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The Ecole Polytechnique, one of France’s top academic institutions, has a longstand-
ing tradition of producing exceptional scientific textbooks for its students. The origi-
nal lecture notes, the Cours de l’Ecole Polytechnique, which were written by Cauchy
and Jordan in the nineteenth century, are considered to be landmarks in the develop-
ment of mathematics.

The present series of textbooks is remarkable in that the texts incorporate the most
recent scientific advances in courses designed to provide undergraduate students with
the foundations of a scientific discipline. An outstanding level of quality is achieved
in each of the seven scientific fields taught at the Ecole: pure and applied mathe-
matics, mechanics, physics, chemistry, biology, and economics. The uniform level
of excellence is the result of the unique selection of academic staff there which in-
cludes, in addition to the best researchers in its own renowned laboratories, a large
number of world-famous scientists, appointed as part-time professors or associate
professors, who work in the most advanced research centers France has in each field.

Another distinctive characteristic of these courses is their overall consistency; each
course makes appropriate use of relevant concepts introduced in the other textbooks.
This is because each student at the Ecole Polytechnique has to acquire basic knowl-
edge in the seven scientific fields taught there, so a substantial link between depart-
ments is necessary. The distribution of these courses used to be restricted to the
900 students at the Ecole. Some years ago we were very successful in making these
courses available to a larger French-reading audience. We now build on this success
by making these textbooks also available in English.
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Preface to the Second Edition

Quantum mechanics is an endless source of new questions and fascinating
observations. Examples can be found in fundamental physics and in applied
physics, in mathematical questions as well as in the currently popular debates
on the interpretation of quantum mechanics and its philosophical implications.

Teaching quantum mechanics relies mostly on theoretical courses, which
are illustrated by simple exercises often of a mathematical character. Reduc-
ing quantum physics to this type of problem is somewhat frustrating since
very few, if any, experimental quantities are available to compare the results
with. For a long time, however, from the 1950s to the 1970s, the only alterna-
tive to these basic exercises seemed to be restricted to questions originating
from atomic and nuclear physics, which were transformed into exactly soluble
problems and related to known higher transcendental functions.

In the past ten or twenty years, things have changed radically. The devel-
opment of high technologies is a good example. The one-dimensional square-
well potential used to be a rather academic exercise for beginners. The emer-
gence of quantum dots and quantum wells in semiconductor technologies has
changed things radically. Optronics and the associated developments in infra-
red semiconductor and laser technologies have considerably elevated the social
rank of the square-well model. As a consequence, more and more emphasis is
given to the physical aspects of the phenomena rather than to analytical or
computational considerations.

Many fundamental questions raised since the very beginnings of quantum
theory have received experimental answers in recent years. A good example
is the neutron interference experiments of the 1980s, which gave experimental
answers to 50 year old questions related to the measurability of the phase of
the wave function. Perhaps the most fundamental example is the experimen-
tal proof of the violation of Bell’s inequality, and the properties of entangled
states, which have been established in decisive experiments since the late
1970s. More recently, the experiments carried out to quantitatively verify de-
coherence effects and “Schrödinger-cat” situations have raised considerable
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interest with respect to the foundations and the interpretation of quantum
mechanics.

This book consists of a series of problems concerning present-day experi-
mental or theoretical questions on quantum mechanics. All of these problems
are based on actual physical examples, even if sometimes the mathematical
structure of the models under consideration is simplified intentionally in order
to get hold of the physics more rapidly.

The problems have all been given to our students in the École Polytech-
nique and in the École Normale Supérieure in the past 15 years or so. A special
feature of the École Polytechnique comes from a tradition which has been kept
for more than two centuries, and which explains why it is necessary to devise
original problems each year. The exams have a double purpose. On one hand,
they are a means to test the knowledge and ability of the students. On the
other hand, however, they are also taken into account as part of the entrance
examinations to public office jobs in engineering, administrative and military
careers. Therefore, the traditional character of stiff competitive examinations
and strict meritocracy forbids us to make use of problems which can be found
in the existing literature. We must therefore seek them among the forefront of
present research. This work, which we have done in collaboration with many
colleagues, turned out to be an amazing source of discussions between us. We
all actually learned very many things, by putting together our knowledge in
our respective fields of interest.

Compared to the first version of this book, which was published by
Springer-Verlag in 2000, we have made several modifications. First of all,
we have included new themes, such as the progress in measuring neutrino
oscillations, quantum boxes, the quantum thermometer etc. Secondly, it has
appeared useful to include, at the beginning, a brief summary on the basics of
quantum mechanics and the formalism we use. Finally, we have grouped the
problems under three main themes. The first (Part A) deals with Elementary
Particles, Nuclei and Atoms, the second (Part B) with Quantum Entangle-
ment and Measurement, and the third (Part C) with Complex Systems.

We are indebted to many colleagues who either gave us driving ideas, or
wrote first drafts of some of the problems presented here. We want to pay a
tribute to the memory of Gilbert Grynberg, who wrote the first versions of
“The hydrogen atom in crossed fields”, “Hidden variables and Bell’s inequal-
ities” and “Spectroscopic measurement on a neutron beam”. We are particu-
larly grateful to François Jacquet, André Rougé and Jim Rich for illuminating
discussions on “Neutrino oscillations”. Finally we thank Philippe Grangier,
who actually conceived many problems among which the “Schrödinger’s cat”,
the “Ideal quantum measurement” and the “Quantum thermometer”, Gérald
Bastard for “Quantum boxes”, Jean-Noël Chazalviel for “Hyperfine struc-
ture in electron spin resonance”, Thierry Jolicoeur for “Magnetic excitons”,
Bernard Equer for “Probing matter with positive muons”, Vincent Gillet for
“Energy loss of ions in matter”, and Yvan Castin, Jean-Michel Courty and Do-
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minique Delande for “Quantum reflection of atoms on a surface” and “Quan-
tum motion in a periodic potential”.

Palaiseau, April 2005 Jean-Louis Basdevant
Jean Dalibard
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Summary of Quantum Mechanics

In the following pages we remind the basic definitions, notations and results
of quantum mechanics.

1 Principles

Hilbert Space

The first step in treating a quantum physical problem consists in identifying
the appropriate Hilbert space to describe the system. A Hilbert space is a
complex vector space, with a Hermitian scalar product. The vectors of the
space are called kets and are noted |ψ〉. The scalar product of the ket |ψ1〉
and the ket |ψ2〉 is noted 〈ψ2|ψ1〉. It is linear in |ψ1〉 and antilinear in |ψ2〉
and one has:

〈ψ1|ψ2〉 = (〈ψ2|ψ1〉)∗ .

Definition of the State of a System; Pure Case

The state of a physical system is completely defined at any time t by a vector
of the Hilbert space, normalized to 1, noted |ψ(t)〉. Owing to the superposition
principle, if |ψ1〉 and |ψ2〉 are two possible states of a given physical system,
any linear combination

|ψ〉 ∝ c1|ψ1〉 + c2|ψ2〉 ,

where c1 and c2 are complex numbers, is a possible state of the system. These
coefficients must be chosen such that 〈ψ|ψ〉 = 1.
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Measurement

To a given physical quantity A one associates a self-adjoint (or Hermitian)
operator Â acting in the Hilbert space. In a measurement of the quantity A,
the only possible results are the eigenvalues aα of Â.

Consider a system in a state |ψ〉. The probability P(aα) to find the result
aα in a measurement of A is

P(aα) =
∥∥∥ P̂α|ψ〉

∥∥∥2 ,
where P̂α is the projector on the eigensubspace Eα associated to the eigenvalue
aα.

After a measurement of Â which has given the result aα, the state of the
system is proportional to P̂α|ψ〉 (wave packet projection or reduction).

A single measurement gives information on the state of the system after
the measurement has been performed. The information acquired on the state
before the measurement is very “poor”, i.e. if the measurement gave the result
aα, one can only infer that the state |ψ〉 was not in the subspace orthogonal
to Eα.

In order to acquire accurate information on the state before measurement,
one must use N independent systems, all of which are prepared in the same
state |ψ〉 (with N � 1) . If we perform N1 measurements of Â1 (eigenval-
ues {a1,α}), N2 measurements of Â2 (eigenvalues {a2,α}), and so on (with∑p

i=1Ni = N), we can determine the probability distribution of the ai,α,
and therefore the ‖ P̂i,α|ψ〉 ‖2. If the p operators Âi are well chosen, this
determines unambiguously the initial state |ψ〉.

Evolution

When the system is not being measured, the evolution of its state vector is
given by the Schrödinger equation

ih̄
d

dt
|ψ〉 = Ĥ(t) |ψ(t)〉 ,

where the hermitian operator Ĥ(t) is the Hamiltonian, or energy observable,
of the system at time t.

If we consider an isolated system, whose Hamiltonian is time-independent,
the energy eigenstates of the Hamiltonian |φn〉 are the solution of the time
independent Schrödinger equation:

Ĥ|φn〉 = En|φn〉 .
They form an orthogonal basis of the Hilbert space. This basis is particu-
larly useful. If we decompose the initial state |ψ(0)〉 on this basis, we can
immediately write its expression at any time as:
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|ψ(0)〉 =
∑

n

αn |φn〉 → |ψ(t)〉 =
∑

n

αn e−iEnt/h̄ |φn〉 .

The coefficients are αn = 〈φn|ψ(0)〉, i.e.

|ψ(t)〉 =
∑

n

e−iEnt/h̄ |φn〉〈φn|ψ(0)〉 .

Complete Set of Commuting Observables (CSCO)

A set of operators {Â, B̂, . . . , X̂} is a CSCO if all of these operators commute
and if their common eigenbasis {|α, β, . . . , ξ〉} is unique (up to a phase factor).

In that case, after the measurement of the physical quantities {A,B, . . . ,X},
the state of the system is known unambiguously. If the measurements have
given the values α for A, β for B, . . . , ξ for X̂, the state of the system is
|α, β, . . . , ξ〉.

Entangled States

Consider a quantum system S formed by two subsystems S1 and S2. The
Hilbert space in which we describe S is the tensor product of the Hilbert
spaces E1 and E2 respectively associated with S1 and S2. If we note {|αm〉} a
basis of S1 and {|βn〉} a basis of S2, a possible basis of the global system is
{|αm〉 ⊗ |βn〉}.

Any state vector of the global system can be written as:

|Ψ〉 =
∑
m,n

Cm,n |αm〉 ⊗ |βn〉 .

If this vector can be written as |Ψ〉 = |α〉 ⊗ |β〉, where |α〉 and |β〉 are vectors
of E1 and E2 respectively, one calls it a factorized state.

In general an arbitrary state |Ψ〉 is not factorized: there are quantum
correlations between the two subsystems, and |Ψ〉 is called an Entangled state.

Statistical Mixture and the Density Operator

If we have an incomplete information on the state of the system, for instance
because the measurements are incomplete, one does not know exactly its state
vector. The state can be described by a density operator ρ̂ whose properties
are the following:

• The density operator is hermitian and its trace is equal to 1.
• All the eigenvalues Πn of the density operator are non-negative. The den-

sity operator can therefore be written as

ρ̂ =
∑

n

Πn |φn〉〈φn| ,
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where the |φn〉 are the eigenstates of ρ̂ and the Πn can be interpreted as a
probability distribution. In the case of a pure state, all eigenvalues vanish
except one which is equal to 1.

• The probability to find the result aα in a measurement of the physical
quantity A is given by

P(aα) = Tr
(
P̂αρ̂
)

=
∑

n

Πn〈φn|Â|φn〉 .

The state of the system after the measurement is ρ̂′ ∝ P̂αρ̂P̂α .
• As long as the system is not measured, the evolution of the density operator

is given by

ih̄
d

dt
ρ̂(t) = [Ĥ(t) , ρ̂(t)] .

2 General Results

Uncertainty Relations

Consider 2N physical systems which are identical and independent, and are
all prepared in the same state |ψ〉 (we assume N � 1). For N of them, we
measure a physical quantity A, and for the N others , we measure a physical
quantity B. The rms deviations ∆a and ∆b of the two series of measurements
satisfy the inequality

∆a ∆b ≥ 1
2

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣ .

Ehrenfest Theorem

Consider a system which evolves under the action of a Hamiltonian Ĥ(t), and
an observable Â(t). The expectation value of this observable evolves according
to the equation:

d

dt
〈a〉 =

1
ih̄
〈ψ|[Â, Ĥ]|ψ〉 + 〈ψ|∂Â

∂t
|ψ〉 .

In particular, if Â is time-independent and if it commutes with Ĥ, the expec-
tation value 〈a〉 is a constant of the motion.

3 The Particular Case of a Point-Like Particle; Wave
Mechanics

The Wave Function

For a point-like particle for which we can neglect possible internal degrees of
freedom, the Hilbert space is the space of square integrable functions (written
in mathematics as L2(R3)).
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The state vector |ψ〉 is represented by a wave function ψ(r). The quantity
|ψ(r)|2 is the probability density to find the particle at point r in dimensional
space. Its Fourier transform ϕ(p):

ϕ(p) =
1

(2πh̄)3/2

∫
e−ip·r/h̄ψ(r) d3r

is the probability amplitude to find that the particle has a momentum p.

Operators

Among the operators associated to usual physical quantities, one finds:

• The position operator r̂ ≡ (x̂, ŷ, ẑ), which consists in multiplying the wave
function ψ(r) by r.

• The momentum operator p̂ whose action on the wave function ψ(r) is the
operation −ih̄∇.

• The Hamiltonian, or energy operator, for a particle placed in a potential
V (r):

Ĥ =
p̂2

2M
+ V (r̂) → Ĥψ(r) = − h̄2

2M
∇2ψ(r) + V (r)ψ(r) ,

where M is the mass of the particle.

Continuity of the Wave Function

If the potential V is continuous, the eigenfunctions of the Hamiltonian ψα(r)
are continuous and so are their derivatives. This remains true if V (r) is a step
function: ψ and ψ′ are continuous where V (r) has discontinuities.

In the case of infinitely high potential steps, (for instance V (x) = +∞
for x < 0 and V (x) = 0 for x ≥ 0), ψ(x) is continuous and vanishes at the
discontinuity of V (ψ(0) = 0), while its first derivative ψ′(x) is discontinuous.

In one dimension, it is interesting to consider potentials which are Dirac
distributions, V (x) = g δ(x). The wave function is continuous and the discon-
tinuity of its derivative is obtained by integrating the Schrödinger equation
around the center of the delta function [ψ′(0+)− ψ′(0−) = (2Mg/h̄2)ψ(0) in
our example].

Position-Momentum Uncertainty Relations

Using the above general result, one finds:

[x̂, p̂x] = ih̄ → ∆x ∆px ≥ h̄/2 ,

and similar relations for the y and z components.
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4 Angular Momentum and Spin

Angular Momentum Observable

An angular momentum observable Ĵ is a set of three operators {Ĵx, Ĵy, Ĵz}
which satisfy the commutation relations

[Ĵx, Ĵy] = ih̄ Ĵz , [Ĵy, Ĵz] = ih̄ Ĵx , [Ĵz, Ĵx] = ih̄ Ĵy .

The orbital angular momentum with respect to the origin L̂ = r̂ × p̂ is an
angular momentum observable.

The observable Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z commutes with all the components

Ĵi. One can therefore find a common eigenbasis of Ĵ2 and one of the three
components Ĵi. Traditionally, one chooses i = z.

Eigenvalues of the Angular Momentum

The eigenvalues of Ĵ2 are of the form h̄2j(j+1) with j integer or half integer.
In an eigensubspace of Ĵ2 corresponding to a given value of j, the eigenvalues
of Ĵz are of the form

h̄m , with m ∈ {−j,−j + 1, . . . , j − 1, j} (2j + 1 values) .

The corresponding eigenstates are noted |α, j,m〉, where α represents the other
quantum numbers which are necessary in order to define the states completely.
The states |α, j,m〉 are related to |α, j,m±1〉 by the operators Ĵ± = Ĵx± iĴy:

Ĵ±|α, j,m〉 =
√
j(j + 1) −m(m± 1) |α, j,m± 1〉 .

Orbital Angular Momentum of a Particle

In the case of an orbital angular momentum, only integer values of j andm are
allowed. Traditionally, one notes j = � in this case. The common eigenstates
ψ(r) of L̂2 and L̂z can be written in spherical coordinates as R(r) Y�,m(θ, ϕ),
where the radial wave function R(r) is arbitrary and where the functions Y�,m

are the spherical harmonics, i.e. the harmonic functions on the sphere of radius
one. The first are:

Y0,0(θ, ϕ) =
1√
4π

, Y1,0(θ, ϕ) =

√
3
4π

cos θ ,

Y1,1(θ, ϕ) = −
√

3
8π

sin θ eiϕ , Y1,−1(θ, ϕ) =

√
3
8π

sin θ e−iϕ .
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Spin

In addition to its angular momentum, a particle can have an intrinsic angular
momentum called its Spin. The spin, which is noted traditionally j = s, can
take half-integer as well as integer values.

The electron, the proton, the neutron are spin s = 1/2 particles, for which
the projection of the intrinsic angular momentum can take either of the two
values mh̄: m = ±1/2. In the basis |s = 1/2 , m = ±1/2〉, the operators Ŝx,
Ŝy, Ŝz have the matrix representations:

Ŝx =
h̄

2

(
0 1
1 0

)
, Ŝy =

h̄

2

(
0 −i
i 0

)
, Ŝz =

h̄

2

(
1 0
0 −1

)
.

Addition of Angular Momenta

Consider a system S made of two subsystems S1 and S2, of angular momenta
Ĵ1 and Ĵ2. The observable Ĵ = Ĵ1 + Ĵ2 is an angular momentum observable.
In the subspace corresponding to given values j1 and j2 (of dimension (2j1 +
1) × (2j2 + 1)), the possible values for the quantum number j corresponding
to the total angular momentum of the system Ĵ are:

j = |j1 − j2| , |j1 − j2| + 1 , · · · , j1 + j2 ,

with, for each value of j, the 2j + 1 values of m: m = −j, −j + 1, · · · , j.
For instance, adding two spins 1/2, one can obtain an angular momentum 0
(singlet state j = m = 0) and three states of angular momentum 1 (triplet
states j = 1, m = 0,±1).

The relation between the factorized basis |j1,m1〉 ⊗ |j2,m2〉 and the to-
tal angular momentum basis |j1, j2 ; j,m〉 is given by the Clebsch-Gordan
coefficients:

|j1, j2 ; j,m〉 =
∑

m1m2

Cj,m
j1,m1;j2,m2

|j1,m1〉 ⊗ |j2,m2〉 .

5 Exactly Soluble Problems

The Harmonic Oscillator

For simplicity, we consider the one-dimensional problem. The harmonic po-
tential is written V (x) = mω2x2/2. The natural length and momentum scales
are

x0 =

√
h̄

mω
, p0 =

√
h̄mω .

By introducing the reduced operators X̂ = x̂/x0 and P̂ = p̂/p0, the Hamil-
tonian is:
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Ĥ =
h̄ω

2

(
P̂ 2 + X̂2

)
, with [X̂, P̂ ] = i .

We define the creation and annihilation operators â† and â by:

â =
1√
2

(
X̂ + iP̂

)
, â† =

1√
2

(
X̂ − iP̂

)
, [â, â†] = 1 .

One has
Ĥ = h̄ω

(
â†â + 1/2

)
.

The eigenvalues of Ĥ are (n + 1/2)h̄ω, with n non-negative integer. These
eigenvalues are non-degenerate. The corresponding eigenvectors are noted |n〉.
We have:

â†|n〉 =
√
n+ 1 |n+ 1〉

and

â|n〉 =
√
n |n− 1〉 if n > 0 ,

= 0 if n = 0 .

The corresponding wave functions are the Hermite functions. The ground
state |n = 0〉 is given by:

ψ0(x) =
1

π1/4
√
x0

exp(−x2 / 2x2
0) .

Higher dimension harmonic oscillator problems are deduced directly from
these results.

The Coulomb Potential (bound states)

We consider the motion of an electron in the electrostatic field of the proton.
We note µ the reduced mass (µ = memp/(me + mp) � me) and we set
e2 = q2/(4πε0). Since the Coulomb potential is rotation invariant, we can find
a basis of states common to the Hamiltonian Ĥ, to L̂2 and to L̂z. The bound
states are characterized by the 3 quantum numbers n, �,m with:

ψn,�,m(r) = Rn,�(r)Y�,m(θ, ϕ) ,

where the Y�,m are the spherical harmonics. The energy levels are of the form

En = −EI

n2
with EI =

µe4

2h̄2 � 13.6 eV .

The principal quantum number n is a positive integer and � can take all integer
values from 0 to n − 1. The total degeneracy (in m and �) of a given energy
level is n2 (we do not take spin into account). The radial wave functions Rn,�

are of the form:
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Rn,�(r) = r� Pn,�(r) exp(−r/(na1)) , with a1 =
h̄2

µe2
� 0.53 Å .

Pn,�(r) is a polynomial of degree n− �− 1 called a Laguerre polynomial. The
length a1 is the Bohr radius. The ground state wave function is ψ1,0,0(r) =
e−r/a1/

√
πa3

1.

6 Approximation Methods

Time-Independent Perturbations

We consider a time-independent Hamiltonian Ĥ which can be written as Ĥ =
Ĥ0 + λĤ1. We suppose that the eigenstates of Ĥ0 are known:

Ĥ0|n, r〉 = En|n, r〉 , r = 1, 2, . . . , pn

where pn is the degeneracy of En. We also suppose that the term λĤ1 is
sufficiently small so that it only results in small perturbations of the spectrum
of Ĥ0.
Non-degenerate Case. In this case, pn = 1 and the eigenvalue of Ĥ which
coincides with En as λ→ 0 is given by:

Ẽn = En + λ 〈n|Ĥ1|n〉 + λ2
∑
k �=n

|〈k|Ĥ1|n〉|2
En − Ek

+O(λ3) .

The corresponding eigenstate is:

|ψn〉 = |n〉 + λ
∑
k �=n

〈k|Ĥ1|n〉
En −Ek

|k〉 +O(λ2)

Degenerate Case. In order to obtain the eigenvalues of Ĥ at first order in
λ, and the corresponding eigenstates, one must diagonalize the restriction of
λĤ1 to the subspace of Ĥ0 associated with the eigenvalue En, i.e. find the pn

solutions of the “secular” equation:∣∣∣∣∣∣∣
〈n, 1|λĤ1|n, 1〉 −∆E . . . 〈n, 1|λĤ1|n, pn〉

... 〈n, r|λĤ1|n, r〉 −∆E
...

〈n, pn|λĤ1|n, 1〉 . . . 〈n, pn|λĤ1|n, pn〉 −∆E

∣∣∣∣∣∣∣ = 0 .

The energies to first order in λ are Ẽn,r = En+∆Er, r = 1, . . . , pn. In general,
the perturbation is lifted (at least partially) by the perturbation.
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Variational Method for the Ground State

Consider an arbitrary state |ψ〉 normalized to 1. The expectation value of the
energy in this state is greater than or equal to the ground state energy E0:
〈ψ|Ĥ|ψ〉 ≥ E0. In order to find an upper bound to E0, one uses a set of trial
wave functions which depend on a set of parameters, and one looks for the
minimum of 〈E〉 for these functions. This minimum always lies above E0.

7 Identical Particles

All particles in nature belong to one of the following classes:

• Bosons, which have integer spin. The state vector of N identical bosons
is totally symmetric with respect to the exchange of any two of these
particles.

• Fermions, which have half-integer spin. The state vector of N identical
fermions is totally antisymmetric with respect to the exchange of any two
of these particles.

Consider a basis {|ni〉, i = 1, 2, . . .} of the one particle Hilbert space.
Consider a system of N identical particles, which we number arbitrarily from
1 to N .

(a) If the particles are bosons, the state vector of the system with N1

particles in the state |n1〉, N2 particles in the state |n2〉, etc., is:

|Ψ〉 =
1√
N !

1√
N1!N2! · · ·

∑
P

|1 : nP (1) ; 2 : nP (2) ; . . . ; N : nP (N)〉 ,

where the summation is made on the N ! permutations of a set of N elements.
(b) If the particles are fermions, the state corresponding to one parti-

cle in the state |n1〉, another in the state |n2〉, etc., is given by the Slater
determinant:

|Ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣

|1 : n1〉 |1 : n2〉 . . . |1 : nN 〉
|2 : n1〉 |2 : n2〉 . . . |2 : nN 〉

...
...

...
|N : n1〉 |N : n2〉 . . . |N : nN 〉

∣∣∣∣∣∣∣∣∣
.

Since the state vector is antisymmetric, two fermions cannot be in the same
quantum state (Pauli’s exclusion principle). The above states form a basis of
the N−fermion Hilbert space.
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8 Time-Evolution of Systems

Rabi Oscillation

Consider a two-level system |±〉, of Hamiltonian Ĥ0 = h̄ω0|+〉〈+|. We couple
these two states with a Hamiltonian Ĥ1:

Ĥ1 =
h̄ω1

2
(
e−iωt|+〉〈−| + eiωt|−〉〈+|) .

We assume that the state of the system is |−〉 at time t = 0. The probability
to find the system in the state |+〉 at time t is:

P (t) =
ω2

1

Ω2
sin2(ΩT/2) with Ω2 = (ω − ω0)2 + ω2

1 .

Time-Dependent Perturbation Theory

We consider a system whose Hamiltonian is Ĥ(t) = Ĥ0 + Ĥ1(t). We assume
the eigenstates |n〉 of Ĥ0 and the corresponding energies En are known. At
time t = 0, we assume that the system is in the eigenstate |i〉 of Ĥ0. To first
order in Ĥ1, the probability amplitude to find the system in another eigenstate
|f〉 at time t is:

a(t) =
1
ih̄

∫ t

0

ei(Ef−Ei)t/h̄ 〈f |Ĥ1(t′)|i〉 dt′ .

In the case of a time-independent perturbation H1, the probability is:

P (t) = |a(t)|2 =
1
h̄2

∣∣∣〈f |Ĥ1|i〉
∣∣∣2 sin2(ωt/2)

(ω/2)2
,

where we have set h̄ω = Ef − Ei.

Fermi’s Golden Rule and Exponential Decay

Consider a system with an unperturbed Hamiltonian Ĥ0. Initially, the system
is in an eigenstate |i〉 of energy Ei. We assume that this system is coupled to
a continuum {|f〉} of eigenstates of Ĥ0 by the time-independent perturbation
V̂ . For simplicity, we assume that the matrix elements 〈f |V̂ |i〉 only depend
on the energies Ef of the states |f〉.

To lowest order in V̂ , this coupling results in a finite lifetime τ of the state
|i〉: the probability to find the system in the state |i〉 at time t > 0 is e−t/τ

with:
1
τ

=
2π
h̄

|〈f |V̂ |i〉|2 ρ(Ei) .

The matrix element 〈f |V̂ |i〉 is evaluated for a state |f〉 of energy Ef = Ei.
The function ρ(E) is the density of final states. For non relativistic particles



12 Summary of Quantum Mechanics

(E = p2/2m) or ultra-relativistic particles (E = cp, for instance photons), its
values are respectively:

ρnon rel.(E) =
mL3

√
2mE

2π2h̄3 ρultra rel.(E) =
L3E2

2π2h̄3c3
.

When the spin degree of freedom of the particle comes into play, this density of
state must be multiplied by the number of possible spin states 2s+ 1, where
s is the spin of the particle. The quantity L3 represents the normalization
volume (and cancels identically with the normalization factors of the states
|i〉 and |f〉 ). Consider an atomic transition treated as a two-level system,
an excited state |e〉 and a ground state |g〉, separated by an energy h̄ω and
coupled via an electric dipole interaction. The lifetime τ of the excited state
due to this spontaneous emission is given by:

1
τ

=
ω3

3πε0h̄c3

∣∣∣〈e|D̂|g〉
∣∣∣2 ,

where D̂ is the electric dipole operator.

9 Collision Processes

Born Approximation

We consider an elastic collision process of a non-relativistic particle of mass
m with a fixed potential V (r). To second order in V , the elastic scattering
cross-section for an incident particle in the initial momentum state p and the
final momentum state p′ is given by:

dσ

dΩ
=
(
m

2πh̄2

)2

|Ṽ (p − p′)|2 , with Ṽ (q) =
∫

eiq·r/h̄ V (r) d3r .

Example: the Yukawa potential. We consider

V (r) = g
h̄c

r
e−r/a ,

which gives, writing p = h̄k:

dσ

dΩ
=
(

2mgca2

h̄

)2 1(
1 + 4a2k2 sin2(θ/2)

)2 (Born) ,

where θ is the scattering angle between p and p′. The total cross-section is
then:

σ(k) =
(

2mgca
h̄

)2 4πa2

1 + 4k2a2
(Born) .
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In the case where the range a of the potential tends to infinity, we recover the
Coulomb cross section:

dσ

dΩ
=
(
gh̄c

4E

)2 1
sin4(θ/2)

(exact) ,

where E = p2/(2m).

Scattering by a Bound State

We consider a particle a of mass m undergoing an elastic scattering on a
system composed of n particles b1, . . . , bn. These n particles form a bound
state whose wave function is ψ0(r1, . . . , rn). In Born approximation, the cross
section is

dσ

dΩ
=
(
m

2πh̄2

)2

|V(p − p′)|2 with V(q) =
∑

j

Ṽj(q) Fj(q) .

The potential Vj represents the interaction between particles a and bj . The
form factor Fj is defined by:

Fj(q) =
∫

eiq·rj/h̄ |ψ0(r1, ..., rj , ..., rn)|2 d3r1 . . . d3rj . . . d3rn .

In general, interference effects can be observed between the various q con-
tributing to the sum which defines V(q). In the case of a charge distribution,
Ṽ is the Rutherford amplitude, and the form factor F is the Fourier transform
of the charge density.

General Scattering Theory

In order to study the general problem of the scattering of a particle of mass
m by a potential V (r), it is useful to determine the positive energy E =
h̄2k2/(2m) eigenstates of Ĥ = p̂2/(2m) + V (r) whose asymptotic form is

ψk(r) ∼
|r|→∞

eik·r + f(k,u,u′)
eikr

r
.

This corresponds to the superposition of an incident plane wave eik·r and
a scattered wave. Such a state is called a stationary scattering state. The
scattering amplitude f depends on the energy, on the incident direction u =
k/k, and on the final direction u′ = r/r. The differential cross section is given
by:

dσ

dΩ
= |f(k,u,u′)|2 .

The scattering amplitude is given by the implicit equation

f(k,u,u′) = − m

2πh̄2

∫
e−ik′·r′

V (r′) ψk(r′) d3r′ with k′ = ku′ .

We recover Born’s approximation by choosing ψk(r′) � eik·r.
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Low Energy Scattering

When the wavelength of the incident particle λ ∼ k−1 is large compared to
the range of the potential, the amplitude f does not depend on u and u′ (at
least if the potential decreases faster than r−3 at infinity). The scattering is
isotropic. The limit as = − limk→0 f(k) is called the scattering length.



Part I

Elementary Particles,
Nuclei and Atoms



1

Neutrino Oscillations

In β decay or, more generally, in Weak interactions, the electron is always
associated with a neutral particle, the neutrino νe. There exists in nature
another particle, the µ lepton, or muon, whose physical properties seem com-
pletely analogous to those of the electron, except for its mass mµ � 200 me.
The muon has the same Weak interactions as the electron, but it is associated
to a different neutrino, the νµ.

A neutrino beam produced in an accelerator can interact with a neutron
(n) in a nucleus and give rise to the reactions

νe + n→ p+ e and νµ + n→ p+ µ , (1.1)

whereas the reactions νe + n → p + µ or νµ + n → p+ e are never observed.
The reactions (1.1) are used in practice in order to detect neutrinos.

Similarly, a π− meson can decay via the modes

π− → µ+ ν̄µ (dominant mode) and π− → e+ ν̄e , (1.2)

whereas π− → µ+ ν̄e or π− → e+ ν̄µ are never observed. This is how one can
produce neutrinos abundantly (it is easy to produce π mesons). In (1.2) we
have introduced the antiparticles ν̄µ et ν̄e. There is a (quasi) strict symmetry
between particles and their antiparticles, so that, in the same way as the
electron is associated with the neutrino νe, the antielectron, or positron, e+

is associated with the antineutrino ν̄e. One observes the “charge-conjugate”
reactions of (1.1) and (1.2)

ν̄e + p→ n+ e+ , ν̄µ + p→ n+ µ+ and π+ → µ+ + νµ . (1.3)

In all what follows, what we will say about neutrinos holds symmetrically for
antineutrinos.

In 1975, a third lepton, the τ , was discovered. It is much more massive,
mµ � 3500 me, it is associated with its own neutrino ντ , and it obeys the
same physical laws as the two lighter leptons, except for mass effects. Since the
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1990’s, the experimental measurements at the LEP colliding ring in CERN
have shown that these three neutrinos νe, νµ, ντ (and their antiparticles) are
the only ones of their kinds (at least for masses less that 100 GeV/c2).

For a long time, physicists believed that neutrinos were zero-mass particles,
as is the photon. In any case, their masses (multiplied by c2) are considerably
smaller than the energies involved in experiments where they are observed.
Therefore, many experimental limits on these masses are consistent with zero.
However, both theoretical and cosmological arguments suggested that this
might not be the case. The proof that neutrino masses are not all zero is a
great discovery of the last ten years.

In the present study, we show how the mass differences of neutrinos can
be measured by a quantum oscillation effect. The idea is that the “flavor”
neutrinos νe, νµ and ντ , which are produced or detected experimentally are
not eigenstates of the mass, but rather linear combinations of mass eigenstates
ν1, ν2, ν3, with masses m1,m2,m3.

The neutrinos observed on earth have various origins. They can be pro-
duced in accelerators, in nuclear reactors, and also in the atmosphere by cos-
mic rays, or in thermonuclear reaction inside stars, in particular the core of
the sun, and in supernovae explosions.

1.1 Mechanism of the Oscillations; Reactor Neutrinos

In this first part, we consider oscillations between two types of neutrinos, the
νe and the νµ. This simple case will allow us to understand the underlying
physics of the general case. We will analyze the data obtained with nuclear
reactors. The average energy of the (anti-)neutrinos produced in reactors is
E = 4 MeV, with a dispersion of the same order.

In all what follows, we will assume that if m is the neutrino mass and p
and E its momentum and energy, the mass is so small that the energy of a
neutrino of mass m and momentum p is

E =
√
p2c2 +m2c4 � pc+

m2c4

2pc
, (1.4)

and that the neutrino propagates to very good approximation at the velocity
of light c.

Let Ĥ be the Hamiltonian of a free neutrino of momentum p, which we
assume to be well defined. We note |ν1〉 and |ν2〉 the two eigenstates of Ĥ:

Ĥ|νj〉 = Ej |νj〉 , Ej = pc+
m2

jc
4

2pc
, j = 1, 2 .

m1 andm2 are the respective masses of the states |ν1〉 and |ν2〉, and we assume
m1 �= m2.
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The oscillations of freely propagating neutrinos come from the following
quantum effect. If the physical states of the neutrinos which are produced
(reactions (1.2)) or detected (reactions (1.1)) are not |ν1〉 and |ν2〉, but linear
combinations of these:

|νe〉 = |ν1〉 cos θ + |ν2〉 sin θ , |νµ〉 = −|ν1〉 sin θ + |ν2〉 cos θ (1.5)

where θ is a mixing angle to be determined, these linear combination of energy
eigenstates oscillate in time and this leads to measurable effects.

1.1.1. At time t = 0, one produces a neutrino of momentum p in the state
|νe〉. Calculate the state |ν(t)〉 at time t in terms of |ν1〉 and |ν2〉.
1.1.2. What is the probability Pe for this neutrino to be detected in the state
|νe〉 at time t? The result will be expressed in terms of the mixing angle θ and
of the oscillation length L

L =
4πh̄p

|∆m2| c2 , ∆m2 = m2
1 −m2

2 . (1.6)

1.1.3. Calculate the oscillation length L for an energy E � pc = 4 MeV and
a mass difference ∆m2c4 = 10−4 eV2.

1.1.4. One measures the neutrino fluxes with a detector located at a distance
� from the production area. Express the probability Pe as a function of the
distance � = ct.

1.1.5. The mass of the muon satisfies mµc
2 = 106 MeV. Conclude that in

such an experiment one cannot detect muon neutrinos νµ with the reaction
(1.1). We recall that mpc

2 = 938.27 MeV and mnc
2 = 939.57 MeV.

1.1.6. The detectors measure neutrino fluxes with an accuracy of ∼ 10%.
(a) Assuming ∆m2c4 = 10−4 eV2, determine the minimal distance �min

where to put a detector in order to detect an oscillation effect. For this
calculation, assume the mixing in (1.5) is maximum, i.e. θ = π/4.

(b) How does �min change if the mixing is not maximum?

1.1.7. Several experiments on neutrinos produced by nuclear energy plants
have been performed in Chooz and in Bugey in France. The most recent data
comes from the KamLAND collaboration, in Japan. The results are given on
Fig. 1.1.
(a) Explain the results of Fig. 1.1, except that of KamLAND.
(b) The KamLAND experiment, which was performed in 2002, consisted

in measuring the neutrinos coming from all the (numerous) reactors in
Japan and neighboring countries, which amounts to taking an average
distance of � = 180 km. Putting together that data and the results of
numerous experiments performed on solar neutrinos, the physicists of
Kamland come to the following results:
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Fig. 1.1. Ratio between the numbers of observed electron neutrinos and those
expected in the absence of oscillations as a function of the distance � to the reactor

|∆m2| c4 = 7.1 (± 0.4) × 10−5 eV2 , tan2 θ = 0.45 (± 0.02) . (1.7)

Show that these values are consistent with the result Pe = 0.61 (± 0.10)
of Fig. 1.1.

1.2 Oscillations of Three Species; Atmospheric Neutrinos

We now consider the general formalism with three neutrino species. We denote
|να〉, α = e, µ, τ the “flavor” neutrinos and |νi〉, i = 1, 2, 3 the mass eigen-
states. These two bases are related to one another by the Maki-Nagawaka-
Sakata (MNS) matrix Û ,

|να〉 =
3∑

i=1

Uαi|νi〉 , Û =

⎛
⎜⎝
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞
⎟⎠ (1.8)

This matrix is unitary (
∑

i U
∗
βiUαi = δαβ) and it can be written as:

Û =

⎛
⎝ 1 0 0

0 c23 s23
0 −s23 c23

⎞
⎠
⎛
⎝ c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎠
⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

where cij = cos θij and sij = sin θij . The complete experimental solution of
the problem would consist in measuring the three mixing angles θ12, θ23, θ13,
the phase δ, and the three masses m1, m2, m3. We consider situations such
that (1.4) is still valid.

1.2.1. At time t = 0 a neutrino is produced with momentum p in the state
|ν(0)〉 = |να〉. Express, in terms of the matrix elements Uαi, its state at a
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later time t. Write the probability Pα→β(t) to observe a neutrino of flavor β
at time t.

1.2.2. We define the oscillation lengths at an energy E � pc by:

Lij =
4πh̄p

|∆m2
ij |c2

, ∆m2
ij = m2

i −m2
j . (1.9)

Notice that there are only two independent oscillation lengths since ∆m2
12 +

∆m2
23 +∆m2

31 = 0. For neutrinos of energy E = 4 GeV, calculate the oscilla-
tion lengths L12 and L23. We will choose for |∆m2

12| the result given in (1.7),
and we will choose |∆m2

23| c4 = 2.5×10−3 eV2, a value which will be justified
later on.

1.2.3. The neutrino counters have an accuracy of the order of 10% and the
energy is E = 4 GeV. Above which distances �12 and �23 of the production
point of the neutrinos can one hope to detect oscillations coming from the
superpositions 1 ↔ 2 and 2 ↔ 3?

1.2.4. The Super-Kamiokande experiment, performed in 1998, consists in de-
tecting “atmospheric” neutrinos. Such neutrinos are produced in the collision
of high energy cosmic rays with nuclei in the atmosphere at high altitudes.
In a series of reactions, π± mesons are produced abundantly, and they decay
through the chain:

π− → µ− + ν̄µ followed by µ− → e− + ν̄e + νµ , (1.10)

and an analogous chain for π+ mesons. The neutrino fluxes are detected in
an underground detector by the reactions (1.1) and (1.3).

To simplify things, we assume that all muons decay before reaching the
surface of the Earth. Deduce that, in the absence of neutrino oscillations, the
expected ratio between electron and muon neutrinos

Rµ/e =
N(νµ) +N(ν̄µ)
N(νe) +N(ν̄e)

would be equal to 2.

1.2.5. The corrections to the ratio Rµ/e due to the fact that part of the
muons reach the ground can be calculated accurately. Once this correction is
made, one finds, by comparing the measured and calculated values for Rµ/e

(Rµ/e)measured

(Rµ/e)calculated
= 0.64 (± 0.05) .

In order to explain this relative decrease of the number of νµ’s, one can think
of oscillations of the types νµ ⇀↽ νe and νµ ⇀↽ ντ . The Super-Kamiokande ex-
periment consists in varying the time of flight of the neutrinos by measuring
selectively the direction where they come from, as indicated on Fig. 1.2. The
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Fig. 1.2. Left: production of atmospheric neutrinos in collisions of cosmic rays
with terrestrial atmospheric nuclei. The underground detector measures the flux of
electron and muon neutrinos as a function of the zenithal angle α. Right: number
of atmospheric neutrinos detected in the Super-Kamiokande experiment as a func-
tion of the zenithal angle (this picture is drawn after K. Tanyaka, XXII Physics in
Collisions Conference, Stanford 2002)

neutrinos coming from above (cosα ∼ 1) have traveled a distance equal to the
atmospheric height plus the depth of the detector, while those coming from
the bottom (cosα ∼ −1) have crossed the diameter of the Earth (13 400 km).
Given the weakness of the interaction of neutrinos with matter, one can con-
sider that the neutrinos propagate freely on a measurable distance between a
few tens of km and 13 400 km.

The neutrino energies are typically 4 GeV in this experiment. Can one
observe a νe ⇀↽ νµ oscillation of the type studied in the first part?

1.2.6. The angular distributions of the νe and the νµ are represented on
Fig. 1.2, together with the distributions one would observe in the absence
of oscillations. Explain why this data is compatible with the fact that one
observes a νµ ⇀↽ ντ oscillation, no νe ⇀↽ ντ oscillation, and no νe ⇀↽ νµ

oscillation.
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1.2.7. In view of the above results, we assume that there is only a two-
neutrino oscillation phenomenon: νµ ⇀↽ ντ in such an observation. We there-
fore use the same formalism as in the first part, except that we change the
names of particles.

By comparing the muon neutrino flux coming from above and from below,
give an estimate of the mixing angle θ23. In order to take into account the large
energy dispersion of cosmic rays, and therefore of atmospheric neutrinos, we
replace the oscillating factor sin2(π�/L23) by its mean value 1/2 if �� L23.

The complete results published by the Super-Kamiokande experiment are

|∆m2
23| c4 = 2.5 × 10−3 eV2 , θ23 = π/4 , θ13 = 0 .

Do they agree with the above considerations?

1.3 Solutions

Section 1.1: Mechanism of the Oscillations: Reactor Neutrinos

1.1.1. Initially, the neutrino state is |ν(0)〉 = |νe〉 = |ν1〉 cos θ + |ν2〉 sin θ.
Therefore, we have at time t

|ν(t)〉 = |ν1〉 cos θ e−iE1t/h̄ + |ν2〉 sin θ e−iE2t/h̄ .

1.1.2. The probability to find this neutrino in the state |νe〉 at time t is

Pe(t) = |〈νe|ν(t)〉|2 =
∣∣∣cos2 θ e−iE1t/h̄ + sin2 θ e−iE2t/h̄

∣∣∣2 ,
which gives, after a simple calculation:

Pe(t) = 1 − sin2(2θ) sin2

(
(E1 − E2)t

2h̄

)
.

We have E1 − E2 = (m2
1 − m2

2)c
4/(2pc). Defining the oscillation length by

L = 4πh̄p/(|∆m2| c2), we obtain

Pe(t) = 1 − sin2(2θ) sin2

(
πct

L

)
.

1.1.3. For an energy E = pc = 4 MeV and a mass difference ∆m2c4 =
10−4 eV2, we obtain an oscillation length L = 100 km.

1.1.4. The time of flight is t = �/c. The probability Pe(�) is therefore

Pe(�) = 1 − sin2(2θ) sin2

(
π�

L

)
. (1.11)
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1.1.5. A νµ energy of only 4 MeV is below the threshold of the reaction
νµ +n→ p+µ. Therefore this reaction does not occur with reactor neutrinos,
and one cannot measure the νµ flux.

1.1.6. In order to detect a significant decrease in the neutrino flux νe, we
must have

sin2(2θ) sin2

(
π�

L

)
> 0.1 .

(a) For the maximum mixing θ = π/4, i.e. sin2(2θ) = 1, this implies π�/L >
0.32 or � > L/10. For E = 4 MeV and ∆m2c4 = 10−4 eV2, one finds � >
10 km. The typical distances necessary to observe this phenomenon are of the
order of a fraction of the oscillation length.
(b) If the mixing is not maximum, one must operate at distances � greater
than L/10. Note that is the mixing angle is too small, (sin2(2θ) < 0.1 i.e.
θ < π/10), the oscillation amplitude is too weak to be detected, whatever the
distance �. In that case, one must improve the detection efficiency to obtain
a positive conclusion.

1.1.7. (a) In all experiments except KamLAND, the distance is smaller
than 1 km. Therefore, in all of these experiments |1 − Pe| ≤ 10−3. The oscil-
lation effect is not detectable if the estimate |∆m2| c4 ∼ 10−4 eV2 is correct.
(b) For |∆m2| c4 = 7.1×10−5 eV2, tan2 θ = 0.45 and � = 180 km, we obtain
Pe = 0.50 which agrees with the measurement. The theoretical prediction
taking into account the effects due to the dispersion in energy is drawn on
Fig. 1.3. We see incidentally how important it is to control error bars in such
an experiment.
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Fig. 1.3. Experimental points of Fig. 1.1 and the theoretical prediction of (1.11)
(sinusoidal function damped by energy dispersion affects). This curve is a best fit of
solar neutrino data. We notice that the KamLAND data point corresponds to the
second oscillation of the curve
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Section 1.2: Oscillations of Three Species: Atmospheric Neutrinos

1.2.1. At time t = 0, we have:

|ν(0)〉 = |να〉 =
∑

j

Uαj |νj〉 ,

and therefore at time t:

|ν(t)〉 = e−ipct/h̄
∑

j

Uαj e−im2
jc3t/(2h̄p) |νj〉 .

We conclude that the probability Pα→β to observe a neutrino of flavor β at
time t is

Pα→β(t) = |〈νβ |ν(t)〉|2 =

∣∣∣∣∣∣
∑

j

U∗
βj Uαj e−im2

jc3t/(2h̄p)

∣∣∣∣∣∣
2

.

1.2.2. We have Lij = 4πh̄E/(|∆m2
ij | c3). The oscillation lengths are propor-

tional to the energy. We can use the result of question 1.3, with a conversion
factor of 1000 to go from 4 MeV to 4 GeV.
• For |∆m2

12| c4 = 7.1 × 10−5 eV2, we find L12 = 140 000 km.
• For |∆m2

23| c4 = 2.5 × 10−3 eV2, we find L23 = 4000 km.

1.2.3. We want to know the minimal distance necessary in order to observe
oscillations. We assume that both mixing angles θ12 and θ23 are equal to
π/4, which corresponds to maximum mixing. We saw in the first part that if
this mixing is not maximum, the visibility of the oscillations is reduced and
that the distance which is necessary to observe the oscillation phenomenon is
increased.

By resuming the argument of the first part, we find that the modification of
the neutrino flux of a given species is detectable beyond a distance �ij such that
sin2(π�ij/Lij) ≥ 0.1 i.e. �ij ≥ Lij/10. This corresponds to �12 ≥ 14000 km for
the oscillation resulting from the superposition 1 ↔ 2, and �23 ≥ 400 km for
the oscillation resulting from the superposition 2 ↔ 3.

1.2.4. The factor of 2 between the expected muon and electron neutrino
fluxes comes from a simple counting. Each particle π− (resp. π+) gives rise to
a νµ, a ν̄µ and a ν̄e (resp. a νµ, a ν̄µ and a νe). In practice, part of the muons
reach the ground before decaying, which modifies this ratio. Naturally, this
effect is taken into account in an accurate treatment of the data.

1.2.5. For an energy of 4 GeV, we have found that the minimum distance to
observe the oscillation resulting from the 1 ↔ 2 superposition is 14000 km. We
therefore remark that the oscillations νe ⇀↽ νµ, corresponding to the mixing
1 ↔ 2 which we studied in the first part cannot be observed at terrestrial
distances. At such energies (4 GeV) and for evolution times corresponding at
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most to the diameter of the Earth (0.04 s), the energy difference E1 −E2 and
the oscillations that it induces can be neglected.

However, if the estimate |∆m2
23| c4 > 10−3eV2 is correct, the terrestrial

distance scales allow in principle to observe oscillations resulting from 2 ↔ 3
and 1 ↔ 3 superpositions, which correspond to νµ ⇀↽ ντ or νe ⇀↽ ντ .

1.2.6. The angular distribution (therefore the distribution in �) observed for
the νe’s does not show any deviation from the prediction made without any
oscillation. However, there is a clear indication for νµ oscillations: there is a
deficit of muon neutrinos coming from below, i.e. those which have had a long
time to evolve.

The deficit in muon neutrinos is not due to the oscillation νe ⇀↽ νµ of the
first part. Indeed, we have seen in the previous question that this oscillation is
negligible at time scales of interest. The experimental data of Fig. 1.2 confirm
this observation. The deficit in muon neutrinos coming from below is not
accompanied with an increase of electron neutrinos. The effect can only be
due to a νµ ⇀↽ ντ oscillation.1

No oscillation νe ⇀↽ ντ appears in the data. In the framework of the present
model, this is interpreted as the signature of a very small (if not zero) θ13
mixing angle.

1.2.7. Going back to the probability (1.11) written in question 1.4, the prob-
ability for an atmospheric muon neutrino νµ to be detected as a νµ is:

P (�) = 1 − sin2(2θ23) sin2

(
π�

L23

)
, (1.12)

where the averaging is performed on the energy distribution of the neutrino.
If we measure the neutrino flux coming from the top, we have �� L23, which
gives Ptop = 1. If the neutrino comes from the bottom, the term sin2(π�/L23)
averages to 1/2 and we find:

Pbottom = 1 − 1
2

sin2(2θ23) .

The experimental data indicate that for −1 ≤ cosα ≤ −0.5, Pbottom = 1/2.
The distribution is very flat at a value of 100 events, i.e. half of the top value
(200 events).

We deduce that sin2(2θ23) = 1, i.e. θ23 = π/4 and a maximum mixing
angle for νµ ⇀↽ ντ . The results published by Super-Kamiokande fully agree
with this analysis.

1 For completeness, physicists have also examined the possibility of a “sterile” neu-
trino oscillation, i.e. an oscillation with a neutrino which would have no detectable
interaction with matter.
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1.4 Comments

The difficulty of such experiments comes from the smallness of the neutrino in-
teraction cross sections with matter. The detectors are enormous water tanks,
where about ten events per day are observed (for instance ν̄e + p→ e+ + n).
The “accuracy” of a detector comes mainly from the statistics, i.e. the total
number of events observed.

In 1998, the first undoubted observation of the oscillation ντ ⇀↽ νµ was
announced in Japan by the Super-Kamiokande experiment Fukuda Y. et al.,
Phys. Rev. Lett. 81, 1562 (1998)). This experiment uses a detector containing
50 000 tons of water, inside which 11 500 photomutipliers detect the Cherenkov
light of the electrons or muons produced. About 60 ντ ’s were also detected, but
this figure is too small to give further information. An accelerator experiment
confirmed the results afterwards (K2K collaboration, Phys. Rev. Lett. 90,
041801 (2003)).

The KamLAND experiment is a collaboration between Japanese, Ameri-
can and Chinese physicists. The detector is a 1000 m3 volume filled with liq-
uid scintillator (an organic liquid with global formula C-H). The name means
KAMioka Liquid scintillator Anti-Neutrino Detector. Reference:
KamLAND Collaboration, Phys. Rev. Lett. 90, 021802 (2003); see also
http:/kamland.lbl.gov/.

Very many experimental results come from solar neutrinos, which we have
not dealt with here. This problem is extremely important, but somewhat too
complex for our purpose. The pioneering work is due to Davis in his celebrated
paper of 1964 (R. Davis Jr., Phys. Rev Lett. 13, 303 (1964)). Davis operated
on a 37Cl perchlorethylene detector and counted the number of 37Ar atoms
produced. In 25 years, his overall statistics has been 2200 events, i.e. one atom
every 3 days! In 1991, the SAGE experiment done with Gallium confirmed
the deficit (A. I. Abasov et al., Phys. Rev Lett. 67, 3332 (1991) and J. N.
Abdurashitov et al., Phys. Rev Lett. 83, 4686 (1999)). In 1992, the GALLEX
experiment, using a Gallium target in the Gran Sasso, also confirmed the solar
neutrino deficit (P. Anselmann et al., Phys. Lett. B285, 376 (1992)). In 2001
the Sudbury Neutrino Observatory (SNO) gave decisive experimental results
on solar neutrinos (Q.R. Ahmad et al., Phys. Rev. Lett. 87, 071307 (2001) and
89, 011301 (2002); see also M.B. Smy, Mod. Phys. Lett. A 17, 2163 (2002)).

The 2002 Nobel prize for physics was awarded to Raymond Davis Jr. and
Masatoshi Koshiba, who are the pioneers of this chapter of neutrino physics.
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Atomic Clocks

We are interested in the ground state of the external electron of an alkali
atom (rubidium, cesium,...). The atomic nucleus has a spin sn (sn = 3/2 for
87Rb, sn = 7/2 for 133Cs), which carries a magnetic moment µn. As in the
case of atomic hydrogen, the ground state is split by the hyperfine interaction
between the electron magnetic moment and the nuclear magnetic moment
µn. This splitting of the ground state is used to devise atomic clocks of high
accuracy, which have numerous applications such as flight control in aircrafts,
the G.P.S. system, the measurement of physical constants etc.

In all the chapter, we shall neglect the effects due to internal core electrons.

2.1 The Hyperfine Splitting of the Ground State

2.1.1. Give the degeneracy of the ground state if one neglects the magnetic
interaction between the nucleus and the external electron. We note

|me;mn〉 = |electron: se = 1/2,me〉 ⊗ |nucleus: sn,mn〉

a basis of the total spin states (external electron + nucleus).

2.1.2. We now take into account the interaction between the electron mag-
netic moment µe and the nuclear magnetic moment µn. As in the hydrogen
atom, one can write the corresponding Hamiltonian (restricted to the spin
subspace) as:

Ĥ =
A

h̄2 Ŝe · Ŝn ,

where A is a characteristic energy, and where Ŝe and Ŝn are the spin operators
of the electron and the nucleus, respectively. We want to find the eigenvalues
of this Hamiltonian.

We introduce the operators Ŝe,± = Ŝe,x ± iŜe,y and Ŝn,± = Ŝn,x ± iŜn,y.
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(a) Show that

Ĥ =
A

2h̄2

(
Ŝe,+ Ŝn,− + Ŝe,− Ŝn,+ + 2Ŝe,z Ŝn,z

)
.

(b) Show that the two states

|me = 1/2;mn = sn〉 and |me = −1/2;mn = −sn〉
are eigenstates of Ĥ, and give the corresponding eigenvalues.

(c) What is the action of Ĥ on the state |me = 1/2;mn〉 with mn �= sn?
What is the action of Ĥ on the state |me = −1/2;mn〉 with mn �= −sn?

(d) Deduce from these results that the eigenvalues of Ĥ can be calculated
by diagonalizing 2 × 2 matrices of the type:

A

2

(
mn

√
sn(sn + 1) −mn(mn + 1)√

sn(sn + 1) −mn(mn + 1) −(mn + 1)

)
.

2.1.3. Show that Ĥ splits the ground state in two substates of energies E1 =
E0 + Asn/2 and E2 = E0 − A(1 + sn)/2. Recover the particular case of the
hydrogen atom.

2.1.4. What are the degeneracies of the two sublevels E1 and E2?

2.1.5. Show that the states of energies E1 and E2 are eigenstates of the

square of the total spin Ŝ
2

=
(
Ŝe + Ŝn

)2

. Give the corresponding value s of
the spin.

Electromagnetic
cavity

Cold
atoms

H=1 m

Fig. 2.1. Sketch of the principle of an atomic clock with an atomic fountain, using
laser-cooled atoms
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2.2 The Atomic Fountain

The atoms are initially prepared in the energy state E1, and are sent up-
wards (Fig. 2.1). When they go up and down they cross a cavity where an
electromagnetic wave of frequency ω is injected. This frequency is close to
ω0 = (E1 − E2)/h̄. At the end of the descent, one detects the number of
atoms which have flipped from the E1 level to the E2 level. In all what fol-
lows, the motion of the atoms in space (free fall) is treated classically. It is only
the evolution of their internal state which is treated quantum-mechanically.

In order to simplify things, we consider only one atom in the sub-level of
energy E1. This state (noted |1〉) is coupled by the electromagnetic wave to
only one state (noted |2〉) of the sublevel of energy E2. By convention, we fix
the origin of energies at (E1 + E2)/2, i.e. E1 = h̄ω0/2, E2 = −h̄ω0/2. We
assume that the time ε to cross the cavity is very brief and that this crossing
results in an evolution of the state vector of the form:

|ψ(t)〉 = α|1〉 + β|2〉 −→ |ψ(t+ ε)〉 = α′|1〉 + β′|2〉 ,
with:

(
α′

β′

)
=

1√
2

(
1 −ie−iωt

−ieiωt 1

) (
α
β

)
.

2.2.1. The initial state of the atom is |ψ(0)〉 = |1〉. We consider a single
round-trip of duration T , during which the atom crosses the cavity between
t = 0 and t = ε, then evolves freely during a time T − 2ε, and crosses the
cavity a second time between T − ε and T . Taking the limit ε→ 0, show that
the state of the atom after this round-trip is given by:

|ψ(T )〉 = i e−iωT/2 sin((ω−ω0)T/2) |1〉− i eiωT/2 cos((ω−ω0)T/2) |2〉 (2.1)

2.2.2. Give the probability P (ω) to find an atom in the state |2〉 at time T .
Determine the half-width ∆ω of P (ω) at the resonance ω = ω0. What is the
values of ∆ω for a 1 meter high fountain? We recall the acceleration of gravity
g = 9.81 ms−2.

2.2.3. We send a pulse of N atoms (N � 1). After the round-trip, each atom
is in the state given by (2.1). We measure separately the numbers of atoms
in the states |1〉 and |2〉, which we note N1 and N2 (with N1 + N2 = N).
What is the statistical distribution of the random variables N1 and N2? Give
their mean values and their r.m.s. deviations ∆Ni. Set φ = (ω − ω0)T/2 and
express the results in terms of cos φ, sinφ and N .

2.2.4. The departure from resonance |ω−ω0| is characterized by the value of
cos((ω−ω0)T ) = 〈N2−N1〉/N . Justify this formula. Evaluate the uncertainty
∆|ω − ω0| introduced by the random nature of the variable N2 − N1. Show
that this uncertainty depends on N , but not on φ.

2.2.5. In Fig. 2.2 we have represented the precision of an atomic clock as
a function of the number N of atoms per pulse. Does this variation with N
agree with the previous results?
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10-13

10-14
104 105 106

N

Relative precision 

Fig. 2.2. Relative accuracy ∆ω/ω of a fountain atomic clock as a function of the
number of atoms N sent in each pulse

2.3 The GPS System

The GPS system uses 24 satellites orbiting around the Earth at 20 000 km.
Each of them contains an atomic clock. Each satellite sends, at equal spaced
time intervals, an electromagnetic signal composed of a “click” from a clock
and the indication of its position. A reception device on Earth, which does
not have an atomic clock, detects the signals coming from several satellites.
With its own (quartz) clock, it compares the times at which different “clicks”
arrive.

2.3.1. What is the minimum number of satellites that one must see at a given
time in order to be able to position oneself in latitude, in longitude, and in
altitude on the surface of the Earth?

2.3.2. We assume that the relative accuracy of each clock is ∆ω/ω = 10−13

and that the clocks are synchronized every 24 hours. What is the order of
magnitude of the accuracy of the positioning just before the clocks undergo a
new synchronization?

2.4 The Drift of Fundamental Constants

Some cosmological models predict a (small) variation in time of the fine struc-
ture constant α = e2/(h̄c) ∼ 1/137. In order to test such an assumption, one
can compare two atomic clocks, one using rubidium (Z = 37) atoms, the other
cesium (Z = 55) atoms. In fact, one can show that the hyperfine splitting of
an alkali atom varies approximately as:

E1 − E2 = h̄ω0 ∝ α2

(
1 +

11
6

(αZ)2
)

for (αZ)2 � 1 .
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By comparing a rubidium and a cesium clock at a one year interval, no sig-
nificant variation of the ratio R = ω

(Cs)
0 /ω

(Rb)
0 was observed. More precisely,

the relative variation |δR|/R is smaller than the experimental uncertainty,
estimated to be 3 × 10−15. What upper bound can one set on the relative
variation rate |α̇/α|?

2.5 Solutions

Section 2.1: Hyperfine Splitting of the Ground State

2.1.1. The Hilbert space of the ground state is the tensor product of the
electron spin space and the nucleus spin space. Its dimension d is therefore
the product of their dimensions, i.e. d = 2 × (2sn + 1).

2.1.2. Energy levels of the hyperfine Hamiltonian.
(a) Making use of

Ŝe,x =
1
2

(
Ŝe,+ + Ŝe,−

)
, Ŝe,y =

i
2

(
Ŝe,− − Ŝe,+

)
,

and a similar relation for Ŝn,x and Ŝn,y, one obtains the wanted result.

(b) The action of Ŝe,+Ŝn,− and Ŝe,−Ŝn,+ on |me = 1/2;mn = sn〉 gives the
null vector. The same holds for |me = −1/2;mn = −sn〉. Therefore, only the
term contributes Ŝe,zŜn,z and one finds:

Ĥ |me = 1/2;mn = sn〉 =
Asn
2

|me = 1/2;mn = sn〉

Ĥ |me = −1/2;mn = −sn〉 =
Asn
2

|me = −1/2;mn = −sn〉 .

(c) We find:

Ĥ|1/2;mn〉 =
Amn

2
|1/2;mn〉

+
A

2

√
sn(sn + 1) −mn(mn + 1) | − 1/2;mn + 1〉

Ĥ| − 1/2;mn〉 = −Amn

2
| − 1/2;mn〉

+
A

2

√
sn(sn + 1) −mn(mn − 1) |1/2;mn − 1〉 .

(d) >From the previous question, one concludes that the 2-dimensional sub-
spaces Emn generated by |1/2;mn〉 and | − 1/2;mn + 1〉 are globally stable
under the action of Ĥ. The determination of the eigenvalues of Ĥ therefore
consists in diagonalizing the series of 2 × 2 matrices corresponding to its re-
striction to these subspaces. The matrix corresponding to the restriction of Ĥ
to the subspace Emn is the same as given in the text.
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2.1.3. The eigenvalues given in the text are actually independent of mn.
They are Asn/2 and −A(1 + sn)/2. In the case sn = 1/2 (hydrogen atom),
these two eigenvalues are A/4 and −3A/4.

2.1.4. There are 2sn 2× 2 matrices to be diagonalized, each of which gives a
vector associated to Asn/2 and a vector associated to −A(1 + sn)/2. In addi-
tion we have found two independent eigenvectors, |1/2, sn〉 and | − 1/2,−sn〉,
associated to the eigenvalue Asn/2. We therefore obtain:

Asn/2 degenerated 2sn + 2 times
−A(1 + sn/2) degenerated 2sn times

We do recover the dimension 2(2sn + 1) of the total spin space of the ground
state.

2.1.5. The square of the total spin is:

Ŝ
2

= Ŝ
2

e + Ŝ
2

n + 2Ŝe · Ŝn = Ŝ
2

e + Ŝ
2

n +
2h̄2

A
Ĥ .

The operators Ŝ
2

e and Ŝ
2

n are proportional to the identity and are respectively:

Ŝ
2

e =
3h̄2

4
Ŝ

2

n = h̄2sn(sn + 1) .

An eigenstate of Ĥ is therefore an eigenstate of Ŝ
2
. More precisely, an eigen-

state of Ĥ with eigenvalue Asn/2 is an eigenstate of Ŝ
2

with eigenvalue
h̄2(sn + 1/2)(sn + 3/2), corresponding to a total spin s = sn + 1/2. An eigen-
state of Ĥ with eigenvalue −A(1+sn)/2 is an eigenstate of Ŝ

2
with eigenvalue

h̄2(sn − 1/2)(sn + 1/2), i.e. a total spin s = sn − 1/2.

Section 2.2: The Atomic Fountain

2.2.1. In the limit ε → 0, the final state vector of the atom is simply the
matrix product:(

α′

β′

)
=

1
2

(
1 −ie−iωT

−ieiωT 1

)
×
(

e−iω0T/2 0
0 eiω0T/2

)

×
(

1 −i
−i 1

) (
1
0

)
,

which corresponds to crossing the cavity, at time t = 0, then to a free evolution
between t = 0 and t = T , then a second crossing of the cavity at time t = T .
We therefore obtain the state vector of the text.

2.2.2. One finds P (ω) = |β′|2 = cos2((ω−ω0)T/2). This probability is equal
to 1 if one sits exactly at the resonance (ω = ω0). It is 1/2 if ω = ω0±π/(2T ).
For a round-trip free fall motion of height H = 1 m, we have T = 2

√
2H/g,

i.e. T = 0.9 s and ∆ω = 1.7 s−1.
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2.2.3. The detection of each atom gives the result E1 with a probability
sin2 φ and E2 with a probability cos2 φ. Since the atoms are assumed to be
independent, the distributions of the random variablesN1 andN2 are binomial
laws. We therefore have:

〈N1〉 = N sin2 φ 〈N2〉 = N cos2 φ ∆N1 = ∆N2 =
√
N | cosφ sinφ| .

2.2.4. We do obtain 〈N2−N1〉/N = cos 2φ = cos((ω−ω0)T ). The fluctuation
on the variable N2 −N1 induces a fluctuation on the determination of ω−ω0.
The two fluctuations are related by:

∆(N2 −N1)
N

= 2 |sin(2φ)| ∆φ .

Since ∆(N2 − N1) = 2 ∆N2 =
√
N |sin 2φ|, we deduce ∆φ = 1/(2

√
N), or

equivalently:

∆|ω − ω0| =
1

2T
√
N
.

The longer the time T and the larger N are, the better the accuracy.

2.2.5. We notice on Fig. 2.2 that the accuracy of the clock improves like
N−1/2, as N increases. For N = 106 and T = 0.9 s, the above formula gives
5.6× 10−4 s. The hyperfine frequency of cesium is ω0 = 2π × 9.2 GHz, which
corresponds to ∆ω/ω ∼ 10−14.

Section 2.3: The GPS System

2.3.1. One must see at least 4 satellites. With two of them, the difference
between the two reception times t1 and t2 of the signals localize the observer
on a surface (for instance on a plane at equal distances of the two satellites
if t1 = t2); three satellites localize the observer on a line, and the fourth one
determines the position of the observer unambiguously (provided of course
that one assumes the observer is not deep inside the Earth or on a far lying
orbit).

2.3.2. Suppose a satellite sends a signal at time t0. This signal is received by
an observer at a distance D at time t1 = t0 +D/c. If the clock of the satellite
has drifted, the signal is not sent at time t0, but at a slightly different time
t′0. The observer whom we assume has a correct time reference from another
satellite, interprets the time t1 − t′0 as a distance D′ = c(t1 − t′0), he therefore
makes an error c(t′0−t0) on his position. For a clock of relative accuracy 10−13,
the typical drift after 24 hours (=86 000 seconds) is 86 000 × 10−13 s, i.e. an
error on the position of 2.5 meters.

Note that the atomic clocks boarding the GPS satellites are noticeably
less accurate than the fountain cold atom clocks in ground laboratories.
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Section 2.4: The Drift of Fundamental Constants

Using the expression given in the text for the dependence on α of the frequen-
cies ωCs and ωRb, we find that a variation of the ratio R would be related to
the variation of α by:

1
R

dR

dt
=

1
α

dα

dt

[
11α2

3
Z2

Cs − Z2
Rb

(1 + 11(αZRb)2/6) (1 + 11(αZCs)2/6)

]
.

The quantity inside the brackets is 0.22, which leads to an upper bound of
α̇/α of 1.4 × 10−14 per year, i.e. 4.3 × 10−22 per second. If we extrapolate
this variation time to a time of the order of the age of the universe, this
corresponds to a variation of 10−4. Such an effect should be detectable, in
principle, by spectroscopic measurements on very far objects.

Remark: a more precise determination of the α dependence of ωCs, for
which the approximation Zα � 1 is not very good, gives for the quantity
inside the bracket a value of 0.45.

Section 2.5: References

The experimental data on the stability of a cold atom clock have been taken
from the paper from the group of A. Clairon and C. Salomon, at Observatoire
de Paris: G. Santarelli et al., Phys. Rev. Lett. 82, 4619 (1999).

Concerning the drift of fundamental constants, see J. D. Prestage, R. L.
Tjoelker, and L. Maleki, Phys. Rev. Lett. 74, 3511 (1995); H. Marion et al.,
Phys. Rev. Lett. 90, 150801 (2003); M. Fischer et al., Phys. Rev. Lett. 92,
230802 (2004).
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Neutron Interferometry

In the late 1970s, Overhauser and his collaborators performed several neutron
interference experiments which are of fundamental importance in quantum
mechanics, and which settled debates which had started in the 1930s. We study
in this chapter two of these experiments, aiming to measure the influence on
the interference pattern (i) of the gravitational field and (ii) of a 2π rotation
of the neutron wave function.

We consider here an interferometer made of three parallel, equally spaced
crystalline silicon strips, as shown in Fig. 3.1. The incident neutron beam is
assumed to be monochromatic.

Fig. 3.1. The neutron interferometer: The three “ears” are cut in a silicon monocrys-
tal; C2 and C3 are neutron counters

For a particular value of the angle of incidence θ, called the Bragg angle,
a plane wave ψinc = ei(p·r−Et)/h̄, where E is the energy of the neutrons and
p their momentum, is split by the crystal into two outgoing waves which are
symmetric with respect to the perpendicular direction to the crystal, as shown
in Fig. 3.2.
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Fig. 3.2. Splitting of an incident plane wave satisfying the Bragg condition

The transmitted wave and the reflected wave have complex amplitudes
which can be written respectively as α = cosχ and β = i sinχ, where the
angle χ is real:

ψI = αei(p·r−Et)/h̄ ψII = βei(p′·r−Et)/h̄ , (3.1)

where |p| = |p′| since the neutrons scatter elastically on the nuclei of the
crystal. The transmission and reflection coefficients are T = |α|2 and R = |β|2,
with of course T +R = 1.

In the interferometer shown in Fig. 3.1, the incident neutron beam is hori-
zontal. It is split by the interferometer into a variety of beams, two of which re-
combine and interfere at point D. The detectors C2 and C3 count the outgoing
neutron fluxes. The neutron beam velocity corresponds to a de Broglie wave-
length λ = 1.445 Å. We recall the value of neutron massM = 1.675×10−27 kg.

The neutron beam actually corresponds to wave functions which are quasi-
monochromatic and which have a finite extension in the transverse directions.
In order to simplify the writing of the equations, we only deal with pure
monochromatic plane waves, as in (3.1).

3.1 Neutron Interferences

3.1.1. The measured neutron fluxes are proportional to the intensities of the
waves that reach the counters. Defining the intensity of the incoming beam
to be 1 (the units are arbitrary), write the amplitudes A2 and A3 of the wave
functions which reach the counters C2 and C3, in terms of α and β (it is not
necessary to write the propagation terms ei(p·r−Et)/h̄).
Calculate the measured intensities I2 and I3 in terms of the coefficients T and
R.

3.1.2. Suppose that we create a phase shift δ of the wave propagating along
AC, i.e. in C the wave function is multiplied by eiδ.
(a) Calculate the new amplitudes A2 and A3 in terms of α, β and δ.
(b) Show that the new measured intensities I2 and I3 are of the form

I2 = µ− ν(1 + cos δ) I3 = ν(1 + cos δ)

and express µ and ν in terms of T and R.
(c) Comment on the result for the sum I2 + I3 .
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3.2 The Gravitational Effect

The phase difference δ between the beams ACD and ABD is created by
rotating the interferometer by an angle φ around the direction of incidence.
This creates a difference in the altitudes of BD and AC, which both remain
horizontal, as shown in Fig. 3.3. The difference in the gravitational potential
energies induces a gravitational phase difference.

3.2.1. Let d be the distance between the silicon strips, whose thickness is
neglected here. Show that the side L of the lozenge ABCD and its height H,
shown in Fig. 3.3, are related to d and to the Bragg angle θ by L = d/ cos θ
and H = 2d sin θ. Experimentally the values of d and θ are d = 3.6 cm and
θ = 22.1◦.

Fig. 3.3. Turning the interferometer around the incident direction, in order to
observe gravitational effects

3.2.2. For an angle φ, we define the gravitational potential V to be V = 0
along AC and V = V0 along BD.
(a) Calculate the difference ∆p of the neutron momenta in the beams AC

and BD (use the approximation ∆p� p). Express the result in terms of
the momentum p along AC, the height H, sinφ, M , and the acceleration
of gravity g.

(b) Evaluate numerically the velocity
√

2gH. How good is the approximation
∆p� p?

3.2.3. Evaluate the phase difference δ between the paths ABD and ACD.
One can proceed in two steps:
(a) Compare the path difference between the segments AB and CD.
(b) Compare the path difference between the segments BD and AC.

3.2.4. The variation with φ of the experimentally measured intensity I2 in the
counter C2 is represented in Fig. 3.4. (The data does not display a minimum
exactly at φ = 0 because of calibration difficulties.)

Deduce from these data the value of the acceleration due to gravity g.
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Fig. 3.4. Measured neutron intensity in counter C2 as the angle φ is varied

3.3 Rotating a Spin 1/2 by 360 Degrees

The plane of the setup is now horizontal. The phase difference arises by placing
along AC a magnet of length l which produces a constant uniform magnetic
field B0 directed along the z axis, as shown in Fig. 3.5.

Fig. 3.5. Experimental setup for observing the neutron spin Larmor precession

The neutrons are spin-1/2 particles, and have an intrinsic magnetic mo-
ment µ̂ = γnŜ = µ0σ̂ where Ŝ is the neutron spin operator, and the σ̂i

(i = x, y, z) are the usual 2 × 2 Pauli matrices. The axes are represented in
Fig. 3.5: the beam is along the y axis, the z axis is in the ABCD plane, and
the x axis is perpendicular to this plane.

We assume that the spin variables and the space variables are uncorrelated,
i.e. at any point in space the wave function factorizes as(

ψ+(r, t)
ψ−(r, t)

)
= ei(p·r−Et)/h̄

(
a+(t)
a−(t)

)
.

We neglect any transient effect due to the entrance and the exit of the field
zone.



3.3 Rotating a Spin 1/2 by 360 Degrees 41

The incident neutrons are prepared in the spin state

| + x〉 =
1√
2

(
1
1

)
,

which is the eigenstate of µ̂x with eigenvalue +µ0. The spin state is not mod-
ified when the neutrons cross the crystal strips.

3.3.1. (a) Write the magnetic interaction Hamiltonian of the spin with the
magnetic field.

(b) What is the time evolution of the spin state of a neutron in the magnet?
(c) Setting ω = −2µ0B0/h̄, calculate the three components of the expecta-

tion value 〈µ̂〉 in this state, and describe the time evolution of 〈µ̂〉 in the
magnet.

3.3.2. When the neutron leaves the magnet, what is the probability Px(+µ0)
of finding µx = +µ0 when measuring the x component of the neutron magnetic
moment? For simplicity, one can set T = Mlλ/(2πh̄) and express the result
in terms of the angle δ = ωT/2.

3.3.3. For which values bn = nb1 (n integer) of the field B0 is this probability
equal to 1? To what motion of the average magnetic moment do these values
bn correspond?
Calculate b1 with µ0 = −9.65 × 10−27 J T−1, l = 2.8 cm, λ = 1.445 Å .

3.3.4. Write the state of the neutrons when they arrive on C2 and C3 (note
p2 and p3 the respective momenta).

3.3.5. The counters C2 and C3 measure the neutron fluxes I2 and I3. They
are not sensitive to spin variables. Express the difference of intensities I2 − I3
in terms of δ and of the coefficients T and R.

3.3.6. The experimental measurement of I2 − I3 as a function of the applied
field B0 is given in Fig. 3.6. A numerical fit of the curve shows that the distance
between two maxima is ∆B = (64 ± 2) × 10−4 T.

Fig. 3.6. Difference of counting rates (I2 − I3) as a function of the applied field
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Comparing the values bn of question 3.3 with this experimental result,
and recalling the result of a measurement of µx for these values, explain why
this proves that the state vector of a spin-1/2 particle changes sign under a
rotation by an odd multiple of 2π.

3.4 Solutions

Section 3.1: Neutron Interferences

3.1.1. The beams ABDC2 and ACDC2 interfere. Omitting the propagation
factors, one has, at C2 an amplitude

A2 = α2β + β3 = β(α2 + β2) .

Similarly, for ABDC3 and ACDC3,

A3 = 2αβ2 .

The intensities at the two counters are

I2 = R− 4R2T I3 = 4R2T .

3.1.2. When there is a phase shift δ in C, the above expressions get modified
as follows:

A2 = α2βeiδ + β3 = β(α2eiδ + β2) , A3 = αβ2(1 + eiδ) .

The intensities become

I2 = R− 2R2T (1 + cos δ) I3 = 2R2T (1 + cos δ) .

The fact that I2 + I3 does not depend on the phase shift δ is a consequence
of the conservation of the total number of particles arriving at D.

Section 3.2: The Gravitational Effect

3.2.1. This results from elementary trigonometry.
(a) Since there is no recoil energy of the silicon atoms to be taken care of, the
neutron total energy (kinetic+potential) is a constant of the motion in all the
process. This energy is given by EAC = p2/2M and EBD = (p−∆p)2/2M +
MgH sinφ, hence

∆p �M2gH sinφ/p .

(b) The velocity
√

2gH is of the order of 0.5 m/s, and the neutron velocity
is v = h/Mλ � 2700 m/s. The change in velocity ∆v is therefore very small:
∆v = gH/v � 2 × 10−4 m/s for φ = π/2.
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3.2.2. (a) The gravitational potential varies in exactly the same way along
AB and CD. The neutron state in both cases is a plane wave with momen-
tum p = h/λ just before A or C. The same Schrödinger equation is used to
determine the wave function at the end of the segments. This implies that the
phases accumulated along the two segments AB and CD are equal.
(b) When comparing the segments AC and BD, the previous reasoning does
not apply, since the initial state of the neutron is not the same for the two
segments. The initial state is exp(ipz/h̄) for AC, and exp[i(p − ∆p)z/h̄] for
BD. After travelling over a distance L = AC = BD, the phase difference
between the two paths is

δ =
∆p L

h̄
=
M2gλd2

πh̄2 tan θ sinφ .

3.2.3. >From the previous result, one has δ2 − δ1 = Ag (sinφ2 − sinφ1),
where A = M2λd2 tan θ/(πh̄2). Therefore,

g =
δ2 − δ1

A (sinφ2 − sinφ1)
.

There are 9 oscillations, i.e. (δ2 − δ1) = 18π, between φ1 = −32◦ and φ2 =
+24◦, which gives g � 9.8 ms−2. The relative precision of the experiment was
actually of the order of 10−3.

Section 3.3: Rotating a Spin 1/2 by 360 Degrees

3.3.1. Since B is along the z axis, the magnetic Hamiltonian is:

ĤM = −µ · B0 =
h̄ ω

2

(
1 0
0 −1

)
.

At time t, the spin state is

|Σ(t)〉 =
1√
2

(
e−iωt/2

e+iωt/2

)
.

By a direct calculation of 〈µ〉 or by using Ehrenfest theorem ( d
dt 〈µ〉 =

1
ih̄ 〈[µ̂, Ĥ]〉), we obtain:

d〈µx〉
dt

= ω〈µy〉 d〈µy〉
dt

= −ω〈µx〉 d〈µz〉
dt

= 0 .

Initially 〈µx〉 = µ0 and 〈µy〉 = 〈µz〉 = 0; therefore,

〈µ〉 = µ0 (cosωt ux + sinωt uy) .
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3.3.2. When the neutrons leave the field zone, the probability of finding
µx = +µ0 is

Px(+µ0) = |〈+x|Σ(T )〉|2 = cos2
ωT

2
= cos2 δ

with T = l/v = lMλ/h.

3.3.3. The above probability is equal to 1 if δ = nπ (ωT = 2nπ), or B0 = nb1
with

b1 =
2π2h̄2

µ0Mlλ
= 34.5 × 10−4 T .

For δ = nπ the magnetic moment has rotated by 2nπ around the z axis by
Larmor precession.

3.3.4. The formulas are similar to those found in question 1.2. The phase of
the upper component of the spinor written in the {|+〉z, |−〉z} basis, is shifted
by +δ, that of the lower component by −δ:

Amplitude at the counter C2 : ei(p2·r−Et)/h̄ β√
2

(
β2 + α2eiδ

β2 + α2e−iδ

)

Amplitude at the counter C3 : ei(p3·r−Et)/h̄ αβ
2

√
2

(
1 + eiδ

1 + e−iδ

)

3.3.5. Since the measuring apparatus is insensitive to spin variables, we must
add the probabilities corresponding to Sz = ±1, each of which is the modulus
squared of a sum of amplitudes. Altogether, we obtain the following intensities
of the total neutron flux in the two counters:

I2 = R− 2R2T (1 + cos δ) , I3 = 2R2T (1 + cos δ)

and
I2 − I3 = R− 4R2T (1 + cos δ) .

3.3.6. There will be a minimum of I2−I3 each time cos δ = +1, i.e. δ = 2nπ.
This corresponds to a constructive interference in channel 3. On the other
hand, there appears a maximum if cos δ = −1, i.e. δ = (2n + 1)π, and this
corresponds to a destructive interference in channel 3 (I3 = 0).

If δ = nπ, whatever the integer n, one is sure to find the neutrons in
the same spin state as in the initial beam. However, the interference pattern
depends on the parity of n.

The experimental result ∆B = (64± 2)× 10−4 T confirms that if the spin
has rotated by 4nπ, one recovers a constructive interference in channel 3 as in
the absence of rotation, while if it has rotated by (4n+2)π, the interference in
C3 is destructive. The probability amplitude for the path ACD has changed
sign in this latter case, although a spin measurement in this path after the
magnet will give exactly the same result as on the incoming beam.
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4

Spectroscopic Measurement
on a Neutron Beam

We present here a very precise method for spectroscopic measurements, due
to Norman Ramsey. The method, using atomic or molecular beams, can be
applied to a very large class of problems. We shall analyse it in the specific case
of a neutron beam, where it can be used to determine the neutron magnetic
moment with high accuracy, by measuring the Larmor precession frequency
in a magnetic field B0.

A beam of neutrons is prepared with velocity v along the x axis. The beam
is placed in a constant uniform magnetic field B0 directed along the z axis.
We write |+〉 and |−〉 for the eigenstates of the z projection Ŝz of the neutron
spin, and γ for the gyromagnetic ratio of the neutron: µ̂ = γŜ, µ̂ being the
neutron magnetic moment operator, and Ŝ its spin.

The neutrons are initially in the state |−〉. When they approach the origin,
they cross a zone where an oscillating field B1(t) is applied in the (x, y) plane.
The components of B1 are

B1x = B1 e−r/a cosω(t− z/c)
B1y = B1 e−r/a sinω(t− z/c)
B1z = 0 ,

(4.1)

where r =
√
x2 + y2. We assume that B1 is constant (strictly speaking it

should vary in order to satisfy ∇ · B = 0) and that B1 � B0.
In all parts of the chapter, the neutron motion in space is treated classically

as a linear uniform motion. We are only interested in the quantum evolution
of the spin state.

4.1 Ramsey Fringes

4.1.1. Consider a neutron whose motion in space is x = vt, y = 0, z = 0.
What is the Hamiltonian Ĥ(t) describing the coupling of the neutron magnetic
moment with the fields B0 and B1?
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Setting ω0 = −γB0 and ω1 = −γB1, write the matrix representation of
Ĥ(t) in the basis {|+〉, |−〉}.
4.1.2. Treating B1 as a perturbation, calculate, in first order time-dependent
perturbation theory, the probability of finding the neutron in the state |+〉
at time t = +∞ (far from the interaction zone) if it was in the state |−〉 at
t = −∞.

One measures the flux of neutrons which have flipped their spins, and are
in the state |+〉 when they leave the field zone. This flux is proportional to
the probability P−+ that they have undergone the above transition.

Show that this probability has a resonant behavior as a function of the
applied angular frequency ω. Plot P−+ as a function of the distance from the
resonance ω−ω0. How does the width of the resonance curve vary with v and
a?

The existence of this width puts a limit on the accuracy of the measurement
of ω0, and therefore of γ. Is there an explanation of this on general grounds?

4.1.3. On the path of the beam, one adds a second zone with an oscillating
field B′

1. This second zone is identical to the first but is translated along the
x axis by a distance b (b� a):

B′
1x = B1 e−r′/a cosω(t− z/c)
B′

1y = B1 e−r′/a sinω(t− z/c)
B′

1z = 0 ,
(4.2)

where r′ = ((x− b)2 + y2)
1/2

.
Show that the transition probability P−+ across the two zones can be

expressed in a simple way in terms of the transition probability calculated in
the previous question.

Why is it preferable to use a setup with two zones separated by a distance b
rather than a single zone, as in question 4.1.2, if one desires a good accuracy in
the measurement of the angular frequency ω0? What is the order of magnitude
of the improvement in the accuracy?

4.1.4. What would be the probability P−+ if one were to use N zones equally
spaced by the same distance b from one another? What optical system is this
reminiscent of?

4.1.5. Suppose now that the neutrons, still in the initial spin state |−〉,
propagate along the z axis instead of the x axis. Suppose that the length
of the interaction zone is b, i.e. that the oscillating field is given by (4.1) for
−b/2 ≤ z ≤ +b/2 and is zero for |z| > b/2. Calculate the transition probability
P ′
−+ in this new configuration.

For what value of ω is this probability maximum? Explain the difference
with the result obtained in question 4.1.2.
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4.1.6. In practice, the neutron beam has some velocity dispersion around the
value v. Which of the two methods described in questions 4.1.3 and 4.1.5 is
preferable?

4.1.7. Numerical Application: The neutrons of the beam have a de Broglie
wavelength λn = 31 Å. Calculate their velocity.

In order to measure the neutron gyromagnetic ratio γn, one proceeds as in
question 4.1.3. One can assume that the accuracy is given by

δω0 =
π

2
v

b
.

The most accurate value of the neutron gyromagnetic ratio is currently

γn = −1.912 041 84 (±8.8 × 10−7) q/Mp

where q is the unit charge and Mp the proton mass. In a field B0 = 1 T, what
must be the length b in order to achieve this accuracy?

4.2 Solutions

4.1.1. The magnetic Hamiltonian is

Ĥ(t) = −µ̂.B = −γ
(
B0 Ŝz +B1x(t) Ŝx +B1y(t) Ŝy

)
.

Since x = vt, y = z = 0,

Ĥ(t) = −γ
[
B0 Ŝz +B1 e−v|t|/a

(
Ŝx cosωt+ Ŝy sinωt

)]
whose matrix representation is

Ĥ(t) =
h̄

2

(
ω0 ω1 exp(−v|t|/a− iωt)

ω1 exp(−v|t|/a+ iωt) −ω0

)
.

4.1.2. Let |ψ(t)〉 = α(t)|+〉 + β(t)|−〉 be the neutron state at time t. The
Schrödinger equation gives the evolution of α and β:

iα̇ =
ω0

2
α+

ω1

2
e−iωt−v|t|/aβ

iβ̇ =
ω1

2
eiωt−v|t|/aα− ω0

2
β .

We now introduce the variables α̃ and β̃:

α̃(t) = α(t) eiω0t/2 β̃(t) = β(t) e−iω0t/2 ,

whose evolution is given by
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i ˙̃α =
ω1

2
ei(ω0−ω)t−v|t|/a β̃

i ˙̃
β =

ω1

2
ei(ω−ω0)t−v|t|/a α̃ .

The equation for α̃ can be formally integrated and it gives

α̃(t) =
ω1

2i

∫ t

−∞
ei(ω0−ω)t′−v|t′|/a β̃(t′) dt′ , (4.3)

where we have used the initial condition α̃(−∞) = α(−∞) = 0. Now, since
we want the value of α(t) to first order in B1, we can replace β̃(t′) by its
unperturbed value β̃(t′) = 1 in the integral. This gives

γ−+ ≡ α̃(+∞) =
ω1

2i

∫ +∞

−∞
ei(ω0−ω)t′−v|t′|/a dt′

=
ω1v

ia
1

(ω − ω0)2 + (v/a)2
.

The transition probability is therefore

P−+ =
ω2

1v
2

a2

1
[(ω0 − ω)2 + (v/a)2]2

.

Fig. 4.1. Transition probability in one zone

The width of the resonance curve is of the order of v/a. This quantity is
the inverse of the time τ = a/v a neutron spends in the oscillating field. From
the uncertainty relation δE.τ ∼ h̄, when an interaction lasts a finite time τ the
accuracy of the energy measurement δE is bounded by δE ≥ h̄/τ . Therefore,
from first principles, one expects that the resonance curve will have a width
of the order of h̄/τ in energy, or 1/τ in angular frequency.
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4.1.3. In the two-zone case, the transition amplitude (in first order pertur-
bation theory) becomes

γ−+ =
ω1

2i

(∫ +∞

−∞
ei(ω0−ω)t−v|t|/a dt +

∫ +∞

−∞
ei(ω0−ω)t−|vt−b|/a dt

)
.

If we make the change of variables t′ = t − b/v in the second integral, we
obtain

γ−+ =
ω1

2i

(
1 + ei(ω0−ω)b/v

)∫ +∞

−∞
ei(ω0−ω)t−v|t|/a dt ,

which is the same formula as previously but multiplied by 1 + ei(ω0−ω)b/v . If
we square this expression, in order to find the probability, we obtain

P−+ =
4ω2

1v
2

a2

1
[(ω0 − ω)2 + v2/a2]2

cos2
(

(ω0 − ω)b
2v

)
.

Fig. 4.2. Ramsey fringes in a two-zone setup

The envelope of this curve is, up to a factor of 4, the same as the previous
curve. However, owing to the extra oscillating factor, the half-width at half-
maximum of the central peak is now of order πv/(2b). The parameter which
now governs the accuracy is the total time b/v that the neutron spends in the
apparatus, going from one zone to the other.

In spectroscopic measurements, it is important to locate the exact position
of the maximum of the peak. Multiplying the width of the peak by a factor
a/b (� 1 since a � b) results in a major improvement of the measurement
accuracy. Of course one could in principle build a single interaction zone of
large size ∼ b, but it would be difficult to maintain a well controlled oscillating
field over such a large region. From a practical point of view, it is much simpler
to use small interaction zones of size a and to separate them by a large distance
b.
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4.1.4. It is quite straightforward to generalize the previous results to an
arbitrary number of zones:

γ−+ =
ω1

2i

(
1 + ei(ω0−ω)b/v + · · · + ei(N−1)(ω0−ω)b/v

)
×
∫ +∞

−∞
ei(ω0−ω)t−v|t|/a dt

P−+ =
ω2

1v
2

a2

1
[(ω0 − ω)2 + v2/a2]2

sin2[N(ω0 − ω)b/2v]
sin2[(ω0 − ω)b/2v]

.

As far as amplitudes are concerned, there is a complete analogy with a dif-
fraction grating in optics.

The neutron (more generally, the particle or the atom) has some transition
amplitude t for undergoing a spin flip in a given interaction zone. The total
amplitude T is the sum

T = t+ t eiφ + t e2iφ + . . . ,

where eiφ is the phase shift between two zones.

4.1.5. We now set z = vt, and x = y = 0 for the neutron trajectory. This
will modify the phase of the field (Doppler effect)

ω(t− z/c) → ω(1 − v/c)t = ω̃t with ω̃ = ω (1 − v/c)
and we must integrate the evolution of α̃:

i ˙̃α =
ω1

2
ei(ω0−ω̃)t β̃

(with β̃ � 1) between ti = −b/(2v) and tf = b/(2v). The transition probability
is then

P ′
−+ = ω2

1

sin2 [(ω0 − ω̃)b/(2v)]
(ω0 − ω̃)2

,

which has a width of the order of b/v but is centered at

ω̃ = ω0 ⇒ ω =
ω0

1 − v/c � ω0 (1 + v/c) .

Comparing with question 4.1.2, we find that the resonance frequency is dis-
placed: The neutron moves in the propagation direction of the field, and there
is a first order Doppler shift of the resonance frequency.

4.1.6. If the neutron beam has some velocity dispersion, the experimental
result will be the same as calculated above, but smeared over the velocity
distribution.

In the method of question 4.1.3, the position of lateral fringes, and the
width of the central peak, vary with v. A velocity distribution will lead to
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a broader central peak and lateral fringes of decreasing amplitude. However
the position of the central peak does not depend on the velocity, and it is
therefore not shifted if the neutron beam has some velocity dispersion.

On the contrary, in the method of question 4.1.5, the position of the cen-
tral peak depends directly on the velocity. A dispersion in v will lead to a
corresponding dispersion of the position of the peak we want to measure.
The first method is highly preferable.

4.1.7. Numerically, for λn = 31 Å, v = h/(Mnλn) � 128 m/s.
Experimentally, one obtains an accuracy δω0/ω0 = δγn/γn = 4.6 × 10−7. For
B = 1 T, the angular frequency is ω0 = γnB0 � 1.8 × 108 s−1, which gives
δω0/(2π) � 13 Hz and b � 2.4 m.

Actually, one can improve the accuracy considerably by analysing the
shape of the peak. In the experiment reported in the reference quoted be-
low, the length b is 2 m and the field is B0 = 0.05 T (i.e. an angular frequency
20 times smaller than above).

Reference
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Analysis of a Stern–Gerlach Experiment

We analyze a Stern–Gerlach experiment, both experimentally and from the
theoretical point of view. In the experimental setup considered here, a mono-
chromatic beam of neutrons crosses a region of strongly inhomogeneous mag-
netic field, and one observes the outgoing beam.

5.1 Preparation of the Neutron Beam

Neutrons produced in a reactor are first “cooled”, i.e. slowed down by cross-
ing liquid hydrogen at 20 K. They are incident on a monocrystal, for instance
graphite, from which they are diffracted. To each outgoing direction, there cor-
responds a well-defined wavelength, and therefore a well-defined momentum.
A beryllium crystal acts as a filter to eliminate harmonics, and the vertical ex-
tension of the beam is controlled by two gadolinium blocks, which are opaque
to neutrons, separated by a thin sheet of (transparent) aluminum of thickness
a, which constitutes the collimating slit, as shown in Fig. 5.1.

Fig. 5.1. Preparation of the neutron beam

5.1.1. The de Broglie wavelength of these monochromatic neutrons is λ =
4.32 Å. What are their velocity and their kinetic energy?
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5.1.2. One observes the impacts of the neutrons on a detector at a distance
L = 1 m from the slit. The vertical extension of the beam at the detector
is determined by two factors, first the width a of the slit, and second the
diffraction of the neutron beam by the slit. We recall that the angular width θ
of the diffraction peak from a slit of width a is related to the wavelength λ by
sin θ = λ/a. For simplicity, we assume that the neutron beam is well collimated
before the slit, and that the vertical extension δ of the beam on the detector
is the sum of the width a of the slit and the width of the diffraction peak.
Show that one can choose a in an optimal way in order to make δ as small as
possible. What is the corresponding width of the beam on the detector?

5.1.3. In the actual experiment, the chosen value is a = 5 µm. What is the
observed width of the beam at the detector?
Comment on the respective effects of the slit width a and of diffraction, on
the vertical shape of the observed beam on the detector?

The extension of the beam corresponds to the distribution of neutron im-
pacts along the z axis. Since the purpose of the experiment is not only to
observe the beam, but also to measure its “position” as defined by the maxi-
mum of the distribution, what justification can you find for choosing a = 5 µm?

Figure 5.2 is an example of the neutron counting rate as a function of z.
The horizontal error bars, or bins, come from the resolution of the measur-
ing apparatus, the vertical error bars from the statistical fluctuations of the
number of neutrons in each bin. The curve is a best fit to the experimental
points. Its maximum is determined with an accuracy δz ∼ 5 µm.

Fig. 5.2. Measurement of the beam profile on the detector
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5.2 Spin State of the Neutrons

In order to completely describe the state of a neutron, i.e. both its spin state
and its spatial state, we consider the eigenbasis of the spin projection along
the z axis, Ŝz, and we represent the neutron state as

|ψ(t)〉 :
(
ψ+(r, t)
ψ−(r, t)

)
,

where the respective probabilities of finding the neutron in the vicinity of
point r with its spin component Sz = ±h̄/2 are

d3P (r, Sz = ±h̄/2, t) = |ψ±(r, t)|2 d3r .

5.2.1. What are the probabilities P±(t) of finding, at time t, the values ±h̄/2
when measuring Sz irrespective of the position r?

5.2.2. What is, in terms of ψ+ and ψ−, the expectation value of the x com-
ponent of the neutron spin 〈Sx〉 in the state |ψ(t)〉?
5.2.3. What are the expectation values of the neutron’s position 〈r〉 and
momentum 〈p〉 in the state |ψ(t)〉?
5.2.4. We assume that the state of the neutron can be written:

|ψ(t)〉 : ψ(r, t)
(
α+

α−

)
,

where the two complex numbers α± are such that |α+|2 + |α−|2 = 1. How do
the results of questions 5.2.2 and 5.2.3 simplify in that case?

5.3 The Stern–Gerlach Experiment

Between the slit, whose center is located at the origin (x = y = z = 0), and
the detector, located in the plane x = L, we place a magnet of length L whose
field B is directed along the z axis. The magnetic field varies strongly with z;
see Fig. 5.3.

We assume that the components of the magnetic field are

Bx = By = 0 Bz = B0 + b′z .

In what follows we choose1 B0 = 1 T and b′ = 100 T/m.

1 This form violates Maxwell’s equation ∇ · B = 0, but it simplifies the following
calculation. With a little modification (e.g. Bx = 0, By = −b′y and By � Bz over
the region of space crossed by the neutron beam), one can settle this matter, and
arrive at the same conclusions.
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Fig. 5.3. Magnetic field setup in the Stern–Gerlach experiment

The magnetic moment of the neutron µ̂ in the matrix representation that
we have chosen for |ψ〉 is

µ̂ = µ0 σ̂ ,

where σ̂ are the usual Pauli matrices, and µ0 = 1.913µN, where µN is the
nuclear magneton µN = qh̄/2Mp = 5.051 10−27 J · T−1. Hereafter, we denote
the neutron mass by m.

5.3.1. What is the form of the Hamiltonian for a neutron moving in this
magnetic field?

Write the time-dependent Schrödinger equation for the state |ψ(t)〉.
Show that the Schrödinger equation decouples into two equations of the
Schrödinger type, for ψ+ and ψ− respectively.

5.3.2. Show that one has

d
dt

∫
|ψ±(r, t)|2 d3r = 0 .

What does one conclude as to the probabilities of measuring µz = ±µ0?

5.3.3. We assume that, at t = 0, at the entrance of the field zone, one has

|ψ(0)〉 : ψ(r, 0)
(
α+

α−

)

and that 〈r〉 = 0, 〈py〉 = 〈pz〉 = 0 and 〈px〉 = p0 = h/λ, where the value of
the wavelength λ has been given above.

The above conditions correspond to the experimental preparation of the
neutron beam discussed in Sect. 5.1.

Let Â be an observable depending on the position operator r̂ and the
momentum operator p̂. We define the numbers 〈A+〉 and 〈A−〉 by

〈A±〉 =
1

|α±|2
∫
ψ∗
±(r, t) Â ψ∗

±(r, t) d3r .
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What is the physical interpretation of 〈A+〉 and 〈A−〉? Show in particular
that |ψ+|2/|α+|2 and |ψ−|2/|α−|2 are probability laws.

5.3.4. Apply Ehrenfest’s theorem to calculate the following quantities:

d
dt

〈r±〉 , d
dt

〈p±〉 .

Solve the resulting equations and give the time evolution of 〈r±〉 and 〈p±〉.
Give the physical interpretation of the result, and explain why one observes
a splitting of the initial beam into two beams of relative intensities |α+|2 and
|α−|2.
5.3.5. Calculate the splitting between the two beams when they leave the
magnet. Express the result in terms of the kinetic energy of the incident
neutrons (we recall that L = 1 m and b′ = 100 T/m).

Given the experimental error δz in the measurement of the position of the
maximum intensity of a beam, i.e. δz = 5 × 10−6 m as discussed in question
5.1.3, what is the accuracy on the measurement of the neutron magnetic mo-
ment in such an experiment, assuming that the determination of the magnetic
field and the neutron energy is not a limitation? Compare with the result of
magnetic resonance experiments:

µ0 = (−1.91304184 ± 8.8 × 10−7) µN .

5.3.6. In the same experimental setup, what would be the splitting of a beam
of silver atoms (in the original experiment of Stern and Gerlach, the atomic
beam came from an oven at 1000 K) of energy E � 1.38 × 10−20 J? The
magnetic moment of a silver atom is the same as that of the valence electron
|µe| = qh̄/2me � 9.3 × 10−24 J.T−1.

5.3.7. Show that, quite generally, in order to be able to separate the two
outgoing beams, the condition to be satisfied is of the form

E⊥ t ≥ h̄/2 ,

where E⊥ is the transverse kinetic energy acquired by the neutrons in the
process, and t is the time they spend in the magnetic field. Comment and
conclude.

5.4 Solutions

Section 5.1: Preparation of the Neutron Beam

5.1.1. We have v = h/(λm) and E = mv2/2, which yields v = 916 m s−1

and E = 0.438 × 10−2 eV.



60 5 Analysis of a Stern–Gerlach Experiment

5.1.2. The contribution of diffraction to the beam width is δdiff = L tan θ ∼
Lλ/a. With the simple additive prescription (which can be improved, but
this would not yield very different results), we obtain δ = a+ Lλ/a which is
minimal for a =

√
Lλ � 21 µm. The spreading of the beam on the detector is

then equal to the Heisenberg minimum δ = 2
√
Lλ = 42 µm.

The uncertainty relations forbid δ to be less than some lower limit. In other
words, the spreading of the wave packet, which increases as a decreases com-
petes with the spatial definition of the incoming beam.

5.1.3. For a = 5 µm, we have δ = 91.5 µm.
In that case, the effect of diffraction is predominant. The reason for making
this choice is that the shape of the diffraction peak is known and can be fitted
quite nicely. Therefore, this is an advantage in determining the position of
the maximum. However, one cannot choose a to be too small, otherwise the
neutron flux becomes too small, and the number of events is insufficient.

Section 5.2: Spin State of the Neutrons

5.2.1. P±(t) =
∫ |ψ±(r, t)|2 d3r

N.B. The normalization condition (total probability equal to 1) is

P+ + P− = 1 ⇒
∫ (|ψ+(r, t)|2 + |ψ−(r, t)|2) d3r = 1 .

The quantity |ψ+(r, t)|2 + |ψ−(r, t)|2 is the probability density of finding the
neutron at point r.

5.2.2. By definition, the expectation value of Sx is 〈Sx〉 = (h̄/2)〈ψ|σ̂x|ψ〉
therefore

〈Sx〉 =
h̄

2

∫ (
ψ∗

+(r, t)ψ−(r, t) + ψ∗
−(r, t)ψ+(r, t)

)
d3r .

5.2.3. Similarly

〈r〉 =
∫

r
(|ψ+(r, t)|2 + |ψ−(r, t)|2) d3r ,

〈p〉 =
h̄

i

∫ (
ψ∗

+(r, t) ∇ψ+(r, t) + ψ∗
−(r, t) ∇ψ−(r, t)

)
d3r .

5.2.4. If the variables are factorized, we have the simple results:

〈Sx〉 = h̄ Re (α∗
+α−
)

and
〈r〉 =

∫
r |ψ(r, t)|2d3r , 〈p〉 =

h̄

i

∫
ψ∗(r, t) ∇ψ(r, t) d3r .
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Section 5.3: The Stern–Gerlach Experiment

5.3.1. The matrix form of the Hamiltonian is

Ĥ =
p̂2

2m

(
1 0
0 1

)
− µ0(B0 + b′ẑ)

(
1 0
0 −1

)
.

The Schrödinger equation is

ih̄
d
dt

|ψ(t)〉 = Ĥ|ψ(t)〉 .

If we write it in terms of the coordinates ψ± we obtain the uncoupled set

ih̄
∂

∂t
ψ+(r, t) = − h̄

2

2m
∆ψ+ − µ0(B0 + b′z) ψ+

ih̄
∂

∂t
ψ−(r, t) = − h̄

2

2m
∆ψ− + µ0(B0 + b′z) ψ−

or, equivalently ih̄ d
dt |ψ±〉 = Ĥ±|ψ±〉 , with

Ĥ± = − h̄
2

2m
∆ ∓ µ0(B0 − b′z) .

In other words, we are dealing with two uncoupled Schrödinger equations,
where the potentials have opposite values. This is basically what causes the
Stern–Gerlach splitting.

5.3.2. Since both ψ+ and ψ− satisfy Schrödinger equations, and since Ĥ±
are both hermitian, we have the usual properties of Hamiltonian evolution
for ψ+ and ψ− separately, in particular the conservation of the norm. The
probability of finding µz = ±µ0, and the expectation value of µz are both
time independent.

5.3.3. By definition, we have∫
|ψ±(r, t)|2 d3r = |α±|2 ,

where |α±|2 is time independent. The quantities |ψ+(r, t)|2/|α+|2 and
|ψ−(r, t)|2/|α−|2 are the probability densities for finding a neutron at po-
sition r with, respectively, Sz = +h̄/2 and Sz = −h̄/2.
The quantities 〈A+〉 and 〈A−〉 are the expectation values of the physical
quantity A, for neutrons which have, respectively, Sz = +h̄/2 and Sz = −h̄/2.

5.3.4. Applying Ehrenfest’s theorem, one has for any observable

d
dt

〈A±〉 =
1

ih̄|α±|2
∫
ψ∗
±(r, t) [Â, Ĥ±] ψ±(r, t) d3r .
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Therefore
d
dt

〈r±〉 = 〈p±〉/m
and

d
dt

〈px±〉 =
d
dt

〈py±〉 = 0
d
dt

〈pz±〉 = ±µ0 b
′ .

The solution of these equations is straightforward:

〈px±〉 = p0 , 〈py±〉 = 0 , 〈pz±〉 = ±µ0b
′t

〈x±〉 =
p0 t

m
= vt , 〈y±〉 = 0 , 〈z±〉 = ±µ0b

′t2

2m
.

Consequently, the expectation values of the vertical positions of the neutrons
which have µz = +µ0 and µz = −µ0 diverge as time progresses: there is a
separation in space of the support of the two wave functions ψ+ and ψ−. The
intensities of the two outgoing beams are proportional to |α+|2 and |α−|2.
5.3.5. As the neutrons leave the magnet, one has 〈x〉 = L, therefore t = L/v
and ∆z = |µ0b

′|L2/mv2 = |µ0b
′|L2/2E where E is the energy of the incident

neutrons.
This provides a splitting of ∆z = 0.69 mm. The error on the position of

each beam is δz = 5 µm, that is to say a relative error on the splitting of the
beams, or equivalently, on the measurement of µ0

δµ0

µ0
�

√
2 δz
∆z

∼ 1.5% ,

which is far from the accuracy of magnetic resonance measurements.

5.3.6. For silver atoms, one has |µ0|/2E = 3.4 × 10−4 T−1. Hence, in the
same configuration, one would obtain, for the same value of the field gradient
and the same length L = 1 m, a separation ∆z = 3.4 cm, much larger than for
neutrons. Actually, Stern and Gerlach, in their first experiment, had a much
weaker field gradient and their magnet was 20 cm long.

5.3.7. The condition to be satisfied in order to resolve the two outgoing
beams is that the distance ∆z between the peaks should be larger than the
full width of each peak (this is a common criterion in optics; by an appro-
priate inspection of the line shape, one may lower this limit). We have seen
in Sect. 5.1 that the absolute minimum for the total beam extension on the
detector is 2

√
Lλ, which amounts to a full width at half-maximum

√
Lλ. In

other words, we must have:
∆z2 ≥ Lλ .

In the previous section, we have obtained the value of∆z, and, by squaring, we
obtain ∆z2 = (µ0b

′)2t4/m2, where t is the time spent traversing the magnet.
On the other hand, the transverse kinetic energy of an outgoing neutron is
E⊥ = p2z±/(2m) = (µ0b

′)2t2/(2m).
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Putting the two previous relations together, we obtain ∆z2 = 2E⊥t2/m; in-
serting this result in the first inequality, we obtain

E⊥ t ≥ h/2 ,

where we have used L = vt and λ = h/mv. This is nothing but one of the
many forms of the time–energy uncertainty relation. The right-hand side is
not the standard h̄/2 because we have considered a rectangular shape of the
incident beam (and not a Gaussian). This brings in an extra factor of 2π.
Physically, this result is interesting in many respects.
(a) First, it shows that the effort that counts in making the experiment
feasible is not to improve individually the magnitude of the field gradient,
or the length of the apparatus, etc., but the particular combination of the
product of the energy transferred to the system and the interaction time of
the system with the measuring apparatus.
(b) Secondly, this is a particular example of the fundamental fact stressed by
many authors2 that a measurement is never point-like. It has always a finite
extension both in space and in time. The Stern–Gerlach experiment is actually
a very good example of a measuring apparatus in quantum mechanics since
it transfers quantum information – here the spin state of the neutron – into
space–time accessible quantities – here the splitting of the outgoing beams.
(c) This time–energy uncertainty relation is encountered in most, if not all
quantum measurements. Here it emerges as a consequence of the spreading of
the wave packet. It is a simple and fruitful exercise to demonstrate rigorously
the above property by calculating directly the time evolution of the following
expectation values:

〈z±〉 , ∆z2 = 〈z2±〉 − 〈z±〉2 , 〈ET 〉 =
〈
p2z±
2m

〉
, 〈z±p± + p±z±〉 .

2 See, for instance, L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Pergamon
Press, Oxford, 1965.
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Measuring the Electron Magnetic
Moment Anomaly

In the framework of the Dirac equation, the gyromagnetic factor g of the
electron is equal to 2. In other words, the ratio between the magnetic moment
and the spin of the electron is gq/(2m) = q/m, where q and m are the charge
and the mass of the particle. When one takes into account the interaction
of the electron with the quantized electromagnetic field, one predicts a value
of g slightly different from 2. The purpose of this chapter is to study the
measurement of the quantity g − 2.

6.1 Spin and Momentum Precession of an Electron
in a Magnetic Field

Consider an electron, of mass m and charge q (q < 0), placed in a uniform
and static magnetic field B directed along the z axis. The Hamiltonian of the
electron is

Ĥ =
1

2m
(p̂ − qÂ)

2 − µ̂ · B,

where Â is the vector potential Â = B × r̂/2 and µ̂ is the intrinsic magnetic
moment operator of the electron. This magnetic moment is related to the
spin operator Ŝ by µ̂ = γŜ, with γ = (1 + a)q/m. The quantity a is called
the magnetic moment “anomaly”. In the framework of the Dirac equation,
a = 0. Using quantum electrodynamics, one predicts at first order in the fine
structure constant a = α/(2π).

The velocity operator is v̂ = (p̂ − qÂ)/m, and we set ω = qB/m.

6.1.1. Verify the following commutation relations:

[v̂x, Ĥ] = ih̄ω v̂y ; [v̂y, Ĥ] = −ih̄ω v̂x ; [v̂z, Ĥ] = 0 .

6.1.2. Consider the three quantities

C1(t) = 〈Ŝz v̂z〉 , C2(t) = 〈Ŝxv̂x + Ŝy v̂y〉 , C3(t) = 〈Ŝxv̂y − Ŝy v̂x〉 .
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Write the time evolution equations for C1, C2, C3. Show that these three equa-
tions form a linear differential system with constant coefficients. One will make
use of the quantity Ω = aω.

6.1.3. What is the general form for the evolution of 〈Ŝ · v̂〉?
6.1.4. A beam of electrons of velocity v is prepared at time t = 0 in a
spin state such that one knows the values of C1(0), C2(0), and C3(0). The
beam interacts with the magnetic field B during the time interval [0, T ]. One
neglects the interactions between the electrons of the beam. At time T , one
measures a quantity which is proportional to 〈Ŝ.v̂〉.

The result of such a measurement is presented in Fig. 6.1 as a function of
the time T , for a value of the magnetic field B = 9.4 × 10−3 T (data taken
from D.T. Wilkinson and H.R. Crane, Phys. Rev. 130, 852 (1963)). Deduce
from this curve an approximate value for the anomaly a.

6.1.5. Does the experimental value agree with the prediction of quantum
electrodynamics?

Fig. 6.1. Variations of the quantity 〈Ŝ.v̂〉, as a function of the time T

6.2 Solutions

6.1.1. The electron Hamiltonian is Ĥ = mv̂2/2 − γBŜz. The following com-
mutation relations can be established with no difficulty

[v̂x, v̂y] = ih̄qB/m2 = ih̄ω/m, [v̂x, v̂z] = [v̂y, v̂z] = 0 ,
[v̂x, v̂

2
y] = [v̂x, v̂y]v̂y + v̂y[v̂x, v̂y] = 2ih̄ω v̂y/m .

Therefore

[v̂x, Ĥ] = ih̄ωv̂y ; [v̂y, Ĥ] = −ih̄ωv̂x ; [v̂z, Ĥ] = 0 .
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6.1.2. We make use of the property ih̄(d/dt)〈Ô〉 = 〈[Ô, Ĥ]〉, valid for any
observable (Ehrenfest theorem). The time evolution of C1 is trivial:

[Ŝz v̂z, Ĥ] = 0 ⇒ dC1

dt
= 0 ; C1(t) = A1 ,

where A1 is a constant. For C2 and C3, we proceed in the following way:

[Ŝxv̂x, Ĥ] = [Ŝxv̂x,mv̂
2/2] − γB[Ŝxv̂x, Ŝz] = ih̄ω(Ŝxv̂y + (1 + a)Ŝy v̂x).

Similarly,

[Ŝy v̂y, Ĥ] = −ih̄ω(Ŝy v̂x + (1 + a)Ŝxv̂y)

[Ŝxv̂y, Ĥ] = −ih̄ω(Ŝxv̂x − (1 + a)Ŝy v̂y)

[Ŝy v̂x, Ĥ] = ih̄ω(Ŝy v̂y − (1 + a)Ŝxv̂x) .

Therefore,

[Ŝxv̂x + Ŝy v̂y, Ĥ] = −ih̄ωa (Ŝxv̂y − Ŝy v̂x)

[Ŝxv̂y − Ŝy v̂x, Ĥ] = ih̄ωa(Ŝxv̂x + Ŝy v̂y)

and
dC2

dt
= −ΩC3 ,

dC3

dt
= ΩC2.

6.1.3. We therefore obtain d2C2/dt2 = −Ω2C2, whose solution is

C2(t) = A2 cos (Ωt+ ϕ) ,

where A2 and ϕ are constant. Hence, the general form of the evolution of
〈S · v〉 is

〈S · v〉(t) = C1(t) + C2(t) = A1 +A2 cos (Ωt+ ϕ) .

In other words, in the absence of anomaly, the spin and the momentum of the
electron would precess with the same angular velocity: the cyclotron frequency
(precession of momentum) and the Larmor frequency (precession of magnetic
moment) would be equal. Measuring the difference in these two frequencies
gives a direct measurement of the anomaly a, of fundamental importance in
quantum electrodynamics.

6.1.4. One calculates the anomaly from the relation a = Ω/ω. The ex-
perimental results for 〈S · v〉 show a periodic behavior in time with a pe-
riod τ ∼ 3 µs, i.e. Ω = 2π/τ ∼ 2 × 106 s−1. In a field B = 0.0094 T,
ω = 1.65 × 109 s−1, and a = Ω/ω ∼ 1.2 × 10−3.

6.1.5. This value is in good agreement with the theoretical prediction a =
α/2π = 1.16 × 10−3.
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Remark: The value of the anomaly is now known with an impressive accu-
racy:

atheo. = 0.001 159 652 200 (40)
aexp. = 0.001 159 652 193 (10) .

The theoretical calculation includes all corrections up to order 3 in α.
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Decay of a Tritium Atom

The nucleus of the tritium atom is the isotope 3H, of charge Z = 1. This
nucleus is radioactive and transforms into a 3He nucleus by β decay. The
purpose of this chapter is to study the electronic state of the 3He+ ion formed
after the decay.

We consider nuclei as infinitely massive compared to the electron, of
mass m. We write a1 = h̄2/(me2) for the Bohr radius and EI = mc2α2/2 �
13.6 eV for the ionization energy of the hydrogen atom, where α is the fine
structure constant [e2 = q2/(4πε0), where q is the electron charge].

In the ground state |ψ0〉 of the tritium atom, the wave function of the
electron (n = 1, l = 0,m = 0) is the same as in the normal hydrogen atom:

ψ0(r) =
1√
πa1

3
e−r/a1 . (7.1)

The β decay of the tritium nucleus leads to:
3H → 3He + e− + ν̄ (7.2)

(ν̄ is an antineutrino), where the emitted electron has an energy of the order
of 15 keV and the helium nucleus 3He has charge Z = 2. The decay is an
instantaneous process; the β electron is emitted with a large velocity and
leaves the atomic system very rapidly. Consequently, an ionized 3He+ atom
is formed, for which, at the time t0 of the decay, the wave function of the
electron is practically the same as in tritium, and we shall assume it is still
given by (7.1). We denote by |n, l,m〉 the states of the ionized helium atom
which is a hydrogen-like system, i.e. one electron placed in the Coulomb field
of a nucleus of charge 2.

7.1 The Energy Balance in Tritium Decay

7.1.1. Write the Hamiltonian Ĥ1 of the atomic electron before the decay and
the Hamiltonian Ĥ2 of this electron after the decay (when the potential term
has suddenly changed).
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7.1.2. What are, in terms of EI, the energy levels of the 3He+ atom? Give
its Bohr radius and its ground state wave function ϕ100(r).

7.1.3. Calculate the expectation value 〈E〉 of the energy of the electron after
the decay. One can for instance make use of the fact that:

〈ψ0| 1
r
|ψ0〉 =

1
a1

and Ĥ2 = Ĥ1 − e2

r
.

Give the value of 〈E〉 in eV.

7.1.4. Express in terms of |ψ0〉 and |n, l,m〉 the probability amplitude
c(n, l,m) and the probability p(n, l,m) of finding the electron in the state
|n, l,m〉 of 3He+ after the decay. Show that only the probabilities pn =
p (n, 0, 0) do not vanish.

7.1.5. Calculate the probability p1 of finding the electron in the ground state
of 3He+. What is the corresponding contribution to 〈E〉?
7.1.6. A numerical calculation gives the following values:

p2 =
1
4
,

∞∑
n=3

pn = 0.02137,
∞∑

n=3

pn

n2
= 0.00177.

Calculate the probability
∑∞

n=1 pn of finding the atomic electron in a bound
state of 3He+ and the corresponding contribution to 〈E〉. Comment on the
result.

7.1.7. Experimentally, in the β decay of the tritium atom, one observes that,
in about 3% of the events, there are two outgoing electrons, one with a mean
kinetic energy 〈Ek〉 ∼ 15 keV, the other with 〈Ek〉 ∼ 34.3 eV, thus leaving
a completely ionized 3He2+ nucleus, as if the β decay electron had “ejected”
the atomic electron. Explain this phenomenon.

7.2 Solutions

7.1.1. The two Hamiltonians are

Ĥ1 =
p̂2

2m
− e2

r
Ĥ2 =

p̂2

2m
− 2e2

r
.

7.1.2. The energy levels corresponding to the bound states of a hydrogen-
like atom of nuclear charge Z are En = −Z2EI/n

2. In the present case,
En = −4EI/n

2. The new Bohr radius is a2 = a1/2, and the wave function
is

ϕ100(r) =
1√
πa3

2

e−r/a2 .
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7.1.3. The expectation value of the electron energy in the new nuclear con-
figuration is

〈E〉 = 〈ψ0|Ĥ2|ψ0〉 = 〈ψ0|Ĥ1|ψ0〉 − 〈ψ0| e
2

r
|ψ0〉 ,

which amounts to

〈E〉 = −EI − e2

a1
= −3EI � −40.8 eV .

7.1.4. By definition, the probability amplitude is c(n, l,m) = 〈n, l,m|ψ0〉,
and the probability p(n, l,m) = |〈n, l,m|ψ0〉|2. The analytic form is

c(n, l,m) =
∫
Rnl(r) (Yl,m(θ, φ))∗ ψ0(r) d3r ,

where Rnl(r) are the radial wave functions of the 3He+ hydrogen-like atom.
Since ψ0 is of the form ψ0(r) = χ(r)Y0,0(θ, φ), the orthogonality of spherical
harmonics implies p(n, l,m) = 0 if (l,m) �= (0, 0).

7.1.5. The probability amplitude in the lowest energy state is

(p1)1/2 = 4π
∫

e−r/a2√
πa3

2

e−r/a1√
πa3

1

r2dr =
16
√

2
27

.

Hence the probability p1 = 0.70233 and the contribution to the energy p1E1 =
−38.2 eV.

7.1.6. With the numerical values given in the text, one has p2E2 = −EI/4 =
−3.4 eV, and p =

∑∞
1 pn = 0.9737 . The contribution to 〈E〉 is 〈EB〉 =∑∞

1 pnEn = −3.0664 EI = −41.7 eV.
The total probability is smaller than 1; there exists a non-zero probability

(1 − p) = 0.026 that the atomic electron is not bound in the final state.
The contribution of bound states 〈EB〉 = −41.7 eV is smaller than the

total expectation value of the energy 〈E〉 by 0.9 eV. The probability (1 − p)
corresponds therefore to a positive electron energy, i.e. an ionization of 3He+

into 3He2+ with emission of the atomic electron.

7.1.7. There is necessarily a probability 1−p = 0.026 for the atomic electron
not to be bound around the helium nucleus, therefore that the helium atom
be completely ionized in the decay. If the mean kinetic energy of the expelled
electron is Ek ∼ 34.3 eV, this represents a contribution of the order of (1 −
p)Ek ∼ +0.89 eV to the mean energy which compensates the apparent energy
deficit noted above.

7.3 Comments

This type of reaction is currently being studied in order to determine the
neutrino mass. If M1 and M2 are the masses of the two nuclei, Eβ the energy
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of the β electron, E the energy of the atomic electron, and Eν̄ the neutrino
energy, energy conservation gives for each event: M1c

2 − EI = M2c
2 + Eβ +

Eν̄ + E. For a given value of E, the determination of the maximum energy
of the β electron (which covers all the spectrum up to 19 keV in the tritium
atom case) provides a method for determining the minimum value mν̄c

2 of Eν̄

through this energy balance. An important theoretical problem is that current
experiments are performed on molecular tritium (HT or TT molecules) and
that molecular wave functions are not known explicitly, contrary to the atomic
case considered here. The most precise experiment up to date is reported in
Weinheimer et al., Phys. Lett. B460, 219, (1999).
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The Spectrum of Positronium

The positron e+ is the antiparticle of the electron. It is a spin-1/2 particle,
which has the same mass m as the electron, but an electric charge of opposite
sign. In this chapter we consider the system called positronium which is an
atom consisting of an e+e− pair.

8.1 Positronium Orbital States

We first consider only the spatial properties of the system, neglecting all spin
effects. We only retain the Coulomb interaction between the two particles. No
proof is required, an appropriate transcription of the hydrogen atom results
suffices.

8.1.1. Express the reduced mass of the system µ, in terms of the electron
mass m.

8.1.2. Write the Hamiltonian of the relative motion of the two particles in
terms of their separation r and their relative momentum p.

8.1.3. What are the energy levels of the system, and their degeneracies? How
do they compare with those of hydrogen?

8.1.4. What is the Bohr radius a0 of the system? How do the sizes of hydrogen
and positronium compare?

8.1.5. Give the expression for the normalized ground state wave function
ψ100(r). Express |ψ100(0)|2 in terms of the fundamental constants: m, c, h̄,
and the fine structure constant α.

8.2 Hyperfine Splitting

We now study the hyperfine splitting of the ground state.
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8.2.1. What is the degeneracy of the orbital ground state if one takes into
account spin variables (in the absence of a spin–spin interaction)?

8.2.2. Explain why the (spin) gyromagnetic ratios of the positron and of the
electron have opposite signs: γ1 = −γ2 = γ. Express γ in terms of q and m.

8.2.3. One assumes that, as in hydrogen, the spin–spin Hamiltonian in the
orbital ground state is:

ĤSS =
A

h̄2 Ŝ1 · Ŝ2 , (8.1)

where the constant A has the dimension of an energy.
Recall the eigenstates and eigenvalues of ĤSS in the spin basis {|σ1, σ2〉},

where σ1 = ±1, σ2 = ±1.

8.2.4. As in hydrogen, the constant A originates from a contact term:

A = −2
3

1
ε0c2

γ1 γ2 h̄
2 |ψ100(0)|2. (8.2)

(a) The observed hyperfine line of positronium has a frequency ν � 200 GHz,
compared to ν � 1.4 GHz for hydrogen. Justify this difference of two
orders of magnitude.

(b) Express the constant A in terms of the fine structure constant and the
energy mc2. Give the numerical value of A in eV.

(c) What frequency of the hyperfine transition corresponds to this calculated
value of A?

8.2.5. Actually, the possibility that the electron and the positron can annihi-
late, leads to an additional contribution ĤA in the hyperfine Hamiltonian. One
can show that ĤA does not affect states of total spin equal to zero (S = 0), and
that it increases systematically the energies of S = 1 states by the amount:

ĤA : δES=1 =
3A
4

(δES=0 = 0) , (8.3)

where A is the same constant as in (8.2).
(a) What are the energies of the S = 1 and S = 0 states, if one takes into

account the above annihilation term?
(b) Calculate the frequency of the corresponding hyperfine transition.

8.3 Zeeman Effect in the Ground State

The system is placed in a constant uniform magnetic field B directed along
the z axis. The additional Zeeman Hamiltonian has the form

ĤZ = ω1Ŝ1z + ω2Ŝ2z ,

where ω1 = −γ1B and ω2 = −γ2B.
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8.3.1. (a) Taking into account the result of question 2.2 and setting ω =
−γB, write the action of ĤZ on the basis states {|σ1, σ2〉}.

(b) Write in terms of A and h̄ω the matrix representation of

Ĥ = ĤSS + ĤA + ĤZ (8.4)

in the basis {|S,m〉} of the total spin of the two particles.
(c) Give the numerical value of h̄ω in eV for a field B = 1 T. Is it easy

experimentally to be in a strong field regime, i.e. h̄ω � A?

8.3.2. Calculate the energy eigenvalues in the presence of the field B; express
the corresponding eigenstates in the basis {|S,m〉} of the total spin. The
largest eigenvalue will be written E+ and the corresponding eigenstate |ψ+〉.
For convenience, one can introduce the quantity x = 8h̄ω/(7A), and the angle
θ defined by sin 2θ = x/

√
1 + x2, cos 2θ = 1/

√
1 + x2.

8.3.3. Draw qualitatively the variations of the energy levels in terms of B.
Are there any remaining degeneracies?

8.4 Decay of Positronium

We recall that when a system A is unstable and decays: A → B + · · · , the
probability for this system to decay during the interval [t, t+dt] if it is prepared
at t = 0, is dp = λe−λtdt, where the decay rate λ is related to the lifetime
τ of the system by τ = 1/λ. If the decay can proceed via different channels,
e.g. A → B + · · · and A → C + · · · , with respective decay rates λ1 and λ2,
the total decay rate is the sum of the partial rates, and the lifetime of A is
τ = 1/(λ1 + λ2).
In all what follows, we place ourselves in the rest frame of the positronium.

8.4.1. In a two-photon decay, or annihilation, of positronium, what are the
energies of the two outgoing photons, and what are their relative directions?

8.4.2. One can show that the annihilation rate of positronium into photons
in an orbital state |n, l,m〉 is proportional to the probability for the electron
and positron to be at the same point, i.e. to |ψnlm(0)|2. In what orbital states
is the annihilation possible?

8.4.3. In quantum field theory, one can show that, owing to charge conjuga-
tion invariance,
(a) a singlet state, S = 0, can only decay into an even number of photons:

2, 4, · · ·
(b) a triplet state, S = 1, can only decay into an odd number of photons:

3, 5, · · ·
In the orbital ground state ψ100, split by spin–spin interactions as calculated
in Sect. 2, the lifetime of the singlet state is τ2 ∼ 1.25 × 10−10 s, and the
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lifetime of either of the three triplet states is τ3 ∼ 1.4×10−7 s. Quantum field
theory predicts:

λ2 =
1
τ2

= 4πα2 c

(
h̄

mc

)2

|ψ100(0)|2, λ3 =
1
τ3

=
4
9π

(π2 − 9)αλ2 .

Compare theory and experiment.

8.4.4. In order to determine the hyperfine constant A of positronium, it is
of interest to study the energy and the lifetime of the level corresponding to
the state |ψ+〉, defined in question 3.2, as a function of the field B.
¿From now on, we assume that the field is weak, i.e. |x| = |8h̄ω/(7A)| � 1,
and we shall make the corresponding approximations.
(a) What are, as a function of x, the probabilities pS ans pT of finding the

state |ψ+〉 in the singlet and triplet states respectively?
(b) Use the result to calculate the decay rates λ+

2 and λ+
3 of the state |ψ+〉

into two and three photons respectively, in terms of the parameter x, and
of the rates λ2 and λ3 introduced in question 4.4.

(c) What is the lifetime τ+(B) of the state |ψ+〉? Explain qualitatively its
dependence on the applied field B, and calculate τ+(B) for B = 0.4 T .

1. One measures, as a function of B, the ratio R = τ+(B)/τ+(0) of the life-
time of the |ψ+〉 state with and without a magnetic field. The dependence
on B of R is given in Fig. 8.1, with the corresponding error bars.
(i) What estimate does one obtain for the hyperfine constant, A, using

the value of the magnetic field for which the ratio R has decreased by
a factor two?

(ii) How do theory and experiment compare?

Fig. 8.1. Variation of the ratio R defined in the text as a function of the applied
magnetic field B
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8.5 Solutions

Section 8.1: Positronium Orbital States

In positronium, we have, by scaling:
8.1.1. A reduced mass µ = m/2.

8.1.2. A center of mass Hamiltonian Ĥ = p̂2/2µ− q2/4πε0r.
8.1.3. The energy levels En = −(1/2)µc2α2/n2 = −(1/4)mc2α2/n2. The
degeneracy is n2 for each level, as in the hydrogen atom; the bound state
energies are half of those of hydrogen.

8.1.4. The Bohr radius is a0 = h̄/(µcα) = 2h̄/(mcα) = 2aH
0 ∼ 1.06 Å. The

diameter of positronium is 〈r〉 = 3a0/2 = 3aH
0 , and, since the proton is fixed,

the diameter of the hydrogen is 2〈r〉H = 3aH
0 . Therefore the two systems have

the same size.

8.1.5. The ground state wave function is ψ100(r) = e−r/a0/
√
πa3

0, and we
have |ψ100(0)|2 = (mcα/(2h̄))3/π.

Section 8.2: Hyperfine Splitting

8.2.1. In the orbital ground state, the degeneracy is 4, corresponding to the
number of independent spin states.

8.2.2. Since the masses are equal, but the charges are opposite, we have
γ1 = q/m, γ2 = −q/m, γ = q/m.

8.2.3. As usual, we can express the spin–spin operator in terms of the total
spin S as S1 · S2 = [S2 − S2

1 − S2
2 ]/2. Hence, the orbital ground state is split

into:
(a) the triplet states: | + +〉, (| + −〉 + | − +〉)/√2, | − −〉, with the energy
shift:

ET = A/4 ,

(b) the singlet state: (| + −〉 − | − +〉)/√2, with the energy shift:

ES = −3A/4 .

8.2.4. (a) There is a mass factor of ∼ 1/2000, a factor of ∼ 2.8 for the
gyromagnetic ratio of the proton, and a factor of 8 due to the value of the wave
function at the origin. Altogether, this results in a factor of ∼ 22/2000 ∼ 1%
for the ratio of hyperfine splittings H/(e+e−).
(b) The numerical value of A is

A =
1

12πε0

(
qh̄

mc

)2 (mcα
h̄

)3

=
1
3
mc2α4 ∼ 4.84 × 10−4 eV.
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(c) This corresponds to a transition frequency of ν = A/h � 117 GHz. This
prediction is not in agreement with the experimental result (∼ 200 GHz).

8.2.5. (a) Taking into account ĤA, the triplet state energy is A while the
singlet state energy is −3A/4. The splitting is δE = 7A/4 = 8.47 × 10−4 eV.
(b) The corresponding frequency is ν = δE/h ∼ 205 GHz, in agreement with
experiment.

Section 8.3: Zeeman Effect in the Ground State

8.3.1.
(a) The Zeeman Hamiltonian is ĤZ = ω(Ŝ1z − Ŝ2z), therefore, we have

ĤZ| + +〉 = ĤZ| − −〉 = 0
ĤZ| + −〉 = h̄ω| + −〉
ĤZ| − +〉 = −h̄ω| − +〉 .

In terms of total spin states, this results in

ĤZ|1, 1〉 = ĤZ|1,−1〉 = 0
ĤZ|1, 0〉 = h̄ω|0, 0〉
ĤZ|0, 0〉 = h̄ω|1, 0〉 .

(b) Hence the matrix representation in the coupled basis:

ĤZ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 h̄ω
0 0 h̄ω 0

⎞
⎟⎟⎠ ,

where the elements are ordered according to: |1, 1〉, |1,−1〉, |1, 0〉, |0, 0〉.
8.3.2. Similarly, one has the matrix representation of the full spin Hamil-
tonian:

Ĥ =

⎛
⎜⎜⎝
A 0 0 0
0 A 0 0
0 0 A h̄ω
0 0 h̄ω −3A/4

⎞
⎟⎟⎠ .

In a field of 1 T, |h̄ω| = qh̄B/m = 2µBB � 1.16 × 10−4 eV. The strong field
regime corresponds to |h̄ω| � A , i.e. B � 4 T, which is difficult to reach.
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8.3.3. (a) Two eigenstates are obvious: |1, 1〉 and |1,−1〉, which correspond
to the same degenerate eigenvalue A of the energy. The two others are obtained
by diagonalizing a 2 × 2 matrix:

|ψ+〉 = cos θ |1, 0〉 + sin θ |0, 0〉 ,
|ψ−〉 = − sin θ |1, 0〉 + cos θ |0, 0〉 ,

corresponding to the energies

E± =
A

8
±
[(

7A
8

)2

+ (h̄ω)2
]1/2

=
A

8

(
1 ± 7

√
1 + x2

)
.

(b) The triplet states | + +〉 and | − −〉 remain degenerate, as shown in
Fig. 8.2.

Fig. 8.2. Variation of the hyperfine energy levels with applied magnetic field

Section 8.4: Decay of Positronium

8.4.1. In a two-photon decay, the outgoing photons have opposite momenta,
their energies are both mc2 = 511 keV.

8.4.2. The wave function vanishes at the origin, except for s-waves
(|ψnlm(0)|2 = 0 if l �= 0), owing to the centrifugal barrier. Therefore the
decay can only occur when the positronium is in an s-state.

8.4.3. The given formulas correspond to λ2 = mc2α5/(2h̄) which yields τ2 =
1.24 × 10−10 s and τ3 = 1.38 × 10−7 s, in agreement with experiment.
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8.4.4. (a) For a given value of the applied field, with the positronium pre-
pared in the state |ψ+〉, the probabilities of finding the system in the singlet
and triplet states are respectively pS = sin2 θ ∼ x2/4 and pT = cos2 θ ∼
1 − x2/4.
(b) The rate for |ψ+〉 to decay into two photons is the product of the prob-
ability of finding |ψ+〉 in the singlet state with the singlet state decay rate:

λ+
2 = pSλ2 ∼ x2λ2/4 = x2/(4τ2) .

Similarly, one has

λ+
3 = pTλ3 ∼ (1 − x2/4)λ3 = (1 − x2/4)/τ3 .

(c) The lifetime of the |ψ+〉 state is

τ+ =
1

λ+
2 + λ+

3

=
τ3

1 − x2

4 + x2

4
τ3
τ2

� τ3

1 + 16h̄2ω2

49A2
τ3
τ2

.

As the field B increases, the state |ψ+〉, which is purely triplet for B = 0,
acquires a greater and greater singlet component. Therefore its lifetime de-
creases as B increases. For B = 0.4 T, one has τ+ = 0.23 τ3 = 3.2 × 10−8 s.
(d) Experimentally, one has R ∼ 0.5, i.e. x2τ3/4τ2 � 1 for B ∼ 0.22 T.
Therefore x � 6 × 10−2 and, since A = 8h̄ω/7x and h̄ω = 2.3 × 10−5 eV, the
result is A ∼ 4.4× 10−4 eV, in good agreement with theoretical expectations.

Section 8.5: References

S. DeBenedetti and H.C. Corben, Positronium, Ann. Rev. Nucl. Sci., 4, 191
(1954).
Stephan Berko and Hugh N. Pendleton, Positronium, Ann. Rev. Nucl. Sci.,
30, 543 (1980).
A.P. Mills and S. Chu, Precision Measurements in Positronium, in Quan-
tum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore 1990)
pp. 774-821.
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The Hydrogen Atom in Crossed Fields

We study the modification of the energy spectrum of a hydrogen atom placed
in crossed static electric and magnetic fields in perturbation theory. We thus
recover a result first derived by Pauli.

In his famous 1925 paper on the hydrogen atom, W. Pauli made use of the
particular symmetry of the Coulomb problem. In addition to the hydrogen
spectrum, he was able to calculate the splitting of the levels in an electric
field (Stark effect) or in a magnetic field (Zeeman effect). Pauli also noticed
that he could obtain a simple and compact formula for the level splitting
in a superposition of a magnetic field B0 and an electric field E0 both sta-
tic and uniform, and perpendicular to each other. In this case, he found that a
level with principal quantum number n is split into 2n − 1 sublevels
En + δE(k)

n with
δE(k)

n = h̄k (ω2
0 + ω2

e )1/2 , (9.1)

where k is an integer ranging from −(n−1) to n−1, ω0 and ωe are respectively
proportional to B0 and E0, and ωe can be written as

ωe =
3
2
Ωef(n) with Ωe =

4πε0h̄
Mqe

E0 ,

where M and qe are the mass and charge of the electron, and where f(n)
depends on n only.

It is only in 1983 that Pauli’s result was verified experimentally. Our pur-
pose, here, is to prove (9.1) in the special case n = 2, to calculate ω0 and ωe

in that case, and, by examining the experimental result for n = 34, to guess
what was the very simple formula found by Pauli for f(n).
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9.1 The Hydrogen Atom in Crossed Electric
and Magnetic Fields

We consider the n = 2 level of the hydrogen atom. We neglect all spin effects.
We assume that B0 is along the z axis and E0 along the x axis. We use first
order perturbation theory.

9.1.1. What are the energy levels and the corresponding eigenstates in the
presence of B0 only? Check that (9.1) is valid in this case and give the value
of ω0?

9.1.2. In the presence of E0 only, the perturbing Hamiltonian is the electric
dipole term ĤE = −D̂.E0 = −qer̂.E0. Write the matrix representing ĤE in
the n = 2 subspace under consideration.
We recall that:
(a)
∫∞
0
r3R2s(r)R2p(r) dr = 3

√
3 a1 where R2s and R2p are the radial wave

functions for the level n = 2, l = 0 and n = 2, l = 1 respectively, and
where a1 = h̄2/(Me2) is the Bohr radius (e2 = q2e/4πε0).

(b) In spherical coordinates (θ polar angle and φ azimuthal angle), the l = 0
and l = 1 spherical harmonics are

Y 0
0 (θ, φ) =

1√
4π
, Y ±1

1 (θ, φ) = ∓
√

3
8π

sin θ e±iφ,

Y 0
1 (θ, φ) =

√
3
4π

cos θ. (9.2)

9.1.3. Calculate the energies of the levels originating from the n = 2 level in
the presence of the crossed fields E0 and B0. Show that one recovers (9.1)
with ωe = (3/2)f(2)Ωe, and give the value of f(2).

9.2 Pauli’s Result

The first experimental verification of Pauli’s result was performed in 1983.1

In Fig. 9.1, the points correspond to a sub-level with a given value of k arising
from the n = 34 level of an hydrogen-like atom. All points correspond to the
same energy of this level, but to different values of the static fields E0 and
B0.

Knowing that ωe is a function of the principal quantum number n of the
form: ωe = (3/2)f(n)Ωe, and that ω0 and Ωe are the constants introduced
above, answer the following questions:
1 Fig. 9.1 was obtained by F. Biraben, D. Delande, J.-C. Gay, and F. Penent, with

rubidium atoms prepared in a Rydberg state, i.e. with an electron placed in a
strongly excited level (see J.-C. Gay, in Atoms in unusual situations, J.-P. Briand
ed., p. 107, Plenum, New York, 1986).
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Fig. 9.1. Values of the electric and magnetic fields giving rise to the same sub-level
energy of the n = 34 level of a hydrogen-like atom

9.2.1. Does the experimental data agree with (9.1)?

9.2.2. Write the quantity ω2
0 + ω2

e in the form λ
(
γB2

0 + f2(n)E2
0

)
, give the

value of the constant γ, and calculate f(34).

9.2.3. Guess Pauli’s result concerning f(n).

9.3 Solutions

Section 9.1: The Hydrogen Atom in Crossed Electric
and Magnetic Fields

9.1.1. Consider a state |n, l,m〉. The orbital magnetic moment of the elec-
tron is µ̂orb = γ0L̂, with γ0 = qe/(2M). The magnetic Hamiltonian is
Ĥ = −µ̂orb.B = −(qe/2M)L̂zB0.
At first order perturbation theory, the energy levels originating from the n = 2
subspace (angular momentum l = 0 or l = 1) are mh̄ω0 with m = −1, 0,+1,
and ω0 = −qeB0/(2M) (ω0 > 0 for B0 > 0). The corresponding states are

|2s〉 and |2p,m = 0〉 δE = 0
|2p,m = −1〉 δE = −h̄ω0

|2p,m = +1〉 δE = +h̄ω0 .

9.1.2. The Hamiltonian is ĤE = −qe x̂ E0. We have to calculate the 16 matrix
elements 〈2, l′,m′|x̂|2, l,m〉. The integral to be evaluated is
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〈2, l′,m′|x̂|2, l,m〉 =
∫ ∫ (

Y m′
l′ (θ, φ)

)∗
sin θ cosφ Y m

l (θ, φ) d2Ω

×
∫ ∞

0

r3 (R2,l′(r))
∗
R2,l(r) dr .

The angular integral vanishes if l = l′. We need only consider the terms l′ = 0,
l = 1 (and the hermitian conjugate l′ = 1, l = 0), i.e.

3
√

3 a1

∫ ∫
1√
4π

√
2π
3

(−Y 1
1 (θ, φ) + Y −1

1 (θ, φ)) Y m
1 (θ, φ) d2Ω

where we have incorporated the radial integral given in the text. One therefore
obtains 3 a1 (δm,−1 − δm,1)/

√
2. The only non-vanishing matrix elements are

〈2s|Ĥ|2p,m = ±1〉 and their hermitian conjugates.
Setting Ωe = 4πε0h̄E0/(Mqe) = qeE0a1/h̄, we obtain the matrix

ĤE =
3h̄Ωe√

2

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 −1
1 0 −1 0

⎞
⎟⎟⎠ .

where the rows (columns) are ordered as 2p, m = 1, 0, −1; 2s.

9.1.3. We want to find the eigenvalues of the matrix

h̄

⎛
⎜⎜⎝

ω0 0 0 3Ωe/
√

2
0 0 0 0
0 0 −ω0 −3Ωe/

√
2

3Ωe/
√

2 0 −3Ωe/
√

2 0

⎞
⎟⎟⎠ .

There is an obvious eigenvalue λ = 0 since the |2p,m = 0〉 and |2s〉 states
do not mix in the presence the electric field. The three other eigenvalues are
easily obtained as the solutions of:

λ(h̄2ω2
0 − λ2) + 9 h̄2Ω2

eλ = 0 ,

i.e. λ = 0 and λ = ±h̄
√
ω2

0 + 9Ω2
e .

The shifts of the energy levels are therefore: δE = 0 twice degenerate, and
δE = ±h̄

√
ω2

0 + 9Ω2
e . If we adopt the prescription given in the text, we obtain

ωe = 3Ωe =⇒ f(2) = 2 .

Section 9.2: Pauli’s Result

9.2.1. We remark that the experimental points are aligned on a straight line
aB2

0 + bE2
0 = constant which is in agreement with (9.1), i.e. a constant value

of ω2
0 + ω2

e corresponds to a constant value of each energy level.



9.3 Solutions 85

9.2.2. Given the definitions of ω0 and Ωe , one has

ω2
0 + ω2

e =
9
4

(
4πε0h̄
Mqe

)2 [(αc
3

)2

B2
0 + f2(n)E2

0

]
,

where α is the fine structure constant and c the velocity of light. The experi-
mental line

(αc/3)2B2
0 + f2(34)E2

0

goes through the points E2
0 = 0, B2

0 � 87 × 10−4 T2 and B2
0 = 0, E2

0 �
4 × 106 V2m−2. This gives f(34) = 34.

9.2.3. Indeed, the very simple result found by Pauli was f(n) = n.
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Energy Loss of Ions in Matter

When a charged particle travels through condensed matter, it loses its kinetic
energy gradually by transferring it to the electrons of the medium. In this
chapter we evaluate the energy loss of the particle as a function of its mass and
its charge, by studying the modifications that the state of an atom undergoes
when a charged particle passes in its vicinity. We show how this process can
be used to identify the products of a nuclear reaction.

The electric potential created by the moving particle appears as a time-
dependent perturbation in the atom’s Hamiltonian. In order to simplify the
problem, we shall consider the case of an atom with a single external electron.
The nucleus and the internal electrons will be treated globally as a core of
charge +q, infinitely massive and, therefore, fixed in space. We also assume
that the incident particle of charge Z1q is heavy and non-relativistic, and that
its kinetic energy is large enough so that in good approximation its motion
can be considered linear and uniform, of constant velocity v, when it interacts
with an atom.

Here q denotes the unit charge and we set e2 = q2/(4πε0). We consider the
x, y plane defined by the trajectory of the particle and the center of gravity
of the atom, which is chosen to be the origin, as shown on Fig. 10.1.

Let R(t) be the position of the particle at time t and r = (x, y, z) the
coordinates of the electron of the atom. The impact parameter is b and the
notation is specified in Fig. 10.1. The time at which the particle passes nearest
to the atom, i.e. x = b, y = 0 is denoted t = 0. We write En and |n〉 for the
energy levels and corresponding eigenstates of the atom in the absence of an
external perturbation.

10.1 Energy Absorbed by One Atom

10.1.1. Write the expression for the time-dependent perturbing potential
V̂ (t) due to the presence of the charged particle.
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10.1.2. We assume that the impact parameter b is much larger than the
typical atomic size, i.e. b � 〈r〉, so that |R(t)| � |r| for all t. Replace V̂ (t)
by its first order expansion in |r|/|R| and express the result in terms of the
coordinates x and y of the electron, and of b, v and t.

10.1.3. Initially, at time t = −∞, the atom is in a state |i〉 of energy Ei.
Using first order time-dependent perturbation theory, write the probability
amplitude γif to find the atom in the final state |f〉 of energy Ef after the
charged particle has passed (t = +∞). We set ωfi = (Ef −Ei)/h̄ and we only
consider the case Ef �= Ei.

10.1.4. The calculation of γif involves the Bessel function K0(z). One has∫ ∞

0

cosωt
(β2 + t2)1/2

dt = K0(ωβ)
∫ ∞

0

t
sinωt

(β2 + t2)3/2
dt = ωK0(ωβ) .

Express γif in terms of K0 and its derivative.
The asymptotic behavior of K0 is K0(z) � − ln z for z � 1, and K0(z) �√

2π/z e−z for z � 1. Under what condition on the parameters ωfi, b and v
is the transition probability Pif = |γif |2 large?
Show that, in that case, one obtains

Pif �
(

2Z1e
2

h̄bv

)2

|〈f |x̂|i〉|2 .

10.1.5. Give the physical interpretation of the condition derived above. Show
that, given the parameters of the atom, the crucial parameter is the effective
interaction time, and give a simple explanation of this effect.

10.2 Energy Loss in Matter

We assume in the following that the Hamiltonian of the atom is of the form

Fig. 10.1. Definition of the coordinates.
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Ĥ0 =
p̂2

2m
+ V (r̂) .

10.2.1. Thomas–Reiche–Kuhn Sum Rule.
(a) Calculate the commutator [x̂, Ĥ0].
(b) Deduce from this commutator a relation between the matrix elements

〈i|x̂|f〉 and 〈i|p̂|f〉, where |i〉 and |f〉 are eigenstates of Ĥ0.
(c) Applying a closure relation to [x̂, p̂] = ih̄, show that:

2m
h̄2

∑
f

(Ef − Ei)|〈f |x̂|i〉|2 = 1

for all eigenstates |i〉 of H0.

10.2.2. Using the Thomas–Reiche–Kuhn sum rule, calculate the expectation
value δE of the energy loss of the incident particle when it interacts with the
atom.

Let E be the energy of the particle before the interaction. Which parame-
ters does the product E δE depend on?

10.2.3. Experimental Application. We are now interested in incident par-
ticles which are fully ionized atoms (Z1 = Z, where Z is the atomic number),
whose masses are, to a good approximation, proportional to the mass num-
ber A = Z + N (where N is the number of neutrons of the isotope). When
these ions traverse condensed matter, they interact with many atoms of the
medium, and their energy loss implies some averaging over the random impact
parameter b. The previous result then takes the form

E δE = kZ2A ,

where the constant k depends on the nature of the medium.
Semiconductor detectors used for the identification of the nuclei in nu-

clear reactions are based on this result. In the following example, the ions to
be identified are the final state products of a reaction induced by 113 MeV
nitrogen ions impinging on a target of silver atoms.

In Fig. 10.2 each point represents an event, i.e. the energy E and energy loss
δE of an ion when it crosses a silicon detector. The reference point corresponds
to the isotope A = 12 of carbon 12

6 C (we use the notation A
ZN for a nucleus

charge Z and mass number A) which loses δE = 30 MeV at an energy E =
50 MeV.
(a) Calculate the constant k and the theoretical prediction for the energy

loss at 60 and 70 MeV. Put the corresponding points on the figure.
(b) Assuming the reaction could produce the following isotopes:

– boron, Z = 5, A = 10, 11, 12
– carbon, Z = 6, A = 11, 12, 13, 14
– nitrogen Z = 7, A = 13, 14, 15, 16,
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Fig. 10.2. Energy loss δE versus energy E through a silicon detector, of the final
products of a reaction corresponding to 113 MeV nitrogen ions impinging on a target
of silver atoms

what nuclei are effectively produced in the reaction? Justify your answers
by putting the points corresponding to E = 50 MeV and E = 70 MeV
on the figure.

10.3 Solutions

Section 10.1: Energy Absorbed by One Atom

10.1.1. The interaction potential between the particle and the atom is the
sum of the Coulomb interactions between the particle and the core, and those
between the particle and the outer electron:

V̂ (t) =
Z1e

2

R(t)
− Z1e

2

|R(t) − r̂| .

10.1.2. For |R| � 〈|r|〉, we have

1
|R − r| =

(
R2 − 2R · r + r2

)−1/2 � 1
R

+
r · R
R3

.
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Therefore

V̂ (t) � − Z1e
2

R3(t)
r̂ · R(t) .

Since R(t) = (b, vt, 0),we obtain

V̂ (t) � − Z1e
2

(b2 + v2t2)3/2
(x̂b+ ŷvt) .

10.1.3. To first order in V̂ , the probability amplitude is

γif =
1
ih̄

∫ +∞

−∞
eiωfit〈f |V̂ (t)|i〉dt .

Inserting the value found above for V̂ (t), we find

γif = − 1
ih̄

∫ +∞

−∞

Z1e
2eiωfit

(b2 + v2t2)3/2
(b〈f |x̂|i〉 + vt〈f |ŷ|i〉) dt .

10.1.4. One has∫ ∞

0

cosωt dt

(β2 + t2)3/2
= − 1

β

d

dβ
K0(ωβ) = −ω

β
K ′

0(ωβ) .

Setting β = b/v, the amplitude γif is

γif = i
2Z1e

2ωfi

h̄v2
(K0(ωfib/v) 〈f |ŷ|i〉 −K ′

0(ωfib/v) 〈f |x̂|i〉) .

The probability Pif = |γif |2 is large if K0 or K ′
0 are also large. This happens

for ωfib/v � 1. In this limit, K0(z) ∼ − ln z and K ′
0(z) ∼ −1/z, and we

obtain

γif = i
2Z1e

2

h̄vb

(
〈f |x̂|i〉 − 〈f |ŷ|i〉 ωfib

v
ln
ωfib

v

)
.

Since |〈f |x̂|i〉| � |〈f |ŷ|i〉|, one can neglect the second term (x lnx � 1 for
x� 1) and we obtain, for ωfib/v � 1,

Pif = |γif |2 �
(

2Z1e
2

h̄bv

)2

|〈f |x̂|i〉|2 .

10.1.5. The time τ = b/v is the characteristic time during which the inter-
action is important, as we can see on the above formulas. For t � τ , the
interaction is negligible.

The condition ωfiτ � 1 means that the interaction time τ must be much
smaller than the Bohr period ∼ 1/ωfi of the atom. The perturbation V̂ (t)
must have a large Fourier component at ω = ωfi if we want the probability
Pif to be significant (the shorter in time the perturbation, the larger the
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spread of its Fourier transform in frequency). In the opposite limiting case,
where the perturbation is infinitely slow, the atom is not excited.

This observation provides an alternative way to evaluate the integrals of
question 1.3. The only values of t which contribute significantly are those for
which t is not too large, compared to τ (say |t| � 10 τ). If ωfiτ � 1, one
can replace eiωfit by 1 in these integrals; the second integral is then zero for
symmetry reasons and the first one is easily evaluated, and gives the desired
result.

Section 10.2: Energy Loss in Matter

10.2.1. Thomas–Reiche–Kuhn Sum Rule.
(a) We find [x̂, Ĥ0] = ih̄p̂/m.
(b) Taking the matrix element of this commutator between two eigenstates
|i〉 and |f〉 of Ĥ0, we obtain:

ih̄
m

〈f | p̂ | i〉 = 〈f | [x̂, Ĥ0] | i〉 = (Ei − Ef )〈f | x̂ | i〉 .

(c) We now take the matrix element of [x̂, p̂] = ih̄ between 〈i| and |i〉 and
we use the closure relation:

ih̄ =
∑

f

〈i | x̂ | f〉 〈f | p̂ | i〉 −
∑

f

〈i | p̂ | f〉 〈f | x̂ | i〉

=
m

ih̄

∑
f

(Ei − Ef ) | 〈f | x̂ | i〉 | 2 − m

ih̄

∑
f

(Ef − Ei) | 〈i | x̂ | f〉 | 2

=
2m
ih̄

∑
f

(Ei − Ef )| 〈f | x̂ | i〉 | 2 ,

which proves the Thomas–Reiche–Kuhn sum rule.

10.2.2. The expectation value δE of the energy transferred to the atom is

δE =
∑

f

(Ef −Ei)Pif =
(

2Z1e
2

h̄bv

)2 ∑
f

(Ef − Ei) | 〈f | x̂ | i〉 | 2 .

Making use of the Thomas–Reiche–Kuhn sum rule, we obtain

δE =
2Z2

1e
4

mb2v2
,

where m is the electron mass. If the ion has mass M , its kinetic energy is
E = Mv2/2, and we therefore obtain a very simple expression:
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E δE =
M

m

(
Z1e

2

b

)2

,

where we see that the product E δE does not depend on the energy of the
incident particle, but is proportional to its mass and to the square of its charge.

10.2.3. With the 12
6C point, one obtains k = 3.47. We have put the calculated

points of the various isotopes on Fig. 10.3.
We make the following observations:

(a) For boron, the isotopes 10B and 11B are produced, but not 12B.
(b) For carbon, 12C is produced more abundantly than 13C, 14C and 11C.
(c) For nitrogen, there is an abundant production of 14N, a smaller produc-
tion of 15N, but practically no 13N or 16N.

10
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50

50 60 70 80 90 10040302010 E(MeV)

14
7 N(113MeV)→Ag

12
6C

δE(MeV)

10
11 11

12
13
14

14
15 7 N

6 C
5 B

Fig. 10.3. Interpretation of the data of Fig. 10.2
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10.4 Comments

Ionization of matter has numerous applications, for instance in developing
detectors for particle and nuclear physics, or in defining protection regulations
against radioactivity. In order to calculate the energy loss of an ion in matter,
one must integrate the above results over the impact parameter. In practice,
taking everything into account, one ends up with the following formula, due
to Hans Bethe and Felix Bloch, for the rate of energy loss per unit length:

−dE
dx

=
4πK2Z2e4N
mec2β2

(ln
(

2mec
2β2

I(1 − β2)

)
− β2) (10.1)

where β = v/c, K is a constant, N is the number density of atoms in the
medium and I is the mean excitation energy of the medium (I ∼ 11.5 eV).

The cases of protons or heavy ions is of great interest and, in comparatively
recent years, it has allowed a major improvement in the medical treatment of
tumors in the eyes (proton therapy) and in the brain (ion therapy) . Owing
to the factor 1/β2, or equivalently 1/v2, in (10.1), practically all the energy
is deposited in a very localized region near the stopping point. Figure (10.4)
shows the comparison between the effect of ion beams and photons. One can
see the enormous advantage, from the medical point of view, of heavy ion
beams. These permit to attack and destroy tumors in a very accurate and
localized manner, as opposed to γ rays which produce damages all around the
point of interest.

Pioneering work on brain tumor therapy has been developed in Darmstadt
at the Heavy ion accelerator facility. Information can be found on the sites

Fig. 10.4. Energy loss of ions (left) and survival rate of cells (right) as a function
of the penetration depth. The dashed curve corresponds to the same quantities for
photons. We can see the considerable medical advantage to use heavy ion beams.
Document from the data of Heavy ion therapy at GSI, Darmstadt, http://www.gsi.de
(Courtesy James Rich)
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http://www-aix.gsi.de/ bio/home.html
http://www.sgsmp.ch/protsr-f.htm

This promising sector of medical applications in rapidly developing at
present.



Part II

Quantum Entanglement and Measurement
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The EPR Problem and Bell’s Inequality

When a quantum system possesses more than one degree of freedom, the asso-
ciated Hilbert space is a tensor product of the spaces associated to each degree
of freedom. This structure leads to specific properties of quantum mechanics,
whose paradoxical character has been pointed out by Einstein, Podolsky and
Rosen. Here we study an example of such a situation, by considering entangled
states for the spins of two particles.

The system under consideration is a hydrogen atom which is dissociated
into an electron and a proton. We consider the spin states of these two parti-
cles when they have left the dissociation region and are located in geometri-
cally distinct regions, e.g. a few meters from one another. They are then free
particles whose spin states do not evolve.

11.1 The Electron Spin

Consider a unit vector uϕ in the (z, x) plane: uϕ = cosϕuz +sinϕux, where
uz and ux are unit vectors along the z and x axes. We note Ŝeϕ = Ŝe.uϕ the
component of the electron spin along the uϕ axis.

11.1.1. What are the eigenvalues of Ŝeϕ?

11.1.2. We denote the eigenvectors of Ŝeϕ by |e : + ϕ〉 and |e : − ϕ〉 which,
in the limit ϕ = 0, reduce respectively to the eigenvectors |e : +〉 and |e : −〉
of Ŝez. Express |e : + ϕ〉 and |e : − ϕ〉 in terms of |e : +〉 and |e : −〉.
11.1.3. Assume the electron is emitted in the state |e : + ϕ〉. One measures
the component Ŝeα of the spin along the direction uα = cosα uz + sinα ux.
What is the probability P+(α) of finding the electron in the state |e : + α〉?
What is the expectation value 〈Ŝeα〉 in the spin state |e : + ϕ〉?
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11.2 Correlations Between the Two Spins

We first assume that, after the dissociation, the electron–proton system is in
the factorized spin state |e : + ϕ〉 ⊗ |p : − ϕ〉.
We recall that if |u1〉 and |u2〉 are vectors of E, and |v1〉 and |v2〉 of F , if
|u〉 ⊗ |v〉 belongs to the tensor product G = E ⊗ F , and if Â and B̂ act
respectively in E and F , Ĉ = Â⊗ B̂ acting in G, one has:

〈u2| ⊗ 〈v2| Ĉ |u1〉 ⊗ |v1〉 = 〈u2|Â|u1〉 〈v2|B̂|v1〉 .

11.2.1. What is the probability P+(α) of finding +h̄/2 when measuring the
component Ŝeα of the electron spin in this state?
Having found this value, what is the state of the system after the measure-
ment?
Is the proton spin state affected by the measurement of the electron spin?

11.2.2. Calculate the expectation values 〈Ŝeα〉 and 〈Ŝpβ〉 of the components
of the electron and the proton spins along axes defined respectively by uα and
uβ = cosβ uz + sinβ ux.

11.2.3. The correlation coefficient between the two spins E(α, β) is defined
as

E(α, β) =
〈Ŝeα ⊗ Ŝpβ〉 − 〈Ŝeα〉 〈Ŝpβ〉(

〈Ŝ2
eα〉 〈Ŝ2

pβ〉
)1/2

. (11.1)

Calculate E(α, β) in the state under consideration.

11.3 Correlations in the Singlet State

We now assume that, after the dissociation, the two particles are in the singlet
spin state:

|Ψs〉 =
1√
2

(
|e : +〉 ⊗ |p : −〉 − |e : −〉 ⊗ |p : +〉

)
. (11.2)

11.3.1. One measures the component Ŝeα of the electron spin along the di-
rection uα. Give the possible results and their probabilities.

11.3.2. Suppose the result of this measurement is +h̄/2. Later on, one mea-
sures the component Ŝpβ of the proton spin along the direction uβ . Here again
give the possible results and their probabilities.

11.3.3. Would one have the same probabilities if the proton spin had been
measured before the electron spin?
Why was this result shocking for Einstein who claimed that “the real states
of two spatially separated objects must be independent of one another”?
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11.3.4. Calculate the expectation values 〈Ŝeα〉 and 〈Ŝpβ〉 of the electron and
the proton spin components if the system is in the singlet state (11.2).

11.3.5. Calculate E(α, β) in the singlet state.

11.4 A Simple Hidden Variable Model

For Einstein and several other physicists, the solution to the “paradox” uncov-
ered in the previous section could come from the fact that the states of quan-
tum mechanics, in particular the singlet state (11.2), provide an incomplete
description of reality. A “complete” theory (for predicting spin measurements,
in the present case) should incorporate additional variables or parameters,
whose knowledge would render measurements independent for two spatially
separated objects. However, present experiments cannot determine the values
of these parameters, which are therefore called “hidden variables”. The ex-
perimental result should then consist in some averaging over these unknown
parameters.

In the case of interest, a very simplified example of such a theory is the
following. We assume that, after each dissociation, the system is in a factorized
state |e : +ϕ〉⊗ |p : −ϕ〉, but that the direction ϕ varies from one event to the
other. In this case, ϕ is the hidden variable. We assume that all directions ϕ
are equally probable, i.e. the probability density that the decay occurs with
direction ϕ is uniform and equal to 1/2π.

Owing to this ignorance of the value of ϕ, the expectation value of an
observable Â is now defined to be:

〈Â〉 =
1
2π

∫ 2π

0

〈e : + ϕ| ⊗ 〈p : − ϕ| Â |e : + ϕ〉 ⊗ |p : − ϕ〉 dϕ . (11.3)

11.4.1. Using the definition (11.1) for E(α, β) and the new definition (11.3)
for expectation values, calculate E(α, β) in this new theory. Compare the
result with the one found using “orthodox” quantum mechanics in Sect. 3.5.

11.4.2. The first precise experimental tests of hidden variable descriptions
vs. quantum mechanics have been performed on correlated pairs of photons
emitted in an atomic cascade.1 Although one is not dealing with spin-1/2
particles in this case, the physical content is basically the same as here. As
an example, Fig. 11.1 presents experimental results obtained by A. Aspect
and his collaborators in 1982. It gives the variation of E(α, β) as a function
of the difference α− β, which is found to be the only experimentally relevant

1 The precision has now been greatly improved with the use of photon pairs
produced by nonlinear splitting of ultraviolet photons (for a review, see e.g.
A. Aspect, Nature, vol. 398, p. 189 (18 March 1999)).
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quantity.
Which theory, quantum mechanics or the simple hidden variable model de-
veloped above, gives a good account of the experimental data?

11.5 Bell’s Theorem and Experimental Results

As proved by Bell in 1965, the disagreement between the predictions of quan-
tum mechanics and those of hidden variable theories is actually very general
when one considers correlation measurements on entangled states. We now
show that the correlation results for hidden variable theories are constrained
by what is known as Bell’s inequality, which, however, can be violated by
quantum mechanics in specific experimental configurations.

Consider a hidden variable theory, whose result consists in two functions
A(λ,uα) and B(λ,uβ) giving respectively the results of the electron and pro-
ton spin measurements. Each of these two functions takes only the two values
h̄/2 and −h̄/2. It depends on the value of the hidden variable λ for the con-
sidered electron–proton pair. The nature of this hidden variable need not be
further specified for the proof of Bell’s theorem. The result A of course de-
pends on the axis uα chosen for the measurement of the electron spin, but
it does not depend on the axis uβ . Similarly B does not depend on uα. This
locality hypothesis is essential for the following discussion.

Fig. 11.1. Measured variation of E(α, β) as a function of α − β. The vertical bars
represent the experimental error bars
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11.5.1. Give the correlation coefficient E(α, β) for a hidden variable theory
in terms of the functions A and B and the (unknown) distribution law P (λ)
for the hidden variable λ.

11.5.2. Show that for any set uα, u′
α, uβ , u′

β , one has

A(λ,uα) B(λ,uβ) +A(λ,uα) B(λ,u′
β)

+A(λ,u′
α) B(λ,u′

β) −A(λ,u′
α) B(λ,uβ) = ± h̄

2

2
. (11.4)

11.5.3. We define the quantity S as

S = E(α, β) + E(α, β′) + E(α′, β′) − E(α′, β) .

Derive Bell’s inequality
|S| ≤ 2 .

11.5.4. Consider the particular case α − β = β′ − α = α′ − β′ = π/4, and
compare the predictions of quantum mechanics with the constraint imposed
by Bell’s inequality.

11.5.5. The experimental results obtained by A. Aspect et al. are E(α, β) =
−0.66 (±0.04) for α−β = π/4 and E(α, β) = +0.68 (±0.03) for α−β = 3π/4.
Is a description of these experimental results by a local hidden variable theory
possible?
Are these results compatible with quantum mechanics?

11.6 Solutions

Section 11.1: The Electron Spin

11.1.1. In the eigenbasis |e : ±〉 of Ŝez, the matrix of Ŝeϕ is

h̄

2

(
cosϕ sinϕ
sinϕ − cosϕ

)
.

The eigenvalues of this operator are +h̄/2 and −h̄/2.

11.1.2. The corresponding eigenvectors are

|e : + ϕ〉 = cos
ϕ

2
|e : +〉 + sin

ϕ

2
|e : −〉

|e : − ϕ〉 = − sin
ϕ

2
|e : +〉 + cos

ϕ

2
|e : −〉.

11.1.3. The probability amplitude is 〈e : + α|e : + ϕ〉 = cos((ϕ− α)/2) and
the probability P+(α) = cos2((ϕ− α)/2). Similarly P−(α) = sin2((ϕ− α)/2),
and the expectation value is, finally,

〈Ŝeα〉 =
h̄

2
cos (ϕ− α) .



104 11 The EPR Problem and Bell’s Inequality

Section 11.2: Correlations Between the Two Spins

11.2.1. The projector on the eigenstate |e : + α〉, corresponding to the mea-
sured value, is |e : + α〉 〈e : + α| ⊗ Îp, where Îp is the identity operator on
the proton states. Therefore

P+(α) = |〈e : + α|e : + ϕ〉|2 = cos2
ϕ− α

2
,

and the state after measurement is |e : + α〉 ⊗ |p : − ϕ〉. The proton spin
is not affected, because the initial state is factorized (all probability laws are
factorized).

11.2.2. One has 〈Ŝeα〉 = h̄
2 cos (ϕ− α) and 〈Ŝpβ〉 = − h̄

2 cos (ϕ− β).

11.2.3. By definition, one has:

Ŝ2
eα =

h̄2

4
Îe and Ŝ2

pβ =
h̄2

4
Îp

and

〈Ŝeα ⊗ Ŝpβ〉 = 〈e : + ϕ|Ŝeα|e : + ϕ〉 〈p : − ϕ|Ŝpβ |p : − ϕ〉

= − h̄
2

4
cos(ϕ− α) cos(ϕ− β) .

Therefore E(α, β) = 0. This just reflects the fact that in a factorized state,
the two spin variables are independent.

Section 11.3: Correlations in the Singlet State

11.3.1. There are two possible values:
h̄/2, corresponding to the projector |e : + α〉 〈e : + α| ⊗ Îp, and
−h̄/2, corresponding to the projector |e : − α〉 〈e : − α| ⊗ Îp.
Therefore, the probabilities are

P+(α) =
1
2

(
|〈e : + α|e : +〉|2 + |〈e : + α|e : −〉|2

)
= 1/2

and similarly P−(α) = 1/2. This result is a consequence of the rotational
invariance of the singlet state.

11.3.2. The state after the measurement of the electron spin, yielding the
result +h̄/2, is

cos
α

2
|e : +α〉 ⊗ |p :−〉 − sin

α

2
|e :+α〉 ⊗ |p :+〉 = |e : +α〉 ⊗ |p :−α〉 .

This simple result is also a consequence of the rotational invariance of the
singlet state, which can be written as
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|Ψs〉 =
1√
2

(|e : + α〉 ⊗ |p : − α〉 − |e : − α〉 ⊗ |p : + α〉) .

Now the two possible results for the measurement of the proton spin ±h̄/2
have probabilities

P+(β) = sin2 α− β
2

P−(β) = cos2
α− β

2
.

11.3.3. If one had measured Ŝpβ first, one would have found P+(β) =
P−(β) = 1/2.
The fact that a measurement on the electron affects the probabilities for the
results of a measurement on the proton, although the two particles are spa-
tially separated, is in contradiction with Einstein’s assertion, or belief. This
is the starting point of the Einstein–Podolsky–Rosen paradox. Quantum me-
chanics is not a local theory as far as measurement is concerned.

Note, however, that this non-locality does not allow the instantaneous
transmission of information. From a single measurement of the proton spin,
one cannot determine whether the electron spin has been previously measured.
It is only when, for a series of experiments, the results of the measurements
on the electron and the proton are later compared, that one can find this
non-local character of quantum mechanics.

11.3.4. Individually, the expectation values vanish, since one does not worry
about the other variable:

〈Ŝeα〉 = 〈Ŝpβ〉 = 0 .

11.3.5. However, the spins are correlated and we have

〈Ŝeα ⊗ Ŝpβ〉 =
h̄2

4

(
sin2 α− β

2
− cos2

α− β
2

)

and therefore E(α, β) = − cos(α− β).

Section 11.4: A Simple Hidden Variable Model

11.4.1. Using the results of Sect. 2, we have:

〈Ŝeα〉 =
h̄

2

∫
cos(ϕ− α)

dϕ
2π

= 0

and similarly 〈Ŝpβ〉 = 0. We also obtain

〈Ŝeα ⊗ Ŝpβ〉 = − h̄
2

4

∫
cos(ϕ− α) cos(ϕ− β)

dϕ
2π

= − h̄
2

8
cos(α− β) .
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Therefore, in this simple hidden variable model,

E(α, β) = −1
2

cos(α− β).

In such a model, one finds a non-vanishing correlation coefficient, which is
an interesting observation. Even more interesting is that this correlation is
smaller than the prediction of quantum mechanics by a factor 2.

11.4.2. The experimental points agree with the predictions of quantum me-
chanics, and undoubtedly disagree with the results of the particular hidden
variable model we have considered. We must however point out that the data
given in the text is not the actual measured data. The “true” results are shown
in Fig. 11.2, where the error bars correspond only to statistical errors. The
difference from theory (i.e. quantum mechanics) is due to systematic errors,
mainly the acceptance of the detectors.

Fig. 11.2. Actual experimental variation of E(α, β) as a function of α − β

Section 11.5: Bell’s Theorem and Experimental Results

11.5.1. In the framework of a hidden variable theory, the correlation coeffi-
cient is

E(α, β) =
4
h̄2

∫
P (λ) A(λ,uα) B(λ,uβ) dλ ,

where P (λ) is the (unknown) distribution law for the variable λ, with

P (λ) > 0 ∀λ and
∫
P (λ) dλ = 1 .
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Note that we assume here that the hidden variable theory reproduces the
one-operator averages found for the singlet state:

〈Seα〉 =
∫
P (λ) A(λ,uα) dλ = 0 〈Spβ〉 =

∫
P (λ) B(λ,uβ) dλ = 0.

If this was not the case, such a hidden variable theory should clearly be re-
jected since it would not reproduce a well established experimental result.

11.5.2. The quantity of interest can be written:

A(λ,uα)
(
B(λ,uβ) +B(λ,u′

β)
)

+A(λ,u′
α)
(
B(λ,u′

β) −B(λ,uβ)
)
.

The two quantities B(λ,uβ) and B(λ,u′
β) can take only the two values ±h̄/2.

Therefore one has either

B(λ,uβ) +B(λ,u′
β) = ±h̄ B(λ,uβ) −B(λ,u′

β) = 0

or
B(λ,uβ) +B(λ,u′

β) = 0 B(λ,uβ) −B(λ,u′
β) = ±h̄ ,

hence the result, since |A(λ,uα)| = |A(λ,u′
β)| = h̄/2.

11.5.3. We multiply the result (11.4) by P (λ) and integrate over λ. Bell’s
inequality follows immediately.

11.5.4. The quantum mechanical result for S is

SQ = − cos(α− β) − cos(α− β′) − cos(α′ − β′) + cos(α′ − β) .

In general, if we set θ1 = α− β, θ2 = β′ −α, θ3 = α′ − β′, we can look for the
extrema of

f(θ1, θ2, θ3) = cos(θ1 + θ2 + θ3) − (cos θ1 + cos θ2 + cos θ3) .

The extrema correspond to θ1 = θ2 = θ3 and sin θ1 = sin 3θ1, whose solutions
between 0 and π are θ1 = 0, π/4, 3π/4, π . Defining the function g(θ1) =
−3 cos θ1 + cos 3θ1 we have: g(0) = −2, g(π/4) = −2

√
2, g(3π/4) = 2

√
2,

g(π) = 2.
We have represented the variation of g(θ) in Fig. 11.3. The shaded areas

correspond to results which cannot be explained by hidden variable theories.
In particular, for α− β = β′ − α = α′ − β′ = π/4, we get SQ = −2

√
2, which

clearly violates Bell’s inequality. This system constitutes therefore a test of
the predictions of quantum mechanics vs. any local hidden variable theory.

11.5.5. The numbers given in the text lead to |3E(π/4) − E(3π/4)| =
2.66 (±0.15) in excellent agreement with quantum mechanics (2

√
2) but in-

compatible with hidden variable theories.
As in the previous question, the actual measurements were in fact E(π/4) =

−0.62 (±0.04), E(3π/4) = 0.60 (±0.03), therefore |3E(π/4) − E(3π/4)| =
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2.46 (±0.15) which violates unquestionably Bell’s inequality, and is consistent
with the quantum mechanical prediction.

It is therefore not possible to find a local hidden variable theory which
gives a good account of experiment.

Fig. 11.3. Variation of g(θ), as defined in the text
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Schrödinger’s Cat

The superposition principle states that if |φa〉 and |φb〉 are two possible states
of a quantum system, the quantum superposition (|φa〉 + |φb〉)/

√
2 is also an

allowed state for this system. This principle is essential in explaining inter-
ference phenomena. However, when it is applied to “large” objects, it leads
to paradoxical situations where a system can be in a superposition of states
which is classically self-contradictory (antinomic).

The most famous example is Schrödinger’s “cat paradox” where the cat
is in a superposition of the “dead” and “alive” states. The purpose of this
chapter is to show that such superpositions of macroscopic states are not
detectable in practice. They are extremely fragile, and a very weak coupling
to the environment suffices to destroy the quantum superposition of the two
states |φa〉 and |φb〉.

12.1 The Quasi-Classical States
of a Harmonic Oscillator

In this chapter, we shall consider high energy excitations of a one-dimensional
harmonic oscillator, of mass m and frequency ω. The Hamiltonian is written

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 .

We denote the eigenstates of Ĥ by {|n〉}. The energy of the state |n〉 is En =
(n+ 1/2)h̄ω.

12.1.1. Preliminaries. We introduce the operators X̂ = x̂
√
mω/h̄, P̂ =

p̂/
√
mh̄ω and the annihilation and creation operators

â =
1√
2

(
X̂ + iP̂

)
â† =

1√
2

(
X̂ − iP̂

)
N̂ = â†â .
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We recall the commutators: [X̂, P̂ ] = i, [â, â†] = 1, and the relations: Ĥ =
h̄ω(N̂ + 1/2) and N̂ |n〉 = n|n〉.
(a) Check that if one works with functions of the dimensionless variables X

and P , one has

P̂ = −i
∂

∂X
X̂ = i

∂

∂P
.

(b) Evaluate the commutator [N̂ , â], and prove that

â|n〉 =
√
n|n− 1〉 (12.1)

up to a phase factor which we set equal to 1 in what follows.
(c) Using (12.1) for n = 0 and expressing â in terms of X̂ and P̂ , calculate

the wave function of the ground state ψ0(X) and its Fourier transform
ϕ0(P ). It is not necessary to normalize the result.

12.1.2. The Quasi-Classical States. The eigenstates of the operator â are
called quasi-classical states, for reasons which we now examine.
Consider an arbitrary complex number α. Show that the following state

|α〉 = e−|α|2/2
∑

n

αn

√
n!
|n〉 (12.2)

is a normalized eigenstate of â with eigenvalue α: â|α〉 = α|α〉.
12.1.3. Calculate the expectation value of the energy in a quasi-classical
state |α〉. Calculate also the expectation values 〈x〉 and 〈p〉 and the root mean
square deviations ∆x and ∆p for this state. Show that one has ∆x∆p = h̄/2.

12.1.4. Following a similar procedure as in question 1.1(c) above, determine
the wave function ψα(X) of the quasi-classical state |α〉, and its Fourier trans-
form ϕα(P ). Again, it is not necessary to normalize the result.

12.1.5. Suppose that at time t = 0, the oscillator is in a quasi-classical state
|α0〉 with α0 = ρeiφ where ρ is a real positive number.
(a) Show that at any later time t the oscillator is also in a quasi-classical

state which can be written as e−iωt/2|α(t)〉. Determine the value of α(t)
in terms of ρ, φ, ω and t.

(b) Evaluate 〈x〉t and 〈p〉t. Taking 1.3, and assuming that |α| � 1, justify
briefly why these states are called “quasi-classical”.

12.1.6. Numerical Example. Consider a simple pendulum of length 1 me-
ter and of mass 1 gram. Assume the state of this pendulum can be described by
a quasi-classical state. At time t = 0 the pendulum is at 〈x0〉 = 1 micrometer
from its classical equilibrium position, with zero mean velocity.
(a) What is the corresponding value of α(0)?
(b) What is the relative uncertainty on its position ∆x/x0?
(c) What is the value of α(t) after 1/4 period of oscillation?
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12.2 Construction of a Schrödinger-Cat State

During the time interval [0, T ], one adds to the harmonic potential, the cou-
pling

Ŵ = h̄g (â†â)2 .

We assume that g is much larger than ω and that ωT � 1. Hence, we can
make the approximation that, during the interval [0, T ], the Hamiltonian of
the system is simply Ŵ . At time t = 0, the system is in a quasi-classical state
|ψ(0)〉 = |α〉.
12.2.1. Show that the states |n〉 are eigenstates of Ŵ , and write the expan-
sion of the state |ψ(T )〉 at time T on the basis {|n〉}.
12.2.2. How does |ψ(T )〉 simplify in the particular cases T = 2π/g and T =
π/g?

12.2.3. One now chooses T = π/2g. Show that this gives

|ψ(T )〉 =
1√
2

(
e−iπ/4|α〉 + eiπ/4| − α〉

)
. (12.3)

12.2.4. Suppose α is pure imaginary: α = iρ.
(a) Discuss qualitatively the physical properties of the state (12.3).
(b) Consider a value of |α| of the same order of magnitude as in 1.6. In what

sense can this state be considered a concrete example of the “Schrödinger
cat” type of state mentioned in the introduction?

12.3 Quantum Superposition Versus Statistical Mixture

We now study the properties of the state (12.3) in a “macroscopic” situation
|α| � 1. We choose α pure imaginary, α = iρ, and we set p0 = ρ

√
2mh̄ω.

12.3.1. Consider a quantum system in the state (12.3). Write the (non-norm-
alized) probability distributions for the position and for the momentum of the
system. These probability distributions are represented in Fig. 12.1 for α = 5i.
Interpret these distributions physically.

12.3.2. A physicist (Alice) prepares N independent systems all in the state
(12.3) and measures the momentum of each of these systems. The measuring
apparatus has a resolution δp such that:

√
mh̄ω � δp� p0 .

For N � 1, draw qualitatively the histogram of the results of the N measure-
ments.
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Fig. 12.1. Probability distributions for the position and for the momentum of a
system in the state (12.3) for α = 5i. The quantities X and P are the dimensionless
variables introduced in the first part of the problem. The vertical scale is arbitrary

12.3.3. The state (12.3) represents the quantum superposition of two states
which are macroscopically different, and therefore leads to the paradoxical
situations mentioned in the introduction. Another physicist (Bob) claims that
the measurements done by Alice have not been performed on N quantum
systems in the state (12.3), but that Alice is actually dealing with a non-
paradoxical “statistical mixture”, that is to say that half of the N systems
are in the state |α〉 and the other half in the state | − α〉. Assuming this is
true, does one obtain the same probability distribution as for the previous
question for the N momentum measurements?

12.3.4. In order to settle the matter, Alice now measures the position of each
of N independent systems, all prepared in the state (12.3). Draw the shape
of the resulting distribution of events, assuming that the resolution δx of the
measuring apparatus is such that:

δx� 1
|α|

√
h̄

mω
.

12.3.5. Can Bob obtain the same result concerning the N position measure-
ments assuming he is dealing with a statistical mixture?

12.3.6. Considering the numerical value obtained in the case of a simple pen-
dulum in question 1.6, evaluate the resolution δx which is necessary in order
to tell the difference between a set of N systems in the quantum superposition
(12.3), and a statistical mixture consisting in N/2 pendulums in the state |α〉
and N/2 pendulums in the state | − α〉.

12.4 The Fragility of a Quantum Superposition

In a realistic physical situation, one must take into account the coupling of
the oscillator with its environment, in order to estimate how long one can
discriminate between the quantum superposition (12.3) (that is to say the
“Schrödinger cat” which is “alive and dead”) and a simple statistical mixture
(i.e. a set of cats (systems), half of which are alive, the other half being dead;
each cat being either alive or dead.)
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If the oscillator is initially in the quasi-classical state |α0〉 and if the en-
vironment is in a state |χe(0)〉, the wave function of the total system is the
product of the individual wave functions, and the state vector of the total
system can be written as the (tensor) product of the state vectors of the two
subsystems:

|Φ(0)〉 = |α0〉|χe(0)〉 .
The coupling is responsible for the damping of the oscillator’s amplitude. At
a later time t, the state vector of the total system becomes:

|Φ(t)〉 = |α1〉|χe(t)〉

with α1 = α(t)e−γt; the number α(t) corresponds to the quasi-classical state
one would find in the absence of damping (question 1.5(a)) and γ is a real
positive number.

12.4.1. Using the result 1.3, give the expectation value of the energy of the
oscillator at time t, and the energy acquired by the environment when 2γt� 1.

12.4.2. For initial states of the “ Schrödinger cat” type for the oscillator, the
state vector of the total system is, at t = 0,

|Φ(0)〉 =
1√
2

(
e−iπ/4|α0〉 + eiπ/4| − α0〉

)
|χe(0)〉

and, at a later time t,

|Φ(t)〉 =
1√
2

(
e−iπ/4|α1〉|χ(+)

e (t)〉 + eiπ/4| − α1〉|χ(−)
e (t)〉

)

still with α1 = α(t)e−γt. We choose t such that α1 is pure imaginary, with
|α1| � 1. |χ(+)

e (t)〉 and |χ(−)
e (t)〉 are two normalized states of the environment

that are a priori different (but not orthogonal).
The probability distribution of the oscillator’s position, measured indepen-
dently of the state of the environment, is then

P(x) =
1
2
[|ψα1(x)|2 + |ψ−α1(x)|2

+ 2Re(iψ∗
α1

(x)ψ−α1(x)〈χ(+)
e (t)|χ(−)

e (t)〉)].

Setting η = 〈χ(+)
e (t)|χ(−)

e (t)〉 with 0 ≤ η ≤ 1 (η is supposed to be real) and
using the results of Sect. 3, describe without any calculation, the result of:
(a) N independent position measurements,
(b) N independent momentum measurements.
Which condition on η allows one to distinguish between a quantum superpo-
sition and a statistical mixture?
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12.4.3. In a very simple model, the environment is represented by a second
oscillator, of same mass and frequency as the first one. We assume that this
second oscillator is initially in its ground state |χe(0)〉 = |0〉. If the coupling
between the two oscillators is quadratic, we will take for granted that

• the states |χ(±)
e (t)〉 are quasi-classical states: |χ(±)

e (t)〉 = | ± β〉,
• and that, for short times (γt� 1): |β|2 = 2γt|α0|2.
(a) From the expansion (12.2), show that η = 〈β| − β〉 = exp(−2|β|2).
(b) Using the expression found in question 4.1 for the energy of the first os-

cillator, determine the typical energy transfer between the two oscillators,
above which the difference between a quantum superposition and a sta-
tistical mixture becomes unobservable.

12.4.4. Consider again the simple pendulum described above. Assume the
damping time is one year (a pendulum in vacuum with reduced friction).
Using the result of the previous question, evaluate the time during which a
“Schrödinger cat” state can be observed. Comment and conclude.

12.5 Solutions

Section 12.1: The Quasi-Classical States of a Harmonic Oscillator

12.1.1. (a) A simple change of variables gives

P̂ =
p̂√
mh̄ω

=
1√
mh̄ω

h̄

i
∂

∂x
= −i

√
h̄

mω

∂

∂x
= −i

∂

∂X

X̂ =
√
mω

h̄
x̂ =
√
mω

h̄
ih̄
∂

∂p
= i

√
mh̄ω

∂

∂p
= i

∂

∂P

(b) We have the usual relations [N̂ , â] = [â†â, â] = [â†, â]â = −â. Conse-
quently:

[N̂ , â]|n〉 = −â|n〉 ⇒ N̂ â|n〉 = (n− 1)â|n〉 ,

and â|n〉 is an eigenvector of N̂ corresponding to the eigenvalue n−1. We know
from the theory of the one-dimensional harmonic oscillator that the energy
levels are not degenerated. Therefore we find that â|n〉 = µ|n− 1〉, where the
coefficient µ is determined by calculating the norm of â|n〉:

‖â|n〉‖2 = 〈n|â†â|n〉 = n⇒ µ =
√
n

up to an arbitrary phase.
(c) The equation â|0〉 = 0 corresponds to (X̂ + iP̂ )|0〉 = 0.
In real space:

(
X + ∂

∂X

)
ψ0(X) = 0 ⇒ ψ0(X) ∝ exp

(−X2/2
)
.

In momentum space:
(
P + ∂

∂P

)
ϕ0(P ) = 0 ⇒ ϕ0(P ) ∝ exp

(−P 2/2
)
.
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12.1.2. One can check directly the relation â|α〉 = α|α〉:

â|α〉 = e−|α|2/2
∑

n

αn

√
n!
â |n〉 = e−|α|2/2

∑
n

αn

√
n!

√
n |n− 1〉

= αe−|α|2/2
∑

n

αn

√
n!

|n〉 = α|α〉

The calculation of the norm of |α〉 yields: 〈α|α〉 = e−|α|2∑
n

|α|2n

n! = 1 .

12.1.3. The expectation value of the energy is:

〈E〉 = 〈α|Ĥ|α〉 = h̄ω〈α|N̂ + 1/2|α〉 = h̄ω(|α|2 + 1/2) .

For 〈x〉, and 〈p〉, we use

〈x〉 =

√
h̄

2mω
〈α|â+ â†|α〉 =

√
h̄

2mω
(α+ α∗)

〈p〉 = −i

√
mh̄ω

2
〈α|â− â†|α〉 = i

√
mωh̄

2
(α∗ − α)

∆x2 =
h̄

2mω
〈α|(â+ â†)2|α〉 − 〈x〉2 =

h̄

2mω
((α+ α∗)2 + 1) − 〈x〉2 .

Therefore ∆x =
√
h̄/2mω, which is independent of α.

Similarly

∆p2 = −mh̄ω
2

〈α|(â− â†)2|α〉 − 〈p〉2 = −mh̄ω
2

((α− α∗)2 − 1) − 〈p〉2

Therefore ∆p =
√
mh̄ω/2. The Heisenberg inequality becomes in this case an

equality ∆x ∆p = h̄/2, independently of the value of α.

12.1.4. With the X variable, we have

1√
2

(
X +

∂

∂X

)
ψα(X) = αψα(X)

⇒ ψα(X) = C exp

(
− (X − α√2)2

2

)

Similarly, with the P variable,

i√
2

(
P +

∂

∂P

)
ϕα(P ) = αϕα(P )

⇒ ϕα(P ) = C ′ exp

(
− (P + iα

√
2)2

2

)
.
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12.1.5. (a)

|ψ(0)〉 = |α0〉
|ψ(t)〉 = e−|α|2/2

∑
n

αn
0√
n!

e−iEnt/h̄|n〉

= e−|α|2/2e−iωt/2
∑

n

αn
0√
n!

e−inωt|n〉

= e−iωt/2|α(t)〉 with α(t) = α0e−iωt = ρe−i(ωt−φ)

(b)

〈x〉t =
√

2h̄/(mω) ρ cos(ωt− φ)
= x0 cos(ωt− φ) with x0 = ρ

√
2h̄/(mω)

〈p〉t = −√
2mh̄ω ρ sin(ωt− φ)

= −p0 sin(ωt− φ) with p0 = ρ
√

2mh̄ω

These are the equations of motions of a classical oscillator. Using the result
1.3, we obtain

∆x

x0
=

1
2ρ

� 1 ,
∆p

p0
=

1
2ρ

� 1

The relative uncertainties on the position and on the momentum of the oscil-
lator are quite accurately defined at any time. Hence the name “quasi-classical
state”.

12.1.6. (a) The appropriate choice is 〈x〉0 = x0 and 〈p〉0 = 0, i.e. φ = 0

ω = 2πν =
√
g

�
= 3.13 s−1 ⇒ α(0) = 3.9 109

(b) ∆x/x0 = 1/(2α(0)) = 1.3 10−10.
(c) After 1/4 period, eiωt = eiπ/2 = i ⇒ α(T/4) = −i 3.9 109

Section 12.2: Construction of a Schrödinger-Cat State

12.2.1. The eigenvectors of Ŵ are simply the previous |n〉, therefore:

Ŵ |n〉 = h̄g n2|n〉
and

|ψ(0)〉 = |α〉 ⇒ |ψ(T )〉 = e−|α|2/2
∑

n

αn

√
n!

e−ign2T |n〉 .

12.2.2. If T = 2π/g, then e−ign2T = e−2iπn2
= 1 and

|ψ(T )〉 = |α〉 .
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If T = π/g, then e−ign2T = e−iπn2
= 1 if n is even, −1 if n is odd, therefore

e−ign2T = (−1)n ⇒ |ψ(T )〉 = | − α〉

12.2.3. If T = π/2g, then e−ign2T = e−i π
2 n2

= 1 for n even, and e−ign2T = −i
if n is odd.
We can rewrite this relation as

e−ign2T =
1
2
(1 − i + (1 + i)(−1)n) =

1√
2
(e−i π

4 + ei π
4 (−1)n)

or, equivalently,

|ψ(T )〉 =
1√
2
(e−iπ/4|α〉 + eiπ/4| − α〉) .

12.2.4. (a) For α = iρ, in the state |α〉, the oscillator has a zero mean
position and a positive velocity. In the state | − α〉, the oscillator also has
a zero mean position, but a negative velocity. The state 12.3 is a quantum
superposition of these two situations.
(b) If |α| � 1, the states |α〉 and | − α〉 are macroscopically different
(antinomic). The state 12.3 is a quantum superposition of such states. It there-
fore constitutes a (peaceful) version of Schrödinger’s cat, where we represent
“dead” or “alive” cats by simple vectors of Hilbert space.

Section 12.3: Quantum Superposition Versus Statistical Mixture

12.3.1. The probability distributions of the position and of the momentum
are

P (X) ∝ |e−iπ/4ψα(X) + eiπ/4ψ−α(X)|2

∝
∣∣∣∣e−iπ/4 exp

(
−1

2
(X − iρ

√
2)2
)

+eiπ/4 exp
(
−1

2
(X + iρ

√
2)2
)∣∣∣∣

2

∝ e−X2
cos2
(
Xρ

√
2 − π

4

)
P (P ) ∝ |e−iπ/4ϕα(P ) + eiπ/4ϕ−α(P )|2

� exp(−(P − ρ
√

2)2) + exp(−(P + ρ
√

2)2) .

In the latter equation, we have used the fact that, for ρ� 1, the two Gaussians
centered at ρ

√
2 and −ρ√2 have a negligible overlap.

12.3.2. Alice will find two peaks, each of which contains roughly half of the
events, centered respectively at p0 and −p0.
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12.3.3. The statistical mixture of Bob leads to the same momentum distrib-
ution as that measured by Alice: the N/2 oscillators in the state |α〉 all lead
to a mean momentum +p0, and the N/2 oscillators in the state |−α〉 to −p0.
Up to this point, there is therefore no difference, and no paradoxical behavior
related to the quantum superposition (12.3).

12.3.4. In the X variable, the resolution of the detector satisfies

δX � 1
|α| =

1
ρ

Alice therefore has a sufficient resolution to observe the oscillations of the
function cos2(Xρ

√
2−π/4) in the distribution P (X). The shape of the distri-

bution will therefore reproduce the probability law of X drawn on figure 12.1,
i.e. a modulation of period (h̄π2/(2mα2ω))1/2, with a Gaussian envelope.

12.3.5. If Bob performs a position measurement on the N/2 systems in the
state |α〉, he will find a Gaussian distribution corresponding to the probability
law P (X) ∝ |ψα(X)|2 ∝ exp(−X)2. He will find the same distribution for the
N/2 systems in the state | − α〉. The sum of his results will be a Gaussian
distribution, which is quite different from the result expected by Alice. The
position measurement should, in principle, allow one to discriminate between
the quantum superposition and the statistical mixture.

12.3.6. The necessary resolution is δx � 1
|α|

√
h̄

mω ∼ 5 10−26 m. Unfortu-
nately, it is impossible to attain such a resolution in practice.

Section 12.4: The Fragility of a Quantum Superposition

12.4.1. We have E(t) = h̄ω(|α0|2e−2γt + 1/2): this energy decreases with
time. After a time much longer than γ−1, the oscillator is in its ground state.
This dissipation model corresponds to a zero temperature environment. The
mean energy acquired by the environment E(0)−E(t) is, for 2γt� 1,∆E(t) �
2h̄ω|α0|2γt.
12.4.2. (a) The probability distribution of the position keeps its Gaussian
envelope, but the contrast of the oscillations is reduced by a factor η.
(b) The probability distribution of the momentum is given by

P(p) =
1
2
(|ϕα1(p)|2 + |ϕ−α1(p)|2 + 2η Re(iϕ∗

−α1
(p)ϕα1(p)))

Since the overlap of the two Gaussians ϕα1(p) and ϕ−α1(p) is negligible for
|α1| � 1, the crossed term, which is proportional to η does not contribute
significantly. One recovers two peaks centered at ±|α1|

√
2mh̄ω.

The difference between a quantum superposition and a statistical mixture
can be made by position measurements. The quantum superposition leads to
a modulation of spatial period (h̄π2/(2mα2ω))1/2 with a Gaussian envelope,
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whereas only the Gaussian is observed on a statistical mixture. In order to
see this modulation, it must not be too small, say

η ≥ 1/10 .

12.4.3. (a) A simple calculation gives

〈β| − β〉 = e−|β|2∑
n

β∗n(−β)n

n!
= e−|β|2e−|β|2 = e−2|β|2

(b) From the previous considerations, we must have e−2|β|2 ≥ 1/10, i.e.
|β| ≤ 1.
For times shorter than γ−1, the energy of the first oscillator is

E(t) = E(0) − 2γt|α0|2h̄ω .
The energy of the second oscillator is

E′(t) = h̄ω(|β(t)|2 + 1/2) = h̄ω/2 + 2γt|α0|2h̄ω .
The total energy is conserved; the energy transferred during time t is ∆E(t) =
2γt|α0|2h̄ω = h̄ω|β|2. In order to distinguish between a quantum superposi-
tion and a statistical mixture, we must have ∆E ≤ h̄ω. In other words, if a
single energy quantum h̄ω is transferred, it becomes problematic to tell the
difference.

12.4.4. With 1/2γ = 1 year = 3 × 107 seconds, the time it takes to reach
|β| = 1 is (2γ|α0|2)−1 � 2 × 10−12 seconds!

12.6 Comments

Even for a system as well protected from the environment as what we have
assumed for the pendulum, the quantum superpositions of macroscopic states
are unobservable. After a very short time, all measurements one can make
on a system initially prepared in such a state coincide with those made on a
statistical mixture. It is therefore not possible, at present, to observe the effects
related to the paradoxical character of a macroscopic quantum superposition.

However, it is quite possible to observe “mesoscopic” kittens, for systems
which have a limited number of degrees of freedom and are well isolated. The
first attempts concerned SQUIDS (Josephson junctions in superconducting
rings), but the results were not conclusive. The idea developed here is oriented
towards quantum optics, and has been proposed by Bernard Yurke and David
Stoler, Phys. Rev. Lett. 57, p. 13 (1986). The most conclusive results have
been obtained at the Ecole Normale Superieure in Paris, on microwave photons
(50 GHz) stored in a superconducting cavity (M. Brune, E. Hagley, J. Dreyer,
X. Maitre, A. Maali, C. Wunderlich, J.-M. Raimond, and S. Haroche, Phys.
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Rev. Lett. 77, 4887 (1996)). The field stored in the cavity is a quasi-perfect
harmonic oscillator. The preparation of the kitten (Sect. 2) is accomplished
by sending atoms through the cavity. Dissipation (Sect. 4) corresponds to the
very weak residual absorption by the walls of the superconducting cavity. One
can devise “kittens” made of 5 or 10 photons (i.e. |α|2 = 5 or 10) and one
can check precisely the theory, including the decoherence due to dissipation
effects.
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Quantum Cryptography

Cryptography consists in sending a message to a correspondent and in min-
imizing the risk for this message to be intercepted by an unwanted outsider.
The present chapter shows how quantum mechanics can provide a procedure
to achieve this goal. We assume here that Alice (A) wants to send Bob (B)
some information which may be coded in the binary system, for instance

+ + − − − + + − · · · (13.1)

We denote the number of bits of this message by n. Alice wants to send this
message to Bob only if she has made sure that no “spy” is listening to the
communication.

13.1 Preliminaries

Consider a spin 1/2 particle. The spin operator is Ŝ = (h̄/2)σ̂ where the set
σ̂i, i = x, y, z are the Pauli matrices. We write |σz = +1〉 and |σz = −1〉 for
the eigenstates of Ŝz with respective eigenvalues +h̄/2 and −h̄/2.

Consider a particle in the state |σz = +1〉. One measures the component
of the spin along an axis u in the (x, z) plane, defined by the unit vector

eu = cos θ ez + sin θ ex , (13.2)

where ez and ex are the unit vectors along the z and x axes respectively. We
recall that the corresponding operator is

Ŝ · eu =
h̄

2
(cos θ σ̂z + sin θ σ̂x) . (13.3)

13.1.1. Show that the possible results of the measurement are +h̄/2 and
−h̄/2.
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13.1.2. Show that the eigenstates of the observable (13.3) are (up to a mul-
tiplicative constant):

|σu = +1〉 = cosφ |σz = +1〉 + sinφ |σz = −1〉
|σu = −1〉 = − sinφ |σz = +1〉 + cosφ |σz = −1〉

and express φ in terms of θ. Write the probabilities p±u of finding +h̄/2 and
−h̄/2 when measuring the projection of the spin along the u axis.

13.1.3. What are the spin states after measurements that give the results
+h̄/2 and −h̄/2 along u?

13.1.4. Immediately after such a measurement, one measures the z compo-
nent of the spin.
(a) What are the possible results and what are the probabilities of finding

these results in terms of the results found previously along the u axis
(observable (13.3)).

(b) Show that the probability to recover the same value Sz = +h̄/2 as in
the initial state |σz = +1〉 is

P++(θ) = (1 + cos2 θ)/2.

(c) Assuming now that the initial state is |σz = −1〉, what is, for the same
sequence of measurements, the probability P−−(θ) to recover Sz = −h̄/2
in the last measurement?

Fig. 13.1. A source emits a pair (a, b) of spin-1/2 particles. Alice measures the
component of the spin of a along a direction θa and Bob measures the component
of the spin of b along a direction θb

13.2 Correlated Pairs of Spins

A source produces a pair (a, b) of spin-1/2 particles (Fig. 13.1), prepared in
the state |ψ〉 = φ(ra, rb)|Σ〉 where the spin state of the two particles is

|Σ〉 =
1√
2
(|σa

z = +1〉 ⊗ |σb
z = +1〉 + |σa

z = −1〉 ⊗ |σb
z = −1〉) . (13.4)
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Fig. 13.2. A spy, sitting between the source and Bob, measures the component of
the b spin along an axis θs

In other words, the spin variables are decoupled from the space variables
(ra, rb). In (13.4), |σa

u = ±〉 (specifically u = z) are the eigenstates of the u
component of the spin of particle a, and similarly for b.

13.2.1. Show that this state can also be written as:

|Σ〉 =
1√
2
(|σa

x = +1〉 ⊗ |σb
x = +1〉 + |σa

x = −1〉 ⊗ |σb
x = −1〉) . (13.5)

13.2.2. The pair of particles (a, b) is prepared in the spin state (13.4), (13.5).
As the two particles move away from each another, this spin state remains
unchanged (unless a measurement is made).
(a) Alice first measures the spin component of a along an axis ua of angle

θa. What are the possible results and the corresponding probabilities in
the two cases θa = 0, i.e. the z axis, and θa = π/2, i.e. the x axis?

(b) Show that, after Alice’s measurement, the spin state of the two particles
depends as follows on the measurement and its result

Axis Result State

z +h̄/2 |σa
z = +1〉 ⊗ |σb

z = +1〉
z +h̄/2 |σa

x = +1〉 ⊗ |σb
x = +1〉

x −h̄/2 |σa
x = −1〉 ⊗ |σb

x = −1〉
¿From then on, why can one ignore particle a as far as spin measurements
on b are concerned?
(We recall that if |ψ〉 = |u〉⊗|v〉 is a factorized state and Ĉ = Â⊗B̂, where Â and

B̂ act respectively on the spaces of |u〉 and |v〉, then 〈ψ|Ĉ|ψ〉 = 〈u|Â|u〉〈v|B̂|v〉).
13.2.3. After Alice’s measurement, Bob measures the spin of particle b along
an axis ub of angle θb.
Give the possible results of Bob’s measurement and their probabilities in terms
of Alice’s results in the four following configurations:
(a) θa = 0, θb = 0;
(b) θa = 0, θb = π/2;
(c) θa = π/2, θb = 0;
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1. Alice and Bob decide along which axes x and z they will make their
measurements.

2. Alice, who controls the source S, prepares an ordered sequence of
N � n pairs of spins in the state (13.4) (n is the number of bits of the
message). She sends the b spins to Bob and keeps the a spins.

3. For each spin that they collect, Alice and Bob measure either the
x or the z component. Each of them chooses the x or z direction at
random with probability p = 1/2. There is no correlation, for a given
pair of spins (a, b), between the axis chosen by Alice and the one chosen
by Bob. They both register all their results.

4. Bob selects a subset FN of his measurements. He communicates
openly to Alice (by cell phone, www, etc.) the axis and the result of
the measurement for each event of this subset. In practice F ∼ 0.5.

5. Alice compares, for this subset FN , her axes and her results with
those just communicated by Bob. By doing so, she can tell whether
or not a spy is present. If a spy is spotted, the procedure stops and a
“physical” search for the spy must be undertaken. Otherwise:

6. Alice makes a public announcement that she is convinced not to have
been spied upon, and Bob, still openly, communicates his axes of mea-
surements for the remaining spins. However, he does not communicate
the corresponding results.

7. . . .

Fig. 13.3. The procedure for quantum cryptography

(d) θa = π/2, θb = π/2.
In which cases do the measurements on a and b give with certainty the same
result?

13.2.4. Consider the situation θa = 0. Suppose that a “spy” sitting between
the source and Bob measures the spin of particle b along an axis us of angle
θs as sketched in Fig. 13.2.
(a) What are, in terms of θs and of Alice’s findings, the results of the spy’s

measurements and their probabilities?
(b) After the spy’s measurement, Bob measures the spin of b along the axis

defined by θb = 0. What does Bob find, and with what probabilities, in
terms of the spy’s results?

(c) What is the probability P (θs) that Alice and Bob find the same results
after the spy’s measurement?

(d) What is the expectation value of P (θs) if the spy chooses θs at random
in the interval [0, 2π] with uniform probability?
What is this expectation value if the spy chooses only the two values
θs = 0 and θs = π/2 each with the same probability p = 1/2?
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13.3 The Quantum Cryptography Procedure

In order to transmit confidential information, Alice and Bob use the procedure
outlined in Fig. 13.3. Comment on this procedure, and answer the following
questions.

13.3.1. How can Alice be sure that a spy is present?

13.3.2. What is the probability that an operating spy will escape being de-
tected? Calculate this probability for FN = 200.

13.3.3. Does the spy become more “invisible” if he knows the system of axes
(x, z) chosen by Alice and Bob to perform their measurements?

13.3.4. Comment on the two “experiments” whose results are given in Tables
13.1 and 13.2. Show that a spy has certainly listened to communication 2.
What is the probability that a spy listened to communication 1, but remained
undetected?

13.3.5. Complete the missing item (number 7 in the above procedure), and
indicate how Alice can send her message (13.1) to Bob without using any
other spin pairs than the N pairs which Bob and her have already analyzed.
Using Table 13.3, tell how, in experiment 1, Alice can send to Bob the message
(+,−).

Table 13.1. Experiment 1, performed with 12 pairs of spins. Top: set of axes and
results obtained by Alice. Bottom: choices of axes and results publicly communicated
by Bob

A Spin # 1 2 3 4 5 6 7 8 9 10 11 12
A Axis x x z x z z x z z z x x
A Result + − + + − − + + + − + −
B Spin # 1 2 3 4 5 6 7 8 9 10 11 12
B Axis x x z x x x
B Result + − − + + +

Table 13.2. Experiment 2, performed with 12 pairs of spins. Top: set of axes and
results obtained by Alice. Bottom: choices of axes and results publicly communicated
by Bob

A Spin # 1 2 3 4 5 6 7 8 9 10 11 12
A Axis x z z z x x z x x z x z
A Result + + − + + − + + − − + +

B Spin # 1 2 3 4 5 6 7 8 9 10 11 12
B Axis x x x z z z
B Result + + − + + −
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Table 13.3. Choice of axes publicly communicated by Bob in the framework of
experiment 1, after Alice has said she is convinced that she is not being spied upon

Spin # 2 5 6 8 9 12
Axis x x x z x x

13.4 Solutions

Section 13.1: Preliminaries

13.1.1. The spin observable along the u axis is

Ŝ · êu =
h̄

2

(
cos θ sin θ
sin θ − cos θ

)
.

The possible results of the measurement are the eigenvalues of Ŝ · êu, i.e.
±h̄/2.

13.1.2. The corresponding eigenvectors are

|σu = +1〉 = cos(θ/2)|σz = +1〉 + sin(θ/2)|σz = −1〉
|σu = −1〉 = − sin(θ/2)|σz = +1〉 + cos(θ/2)|σz = −1〉 ,

therefore φ = θ/2. The probabilities follow directly:

p±u = |〈σu = ±1|σz = +1〉|2 , p+u = cos2(θ/2) , p−u = sin2(θ/2) .

13.1.3. The state after a measurement with the result +h̄/2 (or −h̄/2) is
|σu = +1〉 (or |σu = −1〉).
13.1.4.
(a) If the measurement along u has given +h̄/2, then the probabilities for
the second measurement are:

p+z (±h̄/2) = |〈σz = ±1|σu = +1〉|2

with

p+z (+h̄/2) = cos2(θ/2) , p+z (−h̄/2) = sin2(θ/2) .

If the measurement along u has given −h̄/2, then

p−z (−h̄/2) = cos2(θ/2) , p−z (+h̄/2) = sin2(θ/2) .

(b) One recovers Sz = +h̄/2 with probabilities:
(i) p+u .p

+
z (+h̄/2) = cos4(θ/2) if the measurement along u has given +h̄/2,

(ii) p−u .p
−
z (+h̄/2) = sin4(θ/2) if the measurement along u has given −h̄/2.
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Altogether, one has

P++ = cos4
θ

2
+ sin4 θ

2
=

1
2
(1 + cos2 θ) .

(c) The intermediate results are reversed, but the final probability is the
same

P−− =
1
2
(1 + cos2 θ) .

Section 13.2: Correlated Pairs of Spins

13.2.1. The z and x eigenstates are related by |σx = ±1〉 = (|σz = +1〉 ±
|σz = −1〉)/√2 .
If we make the substitution in expression (13.4), we obtain

1
2
√

2

(
(|σa

z = +1〉 + |σa
z = −1〉) ⊗ (|σb

z = +1〉 + |σb
z = −1〉)

+ (|σa
z = +1〉 − |σa

z = −1〉) ⊗ (|σb
z = +1〉 − |σb

z = −1〉)
)
,

where the crossed terms disappear. More generally, the state under consid-
eration is actually invariant under rotations around the y axis. In an actual
experiment, it would be simpler to work with the singlet state

|0, 0〉 =
1√
2
(|σa

z = +1〉 ⊗ |σb
z = −1〉 − |σa

z = −1〉 ⊗ |σb
z = +1〉)/

√
2 ,

where Alice and Bob would simply find results of opposite signs by measuring
along the same axis.

13.2.2. (a) Alice finds ±h̄/2 with p = 1/2 in each case. This result is
obtained by noticing that the projector on the eigenstate |σa

z = +1〉 is
P̂ a

+ = |σa
z = +1〉〈σa

z = +1| ⊗ Îb and that p(+h̄/2) = 〈Σ|P̂ a
+|Σ〉 = 1/2,

(and similarly for p(−h̄/2)).
(b) This array of results is a consequence of the reduction of the wave packet.
If Alice measures along the z axis, we use (13.4); the normalized projections
on the eigenstates of Ŝa

z are |σa
z = +1〉 ⊗ |σb

z = +1〉 (Alice’s result: +h̄/2)
and |σa

z = −1〉⊗ |σb
z = −1〉 (Alice’s result: −h̄/2). A similar formula holds for

a measurement along the x axis, because of the invariance property, and its
consequence, (13.5).

Any measurement on b (a probability, an expectation value) will imply
expectation values of operators of the type Îa ⊗ B̂b where B̂b is a projector
or a spin operator. Since the states under consideration are factorized, the
corresponding expressions for spin measurements on b will be of the type

(〈σa
z = +1| ⊗ 〈σb

z = +1|)Îa ⊗ B̂b(|σa
z = +1〉 ⊗ |σb

z = +1〉) .
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This reduces to

〈σa
z = +1|σa

z = +1〉.〈σb
z = +1|B̂b|σb

z = +1〉 = 〈σb
z = +1|B̂b|σb

z = +1〉
where the spin state of a is irrelevant.

13.2.3. For the first and second configurations, we can summarize the results
as follows:

θa θb Alice Bob Probability

0 0 +h̄/2 +h̄/2 p = 1
0 0 −h̄/2 −h̄/2 p = 1
0 π/2 +h̄/2 ±h̄/2 p± = 1/2
0 π/2 −h̄/2 ±h̄/2 p± = 1/2

The results for θa = π/2, θb = 0 are identical to those of θa = 0, θb = π/2;
similarly, the case θa = π/2, θb = π/2 is identical to θa = 0, θb = 0 (one
actually recovers the same result for any θa = θb).
In the two cases (a) and (d), where θa = θb, i.e. when they measure along the
same axis, Alice and Bob are sure to find the same result.

13.2.4. (a) Concerning the findings of Alice and of the spy, we have:

Alice Spy Probability

+h̄/2 +h̄/2 cos2(θs/2)
+h̄/2 −h̄/2 sin2(θs/2)
−h̄/2 +h̄/2 sin2(θs/2)
−h̄/2 −h̄/2 cos2(θs/2)

(b) Concerning the findings of Bob and of the spy:

Spy Bob Probability

+h̄/2 +h̄/2 cos2(θs/2)
+h̄/2 −h̄/2 sin2(θs/2)
−h̄/2 +h̄/2 sin2(θs/2)
−h̄/2 −h̄/2 cos2(θs/2)

(c) The probability that Alice and Bob find the same result has actually
been calculated in questions 1.4(b,c), we simply have

P (θS) =
1
2
(1 + cos2 θs) .

(d) Amazingly enough, the two expectation values are the same. On one
hand, one has

∫ 2π

0
P (θs)dθs/(2π) = 3/4. On the other, since P (0) = 1 and

P (π/2) = 1/2, on the average p̄ = 3/4 if the values θs = 0 and θs = π/2 are
chosen with equal probabilities.
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Section 13.3: The Quantum Cryptography Procedure

13.3.1. Necessarily, if θa = θb, the results of Alice and Bob must be the same.
If a single measurement done along the same axis θa = θb gives different
results for Alice and Bob, a spy is certainly operating (at least in an ideal
experiment). If θa �= θb, on the average half of the results are the same, half
have opposite signs.

13.3.2. The only chance for the spy to remain invisible is that Alice and Bob
always find the same results when they choose the same axis. For each pair
of spins, there is a probability 1/2 that they choose the same axis, and there
is in this case a probability 1/4 that they do not find the same result if a
spy is operating (question 2.4(d)). Therefore, for each pair of spins, there is
a probability 1/8 that the spy is detected, and a probability 7/8 that the spy
remains invisible.

This may seem a quite inefficient detection method. However, for a large
number of events, the probability (7/8)FN that the spy remains undetected
is very small. For FN = 200 one has (7/8)200 ≈ 2.5 × 10−12.

13.3.3. Quite surprisingly, as mentioned above, the spy does not gain any-
thing in finding out which x and z axes Alice and Bob have agreed on in step
1 of the procedure.

13.3.4. Experiment number 2. Measurements 8 and 12, where the axes are
the same, give opposite results: rush upon the spy!
In experiment number 1, however, measurements 1, 7 and 11 along the x axis
do give the same results and are consistent with the assumption that there is
no spy around. However, the number N = 3 is quite small in the present case.
If a spy is operating, the probability that he remains undetected is ≈ 40%.

13.3.5. Among the (1 − F )N remaining measurements, Alice selects a se-
quence of events where the axes are the same and which reproduces her mes-
sage. She communicates openly to Bob the labels of these events, and Bob
can (at last!) read the message on his own set of data.
In the present case, Alice tells Bob to look at the results # 8 and # 12, where
Bob can read (+,−).
Comment: This procedure is presently being developed in several industrial
research laboratories. In practice, one uses photon pairs with correlated po-
larizations rather than spin 1/2 particles.

See, for instance C. Bennett, G. Brassard, and A. Ekert, Quantum Cryp-
tography, Scientific American, Vol. 267, p. 26 (October 1992).
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Direct Observation of Field Quantization

We consider here a two-level atom interacting with a single mode of the elec-
tromagnetic field. When this mode is treated quantum mechanically, specific
features occur in the atomic dynamics, such as damping and revivals of the
Rabi oscillations.

14.1 Quantization of a Mode of the Electromagnetic
Field

We recall that in classical mechanics, a harmonic oscillator of mass m and
frequency ω/2π obeys the equations of motion dx/dt = p/m and dp/dt =
−mω2x where x is the position and p the momentum of the oscillator. Defin-
ing the reduced variables X(t) = x(t)

√
mω/h̄ and P (t) = p(t)/

√
h̄mω, the

equations of motion of the oscillator are

dX
dt

= ωP
dP
dt

= −ωX , (14.1)

and the total energy U(t) is given by

U(t) =
h̄ω

2
(X2(t) + P 2(t)) . (14.2)

14.1.1. Consider a cavity for electromagnetic waves, of volume V . Through-
out this chapter, we consider a single mode of the electromagnetic field, of the
form

E(r, t) = ux e(t) sin kz B(r, t) = uy b(t) cos kz ,

where ux, uy and uz are an orthonormal basis. We recall Maxwell’s equations
in vacuum:

∇ · E(r, t) = 0 ∇ ∧ E(r, t) = −∂B(r, t)
∂t

∇ · B(r, t) = 0 ∇ ∧ B(r, t) =
1
c2
∂E(r, t)
∂t
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and the total energy U(t) of the field in the cavity:

U(t) =
∫

V

(
ε0
2
E2(r, t) +

1
2µ0

B2(r, t)
)

d3r with ε0µ0c
2 = 1 . (14.3)

(a) Express de/dt and db/dt in terms of k, c, e(t), b(t).
(b) Express U(t) in terms of V, e(t), b(t), ε0, µ0. One can take∫

V

sin2 kz d3r =
∫

V

cos2 kz d3r =
V

2
.

(c) Setting ω = ck and introducing the reduced variables

χ(t) =

√
ε0V

2h̄ω
e(t) Π(t) =

√
V

2µ0h̄ω
b(t)

show that the equations for dχ/dt, dΠ/dt and U(t) in terms of χ,Π and
ω are formally identical to equations (14.1) and (14.2).

14.1.2. The quantization of the mode of the electromagnetic field under con-
sideration is performed in the same way as that of an ordinary harmonic oscil-
lator. One associates to the physical quantities χ and Π, Hermitian operators
χ̂ and Π̂ which satisfy the commutation relation

[χ̂, Π̂] = i .

The Hamiltonian of the field in the cavity is

ĤC =
h̄ω

2

(
χ̂2 + Π̂2

)
.

The energy of the field is quantized: En = (n + 1/2) h̄ω (n is a non-negative
integer); one denotes by |n〉 the eigenstate of ĤC with eigenvalue En.
The quantum states of the field in the cavity are linear combinations of the
set {|n〉}. The state |0〉, of energy E0 = h̄ω/2, is called the “vacuum”, and the
state |n〉 of energy En = E0 +nh̄ω is called the “n photon state”. A “photon”
corresponds to an elementary excitation of the field, of energy h̄ω.
One introduces the “creation” and “annihilation” operators of a photon as
â† = (χ̂− iΠ̂)/

√
2 and â = (χ̂+ iΠ̂)/

√
2 respectively. These operators satisfy

the usual relations:

â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉 if n �= 0 and â|0〉 = 0 .

(a) Express ĤC in terms of â† and â. The observable N̂ = â†â is called the
“number of photons”.
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The observables corresponding to the electric and magnetic fields at a
point r are defined as:

Ê(r) = ux

√
h̄ω

ε0V

(
â+ â†

)
sin kz

B̂(r) = iuy

√
µ0h̄ω

V

(
â† − â) cos kz .

The interpretation of the theory in terms of states and observables is the
same as in ordinary quantum mechanics.

(b) Calculate the expectation values 〈E(r)〉, 〈B(r)〉, and 〈n|ĤC|n〉 in an
n-photon state.

14.1.3. The following superposition:

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 , (14.4)

where α is any complex number, is called a “quasi-classical” state of the field.
(a) Show that |α〉 is a normalized eigenvector of the annihilation operator

â and give the corresponding eigenvalue. Calculate the expectation value
〈n〉 of the number of photons in that state.

(b) Show that if, at time t = 0, the state of the field is |ψ(0)〉 = |α〉, then,
at time t, |ψ(t)〉 = e−iωt/2|(αe−iωt)〉.

(c) Calculate the expectation values 〈E(r)〉t and 〈B(r)〉t at time t in a
quasi-classical state for which α is real.

(d) Check that 〈E(r)〉t and 〈B(r)〉t satisfy Maxwell’s equations.
(e) Calculate the energy of a classical field such that Ecl(r, t) = 〈E(r)〉t

and Bcl(r, t) = 〈B̂(r)〉t. Compare the result with the expectation value
of ĤC in the same quasi-classical state.

(f) Why do these results justify the name “quasi-classical” state for |α〉 if
|α| � 1?

14.2 The Coupling of the Field with an Atom

Consider an atom at point r0 in the cavity. The motion of the center of mass
of the atom in space is treated classically. Hereafter we restrict ourselves to the
two-dimensional subspace of internal atomic states generated by the ground
state |f〉 and an excited state |e〉. The origin of atomic energies is chosen
in such a way that the energies of |f〉 and |e〉 are respectively −h̄ωA/2 and
+h̄ωA/2 (ωA > 0). In the basis {|f〉, |e〉}, one can introduce the operators:

σ̂z =
(

1 0
0 −1

)
σ̂+ =

(
0 0
1 0

)
σ̂− =

(
0 1
0 0

)
,



134 14 Direct Observation of Field Quantization

that is to say σ̂+|f〉 = |e〉 and σ̂−|e〉 = |f〉, and the atomic Hamiltonian can
be written as: ĤA = − h̄ωA

2 σ̂z .
The set of orthonormal states {|f, n〉 , |e, n〉, n ≥ 0} where |f, n〉 ≡ |f〉⊗|n〉

and |e, n〉 ≡ |e〉⊗|n〉 forms a basis of the Hilbert space of the {atom+photons}
states.

14.2.1. Check that it is an eigenbasis of Ĥ0 = ĤA + ĤC, and give the corre-
sponding eigenvalues.

14.2.2. In the remaining parts of the problem we assume that the frequency
of the cavity is exactly tuned to the Bohr frequency of the atom, i.e. ω = ωA.
Draw schematically the positions of the first 5 energy levels of Ĥ0. Show that,
except for the ground state, the eigenstates of Ĥ0 are grouped in degenerate
pairs.

14.2.3. The Hamiltonian of the electric dipole coupling between the atom
and the field can be written as:

Ŵ = γ
(
âσ̂+ + â†σ̂−

)
,

where γ = −d√h̄ω/ε0V sin kz0, and where the electric dipole moment d is
determined experimentally.
(a) Write the action of Ŵ on the states |f, n〉 and |e, n〉.
(b) To which physical processes do âσ̂+ and â†σ̂− correspond?

14.2.4. Determine the eigenstates of Ĥ = Ĥ0 + Ŵ and the corresponding
energies. Show that the problem reduces to the diagonalization of a set of
2 × 2 matrices. One hereafter sets:

|φ±n 〉 =
1√
2
(|f, n+ 1〉 ± |e, n〉)

h̄Ω0

2
= γ = −d

√
h̄ω

ε0V
sin kz0 Ωn = Ω0

√
n+ 1 .

The energies corresponding to the eigenstates |φ±n 〉 are denoted E±
n .

14.3 Interaction of the Atom with
an “Empty” Cavity

In the following, one assumes that the atom crosses the cavity along a line
where sin kz0 = 1.

An atom in the excited state |e〉 is sent into the cavity prepared in the
vacuum state |0〉. At time t = 0 , when the atom enters the cavity, the state
of the system is |e, n = 0〉.
14.3.1. What is the state of the system at a later time t?
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14.3.2. What is the probability Pf (T ) to find the atom in the state f at time
T when the atom leaves the cavity? Show that Pf (T ) is a periodic function
of T (T is varied by changing the velocity of the atom).

14.3.3. The experiment has been performed on rubidium atoms for a couple
of states (f, e) such that d = 1.1× 10−26 C.m and ω/2π = 5.0× 1010 Hz. The
volume of the cavity is 1.87 × 10−6 m3 (we recall that ε0 = 1/(36π109) S.I.).

The curve Pf (T ), together with the real part of its Fourier transform
J(ν) =

∫∞
0

cos (2πνT )Pf (T ) dT , are shown in Fig. 14.1. One observes a
damped oscillation, the damping being due to imperfections of the experi-
mental setup.
How do theory and experiment compare?
(We recall that the Fourier transform of a damped sinusoid in time exhibits a peak
at the frequency of this sinusoid, whose width is proportional to the inverse of the
characteristic damping time.)
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Fig. 14.1. (a) Probability Pf (T ) of detecting the atom in the ground state after it
crosses a cavity containing zero photons; (b) Fourier transform of this probability,
as defined in the text

14.4 Interaction of an Atom
with a Quasi-Classical State

The atom, initially in the state |e〉, is now sent into a cavity where a quasi-
classical state |α〉 of the field has been prepared. At time t = 0 the atom
enters the cavity and the state of the system is |e〉 ⊗ |α〉.
14.4.1. Calculate the probability Pf (T, n) to find, at time T , the atom in the
state |f〉 and the field in the state |n+ 1〉, for n ≥ 0. What is the probability
to find the atom in the state |f〉 and the field in the state |0〉?
14.4.2. Write the probability Pf (T ) to find the atom in the state |f〉, inde-
pendently of the state of the field, as an infinite sum of oscillating functions.
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14.4.3. On Fig. 14.2 are plotted an experimental measurement of Pf (T ) and
the real part of its Fourier transform J(ν). The cavity used for this mea-
surement is the same as in Fig. 14.1, but the field has been prepared in a
quasi-classical state before the atom is sent in.
(a) Determine the three frequencies ν0, ν1, ν2 which contribute most strongly

to Pf (T ).
(b) Do the ratios ν1/ν0 and ν2/ν0 have the expected values?
(c) From the values J(ν0) and J(ν1), determine an approximate value for

the mean number of photons |α|2 in the cavity.

Fig. 14.2. (a) Probability Pf (T ) of measuring the atom in the ground state af-
ter the atom has passed through a cavity containing a quasi-classical state of the
electromagnetic field; (b) Fourier transform of this probability

14.5 Large Numbers of Photons: Damping
and Revivals

Consider a quasi-classical state |α〉 of the field corresponding to a large mean
number of photons: |α|2 � n0 � 1, where n0 is an integer. In this case, the
probability π(n) to find n photons can be cast, in good approximation, in the
form:

π(n) = e−|α|2 |α2n
|
n!

� 1√
2πn0

exp
(
− (n− n0)2

2n0

)
.

This Gaussian limit of the Poisson distribution can be obtained by using the
Stirling formula n! ∼ nne−n

√
2πn and expanding lnπ(n) in the vicinity of

n = n0.

14.5.1. Show that this probability takes significant values only if n lies in a
neighborhood δn of n0. Give the relative value δn/n0.

14.5.2. For such a quasi-classical state, one tries to evaluate the probability
Pf (T ) of detecting the atom in the state f after its interaction with the field.
In order to do this,
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• one linearizes the dependence of Ωn on n in the vicinity of n0:

Ωn � Ωn0 +Ω0
n− n0

2
√
n0 + 1

, (14.5)

• one replaces the discrete summation in Pf (T ) by an integral.
(a) Show that, under these approximations, Pf (T ) is an oscillating function

of T for short times, but that this oscillation is damped away after a
characteristic time TD. Give the value of TD.
We recall that∫ ∞

−∞

1
σ
√

2π
e−(x−x0)

2/2σ2
cos(αx) dx = e−α2σ2/2 cos(αx0).

(b) Does this damping time depend on the mean value of the number of
photons n0?

(c) Give a qualitative explanation for this damping.

14.5.3. If one keeps the expression of Pf (T ) as a discrete sum, an exact
numerical calculation shows that one expects a revival of the oscillations of
Pf (T ) for certain times TR large compared to TD, as shown in Fig. 14.3.
This phenomenon is called quantum revival and it is currently being studied
experimentally.

Keeping the discrete sum but using the approximation (14.5), can you
explain the revival qualitatively? How does the time of the first revival depend
on n0?

Fig. 14.3. Exact theoretical calculation of Pf (T ) for 〈n〉 � 25 photons

14.6 Solutions

Section 14.1: Quantization of a Mode of the Electromagnetic
Field

14.1.1. (a) The pair of Maxwell equations ∇ · E = 0 and ∇ · B = 0 are
satisfied whatever the values of the functions e(t) and b(t). The equations
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∇ ∧ E = −(∂B/∂t) and c2∇ ∧ B = −(∂E/∂t) require that:

de
dt

= c2kb(t)
db
dt

= −ke(t) .

(b) The electromagnetic energy can be written as:

U(t) =
∫

V

(
ε0
2
e2(t) sin2 kz +

1
2µ0

b2(t) cos2 kz
)

d3r

=
ε0V

4
e2(t) +

V

2µ0
b2(t) .

(c) Under the change of functions suggested in the text, we obtain:{
χ̇ = ωΠ

Π̇ = −ω χ U(t) =
h̄ω

2
(
χ2(t) +Π2(t)

)
.

These two equations are formally identical to the equations of motion of a
particle in a harmonic oscillator potential.

14.1.2. (a) From [χ̂, Π̂] = i, we deduce that:

[â, â†] =
1
2
[χ̂+ iΠ̂, χ̂− iΠ̂] = 1 .

In addition, χ̂ = (â+ â†)/
√

2 and Π̂ = i(â† − â)/√2, i.e.:

ĤC =
h̄ω

2
(
ââ† + â†â

)
= h̄ω

(
â†â+

1
2

)
,

or ĤC = h̄ω
(
N̂ + 1

2

)
.

(b) For an n photon state, we find 〈n|â|n〉 = 〈n|â†|n〉 = 0, which results in

〈E(r)〉 = 0 〈B(r)〉 = 0 .

The state |n〉 is an eigenstate of ĤC with eigenvalue (n+ 1/2)h̄ω, i.e.

〈HC〉 =
(
n+

1
2

)
h̄ω .

14.1.3. (a) The action of â on |α〉 gives

â|α〉 = e−|α|2/2
∞∑

n=1

αn

√
n!

√
n|n− 1〉

= αe−|α|2/2
∞∑

n=1

αn−1√
(n− 1)!

|n− 1〉 = α|α〉 .
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The vector |α〉 is normalized:

〈α|α〉 = e−|α|2
∞∑

n=0

(α∗)nαn

n!
= 1 .

The expectation value of the number of photons in that state is:

〈n〉 = 〈α|N̂ |α〉 = 〈α|â†â|α〉 = ||â|α〉||2 = |α|2 .
(b) The time evolution of |ψ(t)〉 is given by

|ψ(t)〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

e−iω(n+1/2)t|n〉

= e−iωt/2e−|α|2/2
∞∑

n=0

(
αe−iωt

)n
√
n!

|n〉

= e−iωt/2|(αe−iωt)〉 .

(c) The expectation values of the electric and magnetic fields are

〈E(r)〉t = 2α cosωt sin kz
√
h̄ω

ε0V
ux

〈B(r)〉t = −2α sinωt cos kz

√
h̄ωµ0

V
uy .

(d) These fields are of the same type as the classical fields considered at the
beginning of the problem, with

e(t) = 2α
√
h̄ω

ε0V
cosωt b(t) = −2α

√
h̄ωµ0

V
sinωt .

Given the relation ε0µ0c
2 = 1, we verify that ė(t) = c2kb(t) and ḃ = −ke(t).

Therefore the expectation values of the field operators satisfy Maxwell’s equa-
tions.
(e) The energy of the classical field can be calculated using the result of ques-
tion 1.1b. Since cos2 ωt + sin2 ωt = 1, we find U(t) = h̄ωα2. This “classical”
energy is therefore time-independent. The expectation value of ĤC is:

〈HC〉 = 〈h̄ω(N + 1/2)〉 = h̄ω(α2 + 1/2) .

It is also time independent (Ehrenfest’s theorem).
(f) For |α| much larger than 1, the ratio U(t)/〈HC〉 is close to 1. More
generally, the expectation value of a physical quantity as calculated for a
quantum field in the state |α〉, will be close to the value calculated for a
classical field such that Ecl(r, t) = 〈E(r)〉t and Bcl(r, t) = 〈B(r)〉t.
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Fig. 14.4. (a) Positions of the five first energy levels of H0. (b) Positions of the five
first energy levels of Ĥ = Ĥ0 + Ŵ

Section 14.2: The Coupling of the Field with an Atom

14.2.1. One checks that

Ĥ0|f, n〉 =
(
− h̄ωA

2
+
(
n+

1
2

)
h̄ω

)
|f, n〉 ,

Ĥ0|e, n〉 =
(
h̄ωA

2
+
(
n+

1
2

)
h̄ω

)
|e, n〉 .

14.2.2. For a cavity which resonates at the atom’s frequency, i.e. if ω = ωA,
the couple of states |f, n+ 1〉, |e, n〉 are degenerate. The first five levels of Ĥ0

are shown in Fig. 14.4a. Only the ground state |f, 0〉 of the atom+field system
is non-degenerate.

14.2.3. (a) The action of Ŵ on the basis vectors of H0 is given by:

Ŵ |f, n〉 =
√
nγ |e, n− 1〉 if n ≥ 1

= 0 if n = 0
Ŵ |e, n〉 =

√
n+ 1 γ |f, n+ 1〉 .

The coupling under consideration corresponds to an electric dipole interaction
of the form −D̂ · Ê(r), where D̂ is the observable electric dipole moment of
the atom.
(b) Ŵ couples the two states of each degenerate pair. The term âσ̂+ corre-
sponds to the absorption of a photon by the atom, which undergoes a transi-
tion from the ground state to the excited state. The term â†σ̂− corresponds
to the emission of a photon by the atom, which undergoes a transition from
the excited state to the ground state.



14.6 Solutions 141

14.2.4. The operator Ŵ is block-diagonal in the eigenbasis of
Ĥ0 {|f, n〉, |e, n〉} . Therefore:
• The state |f, 0〉 is an eigenstate of Ĥ0 + Ŵ with the eigenvalue 0.
• In each eigen-subspace of Ĥ0 generated by {|f, n+ 1〉, |e, n〉} with n ≥ 0,

one must diagonalize the 2 × 2 matrix:(
(n+ 1)h̄ω h̄Ωn/2
h̄Ωn/2 (n+ 1)h̄ω

)
whose eigenvectors and corresponding eigenvalues are (n ≥ 0):

|φ+
n 〉 corresponding to E+

n = (n+ 1)h̄ω +
h̄Ωn

2

|φ−n 〉 corresponding to E−
n = (n+ 1)h̄ω − h̄Ωn

2
.

The first five energy levels of Ĥ0 + Ŵ are shown in Fig. 14.4b.

Section 14.3: Interaction of the Atom and an “Empty” Cavity

14.3.1. We expand the initial state on on the eigenbasis of Ĥ:

|ψ(0)〉 = |e, 0〉 =
1√
2

(|φ+
0 〉 − |φ−0 〉

)
.

The time evolution of the state vector is therefore given by:

|ψ(t)〉 =
1√
2

(
e−iE+

0 t/h̄|φ+
0 〉 − e−iE−

0 t/h̄|φ−0 〉
)

=
e−iωt

√
2

(
e−iΩ0t/2|φ+

0 〉 − eiΩ0t/2|φ−0 〉
)
.

14.3.2. In general, the probability of detecting the atom in the state f , in-
dependently of the field state, is given by:

Pf (T ) =
∞∑

n=0

|〈f, n|ψ(T )〉|2 .

In the particular case of an initially empty cavity, only the term n = 1 con-
tributes to the sum. Using |f, 1〉 =

(|φ+
0 〉 + |φ−0 〉

)
/
√

2, we find

Pf (T ) = sin2 Ω0T

2
=

1
2

(1 − cosΩ0T ) .

It is indeed a periodic function of T , with angular frequency Ω0.

14.3.3. Experimentally, one measures an oscillation of frequency ν0 = 47 kHz.
This result corresponds to the expected value:

ν0 =
1
2π

2d
h̄

√
h̄ω

ε0V
.
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Section 14.4: Interaction of an Atom with a Quasi-Classical State

14.4.1. Again, we expand the initial state on the eigenbasis of Ĥ0 + Ŵ :

|ψ(0)〉 = |e〉 ⊗ |α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|e, n〉

= e−|α|2/2
∞∑

n=0

αn

√
n!

1√
2

(|φ+
n 〉 − |φ−n 〉

)
.

At time t the state vector is

|ψ(t)〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

1√
2

(
e−iE+

n t/h̄|φ+
n 〉 − e−iE−

n t/h̄|φ−n 〉
)
.

We therefore observe that:
• the probability to find the atom in the state |f〉 and the field in the state

|0〉 vanishes for all values of T ,
• the probability Pf (T, n) can be obtained from the scalar product of |ψ(t)〉

and |f, n+ 1〉 = (|φ+
n 〉 + |φ−n 〉) /

√
2:

Pf (T, n) =
1
4
e−|α|2 |α|2n

n!

∣∣∣e−iE+
n t/h̄ − e−iE−

n t/h̄
∣∣∣2

= e−|α|2 |α|2n

n!
sin2 ΩnT

2
=

1
2
e−|α|2 |α|2n

n!
(1 − cosΩnT ) .

14.4.2. The probability Pf (T ) is simply the sum of all probabilities Pf (T, n):

Pf (T ) =
∞∑

n=0

Pf (T, n) =
1
2
− e−|α|2

2

∞∑
n=0

|α|2n

n!
cosΩnT .

14.4.3. (a) The three most prominent peaks of J(ν) occur at the frequencies
ν0 = 47 kHz (already found for an empty cavity), ν1 = 65 kHz and ν2 =
81 kHz.
(b) The ratios of the measured frequencies are very close to the theoretical
predictions: ν1/ν0 =

√
2 and ν2/ν0 =

√
3.

(c) The ratio J(ν1)/J(ν0) is of the order of 0.9. Assuming the peaks have
the same widths, and that these widths are small compared to the splitting
ν1 − ν0, this ratio correponds to the average number of photons |α|2 in the
cavity.

Actually, the peaks overlap, which makes this determination somewhat
inaccurate. If one performs a more sophisticated analysis, taking into account
the widths of the peaks, one obtains |α|2 = 0.85 ± 0.04 (see the reference at
end of this chapter).
Comment: One can also determine |α|2 from the ratio J(ν2)/J(ν1) which
should be equal to |α|2/2. However, the inaccuracy due to the overlap of the
peaks is greater than for J(ν1)/J(ν0), owing to the smallness of J(ν2).
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Section 14.5: Large Numbers of Photons: Damping and Revivals

14.5.1. The probability π(n) takes significant values only if (n− n0)2/(2n0)
is not much larger than 1, i.e. for integer values of n in a neighborhood of n0

of relative extension of the order of 1/
√
n0. For n0 � 1, the distribution π(n)

is therefore peaked around n0.

14.5.2. (a) Consider the result of question 4.2, where we replace Ωn by its
approximation (14.5):

Pf (T ) =
1
2
− 1

2

∞∑
n=0

π(n) cos
[(
Ωn0 +Ω0

n− n0

2
√
n0 + 1

)
T

]
(14.6)

We now replace the discrete sum by an integral:

Pf (T ) =
1
2
− 1

2

∫ ∞

−∞

e−u2/(2n0)

√
2πn0

· cos
[(
Ωn0 +Ω0

u

2
√
n0 + 1

)
T

]
du .

We have extended the lower integration bound from −n0 down to −∞, using
the fact that the width of the gaussian is

√
n0 � n0. We now develop the

expression to be integrated upon:

cos
[(
Ωn0 +Ω0

u

2
√
n0+1

)
T

]
= cos (Ωn0T ) cos

(
Ω0uT

2
√
n0 + 1

)

− sin (Ωn0T ) sin
(

Ω0uT

2
√
n0 + 1

)
.

The sine term does not contribute to the integral (odd function) and we find:

Pf (T ) =
1
2
− 1

2
cos (Ωn0T ) exp

(
− Ω2

0T
2n0

8(n0 + 1)

)
.

For n0 � 1, the argument of the exponential simplifies, and we obtain:

Pf (T ) =
1
2
− 1

2
cos (Ωn0T ) exp

(
−T

2

T 2
D

)

with TD = 2
√

2/Ω0.
(b) In this approximation, the oscillations are damped out in a time TD which
is independent of the number of photons n0. For a given atomic transition
(for fixed values of d and ω), this time TD increases like the square root of
the volume of the cavity. In the limit of an infinite cavity, i.e. an atom in
empty space, this damping time becomes infinite: we recover the usual Rabi
oscillation. For a cavity of finite size, the number of visible oscillations of
Pf (T ) is roughly νn0TD ∼ √

n0.
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(c) The function Pf (T ) is made up of a large number of oscillating functions
with similar frequencies. Initially, these different functions are in phase, and
their sum Pf (T ) exhibits marked oscillations. After a time TD, the various os-
cillations are no longer in phase with one another and the resulting oscillation
of Pf (T ) is damped. One can find the damping time by simply estimating
the time for which the two frequencies at half width on either side of the
maximum of π(n) are out of phase by π:

Ωn0+
√

n0TD ∼ Ωn0−√
n0TD + π and

√
n0 ±√

n0 � √
n0 ± 1

2

⇒ Ω0TD ∼ π .
14.5.3. Within the approximation (14.5) suggested in the text, equation
(14.6) above corresponds to a periodic evolution of period

TR =
4π
Ω0

√
n0 + 1 .

Indeed (
Ωn0 +Ω0

n− n0

2
√
n0 + 1

)
TR = 4π (n0 + 1) + 2π(n− n0) .

We therefore expect that all the oscillating functions which contribute to
Pf (T ) will reset in phase at times TR, 2TR,. . . The time of the first revival,
measured in Fig. 14.3, is Ω0T � 64, in excellent agreement with this predic-
tion. Notice that TR ∼ 4

√
n0 TD, which means that the revival time is always

large compared to the damping time.
Actually, one can see from the result of Fig. 14.3 that the functions are

only partly in phase. This comes from the fact that the numerical calculation
has been done with the exact expression of Ωn. In this case, the difference
between two consecutive frequencies Ωn+1 − Ωn is not exactly a constant,
contrary to what happens in approximation (14.5); the function Pf (T ) is not
really periodic. After a few revivals, one obtains a complicated behavior of
Pf (T ), which can be analysed with the techniques developed for the study of
chaos.

14.7 Comments

The damping phenomenon which we have obtained above is “classical”: one
would obtain it within a classical description of the interaction of the field
and the atom, by considering a field whose intensity is not well defined (this
would be the analog of a distribution π(n) of the number of photons). On the
other hand, the revival comes from the fact that the set of frequencies Ωn is
discrete. It is a direct consequence of the quantization of the electromagnetic
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field, in the same way as the occurrence of frequencies ν0
√

2, ν0
√

3,. . . in the
evolution of Pf (T ) (Sect. 4).

The experiments described in this chapter have been performed in Paris,
at the Laboratoire Kastler Brossel. The pair of levels (f, e) correspond to very
excited levels of rubidium, which explains the large value of the electric dipole
moment d. The field is confined in a superconducting niobium cavity (Q-
factor of ∼ 108), cooled down to 0.8 K in order to avoid perturbations to the
experiment due to the thermal black body radiation (M. Brune, F. Schmidt-
Kaler, A. Maali, J. Dreyer, E. Hagley, J.-M. Raimond, and S. Haroche, Phys.
Rev. Lett. 76, 1800 (1996)).
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Ideal Quantum Measurement

In 1940, John von Neumann proposed a definition for an optimal, or “ideal”
measurement of a quantum physical quantity. In this chapter, we study a
practical example of such a procedure. Our ambition is to measure the exci-
tation number of a harmonic oscillator S by coupling it to another oscillator
D whose phase is measured.

We recall that, for k integer:

N∑
n=0

e
2iπkn
N+1 = N + 1 for k = p(N + 1), p integer ; = 0 otherwise.

15.1 Preliminaries: a von Neumann Detector

We want to measure a physical quantity A on a quantum system S. We use
a detector D devised for such a measurement. There are two stages in the
measurement process. First, we let S and D interact. Then, after S and D
get separated and do not interact anymore, we read a result on the detector
D. We assume that D possesses an orthonormal set of states {|Di〉} with
〈Di|Dj〉 = δi,j . These states correspond for instance to the set of values
which can be read on a digital display.

Let |ψ〉 be the state of the system S under consideration, and |D〉 the state
of the detector D. Before the measurement, the state of the global system
S + D is

|Ψi〉 = |ψ〉 ⊗ |D〉 .
Let ai and |φi〉 be the eigenvalues and corresponding eigenstates of the

observable Â. The state |ψ〉 of the system S can be expanded as

|ψ〉 =
∑

i

αi|φi〉 . (15.1)
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15.1.1. Using the axioms of quantum mechanics, what are the probabilities
p(ai) to find the values ai in a measurement of the quantity A on this state?

15.1.2. After the interaction of S and D, the state of the global system is in
general of the form

|Ψf 〉 =
∑
i,j

γij |φi〉 ⊗ |Dj〉 (15.2)

We now observe the state of the detector. What is the probability to find the
detector in the state |Dj〉?
15.1.3. After this measurement, what is the state of the global system S+D?

15.1.4. A detector is called ideal if the choice of |D0〉 and of the coupling S–
D leads to coefficients γij which, for any state |ψ〉 of S, verify: |γij | = δi,j |αj |.
Justify this designation.

15.2 Phase States of the Harmonic Oscillator

We consider a harmonic oscillator of angular frequency ω. We note N̂ the
“number” operator, i.e. the Hamiltonian is Ĥ = (N̂ + 1/2))h̄ω with eigen-
states |N〉 and eigenvalues EN = (N + 1

2 )h̄ω, N integer ≥ 0.

Let s be a positive integer. The so-called “phase states” are the family of
states defined at each time t by:

|θm〉 =
1√
s+ 1

N=s∑
N=0

e−iN(ωt+θm)|N〉 (15.3)

where θm can take any of the 2s+ 1 values

θm =
2πm
s+ 1

(m = 0, 1, . . . , s) . (15.4)

15.2.1. Show that the states |θm〉 are orthonormal.

15.2.2. We consider the subspace of states of the harmonic oscillator such
that the number of quanta N is bounded from above by some value s. The
sets {|N〉, N = 0, 1, . . . , s} and {|θm〉,m = 0, 1, . . . , s} are two bases in this
subspace. Express the vectors |N〉 in the basis of the phase states.

15.2.3. What is the probability to find N quanta in a phase state |θm〉?
15.2.4. Calculate the expectation value of the position x̂ in a phase state,
and find a justification for the name “phase state”. We recall the relation
x̂|N〉 = x0(

√
N + 1|N + 1 〉 +

√
N |N − 1〉), where x0 is the characteristic

length of the problem. We set Cs =
∑s

N=0

√
N .
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15.3 The Interaction between the System
and the Detector

We want to perform an “ideal” measurement of the number of excitation
quanta of a harmonic oscillator. In order to do so, we couple this oscillator
S with another oscillator D, which is our detector. Both oscillators have the
same angular frequency ω. The eigenstates of ĤS = (n̂ + 1

2 )h̄ω are noted
|n〉, n = 0, 1, . . . , s, those of ĤD = (N̂ + 1

2 )h̄ω are noted |N〉, N = 0, 1...s
where n̂ and N̂ are the number operators of S and D.

We assume that both numbers of quanta n and N are bounded from above
by s. The coupling between S and D has the form:

V̂ = h̄g n̂N̂ (15.5)

This Hamiltonian is realistic. If the two oscillators are two modes of the electro-

magnetic field, it originates from the crossed Kerr effect .

15.3.1. What are the eigenstates and eigenvalues of the total Hamiltonian

Ĥ = ĤS + ĤD + V̂ ?

15.3.2. We assume that the initial state of the global system S + D is fac-
torized as:

|Ψ(0)〉 = |ψS〉⊗|ψD〉, with : |ψS〉 =
∑

n

an|n〉 , |ψD〉 =
∑
N

bN |N〉 (15.6)

where we assume that |ψS〉 and |ψD〉 are normalized. We perform a measure-
ment of n̂ in the state |Ψ(0)〉. What results can one find, with what probabil-
ities? Answer the same question for a measurement of N̂ .

15.3.3. During the time interval [0, t], we couple the two oscillators. The
coupling is switched off at time t. What is the state |Ψ(t)〉 of the system? Is
it also a priori factorizable?

15.3.4. Is the probability law for the couple of random variables {n,N} af-
fected by the interaction? Why?

15.4 An “Ideal” Measurement

Initially, at time t = 0, the oscillator S is in a state |ψS〉 =
∑s

n=0 an|n〉. The
oscillator D is prepared in the state

|ψD〉 =
1√
s+ 1

s∑
N=0

|N〉 . (15.7)
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15.4.1. We switch on the interaction V̂ during the time interval [0, t]. Express
the state |Ψ(t)〉 in terms of the phase states {|θk〉} of the oscillator D.

15.4.2. We assume the interaction time is t = t0 ≡ 2π/ [g(s+ 1)]. Write the
state |Ψ(t0)〉 of the system.

15.4.3. What is the probability to find the value θk in a measurement of the
phase of the “detector” oscillator D?

15.4.4. After this measurement has been performed, what is the state of the
oscillator S? Describe qualitatively what will happen if one were to choose an
interaction time t �= t0.

15.4.5. Comment on the result. In your opinion, why did J. von Neumann
consider this as an “ideal” quantum-measurement process?

15.5 Solutions

Section 15.1: Preliminaries; a Von Neumann Detector

15.1.1. Since the state of the system is |ψ〉 =
∑

i αi|φi〉, the probability to
find the value aj in a measurement of A is p(aj) = |αj |2.
15.1.2. The state of the global system is

|Ψ1〉 =
∑
i,j

γij |φi〉 ⊗ |Dj〉 .

The probability pj to find the detector in the state |Dj〉 is the sum of the
probabilities |γij |2:

pj =
∑

i

|γij |2 ,

since the states |φi〉 are orthogonal.

15.1.3. After this measurement, the state of the global system S+D is, after
the principle of wave packet reduction,

|Ψ〉 =
1√
pj

[∑
i

γij |φi〉
]
⊗ |Dj〉 .

15.1.4. For an ideal detector, the probability that the detector is in the state
|Dj〉 is pj = |αj |2 = p(aj) and the state of the set system + detector, once
we know the state of the detector, is |φj〉 ⊗ |Dj〉. This is the expected result,
given the wave packet reduction principle.
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Section 15.2: Phase states of the harmonic oscillator

15.2.1. Given the definition of the phase states, one has:

〈θm|θn〉 =
1

s+ 1

s∑
N=0

s∑
N ′=0

eiN(ωt+θm)e−iN ′(ωt+θn)〈N |N ′〉

=
1

s+ 1

s∑
N=0

eiN(θm−θn)

=
1

s+ 1

s∑
N=0

e2iπN(m−n) / (s+1) = δm,n ,

where the last equality stands because −s ≤ m− n ≤ s.
15.2.2. The scalar product of a state |N〉 with a phase state is

〈θm|N〉 = (〈N |θm〉)∗ =
1√
s+ 1

eiN(ωt+θm) ,

hence the expansion:

|N〉 =
s∑

m=0

〈θm|N〉|θm〉 =
1√
s+ 1

s∑
m=0

eiN(ωt+θm)|θm〉 .

15.2.3. Given the definition of a phase state, the probability to findN quanta
in a state |θm〉 is

p(N, θm) = |〈N |θm〉|2 =
1

s+ 1
.

15.2.4. One obtains

〈θm|x̂|θm〉 = 2x0
Cs

s+ 1
cos (ωt+ θm) .

The phases of the expectation values of x in two phase states |θm〉 and |θn〉
differ by an integer multiple 2(m − n)π/(s + 1) of the elementary phase
2π/(s+ 1).

Section 15.3: The Interaction between the System
and the Detector

15.3.1. The factorized states |n〉 ⊗ |N〉 are eigenstates of the total Hamil-
tonian

Ĥ = ĤS + ĤD + V̂ = (n̂+ N̂ + 1)h̄ω + h̄g n̂⊗ N̂ ,

with eigenvalues En,N = (n+N + 1)h̄ω + h̄g nN .

15.3.2. The results of measurements and the corresponding probabilities are
n = 0, 1, . . . , s, p(n) = |an|2 and N = 0, 1, . . . , s, p(N) = |bN |2.
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15.3.3. The state of the system at time t is

|Ψ(t)〉 =
∑

n

∑
N

an bN e−i[(n+N+1)ω+gnN ]t |n〉 ⊗ |N〉 .

In general, it is not factorized.

15.3.4. The probability law for the couple of random variables {n,N} is still
p(n,N) = |an|2|bN |2. It is not modified by the interaction since V̂ commutes
with n̂ and N̂ . The quantities n and N are constants of the motion.

Section 15.4: An “Ideal” Measurement

15.4.1. One has bN = 1/
√
s+ 1, hence

|Ψ(t)〉 =
1√
s+ 1

∑
n

∑
N

ane−i[(n+N+1)ω+gnN)]t |n〉 ⊗ |N〉 .

Inserting the expansion of the states |N〉 in terms of the phase states, one
obtains

|Ψ(t)〉 =
∑

n

∑
m

(∑
N

ei(θm−gnt)N

s+ 1

)
e−i(n+1)ωt an |n〉 ⊗ |θm〉 .

15.4.2. If the interaction time is t0 = 2π / [g(s+ 1)], this expression reduces
to

|Ψ(t0)〉 =
s∑

n=0

e−i(n+1)ωt0 an |n〉 ⊗ |θn〉 . (15.8)

15.4.3. The probability to find the result θn by measuring the phase of the
detecting oscillator D on this state is p(θn) = |an|2.
15.4.4. After this measurement, the state of the oscillator S is simply |n〉
(up to an arbitrary phase factor). In the state (15.8), the two systems are
perfectly correlated. To a phase state of D there corresponds only one state
of number of quanta of S. If one were to choose a time interval different from
t0, this correlation would not be perfect. After a measurement of the phase of
D, the state of S would be a superposition of states with different numbers of
quanta.

15.4.5. We see that this procedure, which supposes a well defined interaction
time interval between the system and the detector, gives the value of the
probability p(n) = |an|2 that S is in a state with n quanta. In addition,
after one has read the result θn on the detector, one is sure that S is in
the state |n〉, without having to further interact with it (reduction of the
wave packet). In this sense, this procedure does follow exactly the axioms of
quantum mechanics on measurement. It is therefore an “ideal” measurement
of a quantum physical quantity.
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15.6 Comments

One can extend formally this result to other systems than harmonic oscilla-
tors. In practice, the case studied here is a simplification of the concrete case
where the oscillators S and D are modes of the electromagnetic field. The
Hamiltonian which is effectively encountered in a optically non-linear crystal,
comes from the phenomenon called the crossed Kerr effect . In an interferom-
eter, where D is a laser beam split in two parts by a semi-transparent mirror,
one can let the signal oscillator S interact with one of the beams. The mea-
surement consists in an interferometric measurement when the two beams of
D recombine.

This type of experiment has been carried out intensively in recent years. It
is also called a “non-destructive” quantum measurement (or QND measure-
ment). One can refer to the article by J.-P. Poizat and P. Grangier, Phys.
Rev. Lett. 70, 271 (1993).
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The Quantum Eraser

This chapter deals with a quantum process where the superposition of two
probability amplitudes leads to an interference phenomenon. The two ampli-
tudes can be associated with two quantum paths, as in a double slit interfer-
ence experiment. We shall first show that these interferences disappear if an
intermediate measurement gives information about which path has actually
been followed. Next, we shall see how interferences can actually reappear if
this information is “erased” by a quantum device.

We consider a beam of neutrons, which are particles of charge zero and spin
1/2, propagating along the x axis with velocity v. In all what follows, the mo-
tion of the neutrons in space is treated classically as a uniform linear motion.
Only the evolution of their spin states is treated quantum mechanically.

16.1 Magnetic Resonance

The eigenstates of the z component of the neutron spin are noted |n : +〉 and
|n : −〉. A constant uniform magnetic field B0 = B0 uz is applied along the
z axis (uz is the unit vector along the z axis). The magnetic moment of the
neutron is denoted µ̂n = γnŜn, where γn is the gyromagnetic ratio and Ŝn

the spin operator of the neutron.

16.1.1. What are the magnetic energy levels of a neutron in the presence of
the field B0? Express the result in terms of ω0 = −γnB0.

16.1.2. The neutrons cross a cavity of length L between times t0 and t1 =
t0 + L/v. Inside this cavity, in addition to the constant field B0, a rotating
field B1(t) is applied. The field B1(t) lies in the (x, y) plane and it has a
constant angular frequency ω:

B1(t) = B1(cosωt ux + sinωt uy) . (16.1)

Let |ψn(t)〉 = α+(t)|n : +〉+α−(t)|n : −〉 be the neutron spin state at time t,
and consider a neutron entering the cavity at time t0.
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(a) Write the equations of evolution for α±(t) when t0 ≤ t ≤ t1. We set
hereafter ω1 = −γnB1.

(b) Setting α±(t) = β±(t) exp[∓iω(t− t0)/2], show that the problem reduces
to a differential system with constant coefficients.

(c) We assume that we are near the resonance: |ω−ω0| � ω1, and that terms
proportional to (ω − ω0) may be neglected in the previous equations.
Check that, within this approximation, one has, for t0 ≤ t ≤ t1,

β±(t) = β±(t0) cos θ − ie∓iωt0β∓(t0) sin θ ,

where θ = ω1(t− t0)/2.

(d) Show that the spin state at time t1, when the neutron leaves the cavity,
can be written as: (

α+(t1)
α−(t1)

)
= U(t0, t1)

(
α+(t0)
α−(t0)

)
(16.2)

where the matrix U(t0, t1) is

U(t0, t1) =
(

e−iχ cosφ −ie−iδ sinφ
−ieiδ sinφ eiχ cosφ

)
, (16.3)

with φ = ω1(t1 − t0)/2, χ = ω(t1 − t0)/2 and δ = ω(t1 + t0)/2.

16.2 Ramsey Fringes

The neutrons are initially in the spin state |n : −〉. They successively cross
two identical cavities of the type described above. This is called Ramsey con-
figuration and it is shown in Fig. 16.1. The same oscillating field B1(t), given

Fig. 16.1. Ramsey’s configuration; the role of the detecting atom A is specified in
parts 3 and 4
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by 16.1, is applied in both cavities. The modulus B1 of this field is adjusted so
as to satisfy the condition φ = π/4. The constant field B0 is applied through-
out the experimental setup. At the end of this setup, one measures the number
of outgoing neutrons which have flipped their spin and are in the final state
|n : +〉. This is done for several values of ω in the vicinity of ω = ω0.

16.2.1. At time t0, a neutron enters the first cavity in the state |n : −〉. What
is its spin state, and what is the probability to find it in the state |n : +〉,
when it leaves the cavity?

16.2.2. The same neutron enters the second cavity at time t′0 = t1 +T , with
T = D/v where D is the distance between the two cavities. Between the two
cavities the spin precesses freely around B0. What is the spin state of the
neutron at time t′0?

16.2.3. Let t′1 be the time when the neutron leaves the second cavity: t′1−t′0 =
t1 − t0. Express the quantity δ′ = ω(t′1 + t′0)/2 in terms of ω, t0, t1 and T .
Write the transition matrix U(t′0, t

′
1) in the second cavity.

16.2.4. Calculate the probability P+ of detecting the neutron in the state |n :
+〉 after the second cavity. Show that it is an oscillating function of (ω0−ω)T .
Explain why this result can be interpreted as an interference process.

16.2.5. In practice, the velocities of the neutrons have some dispersion
around the mean value v. This results in a dispersion in the time T to get
from one cavity to the other. A typical experimental result giving the inten-
sity of the outgoing beam in the state |n : +〉 as a function of the frequency
ν = ω/2π of the rotating field B1 is shown in Fig. 16.2.
(a) Explain the shape of this curve by averaging the previous result over the

distribution

Fig. 16.2. Intensity of the outgoing beam in the state |n : +〉 as a function of the
frequency ω/2π for a neutron beam with some velocity dispersion
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dp(T ) =
1

τ
√

2π
e−(T−T0)

2/2τ2
dT .

We recall that
∫∞
−∞ cos(ΩT ) dp(T ) = e−Ω2τ2/2 cos(ΩT0).

(b) In the above experiment, the value of the magnetic field was B0 = 2.57×
10−2 T and the distance D = 1.6 m. Calculate the magnetic moment of
the neutron. Evaluate the average velocity v0 = D/T0 and the velocity
dispersion δv = v0 τ/T0 of the neutron beam.

(c) Which optical interference experiment is the result reminiscent of?

16.2.6. Suppose one inserts between the two cavities of Fig. 16.1 a device
which can measure the z component of the neutron spin (the principle of such
a detector is presented in the next section). Determine the probability P+,+

of detecting the neutron in the state |n : +〉 between the two cavities and in
the state |n : +〉 when it leaves the second cavity, and the probability P−,+

of detecting the neutron in the state |n : −〉 between the cavities and in the
state |n : +〉 when it leaves the second cavity. Check that one does not have
P+ = P+,+ + P−,+ and comment on this fact.

16.3 Detection of the Neutron Spin State

In order to measure the spin of a neutron, one lets it interact during a time
τ with a spin 1/2 atom at rest. The atom’s spin operator is Ŝa. Let |a : ±〉
be the two eigenstates of the observable Ŝaz. After the interaction between
the neutron and the atom, one measures the spin of the atom. Under certain
conditions, as we shall see, one can deduce the spin state of the neutron after
this measurement.

16.3.1. Spin States of the Atom.
Let |a : ±x〉 be the eigenstates of Ŝax and |a : ±y〉 those of Ŝay. Write
|a : ±x〉 and |a : ±y〉 in the basis {|a : +〉, |a : −〉}. Express |a : ±y〉 in terms
of |a : ±x〉.
16.3.2. We assume that the neutron–atom interaction does not affect the
neutron’s trajectory. We represent the interaction between the neutron and
the atom by a very simple model. This interaction is assumed to last a finite
time τ during which the neutron–atom interaction Hamiltonian has the form

V̂ =
2A
h̄
Ŝnz ⊗ Ŝax , (16.4)

where A is a constant. We neglect the action of any external field, including
B0, during the time τ .
Explain why Ŝnz and V̂ commute. Give their common eigenstates and the
corresponding eigenvalues.
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16.3.3. We hereafter assume that the interaction time τ is adjusted in such
a way that

Aτ = π/2 .

Suppose the initial state of the system is

|ψ(0)〉 = |n : +〉 ⊗ |a : +y〉 .

Calculate the final state of the system |ψ(τ)〉. Answer the same question if
the initial state is |ψ(0)〉 = |n : −〉 ⊗ |a : +y〉.
16.3.4. We now suppose that the initial spin state is

|ψ(0)〉 = (α+|n : +〉 + α−|n : −〉) ⊗ |a : +y〉.

After the neutron–atom interaction described above, one measures the z com-
ponent Saz of the atom’s spin.
(a) What results can one find, and with what probabilities?
(b) After this measurement, what prediction can one make about the value

of the z component of the neutron spin? Is it necessary to let the neutron
interact with another measuring apparatus in order to know Snz once the
value of Saz is known?

16.4 A Quantum Eraser

We have seen above that if one measures the spin state of the neutron between
the two cavities, the interference signal disappears. In this section, we will
show that it is possible to recover an interference if the information left by
the neutron on the detecting atom is “erased” by an appropriate measurement.

A neutron, initially in the spin state |n : −〉, is sent into the two-cavity
system. Immediately after the first cavity, there is a detecting atom of the
type discussed above, prepared in the spin state |a : +y〉. By assumption, the
spin state of the atom evolves only during the time interval τ when it interacts
with the neutron.

16.4.1. Write the spin state of the neutron–atom system when the neutron
is:
(a) just leaving the first cavity (time t1), before interacting with the atom;
(b) just after the interaction with the atom (time t1 + τ);
(c) entering the second cavity (time t′0);
(d) just leaving the second cavity ( time t′1).

16.4.2. What is the probability to find the neutron in the state |n : +〉 at
time t′1? Does this probability reflect an interference phenomenon? Interpret
the result.
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16.4.3. At time t′1, Bob measures the z component of the neutron spin and
Alice measures the y component of the atom’s spin. Assume both measure-
ments give +h̄/2. Show that the corresponding probability reflects an inter-
ference phenomenon.

16.4.4. Is this result compatible with the conclusion of question 4.2?

16.4.5. In your opinion, which of the following three statements are appro-
priate, and for what reasons?
(a) When Alice performs a measurement on the atom, Bob sees at once an

interference appear in the signal he is measuring on the neutron.
(b) Knowing the result obtained by Alice on each event, Bob can select a

subsample of his own events which displays an interference phenomenon.
(c) The experiment corresponds to an interference between two quantum

paths for the neutron spin. By restoring the initial state of the atom,
the measurement done by Alice erases the information concerning which
quantum path is followed by the neutron spin, and allows interferences
to reappear.

16.4.6. Alice now measures the component of the atom’s spin along an ar-
bitrary axis defined by the unit vector w. Show that the contrast of the
interferences varies proportionally to | sin η|, where cos η = w.uz. Interpret
the result.

16.5 Solutions

Section 16.1: Magnetic Resonance

16.1.1. The magnetic energy levels are: E± = ∓γnh̄B0/2 = ±h̄ω0/2.

16.1.2. (a) The Hamiltonian is

H =
h̄

2

(
ω0 ω1e−iωt

ω1eiωt −ω0

)
.

Therefore, the evolution equations are

iα̇+ =
ω0

2
α+ +

ω1

2
e−iωtα− ; iα̇− = −ω0

2
α− +

ω1

2
e+iωtα+ .

(b) With the variables β±(t) = α±(t) exp[±iω(t− t0)/2], we obtain

iβ̇+ =
ω0 − ω

2
β+ +

ω1

2
e−iωt0β− ; iβ̇− =

ω − ω0

2
β− +

ω1

2
eiωt0β+ .
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(c) If |ω0 − ω| � ω1, we have, to a good approximation, the differential
system

iβ̇+ =
ω1

2
e−iωt0β− ; iβ̇− =

ω1

2
eiωt0β+ ,

whose solution is indeed

β±(t) = β±(t0) cos
ω1(t− t0)

2
− i e∓iωt0β∓(t0) sin

ω1(t− t0)
2

.

(d) Defining φ = ω1(t1 − t0)/2 , χ = ω(t1 − t0)/2 , δ = ω(t1 + t0)/2, we
obtain

α+(t1) = e−iχβ+(t1) = e−iχ
[
α+(t0) cosφ− iα−(t0)e−iωt0 sinφ

]
α−(t1) = eiχβ−(t1) = e+iχ

[
α−(t0) cosφ− iα+(t0)e+iωt0 sinφ

]
,

and, therefore,

U =
(

e−iχ cosφ −i e−iδ sinφ
−i eiδ sinφ eiχ cosφ

)
.

Section 16.2: Ramsey Fringes

16.2.1. We assume φ = π/4; the initial conditions are: α+(t0) = 0 , α−(t0) =
1. At time t1 the state is

|ψ(t1)〉 =
1√
2

(−i e−iδ|n : +〉 + eiχ|n : −〉) .
In other words α+(t1) = −ie−iδ/

√
2, α−(t1) = eiχ/

√
2, and P± = 1/2.

16.2.2. We set T = D/v. The neutron spin precesses freely between the two
cavities during time T , and we obtain(

α+(t′0)
α−(t′0)

)
=

1√
2

(−ie−iδe−iω0T/2

eiχe+iω0T/2

)
. (16.5)

16.2.3. By definition, t′0 = t1+T and t′1 = 2t1−t0+T , therefore the transition
matrix in the second cavity is

U ′ =
(

e−iχ′
cosφ′ −ie−iδ′

sinφ′

−ieiδ′
sinφ′ eiχ′

cosφ′

)

with φ′ = φ = ω1(t1 − t0)/2, χ′ = χ = ω(t1 − t0)/2. Only the parameter δ is
changed into

δ′ = ω(t′1 + t′0)/2 = ω(3t1 + 2T − t0)/2 .
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16.2.4. The probability amplitude for detecting the neutron in state |+〉
after the second cavity is obtained by (i) applying the matrix U ′ to the vector
(16.5), (ii) calculating the scalar product of the result with |n : +〉. We obtain

α+(t′1) =
1
2

(
−ie−i(χ+δ+ω0T/2) − ie−i(δ′−χ−ω0T/2)

)
.

Since

δ + χ = ωt1 δ′ − χ =
ω

2
(3t1 + 2T − t0 − t1 + t0) = ω(t1 + T ) ,

we have

α+(t′1) = − i
2

e−iω(t1+T/2)
(
e−i(ω0−ω)T/2 + ei(ω0−ω)T/2

)
. (16.6)

Therefore, the probability that the neutron spin has flipped in the two-cavity
system is

P+ = |α+(t′1)|2 = cos2
(ω − ω0)T

2
.

With the approximation of Sect. 1.2c, the probability for a spin flip in a
single cavity is independent of ω, and is equal to 1/2. In contrast, the present
result for two cavities exhibits a strong modulation of the spin flip probability,
between 1 (e.g. for ω = ω0) and 0 (e.g. for (ω − ω0)T = π). This modulation
results from an interference process of the two quantum paths corresponding
respectively to:
• a spin flip in the first cavity, and no flip in the second one,
• no flip in the first cavity and a spin flip in the second one.
Each of these paths has a probability 1/2, so that the sum of the probability
amplitudes (16.6) is fully modulated.

16.2.5. (a) Since cos2 φ/2 = (1 + cosφ)/2, the averaged probability distri-
bution is

〈
cos2

(ω − ω0)T
2

〉
=

1
2

+
1
2
e−(ω−ω0)

2τ2/2 cos
[
(ω − ω0)T0

]
. (16.7)

This form agrees with the observed variation in ω of the experimental signal.
The central maximum, which is located at ω/2π = 748.8 kHz corresponds
to ω = ω0. For that value, a constructive interference appears whatever the
neutron velocity. The lateral maxima and minima are less peaked, however,
since the position of a lateral peak is velocity dependent. The first two lat-
eral maxima correspond to (ω − ω0)T0 � ±2π. Their amplitude is reduced,
compared to the central peak, by a factor exp(−2π2τ2/T 2

0 ).
(b) The angular frequency ω0 is related to the magnetic moment of the
neutron by h̄ω0 = 2µnB0 which leads to µn = 9.65 × 10−27 J T−1. The time
T0 can be deduced from the spacing between the central maximum and a



16.5 Solutions 163

lateral one. The first lateral maximum occurs at 0.77 kHz from the resonance,
hence T0 = 1.3 ms. This corresponds to an average velocity v0 = 1230 m s−1.
The ratio of intensities between the second lateral maximum and the central
one is roughly 0.55. This is approximately equal to exp(−8π2τ2/T 2

0 ), and gives
τ/T0 ≈ 0.087, and δv ≈ 110 m s−1.
(c) This experiment can be compared to a Young double slit interference
experiment with polychromatic light.The central fringe (corresponding to the
peak at ω = ω0) remains bright, but the contrast of the interferences de-
creases rapidly as one departs from the center. In fact, the maxima for some
frequencies correspond to minima for others.

16.2.6. The probability P++ is the product of the two probabilities: the prob-
ability to find the neutron in the state |n : +〉 when it leaves the first cavity
(p = 1/2) and, knowing that it is in the state |n : +〉, the probability to find
it in the same state when it leaves the second cavity (p = 1/2); this gives
P+,+ = 1/4. Similarly P−,+ = 1/4. The sum P+,+ + P−,+ = 1/2 does not
display any interference, since one has measured in which cavity the neutron
spin has flipped. This is very similar to an electron double-slit interference
experiment if one measures which slit the electron goes through.

Section 16.3: Detection of the Neutron Spin State

16.3.1. By definition:

|a : ±x〉 =
1√
2

(|a : +〉 ± |a : −〉)

|a : ±y〉 =
1√
2

(|a : +〉 ± i|a : −〉)

and these states are related to one another by

|a : ±y〉 =
1
2

((1 ± i)|a : +x〉 + (1 ∓ i)|a : −x〉) .

16.3.2. The operators Ŝnz and Ŝax commute since they act in two different
Hilbert spaces; therefore [Ŝnz, V̂ ] = 0.
The common eigenvectors of Ŝnz and V̂ , and the corresponding eigenvalues
are

|n : +〉 ⊗ |a : ±x〉 Snz = +h̄/2 V = ±Ah̄/2 ,
|n : −〉 ⊗ |a : ±x〉 Snz = −h̄/2 V = ∓Ah̄/2 .

The operators Ŝnz and V̂ form a complete set of commuting operators as far
as spin variables are concerned.

16.3.3. Expanding in terms of the energy eigenstates, one obtains for |ψ(0)〉 =
|n : +〉 ⊗ |a : +y〉 :

|ψ(τ)〉 =
1
2
|n : +〉 ⊗

(
(1 + i)e−iAτ/2|a : +x〉 + (1 − i)eiAτ/2|a : −x〉

)
,
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i.e. for Aτ/2 = π/4:

|ψ(τ)〉 =
1√
2
|n : +〉 ⊗ (|a : +x〉 + |a : −x〉)

= |n : +〉 ⊗ |a : +〉 .

Similarly, if |ψ(0)〉 = |n : −〉 ⊗ |a : +y〉, then |ψ(τ)〉 = i|n : −〉 ⊗ |a : −〉.
Physically, this means that the neutron’s spin state does not change since it
is an eigenstate of V̂ , while the atom’s spin precesses around the x axis with
angular frequency A. At time τ = π/(2A), it lies along the z axis.

16.3.4. If the initial state is |ψ(0)〉 = (α+|n : +〉+α−|n : −〉)⊗ |a : +y〉, the
state after the interaction is

|ψ(τ)〉 = α+|n : +〉 ⊗ |a : +〉 + iα−|n : −〉 ⊗ |a : −〉 .

The measurement of the z component of the atom’s spin gives +h̄/2, with
probability |α+|2 and state |n : +〉 ⊗ |a : +〉 after the measurement, or −h̄/2
with probability |α−|2 and state |n : −〉 ⊗ |a : −〉 after the measurement.

In both cases, after measuring the z component of the atom’s spin, the
neutron spin state is known: it is the same as that of the measured atom. It is
not necessary to let the neutron interact with another measuring apparatus
in order to know the value of Snz.

Section 16.4: A Quantum Eraser

16.4.1. The successive states are:

step (a)
1√
2

(−ie−iδ|n : +〉 ⊗ |a : +y〉 + eiχ|n : −〉 ⊗ |a : +y〉)
step (b)

1√
2

(−ie−iδ|n : +〉 ⊗ |a : +〉 + ieiχ|n : −〉 ⊗ |a : −〉)
step (c)

1√
2

(
− ie−i(δ+ω0T/2)|n : +〉 ⊗ |a : +〉

+iei(χ+ω0T/2)|n : −〉 ⊗ |a : −〉
)
.

Finally, when the neutron leaves the second cavity (step d), the state of the
system is:

|ψf 〉 =
1
2

(
− ie−i(δ+ω0T/2)

(
e−iχ|n : +〉 − ieiδ′ |n : −〉

)
⊗ |a : +〉

+iei(χ+ω0T/2)
(
−ie−iδ′ |n : +〉 + eiχ|n : −〉

)
⊗ |a : −〉

)
.

16.4.2. The probability to find the neutron in state |+〉 is the sum of the
probabilities for finding:
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(a) the neutron in state + and the atom in state +, i.e. the square of the
modulus of the coefficient of |n : +〉 ⊗ |a : +〉 (1/4 in the present case),
(b) the neutron in state + and the atom in state − (probability 1/4 again).
One gets therefore P+ = 1/4 + 1/4 = 1/2: There are no interferences since
the quantum path leading in the end to a spin flip of the neutron can be
determined from the state of the atom.

16.4.3. One can expand the vectors |a : ±〉 on |a : ±y〉:

|ψf〉 =
1

2
√

2

(
− ie−i(δ+ω0T/2)

(
e−iχ|n : +〉 − ieiδ′ |n : −〉

)
⊗ (|a : +y〉 + |a : −y〉)

+ei(χ+ω0T/2)
(
−ie−iδ′ |n : +〉 + eiχ|n : −〉

)
⊗ (|a : +y〉 − |a : −y〉)

)
The probability amplitude that Bob finds +h̄/2 along the z axis while Alice
finds +h̄/2 along the y axis is the coefficient of the term |n : +〉 ⊗ |a : +y〉 in
the above expansion. Equivalently, the probability is obtained by projecting
the state onto |n : +〉 ⊗ |a : +y〉, and squaring. One obtains

P

(
Snz =

h̄

2
, Say =

h̄

2

)
=

1
8

∣∣∣−ie−i(δ+χ+ω0T/2) − iei(χ−δ′+ω0T/2)
∣∣∣2

=
1
2

cos2
(ω − ω0)T

2
,

which clearly exhibits a modulation reflecting an interference phenomenon.
Similarly, one finds that

P

(
Snz =

h̄

2
, Say = − h̄

2

)
=

1
2

sin2 (ω − ω0)T
2

,

which is also modulated.

16.4.4. This result is compatible with the result 4.2. Indeed the sum of the
two probabilities calculated above is 1/2 as in 4.2. If Bob does not know the
result found by Alice, or if Alice does not perform a measurement, which is
equivalent from his point of view, Bob sees no interferences. The interferences
only arise for the joint probability P (Snz, Say).

16.4.5. (a) This first statement is obviously wrong. As seen in question 4.2,
if the atom A is present, Bob no longer sees oscillations (in ω − ω0) of the
probability for detecting the neutron in the state |+〉. This probability is equal
to 1/2 whatever Alice does. Notice that if the statement were correct, this
would imply instantaneous transmission of information from Alice to Bob.
By seeing interferences appear, Bob would know immediately that Alice is
performing an experiment, even though she may be very far away.
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(b) This second statement is correct. If Alice and Bob put together all
their results, and if they select the subsample of events for which Alice finds
+h̄/2, then the number of events for which Bob also finds +h̄/2 varies like
cos2((ω − ω0)T/2); they recover interferences for this subset of events. In the
complementary set, where Alice has found −h̄/2, the number of Bob’s re-
sults giving +h̄/2 varies like sin2((ω − ω0)T/2). This search for correlations
between events occurring in different detectors is a common procedure, in
particle physics for instance.
(c) This third statement, although less precise but more picturesque than
the previous one, is nevertheless acceptable. The cos2((ω − ω0)T/2) signal
found in Sect. 2 can be interpreted as the interference of the amplitudes cor-
responding to two quantum paths for the neutron spin which is initially in
the state |n : −〉; either its spin flips in the first cavity, or it flips in the
second one. If there exists a possibility to determine which quantum path is
followed by the system, interferences cannot appear. It is necessary to “erase”
this information, which is carried by the atom, in order to observe “some”
interferences. After Alice has measured the atom’s spin along the y axis, she
has, in some sense “restored” the initial state of the system, and this enables
Bob to see some interferences. It is questionable to say that information has
been erased: one may feel that, on the contrary, extra information has been
acquired. Notice that the statement in the text does not specify in which
physical quantity the interferences appear. Notice also that the order of the
measurements made by Alice and Bob has no importance, contrary to what
this third statement seems to imply.

16.4.6. Alice can measure along the axis w = sin η uy +cos η uz, in the (y, z)
plane, for instance. Projecting |ψf〉 onto the eigenstate of Ŝaw with eigenvalue
+h̄/2, i.e. cos(η/2) |a : +〉+i sin(η/2) |a : −〉, a calculation similar to 4.3 leads
to a probability

[
1 + sin η cos

(
(ω − ω0)T

)]
/2. If η = 0 or π (measurement

along the z axis) there are no interferences. For η = π/2 and 3π/2 or, more
generally, if Alice measures in the (x, y) plane, the contrast of the interferences,
| sin η|, is maximum.

16.6 Comments

Ramsey Fringes with Neutrons. The experimental curve given in the text
is taken from J.H. Smith et al., Phys. Rev. 108, 120 (1957). Since then, the
technique of Ramsey fringes has been considerably improved. Nowadays one
proceeds differently. One stores neutrons in a “bottle” for a time of the order
of 100 s and applies two radiofrequency pulses at the begining and at the end
of the storage. The elapsed time between the two pulses is 70 s, compared to
1.3 ms here. This improves enormously the accuracy of the frequency measure-
ment. Such experiments are actually devised to measure the electric dipole
moment of the neutron, of fundamental interest in relation to time-reversal
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invariance. They set a very small upper bound on this quantity (K.F. Smith
et al., Phys. Lett. 234, 191 (1990)).

Non Destructive Quantum Measurements. The structure of the inter-
action Hamiltonian considered in the text has been chosen in order to provide
a simple description of the quantum eraser effect. Realistic examples of non-
destructive quantum measurements can be found in J.P. Poizat and P. Grang-
ier, Phys. Rev. Lett. 70, 271 (1993), and S.M. Barnett, Nature, Vol. 362,
p. 113, March 1993.
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A Quantum Thermometer

We study here the measurement of the cyclotron motion of an electron. The
particle is confined in a Penning trap and it is coupled to the thermal radiation
which causes quantum transitions of the system between various energy levels.
In all the chapter, we neglect spin effects. The method and results come from
an experiment performed at Harvard University in 1999.

We consider an electron of mass M and charge q (q < 0), confined in a
Penning trap. This trap consists in the superposition of a uniform magnetic
field B = Bez (B > 0) and an electric field which derives from the potential
Φ(r) whose power expansion near the origin is:

Φ(r) =
Mω2

z

4q
(
2z2 − x2 − y2

)
. (17.1)

The positive quantity ωz has the dimension of an angular frequency. In all this
chapter we set ωc = |q|B/M (ωc is called the cyclotron angular frequency)
and we assume that ωz � ωc.
Useful constants: M = 9.1 10−31 kg ; q = −1.6 10−19 C; h = 6.63 10−34 J s;
Boltzmann’s constant kB = 1.38 10−23 J K−1.

17.1 The Penning Trap in Classical Mechanics

We recall that the Lorentz force acting on a charged particle moving in an
electromagnetic field is F = q(E + v × B).

17.1.1. Check that Φ(r) satisfies the Laplace equation ∆Φ = 0. What is the
shape of a surface of constant potential Φ(r) =Const?

17.1.2. Show that the classical equation of motion of the electron in the trap
is:

ẍ+ ωcẏ − ω2
z

2
x = 0 ÿ − ωcẋ− ω2

z

2
y = 0 z̈ + ω2

zz = 0 .



170 17 A Quantum Thermometer

17.1.3. What is the type of motion along the z axis?

17.1.4. In order to study the component of the motion in the xy plane, we
set α = x+ iy.
(a) What is the differential equation satisfied by α(t)?
(b) We seek a solution of this equation of the form α(t) = α0 eiωt. Show that

ω is a solution of the equation:

ω2 − ωcω +
ω2

z

2
= 0 .

(c) We note ωr and ωl the two roots of this equation with ωr > ωl. Show
that:

ωr � ωc ωl � ω2
z

2ωc
.

17.1.5. We consider the values B = 5.3 T and ωz/(2π) = 64 MHz.
(a) Show that the most general motion of the electron in the Penning trap

is the superposition of three harmonic oscillator motions.
(b) Calculate the frequencies of these motions.
(c) Draw the projection on the xy plane of the classical trajectory of the

trapped electron, assuming that αr � αl (the positive quantities αr and
αl represent the amplitudes of the motions of angular frequencies ωr

and ωl).

17.2 The Penning Trap in Quantum Mechanics

We note r̂ and p̂ the position and momentum operators of the electron. The
Hamiltonian of the electron in the Penning trap is, neglecting spin effects:

Ĥ =
1

2M
(p̂ − qA(r̂))2 + qΦ(r̂) ,

where the electrostatic potential Φ(r) is given by (17.1). For the magnetic
vector potential, we choose the form A(r) = B × r/2.

17.2.1. Expand the Hamiltonian and show that it can be written as Ĥ =
Ĥxy + Ĥz, where Ĥxy only involves the operators x̂, ŷ, p̂x and p̂y, while Ĥz

only involves the operators ẑ and p̂z.
Do Ĥxy and Ĥz possess a common eigenbasis?

17.2.2. We are now interested in the motion along the z axis. This is called
the axial motion. Recall without giving any proof:
(a) the expression of the operators âz and â†z which allow to write Ĥz in the

form Ĥz = h̄ωz (N̂z + 1/2) with N̂z = â†z âz and [âz, â
†
z] = 1;

(b) the eigenvalues of N̂z and Ĥz.
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17.2.3. We now consider the motion in the xy plane under the effect of the
Hamiltonian Ĥxy. We set Ω =

√
ω2

c − 2ω2
z /2. We introduce the right and left

annihilation operators âr and âl:

âr =

√
MΩ

4h̄
(x̂− iŷ) +

i√
4h̄MΩ

(p̂x − ip̂y)

âl =

√
MΩ

4h̄
(x̂+ iŷ) +

i√
4h̄MΩ

(p̂x + ip̂y) .

(a) Show that [âr, â
†
r] = [âl, â

†
l ] = 1.

(b) Show that any left operator commutes with any right operator, i.e.:

[âr, âl] = 0 [âr, â
†
l ] = 0 [â†r, âl] = 0 [â†r, â

†
l ] = 0 .

(c) Recall the eigenvalues of n̂r = â†râr and n̂l = â†l âl (no proof is required).
Do n̂r and n̂l possess a common eigenbasis?

(d) Show that the Hamiltonian Ĥxy can be written as:

Ĥxy = h̄ωr (n̂r + 1/2) − h̄ωl (n̂l + 1/2) ,

where the angular frequencies ωr and ωl have been introduced in Sect.
17.1.

(e) Deduce from this the eigenvalues of the Hamiltonian Ĥxy.

17.2.4. We note |ψ(t)〉 the state of the system at time t and we define
ar(t) = 〈ψ(t)|âr|ψ(t)〉 and al(t) = 〈ψ(t)|âl|ψ(t)〉. Using the Ehrenfest the-
orem, calculate dar/dt and dal/dt.

Integrate these equations and calculate the expectation value of the elec-
tron’s position (〈x〉(t), 〈y〉(t)) in the xy plane. We set ar(0) = ρr e−iφr and
al(0) = ρl eiφl , where ρr and ρl are real and positive.

Show that the time evolution of the expectation value of the electron po-
sition 〈r〉(t) is similar to the classical evolution found in Sect. 17.1.

17.2.5. We note |φ0〉 the eigenstate of Ĥ corresponding to the eigenvalues 0
for each of the operators n̂r, n̂l and N̂z.
(a) Determine the corresponding wave function φ0(r) (it is not necessary to

normalize the result).
(b) Using the same numerical values as in question 17.1.5, evaluate the spa-

tial extension of φ0(r).

17.2.6. The experiment is performed at temperatures T ranging between
0.1 K and 4 K. Compare the characteristic thermal energy kBT to each of the
energy quanta of the “cyclotron”, “axial” and “magnetron” motions (associ-
ated respectively with n̂r, N̂z and n̂l). For which of these motions does the
discrete nature of the energy spectrum play an important role?
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17.3 Coupling of the Cyclotron and Axial Motions

We now study a method for detecting the cyclotron motion. This method uses
a small coupling between this motion and the axial motion. The coupling is
produced by an inhomogeneous magnetic field, and it can be described by the
additional term in the Hamiltonian:

Ŵ =
ε

2
Mω2

z n̂r ẑ
2 .

The experimental conditions are chosen such that ε = 4 × 10−7.

17.3.1. Write the total Hamiltonian Ĥc = Ĥ + Ŵ using the operators n̂r,
n̂l, p̂z and ẑ.

17.3.2. Show that the excitation numbers of the cyclotron motion (n̂r) and
of the magnetron motion (n̂l) are constants of the motion.

17.3.3. Consider the eigensubspace Enr,nl
of n̂r and n̂l, corresponding to the

eigenvalues nr and nl.
(a) Write the form of Ĥc in this subspace.
(b) Show that the axial motion is harmonic if the system is prepared in a

state belonging to Enr,nl
. Give its frequency in terms of nr and nl.

(c) Give the eigenvalues and eigenstates of Ĥc inside Enr,nl
.

17.3.4. Deduce from the previous question that the eigenstates of Ĥc can be
labeled by 3 quantum numbers, nr, nl, nz. We write these states as |nr, nl, nz〉.
Give the energy eigenvalues in terms of these quantum numbers and of ωr,
ωl, ωz and ε.

17.3.5. One measures the beat between a highly stable oscillator of frequency
ωz/(2π) (delivering a signal proportional to sin(ωzt)) and the current induced
in an electric circuit by the axial motion. This latter current is proportional
to 〈pz〉(t).
(a) Calculate the time evolution of the expectation values of the position and

momentum operators ẑ and p̂z assuming that the state of the electron is
restricted to be in the subspace Enr,nl

. We choose the initial conditions
〈ẑ〉(t = 0) = z0 and 〈p̂z〉(t = 0) = 0.

(b) To first order in ε, what is the phase difference ϕ between the detected
current and the stable oscillator after a time τ? Show that the measure-
ment of this phase difference provides a measurement of the excitation
number of the cyclotron motion.

17.3.6. We now assume that the electron is in an arbitrary state

|Ψ〉 =
∑

nr,nl,nz

cnr,nl,nz
|nr, nl, nz〉 .

(a) We measure the phase difference ϕ on a time interval ranging from t = 0
to t = τ . What are the possible results ϕk of the measurement? Show that
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this provides a means to determine the excitation number of the cyclotron
motion.

(b) What is the state of the electron after a measurement giving the result
ϕk ?

(c) We choose τ = 0.1 s and we assume that the measurement of ϕ is done with
an accuracy of π/10. Using the previous values of the physical parameters,
show that this accuracy leads to an unambiguous determination of the
cyclotron excitation number.

(d) After a measurement giving the result ϕk, we let the system evolve for a
length of time T under the action of the Hamiltonian Ĥc. We then perform
a new measurement of ϕ. What results do we expect?

17.4 A Quantum Thermometer

In practice, the cyclotron motion is in thermal equilibrium with a thermostat
at temperature T . We recall that, in that situation, the thermal fluctuations
can excite the system in an energy level En with some probability pn.

We perform successive measurements of the phase difference ϕ in the time
intervals [0, τ ], [τ, 2τ ], . . ., [(N −1)τ,Nτ ]. The total duration Nτ of this series
of measurements for a given temperature T is Nτ = 3000 seconds, i.e. a total
number of results N = 3×104 for τ = 0.1 s. By this procedure, one can follow
the variation of nr during the time interval Nτ , with a time resolution of τ .

17.4.1. Two recordings of this measurement are represented on figure 17.1
for two different temperatures. Comment on these results and explain in par-
ticular:
(a) to what phenomenon are associated the sudden changes of the signal;
(b) what is the fraction of the time during which the electron is in the levels

nr = 0, nr = 1, nr = 2, . . . (the accuracy of a usual graduated ruler is
sufficient).

17.4.2. The probability pn for a system to be in the energy level En is given
by the Boltzmann factor pn = N exp(−En/kBT ), where N is a normalization
factor. Show that for a one-dimensional harmonic oscillator the ratio pn+1/pn

does not depend on n.

17.4.3. Give an estimate of the two temperatures corresponding to the two
recordings of Fig. 17.1.

17.4.4. Fig. 17.2 represents more accurate measurements of the occupation
probabilities of the various cyclotron levels for several temperatures of the
cryostat which contains the Penning trap.
(a) Determine the normalization factor N of the probability law pn for a

one-dimensional harmonic oscillator of angular frequency ω in thermal
equilibrium with a thermostat at temperature T , and calculate the average
excitation number n̄. It is convenient to set γ = h̄ω/(kBT ).



174 17 A Quantum Thermometer
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Fig. 17.1. Time evolution of the quantum number nr corresponding to the cyclotron
motion for two temperatures Ta and Tb

(b) Justify the aspect of the curves of figure 17.2 and evaluate the correspond-
ing temperatures of the measurements.

(c) What is the order of magnitude of the lowest temperature one can measure
with such a device?

(d) How can one improve the sensitivity of such a “quantum thermometer”?

Cyclotron quantum number nd

0 1 2

0,1

1

0,01

Occupation
probability

of the
cyclotron
level nd

Fig. 17.2. Occupation probabilities of the energy states of the cyclotron motion.
Each straight line corresponds to a given temperature (the vertical scale is logarith-
mic)

17.5 Solutions

Section 17.1: The Penning Trap in Classical Mechanics

17.1.1. The electric field E = −∇Φ is:
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E(r) =
Mω2

z

2q

⎛
⎝ x

y
−2z

⎞
⎠ (17.2)

Therefore, one has ∆Φ = −∇ · E = −Mω2
z

2q (1 + 1 − 2) = 0. The potential
satisfies Laplace’s equation in the vacuum. The surfaces of constant potential
are hyperboloids of axis z.

17.1.2. Using the expression (17.2) for the electric field, the equation of mo-
tion is:

M

⎛
⎝ ẍÿ
z̈

⎞
⎠ =

Mω2
z

2

⎛
⎝ x

y
−2z

⎞
⎠+ q

⎛
⎝ ẋẏ
ż

⎞
⎠×

⎛
⎝ 0

0
B

⎞
⎠ ,

or, by setting ωc = −qB/M :

ẍ+ ωcẏ − ω2
z

2
x = 0 ÿ − ωcẋ− ω2

z

2
y = 0 z̈ + ω2

zz = 0 .

17.1.3. Along the z axis, the motion is harmonic, of angular frequency ωz.

17.1.4. (a) The differential equation satisfied by α(t) is:

α̈− iωcα̇− ω2
z

2
α = 0

(b) If we search a solution of the form α0 eiωt, we find that ω is given by the
equation:

−ω2 + ωcω − ω2
z

2
= 0

(c) The roots of this equation are:

ωr =
1
2

(
ωc +

√
ω2

c − 2ω2
z

)
ωl =

1
2

(
ωc −

√
ω2

c − 2ω2
z

)
We assume ωz � ωc, i.e.

√
ω2

c − 2ω2
z � ωc

(
1 − ω2

z/ω
2
c

)
. The two roots ωr and

ωl are given approximately by:

ωr � ωc ωl � ω2
z

2ωc
.

17.1.5. (a) We have seen previously that the motion along z is harmonic
of angular frequency ωz. In order to obtain the motion in the xy plane, we
integrate the equation of motion of α:

α(t) = αl ei(ωlt+φl) + αr ei(ωrt+φr) ,

where αl and αr are two positive real numbers, and φl and φr are two a priori
arbitrary phases. This gives the forms of x(t) and y(t) by taking the real and
imaginary parts of this expression:
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x(t) = αl cos(ωlt+ φl) + αr cos(ωrt+ φr)
y(t) = αl sin(ωlt+ φl) + αr sin(ωrt+ φr) .

The motion in the xy plane is a superposition of two harmonic motions of
angular frequencies ωr and ωl.
(b) One finds ωc/2π = 1.48× 1011 Hz. The frequencies of the three motions
are therefore:

ωl/2π � 14 kHz ωz/2π = 64 MHz ωr/2π � 150 GHz

(c) The motion in the xy plane is the superposition of two circular motions,
one is of radius αr and has a high frequency (ωr), and the other is of radius
αl and has a much lower frequency (ωl). Assuming αr � αl, this results in a
trajectory of the type represented on the following figure

Section 17.2: The Penning Trap in Quantum Mechanics

17.2.1. The expansion of the Hamiltonian gives Ĥ = Ĥxy + Ĥz with:

Ĥxy =
p̂2x
2M

+
p̂2y
2M

+
M

8
(ω2

c −2ω2
z)(x̂2 + ŷ2)+

ωc

2
L̂z Ĥz =

p̂2z
2M

+
1
2
Mω2

z ẑ
2 ,

where we have introduced the z component of the angular momentum L̂z =
x̂p̂y − ŷp̂x. Since Ĥxy involves only the operators x̂, ŷ and p̂x, p̂y, and since
Ĥz only involves ẑ, p̂z, the two operators Ĥxy and Ĥz commute, and each of
them commutes with the total Hamiltonian Ĥ:

[Ĥxy, Ĥz] = 0 [Ĥxy, Ĥ] = 0 [Ĥz, Ĥ] = 0 .

We can therefore search for an eigenbasis of Ĥ in the form of a common
eigenbasis of Ĥxy and Ĥz.

17.2.2. (a) The Hamiltonian Ĥz corresponds to a harmonic motion of an-
gular frequency ωz. Setting

âz =

√
Mωz

2h̄
x̂+ i

p̂√
2Mh̄ωz

and N̂z = â†z âz ,

one easily finds its spectrum since the Hamiltonian can be written as Ĥz =
h̄ωz(N̂z + 1/2).
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(b) From the commutation relation [âz, â
†
z] = 1, we deduce that the eigenval-

ues of N̂z are the non-negative integers nz. The eigenvalues of Ĥz are therefore
of the form h̄ωz(nz + 1/2).

17.2.3. We first calculate the generic commutator:

C =
[√MΩ

4h̄
(x̂− iηŷ) + ξ

i√
4h̄MΩ

(p̂x − iηp̂y) ,√
MΩ

4h̄
(x̂+ iη′ŷ) − ξ′ i√

4h̄MΩ
(p̂x + iη′p̂y)

]

where the four numbers η, ξ, η′ and ξ′ are equal to ±1. Using [x̂, p̂x] = [ŷ, p̂y] =
ih̄, one finds:

C =
1
4

(ξ + ξ′) (1 + ηη′) .

(a) The commutator [âr, â
†
r] corresponds to η = η′ = +1 and ξ = ξ′ = 1,

therefore [âr, â
†
r] = 1. Similarly, one obtains [âl, â

†
l ] = 1 from η = η′ = −1 and

ξ = ξ′ = 1.
(b) The commutator [âr, âl] corresponds to ξ = 1 and ξ′ = −1, hence
[âr, âl] = 0. Similarly, [âr, â

†
l ] vanishes since it corresponds to η = −η′ = 1.

Therefore the other commutators ([â†r, âl] and [â†r, â
†
l ]) also vanish if we take

the Hermitian conjugates of the previous commutators.
(c) The commutation relation [âr, â

†
r] = 1 results in the fact that the eigen-

values of n̂r are the non-negative integers, and the same holds for n̂l.
(d) The operators n̂r and n̂l are expanded as:

n̂r,l =
p̂2x + p̂2y
4h̄MΩ

+
MΩ

4h̄
(x̂2 + ŷ2) − 1

2
± L̂z

2h̄

where the + (resp.−) sign corresponds to n̂r (resp. n̂l). The sum and difference
of the roots of the equation ω2 − ωcω + ω2

z/2 = 0 are:

ωr + ωl = ωc ωr − ωl =
√
ω2

c − 2ω2
z = 2Ω .

We obtain the anticipated result:

Ĥxy = h̄ωr (n̂r + 1/2) − h̄ωl (n̂l + 1/2)

(e) The eigenvectors of Ĥxy can therefore be labeled by the two (non-
negative) integer quantum numbers nr and nl corresponding to the eigenvalues
of n̂r and n̂l. The corresponding eigenstates are noted |nr, nl〉. The eigenvalue
of Ĥxy associated to the vector |nr, nl〉 is h̄ωr(nr + 1/2) − h̄ωl(nl + 1/2).

17.2.4. We have:

[âr, Ĥ] = h̄ωr [âr, â
†
râr] = h̄ωr âr .
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Owing to Ehrenfest theorem we therefore find: ȧr = −iωrar and ȧl = +iωlal.
The solutions of these two equations are:

ar(t) = ar(0) e−iωrt al(t) = al(0) e+iωlt

The expectation value of the position in the xy plane can be calculated by
using:

ar+al =

√
MΩ

h̄
〈x〉+ i√

h̄MΩ
〈px〉 i(ar−al) =

√
MΩ

h̄
〈y〉+ i√

h̄MΩ
〈py〉 .

In other words:

〈x〉(t) =

√
h̄

MΩ
Re (ar(t) + al(t)) 〈y〉(t) =

√
h̄

MΩ
Re (iar(t) − ial(t)) .

Setting ar(0) = ρr e−iφr and al(0) = ρl eiφl , we obtain:

〈x〉(t) =

√
h̄

MΩ
(ρr cos(ωrt+ φr) + ρl cos(ωlt+ φl))

〈y〉(t) =

√
h̄

MΩ
(ρr sin(ωrt+ φr) + ρl sin(ωlt+ φl))

As in the classical motion, the coordinates 〈x〉 and 〈y〉 are the sums of two
sinusoidal functions of angular frequencies ωr and ωl. The x and y components
have equal amplitudes and are phase shifted by π/2 with respect to each
other. The average motion in the xy plane is therefore the superposition of
two uniform circular motions of angular frequencies ωr and ωl. The trajectory
is the same as in question 1.5.

17.2.5. (a) The wave function φ0(r) corresponding to nr = nl = nz = 0
can be written as the product of three functions in the variables x+ iy, x− iy
and z. This function must satisfy âµφ0(r) = 0, with µ = r, l, z. Therefore,
setting η = + and η = − for âr and âl respectively:(

∂

∂x
− iη ∂

∂y
+
MΩ

h̄
(x− iηy)

)
φ0(r) = 0

(
∂

∂z
+
Mωz

h̄
z

)
φ0(r) = 0 .

By adding and subtracting the two equation for η = ±, we obtain:(
∂

∂x
+
MΩ

h̄
x

)
φ0(r) = 0

(
∂

∂y
+
MΩ

h̄
y

)
φ0(r) = 0

The function φ0(r) is therefore a product of three gaussian functions in the
variables x, y, z:

φ0(r) ∝ e−(x2+y2)/4r2
0 e−z2/4z2

0

with

r0 =

√
h̄

2MΩ
and z0 =

√
h̄

2Mωz
.
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(b) The probability distribution |φ0(r)|2 is centered at r = 0. Its extension
along the x and y axes is ∆x = ∆y = r0 � 11 nm. Along the z axis, we have
∆z = z0 � 380 nm.

17.2.6. For the range of temperatures of interest the ratio kBT/h̄ωµ for µ =
r, l, z is

kBT

h̄ωr
= 0.014 − 0.6

kBT

h̄ωl
= 1.5 × 105 − 6 × 106 kBT

h̄ωz
= 30 − 1300

The discrete nature of the energy spectrum will play a decisive role only for
the cyclotron motion (corresponding to âr, â

†
r). Only the first three levels of

this motion nr = 0, 1, 2, 3 will be occupied significantly in this very low tem-
perature domain. For the other components of the motion, of much lower
frequencies than the cyclotron motion, one expects that the thermal fluctua-
tions will populate a large number of levels. The “quantum” character of the
motions will be hidden under the thermal noise.

Section 17.3: Coupling of the Cyclotron and Axial Motions

17.3.1. In the presence of the axial-cyclotron coupling, the Hamiltonian Ĥc

is:

Ĥc = h̄ωr (n̂r + 1/2) − h̄ωl (n̂l + 1/2) +
p̂2z
2M

+
Mω2

z

2
(1 + εn̂r) ẑ2 .

17.3.2. It is straightforward to check that n̂r and n̂l commute with Ĥc. The
corresponding physical quantities (i.e. the excitation numbers of the cyclotron
and magnetron motions) are therefore constants of the motion.

17.3.3. (a) Inside the subspace Enr,nl
, the Hamiltonian Ĥc involves only

the operators ẑ and p̂z:

Ĥ(nr,nl)
c =

p̂2z
2M

+
Mω2

z

2
(1 + εnr) ẑ2 + Enr,nl

with Enr,nl
= h̄ωr (nr + 1/2) − h̄ωl (nl + 1/2).

(b) If the system is prepared in a state belonging to the subspace Enr,nl
, it

will remain in this subspace since nr and nl are constants of the motion. Its
motion is described by the Hamiltonian Ĥ(nr,nl)

c , corresponding to a harmonic
oscillator along z, with frequency ωz

√
1 + εnr.

(c) The eigenvalues of Ĥ(nr,nl)
c are h̄ωz (nz + 1/2)

√
1 + εnr + Enr,nl

. The
corresponding eigenstates are the Hermite functions ψn(Z), where:

Z = z
√
Mωz(1 + εnr)1/2/h̄ .



180 17 A Quantum Thermometer

17.3.4. We can perform the same operation as above inside each subspace
of n̂r and n̂l. We thus obtain a basis of eigenstates of Ĥc which we note
|nr, nl, nz〉. The eigenvalue corresponding to each eigenstate is:

Enr,nl,nz
= h̄ωr (nr + 1/2) − h̄ωl (nl + 1/2) + h̄ωz(nz + 1/2)

√
1 + εnr

Contrary to the result of Sect. 2, this basis no longer corresponds to factorized
functions of the variables x ± iy and z. The coupling between the axial and
cyclotron motions induces a correlation between the axial frequency and the
state of the cyclotron motion.

17.3.5. (a) If the system is prepared in the subspace Enr,nl
, the axial Hamil-

tonian corresponds to a harmonic oscillator of angular frequency ωz

√
1 + εnr.

The Ehrenfest theorem then gives:

〈z〉(t) = z0 cos
(
ωzt

√
1 + εnr

)
〈pz〉(t) = −Mωzz0

√
1 + εnr sin

(
ωzt

√
1 + εnr

)
since the evolution equations of the quantum expectation values coincide with
the classical equations for a harmonic oscillator.
(b) The phase shift accumulated during a time interval τ between the de-
tected current, proportional to 〈pz〉(t), and the external oscillator is:

ϕ = ωzτ
√

1 + εnr − ωzτ � ε

2
ωzτnr .

Knowing the time τ , the frequency ωz and the coupling constant ε, one can
deduce the cyclotron excitation number nr.

17.3.6. (a) The possible results of a measurement are the numbers

ϕk =
ε

2
ωzτk ,

where k = nr is a non-negative integer. A given experimental result determines
unambiguously the excitation number of the cyclotron motion.
(b) The measurement postulate of quantum mechanics implies that the state
|Ψ ′〉 of the system after a measurement corresponds to the projection of the
state vector before the measurement |Ψ〉 on the eigensubspace corresponding
to the measured result:

|Ψ ′〉 ∝
∑

nl,nz

c
n

(0)
r ,nl,nz

|n(0)
r , nl, nz〉

where the integer n(0)
r corresponds to the result of the measurement of ϕ. One

must further normalize the right hand side in order to obtain the state vector
|Ψ ′〉.
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(c) For the values of the parameters given in the text, one finds φ1 =
εωzτ/2 � 2π × 1.28. The accuracy of π/10 is much smaller than the dif-
ference between the phase shifts corresponding to nr and nr + 1, and one can
indeed measure unambiguously the excitation numbers nr = 0, 1, 2, . . ..
(d) A measurement of nr prepares the system in an eigensubspace of n̂r.
Since n̂r commutes with the Hamiltonian Ĥc, nr is a constant of the motion.
Any further measurement of the cyclotron excitation number will therefore
give the same result nr, corresponding to the same phase shift ϕk. Of course,
this conclusion is no longer true if the system is not fully isolated and interacts
with its environment. The coupling with the environment can cause transitions
between different eigenstates of Ĥc, as we shall see in the next section.

Section 17.4: A Quantum Thermometer

17.4.1. (a) The sudden jumps of the signal are associated with a change of
the cyclotron excitation number due to the coupling of the trapped electron
with the thermostat. We recall that otherwise nr would be a constant of the
motion.
(b) In the case of the experimental curve a of Fig. 1, the fractions of time
spent in the nl = 0, 1 and 2 levels are 80%, 19% and 1%, respectively. In the
case of curve b, the fractions are 97% and 3% for the time spent on nl = 0
and nl = 1, respectively.

17.4.2. For a one-dimensional harmonic oscillator of frequency ω, one finds:

pn+1

pn
=

e−(n+3/2)h̄ω/kBT

e−(n+1/2)h̄ω/kBT
= e−h̄ω/kBT ,

which is independent of n.

17.4.3. For the curves of Fig. 1, we find:
• Curve a: p1/p0 = 0.24, i.e. kBTa = h̄ωc/ |ln(0.24)| � 0.7 h̄ωc. This corre-

sponds to Ta � 5 K. In principle, the determination of the temperature
cans also be made using p2/p1, but the accuracy is poor compared to that
obtained with p1/p0.

• Curve b: p1/p0 = 0.03, i.e. kBTb = h̄ωc/ |ln(0.03)| � 0.29 h̄ωc. This corre-
sponds to Tb � 2 K.

17.4.4. (a) The normalization factor is determined from:

1 = N
∞∑

n=0

e−(n+1/2)h̄ω/kBT .

This is a geometric series in e−γ :

1 = N e−γ/2

1 − e−γ
→ N = 2 sinh(γ/2) .
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The mean excitation number is:

n̄ =
∑

n

nPn =
∑

n ne
−nγ∑

n e−nγ
= − d

dγ
ln

(∑
n

e−nγ

)

or:
n̄ =

1
eγ − 1

.

(b) One can see on the above expression that n̄ is a rapidly increasing func-
tion of the temperature. If the temperature is such that γ ∼ 1, i.e. kBT ∼ h̄ωc

(or T ∼ 7.1 K for this experiment), the mean excitation number is of the
order of (e− 1)−1 ∼ 0.6. Below this temperature, the occupation of the level
nl = 0 becomes predominant, as can be seen on the curves of Fig. 17.1. The
variation of ln pn as a function of n is linear:

ln pn = −n h̄ωc

kBT
+ Const

The slope increases as the temperature decreases. The curves of Fig. 2 clearly
show this linear variation. They correspond to ratios p1/p0 equal 0.16 , 0.092 ,
0.028 , 0.012 , i.e. temperatures of 1.6 K, 2 K, 3 K and 3.9 K, respectively.
(c) In order to measure a temperature with such a device, one must use a
statistical sample which is significantly populated in the level nl = 1. It is
experimentally difficult to go below a probability of 10−2 for the level nr = 1,
which corresponds to a temperature T ∼ 1.5 K.
(d) In order to improve the sensitivity of this thermometer, one can:
• Increase significantly the total time of measurement in order to detect

occupation probabilities of the level nr = 1 significantly less than 10−2;
• Reduce the value of the magnetic field B, in order to reduce the cyclotron

frequency ωc, and to increase (for a given temperature) the occupation
probability of the level nl = 1 .

The data used in this chapter are extracted from the article of S. Peil
and G. Gabrielse, Observing the Quantum Limit of an Electron Cyclotron:
QND Measurements of Quantum Jumps between Fock States, Physical Review
Letters 83, p. 1287 (1999).
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Exact Results for the Three-Body Problem

The three-body problem is a famous question of mechanics. Henri Poincaré
was the first to prove exact properties, and this contributed to his celebrity.
The purpose of this chapter is to derive some rigorous results for the three-
body problem in quantum mechanics. Here we are interested in obtaining
rigorous lower bounds on three-body ground state energies. Upper bounds are
easier to obtain by variational calculations. We will see that our lower bounds
are actually quite close to the exact answers, to which they provide useful
approximations.

18.1 The Two-Body Problem

Consider a system of two particles with equal masses m and momenta p1 and
p2, interacting via a potential V (r12) where r12 = |r1 − r2|.
18.1.1. Write the Hamiltonian Ĥ of the system. Let P = p1 + p2 and p =
(p1 − p2)/2 be the total and relative momentum.
Separate the center of mass Ĥcm and the relative Ĥ12 Hamiltonians by writing
Ĥ as:

Ĥ = Ĥcm + Ĥ12 , Hcm =
P̂

2

2M
, Ĥ12 =

p̂2

2µ
+ V (r̂12) , (18.1)

where M = 2m is the total mass of the system. Give the value of the reduced
mass µ in terms of m.

18.1.2. We denote by E(2)(µ) the ground state energy of Ĥ12. Give the ex-
pression for E(2)(µ) in the two cases V (r) = −b2/r and V (r) = κr2/2.
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18.2 The Variational Method

Let {|n〉} be the orthonormal eigenstates of a Hamiltonian Ĥ and {En} the
ordered sequence of its corresponding eigenvalues: E0 < E1 < E2 < · · · .
18.2.1. Show that 〈n|Ĥ|n〉 = En.

18.2.2. Consider an arbitrary vector |ψ〉 of the Hilbert space of the system.
By expanding |ψ〉 on the basis {|n〉}, prove the inequality

∀ψ , 〈ψ|Ĥ|ψ〉 ≥ E0〈ψ|ψ〉. (18.2)

18.2.3. Show that the previous result remains valid if Ĥ is the Hamiltonian
of a two-body subsystem and |ψ〉 a three-body state. In order to do so, one
can denote by Ĥ12 the Hamiltonian of the (1, 2) subsystem in the three-body
system of wave function ψ(r1, r2, r3). One can first consider a given value of
r3, and then integrate the result over this variable.

18.3 Relating the Three-Body and Two-Body Sectors

Consider a system of three-particles of equal masses m with pairwise interac-
tions:

V = V (r12) + V (r13) + V (r23) .

18.3.1. Check the identity

3(p21 + p22 + p23) = (p1 + p2 + p3)
2 + (p1 − p2)

2 + (p2 − p3)
2 + (p3 − p1)

2

and show that the three-body Hamiltonian Ĥ(3) can be written as

Ĥ(3) = Ĥcm + Ĥ(3)
rel , Ĥcm =

P̂
2

6m
,

where P̂ = p̂1 + p̂2 + p̂3 is the total three-body momentum, and where the
relative Hamiltonian Ĥ(3)

rel is a sum of two-particle Hamiltonians of the type
defined in (18.1),

Ĥ
(3)
rel = Ĥ12 + Ĥ23 + Ĥ31

with a new value µ′ of the reduced mass. Express µ′ in terms of m.

18.3.2. Do the two-body Hamiltonians Ĥij commute in general? What would
be the result if they did?

18.3.3. We call |Ω〉 the normalized ground state of Ĥ(3)
rel , and E(3) the cor-

responding energy. Show that the three-body ground state energy is related
to the ground state energy of each two-body subsystem by the inequality:

E(3) ≥ 3E(2)(µ′). (18.3)
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18.3.4. Which lower bounds on the three-body ground-state energy E(3) does
one obtain in the two cases V (r) = −b2/r and V (r) = κr2/2?
In the first case, the exact result, which can be obtained numerically, is E(3) �
−1.067 mb4/h̄2. How does this compare with the bound (18.3)?

18.4 The Three-Body Harmonic Oscillator

The three-body problem can be solved exactly in the case of harmonic inter-
actions V (r) = κr2/2. In order to do this, we introduce the Jacobi variables:

R̂1 = (r̂1 − r̂2)/
√

2, R̂2 = (2r̂3 − r̂1 − r̂2)/
√

6, R̂3 = (r̂1 + r̂2 + r̂3)/
√

3

Q̂1 = (p̂1 − p̂2)/
√

2, Q̂2 = (2p̂3 − p̂1 − p̂2)/
√

6, Q̂3 = (p̂1 + p̂2 + p̂3)/
√

3 .

18.4.1. What are the commutation relations between the components R̂α
j

and Q̂β
k of R̂j and Q̂k, (α = 1, 2, 3, and β = 1, 2, 3)?

18.4.2. Check that one has Q2
1 +Q2

2 +Q2
3 = p21 + p22 + p23, and:

3(R2
1 +R2

2) = (r1 − r2)
2 + (r2 − r3)

2 + (r3 − r1)
2
.

18.4.3. Rewrite the three-body Hamiltonian in terms of these variables for a
harmonic two-body interaction V (r) = κr2/2. Derive the three-body ground
state energy from the result. Show that the inequality (18.3) is saturated, i.e.
the bound (18.3) coincides with the exact result in that case.
Do you think that the bound (18.3), which is valid for any potential, can be
improved without further specifying the potential?

18.5 From Mesons to Baryons in the Quark Model

In elementary particle physics, the previous results are of particular interest
since mesons are bound states of two quarks, whereas baryons, such as the
proton, are bound states of three quarks. Furthermore, it is an empirical ob-
servation that the spectroscopy of mesons and baryons is very well accounted
for by non-relativistic potential models for systems of quarks.

The φ meson, for instance, is a bound state of a strange quark s and
its antiquark s̄, both of same mass ms. The mass mφ is given by mφ =
2ms + E(2)(µ)/c2 where µ = ms/2, c is the velocity of light, and E(2) is the
ground state energy of the ss̄ system which is bound by a potential Vqq̄(r).
The Ω− baryon is made of three strange quarks. Its mass is given by MΩ =
3ms + E(3)/c2, where E(3) is the ground state energy of the three s quarks,
which interact pairwise through a two-body potential Vqq(r).

These potentials are related very simply to each other by
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Vqq(r) =
1
2
Vqq̄(r) .

It is a remarkable property, called flavor independence, that these potentials
are the same for all types of quarks.

18.5.1. Following a procedure similar to that of Sect. 3, show that E(3) ≥
(3/2)E(2)(µ′); express µ′ in terms of µ = ms/2.

18.5.2. Consider the potential Vqq̄(r) = g ln(r/r0), and the two-body Hamil-
tonians Ĥ(2)(µ) and Ĥ(2)(µ̃) corresponding to the same potential but different
reduced masses µ and µ̃. By rescaling r, transform Ĥ(2)(µ̃) into Ĥ(2)(µ) +C,
where C is a constant.
Calculate the value of C and show that the eigenvalues E(2)

n (µ) of Ĥ(2)(µ)
and E(2)

n (µ̃) of Ĥ(2)(µ̃) are related by the simple formula

E(2)
n (µ̃) = E(2)

n (µ) +
g

2
ln
µ

µ̃
.

18.5.3. A striking characteristic of the level spacings in quark–antiquark sys-
tems is that these spacings are approximately independent of the nature of
the quarks under consideration, therefore independent of the quark masses.
Why does this justify the form of the above potential Vqq̄(r) = g ln(r/r0)?

18.5.4. Show that the following relation holds between the Ω− and φ masses
MΩ and mφ :

MΩ ≥ 3
2
mφ + a

and express the constant a in terms of the coupling constant g.

18.5.5. The observed masses aremφ = 1019 MeV/c2 andMΩ = 1672 MeV/c2.
The coupling constant is g = 650 MeV. Test the inequality with these data.

18.6 Solutions

Section 18.1: The Two-Body Problem

18.1.1. The two-body Hamiltonian is

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+ V̂ (r12) .

The center of mass motion can be separated as usual:

Ĥ =
P̂

2

2M
+

p̂2

2µ
+ V̂ (r12) ,

where M = 2m and µ = m/2 are respectively the total mass and the reduced
mass of the system.
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18.1.2. For a Coulomb-type interaction V (r) = −b2/r, we get

E(2)(µ) = −µb
4

2h̄2 .

For a harmonic interaction V (r) = κr2/2, we get

E(2)(µ) =
3
2
h̄

√
κ

µ
.

Section 18.2: The Variational Method

18.2.1. By definition, 〈n|Ĥ|n〉 = En〈n|n〉 = En.

18.2.2. Since {|n〉} is a basis of the Hilbert space, |ψ〉 can be expanded as
|ψ〉 =

∑
cn|n〉, and the square of its norm is 〈ψ|ψ〉 =

∑ |cn|2. We therefore
have 〈ψ|Ĥ|ψ〉 =

∑
En|cn|2.

If we simply write

〈ψ|Ĥ|ψ〉 − E0〈ψ|ψ〉 =
∑

(En − E0)|cn|2 ,

we obtain, since En ≥ E0 and |cn|2 ≥ 0:

〈ψ|Ĥ|ψ〉 ≥ E0〈ψ|ψ〉 .
18.2.3. If Ĥ = Ĥ12, for fixed r3, ψ(r1, r2, r3) can be considered as a non-
normalized two-body wave function. Therefore∫

ψ∗(r1, r2, r3) Ĥ12 ψ(r1, r2, r3) d3r1 d3r2

≥ E0

∫
|ψ(r1, r2, r3)|2 d3r1 d3r2 .

By integrating this inequality over r3, one obtains the desired result.

Section 18.3: Relating the Three-Body and Two-Body Sectors

18.3.1. The identity is obvious, since the crossed terms vanish on the right-
hand side. Therefore Ĥ = P̂

2
/(6m) + Ĥ12 + Ĥ23 + Ĥ31, with

Ĥij =

(
p̂i − p̂j

)2
6m

+ V̂ (rij) =

[(
p̂i − p̂j

)
/2
]2

2µ′
+ V̂ (rij) (18.4)

with a reduced mass µ′ = 3m/4.

18.3.2. Obviously, Ĥ12 and Ĥ23 do not commute; for instance p̂1 − p̂2 does
not commute with V̂ (r23). If they did, the three-body energies would just be
the sum of two-body energies as calculated with a reduced mass µ′ = 3m/4,
and the solution of the three-body problem would be simple.
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18.3.3. By definition, E(3) = 〈Ω|Ĥ(3)
rel |Ω〉 =

∑〈Ω|Ĥij |Ω〉. However, owing
to the results of questions 2.2 and 2.3, we have 〈Ω|Ĥij |Ω〉 ≥ E(2)(µ′), so that

E(3) ≥ 3E(2)(µ′) with µ′ = 3m/4 .

18.3.4. For a Coulomb-type potential, we obtain

E(3) ≥ −3
2
µ′b4

h̄2 = −9
8
mb4

h̄2 ,

which deviates by only 6% from the exact answer −1.067 mb4/h̄2.
In the harmonic case, we obtain:

E(3) ≥ 3
3
2
h̄

√
κ

µ′
= 3

√
3 h̄
√
κ

m
.

Section 18.4: The Three-Body Harmonic Oscillator

18.4.1. One easily verifies that Jacobi variables satisfy canonical commuta-
tion relations:

[R̂α
j , Q̂

β
k ] = ih̄ δjk δαβ .

18.4.2. These relations are a simple algebraic exercise.

18.4.3. We find

Ĥ =
Q̂2

1

2m
+

3
2
κR̂2

1 +
Q̂2

2

2m
+

3
2
κR̂2

2 +
Q̂2

3

2m
= Ĥ1 + Ĥ2 + Ĥcm ,

where Ĥcm = Q̂2
3/(2m) = P̂ 2/(6m) is the center of mass Hamiltonian. The

three Hamiltonians Ĥ1, Ĥ2, and Ĥcm commute. The ground state energy (with
the center of mass at rest) is therefore

E(3) = 2
3
2
h̄

√
3κ
m

= 3
√

3 h̄
√
κ

m
,

which coincides with the lower bound obtained in question 3.4. The bound is
therefore saturated if the interaction is harmonic.

In order to improve the bound, one must further specify the interaction.
Actually, the bound is saturated if and only if the interaction potential is
harmonic. Indeed the variational inequality we use becomes an equality if and
only if the wave function coincides with the exact ground state wave function.
Owing to the particular symmetry of quadratic forms, the Jacobi variables
guarantee that this happens in the harmonic case. The property ceases to be
true for any other potential.
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Section 18.5: From Mesons to Baryons in the Quark Model

18.5.1. The ss̄ relative Hamiltonian is

Ĥ(2) =
p̂2

ms
+ Vqq̄(r̂) .

The sss relative Hamiltonian is (cf. Sect. 3):

Ĥ(3) =
∑
i<j

(
(p̂i − p̂j)2

6ms
+

1
2
Vqq̄(r̂ij)

)
(18.5)

=
1
2

∑
i<j

(
(p̂i − p̂j)2

3ms
+ Vqq̄(r̂ij)

)
. (18.6)

Therefore,

2Ĥ(3) =
∑
i<j

Ĥij with Ĥij =
((p̂i − p̂j) /2)2

2µ′
+ Vqq̄(r̂ij)

with µ′ = 3ms/8 = 3µ/4. From this relation we deduce the inequality:

2 E(3) ≥ 3 E(2)(µ′) with µ′ = 3µ/4 .

18.5.2. With the rescaling r → αr, one obtains:

Ĥ(2)(µ̃) =
p̂2

2α2µ̃
+ g ln

r

r0
+ g lnα .

The choice α =
√
µ/µ̃ leads to Ĥ(2)(µ̃) = Ĥ(2)(µ) + g lnα so that

E(2)
n (µ̃) = E(2)

n (µ) +
g

2
ln
µ

µ̃
.

18.5.3. In a logarithmic potential, the level spacing is independent of the
mass. This is a remarkable feature of the observed spectra, at least for heavy
quarks, and justifies the investigation of the logarithmic potential. Amazingly
enough, this empirical prescription works quite well for light quarks, although
one might expect that a relativistic treatment is necessary.

18.5.4. The binding energies satisfy

E(3) ≥ 3
2

(
E(2) +

g

2
ln

4
3

)

with

MΩ = 3ms +
E(3)

c2
mφ = 2ms +

E(2)

c2
.

We therefore obtain
MΩ ≥ 3

2
mφ +

3g
4c2

ln
4
3
.
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18.5.5. For g = 650 MeV and a = 140 MeV/c2, we obtain

MΩc
2 = 1672MeV ≥ 1669MeV ,

which is remarkably accurate.
Actually, the quark–quark potential is only logarithmic at distances smaller

than 1 fm, which corresponds to the φmean square radius. At larger distances,
it grows more rapidly (linearly). Such inequalities are quite useful in practice
for deciding what choice to make for the potential and for its domain of
validity. The generalization of such inequalities can be found in the literature
quoted below. They are useful in a variety of physical problems.
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Properties of a Bose–Einstein Condensate

By cooling down a collection of integer spin atoms to a temperature of less
than one micro-Kelvin, one can observe the phenomenon of Bose–Einstein
condensation. This results in a situation where a large fraction of the atoms
are in the same quantum state. Consequently, the system possesses remarkable
coherence properties. We study here the ground state of such an N particle
system, hereafter called a condensate. We will show that the nature of the
system depends crucially on whether the two-body interactions between the
atoms are attractive or repulsive.

19.1 Particle in a Harmonic Trap

We consider a particle of mass m placed in a harmonic potential with a fre-
quency ω/2π. The Hamiltonian of the system is

Ĥ =
p̂2

2m
+

1
2
mω2r̂2 ,

where r̂ = (x̂, ŷ, ẑ) and p̂ = (p̂x, p̂y, p̂z) are respectively the position and
momentum operators of the particle. We set a0 =

√
h̄/(mω).

19.1.1. Recall the energy levels of this system, and its ground state wave
function φ0(r).

19.1.2. We wish to obtain an upper bound on this ground state energy by
the variational method. We use a Gaussian trial wave function:

ψσ(r) =
1

(σ2π)3/4
exp(−r2/(2σ2)) with σ > 0 . (19.1)

The values of a relevant set of useful integrals are given below.

By varying σ, find an upper bound on the ground state energy. Compare
the bound with the exact value, and comment on the result.
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Formulas:

∫
|ψσ(r)|2 dxdy dz = 1

∫
|ψσ(r)|4 dxdy dz =

1
(2π)3/2

1
σ3∫

x2 |ψσ(r)|2 dxdy dz =
σ2

2

∫ ∣∣∣∣∂ψσ(r)
∂x

∣∣∣∣
2

dxdy dz =
1

2σ2

19.2 Interactions Between Two Confined Particles

We now consider two particles of equal masses m, both placed in the same
harmonic potential. We denote the position and momentum operators of the
two particles by r̂1, r̂2 and p̂1, p̂2.

19.2.1. In the absence of interactions between the particles, the Hamiltonian
of the system is

Ĥ =
p̂2

1

2m
+

p̂2
2

2m
+

1
2
mω2r̂2

1 +
1
2
mω2r̂2

2 .

(a) What are the energy levels of this Hamiltonian?
(b) What is the ground state wave function Φ0(r1, r2)?

19.2.2. We now suppose that the two particles interact via a potential v(r1−
r2). We assume that, on the scale of a0, this potential is of very short range
and that it is peaked around the origin. Therefore, for two functions f(r) and
g(r) which vary appreciably only over domains larger than a0, one has

∫∫
f(r1) g(r2) v(r1 − r2) d3r1 d3r2 � 4πh̄2a

m

∫
f(r) g(r) d3r . (19.2)

The quantity a, which is called the scattering length, is a characteristic of the
atomic species under consideration. It can be positive (repulsive interaction)
or negative (attractive interaction). One can measure for instance that for
sodium atoms (isotope 23Na) a = 3.4 nm, whereas a = −1.5 nm for lithium
atoms (isotope 7Li).
(a) Using perturbation theory, calculate to first order in a the shift of the

ground state energy of Ĥ caused by the interaction between the two
atoms. Comment on the sign of this energy shift.

(b) Under what condition on a and a0 is this perturbative approach expected
to hold?
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19.3 Energy of a Bose–Einstein Condensate

We now consider N particles confined in the same harmonic trap of angular
frequency ω. The particles have pairwise interactions through the potential
v(r) defined by (19.2). The Hamiltonian of the system is

Ĥ =
N∑

i=1

(
p̂2

i

2m
+

1
2
mω2r̂2

i

)
+

1
2

N∑
i=1

N∑
j=1
j �=i

v(r̂i − r̂j) .

In order to find an (upper) estimate of the ground state energy of the system,
we use the variational method with factorized trial wave functions of the type:

Ψσ(r1, r2, . . . , rN ) = ψσ(r1) ψσ(r2) . . . ψσ(rN ) ,

where ψσ(r) is defined in (19.1).

19.3.1. Calculate the expectation values of the kinetic energy, of the potential
energy and of the interaction energy, if the N particle system is in the state
|Ψσ〉:

Ek(σ) = 〈Ψσ|
N∑

i=1

p̂i
2

2m
|Ψσ〉 Ep(σ) = 〈Ψσ|

N∑
i=1

1
2
mω2r̂i

2|Ψσ〉

Eint(σ) = 〈Ψσ|12
N∑

i=1

N∑
j=1
j �=i

v(r̂i − r̂j)|Ψσ〉

We set E(σ) = 〈Ψσ|Ĥ|Ψσ〉.
19.3.2. We introduce the dimensionless quantities Ẽ(σ) = E(σ)/(Nh̄ω) and
σ̃ = σ/a0. Give the expression of Ẽ in terms of σ̃. Cast the result in the form

Ẽ(σ) =
3
4

(
1
σ̃2

+ σ̃2

)
+
η

σ̃3

and express the quantity η as a function of N , a and a0. In all what follows,
we shall assume that N � 1.

19.3.3. For a = 0, recall the ground state energy of Ĥ.

19.4 Condensates with Repulsive Interactions

In this part, we assume that the two-body interaction between the atoms is
repulsive, i.e. a > 0.
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19.4.1. Draw qualitatively the value of Ẽ as a function of σ̃. Discuss the
variation with η of the position of its minimum Ẽmin.

19.4.2. We consider the case η � 1. Show that the contribution of the kinetic
energy to Ẽ is negligible. In that approximation, calculate an approximate
value of Ẽmin.

19.4.3. In this variational calculation, how does the energy of the conden-
sate vary with the number of atoms N? Compare the prediction with the
experimental result shown in Fig. 19.1.

19.4.4. Figure 19.1 has been obtained with a sodium condensate (mass m =
3.8 × 10−26 kg) in a harmonic trap of frequency ω/(2π) = 142 Hz.
(a) Calculate a0 and h̄ω for this potential.
(b) Above which value of N does the approximation η � 1 hold?
(c) Within the previous model, calculate the value of the sodium atom scat-

tering length that can be inferred from the data of Fig. 19.1. Compare the
result with the value obtained in scattering experiments a = 3.4 nm. Is it
possible a priori to improve the accuracy of the variational method?

Fig. 19.1. Energy per atom E/N in a sodium condensate, as a function of the
number of atoms N in the condensate

19.5 Condensates with Attractive Interactions

We now suppose that the scattering length a is negative.

19.5.1. Draw qualitatively Ẽ as a function of σ̃.

19.5.2. Comment on the approximation (19.2) in the region σ → 0.
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19.5.3. Show that there exists a critical value ηc of |η| above which Ẽ no
longer has a local minimum for a value σ̃ �= 0. Calculate the corresponding
size σc as a function of a0.

19.5.4. In an experiment performed with lithium atoms (m = 1.17 ×
10−26 kg), it has been noticed that the number of atoms in the condensate
never exceeds 1200 for a trap of frequency ω/(2π) = 145 Hz. How can this
result be explained?

19.6 Solutions

Section 19.1: Particle in a Harmonic Trap

19.1.1. The Hamiltonian of a three-dimensional harmonic oscillator can be
written

Ĥ = Ĥx + Ĥy + Ĥz ,

where Ĥi represents a one dimensional harmonic oscillator of same frequency
along the axis i = x, y, z. We therefore use a basis of eigenfunctions of Ĥ of
the form φ(x, y, z) = χnx

(x) χny
(y) χnz

(z), i.e. products of eigenfunctions of
Ĥx, Ĥy, Ĥz, where χn(x) is the nth Hermite function. The eigenvalues of Ĥ
can be written as En = (n+3/2)h̄ω, where n = nx +ny +nz is a non-negative
integer.
The ground state wave function, of energy (3/2)h̄ω, corresponds to nx = ny =
nz = 0, i.e.

φ0(r) =
1

(a2
0π)3/4

exp[−r2/(2a2
0)] .

19.1.2. The trial wave functions ψσ are normalized. In order to obtain an
upper bound for the ground-state energy of Ĥ, we must calculate E(σ) =
〈ψσ|Ĥ|ψσ〉 and minimize the result with respect to σ. Using the formulas
given in the text, one obtains〈

ψσ| p̂
2

2m
|ψσ

〉
= 3

h̄2

2m
1

2σ2

〈
ψσ|12mω

2r2|ψσ

〉
= 3

mω2

2
σ2

2

and

E(σ) =
3
4
h̄ω

(
a2
0

σ2
+
σ2

a2
0

)
.

This quantity is minimum for σ = a0, and we find Emin(σ) = (3/2) h̄ω. In
this particular case, the upper bound coincides with the exact result. This is
due to the fact that the set of trial wave functions contains the ground state
wave function of Ĥ.
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Section 19.2: Interactions between Two Confined Particles

19.2.1. (a) The Hamiltonian Ĥ can be written as Ĥ = Ĥ1 + Ĥ2, where Ĥ1

and Ĥ2 are respectively the Hamiltonians of particle 1 and particle 2. A basis
of eigenfunctions of Ĥ is formed by considering products of eigenfunctions
of Ĥ1 (functions of the variable r1) and eigenfunctions of Ĥ2 (functions of
the variable r2). The energy eigenvalues are En = (n + 3)h̄ω, where n is a
non-negative integer.

(b) The ground state of Ĥ is:

Φ0(r1, r2) = φ0(r1) φ0(r2) =
1

a3
0π

3/2
exp
[−(r21 + r22)/(2a

2
0)
]
.

19.2.2. (a) Since the ground state of Ĥ is non-degenerate, its shift to first
order in a can be written as

∆E = 〈Φ0|ṽ|Φ0〉 =
∫∫

|Φ0(r1, r2)|2 v(r1 − r2) d3r1 d3r2

� 4πh̄2a

m

∫
|φ0(r)|4 d3r =

4πh̄2a

m

1
(2π)3/2

1
a3
0

therefore

∆E

h̄ω
=

√
2
π

a

a0
.

For a repulsive interaction (a > 0), there is an increase in the energy of the
system. Conversely, in the case of an attractive interaction (a < 0), the ground
state energy is lowered.

(b) The perturbative approach yields a good approximation provided the
energy shift ∆E is small compared to the level spacing h̄ω of Ĥ. Therefore,
one must have |a| � a0, i.e. the scattering length must be small compared to
the spreading of the ground state wave function.

Section 19.3: Energy of a Bose–Einstein Condensate

19.3.1. Using the formulas provided in the text, one obtains:

Ek(σ) = N
3
4
h̄2

mσ2
Ep(σ) = N

3
4
mω2σ2

Eint(σ) =
N(N − 1)

2

√
2
π
h̄ω

aa2
0

σ3
.

Indeed, there areN kinetic energy and potential energy terms, andN(N−1)/2
pairs which contribute to the interaction energy.
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19.3.2. With the change of variables introduced in the text, one finds

Ẽ(σ) =
3
4

(
1
σ̃2

+ σ̃2

)
+
N − 1√

2π
a

a0

1
σ̃3

so that
η =

N − 1√
2π

a

a0
.

19.3.3. If the scattering length is zero, there is no interaction between the
particles. The ground state of the system is the product of the N functions
φ0(ri) and the ground state energy is E = (3/2)Nh̄ω.

Section 19.4: Condensates with Repulsive Interactions

19.4.1. Figure 19.2 gives the variation of Ẽ(σ̃) as a function of σ̃ for increas-
ing values of η. The value of the function for a given value of σ̃ increases as η
increases. For large σ̃, the behavior of Ẽ does not depend on η. It is dominated
by the potential energy term 3σ̃2/4.

The minimum Ẽmin increases as η increases. This minimum corresponds
the point where the potential energy term, which tends to favor small values
of σ, matches the kinetic and interaction energy terms which, on the contrary,
favor large sizes σ. Since the interactions are repulsive, the size of the system
is larger than in the absence of interactions, and the corresponding energy is
also increased.

Fig. 19.2. Variation of Ẽ(σ̃) with σ̃ for η = 0, 10, 100, 1000 (from bottom to top)

19.4.2. Let us assume η is much larger than 1 and let us neglect a priori
the kinetic energy term 1/σ̃2. The function (3/4)σ̃2 + η/σ̃3 is minimum for
σ̃min = (2η)1/5 where its value is

Ẽmin =
5
4
(2η)2/5 .

One can check a posteriori that it is legitimate to neglect the kinetic energy
term 1/σ̃2. In fact it is always smaller than one of the two other contributions
to Ẽ:
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• For σ̃ < σ̃min, one has 1/σ̃2 � η/σ̃3.
• For σ̃ > σ̃min, one has 1/σ̃2 � σ̃2.

19.4.3. For a number of atoms N � 1, the energy of the system as calculated
by the variational method is

E

N
=

5
4
h̄ω

(√
2
π
N
a

a0

)2/5

. (19.3)

This variation of E/N as N2/5 is very well reproduced by the data. In Fig. 19.3
we have plotted a fit of the data with this law. One finds E/N � αN2/5 with
α = 8.2 × 10−33 Joule.

Fig. 19.3. Fit of the experimental data with an N2/5 law

19.4.4. (a) One finds a0 = 1.76 µm and h̄ω = 9.4 10−32 Joule.
(b) Consider the value a = 3.4 nm given in the text. The approximation
η � 1 will hold if N � 1300. This is clearly the case for the data of Fig. 19.1.
(c) The coefficient α = 8.2 × 10−33 Joule found by fitting the data leads to
a = 2.8 nm. This value is somewhat lower than the expected value a = 3.4 nm.
This is due to the fact that the result (19.3), E/(Nh̄ω) � 1.142 (Na/a0)2/5,
obtained in a variational calculation using simple Gaussian trial functions,
does not yield a sufficiently accurate value of the ground state energy. With
more appropriate trial wave functions, one can obtain, in the mean field ap-
proximation and in the limit η � 1: Egs/(Nh̄ω) � 1.055 (Na/a0)2/5. The fit
to the data is then in agreement with the experimental value of the scattering
length.
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Section 19.5: Condensates with Attractive Interactions

19.5.1. The function Ẽ(σ̃) is represented in Fig. 19.4. We notice that it has
a local minimum only for small enough values of η. For η < 0, there is always
a minimum at 0, where the function tends to −∞.

0 1 2 3
-10

-5

0

5

10

( )E σ

σ

Fig. 19.4. Plot of Ẽ(σ̃) for η = 0; η = −0.1; η = −0.27; η = −1 (from top to
bottom)

19.5.2. The absolute minimum at σ = 0 corresponds to a highly compressed
atomic cloud. For such small sizes, approximation (19.2) for a “short range”
potential loses its meaning. Physically, one must take into account the forma-
tion of molecules and/or atomic aggregates which have not been considered
here.

19.5.3. The local minimum at σ̃ �= 0 disappears when Ẽ(σ̃) has an inflexion
point where the derivative vanishes. This happens for a critical value of η
determined by the two conditions:

dẼ
dσ̃

= 0
d2Ẽ

dσ̃2
= 0 .

This leads to the system

0 = − 1
σ̃4

+ 1 − 2η
σ̃5

0 =
3
σ̃4

+ 1 +
8η
σ̃5

from which we obtain

|ηc| =
2

55/4
� 0.27 σ̃c =

1
51/4

� 0.67
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or σc � 0.67 a0. If the local minimum exists, i.e. for |η| < |ηc|, one can hope
to obtain a metastable condensate, whose size will be of the order of the
minimum found in this variational approach. On the other hand, if one starts
with a value of |η| which is too large, for instance by trying to gather too
many atoms, the condensate will collapse, and molecules will form.

19.5.4. For the given experimental data one finds a0 = 3.1 µm, and a critical
number of atoms:

Nc =
√

2π ηc
a0

|a| ∼ 1400 ,

in good agreement with experimental observations.

19.7 Comments

The first Bose–Einstein condensate of a dilute atomic gas was observed in
Boulder (USA) in 1995 (M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E.
Wieman, and E.A. Cornell, Science 269, 198 (1995)) with rubidium atoms.

The experimental data shown in this chapter for a sodium condensate
come from the results published by M.-O. Mewes, M.R. Andrews, N.J. van
Druten, D.M. Kurn, D.S. Durfee, and W. Ketterle, Phys. Rev. Lett. 77, 416
(1996). The measurement of the energy E/N is done by suddenly switching
off the confining potential and by measuring the resulting ballistic expansion.
The motion of the atoms in this expansion essentially originates from the
conversion of the potential energy of the atoms in the trap into kinetic energy.

The experimental results on lithium have been reported by C. Bradley,
C.A. Sackett, and R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997).

The Nobel prize 2001 has been awarded to E. Cornell, W. Ketterle, and
C. Wieman for the achievement of Bose-Einstein condensation in dilute gases
of alkali atoms, and for early fundamental studies of the properties of the
condensates.
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Magnetic Excitons

Quantum field theory deals with systems possessing a large number of de-
grees of freedom. This chapter presents a simple model, where we study the
magnetic excitations of a long chain of coupled spins. We show that one can
associate the excited states of the system with quasi-particles that propagate
along the chain.

We recall that, for any integer k:
N∑

n=1

e2iπkn/N = N if k = pN, with p integer;

= 0 otherwise.

20.1 The Molecule CsFeBr3

Consider a system with angular momentum equal to 1, i.e. j = 1 in the basis
|j,m〉 common to Ĵ2 and Ĵz.

20.1.1. What are the eigenvalues of Ĵ2 and Ĵz?

20.1.2. For simplicity, we shall write |j,m〉 = |σ〉, where σ = m = 1, 0,−1.
Write the action of the operators Ĵ± = Ĵx ± iĴy on the states |σ〉.
20.1.3. In the molecule Cs FeBr3, the ion Fe2+ has an intrinsic angular mo-
mentum, or spin, equal to 1. We write the corresponding observable Ĵ , and
we note |σ〉 the eigenstates of Ĵz. The molecule has a plane of symmetry, and
the magnetic interaction Hamiltonian of the ion Fe2+ with the rest of the
molecule is

Ĥr =
D

h̄2 Ĵ
2
z D > 0 .

What are the eigenstates of Ĥr and the corresponding energy values? Are
there degeneracies?
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20.2 Spin–Spin Interactions in a Chain of Molecules

We consider a one-dimensional closed chain made up with an even number N
of Cs FeBr3 molecules. We are only interested in the magnetic energy states
of the chain, due to the magnetic interactions of the N Fe2+ ions, each with
spin 1.

We take {|σ1, σ2, · · · , σN 〉}, σn = 1, 0,−1, to be the orthonormal basis of
the states of the system; it is an eigenbasis of the operators {Ĵn

z } where Ĵ
n

is the spin operator of the n-th ion (n = 1, · · · , N).
The magnetic Hamiltonian of the system is the sum of two terms Ĥ =

Ĥ0 + Ĥ1 where

Ĥ0 =
D

h̄2

N∑
n=1

(Ĵn
z )2

has been introduced in 1.3, and Ĥ1 is a nearest-neighbor spin–spin interaction
term

Ĥ1 =
A

h̄2

N∑
n=1

Ĵ
n · Ĵn+1

A > 0 .

To simplify the notation of Ĥ1, we define Ĵ
N+1 ≡ Ĵ

1
.

We assume that Ĥ1 is a small perturbation compared to Ĥ0 (A � D),
and we shall treat it in first order perturbation theory.

20.2.1. Show that |σ1, σ2, · · · , σN 〉 is an eigenstate of Ĥ0, and give the cor-
responding energy value.

20.2.2. What is the ground state of Ĥ0? Is it a degenerate level?

20.2.3. What is the energy of the first excited state of Ĥ0? What is the
degeneracy d of this level? We shall denote by E1 the corresponding eigenspace
of Ĥ0, of dimension d.

20.2.4. Show that Ĥ1 can be written as

Ĥ1 =
A

h̄2

N∑
n=1

(
1
2
(Ĵn

+Ĵ
n+1
− + Ĵn

−Ĵ
n+1
+ ) + Ĵn

z Ĵ
n+1
z

)
.

20.3 Energy Levels of the Chain

We now work in the subspace E1. We introduce the following notation

|n,±〉 = |σ1 = 0, σ2 = 0, · · · , σn = ±1, σn+1 = 0, · · · , σN = 0〉.

Owing to the periodicity of the chain, we define |N + 1,±〉 ≡ |1,±〉.
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20.3.1. Show that

Ĥ1|n,±〉 = A(|n− 1,±〉 + |n+ 1,±〉) + |ψn〉 ,
where |ψn〉 is orthogonal to the subspace E1.
Without giving the complete form of |ψn〉, give an example of one of its
components, and give the energy of the eigenspace of Ĥ0 to which |ψn〉 belongs.

20.3.2. Consider the circular permutation operator T̂ , and its adjoint T̂ †,
defined by

T̂ |σ1, σ2, · · · , σN 〉 = |σN , σ1, · · · , σN−1〉
T̂ †|σ1, σ2, · · · , σN 〉 = |σ2, σ3, · · · , σN , σ1〉 .

Write the action of T̂ and T̂ † on the states |n,±〉.
20.3.3. Check that, in the subspace E1, Ĥ1 and A(T̂ + T̂ †) have the same
matrix elements.

20.3.4. Show that the eigenvalues λk of T̂ are the N -th roots of unity (we
recall that N is assumed to be even):

λk = e−iqk qk = −π +
2kπ
N

k = 0, · · · , N − 1 .

20.3.5. We seek, in E1, the 2N eigenvectors |qk,±〉 of T̂ , each corresponding
to an eigenvalue λk. Each |qk,±〉 is written

|qk,±〉 =
∑

n

cn(k) |n,±〉 . (20.1)

(a) Write a recursion relation between the coefficients cn.
(b) Show that

cn(k) =
1√
N

eiqkn (20.2)

is a solution of this recursion relation.

(c) Show that the states |qk,±〉 defined using (20.1) and (20.2) are ortho-
normal.

(d) Show that the vectors |qk,±〉 are also eigenvectors of T̂ † and T̂ + T̂ †, and
give the corresponding eigenvalues.

(e) Calculate the scalar product 〈n, ε|qk, ε′〉 (ε, ε′ = ±) and write the expan-
sion of the states |n,±〉 in the basis |qk,±〉.

20.3.6. We treat the Hamiltonian Ĥ1 of Sect. 2 as a perturbation to Ĥ0.
We limit ourselves to the first excited level of Ĥ0, and we want to calcu-
late how the perturbation lifts the degeneracy of this level. We recall that,
in the degenerate case, first order perturbation theory consists in diagonaliz-
ing the restriction of the perturbing Hamiltonian in the degenerate subspace
of the dominant term Ĥ0.
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(a) Explain why the results of questions 3.3 and 3.5 above allow one to solve
this problem.

(b) In first order perturbation theory, give the new energy levels which arise
from the first excited state of Ĥ0, and the corresponding eigenstates.

(c) Draw qualitatively the energies E(qk) in terms of the variable qk which
can be treated as a continuous variable, qk ∈ [−π,+π[, if N is very large.

1. What is the degeneracy of each new energy level?

20.4 Vibrations of the Chain: Excitons

We now study the time evolution of the spin chain.

20.4.1. Suppose that at time t = 0, the system is in the state

|Ψ(0)〉 =
∑
ε=±

N−1∑
k=0

ϕε
k|qk, ε〉 with

∑
ε=±

N−1∑
k=0

|ϕε
k|2 = 1 .

Setting ω = 2A/h̄, write the state |Ψ(t)〉 at a later time t.

20.4.2. We assume that the initial state is |Ψ(0)〉 = |qk,+〉.
(a) Write the probability amplitude αn(t) and the probability Pn(t) of finding

at time t the n-th spin pointing upwards, i.e. σn = +1 and σm = 0 for
m �= n. Show that Pn(t) is the same for all sites of the chain.

(b) The molecules of the chain are located at xn = na, where a is the lattice
spacing. Show that the probability amplitude αn(t) is equal to the value
at x = xn of a monochromatic plane wave

Ψk(x, t) = Cei(p(q)x−E(q)t)/h̄ ,

where C is a constant, q = qk, and x is the abscissa along the chain.
Express p(q) in terms of q.

(c) Show that Ψk(x, t) is an eigenstate of the momentum operator p̂x =
(h̄/i)∂/∂x along the chain.
Show that the value of p(q) ensures the periodicity of Ψk(x, t), i.e. Ψk(x+
L, t) = Ψk(x, t), where L = Na is the length of the chain.

(d) Show that, for |qk| � 1, Ψk(x, t) satisfies a Schrödinger equation for a
particle of negative mass m, placed in a constant potential; give the value
of m.

20.4.3. In a more complete analysis, one can associate quasi-particles to the
magnetic excitations of the chain. These quasi-particles, which we call “mag-
netic excitons”, have an energy E(qk) and a momentum p(qk).

At very low temperatures, T ≈ 1.4 K, the chain is in the ground state
of Ĥ0. If low energy neutrons collide with it, they can create excitons whose
energy and momentum can be determined by measuring the recoil of the
neutrons. The experimental result for E(q) as a function of q ∈ [−π, 0] is
given in Fig. 20.1.
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Fig. 20.1. Experimental measurement of the excitation energy E(q) as a function
of q between −π and 0. The energy scale is in meV (10−3 eV)

(a) Deduce from that data approximate values for D and A.
(b) What do you think of the approximation D � A and of the comparison

between theory and experiment? How could one improve the agreement
between theory and experiment?

(c) Is it justified to assume that the chain is in its ground state when it
is at thermal equilibrium at 1.4 K? We recall the Boltzmann factor:
N(E2)/N(E1) = exp[−(E2 − E1)/kT ], with k = 8.6 × 10−5 eVK−1.

20.4.4. Consider, at time t = 0, the state

|Ψ(0)〉 =
N−1∑
k=0

ϕk|qk,+〉 with
N−1∑
k=0

|ϕk|2 = 1.

We assume that N � 1, that the coefficients ϕk have significant values only
in a close vicinity of some value k = k0, or, equivalently, q ≈ q0, and that, to
a good approximation, in this vicinity,

E(q) = E(q0) + (q − q0)u0 , u0 =
dE
dq

∣∣∣∣
q=q0

.

Show that the probability Pn(t) of finding σn = +1 at time t is the same as
the probability Pn′(t′) of finding σn′ = +1 at another time t′ whose value will
be expressed in terms of t and of the distance between the sites n and n′.

Interpret the result as the propagation of a spin excitation wave along the
chain. Calculate the propagation velocity of this wave and give its numerical
value for a = 0.7 nm and q0 = −π/2.
20.4.5. We now assume that the initial state is |Ψ(0)〉 = |n = 1,+〉.
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(a) Write the probability Pm(t) of finding σm = +1 at a later time t?
(b) Calculate the probabilities P1(t) and P2(t), in the case N = 2, and inter-

pret the result.
(c) Calculate P1(t) in the case N = 8. Is the evolution of P1(t) periodic?
(d) For N � 1, one can convert the above sums into integrals. The prob-

abilities are then Pm(t) ≈ |Jm−1(ωt)|2 where the Jn(x) are the Bessel
functions. These functions satisfy

∑ |Jn(x)|2 = 1 and Jn = (−)nJ−n.

For x� 1 we have Jn(x) ≈
√

2
πx cos(x− nπ/2 − π/4) if x > 2|n|/π, and

Jn(x) ≈ 0 if x < 2|n|/π.
Which sites are appreciably reached by the probability wave at a time t
such that ωt� 1?

(e) Interpret the result as the propagation along the chain of a probability
amplitude (or wave). Calculate the propagation velocity and compare it
with the result obtained in question 4.4).

20.5 Solutions

Section 20.1: The Molecule CsFeBr3

20.1.1. The results are: Ĵ2 : 2h̄2, Ĵz : mh̄ ;m = 1, 0,−1.

20.1.2. One has:

J+|1〉 = 0
J+|0〉 = h̄

√
2|1〉

J+| − 1〉 = h̄
√

2|0〉

J−|1〉 = h̄
√

2|0〉
J−|0〉 = h̄

√
2| − 1〉

J−| − 1〉 = 0 .

20.1.3. The eigenstates are the states |σ〉. The state |0〉 corresponds to the
eigenvalue E = 0, whereas |+〉 and |−〉, which are degenerate, correspond to
E = D.

Section 20.2: Spin–Spin Interactions in a Chain of Molecules

20.2.1. It is straightforward to see that

Ĥ0|σ1, σ2 · · ·σN 〉 = D

N∑
n=1

(σn)2|σ1 · · ·σN 〉 ,

the corresponding eigenvalue being E = D
∑
σ2

n.

20.2.2. The ground state of Ĥ0 corresponds to all the σn equal to zero, so
that E = 0. This ground state is non-degenerate.

20.2.3. The first excited state corresponds to all the σ’s being zero except
one: σn equal to ±1. The energy is D, and the degeneracy 2N , since there are
N possible choices of the non-vanishing σn, and two values ±1 of σn.

20.2.4. J± = Jx ± iJy. A direct calculation leads to the result.
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Section 20.3: Energy Levels of the Chain

20.3.1. The action of the perturbing Hamiltonian on the basis states is, set-
ting ε = ±:

Ĥ1|n, ε〉 = A (|n− 1, ε〉 + |n+ 1, ε〉)
+A
∑
n′ �=n

(|0, · · · 0, σn = ε, 0 · · · 0, σn′ = −1, σn′+1 = +1, 0 · · · 0〉

+|0 · · · 0, σn = ε, 0 · · · 0, σn′ = +1, σn′+1 = −1, 0 · · · 0〉) .

The vector |ψ〉 = |σ1 = 1, σ2 = −1, 0 · · · 0, σn = ε, 0 · · · 0〉 belongs to this latter
set; it is an eigenvector of Ĥ0 with energy 3D.

20.3.2. The definition of T̂ , T̂ † and |n,±〉 implies:

T̂ |n,±〉 = |n+ 1,±〉 ; T̂ †|n,±〉 = |n− 1,±〉 .

20.3.3. We therefore obtain

A(T̂ + T̂ †)|n,±〉 = A(|n− 1,±〉 + |n+ 1,±〉) .

Since

Ĥ1|n,±〉 = A(|n− 1,±〉 + |n+ 1,±〉) + |ψn〉 where 〈n′,±|ψn〉 = 0 ,

Ĥ1 and A(T̂ + T̂ †) obviously have the same matrix elements in the subspace
E1.

20.3.4. Since T̂N = Î, an eigenvalue λk satisfies λN
k = 1, which proves that

each eigenvalue is anN -th root of unity. Conversely, we will see in the following
that each N -th root of unity is an eigenvalue.

20.3.5. (a) The corresponding eigenvectors satisfy

|qk,±〉 =
∑

n

cn|n,±〉 T̂ |qk,±〉 = λk|qk,±〉

therefore one has

∑
n

cn|n+ 1,±〉 = λk

∑
n

cn|n,±〉 .

Hence the recursion relation and its solution are

λk cn = cn−1 cn =
1

λn−1
k

c1 = eiqk(n−1)c1 .
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(b) The normalization condition
∑

n |cn|2 = 1 gives N |c1|2 = 1. If we choose
c1 = eiqk/

√
N , the eigenvectors are of unit norm and we recover the solution

given in the text of the problem.
(c) The scalar product of |qk, ε〉 and |qk′ , ε′〉 is easily calculated:

〈qk′ , ε′|qk, ε〉 = δε,ε′
1
N

∑
n

e2iπn(k−k′)/N = δε,ε′ δk,k′ .

(d) The vectors |qk,±〉 are eigenvectors of T̂ † with the complex conjugate
eigenvalues λ∗k. Therefore they are also eigenvectors of T̂ + T̂ † with the eigen-
value λk + λ∗k = 2 cos qk = −2 cos(2kπ/N).
(e) From the definition of the vectors, we have

〈n, ε|qk, ε′〉 =
1√
N

eiqknδεε′

and (directly or by using the closure relation)

|n,±〉 =
1√
N

N−1∑
k=0

e−iqkn|qk,±〉 .

20.3.6. The restriction of Ĥ1 to the subspace E1 is identical to A(T̂ + T̂ †)
(question 3.3). In E1, the operator A(T̂ + T̂ †) is diagonal in the basis |qk,±〉.
Therefore the restriction of Ĥ1 is also diagonal in that basis. The energy levels
are

E(qk) = D + 2A cos(qk) , (20.3)

corresponding to the states |qk,±〉. As far as degeneracies are concerned, there
is a twofold degeneracy for all levels (the spin value may be +1 or −1). In
addition, for all levels except q = −π and q = 0, there is a degeneracy qk ↔
−qk (symmetry of the cosine). Therefore, in general, the degeneracy is 4.

Section 20.4: Vibrations of the Chain: Excitons

20.4.1. At time t the state of the chain is (cf. (20.3)):

|Ψ(t)〉 = e−iDt/h̄
∑

ε

∑
k

ϕε
ke−iωt cos qk |qk, ε〉 .

20.4.2. We now consider an initial state |qk,±〉, evolving as e−iE(q)t/h̄|qk,±〉.
(a) We therefore obtain an amplitude

αn(t) =
1√
N

ei(qkn−E(qk)t/h̄)

and a probability Pn(t) = |αn|2 = 1
N , which is the same on each site.
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(b) In the expression

αn(t) =
1√
N

ei(qkxn/a−E(qk)t/h̄) ,

we see that αn(t) is the value at x = xn of the function Ψk(x, t) =
1√
N

exp[i(px− Et)/h̄] with E(q) = D + h̄ω cos q and p(q) = h̄q/a.

(c) The function Ψk(x) is an eigenstate of p̂x with the eigenvalue h̄qk/a.
Since N is even, we obtain:

eiqkL/a = eiNqk = e2πik = 1 ,

which proves the periodicity of Ψk.

(d) For |qk| � 1, cos qk = 1 − q2k/2 . Therefore E = E0 + p2/2m with

E0 = D + 2A and m = − h̄2

2Aa2
= − h̄

ωa2
.

Ψk then satisfies the wave equation

ih̄
∂ψ

∂t
= − h̄

2

2m
∂2ψ

∂x2
+ E0ψ ,

which is a Schrödinger equation for a particle of negative mass (in solid state
physics, this corresponds to the propagation of holes and in field theory, to
the propagation of anti-particles).

20.4.3. (a) With the data of the figure which resemble grosso modo the
E(q) drawn in Fig. 20.2, one finds D + 2A ∼ 3.2 × 10−3 eV, and D − 2A ∼
0.4 × 10−3 eV. Therefore:

D ∼ 1.8 × 10−3 eV A ∼ 0.7 × 10−3 eV .

(b) The approximation D � A is poor. The theory is only meaningful to
order (A/D)2 ∼ 10%. Second order perturbation theory is certainly necessary
to account quantitatively for the experimental curve which has a steeper shape
than a sinusoid in the vicinity of q = −π.
(c) For T = 1.4 K, kT ∼ 1.2 × 10−4 eV, exp(−(D − 2A)/kT ) ∼ 0.04. To a
few % , the system is in its ground state.

20.4.4. Approximating E(q) = E(q0) + (q − q0)u0 in the vicinity of q0, we
obtain

αn(t) =
1√
N

ei(q0n−ω0t)
∑

k

ϕk ei(qk−q0)(n−u0t/h̄) .



212 20 Magnetic Excitons

Fig. 20.2. Energy levels

Since the global phase factor does not contribute to the probability, one has
Pn(t) = Pn′(t′) with

t′ = t+ (n′ − n) h̄
u0
.

This corresponds to the propagation of a wave along the chain, with a group
velocity

vg =
u0a

h̄
=
a

h̄

dE
dq

∣∣∣∣
q=q0

= −2aA
h̄

sin q0 .

For q0 = −π/2 and a = 0.7 nm, we find vg ∼ 1500 ms−1. One can also
evaluate u0 ∼ 1.2 meV directly on the experimental curve, which leads to
vg ∼ 1300 ms−1.

20.4.5. If |Ψ(0)〉 = |n = 1,+〉, then ϕ+
k = e−iqk/

√
N and ϕ−

k = 0.
(a) The probability is Pm(t) = |〈m,+|Ψ(t)〉|2, where

〈m,+|Ψ(t)〉 =
e−iDt/h̄

N

∑
k

eiqk(m−1)e−iωt cos qk .

(b) N=2:
There are two possible values for qk: q0 = −π and q1 = 0. This leads to
P1(t) = cos2 ωt, P2(t) = sin2 ωt. These are the usual oscillations of a two-
state system, such as the inversion of the ammonia molecule.
(c) N=8:

qk −π − 3π
4 −π

2 −π
4 0 π

4
π
2

3π
4

cos(qk) −1 − 1√
2

0 1√
2

1 1√
2

0 − 1√
2

The probability P1 of finding the excitation on the initial site is

P1(t) =
1
4

(
cos2(ωt/2) + cos(ωt/

√
2)
)2

.

The system is no longer periodic in time. There cannot exist t �= 0 for which
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P1(t) = 1, otherwise there would exist n and n′ such that
√

2 = n′/n.
(d) Since Jn(ωt) ∼ 0 for ωt < 2|n|/π, only sites for which |m − 1| < πωt/2
are reached at time t. For large ωt, the amplitude is the same for all sites of
the same parity:

Pm(t) =
2
πωt

cos2
(
ωt− (m− 1)

π

2
− π

4

)
.

We notice in particular that Pm(t)+Pm+1(t) = 2/(πωt) is independent of m

and varies slowly with t.
(e) The probability wave becomes delocalized very quickly on the chain
(ωt > a few π). The edges of the region where the probability is non zero
propagate in opposite directions with the velocity v = πωa/2. This is compa-
rable with what we have found in 4.4 for a wave packet near q = π/2.

The experimental data displayed in this chapter were obtained by B. Dorner
et al., Z. Phys. B 72, 487 (1988).
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A Quantum Box

In recent years, it has become possible to devise quantum boxes (also called
quantum dots) of nanometric dimensions, inside which the conduction elec-
trons of a solid are confined at low temperatures. The ensuing possibility to
control the energy levels of such devices leads to very interesting applications
in micro-electronics and opto-electronics.

A quantum box is made of a material A on which another material B is
deposited. A set of quantum boxes is shown on Fig. 21.1. The dots of InAs
(material B) are deposited on a substate of GaAs (material A).

Fig. 21.1. Picture of a set of quantum boxes obtained with a tunneling microscope.
The side of the square is 1 µm long and the vertical scale will be studied below
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In this chapter, we are interested in the motion of an electron in a two-
dimensional box. We note −q the electric charge of the electron, and we neglect
spin effects. We shall assume that in a solid, the dynamics of an electron is
described by the usual Schrödinger equation where:

(i) the mass of the electron is replaced by an effective mass µ,
(ii) the atoms of the materials A and B create an effective potential V (x, y)

which is slowly varying on the atomic scale.

21.1 Results on the One-Dimensional
Harmonic Oscillator

Consider a particle of mass µ placed in the one-dimensional potential V (x) =
µω2x2/2. We recall the definition of the annihilation and creation operators
âx and â†x of the oscillator in terms of the position and momentum operators
x̂ and p̂x

âx =
1√
2

(
x̂

√
µω

h̄
+ i

p̂x√
h̄µω

)
â†x =

1√
2

(
x̂

√
µω

h̄
− i p̂x√

h̄µω

)
. (21.1)

The Hamiltonian of the system can be written as

Ĥx =
p̂2x
2µ

+
1
2
µω2x̂2 = h̄ω

(
n̂x +

1
2

)
where n̂x = â†xâx . (21.2)

We also recall that the eigenvalues of the number operator n̂x are the non-
negative integers. Noting |nx〉 the eigenvector corresponding to the eigenvalue
nx, we have

â†x|nx〉 =
√
nx + 1|nx + 1〉 âx|nx〉 =

√
nx|nx − 1〉 (21.3)

21.1.1. We recall that the ground state wave function is

ψ0(x) =
(µω
πh̄

)1/4

exp
(
−µωx

2

2h̄

)
.

What is the characteristic extension �0 of the electron’s position distribution
in this state?

21.1.2. The effective mass µ of the electron in the quantum box is µ =
0.07 m0, where m0 is the electron mass in vacuum. We assume that h̄ω =
0.060 eV, i.e. ω/(2π) = 1.45 × 1013 Hz.
(a) Evaluate �0 numerically.
(b) At a temperature of 10 Kelvin, how many levels of the oscillator are pop-

ulated significantly?
(c) What is the absorption wavelength of radiation in a transition between

two consecutive levels?
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21.2 The Quantum Box

We assume that the effective two-dimensional potential seen by an electron
in the quantum box is:

V (x, y) =
1
2
µω2
(
x2 + y2

)
. (21.4)

We note Ĥ0 = (p̂2x + p̂2y)/2µ + V (x, y) the Hamiltonian of the electron.

21.2.1. We define the operators ây, â
†
y and n̂y in an analogous way to (21.1)

and (21.2). Give a justification for the fact that the states |nx, ny〉, which
are eigenstates of n̂x and n̂y with integer eigenvalues nx and ny, form an
eigenbasis of Ĥ0. Give the energy levels EN of Ĥ0 in terms of nx and ny.

21.2.2. What is the degeneracy gN of each level EN where N = 0, 1, 2 . . . ?

21.2.3. Express the operator L̂z = x̂p̂y − ŷp̂x as a function of the operators
âx, â†x, ây, â†y.

21.2.4. Write the action of L̂z on the eigenstates |nx, ny〉 of Ĥ0. Do the states
|nx, ny〉 have a well-defined angular momentum Lz ?

21.2.5. We are now interested in finding another eigenbasis of Ĥ0.
(a) Show that Ĥ0 and L̂z commute. Interpret this result physically.
(b) We introduce the “left” and “right” annihilation operators as

âl =
1√
2
(âx + iây) âr =

1√
2
(âx − iây) (21.5)

and the corresponding creation operators â†l , â
†
r. Write the commutation

relations of these four operators.
(c) Show that n̂l = â†l âl and n̂r = â†râr commute. Using the values of the

commutators [âl, â
†
l ] and [âr, â

†
r], and following the same procedure as in

the usual quantization of the harmonic oscillator, justify that the eigen-
values nl and nr of n̂l and n̂r are integers.
We assume that {n̂l, n̂r} form a complete set of commuting observables in
the problem under consideration, and we note {|nl, nr〉} the corresponding
eigenbasis.

(d) Write the expression of n̂l and n̂r in terms of âx, â†x, ây and â†y. Deduce
from that an expression of the operators Ĥ0 and L̂z in terms of n̂l and n̂r.
Justify that the states {|nl, nr〉} form an eigenbasis common to Ĥ0 and
L̂z.

(e) We note mh̄ and EN the eigenvalues of L̂z and Ĥ0. What are the allowed
values for the quantum number m in a given energy level EN?

(f) Represent the allowed couples of quantum numbers (m, N) by points in
the (Lz, EN ) plane. Show that one recovers the degeneracy of the levels
of Ĥ0.
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21.2.6. We consider the eigen-subspace of Ĥ0 generated by |nx = 1, ny = 0〉
and |nx = 0, ny = 1〉 as defined in Sect. 2.1 above. Write the eigenstates of
L̂z in this basis and give the corresponding eigenvalues.

21.3 Quantum Box in a Magnetic Field

One applies a uniform magnetic field B, parallel to the z axis, on the quan-
tum box. This field derives from the vector potential A(r) = −(yB/2)ux +
(xB/2)uy where ux and uy are the unit vectors along the x and y directions.
We assume that the Hamiltonian of the electron in the quantum box and in
presence of the field is given by

ĤB =
1
2µ

(p̂x + qAx(r̂))2 +
1
2µ

(p̂y + qAy(r̂))2 +
1
2
µω2(x̂2 + ŷ2)

with the usual canonical commutation relations [x̂, p̂x] = [ŷ, p̂y] = ih̄ and
[x̂, p̂y] = [ŷ, p̂x] = 0. We introduce the cyclotron angular frequency ωc = qB/µ,
(ωc > 0).

21.3.1. Expand ĤB and show that one can always find a basis of the sys-
tem for which both the total energy and the angular momentum along z are
simultaneously well defined.

21.3.2. We define Ω =
√
ω2 + ω2

c/4. By redefining in a simple manner the
operators of Sect. 2, give the energy levels Enl,nr

of the system in terms of
the two integers nl and nr.

21.3.3. For simplicity we subtract the zero point energy h̄Ω from the energies
Enl,nr

, and we set Ẽnl,nr
= Enl,nr

− h̄Ω.
(a) Give the approximate expressions of the levels Ẽnl,nr

in the two limits of
a weak and of a strong field, and give a definition of these regimes.

(b) Plot as a function of the magnetic field, the positions of the energy levels
originating from the N = 0, 1, 2 levels in the absence of magnetic field.

(c) Show that two levels cross for a value of B such that ωc = ω/
√

2 and
specify which states they correspond to.

21.3.4. In the following we assume that ωc < ω/
√

2. Using the values of ω
and of the effective mass µ given in the first section of the problem, determine
which values of the magnetic field correspond to this inequality.

21.3.5. Show that the first three eigenstates of ĤB have respective energies

E0 = h̄Ω , E− = 2h̄Ω − h̄ωc

2
, E+ = 2h̄Ω +

h̄ωc

2
.

We note |u0〉, |u−〉, |u+〉 the three corresponding eigenstates. What is the value
of the angular momentum Lz in each of these three states?
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21.4 Experimental Verification

One can study the energy levels of an electron in a quantum box by measuring
the absorption spectrum of a light beam. Absorption peaks appear at the Bohr
frequencies (Ef−Ei)/h of the box, corresponding to excitations of the electron
from an initial level |ui〉 to a final one |uf 〉.
21.4.1. At a temperature of 10 K, one observes that only the level |ui〉 = |u0〉
contributes significantly to the absorption signal. Justify this fact using the
result of question 1.2.

21.4.2. The experimental values of the frequencies of the first two absorption
peaks of a quantum box are given in Fig. 21.2, according to the values of the
applied magnetic field. Verify that the model developed above accounts for
the slope of the curves for sufficiently large values of B, but that it fails to
describe the behavior near B = 0.
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Fig. 21.2. Frequencies ν = ω/2π of the two first absorption peaks of a quantum
box as a function of the magnetic field B

21.4.3. Role of the z Dimension
The confinement along the z direction can be simulated by an infinite one-
dimensional square well potential of extension D in this direction.
(a) Recall the energy levels of a particle of mass µ in a one-dimensional infinite

well of widthD. What is the energy difference between the two lowest lying
states?
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(b) Under what condition between D and ω is it legitimate to consider that
the motion along the z axis is “frozen”, and to restrict to the lowest lying
levels of the harmonic motion in the x, y plane?

(c) On the picture 21.1, the vertical (z) and horizontal (xy) scales are differ-
ent. In order to neglect the motion along the z direction, which of the two
scales must be contracted? One can make use of the value of l0 calculated
in Sect. 1.2.

21.5 Anisotropy of a Quantum Box

In order to reproduce the positions of the absorption peaks for low values of
the field (see Fig. 21.2), we assume that the confining potential in the quantum
box is slightly anisotropic. We therefore replace the expression (21.4) of the
confining potential by

V (x, y) =
1
2
µω2(1 + ε)x2 +

1
2
µω2(1 − ε)y2 with ε� 1 . (21.6)

We treat the problem using perturbation theory. In what follows, we as-
sume that the magnetic field is small (ωc � ω). The Hamiltonian ĤB,ε can
therefore be written as:

ĤB,ε = Ĥ0 + Ŵ

with

Ĥ0 =
p̂2

2µ
+

1
2
µω2(x̂2 + ŷ2) and Ŵ =

ωc

2
L̂z + ε

µω2

2
(x̂2 − ŷ2) .

In this expression, Ŵ is the perturbation, and we neglect terms of order B2.
We work in the basis {|nx, ny〉}.
21.5.1. Using the potential given in (21.6), determine the energy levels of
the electron for B = 0.

21.5.2. Applying perturbation theory, evaluate to first order in B and ε the
energy shift of the ground state of the quantum box with respect to the value
found in Sect. 2.

21.5.3. We are now interested in the position of the two energy states origi-
nating from the first excited level of Ĥ0 found in Sect. 2.
(a) Write the restriction of the Hamiltonian HB,ε in the basis {|nx = 1, ny =

0〉 , |nx = 0, ny = 1〉} of the corresponding subspace.
(b) Deduce the approximate values of the energies of interest E−(B, ε) and

E+(B, ε) (with E− < E+).
(c) Give the expressions of the corresponding eigenstates |u−(B, ε)〉 and

|u+(B, ε)〉. One can introduce the mixing angle α such that tan(2α) =
ωc/(εω).
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21.5.4. We now turn back to the experimental data of Fig. 21.2.
(a) Is the transition region between large values of B and B = 0 correctly

described by this model of an anisotropic quantum box?
(b) What value of the anisotropy ε can be deduced from the positions of the

first two absorption peaks in the absence of a magnetic field?

21.6 Solutions

Section 21.1: Results on the One-Dimensional Harmonic
Oscillator

21.1.1. The characteristic spatial extension of the position distribution is
�0 =

√
h̄/(µω). More precisely, �0/

√
2 is the r.m.s. deviation of the probability

law |ψ0(x)|2 for the position distribution.

21.1.2. (a) One finds �0 = 4.3 nm.
(b) The ratio of populations in the first excited level n = 1 and the ground
state n = 0 is given by the Boltzmann law

r = exp(−h̄ω/(kBT )) = exp(−70) = 5 × 10−31 ,

which is negligible. The population of other excited levels is even smaller.
Therefore, at T = 10 K, only the ground state is populated.
(c) One finds λ = 2πc/ω = 21 µm, which corresponds to an infrared radia-
tion.

Section 21.2: The Quantum Box

21.2.1. The Hamiltonian is Ĥ0 = h̄ω(n̂x + n̂y +1), and the operators n̂x and
n̂y commute. We can find an eigenbasis common to the two operators. If a
function Ψ(x, y) is an eigenfunction of n̂x, its x dependence is completely de-
termined (Hermite function of the variable x

√
µω/h̄, corresponding to |nx〉).

Similarly, for the y dependence. The set {n̂x, n̂y} is therefore a CSCO, with
eigenbasis |nx, ny〉. This basis is also an eigenbasis of Ĥ0, the eigenvalue cor-
responding to |nx, ny〉 is EN = h̄ω(N + 1) with N = nx + ny.

21.2.2. The energy level EN = h̄ω(N + 1) corresponds to N + 1 possible
couples for (nx, ny): (N, 0), (N−1, 1), . . ., (0, N). The degeneracy is therefore
gN = N + 1.
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21.2.3. We replace x̂, p̂x, ŷ, p̂y by their values:

x̂ =

√
h̄

2µω
(
â†x + âx

)
p̂x = i

√
h̄µω

2
(
â†x − âx

)
. . .

which leads to:

L̂z =
ih̄

2
((
â†x + âx

) (
â†y − ây

)− (â†y + ây

) (
â†x − âx

))
= ih̄

(
âxâ

†
y − â†xây

)
.

21.2.4. Making use of the action of the creation and annihilation operators,
one finds:

L̂z |nx, ny〉 = ih̄
(√

nx(ny + 1) |nx − 1, ny + 1〉

−
√

(nx + 1)ny |nx + 1, ny − 1〉
)
.

A state |nx, ny〉 is not, in general, an eigenstate of L̂z and does not have a
well defined angular momentum. The only exception is the state for which
nx = ny = 0, and L̂z|0, 0〉 = 0. It is a state with Lz = 0.

21.2.5. We are now interested in finding another eigenbasis of Ĥ0.
(a) The commutator of Ĥ0 and L̂z can be calculated using their expres-
sions in terms of the creation and annihilation operators. We first calculate
[n̂x, â

†
x] = â†x and [n̂x, âx] = −âx, and the analogous relations for y. One

obtains:

[Ĥ0, L̂z] = ih̄2ω [n̂x + n̂y, âxâ
†
y − â†xây]

= ih̄2ω
(
[n̂x, âx]a†y − [n̂x, â

†
x]ây + âx[n̂y, a

†
y] − â†x[n̂y, ây]

)
= ih̄2ω

(−âxa
†
y − â†xây + âxa

†
y + â†xây

)
= 0 .

This result is the consequence of the rotation invariance around the z axis of
the potential V (x, y). This can also be proven by using the polar coordinate
expression: L̂z = −ih̄ ∂

∂φ , which commutes with the two contributions to Ĥ0

(kinetic and potential energy).
(b) There are 4 operators, and therefore 6 commutators to evaluate. We
first remark that the two creation operators commute, and so do the two
annihilation operators. Therefore:

[â†l , â
†
r] = 0 , [âl, âr] = 0 .

A simple calculation leads to:[
âl, â

†
l

]
=

1
2
[âx + iây, â

†
x − iâ†y] =

1
2
[âx, â

†
x] +

1
2
[ây, â

†
y] = 1 ,

[
âr, â

†
r

]
=

1
2
[âx − iây, â

†
x + iâ†y] =

1
2
[âx, â

†
x] +

1
2
[ây, â

†
y] = 1 .
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Finally, one finds:

[
âl, â

†
r

]
=

1
2
[âx + iây, â

†
x + iâ†y] =

1
2
[âx, â

†
x] − 1

2
[ây, â

†
y] = 0 ,[

âr, â
†
l

]
=

1
2
[âx − iây, â

†
x − iâ†y] =

1
2
[âx, â

†
x] − 1

2
[ây, â

†
y] = 0 .

Therefore, any “right” and “left” operators commute. The commutation rela-
tions between right (or left) creation and annihilation operators are the same
as for usual one-dimensional creation and annihilation operators.
(c) The commutation between the hermitian operators n̂l and n̂r is obvious,
since any left operator commutes with any right operator. The quantization of
the one-dimensional harmonic oscillator is entirely based on the commutation
relation [â, â†] = 1, which leads to the fact that the eigenvalues of â†â are
the non-negative integers. The same holds here for the operators n̂l and n̂r,
the corresponding eigenvalues are the couples of integers (nl, nr). As it is
suggested in the text, we assume for the moment that the common eigenbasis
of n̂l and n̂r is unique, and we note |nl, nr〉 the eigenvector corresponding to
the couple of eigenvalues (nl, nr).
(d) One finds:

n̂l =
1
2
(â†x − iâ†y) (âx + iây) =

1
2
(
n̂x + n̂y + i(â†xây − âxâ

†
y)
)

=
1
2

(
Ĥ0

h̄ω
− 1 − L̂z

h̄

)
,

n̂r =
1
2
(â†x + iâ†y) (âx − iây) =

1
2
(
n̂x + n̂y − i(â†xây − âxâ

†
y)
)

=
1
2

(
Ĥ0

h̄ω
− 1 +

L̂z

h̄

)
,

therefore
Ĥ0 = h̄ω (n̂l + n̂r + 1) , L̂z = h̄ (n̂r − n̂l) .

The operators Ĥ0 and L̂z can be expressed in terms of the sole operators
n̂l and n̂r. The eigenbasis common to n̂l and n̂r is therefore also a common
eigenbasis of Ĥ0 and L̂z.
(e) The vector |nl, nr〉 is the eigenstate of Ĥ0 and L̂z, with eigenvalues E =
h̄ω(nl + nr + 1) and Lz = h̄(nr − nl). We therefore have N = nl + nr and
m = nr−nl. We recover the integer values for the orbital angular momentum,
as expected. For a given N , the value of m belongs to the set {−N,−N +
2, . . . , N −2, N}, therefore there are N +1 possible values. We remark that in
an energy level EN , m has the same parity as N . This comes from the parity
invariance of the problem under consideration.
(f) The graphical representation is given on Fig. 21.3. On a given horizontal
line corresponding to a given energy value, one finds N + 1 points, which
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Fig. 21.3. Allowed quantum numbers for the couple Lz, E

correspond to the degeneracy of an energy level of Ĥ0 found previously. This
justifies the fact that {n̂l, n̂r} form a CSCO. If two different states would
correspond to the same couple of eigenvalues (nl, nr), the corresponding point
of the diagram would be twofold degenerate, and the degeneracy of the energy
level EN would be larger than N + 1.

21.2.6. We must find in this subspace two eigenvectors of L̂z corresponding to
the two eigenvalues ±h̄. A first method for finding these eigenvectors consists
in calculating the action of L̂z on the vectors of the basis {|nx, ny〉}. Using
the expression of L̂z in terms of âx, ây, . . ., one finds:

L̂z|nx = 1, ny = 0〉 = ih̄ |nx = 0, ny = 1〉
L̂z|nx = 0, ny = 1〉 = −ih̄ |nx = 1, ny = 0〉 ,

or the 2 × 2 matrix to diagonalize:
(

0 −ih̄
ih̄ 0

)
.

The eigenstates associated to the eigenvalues ±h̄ are therefore:

(|nx = 1, ny = 0〉 ± i|nx = 0, ny = 1〉) /
√

2 .

Another method consists in starting from the ground state |nl = 0, nr =
0〉 and letting act on this state: (i) the operator â†r in order to obtain the
eigenvector of energy 2h̄ω and angular momentum +h̄, (ii) the operator â†l in
order to obtain the eigenvector of energy 2h̄ω and angular momentum −h̄. Of
course, we recover the previous result.
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Section 21.3: Quantum Box in a Magnetic Field

21.3.1. By expanding ĤB , one finds:

ĤB =
p̂2x + p̂2y

2µ
+
(
µω2

2
+
q2B2

8

)
(x̂2 + ŷ2) +

ωc L̂z

2
.

21.3.2. If we set Ω =
√
ω2 + ω2

c/4, we can rewrite ĤB = Ĥ
(Ω)
0 + ωcL̂z/2,

where Ĥ(Ω)
0 is the Hamiltonian of a two-dimensional oscillator of frequency

Ω:

Ĥ
(Ω)
0 =

p̂2x + p̂2y
2µ

+
µΩ2

2
(x̂2 + ŷ2) .

One can then repeat the method of the previous section, by replacing ω byΩ in
the definition of the operators âx, ây,... One constructs an eigenbasis common
to H(Ω)

0 and L̂z, which we continue to note {|nl, nr〉}, the eigenvalues being
h̄Ω(nl + nr + 1) and mh̄. Each vector |nl, nr〉 is also an eigenvector of ĤB ,
corresponding to the energy

Enl,nr
= h̄Ω(nl + nr + 1) + h̄ωc(nr − nl)/2

= h̄
(
Ω +

ωc

2

)
nr + h̄

(
Ω − ωc

2

)
nl + h̄Ω .

21.3.3. (a) Two limiting regimes of the magnetic field can be considered,
corresponding to the limits ωc � ω (very weak magnetic field) and ωc � ω
(very strong magnetic field). In the first case, we have in first order in B:

Ẽnl,nr
� h̄ω(nl + nr) + h̄ωc(nr − nl)/2 ,

which corresponds to a linear variation in B of the N + 1 levels arising from
the level EN in the absence of the field. The slope (h̄qB/(2µ) (nr − nl) is
different for each level, which means that there is no degeneracy if B does not
vanish.
For strong fields, one finds

Ω +
ωc

2
� ωc , Ω − ωc

2
� ω2

ωc
� ω .

We therefore have

Ẽnl,nr
� h̄ωcnr if nr �= 0 , and Ẽnl,0 � h̄ω2

ωc
nl .

For a non-vanishing nr, the energy level increases linearly with B, the slope
being proportional to nr. For nr = 0, the energy Ẽ tends to zero as 1/B.
(b) The energy levels Ẽnl,nr

corresponding to N = 0, 1, 2 are represented on
Fig. 21.4.
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Fig. 21.4. Variation of the energy levels Ẽnl,nr arising from N = 0, 1, 2 as a function
of the magnetic field B

(c) We notice on Fig. 21.4 that the levels nl = 2, nr = 0 and nl = 0, nr = 1
cross each other. The corresponding value of the field B is given by the solution
of the equation

Ω +
ωc

2
= 2
(
Ω − ωc

2

)
,

or 3ωc = 2Ω, i.e. ωc = ω/
√

2.

21.3.4. The value of the field B which corresponds to ωc = ω/
√

2 is
µω/(q

√
2) � 26 T.

21.3.5. If we assume that the field B is smaller than 21 T, the three first
energy levels of ĤB correspond to nl = nr = 0 (ground state of energy
h̄Ω), nl = 1, nr = 0 (energy 2h̄Ω − h̄ωc/2), and nl = 0, nr = 1 (energy
2h̄Ω + h̄ωc/2). These three states are eigenstates of L̂z with the eigenvalues
0,−h̄ and h̄ respectively.

Section 21.4: Experimental Verification

21.4.1. In the absence of a magnetic field, we saw in question 1.2 that only
the level nx = ny = 0 is appreciably populated for T = 10 K. As the magnetic
field increases, the energy splitting between the ground state and the first
excited state diminishes but it stays much smaller than kBT if ωc is less
than ω/

√
2. For ωc = ω/

√
2, the splitting is h̄ω/

√
2. For that value, the ratio

between the populations of the first excited state and the ground state is
r′ = exp(−49) = 3.7 × 10−22.

Since only the ground state is populated, all the detectable absorption lines
will occur from transition starting from this state.

21.4.2. The first two absorption peaks correspond to the transitions |u0〉 ↔
|u−〉 and |u0〉 ↔ |u+〉. The corresponding frequencies ν± are such that

ν± =
Ω

2π
± ωc

4π
.
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The domain in B explored on the experimental figure of the text corresponds
to values of ωc which are small compared to ω. We can therefore use the
weak-field expansion of question 3.3 in order to simplify this expression

ν± =
ω

2π
± ωc

4π
.

We therefore expect that the frequencies ν± will vary linearly with B, the
slopes being ±q/(4πµ), and that the two straight lines will cross for a vanishing
field at the frequency ω/(2π).

This linear variation of ν± does appear on the figure for higher values of
B and the measured slope is close to the expected value (2 × 1011 Hz T−1).
However, the experimentally observed behavior for a very weak field does not
correspond to our theoretical prediction. Instead of two lines of same frequency
for B = 0, there is a finite difference ν+ − ν−.

21.4.3. Role of the z Dimension
(a) The energy levels of an infinite square well of size D are given by En =
π2h̄2n2/(2µD2), with n positive integer, the corresponding eigenstates are the
functions χn(z) ∝ sin(nπz/D). The splitting between the ground state and
the first excited state is ∆E = 3π2h̄2/(2µD2).
(b) In order to consider that the motion along z is “frozen”, the energy
splitting ∆E between the two first levels of the square well must be very large
compared to h̄ω. If this condition is satisfied, the accessible states for the
electron confined in the quantum box (in a reasonable domain of temperatures
and exciting frequencies) will be simply combinations of the vectors |nx, ny〉⊗
|χ0〉. It is then legitimate to neglect the dynamics of the electron along z.
If this condition is not satisfied, absorption lines can appear for frequencies
near those presented on the experimental figure. They will correspond to the
excitation of the motion along the z axis. The condition that the z motion be
“frozen” is

3π2h̄2

2µD2
� h̄ω , or equivalently D � π�0 . (21.7)

(c) In order for the harmonic approximation of the transverse motion to
be valid, the transverse extension ∆L of the quantum box must be large
compared to �0. The condition obtained in the previous question D � π�0,
put together with �0 � ∆L, imposes that the box must have a very flat
geometrical shape: the height D along z must be very small compared to its
transverse extension in xy. We conclude that the vertical scale of the picture
21.1 is very dilated.

Section 21.5: Anisotropy of a Quantum Box

21.5.1. For vanishing B, the Hamiltonian is Ĥx + Ĥy with

Ĥx =
p̂2x
2µ

+
1
2
µω2(1 + ε)x̂2 , Ĥy =

p̂2y
2µ

+
1
2
µω2(1 − ε)x̂2 .
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One can find a common eigenbasis for Ĥx and Ĥy, corresponding to products
of Hermite functions in the variable x

√
µω(1 + ε)/h̄ by Hermite functions in

the variable y
√
µω(1 − ε)/h̄. The corresponding eigenvalues are

h̄ω
√

1 + ε (nx+1/2)+ h̄ω
√

1 − ε (ny +1/2) � h̄ω (nx+ny +1)+
εh̄ω

2
(nx−ny)

where nx, ny are non-negative integers.

21.5.2. To first order in B and ε, the shift of the ground state energy is given
by the matrix element

∆E0,0 = 〈0, 0|Ŵ |0, 0〉 =
ωc

2
〈0, 0|L̂z|0, 0〉 +

εµω2

2
〈0, 0|x̂2 − ŷ2|0, 0〉 .

The state |0, 0〉 is an eigenstate of L̂z with eigenvalue 0. The first term in this
sum therefore vanishes. By symmetry, we have 〈0, 0|x̂2|0, 0〉 = 〈0, 0|ŷ2|0, 0〉,
which means that the second term also vanishes, to first order in ε and B.

21.5.3. (a) We have already determined the matrix L̂z in the basis under
consideration in question 2.6. We must calculate the matrix elements of x̂2

and ŷ2. In order to do that, the simplest is to use the expressions of x̂ and ŷ
in terms of creation and annihilation operators. One has:

x̂2 =
h̄

2µω
(âx + â†x)(âx + â†x) ,

which leads to

〈1, 0|x̂2|1, 0〉 =
h̄

2µω
〈1, 0|â†xâx + âxâ

†
x|1, 0〉

=
h̄

2µω
(1 + 2) =

3h̄
2µω

,

〈1, 0|x̂2|0, 1〉 = 〈0, 1|x̂2|1, 0〉 = 0 ,

〈0, 1|x̂2|0, 1〉 =
h̄

2µω
〈0, 1|âxâ

†
x|0, 1〉

=
h̄

2µω
,

where we have set |0, 1〉 ≡ |nx = 0, ny = 1〉, etc. for simplicity. We obtain a
similar result by exchanging the roles of x and y. The restriction of ĤB,ε in
the subspace of interest is therefore

[ĤB,ε] = 2h̄ω +
h̄

2

(
ε ω −iωc

iωc −ε ω
)
.

(b) The energy eigenvalues are obtained by diagonalizing this 2 × 2 matrix

E±(B, ε) = 2h̄ω ± h̄

2

√
ε2ω2 + ω2

c .
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(c) Setting tan 2α = ωc/(ε ω), the above matrix is written as:

[ĤB,ε] = 2h̄ω +
h̄

2

√
ε2ω2 + ω2

c

(
cos 2α −i sin 2α
i sin 2α − cos 2α

)
,

whose eigenvectors are

|u−(B, ε)〉 =
(
i sinα
cosα

)
|u+(B, ε)〉 =

(
cosα
i sinα

)
.

21.5.4. (a) The variation of E±(B, ε) − E0,0 with B reproduces well the
experimental observations. For large values of B such that ε ω � ωc, we re-
cover the linear variation with B of the two transition frequencies. When B
tends to zero (ωc � ε ω), one finds two different Bohr frequencies correspond-
ing respectively to the two transitions nx = ny = 0 → nx = 0, ny = 1 and
nx = ny = 0 → nx = 1, ny = 0.
(b) When B tends to zero, one finds experimentally that the limit of (ν+ −
ν−)/(ν+ + ν−) is of the order of 0.06. The theoretical prediction for this ratio
is ε/2. We therefore conclude that ε � 0.12.

21.7 Comments

Quantum boxes of semiconductors, a simple model of which has been exam-
ined here, are the subject of many investigations both academic (Coulomb
correlations) and applied (optronics). Here we have only considered electronic
excitations, but collective modes in a lattice (phonons) also play an important
role in the dynamics of quantum boxes. It has been shown recently that the
two types of excitations are strongly coupled. This is in contrast with the usual
situation encountered in semiconductors, for which the coupling between the
electrons and the phonons is weak.

The data presented here come from S. Hameau et al., Phys. Rev. Lett. 83,
4152 (1999).
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Colored Molecular Ions

Some pigments are made of linear molecular ions, along which electrons move
freely. We derive here the energy levels of such an electronic system and we
show how this energy scheme explains the observed color of the pigments.

Consider molecular ions of the chemical formula (CnHn+2)−, which can
be considered as deriving from polyethylene molecules, such as hexatriene
CH2=CH-CH=CH-CH=CH2, with an even number of carbon atoms, by re-
moving a CH+ group. In an ion of this type, the bonds rearrange themselves
and lead to a linear structure of the following type:

(CH2 · · ·CH · · ·CH · · ·CH · · ·CH2)
−
, (22.1)

with an odd number n of equally spaced carbon atoms separated by d = 1.4 Å.
In this structure, one can consider that the n+1 electrons of the double bonds
of the original polyethylene molecule move independently of one another in a
one-dimensional infinite potential well of length Ln = nd:

V (x) = +∞ for x < 0 or x > Ln

= 0 for 0 ≤ x ≤ Ln .
(22.2)

Actually, one should write Ln = (n − 1)d + 2b where b represents the edge
effects. Experimentally, the choice b = d/2 appears to be appropriate.

22.1 Hydrocarbon Ions

22.1.1. What are the energy levels εk of an electron in this potential?

22.1.2. Owing to the Pauli principle, at most two electrons can occupy the
same energy level. What are the energies of the ground state E0 and of the
first excited state E1 of the set of n+ 1 electrons?

We recall that
∑n

k=1 k
2 = n(n+ 1)(2n+ 1)/6.
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22.1.3. What is the wavelength λn of the light absorbed in a transition be-
tween the ground state and the first excited state? One can introduce the
Compton wavelength of the electron: λC = h/(mec) = 2.426 × 10−2 Å.

22.1.4. Experimentally, one observes that the ions n = 9, n = 11 and n = 13
absorb blue light (λ9 ∼ 4700 Å), yellow light (λ11 ∼ 6000 Å) and red light
(λ13 ∼ 7300 Å), respectively. Is the previous model in agreement with this
observation? Are the ions n ≤ 7 or n ≥ 15 colored?

22.2 Nitrogenous Ions

One can replace the central CH group by a nitrogen atom, in order to form
ions of the type:

(CH2 · · ·CH · · ·N · · ·CH · · ·CH2)
−
. (22.3)

The presence of the nitrogen atom does not change the distances between
atoms but it changes the above square well potential. The modification con-
sists in adding a small perturbation δV (x), attractive and localized around
the nitrogen atom:

δV (x) = 0 for |x− Ln

2 | > α/2
= −V0 for |x− Ln

2 | ≤ α/2 ,
where α/d� 1 and V0 > 0.

22.2.1. Using first order perturbation theory, give the variations δεk of the
energy level εk of an electron in the well. For convenience, give the result to
leading order in α/d.

22.2.2. Experimentally, one observes that, for the same value of n, the spec-
trum of the nitrogenous ions (22.3) is similar to that of the ions (22.1) but
that the wavelengths λN

n are systematically shorter (blue-shifted) if n = 4p+1,
and systematically longer (red-shifted) if n = 4p+3, than those λ0

n of the cor-
responding hydrocarbons (22.1). Explain this phenomenon and show that λN

n

and λ0
n are related by:

λ0
n

λN
n

= 1 − (−1)
n+1

2 γ
n

n+ 2
,

where γ is a parameter to be determined.

22.2.3. The nitrogenous ion n = 11 absorbs red light (λN
11 ∼ 6700 Å). Check

that the ion n = 9 absorbs violet light (λN
9 ∼ 4300 Å). What is the color of

the nitrogenous ion n = 13?

22.2.4. For sufficiently large n, if the nitrogen atom is placed not in the
central site but on either of the two sites adjacent to the center of the chain,
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one observes the reverse effect, as compared to question 2.2. There is a red
shift for n = 4p + 1 and a blue shift for n = 4p + 3. Can you give a simple
explanation for this effect?

22.3 Solutions

Section 22.1: Hydrocarbon Ions

22.1.1. The energy levels are

εk =
π2h̄2k2

2mL2
n

k = 1, 2, . . . .

22.1.2. The ground state energy of the n+ 1 electrons is

E0 =
π2h̄2

mL2
n

(n+1)/2∑
k=1

k2 =
π2h̄2

24mL2
n

(n+ 1)(n+ 2)(n+ 3) .

The energy of the first excited state is

E1 = E0 +
π2h̄2

8mL2
n

[
(n+ 3)2 − (n+ 1)2

]
= E0 +

π2h̄2

2mL2
n

(n+ 2) .

22.1.3. One has hν = E1 − E0 = π2h̄2(n + 2)/(2mL2
n). Since λ = c/ν, we

obtain an absorption wavelength

λn =
8 d2

λC

n2

(n+ 2)
.

22.1.4. From the general form λn = 646.33n2/(n + 2), we obtain λ9 =
4760 Å, λ11 = 6020 Å, λ13 = 7280 Å, in good agreement with experiment.

For smaller n, the wavelengths λ7 = 3520 Å and λ5 = 2310 Å are in the
ultraviolet part of the spectrum. The ions n ≤ 7 do not absorb visible light
and are thus not colored.

For n ≥ 15, the wavelengths λ15 = 8550 Å and λ17 = 9830 Å are in the
infrared region. These ions do not absorb visible light in transitions from the
ground state to the first excited state. They are nevertheless colored because
of transitions to higher excited states.

Section 22.2: Nitrogenous Ions

22.2.1. The normalized wave functions are ψk(x) =
√

2/Ln sin(kπx/Ln).
One has

δεk =
∫
δV (x) |ψk(x)|2 dx = −V0

∫ Ln+α/2

Ln−α/2

|ψk(x)|2 dx .
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Setting y = x− Ln/2, one obtains

δεk = −2V0

Ln

∫ +α/2

−α/2

sin2

(
kπ

2
+
kπy

nd

)
dy .

There are two cases:
• k even:

δεk = −2V0

Ln

∫ +α/2

−α/2

sin2

(
kπy

nd

)
dy , i.e. δεk = O((α/d)3) .

The perturbation is negligible.
• k odd:

δεk = −2V0

Ln

∫ +α/2

−α/2

cos2
(
kπy

nd

)
dy .

To first order in α/d, we have δεk = −2V0α/nd < 0.

The exact formulas are:

δεk = − V0

Ln

[
α− (−1)kLn

kπ
sin
(
kπα

Ln

)]
.

The (single particle) energy levels corresponding to even values of k are prac-
tically unaffected by the perturbation; only those with k odd are shifted. This
is simple to understand. For k even, the center of the chain is a node of the
wave function, and the integral defining δεk is negligible. For k odd, on the
contrary, the center is an antinode, we integrate over a maximum of the wave
function, and the perturbation is maximum.

22.2.2. The perturbation to the excitation energy E1 −E0 of question 1.2 is

δE = δε(n+3)/2 − δε(n+1)/2 .

• (n+ 1)/2 even, i.e. n = 4p+ 3, δε(n+1)/2 = 0,

δE = δε(n+3)/2 = −2V0α

nd
< 0 .

• (n+ 1)/2 odd, i.e. n = 4p+ 1, δε(n+3)/2 = 0,

δE = −δε(n+1)/2 =
2V0α

nd
> 0 .

We can summarize these results in the compact form

E1 − E0 + δE =
π2h̄2

2md2
n+ 2
n2

(
1 − (−1)

n+1
2 γ

n

n+ 2

)
,
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with γ = 4V0αmd/(πh̄)2. We therefore obtain the desired relation

λ0
n

λN
n

= 1 − (−1)
n+1

2 γ
n

n+ 2
.

For n = 4p+1, the perturbation increases the excitation energy, and decreases
λn. For n = 4p+ 3, it decreases the excitation energy, and increases λn.

22.2.3. For the ion n = 11 one obtains the relation (1 − 11γ/13) = 6000/6700,
therefore γ ∼ 0.12 and λN

9 = 4330 Å, in good agreement with experiment. One
also obtains λN

13 = 6600 Å, which absorbs red light and gives a green color
to the corresponding pigment. Note that the presence of the nitrogen atom
yields λN

13 ≤ λN
11 whereas λ0

13 > λ
0
11.

22.2.4. The distance between a node and an antinode of ψk(x) is δx =
nd/(2k).

For k = (n + 1)/2 and k = (n + 3)/2 which are the states of interest,
we will have respectively δx = nd/(n + 1) and δx = nd/(n + 3), i.e. δx ∼ d
if n is large. Consequently, if a wave function has a node at the center, it
has an antinode in the vicinity of the two adjacent sites, and vice versa. The
argument is therefore similar to the answer to questions 2.1 and 2.2, with the
reverse effect. The lines are red-shifted if n = 4p+1 and they are blue-shifted
if n = 4p+ 3.

22.4 Comments

Many further details can be found in the article by John R. Platt, The Chem-
ical Bound and the Distribution of Electrons in Molecules, D Conjugated
Chains,, Handbuch Der Physik, Volume XXXVII/2, p. 173, Springer-Verlag
(1961). This article is a very complete work on the applications of Quantum
Mechanics in Chemistry.
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Hyperfine Structure
in Electron Spin Resonance

Many molecular species, such as free radicals, possess an unpaired electron.
The magnetic spin resonance of this electron, called electron spin resonance
(ESR) as opposed to nuclear magnetic resonance, provides useful information
about the electronic structure of the molecule, as we shall see in this chapter.
We assume here the following:

1. Spin variables and space variables are independent, both for electrons and
for nuclei; we are only interested in the former.

2. The spatial ground state of the unpaired electron is non-degenerate, and
one can neglect the effect of a magnetic field on its wave function.

3. We only take into account the following magnetic spin interactions: (a)
the Zeeman interaction of spin magnetic moments with an external field
B, and (b) the hyperfine interaction between the outer electron and the
nuclei.

4. For a given nucleus in the molecule, the hyperfine interaction has the form
ĤHF = (A/h̄2) Ŝ · Î = (A/4)σ̂e · σ̂n where Ŝ = h̄σ̂e/2 is the electron spin
and Î = h̄σ̂n/2 is the nuclear spin; σ̂e and σ̂n are the Pauli matrices
which act respectively in the Hilbert spaces of the electron and of the
nucleus. The constant A is given by

A = −2
3
µ0 γe γn h̄

2|ψ(rn)|2 ,

where µ0 = 1/ε0c2 is the magnetic susceptibility of vacuum, γe and γn
are the gyromagnetic factors of the electron and of the nucleus under
consideration, and ψ(rn) is the value of the electron wave function at the
position rn of this nucleus.

5. In all the problem, the system is considered to be in a constant uniform
magnetic field B directed along the z axis. For simplicity, we set A = h̄a,
ωe = −γeB, ωn = −γnB and η = (ωe − ωn)/2.

The numerical values of gyromagnetic ratios are
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electron: γe/(2π) = −28.024 GHzT−1 ,
proton: γp/(2π) = +42.574 MHzT−1 .

23.1 Hyperfine Interaction with One Nucleus

23.1.1. We first consider a species where the nuclei do not possess a magnetic
moment, so that there is no hyperfine interaction.

Write the Zeeman interaction Hamiltonian of the electron with the mag-
netic field B.

What are the energy levels of the system?
What is the value of the frequency that can excite the system? Give its

numerical value for a magnetic field of 1 Tesla.

23.1.2. We now assume that the molecule has one spin-1/2 nucleus. We note
the (factorized) eigenbasis common to Ŝz and Îz as {|σe;σn〉} with σe = ±1
and σn = ±1.
(a) Write the complete spin Hamiltonian.
(b) Calculate the action of σe · σn on the vectors of the basis {|σe;σn〉}.
(c) Write the matrix form of the Hamiltonian in this basis, and calculate its

eigenvalues.

23.1.3. From now on, we assume that the magnetic field B is strong, in the
sense that |ωe| � |a|.
(a) Give the approximate form of the eigenvalues to first order in a/η.
(b) Recover these results by first diagonalizing the electron Zeeman Hamil-

tonian, and by treating the other terms, i.e. the nuclear Zeeman Hamil-
tonian and the hyperfine interaction, in first order perturbation theory.
What are the corresponding eigenstates (to zeroth order in a/η)?

(c) One can show that the transitions that an electromagnetic field can in-
duce occur only between states which differ by the value of a single spin
(for instance, the transitions |+;−〉 → |−; +〉 are forbidden). Under these
conditions, what are the observable transition frequencies, knowing that
all transitions which are not forbidden actually occur? Classify these tran-
sitions in two sets corresponding respectively to nuclear and to electronic
spin transitions.

(d) Calculate these frequencies numerically for the hydrogen atom in a field
B = 1 T. We recall that, in this case, A/(2πh̄) � 1.420 GHz.

23.2 Hyperfine Structure with Several Nuclei

We now assume that the molecule has N protons in hydrogen atoms located
on sites r1, . . . , rN , whose spins are denoted Î1, . . . , ÎN .

The Hilbert space of spin degrees of freedom is of dimension 2N+1. It is
spanned by the set:
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{|σe;σ1, σ2, . . . , σN 〉} ≡ {|σe〉 ⊗ |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σN 〉}

with σe = ±1 and σk = ±1, k = 1, . . . , N . This set is an orthonor-
mal eigenbasis common to the z projection of the spin observables Ŝz and
Îkz, k = 1, . . . , N , of the N + 1 particles.

23.2.1. Let Ak = h̄ak be the hyperfine constant of proton k. Write the ex-
pression for the spin Hamiltonian of the system (we recall that the magnetic
nucleus–nucleus interaction is neglected).

23.2.2. Show that the restriction of this Hamiltonian to each eigen-subspace
of Ŝz is diagonal.

23.2.3. Assuming, as in 1.3, that the field is strong, calculate the eigenvalues
in first order perturbation theory, and the corresponding eigenstates.

23.2.4. What are the observable electron spin transition frequencies? How
many lines corresponding to these frequencies should the spectrum display in
principle?

23.2.5. What is the number of lines and the multiplicity of each of them
(i.e. the number of transitions at the same frequency) if all the protons are
equivalent, i.e. if all the |ψ(rk)|2, and therefore the coefficients ak, are equal?

23.2.6. What is the number of lines and their multiplicities, if there exist two
sets of equivalent protons, one with p protons corresponding to the constant
ap, the other with q = N − p protons, corresponding to the constant aq?

23.3 Experimental Results

Experimentally, one measures the positions and the intensities of the absorp-
tion lines in the microwave region. An absorption line appears as a peak in
the absorbed intensity α(ν) as a function of the frequency, whose qualitative
shape is shown in Fig. 23.1.

It can be shown that the intensity of an absorption peak at a given fre-
quency is proportional to the number of transitions (multiplicity of the line)
which can occur at that frequency. For experimental convenience, one fixes
the frequency of the microwave at a given value, and one varies the magnetic
field B. This results in an absorption curve α(B).

23.3.1. Figure 23.2 shows the spectrum of the free radical •CH3 (methyl)
(J.N. Chazalviel, private communication). The carbon nucleus does not pos-
sess any magnetic moment; only the protons of the hydrogen atoms give rise
to hyperfine interactions.
(a) Interpret this spectrum qualitatively. Explain the number of lines and

their relative intensities. How many different coefficients ak are there?
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Fig. 23.1. Typical shape of an ESR absorption curve as a function of the frequency

2,3 10-3 T

α (B)

B

Fig. 23.2. Microwave spectrum of the radical •CH3

(b) Give the value of ak/(2π). Calculate the value of |ψ(rk)|2 for the unpaired
electron in this molecule. It is convenient to express the result in terms of
|ψ(0)|2Hydrogen = 1/(πa3

1) where a1 is the Bohr radius of hydrogen.

23.3.2. Answer the same questions for the spectrum of CH3−•COH−COO−

(the radical ion of lactic acid) shown in Fig. 23.3. Neither the oxygen nor the
carbon nuclei carry magnetic moments. The only hyperfine interaction arises,
again, from the protons of the hydrogen atoms.

23.4 Solutions

Section 23.1: Hyperfine Interaction with One Nucleus

23.1.1. The magnetic Hamiltonian is Ĥ = −h̄γeBσ̂ez/2, hence the energy
levels E± = ∓h̄γeB/2 corresponding to the states |±〉 . The transition
frequency is given by hν = E+ − E− = h̄ωe, ν = ωe/(2π). For B = 1 T,
ν = 28.024 GHz.

23.1.2. (a) The full Hamiltonian, including the hyperfine interaction, is
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Fig. 23.3. Microwave spectrum of the radical CH3−•COH−COO−

Ĥ = −γeBŜz − γnBÎz +
A

h̄2 Ŝ · Î

=
h̄ωe

2
σ̂ez +

h̄ωn

2
σ̂nz +

h̄a

4
σ̂e · σ̂n .

(b) The action of σ̂e · σ̂n on the basis states is:

σ̂e · σ̂n|+; +〉 = |+; +〉
σ̂e · σ̂n|+;−〉 = 2|−; +〉 − |+;−〉
σ̂e · σ̂n|−; +〉 = 2|+;−〉 − |−; +〉
σ̂e · σ̂n|−;−〉 = |−;−〉 .

(c) Hence the 4 × 4 matrix representation of the Hamiltonian

Ĥ =
h̄

4

⎛
⎜⎜⎝
a+ 2(ωe + ωn) 0 0 0

0 4η − a 2a 0
0 2a −4η − a 0
0 0 0 a− 2(ωe + ωn)

⎞
⎟⎟⎠ ,

where the rows and columns are ordered as |+; +〉, |+;−〉, |−; +〉, |−;−〉.
Hence the eigenstates and the corresponding eigenvalues:

|+; +〉 −→ h̄

4
(a+ 2(ωe + ωn))

|−;−〉 −→ h̄

4
(a− 2(ωe + ωn))

and from the diagonalization of the 2 × 2 matrix between |+;−〉 and |−; +〉

cosφ |+;−〉 + sinφ |−; +〉 −→ h̄

4
(−a+ 2

√
4η2 + a2)

sinφ |+;−〉 − cosφ |−; +〉 −→ h̄

4
(−a− 2

√
4η2 + a2)

with
tanφ =

a

2η +
√

4η2 + a2
.
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23.1.3. (a) If η � a, the eigenvectors and eigenvalues are, to lowest order,

|+; +〉 −→ (h̄/4)(a+ 2(ωe + ωn))
|+;−〉 −→ ∼ (h̄/4)(4η − a)
|−; +〉 −→ ∼ (h̄/4)(−4η − a)
|−;−〉 −→ (h̄/4)(a− 2(ωe + ωn)) .

(b) In each subspace corresponding respectively to σe = 1 and σe = −1,
the perturbation is diagonal (the non-diagonal terms couple σe = +1 and
σe = −1). The 2 × 2 matrices to be considered are indeed

〈+, σn|Ĥ|+, σ′n〉 and 〈−, σn|Ĥ|−, σ′n〉 .
Consider for instance 〈+, σn|Ĥ|+, σ′n〉. Since

〈+, σn|Ŝx|+, σ′n〉 = 〈+, σn|Ŝy|+, σ′n〉 = 0 ,

only 〈+|Ŝz|+〉〈σn|Îz|σ′n〉 has to be considered, and it is diagonal. The eigen-
states at zeroth order are therefore |σe;σn〉 and we recover the above results.
(c) Transitions:
(i) Nuclear transitions: |σe; +〉 ↔ |σe;−〉 , i.e.

|+; +〉 ↔ |+;−〉 ∆E = h̄(ωn + a/2), ν = |ωn + a/2|/(2π)
|−; +〉 ↔ |−;−〉 ∆E = h̄(ωn − a/2), ν = |ωn − a/2|/(2π) .

(ii) Electronic transitions: |+;σn〉 ↔ |−;σn〉 , i.e.

|+; +〉 ↔ |−; +〉 ∆E = h̄(ωe + a/2), ν = |ωe + a/2|/(2π)
|+;−〉 ↔ |−;−〉 ∆E = h̄(ωe − a/2), ν = |ωe − a/2|/(2π) .

(d) For B = 1 T, νn = 42.6 MHz; a/(2π) = A/(2πh̄) = 1420 MHz;
νe = 28.024 GHz. The nuclear transitions occur at ν1 = 753 MHz and
ν2 = 667 MHz, the electronic transitions occur at ν1 = 28.734 GHz and
ν2 = 27.314 GHz.

Section 23.2: Hyperfine Structure with Several Nuclei

23.2.1. The total Hamiltonian is

Ĥ =
h̄ωe

2
σ̂ez +

N∑
k=1

h̄ωn

2
σ̂kz +

N∑
k=1

Ak

4
σ̂e · σ̂k .

23.2.2. The restriction of Ĥ to a subspace corresponding to the eigenvalue
h̄σe/2 of Ŝez (σe = ±) can be written using 1.2(b) or (c):

Ĥσe =
h̄ωe

2
σe +

N∑
k=1

(
h̄ωn

2
+
Akσe

4

)
σ̂kz .

The operators Ĥ+ and Ĥ− are diagonal in the basis {|σ1, σ2, . . . , σN 〉}.
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23.2.3. First order perturbation theory consists in diagonalizing the perturb-
ing Hamiltonian

∑N
k=1(h̄ωn/2)σ̂kz+

∑N
k=1(Ak/4)σ̂e·σ̂k in each eigen-subspace

of the dominant term h̄ωeσ̂ez/2. This is automatically satisfied. Therefore,

σe = +1 :

E+
σ1...σN

=
h̄ωe

2
+
∑

k

h̄(2ωn + ak)
4

σk , state |+;σ1, . . . , σN 〉 ,

σe = −1 :

E−
σ1...σN

= − h̄ωe

2
+
∑

k

h̄(2ωn − ak)
4

σk , state |−;σ1, . . . , σN 〉 .

23.2.4. There are 2N transitions |+;σ1, . . . , σN 〉 ↔ |−;σ1, . . . , σN 〉 corre-
sponding to the 2N possible choices for the set {σk}. The corresponding fre-
quencies are

∆νσ1...σN
=

1
2π

∣∣∣∣∣ωe +
∑

k

akσk/2

∣∣∣∣∣ .
23.2.5. If all ak are equal to a, we have

∆ν =
1
2π

∣∣∣∣∣ωe + a
∑

k

σk/2

∣∣∣∣∣ = 1
2π

|ωe +Ma/2| ,

withM =
∑
σk = N,N−2, . . . ,−N+2,−N , i.e.N+1 absorption lines. There

are C(N−M)/2
N transitions which have the same frequency and contribute to

each line. The relative intensities of the lines will therefore be proportional to
the binomial coefficients C(N−M)/2

N . The splitting between two adjacent lines
is a.

23.2.6. If p equivalent protons correspond to the coupling constant Ap, and
q = N − p correspond to Aq, then

∆ν =
1
2π

∣∣∣∣∣∣ωe +
ap

2

p∑
i=1

σi +
aq

2

q∑
j=1

σj

∣∣∣∣∣∣ =
1
2π

∣∣∣ωe +Mp
ap

2
+Mq

aq

2

∣∣∣ .
There are p+ 1 values of Mp: p, p− 2, . . . ,−p, and q + 1 values of Mq: Mq =
q, q−2, . . . ,−q. The total number of lines is (p+1) (q+1), and the multiplicity
of a line corresponding to a given couple (Mp,Mq) is C(p−Mp)/2

p C
(q−Mq)/2
q .

Section 23.3: Experimental Results

23.3.1. The experimental results confirm the above analysis.
1. For •CH3 there are 4 equally spaced lines of relative intensities 1 : 3 : 3 : 1.

This is in perfect agreement with the fact that the three protons of •CH3

are obviously equivalent. All the Ak coefficients are equal.
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2. For a fixed ω, one gets by considering two consecutive lines, for instance
the center lines: a/2− γeB1 = −a/2− γeB2 so that a = γe(B1 −B2). We
deduce ν = |a|/2π = 65 MHz = |Ak|/2πh̄, and

πa3
1|ψ(rk)|2 = |ψ(rk)|2/|ψ(0)|2Hydrogen = 65/1420 ∼ 0.045 .

In the radical •CH3, the probability that the outer electron is on top of
a proton is smaller by a factor 3 × 0.045 = 0.135 than in the hydrogen
atom.

23.3.2. In the case of CH3−•COH−COO−, there are four dominant lines,
each of which is split into two. This agrees with the fact that, in the molecule
CH3−•COH−COO−, the 3 protons of the CH3 group are equivalent and have
the same hyperfine constant a1 whereas the proton of the •COH group has a
different constant a2 which is noticeably smaller than a1.

A calculation similar to the previous one gives |ψ(rk)|2/|ψ(0)|2Hydrogen ∼
0.034 for the protons of the CH3 group, and |ψ(rk)|2/|ψ(0)|2Hydrogen ∼ 0.004
for the proton of •COH.
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Probing Matter with Positive Muons

A very efficient technique for probing the structure of crystals consists in
forming, inside the material, pseudo hydrogenic atoms made of an electron
and a positive muon, and called muonium. This chapter is devoted to the
study of the dynamics of muonium, both in vacuum and in a silicon crystal.

The positive muon is a spin-1/2 particle which has the same charge as
the proton. The muon mass is considerably larger than the electron mass:
mµ/me = 206.77. The muon is unstable and decays with a lifetime τ = 2.2µs.
Its use in probing the structure of crystals is based on the rotation of its spin,
once a muonium atom is formed:

• It is possible to form muonium atoms in a quantum state such that, at
t = 0, the spin state of the µ+ is known.

• Using a technique of particle physics, one can measure its spin state at a
later time t.

• The rotation of the muon spin can be related to the hyperfine structure
of the 1s level of muonium.

Therefore, the muonium constitutes a local probe, sensitive to electric and
magnetic fields in its vicinity. One can obtain in this way information on
the structure of the medium by methods analogous to magnetic resonance
experiments.

In the first part of the chapter, we sketch the principle of the method
by studying muonium in vacuum. When the method was first applied to a
silicon crystal, in 1973, the results seemed anomalous. We shall see in the
second section how these results were understood, in 1978, as being due to
the anisotropy of crystalline media.

Throughout this chapter, the muon will be considered as stable. For sim-
plicity, we set

µ̂µ+ ≡ µ̂1 = µ1σ̂1 µ̂e ≡ µ̂2 = µ2σ̂2 ,

where the (x, y, z) components of σ̂1 and σ̂2 are the Pauli matrices.
Numerical values of interest are:
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mµc
2 = 105.66 MeV µ1/h = 67.5 MHz T−1

mec
2 = 0.511 MeV µ2/h = −1.40 × 104 MHz T−1 .

24.1 Muonium in Vacuum

Muonium is formed by slowing down a beam of µ+, prepared in a given spin
state, in a thin metal foil. A sufficiently slow µ+ can capture an electron and
form a hydrogen-like atom in an excited state. This atom falls into its ground
state very quickly (in ∼ 10−9 s), the muon’s spin state remaining the same
during this process. Once it is formed, the muonium, which is electrically
neutral, can diffuse outside the metal.

We assume that, at t = 0, the state of the muonium atom is the following:

• The muon spin is in the eigenstate | + z〉 ≡ |+〉 of σ̂1z.
• The electron spin is in an arbitrary state α|+〉+β|−〉, with |α|2+ |β|2 = 1.
• The wave fuction Ψ(r) of the system is the 1s wave function of the

hydrogen-like system, ψ100(r).

Just as for the hyperfine structure of hydrogen, we work in the 4 dimen-
sional Hilbert space corresponding to the spin variables of the electron and
the muon. In this Hilbert space, the spin–spin interaction Hamiltonian is

Ĥ = E0 − 2
3
µ0

4π
|ψ100(0)|2 µ̂1 · µ̂2 = E0 +

A

4
σ̂1 · σ̂2 ,

where the indices 1 and 2 refer respectively to the muon and to the electron,
and where E0 = −mrc

2α2/2, with mr being the reduced mass of the (e, µ)
system.

24.1.1. Write the matrix representation of the Hamiltonian Ĥ in the basis
{|σ1z, σ2z〉, σiz = ±}.
24.1.2. Knowing the value of A in the hydrogen atom: A/h = 1420 MHz,
calculate A in muonium. We recall that µ1 = qh̄/(2mµ) for the muon, µ2 =
−qh̄/(2me) for the electron, µp = 2.79 qh̄/(2mp) for the proton, where q is
the unit charge and mp = 1836.1me.

24.1.3. Write the general form of an eigenstate of σ̂1z with eigenvalue +1:
(i) in the basis {|σ1z, σ2z〉}; (ii) in the eigenbasis of Ĥ.

24.1.4. We assume that, at t = 0, the system is in a state |ψ(0)〉 of the type
defined above. Calculate |ψ(t)〉 at a later time.

24.1.5. (a) Show that the operators π̂± = (1± σ̂1z)/2 are the projectors on
the eigenstates of σ̂1z corresponding to the eigenvalues ±1.

(b) Calculate for the state |ψ(t)〉 the probability p(t) that the muon spin is
in the state |+〉 at time t. Write the result in the form
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p(t) = q p+(t) + (1 − q) p−(t) ,

where p+ (or p−) is the probability that one obtains if the electron is
initially in the eigenstate of σ2z with eigenvalue +1 (or −1), and where
q is a probability, as yet undefined.

24.1.6. In practice, the electronic spins are unpolarized. A rigorous treatment
of the problem then requires a statistical description in terms of a density
operator. To account for this nonpolarization in a simpler way, we shall set
heuristically that the observed probability p̄(t) corresponds to q = 1/2 in the
above formula.

Using this prescription, give the complete expression for p̄(t).

24.2 Muonium in Silicon

We now form muonium in a silicon crystal sufficiently thick that the muonium
does not escape. The muonium stops in an interstitial position inside the
crystal lattice, the nearest atoms forming a plane hexagonal mesh around it.
The global effect of the interactions between the atoms of the crystal and the
muonium atom is to break the spherical symmetry of the spin–spin interaction,
but to preserve the rotational symmetry around the z axis perpendicular to
the plane of the mesh.

We therefore consider the Hamiltonian

Ĥ = E0 +
A′

4
σ̂1 · σ̂2 +D σ̂1z σ̂2z ,

where the constant A′ may differ from A since the presence of neighboring
atoms modifies the Coulomb potential and, therefore, the wave function at
the origin. The constants A′ and D will be determined experimentally; their
sign is known: A′ > 0, D < 0.

24.2.1. Calculate the spin energy levels and the corresponding eigenstates of
the muonium trapped in the silicon crystal.

24.2.2. We now reconsider the spin rotation experiment with the following
modifications:
• Initially the µ+ spin is now in the eigenstate | + x〉 of σx.
• We want to know the probability of finding the µ+ spin in this same

eigenstate | + x〉 at time t.
One can proceed as in question 1.5:
(a) Calculate in the {|σ1, σ2〉} basis the states |ψ+(t)〉 and |ψ−(t)〉 which are

initially eigenstates of σ̂2z (σ̂2z is the projection of the electron spin along
the z axis).

(b) Evaluate 〈ψε(t)|σ̂1x|ψε(t)〉, where ε = ±.
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(c) Consider the projector π̂x = (1 + σ̂1x)/2 , and deduce from the previous
question the probabilities p±(t).

(d) Calculate the measured probability p̄(t) = (p+(t) + p−(t))/2.

24.2.3. Comparison with experiment: Present day technology in data
processing allows one to determine not p(t) itself, but a quantity which is
easier to deal with, the characteristic function g(ω) = Re(f(ω)) where

f(ω) =
1
τ

∫ ∞

0

p̄(t) e−t/τ eiωt dt

is the Fourier transform of p̄(t)e−t/τ/τ . In this expression, the factor e−t/τ/τ
is due to the finite lifetime of the µ+ (τ ∼ 2.2 µs). We recall that

1
τ

∫ ∞

0

e−t/τ eiωt dt =
1

1 − iωτ
.

(a) Figure 24.1a shows the distribution g(ω) as measured in the conditions of
question 2.2. Check that this data is compatible with the results found in
question 2.2, and deduce from the data the values of A′/h and D/h (we
recall that D < 0).

g(ω)
37,25 54,85

(arbitrary
units)

g(ω)
0 10 50 100 ω/2π (    )MHz

0 10 50 100 ω/2π (    )MHz

92,1

(a)

(b)

Fig. 24.1. Experimental variations of the quantity g(ω), defined in the text, with
the frequency ν = ω/(2π). (a) In the conditions described in question 2.2, and (b)
in another experimental configuration
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(b) Figure 24.1b is obtained by a slight modification of the previous experi-
ment. Can you tell what modification has been made? How can one evalu-
ate the position of the third peak, in terms of the constants of the problem?

24.3 Solutions

Section 24.1: Muonium in Vacuum

24.1.1. The Hamiltonian is

Ĥ = E0 +
A

4
(σ̂1xσ̂2x + σ̂1yσ̂2y + σ̂1zσ̂2z) .

The matrix representation is therefore

Ĥ =

⎛
⎜⎜⎝
E0 +A/4 0 0 0

0 E0 −A/4 A/2 0
0 A/2 E0 −A/4 0
0 0 0 E0 +A/4

⎞
⎟⎟⎠ ,

where the elements are ordered as: | + +〉, | + −〉, | − +〉, | − −〉.
24.1.2. The constant A is related to its value in the hydrogen atom by

A

AH
=

|ψ(0)|2
|ψ(0)|2H

µ1

µp
=

|ψ(0)|2
|ψ(0)|2H

mp

mµ

1
2.79

.

In first approximation, muonium and hydrogen have similar sizes and wave
functions, since the muon is much heavier than the electron. Therefore we
obtain A � AH(mp/2.79mµ) and A/h � 4519 MHz.

The reduced mass correction to the value of the wave function at the origin
is straightforward to calculate. It is of the order of 1% and it leads to

A

h
= 4519 (1 − 0.0126) = 4462 MHz .

This value is very close to the observed 4463MHz, the difference being due to
relativistic effects.

24.1.3. The state under consideration can be written as

|ψ〉 = |+〉 ⊗ (α|+〉 + β|−〉) with |α|2 + |β|2 = 1 .

Equivalently, one can write it as |ψ〉 = α| + +〉 + β| + −〉.
The eigenbasis of Ĥ consists in the common eigenstates of the total spin

operators Ŝ2 and Ŝz:

triplet states

⎧⎨
⎩

| + +〉
(| + −〉 + | − +〉)/√2
| − −〉

singlet state (| + −〉 − | − +〉)/
√

2 .
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Therefore, one also has the representation

|ψ〉 = α|1, 1〉 +
β√
2
(|1, 0〉 + |0, 0〉) ,

where the only constraint on α and β is |α|2 + |β|2 = 1.

24.1.4. We start from |ψ(0)〉 = |ψ〉 as defined above. The energy levels and
the corresponding eigenstates are known:

triplet states ET = E0 +A/4 singlet state ES = E0 − 3A/4 .

At time t the state is:

|ψ(t)〉 = e−iE0t/h̄

[
e−iAt/4h̄

(
α |1, 1〉 +

β√
2
|1, 0〉

)
+
β√
2

ei3At/4h̄ |0, 0〉
]
.

24.1.5. (a) It is straightforward to check that π̂± are projectors:

π̂+|+〉 = |+〉 π̂+|−〉 = 0
π̂−|−〉 = |−〉 π̂−|+〉 = 0 .

(b) The probability of finding the muon spin in the state |+〉 at time t is by
definition

p(t) = ‖π̂+|ψ(t)〉‖2 = 〈ψ(t)|π̂+|ψ(t)〉 .

Using

π̂+|1, 1〉 = |1, 1〉
π̂+|1, 0〉 = π̂+|0, 0〉 =

1√
2
| + −〉

π̂+|1,−1〉 = 0 ,

we obtain

π̂+|ψ(t)〉 = e−i(E0+A/4)t/h̄

[
α| + +〉 +

β

2

(
1 + eiAt/h̄

)
| + −〉

]
.

Squaring the norm of π̂+|ψ(t)〉, we get

p(t) = |α|2 + |β|2 cos2 (At/(2h̄)) .

There is a periodic modulation of the probability of observing the muon spin
aligned with the positive z axis, which can be interpreted as a rotation of the
muon spin with frequency ν = A/h.
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• The probability p+(t) corresponds to the initial state |ψ(0)〉 = |++〉. This
is a stationary state so that p(t) ≡ p+(t) = 1 in this case.

• The probability p−(t) corresponds to the initial state |ψ(0)〉 =
| + −〉 = (|1, 0〉 + |0, 0〉)/√2. There is in this case an oscillation with
a 100% modulation between | + −〉 and | − +〉, so that p(t) ≡ p−(t) =
cos2(At/2(h̄)).

Therefore the result can be cast in the form suggested in the text:

p(t) = q p+(t) + (1 − q) p−(t) ,

with q = |α|2.

24.1.6. When the electronic spins are unpolarized, we obtain following the
assumption of the text:

p̄(t) =
3
4

+
1
4

cos(At/h̄) .

Note: The rigorous way to treat partially polarized systems is based on the
density operator formalism. In the present case the density operator for the
unpolarized electron is:

ρ2 =
1
2

(|+〉〈+| + |−〉〈−|) ,

so that the initial density operator for the muonium is:

ρ(0) =
1
2
| + +〉〈+ + | + 1

2
| + −〉〈+ − |

=
1
2
|1, 1〉〈1, 1|

+
1
4

(|1, 0〉〈1, 0| + |1, 0〉〈0, 0| + |0, 0〉〈1, 0| + |0, 0〉〈0, 0|) .

The density operator at time t is then given by:

ρ(t) =
1
2
|1, 1〉〈1, 1|

+
1
4

(
|1, 0〉〈1, 0| + e−iAt/h̄|1, 0〉〈0, 0|

+eiAt/h̄|0, 0〉〈1, 0| + |0, 0〉〈0, 0|
)

hence the probability:

p̄(t) = 〈+,+|ρ(t)|+,+〉 + 〈+ − |ρ(t)| + −〉
=

1
2

+
1
4

(
1
2

+ e−iAt/h̄ 1
2

+ eiAt/h̄ 1
2

+
1
2

)

=
3
4

+
1
4

cos(At/h̄) .
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Section 24.2: Muonium in Silicon

24.2.1. In the factorized basis {|σ1, σ2〉}, the Hamiltonian is written as

Ĥ = E0 +

⎛
⎜⎜⎝
A′/4 +D 0 0 0

0 −A′/4 −D A′/2 0
0 A′/2 −A′/4 −D 0
0 0 0 A′/4 +D

⎞
⎟⎟⎠ .

This Hamiltonian is diagonal in the eigenbasis {|S,m〉} of the total spin. A
simple calculation shows that the eigenvalues and eigenvectors are

E1 = E4 = E0 +A′/4 +D |1, 1〉 and |1,−1〉
E2 = E0 +A′/4 −D |1, 0〉
E3 = E0 − 3A′/4 −D |0, 0〉 .

24.2.2. (a) The initial states |ψ+(0)〉 and |ψ−(0)〉 are easily obtained in the
factorized basis as

|ψ+(0)〉 = | + x〉 ⊗ |+〉 = (| + +〉 + | − +〉)/√2
|ψ−(0)〉 = | + x〉 ⊗ |−〉 = (| + −〉 + | − −〉)/√2 .

They can be written in the total spin basis {|S,m〉} as

|ψ+(0)〉 =
1√
2
|1, 1〉 +

1
2

(|1, 0〉 − |0, 0〉)

|ψ−(0)〉 =
1√
2
|1,−1〉 +

1
2

(|1, 0〉 + |0, 0〉) .

Writing ωi = −Ei/h̄, we find at time t:

|ψ+(0)〉 =
eiω1t

√
2
|1, 1〉 +

eiω2t

2
|1, 0〉 − eiω3t

2
|0, 0〉

|ψ−(0)〉 =
eiω4t

√
2
|1,−1〉 +

eiω2t

2
|1, 0〉 +

eiω3t

2
|0, 0〉 ,

which can now be converted in the factorized basis:

|ψ+(t)〉 =
eiω1t

√
2
| + +〉 +

eiω2t − eiω3t

2
√

2
| + −〉 +

eiω2t + eiω3t

2
√

2
| − +〉

|ψ−(t)〉 =
eiω4t

√
2
| − −〉 +

eiω2t + eiω3t

2
√

2
| + −〉 +

eiω2t − eiω3t

2
√

2
| − +〉 .
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(b) Since σ̂1x|σ1, σ2〉 = | − σ1, σ2〉, the matrix elements 〈ψ±(t)|σ̂1x|ψ±(t)〉
are equal to:

〈ψ+(t)|σ̂1x|ψ+(t)〉 =
1
2

Re
(
e−iω1t

(
eiω2t + eiω3t

))
=

1
2

(
cos

2Dt
h̄

+ cos
(A′ + 2D)t

h̄

)

〈ψ−(t)|σ̂1x|ψ−(t)〉 =
1
2

Re
[
e−iω4t

(
eiω2t + eiω3t

)]
.

Since ω1 = ω4, the two quantities are equal.
(c) The desired probabilities are

p±(t) = ‖π̂+x|ψ±(t)〉‖2 = 〈ψ±(t)|π̂+x|ψ±(t)〉
or, equivalently,

p±(t) = 〈ψ±(t)|1
2

(1 + σ̂1x) |ψ±(t)〉 =
1
2

+
1
2
〈ψ±(t)|σ̂1x|ψ±(t)〉 .

Using the result obtained above, we get:

p±(t) =
1
2

+
1
4

(
cos

2Dt
h̄

+ cos
(A′ + 2D)t

h̄

)
.

(d) Since p+(t) = p−(t), the result for p̄(t) is simply:

p̄(t) =
1
2

+
1
4

(
cos

2Dt
h̄

+ cos
(A′ + 2D)t

h̄

)
.

24.2.3. Comparison with Experiment: In practice, the time t corre-
sponds to the decay of the µ+, with the emission of a positron e+ and
two neutrinos. The positron is sufficiently energetic and leaves the crystal.
It is emitted preferentially in the muon spin direction. One therefore mea-
sures the direction where the positron is emitted as a function of time. For
N0 incoming muons, the number of positrons emitted in the x direction is
dN(t) = N0p̄(t)e−t/τdt/τ , where τ is the muon lifetime.

A convenient way to analyse the signal, and to extract the desired frequen-
cies, consists in taking the Fourier transform of the above signal. Defining

f0(ω) =
1
τ

∫ ∞

0

e(iω−1/τ)t dt =
1

1 − iωτ
,

one obtains

f(ω) =
1
2
f0(ω) +

1
8

[
f0

(
ω − 2D

h̄

)
+ f0

(
ω +

2D
h̄

)]

+
1
8

[
f0

(
ω − A′ + 2D

h̄

)
+ f0

(
ω +

A′ + 2D
h̄

)]
.
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The function Re(f0(ω)) has a peak at ω = 0 whose half width is 1/τ , which
corresponds to 100 kHz.
(a) The curve of Fig. 24.1 is consistent with this observation. Besides the
peak at ω = 0, we find two peaks at ω1 = −2D/h̄ and ω2 = (A′ + 2D)/h̄.
Assuming that D is negative, which can be confirmed by a more thorough
analysis, one obtains

2D/h = −37.25 MHz and A′/h = 92.1 MHz .

(b) In general, one expects to see peaks at all frequencies ωi − ωj , and in
particular at ω2−ω3 = −A′/h̄. In order to observe the corresponding peak, one
must measure the µ+ spin projection along a direction which is not orthogonal
to the z axis. This leads to a term in cos (ω2 − ω3)t in p̄(t), which appears in
Fig. 24.1.
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Quantum Reflection of Atoms
from a Surface

This chapter deals with the reflection of very slow hydrogen atoms from a
surface of liquid helium. In particular, we estimate the sticking probability
of the atoms onto the surface. This sticking proceeds via the excitation of a
surface wave, called a ripplon. We show that this probability must vanish at
low temperatures, and that, in this limit, the reflection of the atoms on the
surface is specular.

In all the chapter, the position of a particle is defined by its coordinates r =
(x, y) in a horizontal plane, and its altitude z. The altitude z = 0 represents
the position of the surface of the liquid He bath at rest. The wave functions
ψ(r, z) of the H atoms are normalized in a rectangular box of volume LxLyLz.
We write m for the mass of a H atom (m = 1.67 10−27 kg).

25.1 The Hydrogen Atom–Liquid Helium Interaction

Consider a H atom above a liquid He bath at rest (cf Fig. 25.1). We model
the H-liquid He interaction as the sum of pairwise interactions between the H
atom at point (R, Z) (Z > 0), and the He atoms at (r, z), with z < 0:

V0(Z) = n

∫
d2r

∫ +∞

−∞
dz U(

√
(R − r)2 + (Z − z)2) Θ(−z)

where n is the number of He atoms per unit volume, and Θ is the Heaviside
function.

25.1.1. We recall the form of the Van der Waals potential:

U(d) = −C6

d6
,

which describes the long distance interaction between a H atom and a He atom
separated by a distance d. Show that the long distance potential between the
H atom and the liquid He bath is of the form:
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Fig. 25.1. A hydrogen atom incident on a liquid helium bath. The oscillations of
the surface of the liquid are studied in Sect. 25.2

V0(Z) = − α

Z3
.

Express α in terms of C6 and n.

25.1.2. Experimentally, one finds α = 1.9 × 10−2eV Å3. At what distance
from the surface does gravity become larger than the Van der Waals force? In
what follows, we shall neglect the gravitational force.

25.1.3. Show that the eigenstates of the Hamiltonian which describes the
motion of the H atom are of the form |k⊥, φσ〉, where k⊥ represents a plane
running wave propagating in the plane Oxy, i.e. parallel to the surface of the
liquid He, and where φσ is an eigenstate of the Hamiltonian which describes
the motion along the z axis:

〈R, Z|k⊥, φσ〉 =
1√
LxLy

ei(kxX+kyY ) φσ(Z) .

25.1.4. We want to evaluate the number of bound states of the motion along
the z axis in the potential:

V0(Z) = − α

Z3
if Z > zmin

V0(Z) = +∞ if Z ≤ zmin .

We shall use the WKB approximation.
(a) Justify the shape of this potential.
(b) What is the continuity condition for the wave function at Z = zmin?
(c) Show that the quantization condition for a motion with turning points
zmin and b is ∫ b

zmin

k(Z) dZ =
(
n+

3
4

)
π

with n integer ≥ 0.
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(d) Infer the order of magnitude of the number of bound states as a function
of zmin and α. What is the domain of validity of the result?

(e) The parameter zmin for the surface of liquid He is of the order of 2 Å.
How many bound states does one expect for the motion along the z axis?

(f) Experimentally, one finds that there is a single bound state H–liquid He,
whose energy is E0 = −8.6×10−5 eV. Compare this result with the WKB
prediction. This unique bound state in the z-axis motion will be denoted
φ0 in the rest of the chapter.

25.2 Excitations on the Surface of Liquid Helium

The general dispersion relation for waves propagating on the surface of a liquid
is

ω2
q = gq +

A

ρ0
q3 with q = |q| ,

where ωq and q = (qx, qy) are, respectively, the frequency and the wave vector
of the surface wave, g is the acceleration of gravity and A and ρ0 represent
the surface tension and the mass density of the liquid.

25.2.1. Discuss the nature of the surface waves (capillary waves or gravity
waves) according to the value of the wavelength λ = 2π/q. Perform the nu-
merical application in the case of liquid He: ρ0 = 145 kg m−3, A = 3.5× 10−4

Jm−2.

25.2.2. Hereafter, we are only interested in waves for which h̄ωq � |E0|.
Show that these are always capillary waves and give their wavelengths. In
what follows we shall use the simpler dispersion relation ω2

q = (A/ρ0)q3.

25.2.3. In order to quantize these surface waves, we introduce the bosonic
operators rq and r†q corresponding to the annihilation and the creation of
an excitation quantum. These elementary excitations are called ripplons. The
Hamiltonian which describes these excitations is:1

HS =
qmax∑

q

h̄ωq r̂
†
q r̂q .

The altitude h(r) of the liquid surface at point r = (x, y) becomes a two-
dimensional scalar field operator:

ĥ(r) =
qmax∑

q

hq(r†q e−iq.r + rq eiq.r) with hq =

√
h̄q

2ρ0ωqLxLy
.

1 The summation over q is limited to q < qmax where qmax is of the order of a
fraction of an inverse Ångstrom. For larger values of q, hence smaller wavelengths,
the description of the vicinity of the surface in terms of a fluid does not hold any
longer.
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Evaluate, at zero temperature, the r.m.s. altitude ∆h of the position of the
surface. We recall that, in two dimensions, the conversion of a discrete sum-
mation into an integral proceeds via:

∑
q

−→ LxLy

4π2

∫
d2q .

Numerical application: qmax = 0.5 Å−1.

25.3 Quantum Interaction Between H and Liquid He

We now investigate the modifications to the H–liquid He potential arising
from the possible motion of the surface of the liquid helium bath. In order to
do so, we replace the coupling considered above by

V (R, Z) = n

∫
d2r

∫ +∞

−∞
dz U(

√
(R − r)2 + (Z − z)2) Θ(ĥ(r) − z) .

25.3.1. Expand V (R, Z) to first order in ĥ and interpret the result.

25.3.2. Replacing ĥ(r) by its expansion in terms of operators r̂q, r̂†q, cast
V (R, Z) in the form:

V (R, Z) = V0(Z) +
∑

q

(
hqe−iq.R Vq(Z)r†q + h.c.

)

with
Vq(Z) = n

∫
d2r e−iq.r U(

√
r2 + Z2).

25.3.3. Introducing the creation operators â†k,σ and the annihilation opera-
tors âk,σ of a hydrogen atom in an eigenstate of the motion in the potential
V0(Z), write in second quantization the total hydrogen–ripplon Hamiltonian
to first order in ĥ.

25.4 The Sticking Probability

We consider a H atom in an asymptotically free state in the z direction (i.e.
behaving as e±ikσz as z → +∞). This state denoted |k⊥, φσ〉 has an energy

Ei =
h̄2

2m
(k2

⊥ + k2
σ) .

We now calculate the probability that this atom sticks on the surface, which
is assumed here at zero temperature.
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25.4.1. How does the matrix element 〈φ0|Vq|φσ〉 vary with the size of the
normalization box? We assume in the following that this matrix element is
proportional to kσ if kσ is sufficiently small, and we introduce M(q) such that

〈φ0|Vq|φσ〉 =
h̄kσ√
2mLz

M(q) .

All following results will be expressed in terms of M(q).

25.4.2. Using Fermi’s Golden Rule, define a probability per unit time for an
atom to stick on the surface. In order to do so, one will define properly:
(a) the continuum of final states;
(b) the conditions imposed by energy conservation. For simplicity, we shall

assume that the incident energy Ei is negligible compared to the bound
state energy E0. Show that the emitted ripplon has a wave vector q such
that |q| = q0 with:

h̄

√
A

ρ0
q
3/2
0 +

h̄2q20
r2m

= |E0| ;

(c) the density of final states.

25.4.3. Express the flux of incident atoms in terms of h̄, kσ,m and Lz.

25.4.4. Write the expression for the probability that the hydrogen atom
sticks on the surface of the liquid helium bath in terms of h̄, q0, A, ρ0, kσ and
M(q). Check that this probability is independent of the normalization volume
LxLyLz.

25.4.5. How does this probability vary with the energy of the incident hy-
drogen atoms?

25.4.6. Describe qualitatively how one should modify the above treatment if
the liquid helium bath is not at zero temperature.

25.5 Solutions

Section 25.1: The Hydrogen Atom–Liquid Helium Interaction

25.1.1. We use cylindrical coordinates, assuming that the H atom is at R =
0. The potential V0(Z) takes the form
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V0(Z) = n

∫
d2r

∫ 0

−∞
dz U(

√
r2 + (Z − z)2)

= −nC6

∫ 0

−∞
dz
∫ ∞

0

dr
2πr

(r2 + (Z − z)2)3

= −π
2
nC6

∫ 0

−∞

dz
(Z − z)4 = −πnC6

6Z3
.

Therefore
V0(Z) = − α

Z3
with α =

πnC6

6
.

25.1.2. The force which derives from V0(Z) has modulus

F (Z) =
3α
Z4

.

We have 3α/Z4
g = Mg for Zg = (3α/(Mg))1/4. The numerical application

yields Zg = 0.86 µm which is very large on the atomic scale. For all the
relevant H–liquid He distances, which are between 0.1 nm and 1 nm, gravity
can be neglected.

25.1.3. The Hamiltonian can be split as Ĥ = Ĥ⊥ + ĤZ , where

Ĥ⊥ =
p̂2x
2m

+
p̂2y
2m

and ĤZ =
p̂2z
2m

+ V0(Ẑ) .

These two Hamiltonians commute and the eigenbasis of the total Hamiltonian
Ĥ is factorized as a product |k⊥, φσ〉 of (i) the eigenstates of Ĥ⊥, where k⊥
represents the wave vector of a plane running wave propagating in the (x, y)
plane, and (ii) the eigenstates φσ of ĤZ which describes the motion along the
z axis.

25.1.4. (a) For Z ≤ zmin, the overlap of the electron wave functions of the
H and He atoms causes a repulsion between these atoms, which is modeled
here by a hard core potential. For Z � zmin, the Van der Waals forces are
dominant.
(b) For Z ≤ zmin, the wave function φ(Z) is such that φ(Z) = 0. Since φ(Z)
is continuous, we have φ(zmin) = 0.
(c) For a turning point b, the WKB eigenfunction of energy E has the fol-
lowing form in the allowed region (E > V0(Z)):

φ(Z) =
C√
k(Z)

cos

(∫ b

Z

k(Z ′) dZ ′ − π

4

)
,

where C is a normalization constant and where
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h̄k(Z) =
√

2m(E − V0(Z)) .

Imposing the condition φ(zmin) = 0 yields

∫ b

zmin

k(Z ′) dZ ′ − π

4
=
(
n+

1
2

)
π , i.e.

∫ b

zmin

k(Z ′) dZ ′ =
(
n+

3
4

)
π

with n a positive integer.

(d) If the WKB method were exact, the number of bound states would be

n = 1 + Int
(∫ ∞

zmin

k(Z ′)
π

dZ ′ − 3
4

)
,

where Int denotes the integer part and where k(Z) is calculated for a zero
energy E. As usual for the WKB method, the accuracy of this expression
is good if the number of bound states is large. We can take in this case:
n � π−1

∫∞
zmin

k(Z ′) dZ ′ with h̄k(Z) =
√

2mα/Z3, which yields

n � 2
πh̄

√
2mα
zmin

.

(e) The above formula yields n � 1.36. We therefore expect a number of
bound states close to 1, say between 0 and 2.
(f) The experimental result compares favorably with the WKB. prediction,
but it is beyond the validity of the WKB approximation to give a correct
expression for φ0(Z).

Section 25.2: Excitations on the Surface of Liquid Helium

25.2.1. The two terms of the dispersion relation are equal if q =
√
gρ0/A or,

equivalently, for a wavelength

λ = 2π

√
A

gρ0
.

Numerically, one obtains λ = 3 mm. Therefore, we observe capillary waves
(ω2

q � Aq3/ρ0) for λ � 3 mm, and gravity waves (ω2
q � gq) for λ � 3 mm.

For λ = 3 mm the corresponding energy is h̄ωq = 1.3 × 10−13 eV.

25.2.2. For an energy such that |E0| � 10−13 eV, we are therefore in the
regime of capillary waves, with the wavelength:

λ =
2π
q

= 2π
(
Ah2

ρ0E2
0

)1/3

.

The numerical value is λ = 33 Å.
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25.2.3. We have

∆h2 = 〈ĥ2〉 − 〈ĥ〉2 = 〈ĥ2〉 =
∑

q

h2
q〈rqr†q〉 =

∑
q

h2
q .

Converting this into an integral, we obtain

∆h2 =
LxLy

4π2

∫
h̄q

2ρ0ωqLxLy
d2q =

h̄

4π
√
Aρ0

∫ qmax

0

√
q dq

=
h̄

6π

√
q3max

Aρ0
=
h̄ωmax

6πA
,

which yields ∆h = 0.94 Å.

Section 25.3: Quantum Interaction Between H and Liquid He

25.3.1. Using the fact that Θ′(z) = δ(z), we can write Θ(−z + ĥ(r)) �
Θ(−z) + ĥ(r)δ(z) since the δ function is even. Therefore, we obtain

V (R, Z) � V0(Z) + n
∫

d2r U(
√

(R − r)2 + Z2) ĥ(r) .

In this expression, the second term describes the interaction with the “ad-
ditional” or “missing” atoms on the surface as compared to the equilibrium
position z = 0.

25.3.2. Replacing ĥ(r) by its expansion we obtain

V (R, Z) � V0(Z)

+ n

∫
d2r U(

√
(R − r)2 + Z2)

∑
q

hq(r̂†qe
−iq·r + r̂qeiq·r) .

Considering the term r†q and setting r′ = r−R, we obtain in a straightforward
manner

V (R, Z) = V0(Z) +
∑

q

(
hqe−iq·R Vq(Z)r̂†q + h.c.

)
,

with
Vq(Z) = n

∫
d2r′ e−iq·r′

U(
√

r′2 + Z2) .

25.3.3. The Hamiltonian is the sum of the “free” Hamiltonians Ĥat = P 2

2M +
V0(Z) and ĤS, and the coupling term found above. One has

Ĥat =
∑
k,σ

Ek,σâ
†
k,σâk,σ ĤS =

∑
q

h̄ωq r̂
†
q r̂q .

The coupling term becomes
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k,σ

∑
k′,σ′

∑
q

hqâ
†
k,σâk′,σ′ r̂†q 〈k, φσ|e−iq.RVq(Z)|k′, φσ′〉 + h.c.

The matrix element is

〈k, φσ|e−iq·RVq(Z)|k′, φσ′〉 = 〈k|e−iq·R|k′〉 〈φσ|Vq(Z)|φσ′〉
= δk′,k+q 〈φσ|Vq(Z)|φσ′〉 .

We end up with the total hydrogen–ripplon Hamiltonian to first order in ĥ:

Ĥ =
∑
k,σ

Ek,σâ
†
k,σâk,σ +

∑
q

h̄ωq r̂
†
qrq

+
∑

q,k,σ,σ′
hqâ

†
k,σâk+q,σ′ r̂†q 〈φσ|Vq(Z)|φσ′〉 + h.c. .

In the (x, y) plane, the momentum is conserved owing to the translation in-
variance of the problem. This can be seen directly on the form of the coupling

â†k,σâk+q,σ′ r̂†q ,

which annihilates a H atom with momentum h̄(k + q) term, and creates a H
atom with momentum h̄k and a ripplon with momentum h̄q.

Section 25.4: The Sticking Probability

25.4.1. We have by definition

〈φ0|Vq|φσ〉 =
∫
φ∗0(Z)Vq(Z)φσ(Z) dZ .

Since |φσ〉 is an asymptotically free state, it is normalized in a segment of
length Lz. Therefore its amplitude varies as L−1/2

z . Since |φ0〉 is a localized
state which does not depend on Lz, we find

〈φ0|Vq|φσ〉 ∝ 1√
Lz

.

The fact that this matrix element is proportional to kσ in the limit of small
incident momenta is more subtle. The positions Z contributing to the matrix
element are close to zero, since the bound state φ0(Z) is localized in the
vicinity of the He surface. Therefore only the values of φσ(Z) around Z = 0
are relevant for the calculation of the integral. For the Z−3 potential between
the H atom and the He surface, one finds that the amplitude of φσ in this
region is proportional to kσ, hence the result. Such a linear dependance can
be recovered analytically by replacing the Z−3 potential by a square well, but
is out of reach of the WKB approximation, which would predict a dependance
in

√
kσ for the amplitude around Z = 0 of φσ. The reason for this discrepancy

is that the potential in −αZ−3 is too stiff for the WKB to be valid for the
calculation of φσ at distances larger than mα/h̄2.
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25.4.2. We start with the initial state k⊥, φσ. If the atom sticks to the sur-
face, the final state along the z axis is |φ0〉. The sticking proceeds via the
emission of a ripplon of momentum h̄q and a change of the transverse mo-
mentum h̄k⊥ → h̄k⊥ − h̄q.
(a) The continuum of final states is characterized by the vector q:

|k⊥, φσ〉 → |k⊥ − q, φ0〉 ⊗ |q〉 .

(b) Energy conservation gives Ei = Ef with:

Ei =
h̄2(k2

σ + k2
⊥)

2m
Ef = E0 +

h̄2(k⊥ − q)2

2m
+ h̄ωq .

We suppose that Ei is negligible compared to the bound state energy E0.

Therefore h̄2(k⊥ · q)/m ∼
√
|E0|h̄2k2

⊥/(2m) is also very small compared to
|E0|, and we obtain:

h̄2q2

2m
+ h̄ωq � |E0| .

This equation, in addition to the dispersion relation for ripplons, determines

the modulus q0 of q:

h̄

√
A

ρ0
q
3/2
0 +

h̄2q20
2m

= |E0| .

(c) A variation δE of the final state energy corresponds to a variation δq
such that (

h̄2q0
m

+
3h̄
2

√
Aq0
ρ0

)
δq = δE .

The number of states δ2n in a domain δ2q is:

δ2n =
LxLy

4π2
δ2q =

LxLy

4π2
q0δq δθ .

After integrating over δθ, we obtain:

ρ(Ef ) =
LxLy

π

mq0

2h̄2q0 + 3mh̄
√
Aq0/ρ0

.



25.6 Comments 265

25.4.3. The number of atoms which cross a plane of altitude Z in the direc-
tion Z < 0 during a time interval dt is vzdt/(2Lz) = h̄kσdt/(2mLz). The flux
is therefore:

Φσ =
h̄kσ

2mLz
.

25.4.4. The sticking probability is the ratio of the probability per unit time,
given by Fermi’s Golden Rule, and the incident flux:

P =
2π
h̄

|〈k⊥, φσ|V |k⊥ − q, φ0, q〉|2 ρ(Ef )
2mLz

h̄kσ
.

This reduces to

P =
mkσ|M(q)|2

3Am+ 2h̄
√
Aρ0q0

.

25.4.5. P varies as kσ ∝ √
E. At very small energies, the sticking probability

goes to zero and the H atoms bounce elastically on the liquid He surface.

25.4.6. If the liquid helium bath is not at zero temperature, other processes
can occur, in particular a sticking process accompanied by the stimulated
emission of a ripplon. One must therefore take into account the number nq0

of thermal ripplons.

25.6 Comments

The theory of the sticking of H atoms onto a surface of liquid He can be found
in the [1] below. Thorough experimental studies of this process are presented
in [2] and [3].
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Laser Cooling and Trapping

By shining laser light onto an assembly of neutral atoms or ions, it is possible
to cool and trap these particles. In this chapter we study a simple cooling
mechanism, Doppler cooling, and we derive the corresponding equilibrium
temperature. We then show that the cooled atoms can be confined in the
potential well created by a focused laser beam.

We consider a “two state” atom, whose levels are denoted |g〉 (ground
state) and |e〉 (excited state), with respective energies 0 and h̄ω0. This atom
interacts with a classical electromagnetic wave of frequency ωL/2π. For an
atom located at r, the Hamiltonian is

Ĥ = h̄ω0|e〉〈e| − d · (E(r, t)|e〉〈g| + E∗(r, t)|g〉〈e|) , (26.1)

where d, which is assumed to be real, represents the matrix element of
the atomic electric dipole operator between the states |g〉 and |e〉 (i.e. d =
〈e|D̂|g〉 = 〈g|D̂|e〉∗). The quantity E + E∗ represents the electric field. We
set

E(r, t) = E0(r) exp(−iωLt) .

In all the chapter we assume that the detuning ∆ = ωL−ω0 is small compared
with ωL and ω0. We treat classically the motion r(t) of the atomic center of
mass.

26.1 Optical Bloch Equations for an Atom at Rest

26.1.1. Write the evolution equations for the four components of the density
operator of the atom ρgg, ρeg, ρge and ρee under the effect of the Hamiltonian
Ĥ.

26.1.2. We take into account the coupling of the atom with the empty modes
of the radiation field, which are in particular responsible for the spontaneous
emission of the atom when it is in the excited state |e〉. We shall assume that
this boils down to adding to the above evolution equations “relaxation” terms:
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d
dt
ρee

)
relax

= −
(

d
dt
ρgg

)
relax

= −Γρee(
d
dt
ρeg

)
relax

= −Γ
2
ρeg

(
d
dt
ρge

)
relax

= −Γ
2
ρge ,

where Γ−1 is the radiative lifetime of the excited state. Justify qualitatively
these terms.

26.1.3. Check that for times much larger than Γ−1, these equations have the
following stationary solutions:

ρee =
s

2(s+ 1)
ρeg = −d · E(r, t)/h̄

∆+ iΓ/2
1

1 + s

ρgg =
2 + s

2(s+ 1)
ρge = −d · E∗(r, t)/h̄

∆− iΓ/2
1

1 + s

where we have set

s =
2 |d · E0(r)|2/h̄2

∆2 + Γ 2/4
.

26.1.4. Interpret physically the steady state value of the quantity Γρee in
terms of spontaneous emission rate.

26.2 The Radiation Pressure Force

In this section, we limit ourselves to the case where the electromagnetic field
is a progressive plane wave:

E0(r) = E0 exp(ik · r) .

By analogy with the classical situation, we can define the radiative force op-
erator at point r as:

F̂ (r) = −∇rĤ .

26.2.1. Evaluate the expectation value of F̂ (r) assuming that the atom is at
rest in r and that its internal dynamics is in steady state.

26.2.2. Interpret the result physically in terms of momentum exchanges be-
tween the atom and the radiation field. One can introduce the recoil velocity
vrec = h̄k/m.

26.2.3. How does this force behave at high intensities? Give an order of
magnitude of the possible acceleration for a sodium atom 23Na, with a reso-
nance wavelength λ = 0.589 × 10−6 m and a lifetime of the excited state of
Γ−1 = 16 × 10−9 s (d = 2.1 × 10−29 C m).

26.2.4. We now consider an atom in uniform motion: r = r0 + v0t (v0 � c).
Give the expression for the force acting on this atom.
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26.2.5. The action of the force on the atom will modify its velocity. Under
what condition is it legitimate to treat this velocity as a constant quantity for
the calculation of the radiation pressure force, as done above? Is this condition
valid for sodium atoms?

26.3 Doppler Cooling

The atom now moves in the field of two progressive plane waves of opposite
directions (+z and −z) and of same intensity (Fig. 26.1). We restrict ourselves
to the motion along the direction of propagation of the two waves and we
assume that for weak intensities (s � 1) one can add independently the
forces exerted by the two waves.

Fig. 26.1. Doppler cooling in one dimension

26.3.1. Show that for sufficiently small velocities, the total force is linear in
the velocity and can be cast in the form:

f = −mv
τ
.

26.3.2. What is the minimal (positive) value of τmin for a fixed saturation
parameter per wave s0 for an atom at rest? Calculate τmin for sodium atoms,
assuming one fixes s0 = 0.1.

26.3.3. This cooling mechanism is limited by the heating due to the random
nature of spontaneous emission. To evaluate the evolution of the velocity
distribution P (v, t) and find its steady state value, we shall proceed in the
following way:
(a) Express P (v, t + dt) in terms of P (v, t). One will split the atoms into

three classes:
• the atoms having undergone no photon scattering event between t and
t+ dt,

• the atoms having scattered a photon from the +z wave,
• the atoms having scattered a photon from the −z wave.
We choose dt short enough that the probability of the first option is
dominant, and such that multiple scattering events are negligible. We
also assume that the velocities contributing significantly to P (v, t) are
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small enough for the linearization of the force performed above to be
valid. For simplicity we will assume that spontaneously emitted photons
propagate only along the z axis, a spontaneous emission occurring with
equal probabilities in the directions +z and −z.

(b) Show that P (v, t) obeys the Fokker–Planck equation

∂P

∂t
= α

∂

∂v
(vP ) + β

∂2P

∂v2

and express of α and β in terms of the physical parameters of the problem.
(c) Determine the steady state velocity distribution. Show that it corre-

sponds to a Maxwell distribution and give the effective temperature.
(d) For which detuning is the effective temperature minimal? What is this

minimal temperature for sodium atoms?

26.4 The Dipole Force

We now consider a stationary light wave (with a constant phase)

E0(r) = E∗
0(r) .

26.4.1. Evaluate the expectation value of the radiative force operator F̂ (r) =
−∇rĤ assuming that the atom is at rest in r and that its internal dynamics
has reached its steady state.

26.4.2. Show that this force derives from a potential and evaluate the po-
tential well depth that can be attained for sodium atoms with a laser beam
of intensity P = 1 W, focused on a circular spot of radius 10 µm, and a
wavelength λL = 0.650 µm.

26.5 Solutions

Section 26.1: Optical Bloch Equations for an Atom at Rest

26.1.1. The evolution of the density operator ρ̂ is given by:

ih̄
dρ̂
dt

= [Ĥ, ρ̂]

so that:

dρee

dt
= i

d · E(r) e−iωLt

h̄
ρge − i

d · E∗(r) eiωLt

h̄
ρeg

dρeg

dt
= −iω0ρeg + i

d · E(r) e−iωLt

h̄
(ρgg − ρee)
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and
dρgg

dt
= −dρee

dt
dρge

dt
=
(

dρeg

dt

)∗
.

26.1.2. Assume that the atom-field system is placed at time t = 0 in the
state

|ψ(0)〉 = (α|g〉 + β|e〉) ⊗ |0〉 ,
where |0〉 denotes the vacuum state of the electromagnetic field and neglect
in a first step the action of the laser. At time t, the state of the system is
derived from the Wigner–Weisskopf treatment of spontaneous emission:

|ψ(t)〉 = (α|g〉 + βe−(iω0+Γ/2)t)|e〉) ⊗ |0〉 + |g〉 ⊗ |φ〉 ,

where the state of the field |φ〉 is a superposition of one-photon states for the
various modes of the electromagnetic field. Consequently the evolution of the
density matrix elements is ρee(t) = |β|2e−Γt, ρeg(t) = α∗βe−(iω0+Γ )t, or, in
other words,(

dρee

dt

)
relax

= −Γρee

(
dρeg

dt

)
relax

= −Γ
2
ρeg .

The two other relations originate from the conservation of the trace of the
density operator (ρee + ρgg = 1) and from its hermitian character ρeg = ρ∗ge.

We assume in the following that the evolution of the atomic density oper-
ator is obtained by adding the action of the laser field and the spontaneous
emission contribution. Since Γ varies like ω3

0 , this is valid as long as the shift
of the atomic transition due to the laser irradiation remains small compared
with ω0. This requires dE � h̄ω0, which is satisfied for usual continuous laser
sources.

26.1.3. The evolution of the density operator components is given by

dρee

dt
= −Γρee + i

d · E(r) e−iωLt

h̄
ρge − i

d · E∗(r) eiωLt

h̄
ρeg

dρeg

dt
=
(
−iω0 − Γ

2

)
ρeg + i

d · E(r) e−iωLt

h̄
(ρgg − ρee) .

These equations are often called optical Bloch equations.
At steady-state, ρee and ρgg tend to a constant value, while ρeg and ρge

oscillate respectively as e−iωLt and eiωLt. This steady-state is reached after a
characteristic time of the order of Γ−1. ¿From the second equation we extract
the steady-state value of ρeg as a function of ρgg − ρee = 1 − 2ρee:

ρeg = i
d · E(r) e−iωLt/h̄

i∆+ Γ/2
(1 − 2ρee) .

We now insert this value in the evolution of ρee and we get:
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ρee =
s

2(1 + s)
with s(r) =

2 |d · E(r)|2/h̄2

∆2 + Γ 2/4
.

The three other values given in the text for ρgg, ρeg and ρge follow immediately.

26.1.4. The steady state value of ρee gives the average probability of finding
the atom in the internal state |e〉. This value results from the competition
between absorption processes, which tend to populate the level |e〉 and stim-
ulated+spontaneous emission processes, which depopulate |e〉 to the benefit
of |g〉.

The quantity Γρee represents the steady-state rate of spontaneous emission
as the atom is irradiated by the laser wave. For a low saturation parameter s,
this rate is proportional to the laser intensity |E(r)|2. When the laser intensity
increases, s gets much larger than 1 and the steady state value of ρee is close
to 1/2. This means that the atom spends half of the time in level |e〉. In this
case, the rate of spontaneous emission tends to Γ/2.

Section 26.2: The Radiation Pressure Force

26.2.1. For a plane laser wave the force operator is given by:

F̂ (r) = ik d · E0

(
ei(k·r−ωLt)|e〉〈g| − e−i(k·r−ωLt)|g〉〈e|

)
.

The expectation value in steady state is Tr(ρ̂F̂ ) which gives:

f = 〈F 〉 = ik d · E0 ei(k·r−ωLt) ρge + c.c.

= h̄k
Γ

2
s0

1 + s0

with

s0 =
2 |d · E0|2/h̄2

∆2 + Γ 2/4
.

26.2.2. The interpretation of this result is as follows. The atom undergoes
absorption processes, where it goes from the ground internal state to the
excited internal state, and gains the momentum h̄k. From the excited state,
it can return to the ground state by a stimulated or spontaneous emission
process. In a stimulated emission the atom releases the momentum that it has
gained during the absorption process, so that the net variation of momentum
in a such a cycle is zero. In contrast, in a spontaneous emission process, the
momentum change of the atom has a random direction and it averages to zero
since the spontaneous emission process occurs with the same probability in
two opposite directions. Therefore the net momentum gain for the atom in
a cycle “absorption–spontaneous emission” is h̄k corresponding to a velocity
change vrec. Since these cycles occur with a rate (Γ/2)s0/(1+s0) (as found at
the end of Sect. 26.1), we recover the expression for the radiation force found
above.
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26.2.3. For a large laser intensity, the force saturates to the value h̄kΓ/2.
This corresponds to an acceleration amax = h̄kΓ/(2m) = 9×105m s−2, which
is 100 000 times larger than the acceleration due to gravity.

26.2.4. In the rest frame of the atom, the laser field still corresponds to a
plane wave with a modified frequency ωL − k · v (first order Doppler effect).
The change of momentum of the photon is negligible for non-relativistic atomic
velocities. The previous result is then changed into:

f = h̄k
Γ

2
s(v)

1 + s(v)
with s(v) =

2 |d · E0|2/h̄2

(∆− k · v)2 + Γ 2/4
.

26.2.5. The notion of force derived above is valid if the elementary veloc-
ity change in a single absorption or emission process (the recoil velocity
vrec = h̄k/m) modifies only weakly the value of f . This is the case when
the elementary change of Doppler shift kvrec = h̄k2/m is very small compared
with the width of the resonance:

h̄k2

m
� Γ .

This is the so called broad line condition. This condition is well satisfied for
sodium atoms since h̄k2/(mΓ ) = 5 × 10−3 in this case.

Section 26.3: Doppler Cooling

26.3.1. The total force acting on the atom moving with velocity v is

f(v) = h̄k Γ

( |d · E0|2/h̄2

(∆− kv)2 + Γ 2/4
− |d · E0|2/h̄2

(∆+ kv)2 + Γ 2/4

)
,

where we have used the fact that s � 1. For low velocities (kv � Γ ) we get
at first order in v

f(v) = −mv
τ

with τ =
m

h̄k2s0

∆2 + Γ 2/4
2(−∆)Γ

.

This corresponds to a damping force if the detuning ∆ is negative. In this
case the atom is cooled because of the Doppler effect. This is the so-called
Doppler cooling: A moving atom feels a stronger radiation pressure force from
the counterpropagating wave than from the copropagating wave. For an atom
at rest the two radiation pressure forces are equal and opposite: the net force
is zero.

26.3.2. For a fixed saturation parameter s0, the cooling time is minimal for
∆ = −Γ/2, which leads to

τmin =
m

2h̄k2s0
.
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Note that this time is always much longer than the lifetime of the excited
state Γ−1 when the broad line condition is fullfilled. For sodium atoms this
minimal cooling time is 16 µs for s0 = 0.1.

26.3.3. (a) The probability that an atom moving with velocity v scatters a
photon from the ±z wave during the time dt is

dP±(v) =
Γs0
2

(
1 ± 2∆kv

∆2 + Γ 2/4

)
dt .

Since we assume that the spontaneously emitted photons also propagate along
z, half of the scattering events do not change the velocity of the atom: This is
the case when the spontaneously emitted photon propagates along the same
direction as the absorbed photon. For the other half of the events, the change
of the atomic velocity is ±2vrec, corresponding to a spontaneously emitted
photon propagating in the direction opposite to the absorbed photon. Conse-
quently, the probability that the velocity of the atom does not change during
the time dt is 1 − (dP+(v) + dP−(v))/2, and the probability that the atomic
velocity changes by ±2vrec is dP±(v)/2. Therefore one has:

P (v, t+ dt) =
(

1 − dP+(v) + dP−(v)
2

)
P (v, t)

+
dP+(v − 2vrec)

2
P (v − 2vrec, t)

+
dP−(v + 2vrec)

2
P (v + 2vrec, t) .

(b) Assuming that P (v) varies smoothly over the recoil velocity scale (which
will be checked in the end), we can transform the finite difference equation
found above into a differential equation:

∂P

∂t
= α

∂

∂v
(vP ) + β

∂2P

∂v2
,

with

α =
m

τ
β = Γv2recs0 .

The term proportional to α corresponds to the Doppler cooling. The term in
β accounts for the heating due to the random nature of spontaneous emission
processes. The coefficient β is a diffusion constant in velocity space, propor-
tional to the square of the elementary step of the random walk vrec, and to
its rate Γs0.
(c) The steady state for P (v) corresponds to the solution of:
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α v P (v) + β
dP
dv

= 0 ,

whose solution (for α > 0, i.e. ∆ < 0) is a Maxwell distribution:

P (v) = P0 exp
(
−αv

2

2β

)
.

The effective temperature is therefore

kBT =
mβ

α
=
h̄

2
∆2 + Γ 2/4

−∆ .

(d) The minimal temperature is obtained for ∆ = −Γ/2:

kBTmin =
h̄Γ

2
.

This is the Doppler cooling limit, which is independent of the laser inten-
sity. Note that, when the broad line condition is fullfilled, the corresponding
velocity scale v0 is such that:

vrec � v0 =
√
h̄Γ/m� Γ/k .

The two hypotheses at the basis of our calculation are therefore valid: (i)
P (v) varies smootly over the scale vrec and (ii) the relevant velocities are
small enough for the linearization of the scattering rates to be possible.

For sodium atoms, the minimal temperature is Tmin = 240 µK, correspond-
ing to v0 = 40 cm s−1.

Section 26.4: The Dipole Force

26.4.1. For a real amplitude E0(r) of the electric field of the light wave
(standing wave), the force operator F̂ (r) is:

F̂ (r) =

⎛
⎝ ∑

i=x,y,z

di∇E0i(r)

⎞
⎠(e−iωLt|e〉〈g| + eiωLt|g〉〈e|) .

Assuming that the internal dynamics of the atom has reached its steady-state
value, we get for the expectation value of F̂ :

f(r) = 〈F 〉 = −∇(d · E0(r))
d · E0(r)
1 + s(r)

∆

∆2 + Γ 2/4

= − h̄∆
2

∇s(r)
1 + s(r)

26.4.2. This force is called the dipole force. It derives from the dipole poten-
tial U(r):
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f(r) = −∇U(r) with U(r) =
h̄∆

2
log(1 + s(r)) .

For a laser field with intensity P = 1 W, focused on a spot with radius
r = 10 µm, the electric field at the center is

E0 =
√

2P
πε0cr2

= 1.6 × 106 V/m .

We suppose here that the circular spot is uniformly illuminated. A more ac-
curate treatment should take into account the transverse Gaussian profile
of the laser beam, but this would not significantly change the following re-
sults. This value for E0 leads to dE0/h̄ = 3.1×1011 s−1 and the detuning ∆ is
equal to 3×1014 s−1. The potential depth is then found to be equal to 2.4 mK,
10 times larger than the Doppler cooling limit. Due to the large detuning, the
photon scattering rate is quite small: 70 photons/s.

26.6 Comments

The radiation pressure force has been used in particular for atomic beam
deceleration (J.V. Prodan, W.D. Phillips, and H. Metcalf, Phys. Rev. Lett.
49, 1149 (1982)). The Doppler cooling was proposed by T.W. Hänsch and
A. Schawlow (Opt. Commun. 13, 68 (1975)). A related cooling scheme for
trapped ions was proposed the same year by D. Wineland and H. Dehmelt
(Bull. Am. Phys. Soc. 20, 637 (1975)). The first observation of 3D laser cooling
of neutral atoms was reported by S. Chu, L. Hollberg, J.E. Bjorkholm, A.
Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985), and the same group
reported one year later the observation of atoms trapped at the focal point of
a laser beam using the dipole force (Phys. Rev. Lett. 57, 314 (1986)).

It was subsequently discovered experimentally in the group of W.D.
Phillips that the temperature of laser cooled atoms could be much lower than
the Doppler limit kBT = h̄Γ/2 derived in this problem. This clear violation
of Murphy’s law (an experiment working 10 times better than predicted!)
was explained independently in terms of Sisyphus cooling by the groups of C.
Cohen-Tannoudji and S. Chu (for a review, see e.g. C. Cohen-Tannoudji and
W.D. Phillips, Physics Today, October 1990, p.33).

The Physics Nobel Prize was awarded in 1997 to S. Chu, C. Cohen-
Tannoudji and W.D. Phillips for their work on the trapping and cooling of
atoms with laser light.
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Bloch Oscillations

The possibility to study accurately the quantum motion of atoms in standing
light fields has been used recently in order to test several predictions relating
to wave propagation in a periodic potential. We present in this chapter some
of these observations related to the phenomenon of Bloch oscillations.

27.1 Unitary Transformation on a Quantum System

Consider a system in the state |ψ(t)〉 which evolves under the effect of a
Hamiltonian Ĥ(t). Consider a unitary operator D̂(t). Show that the evolution
of the transformed vector

|ψ̃(t)〉 = D̂(t)|ψ(t)〉

is given by a Schrödinger equation with Hamiltonian

˜̂
H(t) = D̂(t)Ĥ(t)D̂†(t) + ih̄

dD̂(t)
dt

D̂†(t) .

27.2 Band Structure in a Periodic Potential

The mechanical action of a standing light wave onto an atom can be described
by a potential (see e.g. Chap. 26). If the detuning between the light frequency
and the atom resonance frequency ωA is large compared to the electric dipole
coupling of the atom with the wave, this potential is proportional to the light
intensity. Consequently, the one-dimensional motion of an atom of mass m
moving in a standing laser wave can be written

Ĥ =
P̂ 2

2m
+ U0 sin2(k0X̂) ,
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where X̂ and P̂ are the atomic position and momentum operators and where
we neglect any spontaneous emission process. We shall assume that k0 � ωA/c
and we introduce the “recoil energy” ER = h̄2k2

0/(2m).

27.2.1. (a) Given the periodicity of the Hamiltonian Ĥ, recall briefly why
the eigenstates of this Hamiltonian can be cast in the form (Bloch theo-
rem):

|ψ〉 = eiqX̂ |uq〉 ,

where the real number q (Bloch index) is in the interval (−k0, k0) and
where |uq〉 is periodic in space with period λ0/2.

(b) Write the eigenvalue equation to be satisfied by |uq〉. Discuss the corre-
sponding spectrum (i) for a given value of q, (ii) when q varies between
−k0 and k0.

In the following, the eigenstates of Ĥ are denoted |n, q〉, with energies En(q).
They are normalized on a spatial period of extension λ0/2 = π/k0.

27.2.2. Give the energy levels in terms of the indices n and q in the case
U0 = 0.

27.2.3. Treat the effect of the potential U0 in first order perturbation theory,
for the lowest band n = 0 (one should separate the cases q = ±k0 and q
“far from” ±k0). Give the width of the gap which appears between the bands
n = 0 and n = 1 owing to the presence of the perturbation.

27.2.4. Under what condition on U0 is this perturbative approach reliable?

27.2.5. How do the widths of the other gaps vary with U0 in this perturbative
limit?

27.3 The Phenomenon of Bloch Oscillations

We suppose now that we prepare in the potential U0 sin2(k0x) a wave packet
in the n = 0 band with a sharp distribution in q, and that we apply to the
atom a constant extra force F = ma.

We recall the adiabatic theorem: suppose that a system is prepared at time
0 in the eigenstate |φ(0)

n 〉 of the Hamiltonian Ĥ(0). If the Hamiltonian Ĥ(t)
evolves slowly with time, the system will remain with a large probability in
the eigenstate |φ(t)

n 〉. The validity condition for this theorem is h̄〈φ(t)
m |φ̇(t)

n 〉 �
|Em(t) − En(t)| for any m �= n. We use the notation |φ̇(t)

n 〉 = d
dt |φ(t)

n 〉.
27.3.1. Preparation of the Initial State. Initially U0 = 0, a = 0 and
the atomic momentum distribution has a zero average and a dispersion small
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compared to h̄k. We will approximate this state by the eigenstate of momen-
tum |p = 0〉. One “slowly” switches on the potential U0(t) sin2(k0x), with
U0(t) ≤ ER.
(a) Using the symmetries of the problem, show that the Bloch index q is a

constant of the motion.
(b) Write the expression of the eigenstate of H(t) of indices n = 0, q = 0 to

first order in U0.
(c) Evaluate the validity of the adiabatic approximation in terms of U̇0, ER, h̄.
(d) One switches on linearly the potential U0 until it reaches the value ER.

What is the condition on the time τ of the operation in order for the
process to remain adiabatic? Calculate the minimal value of τ for cesium
atoms (m = 2.2 × 10−25 kg, λ0 = 0.85 µm.)

27.3.2. Devising a Constant Force. Once U0(t) has reached the maximal
value U0 (time t = 0), one achieves a sweep of the phases φ+(t) and φ−(t) of
the two traveling waves forming the standing wave. The potential seen by the
atom is then U0 sin2(k0x− (φ+(t) − φ−(t))/2) and one chooses

φ+(t) − φ−(t) = k0at
2 .

(a) Show that there exists a reference frame where the wave is stationnary,
and give its acceleration.

(b) In order to study the quantum motion of the atoms in the accelerated
reference frame, we consider the unitary transformation generated by

D̂(t) = exp(iat2P̂ /2h̄) exp(−imatX̂/h̄) exp(ima2t3/(3h̄)) .

How do the position and momentum operators X̂ and P̂ transform? Write

the resulting form of the Hamiltonian in this unitary transformation

˜̂
H =

P̂ 2

2m
+ U0 sin2(k0X̂) +maX̂ .

27.3.3. Bloch Oscillations
We consider the evolution of the initial state n = 0, q = 0 under the effect of
the Hamiltonian ˜̂

H.
(a) Check that the state vector remains of the Bloch form, i.e.

|ψ(t)〉 = eiq(t)X̂ |u(t)〉 ,
where |u(t)〉 is periodic in space and q(t) = −mat/h̄.

(b) What does the adiabatic approximation correspond to for the evolution
of |u(t)〉? We shall assume this approximation to be valid in the following.



280 27 Bloch Oscillations

(c) Show that, up to a phase factor, |ψ(t)〉 is a periodic function of time, and
give the corresponding value of the period.

(d) The velocity distribution of the atoms as a function of time is given
in Fig. 27.1. The time interval between two curves is 1 ms and a =
−0.85 ms−2. Comment on this figure, which has been obtained with ce-
sium atoms.

Fig. 27.1. Atomic momentum distribution of the atoms (measured in the acceler-
ated reference frame) for U0 = 1.4 ER. The lower curve corresponds to the end of
the preparation phase (t = 0) and the successive curves, from bottom to top, are
separated by time intervals of one millisecond. For clarity, we put a different vertical
offset for each curve
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27.4 Solutions

Section 27.1: Unitary Transformation on a Quantum System

The time derivative of |ψ̃〉 gives

ih̄| ˙̃
ψ〉 = ih̄

( ˙̂
D|ψ〉 + D̂|ψ̇〉

)
= ih̄

( ˙̂
DD̂† + D̂ĤD̂†

)
D̂|ψ〉 ,

hence the results of the lemma.

Section 27.2: Band Structure in a Periodic Potential

27.2.1. Bloch theorem
(a) The atom moves in a spatially periodic potential, with period λ0/2 =
π/k0. Therefore the Hamiltonian commutes with the translation operator
T̂ (λ0/2) = exp(iλ0P̂ /(2h̄)) and one can look for a common basis set of
these two operators. Eigenvalues of T̂ (λ0/2) have a modulus equal to 1, since
T̂ (λ0/2) is unitary. They can be written eiqλ0/2 where q is in the interval
(−k0, k0). A corresponding eigenvector of Ĥ and T̂ (λ0/2) is then such that

T̂ (λ0/2)|ψ〉 = eiqλ0/2|ψ〉
or in other words

ψ(x+ λ0/2) = eiqλ0/2ψ(x) .

This amounts to saying that the function uq(x) = e−iqxψ(x) is periodic in
space with period λ0/2, hence the result.
(b) The equation satisfied by uq is:

− h̄
2

2m

(
d
dx

+ iq
)2

uq + U0 sin2(kx) uq = E uq .

For a fixed value of q, we look for periodic solutions of this equation. The
boundary conditions uq(λ0/2) = uq(0) and u′q(λ0/2) = u′q(0) lead, for each
q, to a discrete set of allowed values for E, which we denote En(q). The
corresponding eigenvector of Ĥ and T̂ (λ0/2) is denoted |ψ〉 = |n, q〉. Now
when q varies in the interval (−k0, k0), the energy En(q) varies continuously
in an interval (Emin

n , Emax
n ). The precise values of Emin

n and Emax
n depend on

the value of U0. The spectrum En(q) is then constituted by a series of allowed
energy bands, separated by gaps corresponding to forbidden values of energy.
The interval (−k0, k0) is called the first Brillouin zone.

27.2.2. For U0 = 0, the spectrum of Ĥ is simply h̄2k2/(2m) corresponding
to the eigenstates eikx (free particle). Each k can be written: k = q + 2nk0
where n is an integer, and the spectrum En(q) then consists of folded portions
of parabola (see Fig. 27.2a). There are no forbidden gaps in this case, and the
various energy bands touch each other (Emin

n+1 = Emax
n ).
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Fig. 27.2. Structure of the energy levels En(q) (a) for U0 = 0 and (b) U0 = ER

27.2.3. When q is far enough from ±k0, the spectrum of Ĥ has no degeneracy,
and the shift of the energy level of the lowest band n = 0 can be obtained
using simply:

∆E0(q) = 〈0, q|U0 sin2(k0X̂)|0, q〉

=
k0
π

∫ π/k0

0

e−iqx U0 sin2(k0x) eiqx dx =
U0

2
.

When q is equal to ±k0, the bands n = 0 and n = 1 coincide and one should
diagonalize the restriction of U(x) to this two-dimensional subspace. One gets

〈0, k0|U0 sin2(k0X̂)|0, k0〉 = 〈1, k0|U0 sin2(k0X̂)|1, k0〉 =
U0

2
,

〈0, k0|U0 sin2(k0X̂)|1, k0〉 = 〈1, k0|U0 sin2(k0X̂)|0, k0〉 = −U0

4
.

The diagonalization of the matrix

U0

4

(
2 −1

−1 2

)

gives the two eigenvalues 3U0/4 and U0/4, which means that the two bands
n = 0 and n = 1 do not touch each other anymore, but that they are separated
by a gap U0/2 (see Fig. 27.2b for U0 = ER).

27.2.4. This perturbative approach is valid if one can neglect the coupling
to all other bands. Since the characteristic energy splitting between the band
n = 1 and the band n = 2 is 4 ER, the validity criterion is

U0 � 4 ER .

27.2.5. The other gaps open either at k = 0 or k = ±k0. They result from
the coupling of eink0x and e−ink0x under the influence of U0 sin2(k0x). This
coupling gives a non-zero result when taken at order n. Therefore the other
gaps scale as Un

0 and they are much smaller that the lowest one.
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Section 27.3: The phenomenon of Bloch Oscillations

27.3.1. Preparation of the Initial State
(a) Suppose that the initial state has a well defined Bloch index q, which
means that

T̂ (λ0/2)|ψ(0)〉 = eiqλ0/2|ψ(0)〉 .
At any time t, the Hamiltonian Ĥ(t) is spatially periodic and commute with
the translation operator T̂ (λ0/2). Therefore the evolution operator Û(t) also
commutes with T̂ (λ0/2). Consequently:

T̂ (λ0/2)|ψ(t)〉 = T̂ (λ0/2)Û(t)|ψ(0)〉 = Û(t)T̂ (λ0/2)|ψ(0)〉 ,
= eiqλ0/2|ψ(t)〉 ,

which means that q is a constant of motion.
(b) At zeroth order in U0, the eigenstates of H corresponding to the Bloch
index q = 0 are the plane waves |k = 0〉 (energy 0), |k = ±2k0〉 (energy
4ER), . . . At first order in U0, in order to determine |n = 0, q = 0〉, we have
to take into account the coupling of |k = 0〉 with |k = ±2k0〉, which gives

|n = 0, q = 0〉 = |k = 0〉 +
∑
ε=±

〈k = 2εk0|U0 sin2 k0x|k = 0〉
4ER

|k = 2εk0〉 .

The calculation of the matrix elements is straightforward and it leads to

〈x|n = 0, q = 0〉 ∝ 1 +
U0(t)
8ER

cos(2k0x) .

(c) The system will adiabatically follow the level |n = 0, q = 0〉 as the
potential U0 is raised, provided for any n′

h̄〈n′, q = 0|
(

d|n = 0, q = 0〉
dt

)
� En′(0) − E0(0) .

Using the value found above for |n = 0, q = 0〉 and taking n′ = ±1, we derive
the validity criterion for the adiabatic approximation in this particular case:

h̄U̇0 � 64E2
R .

(d) For a linear variation of U0 such that U0 = ERt/τ , this validity condition
is

τ � h̄/(64ER) ,

which corresponds to τ � 10 µs for cesium atoms.
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27.3.2. Devising a Constant Force
(a) Consider a point with coordinate x in the lab frame. In the frame with
acceleration a and zero initial velocity, the coordinate of this point is x′ =
x− at2/2. In this frame, the laser intensity varies as sin2(kx′), corresponding
to a “true” standing wave.
(b) Using the standard relations [X̂, f(P̂ )] = ih̄f ′(P̂ ) and [P̂ , g(X̂)] =
−ih̄g′(X̂), one gets

D̂X̂D̂† = X̂ +
at2

2
D̂P̂ D̂† = P̂ +mat .

The transformed Hamiltonian D̂ĤD̂† is

D̂ĤD̂† =
1

2m

(
P̂ +mat

)2

+ U0 sin2(k0X̂) ,

and the extra term appearing in ˜̂
H can be written

ih̄
dD̂
dt
D̂† = −atP̂ +maX̂ − ma2t2

2
.

Summing the two contributions, we obtain

˜̂
H =

P̂ 2

2m
+ U0 sin2(k0X̂) +maX̂ .

This Hamiltonian describes the motion of a particle of mass m in a periodic
potential, superimposed with a constant force – ma.

27.3.3. Bloch Oscillations
(a) The evolution of the state vector is ih̄|ψ̇〉 = ˜̂

H|ψ〉. We now put |ψ(t)〉 =
exp(−imatX̂/h̄)|u(t)〉 and we look for the evolution of |u(t)〉. We obtain after
a straightforward calculation

ih̄
∂u(x, t)
∂t

= − h̄
2

2m

(
∂

∂x
− imat

h̄

)2

u(x, t) + U0 sin2(k0x)u(x, t) .

Using the structure of this equation, and using the initial spatial periodicity
of u(x, 0), one deduces that u(x, t) is also spatially periodic with the same
period λ0/2.
(b) The adiabatic hypothesis for |u(t)〉 amounts to assume that this vector,
which is equal to |un=0,q=0〉 at t = 0, remains equal to |u0,q(t)〉 at any time.
The atom stays in the band n = 0.
(c) Consider the duration TB = 2h̄k0/(ma) during which q(t) is changed into
q(t) − 2k0. Since 2k0 is the width of the Brillouin zone, we have |un,q−2k0〉 ≡
|un,q〉. Consequently, when the adiabatic approximation is valid, the state
|ψ(t+ TB)〉 coincides (within a phase factor) with the state |ψ(t)〉. Since this
phase factor does not enter in the calculation of physical quantities such as
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position or momentum distributions, we expect that the evolution of these
quantities with time will be periodic with the period TB.
(d) We first note that the initial distribution is such that the average mo-
mentum is zero, and that the momentum dispersion is small compared with
h̄k0, as assumed in this problem. Concerning the time evolution, we see in-
deed that the atomic momentum distribution is periodic in time, with a period
TB � 8 ms, which coincides with the predicted value 2h̄k0/(ma). Finally we
note that the average momentum increases quasi-linearly with time during the
first 4 ms, from 0 to h̄k0. At this time corresponding to TB/2, a “reflexion”
occurs and the momentum is changed into −h̄k0. During the second half of
the Bloch period (from 4 ms to 8 ms) the momentum again increases linearly
with time from −h̄k0 to 0. At the time TB/2, the particle is at the edge of the
Brillouin zone (q = ±k0). This is the place where the adiabatic approxima-
tion is the most fragile since the band n = 1 is then very close to the band
n = 0 (gap U0). One can check that the validity criterion for the adiabatic
approximation at this place is maER � k0U

2
0 , which is well fullfilled in the

experiment. The reflection occurring at t = TB/2 can be viewed as a Bragg
reflection of the atom with momentum h̄k0 on the periodic grating U0 sin2(kx).

27.5 Comments

This paradoxical situation, where a constant force ma leads to an oscillation
of the particle instead of a constant acceleration, is called the Bloch oscillation
phenomenon. It shows that an ideal crystal cannot be a good conductor: when
one applies a potential difference at the edge of the crystal, the electrons of
the conduction band feel a constant force in addition to the periodic potential
created by the crystal and they should oscillate instead of being accelerated
towards the positive edge of the crystal. The conduction phenomenon results
from the defects present in real metals.

The experimental data have been extracted from M. Ben Dahan, E. Peik,
J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996) and
from E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Phys.
Rev. A 55, 2989 (1997). A review of atom optics experiments performed with
standing light waves is given in M. Raizen, C. Salomon, and Q. Niu, Physics
Today, July 1997, p. 30.
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