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We must find a theory that will work; and that means something extremely difficult; for our
theory must mediate between all previous truths and certain new experiences. It must derange
common sense and previous belief as little as possible, and it must lead to some sensible ter-
minus or other that can be verified exactly.

– William James, Pragmatism, 1907 edition, p. 216



Preface

The Hill–Brown theory of the Moon’s motion was constructed in the years from 1877
to 1908, and adopted as the basis for the lunar ephemerides in the nautical almanacs
of the US, UK, Germany, France, and Spain beginning in 1923. At that time and for
some decades afterward, it was the most accurate lunar theory ever constructed. Its
accuracy was due, first, to a novel choice of “intermediary orbit” or first approxima-
tion, more nearly closing in on the Moon’s actual motion than any elliptical orbit ever
could, and secondly to the care and discernment and stick-to-it-ive-ness with which
the further approximations (“perturbations” to this initial orbit) had been computed
and assembled so as yield a final theory approximating the Moon’s path in real space
with an accuracy of a hundredth of an arc-second or better. The method by which
the Hill–Brown lunar theory was developed held the potentiality for still greater
accuracy.

The intermediary orbit of the Hill–Brown theory may be described as a periodic
solution of a simplified three-body problem, with numerical parameters carried to
15 decimal places. George William Hill, a young American mathematician working
for the U.S. Nautical Almanac Office, had proposed it, and computed the numerical
parameters to their 15 places. A self-effacing loner, he had in his privately pursued
studies come to see that the contemporary attempts at predicting the Moon’s motion
were guaranteed to fail in achieving a lunar ephemeris of the accuracy desired.

Of the two lunar theories vying for preeminence in the 1870s, one was the work
of Peter Andreas Hansen. Hansen’s theory had been adopted as the basis for the lunar
ephemerides in the national almanacs beginning with the year 1862, and it would
continue in that role through 1922. It was numerical rather than algebraic. This meant
that numerical constants were introduced at an early stage of the computation. A con-
sequence was that, beyond this stage, the course of the calculation was not traceable;
the algebraic structure of the theory was lost from sight. The only way to make
responsible corrections to the theory was to start over again from the beginning –
a daunting prospect, given that Hansen’s construction of the theory had occupied
20 years. Already in the 1870s Hansen’s theory was known to be seriously in need
of correction. Further corrections would be required for the theory to keep pace with
ongoing improvements in the precision of celestial observations.
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The second theory, that of Charles Delaunay, which had also required about
20 years for its construction, was entirely algebraic; its calculative paths were there-
fore clearly traceable. Its method, deriving ultimately from Lagrange, was elegant,
and Hill was initially charmed with it. But then came a disillusioning discovery.
In the higher-order approximations, the convergence slowed to a snail’s pace, and the
complexity of the computations increased staggeringly. For perturbations of higher
order than the 7th, Delaunay resorted to “complements,” guesses as to what the
(n + 1)th-order perturbation would be by extrapolation from already computed per-
turbations of the nth and (n − 1)th order. The complements were later found to be
quite unreliable. Delaunay’s resort to “complements,” Hill concluded, was an admis-
sion that his method had failed.

In Part I of the following study, I tell of the new method that Hill now envisaged
for developing the lunar theory, a method suggested by Euler’s lunar theory of 1772.
In the form in which E.W. Brown carried it to completion, it was semi-numerical:
the initial orbit (Hill called it the “variation curve”) was given by the dynamics of
a simplified three-body problem. The numerical input for this three-body problem
was a single number, the ratio of the mean motion of the Sun to the synodic motion
of the Moon. This number was as exactly known as any of the constants of astro-
nomy, and therefore unlikely to require revision. The remainder of the theory, con-
sisting of the thousands of terms necessary to “correct” the simplified model taken
as starting-point, was to be literal or algebraic throughout, and therefore straight-
forwardly correctable. Part II tells how Brown, recruited by George Howard Darwin
of Christ’s College Cambridge as Hill’s continuator, skillfully organized the long
series of computations required for the completion of the Hill–Brown theory.

Can our story appropriately be ended here? I say No. In the 1930s,
J. Leslie Comrie of the British Nautical Almanac Office hazarded the opinion that
the Hill–Brown theory would remain the basis of the lunar ephemerides to the year
2000. In fact, it would be replaced after some 50 years, and in the meantime the lunar
problem would be transformed out of recognition. Brown lived long enough (he died
in July, 1938) to have a role in early phases of the new development. I devote Part III
of my study to describing this transformation, really three revolutions wrapped
into one.

To begin with, even before Hill had conceived of the Hill–Brown theory, two
anomalies had been discovered in the Moon’s motion – variations in its motion
which gravitational theory could not account for; they would still be unresolved
when Brown completed his Tables in 1919. In 1853 John Couch Adams had shown
that Laplace’s theory of the Moon’s secular acceleration (published in 1787) could
account for only about half the observed secular acceleration, leaving the other
half unexplained. Secondly, Simon Newcomb in the 1860s discovered that, besides
its steady acceleration, the Moon’s motion was subject to additional variations,
involving accelerations both positive and negative, lasting sometimes for decades
and sometimes for shorter times. In 1939 it was at last shown conclusively that the
first of these anomalies was due to a deceleration in the Earth’s rotation, and that the
second was due to erratic variations in that same rotation. The assembling of the data
leading to this conclusion was the result of a cooperative effort on the part of many
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astronomers, including Brown. The final proof was worked out by H. Spencer Jones,
H.M. Astronomer at the Cape of Good Hope, and published in 1939.

Jones’s proof meant that astronomy was in need of a new clock. Since Antiquity
astronomers had depended on the diurnal motion of the stars to measure time.
They now knew that this motion, a reflection of the Earth’s rotation, was not strictly
uniform, but was slowing gradually and also varying erratically. A new method of
measuring time was necessary if astronomy was to be a self-consistent enterprise.

In an initial effort to restore logical consistency to their science, astronomers
invented the notion of Ephemeris Time. This was intended to be the time presupposed
in the ephemerides of the Moon, Sun, and planets, which time was in turn supposed to
be the time presupposed in dynamical theory – still, in the 1950s, largely Newtonian.
Unfortunately, the ephemerides were only approximately in accord with dynamical
theory, and were subject to repeated revision to bring them more exactly in accord
with the underlying dynamical theory. Moreover, intervals of Ephemeris Time could
be measured only for the past – a considerable inconvenience. Observations made in
the present had to be made in Universal Time, the varying time given by the apparent
diurnal motion of the stars. Time intervals in Universal Time were then corrected
later through comparisons with the ephemerides.

A more convenient option became available in 1955, with the invention of the
atomic clock. Its possibility had been suggested in 1945 by Isidore Rabi, the inventor
of the magnetic resonance method for studying the structure of atoms and molecules.
Quartz clocks could be calibrated against an atomic frequency, and thus brought to
new levels of precision and accuracy as timepieces. By 1970 atomic clocks had been
so improved as to be accurate to about 5 ns per day. An experiment carried out
in 1971 proved that these clocks obeyed the rules of relativity theory: their rate of
running was dependent on the gravitational fields and accelerated frames of reference
in which they were placed. Here were new complexities and newly available levels
of precision which practical astronomy needed to take into account.

The second revolution came about through the development of the electronic
computer and its application in the calculations of astronomy. During the 1920s,
J. Leslie Comrie of the British Nautical Almanac Office initiated the application of
available punched card technology to the computation of ephemerides. He demons-
trated these processes to E.W. Brown and his graduate student, Walter J. Eckert,
and Eckert took up with enthusiasm the project of adapting computer programs
to the needs of astronomy. By the late 1930s Eckert had succeeded in computeri-
zing the processes whereby Brown had originally computed the 3000 or so terms of
the Hill–Brown theory; the computerized computations showed that, with but few
exceptions, Brown’s results were extremely accurate. In 1948, with the cooperative
help of Thomas J. Watson of IBM, Eckert completed the design and construction of
the Selective Sequence Electronic Calculator. One of the intended uses of this instru-
ment was to compute an ephemeris of the Moon directly from Brown’s trigonometric
series, thus obviating use of Brown’s Tables, which had been found to introduce
systematic error.

Later, with further increments in computer speed and reliability, efforts were
made to re-do the development of the lunar theory by Delaunay’s method. The old
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difficulty of slow convergence re-appeared, and it was found better to start from
Hill’s “Variation Curve,” computed numerically; the theory as a whole, like Brown’s,
would thus be semi-numerical.

The third revolution concerned new types of data, above all, data giving the dis-
tances of celestial bodies. These types of data were introduced by radar-ranging,
space-craft ranging, and after 1969 in the case of the Moon, laser-ranging. Earlier,
the more accurate data had been angular, measuring the positions of celestial bodies
laterally with respect to the line of sight. The new astronomical data, measuring the
distances of celestial bodies, was more accurate by about four orders of magnitude.
These types of data were the work of Jet Propulsion Laboratory (JPL), which had
the task of sending spacecraft aloft and then astronauts to the Moon. The newer data
types required the development of numerical integration techniques and more com-
prehensive (and relativistic) physical models. Laser light, and spacecraft sent aloft,
achieved new wonders in determining the Moon’s position, increasing the preci-
sion of the measurement by four orders of magnitude. The transformation completed
itself in 1984, when responsibility for producing lunar ephemerides, and planetary
ephemerides as well, passed from the Nautical Almanac Office in Washington, DC
to Jet Propulsion Laboratory in Pasadena.

Without doubt, it was the end of an era.
But the mathematical and philosophical interest of an analytic solution to the

lunar problem, in the Hill–Brown-Eckert manner, remains high. Such a solution
reveals something of the nature and limitations of our knowledge of similar problems.

Annapolis, MD Curtis Wilson
January, 2010
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Part I

Hill Lays the Foundation (1877–1878)



1

George William Hill, Mathematician

George William Hill (1838–1914), a mathematician with the U.S. Nautical Almanac
Office from 1861 to 1892, in two papers of 1877 and 1878 laid the foundations
of a new lunar theory, departing from a basic pattern that had characterized earlier
algebraic theories of the Moon’s motions with one exception, to be mentioned below.
The first of Hill’s papers was printed privately, but very quickly a copy (probably
sent by Hill) reached the lunar theorist John Couch Adams of Cambridge University,
and Adams called attention to its seminal importance in the Royal Astronomical
Society’s Monthly Notices for November of that year.1 Wider recognition of its inno-
vative character came during the course of the next decade. In 1887 Hill was awarded
the Gold Medal of the Royal Astronomical Society. His sponsors for the award
included Adams, George Howard Darwin, and the new president of the society,
J.W.L. Glaisher, who devoted his presidential address to a précis and evaluation of
Hill’s two papers.

The starting-point for Hill’s theory was a particular solution of two second-order
differential equations expressing what Henri Poincaré would later call ‘the restricted
problem of three bodies’ (le problème restreint de trois corps). These equations idea-
lized the lunar problem, treating the Moon as of infinitesimal mass and as moving in
the ecliptic plane, the Sun as having zero parallax, and the Earth as moving uniformly
in a circle about the Sun. Hence, before this theory could yield the Moon’s actual
motions, it would need to be modified so as to allow for the inclusion of further
“inequalities.” In his paper of 1878 Hill proposed to treat the inequalities that are
proportional to the sine of the lunar inclination, the solar eccentricity, and the solar
parallax; but the memoir as published contains no further mention of these inequali-
ties. In the 1880s and 1890s Hill published a number of papers on lunar inequalities;
but by the 1890s, we learn, he had bequeathed the project of systematically develop-
ing his lunar theory to a younger man.

1 J.C. Adams, “On the Motion of the Moon’s Node in the Case When the Orbits of the
Sun and Moon are Supposed to Have No Eccentricities, and When Their Mutual Inclina-
tion is Supposed Indefinitely Small,” Monthly Notices of the Royal Astronomical Society,
(hereinafter MNRAS) 38 (Nov., 1877), 43–49.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 1,
c© Springer Science+Business Media, LLC 2010



4 1 George William Hill, Mathematician

This transfer was brought about by George Howard Darwin (1845–1912), son of
Charles Darwin and an applied mathematician of Christ’s College, Cambridge. Hill,
writing on 10 December 1889 to Darwin in reply to Darwin’s note of 22 November
(no longer extant, apparently), explained what had kept him from further developing
his lunar theory:

My energies at present are devoted to the evolving a theory and tables of
Jupiter and Saturn, and other projects have to be laid aside for this time.
Thus it has happened that I have done scarcely anything beyond what you
have seen in print, in reference to the Lunar Theory. It is very problematical
whether I ever have an opportunity of continuing these researches. I should
be glad to see Mr. Brown or any one else enter upon that field of labor. . . .2

The Mr. Brown here mentioned was Ernest W. Brown (1866–1938), a student and
protégé of Darwin’s at Christ’s College during the 1880s. In 1892 he was to migrate
to the United States, take a position at Haverford College, and set himself to work on
the elaboration of Hill’s theory.

Meanwhile, at the urging of Simon Newcomb, Hill had committed himself to
constructing a new theory of Jupiter and Saturn. In 1877, when Newcomb became
director of the Nautical Almanac Office, he had envisaged two ambitious projects for
his staff: the development of a set of planetary tables consistent in their assignment of
masses to the planets (the planetary tables recently published by Le Verrier in Paris
lacked such consistency), and the development of lunar tables more accurate than
those currently available. The theory of Jupiter and Saturn was the most difficult of
the planetary problems, and Newcomb asked Hill – whom he would later characterize
as “easily . . . the greatest master of mathematical astronomy during the last quarter
of the nineteenth century”3 – to take it on. This theory absorbed most of Hill’s efforts
from 1882 to 1892. He insisted on carrying out all the calculations himself, relying
on an assistant only for verifications.

F.R. Moulton on Hill’s death in 1914 wrote an appreciation of the man and his
achievement. Hill, he says, was “retiring and modest to the verge of timidity. . . .
He was absorbed in his own work but never inflicted it on others. In fact, he would
hardly discuss it when others desired him to do so.”4 Moulton reports a conversation
he had with Hill “after one of the meetings of the National Academy in Washington
a few years ago” (Moulton does not specify the year, which was presumably in the
twentieth century). It was a fine spring day; Hill had asked Moulton to join him in a
walk, and was unusually forthcoming about his own earlier work:

Hill told me that he thought the greatest piece of astronomical calculation
ever carried out by one man was Delaunay’s lunar theory, and that his work
on Jupiter and Saturn came second. Now the greater part of this work was
straight computation by methods which were largely due to Hansen, and

2 Hill to G.H. Darwin, 10 Dec. 1889, University of Cambridge Library manuscript collec-
tion (hereinafter UCL.MS), DAR.251:3533; quoted with permission.

3 S. Newcomb, The Reminiscenses of an Astronomer (Houghton: Mifflin, 1903), 218.
4 F.R. Moulton, “George William Hill,” Popular Astronomy, 22 (1914), 391–400, 391.



1 George William Hill, Mathematician 5

which could have been carried out under Hill’s direction by men who did
not have his great ability for original work. It seems probable that science
lost much because Newcomb caused Hill to spend about eight years of the
prime of life on this work. At any rate, this was the direct cause of his laying
aside, as he thought for a time only, his researches on the lunar theory.5

Hill recognized that the working out of his lunar theory would involve much
tedious calculation; he estimated it would require about 10 years, assuming a number
of assistants to do the routine calculations. From a letter of Hill to Darwin of July
1886, we gain some sense of the strain that Hill felt when engaged in “that field of
labor.” Darwin had written to invite Hill to contribute a paper to a certain journal
(unspecified in Hill’s letter); but Hill is begging off:

. . . I have made arrangements for going off in a few days to the wilds of
Canada to pass the vacation. The relaxation I get during the summer vacation
is a matter of great importance to me, as by it I gain sufficient strength to
keep in working trim for the following nine or ten months; and it is all the
more effective, if, during the time, I can be absolutely free from the worry
of scientific investigations.6

In 1892, at age 54, Hill retired from the Nautical Almanac Office, and returned to the
family farm in West Nyack, New York, where he had always preferred to be. He was
an amateur botanist, with considerable expertise in identifying wild plants, and he
loved taking solitary walks and botanizing. From Washington he brought with him
the still unfinished tables for Jupiter and Saturn, and completed them in West Nyack.

In tackling the problem of Jupiter and Saturn, Hill considered the possibility of
using Delaunay’s method – the method Delaunay had applied to the Moon7; it had
not previously been applied to planetary perturbations. He abandoned this idea, how-
ever, and adopted instead a modification of the method of Hansen’s Auseinanderset-
zung.8 Hansen had already applied an early version of his method to Jupiter and
Saturn, thus providing a model.9 Hill apparently judged that Hansen’s processes
would lead more swiftly to the result aimed at than the extensive transformations
required by Delaunay’s method.

In 1895 Hill was chosen president of the American Mathematical Society for
the 1895–1896 term. His presidential address, delivered on 27 December 1895, con-
cerned “the Progress of Celestial Mechanics since the Middle of the Century.”10

5 Ibid., 398.
6 CUL. MS. DAR.251: 2614, Hill to Darwin, 12 July 1886.
7 See Hill’s article, “Notes on the Theories of Jupiter and Saturn,” The Analyst, VIII (1881),

33–40, 89–93; The Collected Mathematical Works of George William Hill, I, 351–363.
8 P.A. Hansen, Auseinandersetzung einer zweckmässigen Methode zur Berechnung der

absoluten Störungen der kleinen Planeten, in Abhandlungen der Königlich Sächsischen
Gesellschaft der Wissenschaften, 5 (1859): 43–218; 6(1859), 3–147.

9 Untersuchung über die gegenseitigen Störungen des Jupiters und Saturns, Berlin, 1831.
10 Bulletin of the American Mathematical Society, second series, II (1896), 125–136; The

Collected Mathematical Works of George William Hill, IV, 99–110.



6 1 George William Hill, Mathematician

Nowhere in it does he mention his own lunar theory; he deals solely with the work
of Delaunay, Gyldén, and Poincaré. Brown, having gone to New York to hear it,
reported to Darwin that “it wasn’t particularly interesting.”11 Hill had mastered an
enormous amount of the detail of celestial mechanics, including the crucial details
that had led him to his new lunar theory. But he was not particularly successful at
transmitting to others a larger view. Frank Schlesinger’s account of Hill’s lecturing
on his specialty at Columbia University for a semester in 1899 tells us that the lec-
turer was tense and that the three graduate students who constituted his audience
were awed and uncomprehending.12 As Newcomb will remark later, Hill lacked the
teaching faculty.13

The archives of the Naval Observatory Library contain an undated, typed memo-
randum of three pages, giving Hill’s assessment of the status of the lunar prob-
lem and his estimate as to what the development of the new lunar theory he had
laid the foundations of would require (for the text, see the Appendix). A reference
there to a memoir by Radau – it dealt with the planetary perturbations of the Moon
and had appeared in the Bulletin astronomique in April and May, 1892 – is conso-
nant with the memorandum’s having been drawn up around the time of Hill’s re-
tirement. The addressee of the memorandum is not specified, but in it Hill refers
three times to “Prof. Newcomb,” in particular mentioning Newcomb’s corrections
of Hansen’s lunar tables. Hansen’s lunar tables had been adopted as the basis for
the lunar ephemerides in the British Nautical Almanac and the French Connaissance
des Temps beginning in 1862; with corrections introduced by Newcomb they were
adopted for the American lunar ephemerides beginning in 1883. Hill, while respect-
ful of Newcomb’s endeavors, is in effect criticizing Newcomb’s attempt to “make
do” with Hansen’s theory.

Hill allows that, from a purely practical point of view, Hansen’s tables, with
minor corrections, might be used for an indefinite time without serious error. But
the comparison Newcomb has made (in Astronomical Papers prepared for the use
of the American Ephemeris and Nautical Almanac, I, 1882, 57–107) between the
terms in Hansen’s theory and those in Delaunay’s shows discrepancies in the values
of the coefficients amounting in some cases to 0′′.5; some of these were probably
due to numerical mistakes made by Hansen. “It is not creditable to the advanced
science of the present day,” Hill remarks, “that we should be in any uncertainty in
this respect.” He goes on to urge that, “in treating this subject, we should start from
a foundation reasonably certain in its details, all known forces being taken correctly
into account.” Hansen’s theory, in his opinion, could not furnish such a foundation.
“To pass from Hansen to a theory absolutely unencumbered with empiricism is a
matter of difficulty. It is not even certain that the figures in [Hansen’s Tables de
la lune, 1857] are actually founded on the formulas of the introduction [to those
tables].”

11 Brown to Darwin, 12 January 1896, CUL. MS. DAR.251: 477.
12 F. Schlesinger, “Recollections of George William Hill”, Publications of the Astronomical

Society of the Pacific, 49, 5–12.
13 S. Newcomb, The Reminiscenses of an Astronomer, 218.
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Hill is endorsing the further development of his own lunar theory, urging that
Ernest W. Brown be encouraged in the computations he has commenced.

Aid should be given in order that we may have the results sooner. . . . I esti-
mate that on this plan new tables could be prepared and ready for use in ten
years. Of course, sufficient computing force must be given to the undertaker
of this project, perhaps three persons might suffice.

Hill’s confidence in his theory was not misplaced. Brown in the course of his
work demonstrated the superior accuracy of the new theory compared to earlier
theories, including Hansen’s and Delaunay’s.

Hill does not imagine that the new tables will resolve all difficulties. Unknown
causes are acting, producing unsolved puzzles that are unlikely to be cleared up in a
mere decade.

The comparison of [the new] theory with observation will give residuals
which are the combined effects of the necessary changes in the values of
the arbitrary constants and the action of the unknown causes. The latter
undoubtedly exist, and I am afraid the period of observation is too short
to show their real law.

Here Hill may have in mind Newcomb’s earlier discovery that Hansen’s tables were
well fitted to lunar observations from 1750 to 1850, but deviated from observations
made before and after that period. As Newcomb discovered, Hansen had altered
numerically the theoretical value of the perturbations of the Moon due to Venus,
attempting in this way to accommodate these earlier and later observations, while
claiming that this was the sole piece of sheer empiricism in his tables. Newcomb
at the date Hill writes is still tinkering with this term – a mistaken effort in Hill’s
view. Hill’s own guess is that the discrepancies are due to the attractions of meteors,
a guess that will prove equally illusory.

The Moon’s motion, it was found, departed from Hansen’s tables in two ways
that Newtonian theory could not account for. First, the Moon was accelerating
over the centuries. Part of this acceleration was derivable from planetary perturbation
of the Earth, but the rest was not. Delaunay suggested that the excess acceleration
might be due to a deceleration in the Earth’s rotation caused by tidal friction. The
second effect was a fluctuation in the Moon’s motion; its speed, besides accelerating,
was altering in seemingly random ways. Like the excess acceleration, the fluctuations
might be attributable to alterations in the Earth’s rotation. But demonstrating these
conjectures would take some doing, and would not be accomplished till 1939. The
introduction of the atomic clock in 1955 will put the assignment of these effects to
changes in the Earth’s rotation beyond possible doubt. Both the tidal deceleration and
the fluctuations remain subjects of ongoing research today. In Part III of our study
we shall enter into more detail concerning this topic, insofar as it is relevant to lunar
astronomy.

Hill’s innovations in the lunar theory led to two later developments in mathe-
matics that we shall touch on in passing. In computing the motion of the Moon’s
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perigee he found himself confronted with an infinite determinant, which he succeeded
in solving. This feat sparked the interest and admiration of Henri Poincaré, and
Poincaré’s ensuing investigation of infinite determinants then led to a considerable
mathematical development in later decades.14 Secondly, Hill’s detailed working out
of a periodic solution of the three-body problem brought such periodic solutions to
the attention of mathematicians, including, again, Poincaré. Such periodic solutions
became for Poincaré the point of departure for explorations of the phase space of the
three-body problem – researches which cast new light on the theory of differential
equations as well as on the nature of classical mechanics.15 In the present study we
focus on the lunar theory itself: Hill’s promising beginnings, and Brown’s elabora-
tion of them into a complete lunar theory.

14 See M. Bernkopf, “A History of Infinite Matrices,” Archive for History of Exact Sciences,
4 (1967–1968), 308–358, especially 313ff.

15 See J. Barrow-Green, Poincaré and the Three Body Problem (Providence, RI: American
Mathematical Society; London: London Mathematical Society, 1997).
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Lunar Theory from the 1740s to the 1870s – A Sketch

The attempt to cope with Newton’s three-body problem not geometrically as Newton
had done but algebraically, using the calculus in the form elaborated by Leibniz,
got under way in the 1740s. That this attempt had not been made earlier appears
to have been due to lack of an appreciation, among Continental mathematicians,
of the importance of trigonometric functions for the solution of certain differential
equations; they failed to develop systematically the differential and integral calculus
of these functions. Newton had used derivatives and anti-derivatives of sines and
cosines, but had not explained these operations to his readers. Roger Cotes, in his
posthumous Harmonia mensurarum of 1722, articulated some of the rules of this
application of the calculus. But Euler, in 1739, was the first to provide a systematic
account of it. In the process he introduced the modern notation for the trigonomet-
ric functions, and made evident their role qua functions. Thus sines and cosines
having as argument a linear function of the time, t , could now be differentiated
and integrated by means of the chain rule. Differential equations giving the gravi-
tational forces acting on a body could be formulated and solved – though only by
approximation.

Euler was the first to exploit these possibilities in computing the perturbations of
the Moon. The tables resulting from his calculation were published in 1746, without
explanation of the procedures whereby they had been derived.

In March of 1746 the prize commission of the Paris Academy of Sciences, meet-
ing to select a prize problem for the Academy’s contest of 1748, chose the mutual
perturbations of Jupiter and Saturn. Since Kepler’s time, Jupiter had been accelerat-
ing and Saturn slowing down, and in other ways deviating from the Keplerian rules.
Newton assumed the deviations to be due to the mutual attraction of the two planets,
and proposed coping with the deviations in Saturn by referring Saturn’s motion to
the center of gravity of Jupiter and the Sun, and assuming an oscillation in Saturn’s
apsidal line. These proposals do not appear to have led to helpful results. The contest
of 1748 was the first academic contest of the eighteenth century in which a case of
the three-body problem was posed for solution.

The winning essay was Euler’s; it was published in 1749. It was not success-
ful in accounting for the anomalies in the motions of Saturn and Jupiter, but its

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 2,
c© Springer Science+Business Media, LLC 2010
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technical innovations proved to be crucially important in later celestial mechanics.
One of them was the invention of trigonometric series – a series in which the
arguments of the successive sinusoidal terms are successive integral multiples of
an angular variable. Euler’s angle in the case of Jupiter and Saturn was the difference
in mean heliocentric longitude between the two planets, which runs through 360◦ in
the course of about 20 years. As it does this, the distance between the two planets
varies by a factor of about 3.4, and hence the forces they exert on each other vary
by a factor of about (3.4)2 = 11.6. The expression of the perturbing force by means
of a trigonometric series enabled Euler to solve the differential equations of motion
to a first-order approximation. Trigonometric series later found other applications in
celestial mechanics, for instance in expressing the coordinates of the Moon in terms
of the mean anomaly, and the relations between mean anomaly, eccentric anomaly,
and true anomaly.

A second seminal innovation in Euler’s essay was his use of multiple observa-
tions in refining the values of certain coefficients. It was the first explicit appeal in
mathematical astronomy to a statistical procedure. The method of least squares had
not yet been invented. Euler’s procedure involved forming the differential corrections
for the coefficients in question, then selecting observations in which a given coeffi-
cient could be expected to be large, and solving the resulting equations approxi-
mately by neglecting terms that were relatively small. Tobias Mayer soon put this
procedure to use in the lunar theory.

The lunar problem differs significantly from the planetary problem. The distance
from the Moon of the chief perturbing body, the Sun, changes by only about 1/390th
of its value during the course of a month, and the resulting perturbation is so minimal
that it can be ignored in the first approximation. What primarily causes the lunar
perturbations is the difference between the forces that the Sun exerts on the Moon and
on the Earth. Were the Moon entirely unperturbed by the Sun, it would move about
the Earth in an ellipse, one focus of which would be occupied by the Earth’s center
of mass; a limiting case being a circle concentric to the Earth. But as Newton showed
in Corollaries 2–5 of Proposition I.66 of his Principia, if the Moon’s pristine orbit
about the Earth were a concentric circle, the effect of the Sun’s extra force, over and
above the force it exerts on the Earth, would be to flatten the circle in the direction
of the line connecting the Earth with the Sun (the line of syzygies), decreasing its
curvature there, while increasing it in the quadratures (where the angle between the
Sun and Moon is 90◦). Also, the Moon’s angular speed about the Earth would be
greater in the line of syzygies than in the quadratures. The variation in angular speed
had been discovered by Tycho in the 1590s, and was named by him the “Variation.”
Newton derived a quantitative measure of the Variation in Propositions III.26–29 of
the Principia, showing (on the assumption again of the Moon’s having pristinely
a circular orbit) that the Moon’s displacement from its mean place would reach a
maximum of 35′10′′ in the octants of the syzygies, and the oval into which the circle
is stretched would have its major axis about one-seventieth longer than its minor
axis.

Astronomers had found the eccentricity of the Moon’s orbit to be, on average,
about one-twentieth of the semi-major axis; were the Sun not perturbing the Moon,
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such an eccentricity would imply an elliptical orbit with the major axis exceeding
the minor by only about 1/800th. Thus eccentricity by itself distorts the shape of
the Moon’s orbit less than solar perturbation. On the other hand, it causes a greater
departure of the Moon from its mean motion, rising to a maximum displacement of
nearly 6◦ approximately midway between perigee and apogee. (This departure from
the mean motion is what led astronomers to assume an eccentric lunar orbit in the
first place.) The true orbit of the Moon, Newton implies, is a kind of blend of the
Variation oval and the eccentric ellipse – “an oval of another kind.”16

When Newton undertook to derive a quantitative measure of the Moon’s apsidal
motion, probably in 1686, he attempted to meld the effects of these two orbits; his
procedure was bold but unjustifiable. From this leap in the dark he later retreated,
apparently recognizing its illegitimacy.17

The first published lunar theory giving explicit derivation of the inequalities by
means of the Leibnizian calculus was Alexis-Claude Clairaut’s Théorie de la lune
(1752). Clairaut and Jean le Rond d’Alembert, both members of the prize com-
mission for the Paris Academy’s contest of 1748, had been occupied with the lu-
nar theory since the commission met in the spring of 1746. Both of them discov-
ered, early on, that their calculations yielded in the first approximation only about
half the motion of the Moon’s apse. With respect to the other known inequalities
of the Moon, their calculations had yielded reasonably good approximations. Nei-
ther Clairaut nor d’Alembert supposed that the second-order approximation would
be able to remove the large discrepancy in the apsidal motion. In September 1747
Clairaut learned that Euler in his lunar calculations had found the same discrepancy.
The three mathematicians were calculating along rather different routes; hence the
apsidal discrepancy did not appear to be an artifact of a particular procedure. Clairaut
presented this discovery to the Paris Academy in November 1747, proposing that a
term be added to Newton’s inverse-square gravitational law, with the additional force
varying inversely as the fourth power of the distance; the coefficient of this second
term was to be adjusted so as to yield the missing apsidal motion. The proposal met
with vigorous protest from Buffon, who regarded a two-term law as metaphysically
repugnant.

Clairaut’s proposal to modify the gravitational law was in accord with an idea
suggested earlier by John Keill – that the inverse-square law holding for interplane-
tary distances might take on a modified form at smaller distances, so as to account
for the forces involved in, for instance, capillary and chemical actions. Euler, by
contrast, thought the gravitational law would fail at very large distances, for he attri-
buted all forces to the impact of bodies, and gravitational force to the pressure of
an aether; but the aether responsible for the “attraction” toward a particular celestial
body would presumably extend only a finite distance from the body. D’Alembert,
differing from both Clairaut and Euler, regarded the inverse-square law of gravitation

16 See D.T. Whiteside, The Mathematical Papers of Isaac Newton, VI, (Cambridge:
Cambridge University Press, 1974) 519.

17 See my “Newton on the Moon’s Variation and Apsidal Motion,” in Isaac Newton’s Natural
Philosophy (eds. Jed Z. Buchwald and I. Bernard Cohen: Cambridge, MA: The MIT Press,
2001), 155–168.
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as sufficiently confirmed by the empirical evidence Newton had supplied; the cause
of the discrepancy in apsidal motion, he advised, should be sought in the action of a
separate force, such as magnetism, reaching from the Earth to the Moon.

The issue was resolved in the spring of 1749, when Clairaut proceeded to a
second-order approximation. In the new calculation, certain terms deriving from the
transverse component of the perturbing force proved after integration to have very
small divisors; the re-calculated coefficients were thus extremely large. These revi-
sions led in turn to a value for the apsidal motion nearly equal to the observed value.
The inverse-square law, it appeared, required no alteration.18 On the other hand, the
slow convergence revealed in the initial analytic assault on the lunar theory was to
prove a persistent difficulty.

Euler published a detailed lunar theory in 1753. Its primary purpose was to
confirm or disconfirm Clairaut’s new result by an entirely different route. Euler
eliminated the radius vector from his calculations, since it did not admit of precise
measurement by the means then available (namely, micrometer measurements of the
Moon’s diameter). He took his value for the apsidal motion from observation, but
in his equations assumed that the inverse-square law required modification by the
addition of a term which he symbolized by μ. The end-result of his calculation was
that μ was negligible and could be set equal to zero.

D’Alembert had registered his early writings on the lunar theory with the Paris
Academy’s secretary, but learning of Clairaut’s new result, stipulated that they should
not be published. In 1754 he published a lunar theory re-worked from the earlier ver-
sions, but now incorporating a multi-stage derivation of the apsidal motion. He gave
four successive approximations, with algebraic formulas for the first two. Whether
further approximations would continue to converge toward the observational value,
he pointed out, remained a question. Neither he nor Clairaut searched for the deeper
cause of the slow convergence they had encountered.

The predictive accuracy achieved in the lunar theories of our three mathemati-
cians was between 3 and 5 arc-minutes – not particularly better than the accuracy
of a Newtonian-style lunar theory, such as Le Monnier published in his Institutions
astronomiques of 1746.

The first lunar tables accurate enough to give the position of the Moon to
two arc-minutes, and hence to give navigators the geographical longitude to 1◦,
were those of Tobias Mayer (1723–1762)), published initially in 1753. They were
later refined and submitted to the British Admiralty. In 1760 James Bradley, the
Astronomer Royal, compared them with 1100 observations made at Greenwich, and
found 1′.25 as the upper bound of the errors. The Admiralty Board at length adopted
Mayer’s tables as the basis for the lunar ephemerides in the Nautical Almanac, which
appeared annually beginning in 1767. Whence the superior accuracy of Mayer’s
tables?

We are unable at the present time to answer this question definitively, but it
appears that empirical comparisons had much to do with the accuracy achieved.

18 A somewhat fuller account is given in “Newton on the Moon’s Variation and Apsidal
Motion,” as cited in the preceding note, 173ff.
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Mayer began with a Newtonian-style theory.19 At some date he carried out an analy-
tical development of the lunar theory, following, with some variations, the pattern
laid out in Euler’s theory of Jupiter and Saturn of 1749; he carried the analysis so far
as to exhaust, as he said, “nearly all my patience.” Many of the inequalities, he found,
could not be deduced theoretically with the desired accuracy unless the calculation
were carried still farther. From Euler’s prize essay on Saturn’s inequalities he had
learned how the constants of a theory could be differentially corrected by compari-
son with large numbers of equations of condition based on observations; and he had
applied such a process in determining the Moon’s librations (slight variations in the
face that the Moon presents to an Earth-bound observer, due primarily to variations
in the Moon’s orbital speed combined with the Moon’s almost exactly uniform axial
rotation). But of the processes he used in determining the Moon’s motions in longi-
tude, he gives us no description. We know that he assembled a large store of lunar
observations, many of them his own, including extremely accurate ones based on the
Moon’s occultations of stars. Presumably he once more constructed Eulerian-style
equations of condition, solved them approximately, and thus refined the coefficients
of his theoretically derived terms to achieve a superior predictive accuracy.

Mayer’s tables, being semi-empirical, did not answer the theoretical question
as to whether the Newtonian law could account for all lunar inequalities. But they
met the navigator’s practical need, supplying a method for determining longitude
at sea – at first the only method generally available. In later years, as marine
chronometers became more affordable and reliable, the chronometric method was
understandably preferred. The chronometer gave the time at Greenwich, and this,
subtracted from local time as determined from the Sun, gave the difference in longi-
tude from Greenwich. The method of lunar distances, by contrast, required a much
more extended calculation. The latter method was long retained, however, as supply-
ing both an economical substitute for the chronometrical method and an important
check on it.

In 1778 Charles Mason revised Mayer’s tables, relying on 1137 observations
due to Bradley, and using, we assume, a similar deployment of equations of condi-
tion. It was in the same way, apparently, that Tobias Bürg revised Mason’s tables
early in the 1800s; he used 3000 of the Greenwich lunar observations made by
Maskelyne between 1760 and 1793. From Mayer’s theoretical derivation (published
by the Admiralty in 1767), Mason deduced eight new terms, and Bürg added six
more, to be included in the tables. But the accuracy of the tables depended crucially
on the empirical refining of constants.

When Laplace undertook to deduce the lunar motions from the gravitational
law, he saw these semi-empirical tables as setting a standard of accuracy difficult
to surpass (Mécanique Céleste, Book VII, Introduction). Laplace’s theory was con-
siderably more accurate than the earlier analytical theories of Clairaut, Euler, and
d’Alembert. This was principally because of Laplace’s discovery of new inequali-
ties by deduction from the gravitational law. Among these new inequalities were

19 Private communication from Steven Wepster of the Mathematics Department, University
of Utrecht.
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two arising from the Earth’s oblateness (the decreasing curvature of its surface
from equator to poles). Moreover, Laplace for the first time supplied a gravitational
explanation for the Moon’s secular acceleration, as arising indirectly from the secu-
lar diminution of the eccentricity of the Earth’s orbit; his deduced value for it was in
good agreement with observations. (In the 1850s it would be found to be theoretically
in error, so that a drastic reinterpretation was required – a topic that we shall return
to in Part III.) The greatest difference between the predictions of Laplace’s theory
and Bürg’s tables was 8.3 arc-seconds; thus the theoretical deduction fell little short
of the accuracy attainable by comparisons with observations. The day was coming,
Laplace confidently predicted, when lunar tables could be based on universal gravi-
tation alone, borrowing from observation solely the data required to determine the
arbitrary constants of integration.

Bürg’s tables were published by the French Bureau des Longitudes in 1806.
In 1811 J.K. Burckhardt presented new lunar tables to the Bureau; they were
based on 4000 observations as well as on the terms newly discovered by Laplace.
A commission compared Bürg’s and Burckhardt’s tables with observations of the
Moon’s longitudes and latitudes from around the orbit, using the method of least
squares to assess the goodness of fit (this appears to have been the first published
use of MLS). In 167 observations of the Moon’s longitude, the root mean square
error of Bürg’s tables was 6′′.5, compared with 5′′.2 for Burckhardt’s tables; in 137
observations of the Moon’s latitudes, the corresponding numbers were 6′′.0 and 5′′.5.
Consequently Burckhardt’s tables were adopted as the basis of the lunar ephemerides
in the French Connaissance des Temps and in the British Nautical Almanac. They
would continue in that role, with some later corrections, through 1861.

For its prize contest of 1820, the Paris Academy of Sciences, at Laplace’s urging,
proposed the problem of forming tables of the Moon’s motion as accurate as the
best current tables [i.e., Burckhardt’s] on the basis of universal gravitation alone.
Two memoirs were submitted, one by the Baron de Damoiseau (1768–1846), direc-
tor of the observatory of the École Militaire in Paris, the other by Giovanni Plana
(1781–1864) and Francesco Carlini (1783–1862), directors, respectively, of the
observatories in Turin and Milan. Both memoirs were Laplacian in method. Damoi-
seau proceeded more systematically than had Laplace. From the start he put the re-
ciprocal radius vector (u) equal to u0 + δu, and the tangent of the latitude (s) equal
to s0 + δs, where u0 and s0 are the elliptic values of u and s, and δu and δs are the
modifications produced by perturbation. He developed the expressions for u and s
to the sixth order inclusive in the lunar and solar eccentricities and inclination of the
lunar orbit, whereas Laplace had stopped at the fourth order. He put δu, and also δs,
equal to a set of sinusoidal terms, with the coefficient of each such term containing
an undetermined factor; there were 85 such factors in the expression for δu and 37
in the expression for δs. Substituting the expressions for u and s into the differen-
tial equations, replacing the arbitrary constants by their empirical values, and set-
ting the coefficient of each sine and cosine term equal to zero, Damoiseau obtained
207 equations of condition, which he solved by successive approximations for the
undetermined factors. Because he substituted numerical values of the arbitrary con-
stants from the start, his theory is called a numerical theory; it is to be contrasted
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with a literal theory in which the coefficients are expressed as algebraic functions of
the arbitrary constants. Comparing Damoiseau’s tables with 120 observations, and
finding them to be of the same order of accuracy as Burckhardt’s tables, the prize
commission deemed them worthy of the prize.

Plana and Carlini in their memoir undertook to achieve a strictly literal solution
of the differential equations. The coefficients of the sinusoidal terms of the theory
are functions of certain constants of the theory – the orbital eccentricities of the
Moon and the Sun, the tangent of the Moon’s orbital inclination to the ecliptic, the
ratio of the Sun’s and Moon’s mean motions, the ratio of the mean Moon-Earth and
Sun-Earth distances. But these functions are far too complicated to be represented
analytically, except in the form of infinite series in the powers and products of the
constants involved. Our authors accordingly introduced such series into the repre-
sentation of the theory – an important innovation, revealing the causal provenance
of each term, and permitting the effect of any revision of a constant to be immedi-
ately calculated. The numerical factor that multiplies any term in such a series can
be determined not merely approximately but exactly, as a numerical fraction, and the
approximate character of the coefficient is due only to the series having to be broken
off after a finite number of terms rather than being summed as a whole.20 Unfortu-
nately, for some of the series the rate of convergence was excruciatingly slow. Where
denominators were produced by the integrations, Plana and Carlini developed their
reciprocals as series and multiplied them into the numerators, often with a decrease in
rate of convergence. At the time of the contest deadline they had not yet constructed
tables, but they showed that their coefficients for the inequalities in longitude were in
close agreement with Burckhardt’s. In view of the immense labor that their memoir
embodied, and the value of the resulting analytic expressions, the Academy decreed
that they, like Damoiseau, should receive the full value of the prize as originally
announced.

Plana went on to achieve a more complete development of the Plana-Carlini
theory in three large volumes published in 1832. Here the dependent variables u
and s emerge in successive approximations. Volume II gives the results accurate to
the fifth order of small quantities, while Volume III gives the developments required
to proceed to still higher orders.

The lunar theories of Clairaut, d’Alembert, Laplace, Damoiseau, and Plana all
took as independent variable the true anomaly ν, expressing the true longitude of the
Moon from the lunar apse. Hence the variables u and s were obtained as functions of
ν, and so also was the mean anomaly ([nt + ε] in Laplace’s notation, where n is the
mean rate of motion, t is the time, and ε the mean longitude at epoch). The result-
ing series, Laplace stated, converged more rapidly than the series obtained when the
independent variable was the mean anomaly. The choice of ν as independent vari-
able meant that, to obtain u, s, and ν as functions of t , it was necessary to obtain
ν as a function of the mean anomaly by reversion of the series for nt + ε in terms

20 A number of the points made here are due to J.C. Adams, “Address on presenting the Gold
Medal of the Royal Astronomical Society to M. Charles Delaunay,” The Scientific Papers
of John Couch Adams, I, 328–340.
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of ν. This operation becomes increasingly laborious as higher-order approximations
are undertaken, and in 1833 Siméon-Denis Poisson (1781–1840) proposed that it be
avoided by taking t as independent variable from the start. His former student Count
Philippe G.D. de Pontécoulant was the first to carry through a complete develop-
ment of the lunar theory on this plan. It was published in 1846 as Volume IV of
Pontécoulant’s Théorie du système du monde.

After completing the analytic development, Pontécoulant substituted empirical
values for the constants in his formulas, and compared the resulting coefficients
of terms in the longitude with those given by Damoiseau, Plana, and Burckhardt.
His and Plana’s coefficients agreed closely, despite the difference in their methods.
Of Pontécoulant’s 95 longitudinal terms, Plana gave 92. In eleven cases of discre-
pancy Pontécoulant traced the difference to errors in Plana’s derivations – errors
later verified and acknowledged by Plana. The differences between Pontécoulant’s
and Burckhardt’s coefficients were generally small; in two cases they exceeded 2′′,
and in 16 they exceeded 1′′. Pontécoulant believed the fault lay with the observations
on which Burckhardt’s tables were based.

In 1848 G.B. Airy published a reduction of the Greenwich lunar observations for
the period 1750–1830. To compare the sequence of resulting positions of the Moon
with theory, he turned to Damoiseau’s tables of 1824, but with the coefficients modi-
fied to agree with Plana’s theory, including all corrections so far found necessary.
From Plana’s theory and the observations, Airy then obtained corrected orbital ele-
ments for the Moon. Airy’s lunar elements were the basis on which Benjamin Peirce
of Harvard founded his Tables of the Moon (1853, 1865), from which were derived
the lunar ephemerides published in the American Ephemeris and Nautical Almanac
from its inception in 1855 through 1882.

For accuracy, however, lunar theories and tables from Damoiseau’s to
Pontécoulant’s were outdistanced by the Tables de la lune of Peter Andreas Hansen
(1795–1874), published in 1857. Deriving perturbations from gravitation alone,
Hansen achieved an accuracy superior to Burckhardt’s. His tables were adopted
for the British and French national ephemerides beginning with the year 1862, and
for the American Nautical Almanac beginning with the year 1883; they would remain
in that role till 1922.

Hansen’s method differed from that of any earlier theory. He had devised his way
of computing perturbations in the course of preparing a memoir for submission in the
Berlin Academy’s contest of 1830. The problem posed by the Academy concerned
Laplace’s and Plana’s conflicting results for second-order perturbations of Saturn due
to Jupiter. Contestants were asked to clarify the issues involved.

The difficulty in deriving analytically the motion of the Moon’s apse in the
1740s had led to the recognition that perturbations must necessarily be computed by
successive approximations. Often the first approximation would prove sufficiently
precise, but if greater precision were needed, the approximations could be arranged
in a series with respect to powers of the perturbing force. For instance, to compute
Saturn’s perturbations of the first order with respect to Jupiter’s perturbing force, you
started from assumed approximate motions for the two planets (motions, say, fol-
lowing Kepler’s “laws”), and on this basis calculated the attractions whereby Jupiter
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perturbs Saturn. To obtain the second-order perturbations of Saturn, the first-order
perturbations of Jupiter due to Saturn, as well as the first-order perturbations of Sat-
urn due to Jupiter, had to be taken into account. Thus the approximations initially
assumed were to be progressively refined. When the corrections became smaller than
the currently attainable observational precision, the result could be accepted as suf-
ficiently precise.

Laplace gave no systematic procedure for perturbations beyond those of first-
order. Second-order perturbations, he believed, would need to be calculated only in
special cases – where, for instance, the first-order perturbations were large. He failed
to recognize the need for a systematic way of obtaining higher-order perturbations.
It would later become evident that he had omitted second-order perturbations as large
as those he calculated. Nor did Plana, though questioning Laplace’s second-order
results, supply a systematic procedure.

A systematic and rigorous procedure for first- and higher-order perturbations,
however, was already at hand. It utilized formulas in the second edition of Lagrange’s
Mécanique analytique (1814). These formulas expressed the time-rates of change
of the orbital elements as functions of these same elements and of the partial deri-
vatives of the disturbing function with respect to them. (The disturbing function,
a Lagrangian innovation, is a potential function from which the force in any direc-
tion can be derived by partial differentiation.) These formulas were rigorous, and
remarkable in their independence of the time. Lagrange was imagining the planet
or satellite as moving at each instant in an ellipse characterized by its six orbital
elements, with the elements changing from instant to instant due to perturbation.
Second- and higher-order perturbations were derivable by applying the well known
“Taylor’s theorem”.

This procedure, however, was time-consuming. The perturbations of all six orbi-
tal elements had to be computed, whereas it was only the perturbations of the
coordinates, three in number, that were required practically. The perturbations of the
elements were often larger than those of the coordinates, so that a smaller quantity
would have to be determined from the difference of two larger ones, giving a result
of uncertain precision. Hansen therefore set out to transform Lagrange’s formulas,
so as to obtain a more direct route from disturbing function to the perturbations of
the coordinates.

Two simultaneous processes had to be taken into account: the continuous change
in shape and orientation of the instantaneous elliptical orbit in which the perturbed
body was conceived to be traveling, and the body’s motion along this protean orbit.
The first of these processes was expressible through the Lagrangian formulas giving
the rates of change of the orbital elements. The second process was governed by
well-known elliptical formulas: the true anomaly of the body (its longitude from
perihelion) was given, through an auxiliary variable, in terms of the mean anomaly;
and the radius vector was given in terms of the true anomaly.

The main focus of Hansen’s method was on the perturbations affecting the orbital
motion in the instantaneous plane (he treated the perturbations in the position of
the instantaneous plane separately). Here two processes needed to be kept distinct:
change in shape and size of the ellipse and motion of the body along it. For this
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purpose Hansen introduced two variables for the time: t for the time in which changes
in orbital elements are registered, τ for the time in which the motion along the orbit
occurs. Eventually the two times would be identified as one, the single time of the
ongoing, twofold process.

To have a single variable that would incorporate both aspects of this double pro-
cess, Hansen introduced ζ as a function of both t and τ . To define it quantitatively,
he stipulated that the true anomaly λ should be a function of ζ , and through ζ of t
and τ . Hence

∂λ

∂t
= ∂λ

∂ζ
× ∂ζ

∂t
,

∂λ

∂τ
= ∂λ

∂ζ
× ∂ζ

∂τ
. (Ha.1)

The quotient of the first of these equations by the second is

∂ζ/∂t

∂ζ/∂τ
= ∂λ/∂t

∂λ/∂τ
. (Ha.2)

Now ∂λ/∂t is given in terms of the Lagrangian formulas for rates of change of
the orbital elements; and ∂λ/∂τ in terms of known elliptical formulas. Hence the
quotient on the right side of (Ha.2) is expressible in terms of explicitly defined
quantities.

To obtain an expression for ζ , Hansen proceeded by successive approximations.
In the first approximation, he set ∂ζ/∂τ equal to 1, so that ζ = τ . Equation (Ha.2)
then simplifies to an expression for ∂ζ/∂t which can be integrated with respect to t ,
yielding a first-order expression for ζ . Differentiating this expression with respect
to τ , Hansen obtained an improved value of ∂ζ/∂τ , which he substituted back into
(Ha.2). The resulting expression when integrated with respect to t gave the second-
order approximation to ζ . Higher-order approximations were obtained by repeating
this process. At the end of each stage of approximation, Hansen replaced τ by t ,
and ζ by z. Thus in descriptions of Hansen’s method the variable z is sometimes
referred to as “the perturbed time”, and nz as “the perturbed mean anomaly.”

The foregoing sketch omits crucial detail, such as the steps required to determine
the arbitrary constants introduced by the integrations, the processes for determining
the radius vector as a function of ζ , and the procedure for finding the instantaneous
plane in which the instantaneous ellipse is located. Among features distinguishing
Hansen’s development of the theory were his use of harmonic analysis (or “special
values”), as advocated by Gauss, in determining the disturbing function, and his
application of Bessel functions in the expansions. Like Damoiseau before him, he
insisted on a numerical rather than a literal form for his theory, and introduced
approximate numerical values for the orbital elements at an early stage, so as to
avoid the problems of slow convergence of series encountered by Plana, and to make
sure that all terms greater than an agreed-upon minimum would be included.

After completing his memoir on the mutual perturbations of Jupiter and Saturn
(Untersuchung über die gegenseitigen Störungen des Jupiters und Saturns, Berlin,
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1831), Hansen set out to apply his new method to the lunar problem. He described
this application in his Fundamenta nova investigationis orbitae verae quam luna per-
lustrat (Gotha, 1838). Is the method really suitable to the lunar problem? Brouwer
and Clemence in their Methods of Celestial Mechanics suggest that it is not. They
give high marks to Hansen’s method in its application to planetary perturbations,
but they describe his adaptation of it to the lunar problem as a tour de force.21 The
method as set forth in the Fundamenta presents new complications, not easily sus-
ceptible of schematic description. We mention here only certain major new features.
A full account is given by Ernest W. Brown in his Introductory Treatise on the Lunar
Theory, Chapter X.

Hansen’s earlier treatment of the latitudes had lacked rigor, while the lunar
latitudes require an especially careful development. In the Fundamenta Hansen
succeeded in deriving them as accurately as could be wished, taking account of the
motions of the ecliptic as well as those of the instantaneous plane of the lunar orbit
with respect to a fixed plane. Comparing the different derivations of the perturbations
in latitude put forward by the celestial mechanicians of his day, the mathematician
Richard Cayley found Hansen’s alone to be strictly rigorous.22

A special difficulty in the lunar theory comes from the relatively large motions
of the Moon’s perigee and node in each lunar month, much larger proportionately
than the motions of the perihelion and node of any planet during its sidereal period.
In his theory of Jupiter and Saturn, Hansen had permitted terms proportional to the
time (t) and its square (t2) to be present, but in the lunar case such terms would
quickly become embarrassingly large. To avoid them Hansen introduced a factor y,
such that the mean rate of the perigee’s advance is ny, where n is the mean rate of
advance in longitude, and y is constant so long as only the perturbations due to the
Sun are considered. He likewise used y in defining the mean rate of recession of the
lunar node.

Another new feature in the Fundamenta was the introduction of a function W
which, integrated twice, gave the perturbations in the instantaneous plane of the orbit.
Initial values for the mean anomaly and radius vector were taken from an auxiliary
ellipse of fixed eccentricity and unvarying transverse axis, the mean motion on it
having a fixed rate n0, and the perigee progressing at the steady rate n0 y. The per-
turbed mean anomaly, nz, was obtained by the integration of W , and then substituted
into the standard elliptical formulas to yield the true anomaly. To find the perturbed
radius vector r , Hansen stipulated that r = r0(1 + ν), where r0 is the radius vector
in the auxiliary ellipse, and ν is a small fraction which represents the perturbations
and is obtained from the integration of W .

Hansen’s lunar theory, Brown tells us, was “much the most difficult to understand
of any of those given up to the present time [1896].” Presumably Hill, at an early
stage in his studies, became acquainted with it, but there are no references to it in his
writings of the 1870s. To Hansen’s work on Jupiter and Saturn, on the contrary, Hill

21 D. Brouwer and G.M. Clemence, Methods of Celestial Mechanics (New York: Academic,
1961), 335, 416.

22 See R. Cayley, “A Memoir on the Problem of Disturbed Elliptic Motion,” Memoirs of the
Royal Astronomical Society, 27 (1859), 1.
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refers explicitly in an article of 1873 concerning a long-term inequality of Saturn;
and a publication of 1874 shows his intensive study of Hansen’s Auseinandersetzung
einer zweckmässigen Methode zur Berechnung der absoluten Störungen der kleinen
Planeten.23 When in the decade 1882–1892 he developed the theory of Jupiter and
Saturn, he chose to apply the method of the Auseinandersetzung, with the modifi-
cation of taking the mean anomaly as independent variable, whereas Hansen had
chosen the eccentric anomaly for this role.

Hill in an article of 1883 takes issue with Hansen’s assertion that the long-period
inequalities of the Moon due to planetary action are difficult to compute, and pro-
poses an elegant method deriving from Cauchy.24 Hill’s memorandum regarding new
tables of the Moon, which we have reproduced in an Appendix, makes evident Hill’s
strongly negative assessment of the future of Hansen’s lunar theory. He saw no way
in which, by various adjustments, it could be brought up to the standards of exact-
ness and clarity he regarded as obligatory for the celestial mechanics of his day.
He envisaged a theory transparent in the sense that each derived effect was clearly
traceable back to the assumptions and numerical constants on which it depended.
Hansen’s theory could not be so described. When E.W. Brown’s An Introductory
Treatise on the Lunar Theory (Cambridge University Press, 1896) appeared, Hill
wrote Brown to compliment him on the book, but, as Brown reports it, with one
criticism:

He thinks it would have been better to leave out Hansen – because he says
‘it will probably never be used again’! Otherwise he is complimentary – but
I don’t think he appreciates what a student beginning the subject wants.25

Delaunay’s lunar theory initially aroused Hill’s enthusiastic allegiance. It had
been published in two huge volumes in 1860 and 1867, and Hill had begun studying
it early in the 1870s. This study influenced his interests and thinking pervasively,
as articles published in The Analyst in 1874 and 1875 testify.26 Delaunay had not
given a derivation of the Hamiltonian-style canonical equations on which he based
his theory, referring instead to a memoir by Binet published in 1841.27 (Binet was the
first to develop canonical equations in which the variables are the elliptical elements

23 The reference is given in note 8.
24 G.W. Hill, “On certain possible abbreviations in the computation of the long-period

inequalities of the Moon’s motion due to the direct action of the planets,” American Jour-
nal of Mathematics, 6 (1883), 115–130.

25 E.W. Brown to G.H. Darwin, 21 March 1896, CUL. MS. DAR.251:479.
26 “Remarks on the Stability of Planetary Systems,” The Analyst, I (1874), 53–60; “The

Differential Equations of Dynamics,” ibid., 200–203; “On the Development of the Pertur-
bative Function in Periodic Series,” The Analyst, II (1875), 161–180.

27 M.J. Binet, “Mémoire sur la variation des constants arbitraires dans les formulas générales
de la dynamique,” Journal de l’École Polytechnique, Vingt-Huitième Cahier, T.XVII
(1841), 1–94. Binet’s work derives, not from Hamilton or Jacobi, but from Poisson
(personal communication from Michiyo Nakane; see M. Nakane and C.G. Fraser,
“The Early History of Hamilton-Jacobi Dynamics 1834–1837,” Centaurus, 44 (2002),
161–227.)
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of motion of a planet or satellite; Delaunay used them with one change, indicated
below.) In an article published in 1876, Hill derived Delaunay’s equations, relying
not on Lagrange’s and Poisson’s brackets, which, as he acknowledged, permitted
the equations to be established in a very elegant manner, but “on more direct and
elementary considerations.”28 He evidently saw his role here as that of presenting
to American mathematicians a sophisticated development with which they were pre-
sumably unfamiliar. His first sentence conveys what he saw in it:

The method of treating the lunar theory adopted by Delaunay is so elegant
that it cannot fail to become in the future the classic method of treating
all the problems of celestial mechanics.

The rudiments of Delaunay’s method may be described as follows.29 Let R be
the disturbing function, and let the elements selected as canonical be: 	, the mean
anomaly; g, the angle between the node on a fixed plane and the perigee; h, the
angle between the node and a fixed line in the fixed plane; L = √

(aμ), where
a is the semi-major axis and μ is the sum of the masses of the Earth and the
Moon; G = L

√
(1 − e2), where e is the eccentricity; and H = G cos i , where i

is the orbital inclination. The mean anomaly 	 = nt + ε is an unexpected choice
for an element since it is not a constant in the unperturbed elliptical orbit; Delau-
nay introduced it to replace one of Binet’s elements (viz., a factor entering into n),
to avoid the emergence of terms proportional to t in the partial derivatives of R.
Of Delaunay’s set of elements, Hill remarks that “it does not appear that a better
can be selected.” For the disturbed ellipse Delaunay then obtained the canonical
equations

d L

dt
= ∂R
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,
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dt
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,

d H
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,

d	
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,

dh

dt
= − ∂R

∂H
. (D.1)

Delaunay developed R as a series of cosines of multiples of the angles 	, g, h, and 	′,
where 	′ is the mean anomaly of the Sun. If the unperturbed values of these variables
are identified by the subscript “0,” the resulting series may be written

R = F +
∑

A cos[i1(nt + 	0)+ i2g0 + i3h0 + i4(n
′t + 	′)],

where i1, i2, i3, i4 are integers, and the summation extends to all sets of integers
leading to detectable inequalities.

Delaunay’s strategy in solving the equations was to separate R into two parts,
R1 and R − R1, where R1 is a single term in R, and solve the equations with R1

28 G.W. Hill, “Demonstration of the Differential Equations Employed by Delaunay in the
Lunar Theory,” The Analyst, III (1876), 655–670.

29 Our account is based on Delaunay’s earliest description: “Mémoire sur une nouvelle
méthode pour la determination du movement de la lune,” Comptes rendus hebdomadaires
des séances de l’Académie des Sciences, 22 (1846), 32–37.
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substituted for R. The solution gave him new values of L , 	,G, g, H, h, which he
substituted into R − R1. Then he repeated the process, separating R − R1 into
two parts, R2 and R − R1 − R2, and solving the equations with R2 substituted
for R. The process was to be repeated over and over, at each stage removing the
largest remaining term in R, until all significant terms were removed. At each stage
the literal expressions of L , 	,G, g, H, h approached more nearly to their final
form.

According to Hill, Delaunay’s procedure was based on the most advanced and
elegant formulation of dynamics available, and it provided complete transparency
in the relations between causes and derived effects. A distinct advantage was its
enabling the calculator to focus on one term of the disturbing function at a time.
Later, Hill would come to regard the large number of tedious transformations entailed
by the method as a serious drawback.

At some point in the mid-1870s, Hill became aware of a more serious difficulty in
the application of Delaunay’s method to the Moon – a difficulty which, from the hu-
man standpoint, looked fatal. The series determining the coefficients of some pertur-
bation terms converged so slowly that to obtain a result of the desired precision requi-
red a quite unreasonable expenditure of time and effort. It was the same difficulty that
Plana and Pontécoulant had encountered, and that had led Hansen to choose a nu-
merical form for his theory. Delaunay carried the development of his series to the
eighth and sometimes to the ninth order of small quantities, still without attaining a
final result of sufficient precision to match the precision of contemporary observa-
tions. Seeing the daunting number of further terms that would have to be calculated if
he were to proceed to the next higher order, he introduced “probable complements”,
based on the rate of decrease of the last two or three terms calculated. Newcomb
later found these complements, though in some cases roughly correct, quite illu-
sory in others. Delaunay’s method, after seeming to promise exact science, was here
showing itself irremediably inexact.

For Hill, the recognition of this difficulty was a trumpet call. A new beginning
was necessary. Hill opted for a radical departure from the tradition of past lunar
theory.

All lunar theorists from Kepler to Delaunay, Euler alone excepted, had taken
a solution of the two-body problem in Newtonian theory – a circular or elliptical
orbit of the Moon about the Earth – as their starting-point, then superimposed on it
periodic variations as required by theory or observation. John Couch Adams, in open-
ing his lectures on lunar theory in the 1860s, called this procedure “the method of
the Lunar Theory”:

The Earth and Moon describe orbits round the Sun which are approximately
ellipses, and the Moon might be regarded as one of the planets; but this
point of view would not be a simple one; the disturbing action of the Earth
would be too great, though it is never so great as the direct attraction of the
Sun, that is to say, never great enough to make the Moon’s path convex to
the Sun. The more convenient method is to refer the motion of the Moon
to the Earth, and counting only the difference of the attractions of the Sun
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upon the Earth and upon the Moon, to find how this distorts the otherwise
elliptical relative orbit. This is the method of the Lunar Theory.30

In contrast, Hill will take as starting-point an oval orbit of the Moon about the
Earth – a circle flattened toward the Sun by the difference between the Sun-induced,
Sun-ward accelerations of the Moon and of the Earth; it is a periodic solution of
a simplified version of the three-body problem. It was in fact the same curve that
Newton had found as an effect of the Sun’s action on the Moon. As previously
noted, and unbeknownst to Hill, Newton in the 1680s had computed an ellipse which
approximated this “Variation curve” with considerable accuracy. And J.A. Euler, son
of Leonhard Euler, had calculated in 1766 the first two terms giving the Moon’s
motion on the Variation curve (Euler’s coefficient for the second term is mistaken,
owing to a simple numerical error).31 Young Euler’s article contains the statement,
“I dare assert that if anyone succeeded in finding a perfect solution [to the prob-
lem of the Variation], he would scarcely find any further difficulty in determin-
ing the true motion of the real Moon.” Leonhard Euler, the father, was likely the
source of this claim, but its decisive substantiation would have to await the elabora-
tion of the Hill–Brown lunar theory. We shall find Hill proceeding just as if he had
read and accepted Euler’s pronouncement (we have no evidence that he in fact had
seen it).

In his final lunar theory, published in 1772, Leonhard Euler chose rotating rectan-
gular coordinates, the x and y coordinates rotating in the plane of the ecliptic about
the z axis with the mean angular speed of the Moon. His objective was to obtain
series that converged rapidly. He separated the periodic developments of the lunar
coordinates into classes according to the parameters on which they depended: K , the
eccentricity of the lunar orbit; i , the inclination of the lunar orbit to the ecliptic; κ ,
the eccentricity of the solar orbit; a, the ratio of the Sun’s parallax to the Moon’s
parallax; p, the difference between the mean motion of the Moon and the mean
motion of the Sun, which Euler calls the “mean elongation;” q, the mean anomaly of
the Moon; r , the mean argument of latitude; and t , the mean anomaly of the Sun. The
stress on inequalities dependent on p does not appear to be present; p is simply one
of eight parameters on which the Moon’s motion depends. Euler was thus proposing
to develop his mathematical theory systematically in terms of the successive powers
and products – of one, two, three, and higher dimensions – of these small parameters.
It was a new way of proceeding, which could guarantee the correctness of the theory
to any pre-chosen level of precision.

Why did Euler (father and/or son) in the paper of 1766 claim that, given a perfect
solution of the problem of the Variation, the further development of the lunar theory
would be without difficulty? Euler does not say, but the following considerations
were probably part of his thinking.

30 J.C. Adams, “Lectures on the Lunar Theory,” in The Scientific Papers of John Couch
Adams, II (Cambridge: Cambridge University Press, 1900), 6. The lectures were given
with successive refinements from 1860 to 1889.

31 J.A. Euler, “Réflexions sur la variation de la lune,” Histoire de l’Académie Royale des
Sciences et Belles-Lettres, Berlin, 1766, 334–353.
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For earlier investigators, the Variation was a single term, a sinusoidal term dis-
covered empirically by Tycho, with argument equal to twice the difference between
the mean longitudes of the Moon and the Sun, i.e., 2(n − n′). Euler’s paper of 1766
derives not only this term but a second term, with double the argument of the first
term, i.e., 4(n − n′). Euler knew his solution to be an approximation at best; with
more investment of labor, further terms could be derived. This discovery can have
been a stepping-stone to Euler’s project in the theory of 1772: to develop the entire
lunar theory in terms of the powers and products of small parameters, by successive
approximations.

But secondly, Euler may have come to see the Variation as more intrinsic to
the lunar problem than any of the other inequalities found in the Moon’s motion –
inequalities dependent on eccentricity, inclination, or parallax. Let us imagine the
eccentricities K and κ , the inclination i , and the ratio a of solar parallax to lunar
parallax diminishing so as to become negligible or zero; a “Variation” would still
be present in the Moon’s motion, provided only that the Moon’s mean motion n
and the Sun’s mean motion n′ differed. Deriving the resulting motion of the Moon
would be solving an essentially three-body problem. To cope with it, the analyst
would no doubt proceed by successive approximations. The parameter in terms
of which to develop these approximations could be m = n′/n or m = n′/(n − n′).
While Newton was able to show by qualitative geometrical arguments that the Varia-
tion curve is some kind of oval, flattened along the line of syzygies, it is important to
note that, except for successive approximations in terms of m or m, no other avenue
to learning the precise nature of the Variation orbit and motion was – or yet today
is – known.

It will be worth our while to review certain general qualitative features of the
Variation; see the figure below. The Moon moves about the Earth E in an orbit abcd,
while the Earth-Moon system moves about the Sun S; we have exaggerated both the
size of the orbit abcd relative to the distance SE, and the flattening of this orbit.
The period of the Earth about the Sun, reckoned with respect to the stars, is 365.256
days. The period of the Moon about the Earth, reckoned again with respect to the
stars, is 27.321 days. These two numbers, with their ratio, have been – at least until
the introduction of atomic clocks in 1955 – as accurately known as any constants in
all of astronomy.

Two further numbers are needed to determine the ratio of the forces of the Sun
and Earth on the Moon. These two numbers are the Earth-Sun distance and the
Moon-Earth distance. The mean ratio of these distances was already known in the
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1760s to be about 380 or 390 to 1. J.A. Euler in his paper of 1766 assumed a solar
parallax of 9′′; this with the known lunar parallax of close to 57′.0 implies a ratio
of 380:1. The senior Euler in his lunar theory of 1772 used the value 390:1 for this
ratio. The accepted value today is about 389:1. These data, along with Proposition 4
of Book I of Newton’s Principia, yield a value for the ratio of the Earth’s force on the
Moon to the Sun’s force on the Moon. With Newton’s value for the solar parallax,
10.5 arcseconds (corresponding to an Earth-Sun distance of 19,644 Earth radii), the
Sun’s force on the Moon comes out to be 1.8 times the Earth’s force on the Moon.
With Euler’s value of 1/390 for the ratio of parallaxes, the Sun’s force on the Moon
is found to be 2.18 times the Earth’s force.

Since the two forces act constantly, the Moon’s path must at each instant be
curved concavely toward both the Sun and the Earth. To understand how this can be,
consider the Moon moving from a, where it is a new Moon, to b, where it is at the
first quarter. Its path ab is shown in the preceding figure as convex toward the Sun,
but this is an illusion due to the diagram’s failing to incorporate time and motion.
The Moon requires 7.4 days to move from a to b, an arc which at the Sun subtends
an angle of 8.8 arcminutes, or less than one-sixth of a degree. But in 7.4 days the
whole Earth-Moon system moves through 7◦.293 about the Sun. The relatively tiny
motion that takes the Moon around the Earth is dwarfed with respect to the larger
sweep that takes the Earth-Moon system about the Sun. This larger sweep moves the
Moon in an arc always concave toward the Sun, while the Moon creeps round the arc
ab which, reckoned in the moving space with Earth at its origin, is always concave
toward the Earth. Since the curvatures are inversely as the radii, the Moon’s orbit
about the Earth has a curvature 389 times the curvature of the Moon’s path about the
Sun. The curvatures are directly as the accelerative forces, but inversely as the 3/2
powers of the linear velocities. Given that the accelerative force of the Sun on the
Moon is 2.18 times the accelerative force of the Earth on the Moon, the much larger
curvature of the Moon’s path about the Earth compared to the curvature of its path
about the Sun is due to the much smaller linear velocity of the Moon’s motion about
the Earth – only about 1/90th of its velocity about the Sun.

The Variation, more than the other parametric dependencies of the Moon’s
motion considered by Euler, must have led him to ponder more deeply the dy-
namic complexities presented by our Moon’s motion. The curve the Moon follows
in space is fully determinate, yet its essence, its mathematical formula, its exact in-
dividuality, is unknown, except the parameters governing it be extracted by succes-
sive approximations, step by step. Newton approximated the Variation curve with
an ellipse, but it is not an ellipse or any other curve with a finitely expressible
formula. In this respect the Variation resembles the lunar theory as a whole; the
exact character of the motion is hidden in the dynamics. These realizations must
have led Euler to propose that, of all the problems in the Moon’s motion, the prob-
lem of the Variation should be tackled first, and independently of the other lunar
inequalities.

Hill’s acquaintance with Euler’s theory came about in his undergraduate study at
Rutgers in 1855–1859 under Theodore Strong, professor of mathematics. Strong,
Hill later recalled, was old-fashioned, and liked to go back to Euler for all his
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theorems, asserting that “Euler is our Great Master.”32 Hill, in the introduction to his
paper of 1878, explicitly cites Euler’s lunar theory of 1772 as providing the model
for his own partition of the inequalities into classes. Hill’s papers and Euler’s lunar
theory also agreed in using rotating rectangular coordinates, but for Hill the coordi-
nates rotated with the mean speed of the Sun, not the Moon.

The Eulerian roots of Hill’s new theory are important. Without Hill’s having
previously become acquainted with Euler’s theory of 1772, he might never have
thought of developing the lunar theory along Eulerian lines.

Also important, however, were the respects in which Hill went beyond Euler.
First, he had studied the methods of Hansen and Delaunay. Hansen’s Untersuchung
showed how all terms with coefficients greater than a pre-specified lower bound
could be obtained – a kind of result that no earlier mathematical astronomer had
achieved. Delaunay’s completely literal lunar theory permitted each perturbational
term to be traced back to the assumptions on which it was based. Hill undoubtedly
saw the exactitude and transparency thus illustrated as standards that a new theory
ought to meet.

Crucial to Hill’s new solution of the lunar problem was the Jacobian integral,
an integral of the equations of motion for a restricted form of the three-body problem.
Nothing similar was available to Euler, who had long struggled to integrate the equa-
tions of the general three-body problem, and had at last given up the attempt. In the
lunar case he made no use of general integrals, such as those for vis viva and angu-
lar momentum. Knowing in advance that the Moon’s position depended on certain
parameters, he formed differential equations each of which contained trigonomet-
ric terms deriving from just one of these parameters or the product of two or more,
and solved the equations one after another by the method of undetermined coeffi-
cients. He did not attempt to calculate the motions of the apsidal and nodal lines, but
used the values for these constants that Mayer had derived from observation. Other
constants besides those introduced by integration, he suggested, might have to be
evaluated observationally. His primary aim was to achieve a precision of one minute
of arc, matching the precision of the available observations.

In contrast, Hill’s solution will be controlled by the vis viva integral due to
C.G.J. Jacobi and first published in the Comptes rendus of the Paris Academy in
1836.33 According to Jacobi in his Vorlesungen über Dynamik, Euler had regarded
the vis viva integral as valid only about a fixed center of attraction, whereas the
Jacobian integral was here applied to a moving center; Jacobi credits Lagrange with
the extension to moving centers.34 For Hill, the Jacobian integral did yeoman service
in determining the properties of the motion. It enabled him, for instance, to obtain

32 See E. Hogan, “Theodore Strong and Ante-bellum American Mathematics,” Historia
Mathematica, 8 (1981), 435–455.

33 C.G.J. Jacobi, Comptes rendus de l’Académie des Sciences de Paris, III, 5961; reprinted in
C.G.J. Jacobi’s Gesammelte Werke, IV (ed. K. Weierstrasse: Berlin: Reimer 1886), 35–38.

34 C.G.J. Jacobi, Vorlesungen über Dynamik, in Gesammelte Werke, Supplementband (ed.
A. Clebsch Berlin: Reimer, 1884), 10. For a detailed account of Jacobi’s likely path
in deriving his integral, see pp. 195–201 of M. Nakane and C.G. Fraser, “The Early
History of Hamilton-Jacobi Dynamics 1834–1837,” Centaurus, 44 (2002), 161–227. The
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the constants of the Variation orbit in literal form, as series in the constant m. By its
means he obtained the terms of the Variation in longitude and radius vector with a
precision far greater than ever before achieved.

Another important feature of Hill’s treatment of the lunar problem was his use of
the imaginary exponential as it relates to the cosine and sine:

e±(√−1)θ = cos θ ± √−1 sin θ.

This relation had been used by d’Alembert in his lunar theory of 1754, but had
not been employed by later celestial mechanicians until Cauchy started promoting
it in the 1840s. The expression of cosines and sines of angles by the imaginary
exponential is particularly useful when infinite series are to be multiplied. Hill’s
theory relied heavily on such multiplications. The expression of trigonometrical
series by imaginary exponentials reduced the multiplications to a simple addition of
exponents.

Hill’s first use of this device was in his paper “On the Development of the
Perturbative Function in Periodic Series,” published in The Analyst in 1875.35 This
paper makes reference to a memoir of 1860 by Puiseux, also dealing with the
development of the perturbing function.36 Puiseux advocated use of the imaginary
exponential with the mean anomaly or its multiples as argument:

The consideration of this new variable allows us not only to assign the limits
within which the coordinates remain convergent, but, as M. Cauchy has
remarked, to calculate without difficulty the general terms of these develop-
ments. Moreover, the same method applied to the perturbing function fur-
nishes the general term of this function developed according to the sines
and cosines of multiple arcs of the mean anomalies of the two planets. The
coefficients of the sine and cosine of a given argument are thus obtained
directly in the form of series proceeding according to the integral powers of
the two eccentricities, of the sine of the mutual half-inclination of the orbits,
and of the ratio of the major axes – that is, under the most appropriate form
for use in celestial mechanics.37

Puiseux is here following in the footsteps of A.-L. Cauchy, who in the Paris
Academy Comptes rendus of the 1840s wrote frequently on ways to make rigor-
ous and to streamline celestial mechanics. Puiseux refers in particular to Cauchy’s
report, in the Comptes rendus for 1845,38 for a commission reviewing a memoir by
Le Verrier on an inequality in the mean motion of the minor planet Pallas. The minor

reconstructed derivation involves a time-dependent potential and thus a non-conservative
dynamical system.

35 The Analyst, II, 161–180; Collected Mathematical Works of G.W. Hill, I, 206–226.
36 Puiseux, “Mémoire sur le développement en séries des coordonnées des planets et de la

fonction perturbatrice,” Journal de mathématiques pures et appliqués, Deuxième Série, V
(1860), 65–102, 105–120.

37 Ibid., 65.
38 XX, 767–786.
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planets so far discovered – there were just four of them – had all proved trouble-
some: orbital elements calculated from 1 year’s observations disagreed with the next
year’s observations, and so it was unclear how to proceed in determining perturba-
tions. Le Verrier had found that 7 times the mean motion of Pallas minus 18 times the
mean motion of Jupiter was a very small angle (viz., 27′11′′); an inequality with a pe-
riod of 83 years would result, but being of the eleventh order in the eccentricities and
inclinations, the question was whether it was in fact detectable. Only a detailed com-
putation could decide the matter. The available methods for computing it stemmed
essentially from Laplace, and were exceedingly laborious. Le Verrier carried out this
computation, and found the maximum value of the inequality to be 14′55′′, and the
phase difference from the mean anomaly, −29◦7′. The commission desired to check
Le Verrier’s result without having to repeat his long calculation.

Cauchy had already shown how to do this: derive a general term of the per-
turbing function algebraically, then substitute into it the numbers appropriate to the
inequality in question. No one earlier had carried out such a procedure. Applying it
to Le Verrier’s inequality, Cauchy first obtained a maximum of 15′6.6′′ and a phase
difference of −29◦3′55′′, and then by a slightly different calculative route a maxi-
mum of 15′6.3′′ and a phase difference of −29◦3′25′′. The results agreed closely
with each other and differed but slightly from Le Verrier’s result; the difference,
according to Cauchy, was of the order of the error arising from Le Verrier’s use of
7-place logarithms.

Since Hill gives us no specific references, we do not know which of Cauchy’s
writings he read. He was clearly aware of Cauchy’s insistence on quantifying the
error committed in breaking off an infinite series at any particular point. Hill in his
paper of 1878 stated:

I regret that, on account of the difficulty of the subject and the length of the
investigation it seems to require, I have been obliged to pass over the impor-
tant questions of the limits between which the series are convergent, and
of the determination of superior limits to the errors committed in stopping
short at definite points. There cannot be a reasonable doubt that, in all cases,
where we are compelled to employ infinite series in the solution of a prob-
lem, analysis is capable of being perfected to the point of showing us within
what limits our solution is legitimate, and also of giving us a limit which
its error cannot surpass. When the coordinates are developed in ascending
powers of the time, or in ascending powers of a parameter attached as a
multiplier to the disturbing forces, certain investigations of Cauchy afford
us the means of replying to these questions. But when, for powers of the
time, are substituted circular functions of it, and the coefficients of these
are expanded in powers and products of certain parameters produced from
the combination of the masses with certain of the arbitrary constants intro-
duced by integration, it does not appear that anything in the writings of
Cauchy will help us to the conditions of convergence.39

39 The Collected Mathematical Works of George William Hill, I, 287.
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Thus Hill recognized the legitimacy of Cauchy’s demand for tests of convergence,
and though he was unable to give error-terms for the series he used, he demonstrated,
as we shall see, that the apparent convergence of these series was exceedingly rapid.
Both in his use of the imaginary exponential and in his concern with convergence,
we must recognize the influence of Cauchy.

When Hill was first appointed to the Nautical Almanac Office in 1861, he spent
a year or two in Cambridge, Massachusetts40; the office was located there from
its inception in 1849 till 1866, primarily in order to benefit from the guidance
of Benjamin Peirce, professor of mathematics at Harvard. Peirce had introduced
Cauchy’s work, including the Cours d’analyse of 1821, into the Harvard curri-
culum.41 It can have been during Hill’s time in Cambridge that he gained some
acquaintance with Cauchy’s writings. But he soon obtained permission to do his
work at the family farm in West Nyack, and we do not know what works he had in
his library there.42

In his paper of 1878, Hill solved his differential equations while leaving out of
account the lunar orbit’s eccentricity and its inclination to the ecliptic; he thus
obtained a periodic orbit. His paper of 1877, proceeding from that same periodic
orbit, introduced eccentricity into the problem, and set out to solve the differential
equations that thus resulted. In this way he arrived at an infinite determinant, a kind
of problem he was the first to confront. In the course of solving it he made crucial
use of a summation which may be written as

+∞∑

i=−∞

1

θ ± i
= π cotπθ,

where θ is a constant. This formula, according to Hill, was “well known”. It had
first been derived by Euler, with the daring manipulative virtuosity for which he is
famous, in a paper published in 174343; and it is also given in Euler’s Introductio in
analysin infinitorum, I.44 It can be derived more soberly in accordance with Cauchy’s
theory of residues, and is so derived in Théorie des fonctions doublement périodiques
by Briot and Bouquet, published in 185945; this book was a standard text for complex

40 R.C. Archibald, A Semicentennial History of the American Mathematical Society,
1888–1938 (New York: American Mathematical Society, 1938), 117.

41 K.H. Parshall and D.E. Rowe, The Emergence of the American Mathematical Research
Community, 1876–1900: J.J. Sylvester, Felix Klein, and E.H. Moore (Providence, RI
American Mathematical Society, 1994), 18.

42 Hill bequeathed his library to Columbia University, according to his will, dated 15 April
1897, and published in the Columbiana at that time. But a list of the books thus donated
to Columbia does not appear to have survived.

43 Leonhardi Euleri Opera Omnia, I.17, 15.
44 Ibid., I.8, 191. See also J.A. Euler, Introduction to Analysis of the Infinite, I

(tr. John D. Blanton: New York, Springer-Verlag, 1988), 149.
45 See C. Briot and C. Bouquet, Théorie des fonctions doublement périodiques (Paris:

Mallet-Bachelier, 1859), 126.
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function theory in the late nineteenth century, and Hill may have met with his “well
known” formula there.

In his founding of a new and more exact lunar theory, Hill was powerfully
assisted by what he had learned from his study of Euler’s writings during his college
days and by his later solitary study of the mathematical literature of his own day.
His construction of the new lunar theory was also solitary. Among mathematical
astronomers in America, his preparation was altogether unique. Without that prepa-
ration, it is hard to see how his two seminal papers of 1877 and 1878 could have
come to be.



3

Hill on the Motion of the Lunar Perigee

Of Hill’s two innovative papers on the lunar theory, the first, “On the part of the
motion of the lunar perigee which is a function of the mean motions of the sun and
moon” (Cambridge, MA: John Wilson, 1877, 28pp; reprinted in Acta Mathematica 8
(1886), pp. 1–36) was by far the most esoteric in its subject matter and hyper-refined
in the methods it employed. The second paper introduces the new lunar theory in
a more pedestrian and reader-friendly way, as the reader will discover in our later
section on “Hill’s Variation Curve.” The first paper must have made a stunning im-
pression on those readers who were prepared to appreciate it; it is a blockbuster of a
paper, astonishing in what and how it achieves. We shall attempt to make its essential
steps understandable for readers with a moderate amount of training in algebra and
the calculus.

The first paper was initially published privately at the author’s expense. The
second paper, “Researches in the Lunar Theory,” was published in the first three
issues of the first volume of the American Journal of Mathematics in 1878. Most
of Hill’s earlier papers, and a few later ones (up to 1881), were published in The
Analyst, a recreationally oriented American journal of pure and applied mathematics
published from 1874 to 1883;46 for his lunar papers, however, Hill apparently did
not consider The Analyst a suitable vehicle. The first volume of the American Jour-
nal of Mathematics, in which Hill published his second paper, did not exist when Hill
completed his first paper. He surely knew that he had achieved something important,
and must have wanted to see it quickly in print. He opted for a private printing of
200 copies; this had the advantage of giving him control of the distribution. As noted
earlier, John Couch Adams received a copy shortly after the article appeared – no
doubt sent by Hill.

In opening his essay of 1877, Hill remarks that lunar theorists since the publi-
cation of Newton’s Principia have been puzzled to account for the lunar perigee’s
motion, simply because they could not conceive that terms of the second and higher

46 Parshall and Rowe, The Emergence of the American Mathematical Community 1876–
1900, 51, 85.
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orders with respect to the disturbing force produced more than half of it. Nor, he
asserts, has the problem yet been satisfactorily solved:

The rate of motion of the lunar perigee is capable of being determined from
observation with about a thirteenth of the precision of the rate of mean
motion in longitude. Hence if we suppose that the mean motion of the
moon, in the century and a quarter which has elapsed since Bradley began
to observe, is known within 3′′, it follows that the motion of the perigee can
be got to within about 500,000th of the whole. None of the values hitherto
computed from theory agrees as closely as this with the value derived from
observation.

The perigee moves about 40◦40′ per year; hence in the 125 years since Bradley it
has moved about 5085◦. Hill is asserting that this total motion can be determined by
observation with a precision of about 3 × 13 = 39 arc-seconds = 0◦.010833, which
is approximately the 500,000th part of the whole. Lunar theorists had not yet come
near to achieving so precise a determination.

Hence I propose, in this memoir, to compute the value of this quantity, so
far as it depends on the mean motions of the sun and moon, with a degree of
accuracy that shall leave nothing further to be desired.

It is only part of the motion of the lunar perigee that Hill is here aiming to
calculate, for the complete motion of the perigee depends in some measure on the
eccentricities of the Moon’s and Earth’s orbits, and on the inclination of the Moon’s
orbit to the ecliptic. But the part Hill will be calculating – the part dependent on the
constant m – will prove to be the main part. Indeed, the value Hill will obtain from
his calculation will differ from the observational value by no more than 1/70th of
the latter. Think of it! – a discrepancy of 1/70th instead of the one-half that Euler,
Clairaut, and d’Alembert were initially confronted with. With the result of Hill’s cal-
culation in hand, it will no longer be a wild surmise that the Moon’s path is more
nearly approximated by the Variation curve than by any Earth-focused ellipse. And
this curve is totally definable in terms of the small parameter m, the cause of all the
problems of slow convergence that had stymied the earlier investigators.

The mathematical development in Hill’s paper of 1877 assumes that the lunar
inequalities depending solely on the parameter m – except for the motion of the
apse – have already been obtained. In other respects, Hill no doubt intends his paper
of 1877 to be self-contained, but his explanations here are remarkable for their con-
cision. We can promise the reader that certain concepts presented here with the
briefest characterization – the Jacobian integral, for instance, and the potential func-
tion  – will in our resume of the second paper be more fully explained.

Hill begins by presenting the differential equations in the form47

d2x

dt2
= ∂

∂x
,

d2 y

dt2
= ∂

∂y
. (I.1)

47 In our numbering of equations, “I” stands for the paper of 1877, and “II” for the paper of
1878.
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These are the equations Jacobi started from, in the paper of 1836 introducing the
Jacobian integral. The variables x and y are the Moon’s rectangular coordinates with
respect to the Earth’s center.  is the potential function, so that ∂/∂x and ∂/∂y
express the net forces exerted on the Moon in the x- and y-directions. Hill leaves
unspecified the terms of which  consists, and proceeds at once to the integral.
As integrating factors (“Eulerian multipliers,” he calls them) he proposes

F = dx

dt
+ n′y, G = dy

dt
− n′x,

where n′ is the angular motion of the Sun about the Earth or of the Earth about the
Sun, here taken to be uniform and circular. The first equation of (I.1) is to be multi-
plied by F , and the second by G; the resulting equations are then added together.
The result (which Hill does not write out) is

d2x

dt2

dx

dt
+ d2 y

dt2

dy

dt
−n′

(
d2 y

dt2
− y

d2x

dt2

)
= ∂

∂x

dx

dt
+ ∂
∂y

dy

dt
−n′

(
x
∂

∂y
− y

∂

∂x

)
.

(I.2)
Note that the third term on the right is identically equal to the third term on the left,
by (I.1). The time-integral of (I.2), Hill then claims, is

dx2 + dy2

2dt2
− n′

(
xdy − ydx

dt

)
= + C, (I.3)

where C is the constant of integration.
That the left-hand side of (I.3) is the integral of the left-hand side of (I.2) is

easily verified. On the right-hand side of (I.2) the first two terms give the indirect
dependence of  on t through the variables x and y. Assuming that  depends in
addition on t directly, we should have

d

dt
= ∂

∂x

dx

dt
+ ∂
∂y

dy

dt
+ ∂
∂t
.

Then, for the right-hand side of (I.3) to be the integral of the right-hand side of (I.2),
we must have

∂

∂t
= n′y

∂

∂x
− n′x

∂

∂y
.

The latter equation can be verified if the terms of which  is composed are
known. We find them, not in Hill, but in Jacobi:

1

2

[(
dx

dt

)2

+
(

dy

dt

)2
]

− n′
(

x
dy

dt
− y

dx

dt

)
= M

(x2 + y2)1/2

+ m′
[

1

[(x − a′ cos n′t)2 + (y − a′ sin n′t)2]1/2
− x cos n′t + y sin n′t

a′2

]
+ const.

(I.4)
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(We have omitted the terms involving the variable z, since Hill confines the orbit
to the x-y plane.) In (I.4) a′ is the Earth-Sun distance, M is the Earth’s mass, and
m′ the Sun’s mass. The Moon is assumed to be without mass. Taking the right-hand
side of (I.4) as an expression of + const., we find by a straightforward calculation
that

∂

∂t
= n′

(
y
∂

∂x
− x

∂

∂y

)
,

as required.
Assuming that (I.1) and (I.3) have together been solved for the Variation orbit,

Hill now proposes to investigate the effect of small departures from that solution.
The Variation curve, as we shall see in our resume of Hill’s second paper, is an oval
symmetrical with respect to the rotating x- and y-coordinate axes, with origin at the
Earth’s center. Let x0 and y0 be the variables for the Variation orbit, and let the (I.1)
and (I.2) be written with x and y thus distinguished by subscript 0.48 Hill is asking
what happens to the orbit when increments ∂x and ∂y are added, respectively, to x0
and y0 in the differential equations.

The increments ∂x and ∂y will destroy the symmetry, making the Moon’s path
eccentric with respect to the Earth’s center, so as to have perigee(s) and apogee(s).
For in the absence of perturbation, the Moon would move in a circle or else in an
ellipse with a center eccentric to the Earth’s center. The eccentricity can be expected
to remain when solar perturbation supervenes. Newton, as mentioned earlier, had
thought in terms of somehow melding the properties of the Variation and those of the
ellipse, but he lacked a legitimate mathematical technique for doing this. Hill, with
Euler’s guidance, is setting out to combine the effects as determined by their defining
parameters, e and m. This he can easily do, using the exponential expression of sines
and cosines. It is a matter of adding exponents.

“Let us suppose,” Hill writes, “. . . that it is desired to get [the inequalities] which
are multiplied by the simple power of [the eccentricity].” Given this statement, the
reader may be surprised to find that the eccentricity e does not figure as a quan-
tity in the calculations of the paper we are examining. But the increments δx , δy
do produce eccentricity. Hill’s remark means that the increments are small enough
so that their squares and their product can be neglected. Given eccentricity, there
will be a perigee and an apogee, and solar perturbation will cause these points of
the orbit to move forward. Hill aims in this paper to determine that motion, inso-
far as it depends on m. Such a determination is prerequisite for determining the
mean anomaly in the resulting orbit, and hence for determining the inequalities
proportional to e.

To arrive at differential equations for δx and δy, Hill first substitutes x0 and y0,
then x0 + δx and y0 + δy, for x and y in the two equations of (I.1), then takes
the difference of the corresponding equations so as to eliminate x0 and y0. The
result is

48 This notation is due to Brouwer and Clemence, Methods of Celestial Mechanics, 350ff.
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d2δx

dt2
=
(
∂2

∂x2

)

0

δx +
(
∂2

∂x∂y

)

0

δy,

d2δy

dt2
=
(
∂2

∂y2

)

0

δy +
(
∂2

∂x∂y

)

0

δx .

The zero subscripts indicate that the partial derivatives are to be evaluated using the
variables of the Variation orbit. If with Hill we put

H =
(
∂2

∂x2

)

0

, J =
(
∂2

∂x∂y

)

0

, K =
(
∂2

∂y2

)

0

,

the equations take the form

d2δx

dt2
= Hδx + Jδy,

d2δy

dt2
= K δy + Jδx . (I.5)

Next, Hill carries out the analogous operation on (I.3), discarding terms in which
δx and δy are squared or multiply each other; the result is

dx0

dt

d(δx)

dt
+ dy0

dt

d(δy)

dt
− n′

(
x0

d(δy)

dt
− y0

d(δx)

dt
+ dy0

dt
δx − dx0

dt
δy

)

=
(
∂

∂x

)

0
δx +

(
∂

∂y

)

0
δy + δC.

According to Hill, δC if developed in ascending powers of the eccentricity is found to
contain only even powers of e; therefore in the approximation we are here exploring,
we shall have δC = 0. Also, in accordance with (I.1), the first-order partial deriva-
tives of  are

F
d(δx)

dt
+ G

d(δy)

dt
− d F

dt
δx − dG

dt
δy = 0. (I.6)

This equation, Hill observes, is identically satisfied by the solution δx = F and
δy = G. The same solution satisfies equations (I.5), giving

d2 F

dt2
= H F + J G,

d2G

dt2
= K G + J F. (I.5a)

This solution, being composed of terms having the same argument as the Variation,
tells us nothing about an orbit incorporating the increments δx, δy. To obtain the
latter orbit, Hill proposes a solution of the form δx = Fρ, δy = Gσ , where ρ and
σ are new variables. The use of F and G in this manner – a well-known technique –
will enable Hill to reduce the order of his final differential equation. Introducing
these new variables into (I.5) and (I.6), and making use of (I.5a), he finds

F
d2ρ

dt2
+ 2

d F

dt

dρ

dt
+ J G(ρ − σ) = 0,



36 3 Hill on the Motion of the Lunar Perigee

G
d2σ

dt2
+ 2

dG

dt

dσ

dt
+ J F(σ − ρ) = 0,

F2 dρ

dt
+ G2 dσ

dt
= 0.

Deriving from the first of these equations an expression for σ , he substitutes it into
the third equation, and so obtains

d3ρ

dt3
+ d

dt

[
ln

F3

J G

]
d2ρ

dt2
+
[

J (F2 + G2)

FG
+ J G

F

d

dt

(
2

J G

d F

dt

)]
dρ

dt
= 0. (I.7)

Hill’s final move is to introduce the substitution

dρ

dt
=
√

J G

F
w. (I.8)

This yields, after algebraic reductions, the differential equation

d2w

dt2
+ θw = 0, (I.9)

where θ can be expressed by

θ = J (F2 + G2)

FG
+ d2 · ln(J FG)

2dt2
−
[

d · ln(J FG)

2dt

]2

. (I.10)

(I.10) shows that θ depends solely on the variables x0, y0, their time-derivatives,
and the derivative J of  with respect to them. Interchanging F and G leaves θ
unchanged; thus if ρ had been eliminated instead of σ , a formally identical equation
would have resulted. According to Hill,

. . . we arrive always at the same value of θ , no matter what variables have
been used to express the original differential equations. From this we may
conclude that θ depends only on the relative position of the Moon with
reference to the Sun, and that it can be developed in a periodic series of
the form

θ = θ0 + θ1 cos 2τ + θ2 cos 4τ + · · · ,
in which τ denotes the mean angular distance of the two bodies.

Here θ0, θ1, etc., are constants, and τ = v(t − t0), in which v is the frequency of the
moon’s synodic motion, and t0 the time of the moon’s conjunction with the Sun.

In this passage Hill does not explain why θ should be an infinite series of cosines,
nor why the arguments of the cosines should be the even multiples of τ . Could not
the function cos τ , for instance, be included in θ , since it gives the same value when-
ever the Moon is at the same angular distance from the Sun? The reason θ must
be an infinite series of cosines with arguments that are even multiples of τ can be
elucidated as follows. F and G are linear functions of x0, y0, dx0/dτ, dy0/dτ ; the
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latter variables are given by infinite series of sinusoidal functions, with arguments
that are odd multiples of τ . These representations of x0 and y0 were chosen initially
(as explained in Hill’s paper of 1878) in order to obtain a periodic orbit. Hence, in
(I.10), F2,G2, and FG are infinite series of sinusoidal functions with arguments that
are even multiples of τ (exponential expression of the sines and cosines makes this
obvious). Moreover, J , the mixed partial derivative of  which multiplies F2,G2,
and FG in (I.10), can also be expressed by an infinite series in which the argu-
ments of the sinusoidal functions are even multiples of τ . Thus θ is represented by
an infinite series of sinusoidal terms, in which the arguments are necessarily even
multiples of τ .

Hill does not say a word about what the new variable w represents.

George Howard Darwin, in his lectures on Hill’s lunar theory,49 points out that it
is a common procedure in dynamics to consider “free oscillations” about a steady
state (free oscillations are contrasted to forced oscillations, produced by an external
force). If the Variation orbit is taken as the steady state, then the obvious oscillations
to consider are those normal and tangential to the Variation curve. Let δp and δs rep-
resent these oscillations. If ϕ is the inclination of the outward normal of the Variation
curve to the x-axis, then

δx = δp cosϕ − δs sinϕ.

δy = δp sinϕ + δs cosϕ.

The sine and cosine of the angle ϕ are furnished by the relations dx0/dτ = −V sinϕ,
dy0/dτ = V cosϕ, where V is the orbital speed:

V =
[(

dx0

dτ

)2

+
(

dy0

dτ

)2
]1/2

.

By the foregoing equivalences Darwin eliminates δx and δy from (I.5) and (I.6) in
favor of δp and δs. He also eliminates x0, y0, and their derivatives, using initial terms
from Hill’s infinite series for x0 and y0 (he stops at terms in which the multiple of τ
is 3). He thus obtains the following approximate differential equation for δp:

d2δp

dτ 2
+ δp

[
1 + 2m − 1

2
m2 − 15m2 cos 2τ

]
= 0.

This resembles Hill’s equation for w, except that θ here consists of a constant and
only one sinusoidal term, rather than an infinite series of such terms. A similar equa-
tion can be obtained for δs.

If θ were a constant, (I.9) would describe simple harmonic motion, with a solu-
tion of the form w = A cos f t where f is a frequency equal to

√
θ . But θ consists of

an initial constant (θ0), plus an infinity of terms that vary,
∑∞

i=1 θi cos 2iτ . We shall

49 G. H. Darwin, “Hill’s Lunar Theory,” Scientific Papers of George Howard Darwin, 5
(Cambridge: Cambridge University Press, 1916), 27ff.
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find that θ0 > θ1 > θ2 > · · · , with θ0 a good deal larger than its successors (it is
more than ten times θ1). Can the simple harmonic solution based on setting θ = θ0
serve as a first approximation in a sequence of successive approximations leading to
the final solution? This idea, Darwin shows, leads into in a cul-de-sac.

Darwin puts Hill’s equation in the form

d2w

dt2
+ (θ0 + 2θ1 cos 2τ + 2θ2 cos 4τ + · · · )w = 0,

and takes
w = A cos[t

√
θ0 + ε]

as the first approximation. Substituting this expression in the term multiplied by θ1,
and neglecting θ2, θ3, etc., he obtains the equation

d2w

dt2
+ θ0w + Aθ1{cos[t (

√
θ0 + 2)+ ε] + cos[t (

√
θ0 − 2)+ ε]} = 0.

Solving this by the usual rules he obtains the second approximation:

w = A

{
cos[t

√
θ0 + ε] + θ1 cos[t (

√
θ0 + 2)+ ε]

4(
√
θ0 + 1)

− θ1 cos[t (
√
θ0 − 2)+ ε]

4(
√
θ0 − 1)

}
.

If this value of w is substituted into the terms of the differential equation having the
coefficients θ1 and θ2, terms in cos[t (

√
θ0 + 4) + ε)] and cos[t (

√
θ0 − 4) + ε] are

produced; and so are terms in cos[t
√
θ0 + ε]—a term of exactly the same kind as

that assumed for the first approximation. As a consequence, in the next stage of the
approximation a secular term having the form Ct sin[t

√
θ0 + ε] arises. Such a term

would come to dominate the solution and there falsify it.
A remedy would seem to be to start over again, using a first approximation of

the form w = A cos[ct + ε], where c differs slightly from
√
θ0. But the process of

successive approximations still circles back on itself, generating terms that modify
the values of terms ostensibly determined earlier in the process. Evidently we are in
need of a procedure that is holistic in the sense of taking account from the start of all
the terms that can significantly influence the solution.

Since the reduction of�, in the form previously given, namely (θ0 + θ1 cos 2τ +
θ2 cos 4τ + · · · ), presents difficulties, Hill proposes to derive another form from
differential equations in terms of coordinates expressing the relative position of the
moon to the sun. He introduces rectangular coordinates x and y, rotating in the plane
of the ecliptic with constant angular speed, in such a way that the axis of x passes
constantly through the center of the sun. He adopts the imaginary variables

u = x + y
√−1, s = x − y

√−1,

and puts ετ
√−1 = ζ , where ε is the basis of natural logarithms. In addition he intro-

duces the operator D = − d
dτ

√−1, so that

D(aζ v) = vaζ v.
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He makes the parameter m to be, as in our earlier discussion, the ratio of the synodic
month to the sidereal year, or m = n′/(n − n′). With μ as the sum of the masses of
the earth and the moon, he puts κ = μ/(n − n′)2. Finally, he defines the potential
function by

 = κ√
us

+ 3

8
m2(u + s)2.

With these preliminaries, he can now derive differential equations of the moon’s
motion. A step-by-step derivation of the differential equations will be given in our
resume of Hill’s second paper, using the Lagrangian algorithm for extracting equa-
tions from the expressions for the potential function and the kinetic energy.

In the exposition of his first paper, Hill merely gives the result:

D2u + 2mDu + 2
∂

∂s
= 0,

D2s − 2mDs + 2
∂

∂u
= 0. (I.11)

Multiplying the first of these by Ds, the second by Du, adding the products and
integrating the resulting equation, he obtains the Jacobian integral:

Du Ds + 2 = 2C. (I.11a)

Subjecting (I.11) and (I.lla) to the operation δ yields the three equations

D2δu + 2mDδu + 2

(
∂2

∂u∂s

)

0

δu + 2

(
∂2

∂s2

)

0

δs = 0,

D2δs − 2mDδs + 2

(
∂2

∂u∂s

)

0

δs + 2

(
∂2

∂u2

)

0

δu = 0,

Du Dδs + Ds Dδu + 2

(
∂

∂u

)

0
δu + 2

(
∂

∂s

)

0
δs = 0. (I.12)

These equations still hold if δ is changed into D, since they then become the deriva-
tives of (I.11) and (I.lla). Hence δu = Du0, δs = Ds constitute a particular solution
of (I.12). This solution reveals nothing about the effect of the free oscillations δu, δs
on the Variation orbit. As before, Hill uses the particular solution to reduce the order
of the final solution. He adopts new variables v and w such that δu = Du · v, δs =
Ds · w. When these are substituted into (I.12), and the second and third derivatives
of u and s are eliminated by means of (I.11) and (I.lla), the result is

Du0 · D2v − 2

[
2

(
∂

∂s

)

0
+ mDu0

]
Dv − 2

(
∂2

∂s2

)

0

Ds0 · (v − w) = 0,
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Ds0 · D2w − 2[2

(
∂

∂u

)

0
+ mDs0]Dw − 2

(
∂2

∂u2

)

0

Du0 · (w − v) = 0,

Du0 Ds0 · D(v + w)− 2

[(
∂

∂s

)

0
Ds0 −

(
∂

∂u

)

0
Du0 + mDu0 Ds0

]
(v− w) = 0.

(I.13)

Hill multiplies the first equation of (I.13) by Ds0 and the second by Du0 and
takes their difference. The resulting equation, along with the third equation of (I.13),
will be his basis for the solution of the problem. For brevity he writes

� =
(
∂

∂s

)

0
Ds0 −

(
∂

∂u

)

0
Du0 + mDu0 Ds0,

and puts
ρ = v + w, σ = v − w.

His two equations then take the form

Du0 Ds0 · Dρ − 2� · σ = 0,

D[Du0 Ds0 · Dσ ] − 2� · Dρ − 2

[(
∂2

∂u2

)

0

Du2
0 +

(
∂2

∂s2

)

0

Ds2
0

]
σ = 0.

(I.14)

Eliminating Dρ between the two equations of (I.14), he obtains an equation in which
the single variable representing the free oscillation is σ :

D[Du0 Ds0 · Dσ ] − 2

[(
∂2

∂u2

)

0

Du2
0 +

(
∂2

∂s2

)

0

Ds2
0 + 2�2

Du0 Ds0

]
σ = 0.

To remove the term involving Dσ , he makes the substitution

σ = w√
Du0 Ds0

.

The product Du0 Ds0, be it noted, is the negative of the square of the speed in the
Variation orbit. With this substitution, he obtains a differential equation for w:

D2w = θw. (I.15)

The coefficient θ can be put in the form

1

Du0 Ds0

[(
∂2

∂u2

)

0

Du2
0 − 2

(
∂2

∂u∂s

)

0

Du0 Ds0 +
(
∂2

∂s2

)

0

Ds2
0

]

+ 3

(
�

Du0 Ds0

)2

+ m2.
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The partial derivatives that appear here are determined from the formula:

 = κ√
us

+ 3

8
m2(u + s)2.

Also, Du0 Ds0 is replaced in accordance with the Jacobian integral by 2C − 2.
With these substitutions, θ becomes

κ

(u0s0)3/2
+ 3

8

κ

(u0s0)
5/2 [u0 Ds0 − s0 Du0]2 + m2(Du0 − Ds0)

2

C − + 3

4

[
�

C −
]2

+m2.

This expression, Hill tells us, is suitable for development in infinite series, when
the method of special values (harmonic analysis) is used. The quadrant from τ = 0◦
to τ = 90◦ is divided into a certain number of equal parts, say six, and from the
values of u0, s0, Du0, Ds0 at the dividing points the corresponding values of θ are
determined. From the latter, by a well-known process, the coefficients of the periodic
terms of θ are determined. Hill thus obtains the following expression for θ :

θ = 1.15884 39395 96583

− 0.11408 80374 93807 cos 2τ

+ 0.00076 64759 95109 cos 4τ

− 0.00001 83465 77790 cos 6τ

+ 0.00000 01088 95009 cos 8τ

− 0.00000 00020 98671 cos 10τ

+ 0.00000 00000 12103 cos 12τ

− 0.00000 00000 00211 cos 14τ. (I.16)

Hill also develops, with analytic ploys of considerable ingenuity, a literal formula
for θ in terms of m, accurate to the order of m10:

θ = 1 + 2m − 1

2
m2 + 3

2
m2a1 + 54a2

1 + (12 − 4m)a1a−1 + (6 − 4m)a2
−1

+
[
(6 + 12m)a1 + (6 + 8m)a−1 − 3

2
m2
]
(ζ 2 + ζ−2)

+
[

20ma2 + (16 + 20m)a−2 − (9 + 40m)a2
1

+6a1a−1 + (7 + 4m)a2
−1 − 3

2 m2(a1 − a−1)

]
(ζ 4 + ζ−4). (I.17)

As this formula is not necessary to the central argument, we shall not examine its
derivation.

We turn now to Hill’s solution of (I.15). To begin with, he reformulates θ as a
series of exponential terms. Thus, in place of the formula

∑∞
i=0 θi cos 2iτ with the

summation running from zero to infinity, he substitutes
∑+∞

−∞ θiζ 2i , with the sum-
mation running from minus to plus infinity. In the latter formula we are to understand



42 3 Hill on the Motion of the Lunar Perigee

that θi = θ−i . With the exception of θ0, which retains its previous value, the new θi
are the halves of the θi in the earlier formula. The symbol ζ stands as before for
ετ

√−1, where ε is Hill’s symbol for the base of natural logarithms. When the index
i is negative, the exponent of ζ in Hill’s new summation formula is negative. Thus
Hill’s new formula gives us the well-known exponential expression for the cosine:

2 cos 2iτ = ε2iτ
√−1 + ε−2iτ

√−1.

As the form of a possible solution of (I.15), Hill proposes

w =
+∞∑

−∞
biζ

c+2i . (I.18)

Here c is the ratio of the synodic to the anomalistic month. Observation gives this
constant as approximately 29.53/27.55, but the point now is to determine it from
theory insofar as it depends on m alone. Under this restriction, c will give the rate
at which w runs through its cycle, from perigee back to perigee. The bi are also
unknown constants, and a complete solution of (I.15) would require determining
them; but Hill’s aim in the present paper is solely to determine c.

The presence of 2i in the exponent of ζ in (I.17) is necessary because θ contains,
besides the constant θ0, terms of the form θi cos 2iτ ; such terms when multiplied by
ζ c will necessarily produce terms containing ζ c+2i . Hence, for D2w to be equal to
θw as (I.15) requires, w must contain the factor ζ c+2i from the start.

To solve (I.15), Hill uses the method of undetermined coefficients – his preferred
method as it was Euler’s. If we compute D2w for a particular index j , we obtain
(c + 2 j)2b jζ

c+2 j . The expression of θw on the right-hand side of the equation will
contain all products of

∑
θiζ

2i by
∑

biζ
c+2( j−i) such that the resulting exponent of

ζ is c + 2 j . Using distinct indices in the two sums, we may write θw as follows:

+∞∑

i=−∞
θiζ

2i ×
+∞∑

k=−∞
bkζ

c+2k =
+∞∑

i=−∞

+∞∑

k=−∞
θi bkζ

c+2(i+k).

The terms that we want from these products will be those in which (i + k) = j ,
in other words the sum

∑+∞
i=−∞ θi b j−iζ

c+2 j . Although the number of terms in this
sum is infinite, Hill’s calculations have indicated that for large | ± i | the θi diminish
sharply; hence the terms with i large should prove negligible. Hill moves the term
θ0b0ζ

c+2 j from the right to the left side of the equation (changing its sign, of course),
and replaces (c + 2 j)2 − θ0 in each equation by the symbol [ j]. Dividing ζ c+2 j out
of each equation, he then gives explicitly

· · · + [−2]b−2 −θ1b−1 −θ2b0 −θ3b1 −θ4b2 − · · · = 0,

· · · − θ1b−2 +[−1]b−1 −θ1b0 −θ2b1 −θ3b2 − · · · = 0,

· · · − θ2b−2 −θ1b−1 +[0]b0 −θ1b1 −θ2b2 − · · · = 0,

· · · − θ3b−2 −θ2b−1 −θ1b0 +[1]b1 −θ1b2 − · · · = 0,

· · · − θ4b−2 −θ3b−1 −θ2b0 −θ1b1 +[2]b2 − · · · = 0.
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For each [ j], where j is any positive or negative integer, there is an equation, and
each equation contains an infinite number of terms. The equations are homogeneous,
each term having one of the b’s as linear factor. For a trivial solution, one could set
all the b’s equal to zero. Are non-trivial solutions possible?

If the equations were finite in number, containing a number of unknowns equal
to the number of equations, it can be proved that a non-trivial solution would be
possible if and only if the determinant of the equations were equal to zero. This
determinant is composed of the coefficients. For the five terms of the five equations
given above, it would be

∣∣∣∣∣∣∣∣∣∣∣

[−2] −θ1 −θ2 −θ3 −θ4
−θ1 [−1] −θ1 −θ2 −θ3
−θ2 −θ1 [0] −θ1 −θ2
−θ3 −θ2 −θ1 [1] −θ1
−θ4 −θ3 −θ2 −θ1 [2]

∣∣∣∣∣∣∣∣∣∣∣

(I.19)

This determinant contains, in the bracketed quantities [ j], the unknown quantity c.
Hence, were (I.19) the determinant in question, c might be determined in such a way
as to make the determinant zero. As Hill puts it,

. . . we get a symmetrical determinant involving c, which, equated to zero,
determines this quantity.

But, Hill’s determinant is infinite. Do the rules for ordinary determinants apply?
Hill believes they do, for he takes the infinite determinant as the limit of a sequence
of finite determinants:

The question of the convergence, so to speak, of a determinant, consisting
of an infinite number of constituents, has nowhere, so far as I am aware,
been discussed. All such determinants must be regarded as having a central
constituent; when, in computing in succession the determinants formed from
the 32, 52, 72, & c., constituents symmetrically situated with respect to the
central constituent, we approach, without limit, a determinate magnitude,
the determinant may be called convergent, and the determinate magnitude is
its value.

In a trial computation, Hill writes out the 3×3 determinant at the center of (I.19),
and sets it equal to zero:
∣∣∣∣∣∣∣

[−1] −θ1 −θ2
−θ1 [0] −θ1
−θ2 −θ1 [1]

∣∣∣∣∣∣∣
= [−1][0][1] − θ2

1 {[1] + [−1]} − 2θ2
1 θ2 + θ2

2 [0] = 0.

He proposes to neglect terms of the order of m5 = 0.000003454. One such term is
−2θ2

1 θ2, which proves to be equal to −0.000002494. The final term, θ2
2 [0], with a

provisional value of [0] calculated from the observational value of c, proves to be
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−0.000000001, hence also negligible. Hill then puts the equation, with these terms
deleted and the symbols [ j] replaced by what they signify, in the form

[(c2 + 4 − θ0)2 − 16c2][c2 − θ0] − 2θ2
1 [c2 + 4 − θ0] = 0.

(Achieving this result takes a little doing.)
A nearly exact solution, Hill shows, can be obtained by means of two further

deletions. To show that they are reasonable, we write out the equation in an expanded
form, and, substituting the observational value of c, namely 1.071713598, compute
the numerical value of each term; these values, with the factor 106 omitted, are placed
below each term:

(c2 − θ0)3 + 8(c2 − θ0)2 + 16(1 − c2)(c2 − θ0)− 2θ2
1 (c

2 − θ0)− 8θ2
1 = 0.

−1.084 844.418 24422.213 − 66.862 − 26032.152

The first term is much the smallest, and the fourth is but 8% of the next larger term;
Hill neglects both. The remaining terms reduce to

c4 − 2c2 − θ2
0 + 2θ0 − θ2

1 = 0.

The solution of this is

c =
√

1 +
√
(θ2

0 − 1)2 − θ2
1 = 1.0715632.

The observational value is larger by 0.014%.
If Hill is on the right track, the calculated value should indeed err in the direc-

tion of smallness. For c is the ratio of the synodic month to the anomalistic month.
If dw/dt is the mean sidereal rate of motion of the lunar perigee, and n, n′ are
the mean sidereal rates of motion of the Moon and the Sun, then this ratio can be
expressed as

c = n − dw
dt

n − n′ .

Thus c will come out larger if dw/dt is smaller. But the calculation has neglected
the lunar orbit’s inclination with respect to the ecliptic, and this inclination has the
effect of diminishing the Sun’s action on the Moon. The calculation therefore makes
the Sun’s action too great, hence gives too great a ratio of dw/dt to n, and thus too
small a value for c.

But now Hill commences his serious assault on the infinite determinant. He rep-
resents it by D(c), and asks us to observe that D(c) = D(−c): the determinant is
an even function. Moreover, D(c) = D(c ± 2i), where i can be any integer: D(c) is
thus periodic. According to Hill:

It will occur immediately to every one that the properties we have stated of
the roots of D(c) = 0 are precisely those of the transcendental equation

cos(πx)− a = 0;
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of which, if x0 is one of the roots, the whole series of roots is represented by
±x0 + 2i . Hence we must necessarily have, identically,

D(c) = A[cos(πc)− cos(πc0)],

A being some constant independent of c.

With a view to evaluating A, Hill introduces Euler’s infinite product for cos(πc),

namely, cos(πc) = ∏∞
k=0

(
1 − 4c2

(2k+1)2
)
. Hill may have read Euler’s derivation of

this formula, and of a parallel formula for sin(πc), in Euler’s Introductio in analysin
infinitorum, Lausanne, 1748.50 When an approximation to cos(πc) is obtained from
the first (n + 1) factors in the foregoing infinite product, the highest power of c
(namely c2n) will have the coefficient

−4

12
× −4

32
× −4

52
× · · · × −4

(2n + 1)2
.

Hill proposes to transform D(c) so that in its expansion, computed to the same
approximation as the formula for the infinite product giving cos(πc), the term con-
taining the largest power of c will have this same coefficient.

The transformation consists in multiplying the row of D(c) containing [0] by −4,
the rows containing [1] and [−1] by 4/(42 − 1), and, in general, the rows containing
[ j] and [− j] by 4/[(4 j)2 − 1] = 4/(2 j − 1)(2 j + 1). A new determinant, ∇(c),
thus arises, which has the same roots as D(c), since multiplying an equation by a
constant does not change its roots.

As a visual aid to the reader, I write out the central 5 × 5 sub-determinant of
∇(c): ∣∣∣∣∣∣∣∣∣∣∣∣∣

4
63 [−2] −4

63 θ1
−4
63 θ2

−4
63 θ3

−4
63 θ4

−4
15 θ1

4
15 [−1] −4

15 θ1
−4
15 θ2

−4
15 θ3

4θ2 4θ1 −4[0] 4θ1 −4θ2
−4
15 θ3

−4
15 θ2

−4
15 θ1

4
15 [1] −4

15 θ1

−4
63 θ4

−4
63 θ3

−4
63 θ2

−4
63 θ1

4
63 [2]

∣∣∣∣∣∣∣∣∣∣∣∣∣

The product of the five terms in its main diagonal, with the symbols [ j] replaced
by what they signify, is

4

7 · 9
[(c − 4)2 − θ0] × 4

3 · 5
[(c − 2)2 − θ0] × (−4)[c2 − θ0]

× 4

3 · 5
[(c − 2)2 − θ0] × 4

7 · 9
[(c − 4)2 − θ0].

Note that the factors symmetrically placed on either side of the central factor have
the same numerical coefficient. Evidently the coefficient of the highest power of c

50 See Leonhard Euler, Opera Omnia, I.8, 168–169.
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in the above product is (−4) 4
32 × 4

52 × 4
72 × 4

92 . For larger central sub-determinants
of ∇(c), the new numerical factors added to the product will always have 4 in the
numerator and the square of an odd number in the denominator: the pattern is the
same as that for cos(πc). Therefore A = 1 and Hill can write

∇(c) = cos(πc)− cos(πc0).

This equation holds for any value of c. Since cos(πc0) is a constant independent
of the value of c, we can determine its value by giving a particular value to c, for
instance c = 0:

cos(πc0) = cos(πc)− ∇(c) = cos(0)− ∇(0) = 1 − ∇(0).

Our aim is to find a value of c such that ∇(c) = 0, and when ∇(c) = 0, we shall
also have cos(πc)− cos(πc0) = 0. Hence, in this case cos(πc) = 1 − ∇(0). It then
follows that ∇(0) = 1 − cos(πc), or

∇(0) = 2 sin2
(πc

2

)
. (I.20)

Therefore, if we knew the value of ∇(0), we could solve (I.20) for c. Note that in
∇(0), c has been set equal to zero, so that it does not occur, and [ j] where it appears
in the main diagonal is reduced to (2 j)2 − θ0.

On the way to obtaining a numerical value for ∇(0), Hill introduces a new de-
terminant, symbolized by �(0). He obtains it by dividing the terms in each row of
∇(0) by the term in that row that is in the main diagonal. Thus the central 5 × 5
sub-determinant in �(0) is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −θ1
42−θ0

−θ2
42−θ0

−θ3
42−θ0

−θ4
42−θ0

−θ1
22−θ0 1 −θ1

22−θ0
−θ2

22−θ0
−θ3

22−θ0
−θ2

02−θ0
−θ1

02−θ0 1 −θ1
02−θ0

−θ2
02−θ0

−θ3
22−θ0

−θ2
22−θ0

−θ1
22−θ0 1 −θ1

22−θ0
−θ4

42−θ0
−θ3

42−θ0
−θ2

42−θ0
−θ1

42−θ0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Then ∇(0) is equal to �(0)multiplied by the product of the elements in the main
diagonal of ∇(0).

The latter product, Hill states, is 1−cos(π
√
θ0) = 2 sin2 (π

2

√
θ0
)
. He proves this

as follows:

As, in the particular case, where θ1, θ2, etc., all vanish, the proper value of
c is

√
θ0, it follows that the element of the determinant ∇(0), formed by the

diagonal line of constituents involving θ0, is

1 − cos(π
√
θ0) = 2 sin2

(π
2

√
θ0

)
.
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In effect, Hill is imagining the following operation as applied to (I.20). On the right-
hand side, all the products of ∇(0) involving θi with i other than zero are to vanish;
these terms are all and only those that are not in the main diagonal. The determinant
∇(0), then, is reduced to the product of the elements in the main diagonal. On the
left-hand side of the equation, c reduces to

√
θ0, since that is the value of c when all

the θi other than θ0 vanish. Therefore the product of the elements in the diagonal of
∇(0) is 2 sin2 (π

2

√
θ0
)
, and

sin2
(π

2
c
)

= sin2
(π

2

√
θ0

)
× �(0). (I.21)

Turning to the evaluation of �(0), Hill remarks that the product of the elements
in the main diagonal is 1, and that all the other products in the expanded determinant
are much smaller, since all elements of �(0) other than those in the main diagonal
are much less than 1. To obtain these other products, Hill uses the procedure of
exchanging columns. Whenever two columns of a determinant are exchanged, the
resulting determinant has the same absolute value as the original determinant, but
differs in sign, being negative if the original determinant was positive, and vice versa.
A second exchange of columns reverses the sign again. The product of the elements
in the diagonal of the new determinant is thus, when given the appropriate sign, one
of the products in the expansion of the original determinant. The columns can be
returned to their original positions, and two or more other columns exchanged in
order to obtain another product in the expansion of the original determinant.

When two adjacent columns of �(0) are interchanged, the main diagonal of the
resulting determinant will consist of l’s except for two elements, each of which has
θ1 as its numerator. The denominators of these two elements have the form (2i)2−θ0,
where i is an integer which can be positive, negative, or zero; but i in the one element
will differ from i in the other by 1. Following Hill, we symbolize (2i)2 − θ0 by {i}.
Then the product of the elements of the main diagonal of the new determinant will

be − θ2
1

{i}{i+1} . To obtain the sum of all the terms of this type – they are infinite in

number – requires evaluating the sum −θ2
1

∑+∞
−∞

1
{i}{i+1} . Hill develops a formula

for doing this; we shall describe its derivation in a moment. In the particular case we
are examining it yields

−θ
2
1π cot

(
π
2

√
θ0
)

4
√
θ0(θ0 − 1)

= +0.00180 46110 93422 7.

Recall that the first product in the determinant �(0) was equal to 1; the second prod-
uct, we now see, is less than 0.2% of the first. Yet it is the largest among the remaining
products, and in fact 104 times larger than any of the others. Hill undoubtedly felt
secure about the “convergence” of this determinant.

To derive the formula used in the foregoing calculation, Hill considers the more
general sum

∑+∞
−∞

1
{i}{i+k} = ∑+∞

−∞
1

[(2i)2−θ0][22(i+k)2−θ0]
. Here k is to be understood

as a fixed integer, later to be assigned the values 1, 2, or 3, while i remains the
variable index of the terms in the summation. To convert each of the two factors in
the denominator into the difference of two squares, Hill introduces the substitution
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4θ2 = θ0, and then factors the factors.51 The expression under the summation sign
can thus be given the form

1

16(θ + i)(θ − i)(θ + i + k)(θ − i − k)
.

This expression can be resolved into a sum of algebraically irreducible partial
fractions:

1

16

[
A

θ + i
+ B

θ − i
+ C

θ + i + k
+ D

θ − i − k

]
,

where A, B,C , and D are constants. These constants are determined by setting our
two expressions equal, clearing them of fractions, then giving i in succession the
values −θ,+θ,−θ − k, θ − k, so as to cause, each time, three of the four resulting
terms to vanish. We thus obtain four equations for the four constants:

2kθ(2θ − k)A = 1,

− 2kθ(2θ + k)B = 1,

− 2kθ(2θ + k)C = 1,

2kθ(2θ − k)D = 1.

But, Hill tells us, it is well known that52

+∞∑

−∞

1

θ + i
=

+∞∑

−∞

1

θ − i
=

+∞∑

−∞

1

θ + i + k
=

+∞∑

−∞

1

θ − i − k
= π cotπθ.

Hence,

+∞∑

−∞

1

{i}{i + 1} = 1

16
(A + B + C + D)π cotπθ

= π cotπθ

8θ(4θ2 − k2)

= π cot
(
π
2

√
θ0
)

4
√
θ0(θ0 − k2)

. (I.22)

For k = 1, 2, 3, respectively, (I.22) yields the coefficients for the products θ2
1 , θ

2
2 , θ

2
3 ;

and thus Hill obtains the contributions of these three products to the value
of �(0):

51 In the article as printed in the Collected Mathematical Works, I, 265, this substitution is
given incorrectly, as 4θ = θ0. It is given correctly in Acta Mathematica, VIII (1886), 30.

52 As indicated earlier, this formula was available to Hill in Euler’s Introductio in analysin
infinitorum and in the textbook of Briot & Bouquet, Théorie des functions doublement
périodiques.
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π cot
(
π
2

√
θ0
)

4
√
θ0

[
θ2

1

1 − θ0 + θ2
2

4 − θ0 + θ2
3

9 − θ0

]
.

Hill could, of course, have included the term for θ2
4 , but this has a value of 3×10−15,

and when this factor is multiplied by its coefficient and evaluated numerically, the
result proves less than 10−15. He chooses to limit the precision of his calculation to
the fifteenth decimal.

Seven more terms, however, must be calculated to bring the overall precision to
this level, and they require, in addition to the formula (I.22) given above, two other
general formulas derived in the same manner:

+∞∑

i=−∞

1

{i}{i + k}{i + k′}

= − 1

16

3θ0 − (k2 − kk′ + k2)√
θ0(θ0 − k2)(θ0 − k2)[θ0 − (k − k′)2]

π cot
(π

2

√
θ0

)
, (I.23)

+∞∑

i=−∞

1

{i}{i + 1}{i + k}{i + k + 1}

− 1

32

5θ0 − (k2 + 1)√
θ0(θ0 − 1)(θ0 − k2)[θ0 − (k + 1)2][θ0 − (k − 1)2]

π cot
(π

2

√
θ0

)
.

(I.24)

Consider first the product θ2
1 θ2; it is obtained by first exchanging two adjacent

columns, then exchanging one of these with its just acquired new neighbor. The term
to be calculated is

+ 3π cot
(
π
2

√
θ0
)

8
√
θ0(1 − θ0)(4 − θ0)

θ2
1 θ2.

Somewhat similarly, the product θ1θ2θ3 is obtained by first exchanging adjacent
columns, then exchanging one of the exchanged columns with the column on the
other side of the just acquired new neighbor. Its coefficient is obtained from formula
(I.23) by substituting k = 1, k′ = 3. The term to be calculated is thus

+ (7 − 3θ0)π cot
(
π
2

√
θ0
)

4
√
θ0(1 − θ0)(4 − θ0)(9 − θ0)

θ1θ2θ3.

To obtain θ3
1 θ3, two adjacent columns are first exchanged, then one of them

is moved by two further exchanges, to the right if it is on the right after the first
exchange, to the left in the opposite case; thus the initial pattern abcd becomes bcda
or dabc. The coefficient is obtained from formula (I.24) above by substituting k = 2.
The term to be calculated is therefore

+ 5π cot
(
π
2

√
θ0
)

16
√
θ0(1 − θ0)(4 − θ0)(9 − θ0)

θ3
1 θ3.
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The four remaining terms all require double or triple summations. Thus in the
case of θ4

1 , we may start from the double summation

+∞∑

k=2

+∞∑

i=−∞

1

{i}{i + 1}{i + k}{i + k + 1} .

Here the summation in which i runs from minus to plus infinity gives all interchanges
of adjacent columns leading to the product θ2

1 ; the summation in which k runs from
2 to plus infinity then gives all interchanges of adjacent columns capable of being
combined with the former exchanges so as to yield the product θ4

1 . First we resolve
the expression under the summation signs into partial fractions with respect to i as
variable, and sum between the indicated limits; the result is

− 1

32

5θ0 − (k2 + 1)√
θ0(θ0 − 1)(θ0 − k2)[θ0 − (k + 1)2][θ0 − (k − 1)2]

π cot
(π

2

√
θ0

)
.

This expression is then to be resolved into partial fractions with respect to k. The
summation is most conveniently carried out, not from 2 to infinity, but from 0 to
infinity, after which the values of the expression for k = 0 and k = 1 can be sub-
tracted. We obtain

π cot
(
π
2

√
θ0
)

32
√
θ0(1 − θ0)2

[
π cot(π

√
θ0)√

θ0
− 1

θ0
+ 2

1 − θ0 + 9

2(4 − θ0)
]
θ4

1 .

By analogous processes the remaining three summations are obtained:

3πci t
(
π
2

√
θ0
)

32
√
θ0(1 − θ0)2(4 − θ0)

[
π cot(π

√
θ0)√

θ0
− 1

θ0
+ 2

1 − θ0 + 2

4 − θ0 + 20

3(9 − θ0)
]
θ4

1 θ2;

π cot
(
π
2

√
θ0
)

16
√
θ0(1 − θ0)(4 − θ0)

[
π cot(π

√
θ0)√

θ0
− 1

θ0
+ 2

1 − θ0 + 2

4 − θ0 + 10

9 − θ0

]
θ2

1 θ
2
2 ;

π cot
(
π
2

√
θ0
)

128
√
θ0(1 − θ0)3

⎧
⎨

⎩

[
− 1
θ0

+ 2
1−θ0 + 9

2(4−θ0)
]
π cot(π

√
θ0)√

θ0
− 25

8θ0
− 1
θ2

0

+ 2
1−θ0 + 4

(1−θ0)2 − 9
8(4−θ0) + 9

(4−θ0)2 − 4
9−θ0 − π2

3θ0

⎫
⎬

⎭ θ
6
1 .

To obtain his value for �(0), Hill evaluated these several expressions numerically
to sixteen decimal places – a task which included the computation of

√
θ0 and two

cotangents to the same precision. Then, adding together these results and the main
term of the determinant – which, we recall, was equal to unity – he obtained

1.00180 47920 21011 2.

This result had then to be introduced into (I.20):

sin2
(π

2
c
)

= sin2
(π

2

√
θ0

)
× 1.00180 47920 21011 2.
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From this expression Hill derived:

c = 1.07158 32774 16016.

To check the accuracy of this result, Hill turned back to the equations from which
he had derived the determinant ∇(0). Each of these equations can be expressed by
the formula

[ j]b j −
∑

i

θ j−i bi = 0, (I.25)

where [ j] = (c+2 j)2 −θ0, and under the summation sign the term with index i = j
is omitted. Using his value for c, Hill computed [ j] for the following values:

[0] = −0.01055 32191 58933,

[−1] = −0.29688 63288 2300,

[1] = +8.37577 98905 1,

[−2] = +7.41678 05615 1,

[2] = +24.56211 3,

[−3] = +23.13045,

[3] = +48.85,

[−4] = +46.8.

Now the central equation of the array – the equation in which [0] occurs – may
be written

[0]b0 −
∑

i

θ j−i bi = 0. (I.26)

Hill sets about eliminating from (I.26), successively, the unknowns b−1, b1, b−2, b2,
b−3, b−4, using in each case an equation of the form of (I.25) to eliminate the b
having subscript j . Thus to eliminate b−1 he solves the equation

[−1]b−1 −
∑

i

θ−1−i bi = 0

or

b−1 =
∑

i θ−1−i bi

[−1]
,

where in the summation on the right the term in which i = −1 is omitted. When this
value of b−1 is substituted into (I.26), and the terms contributing to the coefficient of
each bi are collected, the result is

[
[0] − θ2

1

[−1]

]
b0 −

∑

i

[
θ−i + θ1θi+1

[−1]

]
bi = 0.
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The new coefficient of b0, which Hill symbolizes by [0](−1), turns out to be smaller
than [0] in absolute value. Hill repeats this eliminative process for the b’s we have
listed, obtaining the following reductions in the coefficient of b0:

[0] = −0.01055 32191 58933,

[0](−1) = +0.00040 72723 11650,

[0](−1,1) = +0.00001 50888 08423,

[0](−2,−1,1) = +0.00000 00253 21700,

[0](−2,−1,1,2) = +0.00000 00009 20420,

[0](−3,−2,−1,1,2) = +0.00000 00000 03941,

[0](−3,−2,−1,1,2,3) = +0.00000 00000 00155,

[0](−4,−3,−2,−1,1,2,3) = +0.00000 00000 00008.

As the coefficient of b0 decreases, so, proportionately, must the second term of (I.26),
so that the sum of all terms adds to zero.

Can the 8 × 10−15 of [0](−4,−3,−2,−1,1,2,3) be reduced further by carrying out
further eliminations, for instance, of b4, b−5, etc.? Hill tells us that these further
eliminations do not sensibly change the result. Rather than repeating the whole elimi-
native process with a lower value of c, it will be sufficient, he says, to subtract half
of the residual from the value of c he has assumed. To understand this step, notice
that [0] = c2 − θ0, and that c exceeds 1 by only about 0.072. When the binomial
(c − 4 × 10−15) is squared, the result will therefore be less than c2, very nearly, by
2×4×10−15. Hence replacing the assumed value of c by (c−4×10−15)will reduce
the residual to zero. Hill’s final value of c is thus

c = 1.07158 32774 16012.

In R.S. Woodward’s obituary of Hill published in The Astronomical Journal, 28
(1914), 161–162, it is stated that Hill made two exploratory trips into Canada, one
into the Hudson Bay region and one into the Canadian Northwest.

It was during journey through the latter territory that he worked out his
famous solution of the problem involving an infinite determinant, a solution
“aussi originale que hardi,” as remarked by Poincaré.

What actually got worked out during the journey – initial steps, main ideas, final
steps? – can only be guessed. The solution demanded extensive and complicated
paper-and-pencil computations, most easily imagined as performed where paper was
plentiful and filing facilities available. In concluding his memoir, Hill remarks:

It may be stated that all the computations have been made twice, and no
inconsiderable portion of them three times.
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The value of c that Hill here obtained from gravitational theory differs from the
observational value by only one part in 550. To obtain the implied value of dw/dt ,
the rate of motion of the lunar perigee, it is necessary to substitute in the equation

dw

dt
= n − c(n − n′).

With the observational value of c we obtain 0.00194419 radians/day; Hill’s calcu-
lated value of c gives 0.001971441 radians/day, which exceeds the observational
value by 1/72nd part, or 1.4%. As we affirmed at the start of this section, no earlier
computation of dw/dt had approached the observational value anywhere near so
closely. A few of Hill’s readers, like John Couch Adams, were able to recognize the
significance and the wonder of this achievement.



4

Hill’s Variation Curve

Hill’s second paper, published in the first volume of the American Journal of Mathe-
matics in 1878, is divided into three parts, printed on pp. 5–26, 129–147, and
245–260. In our resume, we shall focus on the laying of the groundwork for the
Hill–Brown lunar theory. Hill’s paper includes treatment of Variation orbits with
different values of m from over the whole range of possible values; we shall confine
our attention to the particular Variation orbit defined by the m of Earth’s Moon.

The “Researches” consists of an introduction and two chapters, the first on the
differential equations and Jacobi’s integral, the second on the determination of the
inequalities dependent solely on the ratio of the mean motions of the Sun and Moon.
In The Collected Mathematical Works of George William Hill, Vol. I, the introduction
is found on pp. 284–287, and the two chapters on pp. 287–304 and 305–335.

Hill begins by giving reasons for laying a new foundation. Earlier lunar theorists,
by making the construction of tables their primary aim, have allowed their choice of
variables and parameters to be unduly restricted.

But the developments having now been carried extremely far, without com-
pletely satisfying all desires, one is led to ask whether such modifications
cannot be made in the processes of integration, and such coordinates and
parameters adopted, that a much nearer approach may be had to the law of
the series, and, at the same time, their convergence augmented.

Hill explains his preference for rectangular coordinates over the polar coordi-
nates commonly employed. In the case of elliptical motion, the x and y coordinates
are given by series expressible finitely in terms of Bessel functions; these series
follow evident laws, and it is a simple matter to calculate their values to any chosen
order of approximation. In polar coordinates, the series developments are less obli-
ging by far. Moreover, the differential equations expressed in rectangular coordinates
are purely algebraic, whereas their expression in polar coordinates requires trigono-
metric functions.

As for parameters, Hill sees as unfortunate the choice by lunar theorists from
Laplace to Delaunay of the parameter m, the ratio of the sidereal period of the Moon
to the sidereal period of the Sun.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 4,
c© Springer Science+Business Media, LLC 2010
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Some instances of slow convergence with the parameter m may be given
from Delaunay’s Lunar Theory; the development of the principal part of
the coefficient of the evection in longitude begins with the term 15

4 me, and

ends with the term 413,277,465,931,033
15,288,238,080 m8ee′; again, in the principal part of the

coefficient of the inequality whose argument is the difference of the mean
anomalies of the Sun and Moon, we find, at the beginning, the term 21

4 mee′,
and, at the end, the term 1,207,454,026,843

3,538,944 m7ee′. It is probable that, by the
adoption of some function of m as a parameter in place of this quantity,
whose numerical value, in the case of our Moon, should not greatly exceed
that of m, the foregoing large numerical coefficients might be very much
diminished.

Hill will begin by using the ratio of the Moon’s synodic period to the Sun’s sidereal
period, the parameter used by Euler in his lunar theory of 1772; it is larger than m
(equal to about 1/12 as compared with 1/13), and the series expressed in terms of
it converge more rapidly. Hill denotes this ratio by an “m” from the Roman font in
which his article is printed; we will use this same notation here.

Hill has a further criticism of Delaunay’s method:

Although [it] is very elegant, and, perhaps, as short as any, when one wishes
to go over the whole ground of the lunar theory, it is subject to some
disadvantages when the attention is restricted to a certain class of lunar
inequalities. Thus, do we wish to get only the inequalities whose coeffi-
cients depend solely on m, we are yet compelled to develop the disturbing
function R to all powers of e.

Hill has the idea of determining, independently of all other inequalities, the
inequalities that are a function solely of m. In the series obtained by Plana and
Delaunay, the convergence problems encountered appeared in almost every case to
be produced by the ingression of m into the expressions. A prior determination of
the inequalities depending solely on m might reduce or eliminate these problems.
The ratio of the mean motions of the Sun and Moon was more precisely known
than the other parameters; hence the inequalities dependent solely on m lent them-
selves particularly well to a numerical theory. Hill will develop both a literal and
a numerical theory of the inequalities dependent solely on m. Once the numerical
theory was worked out, a literal theory of the other inequalities, unencumbered with
top-heavy numerical fractions, should be possible. The Hill–Brown theory will in
fact be achieved by just this sequence of operations.

In deriving his differential equations, Hill set aside the action of the planets and
the influence of the non-spherical figures of the Sun, Earth, and Moon, as also the
gravitational action of the Moon on the Sun. He adopted rectangular axes having
origin at the Earth’s center of gravity, the x-axis directed at the center of the Sun
and the y-axis at a point in the ecliptic 90◦ ahead of the Sun, while the z-axis is
perpendicular to the ecliptic. Let

r =
√

x2 + y2 + z2 = the Earth-Moon distance,
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r ′ = the Earth-Sun distance,

λ′ = the longitude of the Sun,

n′ = the mean angular velocity of the Sun about the Earth,

a′ = the Sun’s mean distance from the Earth.

The Moon’s kinetic energy about the Earth’s center is

T = 1

2

[
dx

dt
− y

dλ′

dt

]2

+ 1

2

[
dy

dt
+ x

dλ′

dt

]2

+ 1

2

dz2

dt2

= 1

2

dx2 + dy2 + dz2

dt2
+ dλ′

dt

xdy − ydx

dt
+ 1

2

[
dλ′

dt

]2

(x2 + y2). (II.1)

The potential function yielding by differentiation the forces on the Moon in the
coordinate directions is

 = μ√
x2 + y2 + z2

+ n′2a′3
√
(r ′ − x)2 + y2 + z2

− n′2a′3

r ′2 x, (II.2)

where μ is the sum of the masses of the Earth and the Moon and n′2a′3 under the
restrictions made is equal to the mass of the Sun. (The second and third terms on the
right yield, as required, the difference between the Sun’s force on the Moon and its
force on the Earth.) From (II.1) and (II.2) Hill derives differential equations by the
well-known Lagrangian algorithm

d

dt
· ∂T

∂
dϕ
dt

− ∂T

∂ϕ
= ∂

∂ϕ
, (II.3)

where ϕ denotes successively each of the variables x, y, z. First, however, for
economy of expression he removes the last term of (II.1) from T and adds it to ,
denoting the modified potential function by ′. The resulting differential equations
can then be written

d2x

dt2
− 2

dλ′

dt

dy

dt
− d2λ′

dt2
y = ∂′

∂x
,

d2 y

dt2
+ 2

dλ′

dt

dx

dt
+ d2λ′

dt2
x = ∂′

∂y
,

d2z

dt2
= ∂′

∂z
. (II.4)

If the solar eccentricity is neglected – that is, if the orbit of the Earth about the Sun
is taken as circular so that the Earth’s motion is uniform – we shall have

dλ′

dt
= n′,
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d2λ′

dt2
= 0,

r ′ = a′.

This restriction enables us to obtain the Jacobian integral. We multiply the three
equations of (II.4) respectively by dx, dy, dz, add the products and integrate,
obtaining

dx2 + dy2 + dz2

2dt2
= ′ + C,

where C is the constant of integration.
To arrive at equations whence his Variation orbit can be derived, Hill introduced

two further restrictions: he neglected the lunar inclination, thus eliminating the equa-
tion for z, and he neglected the solar parallax, which appears in the expansion of the
quotient expressing the net solar force on the Moon. The relative kinetic energy and
potential function thus became

T ′ = dx2 + dy2

2dt2
+ n′ xdy − ydx

dt
,

′ = μ√
x2 + y2

+ 3

2
n′2x2. (II.6)

The differential equations resulting from the substitution of (II.6) in (II.3) are

d2x

dt2
− 2n′ dy

dt
+
[ μ

r3
− 3n′2

]
x = 0,

d2 y

dt2
+ 2n′ dx

dt
+ μ

r3
y = 0. (II.7)

The Jacobian integral resulting from (II.7) is

dx2 + dy2

2dt2
= μ√

x2 + y2
+ 3

2
n′2x2 − C. (II.8)

The neatly linear equations (II.7), together with the Jacobian integral (II.8), are Hill’s
basis for the derivation of the Variation orbit.

The solution of (II.7) considered by Hill will involve trigonometric series in
sines and cosines. To introduce the exponential expression of these functions, and
thus facilitate multiplication of such series, Hill transforms (II.7) and (II.8) using the
complex conjugate variables

u = x + y
√−1,

s = x − y
√−1.
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Substitution into (II.7) gives

d2u

dt2
+ 2n′√−1

du

dt
+ μ

(us)3/2
u − 3

2
n′2(u + s) = 0,

d2s

dt2
− 2n′√−1

ds

dt
+ μ

(us)3/2
s − 3

2
n′2(u + s) = 0. (II.7′)

(Both in the original publication, American Journal of Mathematics, I, 13, and in The
Collected Works, I, 292, the second term in each of these equations is given incor-
rectly, with the sign wrong and the factor

√
(−1) omitted. The later development is

free from error, just as if this mistake had not occurred.) With the new variables the
Jacobian integral becomes

duds

2dt2
= μ

(us)1/2
+ 3

8
n′2(u + s)2 − C. (II.8′)

We turn now to Chapter II of the “Researches”, in which Hill determines his
Variation orbit. Here he is seeking, in the rotating coordinate system, a motion of a
moon about the Earth that is periodic, so that the particularities of this motion repeat
exactly each time the moon completes a cycle with respect to the line of syzygies (the
line connecting the Earth and the Sun). Suppose this moon, moving in accordance
with (II.7), cuts the x-axis at right angles. At the moment of intersection, dx/dt = 0
and y = 0, while y is changing from negative to positive or vice versa. The accele-
rations of the motion before and after the passage will be the reverse of each other;
for if in (II.7) the signs of y and t are reversed, and the sign of x is left unaltered, the
differential equations do not change. Again, suppose the orbit intersects the y-axis
at right angles. If the signs of x and t are reversed, and that of y left unaltered, the
differential equations do not change; and the accelerations of motion before and after
the passage of the y-axis will be the reverse of each other.

This moon can be imagined to cross the x-axis at right angles but with differ-
ent velocities, some too small for it to reach and cross the y-axis perpendicularly,
and some too large. As the principle of continuity suggests, there should be an
intermediate velocity that would bring the moon to the y-axis so as to cross it at
right angles. A moon crossing first the x-axis and then the y-axis at right angles
should go on to execute a closed curve symmetrical with both axes. Such is the
motion that Hill wished to characterize mathematically, for a moon having the mean
synodic angular speed of Earth’s Moon (namely, 2π radians per 29.5305889 days,
or 0.21276871 rad/day

The coordinates of a moon moving in this way, Hill asserted, can be repre-
sented by

x =
∞∑

i=0

Ai cos[(2i + 1)ν(t − t0],

y =
∞∑

i=0

Bi sin[(2i + 1)ν(t − t0)].
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Here ν is the constant just mentioned (0.21276871 rad/day) and t0 the time at which
the moon crosses the x-axis. The selection of the successive odd integers (2i + 1)
as multipliers of ν(t − t0) guarantees that when ν(t − t0) is π/2 or an odd integral
multiple thereof, x and dy/dt will both be zero, and when ν(t − t0) is zero or π or an
integral multiple of π, y and dx/dt will both be zero–the conditions we have found
to be necessary for a periodic orbit.

To simplify the notation Hill denoted the mean anomaly ν(t − t0) by τ , and set
Ai = ai + a−i−1 and Bi = ai − a−i−1. Then

x =
∞∑

0

(ai + a−i−1) cos(2i + 1)τ =
+∞∑

−∞
ai cos(2i + 1)τ.

Here the summation has been extended to all positive and negative integers and zero.
Similarly,

y =
∞∑

0

(ai − a−i−1) sin(2i + 1)τ =
+∞∑

−∞
ai sin(2i + 1)τ.

To replace the infinite series of sines and cosines by exponential expressions,
Hill now introduced the complex conjugate variables u and s given in (II.7′), and the
temporal variable ζ = ετ

√
(−1), where ε is the base of natural logarithms (he retained

“e” to represent orbital eccentricity). Thus

u = x + √−1y =
+∞∑

−∞
ai [cos(2i + 1)τ + √−1 sin(2i + 1)τ ]

=
+∞∑

−∞
aiζ

2i+1,

and

s = x − √−1y =
+∞∑

−∞
ai [cos(2i + 1)τ − √−1 sin(2i + 1)τ ]

=
+∞∑

−∞
aiζ

−(2i+1) =
+∞∑

−∞
a−i−1ζ

2i+1

Next, in the differential equations (II.7′) and in the Jacobian integral (II.8′), the
variable t is to be replaced by the variable ζ . Since τ = ν(t − t0) and ζ = ετ

√
(−1),

it follows that dτ = νdt and dζ/dτ = √
(−1)ζ . Hence

ζ
d

dζ
= −√−1

d

dτ
= −

√−1

ν

d

dt
, so that

d

dt
= (√−1)νζ

d

dζ
.
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Hill denoted the operator ζ d
dζ by D, which he treated as if it were a multiplier.

Also, he put m for n′/ν and κ for μ/ν2. With these substitutions, (II.7′) and (II.8′)
became

{
D2 + 2mD + 3

2
m2 − κ

(us)3/2

}
u + 3

2
m2s = 0, (II.7a′′)

{
D2 − 2mD + 3

2
m2 − κ

(us)3/2

}
s + 3

2
m2u = 0. (II.7b′′)

Du · Ds + 2κ

(us)1/2
+ 3

2
m2(u + s)2 = C. (II.8′′)

In these equations, all terms in the left members are linear except those terms in
(II.7a′′) and (II.7b′′) having the denominator (us)3/2; with the latter terms present,
the solution of the equations would presumably require numerical integration. But
Hill wanted to obtain a solution in which the parameter m is retained in literal form;
he therefore eliminated the non-linear terms pro tem, as the Jacobian integral (II.8′′)
permits him to do. First he multiplied (II.7a′′) by s and (II.7b′′) by u, and took their
sum and difference, obtaining

u D2s + s D2u − 2m(u Ds − s Du)− 2κ

(us)1/2
+ 3

2
m2(u + s)2 = 0,

u D2s − s D2u − 2m(u Ds + s Du)+ 3

2
m2(u2 − s2) = 0.

Then he added (II.8′′) to the first of these, while retaining the second as it is:

D2(us)− Du · Ds − 2m(u Ds − s Du)+ 9

4
m2(u + s)2 = C, (II.9)

D(u Ds − s Du − 2mus)+ 3

2
m2(u2 − s2) = 0. (II.10)

Equations (II.9) and (II.10) are not equivalent to (II.7a′′), (II.7b′′), and (II.8′′),
since the constant κ does not appear in them. This constant determines the scale of
the solution, and is thus essential to the problem. Integration of (II.9) and (II.10) will
introduce an inadmissible constant of integration. Hill will deal with these difficulties
after (II.9) and (II.10) have been integrated.

The first and second derivatives of u and s are:

Du =
+∞∑

−∞
(2i + 1)aiζ

2i+1, Ds =
+∞∑

−∞
(2i + 1)a−i−1ζ

2i+1,

D2u =
+∞∑

−∞
(2i + 1)2aiζ

2i+1, D2s =
+∞∑

−∞
(2i + 1)2a−i−1ζ

2i+1.
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In products such as (us), (u2), (s2), and (Du)(Ds), each of the two factors is an
infinite series, and each term of the one series is to be multiplied by each term of
the other. Using i and k for the indices of the two factors, we may write the product
us as ∑

i

aiζ
2i+1 ×

∑

k

akζ
−(2k+1) =

∑

k

∑

i

ai akζ
2(i−k).

Here as before the indices associated with the summation signs are understood to
have a range form −∞ to +∞; that is, to start at 0 and range in both the minus and
plus directions, it being assumed that the sequence converges. Note that the exponent
of ζ in this product is an even integer–a result to be expected in all the products, since
in the factors the exponent of ζ is always odd, and the sum of two odd integers is
even. Hill used the method of undetermined coefficients, in which the exponent of
ζ needs to be the same in all the products; he made it 2 j . In the value of (us) just
calculated, this result can be obtained by putting i − k = j so that k = i − j :

us =
∑

k

∑

i

ai ai−kζ
2 j .

Analogous substitutions yield the other needed formulas:

u2 =
∑

i

aiζ
2i+1 ×

∑

k

akζ
2k+1 =

∑

i

∑

j

ai a j−i−1ζ
2 j ,

s2 =
∑

i

aiζ
−2i−1 ×

∑

k

akζ
−2k−1 =

∑

i

∑

j

ai a j−i−1ζ
−2 j ,

Du · Ds = −
∑

i

∑

j

(2i + 1)(2i − 2 j + 1)ai a j−i−1ζ
2 j ,

u Ds − s Du = −2
∑

i

∑

j

(2i − j + 1)ai ai− jζ
2 j .

In all these expressions the summations with respect to j have the same extension as
those with respect to i .

Substituting these expressions into (II.9) and (II.10), and equating the polynomial
coefficients of ζ 2 j to zero, we obtain

∑

i

{
(2i + 1)(2i − 2 j + 1)+ 4 j2 + 4(2i − j + 1)m + 9

2
m2
}

ai ai− j

+ 9

4
m2
∑

i

(ai a−i+ j−1 + ai a−i− j−1) = 0,

4 j
∑

i

(2i − j + 1 + m)ai ai− j − 3

2
m2
∑

i

(ai a−i+ j−1 − ai a−i− j−1) = 0.
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These equations hold for all positive and negative integral values of j , but when
j = 0, the right member of the first equation is C rather than 0, and the second
equation is identically zero, hence uninformative. For the moment Hill excluded the
value j = 0 from consideration; he will return to it later.

To obtain somewhat simpler expressions, Hill multiplied the first equation by
2 and the second by 3, and formed first their difference and then their sum. The
result is

∑

i

{8i2 − 8(4 j − 1)i + 20 j2 − 16 j + 2 + 4(4i − 5 j + 2)m + 9m2}ai ai− j

+ 9m2
∑

i

ai a−i+ j−1 = 0, (II.11)

∑

i

{8i2 + 8(2 j + 1)i − 4 j2 + 8 j + 2 + 4(4i + j + 2)m + 9m2}ai ai− j

+ 9m2
∑

i

ai a−i− j−1 = 0. (II.12)

These equations are not really distinct; for if in (II.11) (− j) is put for j everywhere,
and then, under the sign of summation, (i − j) is substituted for i wherever it appears,
the result is identical with (II.12). Evidently a single formula can represent all the
equations of condition. Hill derives such a formula as follows.

Putting i = 0 in the first summation of both (II.11) and (II.12), he obtains

{20 j2 − 16 j + 2 − 4(5 j − 2)m + 9m2}a0a− j , (II.11′)

{−4 j2 + 8 j + 2 + 4( j + 2)m + 9m2}a0a− j . (II.12′)

If the substitution i = j is made instead, the result is the same, except that every-
where − j replaces j . (II.II′) and (II.12′) give the terms of principal importance in
determining a− j and a j . Hill next multiplies (II.11) by (II.12′), and (II.12) by (II.11′),
and adds the products. The number of terms resulting from this operation is 132; but
happily all of them not factored by i j mutually cancel. He then divides the surviving
terms by

48 j2{2(4 j2 − 1)− 4m + m2}.
The result is Hill’s general expression for the system of equations determining the
coefficients ai :

∑

i

{[ j, i]ai ai− j + [ j]ai a−i+ j−1 + ( j)ai a−i− j−1} = 0, (II.13)

where

[ j, i] = − i

j

4( j − 1)i + 4 j2 + 4 j − 2 − 4(i − j + 1)m + m2

2(4 j2 − 1)− 4m + m2
, (II.13a)
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[ j] = − 3m2

16 j2

4 j2 − 8 j − 2 − 4( j + 2)m − 9m2

2(4 j2 − 1)− 4m + m2
, (II.13b)

( j) = − 3m2

16 j2

20 j2 − 16 j + 2 − 4(5 j − 2)m + 9m2

2(4 j2 − 1)− 4m + m2
. (II.13c)

For each value of j , (II.13) gives an infinity of terms, obtained as i takes succes-
sively all integral values between +∞ and −∞. But, Hill assures us, we can never-
theless extract from (H.13) for a particular j , by successive approximations, values
of a j in terms of a0 to any required level of precision. Both |a1| and |a−1| prove to be
more than two orders of magnitude smaller than a0. More generally, |a j+1| is more
than two orders of magnitude smaller than |a j |, and |a− j−1| more than two orders of
magnitude smaller than |a− j |. Hill does not demonstrate the general validity of this
pattern, but it is confirmed step by step as his calculation proceeds. To illustrate the
process:

In determining a1 in terms of a0, we start with the terms of (II.13) in which
j = 1. In a first approximation, how widely should we cast our net, in calculating
values of (II.13) for different values of i? Let us try limiting ourselves to the values
i = −2,−1, 0, 1, 2, 3. Substituting in (II.13), we get

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ [1,−2]a−2a−3 + [1]a−2a2 + (1)a−2a0

+ [1,−1]a−1a−2 + [1]a−1a1 + (1)a−1a−1

+ [1, 0]a0a−1 + [1]a0a0 + (1)a0a−2

+ [1, 1]a1a0 + [1]a1a−1 + (1)a1a−3

+ [1, 2]a2a1 + [1]a2a−2 + (1)a2a−4

+ [1, 3]a3a2 + [1]a3a−3 + (1)a3a−5

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · = 0. (II.14)

Of the 18 terms here written out, four contain a1 and five contain a0. Only two
of these are without ai ’s other than a1 or a0, namely [1]a0a0 in the third row and
[1, 1]a1a0 in the fourth row.

We now give Hill’s numerical values for the quantities [1], (1), [1,0], [1,2], etc.,
in (II.14), as calculated from his value of m, namely 0.08084 89338 08312:

[1] = 0.00151, 58491, 71593,

(1) = −0.00109, 74483, 80467,

[1,−2] = 2.34384, 65210,

[1,−1] = 1.11204, 95007,

[1, 1] = −1,
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[1, 2] = −1.89182, 75672,

[1, 3] = −2.66324, 029556.

Let us try excerpting from (II.14) the two terms that contain no other ai ’s than a0
and a1, and setting them equal to zero; the result is

−a1a0 + [1]a0a0 = 0,

whence a1 = 0.00151 58491 71593a0.
Starting with j = −1 rather than j = 1, we find, analogously,

−a−1a0 + (−1)a0a0 = 0,

implying that a−1 = −0.00869 58084 99634a0.
The smallness of a1 and a−1 relative to a0 is encouraging. On substituting the

values of a1 and a−1 just found into II.14, the resulting equation will give a2 if we
ignore all terms containing a j other than a2 and a0; it will give a−2 if we ignore all
terms containing a j other than a−2 and a0. The result is:

a2 = 0.00000 58793 35016a0,

a−2 = 0.00000 01636 69405a0.

The smallness of these values relative to a1 and a−1 is, again, encouraging. The same
procedure, applied to succeeding values of j , leads at length to

a6 = 0.00000 00000 00007a0,

a−6 = 0.00000 00000 00000a0.

Here the process has gone as far as it can, if with Hill we limit the precision to 15
decimal places.

Taking the ai thus obtained as first approximations, we can proceed to second
approximations by recommencing from the beginning, and re-determining a1 and
a−1, but this time taking account of all terms in which (when j = 1) a1 occurs,
or in which (when j = −1) a−1 occurs. The calculation makes use of the first-
approximation values of the ai for i > 1 and for i < −1. The new values of a1
and a−1 can then be used in re-determining a2 and a−2. Step by step, the successive
coefficients can be revised. Is the process convergent?

The apparent convergence is remarkably rapid. The corrections from the second
approximations are at least four orders of magnitude smaller in absolute value than
the first-approximation values. Hill goes on to calculate corrections from the third
approximations, and these are at least four orders of magnitude smaller still. Thus in
the case of a1/a0 Hill finds

First-approximation value: +0.00151 58491 71593

Second-approximation correction: −0.00000 01416 98831

Third-approximation correction: +0.00000 00000 06801

Resulting value adopted: +0.00151 57074 79563.
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By the calculation just described, Hill shows how the ratios a j/a0 and a− j/a0 can
be obtained as series in terms of the parameter m (see II.13 above). The convergence
of these series can be improved, Hill remarks, if in them the parameter m is replaced
by a function of m of the form m/(1 + αm), the constant α being appropriately
chosen. “It is easily found,” Hill writes, “that α should be −1/3.” Hill’s reasoning is
apparently the following. From (II.13a–c) it is seen that the expressions [j,i] [j], and
(j), and hence the expression (II.13), all contain 2(4 j2−1)−4m+m2 as denominator;
in the special case where j = ±1, this becomes 6 − 4m + m2. The latter trinomial
continues to occur in the formulas (II.13) for j other than ±1, and its expansion as a
power series can be made more convergent if m is replaced by a function of m such
that the denominator no longer contains a term linear in m. Put m1 = m/(1 + αm)
so that m = m1/(1−αm1); substitute this value of m in the expression 6−4m+m2,
and clear of fractions. The coefficient of m1 in the resulting expression is (−12α−4),
which becomes zero when α = −1/3. The denominator becomes 6 + m2

1/3, whose
expansion as a power series in m1 converges with much greater rapidity than the
corresponding power series in m. When numerical values are to be computed from
these series, it is found that the number of terms that have to be calculated for a given
level of precision is less for the series in m1 than for the series in m. For the present
we continue our account of Hill’s calculations as performed with the parameter m;
although in fact he checked most of his calculations by performing them in terms of
both m and m1.

What about the value of a0, in terms of which the other ai have been found?
To determine it, an equation is needed in which κ is still present. Hill chooses
(H.7a′′). Into all terms of it, except the term having κ as a factor, he substitutes the
expressions for u and s as a function of ζ . The result is

κu−1/2s−3/2 =
∑

i

{[
(2i + 1 + m)2 + 1

2
m2
]

ai + 3

2
m2a−i−1

}
ζ 2i+1.

The right-hand side, if we consider only the terms for which i = 0, reduces to

a0

[
1 + 2m + 3

2
m2 + 3

2
m2(a−1/a0)

]
ζ.

Hill symbolizes this by a0ζH , and notes that, since (a−1/a0) is known to fifteen
decimal places, H can be calculated to a like precision. The left-hand side contains
the product of two infinite series, each raised to a negative fractional power. It can be
written as

κu−1/2s−3/2 = κa−2
0 ζ [1 + (a1/a0)ζ

2 + · · · ]−1/2[1 + (a1/a0)ζ
−2 + · · · ]−3/2.

The square brackets on the right can then be developed as Taylor series. From the
product of these brackets thus developed, let the sum of the terms from which ζ is
absent be designated J . Then, equating right- and left-hand sides,

κa−2
0 ζ J = a0ζH, or a3

0 = κ(J/H).
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But
κ = μ

(n − n′)2
= μ

n2
(1 + m)2;

therefore a0 has the value

[ μ
n2

]1/3
[

J (1 + m)2

H

]1/3

=
[ μ

n2

]1/3
[

1− 1

6
m2+ 1

3
m3+ 407

2304
m4− 67

288
m5−· · ·

]

= 0.99909, 31419, 62
[ μ

n2

]1/3
,

where Hill has evaluated the expansion to the ninth power of m.
The quantity [μ/n2]1/3 is generally identified in lunar theory, Hill says, with a,

the mean distance of the Moon from the Earth; and this is commonly determined
empirically.

To determine the constant C of the Jacobian integral, Hill returns to (II.9), which
by substitution of the expressions for u and s gives:

∑

i

{
(2i + 1)(2i − 2 j + 1)+ 4 j2 + 4(2i − j + 1)m + 9

2
m2
}

ai ai− j

+ 9

4
m2

∑

i

{ai a−i+ j−1 + ai a−i− j−1} = 0 or C.

The expression equals C if and only if j = 0, in which case we have

C =
∑

i

{
(2i + 2m + 1)2 + 1

2
m2
}

ai2 + 9

2
m2

∑

i

ai a−i−1.

To the eighth order of small quantities, this gives

C = a02

[
1 + 4m + 9

2
m2 − 1147

27 m4 − 1399

25 · 3
m5 − 2047

28
m6 + 3737

24 · 33
m7
]
.

This value holds when the differential equations are expressed in terms of u, s, and
ζ . When they are expressed in terms of x , y, and t , the preceding value must be

multiplied by 1
2 V 2 = 1

2
n2

(1+m)2
. Then C, with a0 replaced by its value, becomes

C = 1

2
(μn)2/3

[
1+2m− 5

6
m2−m3− 1319

288
m4 − 67

144
m5 − 2879

1296
m6 − 1321

1296
m7
]
.

The function κ/r3 plays an important role in the lunar theory, and Hill there-
fore takes the trouble to derive an expression for it using the process of “special
values” (harmonic analysis – a process promoted byGauss and put to frequent use by
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Hansen53). The constant κ , we recall, denotes the fraction μ/ν2, where ν = n − n′.
Hill computes the values of κ/r3 at intervals of 15◦ over a quadrant:

τ κ/r3

0◦ 1.19699 57017 23421
15◦ 1.19348 68051 03032
30◦ 1.18399 66676 76716
45◦ 1.17125 64904 33157
60◦ 1.15876 77987 29687
75◦ 1.149978 07679 95764
90◦ 1.14652 34925 50570

Then the “special values” procedure yields a Fourier series:

κ

r3
= 1.17150 80211 79225

+ 0.02523 36924 97860 cos 2τ

+ 0.00025 15533 50012 cos 4τ

+ 0.00000 24118 79799 cos 6τ

+ 0.00000 00226 05851 cos 8τ

+ 0.00000 00002 08750 cos 10τ

+ 0.00000 00000 01908 cos 12τ

+ 0.00000 00000 00017 cos 14τ.

53 For a more recent description of the process, see E. Whittaker and G. Robinson, The
Calculus of Observations (Fourth Edition, New York, NY: Dover Publications 1967),
Chapter X.
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Early Assessments of Hill’s Lunar Theory

John C. Adams, writing in the Monthly Notices of the Royal Astronomical Society for
November 1877, was the first to give public recognition of the importance of Hill’s
1877 paper54:

A very able paper has recently been published by Mr. G. W. Hill, assistant
in the office of the American Nautical Almanac, on the part of the motion
of the lunar perigee which is a function of the mean motions of the Sun and
Moon.

Assuming that the values of the Moon’s coordinates in the case of no
eccentricities are already known, the author finds the differential equations
which determine the inequalities which involve the first power of the eccen-
tricity of the Moon’s orbit, and, by a most ingenious and skilful process, he
makes the solution of those differential equations depend on the solution of
a single linear differential equation of the second order, which is of a very
simple form. This equation is equivalent to an infinite number of algebraical
linear equations, and the author, by a most elegant method, shows how to de-
velop the infinite determinant corresponding to these equations in a series of
powers and products of the small quantities forming their coefficients. The
value of the multiplier of each of such powers and products as are required is
obtained in a finite form. By equating this determinant to zero, an equation
is obtained which gives directly, and without the need of successive approxi-
mations, the motion of the Moon from the perigee during half of a synodic
month. . . . The ratio of the motion of the perigee to that of the Moon thus
obtained is true to 12 or 13 significant figures. The author compares his nu-
merical result with that deduced from Delaunay’s analytical formula, which
gives the ratio just mentioned developed in a series of powers of m, the ratio
of the mean motions of the Sun and Moon. The numerical coefficients of
the successive terms of this series increase so rapidly that the convergence
of the series is slow, so that the terms calculated do not suffice to give the

54 J. C. Adams, MNRAS, 38 (1877), 43.
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first four significant figures of the result correctly, although, by induction, a
rough approximation may be made in the remaining terms of the series.

Adams goes on to say that his own researches in the Lunar Theory, pursued
intermittently since the 1860s, have followed a somewhat parallel course.

I have long been convinced that the most advantageous way of treating the
Lunar Theory is, first, to determine with all desirable accuracy the inequali-
ties which are independent of the eccentricities e and e′, and the inclination
2 arcsin γ , and then, in succession, to find the inequalities which are of one
dimension, two dimensions, and so on, with respect to those quantities.

Thus the coefficient of any inequality in the Moon’s coordinates would
be represented by a series arranged in powers and products of e, e′, and γ ,
and each term in this series would involve a numerical coefficient which is a
function of m and which may be calculated for any given value of m without
the necessity of developing it in powers of m . . . .

The differential equations which would require solution in these succes-
sive operations [after the determination of the inequalities solely dependent
on m] would be all linear and of the same form.

The general idea that Adams arrived at for developing the lunar theory was sub-
stantially the same as Hill’s. In the article from which we are quoting he goes on
present his results for the motion of the Moon’s node. Here he arrives at a differ-
ential equation of the same form as Hill’s equation for the motion of the Moon’s
perigee, and encounters an infinite determinant of the same form. His solution of the
latter, he acknowledges, is less skillful and more laborious than Hill’s, but – after
correcting a small error he has committed in a 12th-order term – he finds the two
solutions to be in entire agreement.

On Hill’s being awarded the Gold Medal of the Royal Astronomical Society in
1887, the new president of the society, J.W.L. Glaisher, devoted his inaugural address
to setting forth the grounds of the award.55

The investigations of Mr. Hill’s which the Council have had principally in
view are contained in the memoir “On the Part of the Motion of the Lunar
Perigee, which is a function of the Mean Motions of the Sun and Moon”. . . .
The merits of Mr. Hill’s treatment of this question are such, that, even if this
memoir stood by itself as his sole contribution to astronomy, the Council
would have felt themselves justified in recognizing its value by the highest
mark of appreciation which it is in their power to confer. Mr. Hill’s object in
this memoir is to determine. . . an absolutely accurate value of that part of c
which depends upon m alone.

Hill is the first, Glaisher points out, to obtain c with a numerical precision equal
to that of the observational value, and his method is entirely novel.

55 The address was published in the February issue of MNRAS, 47 (1887), 203–220.
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It will be observed that the problem of the determination of this quantity
is attacked entirely de novo, from first principles, by a peculiar analytical
method devised for this especial purpose.. . . . [The] object is attained with a
degree of precision that sets the problem at rest for ever.

The mathematical process is very peculiar. Not only is it quite differ-
ent from any of the methods with which the lunar theory is associated, but it
even displays novelty from the point of view of the pure mathematician. I am
not aware that actual use has ever been previously made of an infinite deter-
minant in any of the applications of mathematics, or that the development of
such a determinant (by proceeding outwards from its central constituent, as
it were) has ever been the subject of mathematical investigation. One cannot
admire too highly the courage and skill with which Mr. Hill has dealt with
the new mathematical questions to which his methods have led him.

Glaisher also gives a resumé of Hill’s 1878 paper, and emphasizes its departure
from established custom in the lunar theory by the introduction of rectangular coor-
dinates and of the imaginary quantity i[= √

(−1)]. He compares Hill’s procedures
with those that Adams has adopted in dealing with the motion of the lunar node, and
in glowing terms expresses his hopes for the effect Hill’s and Adam’s innovations
will have upon the future development of the lunar theory:

In recent years it has come to be generally believed that a worker had
but little chance of performing useful service in the lunar theory unless
he was prepared to make it the study of his life. The belief has also been
prevalent that the mathematical portion of the treatment of the subject has
been worked out, and that there was no scope for the display of mathe-
matical skill or the employment of modern mathematical methods. Until
some great discovery should change the face of the whole subject, it has
seemed likely that patience and diligence in traversing with greater care
the old lines, and extending still further developments already carried to
a wonderful extent, would be all that was required to perfect the theory.
Considering, on the other hand, the attractiveness of the new and rapidly
progressing branches of pure mathematics, and of many recent applications
of mathematics, and of many recent applications of mathematics to physical
science, it is scarcely to be wondered at that so few of the younger genera-
tion of mathematicians should have included the lunar theory within their
subjects of research. The papers of Mr. Hill’s which I have described, and
certain recent papers of Professor Adams’s, have invested the lunar theory
with a new mathematical interest, and have shown that in the treatment of
the special problems included in the subject there is an ample opportunity
not only for the application of existing mathematical methods, but even
for the discovery of new ones. These papers show also that it is possible
for the mathematician to confine himself to these special problems with-
out attempting to cover the whole ground of the lunar theory. I hope that
this is the dawn of a new day in the history of the lunar problem, and that,
now that the whole territory has been mapped out by Plana and Delaunay,
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it will be found that the special investigations offer a tempting field to the
mathematician. So far from the subject having been exhausted by the general
methods which have been applied to it as a whole, I believe that the future
will show that they have but cleared the ground and disclosed to view the
objects to which mathematical investigation may with the greatest advantage
be directed.

Poincaré, too, praised Hill’s innovations in glowing terms. From his perspective,
their importance was not limited to the lunar theory but extended to all of celestial
mechanics – to the larger projects of determining whether Newton’s inverse-square
law was sufficient to account for the motions of the celestial bodies, and whether
the solar system was stable. In a memoir submitted to the Société mathématique
de France in 1886 he undertook to demonstrate the convergence of Hill’s infi-
nite determinant analytically.56 Hill’s bold use of the ordinary rules applicable to
finite determinants, wrote Poincaré, was justified by its success – its near agreement
with observation. But the analytical substantiation puts “la belle méthode de M. Hill”
beyond any possible objection.

In the introduction to the first volume of his Les méthodes nouvelles de la
Mécanique Céleste (1892), Poincaré refers to Hill’s two papers on the lunar theory
of 1877 and 1878, and says

Dans cette oeuvre, malheureusement inachevée, il est permis d’apercevoir
le germe de la plupart des progress que la Science a faits depuis.

Here “la Science” undoubtedly means Mécanique Céleste, and the progress Poincaré
is referring to is that which he himself has made, in using periodic orbits as “launch-
ing pads” for the investigation of the neighboring phase space, as Hill had done in
introducing eccentricity into the variation orbit. In his introduction to Vol. I of The
Collected Mathematical Works of George William Hill (1905), Poincaré asserts that,
among Hill’s many papers on celestial mechanics, those on the lunar theory consti-
tute his chef d’oeuvre:

. . . c’est lá qu’il a été non seulement un artiste habile, un chercheur curieux,
mais un inventeur original et profond.

56 H. Poincaré, “Sur les determinants d’ordre infini,” Bulletin de la Société mathématique de
France, XIV, 77–90.
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E. W. Brown, Celestial Mechanician

Ernest Willliam Brown (1866–1938), born into a farming family in Hull, England,
attended Christ’s College, Cambridge, beginning in 1884, and received the A.B.
in 1887. He had been a delicate youth, but during his Cambridge years took to
rowing on the Cam and climbing mountains in Switzerland. Like other bright young
Cambridge men of his time, he entered upon the strenuous training for the Mathe-
matical Tripos (named, it is said, from the three-legged stool on which, in the earliest
times, the competitors sat for the examinations). The value of this training has been
variously judged.57 Stress on applied mathematics, learned by intensive practice in
problem-solving, was distinctive of it. Through the last two-thirds of the 19th cen-
tury, most of Britain’s foremost mathematical physicists were top-ranking “wran-
glers” – those achieving high scores in the examinations. Brown graduated sixth
wrangler. He became an assiduous calculator and an able practitioner of applied
mathematics, and as the years went on, a knowledgeable inquirer into foundational
questions in what became his specialty, celestial mechanics.

Brown in later years had no doubts about the influence he was most indebted to in
his career. During 4 years of graduate study at Cambridge (1887–1891), he was the
protégé of George Howard Darwin, son of Charles Darwin. This younger Darwin
had been second wrangler in 1868, and he became an applied mathematician who
achieved recognition for his extended and innovative inquiries into periodic orbits in
the three-body problem, and into the tides within the Earth and its oceans. Darwin
obtained his results by paper-and-pencil calculations, daunting in their length and
intricacy. It was he who proposed to Brown the study of Hill’s lunar theory, and
guided him in his early study of it. It was Darwin, too, who in 1889 obtained Hill’s
consent to Brown’s undertaking the development of the new lunar theory beyond the
point to which Hill had carried it. Darwin proof-read the MS of Brown’s Introductory

57 For a favorable view of Cambridge mathematical culture, see A. Warwick, Masters of
Theory: Cambridge and the Rise of Mathematical Physics (The University of Chicago
Press: Chicago and London 2003). For a critical view, see D. Lindley, Degrees Kelvin.
A Tale of Genius, Invention, and Tragedy (Joseph Henry Press: Washington, DC 2004)
32 ff.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 6,
c© Springer Science+Business Media, LLC 2010
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Treatise on the Lunar Theory (1896), and critiqued others of his papers. Darwin
himself was hard-working, patient, and modest. For over a decade after leaving
Cambridge, Brown corresponded with Darwin on a fairly regular basis, and visited
with him almost every summer, confiding in him and seeking his counsel. Darwin,
we can be pretty sure, was the model that Brown set out to emulate.

In 1889 Brown was made a fellow of Christ’s College (Darwin’s college); he
would retain that position through 1895. In January 1891 he was awarded the A.M.
degree. In the same year he received an appointment as instructor in mathematics
at Haverford College in Pennsylvania. He took up residence there in the autumn of
1891.

During his first winter in the United States, Brown paid a visit to Hill and
Newcomb at the Nautical Almanac Office in Washington, and discussed the lunar
project with them.58 It was at about this time, we believe, that Hill wrote the three-
page memorandum reproduced in the Appendix to this study. It refers to Brown’s
work on the lunar theory, and urges that the Nautical Almanac Office support it
by supplying professional computers – a suggestion that was never acted upon.
Later Hill checked Brown’s results in his first major article on the lunar theory, and
Newcomb offered suggestions about the second. Brown came to regard the relative
merits of the two men, in their work on celestial mechanics, as “much the same,”59

but he found Newcomb easier to communicate with.
To Brown, the change in climate – heat and humidity in the summers, blizzards

and frigid cold in the winters – was trying. In March of his second academic year at
Haverford, he wrote Darwin:

The weather has almost been too much for me this winter. I have scarcely
been well the whole time since I landed in September. This has made me
think seriously of leaving and returning to Cambridge, though I have been
permanently appointed here, that is, for three years. Socially it is very pleas-
ant indeed here. There is always a good deal going on in the way of recep-
tions, dinners, etc.60

On May 19 he reported yet another bout with illness:

Many thanks for yours of April 9th. I am sorry to have not been able to
answer it before. A day or two after receiving it I was taken ill and had three
weeks in bed and am only just able to get up to college now. I have had to
give up all idea of getting anything done besides my small amount of college
lecturing before I sail in four weeks.61

Throughout the 1890s Brown spent his summers in England or on the Continent,
delaying his return to Haverford till the latest moment. Diffident about his future as

58 F. Schlesinger and D. Brouwer, “Ernest William Brown” National Academy Biographical
Memoirs, XXI, 257.

59 Brown to Darwin, 21 March 1896, Cambridge University Library (hereinafter CUL), MS
DAR 251:479.

60 Brown to Darwin, 10 March 1893, CUL, MS DAR 251:467.
61 Brown to Darwin, 19 May 1893, CUL, MS DAR 251:468.
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a mathematician in America, he kept on the lookout for a job in England or possibly
elsewhere. In the job search Darwin did stalwart service, reconnoitering and writing
references.

Meanwhile, Brown persevered in his work on the lunar theory. In November
1891 he submitted for publication a first major paper,62 dealing with the parallactic
inequalities, and at nearly the same time, an extended note for publication in the
Monthly Notices of the Royal Astronomical Society.63 He had apparently begun his
work on the parallactic inequalities earlier in England, under Darwin’s supervision.

Brown next turned to the inequalities dependent on the lunar orbit’s eccentricity.
Eccentricity (displacement of the dynamical center of the orbit from its geometrical
center) implied that the orbit would be partially characterized by elliptical elements.
In December 1892 and June 1893 he submitted for publication the two parts of a
major paper dealing with the “elliptical inequalities.”64 This time he worked without
Darwin’s supervisory help, carrying out extensive calculations which he character-
ized as nightmarish. The results were again substantial.

During the academic year 1894–1895 he took a leave of absence from Haver-
ford, partly, as we learn from a subsequent letter to Darwin, to help the college save
money.65 In December 1894 he completed a third major paper, setting forth a plan
for systematic development of the whole lunar theory.66 At the close of this paper
he gave his location and the date as “Christ’s College, Cambridge, December 24th,
1894.” It seems likely that he was in residence at Christ’s College, as his fellowship
allowed, through all or most of the 1894–1895 academic year. All three of the major
papers we have cited were published, like Hill’s “Researches in the Lunar Theory”
earlier, in the American Journal of Mathematics. They supply essential background
for understanding the systematic development of the lunar theory which Brown was
to embark upon in 1895.

62 E. W. Brown, “On the Part of the Parallactic Inequalities in the Moon’s Motion which is a
Function of the Mean motions of the Sun and Moon,” American Journal of Mathematics,
14 (1892), 141–160.

63 E. W. Brown, “On the Determination of a certain Class of Inequalities in the Moon’s
Motion,” Monthly Notices of the Royal Astronomical Society (hereinafter abbreviated as
MNRAS), 52 (Dec. 1891), 71–80.

64 E. W. Brown, “The Elliptic Inequalities in the Lunar Theory,” American Journal of Math-
ematics, 15 (1893), 244–263, 321–338. As we have seen in Part I, the Moon’s orbit cannot
be approximated as closely by an ellipse as by Hill’s “variation curve.”

65 Brown to Darwin, 21 March 1896, CUL, MS DAR 251:479.
66 E. W. Brown, “Investigations in the Lunar Theory,” American Journal of Mathematics, 17

(1895), 318–358.
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The paper on the parallactic inequalities adapts Hill’s method so as to include the
class of inequalities depending on the ratio of the lunar and solar mean distances
(a/a′). Hill, in accounting for the inequalities depending solely on the ratio of the
mean motions of the Sun and Moon (n′/n), had left these “parallactic” inequalities
out of account, thus implicitly assigning a zero parallax to the Sun. Brown in his
introductory paragraph called attention to the special practical import of the principal
part of the Parallactic Inequality – the part depending solely on the constant m =
n′/(n − n′) and the first power of the ratio a/a′. Astronomers employed this part in
investigating the Sun’s horizontal parallax – a special reason for desiring an accurate
value of it. Delaunay’s calculation of it was of doubtful accuracy.

Brown in his note “On the Determination of a certain Class of Inequalities in the
Moon’s Motion” distinguished the two principal methods by which the Lunar Theory
had been pursued, one of them general, the other specific (we earlier called these the
literal and numerical methods). In the first,

. . . we have the theory, worked out to a certain degree of accuracy, imme-
diately applicable to any single Moon in our solar system, and therefore
arranged in such a way that any small change which improved data may
involve in the values of the constants can be made easily without requiring
us to go over the whole of the work again.

A drawback of this method is that

the number of terms which have been found necessary to secure a degree
of accuracy commensurate with that of observation is very large, and it
becomes a task of great labor to obtain them with any degree of certainty.

In the second method, the constants are assigned numerical values from the start.
The difficulty of slow convergence in the series expansions expressing the coeffi-
cients is thereby entirely avoided, and a great increase in accuracy naturally results.
But this method has its own drawbacks: if any numerical mistake has been made, it
is not easily traceable; and if it is desired to change one of the originally assigned
values of the constants, the entire calculation must be begun over again.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 7,
c© Springer Science+Business Media, LLC 2010
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Hill by his method obtained numerical and algebraic results of equal accuracy for
the inequalities he dealt with, those dependent solely on the constant m. In the end it
was Hill’s numerical results that Brown employed; by introducing them he was able
to eliminate most of the instances of slow convergence encountered earlier by Plana
and Delaunay in their literal elaborations of the theory. The other constants of the
theory – the eccentricities of the lunar and solar orbits, the inclination of the lunar
orbit, and the relative parallax of the two orbits – could be left in literal form, as was
advisable in any case, since their numerical values were less securely established than
that of the constant m. Constants left in literal form in the development of the theory
could eventually be determined numerically in a least-squares fitting of the theory to
observations.

The chief aim of Brown’s note in the Monthly Notices was to compare his own
results for the parallactic inequalities with those of Delaunay. In later stages of his
work, Brown would provide similar comparisons for other classes of inequalities,
pitting the two theories, Delaunay’s and the Hill–Brown theory, against one another.
Delaunay’s theory had been left incomplete at the time of Delaunay’s accidental
death by drowning in 1872, and for some time the further development of it had
languished, but by the 1890s the Bureau des Longitudes in Paris had taken it up as
an ongoing project. In 1910, Radau acknowledged that the Hill–Brown theory had
proven superior, but Delaunay’s theory was used as the basis of the lunar tables in
the Connaissance des Temps till 1923.

In carrying out the comparisons, Brown made use of a discovery of Hill’s:
Delaunay’s series, if expanded not in terms of the constant m = n′/n, as Delaunay
had done, but in terms of the constant m = n′/(n − n′), were rendered more
convergent. Still better for this purpose was the constant μ = m/(1 − m/3) =
m/(1 − 4m/3). Thus for the coefficient of the Variation dependent on m Delaunay
obtained

11

8
m2 + 59

12
m3 + 893

72
m4 + 2855

108
m5 + 8304449

165888
m6

1586′′.8883 + 424′′.4474 + 80′′.0906 + 12′′.7689 + 1′′.8087

+ 102859909

1244160
m7 + 7596606727

74649600
m8 − 8051418262

1119744000
m9 · · ·

+ 0′′.2234 + 0′′.0206 − 0.′′0001 (α)

(The arcseconds corresponding to each term are given beneath the term.) Following a
suggestion of Hill’s, Brown substituted m = μ/(1+4μ/3) into the foregoing series,
then expanded in powers of μ to obtain

11

8
μ2 + 5

4
μ3 + 5

72
μ4 − 11

36
μ5 − 82111

165888
μ6

1957′′.9686 + 147′′.8944 + 0′′.6827 − 0′′.2496 − 0′′.0336
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− 350399

138240
μ7 − 233559113

74649600
μ8 − 10961275281

1119744000
μ9 · · ·

− 0′′.0143 − 0′′.0015 − 0.′′0004 (β)

The convergence in (β) is clearly more rapid than that in (α). Comparing the values
of the coefficient determined by (α) and (β) with Hill’s value, Brown found:

From (α) . . . . . . . . . 2106′′.2478

From (β) . . . . . . . . . 2106′′.2463

Hill’s value . . . . . . . . . 2106′′.2463 (γ )

The agreement of Hill’s value with the value obtained from (β) showed that
Delaunay’s series, revised as proposed by Hill, might provide a useful check on
derivations in the Hill–Brown theory.

The change in sign in (α), Brown pointed out, occurs between the terms in m8

and m9, whereas the change in sign in (β) occurs between the terms in μ4 and μ5.
Brown commented:

I have calculated similar expressions in the coefficients of other inequali-
ties, and generally it appears that when we, by any such substitution as that
made above, apparently improve the convergency of the series, the change
of sign is brought nearer to the beginning of the series. An ideal to aim at
would seem to be, firstly, that the numerical multipliers be made as small as
possible; secondly, that there be no sudden increase in them in the later part
of the series; and thirdly, that these two conditions should involve that there
be no long run of powers with the same sign attached to them. . . . It should
be stated that as the series are calculated up to some definite power only,
and as the law of progression of the series is not able to be expressed by
an algebraical formula, owing to the complicated forms from which they
arise, a substitution like that made above must not be arbitrary, but must
be indicated by theory. An arbitrary substitution. . . may make the unknown
part very slowly convergent, and thus introduce unknown errors into the
numerical values of the coefficients.

Brown’s derivation of the parallactic inequalities took its start from a point early
in Hill’s paper of 1878. As the disturbing function Hill had used

 = μ√
x2 + y2 + z2

+ n′2a′3
√
(r ′ − x)2 + y2 + z2

− n′2a′3

r ′2 x .

The last two terms on the right give, by their derivatives with respect to x , the dif-
ference between the force the Sun exerts on the Moon and the force it exerts on the
Earth. Hill had expanded the first of these terms, using Taylor’s rule for the expansion
of a function of three independent variables, and obtained
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 = μ√
x2 + y2 + z2

+ n′2 a′3

r ′3

[
x2 − 1

2
(y2 + z2)

]

+ n′2

a′
a′4

r ′4

[
x3 − 3

2
x(y2 + z2)

]

+ n′2

a′2
a′5

r ′5

[
x4 − 3x2(y2 + z2)+ 3

8
(y2 + z2)2

]

+ n′2

a′3
a′6

r ′6

[
x5 − 5x3(y2 + z2)+ 15

8
x(y2 + z2)2

]

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
He had then simplified the expression by deleting the variable z, setting r ′ = a′,
and restricting the further development to the first line of the expansion. He was thus
neglecting the terms in which the factors 1/a′, (1/a′)2, and (1/a′)3 occur – the terms
implicitly involving the ratio of the mean Moon-Earth distance to the mean Earth-
Sun distance. In effect, he was assuming the Sun to be of infinite mass and at an
infinite distance.

Brown began his derivation by re-introducing the three neglected terms, whose
sum he labeled 1 (this symbol will later get an extended signification):

1 = n′2

a′

[
x3 − 3

2
xy2

]
+ n′2

a′2

[
x4 − 3x2 y2 + 3

8
y4
]

+ n′2

a′3

[
x5 − 5x3 y2 + 15

8
xy4

]
+ · · ·

The equations of motion as given by Hill (II.7 in Part I) then had to be modified by
the addition of the appropriate partial derivatives of 1 to their right-hand members:

d2x

dt2
− 2n′ dy

dt
+
( μ

r3
− 3n′2

)
x = ∂1

∂x
,

d2 y

dt2
+ 2n′ dx

dt
+ μ

r3
y = ∂1

∂y
. (B.1)

Whereas Hill’s (II.7) admitted of a solution symmetrical with respect to both of
the moving axes, the addition of the partial derivatives spoiled the symmetry. If, in the
standard test for symmetry, we change the signs of x and t in (B.1) while leaving the
sign of y unaltered, the equations are no longer the same; and they are also altered if
we change the signs of y and t while leaving the sign of x unchanged. But the terms
introduced by the partial derivatives are small compared with the terms originally
present. For a range of initial conditions, the resulting orbit remains reentrant or
closed.

Multiplying (B.1) by dx/dt, dy/dt respectively, adding them together and inte-
grating the result, Brown obtained the new Jacobian integral:
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(
dx

dt

)2

+
(

dy

dt

)2

− 2μ

r
− 3n′2x2 = 21 − 2C.

Brown’s next steps again paralleled those of Hill in his 1878 paper. He introduced
the complex variables u, s and the operator D = ζ d

dζ , thus arriving at transformed
expressions for the equations of motion and the Jacobian integral:

[
D2 + 2mD − κ

(us)3/2

]
u = −3

2
m2(u + s)− m2 · 2

n′2 · ∂1

∂s
,

[
D2 − 2mD − κ

(us)3/2

]
s = −3

2
m2(u + s)− m2 · 2

n′2 · ∂1

∂u
,

Du · Ds + 2κ

(us)1/2
= 3

4
m2(u + s)2 − m2 · 2

n′2 ·1 + C ′. (B.2)

Next, he eliminated from these equations the non-linear terms in which the product
(us) is raised to a negative fractional power, just as Hill had done. He multiplied the
first equation by s and the second by u, and added the sum of the products to the
third equation. To obtain a second equation, he subtracted the first of the same two
products from the second. The two resulting equations were

D2(us)− Du Ds − 2m(u Ds − s Du)+ 9

4
m2(u + s)2

= −m2 · 2

n′2

(
u
∂1

∂u
+ s
∂1

∂s
+1

)
+ C ′,

D(u Ds − s Du − 2mus)+ 3

2
m2(u2 − s2)

= −m2 · 2

n′2

(
u
∂1

∂u
− s
∂1

∂s

)
. (B.3)

If from these equations we delete the terms involving 1 and its derivatives, we
obtain the corresponding homogeneous equations given by Hill.

The next stage, for both Hill and Brown, was to introduce a particular integral of
the equations. Hill’s particular integral, we recall, had the form

x =
∑

i

ai cos[(2i + 1)ν(t − t0)], y =
∑

i

ai sin[(2i + 1)ν(t − t0)].

Here the index i extended to all positive and negative integers and to zero. The factor
(2i + 1) in the sinusoidal arguments insured that the orbit would cross the x- and
y-axes at right angles. For Brown, such symmetry was no longer possible: the force
that flattened the moon’s orbit in the direction of the line of syzygies was stronger
on the side of the Earth closer to the Sun than on the far side. The resulting orbital
asymmetry exhibited itself in new parallactic terms.
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Brown proposed the particular integral

x =
∑

i

ai−1 cos iν(t − t0), y =
∑

i

ai sin iν(t − t0),

where the summation extends to all negative and positive integers and zero. He has
here substituted an italic “a” for Hill’s roman “a.” In his next step, he followed Hill
in replacing x, y by the complex variables u, s:

u =
∑

i

aiζ
i+1, s =

∑

i

a−iζ
i−1.

Introducing these expressions into the two equations of (B.3), and equating (except
when i = 0) the coefficients of ζ i to zero, he obtained

∑

j

[
i2 − ( j + 1)(i − j − 1)− 2m(i − 2 j − 2)+ 9

2
m2
]

a j a j−i

+ 9

4
m2
∑

j

[a j−1ai− j−1 + a− j−1a−i+ j−1] = −m2Li ,

∑

j

[i(i − 2 j − 2)− 2mi]a j a j−i

+ 3

2
m2
∑

j

[a j−1ai− j−1 − a− j−1a−i+ j−1] = −m2 Mi , (B.4)

where −m2L1,−m2 Mi are the coefficients of ζ i on the right-hand sides of the equa-
tions. By a short sequence of operations he simplified these equations and obtained
a single equation corresponding to Hill’s result (equation II.13 in Part I):

∑

j

{[i, j]a j a−i+ j + [i]a j−1ai− j−1 + (i)a− j−1a−i+ j−1}

= −1

9
[2Li {[i] + (i)} + 3Mi {[i] − (i)}], (B.5)

where

[i, j] = − j

i
· (i − 2) j + i2 + 2i − 2 − 2( j − i + 2)m + m2

2(i2 − 1)− 4m + m2
,

[i] = −3m2

4i2

i2 − 4i − 2 − 2(i + 4)m − 9m2

2(i2 − 1)− 4m + m2
,

(i) = −3m2

4i2

5i2 − 8i + 2 − 2(5i − 4)m + 9m2

2(i2 − 1)− 4m + m2
.
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If, Brown remarked, the terms on the right-hand side of (B.5) are set equal to zero,
every coefficient ak with odd index k vanishes, and with “one or two changes in
notation,” (B.5) becomes identical with (II.13). The letters i, j are replaced by 2 j, 2i
respectively, so that Hill’s index for a given coefficient is half Brown’s index for the
same coefficient: Hill’s a1, a−1, become Brown’s a2 and a−2.

Hill’s (II.13), we recall, yielded by successive approximations the coefficients
a1, a−1, a2, a−2, etc., in terms of a0. For Brown, these coefficients (written, as just
explained, with the original indices doubled, and with italicized “a” in place of “a”)
remained largely unchanged in value. In their series expansions in powers of m, the
differences emerge only in terms of the 7th and higher orders. The coefficients with
odd indices in Brown’s theory, on the other hand, were altogether new.

Brown’s formulas were more complicated than Hill’s. To begin with, he had to
find expressions for Li , which is proportional to1+u ∂1

∂u +s ∂1
∂s , and for Mi , which

is proportional to u ∂1
∂u − s ∂1

∂s . For the right-hand member of (B.5) he obtained

− 1

9
[2Li {[i] + (i)} + 3Mi {[i] − (i)}]

= 1

a′ [Ai (u
3)i + A′

i (s
3)i + Bi (u

2s)i + B ′
i (us2)i ]

− 1

a′2 [Ci (u
4)i + C ′

i (s
4)i + Di (u

3s)i + D′
i (us3)i + Ei (u

2s2)i ]

− 1

a′3 [Fi (u
5)i + F ′

i (s
5)i + Gi (u

4s)i + G ′
i (us4)i + Hi (u

3s2)i + H ′
i (u

2s3)i ]

− . . . . . . . . . . . . .

Here the letters Ai , A′
I , etc. are functions of m of the order of m2 at least, and the

symbols (u3)i , (s3)i , etc., denote the coefficients of ζ i in u3, s3, etc. For instance,
(u3)1 = 3a2

0a−2, which is of the second order with respect to m, and since 1/a′ and
A1 are each of at least the second order, the term A1(u3)1/a′ is at least of the sixth
order.

A special difficulty arose in obtaining the coefficients a1 and a−1, the first of
the coefficients with odd indices. In this case the denominator in each term of (B.5)
reduced to (−4m + m2), thus lowering the order of all terms by one power of m.
Hence, in calculating these coefficients by (B.5) to a given degree of approximation,
the expressions for them needed to be carried one order higher than in the case of
the other coefficients. Moreover, when i = ±1 the process of approximation was
especially slow and cumbrous.

To avoid these difficulties, Brown developed a special formula. In the equations
(B.4), he set i = 1, obtaining

∑

j

[
a j a j−1{ j2 + j + 1 + 2m(2 j + 1)+ 9

2 m2}
+ 9

4 m2{a j−1a− j + a− j−1a j−2}

]
= −m2L1,
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∑

j

[
a j a j−1{−2 j − 1 − 2m}
+ 3

2 m2{a j−1a− j − a− j−1a j−2}

]
= −m2 M1.

He multiplied the second of these equations by 2m and added it to the first to obtain
a new equation. In this and in the second equation he substituted values of j such as
to yield all values of a1 and a−1 to the seventh order in m. The result was

a0a1

[
3 + 1

2
m2 + a2

a0

(
7 + 1

2
m2
)

+ a−2

a0

(
9

2
m2 + 6m3

)
+ a−4

a0

(
9

2
m2 − 6m3

)]

+ a0a3

[
a2

a0

(
13 + 1

2
m2
)

+ a4

a0

(
21 + 1

2
m2
)]

+ a0a−1

[
1 + 5m2 + 6m3 + a−2

a0
(1 + 5m2 − 6m3)

]

+ a0a−3

[
9

2
m2 − 6m3 + a2

a0

(
9

2
m2 + 6m3

)
+ a−2

a0

(
3 + 1

2
m2
)

+a−4

a0

(
7 + 1

2
m2
)]

= −m2(L1 + 2mM1),

a0a1

[
3 + 2m + a2

a0
(5 + 2m)− 3m2 a−2

a0
+ 3m2 a−4

a0

]

+ a0a3

[
a2

a0
(7 + 2m)+ a4

a0
(9 + 2m)

]

+ a0a−1

[
1 + 2m − 3m2 + a−2

a0
(−1 + 2m + 3m2)

]

+ a0a−3

[
3m2 − 3m2 a2

a0
+ (−3 + 2m)

a−2

a0
+ (−5 + 2m)

a−4

a0

]

= m2 M1. (B.6)

In this expression the quotients a2/a0, a−2/a0, a4/a0, and a−4/a0, good to the
seventh order in powers of m, had been given by Hill.67 The right-hand sides of
the two equations in (B.6) were given by

L1 = a0

a′

[
15

2
(a0a−2 + a0a−4 + a2

−2)

+3

2
(a2

0 + 2a2
2 + 2a2

−2 + 2a2a−2 + 2a0a−2 + a0a2)

]
,

67 See The Collected Mathematical Works of George William Hill, I, 317, where they are
symbolized by a±1/a0, a±2/a0.
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M1 = a0

a′

[
45

8
(a0a−2 − a0a−4 − a2

−2)

+3

8
(a2

0 + 2a2
2 + 2a2

−2 + 2a2a−2 − 2a0a−2 − a0a2)

]
.

The formulas (B.6) for a1 and a−1 contain the factors a3 and a−3. These when
determined from (B.5) are found to depend on a1 and a−1. Proceeding by successive
approximations, one could first determine a1 and a−1 from (B.6) while neglecting
the terms involving a3 and a−3; then use these values in (B.5) to determine a3 and
a−3 approximately; next substitute the latter values into (B.6) to obtain improved
values of a1 and a−1, and so on. To avoid such reciprocal substitutions and arrive in
a single step at values accurate to the seventh order, Brown wrote

a3 = αa1 + βa−1 + γ a0

a′ a0,

a−3 = α′a1 + β ′a−1 + γ ′ a0

a′ a0.

When these expressions are substituted into (B.6), α, β, γ, α′, β ′, γ ′ prove to be
known functions of m, dependent on the ratios a2/a0, a−2/a0, a4/a0, a−4/a0 as
given by Hill.

Having thus found a1 and a−1 to the seventh order, Brown proceeded to deter-
mine, to the same order, the other parts of ai depending on the first power of 1/a′,
namely a3/a0, a−3/a0, a5/a0, a−5/a0.

Next to be computed were the increments to the foregoing values depending on
(1/a′)2 and (1/a′)3. Symbolizing these increments by δa2, δa−2, δa3, . . . , δa5, δa−5
Brown obtained their values in terms of a0 by means of (B.5) and hitherto un-
used terms of L and M . For δa1 and δa−1, he made use of (B.6) in place
of (B.5).

Finally, δa0 had to be determined. For this, it was necessary to start from a differ-
ential equation containing κ(us)−3/2, the nonlinear term eliminated earlier; Brown
chose the first of his equations (B.2). Putting in this the substitutions

u =
∑

i

ai−1ζ
i , s =

∑

i

a−i−1ζ
i ,

and taking out the coefficient of ζ , he obtained

κ(u−1/2s−3/2)1

=
(

1 + 2m + 3

2
m2
)

a0 + 3

2
m2a−2 + m2

a′

[
15

8
(s2)1 + 3

8
(u2 + 2us)1

]

+ m2

a′2

[
35

16
(s3)1 + 5

16
(u3)1 + 15

16
(us2)1 + 9

16
(u2s)1

]
+ · · ·
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Hill, working from his form of the same equation but neglecting parallactic terms,
had obtained the formula

a0 = a

[
J (1 + m)2

H

]1/3

,

where a is the mean Earth-Moon distance, J = (u−1/2s−3/2)1, and a0 H is the value
of the right-hand side of the previous equation. Brown substituted a0 + δa0 for a0,
J + δ J for J , and H + δH for H ; he thus took δa0 as arising from the parallactic
terms which are contained in δ J and δH . His calculation gave him

δa0

a0
= −

( a

a′
)2

m2
{

225

512
· 1 + 4m

τ 2
+ 75

128
· m

τ
+ 3

16
(1 − 2m)

}
,

where τ = 1 − 4m − 37

8
m2 − 17

6
m3 − 89963

32 · 210
m4.

Numerically, δa0/a0 = −0.00965(a0/a′)2.
In the concluding section of his paper Brown transformed his results into polar

coordinates, using the formulas

r cos(V − nt) = 1

2

∑

i

ai (ζ
i + ζ−i ), r sin(V − nt) = 1

2
√−1

∑

i

ai (ζ
i − ζ−i ),

where V is the longitude of the Moon as modified by the solar perturbations
involving the constants m and a/a′. The coefficients in the resulting parallactic
inequalities in longitude and parallax could then be obtained by introducing the
numerical values

m = 0.0808489338, a/a′ = 0.00255879,

where a is the mean Earth-Moon distance. The most accurate values for the coeffi-
cients of the parallactic inequalities, according to Brown, were got by substituting
the numerical value of m from the outset. For the inequalities in longitude he thus
found

−128′′.070 sin D +0′′.039 sin 2D +0′′.750 sin 3D +0′′.001 sin 4D +0′′.008 sin 5D,

where D = (n −n′)(t − t1), the difference between the mean longitudes of the Moon
and the Sun. For the inequalities in parallax he found

−1′′.001 cos D + 0′′.008 cos 3D.

In his Monthly Notices note cited above, Brown gave the comparison of his
results with those of Delaunay – both Delaunay unrevised and Delaunay revised
by replacing m by μ:
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Sin(Arg.) Brown Delaunay Delaunay (μ)
Sin D −128′′.069 −127′′.621 −128.059
Sin 3D +0′′.750 0′′.845 · · ·
Sin 5D +0′′.008 0′′.014 · · ·

In parallax, Brown’s and Delaunay’s results compared as follows:

Cos(Arg.) Brown Delaunay
Cos D −1′′.0100 −0′′.9447
Cos 3D +0′′.0096 +0′′.0158

Unable to locate a source for the discrepancies between his own and Delaunay’s
results, Brown suspected small numerical errors in Delaunay’s computation.

In his paper on the elliptic inequalities – the first part completed in December
1892, the second part in June 1893 – Brown took for his starting-point Hill’s
differential equations (II.7) and their Jacobian integral (II.8), leaving the parallactic
inequalities aside. (The validity of ignoring inequalities of one class while calcula-
ting those of another type is here assumed, the presumptive justification being their
smallness relative to the basic Variation orbit of the Moon.) The two equations of
(II.7) are both of the second order, and thus a general solution must involve four
arbitrary constants. They admit, as we’ve seen, of Hill’s particular solution:

x = a0

+∞∑

i=−∞
ai cos(2i + 1)(n − n′)(t − t1),

y = a0

+∞∑

i=−∞
ai sin(2i + 1)(n − n′)(t − t1).

Here the arbitrary constants are two: n (or a0), determining the mean rate of angu-
lar motion, and t1, fixing the time of crossing of the x-axis. (The constants ai are
functions of m rather than arbitrary constants.) If in (II.7) the constant n′ is set equal
to zero – in effect abolishing the Sun’s perturbing force – the equations admit of a
general elliptical solution:

x = a
+∞∑

p=−∞

1

p
J (p−1)

pe/2 cos pg(t − t0),

y = b
+∞∑

p=−∞

1

p
J (p−1)

pe/2 sin pg(t − t0).

Here a and b are the semi-major and semi-minor axes of the ellipse, the J (p−1)
pe/2 are

the Bessel functions, e is the eccentricity, g is the mean rate of angular motion with
respect to the axes of the ellipse, and t0 is the constant used to make the major axis
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coincide with the x-axis. The two preceding forms are distinct except when both e
and n′ vanish, in which case the motion is circular and uniform.

Since the particular solution occurs when e = 0 and the general solution when
n′ = 0, Brown assumed that for small values of e and n′ there exists a solution
combining the two and having the form

x = a0

∑

i

∑

p

Ai,p cos{(2i + 1)(n − n′)(t − t1)+ pg(t − t0)},

y = a0

∑

i

∑

p

Ai,p sin{(2i + 1)(n − n′)(t − t1)+ pg(t − t0)}. (B.7)

Here the index i runs through all integral values from −∞ to +∞, and so does the
index p. In practical applications, these indices can be restricted to a finite range of
values, such as is found sufficient to match the precision of the observations. The
foregoing solution involves the necessary four arbitrary constants; it can be viewed
as a general solution except insofar as e and m may need to be limited in size for
the resulting series to be convergent. Even when these constants are small, Brown
cautioned, convergence is not guaranteed.

To determine the coefficients in the equations, the ratio g : n−n′ must be known.
Brown put g = c(n −n′), so that the argument of the cosine and sine functions could
be written

α = {n − n′}{(2i + 1)(t − t1)+ cp(t − t0)}.
Also, in transforming to the complex variables u, s, he followed Hill in defining the

operator D as −
√−1
n−n′ · d

dt . Again following Hill, he used the Jacobian integral to
eliminate the non-linear terms κu

(us)3/2
, κs
(us)3/2

. He was thus able to arrive at two linear
equations formally identical with Hill’s (II.9) and (II.10):

D2(us)− Du · Ds − 2m(u Ds − s Du)+ 9

4
m2(u + s)2 = C,

D(u Ds − s Du − 2mus)+ 3

2
m2(u2 − s2) = 0. (B.8)

The form of D implies that D(α
√−1) = 2i + 1 + cp, so that the terms after being

subjected to the operation D do not contain the constants t0 or t1. Brown temporarily
omitted these constants altogether, rewriting the argument α as (2i +1+cp)(n−n′)τ ,
where dt = dτ . Once the coefficients were determined numerically, the constants t0
and t1 could be re-introduced.

Brown defined ζ as exp[(n − n′)τ
√
(−1)], and so could write D = ζ d

dζ , as Hill
had done. (Hill’s symbol τ , however, included the factor [n − n′].) The proposed
solution became

u =
∑

i

∑

p

Ai,pζ
2i+1+cp,

s =
∑

i

∑

p

A−i−1,−pζ
2i+1+cp. (B.9)
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This solution, if viable, would constitute the mathematical meld of the variation
and elliptic orbits which, two centuries before, Newton had believed prerequisite
to solving the lunar problem.

The trigonometric series of (B.9) are of double period. The chief difficulty,
according to Brown, lay

in the fact that the equations of condition between the coefficients of the
terms in the series require a relation between the two periods; it is the finding
of this relation that entails the trouble.

Given the double periodicity, and assuming with Brown that the ratio of the two
periods was irrational (there being no evidence to the contrary), the orbit would be
reentrant only after an infinite time.

Substituting the proposed solution (B.9) into the two differential equations (B.8),
Brown derived equations of condition for the coefficients. In symbolizing the pro-
ducts us, u Ds, s Du, and Du Ds, where the product of two infinite summations
is involved, it was necessary to supplement the indices i and p, already used in
expressing u and s, with the additional indices j and q. The resulting equations of
condition were:

∑

j

∑

q

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
(2i + cp)2−(2 j + 1 + cq)(2i + cp − 2 j − cq − 1)

−2m(2i + cp − 4 j − 2cq − 2)+ 9
2 m2

]
A j,q A j−i,q−p

+ 9
4 m2(A j,q Ai− j−1,p−q + A j,q A−i− j−1,p−q)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= 0

(2i + cp)
∑

j

∑

q

[2i + cp − 4 j − 2cq − 2 − 2m]A j,q A j−i,q−p

+ 3

2
m2
∑

j

∑

q

(A j,q Ai− j−1,p−q − A j,q A−i− j−1,−p−q) = 0. (B.10)

In these equations j and q take all values from −∞ to +∞, and the equations are
true for all values of i and p through the same range, except when i = p = 0, in
which case the right-hand side of the first equation is the Jacobian constant C .

The next task was to determine the coefficients for the terms containing the first
power of e. From the equation for the elliptical solution, Brown knew that the coeffi-
cients Ai,p, Ai,−p were at least of the order ep in e; hence the coefficients containing
the first power of e would be Ai,1 and Ai,−1. (As we shall see later, Ai,1 and Ai,−1
will also contain terms proportional to higher powers of e, namely e3, e5, etc.) For
convenience he set

Ai,1 = εi , Ai,−1 = ε′i , Ai,0 = ai .

By a process exactly parallel to that used by Hill, Brown then combined the
two equations of (B.10) to form a single equation of condition. The resulting
formula was:
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∑

j

∑

q

{( j, i, p, q)A j,q A j−i,q−p + (i, p)A j,q Ai− j−1,p−q

+ [i, p]A j,q A−i− j−1,−p−q} = 0, (B.ll)

where

( j, i, p, q) = −

(2 j + cq){(2i + cp)2 − (2 + 4m − m2)+ (2i + cp)(2 + 2m)}
+(2 j + cq)2(2i + cp − 2 − 2m)

(2i + cp{2(2i + cp)2 − 2 − 4m + m2}) ,

(i, p) = − 3m2

4(2i + cp)2
(2i + cp − 2)(2i + cp − 2 − 2m)− 6 − 12m − 9m2

2(2i + cp)2 − 2 − 4m + m2
,

[i, p] = − 3m2

4(2i + cp)2
(2 + 10i + 5cp)(2i + cp − 2 − 2m)+ 6 + 12m + 9m2

2(2i + cp)2 − 2 − 4m + m2
.

(B.11) includes all the equations in which i and p receive positive and negative
values. When i = p = 0, the right-hand side is a function of the constant C of
the Jacobian integral. Because the index i can take all integral values between −∞
and +∞, the number of equations is infinite, each of them containing the infinity of
terms obtained as j goes through integral values from −∞ to +∞.

If in (B.11) and its supporting definitions, p and q are set equal to 0, the eccen-
tricity e becomes zero, and a formula formally identical with Hill’s (II.13) emerges.
If, alternatively, i, k, and m are set equal to zero, so that n′ = 0, n = g, and c = 1,
(B.11) reduces to a set of conditions on the Bessel functions for the elliptical solution.

To obtain conditions determining Ai,1 = εi and Ai,−1 = ε′I from (B.11), Brown
substituted first p = 1, then p = −1. In each term of the two resulting equations,
he then substituted a value for q such as to yield one of the constants ai (= Hill’s
ai/a0) multiplied by εi or ε′i . The appropriate substitutions proved to be q = +1, 0,
and −1. The equations became

∑

j

{
( j, i, 1, 1)ε j a j−i + ( j + i, i, 1, 0)ε′j a j+i

+2(i, 1)ε j ai− j−1 + 2[i, 1]ε′j a−i− j−1

}
= 0,

∑

j

{
( j − i, i,−1, 0)ε j a j−i + ( j,−i,−1,−1)ε′j a j+i

+2[−i,−1]ε j ai− j−1 + 2(−i,−1)ε′j a−i− j−1

}
= 0. (B.12)

Here Brown has multiplied (B.11) by 2, and using two different substitutions in the
first term of (B.11), has obtained two different terms in each equation of (B.12).
A comparison of corresponding terms in (B.11) and (B.12) identifies the substitutions
made in each case. Thus, in the first term of the first equation of (B.12), p = q = 1,
so that A j,q becomes A j,1, which is ε j , and A j−i,q−p becomes A j−i,0, which is a j−i .
In the last two terms of both equations, it is only p whose value is explicitly given,
but the value of q that is required to complete the formula is easily identified. Thus
the last term of the second equation of (B.12) is derived from (i, p)A j,q Ai− j−l,p−q
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in (B.11), with −i replacing i , and p becoming −1. For A−i− j−1,p−q to become
a−i− j−1, we must have p − q = 0, so that q = −1 and A j,q = A j,−1 ≡ ε′j .

If the constant c were known, we could determine from (B.12) all the succes-
sive values of εi and ε′i , the number of equations then being equal to the number of
unknowns. Hill, in his paper of 1877, had computed the part of c that is dependent
solely on the ratio of the mean motions of the Sun and Moon – the principal part
of c, differing by only a small amount from the observational value. His computa-
tion assumed the lunar eccentricity to be small enough so that its square could be
neglected. The question remained whether the lunar eccentricity, which averages a
little more than 0.05; could have a non-negligible effect on c. How, quantitatively,
did c depend on e?

In search of a formula for this dependence, Brown turned back to (B.10), and
there set p = 1, and q = 0, 1. Adding and subtracting the results, he obtained

∑

j

{c2a j−i + G j,i a j−i + G j+i,i a j+i + 3

4
m2(ai− j−1 + 5a−i− j−1)}X j

+ c
∑

j

(Hj,i a j−i − H ′
j a j+i )Y j = 0,

∑

j

{c2a j−i + G j,i a j−i − G j+i,i a j+i + 3

4
m2(ai− j−1 − 5a−i− j−1)}Y j

+ c
∑

j

(Hj,i a j−i + H ′
j a j+i )X j = 0, (B.13)

where

G j,i = 1

2
(2 j + 1)2 + (2 j + 1)(i + 2m)+ 9

4
m2,

Hj,i = 3

2
(2 j + 1)+ i + 2m, H ′

j = 1

2
(2 j + 1),

X j = ε j + ε′j , Y j = ε j − ε′j .
Denoting by ∞ the sequence 1, 2, 3, . . .∞, Brown observed that there are
4 × ∞ + 2 of the foregoing equations and the same number of unknowns X j and
Y j . The equations are linear, suggesting the possibility of eliminating the unknowns
by a determinant. If the determinant were convergent, it could be solved for c2, just
as Hill had done with the determinant (II.32).

The roots of this determinant in c2, Brown found, are

c2
0, (c0 ± 2)2, (c0 ± 4)2, . . . , (c0 ± 2i)2, . . .

02, 22, 22, 42, 42, . . . , (2i)2, (2i)2, . . .

}
i = 1, 2, . . .∞.

Hill’s determinant had not contained the second series.



94 7 First Papers and a Book

Brown’s determinant, as it stood, proved insoluble. It failed to satisfy one of the
conditions for convergence established by Poincaré, namely, that the sum of the non-
diagonal elements be finite.68 No convenient way of following in Hill’s footsteps
presented itself. The equations (B.13) would later prove useful for verifications, but
Brown abandoned for the time being the endeavor to compute c from an infinite
determinant, concluding it best to assume Hill’s value and calculate the correspon-
ding values of εi and ε′i in terms of ε0 and ε′0.

Returning to (B.12), he made an approximate determination of the relation of ε1
and ε′1 to ε0 and ε′0. These four unknowns turn out to be orders of magnitude larger
than the other εi and ε′i , and thus the latter could be neglected in a first approximation.
The determination involved substitutions in (B.12) which yielded two equations,
each giving a linear relation between the four quantities, and these equations were
then solved simultaneously for ε1 and ε′1 separately as linear functions of ε0 and ε′0.

At the next stage, in computing ε2 and ε′2, quantities of the next smaller order
had to be taken into account, including additional contributions to ε0, ε

′
0, ε1, and ε′1.

Brown computed the additional contributions in successive stages. His results were:

ε−1 = +.01999 88763ε0 + .20567 90112ε′0
ε′1 = −.01054 68058ε0 − .07779 55430ε′0
ε1 = +.00308 02927ε0 − .00092 80067ε′0
ε′−1 = −.00108 65960ε0 − .00019 59999ε′0
ε−2 = +.00001 15205ε0 + .00007 34691ε′0
ε′2 = −.00005 93876ε0 − .00043 20782ε′0
ε2 = +.00001 47376ε0 − .00000 85378ε′0
ε′−2 = +.00000 01043ε0 − .00000 08618ε′0
ε−3 = −.00000 00193ε0 − .00000 01734ε′0
ε′3 = −.00000 04039ε0 − .00000 29218ε′0
ε3 = +.00000 00843ε0 − .00000 00708ε′0
ε′−3 = +.00000 00024ε0 − .00000 00055ε′0
ε−4 = −.00000 00001ε0 − .00000 00012ε′0
ε′4 = −.00000 00029ε0 − .00000 00212ε′0

He checked these computations in several ways. In one such verification he put
i = 0 in the two equations of (B.12), obtaining two equations, which yielded for
Y0/X0 the two values −2.01291 56632 7,−2.01291 56634 5. The difference of
1.8 in the tenth place he attributed to accumulated errors. The mean of these two
values to ten places could be in error by no more than one unit in the tenth place. The
assumed value of c, Brown concluded, must be correct to ten decimal places.

68 H. Poincaré, Bulletin de la Société mathématique de France, 14 (1886), 77–90.
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Only one of the constants ε0, ε
′
0, X0,Y0 could be arbitrary. Brown chose Y0 for

this role. His final values for the new coefficients were thus:

ε0

Y0
= +.25160 40989,

ε′0
Y0

= −.74839 59011,

ε−1

Y0
= −.14889 75297,

ε′1
Y0

= +.05556 82459,

ε1

Y0
= +.00146 95307,

ε′−1

Y0
= −.00012 67065,

ε−2

Y0
= −.00005 20854,

ε′2
Y0

= +.00030 84234,

ε2

Y0
= +.00001 00997,

ε′−2

Y0
= +.00000 06713,

ε−3

Y0
= +.00000 01250,

ε′3
Y0

= +.00000 20851,

ε3

Y0
= +.00000 00742,

ε′−3

Y0
= +.00000 00048,

ε−4

Y0
= +.00000 00009,

ε′4
Y0

= +.00000 00243.

The quantities εi and ε′i become known once Y0 is determined numerically. Each
of them, we recall, contains the first power of the eccentricity e as a factor, and in
the solution (B.9) of (B.8), multiplies the sine or cosine of the mean motion of the
elliptic inequality, which Brown expresses as 	 = c(n − n′)(t − t0). But each of the
εi ’s, as we see in (B.11) and (B.12), is multiplied by one of Hill’s coefficients ai , and
each of the latter in the solution (B.9) is the coefficient of the sine or cosine of an
angle 2i D, where i = 0, 1, 2, 3, etc. The resulting terms in u and s, and hence in x
and y, will therefore involve as factors one of the constants εi , one of the constants
ai , the sine or cosine of 	, and the sine or cosine of 2i D.

Having obtained x and y, Brown set himself the task of determining the elliptic
inequality in longitude. Delaunay by his very different method had also computed
the inequalities proportional to the first power of e, and Brown wanted to compare
his own result with Delaunay’s.

Like Delaunay, Brown expressed the mean synodic motion of the Moon by D
(replacing the symbol τ used by Hill), so that D = (n − n′)(t − t1). Hill’s formulas
for the x- and y-coordinates of the Variation orbit could thus be written

x = a0

+∞∑

−∞
ai cos(2i + 1)D,

y = a0

+∞∑

−∞
ai sin(2i + 1)D.
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Now Hill had also expressed x and y as r cosϕ and y = r sinϕ, respectively, where
r is the radius vector and ϕ the true longitude in the Variation orbit. The longitude
could thus be obtained from the relation ϕ = arctan(y/x).

But the true longitude ϕ in Hill’s rotating coordinate system is the sum of the
mean synodic motion D plus the excess of the true motion over the mean, which Hill
designated by υ (upsilon), so that υ = ϕ− D. In order to obtain an expression for υ,
Hill had tabulated the numerical values of r cos υ and r sinυ, and to these quantities
Brown assigned the symbols x ′ and y′ :

x ′ = r cos υ = a0

⎡

⎢⎢⎢⎣

1 − 0.00718 00395 cos 2D

+0.00000 60424 cos 4D

+0.00000 00325 cos 6D

+0.00000 00001 cos 8D

⎤

⎥⎥⎥⎦ ,

y′ = r sinυ = a0

⎡

⎢⎢⎢⎣

0.01021 14544 sin 2D

+0.00000 57149 sin 4D

+0.00000 00276 sin 6D

+0.00000 00002 sin 8D

⎤

⎥⎥⎥⎦ .

Thus the excess of the true motion over the mean motion in Hill’s rotating
orbit – the inequality we call the Variation – could be obtained from the formula
υ = arctan(y′/x ′).

To symbolize the increments of x ′ and y′ that are produced when eccentricity
is introduced, Brown used the symbols δx ′ and δy′. These increments to x ′ and y′
depend on Y0. The values obtained above for εi and ε′i in terms of Y0 yield, when
inserted in the terms implied by (B.12), the following expressions for δx ′ and δy′:

δx ′ = a0Y0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.49679 18022 cos 	

−.09332 92838 cos(2D − 	)+ .00134 28242 cos(2D + 	)
+.00025 63380 cos(4D − 	)+ .00001 07690 cos(4D + 	)
+.00000 22101 cos(6D − 	)+ .00000 00790 cos(6D + 	)
+.00000 00252 cos(8D − 	)+ .00000 00005 cos(8D + 	)
+.00000 00003 cos(10D − 	)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

δy′ = a0Y0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1.00000 00000 sin 	

+.20446 57756 sin(2D − 	)+ .00159 62372 sin(2D + 	)
+.00036 05088 sin(4D − 	)+ .00000 94264 sin(4D + 	)
+.00000 19601 sin(6D − 	)+ .00000 00694 sin(6D + 	)
+.00000 00234 sin(8D − 	)+ .00000 00004 sin(8D + 	)
+.00000 00003 sin(10D − 	)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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To find the increment in υ corresponding to the increments δx ′ and δy′, Brown
took the δ-derivative of υ = arctan(y′/x ′):

δυ = x ′δy′ − y′δx ′

x ′2 + y′2 . (B.14)

Given the values of x ′, y′, δx ′, and δy′, it was possible to find δυ for any particular
value of D as a sum of the form K1Y0 cos 	 + K2Y0 sin 	, where K1 and K2 are
numerical coefficients.

Delaunay’s expression for δυ had the following form:

A sin 	+ B1 sin(2D − 	)+ B2 sin(4D − 	)+ B3 sin(6D − 	)
+ C1 sin(2D + 	)+ C2 sin(4D + 	)+ C3 sin(6D + 	).

Brown now sought to derive from his own theory an expression of similar form,
but including the additional terms B4 sin(8D − 	) and C4 sin(8D + 	). This meant
finding the numerical values of the coefficients A, B1, . . . ,C1, . . ., using (B.14)
together with the preceding values of x ′, y′, δx ′, and δy′. To 2D Brown gave the
values 0, 30, 90, 150, 180◦, and calculated the coefficients of sin 	 and cos 	 in
these several cases. He then set each of the five results equal to an expression of the
above form, substituting in each case the appropriate value of 2D. Thus he obtained
five equations, to be solved simultaneously (if possible!) for the nine unknown
coefficients.

Three of the equations, those for 2D = 30, 90, and 150◦, contain both sine and
cosine terms on either side; each of them therefore counts as two equations, since
sine terms must be set equal to sine terms, and cosine terms to cosine terms. Thus
there are eight equations to work from. Moreover, the three equations in which 2D
is respectively 0, 90, and 180◦ together yield for the coefficient of sin 	 the value
0.99972 87063Y0. Delaunay in his theory had made this coefficient 2e, where e was
his value for the lunar eccentricity, namely 0.05489 930. Brown in his comparison,
therefore, set Y0 = 2(0.05489930) ÷ 0.9997287063 = 0.10982 8395. Thus in
the eight equations the arbitrary Y0 along with the coefficient A could be replaced
by numbers, and the eight equations modified in this way were sufficient to solve for
the eight remaining unknowns. Brown’s result for the principal elliptic term, 2e sin 	,
was thus identical with Delaunay’s, with a coefficient equal to 6◦17′27′′.5870. The
other terms obtained constituted the evection in longitude:

+ 4607′′.984 sin(2D − 	)+ 35′′.2200 sin(4D − 	)
+ 0′′.2906 sin(6D − 	)+ 0.0027 sin(8D − 	)
+ 174′′.8610 sin(2D + 	)+ 1′′.4460 sin(4D + 	)
+ 0′′.0121 sin(6D + 	)+ 0′′.0001 sin(8D + 	).

Delaunay’s values were

+ 4607′′.771 sin(2D − 	)+ 35′′.1542 sin(4D − 	)+ 0′′.2174 sin(6D − 	)
+ 174′′.8660 sin(2D + 	)+ 1′′.4094 sin(4D + 	)+ 0′′.0055 sin(6D + 	).
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The differences do not exceed tenths of arcseconds. Brown’s numbers were based
on Hill’s constants ai , computed with a precision of at least 13 decimal places.
Delaunay’s calculation, impressive as it was, was less precise.

In the second part of his paper, Brown derived the coefficients of the elliptic
inequalities proportional to e2 and e3, and also the increments δai of ai and δc of c
that are proportional to e2. As we have seen, his derivation of the elliptic inequalities
proportional to the first power of e was carried out on the basis of Hill’s value of c.
He now found that the elliptic inequalities proportional to e2, as well, could be got
without invoking the increment δc. The latter was first required in the derivation of
the inequalities proportional to e3.

The increment δc, it turned out, could be computed by the same process of
successive approximations that Brown had used in determining the elliptic inequali-
ties. This discovery suggested that it might be unnecessary to invoke a new infinite
determinant or face the difficult problem of solving it.

Among the new derivations, Brown first undertook to obtain the increment δai ,
the change in the values of Hill’s coefficients ai required to proceed to approxi-
mations of the order of Y 2

0 . His starting-point was once again (B.11). Putting p = 0
in this equation, he obtained

∑

j

∑

q

{( j, i, 0, q)A j,q A j−i,q + (i, 0)A j,q Ai− j−1,−q + [i, 0]A j,q A−i− j−1,−q} = 0.

(B.15)

This holds for all integral values of i except i = 0. When the subscript q is a positive
or negative integer and not zero, it implies the presence of eq as a factor, and since
there are two A’s in each term, each term will contain the factor e2q . The eccentricity
thus occurs in the equation only to even powers. To limit the order of the terms to
Y 2

0 , Brown set q equal to +1 and to −1. In addition, he used the value q = 0, and
put A j,0 = a j + δa j , where a j has the numerical value computed by Hill, and δa j is
the new part of this constant proportional to e2. For A j,1 and A j,−1 he put, as before,
ε j and ε′j . With these substitutions he obtained the equation

∑

j

{( j, i, 0, 0)(a j + δa j )(a j−i + δa j−i )+ ( j, i, 0.1)ε jε j−i + ( j, i, 0,−1)ε′jε
′
j−i }

+ (i, 0)
∑

j

{(a j + δa j )(ai− j−1 + δai− j−1)+ 2ε jε
′
i− j−1}

+ [i, 0]
∑

j

{(a j + δa j )(a−i− j−1 + δa−i− j−1)+ 2ε jε
′
−i− j−1} = 0. (B.16)

In solving (B.16) for δai , the increment δc can be left out of account. For in
(B.11) c occurs only in the combinations 2i + cp and 2 j + cq. When p and q are
zero, as in ( j, i, 0, 0), (i, 0), and [i, 0], c is absent. When c occurs in ( j, i, 0,±1) it is
multiplied by quantities which are themselves of the order of Y 2

0 , so that, here too, δc
can be ignored. The coefficients ( j, i, 0, 0), (i, 0), [i, 0] were already known, being
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identical with Hill’s ( j, i), (i), and [i]. A two-stage approximation process yielded
the following values for the δai :

δa1 = +.03938 170Y 2
0 , δa−1 = +.01376 519Y 2

0 ,

δa2 = +.00046 113Y 2
0 , δa−2 = +.00002 216Y 2

0 ,

δa3 = +.00000 473Y 2
0 , δa−3 = +.00000 026Y 2

0 ,

δa4 = +.00000 005Y 2
0 , δa−4 = +.00000 000Y 2

0 .

To obtain δa0, it was necessary to return to a differential equation containing the
constant κ . As in the case of the parallactic inequalities, Brown had recourse to an
equation due to Hill (labeled II.7a′′ in our Part I). Solving it to the order of Y 2

0 , he
found

δa0

a0
= −.13311 28Y 2

0 .

Hill’s value of a0 was +.99909 31420(μ/n2)1/3, whence

a0 + δa0 = (+.99909 31420 − .13299 21Y 2
0 )
( μ

n2

)1/3
.

This value must replace Hill’s value of a0 in all terms where the calculation is of the
order of Y 2

0 .
Turning next to the determination of the elliptic inequalities proportional to e2,

Brown made use of two equations obtained from (B.11) by putting first p = +2 and
then p = −2. In each, he gave to q the values that yielded terms of the order of
Y 2

0 , namely 0, 1, 2 in the first equation and 0,−1,−2 in the second. The coefficients
sought in this case were Ai,2 and Ai,−2, which he denoted by fi and f ′

i . The resulting
equations were

∑

j

⎧
⎪⎪⎨

⎪⎪⎩

( j, i, 2, 2)a j−i f j + ( j, i, 2, 0)a j f ′
j−i + ( j, i, 2, 1)ε jε

′
j−i

+2(i, 2)(ai− j−1 f j + εi− j−1ε j )

+2[i, 2](a−i− j−1 f ′
j + ε′−i− j−1ε

′
j )

⎫
⎪⎪⎬

⎪⎪⎭
= 0,

∑

j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( j − i,−i,−2, 0)a j−i f j + ( j − i,−i,−2,−2)a j f ′
j−i

+( j − i,−i,−2,−1)ε jε
′
j−i

+2[−i,−2](ai− j−1 f j + εi− j−1ε j )

+(−i,−2)(a−i− j−1 f ′
j + ε′−i− j−1ε

′
j )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 0.

Since all the terms are of the order of Y 2
0 , Hill’s value of c where it occurs in

( j, i, p, q), (i, p), and [i, p] could be used without the addition of δc. The two
equations, solved together by approximation, yielded the values

f0

Y 2
0

= +.09402 355
f ′
0

Y 2
0

= +.03180 170
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f−1

Y 2
0

= +.06517 276
f ′
1

Y 2
0

= +.01564 642

f−2

Y 2
0

= +.00132 915
f ′
2

Y 2
0

= +.00428 597

f−3

Y 2
0

= +.00000 174
f ′
3

Y 2
0

= +.00004 843

f−4

Y 2
0

= +.00000 003
f ′
4

Y 2
0

= +.00000 049

f1

Y 2
0

= +.00112 370
f ′
−1

Y 2
0

= +.00006 457

f2

Y 2
0

= +.00001 161
f ′
−2

Y 2
0

= +.00000 066

f3

Y 2
0

= +.00000 011
f ′
−3

Y 2
0

= +.00000 001

Next, Brown undertook to determine the parts of Ai,1 and Ai,−1 that depend
on e3. They are additions to the constants εi and ε′i already found, and thus Brown
denoted them by δεi and δε′i . They figure as terms in the coefficients of sin 	 and
cos 	. To obtain them, Brown put p = ±1 in (B.11), obtaining thus two equations;
and he let q take the values 0,±1,±2. The substitution q = ±1 gave the modified
coefficients

Ai,1 = εi + δεi , Ai,−1 = ε′i + δε′i .
The substitutions q = 0,+2,−2 gave coefficients we encountered earlier:

Ai,0 = ai + δai , Ai,2 = fi , Ai,−2 = f ′
i .

Most terms in the equation thus came to be of the order of Y 3
0 . But in order that every

term be of this order, in certain terms account had to be taken of δc, the increment to
c of the order of Y 2

0 .
The equations that resulted were somewhat complicated. They could be solved

in a first approximation for δε±i and δε′±i in terms of Y 3
0 , δε0 = δε′0, and Y0δc.

To obtain the numerical ratios δε0: Y 3
0 and δc : Y 2

0 , Brown put i = 0 in these first-
approximation equations, and for verification added the second equation of (B.13),
with the necessary terms of order Y 3

0 included:

+ .00425 226Y 3
0 + .02946 89δε0 − 1.11898 7Y0δc = 0,

+ .00902 093Y 3
0 + .00129 30δε0 − 3.33860 6Y0δc = 0,

+ .18016 812Y 3
0 + 4.32005 66δε0 + .98781 5Y0δc = 0.
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Solving the first of these with the third, he obtained

δc = +.00268 561Y 2
0 .

The second with the third yielded a result for δc differing by only +1 in the last
decimal place. It followed that

δε0 = δε′0 = −.04231 912Y 3
0 .

The final values of the δεi ’s thus became

δε−1

Y 3
0

= +.01685 40
δε′1
Y 3

0

= −.00568 79

δε1

Y 3
0

= +.02520 23
δε′−1

Y 3
0

= +.000328 28

δε−2

Y 3
0

= +.00070 60
δε′2
Y 3

0

= +.00528 12

δε2

Y 3
0

= +.00048 10
δε′−2

Y 3
0

= +.00002 54

δε−3

Y 3
0

= +.00000 49
δε′3
Y 3

0

= +.00009 91

δε3

Y 3
0

= +.00000 68
δε′−3

Y 3
0

= +.00000 03

δε′4
Y 3

0

= +.00000 14

Brown checked these results in several ways, using differential equations other
than those employed in the derivations, among them a differential equation involving
the Jacobian constant C , with its increment δC proportional to Y 2

0 . Concerning the
care taken, he remarked:

All computations once made were gone through a second time. The average
error made in the later portions of the work was about one in every four or
five hundred figures. It did not seem to be confined to any particular class of
operation. In using the new eight-figure tables of the French Government,
extra care was exercised for the differences, and the chance of error thus
diminished.

In the final section of his paper, Brown combined the preceding results with the
Variation as computed by Hill, and by transforming to polar coordinates, obtained
the implied inequalities in longitude. Denoting by ν the difference between the true
and mean longitudes, he found the expressions for r cos ν and r sin ν to be
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r cos ν

a0 + δa0
= 1 + (−.00718 00395 + .05314 689Y 2

0 ) cos 2D

+ (+.00000 60424 + .00048 328Y 2
0 ) cos 4D

+ (+.00000 00325 + .00000 499Y 2
0 ) cos 6D

+ (+.00000 00002 + .00000 005Y 2
0 ) cos 8D

+ (−.49679 1802Y0 − .08463 82Y 3
0 ) cos 	

+ (−.09332 9284Y0 + .01116 60Y 3
0 ) cos (2D − 	)

+ (+.00025 6338Y0 + .00598 71Y 3
0 ) cos (4D − 	)

+ (+.00000 2210Y0 + .00010 40Y 3
0 ) cos (6D − 	)

+ (+.00000 0025Y0 + .00000 14Y 3
0 ) cos (8D − 	)

+ (+.00134 2824Y0 + .02848 51Y 3
0 ) cos (2D + 	)

+ (+.00001 0769Y0 + .00050 64Y 3
0 ) cos (4D + 	)

+ (+.00000 0079Y0 + .00000 71Y 3
0 ) cos (6D + 	)

+ .12582 524Y 2
0 cos 2	

− .04952 634Y 2
0 cos (2D − 2	)+ .00118 827Y 2

0 cos (2D + 2	)

+ .00561 512Y 2
0 cos (4D − 2	)+ .00001 227Y 2

0 cos (4D + 2	)

+ .00005 017Y 2
0 cos (6D − 2	)+ .00000 012Y 2

0 cos (6D + 2	)

+ .00000 051Y 2
0 cos (8D − 2	)

r sin ν

a0 + δa0
= +(+.01021 14544 + .02561 651Y 2

0 ) sin 2D

+ (+.00000 57149 + .00043 897Y 2
0 ) sin 4D

+ (+.00000 00276 + .00000 447Y 2
0 ) sin 6D

+ (+.00000 00002 + .00000 005Y 2
0 ) sin 8D

+ (+1.00000 0000Y0) sin 	

+ (+.20446 5776Y0 − .02254 19Y 3
0 ) sin(2D − 	)

+ (+.00036 0509Y0 + .00457 52Y 3
0 ) sin(4D − 	)

+ (+.00000 1960Y0 + .00009 41Y 3
0 ) sin(6D − 	)

+ (+.00000 0023Y0 + .00000 13Y 3
0 ) sin(8D − 	)

+ (+.00159 6237Y0 + .02191 96Y 3
0 ) sin(2D + 	)

+ (+.00000 9426Y0 + .00045 57Y 3
0 ) sin(4D + 	)
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+ (+.00000 0069Y0 + .00000 65Y 3
0 ) sin(6D + 	)

+ .06222 185Y 2
0 sin 2	

+ .08081 918Y 2
0 sin(2D − 2	)+ .00105 914Y 2

0 sin(2D + 2	)

+ .00295 682Y 2
0 sin(4D − 2	)+ .00001 094Y 2

0 sin(4D + 2	)

+ .00004 669Y 2
0 sin(6D − 2	)+ .00000 011Y 2

0 sin(6D + 2	)

+ .00000 046Y 2
0 sin(8D − 2	).

The foregoing expressions, arranged in series according to the ascending powers
of Y0, can be denoted by

r cos ν = S0 + S1Y0 + S2Y 2
0 + S3Y 3

0 ,

r sin ν = S′
0 + S′

1Y0 + S′
2Y 2

0 + S′
3Y 3

0 ,

where S0, S1, etc., are the coefficients multiplying the respective powers of Y0. Now
tan ν is the quotient of the second of these equations by the first, and from the quotient
a series for tan ν in powers of Y0 can be obtained. But the variable ν is itself given
by the series

ν = tan ν − 1

3
tan3 ν + 1

5
tan5 ν − · · · .

A path thus opens for determining the expressions for ν corresponding to particular
values of 2D. A general expression for the terms in ν proportional to given powers of
Y0 can then be obtained by the “method of special values.” Such was the procedure
Brown followed.

For the terms proportional to Y 2
0 , he obtained the following results, in which

Y 2
0 has been replaced by its numerical value (computed on the basis of Delaunay’s

numerical value for 2e or e), and the coefficients have been expressed in arc-seconds:

+ 298′′.959 sin 2D + 771′′.132 sin 2	+ 212′′.610 sin(2D − 2	)

+ 5′′.217 sin 4D + 13′′.240 sin(2D + 2	)+ 31′′.055 sin(4D − 2	)

+ 0′′.067 sin 6D + 0′′.169 sin(4D + 2	)+ 0′′.532 sin(6D − 2	)

+ 0′′.001 sin 8D + 0′′.002 sin(6D + 2	)+ 0′′.007 sin(8D − 2	).

These coefficients, Brown tells us,

agree with what might have been expected from Delaunay’s series, with one
exception, the part of the coefficient of the Variation [i.e., the coefficient of
sin 2D] which depends on e2.

Brown put at 298′′.84 the value inferable for this part from Delaunay’s series; it
differed from his own value, 298′′.96, by 0′′.12. From an examination of Newcomb’s
comparison of Delaunay’s and Hansen’s lunar theories,69 Brown could find

69 Brown here refers to Astronomical Papers of the American Ephemeris, I, 92.
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. . . no reason to expect that [Delaunay’s] value of [this] coefficient is erro-
neous by so much as one-tenth of a second.

Later, he would seek an independent procedure for confirming his result.
A more serious discrepancy was that in the part of the motion of the Lunar

Perigee. Brown’s result for δc was +.00268 561Y 2
0 . Substituting for Y 2

0 its value
in terms of Delaunay’s eccentricity, we obtain δc = +.01074 3023e2. But if dw/dt
is the mean sidereal rate of motion of the lunar perigee, then c = n−dw/dt

n−n′ , so that

δc = −δ(dw/dt)

n − n′ = −m + 1

n
δ

(
dw

dt

)
,

whence

δ

(
1

n

dw

dt

)
= − 1

m + 1
δc = .00994 29e2.

Delaunay’s value for this same constant, as deduced by Brown from Delaunay’s
series, was .00955 96e2. The difference amounts to 0′′.055 per year in the motion, or
half a degree in a century. But, as Hill had remarked, this motion could be determined
observationally with a precision of about 39 arc-seconds in 125 years, or 0′′.312 per
year.

Another difference was discoverable in Brown’s and Delaunay’s values for the
coefficient of sin(2D−2	), Delaunay’s value being 212′′.318 and Brown’s 212′′.610.
The difference amounted to 0′′.29.

Brown in this paper did not compare his results for the terms proportional to Y 3
0

with those of Delaunay. He had computed these terms solely in order to obtain a
value for the increment δc. The difference from Delaunay’s result meant that further
investigation was required.

On 10 March 1893, as Brown was completing the paper, he wrote to Darwin
concerning the calculations it had entailed:

It has been tiring work doing arithmetic day after day. The amount of cal-
culation necessary has been nothing less than terrific. I reckon that I have
written about three quarters of a million numerals in connection with it.
It has however given exactly all the coefficients depending on m and e, e2

together with that part of the motion of the perigee which depends on m and
e2. They agree fairly well with Delaunay’s values, but if my results are right
the latter quantity as given by Delaunay is wrong by about one-twentieth of
its value.70

Writing to Darwin in October, 1893, Brown still remembered the calculations in the
paper as nightmarish:

Many thanks for your kind letter received a day or two ago. That paper was
a most terrible bit of work and I never think of what I went through in doing
the calculations without a shudder.71

70 Brown to Darwin, 10 March 1893, CUL, MS DAR.251:467.
71 Brown to Darwin, 18 October 1893, CUL, MS DAR.251:469.
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In his further development of the new lunar theory, Brown would seek to simplify
and streamline the calculations, with a view to assigning a considerable portion of
them to a human computer other than himself, who could reliably carry out specific
computational tasks. Needed as well would be a means of verifying the calculations
efficiently, without merely re-doing them.

After finishing his paper on the elliptic inequalities in the spring of 1893, and
taking a summer tour in Switzerland to recover from his latest spell of illness, Brown,
“quite well again,” began a course of reading and writing connected with his teaching
at Haverford. As he wrote Darwin in October,

I have one man who is doing the Lunar Theory and so far all my time has
been occupied in writing it out for him. I am hoping to develop it into a work
and should very much like your advice on my plan. I have so far given the old
method of finding radius, longitude, and latitude in terms of the time using
the Perturbing Function and following Pontécoulant further, but in getting
the first and second approximations of the principal terms have separated
out these latter in Hill’s method. As far as I can see this seems the best
way to give a student some idea of the problem. The next portion would be
Delaunay’s method and a third Hill’s method. At present I am struggling
with Hansen and am very doubtful whether it would be advisable to include
him. Hill seems easy in comparison – at any rate as far as method of pro-
ceeding goes. I have not worked out Hill’s ∞ determinant and do not think
it will be necessary when I go on with my own work as Adams has found
the principal part of the motion of the node – the only other case in which
I think it would occur. But I should be very glad to have the development if
you at any time let me see the process.72

It was in May, 1893, that Brown had first heard of the computation whereby
Adams had obtained the principal part of the motion of the lunar node, using an
infinite determinant similar to, but simpler than, the one solved by Hill. As he had
then written Darwin,

I was not very surprised when in reading Glaisher’s life of Adams in Monthly
Notices to see that the latter had been on the same track and had solved the
∞ determinant also. He published I see in Monthly Notices 1877 but we
have not got them here so I have not been able to read what he did.73

Brown probably read Adams’s Monthly Notices article on the lunar node during
his stay in Cambridge the following summer. At any rate, he now had the follow-
ing thought: since Hill and Adams had obtained the principal parts of the apsidal
and nodal precessions of the Moon by their infinite determinants, and he himself
had been able to obtain the increment δc proportional to e2 by a process of succes-
sive approximation, perhaps all the increments of the apsidal and nodal precessions

72 Brown to Darwin, 19 May 1893, CUL, MS DAR.251:468.
73 Brown to Darwin, 18 October 1893, CUL, MS DAR.251:469.
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needed for completing the theory could be found in this same way, by successive
approximations.

The review of the major lunar theories that Brown wrote out for his student
became An Introductory Treatise on the Lunar Theory, published in early March
of 1896 by Cambridge University Press. Its 292 pages bristle with equations, detailed
explanations, and references. In his preface Brown thanks George Darwin,
E.W. Hobson, and P.H. Cowell, for suggestions and corrections made during their
reading of the proof-sheets. He expressed his special indebtedness to Darwin in a
letter of 8 March 189674:

I am glad to hear from you that the book is out – your letter received last
night was the first news of the fact. I want to add something to the very
inadequate acknowledgment, in the preface, of all you have done for me.
It isn’t possible to say there all one would wish and I have always been
very grateful – first, that you started me on the Lunar Theory at the point
you did, and after that for all the help and encouragement you have given
me right along. The book certainly would not have been written but for that
and I hope that you may not have great reason to be ashamed of it in the
future. . . . I shall be anxious to hear what Hill and Newcomb have to say
about it.

The book contains a full account of Hill’s infinite determinant and its solution,
as well as of Adams’s several discoveries in the lunar theory.

No doubt Brown, in writing this book, was doing his homework: reviewing the
groundwork of the lunar theory from Laplace onward, mastering the essentials and
much detail, in preparation for the task of carrying Hill’s theory to completion.
In Chapter XII he gives an assessment of the merits and faults of the several methods,
and his reasons for pursuing the procedures pioneered by Hill and Adams.

There does not appear to be any method which is capable of furnishing the
values of the coordinates with a degree of accuracy comparable with that of
observation, without great labor. The question to be discussed is mainly the
relation between the accuracy obtained and the labor expended.

As regards the inequalities produced by the action of the Sun, the methods
may be divided into three classes. The first or algebraical class contains
those in which all the constants are left arbitrary; the second or numerical,
those in which the numerical values of the constants are substituted at the
outset; the third or semi-algebraical, those in which the numerical values
of some of the constants are substituted at the outset, the others being left
arbitrary: the most useful case of the last class appears to be that in which the
numerical value of the ratio of the mean motions is alone substituted. The
advantage of an algebraical development will be readily recognized. In a
numerical development, slow convergence is to a great extent avoided, but

74 Brown to Darwin, CUL, MS.DAR.251:478 (8 March 1896). See also MS.DAR.251:471
(30 August 1895), MS.DAR.251:472 (1 Sept. 1895), MS.DAR.251:473 (7 Sept. 1895),
MS.DAR.251:475 (20 Oct. 1895).
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the source of an error is traced with great difficulty and any change in the
values of the arbitraries can not be fully accounted for without an extended
recalculation. The semi-algebraical class, in which the value of m is alone
substituted, appears to possess an accuracy nearly equal to that of a numeri-
cal development, and it has the advantage leaving those constants arbitrary
whose values are known with least accuracy.

It is difficult to judge of the labor which any particular method will
entail, without performing a considerable part of the calculations by that
and by other methods . . . . For a complete algebraical development carried
to a greater accuracy than that of Delaunay, none of the methods given up
to the present time seem available without the expenditure of enormous
labor: Delaunay’s calculations occupied him for twenty years. If we may
judge from the inequalities computed up to the present time, the methods of
Chap. XI [the methods applied by Hill and Adams] seem to be the best suited
to a numerical or semi-algebraical development. It is true that they give the
results expressed in rectangular instead of in polar coordinates, but the labor
of transformation is not excessive in comparison with that expended on the
previous computations, while the accuracy obtained far surpasses that of any
other method; the transformation of the series, however, would not be neces-
sary for the formation of tables. . . . Hansen’s method labors under the dis-
advantage of putting the results under a form which makes comparison with
those of other methods difficult. Another consideration which is a power-
ful factor, is the question as to how far the ordinary computer, who works
by definite rules only, can be employed in the calculations; and here the
methods of Chap. XI [“Method with Rectangular Coordinates”] appear to
have an advantage not possessed by any of the earlier theories.75

Brown, anxious to hear what Hill and Newcomb would say about his book, could
report to Darwin on 21 March 1896:

I sent [Newcomb] a copy of the Lunar Theory and he wrote me a very nice
letter about it. . . . I have just had a letter from Hill. He thinks it would have
been better to leave out Hansen – because he says ‘it will probably never
be used again!’ Otherwise he is complimentary – but I don’t think he appre-
ciates what a student beginning the subject wants.76

In the same letter Brown also reported that Newcomb was going to Europe in
April and would be in Cambridge, and asked Darwin what he thought about the
university’s giving Newcomb an honorary degree.

You probably remember that G.W. Hill had one in 1892, and the relative
merits of the two men seem much the same. Newcomb has just been deco-
rated by the Paris Academy.77

75 E.W. Brown, An Introductory Treatise on the Lunar Theory (New York NY: Dover Publi-
cations, 1960) 246–247.

76 Brown to Darwin, 21 March 1896, CUL, MS.DAR.251:479.
77 Ibid.
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Darwin apparently acted on Brown’s suggestion: the University of Cambridge
awarded Newcomb an honorary doctorate of science in 1896.78

During 1894, while engaged in writing his book, Brown completed a three-part
article entitled “Investigations in the Lunar Theory.” It was published in the American
Journal of Mathematics in 1895.79 Its first part proposed and justified a new way of
deriving the lunar inequalities beyond those defining Hill’s Variation orbit. Its second
part demonstrated certain relations among the constants of the lunar theory. These
two parts took their inspiration from two papers published by John Couch Adams in
1877 and 1878.

78 R.C. Archibald, A Semicentennial History of the American Mathematical Society, 1888–
1938 (New York NY: American Mathematical Society, 1938), 125.

79 American Journal of Mathematics, 17, 318–358.
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Initiatives Inspired by John Couch Adams’ Papers

Adams’ paper of 1877 – we mentioned it earlier for the high praise that Adams
there gave to Hill’s work on the motion of the lunar perigee – was published in
the Monthly Notices, and bore the title “The Motion of the Moon’s Node in the
case when the Orbits of the Sun and Moon are supposed to have no Eccentricities,
and when their mutual Inclination is supposed to be indefinitely small.”80 The part
of the motion of the node Adams was concerned with depends solely on the ratio
of the mean motions of the Sun and Moon; it is the principal part, differing little
from the observational value.

In his derivation, Adams encountered an infinite determinant of the same form
as the one solved by Hill. Working at intervals, he reduced it to a series of powers
and products of small quantities. He obtained the terms of the fourth order – so he
reported – on 26 December 1868, and the terms of the twelfth order on 2 December
1875. Thus, a year or so before Hill obtained the principal part in the motion of the
perigee, Adams had calculated the principal part in the motion of the node with a
precision about equal to Hill’s.

As remarked earlier, Hill’s and Adams’ successes in these calculations suggested
that the completion of the lunar theory might require no more than successive
approximations. In addition, Adams’ formulation of the problem of the Moon’s
motion in the z-coordinate suggested a new pattern for deriving the lunar inequalities.

Here is Adams’ equation for z:

d2z

dt2
+
(
μ

r3
+ μ

′

r3
1

)
z = 0. (A.1)

In the second term μ is the sum of the masses of the Earth and Moon, μ′ the Sun’s
mass, r the radius vector from Earth to Moon, and r1 the radius (assumed constant)
of the Sun’s orbit. For the unit of distance Adams chose the mean distance in the
orbit a moon would describe in undisturbed motion about the Earth, supposing its
period equal to that of the actual Moon. In this case μ = n2, where n is the Moon’s

80 MNRAS, 38 (Nov., 1877), 43–49.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 8,
c© Springer Science+Business Media, LLC 2010
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mean rate of angular motion. The Sun’s orbit being assumed circular, μ′/r3
1 = n′2,

where n′ is the Sun’s rate of angular motion. Therefore,
(
μ

r3
+ μ

′

r3
1

)
=
(

n2

r3
+ n′2

)
= n2

(
1

r3
+ m2

)
.

For Adams, m = n′/n; he used Plana’s value for m, 0.0748013. Taking r to be the
radius vector in the Variation orbit, he expanded the fraction 1/r3 as a series:

1

r3
= 1.00280 21783 115 + 0.02159 98364 4 cos 2(n − n′)t

+ 0.00021 53273 9 cos 4(n − n′)t + 0.00000 20644 8 cos 6(n − n′)t

+ 0.00000 00192 9 cos 8(n − n′)t + 0.00000 00000 3 cos 10(n − n′)t.

To the constant term of this series he then added the value of m2, and proceeded to
obtain the expansion

1

(n − n′)2

(
n2

r3
+ n′2

)
= 1

(1 − m)2

(
1

r3
+ m2

)
= q2

0 + 2
∞∑

i=1

qi cos 2i(n − n′)t.

(A.2)

Given the values of 1/r3 and m2, he found

q0 = 1.08537 75828 323,

q1 = 0.01261 68354 6,

q2 = 0.00012 57764 3,

q3 = 0.00000 12059 0.

These, he stated, “are all the quantities necessary for finding the motion of the
Moon’s node, to the order which we require.”

Of the further steps in his derivation, Adams reported little. Defining gπ as the
angular motion of the Moon from its node in half a synodic period, he gave for this
quantity, without explanation, the equation

cos gπ = Cc cos q0π + Cs sin q0π, (A.3)

where Cc and Cs are formulas involving the q’s. On substituting numerical values
for the latter, he obtained

cos gπ = −0.96441 51972 00779.

It followed that g = 1.08517 13927 46869, and the ratio of the Moon’s motion from
its node to its sidereal motion was

g(1 − m) = 1.00399 91618 46592.
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The quantity g(1−m) is usually designated g (italic) in the Lunar Theory. The value
of g just given, Adams observed, differs from the true (observational) value in the
eighth decimal place. But, he added, if we develop the value of g not in m but in
Hill’s constant m[= m/(1 − m)], and substitute m = 0.08084 89030 52, then
we find

g = 1.00399 91591 1;
this, said Adams, “is considerably nearer the truth.”

The symbols Brown used in the “Investigations” – inherited in part from Hill –
differed from those used by Adams, and so (A.1), as Brown wrote it, had a different
look. Brown replaced Adams’ q’s by M’s, where

q2
0 = M0, and

1

2
qi = Mi = M−i for i 	= 0.

He replaced d/dt by
√
(−1)(n−n′)D, μ/r3 by κ(n−n′)/r3, and m by its equivalent

in terms of m, namely m/(1 + m), so that the differential equation took the form

D2z −
( κ

r3
+ m2

)
z = 0, or D2z −

(+∞∑

−∞
Mi

)
z = 0.

Brown’s inclusion of the constant m2 in the constant M0, paralleling Adams’ inclu-
sion of the constant m2 in the constant q2

0 , supports our supposition that he was here
following Adams.

Given Brown’s form of the equation, it is easy to show how the infinite determi-
nant arises. Solving this equation by the method of undetermined coefficients leads
to an equation of condition of the form

(2 j + g)2z j +
( +∞∑

i=−∞
Mi

)
z j−i = 0, (A.4)

where the z j are unknown coefficients. (A.4) yields an infinite number of homo-
geneous equations, a different one for each j , each equation containing an infinite
number of terms obtained as i varies from −∞ to +∞. The three equations at the
center of the array may be represented by:

· · · [(g − 2)2 − M0]z−1 −M1z0 −M2z1 · · · = 0

· · · −M1z−1 (g2 − M0)z0 −M1z1 · · · = 0

· · · −M2z−1 −M1z0 [(g + 2)2 − M0]z1 · · · = 0

For there to be a non-trivial solution of this system of equations, the determinant of
the array must equal zero. Setting the determinant equal to zero yields an equation
which is formally the same as Hill’s II.32; it can be solved for g by the same methods
as Hill employed in obtaining c.
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Since Adams based his value of g on a value for m differing slightly from that
adopted by Hill, Brown ultimately relied on another calculation of g, that due to
P.H. Cowell.81

We turn now to Brown’s new procedure. It differed from Hill’s procedure, which
Brown had used in his earlier papers. Hill, we recall, started from two second-order
differential equations, formulated initially with the variables x and y, and then, more
conveniently, with the complex variables u and s. The equations, whether in x, y
or in u, s, were linear in these variables, except for the term expressing the gravi-
tational force. They admitted of an integral (the Jacobian integral), with the aid of
which Hill freed the two equations of the non-linear term. He solved the resulting
linear equations by the method of undetermined coefficients. To obtain the numeri-
cal values of the constants of integration, he had to return to an equation containing
the gravitational force constant.

The new method that Brown now proposed was more direct. It was applicable to
all departures from Hill’s Variation orbit, and it avoided the steps of first eliminating
and then restoring the non-linear term involving the gravitational force. It employed
special symbols for the increments sought: u0 + δu for u and s0 + δs for s, where
u0 and s0 are the values of u and s in the Variation orbit. The latter orbit Brown
expressed by:

u0ζ
−1 = a0

∑

i

aiζ
2i ,

s0ζ = a0

∑

i

a−iζ
2i .

Here he has multiplied Hill’s formulas by a power of ζ such as to put the sum
on the right into a standard form, expressible by a cosine series with argument
2iν(t − t0). The “a0” occurring in these formulas outside the summation signs
represents the same magnitude as Hill’s a0. As in the paper on the elliptic inequali-
ties, the symbol ai for i 	= 0 represents, in terms of Hill’s coefficients, the fraction
ai/a0; for the particular case in which i = 0, the a0 under the summation sign is
equal to 1.82

The departures δu and δs from the Variation orbit can arise from the lunar or
solar eccentricity, from the inclination of the lunar orbit, or from the solar parallax.
In all such inequalities the treatment is basically the same.

Brown chose one equation for determining the increments to u and s, and another
equation for determining the increments to z:

81 P.H. Cowell, “On the Inclinational Terms in the Moon’s Coordinates,” American Journal
of Mathematics, 18 (1896), 99–127.

82 Brown in his Theory of the Motion of the Moon, Memoirs of the R.A.S., 53, 60, will replace
a0 as it occurs outside the summation signs by a0, or more simply a, specifying that a0,
as it occurs under the summation signs, is equal to 1. Hereafter Brown’s Theory of the
Motion of the Moon will be abbreviated as TMM.
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(

D2 + 2mD + 3

2
m2
)

u + 3

2
m2s − κu

(us + z2)3/2
= −∂1

∂s
, (B.17a)

(D2 − m2)z − κz

(us + z)3/2
= −1

2

∂1

∂z
. (B.17b)

(B.17a), with z deleted, is identical with the first equation of (B.2). It governs varia-
tions in longitude and radius vector. Both δu and δs are determined by it because u
and s, being complex conjugates, contain both x and y. (B.17b) governs the Moon’s
departures from the ecliptic.

Deleting z from (B.17a), Brown substituted u0 + δu for u and s0 + δs for s, and
then subtracted the corresponding equation satisfied by u0, s0, namely

(
D2 + 2mD + 3

2
m2
)

u0 + 3

2
m2s0 − κu0

(u0s0)3/2
= 0.

What remained was an equation for deriving the increments δu and δs:

(D + m)2δu + 1

2
m2δu + 3

2
m2δs −

[
κ

(u0 + δu)1/2(s0 + δs)3/2 − κ

u1/2
0 s3/2

0

]
= ∂1

∂s
.

(B.18)

In each derivation from (B.18), Brown construed 1 as consisting of just the
terms required for deriving the particular increment sought. For instance, in seeking
the increments to u0 and s0 arising from the lunar eccentricity, he set 1 equal to
zero, because (B.18) thus modified included all possible eccentric lunar orbits. But
in seeking the increments arising from the eccentricity e′ of the Sun’s (= the Earth’s)
orbit, he gave 1 the form

1 = 1

2
(Au2 + 2Bus + Cs2),

where A, B, and C are functions of the solar eccentricity e′ and the solar mean
anomaly n′t + ε′. For the derivation of increments due to solar parallax, he set 1
equal to yet other terms, as in his first article on the parallactic inequalities.

In all cases Brown assumed that δu and δs, in relation to u0 and s0, were small
enough so that the square bracket in (B.18) could be expanded in a Taylor series.
To third-order terms this expansion is

κ

u1/2
0 s3/2

0

⎡

⎢⎣
− 1

2
δu
u0

− 3
2
δs
s0

+ 3
8
(δu)2

u2
0

+ 15
8
(δs)2

s2
0

+ 3
4
δuδs
u0s0

− 5
16
(δu)3

u3
0

− 35
16
(δs)3

s3
0

− 9
16
(δu)2δs

u2
0s0

− 15
16
δu(δs)2

u0s2
0

+ · · ·

⎤

⎥⎦

In any particular derivation, the expansion could be limited to terms from lowest
order up to the order of the increment sought. For instance, to obtain the increment



114 8 Initiatives Inspired by John Couch Adams’ Papers

proportional to the first power of e′, only the first two terms of the expansion were
required, but to obtain the terms proportional to e′2, the three terms involving the
squares and product of δu and δs had to be included as well.

Since the coefficients of δu, δs, (δu)2, (δs)2, δuδs, etc., within the square bracket
remained the same in all the derivations, labor could be saved by calculating them
once for all. Brown in the present paper gave the numerical series for these coeffi-
cients up to and including the third order of powers and products of δu and δs. Within
the bracket, the coefficient of δu to the first power is equal to κ/2r3

0 , for which Hill
had provided the series:

κ

2r3
= 1

2

⎡

⎢⎢⎢⎣

1.17150 80211 79225

+.02523 36924 97860 cos 2τ

+.00025 15533 50012 cos 4τ

+ · · ·

⎤

⎥⎥⎥⎦ .

Brown – following the pattern adopted by Adams – combined this coefficient of
δu with the term (1/2)m2 – the second term in (B.18) above – to form the single
expression:

1

2
m2 + 1

2

κ

(u0s0)3/2
=
∑

i

Miζ
2i .

For the terms in (B.18) involving δs to the first power, Brown put

ζ−2

[
3

2
m2 + 3

2

κ

u1/2
0 s5/2

o

]
=
∑

i

Niζ
2i .

The multiplication by ζ−2 had the purpose of putting the summation on the right into
a standard form expressible by a cosine series. The second term on the left can be
re-written in the form

3

2

κ

r3
0

· u2
0ζ

−2

r2
0

,

where the factors κ/r3
0 , 1/r

2
0 , and u2

0ζ
−2 have known series expressions, the last-

named being the square of

u0ζ
−1 = a0

∑

i

aiζ
2i .

Thus an expression for
∑

Niζ
2i could be determined by “the method of special

values.” The coefficients of higher order could be obtained similarly.
By way of illustration, Brown applied this procedure to several of the inequalities

to be calculated. The procedure required an appropriate expression for the disturb-
ing function 1, and a correct form for the solution. In the case of the inequality
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depending on the first power of e′, Brown set δu = uη and δs = sη, with the under-
standing that these increments contain e′ to the first power only. He rewrote (B.18)
in the form:

ζ−1(D + m)2uη + ζ−1uη ·
∑

i

Miζ
2i + ζ sη ·

∑

i

Niζ
2i = −Bζ−1u0 − Cζ−2 · ζ s0.

(B.19)

The partial derivative of 1 with respect to s on the right of (B.18) is Bu + Cs; but
since B and C both contain e′ as a factor, u must be replaced by u0 and s by s0,
neglecting δu and δs to avoid producing terms of the second order in e′. B and C
must also contain the sine or cosine of the mean anomaly, n′(t −t0), of the solar orbit,
since the Sun’s orbital position affects its action on the Moon. This result is obtained
by including in B and C the factor ζ±m; for since m = n′/ν, this implies that B and
C contain the factor exp[±n′(t −t0)

√
(−1)] = cos n′(t −t0)±√

(−1)×sin n′(t −t0).
As a solution of the foregoing equation, Brown proposed

ζ−1uη = a0e′∑

j

[η jζ
2 j+m + η′

− jζ
−2 j−m],

ζ sη = a0e′∑

j

[η′
− jζ

2 j+m + η jζ
−2 j−m].

Substituting these expressions into the equation, he solved it by the method of
undetermined coefficients. The terms on the left-hand side proved to be factored
either by ζ 2 j+m or ζ−2 j−m, and the same thing had to be true of the terms on the
right. Designating the coefficients of the latter by K2 j+m or K−2 j−m according as
they contained ζ 2 j+m or ζ−2 j−m, he found them to be

K2 j+m = (2 j + 1 + 2m)2η j +
∑

i

Miη j−i +
∑

i

Niη
′
i− j ,

K−2 j−m = (2 j − 1)2η′
− j +

∑

i

M−iη
′
i− j +

∑

i

N−iη j−i .

The final step was to compute the constants η j and η′
− j by successive approxima-

tions.
Following on his several illustrations, Brown remarked:

Sufficient has been said to indicate the manner of treating the whole Lunar
Theory after this method. . . . Nevertheless, should it be considered that
in finding the terms of high orders in e, e′, γ, 1/a′ the method indicated
above becomes too troublesome, nothing prevents us from returning to equa-
tions (8) [the homogeneous equations], these being available at any stage.
No increase of labor results from the mere change of method.83

83 E. W. Brown, “Investigations in the Lunar Theory,” American Journal of Mathematics, 17
(1895), 341–342.
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We shall find that, in his Theory of the Motion of the Moon (1897–1908), Brown will
use the method just described in computing the inequalities of the first and second
orders. For the inequalities of the third order, he will modify this method in one
particular, and for higher orders he will find it advantageous to return to Hill’s method
and thus to the homogeneous equations.

In the “Investigations,” Brown proceeded on the assumption that all increments
to the principal parts of the motions of the perigee and node could be obtained
by successive approximations, without recourse to infinite determinants. Yet, after
describing the new method, he returned to the question that had stumped him in his
essay on the elliptic inequalities: does introduction of the first power of the lunar
eccentricity into the theory lead to an infinite determinant that converges? The deter-
minant, this time, would be based on a new equation, and so would be different.
Brown was not concerned to solve this determinant, only to learn whether it was con-
vergent and would remain so as further increments were introduced into the theory.

In Brown’s new method, the equation for finding the increments due to the first
power of the lunar eccentricity was similar to (B.19), but with 1 set equal to zero:

ζ−1(D + m)2ue + ζ−1ue

∑

i

Miζ
2i + ζ se ·

∑

i

Niζ
2i = 0.

The solution took the form

ζ−1ue = a0

∑

j

[ε jζ
2 j+c + ε′jζ 2 j−c],

ζ se = a0

∑

j

[ε′− jζ
2 j+c + ε− jζ

2 j−c]. (B.20)

If these expressions were substituted into the equation of motion, and the coeffi-
cients of ζ 2 j+c and ζ 2 j−c equated to zero, the result would be two series of linear
homogeneous equations of condition from which, assuming c to be known, ε j , ε

′
j

could be determined by successive approximations:

(2 j + 1 + m + c)2ε j +
∑

i

Miε j−i +
∑

i

Niε
′
i− j = 0,

(2 j − 1 − m + c)2ε− j +
∑

i

M−iε
′
i− j +

∑

i

N−iε j−i = 0. (B.21)

But suppose that, without assuming c known, we could eliminate ε j , ε
′
j from (B.21);

the condition for this elimination was that the determinant of these equations be equal
to zero. The determinant was clearly infinite, so its convergence was not obvious.
Poincaré in an essay of 188684 had proved the relevant theorem: An infinite deter-
minant converges if and only if (1) the non-diagonal elements have a finite sum, and
(2) the product of the elements in the main diagonal is finite.

84 H. Poincaré, “Sur les déterminants d’ordre infini,” Bulletin de la Société mathématique de
France, XIV (1886), 77–90.
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Brown represented the determinant of the equations for ε j , ε
′
j by

�(c) =
∣∣∣∣
d(c)

d

∣∣∣∣
d

d(−c)

∣∣∣∣.

The vertical and horizontal lines within the determinant delimit the quadrants
occupied by d, d(c), and d(−c). The symbol d(c) stands for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . (3 + m + c)2 + M0 M−1 M2 . . .

. . . M1 (1 + m + c)2 + M0 M−1 . . .

. . . M2 M1 (−1 + m + c)2 + M0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

This matrix is to be understood as extending infinitely up, down, and to right and
left. The symbol d(−c) stands for the same matrix but with the sign of c negative.
The symbol d stands for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . N0 N−1 N−2 N−3 N−4 . . .

. . . N1 N0 N−1 N−2 N−3 . . .

. . . N2 N1 N0 N−1 N−2 . . .

. . . N3 N2 N1 N0 N−1 . . .

. . . N4 N3 N2 N1 N0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Putting d, d(c), and d(−c) in their places in the expression for �(c), and deleting
the cross lines, we have the required determinant.

This determinant, unlike Hill’s, is “doubly infinite,” in that the rows and columns
increase indefinitely toward the cross lines as well as toward the outside of the array.
The determinant Brown had obtained in his paper on the elliptic inequality was also
“doubly infinite” in this way. The new determinant differs, however, in that by a
suitable system of divisors it can be put into a convergent form.

The roots of the determinant �(c), as Brown knew from his earlier paper, were

± c1, ±(c1 ± 2), ±(c1 ± 4), . . . ,

± c2, ±(c2 ± 2), ±(c2 ± 4), . . . ,

where either c1 or c2 is zero. These two sets of roots are also roots of the equation

(cosπc − cosπc1)(cosπc − 1) = 0.
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Following a route previously traversed by Hill, Brown showed that

(cosπc − cosπc1)(cosπc − 1) ≡ �(c)×
(

4

1
· 4

42 − 1
· 4

82 − 1
· · · ·

)4

≡ ∇(c).

The two determinants �(c) and ∇(c) both meet Poincaré’s tests for convergence.
Next, Brown investigated the changes occurring in �(c) when terms dependent

on (e′)2 and its powers are taken into account. Most of these terms contain the angle
n′t + ε but some do not. Brown proposed incorporating the terms not containing
functions of angles into the variables u0 and s0; thus u0 became

a0

∑

j

[a j + e′2(ηη′) j + e′4(η2η′2) j + · · · ]ζ 2 j .

Secondly, in place of Mi , Ni , he put

(M)i = Mi + terms containing e′2 and its powers,

(N )i = Ni + terms containing e′2 and its powers.

The terms arising from A, B,C – the coefficients in the expression for 1 –
could be included in (M), (N ) as well. The new determinant remained symmetri-
cal and convergent. To express the new variables and the new value of c, Brown
wrote

(ε) j = ε j (1 + terms containing e′2 and its powers),

(ε′) j = ε′j (1 + terms containing e′2 and its powers),

(c) j = c + terms containing e′2 and its powers.

Satisfied as to the convergence of the infinite determinant, Brown was led to con-
sider (in the short addendum that is Part III of the “Investigations”) the problem of
“small divisors.” This was a besetting difficulty in celestial mechanics, recognized
by Euler as a danger but first detected in an important particular case by Laplace.
The equations of motion for the Moon, being of the second order, required for
their solution a double integration with respect to the time. If a term undergo-
ing integration contained sin At or cos At , its integral would have, as a divisor,
A2. If A were exceedingly small, the term could come to have a large coeffi-
cient – large, that is, in relation to its order, as determined by the powers to
which the several small parameters entering as factors into its coefficient were
raised. To determine its exact value, a computation was required; it could be of
daunting length and intricacy. Laplace’s famous discovery of “the great inequa-
lity of Jupiter and Saturn” depended on computing the effect of just such a small
divisor.
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Under what circumstances might small divisors arise in the lunar theory? Let the
arguments of any series of terms in x, y differing by multiples of 2ν(t − t0) be

(2 j +�)νt + const.,

where� has the form j1 +km+ pc+2qg. The coefficient of any such term will con-
tain the factors (a′)− j ′(e′)k′

ep′
γ 2q ′

. In �, j1 is either 0 or 1, depending on whether
j ′ is even or odd. The sum [ j ′ + k′ + p′ + 2q ′] is called the order of the term. Also,

k′ = k or k + an even positive integer,

p′ = p or p + an even positive integer,

q ′ = q or q + an even positive integer.

Let the coefficients corresponding to any given value of � be λ j , λ
′
j . The equa-

tions determining these coefficients are

(2 j + 1 + m +�)2λ j +
∑

i

Miλ j−i +
∑

i

Niλ
′
i− j

= known terms independent of λ, λ′,

(2 j − 1 − m +�)2λ′
− j +

∑

i

M−iλ
′
1− j +

∑

i

N−iλ j−i

= known terms independent of λ, λ′. (B.22)

These equations have the same form as (B.21), but with � replacing c, and λ, λ′
replacing ε, ε′; also, the right-hand members are no longer zero. If (B.22) were to
be solved for λ j , λ

′
j by determinants, the denominators in the solutions would be the

determinant of the equations. But this determinant is just the infinite determinant of
(B.21), namely ∇(c), with � replacing c.

As we have seen, ∇(c) ≡ (cosπc − cosπc1)(cosπc − 1). This is an identity
holding for any values of c; in it we can therefore put � for c, while taking c1 to be
the principal part of the perigee’s motion. The determinant of (B.22) will therefore be

∇(�) = (cosπ�− cosπc1)(cosπ�− 1). (B.23)

This expression will be small if either of the two factors is close to zero. Since c1
is close to 1, and hence cosπc1 close to −1, the two factors cannot both be close
to zero for the same value of �. The first factor of (B.23) approaches zero as �
approaches the sum [c1+ an even integer]; the even integer can be positive, negative,
or zero. In this case the period of the inequality will differ little from that of one
of the principal elliptic inequalities, that is, from 2π/(2 j ± c1). Thus, short-term
inequalities with unusually large coefficients would have periods close to periods of
the elliptic inequalities, not to the Moon’s sidereal or synodic periods, as previously
supposed.
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The second factor of (B.23) approaches zero as � approaches an even integer,
which can be positive, negative, or zero. This is the case of long-period terms.

The foregoing rules, with certain further specifications here omitted, needed to
be taken into account in Brown’s later systematic development of the theory. In this
he will start by computing terms of the first “order,” taking this term in its technical
sense as the sum [ j ′ + k′ + p′ + 2q ′]. He will then proceed to terms of the second
order, terms of the third order, and so on. This ordering has to be modified where
very small divisors cause the size of terms to fall outside the range indicated by their
technical order.

The second part of Brown’s “Investigations” took its starting-point from the
second of Adams’ papers, bearing the title “Note on a Remarkable Property of
the Analytical Expression for the Constant Term in the Reciprocal of the Moon’s
Radius Vector.”85 The properties Adams here established were, he said, remarkable
“for a degree of simplicity and generality of which the lunar theory affords very few
examples.” These properties were important to Brown because they supplied ways
of verifying certain calculations. We describe them briefly, omitting details.

Let r be the Moon’s radius vector, and let a be the Moon’s mean distance in
the elliptic orbit that the Moon would describe about the Earth if perturbations due
to the Sun were absent. Thus a = (μ/n2)1/3, where μ is the sum of the masses
of the Earth and Moon, and n the mean motion of the Moon. If terms depending
on the Sun’s parallax are omitted, the fraction a/r can be expanded in an infinite
series of cosines with arguments of the form 2iξ ± jφ ± j ′φ′ ± 2kη. Here ξ is the
mean elongation of the Moon from the Sun, φ is the Moon’s mean anomaly, φ′ is
the Sun’s mean anomaly, and η is the Moon’s mean distance from the ascending
node; i, j, j ′, k are any positive integers or zero. The coefficient of the term with
this argument contains e j e′ j ′γ 2k as a factor, where e is the mean eccentricity of the
Moon’s orbit, e′ is the mean eccentricity of the Sun’s orbit, and γ is the sine of
half the mean inclination of the Moon’s orbit to the ecliptic. The remaining factor
in the coefficient is a function of e2, e′2, and γ 2, and of m = n′/n, the ratio of the
Sun’s mean motion to the Moon’s mean motion. That this second factor involves the
squares of e, e′, and γ is a characteristic of the elliptical theory which Laplace was
apparently the first to identify, and which holds generally for series giving functions
of the longitude or radius vector.

The quotient a/r contains a constant term, corresponding to the case in which
i, j, j ′, and k are all zero. Adams expresses this term in the form

A + Be2 + Cγ 2 + Ee4 + 2Fe2γ 2 + Gγ 4 + &c.,

where

A = A0 + A1e′2 + A2e′4 + &c.,

B = B0 + B1e′2 + B2e′4 + &c.,

C = C0 + C1e′2 + C2e′4 + &c., . . . .

Here A0, A1, etc., B0, B1, etc., C0,C1, etc., are all functions solely of m.

85 MNRAS, 38 (1878), 460–472.
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Adams tells us that Plana, and after him Lubbock, Pontécoulant, and Delaunay,
developed the functions of m occurring in the terms of a/r . Plana showed that B0 and
C0 both vanish when account is taken of terms involving m2 and m3. Pontécoulant
showed that these coefficients still vanish when account is taken of terms involving
m4 and m5. Adams reports that,

Thinking it probable that these cases in which the coefficients had been
found to vanish were merely particular cases of some more general property,
I was led to consider the subject from a new point of view, and on
February 22, 1859, I succeeded in proving, not only that the coefficients
B0 and C0 vanish identically, but that the same thing holds good of the more
general coefficients B and C , so that the coefficients of

e2, e2e′2, e2e′4,&c.

γ 2, γ 2e′2, γ 2e′4,&c.

in the constant term of a/r are all identically equal to zero.

To obtain this result, Adams began by imagining two moons, one without
orbital eccentricity or inclination, the other with either orbital eccentricity or orbital
inclination, but exactly like the first in every other respect. The radius vector and
rectangular coordinates of the first he designated by r, x, y, z, and those of the second
by r1, x1, y1, z1. He was able to show that the expression

(xx1 + yy1 + zz1)

(
1

r3
1

− 1

r3

)
(A.5)

was a complete differential with respect to the time t . It followed that, when deve-
loped in cosines of angles proportional to t , it contained no constant terms. A further
consequence was that the value of

( 1
r1

− 1
r

)
could contain no constant of lower order

than the fourth in e or γ . Thus if one orbit had no eccentricity and the other had
a finite eccentricity e, the foregoing difference of reciprocal radii vectores could
contain no constant term of the order of e2. Since 1/r certainly contained no such
constant term, 1/r1 didn’t either.

The form of reasoning just indicated led Adams on August 14, 1877 to a further
result. If the terms of the quantity c = dφ/ndt involving e2 and γ 2 are denoted by
He2 + Kγ 2, and the terms of the quantity g = dη/ndt involving e2 and γ 2 are
denoted by Me2 + Nγ 2, where H, K ,M , and N are functions of m and (e′)2, then

E

F
= H

K
and

F

G
= M

N
. (A.6)

This appears to have been the last of Adams’ discoveries concerning the constants in
the reciprocal radius vector.

Brown in the first part of his “Investigations,” when applying his new method
to the derivation of δc, arrived at a formula resembling Adams’ expression (A.5).
He found, in fact, that
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2δc
∑

j

[(2 j + 1 + m + c)ε2
j + (2 j − 1 − m + c)ε′2− j ]

= const.part of order e4, in expansion of
κ

a2
0

· Xe2 xe + Ye2 ye

R3
e2

, (B.24)

where Xe2 = x0 + xe + xe2 ,Ye2 = y0 + ye + ye2 , and R2
e2 = X2

e2 + Y 2
e2 .

X and Y with the subscript e2 are the values of x, y in the Variation orbit as
augmented by the increments corresponding to e and e2. To Brown, (B.24) suggested
that

Adams’ theorems as to the connection between the constant parts of the
Parallax of the Moon and certain parts of the motion of the Perigee and
Node must really arise naturally from this mode [Brown’s new mode] of
development of the lunar theory.

He proceeded to prove Adams’ theorems again and to establish them not just in the
form of ratios but as exact equations. Thus he was able to define two constants, Te

and Tr , such that H Te = 6E, K Te = 6F,MTγ = 6F , and N Tγ = 6G, where
H, K ,M, N are Adams’ symbols.

What Brown regarded as his chief new discovery in this part of the “Investiga-
tions” was this: If the Moon’s rectangular coordinates, X,Y, Z , have been calculated
to order 2q − 2, the constant part in the expansion of 1/

√
X2 + Y 2 + Z2 could be

obtained to the order 2q without further reference to the equations of motion. This
suggested that higher-order increments to c and g might possibly be obtained as func-
tions of terms in the constant part of the reciprocal radius vector, without recourse
either to infinite determinants or to successive approximations (the latter being less
daunting than infinite determinants but still laborious).



9

Further Preliminaries to the Systematic Development

In 1894 Brown completed calculations yielding the lunar inequalities proportional
to e′ f1(m) and to ee′ f2(m). After finishing work on his Introductory Treatise on
the Lunar Theory, he also carried out a number of theoretical inquiries resulting in
published papers.

His results for the inequalities proportional to the first power of the eccentricity
e′ of the Sun’s (or Earth’s) orbit were published in June, 1894.86 They were:

− 659′′.2375 sin 	′ + 152′′.0828 sin(2D − 	′)− 21′′.5942 sin(2D + 	′)
+ 1′′.2550 sin(4D − 	′)− 0′′.1800 sin(4D + 	′)
+ 0′′.0105 sin(6D − 	′)− 0′′.0015 sin(6D + 	′)
+ 0′′.0001 sin(8D − 	′).

The first of these terms represents what is known as “the annual equation” in the lunar
theory. The coefficients, Brown reported, were close to Delaunay’s “when estimate
is made for the omitted portions of the series in powers of m, the greatest difference
being 0′′.06.”

Brown’s results for the inequalities proportional to the product ee′ appeared in
November, 1894.87 Because Delaunay’s series in powers of m for the coefficients
of the several terms converged in some cases very slowly, Delaunay had to resort
to estimates as to what the uncalculated terms in the infinite series would con-
tribute to the coefficient. These guesses were often mistaken, as the following ta-
ble shows. Here the column labeled “B” gives Brown’s values, and the column la-
beled “B–D” gives the difference between Brown’s and Delaunay’s values. Where
no value is given for (B–D), it means that Delaunay did not calculate the term in
question.

86 MNRAS, 54 (1894), 77.
87 MNRAS, 55 (1894-5), 3–5.
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Argument B B–D
	+ 	′ −110′′.1758 −0′′.0390
2D − 	− 	′ +206.8242 −0.2528
4D − 	− 	′ +4.0861 0.0549
6D − 	− 	′ +0.0545 +0.0357
8D − 	− 	′ +0.0006 . . .

2D + 	+ 	′ −2.6612 +0.0058
4D + 	+ 	′ −0.0370 −0.0080
6D + 	+ 	′ −0.0004 . . .

	− 	′ +149.1996 +0.8228
2D − 	+ 	′ −27.8714 +1.3975
4D − 	+ 	′ −0.5780 +0.1666
6D − 	+ 	′ −0.0078 −0.0038
8D − 	+ 	′ −0.0001 . . .

2D + 	− 	′ +13.6294 +0.0016
4D + 	− 	′ +0.2160 +0.0438
6D + 	− 	′ +0.0027 . . .

During 1896, Brown published three papers in the London Mathematical
Society’s Proceedings. All of them had to do with the method of variation of ellipti-
cal elements in the lunar theory as applied by Delaunay and later by Newcomb. In the
first and second papers Brown showed how these applications could be streamlined
and made to reach their goal more directly by a use of Jacobi’s principal function.
More immediately relevant to the practical development of the lunar theory, Brown
in the second and third papers showed how the method of variation of elliptical
elements could aid in the determination of certain constants in the theory. The results
that Adams and Brown had obtained by successive approximations, as reported in our
account of Brown’s “Investigations,” are here shown to be equally obtainable from
Delaunay’s starting-point and general method. In addition, the principal parts of the
secular accelerations in the lunar theory (of the mean motion, the perigee’s advance,
and the node’s regression) are obtainable from the final values of Delaunay’s con-
stants L , G, H when all the periodic terms in R have been removed. Newcomb had
calculated them, but Brown now obtained them by a shorter route. Of the importance
of these derivations, Brown wrote:

The basis which furnishes these results is a consideration of the constant
parts of the various functions which naturally arise in the solution obtained
by varying the arbitrary constants. In all problems of celestial mechanics
there are certain arbitrary constants which must be determined from obser-
vation; and there are certain others which may also be accurately found by
observation, but which depend on those previously found. The comparison
of the two sets of values forms so important a test of the sufficiency of the
theory that no means which will give tests of the accuracy of the theoretical
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calculations, or which will enable us to obtain the second class of constants
without serious risk of error, will be unimportant from a practical point of
view, apart from any theoretical interest which they may possess.88

We briefly describe Brown’s first two papers, but follow the argument of the third
in more detail, because of its role in achieving an accurate lunar theory.

The first paper, submitted in April, 1896, was entitled “On the Application of the
Principal Function in the Solution of Delaunay’s Canonical System of Equations.”89

Delaunay’s canonical system of equations, we recall, was

d L

dt
= ∂R

∂	
,

dG

dt
= ∂R

∂g
,

d H

dt
= ∂R

∂h
;

d	

dt
= −∂R

∂L
,

dg

dt
= − ∂R

∂G
,

dh

dt
= − ∂R

∂H
.

To solve the equations, Delaunay wrote

R = −B − A cos θ + R1,

where θ = i	+ i ′g + i ′′h + i ′′′n′t + q.

Here −A cos θ is any periodic term of the disturbing function R, and −B is the non-
periodic part of R; B, A are functions of L , G, H only; i ′, i ′′, etc., are positive or
negative integers; n′ is the solar mean motion; and q is a constant depending on the
solar epoch and perigee. Delaunay began by solving the equations with R1 neglected,
and so obtained a solution containing six arbitrary constants. What values, he then
inquired, should be given these constants if R1 were no longer neglected? The values
were to be so chosen that the new equations would be, like the original equations,
canonical in form.

Delaunay’s process, being one of direct transformation, was unavoidably lengthy
and tedious.

François Tisserand, in his Mécanique Céleste, showed that Delaunay’s process
of transformation could be greatly shortened by use of a “principal function.”90

Already in December, 1893, Brown had obtained the first volume of Tisserand’s
work, apparently at Darwin’s suggestion, for the help it could give him in prepar-
ing his Introductory Treatise on the Lunar Theory.91 The principal function, usu-
ally labeled S, had been introduced by William Rowan Hamilton in 1834; Tis-
serand’s account of it derived more immediately from C.G.J. Jacobi.92 S was not

88 E. W. Brown, “On certain Properties of the Mean Motions and the Secular Accelerations
of the principal Arguments used in the Lunar Theory,” Proceedings of the London Math-
ematical Society, 28 (1897), 143.

89 Proceedings of the London Mathematical Society, 27 (1896), 385–390.
90 F. Tisserand, Traité de Mécanique Céleste, (Paris: Gauthier-Villars, 1889–1896) III,

Chapter 11.
91 Brown to Darwin, 13 December 1893, CUL, MS.DAR.251:470.
92 See F. Tisserand, Traité de Mécanique Céleste, III, 190.
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given explicitly at the start, but constructed in each case so that its partial derivatives
represented the integrals of the equations of motion. Brown in the present article
devised a different principal function from Tisserand’s, bringing a further gain in
simplicity and brevity. We shall encounter a variant of it in Brown’s third article.

Brown’s second article, “On the Application of Jacobi’s Dynamical Method to
the General Problem of three Bodies,” was submitted in October, 1896.93 Here
Brown used the principal function to simplify the derivation of equations in Simon
Newcomb’s Theory of the Inequalities in the Motion of the Moon produced by the
Action of the Planets (1895).94 A further purpose was to exhibit a relation of lunar
constants newly discovered by Newcomb. Brown began as follows:

The connection which exists between the solution of the problem of three
bodies, as obtained by varying the elliptic elements and by the ordinary
methods of continued approximation, has had new light thrown on it by the
appearance of Professor Newcomb’s memoir “Action of the Planets on the
Moon.” . . . Mention will be made of the remarkable results which Professor
Newcomb obtains for the indirect action of a planet on the Moon, on account
of its importance in the calculation of the secular accelerations of the mean
motion, the perigee, and the node of the Moon’s orbit.

The last-named results are derived again, in Brown’s own way, in Brown’s third
paper, to which we now turn.

This third paper, which Brown submitted at the same time as the second, bore
the title “On certain Properties of the Mean Motions and the Secular Accelerations
of the principal Arguments used in the Lunar Theory.”95 Employing once more his
own version of the principal function, Brown here set out to show three things: how
we may pass directly from the elements of the ellipse to Delaunay’s final system
of constants; how the constant part of the parallax is connected with the motions of
the perigee and the node; how by Newcomb’s theorem the secular accelerations are
obtainable immediately from Delaunay’s constants L , G, H . Specifically,

I shall show that the principal part of the acceleration of the mean motion
(that independent of e, γ , a/a′) is obtainable directly from the corresponding
portion of the constant term in the expression for the lunar parallax; and that,
when this is found, the principal parts of the accelerations of the perigee and
the node may be deduced from the expressions for their mean motions.96

Following Newcomb, Brown began with a change of variables. The disturbing
function for Delaunay’s equations was

R′ = (E + M)2

2L2
+ m′

⎧
⎨

⎩

1√
(x−x ′)2+(y−y′)2+(z−z′)2

− xx ′+yy′+zz′
r ′3 − 1

r ′

⎫
⎬

⎭ ,

93 Proceedings of the London Mathematical Society, 28 (1897), 130–142.
94 Astronomical Papers prepared for the Use of the American Ephemeris and Nautical

Almanac, V (Washington, DC: Government Printing Office, 1895), 97–295.
95 Proceedings of the London Mathematical Society, 28 (1897), 143–155.
96 Proceedings of the London Math. Society, 28, 144.
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E , M , m′ being the masses of the Earth, Moon, and Sun, and x, y, z, x ′, y′, z′ the
coordinates of the Moon and Sun referred to fixed axes through the Earth’s center.
Delaunay’s elliptical elements were

L =
√

a(E + M), G = L
√

1 − e2, H = G cos i = G(1 − 2γ 2);
	 = nt + ε − π = mean anomaly,

g = π − θ = distance from node to perigee,

h = θ = longitude of node.

Brown followed Newcomb in putting

p1 = L , p2 = G − L , p3 = H − G;
q1 = 	+ g + h, q2 = g + h, q3 = h.

When the meanings of p1, p2, p3 have been assigned, those of q1, q2, q3 are deter-
minate, and vice versa. This set of variables has the advantage that p2, p3 are small
quantities of the order of e2, γ 2, respectively. A further advantage is that q1, q2, q3
represent familiar variables in the lunar theory – the Moon’s longitude, the perigee’s
longitude, and the node’s longitude. The non-periodic parts of these angles are their
mean motions.

Replacing R′ by −R, Brown showed that the new variables satisfy the canonical
equations:

dpi

dt
= − ∂R

∂qi
,

dqi

dt
= ∂R

∂pi
, (i = 1, 2, 3). (B.25)

Like Delaunay, Brown let z′ = 0, and gave x ′, y′, the Sun’s coordinates, their ellip-
tical values.

The general equations to be satisfied by the principal function were

pi = ∂S

∂qi
,
∂S

∂t
= −R. (B.26)

It was known that, once a solution was obtained for S containing three arbitrary
constants (say, c1, c2, c3), all the integrals of the problem would be given by (B.26)
together with the three partial derivatives of S with respect to the ci :

	i = ∂S

∂ci
. (B.27)

Here S is to be expressed in terms of the qi , ci , and t .
No direct method exists for solving (B.26). Brown built up his solution by

assuming general expressions for the pi as indicated by the practical methods used
for the problem, namely,

pi = ci +
∑

i

s ji cos N . (B.28)
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Here the constants s are coefficients dependent only on c1, c2, c3, n′, e′; and N is an
angle of the form N = j1q1 + j2q2 + j3q3 + j ′n′t + α, the ji and j ′ being positive
or negative integers or zero, and α a constant.

By (B.26) ∂pi
∂t = ∂2 S

∂qi ∂t = − ∂R
∂qi

, and by (B.28) ∂pi
∂t = ∑

i s ji j ′n′ sin N . Suppose
R, like S, to be expressed in terms of qi , ci , and t . An expression for R satisfying
(B.28) and the first equation of (B.25) can then be obtained by putting

R = −B −
∑

s j ′n′ cos N , (B.29)

where −B is the non-periodic portion of R, and depends solely on n′, e′, and the ci .
Since ∂S/∂t = −R, a solution of (B.26) involving the qi , the ci , and the time will be

S = c1q1 + c2q2 + c3q3 + Bt +
∑

s sin N . (B.30)

The remaining integrals are then given by

	i = ∂S

∂ci
= qi + t

∂B

∂ci
+
∑ ∂s

∂ci
sin N .

The three expressions 	i − t ∂B
∂ci

are the non-periodic parts of the variables q1, q2, q3,
and therefore

− ∂B

∂c1
, − ∂B

∂c2
, − ∂B

∂c3

are the mean motions of the Moon, its perigee, and node respectively. Delaunay used
the symbol B with the same meaning as here; it is what remains of his disturbing
function after all the periodic terms have been eliminated. It follows, Brown pointed
out, that the constants c1, c1 + c2, c1 + c2 + c3, B are the same as Delaunay’s L ,
G, H , R, when these symbols come to have their final values after completion of
operations.

Brown’s next order of business was to derive the connection between the mean
motions of the Moon, its perigee, and node, on the one hand, and the constant term
in the lunar parallax on the other. This required demonstrating that

b1c1 + b2c2 + b3c3 + B = 3

2

(κ
r

)

0
, (B.31)

where

κ = E + M, and bi = −∂B

∂ci
, (i = 1, 2, 3).

The subscript 0 on the right-hand side of (B.31) signifies that only the non-periodic
part of the quantity within parentheses is to be considered.

Since S is a function of q1, q2, q3, t , by (B.26)

d S

dt
=
∑

i

q̇i
∂S

∂qi
+ ∂S

∂t

=
∑

i

pi q̇i − R.



9 Further Preliminaries to the Systematic Development 129

Hence (
d S

dt

)

0
=
(
∑

i

pi q̇i

)

0

− (R)0.

The left-hand member of this equation is the coefficient of t in the non-periodic part
of S. From (B.30) it is evident that the non-periodic part of S must come from the
terms c1q1 + c2q2 + c3q3 + Bt . The non-periodic part of qi is 	i + bi t , and therefore
the non-periodic part of the coefficient of t in S is

b1c1 + b2c2 + b3c3 + B.

Hence (
∑

i

pi q̇i

)

0

= b1c1 + b2c2 + b3c3 + B + (R)0. (B.32)

In the second phase of his derivation, Brown introduced rectangular coordinates,
writing the equations of motion as follows:

ẍ = ∂

∂x

(κ
r

+
)
, ÿ = ∂

∂y

(κ
r

+
)
, z̈ = ∂

∂z

(κ
r

+
)
. (B.33)

Both terms within the parentheses contain the variables x , y, z explicitly. The first
term does so because r = (x2 + y2 + z2)1/2. For , Brown used an approximate
expression which neglects the ratio a/a′:

 = m′

r ′3

{
3

2

(xx ′ + yy′ + zz′)2

r ′2 − 1

2
r2

}
.

Since in the constants to be calculated the ratio a/a′ occurs only as (a/a′)2, the error
committed is slight, a/a′ being approximately 1/390.

Brown multiplied the three equations of (B.33) by x , y, and z respectively, then
added the products. Among the terms resulting on the right, the three containing 
yield, by Euler’s homogeneous function theorem,

x
∂

∂x
+ y

∂

∂y
+ z
∂

∂z
= 2.

The other three, after some reductions, give −(κ/r), so that the sum is

x ẍ + y ÿ + zz̈ = −κ
r

+ 2.

or
1

2

d2

dt2
(r2)− 2T = −κ

r
+ 2, (B.34)

where T
( = 1

2 (ẋ
2+ ẏ2+ ż2)

)
is the kinetic energy. The first term on the left of (B.34)

represents only periodic terms. Taking the non-periodic parts of (B.34), therefore, we
have

(T )0 = 1

2

(κ
r

)

0
− ()0. (B.35)
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In elliptic motion the kinetic energy is

T = κ

r
− κ2

2p2
1

,

where the second term on the right is equal to −κ/2a; this term is also found in the
force function for elliptic motion, namely

R = −− κ2

2p2
1

(B.36)

The last two equations together yield

T = κ

r
++ R,

so that
(T )0 =

(κ
r

)

0
+ ()0 + (R)0. (B.37)

Eliminating (T )0 between (B.35) and (B.37), Brown obtained

(R)0 + 2()0 = −1

2

(κ
r

)

0
. (B.38)

The final step in the derivation involved using (B.36) and (B.25) to evaluate the left-
hand member of (B.32):

∑

i

pi q̇i =
∑

i

pi
∂R

∂pi

=
∑

i

pi
∂

∂pi

(
−− κ2

2p2
1

)

= −
(

p1
∂

∂p1
+ p2

∂

∂p2
+ p3

∂

∂p3

)
− p1

∂

∂p1

(
κ2

2p2
1

)
. (B.39)

Since  is a function of the squares or products of two dimensions in the variables
x , y, z, it has the dimension [length]2 in these variables. When x, y, z are expressed
in terms of the variables pi , qi , only the p’s figure in the coefficients of the resul-
ting terms. As shown by their definitions, the pi ’s have the dimensions [length]1/2

[mass]1/2. Therefore considered as a function of the p’s must be of the order [p]4.
By Euler’s homogeneous function theorem it then follows that the first parenthesis
on the right-hand side of (B.39) is equal to −4. The remaining term reduces to
+κ2/p2

1; by (B.36) this is equal to −2R − 2. (B.39) thus becomes

∑

i

pi q̇i = −6− 2R.



9 Further Preliminaries to the Systematic Development 131

Taking the non-periodic parts of this equation, and combining them with three times
(B.38) so as to eliminate ()0, Brown obtained

(
∑

i

pi q̇i

)

0

= (R)0 + 3

2

(κ
r

)

0
.

The right-hand side, substituted into (B.32), yields the result sought:

b1c1 + b2c2 + b3c3 + B = 3

2

(κ
r

)

0
. (B.31)

(B.31) can be used to prove Adams’s theorems. Recall that the constants

bi = −∂B

∂ci
, (i = 1, 2, 3)

are n, π1, θ1, the mean motions, respectively, of the Moon, its perigee, and its node.
We are to differentiate (B.31) partially with respect to n, e2, and γ 2 in succession.
Note also that

∂B

∂n
= ∂B

∂c1

∂c1

∂n
+ ∂B

∂c2

∂c2

∂n
+ ∂B

∂c3

∂c3

∂n

= −n
∂c1

∂n
− π1

∂c2

∂n
− θ1 ∂c3

∂n
,

with analogous equations for ∂B/∂e2 and ∂B/∂γ 2. These equivalences, once we
have carried out the partial differentiations of (B.31), enable us to cancel four terms
from each of the resulting equations. We thus obtain

c1 + c2
∂π1

∂n
+ c3

∂θ1

∂n
= 3

2

∂

∂n

(κ
r

)

0
,

c2
∂π1

∂e2
+ c3

∂θ1

∂e2
= 3

2

∂

∂e2

(κ
r

)

0
,

c2
∂π1

∂γ 2
+ c3

∂θ1

∂γ 2
= 3

2

∂

∂γ 2

(κ
r

)

0
. (B.40)

The partial derivatives ∂n/∂e2 and ∂n/∂γ 2 are both zero, since n is not a function of
e2 or γ 2. Each term of c2 contains the factor e2, and each term of c3 the factor γ 2.

Suppose a to be defined by κ = n2a3. Brown, following Adams, expressed the
dependence of (κ/r)0, π1, and θ1 on e2 and γ 2 by series:
(κ

r

)

0
= n2a2

(a

r

)

0
= n2a2(A + Be2 + Cγ 2 + Ee4 + 2Fe2γ 2 + Gγ 4 + · · · ),

π1 = n(P + He2 + Kγ 2 + · · · ),
θ1 = n(T + Me2 + Nγ 2 + · · · ),
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where A, B, . . . P, H, . . . T,M, . . . are functions of m, e′ only. If we substitute these
expressions into the second and third equations of (B.40), carry out the indicated
differentiations, and divide all terms by n, we obtain

c2(H + · · · )+ c3(M + · · · ) = 3

2
na2(B + 2Ee2 + 2Fγ 2 + · · · ),

c2(K + · · · )+ c3(N + · · · ) = 3

2
na2(C + 2Fe2 + 2Gγ 2 + · · · ).

Since these equations are identities, we can equate the coefficients of like powers of
e2 and γ 2 to zero. Because c2 contains the factor e2 and c3 the factor γ 2, the terms
on the right containing B and C cannot be equated to any terms on the left, and so
must be zero: B = 0, C = 0. In the first equation, on the other hand, the term on the
right containing 2Ee2 can be equated to c2 H , and the term containing 2Fγ 2 to c3 M :

c2 H = 3na2 Ee2,

c3 M = 3na2 Fγ 2.

In the second equation, similarly, the term containing 2Fe2 can be equated to c2 K ,
and the term containing 2Gγ 2 to c3 N :

c2 K = 3na2 Fe2,

c3 N = 3na2Gγ 2.

It follows that H/K = E/F , and M/N = F/G, which constitute Adams’s second
theorem.97

In the final section of the paper, Brown shows how the secular accelerations in the
lunar theory can be obtained from (B.40) together with a theorem due to Newcomb.98

Newcomb’s theorem, expressed in terms of Brown’s constants, is

δc1 = 0, δc2 = 0, δc3 = 0. (B.41)

Here c1, c2, c3 are understood to have been expressed in terms of n, e2, γ 2, n′,
e′2, κ .

When the solar eccentricity e′ undergoes a variation δe′ due to planetary per-
turbation of the Earth’s orbit, the constants n, e, and γ undergo variations δn, δe,
δγ , which can be determined from (B.40) and (B.41). The secular accelerations of
the Moon’s mean motion and apsidal and nodal precessions can then be obtained
from ∫

δndt,
∫
δπ1dt,

∫
δθ1dt.

97 Brown’s results in equations (16), on p. 152 of his article, contain an erroneous factor 1/2.
98 Astronomical Papers prepared for the Use of the American Ephemeris and Nautical

Almanac, 5 (1895), 191.
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Applying the variation δ to (B.40), with the simplifications that (B.41) permits,
yields

c2δ
∂π1

∂n
+ c3δ

∂θ1

∂n
= 3

2
δ
∂

∂n

(κ
r

)

0
,

c2δ
∂π1

∂e2
+ c3δ

∂θ1

∂e2
= 3

2
δ
∂

∂e2

(κ
r

)

0
,

c2δ
∂π1

∂γ 2
+ c3δ

∂θ1

∂γ 2
= 3

2
δ
∂

∂γ 2

(κ
r

)

0
. (B.42)

Brown began by neglecting, in the first equation of (B.42), all powers of e2 and of
γ 2. Since e2 occurs as a factor in c2 and γ 2 as a factor in c3, the two terms on the left
were thus eliminated. What remained was

δ
∂

∂n

(κ
r

)

0
= 0.

The variation operator δ introduces variations in e′2 and n:

∂2

∂n∂n

(κ
r

)

0
δn + ∂2

∂n∂e′2
(κ

r

)

0
δe′2 = 0,

whence δn = −
{

∂2

∂n∂e′2
(
κ
r

)
0

}
δe′2

{
∂2

∂n∂n

(
κ
r

)
0

} .

The part of δn expressed here is its principal part, that is, the part arising from δe′2
alone, the variations in the lunar eccentricity and inclination being left out of account.
To compute the principal part of δn from the foregoing equation, it is necessary to
know how (κ/r)0 depends on n and e′2, and to have a value for δe′2. Since the
variation δe′2 is negative in the present age (e′ is decreasing), the change in n is
positive, constituting a secular acceleration.

With a value of δn in hand, the principal parts of δπ1 and δθ1 can be obtained
from

δπ1 = ∂π1

∂n
δn + ∂π1

∂e′2 δe
′2,

δθ1 = ∂θ1

∂n
δn + ∂θ1

∂e′2 δe
′2.

Turning next to the terms in δn containing the factors e2 and γ 2, Brown desig-
nated them by (δn)e2 , (δn)r2 . He proposed that these new terms be computed
from the following equations, in which the previously found principal part of δn
is symbolized by (δn)0.
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c2

{
∂2π1

∂n∂n
(δn)0 + ∂2π1

∂n∂e′2 δe
′2
}

= 3

2
(δn)e2

∂2

∂n∂n

(κ
r

)

0
,

c3

{
∂2θ1

∂n∂n
(δn)0 + ∂2θ1

∂n∂e′2 δe
′2
}

= 3

2
(δn)γ 2

∂2

∂n∂n

(κ
r

)

0
.

To compute the parts of δπ1 and δθ1 containing the factors e2 and γ 2, he proposed
finding the variations δe2 and δγ 2 from the equations

δc2 = 0, δc3 = 0,

then substituting them into the equations

δπ1 = ∂π1

∂e2
δe2 + ∂π1

∂γ 2
δγ 2 + ∂π1

∂n
(δn)0 + ∂π1

∂e′2 δe
′2,

δθ1 = ∂θ1

∂e2
δe2 + ∂θ1

∂γ 2
δγ 2 + ∂θ1

∂n
(δn)0 + ∂θ1

∂e′2 δe
′2.

In an article in the Monthly Notices for March, 1897, Brown compared his own
theoretical results for the Moon’s mean motion and apsidal and nodal precessions
with the corresponding results of Hansen and with the observational values.99 This
comparison was provisional in that he had carried the development of the theory,
as yet, only to the second-order terms in the eccentricities and inclination. Where
higher-order terms were significant he had to use estimates of them, inevitably doubt-
ful, from Delaunay’s theory.

For the annual precession of the node the numbers were

Brown’s theoretical value: −69 679′′.5
Hansen’s theoretical value: −69 677′′.3
The observational value: −69 679′′.5

The difference 2′′.2 in Hansen’s result, Brown believed, was at least partly due to
some error.

For the annual precession of the perihelion, the numbers were

Brown’s theoretical value: +146 435′′.3
Hansen’s theoretical value: +146 434′′.9
The observational value: +146 435′′.6

Here Brown had to acknowledge an uncertainty in his theoretical value of about 2′′.
It could be removed only by the further development of the theory.

99 MNRAS, 57 (1897), 332–349.
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The question of the accuracy of this theoretical value was, at just this time, of
special interest. In 1859 Le Verrier had found that some 38 arc-seconds per century
in the precession of Mercury’s perihelion could not be accounted for on the basis of
Newton’s law of gravitation, and in 1882 Newcomb had revised this estimate upward
to 43 arc-seconds per century.100 In 1894 Asaph Hall proposed altering the law of
gravitation so as to accommodate this discrepancy: it was only necessary to change
the exponent of the distance from −2 to −2.000 000 16.101 Newcomb in his book
of 1895 on the fundamental constants of astronomy refined Hall’s value of the expo-
nent to −2.000 000 1574, using a more precise value for the anomaly in Mercury’s
precession102; he also computed the effects that this formula would produce in the
precessions of the perihelia of Venus, the Earth, and Mars. In planets other than
Mercury, however, the additional precession was too small and the observational
evidence too imprecise to provide a clear confirmation. He called for an independent
test of the hypothesis in the case of the Moon:

An independent test of this hypothesis in the case of other bodies is very
desirable. The only case in which there is any hope of determining such an
excess is that of the Moon, where the excess would amount to about 140′′ per
century. This is very nearly the hundred-thousandth part of the total motion
of the perigee.

Brown accepted the challenge:

The question awaits the determination of the higher terms due to the Sun’s
action – a determination which I hope to make in the course of a year or
two.103

100 U.J.J. Le Verrier, “Théorie du mouvement de Mercure,” Annales de l’ Observa-
toire Impériale de Paris, V (1859), 98–106; S. Newcomb, “Discussion and results of
observations on transits of Mercury from 1677 to 1881,” Astronomical Papers prepared
for the use of the American Ephemeris and Nautical Almanac, I (1882), 473.

101 A. Hall, “A suggestion in the theory of Mercury,” The astronomical journal, xiv (1894),
49–51.

102 S. Newcomb, The Elements of the Four Inner Planets and the Fundamental Constants of
Astronomy, (Washington DC, Government Printing Office, 1895), 118–120.

103 MNRAS, 57 (1897), 332–333.
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Brown’s Lunar Treatise: Theory of the Motion of the
Moon; Containing a New Calculation of the Expressions
for the Coordinates of the Moon in Terms of the Time

This treatise, published in Volumes 53, 54, 57, and 59 of the Memoirs of the Royal
Astronomical Society (1897–1908), embodies some 18 years of calculative labor,
from 1890 to 1907, on the development of the lunar theory. Initially Brown worked
alone, but after 1895 he was assisted by Ira I. Sterner, A.B., of Haverford College, as
a computer. The treatise incorporated the results of Brown’s earlier papers, and car-
ried to completion the task he had set for himself. This consisted of two sub-tasks.
In the first and more extensive of these, he developed the theory under idealizing
restrictions: the assumption of a strictly elliptical orbit for the Sun relative to the
center of gravity of the Earth and Moon, and the representation of the bodies of the
Moon, Earth, and Sun as point-masses – equivalent to assuming the mass-distribution
within each of them to be spherically symmetrical. The second sub-task consisted in
correcting for these idealizations. This required, principally, the introduction of plan-
etary perturbations of the Sun’s (or Earth’s) and Moon’s orbits, and of non-spherical
shapes for the Moon, Earth, and Sun. The corrections were to be carried to a degree
of approximation that would permit predictions accurate to 0.01 arc-seconds.

In this calculation, efficiency as well as accuracy was crucial, and Brown experi-
mented extensively in seeking appropriate routes. He sought to regularize the calcu-
lations, reducing them insofar as possible to simple, exactly specifiable processes.
Thus they could be assigned to a (human) computer, who during some seven and a
half years would be Mr. Sterner. Brown also sought out independent paths for check-
ing the accuracy of these calculations – paths different from mere repetition. The task
as a whole was demanding in its intricacy and enormous in its scope; Brown made
it manageable. On completing the first of the two sub-tasks in December, 1904, he
reported that

[Mr. Sterner] has in all spent some three thousand hours on these calcu-
lations, extended over seven and a half years; my own share I estimate at
five or six thousand hours since the work was begun on a complete plan in
1895.104

104 E. W. Brown, T M M , Part IV, in Memoirs of the R.A.S., Vol.57 (1905), p.53.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
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For Sterner’s knowledge of computation, and his speed and accuracy, Brown had
high praise. The expense of employing Sterner was met in part by grants from the
Royal Society of London.

In Chapter I of his treatise, Brown described the general features of the theory,
and also the particular processes by which he proposed to compute the terms of the
theory in their successive orders. In the later chapters dealing with orders higher
than the second, he would find it expedient to introduce changes in the procedures
described in Chapter I.

The Problem of Three Bodies and the Disturbing Function

What we have called the first sub-task is the construction of an approximate solution
of the three-body problem. Apart from its not taking account of planetary perturba-
tions and non-spherical distributions of mass, this solution deviated from strict truth
in employing a number of approximations. One of these was caused by the selection
of a strictly elliptical orbit for the center of mass of the Earth and Moon about the
Sun. What correction, Brown asked, is required to compensate for it?

Let the masses of the Moon, Earth, and Sun be M , E , and m′. In plotting the
motions of these masses, Brown used three coordinate systems (see the diagram
above).105

(1) The first system, used for plotting the Moon’s motion, had its origin at the Earth’s
center of mass. The Moon’s distance from the Earth’s center was r , and its
coordinates in this frame were X,Y, z, where X,Y were non-rotating. Since the
Earth was in accelerated motion, this frame was not inertial.

(2) The second system was for plotting the Sun’s relative motion, and had its origin
in the center of mass G of the Earth and the Moon; its coordinate axes were
parallel to those of the first coordinate frame. The Sun’s distance from G was

105 As Brown acknowledges, the analysis that follows is very close to that given by S. New-
comb, “Theory of the Inequalities in the Motion of the Moon produced by the Action of
the Planets,” Astronomical Papers prepared for the use of the American Ephemeris and
Nautical Almanac, V (1895), 105ff.
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r ′, and its coordinates were x ′, y′, z′. Since this system, too, was in accelerated
motion, it was not inertial.

(3) The third system had its origin at the center of mass of M, E , and m′, on the line
connecting G with m′. The coordinate axes in this frame were parallel to those in
the earlier two frames. In a universe consisting solely of the three bodies M, E ,
and m′ – the universe assumed in the first sub-task – this third frame would be
inertial.

Brown now asked: how much does the Moon’s motion cause the Sun to deviate
from the assumed elliptic orbit in the X -Y plane? To answer this question he derived
the Lagrangian equations of motion for the Sun in the third frame of reference. Let
r ′

1 be the Sun’s distance from the Earth and 
 its distance from the Moon; then the
potential energy F of the system is

F = E M

r
+ Em′

r ′
1

+ Em′

�
, (B.43)

where r ′2
1 = r ′2 + 2

M

E + M
r ′r S + M2

(E + M)2
r2,

and �2 = r ′2 − 2
E

E + M
r ′r S + E2

(E + M)2
r2.

Here r ′2
1 and 
2 are given by means of the cosine law, S being the cosine of the angle

subtended at G by 
.
The kinetic energy T , if expressed in terms of the coordinates of the Moon in

the first frame of reference and the coordinates of the Sun in the second frame of
reference, is given by

2T = μ1(Ẋ
2 + Ẏ 2 + ż2)+ μ2(ẋ

′2 + ẏ′2 + ż′2), (B.44)

where μ1 = E M

E + M
and μ2 = m′(E + M)

m′ + E + M
.

By the Lagrangian algorithm, the equations of motion for the Sun are then found
to be

μ2
d2x ′

dt2
= ∂F

∂x ′ , μ2
d2 y′

dt2
= ∂F

∂y′ , μ2
d2z′

dt2
= ∂F

∂z′ . (B.45)

For computing ∂F/∂x ′, ∂F/∂y′, ∂F/∂z′, the relevant part of F is given by

F

μ2
= m′ + E + M

E + M

(
E

r ′
1

+ M

�

)
.

Here 1/r ′
1 and 1/
 can be expanded in powers of r/r ′, to yield

F

μ2
= (m′ + E + M)

[
1

r ′ + E M

(E + M)2
r2

r ′2

(
3

2
S2 − 1

2

)
+ · · ·

]
. (B.46)
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The first term within the square brackets yields the Sun’s elliptical orbit; the second
and further terms represent perturbations of the ellipse. The ratio of the second term
to the first is, approximately,

Mr2 : Er ′2 ∼= 1 : 12,000,000.

Here Brown took M :E to be about 1:81, and r :r ′ to be about 1:390. The third term
within the square brackets (not shown) was about 1/400th smaller still, and Brown
proposed to neglect it. Thus, he claimed, a sufficient correction to the elliptic motion
of the Sun about G could be obtained by using the second term of (B.46),

(m′ + E + M)
E M

(E + M)2
r2

r ′3

(
3

2
S2 − 1

2

)
, (B.47)

as a disturbing function, and substituting for the Moon’s coordinates their elliptic
values modified by the principal inequalities due to the Sun.

Further inaccuracies in Brown’s procedure for the first sub-task arose from the
disturbing function he used for the Moon’s motion. A strictly correct disturbing func-
tion in this case would be

F

μ1
= E + M

r
+ m′(E + M)

E M

(
E

r ′
1

+ M

�

)

= E + M

r
+ m′r2

r ′2

⎡

⎢⎢⎢⎢⎢⎣

(
3
2 s2 − 1

2

)
+ E−M

E+M
r
r ′
(

5
2 s3 − 3

2 s
)

+ E2−E M+M2

(E+M)2
r2

r ′2

(
35
8 s4 − 15

4 s2 + 3
8

)

+ E3−E2 M+E M2−M3

(E+M)3
r3

r ′3

(
63
8 s5 − 35

4 s3 + 15
8 s
)

+ · · ·

⎤

⎥⎥⎥⎥⎥⎦
.

(B.48)

Here the several quotients involving E and M within the square brackets posed
a difficulty, since at this stage the relative values of E and M had not yet been
precisely evaluated. Brown employed, instead, a disturbing function from which
these quotients have been removed:

 = E + M

r
+ m′

[
1√

r ′2 − 2rr ′S + r2
− 1

r ′ − r S

r ′2

]

= E + M

r
+ n′2a′3 r2

r ′3

⎡

⎢⎢⎢⎢⎢⎣

(
3
2 S2 − 1

2

)
+ r

r ′
(

5
2 S3 − 3

2 S
)

+ r2

r ′2

(
35
8 S4 − 15

4 S2 + 3
8

)

+ r3

r ′3

(
63
8 S5 − 35

4 S3 + 15
8 S
)

+ · · ·

⎤

⎥⎥⎥⎥⎥⎦
. (B.49)
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The expansion within the square brackets, Brown believed, had been carried as far
as necessary.

To compensate for the inaccuracies introduced by using (B.49) in place of (B.48),
Brown introduced the following corrections:

(a) Comparing (B.49) with (B.48), we see that m′ has been replaced by n′2a′3,
whereas in fact n′2a′3 = m′ + E + M . A sufficient correction for this inac-
curacy, Brown tells us, can be obtained by multiplying all the lunar inequalities
due to the Sun by

1 − E + M

m′
∼= 1 − 1

330000
.

For example, since the largest solar inequality in the Moon’s motion is the Varia-
tion, with a coefficient of some 39.5 arc-minutes, the correction in this case will
amount to subtracting 39.5×60/330000 = 0.0072 arc-seconds. Thousandths of
arc-seconds have to be taken into account in the calculations, if the final result is
to be accurate to 0.01 arc-seconds.

(b) Correction for use of the elliptic values instead of the true values of the Sun’s
coordinates in (B.49) is necessary only in the largest term within the square
brackets. The correction consists in adding to  the term

n′2a′3δ

[
r2

r ′3

(
3

2
S2 − 1

2

)]
,

where δ operates on x ′, y′, z′, and δx ′, δy′, δz′ are obtained by using (B.47) as a
disturbing function as previously described.

(c) Terms within the square brackets of (B.49) having the factor (r/r ′) j lead to
inequalities having the factor (a/a′) j , where a is the constant of the Moon’s
distance. These same terms are those in (B.48) which were multiplied by one of
the quotients involving E and M . A partial correction for the omission of these
quotients will be obtained if the resulting inequalities are multiplied by

(
E − M

E + M

) j

=
(

1 − 2
M/E

1 + M/E

) j

,

where the fraction M/E is approximately 1/81. To the order of precision that
Brown is aiming to achieve, it is then necessary to correct further the third term
within the square brackets by adding to  the term

n′2a′3 r2

r ′3

[
E M

(E + M)2
· r2

r ′2

(
35

8
S4 − 15

4
S2 + 3

8

)]
.
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The Equations of Motion

In this section Brown introduces rotating coordinates for the Moon:
x, y, z are the lunar coordinates, referred to rectangular axes through the Earth’s

center; x, y are in the plane of the Sun’s orbit (supposed constant), with the positive
x-axis constantly directed to the Sun’s mean place;

r2 = x2 + y2 + z2; ρ2 = x2 + y2;

n, n′ are the observed mean motions of the Moon and Sun;

r ′, e′, a′ are the radius vector, eccentricity, and semi-axis major of the Sun’s
orbit;

υ is the Sun’s equation of center;

S1 = x cos υ + y sinυ = r S.

Also, using ι for
√
(−1), Brown stipulates that

u = x + yι, s = x − yι, us = ρ2;

m = n′/(n − n′), κ = (E + M)/(n − n′)2;

ζ = exp · (n − n′)(t − t0)ι, D = ζ(d/dζ );
where t0 is a constant to be evaluated later.

The rotation of the coordinates causes a new term to appear in the equations;
Brown follows Hill in including it in the disturbing function:

′ = + 1

2
n′2(x2 + y2) = + 1

2
n′2us.

The equations of motion thus become

D2u + 2mDu = − 2

(n − n′)2
∂′

∂s
,

D2s − 2mDs = − 2

(n − n′)2
∂′

∂u
,

D2z = − 1

(n − n′)2
∂′

∂z
,

where, by (B.49),

′ = E + M

(us + z2)1/2
+ n′2a′3

[
1

(r ′2 − 2r ′S1 + us + z2)1/2
− 1

r ′ − S1

r ′2

]
+ 1

2
n′2us.

Expansion of ′ in powers of 1/r ′ yields

2

(n − n′)2
′ = 2κ

(us + z2)1/2
+ 3

4
m2(u + s)2 − m2z2 +1,
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where

1 = 3m2

[
a′3

r ′3 S2
1 − 1

4
(u + s)2

]
− m2(us + z2)

(
a′3

r ′3 − 1

)

+ m2

a′ · a′4

r ′4 [5S3
1 − 3S1(us + z2)]

+ m2

a′2 · a′5

r ′5

[
35

4
S4

1 − 15

2
S2

1(us + z2)+ 3

4
(us + z2)2

]

+ m2

a′3 · a′6

r ′6

[
63

4
S5

1 − 35

2
S3

1(us + z2)+ 15

4
S1(us + z2)2

]

+ · · · · · · · · · · · · · · · · · ·
= ω2 + ω3 + ω4 + ω5 + · · · · · · · · · · · · . (B.50)

The equations may now be written in the form

(D + m)2u + 1

2
m2u + 3

2
m2s − κu

(us + z2)3/2
= −∂1

∂s
,

(D − m)2s + 1

2
m2s + 3

2
m2u − κs

(us + z2)3/2
= −∂1

∂u
,

(D2 − m2)z − κz

(us + z2)3/2
= −1

2

∂1

∂z
. (B.51a,b,c)

Either the first and third of these equations, or the second and third, are suf-
ficient for developing the theory; Brown will employ the first and the third in the
initial phases of the systematic development. Later, considerations of efficiency will
lead him to return to the homogeneous equations that Hill had used. These are de-
rived from (B.51a,b,c) by means of the Jacobian integral, and may be written as
follows:

D2(us + z2)− Du · Ds − (Dz)2 − 2m(u Ds − s Du)+ 9

4
m2(u + s)2 − 3m2z2

= C ′ −
∞∑

q=2

(q + 1)ωq + D−1(D′1),

D(u Ds − s Du − 2mus)+ 3

2
m2(u2 − s2) = s

∂1

∂s
− u

∂1

∂u
,

D(u Dz − zDu)− 2mzDu − m2uz − 3

2
m2z(u + s) = z

∂1

∂s
− 1

2
u
∂1

∂z
.

(B.52a,b,c)
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Here C ′ is the Jacobian constant of integration; D−1 is the operation inverse to D,
viz., integration with respect to ζ followed by division by ζ ; and D′1 signifies the
operation D performed on 1 only insofar as ζ occurs in r ′, v.

Development of 1 According to Powers of e′ and z

The development of 1 according to powers of 1/a′ was given in (B.50). Brown
now develops it according to the powers of the solar eccentricity and the motion
in the coordinate z, both of them small quantities of the first order. He carries this
development to quantities of the orders

a3

a′3 ,
a2

a′2 e′,
a2

a′2 z2,
a

a′ e′3, e′5.

The first step is to introduce an exponential expression for S1:

S1 = x cos υ + y sinυ = 1

2
(ue−υ√−1 + seυ

√−1) = 1

2
(ue−υι + seυι),

where e is the base of natural logarithms. Substituting this expression for S1 into
(B.50), Brown finds the successive terms of 1 to be

ω2 = m2
[

3

4
(u2a2 + s2a2)+ 1

2
usb2 − z2b2

]
,

ω3 = m2

a′

[
5

8
(u3a3 + s3a3)+ 3

8
(u2sc3 + us2c3)− 3

2
uz2c3 − 3

2
sz2c3

]
,

ω4 = m2

a′2

⎡

⎣
35
64 (u

4a4 + s4a4)+ 5
16 (u

3sc4 + us3c4)+ 9
32 u2s2b4

−z2
(

15
8 u2c4 + 15

8 s2c4 + 9
4 usb4

)

⎤

⎦ ,

ω5 = m2

a′3

[
63

128
(u5 + s5)+ 35

128
(u4s + us4)+ 15

64
(u3s2 + u2s3)

]
.

Here, with e again as the base of natural logarithms,

a2 = a′3

r ′3 e−2υι − 1, a3 = a′4

r ′4 e−3υι, a4 = a′5

r ′5 e−4υι,

b2 = a′3

r ′3 − 1, b4 = a′5

r ′5 ,

c3 = a′4

r ′4 e−υι, c4 = a′5

r ′5 e−2υι,

and a2, b2, . . . are the values of a2, b2, . . . when −i is put for i .
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The quantities a2, b2, etc., are then expanded in powers of e′, the solar eccen-
tricity. These elliptic expansions were well-known and had been given by several
authors, e.g., Richard Cayley.106

Form of the Solution

Three variables dependent on the time are necessary and sufficient to determine the
Moon’s position. The variables Brown chose were V , the true longitude of the Moon
in the X-Y plane, measured from the (fixed) X-axis; r , the radius vector; and ψ , the
Moon’s latitude above the X-Y plane. Following the practice of earlier lunar theorists,
he assumed that r, ψ , and V − n′t − ε′ (where n′t + ε′ is the Sun’s mean longitude at
time t) can be expressed as functions of periodic terms whose arguments are algebraic
sums of multiples of the following four angles (“D” here is to be distinguished by
context from “D” used as a differential operator)

D = (n − n′)t + ε − ε′ = Half argument of the “Variation,”

	 = cnt + ε − ω = Argument of the Principal Elliptic Term,

	′ = n′t + ε′ − ω′ = Argument of the “Annual Equation,”

F = gnt + ε − θ = Argument of the Principal Term in Latitude.

Here ε, ω are the mean longitudes of the Moon and its perigee when t is zero in the
equation defining 	; θ is the mean longitude of the Moon’s orbital node when t is
zero in the equation defining F; ε′ and ω′ are the mean longitudes of the Sun and
its perigee when t is zero in the equation defining 	′; and (1 − c)n, (1 − g)n are
the mean motions of the lunar perigee and node. Brown assumes D, 	, 	′, and F and
their multiples are the only angles needed in deriving the Moon’s solar perturbations;
the proof will be in the theory’s success.

The stationary coordinates of the Moon, expressed in terms of V , ρ, r and ψ , are

X = ρ cos V, Y = ρ sin V, z = ρ tanψ = r sinψ.

The corresponding rotating coordinates are

x = ρ cos(V − n′t − ε′) = ρ cos(V − nt − ε + D),

y = ρ sin(V − n′t − ε′) = ρ sin(V − nt − ε + D).

The complex variables u, s, expressed in exponential form, are:

u = ρ exp ·(V − nt − ε + D)ι, s = ρ exp ·[−(V − nt − ε + D)ι]

or uζ−1 = ρ exp ·(V − nt − ε)ι, sζ = ρ exp ·[−(V − nt − ε)ι].

As before, the variable ζ in the last line denotes exp ·Dι, where ι = √
(−1).

106 Memoirs of the R.A.S., 29, and also Cayley, Collected Works, 3.
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The assumption of sufficiency previously stated is expressed in the equations

x
y
z

⎫
⎬

⎭ = a
∑

Ai,p,q,r

cos
sin
sin

⎫
⎬

⎭ (i D + p	+ r	′ + q F), i, p, q, r = 0,±1,±2, . . . .

Here “a” refers to a constant of distance in the lunar theory, A is a coefficient, and
the summation is to be extended to all terms of the form shown. The corresponding
complex variables u, s, zι are

u, s, zι = a
∑

Ai,p,q,r exp ·(i D + p	+ r	′ + q F)ι. (B.53)

The additive constants ε− ε′, ε− ω, ε′ − ω′, ε− θ , contained in D, 	, 	′, and F
are as yet undetermined. The previously given definitions are equivalent to

D = (n − n′)(t − t0),

	 = c(n − n′)(t − t1),

	′ = m(n − n′)(t − t3),

F = g(n − n′)(t − t2),

where t0, t1, t3, t2 are constants, different from one another and as yet undetermined.
The constants c and g are related to c and g by c = cm and g = gm. The replacing
of c by c and g by g enables Brown to express the angles 	 and F as powers of ζ .

The constants Ai,p,q,r in (B.53) can be determined by the method of undeter-
mined coefficients. One of the equations (B.53) is substituted into (B.51) or (B.52),
and the sum of all terms with identical arguments is then set equal to zero. In making
these substitutions, it is necessary to apply the operator D to the variables u, s, and
zι. Suppose, for instance, that we are to form the expression Du in the particular case
where

u = aAi,p,0,0 exp ·[(i D + p	)ι]

= aAi,p,0,0 exp ·{[i(n − n′)(t − t0)+ pc(n − n′)(t − t1)]ι}.

Remembering that D = − ι
n−n′

d
dt , we find that

Du = aAi,p,0,0(i + pc) exp ·[(i D + p	)ι].

More generally, let
ζ c

c = exp ·[c(n − n′)(t − t1)ι].

Then
D j (ζ iζ

pc
c ) = (i + pc) jζ iζ

pc
c ,

where i, j, p are positive or negative integers. Despite the difference between t0 and
t1, the result is the same as if ζ c

c were equal to ζ c. The differentiation of ζ iζ
pc

c
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may thus be carried out as if it were the differentiation of ζ i+pc. Only when the
Moon’s coordinates are to be calculated numerically, need the numerical values of
the additive constants (t0, t1, t3, t2) be introduced.

After the substitutions have been made in all terms, the exponential factor
exp(i D + p	)ι can be divided out. What remains will give Ai,p,0,0 in terms of c, i, p,
and other constants.

The general term in uζ−1 or zι can be expressed by

a(ε p+p′
ε′p′ηr+r ′

η′r ′
kq+q ′

k′q ′
αs′
)i e p+2p′

e′r+2r ′
kq+2q ′

as′
ζ 2i±pc±rm±qg. (B.54)

To explain the several factors, we begin at the right-hand side: ζ 2i±pc±rm±qg is a
sine or cosine, with argument given by the exponent. The letters p, r, q are positive
integers or zero; 2i is a positive or negative integer or zero. (When Brown appends a
subscript “1” to i , it signifies that 2i1 is restricted to the odd values ±1,±3,±5, etc.;
this restriction applies whenever the parameter a is raised to an odd power.) When the
lower sign of pc is taken, the equations of motion require that the superscripts (not
exponents!) of ε and ε′ be interchanged; similarly, when the lower signs of rm and
qg are taken, the superscripts of η and η′, and those of k and k′ must be interchanged.
(The origin of these quantities will be explained shortly.) The integer r as used here
is an angle-multiplier, distinguishable by context from r used to denote the Moon’s
radius vector.

The lunar theory is to be expanded in powers of the parameters e, e′, k, a = a/a′.
Suppose, for instance, that pc is present as a term in the exponent of ζ ; this means
that, in the argument of the periodic term, the angle c(n − n)(t − t1) is multiplied by
the positive integer p. At the same time the parameter e will be raised to the power
p + 2p′, where p′ takes the values 0, 1, 2, etc., successively. Thus the coefficient
of a periodic term with the argument pc(n − n′)(t − t1) will be a series in whose
successive terms the factors ep, ep+2, ep+4, etc., appear. Analogous statements apply
to the powers r + 2r ′, q + 2q ′ to which e′, k respectively are raised.

Brown defines the parameters e, e′,k, a as follows. The constant e, relating to the
lunar eccentricity, is the observational value of the coefficient of the term (a sin 	) in
the longitude – a coefficient which in the ordinary elliptical theory would be given as
2e; Brown’s e is thus about twice the constant used by Delaunay, and is equal to the
constant Y0 in Brown’s essay, “The Elliptical Inequalities in the Lunar Theory”.107

The constant e′ is the eccentricity of the assumed elliptical orbit of the Sun. The con-
stant k, which fixes the mean inclination of the lunar orbit to the ecliptic, is defined
as half the empirical value of the coefficient of (a sin F) in the expression of z as a
sum of periodic terms.

The remaining parameter, a = a/a′, is the constant of parallax, giving the ratio
of the mean Earth-Moon distance to the mean Earth-Sun distance. In the elliptical
theory here assumed for the Sun, n′2a′3 = m′ + E + M , where n′ is the observed
mean motion of the Sun in longitude; the distance a′ is thereby defined. Similarly, a
could be defined by the relation n2a3 = E + M ; but Brown chose another definition

107 American Journal of Mathematics, 15 (1893), 261.
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which shortens the calculations. The variable u0 expressing the Variation curve, we
recall, is given by

u0ζ
−1 = a

∑

i

aiζ
2i , i = 0,±1,±2, . . . (B.55)

Here either a or a0 can be arbitrary; Brown put a0 = 1. Thus a became the coefficient
of ζ 0 in u0ζ

−1. It turned out to be slightly smaller than the lunar mean distance (call
it a) given by the elliptical formula, the ratio a : a being a function of m:

a =
(

E + M

n2

)1/3

f (m)

= a · f (m) = a(0.99909 31419 75298).

(The numerical coefficient here differs from Hill’s value for the same coefficient in
the eleventh decimal place.) Brown stipulated that a have this constant value through-
out his theory. However, as inequalities involving e, e′,k, and a are introduced, the
coefficient of ζ 2i receives certain small augmentations; they take the form a(1 + ν),
as will be explained shortly.

Brown called the factor ep+2p′
e′r+2r ′

kq+2q ′
as′

of (B.54) the characteristic of the
coefficient. The order of a coefficient is given by the sum of the exponents in the
characteristic, namely, p + 2p′ + r + 2r ′ + q + 2q ′ + s′. This order is independent
of the constant m: since the numerical value of m was substituted at the outset, the
power to which m is raised, or the number of terms of the series in m that would have
to be taken into account in a purely literal development of the theory, is irrelevant to
the determination of the precision of the calculation.

Finally, in (B.54) we have a set of factors enclosed in parentheses:

(ε p+p′
ε′p

′
ηr+r ′

η′r ′
kq+q ′

k′q ′
as′
)i . (B.56)

In Brown’s original plan for the development of the theory, these factors were to be
obtained by successive approximations in the solving of the equations of motion for
particular values of the coefficients Ai,p,r,q (see B.53). Six of them come in pairs:
ε, ε′ associated with e; η, η′ associated with e′; k, k′ associated with k. The seventh,
a, is associated with a = a/a′. The symbols εi , ε

′
i occurred in Brown’s essay on

the elliptical inequalities, but are not the same here, being equal, respectively, to the
quantities designated εi/Y0 and ε′i/Y0 in the earlier essay. The calculation of η, η′
and that of k, k′ are similar to that of ε, ε′. The superscripts appearing in (B.56) are
not exponents, but indices signifying that the symbol is associated with a parameter
raised to the power indicated. Thus the symbols fi/Y 2

0 , f ′
i /Y 2

0 in the earlier essay
here become (ε2)i , (ε

′2)i .
In (B.54) suppose that p = r = q = 0. The periodic factor will become ζ 2i , as

in (B.55). The coefficients of this factor, however, can no longer be written simply as
aai . Instead we shall have

uζ−1 = a
∑

i

[
ai +

∑
(ε p′
ε′p

′
ηr ′
η′r ′

kq ′
k′q ′

a2s′
) j e

2p′
e′2r ′

k2q ′
a2s′]

ζ 2i .
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When i = j = 0, we obtain for the coefficient of ζ 0, since a0 = 1,

a
[
1 +

∑
(ε p′
ε′p

′
ηr ′
η′r ′

kq ′
k′q ′

a2s′
)0 e2p′

e′2r ′
k2q ′

a2s′] = a(1 + ν),

where ν is a very small second-order augmentation.

The Solution Process

Brown will begin by determining the terms of order zero, then go on to terms of the
first, second, third, etc., orders in succession.

Terms of Order Zero

These terms are given in Chapter II of Brown’s Theory of the Motion of the Moon.108

They are functions of m alone. The orbit they define in the rotating coordinates x, y
is a closed orbit; Brown like Hill called this orbit the Variation curve. In the notation
of Brown’s Theory, it is given by

u0ζ
−1 = a

∑
aiζ

2i , s0ζ = a
∑

a−iζ
2i . (B.57)

The variables u0, s0 constitute a particular solution of the differential equation

(D + m)2u + 1

2
m2u + 3

2
m2s − κu

ρ3
= 0, (B.58)

or of the pair of homogenous equations

D2(us)− Du · Ds − 2m(u Ds − s Du)+ 9

4
m2(u + s)2 = C ′,

D(u Ds − s Du − 2mus)+ 3

2
m2(u2 − s2) = 0. (B.59)

Equation (B.58) is obtained from (B.51a); the two equations of (B.59) are obtained
from (B.52a), (B.52b), by setting z = 0,1 = 0. Substitution of (B.57) into either
(B.58) or (B.59) yields equations of condition from which the constants aai can be
determined.

Brown took over the whole theory of these terms from Hill’s “Researches in the
Lunar theory.” He also used Hill’s numerical results, with a single exception: Hill
had put

a = 0.99909 31419 62
[ μ

n2

]1/3 ;
Brown revised the numerical coefficient from the eleventh decimal onwards:

a = 0.99909 31419 75298
[ μ

n2

]1/3
.

108 TMM, Memoirs of the R.A.S., 53, 88–92.
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Terms of the First Order

These are given in Chapter III of Brown’s Theory of the Motion of the Moon.109

These terms contain a first power of e, e′, k, or a, but no higher power and no product
of these parameters. Suppose u = u0 + u1, s = s0 + s1, z = z1, where u1 or s1 sig-
nifies terms of u or s dependent on e, e′, or a; and z1 signifies terms of z dependent
on k. Substituting these expressions into the equations of motion, then subtracting
out the terms for the Variation curve, we obtain an equation for a particular term of
u1 (ue or ue′ or ua) or of z1 (namely zk), and this equation can be solved by succes-
sive approximations. The s corresponding to u can be obtained in all cases from the
defining equation for u by substituting 1/ζ for ζ .

The terms containing the first power of e are obtained from (B.51a) with z and
1 set equal to zero:

ζ−1(D + m)2ue + Mueζ
−1 + Nseζ = 0.

Here as earlier

M = 1

2
m2 + 1

2

κ

(u0s0)3/2
=
∑

i

Miζ
2i ,

N = 3

2
m2ζ−2 + 3

2

κζ−2

u1/2
0 s5/2

0

=
∑

i

Niζ
2i .

The solution is of the form

ueζ
−1 = ae

∑

i

(εiζ
2i+c + ε′iζ 2i−c);

the exponents 2i ± c modify the Variation curve, introducing eccentricity.
Terms containing the first power of e′ are obtained from (B.51a) by setting z = 0

and 1 = ω2, this being the only part of 1 varying as the first power of e′. The
result is

ζ−1(D + m)2ue′ + Mue′ζ−1 + Nse′ζ = −∂ω2

∂s
ζ−1.

The right-hand side, with ω2 expanded in accordance with Cayley’s formulas (see
Section “Development of , according to powers of e′ and z” above for reference),
but with z and e′ set equal to zero and u, s replaced by u0, s0, becomes

3

4
m2e′[(u0ζ

−1 + 7s0ζ · ζ−2)ζm + (u0ζ
−1 − s0ζ · ζ−2)ζ−m].

Here u0, s0 are functions of known quantities, and m and e′ are known numerical
constants. The solution has the form

ue′ζ−1 = ae′∑

i

(ηiζ
2i+m + η′

iζ
2i−m).

109 TMM, Memoirs of the R.A.S., 53, 92–98.
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Terms containing the first power of a are obtained from (B.51a) by setting z = 0
and 1 = ω3, this being the only part of 1 that contains the fraction a = a/a′ to
the first power. The result is

ζ−1(D + m)2ua + Muaζ
−1 + Nsaζ = −∂ω3

∂s
ζ−1.

In evaluating the right-hand side we are to replace u, s by u0, s0 and to set z = 0 and
e′ = 0. Each of the Cayley expansions involved is reduced to the single term 1, and
we find

∂ω3

∂s
ζ−1 = aa · 3

4
m2 · 1

a2

[
5

2
(s0ζ )

2ζ−3 + 1

2
(u0ζ

−1)2ζ + (u0s0)ζ
−1
]
.

The solution has the form uaζ
−1 = aa

∑
(a)iζ 2i with i = i1 and 2i1 = ±1,±3,±5,

etc.
Finally, the terms of the first order with respect to k are obtained from (B.51c)

by setting 1 = 0:
D2zk − 2Mzk = 0.

Brown’s solution has the form zk ι = ak
∑

ki (ζ
2i+g − ζ 2i−g), where k′

i = −k−i , and
g has the value of g0 given by P.H. Cowell.110

The arguments and types of coefficients calculated for each of the first-order
characteristics are listed in the following table:

λ Arguments Types of coefficients

E 2i + c εi , ε
′
i

E ′ 2i ± m ηi , η
′
i

a 2i1 (a)i

K ±(2i + g) ki , k′
−i (= −ki )

Terms of the Second and Higher Orders

We now describe the procedure that Brown expected to use for the terms of the
second and higher orders, as set forth in Chapter I of his Theory.111 Later he intro-
duced modifications for terms of the third and higher orders.

Let λ be a characteristic of order 2 or higher. In seeking the terms in u with this
characteristic (let them be uλ), we must take into account all terms of lower order
that can contribute to uλ. Let

∑
uμ be the sum of the terms of u of orders greater

than 0 but less than λ, so that u = u0 +∑
uμ + uλ. Similarly, let

∑
zμ be the sum

of the terms of orders less than λ (there are no terms of zero order in z). If these

110 P.H.Cowell, American Journal of Mathematics, 18.
111 TMM, Memoirs of the R.A.S., 53, 64–69.
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expressions are substituted into (B.5la), the result is ζ−1(D + m)2uλ + Muλζ−1+
Nsλζ = the part with characteristic λ in
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ζ−1(D2 + 2mD)
(∑

uμ
)− ∂1

∂s ζ
−1

+ κu0ζ
−1

ρ3
0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3
8

(∑
uμ

u0

)2 + 15
8

(∑
sμ

s0

)2 + 3
4

∑
uμ·∑ sμ
u0s0

− 3
2

(∑
zμ
ρ0

)2

− 5
16

(∑
uμ

u0

)3 − 35
16

(∑
sμ

s0

)3 − 9
16

(∑
uμ

u0

)2 ∑
sμ

s0

− 15
16

(∑
sμ

s0

)2 ∑
uμ

u0
+ 9

4

(∑
zμ
ρ0

)2 ∑
uμ

u0
+ 15

4

(∑
zμ
ρ0

)2 ∑
sμ

s0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.60)

What is here sought, namely uλ which is a term of order λ having a particular char-
acteristic, appears only in the left-hand member: every variable and constant on the
right-hand side is known. The first term on the right involves the operators D2 and D
applied to

∑
uμ; it contributes nothing to the coefficients determining uλ, but intro-

duces the factors (2i + pc + rm + qg), (2i + pc + rm + qg)2 – factors determining
increments to c and g that are proportional to the second and higher powers of the
parameters. In the next term, −(∂1/∂s)ζ−1, we are to substitute u0 +∑

uμ for u
and

∑
zμ for z. The rest of the terms arise from the expansions of κuζ−1/r3, κz/r3.

The terms zλ are given by an equation similar to (B.60):
D2zλ − 2Mzλ = the part having characteristic λ in

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D2
(∑

zμ
)− 1

2
∂1
∂z

+ κ

ρ2
0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 3
2

∑
zμ
ρ0

(∑
uμ

u0
+

∑
sμ

s0

)

+
∑

zμ
ρ0

{
15
8

(∑
uμ

u0

)2 + 15
8

(∑
sμ

s0

)2 + 9
4

∑
uμ

u0

∑
sμ

s0

}
− 3

2

(∑
zμ
ρ0

)3

− · · · · · · · · · · · · · · ·

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.61)

To solve (B.60), we write

uλζ
−1 = aλ

∑

i

(λiζ
2i+τ + λ′

iζ
2i−τ ) = aλ

∑

i

(λiζ
2i+τ + λ′

−iζ
−(2i+τ)), (B.62)

where τ is one of the values of ±pc ± rm ± 2qg. In the first term on the left-hand
side of (B.60), an expression is needed for uλ; we obtain it by multiplying (B.62)
by ζ :

uλ = aλ
∑

i

(λiζ
2i+τ+1 + λ′

−iζ
−2i−τ+1).

In the third term on the left of (B.60), we need an expression for sλζ ; we obtain it by
changing ζ to 1/ζ in (B.62):

sλζ = aλ
∑

i

(λiζ
−(2i+τ) + λ′

−iζ
2i+τ ).
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On the right-hand side of (B.60), the terms involving ζ±(2i+τ) can be put in the form
aλA = aλ

∑
[Aiζ

2i+τ + A′
−iζ

−(2i+τ)]. With these substitutions, and dividing the
equation by aλ, we obtain

∑

i

λi (2i + τ + 1 + m)2ζ (2i+τ) +
∑

i

λ′
−i (2i + τ − 1 − m)2ζ−(2i+τ)

+
∑

j

M jζ
2 j ×

∑

i

(λiζ
(2i+τ) + λ′

−iζ
−(2i+τ))

+
∑

j

N jζ
2 j ×

∑

i

(λiζ
−(2i+τ) + λ′

−iζ
(2i+τ))

=
∑

i

(Aiζ
(2i+τ) + A′

−iζ
−(2i+τ)). (B.63)

In each of the two products of infinite series in the second line, every term of
one series multiplies every term of the other. However, in the series M j , N j , the
decrease in size from one term to the next is rapid; thus M1 and M−1 (which are
equal) are about 100 times smaller than M0, and successive terms continue to dimi-
nish in about this same ratio. The N j converge in absolute value at a similar rate as
j goes from 0 to the values ±1,±2, etc. Following the pattern of Hill’s and his own
earlier solutions of differential equations by the method of undetermined coefficients,
Brown proposed solving these equations by successive approximations.

In z, the terms with characteristic λ are given by

D2zλ − 2Mzλ = aλι
∑

i

Ai (ζ
2i+τ − ζ−(2i+τ)). (B.64)

Into this we substitute zλι = aλ
∑

i λi (ζ
2i+τ − ζ−(2i+τ)), since in (B.64) λ′

−i is
always equal to −λi . The resulting equations of condition are

(2i + τ)2λi − 2
∑

j

M jλi− j = Ai , (B.65)

where j = 0,±1,±2, . . . , and 2i either = 0,±2,±4, . . . or = ±1,±3,±5, . . . .
For the coefficients determining zλ, the equations of condition turn out to be

easier to resolve than those for the coefficients determining uλ. If in (B.63) we set
equal to zero the coefficients of ζ 2i+τ and also those of ζ−(2i+τ), understanding i to
have the same value in the two cases, we obtain

(2i + τ + 1 + m)2λi +
∑

j

M jλi− j +
∑

j

N jλ
′
j−i = Ai ,

(2i + τ − 1 − m)2λ′
−i +

∑

j

M jλ
′
−i− j +

∑

j

N jλ j+i = A′
−i . (B.66)
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Evidently, if we wish to solve (B.66) simultaneously for λ0 and λ′
0, we will need as

well, in evaluating the summations, values of both λ and λ′ with subscripts equal to
±1,±2,±3, and so on. Suppose that, for a given i , I take from the summations only
the terms in which j = 0; (B.64) reduce to the approximations:

[(2i + τ + 1 + m)2 + M0]λi + N0λ
′
−i ≈ Ai ,

[(2i + τ − 1 − m)2 + M0]λ′
−i + N0λi ≈ A′

−i . (B.67)

These could be solved simultaneously for approximate values of λi , λ
′
−i . But can

successively closer approximations be obtained by including further approximate
values of terms in the summations

∑
M jλ j and

∑
N jλ

′
− j , with ± j taking values

other than zero? Brown apparently proposed a process of this kind to his computer,
Mr. Sterner, but, as he reported, the exact route to be followed could not be specified
once for all, and the calculations did not proceed smoothly:

This method is troublesome to put into a form which a computer can use eas-
ily and is besides peculiarly liable to chance errors; a large number of pro-
cesses would have to be learnt before the computer could proceed quickly
and securely.112

For each second-order inequality, the equations to be solved simultaneously
turned out to be about 20 in number, with the index i taking values from −5 to
+5. Of second-order inequalities, there were 10 to be calculated: those proportional
to the squares of the four parameters e, e′,k, a, and those proportional to their com-
binations in pairs, in number 4!/2!2! = 6. Hence the total number of equations
to be dealt with, and of coefficients to be solved for, was about 200. Of third-order
inequalities there would be 20, hence 400 coefficients to be solved for; and of fourth-
order inequalities there would be 35, hence 700 coefficients to be solved for. Clearly
a new method, avoiding solutions of simultaneous equations by successive approxi-
mations, was desirable.

Before turning to Brown’s new method, we mention the effect of the small-
divisor problem on the calculation of the second-order inequalities.113 We summa-
rized Brown’s earlier and more general discussion of this problem in connection with
(B.22) and (B.23). In the simultaneous solution of the approximate equations (B.67),
the common divisor is

[(2i + τ + 1 + m)2 + M0][(2i + τ − 1 − m)2 + M0] − N 2
0 . (B.68)

This expression has nearly the form of, and is nearly equal to (2i+τ)2[(2i+τ)2−c0].
The near-equality gives rise to cases requiring special devices or the calculation of
additional decimal places. When 2i + τ is equal to zero (implying, since c, m, and

112 E.W. Brown, “On the Solution of a Pair of Simultaneous Linear Differential Equations,
which occur in the Lunar Theory,” Transactions of the Cambridge Philosophical Society,
18 (1900), 94ff.

113 See T M M , Memoirs of the R.A.S., 53, 75–79 for Brown’s treatment of this problem.
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g are assumed incommensurable with the unit, that i = τ = 0), the denominator of
(B.66) becomes very small (equal approximately to 0.00024), and the two equations
(B.65) coalesce into one equation, which is of principal importance in determining
λ0. When 2i + τ = ±c0, A turns out to contain part of the motion of the perigee,
which Brown computes by a special route. When 2i+τ is small compared with unity,
inequalities arise that are of long period compared with the lunar month. When 2i +
τ ± c0 is small compared with unity, numerous short-term inequalities arise which
have arguments nearly equal to the principal elliptic term, for instance the Evection
and Parallactic Inequality. In both the latter cases, extra terms have to be calculated
to attain the requisite precision.

In the case of zλ, the coefficients λi are to be determined by (B.65). Here the
coefficient of λi is (2i+τ)2−2M0 ; this, if we had eliminated all the other unknowns,
would have been (2i +τ)2 − g2

0 multiplied by a numerical factor close to 1. The only
special cases requiring to be considered are those in which 2i + τ ± g0 is zero or
small compared with the unit. In the first case, A contains an unknown part of the
motion of the node, which Brown computes by a special route. The second case leads
to inequalities with periods nearly equal to that of the principal term in latitude.

By the procedures described above, Brown obtained the second-order inequali-
ties, completing (with Mr. Sterner’s aid) the computation by late March, 1897.114

Each inequality was given by a sum of terms, in each of which a coefficient was
multiplied by a power of ζ . For instance, the second-order inequality proportional to
e2 was given by

ue2ζ
−1 = ae2

∑

i

[(ε2)iζ
2i+2c + (ε′2)iζ 2i−2c + (εε′)iζ 2i ].

But as mentioned above, for the third-order terms, the procedure of solving for
the coefficients by successive approximations was too troublesome; a new method
was needed.

114 Brown to Darwin, 24 March 1897, CUL, MS.DAR.251:488.
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A Solution-Procedure Without Approximations

During the 1890s, at the invitation of George Darwin, Brown prepared a paper for
inclusion in the volume of the Transactions of the Cambridge Philosophical Society
commemorating the jubilee of Sir George Gabriel Stokes.115 As his topic, he chose
the problem of getting an exact solution for the equations

(D + m)2u + Mu + Ns = A,

(D − m)2s + Ms + N̄ s = Ā. (B.69)

Here A is of the form
∑

piζ
2i+1+τ +∑ p′

iζ
2i+1−τ . The bar over a letter means that

ζ has been replaced by ζ−1. These equations are essentially the same as those Brown
and Sterner had been solving by successive approximations. Brown’s initial interest
was theoretical: to know the form of the exact solution. Only later did the exact
solution become important practically, as providing a means to obtain the higher-
order inequalities without relying on successive approximations.

For exact solutions of (B.69), the first requisite is a general solution of the
homogeneous equations

(D + m)2u + Mu + Ns = 0,

(D − m)2s + Ms + N̄u = 0. (B.70)

A solution of such a system is general or complete if it contains as many arbitrary
constants as there are independent particular solutions of the differential equations.
Since (B.70) are two in number, and each of the second order, four independent
particular solutions must exist. Three such solutions were already known:

u1 =
∑

i

εiζ
2i+1+c, s1 =

∑

i

ε′−iζ
2i−1+c;

u2 =
∑

i

ε′iζ
2i+1−c, s2 =

∑

i

ε−iζ
2i−1−c;

115 Brown, Transactions of the Cambridge Philosophical Society, 18 (1900), 94–106.
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u3 =
∑

i

(2i + 1)aiζ
2i+1, s3 =

∑

i

(2i − 1)a−iζ
2i−1 (B.71)

The first two of these, u1, s1 and u2, s2, combine the variation curve with eccentric-
ity, but with opposite signs of c; this difference makes them independent, since no
linear combination of ζ c and ζ−c can be zero. The solution u3, s3 gives the variation
curve; here the exponents of ζ are integers, and so the successive terms are indepen-
dent of the terms contributing eccentricity because +c and −c are incommensurable
with unity.

Any linear combination of the solutions (B.71) is also a solution. Thus

u =
∑

j

Q j u j , s =
∑

j

Q j s j , j = 1, 2, 3, (B.72)

where the Q j are arbitrary constants, is a solution of (B.70), but not linearly inde-
pendent of the solutions (B.71). To obtain a fourth particular solution that is linearly
independent of (B.71), Brown employed Lagrange’s method of varying the Q j of
(B.72) so that they become functions of the independent variable t . Applying this
method required that

u1 DQ1 + u2 DQ2 + u3 DQ3 = 0. (B.73)

Substituting (B.72) into the differential equations (B.70), and making use of (B.73),
he found that

Du1 · DQ1 + Du2 · DQ2 + Du3 · DQ3 = 0,
∑

j

{s j D2 Q j + 2Ds j · DQ j − 2ms j DQ j } = 0. (B.74)

To satisfy these conditions, Brown put

⎧
⎪⎨

⎪⎩

u2 Du3 − u3 Du2 = α1,

u3 Du1 − u1 Du3 = α2,

u1 Du2 − u2 Du1 = α3.

⎫
⎪⎬

⎪⎭
,

DQ1

α1
= DQ2

α2
= DQ3

α3
= L . (B.75)

From (B.74) and (B.75), he derived a differential equation for L:

(∑
αs
)

DL + 2L D
(∑

αs
)

− L
[∑

(s Dα)+ 2m
∑
αs
]

= 0, (B.76)

where
∑
αs = α1s1 + α2s2 + α3s3.
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(B.76) can be simplified. Introducing u1, s1 and u2, s2 from (B.71) into (B.70),
Brown showed that

(D + 2m)(s2 Du1 − s1 Du2)+ (m2 + M)(s2u1 − u2s1) = 0,

(D − 2m)(u2 Ds1 − u1 Ds2)+ (m2 + M)(u2s1 − s2u1) = 0.

The sum of these two equations can be integrated; its integral is

C12 = s2 Du1 − u1 Ds2 + u2 Ds1 − s1 Du2 + 2m(s2u1 − u2s1)

= 2
∑
(2i + 1 + m + c)ε2

i + 2
∑
(2i − 1 − m + c)ε′2−i . (B.77)

or, for brevity, f12 = C12. Here C12 is a constant, but not arbitrary, since u1, s1 and
u2, s2 are functions fully defined by (B.71), and the substitution of these functions in
(B.77) yields a value free of variables. By entirely parallel processes, with rotation
of indices, Brown derived the integrals f23 = C23, f31 = C31. Multiplying C23 by
u1,C31 by u2, and C12 by u3, he showed that

u1C23 + u2C31 + u3C12 =
∑
αs,

and
u1 D f23 + u2 D f31 + u3 D f12 =

∑
s Dα + 2m

∑
αs = 0.

This last result reduces (B.75) to

DL

L
+ 2

D
(∑
αs
)

∑
αs

= 0.

The integral of this equation is

ln L + ln
(∑

αs
)2 = ln L0,

whence

L = L0
(∑
αs
)2 = L0

(u1C23 + u2C31 + u3C12)2
, (B.78)

where L0 is a new arbitrary constant. Since by (B.75) DQ j = α j L for j = 1, 2, 3,
it follows that, for the same three indices,

Q j = (Q j )+ L0 D−1 α j

(u1C23 + u2C31 + u3C12)2
. (B.79)

Here D−1 denotes integration; (Q j ) for each j is an arbitrary constant, which can be
zero.

Having thus identified the Q j that will make (B.72) a linearly independent
solution of (B.70), Brown introduced four new arbitrary constants, Q1, Q2, Q3, Q4,
which enabled him to express the general solution of (B.70) as
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u = Q1u1 + Q2u2 + Q3u3 + Q4u4,

s = Q1s1 + Q2s2 + Q3s3 + Q4s4, (B.80)

where
u4 =

∑

j

u j D−1 α j

(u1C23 + u2C31 + u3C12)2
, j = 1, 2, 3,

with s4 given by u4.
The expressions for u4, s4 can be further simplified, because C31 = C23 = 0.

For as is evident from (B.71), (u1, s1) contains ζ c, (u2, s2) contains ζ−c, and (u3, s3)

contains neither ζ c nor ζ−c. Therefore f23 contains the factor ζ−c, and f31 the fac-
tor ζ c, while f12 contains the product of these factors, which equals 1. Since c is
assumed to be incommensurable with unity, f31 and f23 can be constants only if
each of them is zero. The detailed algebra corroborates this conclusion. (B.79) thus
becomes

u4C2
12 = u1 D−1 u2 Du3 − u3 Du2

u2
3

+ u2 D−1 u3 Du1 − u1 Du3

u2
3

+ u3 D−1 u1 Du2 − u2 Du1

u2
3

. (B.80a)

The first two terms on the right can be integrated, yielding

−u1
u2

u3
+ u2

u1

u3
= 0.

Thus, if we let C2
12 be absorbed into Q4, (B.80) reduces to

u4

u3
= D−1

(
u1 Du2 − u2 Du1

u2
3

)
. (B.80b)

Similarly,
s4

s3
= D−1

(
s1 Ds2 − s2 Ds1

s2
3

)
.

According to Brown, these are probably the simplest forms for u4, s4. How-
ever, the values of u1, s1, u2, s2, and u3, s3 are all of the form {(sum of cosines) +√
(−1) (sum of sines)}. For ease of calculation, u4 and s4 need to be expressed in the

same form. By a bit of algebraic legerdemain Brown showed that

u4

u3
= D−1

(
u1 Du2 − u2 Du1

u2
3

)

= 1

2

s1u2 − u1s2

u3s3
+ 1

2
D−1

{
C12

u3s3
− s1u2 − u1s2

u3s3

(
2m + Du3

u3
− Ds3

s3

)}
.

(B.80b)
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Here the first term proves to be real and the second term a pure imaginary, as
required.

By a further transformation Brown showed u4 to be of the form

u3[i Bt (n − n′)+ a power series in ζ 2].

The solution (u3, s3) is also a power series in ζ 2, but lacks the term with factor t .
The latter term turns out to have no role in the lunar theory.

The solution (u4, s4) is a solution of the homogeneous equations but not of the
non-linear equations. In itself, it supplies no new information concerning the Moon’s
motions. But in conjunction with the other solutions it makes possible the general
solution (B.80) of the homogeneous equations, and the latter make possible a solu-
tion, free of any reliance on successive approximations, of the non-linear equations.

The non-linear equations, we recall, were

(D + m)2u + Mu + Ns = A,

(D − m)2s + Ms + N̄u = Ā,

where A, Ā are functions, already known, of the time t . The standard procedure is to
vary the new arbitraries under the restricting conditions given by the 16 equations

∑
Du j · DQ j = A,

∑
Ds j · DQ j = Ā,

∑
u j DQ j = 0,

∑
s j DQ j = 0. (B.82)

These equations are to be solved simultaneously for the DQ j . The solution for DQ j

is given by the quotient of the determinants � j/�, where

� =

∣∣∣∣∣∣∣∣∣

Du1 Du2 Du3 Du4

Ds1 Ds2 Ds3 Ds4

u1 u2 u3 u4

s1 s2 s3 s4

∣∣∣∣∣∣∣∣∣

and

�1 =

∣∣∣∣∣∣∣∣∣

A Du2 Du3 Du4

Ā Ds2 Ds3 Ds4

0 u2 u3 u4

0 s2 s3 s4

∣∣∣∣∣∣∣∣∣

, etc.

The four � j can be shown to be

�1 = −(s2 A + u2 Ā)C12,

�2 = (s1 A + u1 Ā)C12,

�3 = (s4 A + u4 Ā)C12,
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�4 = −(s3 A + u3 Ā)C12.

The determinant � is equal to

−(s2 Du1 − s1 Du2 − s4 Du3 + s3 Du4)C12 = −2C2
12.

Brown thus obtained expressions for the DQi and hence (by integration) for the Qi .
The particular integral of (B.69) corresponding to the right-hand members A, Ā was
thus found to be

u = 1

C12

{
u1 D−1(s2 A + u2 Ā)− u2 D−1(s1 A + u1 Ā)

−u3 D−1(s4 A + u4 Ā)+ u4 D−1(s3 A + u3 Ā)

}
,

s = 1

C12

{
s1 D−1(s2 A + u2 Ā)− s2 D−1(s1 A + u1 Ā)

−s3 D−1(s4 A + u4 Ā)+ s4 D−1(s3 A + u3 Ā)

}
. (B.83)

Calculation of Terms from Third to Sixth Order

Thus far in describing Brown’s new method we have followed his essay for the
Stokes volume. In Theory of the Motion of the Moon, we find him introducing new
symbols, rearranging equations, and changing procedures as the computation pro-
ceeds, all with a view to efficiency.

In the case of the third-order terms, Brown transformed the equations so as
to obtain uλ/u0 instead of uλ. The formulas for determining A′, except for those
deriving from , had u0 as denominator. Calculating uλ/u0 from the start, then
multiplying the parts due of  by u0, was easier than first finding uλ, then multiply-
ing almost all of the terms by 1/u0. To the quotient uλ/u0 Brown gave the general
form

1

λ

uλ
u0

= U1 Qλ + U2 Q̄λ + U3Tλ + U4Vλ, (B.84)

where the products on the right are of the form
∑

piζ
2i ·∑ q jζ

2 j . He thus reduced
a large part of the computation to uniform processes, performable by a reliable and
competent computer.

For the third-order terms and those of higher orders, we shall not list the
arguments and types of coefficients for each characteristic. The length of the lists
increases drastically from the second to the third and fourth orders, diminishes some-
what in the fifth order and still more in the sixth order. The general “look” of these
lists can be inferred from that of the lower-order lists.

In calculating the fourth-order terms, Brown returned to computing uλ directly.
He had concluded that the fifth-order terms should be computed from the homo-
geneous equations (our B.51a, b, c) rather than from the non-homogeneous equations
(our B.60 and B.61), and the former require the results for uλ rather
than uλ/u0.
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Another change made in computing the fourth-order terms was to put

A = 3

4

κu0ζ
−1

ρ3
0

A1,

and instead of the series u2, s2, s3, s4, to use each these series multiplied by
3κu0ζ

−1/4ρ3
0 . The four new series could be computed once for all. As is apparent

from (B.60), A consists of two parts, a small part in the first line whose terms do
not contain the above factor, and the terms in the succeeding lines, all of which do
contain it. The terms in the first line then have to be multiplied by the reciprocal of
the above factor, but this, Brown wrote, would be short work.116

In computing the fifth-order terms, as indicated above, Brown returned to the
homogeneous equations (our B.51a, b, c). The non-homogeneous equations (our
B.60 and B.61) would have required expanding κu/ρ3 to the fifth order, an enor-
mous piece of work. This expression was easy enough to expand to lower orders, but
with each passage to a higher order the number of terms and the complexity of the
calculation increased. On arriving at the fifth-order terms, Brown judged that these
expansions would be too costly in time and labor. The homogeneous equations, in
contrast, required calculation only of such expressions as u2, u Ds, etc., to the fifth
order, and this operation was far less labor-intensive.117

This change, however, introduced wrinkles of its own. The unknowns occur in
the homogeneous equations either as squared or in products of the second degree.
These equations, given earlier as (B.52a, b), are repeated here with the constants of
integration omitted and with the disturbing function limited to the parts required for
computing fifth-order terms:

D2(us + z2)− Du · Ds − (Dz)2 − 2m(u Ds − s Du)+ 9

4
m2(u + s)2 − 3m2z2

+ 3ω2 + 4ω3 − D−1(D′ω2 + D′ω3) = 0; (B.85)

u Ds − s Du − 2mus + D−1
[

3

2
m2(u2 − s2)

]

+ D−1
[

u
∂ω2

∂u
+ u

∂ω3

∂u
− s
∂ω2

∂s
− s
∂ω3

∂s

]
= 0. (B.86)

The operator D′ in (B.85) signifies the operation D performed on 1 only insofar as
ζ occurs in r ′ or u.

Suppose it is required to determine the terms in uζ−1 with characteristic λ and
arguments 2i ± τ , where τ is one of the fifth-order values of ±pc ± rm ± 2qg, the
values of lower order having been previously determined. The terms sought will have
the form

aλ
∑

i

(λτ,iζ
2i+τ + λ−τ,iζ 2i−τ ),

116 TMM, Memoirs of the R.A.S., 53 (1896–1899), 170.
117 Ibid., 54 (1900), 1.
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where the coefficients λτ,i , λ−τ,i are unknowns. How do terms with characteristic λ
and argument 2i ± τ arise in such expressions as D2(us), u2, u Ds, etc.? Evidently
from two factors. Let one have characteristic μ and argument ±(2i + σ), and the
other characteristic ν and argument ±(2i + τ − σ), where μ and ν are such that
μν = λ. The factors that combine can be expressed by

uμζ
−1 = aμ

∑

σ,i

(μσ,iζ
2i+σ + μ−σ,iζ 2i−σ ),

uνζ
−1 = aν

∑

σ,i

(ντ−σ,iζ 2i+τ−σ + νσ−τ,iζ 2i−τ+σ ).

Most of the exponents of ζ contain either the constants c or g or both. In com-
puting terms of the fifth order, account must be taken of the increments that c and g
incur. Here we change notation, replacing c by c0, and symbolizing the increments
to c0 by c2, c4; similarly, we replace g by g0, and symbolize the increments to g0 by
g2, g4. These increments are introduced by the operators D, D2, D−1. Brown carried
out the main computation with the principal values of c and g, namely c0 and g0, and
computed the effects of the increments separately. If the first lines of (B.85) and
(B.86) are labeled f and f′, respectively, then the parts due to c − c0, g − g0 can be
designated δf and δf′, and computed by successive approximations.

When the two equations for λi , λ
′
−i possess a small divisor, the approximations

proceed slowly. In such cases Brown found that labor could be saved by first solving
the equations for λi±1, λ

′
i±1 so as to obtain the latter coefficients in terms of λi , λ

′
−i

and the known quantities, then substituting the results in the equations for λi , λ
′
−i

before solving them.
Brown retained the non-homogenous form of equation for z, since many of the

required products and sums of series had already been obtained in computing the
terms of lower orders. He put the required expansion of κz/r3 in the form

κz

r3
= κ ′′

1 B4 + κ ′′
2 B3 + κ ′′

3 B2 + κ ′′
4 B1, (B.87)

where κ ′′
i = −3κzi/2ρ3

0 and the Bi have expressions whose complication increases
with i .

Among sixth-order terms in uλ, only those with characteristics λ = e4k2, e2k4

were calculated. For those in e6, the elliptic values could be substituted; those in
k6 proved insensible. The same method was used as for the fifth-order terms, with
1 = L ′ = �′ = 0. The main difference arose in the development of δf, δ(Df′).
Thus

δf = c2
∂f4

∂c
+ g2

∂f4

∂g
+ 1

2
c2

2
∂2f2

∂c2
+ 1

2
g2

2
∂2f2

∂g2
+ c4

∂f2

∂c
+ g4

∂f2

∂g
,

with a similar expression for δ(Df′). In most of the products of series, only three
significant figures were required; the computation was thereby considerably short-
ened.
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The calculation of the sixth-order terms in z, had it been carried out with the non-
homogeneous equations, as were the lower-order terms in z, would have required the
expansion of κz/r3 to the fifth order. So Brown returned, here too, to the homo-
geneous equation:

D(u Dz − zDu)− 2mzDu − m2uz − 3

2
m2z(u + z) = 0.
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The “Main Problem” Solved

What Brown called “the main problem” in the lunar theory consisted in the deduc-
tion, from Newton’s law of gravitation alone, of the motions of the Moon under the
restrictions that the Moon, Earth, and Sun be regarded as point-particles, and the
center of gravity of the Earth and Moon be assumed to move about the Sun in a fixed
elliptic orbit. Brown set the accuracy to be achieved at 0′′.01 arc-second. With the
calculation of the sixth-order terms toward the end of 1904, he could announce that
the solution had now been obtained.118 He took the occasion – “the completion of
a laborious piece of work which has occupied many years for its execution” – to
explain why the task had been undertaken and by what method it had been carried
out.

To Euler he credited the idea of the method. It consisted in taking as starting-point
an accurate calculation of the “Variation curve,” and developing the theory along the
powers of four small parameters, namely: the orbital eccentricities of the Moon and
Sun, (or Earth), the inclination of the Moon’s orbit to the ecliptic, and the ratio of the
lunar and solar parallaxes.

He credited G.W. Hill with putting the early steps in the development into a form
such that high accuracy could be obtained without excessive labor. Economy was as
crucial as accuracy:

The working value of a method of treatment is not really tested by the close-
ness with which the first or second approximation will make the further
approximations converge quickly to the desired degree of accuracy; the real
test is, perhaps, the ease with which the final approximation can be obtained.
Here we have the essential difference between the present method and all
other methods. The approximations of the latter proceed along powers of
the disturbing force. Euler’s idea was to approximate along powers of the
other small constants present. This gives a more rapid convergence and a
degree of certainty in knowing the limits of error of the final results which
no other method approaches.

118 MNRAS, 65 (Dec., 1904), 104–108.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 12,
c© Springer Science+Business Media, LLC 2010



168 12 The “Main Problem” Solved

The one further small parameter involved in the theory was the ratio of the mean
motions of the Sun and the Moon. Its numerical value had been assumed from the
outset:

[This ratio] is known with a degree of certainty which satisfies all the possi-
ble needs of the theory, and the effect of any possible change which may be
made in its observed value can be easily deduced from Delaunay’s purely
literal theory. The chief advantage gained is due to the fact that slow con-
vergence (perhaps divergence) occurs only along powers of this ratio, while
there is little loss of theoretical interest in using its numerical value. More-
over it is not difficult to find out how many places of decimals are necessary
at the outset in order to secure a given number of places in the results.

Every coefficient in longitude, latitude, and parallax as great as 0′′.01, Brown
claimed, had been computed to at least this accuracy. To avoid calculative errors, he
had taken exceptional precautions; each page of manuscript work has been checked
by, on the average, two test equations. “Very searching final tests, eleven in number,”
were furnished by the relations existing between the mean motions of the perigee
and node and the constant term of the parallax – relations discovered by J.C. Adams
and Newcomb, with refinements by Brown himself.

It was now possible to carry out some important comparisons. Already, in
the Monthly Notices for May, 1903, Brown had believed himself in a position to
announce that Asaph Hall’s hypothesis – the proposal that the exponent in the
gravitational law be changed to accommodate the anomalous motion of Mercury’s
perihelion – was untenable at the Moon’s distance from the Earth. In 1897, this
point had remained undecided, because of a possible remaining error of 1′′.8 in his
calculated value of the annual motion of the lunar perigee. With the sixth-order terms
known, Brown could now re-do the calculation more precisely; the result showed a
remarkable agreement with the observed values. In addition, Hansen’s values were
seen to be of less accuracy than Brown’s.

For the perigee For the node

Calculated +146, 434′′.5 ± 0′′.2 −69, 679′′.6 ± 0′′.2
Hansen +146, 434′′.0 −69, 676′′.8
Observed +146, 435′′.6 −69, 679′′.5

Hall’s hypothesis would give the gravitational law as r−2−δ , and Newcomb in seek-
ing to account for Mercury’s perihelion motion had put δ = 0.0000001574. This
value of δ would cause a correction of 1′′.4 in the motion of the Moon’s perigee.
Brown’s calculated values given above differ from the observational values by less
than 0′′.3 arc-second, making δ < 0.00000004, a value quite insufficient to account
for the anomalous deviation in the motion of the perihelion of Mercury.

This conclusion, however, proved to be premature. In April, 1904, Brown in
effect acknowledged that his previous conclusion was unwarranted:
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In order to make the comparison complete to this degree of accuracy [0′′.01]
it was found necessary to undertake an examination into the numerical
values of the constants used and into the effects produced by sources other
than the direct solar action. This inquiry revealed several differences which
had a perceptible effect. It was first necessary to develop a general method of
dealing with the effects of planetary and other perturbations on these mean
motions which would permit of their being found easily and accurately. . . .
It was found necessary to make several changes in the values of these non-
solar perturbations as collected in my papers in the Monthly Notices for 1897
March and June: four of these caused alterations of about half a second each
in the annual motions.119

We will take up Brown’s methods in this investigation in a later section of Part II;
here we give his results as he reported them in April, 1904. Only one constant, at
this date, seemed so far doubtful as to affect the results by as much as 0′′.1; this was
f , the ratio of the thickness of the Earth’s equatorial bulge to its equatorial radius.
For f the values 1/292.9 and 1/296.3 were in competition.120 Brown carried out the
calculation first with the value 1/292.9(= α), then with the value 1/296.3(= β):

Annual Mean Motions, Epoch 1850

Perigee Node

Calculated (α) +146, 435′′.27 ± 0′′.10 −69, 679′′.37 ± 0′′.05

Calculated (β) +146, 435′′.11 ± 0′′.05 −69, 679′′.22 ± 0′′.05

Observed +146, 435′′.23 −69, 679′′.45

C – O (α) +0.04 +0.08

C – O (β) −0.12 +0.23

Taking into account possible errors – due to neglect of terms of higher orders than
those calculated and to a questionable value of the mass of Venus, Brown judged
errors as high as ±0′′.10,±0′′.05 to be extreme. Thus α appeared to be better than β.
(Today we know that α is more erroneous.)

From the sixth-order terms in rectangular coordinates, Brown proceeded to com-
pute the final values of the terms in polar coordinates, using “the method of spe-
cial values.” He then carried out a comparison between the resulting coefficients
and those obtained by Hansen; the report of it appeared in the Monthly Notices for
January, 1905. He claimed to have obtained all terms in longitude and latitude equal
to or greater than 0′′.01, and all terms in parallax equal to or greater than 0′′.001.
In the following table we give the total number of terms in longitude and latitude,
then the number of terms in which Hansen’s coefficients (H) differed from Brown’s
(B) by more than 0′′.02, and by 0′′.10 or more. For Hansen’s coefficients Brown used

119 “On the Degree Accuracy of the New Lunar Theory and on the Final Values of the Mean
Motions of the Perigee and Node,” MNRAS, 64 (April, 1904), 524–534.

120 The present-day value is 1/298.297 (Explanatory Supplement to the Astronomical
Almanac, ed. P. Kenneth Seidelmann, 1992, 700).
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the values given by Newcomb, who had transformed them to make them comparable
to Delaunay’s coefficients, and so to Brown’s.

No. terms B − H > 0′′.02 B − H ≥ 0′′.10

Longitude 275 34 6

Latitude 237 10 3

The analogous comparisons in parallax are

No. of terms B − H > 0′′.002 B − H ≥ 0′′.010

Parallax 148 11 4

Brown made another synoptic comparison of his theory with Hansen’s, showing
the sum of the absolute values of the differences B − H in each coordinate:

In longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3′′.61

In latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1′′.90

In parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0′′.242

These are the maximum differences which tables constructed on the two theories
would show. As Hill had suggested long before, differences of this smallness are
inconsequential from a practical point of view (i.e. for the ordinary uses of the
Nautical Almanac). Brown was striving for results that would be both certain and
exact.

The astronomers Frank Schlesinger and Dirk Brouwer assess as follows the
importance of Brown’s solution of the “main problem:”121

Both as to completeness and accuracy this solution surpassed the work of
Brown’s predecessors to a remarkable degree. Few terms having coefficients
in longitude and latitude exceeding 0′′.001 were not included, and in the
great majority of terms the uncertainty did not exceed 0′′.001. In Hansen’s
theory some coefficients were in error by some tenths of a second of arc;
Delaunay’s theory, on account of the slow convergence peculiar to his
development, contained a few terms that were in error by as much as a whole
second of arc.

The accuracy of Brown’s computation was confirmed by a numerical verification of
this part of the lunar theory, carried out by his former pupil, Dr. W.J. Eckert, during
the last few years of Brown’s life.122

121 National Academy Biograpical Memoirs, XXI, 245–246.
122 See the final paragraph of E.W. Brown, “The equations of motion of the Moon,” Amer-

ican Journal of Mathematics, 60 (1938), 792, and also W.J. Eckert and Harry F. Smith,
Jr., “The Solution of the Main Problem of the Lunar Theory by the Method of Airy,”
Astronomical Papers prepared the Use of the American Ephemeris and Nautical Almanac,
19, Part II, 196.
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Correcting for the Idealizations: The Remaining
Inequalities

We recall once more that solution of “the main problem” invoked two idealizations:
the center of gravity of the Earth and Moon was to move in a perfect ellipse about
the Sun; and the Sun, Earth, and Moon were to be point-masses or, equivalently,
spherical bodies with mass-distributions symmetrical about their centers. To correct
for these idealizations meant determining the direct and indirect actions of the planets
on the Moon (the indirect actions are effects of the planetary perturbations of the
Earth’s motion, transmitted from the Earth to the Moon), and the effects of the non-
spherical shapes of the Earth and Moon on the Moon’s motions.

By the time Brown began preparations for computing these inequalities
(ca. 1903), the hope, expressed by Laplace a century earlier, that all perceptible
inequalities of the Moon would prove deducible from the law of gravitation alone,
had dimmed. True, deductions from the theory had been extended and refined, and
the precision with which the Moon’s positions could be measured had been remark-
ably improved. But the problem-situation had complicated itself.

In 1853 John Couch Adams discovered that Laplace’s value for the Moon’s
secular acceleration erred in excess by about 5′′ – nearly half its value. The Moon’s
secular acceleration, first detected by Halley in a comparison between ancient and
17th-century solar eclipses, assumed, like all astronomy before the 20th century,
the Earth’s diurnal rotation as measure of time, the clock. Mid-18th-century
astronomers assigned various values to the empirical centennial increase in the
Moon’s motion: Dunthorne and after him Lalande gave values of about 10′′. (This
value is equivalent to an angular acceleration of 20′′ per century per century.) The
increase remained unexplained till 1787, when Laplace showed that the secular vari-
ation in the Earth’s orbital eccentricity – a known periodic phenomenon caused by
the gravitational action of the other planets on the Earth – implied such an effect
during the present age, when this eccentricity is decreasing. Reduction in the Earth’s
orbital eccentricity leads to a reduction in the Sun’s average gravitational pull on the
Moon; the Earth’s mean attraction of the Moon, thus enhanced relative to the Sun’s
mean attraction, pulls the Moon into an orbit closer to the Earth, in which its mean
motion is greater. Laplace’s theoretical value for the increase was slightly less than

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 13,
c© Springer Science+Business Media, LLC 2010
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11′′ arc-seconds of mean motion per century, a value in satisfactory agreement with
the observed increase.

What Adams showed in 1853 was that Laplace’s deduction, properly carried out,
led to a smaller value. Laplace had treated e′, the Earth’s orbital eccentricity, as
a constant when integrating the equations of motion, then substituted the variable
value of e′ in the result of the integration.123 But this variable value should have
been introduced into the differential equations from the start; the integration would
then have yielded only 6′′.05 of increase in a century (= an angular acceleration of
12′′.10 per century-squared).

The correctness of this correction was hotly disputed by prominent astronomers –
Hansen at first, Pontécoulant and Le Verrier for a longer time.124 In 1859 Delaunay
came to Adams’ support, proving again that gravitational theory would yield an
increase of only 6′′ rather than 11′′, or the 12′′.18 value that Hansen had derived
from ancient solar eclipses and used in his tables.

In 1863 Delaunay went on to suggest that the difference between the theoretical
and observed values could be due to tidal friction, slowing the Earth’s rotation. Just
how the energy would be dissipated was not immediately and in detail clear.

Meanwhile, in completing his lunar tables in 1857, Hansen had fitted his theory to
the Greenwich lunar observations for the century from 1750 to 1850. To the larger of
the two Venus inequalities, which has a period of 239 years, he assigned a coefficient
of 21′′.47. The theory, Delaunay showed in 1863, could yield no more than 0′′.272
for this coefficient. In effect, Hansen had inserted an empirical term of 21′′.20. When
Simon Newcomb sought to correct Hansen’s theory in the early 1880s, he included in
his solution for the long-term mean motion of the Moon a similar periodic empirical
term. Brown would follow him in this. The inclusion of a periodical empirical term
unavoidably influenced the value of the secular acceleration; neither of them could be
separately ascertained with high precision from the observations. But the two terms
could always be mutually adjusted so as not to disturb the theory’s agreement with
modem observations.

Newcomb, beginning in 1870, had undertaken a study of lunar observations, with
a view to correcting Hansen’s lunar tables for use in the U.S. Nautical Almanac (the
tables used earlier were those devised by Benjamin Peirce). Hansen’s larger Venus
term, with a period of 239 years, might fit the Greenwich observations from 1750 to
1850, but it failed, Newcomb found, to fit observations before and after this period.
It occurred to him that these divagations could be due to variations in the Earth’s
speed of rotation.125 But this hypothesis implied that similar variations should occur
in the observed motions of the planets; and this corroboration Newcomb was unable
to obtain. He carried to his grave in 1909 the frustration of an unsolved mystery:

123 Philosophical Transactions of the Royal Society, 1853, 397–406. I am here following the
resumé given by E.W. Brown in his Introductory Treatise on the Lunar Theory, 243.

124 See D. Kushner, “The Controversy Surrounding the Secular Acceleration of the Moon’s
Mean Motion,” Archive for History of Exact Sciences, 39 (1988/89), 291–316.

125 Newcomb, “Researches on the Motion of the Moon, Part I,” Washington Observations for
1875, Appendix, 1878.
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whence the Moon’s divagations? We shall take up the later history of this problem in
Part III of this study.

Brown in seeking to complete his theory knew that he did not and perhaps could
not know the source of the empirical term or terms. He knew also that an empirical
value of the secular acceleration could not be obtained independently of the periodic
empirical term. He had to set this problem aside in order to define a clear immediate
task for himself. The goal he set himself was to discover and evaluate quantitatively
all gravitational effects on the Moon’s motion.

The next part of our review, therefore, will deal with the inequalities remain-
ing after solution of the “main problem”: those arising from the direct and indirect
actions of the planets, the deviations of the bodies of the Earth and Moon from
mechanical sphericity, and second-order perturbations previously ignored. These are
dealt with in Part V of Theory of the Motion of the Moon.126

At the beginning of Part V, Brown reported that he had found no new terms large
enough to account for the empirical term or terms:

. . . the search has led more and more to the conclusion that no such terms
can possibly arise with the laws of motion and of gravitation on which this
theoretical investigation is based. If these inequalities have a real existence,
it would seem that the cause must be sought in some action not purely grav-
itational.127

The main difficulty of this final phase of Brown’s undertaking did not lie in
numerical work – the detailed computation of inequalities. There were few such com-
putations he could turn over to other computers. Many terms and classes of terms had
special peculiarities permitting the calculations to be abbreviated. To devise a general
set of directions that a computer could follow would have meant ignoring such
peculiarities, and, if the accuracy Brown was aiming at was to be achieved, would
have entailed an amount of computation out of all proportion to the final results.
No more than one-third of the time occupied in these investigations, by Brown’s
estimate, was spent in accurate numerical work. A large portion of it went into the
construction of sieves – approximate tests which could identify which terms needed
to be calculated. These rough calculations often required days or weeks. Brown in
writing up Part V found it difficult to describe this part of the work; he settled for a
general characterization.

His procedure was an application of the method of variation of arbitrary constants
as developed by Lagrange. Laplace had lacked a systematic procedure for computing
higher-order perturbations, and by the 1830s the superiority of Lagrange’s procedure
was generally recognized. It was fully systematic, and could be applied consecu-
tively to all orders of perturbations. Hansen followed it in essentials, applying it in a
numerical rather than a literal form, first to Saturn and then to the Moon. Delaunay
applied it in a literal form to the Moon, but was kept from completing his com-
putations by his accidental death in 1872. G.W. Hill in 1884 extended Delaunay’s

126 TMM, Memoirs of the R.A.S., 59 (1908), 1–103.
127 Ibid., 59, 2–3.
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computation to the lunar inequalities deriving from the oblate shape of the Earth. 128

J.C. Rodolph Radau in 1892 extended it to the planetary inequalities of the Moon.129

In the 1870s Simon Newcomb had also begun an investigation of the planetary
perturbations of the Moon by the Lagrangian method. Lack of time prevented him
from completing it, but he published his results in 1895, believing that some of them
would prove useful.130

Brown thus had precedent for applying the Lagrangian procedure to the remain-
ing inequalities. In the solution of the main problem, he had started with the variation
orbit, then added perturbations of that orbit varying with the powers and products of
four small parameters – lunar eccentricity, solar eccentricity, orbital inclination, and
parallax. The new inequalities involved factors of a quite different kind: positions of
planets, the shapes of the Earth and Moon, etc. These factors could be introduced
as new terms in a disturbing function, and their effects systematically determined by
the algorithms of the Lagrangian procedure.

This method, however, seemed especially difficult to apply in the case of the
perturbations of a satellite like the Moon, where characteristics pertaining to the
satellite, its primary, and several perturbing bodies had all to be taken into account.
Hansen had complained about this difficulty. In response, Hill in an article of 1883
showed that the application was easy enough if the shortest computational routes
were chosen.131 The gist of his suggestion was this:

The work may be divided into two portions, independent of each other.
In one the object is to develop, in a periodic series, certain functions of
the Moon’s coordinates, which in number do not exceed five. This portion is
the same whatever planet may be considered to act, and hence may be done
once for all. In the other portion we seek the coefficients of certain terms
in the periodic development of certain functions, five also in number, which
involve the coordinates of the Earth and planet only. And this part of the
work is very similar to that in which the perturbations of the Earth by the
planet in question are the things sought.132

Radau followed Hill’s proposal in his “Recherches concernant les inégalités
planétaires de la lune” of 1892,133 and Brown also followed it in his derivations
of the Moon’s planetary perturbations.

128 G.W. Hill, Determination of the Inequalities of the Moon’s Motion which are produced
by the Figure of the Earth, Astronomical Papers of the American Ephemeris, III (1884),
201–344; The Collected Mathematical Works of George William Hill, II, 179–320.

129 J.C.R. Radau, Recherches concernant les inégalités planétaires de la lune, Annales de
l’Observatoire de Paris, 21 (1892), B1–B114.

130 Astronomical Papers prepared for the Use of the American Ephemeris and Nautical
Almanac, 5, 97–205.

131 “On Certain Possible Abbreviations in the Computation of the Long-Period Inequalities
of the Moon’s Motion due to the Direct Action of the Planets,” American Journal of Math-
ematics, 6 (1883), 115–130.

132 Ibid., 115.
133 Annales de l’ Observatoire de Paris, 21, B.1–B.114.
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But there was still another difficulty, arising from the manner of Brown’s
solution of the “main problem.” Lagrange’s method presupposed a literal theory,
in which the derivatives of the coordinates and velocity components with respect to
the arbitrary constants of the solution (the orbital elements) could be written out as
algebraic formulas. The lunar theory Brown was developing was a semi-numerical
rather than a literal theory, in that the numerical value of the constant m = n′/n, or
m = n′/(n − n′), was introduced from the start. Consequently, no direct route was
available for obtaining the algebraic formulas for the derivatives of the coordinates
and velocity components with respect to n, the mean rate of motion of the Moon.

Brown had foreseen this difficulty. In a paper published in 1903,134 he showed
how the required derivatives could be obtained, not with complete precision but to a
sufficient approximation. The following account gives a general idea of the method.

Derivatives of the Coordinates with Respect to n

The six arbitrary constants of the lunar theory may be taken as ε, π, θ , (the epochs of
the Moon’s mean longitude, perigee, and node), and e (the Moon’s orbital eccentri-
city), γ (the sine of half the Moon’s mean orbital inclination to the Ecliptic), and a
(the Earth-Moon distance or reciprocal of the Moon’s parallax). Of the six constants,
the first three mentioned, ε, π, θ , occur only as parts of angular arguments of sines
and cosines, whether the theory has been worked out literally or with numerical
values. The derivative of a coordinate with respect to ε, π , or θ can therefore be cal-
culated by an elementary application of the chain rule; the result will be as accurate
as the terms differentiated.

The arbitraries e, γ, a occur in the coefficients of the periodic terms. Obtaining
exact expressions for the derivatives of the coordinates and velocity components with
respect to these parameters would require having explicit and exact algebraic rela-
tions between the coordinates and the coefficients – hence a literal theory. But given
the slow convergence of Delaunay’s theory, Brown had concluded that obtaining a
sufficiently precise literal theory for the Moon’s motion was a practical impossibility.

By 1903, however, he had obtained the fourth-order terms in the semi-numerical
theory. From the theory developed this far, he believed he could obtain, with suffi-
cient accuracy, the derivatives of the coordinates with respect to n.

Every coefficient of a periodic term was of the form a Aλ, where λ is the product
of the highest positive powers of e, γ, e′, a that are factors of the coefficient, and A
could be expanded in powers of m or m, e2, γ 2, e′2, a2. The convergence of A with
respect to powers of e2, γ 2, e′2, a2 appeared sufficiently rapid for practical purposes.
With respect to m or m, however, the convergence was often too slow – about as slow
as that of a series in which the ratio of successive terms is 1/2. This was the case with
the derivatives of the coordinates with respect to n. Brown was thus led to pose the
following problem:

134 E.W. Brown, “On the Formation of the Derivatives of the Lunar Coordinates with Respect
to the Elements,” Transactions of the American Mathematical Society, 4 (1903), 234–248.
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Given the derivatives of the various functions with respect to e, e′, γ, a, to
find those with respect to n from a theory in which the numerical value of m
has been substituted.135

To resolve this problem, Brown had recourse to certain relations intrinsic to the
Lagrangian method. To give an idea of the new method, we begin by imagining that
the “main problem” of the lunar theory has been solved by the Lagrangian method.
The equations of motion solved by this solution would be of the form

d2x

dt2
= ∂F

∂x
,

d2 y

dt2
= ∂F

∂y
,

d2z

dt2
= ∂F

∂z
, (B.93)

where F is the force-function, and x, y, z are referred to fixed axes. The solution
would involve six arbitrary constants, which might, for instance, be e, γ, a, ε, π, θ as
listed above. Brown designated them generically by ap(p = 1, 2, . . . , 6). He desig-
nated the derivatives of the coordinates and of their velocities with respect to the
ap by

x p = dx

dap
, ẋ p = d2x

dtdap
= d2x

dapdt
= dẋ

dap
, . . . , . . . .

The equations for the variations, which are deducible from (B.93), are then

ẍ p = ∂2 F

∂x2
x p + ∂2 F

∂x∂y
yp + ∂2 F

∂x∂z
z p, ÿp = . . . , z̈ p = . . . . (B.94)

These equations possess 6!/2!4! = 15 integrals of the form

(p, q) = ẋ pxq − ẋq x p + ẏp yq − ẏq yp + ż pzq − żq z p = C pq(p, q = 1, 2, . . . , 6),
(B.95)

where C pq is a constant, with C pq = −Cqp and C pp = 0. The left-hand members of
(B.95) are called “Lagrange brackets.”

Brown stipulated that the solution of (B.94) be such that x, y, z each consists of
sines or cosines of sums of multiples of angles

w j = b j t + a j ( j = 4, 5, 6).

The b j and the coefficients of the periodic terms are functions of the arbitraries
a1, a2, a3. It is then well-known, Brown tells us, that

Cii ′ = 0,C j j ′ = 0,Ci j = dc j−3

dai
, b j = − d B

dc j−3
(i, i ′ = 1, 2, 3; j, j ′ = 4, 5, 6),

where B is a constant expressible in terms of c1, c2, c3, and the latter are functions
of a1, a2, a3.

Considering the sixth-order determinant

� = |ẋ p, x p, ẏp, yp, ż p, z p| (p = 1, 2, . . . , 6) (B.96)

135 Ibid., 239.
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Brown formed the derivative d�/dt . This derivative is got by differentiating in turn
the elements in each of the six columns with respect to t and taking the sum of
the six resulting determinants. Each of the six determinants turns out to be zero.
Consequently, d�/dt = 0 and � = K , a constant.

Brown then obtained the value of this constant as the square-root of the 6 × 6
determinant

� = |C pq |1/2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 C14 C15 C16

0 0 0 C24 C25 C26

0 0 0 C34 C35 C36

C41 C42 C43 0 0 0

C51 C52 C53 0 0 0

C61 C62 C63 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2

=

∣∣∣∣∣∣∣

C14 C15 C16

C24 C25 C26

C34 C35 C36

∣∣∣∣∣∣∣
= K . (B.97)

Designating the first minor of Ci j in the 6 × 6 determinant by ki j , Brown intro-
duced the definitions

Xi = ki4x4+ki5x5+ki6x6, X j = k1 j x1+k2 j x2+k3 j x3, (i = 1, 2, 3; j = 4, 5, 6)

where xi , x j , we recall, are the partial derivatives of x with respect to the elements
ai , a j . He was then able to prove that

� =
∑

i

ẋi Xi −
∑

j

ẋ j X j ,

or equivalently, ∑

i

(ẋi Xi − xi Ẋi ) = K (i = 1, 2, 3). (B.98)

Defining Yi , Z j with respect to y j , z j in the same way as Xi was defined with
respect to x j , he obtained the two equations K = ∑

(ẏi Yi −yi Ẏi ) = ∑
(żi Zi −zi Żi ).

Now suppose that all the derivatives of the coordinates x, y with respect to the
orbital elements ap are known except for x1, y1. (a1 could be n.) Can (B.98) be
solved for x1, and the corresponding equation involving yi ,Yi for y1? To see that
this can be done, we need to know that

ẋ1 X1 − x1 Ẋ1 = d

dt
(x1 X1).

To understand the signs in the left-hand member of this equation, recall that the
coordinate x is given by a cosine term whose argument is a sum of angles of the form
b j t + a j . The derivatives xi (i = 1, 2, 3) are to be understood as partial derivatives
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with respect solely to elements occurring in the coefficient of this cosine term; hence
the derivative x1 is a positive cosine term. The derivatives x j in Xi (= ki4x4 +ki5x5 +
ki6x6), in contrast, are with respect to orbital elements occurring in the arguments of
cosine terms; hence Xi is a sum of negative sine terms. However, in the first term of
the left-hand member, the first factor is dx1/dt ; since t occurs in the argument of x1,
the time-derivative with respect to t will be a negative sine; the first term, therefore,
is a product of negative factors, hence positive. In the second term of the left-hand
member, the differentiation of X1 (a sum of negative sine terms) with respect to t
will not change the sign, but produce a sum of negative cosine terms; the sign of the
second term is therefore negative.

The solution of (B.98) for x1 is therefore

x1 = X1

∫
K − ẋ2 X2 + x2 Ẋ2 − ẋ3 X3 + x3 Ẋ3

X2
1

dt; (B.99)

the equation in yi ,Yi analogous to (B.98) gives the solution for y1.
Applying (B.99) directly to the lunar theory leads to difficulties, among them

the emergence of terms proportional to the time, and the possibility that the prin-
cipal term of X1, which appears as a denominator in the integrand of (B.99), may
vanish, since it is the derivative of a cos(nt + ε) with respect to n. Brown avoided
these difficulties by using a canonical system of orbital elements. “Canonical” here
means, as earlier, that the elements are related to one another in pairs through a force-
function, the time-derivative of each element being given by a partial derivative of
the force-function with respect to the element with which it is paired.

For the three angular canonical parameters, Brown chose the Moon’s mean
motion and the mean motions of its perigee and node, designating them by

wi = bi t + ai+3 (i = 1, 2, 3).

These are the same angles as used previously, but with changed subscripts. Their
values are understood to be those that the wi have after the “main problem” has been
solved.

These three parameters being chosen, the remaining three parameters,
ci (i = 1, 2, 3), in order to be canonical, had to be such that

dci

dt
= ∂F

∂wi
,

dwi

dt
= −∂F

∂ci
+ bi (i = 1, 2, 3).

The ci can be derived in more than one way; Brown, for instance, had shown136 that

ci = const.term in ẋ xi+3 + ẏ yi+3 + żzi+3.

The bi and the coefficients of the periodic terms in the theory depend only on the
arbitraries c1, c2, c3. These assumptions turn out to imply that

136 “On certain Properties of the Mean Motions, etc.,” Proceedings of the London Mathemat-
ical Society, 28 (1896), 150.
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bi = −d B

dci
(i = 1, 2, 3),

dc1

dc2
= −db2

dn
,

dc1

dc3
= −db3

dn
,

where B, as before, is expressed in terms of c1, c2, c3 and the known constants.
Given the values of c1, c2, c3, Brown found that, for substitution in (B.99),

K = 1, ki,i+3 = 1, ki j = 0 ( j 	= i + 3), Xi = xi+3.

The derivatives of x or y with respect to any of the ci have two terms, since the ci

occur both in the coefficients of the sines and cosines, and in b j . Using the opera-
tor ∂/∂ci to denote differentiation with respect to ci solely where it occurs in the
coefficients of the periodic terms on which it operates, Brown obtained

dx

dci
= ∂x

∂ci
+ t

∑

j

db j

dci
x j ,

dẋ

dci
= d

dt

∂x

∂ci
+
(

1 + t
d

dt

)⎛

⎝
∑

j

db j

dci
x j

⎞

⎠

= ∂

∂ci

dx

dt
+ t

d

dt

⎛

⎝
∑

j

db j

dci
x j

⎞

⎠ .

Substituting these expressions into (B.99), and equating separately to zero the terms
which do and do not contain t as a factor, he obtained in the first case

db j

dci
= dbi+3

dc j−3
(i = 1, 2, 3; j = 4, 5, 6), (B.100)

and in the second case,

∑

i

(
xi+3

d

dt

∂ ẋ

∂ci
− ẋi+3

∂x

∂ci

)
= 1,

or
∑

i

(xi+3 ẋi − ẋi+3xi )+
∑

j

∑

i

db j

dci
x j xi+3 = 1, (B.101)

according as the first or second form of d2x/dtdci is used. He employed the first
equation of (B.101) when substituting i = 1, and the second when substituting
i = 2, 3, and so found

x4
∂ ẋ

∂c1
− ẋ4

∂x

∂c1
= 1 − x5

∂ ẋ

∂c2
+ ẋ5

∂x

∂c2
− x6

∂x

∂c3
+ ẋ6

∂x

∂c3
− x4

∑

j

db j

dci
x j

= Q − x2
4

db4

dc1
.
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Putting db5/dc1 = db4/dc2, db6/dc1 = db4/dc3 in accordance with (B.100), then
integrating and dividing by x2

4 , Brown had at last the result

∂x

∂c1
= x4

∫ (
Q

x2
4

− db4

dc1

)
dt. (B.102)

The derivative db4/dc1 on the right-hand side is a constant since b4 and c1 are con-
stants; hence this term on integration will lead to a term in ∂x/∂c1 factored by t ,
which is impossible. Therefore db4/dc must be set equal to the constant term in the
expansion of Q/x42 .

Although (B.102) solves the problem Brown had set for himself, he did not leave
his result in this form, but chose to adapt the results to the semi-canonical system
b4(= n), c2, c3, so that c1 becomes a function of the independent constants n, c2, c3.
In this semi-canonical system, he found the new form of (B.102) to be

∂x

∂n
= X1

∫ (
dc1

dn

Q′

X2
1

− 1

)
dt (B.103)

where Q′ = 1 − x5
∂ ẋ

∂c2
+ ẋ5

∂x

∂c2
− x6

∂ ẋ

∂c3
+ ẋ6

(
∂x

∂c3

)
.

The only derivative with respect to n in the integrand of (B.103) is dc1/dn, and this
is determined by the vanishing of the constant term under the integral sign. (B.103)
could have been obtained, Brown tells us, from (B.99) by direct transformation of
the set c1, c2, c3 into the set n, c2, c3.
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Direct Planetary Perturbations of the Moon
(The Adams Prize Paper)

Brown gave his full account of the derivation of the direct planetary perturbations
of the Moon, not in his Theory of the Motion of the Moon, but in a separate treatise
entitled The Inequalities in the Motion of the Moon due to the Direct Action of the
Planets. This essay was awarded the Adams Prize of the University of Cambridge
for 1907, and was published by the Cambridge University Press in 1908.137 Brown’s
dedication of the work reads

To George Howard Darwin, at whose suggestion the study of the Moon’s
motion was undertaken by the author, and whose advice and sympathy have
been freely given during the past twenty years, this essay is gratefully dedi-
cated.

Another award came to Brown early in 1907: on February 8 he became the
seventh recipient of the Gold Medal of the Royal Astronomical Society. The president
of the society, William H. Maw, devoted his presidential address that year to the pre-
sentation of the award. (Brown could not be present.) This award, from its inception,
had been given exclusively for contributions to the lunar theory. The previous recipi-
ents had been the Baron Damoiseau (1831), Giovanni Plana (1840), Peter Hansen
(1860), J.C. Adams (1866), Charles Delaunay (1870), and G.W. Hill (1887). With
these illustrious workers, Maw stated, “our present medalist is well qualified to
rank”.138 According to P.H. Cowell as quoted by Maw, Brown was “the first Lunar
theorist to use independent equations of verification,” his device being to form a
small variation of the solution of Hill’s equations:

The numerical application of this device was rendered possible by calcu-
lating series for various complicated fractions of the coordinates in Hill’s
variation curve. The utility of the plan is obvious as soon as it is got into
working order, and its conception implies rare insight on the part of our
medalist. It lies at the root of his success in obtaining more accurate results,

137 We shall reference this treatise hereafter simply as “the Adams prize paper.”
138 “The President’s Address,” MNRAS, 67 (1907), 300.
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with less labor than his predecessors. He has also obtained theorems by
which the higher parts of the motion of the perigee and the node may be
calculated in advance of the corresponding group of periodic terms.139

The following passage, also quoted by Maw, is from a letter by G.W. Hill:

Much as we rightly welcome the results of Professor Brown’s devoted
labors, we should be unwarranted in assuming that their employment in the
Lunar tables would give rise to a marked improvement in the representa-
tion of observations. A slight one might indeed be expected; but it has been
evident for some time that the Moon deviated from its calculated orbit more
because it is subject to irregular forces, which we have not yet the means
of estimating, than because the tables are affected by slight defects in the
mathematical treatment of the forces which are already recognized. This
circumstance in no sense diminishes the credit due to Professor Brown’s
work.140

Hill is referring to the troublesome “empirical term.” Maw also mentions receiving a
letter from Brown in which

he modestly states that the only portions of his work presenting real difficul-
ties were those arising from the direct and indirect actions of the planets.141

From this we gather that, toward the end of Brown’s extended assault on the lunar
inequalities, the terrain to be traversed became more difficult.

Section I of the Adams Prize Paper

Brown took his start from the canonical equations for determining the direct plane-
tary perturbations of the Moon. We gave the same equations earlier, using the symbol
F for the force-function. Brown now proposed to add to F the additional terms
necessary to account for the planetary perturbations, symbolizing these terms by R,
so that the equations now to be solved were

dci

dt
= ∂R

∂wi
,

dwi

dt
= −∂R

∂ci
+ bi (l = 1, 2, 3). (B.104)

Here b1, b2, b3 are the mean motions of the Moon, of its perigee, and of its node,
and the ci are the canonical constants corresponding to the wi , and are functions of
n, e,k, the constants of mean motion, eccentricity, and orbital inclination in Brown’s
lunar theory. The ci also contain e′, n′, which characterize the Sun’s (or Earth’s)
motion.

139 Ibid., 310.
140 Ibid., 308.
141 Ibid., 309.
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But rather than proceeding to solve (B.104), Brown (as in his paper of 1903) first
shifted to the semi-canonical system n, c2, c3, while retaining the wi unchanged.
Putting

dc1

dn
= −a2β,

and remembering that

dc1

dc2
= −db2

dn
,

dc1

dc3
= −db3

dn
,

he found

dn

dt
= 1

a2β

(
− ∂R

∂w1
− db2

dn
· dc2

dt
− db3

dn
· dc3

dt

)
,

dw1

dt
= 1

a2β

∂R

∂n
+ b1,

dc2

dt
= ∂R

∂w2
,

dw2

dt
= − ∂R

∂c2
+ b2 +

(
dw1

dt
− b1

)
db2

dn
,

dc3

dt
= ∂R

∂w3
,

dw3

dt
= − ∂R

∂c3
+ b3 +

(
dw1

dt
− b1

)
db3

dn
. (B.105)

Here b2, b3, c1 are understood to be expressed in terms of n, c2, c3, and R in terms
of n, c2, c3, w1, w2, w3.

A periodic term in R has the form

R = n′2a2 A cos (qt + q ′) = n′2a2 A cos (i1w1 + i2w2 + i3w3 + q ′′t + q ′′′),

where a is the linear constant of Brown’s lunar theory; A is a dimensionless numeri-
cal coefficient; i1, i2, i3 take integral values; and q ′′t + q ′′′ is a combination of the
solar and planetary arguments. The time-derivatives of n, c2, c3 in (B.105) are thus

dn

dt
= n′2

β
· a2

a2
A

dq

dn
sin(qt + q ′),

dc2

dt
= −i2n′2a2 A sin(qt + q ′),

dc3

dt
= −i3n′2a2 A sin(qt + q ′). (B.106)

Among the planetary perturbations of the Moon, Brown knew that there were
many long-period terms with tiny coefficients. Inequalities with periods greater than
3500 years, he decided, could be safely ignored. He initially assumed that the plane-
tary perturbations were small enough so that they could be treated as first-order
variations (later he would investigate whether second-order variations would need
to be computed). Equations (B.106) could then be integrated with respect to t so as
to yield the increments δn, δc2, and δc3:
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δn

n
= −m

β
· a2

a2
· dq

dn

n′

q
A cos (qt + q ′),

δc2

na2
= i2m · a2

a2

n′

q
A cos (qt + q ′),

δc3

na2
= i3m · a2

a2

n′

q
A cos (qt + q ′). (B.107)

The corresponding equations for δw1, δw2, δw3 proved to be

δw1 = 1

β

a2

a2

(
m

n′

q
A1 − dq

dn

n′2

q2
A

)
sin(qt + q ′),

δw2 = a2

a2

{
m

n′

q

(
A2 + A1

β

db2

dn

)
− n′2

q2
A

(
q2

n
+ 1

β

db2

dn

dq

dn

)}
sin(qt + q ′),

δw3 = a2

a2

{
m

n′

q

(
A3 + A1

β

db3

dn

)
− n′2

q2
A

(
q3

n
+ 1

β

db3

dn

dq

dn

)}
sin(qt + q ′),

(B.108)

A1 = n

a2

d

dn
(a2 A), A2 = −a2n

d A

dc2
, A3 = −a2n

d A

dc3
,

where

q2 = −na2 dq

dc2
, q3 = −na2 dq

dc3
.

Equations (B.107) and (B.108) constituted Brown’s solution of the problem.
Numerical values had next to be substituted for the derivatives

dc1

dn
,

db2

dn
,

db3

dn
,

db2

dc2
,

db2

dc3
= db3

dc2
,

db3

dc3
,

and the other constants in (B.107) and (B.108). Brown relied on his own earlier
evaluations of constants as compared with the constants adopted by Delaunay, Hill,
Newcomb, and Radau. The functions c1, c2, c3 were the same as Delaunay’s L ,
G − L , H − G, after the transformations to Delaunay’s final system of arbitraries
had been made These same elements were used by Newcomb and Radau. However,
Brown in his theory had adopted the constants e and k rather than Delaunay’s e and
γ , and to make comparisons with Delaunay’s, Newcomb’s and Radau’s numbers,
he had to convert their constants into his own system. The calculations involved
were not intricate, but Brown invested enormous care to insure that his results were
accurate to four significant figures. With the introduction of numbers, (B.107) and
(B.108) took the following form, where the numbers in square brackets are common
logarithms plus 10.
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δn

n
= (−i1 + .01486i2 − .003744i3) f ′ A

s
cos (qt + q ′),

δc2

na2
= +[9.51801]i2 f ′ A

s
cos (qt + q ′),

δc3

na2
= +[9.51801]i3 f ′ A

s
cos (qt + q ′); (B.107a)

δw1 =
{
(−i1 + .01486i2 − .003744i3) f

A

s2
+ f ′ A1

s

}
sin(qt + q ′),

δw2 =

⎧
⎪⎨

⎪⎩

(+.01486i1 − .007066i2 − .008148i3) f
A

s2

+
(

−[8.1720]A1+[11.0999]
d A

de
−[7.9422]

d A

dk

)
f ′

s

⎫
⎪⎬

⎪⎭
sin(qt + q ′),

δw3 =

⎧
⎪⎨

⎪⎩

(−.003744i1 − .008148i2 + .001210i3) f
A

s2

+
(

+[7.5733]A1+[10.2620]
d A

dk
−[8.2962]

d A

de

)
f ′

s

⎫
⎪⎬

⎪⎭
sin(qt + q ′).

(B.108a)

Here

A1 = n

a2

d

dn
(Aa2),

s = no. of arc-seconds in the daily mean motion of the argument qt + q ′,

s′ = no. of arc-seconds in the daily mean motion of the Sun = 3548′′.19,

β = − 1

a2
· dc1

dn
, f = 1

4

m′′

m′
a2

a2

s′2

β
2,06,265, f ′ = 1

4

m′′

m′
a2

a2

ms′

β
2,06,265.

The number 2,06,265 is 180 ·3600/π , the factor for turning radians into arc-seconds.

Section II of the Adams Prize Paper

Brown now transformed the disturbing function. This had been given initially as

R

m′′ = 1

[(ξ − x)2 + (η − y)2 + (ζ − z)2]1/2
− xξ + yη + zζ

�3
, (B.109)

where m′′ is the mass of the perturbing planet, ξ, η, ζ are its coordinates measured
from the Earth’s center, and� is its distance from that center; x, y, z are the Moon’s
coordinates, again with the same center as origin. The first term of (B.109) yields by
differentiation the components of the planet’s action on the Moon; the second term
yields the planet’s action in drawing the Earth in a direction opposite to that in which
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the Earth draws the Moon. Brown expanded the first term by Taylor’s theorem for
three variables, using the operator

x
∂

∂ξ
+ y

∂

∂η
+ z

∂

∂ζ
= ∂

∂Q
,

and obtained

1

[(ξ − x)2 + (η − y)2 + (ζ − z)2]1/2

=
[

1 − ∂

∂Q
+ 1

2!

(
∂

∂Q

)2

− 1

3!

(
∂

∂Q

)3

+ · · ·
]

1

�

= 1

�
+ xξ + yη + zζ

�3
+
[

1

2!

(
∂

∂Q

)2

− · · ·
]

1

�
. (B.110)

The second term in this expansion will cancel the second term of (B.109). Since
R will be used only in the form of its derivatives with respect to the lunar orbital
elements, and these elements are absent from �, the effective disturbing function is

R

m′′ =
[

1

2!

(
∂

∂Q

)2

− 1

3!

(
∂

∂Q

)3

+ · · ·
]

1

�
. (B.111)

The separation of the terms of R into a sum of products, one factor of which involves
the lunar coordinates and the other the planet’s coordinates, as proposed by Hill and
adopted by Radau, is implicit here.

The next step was to substitute complex coordinates:

x + y
√−1 = u, ξ + η√−1 = u1,

x − y
√−1 = s, ξ − η√−1 = s1,

r2 = us + z2, �2 = u1s2 + ζ 2,

∂

∂Q
= u

∂

∂u1
+ s

∂

∂s1
+ z

∂

∂ζ
.

With these substitutions, 1/� became a function of the complex variables u, s, u1, s1,
so that the Cauchy-Riemann conditions applied to its real and imaginary parts. Those
conditions implied two second-order differential equations that Laplace had been the
first to derive. The formulas for these equations, given u + iv = f (ξ + ηi) = f (z),
are

∂2u

∂ξ2
+ ∂

2u

∂η2
= 0,

∂2v

∂ξ2
+ ∂2v

∂η2
= 0.

Thus both the real and the imaginary parts of the function f (z) satisfy the condition
that their second-order derivatives add to zero. Applied to 1/�, this result gave
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∂2

∂ζ 2

1

�
= −

(
∂2

∂ξ2
+ ∂2

∂η2

)
1

�
= −4

∂2

∂u1∂s1

1

�
.

From this equivalence Brown derived a rule for expanding the disturbing function:

expand
(
∂
∂Q

)n and replace
(
∂
∂ζ

)2m by
(− 4 ∂2

∂u1∂s1

)m and us by r2 − z2.
Next, Brown replaced the derivatives with respect to the coordinates by the

derivatives with respect to a′ (the Earth’s mean solar distance), T (the Earth’s mean
longitude), h′′ (mean longitude of the node of the planet on the ecliptic), and γ ′′ (the
sine of half the inclination of the planet’s orbit to the ecliptic). This enabled him to
exploit an already available expansion of 1/�, given by Le Verrier in Volume I of
the Annales of the Paris Observatoire. Le Verrier had calculated it to terms of the
seventh order in the eccentricities and mutual inclination of the Earth and perturbing
planet.142

The algebra here, lengthy and complex, we omit. According to Brown, the
resulting formulas are easy and rapid for numerical calculation. (As indicated earlier,
the computations beyond those used in solving the “main problem” were performed
largely by Brown himself.) The main features of Brown’s transformation may be
characterized as follows.

Each term of R is made to consist of two main parts together with a con-
stant factor. The first part is a function of the Moon’s coordinates, with which
are combined coefficients involving the Earth’s solar distance and true longitude:
1/r ′2, 1/r ′3, e(V ′−h′′) j , where j denotes

√
(−1). The second part involves the deriva-

tives of 1/�,� being a function of the Earth’s and the disturbing planet’s elements
only. Let θ be an angle present in the first part, and φ an angle present in the second
part; θ ± φ will then be the argument of a term in R.

Brown expressed the first part in terms of certain coefficients Mi which could be
computed once for all:

M1 = coef. of e jθ in
a′2

r ′2 · r2 − 3z2

a2
,

1

2
(M2 ± M3) = coef. of e± jθ in

a′2

r ′2 e∓2 j (V ′−T ) · u2

a2
,

with similar formulas for M4,M5, . . . , M12.
He expressed the planet portions of R in terms of derivatives of 1/� with respect

to α, T, h′′, l ′, the quantities present explicitly in Le Verrier’s expansion. Suppose
a1, a2 represent the mean solar distances of two planets, with a1 < a2. Brown put
α = a1/a2 along with

α
∂

∂α
= D.

Then, for the Earth and an inner planet, a2 = the Earth’s mean distance (a′), a1 =
the planet’s mean distance (a′′), and (because 1/� is homogeneous in α with
degree −1),

142 Annales de l’Observatoire de Paris, I. Brown notes that Boquet, ibid., XIX, had given the
terms of the eighth order.
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r ′ ∂
∂r ′ = −α ∂

∂α
− 1 = −D − 1.

For an outer planet and the Earth, a1 = a′, a2 = a′′, and

r ′ ∂
∂r ′ = α ∂

∂α
= D.

For the second part Brown then put

1

�
= P cos φ = P cos (iT + 2i1h′′ + φ′),

where i and i1 are integers and φ′ is independent of T, h′′. The planetary factors in
the several terms of R are obtained as derivatives of P , for example,

P1 = [(D + 1)2 − i2]P,

P2 = 1

2
P1 + (D + 2)P + (i2 − 1)P,

P3 = (D + 2)i P,

P4 + P5 = (D + 1 − i)

{
i + i1

γ ′′2 + (1 − γ ′′2)
∂

∂γ ′′2

}
P,

P4 − P5 = (D + 1 + t)

{
−i − i1

γ ′′2 + (1 − γ ′′2)
∂

∂γ ′′2

}
P, etc.

Dividing R into two parts, R1 and R2, Brown gave for R1 the formula

R1 = m′′

4m′ n′2a2a′
[

M1 P1 + M2 P2 ∓ M3 P3 − 2γ ′′
√

1 − γ ′′2 M4(P4 ± P5)

]
cos (θ±φ),

(B.112)
all upper signs being taken for the sum θ + φ, and the lower signs for the difference
θ − φ.

R2 is similarly formed from products of additional coefficients Mi and Pp:

R2 = 1

16

m′′

m′ · n′2a2 a

a′ a
′

⎡

⎢⎣
M6 P6 ∓ M7 P7 + M8 P8 ∓ M9 P9

− 2γ ′′
√

1 − γ ′′2

{
M10(P10 ± P11)

+M12(P12 ± P13)

}
⎤

⎥⎦ cos (θ ± φ).

(B.113)
The formulas (B.112) and (B.113) are for inner planets. For exterior planets the
corresponding formulas are obtained by substituting (−D − 1) for D, and the factor
αa′′ for a′.

Section III of the Adams Prize Paper

This section concerns the computation of the coefficients in the expansion just
described. The distance � between disturbing planet and the Earth is given by
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�2 = 1 + α2 − 2α cos (T − P),

where T and P are the heliocentric longitudes of the Earth and disturbing planet.
The successive inverse odd powers of �, with

∑
denoting summation for integral

values of i from −∞ to +∞, can be represented generically by

α
s−1

2

�s
= 1

2
a′∑β(i)s cos i(T − P),

where s is an odd integer. Brown obtained these expansions from Tisserand’s Traité
de Mécanique Céleste. To form the functions Pp, the derivatives

(
α d

dα

)p of the

coefficients β(i)s were required; Brown represented them by

β(i)s,p = 1

p!
α p d p

dα p
β(i)s .

The coefficients in Le Verrier’s expansion of 1/� are all functions of e′, e′′, γ ′′

and the β(i)s,p. Brown’s method of deriving the Pp, he tells us

. . . does not necessarily give the shortest algebraical expressions for the
coefficients, but for numerical computation, which is the principal end in
view, these expressions have this advantage – that they require very little use
of logarithmic tables. The calculations consist mainly of additions, subtrac-
tions and multiplications by integers less than 100, and the functions are read
straight from Le Verrier’s expansion. Moreover, it is possible to see almost
immediately when the terms in a given coefficient become insensible.143

In illustration of the last-mentioned assertion, Brown turned to the largest planetary
perturbation of the Moon, a Venusian perturbation. It has the argument 	 + 16T −
18V , in which 	 is the mean anomaly of the Moon and V the heliocentric longitude of
Venus. The principal term has the factor γ ′′2 and the argument 	+16T −18V −2h′′.
The contributions to it that are greater than 0′′.01 are shown in the following table,
with their orders indicated in the left-hand column.

Order P1 (P2 + P3)/2 (P2 − P3)/2

γ ′′2 −15′′.89 −1′′.28 +1′′.19

γ ′′4 +1.65 +.17 −.09

γ ′′6 −.11 +.01 .00

γ ′′8 +.01

e′2γ ′′2 +.27 .00 −.01

e′′2γ ′′2 +.12 +.01 −.01

e′4γ ′′2 .00

e′2e′′2γ ′′2 −.01

Sums −13′′.96 −1.11 +1.08

143 The Adams Prize paper, 27–28.
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The sum of the sums is −13′′.99; Brown stated it to be accurate to within 0′′.05, or
0.36%, and explained why he had had to accept this upper bound, greater than 0′′.01:

[T]he additional computations necessary to obtain the final coefficient within
0′′.005 are not very long, but in view of the uncertainty in the mass of Venus,
which is doubtful within one per cent, and of the length of the period of the
term [273 years], the present results are sufficient.144

None of the other planetary perturbations of the Moon are as great as 2′′. Since,
in general, the degree of accuracy aimed at was 0′′.01, Brown concluded that, where
the computations required logarithms, it would be sufficient to use four-place tables
and to retain four significant figures in the quantities involved, so that the final results
would be accurate to three significant figures.

The most arduous part of the work, according to Brown, consisted in the compu-
tation of the derivatives of r2, x2 − y2 +2i xy = u2

0 with respect to n, to the accuracy
required. He used the method described in his paper of 1903.145

Section IV – A Sieve for the Rejection of Insensible Coefficients

Brown divided the planetary perturbations of the Moon into two categories, which he
called primary and secondary. The primary inequalities were those arising from the
substitution of w1 + δw1 for the non-periodic term of V , the Moon’s true longitude;
they were thus given by

δV = δw1.

The secondary inequalities were those arising from the substitution of the variations
of the elements in the periodic terms, and so were obtained from

δV =
(

dV

dw1
− 1

)
δw1 + dV

dw2
δw2 + dV

dw3
δw3 + dV

dn
δn + dV

dc2
δc2 + dV

dc3
δc3.

(An analogous formula gives the variations of the radius vector r .) The majority of
the primary inequalities have periods of a year or more. Nearly all the secondary
inequalities have periods of a month or less.

Among the primary inequalities, only those with a period of a year or more were
in need of a sieve. If any part of the Great Empirical Term was to prove explicable
gravitationally, it was most likely to be found amongst these long-period primary
inequalities. There were thousands of inequalities whose periods suggested that their
coefficients might be sensible, but which on computation were found to be smaller
than 0′′.01. Even the roughest approximation, Brown tells us, could be a laborious
process. Formulas that could be rapidly applied were thus a desideratum.

Fortunately, for the two most troublesome planets, Venus and Mars, Newcomb
in his treatise of 1895 had given expansions of 1/�3 and 1/�5 in sines and cosines

144 The Adams Prize paper, 28.
145 Transactions of the American Mathematical Society, IV, 234–248.
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of iT − j P up to i = 29, with a considerable number of values of i − j .146 Using
Newcomb’s expansions, Brown was able to construct an approximate formula for
the coefficient in longitude. Numerical values were introduced from the start. Here
Brown sought only rough values for the coefficients, his purpose being to identify
the terms that needed to be computed accurately. This sieve stood Brown in good
stead, leading to a considerably more complete computation of the direct planetary
perturbations of the Moon than the only other computations comparable with it, those
by Radau147 in 1992 and by Newcomb148 in 1907.

Frank Schlesinger and Dirk Brouwer gave the following assessment of Brown’s
computation:149

When Brown began his work on the lunar theory it was known by
Newcomb’s researches that large unexplained differences existed between
Hansen’s theory and the Moon’s observed motion. The question whether
these differences could be ascribed to imperfections of the gravitational
theory thus became one of the most urgent problems in gravitational
astronomy. Its solution required a reliable determination of the planetary
perturbations in the Moon’s motions. This work was done independently by
Radau (1835–1911), Newcomb (1835–1909), and Brown. Of these deter-
minations Brown’s was the most complete; moreover, his comparison [in
Monthly Notices of the R.A.S., vol. 68, pp. 148–170] of the three results left
very few discrepancies unexplained.

In the comparison just referred to, inserted in the Monthly Notices for January
of 1908, Brown listed 441 direct planetary perturbations in the longitude of the
Moon with coefficients exceeding 0′′.003. (He had in fact computed almost all those
with coefficients greater than 0′′.001, but Newcomb had chosen 0′′.003 for the lower
bound in his list, and Brown in his comparison followed suit.) Most of these terms
were of short period, and such terms were most conveniently added to the true
longitude. The terms of long period, Brown decided, were best added to the mean
longitude. Of the 441 inequalities, Newcomb omitted 238, and Radau 318. Among
those listed by Newcomb, Brown found 41 whose coefficients differed from his own
values by more than 0′′.02. In his conclusion, Brown discussed with great care the
likely causes of these differences; for most of them he was able to provide a satisfac-
tory account.

146 American Ephemeris Papers, V, pt. 3.
147 J.C. Rodolphe Radau, “Recherches concernant les inégalités planétaires du movement de

la lune,” Paris Observatoire, Annales, XXI (1892).
148 S. Newcomb, “Investigation of Inequalities in the Motion of the Moon Produced by the

Action of the Planets,” Carnegie Institute Publication, 72 (1907).
149 F. Schlesinger and D. Brouwer, “Ernest William Brown,” National Academy Biographical

Memoirs, XXI, 246–247.
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Indirect Planetary Perturbations of the Moon

In 1905 Brown published a paper “On a general method for treating transmitted
motions and its application to indirect perturbations.”150 This paper begins with a
generalized description of the process he was planning to employ in deriving the
indirect planetary perturbations of the Moon:

The mathematical treatment of any physical problem demands the construc-
tion of an ideal problem in which the conditions are different from those
of the actual problem. It is assumed that the same general laws hold for
the actual and ideal problems, but the complexity of the circumstances sur-
rounding the former makes simplifications of some kind necessary in order
that the analysis should not be unreasonably tedious. The ideal problem is
therefore usually constructed by neglecting at first some of the influences
which form a part of it but which are assumed to affect the results to a much
smaller extent than those we retain. The simplified problem, which I call
problem A, is then solved. The second step consists in finding what changes
are necessary in the solution of problem A when some or all of the neglected
influences are included; this second problem I call B. The question under
consideration here is the deduction of the solution of B when that of A has
been found.

One of the methods for solving B is that known as the Variation of
Arbitrary Constants.

Using Jacobi’s formulation of Lagrange’s method, Brown derived a number of
results applicable to the indirect planetary perturbations of the Moon. The chief of
these was the following theorem, in which it is supposed that the disturbing function
R contains a term of long period, causing the factor α to occur in the Moon’s δc and
the factor α2 to appear in the corresponding δw. The theorem states:

When squares and higher powers of the ratio of the mass of a planet to that
of the Sun are neglected, the large factor α due to a long-period inequality

150 American Mathematical Society Transactions, 6 (1905), 332–343.
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can never occur in the corresponding term in the Moon’s motion to a power
higher than α2, even if its square is present in the corresponding inequality
of the Earth’s motion.

This result enabled Brown to reject in advance many terms of long period, which,
in the absence of the theorem, would have had to be examined in order to find out
whether their coefficients were sensible in the Moon’s motion.

Brown gave a more concrete description of his procedures for the indirect plane-
tary perturbations in Chapter XII of his Theory of the Motion of the Moon.151

He began with an approximate expression of the disturbing function for the action of
the Sun on the Moon (this expression had originally been derived in Chapter I):

m′

r ′3

{
r2 − 3z2

4
+ 3

4
ρ2 cos(V − V ′)+ 5

8

ρ3

r ′ cos 3(V − V ′)

+3

8

(r2 − 5z2)

r ′ ρ cos(V − V ′)

}
.

Here as before the unprimed coordinates belong to the Moon, the primed coordinates
to the Sun. Brown let δr ′, δV ′ represent the Earth’s departures from elliptical motion
due to the action of planets, the effect being to displace the Sun as seen from the
Earth. Substituting r ′ + δr ′ for r ′, and V + δV ′ for V ′ in the preceding expression,
then putting δr ′/r ′ = δρ′ and neglecting powers of δp′, δV ′ above the first, he thus
found for the disturbing function due to δr ′, δV ′,

R = 3m′

4r3
[−δρ′{r2 − 3z2 + 3ρ2 cos 3(V − V ′)} + δV ′{2ρ2 sin 2(V − V ′)}]

+ 3m′

2r4

⎡

⎢⎢⎣

−δρ′
{

5

3
ρ3 cos 3(V − V ′)+ (r2 − 5z2)ρ cos(V − V ′)

}

+δV ′
{

5

4
ρ3 sin 3(V − V ′)+ 1

4
(r2 − 5z2)ρ sin(V − V ′)

}

⎤

⎥⎥⎦ .

In this formula he replaced the functions of the coordinates of the Moon and the Sun
by the series Mi used in the disturbing function for the direct planetary perturbations,
so that R would now denote that part of the disturbing function that depends on the
lunar angle θ . Also, he multiplied all the Mi of R by a′/r ′, marking them with a
prime mark to indicate the fact. Taking φ as an angle in δρ′, δV ′, he substituted

δρ′ = ρc cosφ, δV ′ = νs sinφ, m′ = n′2a′3.

151 TMM, Memoirs of the R.A.S., 59 (1908), 39–77.
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Finally, putting a1 = a/a′, he obtained

R = 1

4
n′2a2(−3)

[(
M ′

1 + 3

2
M ′

2

)
ρc ± M ′

3νs + a1(M
′
6 + 5M ′

8)ρc

±a1

(
1

4
M ′

7 + 15

4
M ′

9

)
νs

]
cos(θ ± φ).

Brown took his values of δp′, δV ′ from Newcomb’s tables for the Sun,152 with
certain modifications. Of Newcomb’s tabulated perturbations, Brown retained only
those of the first order relative to the masses of the disturbing bodies.

The action of the planets on the Earth causes the plane of the ecliptic or the plane
of the Earth’s orbit, to move; this motion can be expressed as secular and periodic
variations of the inclination and node of the ecliptic with reference to some fixed
plane. As fixed plane Brown chose the ecliptic of date 1850.0; he then referred the
motion of the Moon to the mean ecliptic of time t . He described the derivation of
these variations both in his Theory of the Motion of the Moon153 and in the Monthly
Notices for April, 1908;154 we follow the latter account here.

Let θ1, θ2, θ3 be the angular velocities of a set of rectangular axes rotating about
themselves; x, y, z the coordinates; u, v, w the velocities of a particle with respect
to these axes; F the force-function divided by the mass of the moving particle. The
equations of motion will be

du

dt
− νθ3 + wθ2 = ∂F

∂x
;

dv

dt
− wθ1 + uθ3 = ∂F

∂y
;

dw

dt
− uθ2 + νθ1 = ∂F

∂z
.

Here

u = dx

dt
− yθ3 + zθ2,

ν = dy

dt
− zθ1 + xθ3,

w = dz

dt
− xθ2 + yθ1.

The total energy of the system may be written

H = 1

2
(u2 + ν2 + w2)− F − R,

152 American Ephemeris Papers, VI, pt. 1.
153 TMM, Memoirs of the R.A.S., 59 (1908), 45–48.
154 MNRAS, 68 (1908), 450–455.
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where
R = vxθ3 − wxθ2 + wyθ1 − uyθ3 + uzθ2 − vzθ1.

Assuming that θ1, θ2, θ3 are independent of x, y, z, u, ν, w, we can write the equa-
tions of motion in canonical form:

du

dt
= −∂H

∂x
,

dx

dt
= ∂H

∂u
,

dν

dt
= −∂H

∂y
,

dy

dt
= ∂H

∂ν
,

dw

dt
= −∂H

∂z
,

dz

dt
= −∂H

∂w
.

If R is neglected in H , these equations become identical with those for the motion
of the particle with respect to fixed axes; hence R is the disturbing function for the
motions of the axes. The latter motions are so small that the squares and products of
the terms in R can be neglected.

Brown put i ′ for the inclination of the moving ecliptic (the xy plane) to the fixed
ecliptic of 1850.0, τ for the longitude of its ascending node on the fixed ecliptic,
and L for the angle which the zx plane makes with the plane containing the poles
of the fixed and moving ecliptics. Euler’s equations for the angular velocities of the
coordinates about themselves are then

θ1 = di ′

dt
sin L − sin i ′ cos L

dτ

dt
,

θ2 = di ′

dt
cos L + sin i ′ sin L

dτ

dt
,

θ3 = dτ

dt
cos i ′ + d L

dt
.

L can be so taken that the distances of the origins of reckoning on the fixed and
moving ecliptics from their common node are the same; then L = 90◦ − τ . As a
result the moving axis of x passes through what Cayley dubbed “a departure point.”

The quantities i ′, di ′/dt, dτ/dt are small enough so that their squares and
products can be neglected, and the following approximations are valid:

sin i ′ = i ′, cos i ′ = 1, τ = const.

The expressions for the angular velocities thus reduce to

θ1 = di ′

dt
cos τ, θ2 = di ′

dt
sin τ, θ3 = 0.

R can then be written

R = di ′

dt
{(wy − νz) cos τ + (uz − wx) sin τ }.
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Alternatively, since the differences between u and dx/dt , between ν and dy/dt , and
between w and dz/dt are quantities of the same order of smallness as i ′,

R = di ′

dt

{(
y

dz

dt
− z

dy

dt

)
cos τ −

(
x

dz

dt
− z

dx

dt

)
sin τ

}

= di ′

dt
Q. (B.117)

In accordance with the method of variation of arbitrary constants, into Q can be
substituted the values of x, y, z, dx/dt, dy/dt, dz/dt found in the solution of “the
main problem” of the lunar theory. The value of i ′ is of the form pt + P , where p is
a constant and P a sum of periodic terms whose arguments depend on the motions
of the Earth and planets. From his solution of “the main problem,” Brown found
that P contains a few long-period terms and more numerous short-period terms.
To include these inequalities amounted to referring the Moon’s motions to the actual
ecliptic. Setting P equal to zero was equivalent to referring these motions to a mean
ecliptic. If the latter choice were adopted, the latitude of the Sun above the mean
ecliptic would have to be introduced into F . In this case, Brown discovered, all the
short-period terms became so small that they could be neglected, and the long-period
terms had smaller coefficients than with the actual ecliptic as the plane of reference.
Brown therefore adopted the mean ecliptic, and recognized a few very small terms
which were of long period relative to the period of the Moon’s node, but which did
not give rise to any terms in the Moon’s coordinates. He wrote R1 = pQ.

These choices required the introduction of an additional part of R which Brown
called R2. The principal part of the force-function for the Moon’s motion under the
influence of the Earth and the Sun is

F = μ

r
+ m′

r3

{
3

2

(xx ′ + yy′ + zz′)2

r2
− 1

2
(x2 + y2 + z2)

}
. (B.118)

The “main problem” was solved with z′ = 0, that is, the Sun was assumed to remain
in the reference ecliptic. The force-function was in effect

F = μ

r
+ m′

r3

{
3

2

(xx ′ + yy′)2

r2
− 1

2
(x2 + y2 + z2).

}
(B.118a)

No longer taking z′ to be zero, but stipulating that it is small enough so that its square
can be neglected, Brown introduced the following additional portion into R:

R2 = m′

r3
· 3(xx ′ + yy′)zz′

r2
. (B.119)

With the notation and restrictions previously accepted, he set

z′ = i ′(y′ cos τ − x ′ sin τ). (B.120)
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Substituting (B.120) into (B.119), Brown stated that “it is easy to show that”
R2 = −i ′(d Q/dt). To assist readers in seeing that this is so, we indicate the steps.

From (B.118a) we have that

∂F

∂x
= −μx

r3
+ m′

r3

{
3(xx ′ + yy′)x ′

r2
− x

}
= d2x

dt2
,

∂F

∂y
= −μy

r3
+ m′

r ′3

{
3(xx ′ + yy′)y′

r2
− y

}
= d2 y

dt2
,

∂F

∂z
= −μz

r3
− m′z

r ′3 = d2z

dt2
. (B.121)

Introducing (B.120) into (B.119) we obtain

R2 = 3m′i ′

r ′5 {(xzx ′y′ + yzy′2) cos τ − (xzx ′2 + yzx ′y′) sin τ }. (B.122)

From the second equation of (B. 121), multiplying through by z, we can write

3m′

r ′5 (xzx ′y′ + yzy′2) = z
d2 y

dt2
+ μyz

r3
+ m′yz

r ′3

= z
d2 y

dt2
− y

d2z

dt2

where the last step is obtained from the third equation of (B.121). From the first
equation of (B.121), we obtain, in the same way,

3m′

r ′5 (xzx ′2 + yzx ′y′) = z
d2x

dt2
+ μxz

r3
+ m′xz

r ′3

= z
d2x

dt2
− x

d2z

dt2
.

Substituting these results into (B.122), we obtain

R2 = i ′
{(

z
d2 y

dt2
− y

d2z

dt2

)
cos τ −

(
z

d2x

dt2
− x

d2z

dt2

)
sin τ

}

= i ′
d

dt

{(
z

dy

dt
− y

dz

dt

)
cos τ −

(
z

dx

dt
− x

dz

dt

)
sin τ

}
, (B.123)

where τ has been treated as a constant. Comparing (B.123) with (B.117) we see that
(B.123) is

R2 = −i ′
d Q

dt
= Q

di ′

dt
− d

dt
(i ′Q)

= R1 − d

dt
(i ′Q). (B.124)
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As Brown put it, the effect of the rotation of the axes is to introduce a term R1−R2 =
(di ′/dt)(i ′Q) into the force-function.

Taking w1, w2, w3 for the mean longitudes of the Moon, its perigee, and its
node, and 	, D, F, n, e, γ for the quantities defined by Delaunay, Brown obtained
the following variations of the Moon’s orbital elements for the principal inequality
(with argument φ) arising from R1:

δw1 = −0′′.289 sinφ, δn = +0′′.0014n cosφ,

δw2 = +0′′.840 sinφ, δe = 0.000 cosφ,

δw3 = −15′′.59 sinφ, δγ = +0′′.698 cosφ.

These values, he reported, agree closely with those found by Newcomb.155 They
differed a little from those found by Hill;156 the differences, Brown suggested, were
due to Hill’s use of a literal development having slow convergence.

For the new terms in longitude and latitude arising from R2, Brown obtained
(omitting terms with coefficients less than 0′′.010, and putting T, V, J for the mean
longitudes of Earth, Venus, and Jupiter),

In Longitude. In Latitude.

+0′′.019 sin(φ + 5T − 3V + 119◦), +0′′.077 sin(φ′ + 5T − 3V + 119◦.4),
+0.003 sin(φ + 2w2 − 2J + 90◦), +0′′.030 sin(φ′ − 5T + 3V − 119◦.4),

+0.035 sin(φ′ + 2J + 72◦),
+0′′.018 sin(φ′ − 2J − 72◦).

The second term in longitude, Brown remarked, had a period equal to that of “the
great empirical term,” some 280 years, but its coefficient was much too small to
account for this discrepancy between theory and observation.

Brown constructed a sieve for the indirect planetary terms, just as he had for
the direct planetary terms. As before, he found that he could restrict consideration
to the terms of long period; and he considered separately those that do and do not
contain w1 in their arguments (the primary and secondary terms, respectively). For
the primary terms depending mainly on δρ′, he showed that the order of the indi-
rect terms is to that of the direct terms approximately as m2:1, that is, as 1:178.7.
It followed that any term found by calculation to have a coefficient less than 1′′ due
to direct action would not be sensible in the indirect action. Only one term was left,
the Venusian term with argument 	+ 16T − 18V , and coefficient 14′′.55. The order
of the coefficient for the indirect action is thus 14′′.55m2 = 14′′.55/178.7 = 0′′.08.
When Brown computed the exact value for this coefficient he obtained 0′′.06.

The primary terms due to δV ′ gave similar results: the direct inequalities proved
to be small, and there were no sensible ones arising from the indirect action.

155 Carnegie Institute publication no. 72, 132.
156 Collected Mathematical Works of G.W. Hill, II, 77.
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The sieve selected the terms that needed to be computed precisely. Brown’s pro-
cedure was to take one lunar argument with all multiples of T −� ′ (the Earth’s mean
anomaly), and form the products for all the planetary arguments. As he remarked,

The experience gained in computing the direct inequalities suggested that
the work could be much abbreviated by considering the peculiarities of each
lunar argument. . . 157

Brown provided some of the details toward the end of the text of Chapter XII,158 then
went on to list the indirect planetary inequalities of the Moon greater than 0′′.003,
most of them very small. The most numerous were those due to Venus; Brown listed
169 indirect Venusian perturbations of the Moon, of which 71 were greater than
0′′.01, and 12 as great as or greater than 0′′.10.

157 TMM, Memoirs of the R.A.S., 59 (1908), 54.
158 Ibid., 54–57.
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The Effect of the Figures of the Earth and Moon

In 1884 G.W. Hill had published a long paper entitled “Determination of the
inequalities of the Moon’s motion which are produced by the figure of the Earth:
a supplement to Delaunay’s lunar theory.”159 Hill explained his purpose as follows:

The sensible character of these inequalities [the lunar inequalities due to the
Earth’s figure] was discovered by Laplace; but he and his immediate succes-
sors contented themselves with determining the coefficients of two periodic
terms; one of the fourth order in the longitude, the other in the latitude and
of the third order, whose periods depend on the position of the Moon’s node
with reference to the equinox. The most elaborate treatment of this sub-
ject, we at present have, is by Hansen. . . . The coefficients of about twenty
terms are computed, and all that can be of utility for the formation of the
most exact tables are supposed to be there contained. But these coefficients
appear in the work only as numbers; hence it is impossible to see to what
cause they owe their magnitude. Moreover, no regard has been paid to the
algebraic order of magnitude in retaining or rejecting terms. Thus it will be
seen that, in this portion of the subject, we have nothing to compare with
Delaunay’s splendid treatment of the solar perturbations.

The problem, then, which I propose to solve in this memoir is to deter-
mine, in a literal form, all the inequalities of the Moon which arise from
the figure of the Earth, to the same degree of algebraical approximation as
Delaunay has adopted in determining the solar perturbations, viz., to terms
of the seventh order inclusive.160

We recall that, only a few years before, in the late 1870s, after praising Delaunay’s
procedure to the skies, Hill had lost all hope for it as a way of developing the lunar
theory, on account of the slow convergence of the series that resulted for the coeffi-
cients. This difficulty had led him to initiate the alternative whose development we

159 Astronomical Papers of the American Ephemeris, III (1891), 201–344; also The Collected
Works of George William Hill, II, 180–320.

160 The Collected Works of George William Hill, II, 181.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 16,
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have been tracing in the present study. Yet here we find him speaking of “Delaunay’s
splendid treatment of the solar perturbations!” Delaunay’s attempt to derive the
Moon’s motions was indeed a splendid, if failed, enterprise. Was the task of carrying
out a Delaunay-style derivation of the perturbations of the Moon’s motions due to
the Earth’s figure perhaps imposed by Simon Newcomb, Hill’s boss?

Whatever its motive, the undertaking involved a time-consuming calculation.
In Chapter 4 of his essay, Hill obtained literal expressions for all perturbations of
the Moon due to the Earth’s figure, accurate to algebraic orders up to and inclusive
of the seventh. He found 165 in the Moon’s longitude, 209 in its latitude. In Chapter 6
he gave the numerical values of the coefficients of these terms, accurate to one-ten-
thousandth of an arc-second. Aside from one term in the longitude with a coefficient
of 7′′.6708, and another in the latitude with a coefficient of 8′′.7356, all the terms
had coefficients less than 1′′.0, and most of them were much smaller; Hill gave 39 of
them in the longitude, and 27 in the latitude, as 0′′.0000.

From Hill’s Chapter 4 we also learn that most of the coefficients involved the
parameter m = n′/n, the gremlin responsible for the slow convergence in Delaunay’s
theory; all but 16 terms in the longitude, and 27 terms in the latitude, contain it.
Terms containing this parameter are, of course, incomparable with any that Brown
will find, since in the Hill–Brown theory the constant m is introduced numerically
from the start.

Like Hill before him, Brown began his own account of the effect of the Earth’s
figure (as reported in Chapter 13 of Theory of the Motion of the Moon) by introducing
the term in the disturbing function on which it depended. To a sufficient approxima-
tion it was

R = (E + M)
A + B + C − 3I

2r3 E
,

where E and M are the masses of the Earth and Moon; A, B,C are the moments of
inertia of the Earth about its three principal axes; I is its moment of inertia about the
line joining the Earth’s center of mass with the Moon (the line designated r ).

The “principal axes” had been so-named by Euler; they are axes about which
the body can rotate freely without wobbling. The fact that there are at least three
such axes in any body, whatever its shape and density distribution, was first proved
by J.A. Segner in 1755, and again by Euler a few years later.161 The moments of
inertia A, B,C are present in Brown’s formula not for their role in governing the
Earth’s rotation but because they reflect the distribution of mass within the Earth. The
symbol I is expressible in terms of A, B,C : if α is the right ascension of the Moon
along the celestial equator, reckoned from the A-axis, and δ the Moon’s declination,
or angular distance above the celestial equator, then I is given by

I = A cos2 α cos2 δ + B sin2 α cos2 δ + C sin2 δ.

161 See C. Wilson, “D’Alembert versus Euler on the Precession of the Equinoxes and the
Mechanics of Rigid Bodies,” Archive for History of Exact Sciences, 73 (1987), 266–267.
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Substituting, Brown showed – again like Hill before him – that

A + B + C − 3I = 3

(
C − A + B

2

)(
1

3
− sin2 δ

)
− 3

2
(A − B) cos 2α cos2 δ.

(B.125)

This formula comes out of spherical harmonic analysis, invented by Legendre and
Laplace to express in converging series the attraction of a body of nearly spherical
figure. Hill can have learned it from Thomson and Tait, Treatise on Natural Philo-
sophy,162 to which he refers. (B.125) gives the first two terms of a series, but its
second term in the case of the Earth is negligible, A − B being very small compared
with C − 1/2(A + B).

How is the first term of (B.125) best evaluated numerically? Hill used 73 mea-
surements of the lengths of the seconds-pendulum at different locations on the
Earth’s surface, adjusted in all cases to sea level. Combining them by the method
of least squares, he computed a value for 3

2D2

(
C − A+B

2

)
, where D is the Earth’s

mean equatorial radius. He gave his result as 0.001759484.
Brown either did not trust the precision Hill claimed for this result, or regarded

the carrying of so many significant figures through the calculations as unnecessary.
He employed a more traditional procedure which depended on the empirical value
of the coefficient of the principal term in the latitude arising from the figure of the
Earth. The argument of this term isw1 +ψ,ψ being the precession of the equinoxes.
The observational value Brown cited for the coefficient of this term was −8′′.382;
he attributed it to Hansen – mistakenly, as we learn from a later correction in the
Monthly Notices.163 The correction was due to Frank E. Ross, who pointed out that
Brown had used two different values for the coefficient, one due to Faye, the other
due to Hansen.

The empirical value of the term with argument w1 + ψ contains a part due to
the motion of the ecliptic. This must be subtracted out to give the part that is due
solely to the figure of the Earth. Hill’s theoretical value for the former part was
−0′′.226, leading Brown to assign, to the part due to the Earth’s figure, the value
−8.′′382 − (−0′′.226) = −8′′.156.164 He took this value as a basis for determining
the difference between the Earth’s polar and equatorial radii of gyration.

It is not immediately clear which of the two values for the empirical term, Faye’s
or Hansen’s, Brown used in the several parts of his calculation. He computed the
terms in the Moon’s longitude and latitude arising from the Earth’s figure and having
coefficients greater than or equal to 0′′.003; there were only three of the former,
and five of the latter. He also computed the changes in the Moon’s orbital elements
arising from the same cause; the resulting theoretical value for the principal term in
latitude, he reported, was −8′′.355 sin(w1 + ψ), which disagrees with the empirical
value given earlier.

162 See W. Thomson and P. G. Tait, Principles of Mechanics and Dynamics (Dover Edition, a
republication of the 1912 edition), Part Two, 87, section 539.

163 “On an Error in the New Lunar Theory,” MNRAS, 70 (1909), 3.
164 E.W. Brown, “On the Degree Accuracy of the new Lunar Theory,” MNRAS, 64

(1904), 530.
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The disagreement, Brown expected, would be resolved in the final fitting of
theory to observation:

It is immaterial at the moment which constant is used for the preliminary
tables of the Moon’s motion, since it will have to be corrected by comparison
with observation.165

We turn now to the inequalities due to the figure of the Moon. The disturbing
function for these inequalities is of the same form as that for the action of the Earth’s
figure, but in this case the second term in the expansion must be retained, since the
difference in the equatorial principal axes, A′ and B ′, cannot be neglected. Let α′
be the angle from the A′-axis on the Moon’s equator to the projection of r onto the
equatorial plane, and δ′ the inclination of r to the same plane. In strict analogy to the
case for the Earth’s figure, we shall have

A′ + B ′ +C ′ −3I′ = 3

(
C ′ − A′ + B ′

2

)(
1

3
− sin2 δ′

)
+ 3

2
(B ′ − A′) cos 2α′ cos2 δ′.

The Moon always turns very nearly the same face to the Earth, such difference
as occurs being due to a clearly observable apparent libration together with a tiny
real libration about the C ′-axis, attested by theory but not empirically detectable.
Neglecting the latter, we can set the Moon’s speed of axial rotation equal to n, the
Moon’s mean orbital speed. The Moon’s equator and the ecliptic intersect in a line
whose longitude is w3; Brown designates this point on the celestial sphere by .
Then the mean angular distance between the A′-axis and  is w1 − w3. Dropping a
perpendicular from M , the position of the Moon, onto the ecliptic, and another such
onto the equatorial plane, we obtain two right spherical triangles with the common
hypotenuse M . A rule of spherical trigonometry then gives

cos δ′ cos(α + w1 − w3) = cos U cos(V − w3).

Neglecting δ′,U , we can write α′ = V −w1; if we put α′ = V −w1 + δα′ then δα′
will depend on the squares of δ′,U , and

cos 2α′ = cos 2(V − w1)− 2δα′ sin(V − w1).

Brown neglected quantities of an order higher than the second in the eccentricities
and inclination, and also the inclination multiplied by m2; thus he could neglect
2δα′ sin(V −w1) in the last equation. Also, if γ = sin(i/2), and −i1 is the inclination
of the lunar orbit to the ecliptic, then to a sufficient approximation

sin δ′ = sin(i + i1) sin(V − w3) = sin(i + i1) sin(w1 − w3).

Substituting these expressions, Brown obtained for the disturbing function

R = (E + M)
a2μ′

r3

[
1
3 − sin2(i + i1) sin2(w1 − w3)

+(μ′′/μ′) cos 2(V − w1){1 − sin2(i + i1) sin2(w1 − w3)}

]
,

165 MNRAS, 70 (1909), 3.
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where

a2μ′ = 3

2M

(
C ′ − A′ + B ′

2

)
, a2μ′′ = 3

4M
(B ′ − A′).

All the periodic terms turned out to have very short periods. Brown therefore
neglected them and focused on the constant parts of R, which gave additions to
b2, b3, the mean motions of the perigee and node. The portions of R depending solely
on e2 affected b2, and those depending solely on γ 2 affected b3. For the former,
R reduced to

R = (E + M)
a2

ρ3

[
1

3
μ′ + μ′′ cos 2(V − w1)

]
;

and for the latter, to

R = (E + M)
a2

r3

[
−1

2
μ′ − 1

2
μ′′
]

sin2(i + i1).

Brown next put δn = δ0n, δc2 = 0, δc3 = 0. These stipulations led to

δw1 =
(

1

α2β

∂R

∂n
+ δ0n

)
t, δw2 =

(
− ∂R

∂c2
t + db2

dn
δw1

)
,

δw3 =
(

− ∂R

∂c3
t + db3

dn
δw1

)
.

Since the mean longitude is a quantity observed directly, he chose δ0n so that w1
was still represented by nt + ε; consequently δw1 = 0, so that from the first of the
foregoing equations

δ0n = − 1

α2β

∂R

∂n
,

where −α2β = dc1/dn. The changes in the angles w2, w3 were obtained by adding
to their motions the quantities

δb2 = − ∂R

∂c2
, δb3 = − ∂R

∂c3
.

The change δ0n in n was to be substituted only in the coefficients of terms represent-
ing the Moon’s coordinates. These included the principal elliptic term in longitude,
with 2e as coefficient, and the principal term in latitude, with 2γ as coefficient. Since
the coefficients 2e and 2γ were to be obtained directly from observation, and Brown
wished to retain these very expressions to designate them, he found it necessary to
add to e, γ where they occur in all other terms the amounts

δ0e = − de

dn
δ0n, δ0γ = −dγ

dn
δ0n.

He neglected the further changes thus produced in b2, b3, since they produced less
than 0′′.01 of difference in any coefficient.
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We shall not follow in detail Brown’s processes in arriving at his numerical
results. By a strict deduction he obtained the ratios db2(M) : db2(E), db3(M) :
db3(E) for the figures of the Moon and Earth:

μ′ρe + 3μ′′ρc : μ

(
1 − 3

2
sin2 ε1

)
ρe,

(μ′ + μ′′)
d

di
sin2(i + i1) : μ

(
1 − 3

2
sin2 ε1

)
d

di
sin2 i.

Introducing the already known numbers,

1 − A + B

2C
= 0.00328, i = 5◦.1, i1 = 1◦.5,

he found for the values of db2, db3 attributable to the Moon’s figure, in arc-seconds
per year,

db2 = 191′′
(

1 − A′ + B ′

2C ′

)
− 503′′

(
B ′ − A′

C ′

)
, db3 = −230′′

(
1 − A′

C ′

)
.

From a study of the lunar librations, F. Hayn had found166

B ′ − A′ = +.000157C ′, C ′ − A′ = +.000629C ′.

Adopting these values, Brown obtained for the annual mean motions due to the
Moon’s figure, db2 = +0′′.03, db3 = 0′′.14. To know these quantities accurately
to 0′′.01, he pointed out, would have required having the mechanical ellipticities
accurate to within 5%.

166 Abh. der Math.-Phys. Kl. der K.-Sächs. Gess. der Wiss., XXX (1907), 69.
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Perturbations of Order (δδδR)2

Brown, we recall, in commencing his computation of the inequalities due to the direct
and indirect actions of the planets and the figures of the Earth and Moon, proposed
to neglect, pro tem, quantities of the order (δR)2. With the initial computation now
completed, he undertook, in Chapter 14 of his Theory of the Motion of the Moon,
an investigation to discover whether any of these second-order perturbations were
non-negligible.

The complete disturbing function for all actions other than those dealt with in the
main problem was

δR = R(r ′ + δr ′ + δ2r ′, V ′ + δV ′ + δ2V ′, z′ + δz′)+
∑
(RP + RE + Re).

Here δ2r ′, δ2V ′, δz′ are the terms of the second order in the motion of the Sun, and
R(r ′, V ′, z′) is the disturbing function for the Sun’s action; RP , RE , Re are, respec-
tively, the parts of the disturbing function for the actions of a planet, the figures of
the Earth and Moon, and the motion of the ecliptic. Having derived δ2 R from the
above expression, Brown examined in detail eight possible second-order results, and
found most of them negligible. Two that were not were the indirect effects of solar
terms with arguments 4M − 7T + 3V and 3J − 8M + 4; they yielded the terms

δ2w1 = +0′′.04 sin(152◦ + 119◦.0tc)+ 0′′.84 sin(41◦.1 + 20◦.2tc),

where tc is the number of centuries since 1850. Among additions due to periodic
perturbations of the solar and planetary coordinates in�RP due to the Earth’s action,
Brown found a single term with a sensible coefficient; it had the argument 	+ 3T −
10V , and a period of 1900 years. The yield in included terms was small; its main
result was to establish that other possible terms in δ2 R were negligible.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 17,
c© Springer Science+Business Media, LLC 2010
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The Tables

Chapters X–XV of Brown’s Theory of the Motion of the Moon reached the editorial
office of the Royal Astronomical Society in April 1908, signaling the completion of
the task that Brown had begun in 1895: the systematic computation of all terms pro-
duced by gravitational attraction in the Moon’s coordinates, with coefficients equal
to or greater than a pre-specified minimum. In the longitude and latitude, the mini-
mum was 0′′.01; in the sine parallax it was 0′′.001. At this point, abruptly, Brown
turned to the construction of lunar tables.167

Astronomical tables, from antiquity down to Brown’s time, were used for making
predictions and computing ephemerides – positions of a celestial body at given inter-
vals during a given year. In the 17th century European governments began investing
funds in the construction of lunar tables and ephemerides, seeking thereby to sup-
ply navigators with a means of finding the longitude at sea. The ancient lunar tables
had been founded on observational findings, and this continued to be the case into
modern times. Newton’s Principia introduced a new basis from which the motions
of the Moon might be deduced: the law of gravitation; but it was not at first clear how
the deduction could be carried out systematically. An important first step was taken
by the 18th-century mathematicians Euler, Clairaut, and d’Alembert, in applying the
Leibnizian calculus to the problem; but it was Lagrange who first opened the way to
carrying out second- and higher-order approximations systematically.

Hansen’s lunar tables, constructed by a development of Lagrange’s methods and
published in 1857, were the first tables purporting to be strictly in accordance with
Newton’s law and also accurate enough for navigational use. (They were not quite
what they seemed: as mentioned earlier, they surreptitiously included an empirical
term.) They became the basis of the British and the French nautical almanacs in
1862.168 These tables embodied 300 sinusoidal terms, far more than any earlier
astronomical tables. Requiring ephemeris-computers to derive lunar ephemerides

167 Ernest W. Brown, “On the Plans for New Tables of the Moon’s Motions,” MNRAS, 70
(1909), 148–175.

168 Hansen’s theory was used by the British from 1862 to 1922; by the French from 1862 to
1910; and by the U.S.A. from 1883 to 1922.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 18,
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from a set of 300 tables, one for each term, was not practical; Hansen exercised
much ingenuity and labor in devising tables that would incorporate multiple terms.

The exfoliation of terms out of Newton’s law reached a still higher point in
Brown’s elaboration of the lunar theory. To compute the coordinates of the Moon
for a given time, Brown’s theory required taking some 1500 terms into account.
Electronic computers with their enormous speed and capacity had not yet been
dreamed of, and would not begin to replace human ephemeris-computers till the
middle years of the 20th century. The construction of lunar tables therefore con-
stituted a problem of major proportions. Brown took Hansen’s tables as setting the
standard: the new tables should require no more labor of the ephemeris-computer
than had Hansen’s tables.

When Brown joined the Department of Mathematics at Yale in 1908, an important
part of the prior agreement was that the Yale Observatory would absorb the expense
of constructing, printing and publishing the tables. Henry B. Hedrick was recruited
from the U.S. Nautical Almanac Office to take chief responsibility for devising the
new tables; he took up his post at Yale in 1909. From his earlier work Hedrick had
gained expertise in assessing the merits and drawbacks of different types of tables.169

According to Brown,

Much the heaviest part of the arrangement and performance of the calcula-
tions has been borne by Dr Henry B. Hedrick, whose services were secured
at the outset and who has spent his whole time on the work for nearly nine
years. Every part of it has passed through his hands. He has prepared and
tested all calculations which were performed by others. Many of the devices
which have been employed to simplify the use of the Tables are due to him,
and no decisions have been made without frequent discussions in which his
suggestions have given valuable aid.170

The Brown-Hedrick Tables were an achievement for their time. They were fated,
however, to be outmoded in the 1950s, electronic computers rendering them, along
with all astronomical tables, obsolete. Yet the artistry and hard work that Brown,
Hedrick and their assistants invested in the construction of their Tables has an interest
of its own, and a merited place in the history. We limit our account to general features,
with a few illustrations.

The labor of the ephemeris computer consisted chiefly in extracting numbers
from single- or double-entry tables, and the extraction of almost every number
required time-consuming interpolation. A primary goal for Brown and company,
therefore, was to render the interpolation easy. The intervals between adjacent

169 Hedrick had produced the “Catalogue of Stars for the Epochs 1900 and 1920 Reduced to
an Absolute System,” Astronomical Papers for the American Ephemeris, 8, Part 3 (Nau-
tical Almanac Office, Washington, 1905). It was adopted by all national almanacs as pro-
viding the reference stars against which the motions of the Moon and planets could be
measured, and served in this role for 35 years.

170 E. W. Brown with the assistance of H. B. Hedrick, Tables of the Motion of the Moon, (New
Haven, CT: Yale University Press, 1919). Preface, xi.
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numbers needed to be small, and the tables correspondingly large. The number of
tables, on the other hand, needed to be kept to the least possible.

Hansen in his single-entry tables for the longitude had given the argument in
the horizontal direction for successive half-day intervals, this being the interval used
for tabulating lunar positions in the nautical almanacs. But interpolation over this
interval to the accuracy required would have required forming sixth- or seventh-order
differences – far too costly in time. Hansen therefore divided the argument vertically
into hundredths of a day, to reduce the difficulty.

Brown and Hedrick accepted Hansen’s idea of converting single-entry tables into
two-dimensional arrays, but with differences. These we illustrate from their Table 30,
which incorporates six terms:

∑

30

= +22639′′.500 sin 	+ 769′′.016 sin 2	+ 36′′.124 sin 3	

+ 1′′.938 sin 4	+ 0′′.113 sin 5	+ 0′′.007 sin 6	.

Here 	 is the Moon’s mean anomaly, its mean longitude minus the longitude of its
perigee. Brown derived these six terms in his Theory of the Motion of the Moon.171

For Brown-Hedrick as for Hansen, the inclusion of multiple terms in a single table
was desirable, but the feasibility of combining particular terms had to be assessed:
a particular combination could prove unwieldy, requiring a division of the argument
into excessively small intervals and an increase in the size of the table out of pro-
portion to its relative importance. In Table 30, incorporating all six terms in a single
table caused no increase in size over a table for sin 	 alone. By allowing entries to
be negative as well as positive, and making the tabulation reversible and reentrant
(properties explained farther on), Brown-Hedrick more than halved the size of the
table to 12 folio pages.

Brown-Hedrick first decided to rotate Hansen’s array through 90◦, and so to list
the half-day divisions vertically. Interpolations would now be made between adjacent
columns rather than adjacent rows; errors due to slipping from column to column
were less likely than errors due to slipping from row to row. Next, they sought a
substitute for Hansen’s division of the argument into hundredths of a day. A divi-
sion into smaller intervals was sometimes desirable, and decimal fractions were best
avoided, as they could occasion rounding errors.

They substituted a whole-number measure of the argument. The unit was to
be such that the period and the half-day intervals would be represented by whole
numbers. The argument 	 of sin 	 goes through a full cycle of 360◦ in 27.55455 . . .
days – the anomalistic month – and the arguments 2	, 3	, . . . , 6	 go through their
full cycles in sub-multiples of this same period, so that the sum �30 becomes zero

171 See TMM, Memoirs of the R.A.S., 57 (1909), 130–132 and 135. The first two terms as given
in our text above have slightly smaller coefficients than in the passage of the Memoirs just
cited. The tables were calculated with the value 22639′′.500 for the coefficient of the
principal elliptic term, whereas the final value of this coefficient was 22639′′.550. The
method for changing to the final value is given in Chapter IV of Section I the Tables.
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whenever 	 equals 0◦, 180◦, or 360◦. A whole-number representation was thus re-
quired for the ratio

27.55455

0.5
= 55.10910

1
.

Whole-number expressions of this ratio can be got by developing 55.10910 as a
continued fraction, and breaking off the development at a convenient stage (the result
at any stage is called a convergent). The convergent for 55.10910 after two stages is

55.10910 = 55 + 1

9.1659
≈ 55 + 1

9 + 1
6

= 3031

55
.

This division was deemed accurate enough, but for greater precision without intro-
duction of decimal fractions, Brown-Hedrick sextupled the number of units in the
half-day to 55 × 6 = 330; the full period thus became 3031 × 6 = 18186. The
units were now less than a third as large as Hansen’s, being equal to 71′′.264. Any
discrepancy between the adopted period/half-day ratio, 18186/330, and its obser-
vational value, could be incorporated in the expression for the secular variation of
the anomalistic period. This policy, a suggestion of Hedrick’s, was adopted in all
the tables: numerical ratios were chosen for their convenience in computation, while
strict empirical accuracy was obtained by adjusting the “secular variation.”

The columns of Table 30 are arranged in the order of successive starting values
of the argument, 0, 1, 2, . . . , 329, and the latter numbers are placed as identifiers at
the head of the column to which they apply. The first 19 columns are numbered from
0 to 18, and each of these columns contains 56 rows, labeled in the left-hand margin
by half-days from 0d .0 to 27d .5. In any column, the argument increases by 330 units
(a half-day’s worth) from one row to the next. The entry in each row is the value
of �30 for the value of the argument in that row. In the final row of column 0, the
argument is (2 × 27.5) × 330 = 18150, just 36 units shy of a full period. In all
columns, owing to the dominant role of sin 	 in �30, the entries in the upper half are
positive, and those in the lower half are negative. In column 18 the entries are “anti-
symmetric”: the column when read from top to bottom is the same as the column
read from bottom to top with the signs of all entries reversed. If column 17 is read
from bottom to top with the signs of all entries reversed, it turns out to be column
19, and is so labeled at the bottom. Each of the columns thus serves as two columns,
depending on whether it is read from top to bottom, or from bottom to top with
reversal of signs. Column 0 read from bottom to top with reversal of signs is Column
36. The table is in this sense reversible.

A column with a higher starting value of the argument than 36 must have only
54 rows, corresponding to 54 half-days or 27 days, in order that the argument in its
final row not exceed a full period. In column 37, the value of the argument in the
final row is 37 + (2 × 27) × 330 = 17857, which is 329 shy of a full period. And
just as with the earlier columns, column 37 read from bottom to top with reversal
of signs is column 329. The last column in the table, numbered 183 at both top
and bottom, is the same when read downward as when read upward with reversal
of signs.
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Brown-Hedrick wanted to be able to print the interpolation factor, or variation of
the function�30 per unit change of the argument – an aid to the computer that Hansen
had not supplied. Given the arrangement of the successive columns in the order of the
starting values of their arguments, the interpolation factor remains nearly constant in
any row. Thus in row 0d .0, the variation per unit of the argument is 8′′.39 for columns
0–120, 8′′.38 for columns 121–176, 8′′.37 for columns 177–210, 8′′.36 for columns
211–252, 8′′.35 for columns 253–280, 8′′.34 for columns 281–308, and finally 8′′.33
for columns 309–329. Each interpolation factor is printed at the left of the row to
which it applies.

Table 30, we now see, has no real beginning or end, and wherever a start is
made, the values for the half-day intervals can be continued indefinitely without
re-computation of the argument. The end of Table 30 connects up with its beginning;
the table is thus reentrant.

Among the Brown-Hedrick tables for the longitude, 25 are, like Table 30, single-
entry tables; of these, 24 are reentrant and reversible. All but three of the 25 tables
have periods of about a month or half-month, and relatively large coefficients,
ranging from 22639′′.50 in Table 30 to 1′′.979 in Table 39. Table 30 is the only
table containing negative terms.

We consider next the double-entry tables for the longitude. Double-entry tables
allowed inclusion of large numbers of small terms in a single table. They tabulated
expressions of the form

∑

i, j

ai, j cos(i A + j B + α),

where i, j = 0,±1,±2, . . . , and a and α are constants. The general idea is that
the arguments A have a common period and vary stepwise through that period in
one dimension of the table, while the arguments B share another period and vary
stepwise through their period in the other dimension.

Calculating positions from tables of this form can entail two interpolations, one
for each argument. To avoid the laboriousness of double interpolations, Hansen in his
Tables de la lune grouped together double-entry tables having a common argument
A, but different arguments B. Extractions were made with a particular value of A, the
interpolations being carried out with respect to B alone. Results for the several tables
with the same value of A were then summed. Interpolations between two values of
A were performed solely on the sums.

Brown-Hedrick adopted Hansen’s procedure here, but with some changes.
Hansen had taken the Moon’s mean anomaly 	 for the common argument A, a natural
choice since he was calculating the Moon’s longitude in orbit and regarding the orbit
as a perturbed ellipse. Brown-Hedrick chose other variables, and chiefly D = L−L ′,
the synodic variable, or difference between the mean longitudes of the Moon and the
Sun. 2D, we recall, is the variable of the Variation Curve, and thus basic to the Hill–
Brown theory. The Brown-Hedrick Tables 1–22 for the longitude are all double-entry
tables in which the functions summed are sinusoidal terms having for their arguments
various linear combinations of one or more of the variables 	, 	′, 2F(= 2	 − 2,
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where  is the longitude of the lunar node) with some multiple of D. Table 1, for
example, contains 24 terms of the form

αi, j sin(i	′ ± j D),

where i = 1, 2, 3 or 4, and j = 0, 1, 2, 4, 5 or 6. The absolute values of the
coefficients of these 24 terms add up to nearly 40′′.00. In the 22 double-entry tables
taken together the total number of included terms is 218; the absolute values of their
coefficients add up to about 173′′.

In forming his double-entry tables, Hansen had tabulated horizontally the
successive values of 	, his choice for A, using quarter-day intervals to lessen the
numerical differences over which interpolations had to be performed; this arrange-
ment required the computer to work from alternate rather than adjacent columns – a
source of frequent trouble and complaint. Brown-Hedrick eliminated the quarter-day
divisions, and tabulated the consecutive half-days vertically rather than horizontally.
Thus D, the Brown-Hedrick choice for A, in any column takes on the successive
values −15d .5, −15d .0, . . . ,+15d .0,+15d .0, sixty-three values in all. The period
of D is the synodic month, 29d .530588; the range from −15d .5 to +15d .5 exceeds
the period by a half-day at either end in order to furnish the second differences needed
in interpolating between different values of the function. To avoid negative values of
the vertical variable, the variable D = D + 15d .0 was substituted for D.

In any one of these double-entry tables, consider a given horizontal row, say
the row in which D = 15d .0, so that D = 0. The terms whose sum forms the B
argument are chosen so as to have a common period after which they return to their
initial values. Brown-Hedrick divided this time-period into an integral number ν of
parts sufficient to allow for easy interpolation, a column being devoted to each value
of ν. The B argument is thus constant in a given column. In the horizontal variation
in a single row, proceeding from column to column, D remains constant while the B
argument steps through its cycle of values.

For illustration consider Table 3. The argument tabulated is of the form j (	′ − 	)
±i D, where (	′ − 	) is the difference between the solar and lunar mean anomalies;
j is either 1 or 2, and i = ±1,±2,±3,±4,+5, or ±6. Different combinations of
the factors i and j yield the arguments of the 14 terms incorporated in the table.
The period of the B argument is divided into 58 parts, thus identifying 58 successive
values of the argument beginning with zero. Table 3 thus has 58 columns, one for
each of the 58 selected values of 	′ − 	.

Computing an entry at any position in Table 3 consists in adding up all the terms
included in the table, when in each the variable 	′ − 	 has the value characteristic of
its column, and D has the value designated for its row. In a given column, there are 63
entries, therefore 63 summations to be carried out, each involving 14 addends. Since
Table 3 has 58 columns, the total number of these summations is 63 × 58 = 3654.

Brown designed and built a machine to assist in carrying out these summa-
tions.172 It consisted of tapes on which the numbers to be added were written, a

172 MNRAS, 72 (April, 1912), 454–463. Brown expresses his indebtedness to Sir George
Darwin “for criticisms on the method of presentation of the device and its applications,



18 The Tables 215

carrier holding the tapes, and a frame on which the carrier was placed, with guides
to prevent the tapes from getting out of position or becoming entangled. The car-
rier was a flat piece of brass 1/16 in. by 3/4 in. in cross section, and about 18 in.
long. A photograph of the machine shows 14 tapes looped over the carrier, just the
number of terms summed in Table 3. Each tape gives the values of one of the 14
terms corresponding to the 63 values of D in a given column. Rotating the carrier
about its length advances all 14 tapes to the values of their terms corresponding to the
next value of D. As the value of 	′ − 	 changes from column to column, a different
set of 14 tapes is required for each column. The whole purpose of the machine is to
present together the numbers to be added; the actual addition was performed using
an adding machine.

Of the 22 double-entry tables, Tables 4–15 and 18–22 are both reversible and
reentrant; Tables 1, 2, 3, 16, and 17 are neither.

We turn next to the many planetary terms, most of them small. Most of the errors
of Hansen’s tables were here: omission of some terms, erroneous values assigned to
others.

Brown-Hedrick incorporated a considerable number of the planetary terms in
three tables of double entry with 	′, the mean anomaly of the Sun, as common argu-
ment. In Table P1, V − T , the mean heliocentric longitude of Venus less the mean
heliocentric longitude of the Earth, is tabulated horizontally against 	′ as vertical
variable. In Tables P2 and P3, the analogous job is done for T − J , where J is
the mean heliocentric longitude of Jupiter, and for T − M , where M is the mean
heliocentric longitude of Mars.

Besides the terms included in Tables P1, P2, and P3, there are many more
planetary terms in the longitude which depend on T , on one of the three argu-
ments V, J,M , and also on one of the three arguments 	, 2D, 2D − 	. Rather than
introducing separate tables for these terms, Brown-Hedrick added their contributions
to Table 30 for the Equation of Center, Table 31 for the Variation, and Table 32 for
the Evection.

For illustration consider the incorporation of terms of the form a sin(	+ A) into
Table 30. Here a is a small coefficient, and A an argument composed of 	′, one of
the three arguments V, J,M , and a constant. The term a sin(	+ A) is equivalent to

a sin A · cos 	+ a cos A · sin 	.

In the first of these terms, a sin A can be treated as a variation of 	, since δ(sin 	) =
δ	 · cos 	. The variation δ	 can be added to 	, which is the argument of the largest
term in Table 30, viz., 22639′′.5 sin 	. But (a sin A), to be added, must be expressed
in appropriate units, namely, the parts into which the period of 	 has been divided,
18186 of them. Both a and 22639.5 are in arc-seconds. The correct expression for δ	
is, therefore,

(a sin A) ·
(

18186

22639.5 · 2π

)
.

which led to this paper being almost entirely rewritten.” Darwin had described a different
apparatus for the analysis of large numbers of observations in Proceedings of the Royal
Society 52 (1892), 345.
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The second of the above terms, (a cos A) sin 	, may be treated as an addition to
the coefficient of sin 	. It is merely necessary to multiply the entries of Table 30 by

1 + a cos A

22639.5
.

In an entirely similar way, terms of the form a sin(2D + A) may be attached to
the term 2369′′ sin 2D of Table 31, and terms of the form a sin(2D − 	 + A) to the
term 4586′′.4 sin(2D − 	) of Table 32.

After the larger terms (those over about 0′′.4) had been included in various tables,
along with such smaller terms as could be included without altering the forms of the
tables, there remained a host of minute terms which, according to Brown,

it seemed desirable not to neglect but which would have required many
tables. The plan adopted was their summation in blocks for a period of years
sufficient to satisfy the needs of the ephemeris up to the year 2050.

These “Remainder Terms,” as they were called, were placed in Tables P39–P49.
Each of these tables has 150 columns, numbered successively for the 150 years from
1900 through 2049. The vertical variable was tabulated at intervals of 10 or 14 days.
An approximate interpolation was deemed accurate enough for furnishing the values
for the half-days.

The preceding examples exemplify the inventiveness that went into the Brown-
Hedrick Tables. We should perhaps also mention a particularly difficult problem that
arose in the construction of the latitude tables.

In his Theory of the Motion of the Moon173, Brown had obtained the latitude
terms in the form

U =
∑

u sin(F + a)+
∑

u′ sin(3F + a)+
∑

u′′ sin(5F + a), (B.126)

where a is an argument formed of multiples of 	, 	′, D; F is L − ; and u, u′, u′′
are coefficients in arc-seconds. U includes about 300 terms, the principal one with a
coefficient of 18461′′, the 44 next smaller terms ranging from 1010′′ to 1′′. The sum
U , with its many still smaller terms, was believed accurate to 0′′.001.

To make possible the incorporation of the 300 terms of U into a small number of
tables, Brown undertook to transform (B.126) into an expression of the form

U = (k + C){sin(F + S)+ μ sin 3(F + S)+ ν sin 5(F + S)+ N }. (B.127)

Here N was to consist of a few terms with large coefficients, chosen so that the
terms in C would be small and could be put into double-entry tables; C was to
be independent of F and contain no constant term; and S was to consist solely of
periodic terms, including the terms with large coefficients already incorporated in
single-entry tables for the longitude. The terms in S were to be transformed into
additions to arguments of sine terms; this turned out to require the expansion of
(B.127) in powers of S up to S5.

173 TMM, Memoirs of the R.A.S., 57 (1905), 136–141.
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The transformation of (B.126) into (B.127), Brown tells us, was an indeter-
minate problem until μ, ν, and N had been chosen.174 Choosing them involved a
succession of mutual adjustments. Even then, a straightforward method of proceed-
ing further did not present itself; k,C , and S were obtained at last by a sequence of
approximations.

174 MNRAS, 72 (1911), 651.
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Determining the Values of the Arbitrary Constants

The final values of the arbitrary constants (constants of integration arising from
the solution of the differential equations) were to be obtained from a least-squares
analysis of observations. Brown undertook this task, choosing the Greenwich
meridian observations as a basis:

The Greenwich observations for the past 160 years [1750–1910] present
advantages for this purpose which much outweigh the objection to the use of
material gathered from one source only. They are continuous, and have been
reduced on a consistent plan, which renders their correction and comparison
a matter of far greater ease and certainty than observations gathered from a
variety of sources.175

As will be reported in Part III, the meridian observations at Greenwich and else-
where were later discovered to be severely subject to systematic errors, and hence
problematic.

For Brown, a special advantage of the Greenwich meridian observations was
that P.H. Cowell of the British Nautical Almanac Office had already used them for
a comparison with Hansen’s Tables as revised by Newcomb; Cowell’s results were
published in the Monthly Notices between 1903 and 1905. Cowell had assembled
the observations, not into successive years as done previously, but into successive
periods of 400 lunar days each. A lunar day is the time between two consecutive
meridian transits of the Moon – on average 1.03505 mean solar days. The period of
400 mean lunar days (= 414.02 solar days) is equal, very nearly, to 14 synodic and
15 anomalistic periods of the Moon.

The lunar observations from 1750 to 1901 constituted 134 Cowell periods.
For the first 89 of these periods, from 1750 to 1851, Cowell had used the reduc-
tions of the observations by G.B. Airy, Astronomer Royal from 1835 to 1881.176

175 MNRAS, 73 (Suppl., 1913), 692.
176 G.B. Airy, Reduction of the Observations of the Moon made at the Royal Observatory,

Greenwich, from 1750 to 1830, I (London, 1848), and Reduction of the Observations of
the Moon made at the Royal Observatory, Greenwich, from 1831 to 1851, . . . , forming a

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 19,
c© Springer Science+Business Media, LLC 2010
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“Reducing the observations” meant computing, from the timed meridian transits
and zenith distances of the Moon, the successive positions of the Moon in longi-
tude and latitude. Airy had, as well, compared these positions with Damoiseau’s
lunar theory, but with Damoiseau’s coefficients replaced by values derived from
Plana’s and Pontécoulant’s literal theories. Cowell found many errors in these
coefficients.

For the years from 1847 to 1900, Cowell compared the Greenwich observations
with Hansen’s tabular values as corrected by Newcomb. The latter values still needed
correction in order to agree fully with Brown’s theory.

These final corrections having been made, it was Brown’s and Hedrick’s idea to
use means of the Moon’s observed positions over each of the Cowell periods to obtain
the Moon’s mean longitudes free of inequalities that were functions solely of the vari-
able D. Special corrections had also to be made for other short-period inequalities.
A further difficulty to be surmounted, before the means could be employed in deter-
mining mean motion, concerned the Moon’s secular acceleration and its fluctuations
or “Great Empirical Term.” As Newcomb had been pointing out since the late 1870s,
the determination of the Moon’s average motion and longitude at epoch involved –
inextricably – the magnitudes of both these effects.177

In 1908, toward the end of his Theory of the Motion of the Moon, Brown gave
5′′.8 as his theoretically derived value for the Moon’s secular acceleration, in agree-
ment with the value endorsed by Newcomb in 1878.178 But in 1909 Newcomb
announced that, to take account of the effects of the Earth’s oblateness and the
diminution of the obliquity of the ecliptic, 0′′.27 should be added to this earlier value,
yielding 6′′.08.179 He also gave an observational value, 7′′.96, derived from ancient
eclipses along with modern observations. The excess of this value over the theoretical
value he attributed to the effect of the tides. (The tidal effect is twofold: the Earth’s
rotation is slowed by tidal friction, causing an apparent acceleration in the Moon’s
motion, and the Moon receives energy from the tides, causing it to rise into a higher
orbit with a diminished mean motion. Newcomb’s 1′′.88 is the excess of the first of
these effects over the second.)

In April, 1913 Brown received Simon Newcomb’s posthumously published
“Researches on the Motion of the Moon, Part II.”180 Here Newcomb had employed
the Moon’s occultations of stars as measures of the Moon’s positions before 1750,
and also as a check on the accuracy of theGreenwich observations. The new data

continuation to the Reduction of the Observations of the Moon from 1750 to 1830 (Lon-
don, 1859).

177 Newcomb, “Researches on the Motion of the Moon, Part I,” in Appendix II of Washington
Observations for 1875.

178 TMM, Memoirs of the R.A.S., 59, 93.
179 MNRAS, 69 (1909), 167.
180 Astronomical Papers for the American Ephemeris 9, Pt.I (1912), 249 pp. The subtitle reads

“The mean motion of the Moon and other astronomical elements derived from observa-
tions extending from the period of the Babylonians until A.D. 1908.”
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caused Brown to withdraw and revise a paper he had already submitted to the
Monthly Notices. The revised version, entitled “The Longitude of the Moon from
1750 to 1910,” appeared in late 1913.181

The original object of Brown’s paper had been to determine the Moon’s mean
motion and mean longitude at epoch 1900.0 for use in the new tables. But, he now
allowed, “the actual values to be adopted are of less importance than a knowledge of
what those values represent and whence they are derived.” An exact, unique solution
no longer appeared within reach. He reviewed and corrected all the modern data used
by Cowell and Newcomb – a considerable task. From these he then re-determined
the mean motion and great empirical term, using the theoretical value of the secu-
lar acceleration leaving aside Newcomb’s observationally derived “tidal excess” of
1′′.88. Comparing his formula with Newcomb’s for 36 epochs from 1620 to 1980,
he showed that the differences were small: “between 1710 and 1930 there is no error
as great as 0′′.1, and. . . , for the century before, the errors are all less than 0′′.5.”
Brown was in effect admitting that errors of this magnitude in these constants were
unavoidable. The great empirical term and mean motion values obtained in this paper
differed but slightly from those later adopted for the Tables.

The puzzle of the great empirical term will re-appear in our Part III. The supposi-
tion of a periodical term was really without empirical support. In fact, for the second
half of the 19th century, the observational differences from theory were well repre-
sented by four straight lines with changes in inclination in 1863, 1877, and 1897.
Brown commented:

These apparently sudden changes may be the combined effect of several
periodic terms, but the possibility of their real existence should not be
excluded in an attempt to account for the differences between theory and
observation.182

With regard to the remaining arbitrary constants, Brown was now facing a dead-
line: a printing schedule for the tables had been established, requiring that he decide
on the final values for these constants by early 1915. A series of papers in the Monthly
Notices record his decisions.

In January 1914 appeared his paper on “The Mean Latitudes of the Moon and
Sun.”183 Hansen, in order to bring the Moon’s mean orbit into coincidence with the
ecliptic, had subtracted 1′′.0 from all the observed declinations, and hypothesized
that the Moon’s center of mass was below its geometrical center. Newcomb, from
the immersions and emersions of stars in occultations, found the subtractive differ-
ence to be only 0′′.36; he thought Hansen’s hypothesis unwarranted. Brown obtained
0′′.51 from the Greenwich meridian transits for the years 1847–1911, and added
that, if Newcomb had used immersions only, his result would have been about the
same.

181 MNRAS, 73(1913), 692–714.
182 MNRAS, 73 (1913–1914), 713.
183 MNRAS, 73 (1913–1914), 156–167.
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In March, 1914, appeared Brown’s paper on the perigee’s longitude and motion
and the Moon’s orbital eccentricity.184 After correcting Cowell’s data,185 Brown first
removed two periodicities therein contained – possibly due to the irregular shape of
the Moon’s limbs near the equator – then did a least-squares analysis to determine
corrections to the previously adopted values of the perigee’s mean motion and secular
acceleration. Each of these constants was derivable from both theory and observa-
tion. He found (−37′′/1t2

c ) for the theoretical value of the secular acceleration and
(−35′′.7t2

c ) for its observed value, tc being the number of centuries since 1800. The
difference, 1′′.4t2

c , was smaller than the probable error in the observed value; Brown
therefore adopted the theoretical value.

The mean motion of the perigee depends theoretically on six constants: the
Moon’s mean motion in longitude, its orbital eccentricity and inclination, planetary
action, and the flattening ratios for the Earth and Moon. The magnitudes of the
first four of these factors could be deduced from either observation or theory more
accurately than the perigee’s mean motion could be determined observationally, but
the values of the flattening ratio for Earth and Moon were known less accurately.
For the perigee’s mean motion the observational value had therefore to be adopted.
Brown found it to be 14643536tc at epoch 1850, 17′′ greater than the value derivable
from theory if the Earth’s flattening ratio were set at 1/297. Increasing the flattening
ratio to 1/294 eliminated the discrepancy here as well as a similar discrepancy in
the mean motion of the node. The increase in the flattening ratio, however, proved
unacceptable. Years later, in 1936, Brown discovered that a portion of the perigee’s
motion he had neglected as insensible in 1914 – the term in e′2 – was large enough to
account for most of the previously unexplained difference between the observed and
theoretical values.186 In the case of the node the discrepancy remained unexplained.

Brown determined the Moon’s orbital eccentricity from the coefficient of sin 	
given by the Greenwich meridian observations. This coefficient was given by the
Airy series (1750–1850) as 22639′′.542, and by the Hansen series (1847–1910) as
22639′′.549. The probable error of the mean of these two results was about 0′′.02.
Brown-Hedrick adopted 22639′′.550 for the Tables. The corresponding value of the
orbital eccentricity was got by turning this coefficient into radian measure and setting
it equal to the theoretical value, 2e − 1

4 e3 + 5
96 e5 + 107

4608 e7; solving the equation for
e by approximation, Brown obtained 0.054900489.

Brown’s fourth and final paper on the constants dealt with the node, inclination,
flattening ratio for the Earth, and obliquity of the ecliptic.187 Here he was seeking
constants determinable from an analysis of the coefficients of cos F , sin F , where F
is “the argument of the latitude,” or L −, L being the Moon’s mean longitude, and
 the longitude of the node. Brown’s analysis was based on Cowell’s means over
414 days for these coefficients in the Hansen series (1847–1901); the results were
found to agree in all cases with the occultations given by Newcomb in 1912.

184 MNRAS, 74 (1914), 156–167.
185 MNRAS, 65 (1905), 269ff.
186 MNRAS, 97 (1936), 116–127; MNRAS, 98 (1937), 170–171.
187 MNRAS, 74 (May, 1914), 552–568.
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For the inclination, Brown obtained 18461′′.39 ± 0′′.03. Newcomb’s value,
corrected for certain terms Newcomb had omitted, was 18461′′.44. Brown settled
on 18461′′.400.

For the node’s longitude in 1800.0, Brown obtained

33◦16′28′′.26 − (5r + 134◦8′46′′.98)tc + 7′′.47t2
c .

Newcomb’s value as corrected by Brown was, happily, in good agreement:

33◦16′27′′.50 − (5r + 134◦8′47′′.00)tc + 7′′.47t2
c .

But Brown found the observed value of the node’s mean motion in excess of the
theoretical value by 12′′ per century, and concluded

It appears then that we must adopt the observed value and attribute the
difference to inaccurate values of the ellipticities of the Earth and Moon
(which are uncertain to at least this extent), to unknown perturbations, or to
a combination of all three.188

W.J. Eckert would be finding a similar discrepancy, still unresolved, in 1965.189

188 MNRAS, 74 (1914), 563.
189 W. J. Eckert, “On the Motions of the Perigee and Node and the Distribution of Mass in

the Moon,” Astronomical Journal, 70 (1965), 787–792.
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Ernest W. Brown as Theorist and Computer

Brown was primarily an applied mathematician. He developed an expertise in
choosing or devising maximally efficient routes, coaxing the lunar theory to yield
its consequences with a precision comparable to that attained in observations.

Tisserand’s Traité de mécanique céleste, when it came into his hands in the
mid-1890s, acquainted him with Jacobi’s streamlined procedure for deducing con-
sequences by the Lagrangian method of varying arbitrary constants. He applied it
in instituting certain economies in Delaunay’s and Newcomb’s treatments of the
secular accelerations of the Moon’s mean motion, node and perigee.190 Newcomb
had obtained a theorem that gave him the theoretical values of these accelerations.
However, he had used Delaunay’s developments exclusively, and their slow conver-
gence left an uncertainty amounting to about five percent in the secular accelera-
tion of the Moon’s mean longitude. Brown managed to derive a new theorem which
allowed him to abbreviate the computations and reduce the uncertainty to one-third
of one percent. Of this achievement he was especially proud.191

The third and final volume of Poincaré’s Les méthodes nouvelles de la mécanique
céleste appeared in 1899. As a lunar theorist, Brown felt the need to acquaint himself
with Poincaré’s three-volume work. When in late 1900 he was asked to give one of
two annual courses of six lectures for the summer meeting of the American Mathe-
matical Society in 1901, he chose Poincaré’s volumes as his topic. As he reported to
Darwin in a letter of December 30, 1900192:

[I] have been spending a good deal of time over [Poincaré] and expect to
take most of the next six months. I find that when one goes into details it is
fearfully hard reading – so many small errors, typographical and otherwise –
though I suppose that the general results are right. But I am gradually getting
into the heart of it now.

190 See Brown’s articles in Proceedings of the London Mathematical Society, 27 (1896),
385–390, 28 (1896), 130–142, 143–155.

191 See F. Schlesinger and D. Brouwer, “Ernest William Brown, 1866–1938,” Biographical
Memoirs of the National Academy of Sciences, XXI, 246.

192 CUL, MS.DAR.251:1593.
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In the following April he added193:

I haven’t touched calculations this year. My whole time has been put on
Poincaré’s Mécanique Céleste and I am now becoming a little more at home
in his methods. My respect for him grows with every chapter I read and
annoyance at the same time. He is very careless – sometimes proofs are
faulty – sometimes incomprehensible, and the number of misprints – some
of them misleading – is fearful. I have occasionally spent three or four hours
on a single page and then found that the difficulty arose from some misprint
or misstatement. But it reads beautifully if one doesn’t try to go too much
into details.

Brown was in England in 1901 but restricted his stay to the early summer,
since he had to be in Cornell by early August for the Mathematical Society meet-
ings. He promised Darwin an account of the lectures, and when he next wrote
(on October 19), sent along the syllabus he had drawn up194:

The voyage across in August was good, but the climate on arrival [in the
U.S.A.] decidedly steamy. However, Ithaca – or rather Cornell – is on the
top of a hill above the Lake. We had a good time there. Over 45 members of
the Society attended and 25 stayed for the lectures. As I feared, I had to cover
rather too much ground and they became somewhat sketchy. However my
main purpose, I think, was achieved – the interesting of pure mathematicians
in the subject. It was rather hard work – four successive days with nearly
two hours talking each session – two or three hours in the morning spent
in preparation – talking mathematics and mathematical business between
times and formal or informal committee meetings about the Transactions
[of the American Mathematical Society; Brown had been chosen as one of
the editors] in the evenings. I enclose the syllabus. Poincaré’s classification
at the end of it may interest you. I had a lot of trouble finding out what his
various divisions meant. I am trying to write out now a fuller account for
the Bulletin of the American Mathematical Society which I will send when
published.195

Brown’s intensive preparation for the lectures did not lead him into Poincaré-
style investigations of his own. Poincaré’s new topological methods were not needed
in developing the successive approximations of the lunar theory. The papers Brown
published between 1891 and 1908 were, with few exceptions, dedicated to achieving
an accurate lunar theory.

Brown’s concern with computational efficiency emerged early. The computations
required for a sufficiently precise lunar theory, he realized, would be numerous and

193 CUL, MS.DAR.251:4874.
194 CUL, MS.DAR.251:4942.
195 The Bulletin article, “Modern Methods of treating Dynamical Problems and in particular

the Problems of Three Bodies,” was published in Bulletin of the American Mathematical
Society, series 2, 8, 103–113.
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complicated. In his letters to Darwin he used such adjectives as “tedious,” “everlast-
ing,” “soul-destroying,” in describing these computations.

A little over 2 years later, as he was finishing corrections to the proof sheets for
his Introductory Treatise on the Lunar Theory, he reported to Darwin that

During the intervals of proof sheets in this last month I have been trying to
reduce the rectangular coordinate method [Hill’s method] to a form in which
all the inequalities can be practically reduced to the multiplication of series
with an occasional quadrature – i.e. so that the grind can nearly all be done
by a professional computer. I have succeeded with the latitude inequalities –
no solving of linear equations needed and the higher parts of the motion of
the node come out as nearly as possible. I think I can manage to do the same
with the inequalities in X , Y – at any rate for those independent of the polar
parallax.196

In March, 1896, in a further letter to Darwin, he was able to add:

I told you in my last that I was making an attempt to get the Lunar Theory
reduced to the form where a practical computer may do nearly all the work.
Shortly after, it came out in a form simple beyond my utmost expectations.
It depends on the ‘complementary function’ and ‘particular integrals’ of
Differential Equations.197

In the last sentence Brown refers to topics dealt with in the essay published in the
Stokes Memorial volume, which appeared in 1900.198 This essay had been largely
completed in 1896. Its original aim, it appears, was to construct the general solu-
tion of Hill’s equations in their homogeneous form (see, for example, equations
B.52a, b, c), rather than to achieve computational efficiency. But the reduction of
the development of the theory to the multiplication of series of sinusoidal terms
expressed exponentially needed to be justified: it was necessary to know that non-
periodic terms – terms proportional to t – were absent. These equations had yielded
Hill’s variation curve as a particular periodic solution, and Brown’s “solution of the
main problem” was also a solution of them. Since each of Hill’s equations was of the
second order, the two of them formed a system of the fourth order, and the general
solution consequently required knowing four independent particular solutions. Once
having obtained the general solution, Brown was able to argue that,

. . . it being granted that the series forming the ‘Variation’ inequalities and the
elliptic inequalities depending on the first power of the Moon’s eccentricity
are convergent, it is not difficult to demonstrate . . . that all the terms multi-
plied by a given combination of powers of the eccentricities, inclination and

196 CUL, MS DAR.251:477.
197 CUL, MS DAR.251:478.
198 “On the Solution of a Pair of Simultaneous Linear Differential Equations, which occur in
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ratio of the parallaxes, that is, all the terms with a given characteristic, form
a convergent series.199

The quest for computational efficiency had thus led Brown to a conditional confir-
mation of the theoretical legitimacy of the development.

The superior accuracy that Brown was able to achieve, as compared with earlier
lunar theorists, may be attributed to the reduction of much of the theory’s
development to the multiplication of series, as well as to Brown’s use of indepen-
dent equations of verification (mentioned in Cowell’s letter as quoted by Maw in
his Presidential Address of February, 1907). A still more fundamental cause lay in
Hill’s “variation curve” itself. This was the “intermediate orbit” employed in Brown’s
calculation; all earlier theorists except Euler had assumed an elliptical orbit, a
solution of the two-body problem applied to the Moon moving about the Earth, as
starting-point for the successive approximations. Hill’s variation curve was a better
approximation to the Moon’s actual motions. It led to steeper convergence in the
series for the coefficients of the “perturbation” terms – the terms added to tweak the
variation curve into conformity with reality.

During the first 11 of his 16 years at Haverford, Brown found himself, a number
of times, considering the possibility of seeking a different post elsewhere. Impelling
him in this direction during the early years was the American climate with its ex-
tremes, which appeared to have a very adverse effect upon his health and made him
think of returning to England. “When,” he asked Darwin in December, 1893, “are
they going to appoint a man in astronomy at Oxford?”200

Haverford College went through spells of financial stringency during the 1890s.
Brown took a leave of absence for the 1894–1895 academic year, in part to help the
College save money. In the spring of 1896 the College’s situation worsened, and the
College President gave Brown a bit of a nudge toward moving on. As Brown reported
to Darwin,

I am in rather a fix just now. The College is financially in rather low water –
pending the death of an old lady (the College will have an extra income of
about £4000 a year when she dies.) They’ve been reducing expenses to the
least possible minimum, and not long ago the President told me that they
couldn’t keep two men in Mathematics. The fact is that there isn’t really
enough work for both of us. Morley (formerly of King’s) is a married man
with a family and has been here nine years longer than I have, so, of course,
when the President said he didn’t know which of us to keep, I offered my
resignation. He told me that if I like to stay on for the present on a small
salary and very little work, he would only be too glad, but that if I wanted
to get another post, he would give me the best testimonials. I’ve told you all
these details because I don’t want you to think I’ve been a failure here.201

199 Ibid., 94.
200 CUL, MS.DAR.251:470.
201 CUL, MS.DAR.251:479.
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Darwin proceeded to apprise Brown of an opening (unidentified) in Bombay, but
Brown believed he shouldn’t apply for it202:

. . . the climate is an obstacle which will prevent me thinking of it. I can’t
stand heat and, from what I hear, that is about the warmest place on the
globe. It would probably kill me in 12 hours. The warmest days here are
comparatively cool and they have a sufficiently bad effect. If nothing turns
up, I can make an arrangement to stop here next year at 500 dollars a year
with five hours work per week. It isn’t much but with that and my own
income I can at least keep myself. I need not decide about staying until it
is time to return [to Haverford from England] in September, so if anything
turns up, I shall be free. I suppose there is no chance of a post in the Nautical
Almanac Office?

Darwin sent Brown a letter of recommendation for use in seeking a job, and also
advised him to apply forthwith for Cambridge’s Doctor of Science degree (Brown
would receive the degree in 1897). Brown in his next letter reported that he was
sending Darwin’s letter to Seth Low, President of Columbia University203:

Of course I should immensely like work in England and especially at Oxford
if there were any probability of its leaving me a fair part of the time for my
own work. I am sending the letter you were good enough to write, to Seth
Low. I don’t know what chances there are there – but it can’t do any harm to
let him know that I am open to offers and your letter will have weight with
him.

No opening emerged, and in the autumn Brown was back at Haverford, on a low
salary and light teaching load. On December 7, 1896, he wrote Darwin as follows204:

I must say I like the present arrangement – it is delightful to have nearly all
one’s time at liberty and I get lots of work done. Sometime in the Spring
I expect to have read a paper which will contain the complete solution of
the lunar theory as far as the second order of the eccentricities, inclinations
and parallaxes together with the motions of perigee and node to same order
and some inequalities of the third order – all powers of m being included
numerically. I don’t in the least know where to put it – there will be so much
arithmetic in it and it will run to perhaps sixty or seventy quarto pages.
The American Journal [of Mathematics] does not seem quite the right place.
Do you think that the Royal Society would publish it or that the Astrono-
mical Society Memoirs would be a more fitting place?

In March 1897 Brown informed Darwin that he was submitting the paper for publi-
cation in the Memoirs of the Royal Astronomical Society.205

202 Brown to Darwin, April 30, 1896, CUL, MS.DAR.251:480.
203 Brown to Darwin, May 8, 1896, CUL, MS.DAR.251:481.
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205 CUL, MS.DAR.251:488.
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In his letter to Darwin of December 30, 1900, Brown reported having had a
visit from Stimson J. Brown, newly appointed Astronomical Director of the Naval
Observatory and Director of the Nautical Almanac Office. Stimson Brown proposed
supplying our Brown, E.W. Brown, with a team of computers who would assist in
completing his lunar theory. The team would then proceed to construct lunar tables
from the theory. Our Brown would be in charge of the whole operation, with Hill and
Newcomb serving as an advisory board. To support this plan financially, Stimson
Brown would seek a grant from Congress. To Darwin our Brown wrote206:

. . . there are so many [obstacles] in the way that I doubt whether he
[Stimson Brown] will be able to do anything for a long time yet . . . . But
if he manages to get what he wants and does ask me to undertake them [the
tables] – of course for a proper remuneration – I don’t know whether to
accept. I should probably be able to continue my work here just as before
but [not] if it would mean giving up my whole spare time to the tables for
perhaps eight or ten years, thus doing work which would get very tedious
and mean the stoppage of every other kind of research and mathematics.
Of course, there would not be a large amount of actual calculation to do as
the Office would furnish the computers. . . . If you can with this very rough
outline give me any advice, I should be very grateful. I am not very sure
of my ability to advance the subject in a mathematical direction and in that
case it would be much the best to undertake the work.

Brown, we gather, was diffident about his ability to establish himself as a success-
ful mathematician in the American mathematical community. This sense of inade-
quacy appears to have diminished in the following years as he completed the theory
and gained recognition for his achievement. But a great deal of modesty remained.
In an address of 1914 he said:

My own theory [of the Moon], which was completed a few years ago, is
rather a fulfillment to the utmost of the ideas of others than a new mode of
finding the Moon’s motion. Its object was severely practical – to find in the
most accurate way and by the shortest path the complete effect of the law of
gravitation applied to the Moon. It is a development of Hill’s classic memoir
of 1877.207

Schlesinger and Brouwer, commenting on this statement, urged that “it does not give
the emphasis that it should to [Brown’s] own resourcefulness in finding the most
accurate solution by the shortest path.” We suspect in Brown a certain pride in his
practical achievement as a computer, though it long remained covert. Toward the
end of his life he will show that Hill’s invocation of the infinite determinant was
an unnecessary detour into mathematical sophistication: the same result could be
obtained by the lowly computer, without resort to highfalutin mathematics.
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As for the dilemma posed by Stimson Brown in December, 1900, no decision
proved necessary, as we learn from Brown’s letter to Darwin of April 21, 1901208:

As it has turned out, . . . it looks as though the matter would be postponed for
a long time even if it is undertaken at all. There has been another row in the
Naval Observatory. The nominal chief is a retired navy sea captain and the
working head under him a scientific man but a government servant. Stimson
Brown who was in the latter position when I wrote (the position carries also
that of director of the Nautical Almanac) criticized the sea-captain in rather
too free a manner – result – threats of a court-martial which was averted by
the Secretary for Agriculture removing Brown from duty at the Observatory
and putting a fellow called Harschman in his place. . . . So what will happen
I don’t know but personally I am relieved that the work won’t come on
at present – if it comes my way at all. They are trying to reorganize the
Almanac and Observatory and put them on a proper basis – many rows and
more wire-pulling will result for at least a year.209

Brown in the same letter thanked Darwin for writing (on February 1) about “the
question of the Lunar Tables:”

. . . it helped me a great deal and I felt that when the time came I should have
less difficulty in coming to a decision.

The question of how and by whom the tables would be constructed was resolved
later, Yale University offering major assistance.

In late October of 1902 Brown submitted his name for possible nomination to
take charge of a meteorological office with headquarters at Simla, India, in the moun-
tains north of Delhi. Darwin and Larmor were on the selection committee. The notifi-
cation of the opening had reached Brown late – the deadline for applying had already
arrived, but Brown cabled his willingness to be considered. On November 3 Brown
sent off a long letter to Darwin explaining what his thoughts were in deciding to
apply210:

Of course the most important matter to me was the change in my work.
It was clear to me that the Lunar Theory would have to be definitely and
finally abandoned. It might be possible, in intervals of leisure and holidays
to finish the remaining work though I doubt much whether I should be able
to do so. It was also perfectly clear that if the post came to me I should have
to devote myself to meteorology. You were quite right in telling Eliot that
I should do so. In fact I want to say this in the strongest way possible – all
my energies would be given to the subject. It is hard to leave the numerical
Lunar Theory just now when it is so near completion – I could finish it in

208 CUL, DAR.MS.251:4874.
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a year’s steady work – and nearly as hard to leave the subject itself. I have
been very much interested – more than usual – lately in working up the
literature for the Encyclopedia article, which of course would have to be
dropped. [Brown had agreed to write an article on the Lunar Theory for
the German Encyklopädie der Mathematischen Wissenschaften. It appeared
in 1915 under the title “Theorie des Erdmondes,” Brown’s English version
having been translated into German by A.v. Brunn.] On the other hand, I am
not very certain whether the L.T. [Lunar Theory] has very much more in
store for me apart from the calculations part. If it has [hasn’t?] it will mean
that I shall soon have to take up other subjects, e.g. theory of differential
equations, and apply them to celestial mechanics. On the other side [the
side of Meteorology] lies an almost untouched field from the mathematical
standpoint. The fact that the Meteorological Re. [?] would be relieved of
much of the routine work pointed to a certain degree of leisure for going
into the subject mathematically and all round. Of course one naturally feels
doubtful of any success in tackling such difficult problems but something
might be done to at least make a start.

Brown believed that questions of health would not be a problem: Simla, he had heard,
was “one of the healthiest places in the world.” Moreover, he had been

growing stronger every year by finding out how to take care of myself, and
now I rarely have anything the matter with me and can do almost as much
work in the day as I want to.

In a final paragraph, Brown revealed what may have been the deciding motive for his
allowing his name to go forward:

Another reason which made me anxious to see my way clear to accepting
was the fact that you especially (and I fancy one or two others) have been
on the lookout for me and I have done nothing on my part. . . . I do want you
to know that I appreciate what you have done for me and the best way I can
show it is by doing my best to second your efforts.

A letter from Darwin, a few days later, informed Brown that the meteorological
post had gone to another man. Brown’s response, dated November 10, 1902, is
preserved only in part.211 A month later Brown was once more at work on his
Encyklopädie article.212

In late 1900 Brown had decided to build a house on the Haverford campus.

I get the land for nothing and the College agrees to take the house off my
hands, should I leave, at a valuation.213
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213 CUL, DAR.MS.251:1593.
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Ground for the house was broken on May 1, and construction completed by October.
An important part of the plan was that his younger sister, Mildred, was to come from
England to live with him. She was in Haverford by September, and she and Brown
labored through the autumn to get the house furnished and in working order. Of her
role in his life, Schlesinger and Brouwer in their Biographical Memoir of Brown
have this to say:

[The] household was presided over for many years by [Brown’s] maiden
sister Mildred, junior by two years. For most of her adult life she made it
her chief, almost her sole, concern to see to his comfort and shield him from
cares and disturbances. She succeeded in utterly spoiling him. She died a
few years before her brother.214

Mildred’s ministrations are probably responsible for the thermos bottle of coffee,
mentioned in our biographers’ account of Brown’s rather unusual daily routine215:

He would retire rather early in the evening and as a consequence would
awaken usually from three o’clock to five o’clock in the morning. Having
fortified himself with a number of cigarettes and a cup of strong coffee from
a thermos bottle, he would then set to work in earnest without leaving his
bed. At nine o’clock he would get up and have his breakfast. Unless he had
something especially exciting on hand, he would not return to mathematical
work until the next morning, devoting the intervening time to correspon-
dence, teaching and other similar duties. This program he carried out when-
ever possible, at home, at the houses of friends he was visiting, and even on
board ship.

Once the new pattern in his life was established, we can imagine that Brown
settled down to his task of finishing the lunar theory with a new confidence and
determination. Each successive stage of the computation was prepared for carefully
and systematically executed.

How expert was Brown as a computer? In the 1960s, Walter J. Eckert and
Harry F. Smith carried out, by means of the electronic computers that by then
had come into use, a computation of the main problem of the lunar theory, some
9600 terms in all, to an accuracy of 2′′×10−7. Comparing their results with Brown’s,
they concluded:

Our results show that Brown’s solution is even better in many respects than
he had hoped when he made it, and the freedom from error in his work
is truly phenomenal. . . . In our comparison we found only one correction
as large as 0′′.01, eight as large as 0′′.005, and 51 as large as 0′′.002. The

214 Schlesinger and Brouwer, “Ernest William Brown,” National Academy Biographical
Memoirs, XXI, 258.

215 Ibid., 259.
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outstanding correction is that in y with argument 2F−2	which corresponds
to a correction in the longitude of approximately 0′′.072 sin(2F − 2	).216

Events that we are unable to trace led to Brown’s appointment as professor of
mathematics at Yale University beginning in 1907. A major factor leading to Brown’s
acceptance of this appointment was Yale’s commitment to support the construction
of lunar tables by establishing a fund for the purpose, which eventually expended
$34,000 on the project. The tables, as we have seen, required the solution of a difficult
problem presented by the vastly larger number of sinusoidal terms in Brown’s theory
than in any earlier theory.

As we have also seen, the Tables had to be devised despite the puzzle presented
by the unexplained fluctuations in the Moon’s motion. What was their cause, and
how were they to be dealt with? To these questions we shall turn in Part III.

216 W.J. Eckert and H.F. Smith, Jr., “The Solution of the Main Problem of the Lunar Theory
by the Method of Airy,” Astronomical Papers prepared for the Use of the American
Ephemeris and Nautical Almanac, 19, Part II, 196.
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Introduction

Parts I and II of this study traced the development of the Hill–Brown lunar theory
(1) starting from George W. Hill’s determination of the parameters of the Variation
Curve in 1877–78, (2) continuing with Ernest W. Brown’s computation in the years
1891–1908 of the 3000 or so additional terms required to yield the coordinates accu-
rately to 0′′.01 in latitude and longitude and to 0.001 in sine parallax, and (3) ending
with the incorporation of these terms in the Brown-Hedrick Tables of the Motion of
the Moon, published in 1919.

Beginning with the year 1923, the lunar ephemerides in the nautical almanacs
of the United States, Great Britain, France, Germany, and Spain were computed
from the Brown-Hedrick Tables.217 This practice might have continued through the
century had it not been for (a) questions left unanswered when the Tables were pub-
lished and (b) the development of automatic-sequenced computers, atomic clocks,
and remarkable new modes of collecting data.

Brown had omitted from the Tables any reference to a tidal acceleration of the
Moon, as being uncertain. But in 1920 evidence emerged to show that a tidal accele-
ration was sizable (the value then newly given for the increment per century was
4′′.75 per century). A tidal acceleration of the Moon would entail a gradual slowing
of the Earth’s rotation – the clock that astronomers had relied on since the dawn of
astronomy.

Another kind of departure of the Moon from the motion implied by gravitational
theory had also emerged. These were “fluctuations,” which, unlike the tidal accele-
ration, involved changes in mean motion lasting for days or months or years, but not
steadily persisting as did the secular acceleration. Fluctuations had first been detected
in the 1860s. Brown’s computation of the Moon’s planetary perturbations, finished in
1908, and clearly more complete than any earlier computation of these perturbations,
excluded any lingering hope that a gravitational source for these departures would be
found. To represent a large, long-term component of the fluctuations, Brown included

217 Explanatory Supplement to the Astronomical Almanac, ed. P. Kenneth Seidlemann.
Sausalito, California: University Science Books, 1992, 640. See ibid., 616ff. on coopera-
tion of the principal ephemeris offices.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 21,
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in his Tables a sinusoid, 10′′.71 sin[140◦.0T + 240◦.71]. This was a makeshift, since
there was no guarantee that such a term would continue to fit observations in the
future, or that the fluctuations were periodic as the sinusoidal term implied. In the
1870s Newcomb had already proposed the hypothesis that the fluctuations arose from
variations in the rotation of the Earth,218 but he was unable to confirm this hypo-
thesis. If the hypothesis should prove true, then clearly the Earth’s rotation would no
longer be able to serve as the astronomer’s clock. A major re-thinking of astronomi-
cal time-keeping would be required.

Investigations into the tidal acceleration and fluctuations continued after the
publication of the Brown-Hedrick Tables. In 1939 these investigations at last yielded
persuasive evidence that the anomalies in the Moon’s motion could be accounted
for by variations in the Earth’s rotation. No other interpretation was plausible. The
empirical term in the Tables had therefore to be deleted. The time used in the
ephemerides of Sun, Moon, and planets, at first called Newtonian Time, was now
recognized as distinct from the time in which astronomical observations were made,
namely Universal Time. The latter was dependent on the rotation of the Earth, and
therefore variable. New rules needed to be established for correcting Universal Time
to Newtonian Time.

Meanwhile the powers of the electronic computer began to be developed, partly
in connection with the further investigation of the Moon’s motion. Beginning in the
1920s, automated ways of computing were introduced into astronomical practice,
first by Leslie J. Comrie in Britain, then by Wallace J. Eckert in the United States.
By 1948 Eckert had developed an automatic-sequenced computer capable of cal-
culating the Moon’s celestial coordinates directly from the trigonometric series of
Brown’s theory and independent of the Tables. The improvement over the accuracy
and precision attainable using the Tables was significant. Further improvements in
accuracy and precision soon followed. These developments are summarized in this
final part of our study.

218 See S. Newcomb, “Fluctuations in the Moon’s Mean Motion,” Monthly Notices of the
Royal Astronomical Society (hereinafter MNRAS), 69 (1909), 164.
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Tidal Acceleration, Fluctuations, and the Earth’s
Variable Rotation, to 1939

The proposition that the Moon’s motion was slowly accelerating over the centuries
was first put forward by Edmond Halley in 1692.219 Determinations of the size of this
acceleration during the 18th and early 19th centuries put it at about 10′′ of increase
per century. This meant that the Moon’s mean motion contained the term 10′′T 2,
where T represents 100 Julian years of 36525 days each; the increment is equal
numerically to half the angular acceleration. The 18th-century astronomers referred
to the increment as the “secular acceleration” of the Moon, and this usage continued
into the 20th century.

The cause of the Moon’s acceleration was much debated. At last in November,
1787, Pierre Simon Laplace announced that he had succeeded in deriving it from
the law of gravitation.220 He found the Moon’s acceleration to be the indirect effect
of planetary perturbations of the Earth’s motion. These produced a sinusoidal vari-
ation in the Earth’s orbital eccentricity, cycling through its values over a period of
some hundreds of thousands of years. In the present age the eccentricity is decreas-
ing, causing an increase in the ratio of the Earth’s to the Sun’s mean gravitational
action on the Moon. The Moon therefore falls into an orbit closer to the Earth, with
a consequent increase in its mean angular motion.

In his Mécanique Céleste, Laplace gave 10′′.181621T 2 + 0′′.01853844T 3 for
the theoretical increase in the Moon’s mean angular motion per century during the
present age. (The number of significant figures that Laplace claimed here was out-
rageously excessive, such excess being customary in the 18th century. The whole

219 Information regarding the Moon’s secular acceleration and its discovery and interpretation
can be found in R. Grant, History of Physical Astronomy (Johnson Reprint Corporation,
1966), 61–62, and in J.P. Britton, Models and Precision (New York: Garland Publishing,
1992), 153–171.

220 On 23 November 1785 Laplace read “Un mémoire sur les inégalités séculaires des planets
et des satellites.” This was a draft of “Mémoire sur les inégalités des planets et des sate-
llites” published in the Mémoires de l’Académie royale des Sciences de Paris, 1784/1787.
The latter memoir is also found in Oeuvres completes de Laplace, XI, 49–92.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
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matter of significant figures was first clarified by Karl Friedrich Gauss in 1809.221)
Values close to Laplace’s were found by J.L. Lagrange in the 1790s and by G.A. Plana
and M.C. Baron de Damoiseau in the 1820s. The theoretical values agreed as well
with the empirical values as ancient eclipse reports, unavoidably vague and uncer-
tain, allowed.

But in 1853 John Couch Adams showed this agreement to be specious.222 Certain
terms in the theoretical derivation, judged negligible by Laplace, were in fact sizable.
Including these terms in the computation, Adams obtained 5′′.70 of increase per
century, considerably less than Laplace’s 10′′.18. Adams’ theoretical result for the
Moon’s centennial acceleration was initially disputed by Giovanni Plana, Philippe
de Pontécoulant and Peter A. Hansen. Adams showed that the theoretical deriva-
tions of Plana and de Pontécoulant were fallacious.223 Hansen’s value of 12′′.18 for
the centennial acceleration was derived from the paths of totality of certain ancient
solar eclipses described by George B. Airy.224 This value was observational, and
hence not relevant to the theoretical dispute. Adams’ theoretical result was substan-
tiated in re-calculations by Richard Cayley and by Charles Delaunay. William Ferrel
in 1864 and Delaunay in 1865 suggested that the difference between the theoreti-
cal and observational values could be due to tidal friction.225 Tidal friction would
cause a slowing of the Earth’s rotation, leading to an apparent acceleration of the
Moon. At the same time, there would be a variation in the Moon’s orbital velocity, as
required by conservation of angular momentum.

This topic was discussed by William Thomson and Peter G. Tait in their Treatise
on Natural Philosophy of 1867, and it has been dealt with in more recent discus-
sions.226 Tidal friction and imperfect elasticity in the solid parts of the Earth cause
the tidal bulge to be carried eastward by the Earth’s rotation. The attraction between
this bulge and the Moon gives the Moon added energy in the direction of its forward

221 See K.F. Gauss, Theory of the Motion of the Heavenly Bodies Moving about the Sun
in Conic Sections, (tr. C.H. Davis: New York: Dover publications, 1963), Second Book,
passim.

222 J.C. Adams, “On the Secular Variation of the Moon’s Mean Motion,” Philosophical
Transactions of the Royal Society London, 143 (1853), 397–406. Reprinted in MNRAS,
14 (1854), 59–62.

223 See S. Newcomb, Popular Astronomy (New York: Harper & Brothers, 1878), 97.
224 G.B. Airy, “On the Eclipses of Agathocles, Thales, and Xerxes,” Philosophical Trans-

actions of the Royal Society of London, 143 (1853), 179–200. See also MNRAS, 17 (1857),
234. The paths of totality comprise the successive areas on the Earth’s surface from which
the Sun is seen as totally eclipsed.

225 W. Ferrel, “Note on the Influence of the Tides in Causing an apparent Secular Accele-
ration of the Moon’s Mean Motion,” Proceedings Of the American Academy Arts and
Sciences, VI (1864); C.E. Delaunay, “Sur l’existence d’une cause nouvelle ayant une ac-
tion sensible sur la valeur de l’equation séculaire de la Lune,” Compte Rendu des Séances
de l’Académie des Sciences, 61 (1865), 1023–1032.

226 Sir W. Thomson and P.G. Tait, Treatise on Natural Philosophy, (Oxford, 1867), Part I,
section 276. A more recent account is in Kurt Lambeck, The Earth’s Variable Rotation
(Cambridge University Press, 1980), Chapter 6.
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motion (eastward with respect to the stars). As a consequence, the Moon rises into a
higher orbit where its mean motion is less. The accompanying diagram227 shows the
relevant geometrical relations. Here  is the Earth’s rate of rotation about its axis,
and n� is the Moon’s orbital mean motion. In Figure (a) the Earth responds elasti-
cally to the Moon’s gravitational force, in (b) it responds with a time delay due to
friction or anelasticity.

The amount of energy transferred from the Earth to the Moon during any time
interval depends on where the Moon is in its orbit and the force of attraction exerted
by the tidal bulge at that time. These quantities cannot be obtained directly from
general theory. In the late 20th century, laser-ranging made possible the verifying of
the Moon’s recession from the Earth, about 3.82 cm. per year, or 3.82 m. per century.

During the 1870s, Simon Newcomb set out to review and correct Hansen’s
Tables. He would later use his corrected version for the lunar ephemerides in the
American Ephemeris and Nautical Almanac.228 In 1878 he published revised values
for the Moon’s secular acceleration.229 He gave 5′′.80 for the part of this acceleration
caused by planetary perturbations of the Earth and Moon, and he gave 8′′.32 for the
total acceleration, comprising the theoretically derived part just mentioned and the
part ascribed to tidal friction. Newcomb derived the value 8′′.32 from several ancient

227 From Lambeck, The Earth’s Variable Rotation as cited in the preceding note, p. 119.
228 The lunar ephemerides in the American Ephemeris and Nautical Almanac from its incep-

tion in 1855 were based on the lunar theory of Benjamin Peirce. The corrected Hansen
Tables became the basis beginning with the year 1883.

229 Simon Newcomb, Researches on the Motion of the Moon, Part I, in Appendix II of “As-
tronomical and Meteorological Observations Made during the Year 1875 at the United
States Naval Observatory,” 1878.
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solar and lunar eclipses; he distrusted the ancient reports of total solar eclipses from
which Hansen had derived his larger value. His results implied a tidal part of the
Moon’s secular acceleration of 8′′.32 − 5′′.80 or 2′′.52.

Shortly before his death in 1909, Newcomb published a further revision in his
values for the Moon’s observed secular acceleration and its theoretically derivable
part230:

The observed secular acceleration is now found to be less by 0′′.37 than that
which I derived in 1876. As for the theoretical value, I have added 0′′.27
to the value found by Brown and myself, on account of the effect due to
the combination of the Earth’s oblateness with the secular diminution of the
obliquity of the ecliptic. This carries the theoretical acceleration up to 6′′.08.
The value now found from all observations is

Secular acceleration from mean equinox 9′′.07

Sidereal value 7′′.96

Tidal excess 1′′.88

Newcomb’s “tidal excess” refers to the difference between the new observational
value of 7′′.96 and the new theoretical value of 6′′.08.

The Moon’s Fluctuations, from Their Discovery to the
Publication of Brown’s Tables

That the Moon’s longitudinal motion was fluctuating in ways not derivable from
gravitational theory became evident in the 1860s. It emerged, for instance, in an ex-
amination of the planetary terms which Hansen had included in his Tables de la lune
(1857).231 Two of them were relatively large, long-term perturbations of the Moon
by Venus. For one them Hansen gave the formula 15′′.34 sin(18V −16E −g), where
V is the mean longitude of Venus, E that of the Earth, and g the mean anomaly
of the Earth. The implied period is 273 years. Hansen’s coefficient and argument
for this term were refined in the 1890s, but the corrections were small. For the
other term Hansen gave the formula 21′′.47 sin(8V − 13g + 4◦44′), with an implied
period of 239 years. In 1863 Charles Delaunay carried out a careful derivation of this
second term and found that the coefficient could not exceed 0′′.272.232 According
to Newcomb, “Hansen himself admitted that he had been unable to determine the

230 MNRAS, 69 (1909), 167.
231 Newcomb in his Popular Astronomy (1878, pp. 98–99) states that Laplace had found in

the years just before 1800 that the Moon was falling behind its calculated place. He pro-
posed two conjectural explanations of the inequality, but both were disproved by later
investigators.

232 C.E. Delaunay, “Sur l’inégalité lunaire à longue période due à l’action perturbatrice de
Vénus et dependant de l’argument, 13L ′ − 8L ′′,” Additions à la connaissance des temps
1–56, 1863.



22 Tidal Acceleration, Fluctuations, and the Earth’s Variable Rotation, to 1939 243

amount of this inequality in a satisfactory manner from the theory of gravitation, and
had therefore made it agree with observation. . . .”233

Hansen’s mistaken Venus term, combined with Hansen’s gravitational theory,
produced agreement with the observations for the period 1750–1850. But Newcomb
found that this same combination failed to produce agreement with occultations
observed before 1750 and after 1850. The Moon was deviating from the path and
motion that gravitational theory implied, and this deviation was large and cen-
turies long.234 To represent this deviation, Newcomb found no better way than to
employ a sinusoidal term similar to Hansen’s, but of different period and coefficient:
15′′.5 sin(1◦.32t +93◦.9). The implied period was 273 years. Newcomb thought that
variability in the Earth’s rotation was the most likely cause of the deviation.235

In 1882 Newcomb published a study entitled “Discussion and Results of Obser-
vations on Transits of Mercury, from 1677 to 1881.”236 Among other aims, this study
was designed to test whether the fluctuations of the Moon were caused by variations
in the axial rotation of the Earth. This idea could best be tested on relatively rapidly
moving celestial bodies (e.g., Mercury and the satellites of Jupiter) to see whether
they showed the same apparent inequalities as the Moon.

In a study of the Moon’s motion he had published in 1878, Newcomb included
a computation of the errors, �t , with which the astronomical determinations of
time would have to be affected in order to explain the non-gravitational inequali-
ties detected in the Moon’s motion.237 Supposing that the motion of Mercury was
affected by errors due to the same cause, he interpolated between the tabulated values
of the Moon’s errors to find values for �t at the times of the 23 transits of Mercury
observed since 1677. Before inserting these values into the equations of condition,
he multiplied them by a constant k. The value of this constant was to be determined,
along with ten other quantities including the orbital elements of Mercury, by the
method of least squares. If the hypothesis of perfect uniformity in the Earth’s rota-
tion was correct, k would be zero or close to zero. If the observed inequalities in the
Moon’s mean motion arose from the errors �t , the value of k would come out to be
equal, or nearly equal, to unity.

In his least-squares analysis, Newcomb found k to be 0.295. He inferred that the
probability of k = 1 was less than that of k = 0. But he regarded k = 0 as also
improbable, given the systematic character of the residuals. He was puzzled that a
value near k = 0.3 should nearly satisfy the whole series of observations:

. . . we must regard it as quite improbable that the inequalities in the mean
motion of the Moon are entirely to be accounted for by changes in the earth’s

233 Popular Astronomy (1878), 99.
234 Researches on the Motion of the Moon, Part I, in Appendix II of “Astronomical and Me-

teorological Observations Made during the Year 1875 at the United States Naval Obser-
vatory,” 1878.

235 Newcomb, Popular Astronomy (1878), 99.
236 Astronomical Papers prepared for the use of the American Ephemeris and Nautical

Almanac, I (1882), 363–487.
237 Researches on the Motion of the Moon, Part I, 1878, 266.
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rotation. One of the conclusions of the present discussion is therefore this:
Inequalities in the motion of the Moon not accounted for by the theory of
gravitation really exist, and exist in such a way that the mean motion of the
Moon between 1800 and 1875 was really less than it was between 1720 and
1800.

Newcomb endorsed the idea that the Moon’s fluctuations were due (at least in part)
to real changes in the Moon’s mean motion and he dismissed the possibility that the
anomalous value of k might be due to systematic observational error.

On the other hand, Newcomb did not relinquish the idea that the Moon’s fluc-
tuations were in part due to errors in timing. In the Comptes Rendus of the Paris
Académie des Sciences for 1896, he asserted that

Les observations des passages de Mercure accusent nettement de petite
variations dans la rotation de la Terre dont le montant integer, pendant de
longues périodes de temps s’élève probablement à cinque, ou meme à dix
secondes. En particulier il semble que, entre 1769 et 1789, un ralentisse-
ment de la rotation avait lieu et que, entre 1840 et 1861, encore un autre.
Vers 1862, ce ralentissement était suivi brusquement d’une acceleration bien
accentuée, qui a persisté peut-être jusqu’à 1870. Ce qui est remarquable,
c’est que cette dernière conclusion est confirmée par le movement observé
de la Lune.238

Apparently, he attributed the discrepancies he found in Mercury’s motion to clock
errors �t , but he also believed that at least part of the Moon’s errors arose from an
unidentified source.

In a 1903 paper entitled “On the Desirableness of a Re-investigation of the Prob-
lems growing out of the Mean Motion of the Moon,”239 Newcomb characterized the
discrepancies between observed and theoretical values of the Moon’s mean motion
as “the most important unsolved problem growing out of the celestial motions.” Con-
cerning his earlier investigation as to whether Mercury’s deviations from its tables
bore to the Moon’s deviations the ratio of their respective mean motions, he reported
that they were in almost all cases in the right direction but too small.

The evidence seems almost conclusive that the very improbable deviations
in the Earth’s rotation inferred from the observation of the Moon are unreal,
and that the motion of our satellite is really affected by causes which have,
up to the present time, eluded investigation.

In a 1909 paper, “Fluctuations in the Moon’s Mean Motion,” Newcomb assigned
a new, reduced value to the main term in the fluctuation240:

12′′.95 sin(1◦.31t + 100◦.6).

238 Académie des Sciences, Comptes Rendus, t.cxxii (1896), 1238.
239 MNRAS, 63 (1903), 8.
240 MNRAS, 69 (1909), 165.
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As his final view of the fluctuations, he stated that

Taken in connection with the recent exhaustive researches of Brown, which
seem to be complete in determining with precision the action of every
known mass of matter upon the Moon, the present study seems to prove
beyond serious doubt the actuality of the large unexplained fluctuations in
the Moon’s mean motion to which I have called attention at various times
during the past forty years. . . . The feature of most interest is the great fluc-
tuation with a period of between 250 and 300 years. . . . In the absence of any
physical cause for its continuance, there is no reason to suppose that it will
continue in the future in accordance with the law followed in the past.241

Newcomb presented these deviations from theory in a graph reproduced below.242

The straight medial line in each of the three sections of the graph represents the
motion derived from pure gravitational theory. The fine, sharp curve represents the
large sinusoidal term of the great fluctuation.

The curve of actual longitude is bounded on each side by a shaded area
showing the mean error at each point. . . . In this way not only the fluctuations
as shown by observations are exhibited, but also the error to which the curve
may be subject, the probability being 2/3 that at any point the true curve
lies inside the shaded area, and 1/3 that it lies without it. . . . [B]efore 1750
the observations are not sufficiently continuous, numerous, and accurate to
show any fluctuation with certainty. The first minor fluctuations fairly well
shown began about 1760. During the years 1765–1784 the Moon ran ahead
by about 1′′. Then the excess of motion ceased, and became temporarily
reversed.243

Newcomb had divided the entire deviation into two parts, the great fluctua-
tion of long period, and the minor fluctuations superimposed upon the great one.
He acknowledged that this division was made purely for convenience in representing
past observations, and might not serve to represent future observations.

In setting out to investigate the Moon’s fluctuations and secular acceleration,
Brown appears to have taken the views Newcomb expressed in his 1909 paper as a
point of departure. His first concern was to explore possible non-gravitational causes
for Newcomb’s long-period sinusoidal term. In a paper published in 1910,244 Brown
considered the following possible causes of this long-period, sinusoidal term: (1) the
flattening of Jupiter’s body as it affects the Moon, (2) the gravitational attraction

241 Ibid., 164.
242 Ibid., Plate 11.
243 Ibid., 167.
244 E.W. Brown, “On the Effects of Certain Magnetic and Gravitational Forces on the Motion

of the Moon,” American Journal of Science, 29 (1910), 529–539.
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of the Moon by asteroids between Mars and Jupiter, (3) the non-sphericity of the
Sun as it affects the Moon, (4) a magnetic attraction of the Moon by the Earth, and
(5) a physical libration of the Moon’s axes. Brown found that some of these pro-
posed causes were improbable, others could not be substantiated in detail because
crucial information was lacking, and still others he described as “difficult.” Address-
ing the British Association in 1914, he commented on the causes he had examined
as follows:

The main objection to all these ideas consists in the fact that they stand
alone: there is as yet little or no collateral evidence from other sources. The
difficulty, in fact, is not that of finding a hypothesis to fit the facts, but of
selecting one [hypothesis] out of many.245

Brown mentioned favorably the conjecture that bursts of magnetic flux, issuing from
the Sun, caused the Moon’s fluctuations, as well as fluctuations in nearby planets.
But neither in his paper of 1910 nor in his address of 1914 did he mention variability
in the Earth’s rotation as a possible cause of the fluctuations. He can hardly have
been unfamiliar with this proposal. His silence about it was curious, and it provoked
an early reaction.

Meanwhile, during the years 1912–1915, Brown faced the task of determining
final values of the Moon’s orbital elements for inclusion in the Tables. He began with
the idea of using the Greenwich meridian observations. P.H. Cowell of the British
Nautical Almanac Office had previously grouped and analyzed the Greenwich meri-
dian observations in a convenient way. Cowell’s results needed only to be corrected

245 British Association Report, Australia, September, 1914, “Address on Cosmical Physics,”
printed in the journal Science for Sept. 18, 1914, 389–401. The quotation is from p. 399.
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for the differences between Hansen’s and Brown’s theories.246 When Newcomb’s
“Researches on the motion of the Moon, Part II”247 appeared posthumously in 1912,
Brown decided to expand the basis of his determination to include Newcomb’s
extensive data on occultations. Comparing the occultations with the meridian obser-
vations, Brown found good agreement in observations after 1830, but large discrep-
ancies before 1830. He concluded that the meridian observations made before 1830
were unreliable for the determination of constants.

The first constants requiring determination were those used to express the Moon’s
mean motion. These included the sizes of the Moon’s secular acceleration and long-
term fluctuation, which had to be determined simultaneously since any choice for
the one influenced the value for the other. Newcomb on reducing the tidal part of
the Moon’s secular acceleration from 2′′.52 to 1′′.88 found he could reduce the
coefficient of the fluctuation from 15′′.5 to 12′′.95. The tidal part of the secular
acceleration, because of its dependence on ancient astronomical reports, was dubious,
and Brown wanted to avoid publishing questionable constants in his Tables. As an
experiment, he eliminated the tidal acceleration altogether, and found that he could
then reduce the secular acceleration to its theoretical value of 6′′.08 per century2.
With this value, he then solved the observational equations of condition for the mean
motion by least squares. For the long-period term in the fluctuation, he obtained

10′′.71 sin[140◦.0T + 240◦.71].

This solution for the Moon’s secular acceleration and fluctuation yielded residuals
that differed from those obtained with Newcomb’s solution by only 1′′ or 2′′. Brown
believed that uncertainties of this magnitude were unavoidable in the tidal accelera-
tion and fluctuation. The Tables were scheduled to go to press in 1915, and a decision
was required. Brown chose the reduced values. But in 1922, new information would
cause him to retract this decision.

For the fluctuations, a single sinusoidal term did not suffice. Smaller, shorter-
term wobbles, called “minor fluctuations,” were present. Cowell, Brown, and other
astronomers proposed sinusoidal formulas for these smaller wobbles, but all these
proposals were later disconfirmed. In his Tables, Brown offered no formulas for the
minor fluctuations.

Joseph Larmor, a well-known physicist at the University of Cambridge, was one
of the first to react to Brown’s 1914 address. The Moon’s fluctuations, Larmor felt,
created “an intolerable discrepancy.”248

The results of the application of the law of gravitation to the lunar motion
have now been summed up in magisterial manner by Prof. E.W. Brown,

246 See articles by Cowell in MNRAS for the years 1903–1905, passim.
247 Astronomical Papers prepared for the use of the American Ephemeris and Nautical

Almanac, 9 (1912), 249p.
248 J. Larmor, “On Irregularities in the Earth’s Rotation, in Relation to the Outstanding Dis-

crepancies in the Orbital Motion of the Moon,” MNRAS, 75 (1915), 211–219. Larmor’s
values for the coefficients of the long-period sinusoidal term and a minor fluctuation are
taken from Brown’s 1914 address.
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as the culmination of his classical investigation on the Lunar Theory. The
circumstance that there remains an outstanding irregularity in the orbital
motion, composed roughly of a fluctuation of 13 seconds of arc on each side
of a mean in a half-period of about 140 years, combined with a like fluctua-
tion of about 3 seconds of arc in the shorter half-period of about 35 years, has
been felt to create an intolerable discrepancy, which demands every effort of
the gravitational astronomer to resolve. No higher tribute than this could be
paid to the extreme refinement and exactness of the gravitational explanation
of the celestial motions, a department of knowledge which leaves far behind
the highest amounts of precision that the presence of intractable disturbing
agencies allows to us in other branches of physical science.

Larmor went on to ask whether the empirical terms in the Moon’s motion could
arise from vertical motions of the Earth’s surface masses – an idea that William
Thomson (Lord Kelvin) had proposed earlier.249 Larmor imagined the case of an
earthquake that would lower the sea bottom with a counterbalancing rise of a land
surface, not of the adjacent ocean floor. The level of the ocean would be lowered
over the entire Earth, and the Earth’s rotation would speed up. To produce a change
in the apparent mean motion of the Moon of 0′′.2 per year, he found that an area
400-miles-square of the ocean floor would need to rise or fall 420 feet – a displace-
ment perhaps excessive to postulate. Still, he believed this type of explanation might
prove partially adequate.

Arthur S. Eddington, another Cambridge physicist, was also aware of the prob-
lem that Brown had raised in his 1914 address. Eddington supervised H. Glauert, an
honors student at Cambridge, in a study of the Greenwich meridian observations of
Mercury, Venus, and the Sun.250 Glauert attempted to show that the deviations of
Mercury, Venus, and the Earth from their gravitationally derived paths were simi-
lar to the Moon’s deviations, with their maxima occurring at the same times as the
Moon’s. He assumed, rather than attempting to establish, the proportionality of the
deviations to the mean motions of the three bodies – the relation that would most
strongly argue for the deviations originating in variations in the Earth’s rotation.
Since the error in the Sun’s longitude entered as an element in the geocentric error
of Venus and especially Mercury, a similarity of form was to be expected, and did
not, by itself, constitute a sufficient proof that the residuals in longitude of the Sun,
Mercury, and Venus were closely correlated. Glauert did not investigate whether the
orbital elements of the three planets required revision, nor did he take into account

249 Kelvin had discussed it in his address to the British Association in 1876, as a possible ex-
planation for the fluctuation that Newcomb had discovered. Earlier, in Thomson and Tait,
Natural Philosophy, ed. i , 1867, §§276, 830, Kelvin had dealt with the frictional slowing
of the Earth’s axial rotation, as causing both a real and a merely apparent acceleration of
the Moon.

250 H. Glauert, “The Rotation of the Earth,” MNRAS, 75 (April, 1915), 489–495, 685–687.



22 Tidal Acceleration, Fluctuations, and the Earth’s Variable Rotation, to 1939 249

the systematic errors which affect observations of Mercury and Venus when they are
near their conjunctions with the Sun.251

The efforts of Larmor and Glauert, though inconclusive, posed two questions that
henceforth would not go away: (1) Was the Earth’s rotation varying? (2) If so, what
were the changes in the Earth’s constitution that would cause such variations?

In 1916 Frank E. Ross published two papers relevant to the fluctuations.252 In the
first paper, entitled “The Sun’s Mean longitude,”253 he compared Newcomb’s Tables
of the Sun with meridian observations made at Greenwich, Paris, and Washington:

. . . the Washington observations of the Sun for 60 years have given a result
0s .05 [i.e., 0′′.75 arcseconds] less in right ascension than Greenwich, and
0s .08 [i.e., 1′′.20 arcseconds] less than Paris for the same period.
On account of the great number of observers which must have taken part
in the observations over such an extended period, it is inconceivable that
this is a result of personal equation. It must accordingly be considered as of
instrumental or housing origin, or as a local systematic refraction.254

By combining the data supplied from the three observatories, and comparing the
resulting mean values with Newcomb’s Tables of the Sun, Ross obtained a set of
differences in the sense of [observation minus tabular value]. He compared this set
with the minor residuals in the Moon’s longitude (those residuals remaining after
the Great Empirical Term had been subtracted out) reduced to one-fifth. In effect,
by choosing the minor residuals for this comparison, Ross was taking the distinc-
tion between the G.E.T. and the minor fluctuations as theoretically significant. This
was a questionable step. In observations made after 1830, he found a well-marked
correlation between the minor residuals in the Moon’s longitude and the differences
[observation minus tabular value] for the Sun. But in the years before 1830, there
was no correlation: the Moon’s fluctuations were very small, while those of the Sun
were very large. The result could not, therefore, support the view that the Sun’s fluc-
tuations were caused by changes in the Earth’s rate of rotation.

In a second paper, “Investigations on the Orbit of Mars,”255 Ross was primarily
concerned to correct Newcomb’s Tables of Mars, which he found to be in error by 3′′
for the years 1902–1903, and by 6′′ for 1906–1907. In a final section, Ross compared
the deviations of Mars and the Sun from their tables during the interval 1754–1912,
relying throughout on meridian observations. Between the two sets of deviations he
found a considerable similarity.

251 These flaws in Glauert’s procedure were pointed out later by H. Spencer Jones in MNRAS,
87 (1926), 5.

252 Ross had served as Newcomb’s assistant in assembling the “Researches on the Motion of
the Moon, Part II.”

253 The Astronomical Journal, 29 (1916), 152–156.
254 Ibid., 152–156.
255 The Astronomical Journal, 29 (1916), 157–163.
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The Work of J.K. Fotheringham

In 1915, J.K. Fotheringham, a classicist turned historian of astronomy, set out to
derive the Moon’s secular acceleration from the lunar occultations of stars reported
by Ptolemy.256 Newcomb had rejected these observations as untrustworthy, on the
grounds that they were chosen by Ptolemy to support Hipparchus’s erroneous value
of the precession of the equinoxes (1◦ per century).257 Fotheringham attempted to
refute this objection. Brown and other leading astronomers up to the 1950s accep-
ted Fotheringham’s conclusions. Britton in his 1992 study, however, sides with
Newcomb.258 In recent decades, investigators of the Moon’s secular acceleration
have come to avoid reliance on Ptolemy’s reports.

For the increment in the Moon’s mean motion per century Fotheringham found
10′′.8 ± 0′′.70.259 In 1923 he discovered an error in his 1915 calculation, and revised
his value to 10′′.3. Subtracting the gravitational increase, 6′′.1, he obtained 4′′.7 ±
0′′.70 in the first case, and 4′′.2±0′′.70 in the second case, as the non-gravitational or
tidal increase. These numbers are to be understood as mean values over the previous
2000 years.

The value of the Moon’s secular acceleration derived from lunar eclipses turned
out smaller. Fotheringham attributed this difference to a secular acceleration in the
Sun’s mean motion. Previous authors, except for Cowell, had explained it by an
acceleration of the lunar node in the opposite direction. By a least-squares analysis,
Fotheringham found that the non-gravitational acceleration of the node was 1′′.1 ±
0′′.94. The large probable error made this acceleration doubtful, and Fotheringham
chose to regard it as non-existent.

In 1918 Fotheringham derived an estimate of the Sun’s secular acceleration
from Hipparchus’s observations of equinoxes as reported by Ptolemy, and thus in-
dependently of lunar data.260 From Newcomb’s Tables of the Sun he extracted the
Sun’s longitude for each of the dates of these equinoxes, of which there were 20.
(A difficulty here was that Hipparchus had reported the times of the equinoxes
only to the nearest quarter-day.) By correcting the Sun’s declinations for neglect
of refraction and errors in the setting and graduation of instruments (as obtained
from a least-squares analysis of Hipparchus’s values for the declinations of seven
stars), Fotheringham obtained 1′′.93T 2 ± 0′′.27 for the Sun’s centennial or secular
acceleration.

256 “The Secular Acceleration of the Moon’s Mean Motion as determined from the Occulta-
tions in the Almagest,” MNRAS, 75, 377–396.

257 Astronomical Papers for the American Ephemeris, Vols. 1 (1878) and 9 (1912).
258 See J.P. Britton, Models and Precision: the quality of Ptolemy’s observations and para-

meters, (New York NY: Garland, 1992), 77–98, for an analysis of the occultation-reports
used by Fotheringham.

259 MNRAS, 75 (1915), 394.
260 MNRAS, 78 (1918), 407.
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In 1920,261 Fotheringham reduced his estimate to 1′′.50T 2. More recent estimates
have varied between 1′′.01T 2 and 1′′.88T 2. Britton in his 1992 study262 reviewed
these values and judged the best estimate to be (1′′.15 ± 0′′.15)T 2. Celestial me-
chanics supplied no cause for a real speed-up in the Sun’s (or Earth’s) orbital mo-
tion. The most plausible explanation was a deceleration of the Earth’s rotation. The
evidence Fotheringham presented for the Sun’s apparent secular acceleration was a
strong argument that a tidal deceleration of the Earth’s rotation was occurring.

Recall that Brown applied in his tables a value of 6′′.08T 2 for the Moon’s secular
acceleration limited to the gravitational part. In December 1919 Fotheringham pub-
lished a study entitled “The Longitude of the Moon from 1627 to 1918.”263 Here
he gave a new value for the non-gravitational acceleration of the Moon as deter-
mined from modern observations, and a revised formula for Brown’s G.E.T. He took
Newcomb’s work on occultations as a basis, and added to it the Greenwich meri-
dian observations for the years 1908–1918. He excluded the ancient, medieval, and
17th-century eclipses, because these eclipses involved the Sun’s apparent motion,
which by this time had to be understood as involving an apparent acceleration.

Fotheringham’s new value for the Moon’s mean longitude, reduced to the epoch
1800.0, was −2′′.29 + 1′′.96T + 10′′.53T 2, where the secular acceleration includes
a non-gravitational part, 4′′.52T 2, in addition to Brown’s theoretical part, 6′′.08T 2.
Fotheringham showed that the inclusion of data from 1908–1918 was crucial to the
discovery of the increase, for in 1908, the last year of Newcomb’s data, the Moon’s
fluctuation had been in the negative direction for some years, and after 1908 it turned
in the positive direction. Fotheringham’s results, derived from modem data alone
without any reliance on Ptolemaic reports, strongly supported a significant tidal
deceleration of the Earth’s rotation.

Fotheringham’s new expression for the Great Empirical Term was

+13′′.60 sin(139◦T + 104◦.2).

The coefficient is 2′′.9 larger than Brown’s coefficient.

Harold Jeffreys on the Deceleration of the Earth’s Rotation from
Tidal Friction

In 1920, the geophysicist Harold Jeffreys set out to provide a dynamical account
for the Earth’s slowing rotation.264 He took the Moon’s and Sun’s non-gravitational
accelerations as established, and accepted tentatively Fotheringham’s most recent

261 MNRAS, 81 (1920), 104–126.
262 Britton, Models and Precision, 176.
263 MNRAS, 80 (1919), 289–307.
264 MNRAS, 80, 309–317.
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values for them. He expressed the non-gravitational accelerations as angular
accelerations rather than centennial increments, the accelerations being the numeri-
cal doubles of the increments. Thus he gave Fotheringham’s value for the Moon as
(9′′.0±1′′.40)/T 2, and his value for the Sun as (3′′.86±0′′.54)/T 2. From his analysis
Jeffreys judged that about half Fotheringham’s value for the secular acceleration of
the Sun was in error.265

Jeffreys assumed that the Earth was losing angular momentum due to some form
of tidal friction. He wrote an equation to express how that loss would be compensated
by gains in the Moon’s and Sun’s orbital angular momentum, as conservation of
angular momentum requires. Letting be the Earth’s angular velocity of rotation, C
its principal moment of inertia, and N , N1 the Moon’s and the Sun’s rates of change
of angular momentum, Jeffreys obtained the equation

C
d

dt
= −N − N1.

Here N and N1 are positive rates of increase. For terrestrial observers, the slowing
of the Earth’s rotation produces apparent accelerations of the Moon and Sun, in the
amounts

n



d

dt
,

n1



d

dt
,

where n and n1 are the mean motions of the Moon and Sun. Consequently, the total
observed accelerations would be

ν = dn

dt
− n



d
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dt
− n1



d

dt
,

where dn/dt and dn1/dt are the true rates of change in the mean motions of the
Moon and the Sun.

That the differential coefficients dn/dt and dn1/dt are negative can be shown as
follows. The increments in angular momentum in the Moon and Sun are proportional
to increments in the products c2n, c2

1n1, where c, c1 are the distances of the Moon
and Sun from the Earth. The variables c, n and c1, n1 must vary in accordance with
Kepler’s third law, so that the products c3n2 and c3

1n2
1 remain constant. Therefore, by

differentiation,

2

n

dn

dt
+ 3

c

dc

dt
= 0,

2

n1

dn1

dt
+ 3

c1

dc1

dt
= 0.

Thus dn/dt is opposite in sign to dc/dt , and dn1/dt to dc1/dt . Jeffreys found
dn1/dt to be negligible. But the increment in the Moon’s angular momentum is posi-
tive:�(c2n) > 0, or (c +�c)2(n +�n) > 0. If�c and�n expressed as (dc/dt)�t
and (dn/dt)�t are substituted into this inequality, dc/dt proves to be positive and
dn/dt negative. The increment in angular momentum leads to the Moon’s orbit
having a greater mean radius c, and a smaller mean motion n about the Earth.

265 Ibid., 317.
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For the rate of dissipation of energy due to tidal friction, Jeffreys gave the formula

−d E

dt
= (N + N1)− Nn − N1n1.

Using Fotheringham’s values for the non-gravitational acceleration of the Moon, he
evaluated this rate when the tidal friction is primarily bodily and obtained

−d E

dt
= 1.41 × 1019 ergs per second.

For the case of primarily liquid friction, he obtained

−d E

dt
= 1.38 × 1019 ergs per second.

Jeffreys thought it improbable that bodily friction was the chief force in slowing the
Earth’s rotation, for it would have to arise through an imperfection of elasticity, either
plasticity (incompleteness of elastic recovery) or elastic afterworking (slowness of
the recovery).

Now, few things in geophysics are more certain than that the outer two
thousand miles or so of the crust must be practically free from both these
qualities when small stresses alone are considered.266

Likewise he judged that tides in mid-ocean and movements of the Earth’s atmosphere
were incapable of accounting for the Moon’s secular acceleration. He thought that
the only cause capable of producing an effect of the correct order of magnitude was
tidal friction in shallow seas, as considered by G.I. Taylor in a 1919 paper on this
subject.267 By two different calculative routes, Taylor obtained for the rate of dissi-
pation of energy in the Irish Sea, 2.5 × 1017 and 3.0 × 1017 ergs per second. The
former is about 1/56th of the amount that Jeffreys had calculated as necessary to
produce Fotheringham’s value of the Moon’s non-gravitational secular acceleration.
The areas contributing most to the dissipation should thus be seas of moderate size
that are partly enclosed, such as the English Channel, the Bay of Fundy, Behring
Strait, the Mozambique Channel, and probably several areas in the Sea of Japan and
the East and West Indies.

Jeffreys’ 1920 paper was at first considered to have solved the problem of the
Moon’s tidal secular acceleration, but Jeffreys himself later acknowledged that tidal
friction in shallow seas was an inadequate source for the dissipation of energy
required. It has not as yet been possible to identify the locales of dissipation in the
present geologic era with certainty, but they are believed to be largely oceanic and
may include deep-sea bottom friction and the breaking of waves against shores.268

266 Ibid., 310.
267 The article appeared in Phil. Trans., 220 (1919), 1–33. Taylor provided a brief summary

in MNRAS, 80, 308–309.
268 Ibid., Ch. 10, “Tidal Dissipation,” p. 286ff.
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Brown on the Results of Fotheringham and Jeffreys

Writing in the Astronomical Journal in February, 1922, Brown stated:

The memoirs of Dr. J.K. Fotheringham on the ancient eclipses and those
of C.I. Taylor and H. Jeffreys on tidal friction in shallow seas have largely
cleared away the doubts that surrounded the old hypothesis that the Moon’s
apparent residual acceleration is, in reality, due to a retardation of the Earth’s
rate of rotation. While the importance of their work in clearing up a diffi-
culty in the recorded observations of the Moon is not to be minimized, my
immediate object in this note is to give briefly the numerical consequences
as far as predictions of the Moon’s place by means of the new tables are
concerned, and to indicate how predictions for the unexplained minor fluc-
tuations can best be made when, for example, it is desired to predict the time
and terrestrial path of a solar eclipse with the best possible accuracy.269

Brown wrote, for the Moon’s mean motion to be used in the new tables,

T0 = 335◦43′27′′.81 + 1336r 307◦53′11′′.80T + 7′′.12T 2 + 0′′.0068T 3

+ 10′′.71 sin(140◦T + 100◦.7),

and for Fotheringham’s value,

T0 + δT = 335◦43′25′′.26 + 1336r 307◦53′13′′.82T + 11′′.91T 2 + 0′′.0068T 3

+ 13′′.60 sin(139◦T + 104◦.2),

where T was the number of Julian centuries from 1800.0. With sufficient accuracy
from 1800 on, Brown put the difference at

δT = −2′′.55 + 2′′.02T + 4′′.79T 2 − 2′′.90 cos (139◦T − 166◦)

+ (3.5 − T )0′′.187 sin(139◦T − 166◦).

The change δT proved to make little difference before 1890, but after 1890 it yielded
considerable improvement. Brown found +4′′.65 for its value in 1925, and +9′′.42
for its value in 1950. He cautioned against changing the hourly ephemeris of the
Moon for δT “until it [δT ] has been well established by further observations.”270

After first applying δT , Brown carried out a new analysis of the data for minor
fluctuations since 1750. This analysis suggested that a term with a period of about
40 years and a coefficient of 1′′ had persisted in recent years, but that any additional
terms would be extremely doubtful. Brown called attention once again to the fact
that the fluctuations appeared to proceed by sudden rather than gradual changes of
the mean motion.

269 E.W. Brown, “The Moon’s Mean Motion and the New Tables,” Astronomical Journal, 34
(1922), 52.

270 Ibid., 53.
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Dyson and Crommelin on the Greenwich Meridian Observations
to 1923

In 1923 Dyson and Crommelin of the Royal Greenwich Observatory updated
Cowell’s earlier comparison between the Greenwich observations and tabular values,
and continued the comparison up through 1922.271 They achieved a better accord
between theory and observation by substituting the formula δT − 0′′.16 for Brown’s
formula δT :

δT − 0′′.16 = −2′′.71 + 2′′.02T + 4′′.79T 2 + 13′′.60 sin(139◦T + 104◦.2)

− 10′′.71 sin(140◦T + 100◦.7).

They also obtained a new formula for the Great Empirical Term:

+13′′.28 sin(138◦.3T + 104◦.11).

They then went on to seek a two-term sinusoidal formula that would represent the
remaining residuals, while recognizing that the attempt to represent these residuals
by periodic terms was a doubtful enterprise.

R.T.A. Innes on Fluctuations in Mercury, Satellites of Jupiter, and
the Sun

In 1925, R.T.A. Innes, director of the Union Observatory in Johannesburg, South
Africa, published two notes under the title “Variability of the Earth’s Rotation.”272

Like Newcomb earlier, he carried out a comparison between the time-errors (obser-
vation minus theory-based prediction) in transits of Mercury from 1677 to 1924 and
the fluctuations in the Moon’s motion from 1680 to 1909 as determined by Newcomb.
To make the two sets of data comparable, Innes multiplied Mercury’s time-errors by
the Moon’s mean motion (0′′.55 per 1s) with the sign changed. The correlation was
inexact, but according to Innes this inexactness was to be expected, since the times in
the two series were determined differently. Innes also showed that the time-errors in
the eclipses of the first two Medicean satellites of Jupiter from 1910 to 1923 closely
mirrored those in the transits of Mercury during the same period.

Innes also determined the longitude errors in the Greenwich observations of
the Sun as compared with the Nautical Almanac (the latter being derived from
Newcomb’s Tables of the Sun) for each year from 1901 to 1921, again in the sense
(Observed minus Calculated Value). Using means over 7-year periods, he found that
the Sun’s position was 0′′.12 ahead (eastward) of the ephemeris value in 1904, and
1′′.45 behind the ephemeris value in 1918. Thus it had fallen back a total of 1.′′57
in 14 years. Motion of the Sun through 1.′′57 requires 38s .23 of time. Innes inter-
preted the 38s .23 as a gain in clock-time (with the rotating Earth as clock) during

271 “The Greenwich Observations of the Moon (1751–1922),” MNRAS, 83 (1923), 359–370.
272 Astronomische Nachrichtung, 1925, cols. 109–110. The two notes occupy a single page.
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these 14 years. The average gain per year was 2s .7. For the interval 1908–1921 the
average gain was 2s .1 per year. From the transits of Mercury between 1908 and 1924
Innes found a gain of +1s .1 per year, and from the eclipses of Jupiter’s satellites I
and II, a gain of +1s .9 per year. With regard to the fluctuations of the Moon, Innes
added,

[The lunar fluctuations] indicate a similar result, but the large empirical
terms used in the lunar theory make an exact comparison too onerous. . . .
[W]e have to be contented with rather crude results. It is however satisfac-
tory to find that each of the four available tests gives qualitatively the same
result.

Innes was wholeheartedly opposed to the use of empirical terms:

When allowance is made for the variability of rotation of the Earth, the
Moon’s motion will probably be found to be purely gravitational. The
inclusion of empirical terms confuses.

Brown on the Variability of the Earth’s Rotation, 1926

In this year Brown published a major paper entitled “The evidence for changes in the
rate of rotation of the Earth and their geophysical consequences, with a summary and
discussion of the deviations of the Moon and Sun from their gravitational orbits.”273

In this paper he unequivocally endorsed the hypothesis that the Moon’s fluctuations
were due to changes in the Earth’s rate of rotation. Taking the non-gravitational
acceleration of the Moon due to tidal friction as established, Brown focused on the
fluctuations:

I am not here mainly concemed with the secular changes due to tidal friction,
but with the considerable fluctuations which are exhibited in the difference
between observed and calculated longitudes of the Moon when all known
causes of variation have been eliminated. The numerous investigations into
ancient eclipses culminating in the results of Fotheringham, and the work of
Taylor and Jeffreys on tidal friction in shallow seas, are in substantial agree-
ment as to the amount of the frictional effect, so that it may be regarded as
known. The tabular place of the Moon due to gravitational theory is therefore
first corrected for this effect, the fluctuations referred to being the differences
between this corrected theory and observation.274

The “substantial agreement” mentioned here consisted in Jeffrey’s having accepted
Fotheringham’s value for the tidal part of the Moon’s secular acceleration, i.e.,
4′′.5T 2. Fotheringham and Jeffreys also agreed that the Sun was subject to an

273 Transactions of the Astronomical Observatory of Yale University, 3 (1926), 205–235
+ three plates.

274 Ibid., 209.
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apparent secular acceleration. For this increment, Fotheringham gave a value of
1′′.5T 2. But Jeffreys showed that Fotheringham’s value for the tidal part of the
Moon’s secular acceleration necessarily limited the tidal acceleration in the Sun’s
longitude to a maximum of 0′′.9T 2. Brown adopted the round number 1′′.0T 2, with
a possible error of 0′′.2.

If the Moon’s fluctuations inversely reflect fluctuations in the Earth’s rate of
rotation, then the Earth’s rotational fluctuations should affect the apparent motions
of other celestial bodies in a similar way. Earthlings see the Earth’s heliocentric
motion as reflected in the Sun’s eastward motion about the Earth. Brown multiplied
the Moon’s fluctuations by 0.075 = 1/13.3, the ratio of the mean apparent motion
of the Sun to that of the Moon, and then asked whether these reduced fluctuations
figured as a component in the Sun’s observed motion.

In his 1916 paper on the Sun’s mean longitude, Frank Ross had tabulated the
differences (mean longitude from the Greenwich observations minus Newcomb’s
tables), giving the averages for successive groups of 4–7 years from 1750 to the
1890s. Brown continued this same tabulation down to 1924, using the records of the
more recent Greenwich observations. He then plotted these results in the solid line of
the figure reproduced below.275 The dashed line in the figure gives 1/13.3 of the lunar
fluctuations. The agreement is extremely good from the 1840s to 1924 where the
dashed line and the solid line never differ by as much as 1′′. The plausible conclusion
is that the fluctuations appearing in the Moon’s motion are due to fluctuations in
the Earth’s rotation, and that the latter fluctuations also appear in observations of
the Sun.

With respect to the earlier observations plotted in the figure, Brown remarked
that

. . . the large deviations in the Greenwich series from 1810 to 1825 appear
to be due to systematic errors of observation in this period. Partly or
wholly within these fifteen years we have results from Paris, Königsberg
and Dorpat, and, except for the first Paris group, none of them show any
such large differences. . . . These also are within the period when the dif-
ferences between the Greenwich meridian observations of the moon and
the occultations become large. Hence it would seem that it is scarcely safe
to use the Greenwich observations with full weight during these years in
any discussion that involves theory. Before this time, both sun and moon
indicate that the observations are sufficiently good for use in obtaining the
mean motion and epoch of the Sun but are of doubtful value for any other
purpose.

The evidence presented in the figure supports the hypothesis that the Moon’s
fluctuations in longitude are caused by variations in the rotation of the Earth.

Besides presenting evidence that the Earth’s rate of rotation was fluctuating,
Brown outlined a hypothesis to account for the larger variations in the Earth’s
rotation. A plot of the Moon’s longitude over the last two and a half centuries

275 Brown’s figure, captioned “Figure 4”, is on p. 225 of his paper.
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Full line curve: the Greenwich tabular minus observed errors of the Sun including the secular
acceleration. Dash line: 1/13.3 of the lunar fluctuations.

shows large, sudden changes in the rate of the Moon’s mean motion. In the figure
reproduced below, Brown plotted the Moon’s mean longitude since 1660, averaged
over successive time-intervals of 400 lunar days (= 414 solar days) or (during the
20th century) a year. The dots in the figure represent longitudes determined from
occultations.

As Brown explained, this curve

. . . exhibits the apparent variations which the Moon’s longitude has shown
during the past 260 years referred to the Earth as a clock having a constant
change of rate (the frictional retardation). If we regard these variations as
due solely to further changes in the rate of the clock, the ordinates are pro-
portional to the errors of the clock at any time; the slope measures the rate
of the clock, and the curvature measures the change of rate.

It is striking that from 1660 to 1920 this plot can be approximated by three straight
lines, with sharp changes of slope around 1785 and 1898. (Brown inserted the
straight lines to show the goodness of the approximation.) The rapid change of slope
occurring near 1898 was strongly confirmed by evidence. A rate increase of 0′′.4 per
year diminished to zero within 5 years and then changed to a decrease in rate of
0′′.4 per year within 2 years. On the hypothesis that these changes are reflections
of changes in the Earth’s rate of rotation, Brown set out to explain how the Earth’s
annual rate of rotation might increase by 0′′.8 within 7 years or less, a rate far greater
than that produced by tidal friction.

If the changes in the Earth’s rotational velocity around 1898 were to be brought
about by the Moon or Sun acting gravitationally on the Earth’s atmosphere or
ocean or crust, the effect would have to be less than that produced by tidal friction,
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Fluctuations of the Moon’s Mean Longtitude

Fluctuations of the Moon’s Mean Longitude.

and would have to be periodic with periods formed from combinations of
the periods in the Sun’s and Moon’s motion. None these conditions obtained.
Brown argued that the source of the effect must therefore be internal to the Earth.
In this case, the angular momentum of the Earth’s rotation, Iω, must remain con-
stant. Here ω is the Earth’s angular velocity, and I is its moment of inertia. I
is given by the integral I = ∫

r2dm, where r is the distance of the mass dm
from the axis of rotation, and the integral permits taking into account the vari-
ation of density as a function of radius r . Because Iω is constant, any increase
in ω must be compensated by a decrease in I . Assuming that the total mass re-
mains constant, any decrease in I implies a displacement of mass toward the axis of
rotation.

If the observed change in the Earth’s rate of rotation in the years around 1898 was
brought about by a local shift of a mass near the Earth’s surface, then a staggeringly
large mass must have been transported a good many miles closer to the Earth’s axis,
with catastrophic results that could not go undetected. As an alternative hypothesis,
Brown proposed expansions or contractions extending through a large part or the
whole of the Earth’s body. If the expansion or contraction were uniform throughout
the Earth’s body, we would have

δω

ω
+ 2

r
δr = 0.

Since δω/ω in 1898 was approximately 4 × 10−8, δr/r was approximately
−2×10−8, which gives about a five-inch decrease of the Earth’s radius. If the change
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were produced by a contraction taking place in a layer about 50 miles below the sur-
face, lowering the crust but not affecting the nucleus farther down, Brown found for
δr a value of about −12.5 feet.

In more recent investigations of the larger variations in the Earth’s rotation, geo-
physicists have agreed with Brown in seeking a cause beneath the Earth’s surface.
The hypothesis now favored posits some form of coupling between the Earth’s core
and mantle. Such a coupling is required by the observed westward drift of the Earth’s
magnetic field. The most plausible mechanism, given the elaboration of geomagnetic
dynamo theories by E.C. Bullard and E. Elsasser in the early 1950s, appears to be an
electromagnetic one.276

H. Spencer Jones on the Variable Rotation of the Earth, 1926

In the same year as Brown’s publication, another major paper on the Earth’s rotation
appeared. Its author was H. Spencer Jones, H.M. Astronomer at the Cape of Good
Hope.277 Jones makes no mention of Brown’s paper, and was presumably unaware of
it. In contrast to Brown, he focused exclusively on supplying evidence that the Earth’s
rotation was varying, and set aside entirely the question of the imaginable causes for
such variation. In two earlier papers he had derived elements of the Moon’s orbit
from occultations of stars by the Moon as observed between 1880 and 1922 at the
Cape of Good Hope, for comparison with the elements derived by Brown.278 He now
turned to the fluctuations, the most troublesome problem in the Moon’s motions.
As he explained,

The present paper gives the results of a reexamination of the information
obtainable from observations of the Sun, Mercury, Venus, and Mars as to
the variability of the rate of rotation of the Earth. The discussion was limited
to observations made from 1836 onwards. It was not judged expedient to
extend the investigation to an earlier period than this, on account of the large
accidental errors of the earlier observations. . . .

Jones based his discussion primarily on the Greenwich meridian observations. In the
case of Mercury, he employed as well the transits of Mercury across the Sun’s disk
as discussed by Innes. In the four graphs shown below, Jones plotted the errors of

276 Lambeck, The Earth’s Variable Rotation (Cambridge University Press, 1980), pp. 246–
254.

277 H. Spencer Jones, “The Rotation of the Earth,” MNRAS, 87 (Nov., 1926), 4–31.
278 H. Spencer Jones, “The Moon’s Mean Longitude, Longitudes of Perigee and Node, Semi-

Diameter and Parallactic Inequality derived from Occultations of Stars observed at the
Royal Observatory, Cape of Good Hope, 1880–1922,” MNRAS, 85 (1924), 11–34; “Deter-
mination of the Elements of the Moon’s Orbit, the Parallactic Inequality, and the Moon’s
Semidiameter from Occultations of Stars by the Moon. . . ,” Annals of the Cape Observa-
tory, VIII, Part VIII, IH–47H.
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the tables for the four bodies Sun, Mercury, Venus, and Mars, over the interval from
1840 to 1923. In each case the errors were taken in the sense (tabular value minus
observation). Before being plotted, the residuals in the case of Mercury, Venus and
Mars were first multiplied by the ratio of the mean motion of the Earth to the mean
motion of the planet. While relying mainly upon the Greenwich observations from
1836 onwards, Jones strove to insure that the planetary theories employed were of
uniformly high quality, and that the observations were free from systematic error. The
Sun’s errors had to be determined with special care, since they were presupposed in
the derivation of the fluctuations of Mercury, Venus, and Mars.

Interpreting the graphs, Jones remarked:

If these residuals are due to slight changes in the rotation period of the Earth,
the four curves should theoretically be identical, assuming that the tabular
longitudes and mean motions are free from error. But observations both of
the Sun and of the planets are peculiarly liable to errors of a systematic
nature, and the curves will be modified by these errors. Considering the
smallness of the quantities under discussion, the general similarity between
the four curves is very marked. They all show very clearly a gradual fall of
about the same amplitude commencing near 1896, the rate of fall slowing
down during recent years. All the curves agree in showing a minimum some-
where near 1870, preceded by a gradual fall from the beginning of the period
discussed and followed by a gradual rise to about 1896, the rise being at first
fairly rapid, then slowing down for a time and then again becoming more
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rapid a few years before the maximum. Not only are the curves qualitatively
similar, but also the amplitude changes are approximately equal.279

Jones computed correlation coefficients to express the similarity of the four
curves numerically:

Mercury (meridian observations) and Sun +0.54 ± 0.11

Mercury (transits) and Sun +0.85 ± 0.05

Mercury (transits) and Venus +0.82 ± 0.06

Venus and Sun +0.83 ± 0.03

Mars and Sun +0.86 ± 0.03

The high values of the correlation coefficients, Jones concluded, gave strong support
to the idea that the longitude fluctuations of the Sun, Mercury, Venus, and Mars had a
common cause. The approximate equality in amplitude of the four graphs, given that
the actual fluctuations in each case had been increased or decreased in the ratio of
the Earth’s mean motion to the other planet’s mean motion, favored the supposition
that the common cause was variation in the Earth’s rate of rotation.280

Toward the end of his paper, Jones formed a composite curve of the residuals of
the three planets and the Sun. He then compared this curve with “the minor fluctu-
ations” of the Moon, the fluctuations remaining after the Great Empirical Term is
removed.

The two curves were remarkably similar in shape and amplitude. Once more,
from a similarity of shape and amplitude, Jones inferred a sameness of cause. The

279 Ibid., 25–26.
280 Ibid., 26.
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minor longitude fluctuations of the Moon could be attributed, within the limits of
error of the observations, to changes in the rate of rotation of the Earth.281

Why did Jones treat the minor fluctuations as a special class, separate from the
fluctuations as a whole? The short answer is that Newcomb had made this separa-
tion earlier, when for convenience he introduced a long-period sinusoidal term, later
called the Great Empirical Term. The minor fluctuations were simply the remainder
of the fluctuations after the Great Empirical Term was subtracted out. Brown in his
1926 paper suggested that the distinction was artificial. Our next author will prove
it so.

Willem de Sitter on Secular Accelerations and Fluctuations, 1927

De Sitter’s 1927 paper “On the secular accelerations and the fluctuations of the
longitudes of the Moon, the Sun, Mercury and Venus” advanced the argument for
the variability of the Earth’s rotation in important ways.282 He addressed two ques-
tions: (1) whether the fluctuations in the longitudes of the Sun and planets are equal
to those of the Moon diminished in the exact ratio of the mean motions, or to those
fluctuations, thus diminished, multiplied by a factor, for which values from unity to
about 2.5 are found; and (2) whether the fluctuations of the Sun and planets agree
with the total fluctuations of the Moon, or with the “minor fluctuations” which re-
main after the removal of the “great empirical term.”

To address his first question, de Sitter constructed, for each of the bodies Moon,
Sun, Mercury and Venus, a formula to express the excess of its observed longitude
over its theoretical longitude as deduced from gravitational theory. The excess con-
sisted of a non-gravitational secular acceleration and a remainder constituting the
fluctuation. He suspected that both were caused by changes in the Earth’s rotation.
In the case of the Moon, he expressed the excess as

�L = �L0 + T�n + 5′′.92(1 + κ ′)S + B ′

− 10◦.71 sin(140◦.0T + 240◦.7). (1)

with T as the number of centuries since the beginning of January, 1900 (midnight
before Jan. 1, written 1900.0). The term −10◦.71 sin(140◦.0T + 240◦.7) is Brown’s
Great Empirical Term, subtracted out from �L0 as given in Brown’s tables, since it
was not deducible from gravitational theory. The term B ′ is the Moon’s fluctuation
proper, the part of the excess in the Moon’s longitude not attributable to gravitational
action of the Sun or planets, or to tidal friction.

The term 5′′.92(1 + κ ′)S introduces the non-gravitational part of the secular
acceleration. The number κ ′ is an unknown, 5′′.92 is an arbitrary starting-value for
the calculation of this part of the acceleration, and S is T 2+1.33T −0.26, a quadratic
expression that is zero for T = −1.50 and 0.17, i.e., for the years 1750 and 1917.

281 Ibid., 31.
282 Bulletin of the Astronomical Institutes of the Netherlands, 4, no. 124.
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The expression S minimizes the effect of the corrections on the agreement between
theory and modern observations, and makes the effective epoch of the mean motions
1833.5, midway between 1750, when the Greenwich observations began, and 1917,
the last year for which de Sitter (at the time of writing) had access to Greenwich
observations in reduced form.283 Once κ ′ is known, the non-gravitational secular
acceleration can be obtained from 5′′.92(1 + κ ′)T 2. The other terms resulting from
5′′.92(1+κ)S are 7′′.87(1+κ ′)T −1′′.54(1+κ ′). The first of these is to be added to
T�n, and the second to �L0, to correct the mean motion per century and the mean
longitude at epoch. (Such corrections have to be introduced whenever the secular
acceleration is changed.) The unknowns in equation (1) are κ ′, �L0 and �n.

For the Sun de Sitter wrote the equation

�L ′ = �L ′
0 + T�n0 + S(1 + κ)+ Q

n0

n
B ′. (2)

For Mercury and Venus he wrote the similar equations

�λi = �λi,0 + T�ni + ni

n0
S(1 + κi )+ Qi

ni

n
B ′, (3,4)

where i = 1 for Mercury and i = 2 for Venus. In these equations, n and n0 are
the mean motions of the Moon and the Sun, n1 is the mean heliocentric motion of
Mercury, and n2 the mean heliocentric motion of Venus. In each of the equations (2),
(3) and (4) there are four unknowns: three analogous to those in (1), and a factor Q
or Qi which would be unity if the fluctuations in all cases simply reflected variations
in the Earth’s rotation.

De Sitter states that the values for Q or Qi are found “ranging from unity to
about 2.5.” A value of Q or Qi differing from unity seems difficult to interpret, but
de Sitter, as we shall see, nevertheless presented a way of interpreting such values.

Not all of the fifteen unknowns in (1), (2), (3), and (4) could be determined
independently. The Moon’s secular acceleration could not be separated from its fluc-
tuations in the modern observations. Among the modern observations of the Sun,
de Sitter followed Brown and Jones in deeming trustworthy only those made since
about 1835. The non-gravitational secular accelerations of the Sun and Moon could
only be determined from ancient observations, in which the fluctuations were not
discernible.

To determine the non-gravitational secular accelerations, therefore, de Sitter left
the fluctuations out of account, and reduced (1) and (2) to

�L = �L0 + T�n + 5′′.92S(1 + κ ′),

�L ′ = �L ′
0 + T�n0 + S(1 + κ).

Using ancient observations discussed by Fotheringham and Schoch,284 with weights
matching the probable errors that these two authors assigned, de Sitter obtained seven

283 As pointed out by Britton, Models and Precision, 167.
284 See P.V. Neugebauer, 1930, ed., Neudruck der im Selbstverlag von V. Schoch erschienenen

Schriften, Die Verbesserten Syzygientafeln von C. Schoch, Astronomische Abhandlungen,
Ergänzungshefte zu den Astronomischen Nachrichten 8.2: B2–B5.
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equations for �L ′ and two for �L , and solved them by least squares for κ and κ ′.
His final results were κ = +0.80 ± 0.16 and κ ′ = −0.12 ± 0.05. The values he
thence deduced for the non-gravitational secular accelerations were,

for the Sun, +(1′′.80 ± 0′′.16)S,

for the Moon, +(5′′.22 ± 0′′.30)S.

Britton in his recent study found certain steps in de Sitter’s procedure
objectionable:

In the first place, he treats a number of Fotheringham’s results – e.g.,
the accelerations of the Sun and Moon derived from solar eclipses, and
the relation between them derived from the solar eclipse of Hipparchus
(−128) – as independent determinations, when in fact they are independent
neither of each other nor of the rest of Fotheringham’s results. . .

[M]ost significantly, de Sitter’s results are vitiated by important numeri-
cal errors. In deriving the equation of condition for the Moon’s secular
acceleration as determined from the occultations. . . , de Sitter not only dis-
regards Fotheringham’s subsequent correction of his first determination, he
also computes �L incorrectly, arriving at a figure 610′′ too large. Even
worse, in his equations derived from the accelerations of the Moon’s elonga-
tion found by Fotheringham, he includes the total difference, SD = Sm − Ss

[the difference between the total lunar acceleration and the Sun’s accele-
ration], into the computation, although the rest of his equations and his
solution are for only the non-gravitational component, S′

D .285

By correcting these errors, Britton obtained considerably lower values for the
non-gravitational secular increments: +3′′.62±0′′.5 for the Moon and +1′′.14±0′′.3
for the Sun.286 Investigators after de Sitter (most importantly, H. Spencer Jones)
accepted, without critical review, de Sitter’s results as correctly derived from ancient
observations – a negligence Britton finds hard to understand.

After his determination of κ and κ ′, De Sitter turned to the question whether the
fluctuations in the planets and Sun correspond to the Moon’s ‘minor fluctuations,’
or to its total fluctuation, including both the Great Empirical Term and the “minor
fluctuations.” De Sitter’s analysis showed that the values of Q1 determined from
the sine term and from the residuals were the same. It followed that the distinction
between the Great Empirical Term and the minor fluctuations had no basis in nature,
and could not be regarded as theoretically significant. He also urged, in agreement
with Brown, that the observed lunar fluctuations were not so well represented by a
sinusoid as by a sequence of straight lines of different slopes. In addition, he showed
that the fluctuations are reflected proportionately in the motions of Mercury, Venus,
and the Sun.

In the case of the Sun and Venus, the Great Empirical Term during the period of
trustworthy observations (from 1835 to 1925) differed so little from a straight line

285 Britton, Models and Precision, 166–168.
286 Ibid., 168.
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that any satisfactory representation of the total fluctuations could be transformed
into an equally satisfactory representation of the minor fluctuations, and vice versa,
by corrections to mean motion and epoch. A longer series of trustworthy plane-
tary observations with discernible fluctuations was available only for the transits of
Mercury across the Sun’s disk. Accordingly, de Sitter set about deriving an empirical
sine term for the Moon and another for the transits of Mercury, to see whether these
two terms agreed in period and phase.

For the Moon, he expressed the total difference between observed and theoretical
longitude by the formula

B ′
0 = �L0 + T�n + cS + K sin(βT + γ ). (5)

To determine the constants in this formula, de Sitter used right ascensions observed
from 1621 to 1925, as listed by Brown.287

De Sitter included the term cS in (5), but it was not possible to determine c
independently of β and γ , and therefore he set c equal to zero. The values found for
β and γ proved to depend largely on the weights assigned to the early observations.
De Sitter concluded that his best option was to adopt Brown’s values, slightly
rounded, for these constants. The least-squares solution could thereby be limited
to the three unknowns �L0,�n, and K . De Sitter obtained

B ′
0 = 0′′.66 + 0′′.79T + 14′′.42 sin(140◦.0T + 240◦.0).

From the residuals F he derived for the probable errors of �L0,�n, K the values
±0′′.02,±0′′.02, and ±0′′.03 respectively.

For the transits of Mercury the equations of condition had the form

O − C = a1 + b1T + c1S + K1 sin(β1T + γ1). (6)

Here O − C is the excess of the observed difference between the longitudes of
Mercury and the Sun, over the same difference as calculated from Newcomb’s
tables. To find the constants in (6), de Sitter had recourse to Innes’ discussion of
the observed transits of Mercury since 1677. He again found it impossible to deter-
mine the sine term independently of the secular acceleration. Hence for c1 he chose
the value corresponding to κ1 = +0.80, the same as the value of κ previously found
for the Sun. The sine term he then found to be

4′′.57 sin(136◦.0T + 236◦.4).

The argument of this sine function was so close to that found by Brown for the
Moon’s Great Empirical Term, that de Sitter assumed their equality and proceeded
to a new least-squares solution, introducing as unknowns only a1, b1, and K1. For
K1 he obtained 4′′.39 ± 0′′.21. The ratio of K1 to the coefficient of the Moon’s Great
Empirical term was

287 In tables I–III of his 1926 paper in Transactions of Yale University Observatory, III, Tables
1–3, 216–218.
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K1

K
= 0.304 = 1.32

n1 − n0

n
.

For Q1 in (3) he thus found the value 1.32 ± .07.
The residuals F1 had now to be compared with the corresponding residuals F , or

“minor fluctuations,” found in the Moon’s longitude. The value of Q1 obtained from
the residuals proved to be

Q1 = F1

F
= (1.34 ± .02)

n1 − n0

n
.

While allowing that the uncertainties in the two determinations were probably greater
than those suggested by the probable errors (±0.07,±0.02), de Sitter concluded that
the distinction between Great Empirical Term and the minor fluctuations was simply
artificial and should be dropped.

To define B ′, the Moon’s fluctuation, de Sitter now wrote

B ′ = observed mean longitude of Moon − C, (7)

where C = Brown’s tables − 10′′.71 sin(140◦.0T + 240◦.7)

+ 5′′.22S + 4′′.00T + 6′′.70.

Here C is the theoretical value of the Moon’s mean longitude, computed from
Brown’s Tables with the Great Empirical Term subtracted out, and with de Sitter’s
corrections (shown in the second line) inserted.

Comparing this formula with observations of the Moon’s longitude from 1621
to 1925, as derived by Newcomb from eclipses and occultations up to 1835, and
given by the Greenwich meridian observations after that date, de Sitter found
that the probable errors of the successive normal points steadily decreased, from
±14′′ in 1621, to ±1′′ in 1681, ±0′′.3 around 1800, and ±0′′.04 or ±0′′.05 after
1900.

He next turned to the determination of the value of Q from meridian observations
of the Sun, Venus, and Mercury, choosing in each case the observations he believed
reliable. In the case of the Sun, relying on Greenwich meridian observations from
1839 to 1863 and from 1896 to 1922, and assuming a secular acceleration of 1′′.80S,
he found the correction to Newcomb’s tables to be

�L ′ = +1′′.89 + 1′′.41T + 1′′.80S + 0.098B ′.

The coefficient of B ′ corresponds to

Q = 1.31 ± 0.13.

Assuming that the resulting fluctuation in longitude in the Sun’s motion was a reflec-
tion of the very same variation in the Earth’s rotation that caused B ′ to appear in the
longitude of the Moon, de Sitter identified a multiple of this fluctuation that would
make it comparable to B ′, namely
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B ′
0 = 10.72(O − C),

where C = Newcomb’s tables + 1′′.89 + 1′′.41T + 1′′.80S.

Plotting observational values of B ′
0 and observational values of B ′, de Sitter found

that the two variations were practically coincident.
The corresponding quantities in the case of Venus were

Q2 = 1.262 ± .062,

B ′
2 = 6.58[(O − C)0 −�λ2],

where (O −C)0 signifies the difference between observation and tabular value in the
Sun’s case, and �λ2 the corresponding difference in the case of Venus. Here again,
comparing B ′

2 with B ′, the lunar fluctuations, de Sitter found the variations to be
practically coincident.

The transits of Mercury gave

Q1 = 1.19 ± .075.

B ′
1, like B ′

0 and B ′
2, closely tracked B ′.

The values found for Q, Q1, and Q2 clustered closely enough to support the con-
clusion that they represented a single constant, to which de Sitter assigned the mean
value 1.25 ± .02. If Q, Q1, Q2 had averaged to 1.0, the fluctuations in the motions
of the Moon, Sun, Mercury, and Venus would all have been interpretable as direct
reflections of the variations in the Earth’s rotation. To interpret the deviation of the
Q’s from unity, de Sitter turned to mechanical theory.

With certain simplifications (e.g., de Sitter neglected the axial rotation of the
Moon and orbital motion of the Earth), the projection of the angular momentum of
the Earth-Moon system onto the ecliptic gave

Iω cos ε + μa2n(1 − e2)1/2 cos i = c3. (8)

Here I is the Earth’s moment of inertia about its axis of rotation,288 ω is its ro-
tational velocity, and c3 a constant. The other constants pertain to the Moon: μ
is its mass, a its mean distance from the Earth, n its mean orbital speed about
the Earth, i the inclination of its orbit to the ecliptic, and e the eccentricity of its
orbit.

De Sitter took the variation of (8), finding (with some simplifying)

d(Iω)

Iω
− k cos ε

[
dn

n
+ 3(ede + sin idi)

]
= 0, (9)

where k = μa2n/3Iω. This equation says that a change in the Earth’s angular
momentum of rotation is compensated by changes in three of the Moon’s orbital

288 De Sitter symbolizes the moment of inertia by C . Having used “C” for “calculated value,”
we substitute “I ” for De Sitter’s “C .”
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elements: its mean motion n, its orbital eccentricity e, and the inclination i of its
orbit to the ecliptic. For the factor 3(ede + sin idi) de Sitter substituted – f (dn/n),
signifying that changes in orbital eccentricity and inclination, for a given change
d(Iω), reduce dn/n.

A change in Iω can include changes in both I and ω:

d(Iω)

Iω
= d I

I
+ dω

ω
. (10)

For I to change, terrestrial masses must move outward from or inward toward the
Earth’s rotational axis. With any change of I, ω also changes. But ω can also change
due to tidal friction, in which case no change is produced in I . In this case angular
momentum is transferred to the Moon, where it will appear as an increase in the
orbital mean motion (dn) or in the eccentricity (de) or in the Moon’s orbital incli-
nation (di). How the transfer is divided up among these different effects depends on
the Moon’s instantaneous orbit and the direction and magnitude of the acting force
from the tides. The quantity of these effects cannot be predicted from general theory
alone.

In an attempt to account for the excess of Q over unity, de Sitter now introduced a
complication: he supposed the observed rotation of the Earth to be different from its
rotation as a whole. The observed rotation, which he labeled ω′, is what is detected
by astronomers at Greenwich. Other parts of the Earth may be supposed to rotate at
a different rate ω. To allow for this, de Sitter supposed the Earth to consist of two
parts with moments of inertia I (1 − p) and I p. Equation (10) had then to be altered
to read

d(Iω)

Iω
= d I

I
+ (1 − p)dω + pdω′

ω
= d I

I
+ (1 +�)dω

′

ω
. (10a)

The constant � could be positive or negative, but according to de Sitter, it was
probably small.

The observed change in the Moon’s apparent mean motion, as measured using
the Earth as clock, is

dn′

n
= dn

n
− dω′

ω
(11)

The differential dn′ is an observed change in the Moon’s mean motion. The variation
dn is a change in the Moon’s mean motion, ultimately due to tidal friction and the
transfer of angular momentum from the Earth’s rotation to the Moon’s orbital motion,
but rather small, and so not measurable in de Sitter’s time. The variation dω′ is a
positive or negative change in the Earth’s rotational rate owing to a change in I .
It causes the Moon to appear to accelerate or decelerate. De Sitter put

dω′

ω
= −Q

dn′

n
, (lla)

where Q is a factor to be determined observationally. Substituting it into (11) he
obtained

dn

n
= (1 − Q)

dn′

n
. (llb)
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From (9), (10a), (lla), and (llb), he deduced that

d I

I
= Q(1 +�)dn′

n
− (Q − 1)(1 − f )k cos ε

dn′

n
. (12)

De Sitter applied (12) both to the Moon’s non-gravitational secular acceleration and
to its fluctuations, obtaining different values for Q in the two cases.

In the first of these applications, he set d I = 0, and also � = 0 because

. . . it is inconceivable that the rotation of the crust, or of any part of it, should
be secularly different from that of the whole Earth.

Given that k cos ε = 1.49, (12) reduced to

(0.49 − 1.49 f )(Q − 1) = 1. (12a)

In non-gravitational secular acceleration, therefore, a value for Q determined f . The
observational value of Q in the secular acceleration is (dn0/n0)/(dn/n), where n/n0
is the ratio of the Moon’s mean motion to the Sun’s (= 13.369/1), and dn0/dn is the
ratio of the Sun’s to the Moon’s non-gravitational secular acceleration. According to
de Sitter, the latter ratio was 1.80/5.22 (= 0.3448/1). These numbers gave for Q the
value

Qs = 0.3448 × 13.3687 = 4.6.

Britton, re-doing these calculations in 1992, found for the average non-
gravitational secular accelerations over the period from 300 B.C. to A.D.1900, the
values 1′′.15± 0′′.15 for the Sun and 4′′.00 ± 0′′.6 for the Moon. These give

Qs = 3.84.

Both results are considerably larger than the value Q = 1.25 which de Sitter had
obtained from the fluctuations. With Qs = 4.6, de Sitter found f = 0.14. Britton
would have obtained f = 0.94.

As applied to the fluctuations, (12) yielded a more complicated variation. As be-
fore, k cos ε = 1.49. Q must now be 1.25, and de Sitter assumed that f remained
equal to 0.14. For finding d I/I , (12) also required values for dn′/n and �. Obser-
vations could not yield a value of � directly. But changes in dn′ compared to the
long-term mean rate n were easily detectable.

Brown had plotted the excesses and deficits in the Moon’s advances in longitude
since 1750, as compared with its long-term mean rate. The plot appeared approxi-
mately as a series of straight lines with rather sharp changes in slope (i.e., in rate of
motion) at the junctions. De Sitter’s plots were similar but inverted, with the up and
down directions interchanged. They represented the changes in the Earth’s rotation
which de Sitter took to be the causes of the changes dn′. To both investigators, the
changes at the junctions were the puzzle. They occurred either suddenly, or at most
within a few years, and yet they were of the same order of magnitude as the changes
produced by secular acceleration over a century. Thus in 1897 the change came to
dn′/n = +4.10−8. With this value, de Sitter reduced (12) to
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108 · d I

I
= (1 + 0.25)(1 +�)(4)− (0.25)(0.86)(1.49)(4).

Here terms in which the factor (0.25) appears explicitly are those attributable to the
excess of Q over 1.

De Sitter produced a chart of the values taken by δ I/I and also by δE/(Iω2),
the change in energy, for three different values of �:

� = −0.20 0 +0.20

108(δ I/I ) = +3.2 − 0.5 +4.0 − 0.3 +4.8 − 0.1

108(δE/(Iω2) = −1.6 − 1.0 −2.0 − 1.2 −2.4 − 1.2

Here the first number in each pair corresponds to Q = 1, and the second number
to the excess of Q over unity. The assumption Q = 1 implies that the Moon’s true
mean motion does not change (dn = 0).

De Sitter remarked that the changes δ I and δE for dn′/n = +4 · 10−8 were very
great. If Q = 1 so that the Moon’s true mean motion does not change, the dissipation
of energy is δE = −8 · 1028 ergs, and if Q = 1.25 so that the Moon’s true mean
motion increases, the dissipation increases by 160% to −1.28 · 1029. To give an
idea of the order of magnitude of δ I/I , de Sitter imagined it as produced by local
displacement of a mass μ, originally at distance r from the Earth’s polar axis, to the
distance r + δr . This would give

δ I

I
= 6

μ

M
cos2 φ

δr

r
,

where M is the mass of the Earth and φ is the terrestrial latitude.

The effect of a displacement of the whole of the central Asian highlands,
including the Himalaya and the Kven Lin [= Kwenlun Shan], over its own
height would produce a change of the order of δ I/I = 10−8, i.e. about a
fourth of the change in 1897.

De Sitter acknowledged the improbability that catastrophes of this order of mag-
nitude had happened in historical times without producing effects that geologists
would notice. Like Brown, he concluded that the change was not local, but distributed
through the whole or a large portion of the body of the Earth, in which case it would
correspond to an expansion or contraction produced by a change of temperature of a
fraction of a degree. De Sitter commented:

We are compelled, as Brown has convincingly shown, to ascribe the changes
of I to some deep-seated origin, however difficult it may be to imagine a
cause which can produce such enormous effects in so short a
time.

Given that Q’s excess over unity came with an increment dn in the Moon’s
true mean motion, the excess had to involve a dynamic interaction between Earth
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and Moon. The only likely candidate was tidal friction. But tidal friction always
produces a deceleration of the Earth’s rotation, hence an apparent acceleration in
the Moon’s motion, whereas the fluctuations involve both apparent accelerations
and decelerations. De Sitter resolved this difficulty by suggesting that tidal fric-
tion, and the secular accelerations produced by it, might vary irregularly, the value
found for Qs , like that for Q, being merely an average value over 2000 or 2500
years.

The fluctuations, then, could be the combined effect of changes in the Earth’s
moment of inertia, and of the variability of tidal friction. The two causes would act
independently. For the part of the fluctuation produced by changes in I , the effect in
the Earth’s rotation and in the apparent mean motion of the Moon would be given by
dω′/ω = −dn′/n. For the part produced by tidal friction, the effect would be given
by dω′/ω = −Qsdn′/n. Let the ratio of the actions produced by the two causes be
p : q. Then, necessarily,

p + q = 1,

p + Qsq = Q.

Using his values 4.60 for Qs and 1.25 for Q, de Sitter found p = 0.93 and q = 0.07.
This was his explanation for the otherwise puzzling result that Q = 1.25.

De Sitter considered the excess of Q over unity as solidly established289:

From the material discussed in this paper I would judge the true probable
error to be about ±.08, so that e.g. the chance of the true value being inside
the limits 0.95 and 1.05 would be about 1/25.

He also considered well established the explanation of the Moon’s fluctuations
and non-gravitational acceleration as due to changes in the Earth’s rate of
rotation290:

The striking parallelism between the fluctuations of the different bodies,
and the equality of the factor Q derived independently from the sun and the
two planets, make it very difficult to escape the conclusion that the origin
of the fluctuations, as well as of the secular acceleration, is in the rotation
of the earth. . . [W]e have seen that all observed facts can be satisfactorily
explained by the hypothesis that the actual fluctuations arise from the super-
position of the effects of two causes. The first of these is a series of abrupt
changes in the rate of rotation of the earth caused by changes of the moment
of inertia due perhaps to expansions and contractions of the earth, and the
other a variability of the coefficient of tidal friction. The first cause corre-
sponds to the factor Q = 1, the other to Q = Qs . The combination of the
two causes gives rise to an apparent factor Q = 1.25.

289 Bulletin of the Astronomical Institutes of the Netherlands, 4, 37.
290 Ibid., 38
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In the final paragraphs of his paper, de Sitter addressed the question: How is
“astronomical time” – time as astronomers had always measured it, namely by the
apparent sidereal motion of the Sun (corrected for the “equation of time” from
Ptolemy onwards) – to be corrected so as to yield “uniform” or “Newtonian” time,
the independent variable in the equations of celestial mechanics? The correction must
consist of two parts:

�t = �1t +�2t.

�2t is a secular term, given by +43s .8S, where S = T 2 + 1.33T − 0.26. As we
have seen, S is zero for T = −1.5 and for +0.17, that is, for 1750 and 1917.
This term takes account of the deceleration of the Earth’s rotation due to tidal fric-
tion. �1t is an irregular correction which has to be computed from the Moon’s ob-
served fluctuations. De Sitter provided a table of these corrections; we excerpt a few
values:

− 38s .5 in 1640,

− 13s .4 in 1700,

+ 29s .7 in 1800,

− 35s .9 in 1900,

− 28s .2 in 1926.5.

De Sitter gave no indication of his level of confidence in the accuracy of these
values.

A Revision of Newcomb’s “Researches on the Motion of the
Moon, Part II”, by H. Spencer Jones, 1932

In “Researches, Part II,” Newcomb reduced and discussed a large number of the
Moon’s occultations of stars. The data thus made available would be of key
importance in establishing the variability of the Earth’s rotation. Jones introduced
his revision of this work with praise for Newcomb’s achievement291:

In the year 1912 was published the last of a series of papers on the Moon
by Simon Newcomb, entitled “Researches on the Motion of the Moon, Part
II: The Mean Motion of the Moon and Astronomical Elements, based on
Observations extending from the Era of the Babylonians until A.D. 1908.”
The main and most important portion of this great work consists of the
reduction and discussion of a large number of observations of occultations
of stars by the Moon from 1672 to 1908. The reduction and discussion of

291 H. Spencer Jones, Discussion of observations of occultations of stars by the Moon,
1672–1908, being a revision of Newcomb’s “Researches on the Motion of the Moon,
Part II. ” (London: His Majesty’s Stationery Office, 1932) pp. 1–70.
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the material occupied a period of 30 years and was completed during the
author’s last illness, the copy for the printer being finished only a month
before his death in 1909.

Newcomb had two motives for turning to reports of occultations: (1) to obtain
positions of the Moon for years in which the regular meridian observations were not
available, and (2) to check on the accuracy of the meridian observations themselves.
He had come to suspect that meridian observations were subject to systematic errors
from which it might be impossible to free them. Jones shared this suspicion, as his
paper on the Cape occultations for the period 1880–1922 testifies.

Of the occultations reduced by Newcomb, those dating from 1750 to about 1835
were sharply discordant with the corresponding Greenwich meridian observations.
Brown had remarked on these discrepancies, concluding that the meridian observa-
tions for those years were unreliable. Jones posed the question: Might this discor-
dance be due to the deficiencies of the theoretical basis Newcomb had used, i.e.,
Hansen’s Tables de la lune, supplemented by only some of the principal terms omit-
ted by Hansen? In 1925, with the aid of the more complete theory embodied in
Brown’s tables, Jones set out to answer this question.

Newcomb had anticipated that later investigators would be in a position to
improve on his “Researches,” and had attempted to present them in such a way
that revision would be straightforward. Unfortunately, as Jones found, Newcomb had
failed to specify crucial details, and it was thus impossible to reconstitute Newcomb’s
original normal equations. Jones was forced to begin over and construct normal equa-
tions from the beginning. He also found that Newcomb had committed errors of both
sign and magnitude, so that, on this score alone, a revision was necessary. Newcomb,
apparently aware that time was running out for him, had worked with excessive haste.

Jones modified the theoretical basis adopted by Newcomb in three principal
respects:

(1) He inserted 18 additional terms, most of them representing perturbations of the
Moon by the planets. The largest coefficient among these was 1′′.07; the smallest
coefficient was 0′′.02, and the average was 0′′.23. Jones was thus omitting many
terms in Brown’s theory with yet smaller coefficients. He believed, however, that
he had included all the terms required to yield results precise to about 0′′.02.

(2) He corrected the Hansen-Newcomb mean longitude to reduce it to the mean
longitude of Brown’s tables.

(3) He corrected Brown’s values for the terms dependent on the Earth’s flatten-
ing. Brown had used 1/294 for the flattening ratio, whereas a smaller value,
1/297, was now accepted. The corrections included +1′′.08 sin( + 176◦.8)
in the Moon’s longitude, +0′′.04 sin( + 115◦) in its perigee, and +0′′.06 sin
(+ 325◦) in the node. Here  is the longitude of the lunar node.

(4) Jones also replaced Newcomb’s value for the Moon’s mean semi-diameter,
932′′.58, by the larger value 932′′.70, derived from his work with the Cape
occultations. The reduction of the occultations required an accurate value of this
constant.
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Newcomb’s equations of condition contained nine unknowns:

λ, the correction to the mean longitude of the Moon

κ = −2e d , where  is the longitude of the perigee

iθ = sin i d, where  is the longitude of the Moon’s node

i , the correction to the inclination of the Moon’s orbit

bo, the correction to the Moon’s tabular latitude

αo, the mean correction to the adopted position of the equinox

δo, the mean correction to the declination of all the stars

ε, the correction to the tabular obliquity of the ecliptic

P , the correction to the coefficient of the principal parallactic term

The numbers κ , iθ , αo, δo, and ε were assumed to be varying slowly over the cen-
turies. To determine their secular variations, Newcomb had divided his observa-
tions chronologically into 13 groups, and assumed that all the unknowns except λ
were constant within each group. He then determined the secular variations from the
change in the mean value from one group to another. The groups, with the number
of occultations included in each, were:

Group Years No. of occultations

I 1672–1686 24

II 1699–1720 50

III 1725–1729 12

IV 1736–1739 25

V 1746–1747 21

VI 1753–1779 59

VII 1783–1801 82

VIII 1801–1820 126

IX 1821–1838 335

X 1839–1856 517

XI 1857–1873 589

XII 1874–1890 952

XIII 1891–1908 1586

Jones sought to improve the rigor of Newcomb’s procedure. In deriving longi-
tude corrections Newcomb had neglected altogether the corrections to other orbital
elements. When, as happened in some years, there were several nights on which a
large number of occultations had been observed, the effect of the neglected terms
could amount to as much as 0′′.5. In re-deriving the longitude correction, Jones took
account of all factors required to achieve an accuracy of about 0′′.02.

From the observed occultations, Jones computed average longitudes for the mean
date of the occultations in each group, i.e., for the years 1681, 1710, 1720, 1727,



276 22 Tidal Acceleration, Fluctuations, and the Earth’s Variable Rotation, to 1939

1738, 1744, 1747, for every Cowell period from 1750 to 1850, and for every mid-
year date from 1850.5 to 1908.5. Since the weights assignable to these 167 mean lon-
gitudes varied considerably, he constructed a smooth curve to represent the observed
values as closely as possible. In computing the difference (observed longitude minus
theoretical longitude), he took the observed longitude from the curve for a sequence
of dates, and extracted the theoretical longitude for these same dates from Brown’s
Tables, neglecting the small terms he had chosen to neglect. These differences pro-
vided the residuals for Jones’s least-squares solution for the longitude. As in all such
operations, the residuals presupposed approximate values of the constants, and the
least-squares solution refined these approximations.

For the correction to Brown’s tabular value of the Moon’s longitude, Jones
obtained

−3′′.09 + 2′′.52T + 5′′.22T 2 − 10′′.71 sin(140◦T + 100◦.7),

where T stands for centuries since 1800. He included here a term for the Moon’s
non-gravitational secular acceleration, using de Sitter’s value, (5′′.22 ± 0′′.30)T 2.
He remarked that this value differed little from Fotheringham’s final value, 4′′.79T 2,
which Brown had adopted in his 1926 paper on the Earth’s rotation. (Fotheringham’s
final value was actually 4′′.52T 2.) This inclusion had the purpose of bringing the
tables into agreement with ancient observations.

In his longitude corrections Jones also included a term which subtracted out
Brown’s Great Empirical Term. The Tables thus corrected gave the Moon’s longi-
tude as derived from gravitational theory together with the tidal part of the secular
acceleration, an appropriate adjustment being made of the epoch of mean longitude.

For the years from 1840 onward, Jones found the occultations to be in close
agreement with the meridian observations. It was on the basis of these same meridian
observations that Brown had determined the constants of his theory. As was to be
expected, Jones’s analysis closely confirmed the accuracy of Brown’s values for these
constants.

As for the original aim of Jones’s revision, the analysis confirmed Newcomb’s
earlier conclusion. The differences between the corrections (occultations minus
theoretical values) found by Jones and those found by Newcomb were seldom
as great as 1′′. Therefore, systematic differences remained between the occultations
and the Greenwich meridian observations for the period 1785–1835. Jones obtained
his values for these differences by subtracting the positions given by the meridian
observations from the corresponding positions taken from the smoothed curve for
the occultations. The differences increased from −2′′ in 1788 to +3′′ in 1814 and
nearly +4′′ in 1819, but then fell to zero in 1829.

Similarly, the Sun’s theoretical longitude (given by Newcomb’s tables) minus its
longitude as observed at Greenwich increased from about −2′′ in 1785 to +4′′ in
1814, but then fell to zero in 1830. Evidently the Greenwich meridian observations
during this time-period were affected by varying systematic errors, approximately
the same for the Moon and the Sun. Occultations, though lacking the precision of the
meridian observations, were free of such systematic errors, and were therefore more
trustworthy for the years 1785–1830.
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For the Moon’s fluctuations, Jones obtained a series of values by subtracting
the new theoretical longitude (given by the above formula) for each date from the
corresponding position given by the smoothed curve of the occultations. Thus he ob-
tained values for 1681, 1710, 1720, 1727, 1738, 1744, 1747, for each Cowell period
from 1750 to 1849, and each year from 1850 to 1908. He provided the following
table292:

T B ′′ T B ′′ T B ′′ T B ′′

1681.0 −12.72 1809.1 +11.88 1867.5 −1.57 1906.5 −13.43

1710.0 −3.92 1813.6 +11.23 1872.5 −6.38 1909.5 −12.78

1727.0 +2.15 1821.8 +10.02 1877.5 −9.38 1912.5 −11.62

1738.0 +5.97 1831.5 +6.85 1882.5 −11.35 1915.5 −10.35

1747.0 +8.49 1837.4 +4.91 1887.5 −13.05 1918.5 −10.20

1755.0 +10.34 1843.1 +4.31 1891.5 −14.34 1921.5 −10.18

1771.0 +13.54 1848.8 +3.97 1894.5 −15.23 1924.5 −11.82

1785.0 +14.84 1852.5 +3.37 1897.5 −15.99 1925.5 −12.21

1792.0 +14.53 1857.5 +2.40 1900.5 −15.87 1926.5 −12.20

1801.5 +13.09 1862.5 +0.91 1903.5 −14.50

These values differ somewhat from de Sitter’s values. Jones remarked that
the series of straight lines by which de Sitter had proposed representing the
fluctuations gave only a rough picture of the fluctuations as derived from the
occultations.

Jones revised his own previous results for the fluctuations of the Sun, Mercury,
and Venus.293 Re-calculating de Sitter’s Q with his new values for the fluctuations
of these three bodies, Jones obtained

Sun Q = 1.17 ± 0.07

Venus Q = 1.35 ± 0.07

Mercury Q = 1.11 ± 0.05

The mean of these three values was 1.19 ± 0.04, smaller than de Sitter’s mean, 1.25.
Brown, we recall, had reconciled the differences between the theoretical and

observational values of the secular motions of the Moon’s node and perigee by
increasing the flattening ratio of the Earth’s shape from 1/297 to 1/294. An objec-
tion raised by de Sitter and now repeated by Jones was that the larger value (1/294)
disagreed with the value derived from the well-confirmed precessional constant of
50′′.2500 per year (the flattening ratio of the Earth and the precessional constant
imply each other). Jones reinstated the value 1/297, and added to the theoretical

292 Ibid., 31.
293 In his paper on “The Rotation of the Earth” of 1926, MNRAS, 87, 4–31.
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values of the secular motions of the perigee and node the relativity corrections pro-
posed by de Sitter, +1′′.97 per century for the perigee and +1′′.91 per century for
the node. He then compared the observational values obtained from the occultations
with the theoretical values, obtaining the following results:

Perigee Node

Theoretical +14643521′′ −6967931′′

From meridian observations +14643535′′ −6967944′′

From occultations +14643535′′ −6967943′′

Occ. – Theor. +14′′ −12′′

In 1938 E.W. Brown announced that he had reduced the discrepancy in the case
of the perigee by 11′′.294 The discrepancy between the theoretical and observa-
tional values of the secular motion of the lunar node, however, was still unresolved
in 1965.295

R.T.A. Innes, E.W. Brown and the Occultation Program

From 1923 to 1952, Brown’s Tables served as a basis for the lunar ephemerides
in the Nautical Almanac. Brown was naturally interested in how well observations
confirmed his new tables. In 1926 he published a “Comparison of the Washington
and Greenwich Observations of the Moon for 1923, 4, 5 with the New Tables.”296

He also devoted a good deal of time and energy to organizing observers, professional
and amateur, to observe the solar eclipse of January 24, 1925, and the positions of
the Moon at or near this eclipse.297

Meanwhile, R.T.A. Innes of the Union Observatory in Johannesburg set about
observing, collecting, and reducing reports of lunar occultations of stars. His purpose
was to monitor the Moon’s fluctuations by observations independent of the meridian
observations. By the end of 1926, he and his staff had assembled a list of 560 reduced
occultations (immersions rather than emersions) for the years 1923–1926, against
which to judge the performance of Brown’s Tables.298

Brown enthusiastically endorsed Innes’s project. He persuaded the American
Association of Variable Star Observers to adopt the collecting and reduction of lunar
occultations as a project, an “infant industry,” as he called it. Special forms were

294 E.W. Brown, “Calculation of the term in the motion of the lunar perigee with characteristic
e′4”, MNRAS, 98 (1937), 170–171.

295 See W.J. Eckert, “On the Motions of the Perigee and Node and the Distribution of Mass
in the Moon,” Astronomical Journal, 70 (1965), 788.

296 Astronomical Journal, 37 (1926), 29–32.
297 E.W. Brown, “Discussion of Observations of the Moon at and near the Eclipse of 1925,

January 24,” Astronomical Journal, 37, 9–19.
298 E.W. Brown, “Occultations: A Report of Progress,” Popular Astronomy, 36 (1928),

282–284.
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drawn up for reporting immersions. Advanced students in astronomy at colleges and
universities were invited to participate. In the Astronomical Journal, Brown, with
the assistance of Dirk Brouwer, published reports of the occultations collected and
reduced for each year from 1927 to 1935. For the year 1927 the number of reduced
occultations reported was 418. The number reported rose in successive years, and for
the year 1935 reached 1405. After Brown’s death, and in accordance with his request,
the program of collecting and publishing lunar occultations was continued by the
Yale Observatory staff under the leadership of Brouwer.299 The occultation reports
thus assembled, along with the Cape occultations published by Jones in 1925, and
the occultations reported by Newcomb and revised by Jones in 1932, provided the
data for Jones’s definitive demonstration that the fluctuations observed in the Moon,
Sun, Mercury, and Venus were proportional to the mean motions of these bodies.

H. Spencer Jones’s New Value of QQQ, 1939

Jones’s proof that the fluctuations of the Moon, Sun, Mercury, and Venus were pro-
portional to the mean motions of these bodies consisted in showing that Q, the con-
stant introduced by de Sitter,300 was equal to unity. De Sitter’s value for Q was 1.25.
In 1932, Jones obtained a lower value, 1.19. Jones regarded de Sitter’s explanation
of how Q could have a value greater than 1.0 as unsatisfactory:

There are great difficulties in interpreting a value of Q that is greater than
unity and de Sitter’s suggested explanation, involving sudden and very great
changes in tidal friction, is artificial and not convincing.301

Jones began by reviewing the differences between the two kinds of process
hypothesized as causing changes in the Earth’s rotation: (1) frictional resistance to
the tides, and (2) the fluctuations.

Tides in the Earth’s oceans and solid matter are raised by the gravitational
attraction of both the Moon and the Sun. These tides can give rise to friction which
slows the Earth’s rotation. The evidence for such deceleration first appeared in the
apparent secular acceleration of the Moon, which was larger than the amount of
secular acceleration deducible from planetary perturbations of the Moon. Further
evidence showed up later in an apparent secular acceleration of the Sun. The non-
gravitational secular accelerations of both the Moon and the Sun had to be apparent
only, produced as a projection of the Earth’s slowing rotation. Tidal friction also
caused a transfer of angular momentum to the Moon and the Sun, to compensate
for the Earth’s loss of angular momentum. In the case of the Moon, this added
angular momentum pushes the Moon into a higher orbit in which its mean motion

299 Dirk Brouwer, “The Occultation Campaign. Outline of a Revised Program,” Astronomical
Journal, 47 (1939), 191–192.

300 H. Spencer Jones, “The Rotation of the Earth, and the Secular Accelerations of the Sun,
Moon, and Planets,” MNRAS, 99 (1939), 541–558.

301 Ibid., 543.
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is less. The detected non-gravitational secular acceleration of the Moon is there-
fore the difference between the apparent-only acceleration due to the slowing of the
Earth’s rotation, and the actual slowing due to the transfer of angular momentum
to the Moon’s orbital motion. As the average value of this difference over the past
2000 years, Jones followed de Sitter (who claimed to be following Fotheringham) in
choosing the value 5′′.22 per century. As made clear earlier, this value is excessive.
In the case of the Sun, the transfer of angular momentum has too small an effect on
the Sun’s mean motion to be measurable.

Jones followed de Sitter in defining the Moon’s fluctuation as

B = Observed Longitude − C

where C = Brown’s Tables − 10′′.71 sin(140◦.0T + 240◦.7)

+ 5′′.22T 2 + 12′′.96T + 4′′.65.

T represents centuries since 1900. The effect of the fluctuation can be either an
apparent acceleration or an apparent deceleration of the Moon’s motion. In both
cases it is only apparent, and due entirely to a slowing or speeding-up of the Earth’s
rotation. Since no dynamic interaction with extra-terrestrial bodies is involved, the
Earth’s angular momentum must remain constant, and the changes in angular speed
must be accompanied by changes in the Earth’s moment of inertia. Leaving aside the
inquiry into such changes, Jones turned to re-doing the calculation of the proportion-
ality constant Q.

For the corrections to Newcomb’s tables of the motions of the Sun, Mercury, and
Venus, Jones wrote

�L = a + bT + cT 2 + Q(0.0747)B, (1)

�l1 = a′ + b′T + 4.15cT 2 + Q(0.310)B, (2)

�l2 = a′′ + b′′T + 1.63cT 2 + Q(0.122)B. (3)

These equations are the same as de Sitter’s, but with numbers substituted for the
mean motions. In place of de Sitter’s value for the non-gravitational acceleration
of the Sun (viz., 1′′.80T 2), Jones put the constant c, to be determined by his least-
squares analysis. According to Jones, Mercury’s non-gravitational secular accele-
ration had been found to be to the Sun’s as the mean motions of the two bodies,
namely 4.15:1. The available data were as yet insufficient to establish the analogous
proportion for Venus, but Jones assumed nevertheless that it held. And he took the
fluctuations of the Sun, Mercury, and Venus to be to those of the Moon as their
respective mean motions, that is, as 0.0747:1, 0.310:1, and 0.122:1.

In his new attempt to determine Q, Jones chose his data with exceeding care.
He hypothesized that the earlier determinations were misleading because of their
dependence on the Greenwich meridian observations. He chose a procedure that
would test the correctness of this hypothesis.

For the Moon, Jones chose to avoid dependence on the meridian observations
altogether. He replaced them with lunar occultations of stars. These included the



22 Tidal Acceleration, Fluctuations, and the Earth’s Variable Rotation, to 1939 281

occultations assembled by Newcomb in “Researches, Part II” as re-discussed and
corrected by Jones in 1932, the Cape observations published by Jones in 1925,
and the occultations collected and discussed by Innes, Brown, and Brouwer in
more recent years. He believed that these could be considered free of system-
atic errors, though subject to accidental errors which limited the precision of the
results.

In the case of the Sun, Jones proposed to use both meridian observations of right
ascension and observations of declinations, but he first determined Q by means of the
declinations alone, and then he used both kinds of solar observation together, so that
the results obtained in the two cases could be compared. Of the two kinds of obser-
vation, right ascension observations carried more weight for determining longitudes
because of internal accordance between the observations over short time-intervals.
But the declination observations were far less subject to errors of a systematic nature.
Moreover, for the years 1785–1830, when the right ascension observations at Green-
wich showed large and erratic variations, the declination observations appeared to be
quite free from such variations. Jones found he could use the Greenwich declination
observations back to 1750.

In order to determine the corrections in longitude for Mercury and Venus, the
correction �L for the Sun’s longitude was required. For this reason, Jones decided
against using either smoothed values of the Sun’s longitude taken from a graph or
the representation of the observed longitudes by formula because these procedures
could introduce systematic errors. Instead, he used the quantities directly furnished
by observations of the Sun.

In the case of Mercury, he used the original data on transits of Mercury that
Innes had rediscussed and de Sitter had summarized. These observations together
with Newcomb’s tables gave the quantities Newcomb had denoted by V and W :

November transits: V = 1.487�l1 − 1.01�L + corrections to other elements

= a1 + b1T + 5.16cT 2 + Q(.385)B, (4)

May transits: W = 0.716�l1 − 0.97�L + corrections to other elements

= a2 + b2T + 1.97cT 2 + Q(.147)B. (5)

For Venus, Jones used data he had assembled in a paper of 1926,302 along with
more recent observations. The data were presented in the form

�l2 −�L = a3 + b3T + 0.63cT 2 + Q(.0471))B. (6)

In presenting the observed data, Jones used expressions (1), (4), (5), and (6).
He combined the observations of Sun, Mercury, and Venus and formed normal equa-
tions in order to solve for c and Q. He carried out two such solutions. In the first
solution he excluded the data from right ascensions, and in the second solution he
included the data from right ascensions. The two solutions were as follows:

302 MNRAS, 97 (1926), 4.
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I. Sun’s R.A.’s Excluded

a + 1′′.02 a1 + 5′′.90 a2 + 2′′.78 a3 + 1′′.00

b + 3′′.02 b1 + 16′′.26 b2 + 6′′.94 b3 + 2′′.72

c = +1′′.25 Q = 1.025

II. Sun’s R.A.’s Included

a + 1′′.04 a′ + 1′′.32 a1 + 6′′.03 a2 + 2′′.85 a3 + 1′′.02

b + 3′′.09 b′ + 2′′.67 b1 + 16′′.55 b2 + 7′′.10 b3 + 2′′.76

c = +1′′.26 Q = +1.062

In Solution II, a and b denote as before the Sun’s longitude correction in
epoch and mean motion derived from declinations, whereas a′ and b′ denote this
correction as derived from right ascensions.

Jones found that the probable error of the value of Q in these determinations
was approximately ±.033. Thus, in Solution I, where the right ascensions were
excluded, the value of Q differed from unity by less than the probable error. In
Solution II, with the right ascensions included, the value of Q increased so as
to differ from unity by more than the probable error. Jones believed that this
increase was caused by systematic errors in the observations of the Sun’s right
ascensions. On the strength of these determinations, and from the difficulty of
interpreting any value of Q other than Q = 1, Jones concluded that Q should
be assumed to be equal to unity. This conclusion implied that the fluctuations of
the Moon, Sun, Mercury, and Venus were all simply reflections of variations in
the Earth’s rotation.

Assuming Q = 1, and seeking now to refine the other constants, Jones ob-
tained his final least-squares solution:

III. Adopted Solution

a + 1′′.00 a′ + 1′′.28 a1 + 5′′.81 a2 + 2′′.74 a3 + 0′′.98

b + 2′′.97 b′ + 2′′.69 b1 + 16′′.01 b2 + 6′′.82 b3 + 2′′.70

c = 1′′.23 Q = +1.00

The values of the constants in the adopted solution, together with the values of
expressions (1), (4), (5), and (6) obtained from the series of observations of the Sun,
Mercury and Venus employed in all three solutions, could be used to obtain values
of B at the times of these observations. For selected dates Jones derived the Moon’s
fluctuations from observations of the Sun, Mercury, and Venus. Plotting these results
on a graph of the Moon’s fluctuations as determined from observations of the Moon,
he found an impressive agreement between the values of B obtained from these two
disparate sources. Solution III was therefore consistent with a very considerable body
of observations of the Moon, Sun, and Mercury. The observations of Venus were of
less weight and hence of less value in this comparison.

For the secular acceleration of the Sun, Solution III gives the value c = +1′′.23±
0′′.04. The difference between this new value and de Sitter’s value is 1′′.80−1′′.23 =
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0′′.57, nearly three times the sum of the probable errors of the two determinations,
0′′.16 + 0′′.04 = 0′′.20. Was the difference significant? Jones thought it probable.

The two values did not contradict each other. The larger value was an average
over 20 centuries, the smaller value an average over only the last two and a half
centuries. It was not necessary to assume that the effects of tidal friction and con-
sequent deceleration of the Earth’s rotation had remained absolutely constant over
2000 years. The two values were compatible with a slow progressive change in the
effects of tidal friction. Jones saw no evidence supporting the abrupt changes in tidal
friction that de Sitter had hypothesized to account for the larger shifts in the Moon’s
mean motion.

On the other hand, Jones had assumed that the Moon’s non-gravitational secu-
lar acceleration was +5′′.22 per century. If the effects of tidal friction had changed
as appeared from the Sun’s case, the Moon’s non-gravitational secular acceleration
should have had a different average in recent centuries.

If we suppose that during the period covered by the present investigation the
true [non-gravitational] secular acceleration of the Moon is not +5′′.22, as
we have supposed, but +5′′.22 + s, then we must replace B by a quantity
B ′, which we may define by

B ′ = B − sS,

where S = T 2 + 1.3T − 0.3. The quantity S, which has zero values at 1750
and 1920, is introduced instead of T 2 in order to secure agreement with
modem observations; in other words, it automatically takes account of the
necessary adjustments to longitude at epoch and to mean motion.
The term in T 2 and B in the Sun and planets then becomes

for the Sun,
n0

n
(B − sS)+

(
c + n0

n

)
T 2,

for the planets,
ni

n0

[n0

n
(B − sS)+

(
c + n0

n
s
)

T 2
]
.

The analysis therefore proceeds as before, but corresponding to a secular
acceleration for the Moon of +5′′.22+s we will derive a secular acceleration
for the Sun of amount (c + n0s/n), which is equal to +1′′.23 + (.0747)s.303

To determine s, Jones needed a further equation. To obtain it, he assumed that,
as tidal friction slowly changed, its effects on the secular accelerations of the Moon
and Sun remained in a constant ratio. The ratio could not be determined either from
theory or from empirical observations, because the changes in the Moon’s orbital
elements caused by tidal action could not be calculated from general theory and
were too small to be measured observationally. Jones thought it at least plausi-
ble that, if there was a slow, gradual change in tidal friction, then the ratio would
remain approximately constant. In that case, Jones could set the ratio of the Sun’s and

303 MNRAS, 99 (1939), 555.



284 22 Tidal Acceleration, Fluctuations, and the Earth’s Variable Rotation, to 1939

Moon’s secular accelerations determined over 2000 years equal to the ratio involving
s for the more recent period:

1.80 ± .16

5.22 ± .30
= (1.23 ± .04)+ .0747s

5.22 + s
.

From this equation he found s = −2.11 ± .57. Inserting this value of s into the
expressions for the two non-gravitational secular accelerations, he obtained

for the Moon + 3′′.11 ± 0′′.57,

for the Sun + 1′′.07 ± 0′′.06.

He described these as “the best average values for the past 250 years.”
The reader will recall that Britton, in reviewing de Sitter’s calculations, found

errors, as well as improbabilities in Fotheringham’s estimates of probable error, on
which Fotheringham’s and hence de Sitter’s results depended. Correcting the errors,
and resolving anew de Sitter’s equations for the tidal secular accelerations of the
Moon and the Sun, Britton found the values304

for the Moon + 3′′.62 ± 0′′.5,

for the Sun + 1′′.14 ± 0′′.3.

These values are to be understood as the averages over 2000 years. When compared
with Jones’s “best average values for the last 250 years,” they give no grounds for
supposing that the effects of tidal friction have measurably changed from ancient
to modem times.305 Jones’s trust in de Sitter’s values burdened him with a false
problem.

304 J.P. Britton, Models Precision (New York, NY: Garland Publishing, 1992), 168.
305 For recent discussions, see K. Lambeck, The Earth’s Variable Rotation, (Cambridge:

Cambridge University Press, 1980) Chapter 10, and in particular p. 288.
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The Quest for a Uniform Time: From Ephemeris Time
to Atomic Time

In his 1939 paper H. Spencer Jones presented compelling evidence that de Sitter’s
proportionality constant Q did not differ from unity. This meant that the fluctua-
tions of the Moon and Mercury were proportional to their respective mean motions.
Jones also verified that the secular accelerations of the Sun and Mercury were propor-
tional to their mean motions. (The secular accelerations of the Moon and Mercury,
on the other hand, were not proportional to their respective mean motions, because
tidal friction not only slows the Earth’s rotation but also changes the Moon’s mean
motion.) The two proportionalities – of the fluctuations of the Moon and Mercury
to their mean motions, and of the secular accelerations of the Sun and Mercury
to their mean motions – were straightforwardly interpretable as due to variations
in the Earth’s rotation, that is, as errors in the accepted measure of time. Other
hypotheses left these proportionalities as unexplained coincidences. The general
conclusion in the astronomical community was that the Earth’s rotation was slowing
and fluctuating.

Up to the middle of the 20th century, astronomers measured time by the rotation
of the celestial sphere, understood as a reflection of the Earth’s rotation. The return
of a star to the meridian signified the passage of a sidereal day, provided that the star
was free from any “proper” motion – detectable motion with respect to the general
stellar background. (In practice, the meridian transits of many stars were clocked,
proper motions were taken into account, and the passage of the sidereal day was
taken as the return to the meridian of the first point of Aries, or Vernal Equinox.) The
return of the Sun to the meridian signified the passage of the solar day, a little longer
than the sidereal day because the Sun on average moves 0◦.9855 or 3547′′.8 eastward
each day with respect to the stars, and the celestial sphere in its apparent westward
rotation requires about 3m .94 to turn through this angle. The Sun’s motion eastward
is not quite equable, but subject to an inequality which had already been recognized
in ancient times. It was caused by the inclination of the Sun’s eastward path (the
ecliptic) to the celestial equator, and by the eccentricity of its orbit about the Earth.
Claudius Ptolemy in the Almagest explained how to correct for this inequality.306

306 See G.J. Toomer, Ptolemy’s Almagest, (New York, NY: Springer-Verlag, 1984), 169–172.
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Astronomers were thus able to relate their observations to mean solar time, time as
given by a fictitious mean Sun, moving uniformly around the celestial equator in the
time that the true Sun takes to pass round the ecliptic. Mean solar time was assumed
to be a dependable measure of time, advancing uniformly without fluctuations in
speed.

Spencer Jones’s empirical determinations of 1939 made evident that the Earth’s
axial rotation could no longer serve as a uniform measure of time. The astronomers
who first accepted the non-uniformity of the Earth’s rotation did so because of
departures of celestial bodies, in particular the Moon, from their ephemerides. In his
Researches on the Motion of the Moon, Part I (1778), Newcomb calculated the
time-errors in the Earth’s rotation by comparing the Moon’s observed positions
with a lunar ephemeris computed from a corrected version of Hansen’s Tables de
la lune. Similarly, in 1925, R.T.A. Innes computed the approximate errors of the
Earth as a clock from five sets of residuals or differences of the form (Observation
minus Ephemeris Value), namely, for the transits of Mercury, the fluctuations of the
Moon’s motion, the eclipses of Jupiter’s satellites I and II, and the Sun’s motion from
1901 to 1921. The apparent errors in mean solar time from these different lines of
evidence were in fairly good agreement; failure of precise agreement could be due
to observational errors or errors in the ephemerides.307

In 1927, W. de Sitter provided formulas that were more precise, though of ques-
tionable accuracy. He defined “astronomical time” as the time given by the Earth’s
rotation, affected by both a secular deceleration of the rotation and by the fluctua-
tions. The correction of “astronomical time” to uniform or “Newtonian” time was to
consist of two parts:

�t = �1t +�2t.

�2t was the secular term due to the Earth’s rotational deceleration. De Sitter esti-
mated it to be 43s .8S, where S = T 2 + 1.33T − 0.26 and T is number of centuries
since 1900. (De Sitter’s value of the secular slowing, 43s .8I 2, is a good deal larger
than the value later accepted.) �1t was a correction for the irregular fluctuations in
the Earth’s rotation, for which de Sitter provided a table running from −38s .5 in
1640 to −28s .2 in 1926.5, with several ups and downs in between. He entitled this
table “Corrections from astronomical to uniformly accelerated time.”308 (In a later
article, he used the term “astronomical time” for what he here called “uniformly
accelerated time.”309) If the tidal secular acceleration could be regarded as constant,
�2t could be specified in advance. Since the fluctuations were not specifiable in ad-
vance,�1t was ascertainable only for the past. De Sitter’s values for the tidal secular
accelerations of both the Moon and Sun, we again note, were exaggerated.

307 Astronomische Nachrichten, 1925, cols.109–110.
308 W. de Sitter, “On the Secular Accelerations and the Fluctuations of the Longitudes of

the Moon, the Sun, Mercury and Venus,” Bulletin of the Astronomical Institutes of the
Netherlands, IV, June 8 (1927), 38.

309 W. de Sitter, “On the System of Astronomical Constants,” Bulletin of the Astronomical
Institutes of the Netherlands, VIII, July 8 (1938), note 1, p. 219.
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Like de Sitter, H. Spencer Jones sought to quantify the errors in the Earth’s
time-keeping. In his Halley Lecture of 1939, he estimated that the length of the day
had increased by about 0s .002 per century over the preceding 25 centuries as a result
of tidal friction.310 The increase in the Moon’s potential energy due to tidal friction
had caused the Moon’s mean distance to increase by about five feet per century. For
the effect of the fluctuations on the Earth’s time-keeping he gave a table for the ap-
proximate excesses of the length of the day over its average value during the last
250 years. These numbers were approximate only. Jones treated the issue of correc-
tions as a practical matter. He did not address questions of principle, for instance the
relevance of relativity theory.

Nevertheless, the new situation revealed by Jones’s Monthly Notices paper
of 1939 demanded a careful re-examination of time-measurement in astronomy,
from the standpoint of both astronomical practice and astronomical theory.
G.M. Clemence, director of the U.S. Nautical Almanac Office from 1945 to 1958,
incorporated such a re-examination in a 1948 paper on the system of astronomical
constants. The central theme of the paper was the necessity of self-consistency in
the solar, lunar, and planetary theories.311 This aim, he stated, had never been com-
pletely attained, but during the 20th century had been approached more closely than
ever before. If the theory lacked self-consistency, discrepancies between theory and
observation became difficult or impossible to interpret. The chief scientific value of
ephemerides was to permit comparisons with observations, whereby the correctness
of the theories could be tested. For this purpose, the ephemerides needed to repre-
sent the theories to within amounts smaller than the errors of the observations, and
the theories needed to be logically self-consistent in order to have an unambiguous
interpretation.

According to Clemence, a major inconsistency that needed attention was the
discrepancy between the time used in the ephemerides and the time used in astrono-
mical observations. The time used in the ephemerides was the independent variable
in the equations of motion of celestial mechanics. De Sitter and Jones had called it
“Newtonian Time,” and Clemence in his 1948 paper continued this practice, although
he was aware that there were relativistic effects in the planetary motions that needed
to be taken into account.312 Until 1925, the time to be used in clocking astronomical
observations was officially stipulated by the International Astronomical Union to be
Greenwich Mean Time (GMT). After 1925, it became Universal Time (UT), identical
with GMT except that its epoch was 12 h earlier, at midnight, January 0, 1900, in-
stead of the following noon, January 0.5. Universal Time and Greenwich Mean Time
were both variable because they depended on the Earth’s rotation. This variability

310 H. Spencer Jones, “The Earth as a Clock, being the Halley Lecture delivered on 5 June
1939” (Oxford: Clarendon Press), 1939.

311 G.M. Clemence, “On the System of Astronomical Constants,” Astronomical Journal 53
(1948), 169–179.

312 See G.M. Clemence, “Relativity Effects in Planetary Motion,” Proceedings of the
American Philosophical Society, 93 (1949), 532–534.
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defeated the purpose of the tables of the Sun, Moon, and planets, namely, accurate
prediction.313

The difficulty could not be resolved by ordaining that astronomers employ
“Newtonian Time” in place of Universal Time in their observations. Newtonian Time
could be accessed only in retrospect. For this retrospective access, astronomical
measurements in Universal Time were necessary. What was needed was a regular
and precise way of ascertaining the difference between the two times.

In 1950, Dirk Brouwer proposed the name “Ephemeris Time” to designate the
independent variable of the equations of motion in celestial mechanics. This name
had the merit of not implying a restriction to pre-relativistic dynamical theory.314

The name “Ephemeris Time” was adopted by the International Astronomical Union
at its eighth General Assembly held in Rome in September, 1952. The difference
between the time used in theoretical astronomy and the time used in observa-
tional astronomy therefore became the difference between Ephemeris Time (ET)
and Universal Time (UT). In the discussion which follows we shall represent this
difference by �T = ET − UT.

In his 1948 paper, Clemence turned to Newcomb’s Tables of the Sun, the official
solar tables since 1900, in order to determine �T . The Sun’s apparent eastward
motion is a reflection of the Earth’s motion about the Sun. This motion could
be assumed to be in strict accordance with the theory of gravitation, because no
cause or evidence for the Earth’s departing from its gravitational orbit was known.
On the other hand, the Sun as observed in Universal Time was subject to a secular
acceleration and to fluctuations, both of which had now come to be attributed to time-
errors in Universal Time caused by variations in the Earth’s rotation. In his 1939
paper, Jones had obtained from his least-squares solution for the Sun a correction to
Newcomb’s tables for these departures from a uniform time315:

�L S = +1′′.00 + 2′′.97T + 1′′.23T 2 + 0.0748B. (1)

Here T is measured in Greenwich Mean Time or Universal Time. Its unit is the
Julian century of 36525 days, counted from 1900 January 0, Greenwich Mean Noon
(or equivalently, Jan. 0.5 UT). Its actual measurement is by timing meridian transits
of stars in order to clock the passage of the sidereal day, then correcting sidereal time
to mean solar time by formula.

The first two terms on the right of (1) are corrections to the Sun’s epoch and mean
motion in Newcomb’s Tables. These terms are chosen so as to make the Ephemeris
day approximately identical with the mean solar day in epoch and duration on Jan. 0,
1900.

The third and fourth terms introduce the effects of the variable rotation of the
Earth. The term 1′′.23T 2 gives the Sun’s non-gravitational secular acceleration. It is
the reflection in the Sun of the gradual slowing of the Earth’s rotation. The fourth

313 Ibid., 171.
314 See G.M. Clemence, “The Concept of Ephemeris Time: A Case of Inadvertent Plagia-

rism,” Journal for the History Astronomy, ii (1971), 76.
315 MNRAS, 99 (1939), 556.
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term gives the reflection in the Sun’s motion of fluctuations in the Earth’s rotation.
B is the Moon’s fluctuation. How it can be determined will be explained below.
The number 0.0748 (equal to 1 ÷ 13.369) is the ratio of the Sun’s mean motion to
the Moon’s mean motion; it reduces the fluctuation from the size it has in the Moon’s
motion to the size it has in the Sun’s motion. The fluctuation is best observed in the
Moon, because among easily observable bodies in the solar system the Moon has
the most rapid mean motion, and therefore reflects any departure from uniformity
in the Earth’s rotation with a larger and hence more precisely measurable departure
from its tabular mean longitude.

The correction �L S can be converted into a change in time �t by a change of
the unit in which (1) is expressed, from the arc-second to the second of time. The
Sun in its mean motion from equinox requires 24.349 seconds of time to traverse
one arc-second (1′′.0). Multiplying (1) by 24.349 seconds/arc-second gives

�t = +24s .349 + 72s .3165T + 29s .949T 2 + 1.821B. (2)

If B were accurately known, and if in addition the other terms in �t were accurate,
(2) would furnish the difference between Ephemeris Time and Universal Time.

But Clemence saw that a better course would be to determine empirically the
whole difference between Ephemeris Time and Universal Time, ET − UT, includ-
ing both non-gravitational secular acceleration and fluctuation. In the least-squares
solutions for these two effects, they were not sharply separable. The whole differ-
ence ET − UT could be determined with higher precision and less uncertainty. The
procedure would be to make multiple comparisons between a corrected version of
the Brown-Hedrick Tables of the Motion of the Moon on the one hand, and lunar
observations on the other, and then to average the results.

The necessary correction to bring the Brown-Hedrick tables into agreement with
Ephemeris Time was a correction to the mean motion. Jones had already proposed
its value:

�L M = +4′′.65 + 12′′.96T + 5′′.22T 2 + B

− Brown’s empirical term (G.E.T.). (3)

The subtraction in (3) of Brown’s empirical term was necessary to insure that
the tables would be in strict accordance with the equations of motion. The non-
gravitational secular acceleration, here given as 5′′.22T 2, had to be included, since it
represented a difference from uniform time stemming from the Earth’s variable rota-
tion. As earlier explained,316 the value 5′′.22 was too large, but it had been accepted
by astronomers on de Sitter’s authority. Correction (3) like correction (1) contains
the fluctuation B, another timing-error. Clemence warned that (3) could not be used
as a definition of B if B exceeded a few arc-seconds. If the time-error due to retar-
dation and fluctuation in the Earth’s rotation is �t , then during �t the Moon’s mean
longitude and all the other arguments on which the Moon’s true longitude depends

316 In our discussion of de Sitter’s 1927 paper.



290 23 The Quest for a Uniform Time: From Ephemeris Time to Atomic Time

are changing, and all these changes need to be taken into account. During �t the
Moon’s mean longitude increases by

�L�t = +13′′.37 + 39′.71T + 16′′.44T 2 + B. (4)

When the observations are referred to Ephemeris Time, the correction to Brown’s
tables becomes the difference between (3) and (4):

�L M −�L�t = −8′′.72 − 26′′.75T − 11′′.22T 2

− Brown’s empirical term (G.E.T.). (5)

Correction (5) introduces into the lunar theory the same unit of Ephemeris Time
that corrections (1) and (2) introduce into solar theory. Clemence proposed that these
corrections be accepted at a future date when the entire official system of astronomi-
cal constants was revised. After that time (which turned out to be 1960.0), the dif-
ference �T could be determined as follows. As before, observations of the Moon’s
longitude would be timed in UT. The lunar ephemeris corrected by (5) would then
yield, for the clock time of the observation, a longitude differing from the observed
longitude. The difference, �L , can be converted into time by multiplying by 1.821.
This number is the product of 0.0748, the ratio of the Sun’s mean motion to the
Moon’s mean motion, by 24s .349, the number of seconds of time the Sun requires
to traverse one arc-second in its mean motion. Thus 1.821�L furnishes a value of
�T , or ET − UT. Clemence proposed that many values of �T be determined and
averaged over some number of weeks or months. The average value would be taken
as the definitive value of�T for the mean date of the observations used. This proce-
dure depends on the fact that �T changes rather slowly over time. It has the great
merit that it can be freed from any dependence on estimates of the non-gravitational
acceleration and fluctuation.

Clemence’s 1948 paper was the first to set forth in detail the concept that would
be called Ephemeris Time. Clemence made the concept practical by explaining how
it could be realized. Observations of the Moon were to be carried out as in the past,
and timed in UT. �T was to be determined by multiple comparisons between lunar
observations and a corrected lunar ephemeris. For this purpose, the lunar ephemeris
needed to be free of empirical terms and in strict agreement with the gravitational
equations of motion. Satisfaction of the second condition was inevitably provisional,
since observational precision is ever on the increase, and the number of smaller terms
derivable in the theory is potentially infinite

Clemence was not in a rush to see these changes adopted. He urged that circum-
spection be exercised in introducing changes in fundamental constants and proce-
dures. All proposed corrections of constants should be checked carefully to avoid
introducing inconsistencies or needless labor for the astronomer.

Steps leading to the adoption of Ephemeris Time, however, came on apace.
In 1950, a conference on the fundamental constants of astronomy was held at the
Observatoire de Paris under the chairmanship of André Danjon, the Observatoire’s
director. Danjon, as Clemence learned some years later, had proposed already in
1929 that time be measured by the circumsolar motions of planets rather than by the
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Earth’s rotation.317 At the 1950 conference the measurement of time was discussed
at length, and a recommendation was formulated: in all circumstances where the
second of mean solar time was unsatisfactory because of its variability, the unit
adopted should be the sidereal year at 1900.0, and time measured in this unit was
to be called Ephemeris Time. The recommendation specified the formula for trans-
lating mean solar time into Ephemeris Time (formula (2) above, due to Jones).
This recommendation was forwarded to the International Astronomical Union, and
adopted at the eighth General Assembly of the International Astronomical Union,
meeting in Rome in September, 1952.318 The recommendation was to go into effect
in 1960.

In one respect, the unit of time adopted in 1960 differed from the one de-
cided on in 1952. It was based on the tropical rather than the sidereal year. Thus
the official second adopted in 1960 was “the fraction 1/31, 556, 925.9747 of the
tropical year 1900 January 0 at 12 h Ephemeris Time.”319 The tropical year was
substituted for the sidereal year because it could be deduced from observation with-
out an assumed knowledge of the precession of the equinox. It was therefore more
fundamental.320

In the 1950s it was also realized that Spencer Jones’s values for the non-
gravitational secular accelerations of the Sun and the Moon (1′′.23T 2 and 5′′.22T 2

respectively) were questionable. Writing in 1954, D.H. Sadler reported that more
recent investigations suggested “a reduction of the coefficients to 1′′.01 and 2′′.2,
with the very large mean errors ±0′′.70 and ±9′′.5, the changes (0′′.22 and 3′′.0)
being in the ratio of the mean motion.” This change would not alter �T , since the
difference would be incorporated directly into B.321

The discoveries and discussions leading to the adoption of Ephemeris Time
brought into clear light the disconnection between Universal Time and the motion
of the Sun. Universal Time was defined as Sidereal Time minus certain additional
terms, which were intended to put Universal Time into agreement with the motion of
the mean Sun:

UT = ST − 12h − 18h38m45s .836 − 8, 640, 184s .542T − 0s .0929T 2.

Sidereal Time (ST) was and is based on multiple meridian transits of stars; 0h of the
sidereal day is identified with the transit of the first point of Aries. The last three
terms in the foregoing expression for UT were Newcomb’s expression for the right
ascension of the Mean Sun, with T measured in Universal Time. (The circularity
does not make the formula unusable, since T can be derived approximately from the

317 See Clemence, “The Concept of Ephemeris Time: A Case of Inadvertent Plagiarism,”
Journal for the History Astronomy, ii (1971), 76–78.

318 Ibid., 73–79.
319 Ibid., 76.
320 D.H. Sadler, “Ephemeris Time,” Occasional Notes of the Royal Astronomical Society, 3,

No. 17 (October, 1954), 103–113; 105.
321 Ibid., 106.
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day of the century and the local time.) But Ephemeris Time was introduced in order
to bring Newcomb’s Tables of the Sun into agreement with the Sun’s true motion.
The true Mean Sun has not transited at noon UT since some time between 1900 and
1905. In practice Mean Solar Time was defined by formula, and had no rigorous
relation to the actual true Sun. Universal Time was not a fundamental measure of
time, but an artificial measure of the Earth’s rotation, chosen to be a close approxi-
mation to mean solar time at the meridian of Greenwich.322

The accuracy and precision with which �T and hence Ephemeris Time could
be determined depended on (1) the accuracy and precision of the ephemeris of the
Moon’s motion, and (2) the accuracy and precision of observational determination
of the Moon’s celestial positions. During the 1950s, important advances were made
in the precision and accuracy of both the ephemeris and of lunar observations.

Observational accuracy and precision were improved chiefly through introduc-
tion of a dual-rate, Moon-position camera for determining the Moon’s positions
with respect to the stars. It was developed by William Markowitz of the U.S. Naval
Observatory, and it was put to work in a regular program of observation beginning
in June, 1952.323

Previous ways of determining the Moon’s position were subject to severe dis-
advantages and restrictions. As indicated several times before, meridian transit
observations were exposed to systematic errors that were difficult to identify and
eliminate. Occultations were free of this difficulty, but required that the Moon be
within a degree or two of first quarter for optimal observing conditions. Attempts at
photographically determining the Moon’s position had been hampered by the Moon’s
size, brilliance, and motion.324

Markowitz’s instrument permitted a photographic exposure of the Moon and
background stars for 20 s, during which time the Moon was held fixed in frame rel-
ative to the stars. A synchronous motor and micrometer moved the carriage holding
the photographic plate so as to keep the images of the stars fixed on the plate. The
Moon’s image was intercepted by a dark filter consisting of a plane-parallel glass
plate 1.8 mm thick, having a transmission factor of 0.001. This filter was attached
to a lever arm, which was slowly rotated by a second motor so as to alter the tilt
of the filter with respect to the photographic plate. The change in tilt was adjusted
to hold the Moon’s image fixed on the photographic plate for the duration of the
exposure. A light yellow filter, having at its center a hole which accommodated the
dark Moon filter, cut out the blue rays of the stars. An electric contact was set to
record the instant when the two filters were parallel, at which moment the Moon’s
image was not shifted with respect to the stars. This moment defined the epoch of

322 Ibid., 107.
323 W. Markowitz, “Photographic Determination of the Moon’s Position, and Applications

to the Measure of Time, Rotation of the Earth, and Geodesy,” Astronomical Journal, 59
(1954), 69–73.

324 The only photographic program of lunar observations previously executed appears to have
been that due to A.S. King carried out at Harvard Observatory from 1911 to 1917; see
Annals of the Harvard College Observatory, 72 (1913), 1; 76 (1916), 127.
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the observation. The camera was attached to a 12-inch refractor at the U.S. Naval
Observatory.

On each photographic plate, Markowitz determined the x- and y-coordinates of
some 10 stars and 30 or 40 points on the Moon’s bright limb, using a double-screw
measuring machine. He also fitted a circle to the bright limb by the method of least-
squares, thus determining the coordinates of the Moon’s center. Comparing obser-
vations from night to night, Markowitz estimated a probable error in either right
ascension or declination of about 0.′′15. A determination of the Moon’s position
derived from 100 observations would therefore have a probable error of 0.′′015, pro-
vided no systematic errors were present. The Markowitz camera required consider-
able expertise to operate. Its use was terminated in the mid-1970s, after laser-ranging
proved superior for determining the Moon’s position.325

On the side of theory, a major advance envisaged and promoted by Walter
J. Eckert was on its way to actualization by 1948. One of its goals was to refine
the measurement of Ephemeris Time, but its significance was more far-reaching.
It would reduce the cost in human time and labor of developing planetary and lunar
theories and extracting from them the necessary ephemerides.

Wallace John Eckert (1902–1971) after receiving a bachelor’s degree from
Oberlin College in 1925 and a master’s degree from Amherst College in 1926,
began work on a doctorate in astronomy under E. W. Brown at Yale. Simultane-
ously he became an assistant in the Astronomy Department of Columbia University.
He completed the Ph.D. degree in 1931.326

In 1926, Brown and Eckert received a visit from J. Leslie Comrie who was just
then introducing machine computation into the operations of Great Britain’s Nautical
Almanac Office. Comrie employed commercially available machines, principally the
Hollerith tabulating machine. This invention of Herman Hollerith (1860–1929) was
used to tabulate the U.S. census of 1890. It depended on a system of punched holes in
a nonconducting material, and counted the items by the passage of an electric current
through the holes. Comrie employed another machine to carry out mechanical inte-
grations by the building up of a function from its finite second differences. On the
basis of the Brown-Hedrick Tables, the British Nautical Almanac Office completed
by 1932 a computed ephemeris of the Moon for every year from the 1930s to the
year 2000.327 Comrie expressed the opinion that there was little likelihood of the
Brown-Hedrick Tables being superseded before the end of the century. Any acquisi-
tion of knowledge of the Moon during the next seven decades, he opined, was almost
certain to be expressed in the form of corrections to Brown’s Tables, not in the form
of new tables. Comrie’s confidence on this matter was mistaken.

325 S.J. Dick, Sky and Ocean Joined (Cambridge: Cambridge University Press, 2003), 481
326 The account of Eckert that follows is drawn from Henry S. Tropp, art. “Wallace

John Eckert,” Dictionary of Scientific Biography, XV, suppl. I, 128–130, and Martin
C. Gutzwiller, “Wallace Eckert, Computers, and the Nautical Almanac Office,” Proceed-
ings of the Nautical Almanac Office: Sesquicentennial Symposium, . . . , March 3–4, 1999
(eds. A.D. Fiala and S.J. Dick, U.S.: Washington, DC, Naval Observatory, 1999.

327 See Comrie’s reports in MNRAS, 92 (1932), 523, 694.
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During his early years as an assistant in Columbia’s Astronomy Department,
Eckert borrowed time on the calculating equipment in the Columbia Statistical
Bureau for the performance of astronomical calculations. The equipment had been a
gift of IBM, and was used primarily for educational research. In 1933, Eckert asked
Benjamin D. Wood, head of the Statistical Bureau, to approach T.J. Watson, Sr., of
IBM, with a wish list of equipment. Eckert wanted some of the machines modified
from their commercial form to improve their suitability for the scientific applications
he had in mind. The deal was closed, and the equipment installed in a room of the
Astronomy Department. Thus was the Thomas J. Watson Astronomical Computing
Bureau established, with Eckert as director. It was operated as a joint enterprise of
Columbia, the American Astronomical Society, and IBM.328

At Brown’s request, Eckert applied the new equipment to check Brown’s earlier,
years-long, paper-and-pencil computation of the terms of the lunar theory. The idea
had occurred to Brown of trying the result of referring the Moon’s motion to x- and
y-axes that followed the mean motion of the Moon rather than that of the Sun.329

Later he discovered that Euler in his last lunar theory (of 1772) had used such axes.
If the coordinates in the ecliptic plane followed the Moon’s mean motion, they took
the form a+x, y, where x, y are small enough so that expressions in powers of x and
y are possible. An unexpected outcome was that the equations for x, y could be put
into a form such that the first gave x and then the second gave y to the same degree of
approximation as had been obtained in Hill’s method only by a troublesome solution
of two simultaneous equations. Moreover, the homogeneous equation for x contained
fewer large terms than the earlier equation it superseded. The extent to which small
divisors caused loss of accuracy was easier to assess and compensate for than in the
earlier form of the equations. It was the new set of equations that Brown proposed
employing for the verification of his earlier calculations. Brown tells the story in an
article of 1938:

As the coordinates consist of series of harmonic terms, by far the greatest
part of the work consists of the multiplication of pairs of harmonic series.
If then a technique could be developed for the multiplication of harmonic
series by machinery, practically the whole of the work of calculating the
action of the Sun on the Moon could be done in perhaps a tenth of the time it
originally required. I was fortunate in interesting my friend and former pupil,
Professor W. J. Eckert of Columbia University, in this problem. He had
already adapted several commercial machines of the Hollerith type to the
solution of problems of celestial mechanics, and had developed a comput-
ing laboratory for their effective use. With the aid of the facilities of this
laboratory we have been able in a year or two to test and extend calculations

328 W.J. Eckert, “The Astronomical Hollerith-Computing Bureau,” Publications of the Astro-
nomical Society of the Pacific, 49 (1937), 249–253.

329 Our account is extracted from E.W. Brown, “The Equations of Motion of the Moon,”
American Journal of Mathematics, 60 (1938), 785–792. Brown received the proof sheets
of this article some days before his death on July 22, 1938.
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which took me nearly twenty years to carry out with the old-fashioned
methods.330

In the final paragraph of his article, Brown reported the result of the verification
to date:

The verification. . . has proceeded sufficiently far to enable me to state that
amongst the terms containing even multiples of D, F – about half the whole
number – there appears to be no error in the earlier work greater than 0.′′01
in longitude, on the assumption that the transformation from rectangular to
polar coordinates has been correctly computed. Two of the terms containing
odd multiples of D apparently have errors of 0.′′03, 0.′′04. But it is not
certain whether these are apparent only, some further work being necessary
to decide the matter.331

In the Thomas J. Watson Astronomy Computing Bureau, Eckert worked closely
with engineers. He may have been the first to develop a rudimentary mechanical
programmer, in this early form a box of pluggable relays with about twenty switch
settings, permitting him to coordinate the functions of his tabulating machines.
In 1940 he published a slender volume entitled Punched Card Methods in Scientific
Computation. Eckert there describes the machines available from IBM with their
various capabilities, and discusses the performance of special tasks like mechanical
quadrature, harmonic analysis, interpolation, and numerical solution of differential
equations. Special attention is given to astronomical applications. On the basis of
this publication, Eckert was promoted to a full professorship at Columbia University
in 1940.

In late 1939, Eckert was invited to become director of the U.S. Nautical Almanac
Office in Washington, DC, and he began his work there in early 1940. He later
recalled that the Almanac Office “had no automatic equipment. Every digit was
written by hand and read and written repeatedly. . . . They had desk calculators.”332

One of his accomplishments was to bring the office up to speed in computing equip-
ment. His most important publication during his tenure there was the Air Almanac,
soon imitated by the Germans, the French, and the British. It was a large annual
volume giving positions for the Sun, Venus, Mars, Jupiter, and the Moon for every
10 min. of each day, in degrees with an accuracy of one arc-minute. The first volume
appeared in time for use by the U.S. Army and Navy airplane pilots in World War II.

In 1944, Watson invited Eckert to join IBM as director of a new department of
pure science. Eckert persuaded Watson that the goals of such a department could
best be met by establishing a research center at Columbia University. In March

330 Op.cit., n.115, Ibid., 786.
331 Ibid., 792.
332 Quoted by M. Gutzwiller, “Wallace Eckert, Computers, and the Nautical Almanac Of-

fice,” in Proceedings, Nautical Almanac Office Sesquicentennial Symposium, U.S. Naval
Observatory, 1999, p. 151, from Jean F. Brennan, The I B M Watson Laboratory at
Columbia University: A History (Armonk, NY: IBM Corporation, 1971), 10
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1945 Eckert returned to Columbia as director of the Watson Scientific Laboratory.333

An entire building was dedicated to this research center. It became a hub where the
activities of many people, from IBM, from government, universities, and industry,
intersected. The informal atmosphere fostered interactions.334

At the Computer Laboratory, Eckert supervised the design and construction
of new computers.335 Among them was a large-scale, general-purpose computer
called the Selective Sequence Electronic Calculator (SSEC), which was dedicated
in January, 1948. Eckert was responsible for its logical design, and Frank Hamilton
of IBM for its hardware. Its components were 13,000 vacuum tubes and 21,000
electromagnetic relays.

One of the first tasks performed by the SSEC was the computation of the
heliocentric coordinates of Jupiter, Saturn, Uranus, Neptune, and Pluto at forty-day
intervals from 1653 to 2060. This work was supervised by Eckert along with Dirk
Brouwer, Director of the Yale University Observatory, and G.M. Clemence, succes-
sor to Eckert as director of the Nautical Almanac Office. The computation was per-
formed by numerically solving a set of simultaneous, non-linear, differential equa-
tions of the thirtieth order with an accuracy of 14 decimals. The starting positions
and velocities for the integration were determined from about 25,000 observations
covering the period 1780–1940. This computation was needed because of the de-
fectiveness of all earlier theories for the outer planets. Hill’s tables for Saturn (pub-
lished in 1900) were reduced in accuracy to five significant figures by the 1940s, and
soon they would not suffice for the most routine applications. Jupiter, Uranus, and
Neptune were also departing from their predicted positions by increasing amounts.
The new computation resulted in a volume containing one and a half million
figures.336

From the start, one of the major projects planned for the SSEC was a new
ephemeris of the Moon, computed directly from Brown’s harmonic series for the
coordinates. This project was realized in the Improved Lunar Ephemeris, 1952–1959,
published in 1954.337 A preliminary study, carried out by Edgar W. Woolard of
the U.S. Nautical Almanac Office, showed that an ephemeris drawn from Brown’s
Tables differed significantly from an ephemeris computed directly from Brown’s
theoretical series for the coordinates (longitude, latitude, and sine parallax). In a test
run, Woolard compared positions computed in these two ways at intervals of 0d .5
for the month from April 24 to May 24, 1948. In the extracting of positions from
Brown’s Tables, Brown’s published precepts were followed without special refine-
ments, since the object was to investigate the discrepancies between the SSEC values

333 For a history of this institution, see the work by Brennan cited in the preceding note.
334 P. 19 of the work by Brennan cited in n.332.
335 W.J. Eckert, “Electrons and Computations,” Scientific Monthly, 67 (Nov., 1948), 315–323.
336 APAE, XII: Coordinates of the Five Outer Planets, 1653–2060, U.S. Government Printing

Office, 1951. The information reported here is from the Preface, page v.
337 The title page announces that this is “A Joint Supplement to the American Ephemeris and

the (British) Nautical Almanac, Prepared jointly by the Nautical Almanac Offices of the
United States of America and the United Kingdom.” The volume of xii + 422 pages was
published by the U.S. Government Printing Office, Washington, D.C., in 1954.
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and values obtained by routine use of the Tables. Systematic differences made their
appearance in both longitude and latitude. In the latitude, a large part of the discre-
pancy arose from a mistake in the Tables: the effect of long-period variations in the
Moon’s orbital inclination on several large terms in the latitude had inadvertently
been included twice. In addition, a large number of small, short-period terms given
in Brown’s theoretical expressions were either entirely or partly omitted from the
Tables. The effect known as “aberration” (the discovery of James Bradley in 1729)
had been entirely overlooked in the Tables.

Woolard plotted the differences found between the tabular values and the SSEC
values in longitude and latitude in the figure reproduced below. The errors in the tab-
ular ephemeris vary between −0′′.10 and +0′′.05 in longitude, and between −0′′.20
and +0′′.20 in latitude. The final values of the longitude and latitude calculated by
the SSEC are computationally accurate to three decimal places – an order of accuracy
not obtainable from the Tables.

The Improved Lunar Ephemeris was a considerable improvement over
lunar ephemerides extracted from the Brown-Hedrick Tables. It made possible a
more accurate determination of Ephemeris Time. Further improvements were pos-
sible, and Eckert pursued them as we shall see. But we must first address a new
development that emerged in the summer of 1955, the advent of Atomic
Time.

In August, 1955, L. Essen and J.V.L. Parry of the National Physical Laboratory in
Teddington, Middlesex, announced their construction of a frequency standard based
on a natural resonant frequency of the cesium atom.338 Quartz clocks could be cali-
brated by means of it. Quartz clocks, dependent on the piezo-electric effect, were
already the most precise and stable of clocks. The new calibration would make them
many orders of magnitude more precise. The calibration apparatus depended on the
atomic beam magnetic resonance technique that Isidore Rabi had invented in 1937.
Rabi and his co-workers at Columbia University had perfected this technique in later
years. In 1945, Rabi suggested the possibility of applying such a standard to the cali-
bration of clocks.339 When Essen and Parry made their announcement in August of
1955, the accuracy so far obtained was ±1 part in 109 per day, or 0.1 milliseconds
per day. By 1970 the achieved accuracy would be ±1 part in 2 × 1013 per day
(5 nanosec/day).340

A major advantage of the new standard was that calibrating a quartz clock could
be carried out in minutes. Time measured by such a clock (“Atomic Time”) was
quickly accessible. Ephemeris Time, in contrast, could be known with a similar pre-
cision only after the lapse of a year or more, and would be an average value over
that year. The idea was not far to seek that the second of time measured by quartz
clocks calibrated against the cesium frequency could advantageously be adopted as

338 Essen and Parry, “An atomic standard of frequency and time interval,” Nature, 176 (1955),
280–282.

339 I.I. Rabi, Richtmeyer Lecture to the American Physical Society, New York, 1945
(unpublished).

340 Winkler, G.M.R., Hall, R.G., and Percival, D.B., Metrologia, 6 (1970), 126.
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Differences, Tab.–SSEC in longitude and latitude for every half-day. Asterisks indicate dates
selected for detailed analysis.

the standard second, replacing the ephemeris second. This suggestion was made by
E.C. Bullard, director of the National Physical Laboratory in Teddington, in a note
accompanying the Essen-Parry announcement. 341

A month later, in September, 1955, the General Assembly of the International
Astronomical Union, at its meeting in Dublin, passed a resolution approving the
following definition of the ephemeris second:

The second is the fraction 1:31, 556, 925.975 of the length of the tropical
year for 1900.0.342

341 E.C. Bullard, “Definition of the Second of Time,” Nature, 176 (1955), 282.
342 H. Spencer Jones, “Definition of the Second of Time,” Nature, 176 (1955), 669–670.
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In his report of the passage of this resolution, H. Spencer Jones remarked that this
fraction is accurate enough for practical purposes, but that the value required for
exact agreement with Newcomb’s Tables of the Sun was 1:31, 556, 925.97474.
He gave a step-by-step account of how to obtain a frequency vE corresponding to
the invariable unit of Ephemeris Time defined in the resolution. The steps included
a determination of the difference �t between Ephemeris Time and Universal Time,
using observations with the Markowitz dual-rate, Moon-position cameras. Accord-
ing to Jones, the cesium frequency standard would have a role in determining the
frequencies that correspond to the varying second of Universal Time, and in relating
the mean solar second at any future time to the fundamental second of 1900.0 defined
in the resolution.

A back-and-forth discussion now commenced concerning the relative merits of
Ephemeris Time and Atomic Time.343 Ephemeris Time had been invented to supply
the need for a “more uniform” time than the Earth-clock could supply. Uniformity in
the measurement of time could not be determined by direct empirical test. A clock
was judged to furnish a uniform measure of time if phenomena timed by it agreed
with the accepted theory of dynamics. Uniformity here was a theory-dependent con-
cept. In mid-20th century, the theory of dynamics used in planetary and lunar as-
tronomy was in the main Newtonian, but astronomers knew that certain relativis-
tic effects were observationally detectable. The motions of the planetary perihelia
could in large part be derived from Newtonian gravitation, but the full motion could
be derived only by calling on General Relativity. These relativistic increments in the
motions of the planetary perihelia, astronomers believed, were the only detectable
relativistic effects.344 In a few years, however, further relativistic effects would be
detectable.

Explanations of Ephemeris Time frequently made untenable claims. For instance,
the Explanatory Supplement to the Ephemeris of 1961 described Ephemeris Time as
follows:

343 See for instance G.M. Clemence, “Definition of the Second of Time,” Nature, 176
(Dec. 24, 1955), 1230 and “Standards of Time and Frequency,” Science, 123 (April 6,
1956), 567–573; A. Perard, “The Standard of Length and the Standard of Time,” Nature,
177 (May 5, 1956), 850–851; L. Essen, “Atomic Time and the Definition of the Second,”
Nature, 178 (July 7, 1956), 34–35.

344 G.M. Clemence, “The Relativity Effect in Planetary Motion,” Reviews of Modern
Physics, 19 (1947), 361–364; “Relativity Effects in Planetary Motion,” Proceedings of
the American Philosophical Society, 93 (1949), 532. It is worthy of remark that Clemence
carried out a very careful determination of the observed motion of Mercury’s perihelion,
based on observations covering the period 1790–1940. He found that planetary pertur-
bation accounted for 531.′′47 of Mercury’s centennial perihelion motion. Added to the
precession this gave a motion of the perihelion from the equinox of 5557′′.18 per cen-
tury. The observed motion per century from equinox was 5599.′′74, greater by 42.′′56.
The effect derived from relativity was 43.′′03. The difference, 0.′′47, was smaller than its
probable error, ±0′′.97.
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Ephemeris time is a uniform measure of time depending on the laws of
dynamics. It is the independent variable in the gravitational theories of the
sun, moon, and planets, and the argument for the fundamental ephemerides
in the Ephemeris.345

This description assumes consistency between the laws of dynamics, the gravita-
tional theories of the Sun, Moon, and planets, and the argument of the fundamental
ephemerides. But the ephemerides were at best approximations to the gravitational
theories, and the gravitational theories of planets and the Moon were at best approxi-
mate instantiations of the dynamical principles. In both cases the approximations
were works in progress, using infinite series with doubtful convergence. Consistency
was a goal rather than an assured achievement.

To specify Ephemeris Time in terms of rate and epoch was also troublesome.
The epoch and rate were chosen with the intention of making Ephemeris Time the
independent variable in Newcomb’s Theory of the Sun. The ephemeris second was
defined as the tropical second at 1900 January 0.5 ET, and corresponded to a geo-
metric mean longitude of the Sun equal to 279◦41′48′′.04.346 But the geometric
longitude of the Sun is not an angle that astronomers can measure by observing
the Sun. The Sun is too bright, and its motion in right ascension is too slow, to obtain
its precise position by direct observation. The specification of its position depends
on the system of astronomical constants, and these constants are refined from time
to time. When a new value of the constant of aberration was introduced in 1964, this
change called for an alteration of the Sun’s longitude on 1900 January 0.5.

In practice, Ephemeris Time was determined by comparing observations of
the Moon with a lunar ephemeris. This assumed that the independent variable in
Newcomb’s solar theory bore the same relation to uniform time as did the indepen-
dent variable in Brown’s lunar theory; both were assumed to be in strict accord with
dynamical theory. Repeated improvements in the lunar ephemerides during the 1950s
and 1960s contradicted this assumption. Ephemeris Time, determinable only for the
past, was subject to repeated changes.

Ephemeris Time was a questionable way of measuring time, and critics decried
its questionable features. At a colloquium of the International Astronomical Union
held in August, 1970, I.I. Shapiro pronounced the then current definition of ephemeris
time to be “philosophically repugnant, aesthetically horrifying, and completely
inadequate.”347

Already in 1967 the General Conference of Weights and Measures had tentatively
defined the second of time on the basis of an atomic frequency. The second was to
be “the duration of 9, 192, 631, 770 periods of the radiation corresponding to the

345 Quoted from J. Derral Mulholland, “Measures of Time in Astronomy,” Publications of the
Astronomical Society of the Pacific, 84 (June, 1972), 357–364. My account owes much to
Mulholland’s analysis.

346 Ibid., 361.
347 Ibid., 357.
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transition between the two hyperfine levels of the ground state of the cesium-133
atom.”348 This second was to replace the second of Ephemeris Time in the International
System of Units (SI). The duration was chosen to be as near as possible to the defi-
nition of the ephemeris second. The ephemeris second, meanwhile, remained in the
System of Astronomical Constants of the International Astronomical Union.

New developments increased the accessibility of Atomic Time. An international
standard of atomic time (TAI) was set by the Bureau International de l’Heure. Coor-
dinated Universal Time (UTC) was disseminated by radio starting in 1964. Its second
was the TAI second, while its epoch was defined relative to UT. UTC became the
most readily available measure of time, the time scale against which astronomical
observations were customarily made.349

Was measurement of time by the new clocks subject to General Relativity? In late
1971, J.C. Hafele and Richard E. Keating carried out an experiment to resolve the
much debated question of the difference in aging of two twins with diverse histories
of space travel. Four quartz clocks calibrated to the cesium frequency were flown
twice around the world on regularly scheduled commercial jet flights, once eastward
and once westward.350 During flight, the clocks were miles above the Earth’s sur-
face, hence in a weaker gravitational field than similarly calibrated quartz clocks on
the Earth’s surface. According to relativity theory, the altitude of these clocks should
cause them to gain time relative to reference clocks at the U.S. Naval Observatory.
In addition, the clocks carried in the jet flights were in coordinate frames rotating at
different rates than clocks at the Naval Observatory; clocks in the westward flight
were rotating less rapidly than the Naval Observatory clocks, and clocks in the east-
ward flight were rotating more rapidly. Relativity theory required that the clocks in
the eastward flight should lose time, and those in the westward flight should gain
time, compared with the Naval Observatory clocks. The predicted relativistic time
differences in nanoseconds (10−9 sec.) were as follows:

Effect Eastward flight Westward flight

Gravitational 144 ± 14 179 ± 18

Kinematic −184 ± 18 96 ± 10

Net −40 ± 23 275 ± 21

The estimated error ranges were derived from uncertainties as to the average speeds
and altitudes of the flights. The observed times measured by the four clocks in the
eastward and westward flights were averaged. The mean times with their standard
deviations were:

348 G.M. Clemence, “The Concept of Ephemeris Time,” Journal for the History of Astronomy,
ii (1971), 76

349 Mulholland, Op.cit. in n.345, p. 364.
350 Keating, R.E. and Hafele, J.C., “Around-the-World Atomic Clocks,” Science, 177 (1972),

166–170.
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Eastward flight Westward flight

Mean ± S.D. −59 ± 10 273 ± 7

Thus the measured times were in satisfactory agreement with the predictions of
relativity theory.

This experiment demonstrated that, in order to achieve nanosecond accuracy in
timing, relativistic effects influencing clocks on the rotating Earth or on artificial
satellites had to be taken into account. Thus the distinctions and formalism of General
Relativity had to be applied. Ephemeris Time could no longer be taken as a true or
uniform measure of time, because the pre-relativistic equations of motion on which
it was based were imperfect.

In 1977, Ephemeris Time was finally retired in favor of two new dynamical scales
of time, called “Proper Dynamical Time” (TDP) and “Coordinate Dynamical Time”
(TDC). The TDP second was defined by TDP = TAI + 32s .184, where TAI is Inter-
national Atomic Time. Earlier, the offset of 32s .184 had been used with Ephemeris
Time to keep ET and TAI distinct. It was continued in TDP to make it distinct from
TAI but continuous with its predecessor ET. TAI was the time given by an atomic
clock on the Earth’s surface, and hence was situated in a rotating, non-inertial frame
of reference. The Earth’s rotation was known to vary with annual, monthly, and di-
urnal periodicities; therefore TDP would necessarily have periodic differences from
a clock in an inertial system. Coordinate Dynamical Time (TDC) was stipulated to
be identical with TDP except in being free from the periodic variations to which
TDP was known to be subject. The periodic variations included an annual term with
a 1658-microsecond amplitude, and monthly and diurnal terms with 2-microsecond
amplitudes.351

To illustrate the use of these new dynamical time scales, consider the construction
of an ephemeris for a planet X .352 Equations of motion for X are selected to be in
accordance with General Relativity. They contain an independent variable t which
may be identified with TDC. The equations are integrated numerically or analyti-
cally from initial conditions to yield an ephemeris of X as a function of TDC. This
ephemeris may be labeled “geometric” to indicate that it takes no account of the time
required for light to come from planet X to an observer on planet Earth. A similar
geometric ephemeris is also constructed for planet Earth, using the same independent
variable TDC.

It is next necessary to develop an apparent geocentric ephemeris of X . From
selected space-time “points” in the geometric ephemeris of X , light-paths are traced
to the Earth. According to General Relativity, the time for light to travel from X to
the Earth is a function of distance, velocity, and the gravitational potential along the
path. The arrival of the light on Earth is an observable phenomenon. The apparent
position of X at this instant can be calculated from the Earth’s geometric position

351 The foregoing account follows closely that in G.M.R. Winkler and Thomas C. Van
Flandern, “Ephemeris Time, relativity, and the problem of uniform time in astronomy,”
Astronomical Journal, 82 (1977), 90.

352 The illustration is from the Winkler and Van Flandern article, 90.
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together with X ′s geometric position at the instant of the departure of the light from
X . Thus a geocentric ephemeris of apparent positions of X can be built up and fitted
to observations. This makes possible an adjustment of the initial conditions for the
original integration of the equations of motion for X . The independent variable of
the apparent geocentric ephemeris of X will then be a proper dynamical time, TDP.
Let us suppose that the observer’s clock time is Coordinated Universal Time (UTC)
as described earlier, a broadcast time available at all observatories. The difference
TAI – UTC is an integral number of seconds which changes whenever a leap second
is introduced. And TAI differs from TDP only by the 32s .184 offset. Therefore, TDP
will be knowable.

This procedure is required in order to achieve the new level of precision in time-
keeping made possible by Atomic Time. Atomic Time, while supplying a new level
of precision, was looked to for resolution of a cosmological question. The expansion
of the Universe suggested that the Universal Gravitational Constant, G, might be
decreasing, either as a cause or as an effect of the expansion. E.C. Bullard in his note
accompanying the Essen-Parry announcement of August 14, 1955, remarked:

Dirac, Milne, Jordan and others have suggested that what are usually
regarded as the ‘constants of physics’ may change by amounts of the order
of 1/T per year, where T is the ‘age of the universe’ in years. If T is about
4 × 109 years, changes of this order may soon be measurable over intervals
of a few years. This is a matter that can only be settled by experiment. . . 353

During the 1970s several researchers obtained positive values for the diminution
of G.354 T.C. Van Flandern found a higher value for the Moon’s secular deceleration
when using an atomic time scale than when using Ephemeris Time. From this differ-
ence he derived a value of (1/G)dG/dt .355 The difference, however, has not been
confirmed. In the absence of firm evidence to the contrary, it appears reasonable to
take what has been called “the optimistic and conservative stand” and to assume that
G remains unchanging.356

353 E.C. Bullard, “Definition of the Second of Time,” Nature, 176 (August 13, 1955), 282.
354 See H.C. Ohanian, Gravitation and Spacetime (New York: W.W. Norton, 1976), 187–188,

216.
355 MNRAS, 170 (1975), 333–342.
356 Ohanian as cited in n.354. See also E. Myles Standish, “Numerical Planetary and

Lunar Ephemerides,” Relativity in Celestial Mechanics Astrometry (eds. J. Kovalesky and
V.A. Brumberg; Reidel, Dordrecht, Holland), pp. 82–83.
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1984: The Hill–Brown Theory is Replaced as the Basis
of the Lunar Ephemerides

During the 1960s and until his death in August, 1971, Walter Eckert devoted his
efforts to improving the precision with which the Moon’s position could be derived
from the Hill–Brown theory.

One of these efforts was The Solution of the Main Problem of the Lunar Theory
by the Method of Airy in 1966.357 The “Main Problem of the lunar theory,” we
recall, treats the Sun, Moon, and Earth as point-masses interacting in accordance
with Newton’s inverse-square law. The center of mass of the Earth and Moon is
assumed to move about the Sun in an ellipse. All other effects are set aside, to be
treated later as perturbations of the solution to the Main Problem.

The “method of Airy” corrects a theory by comparison with observations. The
best available earlier solution is substituted into the differential equations, with
numerical values assigned to the arbitrary constants. A set of linear variation
equations is then formulated and solved on the assumption that the squares and prod-
ucts of the residuals can be neglected. The astronomer G.B. Airy during fourteen
years toward the end of his life attempted to apply this process to Delaunay’s theory.
He abandoned the effort at age 88, concluding that his declining powers were unequal
to the demanding computations required.358

Brown in the late 1930s proposed to Eckert that Airy’s method be applied by elec-
tronic computer to check his own earlier elaboration of the lunar theory. He hoped
that greater accuracy could be achieved in the centennial motions of the perigee
and node. This project was not completed in the 1930s, but was carried far enough
to assure Brown that his series developments were free from serious errors. With
Brown’s death and the coming of WWII, the project was set aside.

In 1957 Eckert revived the project, and with the assistance of Harry F. Smith,
Jr., carried it to completion. The progress in automatic computing since the 1930s

357 W.J. Eckert and H.F. Smith, Jr., “The Solution of the Main Problem of the Lunar
Theory by the Method of Airy,” Astronomical Papers prepared for the use of the
American Ephemeris and Nautical Almanac (hereinafter APAE), 19, Part II, U.S.
Government Printing Office, Washington, DC: 1966.

358 G.B. Airy, “The Numerical Lunar Theory,” MNRAS, 49 (1988), 2.

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9 24,
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permitted a considerably higher level of accuracy.359 In the re-computation, the rect-
angular coordinates, consisting of about 9,600 terms, were given with a precision of
1 × 10−12, corresponding to a precision of 2′′ × 10−7 in angular measure. Eckert
elaborated:

The great majority of the terms are believed accurate to a few units in the
last place. Perhaps 30 or 40 terms have errors as large as 10−11, some as
large as 10−10, and a very few terms of long period have larger errors. . . .
Our results show that Brown’s solution is even better in many respects than
he had hoped when he made it, and the freedom from error in his work
is truly phenomenal. . . . In our comparison we found only one correction
as large as 0′′.01, eight as large as 0′′.005, and 51 as large as 0′′.002. The
outstanding correction is that in y with argument 2F−2	which corresponds
to a correction in the longitude of approximately 0′′.072 sin (2F − 2	).360

The Improved Lunar Ephemeris or ILE was derived from Brown’s theory, but
with certain losses of precision. Therefore, it did not reflect the full accuracy of
Brown’s solution. Losses in precision occurred in Brown’s transformation from rect-
angular to polar coordinates, in his special transformation of the longitude series
for use in obtaining the terms in the latitude, in changes he made in the arbitrary
parameters, and in his omission of some small terms in the parallax.

In a paper published in 1966, Eckert and colleagues at the Watson Laboratory
replaced Brown’s transformations with others more precise, with a view to making
the accuracy of Brown’s theory more fully available for comparison with obser-
vation.361 The improved transformations led to corrections to the ILE values for
longitude, latitude, and sin parallax. The corrections brought Brown’s theory and
the Eckert-Smith solution of the Main Problem more closely into agreement. The
improvement in the accuracy and precision of sin parallax was particularly notable.
Earlier, parallax had been used only in the correction of angular coordinates for the
position of the observer, and Brown had relaxed the standard of precision in his for-
mulas for determining this coordinate.

In December of 1967, W.J. Eckert and Dorothy Eckert published an article on
“The Literal Solution of the Main Problem of the Lunar Theory.”362 Their purpose
was to carry the solution of the main problem to a higher level of precision than
Hill and Brown had attempted. In the Hill–Brown procedure, the forces containing
the ratio of the mass of the Earth-Moon system to the mass of the Sun, and the
small terms depending upon the ratio of the mass of the Moon to the mass of the
Earth, had been neglected in the solution of the main problem, and treated instead as

359 W.J. Eckert, “Improvement by Numerical Methods of Brown’s Expressions for the Coor-
dinates of the Moon,” Astronomical Journal, 63 (1958), 415–418.

360 W.J. Eckert and H.F. Smith, Jr., “The Solution of the Main Problem of the Lunar Theory
by the Method of Airy,” APAE, 19, Part II, 196.

361 W.J. Eckert, M.J. Walker, and D. Eckert, “Transformation of the Lunar Coordinates and
Orbital Parameters,” Astronomical Journal, 71 (1966), 314–332.

362 Astronomical Journal, 72 (1972), 1299–1308.
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perturbations of this solution. But these effects could be treated by exactly the same
method as that used in solving the Main Problem. The results were merely additions
to the coefficients of terms with the same arguments. The same machine programs
could be used for both the complete and the simplified equations, and the inclusion
of the added terms would yield high accuracy with little work. The new equations of
motion incorporated two new numerical parameters,

q = E + M

m′ + E + M
, and p = E M

(E − M)2
= M/E

(1 − M/E)2
.

Both q and p are small relative to unity. When they are deleted from the new Eckert
equations the latter reduce to the Hill–Brown form. The coefficients ai of the Varia-
tion Curve were computed by an iterative process carried out to the stage of reducing
the corrections to less than 1×10−20. The motions of the perigee and node were also
derived from the new solution and compared with Brown’s values.

In what would be his last major project, Eckert in 1967 undertook the construc-
tion of a new solution for the “Main Problem” of the lunar theory, aiming for a
higher level of accuracy than ever before. He was assisted by Sarah Bellesheim, who
wrote the computer programs under Eckert’s direction. After Eckert’s death in 1971,
Bellesheim carried this project forward, and completed new tables in 1975.

The Eckert-Bellesheim tables had a sequel to which we shall return later. At this
point our story shifts to a different development, taking place on the opposite side of
the American continent. In Pasadena, California, Jet Propulsion Laboratory during
the 1960s was planning and executing spacecraft missions to the Moon, Venus, Mars,
and Mercury. This organization had begun under Army jurisdiction in the 1930s as a
research group concerned with rocket launches and guided missiles. Its regular mode
of trajectory computation was numerical integration of differential equations.

In the issue of Science for May, 1968, three consecutive reports appeared, two
from JPL and one from MIT. These reports gave evidence of worrisome errors in
the lunar ephemeris supplied by the Nautical Almanac Office – worrisome, at least,
to engineers concerned with sending out spacecraft to orbit around, or land on, the
Moon. The critiqued ephemeris was an updated version of ILE, designated LE4 by
JPL.363 The first report, by J.D. Mulholland and C.J. Devine of JPL, compared LE4
to a numerical integration, designated LE5, of the equations of the Moon over the
period from 25 April 1966 to 26 April 1968.364 They found maximum residuals of
0.16 arcseconds in longitude and 0.12 arcseconds in latitude, corresponding to errors
in LE4 of roughly 300 and 225 m. The standard deviations for these coordinates were
0.057 and 0.053 arcseconds, corresponding to 143 and 133 m. The results in sine
parallax showed a maximum error of 0.0047 arcseconds, with a standard deviation of

363 “Supplement to the A.E. 1968” in The American Ephemeris and Nautical Almanac for
1968 (U.S. Govemment Printing Office, Washington, DC, 1966). The improvements
included those given in “Transformation of the Lunar Coordinates and Orbital
Parameters,” Astronomical Journal, 71 (1966), 314–332.

364 J.D. Mulholland and C.J. Devine, “Gravitational Inconsistency in the Lunar Theory:
Numerical Determination,” Science, 160 (May, 1968), 874–875.
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0.0018 arcseconds, corresponding roughly to 500 and 200 m in range. The residuals
contained distinct periodicities, closely resembling several planetary arguments, such
as Earth+Venus (140 days) and the synodic periods of Venus (600 days) and Jupiter
(400 days). The authors concluded that the planetary portion of the lunar theory
needed to be recalculated. The error of 0.16 arcseconds in the Moon’s longitude
corresponded to an error in the determination of Ephemeris Time of 0.30 s.

Lunar laser-ranging would not be available until retro-reflectors were in place on
the Moon’s surface. The first of these was installed during the lunar landing from
Apollo 11 in the summer of 1969. The maximum errors of lunar laser-ranging would
be of the order of a few centimeters.

The second report confirmed evidence of error in the corrected Hill–Brown
theory as compared with range and Doppler observations of space probes near or
at the Moon’s surface.365 The residuals of the predictions from LE4 were as large as
440 m in position and 1.5 mm per second in velocity.

The third report compared the Doppler shift of radar waves reflected from the
Moon with radial velocities derived from LE4.366 The comparison again disclosed
large discrepancies, averaging about 0.6 cm per second, between the observed radial
velocities and the predictions derived from LE4.

The main conclusion to be drawn was that lunar ephemerides, as derived from
Brown’s theory and improved upon by Eckert up to the mid-1960s, were not accurate
enough for spacecraft navigation. The greater accuracy of JPL’s L5 was due to the
precision and accuracy of new empirical data on the Moon’s distance. In the past, all
observations of celestial bodies were optical, and the dimension of depth or distance
had to be determined by triangulation. Distances were a good deal less precisely
measurable than right ascensions or declinations. But now the situation was reversed:
radar ranging, very-long-baseline interferometry, spacecraft ranging, Doppler tech-
niques, and finally lunar laser-ranging, were more precise by several orders of mag-
nitude than observations of right ascension and declination. The Nautical Almanac
Office had not sought to acquire these new types of data, so crucial to obtaining pre-
cise initial conditions for JPL’s numerical integrations. Account could be taken of
thousands of data-points. The engineers at JPL had long been using numerical inte-
grations to compute trajectories of rockets and missiles, and they applied the same
technique when it came to determining the paths of spacecraft. The newer high-speed
computers made possible the extension of the numerical integrations to an arbitrary
number of simultaneously interacting bodies. Such were JPL’s advantages when it
came to producing ephemerides. Moreover, accurate prediction was now a neces-
sity, given the mission of sending astronauts into space. It was no surprise that JPL
initiated its own work on ephemeris production.

At the Naval Observatory, G.M. Clemence, Scientific Director from 1958 to
1963, made the decision to limit the institution’s role in space-age projects. To have

365 C.N. Cary and W.L. Sjogren, “Gravitational Inconsistency in the Lunar Theory:
Confirmation by Radio Tracking,” Science, 160 (May, 1968), 875–876.

366 C.R. Smith, G.H. Pettengill, I.I. Shapiro, and F.S. Weinstein, “Discrepancies between
radar Data and the Lunar Ephemeris,” Science, 160 (May, 1968), 876–878.
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decided otherwise would have meant a radical change in a tradition-sanctioned style
and scope of operations. The observatory was cooperative in many phases of the
new developments spearheaded by NASA. But one consequence of Clemence’s deci-
sion was that in 1984 the responsibility for planetary and lunar ephemerides in the
national almanacs passed from the Nautical Almanac Office at the Naval Observatory
to JPL in California.367

In the years leading up to this transfer, JPL produced a succession of ephemerides
of the Moon and planets. The integrations were fitted primarily to recent mea-
surements of position: radar ranges, planetary spacecraft positions, and lunar laser
ranges. Radar ranges to the surface of the terrestrial planets (Mars, Venus, Mercury)
had been measured since 1964. Laser ranges to the Moon, as already remarked, began
in 1969. In 1976 the Viking landers on Mars began returning ranges with accuracies
better than 10 m. The transition from optical angles to Viking ranges improved the
accuracy of position determinations for Mars by more than four orders of magnitude.
In the case of the Moon, the shift from optical angles to laser ranges improved preci-
sion by nearly as much. These improvements drove corresponding improvements in
the accuracy of planetary and lunar ephemerides.

In 1977, JPL completed Development Ephemeris 102, the result of a simulta-
neous numerical integration of equations for the Moon and nine planets covering the
time-span from 1411 B.C. to A.D. 3002. An account of this ephemeris was published
in 1983.368 The authors made the following claim:

While the fitting of optical data was long accomplished with analytical
theories for the Moon and planets, the newer data types required the develop-
ment of numerical integration techniques and more comprehensive physical
models. The numerical integrations are necessary to match the accuracy of
the modern data types.369

The point made here is a practical one, having to do with the benefits of an extended
process of trial and error, hypothesis testing, and adaptive refinement, to which JPL’s
procedures were especially well suited.

A case in which experiment played a decisive role was the decision to compute
perturbations due to the asteroids Ceres, Pallas, Vesta, Iris, and Bamberga. “These
were the five asteroids found to have the most pronounced effect on the Earth-Mars
range in an integration from the standard 1969 epoch of initial conditions to 1985.”370

If the Earth and Mars were perturbed detectably by these asteroids, the same must be
true of the Moon.

The main line of attack in the integrations was relativistic. The equations of
motion for the Moon and planets were post-Newtonian:

367 For an account of this transition, see S. J. Dick, Sky and Ocean Joined: the U.S. Naval
Observatory, 1830–2000 (Cambridge: Cambridge University Press, 2003), 530–536.

368 X.X. Newhall, E.M. Standish, Jr., and J.G. Williams, “DE 102: A Numerically Integrated
Ephemeris of the Moon and Planets Spanning Forty-Four Centuries,” Astronomy and
Astrophysics, 125 (1983), 150–167.

369 Ibid., 150.
370 Ibid., 151.
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The principal gravitational force on the nine planets, the sun, and the Moon
is modeled by considering those bodies to be point-masses in the isotropic,
Parameterized Post-Newtonian (PPN) n-body metric. . . . The n-body equa-
tions were derived from the variation of a time-independent Lagrangian
action integral formulated in a non-rotating solar-system barycentric
Cartesian coordinate frame.371

In each equation of motion for the interacting bodies taken as point-masses, the terms
giving the gravitational forces look familiarly pre-relativistic:

r̈i =
∑

J 	= i

μ j (r j − ri )

r3
i j

,

where ri is the position vector of body i with respect to the solar-system barycenter,
μ j is Gm j where G is the gravitational constant and m j is the mass of body j , and
ri j is |r j − ri |. But the terms in this sum are then modified by multiplicative factors
and additive terms which have c2, the square of the speed light, as denominators.
These modifying factors and terms introduce relativistic space curvature and non-
linearity in the superposition of gravity. Relativity thus enters into the basic structure
of the theory.

Figure effects were taken into account as zonal harmonics of the Earth acting on
the point-masses of the Moon and Sun, and as zonal and tesseral harmonics of the
Moon acting on the point-masses of Earth and Sun.

Tidal acceleration of the Moon was modeled by taking into account the attrac-
tion of a tidal bulge leading the Earth-Moon line by a phase angle δ. In DE 102
the resulting inertial acceleration of the Moon was derived quantitatively from the
conservation of the center of mass in the system of bodies considered.

The equations of DE 102 included differential equations for the physical libra-
tions of the Moon. In an earlier integration, in which the lunar librations were
modeled by an analytic formula, the JPL investigators found a secular runoff in the
Moon’s longitude. Computing the librations from the differential equations caused
the runoff to disappear. But the secular instability turned out to be ultimately trace-
able to imperfections in the modeling of long-period additive and planetary terms.
When these imperfections were removed, analytic modeling of the physical libra-
tions no longer produced secular instability.

DE 102 was the end-result of a series of integrations and least-squares fits. Sepa-
rate least squares fits for planetary and lunar data were carried out in alternation.
First the planetary data were used to obtain new planetary starting conditions. Then
the latter conditions were integrated with old lunar starting conditions. The plane-
tary initial conditions were then held fixed while several iterations of lunar fits and
joint integrations were performed until the lunar orbit had converged. In one of the
intermediate iterations, a simultaneous rotation of the lunar and planetary orbits was
included to bring the Earth’s equator into alignment with the ephemerides.372

371 Ibid., 151.
372 Ibid., 159.
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In the case of the planets, the orbital elements implicit in DE 102 were neces-
sarily osculating or instantaneous rather than mean values. For the Moon, the mean
orbital elements affecting its geocentric distance were strongly determined by the
laser ranging data.

The mean motions of the planets could be obtained from distance-determinations
because the product a3n2, where a is the semimajor axis of the ellipse and n the
mean motion, is a solar system constant. The first range data sent back from Mars by
the Viking orbiter made possible corrections to the mean motions of the four inner
planets by −0′′.5 cy−1 [per century]. The astronomical unit was reduced by 700 m,
with a resultant decrease in the planetary radii by several 100 m.

The planets in their elliptical orbits undergo periodic displacements from circu-
lar motion. If e is the orbital eccentricity, the displacements have amplitude ae in
the radial direction, and amplitude 2ae in the longitude direction. The projections of
these displacements on the range direction could be measured, permitting determi-
nation of both the amplitude and the phase of the displacements. The phase gives the
mean anomaly (the difference between the planet’s longitude and the longitude of its
perigee), and the amplitude gives ae.

The foregoing account will give some sense of the impetus of the ongoing
ephemerides program at JPL. JPL’s ephemerides were of unprecedented accuracy
and precision, but their accuracy depended on close control by contemporaneous
data. Displacement of the epoch from the center of the data-span led to error.

In the production of ephemerides for the guidance of space flights, the Nautical
Almanac Office was hardly in a position to compete with JPL. Eckert had worked
steadily toward improving the accuracy of the Hill–Brown theory and of the ephe-
merides derived it, and this effort was continued after his death in 1971. But the
new and more accurate data available to JPL were not accessed in this effort, and
the accuracy achieved was orders of magnitude less than that achieved by JPL.
Organizationally, the two enterprises were disparate: JPL’s was the larger, with more
personnel, and it ran on a tight schedule tied to a projected program of spacecraft
missions. Given the divergence in technical traditions at the two institutions, meld-
ing did not look like a viable option. Clemence as Scientific Director of the Naval
Observatory chose to focus the institution on what he believed it could do best and
most helpfully in the changed circumstances of the Space Age: positional astronomy
and Time service.373

373 See S. J. Dick, Sky and Ocean Joined (Cambridge: Cambridge University Press, 2003),
Section 10.3: Positional astronomy in the Space Age, 414–450; Section 11.3: Time service
in the Space Age, 487–503
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The Mathematical and Philosophical Interest in an
Analytic Solution of the Lunar Problem

If an analytic or semi-analytic solution is sought for the motion of the Moon, the
problem, mathematically considered, is typical of problems in which the series
obtained are not known to be convergent, but yet appear to offer useful results. Not
differently than the numerical lunar theory pursued by JPL, analytical lunar theory
thus presents itself as an essentially pragmatic enterprise. A provocative question has
been whether it is possible by analytical or semi-analytical integrations to achieve the
same level of accuracy as JPL had achieved in its numerical integrations.

In the late 1960s, André Deprit developed computer software for managing
symbolic operations; he was one of the first to do so. Using Lie transforms, he car-
ried out an analytic integration of the lunar problem in the manner of Delaunay.374

Whereas Delaunay had computed all terms to the seventh order of small quantities,
and some to the eighth and ninth order, Deprit aided by the computer carried the
development of all terms to order 20. Comparing his own results with Delaunay’s,
he provided the first detailed list of Delaunay’s errors, showing that they were few.
His aim had been to compute all terms with an accuracy of 0′′.0005. For a num-
ber of terms, the computation to order 20 was insufficient to reach this goal; it left
uncertainties between 0′′.001 and 0′′.005, corresponding to between 2 and 10 m on
the orbit of the Moon. In these cases Deprit provided estimates of the uncertainty.
An ephemeris computed from Deprit’s theory received the acronym ALE (“Analyt-
ical Lunar Ephemeris”). The slow convergence that Delaunay had encountered in
the 1870s was thus re-encountered by Deprit in his more advanced, computer-aided
integration. The result of iterations to order 20 still failed to match the precision of
JPL’s lunar ranges. Deprit and his co-workers Jacques Henrard and Arnold Rom de-
cided it would be useful to combine the advantages of the analytical method using
Lie transforms with the advantages of Hill’s proposal to start from a solution of a
simplified form of the problem. They proposed starting with an analytical solution of
“the non-planar Hill’s problem.” By this they meant a solution that took account of
the eccentricity (e) and inclination (γ ) of the lunar orbit, but left unaccounted for the

374 A. Deprit, J. Henrard, and A. Rom, “Lunar Ephemeris: Delaunay’s Theory Revisited,”
Science, 168 (1970), 1569–1570, and “Analytical Lunar Ephemeris: Delaunay’s Theory,”
Astronomical Journal, 76 (1971), 269–272.
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solar eccentricity (e′) and parallax (α = a/a′) of the lunar orbit.375 The Sun was in
effect removed to an infinite distance, but endowed with a gravitational force equal
to that which it actually exerts on the Moon. In a second step, the difference between
the solution of the non-planar Hill’s problem and a solution to the Main Problem
was to be expanded around mean values of m, e, γ and the corrections to the solu-
tion would be sought in the form of formal power series in e′, α, δm, δe, δγ . Thus
the expansions in m would be replaced by expansions in δm, which should converge
much more rapidly.376 An ephemeris derived from this development of the theory
received the acronym SALE (“Semi-analytical Lunar Ephemeris”).

Comparing SALE with ALE, Henrard found 13 terms in the longitude and 7 in
the latitude with differences equal to or greater than 0′′.0005. These differences, he
believed, were attributable to truncation errors in ALE.

In 1979, Martin Gutzwiller published “The Numerical Evaluation of Eckert’s
Lunar Ephemeris.”377 The ephemeris in question was derived from the lunar theory
that Eckert and Bellesheim had begun constructing in 1967, and that Bellesheim had
completed in 1975. In method, the theory followed along the lines of Brown’s theory
as completed in 1908. The ratio m of the mean motions was treated as a numerical
parameter, and so were the two mass-ratios

M

M + E
,

M + E

M + E + S
.

The two eccentricities (e and e′), the orbital inclination (γ ), and the ratio of the mean
distances (α = a/a′) were treated as literal parameters. Each polynomial coefficient
was calculated for seven different sets of the three numerical parameters, so that the
observational values of these parameters could be easily interpolated. The calcula-
tions were carried consistently to the sixth order in the four literal parameters; that
is, supposing the characteristic of a term to be ep(e′)qγ rαs , all terms with character-
istics such that p + q + r + s ≤ 6 were computed with high accuracy.

From this theory Gutzwiller calculated an ephemeris, to which he gave the
acronym ELE. The chief labor here was the derivation, from the rectangular coor-
dinates given by the Eckert-Belleshim theory, of the corresponding terms in polar
coordinates. Gutzwiller obtained the longitude and latitude terms to 0′′.0001 and the
sine parallax terms to 0′′.000001. These levels of precision were commensurate to
those in ALE, SALE, and ILE (Eckert’s Improved Lunar Ephemeris of 1954), except
that Henrard had given the longitude and latitude in SALE to 0′′.00001. Gutzwiller
compared ELE with ALE and SALE. First, he showed that the differences (ELE
minus ALE) were fewer and smaller than the differences (ILE minus ALE). Henrard
had already carried out a detailed comparison of SALE with ALE.378 Gutzwiller

375 J. Henrard, “Hill’s Problem in Lunar Theory,” Celestial Mechanics, 17 (1978), 195–204.
376 J. Henrard, “A New Solution of the Main Problem of Lunar Theory,” Celestial Mechanics,

19 (1979), 337–355.
377 Astronomical Journal, 84 (1979), 889–899.
378 J. Henrard, A New Solution to the Main Problem of Lunar Theory (Namur, Facultés Uni-

versitaires de Namur, 1978).
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concluded that ELE’s agreement with SALE was as good as ALE’s agreement with
SALE.379

In the early 1980s, the Chapront theory made its appearance. In 1974, Michelle
Chapront-Touzé had set forth a plan for developing lunar theory in the form

∑

i1,i2,i3,i4

⎡

⎣Ai1,i2,i3,i4 +
∑

j

B j
i1,i2,i3,i4

δx0
j

⎤

⎦ ·
(

cos
sin

)
(i1 D̄ + i2 F̄ + i3	̄+ i4	̄′)

where Ai1,i2,i3,i4 and B j
i1,i2,i3,i4

are numerical coefficients, and δx0
j are literal

variations of the constants used for constructing the theory.

The execution of this plan led to a semi-analytical solution from which a century-
long ephemeris was deduced. This ephemeris was compared to JPL’s numerical
integration LE 200. From the comparison, M. Chapront-Touzé and J. Chapront
derived a new set of lunar and solar elements, S200, leading to a new semi-analytical
lunar theory, ELP 2000-82. ELP stands for Ephemeride Lunaire Parisienne, and the
number 2000 indicates that the epoch of the ephemeris is the year 2000. The lunar
ephemerides derived from ELP 2000-82 were introduced into the Connaissance des
Temps (the French equivalent of the Nautical Almanac) beginning with the year 1984.

Several versions of ELP 2000 had been developed, and in 1984, ELP 2000-82
was the latest and most accurate of them. As its authors pointed out, ELP 2000 could
be numerically improved by adding the difference ρ between ELP 2000 and a given
numerical integration over one century. The semi-analytical theory differs from an
ephemeris in that it gives explicit formulas for the terms in longitude, latitude, and
sine parallax. It owes its refined numerical accuracy, however, to comparisons with
the JPL ephemerides. In comparisons of ALE, SALE, and ELE with ELP 2000, all
three came up short. The accuracy of ELP 2000, as refined by comparisons with the
JPL ephemerides, was superior. It became a standard of comparison for checking the
results of other methods.

According to Dieter Schmidt writing in the 1990s, an important advantage of
an analytical or semi-analytical integration of the lunar theory over the numerical
integration lies in its providing a better understanding of the Moon’s dynamical
behavior.380 The theory makes possible the detection of effects that are sensitive
to changes in the physical parameters:

Many of these parameters could be determined more accurately if a better
analytic solution were available. The solution of Chapront may satisfy this
need some day, but at the moment it requires an independent verification of
its own. This can be accomplished with another analytic solution which is
developed independently, preferably by different methods and on computers
with different hardware.

379 Astronomical Journal, 84 (1979), 896.
380 D.S. Schmidt, “Computing the Motion of the Moon Accurately,” Hamiltonian Dynam-

ical Systems: History, Theory, and Applications, (eds. H.S. Dumas, K.R. Meyer, and
D.S. Schmidt, Springer-Verlag, 1995) 342.
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In fact, Schmidt, with the encouragement of Deprit, had already in the late 1870s set
out to develop a semi-analytical integration of the lunar theory along the lines of the
Hill–Brown theory. In preparation, Schmidt had developed a package of computer
programs (“POLYPAK”) for the formal manipulation of power series in several real
or complex variables. Again with Deprit’s encouragement, he joined with Gutzwiller
in undertaking a solution of the Main Problem of the lunar theory. Publication of
the Eckert-Bellesheim theory and of ELE was abandoned, because Schmidt in his
development had already surpassed the precision of ELE. The joint report of Schmidt
and Gutzwiller carried the title “The Motion of the Moon as Completed by the
Method of Hill, Brown, and Eckert.”381

In this new solution of the Main Problem, two constants were inserted with their
numerical values from the start. One was m[= n′/(n − n′)], the ratio of the solar
mean motion to the lunar mean synodic motion. The insertion of the numerical value
of this constant goes back to Hill–Brown and was continued by Eckert. The other
such constant was M/(E + M), which had been measured with high accuracy in the
lunar orbiter program of the early 1970s. The constants that were to remain literal in
the theory-development were the lunar eccentricity (e), the solar eccentricity (e′), the
lunar inclination (γ ), and a new constant β now to be defined. Brown and Eckert had
failed to realize that the mass-ratio (E + M)/(S + E + M) was not an independent
constant. This was so because

E + M

S + E + M
= n2a3

n′2a′3 = (1 + m)2a3

m2a′3 ,

where a/a′ = α is the ratio of the lunar and solar mean distances. Convenience now
dictated that this mass-ratio be set equal to β3:

E + M

S + E + M
= β3.

This stipulation makes β approximately 1/70, hence comparable in size to another of
the constants, e′(∼1/60).

Eckert’s original program was modified in other respects. The criterion for inclu-
ding a term in the calculation was no longer its having an abstract order of 6 or less,
but rather its numerical size after the values of e, γ, e′, and β had been inserted.
The new aim was to guarantee 10−10 in the complete calculation of a lunar position.
Calculation to a still higher order, however, proved necessary because of the rapid
accumulation of small terms. In ELE, for instance, Gutzwiller found that the least of
the 609 largest terms in longitude was 0′′.00012, but the square root of the sum of the
squares of all the smaller terms was 0′′.001, ten times larger.382 The new criterion
for retaining terms in the calculation was that they exceed 10−14. In certain cases,
problems with small denominators necessitated keeping terms down to 10−17.

381 Astronomical Papers prepared for the use of the American Ephemeris and Nautical
Almanac, U.S. Government Printing Office, Washington, 1986.

382 M.C. Gutzwiller, “The Numerical Evaluation of Eckert’s Lunar Ephemeris,” Astronomical
Journal, 84 (1979), 889–899.
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In the solution of the Main Problem, complete agreement with Chapront was
at length achieved. Schmidt has stressed the surprising character of this outcome,
given that a formal solution of the equations of motion diverges. Ultimate divergence
of solutions to the three-body problem had been suggested by Poincaré. The more
recent Kolmogorov-Arnold-Moser theorem implied the same thing.383 Gutzwiller
and Schmidt, in their work on the Main Problem, found numerical instabilities crop-
ping up when they sought to deal with small divisors – a sign of the ultimate diver-
gence of the theory. Non-convergence was the ‘beast in the jungle’ of the lunar
problem. But, according to Schmidt,

What should be more surprising is the fact that one is actually able to calcu-
late a solution to a very high degree of accuracy. This is a consequence of
the judicious choice of Hill’s intermediate orbit as a starting point and the
nature of the phase space in the vicinity of this orbit.384

It was familiarity with Euler’s last lunar theory that led Hill to his “judicious
choice” of the variational orbit as a starting point. The further development of the
theory – by Brown, by Eckert, by Gutzwiller and Schmidt – was an experiment
requiring mathematical skill and tact, and success was not guaranteed. As Schmidt
sums up the situation,

Despite these difficulties, it is possible to compute a formal solution in
the sense of an asymptotic approximation which matches the observational
accuracy of the moon today.385

Gutzwiller and Schmidt see this result as confirming that the Hill–Brown theory of
lunar motions is “one of the great achievements in Celestial Mechanics.”386

383 The Kolmogorov-Amold-Moser theorem is a result in the topological study of
Hamiltonian dynamics. For an account of it, see V.I. Arnold, Mathematical Methods of
Classical Mechanics, (New York NY: Springer-Verlag, 1989) 405–406.

384 D.S. Schmidt, “Computing the Motion of the Moon Accurately,” Hamiltonian Dynamical
Systems: History, Theory, Applications (New York, NY Springer-Verlag, 1995), 359.

385 Ibid., 361.
386 P. 13 of “The Motion of the Moon as Computed by the Method of Hill, Brown, and

Eckert,” as referenced in note 381.



Appendix

“Observations on the Desirability of New Tables of the
Moon” (undated typescript of 3 pages, possibly intended for Newcomb; Naval

Observatory Library, file of George William Hill)

The tables now in use are those of Hansen modified by the addition of certain
corrections due to Prof. Newcomb. As far as practical considerations are concerned,
these tables might be used for an indeterminate length of time, without the occur-
ring of errors of a serious character. But the comparison which Prof. Newcomb has
made of Hansen with Delaunay shows discrepancies in the values of the coefficients
amounting in some cases to half a second of arc. Although, in many cases, these
differences are evidently due to the slow convergence of the literal series employed
by Delaunay, others remain which are possibly to be attributed to numerical mis-
takes by Hansen. It is not creditable to the advanced science of the present day that
we should be in any uncertainty in this respect. Therefore I think that Professor
E.W. Brown should be encouraged to carry on the new computation he has com-
menced in the Polar Perturbations. Aid should be given in order that we may have
the results sooner. In order to reach a degree of approximation which would satisfy
all reasonable wishes, I think the terms we should stop at should be of the order of
e6 and γ 6.

As regards the planetary perturbations, M. Radau’s work seems well done and
may be adopted; but it might be well to subject his selection of arguments to be
treated to tests to see whether he may not have overlooked terms of importance.
The terms due to the Figure of the Earth might be taken from my memoir [Hill
is referring to his paper, “Determination of the Inequalities of the Moon’s Motion
which are produced by the Figure of the Earth. . . ,” Astronomical Papers for the use
of the American Ephemeris and Nautical Almanac, Vol. III (1884), pp. 201–344]; but
in a few cases slight imperfections have crept in, which I will gladly remove when
called upon.

It seems to me desirable that in treating this subject, we should start from a foun-
dation reasonably certain in its details, all known forces being taken correctly into
account. The comparison of such a theory with observation will give residuals which
are the combined effects of the necessary changes in the values of the arbitrary cons-
tants and the action of the unknown forces. The latter undoubtedly exist, and I am
afraid the period of observation is too short to show their real law. We will prob-
ably be driven to resort to empirical formulae. The latter, however, should be of

C. Wilson, The Hill–Brown Theory of the Moon’s Motion, Sources and Studies
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-5937-9,
c© Springer Science+Business Media, LLC 2010
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as simple a nature as possible, and should not contradict our present knowledge.
Prof. Newcomb’s modification of the Venus-inequality of 273 years by altering the
argument by 70◦ is open to serious objection. However well it may answer at present,
it is certain that, in the near future, the observations are going to march away from
such a theory.

The most probable cause that can be assigned to the outstanding residuals of the
above mentioned presumably accurately determined theory is the mass of meteors
passing through the regions immediately surrounding the Tellurian System. It may
be difficult to arrive at formulae giving the effect of these in mass on the position
of the Moon relatively to the Earth; but in the rough, some kind of periodicity must
shape it. If we could find the periods of the terms compassing it, the observations
might be capable of furnishing the coefficients and phases of these terms.

Further tinkering of Hansen seems not desirable as the result would be most
likely only a temporary makeshift to be supplanted by something better.

I estimate that on this plan new tables could be prepared and ready for use in
ten years. Of course, sufficient computing force must be given to the undertaker of
this project, perhaps three persons might suffice. The heaviest part of the work is
the comparison of the theory with observation. To pass from Hansen to a theory
absolutely unencumbered with empiricism is a matter of difficulty. It is not even
certain that the figures in the tables are actually founded on the formulae of the
introduction.

The form to be given to the tables is a matter of some moment. M. Radau’s
investigation shows the planetary perturbations are composed of numerous small
terms with the most various arguments and which it would be impossible to tabulate
singly; tables to double entry would scarcely succeed better. The only course open
would seem to be to tabulate them in lump specially for given times.

G.W. Hill
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Chapront-Touzé, Michelle, 315
Clairaut, Alexis-Claude, 11–13, 15, 32, 209
Clemence, Gerald M., 19, 287–291, 296,

299, 301, 308, 311
Comrie, Leslie J., 238, 293
Cotes, Roger, 9
Cowell, P.H., 106, 112, 151, 181, 219–222,

228, 246–247, 250, 276–277
Crommelin, A.C.D., 255

D
d’Alembert, Jean le Rond, 11–13, 15, 27,

32, 209
Damoiseau, Baron de, 14–16, 18, 181,

220, 240
Danjon, André, 290
Darwin, George Howard, 3–6, 20, 37–38,

75–76, 104–106, 108, 125, 157, 214,
225–232

Delaunay, Charles, 15, 20–22, 26, 55–56,
71, 80, 121, 123–125, 127–128, 147,
172–173, 181, 184, 199, 201, 240,
242, 305, 313

Deprit, André, 313, 316
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