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Preface

Condorcet’s Paradox has been formally studied by an amazing number of people 
in many different contexts for more than two centuries.  Peter Fishburn introduced 
the basic notion of the Paradox to me in 1971 during a course in Social Choice 
Theory at Pennsylvania State University.  My immediate response to seeing the 
simple example that he presented was that this phenomenon certainly could not be 
very likely to ever be observed in reality.  Peter quickly suggested that I should 
work on developing some representations for the probability that the Paradox 
might occur, and very soon thereafter that pursuit began.  It is only after 35 years 
of effort, with a lot of help from Peter, that I now feel that a good answer can be 
given to the challenge that was presented in that classroom in 1971.  Many people 
have suggested to me over the years that a book like this should be completed, 
since the source material is spread over such a wide variety of disciplines of aca-
demic journals and books that it is very difficult for people to know what has been 
done, and has not been done, in this area of determining representations for the 
probability that Condorcet’s Paradox would ever be observed in reality. 

The advent of efficient computer search engines that cover large groups of aca-
demic journals made the idea of pursuing this project seem much more tractable, 
but it was only after starting the search that I realized just how difficult this project 
was going to be, since the number of papers that make a reference to Condorcet’s 
Paradox is truly enormous.  As a result, the original scope of this study was sig-
nificantly reduced to simply focus on the consideration of the existence of the 
Paradox, and factors that affect the probability that it might be observed in real 
situations.  The availability of the on-line Social Choice Bibliography that Jerry 
Kelly developed and maintains at Syracuse University has also been extremely 
helpful in locating sources.  A significant effort has been made to find all of the 
available relevant sources on this specific topic, but some of them undoubtedly 
have been missed.  Apologies are extended in advance to those whose relevant 
work might have been inadvertently overlooked. 

The primary motivation that has led to the continuation of my own work in this 
area of research over such a long period of time has come from opportunities to 
present the results of this work at various meetings, seminars and workshops, 
where very valuable feedback and encouragement have often been obtained.  
Many different universities and organizations have generously supported this ef-
fort, and I am very grateful to all of them.  In particular, Dominique Lepelley (cur-
rently at University of La Reunion), Vincent Merlin and Maurice Salles have been 
very generous in sponsoring my visits to University of Caen on more occasions 
over the years than I can possibly recall. 
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On a personal note, I am also very grateful to several people who have rou-
tinely given positive reinforcement and encouragement to keep me working on 
this project over the several years during which it has evolved, despite my fre-
quent, disconcerting, and sometimes overwhelming belief that it would never ac-
tually be completed during my lifetime.  Most notable on this list are Barbara E. 
Eller, Burton A. Abrams, John F. Preble and Arthur A. Sloane. 

It was with great amusement that I accidentally stumbled over a quote from 
Condorcet regarding the problem that has kept me almost fully occupied for many 
years [Condorcet (1793a, pg. 7)]: 

“But after considering the facts, the average values or the results, we still need to deter-
mine their probability.” 

William V. Gehrlein 
University of Delaware 
Newark, Delaware 
May 2006 
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1 Elections and Voting Paradoxes 

1.1 Introduction 

The problem of considering how a group of individual decision-makers should go 
about selecting some overall best alternative from a set of available alternatives 
has been studied in various forms for many years.  Our study of this problem be-
gins with a historical overview of the development of early thinking about how 
this exercise in decision-making should be performed.  The ultimate interest of 
this chapter is to consider some unusual occurrences that can be observed in these 
decision-making situations and to develop an outline of early work that led to the 
analysis of this problem with mathematical techniques. 

Any group decision-making situation can be viewed in the context of an elec-
tion in which the available alternatives correspond to the candidates that are being 
considered for selection, and where the alternative that is selected as the overall 
best alternative corresponds to the winning candidate in the election. The individ-
ual decision-makers within the group are acting as voters in this scenario.  In a 
famous early paper dealing with election procedures, Jean Charles de Borda 
(1784, pg. 128) clearly makes this point in the concluding statements of a written 
commentary that summarized a presentation that he made to the French Academy 
of Science on June 16, 1770:  

“In conclusion, I must stress that everything we have said here about elections also ap-
plies to any debate conducted by any company or body of men; these debates are really no 
more than a type of election between the different options put forward and are therefore 
subject to the same rules.” 

Throughout the current study, we examine the process of how groups of indi-
vidual decision-makers might go about selecting an alternative in the context of 
election procedures, to try to determine which types of election procedures tend to 
make the most sense for use in different types of situations. 

We typically restrict attention to elections in which all of the voters in a deci-
sion-making group have the same input to the voting process.  That is, no sub-
group of individual decision-makers within the total group has more influence on 
the outcome of the voting process than does any other subgroup with the same 
number of voters, once individual voter’s preferences on candidates have been 
formed.  This does not preclude the possibility that some individuals might be 
more persuasive than others in arguing for their particular viewpoint during de-
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bate, while individual voters are evaluating the candidates.  However, once the in-
dividual voters have determined their particular preferences on the candidates, 
each voter will have the same influence on the outcome.   

If all voters have the same most preferred candidate in a given election, then 
the determination of the winner is a very simple task.  The preferred candidate is 
selected as the winner, and all voters will get their most preferred outcome.  The 
difficulty arises in the much more likely scenario that there is some disagreement 
among the voters as to which candidate is best.  Once this situation arises, all of 
the individual voters cannot get what they most prefer as an outcome, so the de-
termination of which candidate best represents the overall most preferred candi-
date of the group becomes an issue. 

In the case of only two candidates, a group of decision-makers will almost cer-
tainly arrive at the conclusion of applying the notion of majority rule, so that the 
candidate that is more preferred by the greater number of voters will be selected as 
the winner.  With equal voter influence in the process, a sense of fairness suggests 
that the group should select that candidate, in order to provide the better outcome 
for the most voters.  Rousseau (1762) presents a detailed analysis of the issue of 
the fairness of majority rule voting. 

Young (1988) summarizes the thoughts of Rousseau (1762) regarding majority 
rule voting as follows.   Rousseau’s opinion was that the “general will” of the ma-
jority should serve as the legitimate norm for making group decisions.  And, any 
particular individual who is voting in an election can be viewed as trying to decide 
which candidate is most in conformance with the “general will” of the electorate.  
If any individuals vote for a candidate that ultimately is not elected, then these in-
dividuals are viewed as being incorrect in their view of which candidate is most in 
conformance of the “general will”.  The use of majority rule therefore reflects the 
view of what most voters perceive as conforming to the “general will” of the elec-
torate.  This belief in the fairness of majority rule is not held universally, with ar-
guments against it typically attacking it for ignoring the intensity of preferences of 
voters.  

Don Joseph Isadore Morales of Spain wrote a paper after reading about the 
work in Borda (1784), and submitted a paper to the French Academy of Science.  
The content of this paper is discussed in Daunou (1803).  One of Morales’ argu-
ments was that strength of preference must be considered in voting procedures.  In 
particular, situations could exist in which there is a minority group of voters who 
have a very strong preference that an issue should be adopted, while the majority 
of voters are marginally opposed to having it adopted.  If the sizes of the two vot-
ing groups were nearly equal, Morales’ arguments would suggest that the strong 
preference of the minority should outweigh the majority opinion in such a case.  In 
order to account for this, voting procedures would have to ask individual voters to 
report some measure of their degree of preference for candidates, as opposed to 
asking for simple approve or disapprove responses.  

Daunou (1803, pg. 244) makes his opinion of Morales’ arguments about con-
sidering intensity of preferences in voting very clear:
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 “A strong will is already too powerful on its own.  While society might owe some          
outstanding benefits to strong-willed men, it also owes them a greater number of infamous 
disasters and above all an infinite number of smaller problems.  ….  The first condition in 
any debate should therefore be that all votes have equal value, whatever their consistency, 
scope and strength,”  

A much earlier quote that is directly related to this argument is attributed to 
Pliny the Younger of ancient Rome.  Gaertner (2005, pg. 235) reproduces the 
quote: 

“…votes go by number, not by weight; nor can it be otherwise in a public assembly, 
where nothing is so unequal as the equality that prevails in them.” 

The debate about giving consideration to the strength of voters’ preferences 
has not been resolved since the early work that has been cited.  More recently, 
Vickery (1960) discusses the difficulties that would be involved in giving different 
weights to individual voters, based on their strength of preference.  It is argued 
that voters have significant problems simply in correctly determining any actual 
differences that exist between candidates, without even considering the additional 
complexity that would result if individual voters also attempted to evaluate their 
strength of preference.   On the other hand, Tullock (1959) and Ward (1961) argue 
that the use of majority voting in an election can select the wrong outcome if in-
tensity of preference is not considered.  The main argument in Tullock (1959) is 
that a minority of voters with strong preferences, facing a majority of voters with 
less intense preferences, can only get what it desires by resorting to vote trading, 
which can lead to irrational outcomes. The notion of vote trading and the possible 
irrational outcomes that can result from using it will be developed in detail later.  
Downs (1961) presents arguments that are in opposition to the results in Tullock 
(1959), suggesting that the assumptions that are used in that study are not realistic.   

The notion of using majority rule in two candidate elections is justified on a 
mathematical basis in the work of Rae and Taylor.  Rae (1969) considers the situa-
tion in which a group of voters will be faced with a series of votes on policy pro-
posals, and each proposal will be passed or defeated. Voters will have preferences 
to either support or oppose each of the proposals as they are presented.  Rae’s 
analysis determines the size of the majority that should be required to determine if 
each issue is passed or defeated.  It is assumed that the sequence of votes on pro-
posals is unknown, so that it is not known in advance how many voters will sup-
port or oppose forthcoming issues.  It is also assumed that voters form their pref-
erences independently of all other voters. 

Since nothing is known in advance about the issues that are to be presented, it 
is assumed that each voter has a probability of 0.5 of supporting or opposing any 
upcoming issue.  There are two possible situations that might exist that any given 
voter would want to avoid.  In particular, the voter might oppose an issue that 
passes, or the voter might support an issue that is rejected.  Let P denote the joint 
probability that either of these events happens to a given voter.  Rae (1969) proves 
that simple majority rule will uniquely minimize P, given the set of assumptions 
above.  Taylor (1969) extends this result to show that simple majority rule 
uniquely minimizes P for any value of p, where p is the probability that any given 
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voter supports an issue, with 1- p being the probability that the voter opposes an 
issue.  The value of p is assumed to be the same for all voters.  Straffin (1977) ex-
tends the work of Rae and Taylor to show that majority rule uniquely maximizes 
the average probability that voters are in agreement with the chosen election out-
come for odd n.  Fishburn and Gehrlein (1977a) consider the effectiveness of sim-
ple majority and other election procedures in two-candidate elections when voters 
are uncertain of their preferences, and simple majority rule is found to have some 
attractive properties in such voting situations. 

Following the notions behind most of the work in this area, we ignore intensity 
of preference in the remainder of this study and treat all voters equally.  In doing 
so, we are in agreement with ideas that are proposed by Condorcet (1788a, pg. 
155) in his discussion about the necessity of making election procedures as simple 
as possible:  

“We must therefore establish a form of decision-making in which voters need only ever 
pronounce on simple propositions, expressing their opinions only with a yes or a no.”

1.2 The Case of More than Two Candidates 

The problem of selecting the winner of an election becomes significantly more 
complicated when more than two candidates are being considered, since the con-
cept of majority rule can take on different interpretations in this situation.   Much 
of this work finds its origins in the early studies of Jean Charles de Borda and of 
Marie Jean Antoine Nicolas Caritat, the Marquis de Condorcet, whose work has 
already been mentioned.  These 18th century French contemporaries were pioneers 
in the development of formal mathematical studies of election methods, and both 
found that counterintuitive things could happen when different interpretations of 
majority rule are considered for elections with more than two candidates.  We re-
fer to these unusual occurrences in voting events as voting paradoxes. 

Other people obviously considered issues that are related to the process of 
conducting elections before Borda and Condorcet did so.  McLean (1990) dis-
cusses observations of Ramon Lull from the14th century and of Nicolas Cusanus 
from the 15th century that are related to problems of collective decision-making.  
Similarly, Lagerspetz (1986) and Gaertner (2005) present observations of the 
writer Pufendorf from the 17th century.  All of the notions that are considered in 
these studies are clearly relevant to issues that are related to conducting elections.  
However, Borda and Condorcet were the first to formally address these issues 
from a mathematical perspective, and we begin by developing some of the notions 
that they brought forward.  During this development, we also give a brief outline 
of the history of the very interesting interaction that took place between these two 
important figures.   

To give formal definitions to the different interpretations of majority rule, we 
must start by defining the preferences of individual voters.  Suppose that we have 
a set of three candidates, CBA ,, , and that BA  denotes that a voter prefers 
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Candidate A to Candidate B.  A voter’s preferences on pairs of candidates from the 
set of candidates are complete preferences if there is a preference on each of the 
possible pairs.  That is, we must have BA or AB  for all pairs of candidates 
like A and B.  When an individual voter’s preferences are complete, there is no in-
difference between any two candidates.  We initially assume that all voters have 
complete preferences on the candidates, and the effect of individual voter indiffer-
ence between candidates will be considered later.  We also assume that each indi-
vidual voter has transitive preferences.

Transitivity is a common requirement in defining rational behavior in the con-
text of the preferences of individual voters.  Transitivity requires that if a given 
voter has BA  and CB , then that voter must also have CA .  This prevents 
situations in which a given voter might respond in a cyclic fashion, such 
as BA , CB  and AC .  The usual argument for transitivity of preference 
for individual voters falls back on some form of the concept of being able to use 
such a voter as a ‘money pump’ if such cyclic preferences exist.  Suppose that A
would be the overall winner of an election in this specific example of cyclic voter 
preferences.  The voter could be given the option to make some small payment to 
have C become the winner instead of A.  The voter would agree since AC .
Next, we ask the voter to make a small payment to have B become the winner in-
stead of C.  The voter would agree since CB .  The voter is then asked to make 
a small payment to have A become the winner instead of B.  The voter would 
agree since BA .  As a result of these transactions, the voter would then have 
made a series of payments, only to return back to the original situation, with A be-
ing the winner, to strongly suggest that the voter is not acting rationally.  

The notion of using transitivity as one of the standards for rationality for indi-
vidual voter preferences is nearly universally accepted.  However, some studies 
have considered various models to explain why it might be reasonable to expect 
intransitivity in individual preferences.  Gehrlein (1990a, 1994) presents surveys 
of much of this work on intransitive individual preferences. 

Individual preferences that are complete and transitive are defined as linear 
preference rankings.  There are six possible linear preference rankings that each 
voter might have for three-candidate elections, as shown in Fig. 1.1. 

A A B C B C
B C A A C B
C B C B A A

1n 2n 3n 4n 5n 6n

Fig. 1.1 The six possible linear preference rankings on three candidates 

Here, in  denotes the number of voters that have the associated linear preference 

ranking on the three candidates.  That is, 1n  voters all have individual preferences 

with CBA .  Of course, we also have CA for these voters, with the as-
sumption of transitivity.  If we let n define the total number of voters, then 

6
1i inn .  Any particular combination of 'sni  that sum to n will be referred to 
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as a voting situation, n.  Voting situations just report the in values that are associ-

ated with each possible individual preference ranking for a given election, without 
specifying the preferences of any individual voter.

Condorcet (1785a) uses the exact same approach in his work.  He lists a total 
of eight possible complete preference structures that individuals might have on 
three candidates.  Six of these structures are the linear preference rankings on can-
didates that are listed in Fig. 1.1, and two of them represent the cases of cyclic, or 
intransitive, individual preferences on the candidates.  Condorcet notes that these 
two cyclic preference structures are a “contradiction of terms”, to lead to the con-
clusion that “there really are only six possible options”.  Condorcet (1788a, pg. 
156) later makes his view of the irrationality of individual intransitivity of prefer-
ence very obvious by stating:  

“Clearly, if anyone’s vote was self-contradictory (intransitive), it would have to be dis-
counted, and we should therefore establish a form of voting which makes such absurdities 
impossible.” 

We are now able to formally consider two different ways of extending the no-
tion of majority rule to the case of more than two candidates.  The most obvious of 
these extensions is widely known as plurality rule.  Just as with two candidates, 
each voter casts a vote for his or her most preferred candidate with plurality rule, 
and the winner is the candidate who receives the greatest number of votes.  Let 
APB denote the event that A beats B by plurality voting.  Assuming that all of the 
voters will cast votes in agreement with their true preferences, A will be the win-
ner in a plurality rule election if both APB [ 5321 nnnn ] and APC

[ 6421 nnnn ].  It is assumed that voters will always vote in accordance with 

their true preferences throughout this study. 
Borda (1784) considers a second extension of majority rule to three-candidate 

elections, by looking at the basic majority rule relation as applied to pairs of can-
didates.  Let AMB denote the event that A is the majority rule winner over B when 
only A and B are considered.  By ignoring the relative position of C in the possible 
preference ranking for any of the individual voter’s rankings in Fig. 1.1, we see 
that AMB if 653421 nnnnnn , AMC if 654321 nnnnnn ,

and BMC if 642531 nnnnnn . If AMB, then A beats B by Pairwise Ma-

jority Rule (PMR).   Both Borda (1784) and Condorcet (1785b) refer to A as hav-
ing “plurality support” if both AMB and AMC.  To avoid confusion with the stan-
dard definition of plurality rule given above, we refer to A as the winner by PMR, 
or as the Pairwise Majority Rule Winner (PMRW), for the three-candidate case 
when both AMB and AMC.  The PMRW is commonly referred to as the Condor-
cet Winner in the literature.  If we have AMC and BMC, then C is the Pairwise 
Majority Rule Loser (PMRL) for the three-candidate case.  These definitions are 
extended in the obvious fashion when more than three candidates are considered.   

Condorcet (1784) comments at length on Borda’s earlier work, and the discus-
sion in the paper makes it very clear that Borda (1784) was indeed using unusual 
terminology while developing his arguments when he makes references to two dif-
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ferent forms of “plurality rule”, rather than referring to two different forms of 
“majority rule”. 

1.3 Borda’s Paradox 

Borda (1784) makes a very interesting observation regarding a possible outcome 
of election procedures after developing the notion of using PMR.  His original ex-
ample of the phenomenon uses the voting situation in Fig. 1.2 for 21 voters with 
linear preferences on three candidates. 

A        A       B                    C
B        C                C         B
C        B       A         A

          11n           72n           75n           66n .

Fig. 1.2 An example voting situation displaying Borda’s Paradox from Borda (1784) 

The concern that is expressed by Borda in this example is related to the out-
come of the election when plurality rule is used to select the winner, versus the 
outcome when PMR is used.   In using plurality rule with the voting situation in 
Fig. 1.2, APB (8-7), APC (8-6) and BPC (7-6) to give a linear ranking by plurality 
rule, with APBPC.  A very different result is observed using PMR.  Here, BMA
(13-8), CMA (13-8) and CMB (13-8) to give a linear PMR ranking, with CMBMA.
With this particular voting situation, plurality rule and PMR reverse the rankings 
on the three candidates. We refer to this phenomenon as an occurrence of a Strict 
Borda Paradox.

Borda was particularly distressed by the fact that the PMRL would be chosen 
as the winner by plurality rule, leading to his suggestion that plurality rule should 
never be used.  Borda (1784) also suggests that C, the PMRW, “is really the fa-
vourite”.   However, the main concern expressed in Borda’s work was the possi-
bility of the negative outcome that the PMRL could be selected as the winner by 
plurality rule.  We define a Strong Borda Paradox as a situation in which plurality 
rule elects the PMRL, without necessarily having a complete reversal in plurality 
rule and PMR rankings. 

Borda blames the possible existence of a Strong Borda Paradox on the failure 
of plurality rule to allow voters to report their complete preference rankings on all 
of the possible candidates. An explanation of the phenomenon is given in terms of 
the particular example that he posed in Fig. 1.2: 

“On reflection, we see that candidate A gains the advantage only because candidates B
and C have more or less equally split the 13 votes against him.  We might compare them to 
two athletes who, having exhausted themselves competing against one another, are beaten 
by a third who is weaker than either.” 
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1.3.1 Actual Occurrences of Various Forms of Borda’s Paradox 

It is always of interest to know if occurrences of such hypothetical examples like 
the ones identified by Borda have ever been observed in an actual election, and a 
number of studies have been conducted to try to find examples in which various 
forms of Borda’s Paradox might have occurred. 

Weber (1978a) presents a widely cited example of a Strong Borda Paradox in 
the 1970 U.S. Senate election in New York State.  The three candidates were 
James Buckley who was endorsed by the Conservative Party, Charles Goodell 
who was endorsed by both the Liberal Party and the Republican Party, and Rich-
ard Ottinger who was endorsed by the Democrat Party.  Public opinion polls indi-
cated that the majority of voters were liberal, and that their preferences were split 
between Goodell and Ottinger.  The political conservatives strongly supported 
Buckley.   

There is little doubt that either Goodell or Ottinger would have beaten Buckley 
by PMR, given the plurality rule percentage votes for the three candidates: Buck-
ley (38.8%), Goodell (24.3%) and Ottinger (36.9%).  Buckley would have been 
the PMRL in this election, but he was elected, based on plurality rule.  Riker 
(1982) presents a similar analysis of this same election and concludes that Ottinger 
would have been the PMRW. 

Riker (1982) performs an analysis of the 1912 U.S. Presidential election, with 
the three primary candidates being Roosevelt (R), Taft (T) and Wilson (W).   Riker 
reconstructs the probable preference rankings of 93 percent of the voters, with es-
timates of the percentage of voters that held each of these preference rankings, as 
shown in Fig. 1.3: 

     W   R   T 
     R   T   R 
     T   W   W 
   42%  27%  24% 

Fig. 1.3 Voting situation for the 1912 U.S. Presidential election. Reprinted from Riker 
(1982) by permission of Waveland Press, Inc. All rights reserved.  

Roosevelt would have been the PMRW and Wilson would have been the 
PMRL, regardless of the preferences of the seven percent of “Other voters” whose 
preferences could not be determined.  However, Wilson was the plurality winner, 
with 42 percent of the votes, resulting in an example of a Strong Borda Paradox. 

Van Newenhizen (1992) gives an example suggesting the possible existence of 
a Strong Borda Paradox, as observed in the 1988 national elections for Prime Min-
ister of Canada.  A critical issue in that election regarded the candidates’ stands on 
the proposition of establishing a free trade agreement between Canada and the 
United States.  Polls showed that approximately 60 percent of Canadian voters 
were opposed to the establishment of such an agreement, but their votes were di-
vided between two anti-free trade candidates, while the single pro-free trade can-
didate won the election by plurality rule.  Assuming that no other issues of the 
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candidates’ platforms dominated the issue of their stand on the free trade agree-
ment, this would seem to constitute an example of a Strong Borda Paradox. 

Colman and Poutney (1978) examine survey results of voters’ preferences in 
261 different three-candidate contests in British General Elections.  Complete 
voter preference rankings are reconstructed from survey results.  Two forms of 
Borda's Paradox are considered in the study. Their ‘strong form’ is identical to the 
definition of a Strong Borda Paradox above.  Their ‘weak form’ occurs when 
AMC, BMC, and either CPB or CPA.  We define this as an occurrence of a Weak 
Borda Paradox.  No occurrences of a Strong Borda Paradox were observed, but 
14 of the 261 elections exhibited the occurrence of a Weak Borda Paradox. 

Forsythe, et al. (1993) conduct an experimental study in which each subject 
voter in a pool of subjects was given a specified hypothetical preference ranking 
on fictitious candidates, and elections were then held by plurality rule.  The pref-
erence rankings that were distributed to subject voters were contrived to force an 
outcome of a Strong Borda Paradox if voters actually voted according to their 
given hypothetical preferences.  When voters gained information about other vot-
ers' preferences through repeated elections, or through the presentation of pre-
election poll results, a Strong Borda Paradox occurred infrequently in actual vot-
ing by the subjects.  Upon observing that the PMRL would win the election, the 
voters often chose to vote for their second ranked candidate to prevent that out-
come.  It is therefore concluded that the presence of pre-election polls is likely to 
significantly reduce the likelihood of actually observing a Strong Borda Paradox 
in practice, despite the fact that the outcome would result if sincere voting would 
actually be used.   

Bezembinder (1996) considers the possibility that a Strict Borda Paradox, 
which is called the “Plurality Majority Converse” in that study, might occur with 
the assumption of a restricting condition on voters’ preferences.  Statistical analy-
sis of actual voting results is used to consider the possibility that a Strict Borda 
Paradox might have occurred during voting in the era of the Weimar Germany.  
The general conclusion is that the election results that were analyzed show a large 
number of disagreements between plurality rankings and PMR rankings, but they 
fall short of displaying a Strict Borda Paradox, as it has been defined above.  All 
of these findings lead to the conclusion that Borda’s Paradox can exist in its vari-
ous forms, although it might not be a regularly observed phenomenon. 

1.3.2 Borda’s Solution to the Possibility of Borda’s Paradox 

Borda (1784) proposed two election procedures to deal with the possibility that 
various forms of Borda’s Paradox might occur.  The first procedure simply calls 
for using PMR on all pairs of candidates to directly determine the PMRW.  With 
the admission that such a process would be extremely time-consuming, Borda 
makes a second suggestion.  The procedure that he calls “election by order of 
merit” has come to be known as Borda Rule.  It states that each voter should first 
rank all of the candidates, and then each voter’s most preferred candidate in an m
candidate election should receive bma 1  points, the second most preferred 
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candidate should receive bma 2  points, ..., and the least preferred candidate 

should receive bmma  points.  The winner is determined by summing the 

points that are received by each candidate from all of the voters, and declaring the 
candidate with the most points as the winner.  Borda suggests using the particular 
weighting scheme with a = b = 1, so that the points awarded to a candidate by a 
given voter reduces to the rank that the candidate has in that voter’s preference 
ranking on the candidates.  Here, a rank of one refers to a voter’s least preferred 
candidate and a rank of m refers to the voter’s most preferred candidate. 

For a general voting situation as described in Fig. 1.1 with n voters and three 
candidates, the points scored for A, B and C with Borda Rule with a = b = 1 would 
respectively be AScore , BScore  and CScore  with:  

AScore  = 654321 123 nnnnnn
BScore  = 426153 123 nnnnnn
CScore  = 315264 123 nnnnnn .

(1.1)

For the particular example given from Borda (1784) in Fig. 1.2, we obtain 
CScore = 47, BScore  = 42, and AScore  = 37.  If we let ABB denote the 

event that A beats B by Borda Rule, we get a linear ranking on the candidates, with 
CBBBA.   This ranking of candidates in the reverse order of the ranking by plural-
ity rule, and it is in perfect agreement with the ranking that was obtained by PMR.  
McLean (1990) notes that Nicolas Cusanus suggested a voting rule exactly like 
Borda Rule, without any mathematical justification for using it, some 400 years 
before Borda’s work. 

Some authors have suggested that Borda (1784) was making a claim that 
Borda Rule would always select the PMRW [see Merlin, et al. (2002), for exam-
ple].  However, this assertion is not specifically made in Borda (1784).  As 
pointed out in Nurmi (1999, pg. 13): 

 “Since this is the only example discussed in Borda’s paper, we are left somewhat uncer-
tain about whether Borda at the time of presenting his paper believed that his method would 
always elect a Condorcet winner (PMRW).”   

As stressed before, Borda was primarily concerned with the notion that the PMRL 
should not be selected as the winner. 

Condorcet (1785c) develops the general notion of weighted scoring rules, and 
Borda Rule is a special case of these types of rules.  Weighted scoring rules give 
some number of points to candidates according to their relative position within in-
dividual voter’s preference rankings.  For three candidates, a general weighted 
scoring rule assigns three points to a candidate for each most preferred ranking in 
a voter’s preferences,  points for each second place ranking, and one point for 
each least preferred ranking.  Borda Rule with a = b = 1 is a weighted scoring rule 
with 2 .  We restrict 31 since it would not make sense to award more 
points to the middle ranked candidate in a voter’s preference ranking than to the 
most preferred candidate in the ranking, or to award fewer points to the middle 
ranked candidate than to the least preferred candidate. 
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Daunou (1803) presents a simple proof that Borda Rule cannot rank the 
PMRW in last place in an m-candidate election.  Consider the special case of 

Borda Rule with a = b = 1, so that each voter assigns a total of 
2

1mm
 points to 

candidates in an m-candidate election. The total number of points assigned to can-

didates by all voters is 
2

1mnm
, and the average total number of points received 

by a candidate from all voters is therefore
2

1mn
. It is then argued that if some 

candidate is the PMRW, that candidate will have the minimum Borda Score for a 

voting situation in which it is most preferred by 
2

1n  voters and least preferred by 

2
1n

 voters for odd n.  The PMRW will then have a total Borda Score equal to  

.
2

11
2

1
2

1 mmnnnmPMRWScore
(1.2)

The score of the PMRW is therefore greater than the average score for all candi-
dates, so some other candidate must have a below average score, and thus the 
PMRW cannot have the minimum score.  A similar argument holds when n is 
even. 

Smith (1973) and Gärdenfors (1973) reproduce this same result with a similar 
proof, and Smith (1973) shows that for sufficiently large n, voting situations exist 
such that every weighted scoring rule can rank the PMRW last, except for Borda 
Rule. Fishburn and Gehrlein (1976a) produce similar proofs and note from sym-
metry arguments that for sufficiently large n, Borda Rule is the only weighted 
scoring rule that cannot select the PMRL as the unique winner.  As a result of this 
finding, Borda Rule is the only weighted scoring rule that can meet Borda’s crite-
rion of not electing the PMRL as the winner.   

Gehrlein (1976) develops a linear programming formulation to show that the 
PMRL cannot defeat the PMRW for any weighted scoring rule in three-candidate 

elections when 
1

2
1
42

n
n

n
n

 for odd 5n , and with 
2

2
2
82

n
n

n
n

 for even 

8n .  These ranges for  include Borda Rule for all n.  Saari (1992) conducts a 
more general analysis of weighted scoring rules that use a process of sequential 
elimination of candidates to obtain a winner to conclude that by using weighted 
scoring rules, other than Borda Rule, it is possible to give an advantage to the 
PMRL in winning an election, at the expense of the PMRW. 

Borda (1784) also raises the issue of using linearly decreasing points to obtain 
any given values of a and b in his election by order of merit.  In particular, if some 
voter reports a linear preference ranking with CBA , the use of the linearly 
decreasing 3:2:1 point scale that is suggested by Borda results in the same differ-
ence in point values being assigned as we move from any candidate in the voter’s 
preference ranking to the candidate ranked immediately below it.  This constant 
difference in points being given to consecutively ranked candidates inherently as-
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sumes that B is not considered as being closer to A in the given voter’s true prefer-
ence spectrum than it is to C.  Similarly, we are inherently assuming that B is not 
considered to be closer to C than it is to A.   

This all leads us back to the issue on intensity of preference, when we were 
considering the use of majority rule in two-candidate elections.  If candidates are 
not actually equally spaced along the preference spectrum of some voter, then one 
might argue that the use of linearly decreasing weights does not accurately reflect 
that voter’s true preferences in the election outcome.  Borda (1784, pg. 124) 
clearly does not support the notion of making any attempt to account for the inten-
sity of any particular voter’s preferences by using a nonlinear system of assigning 
points to candidates in voters’ preference rankings, when he states: 

“Furthermore, because of the supposed equality between the voters, each rank must be 
assumed to have the same value and to represent the same degree of merit as the same rank 
assigned to another candidate, or even by another voter.” 

Laplace (1795) addresses the notion of using linearly decreasing weights with 
Borda Rule, and justifies the use of such weights from a purely mathematical per-
spective in general m-candidate elections, with the set of candidates being denoted 

as m
m CCC ,...,, 21C .  Laplace’s arguments are explained here in greater de-

tail than in the original work, since the techniques that he used are directly related 
to later developments.  Consider a model in which each voter represents his or her 
preference ranking on candidates by assigning points to candidates, with a greater 
assignment of points to a candidate indicating a greater preference for that candi-
date.  Voters assign as many points to candidates as they wish in order to represent 
their relative strengths of preference for candidates.  Voters then obtain their linear 
preference rankings on candidates according to the associated ordering of points 
that they have assigned to the candidates.  

Let i
jt  denote the number of points that the thi voter assigns to the thj  candi-

date, and let z define the maximum number of points that a voter might assign to 

any candidate.  Then, each i
jt  can have any real value on the closed interval 

z,0 , and it is independent of the other ijt  values.  We can assume, without a loss 

of generality in this argument, that the thi  voter has a linear preference ranking on 
candidates that is given by mCCCC ...321 .  It then follows that we must 

have a condition on the i
jt ’s for that voter such that i

m
iii tttt ...321 .

Laplace (1795) proceeds to find the expected value of any given ijt  when all fea-

sible combinations of ijt ’s with i
m

iii tttt ...321  are equally likely to be ob-

served. 
We begin by considering the “total sum” of the number of combinations of 

i
jt ’s that meet this condition.  Given the assumption that all possible combinations 
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of i
jt ’s are equally likely to be observed for any voter, we find this “total sum” as 

)( ijtV , with 
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(1.3)

As a second step, we find the “total weighted sum” for a given thj  value of 
i
jt , over the same range of ijt ’s as )(* i

jtV , with
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The expected value of i
jt with an equally likely distribution over all possible 

combinations of ijt ’s is then given by the ratio )(/)()( * i
j

i
j

i
j tVtVtE , with 

.
1

1
m
jmz)E(tij

(1.5)

The result in Eq. 1.5 leads directly to the conclusion that the use of linearly de-
creasing weights in a scoring rule, like those suggested by Borda with 

1m
zba , is consistent with using weights that match the expected strengths of 

preference on candidates for a given voter.  This conclusion is, of course, depend-
ent on the model that is developed to describe how individual voters form their 
preferences on candidates. 

Daunou (1803, pages 262-263) does not agree with the analysis that is pre-
sented in Laplace (1795) and summarizes his general objections with the follow-
ing statement: 

“But why substitute this average term for the precise will of the voters?  In order to de-
fend Borda’s method, we start with the maxim that when the voters are able to express all 
the nuances in their opinions on the relative merit of the candidates, calculating these nu-
ances reveals the general will, and yet we immediately deprive the voters of this possibility 
by setting up an average scale and fixing invariable numbers.” 

Black (1958) argues against the notion of using any scoring rules like those 
suggested by Borda and Laplace.  Black asserts that the concept of rating prefer-
ences in scales like 3:1 or 4:1 is plausible for relative evaluations of things like 
goods in markets.  However, Black asserts that the human mind does not operate 
in the same fashion when performing a relative comparison of candidates in elec-
tions.  Biswas (1994) addresses the issue of ignoring intensity of preference with 
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Borda Rule, and considers the resulting number of voters who are adversely af-
fected by the outcome of voting if Borda Rule is used. 

Laplace (1795, pg. 286) ends his discussion of Borda Rule by stating 

 “This election method would undoubtedly be the best, if considerations other than merit 
did not often influence the choices of even the most honest voters.” 

That is, Borda Rule has a problem with being susceptible to the possibility of stra-
tegic manipulation by voters.  Daunou (1803) gives an example of a voting situa-
tion that explains this phenomenon, with 36 voters and m candidates that are de-

noted by m
m CCC ,...,, 21C .  There are 22 voters who have 1C  ranked as most 

preferred, with 2C  ranked as second most preferred, and with the remaining 

2m  candidates ranked in any order after that.  The remaining 14 voters have 

2C  ranked as most preferred, with 1C  ranked as least preferred, and with the re-

maining 2m  candidates being ranked in any order between them.  Using Borda 
Rule with a = b = 1 we have  

14221 mCScore
mmCScore 141222

361412 mCScoreCScore .

(1.6)

Then, the margin by which 2C B 1C increases as m increases, for all 3m , de-

spite the fact that 1C M 2C  (22-14) for all m.  This example verifies the fact that 

Borda Rule does not necessarily reproduce the rankings that are obtained by PMR.  
Moreover, it shows the effect that strategic voting could have if the supporters of 

2C  were to misrepresent their true preference rankings by falsely reporting that its 

major competitor, 1C , is ranked as least preferred in their preferences.  The prob-

lem of strategic voting with Borda Rule was addressed by a number of critics after 
it was implemented in elections that were held in the French Academy.  Steffan-
son (1991) presents a historical analysis of the actual recorded election results in 
the French Academy from 1796 through 1803 while Borda Rule was being used to 
elect new members to the Academy.  McLean (1995, pgs, 28-29) notes Borda’s 
response to criticisms of his voting rule being vulnerable to manipulation as: “My 
election method is only for honest men.” 

The criticism that Borda Rule is vulnerable to strategic manipulation is some-
what exacerbated by the results of Gibbard (1973) and Satterthwaite (1975) that 
show that effectively all voting rules are subject to strategic manipulation.  Smith 
(1999) considers the degree to which various common election procedures can be 
manipulated through strategic misrepresentation of preferences. The results natu-
rally depend upon how the potential for manipulation is measured.  Borda Rule is 
found to have the least potential for manipulation according to one of these meas-
ures.  In particular, Borda Rule is least susceptible when voters are assumed to 
randomly select another preference ranking when they misrepresent their prefer-
ences. 
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1.3.3 A Characterization of Borda Rule 

Young (1974) examines Borda Rule to consider properties that make it unique 
among voting rules.  In this analysis, voters’ preferences are not defined in terms 
of a voting situation, but in the context of a voter preference profile.  A voter pref-
erence profile associates a specific linear preference ranking on candidates with 
each particular voter, giving a list of n preference rankings on candidates.  The 
preferences of each specific voter are therefore identifiable in a voter preference 
profile, while this is not the case in a voting situation.  Young analyzes general so-
cial choice functions that select a subset of winning candidates from a set of all 
possible candidates.   

Let n
mQ  denote a voter preference profile on a set, m

m CCC ,...,, 21C , of m

candidates, where each of n individual voters has linear preferences on the candi-
dates.  A social choice function,  f , is an election procedure that selects a subset of 

winning candidates, n
mQf , given the voters' preferences in the voter preference 

profile, n
mQ .  Obviously, mn

mQf C .

A social choice function is anonymous if the winning candidates in n
mQf  can 

be determined simply from a knowledge of the voting situation that follows from 
the voter preference profile.  That is, the specific preference rankings that are held 
by any particular individual voters do not need to be known in order to determine 

the winning candidates in n
mQf , only the number of voters with each preference 

ranking must be known. 

Suppose that the identities of the candidates in mC  are interchanged according 

to some permutation, mC .  There will be a corresponding change in candidate 

identities in any associated n
mQ , to obtain the modified profile n

mQ .  A social 

choice function is neutral toward candidates if n
m

n
m QfQf .  That is, the 

subset of winners from the modified profile must be identical to the subset of win-
ners from the original profile, accounting for the interchange of names that is 

specified by mC .

Assume that we have profiles 'n
mQ  and "n

mQ  on the candidates in mC  for two 

distinct sets of voters, with n' and n" members in the respective sets.  We also 
suppose that there is at least one common candidate in the winning subsets from 

the two profiles, such that "' n
m

n
m QfQf .  The combined profile "' n

m
n
m QQ

is obtained by merging the preference rankings of the voters in the two profiles to 
obtain a single voter preference profile.  A social choice function is consistent if 
the winning subset from the combined profile is identical to the subset of candi-
dates that are common to both of the winning subsets of the individual profiles, 

with "'"' n
m

n
m

n
m

n
m QfQfQQf .
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Let 1
mQ  represent the preferences for a profile containing only one voter.  A 

social choice function is faithful if the winning candidate, 1
mQf , is the most pre-

ferred candidate for the individual voter.  A social choice function has the cancel-
lation property if any given voter's pairwise preference ji CC  will be offset, or 

cancelled-out, by any other voter's pairwise preference with ij CC .  It follows 

that a social choice function with the cancellation property must declare a tie be-
tween candidates iC  and jC  if the number of voters having pairwise preferences 

with ji CC  is the same as the number of voters with ij CC .

Young (1974) proves that Borda Rule is the only social choice function that is 
neutral, consistent, faithful, and has the cancellation property.  Since each of these 
properties sounds quite desirable, this finding is a strong endorsement for the use 
of Borda Rule. Gärdenfors (1973) develops another characterization, and Nitzan 
and Rubinstein (1981) develop a characterization of Borda Rule for situations in 
which individual voters do not necessarily have transitive preferences.    

Much work has been done on characterizations of Borda Rule and other related 
voting procedures.  Work on characterizations is not the focus of the current study, 
and the intent here is simply to point out that there are positive characteristics of 
Borda Rule that make it unique among all voting rules.  Saari (1996) and Brams 
and Fishburn (2002) list many other positive characteristics of Borda Rule. 

1.4 Condorcet’s Paradox 

Condorcet wrote a series of papers that extended some of the ideas in Borda 
(1784), and criticized others.  As the series of articles progressed, Condorcet’s 
tone became more antagonistic toward Borda’s work.  Condorcet routinely 
stressed the criterion that the winner of any election should be the PMRW, which 
has led to the common use of the term Condorcet Criterion to refer to this notion.  
And, this is why the PMRW is commonly referred to as the Condorcet Winner.  
Condorcet searched tirelessly to find a simple voting procedure that would elect 
the PMRW.  As mentioned before, Borda was the first to suggest that the PMRW 
should win an election, but Borda was much more concerned about the undesir-
able possibility of electing the PMRL. 

Condorcet (1785b) begins his analysis with an example voting situation on 60 
voters with linear preference rankings on three candidates, as shown in Fig. 1.4: 

   A      C          B   C
   C      A          C        B

   B      B          A          A
          232n       24n     195n        166n .

Fig. 1.4 A voting situation with a Strict Borda Paradox from Condorcet (1785b) 
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With plurality rule voting, A gets 23 votes, B gets 19 votes, and C gets 18 
votes, so the rank by plurality rule is the linear order APBPC. Condorcet then goes 
on to note that on the basis of PMR: CMA (37-23), CMB (41-19) and BMA (35-
25).  The result of PMR voting is then a linear rank, with CMBMA.  Thus, the 
ranking by plurality is the reverse of the ranking by PMR, exactly as in the result 
given by Borda (1784).  Like Borda, Condorcet states that this situation results 
from ignoring additional information that could be obtained by requiring voters to 
report preference rankings on candidates “in order of merit”.  No mention is made 
of Borda’s earlier work in Condorcet (1785b). 

Condorcet (1785b) then continues with a famous example of a voting situation 
with 60 voters on three candidates, as shown in Fig. 1.5: 

A     B         B C      C
B     A         C   A          B      
C     C         A B      A

          231n      23n    174n         105n       86n .

Fig. 1.5 A voting situation showing a PMR cycle from Condorcet (1785b) 

Here, Condorcet notes that we have a “contradictory system” that represents 
what has come to be widely known as Condorcet’s Paradox.  In particular, we 
find that PMR comparison leads to: AMB (33-27), BMC (42-18), and CMA (35-
25).  There is a cycle in the PMR relation on the three candidates, so that no can-
didate emerges as being superior to each of the remaining candidates.  Given Con-
dorcet’s strong arguments that the PMRW should always be selected as the win-
ner, we are left with a difficult question in this case.  In particular, “Which 
candidate should be selected as the winner?” 

We noted before that Condorcet was quite adamant in his argument that a lack 
of transitivity of preference for individual voters was so contradictory, that a sys-
tem must be used to eliminate “such absurdities”.  However, after eliminating in-
transitivity from the preferences of individual voters, we find that collective 
choice of voters from PMR still might produce intransitive results, suggesting an 
irrational response in the collective choice of rational voters. 

It was stressed before that Borda, Daunou and Laplace were not at all in favor 
of using anything other than linearly decreasing weights in a weighted scoring rule 
to account for intensity of voters’ preferences.  However, Saari (1995a) makes an 
argument that is based on intensity of preference to justify using Borda Rule, in-
stead of following Condorcet’s suggestion and directly using a PMR based ap-
proach to find a winner.  The argument is that any criterion like the one proposed 
by Condorcet can result in a lack of “inner consistency” in the form of the PMR 
cycles that were just observed, since this criterion ignores some dimensions of 
preference.  Specifically, suppose that a given voter has the linear preference rank-
ing on the three candidates CBA .  Condorcet only accounts for the fact that 

CA  in a PMR comparison between A and C, thereby ignoring the “intensity” 
of preference between A and C, since B appears between them in the ranking.  
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PMR cycles therefore arise because certain information in the preference ranking 
is being ignored, following previous notions that were given in Borda (1784). 

Transitivity of collective choice is often held as a standard of rational behavior 
for group decisions.  The lack of transitivity is typically discussed with a very 
negative connotation.  It is referred to:  as reflecting “some uncertainty of opinion” 
by Condorcet (1785b), as lacking “inner harmony” by Riker (1961), as “discor-
dant” by Fishburn (1973a), as “anarchic” by MacKay and Wong (1979), as “de-
mocratically unpalatable” by Riker (1982) and as “chaotic” by Coggins and Perali 
(1998).  The existence of PMR cycles is said: to “lead to inconsistencies” by Sen 
(1970, pg. 38), to lead to political “incoherence” by Riker and Ordeshook (1973, 
pg. 84), to lead to “arbitrary” political decisions by Oppenheimer (1975), to lead 
to a lack of “viability” by Abrams (1976), to lead to “instability” by both Koehler 
(1975a) and Marhuenda and Ortuño-Ortín (1998), to lead to “pathology” by 
Brams (1976, pg. 29), and to result in a lack of “stability” by Fishburn and 
Gehrlein (1980a). 

Miller (1983) takes exception to the notion that the existence of PMR cycles is 
necessarily a bad phenomenon.  A number of historical quotes are given to suggest 
that conditions leading to PMR cycles are likely to result from the electorate hav-
ing opinions that are “crosscut” in many different ways.  This situation results in 
the electorate routinely forming different factions on many different issues over 
time, to obtain desired outcomes.  The end result of this routine change in factions 
is argued to lead to political stability and viability, without having long-term total 
domination of minorities.  

Rae (1980) criticizes some work of Riker (1980), regarding the suggestion that 
PMR cycles reflect “incoherence” within group decision-making.  Rae uses a 
number of quotes, particularly from Dahl (1956), to argue that transitivity of PMR 
is not a reasonable restriction on group preferences, and concludes with the state-
ment:

“An understanding of majority rule, of democracy, of liberalism which does without 
utilitarianism, and which does more than assert that rights are right, must travel a more 
mysterious space, must walk up odder stairs, and must employ a more intricate altimeter 
than transitive consistency.” 

In his famous work in the area of social choice theory, Arrow (1963) argues 
that the idea of requiring transitivity of group preference from voting procedures, 
including PMR, is indeed a very important aspect of describing rational behavior 
in collective choice. However, he acknowledges the work of other researchers in 
the area [Arrow (1963), pg.118)] who suggest “that a social decision process 
might well sacrifice transitivity if necessary to satisfy other conditions.”  Fishburn 
(1970) presents a number of interesting arguments, with examples, to lead to the 
conclusion that it is not really reasonable to expect social choice rules, including 
PMR, to be transitive.  Bar-Hillel and Margalit (1988) also perform an analysis of 
the logic of the assumption of group transitivity to reach a similar conclusion. 

Condorcet (1785c) continues with his analysis of intransitive PMR voting 
situations, to show that there might be a PMRW with more than three candidates, 
while there is a cycle in the PMR relationship on the remaining candidates.  Thus, 
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a distinction is made between the possibility that there is a PMRW and the possi-
bility that the PMR is completely transitive over all candidates. With only three 
candidates, the existence of a PMRW ensures that the PMR ranking over all can-
didates is transitive. Condorcet notes that the possible existence of this situation 
on more than three candidates is of no consequence to the superiority of the 
PMRW, as long as only one candidate is being elected.   

McGarvey (1953) generalizes Condorcet’s observation by developing a proce-
dure for constructing voting situations with an arbitrary number of voters with lin-
ear preference rankings, to prove that it is possible to have any possible combina-
tion of PMR outcomes on pairs for a finite number of candidates. Stearns (1959) 
obtains McGarvey’s result with a procedure for constructing voting situations that 
requires significantly fewer voters to produce the desired result, and Deb (1976) 
generalizes McGarvey’s result to cover a larger class of voting rules than just 
PMR. 

Condorcet (1785d) does acknowledge the earlier work of Borda (1784), and 
refers to Borda as “a famous mathematician”.  Condorcet writes that he had heard 
of Borda’s earlier results, but did not know that anything had been written on the 
topic.  This statement seems a bit confusing, since Condorcet (1784, pg. 121) pro-
vided written comments on Borda’s work, stating: 

“M. de Borda’s observations on the drawbacks of the election method used almost eve-
rywhere are very important and totally original.”   

McLean (1995) suggests that Borda probably played little or no role in the 
process of having his 1770 paper published.  In fact, it was Condorcet who chose 
to add Borda’s 1770 paper to the Proceedings of the French Academy of Science 
in 1781, which was not actually published until 1784.  This could leave a reader 
with the impression that Borda’s work was done much later than when it actually 
was presented before the French Academy. 

McLean (1990) and Gylmour, et al. (1998) note that a voting rule that is very 
similar to using a procedure to find the PMRW was discussed by Ramon Lull, 
without any mathematical development, over 500 years before Condorcet’s work 
appeared.  The possibility that a PMR cycle might exist has a history of rediscov-
ery by a number of other researchers after Condorcet, including C. L. Dodgson 
[Lewis Carrol] (1885a), Huntingdon (1938) and in a series of articles by Black 
(1948a, 1948b, 1948c, 1948d, 1949a, 1949b, 1949c).  Thorough reviews of the 
history of Condorcet’s paradox can be found in Granger (1956), Black (1958) and 
Riker (1961). 

1.4.1 A Characterization of PMR 

May (1952) examines characteristics of PMR on a pair of candidates to consider 

properties that make it unique among voting rules.  Let nQ2  denote a voter prefer-

ence profile for n voters on a pair of candidates, 21
2 ,CCC .  Each individual 

voter in the preference profile has some preference, or indifference, on the candi-
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dates in the pair.  A social choice function,  f , selects a subset of winning candi-

dates, nQf 2 , given the voters’ preferences in the profile, nQ2 , with 
2

2 CnQf .  A social choice function is decisive if nQf 2  is never empty, so 

that  f always selects some winner, even if this results in a tie with 2
2 CnQf .   

Assume that we have a profile nQ2  for the two candidates in 2C  and that 
n

i QfC 2 .  That is, either f selects 2CiC  as the single winner based on the 

preferences in nQ2 , or there are tied winners with 2CnQf 2 .  Now suppose that 

some voter changes his or her preferences on the candidates within nQ2  to obtain a 

modified profile nQ2
ˆ .  Furthermore, that voter changes preference in a manner to 

show increased support for iC . As a result, this voter could not have had iC  as the 

more preferred candidate in nQ2 .  Increased support can result from changing 

from iC  being the voter’s less preferred candidate to having indifference between 

the two candidates, or from any change that results in iC  becoming the voter’s 

more preferred candidate.  A social choice function is positively responsive if it 

must then be true that i
n CQf 2

ˆ .  With increased support, iC  will remain as the 

single winner if it was the single winner with the original profile, and it will be-
come the single winner if it was tied as the winner with the original profile. 

Using the same definitions of anonymous and neutral social choice functions 
from Young (1974) that were developed in the characterization of Borda Rule ear-
lier in our discussion, May (1952) proves that Simple Majority Rule is the only
social choice function that is always decisive, anonymous, neutral and positively 
responsive.  Since each of these properties sounds quite reasonable on its own, this 
finding is a strong endorsement for the use of Simple Majority Rule.  This charac-
terization for a pair of candidates can be extended to PMR for general m-candidate 
elections since the general case corresponds to a series of simple majority rule de-
cisions on pairs of candidates. There have been many different characterizations of 
PMR since the one proposed by May (1952), with a recent one being given in 
Göksel and Sanver (2002). 

Young (1974) notes that PMR exhibits all of the properties in the characteriza-
tion of Borda Rule when attention is restricted to profiles that have a PMRW.  
However, the fact that PMR does not necessarily have a PMRW, so that we could 

have n
mQf  for some n

mQ , eliminates PMR from consideration as a true social 

choice function, as defined in Young's analysis of Borda Rule. 
Factors that are related to the determination of the likelihood that Condorcet’s 

Paradox might occur in practice are the primary focus of this study.  Any study of 
this type would therefore be of little significance if Condorcet’s Paradox has never 
been observed in a real situation.  Numerous studies have been conducted to find 
empirical examples of Condorcet’s Paradox, and a thorough survey of that work is 
the topic of the next chapter. 
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1.5. Condorcet’s Other Paradox 

Condorcet continued with other papers that considered voting rules like the one 
that Borda suggested.  This is done with an example voting situation, as shown in 
Fig. 1.6, with 81 voters on three candidates in Condorcet (1785c): 

A    A   B   C   B   C
B    C   A      A     C   B
C    B   C      B   A   A

          301n    12n 293n 104n 105n 16n .

Fig. 1.6 A voting situation showing Condorcet’s Other Paradox from Condorcet (1785c) 

The use of PMR with this voting situation results in the outcome: AMB (41-40) 
and AMC (60-21), so that we have A as the PMRW. 

Using Borda Rule with a = b = 1, we have  

.190111312393
182111392313

***BScore
***AScore (1.7)

Here, we have BBA when A is the PMRW, to show again that Borda Rule does not 
always elect the PMRW. 

Condorcet (1785c) then goes farther with the example voting situation in Fig. 
1.6 to show a phenomenon that Fishburn (1974a) refers to as Condorcet’s Other 
Paradox.   This argument involves analyzing this voting situation with a general 
weighted scoring rule with weights 3,  and 1, as described in earlier discussion.  
Condorcet computes AScore  and BScore  for this general weighted scoring 

rule: 

.11131393
11139313
***BScore
***AScore (1.8)

In order for the PMRW, A, to be elected by this weighted scoring rule, we must 
have: 

BScoreAScore
3112839104

248
.3

(1.9)

This contradicts our definition of a weighted scoring rule, and it follows that no 
weighted scoring rule, including Borda Rule, can elect the PMRW in this exam-
ple, which is Condorcet’s Other Paradox.  Fishburn (1974a) generalizes Condor-
cet’s Other Paradox for all 3m , to show that there is some voting situation with 
a PMRW in an m-candidate election, such that every weighted scoring rule will 
have at least 2m  candidates with a greater score than the PMRW. 
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Condorcet (1788b) considers Borda’s work again and becomes more aggres-
sive in his attack on Borda Rule.  He gives the example voting situation that is 
shown in Fig. 1.7 for 30 voters on three candidates: 

A   A   B     C   B   C
B   C   A    A       C   B
C   B   C    B   A   A

          91n     32n    43n 44n 65n 46n .

Fig. 1.7 An example voting situation in which Borda Rule does not elect the PMRW and 
Plurality Rule does from Condorcet (1788b) 

In this particular example, AMB (16-14) and AMC (16-14), so A is the PMRW.  
With election by plurality: A receives twelve votes, B receives ten votes, and C re-
ceives eight votes.  We therefore find that plurality rule elects the PMRW.  When 
we use Borda Rule the scores for candidates are: 

.551319283
6371132103
6210182123

***CScore
***BScore
***AScore (1.10)

For this example, we have BBA, so Borda Rule fails to elect the PMRW, while 
plurality rule, that Borda discredited, does so.  Condorcet (1788b, pg.145) writes:  

“This new method (Borda Rule) is not only no better than the conventional one (plural-
ity), it is actually worse. At least with the conventional method, it is just a possibility that 
the result was wrong and that we are going against the true will of the plurality.  With the 
new method we can be sure that it was wrong and that we are having to act in accordance 
with totally erroneous results.” 

At later times, Condorcet became very antagonistic toward Borda, referring to 
him as “having abandoned mathematics for petty applied science” [Baker (1975), 
pg. 42] and as having written papers “that nobody has ever spoken of … or ever 
will” [McLean (1991), pg. 15].  Young (1995) refers to these comments as show-
ing “a certain amount of personal venom.”  Baker (1975, pg. 42) also reports a 
dispute that arose as a result of an attempt by D’Alembert to obtain financial pay-
ment for Condorcet when Condorcet was appointed as assistant secretary of the 
French Academy of Science. On the other hand, Black (1958, pg. 179) claims that 
Borda and Condorcet remained close friends throughout their lives. 

Condorcet was later accused of treason, and he was to be tried as an enemy of 
the state after it became known that he had anonymously written a pamphlet to 
urge citizens to reject a constitution that was being proposed during the Reign of 
Terror.  McLean (1995) notes a report that Borda risked his own life in making a 
plea for clemency on behalf of Condorcet while Condorcet was in hiding during 
this time.  Condorcet made an attempt to escape after being in hiding for some 
time, but he was ultimately caught in a very unusual episode.  He was imprisoned 
and was found dead in his cell two days later.  Thorough biographies of Condorcet 
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can be found in Schapiro (1934), Morley (1965), Baker (1975), Badinter and 
Badinter (1988), Rosenfield (1989), and McLean and Hewitt (1994). 

Given the long history of the debate over which voting rule makes the most 
sense to use, it is quite fascinating that the debate still continues.  Felsenthal and 
Machover (1992) argue strongly for the use of Condorcet’s suggestion of finding 
the PMRW.  Saari (1995b) argues strongly for the direct use of Borda Rule in all 
elections.  Black (1958) suggests that a hybrid model should be used to elect the 
PMRW when there is one, and to use Borda Rule when a PMRW does not exist.   

Saari (1995b) goes well beyond simply supporting the use of Borda Rule in all 
situations, and goes on to attack the basic concept of using any form of PMR to 
find the winner in an election.  To describe the basis of Saari’s argument, we de-
fine two different voter preference profiles in a three-candidate election.  Voter 
Profile 1 is shown in Fig. 1.8, and it consists of three rational voters with linear 
preference rankings: 

Voter 1:  BA , CB , CA
Voter 2:  CB , AC , AB
Voter 3:  AC , BA , BC .

Fig. 1.8 Example Voter Profile 1 from Saari (1995b) 

By using PMR with the linear preference rankings in Voter Profile 1, we have an 
example of Condorcet’s Paradox, with AMB (2-1), BMC (2-1) and CMA (2-1). 

Voter Profile 2 in Fig. 1.9 shows an example in which there are three irrational 
voters with complete, but intransitive, preferences: 

Voter 1:  BA , CB , AC
Voter 2:  BA , CB , AC
Voter 3:  AB , CA , BC .

Fig. 1.9 Example Voter Profile 2 from Saari (1995b) 

Using PMR on Voter Profile 2, we obtain the results AMB (2-1), BMC (2-1) and 
CMA (2-1), which is identical to the results from Voter Profile 1. 

Saari (1995b, pg. 48) uses the outcome of obtaining identical results from 
these two voter preference profiles to claim that PMR procedure has  

“… an inability to distinguish between transitive and intransitive preferences: conse-
quently the pairwise vote (PMR) loses the critical assumption of transitive voters!”   

He notes that Condorcet was very careful to impose transitivity on individual vot-
ers, but then suggested a system of voting that “surreptitiously drops it” as a con-
dition of aggregated behavior for the electorate.  However, Saari (1995b, pg. 46) 
acknowledges that the notion of seeking the PMRW as the winner in an election 
does have “nearly universal acceptance”.  Risse (2005) presents arguments that are 
very strongly in opposition to the analysis that Saari presents in his criticisms of 
the notion of considering procedures that are associated with finding the PMRW. 
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1.6 The Paradox of Multiple Elections 

Other types of voting paradoxes can be observed if we consider a sequence of in-
dependent majority rule elections, in which a final accept-reject vote is made in 
each stage, without regard to the outcomes of any other elections.  For example we 
might consider a set of independent proposals that are being voted on by a com-
mittee, and each individual proposal would be passed or defeated by majority rule 
by the committee.  The Paradox of Multiple Elections can exist in such situations, 
and it shows inconsistencies that can be observed in voter behavior. 

Brams, et al. (1998) consider an example in which a committee is considering 
three possible proposals that are denoted as CBA ,, .  Each proposal will be con-

sidered in turn, with the passage or rejection of each proposal being independently 
determined on the basis of majority rule.  Voters will vote yes (Y) or no (N) on 
each of the individual proposals, given their preferences on the outcome.  A given 
voter’s preferences on the proposals can then be stated in terms of some combina-
tion of Y-N votes over the three proposals.  Consider the example of such a situa-
tion in Fig. 1.10: 

 Proposal A    Proposal B    Proposal C        Number 
 Preference    Preference    Preference       of Voters 
        Y            Y            Y   3 
        Y            Y            N   1 
        Y            N            Y   1 
        N            Y            Y   0 
        Y            N            N   1 
        N            Y            N   3 
        N            N            Y   3 
        N            N            N   1 

Fig. 1.10 An example voting situation for the Paradox of Multiple Elections from Brams, et 
al. (1998) 

In this example, there are three voters with preference YYY on proposals A, B,
and C respectively, one voter with preference YYN, and so on.  The outcomes of 
the three different majority rule votes in the series of elections are given by: NMY
(7-6) for A, YMN (7-6) for B, and YMN (7-6) for C.  Thus, majority rule produces 
the outcome NYY, so that A is rejected, while B and C are both accepted.  How-
ever, the outcome NYY does not represent the preferences of a single voter, which 
is an example of the Paradox of Multiple Elections. 

Brams, et al. (1998) go on to show that the conditions that lead to the existence 
of the Paradox of Multiple Elections are a generalization of the conditions that 
lead to the existence of Condorcet’s Paradox.  Scarsini (1998) develops a more 
general form of the Paradox of Multiple Elections. 
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1.7 The Vote Trading Paradox 

The Vote Trading Paradox can take place in situations like those that are de-
scribed for the Paradox of Multiple Elections, where a series of independent ma-
jority rule elections are taken for separate issues.  In this case, each of the voters 
receives some payoff or loss that is associated with each issue that is being con-
sidered.  The voters’ payoffs or losses depend upon whether the issues are passed 
or defeated by majority rule, and once a vote has been taken on an issue the out-
come is final for that issue.  These payoffs or losses could reflect the benefit or 
loss for the constituency that a voter represents.  The issues are independent, so 
that each is passed or defeated without regard to the outcome of any other issues.   

Fig. 1.11 lists the payoffs and losses for an example in which three voters are 
considering six issues, FEDCBA ,,,,, , following an example from Riker and 

Brams (1973).   Voter 1 will receive a payoff of one if Issue A is passed by major-
ity rule, and a loss of two will be incurred if Issue A is defeated by majority rule. 

    Voter 1    Voter 2      Voter 3 
  Issue             Pass   Defeat       Pass     Defeat        Pass    Defeat
     A   1         -2 1 -1        -2  2 
     B    1         -2            -2           2   1 -1 
     C   1         -1            -2  2   1 -2 
     D  -2          2 1 -1   1 -2 
     E  -2          2 1 -2   1 -1 
     F   1         -1 1 -2  -2  2 

Fig. 1.11 Voter payoffs for vote trading example from Riker and Brams (1973) 

Rational voters will decide to vote Yes (Y) or No (N) on each issue in an effort 
to maximize their own resulting overall benefit from having that issue pass or fail 
by majority rule.  Voter 1 would therefore vote Y on Issue A, since the associated 
payoff of one when that issue passes is greater than a loss of two for this voter 
when Issue A is defeated.  Fig. 1.12 shows the votes that the voters would cast on 
all issues with such sincere voting. 

 Voter 1   Voter 2  Voter 3      Election       Voter 1  Voter 2 Voter 3 
Issue   Vote     Vote      Vote        Outcome      Payoff   Payoff   Payoff
  A      Y       Y      N               Pass  1  1 -2 
  B      Y       N          Y         Pass       1 -2  1 
  C      Y       N          Y         Pass         1 -2  1 
  D      N       Y     Y                Pass       -2  1  1 
  E      N       Y     Y         Pass      -2  1  1 
  F      Y       Y     N         Pass  1  1 -2 
    Total Payoff  0  0  0 

Fig. 1.12 Total voter payoff with sincere voting for vote trading example from Riker and 
Brams (1973) 
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All issues will pass as a result of sincere voting, and each voter would have a total 
payoff of zero from the election outcomes on the three issues. 

Vote trading, or logrolling, is a process by which some subset of the voters can 
act together to misrepresent their true preferences in the series of issues that are 
being considered.   As a result of vote trading, the subset of voters who participate 
in misrepresenting their preferences can increase their final payoff over that which 
would be obtained from voting according to their true preferences.  The increased 
payoff for participating voters comes at the expense of voters who were not par-
ticipating in the vote trading. 

For example, given advance knowledge of what the outcomes in this particular 
example would be with sincere voting, Voter 2 and Voter 3 can consider a trade of 
votes on Issues A and B.  Both can obtain a higher total payoff from the outcome 
of voting on these two issues by misrepresenting some of their preferences. If the 
vote of Voter 2 is changed to N for Issue A, that issue would then be defeated by 
majority rule. The payoff to Voter 2 will decrease from a gain of one to a loss of 
one as a result, but the payoff to Voter 3 will increase from a loss of two to a gain 
of two.  In return, the vote for Voter 3 will be changed to N on Issue B, so that it 
will also be defeated.  Voter 3 will have a reduction in payoff from a gain of one 
to a loss of one, but Voter 2 will have an increase in payoff from a loss of two to a 
gain of two.  Both Voters 2 and 3 will then have a net increase of two in the com-
bined payoffs for Issues A and B as a result of this vote trade. 

In the same fashion, Voters 1 and 2 can do a vote trade on issues C and D, with 
the vote of Voter 1 being changed to N on Issue C and the vote of Voter 2 being 
changed to N on Issue D.  Both Voters 1 and 2 will obtain a net increase in payoff 
of two as a result of the trade.  Voters 1 and 3 can also do a vote trade on Issues E
and F, with the vote of Voter 1 being changed to N on Issue F and the vote of 
Voter 3 being changed to N on Issue E.  Both Voters 1 and 3 will then have a net 
increase in payoff of two as a result of this trade.  A summary of the votes that are 
cast, the election outcome for each issue and  total payoff for each voter after these 
three vote trades are completed is shown in Fig. 1.13. 

  Voter 1   Voter 2    Voter 3      Election      Voter 1  Voter 2  Voter 3  
Issue    Vote       Vote       Vote        Outcome      Payoff   Payoff   Payoff
   A      Y         N         N        Defeated     -2    -1     2 
   B      Y         N           N        Defeated     -2     2    -1 
   C      N         N            Y        Defeated         -1     2    -2 
   D      N         N         Y         Defeated      2    -1    -2 
   E      N         Y         N        Defeated      2    -2    -1 
   F      N         Y         N        Defeated     -1    -2     2 
        Total Payoff     -2         -2    -2 

Fig. 1.13 Total voter payoff after vote trading in example from Riker and Brams (1973) 

The net result of the three vote trades in this example is that all six issues are 
defeated and the total payoff to each voter is reduced from zero in the sincere vot-
ing case to a loss of two with the three vote trade transactions.  While each voter 
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who is directly involved in a given vote trade has a net increase in total payoff of 
two for that particular trade, the voter who is not involved in that trade has a net 
loss in payoff of six because of the trade.  This causes a net overall loss of two for 
all voters over the three vote trades, since each voter is involved in two vote 
trades, to gain four, and is not involved in one vote trade, to lose six. 

In each of these trades, voters have sequentially chosen to form coalitions in 
order to improve their respective payoffs during that trade.  However, the overall 
net effect is that each voter has a lower payoff in the end than they would have ob-
tained from sincere voting in the original situation.  It is clear that the existence of 
vote trading can lead to irrational outcomes.  McKelvey and Ordeshook (1980) 
perform extensive experimental analysis to show that the vote-trading phenome-
non, as suggested by Riker and Brams (1973), can indeed be induced in an ex-
perimental setting with inexperienced players. 

Koehler (1975a) shows that the conditions that are required to create a vote-
trading outcome like the one in the example above are logically equivalent to the 
conditions that lead to cycles with PMR, and Bernholz (1973,1974) makes similar 
observations.  Sullivan (1976) discusses conditions that might exist in committee 
structures that make it likely to lead to vote trading.  Koford (1982) considers a 
model of vote trading when individuals must make trades on groups of votes 
through a party leader who is attempting to develop an overall balance in vote out-
comes.  Enelow (1986) develops an explanation of how vote trading can exist in a 
stable environment.  This situation exists for risk-averse voters who are using ran-
dom variable forecasts of decisions on future issues, in which issues can be 
brought back for re-voting.  These results support similar conclusions in Tullock 
(1981).   Stratmann (1996) considers the possibility of cycles in vote trading by 
using Markov chain analysis, to conclude that there is little evidence to support the 
notion that cycling, or unstable coalitions, exists for decisions on the distribution 
of federal grants to districts in the U.S. House of Representatives. 

1.8 The No Show Paradox 

Brams and Fishburn (1983a) present an example of a voting paradox in which 
some subset of voters chooses not to participate in an election, and then prefers the 
resulting winner to the winner that would have been selected if the subset had ac-
tually participated in the election.  This phenomenon is referred to as the No Show 
Paradox.  We consider an example in which the winner of an election is deter-
mined by Negative Plurality Elimination in a three-candidate election.  This is a 
two-stage election procedure.  In the first stage, voters cast votes for their two 
most preferred candidates.  The candidate that receives the fewest number of votes 
is then eliminated, and the ultimate winner is selected in the second stage by using 
majority rule on the remaining two candidates.  The voting rule that is used in the 
first stage is referred to as Negative Plurality Rule since it is equivalent to having 
each voter cast a negative vote against one candidate, with the candidate who re-
ceives the most negative votes being eliminated.   
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Consider a voting situation with 21 voters and three candidates CBA ,, , as 

shown in Fig. 1.14. 

A A B C B C
B C A A C B
C B C B A A

          31n    52n    53n 24n 35n 36n .

Fig. 1.14 An example voting situation from Brams and Fishburn (1983a) 

In the first stage of voting with negative plurality, Candidates A, B, and C re-
ceive 15, 14 and 13 votes respectively.  Candidate C is eliminated in the first stage 
and then BMA by a vote of eleven to ten in the second stage, to select B as the 
overall winner.  Voters with the linear preference ranking CBA  would not 
get their most preferred candidate, since B is the winner.  Suppose that two of 
these particular voters had not participated in this election for some reason.  The 
resulting voting situation is shown in Fig. 1.15. 

A A B C B C
B C A A C B
C B C B A A

          11n    52n    53n 24n 35n    36n .

Fig. 1.15 The modified example voting situation from Brams and Fishburn (1983a) 

In the first stage of voting with negative plurality on this modified voting situa-
tion with 19 voters, A, B, and C receive 13, 12 and 13 votes respectively.  Candi-
date B is eliminated in the first stage and then AMC by a vote of eleven to eight in 
the second stage.  Since the winner in this modified voting situation is A, the two 
voters with linear preferences CBA  who did not participate will now have 
their most preferred candidate chosen as the winner.  These two voters have there-
fore obtained a more preferred outcome by not participating in the election. 

Negative plurality elimination does not necessarily elect the PMRW.  How-
ever, Moulin (1988) proved that any election procedure that does meet the condi-
tion that it must select the PMRW, when one exists on four or more candidates, 
must be subject to the possibility that the No Show Paradox can be observed.  
Pérez (2001) considers two variations of this paradox. 

1.9 Other Voting Paradoxes 

Many other voting paradoxes have been discovered, and general surveys of work 
on voting paradoxes are given in Brams (1976), Niemi and Riker (1976), Petit and 
Térouanne (1987), and Nurmi (1998).  Fishburn (1974a) presents a survey of dif-
ferent voting paradoxes, and gives Monte-Carlo computer simulation estimates of 
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the likelihood that each paradox might occur.  The general conclusion is that the 
most extreme forms of voting paradoxes are probably very rare in practice.   

Deb and Kelsey (1987) examine Ostrogorski’s Paradox to show that the con-
ditions that are necessary for it to exist are similar to, but not identical to, the con-
ditions that are necessary for Condorcet's Paradox to exist, and they conclude that 
Ostrogorski’s Paradox therefore deserves study as a separate phenomenon.  So, 
voting paradoxes do exist with conditions that are not identical to those that lead 
to Condorcet’s Paradox. 

1.10 Conclusion 

The possible existence of various voting paradoxes has been the focus of numer-
ous investigations.  This research has largely been dominated by studies that are 
associated with Condorcet’s Paradox.  There is widespread, but not universal, ac-
ceptance of the notion that the PMRW is the best candidate for selection in an 
election process, when such a candidate exists.  When Condorcet’s Paradox oc-
curs, there is no PMRW in three-candidate elections, and there is a need to find 
some other voting mechanism to determine a winner in such cases. 

There is a resulting interest in determining estimates of the likelihood that a 
PMRW exists in various situations.  This observation is intensified by the fact that 
we have seen that the conditions that are necessary for Condorcet’s Paradox to ex-
ist are the same as the conditions that are required for the existence a number of 
other paradoxes, like the Paradox of Multiple Elections and the Vote Trading 
Paradox.  In some cases there are links between the conditions that are necessary 
for other paradoxes to exist and the conditions for Condorcet’s Paradox, as with 
the No Show Paradox.  Researchers even feel obligated to show that the condi-
tions that are necessary for other paradoxes, like Ostrogorski’s Paradox, to exist 
are not the same as the conditions that are required for Condorcet’s Paradox to ex-
ist. 



2 Condorcet’s Paradox 

2.1 Introduction

One conclusion of the last chapter is that the conditions on voters’ preferences that 
lead to the possible existence of Condorcet’s Paradox are equivalent to the condi-
tions that either directly lead to, or are associated with, a number of other voting 
paradoxes.  It is clearly of interest to have some idea as to whether, or not, Con-
dorcet’s Paradox has ever been observed in real voting situations.  The practical 
implications of having this paradox occur are twofold.  First of all, one has to deal 
with the issue of determining who the winner of an election should be if there is 
no PMRW.  No matter which candidate we might select in such a case, it can al-
ways be argued that a majority of voters would prefer to have some other candi-
date selected as the winner.   

The second issue relates to the possibility that election outcomes might be ma-
nipulated by agenda control.  Suppose that we have three options, CBA ,, , before 

a committee that is going to choose only one of the options.  The committee will 
determine the winner by using sequential elimination by majority rule.  That is, 
two issues will be compared by majority rule in the first round, and the loser will 
then be dropped from further consideration.  The winner in the first round will 
then be carried to the next round for a majority rule vote against the remaining 
third candidate.  The sequential elimination procedure is defined in the obvious 
way for elections on more than three candidates.  When voters’ preferences are 
such that an occurrence of Condorcet’s Paradox exists, we would have a PMR cy-
cle like AMB, BMC and CMA.  Any chairperson of the committee who knew the 
preferences of the voters in advance could then set an agenda for the sequence of 
voting to get any outcome that he or she wanted.   

If the chairperson wanted C to win, the first round would have A versus B, with 
A as the first-round winner.  The second round would then have A versus C, with 
C as the ultimate winner.  If the chairperson wanted B to win, the first round 
would have C versus A, with C as the first-round winner.  The second round 
would then have C versus B, with B as the ultimate winner.  If the chairperson 
wanted A to win, the first round would have B versus C, with B as the first-round 
winner The second round would then have B versus A, with A as the ultimate win-
ner.  This logic can easily be extended to cycles on more than three candidates, 
and an agenda setting committee chairperson could manipulate the outcome of an 
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election whenever voters’ preferences result in an occurrence of Condorcet’s 
Paradox.  Davis (1974) discusses “democratic” procedures that can be used to 
determine the order in which voting should be performed when it is known that 
the possibility of a PMR cycle exists, and Tullock (1975) points out some 
difficulties in the proposal presented in Davis (1975). 

Theoretical studies have been performed to model processes by which rational 
voters might choose to misrepresent their preferences in voting on options, once 
the agenda for voting has been set in such situations.  Rubinstein (1980) addresses 
this issue by considering farsighted voters who know what the majority rule out-
comes might be in future stages of voting, once an agenda has been established.  
Suppose that a farsighted voter has the linear preference ranking CBA  on 
three options, and the agenda has been set to start with an initial vote between A
and B, with the first-round winner moving to the next stage to have a majority rule 
vote against C to determine the winner   The farsighted voter would want to vote 
for A over B in the first-round vote, given the assumed true preferences.  However, 
suppose that this farsighted voter also knows that if the outcome AMB results in 
the first round, to send A to the second stage, that a majority of voters prefer C to 
A.  The resulting outcome of CMA in the second stage would then make the far-
sighted voter’s least preferred candidate, C, the ultimate winner of the election.  
The farsighted voter would be better off to misrepresent his or her true preferences 
in the assumed preference ranking CBA  and vote for B in the first round 
election between A and B, to possibly lead to BMA, with the hope that the result 
BMC would have B as the ultimate winner from the second stage PMR vote.  

This farsighted voter might then at least get the middle-ranked preference as a 
winner with this strategy, since it is known that the most preferred candidate can 
not win, from the knowledge of the fact that voters’ preferences are such that 
CMA.  In this example, the election of B would result in a “stable outcome” for the 
farsighted voter.  Since this analysis is done on triples of candidates, a farsighted 
voter is only assumed to have some knowledge of what the outcome of the very 
next, or second-round, election in the sequential elimination process on a triple of 
candidates would be.  Rubinstein (1980) extends this notion from individual far-
sighted voters to majority coalitions of farsighted voters, and proves that a “stabil-
ity set” will never be empty when voters have linear preference rankings on all is-
sues. LeBreton and Salles (1990) and Chakravorti (1999) consider farsighted 
voters who have a knowledge of future majority rule votes on pairs that extends 
beyond the very next stage with sequential elimination by majority rule. 

As a result of all of this discussion, we find that there are two types of misrep-
resentation that might take place in the presence of PMR cycles.  First, misrepre-
sentation might be used by a chairperson in the determination of the sequence in 
which issues are introduced for possible elimination when the agenda is being set.  
Once the agenda has been established, voters might then misrepresent their prefer-
ences at some stage of majority rule voting in order to obtain a more desirable 
outcome than they would get from sincere voting.  Black (1958) conjectured that 
the issue that is entered latest in such a series of sequential elimination votes is 
most likely to me the ultimate winner of an election.  Niemi and Rasch (1987) pre-
sent an example to show that any given voter’s overall utility is maximized by 
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having issues introduced for sequential elimination in the reverse order of that 
voter’s preference ranking on the issues. 

It is usually difficult to determine if Condorcet’s Paradox actually exists for 
any situation based only on the reported voting results from most elections, since 
voters do not normally report their complete preference ranking on candidates, or 
give their preferences on all pairs of candidates.  Marz, et al. (1973) extend and 
correct results that were reported in Murkami (1968) to consider the number of 
PMR elections that would have to be held to determine if PMR cycles exist in a 
specific voting situation.  In this work, only the pass-fail outcome is known for 
each PMR election that is held, and the actual vote count is not revealed from the 
PMR elections.   

Fishburn (1980) considers the restrictions under which it is possible to deter-
mine whether, or not, the PMRW has been selected as the winner of an election, 
based only on the reported vote outcomes from the election. The severity of the 
restrictions that are required leads Brams and Fishburn (1983b, page 95) to con-
clude that 

“Because of the varieties of strategies that are allowed and the paucity of detail about 
how people voted, the likelihood of concluding that the winner is a (PMRW) …., is often 
small if not zero.”

Thus, other factors about voting behavior must typically be assumed in any at-
tempt to reconstruct the preferences of voters from the reported ballot outcome in 
an election, in order to determine which candidate is the PMRW.  Many studies 
have used various methods to induce the complete preferences of voters from re-
ported votes in actual elections to reconstruct either voting situations or voter 
preference profiles.  William Riker performed several classic studies of this type, 
and his primary focus was on situations in which there is evidence that PMR cy-
cles were intentionally created by different methods in order to alter the outcome 
of elections. 

2.2 Riker’s Empirical Studies 

Riker (1982) reconstructs the preferences of 172 members of the U.S. House of 
Representatives on a vote that took place in 1846 regarding the Wilmot Proviso.  
The basic vote regarded an appropriation of $2,000,000 to facilitate the negotia-
tion of a territorial settlement with Mexico at the end of the Mexican War.  The 
Wilmot Proviso was an attachment to the appropriation, and it have would prohib-
ited slavery in the land that was acquired from Mexico in the settlement.  There 
were eight political groups within the House of Representatives that were voting 
on three possible options.  The possible options and the reported voting situation 
results are given in Fig. 2.1. 

It is impossible to determine how the Border Democrats and Border Whigs 
split their votes between the two possible rankings for their respective parties.  As 
a result, we initially ignore the eleven members of these two groups and consider 
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the results of the comparisons on pairs of alternatives for the remaining 161 repre-
sentatives. 

A = Approve the appropriation without the Proviso 
B = Approve the appropriation with the Proviso 
C = Take no action on either the appropriation or the Proviso 

      Number 
     Political Group   of Voters      Preference 

Ranking  
Northern Administration Democrats        7       ABC
Northern Free Soil Democrats      51       BAC
Border Democrats          8              ABC or ACB
Southern Democrats       46      ACB
Northern Pro-War Whigs         2      CAB
Northern Anti-War Whigs       39      CBA
Border Whigs          3             BAC or BCA
Southern and Border Whigs       16      ACB

Fig. 2.1 Voting situation results for Wilmot Proviso example. Reprinted from Riker (1982) 
by permission of Waveland Press, Inc. All rights reserved.  

Under pairwise comparison with the remaining representatives in Fig. 2.1, we 
find that AMC (120-41), CMB (103-58) and BMA (90-71).  There is clearly a 
PMR cycle in the pairwise preferences of the 161 representatives.  The margins of 
defeat in the pairwise votes show that the eleven members of the Border Democ-
rats and Border Whigs could not have modified the outcome of this PMR cycle, 
no matter how they might have voted.  Brams, et al. (1998) present a similar 
analysis of this result from Riker (1982). 

Having established that Condorcet’s Paradox can occur, other studies have 
considered the issue of the manipulation of election outcomes in these situations.  
Riker (1958) gives a detailed description of the procedure by which amendments 
can be proposed for addition to various bills before the U.S. House of Representa-
tives, and the sequential elimination procedure by majority rule that is used to de-
termine the winning outcome.  A detailed examination is then made of the Com-
mittee of the Whole vote on the Agricultural Appropriation Act of 1953.  The 
original bill provided a $250,000,000 appropriation to the Soil Conservation Ser-
vice.  Four different amendments were put forth by members of the House to mod-
ify the appropriation amount to: $142,410,000 (Javits Amendment), $100,000,000 
(O’Toole Amendment), $200,000,000 (Andersen Amendment), and $225,000,000 
(Whitten Amendment). The nature of the process that is used to vote on amend-
ments makes it impossible to precisely obtain the preference rankings of the voters 
on the amendments.  However, Riker (1958) argues very convincingly to show 
that some of the budget amendment amounts were involved in a PMR cycle.  That 
cycle very likely contained the winning option, which was the original bill.  

Riker (1958) then goes on to argue that the Whitten Amendment was inten-
tionally introduced in order to create that cycle.  Representative Whitten was man-
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aging the original bill through the House, and there was some uncertainty that it 
would obtain majority support.  By introducing the Whitten Amendment, a PMR 
cycle was created, and Whitten was thereby able to take advantage of the sequen-
tial elimination election process on amendments to be assured that the original bill 
passed.  Riker (1958) estimated that the House of Representatives and the Senate 
may have voting results that appear to have PMR cycles in more than ten percent 
of cases when two or more amendments are considered with an original bill.  
However, some of these cycles are contrived as a result of strategic manipulation, 
as in the case discussed above.  

Riker (1965) considers another example from the U.S. House of Representa-
tives in which an amendment appears to have been added to a bill to intentionally 
create a PMR cycle to affect the outcome of voting. The particular vote that is 
considered in the study was a bill in 1956 for appropriations for federal grants-in-
aid to build schools.  The Powell Amendment was proposed to limit aid to school 
districts that were segregated, giving three alternatives:  The initial bill (A), The 
initial bill with the Powell Amendment (B), and the Status quo (C).  The reported 
results of the voting were: BMA (229-197) in the first round, and then CMB (227-
199) in the second round to result in C as the winner.  Given the outcome and the 
established voting procedures, the initial bill was defeated, and no vote was taken 
for A versus C.  However, in the following year the same proposal was considered, 
and the Powell Amendment was not brought forward.  The result of the vote was 
AMC (217-209), indicating a PMR cycle with AMC, CMB, and BMA.  Riker sug-
gests that there is some evidence that a subset of the voters misrepresented their 
true preferences in order to intentionally create this PMR cycle, to lead to the de-
feat the initial bill that was presented. 

Jenkins and Munger (2003) discuss “killer amendments” like the Powell 
Amendment.  They identify the conditions that are necessary for such an amend-
ment to successfully defeat a bill, and they provide some other examples in which 
killer amendments have been successfully used.  Their conclusion is that the pro-
cedure has only rarely been successful in the U.S. Congress, and that it has typi-
cally only been successful when the amendment involves race based issues, like 
the Powell amendment and the Wilmot Proviso. 

Riker (1965) provides another example, to suggest that there are situations in 
which voters might misrepresent their preferences in voting on amendments so as 
to create a PMR cycle and obtain the desired outcome as a result of the voting 
procedure that is used to vote on amendments.  The particular example that is con-
sidered is somewhat unusual since it regards voting to ratify the Seventeenth 
Amendment to the Constitution in the U.S. Senate in 1911.  The problem is com-
plicated by the fact that a 2/3 majority is required to pass an amendment to the 
constitution. 

Riker (1982) analyzes the results of the U.S. Presidential election of 1860, 
when the four candidates were Bell, Breckenridge, Douglas and Lincoln.  It is 
concluded that there were 15 feasible preference orders on the four candidates, 
and estimates of the proportions of voting blocs that held the various preference 
rankings on candidates are reconstructed.  The results suggest that Breckenridge 
was the PMRL, while a PMR cycle existed on the remaining three candidates.  
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Given the preferences that were reconstructed, Lincoln was found to be the ulti-
mate winner only because plurality rule was used as the election procedure, with 
Lincoln receiving only about 40 percent of the vote.  Riker suggests that the PMR 
cycle in this example specifically arose as a result of the intentional introduction 
of the slavery issue into the election campaign. 

Regarding his historical examples, Riker suggests that the existence of PMR 
cycles were typically created by the introduction of amendments, by the introduc-
tion of campaign issues, or by the misrepresentation of voters’ preferences to ma-
nipulate the outcome. He is quoted [Riker, 1982, pg. 128] 

“So, I conclude that, because of agreement on an issue dimension intransitivities only 
occasionally render decisions by majoritarian methods meaningless, at least for somewhat 
homogeneous groups and at least when the subjects for decision are not politically impor-
tant.  When, on the other hand, subjects are politically important enough to justify the en-
ergy and expense of contriving cycles, Arrow’s result (the presence of PMR cycles) is of 
great practical significance. It suggests that, on the most important subjects, cycles may 
render social outcomes meaningless.” 

Levmore (1990) generally agrees with Riker by suggesting that a link exists 
between the activity level of political interest groups and the level of stability in an 
election.  That is, interest groups are most active in situations in which PMR cy-
cles, or some other voting anomalies, are most likely to exist.  The activity of the 
interest groups can then focus on agenda control, or on bargaining in the formation 
of winning coalitions with other groups, when the effort is most likely to have an 
impact on the election outcome. 

Rasch (1987) examines the sequential elimination voting procedures that are 
used in the Norwegian Parliament and considers potential abuse of the process by 
manipulators.  The conclusion is that manipulators of the system are more likely to 
be successful by misrepresenting preferences while establishing the order of vot-
ing for sequential elimination, rather than by misrepresenting preferences during 
the actual voting on issues during the election. 

Chamberlin (1986) reaches a very similar conclusion as Riker did after evalu-
ating several voting rules in the context of how election results might be examined 
in order to determine if voters had used strategic misrepresentation of preferences 
to alter the outcome of an election.  The conclusion of the study is that the possi-
bility that strategic misrepresentation has altered the outcome of an election is 
likely to be observed from the existence of PMR cycles in the reported preferences 
of voters.  This connection between PMR cycles and strategic misrepresentation of 
preferences is based on Chamberlin’s belief that PMR cycles in sincere prefer-
ences of voters should be very unlikely to be observed under normal conditions. 

Tullock (2000) agrees with Chamberlin (1986) in suggesting that Riker’s stud-
ies never really dealt with any actual voting situations that contained PMR cycles 
that are based on the true preferences of voters, and goes even father in comment-
ing on the general value of such studies [Tullock (2000, pg. 13)]: 

“Altogether, throughout my life, I have tended to feel that the proof that cycles are pre-
sent, usually connected with the name of Arrow, is mathematically interesting but has noth-
ing to do with the way government actually operates.” 
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Tullock’s main argument seems to be that governments have set up various 
mechanisms in order to be assured that any potential PMR cycle would be re-
solved in some manner before it could ever reach an assembly for final voting.  
This could be accomplished through negotiating amendments that might be added 
to a bill to make it more appealing to some potential voters.  Tullock’s claim 
might therefore be valid for final voting situations in systems like those he de-
scribes.  However, this simply moves the focus of attention away from finding 
PMR cycles in final voting situations.  The focus would then be on the difficulties 
of resolving actual PMR cycles that do exist in voters’ actual preferences before 
they get to the stage of final voting.   

The ability of politicians to create PMR cycles to the degree that Riker sug-
gests is disputed.  Critical comments regarding Riker’s empirical examples of 
PMR cycles that have been made by a number of people who share an interest in 
this area of study are given in Maske and Durden (2003). 

Kadane (1972) presents an analysis of another aspect of considering the addi-
tion of amendments to bills.  In particular, the process of “division of the ques-
tion” is considered, when a coalition of committee members puts together a pack-
age of amendments that will pass by majority rule, when each individual 
amendment would have failed on its own. This condition is strongly related to the 
notion of vote trading. 

2.3 Other Empirical Studies 

Many other empirical studies have been conducted to find possible situations in 
which Condorcet’s Paradox might have occurred.  Flood (1955) presents an early 
result from a simple experiment in which 21 subjects initially gave their individual 
preference rankings on 16 different objects.  The subjects were then divided into 
subgroups according to their reported preference rankings, in order to observe be-
havior in the subgroups while they were trying to select a most favored object that 
might be won from a reduced set of the original 16 objects. The subgroups were 
intentionally formed so that there were PMR cycles on the subgroup members’ 
preferences for the specific reduced set of objects that each subgroup was consid-
ering.  The complete initial preference rankings of the 21 subjects on all 16 objects 
are given in the paper (Table 2, page 4).  The interested reader can verify that 
there is a PMRW (Item 12) for the set of all subjects, and that there is a PMR cy-
cle (on Items 7, 10 and 15), so that PMR is not completely transitive for the set of 
all subjects. 

Flood (1958) discusses a situation that was placed before the West Virginia 
Legislature in 1939, when elected representatives were attempting to use PMR to 
select a distribution of state aid for schools among 55 counties within the state.  A 
preliminary study had been conducted to evaluate the possible distribution alterna-
tives. The study evaluated the overall impact that various possible funding alterna-
tives would have on the school system, in order to reduce the number of feasible 
options that had to be considered by the members of the Legislature.  An attempt 
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to select a winning alternative from the final list of alternatives was conducted by 
using PMR.  It became apparent that the representatives were typically selecting 
the winner from a pair, based solely on a determination of which alternative in the 
pair would return the greater amount of aid to their respective counties.  An at-
tempt was made to find the alternative that would be selected under this apparent 
voting scenario and no PMRW was found to exist.   

A simplified example is given in Fig. 2.2 to illustrate the type of decision-
making process that was being used in this particular case, with three counties vot-
ing on four allocation alternatives DCBA ,,,  to the counties: 

          Allocation             _
  County    A B C D

1  4 1 2 0 
2  0 0 1 2 
3  0 3 1 2 

Fig. 2.2 An example voter preference profile from Flood (1958) 

In this example, each allocation has the same total distribution of four units to 
the three counties.  If each county prefers the alternative from any pair of alterna-
tives that returns the greater distribution to itself, then majority rule voting would 
have DMC (2-1), CMB (2-1), and BMD (2-1).  In particular, we would have DMC
since both Counties 2 and 3 would be better off, with two units, under D than with 
C, with one unit.  County 1 would prefer C, with two units, to D, with no payoff.  
This type of decision-making is identical to the model that led to vote trading cy-
cles in the previous chapter. 

Niemi (1970) examines the results from 22 university elections in which indi-
viduals were being elected to committees.  Voters were not required to rank all 
candidates in these elections.  In the analysis, all unranked candidates on a voter’s 
ballot were assumed to be indifferent to each other, but all were ranked below the 
least preferred candidate that the voter actually did rank.  Given the allowance of a 
response of indifference between candidates, the possibility of ties exists with 
PMR for odd n.

Elections were held for situations with three to 36 candidates, with the number 
of voters ranging from 81 to 463.  There were 18 elections on six or fewer candi-
dates, and four of these elections contained some form of Condorcet’s Paradox.  
One of the elections contained a strict PMR cycle, while the remaining three had 
PMR cycles that included tied PMR votes to form a tie-cycle.  In each of these 
four elections, there was no strict PMRW.  That is, no candidate could strictly de-
feat all other candidates on the basis of PMR, given that a PMR tie is not a win.  
Results indicate that the probability of observing PMR cycles tends to increase as 
the number of candidates increases.  

Blydenburgh (1971) considers tax bills that were voted on in the U.S. House of 
Representatives when roll call voting was imposed.  Tax bills were selected since 
they were voted on under closed voting rules, so that the attachment of additional 
amendments by representatives was not allowed.  As a result, only a limited num-
ber of amendments were being considered in each case.  Sequential elimination by 
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majority rule was used for the predetermined sequence of votes on amendments.  
With roll call voting, the vote that is cast by each representative is recorded at 
each stage of the procedure, so it is possible to reconstruct most of the preference 
rankings for the individual representatives. 

The Revenue Act of 1932 was considered first, for which three alternative 
forms of taxes were being considered to raise additional revenue, when only one 
of the options would to be implemented.  Fig. 2.3 shows the three tax options and 
the voting situation results for the six different voter groups that were identified. 

   S =  Sales Tax 
   I  =  Income Tax 
   E =  Excise Tax  

             Group 1   Group 2   Group 3   Group 4   Group 5    Group 6 
   I E    S      S        S      S~E~I 

E  S    I      E     (E,I)
  S  I   E      I 
          in   162          38   16     69       71         30 

Fig. 2.3 Voting situation for Revenue Act of 1932 from Blydenburgh (1971) 

The notation E~I for Group 6 in Fig. 2.3 indicates that a voter in that group is 
indifferent between implementing E and I, while the notation (E,I) for Group 5 in-
dicates that the preference on the pair could not be determined for members in that 
group, based on the way that they voted in the sequential election.  If we ignore 
the representatives in Group 6, since they are completely indifferent between the 
alternatives, a total of 184 votes are required for a candidate to win by majority 
rule.  The rankings produce the result EMS (200-156) and SMI (194-162).  A 
PMR cycle exists if we have IME, but the known preference relations for repre-
sentatives only give a vote of 178-107.  Blydenburgh goes on to produce strong 
evidence from other sources to induce the relative preferences on I and E for some 
of the representatives in Group 5, to obtain the required number of votes for I to 
obtain support from a majority of all voters.  It therefore appears to be very likely 
that there would have been a PMR cycle in this situation if a PMR vote between I
and E had been held. 

Blydenburgh (1971) performs a similar analysis on the Revenue Act of 1938. 
This vote was on three alternatives: the Act in its original form, the Act with the 
deletion of a corporate tax, and the Act with the addition of an excise tax on pork.  
Based on the voting results, there did not appear to be a PMR cycle in this particu-
lar example. 

Fishburn (1973b, pgs. 89-90) presents an example with 175 voters who gave 
complete preference rankings on five different options for naming a church con-
gregation that was being formed from two separate congregations.  Results show 
that the PMR relationships from the preference rankings were completely transi-
tive. 
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Bjurulf and Niemi (1978) examine the results of voting in the Swedish Parlia-
ment on a number of issues. One particular issue centered on the construction of a 
hospital in Stockholm in 1931.  Three options were considered: Build the hospital 
as planned (A), build the first stage of the hospital according to plan with sharp 
cuts in expenditures for additional sections (B), and do not build the hospital (C).
The order of presentation of the votes had B versus C first, with CMB (46-41).  
Option C was then carried forward to the second stage versus A, with AMC (54-
16).  There was no vote on A versus B, but the preferences of the voters were re-
constructed to indicate that B would have defeated A under a PMR vote.  The re-
sults then produce a PMR cycle: BMA, AMC and CMB. The study also presents 
other examples in which it appears that some members of the parliament strategi-
cally misrepresented their preferences in order to create a “strategic cycle” in 
PMR voting, following the notions of the Riker studies. 

Dyer and Miles (1976) perform an analysis of rankings of 36 trajectory options 
by ten different specialty teams that were working on the Mariner Jupiter/Saturn 
Project for the U.S. National Aeronautics and Space Agency.  The trajectory op-
tions were being evaluated under different criteria by the different specialty teams, 
and the teams responded with indifference on some pairs of options.  The analysis 
in the study gives a PMR relationship on each pair by considering only groups that 
reported some preference on a pair.   This follows from the observation that they 
report that Option 29 beats Option 31, when the rankings give a pairwise compari-
son of five to three with two indifferent groups on the pair.  The study notes that 
there is a transitive PMR ranking among a set of the ten trajectory options that 
were found to be highest ranked by other analysis.   

There is indeed a PMRW when all 36 options are considered.  However, a fur-
ther analysis that was not considered in the study (Table 2, page 229) indicates 
that PMR cycles do exist for some of the trajectory options.  For example, a cycle 
can be found to exist with Option 10 beating Option 4 (7-3), Option 4 beating Op-
tion 25 (5-4) with one indifferent group on the pair, and Option 25 beating Option 
10 (7-3).  It is very interesting to note that Options 10 and 25 were both included 
in the set of the 10 top ranked trajectories with transitive PMR comparisons, while 
Option 4 was not. 

Dobra and Tullock (1981) examine preference rankings from a committee vote 
to select a department chair at a university.  Six committee members provided 
thermometer ratings on 37 candidates on each of six different attributes. In using 
thermometer scores, voters give a score to rate each candidate, using a scale of 
numbers like one through ten, where one is the worst possible rating and ten is the 
best possible rating.  If a particular voter gives a higher thermometer score to Can-
didate A than to Candidate B, it follows that the voter has a preference BA .
Since individuals could give multiple candidates the same thermometer score on 
any attribute, ties in individual rankings were permitted.  After accounting for ab-
stentions and effective abstentions, candidate rankings could be determined for 
four committee members on two candidate attributes, scholarly competence and 
an overall evaluation.  PMR led to a PMRW for scholarly competence.  On the at-
tribute of an overall ranking there was a candidate, A, who could beat or tie all 
other candidates. Candidate A tied with B, C and D.  However, it is noted that 
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there was a PMR tie-cycle since there was a fifth candidate, E, such that AME,
EMB, and B tied with A under PMR. 

Toda, et al. (1982) use thermometer scores from survey results of 5,281 sub-
jects in Japan.  The survey was designed to measure the relative degree of impor-
tance that subjects placed on six different health related issues.  The PMR rela-
tionships that were reconstructed from the thermometer scores were found to be 
completely transitive.  

Dobra (1983) summarizes the results of 32 different elections in which prefer-
ence rankings on candidates were obtained from voters.  The number of voters 
ranged from four to 27 and the number of candidates ranged from three to 37.  A 
strict PMR cycle was found in one of the elections, and PMR tie-cycles were 
found in three of the elections.  In further analysis of the specific elections that 
were considered, Dobra (1983) suggests that these results might tend to overstate 
the actual likelihood that a PMR cycle would actually be observed.  General con-
clusions from the results suggest that PMR cycles are most likely to occur when 
the number of candidates is large, relative to the number of voters. 

Chamberlin, et al. (1984) examine voters’ rankings of candidates in five differ-
ent annual elections for the position of president of professional societies.  In each 
case there were five candidates being considered.  The number of voters ranged 
from 11,560 to 15,499.  Voters were asked to rank all of the candidates in each 
case, but they did not always do so.  Complete rankings were reconstructed in this 
situation in two different ways.  In the impartial scenario, the subset of voters who 
ranked only k = 1,2,3,4 candidates were partitioned equally into groups of voters 
with all possible complete rankings that had the first k candidates ranked the same.  
In the proportional scenario, these voters were partitioned proportionally to com-
plete rankings.  The proportion of each ranking in the partition was consistent with 
the proportions of voters who reported preferences on all candidates, with identi-
cal rankings on the first k candidates.  No PMR cycles were found in any of the 
ten different situations that were considered.   

Dietz and Goodman (1987) perform an analysis of the 1983 mayoral election 
in Lima, Peru.  Preliminary survey results were used as a basis for partially recon-
structing the proportions of the population that had various pairwise preferences 
on pairs of candidates from the four leading candidates.  Different sets of assump-
tions were used to complete the analysis for the pairwise preference proportions.  
There was no significant evidence to support the notion that any PMR cycles ex-
isted on the four candidates.  However, evidence was reported to suggest that the 
candidate that was elected by plurality rule was not the PMRW, so that some form 
of Borda’s Paradox might have been observed. 

Hill (1988) discusses elections by the Royal Statistical Society that were con-
ducted to select one council member to serve as a member for the President 
Nominating Committee.  Reported results show that a clear PMRW and PMRL 
typically exist, with cycles and ties most likely to be observed among middle 
ranked candidates.  Based on observations from 17 different elections, there was a 
tie for first place one time, and a “semi-paradox”, or PMR tie-cycle, for winner 
once.  No example of a strict paradox that did not involve ties in PMR compari-
sons was observed. 
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Rosen and Sexton (1993) discuss a proposed trading of water rights from the 
Imperial Irrigation District (IID) to the Metropolitan Water District (MWD) in 
California.  The four alternative policy options that were available to members of 
the IID are shown in Fig. 2.4. 

    P1 =   Do not participate 
    P2 =   Participate in the trade, with all trade revenue being invested in 

  IID system conservation to maintain the requirements for water 
  within IID. 

    P3 =   Apportion the IID water rights to members in proportion to the 
  assessed valuation of their property, and then allow members to 
  sell their individual allotments back to a Board of Directors for 
  transfer to MWD  

    P4 =    A mix of P2 and P3.

Fig. 2.4 Four policy options from example in Rosen and Sexton (1993) 

Survey results from 31 major interests in IID indicate that P2 was the PMRW and 
that P3 was the PMRL, so that there were no PMR cycles. 

Radcliff (1994) examines U.S. Presidential elections.  Voters’ preference rank-
ings were reconstructed from thermometer scores and other information that was 
based on reported voting intentions for elections in 1972, 1976, 1980 and 1984. 
Complete and transitive PMR rankings were found in each of the four years.  In 
1972 the ranking was Nixon M Humphrey M McGovern. In 1976 the ranking was 
Carter M Ford M Reagan. In 1980 the ranking was Reagan M Carter M Anderson.  
In 1984 the ranking was Reagan M Hart M Mondale. 

Abramson, et al. (1995) examine presidential elections in the United States for 
three recent cases in which significant third-party candidates were present on the 
ballot.  The three cases that were considered include: Wallace in 1968 against 
Nixon and Humphrey, Anderson in 1980 against Carter and Reagan, and Perot in 
1992 against Clinton and Bush.  Thermometer score ratings on the candidates 
were examined to reconstruct the preferences of confirmed voters to indicate that a 
PMRW existed in all three cases, and that the PMRW did in fact win in the final 
election.  Each third-party candidate was found to be the PMRL in the respective 
elections.  Brams and Merrill (1994) use thermometer scores to obtain the same 
result for the 1992 election.  Kiewiet (1979) also uses thermometer scores to 
evaluate the 1968 election between Humphrey, Nixon and Wallace to conclude 
that Nixon was the PMRW.    

Gaubatz (1995) analyzes the results of a number of different public opinion 
polls that were taken for American citizens with regard to various aspects of the 
use of military force to reverse the Iraqi invasion of Kuwait in 1990.  There were 
four different options that were available for consideration, and the population was 
partitioned into six possible subgroups, with the preference rankings on the four 
options being determined for each subgroup.  Public opinion poll results were 
used to obtain estimates of the percentage of the population that fell into each pos-
sible subgroup.  The results are summarized in Fig. 2.5 
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            W -  Withdrawal or do nothing  
        S  -  The imposition of multilateral sanctions 

          U  -  The use of unilateral military intervention 
          M  -  The use of multilateral military intervention 

 Subgroup    Percentage               Ranking 
Unilateral hard-liners              18%   UMSW
Soft Unilateralists                  7%   WSUM
Internationalist multilateralists             26%   MSUW
Accommodationist multilateralists      19%   SWMU
Forceful isolationists              13%   WUMS
Restrained isolationists       17%   WSUM

Fig. 2.5 Voting situation for example from Gaubatz (1995) 

Given the estimated population proportion values in each of the subgroup types in 
Fig. 2.5, along with the associated preference rankings on options for each sub-
group, it is concluded that there is no PMRW in the set of four options that were 
available.  PMR cycles were found for WMMMUMW and SMMMUMS.

Browne and Hamm (1996) perform an extensive analysis of a series of votes 
that led to the passage of the 1951 Electoral Reform Act in Fourth Republic 
France.  The options under consideration were to maintain the existing voting sys-
tem that was based on proportional representation, to adopt a one-ballot majority 
list system, and to adopt a two-ballot majority system.  The 621 voters in the as-
sembly were partitioned into 17 categories based on the recorded history of their 
votes on earlier issues.  A very thorough analysis is then conducted to conclude 
that a PMR cycle existed in the preferences of the assembly members, which ex-
plains the extreme difficulty that was observed in obtaining the final outcome.  
Moreover, it is concluded that this PMR cycle actually existed in the true prefer-
ences of the assembly members, and that it did not result from strategic voting to 
manipulate the outcome. 

Lagerspetz (1997) analyzes a complex procedure that was used until 1994 in 
Finland in which a College of Electors elected the President.  The preference rank-
ings of voting blocs of the major political parties in ten different elections were 
partially reconstructed from information that was gained at each step in the multi-
ple stage election procedure.  Various other sources of information were also used 
to further reconstruct the preference rankings of the voting blocs.  Of the ten cases 
that were available for analysis, there were two clear cases, and one possible case, 
of a PMR cycle. 

Beck (1997) examines the results from elections regarding changes to the 
business curriculum at a university.  Twenty faculty members ranked options that 
were being considered in three different elections.  Rankings of four different op-
tions that were related to community service requirements for graduation resulted 
in a transitive ranking by PMR.  Rankings on eight different options that were re-
lated to additions to core courses resulted in a situation with no PMRW.  Rankings 
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on six options that were related to other degree requirements resulted in transitive 
rankings by PMR. 

Flanagan (1997) investigates a series of votes before the Canadian Parliament 
in 1988, regarding a set of possible bills that were related to abortion rights issues. 
The bills were presented for consideration in a series of pairwise elimination 
votes. Three distinct blocs of voters are found: “pro-life”, “pro-choice” and “com-
promise”.  Any combination of two of the blocs would have been able to form a 
majority of voters. The preference rankings on the bills that were being presented 
were reconstructed for each of the blocs to show that a PMR cycle existed.  The 
sequence of the presentation of the options ultimately led to the retention of the 
status quo situation, and this selection resulted solely from the order of presenta-
tion that was used in the sequential elimination process. 

Morse (1997) presents an analysis of the political situation that led to the 
American action to annex the Republic of Texas.  The Republic of Texas became 
independent from Mexico in 1836, and shortly thereafter residents of the Republic 
petitioned the United States to grant it statehood.  Formal action was not taken on 
the issue until 1844.  There were two major issues that were related to the annexa-
tion. First, there was a consideration as to whether the annexation would entail a 
complete annexation of the territory, or a more moderate expansion of the terri-
tory.  Given the historical background of the time, a second major issue was 
whether Texas would be admitted to the Union as a slave state or as a free state.  
The two major political parties consisted of Democrats, who favored significant 
territorial expansion, and Whigs, who favored more a moderate approach to terri-
torial expansion.  Senators from northern states favored admission of free states, 
while senators from southern states favored admission of slave states. 

The composition of the U. S. Senate in 1844 showed a nearly identical split be-
tween: Southern-Democrats, Southern-Whigs, Northern-Democrats and Northern-
Whigs.  It is argued that this balance led to a situation in which no PMRW existed 
among the options that were available.  President John Tyler initially presented the 
issue of the Annexation of Texas to the Senate as a foreign policy issue.  It is ar-
gued that Tyler intentionally did this in order to gain authority that is granted to 
the President by the Constitution on such issues.  Tyler was then allowed to set the 
agenda for voting in order to obtain the outcome that he sought.  That is, a com-
plete annexation of the Republic of Texas, with a decision on the slavery issue that 
was very sympathetic to Southern interests.  This outcome led immediately to a 
war with Mexico and to an unsettled situation regarding the slavery issue in Texas 
that was not resolved until 1846, as a result of the Wilmot Proviso that was dis-
cussed previously in the Riker studies. 

Taylor (1997) considers the 1980 election between candidates for the position 
of U.S. Senator representing the state of New York.  The three candidates were 
Alphonse D’Amato (D) who was a conservative candidate, Elizabeth Holtzman 
(H) who was a liberal candidate, and Jacob Javits (J) who was a moderate liberal 
candidate.  Results that were obtained from exit polls during the election were 
used to reconstruct the percentages of voters with various preference rankings on 
the three candidates.  The results are summarized in Fig. 2.6. 
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   H  D  D  H  J  J 
   J  J  H  D  H  D 
   D  H  J  J  D  H 

     29% 23% 22% 15%  7%  4% 

Fig. 2.6 Voting situation from example in Taylor (1997) 

The results in Fig. 2.6 indicate that HMD (51%-49%), HMJ (66%-34%) and 
DMJ (60%-40%).  Thus, Holtzman is the PMRW, so that Condorcet’s Paradox 
did not occur.  However, the winner by plurality rule was D’Amato, with 45% of 
the first place votes, compared to the 44% obtained by Holtzman, to indicate that 
some form of Borda’s Paradox might have occurred. 

Hsieh, et al. (1997) perform an analysis that is based on telephone surveys of 
voter preferences that were taken before the 1994 elections for mayor of Taipei 
City.  The pre-election telephone survey asked questions that allowed for a partial 
reconstruction of the ranked preferences of the 450 respondents for the three can-
didates in the election.  The primary observation of interest to our study is that 
their results indicated that PMR was transitive for the three candidates. 

Taplin (1997) evaluated the preference rankings of twelve homeowners on 
four different species of grass for lawns.  The rankings resulted in completely 
transitive outcomes by PMR. 

Regenwetter and Grofman (1998) examine the ballots from elections in seven 
different professional societies.  A procedure was implemented to reconstruct the 
complete preference rankings for voters from the ballot results that were reported.  
Results indicate that PMR was completely transitive in six of the cases, while the 
determination as to whether a PMR cycle existed in the seventh case was not con-
clusive.   

Truchon (1998) considers rankings that were reconstructed from judges’ scor-
ing during the evaluation ice skaters in 24 different competitions in Olympic 
Games, following to the rules of the International Skating Union.  PMR cycles 
were found in the rankings of 15 of the 24 competitions, with cycles involving as 
many as nine skaters.  The cycles typically contained skaters that were ranked near 
the middle of the competitors.  However, one of the cycles contained a skater who 
was ultimately ranked third in the competition.  There was always a PMRW from 
the rankings, with a tie in one case. 

Van Deemen and Vergunst (1998) use results from surveys of approximately 
1500 respondents to questions asked in the Dutch Parliamentary Election Study of 
1982, 1986, 1989 and 1994, to consider the probability that a PMRW existed for 
competing parties in the four elections.   In that survey, questions were asked in 
the form of thermometer ratings regarding the probability that the respondent 
would cast a vote for each of the competing parties in the respective elections.  A 
preference ranking on the parties was reconstructed for each voter, based on these 
responses.  Results showed that respondents’ preference rankings gave completely 
transitive PMR comparisons in each of the four elections: 1982 (13 parties), 1986 
(12 parties), 1989 (9 parties) and 1994 (9 parties).   
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Stensholt (1999a) presents an example of a voting situation that was under 
consideration by the Norwegian National Assembly (Stortinget) in 1992.  Voting 
was being held to determine the location of a proposed major airport.  After the 
elimination of a number of competing locations, three major options GHF ,,
remained.  There were 165 voting members with preference rankings on the op-
tions that are reconstructed in the voting situation in Fig. 2.7. 

F H H G G 
H F G H F 
G G F F H

            in    42          22         37          1           63 

Fig. 2.7 Voting situation from example in Stensholt (1999a) 

If PMR comparisons are made, we find FMH (105-60), HMG (101-64) and GMF
(101-64), to produce a PMR cycle. 

Kurrild-Klitgaard (2001) reports survey results of pairwise preference com-
parisons of three possible candidates, UHP ,, , for the post of Prime Minister of 

Denmark.  The proportions of voters with given pairwise preferences are reported 
as the percent of voters on a pair for which a preference was expressed, with vot-
ers who gave no response being excluded.  It was found that H defeated U
(50.6%-49.4%), U defeated P (51.1%-48.9%) and P defeated H (52.8%-47.2%), to 
produce a PMR cycle. 

Regenwetter, et al. (2002a) examine survey results from eight different three-
candidate elections in three different countries.  Results show that no PMR cycles 
were found in any of the survey results.  However, it was discovered that the use 
of samples of survey respondents could frequently misrepresent the true pairwise 
preference ranking of the entire population of survey respondents, unless the size 
of the sample was relatively large. 

Regenwetter, et al. (2002b) look at thermometer scores from preference sur-
veys in four different three-candidate U.S. Presidential elections and modify the 
procedure of determining subject preferences from these scores.  Here, higher 
thermometer scores represent higher approval ratings from subjects on a 0-100 
scale. Previous studies have considered subject’s responses and have assumed that 
Candidate A, with thermometer score ATS , is preferred to Candidate B in a sub-

ject’s preference ranking if BTSATS .  The study makes an interesting modi-

fication to this type of analysis to account for the fact that subjects are not perfect 
discriminators in assigning scores to candidates, and therefore determine a sub-
ject’s preference for Candidate A over Candidate B only when BTSATS
for a specified positive .  Increasing  reflects a decreased belief in a subject’s 
ability to accurately assign precise scores to candidates. 

Results of the 1968 and 1992 election results show transitive PMR rankings 
Nixon M Humphrey M Wallace and Clinton M Bush M Perot respectively for all 

.  The results from these two elections show a robust definition of the PMR 
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rankings from the survey results.  However, the same outcome is not observed in 
the remaining two elections.  The 1980 election results have transitive PMR re-
sults in all cases, but the rankings are Carter M Reagan M Anderson for 

300  and Reagan M Carter M Anderson for 30 .  Similarly, the 1996 re-
sults have Dole M Clinton M Perot for 8450  and Clinton M Dole M Perot 
for all other .  No PMR cycles were found in any case, but the PMR rankings can 
obviously change with different models.  

Wilson (2003) gives voting results from the International Olympic Committee 
with regard to the selection of the location for the 2010 Winter Olympics.  The se-
lection was conducted by using a two-stage plurality elimination procedure.  The 
candidate that would have been the plurality winner in the first stage was not the 
PMRW, but  the PMRW was ultimately selected in the second stage.  The pro-
posed locations were Pyeongchang (South Korea), Salzburg (Austria) and Van-
couver (Canada). In the first round of voting by plurality rule, the vote outcome 
was South Korea (51), Canada (40), and Austria (16) so that South Korea would 
have been a clear winner by simple plurality voting.  The second round of the 
elimination procedure used a majority rule election between South Korea and 
Canada that resulted in the selection of Canada as the winner by a 56-53 margin 
over South Korea. This pairwise vote outcome, coupled with the margin of votes 
in the first stage plurality election, indicate that Canada was the PMRW.  A 
PMRW did exist, but the use of simple plurality rule would not have selected it, 
indicating that some form of Borda’s Paradox would have occurred if simple plu-
rality rule had been used. 

Gehrlein (2004a) considers situations in which evaluators were ranking grant 
proposals that had been submitted by faculty members in the same college at a 
university.  The eight highest ranked proposals were to be awarded research grants 
of $6,000 each.  In one year, a group of five evaluators each ranked 12 proposals 
and the PMR rankings that resulted were completely transitive.  In the second 
year, a different group of five evaluators each ranked 18 proposals.  There were 
both a PMRW and a PMRL in the second year.  However, there were numerous 
PMR cycles on proposals that were positioned near the center of the PMR rank-
ings in the second year. 

Tideman (1992) performs an extensive study that examines the results of 84 
different elections that were overseen by the Electoral Reform Society of Great 
Britain and Ireland, along with the results of three additional elections.  Voters 
were requested to rank all of the candidates in all cases, but they did not always do 
so.  Candidates that were not reported in a voter’s ranking were all listed as being 
indifferent to each other, and they were all ranked at the bottom of the voter’s 
preferences.  The number of candidates ranged from three to 29 and the number of 
voters ranged from nine to 3,500.  There was complete transitivity, allowing for 
ties, by PMR voting for 61 of the 87 elections.   

Tideman makes a number of very interesting general observations for the 26 
elections that were considered for which PMR was not completely transitive.  All 
of these observations are completely consistent with the results of all of the em-
pirical studies that have been mentioned above: 
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Elections with a few candidates almost always have transitive PMR orderings. 
Pairs of candidates that are ranked by a small number of voters are more likely 
to be involved in a PMR cycle than pairs that are ranked by many voters. 
The size of majorities on pairs that are involved in PMR cycles tends to be 
small, even after accounting for the fact that these typically involve a small 
number of voters. 
Candidates involved in PMR cycles tend to be located near the center of the 
overall PMR ranking.  So, candidates that are most preferred, of most disliked, 
by the electorate are not likely to be involved in PMR cycles. 
PMR cycles typically contain pairs that are ranked relatively close together in 
the overall PMR ranking. 

2.4 Monte-Carlo Simulation Studies 

Other empirically based studies have proceeded to analyze actual voting data for 
observations of the existence of Condorcet’s Paradox in a different fashion.  These 
studies proceed in a two-step process.  In the first step, a voting situation that 
shows the number of voters with each possible preference ranking on candidates is 
reconstructed from actual election data, using some method like the ones de-
scribed in the survey of empirical studies in the preceding section.  The relative 
proportion of voters with each of the possible preference rankings is then com-
puted to represent the probability that a randomly selected voter from a population 
of voters will have the associated preference ranking on candidates.  In the second 
step, Monte-Carlo simulation is used to obtain a voter preference profile by se-
quentially generating random voter preference rankings on candidates for each 
voter.  Each voter’s preference ranking on candidates is generated randomly and 
independently according to the probabilities for voter preference rankings on can-
didates that were obtained in the first step.  After obtaining a number of different 
voter preference profiles in this fashion, the probability of observing Condorcet’s 
Paradox is then estimated by the proportion of the randomly generated voter pref-
erence profiles that exhibit the paradox. 

Bowen (1972) does an analysis of this type on roll call votes from the U. S. 
Senate in the years 1958, 1960, 1962, 1965 and 1966.  The determination of the 
count of senators who had given preference rankings in the first stage for each 
case followed the same procedure as described above in the work of Blydenburgh 
(1971).  As in the Blydenburgh study, it is not always possible to reconstruct the 
complete preference rankings for each preference structure type.  When there were 
unknown pairwise comparisons on alternatives, as in Group 5 of the Blydenburgh 
study, Bowen (1972) splits voters for the preference equally among the complete 
preference rankings that could be obtained from the preference structure being 
considered, in general agreement with the notion of the “impartial scenario” in 
Chamberlin, et al. (1984).  For example, Bowen split the 71 voters in Group 5 of 
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the Blydenburgh study into 35.5 voters with the ranking IES  and 35.5 vot-
ers with EIS .

The Monte-Carlo simulation step of the Bowen (1972) study used the accumu-
lation of all extended ranking results from the first stage, to compute probabilities 
that randomly selected senators would have an associated complete preference 
ranking on the alternatives. Random profiles were generated to determine the pro-
portion of randomly generated profiles that did not have a PMRW. A hypothesis 
test was used to determine that thirteen roll call votes in the set of votes being con-
sidered had a significant probability that no PMRW existed.  Most notably, the 
Food and Agriculture Act of 1962, with nine amendments, exhibited Condorcet’s 
paradox with probability 0.965, the Wheat Act of 1960, with three amendments, 
exhibited the paradox with probability 0.940, the Economic Opportunity Amend-
ments of 1965, with sixteen amendments, exhibited the paradox with probability 
0.630, and the Housing Act of 1960, with three amendments, exhibited the para-
dox with probability 0.460. 

Weisberg and Niemi (1972) perform an analysis of roll call votes following the 
same format as Bowen (1972), but Weisberg and Niemi (1972) use a more sophis-
ticated process for evaluating the probabilities that randomly selected voters 
would have various preference rankings. Bowen (1972) did an equal splitting of 
voters over possible preference rankings for preferences on pairs that were not ob-
served from voting, but Weisberg and Niemi (1972) use a model that reconstructs 
preference rankings for some of the voters, and then does an equal split over pos-
sible preference orders for remaining voters.  Results give a decreased estimate for 
the probability that a PMRW does not exist, with the probability that there is no 
PMRW dropping to 0.198 for the Wheat Act of 1960, as compared to the Bowen 
(1972) estimate of this probability as 0.940. 

Jamison (1975) performs an empirical study to try to determine estimates for 
the probability that a PMRW exists and for the probability that PMR is completely 
transitive.  There were two groups of subjects in the study, a set of 67 graduate 
students and a set of 42 undergraduate students.  Each subject in both groups was 
required to rank their preferences, without ties, on: nine potential presidential can-
didates, 12 types of soup, and 11 European cities that could be toured.  The prob-
abilities for given subject rankings on candidates were obtained directly from the 
reported rankings. 

Simulation analysis was then performed in the second stage on the six different 
combinations that were sampled.  The analysis was performed in the same way in 
each of the six cases.  For each number of subjects n = 3(2)15,  preference rank-
ings were sequentially selected at random, without replacement, from the prefer-
ences reported by respondents in the particular case being considered to obtain a 
voter preference profile for n individuals.  Then, for each number of alternatives m
= 3,4,5,6, a randomly selected set of alternatives was obtained for the particular 
case.  Each of the n individual preference rankings on the m alternatives was then 
reduced, by removing all alternatives that were not included in the selected set of 
alternatives.  A determination was then made as to whether or not a PMRW ex-
isted, and whether or not the PMR relationship was transitive.  The process was 
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repeated 4,500 times to obtain the proportion of times that there was a PMRW and 
the proportion of times that PMR was transitive. 

Over all of the cases that were considered, a PMRW existed with a probability 
ranging between 0.80 and 0.85, while the probability that the PMR relation was 
transitive ranged between 0.60 and 0.80.  Results consistently showed that both 
probabilities were minimized when there were five voters.  For all cases and all 
numbers of alternatives, both probabilities tended to increase monotonically as the 
number of voters increased or decreased from five.  These observations are consis-
tent with the conclusions from Tideman (1992). 

Chamberlin and Featherston (1986) develop a more sophisticated Monte-Carlo 
simulation model that generates voter preference profiles in a fashion that is more 
consistent with observed election outcomes.  The model randomly generates voter 
preference profiles in a manner that is similar to the simulation studies described 
above.  However, the probabilities that voters have given preference rankings on 
candidates are assumed to be random variables themselves, following a Dirichlet 
probability distribution.  The associated parameters of the Dirichlet distribution 
are determined on the basis of observed voter preference rankings from a given 
election outcome. 

Once the parameters of the Dirichlet distribution have been established for a 
particular voting situation, it is possible to randomly generate the proportions that 
are then to be used as a basis for generating a random voter preference profile.  A 
different randomly generated set of proportions is used for the generation of each 
random voter profile.  It would be anticipated that the particular voter preference 
profiles that are obtained by this process would tend to have the same general type 
of preference structure as the observed preferences from the election results that 
were used to obtain the Dirichlet parameters.   

The data from the five different elections for president of a professional soci-
ety, as considered in Chamberlin, et al. (1984), were used as a trial.  It is assumed 
that the same basic type of voter preference profile structure was consistent over 
all elections, and the data from the five elections were used to compute the pa-
rameters of the Dirichlet distribution that would randomly generate proportions of 
voters with given preference rankings in voter preference profiles.  Tests show 
that the procedure randomly generated profiles that were very similar in nature to 
the observed election profiles.  A sample of 1,000 randomly generated voter pref-
erence profiles following this specific scenario found that there were no PMR cy-
cles in any of the profiles.  This observation is completely consistent with the fact 
that no PMR cycles were found in any of the original election outcomes in Cham-
berlin, et al. (1984). 

The line of research that is suggested by these Monte-Carlo simulation studies 
gives a very different slant to the notion of estimating the likelihood that Condor-
cet’s Paradox might occur.  There is typically extreme difficulty involved in trying 
to reconstruct the preference rankings of voters from the limited information that 
is given in most elections.  By appealing to simulation analysis of the type sug-
gested here, we open the door to the notion of evaluating the impact of varying the 
propensity of voter preference profiles have different types of characteristics.   It is 
a very interesting idea to rate the characteristics of voter preference profiles on the 
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basis of their probability of causing Condorcet’s Paradox to be observed, and that 
topic will be addressed in detail in later chapters.  Our next step is to turn attention 
to the historical sequence of the research that leads up to that topic. 

2.5 Conditions that Prohibit Condorcet’s Paradox 

It is clearly of interest to ask if there are some natural underlying conditions that 
are related to the process by which voters form their preferences on candidates 
that would make it impossible for any PMR cycles to occur.  Black (1958) found 
this to be the case when voters’ preferences are restricted to have the property of 
single-peaked preferences.  To describe this property, we define a measure of 

preference or utility, j
i CU , that a given thi  voter associates with candidate jC

in an m-candidate election with m
m CCC ,...,, 21C .  Increased measures of 

j
i CU  indicate that a voter has an increased preference, or utility, for the given 

candidate, so the given voter’s individual preference ranking on candidates will 

have kj CC  if, and only if, k
i

j
i CUCU .

Consider a simple example voter preference profile with three voters, where 
each individual voter has a linear preference ranking on six candidates, as shown 
in Fig. 2.8 with: 

  Voter 1: 241536 CCCCCC
  Voter 2: 152634 CCCCCC
  Voter 3: 156342 CCCCCC .

Fig. 2.8 An example preference profile with three voters and six candidates 

We can determine if the three voter’s preference rankings in the example in 

Fig. 2.8 meet the definition of single-peaked preferences by trying to find j
i CU

values that are consistent with the preference rankings of the individual voters, 
while simultaneously meeting an additional restriction.  This additional restriction 
can be established by drawing a graph like the one that is shown in Fig. 2.9.   

Values of j
i CU  are displayed on the vertical axis of the graph in Fig. 2.9, 

and the horizontal axis of the graph represents the sequence of sC j '  that corre-

sponds to some linear overall reference ranking.  Let ji CC O denote the fact that 

iC  is ranked as preferred to jC in this overall reference ranking.  The specific 

overall reference ranking that is used in Fig. 2.9 is 156342 CCCCCC OOOOO .  Fig. 

2.9 shows a plot of possible j
i CU  values for each voter, as associated with spe-
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cific candidates in the sequence of sC j '  in the overall reference ranking, such that 

the given j
i CU  values for a given i would reproduce the linear preference rank-

ing of the associated thi  voter in Fig. 2.8.  The results that are displayed in Fig. 

2.9 have )( 6
1 CU > )( 3

1 CU > )( 5
1 CU > )( 1

1 CU > )( 4
1 CU > )( 2

1 CU , to correspond 

with the linear preference ranking 241536 CCCCCC  for Voter 1.  We 

do not claim that the j
i CU  values in the graph represent the true utility values 

that voters have for candidates.  The only claim is that they are possible utility 
values that would result in the voters’ preference rankings on candidates. 

   j
i CU

         
                     2C        4C        3C        6C        5C        1C

Fig. 2.9 A graph of single-peaked preference curves for three voters 

Any of the possible 720 linear rankings on the six candidates could have been 
used as an overall reference ranking.   However, the specific overall reference 
ranking used for Fig. 2.9 is of particular interest, since it results in plots of the 

possible j
i CU  values that have single-peaked preference curves for each voter.  

Using the definition in Black (1958, pg. 7), a “single-peaked (preference) curve is 
one which changes its direction at most once, from up to down.” 

Single-peaked preferences curves would tend to suggest a situation in which 
all voters would tend to agree that some underlying characteristics of candidates 
would allow for the sequencing of the candidates in some natural order from left 
to right, according to their rankings in the overall reference order.  Each voter 
would then have some particular most preferred candidate in the sequence, with 
decreasing preferences on candidates as they are ranked farther away, to the left or 
to the right, from their most preferred candidate within the sequence of candidates 
in the overall reference order.  Black (1958, pgs. 8-9) suggests that this scenario 
might be plausible in many situations. 

“While in practice a (committee) member’s preference curve may be of any shape what-
soever, there is reason to expect that, in some important practical problems the (preference) 
valuations actually carried out will tend to take the form of isolated points on single-peaked 

Voter 1

 Voter 2

Voter 3
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curves.  This would be particularly likely to happen if the committee were considering dif-
ferent possible sizes of a numerical quantity and choosing one size in preference to the oth-
ers.  It might, for example, be reaching a decision with regard to the price of a product to be 
marketed by a firm, or to the output for a future period, or the wage rate of labor, or the 
height of a particular tax, or the legal age of leaving school, and so on.”  

Buchanan (1970) and Browning (1972) also consider natural conditions that are 
likely to lead to the existence of single-peaked preferences.  Gaertner (2005) notes 
that arguments that are based on the notions that lead to the definition of single-
peaked preferences are found as far back as Pufendorf in the 17th century. 

Black (1958) then goes on to develop arguments that can be used to show that 
PMR will be transitive for odd n if any overall reference order and possible 

j
i CU  values that are consistent with voters’ preference rankings can be found to 

result in single-peaked preference curves for all voters.  That is, all voters’ prefer-
ence curves must be single-peaked relative to the same overall reference order. 

Arrow (1963) approaches the concept of single-peaked preferences by consid-
ering only the ordinal relationships between candidates in rankings, without using 

Black’s j
i CU  values.  We begin by defining a relationship of having a candi-

date being located between two other candidates in the linear overall reference 
ranking.  For any triple of candidates, kji CCC ,, , let ),,( kji CCCB denote that 

jC  is ranked between candidates iC  and kC in the overall reference ranking, so 

that either kji CCC OO  or ijk CCC OO .   

Voters’ preference rankings are single-peaked if there exists a complete and 
transitive overall reference ranking, such that for each triple of candi-
dates, kji CCC ,, , if a voter has an individual preference ji CC and

),,( kji CCCB  in the overall reference ranking, then the voter must have kj CC
as an individual preference.  Arrow (1963) goes on to prove that if voters’ prefer-
ence rankings on candidates meet this definition of single-peaked preferences, 
then PMR will be transitive for odd n.

It is easily verified that these two definitions of single-peaked preferences are 
equivalent.  In addition, we find that the definition provided by Arrow (1963) 
leads to a simple way of determining if voters’ preferences are single-peaked.  If 
we take any triple of candidates, kji CCC ,, , suppose that ),,( kji CCCB in the 

overall reference ranking, and let *C  denote the candidate that a given voter 
ranks as most preferred from the set of all candidates.  If *C  is iC  or if 

iCC O* in the overall ranking, then the given voter will have preferences on the 

triple with kji CCC , with kC  being ranked last in the triple.  If *C  is kC or 

if *CCkO in the overall ranking, then the given voter will have preferences on the 

triple with ijk CCC , with iC  being ranked last in the triple.  If 

)*,,( ki CCCB in the overall ranking, the given voter could have preference rank-
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ings that include any of any of kji CCC , ijk CCC , ikj CCC  or 

kij CCC , so that either iC  or kC  is ranked last in the triple.  However, it is 

impossible to ever have either jik CCC  or jki CCC  , with jC  being 

ranked last in the triple,  if ),,( kji CCCB  and the given voter’s preferences are 

single-peaked.   
This leads to the following alternative definition that voters’ preferences are 

single-peaked if for every triple of candidates, at least one candidate is never 
ranked last among the three by any voter.  Arrow’s definition lacks the intuitive 
appeal of Black’s definition of single-peaked preferences, but it is an equivalent 
definition, and it will be very useful in later discussion.  This is particularly true 
when attention is restricted to three-candidate elections.  Numerous studies have 
been conducted to establish similar restrictions on voters’ preferences that require 
PMR to be transitive.   

Vickery (1960) discusses another condition on voter preference profiles that 
will guarantee the existence of a transitive PMR relationship for odd n.  This con-
dition exists when voters have single-troughed preferences.  Like the condition of 
single-peaked preferences, this condition assumes that all voters agree on some 
common overall reference ranking of candidates along some dimension from left 
to right.   Each voter would then have some particular least preferred candidate in 
the sequence, with increasing preferences on candidates as they are ranked farther 
away, to the left or right, from their least preferred candidate within the sequence 
of candidates in the overall reference order.  Vickery (1960) points out that the 
condition of single-troughed preferences is equivalent to the assumption of single-
peaked preferences, when all of the voter preference rankings are inverted.   It 
then follows directly from Arrow’s arguments that preferences are single-troughed 
if some candidate in every triple of candidates is never the most preferred candi-
date among the three for any voter. 

Ward (1965) develops another restriction on profiles that will assure transitiv-
ity of PMR for odd n.  Following earlier discussion, This condition requires that 
some candidate in every triple of candidates is never the middle-ranked candidate 
among the three candidates for any voter.  Ward then combines all three condi-
tions that we have discussed to develop an overall condition on voter profiles that 
assures the existence of a PMRW with odd n.

Ward’s Condition is developed here, since it is relevant to later discussion.  
This condition holds on all possible triples from the m candidates, and is described 
in terms of "Condorcet triples" or in terms of a Latin Square.  A Latin Square ex-
ists on a triple of candidates A, B and C if there are voter preference rankings 
within the profile that contain CBA  for some voters, BAC  for some 
voters and ACB  for some voters.  It is clear why this is called a Condorcet 
triple, since a situation in which equal numbers of voters have each of these rank-
ings on the three candidates, forming a perfect Latin Square, would result in the 
PMR cycle with AMB, BMC, and CMA.  However, the numbers of voters with 
each ranking need not be equal for a Latin Square to exist.  Ward's Condition re-
quires that there are no Latin Squares on any triples of candidates in a profile.  
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This condition is clearly much less restrictive than any of the three previous condi-
tions that have been defined.  Ward's Condition only requires that some candidate 
either not be ranked first, or not be ranked second, or not be ranked third among 
voters’ preferences on any triple.  Each candidate in a triple could be ranked in 
third place by some voter in a voter preference profile, to violate Arrow's Condi-
tion. But, Ward's Condition could still be met for that profile as long as one of the 
three candidates was either not ranked first of the three candidates by any voter, or 
was not ranked second of the three candidates by any voter. 

A number of papers have been written on the topic of determining the maxi-
mum number of different linear preference rankings, of the !m  possible rankings, 
on candidates that could be included in a profile and still meet Ward's Condition.  
Most of this work is based on Craven's Conjecture [Kelly (1991)], which is re-
lated to bounds on this number, and most of this work is summarized in Fishburn 
(1997).  Sen (1966) extends the notion of Ward’s Condition to situations in which 
each voter’s preferences do not have to be complete, so that some voter indiffer-
ence between candidates is permitted.  In particular, Sen’s condition of Value-
restricted Preferences allows voters to have weak ordered preferences.   An indi-
vidual voter has weak ordered preferences if transitivity holds, and if the set of 
candidates can be partitioned into k equivalence classes kEEE ,...,, 21  such that 

the voter is indifferent between all candidates within the same equivalence class, 
and if ix EC and jy EC with ji then the voter must have a preference on 

the pair with either yx CC  or xy CC .  In addition, if ix EC  and jy EC

with yx CC  for any ji , then wz CC for all iz EC  and all jw EC .

Inada (1964) proves that PMR must be transitive when individual voters have di-
chotomous preferences, which corresponds to the case of weak ordered prefer-
ences with k = 2. 

Niemi (1983) describes a semi-single-peaked condition that is much less re-
strictive than the single-peaked condition.  The semi-single-peaked condition will 
not guarantee that PMR is transitive, but it is sufficient to guarantee that a PMRW 
exists. The definition of the semi-single-peaked condition follows from the logic 
of our earlier discussion of the definition of the single-peaked condition.  Suppose 
that all voters agree on a common overall linear reference ranking on the candi-
dates, mmm CCC....CCC OOOOOO 12321 , on some dimension.  A profile is semi-

single-peaked if there is some jC  such that a majority of voters have 

CUCU ii
1  for each j  and a majority of voters have 

1CUCU ii  for each j .  It is not necessary for the majority of voters 

in both cases to be composed of the same subset of voters.  A profile can be semi-
single-peaked, while very few individual voters have preferences that are perfectly 
single-peaked.  Demange (1982) presents a condition in which candidates have 
preferences that are single-peaked on a tree, which is also sufficient to guarantee 
the existence of a PMRW, but not guarantee complete transitivity of PMR. 



56      Condorcet’s Paradox 

Summaries of studies of other conditions that require transitivity of PMR can 
be found in Chapters 10 and 10* in Sen (1970), in Chapter 9 in Fishburn (1973b), 
in Arrow and Raynaud (1986), and Chapter 5 in Gaertner (2001).   DeDonder 
(2000) summarizes work regarding conditions that guarantee the existence of a 
PMRW when PMR is treated as a series of voting games, and discusses the eco-
nomic implications of each of these conditions.  Saari and Valognes (1999) con-
sider the impact that single-peaked preferences and single-troughed preferences 
have on the existence of voting paradoxes in general.  They conclude that while 
each prohibits the existence of Condorcet’s Paradox, they still do allow for the ex-
istence a number of other voting paradoxes. 

Fishburn (1974b) and Tullock (1967) use very different approaches to consider 
the extension of the notion of single-peaked preferences to more than one dimen-
sion, or criterion, for ranking candidates.  Both studies generally conclude that the 
probability that there is no PMRW will be exceedingly small when the number of 
voters is much greater than the number of candidates in the case of two dimen-
sions.

2.6 Variations of Condorcet’s Paradox 

The impact that variations of Condorcet’s Paradox has on group decision-making 
has been developed in the context of a number of different types of decision-
making scenarios.  Brennan (2001) presents a view of Condorcet's Paradox from a 
perspective of group decision versus group coherence.  To explain this situation, 
we consider a legal example in which three judges are evaluating a case in which a 
plaintiff has brought suit against a defendant for breach of contract.  The three 
judges have individually weighed the evidence to conclude: 

Judge X: A legal contract was formed between the two parties, and a breach of 
contract did occur on the part of the defendant. 

Judge Y: If a legal contract had been formed between the two parties, then a 
breach of the contract would have occurred.  However, a legal contract had not 
been formed. 

Judge Z: A legal contract was formed between the two parties, but no breach of 
contract occurred. 

In order to find the defendant guilty, a judge must conclude that a legal con-
tract had been agreed to by both parties and that the defendant did not meet the 
specifications of that contract.  Both Judges Y and Z will vote on the side of the 
defendant in this example, since neither finds that both necessary conditions oc-
curred.  So there is a clear majority decision to find the defendant not guilty.  But, 
the question of the coherence of that decision might well be attacked, since a ma-
jority of Judges (X and Z) agrees that a legal contract had been formed, and a ma-
jority of Judges (X and Y) agrees that a breach had occurred.  Thus, a majority of 
judges would have voted on the side of the plaintiff in terms of each of the neces-
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sary conditions.   As a result, observers might find that the final decision of the 
judges was incoherent. 

Stearns (1995) addresses a similar issue related to the context of a courtroom 
scenario in which a panel of judges decides the outcomes of cases by majority 
rule.   An example is presented to show how the outcome of a decision might 
change, based upon the sequence in which different aspects of a hypothetical case 
are addressed, based on actual rulings that were made on cases related to the spe-
cific aspects.  Realizing that the distinct possibility that PMR cycles exist, the 
study describes how specific decision rules have been established to determine 
how the U. S. Supreme Court and lower federal courts must consider cases.  These 
rules, as established, prevent the possibility of observing court decisions with 
PMR cycles within and across case decisions.  Easterbrook (1982) and Block 
(1998) present a background into studies in which the existence of PMR cycles 
might have had an impact on legal decisions, and on the increased level of aware-
ness that is being given to the possible problems that their existence might pose in 
making legal and political decisions. 

List and Petit (2004) describe a generalization of the decision-making scenario 
in a courtroom as described in Brennan (2001) in the context of the “Doctrinal 
Paradox” of logical decision-making, and then draw parallels between the Doc-
trinal Paradox and Condorcet’s Paradox.   List (2003) compares the relative likeli-
hoods of the occurrence of the Doctrinal Paradox and Condorcet’s Paradox. 

May (1954) considers the relationship between collective group intransitivity 
and individual preference intransitivity.  The candidates in the group voting model 
correspond to different alternatives that a subject is comparing on the basis of in-
dividual preference in May’s Model of individual preference.  The preference 
ranking that a given voter has on candidates then corresponds to the subject’s 
preference ranking of alternatives according to some attribute of comparison.  
Then each voter preference ranking on candidates in a voter preference profile 
would correspond to the subject’s ranking of alternatives by a different attribute of 
comparison.  In May’s Model, the subject will prefer alternative X to alternative Y
if X is rated as better than Y on a majority of attributes of comparison.  This is 
equivalent to XMY in the group voting model.  A PMR cycle in the group voting 
model then corresponds to a subject having an intransitive preference cycle on al-
ternatives in May’s Model.  This analogy is also developed by Packard (1975) and 
Gehrlein (1990b), and it will be studied in detail as the subject of Chapter 7. 

Lagerspetz (2004) develops a Meta-Paradox by considering a set of rankings 
of three different voting procedures.  Three different rankings of these voting pro-
cedures are generated, based on the effectiveness of the voting rules at performing 
effectively on three different criteria.  One criterion that was used for a ranking 
was the Condorcet efficiency, or the propensity of the voting rules to select the 
PMRW when one exists, of the voting procedures.  The Meta Paradox results 
when a PMR cycle exists with PMR comparisons of the three voting procedures 
over the three different rankings.  So, the cycle exists not on candidates, but on the 
voting procedures that can be used to select the winner in an election. 

Finally, we note an analysis of Condorcet’s Paradox that was developed by 
Fischel (1972) in an examination of one of Aesop’s fables, “The Miller, His Son 
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and Their Ass”.  The study reconstructs the preferences of various different ob-
servers to social situations that occur in the development of the fable, to determine 
that the use of PMR voting by the observers to determine the most socially pre-
ferred situation would lead to a PMR cycle. 

2.7 Conclusion 

Numerous empirical studies have been conducted to determine if Condorcet’s 
Paradox is ever observed in actual elections.  After surveying these studies, we 
must conclude that the evidence does not suggest that the phenomenon is wide-
spread in voting situations.  However, there clearly are cases in which the evi-
dence shows that Condorcet’s Paradox has occurred in actual elections. The most 
typical observations of the phenomenon occur when there are a large number of 
candidates in an election, but there are cases in which it has been observed in 
three-candidate elections.  Following notions that are suggested in some theoreti-
cal studies, examples have also been found to show that various means occasion-
ally have intentionally been used to create PMR cycles in election settings to gain 
a political advantage.  It is clearly of interest to determine what the characteristics 
of voting situations are that make the possible existence of Condorcet’s Paradox 
most likely to occur. 



3 The Cases of Two and Three Candidates

3.1 Introduction 

The results of the previous chapter support the fact that we can indeed find in-
stances of Condorcet’s Paradox in real situations, but that they are not necessarily 
pervasive.  The next step of our study is suggested by Condorcet (1793a, pg. 7) 
himself: 

“But after considering the facts, the average values or the results, we still need to deter-
mine their probability.” 

Condorcet did a number of studies that applied probability analysis to aspects 
of election procedures, and he discovered a number of very important concepts 
while doing so.  However, the arguments behind his explanations of these ideas 
can be extremely difficult to unravel.  A quote from Todhunter (1931, pg. 352) 
suffices to give an idea of the extreme difficulty that can be involved with follow-
ing Condorcet’s logic in developing probability models: 

“We must state at once that Condorcet’s work is excessively difficult; but the difficulty 
does not lie in the mathematical investigations, but in the expressions that are employed to 
introduce these investigations and to state their results: it is in many cases almost impossi-
ble to discover what Condorcet means to say. The obscurity and self contradiction are 
without parallel.  …  We believe that the work has been very little studied, for we have not 
observed any recognition of the repulsive peculiarities by which it is so undesirably distin-
guished.”   

Todhunter (1931) then recreates many of the results that Condorcet worked on 
by using a much more transparent style.  The first of Condorcet’s probability stud-
ies resulted in an observation that has become known as Condorcet’s Jury Theo-
rem.  The written presentation of this result in Condorcet (1785a) is not an excep-
tion to Todhunter’s description. The proof of the Jury Theorem is developed here 
in some detail, significantly elaborating on the proof of the Jury Theorem that was 
presented in Black (1958). 

Consider a situation in which a group of n jurors, or voters, is deliberating the 
truth of a statement, and the combined opinion of the jury will be used to reach a 
verdict, or election outcome.  In the context of an election, we let Candidate A rep-
resent a juror’s belief that the statement under deliberation is true, and B represent 
a juror’s belief that the statement is false.  If an individual juror’s preference 
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is BA , that juror would vote that the statement is true, and if AB that juror 
would vote that the statement is false.  No juror will know with certainty if the 
statement under deliberation is true or false.  There is some probability, p, with 
which each juror will reach the correct decision, and each juror will be wrong with 
probability p1 .  The value of p is assumed to be the same for each voter, and 
we are assuming that all voters will reach a decision regarding the statement under 
deliberation without abstaining from the election. 

Suppose that h jurors believe that the statement under deliberation is true and 
vote for A, while hn  jurors believe that the statement is false and vote for B.
Let )|( AhP  denote the conditional probability that we have an outcome in which 
h of the jurors vote for A, given that the statement under deliberation is true.  If 
each voter’s decision is formed independently of other voters, binomial probabili-
ties apply with h voters being correct and hn  voters being incorrect, and  

hnh pp
hnh

nAhP )1(
)!(!

!)|( .
(3.1)

If the statement under deliberation is false, then h jurors are incorrect and hn
are correct with conditional probability 

hhn pp
hnh

nBhP )1(
)!(!

!)|( .
(3.2)

Let P(A) denote the probability that the statement under deliberation is true.  We 
assume that it is equally likely that A is true or that B is true, so 

2/1)()( BPAP .  The probability, P(h), that h of the n jurors vote for A is then 

given by 

.)1()1(
)!(!2

!
)()|()()|()(

hhnhnh pppp
hnh

n
BPBhPAPAhPhP (3.3)

Bayes’ Rule can then be used to find the conditional probability, P(A|h), that 
the statement under consideration is true, given that h jurors voted for A as 

hhnhnh

hnh

pppp
pp

hP
APAhPhAP
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(3.4)

If we assume that 2/nh , this can be reduced to    
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,

(3.5)

where 
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nh

p
pX

2
1

.
(3.6)

We note here that the exponent term nh2  in Eq. 3.6 expresses the difference 
between the number of jurors voting for A, there are h of them, and the number 
voting for B, there are hn of them.  Clearly, hAP |  increases as X decreases, 
and this will happen for any fixed n and h, as p increases.  This will also happen 
for any fixed n, as h increases up to n, as long as pp1 , or 2/1p .   

It is therefore possible to increase the probability that a jury of n members 
makes the correct decision either by increasing the probability that individual ju-
rors are correct in their perceptions, or by increasing the value of h that is required 
to ultimately determine a final decision.  Increasing the value of h is the same as 
increasing the difference between the number of voters selecting A and B that is 
requires before a final decision is reached. These results constitute the basis of 
Condorcet’s Jury Theorem. 

Grofman and Feld (1988) elaborate on the relationship between the analysis 
that Condorcet presents here and Rousseau’s notion of using majority rule voting 
to determine the “general will” of the electorate, as discussed in Chapter 1.  The 
basic logic of both writers is found to be consistent.  Numerous papers have been 
written about various other aspects of Condorcet’s Jury Theorem and related top-
ics.  The interested reader is directed to Nagel (1981), Gehrlein (1981a), Grofman, 
et al. (1983), Ladha (1993), Berg (1993,1996).   Karotkin (1993) does an analysis 
of work related to Condorcet's Jury Theorem when decisions are being made by 
committees from the set of voters. 

3.2 The Problem with Three Candidates 

Condorcet (1785a) extends the same type of analysis that is used in the proof of 
the Jury Theorem, to consider the probabilities that each candidate is the true 
PMRW in the overall preference of society, given PMR voting situations in a 
three-candidate election. The extension of this analysis to three-candidate elec-
tions led Condorcet into a dilemma.  The study assumes that voters are using PMR 
with three candidates, CBA ,, .  Let ASB denote that A is preferred to B accord-
ing to the true preference of society.  Following the logic of the Jury Theorem, 
when individual voters make their pairwise comparison between A and B, there is 
a probability, p, that each voter will respond correctly with an individual prefer-
ence of BA that is in agreement with the social preference ASB, rather than re-
sponding incorrectly with AB .

Condorcet’s analysis of this problem is nearly unintelligible, with written 
comments that do not match numerical examples.  Young (1988) recreates the 
logic that Condorcet (1785a) seemed to be using, and we present an extended ver-
sion of the analysis that is given in Young (1988).  Similar efforts to reconstruct 
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the logic of Condorcet (1785a) are given in Monjardet (1976) and Michaud 
(1985). 

Young considers an example with 60 voters with candidates CBA ,,  as 

shown in Fig. 3.1, where the results of an election are given in terms of the num-
ber of voters with a reported preference on pairs of candidates. 

       A B 23  B A 37 
       A C 29  C A 31 
       B C 29  C B 31 

Fig. 3.1 Pairwise preference example for 60 voters from Young (1988) 

As mentioned above, we do not have the complete preference rankings for the 
voters in Fig. 3.1, and each voter has a probability, p, of having voted in agree-
ment with the true social preference on each pair of candidates.  Candidate C
would be the PMRW based on the simple vote outcomes in this example, since it 
beats each of A and B by a vote of 31-29.  However, this observed set of voter re-
sponses might be leading to the wrong conclusion with regard to the true social 
preference if too many voters have given an incorrect response.  The numerical 
example that is used by Young (1988) in Fig. 3.1 is different than the one pre-
sented in Condorcet (1785a), but all of Condorcet’s discussion about the example 
that he used is still valid for the current example.  McLean (1995) explains the 
confusion over this issue. 

We wish to compute the joint conditional probability, )|( VoteCP , that C is the 

true PMRW, with both CSA and CSB, given the voting situations for the 60 voters 
that is listed above.  To begin, we compute a preliminary probability ACP
that C beats A by the vote of 31-29, as observed in the results.  If CSA, then some 
combination of 31 of the 60 voters have voted correctly, and the 29 remaining 
voters have voted incorrectly.  Assuming that we have independent voters with an 
identical probability p of voting correctly, the likelihood of a 31-29 vote for C
over A would be given by the binomial probability  

2931 1
!29!31

!60 ppAA|CCP S .
(3.7)

If ASC, then some combination of 31 of the 60 voters voted incorrectly and the 
remaining 29 voted correctly, with the binomial probability  

3129 1
!29!31

!60| ppCAACP S .
(3.8)

If we assume that the probability of the events ASC and CSA are equally likely, 
with probabilities P(ASC) = P(CSA) = 1/2 for each outcome, we obtain 

)()|()()|()( ACPACACPCAPCAACPACP SSSS . (3.9)
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2
1

2
1

!29!31
!60 31292931 ppppACP .

(3.10)

Bayes’ Rule can be used to obtain the conditional probability, VoteACP |S ,

that CSA, given the pairwise majority votes from the 60 voters with 

ACP
ACPAA|CCPA|VoteCP SSS .

(3.11)

Using arguments from above and algebraic reduction, we obtain 

31292931

2931

11
1

pppp
ppA|VoteCP S .

(3.12)

The same arguments can be used to develop a representation for VoteBCP |S
as:

31292931

2931

11
1

pppp
ppB|VoteCP S .

(3.13)

With the assumption that the events CSA and CSB are statistically independent, 

.
1

11
1

|||

2

22

2

2

31292931

2931

pp
p

pppp
pp

VoteBCPVoteACPVoteCP SS (3.14)

Similarly, 

221414

214

11
1

pppp
ppB|VoteP

221414

214

11
11

pppp
ppP(A|Vote) .

(3.15)

Young (1988) contains a minor typographical error in the representation of 
VoteAP | in Eq. 3.15. 

We consider these probability representations with 2/1p  for 0 .

When  is arbitrarily small, the probability representations can be reduced for this 

case, and we can ignore all terms containing powers of i  with 1i .  After re-
duction, 
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81)|(

VoteAP

VoteBP

VoteCP
(3.16)

When  is arbitrarily small, these results are valid, and the maximum prob-
ability that a candidate is the true PMRW occurs for Candidate B.  This result 
would have been quite disconcerting for Condorcet, since C is the PMRW accord-
ing to the reported votes.  The fact that B has the maximum probability of being 
the true PMRW with this analysis follows from the fact that it wins in more PMR 
comparisons, with 66 total votes over A and C, than does either A, with 52 votes, 
or C, with 62 votes. 

Condorcet (1785b, pg. 76) addresses the issue of what should be done in this 
example in which computed probabilities disagree with observed election out-
comes, by appealing to “simple reason” when he writes: 

“Candidate A clearly does not have the preference, because there is a plurality (majority) 
of votes against him whether he is compared to B or to C, and this is always the case in 
such situations.  The choice is therefore between B and C.  As the proposition ‘B is better 
than C’ has only minority support, we must conclude that C has plurality (majority) sup-
port.” 

So, Condorcet now argues that we should rely on “simple reason” with the actual 
vote count, rather than relying on the computed probabilities, to resolve this di-
lemma. 

Young (1988) generalizes this result to state for any number of voters and can-
didates, if p is sufficiently close to 1/2, then the candidate that receives the most 
pairwise votes from all voters is most likely to be the candidate that is the true ma-
jority rule winner in the societal preference.  It follows easily from arguments in 
Chapter 1 that this candidate would always win by Borda Rule with a = b = 1, if 
the voters had reported complete preference rankings on the candidates.   This 
outcome is, of course, dependent upon independence between voters’ preferences 
and the assumption that each voter has a probability of 1/2 of responding with an 
individual preference that is in agreement with the societal preference on any pair 
of candidates. 

Condorcet (1785c) was clearly thinking along the same line of reasoning that 
is presented by Young (1988), since he makes specific reference to situations in 
which voters are making decisions in which they have individual probabilities of 
preferences on pairwise comparisons that are only slightly greater than 1/2.  Given 
the resulting support of Borda Rule that results from Young’s analysis above, it is 
quite possible that Condorcet made the same observation, leading to his appeal to 
use “simple reason” instead of relying on the computed probabilities. 

Condorcet (1785d) develops a third analysis that is related to the probability 
that a PMRW might exist for the general case of m candidates.  This study also 
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considers situations in which there is some probability that voters will be making a 
correct decision.  The particular situation that has received the most attention from 
this work is when the PMR vote on any pair of candidates has an equal likelihood 
of having either candidate win. To be more specific, this assumption suggests that 
there is an equal likelihood that any pair of candidates, A and B, will have BMA or 
AMB by PMR, regardless of the PMR voting results on any other pairs of candi-
dates. 

We follow Condorcet’s rather indirect logic, and suppose that there are m can-
didates, and that A is the PMRW.  Any outcomes of voting are allowed on the so-
cial relations on the pairs of candidates among the remaining 1m  candidates.  
There are 

2
21 m-m  PMR comparisons on the remaining candidates, and there are 

two possible outcomes on each comparison.  The total number of social relations 
in which any one of the m candidates is the PMRW over the remaining candidates 
is then given by 

.2 2
)2)(1( mm

m
(3.17)

Each of these social relations is assumed to be equally likely to be observed. 
The total number of possible social outcomes by PMR on all m candidates is 

given by 2

1

2
mm

, and each of these is assumed to be equally likely to be observed.   
Given all of the above, the probability that there is a PMRW is given by the ratio 

.
22

2
1

2
1

2
21

m
mm

mm

mm (3.18)

This relationship is stated incorrectly in the original paper by Condorcet (1785d), 
and Sommerlad and McLean (1989) therefore state it incorrectly in their transla-
tion.  Riker (1961) develops a representation for this probability that is identical to 
the one given in Eq. 3.18.   

May (1971) develops an identical representation to Eq. 3.18 for the probability 
that a PMRW exists, while considering societies in which voters have random re-
sponses on pairwise comparisons, and there are absolutely no requirements for any 
consistency on their individual preferences for candidates. Clearly, May’s assump-
tions are in sharp contrast to the notions in the earlier comments from Condorcet 
(1788a) regarding the necessary requirement for transitivity of individual prefer-
ence.  However, we find that both studies result in the development the same rep-
resentation for the probability that a PMRW exists. 

If we further require that the social relation has completely transitive PMR re-
lations, then similar arguments to those used above can be used to show that this 
probability is given as 
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2

!

2
1mm

m (3.19)

An identical representation for this probability was developed by Klahr (1966). 
Both of these probabilities become quite small as m gets at all large, as seen in 

the computed values in Table. 3.1, which led Condorcet to argue in several articles 
that some type of elimination procedure must be implemented to remove candi-
dates that are not serious contenders from consideration.  If we were to believe 
that these probabilities represent a realistic situation, we would then expect to be 
observing PMR cycles on a regular basis, which is not the case. 

Table 3.1  Computed probabilities with equally likely social outcomes from Condorcet’s 
representations 

Candidates
m

A PMRW 
Exists

PMR is 
Transitive 

3 .7500 .7500 
4 .5000 .3750 
5 .3125 .1172 
6 .1875 .0220 
7 .1094 .0024 

The underlying notion of considering an equal likelihood of social outcomes 
on all pairs of candidates under PMR ignores the assumption that voters will have 
some type of coherent preferences, as indicated by the interpretation in May 
(1971).  Consider an example in an m candidate election, and suppose that m is 
large and that Candidate A has sequentially defeated the first 2m of the 

1m candidates that it must defeat by PMR to become the PMRW.  This would 
suggest that A tends to be a highly preferred candidate in the preference rankings 
of the voters.  It is not plausible to then assume that A has only a 50-50 chance of 
defeating the one remaining candidate by PMR, as assumed in Condorcet’s model.  

Neither of Condorcet’s last two probability studies is based on assumptions 
that rely on the notion that there is some underlying coherence in the preferences 
of voters.  An increased level of coherence among all of the individual voter’s 
pairwise preferences would seem likely to reduce the likelihood of PMR cycles.  
This leads to the conclusion that the probabilities in Table 3.1 grossly underesti-
mate both the probability that a PMRW exists and the probability that PMR is 
transitive.  

3.3 Probabilities with Balanced Preferences 

Tangian (2000) does an analysis of conditions on voters’ preferences that tend to 
maximize the likelihood that PMR cycles might occur.  The arguments follow 
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from using utility measures of voter preferences, as developed in Chapter 2, where 

j
i CU  measures the degree of preference, or utility, that a given thi  voter asso-

ciates with each jC  in an m-candidate election with candidates in the set 

m
m CCC ,...,, 21C .  The thi  voter’s individual preference ranking on candi-

dates will have kj CC  if, and only if k
i

j
i CUCU .

These j
i CU  values represent Cardinal Utilities, since they express voter’s 

preferences as precisely measurable values of utilities for candidates, as associated 
with points along a number line within the closed interval z,0 .  The relative dif-
ferences between utilities for candidates can then be used to precisely represent 
the relative degrees of preference between them.  The aggregated social util-
ity, jCSU , for any candidate jC  within a society of n individuals is simply ob-

tained in such situations as the sum of the individual utilities, with 

n

i
j

i
j CUCSU

1
.

(3.20)

The socially preferred candidate, or election winner, is that candidate that has 
the maximum value of jCSU .  Tangian asserts that the exact precision of cardi-
nal utility representations gives them a “solvability” that prevents them from suf-
fering from problems like Condorcet’s Paradox while determining the winning 
candidate.   

Ordinal Utility only expresses a voter’s preferences according to relative rank-
ings of candidates, without an association of degree of preference.  They are most 
appropriate in the context of voting situations, where only the relative rankings of 
preferences are reported.  Tangian considers utility-based representations for vot-
ers’ ordinal preferences, with the assumption that individual voter’s preferences 
are independent. The main conclusion of the study is that the probability that Con-
dorcet’s Paradox occurs will typically vanish for large electorates.  The probability 

of observing Condorcet’s Paradox vanishes, except when the individual j
i CU ’s 

have some underlying probability distributions that describe the likelihood that 
they are observed that exhibit the condition of balanced preferences.  This condi-
tion of balanced preferences exists when the probability distributions over 

j
i CU ’s are such that the “average voter” is indifferent between candidates on an 

expected value basis, and is equally likely to vote for or against any particular 
candidate in pairwise votes. 

Tangian (2000) obtains this outcome by considering the probability that the 
election winner that is obtained by summing individual cardinal utilities is the 
same as the winner that is obtained by PMR voting.  It is shown that this probabil-
ity goes to unity as the number of voters becomes infinite, unless the condition of 
balanced preferences exists.  Since we know that the probability of observing 
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Condorcet’s Paradox will vanish when using a cardinal utility representation in 
this case, the probability of observing Condorcet’s Paradox must therefore also 
vanish unless the condition of balanced preferences exists.  The notion that cardi-
nal utilities have a “solvability” that is not present in ordinal utilities was sug-
gested earlier by Waldner (1973). 

A somewhat different approach to this problem is taken by Gehrlein (1983, 
1997, 2002a), Stensholt (1999b), and Grofman, et al. (2003).  In these studies, 
models are developed to generate random voting situations, and every possible 
voting situation could be observed with some probability.  For any pair of candi-
dates, A and B, some proportion of the voters in each voting situation will have the 
preference BA .  This proportion is not required to be equal to 1/2 in every vot-
ing situation to have balanced preferences.  However, if this proportion is calcu-
lated for every possible voting situation, and each proportion is weighted by the 
respective probability that its associated voting situation is observed, then that 
weighted sum, or expected value of this proportion, must be equal to 1/2.  This 
condition must hold for every pair of candidates to have balanced preferences.  All 
of these studies find that an expected balance in voter preferences on pairs of can-
didates tends to maximize the probability that Condorcet’s Paradox occurs.   

The assumption of balanced preferences is also consistent with the notion of 
the principle of insufficient reason, given that nothing is known a priori about 
voters’ preferences on pairs of candidates in any particular voting situation.  We 
shall see later that it is possible to enter a bias into models for obtaining voting 
situations that will increase the likelihood of observing Condorcet’s Paradox, 
compared to models with balanced preferences.  However, entering such a bias is 
equivalent to assuming that we know something about the way in which voter 
preferences are being formed.  This is the reverse of the situation that was dis-
cussed in Chapter 2, where it was shown that restricting voters to having single-
peaked preferences leads to the required existence of transitive PMR.  By restrict-
ing voter’s preferences in other ways, it is also possible to greatly increase the 
probability that Condorcet’s Paradox is observed.  No such bias, or restriction, is 
implicit to the basic notion of balanced preferences. 

A number of different models that exhibit the condition of balanced prefer-
ences have been developed for generating random voting situations, or voter pref-
erence profiles.  Each of the models generates voting situations, or voter prefer-
ence profiles, with linear voter preference rankings on candidates.  We develop 
each of these models for three-candidate elections with n voters, using the termi-
nology from Chapter 1.  Voting situations are defined following the discussion 
that led to of Fig. 1.1, which is repeated here for convenience as Fig. 3.2. 

        A  A  B  C  B  C 
        B  C  A  A  C  B 
        C  B  C  B  A  A 
        1n 2n 3n 4n 5n 6n

Fig. 3.2 Voting situations with linear preference rankings on three-candidates 
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3.4 Expected Balance for Voting Situations 

3.4.1 A Fixed Number of Voters 

Kuga and Nagatani (1974) and Gehrlein and Fishburn (1976a) developed the no-
tion of Impartial Anonymous Culture (IAC).  With IAC, it is assumed that all pos-
sible voting situations for a specified number of voters, n, are equally likely to be 
observed.  This process is “anonymous” in the sense that we only know the values 
on the in  terms for a voting situation, and have no knowledge of the preferences 

of any particular voter.  IAC produces a balance in the expected preferences on 
pairs of candidates over all possible voting situations.  This balance with IAC fol-
lows from partitioning the set of all possible voting situations into pairs.  To form 
a pair of voting situations in the partition, we match each voting situation to the 
voting situation that interchanges rankings according to: 61 nn , 52 nn , and 

43 nn .

This transformation matches every voting situation with its dual voting situa-
tion, in which the linear preference ordering of candidates is reversed for every 
voter.  Thus, for any two candidates, A and B, the number of voters with BA  in 
one of the voting situations will have the same number of voters with AB  in 
the matching voting situation.  Since both voting situations are equally likely to be 
observed under IAC, there is an expected balance between the number of voters 
with BA  and with AB  within the pair of voting situations.   This observa-
tion extends to all of the pairs of voting situations in the partition, since all voting 
situations are equally likely to be observed with IAC.  In the event that 61 nn ,

52 nn , and 43 nn , the interchange of rankings matches the voting situation 

with itself.  In this case, the difference in the number of rankings with BA  and 
with AB  is not cancelled out over a pair of equally likely voting situations, but 
within this particular voting situation itself. 

We begin by developing a simple closed-form representation for the probabil-

ity, m,n,IACPS
PMRW , that a Strict PMRW exists for m candidates under IAC with 

m = 3, following the derivation in Gehrlein and Fishburn (1976a).   The general 
restrictions on the in terms in a voting situation to have A as the strict PMRW for 

the case of odd n can be restated from Chapter 1 as: 

.
2

1
654

2
1

653

CAnnn

BAnnn
n

n

M

M (3.21)

The restrictions on the individual in  terms that result in the conditions in Eq. 

3.21 are given by: 
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Computing probabilities with IAC is accomplished by using a simple process 
of counting the number of voting situations that meet these given conditions, since 
all voting situations are equally likely. In doing this, the notions that Condorcet 
(1785d) applied to counting the number of possible social outcomes to obtain the 
probability representation in Eq. 3.18 are applied instead to counting voting situa-
tions.  The number of voting situations that meet the restrictions on the in ’s in Eq. 

3.22 to have A as the PMRW for odd n values can be computed as 

IAC,nN A
PMRW ,3 , with 

.oddfor
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Gehrlein and Fishburn (1976a) algebraically reduce this representation for 
,n,IACN A

PMRW 3  by sequentially using known relations for sums of powers of 
integers [Selby (1965)].  This is a cumbersome, but simple, process.  For example, 

the first step of the process is to evaluate the summation 
3456

2 0
1

nnnnn

n
, which  

is equivalent to the determining the number of distinct integer values that 2n  can 
have within the range 345620 nnnnnn .  This general value is given 
quite simply as  13456 nnnnn .  Eq. 3.23 can then be reduced to: 
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 The reduction of Eq. 3.24 for the 3n  summation has two components.  The first 

of these two components is given by 
562

1

3 0
456 1

nn

n

n

nnnn  which is equiva-
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lent to
56

0
456

2
1

3

11
nn

n

n

nnnn . Following the discussion for the reduction 

of the 2n  summation, this first component of the 3n  summation reduces to 

11 562
1

456 nnnnnn n .  The second component of the 3n  sum-

mation is 
56

0
3

2
1

3

nn

n

n

n , which is the sum of the integer values for all integers in the 

range 562
1

30 nnn n .  In general, 
2

1

0
3

3

kkk

n
n , so after substitution 

Eq. 3.24 reduces to: 
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 The process continues in the same fashion to sequentially reduce Eq. 3.25 for 
the 4n , 5n  and 6n  summations, using known representations for sums of higher 
order powers of integers to obtain: 

384128
5

192
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453

5432 nnnnn,n,IACN A
PMRW .

(3.26)

This can be further reduced to  

384
5313

3 nnn,n,IACN A
PMRW , for odd n.

(3.27)

 The total number of possible voting situations, IACnK ,,3 , for three candi-
dates with n voters is given by  
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It follows from Feller (1957) that 
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(3.29)
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Using the definition of IAC and its symmetry with respect to candidates, it fol-
lows that IAC,nN A

PMRW ,3  = IAC,nN B
PMRW ,3  = IAC,nN C

PMRW ,3  , so we 

then find ,n,IACPS
PMRW 3  = 3 ,n,IACN A

PMRW 3 / IACnK ,,3 , to lead to 

4216
3153

2

nn
n,n,IACPS

PMRW , for odd n.
(3.30)

McNutt (1993) and Chen (2002) discuss minor variations of the methods that were 
used to develop this representation for ,n,IACPS

PMRW 3 .

When n is even, a representation for ,n,IACPS
PMRW 3  is obtained from 
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Lepelley (1989) uses this to obtain

53116
42153

nnn
nnn,n,IACPS

PMRW , for even n.
(3.32)

Fishburn, et al. (1979a,b) introduce a different notion that is related to the 
probability that a PMRW exists.  In particular, they consider the probability 

m,n,IACP X
PMRW  that a given set, X , of candidates is included in the set of 

PMRW’s, for n voters with m candidates under IAC.  Here, each pair of candi-
dates in X  is tied by PMR, and each candidate in X  beats or ties all candi-

dates that are not included in X  by PMR. 

Let m,n,IACP#i
PMRW  denote the value of m,n,IACP X

PMRW  when the cardi-

nality of a specified X  is equal to i.  When n is odd, there can be no ties with 

PMR, and it follows from Eq. 3.30 that 

4216
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n,n,IACPIACnP

S
PMRW

PMRW , for odd n.
(3.33)

We continue this logic and develop a representation for ,n,IACP#
PMRW 31  as 

the probability that A beats or ties all other candidates by PMR when n is even.  
Following earlier notation, the number of voting situations that meet this condition 

is denoted by IACn,N A
PMRW ,3 with 
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Gehrlein (2002a) uses algebraic reduction techniques like those described previ-
ously to obtain  

384
642,,3

22 nnnIACnN A
PMRW , for even n.

(3.35)

Following earlier arguments related to IAC, we then find ,n,IACP#
PMRW 31  as the 

ratio IACn/Kn,IACN A
PMRW ,,3,3 , with 

53116
642531
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nnn,n,IACP#

PMRW , for even n.
(3.36)

Kelly (1974) introduced the notion of a Weak PMRW.  A given profile has a 
weak PMRW if some candidate beats or ties all other candidates under PMR.  Let 

m,n,IACPW
PMRW  denote the probability that a weak PMRW exists for n voters 

with m candidates under IAC.  If n is odd, there can be no ties by majority rule, so  

,n,IACPW
PMRW 3 =3 ,n,IACP#

PMRW 31 = ,n,IACPS
PMRW 3 , for odd n. (3.37)

Our next step is to develop a representation for ,n,IACPW
PMRW 3 , for even n.

To do this we use a relationship that follows from our definitions 
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,n,IACP

CBA
PMRW

CB
PMRW

CA
PMRW

BA
PMRW

C
PMRW

B
PMRW

A
PMRW

W
PMRW

(3.38)

Due to the symmetry of IAC with respect to candidates 

.33333

3
321 ,n,IACP,n,IACP,n,IACP

,n,IACP
#
PMRW

#
PMRW

#
PMRW

W
PMRW

(3.39)

Gehrlein (2002a) uses algebraic reduction techniques to obtain: 

53116
882153

2

nnn
nnn,n,IACPW

PMRW , for even n.
(3.40)
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This representation has been verified by computer enumeration, and it is not in 

agreement with a representation for ,n,IACPW
PMRW 3  with even n in Berg and 

Bjurulf (1983).   
Given all of the representations above, the following results follow directly 

from taking derivatives: 

Theorem 3.1 (IAC). ,n,IACPS
PMRW 3 > ,IAC,nPS

PMRW 23 , for all odd n > 1. 

Theorem 3.2 (IAC).  ,n,IACPS
PMRW 3 < ,IAC,nPS

PMRW 23 , for all even n > 2. 

Theorem 3.3 (IAC). ,n,IACPS
PMRW 3 =3 ,n,IACPPMRW 31# = ,n,IACPW

PMRW 3 ,

                        for all odd n > 1. 

Theorem 3.4 (IAC). ,n,IACPPMRW 31# > ,IAC,nPPMRW 231# , for all even n > 2. 

Theorem 3.5 (IAC).  ,n,IACPW
PMRW 3 > ,IAC,nPW

PMRW 23 , for all even n > 2. 

Table 3.2 shows computed values of ,n,IACPS
PMRW 3 , ,n,IACPPMRW 31# , and 

,n,IACPW
PMRW 3  for various values of n.  The results show very different behav-

iors for odd and even n.  With odd n, each of the probabilities approaches its limit-
ing values quickly for relatively small values of n.  For even n, we find a much 
slower rate of convergence to the limiting probabilities as n increases, with a 

rather small probability for ,n,IACPS
PMRW 3  when n is small. 

Table 3.2 Probabilities with Impartial Anonymous Culture Condition (IAC) 

n ,n,IACP S
PMRW 3 ,n,IACPPMRW 31# ,n,IACPW

PMRW 3
3 .9643 .3214 .9643 
4 .5714  .4762 1.0000 
5 .9524 .3175 .9524 
6 .6494 .4329 .9957 
7 .9470   .3157 .9470 
8 .6993 .4079 .9907 
9 .9441 .3147 .9441 
10 .7343 .3916 .9860 
11 .9423 .3141 .9423 
20 .8199 .3553 .9702 
21 .9391 .3130 .9391 
40 .8735 .3348 .9569 
41 .9380 .3127 .9380 
100 .9105 .3217 .9462 
101 .9376 .3125 .9376 

 .9375 .3125 .9375 
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3.4.2 A Variable Number of Voters 

Another model has been developed that is similar to the notion of IAC, in which 
each possible voting situation is considered to be equally likely to be observed.  
However, the Maximal Culture Condition (MC) does not require that the number 
of voters in voting situations is fixed.  MC was first used in a Monte-Carlo simula-
tion study in Fishburn and Gehrlein (1976b), and it was first called MC in 
Fishburn and Gehrlein (1977b).  MC fixes some positive integer, L, and the asso-
ciated in  for each linear preference ranking is equally likely to have any integer 

value in the closed interval L,0 .  With the assumption of MC on three candi-

dates, there are a total of 61L  possible voting situations that are equally likely 

to be observed.  The expected total number of voters in a voting situation, nE ,

with MC is given by LLnE 32/6 .  The same matching of voting situations 

that was used in the IAC case can be used here to show that there is an expected 
balance of preference on all pairs of candidates for voting situations with MC. 

Gehrlein and Lepelley (1997) follow the development of the representation for 

,n,IACN A
PMRW 3  in Eq. 3.27 to obtain a representation for ,L,MCN A

PMRW 3* .

Here, A is required to be a strict PMRW when the total number of voters in a vot-
ing situation is even with MC.  To start, the restrictions on the in ’s that result in 

Candidate A being the strict PMRW with MC are given by: 

1
10

1
10

1
1

0
0
0
0

53421

543216

3421

43215

2

143

134

1

4

3

nnnnn
nnnnn

L
Minn

nnnn
nnnn

L
Minn

Ln
nnn
nnnMax

Ln
Ln
Ln (3.41)

Here,
b
aMin  and 

 b
aMax  respectively denote the minimum and maximum 

of arguments a and b.  The Min and Max functions in the summation limits sig-
nificantly complicate the problem of obtaining a closed-form representation for 

,L,MCN A
PMRW 3* .  This is dealt with by partitioning the set of all voting situa-
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tions that meet the restrictions in Eq. 3.41 into 13 subspaces, such that none of the 
restrictions for inclusion in these subspaces contain any Min or Max arguments.   

We develop the initial stages of the partitioning process that lead to a represen-

tation for ,L,MCN A
PMRW 3* , since the same basic procedure is also used to obtain 

a number of results that follow.  To begin, it is observed that the number of voting 

situations in ,L,MCN A
PMRW 3*  with 34 nn  is identical to the number of voting 

situations with 43 nn .  This follows from the simple fact that Candidate A is the 

PMRW if it is included among the voting situations in ,L,MCN A
PMRW 3*  with 

both 321654 nnnnnn  for AMB and 421653 nnnnnn  for AMC.

The interchange of 3n  and 4n  simply changes a voting situation in which AMB

and AMC to a voting situation in which AMC and AMB, along with the converse. 

We begin by developing a relationship for the number, ,L,MCN nnS
PMRW 3)( 34 , of 

voting situations that are included in ,L,MCN A
PMRW 3*  with 34 nn .  The situa-

tion with 34 nn will be considered as a separate issue later.  The restrictions on 

in ’s in Eq. 3.41 for a voting situation to be included in ,L,MCN A
PMRW 3*  are re-

duced when we add the restriction 34 nn  to the conditions: 

0 < 3n  < 1L
13n < 4n  < L 

0 < 1n  < L 

Ln
nnn

Max 2
134 1

0

1
0

4321
5 nnnn

L
Minn

1
0

54321
6 nnnnn

L
Minn .

(3.42)

To begin the process of further partitioning the voting situations that meet the 
conditions in Eq. 3.42, we start by removing the Min argument on the upper bound 

for 6n .  This is done by creating two disjoint subspaces.  Subspace I contains vot-

ing situations in which 154321 nnnnnL , and Subspace II contains vot-

ing situations in which 154321 nnnnnL .

The 154321 nnnnn  term in the Max argument for the upper bound on 

6n  can then be removed from the bounds on Subspace I if we add the restriction 

that Lnnnnn 143215 ,  to create the upper range limit on 5n  with
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Lnnnn
nnnn

L
Minn

1
10

4321

43215 .
(3.43)

It is easily shown that Lnnnn 14321  is the minimum of the three Min ar-

guments in Eq. 3.43 when 34 nn , so the upper range limit of 5n  reduces to 

Lnnnn 14321 .

To maintain consistency between the upper and lower range limits on 5n , it is 

now necessary to require 014321 Lnnnn , which in turn requires that 

2314 1 nLnnn .  It is easily shown that 01314 Lnnn , so the 

Max argument in the lower range limit of 2n  becomes Lnnn 1314 .  For 

consistency between the lower bound limit and the upper range limits on 2n , we 

now require LLnnn 1314 , which in turn requires 1341 nnn .  After 

completing the remaining consistency requirements for 4n  and 3n , with the re-

striction 34 nn , the limits on in ’s in Subspace I are ultimately given by: 

0 < 3n  < L - 1 

13n < 4n  < L 

134 nn  < 1n  < L

LnLnnn 2134 1
Lnnnnn 10 43215

Ln60 .

(3.44)

The only remaining possible conflict in the bounds on the in ’s in Subspace I

in Eq. 3.44 is for the bounds on 1n , for the specific case in which both 03n and 

Ln4 .  This conflict is dealt with by further partitioning Subspace I into 

1#Subspace  which has 03n  and 2#Subspace  which has 11 3 Ln , as 

shown in Eq. 3.45. 

Ln
Lnnnn

LnnnL
Lnn

Ln
n
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6

4215

214

14

4

3

0
10

1
1

11
0
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LnnnnL
Lnnn

Lnn
Ln
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6

43215

2314

134

43

3

0
10

1
1

1
11

2# (3.45)

The same general procedure is used to partition Subspace II.  However, the 
process becomes more cumbersome to work with, and it requires seven subspaces, 
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denoted as Subspace #3 through Subspace #9, to partition it to remove all Max and 
Min arguments from bounds on the in ’s, as shown in Eqs. 3.46 through 3.49 
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nnnLn

Lnnn
Lnn
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Subspace (3.49)
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The number of voting situations in each of the nine subspaces in this partition 
can then be computed by using algebraic relations for sums of powers of integers, 

as described in the development of the representation for IAC,nN A
PMRW ,3  in 

Eq. 3.26.  After doing this for each of the subspaces and accumulating the results: 

720
60164454153751093

2345
)( 34 LLLLLL,L,MCN nnS

PMRW .
(3.50)

A similar procedure is used to account for the number of voting situations, 

,L,MCN nnS
PMRW 3)( 34 , in ,L,MCN A

PMRW 3*  with 43 nn .  After all partitioning is 

done to remove Max and Min arguments from the lower and upper bounds on the 

restrictions on in ’s to obtain ,L,MCN nnS
PMRW 3)( 34 , we require four subspaces, de-

noted Subspace #10 through Subspace #13, as shown in Eqs. 3.51 and 3.52. 

Ln
Lnnn

nLn
Ln

Subspace

2

165

56

5
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1
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10
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Lnnnn
nnn

nLn
Ln
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2165
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56
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1
0
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11# (3.51)

LnnnL
Lnn

Ln
Ln

Subspace #

216

16

6

5

1
1

10

12

    

Lnnnn
LnLnn

LnnL
Ln

Subspace

2165

165

65

5

1
1

10
13# (3.52)

Gehrlein and Lepelley (1997) contains a minor typographical error for the 
bounds for Subspace #13.  After developing representations for each of these four 
subspaces and accumulating the results 

6
5121033

23
)( 34 LLLL,L,MCN nnS

PMRW .
(3.53)

It was noted above that there are the same number of voting situations in 

,L,MCN A
PMRW 3*  that have 34 nn  as there are with 43 nn .  Using all of this, 

along with the fact that there are 1L  different values that each of 3n  and 4n

can have when 43 nn , we obtain a representation for ,L,MCN A
PMRW 3*  for each 

3L  as: 

,L,MCNL,L,MCN,L,MCN nnS
PMRW

nnS
PMRW

A
PMRW 31323 )()(* 3434 . (3.54)
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After substitution and algebraic reduction, 

360
109

24
37

72
239

24
91

45
107

3
23

65432
* LLLLLL,L,MCN A

PMRW .
(3.55)

Due to the symmetry of MC with respect to candidates  

6

*

1

33
3

L

,L,MCN
,L,MCP

A
PMRWS

PMRW ,
(3.56)

which reduces to 

5

234

1120
2406167494461093

L
LLLLL,L,MCPS

PMRW , for .3L
(3.57)

Following the logic of previous development of representations for IAC prob-
abilities, it is possible to obtain representations for the probabilities 

,L,MCP#
PMRW 31 and ,L,MCPW

PMRW 3  for the case of MC.  Gehrlein (2002a) ob-

tains these representations for 3L  as: 

5

2345
1#

1360
360121218941541644109,,3

L
LLLLLMCLPPMRW

(3.58)

5

2345

1120
120588116811575781093

L
LLLLL,L,MCPW

PMRW
(3.59)

Since the number of voters is not fixed with MC, the odd-even effects that were 
observed with IAC do not occur with MC.  The following results are obtained di-
rectly by taking derivatives of the representations in Eqs. 3.57 through 3.59: 

Theorem 3.1 (MC). ,MC,LP,L,MCP S
PMRW

S
PMRW 133 , for all L > 3. 

Theorem 3.2 (MC). ,MC,LP,L,MCP #
PMRW

#
PMRW 133 11 , for all L > 3. 

Theorem 3.3 (MC). ,MC,LP,L,MCP W
PMRW

W
PMRW 133 , for all L > 3. 

Table 3.3 lists computed values of ,L,MCPS
PMRW 3 , ,L,MCP#

PMRW 31  and 

,L,MCPW
PMRW 3  for various values of L.  The computed probability values ap-

proach their limiting values slowly as L increases, to suggest that the convergence 
to the limiting probability values is quite slow as E(n) increases.  

,L,MCPS
PMRW 3  is also found to be relatively small for small value of E(n). 
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Table 3.3 Probabilities with Maximum Culture Condition (MC) 

L ,L,MCPS
PMRW 3 ,L,MCP#

PMRW 31 ,L,MCPW
PMRW 3

3 .7251 .3833 .9517 
4 .7588 .3650 .9461 
5 .7819 .3535 .9417 
6 .7988 .3456 .9382 
7 .8117 .3398 .9354 
8 .8218 .3354 .9330 
9 .8301 .3319 .9310 
10 .8368 .3291 .9293 
11 .8426 .3268 .9278 
20 .8700 .3162 .9203 
40 .8885 .3096 .9147 
50 .8923 .3082 .9135 

 .9083 .3028 .9083 

As we have observed, the calculations that are required to develop representa-
tions with IAC and MC can be very cumbersome to perform, despite the fact that 
the logic behind the computational process is quite simple.  It will be seen later 
that these procedures can be dramatically simplified.  However, an understanding 
of the logic that is employed by these simplified techniques requires an under-
standing of the algebraic techniques that we have just developed. 

3.5 Expected Balance for Individual Preferences 

Another view of balanced preferences considers an expected balance of prefer-
ences between pairs of candidates within the preference rankings of each individ-
ual voter within a population.  In this situation, we let p denote a six-dimensional 
vector for the three-candidate case, where ip denotes the probability that a voter 

who is selected at random from the population of voters will have the correspond-
ing linear preference ranking on candidates that is shown in Fig. 3.3,  That is, a 
randomly selected voter will have the linear preference ranking CBA  with 
probability 1p .  We also assume that each voter’s preferences are independent of 

the other voters’ preferences. 

      A A B C B C
      B C A A C B
      C B C B A A

          1p 2p      3p    4p    5p     6p

Fig. 3.3 The probability that a randomly selected voter will have a given linear preference 
ranking 
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The existence of any given voter preference profile can be considered to be the 
result of a random selection of n individual voter’s preferences.  Following classic 
analysis from probability modeling, we start with an urn that contains some total 
number of balls, with each ball being one of six different colors.  Each color cor-
responds to one of the six possible linear preference rankings on three candidates.  
The proportions of the total number of balls of each color in the urn are equal to 
their associated probabilities that are specified in p. Then, n balls are sequentially 
drawn at random from the urn, with replacement.  The color of the ball that is 
drawn during the thi  step of the sequential drawing is used to assign the associ-
ated linear preference ranking to the thi  voter before the ball is placed back in the 
urn.  Following previous discussion, this procedure is used to obtain voter prefer-
ence profiles in which the preferences of each individual voter are identifiable, so 
that the voter’s preferences are not anonymous. 

The random selection of balls is being done with replacement during the ex-
periment, so that the probability of observing any given preference ranking for an 
individual voter does not change from draw to draw.  A multinomial probability 
model is appropriate for developing representations for observing any particular 
given event under such an experiment.   The voting situation that results from any 
given voter preference profile with these identifiable voters can be obtained sim-
ply by determining the number of voters that have each of the six possible linear 
preference rankings.  The probability that any such voting situation is observed 

from the identifiable voters is then given by 
6

1 !
!
i in

in
ip

n . We can then directly ob-

tain a representation for the probability, p,,3 nP A
PMRW , that A is the strict 

PMRW for odd n for any given p from the discussion that led to Eq. 3.23, with 
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p (3.60)

where 234561 nnnnnnn .  Similar logic can then be used to find repre-

sentations for the probability that each of B and C is the PMRW.   The probability, 

p,n,PS
PMRW 3 , that a PMRW exists for a given p with n voters for three-candidate 

elections would then be obtained as the sum of these three representations. 
Gehrlein and Fishburn (1976b) develop a much simpler form of the resulting 

probability representation for p,n,PS
PMRW 3   that only requires a three-summation 

function as: 



3.5 Expected Balance for Individual Preferences      83 

.
!!!!

!

3

2
1

0

2
1

0

2
1

0
642531

536142

214365

43211

1

2

1

3 4321

4321

4321n

m

mn

m

mn

m mmmm

mmmm

mmmm

S
PMRW

pppppp

pppppp

pppppp

mmmm
n

,n,P p (3.61)

Here, 3214 mmmnm .  The logic that leads to this representation is quite 

straightforward, and it will be extended in later analysis.  Gillett (1976, 1978) in-

dependently developed the same representation for p,n,PS
PMRW 3 .

In previous discussion related to IAC, we observed an expected balance of 
preference on all pairs of candidates by matching voting situations.  We now con-

sider special cases of p in the representation for p,n,PS
PMRW 3  that result in an 

expected balance of individual preference on all pairs of candidates for a randomly 
selected voter.  Let BA,  denote the difference between the sum of the ip  val-

ues for linear preference rankings with BA  in Fig. 3.3 and the sum of the ip
values for linear preference rankings with AB .  The same definition applies to 
all pairs of candidates in the same fashion, so that 

653421, ppppppBA

654321, ppppppCA

642531, ppppppCB .

(3.62)

Since voter’s preferences are independent of the preferences of other voters, it 
follows from these definitions that a randomly selected voter will be more likely 
to have a preference ranking with BA  than AB  if BA,  > 0.  A total bal-

ance in preference on all pairs of candidates will exist for voters when BA,  = 

CA,  = CB,  = 0.  Gehrlein (1978) proves that this complete balance exists 

only when each possible linear preference ranking has the same probability of be-
ing observed as it reversed, or dual preference ranking.  That is, when 61 pp ,

52 pp  and 43 pp , which is defined as the Dual Culture Condition (DC) in 

Gehrlein (1978). 

3.5.1 Dual Culture Condition 

Sen (1970) considers an example that is very much in the spirit of an extreme case 
of DC.  That example considers a two-class society in which the classes have radi-
cally different interests.  For this “class war” condition we would expect to have 
voter profiles containing only two different rankings on alternatives.  One class 
would have some preference ranking and the other class would have dual prefer-
ence ranking.  It is noted that PMR would always be transitive for an odd number 
of voters in this particular situation with two possible rankings.  DC would further 
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assume that the two classes contain the same number of members in Sen’s exam-
ple. 

Balasko and Crès (1998) perform an evaluation of the probability that PMR 
cycles exist when voter profiles are restricted to populations that are of a general 
form of a “class war” type model.  They define “bipartite populations” in which 
voters have overall preferences that partition them into two groups.  Voters within 
one group have preferences that cluster about a “north pole” and the other group 
has preferences that cluster about a “south pole”. With PMR, the group of voters 
that is associated with the “heaviest pole” will then dominate all decisions.  It is 
shown that the probability that a PMR cycle exists in such situations becomes 
quite small. 

Gehrlein (1978) gives a closed form representation for the limiting probability, 

,DC,PS
PMRW 3 , that a strict PMRW exists for three alternatives in the limiting 

case of voters, as n , for any p meeting DC.  The representation is developed 
by using a procedure that is a direct application of the Central Limit Theorem.  
The background of this procedure is described in detail here, since it is also used 
to develop a number of other results that follow. 

Consider the experiment in which a random voter preference profile is being 
obtained by sequentially drawing balls at random from an urn to represent indi-
vidual voter’s preference rankings in the profile.  We start by considering the 
probability that A will be the PMRW in such a random voter preference profile.  

We define two discrete variables i
BX  and i

CX  that describe two joint events that 

can result as each ball is drawn in the experiment.   The probabilities that are asso-

ciated with the discrete outcomes for the two events for the thi  ball that is drawn 
are given by: 

i
BX  = 

653

421
:1
:1

ppp
ppp

i
CX  = 

.:1
:1

654

321
ppp
ppp

(3.63)

Based on the definitions of these variables, 1i
BX  if BA  in the thi

voter’s preference ranking, and 1i
BX  if AB  for the thi  voter.  Then, 

BAM  for the n voters in the random voter preference profile if .0
1

n

i

i
BX  Simi-

larly, CAM  for the n voters if .0
1

n

i

i
CX  Let BX  denote the average value 

of i
BX , with BX = nX

n

i

i
B /

1
.  Then, A will be the strict PMRW with the joint 

probability that 0BX  and 0CX .  This can be restated in the form that A will 
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be the PMRW in a randomly drawn profile with the joint probability that 

0nX B  and 0nX C .
As the number of voters gets very large, with n , the Central Limit Theo-

rem applies [Wilks (1962)] and the limiting joint distribution of nX B  and 

nX C  has a bivariate normal distribution.  The probability that nX B  and 

nX C  take on any specific value, including zero, in this bivariate normal distri-
bution is zero, so the probability that A is the PMRW in a randomly drawn prefer-

ence profile can be restated as the joint probability that 0nX B  and 

0nX C .  The Central Limit Theorem also states that the correlation between 

nX B  and nX C  in this bivariate normal distribution is identical to the corre-

lation between the original variables i
BX  and i

CX .

In order to obtain the correlation between i
BX  and i

CX , we start by obtaining 

representations for the expected values, i
BXE  and i

CXE of these variables: 

654321 111111 ppppppXE i
B

654321 111111 ppppppXE i
C .

(3.64)

Since DC requires that 5261 , pppp  and 43 pp , it follows from Eq. 3.64 

that .0i
C

i
B XEXE  The variance terms, i

BXVar  and i
CXVar , are then 

obtained by definition from 
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2

5
2

4
2

3
2

2
2

1
2

22

pppppp

XEXEXEXVar i
B

i
B

i
B

i
B

.1111111 6
2

5
2

4
2

3
2

2
2

1
2

22

pppppp
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(3.65)

The covariance, i
C

i
B XXCov , , between i

BX  and i
CX  is obtained directly by 

definition from 
i
C

i
B

i
C

i
C

i
B

i
B

i
C

i
B XXEXEXXEXEXXCov ,

.111111111111 654321 pppppp
(3.66)

The symmetry of DC, with 5261 , pppp  and 43 pp , requires that 

2/1321 ppp , and after algebraic reduction of Eq. 3.66 we obtain 

341, pXXCov i
C

i
B . (3.67)
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The coefficient of correlation, i
C

i
B XXCor , , between i

BX  and i
CX  is ob-

tained directly by definition from 

341,, p
XVarXVar

XXCovXXCor
i
C

i
B

i
C

i
Bi

C
i
B .

(3.68)

The probability that A is the PMRW in a randomly drawn voter preference profile 

is therefore given as the joint probability that 0nX B  and 0nX C , in a 
bivariate normal distribution with a coefficient of correlation that is equal to 

341 p .

We make an additional observation regarding this probability.  It was shown 

that 0i
C

i
B XEXE  as a result of Eq. 3.64, and it therefore follows directly 

that .0nXEnXE i
C

i
B  So, the probability that A is the PMRW in a ran-

domly drawn preference profile under DC as n  is the same as the joint prob-

ability that nXEnX BB  and nXEnX CC , in a bivariate normal 

distribution with a coefficient of correlation equal to 341 p .  The probability that 

both variables in a bivariate normal distribution are greater than, or equal to, their 
respective expected values is defined as a bivariate normal positive orthant prob-
ability [Johnson and Kotz  (1972)]. 

Sheppard’s 1898 Theorem of Median Dichotomy [Johnson and Kotz (1972), 
pg. 92] shows that the bivariate normal positive orthant probability for a distribu-

tion with a coefficient of correlation equal to  is 1
2
1

4
1 Sin .  A representa-

tion for the limiting probability that A is the PMRW in a randomly drawn prefer-
ence profile under DC as n  then follows directly from Sheppard’s Theorem.  
Exactly the same process can be used to develop representations for the probabil-
ity that B is the PMRW and that C is the PMRW.  After accumulating all of the re-
sults, we find 

3

1

1 41
2
1

4
3,,3

j
j

S
PMRW pSinDCP .

(3.69)

Table 3.4 lists computed values of ,DC,PS
PMRW 3  for each value of 

1p , 2p and 3p = 0.00(.025).50 from Gehrlein (1999a).  Columns of entries have 

been truncated in this table to account for the fact that ,DC,PS
PMRW 3  is invari-

ant under permutations of 1p , 2p and 3p .  There is a significant probability that a 
Condorcet winner exists for many entries in Table 3.4.  The results in Table 3.4 
also lead to the following observations from Gehrlein (1999a) that will be useful 
in discussion later. 
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Table 3.4 The Limiting Probability that there is a PMRW for Large Electorates with the 
Dual Culture Condition (DC) 

2p

1p 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.025 1.000 0.959 0.952 0.949 0.947 0.946 0.945 0.945 0.944 0.944 0.944 
0.050 1.000 0.952 0.943 0.938 0.935 0.932 0.931 0.930 0.930 0.929 0.930 
0.075 1.000 0.949 0.938 0.931 0.927 0.925 0.923 0.922 0.921 0.921 0.922 
0.100 1.000 0.947 0.935 0.927 0.923 0.920 0.918 0.917 0.917 0.917 0.918 
0.125 1.000 0.946 0.932 0.925 0.920 0.917 0.915 0.914 0.914 0.915 0.917 
0.150 1.000 0.945 0.931 0.923 0.918 0.915 0.913 0.912 0.913 0.915 0.918 
0.175 1.000 0.945 0.930 0.922 0.917 0.914 0.912 0.912 0.914 0.917 0.922 
0.200 1.000 0.944 0.930 0.921 0.917 0.914 0.913 0.914 0.917 0.921 0.930 
0.225 1.000 0.944 0.929 0.921 0.917 0.915 0.915 0.917 0.921 0.929 0.944 
0.250 1.000 0.944 0.930 0.922 0.918 0.917 0.918 0.922 0.930 0.944 1.000 
0.275 1.000 0.944 0.930 0.923 0.920 0.920 0.923 0.930 0.944 1.000  
0.300 1.000 0.945 0.931 0.925 0.923 0.925 0.931 0.945 1.000   
0.325 1.000 0.945 0.932 0.927 0.927 0.932 0.945 1.000    
0.350 1.000 0.946 0.935 0.931 0.935 0.946 1.000     
0.375 1.000 0.947 0.938 0.938 0.947 1.000      
0.400 1.000 0.949 0.943 0.949 1.000       
0.425 1.000 0.952 0.952 1.000        
0.450 1.000 0.959 1.000         
0.475 1.000 1.000          
0.500 1.000           

Lemma 3.1  ,DC,PS
PMRW 3  = 1  if 1p , 2p or 3p  is equal to zero. 

Proof: ,DC,PS
PMRW 3  is invariant under permutations of 1p , 2p and 3p , so we 

assume arbitrarily that 3p  = 0.  Substitute 3p  = 0 and 2p  = 12/1 p  in the rep-

resentation for ,DC,PS
PMRW 3  in Eq. 3.69, and the result follows directly from 

basic trigonometric identities.                  QED

Gehrlein (1978) also proves that ,DC,PS
PMRW 3 is minimized for DC for the 

special case in which 6/1jp  for all j = 1,2,3,4,5,6, and entries in Table 4.3 ver-

ify that result. 
This special case in which 6/1jp  for all  j = 1,2,3,4,5,6 has been widely re-

ferred to as the Impartial Culture Condition (IC) and it has received a great deal of 
attention in the literature on voting models.   

Lemma 3.2  ,DC,PS
PMRW 3 is minimized by IC. 

Proof: It can assumed without loss of generality that 321 ppp . We are inter-

ested in considering the effect of increasing 1p , while decreasing 3p , with 2p  re-
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maining fixed. Using the fact that 2/1321 ppp  with DC, ,DC,PS
PMRW 3

can be written as 

.1444141

3

21
1

2
1

1
1

2
1

4
3 ppSinpSinpSin

,DC,PS
PMRW

(3.70)

By taking the derivative with respect to 1p , we obtain 

2121111

2121111

2412212212
2412212212
ppppppp
ppppppp

.
(3.71)

This derivative is positive as long as  

0)241(2 212 ppp . (3.72)

Using the fact that 2/1321 ppp  again, this requires that 

0)24222(2 213212 pppppp
0)22(2 132 ppp

13 pp .

(3.73)

Since 13 pp  in our basic assumption, it follows that ,DC,PS
PMRW 3 will 

always be reduced in value if the maximum value of 1p , 2p  and 3p , which is 1p
in this case, is decreased while increasing the minimum value of 1p , 2p and 3p ,

which is 3p  in this case, with the remaining value of 1p , 2p  and 3p  being kept 

fixed.  This reduction will continue until the term that starts out with the maxi-
mum value is made equal to the term that starts out with the minimum value, 
while the remaining term stays fixed. 

By sequentially applying this operation to the 1p , 2p  and 3p  terms, 

,DC,PS
PMRW 3  will be reduced in each step as we converge toward the situa-

tion in which 1p , 2p  and 3p  stabilize at IC.             QED 

Weisberg and Niemi (1973) produce many of these limiting value results with 
the assumption of DC, after starting with a different set of assumptions. 

3.5.2 Impartial Culture Condition 

The basic notion behind IC was presented in Chapter 1 in a very different form, 
while discussing the work in Laplace (1795).  General m -candidate elections, 
with candidates mCCC ,...,, 21

mC  were considered.  A model was developed 
in which voters represent their individual preference rankings on candidates by as-
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signing points to candidates.  Let i
jt  denote the number of points that the thi voter 

assigns to the thj  candidate, with a greater assignment of points to a candidate in-

dicating a greater preference for that candidate.  Then, each i
jt has some real value 

on the closed interval z,0  and it is independent of all other i
jt  values.  Each 

voter then has a linear preference ranking on candidates, according to the ordering 
of points that have been assigned to the candidates. Given Laplace’s assumption 
that all possible combinations of i

jt ’s are equally likely to be observed, it immedi-

ately follows that all possible orderings on the i
jt ’s are equally likely to be ob-

served.  Consequently, all possible linear preference orders on candidates must be 
equally likely to be observed, which is completely consistent with the underlying 
notion behind IC.   

Weber (1978a, 1978b, 1978c) develops a model like the one considered by 
Laplace (1795), in which the i

jt  values represent the utilities that voters have for 
candidates in a random society.  Otherwise, the nature of the models is identical.  
Maassen and Bezembinder (2000) also develop the same basic model to compute 
probabilities that a PMRW exists with the assumption of IC. 

Klahr (1966) presents two different versions of the IC assumption that produce 
identical results.  The first version is consistent with discussion to this point, with 
all voters having their own specific linear preference ranking on candidates. Then 
voters are selected at random from the population to obtain a voter preference pro-
file, with IC representing the case in which all linear rankings are equally likely to 
represent the true preferences of the randomly selected voter.  The second version 
describes a situation in which every voter is completely indifferent between all 
candidates.  When voters are randomly selected from the population, their com-
plete indifference between all candidates will lead them to randomly select any 
one of the possible linear rankings on the candidates with equal likelihood, when 
they are asked for their linear preference ranking. 

A representation for ,n,ICPS
PMRW 3  follows directly from the representation 

for p,n,PS
PMRW 3  in Eq. 3.61, as stated in Gehrlein and Fishburn (1976a): 
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(3.74)

Many earlier attempts were made to develop a simple representation for 

,n,ICPS
PMRW 3 , including Campbell and Tullock (1966), Garman and Kamien 

(1968), Niemi and Weisberg (1968) and DeMeyer and Plott (1970).    However, 
each of these representations is significantly more complicated than the form 
given in Eq. 3.74. 
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A study that takes a very different approach to this problem is due to Hansen 
and Prince (1973).  Each study mentioned before attempted to obtain a representa-

tion for ,n,ICPS
PMRW 3  by finding summation functions that would enumerate all 

profiles with a PMRW.  Hansen and Prince (1973) developed a representation for 

the probability, ,n,ICPS
PMRC 3 , that a PMR cycle exists for three candidates under 

the assumption of IC.  Their summation functions implicitly enumerate all profiles 
on three candidates that have a PMR cycle, with 
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Guilbaud (1952) was the first to develop a representation for the limiting prob-

ability ,IC,PS
PMRW 3  as 

3
1

2
3

4
33 1Sin,IC,PS

PMRW ,
(3.77)

which could be obtained from the representation for ,DC,PS
PMRW 3  in Eq. 3.69.  

Niemi and Weisberg (1968) and Garman and Kamien (1968) reproduce Guil-
baud’s result by using the normal approximation to the binomial probabilities in 
Eq. 3.60.  Guilbaud’s result is stated without any discussion, and it was presuma-
bly developed with the same approach.  Krishnamoorthy and Raghavachari (2005) 
reproduce the representation in Eq. 3.77 by using an approach that is based on the 
Central Limit Theorem, as discussed in the arguments leading to Eq. 3.69, and 
they refer to this approach as using a “statistical perspective.” 

Representations for ,IC,PS
PMRW 3  have been developed by different tech-

niques and in different forms.  Berg and Bjurulf (1983) and Gehrlein (2004b) use 
similar techniques to those discussed above to find 

3
133 1Cos,IC,PS

PMRW .
(3.78)
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Stensholt (1996) uses an analysis that is based on circle pictograms to find 

27
23

2
113 1Cos,IC,PS

PMRW .
(3.79)

All of these different representations must obviously lead to the same numerical 

value, with .91226.3 ,IC,PS
PMRW  Kalai (2002) uses arguments that are based 

on Fourier-theoretic analysis to obtain bounds on the probability that election out-
comes on pairs of candidates will cycle, while considering the set of all election 
procedures that are neutral toward candidates, rather than just considering PMR. 

Kelly (1974,1986) and Buckley and Westen (1979) consider the general be-
havior of various aspects of the probability that a PMRW exists under IC.  Some 
of the results from these observations were proved, while a number of conjectures 
remained regarding this general behavior.  Fishburn, et al. (1979a,b) later proved 
some of the conjectures for the special case of three candidates, and a summary of 
known results is given by:  

Theorem 3.1 (IC). ,n,ICPS
PMRW 3  > ,IC,nPS

PMRW 23 ,   for all odd n > 1.

Theorem 3.2 (IC).  ,n,ICPS
PMRW 3  < ,IC,nPS

PMRW 23 ,    for all even n > 2. 

Theorem 3.3 (IC). ,n,ICPS
PMRW 3  =  3 ,n,ICPPMRW 31#  = ,n,ICPW

PMRW 3 ,   

                        for all odd n > 1. 

Theorem 3.4 (IC). ,n,ICP#
PMRW 31  > ,IC,nP#

PMRW 231 ,   for all even n > 2. 

Theorem 3.5 (IC).  ,n,ICPW
PMRW 3  > ,IC,nPW

PMRW 23 ,    for all even n greater 

                        than some integer N.

Table 3.5 lists computed values for each of ,n,ICPS
PMRW 3 , ,n,ICP#

PMRW 31

and ,n,ICPW
PMRW 3  for various values of n.  Values of ,n,ICPS

PMRW 3  for odd n

were computed directly from Eq. 3.74, and values of ,n,ICPS
PMRW 3  for even n

were computed with a simple modification of Eq. 3.74. Values of ,n,ICP#
PMRW 31

and ,n,ICPW
PMRW 3  were computed in the same fashion as that used in the devel-

opment of ,n,IACP#
PMRW 31  and ,n,IACPW

PMRW 3  in Eqs. 3.36 and 3.40, follow-
ing Gehrlein (2002a) with multinomial probabilities for IC replacing the simple 
counting techniques of IAC. 

The computed values in Table 3.5 are close to the Monte-Carlo simulation es-
timates of these probabilities that are given in Buckley and Westen (1979).  As 
with the IAC results, we observe different behavior for these probabilities, de-
pending upon whether n is odd or even valued.  These probabilities converge to 
their limiting values quite quickly for odd n, while the rate of convergence is 

much slower for even n, with rather small values of ,n,ICPS
PMRW 3  for small 

even values of n.
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Table 3.5 Probabilities with Impartial Culture Condition (IC) 

n ,n,ICPS
PMRW 3 ,n,ICP#

PMRW 31 ,n,ICPW
PMRW 3

3 .9444 .3148 .9444 
4 .4444 .5231 1.0000 
5 .9306 .3102 .9306 
6 .5087 .4821 .9961 
7 .9250 .3083 .9250 
8 .5519 .4574 .9920 
9 .9220 .3073 .9220 
10 .5834 .4406 .9882 
11 .9202 .3067 .9202 
20 .6686 .3991 .9750 
21 .9163 .3054 .9163 
40 .7346 .3702 .9616 
41 .9143 .3048 .9143 

 .9123 .3041 .9123 

3.6 Uniform Culture Condition 

Buckley (1975) develops the notion of conditional probabilities for observing vot-

ing events.  For example, the representation for p,n,PS
PMRW 3  in Eq. 3.61 is con-

ditional in the sense that it computes the probability that a PMRW exists, given 
the specified probability vector p.  Buckley suggests that it might be more appro-
priate to consider the unconditional probability that a PMRW is observed.  To do 
this, we would define the set of all possible p vectors as , with a probability 
density function pF denoting the probability that each possible p in  is ob-

served.   
Gehrlein (1981b) uses this same basic notion to develop a representation for the 

expected probability that a PMRW exists.  This approach takes a different per-
spective on an expected balance between all pairs of candidates within a voter’s’ 
preferences on pairs of candidates by using the Uniform Culture Condition (UC).

In particular, all p vectors with 16
1i ip  are assumed to be equally likely to 

represent the preferences of a population of voters.  This condition sounds very 

similar to the assumption of equally likely combinations of i
jt ’s in Laplace’s 

analysis that was shown to be equivalent to IC.  However, Laplace’s arguments 
lead to an expected balance for each individual voter’s preferences.  With UC, the 
expected balance will be seen to refer to the overall preferences for all voters in a 
voting situation, making it more closely linked to IAC, than to IC.  

As in the case of IAC,  can be partitioned into pairs of vectors according to 
the matching: 61 pp , 52 pp , 43 pp .  If both vectors in the matching 
pair are equally likely to be observed, then the expected probability that BA  in 
a voter’s preference ranking is the same as the expected probability that AB .
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The expected probability that there is a strict PMRW under UC is then denoted by 
UCnPE S

PMRW ,,3 .

The first step in developing a representation for UCnPE S
PMRW ,,3  is done in 

the same fashion that was used in Laplace’s development of the representation in 
Eq. 1.5.   The “total sum” that corresponds to i

jtV  in Eq. 1.3 is pf  in the cur-
rent situation, with 
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and Gehrlein (1982a) shows that 120/1pf .

To obtain a representation for the “total weighted sum” p*f  that corresponds 

to i
jtV *  in Eq. 1.4, we first substitute 654321 ppppp  for 1p  in the 

representation for p,n,P A
PMRW 3  in Eq. 3.60, and then find p*f  from 
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(3.81)

Gehrlein (1981b) sequentially reduces the integral in Eq. 3.81, and uses the sym-
metry of UC with respect to candidates to show that 

,n,UCPE S
PMRW 3 = pp ff /3 * = ,n,IACPS

PMRW 3 . (3.82)

In a later study, Gehrlein (1984) shows that this result can easily be general-
ized, so that we have 

,n,UCPE #
PMRW 31 = ,n,IACPPMRW 31#

,n,UCPE W
PMRW 3 = ,n,IACPW

PMRW 3 .
(3.83)

Thus, the same relationships that hold for IAC and IC regarding the probability 
that a PMRW exists as n changes for three-candidate elections are valid on an ex-
pected value basis with UC. 

Tovey (1997) performs some analysis that is related to the probability of ob-
serving other election outcomes based on the notions of IAC, without using that 
term.  Tovey’s general conclusion about the idea of using IAC as a basis of analy-
sis for such studies fits the expected value nature of the findings in Eqs. 3.81, 3.82 
and 3.83 very closely [Tovey (1997), page 271]: 

“Any result about a particular distribution is open to the doubt about its significance or 
applicability. … (IAC) can get around this difficulty by establishing a result about ‘most’ 
distributions. … following a very natural model.” 
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3.7 Other IC-IAC Connections 

Berg (1985a) uses Pólya-Eggenberger (P-E) models [Johnson and Kotz (1977)] to 
evaluate the probability that a PMRW exists.  These models are best described in 
the context of constructing random voter preference profiles by drawing colored 
balls from an urn, following earlier discussion.  The experiment starts with balls of 
six different colors being placed in the urn.  For each possible individual prefer-

ence ranking, there are iA  balls of the particular color that corresponds to the thi
possible individual preference ranking.  A ball is drawn at random and the corre-
sponding individual preference ranking is assigned to the first voter.  The ball is 
then replaced, along with  additional balls of the same color. A second ball is 
then drawn, the corresponding ranking is assigned to the second voter, and the ball 
is replaced along with  additional balls of the same color.  The process is re-
peated n times to obtain an individual preference ranking for each of the n voters.  
When 0 ,  the color of the ball that is drawn for the first voter will have an in-
creased likelihood of representing the color of the ball that is drawn for the second 
voter, and so on.  These are contagion models that create an increasing degree of 
dependence among the voters’ preferences as  increases.  However, there is no 
dependence among voters’ preferences for the particular case with = 0.  

With P-E models, the probability, ,nP , of observing a given voter prefer-

ence profile, with associated voting situation n, in a three-candidate election is 
given by 
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1 !
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n .

(3.84)

Here, A = 6
1i iA  and ],[kA  is the generalized ascending factorial with  

).)1()....(2)((],[ kk AAAAA (3.85)

By definition, ],[kA = A, for k = 0 and k =  1. 

We give particular attention to the P-E probability ,1 nP which has Ai = 1 for 

all i = 1,2,3,4,5,6.  When we consider the special cases of  = 0 and  = 1, we 
obtain 
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P n

(3.86)

Thus, we find that P-E probability model with  = 0 is equivalent to an inde-
pendent voter model with a multinomial probability for profiles, with equally 
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likely preference rankings.  That is, when  = 0 we have the equivalent of IC.  

The combined results of Eq. 3.29 and the representation for 1,1 nP  in Eq. 3.86 

lead to the conclusion that each possible voting situation is equally likely to be ob-
served, given n, for a P-E model with  = 1.  That is, when  = 1 we have the 
equivalent of IAC, and the direct implication follows that IAC represents a situa-
tion in which there is some dependence among voters’ preferences.  Berg (1985a) 
and Stensholt (1999b) give various other interpretations of the IAC assumption, 
particularly with regard to the small degree of dependence between voters’ prefer-
ences that it implies.  Kara (2005) makes a similar observation regarding the im-
plied dependence of voters’ preferences with IAC by showing that IAC tends to 
give greater probability to voting situations that are closer to unanimity than IC 
does. 

Berg and Bjurulf (1983) do a study of the probability that a PMRW exists with 
IAC and they make a number of observations.  An analogy is drawn with the sub-
ject of statistical mechanics in physics, which considers the behavior of collections 
of particles.  In particular, physicists do computations in statistical mechanics, and 
the approach that is used to perform these computations depends upon whether or 
not it is possible to distinguish one particle from another.  When particles are in-
distinguishable, the use of Bose-Einstein statistics is applicable.  When particles 
are distinguishable, the use of Maxwell-Bolzmann statistics is applicable.  In the 
study of probabilities the assumption of IC is equivalent to the use of Maxwell-
Bolzmann statistics, and the assumption of IAC is equivalent to using Bose-
Einstein statistics.  As a result, the term Impartial ‘Anonymous’ Culture, as coined 
by Gehrlein and Fishburn (1976a), is very appropriate, since ‘anonymous’ voters 
are equivalent to the concept of dealing with ‘indistinguishable’ particles in statis-
tical mechanics. The connection between the use of IAC and IC for computing 
probabilities of voting events and their link to the notions of statistical mechanics 
is also discussed in Meyer and Brown (1998) and Feix and Rouet (1999). 

Berg and Bjurulf (1983) show results to suggest that any differences between 
IC and IAC should become small for m = 4, and insignificant for 5m .    This 
result can be explained on an intuitive basis be considering the experiment of gen-
erating voter preference profiles for m candidates with a P-E procedure which has 

iA = 1 for all !1 mi .  The probability that the second ball that is drawn in this 

case will have a color that is different than the first ball that was drawn is
!

11
m

.

In the limit that m , this probability approaches one, so the dependence 
among voters’ preferences vanishes for all small , since no selection bias has 
been introduced for the 1!m colors that were not drawn for the first voter’s prefer-
ence ranking. That is, each of these 1!m  colors has a probability 

1!/1
!

1 m
m

 for selection in the second draw.  For any given large m, these 

P-E models will therefore generate a given voter preference profile with approxi-
mately the same probability for all small values of .  The question remains open 
as to how fast the rate of convergence between IC and IAC is as m increases. 
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Tovey (1997) develops a simple procedure that is useful to generate random 
voting situations under IAC as n .  For m candidates, there are m! possible 
linear preference rankings on the candidates, and the procedure starts by generat-
ing m! - 1 random numbers from a uniform distribution over the closed interval 

[0,1] and ranking them in increasing value.  Let iO  denote the value of the thi

number in the ranking, and let jq  denote the proportion of voters with the thj

preference ranking in a random voting situation.  Then, 11 Oq , !mq  = 1!1 mO
and for all !0 mj , 1jjj OOq .

Feix and Rouet (1999) use Tovey’s procedure to obtain Monte-Carlo simula-

tion estimates for ,IACm,PS
PMRW  for each m = 3(1)8, as shown in Table 3.6.  

Monte-Carlo simulation estimates of ,ICm,PS
PMRW  are also included in Table 

3.6 for each m = 3(1)8.  A comparison of these probabilities strongly supports the 
conjecture from Berg and Bjurulf (1983) that IC and IAC probabilities converge 
quite quickly as m increases.. 

Table 3.6 Simulation estimates of ,IACm,PS
PMRW  and ,ICm,PS

PMRW  from Feix and 

Rouet (1999) 

m ,IACm,PS ,ICm,PS

3 .9376 .9123 
4 .8384 .8244 
5 .7523 .7484 
6 .6857 .6848 
7 .6309 .6306 
8 .583 .586 

The simulation results in Table 3.6 compare very closely to results from a similar 
simulation study by Lepelley, et al. (2000) and to exact computations that are al-
ready known for the IC case for m > 3 [Gehrlein and Fishburn (1979a)], and for 
the IAC case with four candidates [Gehrlein (2001)]. 

Gehrlein (2004a) develops representations for the probability that a specified 
candidate in given a triple of candidates is the PMRW for that triple, using the 
rankings on the triple that are embedded within the linear preference rankings of a 

voter preference profile on m candidates.  Let ICnmQS
PMRW ,,  denote this prob-

ability with IC.  Define the set of candidates as mCCC ,...,, 21
mC , and con-

sider the probability that the specific candidate 1C  is the PMRW for a given triple 

kj CCC ,,1 .  Let mZ  define the set of all possible linear preference rankings that 

individual voters might have on the candidates, where !# mmZ  and m
i  is the 
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thi  linear ranking in mZ .  We partition mZ  into four subsets, according to indi-
vidual preferences on pairs from kj CCC ,,1  within each ranking: 

mZ1  = 11: CCandCC kj
m
i

mZ2  = kj
m
i CCandCC 11:

mZ3  = jk
m
i CCandCC 11:

mZ4  = kj
m
i CCandCC 11: .

(3.87)

Obviously, mZ1#  = mZ4#  = m!/3 and mZ2#  = mZ3#  = m!/6.

The set of all possible voter preference profiles, m
nR , consists of every possible 

assignment of the linear preference rankings in mZ to n identifiable voters.  Let 

is  denote the total number of linear preference rankings in a given voter prefer-

ence profile that are included in m
iZ .  We begin by determining the total number 

of different voter preference profiles that exist in m
nR  that are consistent with a 

specified combination of values of 4321 ,,, ssss , where 3214 sssns .  There 

are
1s
n

 combinations of 1s  of the n identifiable voters whose preferences agree 

with linear rankings in mZ1 , and each of these identifiable voters can have any of 

the 3/!m  linear preference rankings in mZ1 .  Then, there are 
2

1
s

sn
 combinations 

of 2s  of the remaining 1sn  identifiable voters whose preferences agree with lin-

ear rankings in mZ2 , and each of these identifiable voters can have any of the 6/!m

linear preference rankings in mZ2 .  The process continues in the same fashion for 

3s  and 4s  to arrive at the total number of voter preference profiles with a speci-

fied combination of values of 4321 ,,, ssss  being equal to ICnmK C
PMRW ,,1 , with 

.
3
!

6
!

6
!

3
!

,,

321321

1

3

21

2

1

1

sssnsss

C
PMRW

mm
s

ssnm
s

snm
s
n

ICnmK (3.88)

With the assumption of IC, each of these voter preference profiles has a prob-

ability equal to 
n

m!
1  of being observed, and 1C  is the PMRW for a given triple 

kj CCC ,,1  as long as the values of the is ’s are restricted according to: 
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2
1

10 ns

12
1

20 ss n

12
1

30 ss n .

(3.89)

All of this leads to a representation for the probability, ICnmQ C
PMRW ,,1 , that 

1C  is the PMRW for a given triple kj CCC ,,1  with IC being given as 

.
3
!

6
!

6
!

3
!

!
1

,,

1
3

21

2

1

1

321321

1

sssnsssn

C
PMRW

mm
s

ssnm
s

snm
s
n

m

ICnmQ (3.90)

Here 1  is a triple summation function with indexes that are consistent with 

Eq. 3.89.  After algebraic reduction is performed on Eq. 3.90, along with the result 
in Eq. 3.74, we find  

3/,,3,,1 ICnPICnmQ S
PMRW

C
PMRW . (3.91)

As a result, ICnmQ C
PMRW ,,1  is not a function of m with IC, but the same result is 

not found to be true with IAC. 

The derivations to obtain a representation for IACnmQ C
PMRW ,,1  are largely 

based on a result from Feller (1957).  Suppose that v voters are to be assigned into 

w different categories, with iv  voters in each category so that vvw
i i1 .  The to-

tal number of such possible voting situations is given by wvH , , with 

1
1

,
w

wv
wvH .

(3.92)

The use of this identity with w = 6 and v = n led to the result in Eq. 3.29. 
Following the logic that led to Eq. 3.88 with anonymous, or unidentifiable, vot-

ers, the total number of voting situations with specified combination of values of 

4321 ,,, ssss  is given by IACnmK C
PMRW ,,1 , with 

.
1#

1#
1#

1#
1#

1#
1#

1#

,,

4

4321

3

33

2

22

1

11

1

Z
Zsssn

Z
Zs

Z
Zs

Z
Zs

IACnmK C
PMRW

(3.93)

There are a total of !,mnH  equally likely voting situations with IAC, and af-

ter performing some algebraic manipulation, it follows that  
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.
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!1
6
!

3

0 !2!1
6
!

!1
6
!

2

0 !1!1
3
!

!1
3
!

1
s

s sssnm

msssn

sm

mss

s sm

ms

s sm

ms

C
PMRW

nnn

mn
mn

IACnmQ (3.94)

Table 3.7 lists computed value of ICnQS
PMRW ,,3 , IACnQS

PMRW ,,3 ,

IACnQS
PMRW ,,4  and IACnQS

PMRW ,,5  for each n = 3(8)51. 

Table 3.7 Computed values of ICnQS
PMRW ,,3  and IACnmQS

PMRW ,,  from Gehrlein 

(2004a) and Stensholt (1999b). 

n ICnQS
PMRW ,,3 IACnQS

PMRW ,,3 IACnQS
PMRW ,,4 IACnQS

PMRW ,,5

3 .3148 .3214 .3169 .3153 
11 .3067 .3141 .3084 .3070 
19 .3056 .3131 .3073 .3059 
27 .3051 .3128 .3069 .3054 
35 .3049 .3127 .3068 .3052 
43 .3047 .3126 .3067 .3050 
51 .3046 .3126 .3066 .3050 

 .3041 .3125 .3064 .3046 

Table 3.7 also contains values of the limiting values for ICQS
PMRW ,,3  and 

IACQS
PMRW ,,3  as n that follow directly from Eq. 3.77 and Eq. 3.32 re-

spectively.  The estimates for  IACQS
PMRW ,,4  and IACQS

PMRW ,,5  were 

obtained by Monte-Carlo simulation in Stensholt (1999b).  All of these results 
give additional credence to the claim by Berg and Bjurulf (1983) that IC and IAC 
probabilities converge rapidly to very similar values for m greater than four.  
These results, coupled with previous discussion, support the conjecture in Sten-

sholt (1999b) that in the limit ,m IACQS
PMRW ,,  = ICQS

PMRW ,,3 .

3.8 The Impact of Unbalanced Preferences 

The introduction to this chapter suggested that conditions that produce balanced 
voter preferences generally tend to maximize the probability PMR cycles exist.  It 
was also noted that the introduction of bias to individual voter’s preferences could 
lead to situations with a greater probability of having PMR cycles. 

The result of unbalanced preferences when n  can be described in terms 
of the BA,  terms that are defined in Eq. 3.62.  The representation for 

,DC,PS
PMRW 3  in Eq. 3.69 results if BA,  = CA,  = CB, .  The law of 
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large numbers requires that a randomly generated voter preference profile with 
n  must have AMB if BA,  > 0 for any pair of candidates like A and B.

As a result, A will be the PMRW with probability approaching one if BA,  > 0 

and CA,  > 0, B will be the PMRW with probability approaching one if 

BA,  < 0 and CB,  > 0, and C will be the PMRW with probability ap-

proaching one if CA,  < 0 and CB,  < 0.  There will be a PMR cycle 

AMBMCMA with probability approaching one if BA,  > 0, CB,  > 0 and 

CA,  < 0, and the reverse PMR cycle with AMCMBMA will exist with prob-

ability one if CA,  > 0, CB,  < 0 and BA,  < 0.  Gehrlein (1983) gives 

representations for p,,PS
PMRW 3  when one or two of the BA,  = 0.  The ob-

servation that p,,PS
PMRW 3  goes to a value of either zero or one with probability 

approaching one for three candidates when 0, BA  for any pair of candidates 

has been pointed out by Todhunter (1931), Gleser (1969), May (1971), Weisberg 
and Niemi (1972) and Gehrlein (1983).  Tideman (1985) proves that the probabil-

ity that 130 p,,PS
PMRW  is of measure zero with the assumption of UC. 

Analysis has also been done to try to determine the p vectors that will minimize 

pm,n,PS
PMRW  for small n.  Gillett (1979) performs an analysis of the behavior of 

p,n,PS
PMRW 3  for some special cases of p, and Gillett (1980a) uses Monte-Carlo 

simulation analysis to arrive at a conjecture that p,n,PS
PMRW 3  is minimized by 

the vector *
1p  with 3/1541 ppp  or by *p2  with 3/1632 ppp .

Buckley (1975) proved this conjecture to be true with n = 3, where 
*
1p,,PS

PMRW 33  = *
2p,,PS

PMRW 33  = 7/9, while 18/1733 ,IC,PS
PMRW .  Krish-

namoorthy and Raghavachari (2005) prove the conjecture to be true for general n.

The linear individual preference rankings in Fig. 3.3 show that *
1p  and *p2  will 

only include individual preference rankings in a profile if they are consistent with 
one of the rankings in a triple of rankings that form a Latin Square, as described in 

Chapter 2.  So, *
1p  only admits voter preference rankings that work to reinforce 

the PMR cycle with AMBMCMA and *p2  only admits voter preference rankings 

that work to reinforce the reverse PMR cycle with AMCMBMA.   
The existence of these two cyclic components is critical to the possible exis-

tence of PMR cycles.  Saposnik (1975) finds the conditions on “cyclic balance” 
that will require transitivity of PMR voting.  Cyclic balance measures the differ-
ence between these “clockwise cycles” and “counterclockwise cycles” in the pref-
erence rankings in subsets of voters.  Sen (1966,1970) uses the terms “forward 
circle” and “backward circle” to define them, while  Riker (1980) uses the terms 
“forward cycle” and “backward cycle”. 
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Zwicker (1991) examines the possibility of the existence of PMR cycles by us-
ing linear algebra to decompose the aggregation of voters’ preferences into com-
ponents.  The notion of “spin” is developed to measure the strength of these cyclic 
components in a voter preference profile.  The procedure used is analogous to us-
ing homology theory to decompose current flow in electrical circuits into compo-
nents.  Necessary and sufficient conditions are developed to determine the “spin” 
values on profiles that will require PMR to be transitive. 

We saw in Chapter 2 that Ward’s Condition, which requires that a voter prefer-
ence profile does not contain any Latin Squares, necessarily results in the exis-
tence of a PMRW, but a voter preference profile that does contain Latin Squares 
can still have a PMRW.  The impact of these two cyclic components on the crea-
tion of a PMR cycle in a voter preference profile can cancel each other out.  How-
ever, an increase in the relative strength of either one of these cyclic components 
in voter preference profiles increases the likelihood that the associated PMR cycle 
exists. 

Berg (1985a) shows how this phenomenon can occur by using a P-E urn model.  
In particular, the study starts the experiment of generating random voter prefer-
ence profiles by setting A1 = A4 = A5 =  and A2 = A3 = A6 = 1.   As  becomes 
large, the three preference rankings forming one of the Latin Squares will become 
dominant in the preferences of the population.  Berg assumes that n with 

1  to develop a representation for the limiting Dirichlet probability that a PMR 
cycle exists.  Computed values show that the probability that a PMR cycle exists 
increases rapidly as  increases. 

Saari and Valognes (1998) develop a conditional probability representation for 
the likelihood that a PMRW exists when voters are restricted to have preferences 
on three candidates that tend to reinforce one of the Latin Squares.  The study as-
sumes that all voting situations with 0632 nnn  are equally likely to be ob-

served.  The probability that a PMRW exists in this case is shown to be given 
by 2433 nn  for odd n.  This modification significantly reduces the 

probability that a PMRW exists from the IAC case that does not create a bias in 
favor of one of the Latin Squares in voters’ preferences. 

3.9 Other Representations 

Other representations have been developed that are related to various aspects of 
the likelihood that a PMRW exists in three-candidate elections.  Gehrlein and 
Fishburn (1976a) develop IAC representations for the expected proportion of 

times, IACnmRi
PMRW ,, , that the PMRW is ranked in the thi  position of indi-

vidual voter’s linear preference rankings in preference profiles, given that a 
PMRW exists.  Here, a rank of one refers to a voter’s most preferred candidate.  
Representations are obtained for the case of m = 3 with odd n:
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315
19338,,3

2
1

nn
nnIACnRPMRW

315
134132

nn
nn,n,IACRPMRW

35
23

2
3

nn
nn,n,IACRPMRW .

(3.95)

In the limit as n , 15/8,,31 IACRPMRW , 15/4,,32 IACRPMRW ,

and 5/1,,33 IACRPMRW  to indicate that the PMRW is expected to be the 

most preferred candidate for a majority of voters with large electorates, given that 
a PMRW does exist.  A candidate that is ranked as most preferred by a majority of 
voters must be a strict PMRW.  Richelson (1978), Lepelley (1992) and others 
have considered various aspects of this special case of a PMRW, and have given 
the name Strong PMRW to such a candidate. 

Lepelley and Gehrlein (1999) develop representations for the probability that a 
strong PMRW exists under the assumption of IC, IAC and MC for m = 3.  Let 

ICnPStrong
PMRW ,,3 , IACnPStrong

PMRW ,,3  and MCLPStrong
PMRW ,,3  denote these respec-

tive probabilities.  The representation for ICnPStrong
PMRW ,,3  does not reduce to a 

simple form, but it can be used to obtain the computed values for each n = 3(6)51, 
along with n = 99 and the limiting probability as n , in Table 3.8. 

The representations for IACnPStrong
PMRW ,,3  from Lepelley and Gehrlein (1999) 

are given by: 

4216
7373,,3

nn
nnIACnPStrong

PMRW , for odd n,

53116
9363,,3

nnn
nnnIACnPStrong

PMRW , for even n.

(3.96)

The representation for odd n in Eq. 3.96 was used to obtain the computed val-

ues of IACnPStrong
PMRW ,,3  for each n = 3(6)51 in Table 3.8.  The limiting value 

as n of 16/9,,3 IACPStrong
PMRW , for both the odd and even n representa-

tions in Eq. 3.96, are in agreement with limiting results that are presented in Berg 
and Lepelley (1992). 

The representation for MCLPStrong
PMRW ,,3  is given by Lepelley and Gehrlein 

(1999) as  

5

234

1120
19243442118429,,3

L
LLLLLMCLPStrong

PMRW .
(3.97)
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The representation for MCLPStrong
PMRW ,,3  in Eq. 3.97 was used to obtain the 

computed values for each L = 1(2)17, along with L = 33 and the limiting probabil-
ity as L , in Table 3.8.  These values of L were selected to make the value of 

nE  for MC as close as possible to the corresponding n values for IC and IAC in 

each row of Table 3.8. 

Table 3.8 Computed values of ,n,ICPStrong
PMRW 3 , IACnPStrong

PMRW ,,3  and MCnPStrong
PMRW ,,3  from 

Lepelley and Gehrlein (1999). 

n L ICnPStrong
PMRW ,,3 IACnPStrong

PMRW ,,3 MCnPStrong
PMRW ,,3

3 1 .7778 .8571 .3281 
9 3 .4345 .7133 .3076 
15 5 .2647 .6641 .2894 
21 7 .1672 .6391 .2788 
27 9 .1078 .6240 .2720 
33 11 .0704 .6139 .2672 
39 13 .0465 .6066 .2638 
45 15 .0309 .6011 .2611 
51 17 .0207 .5969 .2591 
99 33 .0009 .5808 .2510 

 0 .5625 .2417 

The results in Table. 3.8 show that ICnPStrong
PMRW ,,3 , IACnPStrong

PMRW ,,3  and 

MCLPStrong
PMRW ,,3  approach very different limits as n  , or as nE  for 

MC.
Gillett (1976, 1978) develops representations for the probability that a PMRW 

exists for generalized p with m = 3,4.  Recursion relations are also developed to 
obtain the representations for given m and n as a function of m and n for smaller 
values of n.  The recursion relations for the case of m = 3 are given with the same 

definition that was used for the representation of p,,3 nP A
PMRW  in Eq. 3.60, and 

where p,,3* nP A
PMRW  is the probability that A is the strict PMRW for even n:

For odd n:
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104      The Cases of Two and Three Candidates 

For even n:

.
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Similar representations can be obtained for p,,3 nP B
PMRW , p,,3* nP B

PMRW ,

p,,3 nP C
PMRW  and p,,3* nP C

PMRW  by appropriately interchanging the subscripts 

on the ip ’s, and the results can be accumulated to obtain the recursion relationship 

for p,,3 nPS
PMRW  as a function of p,1,3 nPS

PMRW .  Gillett (1978) also devel-

ops a recursion relationship for the case of m = 4, but the results are very cumber-
some and they are not reported here.  The recursion relationships in Eqs. 3.98 and 
3.99 will be used in later discussion. 

3.10 Conclusion 

We have observed very similar behavior for the probability that a PMRW exists 
under the different methods of considering balanced preferences in three-
candidate elections: IAC, MC, IC, DC and UC.  The situation developed by Con-
dorcet, which has a balance in social outcomes, suggests that there should be 
widespread occurrences of PMR cycles, if that assumption is valid.  However, this 
assumption ignores a certain amount of coherence among voter preferences.  We 
have typically found the greatest likelihood for PMR cycles to exist with a small 
number of voters. For very large electorates we expect to have a PMRW with 
probability approaching 15/16 = .9375 with IAC and UC, and approaching 
109/120 = .9083 for MC.  The results of Guilbaud (1952) show that a PMRW ex-
ists with probability approaching .9123 for large electorates with IC. 

Some studies suggest that these different assumptions give extraordinarily 
small estimates of the probability that a PMRW exists [Stensholt (1999b), for ex-
ample].  This is not a surprising observation, since none of the studies referenced 
above have ever suggested that IAC, IC, DC or UC reflect reality in any particular 
situation.  As was suggested in the introduction, they have considered instead the 
likelihood that a PMRW exists under various interpretations of balanced prefer-
ences.  If indeed balanced preferences are most likely to produce a PMR cycle, 
then each of these cases represent situations in which the probability that a PMRW 
exists would tend to be at a minimum.  These situations were somewhat contrived 
to make PMR cycles as likely as is possible, without building in a direct bias to 
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force the existence of PMR cycles, and we still expect to have a PMRW in over 90 
percent of cases for large electorates with three candidates.  That probability 
would certainly be significantly greater for typical situations that are not contrived 
to make majority rule cycles more likely to occur. 

Gehrlein and Lepelley (2004) give justification for using assumptions like IC, 
MC and IAC to develop probability representations, despite the fact that they are 
generally believed to represent situations that exaggerate the probability that para-
doxical events will occur: 

They are very useful when large amounts of empirical data are not available, 
which is typically the case with elections. 
They can show that some paradoxical events are very unlikely to be observed.  
If we use conditions to maximize the likelihood of observing paradoxes and 
find that the probability is small with such calculations, the paradox is 
assuredly very unlikely to be observed in reality. 
They can show the relative impact that paradoxical events can have on different 
types of voting situations.  For example, different voting rules can be compared 
on the basis of their relative likelihood of electing the PMRW. 
By using probability models to obtain closed form representations, it is easy to 
observe the impact of varying different parameters of voting situations or voter 
preference profiles, which is somewhat more difficult to do with simulation 
studies.   
The representations that are obtained are directly reproducible and verifiable 
with mathematical analysis, which is not as simple to do with simulation 
analysis. 
It can be useful to find out if the relative probabilities of paradoxical outcomes 
on various voting mechanisms behave in a consistent fashion over a number of 
different assumptions about the likelihood that voting situations or voter 
preference profiles are observed. 

With regard to the third item in this list, Fishburn and Gehrlein (1982) note that 
comparisons of differences in the likelihoods that various election outcomes might 
be observed could be exaggerated with balanced preference models, but there is 
little reason to expect that the relative likelihoods of the election outcomes would 
be changed with more general assumptions.



4 The Case of More than Three Candidates

4.1 Introduction 

The last chapter provided an exhaustive coverage of work that has been done to 
obtain representations for the probability that Condorcet’s Paradox is observed in 
one of its forms in three-candidate elections.  Most of the work that has been done 
in the area of obtaining these probability representations has dealt with the case of 
three-candidate elections, and it will soon be very clear that this type of analysis 
becomes much more complicated when it is extended to the case of more than 
three candidates.  However, extending this analysis to more than three candidates 
is important, since it is almost universally believed that the probability that a 
PMRW exists will decrease rapidly as the number of candidates is increased for a 
fixed n.  For example, see the conjecture due to Black [Black (1958), page 51)].  
We begin by considering the case of four-candidate elections. 

4.2 Representations for Four-Candidate Elections 

4.2.1 A PMRW Exists with Four Candidates 

All of the assumptions that are related to the formation of random voter preference 
profiles that were used in the previous chapter are continued in this extension to 
the case of four-candidate elections.  Individual voters are assumed to have linear 

preference rankings on the four candidates 4321 ,,, CCCC4C , and voters are 

assumed to have individual preferences that are independent of the preferences of 
other voters.  The first complicating factor is that there are 24 possible linear pref-
erence rankings in a four-candidate election, as listed in Fig. 4.1.  A random voter 
preference profile is obtained by sequentially drawing voters from a population 
and observing their preferences.  The sampling from the population is done with 
replacement, and the probability that a voter with a specified preference ranking is 
selected on any draw is denoted by the 24-dimension vector r, with components as 
specified in Fig. 4.1. 



108      The Case of More than Three Candidates 

14321 : rCCCC 94132 : rCCCC 172143 : rCCCC

23421 : rCCCC 101432 : rCCCC 181243 : rCCCC

34231 : rCCCC 113142 : rCCCC 193214 : rCCCC

42431 : rCCCC 121342 : rCCCC 202314 : rCCCC

53241 : rCCCC 134213 : rCCCC 213124 : rCCCC

62341 : rCCCC 142413 : rCCCC 221324 : rCCCC

74312 : rCCCC 154123 : rCCCC 232134 : rCCCC

83412 : rCCCC 161423 : rCCCC 241234 : rCCCC

Fig. 4.1 Possible linear preference rankings for individual voters with four candidates 

We begin the development of a representation for r,,4 nPS
PMRW  by obtaining 

a representation for the probability r,,41 nP C
PMRW  that 1C  will be the PMRW in 

a randomly generated voter preference profile, as described above.  The first step 
is to consider the conditions that will have 1C  as the PMRW for the triple of can-

didates 321 ,, CCC .  Using the same notation that led to Eq. 3.87,  4Z  denotes 

the set of all possible linear preference rankings with four candidates, and let 4
i

for 24...,,3,2,1i  denote the possible linear preference rankings in 4Z .  We 

then partition 4Z   into four subsets as follows: 

                                   1312
44

1 : CCandCCZ i

                                   312
44

2 : CCCZ i

                                   213
44

3 : CCCZ i

                                   3121
44

4 : CCandCCZ i .

(4.1)

Let is  denote the total number of rankings in a given voter preference profile that 

are contained in 4
iZ , and 1C  will be the PMRW for the triple 321 ,, CCC  for odd 

n for any combination of 4321 ,,, ssss with: 

2
1

10 ns

12
1

20 ss n

12
1

30 ss n

3214 sssns .

(4.2)

We now consider the addition of the restriction that 41 CC M  to the conditions 

in Eq. 4.2.  Define two additional subsets of 4Z  as 



4.2 Representations for Four-Candidate Elections      109 

14
44

5 : CCZ i

41
44

6 : CCZ i ,

(4.3)

and let 44
, # jiji ZZs .  The inequalities in Eq. 4.2 require that 1C  is the 

PMRW for the triple of candidates 321 ,, CCC , and the addition of four more ine-

qualities in Eq. 4.4 will require that 41 CC M  also: 

15,10 ss

25,20 ss

5,25,12
1

3
5,30

ss

s
Mins n

5,35,25,12
1

4
5,40

sss

s
Mins n .

(4.4)

The probability jip ,  denotes the probability that a randomly selected voter will 

have a preference ranking from Fig. 4.1 that is included in 44
ji ZZ . It follows 

from the definitions in Eqs. 4.1 and 4.3, along with Fig. 4.1, that 

    2422181612105,1 rrrrrrp
    1596,1 rrp           21115,2 rrp
    876,2 rrp           23175,3 rrp
    14136,3 rrp           20195,4 rrp
    6543216,4 rrrrrrp .

(4.5)

Using the relationship 5,6, iii sss  with previous discussion, a representation 

for r,,41 nP C
PMRW  is given by 

1 2

6,5
4,3,2,1 ,

,

!
!,,4

,
1

j
i ji

s
jiC

PMRW s
p

nnP
ji

r .
(4.6)

Here, 1  is a triple summation function with summation indexes that are con-

sistent with Eq. 4.2 and 2  is a four summation function with summation indexes 

that are consistent with Eq. 4.4.  Representations for r,,4 nP iC
PMRW  can be ob-

tained in a similar fashion for each i = 2, 3, 4 and r,,4 nPS
PMRW  is obtained as 

the accumulation   
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4

1
,,4,,4

i

C
PMRW

S
PMRW nPnP i rr .

(4.7)

Gehrlein (1982a) develops a closed-form representation for the limiting prob-

ability, DCPS
PMRW ,,4 , as n for any r meeting the condition of DC, by 

extending the analysis that led to the development of the representation for 

DCPS
PMRW ,,3  in Eq. 3.69 to the four-candidate case, with 

12

1

1
42

1,,4
i

i
S
PMRW fSinDCP ,

(4.8)

where: 

1513119876543211 2 rrrrrrrrrrrrf

1513119876543212 2 rrrrrrrrrrrrf

1513119876543213 2 rrrrrrrrrrrrf

1513532111987644 2 rrrrrrrrrrrrf

1513532111987645 2 rrrrrrrrrrrrf

1513532111987646 2 rrrrrrrrrrrrf

9764311513118527 2 rrrrrrrrrrrrf

9764311513118528 2 rrrrrrrrrrrrf

9764311513118529 2 rrrrrrrrrrrrf

11865421513973110 2 rrrrrrrrrrrrf

11865421513973111 2 rrrrrrrrrrrrf

11865421513973112 2 rrrrrrrrrrrrf .

(4.9)

A representation for ICnPS
PMRW ,,4  could be obtained for the special case of 

IC directly from Eqs. 4.6 and 4.7, but a result due to May (1971) makes this an 
unnecessary exercise.  May gave a very nice result without providing a proof, stat-
ing that the proof of the result was very complicated.  Fishburn (1973c) provides a 
simple proof of May’s Theorem.  The basis of that proof is explained in detail here 
to facilitate future discussion.  

Theorem 4.1. ICnPS
PMRW ,,4  = 1,,32 ICnPS

PMRW , for all odd n.
Proof.  Let iE  denote the event that 1CCiM  for i = 2, 3, 4, and let iEP  denote 

the probability that iE  occurs with IC.  The probability, P, that 1C  is not the 

PMRW is, by definition, the same as 432 EEEP .  As described in Hogg 

and Craig (1965),  

.432434232

432432
EEEPEEPEEPEEP

EPEPEPEEEPP (4.10)
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It follows by definition that ICnPP C
PMRW ,,41 1  and that 432 EEEP  is 

equivalent to the probability that 1C  is the PMRL for odd n.  Since every voter 

preference profile has the same probability of being drawn as its dual preference 

profile with IC, it therefore follows that 432 EEEP  = ICnP C
PMRW ,,41  and 

that 2/1iEP .  Eq. 4.10 can then be algebraically reduced and rewritten as 

4
1

4342322
1,,41 EEPEEPEEPICnP C

PMRW . (4.11)

By definition, ji EEP  is identical to the probability that 1C  is the PMRL on 

the triple of candidates in ji CCC ,,1  within a voter preference profile on four 
candidates with the IC assumption.  Following previous discussion about the 
probability that any profile is observed being equal to the probability that its dual 
profile is observed with the IC assumption, ji EEP  is identical to the prob-

ability, ICnQ C
PMRW ,,41 , that 1C  is the PMRW on the triple in a voter preference 

profile on four candidates.  Based on Eq. 3.91, we have ICnmQ C
PMRW ,,1

= 3/,,3 ICnPS
PMRW , so that ICnmQ C

PMRW ,,1  is not a function of m.  By substi-
tuting this result into Eq. 4.11 and using the fact that the symmetry of IC requires 
the equality of ICnP iC

PMRW ,,4  for all four candidates, we obtain the representa-
tion in May’s Theorem.                      QED
 Computed values of ICnPS

PMRW ,,4  are listed in Table 4.1 for each n = 

3(2)19.  The limiting value as n  for ICPS
PMRW ,,4  in Table 4.1 is ob-

tained by applying May’s Theorem to Guilbaud’s representation for 

ICPS
PMRW ,,3  in Eq. 3.77. 

Table 4.1 Computed values of ICnPS
PMRW ,,4  and IACnPS

PMRW ,,4

n ICnPS
PMRW ,,4 IACnPS

PMRW ,,4
3 .8889 .9015 
5 .8611 .8730 
7 .8500 .8609 
9 .8440 .8545 
11 .8404 .8506 
13 .8379 .8481 
15 .8360 .8463 
17 .8347 .8450 
19 .8336 .8440 

 .8245 .8384 
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 Gehrlein and Fishburn (1976a) incorrectly use May’s Theorem to obtain a rep-
resentation for IACnPS

PMRW ,,4 , and full responsibility for that error lies with the 
current author.  The proof of May’s Theorem above used the result that 

ICnmQ C
PMRW ,,1  = 3/,,3 ICnPS

PMRW  from Eq. 3.91, and Gehrlein and Fishburn 
(1976a) applied this same result to IAC.  Given the results that were observed 
from Eq. 3.94 and Table 3.7 with the assumption of IAC, May’s Theorem clearly 
can not be applied to the case of IAC, due to the small amount of dependence be-
tween individual voter’s preferences that is implied by IAC.  Berg and Bjurulf 
(1983) were the first to point out this error. 
 Gehrlein (1990c) develops a representation for IACnPS

PMRW ,,4  by trans-

forming the representation for ICnPS
PMRW ,,4  in Eq. 4.6 to the case with IAC.  

This transformation process mimics the logic that transformed the representation 
for ICnmQ C

PMRW ,,1  in Eq. 3.90 to the representation for IACnmQ C
PMRW ,,1  in 

Eq. 3.94, leading to 

.1
!233600

!23!

),,4(

1 2
5432

6451

65
4321 ,,,j

,,

,   j
,,,i

i,j

S
PMRW

jsjss
n

n

IACnP (4.12)

Computed values of IACnPS
PMRW ,,4  from Eq. 4.12 are listed in Table 4.1 for 

each n = 3(2)19.  The computed values of IACnPS
PMRW ,,4  in Table 4.1 pre-

cisely match results that were obtained by computer enumeration techniques in 
Giraud, et al. (1988).   
 A variation of May’s Theorem is used in Gehrlein (2001) to obtain a simpler 
closed form representation for IACnPS

PMRW ,,4 .  This is accomplished by restat-
ing Eq. 4.10, which uses probabilities that events occur in voter preference pro-
files with IC, to account instead for the number of voting situations in which the 
same events occur with IAC.  Let iEN  denote the number of voting situations in 
which iE  occurs with the assumption of IAC, with 

.43243

4232432432
EEENEEN

EENEENENENENEEEN (4.13)

The total number of possible voting situations for four-candidates is obtained 

from wvH ,  in Eq. 3.92 with v = n and w = 4! =24. Let IACnN C
PMRW ,,41  de-

note the total number of voting situations in which 1C  is the PMRW, and our 
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definitions lead to the identity 432 EEEN  = IACnNnH C
PMRW ,,424, 1 .

432 EEEN  is equal to the total number of voting situations in which 1C  is 

the PMRL.  There is a 1-1 mapping between each voting situation and its equally 
likely dual voting situation with IAC, so it follows that 432 EEEN  = 

IACnN C
PMRW ,,41 .  It also follows that iEN  = 24,nH /2 for each i = 2, 3, 4 

and that ji EEN  = IACnQ C
PMRW ,,41  from Eq. 3.94.  As a result of all of this, 

Eq. 4.13 can be algebraically reduced to 

)24,(,,43),,4(
2
1

2
1 11 nHIACnQIACnN C

PMRW
C

PMRW .
(4.14)

The summation indexes in the definition of IACnQ C
PMRW ,,41  in Eq. 3.94 do 

not involve Max or Min arguments, so a closed form algebraic representation can 

be obtained for IACnN C
PMRW ,,41 .  Due to the symmetry of IAC with respect to 

candidates, we obtain a representation for IACnPS
PMRW ,,4  from 

24,
,,44

,,4
1

nH
IACnN

IACnP
C

PMRWS
PMRW .

(4.15)

After algebraic reduction, 

IACnP S
PMRW ,,4

.
232768

)12(46351504287819)12(723551655145

)12(01232306053)12(440508156)12(5895835)12(27472

11

1

2

2222

i
in

nn

nnnn

(4.16)

The precise limiting probability value 8384.),,4(
2048
17174 IACPPMRW  that is ob-

tained from Eq. 4.16 is only slightly different than limiting approximation result 
for that probability that is reported in Berg and Bjurulf (1983). 

4.2.2 PMR is Transitive with Four Candidates 

Representations for the probability that PMR is transitive become very complex. 
Gehrlein (1988, 1989) obtains some representations for these probabilities for 
small m and n by using by using symmetry arguments with IC.  The development 
of these representations follows the general notions that were used to partition 4Z
into the four subgroups in Eq. 4.1 that led to the restrictions on the cardinalities of 
these subgroups that require 1C  to be the PMRW in Eq. 4.2.  For four candidates, 
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4Z  is partitioned into 18 subgroups, and iq  denotes the probability that a ran-

domly selected voter will have a preference ranking in the thi  subgroup, for 
181 i .  The identity of the rankings, as defined Fig. 4.1, that are included in 

each subgroup can be determined from the definitions of the iq  probabilities: 
                242318171 rrrrq     222 rq     123 rq     164 rq
                    105 rq 146 rq     97 rq     158 rq 139 rq
                   2010 rq 2111 rq 1112 rq 1913 rq     614 rq
                    415 rq 316 rq     517 rq     872118 rrrrq .

(4.17)

 For any given voter preference profile, let ik  denote the cardinality of the thi
subgroup from the definitions in Eq. 4.17, and the outcomes 31 CC M , 41 CC M ,

32 CC M  and 42 CC M  occur when: 
         31 CC M : 2/1987654321 nkkkkkkkkk
         41 CC M : 2/11312111054321 nkkkkkkkkk
         32 CC M : 2/11615141098641 nkkkkkkkkk
         42 CC M : 2/1171514131110621 nkkkkkkkkk .

(4.18)

 The restrictions on the individual ik ’s that lead to the simultaneous occurrence 
of the outcomes 31 CC M , 41 CC M , 32 CC M  and 42 CC M  are given by: 

2/10 1 nk
10 2 zk
20 3 zk
30 4 zk
40 5 zk
50 6 zk
60 7 zk
70 8 zk
80 9 zk

5,90 10 zkMink

1011 5,100 kzkMink

111012 5,110 kkzkMink

12111013 5,120 kkkzkMink

109864114 2/1,130 kkkkkknkMink

14109864115 2/1,140 kkkkkkknkMink

1514109864116 2/1,150 kkkkkkkknkMink

161514109864117 2/1,160 kkkkkkkkknkMink .

(4.19)

Here, we define 
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j

i
iknjk

1
   and   

j

i
i

n kjz
12

1 .
(4.20)

The probability, ICnQ ,,4 , that all four outcomes occur simultaneously when n
is odd under IC, is equivalent to the probability that we have a transitive overall 
PMR outcome that is given by one of the four linear rankings: 4321 CCCC MMM ,

3421 CCCC MMM , 4312 CCCC MMM  or 3412 CCCC MMM .  It then follows that  

3
18

1 !
1

246
!,,4

181181 i i
kknkk k

nICnQ ,
(4.21)

where 3  is a 17-summation function with summation indexes that are consistent 
with Eq. 4.19 and where 1818 kk .  Since there are 24 possible transitive PMR 
rankings with four candidates and ICnQ ,,4  accounts for four of them, the sym-
metry of IC with respect to candidates allows us to obtain a representation for the 
probability, ICnPS

PMRT ,,4 , that PMR is strictly transitive in this situation by us-

ing the relationship ICnQICnPS
PMRT ,,46,,4 , so that  

3
18

1 !
1

246
!6,,4

181181 i i
kknkk

S
PMRT k

nICnP .
(4.22)

 Gehrlein (1989) contains several typographical errors in the development of 
this representation.  The representation for ICnPS

PMRT ,,4  in Eq. 4.22 was used 
to compute the associated probabilities in Table 4.2 for each n = 3(2)19. 

Table 4.2 Computed values of ICnPS
PMRT ,,4  and IACnPS

PMRT ,,4

n ICnPS
PMRT ,,4 IACnP S

PMRT ,,4

3 .8299 .8492 
5 .7898 .8081 
7 .7741 .7909 
9 .7660 .7820 
11 .7609 .7767 
13 .7575 .7732 
15 .7550 .7707 
17 .7531 .7689 
19 .7517 .7675 

 .7395 ? 
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Gehrlein (1990c) uses the logic that led to Eq. 4.12 to develop a representation 
for IACnPS

PMRT ,,4  by transforming the representation for ICnPS
PMRT ,,4  in 

Eq. 4.22 to the case with IAC, leading to 

3
3

1
181!236

!23!,,4
i

S
PMRT ikik

n
nIACnP .

(4.23)

The representation for IACnPS
PMRT ,,4  in Eq. 4.23 is used to compute the asso-

ciated probabilities in Table 4.2 for each n = 3(2)19. 

4.2.3 Probabilities for Four Candidates with Large Electorates 

A representation for the limiting probability ICPS
PMRT ,,4  as n  is ob-

tained by Gehrlein and Fishburn (1978a).  The derivation of this representation as-
sumes that a random voter preference profile is obtained by sequentially selecting 
each individual voter’s preference ranking from the list of possible linear rankings 
on four candidates in Fig. 4.1.  With the assumption of IC, each of the possible lin-
ear rankings is equally likely to be selected for each voter. 
 We start by defining four discrete variables that are based on the linear prefer-
ence ranking that is randomly selected for the thi  voter : 

iX1
voterfor theif:1

voterfor theif:1

13

31
th

th

iCC

iCC iX2
voterfor theif:1

voterfor theif:1

14

41
th

th

iCC

iCC

iX3
voterfor theif:1

voterfor theif:1

23

32
th

th

iCC

iCC iX4
voterfor theif:1

voterfor theif:1

24

42
th

th

iCC

iCC

(4.24)

 Following the discussion that led to the representation for ,DC,PS
PMRW 3  in 

Eq. 3.69, the joint outcome 31 CC M , 41 CC M , 32 CC M  and 42 CC M  occurs in a 

voter preference profile when 01 nX , 02 nX , 03 nX  and 

04 nX  respectively.  The symmetry of the assumption of IC with respect to 

candidates leads to the observation that 0i
jj XEnXE  for j = 1, 2, 3, 4.  

The Central Limit Theorem requires that the joint probability that 31 CC M ,

41 CC M , 32 CC M  and 42 CC M  as n  is equivalent to the four-variate normal 

positive orthant probability, 1R4 , that nXEnX jj   for all  j = 1,2,3,4.  

With the assumption of IC, the correlation matrix, 1R , for this joint limiting dis-
tribution follows from the variable definitions that are given in Eq. 4.24 and same 
logic that led to the development of Eq. 3.68, with 
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1
1

01

01

3
1
3
1

3
1

3
1

1R .

(4.25)

 Following previous discussion, we know that 1R46,,4 ICPS
PMRT .

Simple representations for such orthant probabilities were found previously for the 
cases of two and three variables by applying Sheppard’s Theorem of Median Di-
chotomy.  However, the situation becomes much more complicated in the case of 
four or more variables.  The particular form of 1R  in Eq. 4.25 fits a special case 
of a class correlation matrices for which a representation for four-variate normal 
positive orthant probabilities is known [David and Mallows (1961)] and  

dCosICPS
PMRT

3/1

0 2

21

2
1

21/6
8
3,,4 .

(4.26)

 Gehrlein and Fishburn (1978) obtain a value of ICPS
PMRT ,,4  by using 

quadrature with the representation in Eq. 4.26, as shown in Table 4.2 .  The re-
ported result is generally in agreement with a Monte-Carlo simulation estimate 
for ICPS

PMRT ,,4  in Williamson and Sargent (1967).   Gehrlein (1988) performs 

Monte-Carlo simulation analysis to obtain estimates of 529.,,5 ICPS
PMRT

and .340.,,6 ICPS
PMRT   No representation for IACPS

PMRT ,,4  has been 
obtained to give an estimate of its value. 

4.3 More than Four Candidates 

4.3.1 Complete Breakdown by PMR 

Let define a permutation, with terms mCCC ,...,, 21 , on the candi-

dates in m
m CCC ,...,, 21C  in a general m-candidate election.   A PMR m-cycle 

exists in a given voter preference profile if there is some  on the candidates in 
mC  such that 121 ... CCCC m MMMM .  Marchant (2001) considers 

the probability that various decision rules completely breakdown with tied rela-
tionships, so that no winner can be determined.  For PMR, this complete break-
down coincides with the probability that a profile is observed with an m-cycle.  



118      The Case of More than Three Candidates 

 A limited number of representations have been obtained for the limiting prob-

ability, ICmPS
PMRC ,, , that an m-cycle will be observed for n  voters with 

IC.  The idea of approaching this problem with the graph theory concept of Hamil-
tonian cycles was first considered by Taylor (1968), and Bell (1981) approached 
this problem in the same way to show that in the limit that both n  and 

,m .1,, ICPS
PMRC  McKelvey (1976) reaches the same conclusion 

with a different technique, and McKelvey (1979) finds the same result for a more 
general assumption than IC.  Very little is known about the rate of convergence of 

ICmPS
PMRC ,,  to its limiting value as m increases. 

Results from Guilbaud (1952) in Eq. 3.77 for m = 3 directly lead to 

08774.
3
1

2
3

4
1,,31,,3 1SinICPICP S

PMRW
S
PMRC .

(4.27)

Gehrlein (2004) develops a representation for ICPS
PMRC ,,4 , and that deri-

vation starts with the observations in Theorem 4.2. 

Theorem 4.2. If m = 4, any voter preference profile can have only one m-cycle at 
a time. 
Proof.  Suppose, without loss of generality, that 21 CC M , 32 CC M , 43 CC M  and 

14 CC M in an existing 4-cycle in a given voter preference profile . Further, sup-

pose that 31 CC M  is the first link in a second 4-cycle. The second link of this sec-

ond 4-cycle cannot be 43 CC M , because the second 4-cycle must then be com-

pleted by 24 CC M  and 12 CC M , which is a contradiction of 21 CC M  in the first 4-

cycle.  The second link of this second 4-cycle cannot be 23 CC M , since 32 CC M  in 

the first 4-cycle.  Thus, we must have 13 CC M  as the first link in a second 4-cycle. 

Following the same argument as before, it is easily shown that this is not possible. 
                            QED

The development of a representation for ICPS
PMRC ,,4 , follows the logic that 

has been used to obtain limiting representations as n  with IC and DC.  We 
start by defining four discrete variables on the preference rankings that are ran-
domly assigned to individual voters to form a voter preference profile: 

iY1
voterfor theif:1

voterfor theif:1

12

21
th

th

iCC

iCC iY2
voterfor theif:1

voterfor theif:1

23

32
th

th

iCC

iCC

iY3
voterfor theif:1

voterfor theif:1

34

43
th

th

iCC

iCC iY4
voter.for theif:1

voterfor theif:1

41

14
th

th

iCC

iCC

(4.28)
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For any given voter preference profile with 0nY j  for all j = 1, 2, 3, 4, an 

m-cycle exists with 14321 CCCCC MMMM .  Using the assumption of IC with the 

preference rankings in Fig. 4.1, it is easily shown that 0nYE j  for all j = 1, 

2, 3, 4.  By appealing to the Central Limit Theorem as n  and earlier argu-

ments, the joint probability that 0nY j  for all j = 1, 2, 3, 4 is equivalent to the 

four-variate normal positive orthant probability 2R4 , and Gehrlein (2004) 

shows that 

2R  =

1
1

01

01

3
1

3
1

3
1

3
1

.

(4.29)

There are six possible m-cycles with m = 4.  The combination of Theorem 4.2 
and the symmetry of IC with respect to candidates leads to the identity 

2R46,,4 ICPS
PMRC .  Given the special form of 2R , results from David 

and Mallows (1961) can be used to obtain a representation for 2R4 , with 

3
1

0

1
2

1

1

2
6

3
13

8
3,,4

Sin
S
PMRC d

Cos
SinSinSinICP .

(4.30)

The representation for ICPS
PMRC ,,4  can be evaluated by quadrature to ob-

tain the value shown in Table 4.3.   This result is generally in agreement with a 

Monte-Carlo simulation estimate for ICPS
PMRC ,,4  in Bell (1978). 

Table 4.3 Computed values of ICmPS
PMRC ,,  and Monte-Carlo simulation estimates (*) 

from Bell (1978) 

m ICmPS
PMRC ,,

3 .08774 
4 .09042 
5 .099* 
10 .201* 
20 .451* 
40 .668* 
80 .801* 

 1.00000 
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The same type of analysis that was just used to obtain the representation for 

ICPS
PMRC ,,4  is not easy to apply to the case of 5m  candidates, since there 

can be two, or more, m-cycles at the same time in these cases.  With m = 5 we 
could have a first m-cycle in a voter preference profile with 21 CC M , 32 CC M ,

43 CC M , 54 CC M  and 15 CC M . A second m-cycle could then exist with 31 CC M ,

53 CC M , 25 CC M , 42 CC M and 14 CC M . There are no contradictory relationships 

between these two m-cycles, and McGarvey's Theorem [McGarvey (1953)] re-
quires that a voter preference profile can be constructed to obtain such an out-
come, with a sufficiently large number of voters.  Table 4.2 lists estimates of 

ICmPS
PMRC ,,  for each m = 5,10,20,40,80,  that were obtained by Monte-Carlo 

simulation in Bell (1978).  These results strongly suggest that there is a very slow 

rate of convergence of ICmPS
PMRC ,,  to its limiting value as m increases. 

Tovey (1997) considered a variation of this problem with the assumption of  
IAC, while considering the probability that a given number of different PMR cy-
cles exist in randomly generated voting situations.  It is shown that the expected 
number of PMR cycles that are observed in any given randomly generated voting 
situation goes to infinity as m .   

Saari (2004) presents an extensive discussion of a procedure that produces 
“symmetric” preference patterns in profiles that lead to the existence of PMR m-
cycles.  The profiles are produced with a “stuttering process” using a “ranking 
wheel” to produce a profile that represents a “perfect square”.  The procedure is a 
direct extension of Ward (1965) since it can easily be seen to be generating Latin 
Square patterns on m-candidates. 

4.3.2 General PMR Relationships for More than Four Candidates 

Numerous early studies were performed to obtain estimates of ICnmPS
PMRW ,,

and ICnmPS
PMRT ,,  for larger m.  Due to the complexity of the problem, most of 

these studies were performed by using Monte-Carlo simulation techniques, such 
as in Pomeranz and Weil (1970), Campbell and Tullock (1965) and other studies 
that have already been mentioned.  The focus on IC was likely driven by the fact 
that this assumption was used in the original analytical work of Guilbaud (1952) 
and by some rather stunning results that are obtained if IC is assumed when m is 
large. 
 Garman and Kamien (1968) use computer enumeration techniques to obtain 
limited results for values of ICnmPS

PMRW ,, , and then use a discussion of limit-

ing distributions to arrive at the conjecture that 0,, ICnmPS
PMRW  as m

for all n.  Blin (1973) later uses an application of Stirling’s Approximation to 
prove part of this conjecture to be true, by showing that 0,, ICnmPS

PMRW  as 
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m  for large n.  This observation then leads to the obvious conclusion that 
0,, ICnmPS

PMRT  as m  for large n.  May (1971) proves that the conjec-
ture that was posed by Garman and Kamien is true for all 3n , but noted that the 
convergence to the limiting probability as m  is extremely slow for small n.
All of this suggests that the probability that a PMRW exists, or that PMR is transi-
tive, could become quite small in elections with a large number of candidates.  
However, conditions like IC have already been shown to tend to exaggerate the 
probability that Condorcet’s Paradox might occur.  Tovey (1997) proves that 

0,, IACnmPS
PMRT  as m  with n . This result is not surprising fol-

lowing the work of Blin (1973) and the fact IC and IAC converge to the same re-
sults as m .

Williamson and Sargent (1967) show how strongly these rather threatening re-
sults are linked to the assumption of IC by examining the outcome of considering 
situations that are slightly different than IC.  In particular, one possible linear 

preference ranking for an m-candidate election is given a probability 
!

1
m

 of be-

ing drawn to represent the preferences of a randomly selected voter, and all other 

rankings are given a probability 
1!!

1
mm

 of being selected.  Let the Perturbed 

Culture Condition (PC) denote this model of assigning preference rankings to 
candidates.  As n  under PC, arguments are made to show that not only does 

1,, PCmPS
PMRW , but that 1,, PCmPS

PMRT  also.  Previous discussion 

has considered the significant impact that the assumption of unbalanced prefer-
ences, as we have with PC, can have on the probability that various voting situa-
tions are observed. 

 Kelly (1974) proves some general results concerning how ICnmPS
PMRW ,,

and ICnmPS
PMRT ,,  change as m and n change.  The most progress was made re-

garding the behavior of ICnmPS
PMRT ,, :

Theorem 4.3. ICnmPS
PMRT ,,  > ICnmPS

PMRT ,,1  for 3n  and 2m .

Theorem 4.4. ICnmPS
PMRT ,,  > ICnmPS

PMRT ,1,  for odd n and 3m .

Theorem 4.5. ICnmPS
PMRT ,1,  > ICnmPS

PMRT ,,  for even n and 3m .

Theorem 4.6. ICnmPS
PMRT ,,  > ICnmPS

PMRT ,2,  for all n and 3m .

 Kelly (1974) also extended the notion of transitivity of PMR to consider the 
case of even n, so that PMR ties might exist.  Let ICnmPWO

PMRT ,,  denote the 
probability that the PMR relationship is a weak order when n is even.  Then 

Theorem 4.7. ICnmPWO
PMRT ,,  > ICnmPWO

PMRT ,,1  for 3n  and 2m .



122      The Case of More than Three Candidates 

Theorem 4.8. ICnmPWO
PMRT ,,  > ICnmPWO

PMRT ,1,  for odd n and 3m .

Theorem 4.9. ICnmPWO
PMRT ,1,  > ICnmPWO

PMRT ,,  for even n and 3m .

Theorem 4.10. ICnmPWO
PMRT ,,  > ICnmPWO

PMRT ,2,  for all n and 3m .

Mimiague (1973) presents a Monte-Carlo simulation based study that examines 
the probability that various PMR weak order structures result under IC.   

Buckley and Westen (1979) prove some results that are related to the probabil-
ity that a strict PMRW exists: 

Theorem 4.11. ICnmPICnmP S
PMRW

S
PMRW ,1,,,  for odd n and 3m .

Theorem 4.12. ICnmPICnmP S
PMRW

S
PMRW ,,,1,  for even n and 3m .

The recursion relations for p,,3 nPS
PMRW  from Gillett (1978) in Eqs. 3.98 and 

3.99 indicate that Theorems 4.11 and 4.12 are true for all p when m = 3, and other 
unreported results from Gillett further indicate that the same observation is valid 
when m = 4. 
 Kelly (1974) proves some results that are related to the probability that a weak 
PMRW exists: 

Theorem 4.13. ICnmPICnmP W
PMRW

W
PMRW ,,,1,  for odd n and 3m .

Theorem 4.14. ICnmPICnmP W
PMRW

W
PMRW ,1,,,  for even n and 3m .

 Kelly (1974) then leaves two conjectures that were originally suggested by 
Black (1948a,1958), and they remain to be proved. 

Conjecture 4.1. ICnmPICnmP W
PMRW

W
PMRW ,,1,,  for 2m  and n = 3 or 

5n .

Conjecture 4.2. ICnmPICnmP W
PMRW

W
PMRW ,2,,,  for 3m  and n = 1 or 

3n .

Fishburn, et al. (1979a, b) prove Conjecture 4.1 to be true for the case special with 
n = 3.  It was also proved that Conjecture 4.2 is true for all odd n with m = 3 
[Theorem 3.1 (IC)], and for large even n with m = 3 [Theorem 3.5 (IC)]. 

Buckley and Westen (1979) give three additional conjectures that remain un-
proved. 

Conjecture 4.3. ICnmPICnmP S
PMRW

S
PMRW ,,1,,  for 2m , 3n .

Conjecture 4.4. ICnmPICnmP S
PMRW

S
PMRW ,2,,,  for 3m , odd 3n .

Conjecture 4.5. ICnmPICnmP S
PMRW

S
PMRW ,,,2,  for 3m , even 3n .

Krishnamoorthy and Raghavachari (2005) present a proof that Conjecture 4.3 is 
true for the limiting case as n .
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Buckley and Westen (1979) also develop another definition regarding the exis-

tence of a PMRW.  Candidate mCiC  is a Semi-Strict PMRW if iC  defeats or 

ties all other candidates in mC  by PMR and ji CC M  for some mCjC .  Let 

ICnmPSS
PMRW ,,  denote the probability that a Semi-Strict PMRW exists for n

voters and m candidates with the assumption of IC.  It is then conjectured that: 

Conjecture 4.6. ICnmPICnmP SS
PMRW

SS
PMRW ,,,1,  for odd n and 3m .

Conjecture 4.7. ICnmPICnmP SS
PMRW

SS
PMRW ,1,,,  for even n and 3m .

Conjecture 4.8. ICnmPICnmP SS
PMRW

SS
PMRW ,,1,,  for 2m  and 3n .

Conjecture 4.9. ICnmPICnmP SS
PMRW

SS
PMRW ,2,,,  for 3m  and 3n .

Fishburn (1976a) considers a variation of IC, which is denoted here as Bal-
anced Impartial Culture (BIC).  BIC is appropriate for the special case that m = n,
and it is has a conditional assumption that each candidate is most preferred in the 
linear preference ranking of one of the voters.  The conjecture is 

Conjecture 4.10. BICnmPICnmP S
PMRW

S
PMRW ,,,,  for all m = n.

Fishburn, et al. (1979a, b) develop some relationships that are related to Con-
jectures 4.3, 4.4 and 4.5, and to some interrelationships between them. 

Theorem 4.15.  If ICnPICnP S
PMRW

S
PMRW ,,6,,5 , then ICnPS

PMRW ,,4

ICnPS
PMRW ,,5  for odd 3n .

Theorem 4.16. ICnPICnP S
PMRW

S
PMRW ,,6,,3  if and only if 

ICnPICnP S
PMRW

S
PMRW ,,5,,4  for odd 3n .

Theorem 4.17.  If ICnPICnP S
PMRW

S
PMRW ,2,6,,6  then 

ICnPICnP S
PMRW

S
PMRW ,2,5,,5  for odd 1n .

Theorem 4.18.  If ICnPICnP S
PMRW

S
PMRW ,2,6,,6  then 

ICnPICnP S
PMRW

S
PMRW ,,6,,5  for odd 3n .

Additional relationships that are related to Conjectures 4.3, 4.4 and 4.5 come 
from Gehrlein (1981c) 

Theorem 4.19. ICnPICnP S
PMRW

S
PMRW ,,4,,3 2  for all odd 1n .

Theorem 4.20. 3,,3,,4 ICnPICnP S
PMRW

S
PMRW  for all odd 1n .

Theorem 4.21.  If 780625.,,5 ICnPS
PMRW , then ICnPS

PMRW ,,5

ICnPS
PMRW ,,6  for odd 1n .
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Theorem 4.22.  If 799.,,5 ICnPS
PMRW  then ICnPS

PMRW ,,3

ICnPS
PMRW ,,7  for odd 1n .

Theorem 4.23.  If 75.,,7 ICnPS
PMRW  then ICnPICnP S

PMRW
S
PMRW ,,5,,4

 for odd 1n .

Theorem 4.24.  If ICnPICnP S
PMRW

S
PMRW ,2,6,,6  for all odd 1n  then 

ICnPICnP S
PMRW

S
PMRW ,,7,,3  for all odd 1n .

Theorem 4.25. ICmP
m
mICmP S

PMRW
S
PMRW ,,1

12
,,  for all 1m .

Gehrlein and Fishburn (1976) develop a recursion relationship concerning 

ICnmPS
PMRW ,,  for even m, generalizing the notions of May’s Theorem in Theo-

rem 4.1. 

Theorem 4.26.  For odd n and all even 4m , there exist numbers m
j  such that 

    
F

S
PMRW

m
i

mS
PMRW ICniPICnmP ,,,, 0

where  odd m and i isii:F 3 .

Proof.  The proof is a generalization for the earlier proof of Theorem 4.1. P is the 

probability that candidate mC1C  is not the PMRW in an m-candidate election, 

so that when n is odd, P is equivalent to  

ICnmPP C
PMRW ,,1 1 . (4.31)

Boole’s Equation can be used in situations like the current case [Johnson and 
Kotz (1972), pg. 52] to generalize the results from Eq. 4.10 to obtain  

ICniP
i

m
EPP C

PMRW
im

i

m

i
i ,,11

1
111

12
.

(4.32)

By equating the representations for P in Eqs. 4.31 and 4.32 for even m and re-
ducing, we obtain 

ICniP
i

mmmICnmP C
PMRW

im

i

S
PMRW ,,11

1
22

,, 1
2

1
.

(4.33)

It is important to note that Boole’s Equation can not be used to obtain the repre-
sentation in Eq. 4.33 if m is odd. 

By starting with a representation for ICnmPS
PMRW ,,  for a desired m, as 

shown in Eq. 4.33, and sequentially replacing the ICniP C
PMRW ,,11  terms for 

which i + 1 is even and less than m, from largest to smallest,  and expression for 
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ICnmPS
PMRW ,,  as a linear combination of ICnjPS

PMRW ,,  for odd  j < m can 

be obtained for all odd n.                    QED

Table 4.4 lists all of the computed values for the m
j  terms in Theorem 4.26 

for each m = 4(2)18. 

Table 4.4 Computed values of m
j  in Theorem 4.26 from Gehrlein and Fishburn (1976) 

m m
0

m
3

m
5

m
7

m
9

m
11

m
13

m
15

m
17

4 -1 2        
6 3 -5 3       
8 -17 28 -14 4      
10 155 -255 126 -30 5     
12 -2073 3410 -1683 396 -55 6    
14 38227 -62881 31031 -7293 1001 -91 7   
16 -929569 1529080 -754572 177320 -24310 2184 -140 8  
18 28820619 -47408019 23394924 -5497596 753610 -67626 4284 -204 9 

4.3.3 Enumerated Values of ICnmPS
PMRW ,,

Sevcik (1969) develops a computer enumeration procedure to count the number of 
possible voter preference profiles that have a PMRW with the assumption of  IC to 

obtain exact values for ICnmPS
PMRW ,,  with odd n < 7 and odd m < 7, as shown 

in Table 4.5.  These results were extended later by Maassen and Bezembinder 
(2002) for each m = 8, 9 and 10 for each n = 3, 4, 5 and 6.  Computed values of 

the exact ),,( ICnmPS
PMRW  forms in Table 4.5 are given in Table 4.6 for odd m to 

verify results in Garman and Kamien (1968) and other sources.  Sevcik (1969) 

contains a minor typographical error for the resultant value of ),5,5( ICPS
PMRW .   

Table 4.5 Exact values of ICnmPS
PMRW ,,  from Sevcik (1969) and Maassen and Bezem-

binder (2002) 

m

n3 4 5 6 7 8 9 10 

3 18
17

9
8

25
21

450
359

44100
33569

735
536

19845
13913

99225
67079

4
9
4

576
197

4000
1107

4500
1043

77175
15359

526848
91745

35562240
5499323

5080320
705967

5
72
67

36
31

40000
32019

360000
269513

864360000
608721061

1152480
767419

2489356800
1574336347

06223392000
73752538772

6 1944
989

2592
1037

1440000
472549

3888000
1078499

05445468000
11305739113

8712748800
1837328467

16005081275100
8039553049400

600001411465305
51412392119693

7
11664
10789

5832
4957

19440000
15253909

8243753134566563
5602472285362442

00006861289680
80994677194546    
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Results for even m are not included in Table 4.6 since they are directly obtain-
able from Theorem 4.26.  Gehrlein and Fishburn (1976) use the exact results from 

Sevcik (1969) to prove that a linear recursion relation for ICnmPS
PMRW ,, , like 

the one in Theorem 4.26, does not exist for odd m.

Table 4.6 Computed values of ICnmPS
PMRW ,, .  Five digit entries are exact and three digit 

entries are approximations 

m
n 3 5 7 9 11 13 
3 .94444 .84000 .76120 .70108 .65356 .61484
5 .93056 .80047 .70424 .63243 .57682 .53235
7 .92498 .78467 .68168 .60551 .54703 .50063
9 .92202 .77628 .66976 .59135 .53144 .48409
11 .92019 .77108 .66238 .584 .523 .474 
13 .91893 .76753 .65736 .578 .516 .467 
15 .91802 .76496 .65372 .574 .511 .462 
17 .91733 .76300 .65095 .571 .508 .458 
19 .91678 .76146 .64879 .568 .505 .455 
21 .91635 .76022 .64704 .566 .503 .453 
23 .91599 .75920 .64560 .564 .501 .451 
25 .91568 .75835 .64440 .563 .499 .449 
27 .91543 .75763 .645 .562 .498 .448 
29 .91521 .75700 .644 .561 .497 .447 
31 .91501 .75646 .644 .560 .496 .446 
33 .91484 .75598 .643 .559 .495 .445 
35 .91470 .75556 .643 .558 .494 .444 
37 .91456 .75519 .642 .557 .493 .443 
39 .91444 .75485 .642 .557 .493 .442 
41 .91434 .75455 .641 .556 .492 .442 
43 .91424 .75427 .641 .556 .492 .441 
45 .91415 .75402 .640 .555 .491 .441 
47 .91407 .75379 .640 .555 .491 .440 
49 .91399 .75358 .639 .555 .490 .440 

 .91226 .74869 .63082 .54547 .48129 .43131

4.3.4 PMRW Probability Representations with Small m

Let ICnmM C
PMRW ,,1  denote the number of distinct voter preference profiles for 

which 1C  is a strict PMRW in an m-candidate election for odd n.  It follows di-

rectly from the development of Eq. 3.90 that ICnM C
PMRW ,,31  is given by 

.
!!!!

2!,3
2

1

0

2
1

0

2
1

0 3213211

1

2

1

3

32
1

n

s

sn

s

sn

s

ssn
C

PMRW sssnsss
nIC,nM

(4.34)
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Table 4.6 (cont.)  

m
n 15 17 19 21 23 25 
3 .58249 .55495 .53111 .51021 .49168.47511 
5 .49583 .46521 .43908 .41647 .39667.37915 
7 .46280 .43128 .40455 .38154 .36150.34385 
9 .44564 .413 .386 .363 .343 .326 
11 .435 .403 .375 .352 .332 .315 
13 .428 .395 .368 .345 .325 .307 
15 .423 .390 .363 .340 .320 .302 
17 .419 .386 .359 .336 .316 .298 
19 .416 .383 .356 .333 .313 .295 
21 .413 .380 .353 .330 .310 .293 
23 .411 .378 .351 .328 .308 .291 
25 .409 .377 .349 .326 .306 .289 
27 .408 .375 .348 .325 .305 .288 
29 .407 .374 .347 .324 .304 .286 
31 .406 .373 .346 .323 .303 .285 
33 .405 .372 .345 .322 .302 .284 
35 .404 .371 .344 .321 .301 .284 
37 .403 .370 .343 .320 .300 .283 
39 .402 .370 .342 .319 .299 .282 
41 .402 .369 .342 .319 .299 .282 
43 .401 .369 .341 .318 .298 .281 
45 .401 .368 .341 .318 .298 .281 
47 .400 .368 .340 .317 .297 .280 
49 .400 .367 .340 .317 .297 .280 

 .39127 .35844 .33100 .30771 .28768.27025 

The neutrality of IC toward candidates, coupled with the fact that each voter pref-
erence profile in an m-candidate election has the probability nm!  of being ob-
served with the assumption of IC leads to 

nC
PMRW

S
PMRW mICnmmMn,ICmP !/,,, 1 . (4.35)

Gehrlein and Fishburn (1979a) develop a recursive procedure to compute val-
ues of ICnmM C

PMRW ,,1  from ICnmM C
PMRW ,,11 .  The analysis starts with 

values of ICnM C
PMRW ,,31  that are obtained from Eq. 4.34 and then uses the re-

cursive procedure to obtain ICnmM C
PMRW ,,1  values by sequentially increasing 

m.  The ICnmM C
PMRW ,,1  values are obtained for each m, and the computed val-

ues of n,ICmPS
PMRW ,  then follow directly from the representation in Eq. 4.35.  

Gehrlein and Fishburn (1979a) contains a number of typographical errors.  
Gehrlein (1999b) corrects many of the typographical errors and then uses the same 
recursion procedure to significantly extend the list of known computed values of 

n,ICmPS
PMRW , .
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 The recursive procedure to obtain ICnmM C
PMRW ,,1  values starts with the rep-

resentation in Eq. 4.34, which followed from Eq. 3.90.  We start the description of 
this procedure by making some observations about the development of Eq. 3.90.  

ICnM C
PMRW ,,31  is obtained by calculating of the number of voter preference 

profiles on three candidates such that 1s  voters have 1C  ranked  as least preferred.  
Similarly, 32 ss  voters have 1C  ranked second, and 321 sssn  voters have 

1C  ranked as most preferred.  Let 3
3

3
2

3
13 ,, kkkf  denote the number of voter pref-

erence profiles that are enumerated in the computation of ICnM C
PMRW ,,31  that 

have 3
ik  voters with i3  candidates preferred to candidate 1C  in their prefer-

ence rankings, for i = 1, 2, 3.  Obviously, nki i
3

1
3  and 2/13

1 nk .  As 
usual, only the case of odd n is considered, to avoid complications with PMR ties. 
 Then, ICnM C

PMRW ,,41  is obtained by determining the number of unique as-
signments of voter preference profiles that have 1C  remaining as the PMRW 
when a fourth candidate, 4C  , is added to obtain linear voter preference rankings 
on all four candidates, as an extension of the voter preference profiles on the ini-
tial three candidates.  For any combination of 3

ik ’s for three-candidates, let 4
is

denote the number of voters included in 3
ik  for whom we rank 4C  ahead of 1C  in 

the extended rankings.  There are 4

3

is
ik  combinations of such assignments.  For 

any given voter of the 4
is  in this particular assignment, 4C  can be placed in 

i4  different positions above 1C  in that voter’s linear preference ranking. 

 Similarly, any given voter among the remaining the 43
ii sk  voters in this par-

ticular assignment could have 4C  placed in i different positions below 1C  in that 
voter’s preference ranking.  Given that 1C  is the PMRW for all of the three-
candidate voter preference profiles that are being considered, 1C  will remain the 
PMRW for all of the extended four-candidate voter preference profiles whenever 

3
1i

4 2/1nsi .  Using all of the above, we find 

3
3

4
2

4
1

4
3

4
3

3
3

3
2

4
1

4
2

3
2

4
1

3
1

3
1

3
2

3
1

4
1

1

2
1

0
4
3

3
3

2
1

0
4
2

3
22

1

0 0 0
4
1

3
13

3
3
2

3
13 323

,,4

k

s-sn
Min

s

sk
k

-sn
Min

s

ks

n

k

n-k

k

k

s

C
PMRW

.
s
k

s
k

s
k,k,kkf

ICnM (4.36)

Here, 3
3k  = n – 3

1k – 3
2k .
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 While performing the process of computing IC,nM C
PMRW ,41 , it is possible to 

accumulate values for 4
4

4
3

4
2

4
14 ,k,k,kkf , which has terms that are defined in the 

same fashion as for 3
3

3
2

3
13 ,k,kkf ).  That is, 4

ik  is the total number of individual 
voter preference rankings in a voter preference profile on four candidates for 
which i4  of the four candidates are ranked above 1C , and 4

4
4
3

4
2

4
14 ,k,k,kkf  is 

the total accumulated number of extended voter preference profiles on four candi-
dates, with the associated 4

ik ’s, that have 1C  as the PMRW.  In determining the 

contribution to 4
4

4
3

4
2

4
14 ,k,k,kkf  from a specific combination of 3

ik ’s in the devel-

opment of  IC,nM C
PMRW ,41 , we find that 4

1s  voters will have three candidates 

preferred to 1C  in the extended preference rankings on the four candidates, 3
1k  – 

4
1s + 4

2s  will have two candidates preferred to 1C , 3
2k  – 4

2s  + 4
3s  will have one 

candidate preferred to 1C , and 3
3k  – 4

3s  will have no candidates preferred to 1C .

 Once the values for 4
4

4
3

4
2

4
14 ,k,k,kkf  have been obtained, we go about extend-

ing the preference ranking assignments by adding a fifth candidate, 5C , to the 
preference ranking assignments on four candidates.  Then, for any particular set of 

4
ik ’s which have 1C  as the PMRW, we extend the preference rankings of 5

is  of 

the voters from the number of 4
ik  by ranking 5C  ahead of 1C .  Following earlier 

discussion, there are 5

4

is
ik  combinations of such assignments, and there are i5

different positions for placing 5C  above 1C  in each individual voter’s preference 

ranking.  For voters who are counted among 4
ik – 5

is , there are i positions in which 
to place 5C  below 1C  in each voter’s preference ranking.  Following earlier dis-

cussion, 1C  will remain the PMRW as long as 4
1i

5 2/1nsi , and  

2
1

0 0 0
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where .4
3

4
2

4
1

4
4 kkknk
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 Similar representations for ICm,nM C
PMRW ,1  with larger m become very cum-

bersome, but they can easily be developed in the same fashion.  This was done for 
odd m up to seven in Gehrlein (1999b), and Table 4.6 lists the resulting computed 
probabilities for m,n,ICPS

PMRW  from Eq. 4.35 for all n = 3(2)49 with m = 3, 5 

and for all n = 3(2)25 for m = 7.  Computed values of m,n,ICPS
PMRW  are not re-

ported for even m, since recursion relations are known to exist for these cases 
from Theorem 4.26. 

4.3.5 PMRW Probability Representations with Small n

Other studies have developed procedures to obtain computed values of 
m,n,ICPS

PMRW  for the special case of small n.  May (1971) presents some re-
sults along these lines, and begins by developing a representation for 

,ICm,PS
PMRW 3  as 

,ICm,PS
PMRW 3 =

1

0

1

0

1

0 3 !1!
!1!1!1!1m

i

im

j

jim

k kjimm
kmjmimm

.

(4.38)

This representation contains a typographical error in the statement of Eq. (2) in the 
text in May (1971), but it is stated correctly in the development of footnote (3) of 
the same paper.  
 Gehrlein and Fishburn (1979a) develop a representation for ,ICm,PS

PMRW 3
that is simpler than the one shown in Eq. 4.38.  This is done by using arguments 
that count the possible number of voter preference profiles for which 1C  is the 
PMRW, following the arguments in the preceding case for small m.  Since there 
are only three voters, it is not possible for a PMRW to be beaten by any other can-
didate in the preference ranking of more than one voter.  Assume that candi-
date 1C  is the PMRW, and let 3

im  denote the number of candidates that are ranked 
ahead of 1C  in the preference ranking of voter i in a given voter preference profile 
when there are three voters.  Obviously, there are no candidates that are common 

among those counted in the different 3
im ’s.  There are 3

1

1
m
m

 unique combina-

tions of 3
1m  candidates that are ranked above 1C  in the first voter’s preference 

ranking, and there are !1! 3
1

3
1 mmm  different complete preference rankings 

that the first voter might have that are consistent with a specific value of 3
1m .  The 
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second voter has 3
2

3
11

m

mm  unique combinations of 3
2m  candidates that have no 

overlap with candidates among the 3
1m  candidates that are ranked above 1C  in the 

first voter’s preference ranking.  As above, there are 3
2

3
2 1! mmm ! different 

preference rankings that the second voter might have that are consistent with a 
specific value of 3

2m .
 The third voter must have a preference ranking such that 1C  is ranked above all 

of the candidates that are included in 3
1m  and 3

2m .  The proportion of preference 
rankings, of the m! possible complete preference rankings on all candidates, that 
the third voter might have to keep 1C  as the PMRW is given by 1/1 3

2
3
1 mm .

This proportion is simply obtained by noting, for any given 3
1m  and 3

2m , that there 

are a total of !13
2

3
1 mm  permutations on the candidates included in a reduced 

set of those candidates counted in 3
1m and 3

2m , along with 1C .  Of these 

!13
2

3
1 mm   permutations, !3

2
3
1 mm  have 1C  ranked in the first position 

among the reduced set of candidates, regardless of the relative position of candi-
dates in the reduced set within the third voter’s complete preference ranking on all 
candidates.  It follows that 

.
1

!!1!1!!11

,3,

3
2

3
1

3
2

3
1

3
2

3
1

3
2

3
11
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1

0
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3
1
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mm
mmmmmmm

m
mm

m
m

ICmM
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m

mm
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C
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(4.39)

Using Eqs. 4.35 and 4.39 with algebraic reduction, we obtain the representation 

1

0

1

0
3
2

3
1

3
2

3
1

3
2

3
1

3
1

3
1

3
2 1!1!

!1!13,
m

m

mm

m

S
PMRW .

mmmmmm
mmmm,ICmP

(4.40)

 Tables 4.6 and 4.7 list computed values of ,ICmPS
PMRW 3,  from Eq. 4.40 for 

various values of odd m with 4493 m .  As noted in the observation in May 
(1971) that was mentioned earlier, the convergence of ,ICmPS

PMRW 3,  to its lim-
iting value of zero as m  is very slow as m increases. 
 The development of representations for ICnmPS

PMRW ,,  becomes somewhat 
more complicated for n greater than three.  When n = 5, we partition the voters 
into two sets, the first three and the last two.  Consider the situation in which we 
wish to compute the probability that candidate 1C  is the PMRW for the five-voter 

case.  Let 3
ia  denote the number of candidates that are ranked as preferred to 1C  in 
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exactly i of the preference rankings of the first three voters, with 0 < i < 2.  Since 

1C  is the PMRW, we must have 13
2

3
1

3
0 maaa , and no candidate can be 

counted in more than one of the 3
ia  terms. 

Table 4.7 Computed values of ICnmPS
PMRW ,,  from Gehrlein (1999b) 

     n 
m 3 5 
27 .46017 .36352 .25494
29 .44660 .34947 .24138
31 .43421 .33675 .22927
33 .42283 .32517 .21840
35 .41233 .31457 .20857
37 .40260 .30482 .19964
39 .39355 .29583 .19149
41 .38150 .28749 .18402
43 .37720 .27974 .17715
45 .36977 .27251 .17080
47 .36278 .26574 .16492
49 .35618 .25940 .15945
99 .25933   
149 .21450   
199 .18720   
249 .16833   
299 .15426   
349 .14325   
399 .13433   
449 .12690   

 As a first step, we compute the proportion, 3
2

3
1

3
0

5 ,a,aaZ , of five voter prefer-

ence profiles that will have 1C  as the PMRW, given a specific combination of 3
ia

terms from the preferences of the first three voters.  Once the 3
ia  terms are fixed 

from the first three voters, the conditions that keep 1C  as the PMRW result from 
placing restrictions on the preference rankings of the last two voters.  Candidates 
counted in 3

0a  can be ranked anywhere in the preferences of the last two voters 
and 1C  will remain as the PMRW, so we focus our attention on the feasible 

placement of the reduced set of candidates included in the remaining 3
01 am

candidates, relative to the position of 1C  in the preference rankings of the last two 

voters. There are !3
0am  possible preference rankings on this reduced set of 
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candidates for voter number four.  If 1C  is the PMRW, then all candidates among 

those counted in 3
2a  must be ranked below 1C  in the preference ranking for voter 

four.  Assume that exactly  candidates from 3
1a  are ranked ahead of 1C  in the 

preferences of voter four, with 3
1a  being ranked below 1C .  There are 

3
1a

combinations of ways of selecting the candidates that are counted in .
 A total of  candidates from the reduced set are ranked above 1C  for voter 

four, with a total of 3
01 am  from the reduced set being ranked below 1C .

Then there are !1! 3
0am  possible rankings on the reduced set of candi-

dates for voter four that allow 1C  as the PMRW.  The preference ranking for voter 
five must then have candidate 1C  ranked above all candidates counted in either 

3
2a  or .  Following earlier discussion from the development of the representation 

for ICmM S
PMRW ,3, , the proportion of the m! possible preference rankings on all 

candidates for voter five that meet this criterion is given by 1/1 3
2a .  Given 

this discussion, we find the representation 

1
1

!
!1!

3
2

3
0

3
0

0

3
13

2
3
1

3
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5
3
1

aam
ama,a,aaZ

a
,

(4.41)

which can be reduce with the identity 3
2

3
1

3
01 aaam  to 

3
1

0 3
2

3
2

3
1

3
1

3
2

3
1

3
13

2
3
1

3
0

5

1!1!
!!a

aaaa
aaa,a,aaZ .

(4.42)

This representation is valid, without regard to the relative placement of candidates 
in the reduced set within the complete preference rankings on all m candidates of 
the last two voters.  
 Attention now returns to the preference rankings of the first three voters.  Let 

ib  denote the number of candidates that are ranked as being preferred to candidate 

1C  only in the preference ranking of Voter i among the first three voters.  Simi-
larly, jib ,  denotes the number of candidates that are ranked as being preferred to 

1C  only in the preference rankings of both Voter i and Voter j among the first 
three voters.  It then follows directly from previous definitions that 

321
3
1 bbba , 3,23,12,1

3
2 bbba  and 3

2
3
1

3
0 1 aama .  The total 

number of candidates that are ranked as being preferred to 1C  in the preference 
ranking for Voter 1 is given by 3,12,111 bbbm .  There are m! possible pref-



134      The Case of More than Three Candidates 

erence rankings for Voter 1, and !1! 11 mmm  of them that meet this criterion.  
Similar arguments hold for Voter 2 and for Voter 3.  A representation for 

ICm,M S
PMRW ,5  is then obtained by using a summation function to enumerate 

all feasible combinations of ib ’s and jib , ’s.  In this enumeration we calculate the 
number of combinations of ways that the 1m  candidates can be partitioned into 
the ib ’s and jib , ’s, then compute the proportion of all possible profiles for the 

first three voters that are feasible with the given ib ’s and jib , ’s, and then account 

for the proportion, 3
2

3
1

3
0

5 ,a,aaZ , of profiles for the last two voters that will have 

1C  as the PMRW given the ib ’s and jib , ’s.  After using Eq. 4.35 with algebraic 
reduction, the resulting representation is given by 

.
1!1!

!!
!!!!!!!!

!1!

5,

0
4 2

3,23,12,1321

3
1

b
i ii

S
PMRW

bbbb
bbb

mm*bbbbbb

mmm

,ICmP (4.43)

where 4  is a six-summation function with has summation limits given by 

3,12,13213,2

2,13213,1

3212,1

213

12

1

10
10

10
10

10
10

bbbbbmb
bbbbmb

bbbm b
bb m b

b m b
 m b (4.44)

with 

3,23,12,1321

3,23,133

3,22,122

3,12,111

1 bbbbbbmm*
bbbm
bbbm
bbbm

.bbbb
bbbb

3,23,12,1

321

(4.45)

Using similar logical arguments, a representation for ,ICm,PS
PMRW 7  is ob-

tained in Gehrlein and Fishburn (1979a) as  

,ICmPS
PMRW 7,  = 5

7
3

4
1

!!!

!1!
,b,bm*,bZ

bmm*

 -mm - m

X X

i ii .
(4.46)
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Here 5  is a 14-summation function that has sequential indexes 1b , 2b , 3b , ,4b

2,1b , 3,1b , 4,1b , 3,2b , 4,2b , 4,3b , 3,2,1b , 4,2,1b , 4,3,1b , 4,3,2b  where the limits on these 

summation indexes keep  

.mbb...bbbb b 10 4,3,24,3,12,14321 (4.47)

In addition, 

X X b...bbbbbbb

bbbbb
bbbbbbb

bbbbb
bb...bbbbbmm*

bbbbbbbm
bbbbbbbm
bbbbbbbm
bbbbbbbm

!!!!!!!!

1

4,3,24,3,12,14321

4,3,24,3,14,2,13,2,1
4,34,23,24,13,12,1

4321

4,3,24,3,12,14321

4,3,24,3,14,2,14,34,24,144

4,3,24,3,13,2,14,33,23,133

4,3,24,2,13,2,14,23,22,122

4,3,14,2,13,2,14,13,12,111 (4.48)

and
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1!1!1
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bbbbb

,b,bm*,bZ (4.49)

Tables 4.6 and 4.7 list computed values of ,ICm,PS
PMRW 5  for each m = 3(2)49, 

and Table 4.6 lists computed values of ,ICm,PS
PMRW 7  for each m = 3(2)25 from 

Gehrlein (1999b). 

A representation for ,IACm,PS
PMRW 3  is developed in Gehrlein (1998), and the 

logic behind the development of that representation relies upon arguments for 
counting the number of voting situations for which a specified candidate, 1C , is 

the PMRW when n = 3.  The first possibility, Case 1, occurs when all three voters 
have identical preference rankings on the m candidates with 1C  ranked as the 

most preferred candidate.  There are m! different linear preference rankings with 
m candidates, and !1m  of them have 1C  ranked as most preferred.  Case 2 

deals with the situation in which two voters have identical preference rankings on 
the m candidates with 1C  ranked as most preferred, while the third voter has any 

other preference ranking.  The number of voting situations of this nature is given 
by 1!!1 mm .
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Case i3  for i = 0, 1, 2, 3 considers the voting situations in which 1C  is the 

PMRW, when all three voters have different preference rankings, with i voters 
having 1C  ranked first.  It follows directly that the number of voting situations in 

Case 33  is given by 
3

!1m
.  Similarly, the number of voting situations in Case 

23  is given by !1!
2

!1 mmm
.

In the discussion of Cases 03  and 13 , jr  denotes the number of candidates that 

are ranked ahead of 1C  in the preference ranking of Voter j.  Begin with an 

evaluation of Case 13 , and assume arbitrarily that 1C  is ranked first in the prefer-

ence ranking of Voter 1, so that 01r .  This assumption can be made without any 

loss of generality since voters are anonymous with IAC. We can also assume 
without any loss of generality that 23 rr .  Given that there are !1m  linear 

preference rankings with 01r , the number of voting situations in Case 13  is 

given by 

2
1

2

2

231

1 1
3322

2

32

32
!1!!1!

1
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rm

rr
/rmrrmr

r
rr
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m ,

                where   1 = 2 if  32 rr

               1 = 1 otherwise. 

(4.50)

The notation x  denotes the largest integer that is less than or equal to x.  The 
1  term prevents double counting for the case with 32 rr , since interchanging 

the preferences of Voters 2 and 3 will not create a new voting situation. 
To avoid the double counting of voting situations from permutations of prefer-

ence assignments to voters in Case 03 , we assume arbitrarily that 123 rrr ,

with 11r .  It follows directly from the logic of previous arguments that the 

number of voting situations for this particular case is given by 

,/!1!
1 23

12

32

1

3213
1

1

2
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1

3211

1

12

21

23 i
ii

m

r

rm

rr

rrm

rr
rmr

r
rr

r
rrr

rrr
m

where 2 = 2   if 21 rr  or 32 rr , with 31 rr

      2 = 6   if 31 rr          2  = 1  otherwise. 

(4.51)
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The total number of voting situations for all of these cases can be accumulated 

to give the number of voting situations, IACmN C
PMRW ,3,1 , for which candidate 

1C  is the PMRW with n = 3 voters for m candidates.  After accumulation and al-

gebraic reduction 

,
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                    where   1r  = 1r     if  1r  > 0 

                     1r  = 1      if  1r  = 0. 

(4.52)

The 1r  term in Eq. 4.52 is defined to allow for the aggregation of the results 

from Eqs. 4.50 and 4.51. 
Eq. 3.92 can be used to show that there are 6/2!1!!!,3 mmmmH  possi-

ble voting situations for n = 3 with m candidates.  By the symmetry of IAC with 

respect to candidates, a representation for ,IACm,PS
PMRW 3  can then be obtained 

from the relationship 

!,3/,,3 1 mHIACnmmN,IACm,P C
PMRW

S
PMRW . (4.53)

After substituting the representation for IACmN C
PMRW ,3,1  from Eq. 4.52 into 

Eq. 4.53 and performing algebraic reduction, we obtain 
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(4.54)

Table 4.8 contains computed values of ,IACm,PS
PMRW 3  for each m = 3(1)11 

from Eq. 4.54.  The associated values of ,ICm,PS
PMRW 3  from Eq. 4.40 are also 

included in Table 4.8 for the purposes of comparison.  We observe that computed 

values of ,IACm,PS
PMRW 3  and ,ICm,PS

PMRW 3 converge to the same values very 

quickly as m increases, to verify earlier observations.  Table 4.8 also lists values of 
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,IACm,PS
PMRW 5  for each m = 3,4,5 that were obtained by computer enumeration 

in Gehrlein (1998). 

Table 4.8 Calculated values of m,n,IACPS
PMRW  and m,n,ICPS

PMRW  for n = 3,5 from 

Gehrlein (1998) 

m ,IACm,PS
PMRW 3 ,ICm,PS

PMRW 3 ,IACm,PS
PMRW 5 ,ICm,PS

PMRW 5
3 .94444 .96429 .93056 .95238 
4 .88889 .90154 .86111 .87302 
5 .84000 .84392 .80047 .80380 
6 .79778 .79862  
7 .76120 .76134  
8 .72925 .72927  
9 .70108 .70109  
10 .67603 .67603  
11 .65357 .65357  

4.3.6 Limiting Probabilities with More than Four Candidates 

The primary limiting probability representation that has been obtained for cases 

with more than four candidates considers the probability ,ICm,PS
PMRW  that a 

strict PMRW exists for m candidates as n  with IC.  Niemi and Weisberg 
(1968) generalize Guilbaud’s result for m equal to three from Eq. 3.77.  Their re-
sults for the general case of m candidates follow directly from previous discussion. 

The logic that led to Eq. 3.69 can be used to obtain Guilbaud’s result for the 
special case of IC for three candidates.  In particular, Eq. 3.69 can be reduced to 

233 ,IC,PS
PMRW , where 2  is a bivariate normal positive orthant 

probability with correlation 3/1  between the two variables.  The logic that led 

to Eq. 3.91 allows us to easily generalize Guilbaud’s result to  

3/11
1mRm

S
PMRW m,ICm,P . (4.55)

Here, 1mR  is a correlation matrix for a joint multinormal distribution on 

1m  variables for which all correlation terms between variables are equal, with 
3/1 .

Gehrlein and Fishburn (1978a) consider the case of m = 5 and use a representa-

tion for 3/14
4R  from Posnyakov (1971) to obtain  

3
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16
55 dSinSin,IC,PS

PMRW .

(4.56)
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Evaluation by quadrature in Eq. 4.56 leads to 74869.5 ,IC,PS
PMRW .  The re-

sults of Theorem 4.26 can then used to extend these results a representation for 

68476.6 ,IC,PS
PMRW .  Niemi and Weisberg (1968) use calculated values of 

3/11
1mRm  from Ruben (1954) to obtain values of ,ICm,PS

PMRW  for 

each m = 3(2)49, and these values are listed in Tables 4.6 and 4.7. 
Gehrlein and Fishburn (1979a) use a result from Bacon (1963) to develop an 

approximation for ,ICm,PS
PMRW  as 

2
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1 1
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41!!21
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k k
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m
S
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ikkm

mm,ICm,P ,

                           where                /3/11Sin .

(4.57)

4.4 Other Related Results 

Gehrlein and Fishburn (1979a) developed an approximation to minimize the 
maximum absolute percentage deviation of the approximation from known values 

of m,n,ICPS
PMRW  that were available at that time, including the limiting 

,ICm,PS
PMRW  values from Niemi and Weisberg (1968).  Somewhat later, 

Gehrlein (1999b) extended the list of known m,n,ICPS
PMRW  values and re-

evaluated that approximation, using all of the known values that are listed in Ta-
bles 4.6 and 4.7.  The resulting approximation is given by 
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22156
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64.18
719

349,

(4.58)

The approximation in Eq. 4.58 was found to have an absolute percent error of 

0.45% or less over the range of all of the computed values of m,n,ICPS
PMRW  that 

are listed in Tables 4.6 and 4.7 with 49m .  All three decimal place entries in 
Table 4.6 were computed with this approximation.  A number of simpler func-
tional forms were tested, but none could match the accuracy of the approximation 
that is shown in Eq. 4.58. 
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4.4.1 Spatial Models 

Many studies have been performed to evaluate the probability that a PMRW ex-
ists, and to consider factors that affect the likelihood that a PMRW exists by using 
spatial models.  Chamberlin and Cohen (1978) present an excellent study that is 
based on such a model.  Each candidate is evaluated by voters on the basis of k
different characteristics or issues that are of interest, and the position of any can-
didate with regard to any given characteristic is determined by some continuous 
measure of that characteristic.  Each dimension in k-space then represents a char-
acteristic, and any given point in that space represents a specific position on all of 
the k characteristics.  Candidates are then positioned at the point in the k-space to 
represent their stand across all of the characteristics.  Voters are then positioned at 
their ideal point in the space to represent their particular position on the character-
istics.  The ranked preferences on candidates for a given voter are then based on 
the relative Euclidean distance between that voter’s ideal point and the position 
points of the various candidates in the k-space.  This process follows the argu-
ments in Chapter 3 by translating cardinal utilities to ordinal candidate rankings. 

By manipulating the relative positions of candidates in the k-space to consider 
various situations, and then randomly generating position points for each of the 
voters in a Monte-Carlo simulation, Chamberlin and Cohen (1978) obtain random 
voter preference profiles that are used to estimate the probability that a PMRW ex-
ists in various situations.  The basic conclusions of the study suggest that there are 
significant differences in estimates of the probability that a PMRW exists as the 
candidates’ positions are placed in different configurations.  When candidates tend 
to be clustered near each other, the smallest probabilities that a PMRW exists are 
observed.  This situation would tend to result in the random generation of voters’ 
preference rankings on candidates that are most consistent with IC. 

As the positions of candidates are intentionally fixed to create significant dis-
persion among their relative positions, more candidates are located in fringe posi-
tions.  This would suggest situations in which the fringe candidates would typi-
cally only be ranked near the top or near the bottom of voters’ preference 
rankings, depending on the general part of the space in which the voters’ ideal 
points were randomly positioned.   This type of situation would tend to be very 
different than IC, and would be more in accord with the notions of Sen’s class war 
model.  It is found that as the dispersion among candidates’ positions increases, 
there are significant increases in the probability that a PMRW exists. 

Some researchers are skeptical of the results that are based on these spatial 
models.  Skog (1994) presents the primary criticism of such studies, by stating that 
the requirements that such a model places on the degree of precision that is re-
quired of voters to evaluate position points of their own preferences and of candi-
dates’ positions is unrealistic.  This criticism is particularly asserted for compari-
sons that must be made between candidates that are relatively close together in the 
criteria space.  The process by which individuals might go about making pairwise 
comparisons between candidates in such situations is the topic of the final chapter 
of the current study. 
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Dutter (1982) does an empirical study of election results from Northern Ireland.  
The main purpose of the study is to determine if voters perform comparisons of 
candidates based on spatial models or based on “lexicographic models” that are 
very much like ordinal ranking comparison models.  The results indicate patterns 
of voting behavior that are consistent with both models in different elections.  Dut-
ter warns that if one proceeds with the assumption that voters have preferences 
that are exclusively based on spatial models, when the population actually has 
lexicographic preferences or a mix of both, the wrong conclusions could be drawn. 
The same warning would obviously apply equally for the reverse situation. 

Spatial models clearly serve a very useful function, and many interesting stud-
ies use them as a basis for analysis.  These models are not discussed at length in 
the current study for two reasons.  First, these models are primarily only useful for 
Monte-Carlo simulation based analysis.  And, studies based on spatial models and 
their analysis of topics related to the likelihood that a PMRW exists could be the 
basis of a complete book on its own.  See Merrill (1988) for example, which does 
an excellent job of summarizing and integrating a number of Monte-Carlo simula-
tion studies that are based on spatial model analysis of election outcomes.  As a 
result, we primarily focus our attention in the current study on the development of 
probability representations for the likelihood that a PMRW exists that are based on 
ordinal rankings. 

4.4.2 Supermajority Rules 

Supermajority rules have been applied in a number of different situations when 
the resulting decisions of an election are viewed as being of extreme importance.  
Consider an election between Candidates A and B with n voters where BAN
denotes the number of voters who prefer A to B in a voter preference profile.  
Candidate A will only be viewed as superior to B under a supermajority relation 

M if nBAN /  where 2/1 .  Simple majority rule corresponds to the 

case where 2/1 .  The general underlying notion has been that  should in-
crease as the importance of the decision increases. 

Colomer and McLean (1998) examined the history of voting procedures that 
were used to elect popes in the past.  A 2/3 supermajority rule for voting cardinals 
was enacted by Pope Alexander III in 1179.  The intent of imposing this rule was 
to require that a large coalition of voting cardinals had to be formed in order to 
achieve the election of a mutually agreeable candidate.  The elected pope would 
then likely arise as a result of compromise among the supporters of other candi-
dates, which would tend to lead to a stable situation after the election was com-
plete.  Any minority coalition that supported a losing candidate would be faced 
with the prospect of having to persuade a majority of the winning coalition cardi-
nals to change their votes in favor of the losing coalition’s candidate.  Faced with 
such a formidable task, it would seem that any losing coalition would give up op-
position to the final outcome.  The enforcement of this 2/3 majority rule did result 
in a much more stable situation after elections, but problems accompanied its use. 
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The process of requiring a coalition of 2/3 of voting cardinals to reach a mutu-
ally agreeable decision could drag on for long periods of time.  Elections in 1216, 
1241, 1243, 1261 and 1265 took several months to reach a decision. An election 
that started in 1268 lasted for more than two years without a decision.  Colomer 
and McLean (1998) report a number of interesting anecdotes related to drastic 
measures that were employed to speed up the decision processes in these cases. 

Lines (1986) and Coggins and Perali (1998) discuss a prolonged process by 
which elections were held to elect the Doge, or Duke, of Venice.  The position 
was a lifetime appointment, and once a doge died, the government came to a 
standstill until the next doge was elected.  A series of nominations for electors, 
with lotteries and supermajority voting being used at different stages, ultimately 
led to the selection of a voting body of 41 members.  The election of a doge finally 
resulted when the final committee of 41 members voted approve, uncertain or dis-
approve on each candidate, and at least 25 electors voted approve for a candidate, 
for a 61 percent supermajority approval rating.  The system was used in Venice 
for about 500 years.  While the process of electing a doge led to significant peri-
ods of time in which the government was at a standstill, it is credited with explain-
ing the stable political climate in the area during the period in which it was used. 

Nitzan and Procaccia (1986) consider voting rules as they are related to notions 
of corporate governance.  Of particular interest is a reliance on supermajority rules 
at shareholder meetings, where shareholders typically have one vote for each share 
of stock that they own.  The English Companies Act is cited as requiring the use 
of simple majority rule for voting at any general meting of shareholders when “or-
dinary resolutions” are being considered.  However, “special resolutions” and “ex-
traordinary resolutions” that can require a significant change in corporate opera-
tions require a 75 percent supermajority for passage.  The California Corporation 
Code does not distinguish between “ordinary resolutions” and “extraordinary reso-
lutions” and only requires simple majority voting in all cases.  However, the ma-
jority reference is to a majority of shareholders of all outstanding stock, whether 
present at the shareholders meeting or not, which typically imposes a supermajor-
ity requirement on the shareholders who are present at any meeting. 

Gehrlein and Kher (2004) consider the application of supermajority rules by the 
Academy of Motion Pictures Arts and Sciences in making decisions that are re-
lated to some awards that it gives out.  In this particular case, a nominee is se-
lected for an award by a committee and a supermajority vote from all Academy 
members is then required for the award to be given.  In this way, the award has a 
higher prestige associated with it, and there is no disruption to the Academy if a 
supermajority of members does not vote in favor of granting the award to the 
nominee, since the award is simply not given out during the year when such an 
outcome occurs. 

Wickström (1986) presents a survey of work that is related to the notion that 
the required size for the margin of victory by supermajority should increase as the 
relative importance of the associated decision increases.  The conclusion of the 
study is that this notion is only valid if two assumptions are simultaneously met.  
In particular, voters must be risk averse, and the so-called important issues must 
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have greater variance, or more uncertainty, associated with them, relative to their 
net benefit to the voters. 

It is interesting to note that a Pairwise Supermajority cycle ( RPM  cycle), can 

still exist when RPM  is used instead of PMR.  Weber (1993) gives a simple 
proof of a result from Greenberg (1979) that determines the necessary conditions 

for a RPM  cycle to exist.  For 2n  and 2m , a RPM cycle can exist if and 
only if  

m
m 1

.
(4.59)

Coughlin (1981, 1986) considers supermajority rules in the context of “ -
relative majorities”.  We only have nABNBAN  in this case since 

some voters might not have strict preferences on the pair.   Then A beats B by a 
-relative majority if ABNBAN .  It is shown that voting outcomes 

with -relative majority voting will be transitive, with the possibility of ties, if 
and only if 

1

1

m
n

m
mn

.

(4.60)

Here, x denotes the largest integer that is less than or equal to x and x de-
notes the smallest integer that is greater than or equal to x.

Caplin and Nalebuff (1988) also examine ranges of  that prevent the exis-

tence of RPM  cycles.  Linear preference rankings on candidates are assumed to 
exist for voters, and the preference rankings result from a spatial model.  An as-
sumption is made regarding a convexity condition on the distribution of the den-
sity of voter’s most preferred points in the attribute space.  This convexity condi-
tion precludes the existence of societies with some types of preference structures, 
such as with polarized preferences.  The conditions that are assumed in the study 

lead to the conclusion that RPM  cycles are precluded with a majority rate  

n

n
n

1
1 .

(4.61)

As n increases,  increases monotonically to a limiting value of 
e
11 , so that 

a value of  that is approximately equal to 64 percent would then always effec-

tively preclude the possibility of a RPM cycle, given the conditions specified in 
the study. 



144      The Case of More than Three Candidates 

A number of papers have also considered the probability that a RPM  cycle 
will be observed.  Buckley and Westen (1974) conjectured that the probability that 

a RPM  cycle will be observed decreases as  increases.  Monte-Carlo simula-
tion results under IC support this conjecture and also indicate that the probability 

of observing a RPM  cycle approaches zero very quickly for large electorates 
with m at all large for  only marginally greater than 1/2. 

Balasko and Crès (1997) evaluate the probability that RPM  is transitive for m-
candidate elections. The study defines the probability of observing voting situa-
tions in terms of volumes of an m!-dimensional simplex, which we have already 
seen to be equivalent to considering the limiting case of IAC as n .  A repre-

sentation is obtained for the upper limit of the probability that there is a RPM
cycle as ),(mY , with  

!

4714.
1!),(

m
mmY ,

(4.62)

which becomes remarkably small.  For example, with 54.  and m = 7, the rela-

tive volume of the subspace containing voter preference profiles with RPM cy-

cles is less than 5210 .  In general, RPM  cycles are shown to be rare events for 
m at all large with 53. .  Black (1969) considered the case of unanimity rule, 

with 1 , and found that the probability that any such RPM  cycle exists is so 
small that it can be disregarded, in agreement with the observation in Eq. 4.62. 

Grofman (1972) analyzes a variation of this problem by considering the exis-
tence of a set of candidates, ijC , , who would receive at least  j votes in PMR 

contests against each of at least im 1  of the other 1m  candidates with odd n

voters.  Obviously, if 10,# 2
1nC  then the candidate in ijC ,  is the strict 

PMRW, and if 00,# 2
1nC  then there is no strict PMRW.  Grofman takes the 

reverse option of requiring a supermajority RPM  and considers the submajority 

PMR with 2
1nj  that is necessary to ensure that 00,# jC .  It is proved for 

linear voter preference rankings on candidates that 

Theorem 4.27.  If  n
mm

jmmnm
)2(

)1(2/)1(
, then 00,# jC  for 

2
1nj .

4.4.3 Condorcet Committees 

All analysis to this point has been focused on elections that are trying to select a 
single winner.  When the problem changes so that a group of voters is trying to 
elect a committee, a number of new paradoxes that are related to this particular 
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problem can be observed.  For example, see Staring (1986) and Mitchell and 
Trumbull (1992).  Arguments over the way in which the notions behind PMR 
should be extended to the case of electing members of a committee have a long 
history.  Dodgson (1884, 1885a, 1885b) was involved in a dispute with the “Soci-
ety for Proportional Representation” regarding this very issue. 

Dodgson gives an example in which a group is trying to elect a committee of 
three members from five candidates.  In this example, the candidates are Cham-
berlain (A), Gladstone (B), Goschen (C), Hartington (D), and Northcote (E).  The 
voting outcome from an election gives the voter preference ranking on candidates 
that are shown in Fig. 4.2. 

       B     D   B      A    C      E
       D     B   A      B    B    - 
       C     C   D      D    D   - 
       A     A   C      C    A    - 
       E     E   E      E    E    - 
               3030    2980    2020    1100     790     2079 

Fig. 4.2 Example voting situation from Dodgson (1885a) 

Dodgson notes that Candidates A, B, C and D are liberal candidates, and that E
is a conservative candidate.  The fact that the 2079 conservative electors only rank 
their candidate would suggest that they are indifferent, or equally unhappy, with 
the possibility of any of the other candidates. 

Dodgson argues that A, B and D should be elected to the committee “as a mat-
ter of justice”, by comparing pairs of candidates for entry.  The logic is that the 
pair B and D are obvious selections, since 6010 of the 11999 voters rank B and D
first.  Next, Dodgson argues for the inclusion of A as the third member of the 
committee, since “over and above these” 6010 voters, we have 3120 voters who 
place the pair A and B as their two most preferred candidates.  Dodgson goes on to 
show that the system that was proposed by the Society for Proportional Represen-
tation would have elected B, C and D.  Dodgson states that the election of Go-
schen (C) “would bring in the wrong man”. 

The Society for Proportional Representation responds that the election of Go-
schen (C) by their procedure in Dodgson’s example is, in fact, the proper choice 
over Chamberlain (A).  Their argument against Dodgson is that there are 9920 
“liberal electors” in this example for whom a preference comparison between A
and C are known.  Of these 9920 electors, 6800 prefer C to A, with only 3120 pre-
ferring A to C.  Thus, Goschen (C) should be the winner, based on a direct PMR 
comparison between candidates A and C. Thus, the argument of the Society for 
Proportional Representation is based on the notion proposed in the definition of a 
Condorcet committee based on individual comparisons of candidates who are in 
the committee versus not in the committee.  Dodgson responds to the criticism of 
the Society with an example to show that it is possible to continue their logic and 
have PMR cycles in entry and removal of candidates from the elected set. 
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The first definition of a Condorcet Committee that we consider follows from 
the basic idea of the argument that was presented by the Society for Proportional 
Representation regarding the entry of the third candidate to the committee is given 

in Gehrlein (1985).  Let mCWC  denote a possible subset of candidates to be 

elected to a committee.  Then, WC  is a Condorcet committee if ji CC M  for all 

W
i CC and all W

j CC \mC .  Previous discussion makes it clear that a Con-

dorcet committee does not necessarily exist according to this definition for a 

specified WC#  with a given n and m.  However, since PMR is transitive when 
voters have single-peaked preferences or dichotomous preferences, a Condorcet 
committee will always exist according to this definition whenever either of these 
restrictions is assumed to hold. 

Felsenthal and Machover (1992) develop the same definition for a Condorcet 
committee as in Gehrlein (1985), and they suggest that this definition is valid 
when the goal is to select the PMRW as a single winner, but that it might not be 
effective when the goal is to select a committee that reflects a “microcosm of soci-
ety”.  Hill (1988) previously made a similar observation.  Numerous studies have 
been conducted to develop methods to choose committees that would tend to more 
accurately reflect the mix of preferences of the population that the committee will 
represent.  For example, see Good and Tideman (1976), Chamberlin and Courant 
(1983) and Benoit and Kornhauser (1994). 

Fishburn (1981a,b) develops a second definition of a Condorcet committee that 
is based on the notion of PMR.  In these studies, attention is moved from directly 
considering the relative position of individual candidates in voters’ preference 
rankings.  Instead, a determination is made of what the preference rankings of vot-
ers would be on the combinations of candidates in all possible committees with a 
specified number of members, given the voters’ preference rankings on individual 
candidates.  A Condorcet committee is then determined on the basis of elections 
that would be performed by having PMR comparisons between possible pairs of 
committees with the same number of members in each committee, with the Con-
dorcet committee being defined as the possible committee of a given size that is 
preferred by PMR to all other committees of the same size. 

Fishburn (1981a) makes some interesting observations when considering this 
definition of a Condorcet committee when individual voters have dichotomous 
preferences on candidates.  For any given voter, H  denotes the subset of can-

didates among the more preferred candidates and L  denotes the subset of less 

preferred candidates in the voter’s dichotomous preference order.  Some mecha-
nism is required to determine how each voter would then rank committees of a 
specified size, k, given their preferences on the candidates.  Fishburn defines this 

mechanism as Condition P.  Let XC  and YC  denote two possible committees of 
k candidates.  Then, Condition P is defined on a given voter’s pairwise preference 
on committees such that  
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HCHC#CC YXYX # . (4.63)

That is, a voter will prefer committee XC  to YC  if XC  contains more candidates 

in the voter’s more preferred set of candidates than committee YC  does. 
Unlike the results obtained by Inada (1964) for the election of a single candi-

date, Fishburn (1981a) gives an example on four candidates {A,B,C,D} in which 
voters with dichotomous preferences have PMR cycles on committees when Con-
dition P determines individual voter’s preferences on the committees.  This PMR 
cycle refers to a majority of voters who actually have a preference on a given pair 
of committees, since Condition P allows for voter indifference between two com-
mittees.  Voters who are indifferent between pairs of committees are assumed to 
abstain from voting in that particular PMR comparison.  In this example, the indi-
vidual voters’ dichotomous preferences on candidates are shown in Fig 4.3. 

       Voter                 Number 
       Type  H L   of Voters 

          1     AB     CD      3 
          2     C    ABD      2 
          3     D    ABC      2 

Fig. 4.3  Example voter preference profile with dichotomous preferences from Fishburn 
(1981a) 

We see, for example, that committee {A,B} has a three voters to two majority 
over committee {A,C}. This results under Condition P with the three voters of 
Type 1 preferring {A,B} to {A,C} and the two voters of Type 2 preferring {A,C}
to {A,B}.  Voters of Type 3 are indifferent between {A,B} and {A,C} and do not 
vote for this particular PMR comparison of committees.  Using the same logic, we 
find that {A,C} has a three to two majority over {C,D}, with voters of Type 2 not 
voting.  Then, the cycle is complete with {C,D} having a four to three majority 
over {A,B}.

Fishburn (1981b) shows that imposing the condition of single-peaked prefer-
ences on voter’s preferences on individual candidates is insufficient to ensure the 
existence of a majority committee, for k > 1.  The study considers the additional 
restrictions that are required on individual voter’s preferences on candidates to en-
sure the existence on a Condorcet committee.  A Condorcet committee must exist 
when voters have single-peaked preferences on candidates; with the additional re-
striction that each voter must also have the same most preferred candidate in his or 
her preference ranking.  Thus, the conditions that require the existence of a 
PMRW in single-candidate elections fail to be sufficient to require the existence of 
a Condorcet committee of more than one member, given Fishburn’s definition of a 
Condorcet committee. 

Several studies have been conducted to consider various aspects of these two 
definitions of a Condorcet committee.  For example, see Kaymak and Sanver 
(2003) and Ratliff (2003).  A general conclusion seems to be that the definition of 
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a Condorcet committee from Fishburn (1981a,b) is more appropriate in situations 
in which committee members are expected to reflect a “microcosm” of the society 
that it is supposed to represent.  The definition from Gehrlein (1985) is more ap-
propriate if the elected committee represents a list of candidates that are to be 
passed along for further deliberation that will lead to the selection of the final 
winning candidate from that set.  Barberà and Coelho (2004) compare the two 
definitions of a Condorcet committee and they formulate “Random Chooser 
Game” in which agents act strategically and cooperatively.  Using this game as a 
basis, it is shown that when any procedure that meets some basic restrictions is 
used to select candidates to a committee, a set of candidates in a  committee can 
be a strong Nash equilibrium outcome only if the meets the definition of a Con-
dorcet committee from Gehrlein (1985). 

A limited amount of work has been done to develop representations for the 
probability that a Condorcet committee exists, with either definition of the term.  

Gehrlein (1985) does present results for the probability, ICnmPS
kCC ,,)( , that a 

Condorcet committee with k members exists for n voters with m candidates under 
the assumption of IC.  The results refer to the definition of a Condorcet committee 
as defined above in reference to that study. 

Since every voter preference profile has the same probability of being observed 
as its dual voter preference profile 

ICnmPICnmP S
kmCC

S
kCC ,,,, . (4.64)

For the special case that k = 1, 

ICnmPICnmPICnmP S
PMRW

S
mCC

S
CC ,,,,,, 11 . (4.65)

The discussion that led to the development of Eq. 4.22 for odd n leads to 

ICnPICnP S
PMRT

S
CC ,,4,,42 . (4.66)

To develop more general relationships for ICnmPS
kCC ,,)( , we follow the de-

velopment of Eq. 4.24 and define kmk  discrete variables of the form i
jX ,  for 

the thi  individual voter’s preferences that will be used to obtain the joint probabil-

ity, ICnmQS
kCC ,, , that CC jM  for each kj1  and mk 1  in a ran-

dom voter preference profile, with 

i
jX ,

voter.for theif:1

voterfor theif:1
th

j

th
j

iCC

iCC (4.67)
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A representation for ICnmQS
kCC ,,  can be obtained as the joint probability 

that 0,
i
jX  for each kj1  and mk 1 .  With the assumption of IC, it 

is easily shown that 0,
i
jXE .  Previous arguments that were based on the Cen-

tral Limit Theorem have shown that the limiting distribution ICmQS
kCC ,,  as 

n is equivalent to the multivariate-normal positive orthant probability, 

km,Rkmk , with kmk  variables that nXEnX jj ,,  for each 

kj1  and mk 1 .  The correlation matrix for this multivariate normal 

distribution, km,R , can be generalized from the form of 1R , which has m = 4 

and k = 2, in Eq. 4.25.  The correlation term between the pair of variables i
baX ,

and i
dcX ,  is equal to 1/3 if either a = c or b = d.  Otherwise, the correlation be-

tween the pair of variables is zero. 

There are 
k
m

 different combinations of candidates that could form a Condor-

cet committee of k candidates, and the symmetry of IC with respect to candidates 
leads to  

km,Rkmk
S

kCC
S

kCC k
m

ICmQ
k
m

ICmP ,,,, )()( .
(4.68)

Precise analytical representations for ICmPS
kCC ,,   become intractable 

for 5m , so Gehrlein (1985) obtains Monte-Carlo simulation estimates for values 

of km,Rkmk , and then obtains associated estimates of ICmPS
kCC ,, .

The simulation estimates for km,Rkmk  are obtained by using a process 

from Naylor, et al. (1966) to generate 15,000 random observations from a 
kmk  variable normal distribution with correlation matrix km,R .  Each ob-

servation was checked to determine if each of the kmk  values were positive, 

which would place that random observation in the positive orthant of the distribu-
tion.  Then the estimate of km,Rkmk  is obtained as the proportion of the 

15,000 observations that fell into the positive orthant.  Table 4.9 lists the estimates 

for ICmPS
kCC ,,)(  for each 1mk  with 7,6,5,4,3m  from Gehrlein 

(1985). The results in Table 4.8 suggest that ICmPS
kCC ,,)(  decreases as k in-

creases for the range 2/1 mk .
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Table 4.9 Monte-Carlo simulation estimates for ICmPS
kCC ,,)(  from Gehrlein (1985) 

m
k 3 4 5 6 7 
1 .916 .837 .716 .692 .641 
2 .938 .736 .575 .483 .410 
3 -- .824 .598 .437 .350 
4 -- -- .750 .479 .312 
5 --   -- -- .656 .450 
6 -- -- -- -- .628 

4.4.4 Linear Extension Majority Cycles 

Fishburn (1974c, 1976b, 1986) develops the notion of a Linear Extension Majority 
Cycle (LEM Cycle).  To describe the phenomenon, we start by defining a partial 
order, S, in the context of the pairwise preferences of a society, where ji CC S  de-

notes that the society prefers iC  to jC .  Obviously, no candidate can be preferred 

to itself.  Suppose that not all of the societal preference relationships are known 

for all of the pairs of candidates in the Cartesian product mm CC  in an m-
candidate election.  The relationship between iC  and jC  is unknown, denoted by 

jiUCC ,  if neither ji CC S  nor ij CC S .   The event jiUCC  does not necessarily 

mean that society is indifferent between iC  and jC , but means that the societal 

preference is not known for that pair.  Then, S is a partial order if it is transitive, 
but is not necessarily a weak order.  That is, it might be known that ji CC S , while 

kiUCC  and jkUCC  for some other candidate kC , so that the U relationship on 

pairs of candidates is not transitive, as it would be if S were a weak order. 
A linear extension L of S is a linear order with LS , and S  is the set of 

all possible linear extensions of a given S.  For any two candidates iC , jC mC ,

ji CCL ,  is defined as the subset of S  such that if ji CCLL ,'  then 

ji CLC ' , and it follows from these definitions that Sijji CCLCCL ,,

and ijji CCLCCL ,, , since all such 'L  are linear orders.  The LEM rela-

tion, *M , on mC is obtained by following the same logic as PMR, with ji CC *M

if ijji CCLCCL ,#,# .  Fishburn (1974c, 1976b, 1986) gives examples to 

show that LEM cycles can exist, such that ikji CCCC **** MMMM ...  for large 

numbers of candidates.  Gehrlein and Fishburn (1990a) show that LEM cycles can 
exist for all 9m .  Ewacha, et al. (1990) and Gehrlein and Fishburn (1990b) con-
sider the existence of LEM cycles on specializations of partial orders and condi-
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tions on partial orders that prohibit the existence of LEM cycles.  Gehrlein (1991a) 
does a Monte-Carlo simulation analysis to support the hypothesis that the prob-
ability that a randomly generated partial order will lead to a LEM cycle increases 
rapidly as m increases. 

4.4.5 Geometric Models 

The notion of using arguments that have some form of a geometric basis to ana-
lyze elections in terms of the probabilities that various events occur has a long his-
tory.  Black (1958) makes numerous references to results that are based on geo-
metric proofs, in discussing the use of PMR in voting with complementary 
elections.  Tullock (1967) uses geometric arguments with spatial modeling on two 
dimensions to consider the possibility that a PMRW exists with a large electorate.   

Saari (1995b) presents a summary of much of his extensive work that is based 
on geometric approaches to problems that are related to voting events.  That study, 
along with numerous related articles, provides many valuable insights regarding 
paradoxical voting events.  Most of this work is related to the consideration of the 
general behavior of weighted scoring rules, with particular emphasis on the supe-
riority of Borda Rule.  Saari and Tataru (1999) extend these geometric arguments 
to develop probability representations for various voting events in the limiting 
case as n . Other related studies followed in Merlin and Tataru (1997) and in 
Merlin, et al. (2000, 2002).  These studies are based on finding probabilities as 
volumes of various multi-dimensional spaces, starting with first principles in 
sources such as Coxeter (1935) and Schläfli (1950).  These studies have produced 
some very nice results, in using what has come to be referred to as the geometric 
approach to the problem. 

The approach that has been used to obtain limiting probabilities for voting 
events as n  in the current study is generally referred to as using the tradi-
tional approach.  As we have seen, the traditional approach is based on defining a 
set of variables, and applying the Central Limit Theorem to define probability rep-
resentations as multivariate normal orthant probabilities with specified correlation 
matrices.  Known forms of representations for these orthant probabilities from 
numerous other well established studies are then used to obtain final representa-
tions.  Two studies that are frequently used as a basis in the traditional approach to 
obtain limiting probability representations are due to Plackett (1954) and Slepian 
(1962), and both of these studies are based on first principles from Coxeter (1935) 
and Schläfli (1950).  As a result, the traditional approach typically obtains simpler 
probability representations, since it is based on using well established studies that 
are geared toward obtaining simple representations, rather than starting from first 
principles to obtain representations in every case. 

The use of the geometric approach to obtain probability representations for vot-
ing events has also led to the development of incorrect results in a few instances, 
since it is quite easy to fall into the trap of applying it to situations in which it is 
not applicable.  In particular, the geometric approach is typically only applicable 
in situations in which probability distributions for observing voting situations have 
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a spherical symmetry, as in the limiting case with IC.  The approach will not al-
ways work in other cases, such as the limiting case with IAC.  For example, see 
the work of Van Newenhizen (1992) as compared to Cervone, et al. (2005), or 
Saari and Valognes  (1999) as compared to Bezembinder (1996). 

The use of the geometric approach to consider the relative probabilities that 
various election events are observed as parameters change has produced some re-
markable results.  However, the traditional approach is typically more applicable 
to the process of obtaining simple probability representations for election out-
comes in most cases. 

4.5 Conclusion 

There has been a significant interest over the years in developing representations 
both for the probability that a PMRW exists and for the probability that PMR is 
transitive.  This interest is largely driven by the belief that the probability that a 
PMRW exists will go to zero as the number of candidates becomes large under the 

condition of IC.  Given all of this effort, it is still conjecture that ICnmPS
PMRW ,,

decreases as m increases with a given n, and decreases as n increases for odd n
with a given m.  However, representations have been successfully obtained for 

ICnmPS
PMRW ,,  for small m, for small n, and for the limiting case as n .  It 

has also been shown that 0,, ICnmPS
PMRW  as m  for all n.  Tables 4.6 

and 4.7 list all of the known values for ICnmPS
PMRW ,,  for odd n, and these val-

ues all reinforce the notion that ICnmPS
PMRW ,,  decreases as m increases with a 

given n, and decreases as n increases for odd n with a given m.
Substantial evidence has been presented to verify the fact that values of 

ICnmPS
PMRW ,,  and IACnmPS

PMRW ,,  converge to the same values very 

quickly as m increases.  As a result of the known values of ICnmPS
PMRW ,,  in 

Tables 4.6 and 4.7, we can conclude that the probability that a PMRW exists for 
large electorates, as n , is such that Condorcet’s Paradox is a real threat to 
elections with a relatively large number of candidates if either IC or IAC is a valid 
assumption.  We have already stressed that IC and IAC should be expected to pro-
duce exaggerated probability estimates that Condorcet’s Paradox will be observed.  
However, the degree to which these assumptions exaggerate that probability is not 
known. 

The next step of our analysis of this problem proceeds to consider the impact 
that the presence of various societal factors and the requirement of an additional 
degree of coherence of preference among members of the electorate will have on 
the probability that a PMRW exists. 



5 The Impact of Societal Factors 

5.1 Introduction 

The previous chapter showed that the probability of observing PMR cycles could 
be a real threat to election processes with more than a few candidates, if condi-
tions like IC and IAC reflect the true model that generates voter preference pro-
files or voting situations from a population of voters.  The survey of empirical 
findings in Chapter 2 indicates that PMR cycles have indeed been observed in ac-
tual voting situations, but that they are not a common phenomenon.  Typical ex-
planations for this observation have hinged on the idea that assumptions like IC 
and IAC give too much weight to possible voting outcomes that are very unlikely 
to ever be observed if the population of voters has some coherent underlying 
structure to the process by which the preferences of individual voters are formed.  
We have already seen, for example, that the imposition of the condition of single-
peaked preferences over the preferences of all voters in a population would be suf-
ficient to result in a situation in which a PMRW must exist for any subset of actual 
voters taken from that population. 

The general idea that there should be a connection between group coherence 
and the probability that a PMRW exists was alluded to by Tullock in some early 
studies.  Campbell and Tullock (1965) use Monte-Carlo simulation analysis to ob-

tain estimates of ),,( ICnmPS
PMRW .  The authors concluded that the existence of 

PMR cycles is clearly an important phenomenon when voters have independent 
preferences, as IC implies.  Tullock (1967) later uses geometric arguments with 
spatial modeling on two dimensions to consider the possibility that PMR cycles 
are observed with a large electorate, and Tullock speculated that this situation 
should tend to maximize the probability that PMR cycles might exist.  It is noted 
that the model that is used in the study creates a degree of interdependence be-
tween voter’s preferences, and it is shown that there would be a very small prob-
ability of observing PMR cycles as a result. 

Many studies have been conducted to evaluate the impact that various measures 
of the consistency of preference, or group coherence, of a population will have on 
the probability that a PMRW exists.  This work has generally considered the con-
sistency of preference of a population in the context of social homogeneity.  In 
general, the preferences of a society would be totally homogeneous if every mem-
ber of that society has the same preference ranking on candidates.  The opposite 
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extreme is a situation that reflects the notion of IC, in which the population has 
preferences that are completely dispersed over all possible preference rankings on 
candidates. 

Berg’s application of P-E models to the probability that a PMRW exists was 
discussed in Chapter 3, where it was shown that IC corresponds to the P-E model 
with 0  and IAC corresponds to the P-E model with 1 .  The observation 

that ),,3( IACnPS
PMRW  > ),,3( ICnPS

PMRW  has been attributed to the fact that IAC 

imposes a small degree of dependence among voters’ preference rankings while 
IC does not do so.  Berg (1985) generalizes this result to argue that an increase in 
the  parameter of P-E models that generate random voting outcomes corre-
sponds to an increase in the probability that voting situations with greater degrees 
of social homogeneity will be observed.  It is possible to enumerate all voting 
situations with a strict PMRW on three candidates, for a given n, and calculate the 
probability that each is observed with a P-E model for a specified parameter .

The sum of these probabilities, PEnPS
PMRW ,,3 , corresponds to the expected 

probability that a strict PMRW exists for the given value of .  Gehrlein (1995) 

computes values of PEnPS
PMRW ,,3  for various odd n over a range of  val-

ues, to show that this expected probability does indeed increase as  increases, as 
shown in Table 5.1. 

Table 5.1 Computed values of PEnPS
PMRW ,,3  from Gehrlein (1995) 

n
3 5 7 9 11 25 

0 .9444 .9306 .9250 .9220 .9202 .9157 
1 .9643 .9524 .9470 .9441 .9423 .9387 
2 .9750 .9665 .9626 .9604 .9590 .9561 
3 .9815 .9753 .9724 .9708 .9698 .9675 
4 .9857 .9811 .9789 .9776 .9769 .9750 
5 .9886 .9850 .9833 .9824 .9817 .9803 
10 .9952 .9838 .9931 .9927 .9925 .9919 
15 .9974 .9966 .9963 .9961 .9959 .9956 
20 .9983 .9979 .9977 .9975 .9975 .9973 
25 .9988 .9985 .9984 .9983 .9983 .9981 

This general problem has also been addressed in a very interesting way with 
models from statistical mechanics.  The general connection between voting prob-
abilities and this topic from physics was previously addressed in Chapter 3.  In 
particular, Galam (1997) uses the notion of a random field Ising model to consider 
factors that cause individuals in a group to have preferences on a pair of candi-
dates that are “polarized” in the physical sense.  When preferences are polarized in 
this context, they are consistently oriented, reflecting homogeneous preferences on 
the pair.  This definition of polarization is the opposite of what is typically implied 
by the use of the term as related to the preferences of societies.  As expected with 
this model, interactions between voters and small amounts of external social pres-



5.2 Population Specific Measures of Homogeneity      155 

sure are found to result in significant polarization, or agreement, for voters’ pref-
erences on the pair of candidates. 

Raffaelli and Marsili (2004) extend this work to develop a representation for 
the probability that PMR is completely transitive.  They describe a random field 
Ising model on 2/1mm components.  Each component takes a value of 1  to 

correspond with the ordering of preference that a specified voter has on a given 
pair of candidates, with there being 2/1mm  paired comparisons for each voter.  

The possible outcomes on components are then constrained to force each voter’s 
preferences to be consistent with some linear preference ranking.  A representation 
is then obtained for the likelihood that the PMR relations for the voters are com-
pletely transitive with this model. 

The notion of interaction between voters’ preferences is then introduced in the 
sense that voters are described as having an increased tendency towards confor-
mity among all voters.  When there is no interaction, the system is identical to IC.  
Results are obtained as n , and the numerical equivalent of Guilbaud’s num-
ber from Eq. 3.77 is obtained for the special case of  m = 3, and the probability 
that PMR is completely transitive deceases rapidly as m increases, as expected.  
When interaction is introduced between components, there are some levels of in-
teraction such that the probability that PMR is transitive increases rapidly toward 
one as m increases.  This leads to the counterintuitive result that at higher levels of 
interaction, increasing m will increase the probability that the PMR relationship is 
transitive. 

Attention is now turned to the consideration of measures of social homogeneity 
that are more directly related to the parameters of voter preference profiles and 
voting situations. 

5.2 Population Specific Measures of Homogeneity 

Population specific measures of social homogeneity are related to parameters of 
the population that is used to generate random voter preference profiles or voting 
situations.  For three candidates, CBA ,, , these measures are based on the spi '
from the probability vector p that describes the likelihood that a randomly selected 

voter will have the thi  possible linear preference ranking on the candidates.  The 
possible preference rankings on the three candidates and their associated prob-
abilities are shown in Fig. 5.1, which is repeated for convenience from Fig. 3.3. 

        A   A   B   C   B   C
        B   C   A   A   C   B
        C   B   C   B   A   A

        1p 2p 3p 4p 5p 6p

Fig. 5.1 The probability that a randomly selected voter will have a given linear preference 
ranking 
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Population specific measures of homogeneity of this type are partitioned into 
two categories.  Non-Comparison Population Measures (NPM) do not account for 
the relative positions of pairs of candidates in the preference rankings of the vot-
ers, while Comparison Population Measures (CPM) do so. 

5.2.1 Non-Comparison Population Measures 

NCM’s are based on the concept that social homogeneity can be gauged by using 
some measure of the degree of dispersion among the ip ’s in a given p vector.  IC 

has the minimum amount of dispersion among the ip ’s, and it represents one of 

the forms of balanced preferences, with the minimum amount of social homogene-
ity.  The maximum amount of social homogeneity occurs when all voters have the 
same linear preference ranking, and this gives the maximum degree of dispersion 
among the ip ’s.  Two studies give credence to applying this general concept. 

Jamison and Luce (1972) consider the case with n voters on m alternatives, 
where p denotes a probability vector over the m! possible linear preference rank-
ings on candidates, with a large population.  A voter preference profile is obtained 
when n voters from the population are sequentially assigned preference rankings 
according to the probabilities in p.  It is assumed that the specific p for the popula-
tion is not known.  However, pF  denotes the probability density function over 

the set, , of possible p vectors, following the same idea that was suggested by 
Buckley (1975) in the discussion of unconditional probabilities in Chapter 3.  
Jamison and Luce (1972) assume that pF  has the form of a Dirichlet distribu-

tion with parameters !21 ,...,, m .  The i  parameters are directly linked to p by 

the fact that /iipE , where !
1

m
i i .  When /iip , Jamison and 

Luce (1972) note that  pF,,nmPS
PMRT  approaches p,,nmPS

PMRT  as  be-

comes large.  For the IC-like situation in which i  = j  for all i and  j, the only 

remaining parameter is , so pF,,nmPS
PMRT  can then be specified com-

pletely in this situation as ,,nmPS
PMRT .

Jamison and Luce argue that  serves as a measure of social homogeneity, 
with increasing  reflecting decreasing homogeneity. This follows from the fact 
that as  increases, p become more IC-like, since /iip .  For the special 

case of m = 3 and n = 3, it is shown that  

)23(18
365417),3,3( 2

2
S
PMRTP .

(5.1)

By taking the derivative of this representation with respect to , it is easily 
shown that there is a positive relationship between social homogeneity and the 
probability that a PMRW exists for this IC-like situation with m = 3 and n = 3.  It 
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should also be noted that as  in Eq. 5.1, the precise value from the repre-

sentation in Eq. 5.1 approaches 18/17,3,3 ICPS
PMRT  from Sevcik (1969) in 

Table 4.5. 
Berg (1985b) considers the impact that biasing the tendency of some candidate 

to have a plurality majority has on the probability that a PMRW exists in three-
candidate elections with a P-E model.  The number of balls that are in the urn to 
begin the experiment to obtain random voter preference profiles with sequential 
draws have previously been defined with all 1iA  for each of the six rankings 

with three candidates with IAC.  To bias the population to have preferences that 
favor of a specified candidate, Berg (1985b) changes the experiment so that the 
two rankings that have some specified candidate being ranked as most preferred 
will start out with 1  balls instead of one ball.   

As  increases from zero, the two rankings with the selected candidate being 

listed as most preferred will have a greater likelihood for selection.  The concept 
of IAC is maintained in this experiment since each selected ball is replaced after 
each draw, along with one additional ball of the same color. It is then shown that 
the probability that a PMRW exists under this experimental scenario as n  is 
given by  

522
211 .

(5.2)

The particular case in which  = 0 is equivalent to the limiting probability 

16/15,,3 IACPS
PMRW  as n , from Eq. 3.30.  The probability in the rep-

resentation in Eq. 5.2 increases dramatically as  increases, so that the smallest 

probability that a PMRW exists in this case occurs with IAC, which is the least 
homogenous scenario that is considered under this experiment. 

We clearly expect some general relationship between measures of dispersion 
among the ip ’s and the probability that a PMRW exists.  A number of studies 

have been conducted to evaluate simple measures of this dispersion that act as a 
gauge of social homogeneity to determine if they display this general relationship 
to a significant degree.  Abrams (1976) considers the homogeneity measure that is 
given by  

p1NPM  = 
6

1

2

i
ip .

(5.3)

This measure is identical to the large population approximation for the “fractional-
ization index” in Rae (1968).  It is maximized when 1ip  for some i, and it is 

minimized with the assumption of IC.  Increased values of p1NPM  reflect in-

creased homogeneity for a population.  With a large value of p1NPM  for a 
population, we would expect an increased propensity to observe random voter 
preference profiles from such a population that have voters’ preferences that are 
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clustered around one, or a few, of the possible linear rankings on candidates.  As 
p1NPM  increases, ),,( pnmPS

PMRW  should therefore be expected to increase. 
Abrams (1976) gives example p vectors for which there are inconsistencies in 

the expected positive relationship between p1NPM   and p,,nmPS
PMRW .  That 

is, there are p and p* with p1NPM > *1 pNPM  and with p,,nmPS
PMRW <

*,, pnmPS
PMRW .  The specific example that Abrams refers to has p* equivalent 

to IC with m = 3 and n = 17.  Here, ICPS
PMRW ,17,3  = .91733 with ICNPM1  = 

.167.  Then,  p  has 01p  and 5/1ip  for each i = 2,3,4,5,6.  For this p, we 

have p,17,3S
PMRWP  = .90907 with p1NPM  = .200.   Thus, while we might 

expect there to be a general positive relationship between p1NPM   and 

p,, nmPS
PMRW , specific counterexamples exist to show that the relationship is 

not perfect.  Paris (1975) indirectly makes a similar observation.   
Fishburn and Gehrlein (1980) prove several results that are related 

to p1NPM . First, p1NPM  is minimized by IC over the space of p vectors in 

DC, and p,,nmPS
PMRW  increases as p1NPM  increases for p vectors in DC 

when p1NPM  is changed by keeping one of 1p , 2p  or 3p  fixed while chang-

ing the other two.  The example that Abrams (1976) presented to show a violation 

of the expected relationship between p1NPM  and p,,nmPS
PMRW  is general-

ized to show that similar examples can be observed for all odd n.   Further analysis 

suggests that the general expected positive relationship between p1NPM   and 

p,, nmPS
PMRW  tends to deteriorate as the number of voters gets very large.  

Gehrlein (1980) considers the value of p1NPM  that must be observed in a spe-

cific voting situation for the given observation to be categorized as having a statis-
tically significant level of homogeneity. 

Gehrlein (1981d) presents results from a Monte-Carlo simulation analysis to 

evaluate eight different NPM measures, denoted by piNPM  for i = 1, 2, 3, … 8 

with: 

6

1

32

i
ipNPM p

(5.4)

6

1

43

i
ipNPM p

(5.5)
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ip MaximumNPM p4 (5.6)

ip MinimumNPM p5 (5.7)

6 pNPM -4 pNPM 5 pNPM (5.8)

6

1

7

i
ipNPM p

(5.9)

6

1 6
18

i
ipNPM p .

(5.10)

Results of the study indicate that any relationship between these NPM’s and the 
probability that a PMRW exists is very weak, as measured either by the correla-
tion between the two, or by the proportion of sequential randomly generated  p

vectors that have the their respective ),,( pnmPS
PMRW  values increasing, or de-

creasing, as expected by their corresponding measured values of piNPM .  Any 

relationship that did exist diminished rapidly as the number of voters increased 
beyond a relatively small number.  May (1971) presents some preliminary analysis 
with IC to suggest that this observation might have been expected for a very large 
number of voters. 

5.2.2 Comparison Population Measures 

CPM’s are homogeneity measures that are based on  p, as are NPM’s, but they ac-
count for the relative differences between pairs of candidates in the preference 
rankings of the voters.  We begin by measuring the differences between candi-
dates in rankings according to p, using the BA,  definitions that were developed 

in conjunction with Eq. 3.62: 

653421, ppppppBA

654321, ppppppCA

642531, ppppppCB .

(5.11)

Gehrlein (1987) did a Monte-Carlo simulation analysis to compare four CPM’s 
to the NPM’s.  To avoid confusion, it must be noted that the CPM’s were referred 
to as “profile specific measures” in that study.  The four CPM measures, denoted 

by piCPM  are: 

BCAC,CBAB,CABAMaxCPM ,,,,,,1 p (5.12)
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BCAC,CBAB,CABAMinCPM ,,,,,,2 p (5.13)

)()()( 213 ppp CPMCPMCPM (5.14)

2
6431

2
5342

2
21654

2
1)(

pppp

pppppppp
CPM p .

(5.15)

Here, p4CPM  is directly associated with Kendall’s Coefficient of Concor-

dance that Fishburn (1973) suggests as a measure of social homogeneity in a 
slightly different context that will be addressed later in the current study. 

The results of this Monte-Carlo simulation study clearly show a stronger 
relationship between these CPM’s and the probability that a PMRW exists than 
that which was observed in the same situation with NPM’s.  The measure 

p4CPM  showed some superiority over all other homogeneity measures, except 

for p1CPM .  That is, the superiority of p4CPM  over p1CPM  is not as 

significant.  An interesting observation is that the percentage of sequential 

observations of p for which p,,3 nPS
PMRW  changes in accordance with the 

change in p4CPM  tends to increase as n increases, for the range of n

considered.  This percentage typically ranges above 75 percent of the observed 
sequential observations of p vectors. 

5.3 Situation Specific Measures of Homogeneity 

Situation Specific Measures of Homogeneity (SSM) do not measure homogeneity 
based on p vectors, as the population-based measures do.  SSM’s are based on the 

in ’s of particular n vectors for a given voting situation, or on the n vectors that 

result from accumulating individual preferences in a voter preference profile.  
Situation specific measures would use the observed proportions, nni / , as a sub-

stitute for the pi terms in the population-specific measures.  For any particular vot-
ing situation, we know with certainty whether a PMRW exists or not.  One would 
therefore expect to have the strongest correlation between social homogeneity and 
the existence of a PMRW in these situation-specific studies.  Any particular popu-
lation-based measure of social homogeneity is fixed by p.  But, any given voter 
situation with n voters could be obtained from an experiment to create voter pref-
erence profiles from the population, with some probability for a given p.  As a re-
sult, the same population specific measure of social homogeneity would be associ-
ated with many different possible voting situations. 
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Studies have been conducted to consider the general relationship between 
SSM’s and the probability that a PMRW exists.  Lhuilier (1793) presents results in 
an early study that lead to such an observation.  The study starts by proving that a 
voting procedure that was developed in Condorcet (1789) does not always select 
the PMRW, as Condorcet had claimed.  The study continues to compute the prob-
ability of observing some election results, using a different perspective than the 
one that was used in Condorcet (1785d) in the analysis that led to Eq. 3.18.  In 
particular, Lhuilier discusses the probability that election outcomes are observed 
with an IC-like assumption that individual voters have a conditional equally likely 
probability to have given linear preference rankings on three candidates, rather 
than using Condorcet’s notion of having an equal probability of a social outcome 
with PMR for any particular pair of candidates.   

Lhuilier discusses these conditional probabilities for possible individual voter’s 
linear preference rankings on candidates, where these probabilities are conditioned 
on the fact that the most preferred candidate in each voter’s preference ranking is 
known from the results of a plurality election.  Lhuilier performs a probability 
analysis to examine the combinations of ways in which voters might have the re-
maining candidates positioned in their preference rankings, given their observed 
most preferred candidate.  The nature of this analysis is based on combinatorial 
computations that make it clear that Lhuilier is assuming that voters are identifi-
able. This particular set of assumptions closely reflects the notions of IC, as ap-
plied in the context of the possible conditional preference rankings on candidates.

Fishburn (1982) considers the same basic type of problem that was presented in 
Lhuilier (1793), in which voter preference profiles, with their associated voting 
situations, are generated with the assumption of IC for three alternatives CBA ,, .

Let AN  denote the number of preference rankings in a voting situation for which 

A is ranked as most preferred.  A given combination of iN ’s is referred to as a 

plurality situation.  There can be many different voting situations with the same 
plurality situation, and the minimizing voting situation for a specific plurality 
situation is that voting situation with the minimum associated probability that a 
PMRW exists with IC.  As the iN ’s in a plurality situation become more similar, 

the voters would generally tend to have preferences that are less homogeneous, 
which should tend to minimize the probability that a PMRW exists.   

Fishburn shows that the relationship between the probability that a PMRW ex-
ists for minimizing voting situations and the similarity of the iN ’s is not strict.  

However, the overall PMRW probability minimizing voting situation does occur 
for odd n when we have the least homogeneous case, with  

1BA NN , 1CA NN , 1CB NN . (5.16)

Skog (1993) reaches the same general conclusion by employing a very different 
approach to the problem, using a variation of IC.  It is shown that the probability 
that a PMR cycle exists is greatest for voting situations that are similar to the 
minimizing voting situation, with differences in iN ’s that are relatively small.  
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However, the probability that a PMR cycle exists is found to become insignificant 
only for differences between the iN ’s that are quite different than the balanced 

case in the overall PMRW probability minimizing voting situation.  Any general 
relationship between the probability that a PMRW exists and the iN ’s in a voting 

situation will therefore be relatively weak 
Skog (1993) goes on in an effort to find such a general relationship by going 

beyond the consideration of the information that is given in plurality situations.  
Let ABCN  denote the number of voters with the linear preference ranking 

CBA  in a voting situation.  It is first proved that a voting situation can only 
have a PMR cycle if every component of one of the possible PMR cycles com-
pletely dominates the respective components of the reverse cycle.  That is, if the 
PMR cycle exists with ACBA MMM , then it must be true that 

.BACCAB

ACBBCA

CBAABC

NN
NN
NN (5.17)

A model is then developed in which it is assumed that the relative proportions 
between the iN ’s can be used to determine the relative number of voter prefer-

ence rankings that have specific rankings on pairs of candidates.  For example, the 
proportion of voter preference rankings that include BA  is assumed to be the 
same as the proportion BAA NNN / .  This model assumes that a strict consis-

tency exists in the voters’ relative rankings on candidates at all levels of prefer-
ence, according to first place rankings.  The differences in the two models pre-
sented in this study are consistent with the differences between the “impartial” and 
“proportional” scenarios in Chamberlin, et al. (1984) in Chapter 2. 

Skog’s model can then be used to consider the requirements for a PMR cycle in 
Eq. 5.17.  The first equation results in 

CBAABC NN

AB

B
C

CB

B
A NN

NN
NN

NN

BCCBAA NNNNNN .

(5.18)

It follows directly that CA NN .  The other two equations will result in 

AB NN  and BC NN .  These results are clearly inconsistent, so this model 

with the strict proportion breakdown of voters’ preferences on pairs of candidates, 
according to iN ’s, prohibits the existence of PMR cycles. 

Monte-Carlo simulation analysis was subsequently used to consider the impact 
that the degree of structure of voter preferences has on the probability that a PMR 
cycle exists.  Individual voter preference rankings on three candidates were gener-
ated randomly from a mixture of two models to obtain random voter preference 
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profiles.  The mixture used a weight, , with 10 , to obtain the probability 
that a randomly selected voter would have a particular preference ranking on three 
candidates.  The associated probabilities from the model described above were 
weighted by , while a uniformly random component was weighted by 1 .

Results suggest that the probability that a PMR cycle is observed is greatly re-
duced for  as small as 0.5.  This indicates that even a relatively low level of 
structure in voters’ preferences will significantly reduce the probability that a 
PMR cycle is observed. 

Kuga and Nagatani (1974) consider the impact that some societal factors have 
on the probability that a PMRW exists by considering a measure of the degree to 
which voters’ preferences tended to be different in voting situations, as measured 
by voter antagonism.  Two voters are antagonistic on a pair of candidates if the 
order on these two candidates is reversed in their respective preference rankings.  
When m = 3, 421 nnn  voters rank A over B, while 653 nnn  rank B over A,
for a total of 653421 nnnnnn  antagonistic voter preferences on that 
pair of candidates.  The total number of antagonistic pairs in a given voting situa-
tion, n, is given by nAP  with 

.642531

654321653421
nnnnnn

nnnnnnnnnnnnAP n (5.19)

The total number of possible antagonistic pairs for n voters over three possible 

pairs with m = 3 is given by 
2

3 n , and the intensity of antagonism in a society is 

measured as the ratio 
2

3/ nnAP .   The measure n1SSM  of voter antago-

nism is then obtained by normalizing this ratio, and: 

.evenfor,
3

)(4)(

.oddfor,
)1)(1(3

)(4)(

2
1

1

n
n

APSSM

n
nn

APSSM

nn

nn
(5.20)

n1SSM  is minimized at zero, when all voters have the same preference ranking, 

with nni  for some i and 0in  for all j i. n1SSM  is maximized at one 
when the in ’s are equal for even n, and when the in ’s are nearly equally balanced 
for odd n, making a difference of one for each set of two voters with antagonistic 
preferences on the pairs of candidates. 

Kuga and Nagatani (1974) prove that there must be a PMRW on three candi-
dates when the degree of antagonism is relatively small, with 
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.evenfor,
3
2)(

oddfor,
13

2)(

1

2
1

2

nSSM

n
n

nSSM

n

n
(5.21)

Kuga and Nagatani (1974) also consider the limiting case as n  with IAC 
to show that there is a negative correlation between the degree of voter antago-
nism and the probability that a PMRW exists.  The correlation is negative in this 
case since increasing homogeneity corresponds to decreasing antagonism.  In par-
ticular, the study shows that ),,3( IACnPS

PMRW  increases when the voting situa-

tions that were enumerated were restricted to have n1SSM  values less than or 
equal to some decreasing specified value.  If the preference rankings on candidates 
are viewed as being representative of different political parties, Berg (1985a) 
points out that there is a direct link between the notion of voter antagonism and 
the measure of “fractionalization” that was developed by Rae (1968). 

Fishburn (1973a) approaches the problem of social homogeneity by using 
Kendall’s Coefficient of Concordance to measure the degree to which voters’ 
preferences tend to be in agreement.  In the context of three candidate elections, 
Kendall’s Coefficient is measured on a specific voting situation, n, and it is de-

noted by n2SSM , with 

2

2
641

2
5342

2
21652

2
3

n

nnnnnnnnnnnn
SSM n .

(5.22)

Kendall’s Coefficient is a standard method for considering correlation between 
ordinal rankings.  Fishburn performs a computer simulation analysis with IC to 
generate voter preference profiles for various m and odd n.  For each profile, 

n2SSM  was calculated and it was determined if a PMRW existed in the profile.  

The voter preference profiles were then partitioned into 20 different segments over 

the range of possible n2SSM  values.  It was found that the proportion of pro-

files that had a PMRW within each segment tended to increase as the value of 

n2SSM  for the segment increased. 

Studies considering SSM’s typically consider all of the profiles that correspond 
to a particular value of the measure of homogeneity, and then measure the propor-
tion of them which have a PMRW, and Fishburn (1973) is an example of a study 
of this type.  That simulation study showed that the percentage of profiles that 
have a PMRW increased to nearly 100 percent as the associated values of Kend-
all’s Coefficient of Concordance increased to large values.  It is easy to conclude 
in general that the most positive relationship between measures of social homoge-
neity and the probability that a PMRW exists will be observed while considering 
situation-specific measures of homogeneity. 
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5.4 The Effectiveness of Measures of Social Homogeneity 

Attention is now turned to the development of representations for the conditional 
probability that a PMRW exists, given that voting situations have specified values 
of some situation-specific measures of social homogeneity.  These representations 
are based on an extension of IAC.  Let X denote some measure of social homoge-
neity, and the Conditional Impartial Anonymous Culture Condition kIACX  is 

used to develop probability representations for events with the assumption that 
only voting situations for which measure X has a specified value of k can be ob-
served, and that all such voting situations are equally likely.  The Cumulative 

Conditional Impartial Anonymous Culture Condition kCIACX  is used to de-

velop probability representations for events with the assumption that only voting 
situations for which measure X has a specified value of k, or more, can be ob-
served, and that all such voting situations are equally likely.  Similarly, 

kCIACX  is used to develop probability representations for events with the as-

sumption that only voting situations for which measure X has a specified value of 
k, or less, can be observed, and that all such voting situations are equally likely. 
 Berg and Bjurulf (1983) consider the situation-specific measure of social ho-

mogeneity n3SSM  that corresponds to the population-specific measure 

p5NPM  in Eq. 5.7, with  

inMinSSM n3 . (5.23)

 Let k denote a specified value of n3SSM  for any given voting situation.  We 

must have 6/0 nk , and voters’ preferences obviously become less homoge-
neous as k increases.  Gehrlein (2004c) considers the effect that specifying a value 

of n3SSM  has on the expected values of several measures of social homogene-

ity that were discussed above, including the situation-specific measure, n4SSM

that corresponds to the population-specific measure p1NPM  in Eq. 5.3, with  
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i
inSSM n .

(5.24)

Let denote that n3SSM  is being used as a basis for measuring social ho-

mogeneity, and the number of voting situations, kCIACnK ,,3 , that are re-
stricted to have k, or more, voters associated with each preference ranking is 
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After algebraic reduction, we find 
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It follows directly from definitions that the conditional expected value, 
kCIACSSME i |n , for any niSSM , is obtained from the general 

representation 
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Gehrlein (2004c) shows that: 
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The representation for kCIACSSME |1 n  in Eq. 5.28 is in disagreement 

with results reported in Berg (1985a), for the limiting case as n  with 0k .
The representation in Eq. 5.28 contains a typographical error in Gehrlein (2004c). 

By taking derivatives with respect to k, we find that each of the expected values 
behaves as anticipated.  In particular, the derivative of kCIACSSME |1 n  is 

positive for 6/0 nk .  This makes sense because increasing k will increase the 
level of voter antagonism that n1SSM  measures.  However, this corresponds to 

decreased homogeneity.  The derivatives of both kCIACSSME |2 n  and 

kCIACSSME |4 n  are negative over the range 6/0 nk , since increas-
ing k will decrease the level of homogeneity.  As a result, we find that increasing 
values of n3SSM  do indeed correspond to the notion of systematically decreas-
ing all measures of social homogeneity that are being considered. 

Gehrlein and Berg (1992) use computer enumeration techniques to obtain some 
conditional expected values for representations that are of the same nature as 
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0|2 CIACSSME n  in which a PMRW exists for voting situations, while us-

ing a general P-E model instead of kCIAC .  The addition of the restriction 
that a PMRW exists is found to cause only a marginal change in computed values 
when compared to the situation in which all possible voting situations could be 
observed, to suggest that the general positive relationship between n2SSM  and 
the probability that a PMRW exists might not be highly significant. 
 A very surprising result is observed when we consider the effect that increasing 
k has on the probability that a PMRW exists with the assumption of kCIAC
for a three-candidate election. A representation for the associated probability, 

kCIACnPS
PMRW |,3 , follows directly from the discussion that led to the rep-

resentation in Eq. 3.31 for even n, with 
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After algebraic reduction, for even 6n ,

knknkn
knknknk,n|CIACPS

PMRW 65636116
64626153 .

(5.32)

 By taking the derivative of this function with respect to k, we find that 
kCIACnPS

PMRW |,3  decreases as k increases for 6/0 nk .  This result is 
in agreement with expectations since an increase in k, which decreases expected 
social homogeneity, leads to a decrease in the probability that a PMRW exists. 
 Gehrlein (2004c) proceeds in the same fashion to find a representation for 

kCIACnPS
PMRW |,3  for odd 6n , with: 

knkn
knkCIACnPS

PMRW 646216
6315|,3

2
.

(5.33)

This representation is in agreement with a similar result in Berg and Bjurulf 
(1983) for the special case of k = 1.  The representations in Eqs 5.32 and 5.33 are 
also identical to the results in Eqs. 3.32 and 3.30 respectively when k = 0. 

 Surprisingly, we find that kCIACnP S
PMRW |,3  increases as k increases 

over the range 6/0 nk  for odd n.  Table 5.2 lists computed values of 
kCIACnPS

PMRW |,3  for each n = 48, 49 for all 6/0 nk  from Eqs. 5.32 
and 5.33. 
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Table 5.2 Computed values for kCIACPS
PMRW |48,3  and kCIACPS

PMRW |49,3  from 
Gehrlein (2004c)

k kCIACPS
PMRW |48,3 kCIACPS

PMRW |49,3

0 .8834 .9378 
1 .8763 .9379 
2 .8671 .9381 
3 .8546 .9383 
4 .8368 .9387 
5 .8091 .9394 
6 .7602 .9412 
7 .6494 .9470 
8 .0000 1.0000 

The overall expected general relationship between social homogeneity and the 
probability that a PMRW exists is very weak.  It is so weak that a complete rever-
sal of expected results is obtained simply by switching from an even number of 
voters to an odd number of voters. 

Based on what we have seen so far, there seems to be little reason to pursue the 
notion of trying to find a strong general relationship between simple measures of 
social homogeneity and the probability that a PMRW exists.  This observation is 

certainly true for the measure n3SSM , and it would seem to be true for other 

simple measures of homogeneity, despite the fact that they are situation-specific 
measures. 

5.5 Requiring More Coherence in Voters’ Preferences 

Voters can obviously have preferences on candidates that lead to PMR cycles, but 
we have observed that there is typically much more stability in most political set-
tings than would be expected when considering computed probabilities with IC 
and IAC.  This phenomenon has typically been explained in general by supposing 
the presence of some group coherence or social homogeneity in the voters’ prefer-
ences.  We have seen that different measures of social homogeneity have differing 
degrees of ability to show a general relationship with the probability that a PMRW 
exists, and simple measures of homogeneity perform very poorly at displaying a 
general relationship between social homogeneity and the probability that a PMRW 
exists.

List (2002) suggests that this observation should be expected since there are 
different levels of group coherence of preference.  That is, voters might have sub-
stantive level agreement, to the extent that their preferences, or views, tend to have 
some degree of consistency.  However, voters might go beyond that and have 
some degree of meta-level agreement, to the extent that they can agree on a com-
mon dimension on which issues can be conceptualized.  The voters might be 
largely in agreement as to what this common dimension is, while being in great 
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disagreement as to what the optimal position on the dimension is.  Positioning is-
sues along such a dimension is perfectly consistent with the notion of single-
peaked preferences.  List (2002) argues that agreement at the meta-level is more 
likely to reduce occurrences of paradoxical results like PMR cycles than is agree-
ment on a substantive level. 

Dryzek and List (2003) discuss the same notion. Two or more individuals can 
agree on a substantive level to the extent that their preferences are the same.  
However, two individuals might disagree on any common ranking of alternatives 
to reflect their own preferences, but still agree on some ranking of alternatives on 
a common dimension. This second scenario is agreement on a meta-level.  As de-
scribed, agreement on a meta-level might imply single-peakedness.  Issue com-
plexity might rule out any common agreement on a single dimension, but multiple 
relevant issue dimensions coupled with individual voter’s preference rankings on 
candidates on the issue dimensions might lead to some “intra-dimensional single-
peakedness”.  They also discuss the impact that deliberation and discussion might 
have on “preference structuration” to increase the likelihood that the resultant vot-
ers’ preferences will be more like single-peaked preferences. 

Grofman and Uhlaner (1985) propose a similar concept regarding the existence 
of “meta-preferences” that result when voters have preferences for characteristics 
of broadly defined processes that might be involved in determining their prefer-
ences on candidates, rather than simply having preferences for candidates.  They 
suggest that the additional structure that results with the notion of such meta-
preferences leads to more of an overall understanding of the entire decision proc-
ess, and therefore to more overall stability. 

The notion of associating meta-level preferences to voters’ preference rankings 
on candidates would certainly give rise to stability, with transitive PMR, if meta-
level agreement is assumed to reflect the existence of single-peaked preferences.  
However, it seems extremely unlikely that all voters in a population would ever 
have preferences on candidates that would meet the strict definition of single-
peakedness.  It was noted in earlier discussion that Skog(1993) found that signifi-
cant stability could be found with PMR if a relatively small proportion of a popu-
lation had preferences that were structured according to the definition of the model 
used in the study. 

Niemi (1969) developed this same general notion much earlier, to consider the 
relationship between degrees of single-peaked preferences and the existence of a 
PMRW.  In particular, the study considers the maximum proportion, x/n, of n vot-
ers in any voter preference profile who have preference rankings that are single-
peaked along some dimension.  Computer procedures were used to enumerate all 
possible voter preference profiles on n voters. The enumeration results were used 
to compute the conditional probability that PMR is transitive, given x/n.  As ex-
pected, it was found that the conditional probability that PMR is transitive in-
creases as x/n increases.  Computational results surprisingly suggest that if x/n is 
held constant, then the probability that PMR rankings are transitive will increase 
as n increases.  The conclusion of the study is that PMR cycles are most likely to 
be observed in situations where voters’ preferences are unstructured, or when 
small numbers of voters are making decisions on alternatives with many attributes 
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of comparison.  Buckley and Westen (1974) give examples to show that this gen-
eral relationship is not exact.  That is, one profile with a given x/n might have a 
PMRW, while another profile with a greater value of x/n might not have a PMRW. 

Niemi (1970) applied this notion of degree of single-peaked preferences to 
some empirical results.  The study considers seven different three-candidate elec-
tion data sets to find the maximum proportion of voters’ preferences that were 
single-peaked on some dimension.  One of the three-candidate elections resulted 
in a PMR cycle.  In agreement with expectations, that particular election had the 
voter preference profile with the least maximum proportion of voters with prefer-
ences that were single-peaked on some dimension.  Niemi and Wright (1987) ex-
amined survey thermometer scores for candidates in the 1980 U. S. Presidential 
election.  Results indicate that a relatively high proportion of voters’ preferences 
were consistent with single-peaked preferences on all subsets of three and four 
candidates, and that the orderings of candidates that was required to obtain this re-
sult did not generally occur in agreement with left to right political affiliation of 
the candidates.  That is, voters seemed to have strong opinions about candidates 
that were unrelated to the candidates’ relative positions in the political spectrum. 

Radcliff (1993) does an empirical study to determine the propensity of voters to 
have single-peaked preferences.  The study obtains weak ordered preference rank-
ings on U. S. Presidential candidates for respondents to surveys in American Na-
tional Election Studies from 1972 to 1984.  The respondents did not make actual 
pairwise comparisons between candidates, but the respondents’ thermometer rat-
ings on candidates were used to reconstruct all paired comparisons on candidates.  
It was assumed that any difference in reported thermometer scores resulted in a 
distinct preference in pairwise comparison between candidates.  The percentage of 
respondents with preferences that were single-peaked across a reference ranking 
of candidates was approximately 83 percent for three-candidate elections, with 
that percentage decreasing to approximately 68 percent in four and five-candidate 
elections. 

Van Deemen and Vergunst (1998) extended their empirical work that was dis-
cussed in Chapter 2, in which no PMR cycles were found in results of national 
elections to find a similar result as Niemi (1970).  The analysis used a reference 
ordering for candidates that was based on the liberal-conservative nature of the po-
litical parties that were involved in the election.  Their analysis suggests that the 
observed transitivity of PMR comparisons in the study did not seem to be a result 
of single-peaked preferences in respondents’ preference rankings relative to the 
assumed linear reference ordering.  This observation is not surprising, given the 
observations from Niemi and Wright (1987) above. 

Adams (1997) performs a Monte-Carlo simulation study of the probability that 
a PMRW exists using a spatial model format with k criteria, to provide additional 

support to the ideas from Niemi (1969).  The utility, AUi , that the thi  voter has 

for a given candidate, A, has two components: 

iA
k

j
jiji AxbAU

1

2 .
(5.34)
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The first term represents the Euclidean distance between the ideal point of the 
thi  voter, as represented by the ijx ’s, and the stated position of Candidate A, as 

represented by the jA ’s.  This term has a negative coefficient, since greater 

Euclidean distance between a voter’s ideal preference point and a candidate’s po-
sition suggests less satisfaction.  The b value represents the policy salience coeffi-
cient for the voter, and it is assumed to be the same for all voters.  Increased val-
ues of b indicate increased concern regarding policy issues for the voter.  The 
second term, iA , is a uniformly random variable. 

When we have 0b  in this model, uniformly random utilities are given to 
candidates for each voter.  This leads to a situation that is identical to IC.  When b
is very large, voters are driven completely by policy issues, and the random com-
ponent becomes insignificant.  In the special case that 1k  with large b, candi-
dates’ positions are represented by some numerical value along a number line, so 
that voters’ preferences will be single-peaked with this model.  We can then con-
clude that voters' preferences will consistently tend to be more like single-peaked 
preferences as b increases.  Simulation results indicate that the probability that a 
PMRW exists does indeed increase as b increases.  Thus, a more structured pref-
erence format for voters does increase the probability that a PMRW will exist.  A 
second interesting observation is that small values of b will effectively eliminate 
the possibility of a PMR cycle as n becomes large. 

Any approach that effectively shows a strong expected positive relationship be-
tween social homogeneity and the probability that a PMRW exists will obviously 
have to rely heavily on some additional underlying consistency in the structure of 
voters’ preferences, like Niemi’s degree of single-peaked preferences.  That issue 
will be directly addressed in detail in Chapter 6. 

It is worth noting that Feld and Grofman (1988) present an opposing argument 
to the general ideas that have been presented above, in which we have assumed 
that if voters show some consistency of preference according to some measure of 
homogeneity, then the overall preference of the group of voters will also reflect a 
consistency of preference.  They suggest that it is possible to have situations in 
which individual voters might have preferences that are consistent with some ho-
mogeneity measure like single-peaked preferences, while an overall voter prefer-
ence profile does not really reflect consistent preferences.  Moreover, they argue 
that individual voters might have preferences that appear to be mutually inconsis-
tent, while the overall preference structure of the voter preference profile actually 
does display consistency.  For now, we turn our attention to other societal factors 
that are related to the likelihood that a PMRW exists. 

5.6 Voter Abstention 

Numerous studies have been conducted to consider the simple issue of why so 
many people extend the effort to vote in elections when there is such a small prob-



172      The Impact of Societal Factors 

ability that their vote might alter the outcome of an election.  Empirical studies 
have evaluated the impact that many different factors have on voter turnout. 

Settle and Abrams (1976) perform an empirical study to consider a number of 
factors which tend to make people choose to vote, rather than abstain.  These fac-
tors include: the anticipated closeness of the election, the income level of voters, 
the existence of third part candidates, media usage for advertising, the level of 
campaign spending, per capita level of federal spending, and the impact of 
women’s suffrage.  Results indicate that closeness in an election increases voter 
turnout, as does increased levels of federal spending as a reflection of total payoff 
to be expected. 

Many studies have focused on the attitude that voters have toward the candi-
dates in an election, particularly with regard to the perceived closeness of an elec-
tion and voter turnout, and very mixed results are observed.  Brody and Page 
(1973) consider abstention rates in terms of the general attitude of voters toward 
the candidates.  Crain, et al. (1987) consider the effect of close races on abstention 
rates.  In this study, ballots were considered in which voters did not have to vote 
for all candidates in all races on a ballot sheet.  Analysis was then performed on 
the impact of closeness of the elections for the races in which votes were cast, ver-
sus the races in which no vote was cast.  Results indicate that once voters are at a 
polling place, they are more likely to vote in close races than in races with an ex-
pected wide margin of victory. 

Kirchgässner and Schimmelpfenny (1992) analyze elections in the United 
Kingdom and Germany to find that a positive relationship between perceived 
closeness of an election and voting rate is observed only at the level of individual 
election districts.  The result is observed in local elections that are run in conjunc-
tion with national elections, even when the likely winner at the national level is 
evident.  Kirchgässner and Zu Himmerman (1997) found a positive relationship 
when stable political environments exist.  However, the relationship was found to 
be negative for elections held during times of political instability.  Grofman, et al. 
(1998) look at a large number of elections, and a strong relationship was found for 
elections for U. S. Senate in years in which there was no presidential election. 
Similar results were observed in elections for state representatives to the House of 
Representative in years when there was no election for state governor or for mem-
bers of the U. S. Senate in the same state. 

Silver (1973) conducted a study of survey information that was taken from vot-
ers, and it considered many different independent variables.  It was concluded that 
the perceived closeness of an election was not a significant factor in voter 
participation.  The individual voter's interests in politics in general, and in the 
campaign in particular, were found to be highly significant factors in their par-
ticipation.  Matsusaka (1993) reaches a similar conclusion in an empirical study of 
885 ballots in California over the interval 1912-1990.  The results show no 
consistent relationship between the perceived closeness of votes on ballot 
propositions and voter turnout.  It is suggested that the conclusions from earlier 
studies that found a positive relationship between voter turnout and the perceived 
closeness between candidates result from an increased mobilization of party 
members by party organizers to get voters to the polls in close races. 
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Many other factors have also been examined to find relationships to explain 
voter turnout.  Cebula (1983) argues from empirical evidence that the existence of 
the U. S. Electoral College has acted to reduce voter turnout, even during non-
Presidential election years.  Carter (1984) considers the impact that early an-
nouncement of projections of the winners of an election have on voter turnout.  
Capron and Kruseman (1988) consider the impact that political rivalry among 
candidates has on voter turnout.  Empirical results indicate that the participation 
rate in an election can be negatively affected by having either too few or too many 
candidates in an election.  Glazer (1987) argues that voters go through the effort to 
vote for particular candidates for entertainment and to project an image.  Wright 
(1989) examines the phenomenon of reduced voter turnout for runoff elections.  
Heckelman (1994) conducted an empirical study suggesting that the use of secret 
ballots reduces voter turnout, since there is a reduced incentive for candidates to 
offer payoffs for votes.  This results from the lack of candidate control in this 
situation, since the candidate is not able to observe the true behavior of the voters 
who are given bribes in such situations.  Knack (1994) does an empirical study on 
voter turnout, as related to: weather conditions, homeownership status, regularity 
of church attendance, education, age, and other factors.  The results are not consis-
tently clear in that study. 

Several studies have developed economic models to explain why people vote. 
Riker and Ordeshook (1968) develop such a model for two candidate elections.  
This model is basically driven by an attempt to determine the expected payoff 
from voting, and voters are assumed to vote if that expected payoff exceeds the 
expected payoff from abstaining.  The relevant factors in this expected cost model 
include: the number of eligible voters in the population, the reward that the voter 
receives from the act of voting, the marginal reward that the voter receives if the 
more preferred candidate wins, the probability that the voter will be pivotal, and 
the cost of the act of voting.  A voter will be pivotal if his or her vote causes their 
preferred candidate to win.  Hinich (1981) also develops an economic model that 
is based on a voter’s expected payoffs from voting for either of two candidates, 
but this model does not include a factor for the probability that the voter will be 
pivotal.  Niemi (1976) presents a discussion of reasons why people might choose 
not to vote in an election in the context of differences in costs for voting and for 
not voting. 

Darvish and Rosenberg (1988) test some aspects of this general model of Riker 
and Ordeshook (1968) by considering the impact of population size on voter turn-
out in elections.  The size of the population of voters would also have a direct im-
pact on the likelihood that the voter would be pivotal.  Empirical results from elec-
tion data indicate that population size is negatively correlated with local election 
turnout, but that the result is insignificant for national elections.  These results 
support the economic model for local elections that are help separately from na-
tional elections, but the results did not hold for local elections that were held in 
conjunction with national elections. 

Jaarsma, et al. (1986) perform an empirical test of the same model, and focused 
on the aspect of the size of the payoff from having a preferred candidate win.  This 
is done by considering the abstention rates in Dutch elections for private sector 
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workers, for local bureaucrats with government jobs in a local sector where they 
would vote, and for commuting bureaucrats with government jobs in a sector in 
which they do not vote. Local bureaucrats have the highest voter turnout rate for 
any of the groups in local elections.  The difference in voting rates between local 
bureaucrats and commuting bureaucrats disappears in national elections.  The re-
sults suggest that a higher turnout rate should be anticipated as the expected pay-
off from the election outcome increases. 

Greene and Nikolaev (1999) perform a similar empirical study on voting data 
from the United States over the period 1972-1997, showing a positive relationship 
between voter turnout and income, and that public sector employees have a higher 
rate of turnout than private sector employees.  This study was based on results that 
were obtained from surveys of individual voters, rather than considering relation-
ships over aggregated totals from groups of similar voters.  The results from indi-
vidual voters were not found to be as strong as the results from many earlier stud-
ies in which aggregated results were used. 

Variations of the model proposed by Riker and Ordeshook (1968) are proposed 
in several studies.  Ferejohn and Fiorina (1974) evaluate the decision of individu-
als to vote or to abstain from voting from a utility-based decision-theoretic ap-
proach, extending notions from Downs (1957).  Tideman (1985b) considers the 
act of voting in terms of the amount of remorse or elation that is felt by a voter as 
a result of the outcome of an election, in conjunction with whether or not the voter 
has an impact on the outcome of the election.  

Game theoretic approaches are also taken to explain why people vote. Palfrey 
and Rosenthal (1983) use a game theoretic approach to model voter participation 
in terms of the voters’ perceptions that they might affect the outcome of an elec-
tion.  Owen and Grofman (1984) develop a model of voter participation and find 
that a rational equilibrium condition exists if each voter adopts a small probability 
of actually voting. In this situation, the turnout will be sufficiently small to make it 
worth the time to vote, in terms of having an impact on the election, for those who 
actually do vote.  The normal rate of turnout for elections suggests that voters 
must actually be enticed to vote for some reason other than an expectation that 
they will influence the outcome of an election. 

Each of these economic and game theoretic models assumes that individual 
voters decide whether or not to vote based on an evaluation of how to act in order 
to maximize their own utility for voting.  Harsanyi (1980) surveys earlier research 
that leads to a description of two types of decision-makers. Act-utilitarian decision 
makers make decisions solely to maximize social utility on the basis of the par-
ticulars of a specific problem that is facing society at any given time.  Rule-
utilitarian decision-makers make decisions after making a rational commitment to 
act as an agent would be expected to behave to maximize social welfare on an on-
going basis.  It is argued that an act-utilitarian decision-maker, like those de-
scribed in individual utility maximizing models, would very likely never choose to 
participate in an election, since their vote has an insignificant likelihood of affect-
ing the outcome.  However, rule-utilitarian decision-makers would be much more 
likely to participate in elections. 

The recurring reference to the probability that a voter will be pivotal, or have an 
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impact on the election outcome by voting, in the individual utility maximizing 
models has led to a number of studies to consider that probability.  The main focus 
of studies in this particular area has been on the development of representations 
for the probability that a majority rule election on two candidates will result in a 
tied vote. 

Beck (1975) develops a representation for the limiting probability as n
that a tie exists in an election on two candidates BA,  when the probability that a 

randomly selected voter has the preference BA  is p, and voters’ preferences are 
assumed to be independent.  The value of n must be even for a tie to exist. The 
representation is derived by applying Stirling’s Approximation to the appropriate 
binomial probability representation.  The resulting limiting probability representa-
tion is given as  

n
pp

n 214 2 .
(5.35)

Computational evidence shows that this probability approaches zero quite quickly 
for large n, except for p near 1/2  Penrose (1946) gives the same representation for 
the special case of IC with p = 1/2. 

Good and Mayer (1975) and Chamberlain and Rothschild (1981) extend the no-
tions from Beck (1975) by using Bayesian analysis with probability distributions 
defining the likelihood that p values are observed.  Chamberlain and Rothschild 
(1981) consider a special case in which p has a uniform distribution over the inter-
val 1,0 , and the expected probability that a tie exists for even n is then given by  

1
11

221

0 2 n
dppp

nn

n
n

.
(5.36)

The concept of expected probabilities with UC in Chapter 3 applies here, to re-
quire this result to be equivalent to obtaining the obvious representation for this 
probability with IAC, and Berg (1990) finds this to be true with a different Bayes-
ian approach to the problem.  Fischer (1999) provides an extensive analysis of the 
differences between the work by Beck (1975) and the Bayesian approaches. 

Blais and Young (1999) did an experimental study on a group of subjects, ex-
posing them to a film about the rationality of voting and the paradox of why so 
many people vote.  It was found that exposure to this film significantly reduced 
the percentage of subjects who actually voted in a subsequent election, as com-
pared to those who did not view the film.  Framing the act of voting in terms of ra-
tional choice seemed to induce subjects to reconsider why they should feel obliged 
to vote.  There are clearly many reasons to explain why potential voters choose to 
abstain from voting in elections, and simple observations show that many potential 
voters do indeed choose to abstain from voting.  We focus our attention on the im-
pact that voter abstention can have on the determination of a PMRW. 

Gehrlein and Fishburn (1976c) consider the basic situation of an election with 
two candidates BA, .  The set of n voters is partitioned into four categories, 
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where X
i  denotes the number of voters who prefer BAX ,  of the two candi-

dates, and vote in a PMR election on the two candidates if i = 1, or abstain if i = 0.  

By definition, nBBAA
1010 , and we denote the probability that any 

particular combination of these terms is observed as BBAAP 1010 ,,, .  Candi-

date B is defined as the strict Global Pairwise Majority Rule Winner (GPMRW) if 
it is the strict PMRW for both the population of potential voters and the set of ac-
tual voters. The PMRW for the set of actual voters only requires a PMR majority 
that is based on the number of actual voters, not on the number of potential voters.   

When P  denotes some probability distribution over BBAAP 1010 ,,,  for all 

possible combinations of sX
i '  for a specified n, P,,nmP B

GPMRW  denotes 

the probability that B is the strict GPMRW for m-candidate elections.  It follows 
directly for odd n that  
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(5.37)

Let P,,2 nP B
TPMRW  denote the probability that B is the strict PMRW for 

the population of potential voters while A and B tie among the set of actual voters 

in a two-candidate election, with BA
11 , and 
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(5.38)

If a strict winner of a tied outcome for actual voters is determined by random 
selection with equal likelihood for either candidate being selected, the probabil-

ity, P,,2 nPS
GPMRW , that a strict GPMRW exists is given by  

.,,2,,2
2
1,,2,,2

,,2

PPPP

P

nPnPnPnP

nP

B
TPMRW

A
TPMRW

B
GPMRW

A
GPMRW

S
GPMRW (5.39)
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Gehrlein and Fishburn (1976c) develop representations for the probability 

P,,2 nPS
GPMRW  with various assumptions about P .  The assumption of 

Impartial Anonymous Culture with Abstentions (IACA) is defined as the situation 

in which BBAAP 1010 ,,,  is identical for all combinations of X
i ’s for a speci-

fied n.  Based on counting arguments like those used to develop the representation 

for IACnPS
PMRW ,,3  in Eq. 3.30, it is found that the representation for 

IACAnPS
GPMRW ,,2  from Eq. 5.39 for odd n is not a function of n, with 

4/3,,2 IACAnPS
GPMRW . (5.40)

The case with identifiable voters is also considered, where Ap  is the probabil-

ity that a randomly selected potential voter prefers A to B, with AB pp 1 .  Let 

A  denote the probability that a potential voter who prefers A to B will actually 

vote.  If voters’ preferences are conjoint independent, potential voters independ-
ently form their preferences on the pair A and B, and the values of A  and B  are 

independent of the values of Ap  and Bp .  In the case of conjoint independence, 

.11
!!!!

!
,,,

1010

1010

1010
BBAA

BBBBAAAABBAA

BBAA

ppppn
P (5.41)

Gehrlein and Fishburn (1976c) consider the case in which = A  = B  and 

prove that P,,2 nPS
GPMRW  increases as  increases for all Ap  when conjoint 

independence is assumed, with P,,2 nPS
GPMRW  = 1/2 when = 0 and 

P,,2 nPS
GPMRW  = 1 when = 1. 

The conjoint independent condition of Impartial Culture with Abstention
(ICA( )) assumes that Ap = Bp  = 1/2 and = A  = B , and several observa-

tions are made regarding ICAnPS
GPMRW ,,2 .  Theorems 5.1 and 5.2 are 

proved in Gehrlein and Fishburn (1976c), with 

Theorem 5.1. 4/32/1,,2,,2 ICAnPICAnP S
GPMRW

S
GPMRW  for all  

          1,0  and all odd 1n .

Theorem 5.2. 4/3,,2
1

0
dfICAnPS

GPMRW  for any probability density  

          function f  over 1,0  for which 1ff .

An additional representation is also obtained for the limiting distribution of 

ICAnPS
GPMRW ,,2  as n , with 
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/,,2 1CosICAPS
GPMRW . (5.42)

The conditional limiting probability, ICAmCPS
GPMRW ,, , that there is a 

GPMRW for m candidates, given that a PMRW exists in the population of poten-
tial voters is obtained from  

ICmPICAmPICAmCP S
PMRW

S
GPMRW

S
GPMRW ,,/,,,, . (5.43)

Table 5.3 lists computed values of ICACPS
GPMRW ,,2  for each 

00.1)1(.1.0  from Eqs. 5.42 and 5.43, with the fact that 1,,2 ICPS
PMRW .

Table 5.3 Computed values of ICACPS
GPMRW ,,2  and ICACPS

GPMRW ,,3

ICACPS
GPMRW ,,2 ICACPS

GPMRW ,,3
.00 .5000 -------
.10 .6024 .4236 
.20 .6476 .4806 
.30 .6845 .5290 
.40 .7180 .5742 
.50 .7500 .6186 
.60 .7820 .6640 
.70 .8155 .7126 
.80 .8524 .7675 
.90 .8976 .8365 
1.00 1.0000 1.0000 

The results of Table 5.3 indicate that there is a significant likelihood that some 
candidate other then the PMRW for potential voters will be elected when the ab-
stention rate it at all large with the assumption of ICA( ) when the potential 
electorate is large.  Computed values in the original study indicate that these 
limiting values are approached quite rapidly as n increases, approximately for 

49n .  Gehrlein and Fishburn (1976c) also consider a specialized model in 
which A  and B  are dependent on the magnitude of Ap  and Bp .   

Gehrlein and Fishburn (1978a) extend the notion of ICA( ) to elections with 
three candidates CBA ,,  to obtain a representation for the limiting probability 

ICAPS
GPMRW ,,3  as n .  Following previous arguments that have de-

veloped similar limiting probability representations, we start by defining four dis-

crete variables to describe the preferences of a given thi  voter: 
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.castis vote theand voter,potentialfor theif:1

-1abstains voter potential theif:0

castis vote theand voter,potentialfor theif:1

castis vote theand voter,potentialfor theif:1

-1abstains voter potential theif:0

castis vote theand voter,potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1
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3214
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4213
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4211

pppiAC
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pppiCAX
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pppiBAX
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pppiAB

pppiBAX
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thi

th

th

thi

th

thi

th

thi
(5.44)

The expressions in brackets in Eq. 5.44 denote the probability that the associ-
ated values of each variable are observed, following the definition of ip ’s from 

Fig. 5.1.  The symmetry of ICA( ) with respect to candidates leads to 

0i
jj XEXE  for j = 1, 2, 3, 4, and A will be the GPMRW with the joint 

probability that nXEnX jj  for j = 1,2,3,4.  As n  the Central Limit 

Theorem requires that this joint distribution is multivariate normal with correlation 

matrix 3R  with 

1
3/11

3/1
3/3/11

3R .

(5.45)

Following the logic of arguments that were used previously to develop repre-
sentations for limiting probabilities with IC, along with the fact that there are three 
possible candidates that could be the GPMRW 

.3,,3 4
3RICAPS

GPMRW
(5.46)

The positive multivariate normal orthant probability 3R4  is a special case 

of a representation that is given in Cheng (1969), which Gehrlein and Fishburn 

(1978a) use with Eq. 5.46 to obtain a representation for ICAPS
GPMRW ,,3 ,

when 10 , with 
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SinSinSinICAPS
GPMRW

(5.47)

The situation with 0  is problematic in this representation when m > 2, since 
there is more than one interpretation of the existence of a strict PMRW when all 
voters abstain. 

Computed values of ICACPS
GPMRW ,,3  are listed in Table 5.3 for each 

value of  = .1(.1)1.0 from Eqs. 5.43 and 5.47.  As 1 , 1,,3 ICAPS
GPMRW

= ICPS
PMRW ,,3 , so 11,,3 ICACPS

GPMRW .  These computed values show 

that there is a significant likelihood that a GPMRW does not exist, given that a 
PMRW does exist on the population of all potential voters, when the rate of ab-
stention is at all large with the assumption of ICA( ). 

Gehrlein and Fishburn (1979b) consider the probability that a Local Pairwise 
Majority Rule Winner (LPMRW) exists.  Candidate B is a LPMRW if it is the 
PMRW for the set of actual voters, when either A or C is the PMRW among the 
population of all potential voters.  The determination of the PMRW for the set of 
actual voters only requires a PMR majority that is based on the number of actual 
voters, not on the number of potential voters.  To develop a representation for this 
probability, we define four discrete variables to describe the preferences of a given 

thi  voter: 

.castis vote theand voter,potentialfor theif:1

-1abstains voter potential theif:0

castis vote theand voter,potentialfor theif:1

castis vote theand voter,potentialfor theif:1

-1abstains voter potential theif:0

castis vote theand voter,potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1

 voter potentialfor theif:1
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The symmetry of ICA( ) with respect to candidates leads to 0i
jj YEYE

for j = 1, 2, 3, 4, and A will be the PMRW for the set of all potential voters while 
B is the PMRW for the set of actual voters with the joint probability that 
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nYEnY jj  for j = 1, 2, 3, 4.  As n  the Central Limit Theorem re-

quires that this joint distribution is multivariate normal with correlation matrix 
4R  with  

1
3/11

3/3/1
3/3/11

4R .

(5.49)

Following the logic of arguments that were used previously to develop repre-
sentations for limiting probabilities with IC, along with the fact that there are six 
possible combinations of candidates that could create the existence of a LPMRW, 

the limiting probability, ICAPS
LPMRW ,,3  that a LPMRW exists with the as-

sumption of ICA( ) is given by 

.6,,3 4
4RICAPS

LPMRW
(5.50)

The form of the correlation matrix 4R   does not lead to a simple representation 

for 4
4R , so Gehrlein and Fishburn (1979b) obtain values for 4

4R  by us-

ing quadrature with a representation from Gehrlein (1979).  These computed val-
ues are then used with Eq. 5.50 and the logic of Eq. 5.43 to obtain computed val-

ues for the conditional probability, ICACPS
LPMRW ,,3 , that a LPMRW 

exists, given that a PMRW exists for the set of all potential voters.  The computed 

values of ICACPS
LPMRW ,,3  for each 0.1)1(.1.  are given in Table 5.4  

Table 5.4 Computed values of ICACPS
LPMRW ,,3  and ICACPS

RPMRW ,,3

ICACPS
LPMRW ,,3 ICACPS

RPMRW ,,3
.10 .4906 .1999 
.20 .4359 .1596 
.30 .3901 .1295 
.40 .3480 .1046 
.50 .3073 .0829 
.60 .2663 .0636 
.70 .2236 .0459 
.80 .1767 .0296 
.90 .1202 .0143 
1.00 .0000 .0000 

A Reverse Pairwise Majority Rule Winner (RPMRW) exists when some candi-
date is the both the PMRL for the population of all potential voters and the 
PMRW for the set of actual voters.  The determination of the PMRW for the set of 
actual voters only requires a PMR majority that is based on the number of actual 
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voters, not on the number of potential voters.  The derivation of a representation 

for the limiting probability, ICAPS
RPMRW ,,3 , that a RPMRW exists can be 

obtained as a simple extension of the development that led to the representation 

for ICAPS
GPMRW ,,3  in Eq. 5.47.  The modification that must be made is the 

reversal of signs in the definitions of variables iX1  and iX 2  in Eq. 5.44.  The re-

sult that is obtained is given by 
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SinSinSin

SinSinSinICAPS
RPMRW

(5.51)

Computed values for the conditional probability, ICACPS
RPMRW ,,3 , that 

a RPMRW exists, given that a PMRL exists for the population of potential voters 
with the assumption of ICA( ) are obtained by following the logic of Eq. 5.43, 
and the corresponding values are listed in Table 5.4 for each 0.11.1. .

The calculated values in Table 5.4 show that ICACPS
RPMRW ,,3  is sig-

nificantly smaller than corresponding values for ICACPS
LPMRW ,,3 .  How-

ever, ICACPS
RPMRW ,,3  is still quite significant for low rates of voter par-

ticipation.  These observations are completely consistent with some empirical 
observations that are related to such outcomes. 

In particular, Regenwetter, et al. (2002) examine survey results from eight dif-
ferent three-candidate elections in three different countries.  Results show that no 
PMR cycles were found in any of the survey results.  However, it was discovered 
that using samples of survey respondents could frequently misrepresent the true 
PMR ranking of the entire population of survey respondents, unless the size of the 
sample was relatively large.  In this situation the entire population of the data set 
would reflect the preferences of all potential voters, and the sample set would rep-
resent the preferences of the set of actual voters.  In some cases the true PMR 
rankings of the population would only have a high probability of being repre-
sented by the sample if the sample size was in the hundreds or thousands, to re-
flect a relatively low abstention rate.  A key factor for sample convergence to the 
population PMR ranking was shown to be linked to the minimum marginal PMR 
comparison on a pair in the population preferences. 

Tsetlin and Regenwetter (2003) consider the sample size requirements that are 
associated with various confidence levels that the PMRW in a sample is the same 
as the PMRW in a population.  As in the previous study, the size of the sample re-
flects the abstention rate.  Relatively small sample sizes are shown to be sufficient 
to have a high confidence that the sample PMRW is the same as the population 
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PMRW for samples from populations that do not have a strict balance in pairwise 
preferences on candidates like that suggested by ICA( ).  As in our previous 
findings, the conclusions that are reached with the probability representations that 
have been obtained are strongly linked to the balanced preference basis of the as-
sumption of ICA( ).

5.7 Degrees of Voter Indifference between Candidates 

The work of Inada (1964) was mentioned in Chapter 2, in considering conditions 
that require that a PMRW must exist.  In particular, Inada shows that PMR must 
be transitive for an odd number of voters with dichotomous preferences.  As in our 
previous discussion about single-peaked preferences, we should expect there to be 
a positive general relationship between the proportion of voters who have di-
chotomous preferences and the probability that a PMRW exists. 

Radcliff (1993) does an empirical study to determine the propensity of voters to 
have dichotomous preferences.  The study obtains individual voter’s weak ordered 
preference rankings on U. S. Presidential candidates from reported thermometer 
scores in surveys from American National Election Studies from 1972 to 1984.  
Results suggest that approximately 30 percent of respondents had dichotomous 
preferences in three-candidate elections, with that percentage decreasing dramati-
cally as the number of candidates increased to four or five candidates. 

Gehrlein and Valognes (2001) develop a probability representation to consider 
the impact that voter indifference between candidates can have on the probability 
that a PMRW exists in three-candidate elections.  There is a direct link between 
indifference and dichotomous preferences in three-candidate elections.  Let 

BA ~  denote the situation of voter indifference between candidates A and B.  If 
individual indifference is allowed, while individual transitivity of preference is 
still required, individual voter’s preferences must be weak orders. There are 13 
possible weak ordered preference rankings on three candidates that might repre-
sent the preferences of a given voter: 

      A  A  B  C  B  C 
      B  C  A  A  C  B 
      C  B  C  B  A  A 
      1p 2p 3p 4p 5p 6p

 A~B  A~C  B~C   A   B     C 
     C    B     A     B~C   A~C  A~B 
    7p    8p    9p     10p     11p      12p

       BA ~ , CA ~ , CB ~
           13p

Fig. 5.2 Possible weak ordered preference types for individual voters with three candidates 
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Here, 13p denotes the probability that a randomly selected voter has preferences 

that are represented by complete indifference among the candidates. 
Let 1k  denote the probability that a randomly selected voter is in the class of 

voters with linear preference rankings.  Similarly, 2k  denotes the probability that 

voters have weak ordered preferences that do not reflect complete indifference be-
tween candidates, which must be dichotomous preferences with three candidates.  
Then, 3k  denotes the probability that voters have complete indifference on candi-

dates, with 1k  + 2k  + 3k  = 1.  Let the vector 321 ,, kkkk  define the probabili-

ties that voter’s preferences fall into the associated preference classes. 
 The Impartial Weak Order Culture Condition (IWOC k ) assumes that all 
preference structures within a class of voter preference types are equally likely to 
be observed for a specified k with independent voters.  With the voter preferences 
as defined in Fig. 5.2, IWOC k  requires that 6/1kpi  for i = 1, 2, 3, 4, 5, 6; 

that 6/2kp j  for j = 7, 8, 9, 10, 11, 12; and that 313 kp .  Gehrlein and 

Valognes (2001) apply the same basic techniques that have been presented earlier 
to IWOC k in order to develop a representation for the limiting probability, 

kIWOCPS
PMRW ,,3 , that a PMRW exists as n , and 

3
1

2
3

4
3,,3 SinIWOCPS

PMRW k ,
(5.52)

where 

21

21
3 23 kk

kk
.

(5.53)

The determination of the PMRW in this case only requires a PMR majority on 
pairs of candidates that is based on the number of voters who have a preference on 
that pair of candidates, not on the total number of voters.  The result in Eq. 5.52 is 
a direct extension of work in Fishburn and Gehrlein (1980b), where the identical 
result was obtained for the special case with 03k .  Obviously, 021 kk
since no PMRW can exists if all voters have complete indifference between all 

candidates.  Table 5.5 lists computed values of kIWOCPS
PMRW ,,3  for 

3/13 , and for each value of .500).025(.350.3
Two results are obtained by Gehrlein and Valognes (2001) by simply taking de-

rivatives of the representation in Eq. 5.52: 

Theorem 5.3  For any fixed 01k , kIWOCPS
PMRW ,,3  increases as 2k  in 

 creases.  For 01k , 1,,3 kIWOCPS
PMRW  with any 02k .

Theorem 5.4 For any fixed 02k , kIWOCPS
PMRW ,,3  decreases as 1k  in

 creases. 
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Table 5.5  Computed values of kIWOCPS
PMRW ,,3 , kIWOCPS

PMRW ,,4  and 

kIWOCPS
PMRW ,,5

kIWOCPS
PMRW ,,3 kIWOCPS

PMRW ,,4 kIWOCPS
PMRW ,,5

1/3 .9123 .8245 .7487 
.350 .9207 .8415 .7726 
.375 .9335 .8671 .8089 
.400 .9465 .8930 .8459 
.425 .9596 .9192 .8834 
.450 .9729 .9457 .9215 
.475 .9863 .9727 .9604 
.500 1.0000 1.0000 1.0000 

Theorem 5.3 generalizes the result of Inada (1964) for the case of three candi-
date elections by showing that when the preferences of a  population of voters 
shifts, so that fewer individual voters will have linear preferences and more will 
have dichotomous preferences, then there is an increased likelihood that a PMRW 
will exist.  And, when all voters who hold any preferences at all have dichotomous 
preferences a PMRW must exist.  Theorem 5.4 shows that the same result is true 
when individual voter’s preferences shift from having linear rankings to having 
complete indifference between candidates.  For the special case with 02k , Eq. 

5.52 reduces to the result of Guilbaud (1952) for ICPS
PMRW ,,3  in Eq. 3.77 for 

all 01k .

For the case of more than three candidates, the relationship between voter indif-
ference and dichotomous preferences is not as direct, since voters can have transi-
tive preferences with some indifference, without having dichotomous preferences 
in such cases.  A number of studies have been conducted to establish a general 
link between voter indifference between candidates and the probability that a 
PMRW exists for more than three candidates.  Voter’s preferences are assumed to 
be weak ordered preferences in these studies, so that transitivity of preference is 
still a necessary condition.  Bjurulf (1972) performs a Monte-Carlo simulation 
analysis to reach the conclusion that an increased propensity for voters to have 
weak ordered preferences leads to an expected increase in the probability that a 
PMRW exists. 

Analysis in Fishburn and Gehrlein (1980b) can easily be extended to obtain 

representations for the limiting probabilities kIWOCPS
PMRW ,,4  and 

kIWOCPS
PMRW ,,5 , since IWOC k  is a simple extension of the assumption 

of “Permutation Invariance” that was used as a basis in that study.  We develop 

the representation for kIWOCPS
PMRW ,,4  to show how the procedure works.  

Let K denote the set of all possible weak orders on a set of four candidates 

4321 ,,, CCCC4C , and let iK  denote the subset of K with im 1  indiffer-
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ence classes.  It follows from simple counting arguments that 24!4# 1K ,

366#
2
4

2K , 142#
2
4

3
4

3K , and 1# 4K .  For example, the cal-

culation of 2# K  results from the fact that there are 
2
4

 different pairs of candi-

dates that could be placed in the single indifference class in a weak order in this 
particular class of weak orders.  Then, the weak order could be any of the six pos-
sible linear rankings on the two remaining candidates and the pair in the single in-
difference class.  Following earlier discussion, IWOC k  assigns a probability ik
to the likelihood that a randomly selected voter will have preferences that match a 
weak order in iK .  And, each weak order in a specified iK  is equally likely to be 

observed with probability equal to ii Kk /# .

The development of a closed-form representation for the limiting probability 

kIWOCPS
PMRW ,,4  follows earlier arguments.  We start by defining three 

discrete variables i
jX  on the preferences of the thi  voter in a randomly generated 

voter preference profile, for  j = 1, 2, 3, with 
i
jX  = 1   for the 12 weak orders in 1K  with 11 iCC

           for the 15 weak orders in 2K  with 11 iCC
           for the 4 weak orders in 3K  with 11 iCC

i
jX  = 0   for none of the weak orders in 1K

           for the 6 weak orders in 2K  with 11 ~ iCC
           for the 4 weak orders in 3K  with 11 ~ iCC
           for the 1 weak order in 4K  with 11 ~ iCC

i
jX  = -1   for the 12 weak orders in 1K  with 11 CCi

           for the 15 weak orders in 2K  with 11 CCi
           for the 4 weak orders in 3K  with 11 CCi .

(5.54)

Given the definitions in Eq. 5.54, Candidate 1C  will be the strict PMRW for a 

specified random voter preference profile if 0jX  for all j = 1, 2, 3.  By the 

symmetry of IWOC k  with respect to candidates, 0i
jj XEXE , so the 

probability that 1C  will be the strict PMRW is the same as the positive orthant 

probability that nXEnX jj  for all j = 1, 2, 3.  As n , this joint distri-

bution of the nX j  variables is trivariate normal. 

The correlations between the nX j  variables in the joint distribution are the 

same as the correlations between the original i
jX  variables, as a result of the Cen-
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tral Limit Theorem.  Since 0i
jXE , the variance of i

jX  is simply obtained as 

2i
jXE  for each  j = 1, 2, 3.  The symmetry of IWOC k  leads to 

321
3212

7
4

6
5

14
8

36
30

24
24 kkkkkkXE i

j ,
(5.55)

for each   j = 1, 2, 3.  A representation of the covariance term between the vari-

ables i
jX  and iX  is equivalent to ii

j XXE  since 0ii
j XEXE .  More-

over, the definitions in Eq. 5.54 lead to 
ii

j XX  = +1 when either 11 jCC  and 11 CC  or 11 CC j  and     

                                          11 CC
ii

j XX  =  0 when either 11 ~ jCC  or 11 ~ CC
ii

j XX  = -1 when either 111 jCCC  or 111 CCC j .

(5.56)

It then follows directly that 
ii

j XX  = 1  for the 16 weak orders in 1K

       for the 18 weak orders in 2K
      for the 4 weak orders in 3K

ii
j XX  = 0   for none of the weak orders in 1K

        for the 12 weak orders in 2K
        for the 10 weak orders in 3K
        for the 1 weak order in 4K

ii
j XX  = -1   for the 8 weak orders in 1K

        for the 6 weak orders in 2K
        for none of the weak orders in 3K .

(5.57)

After algebraic reduction, 

321 7
2

3
1

3
1 kkkXXE ii

j .
(5.58)

The correlation term between all pairs of variables i
jX  and iX , 4 , can then 

be obtained for 0321 kkk , so that 0
2i

jXE , with 
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321

321
24 243542

121414
kkk
kkk

XE

XXE

i
j

ii
j .

(5.59)

The symmetry of IWOC k  with respect to candidates then leads to the repre-
sentation 

434,,4 3RkIWOCPS
PMRW . (5.60)

Following earlier arguments, 4
3R  is a correlation matrix on three variables 

in which all correlations are equal to 4 , and the representation in Eq. 5.60 can be 

reduced by using the trivariate extension of Sheppard’s Theorem of Median Di-
chotomy to obtain 

4
13

2
1,,4 SinIWOCPS

PMRW k ,
(5.61)

for 0321 kkk .

Following the same procedure with m = 5, it is possible to develop a representa-

tion for kIWOCPS
PMRW ,,5 , with  

545,,5 4RkIWOCPS
PMRW , (5.62)

where 

4321

4321
5 80114135150

40485050
kkkk

kkkk
,

(5.63)

for 04321 kkkk .

The representations in Eqs. 5.59 and 5.63 indicate that 4  and 5  are mini-

mized at 1/3, with 01k and 032 kk  for 4m , or 0432 kkk  for 

5m  They are maximized at 1/2, when 03k  and 021 kk  for 4m , or 

when 04k  and 0321 kkk  for 5m  to require all voters who are not 

completely indifferent between candidates to have dichotomous preferences. 

Table 5.5 lists computed vales for each of kIWOCPS
PMRW ,,4  and 

kIWOCPS
PMRW ,,5  for 4  and 5  equal to 1/3 and for each 4  and 5

equal to .350(.025).500.  The values for kIWOCPS
PMRW ,,4  are obtained with 

Eq. 5.61. The values of kIWOCPS
PMRW ,,5  are obtained from tabular values 

from Gehrlein and Saniga (1975) where the representation that led to Eq. 4.56 was 

used to obtain extensive listings of values of 54
4R .
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Lepelley and Martin (2001) consider a special case of IWOC k , denoted as 
IWOC*, that is very similar to the notion of IC.  For three-candidate elections, 
IWOC* assumes that each of the thirteen possible weak ordered preference struc-
tures in Fig. 5.2 is equally likely to represent the individual preferences of a ran-
domly selected voter.  Thus, IWOC* is equivalent to the special case of IWOC k
with 13/621 kk  and 13/13k  with m = 3.  When m = 4, IWOC* is the spe-

cial case of IWOC k  with 75/241k , 75/362k , 75/143k  and 75/14k .

Representations are obtained for the limiting probability as n  for 

*,,3 IWOCPS
PMRW  and *,,4 IWOCPS

PMRW , with 

9465.
5
2

2
3

2
3*,,3 1CosIWOCPS

PMRW .
(5.64)

8792.
31
1232*,,4 1CosIWOCPS

PMRW .
(5.65)

The representations for *,,3 IWOCPS
PMRW  and *,,4 IWOCPS

PMRW  in 

Eqs. 5.64 and 5.65 are respectively equivalent to the representation in Eqs. 5.52 
and 5.61 for this special case.  Van Deemen (1999) presents some limited com-

puted values of *,3,3 IWOCPS
PMRW  and *,3,3 IWOCPS

PMRC  that are obtained 

by enumeration. 
Jones, et al. (1995) do a Monte-Carlo Simulation study to obtain estimates of 

*,, IWOCnmPS
PMRW .  Results lead to the conjecture that *,, IWOCnmPS

PMRW

is minimized, for a given m, when n = m.  In addition, *,, IWOCnmPS
PMRW  is 

conjectured to decrease monotonically, for a given m, as n increases for mn ,
while it increases monotonically as n increases for mn .

Lepelley and Martin (2001) also consider the probability that a PMRW exists 
under the assumption of the Impartial Anonymous Weak Ordered Culture Condi-
tion (IAWOC).   Following the notion of IAC, the use of IAWOC assumes that 
each possible voting situation with a specified number of voters is equally likely 
to be observed, given that individual voters have weak ordered preferences on 

candidates, as listed in Fig. 5.2.  Representations for both IAWOCnPS
PMRW ,,3

and IAWOCnPS
PMRC ,,3  are obtained for all odd n, for which n + 1 is a multiple 

of four, with 

.
24681012512

681466563378962341099429864411911968373

,,3
23456

nnnnnn
nnnnnn

IAWOCnPS
PMRW (5.66)
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.
2346781011124096

1569156342675967
17292160366211713

,,3

2

3456

nnnnnnnnn
nn

nnnnnnn

IAWOCnPS
PMRC

(5.67)

The probability representations in Eqs. 5.66 and 5.67 are based on having AMB
for candidates A and B if BA  for 21n  or more voters.  The PMR relation-

ship on any pair of candidates must therefore hold on the basis of a majority of all 
voters in these two representations, not just for a majority of voters who have a 
preference on the pair. 

Crès (2001) is an extension of earlier work that related to the possible existence 
of supermajority cycles.  The primary result in the study is that the use of 

RPM with rate 
11  is necessary and sufficient to prohibit the existence of 

RPM  cycles of any length, where  is the maximum number of allowable 
equivalence sets in any voter’s weak ordered preference rankings on candidates.   
Increased levels of indifference, as reflected by smaller values of , therefore re-

duces the value of  that is required to prevent the existence of RPM  cycles. 

5.8 The Impact of Intransitive Voter Preferences 

It was stressed in Chapter 1 that individual voters who displayed intransitive pref-
erences were viewed as acting irrationally. Rose (1957) presents an interesting 
early study that evaluates the presence of intransitive responses in paired compari-
son responses of individual subjects in repeated experiments. Three types of in-
transitive responses were observed.  Intransitivity due to random error occurs 
when a subject is indifferent between all alternatives in some subset and intransi-
tive responses result because the subject makes random preference selections on 
pairs from that indifference subset when forced to give a preference response.  In-
transitivity due to carelessness occurs when a subject makes clerical errors in re-
porting pairwise preferences, or simply does not give adequate thought to deter-
mining true pairwise preferences before responding.  True intransitivity refers to 
actual cyclic preferences that a subject would consistently report after giving ade-
quate thought to determining the true preferences on alternatives.  Most reported 
intransitivities in this empirical study are explained as being due to either random 
error or carelessness.  It is concluded that the evidence shows that examples of 
true intransitivity appear are a very rare phenomenon, if they exist at all. 

Van Acker (1990) surveys much of the work that is related to finding various 
types of intransitivities in individual preferences,  referring to the three types of in-
transitivities above, as representing “inconsistent behavior”, “mistakes” and 
“genotypic intransitivity”.  Van Acker also surveys much of the work that at-
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tempts to explain the occasional presence of various forms of individual intransi-
tivity of preference in empirical studies.  This particular topic will be addressed in 
detail in Chapter 7. 

Fishburn and Gehrlein (1980b) develop a representation for the probability that 
a PMRW exists when voters can have intransitive preferences.  Begin by defining 
a partition of all possible individual preference structures on three candidates 

CBA ,,  into six subsets, denoted as iR  for 1 = 1, 2, …, 6.  The various types of 

individual voter preference structures are displayed in Fig.  5.3. 

    Preference      Prototype  
    Subset        Structure      iR#
        1R     CBCABA ,,~     6 

        2R     CBCABA ,,     6 

        3R     CBCABA ~,,~     6 

        4R     CBCABA ,~,     6 

        5R     CBACBA ,,      2 

        6R     CBCABA ~,~,~     1 

Fig. 5.3 Six types on individual preference structures on thee candidates 

Preference subset 1R  corresponds to all dichotomous preferences, while subset 

2R  corresponds to all linear preference rankings and 6R  corresponds to the situa-

tion of complete indifference between rankings. Preference subset 5R  contains 

individual voter’s preferences that are intransitive.  Voter preference structures in 
subsets 3R  and 4R  are quasi-transitive.  Let ji CC '  denote that a voter either 

prefers iC  to jC  or is indifferent between the two candidates.  A voter’s prefer-

ence ranking on candidates is quasi-transitive if ji CC '  and kj CC '  require 

that ki CC ' , while maintaining transitivity on pairwise preference comparisons.  

The analysis in Fishburn and Gehrlein (1980b) did not consider the possibility of 
complete indifference between candidates, but the results are easily extended to 
include 6R  as a possibility. 

Let r denote a six-dimensional vector such that ir  is the probability that a ran-

domly selected voter has a preference structure in iR .  The assumption of Permu-

tation Invariance ( rPI ) assumes that all preferences within any iR  are equally 

likely to be observed, with probability equal to ii Rr /# .  Fishburn and Gehrlein 

(1980b) develop a representation for the limiting probability, rPIPS
PMRW ,,3 ,

that a PMRW exists  as n , that can be applied to this case, when 16r , to 

lead to 
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'
2
3

4
3,,3 3

1SinPIPS
PMRW r ,

(5.68)

where  

54321

5421
3 3232

3'
rrrrr

rrrr
.

(5.69)

The minimum correlation coefficient value for Eq. 5.69 has 1'3  when 

05r  with 04321 rrrr , and the maximum value is 2/1'3  when 01r

with 05432 rrrr .  Simple analysis will show that rPIPS
PMRW ,,3  de-

creases if 5r  increases, while any other ir  decreases accordingly.   

Table  5.6 lists calculated values of rPIPS
PMRW ,,3  for each value of 

30.25.0.1'3  from Eq. 5.68.  The identical form of Eqs. 5.52 and 5.68 allows 

the determination of rPIPS
PMRW ,,3  for 3/1'3  from values that are asso-

ciated with kIWOCPS
PMRW ,,3  in Table 5.5. 

Table 5.6 Computed values of rPIPS
PMRW ,,3

rPIPS
PMRW ,,3

-1.00 .0000 
-.75 .3451 
-.50 .5000 
-.25 .6294 
.00 .7500 
.25 .8706 
.30 .8955 

Roff (1977) considers the impact that irrational voters have on the probability 
that a PMRW exists in three-candidate elections.  The basis of the study is a varia-
tion of IC, and is connected to the notion of Permutation Invariance.  Let r denote 
the proportion of voters with rational preferences that are complete and transitive.  
Each of these six possible linear rankings has a probability of selection for a 
voter's preference equal to r/6. There are two possible cycles on three alternatives, 
and each cycle represents the preferences of a voter with probability 2/1 r .

This is equivalent to the notion of Permutation Invariance with all cases of voter 
indifference being disallowed, and the probability that a PMRW exists is calcu-
lated for small n.

Jain (1986) considers necessary and sufficient conditions for RPM  to be 
quasi-transitive when voters’ preferences on candidates are quasi-transitive.   The 

conditions that are necessary and sufficient to require transitivity of RPM  are 
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found to be linked to the degree of Latin Square agreement in voter preference 
profiles. 

5.9 The Impact of Uncertainty 

Shepsle (1970,1972) considers PMR cycles in the context of positions or plat-
forms that candidates might take in an election.  Voters will form preference rank-
ings on candidates based on the positions that the candidates adopt.  For three pos-
sible positions 321 ,, PPP , we consider three equally sized blocs of voters with 

preference rankings on the positions as shown in Fig. 5.4 

      Bloc 1  Bloc 2  Bloc 3 
         1P       2P       3P
         2P       3P       1P
         3P       1P       2P

Fig. 5.4 An example voting situation of bloc preferences on three possible candidate posi-
tions 

Thus, a candidate can not choose any position to adopt from 321 ,, PPP  such 

that the electorate would select that candidate as a PMRW, given the voter blocs’ 
preferences on these possible platforms.  However, a candidate might introduce 
“uncertainty” into the process by not taking a precise stand on the issues.  As a re-
sult, the selection of the candidate would amount to selecting a “lottery” on the 
positions.  It is shown that such a “lottery position” might be the PMRW in com-
parison to the three specific positions.  Necessary and sufficient conditions are 
given so that a lottery position must exist as a PMRW in such situations.  Dacey 
(1979) addresses the notion of how such a “lottery” might be created through the 
use of ambiguous candidate statements about their true positions on issues.   

Holler (1980,1982) addresses this same problem of PMR cycles in the context 
of candidates selecting positions or platforms, given the known preference rank-
ings of voters over the positions.  The preference rankings that the candidates 
themselves have for adopting the possible positions are brought in as an additional 
issue.  The candidates are then concerned not only with adopting a position to 
maximize the likelihood that they will be a PMRW with the voters, but also with 
the utility that they themselves have for adopting, and supposedly implementing, 
that particular position.  Analysis suggests that the addition of this additional in-
formation to the candidate's problem of selecting a position, or taking the same 
position as another candidate should tend to lead to a stable, or non-cyclical, selec-
tion process.   Petry (1982) surveys earlier work, based on spatial voting models, 
regarding candidates who select positions to either maximize the number of votes 
that they receive or to maximize their utility from adopting positions. 
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Shepsle (1970,1972) is an extension of the work of Zeckhauser (1969), who 
showed that the reverse situation could exist.  That is, there can be a PMRW on 
pure candidate positions, and the introduction of a lottery on possible candidate 
positions could create an unstable situation in which there is no equilibrium posi-
tion for candidates to select.  Fishburn (1972), McKelvey and Richelson (1974) 
and Flood (1980) develop similar observations as those in Zeckhauser’s analysis. 

5.10 Conclusion 

A number of societal factors have been found to have an impact on the probability 
that a PMRW exists.  The factor that has been most thoroughly examined in this 
context is the degree of coherence or consistency of voters’ preferences, as meas-
ured according to some definition of social homogeneity.  Numerous studies have 
sought to find general relationships between these measures of social homogeneity 
and the probability that a PMRW exists.  Some theoretical studies have success-
fully shown that such relationships can exist on an expected value basis, without 
measuring the overall strength of the relationships.  Strong evidence has also been 
provided to indicate that simple measures of social homogeneity are very ineffec-
tive at showing such a relationship at all.  In particular, the connection between 
some of these measures of social homogeneity and the probability that a PMRW 
exists is found to be reversed, based on whether the number of voters is restricted 
to be odd or even.  If such a general relationship is to be found with a significant 
degree of strength, the measure of homogeneity has to be based on an understand-
ing of the mechanism by which voters preferences are formed.  The proximity of 
the voters’ preferences to single-peaked preferences is an example of such a 
measure of social homogeneity. 

Other significant societal factors that have an impact on the probability that a 
PMRW exists include: the propensity of voters to abstain from the election, the 
degree of voter indifference between candidates, the propensity of voters to have 
intransitive preferences, and the presence of uncertainty regarding the exact posi-
tion that candidates represent on issues. 
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6.1 Introduction 

The possibility that a PMRW does not exist, to result in an occurrence of Condor-
cet’s Paradox, has been seen to be a potentially significant threat to the stability of 
election processes, if the conditions of assumptions like IC and IAC are valid in a 
given situation.  Moreover, we have found that when simple measures of social 
homogeneity are used to evaluate the level of coherence of voters’ preferences, it 
is difficult to observe a strong general relationship between homogeneity and the 
probability that a PMRW exists.  When voters’ preferences are formed by a proc-
ess that imposes some internal structural consistency or coherence to voter prefer-
ence profiles or voting situations, much stronger relationships can be found be-
tween measures of homogeneity and the probability that a PMRW exists.  One 
such assumption is met if voters’ preferences are consistent with the condition of 
single-peaked preferences, which assures the existence of transitive PMR relation-
ships for odd n.  However, this is generally a very restrictive assumption, which 
led Niemi (1969) to propose a measure of proximity to single-peaked preferences 
to gauge social homogeneity.  The goal of this chapter is to develop representa-
tions to evaluate the impact that several similar types of internal structural coher-
ence or consistency will have on the probability that a PMRW exists. 

6.2 Methods for Obtaining Representations 

Methods that can be used to obtain simple closed-form representations for the 
probability that election outcomes are observed with the assumption of IAC or 
MC were developed in Chapter 3.  With these assumptions, the representations 
were obtained by using counting arguments to determine the number of voting 
situations that result in a given outcome. 

Figure 6.1 shows the six possible linear preference rankings that voters might 
have on three candidates, CBA ,, , following the development of Figure 3.2.  

Consistent with previous discussion in  denotes the number of voters with the as-

sociated linear preference ranking, and 6
1i inn .
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        A  A  B  C  B  C 
        B  C  A  A  C  B 
        C  B  C  B  A  A 
        1n 2n 3n 4n 5n 6n

Fig. 6.1 Voting situations with individual linear preference rankings for three-candidate 
elections 

 A representation was developed for ,n,IACPSPMRW 3  with odd n in Chapter 3 

by starting with a definition of the conditions on in ’s that require Candidate A to 

be the PMRW in a voting situation.  Following the logic that led to Eq 3.21, this 
event is observed for any voting situation in which 
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The specific restrictions on the individual in ’s that are necessary to lead to the 

outcome in Eq. 6.1 are developed in the discussion that led to Eq. 3.22, with  

.
0

0

0

0

0

234561

34562

562
1

3

562
1

4

62
1

5

2
1

6

nnnnnnn
nnnnnn

nnn

nnn

nn

n

n

n

n

n (6.2)

A representation for the total number of voting situations, IAC,nN A
PMRW ,3 ,

for which A is the strict PMRW, with the restrictions on in ’s that are defined in 

Eq. 6.2, is developed in Eq 3.23 with 
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 The symmetry of IAC with respect to candidates leads to the identity 

IACnK
IACnN

,n,IACP
A
PMRWS

PMRW ,,3
,,33

3 .
(6.4)
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Here, IACnK ,,3  is the total number of possible voting situations with three 

candidates, following the notion of IAC with fixed n, and 

120
,,3

5

1i
in

IACnK .

(6.5)

A simple closed-form representation for IAC,nN A
PMRW ,3  was obtained by alge-

braic methods in Chapter 3 by using known relations for sums of powers of inte-
gers to sequentially make simplifying reductions to the representation in Eq. 6.3.  
This sequential reduction process was found to be cumbersome, but it follows a 
very simple and direct logic. 
 Simple closed form equations for representations of the type shown in Eq. 6.3, 
are currently very easy to obtain with standard software packages, as long as the 
necessary conditions for an event to occur result in bounds on the upper and lower 
summation indexes are like those specified above in Eq 6.3.  That is, where each 
upper and lower summation bound is expressed as a simple linear function of n
and of in ’s that are defined earlier in the sequence of summation indexes. 

 We define this as the simple linear form restriction, which also requires that 
each of the coefficients in the linear equations that bound the summation indexes 
are rational numbers that can be expressed as ratios of integer numbers.  Huang 
and Chua (2000) note that a generalization can be made when a representation is 
being developed for the count of the number of voting situations that meet condi-
tions that have a simple linear form restriction.  In particular, the general form of 
the identities for sums of powers of integers requires that the resulting representa-
tion for the count of voting situations must be expressible as a polynomial in n.
With five summation signs in the function, the degree of the polynomial must be 
five or less.  Moreover, the constants in the polynomial must also be rational num-
bers.  Huang and Chua (2000) then suggest that this could lead to an easier way to 
obtain representations for IAC probabilities than using the cumbersome process of 
sequential algebraic reduction.  These arguments can easily be extended to repre-
sentations with MC, by replacing n with L in the discussion above. 

6.2.1 EUPIA 

Gehrlein (2002b) develops a computer algorithm, EUPIA (Effectively Unlimited 
Precision Integer Arithmetic), to efficiently implement the basic notions from 
Huang and Chua to obtain closed form probability representations for election 

outcomes with IAC and MC.  To describe how this procedure works, let nEA

denote the number of voting situations for which Candidate A meets the conditions 
of voting Event F with n voters.  Based on the preceding discussion: 
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Axiom 6.1  If the restrictions on in ’s that are necessary for Event F to be ob-

served in a voting situation for a three-candidate election meet the simple linear 
form restriction, then 

5

0i

i
i

A nnE ,

for some integer sequence n =  + pj, with  j = 0, 1, 2,…  . 

(6.6)

Here, each i  coefficient is a rational number that is expressible as the ratio of 

two integers.  The term p is the periodicity of the representation, and  is the 

starting point of the integer sequence for which the given representation is valid.  

As observed in Chapter 3, the representation for IAC,nN A
PMRW ,3  in Eq. 3.26 

has p = 2 and  = 3, since it is only valid for odd 3n , and the representation 

for IACnK ,,3 in Eq. 6.5 has p = 1 and  =1, since it is valid for all positive in-

tegers.
 The periodicity of the series of n values for which a given representation is 
valid is driven by restrictions that are needed to keep all summation limits at inte-
ger values.  For example, suppose that a summation limit contains the term 

y
xn  for 

integer constants x and y.  To keep this ratio integer valued, it can only hold for a 
series of n values with periodicity y.  The specific values of n that are used in a se-
quence with a specified periodicity must also be such that the ratios are integer 
valued, so that (n + x) must be an integer multiple of y.  This has a direct impact 
on the starting point, , which can be used for the series. 

 Suppose that we arbitrarily fix  and p, and use computer enumeration tech-

niques to evaluate the exact integer values for the number of voting situations, 

pjNVS A , for which Candidate A meets the conditions of Event F with 

pj voters, for each  j = 0(1)5.  We then use the computed values of 

pjNVS A  to establish six simultaneous equations of the form 

pjE A  = pjNVS A . (6.7)

The i  terms in the pjE A  functions from Eq. 6.6 are identical in all six of 

these equations for each given i , and they can then be found by using precise al-
gebraic methods to solve these six simultaneous equations with six unknowns. 

 For example, suppose that we wish to determine the coefficients of nEA  for 

the event that A is the PMRW for odd n, so that  = 3 and p = 2.  As a first step, 

computer enumeration is used to obtain the values ,183ANVS ,805ANVS

,2507ANVS ,6309ANVS 137211ANVS  and .268813ANVS
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 Using these computed values with Eqs. 6.6 and 6.7, we then set up six simulta-
neous equations with six unknowns ,,,,,, 543210  that correspond to the 

six rational coefficients in nEA :
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Algebraic reduction is then used in Eq. 6.8 to solve for the six unknown variables, 
to find: 

.
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99

128
45
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210
(6.9)

The resulting representation for nEA  from Eq. 6.9 is therefore identical to the 

representation for IAC,nN A
PMRW ,3  in Eq. 3.26.  The procedure is obviously 

very simple to implement when  and p are known in advance. 

 When  and p are not known in advance EUPIA performs an additional search 

in order to determine them.  Suppose that we arbitrarily fix  at a relatively large 

number, and start the process with 1p .  Computer enumeration is then used to 

evaluate the exact integer values of, pjNVS A  such that A meets the condi-

tions of Event F for each j = 0(1)7.  The first six computed values of 

pjNVS A , with j = 0(1)5,  are then used to establish the six simultaneous 

equations of the form in Eq. 6.7, and the resulting functional form of nEA  is ob-

tained.  A functional form must always exist to fit the six equations with six un-
knowns.  However, if the true periodicity for the representation does not actually 

have 1p , the functional form that has just been obtained for nEA  will not ac-

curately give values of nEA  for pn 5 .

 EUPIA therefore determines if the nEA  function that has just been obtained 

by the procedure will correctly determine the computer enumeration values 

of pjNVS A  for each j = 6, 7.  If the numerical values from the computer 
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enumeration and the derived nEA  are identical for each j = 6, 7, it is concluded 

that the correct nEA  representation and p have been found, for the given .  If 

these results do not match, then the correct periodicity is not being used to obtain 

the nEA  representation.  In this case, EUPIA iterates through this process and 

sequentially increases p, while keeping  fixed, until the computer enumeration 

results and the derived nEA  that has been obtained for the iteration are identical 

with j = 6, 7.  The minimum value of  for which the representation nEA  is 

correct can easily be determined by finding the smallest value of n for which the 
obtained representation matches computer enumeration results; given that the de-
termined periodicity is maintained as the number of voters is reduced from the 

that was arbitrarily set to use the EUPIA procedure. 
 The necessary conditions that are given in Eq. 6 .2 to identify voting situations 

that are included in IAC,nN A
PMRW ,3  clearly result in summation limits in Eq. 6.3 

that meet the definition of the simple linear form restriction.  However, if we con-
sider the restrictions in Eq. 3.41 that identify voting situations that are included in 

MC,nN A
PMRW ,3* , a much more complicated situation results, due to the presence 

of Max and Min arguments on sets of linear functions in the summation bounds.  
This complication was dealt with in Chapter 3 by partitioning the set of all voting 

situations that are included in MC,nN A
PMRW ,3*  into thirteen subspaces, such that 

each of these subspaces has summation bounds that meet the simple linear form 
restriction.  As a result, each of the thirteen subspaces has a representation for the 
number of voting situations that it contains that is of the form of Eq. 6.6.  It fol-

lows directly that the ultimate representation for MC,nN A
PMRW ,3*  that is ob-

tained by accumulating the associated representations for the thirteen subspaces 
must also have a form like that shown in Eq. 6.6.  There must be some periodicity 
for the accumulated representation that is consistent with the periodicities of all of 
the individual subspace representations. 
 Following this logic, it is easy to generalize the earlier definition the simple lin-
ear form restriction to include situations in which each upper and lower summa-
tion bound is expressed as the Max or Min of some set of simple linear functions 
of n and of in ’s that are previously defined in the series of summation indexes.  

As with the original definition, the coefficients in the simple linear functions must 
be rational numbers.  As discussed above, these arguments can easily be extended 
to representations with either IAC or MC  
 A number of probability representations for voting outcomes are obtained with 
the use of the EUPIA procedure in Gehrlein (2002b, 2003, 2006a).  Representa-
tions are obtained in these studies with the assumptions of IAC, MC, and the con-
dition in which all single-peaked voting situations are assumed to be equally likely 
to be observed. 
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6.2.2 EUPIA2 

Gehrlein (2004c, 2006b) develops an extension of EUPIA that obtains representa-
tions for the conditional probability that voting outcomes are observed, given that 
voting situations are constrained to have some specified value of a measurable pa-

rameter.  The representation for kCIACnPSPMRW |,3  in Eq. 5.33 is an exam-
ple of such a result.  The measurable parameter of that is of primary interest at this 
point of our analysis is the proximity of voting situations to the condition of per-
fectly single-peaked preferences. 
 As discussed in Chapter 5, Niemi (1969) considers an extension of the strict 
definition of single-peaked preferences.  In particular, the maximum proportion of 
n voters in any voting situation who have preference rankings that are single-
peaked along some common dimension is used as a rough measure for proximity 
of the voting situation to being perfectly single peaked.  It was also noted in Chap-
ter 2 that Arrow (1963) proves that a voting situation on three candidates repre-
sents perfectly single-peaked preferences if some candidate is never ranked as 
least preferred by any voter.  Gehrlein (2004c) adopts a hybrid of these ideas by 
using the number, b, that measures the minimum number of times that some can-
didate is bottom ranked, or least preferred, in the preferences of n voters to serve 
as a simple measure of the proximity of a voting situation to being perfectly sin-
gle-peaked in three-candidate elections, where 

.,, 654231 nnnnnnMinb (6.10)

If b is equal to zero for a voting situation with three candidates, it represents 
perfectly single-peaked preferences, and when b is maximized at 3/n , a voting 
situation reflects very disperse preferences of voters over candidates to reflect a 
situation that is very far removed from perfect single-peakedness.  Another per-
spective on this issue is that a voting situation with a small parameter b reflects a 
situation in which there is some candidate that very few voters think is the worst 
of the three candidates.  In that sense, this candidate can be viewed as a positively 
unifying candidate that voters would not generally think of as reflecting the worst 
outcome if that candidate were to be elected. 

Following the definitions of Chapter 5, let kIACb  denote an extension of 

IAC that is conditional on the statement that attention is restricted only to voting 
situations with a specified value of b = k.  In particular, all such voting situations 
are assumed to be equally likely to be observed.  The conditional probability that a 
strict PMRW exists for n voters with three candidates, given the assumption of 

kIACb , is denoted by kIACnP b
S
PMRW |,3 . Following the logic that led to 

Eq. 6.4,  

kIACnK
kIACnN

kIAC,nP
b

b
A
PMRW

b
S
PMRW ,,3

,,33
|3 .

(6.11)
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Here, kIACnN b
A
PMRW ,,3  and kIACnK b,,3  are defined in the obvious 

fashion, following the development of Eq. 6.4. 
Gehrlein (2006b) develops EUPIA2 to obtain representations for functions like 

kIACnN b
A
PMRW ,,3  and kIACnK b,,3 .  Under the assumption of IAC, 

EUPIA obtains a representation for the number of voting situations, nEA , such 

that the in ’s meet the necessary conditions for Candidate A to meet the require-

ments of Event F.  With the assumption of kIACb , EUPIA2 obtains a represen-

tation for the number of voting situations, knE A , , such that the in ’s both meet 

the necessary conditions for Candidate A to meet the requirements of Event F and 
meet the necessary conditions to match a specified integer value k for some de-
fined parameter of the voting situation, like b.
 The extended linear form restriction requires that each upper and lower sum-

mation bound on the representation to obtain knE A ,  is expressed as the Max or 

Min of some set of simple linear functions of n, a specified k for some defined pa-
rameter and in ’s that are previously defined in the series of summation indexes.  

As with the definition of a simple linear form restriction, the coefficients in the 
simple linear functions must be rational numbers.  Given the nature of identities 
for sums of powers of integers, it obvious that: 

Axiom 6.2  If the restrictions on in ’s in a three-candidate voting situation that are 

necessary for Event F to be observed and also meet the necessary conditions to 
match a specified integer value k for some defined parameter meet the extended  
linear form restriction, then 

5

0

5

0
,

i

i

j

ji
ij

A knknE

for some integer sequence pn , with = 0, 1, 2,…   . 

(6.12)

As in Axiom 6.1, the ij  coefficients are rational numbers, and these arguments 

can easily be extended to representations with MC by replacing n with L in the 
definition of the extended linear form restriction. 

It follows easily from results in Gehrlein (2004c) that: 

Axiom 6.3  If that the necessary conditions to obtain nEA  for some Event F in a 

three-candidate election meet the simple linear form restriction, then 

knE A , must result in a functional form as specified in Eq. 6.12, if k is a speci-

fied value for parameter b.

Proof. This result is easily proved by noting that knE A ,  can be obtained as the 

sum of three individual functions in this case.  Each function is obtained by start-
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ing with the restrictions on the in ’s that require Candidate A to meet the condi-

tions of Event F, and an additional set of restrictions is added in each case.  Fol-
lowing the definition of b in Eq. 6.10, the first function adds restrictions such that 

knn 31 , knn 42  and knn 65 .  The second function adds restrictions 

such that 131 knn , knn 42  and knn 65 .  The third function adds 

restrictions such that 131 knn , 142 knn  and knn 65 .  Assum-

ing that the necessary conditions that define nEA  meet the simple linear form 

restriction, the addition of the restrictions for each of these three functions will 
obviously meet the extended linear form restriction for each function.  Based on 
Axiom 6.2, each of the three individual functions must then have the general form 
of Eq. 6.12, and so must their sum.                QED

The first step in developing a representation for kIAC,nP b
S
PMRW |3  with 

EUPIA2 is to obtain a representation for the number of voting situations, 
kIACnK b,,3 , with n voters that have a specified value, k, for parameter b, as 

defined in Eq. 6.10.  The representation for IACnK ,,3  in Eq. 3.28 is clearly 

consistent with the simple linear form restriction, so Axiom 6.3 requires that the 
representation for kIACnK b,,3  must have the general form of Eq. 6.12.   

 The EUPIA2 process starts by fixing k at a specified numerical value and us-

ing computer enumeration procedures to obtain values of kpjNVS A |  for 

each value of  j = 0(1)7.  In this case, kpjNVS A |  is a count of the number 

of voting situations with pj  voters for which parameter b is equal to the 

specified value of k.  In addition, k is treated as a constant in Eq. 6.12, so that the 
general form can be reduced to a linear function with a single variable, n, as in  

Eq. 6.6, for that specified k, with the jk  term being absorbed into the ij  term in 

Eq. 6.12. 
 EUPIA is then used directly to find the conditional representation 
for kIACnK b,,3 , denoted as kkIACnK b |,,3 , when the k value has been 

specified at the fixed value, and 

5

0
|,,3

i

ik
ib nCkkIACnK ,

for some integer sequence pjn , with  j = 0, 1, 2,… 

(6.13)

 The process is repeated for each integer k value with 3/0 nk , and the k
iC

terms that are obtained for these kkIACnK b |,,3  representations will typically 

be different for each given k.  For the process to work effectively, we need to start 
the search process in EUPIA2 with a relatively large value of .  Table 6.1 sum-

marizes the k
iC  values that were obtained for 30 i  for each 110 k  when 
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EUPIA2 was run while arbitrarily setting 35  in all cases. The results give 

0k
iC , for all 4i , and the periodicity for all cases is found to have p = 1.  Fur-

thermore, additional EUPIA2 runs were performed to verify that the relevant en-
tries in Table 6.1 remain valid for all integer values of 1 .

 A representation for kkIACnK b |,,3  can then be obtained very easily for 

any specified k in the range 3/20 nk  by using the known form of the rep-

resentation in Eq. 6.13 along with the k
iC  entries in Table 6.1. 

Table 6.1 Computed k
iC  values with the specified k for  = 35 and p = 1 

k kC0
kC1

kC2
kC3

0 0 5/2 3 1/2 
1 12 -22 3 1 
2 171 -165/2 0 3/2 
3 720 -188 -6 2 
4 2010 -695/2 -15 5/2 
5 4500 -570 -27 3 
6 8757 -1729/2 -42 7/2 
7 15456 -1240 -60 4 
8 25380 -3411/2 -81 9/2 
9 39420 -2270 -105 5 
10 58575 -5885/2 -132 11/2 
11 83952 -3732 -162 6 

 The general form of the representations that are given in Eqs. 6.6 and 6.12, 
along with the specific representation for kkIACnK b |,,3  that is given in Eq. 

6.13, lead directly to the conclusion that each k
iC  coefficient must be obtainable 

from a function of k, with 

i

j

j
ij

k
i kC

5

0
,

(6.14)

for some rational ij coefficients for a specified i.

 Following the earlier logic of EUPIA with a specified i , the known values of 
k
iC  that are given in Table 6.1 can be used for k = 0, 1, 2,…, 5-i to establish a set 

of 6-i simultaneous equations, following the format of Eq. 6.14, with i6  un-
knowns.  The solution of the i6  simultaneous equations will give the i6  val-

ues of the ij  coefficients in the general representation for k
iC .  When the par-

ticular case with 0i  is considered, six variables ,,,,,, 050403020100
are defined.  Using the associated entries from Table 6.1, the six simultaneous 
equations are given by: 
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(6.15)

 Algebraic techniques are then used to solve the six simultaneous equations in 
Eq. 6.15 for the six unknown variables, with: 

.0
2
9

2
27

2
3

2
150

050403

020100
(6.16)

Given these results, 

.
2

56313
2
9

2
27

2
3

2
15 2

432
0

kkkkkkkkCk
(6.17)

 Similar analysis leads to: 

52431
2
1 2

1 kkkCk

21
2
3

2 kkCk       
2

1
3

kCk

(6.18)

It is easily verified that these functional forms generate the values that appear in 
the associated columns of Table 6.1 for any specified k.
 After substitution into Eq. 6.13 and algebraic reduction, we obtain 

kknnknkkIACnK b 2351
2

31,,3 ,

for 1n  and .3/2nk

(6.19)

This result is exactly the same as the representation for kIACnK b,,3  in 

Gehrlein (2004c) that was obtained by using algebraic reduction of functions in-
volving sums of powers of integers. 

For the special case that 3/nk  when n is a multiple of three, it is easily 
shown that 

3

3
3

3
,,3 nnIACnK b .

(6.20)
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 The proportion of all possible IAC voting situations that are single-peaked for n
voters with three candidates is obtained from Eqs. 6.19 and 3.29 as 

432
60

,,3
0,,3

nnn
n

IACnK
IACnK b , for 1n .

(6.21)

When n = 91, this proportion is given by 0.0066, to provide firm evidence that the 
assumption of single-peaked preferences is extremely restrictive, to the point that 
this assumption excludes more than 99 percent of all possible voting situations 
with n = 91. 

A representation for kIACnN b
A
PMRW ,,3  is obtained in the same general 

fashion that was used to obtain the representation for kIACnK b,,3  in Eq. 

6.19.  The conditions on in ’s that result in Candidate A being the strict PMRW for 

odd n in Eq. 3.22 clearly meet the simple linear form restriction. Axiom 6.3 there-

fore requires that the representation for kIACnN b
A
PMRW ,,3  must have the 

form of Eq. 6.12. 
Following the development of Table 6.1 that led to representations for 

kkIACnK b |,,3  with specified values of k, we use EUPIA to find coefficients 
k
iD  for specified k that give representations for kkIACnN b

A
PMRW |,,3 .  The 

computations were performed with 91 , and attempts were made to obtain 
k
iD  coefficients for all k with 300 k , where 

.|,,3
3

0

i

i

k
ib

A
PMRW nDkkIACnN

(6.22)

The results are summarized in Table 6.2 for all 220 k  and the periodicity 
was found to be p = 2 for all k entries.  Before we proceed with further analysis, it 
is necessary to consider why Table 6.2 terminates at k = 22.  

 EUPIA2 consistently obtains representations for kkIACnN b
A
PMRW |,,3  with 

p = 2 and 91 , for all 220 k in Table 6.2.  However, no such representa-

tion was found with k = 23.  The reason for this is that representations to obtain 

kIACnN b
A
PMRW ,,3  have one functional form for 

4
3nk  and a second func-

tional form for 
4

1nk .

EUPIA2 began this process by using computer enumeration techniques to count 

the number of voting situations, knNVS APMRW | , for which Candidate A is the 

PMRW with a specified value of k for parameter b, for a series of n values with n
= jp  for j = 0(1)7.  The first term in the series is 91n . With k = 23,  

4
1nk  so the second functional form should be used to obtain the observed value 
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of 23|91A
PMRWNVS . The third enumerated value that is listed in the series is 

952pn . With k = 23, 
4

3nk  so the first functional form should be 

used to obtain the observed value of 23|95A
PMRWNVS .

Table 6.2 Computed k
iD  values with the specified k for  = 91 and p = 2 

k kD0
kD1

kD2
kD3

0 0 5/6 1 1/6 
1 5 -25/3 1 1/3 
2 69 -63/2 0 1/2 
3 290 -218/3 -2 2/3 
4 810 -815/6 -5 5/6 
5 1815 -225 -9 1 
6 3535 -2065/6 -14 7/6 
7 6244 -1492/3 -20 4/3 
8 10260 -1377/2 -27 3/2 
9 15945 -2765/3 -35 5/3 
10 23705 -7205/6 -44 11/6 
11 33990 -1530 -54 2 
12 47294 -11479/6 -65 13/6 
13 64155 -7063/3 -77 7/3 
14 85155 -5715/2 -90 5/2 
15 110920 -10280/3 -104 8/3 
16 142120 -24395/6 -119 17/6 
17 179469 -4779 -135 3 
18 223725 -33421/6 -152 19/6 
19 275690 -19330/3 -170 10/3 
20 336210 -14805/2 -189 7/2 
21 406175 -25355/3 -209 11/3 
22 486519 -57569/6 -230 23/6 

This conflict explains why a single functional form is not obtained as a repre-

sentation for 23|23,,3 b
A
PMRW IACnN  when 91 is used to start the series of 

n values to get the values in Table 6.2.  The exact break point of this type in such 
series can be precisely determined as a function of n by running EUPIA2 with a 
number of  values, to look for consistency in terms of the value of  where the 

first functional form stops working for each .  We find that the first functional 

form for kIACnN b
A
PMRW ,,3  holds over the range of k values with 

4/10 nk , where z  denotes the greatest integer value that is less than 

or equal to z.

A representation for kIACnN b
A
PMRW ,,3  is obtained for this range of k val-

ues in the same fashion that was used to developed the representation for 
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kIACnK b,,3  in Eq. 6.19.  Using the data from Table 6.2, with the necessary 

functional form like that in Eq. 6.14, we obtain 

172111
6

1 2
0 kkkkDk     5264

6
1 2

1 kkkDk

2
21

2
kkDk     

6
1

3
kDk .

(6.23)

Using the identity that is given in Eq. 6.11 with the representation for 

kkIACnN b
A
PMRW |,,3  that follows from Eqs. 6.22 and 6.23, substitution and 

algebraic reduction lead to 

kknnkn
nnknkkkkk

kIAC,nP b
S
PMRW

23513
234265112117

|3
3222

for odd n  with 4/10 nk .

(6.24)

This representation for k,n,IACP b
S
PMRW 3  in Eq. 6.24 is equivalent to the one 

that was obtained by algebraic methods in Gehrlein (2004c). 

Table 6.3   Computed 
*k

iF  values with the specified *k  for  = 91 and p = 4 

*k *
0
kF *

1
kF *

2
kF *

3
kF *

4
kF

0 -231/512 -59/128 17/768 5/128 11/1536 
1 5385/512 -751/128 -343/768 -7/128 11/1536 
2 60345/512 -2883/128 -415/768 -19/128 11/1536 
3 261417/512 -7607/128 -199/768 -31/128 11/1536 
4 760665/512 -16075/128 305/768 -43/128 11/1536 
5 1765449/512 -29439/128 1097/768 -55/128 11/1536 
6 3538425/512 -48851/128 2177/768 -67/128 11/1536 
7 6397545/512 -75463/128 3545/768 -79/128 11/1536 

The determination of a representation for k,n,IACP b
S
PMRW 3  with 

4
1nk

requires some manipulation of EUPIA2. We obtained computer enumeration val-

ues for knNVS APMRW |  in the last phase for each pjn  with j = 0(1)7 for 

each k = 0(1)22 to obtain the entries in Table 6.2.  To obtain the associated repre-

sentation for kIACnN b
A
PMRW ,,3  over the range of k values with 

34
1 nn k ,

we start with computer enumeration values for *|
4

1 knNVS nA
PMRW   for each 
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pjn  with j = 0(1)7, for each k *= 0(1)7, with 91 .  Table 6.3 summa-

rizes the resulting *k
iF  values such that  

.*|*,,3
4
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*
4

1
4

1

i

ik
i

nn
b

A
PMRW nFkkIACnN

(6.25)

The entries in Table 6.3 all have p = 4. 

A representation for *,,3
4

1 kIACnN n
b

A
PMRW  is then obtained for this 

range of k values with 
34

1 nn k  in the same fashion that was used to developed 

the representation for the range of k values 4/10 nk  in Eq. 6.24.  Using 

the data from Table 6.3, with the necessary functional form like that in Eq. 6.14, 
we obtain 
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(6.26)

By substituting 
4

1nk  for k* in the representations for *k
iF in Eq. 6.26, and in 

Eq. 6.25, a representation for kIACnN b
A
PMRW ,,3  can be obtained for the range 

of k values with 
34

1 nn k , with 

.
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3223 nnknkkkkn

kIACnN b
A
PMRW

(6.27)

Additional runs with 4p  verify that this representation is valid for all 

,....19,15,11,7n .
 By repeating this procedure with 93 , this representation is found to be 

valid for all odd 7n  with 3/14/1 nkn , where z  denotes the 

smallest integer value that is greater than or equal to z.
 Using the identity in Eq. 6.11 with algebraic reduction leads to 



210      The Impact of Coherent Preferences 
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The case of 3/nk  when n is an odd multiple of three must be handled as a spe-

cial case, to obtain 4/33/3 n,n,IACP b
S
PMRW .

Similar analysis for even n results in the following representations for even 
8n :
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Table 6.4 lists values of kIACP b
S
PMRW |91,3  and kIACP b

S
PMRW |92,3  that 

were obtained from Eqs. 6.24, 6.28 and 6.29 for each .300 k  One very impor-

tant observation from Table 6.4 is that kIACnP b
S
PMRW |,3  increases as k in-

creases for both odd and even n.  The use of proximity to perfectly single peaked 
preferences as a situation-specific measure of social homogeneity adds enough in-
ternal consistency or coherence to the voters’ preferences to avoid the very disap-

pointing results that were observed Chapter 5 when n3SSM  was used to meas-

ure social homogeneity. 
The computed valued in Table 6.4 also indicate that the presence of a strong 

positively unifying candidate significantly increases the probability that a PMRW 

exists. For example, 99.|91,3 kIACP b
S
PMRW  for all values of 7k  and 

80.|91,3 kIACP b
S
PMRW  for all 25k .  As we have observed in earlier 

analyses, the rate of convergence of kIACnP b
S
PMRW |,3  to its limiting value of 

3/4 is much faster for odd n than it is for even n.
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Table 6.4 Computed values of kIACP b
S
PMRW |91,3 , kIACP b

S
PMRW |92,3  and 

kIACP c
S
PMRW |91,3

k kIACP b
S
PMRW |91,3 kIACP b

S
PMRW |92,3 kIACP c

S
PMRW |91,3

0 1.0000 .9837 1.0000 
1 .9997 .9828 .9920 
2 .9991 .9817 .9894 
3 .9982 .9803 .9841 
4 .9971 .9786 .9810 
5 .9957 .9766 .9762 
6 .9939 .9743 .9729 
7 .9919 .9715 .9683 
8 .9894 .9684 .9648 
9 .9866 .9649 .9602 
10 .9833 .9608 .9565 
11 .9795 .9562 .9520 
12 .9751 .9509 .9481 
13 .9700 .9450 .9435 
14 .9641 .9382 .9394 
15 .9574 .9304 .9347 
16 .9496 .9215 .9304 
17 .9404 .9112 .9255 
18 .9297 .8993 .9211 
19 .9170 .8853 .9160 
20 .9017 .8686 .9115 
21 .8832 .8485 .9063 
22 .8601 .8239 .9016 
23 .8325 .7947 .8965 
24 .8088 .7693 .8921 
25 .7900 .7490 .8875 
26 .7754 .7331 .8839 
27 .7645 .7211 .8803 
28 .7569 .7125 .8779 
29 .7523 .7069 .8758 
30 .7503 .7040 .8751 
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6.3 Proximity to Single-Troughed Preferences 

It was noted in Chapter 2 that Vickery (1960) observed that PMR must be transi-
tive for odd n if voters’ preferences are restricted to be single-troughed.  For three-
candidate elections, this condition is equivalent to requiring that some candidate is 
never top-ranked, or most preferred, by any voter.  Such a candidate can be 
thought of as being a negatively unifying candidate, in the sense that the voters’ 
are unified in their general opposition to having such a candidate selected as the 
winner of an election. 
 Following the logic of the discussion of proximity to perfectly single-peaked 
preferences in the immediately preceding section, we measure the proximity of a 
voting situation to perfectly single-troughed preferences by t, where 

.,, 645321 nnnnnnMint (6.30)

Vickery (1960) points out that the condition of single-troughed preferences is 
equivalent to the assumption of single-peaked preferences, when all of the voter 
preference rankings are inverted.  As a result, we expect to find a very similar im-
pact of proximity to perfectly single-troughed preferences on the likelihood that a 
PMRW exists when compared to that which was observed with proximity to per-
fectly single-peaked preferences.  Intuition turns out to be correct in this case. 

Lemma 6.1. k,n,IACKk,n,IACK tb 33  for all n.

Proof:  Consider any voting situation n such that b has any given value k.  For any 
such voting situation there is a unique voting situation, 'n  that is obtained from n
by taking the dual of the preferences of voters, with:  

.,, 435261 nnnnnn (6.31)

If b = k in n, the nature of the mapping in Eq. 6.31 requires that t = k in 'n .  Since 
this constitutes a 1-1 mapping between all possible voting situations with n voters, 
the result follows directly.                   QED

Lemma 6.2. k,n,IACNk,n,IACN t
A
PMRWb

A
PMRW 33  for odd 3n .

Proof. Consider any voting situation n such that b has any given value k, and sup-
pose that a strict PMRW exists for this voting situation.  Each such voting situa-
tion can be mapped to its unique dual voting situation, 'n  according to Eq. 6.31.  
Based on Lemma 6.1, t = k in 'n .  Given that all preferences are reversed in ob-
taining 'n  from n, the PMRW in n must be the PMRL in 'n .  When n is odd, the 
existence of a PMRL (PMRW) requires that a PMRW (PMRL) must also exist for 
three candidates.  The same statement is not necessarily true when n is even.  The 
mapping in Eq. 6.31 is 1-1, so that when n is odd, there must be the same number 
of voting situations with a strict PMRW and associated PMRL when b = k as there 
are with a strict PMRL and associated PMRW when t = k.  The symmetry of con-
ditions kIACb  and kIACt  with respect to candidates leads directly to the stat-

ed result.                         QED
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Lemma 6.3. kIAC,nPkIAC,nP t
S
PMRWb

S
PMRW |3|3  for odd 3n .

Proof.  Following the development of Eq. 6.11, 

kIACnK
kIACnN

kIAC,nP
t

t
A
PMRW

t
S
PMRW ,,3

,,33
|3 .

(6.32)

The result follows directly from Eq. 6.32 with Lemmas 6.1 and 6.2.     QED
Thus, the impact of having voters’ preferences reflect some degree of proximity 

to perfectly single-troughed preferences is identical to the impact of having the 
same degree of proximity to perfectly single-peaked preferences.  At least this is 
true with regard to the relationship of these two measures of social homogeneity to 
the probability that a PMRW exists. 

6.4 The Impact of Polarizing Candidates 

It was mentioned in Chapter 2 that Ward (1965) developed another restriction on 
voting situations that will assure transitivity of PMR for odd n.  In particular, 
Ward noted that PMR must be transitive if some candidate in every triple of can-
didates is never the middle-ranked candidate among the three candidates for any 
voter.  Let c define the minimum number of voters who rank some candidate at the 
center of their preference ranking in a three-candidate election, with 

526143 ,, nnnnnnMinc . (6.33)

 If c is equal to zero, every voter ranks some candidate as being either most pre-
ferred or least preferred in a three-candidate election.  This candidate can therefore 
be viewed as a polarizing candidate that tends to split voters among the electorate 
into antagonistic groups, rather than unify them..  Following previous discussion 
about measures b and t, c can be viewed as a measure of the proximity of voting 
situations to perfectly polarized preferences.  One observation follows quite easily. 

Lemma 6.4. k,n,IACKk,n,IACK cb 33  for all n.

Proof.  Consider any voting situation n such that b has any given value k.  For any 
such voting situation there is a unique voting situation, 'n  that is mapped to each 
n by reversing the ranking of the two less preferred candidates in the preferences 
of voters, with:  

.,, 645321 nnnnnn (6.34)

If b = k in n, the nature of the mapping in Eq. 6.34 requires that c = k in 'n .  Since 
this constitutes a 1-1 mapping between all possible voting situations with n voters, 
the result follows directly.                   QED

The result of Lemma 6.2 does not apply to the comparison of b and c with the 

mapping in Eq. 6.34, and kIAC,nP b
S
PMRW |3 kIAC,nP c

S
PMRW |3 .
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In order to develop a representation for kIAC,nP c
S
PMRW |3 , the next step is 

to obtain a representation for kIAC,nN c
A
PMRW ,3 .  Given the definition of c in 

Eq. 6.33, the logic of Axiom 6.3 can clearly be applied in this case and the result-
ing development of Eq. 6.22 leads to 

.|,3
3

0i

ik
ic

A
PMRW nGkkIAC,nN

(6.35)

Gehrlein (2006b) uses EUPIA2 to obtain the k
iG coefficients with 91 .  The 

results are summarized in Table 6.5 for all 230 k , and the periodicity was 
found to be p = 4  for all k entries.   

Table 6.5 Computed k
iG values with specified k values with 91 and p = 4 

k kG0
kG1

kG2
kG3

0 0 5/6 1 1/6 
1 25/4 -22/3 3/4 1/3 
2 127/2 -51/2 -1/2 1/2 
3 260 -167/3 -3 2/3 
4 1399/2 -599/6 -13/2 5/6 
5 6213/4 -159 -45/4 1 
6 2978 -1417/6 -17 7/6 
7 5234 -994/3 -24 4/3 
8 8525 -897/2 -32 3/2 
9 52825/4 -1760/3 -165/4 5/3 
10 39045/2 -4505/6 -103/2 11/6 
11 27930 -939 -63 2 
12 77417/2 -6943/6 -151/2 13/6 
13 209685/4 -4207/3 -357/4 7/3 
14 69377 -3363/2 -104 5/2 
15 90252 -5972/3 -120 8/3 
16 115378 -14027/6 -137 17/6 
17 582201/4 -2718 -621/4 3 
18 362235/2 -18841/6 -349/2 19/6 
19 223000 -10795/3 -195 10/3 
20 543115/2 -8205/2 -433/2 7/2 
21 1311365/4 -13937/3 -957/4 11/3 
22 392216 -31433/6 -263 23/6 
23 465870 -5874 -288 4 

The fact that Table 6.5 terminates at k = 23 while 91  results from the fact 

that there are different functional forms for kIAC,nN c
A
PMRW ,3 , depending 

upon the value of k.  Following the development of kkIACnN b
A
PMRW |,,3 , the 

first functional form for kIAC,nN c
A
PMRW ,3  is valid for 

4
10 nk  and the 
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second is valid for 
34

5 nn k .  The results in Table 6.5 can therefore be used to 

determine the functional form of kIAC,nN c
A
PMRW ,3  for 

4
10 nk .

This representation is not directly obtainable from the data that is given in Ta-
ble 6.5, since this series presents a new problem in the process of generating rep-
resentations with EUPIA2.  In particular, there are two different representations 

for kIAC,nN c
A
PMRW ,3  in the range 

4
10 nk , depending upon whether k

has an odd or even value 
We consider the case of odd values of k first, to obtain 

.
4

1

3

0

0andodd   with 

...15,11,7for,|,3

n
i

ik
ic

A
PMRW

kk

nnGOkkIAC,nN
(6.36)

Using the data from Table 6.5 for odd k

.
6

1531
16

3

149571
24

1

31693331391
96
1

32

2
1

23
0

kGOkkGO

kkkGO

kkkkGO

kk

k

k (6.37)

Following the development of earlier representations, 

.
4

1

32223

0 with oddand15,11,7for

,
2351316

1653181495743169333139

|,3

n

c
S
PMRW

kkn

kknnkn
nnknkkkkk

kIACnP (6.38)

The same procedure is then used for the sequence of even values of k to obtain  

.
4

1

322

2323

0 with evenand15,11,7for

,
23513116
11616696

208410274244146472139

|,3

n

c
S
PMRW

kkn

kknnknk
nknkk

nkkkkkkk

kIACnP (6.39)
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Similar analysis can be performed with  = 93 to find that the representations 

in Eqs. 6.38 and 6.39 are valid over the range 
4

10 nk  for all odd 3n .

These results can be combined to obtain 

.
4

1

222
1

322

2323

0with,3oddallfor

23513116
2241246311616696

208410274244146472139

|,3

n

k

c
S
PMRW

kn

kknnknk
nnkkknknkk

nkkkkkkk

kIACnP (6.40)

Here y
x = 1 if x is an integer multiple of y.  Otherwise,  0y

x .  The representa-

tion in Eq. 6.40 is used to compute the kIAC,P c
S
PMRW |913  entries that are 

shown in Table 6.4 for 220 k .
 The values in Table 6.4 show some very interesting results, with 

kIAC,P b
S
PMRW |913 > kIAC,P c

S
PMRW |913  for 190 k  and with 

kIAC,P c
S
PMRW |913 > kIAC,P b

S
PMRW |913  for 2220 k .  This suggests 

that proximity to perfectly single-peaked preferences has more of an impact on the 
probability that a PMRW exists than does proximity to perfectly polarized prefer-
ences for small values of k.  However, as k increases the reverse situation exists.  
In order to investigate this phenomenon further, the representation for 

kIACnP c
S
PMRW |,3  must be obtained for 

4
1nk .

 The development of the representation for kIAC,P c
S
PMRW |913  over the 

range 
34

1 nn k  follows previous analysis, and 

.
3

1
4

1

222
1

4322

23234

 with3oddallfor

,
23513116

22412463584476752

1980545741763872393

|3

nn

k

c
S
PMRW

kn

krnnknk
nnkkknnknkk

nkkkkkkk

kIAC,nP (6.41)

The case with 3/nk when n is an odd multiple of three is a special case, with 

2

2

38
274273/|3

n
nnnIAC,nP c

S
PMRW .

(6.42)
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 Computed values of kIAC,P c
S
PMRW |913  from Eq. 6.41 are shown in Table 

6.4 for each 3023 k .  The pattern continues with kIAC,P c
S
PMRW |913 >

kIAC,P b
S
PMRW |913  for all k in this range.  Moreover, kIAC,P c

S
PMRW |913

and kIAC,P b
S
PMRW |913  do not seem to be approaching the same limiting 

value as 3/nk .  In order to examine these observations further, we consider 
these representations in the limiting case n .

6.5  Limiting Distributions for Large Electorates 

The representations for kIACnP b
S
PMRW |,3  in Eqs. 6.24 and 6.28, and  for 

kIACnP c
S
PMRW |,3  in Eq. 6.40 and 6.41 can easily be modified to account for 

the limiting case as  n .  To do this, k is replaced with nk , so that k is ex-

pressed as a proportion, k , of n, rather than as an integer value.  Then, the limit-

ing representation as n  is determined.  The resulting representations for the 
limiting distributions are: 

.3/14/1for
3116

1296339

,4/10for
313116

165428139|,3

.3/14/1for
312

161818

,4/10for
3131

13411|,3
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2

23

2

23

2

23

k
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kkk

k
kk

kkk
kc

S
PMRW

k
kk

kkk

k
kk

kkk
kb

S
PMRW

IACP

a

IACP
(6.43)

Table 6.6 lists computed values of limiting probabilities as n  for both 

kb
S
PMRW IACP |,3  and kc

S
PMRW IACP |,3  from Eq. 6.43 for each 

value of k =.01(.02).33.  Table 6.6 also includes the limiting value of 

75.3/1|,3 b
S
PMRW IACP  that follows from previous discussion and from 

Eq. 6.29.   The value of the limiting probability 8/73/1|,3 c
S
PMRW IACP  is 

obtained from Eq. 6.42.  The same representation is obtained for the limiting 

probability kb
S
PMRW IACP |,3  regardless of whether the starting represen-

tation for kIACnP b
S
PMRW |,3  is for odd or even n.
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Table 6.6 Computed values of the limiting probabilities kb
S
PMRW IACP |,3  and 

kc
S
PMRW IACP |,3

k kb
S
PMRW IACP |,3 kc

S
PMRW IACP |,3

0 1.0000 1.0000 
.01 .9999 .9963 
.03 .9991 .9888 
.05 .9973 .9814 
.07 .9946 .9740 
,09 .9907 .9665 
,11 .9854 .9589 
.13 .9784 .9511 
.15 .9693 .9431 
.17 .9574 .9348 
.19 .9416 .9263 
.21 .9203 .9174 
.23 .8905 .9083 
.25 .8462 .8990 
.27 .8009 .8903 
.29 .7720 .8828 
.31 .7559 .8775 
.33 .7501 .8751 
1/3 .7500 .8750 

By comparing relevant values in Table 6.6, in which n , to corresponding 
values in Table 6.2, in which  n = 91, it is evident that the rate of convergence to 
the limiting distribution values is very rapid for odd n.  The relevant root of the 

equation *|,3 kb
S
PMRW IACP  = *|,3 kc

S
PMRW IACP  is found at 

2135.37/10218*k .  As a result, the previously observed pattern holds 

up, with kb
S
PMRW IACP |,3  < kc

S
PMRW IACP |,3  for all *kk

and kc
S
PMRW IACP |,3  > kb

S
PMRW IACP |,3  for all *kk .

Moreover, the limiting values of these functions as 3/nk are not the same. 
It was noted in Chapter 5 that Radcliff (1993) does an empirical study to de-

termine the propensity of voters to have single-peaked preferences.  The percent-
age of respondents with preferences that were single-peaked across a reference 
ranking of candidates was found to be approximately 83 percent for three-
candidate elections.  This corresponds to a measure of 17.k  according to pa-

rameter b.  Table 6.6 entries suggest that a PMRW should exist with probability of 
approximately .96 for large electorates in this case.  As a result, it is not surprising 
that Radcliff found that a PMRW existed in each study that was considered. 
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6.6 Cumulative Probabilities that a PMRW Exists 

Representations for the cumulative probabilities kCIACnP b
S
PMRW |,3 ,

kCIACnP t
S
PMRW |,3  and kCIACnP c

S
PMRW |,3  follow earlier definitions.   

That is, all voting situations with a specified parameter value k* with the range 
kk*0  are assumed to be equally likely to be observed.  For example, it fol-

lows Eq. 6.11 and definitions: 

.
*,,3

*,,33
|,3

0*

0*
k

k
b

k

k
b

A
PMRW

b
S
PMRW

kIACnK

kIACnN
kCIACnP

(6.44)

 Gehrlein (2006c) performs the algebraic manipulations to obtain these repre-
sentations.  With parameters b and t for odd n:
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PMRW (6.45)

 This representation is quite unwieldy to serve as the basis of any useful analy-
sis, so attention will be focused on the limiting probability as n . As in pre-
vious analysis, this is done by first substituting nk  for k in Eq. 6.45, and then 

letting n .

.3/14/1for
3615201016
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PMRWkb

S
PMRW CIACPCIACP (6.46)
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Here, kbCIAC  assumes that all voting situations with kk *0 are 

equally likely to be observed. 
 For parameter c with odd n:
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315
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1032033310536117732116

2232630113043532723910

100162120177101140840416025201349
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As defined previously, y
x = 1 if x is an integer multiple of y.  Otherwise,  0y

x .

The associated limiting representations for parameter c are given by: 

.3/14/1for
3615201016

46811401000320201

,4/10for
144608040
139359040

|,,3

322

5432

32

32

k

kkkk

kkkkk

k
kkk

kkk

kc
S
PMRW CIACP (6.48)

These limiting representations are much more tractable, and they also represent 
the potentially most interesting case of large electorates.  Following earlier discus-
sion, these limiting representations result in specific values such that 

0|,3 b
S
PMRW CIACP = 0|,3 t

S
PMRW CIACP = 0|,3 c

S
PMRW CIACP =1 

and such that 3/1|,3 b
S
PMRW CIACP  = 3/1|,3 t

S
PMRW CIACP  = 

3/1|,3 c
S
PMRW CIACP  = 15/16.  This follows from the fact that 0bCIAC

is the same as the limiting case as n  when voters must have preferences that 

are perfectly single-peaked, and 3/1bCIAC  is equivalent to the limiting case of 

IAC as n .
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6.7 Proportions of Profiles with Specified Parameters 

Previous analyses of computed values for the probabilities kIAC,nP b
S
PMRW |3 ,

kIAC,nP t
S
PMRW |3  and kIAC,nP c

S
PMRW |3  have produced some very in-

teresting observations.  In particular, voting situations with small values of k, to 
reflect close proximity to perfect single-peakedness, perfect single-troughedness 
or perfect polarization, have a high probability that a PMRW exists.  This observa-
tion can however be misleading.  We find that these probabilities remain quite 
large for relatively large range of k values.  But, this does not account for the pro-
portions of all possible voting situations that this range of k values represents.  

That is, kIAC,nP b
S
PMRW |3  can be quite large for a relatively wide range of k

values, but the results are meaningless if this range of k only accounts for a very 
small proportion of all possible voting situations.  It was seen earlier in this chap-
ter that the proportion of all possible voting situations for which k is equal to zero 
in Eq. 6.21 is very small, which would tend to make results that focus only on pro-
files that are perfectly single-peaked to be of very limited interest. 

To address this issue, it is necessary to develop representations for the propor-
tion of all possible voting situations that have a specified parameter *k  in some 
given range kk*0 .  The logic behind the development of Eq. 6.21 leads to a 

representation for this proportion, kCIACnP bVS |,3 , when the specified pa-

rameter that is being measured is b.

IACnK

kIACnK
kCIACnP

b
k

k
bVS ,,3

*,,3
|,3 0* .

(6.49)

 Gehrlein (2006c) performs the algebraic reduction of Eq. 6.49 to obtain 
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Based on Lemmas 6.1 and 6.4, kCIACnP bVS |,3  = kCIACnP tVS |,3

= kCIACnP cVS .|,3 .

 Attention will be focused on the limiting distribution, kbVS CIACP |,3 ,

as n , and following earlier analyses, 
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.3/10for,361520103

|,3

|,3|,3

322
kkkkk

kcVS

ktVSkbVS

CIACP

CIACPCIACP (6.51)

The representation in Eq. 6.51 can be used to find values of p
b  such that 

p
bbVS CIACnP |,  = p for each proportion p = 0.00(.05)1.00, and the re-

sults are listed in Table 6.7.  Based on previous discussion, p
b  = p

t  = p
c  for 

all p.  The results in Table 6.7 indicate for example that 65 percent of all possible 
voting situations are included in the range of k  parameter values with 

1924.0 k  for parameter b, t, or c.

Table 6.7 Computed values of p
b , p

t , p
c , p

u , and p  for each proportion p = 

0.00(.05)1.00 

p p
b = p

t = p
c

p
u

p

.00 .0000 .0000 .0000 

.05 .0428 .0308 .0256 

.10 .0619 .0449 .0375 

.15 .0772 .0564 .0473 

.20 .0908 .0667 .0562 

.25 .1033 .0763 .0646 

.30 .1150 .0854 .0727 

.35 .1264 .0943 .0806 

.40 .1374 .1031 .0885 

.45 .1483 .1118 .0965 

.50 .1591 .1206 .1046 

.55 .1700 .1296 .1130 

.60 .1811 .1388 .1217 

.65 .1924 .1484 .1308 

.70 .2042 .1585 .1407 

.75 .2166 .1695 .1514 

.80 .2298 .1815 .1634 

.85 .2445 .1951 .1774 

.90 .2614 .2117 .1946 

.95 .2829 .2344 .2191 
1.00 .3333 .3333 .3333 

The results of Table 6.7 can be used in conjunction with the limiting represen-
tations from Eq. 6.45 to compute the limiting conditional cumulative probability 
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p
bb

S
PMRW CIACnP |,  that a PMRW exists for the p percent of all voting 

situations that are closest to being perfectly single-peaked.  In the same fashion, it 

is also possible to obtain similar values for  p
tt

S
PMRW CIACnP |,  and 

for p
cc

S
PMRW CIACnP |, .  Computed results from the associated represen-

tations for all three of these probabilities are summarized in Table 6.8 for each 
proportion p = 0.00(.05)1.00. 

Table 6.8 Computed Values of p
XX

S
PMRW CIACnP |, , for X = b, t, c, u,   for each 

proportion p = 0.00(.05)1.00 

p b, t c u 

.00 1.0000 1.0000 1.0000 1.0000 

.05 .9991 .9895 .9995 .9976 

.10 .9980 .9850 .9989 .9963 

.15 .9969 .9814 .9983 .9951 

.20 .9956 .9782 .9975 .9940 

.25 .9943 .9753 .9967 .9928 

.30 .9929 .9726 .9958 .9916 

.35 .9913 .9701 .9948 .9903 

.40 .9896 .9676 .9936 .9890 

.45 .9877 .9652 .9924 .9876 

.50 .9857 .9628 .9910 .9860 

.55 .9834 .9605 .9894 .9843 

.60 .9809 .9582 .9876 .9825 

.65 .9781 .9558 .9856 .9804 

.70 .9749 .9535 .9832 .9781 

.75 .9712 .9510 .9804 .9753 

.80 .9669 .9486 .9770 .9721 

.85 .9616 .9460 .9728 .9680 

.90 .9548 .9433 .9671 .9628 

.95 .9466 .9405 .9583 .9550 
1.00 .9375 .9375 .9375 .9375 

The values in Table 6.8 show some very interesting results.  For example, the 
50 percent of all possible voting situations that are closest to being perfectly sin-
gle-peaked have a PMRW with probability of .9857 for large electorates.  And, the 
35 percent of all possible voting situations that are closest to being perfectly sin-
gle-peaked have a PMRW with probability of .9913 for large electorates. Clearly, 
any significant degree of internal consistency of voters’ preferences that ap-
proaches perfectly single-peaked preferences leads to a very high probability that 
a PMRW exists.  The impact of having voters’ preferences that suggest the pres-
ence of a candidate approaching a perfectly polarizing candidate in voting situa-
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tions is also quite strong, but it is not as significant as the presence of the same de-
gree of proximity to perfect single-peakedness or single-troughedness in large 
electorates, assuming equivalence of these factors as measured by k , since 

p
bb

S
PMRW CIACnP |,  > p

cc
S
PMRW CIACnP |,  for 10 p .

6.8 The Impact of an Overall Unifying Candidate 

Parameters b and t have been shown to have a significant impact on the probabil-
ity that a PMRW exists.  While b measures the proximity of a voting situation to 
perfect single-peakedness, it has also been described as reflecting the existence of 
a positively unifying candidate.  Similarly, t measures proximity of a voting situa-
tion to perfect single-troughedness, but it has also been described as reflecting the 
existence of a negatively unifying candidate. 

Both of these parameters can be combined if the presence of an overall unifying 
candidate is considered.  By ignoring the distinction between positively unifying 
and negatively unifying, parameter, u, measures the presence of an overall unify-
ing candidate in a voting situation by 

tbMinu , . (6.52)

Gehrlein (2006c) develops representations with parameter u for odd n:
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The same logic that was used in previous discussion is then used to obtain the 

limiting representation for kuVS CIACP |,3  as n , with 
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Values of p
u  for each proportion p = 0.00(.05)1.00, are obtained from ma-

nipulation of Eq. 6.54, and the results are listed in Table 6.7.  While 65 percent of 
all possible voting situations are included in the range of 1924.0 k  for pa-

rameter b, 65 percent of all possible voting situations are included in a much 
smaller range for parameter u, with 1484.0 k .  This results from the exis-

tence of voting situations with a large b, but a small t, or the converse situation. 

Representations for the cumulative probability kCIACnP u
S
PMRW |,3  for 

odd n are: 
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The limiting probability representations for ku
S
PMRW CIACP |,3  are: 
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 The representation in Eq. 6.56 is used with values of p
u  from Table 6.7 to 

compute numerical values of p
uu

S
PMRW CIACnP |,  for each p = 

0.00(.05)1.00, and these values are shown in Table 6.8.  The use of the joint 
measure of voter preference unification, u, has a significantly greater impact on 
the probability that a PMRW exists than the use of the individual measures b and 
t.  The results from Table 6.8 show that the 50 percent of voting situations that are 
most closely related to perfect overall voter unification have a probability .9910 of 
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having a PMRW, and that the 65 percent of voting situations that are most closely 
related to perfect voter unification have a probability .9856 of having a PMRW.  It 
is remarkable that any voting situation that is remotely close to representing per-
fectly unified preferences, as measure by u, will have a very high probability of 
yielding a PMRW with large electorates. 

6.9 The Impact of Ward’s Condition 

It was noted in Chapter 2 that Ward (1965) defines another condition on voting 
situations that requires the existence of a PMRW for three candidates.  This condi-
tion requires that voters’ preferences do not contain any Latin Squares, which is 
equivalent to the requirement that there is some candidate that is never ranked 
first, is never ranked last, or is never ranked in the middle by any voter.  Parameter 

 measures the proximity of a voting situation to meeting Ward’s Condition, with 

ctbMin ,, . (6.57)

If  is equal to zero for a voting situation, then that voting situation does not 
contain any Latin Squares, and it perfectly meets Ward’s Condition.  Parameter 
is therefore used as a measure of the proximity of a voting situation to perfectly 
meeting Ward’s Condition.  Gehrlein (2006c) obtains a representation for 

kCIACnPVS |,3 , with 
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A representation for the limiting distribution kbVS CIACP |,3  as n
is then given by 

.3/10for,10813560109

|,3
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kkkkk

kVS CIACP (6.59)

Eq. 6.59 is used to obtain the values of p  for each proportion p = 

0.00(.05)1.00, and the results are listed in Table 6.7.  It was noted above the 65 
percent of all possible voting situations are included in the range 1484.0 k
for parameter u. Here, 65 percent of all possible voting situations are contained in 
the smaller range 1308.0 k  for parameter .
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A representation for kCIACnPSPMRW |,3  for odd n is obtained following 

the logic of previous discussion, with 
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The limiting distribution k
S
PMRW CIACP |,3  is given by 
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Eq. 6.61 is used with entries from Table 6.7 to compute numerical values of 

pS
PMRW CIACnP |,  for each p = 0.00(.05)1.00, and these resulting val-

ues are given in Table 6.8. 
Some interesting observations can be made about the values of 

pS
PMRW CIACnP |,  in Table 6.8. It was noted previously that 

p
bb

S
PMRW CIACnP |,  > p

cc
S
PMRW CIACnP |,  for all 10 p .

The impact that a polarizing candidate has on the probability that a PMRW exists 
is not as strong as the impact having a positively-unifying candidate or a nega-

tively-unifying candidate.  As a result, despite the fact that p
u

p  for all p, we 
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find pS
PMRW CIACnP |,  < p

uu
S
PMRW CIACnP |,  for all 

10 p .

6.10 Ehrhart Polynomials 

All of the representations that have been obtained in the current study could not 
conceivably have been developed without the EUPIA and EUPIA2 procedures.  
These procedures work because of the known polynomial form that representa-
tions must have for counting the number of voting situations with specified char-
acteristics for three-candidate elections, from Axioms 6.1, 6.2, 6.3.  It has recently 
been pointed out that these procedures are based on much more general principles 
that have been developed under the topic of Ehrhart Polynomials. For example, 
see Ehrhart (1967a, 1967b), where the general problem is developed in the context 
of counting the number lattice points in a polyhedron. 

Lepelley, et al. (2006) develop an algorithm that is based on the notions of 
Ehrhart Polynomials to produce representations of the type that have been ob-
tained in the current study.  Preliminary results indicate that their procedure is 
very efficient, to open the door to many possible investigations into the probability 
that voting events can occur.  Mbih, et al. (2006) formally develop many of the 
links between the type of work that has been done in the current study and the no-
tions of Ehrhart Polynomials. 

6.11  Conclusion 

When voters’ preferences in a three-candidate voting situation reflect any signifi-
cant degree of proximity to perfect single-peakedness, perfect single-
troughedness, or perfect polarization, the probability that a PMRW exists is quite 
high.  When voters’ preferences are at all close to reflecting a situation in which a 
unifying candidate exists, the probability that a PMRW exists is very high.  It is 
very important to note that the associated underlying models that lead to single-
peaked, single-troughed, or polarized preferences do not actually have to be the 
basis of the mechanism by which the voters’ preference rankings on candidates are 
actually formed.  It is only required that the preferences in a given voting situation 
could have been obtained by one of these models.  As a result, Condorcet’s Para-
dox should rarely be observed in any real elections on a small number of candi-
dates with large electorates, as long as voters’ preferences reflect any significant 
degree of group coherence or consistency. 



7 Individual Intransitivity 

7.1 Introduction 

The requirement that individual voters must have transitive preferences on candi-
dates has been assumed as a basis of rational individual behavior from the start of 
this study. However, it was mentioned that models exist to explain situations in 
which individuals might have intransitive preferences, and that is the topic of the 
current chapter. 

Consider a subject who is making pairwise preference comparisons on elements 
from a set of three alternatives CBA ,, .  The pairwise comparisons of alterna-

tives are made on the basis of some common set of attributes. The subject has 
some perceived ranking on alternatives for each of the particular attributes.  These 
rankings will quite likely be different for different attributes.  For example, the 
subject might perceive A as being superior to both B and C on the basis of one at-
tribute, while being inferior to both B and C on the basis of some other attribute.  
The subject then makes a pairwise comparison between alternatives on the basis of 
these perceived attribute rankings on the alternatives.  Using the notation from 
Chapter 1, BA  denotes the outcome that the subject responds with an overall 
pairwise preference for A over B, after considering the relative attribute rankings 
of these two alternatives. 

Suppose that there are n different common attributes of comparison that are 
used to make comparisons between the three alternatives. It follows that there are 
six possible complete rankings on the alternatives that a subject might have for 
any particular attribute, as noted in Fig. 7.1. 

      A  A  B  C  B  C 
      B  C  A  A  C  B 
      C  B  C  B  A  A 
      1n 2n 3n 4n 5n 6n

Fig. 7.1 Possible rankings on attribute values for three alternatives 

The alternative rankings in Fig. 7.1 are ordered so that the top ranked item is 
perceived as being the best alternative according to any particular attribute, and in

denotes the number of times that the thi ranking represents the subject’s perceived 
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ranking on alternatives for attributes in a given attribute ranking situation, and n
denotes a specified combination of in ’s with 6

1i i nn .

This scenario is completely analogous to earlier developments with regard to 
the formation of voter preference profiles and voting situations.  The three alterna-
tives in this case correspond to the three candidates in earlier discussion, and the n
attribute rankings on alternatives correspond to the n voter preference rankings on 
candidates. 

7.2 Algebraic and Probabilistic Choosers 

Luce and Suppes (1965) note two different general types of models to describe 
how a subject might go about selecting his or her more-preferred alternative from 
a pair of available alternatives that are under consideration.  An algebraic chooser
approaches this process by performing a precise evaluation of all of the informa-
tion that is contained in the rankings of alternatives by the attributes, to reach an 
absolute and precise determination of the more preferred alternative.  A probabil-
istic chooser is less precise in the process of performing preference comparisons.  
As a result, a probabilistic chooser will only have some associated probability of 
selecting the same more-preferred alternative that an algebraic chooser would se-
lect in an identical situation. 

DeSoete, et al. (1989) present a survey of different models that have been de-
veloped to explain the basis of preference comparisons that are made by probabil-
istic choosers.  By resorting to the use of probabilistic models, it is inherently as-
sumed that a subject is unwilling to take the time and effort to precisely evaluate 
the perceived alternative rankings on each of the attributes to definitively deter-
mine the more preferred alternative from a pair. A typical example would involve 
decisions involving the selection of a low impact item when there are many avail-
able alternatives to pick from with many different attributes of comparison.  There 
are many types of situations in which it might be expected that subjects will act as 
probabilistic choosers, rather than act as a “utility maximizing, omniscient, inde-
fatigable consumer” [Swait and Adamowicz  (2001), pg 135].  A probabilistic 
chooser is not expected necessarily to select the same more preferred alternative 
from a pair as an algebraic chooser picks, but it is expected that there should be a 
positive general relationship between a probabilistic chooser’s ultimate selection 
of a more preferred alternative from a pair and the choice that would be made if 
the subject would undergo a thorough consideration of the decision, given the per-
ceived attribute rankings on alternatives.  

A number of empirical studies have been performed to find that subjects will 
often resort to the use of simple decision-making heuristic processes when they 
are making preference choices, rather than act as precise algebraic choosers.  Sub-
jects are typically found to resort to the use of such simple heuristic decision proc-
esses when the decision task becomes more difficult and complicated.  See for ex-
ample: Mazzotta and Opaluch (1995), Stone and Kadous (1997) and Bettman, et 
al. (1998). 
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7.3  May’s Model 

Several studies have identified one particular simplifying heuristic that is used in 
making pairwise preference comparisons.  This specific heuristic operates by mak-
ing preference comparisons between alternatives with the use of a PMR-like rela-
tionship on pairs of alternatives.  That is, the subject would respond that BA  if 
the alternative rankings on attributes are such that 653421 nnnnnn , so 

that A is viewed as being superior to B on more attributes than B is viewed as be-
ing superior to A.

Bettman (1979) summarizes a number of empirical studies that have given sup-
port to the notion that this model accurately reflects the process by which some 
subjects make pairwise preference comparisons in various situations.  Wright and 
Barbour (1977) refer to this model as the “attribute dominance model” and it was 
found that approximately 20 percent of the subjects in their experiment were using 
it to make pairwise preference comparisons.  They also note that this model should 
be more widely recognized in studies of behavioral decision making.  Russo and 
Dosher (1983) refer to this model as the “multiple confirming dimensions heuris-
tic” and found that approximately 50 percent of the subjects in their study were us-
ing it to make pairwise preference comparisons.  They also noted that the propen-
sity of subjects to use this model increases as the number of attributes of 
comparison increases.  Arrow and Raynaud (1986) refer to this model as the “out-
ranking problem”.  The term May’s Model is used in the current study, since this 
model was first proposed in May (1954). 

A subject who makes choices according to May’s Model is acting as an alge-
braic chooser, since the n attribute rankings in a given situation will be precisely 
evaluated by the subject to determine the results of a particular pairwise prefer-
ence comparison.  The model sounds plausible from its definition, and empirical 
studies indicate that it is often used by subjects to make pairwise comparisons.  
The major problem that develops is that May’s Model can lead to intransitive 
preferences for individuals.  Given the analogy between individual preference 
comparisons and voting procedures that was outlined above, along with the basic 
definition of May’s Model, it is easily seen that the existence of intransitive pref-
erences for individuals in this case is directly linked to the existence of Condor-
cet’s Paradox in the context of voting. 

May (1954) conducts an experiment in which 62 undergraduate students per-
form all pairwise comparisons on three hypothetical marriage partners.  Each hy-
pothetical marriage partner was evaluated on the basis of three specified character-
istics, and the given rankings of the three possible choices on the three 
characteristics formed a perfect Latin Square.  Some subjects had individual in-
transitivity in their reported pairwise preference responses that was consistent with 
using May’s Model to make pairwise preference comparisons. 

Lansdowne (1996) considers an example of the same type of problem as ap-
plied to the evaluation of five possible light helicopter systems by the U. S. De-
partment of Defense.  Each system was initially given a numerical score for each 
of seven different criteria.  An ordinal ranking of systems was then obtained for 
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each criterion, according to the relative numerical values that each system had for 
the criteria measurements.  May’s Model did not result in any intransitivity in this 
case.  Obviously, May’s Model will not always result in an intransitive result. 
 As in the previous analysis of Condorcet’s Paradox, the focus here turns to con-
sidering the probability that May’s Model will result in transitive preference re-
sponses from a subject who is performing pairwise preference comparisons on 
three alternatives.  By the definition of May’s Model, Alternative A will be the 
strictly most preferred alternative, or Strict Maximal Alternative (SMA), for a sub-
ject with a specified attribute ranking situation n when: 

.
2

1
654

2
1

653

CAnnn

BAnnn
n

n (7.1)

The logic behind Eq. 7.1 directly follows the notions behind Eq. 3.21, except that 
each of the conditions on the in ’s in Eq. 7.1 lead to a pairwise preference out-

comes for the subject, rather than lead to a PMR preference on a pair of candidates 
for a group of voters.  If a SMA exists on three candidates with May’s Model, then 
the subject’s pairwise preferences must be transitive. 
 Social homogeneity was seen to have an impact on the probability that Condor-
cet’s Paradox is observed. In the context of individual preferences, this corre-
sponds to consideration of the possibility that a correlation exists between the rela-
tive rankings of alternatives in attribute rankings.  The existence of a “halo effect” 
occurs if a subject tends to perceive some alternative as rating very well on most 
attributes.  Increasing the likelihood that such an alternative exists would seem to 
tend to increase the likelihood that a SMA exists with May’s Model. 
 Representations for the probability that a SMA exists with May’s Model are 
obtained in the context of determining if a SMA exists when a profile of n differ-
ent criteria rankings on the alternatives is randomly generated in an urn experi-
ment, following the discussion in Section 3.7.  In order to determine the impact of 
increasing the degree of dependence among the criteria rankings, the urn experi-
ments are conducted with a P-E model with parameter , and the experiments 
start with all 1iA  for i = 1, 2, 3, 4, 5, 6.  The symmetry of P-E models with re-

spect to candidates makes it equally likely that A, B or C is the SMA in a ran-
domly generated profile of criteria rankings.  Given all of these arguments, along 
with the logic that led to Eq. 3.60, a representation for the probability, 

PEnPSMA ,,3 , that a SMA exists with May’s Model for n attributes of com-

parison under the assumption of a P-E model with parameter  is given by 
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Here, the definition of ,1 nP  follows from Eqs. 3.84 and 3.86, and 1n  is ob-

tained from 654321 nnnnnnn .

Table 7.1 lists computed values of PEnPSMA ,,3  for each value of n = 3, 5, 

9, 15, 25, 45 with each =0, 1, 2, 3, 4, 5, 10, 15, 20, 25.  The computed values in 
Table 7.1 show two distinct trends.  The probability of that a SMA exists with 
May’s Model decreases as the number of attributes of comparison increases.  And, 
the probability increases as increases, to indicate that an increase in the degree 
of dependence among attribute rankings will increase the probability that a SMA 
will exist with May’s Model.  The probability that a SMA exists exceeds .91 in all 
cases with three alternatives. 

Table 7.1 Computed values of PEnPSMA ,,3

 Number of Attributes (n)
3 5 9 15 25 45 

0 .9444 .9306 .9220 .9180 .9157 .9142 
1 .9643 .9524 .9441 .9404 .9387 .9379 
2 .9750 .9665 .9604 .9575 .9561 .9554 
3 .9815 .9753 .9708 .9686 .9675 .9668 
4 .9857 .9811 .9776 .9760 .9750 .9745 
5 .9886 .9850 .9824 .9810 .9803 .9798 
10 .9952 .9938 .9927 .9922 .9919 .9917 
15 .9974 .9966 .9961 .9958 .9956 .9955 
20 .9983 .9979 .9975 .9974 .9973 .9972 
25 .9988 .9985 .9983 .9982 .9981 .9981 

 It is interesting to note the impact that increasing the number of attributes of 
comparison has on the probability that a SMA exists for an algebraic chooser us-
ing May’s Model.  An analogous situation was found in the context of voting 
situations where Tullock and Campbell (1970) use Monte-Carlo simulation with a 
spatial model for voter preferences to estimate the probability that there are intran-
sitives in PMR voting.  Attention is restricted to small numbers of voters and a 
small number of candidates, since it is speculated that this situation is most likely 
to give rise to the existence of PMR cycles.  Of particular interest is the effect that 
varying the number of dimensions in the preference space has on the propensity of 
PMR to exist.  With random placement of both the ideal voter preference positions 
and the positions of candidates in the feasible space, the addition of dimensions to 
the space does tend to increase the probability that PMR cycles exist.  However, in 
changing from two to three dimensions, and from three to five dimensions, the in-
crease in the probability is not particularly significant.   
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7.4 Probabilistic Chooser Models 

Gehrlein (1990b, 1990d, 2006d) considers variations of May’s Model in which in-
dividual subjects are probabilistic choosers.  Using May’s Model as a basis for 
modeling a probabilistic chooser, a subject should logically be expected to become 
more likely to respond BA  as A is ranked above B in an increasing number of 
attribute rankings. However, since the subject is not a precise algebraic chooser, 
there will typically always be some probability that the subject responds AB .   
A pairwise preference model (PPM) defines the probabilities that a subject will 
respond with BA  or AB  for an attribute ranking situation on alternatives in 
a given n.

 Let nPPM
BAP  denote the probability that a subject will respond with BA

for a given attribute ranking situation, as specified by n.  It is assumed throughout 
that PPM’s do not permit a subject response of indifference in pairwise compari-

son, so nPPM
BAP + nPPM

ABP =1 for any n.  Given that BA  for an algebraic 

chooser with May’s Model for a specified n , PPM models with greater values of 

nPPM
BAP  then represent probabilistic choosers with greater discriminatory power 

in making pairwise preference comparisons. 
 Gehrlein (1990b) describes a particular PPM called Model L for a probabilistic 
chooser who will respond BA  for an attribute ranking situation with a given n

with a probability nL
BAP  that is obtained as the proportion of rankings in which 

A is ranked ahead of B, with 

.653421
n

nnnP
n

nnnP L
AB

L
BA nn

(7.3)

The term Model L is used in this case since nL
BAP increases linearly as more at-

tribute rankings have A ranked ahead of B.  This model is consistent with some 
standards that are required of all PPM’s.   

First, Model L is unbiased towards candidates in any pairwise preference com-
parison, since there is an equal probability of alternative selection when there is a 
tie between candidates in their relative position in attribute rankings.  That is, 

nPPM
BAP = 2/1nPPM

ABP  when 421 nnn = 653 nnn . Decisiveness is 

also required in all PPM’s, so that the subject must respond BA  if A is ranked 

ahead of B in every attribute ranking, so that nPPM
BAP = 1 and nPPM

ABP = 0 if 

421 nnn = n.

Even if the algebraic form of May’s Model does have a SMA, Model L does 
not necessarily have one.  Model L might also produce a different SMA than the 
one that is obtained by May’s Model.  It is of interest to develop representations 
for the probability that Model L and other PPM’s will result in the same SMA as 
the algebraic form of May’s Model, so that the probabilistic chooser will effec-
tively be behaving as an algebraic chooser with May’s Model.  The number of at-
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tributes is assumed to be odd throughout, to avoid complications with ties with 
May’s Model. 

7.5 Algebraic and Probabilistic Chooser Coincidence 

Let PEnPPPMSMA ,,3  denote the conditional probability that a given PPM and 

May’s Model will both have the same SMA for n attributes of comparison with 
three alternatives, when attribute ranking situations are being randomly generated 
by to a P-E model with parameter , given that May’s Model has a SMA. The 

starting point for developing a general representation for PEnPPPMSMA ,,3 , is a 

representation for the joint probability, PEnJPPPMSMA ,,3 , that a given PPM and 

May’s Model both have the same SMA for n attributes for a given . Then  

PEnP
PEnJPPEnP

SMA

PPM
SMAPPM

SMA
,,3
,,3,,3 .

(7.4)

The symmetry of P-E Models with respect to alternatives requires that 

PEnJPPPMSMA ,,3  can be obtained as three times the probability that A is the 

SMA both with May’s Models and with Model L.  Sequential pairwise preference 
responses from subjects are assumed to be obtained independently, and it follows 
from definitions that 
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The summation indexes in Eq. 7.5 require that A is the SMA with May’s 
Model, since they enumerate all possible alternative ranking outcomes with 

2
1

654
nnnn  and 

2
1

653
nnnn .  The product terms that are being 

summed over give the probabilities nL
BAP  and nL

CAP  with Model L for 

each n that is defined by the summation indexes. 

Computed values of PEnPLSMA ,,3  that result from Eq. 7.4, after obtaining 

values with the representation for in Eq. 7.5 are listed in Table 7.2 for each n = 3, 
5, 9, 15, 25, 45 for each = 0, 1, 2, 3, 4, 5, 10, 15, 20, 25.  The values that are 

listed in Table 7.2 indicate that PEnPLSMA ,,3  increases as increases, and 

that PEnPLSMA ,,3  decreases as n increases.  Values of PEnPLSMA ,,3  are 

less than .50 when n = 45 for both equal to zero and one. 
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Table 7.2 Computed values of PEnPLSMA ,,3

 Number of Attributes (n)
3 5 9 15 25 45 

0 .5882 .4945 .4218 .3781 .3463 .3200 
1 .6420 .5690 .5179 .4910 .4741 .4626 
2 .6838 .6224 .5811 .5601 .5474 .5387 
3 .7170 .6635 .6282 .6106 .6001 .5930 
4 .7440 .6963 .6653 .6500 .6409 .6348 
5 .7663 .7233 .6955 .6819 .6738 .6684 
10 .8374 .8082 .7896 .7806 .7752 .7717 
15 .8753 .8531 .8391 .8323 .8283 .8257 
20 .8989 .8810 .8697 .8642 .8610 .8589 
25 .9150 .9000 .8905 .8860 .8833 .8815 

 The remarkably small conditional probabilities that May’s Model and Model L 
select the same SMA, given that a SMA exists with May’s Model, for larger val-
ues of n for small  raises interest in a determination of limiting values of  these 
probabilities as n .  Following previous discussion, the case with  equal to 
zero is IC-like in the context of the current problem, with complete independence 
between attribute rankings on alternatives.  Similarly, the case with  equal to 
one is the same as IAC-like, suggesting the presence of a small degree of depend-
ence between attribute rankings on alternatives. 

To develop a limiting representation for 0,,3 PEPLSMA , we begin by consid-

ering the limiting probability, 0,,3 PEP A
SMA , that A is the SMA with May’s 

Model for three alternatives, following the development of the representation for 

DCPSPMRW ,,3  in Eq. 3.69.  The process is replicated here in the context of the 

current problem to facilitate an extension of this analysis in later discussion. 
A random profile of n attribute rankings on alternatives is obtained by sequen-

tially drawing balls from an urn in a P-E experiment.  When the thi   ball is drawn 
during the experiment, the color of the selected ball determines which of the six 

possible complete rankings from Fig. 7.1 represents the thi  attribute ranking. 

Here, jp  denotes the probability that the thj  colored ball is drawn. With 

equal to zero, these jp  probabilities do not change from draw to draw.  Two dis-

crete variables iX1  and iX 2  describe two joint events that can result as each ball is 

drawn in the experiment, with: 

iX1  = 
653

421
:1
:1

ppp
ppp

iX 2  = 
.:1

:1

654

321
ppp
ppp

(7.6)



7.5 Algebraic and Probabilistic Chooser Coincidence      237 

The definitions of these variables are such that, 11
iX  if the subject per-

ceives A as being superior to B in the basis of the thi  attribute, and 11
iX  if the 

subject perceives B as being superior to A on that attribute.  Then, according to 

May’s Model the subject will respond with BA  if .0
1

1
n

i

iX  Similarly, the 

subject will respond CA   if .0
1

2
n

i

iX  Let 1X  denote the average value 

of iX1 , with 1X = nX
n

i

i /
1

1 .  Then, A will be the SMA with May’s Model with 

the joint probability that 01X  and 02X .  This can be stated in the alternative 
form that A will be the SMA with May’s Model in a randomly drawn profile of at-

tribute rankings on alternatives with the joint probability that 01 nX

and 02 nX .  The argument that is used here is the same as the one that is used 

to develop Eq. 3.69, with i
B

i XX1  and i
C

i XX 2 .

The Central Limit Theorem applies as the number of voters gets large, 

with n  and the limiting joint distribution of nX 1  and nX 2  will have a 

bivariate normal distribution.  The probability that each of nX 1  and nX 2
take on any particular value, including zero, in a bivariate normal distribution is 
zero, so the probability that A is the SMA with May’s Model can be restated as the 

joint probability that 01 nX  and 02 nX .  The Central Limit Theorem 

also states that the correlation between nX 1  and nX 2  in this bivariate nor-

mal distribution is identical to the correlation, ii XXCor 21, , between the original 

variables iX1  and iX 2 .

 Given the assumption above that the P-E urn experiment starts with all 1iA
for i = 1, 2, 3, 4, 5, 6, 6/1ip for i = 1, 2, 3, 4, 5, 6, and these probabilities are 

constant on each draw since 0 .  Following the development of Eq. 3.64, 

.021
ii XEXE (7.7)

The logic of the development of Eq. 3.68 leads to 

3/1, 21
ii XXCor . (7.8)

The limiting probability 0,,3 PEP A
SMA  is therefore given as the joint prob-

ability that 01 nX  and 02 nX , in a bivariate normal distribution with a 

coefficient of correlation that is equal to 1/3.  Since 021
ii XEXE , it follows 
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that 021 nXEnXE ii , so 0,,3 PEP A
SMA  is the same as the joint prob-

ability that nXEnX 11  and nXEnX 22 , in a bivariate normal dis-

tribution with a coefficient of correlation equal to 1/3.  Using the notation of 
Chapter 4, this limiting joint probability is the bivariate normal positive orthant 
probability 3/12 .

Sheppard’s 1898 Theorem of Median Dichotomy applies to bivariate normal 

positive orthant probabilities, and 
3
11

2
1

4
10,,3 SinPEP A

SMA .  The sym-

metry of PE models with respect to candidates leads to 0,,3 PEP A
SMA

0,,30,,3 PEPPEP C
SMA

B
SMA , and it directly follows that 

.
3
1

2
3

4
30,,3 1SinPEPSMA

(7.9)

The representation for 0,,3 PEPSMA  in Eq. 7.9 is identical to the representa-

tion for Guilbaud’s result in Eq. 3.77. 

A representation for the limiting probability 0,,3 PEJPLSMA  is obtained by 

using the same notions from expected value theory that led to the representation 

for PEnJPLSMA ,,3  in Eq. 7.5.  To start, consider the limiting joint probability, 

0,,3 PEJPLA , that A is the SMA with May’s Model and with Model L. 

2
32142120,,3

n
nnnnnnEPEJPLA .

(7.10)

The expectation, 2E , in Eq. 7.10 is taken over the two dimensions of the positive 

orthant of the bivariate normal distribution.  Let, nXZ jj , for j = 1, 2 and 

then define 0,,3 PEJPLA   in terms of 1Z  and 2Z .  Using the fact that 

2
1 1

421

n
i

iXn
nnn and 

2
1 2

321

n
i

iXn
nnn , 0,,3 PEJPLA

can be rewritten as  

.
4
1

4
13/1

4
1

22
1

22
10,,3

21
2

21
2

2

212

ZZE
n

ZZE
n

n
Z

n
ZEPEJPLA

(7.11)
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Johnson and Kotz (1972) give general representations of the form of 

21
2 ZZE and 21

2 ZZE  for expectation over the positive orthant of bivariate 

normal probability distributions with correlation equal to  as functions of .

For the special case with = 1/3, 

.22
3
1

26
11

22
1

2
3
112

4
1

121
21

2

2
2

1
2

SinSinZZE

ZEZE
(7.12)

In the limit as n , after substituting the appropriate terms from Eq. 7.12 
into Eq. 7.11, we find

0,,3
3
1

4
10,,3

12
1

2 PEPPEJP SMA
L
A .

(7.13)

Using the symmetry of P-E models with respect to Alternatives A, B and C,
along with Eq. 7.4, 

.
4
1

0,,3

0,,33
0,,3

PEP

PEJP
PEnP

SMA

L
AL

SMA

(7.14)

A Model L chooser is quite likely either to select some SMA, or to have pair-
wise preferences on alternatives that cycle, when May’s Model selects a different 
SMA.  It is also noted that the rate of convergence of this probability to the limit-

ing value as n  is very slow, since 0,45,3 PEPLSMA  = .3200 in Table 4.2. 

The given representation for ,1 nP  for the special case in which is equal 

to one in Eq. 3.86 allows for a direct algebraic reduction of Eq. 7.5 for this special 
case.  Gehrlein (1990b) performs the necessary algebraic reduction to obtain a rep-

resentation for 1,,3 PEnPLSMA  with odd n, and 

22

234

3105
42450787354471,,3

nn
nnnnPEnPLSMA .

(7.15)

The limiting value of 1,,3 PEnPLSMA  as n  is given by 1,,3 PEPLSMA  = 

47/105  .4476, which is a very significant improvement over the limiting result 

from Eq. 7.14, which has 0,,3 PEPLSMA  = .2500.  The introduction of some 

small degree of dependence among attribute rankings by using  equal to one 
clearly increases the propensity of Model L choosers to behave like algebraic 
choosers with May’s Model, when compared to the case with  equal to zero, 
with complete independence between attribute rankings. 
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7.6 Weak Maximal Alternatives 

The representation for PEnPLSMA ,,3  that follows from Eq. 7.4 is a strict con-

ditional probability since it requires the same SMA with both May’s Model and 
Model L.  However, there could be a SMA with May’s Model, while there is a 
pairwise preference cycle with Model L. If a subject is unable to make a direct de-
termination of a SMA, due to the presence of a pairwise preference cycle with any 
PPM, it is assumed that the subject selects a maximal alternative at random, with 
an equal likelihood of selecting any of the alternatives.  A Weak Maximal Alterna-
tive (WMA) is an alternative that a subject either directly selects as a SMA, or in-
directly selects as a result of a random determination when a pairwise preference 

cycle exists.  Let PEnPPPMWMA ,,3  denote the conditional probability that a sub-

ject selects a WMA that is the same as the SMA with May’s Model, given that 
May’s Model has a SMA. 

In order to develop a representation for the probability PEnPPPMWMA ,,3  from 

PEnPPPMSMA ,,3 , we start with a representation for the joint probability, 

PEnT PPMA ,,3  that a subject has a pairwise preference cycle with a PPM 

when A is the SMA with May’s Model.  There are two possible cycles that must 
be accounted for when A is the SMA with May’s Model.  For Model L: 

2
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2
1
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2
1

0

2
1

0 0

1

321642653

654531421
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n

nnn

n
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nnn
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nnn
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nnn
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nnn
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nnn
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(7.16)

The summation indexes in Eq. 7.16 require that A is the SMA for an algebraic 
chooser with May’s Model, and the two triple product terms that are being 
summed account for the two possible pairwise preference cycles on the three al-
ternatives for a probabilistic chooser who is using Model L. The first product is 

nL
BAP nL

CBP nL
ACP  for a given n that is based on the summation indexes, 

and the second product is nL
ABP nL

BCP nL
CAP .

A general representation for PEnPPPMWMA ,,3  is obtained by appealing to 

both the symmetry of P-E models with respect to alternatives and the use of a ran-
dom selection procedure to determine the most preferred alternative in the pres-
ence of cycles in pairwise preferences, with 

PEnP

PEnTPEnJP
PEnP

SMA

PPM
A

PPM
SMAPPM

WMA
,,3

,,33,,3
,,3 3

1

.

(7.17)
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Computed values of PEnPLWMA ,,3  from Eq. 7.17 that use calculations 

from the representation for PEnT LA ,,3  in Eq. 7.16 are listed in Table 7.3 for 

each n = 3, 5, 9, 15, 25, 45 for each =0, 1, 2, 3, 4, 5, 10, 15, 20, 25.  The results 

in Table 7.3 indicate both that PEnPLWMA ,,3  increases as increases, and 

that PEnPLWMA ,,3  decreases as n increases. 

Table 7.3 Computed values of PEnPLWMA ,,3

 Number of Attributes (n)
3 5 9 15 25 45 

0 .6405 .5589 .4944 .4550 .4258 .4012 
1 .6872 .6240 .5796 .5560 .5412 .5311 
2 .7236 .6706 .6349 .6169 .6058 .5984 
3 .7526 .7064 .6761 .6611 .6520 .6459 
4 .7762 .7351 .7085 .6954 .6877 .6825 
5 .7957 .7586 .7348 .7232 .7163 .7118 
10 .8578 .8327 .8168 .8092 .8047 .8017 
15 .8910 .8719 .8599 .8542 .8508 .8486 
20 .9116 .8962 .8866 .8820 .8793 .8775 
25 .9257 .9128 .9047 .9009 .8986 .8971 

By definition, PEnPPEnP PPM
SMA

PPM
WMA ,,3,,3  for all PPM, but with the 

assumption that  is equal to zero, 0,45,3 PEPLWMA  = .4012, which is still a 

relatively small probability.  It is therefore of interest to develop a representation 

for the limiting value as n  of 0,,3 PEPLWMA .

The development a representation for 0,,3 PEPLWMA  starts with the limiting 

joint limiting probability 0,, PEnJPLABC  that both May’s Model and Model L 

will have the transitive preference ranking CBA .  Variables iX1  and iX2
were defined in Eq. 7.6 to maintain BA  and CA  respectively with May’s 

Model. We now define a third variable iX3  to require CB  with May’s Model. 
iX3 +1: 531 ppp

                                                 -1: 642 ppp .
(7.18)

Following earlier discussion, this definition leads to CB  in Model L when 

03Z , with nXZ 33 .   The probability that May’s Model will have the tran-

sitive ranking CBA  is obtained as the joint distribution that 01Z , 02Z
and 03Z .  This joint distribution is trivariate normal, with correlation matrix 

* , which is given by  
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1

1

1

3
1

3
1

3
1

3
1

3
1

3
1

* .

(7.19)

A representation for 0,, PEnJPLABC  is then obtained as an expected value 

over the three dimensions covering the positive orthant of the trivariate normal 
distribution for 321 ,, ZZZ :

n
Z

n
Z

n
ZEPEnJPLABC 22

1
22

1
22

10,, 3213 ,
(7.20)

which reduces to 

321
32

3
323121

31
321

32
1

3
8
1

0,,

ZZZEn

ZZZZZZEnZZZEn

PEnJPLABC

* .

(7.21)

Here, *3  is the trivariate orthant probability that 01Z , 02Z  and 

03Z .  A representation for *3  is obtained, from the trivariate extension of 

Sheppard’s (1898) Theorem of Median Dichotomy. 

3
1

4
1

8
1

4
1

8
1 1*

23
1*

13
1*

12
1

3 SinSinSinSin* .
(7.22)

Eq. 7.21 can be algebraically reduced by using representations for the expected 

value terms iZE3 , jiZZE3  and 321
3 ZZZE  from Kamat (1956).  Each of 

these terms is a function of the *
ij  entries from * .  The representation for 

321
3 ZZZE  includes the determinant of * matrix.  Each of these representa-

tions reduces to a simple finite value, as in the analysis of iZE2  and 21
2 ZZE

above.  In the limit as n ,

0,,3
48
1

3
1

4
1

8
1

8
10,, 1 PEPSinPEnJP SMA

L
ABC .

(7.23)

There are eight possible Model L pairwise preference rankings on the alterna-
tives that could result when the transitive ranking CBA  is obtained from 
May’s Model. These are the six possible transitive rankings and the two pairwise 
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preference cycles that can be obtained on three alternatives.  A representation for 
each of these rankings is obtained from one of the eight combinations of  

n
Z

n
Z

n
ZE

22
1

22
1

22
1 3213 .

(7.24)

A direct consequence of Eq. 7.24 and the arguments that lead to develop the 

representation for 0,, PEnJPLABC  in Eq. 7.23 is that each of these eight possi-

ble pairwise preference rankings is equally likely to be observed.  The result that A
is the SMA with May’s Model occurs because one of the two transitive preference 
rankings CBA  or BCA occurs, and there are two Model L pairwise 
preference cycles for each of these two underlying transitive rankings.  The sym-
metry of P-E models with respect to alternatives then leads to 

0,,3
12
10,,340,,3 PEPPEJPPET SMA

L
ABC

L
A .

(7.25)

A representation for 0,,3 PEPLWMA  follows from Eq 7.17 as 

3
1

0,,3

0,,330,,3
0,,3 3

1

PEP

PETPEJP
PEP

SMA

L
A

L
SMAL

WMA .

(7.26)

A probabilistic chooser with Model L is therefore equivalent to a subject who 
makes random preference selections on three candidates as n  with  equal 
to zero, when pairwise preference cycles are broken at random.  Since 

0,45,3 PEPLWMA  = .4012, the convergence of 0,,3 PEnPLWMA  to its limiting 

value as n  is very slow. 

Gehrlein (2006d) develops representation for 1,,3 PEnT LA  by using alge-

braic reduction on Eq. 7.16 to obtain 

42896
3549334759131,,3 2

23

nnn
nnnnPEnT LA .

(7.27)

After substitution into Eq. 7.17 and algebraic reduction, a representation for 

1,,3 PEnPLWMA  with odd n is given by 

22

234

3840
3713072644231204351,,3

nn
nnnnPEnPLWMA .

(7.28)

As n  with  equal to one, 840/4351,,3 PEPLWMA = .5179, so that 

PEPLWMA ,,3  .5179 for all 0 , while 333.0,,3 PEPLWMA .  There 
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is a very significant increase in the probability PEnPLWMA ,,3  in changing 

from zero to one, which implies that some degree of dependence has been im-
posed on attribute rankings. However, a probabilistic chooser who behaves like a 
Model L chooser still does not display particularly good performance at selecting 
the SMA with May’s Model with either case as n , and the SMA selection is 
effectively random when is equal zero as n . This poor performance could 
result from two different sources.  The first possibility is that Model L choosers 
are simply too weak in their ability to discriminate their true preferences on pairs 
of alternatives to avoid making random selections.  The second possibility is that 
all probabilistic choosers might be reduced to making random pairwise preference 
in the presence of independence of attribute rankings as n  . 

7.7  Attribute Independence - Discriminatory Power 

Several PPM models that reflect probabilistic choosers with different levels of 
discriminatory power than a Model L chooser are developed in Gehrlein (1990b).  
One set of these PPM’s for probabilistic choosers shows greater discriminatory 
power in making pairwise comparisons than Model L choosers display, in terms of 
the probability that the subject tends to select the more preferred alternative in 
pairwise comparisons that is more in agreement with the pairwise choice that 
would be selected by an algebraic chooser with May’s Model.   
 Let BAR ,  denote the proportion of the n attribute rankings in which the sub-

ject perceives A as being superior to B. Given the linear ranking definitions from 

Figure 7.1, 
n
nnn

BAR 421,  and 
n
nnn

ABR 653, . The PPM’s for prob-

abilistic choosers who have greater discriminatory power than Model L choosers 
are based on these BAR ,  measures and an integer parameter, , with 1 ,

that reflects the level of discriminatory power of a probabilistic chooser.  We de-
note these PPM models as BTL  choosers, since they are better discriminators 

than Model L choosers.   For any pair of alternatives A and B, we define 

nBTL
BAP  according to whether BA  or AB  by May’s Model.  If BA

with May’s Model, it must be true that BAR ,  > ABR ,  and the definitions of 

nBTL
BAP  and nBTL

ABP  are given by 

ABRPBTLBA ,21 1n

ABRPBTLAB ,2 1n .

(7.29)

All BTL  choosers are decisive, since nBTL
BAP =1 when ABR , =0, and 

they are unbiased since 2/1nn BTL
AB

BTL
BA PP  when ABR , =1/2.  By 
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definition, nn L
BA

BTL
BA PP 1 .  For all 1 , nBTL

BAP > nL
BAP  when 

BA  for an algebraic chooser according to May’s Model, and nBTL
BAP  in-

creases as  increases.  Since 2/1,ABR  if BA  according to May’s Model, 

it is easily shown that BTL  choosers match the behavior of a precise algebraic 

chooser with May’s Model as .

Fig. 7.2 shows graphed values of the nBTL
BAP  pairwise comparison prob-

abilities for =1, 2, 3, 4 with n = 25 attributes of comparison.  The values of 

nBTL
BAP  are a function of ABR ,  in the definitions in Eq. 7.29.  However, 

Fig. 7.2 shows nBTL
BAP  as a function of “attribute dominance”, rather than 

ABR , .  Attribute dominance measures the number of attribute rankings for 

which a subject perceives A as being ranked as superior to B, or BAnR , , given 

that BA  according to May’s Model.  The plots in Fig. 7.2 give strong evidence 
to indicate that BTL  choosers tend to have significantly increasing discrimina-

tory power as  increases. 

Fig. 7.2 Calculated values of nBTL
BAP  and nWTL

BAP  with n = 25

The same basic concepts that led to the development of PPM models for 
BTL  choosers, lead to the notion of WTL  choosers, who are worse than 

Model L choosers at making pairwise preference comparisons that are in agree-

0.50

0.60

0.70

0.80

0.90

1.00

12 14 16 18 20 22 24 26

Attribute Dominance [nR(A,B)]

Pr
ob

ab
ili

ty
 o

f P
ai

rw
is

e 
C

ho
ic

e 
A

gr
ee

in
g 

w
ith

 M
ay

's
 M

od
el

    BTL(4)
    BTL(3)
    BTL(2)
     L
   WTL(2)
   WTL(3)
   WTL(4)



246      Individual Intransitivity 

ment with an algebraic chooser who is using May’s Model.  These WTL
choosers therefore have a weaker ability to discriminate their true pairwise prefer-
ences than Model L choosers have.  The PPM probabilities are defined as above 
for the pair A and B, with BA  by May’s Model as 

ABRBARPWTLBA ,,1
2
1n

ABRBARPWTLAB ,,1
2
1n .

(7.30)

The definitions in Eq. 7.30 lead to the observations that n1WTL
BAP  = 

nL
BAP , and for all 1 nWTL

BAP < nL
BAP  when BA  according to 

May’s Model. In addition, nWTL
BAP  decreases as  increases. Probabilistic 

choosers who behave like WTL  choosers become equivalent to totally random 

pairwise preference choosers, with nWTL
BAP  = 1/2 as , except for the 

special case with 1,BAR .

Fig. 7.2 shows plots of computed values of nWTL
BAP  pairwise preference 

comparison probabilities for each =1, 2, 3, 4 with n = 25 attributes of compari-
son. The numerical evidence in Fig. 7.2 clearly indicates that WTL  choosers 

have significantly weaker discriminatory power as  increases. 
Following the logic of the general discussion that led to Eq. 7.5, a general rep-

resentation for PEnJPPPMSMA ,,3  is obtained as 
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(7.31)

Computed values of PEnPPPMSMA ,,3  can be obtained by using Eq. 7.31 in 

conjunction with Eq. 7.4.  Tables 7.4, 7.5 and 7.6 list the associated values of 

PEnPBTLSMA ,,3  for the respective values of = 2, 3 and 4.  These tables 

have entries for each n = 3, 5, 9, 15, 25, 45 with each value of  =0, 1, 2, 3, 4, 5, 
10, 15, 20, 25.  Tables 4.7, 4.8 and 4.9 list similar computed values of 

PEnPWTLSMA ,,3 .  An analysis of the computed probabilities in Tables 7.4 

through 7.9 show that PEnPPPMSMA ,,3  values increase significantly for all 

given n and  as probabilistic choosers have PPM’s that tend to reflect increased 
levels of discriminatory power. 
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Table 7.4 Computed values of PEnPBTLSMA ,,32

 Number of Attributes (n)
3 5 9 15 25 45 

0 .7124 .6248 .5389 .4774 .4275 .3827 
1 .7503 .6938 .6485 .6220 .6043 .5915 
2 .7797 .7377 .7077 .6915 .6813 .6742 
3 .8029 .7696 .7474 .7361 .7292 .7245 
4 .8218 .7941 .7767 .7682 .7631 .7597 
5 .8374 .8137 .7994 .7927 .7888 .7862 
10 .8869 .8732 .8659 .8629 .8612 .8602 
15 .9134 .9037 .8989 .8970 .8961 .8955 
20 .9298 .9224 .9188 .9175 .9168 .9164 
25 .9410 .9349 .9321 .9311 .9306 .9303 

Table 7.5 Computed values of PEnPBTLSMA ,,33

 Number of Attributes (n)
3 5 9 15 25 45 

0 .8025 .7113 .6220 .5540 .4948 .4380 
1 .8287 .7708 .7275 .7026 .6860 .6740 
2 .8489 .8066 .7788 .7647 .7561 .7501 
3 .8649 .8317 .8115 .8021 .7965 .7929 
4 .8779 .8506 .8349 .8279 .8240 .8215 
5 .8886 .8655 .8527 .8473 .8443 .8425 
10 .9225 .9096 .9032 .9007 .8995 .8989 
15 .9407 .9317 .9275 .9260 .9253 .9249 
20 .9519 .9451 .9420 .9409 .9405 .9402 
25 .9596 .9541 .9516 .9508 .9505 .9503 

Table 7.6 Computed values of PEnPBTLSMA ,,34

 Number of Attributes (n)
3 5 9 15 25 45 

0 .8657 .7727 .6836 .6140 .5505 .4863 
1 .8836 .8224 .7799 .7566 .7413 .7303 
2 .8974 .8514 .8239 .8109 .8033 .7981 
3 .9083 .8714 .8511 .8424 .8376 .8345 
4 .9171 .8862 .8702 .8637 .8603 .8582 
5 .9244 .8979 .8846 .8794 .8769 .8754 
10 .9474 .9318 .9247 .9223 .9212 .9206 
15 .9597 .9487 .9438 .9423 .9416 .9413 
20 .9674 .9588 .9551 .9540 .9535 .9533 
25 .9726 .9656 .9626 .9617 .9613 .9612 
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Table 7.7 Computed values of PEnPWTLSMA ,,32

 Number of Attributes (n)
3 5 9 15 25 45 

0 .4771 .3796 .3190 .2904 .2739 .2631 
1 .5446 .4578 .4024 .3757 .3600 .3496 
2 .5973 .5188 .4682 .4435 .4288 .4191 
3 .6394 .5679 .5213 .4984 .4848 .4758 
4 .6736 .6080 .5650 .5438 .5311 .5227 
5 .7020 .6414 .6015 .5818 .5700 .5622 
10 .7924 .7490 .7199 .7054 .6967 .6909 
15 .8408 .8070 .7843 .7729 .7660 .7614 
20 .8710 .8433 .8247 .8153 .8096 .8058 
25 .8915 .8681 .8523 .8443 .8395 .8363 

Table 7.8 Computed values of PEnPWTLSMA ,,33

 Number of Attributes (n)
3 5 9 15 25 45 

0 .4430 .3384 .2861 .2667 .2577 .2532 
1 .5146 .4139 .3557 .3301 .3161 .3072 
2 .5706 .4763 .4185 .3916 .3763 .3665 
3 .6154 .5277 .4721 .4455 .4301 .4201 
4 .6519 .5704 .5175 .4919 .4768 .4669 
5 .6821 .6062 .5562 .5316 .5171 .5075 
10 .7785 .7229 .6847 .6655 .6539 .6461 
15 .8301 .7865 .7561 .7406 .7312 .7249 
20 .8623 .8265 .8013 .7883 .7804 .7752 
25 .8842 .8538 .8324 .8213 .8145 .8100 

Table 7.9 Computed values of PEnPWTLSMA ,,34

 Number of Attributes (n)
3 5 9 15 25 45 

0 .4319 .3189 .2719 .2580 .2529 .2509 
1 .5048 .3920 .3316 .3071 .2945 .2869 
2 .5620 .4548 .3912 .3630 .3474 .3376 
3 .6076 .5072 .4442 .4149 .3982 .3875 
4 .6448 .5511 .4902 .4610 .4440 .4330 
5 .6756 .5881 .5298 .5013 .4845 .4736 
10 .7740 .7094 .6636 .6403 .6261 .6167 
15 .8267 .7758 .7390 .7199 .7082 .7003 
20 .8594 .8177 .7870 .7709 .7610 .7543 
25 .8818 .8464 .8202 .8063 .7977 .7920 
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Table 7.10 summarizes the computed values of PEPPPMSMA ,45,3  for 

equal to zero and one with all PPM’s that have been considered so far. 

Table 7.10 Summary of PEPPPMSMA ,45,3  and PEPPPMSMA ,,3  values for 1,0

0,,3 PEnPPPMSMA 1,,3 PEnPPPMSMA

PPM 45n n 45n n
4BTL .4863 .2500 .7303 .7154 

3BTL .4380 .2500 .6740 .6576 

2BTL .3827 .2500 .5915 .5743 

Model L .3200 .2500 .4626 .4476 
2WTL .2631 .2500 .3496 .3368 

3WTL .2532 .2500 .3072 .2969 

4WTL .2509 .2500 .2869 .2784 

The results in Table 7.10 show that a probabilistic chooser has 

0,45,3 PEPPPMSMA  increase from .2509 for a 4WTL  chooser to .4683 for a 

4BTL  chooser, with  equal to zero.  The increase in the associated probability 

values is even more dramatic with  equal to one, with an increase from .2869 
for a 4WTL  chooser to .7303 for a 4BTL  chooser.  The value of 

4683.0,45,34 PEPBTLSMA  also suggests the possibility that a significant im-

provement in discriminatory power beyond that of a Model L chooser might pre-
vent a probabilistic chooser from becoming equivalent to a random chooser as 
n .

The same procedure that was used above to obtain a representation for the lim-

iting probability 0,,3 PEPLSMA , can be used to find some results for 2BTL
and 2WTL  probabilistic choosers.  By using identities of the form  

12
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1

2
1

2
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These expected values are being taken over both dimensions of the positive 

orthant of a bivariate normal distribution for variables nX 1  and nX 2 .  Ka-
mat (1956) develops representations of these expected values, and by using alge-
braic reduction after the substitution of the resulting representations into Eqs. 7.33 

and 7.34, it is found that 0,,32 PEJPBTLA  = 0,,32 PEJPWTLA  = 

3
1

24
1  = 0,,3

12
1 PEPSMA  in the limit as n .  It then follows that 

0,,32 PEPBTLSMA = 0,,32 PEPWTLSMA  = 0,,3 PEPLSMA , so that probabil-

istic choosers with PPM’s of the type we are considering will all turn out to be 
equivalent to random choosers as n  when is equal to zero, with its associ-
ated assumption that attribute rankings on alternatives are completely independent. 

The rate of convergence to this limiting probability is quite different for the 

PPM’s.  The values in Table 7.10 show that 0,45,33 PEPWTLSMA  = .2532 and 

0,45,34 PEPWTLSMA  = .2509 for 45 attributes, so that both are very near their 

limiting value.  However, the probabilistic choosers with the greatest discrimina-

tory power have very different convergence results, with 0,45,34 PEPBTLSMA  = 

.4863 which is nearly double the limiting value for n = 45. 
All of this creates an interest in the impact that the small amount of dependence 

between attribute rankings that is suggested with  equal to one might have on 
these coincidence probabilities.  Gehrlein (2006d) uses the same process that was 

employed to develop the representation for 1,,3 PEnPLSMA  in Eq. 7.15  to obtain 

closed form representations for both 1,,3 PEnPBTLSMA  and 1,,3 PEnPWTLSMA
for each  = 2, 3 and 4 with odd n.  The resulting representations are given by: 
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The limiting values, as n , for the probabilities that are given in the repre-
sentations that are shown in Eqs. 7.35 through 7.40 are summarized in Table 7.10, 

and two distinct observations stand out.  First, the limiting 1,,3 PEPPPMSMA  val-

ues are significantly greater than the limiting probabilities of the associated 

0,,3 PEPPPMSMA  for probabilistic choosers with any PPM model that has 

greater discriminatory power than a Model L chooser. The limiting probability 

values as n  are approached much faster with 1,,3 PEnPPPMSMA  than with 

0,,3 PEnPPPMSMA .  The listed values of 1,45,3 PEPPPMSMA  are very near their 

limiting probability values of 1,,3 PEPPPMSMA  for each of the PPM’s that are 

considered in Table 7.10. 
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The development of representations for the probability that the WMA with 
BTL  and WTL  choosers coincides with the SMA for an algebraic chooser 

with May’s Model becomes substantially more complicated than in the earlier 
situation of the Model L case.  In order to obtain a representation for the probabil-
ity that there is a pairwise preference cycle with Model L, a representation for 

PEnT LA ,,3  was developed in Eq. 7.16 with summation indexes that enumer-

ate all possible attribute ranking situations for which both BA  and CA  with 
May’s Model.  The primary source of the additional difficulty with the cases of 
BTL  and WTL  probabilistic choosers results from the fact that the basic 

definitions of both of the nBTL
BAP  and nWTL

BAP  pairwise comparison prob-

abilities are based on whether BA  or AB  for an algebraic chooser with 
May’s Model.   

In order to develop a representation for PEnT BTLA ,,3 , it is necessary to 

consider summation indexes that enumerate all of the possible attribute ranking 
outcomes in which BA , CA  and CB  in May’s Model.  The additional 
restriction that CB  requires that the summation indexes result in the outcome 

that 
2

1
642

nnnn .  We compute the probability that either of the two possi-

ble pairwise preference cycles on alternatives exist when the transitive ranking 
CBA  results from May’s Model.  It then follows from symmetry arguments 

of P-E models with respect to alternatives that PEnT BTLA ,,3  is obtained as 

twice this probability, since both of the possible pairwise preference cycles exist 
with the same likelihood when the transitive ranking BCA  results from 
May’s Model.  As a result 
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A general representation for the probability PEnPBTLWMA ,,3  then follows 

directly from the definition that is given in Eq. 7.17, and computed values of 

PEnPBTLWMA ,,3  are listed in Tables 7.11, 7.12 and 7.13 for respective values 

of = 2, 3 and 4.  These tables have entries for each value of n = 3, 5, 9, 15, 25, 
45 with each =0, 1, 2, 3, 4, 5, 10, 15, 20, 25.  Tables 7.14, 7.15 and 7.16 list 

computed values of PEnPWTLWMA ,,3  respectively for each = 2, 3 and 4. 

These computed values show a marked increase in PEnPPPMWMA ,,3  for all n

and as probabilistic choosers have PPM’s with increased levels of discrimina-

tory power.  Table 7.17 summarizes PEPPPMWMA ,45,3  values for each 1,0 .
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Table 7.11.  Computed values of PEnPBTLWMA ,,32

Number of Attributes (n)
3 5 9 15 25 45 

0 .7509 .6734 .5982 .5441 .4998 .4593 
1 .7842 .7337 .6939 .6708 .6554 .6444 
2 .8097 .7722 .7456 .7315 .7227 .7165 
3 .8300 .8000 .7803 .7705 .7645 .7604 
4 .8463 .8214 .8059 .7984 .7940 .7911 
5 .8598 .8385 .8257 .8198 .8164 .8142 
10 .9026 .8902 .8836 .8809 .8795 .8786 
15 .9254 .9167 .9123 .9106 .9098 .9093 
20 .9396 .9328  .9296  .9284  .9278 .9275 
25.    .9492 .9437 .9412 .9402 .9398 .9396 

Table 7.12 Computed values of PEnPBTLWMA ,,33

 Number of Attributes (n)
3 5 9 15 25 45 

0 .8297 .7489 .6707 .6114 .5595 .5091 
1 .8529 .8010 .7625 .7408 .7263 .7159 
2 .8705 .8324 .8075 .7951 .7875 .7823 
3 .8844 .8543 .8361 .8277 .8229 .8197 
4 .8955 .8708 .8566 .8503 .8469 .8447 
5 .9048 .8837 .8721 .8672 .8646 .8630 
10 .9339 .9220 .9161 .9139 .9128 .9122 
15 .9494 .9411 .9372 .9358 .9352 .9349 
20 .9590 .9527 .9498 .9488 .9484 .9481 
25 .9656 .9605 .9581 .9574 .9570 .9569 

Table 7.13 Computed values of PEnPBTLWMA ,,34

 Number of Attributes (n)
3 5 9 15 25 45 

0 .8846 .8025 .7242 .6636 .6083 .5520 
1 .9005 .8461 .8081 .7876 .7742 .7646 
2 .9125 .8715 .8467 .8352 .8284 .8239 
3 .9219 .8890 .8706 .8627 .8585 .8558 
4 .9295 .9019 .8873 .8814 .8784 .8766 
5 .9357 .9120 .8998 .8952 .8929 .8915 
10 .9554 .9414 .9348 .9326 .9316 .9311 
15 .9659 .9560 .9514 .9500 .9493 .9490 
20 .9724 .9647 .9612 .9601 .9597 .9595 
25 .9768 .9705 .9677 .9668 .9665 .9663 
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Table 7.14 Computed values of PEnPWTLWMA ,,32

 Number of Attributes (n)
3 5 9 15 25 45 

0 .5396 .4546 .3996 .3727 .3568 .3463 
1 .5976 .5233 .4751 .4513 .4372 .4278 
2 .6436 .5767 .5332 .5117 .4990 .4904 
3 .6804 .6196 .5799 .5602 .5485 .5407 
4 .7105 .6547 .6182 .6001 .5893 .5821 
5 .7355 .6840 .6502 .6334 .6234 .6167 
10 .8155 .7785 .7539 .7417 .7344 .7295 
15 .8584 .8296 .8104 .8008 .7950 .7912 
20 .8851 .8616 .8458 .8379 .8332 .8300 
25 .9034 .8835 .8701 .8634 .8594 .8567 

Table 7.15 Computed values of PEnPWTLWMA ,,33

 Number of Attributes (n)
3 5 9 15 25 45 

0 .5080 .4167 .3684 .3498 .3410 .3365 
1 .5694 .4831 .4321 .4092 .3963 .3882 
2 .6182 .5377 .4879 .4645 .4510 .4423 
3 .6575 .5827 .5351 .5123 .4989 .4902 
4 .6896 .6200 .5750 .5531 .5402 .5317 
5 .7163 .6515 .6089 .5881 .5757 .5675 
10 .8019 .7542 .7218 .7055 .6958 .6893 
15 .8480 .8105 .7846 .7715 .7636 .7583 
20 .8767 .8458 .8244 .8135 .8069 .8025 
25 .8963 .8701 .8518 .8425 .8368 .8330 

Table 7.16 Computed values of PEnPWTLWMA ,,34

 Number of Attributes (n)
3 5 9 15 25 45 

0 .4977 .3985 .3548 .3413 .3363 .3343 
1 .5601 .4630 .4098 .3877 .3760 .3690 
2 .6099 .5178 .4629 .4382 .4244 .4157 
3 .6500 .5636 .5096 .4844 .4699 .4605 
4 .6828 .6020 .5499 .5250 .5105 .5010 
5 .7100 .6345 .5847 .5605 .5462 .5368 
10 .7975 .7414 .7024 .6826 .6707 .6628 
15 .8445 .8003 .7689 .7527 .7428 .7362 
20 .8739 .8374 .8112 .7976 .7893 .7837 
25 .8939 .8629 .8405 .8288 .8216 .8168 
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Table 7.17 Summary of PEPPPMWMA ,45,3  and PEPPPMWMA ,,3  values for 1,0

0,,3 PEnPPPMWMA 1,,3 PEnPPPMWMA

PPM 45n n 45n n
4BTL .5520 .3333 .7646 .7517 

3BTL .5091 .3333 .7159 .7018 

2BTL .4593 .3333 .6444 .6295 

Model L .4012 .3333 .5311 .5179 
2WTL .3463 .3333 .4278 .4162 

3WTL .3365 .3333 .3882 .3786 

4WTL .3343 .3333 .3690 .3610 

The results in Table 7.17 indicate that 0,,3 PEPPPMWMA  values converge to the 

limiting result as n  at different rates for different PPM’s.  This result is very 

similar to the behavior that was observed with 0,,3 PEPPPMSMA  computations. 

Gehrlein (2006d) obtains representations for both 1,,3 PEnPBTLWMA  and 

1,,3 PEnPWTLWMA  for  = 2, 3 and 4 with odd n.
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Limiting probability values as n  for these representations are summarized 

in Table 7.17.  Following the general observations from 1,,3 PEPBTLSMA  and 

1,,3 PEPWTLSMA  computations, there is an extreme improvement in the limit-

ing probabilities with  equal to one compared to  equal to zero for any prob-
abilistic chooser that has greater discriminatory power than a Model L chooser. 
The limiting probability values are approached much faster with  equal to one 
than with  equal to zero for all of the PPM’s that are considered. 

7.8 The Impact of Single-Peakedness 

The imposition of the assumption of single-peaked preferences has been seen to be 
sufficient to force PMR relationships to be transitive for odd numbers of voters.  
Gehrlein (1993) adapts this notion to the current problem.  The application of the 
structural consistency of single-peakedness is applied instead to the attribute rank-
ings on alternatives in this case.  The idea of single-peakedness does not have the 
same intuitive appeal in the context of attribute ranking situations, as it does in the 
context of voter preference rankings.  But, the assumption does suggest that there 
will be more internal consistency in attribute ranking situations when the condi-
tion of single-peakedness is applied to the individual preference scenario. 
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 Consistent with earlier notation, 0,,3 b
PPM
SMA IACnP  denotes the probability 

that a PPM probabilistic chooser will have the same SMA as an algebraic chooser 
with May’s Model when all single-peaked attribute ranking situations are equally 
likely to me observed.  Using the definition of Mays Model and previous argu-

ments, it is easily shown that 10,,3 bSMA IACnP , since May’s Model must 

have transitive preferences if single-peakedness is required. 

 Gehrlein (1993) develops representations for 0,,3 b
PPM
SMA IACnP  with three 

types of PPM’s for odd n:
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 Eqs. 7.48. 7.49 and 7.50 are used respectively to obtain computed values of 

0,,3 b
L
SMA IACnP , 0,,32

b
BTL
SMA IACnP  and 0,,32

b
WTL
SMA IACnP  for each 

n = 1(2)15 and for their associated limiting values as n .  The resulting val-
ues are listed Table 7.18, to clearly show that the imposition of the condition of 
single-peakedness does indeed increase the probability that PPM choosers are in 
agreement with an algebraic chooser with May’s Model. 

Table 7.18 Computed values of 0,,3 b
PPM
SMA IACnP

n 0,,3 b
L
SMA IACnP 0,,32

b
BTL
SMA IACnP 0,,32

b
WTL
SMA IACnP

1 1.0000 1.0000 1.0000 
3 .6667 .7685 .5741 
5 .6320 .7473 .5272 
7 .6192 .7399 .5097 
9 .6123 .7361 .5003 
11 .6080 .7338 .4944 
13 .6051 .7323 .4903 
15 .6029 .7312 .4872 

 .5875 .7238 .4655 
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7.9 Strict Maximal-Minimal Reversal 

Results have indicated that there can be a significant probability that a probabilis-
tic chooser might select a SMA that is not the same as the SMA that an algebraic 
chooser with May’s Model would pick.  This leads to the consideration of the 
conditional probability that a probabilistic chooser might have responses that are 
in drastic disagreement with a chooser using May’s Model, with the SMA from 
May’s Model being selected as the strictly minimal, or least preferred, alternative 
(SLA) by the probabilistic chooser, given that May’s Model has a SMA. 

 Gehrlein (1990d) develops representations, denoted as 1,,3 PEnPPPMSLA , for 

this conditional probability for some PPM’s for odd n, assuming a P-E model with 
 equal to one as the basis for generating random attribute ranking situations: 
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Gehrlein (1994) contains a typographical error in restating a representation that is 
associated with Eq. 7.53. 

Table 7.19 summarizes computed values of 1,,3 PEnPPPMSLA  from Eqs. 7.51, 

7.52 and 7.53 for each n = 1(2)15 and their associated limiting values as n .

Table 7.19 Computed values of 1,,3 PEnPPPMSLA

n 1,,3 PEnPLSLA 1,,32 PEnPBTLSLA 1,,32 PEnPWTLSLA

1 .0000 .0000 .0000 
3 .0494 .0219 .0878 
5 .0690 .0338 .1178 
7 .0793 .0402 .1331 
9 .0858 .0444 .1424 
11 .0902 .0473 .1486 
13 .0934 .0495 .1530 
15 .0959 .0512 .1564 

 .1143 .0648 .1797 
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The results in Table 7.19 give strong evidence to support the idea that probabil-
istic choosers have a relatively high chance of giving pairwise preference re-
sponses that are in drastic disagreement with an algebraic chooser using May’s 
Model.  This is particularly true for WTL  choosers.  Gehrlein (1990d) extends 

this analysis by developing representations for 0,,3 b
PPM
SLA IACnP , to determine 

the impact that the increased coherence of imposing the condition single-
peakedness on attribute ranking situations will have on these probabilities.  The 
representations are given as : 
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Table 7.20 summarizes computed values of 0,,3 b
PPM
SLA IACnP  from Eqs. 

7.54, 7.55 and 7.56 for each n = 1(2)15, along with their associated limiting values 
as n .

Table 7.20 Computed values of 0,,3 b
PPM
SLA IACnP

n 0,,3 b
L
SLA IACnP 0,,32

b
BTL
SLA IACnP 0,,32

b
WTL
SLA IACnP

1 .0000 .0000 .0000 
3 .0417 .0185 .0741 
5 .0480 .0225 .0840 
7 .0503 .0234 .0884 
9 .0515 .0237 .0910 
11 .0523 .0238 .0928 
13 .0528 .0239 .0941 
15 .0532 .0239 .0951 

 .0563 .0238 .1030 

The additional internal consistency that the imposition of single-peakedness pro-
duces in attribute ranking situations does significantly reduce the probability that a 
probabilistic chooser will select a SLA that a chooser with May’s Model will se-
lect as a SMA.  However, a relatively high risk still exists that a probabilistic 
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chooser will have pairwise preferences that are in drastic disagreement with an al-
gebraic chooser using May’s Model. 

7.10 Other Related Representations 

A representation for the probability that a Model L chooser has transitive prefer-
ences on three alternatives with odd n, regardless of the outcomes of preferences 
by an algebraic chooser with May’s model, is considered in Gehrlein (1990b).  

This probability is denoted by 1,,3 PEnPLTran  when a P-E model with equal 

to one is applied to generating random attribute ranking situations, and 

n
nPEnPLTran 14

3111,,3 .
(7.57)

 Gehrlein (1994) develops the notion of a different type algebraic chooser model 
in which the subject is only able to accurately determine the highest rated alterna-
tive on each of the attributes.  A Model P chooser will respond with BA  in a 
pairwise preference comparison if A is rated as the highest ranked alternative on 
more attributes of comparison than B is.  A Model P chooser therefore acts as an 
algebraic chooser.  In the context of earlier discussion that was related to three-
candidate elections, a Model P chooser is operating in the same fashion as when 
elections are based on plurality rule. 
 Results from Gehrlein (1982b) can be modified to obtain a representation for 

the conditional probability, 1,,3 PEnPPSMA , that the SMA for a Model P chooser 

and a chooser with May’s Model are the same, given that a SMA exists with 
May’s Model, with 
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Computed values of 1,,3 PEnPPSMA  from Eq. 7.58 are listed in Table 7. 21 for 

each n = 1(6)25 and for the limiting probability as n .
 Other results from Gehrlein (2003) can be extended to obtain a representation 

for 0,,3 b
P
SMA IACnP  to determine the impact that the imposition of the as-

sumption of single-peakedness on attribute ranking situations has on the probabil-
ity that the SMA’s by Model P choosers and choosers by May’s Model coincide. 
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Table 7.21 Computed values of 1,,3 PEnPPSMA  and 0,,3 b
P
SMA IACnP

n 1,,3 PEnPPSMA 0,,3 b
P
SMA IACnP

1 1.0000 1.0000 
7 .8480 .8571 
13 .8534 .8571 
19 .8591 .8579 
25 .8630 .8585 

 .8815 .8611 

Computed values of 0,,3 b
P
SMA IACnP  from Eq. 7.59 are listed in Table 7.21 for 

each n = 1(6)25 and for the limiting probability as n .  The very surprising 
result from the values in Table 7.21 is that the imposition of the assumption of 
single-peakedness does almost nothing to improve the likelihood that the same 
SMA results for Model P choosers and choosers who use May’s Model. 
 Results from Gehrlein and Fishburn (1978b) can be extended to obtain a repre-

sentation for 0,,3 PEPPSMA , with 
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where, 32f  and  

.21log
2
1,

0

2

2 dCosaLi
a (7.61)

aLi2  is the dilogarithmic function and ,2 aLi  is the real part of the diloga-

rithmic function with a complex argument.  Lewin (1958) describes the diloga-
rithmic function in detail and describes methods for calculating values of aLi2
with an infinite series.  The ,2 aLi  terms are evaluated by quadrature.  After 

performing all of the necessary calculations, we find 0,,3 PEPPSMA .7572. 

 By comparing this finding to the limiting value of 1,,3 PEPPSMA  from Ta-

ble 7.21, it can be seen that changing the basic assumption for generating attribute 
ranking situations from a P-E model with  equal to zero to a P-E model with  

 equal to one does have a significant impact on the probability that a Model P 
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chooser and a chooser with May’s Model will have the same SMA, despite the 
earlier observation that imposing the single-peakedness condition has no signifi-
cant impact on this probability. 
 Following the logic of earlier discussion, attention is now turned to the consid-
eration of evidence to support the idea that a Model P chooser might have a rela-
tively high chance of giving pairwise preference responses that are in drastic dis-
agreement with an algebraic chooser using May’s Model.  Analysis that is 
performed in Gehrlein (2002b) can be extended to develop a representation for the 
probability that a Model P chooser selects an alternative as being the SLA, when 
that same alternative is the SMA for a May’s Model chooser.  When alternative 
ranking situations are generated on the basis of a P-E model with  equal to one 
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If the condition of single-peakedness is imposed on attribute ranking situations, 
work in Lepelley (1986) can be extended for P-E model with  equal to one, to 
obtain the representation 
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 Table 7.22 lists computed values of 1,,3 PEnPPSLA  and 0,,3 b
P
SLA IACnP

from Eqs. 7.62 and 7.63 respectively for each n = 1(6)25, along with the limiting 
probability as n .

Table 7.22 Computed values of 1,,3 PEnPPSLA  and 0,,3 b
P
SLA IACnP

n 1,,3 PEnPPSLA 0,,3 b
P
SLA IACnP

1 .0000 .0000 
7 .0160 .0179 
13 .0193 .0220 
19 .0215 .0237 
25 .0229 .0246 

 .0296 .0278 

While the probabilities in Table 7.22 remain relatively small, the imposition of the 
condition of single-peakedness has almost no impact on changing these probabili-
ties.  This result is not surprising at this point, since the imposition of single-
peakedness had almost no impact on the probability that Model P choosers and 
choosers with May’s Model have the same SMA. 
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7.11 Conclusion 

Three factors have been found to be of importance in determining the probability 
that a probabilistic chooser will select the same SMA or WMA as an algebraic 
chooser who is using May’s Model.  An increase in the number of attributes of 
comparison decreases the probability that a probabilistic chooser matches the re-
sponses of an algebraic chooser in all cases.  This result would be expected intui-
tively, since having a subject react to pairwise preferences with a large number of 
attributes of comparison would typically confound the subject with information 
overload.  An increase in the discriminatory power of a probabilistic chooser leads 
to an increase in the probability of matching the results of an algebraic chooser, as 
one would expect.   

The third factor concerns the impact of the degree of dependence among attrib-
ute rankings for alternatives.   When there is complete independence between the 
subject’s perceived attribute rankings, all probabilistic chooser models that were 
considered were found to become equivalent to random choosers as the number of 
attributes increased to its limiting value, with n .  However, the rate of con-
vergence to this limiting value is extremely slow for probabilistic choosers who 
have discriminatory power that is better than that of a Model L chooser.  More-
over, scenarios that reflect only a relatively low level of dependence between at-
tribute rankings, can lead to dramatic increases in the probability that a probabilis-
tic chooser will match the results of an algebraic chooser, even for n .

Model P choosers are found to display unusual behavior.  As expected, increas-
ing the dependence among attribute rankings increases the probability that Model 
P choosers will be in agreement with choosers using May’s Model.  However, the 
imposition of the assumption of single peakedness on attribute ranking situations 
is found to have almost no impact on this relationship.
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