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Introduction

The belief that individuals take advantage of the opportunities afforded by an institu-
tion in order to achieve their goals is at the foundation of much of economic theory.
It is summarized by Plott (1979, p. 138) in the equation

preferences ˚ institutions ˚ physical possibilities D outcomes (�)

where the notation ˚ refers to some unspecified abstract operation which combines
preferences, institutions, and “physical possibilities” or alternatives into actual out-
comes. In the context of decision-making in committees, equation (�) may read as
follows: using some procedure, at the end of which stands a vote, a collection of
individuals has to choose from a set of possible alternatives on which they have
differing and potentially conflicting preferences. Everyday examples abound; they
include voting on legislative proposals in the Council of Ministers of the European
Union (EU), members of a cartel deciding on prices, shareholder meetings voting
on corporate matters, as well as the boards of central banks determining interest
rates or money supply. The “institution” here amounts to the formal and informal
rules that govern the collective decision-making, establishing, for example, who is
entitled to make a proposal, whether or not proposals can be amended, and what
constitutes agreement. If, following Lasswell’s (1936) formulation, politics is “who
gets what,” then it is of central importance to any serious attempt at understand-
ing or shaping political decision-making (in a broad sense) to provide an answer
to the question: How does the decision rule allocate power and influence over the
collective decision?

From a game-theoretic perspective, two general approaches to this problem exist.
First, traditional power indices, which are rooted in cooperative game theory, can be
used to quantify the “a priori voting power” of a committee member, defined as the
ability to affect the outcome of a vote. For this purpose, they abstract from decision-
makers’ preferences. Yet, as equation (�) would suggest, looking at these indices
may tell us very little about players’ capacities to shape actual outcomes: the latter
still depend on preferences and the feasible alternatives. Moreover, the voting rule is
typically but one part of a real-world institution. Nevertheless, power indices may be
useful in designing new committees, or evaluating in advance how the voting power
of decision-makers might change when the voting rule is altered. A comprehensive

ix



x Introduction

treatment is Felsenthal and Machover (1998). Holler (1982a) and Holler and Owen
(2001) contain theoretical and applied contributions to the field, and also give a
sense of its development.

Second, the collective decision process may be described as a non-cooperative
game. Although, in principle, allowing for the specific analysis of complex decision
structures, noncooperative modeling necessitates a detailed description of who can
do what and when, which, in many contexts, is simply not available. Thus, studies
that analyze individual influence in this vein have been limited so far to purely distri-
butional decisions (e. g., Baron and Ferejohn, 1989; Snyder et al., 2005), or rely on
both cooperative and noncooperative solution concepts (e. g., Napel and Widgrén,
2006).

The borderland between these two approaches is exactly the location of this dis-
sertation. Its contribution is twofold: First, it reviews the existing theories that aim
to assess the influence conferred upon committee members by the decision rules.
Second, it breaks new ground by combining – in an eclectic manner – elements of
these theories to obtain fresh insights into committee decision processes.

Before turning to an outlook on individual chapters, a remark on the relation
between the work at hand and the social choice theory of committee decision-
making seems expedient. That theory dates back to the formal investigations of
voting in committees by Borda (1781) and Condorcet (1785). Since the latter’s dis-
covery of cyclical majorities in a three-member, three-alternative example, known
as Condorcet’s paradox, much of subsequent research has dealt with committees as
preference aggregation mechanisms under majority rule. In terms of our introduc-
tory equation, social choice concentrates on the first component in (�): It essentially
deals with a mapping acting on arbitrarily chosen individual preference profiles
in a “committee of the whole,” and processing them into a collective or social
preference ordering of all feasible outcomes. The focus is on characteristics of
the aggregation method, in particular its equilibrium properties, and game aspects
such as strategy-proofness (see the seminal contributions by Farquharson, 1969;
Gibbard, 1973; Satterthwaite, 1975). Apart from special cases, social choice theory
following Arrow’s (1963[1951]) pioneering work has largely established that vot-
ing outcomes under majority rule are inherently unstable. In the absence of sharp
predictions regarding the outcome it would be hard, or even impossible, to deter-
mine individual influence on the collective decision. Although the present analysis
is partly concerned with the same structure as social choice theory, namely a major-
ity rule committee unrestricted by institutional features that favor any member or
any particular outcome, it is unaffected by the difficulties raised by the latter. Either
the committees that we will consider face a binary choice, e. g., approving or dis-
approving a proposal or choosing between exactly two candidates, or committee
members are assumed to have single-peaked preferences over a one-dimensional
continuous policy space. With only two alternatives, majority cycles cannot occur.
But the possibilities of abstention or not showing up are also ruled out. Under
the single-peakedness restriction, the collective decision outcome is compellingly
predicted by Black’s (1958) median voter theorem.
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Chapter 1 presents applications of game-theory to political science. The focus
will be on the effect of the committee decision rule for “who gets what.” One rele-
vant distinction between models precisely concerns what committee members get:
Do they decide on (and derive utility from) the contents of a public policy, or do
they perceive the decision to be primarily about the division of a fixed-size pie?
Depending on the nature of the issue to be decided and on whether the commit-
tee acts on an external proposal or not, different frameworks are appropriate to
evaluate the distribution of players’ influence on the collective decision. Aiming
at greater clarity than is usual in these regards, the chapter discusses simple games
with and without transferable utility, spatial voting games, and non-cooperative bar-
gaining games. From this, it eventually transpires that traditional power indices
figure prominently in conceptually diverse approaches to the problem of assessing
influence in decision-making bodies as far as it is related to the voting rule.

Chapter 2 makes use of an innovative model to consider a familiar problem in
institutional design, namely the choice of an “adequate” voting rule for a demo-
cratic committee of representatives who act on behalf of groups of different sizes.
It is argued that formal political equality or compliance with the “one-person, one-
vote” principle is an essential property of any democratic decision rule, even though
it cannot capture the full idea of “democracy” and “equity” in collective decision-
making. So far, the solution to ensuring equal representation of individual citizens
in a two-tiered voting system has been the one first suggested by Penrose (1946).
In order to equalize individual constituents’ chances to indirectly determine the out-
come of decisions in the committee of representatives, Penrose’s square root rule
recommends to assign weights to representatives such that their power as measured
by the Penrose–Banzhaf index (Penrose, 1946; Banzhaf, 1965) is proportional to
the square root of the respective constituency’s population size. The snag lies in the
fact that the rule rests on a binomial model in which individual voters and represen-
tatives are assumed to vote “yes” or “no” independently with (expected) probability
1=2, which does not apply to many real-world decisions. In contrast, the model
presented here considers decisions which are elements of a one-dimensional con-
vex policy space and may result from strategic behavior consistent with the median
voter theorem. A mathematical investigation suggests that, under limit conditions
and simple majority rule, a square root allocation of weights would be optimal –
a result, which is then confirmed, by means of extensive Monte-Carlo simulations,
for “small” artificial constituency configurations, as well as the EU and the US. In
conclusion, Penrose’s square root rule appears to extend from its original model to
a setting with many finely graded policy alternatives and strategic interactions. The
chapter is based on the article “Equal Representation in Two-tier Voting Systems”,
co-authored with Stefan Napel and published 2007 in Social Choice and Welfare
28(3), pp. 401–420.

Chapter 3 investigates the robustness of the square root rule for equal represen-
tation in two-tiered voting systems. It continues and develops the approach and the
model of Chap. 2, but moreover, it sheds light on problems that are of general inter-
est in the design of voting rules, namely the “inverse problem” of finding weights
which induce a desired power distribution, and the choice of the decision threshold
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or quota. A review of the literature shows that the impact of the latter on representa-
tion of individual citizens has never been properly examined. When supermajority
rules are introduced into the model, representation is demonstrated to become less
egalitarian. The conclusion from these findings would be that the quota applied in a
committee of representatives has important implications for the equity and hence the
legitimacy of decision-making. The chapter then proceeds to explore equal represen-
tation in the case that voters’ preferences within a constituency are somewhat more
similar than across constituencies, i. e., it studies the assumption of heterogeneous
constituencies. This can be done without forgoing the “veil of ignorance” perspec-
tive appropriate to constitutional design. Thinning the “veil of ignorance” slightly, a
new rule for equal representation emerges: In order to give individual citizens from
different constituencies a priori equal chances to influence the collective decision,
the voting weights of representatives need to be such that their power as measured
by the Shapley–Shubik index is proportional to constituency size. Chapter 3 draws
on recent unpublished work with Stefan Napel.

Finally, Chap. 4 studies decision-making in a legislative committee under lobby
influence. Specifically, lobbyists who have similar policy preferences wish to manip-
ulate the collective decision by offering payments to committee members. A model
of endogenous coalition formation among lobbyists is developed. Its analysis uncov-
ers a new link between the status quo bias of a legislative committee and the severity
of the collective action problem of the lobbyists. Coalition formation among the
lobbyists is conceived as a three-stage game: First, lobbyists form coalitions; sec-
ond, coalitions offer politically valuable resources to the members of the committee;
third, the committee decides by voting under closed rule with a fixed agenda-setter.
It turns out that small or no bias in favor of the status quo encourages the formation
of the grand coalition of lobbyists, whereas, in the case of a large status quo bias,
cooperation is partial in the sense that part of the lobbyists will free-ride on others’
lobbying efforts. The equilibrium coalition structure then involves under-provision
of lobby efforts, resulting in an inefficient outcome for the lobbyists. To the extent
that the legislative bargaining game used in the model can be taken as a stylized
description of real world procedures, the model may help to understand the lobby-
ing of supranational legislative institutions like the EU Commission and the Council
of Ministers.

Today, EU decisions extend to all areas of public activity in its member states,
including market regulation, agriculture, consumer affairs, environmental policy,
immigration, and education. Over the past two decades the expansion of the EU, both
geographically and in terms of policy competencies, has stimulated considerable
interest in the design of committee decision-making, which is reflected in a large
amount of related literature, both theoretical and applied. In fact, one might be
tempted to interpret the tough-minded and painful haggling over the rules for Qual-
ified Majority Voting in the EU Council of Ministers at all of the more recent
Intergovernmental Conferences as evidencing the practical relevance of these rules
for “who gets what.” In any case, it should be pointed out here that Chaps. 2–4
can be read as applications of game-theoretic tools to decision-making processes
in the EU.
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However, the complexities and subtleties of the political system of the EU are
far beyond the scope of the present work. Considering only the basic institutional
quartet of the EU – the Commission, the Council, the European Parliament, and the
Court of Justice – and the formal relations between these bodies, it is obvious that
our analysis, which mostly concentrates on decision-making in an “isolated” com-
mittee, can at best be partial. Even a sound investigation of the whole set of formal
and informal decision rules might not be sufficient to complete the picture because
these rules still structure negotiation processes that may include deliberation, per-
suasion, threats, and false pretenses. Getting back once again to equation (�), it is
these elements of committee voting, beclouding our understanding of how “˚” and
“D” work, that ultimately limit our chances to answer in full the question who has
how much influence on collective decisions.
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Chapter 1
Games and Political Decisions

This chapter provides an introduction to some fundamental aspects of decision-
making in committees. ‘Committee’ is used to refer to a decision-making body that
comprises a small number of members (as opposed to a referendum situation), and
chooses from a set of well-defined policy alternatives (in contrast to the electorate
in a general election which usually chooses between candidates or party platforms).
Decisions are ultimately reached by putting alternatives to a vote according to some
voting rule specifying which subsets of all committee members can pass a pro-
posal. This notion of a committee differs from everyday language where the term
also applies to expert panels with advisory function, or organizational subunits that
make recommendations or submit proposals to some superordinate organization.

Simple games provide a model for committees where a majority coalition can
choose any outcome from a set of alternatives, but that are otherwise institution-
free. As such, they are important tools for the analysis of the outcomes of committee
decision-making in the present work. One relevant distinction concerns the nature of
the issue to be decided by the committee. Suppose, for example, that a committee of
representatives each of whom acts on behalf of a constituency has to decide on the
allocation of a fixed-size budget to the constituencies. Under the assumptions that
each representative solely cares about the share that goes to his own constituents
and that representatives’ utility functions are linear in money, the decision is purely
distributive. By contrast, if the committee has the task to establish a regulatory
framework for, say, stem cell research, it confronts a non-distributive problem, even
though the decision – as most policy decisions – is likely to allocate costs and ben-
efits across different groups in a certain way. Yet, these costs and benefits do not
primarily accrue to the decision-makers themselves as is the case with budget allo-
cation under the above assumptions. Rather, their utilities derive from the contents
of the public policy they eventually adopt (see Barry, 1980a, pp. 189ff).

Another useful distinction concerns the choice environment of the committee:
if any alternative within some large set could be enacted, provided that it has
the support of a ‘winning coalition’, the decision is subject to bargaining among
prospective coalition members, which is then confirmed by a final vote. In con-
trast, a committee might only be entitled to accept or reject a given proposal
which an external agency submits to it, i.e., it cannot make proposals of its own
or amend the external proposal. Following Laruelle and Valenciano (2007, 2008b),

N.F. Maaser, Decision-Making in Committees, Lecture Notes in Economics
and Mathematical Systems 635, DOI 10.1007/978-3-642-04153-2 1,
c� Springer-Verlag Berlin Heidelberg 2010
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2 1 Games and Political Decisions

Table 1.1 Selected models in the analysis of committees. Cooperative game theory models are
highlighted in gray

Decision

Pre-vote bargaining
Mechanism Voting on exogeneous

Take-it-or-leave-it proposal
Nature of decision

Distributive
TU simple game TU simple game

Napel and Widgrén (2001) Baron and Ferejohn (1989)
Snyder et al. (2005)

Non-distributive
TU simple game NTU simple game

Romer and Rosenthal (1978) Laruelle and Valenciano (2007)

Napel & Widgrén (2002; 2004) Laruelle and Valenciano (2008b)

these two prototypes are referred to as bargaining committees and take-it-or-leave-it
committees, respectively.

So far, only committees governed by a voting rule but unconstrained by any
further institutional arrangements have been considered. This setting can be stud-
ied by simple games, and, more generally, by cooperative game theory. Here, all
communication, signaling, and commitment are assumed “to take place outside the
formal context of the game” (Shubik, 1982, p. 258). Communication and binding
agreements are available at no cost within the game. In the cooperative portrayal
of a committee, decision-makers thus have the opportunity to compare all alterna-
tives simultaneously and costlessly with each other. By contrast, models based on
non-cooperative game theory can – and, in fact, have to – accommodate procedural
rules that specify, e.g., which players may make proposals or a particular sequential
structure of voting in a multi-chamber legislature. The incorporation of such insti-
tutional detail typically reduces the number of alternatives that can be pitted against
each other, and thereby leads to conclusions that differ remarkably from those of
cooperative models.

Table 1.1 gives a selective overview of models that have been used in order to
analyze committees, and classifies them according to the three distinctions drawn
above. This chapter has the purpose to discuss these models – at varying length –
with respect to the question ‘Who can expect to get what?’. The presentation is also
intended to serve as a backdrop for the applications in Chaps. 2–4. The first section
presents basic tools that will be used throughout subsequent parts, namely charac-
teristic functions, simple games, and spatial games. In Sect. 1.2, ‘non-distributive’
decision-making is considered in various contexts. Section 1.3 focuses on the case
of distributive politics.

1.1 Basic Concepts

When applying game theory to political problems, the question whether utility can
be considered as transferable or not deserves special attention. The transferable
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utility (TU) assumption requires that some infinitely divisible commodity exists,
and side payments in units of this medium permit players to transfer utility without
loss. Then, players within a coalition can reallocate payoffs among themselves in
any manner they see fit. TU is reflected in quasilinear individual utility functions
ui .x1; : : : ; xm/ D Oui .x1; : : : ; xm�1/Cxm, that is, utility for the transfer commodity
or ‘money’ xm is linear. This makes TU seem a more reasonable approximation for
market situations than for policy-making. It is true that committee members typi-
cally face not a single proposal, but a whole set, which gives them the opportunity
to exchange votes. A TU representation may still not be justified if, for example,
vote-trading reduces a legislator’s chances of reelection so that he cannot be fully
compensated for the lost votes by his trading partners. Similarly, treating minister
portfolios as a transfer medium, as is sometimes done in models of coalition forma-
tion in multi-party systems, may be appropriate if politicians only care about offices
and the associated monetary rewards, but rather inappropriate if they are interested
in policies.

In non-transferable utility (NTU) games, players are still able to communicate
and coordinate strategy choices, but they cannot transfer payoffs within coalitions
by means of sidepayments. In principle, NTU games form an interesting ‘middle
class’ between non-cooperative games and cooperative TU games. Although game
theory under the TU assumption is accurately described as a special case within
NTU theory, historically, solution concepts such as the Shapley value often emerged
first from the study of TU games, and only later they were generalized to the NTU
case. The likely reason behind this is that a NTU representation necessitates the use
of set-theoretic manipulations whereas TU games can be analyzed with the help of
simple algebra.

1.1.1 The Characteristic Function

Let N D f1; 2; : : : ; ng denote the set of players and 2N the power set of N , i.e.,
the set of all subsets of N . Each subset S 2 2N is referred to as a coalition. Small
letters are used to denote the cardinality, i.e., set jN j D n etc.

A real-valued mapping v W 2N ! R satisfying v.;/ D 0 is called the character-
istic function v of a cooperative n-person game with transferable utility. The value
v.S/ is interpreted as a single-number summary of ‘what the group can obtain’ when
its members can bindingly commit to some coordinated course of action, that is, the
potential worth of the coalition S . A cooperative game in characteristic function or
coalitional form is an ordered pair .N; v/. Often .N; v/ is referred to as game v. The
game v is monotonic if v.T / � v.S/ for all T 	 S .

A restriction on v that was already proposed by Von Neumann and Morgenstern
(1944, pp. 241f) is superadditivity. A TU-game in characteristic function form is
superadditive if

v.S/ C v.T / � v.S [ T / 8 S; T � N W S \ T D ;; (1.1)
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Table 1.2 A three-person normal form game

�1 D L �1 D R

�2 D L �2 D R �2 D L �2 D R

�3 D L .7; 5; 3/ .0; 3; 3/ �3 D L .3; 3; 6/ .6; 7; 3/

�3 D R .2; 3; 8/ .6; 9; 2/ �3 D R .5; 3; 2/ .2; 0; 2/

i.e., if any two disjoint coalitions S and T can achieve at least as much by joining
their forces as by remaining separate.

Consider the three-person game in Table 1.2, taken from Michener et al. (1987),
with strategy set †i D fL; Rg for each player i 2 f1; 2; 3g is †i D fL; Rg.
Starting from the normal form, v.S/ is the maximin payoff of S in the two-person
game between S and its complement N nS , derived from the hypothetical situa-
tion that these two coalitions form.1 The maximin payoff can be interpreted as
the ‘safety level’ of a coalition – what that coalition could guarantee itself even
if non-members took action to minimize its payoff. In constant-sum games, i.e.,
when v.S/ C v.N nS/ D k, a constant, for all S , this behavioral assumption is
fully warranted, because here minimizing the payoff accruing to the complement is
equivalent to maximizing own payoff.

Under the TU-assumption, the characteristic function of the game in Table 1.2
is v.f1g/ D 2; v.f2g/ D v.f3g/ D 3; v.f12g/ D 6; v.f13g/ D 9; v.f23g/ D 8 and
v.f123g/ D 17.2 It is both monotonic and superadditive.

If side payments between coalition members are not possible, the coalition’s
‘worth’ is represented by a set of vectors instead of a single number. A coopera-
tive NTU-game is a pair .N; V /, where V is a map that assigns to each S 2 2N ,
S ¤ ;, a non-empty set V.S/ � R

s of attainable payoff vectors, or utility profiles.
For each player i , an individually rational payoff v.fig/ 2 R is assumed to exist
such that V.fig/ D fu 2 R j u � v.fig/g, while, for each S 2 2N n;, V.S/ satisfies
the following conditions:

(a)V.S/ is a non-empty, closed subset of R
s .

(b)V.S/ is comprehensive, i.e., if u 2 V.S/ and w 2 R
s such that w � u, then

w 2 V.S/.3

(c)V.S/ \ fu 2 R
s j ui 
 .v.fig//i2Sg is bounded.

Condition (b) reflects free disposal, i.e., players could ‘burn’ their utility if they feel
like it, and thus all these reduced utility vectors might also occur. The comprehensive
hull of a set P 	 R

n is defined by

compr.P / WD fz 2 R
n j there is a p 2 P such that z � pg:

1 This definition of a characteristic function was put forward by Von Neumann and Morgenstern
(1944, pp. 238ff), and is also known as Von Neumann–Morgenstern characteristic function.
2 Instead of f1; 2g, v.f1; 2g/ etc. the notation f12g, v.f12g/ etc. is used throughout as there is no
risk of confusion.
3 For u; w 2 R

s , u � w denotes ui � wi for all i 2 S , and u > w denotes ui > wi for all i 2 S .
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Condition (c) just states that the set of feasible utility profiles for coalition S is
bounded above.

A NTU-game is monotonic if, for all S 	 T 	 N , S ¤ ;, and for all x 2 V.S/

there exists a y 2 V.T / such that yS 
 x. It is superadditive iff V.S/ � V.T / �
V.S [T / for all S; T 2 2N n; with S \T D ;, where V.S/�V.T / D f.x; y/ j x 2
V.S/ and y 2 V.T /g is the Cartesian product of the sets V.S/ and V.T /.

Any TU-game v can be generalized to a NTU-game V.S/, given by V.S/ D
fx 2 R

s j Pi2S xi � v.S/
�

for each S 2 2N n;, where v.S/ denotes the value of
coalition S in a sidepayment game .N; v/. Thus, the set of all TU-games is formally
a subset of the set of all NTU-games.

In NTU-games, several ways to derive a characteristic function from the nor-
mal form game come into consideration, differing in which effectiveness criteria are
applied.4 Coalition S is said to be ˛-effective for some set V.S/ if and only if its
members can combine their strategies in such a way that the outcome of the game is
an element of that set, regardless of the behavior of players outside S . If players in
S may use joint mixed or correlated strategies (see Aumann, 1974), then the set of
utility vectors that can be reached by cooperation forms a compact convex polyhe-
dron (provided that the underlying strategic game is finite). Let †S denote the set of
correlated strategies of the members of coalition S . Put more precisely, coalition S

is ˛-effective for vector x 2 R
s if its members have a correlated strategy �S 2 †S

such that, for any strategy combination �N nS 2 †N nS of the complementary coali-
tion, ui .�S ; �N nS / 
 xi (in expected value) for all i 2 S . By contrast, V.S/ could
also consist of precisely those payoff vectors which players outside S cannot prevent
S from getting. This criterion is termed ˇ-effectiveness (Aumann and Peleg, 1960).5

The normal form game in Table 1.2 translates into the ˛-characteristic function

V˛.f1g/ D .�1; 2�; V˛.f2g/ D V˛.f3g/ D .�1; 3�;

V˛.f12g/ D V˛.f13g/ D V˛.f23g/ D compr f.3; 3/g ;

V˛.f123g/ D cch f.7; 5; 3/; .2; 3; 8/; .6; 9; 2/; .3; 3; 6/; .6; 7; 3/g ;

and the ˇ-characteristic function is given by

Vˇ .f1g/ D .�1; 5�; Vˇ .f2g/ D Vˇ .f3g/ D .�1; 3�;

Vˇ .f12g/ D compr f.6; 7/g ; Vˇ .f13g/ D compr f.6; 3/g ;

Vˇ .f23g/ D cch f.5; 3/; .3; 6/g ;

Vˇ .f123g/ D cch f.7; 5; 3/; .2; 3; 8/; .6; 9; 2/; .3; 3; 6/; .6; 7; 3/g ;

4 Besides the ˛- and ˇ-characteristic functions dealt with here, characteristic functions can also be
derived under the �- and ı-assumptions in Hart and Kurz (1983, 1984).
5 S is ˇ-effective for a payoff vector x 2 R

s if, for any strategy combination �N nS 2 †N nS , there
exists a �S 2 †S such that ui .�S ; �N nS / � xi for all i 2 S .
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where cch.P / refers to the comprehensive convex hull of P 	 R
n.6 The two forms

generally differ because no minimax theorem for coalitions exists in the absence of
transferable utility (see Aumann and Peleg, 1960).

For games with transferable utility, the ˛- and the ˇ-form of the characteris-
tic function coincide. As the example shows, this is not the case in the class of
NTU-games, and the ˇ-characteristic set always includes the ˛-characteristic set.
This conforms to the intuition that the ˛-characteristic function embodies a rather
pessimistic or conservative prejudice, whereas ˇ-effectiveness poses less restric-
tions. Shubik (1971) offers an interpretation of the two forms of V.S/ in sequential
terms: ˛-effectiveness is as if coalition S moves before its complement, whilst
ˇ-effectiveness could describe the situation where S announces its intention to form,
makes N nS move first, and then responds.

An important constraint of coalitional form games is that they are unable to cap-
ture the possibility of externalities across coalitions (for a discussion and example
see Rosenthal, 1972). Externalities exist if the payoffs to the members of S depend
on the actions of the non-members, which implies that no worth can be assigned
to S without specifying those actions. In this situation, the ˛- and ˇ-characteristic
functions inadequately assume away the strategic interaction between S and the out-
side players. One attempt to deal with this problem by extending the characteristic
function concept is the partition function approach, introduced by Thrall and Lucas
(1963).7 Another is offered by endogenous coalition formation theory (see, e.g.,
Bloch, 1996, 1997; Yi, 1997; Ray and Vohra, 1997, 1999), using non-cooperative
game theory.

1.1.2 Simple Games

An important class of characteristic function form games in modeling group
decision-making are simple games, introduced by Von Neumann and Morgenstern
(1944, pp. 420ff). Their distinctive feature is that each coalition S 2 2N can be clas-
sified as either winning or losing. A simple game is a pair G D .N;W/ in which
W � 2N is a set of winning coalitions which satisfy

(a) ; 62 W; (b) N 2 W;

and
(c) S 2 W and S � T ) T 2 W :

6 The convex hull of a set P � R
n is the smallest convex set containing the points in P . It is

defined by conv.P / WD ˚Pn
iD1 ai pi j pi 2 P; ai 2 RC;

Pn
iD1 ai D 1

�
. – If randomization is

not possible, the comprehensive convex hull must be replaced by the comprehensive hull.
7 For each coalition structure, a partition function assigns a ‘worth’ to each coalition (for a dis-
cussion of the limitations of partition functions in the analysis of coalition formation see Ray and
Vohra, 1997).
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The monotonicity condition (c) captures the intuition that a superset of a winning
coalition must also be winning.8

In the presence of transferable utility, .N;W/ is equivalent to the game .N; v/

where v is a characteristic function taking on only two values, and that, after a
suitable normalization, is given by v W 2N ! f0; 1g with

v.S/ D
(

0 if S is losing,

1 if S is winning:

Let GN denote the set of all n-player monotonic simple games with transferable
utility. Then GN can be interpreted as the collection of all logically possible vot-
ing procedures with n voters if the decision is binary, such as voting ‘yes’ or ‘no’
on some (exogenous) proposal. These games have been found to be well-suited to
model economic or political bodies that exercise some kind of control, e.g., over the
allocation of some budget. As observed by Shapley and Shubik (1954), any winning
coalition can determine which proposals pass. Therefore, all winning coalitions can,
in a way, be said to be equally ‘powerful’.

If the defection of any individual member i of a winning coalition S turns the
remaining members Snfig into a losing coalition, S is called a minimum winning
coalition. Put differently, a minimum winning coalition is a winning coalition with
no proper subsets that are also winning. A simple game is completely determined
by its set of minimum winning coalitions, denoted Wmin, because both W and Wmin

are finite sets, and for W it holds that

W D fS 2 2N jS � R 2 Wming:

A player i 2 N is called a null player or dummy in G if

S 2 W ) Snfig 2 W (1.2)

for any coalition S 2 2N . If, by contrast, S 2 W ) i 2 S , then that player i

is a veto player without whom no coalition can be winning. If it even holds that
S 2 W , i 2 S , then i is a dictator in G. Note that it follows from this definition
that the coalition S D fig is also winning (and the other players are of course
dummies). Dictatorial games are inessential since there is no incentive for anyone
to form a coalition.

A simple game is proper if

S 2 W ) N nS 62 W :

8 Following common practice, we include monotonicity in the definition of a simple game. See, for
example, Von Neumann and Morgenstern (1944, pp. 420ff), or Shapley (1962). Note, however, that
a simple game can also be defined more generally in terms of a set W which satisfies conditions
(a) and (b), but not necessarily condition (c) (see, e.g., Ordeshook, 1986, p. 324).
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If both S and its complement N nS are winning coalitions, the game is improper.
This is the case, for instance, when any subset of k players with k < nn2 is a
winning coalition. In improper games, confusion may arise as two separate groups
of voters can make decisions at the same time. A game G 2 GN is superadditive
[cf. (1.1)] precisely if it is proper.

A simple game is strong if

S 62 W ) N nS 2 W :

In a strong game, the complement of a losing coalition is always winning, that is, no
blocking coalitions exist. By contrast, in a weak game, at least one veto player exists.
A special case of weak games arises under unanimity rule, which makes every indi-
vidual a veto-player or blocking coalition: A pure bargaining game results, in which
the outcome is indeterminate as long as one does not impose further assumptions to
make a bargaining solution applicable. Games that are both strong and proper are
called decisive, and in the TU-case, this is equivalent to being constant-sum.

Two sub-classes of simple games are particularly relevant in applications to real-
world committees. The first is the class of weighted majority games ŒqI w�, where
w D .w1; : : : ; wn/ is a vector of voting weights, and q 2 .0; 1� is the (relative)
decision quota. The most elementary example is the canonical simple majority game
with an odd number n of voters,

Mn D .0:5I 1; : : : ; 1
„ ƒ‚ …

n times

/ n odd: (1.3)

Majority games are symmetric in the sense that groups of the same number of play-
ers are undistinguishable. Generally, a coalition S � N is winning in a weighted
majority game iff X

i2S

wi 
 q
X

i2N

wi :

The .n C 1/-tuple ŒqI w1; : : : ; wn� is called a representation of G. Obviously, one
game has many representations, and it is always possible to find one where both
quota and weights are all integers (Shapley, 1962, p. 64). Many simple games, how-
ever, cannot be represented as weighted voting games, which is equivalent to saying
that no single consistent ranking of the players’ relative strengths exists.9

The second sub-class is obtained by applying some concatenation operation to
simple games, e.g., the product or the sum operation. In these compound simple
games, described by Shapley (1962), simple games serve as building blocks. Let
G1 D .N1;W1/, G2 D .N2;W2/ be simple games. The player sets need not be dis-
joint. The product G1 ^ G2 is defined as the game .N1 [ N2;Wp/ where S 2 Wp

iff .S \ N1 2 W1/ and .S \ N2 2 W2/ for S � N1 [ N2. The sum G1 _ G2 is the

9 Taylor and Zwicker (1992, 1993) introduce a general method to decide whether a simple game is
weighted, based on trades of players among coalitions.
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game .N1 [ N2;Ws/ where S 2 Ws iff .S \ N1 2 W1/ or .S \ N2 2 W2/, i.e., to
win in the sum, it is sufficient that a coalition wins in one component, whilst it must
win in both components to win in the product game.10 A general compound simple
game is given by

H D KŒG1; : : : ; Gm�

where K is an arbitrary simple game with simple games Gj , j D 1; : : : ; m, as
‘players’. A coalition is winning in H if and only if it comprises winning coalitions
in enough component games to constitute a winning coalition in K . Consider for
illustration the 9-person compound game

H D M3ŒM3; M3; M3�;

where a winning coalition must at least consist of four players such that two play-
ers from each of two subgames are included. A game of this type can be used to
model a two-stage indirect decision procedure (for an application to the EU see
Laruelle and Widgrén, 1998). Another structure to which compound games apply
are multi-cameral legislatures (see Footnote 10). Imagine for example the legislative
assembly of a society that is ethnically divided into four groups. The constitution
prescribes that the approval of either groups A and B, or the approval of groups
A, C, and D is needed for the passage of a bill. This would give rise to the game
A � .B C .C � D//.11 Interactions between bodies in the various decision-making
procedures of the EU have also been modeled by means of compound games (see,
for example, Laruelle and Widgrén, 2001).12 The approach is, however, unable to
capture the sequential structure of these rules.

Compound simple games allow to create sophisticated voting games from sim-
pler ones and to model complex interactions between the simpler components. A
measure of the complexity of a voting system modeled as simple game .N;W/ is
its dimension, defined by Taylor and Zwicker (1993) as the smallest number k for
which k weighted voting systems .N;W1/; : : : ; .N;Wk/ exist such that a coali-
tion is winning in .N;W/ iff it is winning in every .N;Wj /. The compound game
A � .B C .C � D// can be represented as the (weak) weighted majority game
Œ5I 3; 2; 1; 1�, and thus its dimension is 1. Examples of higher-dimensional voting
games include the procedure for amending the Canadian Constitution and the US
federal legislative system (see Taylor and Zwicker, 1993), as well the current three-
fold majority requirements to pass a decision in the EU Council of Ministers (see
Felsenthal and Machover, 2001).

10 Starting with Shapley (1962), the notation � and C, instead of ^ and _, is often used in the
literature for the special case that the player sets are disjoint. Thus, G1 � G2 and G1 C G2 model
bicameral, or more generally, multicameral decision structures.
11 For another example of a legislative system, consisting of a president, a senate, and a house, see
Shapley and Shubik (1954).
12 See Braham and Steffen (2003) for an application of compound weighted voting games to
insolvency law rules.
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The framework of simple TU-games lends itself only to the study of decision
bodies (a) that operate under closed rule, i.e., when amendments are not possible,
and a binary agenda determined by an external agent (when interpreting the coali-
tion value as ‘control’), or (b) whose members compete for a fixed purse (when
interpreting the coalition value as a private good). In reality, however, committee
decisions rarely concern only two prefabricated alternatives or candidates, and pref-
erences are not always diametrically opposed as is the case in the division of spoils.
Committee members often can make proposals themselves, or amend proposals put
in front of them. Though some political decisions like, e.g., choosing between two
alternatives or allocating a budget or costs, fit into the TU scenario, many others
do not.

Simple games without transferable utility enable investigation of more com-
plex committee models. These games are still characterized by the set of winning
coalitions, but, in addition, a payoff space must be specified. To be precise, let X

denote the set of all possible policy alternatives or outcomes. It is assumed that
the preferences of each individual over X can be represented by a Von Neumann–
Morgenstern utility function,13 establishing a perfect correspondence between the
set of all lotteries over X and the set of available payoff vectors, or utility possi-
bility set, U � R

n.14 Note that no distinction is made between alternatives and
final outcomes. This is surely a simplifying assumption as it is usually impossible to
select outcomes directly, but it should also be observed that individuals usually have
preferences over alternatives because they associate them with certain outcomes.

Then, a set-valued effectivity function (see Rosenthal, 1972; Moulin and Peleg,
1982) can be used to determine for each coalition S the subset of X that S can
realize if it forms. In general, this raises the question which effectivity concept (see
Sect. 1.1.1) should be applied, e.g., ˛-effectivity (what S can enforce regardless
of the actions taken by players in N nS ) or ˇ-effectivity (what N nS cannot pre-
vent S from achieving). Fortunately, the problem does not arise for (proper) simple
games.15 Here, the idea is that a winning coalition is all-powerful in the sense that it
can choose any outcome it pleases from X , whereas a losing coalition has no say at
all. If coalition S forms and selects some payoff vector x 2 X , the resulting utilities
for all players i 2 N are summarized by the payoff vector u D .u1; : : : ; un/ 2 U .
Without loss of generality (since the origin of each player’s utility scale is arbitrary),
let minx2X ui .x/ 
 0 for all i 2 N . For u 2 R

nC, uS denotes the projection of u to
the coordinates corresponding to S . This leads to the following redefinition of V.S/

for simple games,

13 A utility function is of the Von Neumann–Morgenstern type if it satisfies the expected utility
hypothesis. See, for example, Ordeshook (1986, pp. 37ff).
14 The setting consisting of the set of voters, the set of alternatives, and a voting rule has also been
studied from a social choice perspective. See Peleg (2002) for an overview.
15 In voting situations, even taking pre-vote negotiations into account, it seems appropriate to
ignore the possibility that a coalition can achieve outcomes x and y, but is not effective for outcome
z (see Miller, 1982).



1.1 Basic Concepts 11

V.S/ D
(

cchfuS.x/ j x 2 Xg \ R
sC if S is winning,

R
s� if S is losing.

(1.4)

In (1.4), the whole set of feasible utility vectors is associated to every winning coali-
tion S . It is important to observe that, generally, this model does not belong to the
class of constant-sum games. Moreover, payoffs to all players depend on which
coalition S forms, and which outcome x its members agree on. In particular, a non-
winning coalition might free-ride on or be exploited by a winning coalition. This is
illustrated by the following primitive example taken from Shubik (1982, p. 140):

Example 1.1.1. Consider a three-player, simple majority game where the set of
available utility vectors is cch f.0; 0; 0/; .2; 2; 0/; .2; 0; 2/; .1; 2; 2/g. The first player
can reasonably expect to get at least a utility of 1, even if he is not included in the
winning coalition. Yet, the ‘value’ assigned to him by the characteristic function is
.�1; 0�.

These characteristics of the NTU simple game (1.4) transcend the framework
of coalitional games.16 Unlike the TU simple game, (1.4) provides an appropriate,
albeit abstract, model of collective decision-making in the case that (a) decision-
making is concerned with public policies which are ‘public goods’ in that they
bear on all players, but are judged differently by different players (Barry, 1980a,
pp. 189ff), and (b) decision-making is a bargaining process under a voting rule, but
without any further institutional constraints.

In principle, it should be possible to derive a characteristic function from some
underlying game, e.g., in normal form. To conclude this section, an example
illustrates how a strategic game and a TU simple game can be linked to each other.

Example 1.1.2 (M5 ‘Divide-the-dollar’). Five persons decide by simple majority
voting on the division of some budget, normalized to 1.17 A winning coalition can
appropriate the budget, but due to a legal requirement the latter must be divided
equally among the coalition members. First, the situation is modeled by the normal
form game � D Œf†ig; fui.�/g�, i D 1; : : : ; 5. The strategy set †i of player i is

†i D fS � N W i 2 Sg;

i.e., a strategy �i 2 †i amounts to the choice of a coalition to which i belongs. The
payoff function ui , which assigns to each strategy profile � D .�1; : : : ; �5/ 2 � †i

the payoff to i , is given by

ui .�/ D
(

1=jSkj if i 2 Sk and jSkj 
 3;

0 otherwise

16 In Sect. 1.2.2, the NTU simple game will be defined to exclude the possibility of both free-riding
and exploitation of non-winning players.
17 The example can be extended to an arbitrary number of players, see Example 1.3.1.
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Table 1.3 ‘Divide-the-dollar’ with five players

Coalition structure u1 u2 u3 u4 u5

f123g; f45g 1=3 1=3 1=3 0 0

f1234g; f5g 1=4 1=4 1=4 1=4 0

f12345g 1=5 1=5 1=5 1=5 1=5

where

Sk.�/ D
(

Sk if and only if �j D Sk 8 j 2 Sk;

fj g otherwise.
(1.5)

The coalition formation rule (1.5) states that a particular coalition Sk will come
into being if and only if all its prospective members choose Sk . In case that players
i 2 Sk do not unanimously agree on the formation of Sk , those who have selected
the strategy �j D Sk remain singletons.

Moving on to the NTU-game, the information about the coalition formation pro-
cess is lost, but the ‘equal division of payoffs’ rule survives. Omitting permutations
of players, Table 1.3 summarizes the attainable efficient payoff vectors.

Finally, the normal form game translates into a TU simple game given by the
characteristic function

v.S/ D
(

1 if jS j 
 3;

0 otherwise.

According to this representation, the payoff 1 can be divided among the members
of a winning coalition in any way possible.

1.1.3 Spatial Analysis

In political applications, the set of feasible alternatives from which the committee
can choose is often adequately described by a (usually nonempty, compact, and
convex) subset X of a one- or many-dimensional Euclidean space R

m: the choice
of tax-rates, expenditure levels, or a minimum wage are examples for approxi-
mately continuous variables. Moreover, the outcomes of interest to the researcher
frequently are policies which at least some individuals (legislators or voters) neither
entirely accept nor entirely oppose. For example, let any amount of welfare bene-
fit between 0 and the income of the average earner be feasible for the government.
A voter may prefer some moderate amount of welfare benefit over both extremes,
thus displaying satiable preferences.18 These preferences can also be given a spa-
tial conceptualization. The dimensions of the policy space are usually referred to
as ‘issues’. Spatial models presume that all players have a common perception as
to what the issue dimensions are. They disagree about which is the most desirable
point, but not about how policy alternatives are ordered.

18 By contrast, in most purely economic applications, preferences are assumed to exhibit nonsatia-
tion, i.e., more of some good (perhaps denominated in money) is always better.
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As highlighted by Arrow’s 1963[1951] famous theorem, non-dictatorial social
choice in a society without some basic value consensus or similarity of attitudes
may fail to produce a transitive social preference ordering and therefore be unsta-
ble.19 For simple majority rule in particular, a number of results (e.g., Plott, 1967;
Slutsky, 1979) indeed indicate that undominated outcomes, or core points, very
rarely exist.20 This holds true a fortiori for the existence of a complete transitive
social ordering. Important results of subsequent research concern the characteris-
tics of individual preference orderings that, often in combination with the majority
threshold or other institutional constraints, allow equilibrium states of the social
aggregation mechanism. With respect to the spatial setting,21 it transpired from this
work that extremely severe restrictions must be imposed on the admissible type of
individual preferences or on the domain of the latter (i.e., on the dimensionality of
the policy space), or that majority sizes greater than simple majority rule must be
employed, to ensure the existence of equilibria, and even then, the latter may lack
robustness to slight perturbations (see, e.g., McKelvey, 1979).

The first result on the existence of a 50%-majority winner, Black’s 1958 median
voter theorem, combines restrictions on both preference type and domain. It requires
a one-dimensional policy space, where it is assumed that each individual i has a
single most preferred policy outcome, an ideal point (or bliss point), on the issue,
denoted �i . Moreover, i ’s utility is assumed to decrease as the outcome moves away
from i ’s ideal point. The latter condition is termed single-peakedness. Formally,
preferences are single-peaked, if, for each i 2 N there exists a �i 2 X such that
ui .�i / 
 ui .x1/ 
 ui .x2/ for all x1; x2 2 X that satisfy either �i 
 x1 
 x2

or �i � x1 � x2. If X is a convex set, single-peakedness is equivalent to quasi-
concavity of the utility function. Often, a continuous probability density function is
used to describe the (infinite) set of individuals’ ideal points.

Another assumption that is sometimes made is symmetry of preferences which
implies that the individual’s utility is a decreasing function of the distance, mea-
sured usually by the Euclidean norm, between his ideal point and the actual policy
outcome. In other words, a departure of a given size from the ideal point yields the
same decline in utility, independent of the direction of departure.

The median voter theorem states a sufficient condition, one-dimensionality and
single-peakedness, for the existence of an undominated outcome – the median ideal
point (or a closed interval of median points if the number of voters is even) – under

19 The absence of value consensus is expressed in Arrow’s axiom of ‘unrestricted domain’.
20 The core of a game .N; v/ in characteristic function form is defined by Core.N; v/ WD fu 2
I.v/ j Pi2S ui � v.S/ for all S 2 2N n;g where I.v/ is the set of imputations, i.e., vectors u 2 R

n

such that (a) ui � v.fig/ for all i 2 N , and (b)
Pn

iD1 ui D v.N /. Conditions (a) and (b) express
individual rationality and efficiency, respectively.
21 In Arrow’s 1963[1951] model, individuals have binary preference relations over a finite set of
alternatives, which are assumed to satisfy the usual consistency conditions such as reflexivity,
transitivity, and completeness.
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simple majority rule.22 Multi-dimensional analogues of the median voter result are
offered by Plott (1967) and Davis et al. (1972). However, the symmetry conditions
on the distribution of voters’ ideal points which are necessary to produce a mul-
tidimensional ‘median’ are too strong and knife-edge to be met in practice: the
existence of a policy x� 2 R

m such that any hyperplane through x� divides the
committee into three groups such that the members on one side of it and those with
ideal points on the hyperplane can form a majority, as can members on the other
side with those on the hyperplane.23 Generally, in multidimensional issue spaces,
no alternative will command a simple majority against every other alternative (see
Plott, 1967). The ‘chaos theorems’ by McKelvey (1976) and Schofield (1978) show
that in the absence of an undominated outcome intransitivities are generally global,
that is, sequences of paired votes exist such that almost every alternative can be
reached from every other one, making social choice susceptible to local agenda
manipulation.

As a consequence, in order to permit predictions on the outcomes of voting pro-
cesses, theories using a spatial conceptualization often assume that the issues to be
voted upon can be catched by a single policy dimension. A one-dimensional pol-
icy space can obviously be interpreted as an ideological left-right dimension, the
level of a particular tax, or the amount to be spent on some project. Yet, most deci-
sions are presumably made along more than one dimension, and two dimensions
are usually considered the threshold to enter the realm of real-world political atti-
tudes (e.g., Binmore, 1998, p. 164; for empirical findings on US congress see Poole
and Rosenthal, 1991). Another way to escape the no-equilibrium results, originat-
ing with Shepsle (1979), is to augment the spatial setting with some institutional
structure which narrows the set of implementable outcomes and may thereby yield
stability.

In Sect. 1.1.2, (proper) simple games without side payments were introduced as
a model of majority rule bargaining without any further institutional constraints. In
this context, the spatial conceptualization of preferences and alternatives is only a
particularly concrete way to ‘put flesh on the bones’ of the NTU-game (1.4), that
is, to obtain the utility possibility set U .24 Even without its typical restrictions,
the spatial approach imposes considerable structure on the set of alternatives and
individual preference patterns. Why would we want to use a less general approach
compared to (1.4)? One reason is that low-dimensional spatial models have been
found empirically to capture actual voting behavior quite well (see, for example,
Poole and Rosenthal, 1991). A possible conclusion from these studies is that the
spatial conceptualization is consistent with how people experience and describe
political attitudes. From an applied perspective, the assumptions of spatial mod-
els thus appear less restrictive. Second, the spatial formulation allows a simple

22 The theorem was proved by Black (1958) for a finite set of alternatives and extended by Arrow
(1963[1951]) to arbitrary sets of alternatives.
23 A hyperplane is a plane in more than two dimensions.
24 It is not applicable when issues are purely distributive, or interpreted in terms of distribution by
the decision-makers. These situations are more appropriately modeled by TU constant-sum games.
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depiction of the similarity in the policy goals of decision-makers, and to evaluate
the distance of outcomes under different institutions. It gives an intuitive geometric
interpretation to proposals and counter-proposals, dominance relationships between
alternatives, and solution concepts such as the core or bargaining sets. Consider for
example the simple NTU-game .N;W/ with one-dimensional policy space X . If
S 2 W , S is effective for the whole set X . The set of feasible policy outcomes that
are Pareto-efficient for coalition S is given by

X�.S/ D fx 2 X j � y 2 X such that ui .y/ > ui .x/ for all i 2 Sg : (1.6)

Then, the core of the game .N;W/ can be defined as

Core.N;W/ D
8
<

:
u. Qx/ 2 U j Qx 2

\

S22N n;
X�.S/

9
=

;
: (1.7)

The core consists of all (feasible) utility vectors with the property that no coali-
tion could achieve more for all its members on its own. If .N;W/ is strong, it is
sufficient to take the intersection in (1.7) over all S 2 Wmin rather than all non-
empty coalitions (see Ordeshook, 1986, Theorem 8.1). Figure 1.1 illustrates the sets
X�.S/ for the minimum winning coalitions in the canonical majority game M3

under the assumption of single-peaked preferences. The core consists of the utility
vector u.�2/ 2 R

3 associated with the median voter’s ideal point.

Fig. 1.1 Core with single-peaked preferences. The core is the intersection of the Pareto sets X�.S/
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1.2 Voting Rules and Power

Max Weber (1962, p. 117) famously defined power as

“[..] that opportunity existing within a social relationship which permits one to carry out
one’s own will even against resistance and regardless of the basis on which this opportunity
rests.”

and reinforces

“Every conceivable quality of a person and every combination of circumstances may put
someone in a situation where he can demand compliance with his will.”

The definition reflects the experience that ‘power’ is a ubiquitous phenomenon, a
potential aspect of any human relationship. There is no doubt that ‘every quality’
such as patience, better information, persuasiveness, or rhetorical skill can also be
a source of power in committees. Yet, this red meat of power largely eludes game-
theoretic modeling. In view of the general definition of power, the range of the
concepts discussed in the following may thus appear to be regrettably narrow. The
analysis focuses on the power as conferred upon committee members by the voting
rule taken in isolation. For this purpose, power can be specified as the ability to
make a difference to the outcome of a collective decision-making situation.

Power indices, introduced in Sect. 1.2.1, indicate the probability of a committee
member to make a decision pass that would not have passed otherwise without mak-
ing reference to the issue at stake, and hence, without reference to decision-makers’
preferences regarding the issue. Instead, committee members are assumed to be in a
‘general condition’. Differences in the definition of the latter mainly account for the
diversity of power indices.

An approach to evaluate voting rule based influence on the committee outcome in
a general NTU framework is put forward by Laruelle and Valenciano (2007, 2008b).
Their work is considered in Sect. 1.2.2.

Finally, Sect. 1.2.3 provides a brief survey of attempts to measure power in spatial
voting games.

1.2.1 Power Indices

In this section we consider voting power in the context of a committee which can be
represented by a weighted majority game or a more general simple game. A simple
example serves to introduce some key concepts.

Example 1.2.1. Suppose a three-player take-it-or-leave-it committee Œ3I 2; 1; 1� is
presented with a proposal � that it can adopt or reject. In the latter case, the status
quo Q prevails.

Since only the institutional structure is known, but not players’ preferences regard-
ing � and Q, the natural model for the situation at hand is a game form g (Gibbard,
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Table 1.4 Relationship between strategy choices and outcome

�1 D 0 �1 D 1

�2 D 0 �2 D 1 �2 D 0 �2 D 1

�3 D 0 Q Q �3 D 0 Q �

�3 D 1 Q Q �3 D 1 � �

1973), i.e., a game where no individual utilities are yet attached to the outcomes.
It specifies the set of players N , a set of strategies †i for each player i 2 N , a set
of feasible outcomes X , and an outcome function x that assigns to each n-strategy
tuple � D .�1; : : : ; �n/, �i 2 †i , a single outcome x 2 X .

In the example, X D fQ; �g, and, ignoring abstention, the strategy set of each
committee member i is †i D f0; 1g, where 0 and 1 stand for voting ‘no’ and ‘yes’,
respectively, on the proposal. The outcome depends on individuals’ strategy choices
as shown in Table 1.4.

How can we evaluate the voting power of the three players in this game? The
most widely used measures of a priori power are the Penrose–Banzhaf index,
introduced in Penrose (1946) and Banzhaf (1965), and the Shapley–Shubik (1954)
index.25 They are commonly interpreted either in terms of the axioms that char-
acterize them, or as probabilities. A power measure or power index is a function26

� W GN ! R
nC which assigns to each n-player game v a real-valued vector �.v/ that

is interpreted as the distribution of voting power under a given voting rule modeled
by v. The i th component of the vector �.v/ is seen as indicating player i ’s voting
power as it derives from the formal structure ŒqI w1; : : : ; wn� alone.

The Shapley–Shubik index emerges from the application of the Shapley value
(Shapley, 1953) to simple games. The Shapley value ˆ.v/ of a (general) n-player-
game v is given by

ˆi .v/ D
X

S22N ;
i2S

.s � 1/Š.n � s/Š

nŠ
.v.S/ � v.Snfig// : (1.8)

Let < < denote a strict linear ordering of the player set N . Considering a fixed player
i 2 N , let D.i; < </ be the set of players j 2 N who precede i in the ordering.
From (1.8), it is then clear that ˆi .v/ is player i ’s weighted marginal contribution to
all coalitions S , where weights are the shares of player orderings < < that include
the formation of the coalition S D D.i; < </ [ fig out of all (equally probable)
player orderings. There are exactly .s � 1/Š.n � s/Š orderings or permutations that
yield the coalition S .

25 In the literature, the term ‘Banzhaf index’ is widespread. Yet, since L.S. Penrose proposed the
measure well before Banzhaf, we think it more accurate to call it Penrose–Banzhaf index.
26 More formally, a power index is a family of functions f�ngnD1;2;::: because N and n are not
fixed.
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In his seminal contribution “A Value for n-Person Games”, Shapley (1953,
p. 316) gives the following informal, ‘easy-to-visualize’ derivation of his value:

“The players [..] agree to play the game v in a grand coalition, formed in the following way:
(1) Starting with a single member, the coalition adds one player at a time until everyone
has been admitted. (2) The order in which the players are to join is determined by chance,
with all arrangements equally probable. (3) Each player, on his admission, demands and is
promised the amount which his adherence contributes to the value of coalition (as deter-
mined by the function v). The grand coalition then plays the game “efficiently” so as to
obtain the amount v.N /: exactly enough to meet all the promises.”

In a simple game, player i ’s contribution v.S/�v.Snfig/ to the value of coalition
S is either 0 or 1 for a particular ordering < <, taking the value 1 if and only if i 2 S

is in a pivot position in the ordering. This is the case if i ’s entry turns the coalition
of the s � 1 players, who precede i according to the random ordering, from losing
into winning, i.e., if D.i; < </ 62 W , but D.i; < </ [ fig 2 W . Let �.v/ WD ˆ.v/

if v 2 GN . Then, from (1.8) we obtain

�i .v/ D 1

nŠ

X

S W i is critical in S

.s � 1/Š.n � s/Š ; (1.9)

where the phrase ‘i is critical in S ’ means that summation takes place over all coali-
tions S that have the property S 2 W , i 2 S and Snfig 62 W . The Shapley–Shubik
index (1.9) can then be interpreted as the proportion of orderings for which player
i is pivotal among all nŠ logically possible orderings. Shapley and Shubik (1954,
p. 788) suggest to regard a permutation as a ‘voting order’ indicating the players’
relative degrees of support for the bill, with those most strongly in favor of it voting
first, etc.

The definition of the (non-normalized) Penrose–Banzhaf index for player i in
v 2 GN is

ˇi .v/ D 1

2n�1

X

S W i is critical in S

1: (1.10)

The Penrose–Banzhaf index counts the number of swings player i has, and this
number is put in relation to 2n�1, the number of swings that i could maximally have
(because it is the number of coalitions containing i in a n-player game). The game
Œ3I 2; 1; 1� in the introductory example yields the Shapley–Shubik index . 2

3
; 1

6
; 1

6
/,

and the Penrose–Banzhaf index is . 3
4
; 1

4
; 1

4
/.27

Other power indices are the Deegan–Packel index (Deegan and Packel, 1979),
and the Public Good Index (Holler, 1982b; Holler and Packel, 1983); for an
overview see Straffin (1994). They differ from the indices introduced above by
their focus on minimum winning coalitions. The Deegan–Packel index assumes that
coalition members divide the coalition payoff equally, while the Public Good Index

27 The Penrose–Banzhaf index, or measure, only sums to unity after ‘normalizing’ the number of
swings for each player i with the total number of swings. The normalized Penrose–Banzhaf index
here is . 3

5
; 1

5
; 1

5
/.



1.2 Voting Rules and Power 19

treats v.S/ as a public good which accrues to each member of the minimum winning
coalition.28 The nucleolus, introduced by Schmeidler (1969), and other cooperative
solution concepts that have their origin in the allocation of costs or benefits, have
also been proposed as power measures; see, for example, Montero (2005).

The affinity of simple games and, in particular, of power indices, to certain
phenomena in non-animate nature has been noticed early (e.g., Shapley, 1962).
It provides a perhaps rather rhetorical argument against the use of these indices
in the analysis of political or economic institutions (see, for example, Garrett and
Tsebelis, 1996, p. 278). The Penrose–Banzhaf index, for example, corresponds in
electrical engineering to the Birnbaum index (Birnbaum, 1969) which is a mea-
sure of structural reliability of components in, for example, an electronic circuit
(for more details about the link between such reliability systems and power indices
see Freixas and Puente, 2002). In the same context Barlow and Proschan (1975)
proposed an ‘importance measure’ that coincides with the Shapley–Shubik index.
The labels ‘winning’ and ‘losing’ in a simple game can be interchanged with ‘on’
and ‘off’ in switching theory. Other connections exist between weighted majority
games and Boolean algebra as well as with the threshold model in neuroscience,
where stimuli are accumulated until a given neuron fires in response.

The axiomatic approach explicitly lists a set of properties, usually referred to as
axioms, that an index is supposed to have, and then proceeds to demonstrate that
some function uniquely satisfies them. The Shapley value is characterized by four
properties, namely symmetry, linearity, efficiency, and treatment of dummy players
(Shapley, 1953). Axiomatizations for the Shapley–Shubik index and the Penrose–
Banzhaf index have been proposed by Dubey (1975) and Dubey and Shapley
(1979), respectively. Yet, knowledge of the properties that an index has does not
help to answer the question what quality it measures. One possibility to interpret
the Shapley–Shubik and Penrose–Banzhaf indices is offered by the probabilistic
approach under which a player’s voting power is regarded as his probability of being
crucial in passing a decision.

The probabilistic interpretation of power measures is made operational by the
multilinear extension (MLE) of the characteristic function of coalitional games. Sup-
pose that each player i independently accepts to cooperate in coalition S (to vote
‘yes’) with probability pi , and let p D .p1; : : : ; pn/ 2 Œ0; 1�n denote the vec-
tor of the individual acceptance rates. Then, the ‘vote configuration’ S forms with
probability Y

i2S

pi

Y

j 62S

.1 � pj /;

28 Unlike the Shapley–Shubik and the Penrose–Banzhaf indices, the Deegan–Packel and the Public
Good index both violate local monotonicity, i.e., for two players i and j with wi < wj , these indices
do not always assign a higher value to player j . In the literature, local monotonicity has been
discussed, along with other properties, as a major desideratum for a measure of voting power, and
as a criterion for selecting among power indices (see Felsenthal and Machover, 1998, pp. 221ff,
and Holler and Napel 2004a, 2004b).
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and in this event, yields the worth v.S/. Following Owen (1972, 1988), the MLE
f W Œ0; 1�n ! Œ0; 1� of v 2 GN is defined as

f .p1; : : : ; pn/ WD
X

S�N

Y

i2S

pi

Y

j 62S

.1 � pj / v.S/ (1.11)

D
X

S2W

Y

i2S

pi

Y

j 62S

.1 � pj /;

where W is the set of winning coalitions in v. From (1.11), the MLE can be seen
to be the mathematical expectation of a random variable v, given acceptance rates
.p1; : : : ; pn/. Moreover, as v.S/ D 1 if S 2 W.v/ and v.S/ D 0 if S 62 W.v/, it
gives the probability of formation of a winning coalition in v.

The domain of the MLE is the unit hypercube. Any point p 2 Œ0; 1�n in the
cube represents a random coalition, and its 2n vertices correspond in a natural way
to the deterministic coalitions S � N .29 For example, in Fig. 1.2, illustrating the
MLE for a three-person game, the point .0; 1; 1/ relates to the vote configuration
“Player 1 votes ‘no’, and players 2 and 3 vote ‘yes’ with probability 1”. In particular,
f satisfies f .p1; : : : ; pn/ D v.fi 2 N j pi D 1g/, i.e., it coincides with v.S/ on

Fig. 1.2 The multilinear extension for a three-person game

29 The MLE could also be defined for arbitrary real values of pi . The restriction to the unit cube is
due to the interpretation of the pi as probabilities which are naturally constrained by 0 	 pi 	 1.
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the vertices, and is thus an ‘extension’ of v. Owen (1972) proves that f is the only
multilinear (linear in each pi ) function with this property.

How is (1.11) connected to the power indices (1.9) and (1.10)? For any i 2 N ,
the first derivative of f .p1; : : : ; pn/ with respect to pi is

@f .p1; : : : ; pn/

@pi

D
X

S�N
i 62S

Y

j 2S

pj

Y

j 62S
j ¤i

.1 � pj / Œv.S [ fig/ � v.S/� ; (1.12)

which is also called the power polynomial of player i (Straffin, 1977, 1988). It
can be interpreted as a weighted average of player i ’s (marginal) contributions
Œv.S [ fig/ � v.S/� to all coalitions S that do not include i yet. At the same time,
(1.12) is the probability that player i swings in the randomly formed coalition S .

Now consider a partition 	 of the player set N into m disjoint subsets Nj , j D
1; : : : ; m. Let the acceptance rate pi2Nj

, common to all voters i in Nj , be a random
variable with probability distribution 
j on Œ0; 1�. Then, the probability of voter i

having a swing is given by the expected value of (1.12),

Pr .‘voter i is decisive’j	/

D
Z 1

0

� � �
Z 1

0

X

S�N
i 62S

Y

j 2S

pj

Y

j 62S
j ¤i

.1 � pj / Œv.S [ fig/ � v.S/� d
1 : : : d
m:

(1.13)

In principle, it is possible to use the probability distributions 
j to model relation-
ships between voters’ preferences, e.g., ideological opposition between two groups
A and B by stipulating pB D 1 � pA, or other determinants of voting behavior, as
long as they can be formulated in probabilistic terms.

Two assumptions, introduced by Straffin (1977), concerning the partition and the
distributions 
j of acceptance rates are particularly prominent: the independence
and the homogeneity assumption. Under ‘independence’ we have m D n, i.e., the
partition of N is 	 D ff1g; f2g; : : : fngg, and 
j D UŒ0;1�: each individual’s accep-
tance rate pi is selected independently from the uniform distribution on Œ0; 1� (or, for
that matter, any other distribution on the unit interval with mean 1=2). The homo-
geneity assumption, by contrast, requires that some p is realized from the uniform
distribution on Œ0; 1�, and then pi2Nj

D p for all j . This corresponds to the case
m D 1 and, again, 
j D UŒ0;1�.30 One could think of voters as being homogeneous
in the sense that they apply a uniform standard or set of values, reflected by p, to
evaluate the acceptability of a proposal, but p varies from issue to issue.

Owen (1972) shows that the Shapley–Shubik index of player i is obtained
by integrating the partial derivative @f =@pi along the main diagonal of the unit

30 The term ‘independence assumption’ may be misleading as voters’ decisions to vote ‘yes’ are
independent under the homogeneity assumption as well.
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hypercube. Since the main diagonal is characterized by p1 D : : : D pn (see
Fig. 1.2), it expresses Straffin’s (1977) ‘homogeneity’ assumption. Similarly, under
the ‘independence’ assumption, (1.13) gives rise to the Penrose–Banzhaf index
(1.10), as demonstrated by Straffin (1977). This is easiest to see by noting that ‘inde-
pendence’ is equivalent to the assumption that each voter i 2 N will vote in favor
of any proposal independently with probability 1=2.

When the partition is neither atomic nor equals the society as a whole, that is,
1 < m < n, the above model describes a situation with partial homogeneity: Voters
within the same subset Nj behave homogeneously, but the acceptability levels of
different subsets are chosen independently from UŒ0;1�. In Fig. 1.2, the light gray
plane represents the partial homogeneity structure 	 D ff1g; f23gg, i.e., players 2
and 3 always vote ‘yes’ with the same probability p2 D p3, while player 1’s accep-
tance rate is selected independently. For an application of the partial homogeneity
approach to the EU, see Kirman and Widgrén (1995).

Besides permitting (to some extent) preferences to be incorporated into the power
index framework, the virtue of the probabilistic approach is that it gives a clear
meaning to the term ‘voting power’: the a priori power of a voter under some
voting rule is his probability of casting a decisive vote, given some assumption
about voters’ behavior.31 In this view the Penrose–Banzhaf index appears to be
based on the assumption – equivalent to the ‘independence assumption’ – that each
voter, independently from the others, randomly votes ‘yes’ and ‘no’ exactly with
(expected) probability 1=2.32 This is obviously tantamount to saying that each coali-
tion forms with equal probability (see also Leech, 1990). Thus reframed, the ‘coin
toss assumption’ looks more palatable, and in the discussion on the ‘right’ index, the
Penrose–Banzhaf index has repeatedly been endorsed on the grounds that it reflects
best the basic normative principle that any information beyond the voting rule itself
should be ignored. Felsenthal and Machover (1998, p. 38) point to the ‘Principle
of Insufficient Reason’ to justify the independence assumption.33 While this may
be a valid argument in favor of the Penrose–Banzhaf index, it seems that the same
principle may be invoked to justify the Shapley–Shubik index: The latter considers
all ‘attitude orders’ equally probable – this is also expressed in the MLE approach
where the Shapley–Shubik index emerges as an average over all possible values of
the acceptance rate p.34 Second, even a priori we have good reason to think that

31 Only in dictatorial games, probabilities can be assessed from the voting rule alone, without a
behavioral assumption.
32 The probability of casting a decisive vote is greatest at p D 1=2 and declines rapidly already
for small deviations from p D 1=2 (see Chamberlain and Rothschild, 1981). This observation
translates into a substantial bias of the Penrose–Banzhaf index when applied to voting bodies that
do not perfectly satisfy the ‘independence assumption’ (see Kaniovski, 2008).
33 The usage the ‘Principle of Insufficient Reason’ (or ‘Principle of Indifference’ in Keynes’ ter-
minology) is discussed critically and in detail by Keynes (1921, Chaps. IV and VI) who also states
conditions under which it is safely applicable.
34 Leech (1990) favors the Penrose–Banzhaf measure over Shapley–Shubik index arguing that the
distributional assumption underpinning the latter is “unduly strong”.
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the independence assumption is most unlikely to be satisfied: A decision-making
body consisting only of indifferent policy-makers seems quite peculiar, a feeling
that Barry (1980a, p. 184) put into the catchy comparison that “A committee made
up entirely of people who had no interest in pursuing some particular outcome but
were fascinated by the process as such would be as frustrating as a brothel all of
whose customers were voyeurs”.

Before we conclude this section, let us get back to the definition of power as
ability to determine the outcome of decision-making, and ask in what sense we can
say that power indices measure power in this sense. Consider again the introductory
Example 1.2.1 and Table 1.4. Suppose that players have strict preferences over X ,
i.e., for every i 2 N it either holds that Q �i � or � �i Q. Obviously, voting
against the preferred alternative is a weakly dominated strategy for any player, and
it seems reasonable to expect that players will not choose weakly dominated strate-
gies. In the equilibrium of this ‘game’, the set of players is partitioned into the set of
‘yes’-voters, OS D fi 2 N j �i D 1g, and its complement N n OS such that OS consists
exactly of those players who prefer � to Q. If OS is a winning (losing) coalition, the
outcome is � (Q), and the members of OS (N n OS ) can be said to be successful.35

If we take the equilibrium outcome as reference point, a player with strict pref-
erences could at most make a difference to the outcome by choosing a weakly
dominated strategy. This sort of behavior amounts to a rather freakish enjoyment
of power as an end in itself, and although it certainly occurs, it does not pertain to
the ‘normal’ decision-maker. It would follow that only players who are indifferent
between the two alternatives could be credited with power as they can (at times)
change the outcome without betraying their actual preferences. The reference point
chosen in the voting power literature to assess player i ’s power is, however, not
the equilibrium of the n-player game, but the shadow equilibrium outcome of the
game with player set N nfig:36 Following Laruelle and Valenciano (2005), a voter is
decisive (ex post) if he is successful and his vote is critical to the outcome, i.e., iff

�
i 2 OS 2 W and OSnfig 62 W

�
or

�
i 62 OS 62 W and OS [ fig 2 W

�
:

Power indices make power ascriptions base on decisiveness, i.e., a player’s ability to
pass a decision that would not have passed had he voted ‘no’ instead of ‘yes’. Call
this concept ‘decisiveness-power’. Yet, only in the extreme cases of a dictator and
a dummy decisiveness translates directly into (zero) a priori power. In intermediate
cases, however, player i ’s being decisive obviously depends on other players’ behav-
ior. It requires a particular type of luck for a no-dummy, no-dictator player i to be

35 The concept of ‘success’ was introduced in Penrose (1946) and Rae (1969), and elaborated
further by Barry (1980a, 1980b). For an analysis of decisiveness and success also see Laruelle and
Valenciano (2005).
36 To see that is a reasonable choice consider a game with a dictator (who faces a dichotomous
choice): The equilibrium outcome is always the preferred alternative of the dictator, and he could
only make a difference to that by choosing his dominated strategy. His power, however, is that he
can impose his will on (the whole of) the other players.
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decisive, to wit, that players in N nfig produce a configuration that puts him in such
a position. If, for example, player 1 endorses the proposal, while player 2 is against
it, then player 3’s vote will tip the balance in favor of either Q or � (cf. Table 1.4).
The probabilistic approach (indirectly) specifies assumptions about the frequency of
such ‘lucky’ events so as to make an appraisal of i ’s a priori decisiveness possible.
Nevertheless ‘decisiveness-power’ complies with the intuition that ‘power’ should
include the ability to overcome some resistance, albeit only in a formalistic sense.
A winning coalition can make a decision without the votes and irrespective of the
actions or desires of the losing players. Player 3, in the configuration just described,
can enforce � or Q ‘against the resistance’ of the losing coalition (player 2 or 1,
respectively) where ‘resistance’ simply consists in voting on the other side.

It should be stressed that the tight – in fact, proportional – relationship between
decisiveness and ‘power’ is only justifiable for committees that choose from an
exogenously given binary agenda. The characteristic function is defined on the col-
lection of coalitions, and only in TU simple games – modeling 0-1 decisions – do
‘making a difference to a coalition’ and ‘making a difference to the outcome’ fully
coincide. By contrast, if players can make proposals themselves or could amend
the exogenous proposal, it will generally be necessary to negotiate a compromise
among the desires of prospective members of the winning coalition, and then the
fact that a player is usually not unique in being decisive to a coalition would become
relevant. Suppose, for example, that players 1 and 2 agree in principle to form the
minimum-winning coalition f12g and make some still-to-be-specified amendment
to the proposal �. Since both players are decisive here, neither should be able to
claim unilateral control over the outcome.

To conclude, the Shapley–Shubik and the Penrose–Banzhaf index provide sta-
tistical measures of the a priori voting power relations within a take-it-or-leave-it
committee. That they do so in a rather crude manner may be seen from the fact that
the Shapley–Shubik and the normalized Penrose–Banzhaf index yield . 1

n
; : : : ; 1

n
/

[n elements] for both the n-person unanimity game and the ordinary majority
game Mn. Here, the power indices only reflect the symmetry inherent in both
decision-making situations, but fail to report their fundamental difference: as any
summary, power indices must contain poorer information than the original game.

There is an on-going debate about the adequacy of power indices as measures
of (voting) power in general and with respect to their application to EU institu-
tions. One criticism, advanced most prominently by Garrett and Tsebelis (1996,
1999), concerns the fact that power indices disregard players’ preferences (for
replies see, for example, Holler and Widgrén, 1999; Steunenberg et al. 1999; Napel
and Widgrén, 2004). Whilst this point is rather easily countered by pointing to the
intended use of the indices for a priori analysis, a second criticism by Garrett and
Tsebelis, namely that power indices do not take into account relevant features of
the decision-making situation, is far more applicable. Most obviously neglected is
the existence of an external agenda-setter, who can, especially in take-it-or-leave-it
committees, exercise a great deal of control over the policy outcome with regard to
its content as distinguished from ‘decisiveness-power’.
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1.2.2 Bargaining Power

In a simple game with n players and outcome set X where each outcome x 2 X

is associated with a utility vector u 2 U � R
n [cf. (1.4)], the players confront

the problem of jointly choosing a single feasible utility vector. In the case that
this choice has to be made by unanimous consent, the situation corresponds to a
classical n-person bargaining problem as studied by Nash (1950) for bilateral bar-
gaining. Its outcome, or solution, is fundamentally indeterminate in the absence of
any assumptions about the nature of a ‘reasonable agreement’ or explicit bargaining
rules.

The generalized situation where n players bargain over alternatives x 2 X ‘in
the shadow’ of an arbitrary voting rule (with unanimity rule as a special case) is
investigated in recent work by Laruelle and Valenciano (2007, 2008b). While Laru-
elle and Valenciano (2007) obtain a solution to the above problem in the tradition
of cooperative game theory, Laruelle and Valenciano (2008b) provide a noncoop-
erative foundation of that solution.37 Their conceptually very elegant results offer a
perspective on power indices which is quite different from that of Sect. 1.2.1.

A n-player bargaining committee consists of a classical bargaining problem
B D .U; d/, where U � R

n is the set of feasible payoffs and d 2 U is the dis-
agreement payoff or status quo payoff, together with a voting rule W .38 The result
of the bargaining process is implemented iff it has the support of a winning coalition
as specified by W . U is assumed to be closed, convex and comprehensive. Let B and
W denote the set of bargaining problems and the set of voting rules, respectively.
In line with the intention to extend the Nash bargaining problem where the bargain-
ing settlement can ‘by definition’ leave no player worse off than disagreement, it is
assumed that no player can be forced upon any alternative that he considers worse
than the status quo. Then, any bargaining committee .B;W/ corresponds to a NTU
simple game .N; V.B;W// defined by

V.B;W/.S/ D
(

fuS j u 2 U and uN nS D dN nS g if S is winning,

compr.dS / if S is losing.
(1.14)

Note that, in contrast to the NTU simple game (1.4), the utility vectors available to
coalition S according to (1.14) give to non-members of S their status quo payoffs.
Hence, this ‘translation’ of the bargaining problem eliminates the possibility of free-
riding that became apparent in Example 1.1.1 (p. 11): All players i 2 N for whom
a certain payoff vector is beneficial in the sense that it gives them more than di are

37 Laruelle and Valenciano (2008b) can be considered as a contribution to the Nash programme of
establishing connections between cooperative solution concepts and non-cooperative game theory.
However, the fact that some bargaining protocol implements a given solution does not mean that
all relevant protocols do.
38 As with the NTU game (1.4), it is also assumed here that players have Von Neumann–
Morgenstern preferences over X . Thus the bargaining situation can be summarized by .U; d/.
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generally willing to vote ‘yes’ on it, that is, to form a coalition S . Similarly, uj ,
j 2 N nS cannot be arbitrarily small as is the case in the general NTU game.

Using an axiomatic approach, Laruelle and Valenciano (2007) study the question
which agreements can reasonably be expected to result in this setting. Following
Nash’s 1950 pioneering work, an answer is provided by a bargaining solution, that
is, a function F W B � W ! R

n which assigns to every bargaining committee
problem .B;W/ a single element of R

n, indicating the distribution of payoffs that
can be earned by the individual players. As it presupposes unanimous consent, the
classical bargaining problem corresponds to the case W D fN g.

It is desirable that the solution F selects a payoff vector which is feasible, i.e.,
F.B;W/ 2 U , and individually rational, which requires F.B;W/ 
 d . Four more
axioms are used to characterize the solution of .B;W/:

The first axiom ensures that the names of the players do not matter in determining
the solution.

(ANO) Anonymity: For all .B;W/ 2 B � W and any permutation & of N :
F&.i/.&.B;W// D Fi .B;W/, where &.B;W/ D .&B; &W/ and &B D .&.U /;

&.d// is defined by &.u/&.i/ D ui .

The second axiom requires that, if F.B;W/ is the solution to the bargaining com-
mittee problem .B;W/, and if F.B;W/ is still feasible for the problem .B 0;W/

with a diminished set of payoff possibilities U 0 � U , then F.B;W/ should still be
the agreement in .B 0;W/.

(IIA) Independence of irrelevant alternatives: Let B; B 0 2 B, with B D .U; d/

and B 0 D .U 0; d 0/ such that d D d 0 and U 0 � U . Then, F.B;W/ 2 U 0 )
F.B 0;W/ D F.B;W/ for any W 2 W.

The third axiom states that two bargaining committee problems .B;W/; .B 0;W/ 2
B � W should be assigned the same solution if B and B 0 only differ in the units of
the scale on which utility is measured.

(IAT) Invariance w.r.t. positive affine transformation: For any positive affine trans-
formation T W R

n ! R
n defined by Ti .ui / D a � ui Cb with a; b 2 R and a > 0,

and for all .B;W/ 2 B � W:

F ..T .U /; T .d//;W/ D T .F..U; d/;W// :

The fourth axiom requires (a) that status quo payoffs are assigned to null or dummy
players (see definition (1.2)) under the voting rule in use ()),39 and (b) that non-
null players can expect to receive strictly more than their status quo payoffs (().

39 As is common practice in the literature, the terms ‘null player’ and ‘dummy player’ are used
interchangeably here and refer to players whose marginal contribution is null with respect to every
coalition. More accurately, a dummy player i is a null player if v.fig/ D 0 (see Roth, 1988, p. 23).
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Part (ii) makes this axiom more demanding than the null player axiom commonly
used in the axiomatization of the Shapley (1953) value.40

(NP�) Null player �: For all .B;W/ 2 B � W: i 2 N is a null player in W ,
Fi .B;W/ D di .

It turns out that these properties uniquely characterize a solution F.B;W/ to
the bargaining committee problem (Laruelle and Valenciano, 2007, Theorem 1):
F.B;W/ satisfies (ANO), (IIA), (IAT), and (NP�) iff

F.B;W/ D Nash'.W/.B/: (1.15)

for some function ' W W ! R
n of the voting rule that satisfies (ANO) and (NP�).41

In (1.15), Nash'.W/.B/ is the asymmetric Nash bargaining solution, introduced
by Kalai (1977), with weights determined by '. Given a vector ' D .'1; : : : ; 'n/

of positive weights,42 the asymmetric Nash bargaining solution for an arbitrary
bargaining problem B D .U; d/ is defined as

Nash'.B/ D arg max
u2U;
u�d

nY

iD1

.ui � di /
'i : (1.16)

It is worth noting that (IIA), (IAT), and (NP�) together implicate efficiency of the
solution (for a proof see Roth, 1977), that is, no feasible vector u 2 U exists which
would make all players better off than F .

Let BTU D .UTU; 0/ be a normalized TU bargaining problem where UTU WD˚
u 2 R

nC j Pi2N ui � 1
�

is the TU counterpart of (1.14). Because Nash'
i .BTU/ D

'i=
P

i2N 'i ,43 and multiplication of the weights with a positive constant does not
affect the maximizer of the Nash product, '.W/ in (1.15) can, for any W 2 W, be
replaced by Nash'.W/.BTU/ D F.BTU;W/. Then, the solution (1.15) is fully deter-
mined by choosing some specific anonymous function on the domain of simple TU
games which satisfies the null player property. Among the many possible choices
for F.BTU; �/ W W ! R

n, e.g., the normalized Penrose–Banzhaf index or the Public
Good Index, Laruelle and Valenciano (2007) single out the Shapley–Shubik index

40 Shapley’s 1953 original axiomatic characterization used another axiom, the carrier axiom, which
bundles the efficiency axiom and the null player axiom into one.
41 Solution (1.15) can alternatively be derived from (ANO), (IIA), (IAT), the )-part of (NP�),
and the following efficiency axiom: (EFF) For all .B;W/ 2 B � W, there is no u 2 U such that
u > F.B;W/. Then, ' must be an efficient anonymous function satisfying the )-part of (NP�).
42 Laruelle and Valenciano (2007) state their result also for the case that some weights are zero.
Here, we simplify to the case of positive weights.
43 Nash'

i .BTU/ is defined as the solution to the maximization problem max u'1

1 
 
 
 
 
 u'n
n s.t.,

u1 C : : : C un D 1. The first order conditions for the ui (i D 2; : : : ; n) can be summarized to
ui D u1'i ='1. Then, the constraint amounts to u1

Pn
iD1 'i D '1. It follows that u� D .u1; : : : ; un/

with ui D 'i =
Pn

iD1 'i for all i 2 N is the solution to the above maximization problem.
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(see (1.9)) by adding the following transfer axiom (see Dubey, 1975; Weber, 1988,
p. 109) to (ANO), (IIA), (IAT), and (NP�):

(T) Transfer: For all W;W 0 2 W:

Fi .BTU;W/CFi .BTU;W 0/ D Fi .BTU;W[W 0/CFi .BTU;W\W 0/ 8 i 2 N:

(1.17)

This axiom embodies a linear notion of power: it requires that if W and W 0 are
the sets of winning coalitions in any two voting games with player set N , then the
sum of any voter i ’s powers in W and W 0 should be equal to the sum of i ’s pow-
ers in the two games whose sets of winning coalitions are W [ W 0 and W \ W 0,
respectively. It is well known that (T) is the driving force in the axiomatic char-
acterization of the Shapley–Shubik index (Dubey, 1975).44 In a few words, every
simple game can be written as the composition of unanimity games on its minimum
winning coalitions Sk 2 Wmin, and thus (T) allows to derive the value of player i

in a simple game, composed of a number of auxiliary unanimity games, from i ’s
values in the auxiliary unanimity games. Due to the efficiency and symmetry of the
Shapley–Shubik index, player i ’s value in the unanimity game of coalition Sk is
1=jSkj if i 2 Sk and 0 otherwise.

Laruelle and Valenciano (2007, Theorem 2) establish that the solution to the
bargaining committee problem characterized by (ANO), (IIA), (IAT), (NP�), and
(T) is unique and given by

F.B;W/ D Nash�.W/.B/ (1.18)

where � is the Shapley–Shubik index. Note that for the special case B D BTU,
the solution proposed in (1.18) is Nash�.W/.BTU/ D �.W/ (cf. Footnote 43). It
is well known that, for TU-games, the n-player Nash solution coincides with the
Shapley value when players’ (exogenous) status quo payoffs di are identified with
their security levels (v.fig/), and agreement is general.

In (1.18), the weight vector in the asymmetric Nash solution is endogenous as it is
the Shapley–Shubik index induced by the voting rule. In line with Binmore’s (1998,
p. 78) interpretation of the weights 'i in (1.16), the solution (1.18) thus permits
construing �.W/ as the distribution of players’ bargaining powers reflecting the
strategic advantages bestowed on them by the voting rule.

However, any function of W that is efficient, anonymous and assigns zero to null
players is according to (1.15) an equally well-qualified candidate to represent bar-
gaining power. Given W , let J WD fj 2 N j j is a null player in .N;W/g. Whether
'i .W/ D �i .W/ is a better representation of bargaining power than, say,

44 Laruelle and Valenciano (2001) introduce an alternative version of the transfer axiom which
states that the effect on any player’s power of eliminating a minimal winning coalition from W is
the same in any game in which this coalition is minimal winning.
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'i .W/ D
(

1
jN nJ j if i is not a null player in .N;W/;

0 otherwise,

depends entirely on the plausibility of the transfer axiom. As pointed out by a num-
ber of authors, e.g., Straffin (1994) and Felsenthal and Machover (1998, pp. 193ff),
(1.17) lacks an intuitively compelling interpretation in the context of collective
decision-making.

Still, (1.18) opens up a much richer setting than the take-it-or-leave-it committee
discussed in Sect. 1.2.1 for applying the Shapley–Shubik index as a power measure.
The more important criticism concerns the adequacy of the bargaining committee as
model of political decision-making. In Nash’s bargaining theory, due to its original
concern with bilateral exchange, agreements can only be reached by unanimous
consent. While the requirement that no player should be imposed upon an outcome
which falls short of his status quo utility is entirely plausible for market exchange, it
is not very appealing when decisions are by vote. The individual rationality axiom
limits the bargaining space to mutually beneficial agreements, and thus ensures the
general acceptability of the outcome. However, decisions by vote can usually be
expected in situations where consent is lacking. The formulation (1.14) gives every
player a rather large degree of veto power, namely with respect to outcomes that are
exploitative or otherwise injuring to him, which is then reflected in the agreement.
When decisions are eventually made by voting, it is – even on normative grounds –
difficult to justify that a winning coalition should not be able or willing to bring
about an outcome that is beneficial to its members but encroaches on the utilities of
non-members. In direct as well as in representative democracy, majority decisions
are binding on everybody, and everybody can eventually be forced to comply with
them, including those who see their interests violated. Recognition of the fact that,
under majority rule, the interests of the losing minority are inherently unprotected
(within constitutional bounds) would make it necessary to endogenize disagreement
payoffs. It would also invalidate solutions (1.15) and (1.18) which critically depend
on the individual rationality condition.

1.2.3 Power Measurement and Spatial Voting

A still different perspective on power indices is afforded by work on power measure-
ment in spatial settings (cf. Sect. 1.1.3). The earliest contribution in this context,
suggested by Owen (1971) and extended by Shapley (1977), is the application of
power indices to spatial voting games where fixed positions in an m-dimensional
ideological space influence players’ behavior.45 In Fig. 1.3, the most-preferred

45 Owen (1971) introduces a .n � 1/-dimensional space in order to describe ideological affinities
between n voters. A legislative proposal is represented as a point which is chosen randomly from
a uniform distribution over the space. The ordering of players is then taken in terms of increasing
distances of players’ ideal points from that point. Shapley’ s (1977) modification, which is followed
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Fig. 1.3 Modified power index in a three-person voting game with spatial preferences

policies of the members of some committee N D fA; B; C g are described as points
�A; �B , and �C in a two-dimensional space. Each issue determines an ordering of
the three players by drawing the perpendiculars from each ideal point: For issue 1
the line-up is given by B , A, C , whereas it is B , C , A for issue 2. Under simple
majority voting, these orders imply a spatial swing for player A and C , respectively.
Supposing that all issue directions are equally likely, or “that the ‘political winds’
blow across the ideological space in a perfectly random way” (Shapley, 1977,
p. 20), it is obvious that generally not all nŠ orders are equally probable. In line with
common political wisdom, players suffer reduced chances of being pivotal under
simple majority rule when taking positions at the extremes of the policy space. If
the decision rule applied in Fig. 1.3 is W D fAB; AC; BC g, the chances of each
committee member to be pivotal for a randomly chosen issue vector are propor-
tional to the angles in the triangle. To see this, imagine that the arrow labeled ‘Issue
1’ is rotated through 360ı, and, in any position, is equally likely to be brought to a
stop. Then, the modified power index, or Shapley–Owen power index, for the game
.N;W; .�A; �B ; �C // is given by �� D .˛=	; ˇ=	; �=	/.46 In Fig. 1.3, we have
�� D .86=180; 17=180; 77=180/. The Shapley–Shubik index (1.9) corresponds to
the special case where the players’ ideal points �1; : : : ; �n are equidistant from each
other, i.e., they form the vertices of a regular n-simplex. In Fig. 1.3, this would
require the triangle �A, �B , �C to be equilateral.

in Fig. 1.3, uses an ideological space of arbitrary dimension where dimensions can be interpreted
as ‘pure’ issues. Then, a player ordering is induced by a random vector whose direction indicates
the particular ideological ‘mixture’ of the (exogeneous) proposal faced by the committee.
46 The calculation of the modified power index for general weighted voting games in two
dimensions is explained in Straffin (1994, pp. 1140ff).
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As shown by Owen and Shapley (1989), the strong point xSP, or Copeland
winner, of a (decisive and proper) spatial voting game can be expressed as the
weighted average of committee members’ ideal points, where the weights are given
by their respective Shapley–Owen values. The strong point is the policy position
“that defeats or ties the greatest number of alternatives in the space” (Grofman et al.,
1987, p. 539). When the core of a decisive spatial voting game is non-empty, the core
consists of exactly one element and coincides with the strong point.

Modified power indices provide an analytical tool in situations where it is (empir-
ically) possible to identify decision-makers, e.g., parties in a parliament, in advance
with definite positions on the ‘political spectrum’. The observation that, once policy
positions are taken into account, not all coalitions are equally probable to form, is
also at the bottom of the ‘lack of preferences’ criticism of classical power indices
which has been advanced, among others, by Garrett and Tsebelis (1996, 1999). In
response to that point, Garrett and Tsebelis (1996, p. 275) propose to build a power
measure only on coalitions that are ideologically connected: only coalitions whose
members are adjacent to each other in the policy dimension(s) should be expected
to arise.47 Given a realization of ideal points and a status quo, denoted by Q, which
prevails in case that no decision is passed, player i ’s ‘power’ is measured by the
number of ‘plausible’ minimum winning coalitions in which player i participates.
Since this is equivalent to the joint assumption that all connected minimum win-
ning coalitions are equally likely, and the coalition value of 1 is a collective good
accruing to all members similarly, the measure bears some resemblance with the
non-spatial Public Good Index (Holler, 1982b; Holler and Packel, 1983). Blending
decision rule-related power with preference-related influence, it has some intuitive
appeal if the objective is a descriptive assessment or an ex post understanding of the
voting situation.

If, however, power is to be evaluated ex ante, i.e., before a particular preference
profile occurs, the assumption of stable ideological affinities is not appropriate. To
this purpose, Steunenberg et al. (1999) suggest to consider the equilibrium outcome
x�

g of a policy game whose rules are modeled by a game form g (see p. 16). Let
! D .�1; : : : ; �nI Q/ denote a ‘state of the world’ consisting of players’ ideal points
and a status quo, and let � be the collection of all states of the world. Then, x�

g can
be thought of as a game-theoretic solution, that is, a mapping x�

g W � ! X which
assigns to each game defined by g and ! 2 � a policy outcome x�

g.!/. The basic
idea is that “a player is more powerful than another player if the expected distance
between the equilibrium outcome and its ideal point is smaller than the expected dis-
tance for the other player” (Steunenberg et al. 1999, p. 348). Given the ‘rules of the
game’ and distributional assumptions about !, the equilibrium outcome x�

g .!/ can
be derived as a function of the random variable !. The expected distance between
x�

g.!/ and player i ’s ideal point �i is the basic ingredient of a measure, dubbed the
strategic power index since x�

g may result from sophisticated strategic interaction.

47 For one-dimensional policy spaces, (minimum) connected winning coalitions were first
suggested by Axelrod (1970) in his “conflict of interest” theory.



32 1 Games and Political Decisions

In principle, the approach can also address the second main criticism of classical
power indices, viz. their neglect of institutional structures. For example, Steunen-
berg et al. (1999) use their power index to analyze the consultation procedure of EU
decision-making whicth includes the EU Commission as a strategic agenda-setter.
As pointed out in detail by Napel and Widgrén (2002, pp. 9ff), the drawback of the
so-called strategic power index is that it captures expected success, but not power,
understood as the ability to make a difference to the outcome of the decision pro-
cess. The reason for this is that the measure exclusively relies on information about
x�

g : coincidence of the latter with player i ’s preferences implies that i ‘gets what he
wants’. This success for player i (see p. 23) could come about either because he is
decisive, or because he is lucky (see Barry, 1980b).

Instead of comparing x�
g.!/ with player i ’s ideal point, Napel and Widgrén

(2002, 2004) base power ascriptions on a comparison between the outcome of the
collective decision process modeled by g and a counterfactual or shadow outcome
which i could bring forth if he liked to. The more sensitive the outcome is to i ’s
behavior, the greater the power attributed to i relative to other players. Given the
decision rules g, a solution concept x�

g , and some particular state of the world
! 2 �, sensitivity to a change in player i ’s preferences is measured ex post by
@x�

g.!/=@�i , i.e., by the partial derivative of x�
g with respect to i ’s ideal point.48

It indicates the extent to which the outcome would differ if i ’s preferences were
slightly different, or the marginal contribution of player i to the outcome.

Now, power can be measured ex ante (or in the long run) by introducing uncer-
tainty about the state of the world in the form of some probability distribution 
 over
profiles ! 2 �. The ex ante measure �N W is then given by the expectation of the
above derivative with respect to 
,

�N W
i D

Z
@x�

g.!/

@�i

d
 : (1.19)

Just like the MLE expression for voter i ’s probability of being pivotal (1.13), �N W
i

identifies ‘power’ with i ’s expected marginal contribution, but the contribution is to
the policy outcome rather than to the ‘worth’ of coalitions. In line with this analogy,
an a priori measure is obtainable by choosing an informationally poor probability
measure 
 in (1.19), e.g., a uniform distribution on the state space �. For appro-
priately selected game forms and distributions, the sensitivity approach includes
traditional power indices as special cases (see Napel and Widgrén, 2004, pp. 526f).
Unlike the latter, (1.19) permits taking into account institutional structures such as
the existence of an agenda-setter and the time structure of policy games. In fact,
Napel and Widgrén (2006) provide an application to the co-decision procedure of

48 Discrete alternatives to the derivative – corresponding to an infinitesimally small preference
change – are discussed in Napel and Widgrén (2004). Sensitivity may also be defined more directly
as the reaction of x� to a change in a given player’s actions rather than his preferences. However,
as actions are usually thought to originate in preferences, the formulation of the approach in terms
of preferences is more elementary.
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the EU, modeled as an extensive form game. They find that, although the European
Parliament and the Council of Ministers are formally on a par under that procedure,
the inter-institutional balance of power is substantially biased in favor of the Coun-
cil of Ministers as a consequence of the latter’s more conservative internal decision
rule. In a similar vein, Napel and Widgrén (2008) study the distribution of power
between permanent and elected members of the UN Security Council.

As seen in Sect. 1.2.1, traditional power indices capture players’ decisiveness
with respect to two exogenously given alternatives, e.g., proposal and status quo.
The more interesting kind of influence over the outcome, however, seems to rest
with the agenda-setter who determines the contents of the proposal.49 It should be
pointed out that agenda-setting is a factor that properly lies outside the voting game.
An early model highlighting the power of the agenda-setter (or proposer) vis-à-
vis a take-it-or-leave-it committee is provided by Romer and Rosenthal (1978).50

The agenda-setter is assumed to be fully informed about the policy preferences of
committee members, and, rather than making random proposals, he behaves strate-
gically. In the first stage of the game, the agenda-setter makes a proposal � 2 X

to the committee whose members have Euclidean preferences over the set of fea-
sible alternatives X , with an ideal point in the space. Once the proposal is made,
the committee votes whether to adopt � by simple majority rule. In case that �

is not supported by a simple majority, the status quo Q, which is known to all
players, prevails. Under the closed rule assumption, the agenda-setter can make a
credible ultimatum offer relative to Q. His optimal strategy is to propose the pol-
icy he prefers most among those policy alternatives that are preferred to Q by a
majority of decision-makers. This set of points is called the win set of Q. For the
three-member committee illustrated in Fig. 1.4, it corresponds to the shaded area.
Suppose that member A is the agenda-setter in this situation. Then, A’s equilibrium
proposal (and the outcome of the voting game) is his ideal point, i.e., x�

g.!/ D �A.
Applying the sensitivity approach @x�

g.!/=@�i to the committee N D fA; B; C g,
one obtains the ex post power vector .1; 0; 0/ for any direction of marginal change
in the preferences. Any small change in the agenda-setter’s preferences translates
into an identical shift of the collective decision, whereas small changes in the ideal
points of members B and C have no effect.51

To round off the example, consider the case that the committee in Fig. 1.4 oper-
ates under an open agenda rule, which permits amendments to proposals. Then, the

49 The agenda-setter can also control the outcome under a sequential binary agenda, as described
by a finite binary voting tree, if he has information about the majority preference relation.
50 Romer and Rosenthal (1978) analyzed the effect of agenda control for one-dimensional policy
choices under closed rule.
51 In the closed rule game, players B and C could be characterized as spatially inferior (compared
to A). The concept of inferior players, referring to players who are subject to credible ultima-
tum threats, is introduced by Napel and Widgrén (2001) for TU simple games, and by Napel and
Widgrén (2002) and Widgrén ans Napel (2002) for (one-dimensional) spatial voting games. Napel
and Widgrén propose power measures, called the Strict Power Index and the Strict Strategic Power
Index, respectively, which regard inferior/spatially inferior players as powerless.



34 1 Games and Political Decisions

Fig. 1.4 Agenda setting in two-dimensional policy space. The shaded area is the win set of Q

outcome of the decision-making process can be expected to be located at or very
close to the strong point (see Grofman et al., 1987). As mentioned earlier, the strong
point xSP is a convex combination of players’ ideal points, and in particular, it holds
that xSP D Pn

iD1 ��
i �i (Owen and Shapley, 1989). If x�

g.!/ D xSP, it follows
that player i ’s ex post power @x�

g.!/=@�i is given by the modified power index

�� D .˛=	; ˇ=	; �=	/ (see Napel and Widgrén, 2004, p. 532).
The real-world collective decision-making is modeled as a game to which some

solution concept needs to be applied in order to derive the collective outcome x�
g

from !. Yet, while to some models only one ‘solution’ may lend itself, others allow
the application of several solutions or equilibrium concepts each of which explores
a different hypothesis about players’ rationality and behavior. For example, if the
core of a majority voting game in a spatial context is empty, both the center of the
yolk (McKelvey, 1986), and the strong point (see Grofman et al., 1987) could be
considered as reasonable point predictors for the policy outcome.52 Similarly, many
solution concepts do not yield a unique or one-point prediction – even if refinements
are used to reduce multiplicity. In a priori analysis, multiple equilibria can be dealt
with by making explicit assumptions about their probability (Napel and Widgrén,
2004, p. 523), although this has a slight ad hoc flavor.

Finally, it should be mentioned that the proposals to measure ‘power’ in a spa-
tial framework have met with scepticism because they, by definition, include the

52 The yolk (McKelvey, 1986) is the smallest circle that intersects all median lines or median
hyperplanes. Its radius can be seen as a measure of how close the game is to having a core outcome.
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preferences of players whose power is to be assessed. A number of authors argue
that any dependence of power ascriptions on preferences runs counter to the mean-
ing of ‘power’, which – as the generic ability to affect an outcome – exclusively
resides in the game form (cf. p. 16). (See Miller, 1982, Braham and Holler, 2005a,
2005b; for counter-arguments see Napel and Widgrén, 2005).

1.3 Voting Rules and Payoffs

The power distribution in a decision-making body is arguably most crucial in those
situations where all individual decision-makers have conflicting interests. Then, the
decision that is eventually reached reflects who can enforce his preferences most
comprehensively. For example, empirical evidence strongly suggests that budget
allocation in the EU is largely driven by the distribution of voting power in the EU
Council of Ministers (see Baldwin et al. 2001; Kauppi and Widgrén, 2007 and the
references therein). In its purest form, the clash of interests as it occurs in situations
of benefit (or cost) allocation (under an assumption of selfish preferences) can be
modeled by constant-sum games.

Up to this point, a voter has been considered powerful insofar as he could change
the outcome by changing his vote. While it is not generally clear when power can
be equated with the benefits or utilities attached to the outcome, the relationship
between the power of a player and his value, i.e., his prospects from playing the
game, seems tightest for purely distributive decisions. A second way to establish a
link between voting rule and payoffs arises if one looks at the decision-making body
through the eyes of a lobbyist. Albeit not identical, the question ‘how powerful
is committee member i ’ is intuitively related to the question ‘at whom should a
lobbyist address his efforts in order to promote a decision he favors’. This section
explores some connections between voting rules and payoffs in both cooperative
and non-cooperative games.

The canonical problem in distributive politics is ‘divide-the-dollar’: one
dollar – representing, for example, a fixed-size budget – is to be allocated by collec-
tive choice among the n members of the committee. Thus, the set of alternatives in
‘divide-the-dollar’ is the .n � 1/-dimensional simplex

XDD D
(

.x1; : : : ; xn/ 2 Œ0; 1�n W
X

i2N

xi D 1

)

: (1.20)

Example 1.3.1. Suppose that the simple n-player majority game Mn (cf. (1.3)) is
used to choose an element of X , and that for all i 2 N and x 2 XDD, ui .x/ D xi .
A winning coalition S 2 2N n; gains possession of the prize of victory (e.g., a lump
sum budget, or a certain number of cabinet posts), which it completely distributes
among its members.
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It is well known that the core of this game is empty.53 This result should also
not be surprising in light of the high-dimensionality of the policy space (1.20)
(cf. Sect. 1.1.3). Although core emptiness implies that any allocation must leave
at least one coalition short of its potential and thus reflects a lot of scope for social
conflict, it is not tantamount to instability of outcomes. Rather, an empty core may
only indicate that no prediction of outcomes is made.

In Sect. 1.2.1, the Shapley–Shubik index was introduced as the application of the
Shapley value to simple games, lending itself to the a priori measurement of power
or control in voting situations. Originally, Shapley (1953) suggested to interpret the
Shapley value as a measure of players’ benefit of playing the game which attempts
to relate the size of the share of the pie that accrues to an individual in a cooperative
setting to that individual’s contribution to the size of the pie. As mentioned earlier,
the Shapley value of player i is the average or expected marginal contribution that
i makes to the grand coalition when all orders of forming the latter are equally
likely. With respect to TU simple games like the one described in Example 1.3.1, it
follows that the Shapley–Shubik index of committee member i would correspond to
i ’s expected payoff or share in a fixed purse if i received on average his contributed
amount.

One immediate way how this can be effected is by the simple procedure Shapley
(1953) used to describe the come about of the Shapley value – let players line up
in random order and pay to each his marginal worth to the coalition which consists
of those who come before him (see p. 18). But giving the pivotal player full credit
for having ‘baked the pie’, or passed the measure, is hardly a conceivable ‘real-
world’ negotiation process. Still, it is possible to sustain the Shapley value by a
variety of sophisticated, albeit not necessarily realistic, non-cooperative bargaining
games based on the exchange of proposals and counter-proposals (e.g., Gul, 1989;
Hart and Mas-Colell, 1996): The vector of players’ equilibrium payoffs converges
towards the Shapley value in these games.

Alternatively, an outside authority who has the task of allocating collective
benefits or costs to individuals might wish to apply the Shapley value, or the
Shapley–Shubik index, as an arbitration scheme on the grounds that it would seem
fair to give each player his average contribution.54 If, by contrast, the allocation
is decided upon by (weighted) voting, then the outcome in any play of the game
as it results from the competitive behavior of coalitions does, in general, not corre-
spond to the Shapley–Shubik index which would require the grand coalition to form.
In Example 1.3.1, the Shapley–Shubik index is �.v/ D . 1

n
; : : : ; 1

n
/ [n elements],

which is neither an element of the core (being empty) nor of the Von Neumann–
Morgenstern stable set (see Owen, 1995, pp. 234ff). These latter concepts appear to

53 In fact, the core is always empty for superadditive constant-sum games; for a proof see
Ordeshook (1986, pp. 350f).
54 For example, Littlechild and Thompson (1977) apply the Shapley value to the problem of allo-
cating airport landing charges to different types of aircraft. Yet, the ‘fairness credentials’ of the
Shapley value hinge on the axioms (see p. 19) which characterize it.
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be more qualified than the Shapley value to capture some of the strategic features of
the situation.

If majority voting is used as an allocation mechanism, Riker’s (1962, pp. 32f
and 247ff) size principle provides a hypothesis about coalition formation: It states
that in n-person constant-sum games with transferable utility only minimum win-
ning coalitions form, that is, coalitions in which every member is critical (cf. p. 7).
In a nutshell, the reasoning behind the size principle is that, first, the prize of
winning makes it rationally desirable to be a member of a winning coalition, and
second, admitting no more members to the coalition than necessary to ensure win-
ning means that the prize can be divided among fewer players. While Riker (1962)
justifies the principle on the basis of abstract cases, Schofield (1980) shows that
the formation of minimum winning coalitions can be rigorously derived from the
additional assumption of M2-stability (see Owen, 1995, p. 316) for symmetric,
constant-sum games with decreasing returns to scale.55 The game in Example 1.3.1
and its five-player-version, Example 1.1.2, fall into this class.

Another link between the voting rule and players’ payoffs can be established via
vote-selling games. For example, the Penrose–Banzhaf power measure (1.10) allows
an interpretation as the amount that a committee member would be paid by a lob-
byist buying his or her votes (see Felsenthal and Machover, 1998, p. 45). Consider
a lobbyist who will gain one unit of transferable utility if a take-it-or-leave-it com-
mittee accepts a certain policy proposal, but who will lose one unit upon rejection
of the proposal. How much should the lobbyist be willing to pay for a committee
member’s vote if, for lack of information on members’ attitudes towards the resolu-
tion, he deems all coalitions equally likely to form? The answer is, of course, that
he ought to be prepared to pay up to the marginal benefit of commanding that vote.
Given the voting rule W of the committee, the a priori chance that the proposal is
accepted by the committee without any effort on the part of the lobbyist is jWj=2n,
that is, the number of winning coalitions as a share of all possible bipartitions of the
committee. Hence, his expected payoff is given by

E.u/ D jWj
2n

.C1/ C 2n � jWj
2n

.�1/ D jWj
2n�1

� 1: (1.21)

This is clearly less than the expected payoff in the case that some member i of the
committee is sure to vote ‘yes’. Then, the conditional probability that the proposal
gets accepted is jWi j=2n�1, where Wi refers to the set of winning coalitions to
which i belongs, and 2n�1 is the total number of coalitions containing i . This yields
the expected payoff

E .u j i votes ‘yes’/ D jWi j
2n�1

.C1/ C 2n�1 � jWi j
2n�1

.�1/ D 2jWi j
2n�1

� 1 (1.22)

55 A game in characteristic function form exhibits decreasing returns to scale (McKelvey and
Smith, 1974) if v.T /=jT j > v.S/=jS j for all T � S , v.T /; v.S/ > 0; for illustration see
Example 1.1.2 with Table 1.3.
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for the lobbyist. In fact, the difference between the unconditional expected payoff
(1.21) and the conditional expected payoff (1.22) is

E .u j i votes ‘yes’/ � E.u/ D 2jWi j � jWj
2n�1

D ˇi

where the second equality is implied by 2jWi j�jWj D jfS�N W i is critical in Sgj,
for any i 2 N , together with definition (1.10).56 According to this result, the
Penrose–Banzhaf measure ˇi of committee member i represents the gain which a
lobbyist could expect from buying i ’s vote, and thus, an upper bound to the amount
the lobbyist should rationally spent on that vote.

The question ‘what amount of transferable utility may players expect from a
purely distributional game’ can, under certain circumstances, be answered by power
indices like the Shapley–Shubik index or the Penrose–Banzhaf measure. Yet, taking
a strategic approach to bargaining over the division of one unit of benefits typically
leads to conclusions which are not congruent with those of thoroughly cooperative
game theory. One important aspect of power, proposal power, is captured by the
legislative ultimatum game, suggested by Romer and Rosenthal (1978), which has
already been considered in the spatial setting (cf. Sect. 1.2.3).

Consider, for example, the interactions between the EU Commission and the
Council of Ministers under the majority version of the consultation procedure:
the Council is presented a proposal by the Commission which it can adopt by
qualified majority (or unanimously, depending on the policy area).57 Treating the
Commission as a single actor, and ignoring the possibility that the Commission
proposal could be amended by the Council, as well as the fact that interaction is
indefinitely repeated, the situation may be illustrated by a simple game with one
voting body where all minimum winning coalitions include the Commission and
some minimum set of Council members such that the quota is met. In a more non-
cooperative vein, if the Commission was in a position to make credible ultimatum
offers to Council members, it would obtain the (rational) approval of the latter by
making marginal concessions to their interests, assigning (almost) the total prize

56 Let W�i denote the set of winning coalitions to which player i does not belong. Then, it holds
that jWj D jWi jCjW�i j for any player i . Adding jWi j on both sides of this identity and rearrang-
ing yields jWi j � jW�i j D 2jWi j � jWj. The left hand side indicates the difference between the
number of winning coalitions containing i , and the number not containing i , and is easily shown to
be equivalent to the number of swings that player i has, i.e., to jfS � N W i is critical in Sgj (for a
proof see Dubey and Shapley, 1979, p. 102).
57 Under the consultation procedure, the Council can also amend the Commission’s proposal by
unanimity. Moreover, the European Parliament needs to be consulted, but its opinion is non-
binding. Generally, Article 155 grants the Commission the exclusive right to initiate legislation
vis-à-vis the Council and the European Parliament, and according to Article 189a (2), it holds the
right to modify a proposal at any point of procedure. Nevertheless, how much control the Com-
mission can exercise over the proposal which ultimately comes to a vote in the Council probably
varies with the EU’s different decision procedures (see Garrett and Tsebelis, 1996).
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to itself, and leaving (almost) nothing to Council members. Following Napel and
Widgrén (2001), all Council members in this example are inferior players, i.e., the
set of minimum winning coalitions containing any particular Council member is
a proper subset of the set of minimum winning coalitions containing the Com-
mission. Arguably, the position of inferior players is somewhat similar to that of
dummies (cf. definition (1.2)).58 Napel and Widgrén (2001) suggest that a player
who receives a zero payoff in ‘divide-the-dollar’ bargaining should be considered
powerless. Accordingly, traditional power indices can, for certain applications, be
modified by assigning zero power to inferior players. For instance, defining the
Penrose–Banzhaf measure (1.10) only with respect to swings by players who are
not inferior in the simple voting game gives rise to the Strict Power Index (Napel
and Widgrén, 2001). There are two points to note. Firstly, while it does not attach
any power to players whose payoffs are nil, it is not possible to interpret the Strict
Power Index in terms of (expected) payoffs. Secondly, the concept of inferior play-
ers presupposes that the rules of bargaining are such as to allow one particular player
to make credible ultimatum threats to other players.

A prominent approach to distributive decisions in voting committees is the
sequential bargaining model by Baron and Ferejohn (1989). In their model, one
of the committee members is randomly chosen, in accordance with exogenously
given recognition propobabilities, to make a proposal – a division of the dollar –
which is then put to a vote under 50%-majority rule. All players are assumed to
have the same voting weight. Baron and Ferejohn (1989) consider both a closed
rule (where the proposer makes a take-it-or-leave-it offer for the current legislative
session) and an open rule (where amendments in each session are allowed). Here,
we focus on the former. The game ends upon acceptance of the proposal, and the
proposal that has the support of a winning coalition materializes. If the proposal
x 2 XDD is rejected, the session ends, and the legislature moves to the next ses-
sion which begins by drawing a proposer again, and so on. From session to session,
payoffs are discounted, where a discount factor of 1 indicates maximal patience. A
player will vote in favor of a proposal if it gives her at least her continuation value,
and against it otherwise. Concentrating on stationary subgame perfect equilibria of
the game,59 Baron and Ferejohn (1989) find that, under closed rule, the member
recognized first to make a proposal can secure a greater share for herself compared
with what she would receive as a mere voter. This proposer advantage stems from
the other members’ being aware that they might belong to the losing minority in
future sessions. It decreases in the discount factor, and increases in the size n of
the committee. The predictions from the Baron–Ferejohn model contrast with those
that arise from the cooperative analysis of the simple game in Example 1.3.1, the

58 Indeed, a dummy player is always inferior, and in decisive games (cf. p. 8), the two concepts
‘inferior players’ and ‘dummy’ fully coincide (Napel and Widgrén, 2001, p. 213).
59 A stationary subgame perfect equilibrium is one in which (a) a proposer proposes the same
distribution every time he is recognized, and (b) voting members vote only on the basis of the
current proposal (and their expectations about future proposals which are time-invariant because
of (a)), i.e., players’ actions are independent of the history of the game.
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main reason being that the non-cooperative model considers both voting power and
proposal power.60

An extension of the Baron–Ferejohn model of distributive political decisions to
weighted majority voting is provided by Snyder et al. (2005). Assuming that no
discounting of payoffs occurs, they investigate two different cases concerning the
probability of a committee member to be chosen as proposer. First, recognition
probabilities may be proportional to voting weights. Second, all members may have
the same probability irrespective of their voting weight, which should, for exam-
ple, at least theoretically apply to the EU Council of Ministers. In the first case,
the stationary subgame perfect equilibrium of the game implies that each player’s
expected payoff is equal to his share of total voting weight. If recognition prob-
abilities are uniform, two types of equilibria emerge: Either expected payoffs are
again proportional to committee members’ weights, or, for heavily skewed distri-
butions of weights, ‘small’ players enjoy expected payoffs in excess of their voting
weight, deriving from their proposal power. In contrast to power indices which rest
on the idea that all coalitions (or minimum winning coalitions, or permutations) are
equally likely to form, the non-cooperative model by Snyder et al. (2005) explicitly
considers the price of different coalitions. From a cost-minimizing proposer’s point
of view, one voter with, say, a voting weight of three and a continuation value of four
is less desirable to include in the coalition than three voters who have one vote each
and a continuation value of one. As a consequence of this ‘substitution logic’, one
committee member with k votes basically receives the same share of the total purse
as k members with one vote each. Again, the discrepancy between these results and,
for example, the Shapley–Shubik index (which is non-linear in voting weights) can
be traced back to the fact that, unlike cooperative solution concepts, the bargaining
model accounts for the proposal making and the voting process.

60 Holler and Schein (1979) provide a different model of ‘pie’ division by majority voting in which
the shares of the ‘pie’ that players can secure for themselves are determined by their proposal rights
and the sequence of their proposals.



Chapter 2
Committees as Representative Institutions

A voting game can be looked at from the angle of the individual players, or from
that of the designer of the voting game. In the former perspective, it is natural to ask
what the ‘value’ of the game to each of the players is. As stressed in Sects. 1.2 and
1.3, ‘value’ can refer to a player’s ability to change the outcome of a voting game,
or to the payoffs he may reasonably expect, but in both cases the game enters the
analysis as input. From the designer’s perspective, by contrast, the input is a desired
value for the individual players, and the problem is to construct a voting game which
induces it. This idea, that human interaction can be subjected to deliberate design,
possibly most warrants the label ‘political’. Assessing the rules of existing political
bodies and devising new rules is the foremost area of application for power indices
(see Sect. 1.2.1).

This chapter is devoted to one instance of such an institutional design problem:
finding a weighted voting rule which implements the principle of ‘one person, one
vote’ in a two-tiered government system. Weighted voting is used in many important
political bodies such as the EU Council of Ministers, the US Electoral College, and
the International Monetary Fund, as well as in some cartels, such as the International
Coffee Council. The choice of weights is often a source of considerable dissent in
these bodies. With respect to the European Union, the Single European Act of 1986
comprised provisions that weighted voting under a qualified majority rule should
be applied for most decisions in the Council of Ministers concerning the Single
Market. Like the earlier Treaties of Maastricht and Amsterdam, the Treaty of Nice,
which was settled by the governments of the EU member states in December 2000,
extended the use of qualified majority rule to new policy domains. Here, as well
as at earlier occasions, e.g., the 1995 enlargement to Austria, Finland, and Sweden,
the voting weights and quota proved to be a bone of contention. The controversy
regained its momentum at the Council of the European Union (the ‘EU Summit’)
in June 2007 due to Poland’s lobbying for a square-root allocation of weights in the
Council of Ministers.

Section 2.1 provides a brief overview of criteria that the designer of a commit-
tee voting game might wish to apply if he is interested in giving fair representation
to individual citizens. It will be argued that equality of individual influence on the
political outcome should be given priority when the committee is meant to represent
some public in a democratic sense. So far, this ideal has only been investigated in

N.F. Maaser, Decision-Making in Committees, Lecture Notes in Economics
and Mathematical Systems 635, DOI 10.1007/978-3-642-04153-2 2,
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the context of take-it-or-leave-it committees operating under a binary agenda with
an exogenously given proposal, giving rise to Penrose’s (1946) square root rule. In
Sect. 2.2, the decision-making is modeled as an idealized two-stage process where
alternatives are elements of a one-dimensional policy space. The model thus cov-
ers committee decisions that are non-binary and possibly involve strategic behavior.
The ‘one person, one vote’ principle is interpreted as calling for a priori equal indi-
rect influence of citizens on final decisions. In Sect. 2.3, a departure is made towards
an analytical solution of the model. Heuristic arguments strongly suggest that, under
50%-majority rule, weights proportional to the square root of population sizes are
an approximate solution to the equal representation problem. This finding is cor-
roborated by extensive Monte-Carlo simulations, described in Sect. 2.4. Section 2.5
concludes with a discussion of issues which are left unobserved in this chapter,
some of which are taken up in the following one. Except for Sect. 2.1, the presenta-
tion draws heavily on Maaser and Napel (2007). Section 2.3 is based on recent work
with Stefan Napel.

2.1 Criteria for Representative Committees

A basic characteristic of today’s idea of democracy is the use of political represen-
tatives who make decisions on behalf of the citizens. The participation of the latter
is largely indirect as they only elect their representatives. With respect to analysis
and modeling, the fact that all modern democracies are representative implies that
a lot of democratic processes have to be conceived as two-tiered. First, the votes of
the population determine the composition of a representative decision-making body.
Second, this body makes decisions according to some set of rules.

In many two-tier systems, representatives are elected in separate districts and
then participate in a governing body at the union level, where they cast a block
vote for their district. Most often, voting districts are – for geographical, ethnic, or
historical reasons – not equally sized, so that representatives’ voting weights have to
somehow reflect their constituency’s population size. The most prominent example
for such two-tier systems is the EU Council of Ministers. The members states of
the EU differ widely in population figures, with Germany’s 82 million inhabitants
at the one extreme, and Malta’s 400,000 at the other. A natural question that arises
in this context is which rule should be applied to define districts’ weight at the
union level. Equivalently, thinking of the design of mechanisms as a maximization
problem where some criterion – the designer’s utility – is maximized under some
assumptions about players’ behavior, one can ask what the utility function of the
designer should be.

Obviously, the answer depends on which properties of the decision-making pro-
cess itself or its outcomes are regarded as desirable. Concerning the evaluation of
alternative decision rules for a representative political body, two classes of norma-
tive criteria are particularly relevant: instrumental or outcome-oriented and intrinsic
or procedure-oriented. On an instrumental account, one decision rule or another
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is advocated on the grounds that it is conducive to certain (desirable) substantial
outcomes. For instance, one interpretation of ‘representation’ holds that it means
acting in the best interest of those represented (see Pitkin, 1967, pp. 155ff). In this
welfarist view, representation deals with the relationship between preferences and
outcomes.1 A utilitarian approach to the ‘best interest’ is to seek efficient outcomes,
that is, to maximize total (expected) utility. The design of voting rules that sat-
isfy this ideal is studied in the context of yes–no decision-making by Beisbart et
al. (2005), Barberà and Jackson (2006), and Beisbart and Bovens (2007). Another
instrumental norm in the welfarist vein is equality of (expected) utility throughout
society, which might be seen as flowing from some notion of outcome fairness. This
objective is considered by Beisbart and Hartmann (2006) and again Beisbart and
Bovens (2007).

Both these ideals are generally incompatible with norms that ascribe intrinsic
value to the procedure rather than the outcome. From this viewpoint, the prob-
lem is that voting rules which implement instrumental norms may treat individual
citizens asymmetrically, that is they fail to guarantee anonymity. A voting rule is
anonymous if and only if the outcome of collective decision-making is invariant
under a permutation of the assignment of preferences to individuals. This property
ensures that the collective decision only depends on how many votes an alter-
native gets, not on whose votes these are. To put the same point differently: a
non-anonymous rule – intentionally or accidentally – biases the decision in favor
of some individuals. Following Dahl (1956, p. 37), anonymity defines – together
with popular sovereignty – the minimum requirement for decision-making proce-
dures to be called democratic. Popular sovereignty means that citizens ultimately
control political decision-making, and anonymity embodies political equality, or
equivalently, the principle of ‘one person, one vote’. The significance of this prin-
ciple is intrinsic rather than instrumental since it conveys no orientation towards
certain substantial outcomes. Why would the formal or numerical concept of polit-
ical equality be so important as to take precedence over, for example, the above
welfare considerations?2

It is illusionary and possibly not even desirable,3 that collective decisions on pub-
lic policies, and especially on distributive matters, should be reached by unanimous
agreement.4 Rather, the collective decision will most often infringe upon the will
and the interests of some individuals. In as much as the decision bars options that

1 Manin et al. (1999, p. 9) distinguish representativeness from responsiveness which they take to
mean that a government adopts the policies that it understands to be preferred by the citizens. If the
government is better informed about the state of the world, responsiveness and representativeness
in the above sense can fall apart.
2 See the debate between Wall (2006) and Christiano (2006) on this issue.
3 Rae (1975) demonstrates that a decision rule which gives every individual the right of consent is
not robust, by which he means that it must return some outcome. Acknowledging that it is de facto
not possible not to make a decision, disagreement in society implies that the outcome is imposed
upon at least one individual.
4 Yet, unanimous consent as a precondition for action is deeply linked with liberalism (see Rae,
1975): It is the source of the mythical social contract in the works of John Locke and Thomas
Hobbes, and it is the guiding principle of (supposedly coercion-free) market exchange.
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were available to these individuals before, it can be said to interfere with their lib-
erty (in the sense of freedom from coercion). So, if it is true that general consensus
is fictitious, and liberty is the proper or initial condition of citizens, how can the use
of coercion, implied by the collective decision, be justified?

As unanimous consent cannot reasonably be expected in the realm of politi-
cal decisions, attention naturally shifts to the procedure by which the conflict of
wills is decided. The egalitarian theory of democracy holds that it follows from the
basic liberal idea of the fundamental moral equality of all persons that every person
must be given equal regard in collective decision-making. The wielding of political
power, and the use of coercion following a collective decision, is only legitimate or
morally justifiable, if all have an ‘equal say’ on the decision (see Buchanan, 2002,
pp. 710ff). The ‘one person, one vote’ principle provides this legitimation by assign-
ing to everybody whom the final decision will bind equal formal means to influence
the political decision. Of course, it can be contested what it means that citizens have
an ‘equal say’: First, in representative democracy, citizens are confined to electing
representatives, which, at best, limits their ‘say’ to choosing the ends or the direction
of policy-making, whereas the choice of the means is usually left to the represen-
tatives. Second, some citizens such as parliamentarians or judges have powers to
influence collective outcomes that ordinary citizens do not have. Third, wealthy
citizens may, by their access to organizational or propaganda resources, wield priv-
ileged influence on political decisions. To the first two points, one may answer that
functional asymmetries are still compatible with political equality if citizens are the
arbiter over those who wield political power and enjoy equal participation in the
control of the latter. As regards the third point, it seems that the degree to which
political equality is feasible in a society depends on the distribution of income and
wealth.

Despite these qualifications, political decision-rules that express a commitment
to equality still seem the best possibility to reconcile the use of coercion with liberal
individualism (see Buchanan, 2002, pp. 711f). The legitimizing effect of procedural
equality is generally absent in instrumental decision rules, e.g., rules that are moti-
vated by welfarist ideals. The standard liberal tenets that every individual is worthy
of equal regard and that every individual knows his or her own interest best imply
that all individuals must be assigned the same formal weight in making the rules for
their lives.

The brief discussion of the egalitarian norm of democracy suggests that other
criteria which might govern the choice of the decision procedure, such as utility-
maximization, or procedural transparency, should only be taken into account in so
far as they do not compromise the more significant ‘one person, one vote’ princi-
ple. It is true that many other properties besides political equality may be deemed
desirable for a democratic system, e.g., a high turnout of voters or impartial media
coverage of election campaigns. But as these qualities, which could be summarized
as the ‘deliberative dimension of democracy’ (Christiano, 1996, pp. 91ff), are not
easily amenable to anticipatory design, it seems reasonable to concentrate on what
can be legislated, that is, on procedures which implement numerical equality.
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Returning to two-tiered decision systems, democratic rules ought to guarantee
equality of the means to influence collective decision-making with respect to the
aggregate process (see Christiano, 1996, pp. 232ff). Claims that political equality is
established if ‘one person, one vote’ is satisfied at the electoral stage, where repre-
sentatives are elected, and that the decision-rule at the legislative stage could follow
other goals (e.g., Beitz, 1989), are inconsistent with the view that the first stage is
only a means to an end. The election of representatives is not an end in itself.

How can the basic democratic value of political equality be operationalized in
practice in two-tiered systems that involve multiple constituencies of different popu-
lation size? Given non-integer ‘ideal shares’, which might for example be the result
of a general election in a multi-party system with proportional rule, the problem
arises how to apportion an integer number of seats for these shares (see Balinski and
Young, 2001). If, by contrast, there is one representative from every constituency in
the higher-level assembly who casts a block vote on behalf of his constituents (as in
the US Electoral College or the EU Council of Ministers), the problem is to deter-
mine what representatives’ shares or weights should ideally be. The ‘one person,
one vote’ principle can then be interpreted to call for a weighted voting scheme in
the representative committee which gives each individual voter in any constituency
an equal chance to determine the policy outcome of the two-tier process.

Although it seems straightforward to allocate weights proportional to popula-
tion sizes, this ignores the combinatorial properties of weighted voting, which often
imply stark discrepancies between voting weight and actual voting power: In an
assembly with simple majority rule and three representatives having weight 47, 43,
and 10, all three possess exactly the same number of possibilities to form a winning
coalition, and hence the same a priori power.

The most well-known solution to this problem is the one first suggested by
Penrose (1946). Starting from the ideal world in which only constituency mem-
bership5 distinguishes voters, Penrose found that if members of any constituency
are to have the same a priori chance to indirectly determine the outcome of top-tier
decisions, then constituencies’ voting weights need to be such that their power at
the top-tier as measured by the Penrose–Banzhaf index (Penrose, 1946; Banzhaf,
1965) is proportional to the square root of the respective constituency’s population
size (also see Felsenthal and Machover, 1998, Sect. 3.4). This square root rule has
recently become the benchmark for numerous studies of the EU Council of Minis-
ters (see, e.g., Felsenthal and Machover 2001, 2004, Leech, 2002) and it is at least a
reference point for investigations concerning the US (see, e.g., Gelman et al. 2004).

Applying the square root rule has, unfortunately, two weaknesses: First, Penrose’s
theorem critically depends on equiprobable ‘yes’ and ‘no’-decisions by all voters,
or at least a ‘yes’-probability which is random and distributed independently across
voters with mean exactly 0:5. As shown in Sect. 1.2.1, this assumption leads to the
Penrose–Banzhaf index. If the ‘yes’-probability is slightly lower or higher, or if it

5 The constituency configuration is assumed to be given exogenously. See, e.g., Epstein and
O’Halloran (1999) on constructing majority–minority voting districts along ethnic, religious, or
social lines.
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exhibits even minor dependence across voters – say, they are influenced by the same
newspapers – then the square root rule may result in highly unequal representation
(see Good and Mayer, 1975; Chamberlain and Rothschild, 1981). Related empir-
ical studies in fact have failed to confirm the predictions for average closeness of
two-party elections which lie behind the square root rule (see Gelman et al. 2002,
2004).

Second, rigorous justifications for using the square root rule as the benchmark
have so far concerned only preference-free binary voting.6 But real decisions are
rarely binary, e.g., about either introducing a tax, building a road, accepting a candi-
date, introducing affirmative action, etc. or not. At least at intermediate levels there
is a preference-driven compromise that involves many alternative tax levels, road
attributes, suitable candidates, degrees of affirmative action, etc. Even issues that
appear to be intrinsically binary, such as declaring war, usually entail decisions of
a gradual nature, e.g., how many forces to deploy, or which aims to achieve before
stopping aggression.

The first criticism has been addressed in the literature, at least in abstract nor-
mative terms. Namely, one can argue that constitutional design should be carried
out behind a thick ‘veil of ignorance’ in which no particular type of dependence
or modification of equiprobability (which follows from the ‘Principle of Insuffi-
cient Reason’, cf. p. 22) is justified.7 Regarding the second issue, the next section
presents, to the author’s knowledge, the first model which allows to investigate
the ‘one person, one vote’ principle for non-binary decisions that possibly involve
strategic behavior.

2.2 The Model

In line with the arguments advanced in the preceding section, the principle of ‘one
person, one vote’ is considered a worthwhile objective in the design of a decision-
making rule for a committee of representatives. In the following, it will be equated
with the following egalitarian norm: Each voter in any constituency should have
an equal chance to determine the policy implemented by the committee of rep-
resentatives. Instead of yes-no-decisions the model considers policy alternatives
which are elements of a bounded interval. Two key assumptions are imposed: First,
the policy advocated by the top-tier representative of any given constituency coin-
cides with the ideal point of the respective constituency’s median voter (or the

6 For rigorous, very comprehensive treatments of the binary or simple game world see Felsenthal
and Machover (1998) or Taylor and Zwicker (1999).
7 The term ‘veil of ignorance’ was coined by John Rawls to characterize a hypothetical ‘original
position’ in which decision-makers agree on principles of justice under uncertainty about the distri-
bution of benefits and burdens that will result from a decision. In the constitutional choice literature,
the ‘veil of ignorance’ is conceived of as a mechanism that makes the hypothetical designers of the
constitution choose constitutional rules in an impartial way.
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constituency’s core). Second, the decision taken at the top tier is the position of the
pivotal representative (or the assembly’s core), with pivotality determined by the
weights assigned to constituencies and a 50%-decision quota. The respective core
is meant to capture the result of strategic interaction. As long as this is a reasonable
approximation, the actual systems determining collective choices are undetermined
and could even differ across constituencies.

In order to produce a recommendation appropriate to the circumstances of ‘con-
stitutional choice’, it is necessary to be as unspecific as possible about the agenda
which will confront the committee, or the ways committee members will evaluate
policy alternatives, or the factional structure of the committee. This requirement
seems to be met best by assuming that voters choose their most preferred policy
independently of each other. In this benchmark case, a given individual’s chance to
be pivotal at the bottom tier is inversely proportional to the respective constituency’s
population size. This makes it necessary and sufficient for equal representation of
voters that the probability of any given constituency being pivotal at the top tier is
proportional to its size.8

The population size of a constituency affects the distribution of its median. A
given voter’s chance to be doubly pivotal thus becomes a rather complex function
of (the order statistics of) differently distributed independent random variables. This
makes a neat analytical statement similar to Penrose’s rule exceptionally hard and
likely impossible, except for limit situations.

This sketch of the model now needs to be set out more formally. Consider a
large population of voters partitioned into m constituencies C1; : : : ; Cm with nj D
jCj j > 0 members each. Voters’ preferences are single-peaked with ideal point �i

j

(for i D 1; : : : ; nj and j D 1; : : : ; m) in a bounded convex one-dimensional policy
space X 	 R. Assume for simplicity that all nj are odd numbers.

For any random policy issue, let � W nj denote the permutation of voter numbers
in constituency Cj such that

�
1Wnj

j � : : : � �
nj Wnj

j

holds. In other words, k Wnj denotes the k-th leftmost voter in Cj and �
kWnj

j denotes

the k-th leftmost ideal point (i.e., �
kWnj

j is the k-th order statistic of �1
j ; : : : ; �

nj

j ).
A policy x 2 X is decided on by an committee of representatives R consist-

ing of one representative from each constituency. Without going into details, we
assume that the representative of Cj , denoted by j , adopts the ideal point of his
constituency’s median voter,9 denoted by

8 If voters’ utility is linear in distance, the criterion also guarantees equal expected utility, i.e.,
a priori power and expected success are then perfectly aligned. See Laruelle et al. (2006) for a
conceptual discussion of the latter.
9 We are aware of this not being appropriate in all contexts. – The possibility that two ideal points
exactly coincide, in which case the median voter (in contrast to the median policy) is not well-
defined, is ignored. This is innocuous for any continuous ideal point distribution.
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�j 
 �
.nj C1/=2Wnj

j :

Let �kWm denote the k-th leftmost ideal point amongst all the representatives (i.e.,
the k-th order statistic of �1; : : : ; �m).

In the top-tier assembly or committee of representatives R, each constituency Cj

has voting weight wj 
 0. Any subset S � f1; : : : ; mg of representatives which
achieves a combined weight

P
j 2S wj above q 
 0:5

Pm
j D1 wj , i.e., a simple

majority of total weight, can implement a policy x 2 X .
Consider the random variable P defined by

P 
 min
n
l 2 f1; : : : ; mg W

lX

kD1

wkWm > q
o
:

Player P W m’s ideal point, �P Wm, is the unique policy that beats any alterna-
tive x 2 X in a pairwise majority vote, i.e., constitutes the core of the voting
game defined by weights and quota.10 Without detailed equilibrium analysis of
any decision procedure that may be applied in R (see Banks and Duggan, 2000
for sophisticated non-cooperative support of policy outcomes inside or close to the
core), we assume that the policy agreed by R is in the core, i.e., it equals the ideal
point of the pivotal representative P Wm.

In this setting, the egalitarian norm above can be stated formally as follows: there
should exist a constant c > 0 such that

8j 2 f1; : : : ; mg W 8i 2 Cj W Pr
�
j D P Wm ^ i D .nj C 1/=2 Wnj

� 
 c: (2.1)

We would like to answer the following question: which allocation of weights
w1; : : : ; wm satisfies this norm (at least approximately) for an arbitrary given par-
tition of an electorate into m constituencies? In other words we search for an
analogue of Penrose’s (1946) rule, which calls for proportionality of a constituency’s
Penrose–Banzhaf index (1.10) and square root of population.11

The probability of a voter’s double pivotality in (2.1) depends on the distribution
of all voters’ ideal points. Though in practice ideal points in different constituencies
may come from different distributions on X and may exhibit various dependencies,
it is appealing from a normative constitutional-design point of view to presume that
the ideal points of all voters in all constituencies are independently and identically
distributed (i. i. d.).

10 The policy �P Wm – Things are more complicated if q > 0:5
Pm

jD1 wj is assumed. Then, the
complement of a losing coalition need no longer be winning. In this case there may not exist any
policy x 2 X which beats all alternatives x0 ¤ x despite unidimensionality of X and single-
peakedness of preferences.
11 Conditions for when a player’s Penrose–Banzhaf index is approximately his/her voting weight
are given by Lindner and Machover (2004). – In Chap. 3, the exact version of Penrose’s rule is
investigated with respect to the present model.
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Given that voters’ ideal points in constituency Cj are i. i. d., each voter i 2 Cj has
the same probability to be its median. Hence,

8j 2 f1; : : : ; mg W 8i 2 Cj W Pr
�
i D .nj C 1/=2 Wnj

� D 1

nj

:

Because the events fi D .nj C1/=2 Wnj g and fj D P Wmg are independent, one can
thus write (2.1) as

8j 2 f1; : : : ; mg W Pr .j D P Wm/

nj


 c: (2.2)

So if constituency Cj is twice as large as constituency Ck , representative j must have
twice the chances to be pivotal than representative k in order to equalize individual
voters’ chances to be pivotal.

Representatives’ ideal points �1; : : : ; �m are independently but (except in the
trivial case n1 D : : : D nm) not identically distributed. If all voter ideal points
come from the (arbitrary) identical distribution F with density f , then Cj ’s median
position is asymptotically normally distributed (see e.g., Arnold et al., 1992) with
mean

�j D F �1.0:5/ (2.3)

and standard deviation

�j D 1

2 f .F �1.0:5//
p

nj

: (2.4)

So, the larger a constituency Cj is, the more concentrated is the distribution of its
median voter’s ideal point, �j , on the median of the underlying ideal point distribu-
tion (assumed to be identical for all �i

j ). This makes the representative of a larger
constituency on average more central in the committee of representatives and more
likely to be pivotal in it for a given weight allocation.

It is important to observe that the assumption of the respective collective pref-
erences having an identical a priori distribution is inconsistent with the assumption
that all individual preferences are a priori identically distributed. The intuitively
appealing linear rule of giving twice the weight to a constituency double the size
(or, in view of the combinatorial aspects of weighted voting, choosing weights such
that the respective Shapley–Shubik index12 is twice as large) violates the ‘one per-
son, one vote’ principle if one makes the latter assumption. We find it considerably
more fitting and will assume i. i. d. ideal points for all bottom-tier voters throughout
this paper. Weights and Shapley–Shubik index of constituencies hence need to be
increasing in population size but less than linearly.

Probability Pr .j D P Wm/ in (2.2) depends both on the different distributions of
representatives’ ideal points (essentially the standard deviations �j determined by

12 Note that the Shapley–Shubik index corresponds to the probability of top-tier pivotality in case
that representatives’ preferences are i. i. d. (cf. Sect. 1.2.3).
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constituency sizes nj ) and the voting weight assignment. This makes computation
of the probability of a given constituency Cj being pivotal a complex numerical task
even for the most simple case of uniform weights, in which the representative of Cj

with median top-tier ideal point is always pivotal, i.e., P 
 .m C 1/=2 for odd m.
Define M �j 
 f1; : : : ; j � 1; j C 1; : : : ; mg as the index set of all constituencies
except Cj . Then, the probability of constituency Cj being pivotal is

Pr
�
j D mC1

2
Wm� D Pr

�
exactly m�1

2
of the �k; k ¤ j; satisfy �k < �j

�

D
Z

P

S�M �j ;
jS jD.m�1/=2

Q

k2S

Fk.x/ � Q

k2M �j�S

.1 � Fk.x// � fj .x/ dx;

(2.5)
where fj and Fj denote the density and cumulative density functions of �j (j D
1; : : : ; m). Proceeding to the case of weighted voting (P 6
 .mC1/=2), even success
in more generally approximating

Pr.j D p Wm/ D
Z X

S�M �j ; jS jDp�1

Y

k2S

Fk.x/ �
Y

k2M �j�S

.1 � Fk.x// � fj .x/ dx:

for any given realization p of random variable P would be of little help because
events fP D pg and fj D p Wmg are no longer independent.13 So, typically,

Pr.j D P Wm/ ¤
mX

pD1

Pr.P D p/ � Pr.j D p Wm/:

2.3 Analytic Arguments

For the reasons stated above, it seems unrealistic to aim for a general analytical
solution to the equal representation problem (2.1), or equivalently, (2.2) for arbi-
trary finite configurations .n1; : : : ; nm/. But is there a way of making progress for a
particularly clear layout? The following heuristic arguments suggest that this might
indeed be possible.

Assume that representatives’ ideal points �j are normally distributed with mean
�j D 0 and standard deviation

�j D #
p

2	

2
p

nj

> 0

13 To see this, consider the artificial case of representative j having weight wj > 0:5
Pm

jD1 wj

even though all constituencies are of equal size, so that ideal points �k (k D 1; : : : ; m) are i. i. d.
Since j is a dictator, Pr.j D P Wm/ D 1. But Pr.P D p/ D 1=m and Pr.j D p Wm/ D 1=m for
all p.
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[cf. (2.4)], where # > 0 is a constant. Denote the cumulative density function of �j

by F�j
, and the density of �j by f�j

. The latter is given by

f�j
.x/ D 1

�j

p
2	

e
� x2

2�j
2 D

p
nj

#	
e

� x2 nj

#2� : (2.6)

Let � denote the set of vectors of median ideal points. Finally, to facilitate notation,
let 	j 
 Pr .j D P Wm/. A representative k with ideal point �k is pivotal in the
committee of representatives if, for a given realization ! 2 � of median voters’
ideal points, the total weight of the representatives who have ideal points to the left
of �k is greater than or equal to q � wk , but less than q.

Given weights w1; : : : ; wm, let Qwj .x/, x 2 X , be the random variable defined by

Qwj .x/.!/ D
(

wj if �j .!/ � x

0 if �j .!/ > x:

where ! 2 � refers to a particular ideal point realization. The random variable
Qwj .x/ is the contribution of constituency Cj to the total weight of constituencies
which have ideal points weakly to the left of x. Denote the weight accumulated up
to x by constituencies other than any fixed constituency Ck by

QW�k.x/.!/ D
X

j ¤k

Qwj .x/.!/:

Consider any ideal point realization ! such that �k.!/ D x. Constituency Ck is
pivotal in the committee of representatives iff

QW�k.x/.!/ � q < QW�k.x/.!/ C wk

or
q � wk < QW�k.x/.!/ � q:

The expected value of the probability of this event with respect to the probability
density function f�k

.x/ yields k’s overall power Pr .k D P Wm/,

	k D
Z 1

�1
Pr.q � wk < QW�k.x/ � q/ f�k

.x/ dx: (2.7)

So, 	k is the probability that representative k’s median is located between the
positions QW �1

�k
.q � wk/ and QW �1

�k
.q/ in X at which constituencies j ¤ k have

accumulated weight q � wk and q, respectively.14 This is illustrated in Figs. 2.1
and 2.2.

14 Note that QW�k.x/ is a step function. Thus, QW �1
�k .
/ is the quasi-inverse of QW�k.x/, i.e.,

QW �1
�k .y/ D inffx 2 X j y 	 QW�k.x/g.
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Fig. 2.1 Accumulated weight of constituencies other than k and determination of QW �1
�k .q � wk/

and QW �1
�k .q/

Fig. 2.2 Density of �k . The shaded area corresponds to 	k , which is the expectation of the event
that �k is situated between QW �1

�k .q � wk/ and QW �1
�k .q/

As mentioned already, the explicit computation of QW�k.x/’s distribution, and
hence that of 	k , is very involved: for any W 2 .q � wkI q�, one needs to account
for all combinatorial possibilities to reach the aggregate weight W without Ck . This
would amount to the enumeration of all coalitions S not containing representative k
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with weight
P

j 2S wj D W , followed by the summation of the respective formation
probabilities

Q
j 2S F�j

.x/
Q

j 62S .1 � F�j
.x//.

An approximation which ignores these combinatorial complications is of little
use for estimating power for any particular weight distribution, but helps in identi-
fying the general behavior of power, as weight and population size is varied.

The key observation is that, for a large number m of constituencies, QW�k.x/ –
as the sum of m � 1 independent random variables – is approximately normally
distributed,15 with mean

E QW�k.x/ D
X

j ¤k

E Qwj .x/ D
X

j ¤k

wj F�j
.x/: (2.8)

As m goes to infinity, the variance of the random variable QW�k.x/ approaches zero.
Hence, the error of replacing QW�k.x/ in (2.7) by its expected value E QW�k.x/ is
small when we look at a large number of constituencies. In particular, we can then
approximate (2.7) by

	k � O	k D
Z 1

�1
1fx W q�wk<E QW�k.x/	qg.x/ f�k

.x/ dx

D
Z 1

�1
1fx W E QW �1

�k
.q�wk/<x	E QW �1

�k
.q/g.x/ f�k

.x/ dx

D
Z E QW �1

�k
.q/

E QW �1
�k

.q�wk/

f�k
.x/ dx (2.9)

where 1X denotes the indicator function of set X .
From the point symmetry of the normal cumulative density function, F�j

.x/ D
1�F�j

.�x/, together with (2.8), it follows that E QW�k.x/ is point symmetric in rela-
tion to the point .0IPj ¤k wj =2/ (cf. Fig. 2.1). Consider the case of simple majority
rule, q D P

j wj =2. The quota can be rewritten as q D P
j ¤k wj =2Cwk=2, whilst

q �wk D P
j ¤k wj =2�wk=2. Thus, if E QW�k.z/ D q for some z 2 R, then it holds

that E QW�k.�z/ D q � wk .
Using (2.6), approximation (2.9) becomes

O	k D
Z z

�z
f�k

.x/ dx D
p

nk

#	

Z z

�z
e

� x2 nk

#2� dx D 2

p
nk

#	

Z z

0

e
� x2 nk

#2� dx (2.10)

where z is implicitly defined by E QW�k.z/ D q. This integral can be written as the
Taylor series

15 As the random variables Qwj .x/ are independently, but not identically distributed with finite
variance, Lyapunov’s central limit theorem applies.
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O	k D 2

p
nk

#	

Z z

0

�
1 � �x2

1Š
C �2x4

2Š
� �3x6

3Š
C : : :

�
dx

D 2

p
nk

#	

�
z � �z3

3 � 1Š
C �2z5

5 � 2Š
� �3z7

7 � 3Š
C : : :

�
(2.11)

with � 
 nk

#2�
.

If constituency k were included in the aggregation, the quota q D P
j wj =2

would in expectation be accumulated exactly at x D 0. If constituency Ck’s weight
wk is ‘small’ relative to

P
j wj , then q will in expectation be accumulated slightly

to the right of zero, i.e., z is close to zero. For this case, terms in (2.11) with
degree greater than one have only a second-order effect. So O	k can rather well be
approximated by

O	k D 2z
p

nk

#	
: (2.12)

In the neighborhood of x D 0, F�j
.x/ can be approximated by its Taylor polyno-

mial of degree 1, i.e.,

OF�j
.x/ D F�j

.0/ C xf�j
.0/ D 1

2
C xf�j

.0/:

Then, solving

X

j ¤k

wj =2Cwk=2 D q D E QW�k.z/ �
X

j ¤k

wj
OF�j

.z/ D
X

j ¤k

wj =2C
X

j ¤k

wj zf�j
.0/;

the location z is obtained approximately as

z � wk

2
P

j ¤k wj f�j
.0/

:

This, together with (2.12), leads to the conclusion that

	k � wk
p

nk

#	
P

j ¤i wj f�j
.0/

: (2.13)

According to (2.13), the probability of constituency Ck to be pivotal at the top
tier is approximately proportional to its weight wk and to the square root of its
population nk . The square root of population, which first showed up in the den-
sity (2.6), describing the distribution of representative j ’s position, reappears in
(2.13). Returning to the equal representation condition (2.2), it follows from (2.13)
that (2.2) can be approximately satisfied by choosing weights w�

j such that

w�
j ∝ p

nj ;
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where the notation ∝ refers to (direct) proportionality between w�
j and the square

root of nj for all j D 1; : : : ; m.
In order to obtain this heuristic result, two major approximations were made:

first, the effect of the combinatorial features of a particular weight distribution on
power is ignored [leading to formula (2.9)]. Second, the ‘lumpiness’ of player k’s
weight which implies that z is actually larger than 0 is not taken into account [leading
to (2.12) and (2.13)]. Nevertheless, (2.13) allows a prediction about the equitable
weight allocation for large representative committees and exposes the reason why
one would expect a square root rule to eventually emerge from the ‘double pivot’
model introduced in Sect. 2.2.16

While the approximative weight allocation rule w�
j ∝ p

nj may be expected to
work well under ‘limit conditions’, it is of limited use when the number of con-
stituencies is ‘small’. The following section for this reason uses Monte-Carlo
simulation in order to approximate the probability of any constituency Cj being
pivotal for a given partition of an electorate, or configuration fC1; : : : ; Cmg, and a
fixed weight vector .w1; : : : ; wm/. Based on this, the simulation tries to find weights
.w�

1 ; : : : ; w�
m/ which approximately satisfy the two equivalent equal representation

conditions (2.1) and (2.2).

2.4 Simulation Results

The problem of finding probability 	j 
 Pr .j D P Wm/ is similar to that of evalu-
ating the odds of rolling a ‘6’ with a funny-shaped die: while one may conceivably
solve a complex dynamic model with several partial differential equations, it is
equally reliable to simply roll the die many times and keep track of ‘6’s. In par-
ticular, 	j can be viewed as the expected value of the random variable Kj 
 gw

j

.�1; : : : ; �m/ which equals 1 if j D P Wm holds for given weight vector w and real-
ized median ideal points �1; : : : ; �m, and 0 otherwise. The Monte-Carlo method
(Metropolis and Ulam, 1949) then exploits the fact that the empirical average of s

independent draws of Kj ,

Nks
j D 1

s

sX

lD1

kl
j ;

converges to Kj ’s theoretical expectation

E.Kj / D 	j

16 Note that Penrose’s square root rule also includes an approximation: In its derivation, Stirling’s
formula is used to approximate the probability that an individual voter is decisive at the lower-tier
referendum (or a general two-candidate election).
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by the law of large numbers. The speed of convergence in s can be assessed by the
sample variance of Nks

j . Using the central limit theorem, it is then possible to obtain
estimates of 	j with a desired precision (e.g., a 95%-confidence interval) if one
generates and analyzes a sufficiently large number of realizations.

To obtain a realization kl
j of Kj , first m random numbers �1; : : : ; �m are drawn

from distributions F1; : : : ; Fm.17 Throughout the analysis, Fj is taken to be a beta
distribution with parameters

�
.nj C 1/=2; .nj C 1/=2

�
. This corresponds to the

median of nj independently Œ0; 1�-uniformly distributed voter ideal points, i.e., all
individual voter positions are assumed to be distributed uniformly.18 Second, the
realized constituency positions are sorted and the pivotal position p is determined.
Constituency CpWm is thus identified as the pivotal player ofR. It follows that kl

j D 1

for j D p Wm, and 0 for all other constituencies.
The goal is to identify a simple rule for assigning voting weights to constituen-

cies which – if it exists – approximately satisfies equal representation conditions
(2.1) or (2.2) for various numbers of constituencies m and population configurations
fC1; : : : ; Cmg. A natural focus is the investigation of power laws

wj D nj
˛ (2.14)

with ˛ 2 Œ0; 1�. For big m this approximately includes Penrose’s square root rule as
the special case ˛ D 0:5 (see Lindner and Machover, 2004; Chang et al., 2006).

For any given m and population configuration fC1; : : : ; Cmg under consideration,
a fixed ˛ is considered and then 	j is approximated by its empirical average O	j in a
run of 10 million iterations. This is repeated for different values of ˛, ranging from
0 to 1 with a step size of 0.1 or 0.01, in order to find the exponent ˛ which comes
‘closest’ to implying equal representation for the given configuration.

Two different criteria come into question for evaluating distance between the
(estimated) probability vector O	 
 . O	1; : : : ; O	m/ realized by weights w and the
ideal egalitarian vector 	� 
 .

Pm
kD1 nk/�1 � .n1; : : : ; nm/. A first straightforward

criterion is O	j ’s cumulative quadratic deviation from 	�
j ,

mX

j D1

. O	j � 	�
j /2; (2.15)

which is equivalent to considering Euclidean distance between O	 and 	� in R
m. The

above, a priori, treats deviations from 	�
j equally for all j , i.e., looks at deviations

for constituencies as such rather than for individuals.

17 A Java computer program is used. The source code is available upon request. Directly drawing
the constituency medians �j provides a huge computational advantage. Unfortunately, it prevents
statements about the population median and, e.g., its average distance to the policy outcome.
18 The mentioned asymptotic results for order statistics imply that only F ’s median position and
density at the median matter when constituency sizes are large. So below findings are not specific
to the assumption of uniform distributions at the bottom tier.
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It seems, however, desirable in an egalitarian context to focus on the latter. So
the second criterion considers cumulative quadratic deviations between the realized
and the ideal chances of an individual. Any voter in any constituency Cj would
ideally determine the outcome with the same probability 1=

Pm
kD1 nk , but vector O	

actually gives him or her the probability O	j =nj of doing so. Treating all nj voters
in any constituency Cj equally then amounts to looking at

mX

j D1

nj �
�

1
Pm

kD1 nk

� O	j

nj

�2

: (2.16)

Minimization of (2.16) seems more relevant than that of (2.15). In any case opti-
mal values of ˛ are virtually unaffected by a switch between the two criteria. They
are also almost unaffected by a switch from respective quadratic deviations to abso-
lute deviations. So, with little loss of information, only results for measure (2.16)
will be presented, referring to it as cumulative individual quadratic deviation below.
Section 2.4.1 first investigates computer-generated random environments with con-
stituency numbers between 10 and 100; several population configurations for each
m are investigated to check the robustness of an optimal ˛. Sections 2.4.2 and 2.4.3
then briefly look at the EU Council of Ministers and the US Electoral College.

2.4.1 Randomly Generated Configurations

Table 2.1 reports the optimal values of ˛ that were obtained for four sets of
configurations fC1; : : : ; Cmg.19 For m 2 f10; 15; 20; 25; 30; 40; 50g, constituency
sizes n1; : : : ; nm were independently drawn from a uniform distribution over Œ0:5 �
106; 99:5 � 106�. Numbers in column (I) are the optimal ˛ 2 f0; 0:1; : : : ; 0:9; 1g 	
Œ0; 1�, where probabilities O	j were estimated by a simulation with 10 mio. iterations.
Cumulative individual quadratic deviations for optimal ˛’s are shown in brackets.
Column (II) reports the respective values obtained for an independent second set
of constituency configurations; columns (III) and (IV) do likewise but based on the
finer grid f0; 0:01; 0:02; : : : ; 0:99; 1g that contains ˛.20

While results for m D 10 are still inconclusive, ˛ � 0:5 emerges as the very
robust ideal exponent for larger number of constituencies. The reported cumulative
individual quadratic deviations are so small that even if the power laws assumed
in (2.14) do not contain the theoretically best rule for equal representation in
our median-voter context (because possibly constituencies’ sizes are not the right

19 The configuration draws are independent across different values of m. Thus, the table actually
reports optimal values obtained for 28 independent configurations.
20 Hence columns (III) and (IV) each report on 101 
 7 simulation runs (with 10 mio. iterations
each).
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Table 2.1 Optimal value of ˛ for uniformly distributed constituency sizes (cumulative individual
squared deviations from ideal probabilities in parentheses)

# const (I) (II) (III) (IV)

10 0.5 0.6 0.39 0.00
.1:22 � 10�11/ .1:04 � 10�11/ .2:20 � 10�12/ .2:39 � 10�11/

15 0.5 0.5 0.49 0.48
.1:43 � 10�11/ .1:45 � 10�13/ .2:79 � 10�14/ .8:84 � 10�14/

20 0.5 0.5 0.49 0.49
.4:80 � 10�14/ .8:59 � 10�14/ .5:66 � 10�15/ .6:91 � 10�15/

25 0.5 0.5 0.49 0.49
.9:25 � 10�15/ .1:28 � 10�14/ .5:37 � 10�15/ .7:69 � 10�15/

30 0.5 0.5 0.49 0.49
.1:11 � 10�15/ .5:12 � 10�15/ .7:36 � 10�15/ .2:38 � 10�15/

40 0.5 0.5 0.49 0.49
.3:38 � 10�15/ .5:11 � 10�15/ .3:69 � 10�15/ .7:02 � 10�15/

50 0.5 0.5 0.50 0.50
.3:06 � 10�15/ .4:70 � 10�15/ .3:10 � 10�15/ .3:30 � 10�15/

Table 2.2 Optimal value of ˛ for normally distributed constituency sizes (� D 1 mio., � D
200;000; truncated below 0)

# const (I) (II) (III) (IV)

10 0.0 0.0 0.0 0.0
.1:22 � 10�9/ .1:65 � 10�9/ .9:21 � 10�9/ .1:83 � 10�9/

20 0.6 0.0 0.6 0.0
.2:19 � 10�10/ .2:93 � 10�10/ .2:82 � 10�10/ .3:83 � 10�10/

30 0.1 0.2 0.4 0.5
.1:07 � 10�10/ .1:07 � 10�10/ .6:94 � 10�11/ .6:76 � 10�11/

40 0.3 0.4 0.4 0.5
.1:72 � 10�11/ .2:08 � 10�11/ .2:32 � 10�11/ .2:81 � 10�13/

50 0.4 0.2 0.3 0.3
.1:60 � 10�11/ .7:39 � 10�12/ .3:56 � 10�11/ .4:72 � 10�11/

100 0.5 0.5 0.5 0.5
.1:01 � 10�13/ .2:30 � 10�12/ .1:99 � 10�13/ .3:44 � 10�13/

reference point, but rather something like their Penrose–Banzhaf or Shapley–Shubik
index), they allow a sufficiently good approximation for most practical purposes.

Results in Table 2.1 are strongly suggesting that (an approximation of) Penrose’s
square root rule holds also in the context of median voter-based policy decisions in
X 	 R. But optimality of ˛ � 0:5 could be an artifact of considering uniformly dis-
tributed constituency sizes n1; : : : ; nm, which perhaps unrealistically makes small
constituencies as likely as large ones. Therefore similar investigations using other
distributional assumptions need to be conducted.

Constituency sizes seem usually a matter of history, geography, or deliberate
design. In the latter case, one might expect them to be clustered around some ‘ideal’
intermediate level. This makes a (truncated) normal distribution around some value
Nn a focal assumption for constituency configurations. Table 2.2 indicates that, in
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Fig. 2.3 Cumulative individual quadratic deviation in normal-distribution runs (I) for different
numbers of constituencies

this case, ˛ D 0:5 is no longer the general clear winner from the considered set
of parameters f0; 0:1; : : : ; 0:9; 1g. This is neither very surprising nor – from a
square-root-rule point of view – very disturbing: Moderately many and more or
less equally sized constituencies give rather little scope for discrimination between
constituencies. Assigning slightly larger constituencies substantially more weight
risks overshooting the mark, but assigning them only slightly more weight may not
translate into an increased number of pivot positions at all. So, first, the optimal ˛

can be expected to be rather sensitive to the precise constituency configuration at
hand, especially when a small number of constituencies creates relatively few dis-
tinct opportunities to achieve a majority. And, second, in the wide range where extra
weight to an above-the-average constituency translates into no or few extra winning
coalitions, the objective function is very flat. This is nicely illustrated by Fig. 2.3. Its
minimization via Monte Carlo techniques is then particularly sensitive to remain-
ing estimation errors. But note that the importance of these issues decreases as m

gets large. This indicates that applicability of the square root rule rests on enough
flexibility regarding the formation of distinct winning coalitions.

When historical or geographical boundaries determine a population partition, a
yet more natural distributional benchmark for nj is a power law such as Zipf’s law
(or zeta distribution), which has big empirical support in a variety of contexts.21 As
an example, we consider the Pareto distribution with density function

g.x j 
; x/ D 

x�

x�C1
(2.17)

21 Examples for which (approximative) power-law behavior has been observed include sizes of
human settlements (Gabaix, 1999; Reed, 2002), the value of oil reserves in oil fields, the size of
meteor impacts on the moon, or even frequencies of words in long sequences of text. Explana-
tions for this widespread regularity are based on ideas such as self-organized criticality and highly
optimized tolerance (see, e.g., Newman, 2000).
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Table 2.3 Optimal value of ˛ for constituency sizes from Pareto distribution on Œ0:1I 1/

�

# const 1.0 1.8 3.4 5.0

10 0.5 0.5 0.0 0.0
.1:32 � 10�9/ .3:25 � 10�9/ .3:72 � 10�9/ .1:80 � 10�8/

20 0.5 0.5 0.5 0.0
.6:99 � 10�11/ .4:78 � 10�11/ .5:64 � 10�11/ .3:61 � 10�9/

30 0.5 0.5 0.5 0.1
.1:32 � 10�11/ .2:41 � 10�11/ .2:41 � 10�11/ .1:03 � 10�10/

40 0.5 0.5 0.5 0.15
.1:87 � 10�11/ .2:25 � 10�11/ .3:27 � 10�12/ .2:85 � 10�11/

50 0.5 0.5 0.5 0.1
.1:31 � 10�10/ .1:86 � 10�11/ .2:67 � 10�12/ .1:91 � 10�10/

100 0.5 0.5 0.5 0.5
.3:79 � 10�12/ .1:04 � 10�12/ .8:88 � 10�13/ .7:54 � 10�13/

on Œx; 1/ . Parameter x provides a lower bound on nj and parameter 
 determines
how quickly the probability of drawing a large (rather than small or medium-sized)
constituency approaches 0.

Table 2.3 reports simulations with constituency sizes drawn from a Pareto dis-
tribution with x D 0:1 and 
 2 f1; 1:8; 3:4; 5g, where numbers refer to million
inhabitants. As long as the distribution is only moderately skewed (small 
), findings
correspond nicely to those for the uniform distribution: wj D p

nj performs best
and gets close to ensuring equal representation provided that the number of con-
stituencies is sufficiently large. The former is no longer the case for a heavily skewed
distribution of constituency sizes, i.e., when there are mostly small constituencies
and only one or perhaps two large constituencies (reminiscent of the major players in
an otherwise oceanic game). Giving all constituencies equal weight does reasonably
well. A coefficient ˛ greater, but still not far from zero, improves on this by creat-
ing additional pivot positions for the large constituency. But for a moderate number
of constituencies, increasing ˛ after the initial introduction of asymmetry produces
quite little effect (again, the objective function is rather flat over a big range as indi-
cated by Fig. 2.4) and then suddenly overshoots, resulting in too much power for the
large constituency. For the same combinatorial reasons as in the normal-distribution
case, this problem gets less severe, the greater is the total number of constituen-
cies: For m D 100 or larger, ˛ D 0:5 turns out to be clearly optimal even for high
skewness (
 D 5).

In summary, the above analysis of many different population configurations
reveals three things. First, as Table 2.1 and Figs. 2.3 and 2.4 show, ˛ D 0:5 results
in representation close to being as equal as possible for the given partition of the
electorate. Second, for a moderately large number m of constituencies ˛ � 0:5 is
optimal in the considered class of power laws unless all constituency sizes are very
similar (e.g., nj normally distributed with small variance) or rather similar with one
or two outliers (corresponding to a heavily skewed distribution). Third, even in these
extreme cases the optimal ˛ converges to 0.5 as m gets large. We now turn to two
prominent real-world two-tier voting systems.
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Fig. 2.4 Cumulative individual quadratic deviation for m D 30 and different Pareto distributions

2.4.2 EU Council of Ministers

Together with Commission and Parliament, the Council of Ministers is one of the
European Union’s chief legislative bodies. It is widely held to be the most influential
amongst the three and most voting power analysis concentrates on it.22 It consists of
a national government representative from each of the EU member states, endowed
with voting weight that is (weakly) increasing in share of total population.23

Figure 2.5 illustrates the probabilities that representatives from differently sized
member states are pivotal in the Council assuming a 50% decision quota and
assigning voting weight based on populations size via wj D nj

˛ .24 In line with
above findings for randomly generated two-tier voting systems, ˛ D 0:5 per-
forms best amongst all coefficients in f0; 0:1; : : : ; 1g (cf. Fig. 2.6). Figure 2.5 shows
how close the implied probability of country j being pivotal comes to the respec-
tive ideal value, which would implement a priori perfectly equal representation.
Only the most populous country, Germany, would be visibly misrepresented (here:
over-represented).

With the exceptions of Germany, Spain, and Poland, the current Council weights
agreed in the Treaty of Nice correspond roughly to the square root of populations. It
follows that if a single quota of 50% were used in the Council of Ministers, probabil-
ities O	j would be close to their egalitarian values (with the mentioned exceptions).

22 See Felsenthal and Machover (2004), Baldwin and Widgrén (2004), and Leech (2002) for exam-
ples. Napel and Widgrén (2006) argue formally that the Commission’s and Parliament’s positions
are nearly irrelevant in the EU25’s most common codecision procedure.
23 The current voting rule (based on the Treaty of Nice) is actually quite complex. In addition to
standard weighted voting it involves the requirement that the majority weight supporting a policy
represents a simple majority of member states and 62% of population.
24 These and the following numbers are Monte-Carlo estimates obtained from six runs with 10
million iterations each. In case of qualified majority voting, the pivot is identified by assuming a
status quo at or to the left of the leftmost representative’s ideal point.
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Fig. 2.5 Power law weights for EU25. Probabilities generated by weights of the form wj D nj
˛

are compared to ideal probabilities

Fig. 2.6 Cumulative individual quadratic deviation for EU Council of Ministers

However, the Council uses a qualified majority of 72.2% of the weight plus addi-
tional population and number-of-supporters requirements. The latter have little
effect (see Felsenthal and Machover, 2001) but the former makes a real difference.

Comparison of panels (a) and (b) in Fig. 2.7 illustrates this. With a quota signif-
icantly above 50%, a priori greater centrality of median opinion in large countries
such as Germany or France no longer provides greater chances of being pivotal in
the Council. It actually reduces them. So under the qualified majority rule, repre-
sentation is not only even more biased against German voters, but now also French,
British, and Italian representatives are less often pivotal than would be necessary to
give all voters in the EU equal representation in the Council.
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Fig. 2.7 Nice weights. Panel (a): EU25 with nice weights under 50% quota; Panel (b): EU25 with
nice weights under 72.2% single quota
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Note that this analysis not only puts historical voting patterns and preference
similarities between some members behind a veil of ignorance but also, as do the
mentioned applied studies, it disregards differences between the bottom-tier vot-
ing procedures which determine national governments. For example, the UK uses
plurality rule or a ‘first-past-the-post’ system, whilst Germany uses a roughly pro-
portional system.25 This difference might have a systematic effect on the respective
accuracy of our median voter assumption at the constituency level. To the extent that
it does not, our findings are robust.

2.4.3 US Electoral College

US citizens elect their president via an Electoral College. The 50 states and
Washington DC each send representatives to it. Their number is weakly increasing
in the represented share of total population. Although most Electors are not legally
bound to vote in any particular way, virtually all state representatives cast their
vote for the presidential candidate who secured a plurality of the respective state’s
popular vote with only minor exceptions. The US Electoral College is therefore
commonly treated as a weighted voting system. It actually inspired the important
development of the generating function approach (see Mann and Shapley, 1962 and
recently Algaba et al., 2003), which is the main computational technique for eval-
uating power under weighted voting in binary settings. Large numbers of players
could hitherto only be tackled by the Monte Carlo method (see Mann and Shapley,
1960).

Decisions in the Electoral College have in the recent past been essentially binary.
The pivotal player amongst the states’ median voters might, however, feature promi-
nently in a more sophisticated model of how the two main contestants are selected.
In any case, consideration of strategic policy choices in a convex space provides a
useful benchmark for the preference-free dichotomous model considered by Penrose
(1946) and, specifically addressing the Electoral College, Banzhaf (1968).26

Figure 2.8 illustrates the result of determining (hypothetical) weights for state
representatives based on current US state population data. Substantiating the find-
ings of Penrose and Banzhaf, the square root rule corresponding to ˛ D 0:5 is again
extremely successful in ensuring equal representation. Moreover, as shown by
Fig. 2.9, it is clearly the best amongst all considered rules.

25 Germany’s system is actually complex: Some members of parliament are directly elected in
a first-past-the-post manner, others get seats in proportion to their party’s vote. Stratmann and
Baur (2002) use this distinction amongst German parliamentarians to show that different electoral
procedures indeed translate into different policies.
26 Early weighted voting analysis of US presidential elections also includes Brams (1978, Chap. 3).



2.5 Discussion 65

Fig. 2.8 Power law weights for US Electoral College. Probabilities generated by weights of the
form wj D nj

˛ are compared to ideal probabilities

Fig. 2.9 Cumulative individual quadratic deviation for US Electoral College

2.5 Discussion

The analytical arguments in Sect. 2.3 suggest that the probability of constituency
Cj being pivotal in the committee of representatives is approximately proportional
to its weight wj and the square root of its population size,

p
nj , provided that the

number of constituencies is large. This implies that approximately equal representa-
tion can be achieved by a simple square root rule. The simulation study in Sect. 2.4
corroborates this finding. Considering a vast number of randomly generated popu-
lation configurations as well as recent data for the EU and the US, top-tier weights
proportional to the square root of population turn out optimal for most practically
relevant population configurations. Even for extreme artificial cases, the rule yields
good results and becomes optimal if the number of constituencies m gets large.
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Since, for large m, the simple square root rule and Penrose’s rule practically
coincide,27 these results may be seen as evidence that Penrose’s square root rule has
a wider area of application than previously thought: in a way, its confinement to
take-it-or-leave committees seems overcome.

This result is surprising because apart from the ‘veil of ignorance’ perspec-
tive with a priori identical but independent voters, the setting considered here is
very remote from the preference-free binary model considered by Penrose (1946),
Banzhaf (1965, 1968) and others. It is relevant because the binary model, from
which Penrose’s square root rule is derived traditionally, suffers from two serious
weaknesses: first, its prediction concerning the average closeness of binary elec-
tions is rejected in empirical tests (see Gelman et al., 2002, 2004). Second, it only
applies to pure take-it-or-leave-it voting situations which appear to be rare in reality.
From a practical point of view, the finding of (near) optimality of a simple square
root rule in the ‘double pivot’ model provides a better foundation for applied stud-
ies which use Penrose’s square root rule as a benchmark. In contrast to the binary
voting model, which considers the intra-institutional power distribution in a take-it-
or-leave committee, but ignores proposal and amendment rules, the ‘double pivot’
model allows for strategic interaction among committee members who have pro-
posal power, provided that the result of this interaction corresponds to the core of
the voting game ŒqI w1; : : : ; wm�. The square root rule thus seems to be less of an
artifact of a particular objective function or setting.

Square root rules have been demonstrated to be optimal under criteria other than
the equality of influence. If, in a binary voting model, weights of the delegates,
rather than their powers, are made proportional to the square root of their con-
stituency’s population size, the second square root rule (Felsenthal and Machover,
1998, pp. 72ff) results. This rule minimizes the expected majority deficit, which
corresponds to the mean deviation of the indirect two-tier decision-making rule
from a ‘direct democracy’ simple majority rule. Beisbart and Hartmann (2006)
and Beisbart and Bovens (2007) arrive at the square root rule in a welfarist binary
framework starting from the norm that expected utility should be equalized for all
countries. Basically the same result is obtained by Barberà and Jackson (2006), who
study the design of voting rules that maximize the expected utility in a ‘fixed-size-
of-blocks model’, i.e., for large constituency populations which contain variably
many small blocks.28

With respect to the EU Council of Ministers, it seems desirable to base the design
of decision-making rules on clear principles rather than ad hoc settlements as this
would prevent the haggling for influence to start anew each time new members are
admitted or constitutional reform stands for debate. Nevertheless, at this point, it
would be imprudent to recommend Penrose’s square root rule or its simpler cousin

27 In fact, Penrose (1946) seems to have deliberately blurred the distinction between voting weight
and voting power in his discussion of equal representation in a world assembly. Penrose was aware,
however, that approximate proportionality of weight and power generally holds only for sufficiently
many constituencies.
28 Also see Beisbart et al. (2005) for a related utilitarian investigation.
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as a standard for constitutional design in the real world.29 For one thing, the search
for the optimal decision rule was confined to 50%-majority rule. Figure 2.7, how-
ever, indicates that the Treaty of Nice weights which approximately follow a square
root rule produce unequal representation when applying the EU25 decision thresh-
old of 72.2%. For another, the result could critically depend upon the assumption
that the preferences of all voters are identically distributed, i.e., that they have no
relation with constituency membership. Both points are investigated in Chap. 3.

Regarding the obviously strong assumptions such as one-dimensionality of the
policy space or single-peaked preferences, it must be kept in mind that the binary
voting model with its assumption of equiprobable yes–no decisions is even narrower
than the one used here. Yet, two other potential criticisms of our model are worth
noting here. First, it is debatable whether the representatives will be fully respon-
sive to their respective constituency’s median voter on every issue. This assumes that
they face competition for (re-)election, and that they “formulate policies in order to
win elections” (Downs, 1957, p. 28). In reality, a representative may take positions
that differ significantly from his district’s median when voter preferences within
that district are sufficiently heterogeneous (see Gerber and Lewis, 2004 for empir-
ical evidence). Second, the policy space is assumed to be the same for both the
general election situation at the bottom tier and the committee decision at the top.
In representative democracies, however, citizens have only indirect access to the
policy space by choosing representatives for the legislative period. Even if citizens’
preferences do not change substantially over that period, representatives do possibly
not reflect them equally well at all times, depending, for example, on whether the
constituency is at the end or the beginning of the election cycle.

29 The square root rule already played a significant role in the public discussion of a possible
EU Constitution. See, for example, the open letter by Bilbao et al. (2004) to the EU members’
governments with repercussions in various national news outlets.



Chapter 3
Robust Equal Representation

This chapter investigates the robustness of square root rules for equal representation
in two-tiered voting systems. When policy alternatives are non-binary and decisions
are made by simple majority rule, Chap. 2 demonstrated that weight proportional to
the square root of population size is approximately optimal, which may be inter-
preted as extending the scope of Penrose’s square root rule beyond the narrow
limits of binary decision-making. However, in light of the normative character of
this result, the simplifications used in the modeling of a complex real situation, such
as, e.g., decision-making in the EU Council of Ministers, require special scrutiny.

Specifically, the aim of this chapter is to conduct a ‘sensitivity analysis’ regarding
the square root rule, addressing the following questions:

� How does a ‘simple’ voting rule that derives directly from constituency sizes
perform compared to more sophisticated rules that use standard power indices as
reference points?

� What is the fair voting rule under supermajority rules at the top tier?
� How does the fair voting rule react to heterogeneity across constituencies?

The first point is explored in Sect. 3.1. The implementation of sophisticated
rules, and namely of Penrose’s square root rule, necessitates finding weights which
induce a desired power distribution. As no analytic solution to this inverse problem
is known, the evaluation involves nonlinear optimization techniques. The reported
observations suggest that standard sophisticated rules capture some, but not all com-
binatorial aspects of weighted voting in the model which was presented in Sect. 2.2.
The difference between simple and sophisticated rules turns out to be relevant only
for ‘small’ committees.

Section 3.2 considers the effects of supermajority requirements in the delegates’
committee on the representation of individual citizens. A brief review of the litera-
ture shows that ‘representation’ has so far been neglected as a criterion for the choice
of the quota. Yet, a high decision threshold not only affects the balance of ‘external
costs’ and ‘decision-making costs’ (Buchanan and Tullock, 1962) or challenges the
so-called ‘efficiency’ of a decision-making body, but also impairs the equality of
representation significantly.

Penrose’s square root rule refers to a voting model where voters only differ in
the constituency they live in. This implies that the voting behavior of citizens from

N.F. Maaser, Decision-Making in Committees, Lecture Notes in Economics
and Mathematical Systems 635, DOI 10.1007/978-3-642-04153-2 3,
c� Springer-Verlag Berlin Heidelberg 2010
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the same constituency is not more highly correlated than the voting behavior of
citizens from distinct constituencies. Although the model introduced in Sect. 2.2
is quite different from Penrose’s, it shares with the latter the assumption that all
individual citizens are a priori identical. In Sect. 3.3, this premise is relaxed slightly,
but without abandoning the ‘veil of ignorance’ perspective which is appropriate to
constitutional design. Whereas citizens’ preferences are still identical a priori, issue-
specific attitudes are assumed to vary with constituency affiliation. The investigation
of this setting gives rise to an entirely new recommendation: that representatives’
weights should follow a linear rule based on the Shapley–Shubik index in order to
ensure equal representation.

Section 3.4 concludes by a general discussion of the robustness of square root
rules in the binary and the spatial voting model.

3.1 Simple and Sophisticated Square Root Rules

In the ‘double pivot’ model of Chap. 2, the simple square root rule, wj ∝ p
nj ,

has been found to ensure equal representation to an almost optimal extent when the
number of constituencies is large. With few constituencies (and representatives),
however, it becomes more important to have an index that, at least approximately,
captures the power distribution generated by voting weights at the top tier. Stan-
dard power indices can be ruled out as candidates for the ‘theoretically correct’
index because they are based on identical stochastic behavior of top-tier voters,
which is generally inconsistent with identical stochastic behavior of bottom-tier
voters. Still, as a second-best solution, sophisticated rules that are based upon the
Shapley–Shubik index (see equation (1.9)) or the Penrose–Banzhaf index (see equa-
tion (1.10)) might be expected to do better than the simple rule: the latter ignores
all combinatorial aspects of weighted voting, while the former capture them at least
for identical top-tier behavior. The latter is not too far off when constituencies have
similar sizes.

Implementing such rules requires a solution to the inverse problem of finding
weights which induce a desired power distribution (see, e.g., Leech, 2003; Leech
and Machover, 2003). For a finite number n of committee members, the number
of different voting rules is also finite, albeit increasing very quickly in n. There-
fore, the set of reachable power vectors is discrete, as illustrated in Fig. 3.1. The
problem of enumerating all simple games with n players could be solved by deter-
mining all antichains on 2N .1 This (unsolved) problem is known as Dedekind’s
problem, and the corresponding numbers are called Dedekind numbers. The num-
ber of games in the important subclass of non-dictatorial, weighted majority games

1 A subset of a partially ordered set (or poset) .P; <P / – where P is a set, and <P is a partial order
relation – is an antichain if any two elements of the subset are incomparable under <P . Applied to
simple voting games, the power set 2N is partially ordered in respect to the inclusion �, and each
set of minimum winning coalitions, characterizing a game, corresponds to an antichain.
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Fig. 3.1 Illustration of the nature of the inverse problem. Numbers are Shapley–Shubik indices
for all proper three-player weighted majority games

with a quota of half the total weight is considerably smaller: for example, counting
permutations, there are four such games with three players,2 whereas the Dedekind
number (excluding the empty antichain which contains no subsets and the antichain
consisting of only the empty set) is 18.

It is worthwhile to compare the performance of the simple square root rule to
that of sophisticated rules in the double median setting introduced in Sect. 2.2. For
the comparison, we use 30 randomly generated configurations of 15 constituen-
cies each.3 Experience suggests that at this value the distribution of power is not
entirely governed any more by the combinatorial particularities of the configura-
tion at hand, but asymptotic properties only begin to operate (see Chap. 2, or, for
example, Chang et al., 2006). For larger numbers of constituencies, it becomes
increasingly difficult to make meaningful comparisons between weight-based and
index-based rules, as the power ratio (measured by the Penrose–Banzhaf or the
Shapley–Shubik index) between any two representatives typically approaches the
ratio of their voting weights. This convergence is asserted by Penrose’s 1952 Limit
Theorem, which has been proved to hold under certain conditions (Lindner and
Machover, 2004), and seems to apply whenever the weight distribution is not too
skewed.4

2 The minimum integer weight representations of these four games are .3I 2; 1; 1/, .3I 1; 2; 1/,
.3I 1; 1; 2/, and .2I 1; 1; 1/. In Fig. 3.1, these games correspond to the four points in the interior
of the simplex.
3 In 15 of the configurations, population sizes were drawn from a uniform distribution, and in the
other 15 from a Pareto distribution with 
 D 1:0.
4 For special classes of weighted voting games, Lindner and Machover (2004) prove Penrose’s
1952 Limit Theorem with respect to the Penrose–Banzhaf index for q D 0:5 and with respect to
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Let wˇ and w� denote the weight vectors that are solutions to the inverse
problems “choose weights such that

(I) ˇj .w; q/ ∝ p
nj , and

(II) �j .w; q/ ∝ p
nj , for each constituency j ”,

where ˇ.�/ and �.�/ refer to the Penrose–Banzhaf measure (1.10) and the Shapley–
Shubik index (1.9), respectively. The comparison involves three different weight
allocations: simple square root weights, wˇ , and w� . A reference point to evaluate
the capacity of these rules to achieve equal representation is provided by the ‘best
egalitarian weights’, as resulting from an unconstrained search for the minimizer of
the objective function

mX

j D1

nj �
�

1
Pm

kD1 nk

� O	j

nj

�2

: (3.1)

(see Sect. 2.4). These, as well as the inverse weights wˇ and w� , are obtained
numerically by the Nelder–Mead simplex method (see, for example, Avriel, 1976,
Chap. 9).5 The deviation from ideal probabilities that is associated with the best
unconstrained weights can be considered as inevitable. Owing to the discrete nature
of the set of possible power allocations, the discrepancy can, in general, not be
eliminated completely.

Figure 3.2 suggests systematic differences in the performance of cumulative
deviation (3.1) under the four sets of weights. The graphic impression is corrob-
orated by a comparison (including all 30 configurations) of cumulative individual
quadratic deviations for (1a) wˇ , and (1b) w� , versus simple square root weights,
(2a) wˇ , and (2b) w� , versus best unconstrained weights, and (3) wˇ versus w� ,
using the Wilcoxon signed rank test (see, e.g., Hollander and Wolfe, 1999, Chap. 3).
In tests (1a) and (1b), the null hypothesis that the median difference between pairs of
observations is zero could be rejected at the 99% significance level, indicating that
both the inverse weights wˇ and w� perform significantly better than simple square
root weights.6 Similarly, the null hypothesis in tests (2a) and (2b) was rejected at
the 99% significance level, which suggests that both wˇ and w� are none the less
not the correct or first-best weights in the double median setting. In test (3), the null

the Shapley–Shubik index for q 2 .0; 1/. Their conjecture that the Theorem holds ‘almost always’
under rather general conditions is corroborated in a simulation study by Chang et al. (2006).
5 The Nelder–Mead algorithm does not rely on numerical or analytic gradients, which makes it par-
ticularly suitable to non-linear optimization problems like the present. In each step of the search,
the probabilities 	j � Pr .j D P Wm/ of representative j being pivotal in the top-tier commit-
tee are approximated by their empirical average over 10 million iterations. A MATLAB computer
program is used for the computations. The source code is available upon request.
6 Generally, ˛ D 0:5 is not exactly the best exponent among all power laws. Obviously, the best
power law weights wj D n˛�

j for a given configuration result in a lower deviation from egalitarian
representation than simple square root weights, but they turn out to perform still worse than wˇ

and w� .
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Fig. 3.2 Cumulative individual quadratic deviation under simple weights, wˇ , w� , and best uncon-
strained weights. Panel (a): 15 configurations with uniformly distributed constituency sizes; Panel
(b): 15 configurations with Pareto distributed constituency sizes

hypothesis could not be rejected, that is, no significant difference between wˇ and
w� was detected.

In order to find out whether these differences fade away for larger numbers of
constituencies, an additional test including 12 configurations with 30 constituencies
each is conducted.7 For these, cumulative deviations (3.1) under weights w� are first
compared with those under simple square root weights. The null hypothesis that the
median difference between pairs of observations is zero could not be rejected at the

7 The 12 configurations consist of 3 � 4 configurations with population sizes drawn from a uniform,
a normal, and a Pareto .
 D 1:0/ distribution, respectively.
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95% significance level (it can be rejected at the 90% level). Second, w� is checked
against the best power law weights wj D n˛�

j with the result that no significant
difference in deviations for these two weight allocation rules could be established.

3.2 Quota Variation

A voting game is defined by the non-negative weight vector w D .w1; : : : ; wm/ and
the (relative) quota q 2 .0; 1� which specifies the proportion of total weight required
to pass a (positive) decision. Decision-thresholds of more than 0:5 are referred to as
super (or ‘special’ or ‘qualified’) majority rules. Many possible criteria for choosing
an ‘optimal’ quota exist, and we discuss some of them briefly, before we investigate
the consequences of supermajority requirements in the spatial setting.

3.2.1 The ‘Optimal’ Quota

Dating back to Rousseau, economists and political theorists like Wicksell (1969,
pp. 110ff) and Buchanan and Tullock (1962) have suggested that collective deci-
sions should ideally be made unanimously. This recommendation is based on the
unique property of unanimity rule to effect Pareto-preferred outcomes with certainty
as it protects individuals against being coerced by other members of the society.8 On
the other hand, unanimity rule exemplifies the evident fact that supermajority rules
favor status quo-loving minorities – or, in the extreme case, individual veto players –
over change-loving majorities (see Rae, 1975).

Reaching a unanimous collective decision is also often regarded as costly in
terms of decision time, and strategic behavior on the part of individuals may well
inflate these costs further. Buchanan and Tullock (1962) therefore portray the opti-
mal majority as emerging from the trade-off between the ‘decision-making costs’ of
a rule and its ‘external costs’, i.e., the utility loss suffered by outvoted individuals
as compared to the utility they would have secured under unanimity. In this line of
thought, supermajority rules are sometimes regarded as watered-down substitutes
for the ideal of unanimity. Their widespread use for grave and important questions
such as amendments to the constitution suggests that the ‘external costs’ of these
decisions may be particularly high, yet the specific quota is usually chosen on no
explicit grounds as both ‘decision-making’ and ‘external’ costs defy quantification.

Majorities larger than 50% seem harder to be brought about, implying a bias
in favor of the status quo. Changes to the status quo are the more difficult to
achieve, the closer the quota is to 100%. A voting rule that treats each pair of issues

8 One criticism advanced by Rae (1975) is that Pareto-optimality is compatible with a possibly
outrageous distributional situation which is locked in under unanimity rule.
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alike, or symmetrically, irrespective of their content is neutral as defined in May
(1952). May’s (1952) theorem states that simple majority rule is the only positively
responsive decisive voting rule that satisfies anonymity and neutrality. Obviously,
supermajority rules violate neutrality as it takes e.g., two thirds of the votes to
change the status quo, but only one third to leave it in place. Under the precondition
that the voting rule is anonymous, Rae (1969) shows that if, for all individuals, the
costs of seeing an unwanted policy adopted are as high as the costs of not getting
a policy that they support, then 50% majority rule is optimal on utilitarian grounds.
The feeling that supermajority rules are less democratic than simple majority is due
to their small responsiveness to individual preferences. Instead, they tend to impose
a “decision based on precedent” (McGann, 2004, p. 63). As Rae (1975) argues,
the privilege of the status quo over other alternatives which is implied by a high
quota may well translate into a privilege of those voter groups who thrive under
the status quo, e.g., the prior generation who defined the decision rules as to best
serve their preferences. To the extent that they bias institutions – intentionally or
accidentally – in favor of some alterative or group of voters, supermajority require-
ments thus also indirectly violate anonymity, which Sect. 2.1 identified as the most
fundamental characteristic of democratic rule.

Moreover, a high quota can result in the inability of the body to reach any (posi-
tive) decision at all, i.e., in a lack of ‘efficiency’ (operationalized by Felsenthal and
Machover, 2001; Baldwin et al., 2001 as the probability that a random proposal is
passed in a 0-1-setting). Note that retaining the status quo because of a high quota is
disadvantageous or ‘inefficient’ only if the decision-making body would otherwise
pass a good decision.

However, the conventional wisdom that high quotas result in gridlock may not
hold if side-payments are available. As suggested in Harstad (2005), the quota is
irrelevant for passing a decision when opposing veto players can be compensated
to accept it. For European Union politics, there is some anecdotal evidence of such
transfer payments, and in fact studies of EU decision-making before and after a
supposedly efficiency-reducing enlargement have failed so far to find any of the
predicted effects.

Another often cited reason for using supermajorities is that they produce ‘sta-
bility’: They are less prone than simple majority rule to cycling across outcomes,
or intransitivity (cf. Sect. 1.1.3).9 Without any restrictions on preferences, elec-
toral cycles can arise under all rules except unanimity, but they are less probable
under ‘high’ quotas. For decisions where some amount of social consensus exists,
Caplin and Nalebuff (1988) demonstrate that the possibility of cycles vanishes under
64%-majority rule.10

9 On the other hand, supermajorities could serve to mitigate time inconsistencies if they make it
more difficult to revise a policy.
10 More precisely, the ‘social consensus’ which Caplin and Nalebuff (1988) presuppose amounts
to the restriction that the density of voters’ ideal points is a logarithmically concave function, e.g.,
a uniform density over a convex set. Then, points exist which cannot be defeated by any other
alternative under a majority requirement larger than or equal to 1 � 1=e 
 0:64.
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It is, however, doubtful whether the existence of a consistent choice by the
collectivity should be considered a desideratum from a democratic point of view.
Following Miller’s (1983) and McGann’s (2004) argument, cycles could well be
beneficial because, by preventing that some individuals are perpetually outvoted,
they enhance systemic stability. McGann (2004) suggests that, due to the instability
from cycling and the relative ease with which winning coalitions can be formed,
majority rule protects minorities better from exploitation than supermajoritarian
prerequisites.11

A different branch of the literature on decision procedures focuses on their epis-
temic characteristics, i.e., on their capacities to aggregate information and track the
truth (see, e.g., Nitzan and Paroush, 1984). When it is, at least in principle, possible
to assess objectively what the correct decision is, as in a jury’s verdict, superma-
jority rules may be preferable to simple majority rule as they could increase the
probability that the correct choice is made. As it is hard to argue that an indepen-
dent standard of correctness for political decisions exists, the procedural perspective
seems, however, far more relevant here than the epistemic.

The quota can also be used to make each player’s power (as measured by some
index) proportional to his or her voting weight. For example, Dubey and Shapley
(1979, Theorem 6) prove that expected power as measured by the normalized
Penrose–Banzhaf index is equal to relative weight if the quota is chosen randomly
(for a discussion of such randomized decision rules see Holler, 1985). The objective
of strictly proportional power may be motivated by a concern for the transparency
or, thinking of the allocation of parliamentary seats, even the stability of the polit-
ical system. Specifically with regard to voting in the EU Council of Ministers,
Słomczyński and Życzkowski (2007) suggest a voting system which is called the
“Jagiellonian Compromise”: It consists of a square root weight allocation and a
voting threshold chosen to achieve maximal proportionality between weights and
power.

3.2.2 Supermajorities and Representation

In view of the important role that supermajority rules play in theory, and their
widespread use in real-world decision-making, it is worthwhile to investigate the
‘double pivot’ model (cf. Sect. 2.2) with respect to the effect of using a quota
q � 0:5 in the top-tier assembly. Of course, even approximately equal representa-
tion is impossible under unanimity rule (keeping the bottom-tier role of the median).
For 0:5 � q � 1, optimal assignments can be expected to give large constituencies
greater weight than implied by ˛ D 0:5.

11 The claim that supermajorities are minority-protecting rests on the assumption, uncovered by
McGann (2004), that the status quo is more benign for the minority than government action to
change it.
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In contrast to simple majority rule, the voting game under supermajority rule is
not decisive. This means that possibly no policy x 2 X exists which defeats all
alternatives x0 ¤ x in a pairwise comparison. The probability that the outcome of
collective decision-making is merely a confirmation of the status quo is a measure
of the institutional inertia created by the decision threshold. The following analy-
sis, however, concentrates on creative power rather than representatives’ abilities to
preserve the status quo.

To this end, the status-quo, Q, is fixed to a point equal to or left of the leftmost
representative’s ideal point, which implies that it will always be displaced in favor
of some policy to its right by a winning coalition. This assumes that committee
members agree about the direction of policy change. Suppose, for illustrative pur-
poses, that X D Œ0; 1� and Q D 0. Moreover, let a continuum of representatives
have equal weights and their policy positions be distributed uniformly on X . Then,
for a given value of q 2 .0:5; 1/, all policies x 2 .0; 2.1 � q// are preferred to the
status quo by a majority of at least q. However, any policy x < 1 � q could still be
improved upon by a share of representatives greater than q. A continuous process of
‘displacement’ of the status quo in the top-tier committee can be expected to come
to a halt at x D 1 � q. A further movement to the right will be blocked by at least
the representative whose ideal point is equal to 1 � q, and who is strictly necessary
to form a winning coalition. For example, the policy outcome under a quota of 0:75

would be the first quartile point of the distribution of representatives’ ideal points.
Under weighted voting, and for discrete representatives’ ideal points, the above

reasoning suggests that the policy adopted in the committee of representatives coin-
cides with the ideal point �P Wm of representative P W m who is pivotal ‘from the
right’. The random variable P is defined by
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In principle, it seems feasible, for ‘limit’ situations, to extend the analytical argu-
ments put forward in Sect. 2.3 concerning the probability of top-tier pivotality under
simple majority rule to the case of supermajorities. This being beyond the scope of
the present work, we resort to Monte-Carlo simulation to evaluate rules of the form
wj D n˛

j (cf. Sect. 2.4) and search for the optimal ˛ given alternative values of
the quota. Again, the extent to which the considered rule falls short of the egalitar-
ian norm (2.1) or (2.2) will be measured by cumulative quadratic deviation at the
individual level as given by (3.1). First, randomly generated configurations will be
investigated, then, we briefly look at the EU Council of Ministers.

3.2.2.1 Randomly Generated Configurations

Under different assumptions about the distribution of constituency sizes, each
of the Tables 3.1–3.3 reports optimal values of ˛ for four configurations with
m D 30 constituencies. As mentioned in Sect. 3.1, the difference between simple
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Table 3.1 Optimal value of ˛ for constituency sizes from Uniform distributions U.a; b/ (cumula-
tive individual quadratic deviations from ideal probabilities in parentheses)

Distribution of constituency sizes

q (%)
(I) (II) (III) (IV)

U.0; 108/ U.0; 108/ U.3 � 106; 107/ U.3 
 106; 107/

50 0.49 0.49 0.46 0.42
.4:85 � 10�15/ .4:28 � 10�15/ .3:46 � 10�14/ .9:93 � 10�13/

55 0.50 0.50 0.52 0.54
.2:05 � 10�15/ .1:58 � 10�15/ .2:33 � 10�14/ .3:23 � 10�14/

60 0.52 0.52 0.50 0.46
.9:00 � 10�15/ .9:52 � 10�15/ .4:84 � 10�14/ .4:41 � 10�13/

65 0.56 0.56 0.58 0.60
.5:40 � 10�14/ .3:48 � 10�14/ .1:36 � 10�13/ .4:12 � 10�14/

70 0.62 0.62 0.62 0.58
.2:16 � 10�13/ .1:50 � 10�13/ .2:60 � 10�13/ .8:56 � 10�14/

75 0.70 0.70 0.70 0.72
.5:79 � 10�13/ .4:10 � 10�13/ .6:95 � 10�13/ .2:52 � 10�13/

80 0.80 0.80 0.82 0.82
.1:32 � 10�12/ .9:36 � 10�13/ .1:72 � 10�12/ .5:68 � 10�13/

Table 3.2 Optimal value of ˛ for constituency sizes from Normal distributions N.�; �/ (cumula-
tive individual quadratic deviations from ideal probabilities in parentheses)

Distribution of constituency sizes

q (%)
(I) (II) (III) (IV)

N.107; 4 � 106/ N.107; 4 � 106/ N.107; 2 � 106/ N.107; 2 � 106/

50 0.50 0.50 0.40 0.50
.2:38 � 10�14/ .9:33 � 10�14/ .8:78 � 10�12/ .1:20 � 10�11/

55 0.50 0.50 0.64 0.65
.1:73 � 10�14/ .8:27 � 10�14/ .3:47 � 10�14/ .1:87 � 10�13/

60 0.52 0.52 0.50 0.50
.3:75 � 10�14/ .7:64 � 10�14/ .7:72 � 10�12/ .1:08 � 10�11/

65 0.55 0.55 0.68 0.72
.1:29 � 10�13/ .7:10 � 10�14/ .4:95 � 10�14/ .7:00 � 10�14/

70 0.60 0.62 0.50 0.56
.4:47 � 10�13/ .3:40 � 10�13/ .4:37 � 10�12/ .7:00 � 10�12/

75 0.68 0.70 0.80 0.84
.1:12 � 10�12/ .5:00 � 10�13/ .1:57 � 10�13/ .1:72 � 10�13/

80 0.80 0.80 0.66 0.72
.2:64 � 10�12/ .1:78 � 10�12/ .7:87 � 10�13/ .2:18 � 10�12/

and sophisticated rules becomes insignificant for this number of players.12 We
therefore concentrate on findings regarding optimal rules of the type wj D n˛

j . The
values of ˛ run from 0 to 1 in 0.01-intervals, and probabilities 	j were estimated
by simulations with 10 mio. iterations. Values in parentheses are the deviations (3.1)
associated with the optimal ˛.

12 The tests for 30-constituency unions reported at the end of Sect. 3.1 concern precisely the
configurations which are used in the present simulations on quota variation.
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Table 3.3 Optimal value of ˛ for constituency sizes from Pareto distributions P.
; x/ (cumulative
individual quadratic deviations from ideal probabilities in parentheses)

Distribution of constituency sizes

q (%)
(I) (II) (III) (IV)

P.1:0; 500000/ P.1:0; 500000/ P.1:8; 500000/ P.1:8; 500000/

50 0.48 0.46 0.48 0.46
.1:96 � 10�12/ .7:46 � 10�12/ .3:37 � 10�13/ .1:86 � 10�11/

55 0.50 0.50 0.50 0.48
.2:59 � 10�13/ .2:44 � 10�12/ .4:34 � 10�13/ .2:55 � 10�12/

60 0.56 0.56 0.52 0.52
.1:44 � 10�11/ .2:94 � 10�11/ .3:99 � 10�13/ .4:59 � 10�11/

65 0.66 0.68 0.56 0.56
.1:22 � 10�10/ .2:56 � 10�10/ .1:95 � 10�12/ .2:67 � 10�10/

70 0.78 0.80 0.60 0.62
.5:22 � 10�10/ .9:72 � 10�10/ .1:50 � 10�11/ .5:73 � 10�10/

75 0.80 0.80 0.70 0.72
.1:62 � 10�9/ .2:74 � 10�9/ .7:69 � 10�11/ .7:71 � 10�10/

80 0.90 0.90 0.84 0.84
.2:99 � 10�9/ .4:31 � 10�9/ .2:30 � 10�10/ .8:53 � 10�10/

Three observations apply irrespectively of the distributional assumption. First,
˛� increases in the quota. This is due to the fact that the median voter of large
constituencies is more central, which lowers the chances of the constituencies to
be pivotal when a considerable supermajoritarian rule is used. To compensate this
effect, the weight of populous countries has to rise. Second, the deviation from ideal
egalitarian probabilities generally also increases. From q D 55% to q D 80%,
the quality of representation deteriorates by up to a factor of 1;000. This decline
indicates that any power law either gives not enough or too much pivot probability
to large constituencies. Third, while one might have expected cumulative individual
quadratic deviations to be lowest under simple majority, they reach their minimum
at a quota of 55% (among all quotas considered here). It seems that the slightly
higher threshold impairs to the right degree the chances of large constituencies who
tend to be a little over-represented with simple square root weights (cf. Figs. 2.5 and
2.8), and thus makes representation more egalitarian.

Table 3.1 relates results for uniformly distributed constituency sizes n1; : : : ; n30.
Populations in configurations (I) and (II) come from a uniform distribution over
Œ0; 108�, and those in (III) and (IV) come from a uniform distribution over
Œ3 � 106; 107�. It will be readily noticed that the deviations in columns (I) and (II)
are smaller than deviations in (III) and (IV) except for the highest quotas where
no systematic difference is apparent. Moreover, the optimal ˛ exhibits greater sta-
bility from configuration (I) to (II) than between (III) and (IV). As the variance of
U.0; 108/ is by a factor of 200 greater than that of U.3�106; 107/, the data suggest a
positive relationship between the variance of the population numbers and the accu-
racy of the equal representation rule. These findings are corroborated by the data
for normally distributed populations contained in Table 3.2, where again the two
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left columns pertain to more variable population configurations than the two right
columns. The likely explanation for these patterns is that a great amount of variance
in population numbers translates ceteris paribus into a great variety of weights in
the power law allocation wj D n˛

j . This implies, for a given quota, that more dis-
tinct winning coalitions exist, enabling a closer match between achievable and ideal
probability vectors.

It is worth noting that the variances of U.3�106; 107/ and the normal distribution
N.107; 2 � 106/ are roughly the same, but a comparison of columns (III) and (IV)
in Table 3.1 with corresponding columns in Table 3.2 reveals that estimated prob-
abilities are, in most cases, closer to their ideal values with uniformly distributed
constituency sizes. Thus, if one considers configurations of the same distribution
type, the more variable distribution can be expected to allow more egalitarian rep-
resentation, but across different types, variance is a less reliable indicator. Under
a normal distribution, many constituencies are of similar size, and the minor dif-
ferences between them cannot easily be reflected adequately by pivot probabilities.
Then, the precise value of ˛� and the quality of representation may depend heavily
on the particular constituency configuration at hand, as is the case with configuration
(III) in Table 3.2.

Table 3.3 shows results for population sizes drawn from a Pareto distribution
P.
; x/ (cf. definition (2.17)). The parameter 
 > 0 determines the shape or skew-
ness of the distribution, and x > 0 is the minimum possible value.13 Here, only a
single or very few large constituencies exist, which are particularly disadvantaged
by their central position when supermajority rules apply. A high value of ˛ would
give them a power monopoly, but a moderate ˛ gives them insufficient pivot prob-
abilities. This logic drives the rather low values of ˛ under simple majority rule as
well as the comparatively high values for the most demanding quotas.

3.2.2.2 EU Council of Ministers

The EU Council of Ministers decides the largest part of issues by qualified major-
ity voting. A proposal is adopted if, first, 255 out of 345 votes (73:9%) are cast in
its favor. The number of votes allocated to each member state roughly reflect the
square root of population size. Additionally, the majority weight supporting a pro-
posal must represent a simple majority of member states. Finally, any member state
may ask for confirmation that the approving votes represent at least 62% of the EU’s
total population. The latter two requirements are, however, insignificant as they are
in the great majority of cases fulfilled whenever the qualified majority is met (see
Felsenthal and Machover, 2001). With regard to EU decision-making the assump-
tion of a status quo fixed to the left of the leftmost representative’s ideal point is

13 It is not possible to compare the columns in Table 3.3 with respect to the variance of constituency
sizes because the variance of P.
; x/ is infinity for 
 	 2.



3.3 Heterogeneity Across Constituencies 81

Fig. 3.3 Effect of quota variation for EU27

particularly interesting, because often not the direction of new legislation, but only
the extent of change is subject to the process of legislative bargaining.

Figure 3.3 shows, for EU27 population data, the effect of a quota q > 0:5 on rep-
resentation. The respective best value of ˛ 2 f0; 0:02; : : : ; 0:98; 1g is represented
by the solid graph which is measured on the left vertical axis. The figure suggests
that the optimal ˛ is approximately a quadratic function of q. The right vertical axis
measures the corresponding cumulative individual quadratic deviation. As it has its
zero point in the upper right corner, the dashed graph can be interpreted as indicat-
ing the closeness between ideal egalitarian probabilities and the (estimated) pivot
probabilities under the optimal ˛-rule. The drop in closeness (or rise in deviation)
means that representation becomes increasingly unequal as the quota is increased.
The following numbers may help to get an idea of the deterioration of fit: The ideal
probabilities of Malta and Germany are 0:08% and 16:62%, respectively. Already
for q D 0:7, however, their (estimated) pivot probabilities under the best weight
assignment rule wj D n0:62

j are 0:06% and 15:45%, which is 25% and 7% short of
the ideal values.

3.3 Heterogeneity Across Constituencies

The presumably most questionable assumption in our previous analysis (and that
of Penrose, too) is that, for each issue, all voters’ opinions are assumed to be iden-
tically distributed. They have no relation to constituency membership whatsoever.
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In contrast to the model considered so far, with i. i. d. ideal points of all individual
voters throughout, this section explores the idea that voters within a country are
somewhat similar.

Similarities in the attitudes of citizens from the same constituency could be the
result of a sorting process à la Tiebout (1956), i.e., voting with one’s feet. In Alesina
and Spolaore (2003), preference homogeneity within a country is argued to develop
over time due to geographical proximity and national policies fostering cultural
uniformity. The fact that citizens of one country usually share historical experi-
ence, traditions, language, communication etc. can be expected to induce some kind
of common set of values or ‘common belief’ in them.14 The existence of diverse
‘common belief’ systems is just the reason why countries persistently differ in their
population sizes and why they can hardly be redistricted so as to produce equal-size
constituencies. Under the premise of Penrose’s square root rule that the preferences
of the individuals within one country are unconnected, there is no justification
– apart from the tough practical realization – not to regroup citizens into purely
administrative districts with equal numbers of voters. When all voters are i. i. d.,
what, abstracting from potential epistemic reasons, is the rationale for a committee
of representatives instead of a single president-like decision-maker?

The case being argued for here is that the fact that voter preferences within a
constituency tend to ‘have more in common’ than preferences across constituencies
should be considered as known behind the veil of ignorance, and should be taken
into account for normative, or constitutional design, purposes. In Fig. 3.4, which
illustrates different degrees of using information in the assessment of voting situ-
ations, the assumption is referred to as ‘a priori II’. It is in line with Braham and
Steffen (2002) who take the term ‘a priori’ to describe a perspective which incor-
porates the ‘structure’ (as opposed to particular preferences) that conditions voters’
behavior.15 The analysis based on ‘a priori II’ is to be distinguished from studies
that model, especially with regard to the EU, similarities or dissimilarities between
countries based on economic or social dimensions (see Widgrén, 1995), size or geo-
graphical position (see Beisbart and Hartmann, 2006), and that possibly contribute
to understand decision-making from an interim or a posteriori perspective.

Generalizing our earlier model, the ‘a priori II’ assumption is implemented by
introducing constituency-specific distributions of individual ideal points. Given a
policy issue, the ideal points �

j
i of voters in constituency Cj come from an arbitrary

identical distribution Fj with density fj and distribution median Q�j .16 It is assumed
that, rather than being identical, the Q�j are random variables with an identical dis-
tribution Hj D H for all j D 1; : : : ; m. The expected value of Q�j is assumed to

14 A ‘common belief’ is also represented by Straffin’s (1977) homogeneity assumption under which
the probability of a voter ‘affecting the outcome’ coincides with the Shapley–Shubik index.
15 Concerning the probabilistic interpretation of power measures (cf. Sect. 1.2.1), Braham and Stef-
fen (2002) argue that the whole range of partial homogeneity assumptions is no less a priori than
its two borderline cases, i.e., the Banzhaf index and the Shapley–Shubik index.
16 If the distributions of individual ideal points are symmetric, Q�j could also refer to the mean of
the distribution fj .
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Fig. 3.4 Increasing degree of information usage in the assessment of decision-making situations

be zero, and the standard deviation is given by �H > 0, measuring the degree of
heterogeneity across constituencies. Let h denote the density function of H . Chap-
ter 2 dealt with the special case without heterogeneity across constituencies, i.e.,
�H D 0. Generally, a realized distribution Fj is specific to constituency Cj , thus
expressing the ‘common belief’ of that constituency, whilst the ideal points of voters
from different constituencies are independent. It is worthwhile to emphasize that, in
expectation, all voter ideal points still have an identical a priori distribution, but
group membership now makes a difference interim, and this is acknowledged in our
a priori analysis.

As noted before, in the case of i. i. d. voters’ ideal points, the representative of
a larger constituency is on average more central in the electoral college, and given
simple majority rule, more likely to be pivotal in it for a given weight allocation. In
the light of the standard deviation of the (approximate) distribution of the population
median �j as given by

�j D 1

2 fj .F �1
j .0:5//

p
nj

(3.2)

(cf. Sect. 2.2), it is possible that slight differences in the countries’ ideal point
distributions suffice to make representatives’ ideal points virtually identically dis-
tributed. The extent of the necessary perturbation depends on the population sizes
involved. For example, according to (3.2), the largest standard deviation of the
median ideal point in the EU27 (belonging to Malta as the smallest member state) is
�max D 7:8�10�4. Any amount of heterogeneity greater than that, say �H D 0:001,
practically removes the greater centrality which would otherwise be implied by a
larger population.

Let us make this intuition more precise. Given the distribution Fj of individual
voters in constituency Cj , the representative’s (or median voter) ideal point �j is
asymptotically normally distributed with mean �j D F �1

j .0:5/ D Q�j , and the
standard deviation given by (3.2). For a specific realization � of the median of all
voters’ ideal points in constituency Cj , Q�j , let f�j j � be the conditional density of
�j . For any �, this density is a shifted version of f�j j 0. In particular, it holds that
f�j j �.x C �/ D f�j j 0.x/ for all x. Now recall that � is a specific realization

of the random variable Q�j with distribution H and density h. The unconditional
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density of the median voter’s position in Cj (and representative j ’s ideal point) �j

is hence given by

f�j
.x/ D

Z C1

�1
f�j j �.x/h.�/d�

D
Z C1

�1
f�j j 0.x � �/h.�/d�: (3.3)

Consider first the case that h.�/ is a uniform density on the interval Œ�a; Ca�,
a > 0. Then, (3.3) becomes

f�j
.x/ D 1

2a

Z Ca

�a

f�j j 0.x � �/d�;

so

f�j
.x/ D 1

2a

	�F�j j 0.x � �/

Ca

�a

D 1

2a

	
F�j j 0.x C a/ � F�j j 0.x � a/



:

As the standard deviation of F�j j 0 is small for ‘large’ constituency size nj , we have
F�j j 0.x Ca/ � 1 and F�j j 0.x �a/ � 0 if a � 0, and therefore f�j

.x/ � 1=.2a/

in the ‘center’ of the interval Œ�a; Ca�, irrespective of which constituency Cj one
considers. For x ‘close’ to the boundaries, f�j

.x/ depends on the constituency-
specific F�j j 0, and thus differs across constituencies. Figure 3.5 illustrates the
above reasoning.

Fig. 3.5 Densities f�j .x/ of median voter positions �j , j D A; B . The underlying f�j j 0 are
normal distributions with standard deviations �A D 0:08 (solid graph) and �B D 0:12 (dashed
graph). The heterogeneity function h.�/ is a uniform density over Œ�1; C1�
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If, in (3.3), h.�/ is a normal distribution with zero mean and standard deviation
�H , then one obtains
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:

This establishes that the ideal point �j of the representative from constituency Cj

is normally distributed with mean zero and standard deviation
q

�2
j C �2

H . For two
constituencies Cj and Ck with large but different populations sizes, it holds that

�j � N.0;
q

�2
j C �2

H / � N.0;

q
�2

k
C �2

H / � �k

under the condition that �j and �k are small compared to �H .
Figure 3.6 shows, for two constituencies A and B of different size, sample

median distributions for seven realizations of Q�j (j D A; B), respectively. Due

Fig. 3.6 Density functions of median voter positions of median voter positions in large con-
stituency A (solid gray curves) and small constituency B (dashed black curves) for varying
median/mean voter positions from a normal heterogeneity function. Uncertainty about the
median/mean voter position results into flattened ex ante median densities f�j .x/, j D A; B
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to A’s larger population size, the f�A j � distributions are much more concentrated
around the realizations of Q�A than is the case for the f�B j � distributions. Ex ante,
however, considering the random variables Q�j rather than realizations of them, the
density functions f�A

.x/ and f�B
.x/ practically coincide.

More generally, note that (3.3) is the definition of the convolution .h � f�j j 0/.x/.
For two independent random variables Y1, Y2 with Y1 � H and Y2 � F�j j 0, the
convolution of their individual density functions gives the probability density of the
sum Y1 C Y2. If the variance of Y2 is small compared to that of Y1 (as is the case
if F�j j 0 is the distribution of the median of a large population), then the random
variable Y2 can be viewed as almost constant. Hence, the variance of Y1 C Y2 is
practically determined only by the variance of Y1.

The above arguments demonstrate that representatives’ ideal points are virtually
i. i. d. under the assumption of some heterogeneity between constituencies. This
implies that all mŠ orderings of representatives are equiprobable. The chances 	j

of any representative j to be the pivot at the top tier are then captured by the
Shapley–Shubik index �j .w; q/. Hence a simple rule ensuring equal representation
emerges:

Shapley–Shubik linear rule (SSLR): With any amount of heterogeneity �H �
maxj f�j g and for a given decision quota q, the weights w� which satisfy the egal-
itarian norm (2.1) or, equivalently, (2.2) are defined implicitly as solutions to the
inverse problem

�j .w�; q/ ∝ nj ; j D 1; : : : ; m: (3.4)

The finding that in the presence of heterogeneity weights should be chosen such
that the Shapley–Shubik index is proportional to population size for each con-
stituency is illustrated by Fig. 3.7 for the EU Council of Ministers. Note that the
proportional Shapley–Shubik rule holds for any quota used at the top tier, but the
remarks concerning the inverse problem under high quotas still apply: implement-
ing the above rule requires a solution to the inverse problem of finding weights that
yield the desired values. In general, only approximative solutions to this problem
exist because the number of distinct voting games on the set of players f1; : : : ; mg
is finite, whereas the number of combinations of desired values is infinite. This
technical problem is perceivable in Fig. 3.7: When a 50%-majority rule is used,
the Shapley–Shubik indices associated with best unconstrained weights are located
nicely on the 45ı-line, but under the 73.9%-quota, they rather meander around that
line.

In line with the above discussion, Fig. 3.8 demonstrates that the transition from
square root rule to a near-linear rule takes place very quickly. The square root rule
survives for �H D 0:00001, but already for �H D 0:00005 we get ˛� D 0:58.
Given the small variation in the setting – in Chap. 2 mean ideal points came from
the degenerate normal distribution N.0; �H D 0/ – the result differs strikingly from
our previous finding ˛� � 0:5. The square root rule ceases to apply already for
small degrees of heterogeneity.
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Fig. 3.7 Shapley–Shubik linear rule: Shapley–Shubik indices for best unconstrained weights in
EU27

Figure 3.9 plots the objective criterion (3.1) versus ˛.17 The mean ideal points
�j of the 27 countries are drawn from the normal distribution N.0; �H D 0:001/

and voters’ ideal points in constituency j are uniformly distributed on [�j � 0:5,
�j C0:5]. Amongst all coefficients in f0; 0:01; : : : ; 1g, ˛ D 0:94 performs best with
a cumulative individual quadratic deviation of 7:02 � 10�13. For these best simple
weights and SSLR weights, Fig. 3.10 shows the absolute deviations of estimated
from ideal egalitarian probabilities, applying a hypothetical quota of q D 0:5. Apart
from Germany’s being over-represented under the simple rule, the overall difference
between the two weight allocations is small, which is in line with our remarks at the
end of Sect. 3.1 (albeit concerning square root rules).

A second form of interim heterogeneity occurs if constituencies differ in their
degree of ‘preference cohesion’. In particular, it is conceivable that the strength of
the ‘common belief’ decreases in the size of the society.18 The variance �2

j of the
ideal point distribution Fj (j D 1; : : : ; m) in constituency Cj can then be written as

17 Eurostat population numbers for EU27 countries as of 01/01/2007 are used as simulation input.
18 The assumption that preferences are more heterogeneous in large populations is also made in
Alesina and Spolaore (2003), and the trade-off between the costs of differences and the economies
of scope in large jurisdictions determines nation size in their framework.
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Fig. 3.8 Rapid transition from square root rule to near-linear rule for EU27 (q D 0:5)

Fig. 3.9 Cumulative individual quadratic deviation for EU27 (�H D 0:001, q D 0:5)

�2
j D g.nj /

where g.�/ is a monotonically increasing function.
Consider the simple case of proportionality, i.e., g.nj / D a � nj where a > 0 is a

constant, and assume that, in each constituency j , voters’ ideal points are uniformly
distributed on the interval Œx1j ; x2j � with common mean �j D � for all for j D
1; : : : ; m. The density in constituency j is
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Fig. 3.10 Absolute deviations of estimated from ideal probabilities for EU27 (�H D 0:001,
q D 0:5)

fj .x/ D

8
<̂

:̂

1
x2j �x1j

x1j � x � x2j

0 elsewhere;

and the variance of the uniform distribution on Œx1j ; x2j � is �2
j D .x2j � x1j /2=12.

Then, the length of the interval Œx1j ; x2j � for constituency j with population
nj is proportional to

p
nj . As the density fj .x/ appears in (3.2), the standard

deviation of the median ideal point is equalized for all constituencies and for
all values of a. When the variance of voters’ uniformly distributed ideal points
increases proportionately in population size, the representatives’ ideal points are
i. i. d. For the reasons stated before, we arrive again at the recommendation to allo-
cate weights such that each representative’s Shapley–Shubik power is proportional
to his constituency size.

Though the assumption that preferences are more widely spread in large con-
stituencies could seem plausible at first glance, it is less convincing if one thinks
about the policy space X as the carrier of individual preferences. Rather, prefer-
ences in a small society can be as varied as in a large society. Therefore we deem
the assumption that ‘preference heterogeneity’ is independent of population size,
i.e., identical variances �2

j of the �
j
i for all constituencies, more plausible.

It is interesting to note that SSLR coincides with the ‘neutral’ voting rule that
Laruelle and Valenciano (2008a) obtain in the context of a bargaining committee
(cf. Sect. 1.2.2). A bargaining committee consists of a voting rule W specifying the
winning coalitions, and a m-person Nash bargaining problem B D .U; d/, where
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U � R
m is the set of feasible payoff vectors and d is the vector of status quo or dis-

agreement payoffs. Unlike classical bargaining which is thought of as a unanimous
decision process, an agreement in a bargaining committee only needs the support of
a winning coalition to be implemented. Under the condition that the Shapley–Shubik
index � is accepted as a valid measure of bargaining power, Laruelle and Valen-
ciano (2007) axiomatically derive a solution F.B;W/ to the bargaining committee
problem .B;W/:

F.B;W/ D Nash�.W/.B/ D arg max
u2U;
u� d

mY

j D1

.uj � dj /�j .W/; (3.5)

that is, an asymmetric Nash solution with weights given by the Shapley–Shubik
indices of the committee members under the voting rule. Solution (3.5) can be
regarded as a reasonable expectation of the utility levels when a general agreement
is achieved in the bargaining committee.

A voting rule is called ‘neutral’ if every citizen in every constituency Cj is indif-
ferent between bargaining for himself with all other citizens in the union or leaving
the bargaining to a representative who bargains on behalf of Cj in the bargaining
committee. As shown by Laruelle and Valenciano (2008a), a rule with this property
exists if citizens’ preferences are ‘partition-symmetric’. This property requires that
all citizens in constituency Cj have a common status quo payoff dj , and that the set
of payoff vectors which are attainable for them must be symmetric for any fixed dis-
tribution of payoffs among non-members of Cj . Under partition-symmetry, citizens
within the same constituency have the same bargaining characteristics. This makes it
possible to condense the bargaining problem that would be faced by the ‘committee
of the whole’, i.e., by all citizens bargaining directly, into the m-person bargain-
ing problem B D .U; d/. Let udNB

i denote the payoff to citizen i under direct (and
unweighted) Nash bargaining. Now suppose that i is a member of constituency Cj .
It is quite obvious that i would get a payoff equal to udNB

i if, for all j , the weight
of representative j in an asymmetric Nash bargaining solution is proportional to
the number of citizens in Cj . In view of (3.5), this implies that a voting rule W is
neutral if the Shapley–Shubik index of representative j under W is proportional to
his constituency’s population number nj .

3.4 Discussion

The aim of this chapter has been to examine the effects of two particularly relevant
modifications to the ‘double pivot’ model of two-tier voting systems. First, top-tier
decision thresholds of more than 50% have been studied by means of simulations.
Second, the analysis has been made more comprehensive by portraying ‘constituen-
cies’ not as purely administrative entities, but as reflecting heterogeneities between
voters.
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In the model without heterogeneity, supermajority requirements were demon-
strated to drastically reduce the extent to which the egalitarian ideal can be satisfied.
The conclusion from these findings would be that the quota applied in a committee
of representatives has important implications for the equity and hence the legitimacy
of decision-making. This contrasts with the yes-no-setting, where the mathematical
validity of Penrose’s square root rule is not limited to any specific value of the quota.
The latter can therefore, in principle, be adjusted to pursue objectives other than
equal representation. This ignores, however, that Penrose’s square root rule requires
a solution to the inverse problem (cf. Sect. 3.1). As the set of different weighted
voting games shrinks when q increases, the inverse problem cannot be solved any-
more to a satisfying degree of approximation. Practically, a high threshold impedes
the appropriate implementation of Penrose’s rule, and thus impairs the equality of
representation in the binary model.

As suggested, for example, by Harstad (2008), the decision threshold in the rep-
resentative committee may have important implications for strategic delegation. In
particular, if the majority requirement is large, then it could be beneficial for the
median voter to strategically delegate decision-making, or bargaining, at the top tier
to a representative who is more conservative, i.e., status quo biased, than himself.
The ‘double pivot’ model could possibly be extended by modeling explicitly the
legislative bargaining in the committee of representatives, e.g., appoint at random
one representative as agenda setter and let all representatives vote under closed rule
for or against the proposal. Then, the identity between the median voter and the rep-
resentative in each constituency could be relaxed allowing for strategic delegation,
or similarly, for a distinction between the policies a representative advocates and
those he votes for.

As a theoretical contribution, the present chapter has established that, in the pres-
ence of almost arbitrarily small heterogeneity among constituencies, weights for
which each constituency’s Shapley–Shubik index becomes (approximately) propor-
tional to its population number ensure equal representation of individual citizens,
interpreted as identical (and positive) indirect expected influence on final out-
comes. The existence of such heterogeneities is regarded as ‘a priori II’ information,
available behind an appropriately thinned veil of ignorance: individual voters are
still assumed to be independently and – in expectation – identically distributed.
Penrose’s square root rule (or its simpler limit version) turns out not to be robust
in light of even slight heterogeneity across constituencies. Figure 3.11 summarizes
the results.

Square root rules have been found to lack robustness in other contexts before.
However, the literature heretofore has considered only the binary voting model and
other forms of correlation among voters’ preferences. As highlighted by Good and
Mayer (1975), Chamberlain and Rothschild (1981), and Kaniovski (2008), even
minor changes regarding the equiprobability assumption at the individual or col-
lective decision level in the binary model lead to substantially different swing
probabilities, and thus to recommendations for operationalizing the one-person,
one-vote principle that disagree with Penrose’s square root rule. Also considering
the binary voting model, Kirsch (2007) finds that square root weights minimize the
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Fig. 3.11 Summary of findings of the sensitivity analysis

difference between the margin of representatives accepting or rejecting a proposal
and the size of the popular margin.19 Yet, if each constituency exhibits a ‘collec-
tive bias’ whose strength is independent of constituency size, the optimal weights
with respect to that minimization problem turn out to be proportional to population
numbers rather than to the square roots of the latter. Investigating the ideals of max-
imizing and equalizing expected utility, respectively, Beisbart and Bovens (2007)
come to basically the same conclusion: With i.i.d. voters and simple majority rule,
both ideals are met by simple square root weights. But if correlations of individual
utilities within each constituency are introduced, then optimality of the square root
rule breaks down quickly.

Proportional rules have emerged as normative recommendations from various
models. Yet so far, they have not been shown to produce equal representation as it is
understood here. Barberà and Jackson (2006) show in their ‘fixed-number-of-blocks
model’ that, if each constituency consists of a given number of blocks of identical
voters, setting weights proportional to population sizes maximizes expected utility
irrespective of the voting threshold. Similarly, considering the case that the interests
of people within the same constituency are perfectly correlated (but independent
across constituencies), Beisbart and Bovens (2007) find that the ideal of maximizing
overall expected utility requires proportional weights and a threshold of 50%.

Whereas the above findings pertain to binary decision-making, Laruelle and
Valenciano (2008a) study a committee whose members bargain over a convex space
of alternatives. They demonstrate that a voting rule ensures ‘neutral representation’

19 The difference between these two quantities is very similar to the mean majority deficit which is
also minimized under square root weights (see Felsenthal and Machover, 1998, pp. 72ff).
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in the sense that all individual citizens are indifferent between bargaining themselves
or putting bargaining in the hands of a representative if each representative is pro-
vided with bargaining power, measured by the Shapley–Shubik index, proportional
to his constituency’s population size.

Neutrality of the voting rule can be interpreted in terms of equivalence between
direct and indirect democracy. In the ‘double pivot’ model, it requires that the
outcome of the two-tiered decision-making process should equal the outcome of
bargaining among all individual voters in the union. Under single-peakedness and
one-dimensionality, the latter corresponds to the median ideal point of all citizens.
Generally, the direct and the indirect outcome differ, but it seems worthwhile to
search for a weight allocation rule that is ‘most neutral’ in the sense of minimizing
the discrepancy.



Chapter 4
Committees and Lobby Coalition Formation

This chapter finally descends from the heights of constitutional design to the domain
of ‘ordinary’ politics: It analyzes a situation where lobbyists seek to influence
decision-making in a legislature (or legislative committee) by offering payments to
its members. While Chap. 1 has asked “who gets what” with respect to committee
members themselves, Chaps. 2 and 3 have studied individual citizens’ ‘deriva-
tive’ influence on decisions in a committee of representatives. The present chapter
considers the question how much clout lobbyists have with a legislative committee.

Lobbyists are assumed to share common interests with respect to the political
outcome, whereby lobbying efforts become a public good for them, and incentives
to free-ride arise. Each lobbyist prefers someone else to contribute so that he may
enjoy the benefits from a more favorable political decision without incurring the
costs of bringing it about. Although increasing returns to sharing these costs exist,
which would imply the formation of a ‘grand coalition’ of lobbyists, “The Logic of
Collective Action” (Olson, 1965) suggests that, in the absence of enforceable agree-
ments, (rational) individual lobbyists cannot be expected to act on group interest,
that is, to provide an efficient level of lobbying efforts. At the same time, in the real
world, lobbyists often seem able to organize themselves in order to obtain changes
in legislation or regulation.

The impact of the ‘legislative environment’ – the decision-making procedure
used by the legislature together with legislators’ policy preferences – on the lob-
byists’ collective action problem, i.e., their incentives to form coalitions, has, to our
best knowledge, so far not been examined by the theoretical literature. To study
this topic, we propose a game-theoretic model and determine the equilibrium lobby
coalition structure. The model helps to understand the lobbying of supranational
legislative institutions like the EU Commission and the EU Council of Ministers.

Section 4.1 introduces our framework and clarifies the intuition behind the basic
results. Section 4.2 formally presents a simple model of lobby coalition formation in
anticipation of the subsequent legislative process. In Sect. 4.3, the game is solved by
backward induction: the analysis reveals a link between the legislature’s status quo
bias and the coalition formation of the lobbyists. Section 4.4 discusses the results
and their robustness, considering various modifications of the model.

N.F. Maaser, Decision-Making in Committees, Lecture Notes in Economics
and Mathematical Systems 635, DOI 10.1007/978-3-642-04153-2 4,
c� Springer-Verlag Berlin Heidelberg 2010
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4.1 Motivation

A difficult problem in political theory is to assess to which extent lobbyists can
influence the outcomes of a legislative process, and which factors determine lobby
success. The large empirical literature concerning these questions has yielded mixed
results, both with respect to the legislative institutions of the US and those of the EU
(see, e.g., Wright, 1990; Fordham and McKeown, 2003; Bernhagen and Bräuninger
(2005); Mahoney, 2007; for an overview of the literature concerning the EU also see
Dür, 2005). Formal work on the interaction between lobbying and legislation is still
scarce. Denzau and Munger (1986) propose a model in which the legislator’s deci-
sion either serves the interests of organized groups or the interests of unrepresented
constituents, so as to maximize votes. Snyder (1991) analyzes lobby contributions
and influence in a spatial voting model where legislators have different ideal points.
Helpman and Persson (2001) investigate the implications of alternative legislative
bargaining processes (US congressional and European parliamentary system) for
policy outcomes and lobbying contributions.

The effect of the legislative environment on the incentives of lobbyists to form
coalitions has, to our best knowledge, so far not been examined by the theoretical
literature.1 In the following, this issue is addressed with particular regard to the EU.

Empirical findings on lobbying at the EU level cast doubt on the ability of
so-called Eurogroups to organize themselves, and promote the interests of their
members effectively (see, for example, Jordan and McLaughlin, 1993; McLaughlin
et al. 1993). Eurogroups are umbrella associations or ‘associations of associations’,
that are officially recognized by the European Commission. Examples include the
European Chemical Industry Council (CEFIC) with a membership of chemical
associations from 22 countries, or the European Environmental Bureau (EEB), a
federation of more than 140 environmental organizations. The perceived weakness
of many Eurogroups is surprising as one might expect that the progressive exten-
sion of the EU’s policy-making competencies at the expense of local and national
governments (van Schendelen, 2005, p. 66f) would in fact boost the supranational
organization of lobbying activities.2 Moreover, the formation of Eurogroups is
encouraged by a preference on the part of the EU institutions to consult such feder-
ations (Mazey and Richardson, 1993).3 The accommodativeness of EU institutions
to Eurogroups and other interest groups is generally attributed to the enormous
information problems that legislators face with regard to the consequences and the
evaluation of policies in the 27 member states.

1 Coalition formation among organized interests in the US has, however, been studied empiri-
cally by Hojnacki (1997). With respect to the EU, Pijnenburg (1998) presents a case study on the
formation of ad hoc lobby coalitions of companies.
2 The reasons commonly cited to explain their perceived ineffectiveness are internal heterogeneity
and difficulties in forming a common position (Pijnenburg, 1998; Michalowitz, 2004, p. 124).
3 The institutionalized consultation of group interests is seen as related to corporatist ideas prevail-
ing in EU policy-making (see Michalowitz, 2004, p. 27). Yet, associations do not sit at the table
when decisions are actually made, and inclusion of their suggestions is only rarely obligatory.
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As a framework for studying the decision of lobbyists, which could be (national)
special interest groups or individual companies,4 to participate in a lobby coali-
tion, this chapter provides a three-stage game-theoretic model. At the coalition-
formation stage, modeled as the unanimity game � proposed by Von Neumann and
Morgenstern (1944, p. 243f) and Hart and Kurz (1983, 1984), lobbyists simulta-
neously decide upon which coalition they wish to belong to. Lobby coalitions act
to maximize the sum of their members’ utilities. Ruling out side-payments within
coalitions allows us to use the valuation approach pioneered by Shenoy (1979) and
Hart and Kurz (1983, 1984).5 The outcome of this stage is a partition of the lobbyists
into disjoint coalitions, called a coalition structure.

In the second stage, according to the coalition structure established, lobbyists
make contributions to members of the legislature in order to change the outcome of
legislation. As in the standard public good game (Ray and Vohra, 1997), it turns out
that only the largest coalition (in terms of members) will engage in lobbying. Lobby
contributions may be thought of as pieces of information that help legislators to draft
legislation or to repel criticism, or that confront them with arguments countervailing
their current position. They could also be monetary or other material benefits. In the
context of EU lobbying, contributions are also known to include valuable technical
information or proposals on wordings of regulations. The modeling of the contribu-
tion stage builds upon the model of vote-buying with price-discrimination suggested
by Snyder (1991). Unlike that model, we explicitly consider finitely many lobbyists,
and include an ‘independent’ agenda-setter in the legislature.6

Finally, in the third stage, the legislature chooses a policy outcome from a
one-dimensional convex policy space. The legislature’s decision affects N con-
stituencies, each of which is represented by one legislator. The model of the
legislative process follows Romer and Rosenthal (1978) where an agenda-setter
chooses a position that maximizes his utility subject to the constraint that a majority
prefers the position to the status quo. The proposal is executed if supported by the
required majority.

Lobbyists’ preferences over policy outcomes are assumed to be aligned, which
provides a natural potential for the formation of a grand or all-encompassing coali-
tion. But lobbying efforts are prone to free-riding (Olson, 1965): The provision
of resources to the political decision-makers is a contribution to a public good
for the lobbyists. In order to concentrate on the collective action problem of the
lobbyists, we assume that their policy goals are not only aligned, but coincide
fully. Concerning the possibilities to influence the decision process, we impose two

4 Of course, collective action problems inside these groups or companies may exist. These are
assumed to already have been resolved in the present analysis.
5 A valuation is a mapping which associates to each coalition structure 	 a vector in R

n, repre-
senting individual payoffs. A player’s valuation of a certain coalition thus depends on the entire
coalition structure. Hart and Kurz (1983, 1984) refer to the evaluation of players’ prospects for any
coalition structure as the coalition structure value.
6 In Snyder’s (1991) model, a single lobbyist (or a unitary lobby group) has full agenda-setting
power, and there is a continuum of legislators.
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assumptions: First, all lobbyists may approach the agenda-setter and offer contribu-
tions to him. Second, as in Helpman and Persson (2001), we assume a one-to-one
relationship between legislators and lobbyists, i.e., an individual lobbyist can lobby
exclusively one legislator, ‘his own’.

The objective of the present chapter is to explore, in this setting, the relation-
ship between the distribution of preferences in the legislature and the ‘severity’ of
the lobbyists’ collective action problem. Our main finding is that the status quo
bias of legislators plays a key role in the endogenous formation of lobby coalitions.
More specifically, there is a dichotomy between situations where the bias for the
status quo on a given issue is ‘small’, that is, decision-makers exhibit a pronounced
disposition to change current policy, and situations where the status quo bias is
‘large’. In the former case, lobbyists can focus their efforts on the agenda-setter.
In the coalition-formation game, lobbyists’ symmetry with respect to accessing the
agenda-setter leads to the formation of the grand coalition of all lobbyists, and the
policy outcome under lobbying tends to be close to the lobbyists’ ideal point.7 By
contrast, a large status quo bias means that the overall willingness to alter the status
quo is low. We demonstrate that, in this case, recruiting the votes of some legislators
is necessary, and the identity of the lobbyists who form the lobby coalition mat-
ters. The fact that the votes of a certain subset of legislators are needed to have the
desired policy accepted creates asymmetry among the lobbyists. In equilibrium, the
lobbying coalition may then be smaller than the grand coalition, which is inefficient
from the lobbyists’ point of view as it fails to maximize the sum of their utilities.
The lobby coalition’s success is small in the sense that it is, in general, very costly
to achieve policies that are far away from those that would have occurred without
lobby interference, and the coalition may therefore content itself with rather meek
‘modifications’ to the outcome. Concerning the question of who lobbies, the analysis
suggests that only those lobbyists who are associated with legislators that are piv-
otal regarding the desired policy outcome, participate in the lobby group, while all
others free-ride. In a twist of Axelrod’s (1970) famous prediction for parliamentary
democracies that ideologically connected minimal winning coalitions will form, the
lobby coalition is made up of lobbyists who, rather than having themselves adjacent
ideal points, are linked to ideologically connected legislators.

The major application that we have in mind for the model above is lobbying of the
European institutions, namely the EU Commission and the EU Council of Ministers.
The interaction between these bodies has been found to bear some resemblance
to the legislative bargaining game used here, and has been modeled accordingly
before (e.g., Steunenberg et al., 1999). The Commission is regularly considered as
the agenda-setter par excellence, because it virtually has a monopoly to initiate EU
legislation (Vaubel, 1997, p. 444). Thus, the considered legislative ultimatum game,
with the Commission (and its bureaucracy) making a take-it-or-leave-it proposal,
is quite realistic. Although the Council of Ministers does usually not draft policy

7 How close exactly depends on how easily the agenda-setter is influenced, and how many members
the legislature (and thus the lobby coalition) has.
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Fig. 4.1 Time structure of the game

proposals itself, it is considered the most powerful decision-making body in the
EU (e.g., Mazey and Richardson, 1993, p. 14). Its influence has been substantiated
in theoretical work by Napel and Widgrén (2006), with special regard to the co-
decision procedure of the EU. The Council of Ministers includes one minister (or
other government representative) from each member state. The assumption of a one-
to-one-relationship between legislators and lobbyists hence translates into the idea
that government officials are much more easily accessed by lobbyists from the same
country.

4.2 The Model

The relationship between the preference distribution in the legislature and coalition
formation among lobbyists is studied using a three-stage game. In the first stage,
lobbyists simultaneously decide on which coalitions they wish to form in order to
coordinate their lobbying efforts. In the second stage, the resulting coalitions simul-
taneously offer contributions in order to influence the legislature’s policy choice.
In the third stage, the legislature decides. The sequential structure of interaction is
illustrated in Fig. 4.1. We start by describing the third stage of the game, the legisla-
tive policy-making, in Sect. 4.2.1. The second and first stage, the lobbyists’ game,
follow in Sect. 4.2.2.

4.2.1 The Legislature

Consider a legislature consisting of an agenda-setter A and a set N D f1; : : : ; ng of
legislators (without agenda-setting authority), where n 
 3 is, for simplicity, an odd
number. Each legislator represents one constituency and has one vote. For the time
being, we assume that decisions are taken by simple majority rule.

The set of possible policies is described by a compact convex one-dimensional
Euclidean space X 	 R, with each point corresponding to a different policy, such as,
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e.g., the amount of money to be spent on a certain public good, a tax rate, or the level
of carbon dioxide emission constraints for cars. Each member of the legislative body
has single-peaked preferences on X , and can thus be identified with his ideal point.
Let �A denote the agenda-setter’s ideal point, and ƒ D .�1; : : : ; �n/ the profile of
legislators’ ideal points. Without loss of generality, assume that �1 < �2 < � � � < �n

for a given random policy issue. Then, �M 
 �.nC1/=2 is the ideal point of the
median legislator.

The legislature operates under a closed rule, i.e., no amendments can be made,
with a legislative session consisting of the following sequence of events:

1. The agenda-setter confronts the legislators with a take-it-or-leave-it proposal
� 2 X , where the agenda-setter is assumed to have perfect information about the
ideal points of the legislators.

2. The legislators vote on the proposal. The outcome of the game is � if a simple
majority approve of it. If the proposal is rejected, the status quo Q 2 X (or a
default outcome) prevails. The status quo is known to all players.

This simple model of legislative bargaining is basically a spatial version of the
legislative ‘ultimatum’ game proposed by Romer and Rosenthal (1978).8

To keep things simple, preferences are assumed to be given by utility functions
of the linear absolute deviation form:

uA.x; �A/ D �ajx � �Aj C RA (4.1)

for the agenda-setter, and

uj .x; �j / D �bjx � �j j C Rj ; (4.2)

for legislator j , where x 2 X denotes a policy, a; b > 0 are parameters reflecting
the intensity of the agenda-setter’s and the legislators’ preferences, and RA and Rj

are the amounts of politically valuable resources that they receive from lobbyists.
Resources might take several forms. One could imagine that the lobbyists compile
(possibly biased) information about policy consequences, or that they have expen-
ditures for surveys, research, or commissioned studies. Resources might also be
campaign contributions or outright bribes.

Legislators care about how they vote per se, just as the agenda-setter cares about
which proposal he makes. In particular, they do not wish to depart too much from
their ideal point which could be interpreted as the prevailing opinion of their con-
stituency on the issue at stake, but could also reflect the policy-makers’ personal
preferences.9 Lobbyists make their contributions to the members of the legislature

8 Napel and Widgrén (2004) use the above legislative bargaining model in order to propose a new
index of decision power which takes players’ spatial preferences into account (cf. Sect. 1.2.3).
9 The ‘costs’ that members of the legislature incur when deviating from their ideal point could,
e.g., be moral qualms, or reduced chances of reelection if constituents can monitor voting records,
and hold legislators accountable for their votes.
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contingent on individual actions: Offers to the agenda-setter (to legislator j ) take
the form “I will provide to you an amount RA (Rj ) if you propose (vote in favor
of) policy x”.10 Though, in reality, the extent to which legislators are susceptible to
lobbyists certainly differs, it is natural to start on the assumption that they can be
influenced in an equal fashion.

Legislator j votes for a policy x tied to lobbying rent Rj , whenever he prefers it
to the status quo Q, i.e., whenever his individual rationality constraint

� bjx � �j j C Rj 
 �bjQ � �j j (4.3)

is satisfied. Legislators who are indifferent between passing and rejecting are
assumed to vote in favor of the proposal. Thus, given a proposal �, the coalition
N��Q 
 fj 2 N W �bj���j jCRj 
 �bjQ ��j jg � N , will form. This implies
that, if a lobbyist makes an offer RA (Rj ) such that the agenda-setter (legislator
j ) is indifferent between accepting and rejecting, the agenda-setter (legislator j )
always accepts. Thus, in the bargaining between lobbyist and legislator, the lobbyist
has all bargaining power as he will only provide an amount of resources equal to the
reservation value of the decision-maker, making (4.3) hold with equality.

4.2.2 The Lobbyists’ Game

The game includes as many lobbyists as legislators. Concerning the feasible actions
of the lobbyists, we impose two assumptions: First, all lobbyists have access –
and can offer resources – to the agenda-setter. Second, each lobbyist is associated
with exactly one legislator, ‘his’ legislator, to whom he can make contributions.
To emphasize the one-to-one relationship between legislators and lobbyists, the set
N D f1; : : : ; ng will refer to the latter as well, and lobbyist j may be thought of as
being based in constituency j . The fixed link could then arise because the lobbyist
comes from the same geographical location as the legislator, or because of ideolog-
ical ties. Empirical evidence suggests that indeed contributions to a legislator come
in large part from interests within his own electoral district (see, e.g., Wright, 1989).

The lobbyists are assumed to all have the same ideal point L towards which
they seek to shift the outcome of the legislative process. Their preferences are
also equally intense. A particular policy outcome x is evaluated according to the
quadratic utility function

vj .x; Cj / D �.x � L/2 � Cj ; (4.4)

10 A different kind of offers are ‘pivotal contracts’, that are contingent on the collective decision.
Here, a legislator receives a bribe if and only if his vote turns out to be pivotal to the collective
decision that the lobbyist seeks to bring about. As discussed by Dal Bó (2007), pivotal contracts
allow the outside party to manipulate committee decisions at no cost.
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where Cj are the costs lobbyist j incurs.11 These costs arise from the provision of
politically valuable resources to the agenda-setter and the legislators. Throughout
the analysis we assume parameters a, b, and L to be such that, for every lobbyist j ,
the utility from the outcome under lobby influence is greater than the utility asso-
ciated with the no-lobbying outcome, i.e., the participation constraint never binds.
If lobbyist j acts on his own, his costs Cj equal the sum of the resources which
he provides to the agenda-setter, denoted by .RA/j , and the resources Rj which he
provides to his legislator.

In the first stage of the lobbyists’ game, the players may form coalitions in order
to coordinate their lobbying efforts. The result of this phase is a coalition structure
	 D fS1; : : : ; Smg, i.e., a partition of the set of lobbyists N D f1; : : : ; ng, such that
Si \ Sk D ; for all i ¤ k and

Sm
iD1 Si D N . In the second stage, the coalitions

that emerged from the previous stage engage non-cooperatively in manipulating the
legislature.

Coalition formation among the lobbyists is modeled as a simultaneous game,
i.e., all lobbyists announce their decision at the same time. Specifically, we model
coalition formation as the unanimity game originally proposed by Von Neumann and
Morgenstern (1944, p. 243f), and later by Hart and Kurz (1983, 1984) as their game
� .12 Each player j 2 N chooses his strategy from the set †j D fS � N W j 2 Sg,
i.e., the set of coalitions to which j belongs. A strategy �j 2 †j for player j

amounts to a message announcing which coalition S player j wishes to commit
to. Only if all of its members have chosen it, the coalition is formed. The outcome
function that maps a strategy profile � D .�1; : : : ; �n/ into a partition of the set of
lobbyists is given by

	.�/ D fS1; : : : ; Smg
where

Si .�/ D
(

Si if and only if �j D Si 8 j 2 Si ;

fj g otherwise.

This coalition formation rule states that the formation of a particular coalition Si

requires that all of its prospective members choose Si . In the case that there is no
unanimous consent on the formation of Si among the j 2 Si , those players j who
selected the strategy �j D Si remain singletons.13 This implies that a coalition
breaks down if a deviation occurs, which seems plausible if one views the coalition
as the result of unanimous consent that has then been withdrawn.

11 One might also consider a more general utility function vj .x; Cj / D ��j .x � L/2 � Cj , where
�j > 0 varies across lobbyists. The assumptions of quadratic utility for the lobbyists and linear
utility for the members of the legislative body simplify the analysis, but they are not essential to
the qualitative results.
12 The game � , as well as the game � in Hart and Kurz (1983, 1984), are also called exclusive
membership games of coalition formation (Bloch, 1997). Membership is exclusive because players
are not free to join an existing coalition without the consent of its members.
13 By contrast, in the related game �, also studied by Hart and Kurz (1983, 1984), a coalition is
formed of all members who announce a given coalition, irrespective of whether all members of
that coalition announce it.
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Once a coalition structure has formed, payoffs to the lobbyists are given by the
utilities obtained in the second stage. Players belonging to the same coalition are
assumed to jointly maximize their aggregate payoff, and the costs of lobbying are
shared equally among coalition members. One could think about the costs Cj of
each member j of a lobby coalition S as the (uniform) membership fee j pays
to participate in S , and the sum of membership fees exactly covers the resources
provided by S :

P
j 2S Cj D .RA/S CP

j 2S Rj .
Equal division of costs allows us to represent gains from cooperation by a valua-

tion, which assigns to each coalition-structure a vector of individual payoffs (rather
than coalitional values to be distributed among coalition members).14 Thus, the
normal form game � corresponds to a game without side payments.

4.3 Analysis of the Model

The objective of this section is to solve the game for the equilibrium strategies by
backward induction. The equilibrium concept is subgame perfect equilibrium, and
as the set of Nash equilibria of the coalition formation game may be quite large,
strong Nash equilibrium (Aumann, 1959) is used as refinement. First, we analyze
the legislative game in the absence of lobbying activities, and then proceed to derive
the lobbyists’ optimal policy choice and coalitional strategies in Sects. 4.3.2, 4.3.3,
and 4.3.4.

4.3.1 Legislative Decision-Making Without Lobbyists

The agenda setter and the lobbyists are, for presentational purposes, assumed to
have most preferred policies such that L > �A 
 Q and �M 
 Q hold.

Which proposal will the agenda-setter choose if no lobbying occurs? As a pro-
posal can be passed by majority, the agenda-setter will not forgo any more distance
than is inevitable to secure that majority. The agenda-setter’s problem then is to
choose the most favorable proposal for himself among those policies which the
median player (marginally) prefers to the status quo.

The subgame perfect equilibrium proposal for any particular realization .�A; ƒ/

of ideal points is

��.�A; ƒ/ D ��.�A; �M / D

8
ˆ̂
<

ˆ̂
:

�A; if �M 
 xd

2�M � Q; if �M 2 .Q; xd /

Q; if �M � Q

(4.5)

14 To allow for a valuation representation, it is necessary that the second-stage game has a unique
equilibrium. As shown in Sect. 4.3.3, this is indeed the case.
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Fig. 4.2 The Nash equilibrium proposal �� of the legislative bargaining game

where xd D .�A C Q/=2 is the dividing point that separates the area in which
the agenda-setter gets his own ideal point accepted from the area in which he has
to compromise with the pivotal player. The equilibrium proposal ��.�A; �M / is
accepted by at least .n C 1/=2 voters, and hence it becomes the outcome of the
collective decision-making. Figure 4.2 illustrates the equilibrium of the legislative
bargaining game.

Obviously, the legislative bargaining game endows the agenda-setter with con-
siderable power over the outcome. However, this power does not go unchecked. It
varies considerably with the position of both the status quo and the median legislator.

For a given profile ƒ of legislators’ ideal points, the status quo bias, or inertia,
� of the legislature can be measured by

�.ƒ/ D 1 � j�M � Qj:

It is a measure of the legislators’ ‘aggregate’ inclination to keep the status quo, rang-
ing from 0 to 1. A large value of � indicates a large bias in favor of the status quo,
as associated either with a situation where opinions in the legislature are divided, or
a situation where many legislators (including the median) are comfortable with the
status quo. This measure derives only from legislators’ preferences, and is to be dis-
tinguished from bias – in favor of or against the status quo – created by institutional
features such as supermajority requirements.

For illustration purposes consider a continuum of legislators with ideal points
distributed uniformly over the interval X 
 Œ�0:5; C0:5�. Then, the median ideal
point is �M D 0. If Q D �0:5, we have � D 0:5, and the agenda-setter is effective
for all positions he might wish to take. If, by contrast, Q D 0, i.e., the status quo
coincides with the median ideal point, � equals 1, and the agenda-setter cannot
achieve any position other than 0.

4.3.2 Lobbyists’ Contributions

As in Snyder’s (1991) model of bribes and voting in a majoritarian legislature, the
lobbyists will in equilibrium only provide resources to a minimum winning coalition
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of decision-makers. By doing so, the lobbyists can, in principle, capture the policy-
making process. Given the status quo and the ideal points of the members of the
legislature, the resources which are necessary to obtain a certain policy outcome x

in the least costly way are given by

�.x/ D
8
<

:

ajx � �Aj if �M 
 xd ;

ajx � �Aj C
Xr

j DM
2b
�x C Q

2
� �j

�
if �M < xd

(4.6)

with xd D .xCQ/=2, and where r 2 N is defined by the condition f�r 2 Œ�M ; xd /^
�rC1 
 xd g. In the case that �M 
 xd , it is sufficient to induce the agenda-setter
to propose x by providing him his reservation value ajx � �Aj. But if �M < xd ,
resources must additionally be offered to the set fM; : : : ; rg of pivotal legislators,
i.e., those who have ideal points in the interval Œ�M ; xd /, so as to make them
indifferent between accepting x and rejecting it. The index number r refers to the
legislator with the rightmost ideal point who the lobbyists still have to bribe in order
to get a given policy x accepted.

For all the lack of consensus in the lobbying literature whether lobbyists will
focus on those sympathetic to their position, or on the rather hostile, the claim made
here, that lobbyists wish to pick pivotal members of the legislature, appears to be
uncontroversial.

Note that (4.6) involves price-discrimination across legislators: The legislators
at whom lobbying efforts are aimed are those marginally opposed to the lobbyists’
policy, and within this pivotal set the amounts of resources received are higher the
more opposed a legislator is to x. In the context of a small legislature or decision-
making committee, price-discrimination seems a plausible prediction.

4.3.3 Cartel Formation and Small Status Quo Bias

Consider first the case �M 
 .L C Q/=2, i.e., the policy choice sought by the
lobbyists is closer to the median legislator than the latter is to the status quo. We
shall use lower case letters to denote the cardinality of coalitions, e.g., s refers to the
number of players in coalition S . Viewed in isolation, a coalition of size s solves

max
x

�s.x � L/2 � �.x/ (4.7)

yielding a policy choice

x�.s/ D L � a

2s
(4.8)

and resource provision

�.x�.s// D ajL � a

2s
� �Aj: (4.9)
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The larger S , the closer to L is the policy outcome that S can obtain, and the greater
the amount of resources it spends on lobbying efforts. Under the equal sharing rule,
any member j in coalition S incurs costs Cj D �.x�.s//=s, and receives a per-
capita utility

vj .s/ D a2

4s2
� a.L � �A/

s
8 j 2 S: (4.10)

The function vj .s/ is strictly increasing in s, thus exhibiting increasing returns to
size in lobbying activities.

In coalition structure 	 , coalition S will contribute to lobbying efforts as long
as, given the other contributions, the policy choice is less than x�.s/. Suppose the
complement N n S provides an amount of resources �.y/, then the best response
of S is to contribute max Œ�.x�.s// � �.y/; 0�. In equilibrium, as greater coalitions
provide more resources, only the coalition (or coalitions) in 	 with the largest num-
ber of members engages in lobbying, while all other coalitions free-ride. Let ` 
 1

be the number of such maximal lobby coalitions in coalition structure 	 . In the
case that 	 includes a unique lobbying coalition S , i.e., ` D 1, utilities under 	

are fully determined by the size s of S . The utility of the members of S is given
by (4.10). If several largest coalitions have formed with s members each, any divi-
sion of the resources �.x�.s// among these cartels is possible in equilibrium, while
non-maximal coalitions still free-ride. In view of the symmetry among the ` car-
tels, it seems plausible to require that each of them bears the share �.x�.s//=` of
total resource provision. Thus, a unique vector of per-capita utilities is associated to
each 	 . In a coalition structure 	 with ` maximal coalitions Si of size s, free-riding
players obtain utilities

vj .	/ D vj .s/ D � a2

4s2
8j 2 N n f[ `

iD1Sig; (4.11)

which is clearly greater than (4.10). Moreover, non-members of the Si benefit from
an increase in the size of the lobbying coalition(s). Formally speaking, in the lobby-
ists’ game, the following conditions defined by Yi (1997) hold that express positive
spillovers and negative interrelation between coalition size and payoff, respectively.

Property 4.3.1. 8j 2 T , T 2 	; 	 0 W vj .	/ < vj .	 0/ if 	 0 n T can be derived
from 	 n T by merging coalitions in 	 n T .

Property 4.3.2. For any coalition structure 	 and any two coalitions S; T 2
	 W 8i 2 S; j 2 T W vi .	/ < vj .	/ if and only if s > t .

The public good character of lobbying efforts makes the grand coalition the effi-
cient coalition structure from the point of view of the lobbyists: it maximizes the
sum of lobbyists’ utilities. Whether it will actually be formed is determined in the
coalition-formation game to which we turn now.

First, it is useful to observe that the lobbyists are symmetric: The utility of a
player in a particular coalition only depends on the number of individuals in the
largest coalition in the partition, but not on their identities. A strategy �j for player
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j is therefore equivalent to an announcement of the size s of the coalition j wishes
to be a member of. Thus, all players have the same strategy set. Formally, player
symmetry is captured by the properties (a) †i D †j for all i; j 2 N , and (b)
vi .	/ D vj .	 0/, i; j 2 N , and vk.	/ D vk.	 0/, k ¤ i; j , where 	 0 is the coalition
structure that results from 	 when player i ’s and j ’s strategy choices �i and �j are
switched.15

Second, note that the game � allows players to commit to staying alone. If all
players decide to remain singletons, the game could, in principle, become a war of
attrition where each player hopes that one of the others will provide contributions
in the expectation of free-riding on him. However, as the no-lobbying outcome is
not desirable to any of the lobbyists, each of them is willing to engage in lob-
bying the agenda-setter, effectuating the outcome x�.1/ according to (4.8). From
the above assumption that resource provision is shared equally among all maximal
coalitions, it follows that, in the atomic coalition structure O	 D ff1g; f2g; : : : ; fngg,
each lobbyist incurs costs of Cj D �.x�.1//=n. The payoff of each player j in O	 is

vj . O	/ D a2.2 � n/

4n
� a.L � �A/

n
8 j 2 N; (4.12)

and one can easily check that it is always less than the grand coalition per-capita
payoff vj .N /.

A strong Nash equilibrium is immune to any coalitional deviation, i.e., it is a
strategy profile � for which there does not exist a coalition T 	 N with strategy
profile � 0

T for players in T such that vj

�
	.� 0

T ; �N nT /
�

> vj .	.�// 8j 2 T .
The game � generally has multiple strong Nash equilibria. If, for example, some

player j committed to stay on his own, then it would be a best response for the
remaining players to form the coalition N n fj g, and vice versa. Since it does not
pay in the game � to leave any lobbying coalition S once it has formed as the
remainder then dissolves into singletons, the coalition structure would be stable iff
vj .n � 1/ > vj .n/, i.e., iff the single player does not have an incentive to merge
with the grand coalition. Yet, taking the idea of simultaneous decisions on coalition
announcements �j seriously, players have no means to coordinate on an asymmetric
equilibrium. We therefore focus on symmetric strong equilibria as the only plausible
results in the case of a small status quo bias � . Let x�

N denote the optimal policy,
as defined by (4.8), which is available to the grand coalition N . When � is smaller
than a threshold given by 1 � jx�

N � �M j, the lobbyists’ game is symmetric.

Proposition 4.3.1. Suppose that �.ƒ/ � 1 � jx�
N � �M j. Then, in the simultaneous

coalition-formation game � , the strategy profile �� with ��
j D fN g for every j D

1; : : : ; n is the unique symmetric strong equilibrium, and the grand coalition N is
formed.

Proof. The idea behind Proposition 4.3.1 is simple. If bias �.ƒ/ � 1 � jx�
N � �M j,

the distance between �M and Q exceeds the distance between x�
N and �M . It is

15 Put differently, a symmetric game is invariant under a permutation of players.
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therefore sufficient for the lobbyists to influence the agenda-setter’s proposal in their
favor. Because of symmetry, a strategy �j for player j reduces to an announcement
of the size of the coalition he wishes to form. Equation (4.11) shows that all play-
ers who do not belong to the maximal coalition S in 	 receive the same payoff
regardless of how the player set N n S is organized. Also, by (4.10), a player in a
greater lobbying coalition receives a larger payoff than a player in a smaller lobby-
ing coalition. Hence, no player chooses a strategy �j D S where S 	 N; j 2 S , is
a coalition of size s with 1 < s < n. As the grand coalition is strictly preferred to the
atomic coalition structure [equation (4.12)] by all players, it follows that �j D N

is the best strategy for all j 2 N , leading to the formation of the lobbying coali-
tion N . ut

4.3.4 Cartel Formation and Large Status Quo Bias

We next analyze the more complex case in which the lobbyists’ optimal policy
choices require provision of resources to both the agenda-setter and to some leg-
islators in order to recruit the votes that are necessary to pass the proposal. First
note that the number of coalitions that will form can safely be limited to ‘one or
two’, as still only the largest coalition, which is in a position to lobby, will do so,
and the organization structure of non-lobbying players does not matter. Thus, either
the grand coalition N , or the coalition structure 	 D fSL; SFRg will be established,
where SL is the lobbying coalition, and SFR D N n SL comprises all free-riding
players.16

Lobbyists differ in their preferences for these two potential coalitions. If, for
example, lobbyist M , i.e., the player associated with the median legislator, joined
SFR, no successful lobbying would be possible.17

Given x, let r 2 N again be the index number that is (uniquely) determined by
the condition f�r 2 Œ�M ; xd / ^ �rC1 
 xd g. Then, the resource schedule (4.6) for
the case �M < xd D .x C Q/=2 can be rewritten as

�.x/ D ajx � �Aj C kb.x C Q/ � 2b

MCk�1X

j DM

�j (4.13)

where k 2 f1; 2; : : : ; r C 1 � M g is such that x 2 .2�MCk�1 � Q; 2�MCk � Q� :

16 Belleflamme (2000) imposes the restriction that maximally two coalitions can form in order to
make progress on the analysis of cartel formation among asymmetric firms.
17 The general possibility that some lobbyist with an index number smaller than M could step into
the breach and bring his legislator to vote in favor of the proposal is ignored in the analysis that
follows. The focus is on least-cost lobbying strategies as described by (4.6).
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In the case r C1 > n, let 2�MCk �Q WD 0:5, i.e., a policy x > 2�n �Q is obtained
by providing resources to the legislator set fM; M C1; : : : ; ng. The piecewise linear
schedule (4.13) is continuous throughout its domain .2�M � Q; 2�rC1 � Q�.

Let us first consider the policy that would be enacted by the grand coalition.
Obviously, the grand coalition is in a position to approach all legislators that it wants.
In order to achieve a given policy x 2 .2�MCk�1 � Q; 2�MCk � Q� for some
k 2 f1; 2; : : : ; r C 1 � M g, contributions must be made to k legislators. At points
x D 2�MCk�1 � Q, k D 1; 2; : : : ; r C 1 � M , the cardinality of the set of pivotal
legislators jumps from k � 1 to k.18

Using (4.13), one finds that the policy x� solving (4.7), i.e., maximizing the
utility of the grand coalition, is defined by the fixed point problem

x� 2 �.x�/ (4.14)

where � W X ⇒ Œ0; L� is defined by

�.x/ D

8
ˆ̂
<̂

ˆ̂
:̂

n
L � aCbk

2n

o
; if x 2 �

2�M Ck�1 � Q; 2�M Ck � Q
�

for some k D 1; 2; : : : ; r C 1 � M

h
L � aCb.k�1/

2n
; L � aCbk

2n

i
; if x D 2�M Ck�1 � Q for some k D 1; 2; : : : ; r C 1 � M:

(4.15)
The assumption that the participation constraint does not bind implies that the range
of � has zero as lower bound. As k monotonically increases in x, the graph of �

is monotonically decreasing in x. It is readily checked that the correspondence �

fulfills the criteria of Kakutani’s Fixed Point Theorem.19 Thus, the existence of a
fixed point is guaranteed. Moreover, �.x/ has a unique fixed point. This follows
from the fact that � is monotonically decreasing. Hence, a unique outcome exists
for every coalition structure. Problem (4.14) is illustrated in Fig. 4.3.

Comparing the outcome defined by (4.14) together with (4.15) to (4.8), the cor-
responding expression under a small status quo bias, it is straightforward to see
that the policy outcome is now strictly further to the left of L than in the case
�M 
 .L C Q/=2. As more resources are required to achieve a particular out-
come x, the lobbyists settle for a less extreme policy. Ceteris paribus, the policy is
further to the right, the smaller a and b are; that is, the more amenable to lobbying
efforts the legislature is.

How does the policy enacted by a lobbying coalition SL ¤ N differ from the
one defined in (4.14)? The policy that SL aspires to is in principle also given by

18 Thus, k as a function of x depends on the particular profile of legislators’ ideal points. In the
limiting case where legislators form a continuum with uniformly distributed ideal points on X , the
policy that balances at the margin the gains in terms of policy and the costs of lobbying can be
calculated explicitly and is given by x� D .4nL C 2b�M � bQ � 2a/=.4n C b/.
19 Kakutani’s fixed point theorem states the existence of a fixed point of f W A ⇒ A under the
conditions that (a) A � R

n is a nonempty, compact, convex set, and (b) f is an upper hemicontin-
uous correspondence from A into itself with the property that the set f .x/ � A is nonempty and
convex for every x 2 A.
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Fig. 4.3 The policy choice x�, maximizing the utility of members j of the lobbying coalition SL,
is obtained as fixed point of correspondence �

(4.14), the only difference being that n must be replaced by the cardinality of SL.
Yet, SL may not include the lobbyists necessary to establish this outcome. For some
k 2 N

�, k � r C 1 � M , define SL as

SL.k; t/ D fM; M C 1; : : : ; M C k � 1g [ T;

where T � N n fM; M C 1; : : : ; M C k � 1g is a (potentially empty) coalition of
size t . Hence, the number of players in SL is k C t .

In the case that k D r C1�M , SL does include the lobbyist who is associated to
the legislator with ideal point �r , and any policy that is desirable to the coalition is
principally within its reach. If k < r C1�M , the most extreme policy achievable is
given by 2�MCk � Q. Let O�.x/ denote the correspondence that results from replac-
ing n with .k C t/ in (4.15), and denote the unique fixed point of O�.x/ by Ox. Then,
the optimal policy choice of a coalition SL is given by the following expression:

x�.k; t/ D
(

Ox; if Ox � 2�MCk � Q

2�MCk � Q; if Ox > 2�MCk � Q:
(4.16)

x�.k; t/ weakly increases in both k and t until it eventually reaches the policy (4.14)
enacted by the grand coalition.

Building on these findings, we can formulate the following result.
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Proposition 4.3.2. Suppose that �.ƒ/ > 1 � jx�
N � �M j. Then, there exist prefer-

ence profiles such that the strong Nash equilibrium of the lobbying game involves a
coalition structure 	 D fSL; SFRg with SL; SFR ¤ ;.

The proposition states that the lobbying coalition may be smaller than the grand
coalition, and all remaining players free-ride. The condition �.ƒ/ > 1�jx�

N ��M j is
equivalent to saying that �M is closer to Q than to the outcome x�

N which would be
available to the grand coalition of lobbyists by influencing the agenda-setter alone.
As a corollary, one immediately obtains that the Nash equilibrium structure may be
inefficient in the sense that it does not maximize the sum of lobbyists’ payoffs, and
the policy outcome under lobbying in this case is less ‘extreme’ than the policy that
the grand coalition would obtain.

Before proving the proposition by providing an example, let us briefly review
the conditions for a strong equilibrium. In a Nash equilibrium coalition structure
	� D fSL; SFRg, no player wishes to switch coalitions unilaterally. First, as the
participation constraint is assumed to be never binding, the player associated to
the median legislator engages in lobbying efforts. For some k 2 f2; : : : ; rg and
t 2 f0; 1; : : : ; n � 1g, the incentive of lobbyist j D M C k � 1 who is associated to
the ‘next’ potentially pivotal legislator, to join a coalition SL.k � 1; t/ is given by

Ij .k � 1; t/ D vj .k; t/ � vj .k � 1; t/:

Similarly, the incentive of any lobbyist l 2 T D N n fM; : : : ; M C k � 1g outside
the pivotal set to join SL.k; t � 1/ is

Il.k; t � 1/ D vl.k; t/ � vl.k; t � 1/:

For coalition structure fSL.k; t/; SFR.k; t/g to be an equilibrium structure, it must
hold that (a) Ij .k�1; t/ 
 0 for j D M Ck�1, but Ij .k; t/ < 0 for j D M Ck, and
(b) Il.k; t �1/ 
 0 for l 2 N nSL.k; t �1/, but Il .k; t/ < 0 for all l 2 N nSL.k; t/.

As a coalition left by some member disintegrates into singletons, no player can
benefit from leaving the lobby coalition SL.k; t/. For an equilibrium structure 	� D
fSL.k; t/; SFR.k; t/g to be a strong Nash equilibrium of the coalition formation
game, it is therefore sufficient that members of SFR.k; t/ do not have an incentive
to merge with SL.k; t/, i.e., to form the grand coalition. This is the case if

vj .k; t/ � vj .N / 
 0 for all j 2 SFR.k; t/:

We now construct an example to prove Proposition 4.3.2.20

20 As the equilibrium coalition structure depends on the entire profile of ideal points, the location
of the status quo, and parameters a and b, it is difficult to characterize in a general way. Conditions
on the parameters could possibly be derived under some restrictions, such as, e.g., equidistant ideal
points of all legislators.
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Proof of Proposition 2. Consider the following legislature with N D 5 legislators.
Let ƒ D .�1; �2; 0; 0:05; 0:1/ with �1 � �2 < 0 be the vector of their ideal points,
and �A D 0 the agenda-setter’s ideal point. The parameters in the agenda-setter’s
and the legislators’ utility functions are a D 1=4 and b D 1=10. The status quo and
the lobbyists’ ideal point are given by Q D 0 and L D 0:5, respectively.

If no lobbying takes place, the outcome of the legislative game will be �� D 0

(regardless of the position �A of the agenda-setter). To be effective, a coalition must
at least include lobbyist 3 who is associated to the median legislator. Table 4.1 lists
all effective lobby coalitions SL and the valuations of players in SL and in the
free-riding coalition SFR. It can be seen from Table 4.1 that 	� D fSL; SFRg D
ff345g; f12gg is the unique strong Nash equilibrium structure: start with the situation
where only lobbyist 3 makes a lobbying effort, which results in a payoff of �0:1600

for the free-riding players. Yet, lobbyist 4 has an incentive to join f3g, since this
increases his payoff from �0:1600 to �0:1300. Similarly, lobbyist 5 benefits from
entering the coalition f34g. Given the optimal lobbying efforts of the coalition f345g,
the remaining players 1 and 2 do not wish to participate as their free-riding payoff
(�0:0084) is higher than what they would receive if only one of them joined the
lobbying coalition (�0:0565), or if both joined (�0:0460). Thus, in the coalition-
formation game � with the number of coalitions that can be established limited
to a maximum of two, the equilibrium strategies are ��

j D f345g for lobbyists
j D 3; 4; 5, and ��

j D f12g for lobbyists j D 1; 2.
The policy outcome under lobbying is x�.3; 0/ D 0:4083, whereas the grand

coalition policy would be 0:445. This is the situation depicted in Fig. 4.3. As indi-
cated by the sum of valuations over all players in the last column in Table 4.1, the
lobbyists’ joint payoff is not maximal in equilibrium. ut
The above example demonstrates that, in the case of a large status quo bias, the
identity of coalition members becomes important. This asymmetry allows those lob-
byists, whose legislators are not necessary to achieve a desired policy outcome, to
give free rein to their free-riding instincts without having to fear that the atomic
coalition structure, or no lobbying effort at all, would be the result. To be effective,

Table 4.1 Lobby coalitions and payoffs

SL k t x�.k; t / vj .j 2 SL/ vj .j 2 SFR/
P

j vj

f3g 1 0 0:1 �0:1950 �0:1600 �0:8350
f31g or f32g or f35g 1 1 0:1 �0:1775 �0:1600 �0:8350

f312g or f315g or f325g 1 2 0:1 �0:1717 �0:1600 �0:8350

f3125g 1 3 0:1 �0:1688 �0:1600 �0:8350

f34g 2 0 0:2 �0:1300 �0:0900 �0:5300
f341g or f342g 2 1 0:2 �0:1167 �0:0900 �0:5300

f3412g 2 2 0:2 �0:1100 �0:0900 �0:5300

f345g 3 0 0:4083 �0:0733 �0:0084 �0:2366
f3451g or f3452g 3 1 0:4313 �0:0565 �0:0047 �0:2308

f12345g 3 2 0:4450 �0:0460 � �0:2299
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the lobbying coalition must consist of, or at least contain, lobbyists whose legislators
have adjacent ideal points. This result is reminiscent of Axelrod’s (1970) theory of
coalition formation which predicts that coalitions will be ideologically ‘connected’
along a policy dimension. The conclusion that the grand coalition may not form with
heterogeneous players is related to results in Belleflamme (2000) who studies the
formation of Cournot oligopolies in an open membership game among firms with
different cost functions.

4.4 Discussion

This section discusses the robustness of our findings and modifications of the setting,
and then looks at the limitations of the model. To start with, let us reconsider the
coalition-formation process.

The game described above is not immune to the common critique that outcomes
depend to a great extent on the rules of coalition formation (see Yi, 1997). In
principle, the lobbyists’ agreement to form the grand coalition, as any agreement
concerned with the production of public goods, is subject to the free-rider prob-
lem as characterized by the following observation in Stigler (1950, p. 25f) about
mergers:

“The major difficulty in forming a merger is that it is more profitable to be outside a
merger than to be a participant. [...] Hence, the promoter of merger is likely to receive much
encouragement from each firm – almost every encouragement, in fact, except participation.”

In the game � , however, the incentive for a lobbyist to stay out of the lobbying
coalition, hoping that others will join it nevertheless, vanishes, and the free-riding
problem can be resolved. Application of the coalition unanimity game � seems
appropriate in our context as the number of lobbyists concerned about a certain
(regulative) issue is relatively small. This makes the implication of � , that the for-
mation of a coalition requires unanimous consent of its members, more plausible,
and it seems more likely than in the case of a great number of players that a coali-
tion breaks up after the defection of one of its members. Of course, more complex
games of coalition formation exist, namely sequential games with fixed distribution
of payoffs as in Bloch (1996) and the equilibrium binding agreements reached by
far-sighted players with transferable utility proposed by Ray and Vohra (1997).

Usually, in games of public good provision, cooperation can only be sustained
if some kind of information imperfection prevails. This is also true here: the simul-
taneity of the coalition-formation decision creates informational imperfection. The
grand coalition might not emerge in a sequential game with perfect information.

As a normative benchmark, observing the policy that would be chosen by a
benevolent social planner is worthwhile. So far, no assumption was made about the
origin of the agenda-setter’s ideal point. It might derive from the ideal points of the
legislators, or from the preferences of citizens. Define the socially efficient policy
as the maximizer of the sum of utilities of individual citizens in all constituencies.
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Under the additional assumption that individuals’ utility is linear in distance and
equally intense, the policy corresponding to the median citizen’s ideal point would
maximize overall welfare. Generally, the median citizen’s and the median legisla-
tor’s ideal points will fall apart, even if each legislator’s position corresponds to the
median of his constituency and constituencies are equally sized. But �M could then
be expected to be a good proxy for the socially optimal policy choice.

Suppose the agenda-setter is benevolent in the sense that he would propose �M

in the absence of any lobbying efforts, so that �M would then be the outcome of
the legislative process. A small status quo bias allows lobbyists to exercise more
influence in the sense that they can achieve outcomes that differ to a great extent
from �M . The shift of the state of affairs in the lobbyists’ favor turns out to be
much smaller when they have to engage in recruiting the votes of legislators than in
the case where they only have to influence the agenda-setter. The reasons are that,
first, assessing both agenda-setter and legislators is more expensive, and, second,
lobbyists may not be able to overcome the collective action problem fully.

From the optimal policy choices of the lobbyists for the case of a small and a
large status quo bias as given by (4.8) and (4.14), respectively, it can be seen that,
the larger the lobbying coalition, the more ‘extreme’ is the legislative outcome under
lobbying. A large legislature, implying an equally large number of lobbyists, allows
ceteris paribus for outcomes that are more congenial to the lobbyists’ interest. This
is a rather disturbing conclusion given the fact that the number of interests active in
EU lobbying has multiplied with the enlargement of the Union.

Given the assumption of equal voting weights, the legislator holding the median
position is always pivotal. He is the only other player apart from the agenda-setter
who may have an impact on the outcome in the sense that a change in his preferences
might alter the outcome of the collective decision-making. Under weighted voting,
as used in the EU Council of Ministers, however, the pivotal position is generally
different from the median.21 In the definition of the status quo bias (see Sect. 4.3.1)
of the legislature, �M would then have to be replaced by the ideal point of the player
who is pivotal from the right. Generally speaking, weighted voting can be expected
to increase the asymmetry among lobbyists, and thus to intensify their free-riding
problem.

The Council of Ministers not only decides by weighted voting, but the decision
threshold is also much higher than simple majority. Currently 255 out of 345 votes
(73:9%) are needed to pass a proposal. One can check that such a supermajority
requirement narrows the set of policies for which the agenda-setter is fully effective.
It follows from the present analysis that the potential for the formation of the grand
coalition of lobbyists is smaller the higher the quota used in the legislature.

In order to single out the effect of status quo bias in the legislature, the most pre-
ferred policy was assumed to be the same for all lobbyists. While this assumption

21 ‘A priori’, i.e., without taking preferences into account, the pivotal position would be a random
variable. Under the condition that the ideal points �1; : : : ; �n are independently and identically
distributed, the a priori probability that a legislator is pivotal is given by the respective Shapley–
Shubik index (cf. Sect. 1.2).
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seems to be close to reality for many classes of lobbyists – one could, e.g., imagine
that all cigarette producers uniformly prefer the laxest possible anti-smoking regula-
tion – one can also conceive of situations where different national lobby associations
have antagonistic preferences. For example, the car industry of one country could
be greatly advanced in producing cars with low CO2 emission levels whilst the car
makers of another country lag behind.

With lobbyist ideal points L1; : : : ; Ln, the formation of a lobby coalition in the
case that the agenda-setter is potentially effective for all L generally necessitates
side-payments among coalition members. Otherwise some members might prefer
to lobby the agenda-setter on their own. Provided that all lobbyists in the coalition
have the same preference intensity over policy outcomes (see Footnote 11), the sum
of squares

P
j 2S �.x � Lj /2 is minimal for x D NL D 1=n

P
j 2S Lj , i.e., if

the outcome of the legislative bargaining is the mean of the lobbyists’ ideal points.
Therefore, NL is the ideal point of the lobby coalition. When the issue at stake has a
different importance to lobbyists from different constituencies, NL has to be replaced
with a weighted mean. It seems intuitively plausible that a lobby coalition might not
be effective if the preferences of its members differ very much.22 If the lobbyists’
positions are scattered on both sides of the agenda-setter’s ideal point, it seems most
natural to assume that two cartels opposing each other would form.23

In summary, the grand coalition of lobbyists is more likely to form when the
bias among legislators for the status quo is small, lobbyists’ preferences over policy
outcomes are similar, the quota is close to simple majority, and when legislators do
not differ much in voting weights.

There are, however, several limitations to drawing too wide conclusions from
our analysis: First, the one-dimensionality of the policy space is obviously a strong
assumption. It might be justified, however, for the application to Eurogroups whose
domains of concern are mostly narrow and often ‘low-brow’ issues such as, e.g.,
technical standards. Also, the analysis has been confined to a particular simple
model of legislative bargaining. It is well known from bargaining theory that modest
variations in the institutional details can result in very different outcomes. It would,
for example, probably be more realistic for EU decision-making to assume multi-
round bargaining, with lobbyists making contributions in each bargaining round.
Second, contributions are part of a quid-pro-quo exchange. Lobbyists are able to
persuade legislators to vote differently by providing resources to them, but the
mechanism through which they exercise their influence is a black box. One key
resource that interest groups ‘exchange’ for influence is information, and an influ-
ential branch of the lobbying literature (see, e.g., Austen-Smith and Wright, 1992;
Lohmann, 1995) has emphasized the role of interest groups as strategic providers of

22 To the extent that a positive relationship exists between the degree of collusion in an industry
and the similarity of firms’ preferences over policy outcomes, this result is in line with Damania
and Fredriksson (2000) who show formally that more collusive industries with higher profits from
collusion have a greater incentive to form industry lobby groups, and more easily overcome the
free-rider problems involved.
23 The situation of two competing lobbyists is studied by Groseclose and Snyder (1996).
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information which is relevant to policy-decisions. Third, it is important that lobbyist
j is unable to influence legislators other than ‘his own’. The situation of n lobby-
ists allocating their resources non-cooperatively to n legislators would constitute a
Colonel Blotto game (see Shubik, 1982, p. 226f and 322ff) which is very difficult to
analyze. In the case of a common ideal point of the lobbyists, it does not seem too
restrictive to exclude this kind of competitive behavior, but if lobbyists’ preferences
differ, the assumption is more limiting.

Finally, the assumption of a fixed sharing rule might seem a severe restriction
on the cooperation possibilities that can be captured. But note that optimal policy
choices of the lobbyists would be left unchanged in the transferable utility case.
Coalition SL makes contributions such as to maximize joint payoff (4.7). Since the
utility functions of the lobbyists are additively separable, it actually does not matter
how contributions are divided. Instead of being financed through membership fees
levied uniformly on members, they could be split in line with some efficient cooper-
ative bargaining solution as the result of a bargaining process among the lobbyists.
Players within one coalition could hence carry out transfers of utility without affect-
ing the strategic environment for other coalitions. The scope for cooperation could
possibly be enhanced if the allocation of the coalitional surplus among cartelists
was not determined in advance. But, as argued by Bloch (1996, p. 91f), valuations
seem rather natural because the prospective coalition member, when contemplating
his coalition decision, must apply some fixed rule to evaluate the payoffs he receives
in different coalition structures.24 In the context of a transnational lobby group, it is
quite plausible to assume that the decision to join the group entails bearing a pre-
defined share of the costs. For symmetric games, equal division of coalition payoffs
is derived endogenously in a bargaining game by Ray and Vohra (1999).

This chapter has studied the endogenous formation of lobby coalitions and the
resulting policy outcome in a highly stylized model of a supranational decision-
making process. The novel element in the present chapter lies in characterizing the
relationship between the status quo bias of the legislature, which is a source of
asymmetry among lobbyists, and lobbyists’ ability to overcome a collective action
problem. If the status quo bias, or legislative inertia, is large, then the equilibrium
coalition structure can feature a lobbying coalition which is smaller than the grand
coalition, and thus is inefficient from the lobbyists’ point of view.

The empirical literature on EU lobbying has identified ad hoc coalitions of lobby-
ists, especially large companies, as an important type of actor in European lobbying.
Moreover, depending on the issue at stake, this form of ‘spontaneous’ organization
often seems to be more attractive to individual lobbyists than representation by a
Eurogroup (Pijnenburg, 1998). The analysis provides some indication why, so far,
lobbying in the European Union has not been dominated by all-European groups or
grand coalitions, but could rather be characterized by ephemeral ad hoc coalitions
targeted on specific issues. Likely reasons are the large supermajority requirement

24 Different players might, however, use different rules, leading to incompatible expectations when
it comes to bargaining over the actual allocation.
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in the Council as the chief decision-making body, and possibly, prevalent prefer-
ences for keeping the status quo, or divergence between Council members on the
future direction of policy. For example, opinions on the role of nuclear energy do
not only greatly vary in detail among European decision-makers, there is not even a
consensus as whether to expand or reduce reliance on this energy source.

One hypothesis generated by the model is that formation of ad hoc coalitions
between lobbyists should be expected among lobbyists whose legislators form an
ideologically compact set. This is a testable prediction, suggesting further empirical
work.

There are several other directions that should be taken up by future research.
First, it is desirable to characterize more systematically under which parameter con-
stellations the grand coalition will not form, and, ideally, to describe all equilibria
that might arise in the game. Second, the problem of lobbyists with divergent inter-
ests deserves further attention. While, for some matters, there may only be one
dominant ‘type’ of lobbyists that has a particularly high stake in the issue, other
issues provoke activity by different ‘types’ of lobbyists who oppose each other
to varying degrees (e.g., the bio engineering industry and consumer food associ-
ations). The effects of heterogeneity in lobbyists’ preferences, up to the point of
fully opposite interests, on the formation of lobby cartels seem a very challenging
topic.
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