


Studies in Choice and Welfare

Editor-in-Chief

M. Salles, France

Series Editors

P.K. Pattanaik, USA
K. Suzumura, Japan

For further volumes:

http://www.springer.com/series/6869



.



William V. Gehrlein l Dominique Lepelley

Voting Paradoxes
and Group Coherence

The Condorcet Efficiency of Voting Rules



Professor William V. Gehrlein
Department of Business Administration
Alfred Lerner College
of Business & Economics
University of Delaware
303 Alfred Lerner Hall
Newark Delaware 19716
USA
wvg@udel.edu

Professor Dominique Lepelley
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Preface

An extraordinary amount of research has been conducted on the general topic of

Voting Paradoxes. It has been studied for over two centuries by philosophers,

mathematicians, economists, political scientists and other interested people from

many different backgrounds. It has fascinated numerous people to think about the

very strange and counterintuitive outcomes that might possibly be observed when a

group of decision makers, or voters, takes on the task of selecting a winning

candidate from a set of available candidates. Books have been written to describe

many of these paradoxical outcomes and to categorize them according to the types

of unusual behaviors that they display.

The most famous of these paradoxical outcomes is Condorcet’s Paradox, or the

Condorcet Effect, which is named after the renowned eighteenth century French

mathematician-philosopher who formally described the phenomenon. Condorcet

wrote at length about the possibility that cyclical majorities on pairs of candidates

might occur, and he made some attempts to assess the likelihood that such an

outcome might happen. Condorcet was also adamant in his assertion that if some

candidate, that we call a Pairwise Majority Rule Winner (PMRW), would be

capable of defeating each of the other candidates on the basis of paired comparisons

by majority rule, then that candidate should be selected as representing the best

choice according to the voters’ preferences. As a result, this principle has become

known as the Condorcet Criterion.

Much effort has been expended since Condorcet’s early work to obtain probabil-

ity representations for the likelihood that voting paradoxes will be observed in

election settings. The basic motivation has been to determine if these possible

paradoxical events might actually pose real threats to elections. The level of sophis-

tication of the techniques that have been used to assess the probability that voting

paradoxes will be observed has advanced at a very significant rate in recent years.

These advances have allowed for the introduction of new dimensions into the formal

probability representations that can be obtained. These new dimensions specifically

allow for the consideration of the degree to which a group of decision makers, or

voters, displays various measures of group mutual coherence. This led to the
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ultimate conclusion that while Condorcet’s Paradox is a fascinating concept to think

about, it should actually be a rare event in actual election settings with a small

number of candidates, whenever a group of voters displays any significant level of

groupmutual coherence for any of a number of possiblemeasures of such coherence.

Given that as a starting point, we began this study with two objectives in mind.

First, it was of interest to investigate other voting paradoxes to determine if they too

would suffer the same fate of being shown to be interesting phenomena to study,

while having very little chance of ever being observed in reality. The second

objective resulted from the fact that since Condorcet’s Paradox should be a relatively

rare event, there is a high probability that a PMRWwill exist, to make the Condorcet

Criterion very relevant. We therefore wanted to investigate the propensity of

common voting rules to elect the PMRW, with an emphasis on an analysis of the

impact that various levels of group mutual coherence might have on that outcome.

Our goal throughout was to integrate the theoretical results that we were

obtaining from formal probability representations with empirical results from

other studies. Some voting paradoxes are definitely more paradoxical than others,

and it obviously can not be shown that all voting paradoxes should be very rare

events. However, the more extreme paradoxes are generally found to pose very

little threat to actual elections, in agreement with empirical findings. The study of

the propensities of common voting rules to meet the Condorcet Criterion produces

mixed results. Most voting rules can perform very well, depending upon the model

that describes the mechanism with which group mutual coherence is attained.

However, it is found that while Borda Rule is not always the most effective voting

rule for selecting the PMRW in all scenarios, it is resistant to the potential problem

of performing very poorly. Moreover, scenarios do exist for all other common

voting rules in which the possible outcome of very poor performance is a significant

issue. Borda Rule is also found to have a number of very interesting additional

properties, to make it a very good choice as a voting rule. This all leads us to suggest

the Borda Compromise position, to avoid the possibility of poor performance with

other voting rules, when nothing is known a priori about the general structure of

preferences for a group of voters.

A significant effort was made in our literature search to include references to all

work that is directly related to the specific topic of interest. Apologies are extended

in advance if we accidently overlooked some relevant related studies. On a personal

note, Gehrlein wishes to extend sincere gratitude to the many people who have been

supportive and encouraging through the long course of this project. This particularly

includes his wife Barbara Eller, who has been the most supportive and encouraging

of all. Lepelley is very grateful to Maurice Salles for introducing him to the

wonderful world of Voting Theory, to Bill Gehrlein for his trust and to his wife

Françoise for her constant support and patience throughout these last 35 years.

Newark, DE, USA William V. Gehrlein

La Réunion Island, FRANCE Dominique Lepelley

September 2010
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Chapter 1

Voting Paradoxes and Their Probabilities

1.1 Introduction

An extraordinary amount of research effort has been dedicated to the application of

formal mathematical modeling techniques to the analysis of the question: “How

should a group of individual decision-makers go about the process of selecting

some alternative that can be viewed as being the best among a set of available

alternatives?” Any group decision-making situation of this type can be viewed in

the context of an election in which the available alternatives correspond to the

candidates in the election, and where the alternative that is selected as the overall

best corresponds to the winning candidate in the election. The individual decision-

makers within the group are consequently acting as the voters in the election

scenario. The first scholars to analyze such voting situations with formal mathe-

matical modeling techniques were the eighteenth century contemporary French

mathematician-philosophers Jean Charles de Borda and Marie Jean Antoine Nicolas

Caritat, the Marquis de Condorcet. Thus, the mathematical analysis of this problem

has a very long history.

The process of determining how groups of individual decision makers might go

about selecting an overall best alternative in different situations is consistently

discussed in the context of election procedures throughout this study. However, it is

noted that a strong link between elections and general decision-making situations

can be forged by observing that the same election procedures that we shall discuss

later are used in many actual group decision-making studies, including: forestry

management (Kangas et al. 2006; Palander and Laukkanen 2006), land use man-

agement (McDaniels and Thomas 1999), water resource management (Rosen and

Sexton 1993; D’Angelo et al. 1998) and the evaluation of engineering designs

(Dyer and Miles 1976; Dym et al. 2002).

Our attention is typically restricted to elections in which each voter has the same

level of impact on the voting process, so that no subgroup of voters has more

influence on the outcome of the voting process than does any other subgroup with

the same number of voters once individual voter’s preferences on candidates have

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_1,
# Springer-Verlag Berlin Heidelberg 2011
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been formed. This does not prohibit the possibility that some individuals might be

more persuasive than others in arguing for their particular viewpoint during prelim-

inary debate before voting, but once the individual voters have determined their

particular preferences on the candidates, each voter will then have the same degree

of influence on the election outcome.

The determination of the winner of an election is a very simple task for any

situation in which all voters have the same most preferred candidate, and all voters

will get their most preferred outcome if that candidate is selected as the winner.

However, it should be expected that there will almost always be some disagreement

among the voters in an election as to which candidate is the best for selection as the

winner, so that it will not be possible for each of the individual voters to get their

most preferred outcome. The determination of the particular candidate that best

represents the overall most preferred candidate of the group becomes a much more

difficult problem to address in that case, since many different criteria can be used to

measure the degree of how well each candidate represents the position of being the

overall most preferred candidate of the group.

Any group of voters will almost certainly arrive at the conclusion of applying the

notion of majority rule when there are only two candidates, so that the candidate

that is more preferred by the greater number of voters will be selected as the winner.

A sense of fairness suggests that the group should select that candidate, in order to

provide the better outcome for the most voters with our assumption of equal voter

influence in the process. An extensive analysis of the issue of the fairness of

majority rule voting was developed by Rousseau (1762), and Rousseau’s arguments

are summarized in Young (1988).

Some writers have presented arguments that oppose the notion of the basic

fairness that results from implementing majority rule, and these opposing argu-

ments are typically centered on the fact that majority rule ignores the intensity of

preferences of voters. Don Joseph Isadore Morales of Spain wrote a paper after

reading about some work of Jean Charles de Borda (Borda 1784) that ignored

intensity of preference in voting procedures, and the content of Morales’ work is

discussed in Daunou (1803). One of Morales’ arguments was that situations could

exist in which there is a minority group of voters who have a very strong preference

that an issue should be adopted, while the majority of voters are marginally opposed

to having it adopted. If the sizes of the two voting groups were nearly equal in such

a case, Morales argues that the strong preference of the minority should outweigh

the majority opinion. This leads to the conclusion that voting procedures should ask

the individual voters to report some measure of their degree of preference for

candidates, as opposed to asking for simple approve or disapprove responses.

We follow the same direction as most other researchers in this area and ignore

the issue of intensity of preference. Vickery (1960) summarizes the logic behind

this decision by noting that most voters have significant problems simply in

correctly determining any actual differences that exist between candidates, without

even considering the additional complexity that would result for voting systems that

attempt to evaluate the strength of preference of individual voters. However, the

argument about the appropriateness of ignoring intensity of individual voter’s
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preferences is still not fully resolved (Tullock 1959; Ward 1961; Downs 1961;

Bordley 1986; Saari 1995a; Baharad and Nitzan 2002).

By ignoring the issue of intensity of preference, we are in complete agreement

with ideas that are originally proposed by Condorcet (Condorcet 1788a), where it is

stressed that any election procedure must be kept as simple as possible, with only a

series of simple ‘yes’ or ‘no’ responses being required from voters. Condorcet’s

ideas in this particular area were a definite precursor to the notions that were

expressed above from Vickery (1960).

1.2 The Case of More than Two Candidates

The basic concept of majority rule can take on different interpretations when more

than two candidates are being considered, making the problem of selecting the

winner much more complicated. Borda and Condorcet found that very counterintu-

itive election outcomes could be observed when these different interpretations of

majority rule are used for elections with more than two candidates, and these

possible unusual occurrences in voting events are referred to as voting paradoxes.
To develop formal definitions of these different interpretations of majority rule

with more than two candidates, we start by defining some restrictions on the

preferences that rational individual voters might have on candidates. Suppose that

three candidates, A;B;Cf g, are available for consideration in an election, and let

A � B denote the outcome that a given individual voter prefers Candidate A to

Candidate B. A voter’s preferences on pairs of candidates from a set of candidates

are complete preferences if such a preference relation exists on each of the possible
pairs of candidates. Since either A � B or B � A for all pairs of candidates like A
and B when an individual voter’s preferences are complete, no voter indifference is

allowed to exist between any two candidates. We assume that individual voter

preferences are complete for now, but this assumption will be relaxed later to allow

for some voter indifference between candidates.

It is also assumed that each of the individual voters has transitive preferences on
the candidates. Transitivity is a very commonly used requirement in the definition

of rational behavior in the context of individual voter’s preferences. If a given voter

has preferences on pairs of candidates with A � B and B � C, then transitivity

requires that this voter must also have A � C. Transitivity prevents the existence of
a situation in which any voter might respond in a cyclic fashion, such as A � B,
B � C and C � A. Condorcet (1785a) makes reference to the possibility that such

cyclic preferences might exist as a “contradiction of terms”, and Condorcet (1788a)

later stresses the importance of developing voting models to “make such absurdities

impossible.” The use of the assumption of transitivity as one of the standards for

rationality for individual voter’s preferences has nearly universal acceptance.

However, just as in the earlier discussion of the general belief that intensity of

preferences should play no role in majority rule voting, some studies have been

conducted to focus on the development of individual preference models to explain
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why it might occasionally be reasonable to expect intransitive individual prefer-

ences. Gehrlein (1990a, 1994) presents surveys of this work.

Individual voter preferences on candidates that are both complete and transitive

are linear preference rankings, and Fig. 1.1 shows each of the six possible linear

preference rankings that each voter might have in a three-candidate election.

Here, ni denotes the number of voters that have the associated linear preference

ranking on the three candidates, so that n1 voters all have individual preferences

with A � B � C, along with A � C from the assumption of transitivity. Let n define
the total number of voters, with n ¼ P6

i¼1 ni. A voting situation, n, denotes any

particular combination of ni
0s that sum to n. Voting situations just report the ni

values that are associated with each possible individual preference ranking for a

given election, without specifying the preferences of any individual voter. A voter
preference profile, or voter profile, gives a complete list that shows the specific

linear preference order that is held by each individual voter. A voting situation can

be obtained directly from a voter profile simply by determining the number of

voters within the profile that have each of the possible linear preference rankings.

As a result, voters’ preferences are not anonymous in the case of a voter profile, but

they are in a voting situation.

There are two different ways that we use to extend the notion of majority rule to

the case of more than two candidates. The most obvious of these extensions is

widely known as Plurality Rule (PR). Each voter casts a vote for his or her most

preferred candidate with PR, and the election winner is the candidate who receives

the greatest number of votes. Let APB denote the event that A beats B by PR.

Assuming that all of the voters will cast votes in agreement with their true

preferences, A will be the PR winner of in a three-candidate election if both APB
[ n1 þ n2 > n3 þ n5] and APC [ n1 þ n2 > n4 þ n6]. Voters will always be assumed

to vote in accordance with their true preferences throughout this study.

Borda (1784) considers the second extension of majority rule to the case of

three-candidate elections by looking at the basic majority rule relation as it is

applied to pairs of candidates. Let AMB denote the event that A defeats B by

Pairwise Majority Rule (PMR) when only the preferences on the pair of candi-

dates A and B are considered in voters’ preference rankings, with the relative

position of C being completely ignored. Using the possible preference rankings

on three candidates that are given in Fig. 1.1, it follows directly that AMB
if n1 þ n2þ n4 > n3 þ n5 þ n6, AMC if n1 þ n2 þ n3 > n4 þ n5 þ n6, and BMC if

n1 þ n3 þ n5 > n2 þ n4 þ n6. Then, Candidate A will be the winner by PMR, or the

Pairwise Majority Rule Winner (PMRW), for the three-candidate case when both

AMB and AMC. The PMRW is commonly referred to as the Condorcet Winner
in the literature, since Condorcet was a very strong advocate of the argument that

the PMRW should always be selected as the winner of an election. If voters’

A A B C B C
B C A A C B
C B C B A A
n1 n2 n3 n4 n5 n6

Fig. 1.1 The six possible

linear preference rankings on

three candidates
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preferences in a voting situation are such that both AMC and BMC, then C is the

Pairwise Majority Rule Loser (PMRL) for the three-candidate case. The definitions
of PMR, PMRW and PMRL are extended in the obvious fashion when there are

more than three candidates in an election. It is possible that a PMR tie can exist on a

pair of candidates when n is even, and such ties are not considered with the

definition of PMR that is given above, to make this definition refer to a Strict
PMR, Strict PMRW and Strict PMRL.

Both Borda and Condorcet made some fascinating mathematically based obser-

vations about some of the possible paradoxical results that can be observed when

more than two candidates are being considered in voting situations with these

definitions of PR and PMR. These paradoxical results are discussed in detail in

the next section as part of a general overview of the many different types of voting

paradoxes that can be observed.

1.3 Voting Paradoxes

Many surveys of voting paradoxes exist in the literature (Fishburn 1974a; Brams

1976; Niemi and Riker 1976; Petit and Térouanne 1987; Nurmi 1998). Nurmi

(1999) categorizes voting paradoxes into four groups: Incompatibility Paradoxes,

Monotonicity Paradoxes, Choice Set Paradoxes and Representation Paradoxes.

These results are summarized in the context of earlier discussion, following Gehrlein

and Lepelley (2004), with some additional results. Representation Paradoxes that

are presented in Nurmi (1999) are not directly related to the topic of the current

study, so they are not discussed. Most of the paradoxes that are mentioned below

will be discussed in detail later in this study. For now, we only give a brief overview

of the types of voting paradoxes that can be observed.

1.3.1 Incompatibility Paradoxes

Incompatibility Paradoxes represent voting situations in which there are multiple

reasonable definitions as to which candidate should be viewed as being the ‘best’

possible candidate among the set of available candidates, and where these defini-

tions cannot be satisfied simultaneously by a voting rule. When we apply this notion

with the two reasonable definitions of having the ‘best’ candidate being determined

by the use of PMR to obtain the PMRW and the use of PR to determine the winner,

three classic incompatibility paradoxes can be observed.

1.3.1.1 Condorcet’s Paradox

Condorcet’s Paradox is developed in Condorcet (1785b) with a famous example of

a voting situation with 60 voters on three candidates, as shown in Fig. 1.2.
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Condorcet notes a very strange outcome, which he referred to as a “contradictory
system”, when PMR is used with this voting situation. In particular, we find that PMR

comparisons lead to: AMB (33–27), BMC (42–18), and CMA (35–25). So, there is an

intransitive cycle on the PMR relation on the three candidates, with no candidate

emerging as being superior to each of the remaining candidates. Given Condorcet’s

strong arguments that the PMRW should always be selected as the winner of

an election, we are left with a difficult question in this case: ‘Which candidate should

be selected as the winner, when a majority of voters would prefer that another

candidate should be selected as the winner, regardless of which candidate you select?’

Condorcet (1785c) continues with his analysis of intransitive PMR voting

situations, to show that there might be a PMRW with more than three candidates,

while a PMR cycle might exist among some subset of the remaining candidates.

Thus, a distinction is made between the possibility that there is a PMRW and the

possibility that the PMR is completely transitive over all candidates. With only

three candidates, the existence of a PMRW ensures that the PMR ranking is

transitive for odd n. Condorcet notes that the possible existence of this situation

on more than three candidates is of no consequence to the superiority of the PMRW

among the candidates, as long as only one candidate is being elected.

It was noted earlier that Condorcet was quite adamant in his argument that a lack

of transitivity of preference for individual voters was so contradictory, that a system

must be used to eliminate “such absurdities”. However, after eliminating intransi-

tivity from the preferences of individual voters, we find that collective choice of

voters with PMR still might produce intransitive results, suggesting that an irratio-

nal response can exist in the collective choice of a set of rational voters.

An exhaustive survey of research on Condorcet’s Paradox is presented in Gehrlein

(2006a) and much of what we present on that particular topic in the current study is

taken from that source.

1.3.1.2 Borda’s Paradox

Borda’s Paradox results from a very interesting observation regarding possible

conflicts between the outcomes of using PMR and PR to determine the winner of an

election in Borda (1784). Borda’s original example of this phenomenon uses the

voting situation in Fig. 1.3 for 21 voters with linear preferences in a three-candidate

election.

If PR is used with the voting situation in Fig. 1.3, APB (8–7), APC (8–6) and

BPC (7–6) to give a linear ranking by PR, with APBPC. A very different result is

A

B

C

n1 = 23

B

A

C

n3 = 2

B

C

A

n4 = 17

C

A

B

n5 = 10

C

B

A

n6 = 8

Fig. 1.2 A voting situation

showing a PMR cycle from

Condorcet (1785b)
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observed using PMR. Here, BMA (13–8), CMA (13–8) and CMB (13–8) to give a

linear PMR ranking, with CMBMA. With this particular voting situation, PR and

PMR reverse the election rankings on the three candidates. We refer to this specific

phenomenon as representing an occurrence of a Strict Borda Paradox.
Borda was particularly distressed by the fact that the PMRL could be chosen as

the winner by PR, leading to his suggestion that PR should never be used. Borda

(1784) also suggests that Candidate C, the PMRW, “is really the favourite” for the

voting situation in Fig. 1.3, in agreement with the arguments of Condorcet. How-

ever, the primary concern that is expressed in Borda’s work is the possibility of the

negative outcome that the PMRL could be selected as the winner by PR. We define

a Strong Borda Paradox as a situation in which PR elects the PMRL, without

necessarily having a complete reversal in PR and PMR rankings. The least stringent

form of this general paradox is a Weak Borda Paradox, in which PR reverses the

rankings by PMR on some pair of candidates, without necessarily electing the

PMRL as the overall PR winner.

Borda (1784) proposed an election procedure to be used in order to deal with the

possibility that various forms of Borda’s Paradox might occur. The procedure that

he referred to as “election by order of merit” has come to be widely known as Borda
Rule (BR). Each voter starts the implementation of BR by listing their respective

preference ranking on the candidates, where a rank of one refers to a voter’s least

preferred candidate and a rank of m refers to the voter’s most preferred candidate in

an m-candidate election. Then, each voter’s most preferred candidate is given

aþ m� 1ð Þb points, the second most preferred candidate is given aþ m� 2ð Þb
points, and so on until the least preferred candidate is given aþ m� mð Þb points.

The election winner is determined by summing the points that each candidate

receives from all of the voters, and declaring the candidate with the most points

as the winner. Borda suggests using the particular weighting scheme with a¼ b ¼ 1,

so that the number of points that are awarded to a candidate by a given voter is

equivalent to the rank that the candidate has in that voter’s preference ranking on

the candidates.

For a general voting situation, as described in Fig. 1.1, with n voters and three

candidates, the Borda Score for A, B and C under BR with a weighting scheme with

a ¼ b ¼ 1 would respectively be BS Að Þ, BS Bð Þ and BS Cð Þ with:

BS Að Þ ¼ 3 n1 þ n2ð Þ þ 2 n3 þ n4ð Þ þ 1 n5 þ n6ð Þ
BS Bð Þ ¼ 3 n3 þ n5ð Þ þ 2 n1 þ n6ð Þ þ 1 n2 þ n4ð Þ
BS Cð Þ ¼ 3 n4 þ n6ð Þ þ 2 n2 þ n5ð Þ þ 1 n1 þ n3ð Þ: (1.1)

A A B C

B C C B

C B A A

n1 = 1 n2 = 7 n5 = 7 n6 = 6

Fig. 1.3 An example voting

situation displaying Borda’s

Paradox from Borda (1784)
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For the particular example that is taken from Borda (1784) in Fig. 1.3, we obtain

BS Cð Þ ¼ 47, BS Bð Þ ¼ 42, and BS Að Þ ¼ 37. If we let ABB denote the event that A
beats B by BR, we get a linear ranking on the candidates, with CBBBA. This
ranking of candidates by BR is now in the reverse order of the ranking with PR, and

it is in perfect agreement with the ranking that was obtained by PMR. Borda (1784)

never clearly stated that the ranking with BR would always be the same as the

ranking with PMR, and this is not true for all voting situations. It is also obvious that

the definition of the Borda Score for any candidate in (1.1) is effectively equivalent

to using a procedure that simply counts the total number of instances in which this

given candidate is preferred to other candidates in voter preference rankings.

1.3.1.3 Condorcet’s Other Paradox

Condorcet (1785c) develops the general notion of aWeighted Scoring Rule (WSR),
and BR is a special case of this type of rule. A general WSR gives some number of

points to candidates according to their relative position within each individual

voter’s preference ranking. BR with a ¼ b ¼ 1 is a form of a WSR that assigns

weights of 3, 2 and 1 respectively for each first, second and third place ranking

in voters’ preferences. The winner is then determined as the candidate who receives

the most total points. For three-candidate elections, we consistently define a

WSR as one that assigns weights of 1, l and 0 for each first, second and third

place ranking in voters’ preferences. We restrict 0 � l � 1 since it would not make

sense to award more points to the middle ranked candidate in a voter’s preference

ranking than to the most preferred candidate in the ranking, or to award fewer points

to the middle ranked candidate than to the least preferred candidate. It is very

simple to show that BR is completely equivalent to our definition of a WSR

with l ¼ 1=2.
Condorcet (1785c) gives the example voting situation in Fig. 1.4 to show a

phenomenon that Fishburn (1974a) refers to as Condorcet’s Other Paradox.
Condorcet notes that AMB (41-40) and AMC (61-20) in this voting situation, so

that Candidate A is the PMRW, and then goes on to compute Score A; lð Þ and

Score B; lð Þ for the WSR with weights 1, l and 0, with:

Score A; lð Þ ¼ 1�31þ l�39þ 0�11
Score B; lð Þ ¼ 1�39þ l�31þ 0�11: (1.2)

A A B C B C
B C A A C B
C B C B A A

n1 = 30 n3 = 29 n4 = 10 n5 = 10 n6 = 1n2 = 1

Fig. 1.4 A voting situation

showing Condorcet’s Other

Paradox from Condorcet

(1785c)
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In order for Candidate A to be elected by this WSR, we must have:

Score A; lð Þ> Score B; lð Þ
31þ 39l> 39þ 31l

8l> 8

l> 1: (1.3)

This contradicts our definition of a WSR, so that no WSR, including BR, can

elect the PMRW in this example, which is Condorcet’s Other Paradox.

1.3.2 Monotonicity Paradoxes

Monotonicity Paradoxes represent situations in which some reasonable definition

has been established to determine which candidate should be viewed as being the

‘best’ available candidate, and where a voting rule has been selected and that voting

rule is not monotonic.Monotonicity of a voting rule requires consistency of election
outcomes as voters’ preferences change. That is, increased support (decreased

support) for a candidate in voters’ preferences should not be detrimental (benefi-

cial) to that candidate in the election outcome.

1.3.2.1 No Show Paradox

The No Show Paradox is developed in Brams and Fishburn (1983a), with an

example in which some subset of voters chooses not to participate in an election,

and then prefers the resulting winner to the winner that would have been selected if

they had actually participated in the election. The winner of an election is deter-

mined by Negative Plurality Elimination Rule (NPER) in a three-candidate election
in this example. A two-stage election procedure is needed to implement NPER. In

the first stage, voters cast votes for their two more preferred candidates. The

candidate that receives the fewest number of votes is then eliminated, and the

ultimate winner is selected in the second stage by using PMR on the remaining two

candidates. The voting rule that is used in the first stage is referred to as Negative
Plurality Rule (NPR) since it is equivalent to having each voter cast a negative vote
against their least preferred candidate, with the candidate who receives the most

negative votes being eliminated.

Consider a voting situation with 21 voters and three candidates A;B;Cf g, as
shown in Fig. 1.5 from Brams and Fishburn (1983a).

In the first stage of voting with NPR, Candidates A, B, and C receive 15, 14 and

13 votes respectively. Candidate C is therefore eliminated in the first stage and then

BMA by a vote of 11 to 10 in the second stage, to select B as the overall winner.

1.3 Voting Paradoxes 9



Voters in this voting situation with the linear preference ranking A � B � C
would not get their most preferred candidate, since B is the election winner.

Suppose that two of these particular voters had not participated in this election

for some reason. The voting situation that would have resulted is shown in Fig. 1.6.

In the first stage of voting on this modified voting situation with NPR with

19 voters, Candidates A, B, and C receive 13, 12 and 13 votes respectively.

Candidate B is eliminated in the first stage and then AMC by a vote of eleven to

eight in the second stage. Since the winner in this modified voting situation is A, the
two voters with linear preferences A � B � C who did not participate will now

have their most preferred candidate chosen as the winner. These two voters have

therefore obtained a more preferred outcome from the election with NPER by not

participating in the election, which violates the definition of monotonicity.

NPER does not necessarily elect the PMRW. However, Moulin (1988a) proved

that any election procedure that does meet the condition that it must select the

PMRW, when one exists on four or more candidates, must be subject to

the possibility that the No Show Paradox can be observed. Pérez (2001) produces

the same general observation as Moulin (1988) while considering two variations of

this paradox. Ray (1986) had previously developed the notion of the No Show

Paradox in the context of a less commonly used voting rule known as Single

Transferable Vote.

1.3.2.2 Additional Support Paradox

The Additional Support Paradox reverses the scenario of the No Show Paradox.

In this case, a specified candidate will win with some voting rule for a given voting

situation. Then, a new voting situation is created from the original voting situation

in which some voters increase their support for the winning candidate by improving

the position of that candidate in their preference rankings, with all other things

remaining the same. Then, the voting rule winner in the modified voting situation is

no longer the original winning candidate. This situation violates the notion of

monotonicity, and this paradox is discussed in Richelson (1979), Straffin (1980),

Fishburn (1982), and Nurmi (1987).

A A B C B C
B C A A C B
C B C B A A

n1 = 3 n2 = 5 n3 = 5 n4 = 2 n5 = 3 n6 = 3

Fig. 1.5 An example voting

situation from Brams and

Fishburn (1983a)
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n1 = 1

A

C
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n2 = 5

B

A
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n3 = 5

C

A
B

n4 = 2

B

C
A

n5 = 3

C

B
A

n6 = 3

Fig. 1.6 The modified

example voting situation from

Brams and Fishburn (1983a)
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1.3.3 Choice Set Variance Paradoxes

Choice Set Variance Paradoxes represent situations in which a series of proposi-

tions are put before voters, where each individual issue will be approved or

disapproved by majority rule voting. A paradoxical result then arises when the

overall final election outcome on the propositions represents a result that is somehow

inconsistent with the underlying preferences of the voters.

1.3.3.1 Ostrogorski’s Paradox

Suppose that there are m independent issues that are to be presented to n voters and
that each individual issue will be approved or disapproved by majority rule voting.

There are two parties, R and L, that have opposing positions on each of the issues.

Each voter therefore has a position that is in agreement with either Party R or

Party L on each individual issue, but each voter does not necessarily agree with the

position of the same party on every issue. A voter is considered to be a member of

Party R (Party L) if their individual position on issues is in agreement with Party R
(Party L) over a majority of the issues that are being considered. The outcome of

voting on each issue will be determined to be in agreement Party R, or Party L,
based on the majority rule outcome of voting on that issue. A Strict Ostrogorski
Paradox occurs if a majority of voters have preferences that make them members of

Party R (Party L), while Party L (Party R) has an election outcome on every issue

that is in agreement with its position. A Weak Ostrogorski Paradox occurs if a

majority of voters have preferences to make them members of Party R (Party L),
while Party L (Party R) has a majority of election outcomes on issues that are in

agreement with its position. This paradox was first presented in Ostrogorski (1902)

and it will be discussed in detail in Chap. 4.

1.3.3.2 Majority Paradox

As in the description of Ostrogorski’s Paradox, there are m issues that will be

presented to n voters, and each issue will be approved or disapproved by majority

rule voting. Parties R and L have opposing positions on each issue, and each voter

has a position on each issue that is in agreement with either Party R or Party L. Each
voter does not necessarily agree with the position of the same party on every issue.

The outcome of voting on each issue will be in agreement Party R or Party L, based
on the majority rule voting. Party R (Party L) is theOverall Majority Party (OMP) if
there are more R (L) entries than L (R) entries in the mn different party position

associations for preferences of the voters over all of the issues.

TheMajority Paradox occurs if the OMP is selected as the winner in a minority

of elections on issues. There can not be a Strict Majority Paradox, as in the case of

Ostrogorski’s Paradox, since if any party is the winner by majority rule for every
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issue, then that same party must also be the OMP. The Majority Paradox was

presented in Feix et al. (2004) and it will be discussed in detail in Chap. 4.

1.3.3.3 Paradox of Multiple Elections

The Paradox of Multiple Elections was first presented in Brams et al. (1998), where

there are m independent issues that are to be presented to n voters in a series of

elections. Parties R and L have opposing positions on each of the issues, and each

voter has a position on each issue that is in agreement with either Party R or Party L.
Each voter does not necessarily agree with the position of the same party on every

issue. The outcome of voting on each issue is determined to be in agreement Party R
or Party L, based on majority rule voting. The Paradox of Multiple Elections occurs

if there is not at least one voter who has preferences that are in agreement with Party

L – Party R positions on each of the individual issues that are in agreement with final

Party R – Party L position association of the majority rule vote outcomes on issues.

1.3.3.4 Consistency Condition Paradox

The Consistency Paradox occurs when the winner by some voting rule for a given

voting situation is not the same as the winner by the same rule on a subset of

candidates that includes the original winner. The voters’ preference rankings on the

subset of candidates in the modified voting situation are assumed to remain the

same as their relative ranking in the original voting situation. Variations of this

paradox will be considered in detail in Chap. 7.

1.4 Empirical Evidence of the Existence of Voting Paradoxes

The voting paradox descriptions that are summarized above indicate that there is a

distinct possibility that very counterintuitive election outcomes might be observed

and create disruptions to elections. It is only natural that many empirical studies

have been conducted to determine if any of these voting paradoxes pose a realistic

threat to real election procedures.

1.4.1 Empirical Evidence of Condorcet’s Paradox

Condorcet’s Paradox has received the great majority of attention in this line of

investigation, since it results in the arguably most counterintuitive election out-

come. Table 1.1 summarizes the results of numerous empirical studies that were

discussed in detail in Gehrlein (2006a), along with some more recent results.
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The results in this table require that Strict PMR relations hold for the existence of a

PMRW and for PMR transitivity.

To interpret the results in Table 1.1, we note for example that the study by

Chamberlin et al. (1984) considers five different elections with five candidates in

each election. There were at least 11000 voters in each election and the results

showed that a PMRW existed in each case and that PMR was completely transitive

in each case. The study in Niemi (1970) consisted of an examination of 18 elections,

Table 1.1 A summary of empirical studies looking for Condorcet’s Paradox

Source Number of

Elections

Candidates

m
Voters

n
Strict

PMRW

Transitive

PMR

Flood (1955) 1 16 21 Yes No (1)

Riker (1958) 1 4 255 No (1) No (1)

Riker (1965) 1 3 426 No (1) No (1)

Niemi (1970) 18 3–6 81–463 No (4) No (4)

Blydenburgh (1971) 2 3 386 No (1) No (1)

Fishburn (1973a) 1 5 175 Yes Yes

Bjurulf and Niemi (1978) 1 3 87 No (1) No (1)

Dyer and Miles (1976) 1 36 10 Yes No (1)

Riker (1982) 2 3–4 172þ No (2) No (2)

Toda et al. (1982) 1 6 5281 Yes Yes

Dobra (1983) 32 3–37 4–27 No (4) No (?)

Chamberlin et al. (1984) 5 5 11000þ Yes Yes

Dietz and Goodman (1987) 1 4 Large Yes Yes

Fishburn and Little (1988) 3 3–5 1500þ Yes Yes

Rosen and Sexton (1993) 1 4 31 Yes Yes

Radcliff (1994) 4 3 Large Yes Yes

Abramson et al. (1995) 4 3 Large Yes Yes

Gaubatz (1995) 1 4 Large No (1) No (1)

Browne and Hamm (1996) 1 3 621 No (1) No (1)

Lagerspetz (1997) 10 3–4 300 No (2) No (2)

Beck (1997) 3 4–8 20 No (1) No (1)

Flanagan (1997) 1 3 224 No (1) No (1)

Morse (1997) 1 4 52 No (1) No (1)

Taylor (1997) 1 3 Large Yes Yes

Hsieh et al. (1997) 1 3 450 Yes Yes

Taplin (1997) 1 4 12 Yes Yes

Regenwetter and Grofman

(1998)

7 3 Large No (1) No (1)

Truchon (1998) 24 5–9 5–23 Yes No (15)

Van Deemen and Vergunst

(1998)

4 9–13 1500 Yes Yes

Stensholt (1999a) 1 3 165 No No

Kurrild-Klitgaard (2001) 1 3 Large No No

Regenwetter et al. (2002a) 8 3 Large Yes Yes

Regenwetter et al. (2002b) 3 3 Large Yes Yes

Wilson (2003) 1 3 Large Yes Yes

Gehrlein (2004a) 2 12–18 5 Yes No (1)

Kurrild-Klitgaard (2008) 8 9–11 1000þ Yes Yes

Smith (2009) 1 4 Large No (1) No (1)
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with the number of candidates ranging from 3 to 6 and the number of voters ranging

from 81 to 463. A PMRW did not exist in four of the elections and PMR was not

completely transitive in those same four elections. Obviously, if a PMRW does not

exist for a voting situation then PMR can not be transitive for that voting situation.

The study by Truchon (1998) found that a PMRW existed for all 24 elections that

were considered, but that PMR was not transitive in 15 of these elections.

The results of Table 1.1 indicate that there is a possibility that Condorcet’s

Paradox might be observed, but that it probably is not a widespread phenomenon.

This notion is further reinforced by two factors. First, it is much more likely that an

observer would make the effort to write about examples in which they believed that

this very interesting paradox might have occurred than they are to do so when it is

not believed that such a paradox occurred.

The second major factor that has an impact on the relevance of these empirical

studies was primarily promoted by Riker (1982), who presents many historical

examples in which Condorcet’s Paradox seems to have been present. Riker argues

strongly that the existence of PMR cycles have typically been created artificially by

the introduction of amendments, by the introduction of campaign issues, or by the

misrepresentation of voters’ preferences to manipulate the outcome of an election.

Bjurulf and Niemi (1978), Chamberlin (1986), Levmore (1999), and Tullock (2000)

all agree with Riker, to varying degrees, that PMR cycles are typically contrived.

However, the ability of individuals to create artificial PMR cycles to the degree

that Riker suggests is disputed. For example, Maske and Durden (2003) present a

survey of some opposing viewpoints to Riker’s arguments. Other studies, such as

Browne and Hamm (1996), clearly state that no evidence was found of strategic

misrepresentation of any kind in the actual situations for which a PMR cycle was

found. An analysis of the studies in Table 1.1 also indicates that PMR cycles were

found to exist in situations in which there is no plausible reason to expect that any

type of manipulation to create PMR cycles would have been taking place. In

conclusion, these empirical studies provide very strong evidence that Condorcet’s

Paradox has been observed in some voting situations. However, it should not be

expected to be an event that occurs frequently, and the likelihood of its occurrence

is quite possibly overstated in the results of Table 1.1, for the reasons that are

noted above.

Tideman (1992) performs the most thorough study of empirical data to deter-

mine if PMR cycles ever actually exist. The results of 84 different elections that

were overseen by the Electoral Reform Society of Great Britain and Ireland are

examined in that study along with the results of three additional elections. Voters

were requested to rank all of the candidates in all cases, but they did not always do

so. Candidates that were not reported in a voter’s ranking were all listed as being

indifferent to each other, and they were all ranked at the bottom of the voter’s

preferences. The number of candidates ranged from 3 to 29 and the number of

voters ranged from nine to 3,500. There was complete transitivity, allowing for tied

PMR voting, in 61 of the 87 elections.

Tideman makes a number of very interesting general observations for the 26

remaining elections in the study for which strict PMR was not completely
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transitive. Moreover, all of these observations are totally consistent with the results

of all of the empirical studies that are summarized in Table 1.1:

l Elections with a few candidates almost always have transitive PMR orderings.
l Pairs of candidates that are ranked by a small number of voters are more likely to

be involved in a PMR cycle than pairs that are ranked by many voters.
l The size of majorities on pairs that are involved in PMR cycles tends to be small,

even after accounting for the fact that these typically involve a small number of

voters.
l Candidates that are involved in PMR cycles tend to be located near the center of

the overall PMR ranking. So, candidates that are most preferred, or most

disliked, by the electorate are not likely to be involved in PMR cycles.
l PMR cycles typically contain pairs that are ranked relatively close together in

the overall PMR ranking.

1.4.2 Empirical Evidence of Borda’s Paradox

Borda’s Paradox also is certainly counterintuitive, but the possibility of its exis-

tence is not as striking as the possibility that Condorcet’s Paradox might occur. As a

result, fewer empirical studies have been conducted in attempts to discover if any of

the forms of Borda’s Paradox that were discussed above have occurred in practice.

Table 1.2 summarizes the results of these studies, and there were a large number of

voters in all cases.

A total of 270 elections were analyzed in the studies from Table 1.2, and the

results for the first study are obtained from combined information from Weber

(1978a) and Riker (1982). There was only one observation of a Strict Borda

Paradox, and only five of the studies that only looked at a single election showed

evidence that a Strong Borda Paradox occurred. There is much more evidence that a

Weak Borda Paradox might occur. These findings are consistent with the general

Table 1.2 Summary of empirical studies looking for Borda’s Paradox

Source Number of

Elections

Candidates

m
Strict Borda

Paradox

Strong Borda

Paradox

Weak Borda

Paradox

Weber (1978a),

Riker (1982)

1 3 No Yes Yes

Riker (1982) 1 3 No Yes Yes

Van Newenhizen

(1992)

1 3 No Yes Yes

Taylor (1997) 1 3 No Yes Yes

Colman and

Poutney (1978)

261 3 No No Yes (14)

Bezembinder

(1996)

4 7 No No Yes (?)

Niou (2001) 1 3 Yes Yes Yes
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conclusion in Fishburn (1974a), where a survey of different voting paradoxes is

given. Monte-Carlo computer simulation estimates were obtained for the likelihood

that each paradox might occur, and it was concluded that the most extreme forms of

voting paradoxes are probably very rare in practice.

All of these findings lead to the ultimate conclusion that Borda’s Paradox can

exist, although it might not be a regularly observed phenomenon. As in the case of

the empirical evidence of Condorcet’s Paradox, it is much more likely that an

observer would make the effort to write about examples in which they believed that

an interesting voting paradox might have occurred than they are to do so when it is

not believed that such a paradox occurred. So, the results in Table 1.2 are likely to

overestimate the probability that various forms of Borda’s Paradox might be

observed in practice.

1.5 Probability Representations for Voting Paradoxes

Many studies have been conducted to develop formal mathematical representations

for the probability that various voting paradoxes might be observed, and this

particular approach to the problem is the primary focus of the current study. The

history of studies of this type goes back to the work of Condorcet, who wrote the

following statement while discussing his extensive work on the analysis of election

procedures and voting paradoxes (Condorcet 1793, p. 7):

But after considering the facts, the average values or the results, we still need to determine

their probability.

The degree of sophistication that has been used in the methods that have been

developed to obtain these probability representations has evolved significantly over

the more recent decades since the work of Guilbaud (1952), which will be discussed

later. This increased degree of sophistication has largely resulted from efforts that

were being made to reconcile the predicted likelihoods of voting outcomes from

these mathematical models with the observed likelihoods of their outcomes from

empirical studies. In each of these models, different assumptions are made about the

relative likelihood that a randomly selected voter profile or voting situation will be

observed, so that various measurable characteristics of the resulting voter profiles or

voting situations that are generated by these models will change. As an ultimate

result of these studies, much has been learned about the relationship between these

measurable characteristics of voter profiles or voting situations and the probability

that different voting paradoxes will be observed.

We discuss these various mathematical modeling procedures here as they apply to

the development of probability representations for the likelihood that Condorcet’s

Paradox will be observed, since Condorcet’s Paradox has received the most atten-

tion in the literature. Surveys of much of this work are given in Gehrlein (1983,

1997). The same models will then be brought back later in the process of deve-

loping representations for the probability of observing other voting paradoxes.
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Once the notions behind these models are presented, we shall go on to consider

the distinctions between these different models and to assess what can be dis-

cerned from the results that are obtained from each. The first studies in this area

considered the likelihood that various voter profiles will be observed, so that is

where we begin.

1.5.1 Multinomial Probability Models for Voter Profiles

The probability that any given voter preference profile will be observed can be

considered to be the result of the random selection of n individual voter’s prefer-

ence rankings on the candidates. In this situation, we let p denote a six-dimensional

vector for the three-candidate case, where pi denotes the probability that a randomly

selected voter from the population of potential voters will have the corresponding

possible linear preference ranking on candidates that is shown in Fig. 1.7. That is, a

randomly selected voter will have the linear preference ranking A � B � C with

probability p1. We also make a critical assumption here that each voter’s preference

ranking on candidates is arrived at independently of the other voters’ preferences.

Following the standard methods that are used in a classical analysis of this type

of problem with probability modeling, we start with an urn that contains some total

number of balls, with each ball being one of six different colors. Each color

corresponds to one of the six possible linear preference rankings on the three

candidates. The proportions of the total number of balls of each color in the urn

are equal to their associated probabilities for the population that are specified in p.
Then, balls are sequentially drawn at random from the urn n different times, with

the selected ball being returned to the urn after its color is noted on each draw. The

random selection of balls is being done with replacement during the experiment so

that the probability of observing any particular possible preference ranking for an

individual voter does not change from draw to draw. The color of the ball that is

drawn during the ith step of this sequential drawing is used to assign the associated

linear preference ranking to the ith voter before the ball is placed back in the urn.

Following previous discussion, this procedure is used to obtain voter preference

profiles in which the preferences of each individual voter are identifiable, so that the

voter’s preferences are not anonymous.

A multinomial probability model is appropriate for use in developing represen-

tations for observing any particular given event under such an experiment. As noted

previously, the voting situation, n, that results from any given voter preference

profile with its identifiable voters can be obtained simply by determining the

A A B C B C
B C A A C B
C B C B A A
p1 p2 p3 p4 p5 p6

Fig. 1.7 Probabilities for the

six linear preference rankings

on three candidates
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number of voters in the voter preference profile that have each of the six possible

linear preference rankings. The probability that any given n will be observed from

the identifiable voters in a randomly generated voter preference profile is then given

directly by the multinomial probability n!
Q6
i¼1

p
ni
i

ni!
:

The probability that any particular voting paradox will be observed can be

obtained quite simply by enumerating all of the possible voting situations that

lead to the existence of the given paradox, and summing the associated probabilities

that each of these voting situations will be observed. For now, we restrict attention

to the probability that Condorcet’s Paradox will be observed, by considering the

probability that a Strict PMRW will exist on three candidates.

The general restrictions that are necessary for a voting situation to have Candidate

A as the strict PMRW for the case of odd n follows from earlier discussion as:

n3 þ n5 þ n6 � n� 1

2
) AMB

n4 þ n5 þ n6 � n� 1

2
) AMC: (1.4)

The restrictions that are needed for the individual ni terms to result in the

conditions in (1.4) are given by:

0 � n6 � n� 1

2

0 � n5 � n� 1

2
� n6

0 � n4 � n� 1

2
� n6 � n5

0 � n3 � n� 1

2
� n6 � n5

0 � n2 � n� n6 � n5 � n4 � n3

n1 ¼ n� n6 � n5 � n4 � n3 � n2: (1.5)

A representation for the probability, P
Af g

PMRW 3; n; pð Þ, that Candidate A is the strict

PMRW for odd n for any given p follows directly as

P
fAg
PMRWð3; n; pÞ ¼

Xn�1
2

n6¼0

Xn�1
2

�n6

n5¼0

Xn�1
2

�n6�n5

n4¼0

Xn�1
2

�n6�n5

n3¼0

Xn�n6�n5�n4�n3

n2¼0

n!
Y6
i¼1

pnii
ni!

; (1.6)

where n1 ¼ n� n6 � n5 � n4 � n3 � n2. Similar logic can then be used to find

representations for the probability that each of B and C is the PMRW. The

probability, PS
PMRW 3; n; pð Þ, that a Strict PMRW exists for a given p with n voters
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for three-candidate elections is then be obtained as the sum of these three repre-

sentations.

Gehrlein and Fishburn (1976a) develop a simpler probability representation for

PS
PMRW 3; n; pð Þ for odd n that only requires a three-summation function as:

PS
PMRW 3; n; pð Þ

¼
Xn�1
2

m1¼0

Xn�1
2

�m1

m2¼0

Xn�1
2

�m1

m3¼0

n!

m1! m2! m3! m4!

p5 þ p6ð Þm1pm2

3 pm3

4 p1 þ p2ð Þm4þ
p2 þ p4ð Þm1pm2

1 pm3

6 p3 þ p5ð Þm4þ
p1 þ p3ð Þm1pm2

5 pm3

2 p4 þ p6ð Þm4

8>><
>>:

9>>=
>>;
: (1.7)

Here, m4 ¼ n� m1 � m2 � m3. The logic that leads to the representation in (1.7)

is a straightforward extension of the representation in (1.6), and Gillett (1976, 1978)

independently developed the same result. The Dual Culture Condition and the

Impartial Culture Condition are two special cases of this general multinomial

probability model that have received significant attention in the literature.

1.5.1.1 Dual Culture Condition

The Dual Culture Condition (DC) represents a special case of p vectors with

p1 ¼ p6, p2 ¼ p5 and p3 ¼ p4. This notion comes from Gehrlein (1978), and it

represents the case in which the probability that a randomly selected voter has

any preference ranking on candidates is the same as the probability that the same

voter has the dual, or inverted, preference ranking on the candidates, as seen in

Fig. 1.7.

Let D A;Bð Þ denote the difference between the sum of the pi values for linear
preference rankings with A � B and B � A. The same definition is extended in the

obvious fashion to all pairs of candidates, so that

DðA;BÞ ¼ p1 þ p2 þ p4 � p3 � p5 � p6

DðA;CÞ ¼ p1 þ p2 þ p3 � p4 � p5 � p6

DðB;CÞ ¼ p1 þ p3 þ p5 � p2 � p4 � p6 (1.8)

When each voter’s preferences are independent of all other voters’ preferences, a

randomly selected voter will be more likely to have a preference ranking with

A � B than B � A if D A;Bð Þ> 0. And, there is a complete balance on the basis

of expected value for a randomly selected individual voter’s preferences on all

pairs of candidates, as defined in Gehrlein (2002a), when D A;Bð Þ ¼ D A;Cð Þ ¼
D B;Cð Þ ¼ 0, and this complete balance of individual voter’s preferences on all

pairs of candidates for p vectors only exists with DC.

This discussion leads to the conclusion that any results that are obtained with the

assumption of DC represent an extreme case in which no candidate has any
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expected advantage whatsoever when the preferences for a pair of candidates are

examined for a voter that is randomly selected from the population of voters. It is

important to note that this balance of preferences applies to preferences on pairs of

candidates with DC. It does not preclude the possibility that some candidates might

be ranked as most preferred, or least preferred, in the preference ranking of a

randomly selected voter with greater likelihood than some other candidate. For

example, DC applies if p1 ¼ p6 ¼ 1=2 and p2 ¼ p3 ¼ p4 ¼ p5 ¼ 0, so that A and C
must always be ranked as either most or least preferred in a randomly selected

voter’s preference ranking, while B must always be ranked in the middle.

Using the representation for PS
PMRW m; n; pð Þ in (1.7) with the definition of DC, a

representation for PS
PMRW m; n;DCð Þ for any p in the DC subset follows as:

PS
PMRW 3;n;DCð Þ¼

Xn�1
2

m1¼0

Xn�1
2

�m1

m2¼0

Xn�1
2

�m1

m3¼0

n!

m1!m2!m3!m4!

1

2
�p1

� �m1þm4

pm2þm3

1 þ

1

2
�p2

� �m1þm4

pm2þm3

2 þ

1

2
�p3

� �m1þm4

pm2þm3

3

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

:

(1.9)

1.5.1.2 Impartial Culture Condition

The Impartial Culture Condition (IC) is a refinement of DC which assumes that

pi ¼ 1=m! in an m-candidate election, so that each possible linear preference

ranking on the candidates is equally likely to represent the preferences of a

randomly selected voter. Since IC is a special case of DC, the preferences of any

given voter are independent of any other voters’ preferences, and there is a

complete expected balance of preferences on pairs of candidates for a randomly

selected voter. The additional restriction of IC beyond DC requires that there is

also a complete balance on the expected ranking position for all candidates, so

that all candidates are equally likely to be most preferred, least preferred or

middle ranked for a randomly selected voter. All of these assumptions make IC

the ‘purest’ assumption, since no candidate has any advantage whatsoever, when it

is compared to any other candidates, in the preference rankings of a randomly

selected voter.

A representation for PS
PMRW 3; n; ICð Þ for IC with odd n follows from (1.7):

PS
PMRW 3; n; ICð Þ

¼ 3n!

6n

Xn�1
2

m1¼0

Xn�1
2

�m1

m2¼0

Xn�1
2

�m1

m3¼0

2n�m2�m3

m1! m2! m3! n� m1 � m2 � m3ð Þ!; for odd n: (1.10)
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A representation for PS
PMRW 3; n; ICð Þ with even n follows directly, with:

PS
PMRW 3;n;ICð Þ

¼ 3n!

6n

Xn�2
2

m1¼0

Xn�2
2

�m1

m2¼0

Xn�2
2

�m1

m3¼0

2n�m2�m3

m1!m2!m3! n�m1�m2�m3ð Þ!; for even n: (1.11)

Computed values of PS
PMRW 3; n; ICð Þ from the representations in (1.10) and

(1.11) are listed in Table 1.3 for various n, where it is seen that PS
PMRW 3; n; ICð Þ

decreases as odd n increases and that it increases as even n increases. The rate of

convergence of PS
PMRW 3; n; ICð Þ for odd and even n is very slow as n increases,

which creates an interest in the limiting value of PS
PMRW 3; n; ICð Þ as n ! 1, and the

derivation of these limiting representations is the topic of the next section.

A significant amount of effort has been expended over many years to determine

computed values of PS
PMRW m; n; ICð Þ for the general case of m-candidate elections.

Various mathematical tricks have been used to obtain tractable representations for

this probability in many different cases. The interested reader is referred to an

extensive survey of this work in Gehrlein (2006a), as we continue to focus on the

case of three-candidate elections in the current study.

1.5.2 Multinomial Probability Models – Limiting Case for n

We start by developing a representation for the limiting probability PS
PMRW 3;1; pð Þ,

that a strict PMRW exists for three candidates in the limiting case of voters,

as n ! 1, with DC. The representation is developed by using a procedure that

Table 1.3 Computed values

of PS
PMRW 3; n; ICð Þ and

PS
PMRW 3; n; IACð Þ

n PS
PMRW 3; n; ICð Þ PS

PMRW 3; n; IACð Þ
3 0.9444 0.9643

4 0.4444 0.5714

5 0.9306 0.9524

6 0.5087 0.6494

7 0.9250 0.9470

8 0.5519 0.6993

9 0.9220 0.9441

10 0.5834 0.7343

11 0.9202 0.9423

20 0.6686 0.8199

21 0.9163 0.9391

40 0.7346 0.8735

41 0.9143 0.9380

100 – 0.9105

101 – 0.9376

1 0.9123 0.9375
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follows from work in Gehrlein (1978) that is a direct application of the Central

Limit Theorem.

Go back to the notion of the experiment in which a random voter profile is being

obtained by sequentially drawing balls from an urn, and consider the probability

that Candidate A will be the PMRW in such a randomly drawn voter preference

profile. Define two discrete variables Xi
B and Xi

C that describe two simultaneous

events that can be observed as each ball is drawn in the experiment. The probabil-

ities that are associated with the discrete outcomes for the two events for the ith ball
that is drawn are given by:

Xi
B ¼

þ1 : p1 þ p2 þ p4

�1 : p3 þ p5 þ p6

Xi
C ¼

þ1 : p1 þ p2 þ p3

�1 : p4 þ p5 þ p6: ð1:12Þ

Based on the definitions of the pi variables in Fig. 1.7, Xi
B ¼ þ1 if A � B in the

preference ranking of the ith randomly selected voter, and Xi
B ¼ �1 if B � A in the

preference ranking of that voter. Then, AMB for the n voters in the random voter

profile if
Pn
i¼1

Xi
B > 0: Similarly, AMC for the n voters if

Pn
i¼1

Xi
C > 0: Let XB denote

the average value of Xi
B, with XB ¼ Pn

i¼1

Xi
B

� �
=n. Then, A will be the strict PMRW

with the joint probability that XB > 0 and XC > 0, which can clearly be restated in

the form that A will be the PMRW in a randomly drawn voter profile with the joint

probability that XB
ffiffiffi
n

p
> 0 and XC

ffiffiffi
n

p
> 0.

As the number of voters gets very large, with n ! 1, the Central Limit

Theorem applies (Wilks 1962) and the limiting joint distribution of XB
ffiffiffi
n

p
and

XC
ffiffiffi
n

p
takes on a bivariate normal distribution. The probability that XB

ffiffiffi
n

p
and

XC
ffiffiffi
n

p
take on any specific value, including zero, in this bivariate normal distribu-

tion is zero, so the probability that A is the PMRW in a randomly drawn voter

profile can be restated as the joint probability that XB
ffiffiffi
n

p � 0 and XC
ffiffiffi
n

p � 0.

Furthermore, the Central Limit Theorem also states that the correlation between

XB
ffiffiffi
n

p
and XC

ffiffiffi
n

p
in this bivariate normal distribution is identical to the correlation

between the original variables Xi
B and Xi

C.

In order to obtain a representation for the correlation between Xi
B and Xi

C, we

start by deriving representations for the expected values, E Xi
B

� �
and E Xi

C

� �
of these

variables:

E Xi
B

� � ¼ þ1p1 þ 1p2 � 1p3 þ 1p4 � 1p5 � 1p6

E Xi
C

� � ¼ þ1p1 þ 1p2 þ 1p3 � 1p4 � 1p5 � 1p6: (1.13)
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In order to ultimately obtain a simple closed form representation for

PS
PMRW 3;1; pð Þ, later arguments will make it essential for us to be able to assume

that E Xi
B

� � ¼ E Xi
C

� � ¼ 0: Since DC requires that p1 ¼ p6; p2 ¼ p5 and p3 ¼ p4, it
follows from (1.13) that the assumption of DC is adequate to meet this condition, so

we continue the analysis with the ongoing assumption that DC applies.

The variance terms for the variables, Var Xi
B

� �
and Var Xi

C

� �
, are then obtained

by definition from

Var Xi
B

� � ¼ E Xi
B � E Xi

B

� �� �2h i
¼ E Xi

B

� �2h i

¼ þ1ð Þ2p1 þ þ1ð Þ2p2 þ �1ð Þ2p3 þ þ1ð Þ2p4 þ �1ð Þ2p5 þ �1ð Þ2p6 ¼ 1

Var Xi
C

� � ¼ E Xi
C � E Xi

C

� �� �2h i
¼ E Xi

C

� �2h i

¼ þ1ð Þ2p1 þ þ1ð Þ2p2 þ þ1ð Þ2p3 þ �1ð Þ2p4 þ �1ð Þ2p5 þ �1ð Þ2p6 ¼ 1:

(1.14)

The covariance, Cov Xi
B;X

i
C

� �
, between Xi

B and Xi
C is then obtained directly by

definition from

Cov Xi
B;X

i
C

� �¼ E Xi
B�E Xi

B

� �� �
Xi
C�E Xi

C

� �� �	 
¼ E Xi
BX

i
C

	 

¼ þ1ð Þ þ1ð Þp1þ þ1ð Þ þ1ð Þp2þ �1ð Þ þ1ð Þp3þ þ1ð Þ �1ð Þp4
þ �1ð Þ �1ð Þp5þ �1ð Þ þ1ð Þp6: (1.15)

The symmetry of DC requires that p1 þ p2 þ p3 ¼ 1=2, and after substitution

and algebraic reduction of (1.15) we obtain

Cov Xi
B;X

i
C

� � ¼ 1� 4p3: (1.16)

The coefficient of correlation, Cor Xi
B;X

i
C

� �
, between Xi

B and X
i
C is then obtained

directly by definition from

Cor Xi
B;X

i
C

� � ¼ CovðXi
B;X

i
CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXi
BÞVarðXi

CÞ
q ¼ 1� 4p3: (1.17)

All of this leads to the conclusion that the probability that Candidate A is the

PMRW in a randomly drawn voter preference profile with DC is therefore given as

the joint probability that XB
ffiffiffi
n

p � 0 and XC
ffiffiffi
n

p � 0 in a bivariate normal distribu-

tion with a coefficient of correlation that is equal to 1� 4p3.
We now make an additional observation and discover why it was necessary to

require the assumption of DC above. Since E Xi
B

� � ¼ E Xi
C

� � ¼ 0 with DC, it

follows directly that E Xi
B

ffiffiffi
n

p� � ¼ E Xi
C

ffiffiffi
n

p� � ¼ 0, and that the probability that A is
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the PMRW in a randomly drawn preference profile under DC as n ! 1 is

equivalent to the joint probability that XB
ffiffiffi
n

p � E XB
ffiffiffi
n

p� �
and XC

ffiffiffi
n

p � E XC
ffiffiffi
n

p� �
in a bivariate normal distribution with a coefficient of correlation equal to 1� 4p3.
The probability that both variables in a bivariate normal distribution are greater

than, or equal to, their respective expected values is defined as a bivariate normal

positive orthant probability. Many closed form representations are available for

general multivariate normal positive orthant probabilities for this type of distribu-

tion with up to four variables (Johnson and Kotz 1972).

Sheppard’s 1898 Theorem of Median Dichotomy (Johnson and Kotz 1972,

p. 92) applies in this particular case since it proves that the bivariate normal positive

orthant probability for a distribution with a coefficient of correlation equal to r is
1
4
þ 1

2p Sin
�1 rð Þ. A representation for the limiting probability that Candidate A is the

PMRW in a randomly drawn preference profile under DC as n ! 1 then follows

directly from Sheppard’s Theorem. Exactly the same process can be used to

develop representations for the probability that B is the PMRW and that C is the

PMRW. After accumulating all of the results, we find

PS
PMRW 3;1;DCð Þ ¼ 3

4
þ 1

2p

X3
j¼1

Sin�1 1� 4pj
� �

: (1.18)

For the special case of IC (1.18) reduces to

PS
PMRW 3;1; ICð Þ ¼ 3

4
þ 3

2p
Sin�1 1

3

� �
� 0:91226: (1.19)

This representation for IC was the first developed in Guilbaud (1952).

Table 1.4 lists computed values of PS
PMRW 3;1;DCð Þ for each value of p1, p2

and p3 ¼ 0.00(0.025)0.50 from (1.18). Columns of entries have been truncated in

this table to account for the fact that PS
PMRW 3;1;DCð Þ is invariant under permuta-

tions of p1, p2 and p3.
There is obviously a very high probability that a PMRW will exist for many of

the entries that are given in Table 1.4, to indicate that some conditions are likely to

exist that will make an occurrence of Condorcet’s Paradox quite unlikely to be

observed.

1.5.3 Probability Models for Voting Situations – Algebraic
Approach

Two methods form the basis of obtaining probability representations for voting

outcomes that are based on the direct generation of random voting situations. These

two procedures are the Impartial Anonymous Culture Condition and the Maximal

Culture Condition.
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1.5.3.1 Impartial Anonymous Culture Condition

The Impartial Anonymous Culture Condition (IAC) is based on the assumption that

each possible voting situation with n voters is equally likely to be observed. The

IAC assumption was first used in Gehrlein and Fishburn (1976b) as an extension of

work in Kuga and Nagatani (1974). Probability representations for the likelihood

that various elections outcomes are observed with IAC are obtained by using

various techniques to obtain representations for the count of the number of voting

situations in which the outcomes are observed. The initial procedure that was used

to perform these calculations was based on simple algebraic counting methods.

Gehrlein and Fishburn (1976b) developed a representation for the probability,

PS
PMRW 3; n; IACð Þ, that a strict PMRW exists for three candidates with odd n under

the IAC assumption. This process begins by developing a representation that counts

the number of voting situations, N
Af g

PMRW 3; n; IACð Þ, that meet the restrictions on the

ni’s to have Candidate A as the PMRW for odd n. It follows directly from the

discussion leading to (1.5) that N
Af g

PMRW 3; n; IACð Þ can be computed as:

N
Af g

PMRW 3;n; IACð Þ ¼
Xn�1
2

n6¼0

Xn�1
2

�n6

n5¼0

Xn�1
2

�n6�n5

n4¼0

Xn�1
2

�n6�n5

n3¼0

Xn�n6�n5�n4�n3

n2¼0

1;

for odd n: (1.20)

A simple closed form representation for N
Af g

PMRW 3; n; IACð Þ is then obtained

from (1.20) by sequentially using known relations for sums of powers of integers

Table 1.4 Computed values of PS
PMRW 3;1;DCð Þ

p1 p2

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.025 1.000 0.959 0.952 0.949 0.947 0.946 0.945 0.945 0.944 0.944 0.944

0.050 1.000 0.952 0.943 0.938 0.935 0.932 0.931 0.930 0.930 0.929 0.930

0.075 1.000 0.949 0.938 0.931 0.927 0.925 0.923 0.922 0.921 0.921 0.922

0.100 1.000 0.947 0.935 0.927 0.923 0.920 0.918 0.917 0.917 0.917 0.918

0.125 1.000 0.946 0.932 0.925 0.920 0.917 0.915 0.914 0.914 0.915 0.917

0.150 1.000 0.945 0.931 0.923 0.918 0.915 0.913 0.912 0.913 0.915 0.918

0.175 1.000 0.945 0.930 0.922 0.917 0.914 0.912 0.912 0.914 0.917 0.922

0.200 1.000 0.944 0.930 0.921 0.917 0.914 0.913 0.914 0.917 0.921 0.930

0.225 1.000 0.944 0.929 0.921 0.917 0.915 0.915 0.917 0.921 0.929 0.944

0.250 1.000 0.944 0.930 0.922 0.918 0.917 0.918 0.922 0.930 0.944 1.000

0.275 1.000 0.944 0.930 0.923 0.920 0.920 0.923 0.930 0.944 1.000

0.300 1.000 0.945 0.931 0.925 0.923 0.925 0.931 0.945 1.000

0.325 1.000 0.945 0.932 0.927 0.927 0.932 0.945 1.000

0.350 1.000 0.946 0.935 0.931 0.935 0.946 1.000

0.375 1.000 0.947 0.938 0.938 0.947 1.000

0.400 1.000 0.949 0.943 0.949 1.000

0.425 1.000 0.952 0.952 1.000

0.450 1.000 0.959 1.000

0.475 1.000 1.000

0.500 1.000
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(Selby 1965). This is a very straightforward process that can become quite

cumbersome.

The first step of the reduction process consists of an algebraic evaluation of the

last summation term in the sequence,
Pn�n6�n5�n4�n3

n2¼0

1, which is equivalent to

determining the number of distinct integer values that n2 can have in the range

0 � n2 � n� n6 � n5 � n4 � n3. The general value of this term is given quite

simply as n� n6 � n5 � n4 � n3 þ 1, so it follows that (1.20) can be reduced to:

N
Af g

PMRW 3; n; IACð Þ ¼
Xn�1
2

n6¼0

Xn�1
2

�n6

n5¼0

Xn�1
2

�n6�n5

n4¼0

Xn�1
2

�n6�n5

n3¼0

n� n6 � n5 � n4 þ 1ð Þ � n3½ �:

(1.21)

The next step is the reduction of (1.21) for the n3 summation, which has two

components. The first component is given by
Pn�1

2
� n6 � n5

n3¼0

n� n6 � n5 � n4 þ 1ð Þ,

which is equivalent to n� n6 � n5 � n4 þ 1ð Þ Pn�1
2

� n6 � n5

n3¼0

1. Following the earlier

discussion for the reduction of the n2 summation, this first component of the n3
summation reduces to n� n6 � n5 � n4 þ 1ð Þ n�1

2
� n6 � n5 þ 1

� �
. The second

component of the n3 summation is
Pn�1

2
� n6 � n5

n3¼0

n3, which is the sum of the integer

values for all integers in the range 0 � n3 � n�1
2

� n6 � n5. In general,

Pk
n3¼0

n3 ¼ k kþ1ð Þ
2

, so after substitution (1.21) reduces to:

N
Af g

PMRW 3; n; IACð Þ

¼
Xn�1
2

n6¼0

Xn�1
2

� n6

n5¼0

Xn�1
2

� n6 � n5

n4¼0

ðn� n6 � n5 � n4 þ 1Þ nþ 1

2
� n6 � n5

� �

� 1

2

n� 1

2
� n6 � n5

� �
nþ 1

2
� n6 � n5

� �

2
6664

3
7775:

(1.22)

The process then continues in the same fashion to sequentially reduce (1.22) for

the n4, n5 and n6 summations, by using known representations for sums of higher

order powers of integers to obtain:

N
Af g

PMRW 3; n; IACð Þ ¼ 45

128
þ 99n

128
þ 39n2

64
þ 43n3

192
þ 5n4

128
þ n5

384
: (1.23)
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This can be further reduced to

N
Af g

PMRW 3; n; IACð Þ ¼ ðnþ 1Þðnþ 3Þ3ðnþ 5Þ
384

; for odd n: (1.24)

A representation for the total number of possible voting situations, K 3; n; IACð Þ,
for three candidates with n voters can be obtained in a similar fashion from

K 3; n; IACð Þ ¼
Xn
n6¼0

Xn�n6

n5¼0

Xn�n6�n5

n4¼0

Xn�n6�n5�n4

n3¼0

Xn�n6�n5�n4�n3

n2¼0

1: (1.25)

This representation can be simplified by the same sequential reduction procedure

that was just used to obtain the closed form representation for N
Af g

PMRW 3; n; IACð Þ in
(1.24), or it follows from Feller (1957) that

K 3; n; IACð Þ ¼
Q5
i¼1

nþ ið Þ
120

: (1.26)

The definition of IAC and its symmetry with respect to candidates lead to the

conclusion that N
Af g

PMRW 3; n; IACð Þ ¼ N
Bf g

PMRW 3; n; IACð Þ ¼ N
Cf g

PMRW 3; n; IACð Þ, so we

then find PS
PMRW 3; n; IACð Þ ¼ 3 N

Af g
PMRW 3; n; IACð Þ=K 3; n; IACð Þ, and

PS
PMRW 3; n; IACð Þ ¼ 15ðnþ 3Þ2

16ðnþ 2Þðnþ 4Þ ; for odd n: (1.27)

When n is even, a representation for PS
PMRW 3; n; IACð Þ can be obtained from

PS
PMRW 3; n; IACð Þ ¼

3
Pn�2
2

n6¼0

Pn�2
2

�n6

n5¼0

Pn�2
2

�n6�n5

n4¼0

Pn�2
2

�n6�n5

n3¼0

Pn�n6�n5�n4�n3

n2¼0

1

K 3; n; IACð Þ : (1.28)

Lepelley (1989) uses algebraic techniques to reduce this representation to obtain

PS
PMRW 3; n; IACð Þ ¼ 15nðnþ 2Þðnþ 4Þ

16ðnþ 1Þðnþ 3Þðnþ 5Þ ; for even n: (1.29)

Computed values of PS
PMRW 3; n; IACð Þ that are obtained from the representations

in (1.27) and (1.29) are listed in Table 1.3 for various n. It is clear that

PS
PMRW 3; n; IACð Þ>PS

PMRW 3; n; ICð Þ, and that PS
PMRW 3; n; IACð Þ has the same

behavior as PS
PMRW 3; n; ICð Þ as n changes. That is, PS

PMRW 3; n; IACð Þ decreases as
odd n increases, and it increases as even n increases.

It was noted in earlier discussion that DC represents a case in which each voter’s

preferences are independent of the preferences of all other voters, and in which

there is an expected balance in individual voter’s preferences. This balance resulted
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from the fact that it is equally likely for a randomly selected voter to have a linear

preference ranking on candidates that contains A � B or B � A for each pair of

candidates. A similar observation can be made with the case of IAC, but nothing is

stated about any individual voter’s preferences. With IAC, each voting situation has

the same likelihood of being observed as its dual voting situation, in which the

preferences of all voters are reversed, with n1 $ n6, n2 $ n5 and n3 $ n4. If AMB
in any voting situation, then BMA by definition in the equally likely dual voting

situation, so IAC represents a case of expected balance of preferences in which it is

equally likely for a randomly selected voting situation to have either AMB or BMA for

each pair of candidates. It will be shown later that IAC actually drops the underlying

assumption of independence between the individual voter’s preferences, so there is a

very subtle and interesting difference between the assumptions of DC and IAC.

1.5.3.2 Maximal Culture Condition

TheMaximal Culture Condition (MC) is similar in nature to IAC, but the number of

voters in a random voting situation with MC is not fixed at a specific value of n. MC

was first called by that name in Fishburn and Gehrlein (1977a). It fixes a positive

integer, L, and the associated ni for each possible linear preference ranking is

equally likely to have any integer value in the closed interval 0; L½ �. There are

Lþ 1ð Þ6 possible voting situations that are equally likely to be observed with the

assumption of MC on three candidates. The expected total number of voters in a

voting situation, E nð Þ, with MC is then given by E nð Þ ¼ 6 L=2ð Þ ¼ 3L.
Gehrlein and Lepelley (1997) use the logic that led to the development of the

representation for N
Af g

PMRW 3; n; IACð Þ in (1.20) to obtain a similar representation for

N
Af g

PMRW 3; L;MCð Þ. Candidate A is required to be a strict PMRW when the total

number of voters in a voting situation is even with MC, and the restrictions become

much more complex in this case since n is not fixed. The restrictions on the ni’s that
result in Candidate A being the strict PMRW with MC are given by:

0 � n3 � L

0 � n4 � L

0 � n1 � L

Max

0

n4 � n3 � n1 þ 1

n3 � n4 � n1 þ 1

8><
>:

9>=
>; � n2 � L

0 � n5 � Min

L

n1 þ n2 þ n3 � n4 � 1

n1 þ n2 þ n4 � n3 � 1

8><
>:

9>=
>;

0 � n6 � Min

L

n1 þ n2 þ n3 � n4 � n5 � 1

n1 þ n2 þ n4 � n3 � n5 � 1

8><
>:

9>=
>;: (1.30)
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Here, Min
n a

b

o
and Max

n a

b

o
respectively denote the minimum and maximum

of arguments a and b. TheMin andMax functions in the resulting summation limits

significantly complicate the problem of obtaining a simple closed-form representation

for N
Af g

PMRW 3; L;MCð Þ. This complication is dealt with by partitioning the set of all

voting situations that meet the restrictions in (1.30) into 13 subspaces, such that none of

the restrictions for inclusion in these subspaces contain any Min or Max arguments.

This partitioning process is started with the observation that the number of

voting situations in N
Af g

PMRW 3; L;MCð Þ with n4 > n3 is identical to the number of

voting situations with n3 > n4. This follows from the fact that Candidate A is the

PMRW if it is included among the voting situations inN
Af g

PMRW 3;L;MCð Þwhich have
both n4 þ n5 þ n6 < n1 þ n2 þ n3 for AMB and n3 þ n5 þ n6 < n1 þ n2 þ n4 for

AMC. The interchange of n3 and n4 in these restrictions simply changes a voting

situation in which AMB and AMC to a voting situation in which AMC and AMB,
along with the converse.

We begin by developing a relationship for the number, N
Sðn4 > n3Þ
PMRW 3; L;MCð Þ, of

voting situations that are included in N
Af g

PMRW 3; L;MCð Þ for which n4 > n3. The
special case for which n4 ¼ n3 will be considered as a separate issue later. The

restrictions that are in place on the ni’s in (1.30) for a voting situation to be included
in N

Af g
PMRW 3; L;MCð Þ are dramatically reduced when we add the additional restric-

tion that n4 > n3 to the conditions:

0 � n3 � L� 1

n3 þ 1 � n4 � L

0 � n1 � L

Max
0

n4 � n3 � n1 þ 1

� �
� n2 � L

0 � n5 � Min
L

n1 þ n2 þ n3 � n4 � 1

� �

0 � n6 � Min
L

n1 þ n2 þ n3 � n4 � n5 � 1

� �
: (1.31)

Gehrlein and Lepelley (1997) develop a very direct, but cumbersome, procedure

to show how the set of voting situations that are described by the restrictions in

(1.31) can be partitioned into nine subsets that do not contain any Min or Max
arguments. These nine subsets are listed in (1.32)–(1.36):

Subspace #1

n3 ¼ 0

1 � n4 � L� 1

n4 þ 1 � n1 � L

Lþ 1þ n4 � n1 � n2 � L

0 � n5 � n1 þ n2 � n4 � 1� L

0 � n6 � L

Subspace #2

1 � n3 � L� 1

n3 þ 1 � n4 � L

n4 � n3 þ 1 � n1 � L

Lþ 1þ n4 � n1 � n3 � n2 � L

0 � n5 � n1 þ n2 þ n3 � n4 � 1� L

0 � n6 � L (1:32)
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Subspace #3
n3 ¼ 0

1 � n4 � L� 1

n4 þ 1 � n1 � L
Lþ 1þ n4 � n1 � n2 � L
n1 þ n2 � n4 � L � n5 � L

0 � n6 � n1 þ n2 � n4 � n5 � 1

Subspace #4
1 � n3 � L� 1

n3 þ 1 � n4 � L
n4 � n3 þ 1 � n1 � L

Lþ 1þ n4 � n1 � n3 � n2 � L
n1 þ n2 þ n3 � n4 � L � n5 � L

0 � n6 � n1 þ n2 þ n3 � n4 � n5 � 1

(1.33)

Subspace #5

n3 ¼ 0

1 � n4 � L� 1

n4 þ 1 � n1 � n4

n4 � n1 þ 1 � n2 � L

0 � n5 � n1 þ n2 � n4 � 1

0 � n6 � n1 þ n2 � n4 � n5 � 1

Subspace #6

1 � n3 � L� 1

n3 þ 1 � n4 � L

0 � n1 � n4 � n3

n4 � n3 � n1 þ 1 � n2 � L

0 � n5 � n1 þ n2 þ n3 � n4 � 1

0 � n6 � n1 þ n2 þ n3 � n4 � n5 � 1

(1.34)

Subspace #7

n3 ¼ 0

n4 ¼ L

1 � n1 � L

L� n1 þ 1 � n2 � L

0 � n5 � n1 þ n2 � L� 1

0 � n6 � n1 þ n2 � n5 � L� 1

Subspace #8

n3 ¼ 0

1 � n4 � L� 1

n4 þ 1 � n1 � L

0 � n2 � L� n1 þ n4

0 � n5 � n1 þ n2 � n4 � 1

0 � n6 � n1 þ n2 � n4 � n5 � 1 (1:35)

Subspace #9

1 � n3 � L� 1

n3 þ 1 � n4 � L

n4 � n3 þ 1 � n1 � L

0 � n2 � Lþ n4 � n1 � n3

0 � n5 � n1 þ n2 þ n3 � n4 � 1

0 � n6 � n1 þ n2 þ n3 � n4 � n5 � 1 (1:36)

The total number of voting situations that are included in each of the nine

subspaces in this partition can then be computed by using algebraic relations for

sums of powers of integers, as described in the development of the representation

for N
Af g

PMRW 3; n; IACð Þ in (1.24). After doing this reduction for each of the subspaces,
accumulating the results and performing algebraic reduction:

N
Sðn4 > n3Þ
PMRW 3; L;MCð Þ ¼ Lð109L5 þ 375L4 þ 415L3 þ 45L2 � 164L� 60Þ

720
: (1.37)

30 1 Voting Paradoxes and Their Probabilities



A similar partitioning procedure is then used to count the number of voting

situations, N
Sðn4¼n3Þ
PMRW 3; L;MCð Þ, in N

Af g
PMRW 3; L;MCð Þ that have n3 ¼ n4. After all

partitioning is done to remove Max and Min arguments on the restrictions on ni’s
to obtain N

Sðn4¼n3Þ
PMRW 3; L;MCð Þ, four subspaces are required, denoted Subspace #10

through Subspace #13, as shown in (1.38) and (1.39).

Subspace #10

0 � n5 � L� 1

0 � n6 � L� 1� n5

n5 þ n6 þ 1 � n1 � L

0 � n2 � L

Subspace #11

0 � n5 � L� 1

0 � n6 � L� 1� n5

0 � n1 � n5 þ n6

n5 þ n6 � n1 þ 1 � n2 � L (1:38)

Subspace#12

n5 ¼ L

0 � n6 � L� 1

n6 þ 1 � n1 � L

Lþ 1þ n6 � n1 � n2 � L

Subspace #13

0 � n5 � L� 1

L� n5 � n6 � L

n5 þ n6 þ 1� L � n1 � L

n5 þ n6 � n1 þ 1 � n2 � L (1:39)

Gehrlein and Lepelley (1997) contains a minor typographical error for the

bounds for Subspace #13. After developing representations for each of these four

subspaces, accumulating the results and performing algebraic reduction:

N
Sðn4¼n3Þ
PMRW 3; L;MCð Þ ¼ Lð3L3 þ 10L2 þ 12Lþ 5Þ

6
: (1.40)

It was noted above that there are the same number of voting situations in

N
Af g

PMRW 3; L;MCð Þ that have n4 > n3 as there are with n3 > n4. Using this, along

with the fact that there are Lþ 1 different values that each of n3 and n4 can have

when n3 ¼ n4, we obtain a representation for N
Af g

PMRW 3; L;MCð Þ for each L � 3 as:

N
Af g

PMRW 3; L;MCð Þ ¼ 2N
Sðn4 > n3Þ
PMRW 3; L;MCð Þ þ Lþ 1ð ÞNSðn4¼n3Þ

PMRW 3; L;MCð Þ: (1.41)

The symmetry of MC with respect to candidates leads to

PS
PMRW 3; L;MCð Þ ¼ 3N

Af g
PMRW 3; L;MCð Þ

Lþ 1ð Þ6 : (1.42)

After substitution and algebraic reduction, we find

PS
PMRW 3; L;MCð Þ ¼ Lð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ

120ðLþ 1Þ5 ; for L � 3:

(1.43)
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Table 1.5 lists computed vales of PS
PMRW 3; L;MCð Þ from (1.43) for various values

of L. Since the number of voters is not fixed with MC, the odd-even effects that were

observed with IC and IAC as n changes do not occur with MC. The values of

PS
PMRW 3; L;MCð Þ consistently increase as L, and correspondingly E nð Þ, increases.
Just as we observed in the case of IAC, each voting situation has the same

likelihood of being observed as its dual voting situation with MC, so MC also

represents a case of balanced preferences in which it is equally likely for a randomly

selected voting situation to have AMB or BMA for each pair of candidates.

The degree of complexity that is involved with the development of probability

representations with algebraic techniques for both IAC and MC escalates dramati-

cally when other voting paradoxes are considered, which led to the consideration of

much simpler procedures that might be used to obtain such representations.

1.5.4 Probability Models for Voting Situations – EUPIA

Simple closed form equations for IAC probability representations of the type shown

in (1.24), are currently very easy to obtain with standard software packages, as long

as the necessary conditions for an event to occur result in bounds on the upper and

lower summation indexes that are like those that are specified above in (1.20). That

is, where each upper and lower summation bound is expressed as a simple linear

function of n and of ni’s that are defined earlier in the sequence of summation

indexes, with no Max or Min arguments.

This is defined as the simple linear form restriction, which also requires that each
of the coefficients in the linear equations that bound the summation indexes can be

expressed as ratios of integer numbers, or rational numbers. Huang and Chua

(2000) note that a generalization can be made when a representation is being

developed for the count of the number of voting situations that meet conditions

that have a simple linear form restriction with IAC. In particular, the general

form of the identities for sums of powers of integers requires that the resulting

Table 1.5 Computed values

of PS
PMRW 3; L;MCð Þ L E nð Þ PS

PMRW 3;L;MCð Þ
3 9 0.7251

4 12 0.7588

5 15 0.7819

6 18 0.7988

7 21 0.8117

8 24 0.8218

9 27 0.8301

10 30 0.8368

11 33 0.8426

20 60 0.8700

40 120 0.8885

50 150 0.8923

1 1 0.9083
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representation for the count of voting situations must be expressible as a polynomial

in n. With five summation signs in the function, the degree of the polynomial must

be five or less. Moreover, the coefficients in the polynomial must also be rational

numbers. Huang and Chua (2000) then suggest that this leads to an easier way to

obtain representations for IAC probabilities than using the cumbersome process of

sequential algebraic reduction. These arguments can easily be extended to repre-

sentations with MC, by replacing n with L in the discussion above.

Gehrlein (2002b) develops a computer algorithm, EUPIA (Effectively Unlimited
Precision Integer Arithmetic), that efficiently implements the basic notions from

Huang and Chua to obtain closed form probability representations for election

outcomes with IAC and MC. To describe how this procedure works, let EA nð Þ
denote the number of voting situations for which Candidate A meets the conditions

of some specified voting Event F for n voters with IAC. Based on the preceding

discussion:

Axiom 1.1 If the restrictions on ni’s that are necessary for Event F to be observed

in a voting situation for a three-candidate election meet the simple linear form

restriction, then

EAðnÞ ¼
X5
i¼0

tini; for some integer sequence n ¼ cþ pj;with j ¼ 0; 1; 2; . . . :

(1.44)

Here, each ti coefficient is a rational number, p is the periodicity of the

representation, and c is the starting point of the integer sequence for which the

given representation is valid. The representation for N
Af g

PMRW 3; n; IACð Þ that is

obtained in (1.23) has p ¼ 2 and c ¼ 3, since it is only valid for odd n � 3, and

the representation for K 3; n; IACð Þ in (1.26) has p¼ 1 and c¼ 1, since it is valid for

all positive integers.

The periodicity of the series of n values for which a given representation is valid
is driven by any restrictions that are needed to keep all of the summation limits at

integer values. For example, suppose that a summation limit contains the term nþx
y

for integer constants x and y. To keep this ratio integer valued, it can only hold for a
series of n values with periodicity y. The specific values of n that are used in a

sequence with a specified periodicity must also be such that the ratios are integer

valued, so that (n þ x) must be an integer multiple of y. This has a direct impact on

the value of the starting point, c, that can be used for the series.

Suppose that we arbitrarily fix c and p, and use computer enumeration techni-

ques to evaluate the exact integer values for the number of voting situations,

NVSA cþ pjð Þ, for which Candidate A meets the conditions of Event F with

cþ pj voters, for each j ¼ 0(1)5. The computed values of NVSA cþ pjð Þ are then
used to establish six simultaneous equations of the form

EAðcþ pjÞ ¼ NVSAðcþ pjÞ; for each j ¼ 0ð1Þ5: (1.45)
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The ti terms in the EA cþ pjð Þ functions from (1.45) are identical in all six of

these equations for each given i, and their values can then be found by using precise
algebraic methods to solve these six simultaneous equations with six unknown

terms.

For example, suppose that we wish to determine the coefficients of EA nð Þ for the
event that A is the PMRW for odd n, so that c ¼ 3 and p ¼ 2. As a first step,

computer enumeration is used to obtain the values NVSA 3ð Þ ¼ 18; NVSA 5ð Þ ¼ 80;

NVSA 7ð Þ ¼ 250;NVSA 9ð Þ ¼ 630;NVSA 11ð Þ ¼ 1372 and NVSA 13ð Þ ¼ 2688:
Using these computed values with (1.44) and (1.45), we then establish six

simultaneous equations with six unknowns t0; t1; t2; t3; t4; t5f g that correspond

to the six rational coefficients in EA nð Þ:

t0 þ t13þ t232 þ t333 þ t434 þ t535 ¼ 18

t0 þ t15þ t252 þ t353 þ t454 þ t555 ¼ 80

t0 þ t17þ t272 þ t373 þ t474 þ t575 ¼ 250

t0 þ t19þ t292 þ t393 þ t494 þ t595 ¼ 630

t0 þ t111þ t2112 þ t3113 þ t4114 þ t5115 ¼ 1372

t0 þ t113þ t2132 þ t3133 þ t4134 þ t5135 ¼ 2688: (1.46)

Algebraic reduction is then used in (1.46) to solve for the six unknown variables,

to obtain:

t0 ¼ 45

128
t1 ¼ 99

128
t2 ¼ 39

64
t3 ¼ 43

192
t4 ¼ 5

128
t5 ¼ 1

384
(1.47)

The resulting representation for EAðnÞ from (1.44) and (1.47) is identical to the

representation for N
Af g

PMRW 3; n; IACð Þ in (1.23). The procedure is obviously very

simple to implement when c and p are known in advance.

Problems arise when c and p are not known in advance, and EUPIA performs an

additional search in order to determine them. Suppose that we arbitrarily fix c at a

relatively large number, and start the process with p ¼ 1. Computer enumeration is

then used to evaluate the exact integer values of, NVSA cþ pjð Þ such that A meets

the conditions of Event F for each j ¼ 0(1)7. The first six computed values of

NVSA cþ pjð Þ, with j ¼ 0(1)5, are then used to establish the six simultaneous

equations of the form in (1.45), and the resulting functional form of EA nð Þ is

obtained. A functional form must always exist to fit the six equations with six

unknowns. However, if the true periodicity for the representation does not actually

have p ¼ 1, the functional form that has just been obtained for EA nð Þ will not

accurately give values of EA nð Þ for n>cþ 5p.
EUPIA therefore determines if the EA nð Þ function that has just been obtained by

the procedure will correctly determine the computer enumeration values of

NVSA cþ pjð Þ for each j ¼ 6, 7. If the numerical values from the computer

enumeration and the derived EA nð Þ are identical for each j ¼ 6, 7, it is concluded
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that the correct EA nð Þ representation and p have been found, for the given c. If these
results do not match, then the correct periodicity is not being used to obtain the

EA nð Þ representation. In this case, EUPIA iterates through this process and sequen-

tially increases p, while keeping c fixed, until the computer enumeration results and

the derived EA nð Þ that are obtained for the iteration are identical with j ¼ 6, 7. The

minimum value of c for which the representation EA nð Þ is correct can easily be

determined by finding the smallest value of n for which the obtained representation
matches computer enumeration results; given that the determined periodicity is

maintained as the number of voters is reduced from the c that was arbitrarily set to

use the EUPIA procedure.

The necessary conditions that are given in (1.5) to identify voting situations that

are included in N
Af g

PMRW 3; n; IACð Þ clearly result in summation limits in (1.6) that

meet the definition of the simple linear form restriction. However, if we consider

the restrictions in (1.30) that identify voting situations that are included in

N
fAg
PMRWð3; n;MCÞ, a much more complicated situation results due to the presence

of Max and Min arguments on sets of linear functions in the summation bounds.

This complication was dealt with above by partitioning the set of all voting

situations that are included in N
Af g

PMRW 3; n;MCð Þ into 13 subspaces, such that each

of these subspaces has summation bounds that meet the simple linear form restric-

tion. Each of the 13 subspaces therefore has a representation for the number of

voting situations that it contains that is of the form of (1.44). It follows directly that

the ultimate representation for N
Af g

PMRW 3; n;MCð Þ that is obtained by accumulating

the associated representations for the 13 subspaces must also have a form like that

shown in (1.44), and there must be some periodicity for the accumulated represen-

tation that is consistent with the periodicities of all of the individual subspace

representations.

It is easy to use these arguments to generalize the earlier definition of the simple

linear form restriction to include situations in which each upper and lower summa-

tion bound is expressed as theMax orMin of some set of simple linear functions of

n and of ni’s that are previously defined in the series of summation indexes. The

coefficients in each of these simple linear functions must, of course, be rational

numbers. Moreover, these arguments can easily be extended to the development of

such probability representations with either IAC or MC. As a result, Gehrlein

(2002b) was able to directly use EUPIA to reproduce the representation for

PS
PMRW 3; L;MCð Þ in (1.43), without having to go through the cumbersome subspace

partitioning procedure.

1.5.5 Probability Models – Ehrhart Polynomials

EUPIA is based on the observation that the number of integer solutions of a system

of linear constraints can be represented by a polynomial in n, with periodic

coefficients (see Axiom 1.1 above). Indeed, in mathematical terms, the probability

calculations that are involved under the IAC or MC assumptions typically amount
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to counting the number of integer lattice points inside convex polytopes. Recently,

Wilson and Pritchard (2007) and Lepelley et al. (2008) have independently pointed

out that there exists an established mathematical theory of counting lattice points in

polytopes. This observation was also discussed in Mbih et al. (2006). The seminal

results that form the basis of this domain of research date back to the 1960s work of

Eugène Ehrhart. The theory that is developed by Ehrhart is very general and it

provides a solid theoretical foundation for the IAC andMC probability calculations.

We now present a brief overview of this theory.

Let Rd denote the Euclidian d-space of all d-tuples y ¼ y1; y2; . . . ; ydð Þ of real
numbers. The integer latticeZd is the subset ofRd that consists of points with integer

coordinates. A rational polytope of dimension d is a set P	Rd that is the solution of

a finite system of q independent linear inequalities with integer coefficients:

P ¼ fy 2 Rd : Ay � bg; (1.48)

where A is an q 
 d integer matrix and b an integer vector with q components. The

extremal points of a polytope are called its vertices, and a lattice polytope is a

polytope with integer vertices.

The dilatation of any d-dimensional polytope P 	 Rd is denoted by kP for an

integer parameter k � 1, and kP defines the polyhedron

kP ¼ fky : y 2 Pg: (1.49)

We are particularly interested in the case with k ¼ n, for n voters. The dilation

nP can be interpreted geometrically as dilating polytope P while leaving fixed all

angles and proportions within P.
Consider the function L(P, n) ¼ |nP \ Zd| of variable n, that describes the

number of lattice points that lie inside the dilatation nP. Ehrhart (1962) inaugurated
the systematic study of general properties of this function by proving, in particular,

that it can be represented by a polynomial in n when P is a lattice polytope and by a

finite family of polynomials called quasi-polynomials (or Ehrhart polynomials) in
the general case.

Instead of representing a quasi-polynomial by a list of polynomials, Ehrhart

(1977) uses the practical concept of periodic numbers: a rational periodic number

U(n) is a function U: Z ! Q, such that there exists a period p with U(n) ¼ U(n’)
whenever n � n’ mod p. The possible values of U(n) are usually made explicit by a

list of p rational numbers enclosed in square brackets. For example,

UðnÞ ¼ 1

2
;
3

4
; 1

� �
n

(1.50)

is a periodic number with period p ¼ 3, where U(n) ¼ 1
2
if n � 0 mod 3, U(n) ¼ 3

4
if

n� 1 mod 3 and U(n)¼ 1 if n� 2 mod 3. Now, a quasi-polynomial f of degree d is
a function
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f nð Þ ¼ cd nð Þnd þ . . .þ c1 nð Þnþ c0 nð Þ; (1.51)

where the ci nð Þ coefficients are rational periodic numbers. The period p of a quasi-

polynomial is the least common multiple (lcm) of the periods of its coefficients.
We can now formulate Ehrhart’s main result.

Theorem 1.1 (Ehrhart) Let P be a rational polytope of dimension d. The function
L(P,n) that represents the number of integer points in the dilatation nP is given by a
degree-d quasi-polynomial. The coefficient of the leading term is independent of
n and is equal to the volume of P. The period of the quasi-polynomial is a divisor
of the lcm of the denominators of the vertices of nP. When P is a lattice polytope,
L(P, n) is given by a single polynomial.

To illustrate the implementation of Theorem 1.1, we consider once again the

example of the probability that a PMRW exists. Starting from (1.5), we can write

that the number of voting situations having Candidate A as the PMRW for n voters

under IAC is given by the number of integer points that are inside the polyhedron nP
defined as:

nP ¼ n1; n2; n3; n4; n5ð Þ 2 R5 : n1 � 0; n2 � 0; n3 � 0; n4 � 0; n5 � 0;

n1 þ n2 þ n3 � nþ 1

2
; n1 þ n2 þ n4 � nþ 1

2
; n1 þ n2 þ n3 þ n4 þ n5 � n:

(1.52)

The vertices of nP are found to exist at:

nþ1

2
;0;

n�1

2
;0;0

� �
nþ1

2
;0;0;

n�1

2
;0

� �
nþ1

2
;0;0;0;

n�1

2

� �
nþ1

2
;0;0;0;0

� �

0;
nþ1

2
;
n�1

2
;0;0

� �
0;
nþ1

2
;0;

n�1

2
;0

� �
0;
nþ1

2
;0;0;

n�1

2

� �
0;
nþ1

2
;0;0;0

� �

n;0;0;0;0ð Þ 0;n;0;0;0ð Þ 1;0;
n�1

2
;
n�1

2
;0

� �
0;1;

n�1

2
;
n�1

2
;0

� �
:

It then follows from Theorem 1.1 that L(P,n) is a quasi-polynomial of the form

of (1.51) with degree five, and it has the following general form

L P; nð Þ ¼ an5 þ b1; b2½ �nn4 þ c1; c2½ �nn3 þ d1; d2½ �nn2 þ e1; e2½ �nn
þ f1; f2½ �n: (1.53)

An examination of the vertices of nP that are shown above indicates that the

maximal value of the periodicity of the coefficients in this function is given by two,

and we also know from Theorem 1.1 that the coefficient of n5 in (1.53) does not

depend on n.
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Clauss and Loechner (1996) was the first study to propose a method for comput-

ing the quasi-polynomial coefficients like those in (1.53). Just like EUPIA, their

algorithm counts the number of lattice points for a set of fixed values, and then

calculates the quasi-polynomial through interpolation. Applied to our problem,

their algorithm gives:

L P; nð Þ ¼ N
Af g

PMRW 3; n; IACð Þ ¼ n5

384
þ 1

32
;
5

128

� �
n

n4 þ 13

96
;
43

192

� �
n

n3 þ 1

4
;
39

64

� �
n

n2

þ 1

6
;
99

128

� �
n

nþ 0;
45

128

� �
n

: ð1:54Þ

Of course, this expression coincides with (1.23) for odd n. By dividing by the

total number of voting situations from (1.26), we obtain equivalent results to those

in (1.29) for n even.

If we now consider the number of voting situations having Candidate A as the

PMRW for n voters withMC, it is tedious but possible to verify that all the vertices
of the polyhedron defined by (1.30) have integer coordinates. Consequently, the

periodicity is one and N
Af g

PMRW 3; n;MCð Þ is obtained as a single polynomial, in

accordance with (1.41).

Finally, it is worth noting that Clauss et al. (1997) have extended Ehrhart’s

Theorem to parameterized polytopes with any number of integer parameters.

This generalization constitutes the theoretical foundation of the two-parameter

algorithm EUPIA2 that we will use in some later chapters.

1.5.6 Probability Models – Barvinok’s Algorithm

The main difficulty that is involved with using an algorithm like EUPIA or the

interpolation procedure of Clauss and Loechner (1996) is related to the amount of

computer execution time that is required to obtain a solution. When the periodicities

are large, the interpolation procedure of Clauss and Loechner will take an exponen-

tially increasing execution time (Verdoolaege et al. 2005). However, an algorithm

that is proposed by Barvinok (1993) avoids this difficulty (see also Barvinok and

Pommersheim 1999). We present a very brief description of the main steps that are

involved with implementing this procedure. For a more detailed presentation, the

reader is referred to Rabl (2006) or Lepelley et al. (2008).

l For a given polytope P, define the generating function that is attached to P as

f P; xð Þ ¼ P
a x

a, where a ¼ a1; a2; . . . ; adð Þ runs over all integer lattice points

that are included in Zd \ P, and xa ¼ xa11 x
a2
2 . . . xadd with x ¼ x1; x2; . . . ; xdð Þ.

By setting x ¼ 1, with xi ¼ 1 for all 1 � i � d, f P; xð Þ gives the number of

integer lattice points in P.
l Brion (1988) showed that f P; xð Þ is the sum over all vertices v of the generating

functions of the supporting cones of P at v.
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l Barvinok (1999) found a polynomial time algorithm for decomposing these

cones into simple unimodular cones.
l The function corresponding to a simple unimodular cone is an easily derived

rational function. Thus f P; xð Þ is a sum of nice rational functions.

In order to roughly illustrate these steps, consider the simple one-dimensional

example where P ¼ [0, N]. We have:

f P; xð Þ ¼ 1þ xþ � � � þ xN ¼ 1� xNþ1

1� x
: (1.55)

The substitution of x ¼ 1 into (1.55) yields a denominator equal to zero, so we

must take the limit as x ! 1 to obtain the expected result f(P; 1) ¼ N þ 1, the

number of integer points in the closed interval P.
In this simple example, the basic observation is that the compact expression of the

generating functions can be obtained by considering two supporting cones, which are

actually rays in our one-dimensional example. The two ‘cones’ are defined by K0 ¼
[0,1) and KN ¼ (�1, N ]. Their respective generating functions are:

f ðK0; xÞ ¼
X
a�0

xa ¼ 1

1� x
and f ðKN; xÞ ¼

X
a�N

xa ¼ xN

1� x�1
: (1.56)

Adding the two rational function right-hand sides that represent two infinite

series collapses into the rational function that represents f P; xð Þ:

1

1� x
þ xN

1� x�1
¼ 1� xNþ1

1� x
: (1.57)

In the general case, of course, the polytope decomposition is not so simple. The

fundamental idea behind Barvinok’s procedure is to decompose each cone K into a

signed sum of simple (unimodular) cones Ki. Via this decomposition, the generat-

ing function f P; xð Þ can be written as a signed sum of short rational functions.

The polynomial-time algorithm of Barvinok was further generalized by

Verdoolaege et al. (2004) to allow the consideration of parametric polytopes with

any number of parameters. Using this extension, Ehrhart polynomials with one or

more parameters can be obtained analytically. Obviously, this parameterized ver-

sion of Barvinok’s algorithm needs to be able handle periodic numbers. In order to

avoid the exponential time requirements that are observed with the interpolation

method of Clauss and Loechner (1996), periodicity is represented by using frac-
tional parts. For a rational number x, the fractional part is denoted by {x} and it

is defined as fxg ¼ x� xb c, where xb c is the largest integer that is less than or

equal to x.
As an illustration, the implementation of the parameterized version of Barvinok’s

algorithm gives the following expression for the number of voting situations having

Candidate A as the PMRW for n voters under IAC:
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L P; nð Þ ¼ N
Af g

PMRW 3; n; IACð Þ ¼ n5

384
þ 1

64
f1
2
ng þ 1

32

� �
n4 þ 17

96
f1
2
ng þ 13

96

� �
n3

þ 23

32
f1
2
ng þ 1

4

� �
n2 þ 233

192
f1
2
ng þ 1

6

� �
nþ 45

64
f1
2
ng

� �
: ð1:58Þ

We have here f1
2
ng ¼ 0 if n is even and f1

2
ng ¼ 1

2
if n is odd. This representation is

very convenient when the periodicity is large.

1.6 Relevance of DC, IC, IAC and MC Based Probabilities

An extensive amount of research has been conducted to develop probability

representations for the likelihood that various voting outcomes will occur with

the assumptions of DC, IC, IAC and MC. It is obviously of interest to discuss the

relevance of the probability estimates that result from such studies. This is particu-

larly true since a number of recent studies have raised this issue after performing

empirical analysis to conclude that the distribution of voters’ preferences in most

election results do not correspond to anything like any of DC, IC, IAC or MC. The

most notable empirical studies of this type include Regenwetter et al. (2006) and

Tideman and Plassmann (2008). We shall see that there are in fact several very

good reasons to explain why it is relevant to consider the results that are obtained

with such probability models.

1.6.1 General Arguments

Gehrlein and Lepelley (2004) summarize a number of general arguments that

support the use of assumptions like DC, IC, MC and IAC to develop probability

representations, given the fact that they are generally believed to represent situa-

tions that exaggerate the probability that paradoxical voting events will occur:

l They are very useful when large amounts of empirical data are not available,

which is typically the case when analyzing elections.
l They can show that some paradoxical events are very unlikely to be observed.

That is, if we use conditions that tend to exaggerate the likelihood of observing

paradoxes and find that the probability is small with such calculations, the

paradox is assuredly very unlikely to be observed in reality.
l They can suggest the relative impact that paradoxical events can have on

different types of voting situations. For example, different voting rules can be

compared on the basis of their relative likelihood of electing the PMRW.
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l By using such probability models to obtain closed form representations, it

is easy to observe the impact of varying different parameters of voting situa-

tions or voter preference profiles, which is more difficult to do with other

approaches.
l The probability representations that are obtained are directly reproducible and

verifiable with mathematical analysis, which is not as simple to do with other

approaches.
l Analysis of this type can be useful to find out if the relative probabilities of

paradoxical outcomes on various voting mechanisms behave in a consistent

fashion over a number of different assumptions about the likelihood that voting

situations or voter preference profiles are observed.

Fishburn and Gehrlein (1982) make an observation regarding the third item in

this list, by noting that there is little reason for us to expect that the relative
likelihoods of the election outcomes would be changed with the use of more general

assumptions. Such relative comparisons are not easily obtainable from the empiri-

cal analysis of the results from actual elections. With very few exceptions, actual

elections are only conducted with one voting rule being used, and it typically is not

at all easy to compare the resulting election outcome to what might have happened

if some other voting rule had been used.

In fact, it is not always easy to determine exactly what happened in an

election, based only on the election results. Fishburn (1980) considers the restric-

tions under which it is possible to determine whether or not the PMRW has been

selected as the winner of an election, based only on the reported vote counts from

the election. It is assumed that voters have weak ordered preferences on candi-

dates and assumptions are established to define admissible voting behavior. The

severity of these restrictions leads Brams and Fishburn (1983b, pg 95) to con-

clude that

Because of the varieties of strategies that are allowed and the paucity of detail about how

people voted, the likelihood of concluding that the winner is a (PMRW) . . .. is often small if

not zero.

As a result, other factors about voting behavior must typically be assumed with

some model to reconstruct the preferences of voters from the reported ballot out-

comes in an election, simply to determine which candidate was the PMRW,

let alone to determine what might have happened if a different voting rule had

been used. The significant difficulties in successfully doing this are pointed out in

the conclusion of a study by Regenwetter et al. (2002b, pg 461)

Similarly, we conclude from the analysis of four . . . data sets . . . that even the most basic

and subtle changes in modeling approaches can affect the outcome on any analysis of

voting or ballot data against the Condorcet criterion.

We now proceed to develop some of the types of basic results that can be

obtained by analyzing probability representations that are obtained with the simple

assumptions of DC, IC, MC and IAC.
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1.6.2 Results from the DC Assumption

Earlier discussion showed that the p vectors in the DC subset all have two common

characteristics. First, each of the individual voter’s has preferences that are inde-

pendent of all other voters’ preferences. Second, there is a complete balance on an

expected value basis for a randomly selected individual voter’s preferences on

all pairs of candidates, with D A;Bð Þ ¼ D A;Cð Þ ¼ D B;Cð Þ ¼ 0. Therefore, any

observations that are made about how probabilities change as p vectors change

within the DC subset do not result either from differences in the degree of dependence

among voters’ preferences or from differences in the expected balance in individual

voter’s preferences on pairs of candidates.

Numerous studies have been conducted to evaluate the impact that various

measures of the degree of consistency of preference, or mutual coherence, among

the voters in a population will have on the probability that a PMRW exists. It is very

appealing on an intuitive level to conclude that paradoxical voting outcomes should

become less likely to be observed as the population of voters have preferences that

tend to be more mutually coherent. This degree of the consistency of voters’

preferences has often been defined in the context of social homogeneity. The
preferences of members of a society would be totally homogeneous if every

member of that society has exactly the same preference ranking on the candidates.

The opposite extreme is a situation that reflects a situation like IC, where the

individual voters would be expected to have preferences that are completely

dispersed over all possible preference rankings on candidates.

Simple measures of the amount of dispersion among the pi terms in p vectors

have frequently been used as a gauge of the amount of social homogeneity in a

population. Abrams (1976) considers such a measure of homogeneity for three-

candidate elections, with

H pð Þ ¼
X6
i¼1

p2i : (1.59)

H pð Þ is maximized when pi ¼ 1 for some ranking, and it is minimized with the

assumption of IC. Increased values of H pð Þ generally tend to reflect increased

homogeneity for a population of voters. With a large value of H pð Þ, we would

expect an increased propensity to observe random voter preference profiles from

such a population that have voters’ preferences that are clustered around one, or a

few, of the possible linear rankings on candidates. As H pð Þ increases, intuition

therefore suggests that PS
PMRW 3; n; pð Þ should also be expected to increase.

Fishburn and Gehrlein (1980a) prove that PS
PMRW 3;1;DCð Þ is minimized by IC

over the p vectors in the subspace of DC, and that PS
PMRW 3;1;DCð Þ increases as

H pð Þ increases for p vectors in DC when H pð Þ is changed by keeping one of p1, p2
or p3 fixed while changing the other two. Of course, p4, p5 and p6 also change

accordingly to keep p in the subspace of DC. A general expected positive
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relationship between H pð Þ and PS
PMRW 3; n;DCð Þ is found, but it does tend to

deteriorate as the number of voters gets very large. Two important preliminary

conclusions can be made from these observations, without actually assuming that

DC represents any actual voting situation.

First, the fact that PS
PMRW 3;1;DCð Þ is minimized with IC suggests that

PS
PMRW 3; n; ICð Þ estimates are very likely to produce underestimates of the likeli-

hood of what can be expected to be observed. This conclusion is verified when the

computed values of PS
PMRW 3; n; ICð Þ in Table 1.3 are evaluated in comparison to our

observations regarding the likelihood that Condorcet’s Paradox has been observed

in empirical studies. As a result, PS
PMRW 3; n; ICð Þ values can be viewed as a lower

bound on PS
PMRW 3; n; pð Þ when p vectors are not biased to produce a PMR cycle or

to produce a PMRW. A bias to produce a PMR cycle would be introduced in

situations with D A;Bð Þ> 0, D B;Cð Þ> 0 and D C;Að Þ> 0, as found in the case with

p1 ¼ p4 ¼ p5 ¼ 1=3 and p2 ¼ p3 ¼ p6 ¼ 0. The representation for PS
PMRW 3; n; pð Þ

can also be biased to force the existence of a PMRW. One such extreme case would

have p1 ¼ 1 and pi ¼ 0 for i ¼ 2; 3; 4; 5; 6, so that D A;Bð Þ > 0, D B;Cð Þ > 0 and

D A;Cð Þ > 0.

Probability representations that are based on the IC assumption can generally be

viewed as representing a scenario that exaggerates the likelihood that paradoxical

voting outcomes, like Condorcet’s Paradox, will be observed. This tendency to

represent a maximum likelihood scenario is contingent on the fact that IC neither

deliberately creates any bias to force paradoxical outcomes to be observed nor

creates a bias to eliminate the possibility that the paradox will be observed. This is

of particular interest if the probability of observing some paradoxical voting out-

come is found to be relatively small with the assumption of IC, since this would

strongly suggest that the probability of observing that paradox in reality would be

very small.

The second important observation is that the expected relationship betweenH pð Þ
and PS

PMRW 3; n; pð Þ is found to be generally valid within the subspace of DC. So,

there is some positive relationship between social homogeneity, as measured by

H pð Þ, and the probability that a PMRW exists. And, it is of significant importance to

note that the impact of any possible dependence among voters’ preferences is

completely eliminated as a potential component of an explanation of the source

of this relationship, since the analysis was restricted to p vectors in the DC subset.

1.6.3 Results from IC–IAC Comparisons

Berg (1985a) introduced Pólya–Eggenberger (P–E) probability models (Johnson

and Kotz 1977) to evaluate the probability that a PMRW exists, and this analysis

leads to an interesting distinction between the assumptions of IC and IAC. These

P–E models are best described in the context of constructing random voter prefer-

ence profiles by drawing colored balls from an urn, following earlier discussion.

The experiment starts with balls of six different colors being placed in the urn.
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For each possible individual preference ranking, there are Ai balls of the particular

color that corresponds to the ith possible individual preference ranking. A ball is

drawn at random and the corresponding individual preference ranking is assigned to

the first voter. The experiment now changes from the format of the earlier experi-

ment. Now, the ball is replaced, along with a additional balls of the same color. A

second ball is then drawn, the corresponding ranking is assigned to the second

voter, and the ball is replaced along with a additional balls of the same color. The

process is repeated n times to obtain an individual preference ranking for each of

the n voters. When a> 0, the color of the ball that is drawn for the first voter will

have an increased likelihood of representing the color of the ball that is drawn for

the second voter, and so on. These are contagion models that create an increasing

degree of dependence among the voters’ preferences as a increases. However, there
is no dependence among voters’ preferences for the particular case with a ¼ 0.

The probability, P n; að Þ, of observing a given voter preference profile, with

associated voting situation n, in a three-candidate election with a P–E model is

given by

P n; að Þ ¼ n!

A n;a½ �
Y6
i¼1

A
ni;a½ �
i

ni!
: (1.60)

Here, A ¼ P6
i¼1 Ai and A½k;a� is the generalized ascending factorial with

A½k;a� ¼ AðAþ aÞðAþ 2aÞ . . . :ðAþ ðk � 1ÞaÞ (1.61)

By definition, A½k;a� ¼ A, for k ¼ 0 and k ¼ 1.

We give particular attention to the P–E probability P1 n; að Þ which has Ai ¼ 1 for

each i ¼ 1; 2; 3; 4; 5; 6 and consider the special cases of a ¼ 0 and a ¼ 1, we obtain

P1 n; 0ð Þ ¼ n!

n1!n2!n3!n4!n5!n6!

1

6n
: (1.62)

P1 n; 1ð Þ ¼ 120

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þ : (1.63)

Based on (1.62), we find that P–E probability model with a ¼ 0 is equivalent to

an independent voter model with a multinomial probability for profiles, with

equally likely preference rankings. That is, when a ¼ 0 we have the equivalent of

the assumption of IC. The combined results of (1.26) and the representation for

P1 n; 1ð Þ in (1.63) lead to the conclusion that each possible voting situation is

equally likely to be observed, given n, for a P–E model with a ¼ 1. That is, when

a ¼ 1 we have the equivalent of the assumption of IAC, and the direct implication

follows that IAC represents a situation in which there is some degree of dependence

among voters’ preferences.
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The preferences of individual voters are not identified with IAC, so nothing can be

said about D A;Bð Þ for any pair of candidates in that case. However, if AMB in any

voting situation, thenBMA by definition in the dual voting situation, so IAC represents

a case of expected balance of preferences in which it is equally likely for a randomly

selected voting situation to have either AMB or BMA for each pair of candidates.

The same statement can be made regarding voting situations that are obtained from

voting profiles that are generated with IC, since D A;Bð Þ ¼ D B;Cð Þ ¼ D A;Cð Þ ¼ 0

for each individual voter. So, no bias exists on an expected value basis to create a PMR

relationship for any candidate over any other candidate with either IAC or IC.

The results of Table 1.3 show that PS
PMRW 3; n; IACð Þ>PS

PMRW 3; n; ICð Þ, and
the only distinction between IC and IAC that can explain this is the degree of

dependence among voter preferences that is introduced with IAC. So, the introduc-

tion of some dependence among voters’ preferences reduces the likelihood that

Condorcet’s Paradox will be observed. This conclusion is valid, and very likely can

be generally extended to other voting paradoxes, without the requirement that either

IC or IAC must ever be observed in actual elections.

1.6.4 Homogeneity and Dependence Connections

Our analysis has led to the conclusion that the likelihood of observing paradoxical

voting outcomes is associated with both the degree of social homogeneity and the

level of dependence among voters’ preferences. As either of these two factors

increase for voting situations, it should be expected that the preferences of voters

generally tend to become more alike. So, some degree of association would be

expected to exist between these two factors.

Some understanding of this relationship can be gained by considering the

expected value, E H pð Þð Þ, of H pð Þ with some of the assumptions that have been

considered. The IC assumption is the easiest case to evaluate, since IC only con-

siders one p vector, and (1.59) leads directly to the expected value E H ICð Þð Þ, with

E H ICð Þð Þ ¼
X6

i¼1

1

6

� �2

¼ 1

6
: (1.64)

In order to obtain E H pð Þð Þ for more general cases, some assumption must be

made regarding the likelihood that various p vectors will be observed. The most

basic assumption of this type has been defined in Gehrlein (1981a) as the Uniform
Culture Condition (UC), where each possible p vector with

P6
i¼1 pi ¼ 1 is equally

likely to be observed. Probabilities and expected values as n ! 1 with the UC

assumption can be obtained with geometric arguments that can be traced back

to related work that was performed in Laplace (1795) while evaluating results

from Borda (1784). We begin by computing the volume of the simplex with
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P6
i¼1 pi ¼ 1. This volume, VolUC, is obtained directly by simple integration over

the five-dimensional space with
P5

i¼1 pi � 1:

VolUC ¼
ð1

p1¼0

ð1�p1

p2¼0

ð1�p1�p2

p3¼0

ð1�p1�p2�p3

p4¼0

ð1�p1�p2�p3�p4

p5¼0

dp5dp4dp3dp2dp1 ¼ 1

120
: (1.65)

As n ! 1with UC, each point in this five-dimensional simplex is equally likely

to be a randomly selected p vector, with p6 ¼ 1� p1 � p2 � p3 � p4 � p5.
A representation for E H UCð Þð Þ is then obtained from

E H UCð Þð Þ ¼

Ð1
p1¼0

Ð1�p1

p2¼0

Ð1�p1�p2

p3¼0

Ð1�p1�p2�p3

p4¼0

Ð1�p1�p2�p3�p4

p5¼0

P6
i¼1

p2i

� �
dp5dp4dp3dp2dp1

VolUC
:

(1.66)

After algebraic reduction, (1.66) reduces to E H UCð Þð Þ ¼ 2=7.
Similar analysis can be used to obtain the expected value, E H DCð Þð Þ, of H pð Þ

over the subspace of p vectors in DC. Once p1, p2 and p3 are determined with DC,

p4, p5 and p6 are fixed accordingly. As n ! 1 with DC, assume that each p vector

in the DC subset with
P3

i¼1 pi ¼ 1=2 is equally likely to be selected. This corre-

sponds to the assumption that each point in the two-dimensional simplex withP2
i¼1 pi � 1=2 is equally likely to be observed, with p3 ¼ 1

2
� p1 � p2. The volume

of the DC subspace, VolDC, is then obtained as above with:

VolDC ¼
ð1=2

p1¼0

ð1=2�p1

p2¼0

dp2dp1 ¼ 1

8
: (1.67)

A representation for E H DCð Þð Þ is obtained with the assumption that all p vectors
with DC are equally likely to be observed as n ! 1, with

E H DCð Þð Þ ¼

Ð1=2
p1¼0

Ð1=2�p1

p2¼0

2
P3
i¼1

p2i

� �
dp2dp1

VolDC
¼ 1

4
: (1.68)

It can therefore be observed that the additional restriction that p vectors in the

DC subset must have an expected balance on the likelihood that each voter will

have preferences on pairs of candidates results in E H DCð Þð Þ<E H UCð Þð Þ. So, the
DC assumption results in the generation of voting situations that are expected to

have less homogeneous preferences, when compared to the UC scenario.
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It is proved in Gehrlein (1981a) that the expected value of the probability that any

voting outcome is observed under the UC assumption for any n is identical to the

probability that the same voting outcome is observed with IAC for the same n.
It therefore follows directly from the results above with n ! 1 that E H IACð Þð Þ ¼
E H UCð Þð Þ ¼ 2=7. The assumption of IAC was shown to introduce some degree of

dependence among voters’ preferences, when compared to the complete indepen-

dence of IC. But, we also see that E H IACð Þð Þ>E H ICð Þð Þ, so that the assumption of

IAC concurrently increases the expected degree of social homogeneity among

voters’ preferences, when compared to the case of IC.

There is definitely a direct relationship between the amount of dependence

among voters’ preferences and the expected degree of social homogeneity in voting

situations, when homogeneity is defined by H pð Þ in (1.59). There is no reason to

anticipate that this observation would change when any other reasonable measures

of homogeneity are considered.

1.7 Conclusion

A number of voting paradoxes have been introduced, and empirical studies have

been summarized to indicate that some of the most common paradoxes are rela-

tively unlikely to be observed in actual elections. Mathematical models (DC, IC,

IAC and MC) are developed for obtaining representations for the probability that

voting events will be observed, and these models were then used to suggest that

voting paradoxes should become less likely to be observed as voters’ preferences

exhibit greater degrees of homogeneity, or as voters’ preferences on candidates

become more statistically dependent.
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Chapter 2

Condorcet’s Paradox and Group Coherence

2.1 Introduction

The possibility that various election paradoxes might exist has been seen to be a

potentially significant threat to the stability of election processes, and we have

developed a number of different mathematical models that can be used to assess

the likelihood that these paradoxes might actually be observed. These basic models

have been used to yield some support to the intuitively appealing hypothesis that the

likelihood that these voting paradoxes will be observed should tend to decrease

with increasing levels of social homogeneity among the preferences of voters in

the population, or as the degree of dependence among voters’ preferences in the

population tends to increase. There is a direct linkage between increases in the

measure of dependence among voters’ preferences and the degree of social homo-

geneity that is expected to exist in a voting situation.

An extensive survey of the work that has been performed to investigate the

association between the likelihood that voting paradoxes might occur and degrees

of social homogeneity is summarized in Gehrlein (2006a). The many different

measures of social homogeneity that have been developed in the literature can be

categorized as being either Population Specific Measures of Homogeneity or

Situation Specific Measures of Homogeneity. As in Chap. 1, we focus on the

association between the likelihood that a PMRW exists and degrees of social

homogeneity, since this area has received most of the attention in this type of

analysis. The extension of this analysis to other voting paradoxes will then be

considered later.

2.2 Population Specific Measures of Homogeneity

A Population Specific Measure of Social Homogeneity (PSM) is related to para-

meters of the population from which random voter preference profiles or voting

situations are generated. For three candidates, {A, B, C}, these measures are based

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_2,
# Springer-Verlag Berlin Heidelberg 2011
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on the pi’s from the p vectors that describe the likelihood that a randomly selected

voter will have the ith possible linear preference ranking on the candidates. The

measure H pð Þ from (1.59) is one such a PSM, and it was pointed out in Chap. 1

that PS
PMRW 3; n;DCð Þ generally increases as H pð Þ increases for p vectors in the DC

subset. However, it was also noted that this relationship deteriorates as n becomes

large. To the degree that the level of dependence between voters’ preferences

is related to social homogeneity, the Parameter a in P–E probability models is

also a PSM.

The general conclusion in Gehrlein (2006a) is that studies that have looked for a

general connection between PS
PMRW m; n; pð Þ and various PSM’s have only found at

best a weak relationship. An explanation of this outcome can be based on the fact

that any p vector for a population will have only one value for the PSM that is being

considered, while it is possible that many voting situations could be generated from

that p. This leads to the consideration of measures of social homogeneity that are

based on characteristics of specific voting situations themselves, rather than on the

characteristics of the population from which a voting situation is obtained.

2.3 Situation Specific Measures of Homogeneity

A Situation Specific Measure of Homogeneity (SSM) does not measure social

homogeneity based on p vectors, as the PSM’s do. SSM’s are based on the ni’s of
the particular n vector for a given voting situation, or on the n vector that is obtained

by accumulating individual preferences in a voter preference profile. A SSM would

use the actual observed proportions, ni=n, as a substitute for the pi terms in any

PSM. For any particular voting situation, we know with certainty whether or not a

PMRW exists. It is therefore quite reasonable to expect to have a stronger correla-

tion between social homogeneity and the probability that a PMRW exists for studies

in which social homogeneity is measured by some SSM.

Most simple SSM’s still do not lead to a strong general relationship between

social homogeneity and the probability that a PMRW exists. However, it was found

in Gehrlein (2006a) that when the voters’ preferences are formed by a process that

imposes some internal structural consistency or some mutual coherence on voter

preference profiles or voting situations, much stronger relationships can be found

between SSM’s and the probability that a PMRW exists. The measures of mutual

coherence that have been found to exhibit this tendency are based on some simple

extensions of natural underlying conditions on voting situations that require that a

PMRW must exist.

Black (1958) found one such condition when voters’ preferences are restricted

to have the property of single-peaked preferences. To describe this property, we

define a measure of preference or utility, Ui Cj

� �
, that a given ith voter associates

with candidate Cj in an m-candidate election on candidates C1;C2; :::;Cmf g.
Increased measures of Ui Cj

� �
indicate that a voter has an increased preference, or
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utility, for the given candidate, so that the given voter’s individual preference

ranking on candidates will have Cj � Ck if, and only if, Ui Cj

� �
>Ui Ckð Þ.

Consider a simple example voter preference profile with three voters, where

each individual voter has a linear preference ranking on six candidates, as shown in

Fig. 2.1.

We can determine if the three voter’s preference rankings in the example in

Fig. 2.1 meet the definition of single-peaked preferences by trying to find Ui Cj

� �
values that are consistent with the preference rankings of the individual voters,

while simultaneously meeting an additional restriction. This additional restriction

can be established by drawing a graph like the one that is shown in Fig. 2.2.

Values of Ui Cj

� �
are displayed on the vertical axis of the graph in Fig. 2.2, and

the horizontal axis of the graph represents the sequence of Cj’s that corresponds to

some linear overall reference ranking. Let CiOCj denote the fact that Ci is ranked

before Cj in this overall reference ranking. The specific overall reference ranking

that is used in Fig. 2.2 is C2OC4OC3OC6OC5OC1. Figure 2.2 shows a plot of

possible Ui Cj

� �
values for each voter, as associated with specific candidates in the

sequence of Cj’s in the overall reference ranking, such that the given U
i Cj

� �
values

for a given i would reproduce the linear preference ranking of the associated ith

voter in Fig. 2.1. The results that are displayed in Fig. 2.2 have U1ðC6Þ >

U1ðC3Þ>U1ðC5Þ>U1ðC1Þ>U1ðC4Þ>U1ðC2Þ, to correspond with the linear

preference ranking C6 � C3 � C5 � C1 � C4 � C2 for Voter 1. We do not claim

that the Ui Cj

� �
values in the graph necessarily represent the true utility values that

voters have for candidates. The only claim is that they are possible utility values

that would result in the voters’ preference rankings on candidates.

Any of the possible 720 linear rankings on the six candidates could have been used

as an overall reference ranking. However, the specific overall reference ranking used

for Fig. 2.2 is of particular interest, since it results in plots of the possible Ui Cj

� �

Voter 1: C2

C2

C2

C4

C4

C4

C1

C1.

C1

C5

C5

C5

C3

C3

C3

C6

C6

C6Voter 2: 

Voter 3: 

Fig. 2.1 An example

preference profile with three

voters and six candidates

Ui(Cj)

C2 C4 C3 C6 C5 C1

Voter 1
Voter 2
Voter 3

Fig. 2.2 A graph of single-peaked preference curves for three voters
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values that have single-peaked preference curves for each voter. Using the definition

in Black (1958, p. 7), a “single-peaked (preference) curve is one which changes

its direction at most once, from up to down.” The logical foundation of the definition

for single-peaked preferences is given in Black (1958, pp. 8–9):

While in practice a (committee) member’s preference curve may be of any shape whatso-

ever, there is reason to expect that, in some important practical problems the (preference)

valuations actually carried out will tend to take the form of isolated points on single-peaked

curves. This would be particularly likely to happen if the committee were considering

different possible sizes of a numerical quantity and choosing one size in preference to the

others. It might, for example, be reaching a decision with regard to the price of a product to

be marketed by a firm, or to the output for a future period, or the wage rate of labor, or the

height of a particular tax, or the legal age of leaving school, and so on.

Buchanan (1970) and Browning (1972) also consider various sets of natural

conditions that are likely to lead to the existence of single-peaked preferences for a

group of voters. Gaertner (2005) notes that arguments that ultimately lead to the

same definition of single-peaked preferences can be found as far back as the work of

Pufendorf in the seventeenth century. It can be concluded that the notion of single-

peaked preferences is not simply a mathematical artifact, and that it does have a

basis in reality for some voting scenarios.

The condition of single-peaked preference curves indicates the existence of a

situation in which all voters have preferences that are mutually coherent. That is,
the presence of such a situation suggests that there is mutual agreement among the

voters that some underlying characteristics of candidates exist that allow for the

sequencing of the candidates in some natural order from left to right, according to

their rankings in an overall reference order. Each voter would then have some

particular most preferred candidate in the sequence, with decreasing preferences on

candidates as they are ranked farther away, to the left or to the right, from their most

preferred candidate within the sequence of candidates in the overall reference order.

List (2002) discusses the notion of having different levels of group coherence of

preference, such that voters’ preferences might reflect a substantive level agree-
ment, to the extent that their preferences, or views, tend to have some degree of

consistency or homogeneity. However, voters might go beyond that and have

some degree of meta-level agreement, to the extent that they can agree on a

common dimension on which issues can be conceptualized. The voters might be

largely in agreement as to what this common dimension is, while being in great

disagreement as to what the optimal position on the dimension is. Positioning issues

along such a dimension is perfectly consistent with the notion of single-peaked

preferences. List (2002) argues that agreement at the meta-level is more likely to

reduce occurrences of paradoxical results like PMR cycles than is agreement on a

substantive level.

Dryzek and List (2003) extend this notion, by pointing out that two or more

individuals can agree on a substantive level to the extent that their preferences are

the same. However, these individuals might instead disagree on any common

ranking of alternatives that would reflect their own preferences, while they could

still agree on some ranking of alternatives along a common dimension. This second
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scenario is agreement on a meta-level. As described above, agreement on a meta-

level would imply a condition like single-peakedness. The introduction of issue

complexity might rule out any common agreement on any single dimension, but

multiple relevant issue dimensions coupled with individual voter’s preference

rankings of alternatives on the issue dimensions might lead to some “intra-

dimensional single-peakedness”.

Grofman and Uhlaner (1985) previously proposed a similar concept regarding

the existence of “meta-preferences” that would result when voters have preferences

for characteristics of broadly defined processes that might be involved in determin-

ing their individual preferences on candidates, rather than simply having prefer-

ences for candidates. They suggest that the additional structure that results from

processes that are based on such meta-preferences would lead to an increased level

of overall understanding of the entire decision process, and therefore to more

overall stability. This increased stability would therefore suggest that paradoxical

voting outcomes should be less likely to be observed.

All of this is supported by the work of Black (1958), where arguments are

developed to show that PMR must be transitive for odd n if any overall reference

order and possible Ui Cj

� �
values that are consistent with voters’ preference rank-

ings can be found to result in single-peaked preference curves for all voters. That is,

all voters’ preference curves must be single-peaked relative to the same overall

reference order. However, the assumption of perfectly single-peaked preferences

forces some very strict requirements on voters’ preferences, particularly when there

are many voters in the electorate.

Niemi (1969) proposed the notion of using some measure to the proximity of a

voting situation to having perfectly single-peaked preferences as a SSM, since it

might be overly restrictive to assume that all voters in a large electorate will have

preferences that are single-peaked. Given Black’s result, it seems very reasonable

to assume that the probability that PMR is transitive will remain high as long as the

preferences of most voters in a voting situation are consistent with the restriction of

single-peaked preferences. Niemi proposed that the proximity of a voting situation

to having perfectly single-peaked preferences could effectively be measured as the

minimum proportion of voters in the electorate who must have their preferences

ignored so that the preferences on the remaining candidates will be perfectly single-

peaked. As this necessary proportion of voters decreases, the closer the preferences

in the original voting situation are to being perfectly single-peaked. Niemi (1970)

performs an empirical study of seven three-candidate elections in which complete

preference rankings were reported by voters, to find that only one case resulted in

the existence of a PMR cycle, and that this case was the one that was farthest

removed from the condition of perfect single-peakedness with this measure. One

difficulty of using this measure as a SSM is that it can be difficult to calculate this

proportion, but results of Arrow (1963) can be applied to obtain a proxy for this

measure very easily in the case of three-candidate elections.

Arrow (1963) approaches the concept of single-peaked preferences in a very

different manner, by considering only the ordinal relationships between candidates

in rankings, without using Black’s Ui Cj

� �
values. Arrow’s findings lead to an
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alternative definition of single-peaked preferences, such that voters’ preferences are

perfectly single-peaked if for every triple of candidates, at least one candidate is

never ranked as least preferred among the three candidates by any voter. Arrow’s

definition lacks the conceptual appeal of Black’s utility based definition, but it is a

completely equivalent definition of single-peaked preferences.

2.3.1 Weak Measures of Group Coherence

The ideas that were proposed above by Black, Niemi and Arrow are all combined in

Gehrlein (2004b) to develop a SSM, Parameter b, that measures the minimum

number of times that some candidate is bottom ranked, or is least preferred, in the

preferences of the n voters in a voting situation, to serve as a simple measure of the

proximity of a voting situation to representing perfectly single-peaked preferences

in a three-candidate election, where

b ¼ Min n1 þ n3; n2 þ n4; n5 þ n6f g: (2.1)

Here, the ni terms are defined for a voting situation from Fig. 1.1, which is

reproduced here for convenience in Fig. 2.3.

If b is equal to zero for a voting situation with three candidates, some candidate

is never ranked as least preferred, so the voting situation represents the condition in

which voters have perfectly single-peaked preferences. This would happen, for

example if n1 þ n3 ¼ 0, where the definitions from Fig. 2.3 indicate that this

requires that Candidate C is never the least preferred candidate for any voter in

the associated voting situation. When b is maximized at n=3, a voting situation

reflects very disperse preferences of voters over candidates to reflect a situation that

is very far removed from perfect single-peakedness.

As Parameter b increases in voting situations, the preferences of voters in a

voting situation become more removed from the condition of perfect single-

peakedness. Another perspective on this issue is that a voting situation with a

small Parameter b reflects a situation in which there is some candidate that very

few voters think is the worst of the three candidates. The electorate would be

somewhat united by their weak support of, or lack of complete opposition to, the

election of such a candidate. In that sense, this candidate can be viewed as a Weak
Positively Unifying Candidate that voters would not generally think of as reflecting
the worst possible outcome if that candidate were to be elected.

A A B C B C
B C A A C B
C B C B A A
n1 n2 n3 n4 n5 n6

Fig. 2.3 The six possible

linear preference rankings on

three candidates
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Vickery (1960) considers the well known condition of single-troughed prefer-
ences, and proves that the imposition of this assumption on voting situations will

also lead to the necessary existence of a PMRW. This condition is also known as

single-dipped preferences in the literature, but we use the term single-troughed

preferences since that term is the originally used by Vickery. The condition of

single-troughed preferences is equivalent to the condition of single-peaked

preferences, since every single-peaked voting situation corresponds to a single

troughed-voting situation in which all voters’ preference rankings are inverted.

For a three-candidate election, it follows from Arrow (1963) that a voting situation

with perfectly single-troughed preferences is one in which at least one candidate is

never ranked as most preferred by any voter.

Following the development of Parameter b above, Parameter t measures the

proximity of a voting situation to meeting the condition of perfectly single-troughed

preferences, with

t ¼ Min n1 þ n2; n3 þ n5; n4 þ n6f g: (2.2)

The definition of ni’s in Fig. 2.3 are used to define Parameter t as the minimum

number of times that some candidate is top-ranked as the most preferred candidate

in the voters’ preference rankings, so that a voting situation is perfectly single-

troughed if t ¼ 0, and the value of t then reflects the relative proximity of a voting

situation to the condition of perfect single-troughedness. Any candidate that very

few voters rank as the most preferred candidate in a voting situation can be viewed

as a Weak Negatively Unifying Candidate since none of the voters would generally

think of the election of this candidate as reflecting the best possible outcome. The

electorate would be weakly unified by their opposition to, or lack in complete

support of, the election of such a candidate.

Ward (1965) develops another restriction on voting situations that leads to the

conclusion that a PMRW must exist in a three-candidate election. This condition

requires that some candidate must be perfectly polarizing, in the sense that this

candidate is never middle ranked, or ranked at the center, of any voter’s preference

ranking. That is, every voter will either consider this candidate to be either the most

preferred or the least preferred. The definition of ni’s in Fig. 2.3 are used to define

Parameter c to reflect the proximity of a voting situation to the condition of perfect

polarization, with

c ¼ Min n3 þ n4; n1 þ n6; n2 þ n5f g: (2.3)

If c ¼ 0, some candidate is perfectly polarizing, since all voters will rank that

candidate as either least preferred or most preferred, and the value of cmeasures the

proximity of a voting situation to the condition of perfect polarization. Any

candidate that very few voters rank in the middle of their preference ranking can

generally be viewed as a Weak Polarizing Candidate.
Parameters b and t are combined in Gehrlein (2008) to obtain another measure of

group coherence. By ignoring the distinction between positively unifying and
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negatively unifying candidates, Parameter u measures the presence of an overall

unifying candidate in a voting situation with

u ¼ Minimum b; tf g: (2.4)

A small value of Parameter u for a voting situation indicates that some candidate

is close to being either positively or negatively unifying, and Parameter umeasures

the proximity of a voting situation to having a Weak Overall Unifying Candidate.

2.3.2 Strong Measures of Group Coherence

Stronger measures of group coherence are developed in Gehrlein (2009), and each

of these measures is a more restrictive variation of Parameters b, t, c and u. A Weak

Positively Unifying Candidate was defined as some candidate that is ranked as least

preferred by a small proportion of voters in a voting situation, and the proximity of a

voting situation to having a perfect Weak Positively Unifying Candidate is measure

by Parameter b. A candidate would more strongly reflect the notion of being a

positively unifying candidate by being ranked as most preferred by a large propor-

tion of the voters in a voting situation. Parameter t� is defined accordingly from the

definition of the ni’s in Fig. 2.3, with

t� ¼ Max n1 þ n2; n3 þ n5; n4 þ n6f g: (2.5)

If t� ¼ n, the same candidate is ranked as most preferred by all voters, making it

a perfect Strong Positively Unifying Candidate, and Parameter t� is used as a

measure of the proximity of a voting situation to this condition.

The same basic logic can be used to strengthen the definition the proximity of a

voting situation to having perfect Weak Negatively Unifying Candidate, as

measured by Parameter t. Parameter b� is defined accordingly by

b� ¼ Max n5 þ n6; n2 þ n4; n1 þ n3f g: (2.6)

If b� ¼ n, the same candidate is ranked as least preferred by all voters, making it

a perfect Strong Negatively Unifying Candidate, and Parameter b� is used as a

measure of the proximity of a voting situation to this condition.

Parameter c measured the proximity of a voting situation to the condition of

perfect weak polarization. The strong measure that is associated with this parameter

is Parameter c�, with

c� ¼ Max n3 þ n4; n1 þ n6; n2 þ n5f g: (2.7)

If c� ¼ n, the same candidate is middle-ranked in the preferences of all voters, so

that this candidate is neither extremely liked nor extremely disliked by any voter,
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making it a perfect Strong Centrist Candidate, and Parameter c� is used as a

measure of the proximity of a voting situation to this condition.

Parameters b� and t� are combined as above, by ignoring the distinction between

positively unifying and negatively unifying candidates, and Parameter u� measures

the presence of a Strong Overall Unifying Candidate in a voting situation with

u� ¼ Max b�; t�f g: (2.8)

A large value of Parameter u� therefore indicates that a voting situation has some

candidate that is close to representing either a strong positively or a strong nega-

tively unifying candidate.

2.4 Obtaining Probability Representations

In order to determine the impact that these measures of group coherence have on the

probability that a PMRW exists, attention is focused to the development of repre-

sentations for the conditional probability that a PMRW exists, given that voting

situations have specified values of these SSM’s. These probability representations

are based on a direct extension of the assumption of IAC. For any particular

X 2 b; t; c; u; b�; t�; c�; u�f g, the Conditional Impartial Anonymous Culture Condi-
tion IACX kð Þð Þ is used to develop probability representations for election out-

comes, conditional on the assumption that only voting situations for which

Parameter X has a specified value of k can be observed, and that each of these

possible voting situations is equally likely to be observed.

The conditional probability that a strict PMRW exists for n voters with three

candidates, given the assumption of IACX kð Þ for X 2 b; t; c; u; b�; t�; c�; u�f g,
is denoted by PS

PMRW 3; n j IACX kð Þð Þ. The logic that led to (1.27) is easily genera-

lized to

PS
PMRW 3; n j IACX kð Þð Þ ¼ 3N

Af g
PMRW 3; n; IACX kð Þð Þ
K 3; n; IACX kð Þð Þ : (2.9)

Here, N
Af g

PMRW 3; n; IACX kð Þð Þ and K 3; n; IACX kð Þð Þ are defined in the obvious

fashion, following the development of (1.27).

Gehrlein (2004b) derived a representation for PS
PMRW 3; n j IACb kð Þð Þ with the

subspace partitioning process that was described in the development of a represen-

tation for N
Af g

PMRW 3; L;MCð Þ in Chap. 1. An eight subspace partition is required to

remove all Max and Min arguments that are required in the summation limits to

have Candidate A as the PMRW with b ¼ k, while obtaining a representation for

N
Af g

PMRW 3; n; IACb kð Þð Þ. The resulting representation for odd n � 7 is given by
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PS
PMRW 3; n j IACb kð Þð Þ

¼ �kð17� 21k � 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3

ðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for 0 � k � n� 1ð Þ=4
3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3

2ðk þ 1Þ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3
3

4
; for k ¼ n=3: (2.10)

The subspace partitioning procedure is further complicated in this situation with

the addition of Parameter b to the required summation limits in such probability

representations. In order to facilitate the process of obtaining these representations,

Gehrlein (2005, 2006b) develops an extension of EUPIA that obtains representa-

tions for the conditional probability that voting outcomes are observed, given that

voting situations are constrained to have some specified value of a measurable

parameter.

2.4.1 EUPIA2

With the assumption of either IAC or MC, EUPIA was developed to obtain a

representation for the number of voting situations with n voters, EAðnÞ, such that

the ni’s meet the necessary conditions for Candidate A to meet the requirements of

Event F. With the assumption of IACb kð Þ, EUPIA2 obtains a representation for the

number of voting situations, EA n; kð Þ, such that the ni’s meet the necessary condi-

tions for Candidate A to meet the requirements of Event F and simultaneously meet

the necessary conditions for some defined parameter of the voting situation, like b,
to match a specified integer value k.

The basic requirements of the conditions that are needed for EUPIA to work are

expressed in the discussion that followed Axiom 1.1, where the simple linear form

restriction is imposed on theMax andMin arguments in the summation bounds that

are required for Event F to be observed in a voting situation. The extension of this

logic to EUPIA2 relies on an extension of the simple linear form restriction. The

extended linear form restriction requires that each upper and lower summation

bound on the representation to obtain EA n; kð Þ is expressible as the Max or Min of

some set of simple linear functions of n, a specified k for some defined parameter

and ni’s that are previously defined in the series of summation indexes. As with the

definition of a simple linear form restriction, the coefficients in these simple linear

functions must be rational numbers. Given the nature of identities for sums of

powers of integers, it is very simple to show that:
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Axiom 2.1 If the restrictions on the ni’s in a three-candidate voting situation that are
necessary for Event F to be observed and to simultaneously meet the necessary

conditions for some defined Parameter X 2 b; t; c; u; b�; t�; c�; u�f g to have a speci-

fied integer value k meet the extended linear form restriction, then

EA n; kð Þ ¼
X5
i¼0

X5�i

j¼0

tijnikj; (2.11)

for some integer sequence n ¼ cþ pu, with u ¼ 0, 1, 2, . . . .
As in Axiom 1.1, the tij coefficients in (2.11) must be rational numbers, and

these arguments can easily be extended to representations with MC by replacing n
with L in the definition of the extended linear form restriction.

It is then a trivial extension of a result proved in Gehrlein (2006a) that:

Axiom 2.2 If the necessary conditions that are required to obtain EAðnÞ for some

Event F in a three-candidate election meet the simple linear form restriction, then

EA n; kð Þ must result in a functional form as specified in (2.11), if Parameter

X 2 b; t; c; u; b�; t�; c�; u�f g is simultaneously required to have a specified integer

value k.

2.4.1.1 Obtaining a Representation for PS
PMRW 3; n j IACb kð ÞÞð with EUPIA2

We illustrate the procedure for obtaining representations with EUPIA2 by develop-

ing a representation for PS
PMRW 3; n j IACb kð Þð Þ. The first step is to obtain a represen-

tation for the number of voting situations, K 3; n; IACb kð Þð Þ, with n voters that have

a specified value, k, for Parameter b, as defined in (2.1). The representation for

K 3; n; IACð Þ in (1.25) is clearly consistent with the simple linear form restriction, so

Axiom 2.2 requires that the representation for K 3; n; IACb kð Þð Þ must have the

general form of (2.11).

The process is initiated by fixing k at some specified numerical value and then

using computer enumeration procedures to obtain values of NVSA cþ pj j kð Þ for
each value of j ¼ 0(1)7. In this case, NVSA cþ pj j kð Þ is a count of the number of

voting situations with cþ pj voters for which Parameter b is equal to the specified

value of k. Since k can be treated as a constant in (2.11), the kj term can be absorbed

into the tij term and the general form can be reduced to a linear function with a

single variable, n, as in (1.44), for that specified k.
EUPIA is then used directly to find the conditional representation for

K 3; n; IACb kð Þð Þ, denoted as K 3; n; IACb kð Þ j kð Þ; for the k value has been specified,
and

K 3; n; IACb kð Þ j kð Þ ¼
X5
i¼0

Ck
i n

i; (2.12)

for some integer sequence n ¼ cþ pj, with j ¼ 0, 1, 2,. . .
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The process is then repeated for each integer k value with 0 � k< n=3, and the

Ck
i terms that are obtained for these K 3; n; IACb kð Þ j kð Þ representations will typi-

cally be different for each given k. For the process to work effectively, we need to

start the search process in EUPIA2 with a relatively large value of c.
Table 2.1 summarizes the Ck

i values that were obtained for 0 � i � 3 for each

0 � k � 11 when EUPIA2 was run while arbitrarily setting c ¼ 35 in all cases. The

results give Ck
i ¼ 0; for all i � 4, and the periodicity for all cases is found to have

p ¼ 1. Furthermore, additional EUPIA2 runs were performed to verify that the

relevant entries in Table 2.1 remain valid for all integer values of c � 1.

A representation for K 3; n; IACb kð Þ j kð Þ can be obtained very easily for any

specified k in the range 0 � k � n� 2ð Þ=3 by using the known form of the

representation in (2.12) along with the Ck
i entries in Table 2.1.

When the general form of the representations that are given in (1.44) and (2.11)

are considered along with the representation for K 3; n; IACb kð Þ j kð Þ that is given in
(2.12), we are led directly to the conclusion that each Ck

i coefficient must be

obtainable as a function of k, with

Ck
i ¼

X5�i

j¼0

@ijk
j for some rational @ij coefficients for a specified i: (2.13)

The earlier logic of the development of EUPIA and the known values of Ck
i that

are given in Table 2.1 for a specified i can be used for k ¼ 0, 1, 2,. . ., 6� i to
establish a set of 6� i simultaneous equations, following the format of (2.13), with

6� i unknowns. The solution of the 6� i simultaneous equations will then give the

6� i values of the @ij coefficients in the general representation for Ck
i . When the

particular case with i ¼ 0 is considered, six variables @00; @01; @02; @03; @04; @05f g
are defined. Using the associated entries for Ck

0 that are listed in Table 2.1, the six

simultaneous equations are given in (2.14).

Table 2.1 Computed Ck
i

values with the specified k for
c ¼ 35 and p ¼ 1

k Ck
0 Ck

1 Ck
2 Ck

3

0 0 5/2 3 1/2

1 12 �22 3 1

2 171 �165/2 0 3/2

3 720 �188 �6 2

4 2010 �695/2 �15 5/2

5 4500 �570 �27 3

6 8757 �1729/2 �42 7/2

7 15456 �1240 �60 4

8 25380 �3411/2 �81 9/2

9 39420 �2270 �105 5

10 58575 �5885/2 �132 11/2

11 83952 �3732 �162 6
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@00 þ @010þ @020
2 þ @030

3 þ @040
4 þ @050

5 ¼ 0

@00 þ @011þ @021
2 þ @031

3 þ @041
4 þ @051

5 ¼ 12

@00 þ @012þ @022
2 þ @032

3 þ @042
4 þ @052

5 ¼ 171

@00 þ @013þ @023
2 þ @033

3 þ @043
4 þ @053

5 ¼ 720

@00 þ @014þ @024
2 þ @034

3 þ @044
4 þ @054

5 ¼ 2010

@00 þ @015þ @025
2 þ @035

3 þ @045
4 þ @055

5 ¼ 4500: (2.14)

Algebraic techniques are then used to solve the six simultaneous equations in

(2.14) for the six unknown variables, with:

@00 ¼ 0 @01 ¼ �15

2
@02 ¼ 3

2

@03 ¼ 27

2
@04 ¼ 9

2
@05 ¼ 0: (2.15)

Given these results, it follows that

Ck
0 ¼

�15

2
k þ 3

2
k2 þ 27

2
k3 þ 9

2
k4 ¼ 3kðk þ 1Þð3k2 þ 6k � 5Þ

2
: (2.16)

Similar analysis is used to obtain the representations for the remaining Ck
i terms

for i ¼ 1; 2; 3; 4 and:

Ck
1 ¼ � 1

2
k þ 1ð Þ 3k2 þ 24k � 5

� �

Ck
2 ¼ � 3

2
k þ 1ð Þ k � 2ð Þ

Ck
3 ¼

k þ 1ð Þ
2

: (2.17)

It is easily verified that these functional forms will generate the values that

appear in the associated columns of Table 2.1 for any specified k.
After substitution the Ck

i terms from (2.16) and (2.17) into (2.12) and performing

the necessary algebraic reduction, we obtain

K 3; n; IACb kð Þð Þ ¼ ðk þ 1Þðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ �
2

;

ð2:18Þfor n � 1 and k � n� 2ð Þ=3:

The result that is given in (2.18) is exactly the same as the representation for

K 3; n; IACb kð Þð Þ in Gehrlein (2004b).
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For the special case that k ¼ n=3 when n is a multiple of three, it is easily shown

that

K 3; n; IACb
n

3

� �� �
¼ nþ 3

3

� �3

: (2.19)

A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ can be obtained in the same fashion

that was used to obtain the representation for K 3; n; IACb kð Þð Þ in (2.19). The

conditions on ni’s that result in Candidate A being the strict PMRW for odd n in

(1.5) clearly meet the simple linear form restriction. Axiom 2.2 then requires

that the representation for N
Af g

PMRW 3; n; IACb kð Þð Þ must have the form of (2.11).

Following the same logic that led to the development of Table 2.1 that ultimately

led to representations for K 3; n; IACb kð Þ j kð Þ with specified values of k, we use

EUPIA to find coefficients Dk
i for specified k values for Parameter b that give

representations for N
Af g

PMRW 3; n; IACb kð Þ j kð Þ, with

N
Af g

PMRW 3; n; IACb kð Þ j kð Þ ¼
X3
i¼0

Dk
i n

i: (2.20)

The EUPIA computations were performed with c ¼ 91, and attempts were

made to obtain Dk
i coefficients for all k with 0 � k � 30, and the results are

summarized in Table 2.2 for all 0 � k � 22. The periodicity for the representation

was found to be p ¼ 2 for all k entries.
Coefficients for the representations for N

Af g
PMRW 3; n; IACb kð Þ j kð Þ in (2.20) were

found for all 0 � k � 22 in Table 2.2, with p ¼ 2 and c ¼ 91. However, no such

representation was found with k ¼ 23. The reason for this is that representations to

obtain N
Af g

PMRW 3; n; IACb kð Þð Þ have one functional form for k � n�3
4

and a second

functional form for k � nþ1
4
.

EUPIA2 began this process by using computer enumeration techniques to count

the number of voting situations, NVSAPMRW n j kð Þ for which Candidate A is the

PMRW with a specified value of k for Parameter b, for a series of n values with

n ¼ cþ jp for j ¼ 0(1)7. The first term in the series has n ¼ cþ 0p ¼ 91. With

k ¼ 23 and n ¼ 91, k � nþ1
4

so the second functional form should be used to obtain

the observed value of NVSAPMRW 91 j 23ð Þ. The third enumerated value that is listed

in the series has n ¼ cþ 2 p ¼ 95. With k ¼ 23 and n ¼ 95, k � n�3
4

so the first

functional form should be used to obtain the observed value of NVSAPMRW 95 j 23ð Þ.
This conflict explains why a single functional form is not obtained as a representa-

tion for N
Af g

PMRW 3; n; IACb 23ð Þ j 23ð Þ when c ¼ 91 is used to start the series of

n values to get the values in Table 2.2. The exact break point of this type in such

series can be precisely determined as a function of n by running EUPIA2 with

a number of c values, to look for consistency in terms of the value of c where

the first functional form stops working for each c. As a result, we find that the first

functional form for N
Af g

PMRW 3; n; IACb kð Þð Þ holds over the range of k values with

0 � k � n� 1ð Þ=4.
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A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ for the range of k values with

0 � k � n� 1ð Þ=4 is obtained in the same fashion that was used to develop the

representation for K 3; n; IACb kð Þð Þ in (2.18). Using the data from Table 2.2, with

the necessary functional form like that in (2.13), we obtain

Dk
0 ¼

k k þ 1ð Þ
6

11k2 þ 21k � 17
� �

Dk
1 ¼ � k þ 1ð Þ

6
4k2 þ 26k � 5
� �

Dk
2 ¼� k þ 1ð Þ k � 2ð Þ

2
Dk

3 ¼
k þ 1ð Þ
6

: (2.21)

By using the identity that is given in (2.9) along with the representation for

N
Af g

PMRW 3; n; IACb kð Þ j kð Þ that follows from (2.20) and (2.21), substitution and

algebraic reduction lead to the identical representation for PS
PMRW 3; n; IACb kð Þð Þ

with 0 � k � n� 1ð Þ=4 that was obtained by algebraic methods in (2.10).

The determination of an appropriate representation for PS
PMRW 3; n; IACb kð Þð Þ

with k � nþ 1ð Þ=4 requires some additional manipulation of EUPIA2. Computer

enumeration values for NVSAPMRW n j kð Þ were obtained in the last phase for each

n ¼ cþ pj with j ¼ 0(1)7 for each k ¼ 0(1)22 to obtain the entries in Table 2.2. To

obtain the associated representation for N
Af g

PMRW 3; n; IACb kð Þð Þ over the range of

k values with nþ1
4

� k � n
3
, we start by obtaining computer enumeration values

for NVSAPMRW n j nþ1
4

þ k0
� �

for each n ¼ cþ pj with j ¼ 0(1)7, for each value of

k0 ¼ 0(1)7, with c ¼ 91.

Table 2.2 Computed Dk
i

values with the specified k
for c ¼ 91 and p ¼ 2

k Dk
0 Dk

1 Dk
2 Dk

3

0 0 5/6 1 1/6

1 5 �25/3 1 1/3

2 69 �63/2 0 1/2

3 290 �218/3 �2 2/3

4 810 �815/6 �5 5/6

5 1815 �225 �9 1

6 3535 �2065/6 �14 7/6

7 6244 �1492/3 �20 4/3

8 10260 �1377/2 �27 3/2

9 15945 �2765/3 �35 5/3

10 23705 �7205/6 �44 11/6

11 33990 �1530 �54 2

12 47294 �11479/6 �65 13/6

13 64155 �7063/3 �77 7/3

14 85155 �5715/2 �90 5/2

15 110920 �10280/3 �104 8/3

16 142120 �24395/6 �119 17/6

17 179469 �4779 �135 3

18 223725 �33421/6 �152 19/6

19 275690 �19330/3 �170 10/3

20 336210 �14805/2 �189 7/2

21 406175 �25355/3 �209 11/3

22 486519 �57569/6 �230 23/6
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Table 2.3 summarizes the resulting Fk0
i values such that

N
Af g

PMRW 3; n; IACb
nþ 1

4
þ k0

� �
j nþ 1

4
þ k0

� �
¼

X4
i¼0

Fk0
i n

i: (2.22)

The entries in Table 2.3 all have periodicity with p ¼ 4.

A representation for N
Af g

PMRW 3; n; IACb
nþ1
4

þ k0
� �� �

is then obtained for this range

of k values with nþ1
4

� k< n
3
in the same fashion that was used to developed the

representation for the range of k values 0 � k � n� 1ð Þ=4 in (2.10). Using the data
from Table 2.3, with the necessary functional form like that in (2.13), we obtain

Fk0
0 ¼ 3

512
4k0 þ 1ð Þ 192k0

3 þ 144k0
2 þ 100k0 � 77

� �

Fk0
1 ¼ �1

128
59þ 356k0 þ 144k0

2 þ 192k0
3

� �

Fk0
2 ¼ 1

768
17� 504k0 þ 144k0

2
� �

Fk0
3 ¼ 5� 12k0

128
: (2.23)

A representation for N
Af g

PMRW 3; n; IACb kð Þð Þ can be obtained for the range of k
values with nþ1

4
� k< n

3
by substituting k � nþ1

4
for k0 in the representations for Fk0

i

in (2.22) and (2.23), with

N
Af g

PMRW 3; n; IACb kð Þð Þ

¼ ðn� 3kÞf3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3g
12

;

for nþ 1ð Þ=4 � k< n=3: (2.24)

Additional runs with p ¼ 4 verify that this representation is valid for all

n ¼ 7 4ð Þ . . . . By repeating this procedure with c ¼ 93, this representation is

found to be valid for all odd n � 7 with nþ 1ð Þ=4 � k � n� 1ð Þ=3.
By using the identity in (2.9) along with the representations from (2.18) and

(2.24), substitution and algebraic reduction lead to the same representation

for PS
PMRW 3; n; IACb kð Þð Þ with nþ 1ð Þ=4 � k � n� 1ð Þ=3 that was obtained by

algebraic methods in (2.10). The case of k ¼ n=3 when n is an odd multiple

Table 2.3 Computed Fk0
i values with the specified k0 for c ¼ 91 and p ¼ 4

k0 Fk0
0 Fk0

1 Fk0
2 Fk0

3 Fk0
4

0 �231/512 �59/128 17/768 5/128 11/1536

1 5385/512 �751/128 �343/768 �7/128 11/1536

2 60345/512 �2883/128 �415/768 �19/128 11/1536

3 261417/512 �7607/128 �199/768 �31/128 11/1536

4 760665/512 �16075/128 305/768 �43/128 11/1536

5 1765449/512 �29439/128 1097/768 �55/128 11/1536

6 3538425/512 �48851/128 2177/768 �67/128 11/1536

7 6397545/512 �75463/128 3545/768 �79/128 11/1536
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of three must be handled as a special case, and it is quite easy to show that

PS
PMRW 3; n; IACb n=3ð Þð Þ ¼ 3=4.
By conducting a similar analysis for even values of n, a representation for

PS
PMRW 3; n; IACb kð Þð Þ with even n � 8 is obtained as:

PS
PMRW 3; n j IACb kð Þð Þ

¼ 2kð6þ 31k þ 11k2Þ � 4ð2þ 13k þ 2k2Þnþ 3ð3� 2kÞn2 þ 2n3

2ðn� 3kÞ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for 0 � k � n� 4ð Þ=4
2ð2� 3k þ 18k2 � 9k3Þ þ 2ð1� 12k þ 9k2Þnþ ð5� 6kÞn2 þ n3

2ðk þ 1Þ ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ½ � ;

for n=4 � k � n� 1ð Þ=3
3n2

4 nþ 3ð Þ2 ; for k ¼ n

3
: (2.25)

Table 2.4 gives a list of computed values for PS
PMRW 3; 91 j IACb kð Þð Þ and

PS
PMRW 3; 92 j IACb kð Þð Þ from (2.10) and (2.25), for each value over the bounds of

possible b values from 0 � k � 30: These probabilities decrease as k increases,

yielding strong support to the general hypothesis that the likelihood that paradoxi-

cal voting outcomes will be observed is expected to decrease as voters’ preferences

reflect greater degrees of mutual coherence. Similar to observations that were made

in earlier analyses, the rate of convergence of PS
PMRW 3; n j IACb kð Þð Þ to the limiting

value of 3/4 occurs much faster for odd n than it does for even n.
The most important observation that can be made from Table 2.4 is that voting

situations that are at all close to the condition of having a perfect weak positively

unifying candidate, with b ¼ 0, have a significantly increased probability that a

PMRW will be present. This observation is clearly evident from the fact that

PS
PMRW 3; 91 j IACb kð Þð Þ> 0:99 for all values of k � 7. Moreover, voting situations

that are farthest removed from this condition have a significantly reduced probabil-

ity that a PMRW will exist, with PS
PMRW 3; 91 j IACb kð Þð Þ< 0:80 for all k � 25.

2.4.1.2 Other PS
PMRW 3; n j IACX kð Þð Þ Representations for Weak Measures

The EUPIA2 procedure can be used in the same manner to obtain representations

for PS
PMRW 3; n j IACX kð Þð Þ for each X 2 t; c; u; b�; t�; c�; u�f g. However, this is sim-

plified for Parameter t, based on the following result from Gehrlein (2004b).

Lemma 2.1 PS
PMRW 3; n j IACb kð Þð Þ ¼ PS

PMRW 3; n j IACt kð Þð Þ for odd n � 3.

Thus, the impact of having voters’ preferences reflect some degree of proximity

to a perfect weak negatively unifying candidate is identical to the impact of having

the same degree of proximity to perfect weak positively unifying candidate. At least

this is true with regard to the relationship of these two measures of group mutual

coherence to the probability that a PMRW exists.
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A representation for PS
PMRW 3; n j IACc kð Þð Þ is obtained in Gehrlein (2005), and

the details of how this representation was obtained with EUPIA2 are presented

there. The development of this representation was complicated by an additional

issue, since the representation has different forms for odd and even values of

Parameter c. That is, the representation has periodicity equal to two for the k
component. The resulting representation for odd n � 3 is given by

PS
PMRW 3;njIACc kð Þð Þ

¼

ð139k3þ472k2þ146k�244Þk�4ð7k3þ102k2þ84k�20Þn
�6ð9k2�6k�16Þn2þ16ðkþ1Þn3þ3d2kþ1fð6k2þ24k�1Þþ4ðk�2Þn�2n2g

2
4

3
5

16ðkþ1Þðn�3kÞfðnþ1Þðnþ5Þ�3kð2þkÞg ;

for 0�k� n�1ð Þ=4
3ð�39k4þ72k3þ38k2�76kþ1Þþ4ð57k3�54k2�80kþ19Þn

�2ð75k2þ6k�47Þn2þ4ð8kþ5Þn3�n4þ3d2kþ1fð6k2þ24k�1Þþ4ðk�2Þn�2n2g

2
4

3
5

16ðkþ1Þðn�3kÞfðnþ1Þðnþ5Þ�3kð2þkÞg ;

for nþ1ð Þ=4� k� n�1ð Þ=3

Table 2.4 Computed

values for each of

PS
PMRW 3; 91jIACb kð Þð Þ,

PS
PMRW 3; 92jIACb kð Þð Þ,

PS
PMRW 3; 91jIACc kð Þð Þ and

PS
PMRW 3; 91jIACu kð Þð Þ

k PS
PMRW

3; 91jIACb kð Þð Þ
PS
PMRW

3; 92jIACb kð Þð Þ
PS
PMRW

3; 91jIACc kð Þð Þ
PS
PMRW

3; 91jIACu kð Þð Þ
0 1.0000 0.9837 1.0000 1.0000

1 0.9997 0.9828 0.9920 0.9996

2 0.9991 0.9817 0.9894 0.9990

3 0.9982 0.9803 0.9841 0.9980

4 0.9971 0.9786 0.9810 0.9967

5 0.9957 0.9766 0.9762 0.9951

6 0.9939 0.9743 0.9729 0.9929

7 0.9919 0.9715 0.9683 0.9902

8 0.9894 0.9684 0.9648 0.9870

9 0.9866 0.9649 0.9602 0.9830

10 0.9833 0.9608 0.9565 0.9782

11 0.9795 0.9562 0.9520 0.9724

12 0.9751 0.9509 0.9481 0.9654

13 0.9700 0.9450 0.9435 0.9569

14 0.9641 0.9382 0.9394 0.9466

15 0.9574 0.9304 0.9347 0.9339

16 0.9496 0.9215 0.9304 0.9183

17 0.9404 0.9112 0.9255 0.8987

18 0.9297 0.8993 0.9211 0.8737

19 0.9170 0.8853 0.9160 0.8414

20 0.9017 0.8686 0.9115 0.7985

21 0.8832 0.8485 0.9063 0.7399

22 0.8601 0.8239 0.9016 0.6568

23 0.8325 0.7947 0.8965 0.5427

24 0.8088 0.7693 0.8921 0.4368

25 0.7900 0.7490 0.8875 0.3446

26 0.7754 0.7331 0.8839 0.2637

27 0.7645 0.7211 0.8803 0.1921

28 0.7569 0.7125 0.8779 0.1285

29 0.7523 0.7069 0.8758 0.0722

30 0.7503 0.7040 0.8751 0.0217
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7n2 þ 42nþ 27

8 nþ 3ð Þ2 ; for k ¼ n=3: (2.26)

Here, dyx ¼ 1 if x is an integer multiple of y. Otherwise, dyx ¼ 0. The representation in

(2.26) is used to compute the PS
PMRW 3; 91 j IACc kð Þð Þ entries that are shown in Table

2.4 over the possible Parameter c values from 0 � k � 30.

The values that are presented in Table 2.4 show some very interesting results,

with PS
PMRW 3; 91 j IACb kð Þð Þ>PS

PMRW 3; 91 j IACc kð Þð Þ for 0 � k � 19 and with

PS
PMRW 3; 91 j IACc kð Þð Þ>PS

PMRW 3; 91 j IACb kð Þð Þ for 20 � k � 30. This suggests

that proximity to of a voting situation to the condition of having a perfect weak

positively unifying candidate has more of an impact on the probability that a

PMRW exists than does the proximity to a perfect weak polarizing candidate for

small values of k. However, as k increases the reverse situation exists. Moreover,

PS
PMRW 3; 91 j IACc kð Þð Þ and PS

PMRW 3; 91 j IACb kð Þð Þ do not seem to be approaching

the same limiting value as k ! n=3. This observation is verified if we consider

the values of these representations in the limiting case as n ! 1, where

PS
PMRW 3;1j IACc kð Þð Þ ¼ 7=8 from (2.26) while PS

PMRW 3;1j IACb kð Þð Þ ¼ 3=4
from (2.10).

A representation for PS
PMRW 3; n j IACu kð Þð Þ was developed in conjunction with

other results that are reported in Gehrlein (2008), with

PS
PMRW 3; n j IACu kð Þð Þ

¼ 19k3 þ 93k2 þ 14kþ 6þ 2ð6k2 � 24k� 1Þn� 6ð2k� 1Þn2 þ 2n3

13k3 þ 81k2 þ 14kþ 6þ 2ð7k2 � 22k� 1Þn� 6ð2k� 1Þn2 þ 2n3
;

for 0 � k � n� 1ð Þ=4
3ðn� 3kÞð9k2 þ 3� 6knþ n2Þ

81k3 þ 54k2 þ 27kþ 12� ð63k2 þ 36kþ 5Þnþ 3ð5kþ 2Þn2 � n3
;

for nþ 1ð Þ=4 � k � n=3: (2.27)

Some interesting results follow directly from these representations. Since a

PMRW must exist if b ¼ 0 or t ¼ 0, it is obvious that a PMRW must exist if

u ¼ 0. It is also easy to prove that PS
PMRW 3; n j IACu n=3ð Þð Þ ¼ 0 when n is an odd

multiple of three, and this is also evident from the representation in (2.27). Calcu-

lated values of PS
PMRW 3; 91 j IACu kð Þð Þ are listed in Table 2.4 for each 0 � k � 30.

These results yield some dramatic, but potentially misleading results. The calcu-

lated results for PS
PMRW 3; 91 j IACu kð Þð Þ show a much stronger relationship between

the probability that a PMRW exists and the value of Parameter u than was observed
previously with any of the Parameters b, t or c.

The potentially misleading result comes from the very evident observation that

PS
PMRW 3; 91 j IACb kð Þð Þ>PS

PMRW 3; 91 j IACu kð Þð Þ for all k> 0, which might make it

appear that Parameter u is not as closely associated with the probability that a
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PMRW exists than Parameter b is. However, while a PMRW must exist if either

b ¼ 0 or u ¼ 0, the subset of voting situations for which u ¼ 0 includes all of the

voting situations for which b ¼ 0, along with all of remaining voting situations for

which t ¼ 0. This difference in the basis of comparison of these probabilities does

not therefore allow for a direct evaluation of the relative degree of the connection

between these parameters and the probability that a PMRW exists. In order to make

a fair comparison of these parameters for weak measures of group mutual coher-

ence, it is necessary to consider some other factors.

2.5 Cumulative Probabilities that a PMRW Exists

Instead of considering representations for the probability PS
PMRW 3; n j IACX kð Þð Þ

that a PMRW exists when all voting situations are equally likely to be observed

for which Parameter X has a specific value equal to k, it is more useful to consider

cumulative probabilities for Parameter X. For each X 2 b; t; c; uf g a PMRW must

exist when the value of X is equal to zero. The CIACX k�ð Þ assumption is an

extension of IACX kð Þ that assumes that all voting situations for which Parameter

X has a value of q in the range 0 � q � k are equally likely to be observed. Thus,

as k decreases the set of voting situations that are being considered represents

the subset of all of the possible voting situations that are closest to having a

perfect weak positively unifying candidate, a perfect weak negatively unifying

candidate, a perfect weak polarizing candidate or perfect weak overall unifying

candidate.

The definitions of the cumulative probability PS
PMRW 3; n jCIACX k�ð Þð Þ follow

accordingly for each X 2 b; t; c; uf g. These representations are found from a direct

extension of the identity in (2.9) for each 0 � k � n=3, with:

PS
PMRW 3; n jCIACX k�ð Þð Þ ¼

3
Pk
q¼0

N
Af g

PMRW 3; n; IACX qð Þð Þ

Pk
q¼0

K 3; n; IACX qð Þð Þ
: (2.28)

The algebraic manipulations that are required to obtain these representations

for each X 2 b; t; c; uf g were performed to obtain results in Gehrlein (2008) for

odd n:

PS
PMRW 3;n jCIACb k�ð Þð Þ ¼ PS

PMRW 3;n jCIACt k
�ð Þð Þ

¼ 2½ð � 41þ 69kþ 22k2Þkþ 5ð5� 18k� 2k2Þnþ 10ð3� kÞn2 þ 5n3�
ð � 73þ 117kþ 36k2Þkþ 5ð10� 33k� 3k2Þnþ 20ð3� kÞn2 þ 10n3

;

for 0� k � n� 1ð Þ=4

68 2 Condorcet’s Paradox and Group Coherence



195�1968k�720k2þ3840k3þ4320k4þ1728k5

þð1661�1680k�6000k2�5760k3�2880k4Þnþ10ð165þ200kþ216k2þ192k3Þn2
þ30ð9�8k�24k2Þn3þ5ð15þ32kÞn4�11n5

2
64

3
75

16ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for nþ1ð Þ=4�k� n�1ð Þ=3:
(2.29)

PS
PMRW 3;n jCIACc k�ð Þð Þ

¼

kþ1ð Þ 165�783kþ1743k2þ1597k3þ278k4þ10ð71�233k�143k2�7k3Þn
þ30ð31þ3k�6k2Þn2þ80ðkþ2Þn3

" #

�15d2kf11þ30kþ6k2�2 3�2kð Þn�2n2g

2
664

3
775

8ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for 0� k� n�1ð Þ=4
435�952kþ480k2þ2200k3�90k4�468k5

þð1349�2520k�4160k2þ840k3þ1140k4Þnþ10ð177þ120k�162k2�100k3Þn2

þ10ð39þ72kþ32k2Þn3�5ð3þ4kÞn4þn5�30d2kf11þ30kþ6k2�2ð3�2kÞn�2n2g

2
664

3
775

16ðkþ1Þðkþ2Þ½ð�73þ117kþ36k2Þkþ5ð10�33k�3k2Þnþ20ð3�kÞn2þ10n3� ;

for nþ1ð Þ=4� k� n�1ð Þ=3:
(2.30)

PS
PMRW 3;n jCIACu k�ð Þð Þ

¼ 30þ 121kþ 261k2 þ 38k3 � 10ð1þ 15k� 3k2Þnþ 10ð3� 4kÞn2 þ 10n3

2ð15þ 56kþ 111k2 þ 13k3Þ� 5ð2þ 27k� 7k2Þnþ 10ð3� 4kÞn2 þ 10n3
;

for 0� k� n� 1ð Þ=4
27ð25þ 64kþ 480k2 þ 1280k3 þ 1440k4 þ 576k5Þ

þ 9ð101� 960k� 3840k2 � 5760k3 � 2880k4Þnþ 90ð29þ 128kþ 288k2 þ 192k3Þn2

�10ð85þ 576kþ 576k2Þn3 þ 15ð37þ 64kÞn4 � 59n5

2
664

3
775

16 n� 2uð Þ 18ðkþ 1Þð13þ 42kþ 63k2 þ 27k3Þ� 3ð35þ 250kþ 360k2 þ 144k3Þn
þð25þ 24kÞð5þ 6kÞn2 � 3ð5þ 6kÞn3 þ n4

" #

for nþ 1ð Þ=4� k� n� 1ð Þ=3:
(2.31)

Here, dyx ¼ 1 if x is an integer multiple of y. Otherwise, dyx ¼ 0.

It follows directly from definitions for each X 2 b; t; c; uf g that

PS
PMRW 3; n jCIACX

n

3

�� �� �
¼ PS

PMRW 3; n; IACð Þ ¼ 15ðnþ 3Þ2
16ðnþ 2Þðnþ 4Þ : (2.32)

These representations are far too unwieldy to serve as the basis of any useful

analysis, so attention will be focused on the potentially most interesting case of

large electorates with limiting probability as n ! 1. To do this, k is replaced with
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akn in the PS
PMRW 3; n jCIACX k�ð Þð Þ representations, so that k is expressed as a

proportion, ak, of n, rather than as an integer value. It then follows from definitions

that 0 � ak � 1=3. The limiting representation as n ! 1 is then determined.

The resulting representations for the limiting distributions are denoted by

PS
PMRW 3;1jCIACX a�k

� �� �
, with:

PS
PMRW 3;1jCIACb a�k

� �� �¼ PS
PMRW 3;1jCIACt a�k

� �� �

¼ 10� 20ak � 20a2k þ 44a3k
10� 20ak � 15a2k þ 36a3k

; for 0� ak � 1=4

�11þ 160ak � 720a2k þ 1920a3k � 2880a4k þ 1728a5k
16a2kð10� 20ak � 15a2k þ 36a3kÞ

; for 1=4� ak � 1=3:

(2.33)

PS
PMRW 3;1; jCIACc a�k

� �� �

¼ 40� 90ak � 35a2k þ 139a3k
40� 80ak � 60a2k þ 144a3k

; for 0 � ak � 1=4

¼ 1� 20ak þ 320a2k � 1000a3k þ 1140a4k � 468a5k
16a2kð10� 20ak � 15a2k þ 36a3kÞ

; for 1=4 � ak � 1=3:

(2.34)

PS
PMRW 3;1jCIACu a�k

� �� �

¼ 10� 40ak þ 30a2k þ 38a3k
10� 40ak þ 35a2k þ 26a3k

; for 0 � ak � 1=4

�59þ 960ak � 5760a2k þ 17280a3k � 25920a4k þ 15552a5k
16ð1� 2akÞð1� 18ak þ 144a2k � 432a3k þ 486a4kÞ

;

for 1=4 � ak � 1=3: (2.35)

These limiting representations as n ! 1 are much more tractable. Following

earlier discussion, these limiting representations result in specific values such

that PS
PMRW 3;1jCIACX 0�ð Þð Þ ¼ 1 and PS

PMRW 3;1jCIACX 1=3�ð Þð Þ ¼ 15=16
for each X 2 b; t; c; uf g. The cumulative probability representations ultimately

will be very helpful in showing the relationship that exists between the probability

that a PMRW exists and the degree of group mutual coherence that is present in

voters’ preferences. However, the original issue regarding the fact that there is a

greater proportion of voting situations with ak ¼ 0 for Parameter u than for Param-

eter b has not yet been resolved. In order to address this problem, attention is turned

to the consideration of the proportion of voting situations that have a specified

parameter value.
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2.6 Proportions of Profiles with Specified Parameters

Wewant to develop representations for the proportion of all possible voting situations

that have a specified value, q, of Parameter X in some given range 0 � q � k. Define
this proportion as PVS 3; n jCIACX k�ð Þð Þ for each X 2 b; t; c; uf g. The representa-

tions for PVS 3; n jCIACX k�ð Þð Þ are obtained from an identity that follows directly

from definitions for 0 � k � n=3, with

PVS 3; n jCIACX k�ð Þð Þ ¼

Pk
q¼0

K 3; n; IACX qð Þð Þ

K 3; n; IACð Þ : (2.36)

Gehrlein (2008) performs the algebraic reduction of (2.36) to obtain

PVS 3;n jCIACb k�ð Þð Þ ¼ PVS 3;n jCIACt k
�ð Þð Þ ¼ PVS 3;n jCIACc k�ð Þð Þ

¼
3 kþ 1ð Þ kþ 2ð Þ ð �73þ 117kþ 36k2Þk

þ5ð10� 33k� 3k2Þnþ 20ð3� kÞn2 þ 10n3

( )" #

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þ ;

for 0� k � n� 1ð Þ=3
1; for k ¼ n=3: (2.37)

Attention will be focused on the limiting distribution, PVS 3;1jCIACX ak�ð Þð Þ, as
n ! 1, and following the procedure that was used in earlier analyses,

PVS 3;1jCIACb ak�ð Þð Þ ¼ PVS 3;1jCIACt ak�ð Þð Þ ¼ PVS 3;1jCIACc ak�ð Þð Þ
¼ 3ak2ð10� 20ak � 15ak2 þ 36ak3Þ; for 0 � ak � 1=3: ð2:38Þ

The representation in (2.38) can be used as a basis of a search procedure to find

specific values of bpb such that PVS n;1jCIACb b p�
b

� �� �¼ p for each proportion p¼
0.00(0.05)1.00, and the results are listed in Table 2.5. Based on previous discussion,

b p
b ¼ b p

t ¼ b p
c for all p. The results in Table 2.5 indicate for example that 65% of

all possible voting situations are included in the range of ak parameter values

with 0 � ak � 0:1924 for Parameter b, t, or c, and 15% of all possible voting

situations are included in the range of ak parameter values with 0 � ak � 0:0564
for Parameter u.

The results of Table 2.5 can now be used in conjunction with the limiting

representations from (2.33) to compute the limiting conditional cumulative proba-

bility PS
PMRW n;1jCIACb bp

�
b

� �� �
that a PMRW exists for the p percent of all

voting situations that are closest to having a perfect weak positively unifying

candidate. For example, suppose that we wish to consider the 20% of voting situa-

tions that are closest to having a perfect weak positively unifying candidate.
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The results on Table 2.5 show that b:20b ¼ 0:0908. This particular value is used with
(2.33) to find that PVS 3;1jCIACb b:20

�
b

� �� � ¼ 0:9956. So, the probability that a

PMRW exists for the 20% of voting situations that are closest to having a perfect

weak positively unifying candidate is 0.9956.

Computed values from all of the associated representations for

PS
PMRW n;1jCIACX bp

�
X

� �� �
for each X 2 b; t; c; uf g are listed in Table 2.6 for

each proportion p ¼ 0.00(0.05)1.00.

The values in Table 2.6 show some very interesting results. For example, the

50% of all possible voting situations that are closest to having a perfect weak

positively or negatively unifying candidate have a PMRW with probability of

0.9857 for large electorates. And, the 15% of all possible voting situations that

are closest to having a perfect weak polarizing candidate have a PMRW with

probability of 0.9814 for large electorates. Clearly, any significant degree of

group mutual coherence among voters’ preferences that approaches having a

perfect weak positively or negatively unifying candidate leads to a high probability

that a PMRW exists. The impact of having voters’ preferences that suggest

the presence of a candidate approaching a perfect weak polarizing candidate in

voting situations is also quite strong, but it is not as significant as the proximity to

having a perfect weakly unifying candidate, assuming that there is an equivalence

of these factors as they are measured by ak, since PS
PMRW n;1jCIACb bp

�
b

� �� �
>

PS
PMRW n;1jCIACc bp

�
c

� �� �
for all 0< p< 1. Moreover, the results from Table 2.6

show that the 50% of voting situations that are most closely related to having a

perfect weak overall unifying candidate have a probability 0.9910 of having a

Table 2.5 Computed

values of bpb, b
p
t , b

p
c and bpu;

for each proportion

p ¼ 0.00(0.05)1.00

p bpb ¼ bpt ¼ bpc bpu
0.00 0.0000 0.0000

0.05 0.0428 0.0308

0.10 0.0619 0.0449

0.15 0.0772 0.0564

0.20 0.0908 0.0667

0.25 0.1033 0.0763

0.30 0.1150 0.0854

0.35 0.1264 0.0943

0.40 0.1374 0.1031

0.45 0.1483 0.1118

0.50 0.1591 0.1206

0.55 0.1700 0.1296

0.60 0.1811 0.1388

0.65 0.1924 0.1484

0.70 0.2042 0.1585

0.75 0.2166 0.1695

0.80 0.2298 0.1815

0.85 0.2445 0.1951

0.90 0.2614 0.2117

0.95 0.2829 0.2344

1.00 0.3333 0.3333
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PMRW. This suggests that any voting situation that is relatively close to represent-

ing perfect weak overall unifying candidate, as measure by Parameter u, will have a
very high probability of yielding a PMRW with large electorates.

2.7 Results with Strong Measures of Group Coherence

The same type of analysis that we have just used with weak measures of group

mutual coherence was applied to strong measures in Gehrlein (2009), but there are

some differences in how these methods must be applied in that case. Representa-

tions are obtained for PS
PMRW 3; n j IACX� kð Þð Þ for each X� 2 b�; t�; c�; u�f g in exactly

the same fashion with EUPIA2. But, a major difference then occurs during the

process of obtaining the cumulative probability representations that a PMRW exists

with these strong measures of group coherence. The identity in (2.28) was based on

the fact that parameter values for the weak measures of group mutual coherence in

X 2 b; t; c; uf g were each closest to the condition of requiring that a PMRW must

exist with X ¼ 0. However, the parameters for the strong measures of group mutual

coherence in X� 2 b�; t�; c�; u�f g are each closest to requiring that a PMRW must

exist when X� ¼ n.
For the strong measures of group mutual coherence in X� 2 b�; t�; c�; u�f g, the

cumulative probability that a PMRW exists is therefore found for a specified range

of q values for Parameter X� in the range k � q � n. The resulting cumulative

Table 2.6 Computed values

of PS
PMRW n;1jCIACX bp�Xð Þð Þ

for X ¼ b, t, c, u for

each proportion

p ¼ 0.00(0.05)1.00

p b, t c u

0.00 1.0000 1.0000 1.0000

0.05 0.9991 0.9895 0.9995

0.10 0.9980 0.9850 0.9989

0.15 0.9969 0.9814 0.9983

0.20 0.9956 0.9782 0.9975

0.25 0.9943 0.9753 0.9967

0.30 0.9929 0.9726 0.9958

0.35 0.9913 0.9701 0.9948

0.40 0.9896 0.9676 0.9936

0.45 0.9877 0.9652 0.9924

0.50 0.9857 0.9628 0.9910

0.55 0.9834 0.9605 0.9894

0.60 0.9809 0.9582 0.9876

0.65 0.9781 0.9558 0.9856

0.70 0.9749 0.9535 0.9832

0.75 0.9712 0.9510 0.9804

0.80 0.9669 0.9486 0.9770

0.85 0.9616 0.9460 0.9728

0.90 0.9548 0.9433 0.9671

0.95 0.9466 0.9405 0.9583

1.00 0.9375 0.9375 0.9375
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probability is denoted by PS
PMRW 3; n jCIACX� kþð Þð Þ. The representations for these

cumulative probabilities follow directly from definitions for each possible value of

k with n=3 � k � n, with

PS
PMRW 3; n jCIACX� kþð Þð Þ ¼

3
Pn
q¼k

N
Af g

PMRW 3; n; IACX� qð Þð Þ
Pn
q¼k

K 3; n; IACX� qð Þð Þ
: (2.39)

The resulting representations are given by:

PS
PMRW 3;n jCIACb� kþð Þð Þ ¼ PS

PMRW 3;n jCIACt� kþð Þð Þ

¼

3ð576k5�1440k4þ1280k3�1200k2þ784kþ65Þ
� ð2880k4�5760k3þ6000k2�4560k�221Þn

þ10ð192k3�360k2þ344k�11Þn2�30ð24k2�40kþ7Þn3þ5ð32k�17Þn4�11n5

2
64

3
75

16½kðkþ1Þfðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3g� ;

for nþ1ð Þ=3� k� n�1ð Þ=2:
(2.40)

1, for nþ 1ð Þ=2 � k � n

PS
PMRW 3;njCIACc� kþð Þð Þ

¼

1476k5�2610k4þ40k3þ824kþ435�ð2100k4�2760k3þ2000k2�2200k�757Þn
þ10ð116k3�186k2þ216kþ25Þn2�10ð40k2�80kþ9Þn3þ5 20k�11ð Þn4�7n5

�30d2kf3ð10k2�18kþ5Þ�2ð14k�11Þnþ6n2g

2
664

3
775

16½kðkþ1Þfðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3g� ;

for nþ1ð Þ=3�k� n�1ð Þ=2

nþ3�kð Þ nþ1�kð Þ 34k3�169k2þ42kþ365

�2ð31k2�49k�139Þnþð22kþ71Þn2þ6n3

( )

�15ð1�d2kÞf2k2�10kþ9�2ð2k�5Þnþ2n2g

2
664

3
775

8ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞðnþ5þ4kÞ ;

for nþ1ð Þ=2�k�n:

(2.41)

PS
PMRW 3;n jCIACu� kþð Þð Þ

¼

3

�9ð576k5�1440k4þ1280k3�480k2þ64k�25Þ
þ3ð2880k4�5760k3þ3840k2�960kþ229Þn

�30ð192k3�288k2þ128k�29Þn2þ30ð64k2�64kþ19Þn3�5ð64k�37Þn4þ23n5

2
64

3
75

16
36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn

þ 5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

" # ;

for n=3� k� 3n�1ð Þ=8:
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¼

8608k5�31760k4þ41600k3�23920k2þ5892k�135

�3ð5920k4�16960k3þ16320k2�6160kþ501Þnþ90ð160k3�336k2þ212k�33Þn2
�90ð64k2�88kþ25Þn3þ15ð76k�49Þn4�87n5

2
64

3
75

8
36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn

þ5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

� 	 ;

for 3nþ1ð Þ=8�k� n�1ð Þ=2
¼1; for nþ1ð Þ=2�k�n: (2:42)

It then follows directly from definitions for each X� 2 b�; t�; c�; u�f g that

PS
PMRW 3; n jCIACX�

n

3

� �þ� �� �
¼ PS

PMRW 3; n; IACð Þ

¼ 15ðnþ 3Þ2
16ðnþ 2Þðnþ 4Þ : (2.43)

Just as we observed in the case of the representations that were obtained for

PS
PMRW 3; n j IACX kð Þð Þ in (2.29), (2.30) and (2.31), the resulting representations for

PS
PMRW 3; n jCIACX� kþð Þð Þ in (2.40), (2.41) and (2.42) are far too cumbersome

for any meaningful analysis. Following earlier analysis, attention therefore is

focused on the limiting case for voters as n ! 1, and the resulting representations

are defined by PS
PMRW 3;1jCIACX� aþk

� �� �
; for the range 1=3 � ak � 1, with

PS
PMRW 3;1jCIACb� akþð Þð Þ ¼ PS

PMRW 3;1jCIACt� akþð Þð Þ

¼ 1728a5k � 2880a4k þ 1920a3k � 720a2k þ 160ak � 11

16a2kð36a3k � 15a2k � 20ak þ 10Þ ; for 1=3 � ak � 1=2

1; for 1=2 � ak � 1: (2.44)

PS
PMRW 3;1jCIACc� aþk

� �� �

¼ 1476a5k � 2100a4k þ 1160a3k � 400a2k þ 100ak � 7

16a2kð36a3k � 15a2k � 20ak þ 10Þ ; for 1=3 � ak � 1=2

¼ 17ak þ 3

4ð4ak þ 1Þ ; for 1=2 � ak � 1: ð2:45Þ

PS
PMRW 3;1jCIACu� aþk

� �� �

¼3ð�5184a5kþ8640a4k�5760a3kþ1920a2k�320akþ23Þ
16ð6ak�1Þð1;62a4k�288a3kþ192a2k�58akþ7Þ ; for 1=3�ak�3=8:

8608a5k�17760a4kþ14400a3k�5760a2kþ1140ak�87

8ð6ak�1Þð162a4k�288a3kþ192a2k�58akþ7Þ ; for 3=8�ak�1=2

1; for 1=2�ak�1: ð2:46Þ
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A direct comparison of the cumulative probability values that are obtained from

these PS
PMRW 3;1jCIACX� aþk

� �� �
representations for different strong measure of

group mutual coherence, as measured by parameters in X� 2 b�; t�; c�; u�f g, does not
lead to any clear results. The reason for this follows from the fact that the subset of

all voting situations for which b� ¼ n are included in the set of all voting situations
with u� ¼ n, along with all other voting situations with t� ¼ n. So the basis of

comparison is not the same in all cases. In order to facilitate further analysis, we

develop representations for the proportion, PVS 3; n jCIACX� kþð Þð Þ, of all voting
situations that have a specified value, q, for Parameter X* in the range k � q � n.
These representations are obtained from the identity.

PVS 3; n jCIACX� kþð Þð Þ ¼

Pn
q¼k

K 3; n; IACX� qð Þð Þ

K 3; n; IACð Þ : (2.47)

The necessary algebraic reduction of (2.47) is performed in Gehrlein (2009), to

obtain representations for PVS 3; n jCIACX� kþð Þð Þ with each X� 2 b�; t�; c�; u�f g:

PVS 3;n;CIACb� kþð Þð Þ¼PVS 3;n;CIACt� kþð Þð Þ¼PVS 3;n;CIACc� kþð Þð Þ

¼3kðkþ1Þ½ðk�1Þð36k2þ45k�154Þ�5ð3k2þ27k�40Þn�20ðk�4Þn2þ10n3�
ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ;

for n=3<k� n�1ð Þ=2
3ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞðnþ5þ4kÞ

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ; for ½ nþ1ð Þ=2�k�n:

(2.48)

PVS 3;n;CIACu� kþð Þð Þ

¼
3

36kðk�1Þð27k3�63k2þ42k�13Þ�6ð315k4�810k3þ695k2�240kþ13Þn
þ5ð6k�1Þð48k2�82kþ37Þn2�5ð108k2�132kþ31Þn3þ5ð20k�11Þn4�7n5

" #

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ;

for n=3<k� n�1ð Þ=2
6ðnþ1�kÞðnþ2�kÞðnþ3�kÞðnþ4�kÞð6k�nÞ

ðnþ1Þðnþ2Þðnþ3Þðnþ4Þðnþ5Þ ; for nþ1ð Þ=2�k�n: ð2:49Þ

The limiting representations as n ! 1 are obtained from (2.48) and (2.49)

following previous discussion, with:

PVS 3;1;CIACb� aþk
� �� � ¼ PVS 3;1;CIACt� aþk

� �� � ¼ PVS 3;1;CIACc� aþk
� �� �

¼ 3a2kð36a3k � 15a2k � 20ak þ 10Þ; for 1=3 � ak � 1=2

3ð1� akÞ4ð4ak þ 1Þ; for 1=2 � ak � 1: ð2:50Þ
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PVS 3;1;CIACu� aþk
� �� �

¼ 3ð6ak � 1Þð162a4k � 288a3k þ 192a2k � 58ak þ 7Þ; for 1=3� ak � 1=2

6ð1� akÞ4ð6ak � 1Þ; for 1=2� ak � 1: (2.51)

These results show for example that PVS 3;1;CIACu� 0:50þð Þð Þ ¼ 0:75, so that

75% of all voting situations have a value of u�=n in the range 0.50–1.00 in the limit

as n ! 1. A search procedure was then initiated with these representations to find

the specific values of b p
X� such that PVS 3;1;CIACX bpX�

þ� �� � ¼ p for each

X� 2 b�; t�; c�; u�f g with p ¼ 0:00 0:05ð Þ1:00 and the results are summarized in

Table 2.7.

These bpX� values from Table 2.7 are used in conjunction with the representations

from (2.44), (2.45) and (2.46) to obtain the cumulative probability values that a

PMRW exists from PS
PMRW 3;1jCIACX� bpX�

þ� �� �
for each strong measure of

group mutual coherence from X� 2 b�; t�; c�; u�f g with p ¼ 0:00 0:05ð Þ1:00. The
results of these computations are summarized in Table 2.8, and some very interest-

ing and compelling observations directly follow from them.

Just as we observed in the case of the proximity of a voting situation to having a

perfect weak polarizing candidate for weak measures of group mutual coherence,

the proximity of a voting situation to having a perfect strong centrist candidate has

the least amount of impact on the probability that a PMRW will exist. A somewhat

surprising result is that the 55% of voting situations that are closest to having a

perfect strong positively unifying candidate or perfect strong negatively unifying

Table 2.7 Values of bpX� for

each X� 2 b�; t�; c�; u�f g for

each p ¼ 0.00(0.05)1.00

p bpb� ¼ bpt� ¼ bpc� bpu�
0.00 1.0000 1.0000

0.05 0.7456 0.7820

0.10 0.6934 0.7357

0.15 0.6574 0.7032

0.20 0.6289 0.6770

0.25 0.6049 0.6546

0.30 0.5839 0.6347

0.35 0.5651 0.6166

0.40 0.5479 0.5998

0.45 0.5320 0.5840

0.50 0.5173 0.5689

0.55 0.5033 0.5545

0.60 0.4902 0.5405

0.65 0.4773 0.5268

0.70 0.4645 0.5133

0.75 0.4514 0.5000

0.80 0.4376 0.4865

0.85 0.4226 0.4720

0.90 0.4054 0.4551

0.95 0.3838 0.4323

1.00 0.3333 0.3333

2.7 Results with Strong Measures of Group Coherence 77



candidate have a PMRW with certainty. The most compelling observation is that

the 75% of voting situations that are closest to having a perfect strong overall

unifying candidate will have a PMRW with absolute certainty.

2.8 Conclusion

When voters’ preferences in a three-candidate voting situation reflect any signifi-

cant degree of proximity to having a perfect weak positively or negatively unifying

candidate, the probability that a PMRW exists is high. When voters’ preferences are

at all close to reflecting a situation in which a perfect weak overall unifying

candidate exists, the probability that a PMRW exists is very high. An even stronger

relationship is shown to exist when voting situations are at all close to having a

perfect strong positively or negatively unifying candidate. A PMRW must exist

when voting situations are even remotely close to having a perfect strong overall

unifying candidate.

It is very important to note that the associated underlying models that lead to any

of these measures of mutual group coherence do not actually have to be the basis of

the mechanism by which the voters’ preference rankings on candidates were

actually formed. It is only required that the preferences in a given voting situation

could have been obtained by one of these models. As a result, it is easily concluded

that Condorcet’s Paradox should very rarely be observed in any real elections on a

Table 2.8 Values of

PS
PMRW 1jCIACX� bpX�

þ� �� �
;

for each X� 2 b�; t�; c�; u�f g
for each p ¼ 0.00(0.05)1.00

p b�,t� c� u�

0.00 1.0000 1.0000 1.0000

0.05 1.0000 0.9840 1.0000

0.10 1.0000 0.9797 1.0000

0.15 1.0000 0.9764 1.0000

0.20 1.0000 0.9736 1.0000

0.25 1.0000 0.9711 1.0000

0.30 1.0000 0.9688 1.0000

0.35 1.0000 0.9667 1.0000

0.40 1.0000 0.9646 1.0000

0.45 1.0000 0.9626 1.0000

0.50 1.0000 0.9607 1.0000

0.55 1.0000 0.9588 1.0000

0.60 0.9988 0.9569 1.0000

0.65 0.9946 0.9544 1.0000

0.70 0.9885 0.9530 1.0000

0.75 0.9812 0.9508 1.0000

0.80 0.9732 0.9485 0.9969

0.85 0.9647 0.9460 0.9891

0.90 0.9558 0.9433 0.9775

0.95 0.9468 0.9405 0.9617

1.00 0.9375 0.9375 0.9375
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small number of candidates with large electorates, as long as voters’ preferences

reflect any reasonable degree of group mutual coherence from a number of different

possible models, and the observations that have been made from numerous empiri-

cal studies should no longer seem surprising.

It can also be concluded from these observations that the use of the Condorcet
Criterion that voting rules should select the PMRW whenever one exists is a very

valid measure of the effectiveness of various voting rules at selecting the alternative

that is the overall most preferred candidate. Arguments against the use of the

Condorcet Criterion are typically based on the fact that a PMRW does not always

exist, so that there might be some confusion over which candidate should be

selected as the winner. However, our results indicate that the probability that this

confounding issue would ever result is expected to be very small for elections on a

small number of candidates with a large number of voters.
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Chapter 3

Other Incompatibility Paradoxes

3.1 Introduction

The notion of Incompatibility Paradoxes was introduced in Chap. 1, where they

were defined as representing situations in which there are multiple possible defini-

tions of what constitutes the best candidate for selection as the winner from a set of

available candidates, and where these multiple definitions cannot be simultaneously

met by a voting rule. Condorcet’s Paradox is one such outcome, and we have

already discussed that in detail, to see that the likelihood that this paradox is

observed consistently decreases as the degree of group mutual coherence increases.

We now consider the two remaining incompatibility paradoxes, Borda’s Paradox

and Condorcet’s Other Paradox. We start our analysis by looking for a relationship

between the probability that Borda’s Paradox is observed and the degree of group

mutual coherence that is present in a voting situation.

3.2 Borda’s Paradox

Borda (1784) discovered the possibility that a Strict Borda Paradox might exist in a

voting situation, where the ranking of candidates that is obtained by PR would be

the dual of the ranking by PMR. Borda was primarily concerned with the less

restrictive outcome in which PR might elect the PMRL, and this result is defined as

a Strong Borda Paradox. An occurrence of either form of Borda’s Paradox leads to a

situation in which a candidate is elected as the winner in an election when each of

the remaining candidates is preferred to that winner by a majority of voters with

PMR. Given our finding that there is a very high probability that PMR is transitive

in a three-candidate election when voters’ preferences reflect any significant degree

of group mutual coherence, we have an increased interest in the possible existence

of these various forms of Borda’s Paradox.

The empirical studies that are summarized in Table 1.2 led to the ultimate

conclusion that observations of a Strict Borda Paradox should be very rare, while

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_3,
# Springer-Verlag Berlin Heidelberg 2011
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observations of the less than strict form of Borda’s Paradox might actually be

detected, although they will not be phenomenon that can be expected to appear

on a regular basis. The objective here is to determine if there is a direct connection

between measures of group mutual coherence and the probability that various forms

of Borda’s Paradox are observed, as we have seen is the case with Condorcet’s

Paradox. The combination of intuition and the conclusions that were reached with

Condorcet’s Paradox strongly suggest that this should be the case, but results that

are obtained in Gehrlein and Lepelley (2009a) surprisingly indicate that this is not

really true for the case of Borda’s Paradox.

3.2.1 The Probability of Observing a Strict Borda Paradox

We begin the analysis of the connection between the probability that Borda’s

Paradox is observed and measures of group mutual coherence by using the same

basic type of analysis that we employed in the consideration of the same connection

for Condorcet’s Paradox. Our analysis is based on the previously established

measures of group mutual coherence that are specified by Parameters b and t. The
first step is to develop a closed form representation for the conditional probability,

PPR
StBP 3; njIACb kð Þð Þ, that a Strict Borda Paradox will be observed for a randomly

selected voting situation with n voters in a three-candidate election with PR, given

that attention is restricted to voting situations for which Parameter b has some

specified value k. The development of this representation follows the logic that led

to the representation for PS
PMRW 3; njIACb kð Þð Þ in Chap. 2. Since any form of

Borda’s Paradox can only be observed in voting situations for which a PMRW

exists, it follows directly that PPR
StBP 3; njIACb kð Þð Þ � PS

PMRW 3; njIACb kð Þð Þ.
For convenience in discussion that will follow, the list of the possible linear

preference rankings that voters might have on three candidates is reproduced here

from Fig. 1.1.

Gehrlein and Lepelley (2009a) present a simple result that immediately leads to

the conclusion that it will not be possible to prove the expected result that the

conditional probability PPR
StBP 3; njIACb kð Þð Þ consistently increases as k increases.

This observation follows from Theorem 3.1.

Theorem 3.1 PPR
StBP 3; njIACb n=3ð Þð Þ ¼ 0 for n a multiple of 3:

Proof Assume without any loss of generality that Candidate A is both the winner by

PR and the PMRL, which are necessary, but not sufficient, requirements for a Strict

Borda Paradox to be observed. If A is the strict winner by PR, then

APB n1 þ n2 > n3 þ n5½ � (3.1)

APC n1 þ n2 > n4 þ n6½ � (3.2)

A A B C B C
B C A A C B
C B C B A A
n1 n2 n3 n4 n5 n6

Fig. 3.1 The six possible

linear preference rankings on

three candidates
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If A is the PMRL, then:

CMA n1 þ n2 þ n3 < n4 þ n5 þ n6½ � (3.3)

BMA n1 þ n2 þ n4 < n3 þ n5 þ n6½ �: (3.4)

If A is the strict winner with PR, it then follows directly from (3.1) and (3.2) that

n1 þ n2 > n=3. It also follows from definition that n5 þ n6 ¼ n=3 if b ¼ n=3. Using
both of these facts with (3.3) leads to n4 > n3, while using both of these facts with

(3.4) leads to n3 > n4. All of the conditions that are listed in (3.1)–(3.4) therefore

cannot hold simultaneously. □

The general tendency for PPR
StBP 3; njIACb kð Þð Þ to change as k increases can be

determined more closely after a representation for PPR
StBP 3; njIACb kð Þð Þ is obtained.

Gehrlein and Lepelley use the EUPIA2 procedure to obtain this representation, with:

PPR
StBP 3; njIACb kð Þð Þ

¼
kþ1ð Þ

27ð3k3þ11k2þ9k�1Þ�9ð4k2þ8k�1Þnþn3�4d12nþ1ð54d2k
þ12n�31Þ�16d12nþ11ð3nþ1Þ�108d12nþ9ð2d2k �1Þ

�16d12nþ7ð3n�1Þ�4d12nþ5ð54d2k þ12n�23Þþ27d2kð2kþ3Þ

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775

72ðkþ1Þðn�3kÞfðnþ1Þðnþ5Þ�3kð2þ kÞg ;

for 0� k� n�1ð Þ=6

� 162ð21k4þ14k3þ6k2þ kþ1Þþ27ð104k3þ60k2þ10k�1Þn
� 9ð96k2þ42k�1Þn2þ 3ð38kþ9Þn3�5n4þ162d2kð6kþ1�2nÞ
þ 2d12nþ1f2ð864k2þ564kþ141�ð288kþ89Þnþ12n2Þ� 324d2kð4kþ1�nÞg
þ 16d12nþ11f3ð72k2þ 16kþ5Þ�2ð36k�1Þnþ3n2g�324d12nþ9ð2d2k �1Þ
� ð4kþ1�nÞþ16d12nþ7f3ð72k2þ 20kþ5Þ�2ð36kþ1Þnþ3n2g
þ 4d12nþ5fð864k2þ516kþ141Þ� ð288kþ73Þnþ12n2�162d2kð4kþ1�nÞg

2
6666666666664

3
7777777777775

432ðkþ1Þðn� 3kÞfðnþ1Þðnþ 5Þ�3kð2þ kÞg ;

for nþ1ð Þ=6� k� n�1ð Þ=4

ðnþ 2� 3kÞðn� 4� 3kÞf99k2 þ 96k þ 12� 2ð33k þ 16Þnþ 11n2g
þ 81d2kð6k þ 1� 2nÞ þ 32d6nþ3f3ð18k2 þ 14k þ 1Þ
� 2ð18k þ 7Þnþ 6n2g þ 32d6nþ1ð3k � nÞ

2
6664

3
7775

216ðk þ 1Þðn� 3kÞfðnþ 1Þðnþ 5Þ � 3kð2þ kÞg ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (3.5)
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Following earlier notation, the term dqp ¼ 1 if p is an integer multiple of q, and
dqp ¼ 0 otherwise.

While the representation for PPR
StBP 3; njIACb kð Þð Þ in (3.5) has been verified by

computer enumeration, it is so complex that it is of little practical use. However, it

does provide an avenue to obtaining the much simpler representation for the

limiting conditional probability for PPR
StBP 3;1jIACb kð Þð Þ as n ! 1. Following

the logic that was developed earlier, k is replaced by akn in (3.5), such that ak is
the minimum proportion of profiles for which some candidate is ranked as least

preferred, with ak ¼ k=n. The limiting representation is then obtained by letting

n ! 1 after this substitution is made, and

PPR
StBP 3;1jIACb akð Þð Þ

¼ 27a2k � 3ak � 1

72ð3a2k � 1Þ ; for 0 � ak � 1=6

�3402a4k þ 2808a3k � 864a2k þ 114ak � 5

432akð3ak � 1Þð3a2k � 1Þ ; for 1=6 � ak � 1=4

11ð3ak � 1Þ3
216akð3a2k � 1Þ ; for 1=4 � ak � 1=3: (3.6)

The limiting probability representation in (3.6) is clearly much more tractable

than the representation for finite n in (3.5). An observation follows directly from

(3.6) for the special case with ak ¼ 0, for which voting situations have a perfect

weak positively unifying candidate, which is consistent with the condition

that voters’ preferences are perfectly single-peaked. It can easily be seen that

PPR
StBP 3;1jIACb 0ð Þð Þ ¼ 1=72, which verifies a result from Bezembinder (1996)

and is in disagreement with a result from Saari and Valognes (1999). Calculated

values of PPR
StBP 3;1jIACb akð Þð Þ are given in Table 3.1 for each ak ¼ 0:01 0:02ð Þ

0:33, along with values for ak ¼ 0 and ak ¼ 1=3.
The calculated values of PPR

StBP 3;1jIACb akð Þð Þ that are listed in Table 3.1 show

that these probabilities remain at very small values over the entire range of ak
values with 0 � ak � 1=3. Moreover, the values of PPR

StBP 3;1jIACb akð Þð Þ do indeed
follow our intuition and increase as ak increases over the range 0 � ak � 0:07.
That is, as ak increases we have voting situations that are more removed from the

condition of having a perfect weak positively unifying candidate. Since this gener-

ally reflects reduced levels of group mutual coherence among voters’ preferences, it

sounds quite logical that the associated probability of observing a Strict Borda

Paradox would increase. However, Theorem 3.1 makes it clear that this intuitively

appealing outcome can not be maintained over the entire range of 0 � ak � 1=3,
and the computed values in Table 3.1 show that PPR

StBP 3;1jIACb akð Þð Þ decreases
over the range of values 0:07 � ak � 1=3. Thus, we observe the counterintuitive

result that the probability of observing a Strict Borda Paradox with PR decreases as

the degree of group mutual coherence decreases over this upper range of ak values.
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The impact of this counterintuitive observation would be minimized if it could

be shown that it only occurs over a small proportion of possible voting situations.

However, the results from the representation shown for PVS 3;1jCIACb a�k
� �� �

in

(2.38) indicate that only 12.6% of all voting situations have ak in the range

0 � ak � 0:07 as n ! 1. So, the counterintuitive observation is valid for the

surprisingly large 87.4% of all possible voting situations that are farthest removed

from having a perfect weak positively unifying candidate.

There are two possible explanations that can be proposed to negate the signifi-

cant impact of the counterintuitive results that has been observed from changing k
in PPR

StBP 3; njIACb kð Þð Þ. First, we already know from Chap. 2 that changing the value

of Parameter b has a significant impact on the probability that a PMRW exists. In

addition, changing k also has some apparent impact on the propensity of the

candidate ranking by PR to be the reverse of the candidate ranking by PMR. It is

possible to focus only on this second component, by removing the influence that the

selected value of k has on the probability that a PMRW exists from the analysis.

This is accomplished by developing a representation for the conditional probability,

PPR
StBP 3; njIAC�

b kð Þ� �
, that is based only on voting situations for which a PMRW

exists. This closed form representation is based on the assumption, IAC�
b kð Þ,

that all voting situations that have a PMRW and for which b ¼ k are equally

likely to be observed for the specified value of k. The conditional probability

PPR
StBP 3; njIAC�

b kð Þ� �
is therefore conditional on the simultaneous assumptions that

a PMRW exists and that b ¼ k.
It will be impossible to show that PPR

StBP 3; njIAC�
b kð Þ� �

consistently increases as

k increases, as a result of an observation that follows as a direct extension of

Table 3.1 Computed values of PPR
StBP 3;1jIACX akð Þð Þ, PPR

StBP 3;1jIAC�
b akð Þ� �

and PPR
StBP

3;1jIAC�
t akð Þ� �

ak PPR
StBP 3;1jIACb akð Þð Þ PPR

StBP 3;1jIAC�
b akð Þ� �

PPR
StBP 3;1jIAC�

t akð Þ� �
0.00 0.0139 0.0139 0

0.01 0.0143 0.0143 0.0000

0.03 0.0148 0.0149 0.0000

0.05 0.0151 0.0152 0.0000

0.07 0.0152 0.0153 0.0001

0.09 0.0150 0.0151 0.0003

0.11 0.0145 0.0146 0.0006

0.13 0.0137 0.0140 0.0012

0.15 0.0125 0.0129 0.0021

0.17 0.0111 0.0116 0.0036

0.19 0.0094 0.0100 0.0059

0.21 0.0078 0.0084 0.0098

0.23 0.0061 0.0069 0.0164

0.25 0.0039 0.0046 0.0284

0.27 0.0017 0.0021 0.0498

0.29 0.0005 0.0007 0.0799

0.31 0.0001 0.0001 0.1170

0.33 0.0000 0.0000 0.1592

1/3 0 0 1/6
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Theorem 3.1, since the proof of Theorem 3.1 is not changed in any way if it is

further assumed that a PMRW exists.

Corollary 3.1 PPR
StBP 3; njIAC�

b n=3ð Þ� � ¼ 0 for n a multiple of 3.

Gehrlein and Lepelley (2009a) use the EUPIA2 procedure to obtain a represen-

tation for the conditional probability PPR
StBP 3; njIAC�

b kð Þ� �
. This representation will

be useful in obtaining a better understanding of how PPR
StBP 3; njIAC�

b kð Þ� �
changes as

k increases.

PPR
StBP 3; njIAC�

b kð Þ� �

¼

kþ 1ð Þ

27ð3k3 þ 11k2 þ 9k� 1Þ � 9ð4k2 þ 8k� 1Þnþ n3 � 4d12nþ1

� ð54d2k þ 12n� 31Þ � 16d12nþ11ð3nþ 1Þ � 108d12nþ9ð2d2k � 1Þ

� 16d12nþ7ð3n� 1Þ � 4d12nþ5ð54d2k þ 12n� 23Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ 27d2kð2kþ 3Þ

2
6666666664

3
7777777775

72ðkþ 1Þfkð � 17þ 21kþ 11k2Þ þ ð5� 26k� 4k2Þnþ 3ð2� kÞn2 þ n3g ;

for 0 � k � n� 1ð Þ=6
� 162ð21k4 þ 14k3 þ 6k2 þ k þ 1Þ þ 27ð104k3 þ 60k2 þ 10k � 1Þn
� 9ð96k2 þ 42k � 1Þn2 þ 3ð38k þ 9Þn3 � 5n4 þ 162d2kð6k þ 1� 2nÞ
þ 2d12nþ1f2ð864k2 þ 564k þ 141� ð288k þ 89Þnþ 12n2Þ
� 324d2kð4k þ 1� nÞg þ 16d12nþ11f3ð72k2 þ 16k þ 5Þ � 2ð36k � 1Þnþ 3n2g
� 324d12nþ9ð2d2k � 1Þð4k þ 1� nÞ þ 16d12nþ7f3ð72k2 þ 20k þ 5Þ
� 2ð36k þ 1Þnþ 3n2g þ 4d12nþ5fð864k2 þ 516k þ 141Þ
� ð288k þ 73Þnþ 12n2 � 162d2kð4k þ 1� nÞg

2
66666666666666664

3
77777777777777775

432ðk þ 1Þfkð � 17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3g ;

for nþ 1ð Þ=6 � k � n� 1ð Þ=4
ðnþ 2� 3kÞðn� 4� 3kÞf99k2 þ 96k þ 12� 2ð33k þ 16Þnþ 11n2g

þ 81d2kð6k þ 1� 2nÞ þ 32d6nþ3f3ð18k2 þ 14k þ 1Þ � 2ð18k þ 7Þn

þ 6n2g þ 32d6nþ1ð3k � nÞ

2
66664

3
77775

108ðn� 3kÞfðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3:
(3.7)
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The limiting probability representation, PPR
StBP 3;1jIAC�

b akð Þ� �
, as n ! 1 is

obtained following earlier discussion and

PPR
StBP 3;1jIAC�

b akð Þ� �

¼ ð3ak � 1Þð27a2k � 3ak � 1Þ
72ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=6

�3402a4k þ 2808a3k � 864a2k þ 114ak � 5

432akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

¼ ð3ak � 1Þð9a2k � 6ak þ 1Þ
108ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (3.8)

Calculated values of PPR
StBP 3;1jIAC�

b akð Þ� �
are listed in Table 3.1 for each value

of ak ¼ 0:01 0:02ð Þ0:33, along with values for ak ¼ 0 and ak ¼ 1=3. The restriction
of our attention to voting situations for which a PMRW must exist still leads to the

same counterintuitive results regarding a generally decreasing probability that a

Strict Borda Paradox will be observed as voters’ preferences become more removed

from the condition of having a perfect weak positively unifying candidate for

ak values that are above the range 0:07 � ak � 1=3.
In order to determine the proportion of voting situations for which this happens

when only voting situations that have a PMRW can be observed with IAC�
b kð Þ, we

obtain a representation for the proportion, PVS 3; n;CIAC�
X k�ð Þ� �

, of all voting

situations for which a PMRW exists that have a value of q in the range 0 � q � k
for Parameter X with X 2 b; t; c; uf g. Following the development of (2.36), these

representations are obtained from the identity

PVS 3; n;CIAC�
X k�ð Þ� � ¼

3
Pk
q¼0

N
Af g

PMRW 3; n; IACX qð Þjqð Þ

15 nþ 3ð Þ2
16 nþ 2ð Þ nþ 4ð Þ

: (3.9)

We only present the limiting representations that are obtained for

PVS 3;1;CIAC�
X a�k
� �� �

, for each X 2 b; t; c; uf g with:

PVS 3;1;CIAC�
b a�k
� �� � ¼ PVS 3;1;CIAC�

t a�k
� �� �

¼ 32

5
a2k 22a3k � 10a2k � 10ak þ 5
� �

; for 0 � ak � 1=4
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1728a5k � 2880a4k þ 1920a3k � 720a2k þ 160ak � 11

5
;

for 1=4 � ak � 1=3: (3.10)

PVS 3;1;CIAC�
c a�k
� �� �

¼ 4

5
a2k 139a3k � 35a2k � 90ak þ 40
� �

; for 0 � ak � 1=4

�468a5k þ 1140a4k � 1000a3k þ 320a2k � 20ak þ 1

5
;

for 1=4 � ak � 1=3: (3.11)

PVS 3;1;CIAC�
u a�k
� �� �

¼ 64

5
a2k 19a3k þ 15a2k � 20ak þ 5
� �

; for 0 � ak � 1=4

15552a5k � 25920a4k þ 17280a3k � 5760a2k þ 960ak � 59

5
;

for 1=4 � ak � 1=3: (3.12)

By using (3.10) with ak ¼ 0:07, we find that only the 13.4% of all possible

voting situations with a PMRW that are closest to having a perfect weak positively

unifying candidate show an increasing probability that a Strict Borda Paradox will

be observed as ak increases. Thus, the counterintuitive result is observed over the

86.6% of voting situations with a PMRW that are farthest removed from the

condition of having a perfect weak positively unifying candidate. No improvement

is therefore made in negating the significant impact of the counterintuitive results

that has been observed by restricting attention to consider only voting situations for

which a PMRW exists.

There are two additional options that must now be considered to explain the

existence of this counterintuitive result. First, the use of Parameter b to measure the

degree of group mutual coherence among voters’ preferences might be an inade-

quate metric, despite our earlier observations regarding the expected relationship

between Parameter b and the probability that a PMRW exists. The second possible

explanation is that there might be something unusual about the behavior of PR that

causes this unexpected observation. We begin to address the first of these issues by

considering what happens if Parameter t is used instead of Parameter b to measure

the degree of group mutual coherence among voters’ preferences.
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3.2.1.1 A Representation for PPR
StBP 3; njIAC�

t kð Þ� �

When we were considering the probability that a PMRW exists in Chap. 2, we

found that PS
PMRW 3; njIACb kð Þð Þ ¼ PS

PMRW 3; njIACt kð Þð Þ for odd n � 3, based on

Lemma 2.1. Thus, there is no difference whatsoever between the use of Parameter

b or t to measure the impact of group mutual coherence on the probability that

Condorcet’s Paradox will be observed. The consideration here is to determine if

this same phenomenon is observed when we compare PPR
StBP 3;1jIAC�

b akð Þ� �
to

PPR
StBP 3;1jIAC�

t akð Þ� �
.

The values of PPR
StBP 3;1jIACb akð Þð Þ and PPR

StBP 3;1jIAC�
b akð Þ� �

have been found

to be very similar, so we restrict attention to probability representations like those

that were obtained with the assumption of IAC�
b kð Þ in further analysis. Then,

something very different happens with PPR
StBP 3; njIAC�

t kð Þ� �
as Parameter t increases,

compared to the counterintuitive results that were observed above with the assump-

tion of IAC�
b kð Þ. The first indication of this general observation comes from the

following result that gives us a much better starting point than we were given with

Theorem 3.1.

Theorem 3.2 PPR
StBP 3; njIAC�

t 0ð Þ� � ¼ 0 for odd n � 3.

Proof If t¼ 0 for any given voting situation, some candidate is never ranked as most

preferred by any voter. One of the two remaining candidates must therefore be

ranked as most preferred by at least nþ 1ð Þ=2 voters, and this same candidate must

therefore be both the PMRW and the winner by PR. Thus, a Strict Borda Paradox

cannot occur for the given voting situation by definition. □
It is therefore impossible to observe a Strict Borda Paradox for any voting

situation that has a perfect negatively unifying candidate. The obvious next step

is to determine if PPR
StBP 3; njIAC�

t kð Þ� �
then continues to increase as k increases.

General representations for PPR
StBP 3; njIAC�

t kð Þ� �
were obtained with EUPIA2 in

Gehrlein and Lepelley (2009a), with:

PPR
StBP 3; njIAC�

t kð Þ� �

¼ kðk þ 1Þðk þ 2Þ
kð11k2 þ 21k � 17Þ � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3

;

for 0 � k � n� 1ð Þ=4

ð1þ kÞðn� 1� 3kÞf6kðn� kÞ � ðnþ 1Þðn� 3Þg
ðn� 3kÞf3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: ð3:13Þ

The representations for PPR
StBP 3; njIAC�

t kð Þ� �
in (3.13) are clearly much simpler

than the representations that were obtained for PPR
StBP 3; njIAC�

b kð Þ� �
in (3.7), but we
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continue to restrict attention to the limiting representations as n ! 1. Following

previous arguments, we find:

PPR
StBP 3;1jIAC�

t akð Þ� � ¼ 5a3k
16ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=4

¼ 87a3k � 99a2k þ 31ak � 3

8ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3:

(3.14)

Calculated values of PPR
StBP 3;1jIAC�

t akð Þ� �
are listed in Table 3.1 for each value

of ak ¼ 0:01 0:02ð Þ0:33, along with values for ak ¼ 0 and ak ¼ 1=3, and these

results are completely in agreement with the expectations of our intuition. The

probability that a Strict Borda Paradox is observed consistently increases as voters’

preferences reflect situations that are farther removed from the condition of having

a perfect weak negatively unifying candidate, as measured by Parameter t. So, when
Parameter t is used as a measure of the degree of group mutual coherence among

voters’ preferences, we find results that are completely in accord with intuition, as

opposed to our observations when Parameter b is used. Moreover, the probability of

observing a Strict Borda Paradox with PR grows to surprisingly large values as

ak ! 1=3 with Parameter t.
In order to get a better understanding of what is happening, we now turn

attention to the probability that a Strict Borda Paradox is observed with another

voting rule. In particular, we consider what happens when NPR is used as an

election procedure.

3.2.1.2 Strict Borda Paradox with Negative Plurality Rule

A Strict Borda Paradox can obviously occur with NPR in the same general way that

it can happen with PR. If we let ANB denote the outcome that Candidate A beats B
by NPR, a Strict Borda Paradox would be observed if AMB, BMC and AMC with

PMR, while CNB and BNA with NPR. Let PNPR
StBP 3; njIAC�

b kð Þ� �
denote the condi-

tional probability that a Strict Borda Paradox is observed when elections are held

with NPR under the assumption of IAC�
b kð Þ. The behavior that is exhibited by

PNPR
StBP 3; njIAC�

b kð Þ� �
as Parameter b increases is very easy to determine as a result of

the following observations. The first of these results is very general and it will also

be very useful in a number of situations later on.

Let P
WSR lð Þ
Event 3; njIACX kð Þð Þ denote the probability that some Event is observed

with WSR Rule l in a three-candidate election A;B;Cf g for n voters with

X 2 b; t; c; b�; t�; c�f g. Event can be defined as any set of combinations PMR

relationships and at least one WSR outcome on a pair of candidates, where AWlB
denotes Score A; lð Þ > Score B; lð Þ as in the definition leading to (1.2). Then,
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EventD denotes the dual outcome in which all PMR and pairwise WSR relationships

that are defined by Event are reversed.

Theorem 3.3 For all values of k:

P
WSR lð Þ
Event 3; njIACb kð Þð Þ ¼ P

WSR 1�lð Þ
EventD 3; njIACt kð Þð Þ;

P
WSR lð Þ
Event 3; njIACc kð Þð Þ ¼ P

WSR 1�lð Þ
EventD 3; njIACc kð Þð Þ;

P
WSR lð Þ
Event 3; njIACb� kð Þð Þ ¼ P

WSR 1�lð Þ
EventD 3; njIACt� kð Þð Þ;

P
WSR lð Þ
Event 3; njIACc� kð Þð Þ ¼ P

WSR 1�lð Þ
EventD 3; njIACc� kð Þð Þ:

The same relationships are also valid when IACX kð Þ is replaced by IAC�
X kð Þ for

each X 2 b; t; c; b�; t�; c�f g.
Proof The proofs of each of these statements all use exactly the same solution

technique. A proof of the first statement is shown, and the remaining statements will

then be seen to be obvious. Consider an Event that includes AMB and AWlB.
Suppose that we have a voting situation VS with b ¼ k that meets these conditions,

so that the definitions of the ni
0s in Fig. 3.1 lead to:

AMB ) n1 þ n2 þ n4 > n3 þ n5 þ n6 (3.15)

Score A; lð Þ > Score B; lð Þ ) n1 þ n2 þ l n3 þ n4ð Þ > n3 þ n5
þ l n1 þ n6ð Þ: (3.16)

For every such VS, there is a unique dual voting situation VSD that it obtained

from VS with the mapping n1 $ n6, n2 $ n5 and n3 $ n4, so that this transforma-

tion effectively creates VSD by inverting the preferences of each of the voters in VS.
It is then obvious that VSD must have t ¼ k and that n is unchanged. The associated
equations (3.15) and (3.16) for VSD then become

n6 þ n5 þ n3 > n4 þ n2 þ n1 (3.17)

n6 þ n5 þ l n4 þ n3ð Þ > n4 þ n2 þ l n6 þ n1ð Þ: (3.18)

The result in (3.17) leads directly to the observation that BMA in VSD. Moreover,

(3.18) can be modified to

n� n1 � n2 � n3 � n4 þ l n4 þ n3ð Þ > n� n1 � n3 � n5 � n6 þ l n6 þ n1ð Þ;
(3.19)
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so that

n1 þ n2 þ 1� lð Þ n4 þ n3ð Þ < n3 þ n5 þ 1� lð Þ n6 þ n1ð Þ: (3.20)

The result of (3.20) leads to Score B; 1� lð Þ > Score A; 1� lð Þ, and BW1�lA.
The same arguments hold for all possible PMR relationships and for all possible

WSR comparisons on pairs of candidates from A;B;Cf g that might be included in

the definition of Eventwith the transformation that was used to obtain VSD from VS.
Since this mapping is 1–1, the result then follows directly from definitions since the

probability of observing any VS with IACb kð Þ is identical to the probability of

observing the associated VSD with IACt kð Þ.
The same arguments and 1–1 mapping can easily be used to prove the remaining

statements. □
The proof of Theorem 3.3 could be repeated without accounting for the particu-

lar value of Parameters X 2 b; t; c; b�; t�; c�f g in voting situations. Any scenario for
which the probability of observing any VS is identical to the probability of observ-

ing the associated VSD under the 1–1 mapping will produce the same result.

Corollary 3.2 P
WSR lð Þ
Event 3; n; IACð Þ ¼ P

WSR 1�lð Þ
EventD 3; n; IACð Þ;

P
WSR lð Þ
Event 3; L;MCð Þ ¼ P

WSR 1�lð Þ
EventD 3; L;MCð Þ;

P
WSR lð Þ
Event 3; n;DCð Þ ¼ P

WSR 1�lð Þ
EventD 3; n;DCð Þ

P
WSR lð Þ
Event 3; n; ICð Þ ¼ P

WSR 1�lð Þ
EventD 3; n; ICð Þ;

or with IAC*, MC*, DC* or IC*.

Conditions IAC*, MC*, DC* and IC* are based only those voting situations that

have a PMRW with IAC, MC, DC and IC respectively.

Two results then follow directly from Theorem 3.3, by considering the cases of

NPR with l ¼ 1 and PR with l ¼ 0.

PNPR
StBP 3; njIAC�

b kð Þ� � ¼ PPR
StBP 3; njIAC�

t kð Þ� �
for odd n � 3: (3.21)

PNPR
StBP 3; njIAC�

t kð Þ� � ¼ PPR
StBP 3; njIAC�

b kð Þ� �
for odd n � 3: (3.22)

The combined results of Theorem 3.2 and (3.21) lead to the observation:

PNPR
StBP 3; njIAC�

b 0ð Þ� � ¼ 0: (3.23)

The results that have already been observed can be combined with (3.21) to

conclude that PNPR
StBP 3;1jIAC�

b akð Þ� �
will consistently increase as ak increases. So,

the probability of observing a Strict Borda Paradox with NPR will increase as

voting situations become more removed from the condition of having a perfect
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weak positively unifying candidate, in complete agreement with our intuition.

Unfortunately, the result of (3.22) implies that PNPR
StBP 3;1jIAC�

t akð Þ� �
will generally

decrease as ak increases, contrary to our intuition. The use of NPR therefore

reverses the results that were found when PR was used to determine the ranking

of winners for Parameters b and t, and no consistent relationships are found between
the probability that a Strict Borda Paradox is observed and the degree of group

mutual coherence among voters’ preferences when this degree of group mutual

coherence is measured by either of the Parameters b or t.

3.2.1.3 Strict Borda Paradox with Borda Rule

Some interesting results can be made about the likelihood that a Strict Borda

Paradox can be observed with BR, based on some particular properties of BR.

Daunou (1803) proved the first of these results

Theorem 3.4 (Daunou) The PMRW can not be ranked last by BR in an m candidate
election.

Proof Consider the special case of BR with a ¼ b ¼ 1, so that each voter assigns a

total of
m mþ1ð Þ

2
points to candidates in an m-candidate election. The total number of

points assigned to candidates by all voters is
nm mþ1ð Þ

2
, and the average total number

of points received by a candidate from all voters is therefore
n mþ1ð Þ

2
. If some

candidate is the PMRW, then that candidate will have the minimum Borda Score,

as defined in (1.1), for a voting situation in which it is most preferred by
nþ1ð Þ
2

voters

and least preferred by
n�1ð Þ
2

voters for odd n. The PMRW will then have a total

Borda Score equal to

BS PMRWð Þ ¼ m
nþ 1

2

� �
þ n� 1

2

� �
¼ n mþ 1ð Þ þ m� 1ð Þ

2
: (3.24)

The score of the PMRW is therefore greater than the average score for all

candidates, so some other candidate must have a below average score, and thus

the PMRW cannot have the minimum score. A similar argument holds when n is

even. □
Smith (1973) and G€ardenfors (1973) reproduce this same result with a similar

proof, and Smith (1973) further shows that for sufficiently large n, voting situations
exist such that every WSR except BR can rank the PMRW last. Fishburn (1974a)

extends this result for all m � 3, to show that there is always some voting situation

with a PMRW in an m-candidate election, such that every WSR will have at least

m� 2 candidates with a greater score than the PMRW. The result of Theorem 3.4

shows why it is impossible for each of the remaining m� 1 candidates to have a

greater score than the PMRW for every WSR, which would require the inclusion

of BR.

Fishburn and Gehrlein (1976b) continue this analysis through an extension of the

approach taken by Smith (1973) to show that
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Theorem 3.5 The PMRL can not be ranked first by BR in an m candidate election.

Fishburn and Gehrlein (1976b) also show that for sufficiently large n, BR is the

only WSR that guarantees that the PMRL is not selected as a unique WSR winner.

Either of Theorems 3.4 or 3.5 is adequate to verify that a Strict Borda Paradox can

not exist with BR. Theorem 3.5 shows that even the weaker Strong Borda Paradox

can not exist with BR.

There are obvious significant issues that arise in attempting to show that the

likelihood of observing a Strict Borda Paradox will generally tend to decrease as the

amount of group mutual coherence among voters’ preferences increases in voting

situations. In order to search for an explanation to minimize the impact of this

general observation, we investigate the possible existence of this relationship when

attention is focused to the probability that a Strong Borda Paradox is observed.

3.2.2 The Probability of Observing a Strong Borda Paradox

A Strong Borda Paradox is observed for a voting situation when the PMRL is

selected as the winner of an election. Since this condition is much less restrictive

than the requirements that are necessary for a Strict Borda Paradox to occur, the

probability that a Strong Borda Paradox is observed will obviously be greater than

the probability that a Strict Borda Paradox will occur.

3.2.2.1 Results with IC*, IAC* and MC*

Some representations have been obtained for the probability that a Strong Borda

Paradox is observed with the standard assumptions that are related to IC*, IAC* and

MC*. Tataru and Merlin (1997) use geometric methods to develop a representation

for the conditional probability, P
WSR lð Þ
SgBP 3;1; IC�ð Þ, that a Strong Borda Paradox is

observed when a WSR Rule l elects the PMRL, given that a PMRL exists as

n ! 1 with IC*, with

P
WSR lð Þ
SgBP 3;1; IC�ð Þ ¼ 2

p p� Cos�1 1
3

� �� �
ð2l�1

0

2tCos�1
ffiffiffiffiffiffiffiffiffi
9t2þ3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þ3ð Þ 4t2þ1ð Þ

p
	 


t2 þ 3ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6t2 þ 2

p

2
664

þ
tCos�1

ffiffi
3

p
1�t2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3t2þ1Þ t2þ3ð Þ 4t2þ1ð Þ
p
	 


t2 þ 3ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6t2 þ 14

p

3
775dt: (3.25)

We note that the requirement that a PMRL exists is equivalent to the requirement

that a PMRW exists in a three-candidate election.
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It is also noted in Tataru and Merlin (1997) that P
WSR lð Þ
SgBP 3;1; IC�ð Þ is the same as

the probability that the PMRW will be ranked last by Rule l. It follows easily from
the form of the representation in (3.25) that P

WSR lð Þ
SgBP 3;1; IC�ð Þ is symmetric about

l ¼ 1=2, and computed values that follow from (3.25) are listed in Table 3.2 for

each l ¼ 0:00 0:05ð Þ0:50:
Gehrlein and Fishburn (1978b) develop an alternative representation for the

special case of PPR
SgBP 3;1; IC�ð Þ for l ¼ 0:

PPR
SgBP 3;1;IC�ð Þ

¼

1

4
� 3

4p
Sin�1

ffiffiffi
2

3

r !
þSin�1

ffiffiffi
1

6

r !
�1

2
Sin�1 1

3

� �( )

þ 3

4p2
Sin�1

ffiffiffi
2

3

r !" #2
�1

4
Sin�1 1

3

� �� �2
þ3

2

ð1=3

0

Sin�1 x
1þ2x

 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p dx

8<
:

9=
;

2
66666664

3
77777775

3

4
þ 3

2p
Sin�1 1

3

� � ¼0:0371:

(3.26)

Gehrlein (2002b) obtains representations for the conditional IAC probability

that a Strong Borda Paradox is observed with both PR and NPR, given that a

PMRL exists. Following the discussion presented above, these probabilities are

denoted by PPR
SgBP 3; n; IAC�ð Þ and PNPR

SgBP 3; n; IAC�ð Þ respectively, with:

PPR
SgBP 3; n; IAC�ð Þ ¼ 2 2n4 þ 9n3 þ 33n2 � 9n� 675ð Þ

135 nþ 1ð Þ nþ 3ð Þ2 nþ 5ð Þ ; for n ¼ 9 6ð Þ . . . (3.27)

PPR
SgBP 3; n; IAC�ð Þ ¼ 4 n4 � 7n3 þ 24n2 þ 32n� 320ð Þ

135n nþ 2ð Þ nþ 4ð Þ2 ; for n ¼ 10 6ð Þ::: (3.28)

Table 3.2 Computed values of P
WSR lð Þ
SgBP 3;1; IC�ð Þ from (3.25)

l P
WSR lð Þ
SgBP 3;1; IC�ð Þ

0.00 0.0371

0.05 0.0303

0.10 0.0238

0.15 0.0179

0.20 0.0126

0.25 0.0081

0.30 0.0046

0.35 0.0021

0.40 0.0007

0.45 0.0001

0.50 0.0000
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PNPR
SgBP 3; n; IAC�ð Þ ¼ 17n4 þ 119n3 þ 353n2 þ 1461nþ 1890

540 nþ 1ð Þ nþ 3ð Þ2 nþ 5ð Þ ;

for n ¼ 9 12ð Þ::: (3.29)

PNPR
SgBP 3; n; IAC�ð Þ ¼ 17n4 � 49n3 � 622n2 � 636n� 600

540n nþ 2ð Þ nþ 4ð Þ2 ;

for n ¼ 10 12ð Þ::: : (3.30)

The results for both PPR
SgBP 3;1; IAC�ð Þ in (3.27) and PNPR

SgBP 3;1; IAC�ð Þ in (3.29)
verify representations in Lepelley (1993).

The limiting results of (3.27) and (3.29) as n ! 1 lead to

PPR
SgBP 3;1; IAC�ð Þ ! 4=135 ¼ 0:0296 (3.31)

PNPR
SgBP 3;1; IAC�ð Þ ! 17=540 ¼ 0:0315: (3.32)

When these results are compared to the case of IC* from Table 3.2, with

PPR
SgBP 3;1; IC�ð Þ ¼ PNPR

SgBP 3;1; IC�ð Þ ¼ 0:0371, it is clear that the small increase

in the degree of voter dependence that is present in IAC and IAC* does reduce the

probability that a Strong PMRW will be observed.

Nurmi and Uusi-Heikkil€a (1985) obtain Monte-Carlo simulation estimates

for PPR
SgBP m; n; IC�ð Þ. Lepelley et al. (2000a) obtain Monte-Carlo simulation esti-

mates for each of PPR
SgBP m;1; IC�ð Þ, PNPR

SgBP m;1; IC�ð Þ, PPR
SgBP m;1; IAC�ð Þ and

PNPR
SgBP m;1; IAC�ð Þ for 3 � m � 8 and the results are listed in Table 3.3.

These simulation results clearly indicate that the IC* and IAC* probabilities

converge rapidly as m increases.

Gehrlein (2002b) also considers the assumption of MC* and obtains representa-

tions PPR
SgBP 3; L;MC�ð Þ and PNPR

SgBP 3; L;MC�ð Þ, and it is found that there representa-

tions are identical, with

PPR
SgBP 3; L;MC�ð Þ ¼ PNPR

SgBP 3; L;MC�ð Þ

¼ 43L5 � L4 þ 86L3 � 26L2 � 57L� 45

8Lð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ ; for L ¼ 5 2ð Þ::: (3.33)

PPR
SgBP 3;L;MC�ð Þ ¼ PNPR

SgBP 3; L;MC�ð Þ

¼ 43L5 þ 42L4 þ 85L3 þ 60L2 þ 52L� 192

8ðLþ 1Þð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ ; for L ¼ 4 2ð Þ::: (3.34)
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The limiting results as n ! 1 from (3.33) and (3.34) obviously both give the

same value, with PPR
SgBP 3; L;MC�ð Þ ¼ PNPR

SgBP 3; L;MC�ð Þ ¼ 43=872 ¼ 0:0493:
We have seen limited evidence that the introduction of some degree of voter

dependence will tend to reduce the probability that a Strong Borda Paradox is

observed. Nurmi (1986) performs a Monte-Carlo simulation analysis to consider

possible links between the probability that this paradox is observed with PR and

measures of group mutual coherence. Three different assumptions are used to

describe preferences in the voting population. The first assumption is IC. The

second assumption is a ‘unipolar distribution’ in which a given preference ranking

is observed with a probability of 1/3, while all other rankings are assumed to be

equally likely. The third assumption is a ‘bipolar distribution’, in which a given

preference ranking and its dual ranking are each observed with a probability of 1/3,

while all other rankings are assumed to be equally likely.

When corresponding probability estimates are compared for commonm and n, the
increased group mutual coherence that occurs with the unipolar assumption leads to a

clear reduction in observations of a Strong Borda Paradox with PR from that

observed with IC. A major result is that the bipolar assumption results in dramatically

greater probabilities of observing this paradox with PR than with either of the

unipolar or IC cases. We continue with an examination of the impact that the

presence of measures of group mutual coherence will have on this probability.

3.2.2.2 A Representations for PPR
SgBP 3; njIAC�

b kð Þ� �

Let PPR
SgBP 3; njIAC�

b kð Þ� �
denote the conditional probability that a Strong Borda

Paradox will be observed with PR under the assumption IAC�
b kð Þ. It will unfortu-

nately be impossible to verify the intuitively appealing result that PPR
StBP

3; njIAC�
b kð Þ� �

consistently increases as k increases, based on an observation that

follows directly from the proof of Theorem 3.1.

Corollary 3.3 PPR
SgBP 3; njIAC�

b n=3ð Þ� � ¼ 0 for n a multiple of 3.

A representation for PPR
SgBP 3; njIAC�

b kð Þ� �
was obtained in Gehrlein and Lepelley

(2009a) in order to determine how this probability changes as k increases:

Table 3.3 Strong Borda paradox probability estimates (from Lepelley et al. 2000a)

m PR NPR

IC* IAC* IC* IAC*

3 0.0374 0.0296 0.0377 0.0311

4 0.0250 0.0226 0.0251 0.0238

5 0.0189 0.0184 0.0190 0.0187

6 0.0160 0.0145 0.0155 0.0157

7 0.0136 0.0128 0.0133 0.0128

8 0.0114 0.0127 0.0113 0.0127
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PPR
SgBP 3;njIAC�

b kð Þ� �

¼108k3þ288k2þ144kþ5�9ð4k2þ8kþ1Þnþ3n2þn3�8d6nþ1ð5þ3nÞ�32d6nþ3

36fkð11k2þ21k�17Þ�ð4k2þ26k�5Þn�3ðk�2Þn2þn3g ;

for 0�k� n�1ð Þ=6
� 10368k4 � 13824k3 � 4320k2 þ 192k

þ 125þ 4ð12k þ 5Þð144k2 þ 84k � 5Þn
� 6ð288k2 þ 192k þ 25Þn2 þ 4ð48k þ 17Þn3 � 7n4

� 16d6nþ5f216k2 þ 168k þ 31� 2ð36k þ 19Þnþ 3n2g
� 16d6nþ3f216k2 þ 120k þ 23� 2ð36k þ 11Þnþ 3n2g

2
66666664

3
77777775

432ðk þ 1Þfkð11k2 þ 21k � 17Þ � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3g ;

for nþ 1ð Þ=6 � k � n� 1ð Þ=4

4ðn� 2� 3kÞðnþ 1� 3kÞð2n� 1� 6kÞ2

þ 2d6nþ3f54k2 þ 24k þ 1� 4ð9k þ 2Þnþ 6n2g
þ 2d6nþ5f54k2 þ 12k � 1� 4ð9k þ 1Þnþ 6n2g

2
6664

3
7775

27ðn� 3kÞf3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (3.35)

While the representation for PPR
SgBP 3; njIAC�

b kð Þ� �
in (3.35) is less complicated

than the representation for PPR
StBP 3; njIAC�

b kð Þ� �
in (3.7), the result is still intractable

for any realistic analysis, so the limiting representation as n ! 1 for

PPR
SgBP 3;1jIAC�

b akð Þ� �
is obtained following previous discussion, with:

PPR
SgBP 3;1jIAC�

b akð Þ� � ¼ 108a3k � 36a2k þ 1

36ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=6

�10368a4k þ 6912a3k � 1728a2k þ 192ak � 7

432akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

16ð3ak � 1Þ3
27ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (3.36)

The representation that is given in (3.36) leads directly to the observation that

PPR
SgBP 3;1jIAC�

b 0ð Þ� � ¼ 1=36, which is in complete agreement with a result that is

proved in Lepelley (1993).

Lepelley et al. (2000b) develop a result that can be used to obtain a representa-

tion for the limiting probability P
WSR lð Þ
SgBP 3;1jIAC�

b 0ð Þ� �
that a WSR Rule l will

result in a Strong Borda Paradox, with
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P
WSR lð Þ
SgBP 3;1jIAC�

b 0ð Þ� � ¼ ð1� 2lÞ3
36ð1� lÞ2 ; for 0 � l � 1=2

¼ 0 for 1=2 � l � 1: (3.37)

This is also in agreement with (3.36) for the case of PR with l ¼ 0.

The representation in (3.36) was used to compute values of PPR
SgBP

3;1jIAC�
b akð Þ� �

for each value of ak ¼ 0:01 0:02ð Þ0:33, along with values for

ak ¼ 0 and ak ¼ 1=3, and all of the resulting values are listed in Table 3.4. These

computed values indicate two main results. First, while the values of PPR
SgBP

3;1jIAC�
b akð Þ� �

still do not reach very large values, they are significantly larger

than their corresponding PPR
StBP 3;1jIAC�

b akð Þ� �
probabilities in Table 3.1. The

second observation is that that PPR
SgBP 3;1jIAC�

b akð Þ� �
does generally tend to

increase as ak increases over the range of values with 0 � ak � 0:23, according
to intuition. This tendency for the probability to increase as ak increases is clearly
not perfectly monotonic, since there are some small inconsistent variations in PPR

SgBP

3;1jIAC�
b akð Þ� �

values within the range 0:09 � ak � 0:15. The values of PPR
SgBP

3;1jIAC�
b akð Þ� �

that are given in Table 3.4 then decrease dramatically as ak
increases, contrary to intuition, over the range of values with 0:23 � ak � 1=3.

The representation shown for PVS 3;1;CIAC�
b a�k
� �� �

in (3.10) indicates that

82.6% of all possible voting situations with a PMRW have a value of ak within the

range 0 � ak � 0:23, so it can be concluded that the conditional probability

PPR
SgBP 3;1jIAC�

b akð Þ� �
generally behaves according to our intuition as ak increases,

given that voting situations must have a PMRW, over a fairly wide range of ak
values that represent voting situations that are closest to having a perfect weak

positively unifying candidate. The very disconcerting results that were observed

while considering the probability that a Strict Borda Paradox will be observed with

PR for Parameter b are therefore largely ameliorated when attention is focused

instead on the probability that a Strong Borda Paradox will be observed in that same

situation.

3.2.2.3 A Representation for PPR
SgBP 3; njIAC�

t kð Þ� �

Since we have seen that PPR
SgBP 3;1jIAC�

t akð Þ� �
consistently increases as ak

increases, there is good reason to expect that the same behavior will be observed

for PPR
SgBP 3;1jIAC�

t akð Þ� �
when Parameter t is used to measure the degree of group

mutual coherence among voters’ preferences. This notion is definitely reinforced by

an observation that follows directly from Theorem 3.2, with:

Corollary 3.4 PPR
SgBP 3; njIAC�

t 0ð Þ� � ¼ 0 for odd n � 3.

A determination of the general behavior of how PPR
SgBP 3;1jIAC�

t akð Þ� �
changes

as ak changes over the entire range 0 � ak � 1=3 begins with the development of a
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probability representation for PPR
SgBP 3; njIAC�

t kð Þ� �
in Gehrlein and Lepelley

(2009a), with:

PPR
SgBP 3; njIAC�

t kð Þ� �

¼ðk�1Þðkþ1Þf�3ðk2�4k�1Þþ4kng�3d2kf4k3�6k2�12k�1�4kðkþ1Þng
16ðkþ1Þfkð11k2þ21k�17Þ�ð4k2þ26k�5Þn�3ðk�2Þn2þn3g ;

for 0 � k � n� 1ð Þ=4

3ð255k4 þ 4k3 � 30k2 � 36k � 8Þ � 6ð170k3 þ 32k2 þ 6k � 2Þn
þ 2ð240k2 þ 48k þ 7Þn2 � 12ð8k þ 1Þn3 þ 7n4

� 3d2kf4k3 � 6k2 � 12k � 1� 4kðk þ 1Þng

2
6664

3
7775

8ðn� 3kÞfðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (3.38)

The limiting representation PPR
SgBP 3;1jIAC�

t akð Þ� �
as n ! 1 then follows

directly from the use of earlier arguments with (3.38):

PPR
SgBP 3;1jIAC�

t akð Þ� � ¼ a2kð4� 3akÞ
16ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=4

765a4k � 1020a3k þ 480a2k � 96ak þ 7

8ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (3.39)

The representation that is given in (3.39) is then used to compute values of

PPR
SgBP 3;1jIAC�

t akð Þ� �
for each value of ak ¼ 0:01 0:02ð Þ0:33, along with values for

ak ¼ 0 and ak ¼ 1=3, and the resulting values are listed in Table 3.4. These

calculated values show the expected result that values of PPR
SgBP 3;1jIAC�

t akð Þ� �
consistently increase as ak increases over the entire range 0 � ak � 1=3, according
to our intuition. Thus, when PR is employed, the probability of observing a Strong

Borda Paradox generally increases as both Parameters b and t increase. This

statement is definitely valid on the basis of analysis with Parameter t, and it is

valid for most voting situations over the range of Parameter b values. In order to

determine the degree to which these overall observations regarding the possibility

of observing a Strong Borda Paradox can be generalized to other voting rules, we

extend this study to elections that are based on NPR.
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3.2.2.4 A Strong Borda Paradox with Negative Plurality Rule

There is a good reason to assume that PNPR
SgBP 3; njIAC�

b kð Þ� �
will consistently

increase as k increases, since that same behavior was observed previously for the

case of PNPR
StBP 3;1jIAC�

b akð Þ� �
. This notion is also further reinforced by the follow-

ing observation from Lepelley (1993).

Theorem 3.6 PNPR
SgBP 3; njIAC�

b 0ð Þ� � ¼ 0 for odd n � 3.

Proof If b ¼ 0 in a voting situation, then some candidate is never ranked as the least

preferred candidate by any voter, so one of the other two candidates must be ranked as

least preferred by at least nþ 1ð Þ=2 voters. It then follows directly from definitions,

that this same bottom ranked candidate must be both the PMRL and the candidate

that is ranked last by NPR, so a Strong Borda Paradox obviously cannot be

observed. □
A closed form representation for PNPR

SgBP 3; njIAC�
b kð Þ� �

is given in Gehrlein and

Lepelley (2009a) to allow for the analysis of the behavior of this conditional

probability as k changes.

PNPR
SgBP 3; njIAC�

b kð Þ� �

¼
kðk þ 1Þ k þ 2ð Þ

kð11k2 þ 21k � 17Þ � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3
;

for 0 � k � n� 1ð Þ=4

ð1þ kÞðn� 1� 3kÞf6kðn� kÞ � ðnþ 1Þðn� 3Þg
ðn� 3kÞf3ð3� 2k � 6k3Þ þ ð11þ 18k2Þnþ 3ð1� 2kÞn2 þ n3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ: (3.40)

The resulting limiting probability as n ! 1 for the representation in (3.40) is

denoted by PNP
SgBP 3;1jIAC�

b ak
� �� �

, and it is obtained by the same process that has

been discussed previously, with

PNPR
SgBP 3;1jIAC�

b akð Þ� � ¼ a3k
11a3k � 4a2k � 3ak þ 1

; for 0 � ak � 1=4

akð6a2k � 6ak þ 1Þ
18a3k � 18a2k þ 6ak � 1

; for 1=4 � ak � 1=3: (3.41)

The representation that is given in (3.41) was used to compute values of

PNPR
SgBP 3;1jIAC�

b akð Þ� �
for each value of ak ¼ 0:01 0:02ð Þ0:33, along with values
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for ak ¼ 0 and ak ¼ 1=3, and the resulting values are listed in Table 3.4. These

results show that calculated values of PNPR
SgBP 3;1jIAC�

b akð Þ� �
behave exactly as

intuition suggests, since they increase as ak increases over the entire range with

0 � ak � 1=3. It should be noted that the computed probabilities that are obtained

from PNPR
SgBP 3;1jIAC�

b akð Þ� �
in Table 3.4 are very similar to the associated valued

that are obtained for PPR
SgBP 3;1jIAC�

t akð Þ� �
. Moreover, they both have the same

unexpectedly large limiting value of 1/3 as ak ! 1=3.
We can not anticipate that the same intuitively appealing result will be observed

for PNPR
SgBP 3;1jIAC�

t akð Þ� �
, due to an observation in Theorem 3.7.

Theorem 3.7 PNPR
SgBP 3; njIACt n=3ð Þð Þ ¼ 0 for n a multiple of 3.

Proof Assume without any loss of generality that Candidate A is both the PMRL

and the winner by NPR in some voting situation. If A is the PMRL, then

CMA n1 þ n2 þ n3 < n4 þ n5 þ n6½ � (3.42)

BMA n1 þ n2 þ n4 < n3 þ n5 þ n6½ �: (3.43)

If A is the strict winner by NPR, then

ANC n5 þ n6 < n1 þ n3½ � (3.44)

ANB n5 þ n6 < n2 þ n4½ �: (3.45)

If A is the winner by NPR, it is then easy to show from (3.44) and (3.45) that

n5 þ n6 < n=3. If it is also required that t ¼ n=3, it then follows directly from

definition that n1 þ n2 ¼ n=3. Using both of these facts with (3.42) leads to n4 > n3,
while using both of these facts with (3.43) leads to n3 > n4. Because of this

contradiction, all of these conditions cannot hold simultaneously. □

A representation for PNPR
SgBP 3; njIAC�

t kð Þ� �
is shown in (3.46) to allow for an

evaluation of the behavior of this conditional probability as k increases.

PNPR
SgBP 3; njIAC�

t kð Þ� �

¼

ðkþ1Þ
126k3þ306k2þ81kþ145�9ð4k2þ20kþ1Þn�3ð9k�5Þn2þ7n3

�4f8d12nþ5ð3nþ7Þþ43d12nþ3þd12nþ11ð83þ24nÞþ16d12nþ9þ27d12nþ7g

8<
:

9=
;

þ54d2kðd4nþ3�d4nþ1Þf2 kþ2ð Þþng

2
6664

3
7775

144ðkþ1Þfkð11k2þ21k�17Þ�ð4k2þ26k�5Þn�3ðk�2Þn2þn3g
for 0�k� n�1ð Þ=6;
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27ð�1472k4�640k3þ992k2þ544kþ33Þþ288ð120k3þ60k2�36k�13Þn
þ18ð�624k2�304kþ47Þn2þð1536kþ536Þn3�65n4�1296d12nþ9ðnþ2Þ
�16d12nþ5f�1728k2�768k�22þð576kþ193Þn�24n2g
�128d12nþ11f�216k2�96k�23þð14þ72kÞn�3n2g
�16d12nþ1ð480kþ226�79nÞ�256d12nþ7ð30kþ4�10nÞ

2
6666666664

3
7777777775

3456ðkþ1Þfkð11k2þ21k�17Þ�ð4k2þ26k�5Þn�3ðk�2Þn2þn3g

for nþ1ð Þ=6� k� n�1ð Þ=4;

ð21k þ 1� 7nÞð3k � 2� nÞð3k þ 1� nÞð3k þ 4� nÞ
þ 4d6nþ3f108k2 þ 60k þ 2� 4ð18k þ 5Þnþ 12n2g
þ 8d6nþ1ð3k þ 1� nÞð18k � 1� 6nÞ

2
664

3
775

27ðn� 3kÞfðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (3.46)

The limiting probability representation for PNPR
SgBP 3;1jIAC�

t akð Þ� �
as n ! 1 is

obtained from (3.46) following the procedures from previous discussion, with:

PNPR
SgBP 3;1jIAC�

t akð Þ� �¼ 126a3k � 36a2k � 27ak þ 7

144ð11a3k � 4a2k � 3ak þ 1Þ ; for 0� ak � 1=6

�39744a4k þ 34560a3k � 11232a2k þ 1536ak � 65

3456akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

7ð3ak � 1Þ3
27ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (3.47)

The probability representation in (3.47) was used to compute values of

PNPR
SgBP 3;1jIAC�

t akð Þ� �
for each value of ak ¼ 0:01 0:02ð Þ0:33, along with values

for ak ¼ 0 and ak ¼ 1=3, and the resulting values are listed in Table 3.4. These

computed values show the counter-intuitive result that PNPR
SgBP 3;1jIAC�

t akð Þ� �
con-

sistently decreases as ak increases over its entire range of possible values with

0 � ak � 1=3. As a result, we find that by considering the probability that a Strong

Borda Paradox exists, rather than the more restrictive Strict Borda Paradox, we are

still unable to show a consistent relationship in which the probability that these

particular paradoxical voting outcomes will be observed can be expected to
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decrease as the preferences of the voters in a voting situation exhibit increased

levels of group mutual coherence.

3.2.3 Overall Probabilities for Borda’s Paradox

The results in Table 3.1 show computed probabilities for PPR
StBP 3;1jIAC�

b akð Þ� �
and

PPR
StBP 3;1jIAC�

t akð Þ� �
that are relatively large for some specific values of ak, while

they are relatively small for other specific values of ak. In order to obtain a more

general idea of the probability that a Strict Borda Paradox will be observed with

PR over the range of all possible ak, EUPIA is used to obtain a representation for

the probability, PPR
StBP 3; n; IAC�ð Þ, that a Strict Borda Paradox will be observed

under the assumption of IAC*, that all voting situations that have a PMRW are

equally likely to be observed. The resulting representation has periodicity 12, and

it is given by

PPR
StBP 3; n; IAC�ð Þ ¼ PNPR

StBP 3; n; IAC�ð Þ

¼ ðn� 5Þðnþ 7Þð3n3 þ 4n2 � 33n� 214Þ
270ðnþ 1Þðnþ 3Þ3ðnþ 5Þ ; for n ¼ 5 12ð Þ::: : (3.48)

The fact that PPR
StBP 3; n; IAC�ð Þ ¼ PNPR

StBP 3; n; IAC�ð Þ follows directly from Corollary

3.2. In the limit as n ! 1, (3.48) leads to

PPR
StBP 3;1; IAC�ð Þ ¼ PNPR

StBP 3;1; IAC�ð Þ ¼ 1=90 � 0:0111: (3.49)

Given that we know that assumptions like IC and IAC, and therefore IC* and

IAC*, tend to exaggerate the actual probability that paradoxical voting outcomes

will be observed, this result clearly indicates that it is very unlikely that an

occurrence of a Strict Borda Paradox would ever actually be observed with either

PR or NPR. This finding is completely in agreement with the relevant empirical

studies that were surveyed in Chap. 1. However, it should be noted again that we

have also found that there are some very specific scenarios that can be defined for

which this probability could be relatively large.

In the limit as n ! 1, we find that PPR
SgBP 3;1; IAC�ð Þ ¼ 4=135 � 0:0296 and

PNPR
SgBP 3;1; IAC�ð Þ ¼ 17=540 � 0:0315 from (3.31) and (3.32), so there is a signifi-

cantly greater overall probability that a Strong Borda Paradox will be observed

when compared to the overall probability that a Strict Borda Paradox will be

observed. However, we also find that this overall likelihood for a Strong Borda

Paradox with PR and NPR is still not very large under the IAC* assumption, despite

the fact that the results in Table 3.4 indicate that there are indeed specific situations

that can be defined for which this probability is quite large.
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3.2.3.1 Overall Probabilities for General Weighted Scoring Rules

The probability of observing Borda’s Paradox has been studied extensively to this

point for BR, PR and NPR. The only other consideration has been the representation

for P
WSR lð Þ
SgBP 3;1; IC�ð Þ in (3.25) that is related to the likelihood that a Strong Borda

Paradox will be observed for the case of general WSR’s. Diss and Gehrlein (2009)

extend this type of analysis to consider both the assumption of IAC* and the case of

a Strict Borda Paradox.

Representations for a Strong Borda Paradox

An alternative representation for P
WSR lð Þ
SgBP 3;1; IC�ð Þ is obtained by following the

same general procedure that was used to develop the representation for

PS
PMRW 3;1;DCð Þ in (1.18). The procedure starts by defining four discrete variables

that are denoted Yj
i for i ¼ 1; 2; 3; 4. These variables are associated with the

randomly selected voter preference ranking for the jth voter, and they have prob-

abilities of taking on different values that are defined in terms of the pi probabilities
that are associated with the likelihood of observing each of the six possible voter

preference rankings on the three candidates, as shown in Fig. 3.1:

Yj
1 ¼�1 : p1 þ p2 þ p4

þ1 : p3 þ p5 þ p6

Yj
2 ¼ �1 :p1 þ p2 þ p3

þ1 :p4 þ p5 þ p6

Yj
3 ¼1� l: p1

1: p2

l� 1: p3

l: p4
�1: p5

�l: p6

Yj
4 ¼1: p1

1� l: p2
l: p3

l� 1: p4

�l: p5
�1: p6 (3:50)

For a given voter’s preference ranking, the definitions of the pi’s and the associated
rankings that they represent indicate that Candidate A is ranked below (above) B
when Yj

1 > 0 ðY j
1 < 0Þ. Similarly, Candidate A is ranked below (above) C when

Yj
2 > 0ðYj

2 < 0Þ. Candidate A will be the PMRL for n voter when we have average

values of Yj
1 and Y

j
2 with Y1 > 0 (BMA) and Y2 > 0 (CMA). Similarly, Yj

3 and Y
j
4 then

denote the relative differences in scoring rule weights that are given by Rule l
respectively for A over B, and for A over C. Candidate A will be the Rule l winner

for n voters when we have Y3 > 0 (AWB) and Y4 > 0 (AWC).
Based as these definitions, the joint probability that Candidate A is both the

PMRL and the winner by Rule l is equivalent to the joint probability that Yi > 0,

for i ¼ 1; 2; 3; 4. As n ! 1 with IC, this joint probability is equivalent to the

quadrivariate normal positive orthant probabilityFA
4 R1
� �

that Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for
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i ¼ 1; 2; 3; 4 with a correlation matrix R1 that is obtained from the correlations

between the original Yj
i variables, with

R1 ¼
1 1

3
�

ffiffiffi
2
3z

q
�

ffiffiffi
1
6z

q

� 1 �
ffiffiffi
1
6z

q
�

ffiffiffi
2
3z

q
� � 1 1

2� � � 1

2
66664

3
77775; (3.51)

where z ¼ 1� l 1� lð Þ.
No closed form representation exists forFA

4 R1
� �

, but a representation is found as

a bounded integral function of a single variable by directly following procedure in

Gehrlein and Fishburn (1978a), with:

FA
4 R1
� � ¼ 1

9
� 1

4p
Sin�1

ffiffiffiffiffi
2

3z

r !
þ Sin�1

ffiffiffiffiffi
1

6z

r !( )

þ 1

4p2

( 
Sin�1

ffiffiffiffiffi
2

3z

r !!2

� Sin�1

ffiffiffiffiffi
1

6z

r ! !2

�
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

36� 3� tð Þ2
s

Cos�1 6tz� g t; zð Þ
2g t; zð Þ

� �!
dt

)
: (3.52)

The symmetry of IC with respect to candidates then leads to a representation for

the conditional probability P
WSR lð Þ
SgBP 3;1; IC�ð Þ with

P
WSR lð Þ
SgBP 3;1; IC�ð Þ ¼ 3FA

4 R1
� �

PS
PMRL 3;1; ICð Þ : (3.53)

Here, PS
PMRL 3;1; ICð Þ is the probability that a PMRL exists as n ! 1 with IC,

and PS
PMRL 3;1; ICð Þ ¼ PS

PMRW 3;1; ICð Þ for three candidates, so it follows directly
from (1.19) that

PS
PMRL 3;1; ICð Þ ¼ 3

4
þ 3

2p
Sin�1 1

3

� �
: (3.54)

It is easily verified by numerical methods that the representation in (3.53) yields

identical results to those that are listed in Table 3.2 from (3.25), and they are listed

in Table 3.5 for convenience. Given that z is symmetric about l ¼ 1=2 and the

specific form of R1, it then follows directly that P
WSR 1�lð Þ
SgBP 3;1; IC�ð Þ ¼ P

WSR lð Þ
SgBP

3;1; IC�ð Þ.
A representation for P

WSR lð Þ
SgBP 3;1; IAC�ð Þ is obtained for the limiting case with

n ! 1 under IAC* by using a procedure that was developed in Cervone et al.
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(2005). The development of this procedure is outlined here, and full details of the

logic of this procedure are given in the original paper. This procedure begins by

defining the proportions of voters in a voting situation with each of the possible

complete preference rankings on candidates, with qi ¼ ni=n.
The hyperspace of the simplex D5 with

P6
i¼1 qi ¼ 1 is then used to represent the

space of all feasible voting situations in the limit as n ! 1. The polyhedron D5 is

defined by six vertices that are denoted by six-dimensional vectors v0i , with

v01 ¼ 1 0 0 0 0 0½ � v04 ¼ 0 0 0 1 0 0½ �

v02 ¼ 0 1 0 0 0 0½ � v05 ¼ 0 0 0 0 1 0½ �

v03 ¼ 0 0 1 0 0 0½ � v06 ¼ 0 0 0 0 0 1½ �

With this particular definition of the v0i vectors, D5 has an edge length of
ffiffiffi
2

p
between each of the pairs of vertices, and its volume, which is denoted by Volume1,
is then given by [Sommerville (1958, pp. 125–126)]

Volume1 ¼
ffiffiffi
6

p

120
: (3.55)

Hyperplane H1 is then defined by

H1 : q1 þ q2 � q3 þ q4 � q5 � q6 ¼ 0 (3.56)

This hyperplane identifies voting situations for which there is a PMR tie between

Candidates A and B, and it is used to partition D5 into the two subspace regions. The

first of these regions has q1 þ q2 � q3 þ q4 � q5 � q6 > 0 (with AMB) and the

other has q1 þ q2 � q3 þ q4 � q5 � q6 < 0 (with BMA). The partition subspace

for which AMB is discarded with all of the vertices included in it. A procedure in

Table 3.5 Computed values of P
WSR lð Þ
SgBP 3;1; IC�ð Þ and P

WSR lð Þ
SgBP 3;1; IAC�ð Þ

l P
WSR lð Þ
SgBP 3;1; IC�ð Þ P

WSR lð Þ
SgBP 3;1; IAC�ð Þ l P

WSR lð Þ
SgBP 3;1; IC�ð Þ P

WSR lð Þ
SgBP 3;1; IAC�ð Þ

0.00 0.0371 0.0296 0.50 0.0000 0.0000

0.05 0.0303 0.0242 0.55 0.0001 0.0002

0.10 0.0238 0.0192 0.60 0.0007 0.0013

0.15 0.0179 0.0146 0.65 0.0021 0.0033

0.20 0.0126 0.0105 0.70 0.0046 0.0061

0.25 0.0081 0.0070 0.75 0.0081 0.0096

0.30 0.0046 0.0042 0.80 0.0126 0.0136

0.35 0.0021 0.0021 0.85 0.0179 0.0178

0.40 0.0007 0.0007 0.90 0.0238 0.0223

0.45 0.0001 0.0001 0.95 0.0303 0.0269

0.50 0.0000 0.0000 1.00 0.0371 0.0315
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Cervone et al. (2005) is used to determine all of the new vertices that are created

when H1 cuts some of the edges of D5 to form the new face of the remaining

subspace region in which BMA.
Hyperplane H2 is then defined in the same manner to determine the voting

situations for which there is a PMR tie between Candidates A and C, with

H2 : q1 þ q2 þ q3 � q4 � q5 � q6 ¼ 0: (3.57)

Then, H2 is used to partition the simplex partition region with BMA into the

subspace in which both BMA and AMC (with q1 þ q2 þ q3 � q4 � q5 � q6 > 0)

and the other subspace in which both BMA and CMA (with q1 þ q2 þ q3�
q4 � q5 � q6 < 0). This first subspace is discarded along with vertices that are

included in it. We then determine all of the new vertices that are created when H2

cuts some edges of the simplex partition region with BMA to form the new face of

the remaining subspace in which both BMA and CMA. The polyhedron that remains

has eleven vertices that are denoted by six-dimensional vectors, v1i , with

v11 ¼ 0 0 0 0 0 1½ � v17 ¼ 0 0 0 1=2 1=2 0½ �

v12 ¼ 0 0 0 0 1 0½ � v18 ¼ 0 1=2 0 0 0 1=2½ �

v13 ¼ 1=2 0 0 0 0 1=2½ � v19 ¼ 0 1=2 0 0 1=2 0½ �

v14 ¼ 1=2 0 0 0 1=2 0½ � v110 ¼ 0 0 1=2 0 0 1=2½ �

v15 ¼ 0 0 0 1=2 0 1=2½ � v111 ¼ 0 0 1=2 0 1=2 0½ �

v16 ¼ 0 0 1=2 1=2 0 0½ �

The volume of this polyhedron is denoted as Volume2, and the ratio

Volume2=Volume1 gives the limit probability as n ! 1 that Candidate A is the

PMRL with IAC, which is the same as the limit probability that Candidate A is the

PMRW for three candidates. The symmetry of IAC with respect to candidates and

the limiting result from (1.27) require that

PS
PMRL 3;1; IACð Þ ¼ 3Volume2

Volume1
¼ 15

16
: (3.58)

It then follows directly from (3.58) that

Volume2 ¼
ffiffiffi
6

p

384
: (3.59)

To find a representation for P
WSR lð Þ
SgBP 3;1; IAC�ð Þ, the subspace with BMA and

CMA must be further partitioned to find the volume for which it is also true that
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AWB and AWC for Rule l. To simplify the analysis that follows, it is easier to

consider a variation of Rule l which is Rule s that is a WSR with weights 1; s;�1ð Þ.
These rules are equivalent when l ¼ sþ 1ð Þ=2, and AW0B denotes the outcome that

A beats B under Rule s. Two hyperplanes are now defined in the context of Rule s,
such that H3 and H4 determine voting situations for which there is a tie respectively

between Candidates A and B and Candidates A and C.

H3 : 1� sð Þq1 þ 2q2 � 1� sð Þq3 þ 1þ sð Þq4 � 2q5 � 1þ sð Þq6 ¼ 0 (3.60)

H4 :2q1 þ 1� sð Þq2 þ 1þ sð Þq3 � 1� sð Þq4 � 1þ sð Þq5 � 2q6 ¼ 0 (3.61)

These two hyperplanes are sequentially used to partition the subspace in

which BMA and CMA. Some vertices are discarded with each hyperplane cut and

some new ones are created, following the discussion above. The ultimate result is

the determination of the vertices of the remaining polyhedron in which BMA, CMA,
AW0B and AW0C. In performing this process, it is necessary to evaluate two

different situations. The first has 0 � s � 1 and the other has � 1 � s � 0.

There are 17 vertices for the polyhedron with 0 � s � 1, and they are denoted as

six-dimensional vectors v2i in Fig. 3.2.
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Fig. 3.2 Vertices for polyhedron with BMA, CMA, AW0B and AW0C for 0 � s � 1
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The volume of this region is Volume3 sð Þ and it is obtained with a procedure from
Cervone et al. (2005) that starts out by partitioning this polyhedron into pyramids.

The pyramid structure for this set of vertices is shown in Fig. 3.3. The 14 sets of

vertices at the far right of Fig. 3.3 each form a two-dimensional polygon that is the

base of a three-dimensional pyramid with an apex at the vertex that is leading to it in

the pyramid structure. For example; v22, v
2
10 and v

2
11 form a two-dimensional triangle

that is the base of a three-dimensional pyramid with an apex at v24.
These three-dimensional pyramids then form the bases of four-dimensional

pyramids with apexes at v217 and v210 in the pyramid structure, and these four-

dimensional pyramids then form the base of a five-dimensional pyramid with an

apex at v21. The volumes are then sequentially found for pyramids with an increasing

number of dimensions, with

Volume3 sð Þ ¼ ð3s4 � 32s3 þ 217s2 þ 436sþ 192Þs3 ffiffiffi
6

p

77760ð3sþ 1Þðsþ 3Þð1þ sÞ3 : (3.62)

The symmetry of IAC with respect to the three candidates leads to a representa-

tion for P
WSR sð Þ
SgBP 3;1; IAC�ð Þ from the identity

Fig. 3.3 The pyramid

structure of the polyhedron

with BMA, CMA, AW0B
and AW0C
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P
WSR sð Þ
SgBP 3;1; IAC�ð Þ ¼ 3Volume3 sð Þ

3Volume2
; for 0 � s � 1: (3.63)

A representation for P
WSR lð Þ
SgBP 3;1; IAC�ð Þ is then obtained from (3.63) with the

variable transformation s ! 2l� 1ð Þ, and

P
WSR lð Þ
SgBP 3;1; IAC�ð Þ ¼ ð2l� 1Þ3ð2� 53lþ 331l2 � 88l3 þ 12l4Þ

1620l3ð3l� 1Þðlþ 1Þ ;

for 1=2 � l � 1: (3.64)

The representation in (3.64) gives the result that PBR
SgBP 3;1; IAC�ð Þ ¼ 0 and that

PNPR
SgBP 3;1; IAC�ð Þ ¼ 17=540, which is in agreement with (3.32). Computed values

from (3.64) are listed in Table 3.5 for each l ¼ 0:50 0:05ð Þ1:00:
There are 12 vertices for the polyhedron with � 1 � s � 0, and they are denoted

as six-dimensional vectors v3i , in Fig. 3.4.

The volume of this region is denoted by Volume4 sð Þ, and the same procedure that

was used above obtains

Volume4 sð Þ ¼ ðs2 þ 11s� 14Þs3 ffiffiffi
6

p

38880ð1� sÞ3 ; for� 1 � s � 0; (3.65)

This all leads to the representation

P
WSR lð Þ
SgBP 3;1; IAC�ð Þ ¼ ð2l� 1Þ3ð12� 9l� 2l2Þ

405ðl� 1Þ3 ; for 0 � l � 1=2: (3.66)
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Fig. 3.4 Vertices for polyhedron with BMA, CMA, AW0B and AW0C for � 1 � s � 0
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The representation in (3.66) also gives the well known result that

PBR
SgBP 3;1; IAC�ð Þ ¼ 0 and that PPR

SgBP 3;1; IAC�ð Þ ¼ 4=135, which is in agreement

with results in (3.31). Computed values from (3.66) are listed in Table 3.5 for each

l ¼ 0:00 0:05ð Þ0:50:

Representations for a Strict Borda Paradox

Diss and Gehrlein (2009) also obtain representations for P
WSR lð Þ
StBP 3;1; IC�ð Þ and

P
WSR lð Þ
StBP 3;1; IAC�ð Þ with the same procedures that have just been used to develop

representations for a Strong Borda Paradox. The results are summarized below.

P
WSR lð Þ
StBP 3;1; IC�ð Þ ¼ 6F5 R2

� �
PS
PMRL 3;1; ICð Þ ; (3.67)

where

R2 ¼

1 � 1
3

1
3

�
ffiffiffi
2
3z

q ffiffiffi
1
6z

q

1 1
3

ffiffiffi
1
6z

q
�

ffiffiffi
2
3z

q

1 �
ffiffiffi
1
6z

q
�

ffiffiffi
1
6z

q
1 � 1

2

1

2
66666664

3
77777775

(3.68)

Given the symmetry of z around l ¼ 1=2 and the form of R2, it then follows

directly that P
WSR 1�lð Þ
StBP 3;1; IC�ð Þ ¼ P

WSR lð Þ
StBP 3;1; IC�ð Þ. Numerical values of

P
WSR lð Þ
StBP 3;1; IC�ð Þ are obtained for each l ¼ 0:00 0:05ð Þ0:50. The results are listed

in Table3.6, and they are accurate to the number of decimal places that are shown.

Table 3.6 Computed values of P
WSR lð Þ
StBP 3;1; IC�ð Þ and P

WSR lð Þ
StBP 3;1; IAC�ð Þ

l P
WSR lð Þ
StBP 3;1; IC�ð Þ P

WSR lð Þ
StBP 3;1; IAC�ð Þ

0.00 0.0126 0.0111

0.05 0.0100 0.0091

0.10 0.0077 0.0073

0.15 0.0057 0.0056

0.20 0.0039 0.0040

0.25 0.0024 0.0027

0.30 0.0013 0.0016

0.35 0.0006 0.0008

0.40 0.0002 0.0003

0.45 0.0000 0.0000

0.50 0.0000 0.0000
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When IAC* is considered, P
WSR lð Þ
StBP 3; n; IAC�ð Þ ¼ P

WSR 1�lð Þ
StBP 3; n; IAC�ð Þ and

P
WSR lð Þ
StBP 3;1; IAC�ð Þ ¼ ð1� 2lÞ3ð9� 6l� 2l2Þ

810ð1� lÞ3 ; for 0 � l � 1=2: (3.69)

P
WSR lð Þ
StBP 3;1; IAC�ð Þ ¼ ð2l� 1Þ3ð1þ 10l� 2l2Þ

810l3
; for 1=2 � l � 1: (3.70)

The representations that are given in (3.69) and (3.70) both yield the result that

PBR
StBP 3;1; IAC�ð Þ ¼ 0 and that PPR

StBP 3;1; IAC�ð Þ ¼ PNPR
StBP 3;1; IAC�ð Þ ¼ 1=90,

which is in agreement with (3.49). Computed values from (3.70) are listed in

Table 3.6 for each l ¼ 0:00 0:05ð Þ0:50:
Some results are clear from the calculated values that are listed in Tables 3.5 and

3.6. The probability of observing a Strict Borda Paradox is maximized by PR and

NPR. It should be noted that the introduction of some degree of voter dependence

with IAC actually causes a slight increase in the overall probability of observing a

Strict Borda Paradox with IC for 0:20 � l � 0:40 and for 0:60 � l � 0:80. Over-
all, the probability of observing a Strict Borda Paradox only exceeds 0.01 for

0 � l � 0:05 and 0:95 � l � 1:00 for IC in Table 3.6, and it can be concluded

that is very unlikely that a Strict Borda Paradox would ever be observed for any

voting rule in any realistic voting scenario.

The probability values for observing a Strong Borda Paradox that are listed in

Table 3.5 are significantly greater than the corresponding probabilities for obser-

ving a Strict Borda Paradox in Table 3.6, but these probabilities still remain less

than 0.0371. The introduction of some degree of dependence among voters’ pre-

ferences with IAC in this case decreases the corresponding probability values that

are observed with IC for all 0 � l < 0:50, but the reverse is true for table entries

with 0:50 < l � 0:80.
The probability of observing a Strong Borda Paradox remains less than 0.01 for

all 0:25 < l � 0:75 with both IC and IAC. However, the probability increases quite

rapidly outside this region as Rule l approaches either PR or NPR. Given that IC

and IAC tend to exaggerate these probabilities, observances of a Strong Borda

Paradox should be rare, but not impossible to observe in realistic voting scenarios.

The use of voting rules like PR and NPR will clearly tend to maximize the

likelihood of observing such phenomena.

3.3 Condorcet’s Other Paradox

The definition of Condorcet’s Other Paradox was initially given in Chap. 1, as we

introduced the notion of WSR’s. The weighted score for each alternative under our

standard weighting scenario 1; l; 0ð Þ follows as a general extension of (1.2):
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Score A; lð Þ ¼ n1 þ n2 þ l n3 þ n4ð Þ (3.71)

Score B; lð Þ ¼ n3 þ n5 þ l n1 þ n6ð Þ (3.72)

Score C; lð Þ ¼ n4 þ n6 þ l n2 þ n5ð Þ (3.73)

Condorcet’s Other Paradox occurs when we have a voting situation with a

PMRW such that no WSR for any l in the range 0 � l � 1 will select the PMRW

as theWSR winner. Some earlier work has done to compute the probability that that

a much stronger version of this paradox will be observed under the assumption of

IC* as n ! 1. To describe this earlier work, let BDA denote the event that

Candidate B will dominate Candidate A by defeating it for every possible WSR

with 0 � l � 1. If we consider the definitions of Score A; lð Þ and Score B; lð Þ
in (3.71) and (3.72) respectively, both must increase in a linear fashion as the

value of l increases for any voting situation. It is therefore obvious that it must

then be true that BDA in any given voting situation if it is true that both

Score B; 0ð Þ > Score A; 0ð Þ and Score B; 1ð Þ > Score A; 1ð Þ, due to the linear nature

of these functions. So, BDA if Candidate B defeats A by both PR, with l ¼ 0, and

NPR, with l ¼ 1.

Similarly, we let BD Xf g denote the event that Candidate B dominates each

candidate in a set X. Merlin et al. (2002) use geometric techniques to obtain a repre-

sentation that can ultimately lead to the conditional probability, P BD A;Cf g;1;ð
ICjA is PMRWÞ, that Candidate B will be the overall winner for every WSR with

0 � l � 1 as n ! 1 with the assumption of IC*, given that A is the PMRW. This

situation is obviously much more restrictive than the definition of Condorcet’s

Other Paradox that we have been using.

We begin by replicating the results in Merlin et al. (2002) by using the traditional

approach to the problem to obtain a representation for the joint probability

P BD A;Cf g;1; IC & A is PMRWð Þ that Candidate B dominates both A and C
when A is the PMRW as n ! 1 with the assumption of IC*. Based on previous

discussion, this will happen if B is the overall winner by both PR and NPR when A
is the PMRW, so there are six events that must simultaneously occur in a voting

situation for this to happen:

AMC n1 þ n2 þ n3 > n4 þ n5 þ n6½ � (3.74)

AMB n1 þ n2 þ n4 > n3 þ n5 þ n6½ � (3.75)

Score B; 0ð Þ > Score A; 0ð Þ n3 þ n5 > n1 þ n2½ � (3.76)

Score B; 0ð Þ > Score C; 0ð Þ n3 þ n5 > n4 þ n6½ � (3.77)

Score B; 1ð Þ > Score A; 1ð Þ n5 þ n6 > n2 þ n4½ � (3.78)
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Score B; 1ð Þ > Score C; 1ð Þ n1 þ n3 > n2 þ n4½ � (3.79)

We obtain a representation for P BD A;Cf g;1; IC & A is PMRWð Þ by follow-

ing the same general procedure that was used to develop the representation for

PS
PMRW 3;1;DCð Þ in (1.18). The process begins by defining six discrete variables,

Xj
i for i ¼ 1; 2; 3; 4; 5; 6, that are associated with the likelihood that the individual

events that are described in the six restrictions in (3.74)–(3.79) will be observed in a

randomly selected linear preference ranking for the jth voter. A six-dimensional

vector, p, exists to denote the probabilities that are associated with the likelihood

that each of the six possible voter preference rankings on the three candidates will

be drawn at random for the jth voter from the population of possible voters, as

shown in Fig. 1.7. The probability that the Xj
i variables take on various values are

defined in terms of the pi probabilities from p, with:

Xj
1 ¼ þ1 : p1 þ p2 þ p3 Xj

2 ¼ þ1 : p1 þ p2 þ p4

�1 : p4 þ p5 þ p6 � 1 : p3 þ p5 þ p6 (3.80)

Xj
3 ¼ þ1 : p3 þ p5 Xj

4 ¼ þ1 : p3 þ p5

�1 : p1 þ p2 � 1 : p4 þ p6

0 : p4 þ p6 0 : p1 þ p2 (3.81)

Xj
5 ¼ þ1 : p5 þ p6 Xj

6 ¼ þ1 : p1 þ p3

�1 : p2 þ p4 � 1 : p2 þ p4

0 : p1 þ p3 0 : p5 þ p6 (3.82)

For example, we see from the definition of Xj
3 in (3.81) that BPA if X3 > 0 for

the n preference rankings that are drawn to create a voter preference profile. As

n ! 1 with IC, it follows that P BD A;Cf g;1; IC & A is PMRWð Þ is equivalent
to the multivariate normal probability that Xi

ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for i ¼ 1; 2; 3; 4; 5; 6:

The correlation matrix that results with IC from the variable definitions in (3.80)

through (3.82) is R3, with

R3 ¼

1 1
3

�
ffiffi
1
6

q ffiffi
1
6

q
�

ffiffi
1
6

q ffiffi
1
6

q

� 1 �
ffiffi
2
3

q
�

ffiffi
1
6

q
�

ffiffi
2
3

q
�

ffiffi
1
6

q
� � 1 1

2
1
2

1
4� � � 1 1

4
1
2� � � � 1 1
2� � � � � 1

2
666666664

3
777777775
: (3.83)

Then, P BD A;Cf g;1; IC & A is PMRWð Þ is equivalent to the multivariate

normal positive orthant probability F6 R3
� �

. The symmetry of IC with respect to
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candidates then requires that the probability that the same candidate, that is not the

PMRW, will dominate each of the two other candidates, including the PMRW, is

obtained as 6F6 R3
� �

. Merlin et al. (2002) obtain a valid, but rather complex,

representation for this probability and then use quadrature to obtain a probability

estimate of 0.01808. By using the procedure of Naylor et al. (1966), we obtain

Monte-Carlo simulation estimates of F6 R3
� �

and calculate a very similar probability

value. To make this probability conditional on the fact that a PMRW exists, we

simply make the obvious modification and use the relationship 6F6 R3
� �

=

PS
PMRW 3;1; ICð Þ to obtain a probability value of 0.01982.

This all leads to the conclusion that the probability of observing this phenom-

enon is quite small, but this result could be biased on two accounts. First, it could

be the result of the IC* assumption, and the impact of this assumption can be

tested by doing the same analysis with the assumption of IAC*. An algorithm that

is based on Ehrhart polynomial theory was used to compute this conditional

probability with IAC* as n ! 1, following a procedure that is developed in

Lepelley et al. (2008). The resulting conditional probability is reduced to 19/1620

¼ 0.01173, so the small increase in voter dependence that is suggested by IAC*

makes the already small IC* probability significantly smaller. If Condorcet’s

Other Paradox, as we have defined it, is actually to be perceived as a potential

threat to elections, then the restrictions that we have just considered from Merlin

et al. (2002) would have to be creating a significant understatement of the paradox

probability.

3.3.1 A More Relaxed Condition

Gehrlein and Lepelley (2009b) note that the restrictions that are imposed by Merlin

et al. (2002) can be significantly relaxed and still be consistent with the less

restrictive situation than we have used to define Condorcet’s Other Paradox. This

is accomplished by considering the possibility that some given candidate always

dominates the PMRW, without also requiring that this given candidate always

dominates the remaining candidate that is not the PMRW. This would be obtained

for one particular such occurrence if BDA when Candidate A is the PMRW. The

limiting joint probability that this particular event is observed is denoted as

P BDA;1; IC & A is PMRWð Þ as n ! 1 with IC.

A representation for this probability follows directly from the discussion

in the immediately preceding section, since the conditions that lead to its occur-

rence in a voting situation follow from the restrictions in (3.74) through (3.79)

above, with the conditions of (3.77) and (3.79) being ignored. We can therefore

obtain a representation for P BDA;1; IC & A is PMRWð Þ as a multivariate nor-

mal positive orthant probability, F4 R4
� �

, with a correlation matrix R4 that is

obtained from R3 by removing the terms that are associated with variables Xj
4

and Xj
6, with
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R4 ¼
1 1

3
�

ffiffi
1
6

q
�

ffiffi
1
6

q

� 1 �
ffiffi
2
3

q
�

ffiffi
2
3

q
� � 1 1

2� � � 1

2
66664

3
77775 (3.84)

The form of R4 is such that it does not lead to a simple representation for

F4 R4
� �

, so a procedure from Gehrlein (1979) is used to evaluate it by numerical

methods, to find F4 R4
� � � 0:003234. It is not possible to have a three-candidate

voting situation in which Candidates B and C both dominate A when A is the

PMRW, since this would require the PMRW to be ranked last by BR, which is

known to be impossible from Theorem 3.4. The symmetry of IC with respect to

candidates therefore leads to the conclusion that the conditional probability that

some given candidate dominates the PMRW, given that a PMRW exists is given by

6F4 R4
� �

=PS
PMRW 3;1; ICð Þ, and this value is given by 0.02127.

The use of this less restrictive condition does not therefore result in a sig-

nificant increase in the conditional probability for observing the more restrictive

outcome from Merlin et al. (2002). When this probability is calculated for

IAC* as n ! 1 with the same approach as above, the probability drops to 1/80

¼ 0.0125. Again, the slight degree of dependence that is suggested by IAC*

significantly decreases the already small probability that is obtained with the

assumption of IC*.

3.3.2 Another Condition

A representation for the probability that Condorcet’s Other Paradox, as we have

defined it, is observed can be obtained after we consider another condition. Suppose

that Candidate A is the PMRW that it is not dominated by either B or C, while it is
still never selected as the WSR for any 0 � l � 1. Such an outcome occurs in a

voting situation in which

AMC n1 þ n2 þ n3 > n4 þ n5 þ n6½ � (3.85)

AMB n1 þ n2 þ n4 > n3 þ n5 þ n6½ � (3.86)

Score B; 0ð Þ>Score A; 0ð Þ n3 þ n5>n1 þ n2½ � (3.87)

Score A; 0ð Þ>Score C; 0ð Þ n1 þ n2>n4 þ n6½ � (3.88)

Score C; 1ð Þ>Score A; 1ð Þ n5 þ n6>n1 þ n3½ � (3.89)

Score A; 1ð Þ>Score B; 1ð Þ n2 þ n4>n5 þ n6½ � (3.90)
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Score C; l�ð Þ>Score A; l�ð Þ

n4 þ n6 þ l� n2 þ n5ð Þ > n1 þ n2 þ l� n3 þ n4ð Þ½ �: (3.91)

Candidate C does not dominate A since APC due to the restriction in (3.88).

Similarly, Candidate B does not dominate A since ANB in (3.90). It follows directly

from the linearity of Score X; lð Þ that as l increases for each X 2 A;B;Cf g, Candi-
date A must always be beaten by either B or C if it is also true that a value of l�

exists for some 0 < l�< 1 with Score C; l�ð Þ ¼ Score B; l�ð Þ and in addition we

have Score C; l�ð Þ> Score A; l�ð Þ.
In order to have Score C; l�ð Þ ¼ Score B; l�ð Þ, we need

n4 þ n6 þ l� n2 þ n5ð Þ ¼ n3 þ n5 þ l � n1 þ n6ð Þ; (3.92)

so that

l� ¼ n3 þ n5 � n4 � n6
n2 þ n5 � n1 � n6

: (3.93)

Then for Score C; l�ð Þ>Score A; l�ð Þ, we require

n4 þ n6 þ l� n2 þ n5ð Þ > n1 þ n2 þ l� n3 þ n4ð Þ: (3.94)

By combining (3.93) and (3.94)

n4 þ n6 þ n3 þ n5 � n4 � n6
n2 þ n5 � n1 � n6

n2 þ n5ð Þ >

n1 þ n2 þ n3 þ n5 � n4 � n6
n2 þ n5 � n1 � n6

n3 þ n4ð Þ: (3.95)

If we sum (3.87)–(3.90), and reduce the results, we obtain

n2 þ n5 > n1 þ n6 (3.96)

So, the result that is given in (3.95) to require Score C; l�ð Þ> Score A; l�ð Þ can be
multiplied by n2 þ n5 � n1 � n6 without reversing the inequality to obtain

n4 þ n6ð Þ n2 þ n5 � n1 � n6ð Þ þ n3 þ n5 � n4 � n6ð Þ n2 þ n5ð Þ >
n1 þ n2ð Þ n2 þ n5 � n1 � n6ð Þ þ n3 þ n5 � n4 � n6ð Þ n3 þ n4ð Þ: (3.97)

This can be algebraically reduced to make the restriction in (3.91) equivalent to

n21 þ n24 þ n25 þ n2n3 þ n2n6 þ n3n6 >

n22 þ n23 þ n26 þ n1n4 þ n1n5 þ n4n5: (3.98)
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If a voting situation meets the condition that Candidate A is the PMRW and that it

is not dominated by either B or C, while it is still never selected as the WSR for any

0 � l � 1; it must simultaneously meet the restrictions of (3.85)–(3.90) along with

(3.98). The nonlinear nature of the restriction in (3.98) makes it very difficult to

obtain a formal representation for this probability. However, Monte-Carlo simula-

tion was used to obtain an estimate of this probability with the assumption of IAC*

as n ! 1, following a procedure that is developed in Tovey (1997). The condi-

tional probability that a profile exists for which the PMRW is not dominated by

either of the other two candidates, and it still is never selected as the winner for any

WSR, given that a PMRW exists, is approximated as 0.00017. This is an extremely

small probability. If we combine this observation with the IAC probability that the

PMRW is dominated by some candidate from the previous section, we obtain the

probability that Condorcet’s Other Paradox, as we have defined it, will be observed.

The resulting probability of observing the paradox with IAC* as n ! 1 is only

0.01267. If we couple this observation with the knowledge of the fact that IC* and

IAC* are expected to give inflated estimates of the probability that voting para-

doxes will be observed, it can be concluded that actual observances of Condorcet’s

Other Paradox should be very rare events.

3.4 Conclusion

The overall objective of this chapter has been an attempt to extend the intuitively

appealing observations regarding the connection between the likelihood that Con-

dorcet’s Paradox is observed with the degree of group mutual coherence in voting

situations from the preceding chapter to the consideration of two other paradoxes

that involve WSR’s. When Condorcet’s Other Paradox was considered, the

expected results were clearly observed, since the probability of observing this

paradox with the assumption of IC was significantly reduced by considering instead

the probability that the paradox is observed with IAC, which inserts a degree of

dependence among voters’ preferences. The probability of observing this paradox

was found to be very small under the assumption of IAC.

This same result was not consistently observed for all WSR’s when Borda’s

Paradox was evaluated with the same type of comparison under IC and IAC. The

connection between group mutual coherence and the likelihood that Borda’s Para-

dox is observed therefore does not have such a clear outcome. The most salient

results that we have obtained in this study can be summarized as follows.

l There are some specific circumstances that can be identified for which Borda’s

Paradox can occur with a probability that is far from being negligible: when

voting situations are more and more removed from the condition of having a

perfect negatively unifying candidate, the strict version of the paradox has a

probability of occurrence that can be higher than 15% when PR is used to rank

the candidates. The strong version can occur with a likelihood that is greater than

120 3 Other Incompatibility Paradoxes



30% when voters’ preferences are far removed from the condition of having a

perfect positively unifying candidate when the voting rule is NPR.
l Given that specific conditions can be defined so that a high likelihood exists for

observing Borda’s Paradox, the overall probability that Borda’s Paradox will be

observed is rather small. This overall probability with IAC for large electorates

as n ! 1 is only about one percent for a Strict Borda Paradox and about three

percent for a Strong Borda Paradox, making these probabilities significantly

lower than the likelihood of Condorcet’s Paradox at 6.25% under the same

assumption. As a consequence, Borda’s Paradox could be considered as gener-

ally being less problematic than Condorcet’s Paradox in real election settings.
l This assertion should however be balanced by the following observation, which

certainly constitutes our primary finding. That is, the results that we have

obtained show that the impact of an increasing degree of group mutual coherence

among voters’ preferences on the likelihood of observing Borda’s Paradox

is much more subtle and more difficult to analyze than it is for the case of

Condorcet’s Paradox. This impact is found to depend both on the measure of

group mutual coherence that is being considered and on the voting rule that is

used. In some circumstances, the probability that Borda’s Paradox will occur will

consistently increase as voters’ preferences become more mutually coherent.

3.4 Conclusion 121



Chapter 4

Other Voting Paradoxes

4.1 Choice Set Variance Paradoxes

Choice Set Variance Paradoxes were introduced in Chap. 1, where they were

defined as representing situations in which a series of issues are to be put before

voters, such that each individual issue will be approved or disapproved by majority

rule voting. There are two parties R;Lf g with opposing positions on each of m
different issues that are being considered, and each of n voters has preferences on

the individual issues that are in agreement with the position of either Party R or of

Party L, but a given voter does not necessarily agree with the position of the same

party on every issue. Voters are assumed throughout to vote sincerely, according to

their preferences, on each of the individual issues. A Choice Set Variance Paradox

is observed if the overall final election outcomes on the individual issues represent a

result that is somehow inconsistent with the preferences of the voters, according to

their Party R and L associations on the issues. We consider two different ways in

which these results can be inconsistent, as reflected by the possible existence of

Ostrogorski’s Paradox and the Majority Paradox.

4.1.1 Ostrogorski’s Paradox

Suppose that an alignment with either Party R or L is determined for each voter,

such that a voter is determined to have an alignment with a given party whenever

this voter is in agreement with a party’s positions over a majority of the m issues.

If m is even and a voter has preferences that are in agreement with both parties on

m/2 issues each, that voter is not considered to be aligned with either party. The

Majority Party (MP) is that party with the greater number of voters aligned with it,

excluding the voters that are not aligned with either party. Each issue is then voted

on individually, and the outcome of the vote will be in agreement with the position

of either Party R or Party L, based on the outcome of majority rule voting.

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_4,
# Springer-Verlag Berlin Heidelberg 2011
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We are interested in the probability that the majority rule voting results on the m
different individual issues produce exactly k voting outcomes that are in agreement

with the positions of the MP. A perfectly stable outcome of complete agreement

occurs when the position of the MP is the majority rule winner for every issue.

An extremely paradoxical outcome occurs when there is complete disagreement

between voting outcomes on issues and the positions of the MP, which represents

an occurrence of a Strict Ostrogorski Paradox. A Weak Ostrogorski Paradox occurs

if a majority of voters are aligned with one of the parties, while the other party has a

majority of election outcomes on issues that are in agreement with its positions on

the issues.

The general problem of such disagreement was originally presented in

Ostrogorski (1902) and it was also discussed in Daudt and Rae (1976) and in

Deb (1976). Deb and Kelsey (1987) show that the conditions that are necessary for

Ostrogorski’s Paradox to exist are similar to, but different than the conditions that

are needed for Condorcet’s Paradox to exist. Laffond and Laine (2006) consider

restrictions on voters’ preferences that preclude the possible existence of an occur-

rence of Ostrogorski’s Paradox.

It would be very unrealistic to assume that complete agreement could be an

expected outcome in such situations, but we would also hope to find that an

outcome of complete disagreement in the form of a Strict Ostrogorski Paradox

should be very unlikely. Our objective is to develop representations for the prob-

abilities that various levels of agreement, between these two extremes, will be

observed. This effort will focus on the limiting case of voters as n ! 1, following

work in Gehrlein and Merlin (2009a). It is assumed throughout that voters form

their preferences on each of the issues independently of the preferences of other

voters.

4.1.1.1 Ostrogorski’s Paradox: The Case of Two Issues

When there are only two issues that are being considered, there are four possible

sets of issue agreements that each voter might have, as listed in Fig. 4.1.

The ti entries in Fig. 4.1 indicate the probability that a randomly selected voter

will have the associated party agreements on the issues. For example, there is a

probability t2 that this randomly selected voter will agree with the position of Party

R on Issue 1, while agreeing with the position of Party L on Issue 2. There is a

resulting tie when determining party alignment for such a voter, so no designation

of party alignment would be made in this case. It follows that
P4

i¼1 ti ¼ 1.

t
1

t
2

t
3

t
4

Issue 1 R
R
R

Issue 2 
Alignment 

R
R
L

L
L
L
L- -

Fig. 4.1 Feasible voter

preferences for sequential

elections on two issues
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We begin by developing a representation for the probability of complete agree-

ment, such that the positions that are held by the MP win the majority rule vote for

both issues. This starts by defining three discrete variables that are linked with the

party agreements on issues for a randomly selected jth voter:

Xj
1 ¼ þ1 : t1 þ t2 Xj

2 ¼ þ1 : t1 þ t3 Xj
3 ¼ þ1 : t1

�1 : t3 þ t4 �1 : t2 þ t4 0 : t2 þ t3

�1 : t4 (4.1)

Given the definitions of the ti probabilities with the voter party agreements on

issues from Fig. 4.1, Xj
i will take a value of þ1 (�1) when the jth voter has a

preference that is in agreement with the position of Party R (L) on the ith issue, for

i ¼ 1, 2. The outcome of majority rule voting on Issue i is then in agreement with

the position of Party R, if
Pn

j¼1 X
j
i > 0, or Xi > 0, or Xi

ffiffiffi
n

p
> 0 for i ¼ 1, 2.

Variable Xj
3 measures the contribution that the party alignment of the jth voter

makes toward Party R being the MP. For example, this randomly selected voter will

contribute to Party R being the MP with probability t1. With probability t2 this voter
will have neither a positive nor a negative contribution for Party R being the MP.

Party R will be the MP if
Pn

j¼1 X
j
3 > 0, or X3 > 0, or X3

ffiffiffi
n

p
> 0.

Complete agreement exists, with the positions of Party R being the majority

rule winner on both issues while Party R is also the MP, whenever Xi
ffiffiffi
n

p
> 0 for

i ¼ 1, 2, 3. The process of obtaining a representation for the probability that this

outcome is observed begins with the determination of the expected values, E Xj
i

� �
,

of the variables:

E Xj
1

� �
¼ þ1t1 þ 1t2 � 1t3 � 1t4

E Xj
2

� �
¼ þ1t1 � 1t2 þ 1t3 � 1t4

E Xj
3

� �
¼ þ1t1 þ 0t2 � 0t3 � 1t4: ð4:2Þ

Let b denote the likelihood that there is complete agreement between a randomly

selected voter’s issue agreements and the position of the same party on every issue,

with b ¼ t1 þ t4. If we assume a neutrality or parity between Parties R and L,
t1 ¼ t4 ¼ b=2 and t2 ¼ t3 ¼ 1� bð Þ=2. The special case for which b ¼ 1=2 leads

to the condition of IC in which there is an equal probability for all ti terms. This

parity assumption leads to E Xj
i

� �
¼ E Xi

� � ¼ E Xi
ffiffiffi
n

p� � ¼ 0 for each i ¼ 1, 2, 3 in

(4.2), and the impact of this assumption will be discussed in detail later.

It now follows directly from previous discussion that the probability that the

positions of Party R will be the majority rule winner on both issues, while Party R
is also the MP is equivalent to the joint probability that Xi

ffiffiffi
n

p
>E Xi

ffiffiffi
n

p� �
for i ¼ 1,

2, 3. Voters form their preferences on issues independently of other voters, and as

n ! 1 the Central Limit Theorem requires that the joint distribution of the Xi
ffiffiffi
n

p
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variables is multivariate normal. The probability that any variable takes on a

specific value, including its expected value, in a continuous probability distribution

is zero, so in the limiting case as n ! 1 the probability of complete agreement for

Party R is given by the joint multivariate normal probability that Xi
ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for i ¼ 1, 2, 3. This describes a three-variate normal positive orthant probability,

and we continue to find the correlation matrix for this limiting distribution. The

correlation terms between these variables are the same as the associated correla-

tions between the original Xj
i variables.

Based on the definitions for the Xj
i variables in (4.1), E Xj2

i

� �
¼ 1 for i¼ 1, 2 and

E Xj2

3

� �
¼ b. Since we have E Xj

i

� �
¼ 0 for i¼ 1, 2, 3, the correlation, Cor Xj

i;X
j
k

� �
,

between variables Xj
i and Xj

k follows from the development that led to (1.17) as

Cor Xj
i;X

j
k

� �
¼

E Xj
i X

j
k

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Xj2

i

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Xj2

k

� �r : (4.3)

This requires a determination of the E Xj
i X

j
k

� �
terms, with:

E Xj
1X

j
2

� �
¼ þ1t1 � 1t2 � 1t3 þ 1t4 ¼ 2b� 1

E Xj
1X

j
3

� �
¼ þ1t1 þ 0t2 þ 0t3 þ 1t4 ¼ b

E Xj
2X

j
3

� �
¼ þ1t1 þ 0t2 þ 0t3 þ 1t4 ¼ b: ð4:4Þ

The limiting probability as n ! 1 that the positions of Party R will be the

majority rule winner on both issues, while Party R is also the MP is equal to the

three-variate normal positive orthant probability F3 R1
� �

with correlation matrix

R1, where

R1 ¼
1 2b� 1

ffiffiffi
b

p
� 1

ffiffiffi
b

p
� � 1

2
4

3
5: (4.5)

With the assumption of neutrality between Parties R and L, symmetry arguments

can then be used to obtain the limiting probability, P1
MP 2; 2; bð Þ, of having complete

agreement between the MP and the majority rule winners for two issues from the

relationship P1
MP 2; 2; bð Þ ¼ 2F3 R1

� �
. Since each correlation term in R1 increases as

b increases, a result from Slepian (1962) applies and P1
MP 2; 2; bð Þ does not decrease

as b increases. This leads to the intuitively appealing result that the probability that
complete agreement is observed, with a corresponding decrease in the probability

that some form of Ostrogorski’s Paradox will occur, increases as the degree of

complete voter agreement with one party’s positions increases. This observation is
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valid despite the neutrality assumption, which effectively causes an increased

degree of polarization among voters’ preferences as b increases.

A closed form representation for P1
MP 2; 2; bð Þ is obtained from (4.5) by using the

three-variate extension of Sheppard’s Theorem of Median Dichotomy (Johnson

and Kotz 1972, p. 92) to obtain a representation for F3 R1
� �

that is then used with

P1
MP 2; 2; bð Þ ¼ 2F3 R1

� �
, and

P1
MP 2; 2; bð Þ ¼ 1

4
þ 1

2p
Sin�1 2b� 1ð Þ þ 1

p
Sin�1

ffiffiffi
b

p� �
: (4.6)

Exact values can be obtained for some special cases from (4.6): P1
MP 2; 2; 0ð Þ ¼ 0,

P1
MP 2; 2; 1ð Þ ¼ 1, and P1

MP 2; 2; 1=4ð Þ ¼ 1=3. Computed values of P1
MP 2; 2; bð Þ are

listed in Table 4.1 for each b ¼ 0.00(0.10)1.00 that were obtained from (4.6).

The results in Table 4.1 clearly show that the probability of complete agreement

increases significantly as b increases for the case of two issues. The entry for

P1
MP 2; 2; 0:50ð Þ ¼ 0:5000 corresponds to the situation with IC, which is indicative

of a population of voters that does not have any significant degree of consistency of

agreement with parties. Thus, a society with any relatively coherent degree of party

agreement, as measured by b, can be expected to have complete agreement between

the MP and the majority rule winners for both issues with a relatively high

probability for the case of two issues.

It is very easy to obtain a representation for the probability, Pn
MP 2; 0; bð Þ, that a

Strict Ostrogorski Paradox occurs for the general case of n voters with two issues

for any value of b as a result of Theorem 4.1.

Theorem 4.1 Pn
MP 2; 0; bð Þ ¼ 0 for all 0 � b � 1.

Proof Let ni for i ¼ 1,2,3,4 denote the number of voters with the associated

combination of agreements with party positions in Fig. 4.1. If Party R is the MP,

n1 > n4: (4.7)

Table 4.1 Computed values of P1
MP 2; 2; bð Þ and P1

MP 2; 1; bð Þ
b P1

MP 2; 2; bð Þ P1
MP 2; 1; bð Þ

0.00 0.0000 1.0000

0.10 0.2048 0.7952

0.20 0.2952 0.7048

0.30 0.3690 0.6310

0.40 0.4359 0.5641

0.50 0.5000 0.5000

0.60 0.5641 0.4359

0.70 0.6310 0.3690

0.80 0.7048 0.2952

0.90 0.7952 0.2048

1.00 1.0000 0.0000

4.1 Choice Set Variance Paradoxes 127



If majority rule voting on Issue 1 leads to an outcome that is in agreement with

the position of Party L

n3 þ n4 > n1 þ n2: (4.8)

If majority rule voting on Issue 2 leads to an outcome that is in agreement with

the position of Party L

n2 þ n4 > n1 þ n3: (4.9)

The addition of the inequalities in (4.8) and (4.9) requires that n4 > n1, which
contradicts (4.7). □

Therefore, a Strict Ostrogorski Paradox cannot be observed when m¼ 2, follow-

ing results obtained previously in Corollary 1 fromDeb and Kelsey (1987), and this

result can be used to further simplify the representation for P1
MP 2; 2; bð Þ in (4.6).

Begin by considering the probability that the issue position of Party R wins by

majority rule for both issues, while Party L is the MP. This probability can be

obtained by reversing the signs in the variable definition of Xj
3 in (4.1). The limiting

probability as n ! 1 for this outcome will then be a three-variate normal positive

orthant probability with correlation matrix S1 that is obtained from R1 by reversing

the signs of all correlation terms involving variable Xj
3. Sheppard’s Theorem can be

used again to obtain a representation for F3 S1
� �

that is then used with

P1
MP 2; 0; bð Þ ¼ 2F3 S1

� �
and Theorem 4.1 to obtain

P1
MP 2; 0; bð Þ ¼ 1

4
þ 1

2p
Sin�1 2b� 1ð Þ � 1

p
Sin�1

ffiffiffi
b

p� �
¼ 0: (4.10)

By combining the results of (4.6) and (4.10), we obtain

P1
MP 2; 2; bð Þ ¼ 1

2
þ 1

p
Sin�1 2b� 1ð Þ: (4.11)

A representation for P1
MP 2; 1; bð Þ follows from using Theorem 4.1 and (4.11)

with the fact that
P2

i¼0 P
1
MP 2; i; bð Þ ¼ 1 to obtain

P1
MP 2; 1; bð Þ ¼ 1

2
� 1

p
Sin�1 2b� 1ð Þ: (4.12)

It follows directly from (4.11) and (4.12) that P1
MP 2; 2; bð Þ ¼ P1

MP 2; 1; 1� bð Þ,
as shown in Table 4.1.

4.1.1.2 Ostrogorski’s Paradox: The Case of Three Issues

When attention is focused on the case of three issues, the problem becomes

somewhat more complex since there are eight possible combinations of voter

agreements with party positions on issues that must be considered, as shown in
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Fig. 4.2. However, there is also some simplification since there can not be any ties

in the determination of voter alignment when m is odd.

The same general procedure that was used above for two issues is employed

here, and the probability that a randomly selected voter is in complete agreement

with the positions of Party R (L) is q1ðq8Þ in Fig. 4.2, with a ¼ q1 þ q8. Such voters
can be viewed as staunch supporters of one party’s positions, and there is greater

degree of complete voter agreement with party positions as a increases. Continuing
with the party parity assumption we require q1 ¼ q8 ¼ a=2, to suggest that the

preferences of the voters will also reflect an increasing degree of polarization as a
increases. The remaining six possible combinations of party agreement show less

than complete agreement with issue positions of one party, with agreement on two

issues and disagreement on one issue. These preferences would reflect more

moderate voters. By going back to the party parity assumption, it is assumed that

qi ¼ 1� að Þ=6 for 2 � i � 7. The special case with a ¼ 0.25 leads to the equally

likely situation of IC in which qi ¼ 1=8 for each 1 � i � 8.

The Case of Complete Agreement on Three Issues

The same procedure that was used for the case of two issues is extended here to

define the limit probability as n ! 1 that Party R is both the MP and the party that

has its position win by majority rule on all three issues. Four variables are defined to

account for each of these events. Variable Yj
i is used to require that majority rule

selects the position of Party R for Issue i if Yi > 0 for each i ¼ 1, 2, 3. Variable Yj
4

requires that Party R is the MP if Y4 > 0. The Central Limit Theorem is applied as

n ! 1, and this limit probability is then obtained as a four-variate normal positive

orthant probability F4 R2
� �

that Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i ¼ 1, 2, 3, 4. After

performing the necessary algebraic calculation, the correlation matrix R2 is

obtained as

R2 ¼

1
4a� 1

3

4a� 1

3

2aþ 1

3

� 1
4a� 1

3

2aþ 1

3

� � 1
2aþ 1

3
� � � 1

2
666666664

3
777777775
: (4.13)

q
1

q
3

q
5

q
8

q
7

q
6

q
4

q
2

Issue 1 R R R R L L L L
Issue 2 R R L L R R L L
Issue 3 R L R L R L R L
Alignment R R R L R L L L

Fig. 4.2 Feasible voter party agreements for sequential elections on three issues
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The limiting probability of having complete agreement on three issues with a

given a is denoted as P1
MP 3; 3; að Þ, and a representation for this probability is

obtained from the multivariate normal positive orthant probability F4 R2
� �

. Since

there are two possible parties that could be the MP, the imposed neutrality toward

candidates leads to P1
MP 3; 3; að Þ ¼ 2F4 R2

� �
, and some results follow immediately.

Since all correlation terms in R2 increase as a increases, the previously mentioned

result from Slepian (1962) requires that P1
MP 3; 3; að Þ does not decrease as a

increases. It can therefore be concluded that an increased degree of voters’ com-

plete party agreement with party positions on issues, and the associated polarization

that neutrality towards parties implies, generally leads to an increase in the proba-

bility that there will be complete agreement, as measured by P1
MP 3; 3; að Þ.

The correlation matrix R2 also fits the special case for four-variate normal

positive orthant probabilities in Gehrlein (1979), which leads to a representation

for P1
MP 3; 3; að Þ with a given value of a as

P1
MP 3; 3; að Þ ¼ 1

8
þ 3

4p
Sin�1 2aþ 1

3

� �
þ Sin�1 4a� 1

3

� �	 


þ 3

2p2

ð2aþ1
3

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 4a� 1� 3z2

4aþ 2� 6z2

� �
dz: (4.14)

An exact result can be obtained from direct integration for the special case with

a ¼ 1 in (4.14), leading to P1
MP 3; 3; 1ð Þ ¼ 1. Table 4.2 shows computed vales of

P1
MP 3; 3; að Þ for each value of a ¼ 0.00(0.10)1.00 that were obtained by numerical

integration from (4.14). The computed value for a¼ 0.25 is also included since this

corresponds to the condition of IC.

Table 4.2 Computed values of P1
MP 3; 3; að Þ, P1

MP 3; 2; að Þ, P1
MP 3; 1; að Þ and P1

MP 3; 0; að Þ
a P1

MP 3; 3; að Þ P1
MP 3; 2; að Þ P1

MP 3; 1; að Þ P1
MP 3; 0; að Þ

0.00 0.0877 0.6491 0.2632 0.0000

0.10 0.1499 0.5971 0.2490 0.0040

0.20 0.2097 0.5527 0.2291 0.0085

0.25 0.2396 0.5312 0.2187 0.0104

0.30 0.2697 0.5098 0.2083 0.0121

0.40 0.3314 0.4665 0.1873 0.0148

0.50 0.3959 0.4215 0.1662 0.0164

0.60 0.4648 0.3735 0.1446 0.0170

0.70 0.5407 0.3207 0.1220 0.0166

0.80 0.6282 0.2598 0.0971 0.0149

0.90 0.7392 0.1823 0.0671 0.0114

1.00 1.0000 0.0000 0.0000 0.0000
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A Strict Ostrogorski Paradox occurs when the simple majority voting outcomes

on all three issues agree with the position of Party R, with Yi
ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for all

i ¼ 1, 2, 3, and Party L is the MP with Y4

ffiffiffi
n

p � E Y4

ffiffiffi
n

p� �
. A representation for this

probability, P1
MP 3; 0; að Þ, can be obtained quite easily by replacing variable Yj

4

with � Yj
4 in our arguments. This effectively negates all correlation terms that

involve variable Yj
4 in R2, which ultimately leads to

P1
MP 3; 0; að Þ ¼ 1

8
� 3

4p
Sin�1 2aþ 1

3

� �
� Sin�1 4a� 1

3

� �	 


� 3

2p2

ð2aþ1
3

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 4a� 1� 3z2

4aþ 2� 6z2

� �
dz:

(4.15)

A precise solution can be obtained for the special case of a ¼ 1 in (4.15) by

using direct integration, with P1
MP 3; 0; 1ð Þ ¼ 0. Computed values of P1

MP 3; 0; að Þ are
listed in Table 4.2 for each value of a ¼ 0.00(0.10)1.00 that were obtained from

numerical integration from (4.15), along with the value for a ¼ 0.25. These results

indicate that the probability of observing a Strict Ostrogorski Paradox is very small

over the range of all possible values of a.
An alternative representation for P1

MP 3; 0; að Þ is found in Gehrlein and Merlin

(2009a) by using a different approach to the problem that follows Merlin and Tataru

(1997), Saari and Tataru (1999) and Merlin et al. (2000, 2002), with

PA1
MP 3; 0; að Þ ¼ 3

2p2

ða

0

2Cos�1
ffiffiffiffiffiffiffi
2tþ1
8tþ1

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2t� 4t2

p �
Cos�1 tþ1

2tþ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� t� t2

p
8<
:

9=
;dt: (4.16)

This particular representation for P1
MP 3; 0; að Þ is useful, since it can be used to

find that the maximum value exists at P1
MP 3; 0; 0:610ð Þ � 0:0170, which is not

equivalent to the IC scenario.

The Case of Partial Agreement on Three Issues

Party R will be the MP and Issue 1 will have the only majority rule outcome that

is in disagreement with the position of Party R if both Y1

ffiffiffi
n

p � E Y1
ffiffiffi
n

p� �
and

Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for each i ¼ 2, 3, 4, which is equivalent to the joint probability

that Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i ¼ 2, 3, 4 minus the probability that Yi

ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i¼ 1, 2, 3, 4. The first probability can be obtained directly from the three-variate

extension of Sheppard’s Theorem and the second is F4 R2
� �

. Moreover, there are

three issues that could be the single issue that is not in agreement with the MP and
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there are two parties that could be the MP. After algebraic reduction we get a

representation for P1
MP 3; 2; að Þ as

P1
MP 3; 2; að Þ ¼ 3

8
þ 3

4p
Sin�1 2aþ 1

3

� �
� Sin�1 4a� 1

3

� �	 


� 9

2p2

ð2aþ1
3

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 4a� 1� 3z2

4aþ 2� 6z2

� �
dz:

(4.17)

An exact integral solution can be found for (4.17) for the special case of a ¼ 1,

with P1
MP 3; 2; 1ð Þ ¼ 0. Computed values of P1

MP 3; 2; að Þ are listed in Table 4.2 for

each value of a ¼ 0.00(0.10)1.00 that were obtained from numerical integration

from (4.17), along with the value for a ¼ 0.25.

The only remaining representation for P1
MP 3; 1; að Þ can then be obtained by using

the identity relation
P3

i¼0 P
1
PM 3; i; að Þ ¼ 1 with the representations from (4.14),

(4.15) and (4.17), with

P1
MP 3; 1; að Þ ¼ 3

8
� 3

4p
Sin�1 2aþ 1

3

� �
þ Sin�1 4a� 1

3

� �	 


þ 9

2p2

ð2aþ1
3

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 4a� 1� 3z2

4aþ 2� 6z2

� �
dz:

(4.18)

An exact integral solution can be found for P1
MP 3; 1; að Þ in the special case with

a¼ 1 in (4.18), with P1
MP 3; 1; 1ð Þ ¼ 0. Computed values of P1

MP 3; 1; að Þ are listed in
Table 4.2 for each a ¼ 0.00(0.10)1.00 that were obtained from numerical integra-

tion from (4.18), along with the value for a¼ 0.25. The results from Table 4.2 show

that both P1
MP 3; 1; að Þ and P1

MP 3; 2; að Þ consistently decrease as a increases, which

indicates a decrease in the probability that there is only partial agreement for the

case of three issues as a increases.

AWeak Ostrogorski Paradox is observed with a probability of as much as nearly

22% for the case of three issues in Table 4.2 for conditions in which the population

of voters is required to show at least as much mutual coherence in agreements with

party positions on issues as in the case of IC. The probability of observing a Weak

Ostrogorski Paradox obviously increases significantly over the probability of

observing the much more restrictive outcome that is required to observe a Strict

Ostrogorski Paradox.
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4.1.1.3 The Impact of the Party Parity Assumption

Some discussion is necessary to consider the impact that the party parity assump-

tion with q1 ¼ q8 ¼ a=2 and qi ¼ 1� að Þ=6 for 2 � i � 7 has on the resulting

probability estimates. The possible voters’ preferences on party positions on issues

that are shown in Fig. 4.2 indicate that this assumption is equivalent to saying that

the probability that any voter has any given set of preferences on issues is identical

to the probability that the voter has preferences on issues with all of the R and L
entries reversed. This leads to parity in voters’ preferences for issues positions for

Parties R and L, such that any randomly selected voter is equally likely to have an

overall party alignment with either party and the MP is equally likely to be either

party. Situations of this nature with a complete balance of outcome possibilities will

obviously tend to exaggerate the probability that paradoxical events are observed

for large electorates, since the introduction of any consistent bias that favors the

position of either party on the issues will typically lead to a very high probability

that complete agreement with the MP position on issues will be observed as

n ! 1. However, such a parity situation is not a completely implausible scenario,

despite the fact that it does represent an extreme case.

More extreme theoretical models can be developed to obtain significantly

greater probabilities that a Strict Ostrogorski’s Paradox is observed. For example,

consider a scenario in which the qi probabilities are obtained with the following

process. Randomly generate two variables, d and e, from some probability distribu-

tion on the interval 0; 1=8½ �, and let d (e) denote the propensity of voters to have

issue preferences that lean toward Party R (L) partisanship. That is, voters are

generally more disposed to favor the issue positions of Party R than Party L
whenever d > e. The qi probabilities for this partisanship model can then be

defined on the basis of d and e, as shown in Fig. 4.3.

The definitions from Fig. 4.3 lead to E Yj
i

� �
¼ 2 d� eð Þ for i ¼ 1,2,3 and

E Yj
4

� �
¼ 0. If we suppose without a loss of generality that d > e as n ! 1, then

Party R will be the majority rule winner on all issues with probability approaching

one. But, Party R will only be the MP with probability 0.5 with this model since

E Yj
4

� �
¼ 0, so there is a very significant chance that a Strict Ostrogorski Paradox

will be observed. However, the impact of this striking observation must be weighed

Issue 1 R R R R L L L L

Issue 2 R R L L R R L L

Issue 3 R L R L R L R L

Alignment R R R L R L L L

8
1 -d

8
1 +3d

8
1 -d

8
1 -d

8
1 -e

8
1 +3e

8
1 -e

8
1 -e

Fig. 4.3 Feasible voters’ preferences with a partisanship model
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against the relative degree of rationality that this partisanship model associates with

the electorate.

Suppose that d is significantly greater than e, so that we have a population of

voters that has a strong bias toward adopting the issue positions that are taken by

Party R. A randomly selected voter is very predictably most likely to have prefer-

ences that are in complete agreement with Party R on all issues, which is quite a

rational outcome for this model. Unfortunately, Fig. 4.3 then tells us that a ran-

domly selected voter is least likely to have agreement with Party R on two out of

three issues, suggesting an electorate that displays very odd behavior for a group

that is supposedly predisposed to be highly favorable toward the issue positions of

Party R. So, while it is possible to define such a theoretical model, it falls out of the

realm of plausibility.

In the same vein, it is possible to develop other models that give a significantly

large probability of observing a Strong Ostrogorski Paradox by making assump-

tions about different intensities of importance that parties might place on the

passage of the various issues that are being considered. While these models can

indeed fall into the realm of plausibility, they typically rely on the assumption that

the MP has some subset of issues for which it takes a position, but where it has a low

intensity of concern about the ultimate vote outcome. However, it would not be

particularly paradoxical or disconcerting for the MP if the minority party position

won on such issues that are considered to be of little importance.

The party parity model that we use in the current study attempts to give an upper

bound on the estimate of the paradox probabilities with a not implausible model that

assumes that the parties take issue positions with a real concern about the voting

outcome on the issues, without making any a priori assumptions that are intention-

ally creating a specific scenario that is tailored to produce the paradoxical outcome

that is being studied.

4.1.1.4 Ostrogorski’s Paradox: The General Case of m Issues

The analysis of this type of problem becomes significantly more complex as the

number of issues increases, since there are 2m possible combinations of voter

agreements with party positions. As a result, attention is restricted to the IC

assumption for all m � 4. We generalize the analysis that was presented above

for the two and three-issue cases, by defining m binary variables to determine if the

position of Party R is the winner by majority rule on each issue. Variable Zj
i takes a

value ofþ1 (�1) when the jth voter is in agreement with the position of Party R (L)
on the ith issue. The m variables are formally defined as

Zj
i ¼ þ1: For jth voter agreement with the position of Party R on Issue i

�1: For jth voter agreement with the position of Party L on Issue i: (4.19)

There are an equal number of voters’ party position agreement combinations in

the þ1 and �1 categories in the variable definitions for each issue in (4.19). Since
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each possible combination is equally likely, it follows that E Zj
i

� �
¼ 0 for each

1 � i � m. It is also obvious that E Zj2

i

� �
¼ 1 for all 1 � i � m.

To determine E Zj
iZ

j
k

� �
for 1 � i< k � m, partition the set of all possible com-

binations of voter agreements with party positions on issues into 2m�2 subsets of

cardinality four such that each of Zj
i and Zj

k can have values of þ1 or �1 in each

subset, while the party agreements on issues on the remaining m� 2 issues are

identical within each of the subsets. Obviously, E Zj
iZ

j
k

� �
¼ 0 within each of these

2m�2 subsets when each combination is assumed to be equally likely. The partition-

ing procedure also requires this to be true for each of the subsets, so it follows

directly that E Zj
iZ

j
k

� �
¼ 0 over the entire set of all possible combinations of voter

agreements with party positions. The correlation between variables Zj
i and Zj

k is

denoted as oi;k, and the fact that E Zj
i

� �
¼ 0 for all 1 � i � m coupled with earlier

discussion leads to the observation that oi;k ¼ 0 for all 1 � i< k � m.
Variable Zj

mþ1 denotes the contribution that the party alignment of the jth voter

makes toward Party R being the MP.

Zj
mþ1 ¼ þ1 : If jth voter is aligned with Party R

0 : If jth has no party alignment

�1 : If jth voter is aligned with Party L (4.20)

Each possible combination of a voter’s party agreements on issues can be paired

with the equally likely combination in which all of the Party R and L positions on

issues are interchanged. Either both members of this pair do not have a party

alignment, or one is aligned with Party R while the other is aligned with Party L.

It follows directly that E Zj
mþ1

� �
¼ 0. If m is odd, there cannot be a tie for party

alignment, so it must be true that

E Zj 2
mþ1

� �
¼ 1; for odd m: (4.21)

If m is even, there are Cm
m=2 different combinations of possible voter agreements

on the issues for which a voter is not aligned with any party, with Zj
mþ1 ¼ 0 in

(4.20). Each possible combination has an equally likely probability of 1=2m for a

randomly selected voter, so

E Zj 2
mþ1

� �
¼ 2m � Cm

m=2

2m
; for even m: (4.22)
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To obtain E Zj
hZ

j
mþ1

� �
, we consider the voters’ party agreement on Issue h in the

2m different possible combinations of voter agreements with party positions. Half

of these possible combinations have an agreement with Party R for Issue h. Denote
this subset as S(R). There are Cm�1

i different combinations of voter agreements on

the remaining m� 1 party positions for issues in this subset that will have exactly

i issues in agreement with the position of Party L, and Party R will be the MP if

0 � i<m=2. The total number of combinations in S Rð Þ for which Party R is the MP

is therefore given by #S Rð Þ, with

#S Rð Þ ¼
Xm�1ð Þ=2

i¼0

Cm�1
i ; for odd m (4.23)

#S Rð Þ ¼
Xm�2ð Þ=2

i¼0

Cm�1
i ; for even m: (4.24)

The other half of the possible combinations of voter agreements with party

positions on issues will have an agreement with Party L on Issue h, and we denote

this subset as S Lð Þ. There are Cm�1
i combinations that have exactly i issues in

agreement with the position of Party L in the remaining m� 1 issues, and each such

combination will have Party R as the MP if 0 � i< m� 2ð Þ=2. The total number of

combinations in S Lð Þ for which Party R is the MP is therefore given by#S Lð Þ, with

#S Lð Þ ¼
Xm�3ð Þ=2

i¼0

Cm�1
i ; for odd m (4.25)

#S Lð Þ ¼
Xm�4ð Þ=2

i¼0

Cm�1
i ; for even m: (4.26)

The value of variable Zj
h will be þ1 �1½ � for each combination of possible voter

agreements in S Rð Þ S Lð Þ½ � and each possible combination has a probability of 1=2m

of being observed. With Party R being the MP in both #S Rð Þ and #S Lð Þ, the
expected value E Zj

hZ
j
mþ1

� �
is obtained from

E Zj
hZ

j
mþ1

� �
¼ þ1ð Þ#S Rð Þ þ �1ð Þ#S Lð Þ½ �=2m: (4.27)

The correlation between Zj
h and Zj

mþ1 for all 1 � h � m follows the definition in

(4.3) in this case, and all of the above leads to

oh;mþ1 ¼
Cm�1
ðm�1Þ=2
2m�1

; for all 1 � h � m ðoddÞ (4.28)
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oh;mþ1 ¼
Cm�1
ðm�2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�2ð2m � Cm
m=2Þ

q ; for all 1 � h � m ðevenÞ: (4.29)

LetWmþ1 with theseoi;j components denote the correlation matrix for the mþ 1

variables that are defined in (4.19) and (4.20). TheWmþ1 matrices that are obtained

from (4.28) and (4.29) verify results for the cases of two, three and four issues with

IC in Gehrlein and Merlin (2009a). Given the neutrality of the IC assumption

toward the two parties, the probability of complete agreement between the MP,

which could be Party R or L, and the majority rule winning party position on all m
issues is given by P1

MP m;m; ICð Þ ¼ 2Fmþ1 Wmþ1ð Þ.

The General Case of m Issues: Partial Agreement

Suppose that we are interested in the probability that there is nearly complete

agreement, in that only Issue 1 has a majority rule outcome for a party position

that is in disagreement with the MP. This would be determined by finding the

resulting correlation matrix W1
mþ1 where the signs of the variable values for Zj

1

are reversed, which would reverse the sign on all correlation terms in Wmþ1

that involve Zj
1. As a result, it is still true that o1

h;k ¼ oh;k ¼ 0 for all

1 � h< k � m and o1
g;mþ1 ¼ og;mþ1 for all 1< g � m. The only difference

between W1
mþ1 and Wmþ1 is that o1

1;mþ1 ¼ �o1;mþ1. With the neutrality of IC

toward the two parties and the symmetry of IC with respect to the m possible issues

that could be the single issue in disagreement with the MP position, it follows that

P1
MP m;m� 1; ICð Þ ¼ 2mFmþ1 W1

mþ1

� �
.

This logic can easily be extended to the general case in which exactly k issues

have majority rule agreement with party positions that are in disagreement with the

MP positions. The correlation matrix that is used for the associated probability is

Wk
mþ1, which comes from Wmþ1 simply by negating the oi;mþ1 correlation values

for 1 � i � k. The same probability value will be obtained, regardless of which

specific set of k issues are selected to have their oi;mþ1 terms negated to obtain the

ok
i;mþ1 values. There are C

m
k different sets of k issues and there are two parties that

could be the MP, so P1
MP m;m� k; ICð Þ ¼ 2Cm

k Fmþ1 Wk
mþ1

� �
.

This observation can be extended to produce some interesting results.

Theorem 4.2 P1
MP m;m� k; ICð Þ � P1

MP m; k; ICð Þ, for 0 � k � m=2:

Proof Given the definition of Wk
mþ1, ok

i;j � ok�
i;j for all 1 � i< j � mþ 1

when k< k�. This observation is contingent upon the requirement that oi;mþ1 > 0,

which is true from (4.28) and (4.29). It then follows from Slepian (1962) that

F Wk
mþ1

� � � F Wk�
mþ1

� �
. Given that Cm

k ¼ Cm
m�k, 2C

m
k F Wk

mþ1

� � � 2Cm
m�kF Wm�k

mþ1

� �
if k � m=2: □
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Theorem 4.3 P1
MP m;m� k; ICð Þ þ P1

MP m; k; ICð Þ ¼ Cm
k 1=2ð Þm�1 for m � 2 with

0 � k � m.

Proof The limit probability P1
MP m;m� k; ICð Þ is obtained from the positive

orthant probability Fmþ1 Wk
mþ1

� �
, which is the probability that Party R is the

MP and that there are exactly k majority rule outcomes on issues that are in

disagreement with the position of Party R. This orthant probability can alterna-

tively be obtained as the difference in two probabilities. The first of these

probabilities represents the situation in which there are exactly k majority rule

outcomes on issues that are in disagreement with the position of Party R. This

situation makes no determination of the MP, and the associated correlation matrix

Zm on this joint distribution is obtained from Wk
mþ1 by removing all correlation

terms that are related to Zj
mþ1.

Given the definition of Wk
mþ1, all correlations in Zm are therefore equal to zero,

which gives Fm Zmð Þ ¼ 1=2ð Þm. We then subtract the second probability that there

are exactly k majority rule outcomes on issues that are in disagreement with the

position of Party R, when Party L is the MP. This second probability is obtained by

using the assumptions that led to the development of Fmþ1 Wk
mþ1

� �
, except that the

signs on variable Zj
mþ1 are reversed. This reverses the signs on all correlation terms

that involve Zj
mþ1 and leads to an associated positive orthant probability that is

equivalent to Fmþ1 Wm�k
mþ1

� �
.

As a result, we find that

Fmþ1 Wk
mþ1

� � ¼ 1=2ð Þm�Fmþ1 Wm�k
mþ1

� �

2Cm
k Fmþ1 Wk

mþ1

� � ¼ Cm
k 1=2ð Þm�1�2Cm

k Fmþ1 Wm�k
mþ1

� �

2Cm
k Fmþ1 Wk

mþ1

� �þ 2Cm
m�kFmþ1 Wm�k

mþ1

� � ¼ Cm
k 1=2ð Þm�1: □

A related observation follows directly from the proof of Theorem 4.3.

Corollary 4.1 P1
MP m;m=2; ICð Þ ¼ Cm

m=2 1=2ð Þm for all even m � 2.

The Case of Four Issues with IC

Some results can be obtained for the special case of four issues. Corollary 4.1

directly gives P1
MP 4; 2; ICð Þ ¼ 3=8. A representation can be obtained for the limit

probability P1
MP 4; 4; ICð Þ from the identity P1

MP 4; 4; ICð Þ ¼ 2F5 W5ð Þ. Representa-
tions for multivariate normal positive orthant probabilities become extremely

complex in cases with more than four variables, except for a small number cases

in which very restrictive conditions are placed on the associated correlation matrix

for the distribution.

A reasonable representation is obtainable for F5 W5ð Þ by appealing to Boole’s
Equation (Johnson and Kotz 1972, p. 52), which describes a procedure that can be
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used to express positive orthant probabilities with an odd number of dimensions in

terms of a linear combination of positive orthant probabilities with fewer dimen-

sions. With the correlation matrix W5, Boole’s Equation results in

F5 W5ð Þ ¼ 1

2

�
1� 5

1

2

� �
þ 6F2 Z2ð Þ þ 4F2 U2ð Þf g � 4F3 Z3ð Þ þ 6F3 U3ð Þf g

þ F4 Z4ð Þ þ 4F4 U4ð Þf g
�
: ð4:30Þ

Here, Zj denotes a correlation matrix for a distribution on j variables with all

correlation terms are equal to zero, as above. The correlation matrix Uj is defined

on j variables with terms ui;h ¼ 0 for all 1 � i< h< j and ui;j¼
ffiffiffiffi
9
40

q
for all

1 � i � j� 1. The term
ffiffiffiffi
9
40

q
comes from (4.29) with m equal to four.

Sheppard’s Theorem can be used to obtain simple representations for F2 U2ð Þ
and F3 U3ð Þ and F4 U4ð Þ is a special case of a representation in Gehrlein (1979).

After substitution and algebraic reduction, (4.30) reduces to

F5 W5ð Þ ¼ 1

32
þ 1

4p
Sin�1

ffiffiffiffiffi
9

40

r !
þ 3

2p2

ð
ffiffiffiffi
9
40

q

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 �z2

1� 2z2

� �
dz: (4.31)

Using the fact that P1
MP 4; 4; ICð Þ ¼ 2F5 W5ð Þ with (4.31) yields

P1
MP 4; 4; ICð Þ ¼ 1

16
þ 1

2p
Sin�1

ffiffiffiffiffi
9

40

r !

� 3

p2

ð
ffiffiffiffi
9
40

q

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz � 0:1245: (4.32)

Numerical integration is used to obtain the value of 0.1245 for P1
MP 4; 4; ICð Þ.

Theorem 4.3 can be used in conjunction with (4.32) to obtain a representation for

P1
MP 4; 0; ICð Þ,

P1
MP 4; 0; ICð Þ ¼ 1

16
� 1

2p
Sin�1

ffiffiffiffiffi
9

40

r !

þ 3

p2

ð
ffiffiffiffi
9
40

q

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz � 0:0005: (4.33)
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We turn attention to the situation in which there is only partial agreement with

four issues, by developing a representation for P1
MP 4; 3; ICð Þ. Issue 1 will have the

only majority rule outcome in disagreement with the issue position of the MP,

when Party R is the MP, when both X1

ffiffiffi
n

p � E X1

ffiffiffi
n

p� �
and Xi

ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for

each i ¼ 2, 3, 4, 5. This is equivalent to the probability that Xi
ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for

each i ¼ 2; 3; 4; 5 minus the probability that Xi
ffiffiffi
n

p � E Xi
ffiffiffi
n

p� �
for each i ¼ 1, 2, 3,

4, 5, which is F4 U4ð Þ � F5 W5ð Þ. There are four issues that could be the single issue
that is in disagreement with the issue position of the MP, and there are two parties

that could be the MP. The symmetry of IC with respect to issues and parties leads to

the conclusion that P1
MP 4; 3; ICð Þ ¼ 8 F4 U4ð Þ � F5 W5ð Þf g. After performing all

necessary substitution and algebraic reduction,

P1
MP 4; 3; ICð Þ ¼ 1

4
þ 1

p
Sin�1

ffiffiffiffiffi
9

40

r !

þ 6

p2

ð
ffiffiffiffi
9
40

q

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz � 0:4406: (4.34)

A representation for the remaining probability P1
MP 4; 1; ICð Þ can be obtained

from the identity
P4

i¼0 P
1
MP 4; i; ICð Þ ¼ 1, which leads to

P1
MP 4; 1; ICð Þ ¼ 1

4
� 1

p
Sin�1

ffiffiffiffiffi
9

40

r !

� 6

p2

ð
ffiffiffiffi
9
40

q

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz � 0:0594: ð4:35Þ

The possibility of the existence of a Strict Ostrogorski Paradox presents a very

interesting phenomenon that could lead to a very unsettling outcome in group

decision-making situations. This phenomenon cannot exist in two-issue voting

situations for any n as a result of Theorem 4.1. When three-issue situations are

considered, the results of Table 4.2 indicate that the probability of such an outcome

never reaches as much as a two percent for large electorates, regardless of the

propensity of voters to align their views with the standards of political parties. The

results of (4.33) indicate that the probability of observing a Strict Ostrogorski

Paradox in four-issue situations is nearly zero with IC for large electorates.

Given our discussion that the party parity assumption will exaggerate the proba-

bility that such paradoxical outcomes will be observed, we can conclude that it is

very unlikely that a Strict Ostrogorski Paradox, or any other extreme form of

Ostrogorski’s Paradox, would ever be observed in any real situation with large

electorates over the range of the number of issues that we have been considering.
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4.1.2 The Majority Paradox

The Majority Paradox is not based on the party alignments of the individual voters,

as specified with Ostrogorski’s Paradox. It is based instead on the determination of

an Overall Majority Party (OMP). There are a total of nm different party agreement

associations in the preferences of all of the individual voters over all of the issues,

and the OMP is that party that holds a majority of these nm party agreement

associations. A Weak Majority Paradox occurs if the issue position of the OMP is

then selected as the winner by majority rule for a minority of elections on issues.

There cannot be a Strict Majority Paradox, as in the case of Ostrogorski’s Paradox,
since any party with an associated position that loses by majority rule voting for

every issue obviously cannot be the OMP. These conditions are much less restric-

tive than those that were required to observe Ostrogorski’s Paradox, and the

objective here is to extend our analysis to consider the likelihood that the much

less restrictive Majority Paradox might be observed. Much of this work is taken

from Gehrlein and Merlin (2009b).

4.1.2.1 Majority Paradox: The Case of Two Issues

The basic notation here is to describe the probability that various levels of agree-

ment exist between the majority rule outcomes on issues and the OMP, just as we

used to describe comparable levels of agreement with the MP when Ostrogorski’s

Paradox was being analyzed. Let Pn
OMP 2; i; bð Þ denote the probability that exactly i

issues have majority rule outcomes that are in agreement with the positions of the

OMP for n voters with two issues. The same neutrality requirements are specified

for the probability that the possible party position agreements from Fig. 4.1 are

observed that were given in the development of Pn
MP 2; i; bð Þ.

Representations for Pn
OMP 2; i; bð Þ are quite simple to obtain as the result of an

observation from Gehrlein and Merlin (2009b).

Theorem 4.4 Pn
OMP 2; i; bð Þ ¼ Pn

MP 2; i; bð Þ for i ¼ 0; 1; 2.

Proof Let ni define the number of voters who have the ith combination of party

agreements in Fig. 4.1 for 1 � i � 4, with
P4

i¼1 ni ¼ n. Suppose that Party R is the

majority rule winner for both issues for any specified set of ni values, so that

n1 þ n2 > n3 þ n4 ½Party R wins on Issue 1� (4.36)

n1 þ n3 > n2 þ n4 ½Party R wins on Issue 2�: (4.37)

If we add (4.36) and (4.37), we find n1 > n4, so that Party R must be the OMP.

Since the n2 þ n3 voters do not have any party alignment because of a tie in party

position agreements, Party R must also have a majority of party alignments among
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the voters who have a party alignment if n1 > n4. This is true for all possible

combinations of ni values, regardless of the b value that is being considered, so it

follows directly that Pn
OMP 2; 2; bð Þ ¼ Pn

MP 2; 2; bð Þ.
It was noted above that a Strict Majority Paradox cannot exist for any m, and

a Strict Ostrogorski Paradox cannot exist for the case of two issues based on

Theorem 4.1, so Pn
OMP 2; 0; bð Þ ¼ Pn

MP 2; 0; bð Þ ¼ 0. Then, since it also follows that

from definitions that
P3

i¼0 P
n
OMP 2; i; bð Þ ¼P3

i¼0 P
n
MP 2; i; bð Þ ¼ 1, the observations

above lead to the conclusion that Pn
OMP 2; 1; bð Þ ¼ Pn

MP 2; 1; bð Þ. □

The main result of this theorem is that all of the conclusions that were drawn

regarding the connections between the probability that a voter will have complete

agreement with the positions of a single party, as measured by b, and the probability
of observing Ostrogorski’s Paradox also apply to the probability of observing the

Majority Paradox. Thus, a society with any relatively coherent degree of party

agreement can be expected have complete agreement between the OMP and the

majority rule winners for both issues with a relatively high probability for the case

of two issues.

4.1.2.2 Majority Paradox: The Case of Three Issues

The same procedure that was used to analyze Ostrogorski’s Paradox for the case of

three issues is employed here, with the eight possible combinations of voter

agreements with party positions on issues in Fig. 4.2. Start by defining variable

Yj
1 for the jth voter, to denote the voter’s party position agreement on Issue 1:

Yj
1 ¼ þ1: q1 þ q2 þ q3 þ q4

� 1: q5 þ q6 þ q7 þ q8: ð4:38Þ

Issue 1 then has a majority rule outcome that is in agreement with the position of

Party R if
Pn

j¼1 Y
j
1>0.

Issue 2 and Issue 3 have corresponding binary variables Yj
2 and Yj

3 with

Yj
2 ¼ þ1: q1 þ q2 þ q5 þ q6

� 1: q3 þ q4 þ q7 þ q8 ð4:39Þ

Yj
3 ¼ þ1: q1 þ q3 þ q5 þ q7

� 1: q2 þ q4 þ q6 þ q8: ð4:40Þ

A randomly selected voter will have complete agreement with the positions of

Party R (L) with probability q1ðq8Þ, with a ¼ q1 þ q8. With the further assumption
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of neutrality toward parties we get q1 ¼ q8 ¼ a=2. The remaining six rankings then

show less than complete agreement with issue positions of a party, with agreement

on two issues and disagreement on one issue. By going back to the assumption of

neutrality, it is assumed that qi ¼ 1� að Þ=6 for 2 � i � 7. As a result, E Yj
i

� �
¼ 0

and E Yj2

i

� �
¼ 1 for each i ¼ 1, 2, 3. All three issues will have majority rule

outcomes that are in agreement with the position of Party R with the joint probabil-

ity that Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for each i ¼ 1, 2, 3. This distribution is multivariate

normal as n ! 1 with correlation terms obtained from E Yj
iY

j
k

� �
, with

E Yj
1Y

j
2

� �
¼ q1 þ q2 � q3 � q4 � q5 � q6 þ q7 þ q8 ¼ 4a� 1ð Þ=3:

E Yj
1Y

j
3

� �
¼ q1 � q2 þ q3 � q4 � q5 þ q6 � q7 þ q8 ¼ 4a� 1ð Þ=3

E Yj
2Y

j
3

� �
¼ q1 � q2 � q3 þ q4 þ q5 � q6 � q7 þ q8 ¼ 4a� 1ð Þ=3: ð4:41Þ

These variable descriptions are identical to those of the first three variables that

were used during the development of the limiting representation for P1
MP 3; 3; að Þ in

(4.14), so the associated correlations between these three variables will not change

from their respective values in R2 in (4.13).

The Case of Complete Agreement on Three Issues

The difference now appears in the procedure for developing a representation for the

probability that there is complete agreement between the party positions that win by

majority rule on all issues and the issue positions of the OMP. The difference is

based in the definition of how the fourth discrete variable is defined so that Party R
will be the OMP. Variable Y0j

4 accounts for the marginal contribution that the jth
voter’s party agreements on issues will make toward Party R being the OMP, with

Y0j
4 ¼ þ3 : q1

þ1 : q2 þ q3 þ q5

�1 : q4 þ q6 þ q7:

�3 : q8 ð4:42Þ

For example, a randomly selected voter has three more agreements with Party R
issue positions than with Party L positions with probability q1, and one more

agreement with Party L issue positions than Party R with probability q4 þ q6 þ q7.
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Party R will be the OMP if
Pn

j¼1 Y
j
4 > 0. We also note that E Y0j

4

� �
¼ 0 and that

E Y0j2
4

� �
¼ 8aþ 1, so the correlation terms between the Yj

i and Y0j
4 variables are

obtained directly from E Yj
iY

0j
4

� �
, with

E Yj
1Y

0j
4

� �
¼ 3q1 þ q2 þ q3 � q4 � q5 þ q6 þ q7 þ 3q8 ¼ 8aþ 1ð Þ=3

E Yj
2Y

0j
4

� �
¼ 3q1 þ q2 � q3 þ q4 þ q5 � q6 þ q7 þ 3q8 ¼ 8aþ 1ð Þ=3

E Yj
3Y

0j
4

� �
¼ 3q1 � q2 þ q3 þ q4 þ q5 þ q6 � q7 þ 3q8 ¼ 8aþ 1ð Þ=3: ð4:43Þ

The limit probability as n ! 1 that Party R is the OMP and all three issues have

majority rule outcomes that are in agreement with the position of Party R is the

joint probability, F4 R02� �
, that Yi

ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
, for each i ¼ 1, 2, 3 and that

Y0
4

ffiffiffi
n

p � E Y0
4

ffiffiffi
n

p� �
. The correlation matrix R02 is developed following earlier

discussion, with

R02 ¼

1
4a� 1

3

4a� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aþ 1

9

r

� 1
4a� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aþ 1

9

r

� � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aþ 1

9

r

� � � 1

2
66666666664

3
77777777775
: (4.44)

The limit probability that there is complete agreement for the case of three

issues with a given a is denoted as P1
OMP 3; 3; að Þ, and it is obtained from the

identity P1
OMP 3; 3; að Þ ¼ 2F4 R02� �

. Since each correlation terms in R02 increase as a
increases, P1

OMP 3; 3; að Þ does not decrease as a increases. An increased degree of

voters’ complete agreement with the issue position of one party therefore leads

directly to an increase in the probability of having complete agreement of majority

rule outcomes on issue positions with the positions of the OMP. The specific form of

R02 in (4.44) does not directly lead to a simple closed form representation forF4 R02� �
,

but it is possible to obtain such a representation after making a few observations.

Let F4 Q02� �
denote the limit probability that Yi

ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i¼ 1, 2, 3 and

Y0
4

ffiffiffi
n

p � E Y
0
4

ffiffiffi
n

p� �
. These conditions require that issue positions of Party R are

adopted bymajority rule on all three issues, while Party L is the OMP. The correlation

matrix Q02 is obtained from R02 in (4.44) by negating the correlation terms that

involve Y0j
4. The assumed neutrality toward issues and our definitions lead to

P1
OMP 3; 3; að Þ þ P1

OMP 3; 0; að Þ ¼ 2 F4 R02� �þ F4 Q02� �� �
: (4.45)
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It also follows that F4 R02� �þ F4 Q02� �
is equivalent to the limiting joint proba-

bility that Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i ¼ 1,2,3. Denote this limiting joint probability

as F3 R3
� �

, where R3 is obtained from R02 in (4.44) by eliminating all correlation

terms that involve Y0j
4, so all remaining correlation terms in R3 are equal to

4a� 1ð Þ=3. The three variate extension of Sheppard’s Theorem can be applied to

obtain a closed form representation forF3 R3
� �

. We couple this with the fact that we

know that P1
OMP 3; 0; að Þ ¼ 0 for all a from previous discussion, and it follows that

(4.45) can then be reduced to

P1
OMP 3; 3; að Þ ¼ 1

4
þ 3

2p
Sin�1 4a� 1

3

� �
: (4.46)

Table 4.3 lists the computed vales of P1
OMP 3; 3; að Þ from (4.46) for each value of a¼

0.00(0.10)1.00. The computed value for a ¼ 0.25 is also included since this

corresponds to the condition of IC.

If the probability representations for P1
MP 3; 3; að Þ and P1

MP 3; 0; að Þ in (4.14) and

(4.15) respectively are summed, the result is identical to the probability representa-

tion for P1
OMP 3; 3; að Þ in (4.46), which leads to the observation that

P1
OMP 3; 3; að Þ ¼ P1

MP 3; 3; að Þ þ P1
MP 3; 0; að Þ: (4.47)

The probability of complete agreement is therefore much greater in the context of

agreement with the OMP than it is in the context of agreement with the MP.

The Case of Three Issues: Partial Agreement

Party R will be the OMP and Issue 1 will have the only majority rule outcome that

agrees with the position of Party L if Y1

ffiffiffi
n

p � E Y1

ffiffiffi
n

p� �
, Yi

ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for

Table 4.3 Computed values of P1
OMP 3; 3; að Þ, P1

OMP 3; 2; að Þ and P1
OMP 3; 1; að Þ

a P1
OMP 3; 3; að Þ P1

OMP 3; 2; að Þ P1
OMP 3; 1; að Þ

0.00 0.0877 0.6491 0.2632

0.10 0.1539 0.6350 0.2111

0.20 0.2181 0.6056 0.1763

0.25 0.2500 0.5877 0.1623

0.30 0.2819 0.5684 0.1498

0.40 0.3461 0.5259 0.1280

0.50 0.4123 0.4786 0.1091

0.60 0.4818 0.4263 0.0919

0.70 0.5572 0.3673 0.0754

0.80 0.6431 0.2983 0.0587

0.90 0.7506 0.2097 0.0397

1.00 1.0000 0.0000 0.0000
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i ¼ 2; 3 and Y0
4

ffiffiffi
n

p � E Y0
4

ffiffiffi
n

p� �
. This is equivalent to the joint probability that

Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i ¼ 2; 3 and Y 0

4

ffiffiffi
n

p � E Y 0
4

ffiffiffi
n

p� �
minus the probability that

Yi
ffiffiffi
n

p � E Yi
ffiffiffi
n

p� �
for i¼ 1,2,3 and Y0

4

ffiffiffi
n

p � E Y0
4

ffiffiffi
n

p� �
. The first probability can be

obtained directly from the three-variate extension of Sheppard’s Theorem and the

second probability is F4 R02� �
. In order to obtain a representation for P1

OMP 3; 2; að Þ,
we must also account for the fact that there are three issues that could be the single

issue that is in disagreement with the position of the OMP and for the fact that there

are two parties that could be the OMP. After using all of this with (4.46) and

algebraic reduction, the resulting representation for P1
OMP 3; 2; að Þ is given by

P1
OMP 3; 2; að Þ ¼ 3

p
Sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aþ 1

9

r !
� Sin�1 4a� 1

3

� �( )
: (4.48)

An exact solution can be found for the special case of a ¼ 1 in (4.48), with

P1
OMP 3; 2; 1ð Þ ¼ 0. Computed values of P1

OMP 3; 2; að Þ are listed in Table 4.3 for

each value of a ¼ 0.00(0.10)1.00 that were obtained from (4.48), along with the

value for a ¼ 0.25.

A representation for P1
OMP 3; 1; að Þ is obtained directly from the identity relation-

ship
P3

i¼0 P
1
OMP 3; i; að Þ ¼ 1. After using the representations in (4.46) and (4.48)

with P1
OMP 3; 0; að Þ ¼ 0, algebraic reduction leads to the representation

P1
OMP 3; 1; að Þ ¼ 3

4
� 3

p
Sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aþ 1

9

r !
þ 3

2p
Sin�1 4a� 1

3

� �
: (4.49)

An exact solution can be found for the special case of a ¼ 1 in (4.49), with

P1
OMP 3; 1; 1ð Þ ¼ 0. Computed values of P1

OMP 3; 1; að Þ are listed in Table 4.3 for

each a ¼ 0.00(0.10)1.00 from (4.49), along with the value for a ¼ 0.25.

4.1.2.3 Majority Paradox: The General Case of m Issues

The analysis of the three-issue case for the Majority Paradox was seen to follow the

analysis of the three-issue case for Ostrogorski’s Paradox very closely, and the

same is found to be true for the general case of m issues, where we restrict attention

to the IC scenario for m � 4. To start, m binary variables are defined to determine

if the position of Party R is the winner by majority rule on each issue. Variable Zj
i

will take a value of þ1 (�1) when the jth voter is in agreement with the position of

Party R (L) on the ith issue. The m variables are formally defined exactly as they

were in (4.19), with
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Zj
i ¼ þ1: For jth voter agreement with the position of Party R on Issue i

�1: For jth voter agreement with the position of Party L on Issue i:

(4.50)

The expected values and the correlations between these m variables remain the

same as in the development of representations for Ostrogorski’s Paradox, such that

E Zj
i

� �
¼ 0 and E Zj2

i

� �
¼ 1 for each 1 � i � m, along with Cor Zj

iZ
j
k

� �
¼ 0 for all

1 � i< k � m.
The analysis changes at this point with the introduction of variable Z0j

mþ1 that

denotes the incremental contribution that the party agreements of the jth voter make

toward Party R being the OMP, just as the variable Y0j
4 did in the case of three

issues. For the general case of m issues,

Z0j
mþ1 ¼ 2x� m:

where the jth voter agrees with the position of Party R on x issues: (4.51)

Since each possible combination of a voter’s party agreements on issues can be

paired with the equally likely combination in which the Party R and L positions are

interchanged, it follows that E Z0j
mþ1

� �
¼ 0. There are Cm

i different combinations of

possible voter agreements on the m issues for which a voter can agree with Party R
on exactly i different issues. Every possible combination has an equally likely

probability of 1=2ð Þm for a randomly selected voter, so E Z0j
mþ1

2
� �

is obtained from

E Z0j
mþ1

2
� �

¼
Xm
i¼0

Cm
i m� 2ið Þ2

2m
¼ m: (4.52)

To obtain the expected value E Zj
hZ

j
mþ1

� �
we consider the party agreement of

Issue h in the 2m different possible combinations of voter agreements with party

positions. Subset S Rð Þ of these possible combinations all have an agreement with

the position of Party R for Issue h, and we consider the total incremental contribu-

tion that the remaining m� 1 issue positions have, in combination with Issue h, on
Party R being the OMP. There are Cm�1

i different combinations of voter agreements

on party positions for the remaining m� 1 issues in this subset that will have

exactly i issues in agreement with the position of Party L, and each such combina-

tion would make an incremental contribution of m� 2i toward making Party R the

OMP. The total incremental contribution over the entire subset S Rð Þ is therefore
given by

Pm�1
i¼0 Cm�1

i m� 2ið Þ.
Subset S Lð Þ of the possible voter agreements with party positions on issues will

have an agreement with Party L on Issue h. There are Cm�1
i combinations that have

exactly i issues in agreement with the position of Party L in the remaining m� 1
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entries, and each such combination will give Party R an incremental contribution of

m� 2� 2i toward being the OMP. The total incremental contribution over the

entire subset S Lð Þ is therefore given by
Pm�1

i¼0 Cm�1
i m� 2� 2ið Þ.

The value of variable Zj
h will be þ1 �1½ � for each combination of possible voter

agreements in S Rð Þ S Lð Þ½ �, and since the contributions to Z0j
mþ1 are to make Party R

the OMP, the expected value E Zj
hZ

0j
mþ1

� �
is obtained from

E Z
j
hZ

0j
mþ1

� �
¼ þ1ð Þ

Xm�1

i¼0

Cm�1
i m�2ið Þþ �1ð Þ

X0
i

Cm�1
i m�2�2ið Þ

" #
=2m¼ 1: (4.53)

The correlation between Zj
h and Zj

mþ1 for all 1 � h � m follows the definition in

(4.3), and

nh;mþ1 ¼
ffiffiffiffi
1

m

r
for all 1 � h � m: (4.54)

Let Vmþ1 denote a correlation matrix for the mþ 1 variables that have just been

defined, with components denoted by vi;j. As noted in earlier discussion, vi;j ¼ 0 for

all 1 � i< j � m. The neutrality of the IC assumption toward the two parties that

could be the OMP, leads to the determination of a representation for the probability

of complete agreement between the OMP and the majority rule winning party

position on all m issues with P1
OMP m;m; ICð Þ ¼ 2Fmþ1 Vmþ1ð Þ.

The General Case of m Issues: Partial Agreement

Theorems 4.2 and 4.3 present some general results regarding relationships between

P1
MP m; k; ICð Þ representations. The proofs of these theorems were based on the fact

that correlation matrix Wmþ1 had the specific characteristics that oi;j ¼ 0 for all

1 � i< j � m and that oi;mþ1 is equal to the same positive constant from either

(4.28) if m is odd or (4.29) if m is even for all 1 � i � m. The same is true of

correlation matrix Vmþ1, except that ui;mþ1 is equal to the same positive constant

from (4.54) for all 1 � i � m. Thus, the observations from Theorems 4.2 and 4.3 are

also applicable in the case of the Majority Paradox.

Corollary 4.2 P1
OMP m;m� k; ICð Þ � P1

OMP m; k; ICð Þ; for 0 � k � m=2:

Corollary 4.3 P1
OMP m;m� k; ICð Þ þ P1

OMP m; k; ICð Þ ¼ Cm
k 1=2ð Þm�1 for m � 2:

Corollary 4.4 P1
OMP m;m=2; ICð Þ ¼ P1

MP m;m=2; ICð Þ ¼ Cm
m=2 1=2ð Þm, for all even

m � 2.

Corollary 4.3 can then be used with the observation that P1
OMP m; 0; ICð Þ ¼ 0 to

conclude that
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Corollary 4.5 P1
OMP m;m; ICð Þ ¼ 1=2ð Þm�1 for all m � 2.

The result of Corollary 4.5 can be used with Theorem 4.3 to generalize the

observation in (4.47) to the case of m issues with IC

Corollary 4.6 P1
OMP m;m; ICð Þ ¼ P1

MP m;m; ICð Þ þ P1
MP m; 0; ICð Þ for all m � 2.

The Case of Four Issues with IC

Some results follow directly for the case of four issues with the assumption of

IC. Corollary 4.5 gives the initial value P1
OMP 4; 4; ICð Þ ¼ 1=8, while Corollary 4.4

gives P1
OMP 4; 2; ICð Þ ¼ 3=8, and we know from previous discussion that

P1
OMP 4; 0; ICð Þ ¼ 0. In order to obtain a representation for limit probability

P1
OMP 4; 3; ICð Þ, we start by following the logic of earlier discussion to note that

F5 V1
5

� � ¼ F4 R4
� �� F5 V5ð Þ; (4.55)

where

R4 ¼
1 0 0 1

2

1 0 1
2

1 1
2

1

2
6664

3
7775: (4.56)

Here, correlation matrix R4 is obtained from V1
5 by removing all correlations

terms that are associated with Zj
1. The form of R4 fits a special case for obtaining

four-variate normal positive orthant probabilities in Gehrlein (1979), which gives

F4 R4
� �

as

F4 R4
� � ¼ 1

8
� 3

4p2

ð12
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz: (4.57)

By using Corollary 4.5 with P1
OMP 4; 4; ICð Þ ¼ 2F5 V5ð Þ, it directly follows that

F5 V5ð Þ ¼ 1=16. By using this with the results from (4.55) and (4.57), the identity

that P1
OMP 4; 3; ICð Þ ¼ 8F5 V1

5

� �
, ultimately leads to

P1
OMP 4; 3; ICð Þ ¼ 1

2
� 6

p2

ð12
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� z2

r
Sin�1 z2

1� 2z2

� �
dz � 0:4583: (4.58)
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The value of P1
OMP 4; 3; ICð Þ in (4.58) was obtained by numerical integration, and

this result can be used in conjunction with the result of Corollary 4.3 to obtain

P1
OMP 4; 1; ICð Þ � 0:0417.

While it is not possible to observe a Strict Majority Paradox, the possible

existence of a Weak Majority Paradox, in which a majority of the majority rule

outcomes on issues are in disagreement with the issue positions of the OMP still

presents the possibility of a very unsettling phenomenon that could lead to concerns

in group decision-making situations. When three-issue situations are considered,

the results of Table 4.3 indicate that the probability of such an outcome never

reaches a level that is as high as sixteen percent for large electorates, regardless of

the propensity of voters to have complete agreement with the issue positions of one

of the political parties for populations that are at least as mutually coherent as the

scenario specified by IC, with a ¼ 1=4. Results also indicate that the probability of

observing a Weak Majority Paradox in four-issue situations is less than five percent

under the IC scenario with large electorates, and it has been widely accepted that the

assumption of IC generally tends to exaggerate the likelihood that such paradoxical

outcomes will be observed. The results that have been obtained indicate that it is

relatively unlikely that any extreme form of the Majority Paradox would ever be

observed in real situations with large electorates of mutually coherent voters over

the range of the number of issues that is considered in this study.

4.2 Monotonicity Paradoxes

Monotonicity paradoxes were defined in Chap. 1 as representing situations in which

some reasonable definition has been established to determine which candidate

should be viewed as being the ‘best’ available candidate, and where a voting rule

has been selected and that voting rule is not monotonic. Monotonicity requires

consistency in election outcomes as voters’ preferences change, such that increased

support (decreased support) for a candidate in voters’ preferences should not be

detrimental (beneficial) to that candidate in the election outcome.

Four specific types of Monotonicity Paradoxes are defined for our analysis of

this topic:

l More is Less Paradox (MLP): The winner is ranked higher by some voters

(everything else remaining the same) and then becomes a loser.
l Less is More Paradox (LMP): A loser is ranked lower by some voters (every-

thing else remaining the same) and then becomes a winner.
l Positive Abstention Paradox (PAP): The preferences of some voters with a loser

ranked first are removed (or they abstain) and this loser then becomes a winner.
l Negative Abstention Paradox (NAP): The preferences of some voters with the

winner ranked last are removed (or they abstain) and the winner then becomes a

loser.
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With these definitions, MLP and LMP are fixed population paradoxes, while

PAP and NAP require the number of voters to vary due to removal or abstention.

The vulnerability of voting rules to exhibit these paradoxes has been analyzed in

the literature for various WSR runoff procedures: PER, NPER, and Borda Eli-
mination Rule (BER). Here, BER is defined as a two-stage voting rule with BR

being used in the first stage, following the definitions of PER and NPER. Let

PVR
X 3; n; IACð Þ denote the probability that a random voting situation could be

susceptible to exhibiting Paradox X, with X 2 MLP; LMP;PAP;NAPf g, under

voting rule VR in a three-candidate election with n voters and the assumption of

IAC. Lepelley et al. (1996) develop closed form representations for each of

PVR
MLP 3; n; IACð Þ and PVR

LMP 3; n; IACð Þ for PER and NPER.

4.2.1 Monotonicity Paradox Probabilities

A Monotonicity Paradox occurs according to our definition when either MLP or

LMP is observed, and the probability that a Monotonicity Paradox might be

observed in a random voting situation with voting rule VR under the IAC assump-

tion is denoted by PVR
Mon 3; n; IACð Þ. Lepelley et al. (1996) also obtain some limiting

representations as n ! 1 to show that:

PPER
Mon 3;1; IACð Þ ¼ 397

6912
(4.59)

PNPER
Mon 3;1; IACð Þ ¼ 151

1296
: (4.60)

A similar limiting representation has recently been obtained for BER by

Lepelley and Smaoui (2010) as:

PBER
Mon 3;1; IACð Þ ¼ 191

5184
: (4.61)

The limiting PVR
Mon 3;1; IACð Þ results from (4.59) through (4.61) are summarized

in Table 4.4.

It is clear from the results in Table 4.4 that NPER is much more susceptible to

exhibiting a Monotonicity Paradox than PER is for large electorates with the IAC

Table 4.4 Probability values for PVR
Mon 3;1; IACð Þ, PVR

NSP 3;1; IACð Þ and PVR
NSP 3;1; ICð Þ

VR PVR
Mon 3;1; IACð Þ PVR

NSP 3;1; IACð Þ PVR
NSP 3;1; ICð Þ

PER 0.0574 0.0408 0.0558

NPER 0.1165 0.0425 0.1623

BER 0.0368 0.0243 0.0502
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assumption. It then follows in turn that PER is more susceptible to exhibiting the

paradox than BER is.

4.2.2 No Show Paradox Probabilities

A No-Show Paradox occurs when a group of voters obtains a better result by

abstaining rather than voting. Let PVR
NSP 3; n; IACð Þ denote the probability that a

random voting situation is susceptible to the No Show Paradox with voting rule

VR for n voters with IAC. Both PAP and NAP represent special cases of a No Show

Paradox. Lepelley and Merlin (2001) prove that it is not possible to simultaneously

observe PAP and NAP in a voting situation for any WSR elimination voting rule

with three candidates. Furthermore, it is shown that PAP and NAP comprise all

possible cases in which voters might obtain a better outcome by abstaining when

there are three candidates. As a result, for any voting rule VR that is based on WSR

elimination:

Theorem 4.5 PVR
NSP 3; n; IACð Þ ¼ PVR

NAP 3; n; IACð Þ þ PVR
PAP 3; n; IACð Þ.

The same result is true for all assumptions, not just IAC.

The study also considers the vulnerability of PER, NPER and BER to several

monotonicity paradoxes, including PAP and NAP with both IC and IAC. These

probabilities were obtained by computer enumeration for small n, and exact limit-

ing probability representations as n ! 1 were obtained for PER and NPER with

IAC. The limiting values for the No Show Paradox are then obtained for IAC with

Theorem 4.5:

PPER
NSP 3;1; IACð Þ ¼ 47

1152
(4.62)

PNPER
NSP 3;1; IACð Þ ¼ 49

1152
: (4.63)

Wilson and Pritchard (2007) give limiting NAP and PAP probability representa-

tions for BER with IAC that can be used with Theorem 4.5 to obtain

PBER
NSP 3;1; IACð Þ ¼ 7

288
: (4.64)

The limiting PVR
NSP 3;1; IACð Þ results from (4.62) through (4.64) are summarized

in Table 4.4.

Representations for the limiting probabilities of PVR
NSP 3;1; ICð Þ are also obtained

in Lepelley and Merlin (2001) for each of PER, NPER and BER and the resulting

numerical values for these probabilities are summarized in Table 4.4. The calcu-

lated IAC probabilities for the No Show Paradox show a similar pattern to the
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Monotonicity Paradox results from above. There is a much weaker dominance of

PER over NPER with the No Show Paradox under IAC, and BER is less vulnerable

than both PER and NPER.

Another important observation is that the increased degree of dependence of

among voters’ preferences that is introduced with IAC significantly reduces the

probability of observing a No Show Paradox in comparison to the probabilities that

are observed with IC. On a related note, occurrences of a Monotonicity Paradox are

very often associated to the presence of a PMR cycle. Consequently, it can be

expected that the introduction of some degree of homogeneity in voter’s prefer-

ences would considerably reduce the vulnerability of WSR runoff systems to these

paradoxes.

Finally, it can be mentioned that Mbih et al. (2009) have recently investigated

the vulnerability of some Parliamentary Voting Rules to some specific forms of

Monotonicity Paradoxes. A comparison of the results that are obtained in that study

with the results that have just been observed here suggests that the occurrence of

Monotonicity Paradoxes with Parliamentary Voting Rules could be greater than

those that are observed with WSR runoff systems.

4.3 The Instability Paradox

The notion of the self-selectivity of voting rules is peripherally related to our general
topic, and it was first introduced into the literature by Koray (2000). It addresses

issues that are related to what might happen if voters were holding an election to

determine which voting rule they should use. For example, consider a group of

voters that is evaluating a set of voting rules that includes the use of PR, with the

goal of determining a winning voting rule that would then be implemented to make

decisions in the future. Different voting outcomes would then be obtained in the

future, depending upon the particular voting rule that is selected at this time for

future implementation. Any given voter’s preferences on these voting rules are

based upon the general properties that the voting rules possess, not on the specific

impact of any known election outcomes that each rule might have on the voter in the

future, so this study abandons the hypothesis of consequentialism. The voting

situation for this scenario therefore accumulates voter preference rankings on the

set of available voting rules. Suppose that it is somehow decided that the determi-

nation of the winning voting rule will be obtained with PR. Then PR is self-

selecting if PR is then chosen as the winner from the voting situation. It would be

somewhat paradoxical if a voting rule were to be selected for implementation if that

voting rule did not turn out to be self-selecting.

Diss and Merlin (2009) and Diss et al. (2009) perform analyses that are related to

the probability that voting rules are self-selecting. In particular, they consider the

set of three different voting rules: BR, PR and NPR. This triple of voting rules is

defined as being stable if at least one of the rules is self-selecting for any given

voting situation. We define the Instability Paradox as the outcome in which a voting
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situation exists such that none of voting rules in the triple is self-selecting. Voting

situations are not necessarily stable for this triple of voting rules, as seen in the

example voting situation on 27 voters in Fig. 4.4.

Based on this example voting situation, we see for example that ten voters view

NPR as their most preferred voting rule, with PR being their second most preferred.

If we use PR to select the winning voting rule, BR will win with 13 votes, compared

to four for PR and ten for NPR, so PR is not self-selecting. If we use NPR to select

the winner, PR will win with 22 votes, compared to 19 for NPR and 13 for BR, so

NPR is not self-selecting. Using the Borda weighting scheme with weights 3; 2; 1ð Þ
from (1.1), we obtain NPR as the winner, with BS NPRð Þ ¼ 56, BS PRð Þ ¼ 53 and

BS BRð Þ ¼ 53, so BR is not self-selecting.

When voters are equally likely to have any of the six possible preference

rankings for using BR, PR and NPR, we have the situation of IC. Diss and Merlin

(2009) use geometric procedures to obtain a probability estimate that the Instability

Paradox is observed under IC in the liming case of voters as n ! 1. The resulting

representation is quite complicated, but it leads to the result that the Instability

Paradox will be observed for this triple of voting rules with a surprisingly large

probability of 0.1551, when the hypothesis of consequentialism is not included in

the analysis.

Diss et al. (2009) then performs the same type of analysis with the assumption of

IAC as n ! 1, but simultaneously brings in the hypothesis of consequentialism.

Thus, voters rank voting rules based upon their preference for the winning outcome

that each of the voting rules will select in a specified voting situation. In doing this,

rules were established to deal with the case of ties in which more than one voting

rule would select the same outcome as the winner. The study goes on to find that the

probability of observing the Instability Paradox is dramatically reduced to 0.0183.

The introduction of the slight degree of dependence that IAC introduces among

voters’ preferences, along with the significant impact of having preferences on

voting rules that are reliant on the hypothesis of consequentialism, results in a

dramatic impact on the reduction of the possibility that the Instability Paradox will

be observed for this triple of voting rules.

4.4 Conclusion

Five different paradoxical outcomes of voting situations have been considered, to

develop an assessment of the probability that such election results might be so

extreme as to bring the electorate to question the viability of the results. Neither of

BR BR NPR PR
NPR PR PR NPR
PR NPR BR BR

ni   = 5 8 10 4

Fig. 4.4 An example voting situation that demonstrates the Instability Paradox
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the two Choice Set Variance Paradoxes (Ostrogorski’s Paradox and the Majority

Paradox) can ever be observed in their strict sense in the case of two issues.

Moreover, a Strict Majority Paradox cannot be observed for any number of issues.

The possibility of the existence of a Strict Ostrogorski Paradox presents a very

counterintuitive outcome in group decision-making situations. However, our results

indicate that the probability of observing this outcome is quite small for up to four

issues. This probability is found to be nearly zero with IC for large electorates with

four issues, and the results of Theorem 4.3 also indicate that this probability must

be very small for all m at all large. Moreover, the assumption of IC is generally

accepted as a condition that tends to exaggerate the likelihood that such paradoxi-

cal outcomes will be observed, which gives even further support to the conclusion

that it is very unlikely that a Strict Ostrogorski Paradox, or any extreme form of

Ostrogorski’s Paradox, would ever be observed in any real situation with large

electorates that showed any significant degree of group mutual coherence.

It is not possible ever to observe a Strict Majority Paradox, and similar conclu-

sions to those just reached for Ostrogorski’s Paradox are drawn regarding the

probability that any extreme form of the Majority Paradox would ever be observed

in real voting situations. This leads us back to the conclusions from Fishburn (1974a,

p. 537):

As might be expected, the general conclusion from these data is that the more extreme

forms of the paradoxes are exceedingly rare in practice.

Our analysis of Monotonicity Paradoxes (Monotonicity Paradox and the No

Show Paradox) obtains higher probability estimates of possible occurrence with

IC and IAC than those that are observed with the Choice Set Variance Paradoxes.

However, these paradox probabilities typically are still not very large. It is also

observed that the introduction of some degree of dependence among voters’ pre-

ferences with IAC does cause a decrease in the likelihood that a No Show Paradox

would be observed with PER, NPER and BER, when these probabilities were

compared to the results with the assumption of IC.

The analysis of the Instability Paradox also leads to a clear conclusion that the

addition of voter dependence and such natural considerations like the hypothesis

of consequentialism dramatically reduces the likelihood that such paradoxical

outcomes will ever be observed.
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Chapter 5

Condorcet Efficiency and Social Homogeneity

5.1 Introduction

There are many different aspects of election procedures that might be studied.

In general we might be concerned with the procedure by which an election will be

held, the fairness of the procedure toward candidates, and the consideration of how

well the procedure does at selecting the candidate who best reflects the preferences

of the voters. Fishburn (1983) presents a survey of research that deals with these

issues in some detail. The aspects of elections that are considered are: the nomina-

tion process, agenda formation, candidate strategy, voter psychology and strategy,

ballot forms and method of aggregation, evaluative aspects of aggregation, incen-

tive compatibility, costs and financing, and institutional effects. Richelson (1975,

1978a, b, 1979, 1980, 1981), Nurmi (1983) and Tideman (2006) all present analyses

that evaluate voting rules according to a number of different criteria, including

the Condorcet Criterion. Bordley (1983, 1985) presents simulation studies to eva-

luate voting rules on a number of criteria other than the Condorcet Criterion. There

are clearly many different criteria by which voting rules can be evaluated.

We have primarily been concerned with the form of the ballot and the procedure

by which the voter responses on the ballot are to be aggregated in order to determine

the winner, and we continue with a focus on the propensity of voting rules to meet

the Condorcet Criterion. The analysis of the likelihood that Condorcet’s Paradox

will be observed during the development of Chap. 2 led to the conclusion that it is

very likely that a PMRW will exist for elections with a small number of candidates,

as long as voters’ preferences reflect any reasonable degree of group mutual

coherence. This result was shown to be valid for a number of different simple

measures of group mutual coherence. The Condorcet Criterion therefore takes on a

much more significant level of interest, since the notion of electing the PMRW

becomes more important when there is a high probability that such a candidate

exists.

There has been a long history of debate over the wisdom of using the Condorcet

Criterion, and the debate has not resulted in complete agreement. Felsenthal and

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_5,
# Springer-Verlag Berlin Heidelberg 2011
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Machover (1992) argue very strongly for the implementation of the Condorcet

Criterion. Saari (1995b) argues strongly for the direct use of BR in all elections.

Black (1958) suggests that a hybrid model should be used to elect the PMRW when

there is one, while BR should then be used when a PMRW does not exist.

Saari (1995b) not only supports the use of BR in all situations, but strongly

opposes the basic concept of using any form of PMR to find the winner in an

election. The basis of Saari’s argument is found after defining two different voter

preference profiles in a three-candidate election. Voter Profile 1 is shown in

Fig. 5.1, and it consists of three rational voters with linear preference rankings.

By using PMR with the linear preference rankings in Voter Profile 1, we have an

example of Condorcet’s Paradox, with AMB (2-1), BMC (2-1) and CMA (2-1).

Voter Profile 2 in Fig. 5.2 shows an example in which there are three irrational

voters with complete, but intransitive, preferences.

Using PMR on Voter Profile 2, we obtain the results AMB (2-1), BMC (2-1) and

CMA (2-1), which is identical to the results that are obtained from Voter Profile 1.

The outcome of obtaining identical results from these two voter preference

profiles leads to the claim that PMR procedure has (Saari 1995b, p. 48):

. . . an inability to distinguish between transitive and intransitive preferences: consequently
the pairwise vote (PMR) loses the critical assumption of transitive voters!

Saari notes that Condorcet was very careful to impose the condition of transitiv-

ity on the preferences of individual voters, but then suggested a system of voting

that “surreptitiously drops it” as a condition for the aggregated behavior for the

electorate. However, Saari (1995b, p. 46) acknowledges that the Condorcet Crite-

rion does have “nearly universal acceptance”.

Risse (2005) raises a number of objections to the logic behind the arguments that

Saari makes in his criticism of all methods that are based on PMR while arguing

very strongly in support of BR. The first is that Condorcet’s arguments precluded

the existence of voters with cyclic preferences to begin with, so that a situation like

the one that is given in Fig. 5.2 could not exist. The second argument is that the

definition of BR does not allow for the consideration of intransitive preferences.

So, BR does not even apply to the situation that Saari is using to discredit PMR,

while Condorcet’s assumptions prohibit the possibility that it might ever occur to

begin with.

Voter 1: B,A C,B AC
Voter 2: B,A C,B AC
Voter 3: A,B C,A B.C

Fig. 5.2 Example Voter

Profile 2 from Saari (1995b)

Voter 1: B,A C,B CA
Voter 2: C,B A,C AB
Voter 3: A,C B,A B.C

Fig. 5.1 Example Voter

Profile 1 from Saari (1995b)
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Saari (2006) responds to the statements that are made in Risse (2005) by noting

three points of interest. First, it is correctly pointed out that it is never assumed in

Saari’s arguments that the intransitive voters in Fig. 5.2 ever actually exist. The

point is that we can get the same response from the PMR comparisons of rational

voter that could possibly have been obtained from such irrational voters, if they did

exist. Second, the case in which PMR cycles exist must be treated as a completely

tied outcome among the candidates, which is in complete agreement with notions

presented earlier by Schwartz (1972). Third, BR can indeed be adapted to account

for the possibility that voters have intransitive preferences, by using the definition

of BR which gives a score to each candidate that counts the total number of times

that the candidate beats other candidates in the voters’ preference rankings.

It is interesting to note that it is now possible to use these three points from Saari

(2006) to evaluate BR on its ability to distinguish between the voting situations in

Figs. 5.1 and 5.2. It turns out that while BR cannot result in a cycle on the candidates,

it is also unable to distinguish between the responses of rational voters in Fig. 5.1 and

the possible responses of irrational voters in Fig. 5.2, since complete ties occur with

identical scores in both cases with BR, which is the same outcome that results with

PMR, if indeed PMR cycles represent ties between all candidates in the cycle.

Sen (1995) also expresses concerns with the basic assumptions of studies that

evaluate voting rules on the basis of their propensity to select winners according to

any isolated property, such as the Condorcet Criterion. An example is presented for

a three-candidate election on candidates A;B;Cf g with an odd number of voters in

which nþ 1ð Þ=2 voters have the linear preference ranking A � B � C, and

n� 1ð Þ=2 voters have the linear preference ranking B � C � A. Such a voting

situation would result in Candidate A being selected as the PMRW under the

Condorcet Criterion. Sen argues that society might clearly prefer Candidate B in

such a scenario, since B is ranked as either most or second preferred by all voters,

while A is ranked as least preferred by almost half of the voters.

We continue with the use of the Condorcet Criterion as the primary focus of our

investigation, since it does have nearly universal acceptance and every voting criterion

can be shown to perform poorly in some specific voting situation. The results

regarding Borda’s Paradox in Chap. 3 clearly indicate that the common voting rules

that have been considered so far will not always elect the PMRW. As a result, we

consider the Condorcet Efficiency of voting rules, which is defined as the conditional
probability that a voting rule will elect the PMRW, given that a PMRW exists. We

also investigate the impact that the presence of various measures of social homogene-

ity from earlier discussion will have on the Condorcet Efficiency of voting rules.

5.2 The Desirability of Using Simple Voting Rules

Condorcet wrote at length about the desirability of making voting procedures as

simple as possible. He states for example (Condorcet 1788b, p. 155):

5.2 The Desirability of Using Simple Voting Rules 159



We must therefore establish a form of decision-making in which voters need only ever

pronounce on simple propositions, expressing their opinions only with a yes or a no.

A number of studies were conducted by Condorcet in an attempt to develop a

voting rule that is based on this premise that it would always select the PMRW

whenever one exists. One of these particularly complex procedures was presented

in Condorcet (1789), but Lhuilier (1793) proved later that this particular procedure

does not always select the PMRW.

Condorcet also dismissed the use of multiple stage voting rules that would

include the determination of all PMR comparisons to obtain the PMRW, along

with the use of PER and NPER (Condorcet 1789, p. 175):

Generally speaking, even when an election is undecided after a single ballot, it will have

given some indication of the will or disposition of the assembly. But such an indication

will be vague; often, it may only be the will of a few parties within the assembly. This

will simply inform these parties of their strength or weakness, show them whom they

should join forces with and against whom they should concentrate their efforts. Estab-

lishing a method of successive ballots simply exposes elections to intrigue and factions,

in an effort to reveal not the real opinion, nor even the real will of the electors, but the

circumstantial will dependent on the possibility of a certain candidate’s success.

Several papers by Condorcet discussed various elimination procedures that

could be used to reduce the number of candidates that are ultimately being consid-

ered for election, and he does support such notions for eliminating candidates from

further consideration in an election if they do not receive some minimal number of

votes to allow them to be considered as an acceptable candidate. He also supported

the notion of having one group determine the list of candidates while having a

second group of electors determine the winner of the election. However, Condorcet

is clearly opposed to having the same group of voters hold sequential elections with

the removal of candidates at each stage. Black (1958, p. 44) makes very similar

arguments against the use of PER.

Dodgson (1884) was another important early scholar who wrote about the

desirability of keeping voting rules as simple as possible. In a response to a voting

rule that was proposed by The Proportional Representation Society, he states clear

opposition to the requirement of having voters report ranked preferences for

candidates on their ballots (Dodgson 1884, pp. 29–30):

The Proportional Representation Society proposes to let each Elector hand in a list of

Candidates, marked in the order of his preference; and that his vote, if not required for his

No. 1, should be transferred to his No. 2, and, if not required by him, then to No. 3, and so

on. One great objection to this method is the confusion it would cause in the mind of an

ignorant Elector, who, though quite able to name his favourite Candidate, would be utterly

puzzled if told to arrange five or six names in order of merit.

Black (1958, p. 182) is another source that clearly does not agree with the

universal use of voting mechanisms like WSR’s. In general, Black concludes that

the notion of rating preferences in scales like 3:1 or 4:1 is plausible for things like

goods in markets. However, he writes that he does not believe that the human mind
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operates in such a way to allow for the relative evaluation of candidates in an

election in the same fashion.

Voting rules can be established that will always select the PMRW whenever

there is one, but none of them meet the criteria of simplicity that are established

above. We therefore focus on the Condorcet Efficiency of voting rules. We continue

to evaluate PER and NPER, despite the concerns of Condorcet. And, we also

continue to evaluate BR, despite the concerns expressed by Dodgson. The argu-

ments that Dodgson proposed against the requirement that voters must rank candi-

dates with BR are somewhat minimized by the fact that we will typically limit

attention to elections with a relatively small number of candidates.

5.3 Early Research on the Condorcet Efficiency

of Voting Rules

Many different studies have been conducted to estimate the Condorcet Efficiency of

voting rules under various assumptions, and the earliest work in this area was

typically based on general numerical analysis procedures like computer enumera-

tion and Monte-Carlo simulation. These studies provided valuable insights that led

to a number of conjectures regarding the Condorcet Efficiency of common voting

rules with sincere voting, and these conjectures set the direction of much of the

work that followed. A survey of this early work is presented next.

5.3.1 Early Numerical Analysis of Condorcet Efficiency

The initial studies that formed the basis of the analysis of considering the Condorcet

Efficiency were typically based on the IC assumption, and then later on the IAC and

MC assumptions. These studies were not able to formally prove any results, but

they did give strong support to generalities that could be expected to be found in

future theoretical research on the topic. We summarize most of the general con-

clusions that were drawn from these studies.

5.3.1.1 Condorcet Efficiency of Common Voting Rules

A study in Gehrlein (1995) is based upon the process of the computer enumeration

of all possible voting situations under the P–E model scenario from Chap. 1, where

the parameter a of a P–E distribution was found to be associated with the degree of

dependence, and consequently the degree of social homogeneity, among voters’

preferences. For the situation in which Ai ¼ 1 for all 1 � i � 6 in a P–E model, the

probability that a specific voting situation with three candidates is observed is

obtained from (1.60) as P1 n; að Þ with

5.3 Early Research on the Condorcet Efficiency of Voting Rules 161



P1 n; að Þ ¼ n!

6½n;a�
Y6
i¼1

1½ni;a�

ni!
: (5.1)

By following the development that led to the representation in (1.6), the

probability, PS
PMRW 3; n;PE að Þð Þ, that a strict PMRW will be observed in a three-

candidate election for an odd number of voters under a P–E model with parameter a
is given by

PS
PMRW 3; n;PE að Þð Þ ¼ 3

Xn�1
2

n6¼0

Xn�1
2

�n6

n5¼0

Xn�1
2

�n6�n5

n4¼0

Xn�1
2

�n6�n5

n3¼0

Xn�n6�n5�n4�n3

n2¼0

P1 n; að Þ:

(5.2)

It then follows from definitions that the Strict Condorcet Efficiency,

CES
VR 3; n;PE að Þ�ð Þ, of voting rule VR under the same set of assumptions and the

condition that a PMRW exists is then given by

CES
VR 3; n;PE að Þ�ð Þ ¼ 3

Xn�1
2

n6¼0

Xn�1
2

�n6

n5¼0

Xn�1
2

�n6�n5

n4¼0

Xn�1
2

�n6�n5

n3¼0

�
Xn�n6�n5�n4�n3

n2¼0

d VRð ÞP1 n; að Þ
PS
PMRW 3; n;PE að Þð Þ

� �
: (5.3)

Here d VRð Þ ¼ 1 if VR strictly selects the PMRW (Candidate A) with no ties

for the winning candidate, and d VRð Þ ¼ 0 otherwise. Computed values of

CES
VR 3; n;PE að Þ�ð Þ with each value of n 2 3; 5; 7; 9; 11; 25f g and for each

VR 2 PR;PER;NPR;NPER;BRf g are listed in Table 5.1 for a ¼ 0 and in Table 5.2

for a ¼ 1. Recall that IC is equivalent to the case with a ¼ 0 and that IAC is equivalent

to the case of a ¼ 1.

The results from these tables do not show any completely consistent results for

both IC* and IAC* for any VR as n increases. The Strict Condorcet Efficiency of

each VR except NPR increases for IAC* as compared to IC*, to provide some

support to the observation that the increased degree of dependence among voters’

Table 5.1 Strict Condorcet Efficiency under IC* with m ¼ 3, from Gehrlein (1995)

n VR

PR NPR BR PER NPER

3 0.8235 0.5294 0.9118 0.8235 0.8235

5 0.6766 0.5473 0.8839 0.9751 0.9005

7 0.7372 0.5346 0.8743 0.9189 0.9546

9 0.7447 0.6084 0.8711 0.9139 0.9110

11 0.7076 0.6142 0.8703 0.9549 0.9253

25 0.7365 0.6515 0.8746 0.9412 0.9513
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preferences that is associated with parameter a has an impact on Condorcet

Efficiency of voting rules. One clear observation is that BR consistently performs

better than both PR and NPR, but not as well as either PER or NPER.

This type of analysis by computer enumeration is not amenable to the consider-

ation of large values of n or for more than three-candidate elections, which then

requires such studies to be based on Monte-Carlo simulation analysis. Table 5.3

summarizes simulation estimates of the Strict Condorcet Efficiency of a number of

different types of voting rules from Fishburn and Gehrlein (1982) with n ¼ 101

under IC* for each m 2 3; 4; 5f g.
Fishburn (1974b, c) uses Monte-Carlo simulation analysis to estimate the Strict

Condorcet Efficiency of single-stage election procedures for n voters on m candi-

dates with IC in Table 5.3. The study considers constant scoring rules, truncated

Borda rules and nonlinear scoring rules. A Constant Scoring Rule (CSR) is gener-
ally denoted as Rule Cm

k and it assigns one point to each of the first k candidates in
each voter’s preference ranking, with the remaining candidates getting a score of

zero. For example, Rule Cm
1 corresponds to PR for any m, and Rule C3

2 corresponds

to NPR in a three-candidate election. A Truncated Borda Rule on m candidates is

denoted as Rule Bm
k and it assigns points to the first k candidates in each voter’s

preference ranking, with the remaining candidates getting a score of zero. The

points that are assigned to the first k candidates are the linearly decreasing point

Table 5.2 Strict Condorcet Efficiency under IAC* with m ¼ 3, (from Gehrlein 1995)

n VR

PR NPR BR PER NPER

3 0.8889 0.4444 0.8889 0.8889 0.8889

5 0.8250 0.4750 0.8750 0.9750 0.9250

7 0.8480 0.5040 0.8800 0.9440 0.9520

9 0.8508 0.5365 0.8825 0.9524 0.9429

11 0.8440 0.5525 0.8848 0.9606 0.9490

25 0.8630 0.5902 0.8965 0.9624 0.9627

Table 5.3 Strict Condorcet Efficiency simulation estimates with

n ¼ 101 under IC*, from Fishburn and Gehrlein (1982)

VR m

3 4 5

Rule Cm
1 0.77 0.66 0.58

Rule Cm
2 0.74 0.74 0.70

Rule Cm
3 – 0.61 0.68

Rule Cm
4 – – 0.53

RuleBm
2 0.91 0.82 0.73

RuleBm
3 – 0.87 0.84

RuleBm
4 – – 0.87

Rule Cm
1:2:1½ � 0.96 0.89 0.81

Rule Cm
2:2:1½ � 0.96 0.94 0.91

Rule Cm
3:2:1½ � – 0.87 0.90

Rule Cm
4:2:1½ � – – 0.79
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scores for a k candidate election. The standard definition of BR from earlier

discussion is then equivalent to Rule Bm
m�1. A nonlinear scoring rule is a WSR

that is neither a CSR nor a truncated Borda rule.

Monte-Carlo simulation estimates for the limiting Strict Condorcet Efficiency of

Rule Cm
k as n ! 1 with IC* are obtained for 3 � m � 9 in Gehrlein (1985a) and

the results are summarized in Table 5.4.

These simulation estimates are generally consistent with the results that are

listed in Table 5.3. Given that the results in Table 5.4 are dependent upon the IC*

assumption as n ! 1, we can conclude that PR becomes quite inefficient as m gets

at all large, and that Condorcet Efficiency can be increased by about 70% over the

results with PR by using Rule Cm
k with k � m=2 for seven or more candidates in

such a scenario.

Lepelley et al. (2000a) perform a simulation analysis with the assumptions of

both IC* and IAC*, to estimate the limiting Condorcet Efficiency for PR, BR, and

NPR, which is equivalent to Rule Cm
m�1, as n ! 1 for 3 � m � 8. The results are

summarized in Table 5.5.

These simulation results are very consistent with the reported overlapping

efficiency values in Table 5.4. There is a clear indication that IC and IAC prob-

abilities converge quite rapidly as the number of candidates increases, as suggested

by Berg and Bjurulf (1983). This provides further verification that the Condorcet

Efficiency of all voting rules can be expected to decrease as m increases.

Table 5.4 Condorcet Efficiency simulation estimates for Rule Cm
k as n ! 1 under IC*, from

Gehrlein (1985a)

k m

3 4 5 6 7 8 9

1 0.768 0.646 0.571 0.521 0.440 0.420 0.393

2 0.767 0.723 0.687 0.648 0.591 0.546 0.490

3 – 0.652 0.688 0.708 0.694 0.610 0.594

4 – – 0.580 0.614 0.665 0.705 0.661

5 – – – 0.496 0.600 0.579 0.641

6 – – – – 0.476 0.524 0.624

7 – – – – – 0.407 0.497

8 – – – – – – 0.370

Table 5.5 Strict Condorcet Efficiency estimates with n ! 1 under IC* and IAC*,

from Lepelley et al. (2000a)

m VR

PR NPR BR

IC* IAC* IC* IAC* IC* IAC*

3 0.7574 0.8816 0.7571 0.6298 0.9010 0.9108

4 0.6416 0.7429 0.6415 0.5517 0.8702 0.8706

5 0.5570 0.6139 0.5602 0.5090 0.8552 0.8541

6 0.4858 0.5198 0.4946 0.4730 0.8450 0.8471

7 0.4663 0.4524 0.4450 0.4386 0.8438 0.8457

8 0.4123 0.4088 0.4378 0.4101 0.8362 0.8428
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Paris (1975) provides some limited computations to estimate the Condorcet

Efficiency of PR in different situations. By using computed results from that

study with some other results of Satterthwaite (1972), a very rough estimate is

given for the limiting Condorcet Efficiency of PR as n ! 1 under IC*. Results that

directly obtain estimates for the Condorcet Efficiency of PR consistently produce

somewhat different values.

Fishburn and Gehrlein (1976a, 1977a) extend the analysis of the Condorcet

Efficiency of voting rules to two-stage election procedures. The two-stage voting

rule Rule Cm
x:y:z½ � obtains a ranking of candidates that is based on Rule C

m
x in the first

round. The y top scoring candidates are then retained for a second round election,

during which the ultimate winner is determined by Rule Cy
z . Simulation estimates

of the Condorcet Efficiency of these types of voting rules for all possible forms of

Rule Cm
x:2:1½ � are given in Table 5.3 with n ¼ 101 under IC* for each m 2 3; 4; 5f g.

Merrill (1984) performs a simulation analysis to estimate the Condorcet Efficiency

of some simple voting procedures under the assumption of IC*, verifying the results

in Table 5.3 for which there was an overlap.

General results are observed in Table 5.3 that are consistent with the conclusions

that were drawn above for the case ofm ¼ 3 under the assumption of IC*. For eachm,
the most efficient Rule Bm

k has greater Condorcet Efficiency than the most efficient

Rule Cm
k , and the most efficient Rule Cm

x:2:1½ � has greater Condorcet Efficiency than the
most efficient Rule Bm

k .

The following conjectures were given in Fishburn and Gehrlein (1982) from all

of the observations in these studies, and all are based on the assumption of IC* with

ranges of values that havem � 20 and n � 101. The conjectures marked with an ‘*’

were later proved to be true for the limiting case in voters as n ! 1.

Conjecture 5.1 * The CSR, Rule Cm
k , that maximizes Condorcet Efficiency uses

k � m

2
1�

ffiffiffi
1

n

r !
: (5.4)

This conjecture was proved true for n ! 1 in Gehrlein and Fishburn (1981a).

Conjecture 5.2 * The truncated Borda rule, Rule Bm
k , that maximizes Condorcet

Efficiency uses the value of k which is the nearest integer to

k � m 1�
ffiffiffi
1

n

r !
; with k � m� 1: (5.5)

This conjecture was proved true for n ! 1 in Gehrlein (1981b).

Conjecture 5.3 * The scoring rule that maximizes Condorcet Efficiency for given
m and n is typically a nonlinear scoring rule. However, as n ! 1 the expected
gain from using the most Condorcet Efficient nonlinear scoring rule, rather than the
most Condorcet Efficient Rule Bm

k , becomes insignificant. This conjecture was
proved true for n ! 1 in Gehrlein (1981b).
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Conjecture 5.4 The most Condorcet Efficient two-stage CSR, of the form Rule
Cm

1:k:1½ �, is Rule C
m
1:2:1½ �.

Conjecture 5.5 For m � 6, the Condorcet Efficiency of the best Rule Cm
k is

significantly less than that of Rule Cm
1:2:1½ �, but the reverse is true for m 	 9.

Conjecture 5.6 The most Condorcet Efficient two-stage CSR is always of the form
Rule Cm

x:2:1½ �
Conjecture 5.7 The number of candidates, x, to vote for on the first ballot of the
most Condorcet Efficient Rule Cm

x:2:1½ � is equal to, or one more than, the number to
vote for to obtain the most Condorcet Efficient Rule Cm

k .

The generality of these conclusions was tested with further analysis in Fishburn

and Gehrlein (1976a). In the first extension of this work, the number of voters with

each possible candidate ranking in each voting situation was taken to some integer

power, to create more radical variation among the voters’ preferences. Each of

Conjectures 5.4–5.7 was found to remain valid, but the most Condorcet efficient

Rule Cm
k was found to drift toward PR as the power that was used in the voting

situation transformation was increased, to suggest situations that are further

removed from the assumption of IC*. Identical observations were made when the

analysis was performed again with the MC* assumption.

Fishburn (1974c) and Fishburn and Gehrlein (1976a) also examined the conclu-

sions by analyzing the propensity of Rule Cm
k and two-stage CSRs to elect the BR

winner with the assumption of IC. The only conclusion that we report here regards

the Borda Efficiency of single-stage CSRs:

Conjecture 5.8 * The most Borda Efficient Rule Cm
k is to vote for half, or slightly

fewer, of the candidates. This conjecture was later proved to be true for the limiting
case as n ! 1 in Gehrlein (1981c).

Van Der Cruyssen (1999) also applied Monte-Carlo simulation analysis to the

problem of evaluating voting rules on their propensity to elect the same winner as

the one selected by BR.

Nurmi (1992) uses Monte-Carlo simulation results to show that there can be

substantial differences in Condorcet Efficiency measurements that are observed,

based on how situations with tied winners are dealt with: strict winners required,

random tie-breaking to determine winners, or if we are simply concerned if PMRW

among the winning set of candidates. However, it must be pointed out these

differences must become negligible as n ! 1, since the probability that a tie is

observed for any realistic voting rule will approach zero for large electorates.

5.3.1.2 The Pursuit of the Optimal Voting Rule

It is clear that different voting rules have different expected levels of Condorcet

Efficiency, so it is natural to wonder which voting rule is optimal, in the sense that it

is expected to have the maximum level of efficiency. Most of the early work in this
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area focused on the Condorcet efficiency of WSRs in three-candidate elections.

Let CEW
WSR lð Þ 3; n;PE að Þ�ð Þ denote theWeak Condorcet Efficiency of the WSR with

weights 1; l; 0ð Þ for n voters in a three-candidate election under the assumption

of a P–E model with parameter a. By considering weak efficiency, we only require

that the PMRWmust be selected as one of the winners in an election when ties exist

for the winning position.

Fishburn (1974b) describes a procedure that can be used to analyze all voting

situations for n voters, to partition the unit interval 0; 1½ � into segments such that all

values of l in the same interval have identical values of CEW
WSR lð Þ 3; n;PE að Þ�ð Þ.

This procedure was then used in Gehrlein and Fishburn (1978a) to find the partition

of 0; 1½ � with equal values of CEW
WSR lð Þ 3; 7; IC

�ð Þ for the P–E case with a ¼ 0 for

n ¼ 7, and the results are given in Table 5.6 The Condorcet Efficiency values

decrease rapidly within each of the segments in the ranges 0 � l � 1=4 and

3=5 � l � 1, and these values are not reported.

Table 5.6 indicates for example that each WSR on three candidates with

2=5< l� < 1=2 produces the same maximum possible Condorcet Efficiency value

of 0.9473 under the assumption of IC for n¼ 7. Similar analysis is performed for all

odd n ¼ 7 2ð Þ31, and the results are summarized in Table 5.7, which gives values of

Table 5.6 Condorcet Efficiency for ranges of l values with

n ¼ 7 under IC*, from Gehrlein and Fishburn (1978a)

CEW
WSR lð Þ 3; n; IC�ð Þ Range for l

0.9181 1/4 < l < 1/3

0.9323 l ¼ 1/3

0.9465 1/3 < l < 2/5

0.9469 l ¼ 2/5

0.9473 2/5 < l < 1/2

0.9278 l ¼ 1/2

0.9084 1/2 < l < 4/7

0.9080 l ¼ 4/7

0.9075 4/7 < l < 3/5

Table 5.7 CEW
WSR 0ð Þ 3; n; IC

�ð Þ, CEW
WSR 1=2ð Þ 3; n; IC�ð Þ, CEW

WSR l�ð Þ 3; n; IC�ð Þ and Range of Maximiz-

ing Values for l* under IC* from Gehrlein and Fishburn (1978a)

n CEW
WSR 0ð Þ 3; n; IC�ð Þ CEW

WSR 1=2ð Þ 3; n; IC
�ð Þ CEW

WSR l�ð Þ 3; n; IC�ð Þ Range for l�

7 0.8281 0.9278 0.9473 2/5 < l� < 1/2

9 0.8166 0.9218 0.9360 2/5 < l� < 3/7

11 0.8054 0.9179 0.9288 3/7 < l� < 4/9

13 0.8063 0.9152 0.9241 4/9 < l� < 5/11

15 0.8015 0.9132 0.9208 5/11 < l� < 6/13

17 0.7964 0.9118 0.9183 5/11 < l� < 6/13

19 0.7969 0.9106 0.9164 6/13 < l� < 7/15

21 0.7941 0.9097 0.9149 6/13 < l� < 7/15

23 0.7910 0.9089 0.9136 6/13 < l� < 7/15

25 0.7914 0.9083 0.9126 7/15 < l� < 8/17

27 0.7895 0.9077 0.9117 7/15 < l� < 8/17

29 0.7874 0.9073 0.9109 7/15 < l� < 8/17

31 0.7877 0.9069 0.9103 7/15 < l� < 8/17
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CEW
WSR 0ð Þ 3; n; IC

�ð Þ for PR, CEW
WSR 1=2ð Þ 3; n; IC

�ð Þ for BR, CEW
WSR l�ð Þ 3; n; IC

�ð Þ for

the Rule l� values that maximize that Condorcet Efficiency, and the range of values

for l� that maximize Condorcet Efficiency.

A very interesting result from Table 5.7 leads to:

Conjecture 5.9 * The Rule l� that maximizes Condorcet Efficiency approaches BR
as n ! 1 under IC*. This conjecture was later proved true in Gehrlein and
Fishburn (1978a).

It is also clear that BR has values of Condorcet Efficiency near that of the

maximizing Rule l� for n at all large, which is consistent with Conjecture 5.3.

In addition, PR has significantly lower Condorcet Efficiency than BR for all n.
This type of analysis was extended to P–E models with a> 0 in Gehrlein

(2003a), with the results for a ¼ 1, which corresponds to IAC, being summarized

in Table 5.8.

The are some clear consistencies between the IC and IAC results for all n, since
the results of Table 5.8 show that BR consistently has greater Condorcet Efficiency

than PR, and that BR has efficiency values that are very near the maximum

efficiency that is obtained. Unlike the IC results of Table 5.7, the l� value that

maximizes CEW
WSR l�ð Þ 3; n; IAC

�ð Þ is not converging toward BR as n ! 1.

This analysis is extended to a number of larger values of a and the results for the
P–E models with a ¼ 4 are summarized in Table 5.9. These results are typical of

outcomes that are observed with all a> 1, and they show some very interesting

changes from observations that have been made for a � 1.

The observations regarding CEW
WSR l�ð Þ 3; n;PE að Þ�ð Þ values that have been

obtained are summarized as:

Table 5.8 CEW
WSR 0ð Þ 3; n; IAC

�ð Þ, CEW
WSR 1=2ð Þ 3; n; IAC�ð Þ, CEW

WSR l�ð Þ 3; n; IAC
�ð Þ and Range of

Maximizing Values for l� under IAC* from Gehrlein (2003a)

n CEW
WSR 0ð Þ 3; n; IAC�ð Þ CEW

WSR 1=2ð Þ 3; n; IAC�ð Þ CEW
WSR l�ð Þ 3; n; IAC�ð Þ Range for l�

7 0.8960 0.9200 0.9440 1/4 < l� < 1/2

9 0.8910 0.9175 0.9365 1/3 < l� < 1/2

2/7 < l� < 1/3

11 0.8878 0.9155 0.9344 1/3 < l� < 2/5

13 0.8869 0.9144 0.9323 4/11 < l� < 2/5

15 0.8856 0.9138 0.9309 4/11 < l� < 3/8

5/13 < l� < 2/5

17 0.8846 0.9132 0.9297 4/11 < l� < 3/8

19 0.8843 0.9128 0.9289 4/11 < l� < 3/8

5/13 < l� < 2/5

21 0.8838 0.9126 0.9284 4/11 < l� < 3/8

23 0.8833 0.9123 0.9280 7/19 < l� < 3/8

25 0.8832 0.9122 0.9276 7/19 < l� < 3/8

27 0.8829 0.9120 0.9274 7/19 < l� < 3/8

29 0.8827 0.9119 0.9271 7/19 < l� < 3/8

31 0.8826 0.9118 0.9269 7/19 < l� < 3/8
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Observation 5.1 The Condorcet Efficiency of BR exceeds the efficiency of PR only
for a � 1.

Observation 5.2 The Condorcet Efficiency of BR is quite close to the efficiency of
the Rule l� that maximizes Condorcet Efficiency for a � 1 with n at all large.

Observation 5.3 The Condorcet Efficiency of PR is quite close to the efficiency of
the Rule l� that maximizes Condorcet Efficiency for a> 1 with n at all large.

Observation 5.4 The Rule l� that maximizes Condorcet Efficiency has decreasing l
as a increases, but the convergence to PR as the Rule l� to maximize Condorcet
Efficiency is relatively slow.

Observation 5.5 As a becomes large, the Condorcet Efficiency of all Rule l become
quite similar, and obviously they all are equal to 1.00 in the limit a ! 1.

As a result, we observe increasing values of Condorcet Efficiency for WSR’s as

parameter a increases in a P–E model. Since parameter a is a rough population

specific measure of social homogeneity, we see an indication of a connection

between Condorcet Efficiency and social homogeneity. However, the WSR that

maximizes Condorcet Efficiency as n ! 1 changes from BR to WSR’s that are

more like PR as a increases. These results are consistent with observations that were
made in an independent study that is based on computer enumeration with n ¼ 101

by Lepelley et al. (2000b), and additional results from this study that explain why

Observation 5.3 is valid will be discussed later.

5.3.2 Probability Representations for Condorcet Efficiency

All of these conjectures and observations that evolved from early numerical

analysis generated significant interest in the development of mathematically

Table 5.9 CEW
WSR 0ð Þ 3; n;PE 4ð Þ�ð Þ, CEW

WSR 1=2ð Þ 3; n;PE 4ð Þ�ð Þ, CEW
WSR l�ð Þ 3; n;PE 4ð Þ�ð Þ and Range

of Maximizing Values for l� under IAC* from Gehrlein (2003a)

n CEW
WSR 0ð Þ 3; n;PE 4ð Þ�ð Þ CEW

WSR 1=2ð Þ 3; n;PE 4ð Þ�ð Þ CEW
WSR l�ð Þ 3; n;PE 4ð Þ�ð Þ Range for l�

7 0.9606 0.9382 0.9773 1/5 < l� < 1/4

9 0.9588 0.9358 0.9732 1/6 < l� < 1/5

11 0.9578 0.9331 0.9694 1/7 < l� < 1/6

13 0.9572 0.9352 0.9675 1/8 < l� < 1/7

15 0.9567 0.9346 0.9660 1/9 < l� < 1/8

17 0.9563 0.9333 0.9644 1/10 < l� < 1/9

19 0.9561 0.9345 0.9635 1/11< l� < 1/10

21 0.9559 0.9342 0.9628 1/12< l� < 1/11

23 0.9557 0.9335 0.9619 1/13< l� < 1/12

25 0.9556 0.9342 0.9614 1/14< l� < 1/13

27 0.9555 0.9340 0.9610 1/15< l� < 1/14

29 0.9554 0.9336 0.9604 1/16< l� < 1/15

31 0.9553 0.9341 0.9601 1/17< l� < 1/16
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based studies that were performed to obtain probability representations for the

Condorcet Efficiency of voting rules. The development of these probability

representations for the Condorcet Efficiency of voting rules followed the same

pattern as we observed in the development of representations for the probability

that a PMRW exists under the assumptions of IC, IAC and MC. The techniques

that were used to obtain these representations directly follow the techniques that

were used to obtain the probability representations in Chap. 1.

5.3.2.1 Representations Based on IC and DC

The first study in this general area of research was performed to address Conjecture

5.9 above. Gehrlein and Fishburn (1978a) develop a probability representation

for CES
WSR lð Þ 3;1;PE 0ð Þ�ð Þ, or CES

WSR lð Þ 3;1; IC�ð Þ, to determine the WSR that

maximizes Condorcet Efficiency in the limit n ! 1 with the assumption of IC*

in three-candidate elections. The procedure that we use here follows from the

development of a representation for CES
BR 3;1;DC�ð Þ in Gehrlein (1999a), and it

can be used to obtain much more general results than those that are presented in the

original study.

Condorcet Efficiency Representations for WSR’s with IC*

To begin, we define four discrete variables that describe a randomly selected voter’s

linear preference ranking. These variables have probabilities of taking different

values that are defined in terms of the likelihood that each of the six possible linear

preference rankings on voters’ preferences might be observed. The possible prefer-

ence rankings and their associated probabilities from Fig. 1.7 are listed here for

convenience in Fig. 5.3.

The variable definitions for the ith voter are given by:

Xi
1 ¼þ 1 : p1 þ p2 þ p4 Xi

2 ¼ þ1 : p1 þ p2 þ p3

� 1 : p3 þ p5 þ p6 � 1 : p4 þ p5 þ p6

Xi
3 ¼ 1� l : p1 Xi

4 ¼ 1 : p1

1 : p2 1� l : p2

l� 1 : p3 l : p3

l : p4 l� 1 : p4

�1 : p5 � l : p5

�l : p6 � 1 : p6 (5.6)

170 5 Condorcet Efficiency and Social Homogeneity



Following the discussion that led to the representation for PS
PMRW 3;1;DCð Þ in

(1.18), the definitions in (5.6) require that Candidate A will be the PMRW when

both X1 > 0 and X2 > 0. Furthermore, the definitions of Xi
3 and X

i
4 in (5.6) denote the

relative differences in WSR scores that are given respectively for A over B, and for

A over C, by Rule l. Candidate Awill be the Rule lwinner when we simultaneously

have both X3 > 0 and X4 > 0.

Based as these definitions, the joint probability that Candidate A is the PMRW

and is selected by Rule l is equivalent to the joint probability that Xj > 0, for

j ¼ 1; 2; 3; 4. Since the expected value, E Xj

� �
, of Xj is the same as E Xi

j

� �
, the

definitions of the Xi 0
j s in (5.6) lead to:

E Xi
1

� � ¼ E X1

� � ¼ p1 þ p2 þ p4 � p3 � p5 � p6

E Xi
2

� � ¼ E X2

� � ¼ p1 þ p2 þ p3 � p4 � p5 � p6

E Xi
3

� � ¼ E X3

� � ¼ 1� lð Þ p1 � p3ð Þ þ p2 � p5 þ l p4 � p6ð Þ
E Xi

4

� � ¼ E X4

� � ¼ 1� lð Þ p2 � p4ð Þ þ p1 � p6 þ l p3 � p5ð Þ: (5.7)

With the assumption of DC, (5.7) reduces to:

E Xi
1

� � ¼ E X1

� � ¼ 0

E Xi
2

� � ¼ E X2

� � ¼ 0

E Xi
3

� � ¼ E X3

� � ¼ 1� 2lð Þ p1 � p3ð Þ
E Xi

4

� � ¼ E X4

� � ¼ 1� 2lð Þ p2 � p3ð Þ (5.8)

Suppose that some conditions exist to require that E Xj

� � ¼ 0 for each

j ¼ 1; 2; 3; 4 in (5.8), so that the probability that Candidate A is both the PMRW

and the winner by Rule l becomes equivalent to the joint probability that

Xj
ffiffiffi
n

p
>E Xj

ffiffiffi
n

p� �
, for j ¼ 1; 2; 3; 4. As n ! 1 under DC, the joint probability of

the Xj
ffiffiffi
n

p
variables becomes multivariate normal, and the probability of observing

any specific value, including zero, in a continuous joint distribution goes to zero.

Thus, the probability of interest is equivalent to the multivariate normal positive

orthant probability that Xj
ffiffiffi
n

p 	 E Xj
ffiffiffi
n

p� �
, for j ¼ 1; 2; 3; 4, if E Xj

� � ¼ 0 for

j ¼ 1; 2; 3; 4 in (5.8).

A A B C B C
B C A A C B
C B C B A A
p

1
p

3
p

5
p

6
p

4
p

2

Fig. 5.3 Probabilities for the

six linear preference rankings

on three candidates
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The Central Limit Theorem also requires that the Variance-Covariance matrix,

V, for the joint distribution of the Xj
ffiffiffi
n

p
variables is obtained directly from the Xi

j

variables, and that Vmust be non-singular. Matrix V can therefore be obtained from

the following terms with DC when E Xj

� � ¼ 0 for j ¼ 1; 2; 3; 4:

E Xi2

1

� �
¼ E Xi2

2

� �
¼ 1

E Xi2

3

� �
¼ 1� 2lþ 2l2
� �

p1 þ p3ð Þ þ 2p2

E Xi2

4

� �
¼ 1� 2lþ 2l2
� �

p2 þ p3ð Þ þ 2p1

EðXi
1X

i
2Þ ¼ 1� 4p3

EðX1
i X

i
3Þ ¼ 1� p1 � p3

EðXi
1X

i
4Þ ¼ 1� p2 � 3p3

EðXi
2X

i
3Þ ¼ 1� p1 � 3p3

EðXi
2X

i
4Þ ¼ 1� p2 � p3

EðXi
3X

i
4Þ ¼ 1=2� 1þ 2lð1� lÞf gp3: (5.9)

There are two different situations that result in E Xj

� � ¼ 0 for each j ¼ 1; 2; 3; 4 in

(5.8). The first situation arises with the assumption of IC for any Rule l, and the

second keeps attention on the more general assumption of DC while restricting

attention to BR, with l ¼ 1=2.
Gehrlein and Fishburn (1978a) considered the first of these situations while

developing a representation for CES
WSR lð Þ 3;1; IC�ð Þ. The definitions in (5.9) with

IC give the expected values that are required to obtain V, with:

V ¼

1 1
3

2
3

1
3

� 1 1
3

2
3

� � 2z
3

z
3

� � � 2z
3

2
666664

3
777775
; with z ¼ 1� l 1� lð Þ: (5.10)

Matrix V is positive definite for all z 2 ð3=4; 1�: As a result, the situation with

z ¼ 3=4, which corresponds to l ¼ 1=2, must be treated as a special case. Given all

of the discussion above, the joint probability that Candidate A is the PMRW and is

also elected by Rule l, with l 6¼ 1=2, as n ! 1 under IC is a four-variate normal

positive orthant probability, F4 Rð Þ, having correlation matrix R, with R being

obtained from V following (1.17).

The resulting correlation matrix R with the IC assumption from (5.10) is

given by
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R ¼

1 1
3

ffiffiffi
2
3z

q ffiffiffi
1
6z

q

� 1
ffiffiffi
1
6z

q ffiffiffi
2
3z

q

� � 1 1
2

� � � 1

2
6666664

3
7777775
: (5.11)

Unfortunately, no simple closed form representation exists for F4 Rð Þ with the R
that is specified in (5.11), but a representation for F4 Rð Þ can be obtained by

appealing to a result from Plackett (1954).

Plackett’s Procedure can be very useful when we wish to obtain a representation
for a general four-variate normal positive orthant probability F4 Rð Þ when a direct

closed form representation is not available. Here, R denotes a general symmetric

correlation matrix for a multivariate normal distribution, with elements ri; j for
1 � i; j � 4. Suppose that there is some four-variate normal distribution with

correlation matrix R* for which a simple representation for the positive orthant

probability F4 R�ð Þ is known exactly. Also, suppose that R and R* are the same for

all elements, except for one pair of terms, denoted by ri; j ¼ rj; i and r�i; j ¼ r�j; i.
It is possible to obtain a representation for F4 Rð Þ from

F4 Rð Þ ¼ F4 R�ð Þ þ I; (5.12)

where I is a bounded integral over a single variable. To obtain this representation,

the first step is to obtain the matrix C tð Þ, where

C tð Þ ¼ tRþ 1� tð ÞR�: (5.13)

Let ci; j denote the matrix entries for C tð Þ. The second step is to obtain the matrix

inverse H tð Þ, with entries hi; j such that

H tð Þ ¼ C tð Þ�1: (5.14)

Then, for a 6¼ b, with a; b 2 f½1; 2; 3; 4�n½i; j�g, Plackett’s Procedure obtains the
integral I in (5.12) as

I ¼ c0ij
4p2

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� c2ij

s
Cos�1 habffiffiffiffiffiffiffiffiffiffiffiffi

haahbb
p
	 


dt: (5.15)

Here,

c0ij ¼ @cij
@t

: (5.16)
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For this particular example, we use a result from David and Mallows (1961) that

presents a representation for the special case of R* in which

R� ¼
1 1

2
b b

2

� 1 b
2

b
� � 1 1

2� � � 1

2
664

3
775: (5.17)

David and Mallows show that

F4 R�ð Þ ¼ 1

9
þ 1

4p
Sin�1 bð Þ þ Sin�1 b

2

	 
� �

þ 1

4p2
Sin�1 bð Þ� �2� Sin�1 b

2

	 
	 
2
( )

: (5.18)

The important point is that R* in (5.17) is nearly identical to R in (5.11) with

b ¼
ffiffiffi
2z
3

q
, except that r�1;2 ¼ r�2;1 ¼ 1=3 and r1;2 ¼ r2;1 ¼ 1=2. As a result, Plackett’s

Procedure can be applied. To start,

C tð Þ ¼
1 3�t

6

ffiffiffi
2
3z

q ffiffiffi
1
6z

q

� 1
ffiffiffi
1
6z

q ffiffiffi
2
3z

q
� � 1 1

2� � � 1

2
66664

3
77775: (5.19)

After algebraic reduction,

H tð Þ ¼ 1

J

12z 3z� 2ð Þ �6yz �4 3z� 2ð Þ ffiffiffiffiffi
6z

p
2y

ffiffiffiffiffi
6z

p

� 12z 3z� 2ð Þ 2y
ffiffiffiffiffi
6z

p �4 3z� 2ð Þ ffiffiffiffiffi
6z

p

� � 4J
3
þ 8 3z� 2ð Þ � 2J

3
þ 4y

� �
� � � 4J

3
þ 8 3z� 2ð Þ

2
66664

3
77775;

(5.20)

with y ¼ 3� tð Þz� 2 and J ¼ 4 3z� 2ð Þ2�y2:
The integral term I is then obtained following equations (5.15) and (5.16) as:

I ¼ �1

4p2

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

36� 3� tð Þ2
s

Cos�1 6tz� g t; zð Þ
2g t; zð Þ

	 

dt; (5.21)

with g t; zð Þ ¼ 4 3z� 2ð Þ2� 3z� 2� tzð Þ2þ6 3z� 2ð Þ.
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Given all of the above, F4 Rð Þ is obtained for l 6¼ 1=2 from

F 4 Rð Þ ¼ 1

9
þ 1

4p
Sin�1

ffiffiffiffiffi
2

3z

r !
þ Sin�1

ffiffiffiffiffi
1

6z

r !( )

þ 1

4p2

(
Sin�1

ffiffiffiffiffi
2

3z

r ! !2

� Sin�1

ffiffiffiffiffi
1

6z

r ! !2

�
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

36� 3� tð Þ2
s

Cos�1 6tz� g t; zð Þ
2g t; zð Þ

	 

dt

)
: (5.22)

For the case of l ¼ 1=2, the limiting distribution is a singular-normal distribu-

tion that is the limit of the four-variate normal with Variance-Covariance matrix V
as z ! 3=4 from above. Since both F4 R�ð Þ and I are continuous at z ¼ 3=4, results
from Cramér (1946, p. 102) show that F4 Rð Þ as z ! 3=4 can be evaluated as F4 Rð Þ
with z ¼ 3=4.

Given the symmetry of IC with respect to candidates and the result of (1.19),

CES
WSR lð Þ 3;1; IC�ð Þ can be obtained from the identity

CES
WSR lð Þ 3;1; IC�ð Þ ¼ 3F4 Rð Þ

PS
PMRW 3;1; ICð Þ : (5.23)

The symmetry of z around l ¼ 1=2 leads directly to the observation that

CES
WSR lð Þ 3;1; IC�ð Þ ¼ CES

WSR 1�lð Þ 3;1; IC�ð Þ: (5.24)

Computed values of CES
WSR lð Þ 3;1; IC�ð Þ are obtained by numerical integration

from (5.23) for each l ¼ 0:00 0:05ð Þ0:50 and they are listed in Table 5.10.

The primary result from this analysis is the verification of Conjecture 5.9, which

follows directly from the form of the R matrix in (5.11).

Table 5.10 Computed values of CES
WSR lð Þ 3;1; IC�ð Þ (from

Gehrlein and Fishburn 1978a)

l CES
WSR lð Þ 3;1; IC�ð Þ

0.00 0.7572

0.05 0.7749

0.10 0.7930

0.15 0.8113

0.20 0.8296

0.25 0.8473

0.30 0.8639

0.35 0.8786

0.40 0.8905

0.45 0.8984

0.50 0.9012
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Theorem 5.1 BR maximizes CES
WSR lð Þ 3;1; IC�ð Þ.

Proof Each correlation term in R that involves z in (5.11) increases as l
increases on the interval 0 � l � 1=2. It then follows directly from a result in

Slepian (1962) that F4 Rð Þ does not decrease as l increases over the range

0 � l � 1=2. The symmetry of CES
WSR lð Þ 3;1; IC�ð Þ around l ¼ 1=2 from (5.24)

completes the proof. □

An alternative representations for the special case of PR, with l ¼ 0, is also

obtained, and it can be simplified by combining it with other results from Gehrlein

and Fishburn (1978b).

CES
PR 3;1;IC�ð Þ¼
1

4
þ 3

4p
Sin�1

ffiffiffi
2

3

r !
þSin�1

ffiffiffi
1

6

r !
þ1

2
Sin�1 1

3

	 
( )

þ 3

4p2
Sin�1

ffiffiffi
2

3

r ! !2

�1

4
Sin�1 1

3

	 
	 
2

þ3

2

ð1=3

0

Sin�1 x
1þ2x

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p dx

8<
:

9=
;

2
66666666664

3
77777777775

PS
PMRW 3;1;ICð Þ

� 0:757200 (5.25)

Gillett (1980) develops a representation for CES
PR 3; n; p�ð Þ for general p vectors and

considers the specific p that will minimize the Condorcet Efficiency of PR. It is

shown that CES
PR 3; n; p�ð Þ ! 0 as n ! 1 for p ¼ r; 0; 1=2� r; 0; 1=2� r; rð Þ with

1=3< r< 1=2. It is easily seen that Candidate B will be both the strict PMRW and

the strict loser by PR in this case. Similar p vectors can be obtained for Candidates

A and C.
Another result from Gehrlein and Fishburn (1978b) is an alternative representa-

tion for the Condorcet Efficiency of the special case of BR, with l ¼ 1=2.

CES
BR 3;1; IC�ð Þ ¼

3
2
� 3

2p Cos�1
ffiffi
8
9

q� �
þ Cos�1

ffiffi
2
9

q� �n oh i
PS
PMRW 3;1; ICð Þ � 0:9012: (5.26)

Probability representations for assumptions other than with IC are also consid-

ered. For generic p vectors as n ! 1, the variance of the distribution of the

proportion of voters who have the ith preference ranking shrinks to zero, around

the mean values of pi. Two observations are made as a result for the subset of

p vectors as n ! 1 for which a PMRW exists:

l For each l 2 0; 1½ � there is a p such that the PMRW does not win with Rule l.
l For each l=2 0; 1=2; 1f g there is a p such that the PMRW has a non-zero

probability of being elected with Rule l, while the PMRW can not be the winner

for any other Rule m with m 2 0; 1½ � and m 6¼ l.
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Two additional studies follow directly from the development that leads to the

representation for CES
WSR lð Þ 3;1; IC�ð Þ in (5.23). The first stays with the more

general assumption of DC, while restricting attention to BR.

Condorcet Efficiency of BR with DC

It was noted above that a second set of conditions results in E Xj

� � ¼ 0 for each

j ¼ 1; 2; 3; 4 in (5.8), so that the resulting probability can be expressed as a four-

variate normal positive orthant probability. These conditions require the assump-

tion of DC and the restriction of attention to BR, with l ¼ 1=2. The same approach

that was used above leads to a representation for the joint probability that Candidate

A is both the PMRW and the winner by BR as n ! 1 with the assumption of DC

from F4 R0ð Þ, where

R0 ¼

1 1� 4p3
1þ2p2ffiffiffiffiffiffiffiffiffiffi
6p2þ1

p 2�2p2�6p3ffiffiffiffiffiffiffiffiffiffi
6p1þ1

p

1 2�2p1�6p3ffiffiffiffiffiffiffiffiffiffi
6p2þ1

p 1þ2p1ffiffiffiffiffiffiffiffiffiffi
6p1þ1

p

1 2�6p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6p1þ1Þð6p2þ1Þ

p

1

2
666666664

3
777777775

(5.27)

The form of R0 in (5.27) does not lead directly to a simple analytical representation

for F4 R0ð Þ. However, Gehrlein (1999a) uses the result of Theorem 3.4 to obtain a

simplified representation

Some notation is required to describe how an analytical representation for

F4 R0ð Þ can be obtained with the aid of Theorem 3.4. Start by defining a function

F4 R0;þ;þ;þ;þð Þ ¼ F4 R0ð Þ, which is the joint probability that Xj
ffiffiffi
n

p 	 E Xj

� � ffiffiffi
n

p
for each j ¼ 1; 2; 3; 4. Extensions of F4 R0;þ;þ;þ;þð Þ are obtained in two possible
ways. First, some variables can be removed from the joint probability, which is

denoted by replacing the associated ‘þ’ with a ‘0’ in F4 R0;þ;þ;þ;þð Þ. For
example, the joint probability that Xj

ffiffiffi
n

p 	 E Xj

� � ffiffiffi
n

p
for each j ¼ 1; 2; 4 would be

denoted as F3 R0;þ;þ; 0;þð Þ. It is also possible to reverse the sign on some Xi
j

variables, which is denoted by replacing the associated ‘þ’ with a ‘�’ in

F4 R0;þ;þ;þ;þð Þ. For example, the probability that Xj
ffiffiffi
n

p 	 E Xj

� � ffiffiffi
n

p
for each

j ¼ 1; 2; 3 and X4

ffiffiffi
n

p � E X4

� � ffiffiffi
n

p
is denoted by F4 R0;þ;þ;þ;�ð Þ, which requires

an appropriate modification to R0 to account for the negation of variable Xi
4 so that

F4 R0;þ;þ;þ;�ð Þ is still a multivariate normal positive orthant probability.
With the four variables that are used to obtain R0 in (5.27), F3 R0;þ;þ; 0;�ð Þ

denotes the three-variate normal positive orthant probability that AMB, AMC and

CBA. The adjusted correlation matrix for this reduced positive orthant probability

would be obtained by removing all correlation that involve Xi
3 from R0 and then

reversing the sign on all remaining correlation terms that involve Xi
4.
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The representation for F4 R0ð Þ then follows from the identity relation

F4 R0;þ;þ;þ;þð Þ ¼ F2 R0;þ;þ; 0; 0ð Þ � F3 R0;þ;þ; 0;�ð Þ
� F3 R0;þ;þ;�; 0ð Þ þ F4 R0;þ;þ;�;�ð Þ: (5.28)

Theorem 3.4 requires that F4 R0;þ;þ;�;�ð Þ ¼ 0, and the remaining two and

three-variate orthant probabilities on the right hand side of (5.28) have simple

representations from Sheppard’s Theorem of Median Dichotomy. The same pro-

cedure can then be used to develop representations for the probabilities that

each of Candidates B and C are both the PMRW winners and the winners by

BR. After algebraic reduction, the resulting representation for CES
BR 3;1;DC�ð Þ

is obtained as

CES
BR 3;1;DC�ð Þ¼P

i; j;kð Þ 2 1;2;3ð Þ
2;1;3ð Þ
3;1;2ð Þ

( ) 1
2pSin

�1 1þ2piffiffiffiffiffiffiffiffiffi
6piþ1

p
	 


þ 1
4p Sin�1 2�2pj�6pkffiffiffiffiffiffiffiffiffi

6piþ1
p

	 

þSin�1 2�2pk�6pjffiffiffiffiffiffiffiffiffi

6piþ1
p

	 
� �� �

PS
PMRW 3;1;DCð Þ :

(5.29)

Computed values of CES
BR 3;1;DC�ð Þ from (5.29) are listed for each value of p1, p2

and p3 ¼ 0:00ð0:025Þ0:50 in Table 5.11. Columns of entries have been truncated

to account for the fact that CES
BR 3;1;DC�ð Þ is invariant under permutations of

p1, p2 and p3. It can be concluded from the values in Table 5.11 that the Condorcet

Efficiency of BR generally exceeds 0.90 for DC* as n ! 1.

The representation for CES
BR 3;1;DC�ð Þ in (5.29) can be used to make an

observation about the relationship between the Condorcet Efficiency of BR and

the measure of social homogeneity H pð Þ in (1.59) when either p1, p2 or p3 is equal
to zero. This analysis begins with the following result.

Lemma 5.1 PS
PMRW 3;1;DCð Þ ¼ 1 if either p1, p2 or p3 is equal to zero.

Proof PS
PMRW 3;1;DCð Þ is invariant under permutations of p1, p2 and p3 in (1.18),

so we assume arbitrarily that p3 ¼ 0. Using p3 ¼ 0 and p2 ¼ 1=2� p1 in the

representation for PS
PMRW 3;1;DCð Þ, the result follows directly from basic trigono-

metric identities. □

The value of CES
BR 3;1;DC�ð Þ in (5.29) is invariant under permutations of p1, p2

and p3, so we arbitrarily assume that p3 ¼ 0, p1 ¼ 1=4þ e and p2 ¼ 1=4� e in the

following result.

Theorem 5.2 For p vectors in DC with p3 ¼ 0, p1 ¼ 1=4þ e and p2 ¼ 1=4� e, or
any permutation on these values, CES

BR 3;1;DC�ð Þ increases as e increases on the
interval 0 � e � 1=4.
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Proof As a result of Lemma 5.1 and the assumed valued of p1,p2 and p3,

CES
BR 3;1;DC�ð Þ reduces to

CES
BR 3;1;DC�ð Þ ¼ 1

4
þ 3

4p
Sin�1 3þ 4effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 24e
p
	 


þ Sin�1 3� 4effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 24e

p
	 
� �

þ 1

4p
Sin�1 1� 12effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 24e
p
	 


þ Sin�1 1þ 12effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 24e

p
	 
� �

:

(5.30)

After taking the derivative of CES
BR 3;1;DC�ð Þ with respect to e with significant

algebraic reduction we obtain

d

de
CES

BR 3;1;DC�ð Þ ¼ 96e

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16e2

p : (5.31)

This derivative is positive for all DC vectors as defined above in the feasible range

with 0 � e � 1=4. □
The relationship between the Condorcet Efficiency of BR and the measure of

social homogeneity H pð Þ then follows as a result of the following observation.

Lemma 5.2 For p vectors in DC with p3 ¼ 0, p1 ¼ 1=4þ e and p2 ¼ 1=4� e, or
any permutation on these values, CES

BR 3;1;DC�ð Þ increases as H pð Þ increases on
the interval 0 � e � 1=4.

Table 5.11 Computed values of CES
BR 3;1;DC�ð Þ from Gehrlein (1999a).

p1 p2

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

0.000 1.000 0.950 0.933 0.922 0.914 0.908 0.904 0.901 0.899 0.898 0.898

0.025 0.950 0.941 0.931 0.923 0.918 0.913 0.910 0.908 0.907 0.906 0.906

0.050 0.933 0.931 0.923 0.917 0.913 0.910 0.907 0.906 0.905 0.904 0.905

0.075 0.922 0.923 0.917 0.913 0.909 0.907 0.905 0.904 0.903 0.903 0.904

0.100 0.914 0.918 0.913 0.909 0.907 0.905 0.903 0.902 0.902 0.902 0.903

0.125 0.908 0.913 0.910 0.907 0.905 0.903 0.902 0.902 0.902 0.902 0.903

0.150 0.904 0.910 0.907 0.905 0.903 0.902 0.901 0.901 0.901 0.902 0.903

0.175 0.901 0.908 0.906 0.904 0.902 0.902 0.901 0.901 0.902 0.902 0.904

0.200 0.899 0.907 0.905 0.903 0.902 0.902 0.901 0.902 0.902 0.903 0.905

0.225 0.898 0.906 0.904 0.903 0.902 0.902 0.902 0.902 0.903 0.904 0.906

0.250 0.898 0.906 0.905 0.904 0.903 0.903 0.903 0.904 0.905 0.906 0.898

0.275 0.898 0.907 0.906 0.905 0.905 0.905 0.905 0.906 0.907 0.898

0.300 0.899 0.908 0.907 0.907 0.907 0.907 0.907 0.908 0.899

0.325 0.901 0.910 0.910 0.909 0.909 0.910 0.910 0.901

0.350 0.904 0.913 0.913 0.913 0.913 0.913 0.904

0.375 0.908 0.918 0.917 0.917 0.918 0.908

0.400 0.914 0.923 0.923 0.923 0.914

0.425 0.922 0.931 0.931 0.922

0.450 0.933 0.941 0.933

0.475 0.950 0.950

0.500 1.000
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Proof The representation for H pð Þ (1.59) obviously increases as e increases for

0 � e � 1=4. The result then follows directly from Theorem 5.2. □

Lemma 5.2 indicates that there is some positive relationship between the Con-

dorcet Efficiency of BR and the measure of social homogeneity H pð Þ when either

p1, p2 or p3 is equal to zero. However this relationship does not hold for general p,
since the minimum CES

BR 3;1;DC�ð Þ from Theorem 5.2 results with e ¼ 0

when either p1, p2 or p3 is equal to zero and the associated value of

CES
BR 3;1;DC�ð Þ ¼ 0:8976 for that case. But, the measure H pð Þ is minimized

with IC, which is also included in DC, and we know from (5.26) that

CES
BR 3;1; IC�ð Þ ¼ 0:9012, so the positive relationship between H pð Þ and

CES
BR 3;1;DC�ð Þ is not strict in the space of all possible DC vectors.

Condorcet Efficiency and Strong Borda Paradox Probability with IC

Gehrlein (1996a) and Gehrlein and Lepelley (1998) extend the analysis in

the immediately preceding section to develop a formal relationship between

CES
WSR lð Þ 3;1; IC�ð Þ and P

WSR lð Þ
SgBP 3;1; IC�ð Þ. Candidate A will be both the PMRW

and the winner by Rule l with probability F4 Rð Þ ¼ F4 R;þ;þ;þ;þð Þ, where R
is defined in (5.11). It then follows that Candidate A will be both the PMRL and

the winner by Rule l with positive orthant probability F4 R;�;�;þ;þð Þ.
We start this analysis with an identity relationship that is developed in the same

fashion as the one in (5.28), with

F4 R;�;�;þ;þð Þ ¼ F2 R; 0; 0;þ;þð Þ � F3 R; 0;þ;þ;þð Þ
� F3 R;þ; 0;þ;þð Þ þ F4 R;þ;þ;þ;þð Þ: (5.32)

Due to the symmetry of IC with respect to candidates, F4 R;�;�;þ;þð Þ is

equivalent to the probabilities that each of Candidates B and C is both the PMRL

and the winner by Rule l. The two and three-variate normal orthant probabilities on

the right hand side of the identity in (5.32) all have simple representations from

Sheppard’s Theorem of Median Dichotomy, and after algebraic reduction:

P
WSR lð Þ
SgBP 3;1; IC�ð Þ ¼ CES

WSR lð Þ 3;1; IC�ð Þ �
Sin�1

ffiffiffi
1
6z

q� �
þ Sin�1

ffiffiffi
2
3z

q� �
p
2
þ Sin�1 1

3

� � ;

(5.33)

where z ¼ 1� l 1� lð Þ.
The symmetry of both CES

WSR lð Þ 3;1; IC�ð Þ and z around l ¼ 1=2 then leads to

the observation that

P
WSR lð Þ
SgBP 3;1; IC�ð Þ ¼ P

WSR 1�lð Þ
SgBP 3;1; IC�ð Þ: (5.34)
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Computed values of P
WSR lð Þ
SgBP 3;1; IC�ð Þ from (5.34) are identical to those that

were obtained first by Tataru and Merlin (1997) from the representation that is

shown in (3.25).

Another consideration is the conditional probability CLSWSR lð Þ 3;1; IC�ð Þ that the
PMRW is ranked last by Rule l, given that a PMRW exists as n ! 1 with IC.

The probability that Candidate A is the PMRW and is ranked last by Rule l is

obtained from F4 R;þ;þ;�;�ð Þ. By employing the same approach that was used

to obtain the representation for P
WSR lð Þ
SgBP 3;1; IC�ð Þ in (5.34), it is easy to prove that

CLSWSR lð Þ 3;1; IC�ð Þ ¼ P
WSR lð Þ
SgBP 3;1; IC�ð Þ: (5.35)

Tataru and Merlin (1997) also made this observation.

Condorcet Efficiency of CSRs with IC

Let CES
CSR kð Þ m;1; IC�ð Þ denote the Strict Condorcet Efficiency of CSR Rule Cm

k as

n ! 1 with IC*. Conjecture 5.1 suggests that CES
CSR kð Þ m;1; IC�ð Þ is maximized

with k � m=2, and Gehrlein and Fishburn (1981a) perform a study that proves this

result to be true.

Consider an election on m candidates C1;C2; . . . ;Cmf g for which we wish to

determine the joint probability that Candidate C1 is both the PMRW and the winner

by Rule Cm
k . The first step of the development of a representation for this probability

is the definition of 2 m� 1ð Þ variables that are defined on the preference ranking of

the ith voter during the generation of a random voter preference profile under the

assumption of IC.

For 1 � j � m� 1

Yi
j ¼ þ1 if C1 � Cjþ1

� 1 if Cjþ1 � C1: (5.36)

For m � j � 2 m� 1ð Þ
Yi
j ¼ þ1 if C1 is among k top ranked and Cjþ2�m is not

� 1 if Cjþ2�m is among k top ranked and C1 is not

0 otherwise: (5.37)

Based on the variable definitions in (5.36) and (5.37), Candidate C1 will be both

the PMRW and the winner by Rule Cm
k if Xj > 0 for all 1 � j � 2 m� 1ð Þ. The

symmetry of IC with respect to candidates also leads to E
�
Xi
j

� ¼ 0 for all

1 � j � 2 m� 1ð Þ, so the logic of previous discussion can be used to get a repre-

sentation for the limiting joint probability as n ! 1 that Candidate C1 will be both

the PMRW and the winner by Rule Cm
k if Xj > 0 for all 1 � j � 2 m� 1ð Þ, which is

equivalent to the multivariate normal positive orthant probability F2 m�1ð Þ Qð Þ.
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Arguments that are based on combinatorics are used to obtain the correlation

matrix Q from the variable definitions in (5.36) and (5.37). Let qi;j denote the matrix

terms in Q, and:

qi; i ¼ 1 for all 1 � i � 2 m� 1ð Þ
qi; j ¼ 1=3 for all 1 � i; j � m� 1 and i 6¼ j

qi; j ¼ 1=2 for all m � i; j � 2 m� 1ð Þ and i 6¼ j

qi; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k m� kð Þ
m m� 1ð Þ

s
for all i; j with 1 � i � m� 1;

and m � j � 2 m� 1ð Þ and j 6¼ m� 1þ i

qi; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k m� kð Þ
2m m� 1ð Þ

s
for all i; j with 1 � i � m� 1 and j ¼ m� 1þ i: (5.38)

The symmetry of IC with respect to candidates leads to a representation for

CES
CSR kð Þ m;1; IC�ð Þ from

CES
CSR kð Þ m;1; IC�ð Þ ¼ mF2 m�1ð Þ Qð Þ

PS
PMRW 3;1; ICð Þ : (5.39)

Based on the definition of the correlation terms in (5.38), Q is identical for Rule

Cm
k and Rule Cm

m�k, so it then follows directly from (5.39) that

Theorem 5.3 CES
CSR kð Þ m;1; IC�ð Þ ¼ CES

CSR m�kð Þ m;1; IC�ð Þ.
It is also easily seen from the definitions in (5.38) that all correlation terms in Q

increase as k increases for all values in the range 1 � k � m=2. The result from

Slepian (1962) can then be applied to show that

Theorem 5.4 CES
CSR kþ1ð Þ m;1; IC�ð Þ 	 CES

CSR kð Þ m;1; IC�ð Þ; for k � m� 2ð Þ=2.
CES

CSR kð Þ m;1; IC�ð Þ is therefore maximized by Rule Cm
m=2 for even m and by

both Rule Cm
m�1ð Þ=2 and Rule Cm

mþ1ð Þ=2 for odd m, verifying Conjecture 5.1 for the

limiting case of IC as n ! 1.

Borda Efficiency of CSRs with IC

Conjecture 5.8 changed the focus of evaluating voting rules from their Condorcet

Efficiency to considering instead their Borda Efficiency. Let BES
CSR kð Þ m;1; ICð Þ

denote the limiting probability as n ! 1 with the assumption of IC that CSR Rule

Cm
k selects the same candidate as the winner by BR. Gehrlein (1981c) develops a

representation for BES
CSR kð Þ m;1; ICð Þ by using the same general procedure that was

used in the immediately preceding section. Define 2 m� 1ð Þ variables that are

denoted as Y0i
j for 1 � j � 2 m� 1ð Þ on the preference ranking of the ith voter during

the generation of a random voter preference profile under the assumption of IC.
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The m� 1 different Y0i
j variables with m � j � 2 m� 1ð Þ are identical to those in

(5.37), and lead to the result that Candidate C1 is the winner by Rule Cm
k when

Y0
j > 0 for m � j � 2 m� 1ð Þ. The m� 1 different Y 0i

j variables with 1 � j � m� 1

are changed from (5.36), and they determine the contribution that a given prefer-

ence ranking on candidates makes toward the result that Candidate C1 will be the

winner by BR, so that C1 is the winner by BR when Y0
j > 0 for 1 � j � m� 1. The

resulting correlation matrix from these variables is found to be Q0, with specific

correlation terms q0i; j defined by

q0i; i ¼ 1 for all 1 � i � 2 m� 1ð Þ
q0i; j ¼ 1=2 for all 1 � i; j � m� 1 and i 6¼ j

q0i; j ¼ 1=2 for all m � i; j � 2 m� 1ð Þ and i 6¼ j

q0i; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kðm� kÞ
4ðmþ 1Þðm� 1Þ

s
for all i; j with 1 � i � m� 1;

and m � j � 2 m� 1ð Þ and j 6¼ m� 1þ i

q0i; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kðm� kÞ
ðmþ 1Þðm� 1Þ

s
for all i; j with 1 � i � m� 1 and j ¼ m� 1þ i:

(5.40)

The symmetry of IC with respect to candidates leads to a representation for

BES
CSR kð Þ m;1; ICð Þ from

BES
CSR kð Þ m;1; ICð Þ ¼ mF2 m�1ð Þ Q0ð Þ: (5.41)

The definitions of the correlation terms in (5.40) indicate that Q0 is identical for
Rule Cm

k and Rule Cm
m�k, so it then follows directly from (5.41) that

Theorem 5.5 BES
CSR kð Þ m;1; ICð Þ ¼ BES

CSR m�kð Þ m;1; ICð Þ.
It follows from the definitions in (5.40) that all correlation terms inQ0 increase as

k increases for all values in the range 1 � k � m=2, and the result from Slepian

(1962) can then be applied to show that

Theorem 5.6 BES
CSR kþ1ð Þ m;1; ICð Þ 	 BES

CSR kð Þ m;1; ICð Þ; for k � m� 2ð Þ=2.
Then BES

CSR kð Þ m;1; ICð Þ is maximized by Rule Cm
m=2 for even m and by both

Rule Cm
m�1ð Þ=2 and Rule Cm

mþ1ð Þ=2 for odd m, which verifies Conjecture 5.8 for the

limiting case of n ! 1.

A simple representation for the special case of m ¼ 3 is obtained in Gehrlein and

Fishburn (1978b), where the form of F4 Q0ð Þ was found to have the specific form

that is required for a representation from Cheng (1969), with

BES
CSR 1ð Þ 3;1; ICð Þ ¼ 41

48
� 3

4p2
Sin�1

ffiffiffiffiffi
13

16

r !( )2

� 0:758338: (5.42)
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The representation that is reported in Gehrlein and Fishburn (1978b) has a minor

typographical error for this representation.

Condorcet Efficiency of PER and NPER with IC

The same type of analysis that is based on obtaining limiting representations for the

Condorcet Efficiency of voting rules is used in Gehrlein (1993) to consider PER and

NPER as n ! 1 with IC. It is proved that

CES
PER 3;1; IC�ð Þ ¼ CES

NPER 3;1; IC�ð Þ: (5.43)

A representation for the Condorcet Efficiency of these two voting rules is then

obtained as

CES
PER 3;1;IC�ð Þ¼CES

NPER 3;1;IC�ð Þ

¼

�1� 3

4p2
Sin�1

ffiffiffi
1

3

r ! !2

þ 3

16p2
3pþSin�1 1

3

	 
	 
2

þ 3

4p
Sin�1

ffiffiffi
1

6

r !
� 9

8p2

ð1=3

0

Sin�1 x= 1þ2xð Þf gffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p dx

2
66666664

3
77777775

PS
PMRW 3;1;ICð Þ �0:9629 (5.44)

Based on the results that have been obtained for the limiting case for IC* as

n ! 1, PER and NPER outperform BR on the basis of Strict Condorcet Efficiency

in three-candidate elections, while BR outperforms both PR and NPR.

5.3.2.2 Representations Based on IAC

A number of IAC-based representations for the Condorcet Efficiency of voting

rules were obtained by using the partitioning process and algebraic summation

procedure that was described in Chap. 1. The first came from Gehrlein (1982),

where representations are developed for the Strict Condorcet Efficiency of PR,

NPR, PER and NPER for three-candidate elections under the assumption of IAC*

for n ¼ 9 12ð Þ . . . :

CES
PR 3; n; IAC�ð Þ ¼ 119n4 þ 1348n3 þ 5486n2 þ 10812nþ 10395

135ðnþ 1Þðnþ 3Þ2ðnþ 5Þ (5.45)

CES
NPR 3; n; IAC�ð Þ ¼ 68n3 þ 501n2 þ 834n� 315

108ðnþ 1Þðnþ 3Þðnþ 5Þ (5.46)
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CES
PER 3; n; IAC�ð Þ ¼ 523n4 þ 6191n3 þ 25117n2 þ 40749nþ 22140

540ðnþ 1Þðnþ 3Þ2ðnþ 5Þ (5.47)

CES
NPER 3; n; IAC�ð Þ ¼ 131n4 þ 1542n3 þ 6144n2 þ 9018nþ 3645

135ðnþ 1Þðnþ 3Þ2ðnþ 5Þ : (5.48)

A minor clarification must be made regarding the definition of the existence of a

strict winner by PER and NPER in CES
PER 3; n; IAC�ð Þ and CES

NPER 3; n; IAC�ð Þ.
Suppose that Candidate A is the PMRW. It will also be the strict winner by PER

whenever both APB and APC. Candidate A will not be eliminated in the first round

if Candidates B and C are tied by PR, no matter how the tie is broken to determine

which of these two losing candidates is to be eliminated, so Candidate A is still

counted as a strict winner when such a tie exists. The same argument is valid for

NPER.

A representation for CES
BR 3; n; IAC�ð Þ is developed with the partitioning process

in Gehrlein and Lepelley (2001) for n ¼ 9 12ð Þ . . . , with

CES
BR 3; n; IAC�ð Þ ¼ 123n4 þ 1416n3 þ 5722n2 þ 10104nþ 8235

135ðnþ 1Þðnþ 3Þ2ðnþ 5Þ : (5.49)

Computed values of CES
BR 3; n; IAC�ð Þ from (5.49) are verified by values that

were obtained by enumeration in Gehrlein (1992, 1995), and the limiting value

CES
BR 3; n; IAC�ð Þ is consistent with the value of 41/45 that was obtained with the

traditional partitioning approach in Gehrlein (1992). Berg (1985b) also obtains

the same limiting value for CES
PR 3;1; IAC�ð Þ. The form of each of these repre-

sentations was also replicated with EUPIA in Gehrlein (2002b).

Computed values of CES
VR 3; n; IAC�ð Þ are obtained from (5.45) through (5.49)

for each VR 2 PR;NPR;PER;NPER;BRf g, and the results are listed in Table 5.12

for each n ¼ 9 12ð Þ189, along with the value as n ! 1.

The results in Table 5.12 show that PER and NPER consistently have greater

Condorcet Efficiency than BR, which consistently dominates PR, which in turn

consistently dominates NPR. It is also observed that the limiting results as n ! 1
are approached quite quickly as n increases.

Cervone et al. (2005) develop a representation for the Condorcet Efficiency of

WSRs with weights 1; l; 0ð Þ under IAC as n ! 1, which is denoted by

CES
WSR lð Þ 3;1; IAC�ð Þ. This was done by utilizing the procedure that was outlined

in Chap. 3. The subspace of D5 that represents all feasible IAC voting situations

for which Rule l and PMR both have the same winner is partitioned into pyramids,

and CES
WSR lð Þ 3;1; IAC�ð Þ is determined as the ratio of the combined volumes

of these pyramids, compared to the volume of the subspace of D5 for which a

PMRW exists. The resulting representation is given by:
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CES
WSR lð Þ 3;1; IAC�ð Þ

¼ 714� 1647lþ 335l2 þ 1534l3 � 1036l4 þ 65l5 þ 28l6 þ 8l7

405ð1� lÞ3ð2� lÞð1þ lÞ ;

for 0 � l � 1=2 (5.50)

8�126lþ1163l2�8395l3þ17522l4þ4496l5�16764l6þ5984l7þ192l8

1620l3ð1þlÞð2�lÞð3l�1Þ ;

for 1=2� l� 1: (5.51)

Computed values of CES
WSR lð Þ 3;1; IAC�ð Þ from (5.50) and (5.51) are listed in Table

5.13 for each l ¼ 0:00 0:05ð Þ1:00.
These computed values verify the limiting results for PR, NPR and BR from

Table 5.12. The maximum value of CES
WSR lð Þ 3;1; IAC�ð Þ exists at l � 0:37228, so

that BR is not the most Condorcet efficient WSR with IAC as n ! 1, verifying

earlier results that suggest that a WSR closer to PR becomes the most Condorcet

Efficient as voting situations tend to reflect greater degrees of dependence among

voters’ preference rankings on candidates. A more detailed comparison of these

limiting Condorcet Efficiency results with IAC to the earlier results with IC will be

presented after results with the assumption of MC are considered.

The study by Cervone et al. (2005) was motivated by a reexamination of some

results that were developed in Van Newenhizen (1992) that suggested that

CES
WSR lð Þ 3;1; IAC�ð Þ is maximized by BR. Van Newenhizen (1992) did develop

Table 5.12 Condorcet Efficiency values with IAC* for PR, NPR, PER, NPER and BR (from

Gehrlein 1982; and Gehrlein and Lepelley 2001)

n VR

PR NPR BR PER NPER

9 0.8508 0.5365 0.8825 0.9523 0.9428

21 0.8607 0.5853 0.8943 0.9611 0.9521

33 0.8666 0.6005 0.8995 0.9637 0.9633

45 0.8700 0.6079 0.9022 0.9650 0.9652

57 0.8721 0.6123 0.9039 0.9657 0.9663

69 0.8736 0.6152 0.9051 0.9662 0.9670

81 0.8747 0.6173 0.9059 0.9665 0.9675

93 0.8755 0.6188 0.9066 0.9668 0.9679

105 0.8761 0.6200 0.9071 0.9670 0.9682

117 0.8766 0.6210 0.9075 0.9671 0.9684

129 0.8771 0.6218 0.9078 0.9672 0.9686

141 0.8774 0.6224 0.9081 0.9674 0.9687

153 0.8777 0.6230 0.9083 0.9675 0.9689

165 0.8780 0.6234 0.9085 0.9675 0.9690

177 0.8782 0.6239 0.9087 0.9676 0.9691

189 0.8784 0.6242 0.9088 0.9676 0.9691

1 0.8815 0.6296 0.9111 0.9685 0.9704
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some other correct representations with this particular proof procedure that is

based on geometry when it was used for IAC as n ! 1. However, it is shown in

Cervone et al. (2005) that the absence of spherical symmetry in the probability

distribution that describes the likelihood that various voting situations are observed

makes this particular proof procedure insufficient to be certain that any resulting

representations are correct.

Spherical symmetry applies to a number of different probability distributions,

including that of IC as n ! 1, where the resulting multivariate normal probability

distribution that voting situations are observed is certainly spherically symmetric.

As a result, representations that are obtained with this procedure will be correct with

the assumption of IC as n ! 1, as in the development of the representation that is

given in (3.25). However, spherical symmetry does not apply to the case of IAC as

n ! 1, so there are no guarantees that representations that are obtained with this

particular procedure will be correct in that case. Some of the representations in Van

Newenhizen (1992) are therefore correct, while some are not. Similar problems

arise in Saari and Valognes (1999). There is no simple way to determine a priori

when this procedure will work with IAC, but there are many other distributions for

which the procedure will obtain correct representations.

5.3.2.3 Representations Based on MC

A number of results have been obtained regarding the Strict Condorcet Efficiency

of voting rules with the assumption of MC. Gehrlein and Fishburn (1981a) use some

simple symmetry arguments to prove that

Theorem 5.7 CES
PR 3; L;MC�ð Þ ¼ CES

NPR 3; L;MC�ð Þ.
This result is extended to the two-stage elimination rules for three-candidate

elections in Gehrlein and Lepelley (1999), with

Theorem 5.8 CES
PER 3; L;MC�ð Þ ¼ CES

NPER 3; L;MC�ð Þ.

Table 5.13 CES
WSR lð Þ 3;1; IAC�ð Þ from Cervone et al. (2005)

l CES
WSR lð Þ 3;1; IAC�ð Þ l CES

WSR lð Þ 3;1; IAC�ð Þ
0.00 0.8815 0.50 0.9111

0.05 0.8899 0.55 0.8943

0.10 0.8979 0.60 0.8720

0.15 0.9055 0.65 0.8461

0.20 0.9123 0.70 0.8176

0.25 0.9182 0.75 0.7874

0.30 0.9227 0.80 0.7560

0.35 0.9252 0.85 0.7240

0.40 0.9249 0.90 0.6919

0.45 0.9208 0.95 0.6603

0.50 0.9111 1.00 0.6296
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Representations for the Condorcet Efficiency of voting rules are obtained with

an extensive partitioning procedure in Gehrlein and Lepelley (1999), and these

results are verified and extended by EUPIA in Gehrlein (2002b). A summary of

these representations is given by:

CES
PR 3; L;MC�ð Þ ¼ CES

NPR 3; L;MC�ð Þ ¼
661L5 þ 3216L4 þ 6640L3 þ 7200L2 þ 4264Lþ 1104

8ðLþ 1Þð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ ; for L ¼ 4 2ð Þ . . .

ðLþ 1Þð661L4 þ 1894L3 þ 2191L2 þ 924Lþ 90Þ
8Lð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ ; for L ¼ 5 2ð Þ . . . :

(5.52)

CES
PER 3; L;MC�ð Þ ¼ CES

NPER 3; L;MC�ð Þ ¼
829L5 þ 4164L4 þ 8740L3 þ 9480L2 þ 5416Lþ 1296

8ðLþ 1Þð109L4 þ 446L3 þ 749L2 þ 616Lþ 240Þ ;

for L ¼ 4 2ð Þ . . . : (5.53)

CES
BR 3;L;MC�ð Þ¼

10594L6þ54786L5þ118885L4þ136560L3þ95196L2þ40304Lþ4160

108LðLþ1Þð109L4þ446L3þ749L2þ616Lþ240Þ ;

for L¼ 4 6ð Þ . . .
10594L5þ44192L4þ74693L3þ61867L2þ31409Lþ5885

108Lð109L4þ446L3þ749L2þ616Lþ240Þ ;

for L¼ 5 6ð Þ . . . :
(5.54)

The representations in (5.52)–(5.54) were used to compute values of

CES
VRð3; L;MC�Þ for each VR 2 PR;NPR;BR;PER;NPERf g with L ¼ 10 6ð Þ52,

along with limiting values as n ! 1. The results are listed in Table 5.14, along

with the expected number of voters, E nð Þ, for each L.
The results in Table 5.14 are generally consistent with patterns that have been

observed with IC* and IAC*. That is, BR outperforms both PR and NPR, and BR is

dominated by both PER and NPER.

5.3.3 Summary of Condorcet Efficiency Results

The most clearly consistent result that is observed for the Condorcet Efficiency of

voting rules in three-candidate elections with IC*, IAC* and MC* is seen in the
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limiting results for PR, NPR, BR, PER and NPER that are summarized in Table

5.15 from calculations that are performed above.

BR significantly dominates both PR and NPR with IC* and MC* on the basis

of Condorcet Efficiency. The introduction of a small degree of dependence among

voters’ preferences with IAC* produces the same general result, except that the

efficiency of PR is significantly increased and the efficiency of NPR is signifi-

cantly decreased. It was observed that BR maximizes Condorcet Efficiency as

n ! 1 with IC, but as the degree of dependence increases beyond IAC for P–E

models, the most efficient voting rule consistently moves closer to PR. The results

in Table 5.15 also show that both PER and NPER dominate BR. The differences

in the efficiencies of BR and the optimal WSR are not found to be very large,

and computed value of CES
BR 3;1;DC�ð Þ in Table 5.11 indicate that the efficiency

of BR remains quite high over the range of DC probabilities. The use of BR in

three-candidate elections can generally be expected to produce relatively high

efficiencies.

The simulation results in Table 5.5 indicate that the dominance of BR over both

PR and NPR becomes increasingly pronounced as m increases. For the case of

general m, the CSR that requires voters to vote for half of the candidates is found to

maximize both the Condorcet Efficiency and the Borda Efficiency for CSRs with IC

as n ! 1. The results of Table 5.4 indicate that the Condorcet Efficiency of this

optimal CSR is significantly greater than the expected efficiency of PR and NPR

with IC* as n ! 1.

Table 5.14 Condorcet Efficiencies of voting rules with MC*

L E nð Þ VR

PR, NPR BR PER, NPER

10 30 0.7424 0.9060 0.9435

16 48 0.7479 0.9040 0.9463

22 66 0.7506 0.9029 0.9476

28 84 0.7521 0.9023 0.9483

34 102 0.7531 0.9019 0.9487

40 120 0.7538 0.9016 0.9490

46 138 0.7544 0.9014 0.9492

52 156 0.7548 0.9013 0.9494

1 1 0.7580 0.8999 0.9507

Table 5.15 Summary of limiting Condorcet Efficiency results for IC*, IAC* and MC*

VR IC* IAC* MC*

PR 0.7572 0.8815 0.7580

NPR 0.7572 0.6296 0.7580

BR 0.9012 0.9111 0.8999

PER.20 0.9629 0.9685 0.9507

NPER 0.9629 0.9704 0.9507
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5.4 The Impact of Social Homogeneity on Efficiency

Results that were obtained in the previous section have given a strong indication that

there is some relationship between the Condorcet Efficiency of voting rules and the

degree of dependence that exists among voters’ preference rankings on candidates in

the transition from IC to IAC. While the results regarding Borda’s Paradox in Chap.

3 clearly indicate that no voting rule will always elect the PMRW, intuition suggests

that we should observe a relationship for Condorcet Efficiency that parallels what

was observed in the analysis of Condorcet’s Paradox. In particular, as voters have

preferences on candidates that reflect increased levels of social homogeneity or

group mutual coherence, voting rules should tend to show an increased level of

Condorcet Efficiency, and we refer to this as the Efficiency Hypothesis. The studies
that have been surveyed to this point have not specifically focused on the ideas

underlying the Efficiency Hypothesis, but some studies have done so.

Just as in the studies that considered the probability that a PMRW exists, the

earliest work that considered the Efficiency Hypothesis was typically based on

Monte-Carlo simulation analysis and computer enumeration techniques while

searching for links between Condorcet Efficiency and measures of social homoge-

neity. A survey of much of this early work indicates that there is a substantial

amount of conflicting evidence regarding the Efficiency Hypothesis. Two basic

measures of social homogeneity have been the primary focus of these studies. The

first of these measures is H pð Þ from (1.59), with

H pð Þ ¼
X6
i¼1

p2i : (5.55)

The second measure of social homogeneity that we consider is H0 pð Þ and this

measure is directly associated with Kendall’s Coefficient of Concordance, which is

a standard measure of agreement between sets of ordinal rankings, with

H0 pð Þ ¼ 1

2

p5 þ p6 � p1 � p2ð Þ2þ p2 þ p4 � p3 � p5ð Þ2þ
p1 þ p3 � p4 � p6ð Þ2

" #
: (5.56)

These are population specific measures of social homogeneity, as they are

defined in (5.55) and (5.56), since they are based on the pi values of a population

of possible voters. Each can easily be changed to represent situation specific

measures of social homogeneity H nð Þ and H0 nð Þ from (5.55) and (5.56) respec-

tively by replacing the pi values for a population with the associated ni=n values for
a specified voting situation n. The measure H0 nð Þ was considered in Fishburn

(1973b), where it was found to have a relatively strong connection with the

probability that a PMRW exists in randomly generated voting situations.
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5.4.1 Population Specific Measures of Homogeneity

An analysis of the relationship between the Condorcet Efficiency of voting rules

and a population specific measure of social homogeneity is performed in Gehrlein

(1995). The study is based upon the computer enumeration of all possible voting

situations under the P–E model scenario, where the parameter a of a P–E distribu-

tion is associated with the degree of dependence, and consequently the degree of

social homogeneity, among voters’ preferences.

The representation for CES
VR 3; 25;PE að Þ�ð Þ in (5.3) was used directly to obtain

expected values of efficiencies with the specific value of n ¼ 25 for each

VR 2 PR;NPR;PER;NPER;BRf g with each a ¼ 0; 1; 2; 3; 4; 5; 10; 15; 20; 25.
These values are listed in Table 5.16 along with computed values for the condi-

tional expected value E H0 nð Þf g, given that a PMRW exists.

The results in Table 5.16 clearly show that the expected value of H0 nð Þ increases
as a increases in P–E models, giving further support to fact that a represents a rough
measure of population specific homogeneity.

There will obviously be differences in the Condorcet Efficiencies that are

obtained by each VR, but the Efficiency Hypothesis is found to be valid for

each of PR, PER, NPER and BR as a increases. However, the Condorcet Effi-

ciency of NPR is found to behave in a dramatically contrary manner, compared to

what the Efficiency Hypothesis suggests, by consistently decreasing as a
increases. Moreover, the Condorcet Efficiency of NPR exhibits very poor perfor-

mance with large a. These results do give support to the Efficiency Hypothesis,

but there are some contradictory findings. We also observe that PR has greater

efficiency that BR for all a 	 3, which reinforces the results from the previous

section that increased levels of dependence among voters’ preferences leads to a

WSR with maximum efficiency that is more like PR than BR in three-candidate

elections.

Table 5.16 Computed values of CEVR 3; 25;PE að Þ�ð Þ (from Gehrlein 1995)

a E H0 nð Þf g VR

PR NPR BR PER NPER

0 0.0432 0.7365 0.6515 0.8746 0.9412 0.9513

1 0.1873 0.8630 0.5902 0.8965 0.9624 0.9627

2 0.2914 0.9081 0.5521 0.9091 0.9714 0.9701

3 0.3708 0.9333 0.5524 0.9191 0.9775 0.9758

4 0.4337 0.9492 0.4958 0.9273 0.9819 0.9801

5 0.4850 0.9599 0.4711 0.9341 0.9851 0.9835

10 0.6447 0.9833 0.3701 0.9556 0.9931 0.9922

15 0.7286 0.9908 0.3008 0.9666 0.9961 0.9955

20 0.7804 0.9942 0.2523 0.9733 0.9974 0.9971

25 0.8156 0.9960 0.2169 0.9778 0.9982 0.9980
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5.4.2 Situation Specific Measures of Homogeneity

A Monte-Carlo simulation study in Gehrlein (1987) examines the Efficiency

Hypothesis from the perspective of profile specific measures of social homogeneity

H nð Þ and H0 nð Þ with the assumption of MC* as L ! 1. A value of xi was

randomly generated from the closed interval 0; 1½ � for each 1 � i � 6 and values

of the proportion, qi, of all voters with each preference ranking in the given

voting situation was obtained by normalizing the xi values. That is, each xi was
divided by

P6
j¼1 xj. It was then determined if a PMRW existed in the voting

situation, based on the resulting qi values, and each observation was discarded for

which a PMRW was not found to exist. The process was repeated until 1,000,000

voting situations were found for which a PMRW existed.

The voting situations were then partitioned into quintiles of increasing levels of

homogeneity for both H nð Þ and H0 nð Þ, and the proportion of voting situations

within each quintile was found for which the WSR Rule l elected the PMRW for

each l ¼ 0:0 0:1ð Þ1:0. The resulting proportion estimates of CES
WSR lð Þ 3;1;MC�ð Þ

for quintiles of H nð Þ are listed in Table 5.17.

The Condorcet Efficiency generally increased across quintiles, discounting a

small but consistent reversal in going from the first to the second quintile, as the

degree of social homogeneity increased for l< 0:5. Thus, the anticipated results

from the Efficiency Hypothesis are observed for l< 0:5. However the exact

opposite result was observed for l> 0:5. With l ¼ 0:5 there was no change in

Condorcet Efficiency as the quintiles changed. The average efficiency within each

quintile was taken over all of the Rule l values, and no change in the average

efficiency for Rule l was found as the quintiles changed.

These results are very similar to those that were encountered when population

specific measures of social homogeneity were being considered. That is, the

Efficiency Hypothesis is valid for voting rules that are like PR, with l ¼ 0, when

H nð Þ is the measure of social homogeneity. However, very contrary results are

observed for voting rules that are like NPR, with l ¼ 1. A possible explanation for

this phenomenon if that H nð Þ is a poor measure of social homogeneity, which leads

us to evaluate what happens when the measure that is based on Kendall’s Coeffi-

cient of Concordance is used instead.

Table 5.18 lists computed values of the resulting proportion estimates of

CES
WSR lð Þ 3;1;MC�ð Þ for quintiles of H0 nð Þ.
For l � 0:2, the Condorcet Efficiency values in Table 5.18 increase significantly

as the level of homogeneity increases. But, then efficiency decreases significantly

as the level of homogeneity increases for l 	 0:8. For 0:2< l< 0:8, efficiency
consistently decreases to a minimum value for some quintile and then increases

over the remaining quintiles. It should be noted that this result is generally consis-

tent with observations in Fishburn (1973b) where IC was being used with BR. As a

result, there is no consistently clear indication of the connection between social

homogeneity, as measured by H0 nð Þ, and Condorcet Efficiency as Rule l changes.

However, if we take the average value of Condorcet Efficiency over all Rule l
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within each quintile, there is a definite increase in the average efficiency as homo-

geneity increases. On average, we do see support for the Efficiency Hypothesis.

However, PR behaves exactly as expected with both measures of homogeneity,

while NPR behaves exactly the opposite of what is expected with both measures.

5.4.3 Strong Condorcet Efficiency of Voting Rules

Another measure of the effectiveness of voting rules is their propensity to select the

Strong PMRW. A Strong PMRW is a candidate that is ranked as most preferred by

more than half of all voters, and a Strong PMRL is defined in the obvious fashion.

The existence of either a Strong PMRW or a Strong PMRL is a very powerful

restriction on voting situations. Intuition suggests that all voting rules should be

very good at selecting the PMRW in such voting situations, since some candidate

will either be widely preferred, or widely disliked, among the electorate. But, it will

be seen that there are significant limits on the generality of this notion.

Lepelley and Merlin (1998) prove that PR is the only WSR that must elect the

Strong PMRW, when there is one, and this result leads us back to further consider-

ation of Observation 5.3. Lepelley et al. (2000b) note that as a increases to a large

number in a P–E probability model, there is an increasing likelihood that many of

the preference rankings in a randomly generated voter preference profile will have

the same ranking as the one that is assigned to the first voter. This would then lead

to having resulting voting situations with a high probability that a Strong PMRW

exists, which then assures us that PR will elect that PMRW.

To illustrate this point, Table 5.19 lists computed values of PS
PMRW 3; n;PE að Þð Þ

with n ¼ 101 for each a 2 0; 1; 2; 3; 4; 5; 10; 15; 20; 25f g, along with the probabil-

ity P
Sg
PMRW 3; n;PE að Þð Þ that a Strong PMRW exists, and the Condorcet Efficiency of

BR under the assumption PE að Þ# that all voting situations with a Strong PMRW

from PE að Þ are equally likely to be observed.

We already knew that PS
PMRW 3; n;PE að Þð Þ increases as a increases, and the

significant increase in PSg
PMRW 3; 101;PE að Þð Þ agrees with the intuition from Lepelley

Table 5.19 Values of PS
PMRW 3; n;PE að Þð Þ, PSg

PMRW 3; n;PE að Þð Þ and CES
BR 3; n;PE að Þ#
� �

a PS
PMRW 3;101;PE að Þð Þ PSg

PMRW 3;101;PE að Þð Þ CES
BR 3;101;PE að Þ#
� �

0 0.9131 0.0008 0.999

1 0.9376 0.5804 0.957

2 0.9550 0.7573 0.940

3 0.9665 0.8368 0.937

4 0.9742 0.8812 0.939

5 0.9796 0.9092 0.942

10 0.9916 0.9650 0.957

15 0.9954 0.9814 0.967

20 0.9971 0.9884 0.973

25 0.9980 0.9921 0.977
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et al. (2000b). Since PR must elect the PMRW when a Strong PMRW exists, a

dramatic increase in P
Sg
PMRW 3; n;PE að Þð Þ must then result in very high values of

CES
PR

�
3; n;PE að Þ#� for large a. Moreover, the behavior of CES

BR

�
3; 101;PE að Þ#�

is not consistent as a increases, and BR clearly is not receiving the same benefit

from the existence of a Strong PMRW that PR gets, even for a ¼ 25.

Sanver (2002) and Woeginger (2003) present restrictions on n and m such that

some WSR can guarantee that it will both always elect a Strong PMRW whenever

one exists and prohibit the election of a Strong PMRL whenever one exists. It is

shown that some WSR can only guarantee both results under the very restrictive

conditions that n 2 2; 3; 4; 5; 6; 8; 10; 12f g and m> 2.

Lepelley and Gehrlein (2000) develop representations for the Strong Condorcet

Efficiency of PR, NPR, PER, NPER and BR under the assumption of IAC#with:

CES
PR 3; n; IAC#
� � ¼ CES

PER 3; n; IAC#
� � ¼ 1; for n ¼ 9 2ð Þ . . . (5.57)

CES
NPR 3; n; IAC#
� � ¼ 197n3 þ 1145n2 þ 1623n� 405

108ð3nþ 7Þðnþ 1Þðnþ 5Þ ;

for n ¼ 9 12ð Þ . . . (5.58)

CES
NPER 3; n; IAC#

� � ¼ 79n2 þ 546nþ 675

27ð3nþ 7Þðnþ 5Þ ; for n ¼ 9 6ð Þ . . . (5.59)

CES
BR 3; n; IAC#
� �

¼ 2ð39n5 þ 690n4 þ 4370n3 þ 12420n2 þ 17991nþ 13770Þ
27ðnþ 1Þðnþ 3Þðnþ 5Þðnþ 7Þð3nþ 7Þ ;

for n ¼ 9 12ð Þ . . . : (5.60)

Computed values of CES
VR 3; n; IAC#
� �

are obtained from (5.58) through (5.60)

with each VR 2 NPR;NPER;BRf g for each n ¼ 9 12ð Þ129, and for the limiting

value as n ! 1. The results are listed in Table 5.20, and they indicate that

CES
VR 3; n; IAC#
� �

increases as odd n increases for each VR 2 NPR;NPER;BRf g.
The very high levels of Condorcet Efficiency of PR from (5.57) reflect the result

that would be anticipated when one candidate is very popular. High levels of

Condorcet Efficiency are also observed for both NPER and BR in Table 5.20.

However, NPR performs very poorly, even with the very strong restriction that a

Strong PMRW must exist.

Lepelley and Gehrlein (2000) also develop representations for the Condorcet

Efficiency of PR, NPR, PER, NPER and BR under the assumption of IAC#
b 0ð Þ,

which assumes that all voting situations with a Strong PMRW that also have single-

peaked preferences are equally likely to be observed. These representations are

given respectively in (5.61)–(5.64).
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CES
PR 3; njIAC#

b 0ð Þ
� �

¼ CEPERS 3; njIAC#
b 0ð Þ

� �
¼ 1; for n ¼ 9 2ð Þ . . . (5.61)

CES
NPR 3; njIAC#

b 0ð Þ
� �

¼ 2ðn� 1Þðnþ 6Þ
3ðnþ 3Þ2 ; for n ¼ 9 2ð Þ . . . (5.62)

CES
NPER 3; njIAC#

b 0ð Þ
� �

¼ 1; for n ¼ 9 2ð Þ . . . (5.63)

CES
BR 3; njIAC#

b 0ð Þ
� �

¼ 2ð4n2 þ 15nþ 15Þ
9ðnþ 1Þðnþ 3Þ ; for n ¼ 9 6ð Þ . . . : (5.64)

Computed values of CES
VRð3; n; IAC#

b 0ð ÞÞ are obtained from (5.62) and (5.64)

respectively for NPR and BR with each n ¼ 9 12ð Þ129, and for the limiting value as

n ! 1. The results are listed in Table 5.21, to indicate that the additional restric-

tion to IAC# that voters’ preferences must also be single-peaked has the expected

result of improving the Condorcet Efficiency of NPR, but that the efficiency value

still remains relatively low. A very surprising outcome is that this additional

restriction to IAC# actually leads to a reduction in the Condorcet Efficiency of BR.

Lepelley et al. (2000b) also develop the general limiting representation

CES
WSR lð Þ 3;1jIAC#

b 0ð Þ
� �

¼ 2l2 � 9lþ 6

3ð1� lÞð2� lÞ ; for 0 � l � 1=2:

2ð2l2 � 5lþ 4Þ
3ð2� lÞ ; for 1=2 � l � 1: (5.65)

This representation verifies the limiting results as n ! 1 for PR, NPR and BR that

follow respectively from (5.61), (5.62) and (5.64).

Table 5.20 Computed values of CES
VR 3; n; IAC#
� �

for each VR 2 NPR;NPER;BRf g
n VR

NPR NPER BR

9 0.4874 0.9328 0.9076

21 0.5466 0.9560 0.9355

33 0.5665 0.9629 0.9449

45 0.5767 0.9662 0.9496

57 0.5829 0.9681 0.9523

69 0.5870 0.9694 0.9541

81 0.5900 0.9702 0.9554

93 0.5922 0.9709 0.9564

105 0.5940 0.9714 0.9571

117 0.5954 0.9718 0.9577

129 0.5965 0.9721 0.9582

1 0.6080 0.9753 0.9630
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5.4.4 Spatial Modeling Results

Merrill (1985, 1988) presents some interesting results that are related to the Con-

dorcet Efficiency of a set of voting rules by using a different approach. In this study,

voters evaluate candidates on the basis of the respective stands that these candidates

take on � different issues. It is assumed that all possible candidate positions on a

given issue can be evaluated on the basis of some measurable characteristic of that

issue. Each voter then has some ideal value for the measurable characteristic for

each issue that expresses the position that the voter would most prefer to see a

candidate adopt on that issue. A given point in a spatial model with a �-dimensional

issue space is then used to identify each voter’s overall ideal point for a candidate

over the � issues in that space. Similarly, each candidate is identified by a point in

the �-dimensional issue space, based on the stands that they actually take on the

issues. A voter’s preference ranking on the candidates is then obtained on the basis

of the Euclidean distances between the voter’s ideal point and the points that

represent the actual candidates’ stands. That is, the candidate that has taken a

position that is closest to a voter’s ideal point, based on Euclidean distance, will

be that voter’s most preferred candidate, and so on.

The study is based on a Monte-Carlo simulation analysis that generates a set of n
random ideal position points to represent the voters and a set of m random position

points that are taken by the candidates. The distributions from which these two sets

of points are randomly selected both have the same origin, and both are generated

from multivariate normal distributions. As the parameters of the respective multi-

variate normal distributions are changed, the Condorcet Efficiency of all voting

procedures that are considered decrease as m increases.

A reduction in the relative dispersion of candidates’ positions, making them

more IC-like, results in significant reductions in the Condorcet Efficiency of PR, in

agreement with the Efficiency Hypothesis. However, the Condorcet Efficiency of

Table 5.21 Computed values of CES
VR 3; njIAC#

b 0ð Þ
� �

for

VR 2 NPR;BRf g
n VR

NPR BR

9 0.5556 0.8778

21 0.6250 0.8813

33 0.6420 0.8834

45 0.6493 0.8847

57 0.6533 0.8854

69 0.6559 0.8860

81 0.6576 0.8864

93 0.6589 0.8867

105 0.6598 0.8869

117 0.6606 0.8871

129 0.6612 0.8873

1 0.6667 0.8889

5.4 The Impact of Social Homogeneity on Efficiency 197



some of the other rules remains almost unchanged with this change in dispersion.

Merrill (1984) gives an explanation as to how this reduction in dispersion could

lead to a decrease in Condorcet Efficiency.

In an extension, an additional random variable is added to account for voters’

perceptual uncertainty regarding the position points of candidates. As the degree of

this perceptual uncertainty increases, suggesting an increased degree of fuzziness in

the perception of candidates’ positions, the Condorcet Efficiency of PR increases

significantly. This observation does not support the logic of the EfficiencyHypothesis.

When a bipolar multivariate distribution is used to generate ideal points for voters

and for position points of candidates in the issue space, a reduction in Condorcet

Efficiency is observed for the voting rules that are considered. This observation does

not support the Efficiency Hypothesis with regard to the notion of using proximity to

perfectly polarized preferences to measure group mutual coherence.

Merrill (1988) summarizes the results of these studies of Condorcet Efficiency, and

these observations are consistent for changes in correlations in themultivariate normal

distributions of issue dimensions, changes in the relative dispersions of the distribu-

tions for both voters’ preferences and candidates’ positions, and changes in �:

l The Condorcet Efficiency of all of the voting procedures that are considered

decrease as m increases.
l The Condorcet Efficiency increases for all of the voting procedures that are

considered as � increases.
l The Condorcet Efficiency is maximized under all scenarios by NPER and BR.
l The Condorcet Efficiency is minimized across all scenarios by PR.
l Mid-range values of Condorcet Efficiency are observed across all scenarios for

PER.

Chamberlin and Cohen (1978) observed very similar results in an earlier spatial

modeling analysis.

5.4.5 Summary of Social Homogeneity Results

The general conclusion of these results is that while there has been some substantial

support in the literature for the basic premise of the Efficiency Hypothesis, there have

been some other observations that cause serious concerns about its general veracity.

This contrary evidence results from observed changes in the Condorcet Efficiency of

some voting rules, most notably NPR, as various measures of social homogeneity are

changed. Other contrary results are observed even when the requirement that a Strong

PMRW must exist is imposed. However, this same general conclusion was reached

when a general relationship was being sought in Chap. 2, during the evaluation of

links between measures of social homogeneity and the probability that a PMRW

exists. Just as in that case, we still might find stronger support for the Efficiency

Hypothesis if we shift from the consideration of measures of social homogeneity and

consider instead the more structured measures of group mutual coherence.
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Chapter 6

Coherence and the Efficiency Hypothesis

6.1 Introduction

The primary objective of this chapter is to evaluate the impact that the presence of

various degrees of measures of group mutual coherence have on the Condorcet

Efficiency of voting rules. The Efficiency Hypothesis suggests that the Condorcet

Efficiency of voting rules should increase as voters’ preferences reflect increased

levels of group mutual coherence. Some preliminary work has been conducted

in this area, when attention is primarily focused on group mutual coherence, as

measured by the proximity of voting situations to the condition of perfectly single-

peaked preferences.

6.2 Numerical Evidence

Adams (1997) performs a Monte-Carlo simulation study of the probability that a

PMRW exists by using a spatial modeling format with � criteria, as described in

Chap. 5. The utility that the ith voter with 1 � i � n has for a given candidate, Cg, is

denoted as Ui Cg

� �
for 1 � g � m. This utility has two components:

Ui Cg

� � ¼ �t
X�
j¼1

xij � Cgj

� �2 þ mi Cg

� �
: (6.1)

The first term in (6.1) represents the Euclidean distance between the ideal point

of the ith voter on the issues, as represented by the xij
0s in the � -space, and the stated

position of Candidate Cg on the issues, as represented by the Cgj
0s in the � -space.

This first term has a negative coefficient, since an increased Euclidean distance

between a voter’s ideal position and the position that is adopted by a candidate

suggests less voter satisfaction with the position that is taken by Candidate Cg. The

t value represents the policy salience coefficient for the voter, and it is assumed to be

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_6,
# Springer-Verlag Berlin Heidelberg 2011
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the same for all voters. Increased values of t indicate increased voter concern

regarding the policy issues. The second term, mi Cg

� �
, is a uniformly random variable.

When we have t ¼ 0 in this model, uniformly random utilities are given to

candidates for each voter, leading to a situation that is identical to IC. Voters are

driven completely by policy issues when t is very large and the random component

becomes insignificant. In the special case of comparisons of candidates on a single

issue with � ¼ 1 and large t, each candidate’s position is represented by some

numerical value along the number line, so that voters’ preferences will be perfectly

single-peaked. It can then be concluded that voters’ preferences will consistently

tend to be more closely aligned with single-peaked preferences as t increases.

Simulation results indicate that the probability that a PMRW exists does indeed

increase as t increases. Thus, a more structured preference format for voters,

such as the situation in which voters’ preferences are more like single- peaked

preferences, will lead to an increase in the probability that a PMRW will exist. This

is in agreement with out earlier observations with Parameter b.
Adams (1997) goes on to evaluate the Condorcet Efficiency of both PR and PER

with the same model. Results indicate that both rules can have very high Condorcet

Efficiency for small, but positive, values of t with large electorates. However, the

Condorcet Efficiency significantly decreases as t becomes large. Since an increased

value of t represents closer proximity of voters’ preferences to perfectly single-

peaked preferences, this observation does not support the Efficiency Hypothesis

with regard to Parameter b. Adams (1999) extends this analysis to additional voting

rules with more than one criterion, and reaches the same general conclusions.

Computer enumeration is used in Gehrlein (2003b) to determine the impact

that Parameter b has on CES
VR 3; 45jIAC�

b kð Þ� �
with a specified k for each

VR 2 PR;NPR;BRf g in three-candidate elections with n equal to 45. The results

are listed in Table 6.1.

Table 6.1 Values of CES
VR 3; 45jIAC�

b kð Þ� �
from Gehrlein (2003b)

k VR

PR NPR BR

0 0.8595 0.7333 0.9114

1 0.8645 0.7171 0.9105

2 0.8690 0.7010 0.9097

3 0.8723 0.6850 0.9086

4 0.8747 0.6688 0.9075

5 0.8756 0.6521 0.9060

6 0.8752 0.6346 0.9043

7 0.8726 0.6157 0.9023

8 0.8676 0.5947 0.8999

9 0.8610 0.5704 0.8971

10 0.8561 0.5404 0.8941

11 0.8608 0.4997 0.8917

12 0.8757 0.4490 0.8897

13 0.8889 0.3782 0.8925

14 0.8985 0.2635 0.8989

15 0.9023 0.0000 0.9023

200 6 Coherence and the Efficiency Hypothesis



For 0 � k � n=3, increasing values of k indicate that voting situations are

farther removed from the very structured environment of perfectly single-peaked

preferences, and NPR behaves exactly as expected according to the Efficiency

Hypothesis, since CES
NPR 3; 45jIAC�

b kð Þ� �
deceases as k increases. The results with

BR show that CES
BR 3; 45jIAC�

b kð Þ� �
remains almost constant as k increases, and

quite surprisingly PR behaves in exactly the opposite pattern than we expect

with the Efficiency Hypothesis, since CES
PR 3; 45jIAC�

b kð Þ� �
actually increases as

k increases. This observation with regard to PR is consistent with the spatial

modeling results from Adams (1997) that are discussed above.

Nurmi (1992) performs a Monte-Carlo simulation analysis to estimate the

Condorcet Efficiency of a number of voting rules including PER. An extreme

form of a bi-polar distribution is used for three-candidate elections. Each of two

dual rankings are given probability q/2 of being selected at random to represent a

given voter’s preference ranking, while each of the four remaining rankings has

probability 1� qð Þ=4 of being selected. The impact of imposing this bipolar

assumption leads to a general increase in the Condorcet Efficiency of PER when

it is compared to results that are obtained when IC is assumed. This finding is

supportive of the notion behind the Efficiency Hypothesis, but this model is not

perfectly consistent with any of the parameters of group mutual coherence that we

have defined. However, it is related to the motivation that lies behind the use of

Parameters c and c�. Significant differences were not observed between the two

scenarios for the other voting rules that were considered in the study, but these other

voting rules are not included in the set that we have been considering.

6.3 Condorcet Efficiency with Single Peaked Preferences

Lepelley (1995) develops representations for the Condorcet Efficiency of WSRs with

weights 1; l; 0ð Þ when attention is restricted to voting situations that represent

perfectly single-peaked preferences in three-candidate elections, with the assumption

of IAC�
b 0ð Þ, which is actually the same as IACb 0ð Þ since a PMRW must exist with

single-peaked preferences.

CES
WSR lð Þ 3;1jIAC�

b 0ð Þ� � ¼ 4l4 � 5l3 � 66l2 þ 133l� 62

36 1� lð Þ2 l� 2ð Þ ; for 0 � l � 1=2

4l2 � 11lþ 10

4 2� lð Þ ; for 1=2 � l � 1: (6.2)

The representation for CES
WSR lð Þ 3;1jIAC�

b 0ð Þ� �
is found to be maximized at

l ¼ 18929=50151 � 0:37744 and minimized at l ¼ 1. It is also noted that the

Condorcet Efficiencies of PR and BR change very little as we move from IAC� to
IAC�

b 0ð Þ, contrary to expected results. However, the efficiency of NPR does
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increase substantially with the transition from IAC� to IAC�
b 0ð Þ, which supports the

Efficiency Hypothesis.

A simple closed-form representation for CES
PR 3; njIAC�

b 0ð Þ� �
is obtained by

using EUPIA in Gehrlein (2003b), with

CES
PR 3; njIAC�

b 0ð Þ� � ¼ 31n3 þ 183n2 þ 153nþ 81

36n nþ 1ð Þ nþ 5ð Þ ; for n ¼ 9 12ð Þ . . . : (6.3)

This observation verifies the limiting result as n ! 1 from Lepelley (1995) that

is given in (6.2).

Lepelley and Vidu (2000) develop a representation for the Condorcet Efficiency,

CES
WSRE lð Þ 3;1jIAC�

b 0ð Þ� �
, of two-stage Rule l elimination, with

CES
WSRE lð Þ 3;1jIAC�

b 0ð Þ� �¼ 8l4� 28l3þ 210l2� 319lþ 137

72 l� 1ð Þ2 2� lð Þ ; for 0� l� 1=2

1; for 1=2� l� 1: ð6:4Þ

The observation that CES
WSRE 1=2ð Þ 3;1jIAC�

b 0ð Þ� � ¼ 1 for BR is an expected

result that follows directly from Theorem 3.4. The additional observation that

CES
WSRE 1ð Þ 3;1jIAC�

b 0ð Þ� � ¼ 1 is also expected, since Black (1958, p. 71) proves

a much more general result that leads to the fact that the PMRW must be elected by

NPER with single-peaked preferences in a three-candidate election. Obviously, this

is not necessarily true with unrestricted preferences.

Moreno and Puy (2005) further show that PR is the only WSR that will elect

the PMRW in three-candidate elections when preferences are single-troughed,

and they further show that this result fails to be true when more than three

candidates are considered. Furthermore, no single-stage WSR that does not use

elimination procedures will always select the PMRW when voting situations are

either perfectly single-peaked or perfectly polarized. Their result regarding the

Condorcet Efficiency of PR with single-troughed preferences is very easy to

prove for the particular case of three candidates.

Lemma 6.1 CES
PR 3; njIAC�

t 0ð Þ� � ¼ 1 for odd n:

Proof If a voting situation represents perfectly single-troughed preferences with

t ¼ 0, some candidate is never ranked as most preferred by any voter. The two

remaining candidates must then occupy the first place preferences of all voters. One

of these remaining two candidates must therefore be ranked as most preferred by at

least nþ 1ð Þ=2 of the voters when n is odd. That candidate must therefore by

definition be both the PMRW and the winner by PR. □

In conclusion, there has been some general support for the Efficiency Hypothesis

in the literature, but some other observations leave serious concerns about its

overall veracity. In particular, while the condition of perfect single-peakedness

appears to have minimal impact on the Condorcet Efficiency of PR, it is found that
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perfect single-peakedness does have a significant impact on the Condorcet Effi-

ciency of some other voting rules.

We therefore proceed with a more thorough analysis of this phenomenon by

developing representations for CES
PR 3; njIAC�

X kð Þ� �
for each X 2 b; t; cf g to evalu-

ate the degree to which weak measures of group mutual coherence have an impact

on the Condorcet Efficiency of PR.

6.4 Efficiency with Weak Measures of Group Coherence

EUPIA2 and other procedures have been used to develop representations for

CES
VR 3; njIAC�

X kð Þ� �
for each of the weak measures of group coherence

X 2 b; t; cf g and each of the voting rules VR 2 PR;NPR;BR;PER;NPERf g.
These results allow for a thorough evaluation of the Efficiency Hypothesis under

many different scenarios.

6.4.1 Condorcet Efficiency of PR with Weak Measures

Gehrlein and Lepelley (2009c) use EUPIA2 with PR and Parameter b to obtain a

representation for CES
PR 3; njIAC�

b kð Þ� �
for odd n � 3:

CES
PR 3;njIAC�

b kð Þ� �

¼

kþ1ð Þ
2ð216k3þ369k2�234kþ46Þ�9ð22k2þ95k�14Þn

�3ð27k�61Þn2þ31n3þ16d6nþ3�8d6nþ1ð11þ3nÞ

2
4

3
5

�27ð1�d2kþ1Þð4kþ1�nÞ

2
6664

3
7775

36 kþ1ð Þ½kð�17þ21kþ11k2Þþð5�26k�4k2Þnþ3 2� kð Þn2þn3� ;

for 0� k� n�1ð Þ=6

12960k4þ36288k3þ25596k2þ2742kþ1249�ð6696k3þ22248k2

þ15768k�229Þn�9ð12k2�286k�305Þn2þð300kþ311Þn3þ2n4

þ648d2kþ1ðkþ1Þ�324d12nþ11ð2d2kþ1�1Þðnþ1�2kÞ�64d12nþ9ð15k�2�5nÞ
þ4d12nþ7½864k2þ942kþ205�ð288kþ215Þnþ12n2þ162d2kþ1ð2k�1�nÞ�
�4d12nþ3½402k�113�161n�162d2kþ1ð2k�1�nÞ�
�16d12nþ1½�216k2�276k�31þ2ð36kþ37Þn�3n2�

2
6666666666664

3
7777777777775

432 kþ1ð Þ½kð�17þ21kþ11k2Þþð5�26k�4k2Þnþ3 2� kð Þn2þn3� ;

for nþ1ð Þ=6� k� n�1ð Þ=4
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ðn� 3kÞ½ � 144ð21k3 þ 8k2 þ 6k � 8Þ þ 3ð900k2 þ 256k þ 363Þn
� 2ð396k � 71Þn2 þ 109n3 þ 324d2kþ1� � 32d12nþ5ð2� 15k þ 5nÞ
� 4d12nþ11½123k þ 16� 41nþ 162d2nþ1ðn� 3kÞ� � 32d12nþ1½54k2 � 30k þ 1

� 2ð18k � 5Þnþ 6n2� þ 324d12nþ3ð1� 2d2kþ1Þ n� 3kð Þ
� 4d12nþ7½432k2 þ 3k þ 8� ð288k þ 1Þnþ 48n2 � 162d2kþ1ð3k � nÞ�

2
6666666664

3
7777777775

108ðn� 3kÞ½ nþ 1ð Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3� ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3:
(6.5)

The representation for CES
PR 3; njIAC�

b kð Þ� �
in (6.5) has been verified by com-

puter enumeration, but it has an extremely complex form. However, it remains

important since it provides a basis for obtaining the limiting representation of

CES
PR 3;1jIAC�

b akð Þ� �
for large electorates as n ! 1, following earlier discussion.

After algebraic reduction:

CES
PR 3;1jIAC�

b akð Þ� �¼ 432a3k � 198a2k � 81ak þ 31

36ð11a3k � 4a2k � 3ak þ 1Þ ; for 0� ak � 1=6

6480a4k � 3348a3k � 54a2k þ 150ak þ 1

216akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

3024a3k � 2700a2k þ 792ak � 109

108ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak<1=3: (6.6)

The representation for CES
PR 3;1jIAC�

b 0ð Þ� �
verifies results from (6.2).

Computed values ofCES
PR 3;1jIAC�

b akð Þ� �
for each value of ak ¼ 0:00 0:01ð Þ0:33

are listed in Table 6.2, and the first observation that can be made from these values

is that CES
PR 3;1jIAC�

b akð Þ� �
does not change monotonically as ak increases. Of

particular interest is the surprising fact that CES
PR 3;1jIAC�

b akð Þ� �
generally tends to

increase as ak increases, most notably for the range ak>0:23. Thus, the Condorcet

Efficiency of PR generally increases as voting situations become farther removed

from the condition of perfect single-peakedness, as measured by Parameter b. This
observation is completely contrary to the ideas that underlie the Efficiency Hypothesis,

but it is in agreement with results from Adams (1997).

The preliminary result that is given in Lemma 6.1 suggests that the Efficiency

Hypothesis might very well be valid for PR when group mutual coherence is

measured by the proximity of voters’ preferences to the condition of perfectly

single-troughed preferences, as measured by Parameter t. This is investigated in

Gehrlein and Lepelley (2009c) where the EUPIA2 procedure is used to develop a

representation for CES
PR 3; njIAC�

t kð Þ� �
for odd n � 3, with:
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CES
PR 3;njIAC�

t kð Þ� �

¼

kþ 1ð Þ½3ð6kþ 1Þð4k2þ 7k� 7Þ� 2ð11k2þ 94k� 5Þn� 3ð9k� 13Þn2þ 8n3�
� 3ð1� d2kþ1Þðnþ 1� 2kÞ½2k2� 2k� 7�ð2kþ 3Þn�

" #

8 kþ 1ð Þ½kð� 17þ 21kþ 11k2Þþ ð5� 26k� 4k2Þnþ 3 2� kð Þn2þ n3� ;

for 0� k� n� 1ð Þ=4

nþ 1� 2kð Þ
� 36k3 þ 63k2 � 48k þ 9þ ð57k2 � 66k þ 19Þn
� 15ð2k � 1Þn2 þ 5n3 þ 3d2kþ1ð2k2 � 2k � 7� ð2k þ 3ÞnÞ

" #

4 n� 3kð Þ½ nþ 1ð Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3� ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: ð6:7Þ

Table 6.2 Computed values of CES
PR 3;1jIAC�

X akð Þ� �
, for X 2 b; t; cf g

ak X

b t c

0.00 0.8611 1.0000 0.8611

0.01 0.8643 0.9963 0.8638

0.02 0.8674 0.9925 0.8662

0.03 0.8702 0.9888 0.8683

0.04 0.8728 0.9850 0.8702

0.05 0.8752 0.9811 0.8719

0.06 0.8774 0.9772 0.8733

0.07 0.8794 0.9731 0.8745

0.08 0.8811 0.9689 0.8755

0.09 0.8826 0.9645 0.8763

0.10 0.8839 0.9598 0.8769

0.11 0.8849 0.9548 0.8773

0.12 0.8857 0.9494 0.8776

0.13 0.8861 0.9435 0.8779

0.14 0.8861 0.9370 0.8780

0.15 0.8858 0.9298 0.8781

0.16 0.8850 0.9218 0.8783

0.17 0.8837 0.9126 0.8787

0.18 0.8818 0.9020 0.8793

0.19 0.8795 0.8896 0.8803

0.20 0.8768 0.8750 0.8818

0.21 0.8741 0.8574 0.8838

0.22 0.8717 0.8357 0.8864

0.23 0.8704 0.8086 0.8893

0.24 0.8710 0.7736 0.8924

0.25 0.8754 0.7273 0.8952

0.26 0.8826 0.6737 0.8974

0.27 0.8897 0.6210 0.8989

0.28 0.8965 0.5698 0.9002

0.29 0.9026 0.5204 0.9012

0.30 0.9080 0.4731 0.9023

0.31 0.9122 0.4281 0.9034

0.32 0.9151 0.3857 0.9043

0.33 0.9166 0.3460 0.9047
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This representation is much more tractable that the earlier representation for

CES
PR 3; njIAC�

b kð Þ� �
in (6.5), but attention continues to be focused on the limiting

probability CES
PR 3;1jIAC�

t akð Þ� �
as n ! 1, with:

CES
PR 3;1jIAC�

t akð Þ� � ¼ 72a3k � 22a2k � 27ak þ 8

8ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=4

ð2ak � 1Þð12a2k � 15ak þ 5Þ
4ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak<1=3: (6.8)

Table 6.2 lists computed values of CES
PR 3;1jIAC�

t akð Þ� �
for each value of

ak ¼ 0:00 0:01ð Þ0:33 from (6.8). Values of CES
PR 3;1jIAC�

t akð Þ� �
decrease mono-

tonically as ak increases, so that the Condorcet Efficiency of PR decreases as voting

situations become farther removed from perfectly single-troughed preferences. This

reduction in Condorcet Efficiency is also quite dramatic, dropping from 1.000 to

0.346 over the range of ak values, so there are different scenarios in which PR

can be expected to have either very good or very poor performance. As a result, PR

is found to behave completely in accordance with the Efficiency Hypothesis

with Parameter t. Since these results are reversed from what we observed in the

previous analysis of CES
PR 3;1jIAC�

b akð Þ� �
, we are interested in obtaining a similar

representation when the degree of group mutual coherence is measured by voting

situation proximity to perfectly-polarized preferences.

EUPIA2 was used to develop a representation for CES
PR 3; njIAC�

c kð Þ� �
for odd

n � 3 with 0 � k � n� 1ð Þ=6:

CES
PR 3;njIAC�

c kð Þ� �¼

2

kþ1ð Þ 931k3þ1873k2�562kþ120
� �þ2d6kþ2 27k2�118k�35

� �
�64d6kþ3 4k�1ð Þþ54d6kþ4 k2�2k�1

� ��16d6kþ5 8kþ1ð Þþ2d6k 27k2�182kþ5
� �

þ6½ kþ1ð Þ �46k2�266kþ35
� ��2d6kþ2 9k�4ð Þþ16d6kþ3�18d6kþ4kþ8d6kþ5

�2d6k 9k�8ð Þ�nþ3 �63k2þ50kþ122�9d2kþ1

� �
n2þ62 kþ1ð Þn3

þ16 kþ1ð Þ 2d6nþ3�d6nþ1 11þ3nð Þ� �

2
6666666664

3
7777777775

9
ð139k3þ472k2þ146k�244Þk�4ð7k3þ102k2þ84k�20Þn
�6ð9k2�6k�16Þn2þ16 kþ1ð Þn3þ3d2kþ1½6k2þ24k�1þ4 k�2ð Þn�2n2�

" # ;

for 0�k� n�1ð Þ=6: ð6:9Þ

The complexity of the representation in (6.9) is quite extreme, since it involves

periodicity six for both n and k, and the EUPIA2 algorithm was found to be incapable

of obtaining results that would lead to a representation for CES
PR 3; njIAC�

c kð Þ� �
for
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k � n=6 in any reasonable amount of computer processing time. The issue of the

exponential time requirements for algorithms like EUPIA2 was addressed in Chap. 1,

and it was mentioned that some algorithms exist that only have polynomial time

requirements.

The parameterized version of Barvinok’s algorithm is one such polynomial time

algorithm, and it was used to obtain results that provide representations for

CES
PR 3; njIAC�

c kð Þ� �
over the range nþ 1ð Þ=6 � k � n� 1ð Þ=3 for all odd n � 3.

The extreme complexity of these representations resulted in attention being focused

on a representation that is only valid for all n ¼ 9 12ð Þ . . . , which will be adequate

to obtain the limiting representation CES
PR 3;1jIAC�

c akð Þ� �
as n ! 1. After

significant algebraic reduction, for all values of n ¼ 9 12ð Þ . . . :

CES
PR 3;njIAC�

c kð Þ� �¼
�3ð14912k4�7424k3�4344k2þ18144k�2565Þþ72ð668k3�444k2

�771kþ244Þn�18ð1380k2þ152k�907Þn2þ8ð597kþ443Þn3�77n4

þ1536d6kþ4ð8k�3n�2Þþ768d6kþ2ð8k�3n�5Þ�48d6kþ5ð54k2�290k

þ80�108nkþ75nþ27n2Þ�1296d6kþ3ð2k2�6k�4nkþnþn2Þ
�48d6kþ1ð54k2�418kþ64�108nkþ123nþ27n2Þ

2
6666666664

3
7777777775

216
ð139k3þ472k2þ146k�244Þk�4ð7k3þ102k2þ84k�20Þn�6ð9k2�6k

�16Þn2þ16ðkþ1Þn3þ3d2kþ1½6k2þ24k�1þ4 k�2ð Þn�2n2�

" # ;

for nþ1ð Þ=6� k� n�1ð Þ=4

� 3ð34880k4 þ 23296k3 � 4536k2 þ 21024k � 1431Þ þ 72ð1948k3

þ 804k2 � 659k þ 292Þn� 18ð3972k2 þ 1688k � 793Þn2

þ 8ð1821k þ 785Þn3 � 815n4 þ 1536d6kþ4ð8k � 3n� 2Þ
� 48d6kþ5ð486k2 � 74k þ 11� 324nk þ 21nþ 54n2Þ
� 1296d6kþ3ð18k2 þ 2k þ 1� 12nk � nþ 2n2Þ þ 768d6kþ2ð8k � 3nþ 1Þ
� 48d6kþ1ð486k2 � 202k þ 91� 324nk þ 69nþ 54n2Þ

2
6666666666664

3
7777777777775

216

3ð � 39k4 þ 72k3 þ 38k2 � 76k þ 1Þ þ 4ð57k3 � 54k2 � 80k þ 19Þn
� 2ð75k2 þ 6k � 47Þn2 þ 4ð8k þ 5Þn3 � n4 þ 3d2kþ1½6k2 þ 24k

� 1þ 4 k � 2ð Þn� 2n2�

2
664

3
775

;

for nþ 1ð Þ=4 � k � 3n� 8ð Þ=10
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2
n� 3kð Þ

� 9ð105k3 þ 116k2 þ 40k � 150Þ þ 3ð171k2 þ 232k

þ 294Þn� ð27k � 190Þk2 þ 25n3 þ 288ðd6kþ3 � d6kþ1Þ

8<
:

9=
;

þ 9d2kð162k2 þ 27� 108nk þ 18n2Þ � 36ðd6k þ 17d6kþ4 þ 9d6kþ2Þðn� 3kÞ

2
6664

3
7775

27

3ð� 39k4 þ 72k3 þ 38k2 � 76k þ 1Þ þ 4ð57k3 � 54k2

� 80k þ 19Þn� 2ð75k2 þ 6k � 47Þn2 þ 4 8k þ 5ð Þn3

� n4 þ 3d2kþ1½6k2 þ 24k � 1þ 4 k � 2ð Þn� 2n2�

2
664

3
775

;

for 3n� 7ð Þ=10 � k � n� 2ð Þ=3: ð6:10Þ

These representations are clearly very complex, but the simpler limiting

probability representations for CES
PR 3;1jIAC�

c akð Þ� �
follow directly from them,

with:

CES
PR 3;1jIAC�

c akð Þ� � ¼ 2ð931a3k � 276a2k � 189ak þ 62Þ
9ð139a3k � 28a2k � 54ak þ 16Þ ;

for 0 � ak � 1=6

�44736a4k þ 48096a3k � 24840a2k þ 4776ak � 77

216akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=6 � ak � 1=4

104640a4k � 140256a3k þ 71496a2k � 14568ak þ 815

216ð117a4k � 228a3k þ 150a2k � 32ak þ 1Þ ; for 1=4 � ak � 3=10

2ð � 945a3k þ 513a2k � 27ak þ 25Þ
27ð39a3k � 63a2k þ 29ak � 1Þ ; for 3=10 � ak � 1=3: ð6:11Þ

The first observation that comes from the limiting representations in (6.11)

is that CES
PR 3;1jIAC�

c 0ð Þ� � ¼ CES
PR 3;1jIAC�

b 0ð Þ� � ¼ 31=36. Computed values

of CES
PR 3;1jIAC�

c akð Þ� �
for each value of ak ¼ 0:00 0:01ð Þ0:33 are listed in

Table 6.2, where it is evident that CES
PR 3;1jIAC�

c akð Þ� �
increases monotonically

as ak increases, which is completely contrary to the Efficiency Hypothesis.

As a result of these observations, there is no clear-cut answer to the ques-

tion: Is it a good idea to use PR? PR is very Condorcet Efficient for societies in

which voters’ preferences are at all close to being perfectly single-troughed.

However, when voters’ preferences are at all close to being perfectly-polarized,

PR does not have large values of Condorcet Efficiency. The most surprising

result is that PR does not have large values of Condorcet Efficiency when

voters’ preferences are at all close to being perfectly single-peaked. This creates

a definite interest in the analysis of other voting rules to determine when

different voting rules will tend to have the maximum value of Condorcet

Efficiency.
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6.4.2 Condorcet Efficiency of NPR with Weak Measures

The same type of analysis that was just used above in the analysis of PR was

employed in Lepelley et al. (2010) to obtain representations for the Condorcet

Efficiency of NPR with EUPIA2. The resulting representations are summarized as

follows.

Condorcet Efficiency of NPR, given b:

CES
NPR 3; njIAC�

b kð Þ� � ¼
3 k þ 1ð Þ nþ 1� 2kð Þ½ � ð4k2 þ 18k þ 5Þ � 2 k � 2ð Þnþ n2�

4ðk þ 1Þ½kð � 17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3� ;

for 0 � k � n� 1ð Þ=4

3 k þ 1ð Þ n� 1� 3kð Þ nþ 1� 2kð Þ2
ðn� 3kÞ½ðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3� ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (6.12)

Condorcet Efficiency of NPR, given t:

CES
NPR 3; njIAC�

t kð Þ� � ¼

k þ 1ð Þ

9ð131k3 þ 339k2 þ 193k þ 45Þ � 9ð28k2 þ 146k þ 27Þn

� 6 27k � 32ð Þn2 þ 47n3 � 4d12nþ5ð41þ 12nÞ þ 44d12nþ1

� 16d12nþ11ð17þ 3nÞ þ 108d12nþ9 � 64d12nþ7

8>>><
>>>:

9>>>=
>>>;

þ 27d2k 6k � 1� 2nð Þ

2
66666664

3
77777775

72ðk þ 1Þ½ð11k2 þ 21k � 17Þk � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3� ;

for 0 � k � n� 1ð Þ=6

� 27ð170k4 þ 196k3 � 8k2 þ 8k þ 3Þ þ 18ð324k3 þ 318k2 þ 15k þ 43Þn
� 18ð150k2 þ 128k � 19Þn2 þ 2ð231k þ 209Þn3 � 7n4

þ 2ð81d2k þ 64d12nþ7Þð6k � 1� 2nÞ þ 8d12nþ5f432k2 þ 705k þ 127

� 4ð36k þ 43Þnþ 6n2g þ 8d12nþ1ð177k þ 65� 32nÞ þ 648d12nþ9ðk þ 1Þ
þ 16d12nþ11f216k2 þ 312k þ 23� 2ð36k þ 43Þnþ 3n2g

2
6666666664

3
7777777775

432ðk þ 1Þ½ð11k2 þ 21k � 17Þk � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3� ;

for nþ 1ð Þ=6 � k � n� 1ð Þ=4
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ðn� 3kÞf � 9ð363k3 þ 574k2 þ 24k � 28Þ þ 3ð657k2 þ 1148k þ 255Þn
� ð225k þ 304Þn2 þ 10n3g � 4d12nþ1 633k þ 16� 211nð Þ
� 4d12nþ5f432k2 þ 537k þ 8� 288k þ 179ð Þnþ 48n2g
þ 972 n� 3kð Þd12nþ9 þ ð81d2k þ 64d12nþ7Þð6k � 1� 2nÞ
� 32d12nþ11f54k2 � 24k þ 1� 4ð9k � 2Þnþ 6n2g

2
6666666664

3
7777777775

108ðn� 3kÞ½ðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3� ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: ð6:13Þ

EUPIA2 was not able to obtain the complete general representation for the

Condorcet Efficiency of NPR for Parameter c with reasonable effort. However,

the limiting representations for the efficiency of NPR with Parameters b and t were
obtained from (6.12) and (6.13), and the limiting representation for Parameter cwas
obtained with the parameterized version of Barvinok’s algorithm:

Limiting Condorcet Efficiency of NPR for Parameter b:

CES
NPR 3;1jIAC�

b akð Þ� � ¼ 3ð2ak � 1Þð4a2k þ 2ak � 1Þ
4ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=4

�3akð2ak � 1Þ2
18a3k � 18a2k þ 6ak � 1

; for1=4 � ak � 1=3: (6.14)

Limiting Condorcet Efficiency of NPR for Parameter t:

CES
NPR 3;1jIAC�

t akð Þ� �¼ 1179a3k �252a2k �162akþ47

72ð11a3k �4a2k �3akþ1Þ ; for 0� ak � 1=6

�4590a4k þ 5832a3k � 2700a2k þ 462ak � 7

432akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

3267a3k � 1971a2k þ 225ak � 10

108ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (6.15)

Limiting Condorcet Efficiency of NPR for Parameter c:

CES
NPR 3;1jIAC�

c akð Þ� �¼�1404a3k þ252a2k �135akþ61

9ð139a3k �28a2k �54akþ16Þ ;

for 0� ak � 1=6
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94608a4k � 88128a3k þ 22464a2k � 1632ak þ 139

216akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=6 � ak � 1=4

�2ð2403a3k � 1323a2k þ 81ak � 7Þ
27ð39a3k � 63a2k þ 29ak � 1Þ ; for 1=4 � ak � 1=3: (6.16)

The representation for CES
NPR 3;1jIAC�

b 0ð Þ� �
verifies the result from (6.2).

Table 6.3 lists computed values of CES
NPR 3;1jIAC�

X akð Þ� �
, for each value of

ak ¼ 0:00 0:01ð Þ0:33 with each X 2 b; t; cf g respectively from (6.14)–(6.16). These

results show that CES
NPR 3;1jIAC�

X akð Þ� �
consistently decreases as Parameter

b increases, in agreement with the Efficiency Hypothesis. However, the Condorcet

Table 6.3 Computed values of CES
NPR 3;1jIAC�

X akð Þ� �
, for X 2 b; t; cf g

ak X

b t c

0.00 0.7500 0.6528 0.4236

0.01 0.7426 0.6497 0.4289

0.02 0.7353 0.6463 0.4351

0.03 0.7281 0.6425 0.4422

0.04 0.7210 0.6385 0.4501

0.05 0.7140 0.6342 0.4588

0.06 0.7071 0.6296 0.4685

0.07 0.7002 0.6249 0.4791

0.08 0.6933 0.6199 0.4906

0.09 0.6865 0.6149 0.5030

0.10 0.6796 0.6098 0.5165

0.11 0.6727 0.6047 0.5309

0.12 0.6657 0.5997 0.5463

0.13 0.6587 0.5950 0.5627

0.14 0.6515 0.5907 0.5800

0.15 0.6442 0.5870 0.5984

0.16 0.6367 0.5841 0.6178

0.17 0.6290 0.5825 0.6380

0.18 0.6209 0.5826 0.6590

0.19 0.6125 0.5848 0.6805

0.20 0.6037 0.5897 0.7022

0.21 0.5942 0.5981 0.7241

0.22 0.5840 0.6112 0.7459

0.23 0.5727 0.6303 0.7674

0.24 0.5601 0.6578 0.7883

0.25 0.5455 0.6974 0.8085

0.26 0.5279 0.7430 0.8275

0.27 0.5072 0.7846 0.8450

0.28 0.4839 0.8213 0.8608

0.29 0.4584 0.8527 0.8747

0.30 0.4311 0.8783 0.8863

0.31 0.4026 0.8976 0.8954

0.32 0.3732 0.9104 0.9016

0.33 0.3433 0.9163 0.9046
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Efficiency for NPR generally increases as both Parameters t and c increase, which is
exactly the reverse of what would be expected with the Efficiency Hypothesis. Just

as we observed with PR, there is a very mixed agreement between NPR and the

Efficiency Hypothesis.

6.4.3 Condorcet Efficiency of BR with Weak Measures

The same type of analysis was applied in Lepelley et al. (2010) in an attempt to

obtain general representations for the Condorcet Efficiency of BR, but the results

were found to be extremely complicated due to unusual periodicities for both n and
the parameter that is being considered. As a result, the only available results are for

limiting representations from the parameterized version of Barvinok’s algorithm:

Limiting Condorcet Efficiency of BR for Parameter b:

CES
BR 3;1jIAC�

b akð Þ� � ¼ 507a3k � 184a2k � 132ak þ 44

48ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=6

5352a4k � 2336a3k � 840a2k þ 328ak þ 1

384akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

60696a4k � 63712a3k þ 24744a2k � 4024ak þ 203

192ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 2=7

73760a4k � 89952a3k þ 41112a2k � 8520ak þ 693

192ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 2=7 � ak � 3=10

165a3k � 153a2k þ 47ak � 6

4ð18a3k � 18a2k þ 6ak � 1Þ ; for 3=10 � ak<1=3: (6.17)

Limiting Condorcet Efficiency of BR for Parameter t:

CES
BR 3;1jIAC�

t akð Þ� � ¼ 195a3k � 80a2k � 66ak þ 22

24ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=6

4416a4k � 2144a3k � 840a2k þ 328ak þ 1

384akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=5

54416a4k � 42144a3k þ 11160a2k � 1272ak þ 81

384ð1� 3akÞð11a3k � 4a2k � 3ak þ 1Þ ; for 1=5 � ak � 1=4
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62096a4k � 74400a3k þ 33336a2k � 6792ak þ 549

192ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 3=10

84a3k � 72a2k þ 20ak � 3

4ð18a3k � 18a2k þ 6ak � 1Þ ; for 3=10 � ak<1=3: (6.18)

Limiting Condorcet Efficiency of BR for Parameter c:

CES
BR 3;1jIAC�

c atð Þ� �¼ 2379a3k�648a2k�564akþ176

12ð139a3k�28a2k�54akþ16Þ ; for 0� ak � 1=6

9303a4k � 1512a3k � 3252a2k þ 928ak � 2

60akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=6 � ak � 1=5

�6322a4k þ 10988a3k � 7002a2k þ 1428ak � 27

60akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=5 � ak � 1=4

6322a4k � 10988a3k þ 7002a2k � 1428ak þ 27

60ð3ak � 1Þð39a3k � 63a2k þ 29ak � 1Þ ; for 1=4 � ak � 2=7

�699a3k þ 315a2k þ 23ak þ 17

12ð39a3k � 63a2k þ 29ak � 1Þ ; for 2=7 � ak<1=3: (6.19)

The representation for CES
BR 3;1jIAC�

b 0ð Þ� �
verifies the result from (6.2).

Table 6.4 lists computed values of CES
BR 3;1jIAC�

X akð Þ� �
, for each value of

ak ¼ 0:00 0:01ð Þ0:33 with each X 2 b; t; cf g respectively from (6.17)–(6.19). The

computed results of CES
BR 3;1jIAC�

X akð Þ� �
in Table 6.4 show very consistent

efficiency values for each Parameter X 2 b; t; cf g over the entire range with

0:00 � ak � 0:33. It is also noteworthy that the Condorcet Efficiency of BR is

never less than 0.88 for any combination of circumstances.

It is therefore apparent that while there are definitely scenarios in which the

Efficiency Hypothesis is observed, there unfortunately are many other scenarios in

which the reverse of the expected outcome of the Efficiency Hypothesis is

observed. For the case of BR, Condorcet Efficiency does not really respond very

much to the values of Parameters b, t, or c in voting situations. All of this leaves

open the question of how an election should be conducted if we want to restrict

attention to the single-stage voting rules PR, NPR and BR.

6.4.4 Single-Stage Voting Rules with Weak Measures

A great deal can be observed about the relative performances of these single-stage

voting rules for each of the specified Parameters b, t and c by plotting the associated
Condorcet Efficiency values that are included in Tables 6.2–6.4. Computed values
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of CES
VR 3;1jIAC�

b akð Þ� �
are plotted in Fig. 6.1 for each voting rule with

VR 2 PR;NPR;BRf g for Parameter b.
The results in Fig. 6.1 display completely consistent results for Condorcet

Efficiency values over the entire range of all possible b values. That is, BR is

uniformly superior to PR on the basis of Condorcet Efficiency, and both of these

voting rules are consistently superior to NPR. As a result, a decision to use BR

would always be a good choice, based only on this evidence. If this same pattern

holds up with Parameters t and c, a clear conclusion can be drawn to universally

support the use of BR.

Computed values of CES
VR 3;1jIAC�

c akð Þ� �
are plotted in the same manner for

Parameter c in Fig. 6.2 for each of the single-stage voting rules that we have considered.

Table 6.4 Computed values of CES
BR 3;1jIAC�

X akð Þ� �
, for X 2 b; t; cf g

ak X

b t c

0.00 0.9167 0.9167 0.9167

0.01 0.9166 0.9167 0.9181

0.02 0.9166 0.9168 0.9193

0.03 0.9165 0.9169 0.9202

0.04 0.9164 0.9171 0.9210

0.05 0.9162 0.9174 0.9214

0.06 0.9160 0.9176 0.9217

0.07 0.9158 0.9179 0.9216

0.08 0.9156 0.9182 0.9214

0.09 0.9152 0.9185 0.9209

0.10 0.9149 0.9187 0.9202

0.11 0.9145 0.9189 0.9193

0.12 0.9140 0.9190 0.9182

0.13 0.9135 0.9190 0.9169

0.14 0.9130 0.9188 0.9153

0.15 0.9124 0.9185 0.9136

0.16 0.9117 0.9178 0.9118

0.17 0.9109 0.9167 0.9098

0.18 0.9101 0.9151 0.9078

0.19 0.9091 0.9128 0.9057

0.20 0.9081 0.9096 0.9038

0.21 0.9070 0.9052 0.9020

0.22 0.9059 0.8996 0.9004

0.23 0.9048 0.8930 0.8993

0.24 0.9039 0.8865 0.8985

0.25 0.9034 0.8826 0.8982

0.26 0.9028 0.8834 0.8984

0.27 0.9023 0.8877 0.8989

0.28 0.9032 0.8941 0.9000

0.29 0.9059 0.9010 0.9009

0.30 0.9094 0.9072 0.9022

0.31 0.9127 0.9119 0.9033

0.32 0.9152 0.9151 0.9042

0.33 0.9166 0.9166 0.9047

214 6 Coherence and the Efficiency Hypothesis



While the calculated values of CES
VR 3;1jIAC�

c akð Þ� �
in Fig. 6.2 are quite

different than those that were obtained for CES
VR 3;1jIAC�

b akð Þ� �
in Fig. 6.1, a

somewhat consistent general pattern of the relative performance of PR, NPR and

Condorcet Efficiency with Parameter b
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BR on the basis of Condorcet Efficiency emerges from both. In particular, BR is

consistently more efficient than PR over the entire range of Parameter c values, and
both BR and PR dominate NPR on the basis of Condorcet Efficiency.

A strong case is developing to support BR as the obvious choice for selection as

a voting rule, if the intent is to use a voting rule to maximize Condorcet Efficiency.

Unfortunately, a deterrent to this general conclusion emerges when Parameter t is
considered. Computed values of CES

VR 3;1jIAC�
t akð Þ� �

are plotted for Parameter t
in Fig. 6.3 for each single-stage voting rule.

The observations in Fig. 6.3 show that the relative performance of PR, NPR and

BR on the basis of Condorcet Efficiency is not as consistent over the range of values

for Parameter t as it is for Parameters b and c. BR remains consistently superior to

NPR over the entire range of t values. But, PR is the most Condorcet Efficient

voting rule for the range of t values with 0 � ak � 0:17, while it is the least

Condorcet Efficient voting rule for the range of values with 0:25 � ak � 0:33.
The Condorcet Efficiency of PR can therefore be extremely poor in some cases.

Since CES
PR 3;1jIAC�

t 1=3ð Þ� � ! 1=3, this effectively makes PR a random chooser

of an election winner when ak ! 1=3 with Parameter t. However, this would reflect
a very non-intuitive situation in which the voters are approaching the least mutually

coherent situation that is possible with a model that is being driven by proximity to

single-troughed preferences on candidates.

It is definitely of interest to gain some insight into what proportion of all possible

voting situations fall into the region with 0 � ak � 0:17 for Parameter t, in order to
obtain a better idea of how significant the range of dominance of PR over BR

Condorcet Efficiency with Parameter t
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actually is in Fig. 6.3. Based on the results that are obtained from (3.10), we know

that PVS 3;1;CIAC�
t 0:17�ð Þ� � ¼ 0:5769. Thus, the range over which PR has a

greater Condorcet Efficiency than BR covers a significant proportion of all possible

voting situations that have a PMRW, based on Parameter t. At the other extreme,

the observation that PVS 3;1;CIAC�
t 0:25�ð Þ� � ¼ 0:8875 indicates that PR is only

dominated by both of the other single-stage voting rules in the 11.25% of voting

situations with a PMRW that are the farthest removed from the condition of

perfectly single-troughed preferences.

6.4.5 Single-Stage Voting Rules: A Borda Compromise

Since we typically could not know a priori which type of model will be the basis by

which voters’ preferences will be formed, there is no absolute answer as to which

single-stage voting rule is expected to deliver the greatest Condorcet Efficiency. BR

is the obvious choice if preferences are known to be based on either single-peaked

preferences or polarized preferences. However, the answer is mixed for situations in

which preferences are based on single-troughed preferences.

Calculated efficiency values show us that any tendency towards single-peaked

preferences, single-troughed preferences or polarized preferences has a very weak

impact on the Condorcet Efficiency of BR, and CES
BR 3;1jIAC�

X akð Þ� � � 0:88 for

all three scenarios. By contrast, both PR and NPR can have values of Condorcet

Efficiency values that can fall to 0.33. It clearly is not a feasible option to obtain the

votes from the electorate before the decision is made as to how the winner of an

election will be determined. As a consequence of all of this, an appeal can be made

to use a “maximin” type argument to support a Borda Compromise position. This

Borda Compromise will use BR when nothing is known a priori about the type of

model that is likely to reflect the preferences of an electorate. This compromise

position will have a high likelihood of selecting the PMRW whenever such a

candidate exists, and it will completely avoid any possibility of producing very

poor outcomes that effectively can be equivalent to having a process that randomly

selects a winner.

6.4.6 Two-Stage Rule Efficiencies with Weak Measures

It seems quite logical to assume that the increased complexity that is introduced

with two-stage voting rules should lead to a resulting improvement in Condorcet

Efficiency. An analysis of this notion is started with the development of representa-

tions for CES
PER 3; njIAC�

b kð Þ� �
, CES

PER 3; njIAC�
t kð Þ� �

, CES
NPER 3; njIAC�

b kð Þ� �
and

CES
NPER 3; njIAC�

t kð Þ� �
with EUPIA2 to evaluate the increased level of efficiency

that results from the introduction of this increased complexity.
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Condorcet Efficiency of PER, given b:

CES
PER 3; njIAC�

b kð Þ� � ¼

k þ 1ð Þ

9ð162k3 þ 310k2 � 229k � 27Þ � 9ð60k2 þ 384k � 65Þn

� 3ð135k � 269Þn2 þ 137n3 þ 172d12nþ5 þ 4d12nþ1ð131þ 24nÞ

þ 64d12nþ11 þ 108d12nþ9 þ 32d12nþ7ð13þ 3nÞ

8>>><
>>>:

9>>>=
>>>;

þ 54d2kð1� 2d4nþ1Þð2k þ 6þ nÞ

2
66666664

3
77777775

144ðk þ 1Þ½kð � 17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3� ;

for 0 � k � n� 1ð Þ=6

27ð2880k4 þ 7552k3 þ 3744k2 � 352k þ 231Þ
� 72ð672k3 þ 2208k2 þ 1392k � 95Þnþ 18ð48k2 þ 1232k þ 1237Þn2

þ 80ð24k þ 31Þn3 þ 65n4 � 16d12nþ5ð480k þ 260� 79nÞ
� 16d12nþ1f1728k2 þ 2688k þ 508� ð576k þ 671Þnþ 24n2g
� 512d12nþ11ð15k � 2� 5nÞ � 1296d12nþ9ð4þ nÞ � 128d12nþ7f216k2 þ 336k

þ 23� 2ð36k þ 47Þnþ 3n2g

2
6666666666664

3
7777777777775

3456ðk þ 1Þ½bð � 17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3� ;

for nþ 1ð Þ=6 � k � n� 1ð Þ=4

ðn� 3kÞf � 9ð33k3 þ 22k2 þ 15k � 25Þ þ 3ð99k2 þ 44k þ 96Þn
� ð99k � 59Þn2 þ 20n3g � 8d6nþ5ð15k � 2� 5nÞ
þ 8d6nþ1f54k2 � 30k þ 1� 2ð18k � 5Þnþ 6n2g

2
6664

3
7775

27ðn� 3kÞ½ðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3� ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3:
(6.20)

Condorcet Efficiency of PER, given t:

CES
PER 3;njIAC�

t kð Þ� �¼
ð10k2þ18k�19Þk�ð4k2þ26k�5Þn�3ðk�2Þn2þn3

ð11k2þ21k�17Þk�ð4k2þ26k�5Þn�3ðk�2Þn2þn3
; for 0� k� n�1ð Þ=4

ðnþ1�2kÞ½�3ð6k3þ7k2þ13kþ1Þþð15k2�3kþ11Þn�3ð2k�1Þn2þn3�
ðn�3kÞ½ðnþ1Þðn2þ2nþ9Þ�6ðn2þ1Þkþ18nk2�18k3� ;

for nþ1ð Þ=4� k� n�1ð Þ=3:
(6.21)
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Condorcet Efficiency of NPER, given b:

CES
NPER 3;njIAC�

b kð Þ� �¼
ðkþ1Þ½ð179k3þ345k2�287k�45Þ�4ð17k2þ109k�14Þn�48ðk�2Þn2

þ16n3�þ3d2kfð�4k3�6k2þ12kþ15Þþ4ðkþ1Þðkþ2Þng

2
4

3
5

16ðkþ1Þ½kð�17þ21kþ11k2Þþð5�26k�4k2Þnþ3ð2� kÞn2þn3� ;

for 0� k� n�1ð Þ=4

3ð�111k4þ4k3þ78k2�60k�8Þþ12ð37k3þ14k2�27kþ3Þn
�2ð96k2þ84k�37Þn2þ12ð2kþ3Þn3þn4

þ3d2kfð�4k3�6k2þ12kþ15Þþ4ðkþ1Þðkþ2Þng

2
664

3
775

8ðn�3kÞ½ðnþ1Þðn2þ2nþ9Þ�6ðn2þ1Þkþ18nk2�18k3� ;

for nþ1ð Þ=4� k� n�1ð Þ=3
(6.22)

Condorcet Efficiency of NPER, given t:

9ð32k3 þ 68k2 � 52k � 9Þ � 9ð12k2 þ 96k � 13Þn� 3ð36k � 67Þn2

þ 35n3 þ 32d6nþ1 þ 8d6nþ5ð17þ 3nÞ

" #

36fð11k2 þ 21k � 17Þk � ð4k2 þ 26k � 5Þn� 3ðk � 2Þn2 þ n3g ;

for 0 � k � n� 1ð Þ=6

27ð560k4þ1536k3þ1120k2þ240kþ57Þ�36ð240k3þ744k2þ516kþ23Þn
þ18ð24k2þ200kþ179Þn2þ4ð60kþ71Þn3þ7n4�128d6nþ1ð6k�1�2nÞ
�16d6nþ5f216k2þ312kþ23�2 36kþ43ð Þnþ3n2g

2
6664

3
7775

432ðkþ1Þfð11k2þ21k�17Þk�ð4t2þ26k�5Þn�3ðk�2Þn2þn3g ;

for nþ1ð Þ=6� k� n�1ð Þ=4

ðn� 3kÞf � 9ð6k3 þ 32k2 þ 6k � 23Þ þ 3ð18k2 þ 64k þ 87Þn
� ð18k � 49Þn2 þ 11n3g � 16d6nþ1ð6k � 1� 2nÞ
þ 8d6nþ5f54k2 � 24k þ 1� 4ð9k � 2Þnþ 6n2g

2
6664

3
7775

27ðn� 3kÞfðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3:
(6.23)
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Representations for the Condorcet Efficiency of PER and NPER are not obtained

for Parameter c for finite n. The limiting representations as n ! 1 can be obtained

for Parameters b and t by following the same logic that we have used before. It is

also possible to obtain the limiting representations for Parameters b, t and c from

previous results that are related to the likelihood that a Strong Borda Paradox is

observed.

Theorem 6.1 P
WSR 1�lð Þ
SgBP 3;1jIAC�

t kð Þ� � ¼ 1� CES
WSRE lð Þ 3;1jIAC�

b kð Þ� �

P
WSR 1�lð Þ
SgBP 3;1jIAC�

b kð Þ� � ¼ 1� CES
WSRE lð Þ 3;1jIAC�

t kð Þ� �

P
WSR 1�lð Þ
SgBP 3;1jIAC�

c kð Þ� � ¼ 1� CES
WSRE lð Þ 3;1jIAC�

c kð Þ� �
:

The same results are also true if b, t and c are replaced by b�, t� and c�.

Proof The proof for each statement follows an identical process. We prove the first

result using the notation from Theorem 3.3, and the remaining statements are then

obvious. Define the Event for a voting situation on three candidates A;B;Cf g with
the specified parameter value b ¼ k such that AMB, AMC, BWlA, CWl A, making

Candidate A both the PMRW and the strict loser by Rule l. We show that the

probability of this Event is identical to the probability of two other events.

First, Theorem 3.3 requires that the probability of observing this Event is the

same as the probability that EventD is observed, with BMA, CMA, AW1�lB, AW1�l

C, leading to a voting situation with parameter value t ¼ k that exhibits a Strong

Borda Paradox in which Candidate A is both the PMRL and the strict winner by

Rule 1� lð Þ. The symmetry of IAC-based assumptions with respect to the candi-

dates for all such voting situations leads directly to the left hand side of the identity

relationship.

The definition of Event also describes the only type of voting situation in which

Candidate A is the PMRW that can not be the winner by Rule l elimination, since

the PMRW must win the second stage election if it is not eliminated in the first

round. No voting situation that contains any such Eventwill therefore be included in
the accumulation of relevant voting situations to obtain the Condorcet Efficiency of

Rule l elimination. If the possibility of ties by Rule l is zero, which occurs if

n ! 1, the symmetry of IAC based assumptions with respect to candidates leads to

the right hand side of the identity relationship. □
The limiting representations for the Condorcet Efficiencies of the two-stage

voting rules are then obtained from the associated Strong Borda Paradox represen-

tations from Chap. 3, and the results are summarized as:

Limiting Condorcet Efficiency of PER for Parameter b:

CES
PER 3;1jIAC�

b akð Þ� �¼1458a3k�540a2k�405akþ137

144ð11a3k�4a2k�3akþ1Þ ; for 0�ak�1=6
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77760a4k � 48384a3k þ 864a2k þ 1920ak þ 65

3456akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

297a3k � 297a2k þ 99ak � 20

27ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (6.24)

Limiting Condorcet Efficiency of PER for Parameter t:

CES
PER 3;1jIAC�

t akð Þ� � ¼ 10a3k � 4a2k � 3ak þ 1

11a3k � 4a2k � 3ak þ 1
; for 0 � ak � 1=4

ð2ak � 1Þð6a2k � 3ak þ 1Þ
18a3k � 18a2k þ 6ak � 1

; for 1=4 � ak � 1=3: (6.25)

Limiting Condorcet Efficiency of PER for Parameter c:

CES
PER 3;1jIAC�

c akð Þ� � ¼ 1557a3k � 288a2k � 459ak þ 137

9ð139a3k � 28a2k � 54ak þ 16Þ ; for 0 � ak � 1=8

�6060a4k þ 4992a3k � 2988a2k þ 644ak � 3

36akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=8 � ak � 1=6

53064a4k � 31392a3k � 2160a2k þ 2064ak þ 59

216akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=6 � ak � 1=4

1917a3k � 2565a2k þ 1071ak � 59

27ð39a3k � 63a2k þ 29ak � 1Þ ; for 1=4 � ak � 1=3: (6.26)

Limiting Condorcet Efficiency of NPER for Parameter b:

CES
NPER 3;1jIAC�

b akð Þ� � ¼ 179a3k � 68a2k � 48ak þ 16

16ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=4

�111a3k þ 111a2k � 27ak � 1

8ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (6.27)

Limiting Condorcet Efficiency of NPER for Parameter t:
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CES
NPER 3;1jIAC�

t akð Þ� �¼ 288a3k � 108a2k � 108ak þ 35

36ð11a3k � 4a2k � 3ak þ 1Þ ; for 0� ak � 1=6

15120a4k � 8640a3k þ 432a2k þ 240ak þ 7

432akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

54a3k � 54a2k þ 18ak � 11

27ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=4 � ak � 1=3: (6.28)

Limiting Condorcet Efficiency of NPER for Parameter c:

CES
NPER 3;1jIAC�

c akð Þ� � ¼ 1653a3k � 756a2k � 324ak þ 128

9ð139a3k � 28a2k � 54ak þ 16Þ ;

for 0 � ak � 1=6

8172a4k þ 3024a3k � 7992a2k þ 2112ak � 29

108akð139a3k � 28a2k � 54ak þ 16Þ ; for 1=6 � ak � 1=4

1431a3k � 2079a2k þ 909ak � 41

27ð39a3k � 63a2k þ 29ak � 1Þ ; for 1=4 � ak � 1=3: (6.29)

Equations (6.24)–(6.29) are used to obtain values of CEVR 3;1jIACX akð Þð Þ for
each value of ak ¼ 0:00 0:01ð Þ0:33, with X 2 b; t; cf g and VR 2 PER;NPERf g.
Tables 6.5 and 6.6 list the results for PER and NPER respectively.

Some other results also follow directly from these limiting representations.

First, we observe that CES
PER 3;1jIAC�

t 0ð Þ� � ¼ CES
NPER 3;1jIAC�

b 0ð Þ� � ¼ 1,

which can be proven very easily. In addition, as ak ! 1=3 we note that

CES
PER 3;1jIAC�

t 1=3ð Þ� � ¼ CES
NPER 3;1jIAC�

b 1=3ð Þ� � ¼ 2=3, to indicate possible

scenarios with very poor performance for both of these two-stage voting rules.

However, slightly different values are obtained from these two representations over

the rest of the range of possible ak values.
A graphical representation of the Condorcet Efficiencies of two-stage voting

rules that are taken from Tables 6.5 and 6.6 are shown in Fig. 6.4 for Parameter b, in
Fig. 6.5 for Parameter t and in Fig. 6.6 for Parameter c. The previously calculated

values of CES
BR 3;1jIAC�

X akð Þ� �
are also included in each of these figures for

comparison purposes.

A very evident observation from these graphs is that the two-stage voting rules

typically have significantly greater Condorcet Efficiency values than those that are

observed for the single-stage voting rules. It is also very clear that there are a

number of notable violations of the Efficiency Hypothesis with the two-stage

voting rules.
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When we consider which voting rules tend to be most efficient, the results in

Fig. 6.4 indicate that both two-stage voting rules have greater values of Condorcet

efficiency than BR over the range with 0 � ak � 0:26 for Parameter b. Since

PVS 3;1;CIAC�
b 0:26�ð Þ� � ¼ 0:9132, there is only a very small range over which

BR is more Condorcet Efficient than NPER, and that range only accounts for the

less than 9% of voting situations that have a PMRW that are farthest removed from

being perfectly single-peaked. The same general observations are made with regard

to the results in Fig. 6.5 with Condorcet Efficiencies that are based on Parameter t.
The difference in this case is that it is the less than nine percent of voting situations

that have a PMRW that are farthest removed from being perfectly single-troughed

for which BR is more Condorcet Efficient than PER.

Table 6.5 Computed values of CES
PER 3;1jIAC�

X akð Þ� �
, for X 2 b; t; cf g

ak X

b t c

0.00 0.9514 1.000 0.9514

0.01 0.9518 1.000 0.9516

0.02 0.9523 1.000 0.9518

0.03 0.9528 1.000 0.9519

0.04 0.9534 0.9999 0.9520

0.05 0.9540 0.9999 0.9522

0.06 0.9546 0.9997 0.9523

0.07 0.9554 0.9996 0.9525

0.08 0.9561 0.9993 0.9528

0.09 0.9570 0.9990 0.9532

0.10 0.9579 0.9985 0.9537

0.11 0.9589 0.9979 0.9545

0.12 0.9601 0.9971 0.9555

0.13 0.9613 0.9961 0.9568

0.14 0.9627 0.9948 0.9585

0.15 0.9642 0.9932 0.9607

0.16 0.9659 0.9911 0.9634

0.17 0.9678 0.9885 0.9665

0.18 0.9699 0.9852 0.9698

0.19 0.9721 0.9810 0.9734

0.20 0.9744 0.9756 0.9771

0.21 0.9767 0.9687 0.9808

0.22 0.9791 0.9596 0.9844

0.23 0.9817 0.9476 0.9879

0.24 0.9846 0.9315 0.9910

0.25 0.9882 0.9091 0.9937

0.26 0.9919 0.8821 0.9957

0.27 0.9947 0.8541 0.9973

0.28 0.9968 0.8254 0.9984

0.29 0.9983 0.7961 0.9991

0.30 0.9992 0.7665 0.9996

0.31 0.9997 0.7366 0.9999

0.32 1.0000 0.7067 1.0000

0.33 1.0000 0.6767 1.0000
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Different results are observed in Fig. 6.6, where Condorcet Efficiencies are

based on Parameter c. Here, both two-stage voting rules have greater values of

Condorcet Efficiency that BR does over most of the region of possible ak values.
The only exception is that BR has a greater Condorcet Efficiency that NPER in

the range 0 � ak � 0:05. Since PVS 3;1;CIAC�
c 0:05�ð Þ� � ¼ 0:0709, both two-

stage voting rules have greater Condorcet Efficiency than BR, except for the

seven percent of voting situations that have a PMRW that are closest to having

perfectly-polarized preferences, as measured by Parameter c.
If we accept the basic idea that we would generally expect to have large

electorates that are neither highly mutually coherent nor highly mutually incoherent

in their preferences, we would conclude that both two-stage voting rules have

Table 6.6 Computed values of CES
NPER 3;1jIAC�

X akð Þ� �
, for X 2 b; t; cf g

ak X

b t c

0.00 1.000 0.9722 0.8889

0.01 1.000 0.9715 0.8963

0.02 0.9999 0.9708 0.9034

0.03 0.9998 0.9703 0.9104

0.04 0.9996 0.9698 0.9171

0.05 0.9993 0.9695 0.9236

0.06 0.9989 0.9693 0.9299

0.07 0.9985 0.9691 0.9360

0.08 0.9980 0.9690 0.9418

0.09 0.9973 0.9690 0.9474

0.10 0.9966 0.9690 0.9529

0.11 0.9956 0.9691 0.9580

0.12 0.9946 0.9691 0.9629

0.13 0.9933 0.9692 0.9675

0.14 0.9918 0.9691 0.9719

0.15 0.9900 0.9690 0.9758

0.16 0.9878 0.9687 0.9794

0.17 0.9853 0.9682 0.9826

0.18 0.9822 0.9674 0.9853

0.19 0.9786 0.9664 0.9876

0.20 0.9741 0.9652 0.9897

0.21 0.9686 0.9641 0.9915

0.22 0.9617 0.9634 0.9932

0.23 0.9529 0.9639 0.9947

0.24 0.9414 0.9665 0.9961

0.25 0.9261 0.9731 0.9972

0.26 0.9060 0.9815 0.9981

0.27 0.8815 0.9880 0.9988

0.28 0.8534 0.9928 0.9993

0.29 0.8222 0.9961 0.9996

0.30 0.7885 0.9982 0.9998

0.31 0.7531 0.9994 0.9999

0.32 0.7165 0.9999 1.0000

0.33 0.6792 1.000 1.0000
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greater Condorcet Efficiency than BR in the realm of realistic voting situations for

models that are based on any of Parameters b, t and c. However, the previous

discussion of the Borda Compromise could still be applied in general; particularly

since the use of two-stage voting systems reflects the use of more complicated

voting procedures. This notion certainly deserves to be analyzed in much greater

detail, and that will be done after we first consider the connection between the

Efficiency Hypothesis and strong measures of group mutual coherence.

6.5 Efficiency with Strong Measures of Group Coherence

Before we develop representations for the Condorcet Efficiency of voting rules with

specified levels of strong measures of group mutual coherence, some general

observations can be made from work presented in Gehrlein et al. (2010).

Theorem 6.2 CES
PR 3;njIAC�

t� kð Þ� �¼ CES
PER 3;njIAC�

t� kð Þ� �¼ 1 for all n=2< k� n.

Proof If a voting situation has k>n=2 for Parameter t�, some candidate is a Strong

PMRW, as described in Chap. 5. Suppose without a loss of generality that this is

Candidate A. Then, Candidate A will obviously be the strict winner by PR. More-

over, Candidate A can not then be eliminated in the first stage of PER voting, so it

must be one of the two candidates that advance the second stage of voting. Since

Candidate A is a Strong PMRW, it must then be the winner in the second stage of

voting. □
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Theorem 6.3 CES
NPER 3; njIAC�

b� kð Þ� � ¼ 1 for n=2<k � n.

Proof If a voting situation has k>n=2 for Parameter b�, some candidate is a

Strong PMRL, as described in Chap. 5. Suppose without a loss of generality that

this is Candidate C. It is obvious that Candidate C will be the strict loser by NPR in

the first stage of voting by NPER, so that it will be eliminated. The two remaining

candidates then go to the second stage of voting, and if either is a PMRW it must be

elected as the winner in the second stage. □

Theorem 6.4 CES
PER 3; njIAC�

b� kð Þ� � ¼ 1 for 3n=4 � k � n.

Proof Assume that Candidate A is the PMRW in a voting situation. Then, some

candidate other than A must therefore have k � 3=4 for Parameter b�. Suppose
without any loss of generality that this is Candidate C, and with the complete voter

preference rankings from Fig. 1.1, n1 þ n3 � 3n=4. The PR score of Candidate C
must therefore have n4 þ n6 � n=4. Since Candidate A is the PMRW, the PR score

of Candidate B must have n3 þ n5<n=2. The PR score of Candidate A must then

necessarily have n1 þ n2>n=4, so that it can not be eliminated at the first stage by

PER, and it must then win in the second stage. □

Theorem 6.5 CES
BR 3;1jIAC�

t� akð Þ� � ¼ CES
NPER 3;1jIAC�

t� akð Þ� � ¼ 1 for 2=3�ak
�1.

Proof Consider a voting situation with finite n voters such that k � 2n=3 for

Parameter t�. Suppose that this occurs because Candidate A is ranked as most

preferred by at least 2n=3 voters, to make it a Strong PMRW. By using Borda

score weights 1; 1=2; 0ð Þ, it then follows that the BR score of Candidate A must be

greater than or equal to 2n=3. Given the BR weights that we are using, The BR

scores of Candidates B and Cmust then be less than or equal to 2n=3, if Candidate A
is ranked as most preferred by at least 2n=3 voters. The probability of BR ties in

voting situations vanishes as n ! 1, so it follows that the Strong PMRW, Candi-

date A, must be the strict BR winner as n ! 1.

The same limiting result also holds for NPER. For the same voting situation that

is described above for finite n, the NPR score of the Strong PMRW, Candidate A, is
greater than or equal to 2n=3 in the first stage. The total NPR score for all candidates

in the first stage is equal to 2n, so Candidate A has a score that is greater than or

equal to the average NPR score for all candidates. Since the probability of NPR ties

vanishes as n ! 1, the probability that Candidate A could be eliminated in the first

stage of NPER voting vanishes, and it must then be elected in the second stage since

it is the Strong PMRW. □

Theorem 6.6 CES
NPR 3;1jIAC�

t� 1ð Þ� � ¼ 1.

Proof Some candidate must be ranked as most preferred by every voter in such a

voting situation, and that candidate is therefore the PMRW. Since this candidate is

never ranked as least preferred, it must be the winner by NPR when the possible

existence of NPR ties vanishes as n ! 1. □
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Theorem 6.7 CES
PR 3; njIAC�

c� nð Þ� � ¼ CES
PR 3; n; IAC�

b� nð Þ� � ¼ 1, for odd n.

Proof If either Parameter c� or b� has k ¼ n in a voting situation, some candi-

date is never ranked as most preferred by any voter. Whichever remaining

candidate is ranked as most preferred by a majority of voters must then be both

the PMRW and the winner by PR. □

The degree of group mutual coherence increases as each of b�, t� and c� increases,
so Theorems 6.2–6.7 provide significant support for the Efficiency Hypothesis.

However, we shall soon see that some voting rules are not always in agreement

with the Efficiency Hypothesis for strong measures of group mutual coherence.

Theorem 6.8 CES
NPR 3; njIAC�

c� nð Þ� � ¼ 0.

Proof Assume that Candidate A is the PMRW. Since k¼ n with Parameter c�, some

candidate other than the PMRW is middle ranked in the preferences of all voters

and it receives a score of n by NPR. Since the total score is 2n with NPR, Candidate
A therefore can not be the strict NPR winner. □

Theorem 6.9 CES
NPR 3; njIAC�

b� nð Þ� � ¼ 0.

Proof If b� ¼ n, some candidate is ranked as least preferred by every voter, to be

both the strict NPR loser and the PMRL. Each of the other two candidates therefore

has a tied NPR score of n, so that the strict PMRW, if one exists for even n, can not
be the strict NPR winner since it is tied with another candidate. □

It obviously follows that there will not be a relationship between the Con-

dorcet Efficiency of NPR and either of Parameters b� or c� that is in agree-

ment with the Efficiency Hypothesis. Discontinuities can also be found the in

limiting Condorcet Efficiency representations as a result of the two following

observations.

Theorem 6.10 CES
NPR 3;1jIAC�

b� akð Þ� � � 1=2 for 1=2 � ak<1.

Proof Consider a voting situation with finite n voters such that k>n=2 for

Parameter b�. Suppose that this results since Candidate C is ranked as least

preferred by at least the n=2 voters, making it a Strong PMRL. To prove the result,

it is sufficient to show that each voting situation for which the NPR winner is

different than the PMRW can be mapped to another unique voting situation in

which the PMRW is the NPR winner. Suppose that Candidate A is the PMRW and

that Candidate B is the NPR winner. This scenario requires the following inequal-

ities to hold, based on the preference ranking definitions in Fig. 1.1 for a given n:

½b� � n=2;C is PMRL� n1 þ n3 � n=2 (6.30)

½AMB� n1 þ n2 þ n4 > n3 þ n5 þ n6 (6.31)

½B beats A by NPR� n2 þ n4 < n5 þ n6 (6.32)

228 6 Coherence and the Efficiency Hypothesis



Note that (6.31) and (6.32) jointly require that n1>n3. The mapping of this

voting situation to another unique voting situation interchanges n1 $ n3. Based on

(6.30), Candidate C has the same value for Parameter b� and remains the Strong

PMRL in the new voting situation. Based on (6.32), Candidate B remains the NPR

winner over A. This new voting situation must have n3>n1, which in conjunction

with (6.32) requires that BMA, so that Candidate B is now the PMRW. It is still

necessary to account for the case of ties with n1 ¼ n3, but as n ! 1 the probability

of such tied outcomes vanishes. □

A discontinuity in CES
NPR 3;1jIAC�

b� akð Þ� �
must then exist as ak ! 1, given

Theorem 6.9. Different results can also be observed if Weak Condorcet Efficiency

is considered, since it follows from the proof of Theorem 6.9 that:

Corollary 6.1 CEW
NPR 3; njIAC�

b� nð Þ� � ¼ 1.

As a result of Theorems 6.8 and 6.9, it is clearly evident that the Efficiency

Hypothesis can not be completely valid for all voting rules with strong measures of

group mutual coherence, just as in the case of weak measures of group coherence.

However, we continue our efforts to analyze this general relationship between

the Condorcet Efficiency of voting rules and strong measure of group mutual

coherence.

6.5.1 Single-Stage Rule Representations with Strong Measures

Gehrlein et al. (2010) obtain limiting representations for the Condorcet Efficiency

of voting rules, conditional on specified values of strong measures of group

mutual coherence. Only the limiting representations are obtained with the

parameterized version of Barvinok’s algorithm, and these are obtained for each

of Parameters b�, t�, c� and u�. The resulting representations are summarized

below.

6.5.1.1 Limiting Condorcet Efficiency Representations for PR

Limiting Condorcet Efficiency of PR for Parameter b�:

CES
PR 3;1jIAC�

b� akð Þ� � ¼ 540a3k � 216a2k � 36ak � 17

108ð18a3k � 18a2k þ 6ak � 1Þ;

for 1=3 � ak � 5=12

14256a4k � 29808a3k þ 21168a2k � 5940ak þ 557

432ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2
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648a4k � 1944a3k þ 2106a2k � 948ak þ 139

216akðak � 1Þ3 ; for 1=2 � ak � 2=3

9ak � 1

8ak
; for 2=3 � ak � 1: (6.33)

Limiting Condorcet Efficiency of PR for Parameter t�:

CES
PR 3;1jIAC�

t� akð Þ� � ¼ akð6a2k � 6ak þ 1Þ
18a3k � 18a2k þ 6ak � 1

; for 1=3 � ak � 1=2

1, for 1/2 � ak � 1 (see Theorem 6.2). (6.34)

Limiting Condorcet Efficiency of PR for Parameter c�:

CES
PR 3;1jIAC�

c� akð Þ� � ¼ 4ð162a3k þ 54a2k � 90ak � 1Þ
27ð123a3k � 99a2k þ 25ak � 5Þ ; for 1=3 � ak � 3=8 Þ;

14232a4k � 18432a3k þ 9072a2k � 2244ak þ 247

27ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 5=12

7728a4k � 2304a3k � 3456a2k þ 1512ak � 131

54ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 1=2

8ð12a4k � 48a3k þ 72a2k � 54ak þ 17Þ
27ð1� akÞ3ð17ak � 1Þ ; for 1=2 � ak � 2=3

8ð23ak � 5Þ
9ð17ak � 1Þ; for 2=3 � ak � 1: (6.35)

Limiting Condorcet Efficiency of PR for Parameter u�:

CES
PR 3;1jIAC�

u� akð Þ� � ¼ 97

162
; for 1=3 � ak � 3=8

47736a4k � 82080a3k þ 51408a2k � 14016ak þ 1411

54ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 3=8 � ak � 5=12

74736a4k � 129600a3k þ 81216a2k � 22032ak þ 2197

108ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 5=12 � ak � 1=2
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1080a4k � 3456a3k þ 4050a2k � 2028ak þ 355

216ðak � 1Þ3ð3ak � 1Þ ; for 1=2 � ak � 2=3

25ak � 9

8ð3ak � 1Þ; for 2=3 � ak � 1: (6.36)

Computed values of CES
PR 3;1jIAC�

X� akð Þ� �
for X� 2 b�; t�; c�; u�f g are

obtained with (6.30)–6.36 for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 1=3, and
the results are listed in Table 6.7.

6.5.1.2 Limiting Condorcet Efficiency Representations for NPR

Limiting Condorcet Efficiency of NPR for Parameter b�:

CES
NPR 3;1jIAC�

b� akð Þ� � ¼ 255a3k � 255a2k þ 75ak � 7

8ð18a3k � 18a2k þ 6ak � 1Þ ;

for 1=3 � ak � 1=2

5ak þ 3

16ak
; for 1=2 � ak<1: (6.37)

Limiting Condorcet Efficiency of NPR for Parameter t�:

CES
NPR 3;1jIAC�

t� akð Þ� � ¼ �3591a3k þ 4887a2k � 2061ak þ 244

108ð18a3k � 18a2k þ 6ak � 1Þ ;

for 1=3 � ak � 5=12

Table 6.7 Computed values of CES
PR 3;1jIAC�

X� akð Þ� �
, for X� 2 b�; t�; c�; u�f g

ak X

b� t� c� u�

1/3 0.9166 0.3233 0.9047 0.5988

0.35 0.9143 0.3833 0.9040 0.5988

0.40 0.8864 0.5366 0.8972 0.6031

0.45 0.8432 0.7161 0.8889 0.6553

0.50 0.8148 1.0000 0.8691 0.8148

0.55 0.8750 1.0000 0.8536 0.8942

0.60 0.9118 1.0000 0.8591 0.9339

0.65 0.9326 1.0000 0.8802 0.9539

0.70 0.9464 1.0000 0.9052 0.9659

0.75 0.9583 1.0000 0.9267 0.9750

0.80 0.9688 1.0000 0.9453 0.9821

0.85 0.9779 1.0000 0.9616 0.9879

0.90 0.9861 1.0000 0.9759 0.9926

0.95 0.9934 1.0000 0.9886 0.9966

1.00 1.0000 1.0000 1.0000 1.0000
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810a4k � 1944a3k þ 540a2k þ 414ak � 137

216ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

27a4k � 108a3k þ 162a2k þ 84ak þ 7

216akðak � 1Þ3 ; for 1=2 � ak � 2=3

13ak � 5

8ak
; for 2=3 � ak<1: (6.38)

Limiting Condorcet Efficiency of NPR for Parameter c�:

CES
NPR 3;1jIAC�

c� akð Þ� � ¼ 4ð � 1296a3k þ 1836a2k � 792ak þ 89Þ
27ð123a3k � 99a2k þ 25ak � 5Þ ;

for 1=3 � ak � 3=8

25344a4k � 53568a3k þ 36288a2k � 9168ak þ 695

108ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 2=5

62844a4k � 113568a3k þ 72288a2k � 18768ak þ 1655

108ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 2=5 � ak � 5=12

20100a4k � 24672a3k þ 14112a2k � 5232ak þ 845

108ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 1=2

2808a4k � 7776a3k þ 6480a2k � 1200ak � 365

216ðak � 1Þ3ð17ak � 1Þ ; for 1=2 � ak � 2=3

152a4k � 352a3k þ 240a2k � 16ak � 23

8ðak � 1Þ3ð17ak � 1Þ ; for 2=3 � ak � 3=4

13ð1� akÞ
17ak � 1

; for 3=4 � ak � 1: (6.39)

Limiting Condorcet Efficiency of NPR for Parameter u�:

CES
NPR 3;1jIAC�

u� akð Þ� � ¼ 1975

2592
; for 1=3 � ak � 3=8

282393a4k �450252a3k þ266598a2k �69612akþ6773

108ð2152a4k �3552a3k þ2160a2k �576akþ57Þ ; for 3=8� ak � 2=5
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113643a4k � 180252a3k þ 104598a2k � 26412ak þ 2453

108ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 2=5� ak � 5=12

ð3ak � 1Þð51705a3k � 65889a2k þ 27303ak � 3703Þ
108ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 5=12 � ak � 1=2

297a3k � 945a2k þ 1035ak � 379

864ðak � 1Þ3 ; for 1=2 � ak � 2=3

3ð27ak � 11Þ
32ð3ak � 1Þ ; for 2=3 � ak � 1: (6.40)

Computed values of CES
NPR

�
3;1jIAC�

X� akð Þ� for X� 2 b�; t�; c�; u�f g are

obtained with (6.37)–(6.40) for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 1=3,
and the results are listed in Table 6.8.

6.5.1.3 Limiting Condorcet Efficiency Representations for BR

Limiting Condorcet Efficiency of BR for Parameter b�:

CES
BR 3;1jIAC�

b� akð Þ� � ¼ akð3a2k þ 9ak � 7Þ
4ð18a3k � 18a2k þ 6ak � 1Þ; for 1=3 � ak � 3=8

�4042a4k þ 6288a3k � 3636a2k þ 906ak � 81

24ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 2=5

Table 6.8 Computed values of CES
NPR 3;1jIAC�

X� akð Þ� �
, for X� 2 b�; t�; c�; u�f g

ak X

b� t� c� u�

1/3 0.3208 0.9162 0.9047 0.7620

0.35 0.3955 0.9074 0.8999 0.7620

0.40 0.5640 0.7990 0.8475 0.7516

0.45 0.6770 0.6388 0.7738 0.6685

0.50 0.6875 0.4676 0.6988 0.5613

0.55 0.6534 0.5259 0.6181 0.5868

0.60 0.6250 0.5918 0.5339 0.6157

0.65 0.6009 0.6636 0.4452 0.6465

0.70 0.5803 0.7321 0.3571 0.6733

0.75 0.5625 0.7917 0.2766 0.6938

0.80 0.5469 0.8438 0.2063 0.7098

0.85 0.5331 0.8897 0.1450 0.7228

0.90 0.5208 0.9306 0.0909 0.7335

0.95 0.5099 0.9671 0.0429 0.7424

1.00 0.5000 1.0000 0.0000 0.7500
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5333a4k � 8712a3k þ 5364a2k � 1494ak þ 159

24ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 2=5 � ak � 1=2

27a4k � 48a3k þ 36a2k � 24ak þ 10

48akð1� akÞ3
; for 1=2 � ak � 2=3

9ak � 1

8ak
; for 2=3 � ak � 1: (6.41)

Limiting Condorcet Efficiency of BR for Parameter t�:

CES
BR 3;1jIAC�

t� akð Þ� �¼ 84a3k �72a2k þ20ak�3

4ð18a3k �18a2k þ6ak�1Þ; for 1=3� ak � 3=8

�2584a4k þ 4344a3k � 2664a2k þ 690ak � 63

24ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 1=2

87a4k � 234a3k þ 234a2k � 102ak þ 16

6akðak � 1Þ3 ; for 1=2 � ak � 2=3

¼ 1; for 2=3 � ak � 1 ðsee Theorem 6:4Þ: (6.42)

Limiting Condorcet Efficiency of BR for Parameter c�:

CES
BR 3;1jIAC�

c� akð Þ� � ¼ 213a3k þ 171a2k � 185ak þ 1

12ð123a3k � 99a2k þ 25ak � 5Þ; for 1=3 � ak � 3=8

75121a4k � 93804a3k þ 44406a2k � 11004ak þ 1281

180ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 3=7

22069a4k � 14516a3k � 1266a2k þ 1484ak � 91

120ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=7 � ak � 1=2

971a4k � 1484a3k þ 786a2k � 524ak þ 291

120ð1� akÞ3ð17ak � 1Þ ; for 1=2 � ak � 2=3

2269ak � 349

120ð17ak � 1Þ; for 2=3 � ak � 1: (6.43)

234 6 Coherence and the Efficiency Hypothesis



Limiting Condorcet Efficiency of BR for Parameter u�:

CES
BR 3;1jIAC�

u� akð Þ� � ¼ 7

8
; for 1=3 � ak � 3=8

2395a4k � 3876a3k þ 2322a2k � 612ak þ 60

2152a4k � 3552a3k þ 2160a2k � 576ak þ 57
; for 3=8 � ak � 2=5

2ð2030a4k � 3314a3k þ 1983a2k � 518ak þ 50Þ
3ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ; for 2=5 � ak � 1=2

156a4k � 468a3k þ 522a2k � 252ak þ 43

24ðak � 1Þ3ð3ak � 1Þ ; for 1=2 � ak � 2=3

25ak � 9

8ð3ak � 1Þ; for 2=3 � ak � 1: (6.44)

Computed values of CES
BR 3;1jIAC�

X� akð Þ� �
for X� 2 b�; t�; c�; u�f g are

obtained with (6.41)–(6.44) for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 1=3,
and the results are listed in Table 6.9.

6.5.2 Single-Stage Rule Efficiencies with Strong Measures

The computed Condorcet Efficiencies, CES
VRð3;1jIAC�

X� akð ÞÞ, for single-stage vot-
ing rules fromTables 6.7–6.9 are displayed graphically in Fig. 6.7 for Parameter b�, in
Fig. 6.8 for Parameter t�, in Fig. 6.9 for Parameter c� and in Fig. 6.10 for Parameter u�.

Table 6.9 Computed values of CES
BR 3;1jIAC�

X� akð Þ� �
, for X� 2 b�; t�; c�; u�f g

ak X

b� t� c� u�

1/3 0.9166 0.9166 0.9047 0.8750

0.35 0.9144 0.9141 0.9040 0.8750

0.40 0.8913 0.8730 0.8985 0.8696

0.45 0.8925 0.8099 0.8954 0.8330

0.50 0.8958 0.8333 0.8950 0.8333

0.55 0.9040 0.9501 0.9037 0.9029

0.60 0.9175 0.9931 0.9179 0.9362

0.65 0.9327 0.9999 0.9335 0.9539

0.70 0.9464 1.0000 0.9475 0.9659

0.75 0.9583 1.0000 0.9594 0.9750

0.80 0.9688 1.0000 0.9697 0.9821

0.85 0.9779 1.0000 0.9787 0.9879

0.90 0.9861 1.0000 0.9867 0.9926

0.95 0.9934 1.0000 0.9937 0.9966

1.00 1.0000 1.0000 1.0000 1.0000
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These Condorcet Efficiency values for the single-stage voting rules are signifi-

cantly different for strong measures of group mutual coherence, relative to what

was observed with weak measures. However, the relative performances of PR, NPR

and BR in Figs. 6.7–6.10 remain consistent with the observations from weak

measures of group mutual coherence. BR dominates PR over the entire range of

Parameters b� and c�, and PR in turn dominates NPR. For Parameter u�, BR
dominates both PR and NPR over the entire range of parameter values. BR

dominates NPR over the entire range for Parameter t�. There is however a region

of Parameter t� values with 0:47 � ak � 1:00 in which PR dominates BR.

In order to determine the overall significance of this region in which

PR dominates BR for Parameter t�, EUPIA2 is used to develop representations for the
limiting proportion of profiles, PVS 3;1;CIAC�

X� aþk
� �� �

for X� 2 b�; t�; c�; u�f g,
that have a PMRW for a specified parameter value ak or greater. This definition

follows the ideas that led to PVS 3;1;CIAC�
X a�k
� �� �

for weak measures in

(3.10)–(3.12). The results are summarized as:

PVS 3;1;CIAC�
b� aþk
� �� � ¼ PVS 3;1;CIAC�

t� aþk
� �� �

¼ 1728a5k � 2880a4k þ 1920a3k � 720a2k þ 160ak � 11

5
;

for 1=3 � ak � 1=2

16

5
1� akð Þ4 1þ 4akð Þ; for 1=2 � ak � 1: (6.45)
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Condorcet Efficiency with Parameter t*
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PVS 3;1;CIAC�
c� aþk
� �� � ¼

1476a5k � 2100a4k þ 1160a3k � 400a2k þ 100ak � 7

5
;

for 1=3 � ak � 1=2

4

5
1� akð Þ4 3þ 17akð Þ; for 1=2 � ak � 1: (6.46)

PVS 3;1;CIAC�
u� aþk
� �� � ¼

�15552a5k þ 25920a4k � 17280a3k þ 5760a2k � 960ak þ 69

5
;

for 1=3 � ak � 3=8

17216a5k � 35520a4k þ 28800a3k � 11520a2k þ 2280ak � 174

5
;

for 3=8 � ak � 1=2

32

5
1� akð Þ4 6ak � 1ð Þ; for 1=2 � ak � 1: (6.47)
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Since (6.45) gives PVS 3;1;CIAC�
t� 0:47þð Þ� � ¼ 0:7176, PR dominates BR over

a significant range of Parameter t� values that are closest to having a perfect Strong
Positively Unifying Candidate. However, this observation is somewhat offset by the

fact that the performance of PR is unfortunately close to reflecting a random

chooser over the lower range of Parameter t� values with ak ! 1=3.
The arguments supporting the Borda Compromise are even stronger for one-

stage voting rules with strong measures of group mutual coherence than they

were for the case of weak measures. Violations of the Efficiency Hypothesis are

also still observed with strong measures of group mutual coherence, particularly

for NPR.

6.5.3 Two-Stage Rule Representations with Strong Measures

The limiting representations for the Condorcet Efficiency of two-stage voting rules,

conditional on specified values of strong measures of group mutual coherence from

Gehrlein et al. (2010) are summarized as follows.

6.5.3.1 Limiting Condorcet Efficiency Representations for PER

Limiting Condorcet Efficiency of PER for Parameter b�:

CES
PER 3;1jIAC�

b� akð Þ� � ¼ 918a3k � 918a2k þ 306ak � 43

27ð18a3k � 18a2k þ 6ak � 1Þ ;

for 1=3 � ak � 3=8

22464a4k � 48384a3k þ 34560a2k � 9408ak þ 811

864ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 5=12

19008a4k � 20736a3k þ 8640a2k � 2592ak þ 439

864ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

38884k � 12096a3k þ 12960a2k � 5136ak þ 395

3456akðak � 1Þ3 ; for 1=2 � ak � 2=3

3844k � 1152a3k þ 1248a2k � 560ak þ 81

128akðak � 1Þ3 ; for 2=3 � ak � 3=4

¼ 1; for 3=4 � ak � 1: ðsee Theorem 6:4Þ: (6.48)
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Limiting Condorcet Efficiency of PER for Parameter t�:

CES
PER 3;1jIAC�

t� akð Þ� �¼ 48a3k � 30a2k � ak þ 1

4ð18a3k � 18a2k þ 6ak � 1Þ; for 1=3� ak � 1=2

¼ 1 for 1=2� ak � 1: ðsee Theorem 1Þ: (6.49)

Limiting Condorcet Efficiency of PER for Parameter c�:

CES
PER 3;1jIAC�

c� akð Þ� � ¼ 3699a3k � 3051a2k þ 801ak � 149

27ð123a3k � 99a2k þ 25ak � 5Þ ;

for 1=3 � ak � 2=5

1722a4k þ 2148a3k � 3546a2k þ 1152ak � 91

27ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 2=5 � ak � 5=12

24180a4k � 30264a3k þ 14508a2k � 3696ak þ 443

54ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 1=2

4128a4k � 12672a3k þ 12960a2k � 4704ak þ 239

216ðak � 1Þ3ð17ak � 1Þ ; for 1=2 � ak � 2=3

352a4k � 1536a3k þ 2592a2k � 2016ak þ 603

27ð1� akÞ3ð17ak � 1Þ ; for 2=3 � ak � 3=4

4ð5ak � 1Þ
17ak � 1

; for 3=4 � ak � 1: (6.50)

Limiting Condorcet Efficiency of PER for Parameter u�:

CES
PER 3;1jIAC�

u� akð Þ� � ¼ 2417

2592
; for 1=3 � ak � 3=8

246591a4k � 402516a3k þ 242730a2k � 64308ak þ 6331

108ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 3=8 � ak � 2=5

162216a4k�267516a3kþ161730a2k�42708akþ4171

108ð2152a4k�3552a3kþ2160a2k�576akþ57Þ ; for 2=5�ak�5=12

91476a4k � 151038a3k þ 91665a2k � 24354ak þ 2398

54ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 5=12 � ak � 1=2

10800a4k � 36288a3k þ 44064a2k � 22416ak þ 3851

3456ðak � 1Þ3ð3ak � 1Þ ; for 1=2 � ak � 2=3
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640a4k � 2048a3k þ 2400a2k � 1200ak þ 209

128ðak � 1Þ3ð3ak � 1Þ ; for 2=3 � ak � 3=4

3ð27ak � 11Þ
32ð3ak � 1Þ ; for 3=4 � ak � 1: (6.51)

Computed values of CES
PER 3;1jIAC�

X� akð Þ� �
for X� 2 b�; t�; c�; u�f g are

obtained with (6.48)–(6.51) for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 1=3,
and the results are listed in Table 6.10.

6.5.3.2 Limiting Condorcet Efficiency Representations for NPER

Limiting Condorcet Efficiency of NPER for Parameter b�:

CES
NPER 3;1jIAC�

b� akð Þ� � ¼ 30a3k � 30a2k þ 9ak � 1

18a3k � 18a2k þ 6ak � 1
; for 1=3 � ak � 1=2

¼ 1; for 1=2 � ak � 1 ðsee Theorem 6:3Þ: (6.52)

Limiting Condorcet Efficiency of NPER for Parameter t�:

CES
NPER 3;1jIAC�

t� akð Þ� � ¼ 675a3k � 675a2k þ 2251ak � 34

27ð18a3k � 18a2k þ 6ak � 1Þ ;

for 1=3 � ak � 5=12

Table 6.10 Computed values of CES
PER 3;1jIAC�

X� akð Þ� �
, for X� 2 b�; t�; c�; u�f g

ak X

b� t� c� u�

1/3 1.0000 0.6540 1.0000 0.9325

0.35 0.9998 0.7254 0.9999 0.9325

0.40 0.9863 0.8598 0.9986 0.9295

0.45 0.9540 0.9442 0.9933 0.9147

0.50 0.9352 1.0000 0.9827 0.9352

0.55 0.9589 1.0000 0.9636 0.9652

0.60 0.9785 1.0000 0.9432 0.9838

0.65 0.9929 1.0000 0.9259 0.9952

0.70 0.9993 1.0000 0.9225 0.9996

0.75 1.0000 1.0000 0.9362 1.0000

0.80 1.0000 1.0000 0.9524 1.0000

0.85 1.0000 1.0000 0.9665 1.0000

0.90 1.0000 1.0000 0.9790 1.0000

0.95 1.0000 1.0000 0.9901 1.0000

1.00 1.0000 1.0000 1.0000 1.0000
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4536a4k � 12960a3k þ 10800a2k � 3384ak þ 353

216ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

135a4k � 432a3k þ 486a2k � 222ak þ 32

54akðak � 1Þ3 ; for 1=2 � ak � 2=3

1, for 2/3 � ak � 1 (see Theorem 6.5). (6.53)

Limiting Condorcet Efficiency of NPER for Parameter c�:

CES
NPER 3;1jIAC�

c� akð Þ� � ¼ 4185a3k � 3537a2k þ 963ak � 167

27ð123a3k � 99a2k þ 25ak � 5Þ ;

for 1=3 � ak � 5=12

8181a4k � 19764a3k þ 15174a2k � 4536ak þ 458

27ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 1=2

651a4k � 1740a3k þ 1638a2k � 564ak þ 25

216ðak � 1Þ3ð17ak � 1Þ ; for 1=2 � ak � 2=3

163ak � 19

9ð17ak � 1Þ; for 2=3 � ak � 1: (6.54)

Limiting Condorcet Efficiency of PER for Parameter u�:

CES
NPER 3;1jIAC�

u� akð Þ� � ¼ 155

162
; for 1=3 � ak � 3=8

60372a4k � 98928a3k þ 59832a2k � 15888ak þ 1567

27ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 3=8 � ak � 5=12

100008a4k � 163296a3k þ 98064a2k þ 25776ak þ 2509

54ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ ; for 5=12 � ak � 1=2

243a4k � 810a3k þ 972a2k � 492ak þ 86

54ðak � 1Þ3ð3ak � 1Þ ; for 1=2 � ak � 2=3

1; for 2=3 � ak � 1: (6.55)

Computed values of CES
NPER 3;1jIAC�

X� akð Þ� �
for X� 2 b�; t�; c�; u�f g are

obtained with (6.52)–(6.55) for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 1=3,
and the results are listed in Table 6.11.
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6.5.4 Two-Stage Rule Efficiencies with Strong Measures

The values of two-stage voting rule Condorcet Efficiencies from Tables 6.10 and

6.11 are shown graphically in Fig. 6.11 for Parameter b�, in Fig. 6.12 for Parameter

t�, in Fig. 6.13 for Parameter c�, and in Fig. 6.14 for Parameter u�. Previously
calculated values of CES

BR 3;1jIAC�
X� akð Þ� �

are also included in each of these

figures for comparison purposes.

The calculated Condorcet Efficiency values for the two-stage voting rules in

Tables 6.10 and 6.11 are significantly different for strong measures of group mutual

coherence than those that were observed with weak measures. Of particular interest

is the relative performance of PER and NPER compared to BR with these strong

measures of coherence. The plotted Condorcet Efficiency values for two-stage

voting rules that are shown in Figs. 6.11–6.14 indicate once again that there are

many violations of the Efficiency Hypothesis with strong measures of group mutual

coherence. However, some interesting results occur when attention is restricted to

parameter values within the range 0:50 � ak � 1:00.
Based on the representations that are given in (6.45)–(6.47):

PVS 3;1jCIAC�
b� 0:50þð Þ� � ¼ PVS 3;1jCIAC�

t� 0:50þð Þ� � ¼ 0:6000

PVS 3;1;CIAC�
c� 0:50þð Þ� � ¼ 0:5750

PVS 3;1;CIAC�
u� 0:50þð Þ� � ¼ 0:8000: (6.56)

Table 6.11 Computed values of CES
NPER 3;1jIAC�

X� akð Þ� �
, for X� 2 b�; t�; c�; u�f g

ak X

b� t� c� u�

1/3 0.6567 1.0000 1.0000 0.9568

0.35 0.7164 0.9999 0.9999 0.9568

0.40 0.8537 0.9937 0.9968 0.9549

0.45 0.9557 0.9646 0.9814 0.9346

0.50 1.0000 0.9074 0.9605 0.9074

0.55 1.0000 0.9628 0.9554 0.9685

0.60 1.0000 0.9915 0.9555 0.9936

0.65 1.0000 0.9998 0.9614 0.9999

0.70 1.0000 1.0000 0.9694 1.0000

0.75 1.0000 1.0000 0.9764 1.0000

0.80 1.0000 1.0000 0.9824 1.0000

0.85 1.0000 1.0000 0.9876 1.0000

0.90 1.0000 1.0000 0.9922 1.0000

0.95 1.0000 1.0000 0.9963 1.0000

1.00 1.0000 1.0000 1.0000 1.0000
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So, the proportion of voting situations that have a PMRW in the parameter range

of strong measures of coherence with 0:50 � ak � 1:00 is therefore relatively large,
particularly for Parameter u�. The Efficiency Hypothesis is also valid for PER,

NPER and BR within this range of parameter values, with the minor exception that

the Condorcet Efficiency for PER and NPER briefly decrease slightly in this range

for Parameter c� before they both begin to consistently increase to 1.00.

The same observation can be made over this range of strong measure parameters

for PR in Figs. 6.7–6.10. However, it is clear that NPR completely violates

the Efficiency Hypothesis even within this range of parameter values, since its

Condorcet Efficiency decreases as ak increases for both Parameters b� and c�, in
accordance with Theorems 6.6 and 6.7.

6.6 Conclusion

After this extensive analysis with a number of different measures of group mutual

coherence, there is very little general support for the Efficiency Hypothesis.

However, a number of general observations can be made regarding the relative

performance of voting rules on the basis of Condorcet Efficiency for three-

candidate elections.

l NPR is consistently dominated by all other voting rules that have been consid-

ered and it should not be used, particularly when either a Strong Negatively

Unifying Candidate or a Strong Centrist Candidate exists. In such scenarios, the

probability of electing a candidate that is different than the PMRW is very high

with NPR. There are very few scenarios in which NPR performs better than PR,

and it never performs better than BR.
l PR has greater efficiency than BR only for Parameter t with 0 � ak � 0:16

(57.7% of all possible voting situations) and for Parameter t� with

0:50 � ak � 0:67 (42.6% of all possible voting situations). In all other scenarios,

BR is more efficient than PR. The fact that PR also exhibits very poor perfor-

mance for some other ranges of Parameters t, t� and u� leads to the Borda

Compromise for the single-stage voting rules.
l NPER has greater Condorcet Efficiency than BR on the range 0:50 � ak � 1

(at least 57.5% of all possible voting situations) for all strong measures of group

mutual coherence. However, NPER exhibits poor performance for some ranges

of Parameters b and b�.
l PER does not have greater Condorcet Efficiency than BR as consistently as

NPER over the range of parameters that have been considered. The relative

performance of PER and NPER is mixed for weak measures of group mutual

coherence, and NPER dominates PER on the range 0:67 � ak � 1 (at least

14.2% of all possible voting situations) for strong measures of group mutual

coherence. In addition, PER performs very poorly for some ranges of Parameters

t and t�.
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l If we ignore NPR as being an unacceptable voting rule for consideration, the

Condorcet Efficiencies of all voting rules are close to one whenever ak is at all
close to one for any strong measure of group mutual coherence.

The Borda Compromise is a rather easy conclusion to reach in the evaluation of

the single-stage voting rules. But, the solid performance of NPER is difficult to

ignore, particularly since it could be accomplished in one stage by simply asking

voters to rank order their candidates, just as we require with BR. However, if we can

not preclude the possible existence of voters’ preferences that are generated on the

basis of Parameters b or b�, the possibility exists for very poor performance to result

if NPER is used. This possibility can be completely avoided with the Borda

Compromise. This increases our interest in the pursuit of other unique properties

that BR might possess. The final point that is listed also increases our interest in an

evaluation of how significant the ultimate decision is when a voting rule is being

selected for implementation.
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Chapter 7

Other Characteristics of Voting Rules

7.1 Introduction

The last chapter showed that different voting rules can be expected to have the

greatest Condorcet Efficiency in various types of scenarios, depending upon the type

and degree of group mutual coherence that is present in voting situations. The Borda

Compromise concluded that BR could generally be expected to perform with

relatively good measures of Condorcet Efficiency, without allowing the possibility

of having very poor performance. We now continue with an analysis of other

features of voting rules, with an emphasis on various properties of BR.

7.2 Empirical Studies of Condorcet Efficiency

Many studies have been performed to determine the outcomes that would have been

observed in actual elections if different voting rules had been used. Keeping in mind

the discussion of potential difficulties that can arise while performing such empiri-

cal analysis from Chap. 1, we survey much of this work that has been done that is

relevant to our interests. Most of these studies of actual election outcomes indicate

that there are very substantial improvements to Condorcet Efficiency that can be

gained by using BR as a single-stage voting rule.

7.2.1 Single-Stage Voting Rules

Joslyn (1976) uses thermometer scores that were reported by survey respondents to

rank the four primary contenders for the 1972 US Presidential nomination of the

Democrat Party. The thermometer scores were used to construct the individual

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_7,
# Springer-Verlag Berlin Heidelberg 2011
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respondents’ ranked preferences on the four principle contenders for the nomina-

tion: Humphrey, McGovern, Muskie and Wallace. The respondents were grouped

according to their state of residence for 15 different states.

The study then used the respondents’ individual preference rankings to deter-

mine the number of times that two given voting rules will elect different winners

in the 15 different states. PR was consistently found to be the election procedure

that produced a winner that is different than other voting rules. For example, PR

selected a different winner than each of the BR winner and the PMRW in 5 of the

15 different states. The BR winner and the PMRW were found to be the same in

all 15 states that were considered. The study argues that while the use of PR

receives wide mass support, the use of other voting procedures like BR will

produce winners that much more accurately reflect voter sentiment in elections

with more than two candidates. Tideman and Plassmann (2008) produce results on

a different set of elections that lead to a similar conclusion, with BR even

performing as well on the basis of Condorcet Efficiency as the two-stage voting

rules with large electorates.

Chamberlin et al. (1984) examine voters’ rankings of candidates in five different

annual elections for the position of the presidency of a society. In each case there

were five candidates being considered. The number of voters ranged from 11560 to

15499. Voters were asked to rank all of the candidates in each case, but they did not

always do so in every case. Complete rankings were induced in this situation in two

different ways. In the ‘impartial’ scenario, the subset of voters who ranked only k
candidates was partitioned equally into voters with all possible complete rankings

that were consistent with the first k candidate rankings. In the ‘proportional’

scenario, these voters were partitioned proportionally to reported complete rank-

ings. The proportion of each ranking in the partition was consistent with the

proportions of voters who reported preferences on all candidates, with the ranking

on the first k candidates being consistent.

No PMR cycles were found in any of the ten different situations that were

considered. PR was consistently the worst election rule being considered, in

selecting the PMRW. PR failed to elect the PMRW in five of the ten situations

that were considered, while BR failed to elect the PMRW in only two of these

situations.

Levin and Nalebuff (1995) performed an analysis of votes that were taken in 30

British Union elections in which all voters were required to rank all candidates

according to their preferences. Nine different voting rules, including PR and BR,

were applied to the results from the elections. Most of the voting rules picked the

same winner in all cases and differences in rankings of the seven voting rules that

consistently had common winners only occurred when a PMR cycle existed for the

voters’ preferences. However, PR was found to produce a different winner fre-

quently. It was also observed that while rankings were not identical, BR and PMR

typically picked the same winner.

Martin et al. (1996) evaluate BR and PMR on the basis of their use for an

example problem in which the US Forest Service was evaluating options for

250 7 Other Characteristics of Voting Rules



ecosystem management in the Shoshone National Forest in Wyoming. Seven

alternatives were being considered and the preference rankings of seven different

interest groups were obtained on the options. The preference rankings were found to

be single-peaked. The winning option by BR is the PMRW, while the winning

option by PR was found to be different.

D’Angelo et al. (1998) consider four different water-resource management

options that were available to manage the Beaver Creek Drainage Area in Arizona.

Six different interest groups were contacted to provide their overall preference

rankings on the four options that were available. Using these six rankings to

represent preferences for voters, winners were sought by PMR, PR, BR, and

some other voting methods. Ties existed for the winner with both BR and PMR,

but the winner by PR is included in the winning tie-set of both.

Using the same basic example, the preference rankings of each interest group

were then obtained for different specific concerns for the groups, rather than just

reporting an overall ranking for the group. This resulted in a total of 14 preference

rankings on the four alternatives, and no ties were found with the voting rules. BR

was found to elect the PMRW, while PR found a different winner.

Brams et al. (2006) examine the results of a very close election of the Public

Choice Society (PCS). The number of voters was only 36 and there were five

candidates. The voters were asked to report their preference rankings on the

candidates for informational purposes. Based on the evidence that was available,

it was found that a PMRW did exist and that BR would have selected it. However,

PR would have selected a different candidate. It is noted that these results “indicate

the sensitivity of election outcomes to the voting rules (that are used), especially in

an election as close as that of the PCS.”

The overall propensity of BR to select the PMRW in these election based

settings is very difficult to ignore, particularly relative to PR. But, there are some

reports of situations in which PR outperforms BR. For example, Dasgupta and

Maskin (2004) consider the US Presidential election of 2000 with candidates

Buchanan, Bush, Gore and Nader. They observe from reconstructed preference

rankings that are based on election results that Gore was the PMRW, despite his

ultimate loss to Bush. They then go on to show that BR would likely have elected

Bush as the winner, while PR would have elected the PMRW.

Feld and Grofman (1988a, b) determine the conditions under which the PMRW

and the BR winner will be selected under a multi-dimensional spatial modeling

format with a potentially infinite number of candidates. Their first general conclu-

sion is that the probability that a PMRW will exist is quite small. In the unlikely

event that a PMRW does exist, it is very likely to be different than the BR winner

with more than one dimension in the attribute space. Thus, the superiority of BR

might disappear as the number of candidates becomes very large. A similar

observation is made in Lamboray (2007) that evaluates the propensity of a number

of different voting rules that are extensions of PMR and BR to produce the same

rankings on candidates. It is concluded that it is possible for voting situations to

exist such that these rules will produce very different rankings.
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7.2.2 Two-Stage Voting Rules

Less actual data is available from two-stage elections, since these voting rules are

used less frequently. Wilson (2003) gives voting results from the International

Olympic Committee with regard to the selection of the location for the 2010 Winter

Olympics. The selection was conducted by using a two-stage PER procedure. The

PR winner in the first stage was not the PMRW that was ultimately selected in the

second stage. The proposed locations were Pyeongchang (South Korea), Salzburg

(Austria) and Vancouver (Canada). In the first round of voting by PR, the vote

outcome was South Korea (51), Canada (40), and Austria (16) so that South Korea

would have been a clear winner by PR voting. The second round of the elimination

procedure used a majority rule election between South Korea and Canada that

resulted in the selection of Canada as the winner by a 56–53 margin over South

Korea. This pairwise vote outcome, coupled with the margin of votes in the first

stage of the election, indicates that Canada was the PMRW.

Abramson (2007) presents results from the election for President of France in

2007, to suggest that the PMRW was not elected in a two-stage election procedure

that was based on PER. PR was used in the first stage of this election on 12

candidates. Only four candidates received more than 5% of the PR vote in the first

round: Le Pen (10.4%), Bayrou (18.6%), Royal (25.9%) and Sarkozy (31.3%). The

two candidates with the greatest number of PR votes then advanced to the second

round of the election, and Sarkozy defeated Royal by a margin of 53.1% to 46.9%.

This study considers a number of pre-election polls in which the candidates were

compared on a PMR basis. Four polls compared Bayrou, Royal and Sarkozy, and

the results of these polls indicate that Bayrou was the PMRW in all four samples.

The author goes on to use additional evidence from a number of other polls to

support the notion that Bayrou was quite likely the PMRW in the set of all 12

original candidates. Assuming that this is the case, the use of PER clearly does not

guarantee the election of the PMRW.

In a related study, Bullock and Johnson (1985) present an empirical investiga-

tion from runoff elections in the State of Georgia in the US that examines the

likelihood that a number of common myths are true regarding the advantage that

various candidates might have in runoff elections. The myths that are considered

are: ‘primary leader loses in a runoff,’ ‘incumbent loses in a runoff’ and ‘runoff

elections disadvantage minorities’. It is concluded that while these myths are

typically based on some well-known instances that support them, statistical analysis

of all cases provides very little overall evidence to support them.

7.3 Practical Factors and Condorcet Efficiency

Wright and Riker (1989) consider a very interesting extension to comparisons of the

Condorcet Efficiencies of PR and Rule Cm
1:2:1½ �. Simulation estimates under a number

of different scenarios consistently show that the Condorcet Efficiency of Rule
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Cm
1:2:1½ � is significantly greater than the Condorcet Efficiency of PR. This notion is

extended to consider the impact that using Rule Cm
1:2:1½ � might have on the number of

candidates who initially enter a race, as compared to the number who would enter if

PR were to be used. The number of entries is typically expected to be greater for

runoff systems.

The study considers elections in primary gubernatorial elections for Democrat

Party nominees in southern states of the US, since these elections can be held by

either PR or by Rule Cm
1:2:1½ �. Their analysis suggests that the use of Rule C

m
1:2:1½ � is

expected to add two candidates to an election, as opposed to the number of

candidates that would be expected if PR were to be used. The particularly

interesting result is that they find that Condorcet Efficiency of PR with m candi-

dates is approximately the same as the Condorcet Efficiency of Rule Cmþ2
1:2:1½ � from

simulation data. Given this additional factor, it is concluded that the use of

PR actually should not be expected to be less Condorcet efficient than the use of

Rule Cmþ2
1:2:1½ �.

O’Neill (2007) considers the overall cost effectiveness of holding runoff elec-

tions when a candidate does not receive a majority of votes in the first round.

Considering the fact that there could be a significant expense involved with holding

a runoff election, this study evaluates policies of using cutoff thresholds below 50%

to force a runoff election. For example, if 49% of the voters cast a vote for some

candidate in the first round, there can be only a very small probability that this

candidate will not win in the runoff. This scenario would make the notion of

holding a runoff very cost ineffective. The study presents a procedure to obtain

estimates of the probability that a PR winner with some specified proportion of

votes in the first round would win the runoff election if it were to be held.

Eckert et al. (2005) consider the interaction between the cost, as measured by the

amount of information that is needed from voters to implement a voting rule, and a

measure of the Condorcet Efficiency of that voting rule. Constant Scoring Rules of

the form Rule Cm
k and Truncated Borda Rules of the form Rule Bm

k are considered

as possible voting rules. The cost, Cost VRð Þ, that is associated with a voting rule VR
is measured by the minimum number of pairwise preference comparisons that a

voter must perform in order to be able to report the information that is required to

cast a ballot with that particular voting rule. Then, Cost Rule Cm
1

� �
is given as m� 1

since a voter only needs to determine that some candidate is pairwise preferred to

the remaining m� 1 candidates with Rule Cm
1 . In general, Rule Cm

k has a cost of

Cost Rule Cm
k

� � ¼ k m� kð Þ: (7.1)

By using similar analysis, Rule Bm
k has an associated cost of

Cost Rule Bm
k

� � ¼Xk
i¼1

m� ið Þ ¼ k 2m� k � 1ð Þ
2

: (7.2)

Condorcet Efficiency is measured in a different manner than we have been using

to this point. Instead, a distance measure, d VRð Þ, is introduced. This value d VRð Þ
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does more than give a binary value to indicate whether or not a voting rule selects

the PMRW. The value of d VRð Þ is obtained for a given voting rule and a given

voting situation as twice the number of candidates that beat the PMRW for that

voting rule plus the number of other candidates that are tied with the PMRW.

Monte-Carlo simulation analysis was then used to obtain estimates of d VRð Þ for
Rule Cm

k and Rule Bm
k for various m and k with n ¼ 25.

A measure of the overall effectiveness, f VRð Þ, of a voting rule is then defined by

f VRð Þ ¼ 1

Cost VRð Þwd VRð Þ1�w
; (7.3)

where w measures the relative weight that is placed on the cost of obtaining

information, compared to the level of Condorcet Efficiency, as measured by

d VRð Þ, that is desired. When w is equal to one all weight is put on Cost VRð Þ, and
when w is equal to zero all weight is put on d VRð Þ.

The study then compares f VRð Þ with the simulated d VRð Þ values to conclude

that for w as small as 0.1, which puts a strong emphasis on Condorcet Efficiency,

the effectiveness of BR that results from its greater Condorcet Efficiency is

overcome by the cost effectiveness of PR, to make PR the more overall effective

voting rule of the two voting rules, given this particular measure of cost and the

distance measure d VRð Þ.
Weber (1978a–c) analyzes voting rules by using a model that is based on total

social utility. A Random Society is defined for n voters on m candidates

C1;C2; . . . ;Cmf g. Voter i has utility, Ui Cj

� �
, that is associated with the outcome

that Candidate Cj is elected. Each Ui Cj

� �
value is assumed to be drawn indepen-

dently from a uniform distribution over the unit interval (0,1) for all i and j. The
Social Utility for Candidate Cj is given by SU Cj

� � ¼Pn
i¼1 U

i Cj

� �
. Due to

the additive nature of this definition, the Central Limit Theorem requires that the

distribution of possible SU Cj

� �
is normal as n ! 1.

The optimal candidate in any particular case is that Candidate Cj with the

maximum value of SU Cj

� �
. The expected social utility for a voting rule that

would always select the optimal candidate for m candidates, EUm Optimalð Þ, is
obtained directly by considering the distribution of order statistics as

EUm Optimalð Þ ¼ n

2
þ

ffiffiffiffiffi
n

12

r
NormMax mð Þ: (7.4)

Here, NormMax mð Þ is the expected value of the maximum of m independent unit

normal random variables.

If a candidate is elected at random, the expected social utility for each

candidate is

EUm Randomð Þ ¼ n

2
: (7.5)
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The Effectiveness of any voting rule VR is then defined in terms of EUm VRð Þ as
Effectivenessm VRð Þ, with

Effectivenessm VRð Þ ¼ EUm VRð Þ � EUm Randomð Þ
EUm Optimalð Þ � EUm Randomð Þ : (7.6)

Given the condition that n ! 1, results are obtained for specific VR’s:

Effectivenessm PRð Þ ¼
ffiffiffiffiffiffi
3m

p

mþ 1
(7.7)

Effectivenessm BRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

mþ 1

r
: (7.8)

Clearly, BR is superior to PR, and it is further shown that BR becomes nearly as

effective as an optimal rule when m gets large.

Further analysis of CSR’s shows that

Effectivenessm Rule Cm
k

� � ¼ 1

mþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mk m� kð Þ

m� 1

r
: (7.9)

It then follows directly from this definition that

Effectivenessm Rule Cm
k

� � ¼ Effectivenessm Rule Cm
m�k

� �
: (7.10)

Moreover, Effectivenessm Rule Cm
k

� �
is maximized by m=2 for even m, and by

mþ 1ð Þ=2 and m� 1ð Þ=2 for odd m. This result is consistent with observations in

Gehrlein and Fishburn (1981) regarding the Condorcet Efficiency of Rule Cm
k . It

also follows that BR is more effective than the most effective Rule Cm
k . In

summary, for large values of m, BR must be nearly as effective as any voting

rule. However, some non-linear WSR’s are developed on three and four-candidate

elections that are more effective than any of the standard rules that are considered,

given the assumptions used in the study.

LeBreton and Truchon (1997) develop another connection between BR and

PMR. They begin by developing a measure of how the winners by voting rules

compare to the winner by BR. Their measure evaluates a worst case scenario for

various voting rules. To describe it, consider a voting situation P for voters’

preferences on a set of candidates X. Then G Pð Þ is the set of winning candidates

for voting rule G, and B x;Pð Þ is the weighted score for candidate x 2 X under BR.

B� Pð Þ is the value of B x;Pð Þ for the candidate with the maximum BR score, with

B� Pð Þ ¼ Maxx2X B x;Pð Þ½ �: (7.11)
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Let L� denote the set of all possible voting situations. The Borda measure,

BG m; nð Þ, is defined for the worst case situation in which G selects the alternative

with the lowest relative B x;Pð Þ compared to the BR winner, with

BG m; nð Þ ¼ MinP2L�
Maxx2G Pð Þ B x;Pð Þ½ �

B� Pð Þ
� �

: (7.12)

If the winner by BR is included in G Pð Þ for a given voting situation P,

Maxx2G Pð Þ B x;Pð Þ½ �
B� Pð Þ ¼ 1: (7.13)

Thus, BG m; nð Þ identifies the specific P for which this ratio is minimized, so it is

the worst case scenario in terms of how well voting rule G performs at selecting the

BR winner, given the definition of BG m; nð Þ. Obviously, BBR m; nð Þ ¼ 1 for the case

when is G is BR. The study then evaluates a number of voting rules on the basis of

this Borda measure for various voting rules. Of particular interest is the effective-

ness of PMR. It is shown that

Theorem 7.1 Given that a PMRW exists, BPMR m; nð Þ is given by

BPMR m; nð Þ ¼ 1 if n � mn nð Þ
m� 2

m� 1ð Þ nþ n nð Þð Þ
2m� 3ð Þn� n nð Þ if n>

mn nð Þ
m� 2

:

Here, n nð Þ ¼ 1 for odd n and n nð Þ ¼ 2 for even n. In the limit that n ! 1,
BPMR m;1ð Þ is shown to monotonically decrease as m increases from
BPMR 3;1ð Þ ¼ 2=3 to BPMR 1;1ð Þ ¼ 1=2.

The relationship between BR and other voting rules is also considered in

Gehrlein (1998a) where preliminary work in Gehrlein (1996b) is extended to obtain

a representation for the Joint Condorcet Efficiency JCEBR
WSR lð Þ 3;1; IC�ð Þ that both

BR and Rule l will elect the PMRW, given that a PMRW exists. This is accom-

plished by expanding the procedure that was discussed in detail in the development

of the representation for CES
WSR lð Þ 3;1; IC�ð Þ in (5.22) and (5.23).

Four variables were defined in the development of CES
WSR lð Þ 3;1; IC�ð Þ to

require that Candidate A is both the PMRW over B and C and the Rule l winner

over B and C. Two additional variables are added during the development of the

representation for JCEBR
WSR lð Þ 3;1; IC�ð Þ to make Candidate A the BR winner over B

and C. The joint probability that Candidate A is simultaneously the PMRW, the

Rule l winner and the BR winner is then obtained as a six-variate normal positive

orthant probability, F6 R1
� �

, with correlation matrix R1 given by

256 7 Other Characteristics of Voting Rules



R1 ¼

1
1

3

ffiffiffiffiffi
2

3z

r ffiffiffiffiffi
1

6x

r ffiffiffi
8

9

r ffiffiffi
2

9

r

� 1

ffiffiffiffiffi
1

6x

r ffiffiffiffiffi
2

3z

r ffiffiffi
2

9

r ffiffiffi
8

9

r

� � 1
1

2

ffiffiffiffiffi
3

4z

r ffiffiffiffiffiffiffi
3

16z

r

� � � 1

ffiffiffiffiffiffiffi
3

16z

r ffiffiffiffiffi
3

4z

r

� � � � 1
1

2
� � � � � 1

2
66666666666666666664

3
77777777777777777775

: (7.14)

Here z ¼ 1� l 1� lð Þ, as before, and by the symmetry of IC with respect to

candidates

JCEBR
WSR lð Þ 3;1; IC�ð Þ ¼ 3F6 R1

� �
PS
PMRW 3;1; ICð Þ : (7.15)

This orthant probability F6 R1
� �

is obviously symmetric about l ¼ 1=2, given
the definition of z, so

JCEBR
WSR lð Þ 3;1; IC�ð Þ ¼ JCEBR

WSR 1�lð Þ 3;1; IC�ð Þ: (7.16)

Results from Slepian (1962) can be applied here, given the form of R1 in (7.14),

and F6 R1
� �

will be maximized by the value of l that minimizes z, which corre-

sponds to BR, and it will be minimized by the value of l that maximizes z, which
corresponds to PR and NPR.

There is no direct way to obtain computed values for six-variate orthant prob-

abilities with numerical integration over a single variable. However, Gehrlein

(1998a) uses Boole’s Equation to reduce this representation to a series of orthant

probabilities on four and five variables by using the fact that the PMRW can not be

beaten by both other candidates under BR, as described by fifth and sixth variables

that were introduced to develop R1.

The resulting representation that is obtained is

JCEBR
WSR lð Þ 3;1; IC�ð Þ ¼ 3 F4 Rð Þ � 2F5 R2

� �� �
PS
PMRW 3;1; ICð Þ : (7.17)
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The representation for F4 Rð Þ is given in (5.22), and R2 is

R2 ¼

1
1

3

ffiffiffiffiffi
2

3z

r ffiffiffiffiffi
1

6x

r
�

ffiffiffi
8

9

r

1

ffiffiffiffiffi
1

6x

r ffiffiffiffiffi
2

3z

r
�

ffiffiffi
2

9

r

1
1

2
�

ffiffiffiffiffi
3

4z

r

1 �
ffiffiffiffiffiffiffi
3

16z

r

1

2
66666666666664

3
77777777777775

: (7.18)

A procedure from Gehrlein (1979) is then used to obtain values of F5 R2
� �

for all

l ¼ 0:00 0:05ð Þ0:500 which are then substituted into (7.17) to obtain the values of

JCEBR
WSR lð Þ 3;1; IC�ð Þ in Table 7.1.

We see for example in Table 7.1 that there is a conditional probability of 0.7200

that both BR and PR will elect the PMRW, given that a PMRW exists.

Another representation of significant interest is the conditional probability,

JBEPMR
WSR lð Þ 3;1; IC�ð Þ, that BR elects the Rule l winner, given that Rule l elects

the PMRW. By definition,

JBEPMR
WSR lð Þ 3; l; IC

�ð Þ ¼
JCEBR

WSR lð Þ 3;1; IC�ð Þ
CES

WSR lð Þ 3;1; IC�ð Þ : (7.19)

Computed values of JBEPMR
WSR lð Þ 3;1; IC�ð Þ are listed in Table 7.1 for each

l ¼ 0:00 0:05ð Þ0:500 and we see for example that BR will elect the PMRW with

probability 0.9508, given that PR elects the PMRW when a PMRW exists. As a

result, if any WSR elects the PMRW, the likelihood that BR will also do so is high.

The EUPIA procedure can be used to obtain a simple representation for

JCEBR
PR 3; n; IAC�ð Þ for finite n with IAC, with the result

JCEBR
PR 3;n;IAC�ð Þ¼939195þ817479nþ549630n2þ203550n3þ37255n4þ2651n5

3240 nþ1ð Þ nþ3ð Þ3 nþ5ð Þ ,

for n¼9 24ð Þ... . ð7:20Þ

Table 7.1 Computed values

of JCEBR
WSR lð Þ 3;1; IC�ð Þ and

JBEPMR
WSR lð Þ 3;1; IC�ð Þ

l JCEBR
WSR lð Þ 3;1; IC�ð Þ JBEPMR

WSR lð Þ 3;1; IC�ð Þ
0.00 0.7200 0.9508

0.05 0.7384 0.9529

0.10 0.7575 0.9552

0.15 0.7771 0.9579

0.20 0.7971 0.9609

0.25 0.8171 0.9644

0.30 0.8368 0.9686

0.35 0.8556 0.9738

0.40 0.8730 0.9804

0.45 0.8884 0.9889

0.50 0.9012 1.0000
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This result is not very useful on its own, given the periodicity of 24 for n. How-
ever, the limiting value of JCEBR

PR 3;1; IAC�ð Þ goes to 2651=3240 ¼ 0:81821 as

n ! 1, so the small amount of dependence that IAC brings to voters’ preferences,

compared to the complete independence of IC, dramatically increases the joint

probability of getting the same winner with these three voting rules.

However, based on the result in (5.45), CES
PR 3;1; IAC�ð Þ ¼ 119=135, so

JBEPMR
PR 3;1; IAC�ð Þ ¼ 0:9282 and the conditional probability that BR selects the

PMRW, given that PR selects the PMRW, decreases with an increase in depen-

dence among voters’ preferences. But, the joint probability of getting the same

winner with these three voting rules does increase with the increased levels of

dependence in preferences. This result is very consistent with the observation from

Regenwetter et al. (2007) from the analysis of actual election data that finds that

there is a very high probability that PR and BR will both elect the PMRW.

7.4 Voter Indifference and Condorcet Efficiency

It is definitely possible that scenarios might exist in which some voters in a three-

candidate election could be completely indifferent between some of the available

candidates. Several complications can then arise during the implementation of

many voting rules in the presence of such voter indifference, particularly when a

WSR is being used. The first possible option that can be used to avoid these types of

complications is to require all voters to arbitrarily break any such indifference ties

on candidates to report complete preference rankings, and the second option is to

modify the WSR to account for such indifferences. It intuitively seems that the

implementation of the forced ranking option should not produce dramatically

different results in our observations, but we begin by showing that the option of

forcing rankings can actually have a surprisingly large likelihood of producing

some very negative election outcomes. We then consider how a WSR can be

modified to account for voter indifference.

7.4.1 The Forced Ranking Option

An extension of the IC assumption to allow for some degree of indifference in voter’s

preferences was developed in Fishburn and Gehrlein (1980b). One subset of voters

will have complete preference rankings on the candidates, like those that are shown in

Fig. 1.7, and they represent a class of voters. The six possible complete preference

rankings on three candidates A;B;Cf g are repeated here in Fig. 7.1 for convenience.

A A B C B C
B C A A C B 
C B C B A A 
q

1
q

2
q

3
q

4
q

5
q

6

Fig. 7.1 The possible

complete preference rankings

on three candidates
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Here, qi denotes the probability that a randomly selected voter from the popula-

tion of prospective voters will have the ith associated complete preference ranking

on candidates in Fig. 7.1.

A second class of voters have weak ordered preferences that reflect a partial

degree of indifference on the candidates, with voter indifference on one pair of

candidates. Indifference between Candidates A and B is denoted by A � B when

neither A � B nor B � A. The case of complete indifference in which a voter is

completely indifferent between all three candidates is ignored, since there is no

particular reason for such a voter to be involved in any associated election.

Partial indifference in a voter’s preferences would exist for a voter who has

A � B but feels that both A � C and B � C. It is still required that each voter’s

preferences must be transitive, so there are only six different weak ordered individ-

ual preference types that represent partial indifference, as shown in Fig. 7.2.

Let k1 denote the probability that a randomly selected voter has a complete

preference ranking on candidates from Fig. 7.1, and let k2 denote the probability

that a voter has preferences with partial indifference from Fig. 7.2. Since complete

indifference is ignored, k1 þ k2 ¼ 1 and
P12

i¼1 qi ¼ 1.

The Impartial Weak Ordered Culture Condition (IWOC) defines the probability
that a randomly selected voter has a specified preference ranking on the candidates

when partial indifference is allowed. With IWOC, each of the six complete linear

preference rankings in Fig. 7.1 is assumed to be equally likely to be observed as the

preferences for a voter in this category, with probability k1=6. Similarly, each voter

in the class of voters with partial indifference has probability k2=6 ¼ 1� k1ð Þ=6 of
having each of the six possible preference rankings with partial indifference in

Fig. 7.2.

In order to determine if a PMRW exists when voter indifference is allowed,

some modification must be made to our original definition of PMR. We define ni as
the number of voters who have the associated ith preference ranking in Figs. 7.1

and 7.2, and let AM0B denote the outcome that a majority of the voters who have an

actual preference on Candidates A and B have A � B. For example, AM0B in a

specific voting situation if n1 þ n2 þ n4 þ n8 þ n10 > n3 þ n5 þ n6 þ n9 þ n11.
Note that the n7 þ n12 voters with preferences containing A � B are completely

excluded in this definition of AM0B. The conditional limiting probability

PS
PMRW 3;1; IWOCjk1ð Þ that a strict PMRW exists for a three-candidate election

in the limit of voters as n ! 1 under the IWOC assumption for a given value of k1
is obtained in Fishburn and Gehrlein (1980b), with

PS
PMRW 3;1; IWOCjk1ð Þ ¼ 3

4
þ 3

2p
Sin�1 1

k1 þ 2

	 

: (7.21)

A~B A~C B~C A B C

C B A B~C A~C A~B
q7 q8 q9 q10 q11 q12

Fig. 7.2 The possible

preference rankings with

partial indifference on three

candidates
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The representation for PS
PMRW 3;1; IWOCjk1ð Þ in (7.21) obviously reduces to

the representation for PS
PMRW 3;1; ICð Þ in (1.19) in the special case with k1 ¼ 1.

Table 7.2 lists computed values of PS
PMRW 3;1; IWOCjk1ð Þ for each k1 ¼ 0:00

0:10ð Þ1:00 from (7.21). The proportion of voters that have partial indifference in

their preferences, as measured by k2, clearly has an impact on the probability that

a PMRW exists, given the results in Table 7.2. Any increase in k2, with a

corresponding decrease in k1, leads to an increase in PS
PMRW 3;1; IWOCjk1ð Þ,

with certainty that a PMRW exists in the extreme case of k2 ¼ 1. The requirement

that a PMRWmust exist in the case of dichotomous preferences with k2 ¼ 1 is well

known from results that are presented in Inada (1964). It is clearly of interest to

determine the resulting impact that an increasing level of voter indifference has on

the Condorcet Efficiency of voting rules.

Consider the possibility that the PMRW that is found in the complete preference

rankings that result from forcing rankings might be different than the PMRW that

would be observed in the original voting situation that contains partial indifference.

A limiting representation for the probability P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ that there is

mutual agreement between the PMRW candidates that exist under both cases as

n ! 1, given that a PMRW exists with IWOC for a specified k1 is obtained in

Gehrlein (2010). Following the logic previous notation, IWOC* refers only to

IWOC probabilities for which a PMRW exists.

The development of this representation follows previous discussion with the

definition of four variables. Let Xi
j denote the variable value for the ith randomly

selected voter for the jth variable. The first two variables are defined by

Xi
1 ¼þ 1 : q1 þ q2 þ q4 þ q8 þ q10

0 : q7 þ q12

� 1 : q3 þ q5 þ q6 þ q9 þ q11

Xi
2 ¼þ 1 : q1 þ q2 þ q3 þ q7 þ q10

0 : q8 þ q11

� 1 : q4 þ q5 þ q6 þ q9 þ q12 (7.22)

Table 7.2 Computed values

of PS
PMRW 3;1; IWOCjk1ð Þ k1 k2 PS

PMRW 3;1; IWOCjk1ð Þ
0.00 1.00 1.0000

0.10 0.90 0.9870

0.20 0.80 0.9753

0.30 0.70 0.9648

0.40 0.60 0.9552

0.50 0.50 0.9465

0.60 0.40 0.9385

0.70 0.30 0.9312

0.80 0.20 0.9244

0.90 0.10 0.9181

1.00 0.00 0.9123
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The definition of Xi
1 in (7.22) and the preference rankings in Figs. 7.1 and 7.2

indicate that Xi
1 ¼ þ1 �1ð Þ if the preference ranking for the ith randomly selected

voter has A � B B � Að Þ, and Xi
1 ¼ 0 if A � B. Then, AM0B for a given voting

situation if
Pn

i¼1 X
i
1 > 0, X1 > 0 or X1

ffiffiffi
n

p
> 0, and the same type of analysis leads to

the conclusion that AM0C in a voting situation if X2

ffiffiffi
n

p
> 0.

Variables Xi
3 and X

i
4 will be defined in the same fashion to determine if AMB and

AMC in the voting situation that is obtained by having the ith voter arbitrarily break
indifference ties when partial indifference exists. These variables are formally

defined by the qi probabilities, with

Xi
3 ¼ þ1 : q1 þ q2 þ q4 þ q8 þ q10 þ qABC7 þ qCAB12

� 1 : q3 þ q5 þ q6 þ q9 þ q11 þ qBAC7 þ qCBA12

Xi
4 ¼ þ1 : q1 þ q2 þ q3 þ q7 þ q10 þ qACB8 þ qBAC11

� 1 : q4 þ q5 þ q6 þ q9 þ q12 þ qCAB8 þ qBCA11 (7.23)

Some additional discussion is needed to define the probabilities for these vari-

ables that result from having equally likely tie breaking to force rankings on

indifference pairs. Consider the probability q7 where A � B, A � C and B � C.
Let qABC7 denote the probability that a randomly selected voter has preferences with

this partial indifference with A � B, and randomly breaks the tie by ranking A � B
to lead to the transitive ranking A � B � C. Then, q7 ¼ qABC7 þ qBAC7 .

The definitions of the variables Xi
3 and Xi

4 lead to the conclusion that AMB if

X3

ffiffiffi
n

p
> 0 and AMC if X4

ffiffiffi
n

p
> 0 in the voting situation that results from forced

rankings. It then follows that Candidate A will be the PMRW based both on the

original voting situation and on the voting situation that results from forced ranking

when Xj
ffiffiffi
n

p
> 0 for all 1 � j � 4. In the limit as n ! 1, the joint distribution

between these four Xj
ffiffiffi
n

p
variables becomes multivariate normal, and the correla-

tions between these variables are the same as the correlations between the

corresponding original Xi
j variables. The first step to obtaining these correlation

terms is the determination of the expected values of the Xi
j variables, with

E Xi
1

� � ¼ q1 þ q2 þ q4 þ q8 þ q10ð Þ þ 0 q7 þ q12ð Þ � q3 þ q5 þ q6 þ q9 þ q11ð Þ
E Xi

2

� � ¼ q1 þ q2 þ q3 þ q7 þ q10ð Þ þ 0 q8 þ q11ð Þ � q4 þ q5 þ q6 þ q9 þ q12ð Þ
E Xi

3

� � ¼ q1 þ q2 þ q4 þ q8 þ q10 þ qABC7 þ qCAB12

� �
� q3 þ q5 þ q6 þ q9 þ q11 þ qBAC7 þ qCBA12

� �
E Xi

4

� � ¼ q1 þ q2 þ q3 þ q7 þ q10 þ qACB8 þ qBAC11

� �
� q4 þ q5 þ q6 þ q9 þ q12 þ qCAB8 þ qBCA11

� � ð7:24Þ

With the assumption of IWOC, qi ¼ 1� k1ð Þ=6 for 7 � i � 12, and when the

indifference ties are broken with equal likelihood qXYZi ¼ 1� k1ð Þ=12 for

7 � i � 12 for all XYZ combinations. All of this leads to the observation that
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EðXi
jÞ ¼ 0 for all 1 � j � 4, so that E Xj

ffiffiffi
n

p� � ¼ 0 for all 1 � j � 4. This allows for

the definition of the limiting probability that Candidate A will be the PMRW based

both on the original voting situation and on the voting situation that results from

forced ranking as being identical to the four-variate normal positive orthant proba-

bility that Xj
ffiffiffi
n

p � E Xj
ffiffiffi
n

p� �
for all 1 � j � 4.

The definitions in (7.22) lead to EðXi2

j Þ ¼ 2þk1
3

for j ¼ 1; 2 and (7.23) leads to

E Xi2

j

� �
¼ 1 for j ¼ 3; 4. The expected value of the cross-products of the original

variables comes from:

E Xi
1X

i
2

� �¼ q1þq2�q3�q4þq5þq6þq9þq10 ¼ 1

3

E Xi
1X

i
3

� �¼ q1þq2þq3þq4þq5þq6þq8þq9þq10þq11 ¼ 2þ k1
3

E Xi
1X

i
4

� �¼ q1þq2�q3�q4þq5þq6þqACB8 �qCAB8 þq9þq10�qBAC11 þqBCA11 ¼ 1

3

E Xi
2X

i
3

� �¼ q1þq2�q3�q4þq5þq6þqABC7 �qBAC7 þq9þq10�qCAB12 þqCBA12 ¼ 1

3

E Xi
2X

i
4

� �¼ q1þq2þq3þq4þq5þq6þq7þq9þq10þq12 ¼ 2þ k1
3

E Xi
3X

i
4

� �¼ q1þq2�q3�q4þq5þq6þqABC7 �qBAC7 þqACB8 �qCAB8 þq9

þq10�qBAC11 þqBCA11 �qCAB12 þqCBA12 ¼ 1

3
: ð7:25Þ

The resulting correlation matrix that is obtained from these calculations is

denoted by R3, with terms ri;j, and all of the above leads to

R3 ¼

1
1

k1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3ðk1 þ 2Þ
r

� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3ðk1 þ 2Þ
r ffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ 2

3

r

� � 1
1

3� � � 1

2
666666664

3
777777775
: (7.26)

This correlation matrix does not directly lead to a simple representation for

F4 R3
� �

, but Plackett’s Procedure can be used in this case with a representation

from Cheng (1969) to obtain a representation for F4 R3
� �

in terms of a bounded

integral over a single variable.

The symmetry of IWOC with respect to candidates and the assumption that

n ! 1 can be used to obtain a representation for P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ from

the identity relationship

P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ ¼ 3F4 R3

� �
PS
PMRW 3;1; IWOCjk1ð Þ : (7.27)
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After substitution and significant algebraic reduction, (7.27) ultimately leads to

the representation:

P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ

¼

p2

4
þp Sin�1 1

k1þ2

	 

þSin�1

ffiffiffiffiffiffiffiffiffiffiffi
k1þ2

3

r !
þSin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3ðk1þ2Þ

s !( )

� 1�k1ð Þ
Z1

0

Cos�1 ðk1þ3Þ ðk1�1Þt�3ðk1þ1Þðk1þ3�tÞf gþgðk1;tÞ
gðk1;tÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifðk1�1Þtþ3ðk1þ3Þgf3ðk1þ1Þ�ðk1�1Þtgp dt

þ Sin�1 1

k1þ2

	 
 �2

þ Sin�1

ffiffiffiffiffiffiffiffiffiffiffi
k1þ2

3

r !( )2

� Sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3ðk1þ2Þ

s !( )2
2
4

3
5

2
666666666666664

3
777777777777775

p2þ2pSin�1 1
k1þ2

� � :

(7.28)

Here, g k1; tð Þ ¼ k1 þ 2ð Þ 3 k1 þ 3ð Þ k1 þ 1ð Þ þ k1 � 1ð Þ t� 2ð Þtf g.
The bounded integral in (7.28) does not have a simple closed form solution, but

it is easily evaluated with numerical integration for specified values of k1, and
computed values of P

MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ are listed in Table 7.3 for each value

of k1 ¼ 0:00 0:10ð Þ1:00.
One obvious result from Table 7.3 is that P

MA FRð Þ
PMRW 3;1; IWOC�j1ð Þ ¼ 1, along

with the result that follows from intuition that P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ decreases

as k1 decreases. The very surprising result from Table 7.3 is the highly significant

degree with which P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ decreases as k1 decreases. At the

extreme in which all voters have dichotomous preferences, with k1 ¼ 0, a PMRW

must exist for each of the initial voting situations, but P
MA FRð Þ
PMRW 3;1; IWOC�j0ð Þ is

only 0.6908. As a result, we find that the tactic of forcing rankings from voters can

potentially result in a significant likelihood that a different PMRWwill be observed

in the resulting forced ranking voting situation when compared to the PMRW that

exists in the original voting situation.

Table 7.3 Computed values

of P
MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ k1 k2 P

MA FRð Þ
PMRW 3;1; IWOC�jk1ð Þ

0.00 1.00 0.6908

0.10 0.90 0.7077

0.20 0.80 0.7253

0.30 0.70 0.7437

0.40 0.60 0.7634

0.50 0.50 0.7845

0.60 0.40 0.8076

0.70 0.30 0.8337

0.80 0.20 0.8645

0.90 0.10 0.9043

1.00 0.00 1.0000
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The impact that requiring forced rankings will have on the Condorcet Efficiency

of WSR’s is discussed in Gehrlein and Valognes (2001), where it is noted that

equally likely tie-breaking of indifferences reduces IWOC to being equivalent to

assuming IC with equally likely complete rankings. However, such a use of IC gives

the Condorcet Efficiency of a WSR relative to its ability to select the PMRW that

results from the forced rankings. It is now clear that this PMRW is quite likely to be

different than the PMRW from the original preferences that contain indifference.

Gehrlein and Fishburn (1981b) perform an analysis that can be used to determine

the impact that forcing rankings will have on the Condorcet Efficiency of a WSR in

three-candidate elections when voters’ preferences can have any form, including

intransitivity. These results can be used directly to obtain a representation for the

limiting Condorcet Efficiency, CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ, relative to the original

PMRW, when voters’ are forced to randomly break indifference ties on pairs to

report a complete ranking

By using Plackett’s Procedure with a correlation matrix from Gehrlein and

Fishburn (1981b) and a representation from Cheng (1969), we find

CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ

¼

4p2

9
þp Sin�1 3þk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8zð2þk1Þ
p
 !

þSin�1 3þk1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8zð2þk1Þ

p
 !( )

þ Sin�1 3þk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8zð2þk1Þ

p
 ! !2

� Sin�1 3þk1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8zð2þk1Þ

p
 ! !2

�k1

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtk1þk1þ2Þð� tk1þ3k1þ6Þp Cos�1 �gðk1;z;tÞ�3tk1ð3þk1Þ2
2gðk1;z;tÞ

 !
dt

2
66666666666664

3
77777777777775

p2þ2pSin�1 1
2þk1

� � :

(7.29)

Here, we use g k1; z; tð Þ ¼ 3k1 þ 6þ 2k1tð Þ k21 þ 6k1 � 8k1zþ 9� 16z
� �þ 8k21t

2z,
with z ¼ 1� l 1� lð Þ.

The definition of CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ in (7.29) leads to the observation

that

CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ ¼ CE

S FRð Þ
WSR 1�lð Þ 3;1; IWOC�jk1ð Þ: (7.30)

Values of CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ are obtained from (7.30) by numerical

integration for each l ¼ 0:00 0:10ð Þ0:50 with k1 ¼ 0:00 0:20ð Þ1:00, and these com-

puted values are listed in Table 7.4.

Results for k1 ¼ 1 verify entries in Table 5.10 from (5.23), and it is obvious that

high levels of voter indifference can significantly reduce the resulting Condorcet

7.4 Voter Indifference and Condorcet Efficiency 265



Efficiency of a WSR when forced rankings are required. It can be shown with

Slepian (1962) that CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ will not decrease as l increases on

the interval 0 � l � 0:50. As a result of all of this, BR maximizes, while both PR

and NPR minimize, CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ for all k1.

While it has been acknowledged that assumptions like IWOC tend to exaggerate

the probability of observing such paradoxical outcomes, the results that are

observed here are so dramatic that it clearly signals that the option of forcing

complete preference rankings when partial indifference exists could potentially

lead to significant problems in election scenarios.

7.4.2 Modifying WSR’s for Voter Indifference

Condorcet (1793 p. 267) discusses the possibility that some voters might show

indifference between candidates, for good reasons. He expresses serious concerns

about the option of forcing voters to report complete rankings in these cases, since

voters would effectively be randomly ranking the indifferent candidates. He then

suggests a PMR-based voting procedure that allows voters to express indifference

on a pair of candidates.

Black (1976) proposed a WSR for assigning weights to given candidates in a

voter’s preference ranking when preferences are weak orders. The weights for this

particular WSR are determined as the difference between the number of candidates

that the given candidate is preferred to and the number of candidates that are

preferred to the given candidate in that voter’s preference ranking. For the case in

which a given voter has a linear preference ranking on m candidates, the weight that

would be assigned to the kth most preferred candidate in the voter’s preference

ranking would be given by the general relationship m� k � k � 1ð Þ ¼ mþ 1� 2k:
The difference in consecutive weights is always two as k increases, so the resulting
system of weights is consistent with BR when a voter’s preferences are complete

and transitive. Black generalizes this system to the situation in which voters can

have weak ordered preferences on candidates.

When calculating the PMR proportions for a pair of candidates with A � B in a

weak order, the number of voters who are indifferent between the two candidates in

Table 7.4 Computed values of CE
S FRð Þ
WSR lð Þ 3;1; IWOC�jk1ð Þ

l
k1

0.00 0.20 0.40 0.60 0.80 1.00

0.00 0.6710 0.6883 0.7055 0.7227 0.7399 0.7572

0.10 0.6955 0.7147 0.7339 0.7533 0.7729 0.7930

0.20 0.7191 0.7402 0.7616 0.7835 0.8060 0.8296

0.30 0.7393 0.7623 0.7859 0.8103 0.8361 0.8639

0.40 0.7533 0.7777 0.8030 0.8296 0.8583 0.8905

0.50 0.7583 0.7833 0.8093 0.8368 0.8667 0.9012
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the pair are equally divided into the two categories of voters with preferences on the

pair. That is, if N A � Bð Þ denotes the number of voters who prefer A to B in their

preferences rankings, the PMR proportion p A � Bð Þ for A over B is obtained by the

relationship

p A � Bð Þ ¼ N A � Bð Þ þ n� N A � Bð Þ � N B � Að Þ½ �=2
n

: (7.31)

Black goes on to prove that the use of the proposed WSR that is described above

will select the candidate with the greatest average PMR proportion wins over all

other candidates. This system is described as allowing for ‘compensation’ among

PMR pairs, which the direct selection of a PMRW does not allow. That is, this

system could select a winner that some other candidate defeats by a small margin in

a PMR comparison as long as the winning candidate compensates for this by

defeating other candidates by a large margin under PMR comparisons.

The IWOC assumption is used to consider the direct impact that voter indiffer-

ence has on the Condorcet Efficiency of WSR’s in Gehrlein and Valognes (2001),

following the development of the representation for CES
WSR lð Þ 3;1; IC�ð Þ in (5.23).

The 1; l; 0ð Þ weights are modified to keep fixed the total number of points that each

voter has to distribute to candidates. For a situation in which a voter is indifferent

between two top-ranked candidates that are both preferred to the third candidate,

the two tied top-ranked candidates each receive 1þ lð Þ=2 points each, while the

least preferred candidate receives zero points. For a situation in which a voter is

indifferent between two tied bottom-ranked candidates that are both less preferred

than the third candidate, the two tied bottom-ranked candidates each receive l=2
points while the most preferred candidate receives one point. Each voter still

assigns a total of 1þ l points to the candidates in both cases.

With this redistribution of points that voters allocate with partial indifference, a

limiting representation for the Condorcet Efficiency, CES
WSR lð Þ 3;1; IWOC�jk1ð Þ, of

Rule l as n ! 1 is obtained with an application of Plackett’s Procedure:

CES
WSR lð Þ 3;1; IWOC�jk1ð Þ

¼

Sin�1 k1 þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2ð Þz�p

 !
þ Sin�1 k1 þ 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2ð Þz�p

 !" #

	 Sin�1 k1 þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2ð Þz�p

 !
� Sin�1 k1 þ 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2ð Þz�p

 !
þ p

" #

þ 4p2

9
� k1

ð1

0

Cos�1 3k1t k1þ3ð Þ2�g0 k1;z�;tð Þ
2g0 k1;z�;tð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 k1 þ 2ð Þ2� 2þ k1 1� tð Þf g2

q dt

2
66666666666664

3
77777777777775

p2 þ 2pSin�1 1
k1þ2

� � : (7.32)

7.4 Voter Indifference and Condorcet Efficiency 267



Here, g0 k1; z�; tð Þ ¼ 4 k1 þ 2ð Þ2z�� k1 þ 2� k1tð Þ2z�� 3k1 þ 6þ 2k1tð Þ k1 þ 3ð Þ2
and z�¼ 4þ 3k1 þ 1ð Þ 1� 2l 1� lð Þ½ �.

It follows directly from these definitions that

CES
WSR lð Þ 3;1; IWOC�jk1ð Þ ¼ CES

WSR 1�lð Þ 3;1; IWOC�jk1ð Þ: (7.33)

It is also proved that CES
WSR lð Þ 3;1; IWOC�jk1ð Þ does not decrease as l increases

for 0 � l � 0:5. With (7.33) this requires that BR maximizes Condorcet Efficiency

for all values of k1. It is also shown that CES
WSR lð Þ 3;1; IWOC�jk1ð Þ increases as k1

decreases (k2 increases) for 0 � k1 � 1, so that increased levels of indifference

increases Condorcet Efficiency.

Computed values of CES
WSR lð Þ 3;1; IWOC�jk1ð Þ that are obtained by using

numerical integration with the representation in (7.32) are listed in Table 7.5 for

each combination of values with l ¼ 0:00 0:10ð Þ0:50 and k1 ¼ 0:00 0:20ð Þ1:00.
These computed values clearly show that both the selection of the Rule l that is

used and the degree of partial indifference in voters’ preferences, as measured by

k2, can have a significant impact on the Condorcet Efficiency that results.

Merlin and Valognes (2004) consider the use of WSR’s for three-candidate

elections as n ! 1 under IWOC. They develop a relationship between the proba-

bility of observing a Strong Borda Paradox, P
WSR lð Þ
SgBP 3;1; IWOC�jk1ð Þ, that Rule l

elects the PMRL and CES
WSR lð Þ 3;1; IWOC�jk1ð Þ, with

P
WSR lð Þ
SgBP 3;1; IWOC�jk1ð Þ ¼ CES

WSR lð Þ 3;1; IWOC�jk1ð Þ

� Sin�1 rð Þ þ Sin�1 r=2ð Þ
p
2
þ Sin�1 1

2þk1

� �
0
@

1
A; (7.34)

where

r ¼ 3þ k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4þ ð1þ 3k1)(1� 2lþ 2l2)g 2þ k1ð Þ

q : (7.35)

This result verifies (5.33) for the special case with k1 ¼ 1.

Table 7.5 Computed values of CES
WSRðlÞ 3;1; IWOC�jk1ð Þ

l
k1

0.00 0.20 0.40 0.60 0.80 1.00

0.00 0.8495 0.8156 0.7942 0.7787 0.7668 0.7572

0.10 0.8776 0.8456 0.8260 0.8121 0.8015 0.7930

0.20 0.9069 0.8756 0.8580 0.8459 0.8368 0.8296

0.30 0.9372 0.9038 0.8877 0.8773 0.8697 0.8639

0.40 0.9683 0.9261 0.9106 0.9014 0.8951 0.8905

0.50 1.0000 0.9354 0.9199 0.9111 0.9053 0.9012
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7.5 Voter Abstention and Condorcet Efficiency

Just as in the case with forcing preference rankings when voter indifference exists, a

different candidate can be observed as the PMRW in actual election results than the

candidate that is the PMRW among the preferences of all potential voters, if some

of the potential voters abstain from voting. This phenomenon and the impact that it

has on the Condorcet Efficiency of voting rules has been studied for the case of both

two and three-candidate elections.

7.5.1 Two-Candidate Elections

The impact of voter abstention in two-candidate A;Bf g elections is developed in

Gehrlein and Fishburn (1978c). Four variables are defined to determine if the same

candidate is the PMRW among the set of all possible voters and the set of actual

voters:

n1;1 ¼ number of voters with A � B who vote

n1;0 ¼ number of voters with A � B who abstain

n�1;1 ¼ number of voters with B � A who vote

n�1;0 ¼ number of voters with B � A who abstain: (7.36)

Here, n1;1 þ n1;0 þ n�1;1 þ n�1;0 ¼ n for odd n possible voters when n1;1 þ n�1;1

of them actually vote. Let Q n1;1; n1;0; n�1;1; n�1;0

� �
denote the probability that a

specific combination of these four variables will be observed under some assump-

tion Q regarding the relative likelihood that various combinations are observed.

Then, P
MA Abð Þ
PMRW m; n;Q�ð Þ defines the probability of having mutual agreement

between the PMRW for the set of n possible voters and the set of actual voters

for m candidates, given that a PMRW exists for the set of n possible voters.

A PMR tie will exist among actual voters whenever n1;1 ¼ n�1;1, and it is

assumed that such ties are broken randomly with each candidate having an equal

likelihood of being selected as the PMRW. Since a PMRW must exist for the set of

all voters with odd n for two candidates, it then follows that

P
MA Abð Þ
PMRW 2; n;Q�ð Þ ¼

Xn�1
2

n1;1¼0

Xn�1
2

�n1;1

n1;0¼0

Xn�n1;1�n1;0

n�1;1¼n1;1þ1

Q n1;1; n1;0; n�1;1; n�1;0

� �

þ
Xn�1
2

n�1;1¼0

Xn�1
2

�n�1;1

n�1;0¼0

Xn�n�1;1�n�1;0

n1;1¼n�1;1þ1

Q n1;1; n1;0; n�1;1; n�1;0

� �

þ 1

2

Xn�1
2

n1;1¼0

Xn�2n1;1

n1;0¼0

Q n1;1; n1;0; n�1;1 ¼ n1;1; n�1;0

� �
: (7.37)
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The study considers a number of scenarios for possible assumptions about Q.
One situation of particular interest to the current study is IAC, which considers all

combinations of Q n1;1; n1;0; n�1;1; n�1;0

� �
to be equally likely. It is shown that

P
MA Abð Þ
PMRW 2; n; IAC�ð Þ ¼ 3=4; for all odd n: (7.38)

Another situation that is considered is an IC-like scenario, denoted as IC uð Þ, in
which all possible voters are independent and have an equal likelihood of having a

preference for A � B or B � A, and all voters have a probability u of actually

voting. In the limiting case as n ! 1

P
MA Abð Þ
PMRW 2;1; IC uð Þ�ð Þ ¼ Cos�1ð� ffiffiffi

u
p Þ

p
: (7.39)

At the endpoints of the range of all possible values for 0 � u � 1, it is found

that P
MA Abð Þ
PMRW 2;1; IC 0ð Þ�ð Þ ¼ 1=2 and that P

MA Abð Þ
PMRW 2;1; IC 1ð Þ�ð Þ ¼ 1. Moreover,

P
MA Abð Þ
PMRW 2;1; IC uð Þ�ð Þ consistently increases as u increases.

7.5.2 Three-Candidate Elections

A limiting representation for the probability P
MA Abð Þ
PMRW 3;1; IC uð Þ�ð Þ that there is

mutual agreement between the PMRW for the set of all potential voters and the

PMRW of the subset of actual voters is developed for the case of three candidates in

Gehrlein and Fishburn (1978b) as

P
MA Abð Þ
PMRW 3;1; IC uð Þ�ð Þ

¼

3

16
þ 3

4p
Sin�1 1

3

	 

þ Sin�1

ffiffiffi
u

p� �þ Sin�1

ffiffiffi
u

p
3

	 
 �

þ 3

4p2
Sin�1 1

3

	 
	 
2

þ Sin�1
ffiffiffi
u

p� �� �2� Sin�1

ffiffiffi
u

p
3

	 
	 
2
" #

2
66664

3
77775

PS
PMRW 3;1; ICð Þ : (7.40)

Computed values of P
MA Abð Þ
PMRW 3;1; IC uð Þ�ð Þ are listed in Table 7.6 for each

u ¼ 0:10 0:10ð Þ1:00. It can be shown that P
MA Abð Þ
PMRW 3;1; IC uð Þ�ð Þ increases as u

increases, and it is obvious that there can be a significant chance that actual voters

will have a different PMRW than the entire electorate with high abstention rates.

For example, a 50% turnout rate will result in only about a 62% chance of PMRW

mutual agreement. As with forced rankings, abstention is very likely to have a

significant impact on the Condorcet Efficiency of voting rules. This analysis was

extended to consider the impact of voter abstention on the Condorcet Efficiency of

three-candidate elections in Gehrlein and Fishburn (1979).
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A representation for the Condorcet Efficiency, CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ, of a

WSR with weights 1; l; 0ð Þ in the limit as n ! 1 under the assumption of IC uð Þ
is obtained in terms of a four-variate normal positive orthant probability. We use

the correlation matrix from that representation and apply Plackett’s Procedure with

a representation from Cheng (1969) to obtain

CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ

¼

4p2

9
þ p Sin�1
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tþ 3ð Þ 9� tð Þp Cos�1 �h z0; tð Þ � 6t

2h z0; tð Þ
	 


dt

2
666666666664

3
777777777775

p2 þ 2pSin�1 1
3

� � : (7.41)

Here, z0 ¼ 1� l 1� lð Þ½ �=u and h z0; tð Þ ¼ 18� 27z0 þ z0t2 þ 4t� 6tz0.
It follows directly from (7.41) and the definition of z0 that

CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ ¼ CE

S Abð Þ
WSR 1�lð Þ 3;1; IC uð Þ�ð Þ: (7.42)

It can also be shown that CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ is non-decreasing as l increases

over the range 0 � l � 1=2, so that it is maximized by BR and it is minimized

by both PR and NPR for all possible values of u. Computed values of

CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ are listed for both PR and BR in Table 7.6 for each

u ¼ 0:10 0:10ð Þ1:00: These calculated results verify some previous Condorcet Effi-

ciency calculations with IC in Table 5.10 for the special case with u ¼ 1, and

significant abstention rates can also be seen to have a dramatic impact on the

Condorcet Efficiency of these voting rules.

Table 7.6 Values of

P
MA Abð Þ
PMRW 3;1; IC uð Þ�ð Þ,

CE
S Abð Þ
PR 3;1; IC uð Þ�ð Þ and

CE
S Abð Þ
BR 3;1; IC uð Þ�ð Þ

u P
MA Abð Þ
PMRW

3;1; IC uð Þ�ð Þ
CE

S Abð Þ
PR

3;1; IC uð Þ�ð Þ
CE

S Abð Þ
BR

3;1; IC uð Þ�ð Þ
0.1 0.4236 0.4399 0.4576

0.2 0.4806 0.4882 0.5151

0.3 0.5290 0.5277 0.5630

0.4 0.5742 0.5630 0.6068

0.5 0.6186 0.5961 0.6490

0.6 0.6640 0.6280 0.6911

0.7 0.7126 0.6595 0.7345

0.8 0.7675 0.6911 0.7810

0.9 0.8365 0.7234 0.8337

1.0 1.0000 0.7572 0.9012
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Gehrlein and Fishburn (1978b) also argue that these results can be used to

consider some potential complications that are related to the complexity of the

voting rule that is being used in an election. For example, the use of PR only requires

voters to report their most preferred candidate, and some voting rate uPR can be

anticipated if it is employed. All other WSR’s, except NPR, will require more input

from each voter since a ranking of the three candidates must be reported, and BRwill

be used to maximize Condorcet Efficiency if a WSR will be used. A voting rate uBR
can be anticipated in this case. Given the representation that has been obtained for

CE
S Abð Þ
WSR lð Þ 3;1; IC uð Þ�ð Þ in (7.41), the Condorcet Efficiency of PR and BR will be

identical when they have the same value of z0. It is easily seen that this happens when

uBR ¼ 3

4
uPR: (7.43)

As a result of this analysis, if the implementation of BR will lead to a reduction

in voter turnout to a level that is less than 75% of the turnout that is anticipated with

PR, a lower level of Condorcet Efficiency will result if BR is used, with this IC uð Þ
assumption. This gives strong support to the concept that simple voting rules should

be used, since the implementation of complicated voting rules that require signifi-

cant input from voters will likely result in an increased rate of voter abstention, with

the distinct possibility that the resulting Condorcet Efficiency from using the more

complicated voting rule actually will be reduced.

This analysis was further extended to evaluate the Condorcet Efficiency of two-

stage voting rules of the form of WSR elimination rules for three-candidate elec-

tions. A different IC-like assumption is used in this analysis, in the form of IC u;oð Þ.
This assumption uses IC uð Þ during the first stage of the election and then uses IC oð Þ
in the second stage of the election. It is assumed that the two stages of the election

are completely independent, so that P
MA Abð Þ
PMRW 2;1; IC oð Þ�ð Þ from (7.39) can be used

to account for the efficiency of the second stage. By using Plackett’s Procedure with

a correlation matrix from Gehrlein and Fishburn (1978b) and a representation from

Cheng (1969), we obtain a representation for CE
S Abð Þ
WSRE lð Þ 3;1; IC u;oð Þ�ð Þ as

CE
S Abð Þ
WSRE lð Þ 3;1; IC u;oð Þ�ð Þ

¼

5p2

9
þ p 2Sin�1 1

3

	 

þ Sin�1

ffiffiffiffiffiffi
2

3z0

r !
þ Sin�1 1ffiffiffiffiffiffi

6z0
p
	 
( )

� Sin�1

ffiffiffiffiffiffi
2

3z0

r ! !2

þ Sin�1 1ffiffiffiffiffiffi
6z0

p
	 
	 
2

þ
ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ 3ð Þ 9� tð Þp Cos�1 �h z0; tð Þ � 6t

2h z0; tð Þ
	 


dt

2
66666666666664

3
77777777777775

Cos�1 � ffiffiffiffi
o

pð Þ

p3 þ 2p2Sin�1 1
3

� � :

(7.44)

272 7 Other Characteristics of Voting Rules



It is easily seen that

CE
S Abð Þ
WSRE lð Þ 3;1; IC u;oð Þ�ð Þ ¼ CE

S Abð Þ
WSRE 1�lð Þ 3;1; IC u;oð Þ�ð Þ: (7.45)

It can also be shown that CE
S Abð Þ
WSRE lð Þ 3;1; IC u;oð Þ�ð Þ increases as both u and o

increase, and that it is non-decreasing over the range of l with 0 � l � 1=2 for all u
and o, so BER is the WSR that maximizes Condorcet Efficiency, while PER

and NPER minimize Condorcet Efficiency. Computed values of CE
S Abð Þ
WSRE lð Þ

3;1; IC u;oð Þ�ð Þ from (7.44) are listed for each u ¼ 0:10 0:10ð Þ1:00 and each

o ¼ 0:20 0:30ð Þ0:80 for PER in Table 7.7 and for BER in Table 7.8.

As observed in the case of single-stage elections, significant reductions in

Condorcet Efficiency are observed with high levels of voter abstention. The rela-

tionship in (7.43) regarding the relative rates of voter abstention between PR and

BR also applies to the first stage of these two-stage elections.

This type of analysis was significantly extended to consider the general case of

single-stage voting rules on m candidates C1;C2; . . . ;Cmf g in Gehrlein (1981b).

Let umm�k denote the probability that a voter will actually participate in voting when

the voting rule requires that the m� k most preferred candidates must be ranked.

With k ¼ 1, a standard WSR with weights Vm
m�1 ¼ v1; v2; . . . ; vmð Þ will be used

with the non-ranked candidate being considered as least preferred with vm ¼ 0. For

k> 1, a truncated WSR will be used as the voting rule, with vt ¼ 0 for all

m� k þ 1 � t � m. We also define V ¼Pm
s¼1 vs.

A limiting representation as n ! 1 for the joint probability, F2 m�1ð Þ R4
� �

, that

Candidate C1 is both the PMRW and the winner by the WSR with weights in Vm
m�k

is developed in terms of 2 m� 1ð Þ variables. The variables Yi
j and Zi

j are defined on

the preference rankings of the ith voter for each 1 � j � m� 1.

Yi
j ¼ þ1 if voter i has C1 � Cjþ1

� 1 if voter i has Cjþ1 � C1

Zi
j ¼ va � vb if voter i does vote and ranks C1 in the ath position

and ranks Ciþ1 in the bth position

0 if voter i does not vote. (7.46)

Table 7.7 Computed values

of CE
S Abð Þ
PER 3;1; IC u;oð Þ�ð Þ

u
o

0.2 0.5 0.8

0.1 0.4951 0.5734 0.6517

0.2 0.5203 0.6026 0.6849

0.3 0.5395 0.6248 0.7101

0.4 0.5554 0.6433 0.7311

0.5 0.5694 0.6595 0.7495

0.6 0.5820 0.6741 0.7661

0.7 0.5936 0.6874 0.7813

0.8 0.6043 0.6998 0.7954

0.9 0.6142 0.7114 0.8085

1.0 0.6236 0.7222 0.8208
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Following the logic of earlier analysis, F2 m�1ð Þ R4
� �

is a multivariate-normal

positive orthant probability. The individual correlation terms in R4 are defined by

Cor Yc; Ydð Þ, Cor Zc; Zdð Þ and Cor Yc; Zdð Þ, with

Cor Yc; Ydð Þ ¼ 1

3
; for all 1 � c 6¼ d � m� 1

Cor Zc; Zdð Þ ¼ 1

2
; for all 1 � c 6¼ d � m� 1

Cor Yc; Zcð Þ ¼ f Vm
m�k; u

m
m�k

� �
; for all 1 � c � m� 1

Cor Yc; Zdð Þ ¼ 1

2
f Vm

m�k; u
m
m�k

� �
; for all 1 � c 6¼ d � m� 1: (7.47)

Here,

f Vm
m�k; u

m
m�k

� � ¼
2
ffiffiffiffiffiffiffiffiffi
umm�k

p Pm
s¼1

mþ 1� 2sð Þvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m m� 1ð Þ m

Pm
s¼1

v2s � V2

 �s : (7.48)

These results verify the correlation matrix in (5.11) for the special case with

m ¼ 3, k ¼ 1 and u23 ¼ 1. The symmetry of the IC umm�k

� �
with respect to candidates

then leads to the definition of CES
WSR Vm

m�kð Þ m;1; IC umm�k

� ��� �
as

CES
WSR Vm

m�kð Þ m;1; IC umm�k

� ��� � ¼ mF2 m�1ð Þ R4
� �

PS
PMRW m;1; ICð Þ : (7.49)

The form of R4 in (7.47) and (7.48) can be used with a result from Slepian (1962)

to show that CES
WSR Vm

m�kð Þ m;1; IC umm�k

� ��� �
will be maximized by the Vm

m�k that

Table 7.8 Computed values

of CE
S Abð Þ
BER 3;1; IC u;oð Þ�ð Þ

u
o

0.2 0.5 0.8

0.1 0.5046 0.5844 0.6642

0.2 0.5335 0.6179 0.7023

0.3 0.5554 0.6433 0.7311

0.4 0.5738 0.6645 0.7553

0.5 0.5898 0.6831 0.7764

0.6 0.6043 0.6998 0.7954

0.7 0.6174 0.7151 0.8127

0.8 0.6294 0.7290 0.8285

0.9 0.6401 0.7414 0.8426

1.0 0.6476 0.7500 0.8524
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maximizes f Vm
m�k; u

m
m�k

� �
, for a specified k. This result is then used in Gehrlein

(1981b) to obtain a number of results regarding the most Condorcet Efficient

WSR’s in m-candidate elections.

Theorem 7.2 When voters are required to rank m� k candidates, the Vm
m�k that

maximizes CES
WSR Vm

m�kð Þ m;1; IC umm�k

� ��� �
has weights

vi ¼ m� i� k � 1ð Þ=2; for each 1 � i � m� k:

A result that follows directly from Theorem 7.2 is

Corollary 7.1 When voters are required to rank all candidates, with k ¼ 1,

CES
WSR Vm

m�kð Þ m;1; IC umm�1

� ��� �
is maximized by BR.

It is particularly interesting to note that the Vm
m�k that maximizes Condorcet

Efficiency with k> 1 is not obtained with a truncated BR form>3. For example, the

Vm
m�k weights that maximize Condorcet Efficiency for m ¼ 4; 5 are listed in

Fig. 7.3.

The maximum value fMax Vm
m�k; u

m
m�k

� �
for a specified k follows directly from

(7.48) and Theorem 7.2 as

fMax Vm
m�k; u

m
m�k

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u;mm�k m� kð Þ mþ 1ð Þ m� 1ð Þ þ k mþ kð Þ½ �

3m2 mþ 1ð Þ

s
: (7.50)

Rates of voting participation could vary from these WSR results if CSR’s are

used instead. Let tmm�k denote the probability that a voter will participate in voting

when the CSR Rule Cm
m�k is used, such that each voter’s m� k most preferred

candidates must be reported without an associated ranking on these candidates.

Then, a simple representation for fCSR m�kð Þ Vm
m�k; t

m
m�k

� �
from (7.48) follows

directly from results in Gehrlein and Fishburn (1981a) as

fCSR m�kð Þ Vm
m�k; t

m
m�k

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t;mm�kk m� kð Þ

m m� 1ð Þ

s
: (7.51)

m = 4, k = 1

m = 4, k = 2

m = 5, k = 1

m = 5, k = 2

m = 5, k = 3

V3
4 = (3,2,1,0)

V2
4 = (2.5,1.5,0,0)

V4
5 = (4,3,2,1,0)

V3
5 = (3.5,2.5,1.5,0,0)

V2
5 = (3,2,0,0,0)

Fig. 7.3 WSR values that

maximize Condorcet

Efficiency for m ¼ 4; 5
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Given all of the assumptions, the optimal voting rule to maximize Condorcet

Efficiency is determined by the following procedure:

l Find the integer i* that maximizes fMax Vm
m�i; u

m
m�i

� �
for 1 � i � m� 1.

l Find the integer j* that maximizes fCSR m�jð Þ Vm
m�j; t

m
m�j

� �
for 1 � j � m� 1.

l Determine the voting rule to use by:

1. If fMax Vm
m�i� ; u

m
m�i�

� �
> fCSR m�j�ð Þ Vm

m�j� ; t
m
m�j�

� �
, voters should rank their

m� i� most preferred candidates and the truncated scoring rule Vm
m�i� from

Theorem 7.2 should be used.

2. If fCSR m�j�ð Þ Vm
m�j� ; t

m
m�j�

� �
> fMax Vm

m�i� ; u
m
m�i�

� �
, then the CSR Rule Cm

m�j�

should be used.

3. If fMax Vm
m�i� ; u

m
m�i�

� � ¼ fCSR m�j�ð Þ Vm
m�j� ; t

m
m�j�

� �
, the Condorcet Efficiency of

Rule Cm
m�j� and the truncated WSR Vm

m�i� are the same.

7.6 The Presence of a PMR Cycle and Condorcet Efficiency

All measures of Condorcet Efficiency that have been considered to this point have

been conditional on the requirement that a PMRW exists. It is a natural question to

ask what should be done if a PMRW does not exist in a voting situation. A number

of studies have developed proposals as to which candidate most closely reflects the

nature of a PMRWwhen no such winner actually exists on the basis of the definition

that we have been relying on. Two early studies by Condorcet and Dodgson develop

some very basic approaches to considering this problem.

7.6.1 Methods for Breaking PMR Cycles

Condorcet (1793, pp. 267–268) wrote about how this should be done in the context

of how PMR cycles could be removed when voter indifference on some pairs of

candidates is allowed:

A table of majority judgments between the candidates taken two by two would then be

formed and the result, that is, the order of merit in which they are placed by the majority,

extracted from it. If these two judgments could not all exist together, then those with the

smallest majority would be rejected.

An important issue here is that Condorcet goes on to state that this procedure

applies to all situations. Condorcet frequently discusses what should be done to

remove PMR cycles when indifference is not considered. This discussion is typi-

cally very confounded by his computation of probabilities that are related to the

likelihood that pairwise comparisons are true, based on reported votes. It is always

unclear as to whether he suggests the reversal of the pair with the smallest majority
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vote count, or the smallest computed probability, to remove cycles. There is no

discussion of probabilities in this summary when he states that the cycles should be

removed on the basis of the smallest majority of the PMR relations, and that it

applies to all situations.

Condorcet’s procedure is based on the margin of victory in PMR comparisons

for pairs of candidates in a PMR cycle. Suppose that a voting situation exists with

the PMR cycle AMB, BMC and CMA. Using the definition of N C � Að Þ that leads
to Eq. 7.31, Candidate A would become the PMRW in this voting situation if the

preferences of N C � Að Þ � n� 1ð Þ=2 voters are changed to reverse their prefer-

ence from C � A to A � C. The smallest number of such pairwise interchanges of

candidates in voters’ preference rankings that are needed to remove this PMR cycle

is associated with the pair of candidates that is identified by the minimum of

N A � Bð Þ, N B � Cð Þ and N C � Að Þ. The intent of the procedure that Condorcet

suggests is to directly break the ‘weakest link’ in the PMR cycle

As an extension of this work, Young (1977) develops a mathematical program-

ming formulation to the problem of determining the largest subset of voters within a

voting situation that have preference rankings with a PMRW. Rosenthal (1975) also

presents a linear programming approach related to this problem.

A second approach to the problem of breaking PMR cycles is credited to

Dodgson, in Black (1958, p. 58). A copy of Dodgson’s original paper is reprinted

in Black’s book. Suppose that AMB, BMC and CMA form the PMR cycle, as above.

If N C � Að Þ is the minimum of N A � Bð Þ, N B � Cð Þ and N C � Að Þ, the modified

voting situation must then have AMB, BMC and AMC after A and C are inter-

changed in the preference rankings of N C � Að Þ � n� 1ð Þ=2 voters who originally
have C � A. However, suppose that this is done in a voter’s complete and transitive

preference ranking with C � B � A. Interchanging A and C in this voter’s prefer-

ence ranking will also reverse that voter’s preferences relations on pairs C � B to

B � C and B � A to A � B. While the procedure that Condorcet suggests directly

breaks the weakest link in the PMR cycle, it does not measure the total number of

such reversals that occur in voters’ preferences in a voting situation when the two

candidates that are involved in this weakest link are interchanged for some voters.

This problem is compounded when more than three candidates are considered.

Dodgson [Black (1958), pg. 256] suggests the notion of breaking a PMR cycle in a

voting situation by looking for the PMRW as the candidate that requires the least

total number of such reversals in voters’ preferences.

Many different voting rules have been developed that elect the PMRWwhen one

exists, with various procedures that somehow break PMR cycles to determine the

winner when a PMRW does not exist. Fishburn (1977) presents an analysis of nine

different voting rules with this property. Other studies have focused on similar

approaches to obtain complete and transitive PMR rankings, as opposed to simply

obtaining a PMRW. These studies include Rödding (1975), Callaos et al. (1980),

Wolsky and Sanathanan (1982) and Maas et al. (1995).

Klamler (2004) shows that Condorcet’s method for breaking ties by using the

weakest link argument can produce PMR rankings that are inconsistent with the

rankings that result from directly using BR on the voters’ preferences. Klamler
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(2005) further analyzes the case of four or more alternatives to compare BR

rankings to the PMR rankings that are induced when PMR cycles are present.

The induced PMR rankings are obtained by finding the minimum total number of

reversals in voters’ preferences that must be made to obtain a transitive PMR

relationship. It is found that there can be dramatic differences between the resulting

induced PMR rankings and the BR rankings that are obtained from the original

voters’ preferences. However, the mere fact that such inconsistencies can occur

does not evaluate BR on its overall expected performance.

In a related study, Martin and Merlin (2002) do an analysis that considers the

behavior of WSR’s when a PMRW does not exist in a voting situation. The analysis

considers the propensity of WSR’s to select candidates that are in the stability set
with PMR in a modified voting situation in which voters are farsighted in the sense

described by Rubinstein (1980). The first example shows a voting situation for

which there is no PMRW, and for which every WSR selects a candidate that is not

included in the stability set with PMR. A second example shows a voting situation

in which there is no PMRW, and for which every WSR runoff procedure selects the

same candidate that is not included in the stability set with PMR.

7.6.2 The Efficiency of WSR’s when PMR Cycles Exist

An evaluation of WSR’s on the basis of their propensity to elect the PMRW that is

obtained when PMR cycle are broken with Condorcet’s method is performed in

Gehrlein (2004c) for three-candidate elections with the assumption of IC in the

limit as n ! 1.

Let SM A;Bð Þ denote the strength of the PMR vote for A over B, with

SM A;Bð Þ ¼ N A � Bð Þ � N B � Að Þ: (7.52)

With the definition of ni
0s for voting situations from Fig. 1.1, a given voting

situation will have SM A;Bð Þ ¼ n1 þ n2 þ n4 � n3 � n5 � n6, and AMB if and only

if SM A;Bð Þ> 0. An increase in SM A;Bð Þ indicates a greater strength in the PMR

relation for A over B.
If there is a PMR cycle with AMB, BMC and CMA, then SM A;Bð Þ> 0,

SM B;Cð Þ> 0 and SM C;Að Þ> 0. The weakest link in the PMR cycle is associated

with the pair from Minimum SM A;Bð Þ; SM B;Cð Þ; SM C;Að Þf g. This analysis starts
by developing a representation, U 3;1; ICð Þ, for the limiting probability as n ! 1
with IC that a strict PMR cycle exists with AMB, BMC and CMA and SM C;Að Þ is
the Minimum SM A;Bð Þ; SM B;Cð Þ; SM C;Að Þf g. Three variables are defined to

develop this representation, and the process follows many of our earlier analyses

that developed representations as limiting distributions of multivariate-normal

orthant probabilities.

Variable Ti
1 defines the contribution that the ith randomly selected voter will

make to the difference SM A;Bð Þ � SM C;Að Þ in a voting situation, with
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Ti
1 ¼ 2 : p1 þ p2

�2 : p5 þ p6

0 : p3 þ p4: (7.53)

For example, the voter will have a preference ranking A � B � C with proba-

bility p1, and this voter’s preference ranking would cause SM A;Bð Þ to increase by

one since A � B and cause SM C;Að Þ to decrease by one since A � C. With

probability p1, this voter will therefore cause an increase of two in the count of

the difference SM A;Bð Þ � SM C;Að Þ. Other values of Ti
1 are determined in the same

fashion for each of the six possible preference rankings. If T1 > 0 for the n voters,

then SM A;Bð Þ> SM C;Að Þ.
Variable Ti

2 defines the contribution that the randomly selected ith voter will

make to the difference SM B;Cð Þ � SM C;Að Þ in the same way, with

Ti
2 ¼ 2 : p1 þ p3

�2 : p4 þ p6

0 : p2 þ p5: (7.54)

If T2 > 0, then SM B;Cð Þ > SM C;Að Þ.
Following previous discussion, CMA if T3 > 0 when

Ti
3 ¼ 1 : p4 þ p5 þ p6

�1 : p1 þ p2 þ p3: (7.55)

U 3;1; ICð Þ is then obtained as the three-variate-normal positive orthant probabil-

ity, F3 R5
� �

, that Tj � 0 for 1 � j � 3 for correlation matrix R5, with

R5 ¼
1

1

2
�

ffiffiffi
2

3

r

1 �
ffiffiffi
2

3

r

1

2
666664

3
777775
: (7.56)

Sheppard’s Theorem can be used to obtain a simple representation for F3 R5
� �

.

There are two different PMR cycles on three candidates and there are three possible

pairs that could be the weakest link in each PMR cycle. With the symmetry of IC

with respect to candidates, the limiting probability that a strict PMR cycle exists for

three candidates with IC is given by PS
PMRC 3;1; ICð Þ and

PS
PMRC 3;1; ICð Þ ¼ 6F3 R5

� � ¼ 1� 3

p
Cos�1

ffiffiffi
1

3

r !

 0:08774: (7.57)
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The numerical result that is given in (7.57) is not at all surprising since the prob-

ability of a PMR tie is zero as n ! 1, so PS
PMRC 3;1; ICð Þ ¼ 1� PS

PMRW 3;1; ICð Þ.
With Tj � 0 for 1 � j � 3 as described above, we also want a WSR with weights

1; l; 0ð Þ to select Candidate A as the winner. To ensure that this is the case, two

more variables are required. Variable Ti
4 will result in AWlB if T4 > 0, when

Ti
4 ¼ Xi

3 from the discussion leading to (5.6). Similarly, variable Ti
5 will result in

AWlC if T5 > 0, when Ti
5 ¼ Xi

4 from (5.6).

We want the joint probability that Tj > 0 for 1 � j � 5 with IC as n ! 1.

A limiting representation is obtained as the five-variate normal positive orthant

probability, F5 R6
� �

, with correlation matrix R6, where z ¼ 1� l 1� lð Þ, and

R6 ¼

1
1

2
�

ffiffiffi
2

3

r ffiffiffiffiffi
3

8z

r ffiffiffiffiffi
3

8z

r

1 �
ffiffiffi
2

3

r
0

ffiffiffiffiffi
3

8z

r

1 �
ffiffiffiffiffi
1

9z

r
�

ffiffiffiffiffi
4

9z

r

1
1

2
1

2
666666666666664

3
777777777777775

: (7.58)

There are two possible PMR cycles with three candidates, and there are three

pairs of candidates that could represent the weakest link in each cycle. Given the

symmetry of IC with respect to candidates, the Condorcet Efficiency given that a

PMR cycle exists, CESC
WSR lð Þ 3;1; ICcð Þ, that Rule l elects the candidate that is

induced as the PMRW by breaking the weakest link in the PMR cycle is given by

CESC
WSR lð Þ 3;1; ICcð Þ ¼ 6F5 R6

� �
PS
PMRC 3;1; ICð Þ : (7.59)

The definitions of z and R6 lead to the conclusion that CESC
WSR lð Þ 3;1; ICcð Þ is

symmetric for l, about l ¼ 1=2, for the closed interval l 2 0; 1½ �. The differences in
signs for correlation terms in R6 that involve z do not permit an analytical determi-

nation as to exactly how CESC
WSR lð Þ 3;1; ICcð Þ changes as l changes. A procedure

from Gehrlein (1979) is used to compute values of CESC
WSR lð Þ 3;1; ICcð Þ from (7.59)

for each l ¼ 0:00 0:05ð Þ0:50 and the results are listed in Table 7.9.

Computed values ofCES
WSR lð Þ 3;1;IC�ð Þ fromTable 5.10 are included in Table 7.9

for convenience. The numerical evidence suggests that CESC
WSR lð Þ 3;1; ICcð Þ is

uniquely maximized by BR. As intuition would suggest,CESC
WSR lð Þ 3;1; ICcð Þ values

are less than CES
WSR lð Þ 3;1; IC�ð Þ values. However, CESC

WSR lð Þ 3;1; ICcð Þ maintains

about 75% of the value of CES
WSR lð Þ 3;1; IC�ð Þ for BR, and about 65% of the value

for PR and NPR. It is very important to note that BR does maximize both prob-

abilities, when either a PMRW exists or a PMR cycle exists as n ! 1 under IC.
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The process of developing a general representation for CESC
WSR lð Þ 3; n; IAC

cð Þ
would be an extremely cumbersome task. However, some analytical results

are obtained for specific voting rules by using EUPIA. Representations for

PS
PMRC 3; n; IACð Þ and CESC

VR 3; n; IACcð Þ, for each VR 2 PR;BR;NPRf g are

PS
PMRC 3; n; IACð Þ ¼ ð3n3 þ 3n2 � 107nþ 53Þðn� 1Þ

48ðnþ 1)(nþ 2)(nþ 3)(nþ 4Þ ; for n ¼ 7 6ð Þ . . . (7.60)

CESC
PR 3; n; IACcð Þ ¼ 17n3 þ 17n2 � 313n� 153

9ð3n3 þ 3n2 � 107nþ 53Þ ; for n ¼ 7 6ð Þ . . . (7.61)

CESC
BR 3; n; IACcð Þ ¼ 2ð3n3 þ 3n2 � 67nþ 13Þ

3ð3n3 þ 3n2 � 107nþ 53Þ ; for n ¼ 7 6ð Þ . . . (7.62)

CESC
NPR 3; n; IACcð Þ ¼ 47n4 þ 187n3 � 2283n2 � 2663nþ 15080

36ð3n3 þ 3n2 � 107nþ 53Þ nþ 5ð Þ ;

for n ¼ 13 6ð Þ . . . (7.63)

Based on these representations, it is obvious that there is no symmetry in the

limiting distribution CESC
WSR lð Þ 3;1; IACcð Þ about l ¼ 1/2 on the interval l 2 0; 1½ �,

since CESC
PR 3;1; IACcð Þ ¼ 17=27 and CESC

NPR 3;1; IACcð Þ ¼ 47=108. The effi-

ciency of PR increases significantly from the case of IC, while the efficiency of

NPR decreases significantly. With CESC
BR 3;1; IACcð Þ ¼ 2=3, the efficiency of BR is

reduced, but almost unchanged with IAC.

Table 7.10 lists Monte-Carlo simulation estimates of CESC
WSR lð Þ 3;1; IACcð Þ for

each l ¼ 0.00(0.05)1.00 that were obtained with a procedure from Tovey (1997).

Computed values of CES
WSR lð Þ 3;1; IAC�ð Þ from Table 5.13 are also included in

Table 7.10 for convenience. CESC
WSR lð Þ 3;1; IACcð Þ maintains about 73% of the

value of CES
WSR lð Þ 3;1; IAC�ð Þ for BR, about 71% of the value for PR and 69%

for NPR. The same WSR seems to maximize both probabilities, with l 
 0:35,
when either a PMRW exists or a PMR cycle exists as n ! 1 under IAC. As a

result, the addition of some degree of dependence among voters’ preferences

Table 7.9 Computed values

of CES
WSR lð Þ 3;1; IC�ð Þ and

CESC
WSR lð Þ 3;1; ICcð Þ

l CES
WSR lð Þ 3;1; IC�ð Þ CESC

WSR lð Þ 3;1; ICcð Þ
0.00 0.7572 0.4883

0.05 0.7749 0.5010

0.10 0.7930 0.5155

0.15 0.8113 0.5320

0.20 0.8296 0.5507

0.25 0.8473 0.5717

0.30 0.8639 0.5944

0.35 0.8786 0.6230

0.40 0.8905 0.6459

0.45 0.8984 0.6652

0.50 0.9012 0.6722
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changes the most Condorcet efficient WSR from BR to something closer to PR in

both cases. However, the difference between the Condorcet Efficiency of BR and

the most efficient voting rule is not very large in either case.

7.7 The Impact of Removing Candidates

One measure of the stability of voting rules is the degree to which they respond to

having some subset of candidates removed from an election. The notion of inde-

pendence of irrelevant candidates suggests that the removal of candidates that are

not election winners should not change the election outcome.

Suppose that the WSR ranking on the set of candidates Cm ¼ C1;C2; . . . ;Cmf g
is C1VC2V . . .VCm with WSR Vm

m�1 for a given voting situation. A subset of

candidates K with #K¼ k is then removed from the voters’ preference rankings

to form a modified voting situation in which the preference rankings on the

remaining candidates in CmnK remains consistent with the voters’ preferences in

the original voting situation. A WSR Wm�k
m�k�1 is then used to obtain a ranking

on the candidates in CmnK for the modified voting situation. We then let

PSRm
K Vm

m�1;W
m�k
m�k�1;1; IC

� �
denote the limiting probability as n ! 1 under IC

that the ranking of the candidates in CmnK by Wm�k
m�k�1 in the modified voting

situation is consistent with the ranking of these same candidates in

C1VC2V . . .VCm with WSR Vm
m�1 in the original voting situation.

Some limiting representations for PSRm
K Vm

m�1;W
m�k
m�k�1;1; IC

� �
are developed

in Gehrlein and Fishburn (1980) for the special case of m ¼ 3; 4.

Table 7.10 Computed values

of CES
WSR lð Þ 3;1; IAC�ð Þ and

CESC
WSR lð Þ 3;1; IACcð Þ

l CES
WSR lð Þ 3;1; IAC�ð Þ CESC

WSR lð Þ 3;1; IACcð Þ
0.00 0.8815 0.6307

0.05 0.8899 0.6399

0.10 0.8979 0.6508

0.15 0.9055 0.6588

0.20 0.9123 0.6676

0.25 0.9182 0.6757

0.30 0.9226 0.6824

0.35 0.9252 0.6874

0.40 0.9249 0.6873

0.45 0.9208 0.6818

0.50 0.9111 0.6659

0.55 0.8943 0.6333

0.60 0.8720 0.5997

0.65 0.8461 0.5700

0.70 0.8176 0.5411

0.75 0.7874 0.5163

0.80 0.7560 0.4929

0.85 0.7240 0.4754

0.90 0.6919 0.4610

0.95 0.6603 0.4480

1.00 0.6296 0.4350
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Theorem 7.3 Given m ¼ 3 with V3
2 ¼ 1; l; 0ð Þ and W2

1 ¼ 1; 0ð Þ

PSR3
C3f g V3

2;W
2
1;1; IC

� � ¼ PSR3
C1f g V3

2;W
2
1;1; IC

� �

¼ 1

2
þ 3

2p
Sin�1

ffiffiffiffiffi
2

3z

r !
� Sin�1

ffiffiffiffiffi
1

6z

r !" #

PSR3
C2f g V3

2;W
2
1;1; IC

� � ¼ 1

2
þ 3

p
Sin�1

ffiffiffiffiffi
1

6z

r !
;

with z ¼ 1� l 1� lð Þ.
It is further shown for all X 2 C1;C2;C3f g that PSR3

Xf g V3
2;W

2
1;1; IC

� �
, where

V3
2 has weight 1; l; 0ð Þ, is symmetric about l ¼ 1=2 on the interval l 2 0; 1½ � and

that it is maximized when V3
2 is BR and minimized when V3

2 is either PR or NPR.

Table 7.11 lists computed values of PSR3
Xf g V3

2;W
2
1;1; IC

� �
for X 2 C2;C3f g for

each l ¼ 0:00 0:05ð Þ0:50 from Gehrlein and Fishburn (1983).

Theorem 7.4 Given m ¼ 4 with V4
3 ¼ v1; v2; v3; 0ð Þ and W2

1 ¼ 1; 0ð Þ

PSR4
C3;C4f g V4

3;W
2
1;1; IC

� � ¼ PSR4
C1;C2f g V4

3;W
2
1;1; IC

� �

¼ 1

8p
Sin�1 2bð Þ � Sin�1 bð Þ� �þ 1

4p2

ð1=2

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� t2

r
Cos�1 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4t2

1� t2 � b2

s !
dt

PSR4
C2;C4f g V4

3;W
2
1;1; IC

� � ¼ PSR4
C1;C3f g V4

3;W
2
1;1; IC

� �

¼ 1

48
þ 1

4p2

ðb

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� t2

r
Cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t2

3� 6t2

r !
þ Cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t2

9� 12t2

r !(

�Cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3� 10t2 þ 8t4

r !)
dt

PSR4
C2;C3f g V4

3;W
2
1;1; IC

� �

¼ 1

48
þ 1

2p2

ðb

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� t2

r
p
2
� Sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3� 10t2 þ 8t4

r !( )
dt

PSR4
C1;C4f g V4

3;W
2
1;1; IC

� �

¼ 1

48
þ 1

2p2

ðb

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� 4t2

r
Cos�1 1

3

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1� t2

r
Cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t2

3� 6t2

r !( )
dt;

with b ¼ 3v1 þ v2 � v3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24 4ðv21 þ v22 þ v23Þ � ðv1 þ v2 þ v3Þ2
h ir :
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It is further proved for all i< j that PSR4

Ci;Cjf g V4
3;W

2
1;1; IC

� �
is maximized

when V4
3 is BR and it is minimized when V4

3 is either PR or NPR. Similar position

specified candidate removal results are not obtained for the case in which a single

candidate is removed when m ¼ 4.

A related problem that is associated with the limiting probability that there is

consistency among winning candidates when a loser is removed is considered in

Gehrlein et al. (1982). Suppose that Candidate Cw is winner that is obtained by

usingWSR Vm
m�1 for a voting situation on C

m. One of them� 1 losing candidates is

then selected for removal from CmnCw, with each losing candidates having an equal

likelihood of being selected. The original voting situation is then modified by

removing the selected losing candidate from voters’ preference rankings. The

WSR Wm�1
m�2 is then used to determine the winning candidate from the modified

voting situation. Let PSWm
m�1 Vm

m�1;W
m�1
m�2;1; IC

� �
denote the probability that the

same winner is obtained in both cases, and it is proved that PSWm
m�1 Vm

m�1;
�

Wm�1
m�2;1; ICÞ is maximized when both Vm

m�1 and Wm�1
m�2 are consistent with BR

for all m � 3.

Saari (1991) also examines the propensity of WSR’s to maintain relationships

between an original profile and reduced profiles, and it is similarly concluded that

BR maximizes the number of such relationships. Yeh (2006) approaches a very

different issue by considering the sensitivity of WSR’s to changes that result in

rankings on pairs of candidates when voters are removed from the electorate.

7.8 Results from Saari’s Analysis of WSR’s

Donald Saari is the leading proponent of using BR, and he has conducted many

different analyses that are related to various properties of WSR’s, with a primary

focus on BR. The studies present very interesting observations regarding election

outcomes, while they typically do not provide probability estimates regarding the

relative likelihoods that the phenomena might be observed. The results that are

most relevant to the current study are summarized in this section.

Table 7.11 PSR3
Xf g V3

2;
�

W2
1;1; ICÞ for

X 2 C2;C3f gfrom Gehrlein

and Fishburn (1983)

l
X

C2 C3

0.00 0.9016 0.7553

0.05 0.9121 0.7671

0.10 0.9223 0.7794

0.15 0.9319 0.7919

0.20 0.9409 0.8044

0.25 0.9488 0.8167

0.30 0.9557 0.8282

0.35 0.9613 0.8383

0.40 0.9654 0.8464

0.45 0.9679 0.8516

0.50 0.9688 0.8534
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It is assumed that all voters have complete and transitive preferences on m
candidates. There are k� ¼ 2m � mþ 1ð Þ different subsets with two or more candi-

dates, and a system voting vector Wm defines k* different WSR’s, with an appro-

priate numbers of terms in each, that are to be applied to each of these k* subsets.

Voters are assumed to have complete and transitive preference rankings on subsets

of candidates that are consistent with their relative ranking on allm candidates. Two

special cases of Wm are Pm and BCm which represent the respective use of PR and

BR on each k* subset. A word, F p;Wmð Þ, lists the rankings that are obtained on all

of the k* subsets of candidates when Wm is applied to a voting situation p.
A dictionary, Dm Wmð Þ, denotes the set of words that are obtained by applying

Wm to all possible voting situations, with no restriction on n.
Let Um denote the dictionary that includes every possible word, or lists of

possible combinations of rankings on the k* sets of candidates. Since some possible

words might not ever result for a givenWm for any p, it follows thatDm Wmð Þ � Um.

Some Wm that are contained in Um produce paradoxical outcomes. As an example

of a paradoxical outcome, some W3 for a three candidate election might produce A
beats B, B beats C and A beats C on the three different two candidate sets to produce

the complete and transitive ranking A beats B beats C. The results of the two

candidate subset elections are not paradoxical on their own, but suppose that the

same W3 outcome on the triple of candidates results in the ranking C beats B beats

A. Such a combined outcome would suggest that the specified W3 exhibited a very

strange, or paradoxical, outcome. If Dm Wmð Þ ¼ Um, then Wm allows any possible

voting outcome to result for some p, to suggest that Wm is susceptible to every

possible paradoxical outcome.

Saari (1989, 1990a) shows that there is a subset, am, of all possibleWm such that

Dm Wmð Þ � Um if and only if Wm 2 am. For the case m equal to three, it is proved

that a3 ¼ BC3, to make BR unique in not allowing all possible outcomes. It is also

shown that

Theorem 7.5 (Saari) Pm =2 am so that PR allows the existence of every paradoxical
outcome that is included in Um.

Saari (2002) considers other aspects of the relative behavior of PR compared to

other WSR’s, and Saari (1989, 1990a) goes on to show that if Wm 6¼ BCm, then

Dm BCmð Þ � Dm Wmð Þ so that every paradoxical outcome that is allowed by BRmust

also be allowed by every otherWm. Since some other paradoxical outcomes can be

expected to be included inDm Wmð ÞnDm BCmð Þ for any givenWm, it is concluded that

BR is the WSR that is least susceptible to exhibiting paradoxical outcomes.

Saari (1996a) considers relationships between the outcome of three and four-

candidate elections when Wm is obtained in a very particular way. For two-candi-

date elections, the outcome of elections with all WSR’s is equivalent to using PR

weights w1;w2f g ¼ 1; 0f g for all pairs in W2. Suppose that we are looking at a

method for aggregating these weights on pairs from W2 to obtain the weights

w1;w2;w3ð Þ for the WSR component for all three candidates in W3 This aggrega-

tion is performed in a specific manner to obtain the aggregated weights o3 1; 0ð Þ for
the three-candidate election. Suppose that we want to consider a specific ranking
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C1WC2WC3 that is obtained fromo3 1; 0ð Þ. Further suppose that we want PR voting

on all pairs of candidates to be consistent with C1WC2WC3 when one of the

candidates is removed from the preferences of the voters, so that C1PC2, C1PC3

and C2PC3. The aggregated score that is earned by each candidate over the three

pairwise elections is summarized in Fig. 7.4.

The weights for candidates in o3 1; 0ð Þ correspond to the sum of weights that

each candidate receives, so we see from Fig. 7.4 that o3 1; 0ð Þ ¼ BC3.

The work is extended to four candidates where we assume that C1WC2WC3WC4

with weighted scoring rule o4 o3ð Þ that is obtained as an accumulation from the use

of the general WSR o3 ¼ o3
1;o

3
2; 0

� �
on three-candidate elections. That is, the

weights in o4 o3ð Þ correspond to the sum of the scores that candidates earn for

elections on all triples that are consistent with C1WC2WC3WC4 when WSR o3 is

used in the elections on triples. Following previous analysis, the weights foro4 o3ð Þ
are developed in Fig. 7.5.

This analysis all leads to

o4 o3
� � ¼ 3o3

1;o
3
1 þ 2o3

2; 2o
3
2; 0

� �
: (7.64)

Saari (1996b) then proposes four properties for o4 o3ð Þ:
l If some candidate is the top-ranked with o3 for elections on all triples that it is

contained in, then that candidate should not be bottom-ranked by o4 o3ð Þ.
l If some candidate is bottom-ranked with o3 for elections on all triples that it is

contained in, then that candidate should not be top-ranked by o4 o3ð Þ.
l If some candidate is the top-ranked with o3 for elections on all triples that it is

contained in, then the ranking by o4 o3ð Þ should rank that candidate above any

other candidate that is bottom-ranked with o3 for elections on all triples that the

other candidate is contained in.
l If all four elections on triples with o3 result in a three-way tie, then the election

with o4 o3ð Þ should result in a four-way tie on the candidates.

Candidates C1 C2 C3

{C1,C2}
{C1,C3}
{C2,C3}

1

1 0

1 0

Sum 2 1 0

0

Fig. 7.4 Aggregated scores

from voting on pairs to obtain

o3 1; 0ð Þ

Candidates

{C1,C2,C3}

{C1,C2,C4}

{C1,C3,C4}

{C2,C3,C4}

0

0

0

0

Sum 0

C1 C2 C3 C4

3
1w

3
1w

3
1w

3
1w

3
2w

3
2w

3
2w

3
2w

3
1w 3

2w+2 3
2w23

1w3

Fig. 7.5 Aggregated scores

from voting on triples to

obtain o4 o3ð Þ
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It is then shown that all four of these properties are simultaneously met when

o4 o3ð Þ ¼ BC4, and that no o3, other than BR will simultaneously meet these four

properties in developing o4 o3ð Þ in (7.64).

Saari (1996a) gives some additional properties of BR:

l Suppose that a candidate is top ranked by BCm for all k-candidate elections with
2 � k<m for a profile. Then, that candidate cannot be bottom ranked by BR in

the corresponding m-candidate election.
l Suppose both that candidate C1 is top ranked and that C2 is bottom ranked by

BCm for all elections on all k-candidate elections with 2 � k<m for a profile.

Then, BR must rank C1 above C2 in the corresponding m-candidate election.
l A complete and transitive PMR ranking on m-candidates could be CjMCk for

all 1 � j< k � m while the corresponding ranking by BR is Cm�1BCm�2

B . . .BC1BCm. Thus, very different rankings can be obtained by PMR and BR.

Saari (1992a) also does an analysis of WSR’s to consider the effect of removing

losers in sequential elections. Consider a WSR, w4, on four candidates and a WSR,

w3, on three candidates. We start with a voting situation on four candidates and

obtain a reduced profile by removing some candidate from the all of the voters’

preference rankings, to obtain the relative preference rankings on the remaining

three candidates. A candidate is defined as theUniversal Winnerwith w3 for a voting

situation on four candidates if that candidate would be the winner by w3 in each of

the elections on the three reduced profiles that is obtained by eliminating one of the

remaining candidates from the original profile. A candidate is defined as the

Universal Loser with w3 if it loses all three of the elections on the reduced profiles.

It is shown that some very unusual situations can be observed when candidates

are eliminated from voting situations. For example, suppose that we have a voting

situation with four candidates such that some candidate is both the PMRW and the

Universal Loser with w3 ¼ 3; 1; 0ð Þ. Then, that PMRW can not win an election on

the original voting situation with w4 ¼ 6; 3; 1; 0ð Þ. However, it is possible to have a
voting situation with four candidates such that some candidate is the PMRL and the

Universal Winner with w3 ¼ 3; 1; 0ð Þ. Moreover, that PMRL can be the winner on

the original voting situation with w4 ¼ 6; 3; 1; 0ð Þ. The study generally concludes

that by using WSR’s, other than BR, it is possible to give advantages to the PMRL

toward winning an election, at the expense of the PMRW.

Saari (1999) considers other properties of BR, and concludes that whenever

there is a difference between the rankings by BR and PMR, the difference is due to

the fact that PMR partially dismisses the assumption of individual rationality of

voters. It is further claimed that all differences in these rankings show the relative

strength of BR when compared to the weakness of PMR.

7.9 Characterizations of BR

Young (1974) examines BR to determine properties that make it unique among all

voting rules. In this analysis, voters’ preferences are not defined in terms of a voting

situation, but in the context of a voter preference profile. Young analyzes general
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social choice functions that select a subset of winning candidates from a set of all

possible candidates.

Let Qn
m denote a voter preference profile on a set, Cm ¼ C1;C2; . . . ;Cmf g, of m

candidates, where each of n individual voters has linear preferences on the candi-

dates. A social choice function, f, is an election procedure that selects a subset of

winning candidates, f Qn
m

� �
, given the voters’ preferences in the voter preference

profile, Qn
m. Obviously, f Qn

m

� � � Cm.

A social choice function is anonymous if the winning candidates in f Qn
m

� �
can be

determined simply from a knowledge of the voting situation that follows from the

voter preference profile. That is, the specific preference rankings that are held by

any particular individual voters do not need to be known in order to determine the

winning candidates in f Qn
m

� �
, only the number of voters with each preference

ranking must be known.

Suppose that the identities of the candidates in Cm are interchanged according to

some permutation, s Cmð Þ. There will be a corresponding change in candidate

identities in any associated Qn
m, to obtain the modified profile s Qn

m

� �
. A social

choice function is neutral toward candidates if f s Qn
m

� �� � ¼ s f Qn
m

� �� �
. That is, the

subset of winners from the modified profile must be identical to the subset of

winners from the original profile, accounting for the interchange of names that is

specified by s Cmð Þ.
Assume that we have profiles Qn0

m and Qn00
m on the candidates in Cm for two

distinct sets of voters, with n0 and n00 members in the respective sets. We also

suppose that there is at least one common candidate in the winning subsets from the

two profiles, such that f Qn0
m

� � \ f Qn
m

� � 6¼ f. The combined profile Qn0
m þ Qn00

m is

obtained by merging the preference rankings of the voters in the two profiles to

obtain a single voter preference profile. A social choice function is consistent if the
winning subset from the combined profile is identical to the subset of candidates

that are common to both of the winning subsets of the individual profiles, with

f Qn0
m þ Qn00

m

� � ¼ f Qn0
m

� � \ f Qn00
m

� �
.

Let Q1
m represent the preferences for a profile containing only one voter. A social

choice function is faithful if the winning candidate, f Q1
m

� �
, is the most preferred

candidate for the individual voter. A social choice function has the cancellation
property if any given voter’s pairwise preference Ci � Cj will be offset, or can-

celled-out, by any other voter’s pairwise preference with Cj � Ci. It follows that a

social choice function with the cancellation property must declare a tie between

candidates Ci and Cj if the number of voters having pairwise preferences with

Ci � Cj is the same as the number of voters with Cj � Ci.

It is proved that BR is the only social choice function that is neutral, consistent,

faithful, and has the cancellation property. Since each of these properties sounds

quite desirable, this finding is a strong endorsement for the use of BR. G€ardenfors
(1973) develops another early characterization, and Nitzan and Rubinstein (1981)

develop a characterization of BR for situations in which individual voters do not

necessarily have transitive preferences. Debord (1992) develops a characterization

of BR when it is used to elect committees of k members. BR is applied in the
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standard way in this study, and the k candidates with the greatest score are selected

as winners. Other more recent characterizations of BR are presented in Marchant

(1996, 1998) and Ohseto (2007).

Young (1974) notes that PMR exhibits all of the properties in the characteriza-

tion of BR when attention is restricted to profiles that have a PMRW. However,

the fact that PMR does not necessarily have a PMRW, so that we could have

f Qn
m

� � ¼ f for someQn
m, eliminates PMR from consideration as a true social choice

function, as defined in the analysis of BR.

In terms of characteristics that are generally related to Condorcet Efficiency,

Fishburn and Gehrlein (1976b) list a number of ways in which BR is unique among

WSR’s for m � 3. Some of these observations have been noted earlier:

l BR is the onlyWSR that must always have allm candidates tied as winners when

N Ci � Cj

� � ¼ N Cj � Ci

� �
for all i 6¼ j with 1 � i; j � m.

l If there are two voting situations for which N Ci � Cj

� �
is the same in both

voting situations for all i 6¼ j with 1 � i; j � m, BR is the only WSR that

guarantees that the same candidate will always be selected as the winner for

both voting situations.
l When m ¼ 3 as n ! 1, the number of voter preference profiles (not voting

situations) for which there is coincidence between the winner by BR and the

PMRW, when there is a PMRW, is greater than the number of profiles with

coincidence between any other WSR winner and the PMRW.
l BR is the only WSR that guarantees that the PMRW is not bottom ranked.
l BR is the only WSR that guarantees that the PMRL is not selected as a unique

WSR winner.
l BR is the only sequential WSR-elimination winner that guarantees that the

PMRW is selected as the ultimate winner, given that a PMRW exists.

Brams and Fishburn (2002) also list many other positive characteristics of BR.

7.10 Potential for Manipulation

De Grazia (1953) discusses the historical impact of Borda (1784) on the study of

developing election procedures. The study then goes on to present an extensive

analysis of the weaknesses that he perceives in Borda’s work. Most of these

weaknesses have already been addressed. However, a major concern of the study

follows very strong arguments that Condorcet made about the possibility of the

manipulation of an election outcome with BR through voters’ misrepresentation of

their true preferences, when some voters realize that their most preferred candidate

has no realistic chance of winning. That is, such voters might change their votes by

misrepresenting their true preferences, either to get their preferred outcome, or to

accept a less preferred outcome to thereby avoid an even worse outcome.
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In particular, a voting rule would be strategy proof if it would not possible for

voters’ to misrepresent their preferences to gain an advantage when that voting rule

is used. It is well known from the results of Gibbard (1973) and Satterthwaite

(1975) that effectively all voting rules are subject to the possibility of manipulation

and therefore that none is strategy proof. A long held criticism of BR is that it is

believed to be particularly susceptible to voter manipulation of preferences, and this

issue must be addressed. The susceptibility of a voting rule to manipulation has

been measured by both the likelihood that individual manipulation can occur and

the likelihood that coalition manipulation by a group of voters can occur.

7.10.1 Empirical Results on BR Manipulability

The amount data from elections using BR is extremely limited, since it is not widely

used. However limited the scope of the study, Reilly (2002) considers an example

of a Pacific island country that uses a WSR in national elections. The Republic of

Kiribati uses a truncated BR to select four candidates to be nominated for election.

Each member of the parliament examines all candidates and ranks the four most

preferred candidates, and they are given weights 4; 3; 2; 1ð Þ. The four candidates

who receive the most total points in this stage are then considered to be the

nominees for the final election. An analysis of actual election results indicates

that significant strategic manipulation was being used with this system, leading to

the elimination of popular candidates from inclusion in the set of final nominees.

Manipulation has the definite potential to be a significant concern for BR.

7.10.2 Analytical Studies of BR Manipulation

Smith (1999) considers the degree to which some common election procedures can

be manipulated through misrepresentation of preferences for small m and n with

computer enumeration. The results depend upon how the potential for manipulation

is measured. BR has the least potential for manipulation when voters randomly

select another preference ranking to misrepresent their preferences. Unfortunately,

BR performs very poorly under three other measures of possible manipulation, and

it is concluded that BR is especially prone to manipulation if some manipulating

agent has complete knowledge of other voters’ preferences.

The techniques that have been used to develop probability representations in the

current study have also been applied to the determination of the probability that

different voting rules can be manipulated either by individuals or by coalitions of

voters. Let PVR
IM m; n; IACð Þ and PVR

CM m; n; IACð Þ respectively denote the probability

that individual manipulation and coalition manipulation can occur with voting rule

VR for m candidates and n voters with the IAC assumption. Lepelley and Mbih

(1996) develop a representation for PPR
IM 3; n; IACð Þ, with
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PPR
IM 3; n; IACð Þ ¼ 55n3 þ 75n2 � 45nþ 135

18(nþ 1)(nþ 2)(nþ 4)(nþ 5)
; for odd n: (7.65)

The first closed-form representation for measuring the BR vulnerability to

strategic manipulation is given in Favardin et al. (2002), which considers individual

manipulation. An unstable voting situation is a voting situation in which a single

voter can obtain an improved election outcome by misrepresenting his or her

preferences. A representation for PBR
IM 3; n; IACð Þ with periodicity equal to six is

obtained as

PBR
IM 3; n; IACð Þ ¼ 5ð5n3 þ 43n2 þ 51n� 51Þ

12ðnþ 1)(nþ 2)(nþ 4)(nþ 5Þ ; for n ¼ 3 6ð Þ . . . (7.66)

In the limit that n ! 1, we find the expected result that PVR
IM 3;1; IACð Þ ! 0 for

each VR 2 PR;BRf g so individual manipulation is not an issue for large n.
Lepelley and Mbih (1987) considers the issue of coalition manipulation to obtain

a representation for the manipulability of PR, with

PPR
CM 3; n; IACð Þ ¼ 42n4 þ 339n3 þ 683n2 � 99n� 1125

144(nþ 1)(nþ 2)(nþ 4)(nþ 5)
; for n ¼ 3 6ð Þ . . .

(7.67)

In the limit that n ! 1, we find PPR
IM 3;1; IACð Þ ¼ 42=144 
 0:2917, so coali-

tion manipulation potentially poses a significant problem with PR.

A characterization of voting situations for which BR is susceptible to coalition

manipulation is also obtained in Favardin et al. (2002). This characterization

allows computer enumeration to obtain values of the probability, PBR
CM m; n; IACð Þ,

that BR was vulnerable to coalition manipulation. Wilson and Pritchard (2007)

and Lepelley et al. (2008) then independently use this characterization with an

Ehrhart Polynomial based approach to obtain a limiting representation with

PBR
CM 3;1; IACð Þ ¼ 132;953=264;600 
 0:5025, and the evidence against the rela-

tive susceptibility of BR to manipulation continues to mount. Other related studies

are given in Lepelley and Merlin (1998) and Lepelley and Valognes (1999, 2003).

Fortunately, some very interesting results concerning the relative susceptibility

of BR to strategic manipulation come from Favardin and Lepelley (2006), to

support a relative advantage for BR. The main contribution that is introduced in

this study accounts for a very important fact. In particular, when the vulnerability of

a voting rule to strategic manipulation is being evaluated, it is important to consider

the fact that the strategic behavior of a voter (coalition of voters) can be neutralized

by some other voter (coalition of voters). As a result, it is suggested that strategic

manipulation should be viewed as a dynamic process.

In order to describe this dynamic manipulation, consider the voting situation

with three candidates that is shown in Fig. 7.6 when PR is the voting rule.

The winner with sincere PR voting is Candidate A, with 40 votes.
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However, if the 12 voters with the preference ranking C � B � A misrepresent

their preferences and vote for B instead of C, then B would become the PR winner,

with 42 votes. This action would produce a better outcome both for the 30 voters

with B � A � C and for the 12 manipulating voters with C � B � A, at the expense
of all other voters. However, if the potential threat of strategic behavior on the part
of the 12 voters is anticipated, then the 18 voters with the preference ranking

C � A � B, who could get a less-preferred outcome as a result of this potential

threat of manipulation, could react by voting instead for Candidate A instead of C,
so that Awill again become the PR winner, with 58 votes. Observe that the 12 voters

with the C � A � B ranking have no effective way of counter-reacting to this

reaction. Consequently, we can expect that the PR winner in this voting situation

will still be Candidate A, the original sincere winner. Such a situation is said to be a
quasi-stable voting situation. By counting only those situations that are not quasi-

stable when evaluating the vulnerability of a voting rule, a new and quite possibly

more realistic measure of manipulability is obtained, since the possibility of some

threat of strategic behavior does not really matter if the sincere winner can ulti-

mately be elected anyway with an appropriate reaction.

Six different “electoral environments” are considered in Favardin and Lepelley

(2006), and they are dependent upon the definition of näive voters, who always

ignore any possible reaction to threats of strategic manipulation. This is the usual

assumption that has been used when considering the probability of observing

individual manipulation. It is based on the notion of Nash equilibrium and it is

used for example in the development of the representations in (7.65)–(7.67). On the

other hand, voters who are non-naı̈ve do react to such potential threats.

These electoral environments are also dependent upon the distinction between

possible manipulation by homogeneous and heterogeneous groups of voters.

A group of homogeneous voters all have the same preference ranking on candi-

dates. This scenario would be relevant to contexts like political assemblies, where

the set of all voters is partitioned into several groups with homogeneous prefer-

ences, according to their party membership. Communication and development of

a common strategy before voting is likely to occur within each group of homoge-

neous voters, while being less likely to occur between voters from different

parties.

Favardin and Lepelley (2006) consider the susceptibility to manipulation of 19

different voting rules, including PR, NPR, BR, PER and NPER. Closed-form

representations for BR susceptibility to manipulation are obtained for finite n for

electoral environments that involve individual manipulation; in the other cases only

limiting probability representations are obtained. The results regarding BR suscep-

tibility in the six different environments are summarized as follows:

A B C C
B A A B
C C B A
40 30 18 12

Fig. 7.6 A voting situation

with possible dynamic

manipulation for PR
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l Case 1. (Individual Manipulation, Naı̈ve Voters) BR is the least susceptible

WSR, but it is more vulnerable than the Condorcet consistent methods and the

two-stage WSR’s. The superiority of BR among the WSR’s with individual

manipulation is in accordance with a general result from Saari (1990b).
l Case 2. (Group Manipulation, Homogeneous Naı̈ve Voters) Limiting manipula-

tion probabilities are listed in Table 7.12 for PR, NPR, BR, PER, and NPER. BR

does not perform well.
l Case 3. (Group Manipulation. possibly Heterogeneous Naı̈ve Voters) Limiting

manipulation probabilities are listed in Table 7.12 for PR, NPR, BR, PER, and

NPER. BR does not perform well, and the distinction between manipulation by

homogeneous voters in Case 2 and heterogeneous voters in Case 3 has no impact

for PR, NPR and PER
l Case 4. (Individual Manipulation, Non-Naı̈ve Voters) BR is the least susceptible

voting rule among all of the 19 voting rules that are considered.
l Case 5. (Group Manipulation, Homogeneous Non-Naı̈ve Voters) Limiting

manipulation probabilities are listed in Table 7.12 for PR, NPR, BR, PER, and

NPER. BR performs well among these voting rules.
l Case 6. (GroupManipulation, possibly Heterogeneous Non-Naı̈ve Voters) Limit-

ing manipulation probabilities are listed in Table 7.12 for PR, NPR, BR, PER, and

NPER. BR shows increased vulnerability, but it remains better that PR and NPR.

We conclude from these results that the commonly believed notion that BR is

highly susceptible to manipulation is quite disputable if we take into consideration

the possibility of reactions or “counter-threats” in the analysis of strategic voting.

This conclusion that is strongly in favor of BR is highly dependent on the concept of

quasi-stability, so it is natural to wonder if this concept of quasi-stability is more

relevant than the usual stability concept.

A recent study by Béhue et al. (2009) gives a tentative answer to this question

through an experimental investigation of this problem in the context of individual

manipulation, and empirical support is found for the notion of reaction to threats. In

this study, two types of voting situations with three candidates are compared. In the

first one, Type 1 voting situations have one voter who can manipulate the election,

and no reaction from the other voters is possible. Type 2 voting situations have one

voter who is still in a position to manipulate the election, but with another voter who

can restore the sincere winner by adopting a strategic vote. The results of the study

show that the sincere winner is elected with BR in only 33% of the elections that

Table 7.12 Limiting

probabilities for susceptibility

to manipulation of

preferences

VR

Case

2 3 5 6

PR 0.2917 0.2917 0.1736 0.1736

NPR 0.5185 0.5185 0.4444 0.4444

BR 0.3798 0.5025 0.0675 0.1375

PER 0.1111 0.1111 0.0920 0.0920

NPER 0.4267 0.4306 0.0579 0.0579
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were conducted with Type 1 situations; while the sincere winner is elected in 75%

of the elections with Type 2 situations. Consequently, it appears to be very relevant

to distinguish between situations with or without possible reaction to threats when

analyzing strategic voting.

7.11 Conclusion

We knew at the onset of this chapter from the Borda Compromise that BR could

generally be expected to perform with relatively good measures of Condorcet

Efficiency, without exhibiting the possibility of having very poor performance in

some scenarios. Numerous other pieces of evidence have been provided in the

development of this chapter to support the general notion that while BR will not

necessarily always produce the best election outcome; it can typically be expected

to perform very well relative to any voting rule on a number of different criteria.

Evidence has also been provided to indicate that reports of the commonly held

belief that BR is highly susceptible to strategic manipulation appear to be greatly

exaggerated.
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Chapter 8

The Significance of Voting Rule Selection

8.1 Introduction

A great deal of evidence has been accumulated to support the Borda Compromise

when the goal is to select the winning candidate in an election setting. A significant

amount of research has also been conducted to determine how significant the impact

might be when different voting rules are used. That is, the issue is addressed as to

how much difference it actually makes when a voting rule is being selected. The

initial exploration of this problem focused on the likelihood that two different

voting rules would elect the same winner.

8.2 Same Winner with Two Voting Rules

Some work on the probability that two voting rules will elect the same winner has

already been presented in the development of the representation for Joint Condorcet

Efficiency JCEBR
WSR lð Þ 3;1; IC�ð Þ in (7.15) that BR and Rule l will both elect the

PMRW, given that a PMRW exists. This analysis is extended here to consider the

probability that two voting rules will elect the same winner in two different

scenarios. The first case will not require that both voting rules elect the PMRW,

or even require that a PMRW exists. The second case is conditional, since it

requires that a PMRW exists and that both voting rules will select it.

8.2.1 Two Voting Rules Winner Coincidence

The analysis for single-stage voting rules with three candidates begins by consider-

ing the limiting joint probability JP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ that Rule l and Rule l0 both

elect the same winner under the IC assumption, with no requirement that a PMRW

exists. This representation is developed in Gehrlein and Fishburn (1983) as an

extension of work in Gehrlein (1980), with

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_8,
# Springer-Verlag Berlin Heidelberg 2011
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JP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ ¼ 1

3
þ 3

4p
½Sin�1ð2 f ðl; l0ÞÞ þ Sin�1ð f ðl; l0ÞÞ�

þ 3

4p2
f½Sin�1ð2 f ðl; l0ÞÞ�2 � ½Sin�1ð f ðl; l0ÞÞ�2g; (8.1)

where

f l; l0ð Þ ¼ 2� l� l0 þ 2ll0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lþ l2Þð1� l0 þ l0

2Þ
q : (8.2)

It follows directly from the definition of f l; l0ð Þ and (8.1) that

JP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ ¼ JP

WSR 1�l0ð Þ
WSR 1�lð Þ 3;1; ICð Þ: (8.3)

Computed values of JP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ from (8.1) are listed in Table 8.1 for

each l; l0 ¼ 0:00 0:10ð Þ1:00.
The results in Table 8.1 indicate that whenever the difference between l and l0 is

less than 0.2, there is a probability of at least 0.892 of getting the same winner with

the two associated WSR’s. If one of the rules is BR, there is always at least a

probability of 0.7583 of having the same winners. The lowest coincidence proba-

bility is associated with the use of PR and NPR, with a coincidence probability that

is only equal to 0.5346. As a result, there can be a significant likelihood that the

winners by PR and NPR will be different as n ! 1 with IC.

8.2.2 Two Voting Rules Winner Coincidence with the PMRW

Gehrlein (1986) performs a Monte-Carlo simulation study to consider the impact

that degree of social homogeneity in a voting situations will have on the propensity

Table 8.1 Computed values of JP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ from Gehrlein and Fishburn (1983)

l l0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 1.000 0.9568 0.9103 0.8610 0.8099 0.7583 0.7076 0.6590 0.6136 0.5720 0.5346

0.1 0.9568 1.000 0.9529 0.9030 0.8513 0.7991 0.7476 0.6984 0.6523 0.6101 0.5720

0.2 0.9103 0.9529 1.000 0.9495 0.8971 0.8441 0.7920 0.7420 0.6952 0.6523 0.6136

0.3 0.8610 0.9030 0.9495 1.000 0.9469 0.8932 0.8403 0.7895 0.7420 0.6984 0.6590

0.4 0.8099 0.8513 0.8971 0.9469 1.000 0.9455 0.8918 0.8403 0.7920 0.7476 0.7076

0.5 0.7583 0.7991 0.8441 0.8932 0.9455 1.000 0.9455 0.8932 0.8441 0.7991 0.7583

0.6 0.7076 0.7476 0.7920 0.8403 0.8918 0.9455 1.000 0.9469 0.8971 0.8513 0.8099

0.7 0.6590 0.6984 0.7420 0.7895 0.8403 0.8932 0.9469 1.000 0.9495 0.9030 0.8610

0.8 0.6136 0.6523 0.6952 0.7420 0.7920 0.8441 0.8971 0.9495 1.000 0.9529 0.9103

0.9 0.5720 0.6101 0.6523 0.6984 0.7476 0.7991 0.8513 0.9030 0.9529 1.000 0.9568

1.0 0.5346 0.5720 0.6136 0.6590 0.7076 0.7583 0.8099 0.8610 0.9103 0.9568 1.000

296 8 The Significance of Voting Rule Selection



of two WSR’s to select the same winner with large electorates in three-candidate

elections. The analysis follows the discussion of Gehrlein (1987) in Chap. 5, by

generating random voting situations in the MC format with n ! 1 to obtain q
vectors at random from the space of possible vectors with

P6
i¼1 qi ¼ 1. As each

voting situation was generated, it was determined if there was coincidence between

the winners by Rule l and Rule l0 for each l; l0 2 0:0 0:1ð Þ1:0. The results were

found to be very similar to the IC based calculations in Table 8.1.

In the next stage, the situation specific measure of social homogeneity of each

voting situation was measured by H2 qð Þ, with

H2 qð Þ ¼ q1 þ q2ð Þ2þ q3 þ q5ð Þ2þ q4 þ q6ð Þ2: (8.4)

The generated voting situations were then partitioned into five subsets, to reflect

quintiles of increasing values of the computed H2 qð Þ values. Highly significant

increases are found in the rates of coincidence of Rule l and Rule l0 winners as the
different quintile subgroups of H2 qð Þ increase. Increased levels of coincidence can

therefore be expected as voters’ preferences become more socially homogeneous,

as measured by H2 qð Þ. However, no such relationship was found when the measure

H qð Þ from (5.55) was used in a similar analysis.

The final stage of this study repeated the previous stage, but all voting situations

for which a PMRW did not exist were deleted as the voting situations were being

generated. In this case, only very minor differences were found in the rates of

coincidence of Rule l and Rule l0 winners in the previous stage. So, adding the

restriction that a PMRW must exist is surprisingly found to have very little impact

on the observations in the study.

An analysis of the probability that the same winner is obtained with two-stage

voting rules is approached in Gehrlein (1998b) to consider the probability that PER

and NPER both elect the PMRW. This result follows from the fact that the PMRW

must be elected by one, or both, of PER or NPER if a PMRW exists:

Theorem 8.1 A strict PMRW can not be ranked strictly last by both PR and NPR in
an election on three candidates A;B;Cf g.
Proof Six equations must hold simultaneously if Candidate A, is ranked strictly last
by PR, is ranked strictly last by NPR, and is the strict PMRW. Using the ni
definitions from Fig. 1.1:

½B PR winner over A� n3 þ n5 > n1 þ n2 (8.5)

½C PR winner over A� n4 þ n6 > n1 þ n2 (8.6)

½B NPR winner over A� n5 þ n6 > n2 þ n4 (8.7)

½C NPR winner over A� n5 þ n6 > n1 þ n3 (8.8)
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½AMB� n1 þ n2 þ n4 > n3 þ n5 þ n6 (8.9)

½AMC� n1 þ n2 þ n3 > n4 þ n5 þ n6 (8.10)

Equation 8.5 leads to n3 þ n5 þ n4 > n1 þ n2 þ n4, which can be used with (8.9)
to obtain n3 þ n5 þ n4 > n3 þ n5 þ n6, so

n4 > n6: (8.11)

Equation 8.6 leads to n3 þ n4 þ n6 > n1 þ n2 þ n3, which can be used with

(8.10) to obtain n3 þ n4 þ n6 > n4 þ n5 þ n6, so

n3 > n5: (8.12)

Equation 8.7 leads to n3 þ n5 þ n6 > n2 þ n3 þ n4, which can be used with (8.9)
to obtain n1 þ n2 þ n4 > n2 þ n3 þ n4, so

n1 > n3: (8.13)

Equation 8.8 leads to n4 þ n5 þ n6 > n1 þ n3 þ n4, which can be used with

(8.10) to obtain n1 þ n2 þ n3 > n1 þ n3 þ n4, so

n2 > n4: (8.14)

From (8.5) and (8.13) n3 þ n5 > n1 þ n2 > n2 þ n3, so

n5 > n2: (8.15)

From (8.8) and (8.12) n5 þ n6 > n1 þ n3 > n1 þ n5, so

n6 > n1: (8.16)

Using (8.11)–(8.16), n4 > n6 > n1 > n3 > n5 > n2 > n4, which is clearly a

contradiction.

□
Consider the joint probability that Candidate A is the PMRW that is elected by

both PER and NPER. Let P Event½ � denote the probability that Event occurs, and
when the possibility of ties by PMR, PER and NPER can be ignored:

P A is the winner by PMR; PER & NPER½ � ¼ P A is the PMRW½ �
� P A is the PMRW & PER loser½ � � P A is the PMRW & NPER loser½ �
þ P A is the PMRW & loser by PER & NPER½ �: ð8:17Þ
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Theorem 8.1 tells us that P A is the PMRW & loser by PER & NPER½ � ¼ 0,

and the possibility of ties with PER and NPER can be ignored with IC, IAC and

MC for large electorates as n ! 1. After some manipulation, the joint probability

JCENPER
PER 3;1;X�ð Þ that PER and NPER both elect the PMRW, given that a PMRW

exists, is obtainable from (8.17) for X� 2 IC�; IAC�;MC�f g as

Theorem 8.2 For each X� 2 IC�; IAC�;MC�f g,

JCENPER
PER 3;1;X�ð Þ ¼ CES

PER 3;1;X�ð Þ þ CES
NPER 3;1;X�ð Þ � 1:

Theorem 8.2 is used in conjunction with earlier results for CES
PER 3;1;X�ð Þ

and CES
NPER 3;1;X�ð Þ to obtain values of JCENPER

PER 3;1; IC�ð Þ ¼ 0:9258,

JCENPER
PER 3;1; IAC�ð Þ ¼ 0:9389 and JCENPER

PER 3;1;MC�ð Þ ¼ 0:9014. So, there is

a reasonably high likelihood that we will get the same winner with both PER and

NPER.

EUPIA is used to obtain a representation for IAC with finite n, with

JCENPER
PER 3;n; IAC�ð Þ ¼ 12420þ 31461nþ 22693n2 þ 5879n3 þ 507n4

540 nþ 1ð Þ nþ 3ð Þ2 nþ 5ð Þ ;

for n¼ 9 12ð Þ . . . : (8.18)

The limiting value of JCENPER
PER 3;1; IAC�ð Þ above is verified with this represen-

tation, and computed values of JCENPER
PER 3; n; IAC�ð Þ are shown in Table 8.2 for each

n ¼ 9 12ð Þ93 to show that JCENPER
PER 3; n; IAC�ð Þ increases as n increases, for this

series of n values.

8.3 The Probability that All WSR’s Elect the Same Winner

A logical extension of the analysis of the probability that two WSR’s elect the same

winner is the consideration of the probability that all WSR’s will elect the same

winner, which would make the process of selecting of any particular voting rule

Table 8.2 Computed values

of JCENPER
PER 3; n; IAC�ð Þ n JCENPER

PER 3; n; IAC�ð Þ
9 0.8952

21 0.9203

33 0.9271

45 0.9303

57 0.9321

69 0.9333

81 0.9342

93 0.9348

1 0.9389
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quite irrelevant. The first step of this analysis is to consider the conditions that are

necessary for all WSR’s to select the same winner in a voting situation.

Moulin (1988b) presents some definitions that are useful in determining condi-

tions that are required for a given candidate to be the winner in a voting situation for

all possible WSR’s. In an m-candidate election on candidates C1;C2; . . . ;f
Cmg; let rk Cið Þ denote the number of voter preference rankings in a voting situa-

tion for which Ci is ranked among the top k more preferred candidates. Obviously,

rm Cið Þ ¼ n. Moulin leaves it as a simple exercise for readers, with hints being

given, to use these rk Cið Þ definitions as a basis for finding that the total score,

Score Cið Þ, that Candidate Ci receives in a given voting situation with WSR

W ¼ w1;w2; . . . ;wmð Þ, and

Score Cið Þ ¼ w1r1 Cið Þ þ
Xm
k¼2

wk rk Cið Þ � rk�1 Cið Þ½ � (8.19)

Score Cið Þ ¼
Xm�1

k¼1

rk Cið Þ wk � wkþ1½ � þ wmn: (8.20)

It then follows directly that Ci will be a winner for all possible W for which

wj � wjþ1 with 1 � j � m� 1, as long as rk Cið Þ � rk Ctð Þ for all 1 � k � m and for

all 1 � t � m. Saari (1995b p. 117) notes the same result for three-candidate

elections, and that result is extended to the case of more than three candidates in

Merlin et al. (2000). Baharad and Nitzan (2006) present a different characteriza-

tion of the conditions that require all WSR’s to elect the same winner in a voting

situation. The characterization from Moulin (1988b) will be the one that is used in

further analysis in this study. For the case of three candidates, Moulin’s conditions

require that all WSR’s must elect the same winner in a voting situation if PR and

NPR both select that same winner. It is a trivial extension of this analysis to observe

that all WSR’s must elect the PMRW in a voting situation on three candidates,

given that a PMRW exists, if both PR and NPR elect that candidate.

Gehrlein and Lepelley (2000) obtain Monte-Carlo simulation estimates for both

the joint probability JPNPR
PR m;1; ICð Þ that PR and NPR both select the same winner

as n ! 1 with IC and the joint Condorcet Efficiency, JCENPR
PR m;1; IC�ð Þ, that PR

and NPR both select the PMRW, given that a PMRW exists. The results are listed in

Table 8.3 for each m ¼ 3, 4, 5.

The estimate for JPNPR
PR 3;1; ICð Þ in Table 8.3 is very close to the exact value of

JP
WSR 1ð Þ
WSR 0ð Þ 3;1; ICð Þ in Table 8.1. Merlin et al. (2000) compute an exact value of

JCENPR
PR 3;1; IC�ð Þ ¼ 0:5475, which is also very close to the estimate in Table 8.3.

Table 8.3 Simulation

estimates of JPNPR
PR m;1; ICð Þ

and JCENPR
PR m;1; IC�ð Þ

m JPNPR
PR m;1; ICð Þ JCENPR

PR m;1; IC�ð Þ
3 0.5369 0.5504

4 0.2704 0.3049

5 0.1383 0.1735
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Two results are evident from Table 8.3. First, the probability that all WSR’s elect

the same candidate decreases rapidly as m increases. The second observation is that

the introduction of the requirement that a PMRW must exist has very little impact

on the probability that all WSR’s will select the same winner, as observed in

discussion above.

A representation for JPNPR
PR 3;1; ICð Þ follows directly from (8.1) with some

algebraic reduction as

JPNPR
PR 3;1; ICð Þ ¼ 23

48
þ 3

4p
Sin�1 1

4

� �
� 3

4p2
Sin�1 1

4

� �� �2
¼ 0:5346: (8.21)

A representation for JCENPR
PR 3;1; IC�ð Þ is developed in Gehrlein (1999b) as

JCENPR
PR 3;1; IC�ð Þ ¼ JPNPR

PR 3;1; ICð Þ � 6F5 R1
� �

PS
PMRW 3;1; ICð Þ ; (8.22)

where

R1 ¼

1 1
2

1
2

1
4

�
ffiffi
2
3

q

1 1
4

1
2

�
ffiffi
1
6

q

1 1
2

�
ffiffi
2
3

q

1 �
ffiffi
1
6

q
1

2
666666664

3
777777775
: (8.23)

The representation in (8.22) is evaluated with a procedure from Gehrlein (1979)

as JCENPR
PR 3;1; IC�ð Þ ¼ 0:5475: This result verifies a value that was obtained for

this probability in Merlin et al. (2000), where a rather complex representation is

also given for the limiting probability that all WSR’s select the same winner, given

that a PMR cycle exists for three candidates as n ! 1 with IC.

Representations for JPNPR
PR 3; n; IACð Þ and JCENPR

PR 3; n; IAC�ð Þ are developed with
EUPIA in Gehrlein (2002b), with

JPNPR
PR 3; n; IACð Þ ¼ 226n4 þ 2037n3 þ 6009n2 þ 7623nþ 2025

432ðnþ 1Þðnþ 2Þðnþ 4Þðnþ 5Þ ;

for n ¼ 9 12ð Þ . . . : (8.24)

JCENPR
PR 3;1;IAC�ð Þ

¼ 3437n5þ42810n4þ199110n3þ421200n2þ375813nþ391230

6480ðnþ1Þðnþ3Þ3ðnþ5Þ ;

for n¼ 9 24ð Þ . . . : : (8.25)
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The periodicities of 12 and 24 in (8.24) and (8.25) make these representations of

limited interest, but they can be used to obtain the limiting probability as n ! 1,

with JPNPR
PR 3;1; IACð Þ ¼ 0:5231 and JCENPR

PR 3;1; IAC�ð Þ ¼ 0:5304. As in the

case with IC, the addition of the restriction that a PMRW must exist has little

impact on the probability that all WSR’s select the same winner with IAC. The

increased degree of dependence among voters’ preferences that is introduced with

IAC also had almost no impact on the probabilities that were obtained with IC. In

fact, each of these probabilities is slightly lower with IAC than with IC.

8.4 Homogeneity and Voting Rule Selection Sensitivity

Mixed results have been observed so far regarding the way in which the probability

that all WSR’s select the same winner changes as the degree of homogeneity or

dependence among voters’ preferences increases. Some studies have been con-

ducted to directly analyze this general relationship.

McCabe-Danstead and Slinko (2006) perform an analysis to determine if there

are categories of voting rules that tend to select the same winner. The study

considers 27 different voting rules and computes the ‘distance’ between each of

the pairs of voting rules, where the ‘distance’ is measured by the probability that the

two voting rules in the pair fail to pick the same winner for a randomly generated

voting situation. Monte-Carlo simulation was used to generate random voting

situations with a P–E model for m ¼ 5 for various n. Cluster analysis was then

used to position the 27 voting rules in two-dimensional space, based on the

differences between pairs.

As the degree of homogeneity is increased within the range of relatively low

homogeneity, the similarity between voting rules is surprisingly reduced, with

clusters of voting rules separating to form sets of new clusters. However, for the

range of moderate and high degrees of homogeneity, the similarity between voting

rules tends to increase as homogeneity increases, with clusters of voting rules

collapsing into common clusters as would be expected. Similar results were

found whether or not a PMRW exists in the randomly generated voting situation.

Fedrizzi et al. (1996) perform a related study by considering a number of

different voting rules and a variety of different criteria that are available for

evaluating the performance of voting rules in selecting winners. They note that

many voting situations exist for which all voting rules will select the same winner.

By using a ‘rough sets’ approach, they identify a subset of voting rules that tend to

have the ability to produce winners with characteristics that are different than some

other voting rules. They also identify a subset of criteria that tend to be most crucial

in characterizing differences in the performance of voting rules in determining

winners. The Condorcet Criterion is included in this crucial subset, so the require-

ment that voting rules select the PMRW, when one exists, is shown to have an

impact on the probability that all voting rules select the same winner.
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8.5 Measures of Coherence and Voting Rule

Selection Sensitivity

The obvious next step is to determine the relationship between more sophisticated

measures of group mutual coherence and the probability that all WSR’s select the

same winner. The initial analysis of this nature was presented in Gehrlein (2003b)

where a representation is developed for probability JCENPR
PR 3; njIAC�

b 0ð Þ� �
that

all WSR’s elect the PMRW in three-candidate elections under the assumption

that all single-peaked voting situations with a PMRW are equally likely to be

observed.

JCENPR
PR 3; njIAC�

b 0ð Þ� � ¼ 11n3 þ 51n2 � 27n� 27

18nðnþ 1Þðnþ 5Þ ; for n ¼ 9 6ð Þ . . . : (8.26)

In the limit as n ! 1, we find that JCENPR
PR 3;1; IAC�ð Þ ¼ 0:5304 and

JCENPR
PR 3;1jIAC�

b 0ð Þ� � ¼ 11=18 ¼ 0:6111, so there is a 61% chance that all WSR’s

will elect the PMRW, given that a PMRW exists, if we assume that voters’ prefer-

ences are single-peaked. If we do not require the internal consistency of voters’

preferences that follows from the assumption of single-peakedness, the probability

that all WSR’s select the PMRW is reduced to about 53%. The restriction of

preferences to the internal consistency of single-peakedness, which requires the

existence of a perfect Weak Positively Unifying Candidate, therefore does increase

the probability that all WSR’s will elect the PMRW.

The results of JCENPR
PR 3; njIAC�

b kð Þ� �
are accumulated over all 0 � k � n=3

when we obtain the overall IAC results in JCENPR
PR 3; n; IAC�ð Þ. The impact that

changing k has on JCENPR
PR 3; njIAC�

b kð Þ� �
is shown in Gehrlein (2006b) for the

special case of n ¼ 55, and computed values from computer enumeration are

listed in Table 8.4. These calculated results indicate that JCENPR
PR 3; njIAC�

b kð Þ� �
decreases dramatically as k increases. Thus, we observe the intuitively appealing

result that the probability that all WSR’s will select the PMRW, given that

a PMRW exists, consistently decreases as voting situations become farther

Table 8.4 Computed values

of JCENPR
PR 3; 55jIAC�

b kð Þ� � k JCENPR
PR 3; 55jIAC�

b kð Þ� �
k JCENPR

PR 3; 55jIAC�
b kð Þ� �

0 0.5961 10 0.4955

1 0.5881 11 0.4785

2 0.5801 12 0.4591

3 0.5719 13 0.4376

4 0.5634 14 0.4139

5 0.5545 15 0.3816

6 0.5450 16 0.3364

7 0.5347 17 0.2669

8 0.5234 18 0.0000

9 0.5105
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removed from the condition of perfectly single-peaked preferences, as measured

by Parameter b.
Representations for JCENPR

PR 3; njIAC�
b kð Þ� �

are then obtained by EUPIA2

to develop a better understanding of how JCENPR
PR 3; njIAC�

b kð Þ� �
changes as

k increases for Parameter b. These representations are given in (8.27) for all

odd n.

JCENPR
PR 3; njIAC�

b kð Þ� �

¼

ð�70� 61k þ 711k2 þ 936k3 þ 207k4Þ � 2ð27þ 333k þ 324k2 þ 18k3Þn
þ 3ð34þ 7k � 27k2Þn2 þ 27d2kþ1 þ ðk þ 1Þf22n3 þ 16ðd12nþ3 þ d12nþ9Þ
� 8ðd12nþ1 þ d12nþ7Þð3nþ 11Þg

2
6664

3
7775

36ðk þ 1Þ½kð�17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3� ;

for 0 � k � n� 1ð Þ=6
ð917þ12480kþ38232k2þ35712k3þ8064k4Þ
�8ð439þ2457kþ2520k2þ396k3Þnþ18ð129þ104k�44k2Þn2

þ8ð34þ39kÞn3þn4�432d2kþ1ðn�2k�1Þþ432d12nþ1ð2d2kþ1�1Þðn�2kÞ
�32d12nþ3ð43þ156kþ36k2�40n�3n2Þ�16d12nþ5f2ð35þ105kþ36k2Þ
�37n�6n2�54d2kþ1ðn�2kÞg�d12nþ9½16f2ð43þ129kþ36k2Þ�53n�6n2g
�864d2kþ1ðn�2kÞ��32d12nþ11ð35þ132kþ36k2�32n�3n2Þ

2
6666666666664

3
7777777777775

576ðkþ1Þ½kð�17þ21kþ11k2Þþð5�26k�4k2Þnþ3ð2�kÞn2þn3� ;

for nþ1ð Þ=6� k� n�1ð Þ=4

n� 1� 3kð Þ
2ð76� 117kþ 144k3Þþ 9ð19� 16k� 36k2Þnþ 6 13þ 15kð Þn2

� n3� 108d2kþ1þ 108d12nþ1ð2d2kþ1� 1Þ� 48ðd12nþ1þ d12nþ7Þðn� 3kÞ
þ 64d12nþ3� 4d12nþ5ð19� 54d2kþ1Þ� 4d12nþ9ð11� 54d2kþ1Þþ 32d12nþ11

2
6664

3
7775

36ðn� 3kÞ½ðnþ 1Þðn2þ 2nþ 9Þ� 6ðn2þ 1Þkþ 18nk2� 18k3� ;

for nþ 1ð Þ=4� k� n� 1ð Þ=3:
(8.27)

Just as we observed previously with other representations for finite n, the

highly complex form of the representations for JCENPR
PR 3; njIAC�

b kð Þ� �
in (8.27)

makes them extremely cumbersome for any direct analysis. However, these

representations directly allow us to obtain results for the limiting behavior of

JCENPR
PR 3;1jIAC�

b akð Þ� �
as ak increases with n ! 1, and
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JCENPR
PR 3;1jIAC�

b akð Þ� � ¼ 207a3k � 36a2k � 81ak þ 22

36ð11a3k � 4a2k � 3ak þ 1Þ ; for 0 � ak � 1=6

8064a4k � 3168a3k � 792a2k þ 312ak þ 1

576akð11a3k � 4a2k � 3ak þ 1Þ ; for 1=6 � ak � 1=4

288a3k � 324a2k þ 90ak � 1

36ð�18a3k þ 18a2k � 6ak þ 1Þ ; for 1=4 � ak < 1=3: (8.28)

The results of (8.28) yield JCENPR
PR 3;1jIAC�

b 0ð Þ� � ¼ 11=18, which verifies the

limiting result from the representation in (8.26). Table 8.5 lists computed values of

JCENPR
PR 3;1jIAC�

b akð Þ� �
for each value of ak ¼ 0:00 0:02ð Þ0:32, along with

ak ¼ 0:33. JCENPR
PR 3;1jIAC�

b akð Þ� �
is not defined for the special case ak ¼ 1=3,

since it is easily shown that a PMRW cannot exist under this restriction.

It is interesting to observe what happens to JCENPR
PR 3;1jIAC�

b akð Þ� �
in the limit

as ak ! 1=3 in (8.28), where we find JCENPR
PR 3;1jIAC�

b 1=3ð Þ� � ¼ 11=36 ¼
JCENPR

PR 3;1jIAC�
b 0ð Þ� �

=2. Very different results are observed when we first let

ak ! 1=3 and then let n ! 1. To do this, we first set k ¼ n� 1ð Þ=3 in the

representation for JCENPR
PR 3; njIAC�

b kð Þ� �
in (8.27), which has periodicity 12. For k

to be integer valued for odd n, then either n þ 5 or n þ 11 must be a multiple of 12.

Next, we let n ! 1 to obtain JCENPR
PR 3;1jIAC�

b ak ! 1=3ð Þ� � ¼ 0, which is con-

sistent with the results in Table 8.4 where n¼ 55, but if we first set k ¼ n� 2ð Þ=3 in
the representation for JCENPR

PR 3; njIAC�
b kð Þ� �

, either n þ 1 or n þ 7 must be a

multiple of 12 for integer k. Then we let n ! 1 to obtain the representation

JCENPR
PR 3;1jIAC�

b ak ! 1=3ð Þ� � ¼ 11=72: If we first set k ¼ n� 3ð Þ=3, then either
nþ 3 or nþ 9 is a multiple of 12 for integer k and JCENPR

PR 3;1jIAC�
b ak ! 1=3ð Þ� � ¼

11=54:
Computed values of JCENPR

PR 3; njIAC�
b kð Þ� �

for large n indicate that the conver-

gence to the associated JCENPR
PR 3;1jIAC�

b ak ! 1=3ð Þ� �
limit values occurs very

sharply for values of ak that are extremely close to 1/3, and they remain close to the

value of JCENPR
PR 3;1jIAC�

b 1=3ð Þ� � ¼ 11=36 for all other ak that are near 1/3.

Table 8.5 Computed values of JCENPR
PR 3;1jIAC�

b akð Þ� �
and JPNPR

PR 3;1jIACb akð Þð Þ
aK JCENPR

PR JPNPR
PR

aK JCENPR
PR JPNPR

PR

0.00 0.6111 0.6111 0.18 0.5253 0.5223

0.02 0.6028 0.6028 0.20 0.5102 0.5062

0.04 0.5946 0.5945 0.22 0.4930 0.4872

0.06 0.5863 0.5860 0.24 0.4742 0.4650

0.08 0.5779 0.5772 0.26 0.4536 0.4396

0.10 0.5691 0.5681 0.28 0.4232 0.4120

0.12 0.5598 0.5583 0.30 0.3839 0.3830

0.14 0.5496 0.5477 0.32 0.3383 0.3533

0.16 0.5383 0.5359 0.33 0.3139 0.3383
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The computed values of JCENPR
PR 3;1jIAC�

b akð Þ� �
from Table 8.5 are generally

consistent with previous observations for JCENPR
PR 3; 55jIAC�

b kð Þ� �
in Table 8.4.

Specifically, JCENPR
PR 3;1jIAC�

b akð Þ� �
decreases quite slowly as ak increases for

0 � ak � 0:21, with all associated JCENPR
PR 3;1jIAC�

b akð Þ� �
> 0:50. However, for

voting situations with ak > 0:21, JCENPR
PR 3;1jIAC�

b akð Þ� �
continues to decrease at

a significantly increasing rate as ak increases.
Clearly, the selection of the specific WSR that is to be used in an election

becomes much less critical, relative to the likelihood that the PMRW is selected,

as profiles become at all close to having a perfect Weak Positively Unifying

Candidate, while the probability that all WSR’s will select the PMRW does remain

less than .62. However, the selection of the specific WSR that is used in an election

can obviously have a more significant impact on the ultimate winner that is elected

when voters’ preferences show decreased levels of group mutual coherence, as

measured by Parameter b.
It is natural to wonder if this observed propensity of all WSR’s to select the same

winner is inflated by the fact that we have restricted attention to voting situations for

which a PMRW exists. Intuition suggests that this restriction would seem to add an

additional degree of structure to voters’ preferences that might have an impact on

the results. In order to investigate the degree to which the presence of a PMRW

changes the outcome that all WSR’s select the same winner, EUPIA2 is used to

obtain representations for the joint probability, JPNPR
PR 3; njIACb kð Þð Þ, that PR and

NPR both select the same winner without the restriction that a PMRW exists.

The results are given in (8.29).

JPNPR
PR 3;njIACb kð Þð Þ

¼

kþ1ð Þ
333k3þ1413k2þ63k�59�18ð2k2þ67kþ9Þn

�6ð27k�34Þn2þ44n3þ32d6nþ3�16d6nþ1ð3nþ11Þ

2
4

3
5

�d2k 162kþ81�54nð Þ

2
66664

3
77775

72ðkþ1Þðn�3kÞ½ðnþ1Þðnþ5Þ�3kð2þkÞ� ;

for 0� k� n�1ð Þ=6
3591k4 þ 13878k3 þ 13500k2 þ 2646k� 162

� 18ð102k3 þ 447k2 þ 396kþ 46Þn� 18ð3k2 � 47k� 48Þn2

þ 4ð21kþ 23Þn3 þ 2n4 þ 81d2kþ1ð6kþ 3� 2nÞ
þ 16d6nþ1f108k2 þ 147kþ 29� 5ð9kþ 8Þnþ 3n2g þ 32d6nþ5ð3kþ 2� nÞ

2
6666664

3
7777775

216ðkþ 1Þðn� 3kÞ½ðnþ 1Þðnþ 5Þ � 3kð2þ kÞ� ;

for nþ 1ð Þ=6 � k � n� 1ð Þ=4
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ðn�1�3kÞf1107k3þ765k2�147kþ503�ð1323k2þ942k�337Þn
þð441kþ337Þn2�25n3gþd2kþ1f243 2kþ1ð Þ�162ng�32d6nþ3ð3kþ2�nÞ
þ16d6nþ1f108k2þ141kþ25�ð45kþ38Þnþ3n2g

2
6664

3
7775

216ðkþ1Þðn�3kÞ½ðnþ1Þðnþ5Þ�3kð2þkÞ� ;

for nþ1ð Þ=4� n�1ð Þ=3:
ð8:29Þ

The limiting representations for JPNPR
PR 3;1jIACb akð Þð Þ as n ! 1 are then

obtained from (8.29) in the same way that has been used previously, with

JPNPR
PR 3;1jIACb akð Þð Þ ¼ 44� 162ak � 36a2k þ 333a3k

72ð1� 3akÞð1� 3a2kÞ
; for 0 � ak � 1=6

2þ 84ak � 54a2k � 1836a3k þ 3591a4k
216akð1� 3akÞð1� 3a2kÞ

; for 1=6 � ak � 1=4

�25þ 441ak � 1323a2k þ 1107a3k
216akð1� 3a2kÞ

; for 1=4 � ak � 1=3: (8.30)

Computed values of JPNPR
PR 3;1jIACb akð Þð Þ are listed in Table 8.5 for each value

of ak ¼ 0:00 0:02ð Þ0:32, along with ak ¼ 0:33, and very little difference is noted

between values of JPNPR
PR 3;1jIACb akð Þð Þ and JCENPR

PR 3;1jIAC�
b akð Þ� �

. Thus, the

additional restriction that a PMRW must exist has almost no impact on the

probability that all WSR’s will select the same winner, which is consistent with

the results from other sources that were mentioned above.

It is therefore concluded that as voting situations have increased levels of

group mutual coherence, as measured by Parameter b, there is an increased

probability that all WSR’s will select the same winner, whether or not a PMRW

exists. Our next step is to extend this analysis to the relationship of other weak

measures of group mutual coherence to the probability that all WSR’s select the

PMRW.

8.5.1 Weak Measures and WSR Selection Sensitivity

Since very little difference is observed for the probability that all WSR’s will select

the same winner whether or not a PMRW is required to exist, we restrict attention to

the case in which a PMRW does exist in further analysis. Lepelley and Gehrlein

(2010a) obtain limiting representations for JCENPR
PR 3;1jIAC�

X akð Þ� �
for each

X 2 t; c; uf g with the parameterized version of Barvinok’s algorithm:
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For a Weak Positively Unifying Candidate (Parameter t)

JCENPR
PR 3;1jIAC�

t akð Þ� �

¼ 376� 1386ak � 1980a2k þ 9081a3k
576ð1� 3ak � 4a2k þ 11a3kÞ

; for 0 � ak � 1=6

� 10� 624ak þ 3690a2k � 7524a3k þ 5607a4k
576akð1� 3ak � 4a2k þ 11a3kÞ

;

for 1=6 � ak � 1=4

17þ 351ak � 1053a2k þ 333a3k
288ð1� 6ak þ 18a2k � 18a3kÞ

; for 1=4 � ak � 1=3: (8.31)

For a Polarizing Candidate (Parameter c)

JCENPR
PR 3;1jIAC�

c akð Þ� �

¼ 44� 54ak þ 60a2k � 939a3k
9ð16� 54ak � 28a2k þ 139a3kÞ

; for 0 � ak � 1=6

3� 4ak þ 408a2k � 1504a3k þ 620a4k
12akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=6 � ak � 1=4

�1þ ak þ 213a2k � 393a3k
3ð�1þ 29ak � 63a2k þ 39a3kÞ

; for 1=4 � ak � 1=3: (8.32)

For a Weak Overall Unifying Candidate (Parameter u)

JCENPR
PR 3;1jIAC�

u akð Þ� �

¼ 728� 5274ak þ 9756a2k � 387a3k
576ð2� 12ak þ 12a2k þ 19a3kÞ

; for 0 � ak � 1=6

�1þ 104ak � 786a2k þ 1852a3k � 1147a4k
64akð2� 12ak þ 12a2k þ 19a3kÞ

; for 1=6 � ak � 1=5

�3þ 102ak � 768a2k þ 2176a3k � 2136a4k
32akð2� 12ak þ 12a2k þ 19a3kÞ

; 1=5 � ak � 1=4

5

12
; for 1=4 � ak � 1=3: (8.33)

Computed values of JCENPR
PR 3;1jIAC�

X akð Þ� �
are obtained for each parameter

X 2 t; c; uf g from (8.31) through (8.33), and the results are listed in Table 8.6

for each value of ak ¼ 0:00 0:02ð Þ0:32, along with ak ¼ 0:33. The Table 8.5 values

of JCENPR
PR 3;1jIAC�

b akð Þ� �
are also listed in Table 8.6 for convenience.
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Some interesting observations can be made from the probabilities in Table 8.6

regarding trends in these values of JCENPR
PR 3;1jIAC�

X akð Þ� �
as ak changes for the

different measures of group mutual coherence. These trends can be observed most

directly from the graphical representation of the Table 8.6 probabilities that is

shown in Fig. 8.1.

Table 8.6 Computed values

of JCENPR
PR 3;1jIAC�

X akð Þ� �
for X 2 b; t; c; uf g ak

X

b t c u

0.00 0.6111 0.6528 0.3056 0.6319

0.02 0.6028 0.6430 0.3200 0.6162

0.04 0.5946 0.6314 0.3371 0.6003

0.06 0.5863 0.6181 0.3570 0.5842

0.08 0.5779 0.6031 0.3801 0.5676

0.10 0.5691 0.5865 0.4065 0.5506

0.12 0.5598 0.5683 0.4365 0.5327

0.14 0.5496 0.5487 0.4706 0.5140

0.16 0.5383 0.5282 0.5091 0.4940

0.18 0.5253 0.5074 0.5525 0.4730

0.20 0.5102 0.4875 0.6003 0.4515

0.22 0.4930 0.4691 0.6519 0.4319

0.24 0.4742 0.4529 0.7057 0.4187

0.26 0.4536 0.4379 0.7586 0.4167

0.28 0.4232 0.4136 0.8070 0.4167

0.30 0.3839 0.3797 0.8497 0.4167

0.32 0.3383 0.3375 0.8855 0.4167

0.33 0.3139 0.3138 0.9003 0.4167
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Fig. 8.1 Computed values of JCENPR
PR 3;1jIAC�

X akð Þ� �
for X 2 b; t; c; uf g
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The general behavior of JCENPR
PR 3;1jIAC�

b akð Þ� �
has already been discussed

above, and nearly identical conclusions can be reached for the proximity of voting

situations to having a perfect Weak Negatively Unifying Candidate, as measured by

Parameter t. Similar results are observed for the proximity of a voting situation to

having a perfect Weak Overall Unifying Candidate, as measured by Parameter u,
with the exception that JCENPR

PR 3;1jIAC�
u akð Þ� �

stabilizes at the constant value

0.417 over the range 1=4 � ak � 1=3.
The most striking relationship that can be observed in Fig. 8.1 is the relationship

for the proximity of voting situations to having a perfect Polarizing Candidate,

as measured by Parameter c. There is a significant increase in values of

JCENPR
PR 3;1jIAC�

c akð Þ� �
from 0.306 to 0.900 as ak increases over the range with

0 � ak � 1=3, to indicate that a strongly polarizing candidate can have a highly

significant impact on the outcomes that can be obtained with different WSR’s.

8.5.2 Strong Measures and WSR Selection Sensitivity

This same type of analysis is extended to the impact that strong measures of group

mutual coherence have on the probability that all WSR’s select the PMRW in

Lepelley and Gehrlein (2010a), and the results are summarized as follows:

For a Strong Negatively Unifying Candidate (Parameter b�)

JCENPR
PR 3;1jIAC�

b� akð Þ� �

¼ 1530a3k � 1404a2k þ 351ak � 25

72ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=3 � ak � 5=12

6804a4k þ 108a3k � 6858a2k þ 3444ak � 475

432ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

1944a4k � 6156a3k þ 6750a2k � 2916ak þ 361

1728akðak � 1Þ3 ; for 1=2 � ak � 2=3

27ak þ 5

64ak
; for 2=3 � ak � 1: (8.34)

For a Strong Positively Unifying Candidate (Parameter t�)

JCENPR
PR 3;1jIAC�

t� akð Þ� � ¼ 90a3k þ 54a2k � 90ak þ 17

36ð18a3k � 18a2k þ 6ak � 1Þ; for 1=3 � ak � 3=8
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3ð32544a4k � 56448a3k þ 36288a2k � 10032ak þ 1001Þ
1728ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 5=12

14688a4k � 31104a3k þ 22464a2k � 6096ak þ 503

1728ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

27a4k � 108a3k þ 162a2k � 84ak þ 7

216akðak � 1Þ3 ; for 1=2 � ak � 2=3

13ak � 5

8ak
; for 2=3 � ak � 1: (8.35)

For a Strong Centrist Candidate (Parameter c�)

JCENPR
PR 3;1jIAC�

t� akð Þ� � ¼ �91a3k � 143a2k þ 61ak � 5

123a3k � 99a2k þ 25ak � 5
; for 1=3 � ak � 3=8

824a4k þ 6720a3k � 6192a2k þ 1152ak þ 45

72ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 2=5

49176a4k � 86720a3k þ 54192a2k � 13952ak þ 1235

72ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 2=5 � ak � 5=12

36144a4k � 69760a3k þ 43584a2k � 9904ak þ 595

144ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 1=2

816a4k � 3456a3k þ 5472a2k � 3856ak þ 1019

144ð17ak � 1Þð1� akÞ3
; for 1=2 � ak � 2=3

1312a4k � 3456a3k þ 3168a2k � 1104ak þ 87

48ð17ak � 1Þðak � 1Þ3 ; for 2=3 � ak � 3=4

10ð1� akÞ
17ak � 1

; for 3=4 � ak � 1: (8.36)

For a Strong Overall Unifying Candidate (Parameter u�)

JCENPR
PR 3;1jIAC�

u� akð Þ� � ¼ 5

12
; for 1=3 � ak � 3=8

2476a4k � 3984a3k þ 2376a2k � 624ak þ 61

2ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ; for 3=8 � ak � 2=5
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1827a4k � 2968a3k þ 1752a2k � 448ak þ 42

4ð2152a4k � 3552a3k þ 2160a2k � 576ak þ 57Þ; for 2=5 � ak � 1=2

1062a4k � 3708a3k þ 4734a2k � 2564ak þ 481

576ðak � 1Þ3ð3ak � 1Þ ; for 1=2 � ak � 2=3

169ak � 73

64ð3ak � 1Þ ; for 2=3 � ak � 1: (8.37)

Computed values of JCENPR
PR 3;1jIAC�

X� akð Þ� �
are obtained for each parameter

X� 2 b�; t�; c�; u�f g from (8.34) through (8.37) respectively. The results are listed

in Table 8.7 for each value of ak ¼ 0:35 0:05ð Þ1:00, along with ak ¼ 0:33.
A graphical representation of the JCENPR

PR 3;1jIAC�
X� akð Þ� �

values that are listed

in Table 8.7 is given in Fig. 8.2, and the conclusions that can be deduced from these

values are quite different, depending on the strong measure of group mutual

coherence that is being considered.

Parameter b� has a relatively weak impact on the probability that all WSR’s

select the same winner. Values of JCENPR
PR 3;1jIAC�

b� akð Þ� �
generally increase in

the expected manner for 1=3 � ak � 0:40, but the probability remains between 0.50

and 0.55 for the range 0:40 � ak � 1:0. This probability does not increase in a

monotonic fashion as ak increases, and it typically remains very close to the overall

IAC limiting probability value of JCENPR
PR 3;1; IAC�ð Þ ¼ 0:5304 from (8.25).

The results with Parameter t* are quite predictable, with the probability that all

WSR’s will select the PMRW increasing monotonically as ak increases. According
to intuition, we find that JCENPR

PR 3;1jIAC�
t� akð Þ� � ! 1 as ak ! 1, to reflect voting

situations with a perfect Strong Positively Unifying Candidate.

The results that are observed for Parameter c� are much more surprising, where

we find that JCENPR
PR 3;1jIAC�

c� akð Þ� �
decreases monotonically as ak increases.

Table 8.7 Computed values

of JCENPR
PR 3;1jIAC�

x� akð Þ� �
for X� 2 b�; t�; c�; u�f g

ak X*

b* t* c* u*

0.33 0.2951 0.2988 0.9089 0.4167

0.35 0.3560 0.3356 0.8809 0.4167

0.40 0.4793 0.3899 0.7896 0.4130

0.45 0.5447 0.4162 0.6836 0.3910

0.50 0.5324 0.4676 0.5778 0.4063

0.55 0.5456 0.5259 0.4851 0.4955

0.60 0.5479 0.5918 0.4078 0.5579

0.65 0.5420 0.6636 0.3397 0.6061

0.70 0.5335 0.7321 0.2744 0.6435

0.75 0.5260 0.7917 0.2128 0.6719

0.80 0.5195 0.8437 0.1587 0.6942

0.85 0.5138 0.8897 0.1115 0.7122

0.90 0.5087 0.9306 0.0699 0.7270

0.95 0.5041 0.9671 0.0330 0.7394

1.00 0.5000 1.0000 0.0000 0.7500
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Moreover, JCENPR
PR 3;1jIAC�

c� akð Þ� � ! 0 as ak ! 1. This follows directly from the

fact that a perfect Strong Centrist Candidate cannot be the PMRW, while it must be

the strict winner by NPR with certainty as n ! 1, when the possibility of ties by

NPR vanishes. The values of JCENPR
PR 3;1jIAC�

u� akð Þ� �
behave in the expected

fashion by generally increasing as ak increases, but the increase is not monotonic

as ak increases, with JCENPR
PR 3;1jIAC�

u� akð Þ� � ! 0:75 as ak ! 1.

Two different types of environments have now been identified in which the

probability that all WSR’s will select the PMRW is very high. The first one is

obvious, and it occurs when a large proportion of voters rank the PMRW in first

place, to completely overwhelm the impact of second place rankings. The second

environment is much more unexpected, and it occurs when all of the candidates are

approximately equally distributed as the middle ranked candidate in voters’ pre-

ferences. All candidates will receive approximately the same score from second

place rankings in such a voting situation for any Rule l, which will therefore drive

the determination of the WSR to be based completely on first place rankings.

It can therefore be concluded that there are some scenarios that can produce

voting situations which have a very high probability that all WSR’s will select the

PMRW. However, there are other scenarios that can produce voting situations with

a very low probability of this outcome. In general, one might expect there to be

some reasonable probability that voting situations will be observed for which all

WSR’s will select the PMRW, but this probability is not likely to be large. This

conclusion is also consistent with the empirical results that indicated that there are

many examples in which PR and BR did not both select the PMRW. Therefore,

there is typically very good reason to be concerned about the voting rule that will be

selected for use in any particular election setting.
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8.6 Other Voting Rules

A number of other voting rules have been developed that have received consider-

able attention in the literature. Most of these voting rules have evolved to deal with

the consequences of the possibility that voters’ might strategically misrepresent

their preferences to obtain more desirable outcomes in an election. Three of these

election procedures are considered here, since the simultaneous impact of their use

on Condorcet Efficiency has been evaluated.

8.6.1 Approval Voting

The notion of Approval Voting (AV) is very simple, in that it allows every voter to

cast a ballot for each available candidate that he or she considers to be acceptable.

Thus, there is no fixed number of candidates that each voter must pick, as was the

case with CSR’s. Weber (1978b) presented an early analysis to promote the use of

AV, based upon the Effectiveness measure from Chap. 7. The principle promoters

of AV have been Steven Brams and Peter Fishburn, and a summary of the benefits

that could be expected to result from utilizing AV rather than PR is given in Brams

and Fishburn (1983b):

l It gives voters more flexibility in their voting options, allowing them to show

support for a candidate that they favor, without “wasting a vote”.
l It would likely lead to increased voter turnout for two reasons. First, as above,

voters would be able to vote to support candidates who they know have only a

small possibility of winning. Second, voters who cannot decide upon one single

most preferred candidate would not be forced to make a decision as to which

candidate they will vote for.
l It would help to elect the strongest candidate. That is the candidate with the most

overall support, so that it would induce candidates to establish platforms that are

acceptable to a majority of voters.
l It gives minority candidates their proper due, since voters can vote to support

such candidates without having to switch their single vote to support a less

preferred candidate who has a chance of winning. That is, the voter can vote for

both of these candidates with AV.
l It is insensitive to the number of candidates running. With PR and many

candidates, a winner can be selected with a very small percentage of the total

votes. This is not the case with AV.
l It adds legitimacy to the election outcome by preventing situations in which

candidates can enter a race to ‘splinter’ the electorate to win by PR with a small

percentage of the total vote.
l It is eminently practicable, in that it would be very easy to enact and implement

as a voting system.
l It has a strong propensity to elect the PMRW.
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Potential problems with utilizing AV are listed as including:

l It loses some gradations of voter preferences on candidates that are observed

with ranking methods. It is however asserted that voting methods that do use

rankings will likely have these gradations damped out by the preference aggre-

gation process to produce the same winner as AV.
l It could encourage the proliferation of candidates with “fuzzy” positions on

issues, to appeal to a broader base of candidates.
l It could undermine the “two-party system”, but there is no reason why both

major parties would not continue to exist, as long as they maintained positions to

get a significant amount of support.
l It could create significant inequities among voters, depending on the number of

candidates that they choose to vote for. However, AV is more equitable to

voters, in allowing them to more adequately express their true preferences.

A number of very positive features have been formally proved to be valid for AV

when it can be assumed that voters have dichotomous preferences on candidates. It

was mentioned previously that Inada (1964) showed that a PMRW must exist with

this restriction of preferences for odd n. Brams and Fishburn (1978) establish

specific restrictions on the allowable forms of preferences that each voter might

have on combinations of candidates, and they also develop a specific definition of

admissible voting responses from voters. With these restrictions and specifications,

AV is shown to always select the PMRW when all voters have dichotomous

preferences. With the same restrictions and specifications, it is also shown that all

CSR’s can fail to elect the PMRW when all voters have dichotomous preferences

on candidates. As a result, AV is superior to these CSR’s on the basis of Condorcet

Efficiency, given the assumptions that are inherent to voters using admissible

strategies when they report their votes with AV. Fishburn and Brams (1981a)

then extend this analysis to reach the same general conclusion about the superiority

of AV when it is compared to runoff election procedures. In addition, AV is also

shown to be strategy proof under the conditions that are specified.

It must be stressed that all of these results are completely dependent upon the

assumption that all voters have dichotomous preferences. Niemi (1984) produces

examples to show that many other outcomes are possible with AV when the

assumptions are changed to allow voters to have preferences on candidates that

are not dichotomous. Examples are provided to show that:

l AV does not always select the PMRW.
l AV does not necessarily select a candidate with a majority of first place votes.
l AV can elect the PMRL.
l AV can rank the PMRW last, so that it would be eliminated in any runoff

procedure.

Lines (1986) considers voting situations in which voters have trichotomous

preferences, with candidates being categorized as preferred, acceptable, or unac-

ceptable. It is argued that voters might misrepresent their preferences to the degree

that votes would be given to candidates that are only acceptable to a voter, if that
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voter believed that none of their preferred candidates had any chance of winning.

Such a voter would also cast votes for their preferred candidates in this situation.

However, Brams and Fishburn (1983b) note that AV is the only strategy proof

system when voter preferences on candidates are dichotomous, and that no voting

rule is strategy proof when preferences are trichotomous or multichotomous.

Since the analysis of Brams and Fishburn (1983b) is so heavily dependent on the

assumption that voters have dichotomous preferences, it is clearly of interest to

consider empirical results regarding the efficacy of this assumption. Radcliff

(1993) does an empirical study to determine the propensity of voters to have

dichotomous preferences. The study obtains weak ordered preference rankings on

US Presidential candidates for respondents to surveys in American National Elec-

tion Studies from 1972 to 1984. The respondents did not make actual pairwise

comparisons between candidates, but respondents’ thermometer ratings on candi-

dates were used to deduce respondents’ paired comparisons on candidates. It was

assumed that any difference in reported thermometer scores resulted in a distinct

preference in pairwise comparison between candidates. Results suggest that only

approximately 30% of respondents had dichotomous preferences in three-candidate

elections, with that percentage decreasing dramatically as the number of candidates

increases to four or five.

Fishburn and Brams (1981b) analyze the number of candidates that a voter

should vote for with AV from the perspective of maximizing the expected utility

that the voter receives, when utility values are associated with the prospect that

various candidates are selected as the winner. If the objective is to maximize this

expected utility, the approximately optimal procedure for any voter is to cast a vote

for all candidates that have associated individual utility values that exceed that

given voter’s average utility for all candidates.

Wiseman (2000) continues this analysis and assumes that voters use such an

approximately optimal voting procedure, both on elections on the set of candidates

and for elections on all subsets of candidates. With the assumption of some

restrictions on the utility values that voters will have on candidates, a scenario is

established such that Theorem 7.5 must apply, where the use of PR on all subsets of

candidates is found to allow for the existence of all possible paradoxical voting

outcomes. Since voters could all use PR on all subsets of candidates, it then follows

that AV is subject to allowing all possible paradoxical voting outcomes, even if this

approximately optimal voting procedure is being used by voters.

Arrington and Brenner (1984) perform an evaluation of AV and argue that many

of the qualities that are attributed to it will not be valid in practice. Much of their

argument is based on the belief that the use of AV will lead to more candidates

entering into elections, following the previously mentioned arguments of Wright

and Riker (1989) in the discussion of the effects of using elimination rules in Chap. 7.

As a result, it is suggested that all of the proofs that AV is superior when it is

assumed that each voter’s preferences on candidates are dichotomous will tend to

become irrelevant. The argument that candidates with low levels of support with PR

will receive more visible support with AV is discounted by assuming that all

candidates will show increased levels of support with AV. The argument that
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there will be an increased voter turnout with AV, since voters who support

candidates with little chance of winning under PR would go to vote with AV, is

also discounted. Their rebuttal is based on the fact that there would still be little

chance that the preferred candidate of such voters would be elected with AV. Brams

and Fishburn (1984) respond to these criticisms of AV.

There has been a great deal of debate regarding the desirability of using AV, with

strong opinions being held on both sides, with Donald Saari being a staunch critic of

AV. See for example Saari and Van Newenhizen (1988). It is therefore of interest

to consider what impact the use of AV would have had in actual elections. Most of

this interest has focused on how successful AV would have been at showing the true

levels of support that is present for candidates that do not win with PR, and on the

propensity of AV to select the PMRW.

8.6.1.1 Approval Voting: Empirical Studies

Kiewiet (1979) uses thermometer ratings from surveys of prospective voters in the

1968 US Presidential election between Humphrey, Nixon and Wallace. The final

popular vote results in this very close election were Humphrey (42.7%), Nixon

(43.4%) and Wallace (13.5%). Results of the study suggest that Nixon was the

PMRW, and he was the ultimate winner of the election. Using a few different

models to determine the number of candidates that each voter would have voted for

from the thermometer scores if AV had been used, it is concluded that Nixon would

have been a much more clear-cut winner with AV and that Wallace would have

received significantly more votes to indicate his true level of support among voters

with AV, despite the fact that Wallace still would not have come close to winning.

Brams and Merrill (1994) use thermometer score data and consider three differ-

ent models of how voters might have selected the number of candidates that they

would have chosen to vote for in an AV format in the three-candidate US Presiden-

tial election in 1992 with Clinton, Bush and Perot. A number of studies have shown

that Clinton was the PMRW and Perot was the PMRL. The conclusion is that Perot

would have gained a substantial increase in the margin of votes with all three

models, but that the overall ranking of Clinton beats Bush beats Perot would have

remained the same in all three scenarios.

Tabarrok (2001) extends the analysis of this same election with a geometric

approach to analyze the survey results of registered voters to obtain preference

rankings. It is shown that all WSR’s would have selected Clinton as the overall

winner and Perot as the overall loser. Despite this, it is shown that scenarios existed

such that Perot could have been the winner by AV and that Clinton could have been

the loser by AV. It is stated that “such disturbing outcomes occur because AV

misrepresents and ignores key pieces of information”.

This all leads to a common criticism of AV on the basis that it might tend to

select candidates with a lot of moderate support from a majority of voters, or the

“lowest common denominator”. Condorcet (1789, pg 179) discusses voting systems

in general and states opposition to the use of any such voting rule:
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Moreover, we must also ensure that candidates who obtain a large number of votes are also

preferable to some of their opponents, so that in preferring the certainty of a good choice to

the hope of a better one, we do not expose ourselves to preferring men whom everyone is

happy to elect, because everyone is indifferent to them. In avoiding bad choices we must

not favour mediocre ones.

Brams and Fishburn (1988) consider this issue in an analysis of the results of

ten different election results from several professional organizations, when both the

preference rankings on candidates and AV results were reported by voters. Some of

these elections involved the selection of more than one candidate as winners. Narrow

voters are defined as those who do not vote for more candidates under AV than the

number of candidates that are to be selected as winners, and wide voters are those

who vote for more candidates than the number that are to be elected as winners. The

narrow voters can be viewed as being more selective in their evaluation of candidates.

A winner who would be selected with AV by both the subset of narrow voters and

by the subset of wide voters is defined as being AV-dominant. It was found in the

analysis that the actual winners by AV were also AV-dominant in nine of the ten

elections. As a result, the evidence is quite strong that AV typically does not

select candidates that are simply viewed as being barely acceptable to the most

voters, since the same winners would also have been selected by just the subset of

narrow voters.

Laslier and Van der Straeten (2003) performed a very interesting and extensive

study to evaluate the impact that the use of AV would have had in the first-stage

elimination step of the French Presidential election of 2002, in which 16 candidates

were competing. In this particular election, the top two candidates with PR, Chirac

and Le Pen, were selected to be sent to the second stage for election by PR. The

authors received permission to setup a secondary voting station at the actual voting

sites during the first-stage elections in two towns. After casting their official ballots

in the election, voters were subsequently asked to vote with AV at the second voting

station. Voters were aware that this second voting station was being run on an

experimental basis, and more than 75% of the voters agreed to vote in the secondary

stage in both cases.

Several important observations were made from this highly significant experi-

ment that definitely reflects the actual voting situation. First, the average number of

candidates that voters actually voted for with AV was 3.15 candidates of the 16

possible candidates. Only a small proportion of voters chose to vote form more than

five candidates. Second, the impact that AV has on an election is shown by the fact

that very different levels of candidate support among the voters is reflected by the

results of AV, compared to the results from PR. The final observation indicates that

there would have been a significant change in the outcome of this first stage election

if AV had been used to determine the two candidates that would have been sent to

the second stage. The results indicate that candidate Le Pen, who represented the

extreme right of the political spectrum, had a hard core of supporters, but that the

number of other voters who approved of Le Pen was relatively small, when

compared to the other candidates. Candidate Jospin, who represented moderates

in the political spectrum, received a smaller percent of the PR vote than Le Pen, but
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received a substantially larger number of votes by AV. As a result, Jospin would

likely have replaced Le Pen in the runoff election in the second stage. This

observation reinforces the belief that the use of AV is likely to produce winners

who tend to represent the center of the political spectrum.

The election for President of France in 2007 was mentioned in Chap. 5 while

discussing a study by Abramson (2007). It was reported there that only four

candidates received more than 5% of the PR vote in the first round of a PER

election: Le Pen (10.4%), Bayrou (18.6%), Royal (25.9%) and Sarkozy (31.3%),

and further analysis suggested that Bayrou was the PMRW. Baujard and Igersheim

(2009) report on an experiment with AV like the one mentioned above that was

conducted during the first phase of voting in some towns during this election. The

PR rankings in the actual election results for these towns were consistent with the

national percentages of PR vote results from all of France. However, the results

from the follow-up election by AV gave a very different ranking in the study, with

Bayrou beats Sarkozy beats Royal beats Le Pen. So, it is therefore indicated that AV

would have selected the PMRW, while PER even failed to pass this candidate along

for consideration in the second stage of the election.

Stensholt (2002) indirectly addresses this issue for three candidates by consider-

ing the tradeoffs between selecting winners with PR and PMR. If PR and PMR both

select the same winner, it is suggested that this candidate should be elected, which

obviously would not be viewed as a controversial choice. However, if these two

winners do not coincide, a very novel approach is suggested in which the PMRW

would be eliminated, with voters then choosing between the remaining two candi-

dates in a runoff election. It is argued that this would preserve the “plurality

ideology” while letting centrist voters choose between the “right” and “left” candi-

dates, rather than always selecting centrist candidates. It is argued that AV presents a

viable compromise between this “plurality ideology” and “Condorcet ideology”.

Aleskerov (2005) considers an additional possible issue that could arise with the

implementation of AV, by noting a period during which Catherine the Great of

Russia incorporated the use of AV into the regulations by which cities elected

representatives to provincial and district ruling bodies. These rules were later

amended to require that the elected representatives must be approved by a majority

of voters. When an adequate number of candidates did not receive the required

number of votes, the candidates without a majority were then put through a second

stage election, during which AV was used again. It is pointed out that this procedure

was strongly criticized in this particular application. This resulted from the fact that

the voters in specific districts were most likely to be reasonably familiar with only

one or two of the candidates, while they were typically required to vote for at least

five or six candidates for the process to work.

8.6.1.2 Approval Voting: Condorcet Efficiency

Fishburn and Little (1988) perform an analysis of election results for positions in a

professional society. The winners of the elections were determined by PR, but
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voters were also asked to submit a second ballot in which they ranked all candidates

and noted which candidates they would vote for if AV were being used. Between

1536 and 1828 voters participated in each of the elections, and most submitted their

complete rankings on the candidates with the AV results, as requested, in each case.

Some analysis was performed to determine that no bias would be introduced into

the process of obtaining the winners by both AV and PMR if the results of the voters

who did not respond with candidate rankings, as they were requested to do, were

ignored.

The first election that was considered was selecting a single winner from three

candidates. PR and AV selected different winners in this election, and there was

effectively a PMRW tie between these two candidates. Of the responding voters in

this election, 46% of voters voted for one candidate and 49% of voters voted for two

candidates. The second election also selected a single winner from three candidates.

In this case PR and AV select the same winner, and this candidate is involved in an

effective tie as the PMRW. Of the responding voters in this election, 55% of voters

voted for one candidate and 32% of voters voted for two candidates. The third

election produced the most interesting results in selecting two candidates from a set

of five possible candidates. PMR produced a transitive ranking on the five candi-

dates, and the AV results produced the identical ranking. The results of PR

produced a significantly different result by interchanging the second and fourth

ranked candidates in the PMR ranking.

Brams and Nagel (1991) analyze the results from an election that used AV

for an academic organization. They observe that voters did take advantage of

the opportunity to cast multiple votes with an average of 1.33 votes being cast

in a three-candidate election and averages of 1.42 and 1.37 in two different

four-candidate elections. A single-dimensional scale was obtained to position

the set of candidates that was strictly consistent with the raw data of the election

results of 84% of the voters. In conjunction with other information in the

election data, a transitive PMR ranking was found that was identical to the

ranking that was obtained by AV. Following the discussion in the previous

section, it was also concluded that the use of AV will result in relatively higher

vote totals for “underdog” candidates, provided that these candidates do not

have positions that are so extreme that they share little common support with

other candidates.

Fishburn and Gehrlein (1977a) perform a Monte-Carlo simulation analysis to

compare the standard one-stage and two-stage CSR’s with the possibility of

modifying these rules by using AV in the first, or only, stage of the election.

The first part of the study uses IC with 3 � m � 5, and the maximum Condorcet

efficiency that is obtained by the AV scenario in the first stage is consistently

marginally less than the result that is obtained with the best CSR. When the

experiment was repeated with MC, the use of AV in the first stage was found to

have marginally greater Condorcet efficiency in more cases than when using a

CSR in the first stage. No consistently significant advantage is therefore found

to be gained from using the AV scenario to replace CSR’s in single-stage or

two-stage elections.
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8.6.1.3 Approval Voting: Condorcet Efficiency Representations

A limiting representation for the Condorcet Efficiency of AV is developed in

Gehrlein and Lepelley (1998). Let CES
AV hð Þ m;1; IC�ð Þ denote the limiting Con-

dorcet Efficiency of AV as n ! 1 under the assumption of IC� where h is a vector

with hi denoting the probability that a voter will choose to vote for i candidates of m
possible candidates. Since a voter will have no impact on an election outcome by

casting a vote for all candidates, it is assumed that hm ¼ 0. It is further assumed that

there is complete independence between any voter’s preference ranking on candi-

dates and the number of candidates that will be voted for.

The representation for CES
AV hð Þ m;1; IC�ð Þ is obtained as a multivariate normal

positive orthant probability on 2 m� 1ð Þ dimensions, following the logic of earlier

discussion. The representation is given by

CES
AV hð Þ m;1; IC�ð Þ ¼ mF2 m�1ð Þ R0ð Þ

PS
PMRW m;1; ICð Þ : (8.38)

Here, the correlation matrix R0 has components r0i; j with

r0i:j ¼
1

3
; for 1 � i 6¼ j � m� 1

¼ 1

2
; for m � i 6¼ j � 2 m� 1ð Þ

¼
ffiffiffiffiffi
2e

p
for 1 � i � m� 1 and j ¼ m� 1þ i

¼
ffiffiffi
e

2

r
for 1 � i � m� 1 and m � j 6¼ m� 1þ i; (8.39)

and

e ¼
Xm�1

k¼1

kðm� kÞ
mðm� 1Þ hk: (8.40)

The result of (8.40) leads to e ¼ 2=3 for all h when m ¼ 3 so that R0 has the
identical form of correlation matrix R in (5.11) for the cases of PR l ¼ 0ð Þ and NPR
l ¼ 1ð Þ. This leads directly to a result from Gehrlein and Fishburn (1979):

Theorem 8.3 CES
PR 3;1; IC�ð Þ ¼ CES

AV hð Þ 3;1; IC�ð Þ ¼ CES
NPR 3;1; IC�ð Þ, for all

possible h.

Additional results from Gehrlein and Lepelley (1998) prove that

Theorem 8.4 CES
PR m;1; IC�ð Þ � CES

AV hð Þ m;1; IC�ð Þ � CES
CSR m=2ð Þ m;1; IC�ð Þ,

for all possible h.

Here, CSR m=2ð Þ is the CSR in which each voter must vote for m/2 candidates

with even m, or vote for mþ 1ð Þ=2 candidates with odd m.

8.6 Other Voting Rules 321



It is also proved that

Theorem 8.5 PPR
SgBP m;1; IC�ð Þ � P

AV hð Þ
SgBP m;1; IC�ð Þ � P

CSR m=2ð Þ
SgBP m;1; IC�ð Þ, for

all possible h.

Theorem 8.5 holds with equality for the case ofm¼ 3. All of these results lead to

the conclusion that AV is dominated on the basis of Condorcet Efficiency by the

best CSR with the assumption of IC, so it will then be strongly dominated by BR

based on Corollary 7.1.

This analysis is extended by Diss et al. (2010) with a modification of IC in which

voters can have weak ordered preferences. The model is different than IWOC in

that when voters report their preferences in an AV format, they can simply report

votes for more than one candidate, or vote for more than one candidate with a stated

preference ranking on the reported candidates. Extended WSR’s are then defined to

account for the different preference types that voters can report. A representation is

obtained for the Condorcet Efficiency of Extended WSR’s in the limit of voters for

three-candidate elections. Results indicate that the introduction of any degree of

dichotomous preferences among voters gives AV an advantage over both PR and

NPR in terms of Condorcet Efficiency. However, the extended version of BR still

dominates AV on this dimension. As noted above, any superiority of AV tends to be

highly dependent upon the existence of dichotomous voter preferences.

Lepelley (1993) develops a representation for the probability that AV exhibits a

Strong Borda Paradox with single-peaked preferences, with

P
AV hð Þ
SgBP 3;1jIAC�

b 0ð Þ� � ¼ 1� 2h2ð Þ3
36 1� h2ð Þ2 ; for 0 � h2 � 1=2

0; for 1=2 � h2 � 1: (8.41)

For the special case with h2 ¼ 0, AV is equivalent to PR and the limiting result

of (3.37) for PR is verified.

8.6.2 Lottery Based Voting Rules

Lottery rules use a random process to determine the ultimate winner of an election.

In some cases, the same probability of selection is assigned to all candidates, and in

other cases the probability that a candidate is selected is related to the number of

votes that they receive in a preliminary election. As mentioned previously, such

procedures might be implemented to reduce the impact of strategic manipulation by

voters. Another justification of lottery rules is brought up in the context of scenarios

in which voters are not completely certain about their preferences on candidates.

Lottery rules are discussed in Flood (1980) where it is suggested that the use of

lottery rules would also preclude the possibility that any group with a small

majority of voters could continuously have complete control over the minority.
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It is suggested that a proportional lottery rule should be used, where the probability

that a candidate would be selected as the winner is equal to the proportion of votes

that they receive in a preliminary election.

8.6.2.1 Lottery Rules: Historical Overview

Lottery rules have actually been used in a number of situations for various reasons.

Tangian (2003, 2008) presents a historical background of the development of

democratic institutions that are based on elections, which includes an extensive

discussion of the use of lottery rules. The discussion starts with a listing of positions

that were filled by lotteries in the government of ancient Athens. The reasons for the

reliance on lotteries in Athens, as opposed to elections, are listed as:

l Evaluating candidates on the basis of merit instead of treating everyone equally

contradicted the very idea of Athenian democracy. Lotteries gave an equal

chance to all.
l Oligarchs and aristocrats had well established criteria of evaluation that were

based on wealth and virtue, while common citizens could quite possibly use

criteria of evaluation that were socially questionable. The use of lotteries was

free of situations that could be based on improper motivation for the evaluation

of candidates.
l The use of elections can have the tendency to keep the same people in power,

which can gradually lead to the development of a political oligarchy. The use of

lotteries breaks this trend, and thereby provides all citizens with equal access to

power.
l Professional politicians with an advantage of wealth and popularity have a better

chance at winning elections. However, such individuals were known to misrep-

resent their true beliefs and opinions in order to get elected. By relying on

lotteries, winners could not be suspected of such misrepresentation.

Tangian (2003) also refers to the work of Rousseau, in which it is suggested that

the use of lotteries is the only fair way of making appointments to ‘burdensome’

positions which do not have to take into account the characteristics of the candi-

dates or the position.

Lines (1986) and Cogggins and Perali (1998) describe a very complex eight-step

procedure for the election of the Duke of Venice from 1268 to 1797. The procedure

was a sequence of elections and lottery procedures. The extreme complexity of the

procedure removed the possibility of manipulation of the election process, and

the lottery components excluded the possibility of bringing corruption into the

election process. Bartholdi and Orlin (1991) make similar arguments that support

the notion that complicated voting procedures will be resistant to strategic

manipulation.

Aleskerov (2005) gives an example in which lottery rules are used as part of the

selection of the Patriarch of the Russian Orthodox Church. The procedure was used
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from 1589 to 1703, in which the electoral body would cast votes for candidates, and

the ultimate winner would be determined by lottery from the three candidates who

received the most votes. This procedure was eliminated in 1703 by Tsar Peter I,

who proclaimed that the Tsar would serve as the patriarch, and this lasted until 1917

when the old procedure was restored, and it is currently in use.

There has definitely been stated opposition to the notion of using lottery rules.

Condorcet (1789, p. 168) makes it clear that he disapproves of voting systems that

contain components that are dependent upon a lottery when he writes:

It would be absurd to try to find a method to prevent the plurality from making a bad choice

even if they had decided to do so; and this cannot be achieved unless part of the decision is

left to fate. This is what has been done in several modern republics, where a mixture of

choice and fate was used in an attempt to avoid the disadvantages of corrupt voters, while

maintaining the advantages of their enlightenment. But it is time for these methods,

invented when men were more shrewd than enlightened, to be replaced by better ones

The notion of leaving decision “to fate” clearly suggests that Condorcet is

specifically referring to lottery rules.

8.6.2.2 Single-Stage Lottery Rules

One application of lottery rules comes into play when voters are uncertain about

their preferences on candidates. The idea is to have an election by lottery that has

probabilities for candidate selection being driven by the probabilities that voters’

might pick them. Properties of lottery rules for the case of two candidates with

uncertain preferences are considered in Fishburn and Gehrlein (1976c, 1977b).

The case of uncertain voters with three or more candidates is presented in an

early study by Intriligator (1973) that extends work of May (1954) that dealt with

voters’ preferences on pairs of candidates. Let qi; j denote the probability that voter i
would pick Candidate Cj, if selected to act as a dictator in the election process.

Here, qi; j � 0 and
Pm

j¼1 qi; j ¼ 1: Then, a set of probabilities is defined for the

selection of the winning candidate in a lottery, where tj denotes the probability that
Candidate Cj will be selected as the winner in the lottery. The set of tj lottery
probabilities is to be determined from the set of individual qi;j choice probabilities.

Three basic axioms of social choice are developed:

l Existence of Social Probabilities: Given any particular set of qi; j probabilities,
there is a unique set of tj probabilities.

l Unanimity Preserving for a Loser: If every voter has qi;j ¼ 0, then tj ¼ 0, so that

if all voters completely reject a candidate, then the lottery will too.
l Strict and Equal Sensitivity to Individual Probabilities: If qi; j increases

(decreases) for any voter i, then tj will increase (decrease). Thus, increased

(decreased) voter support for a candidate must increase (decrease) the probabil-

ity that the candidate wins in the lottery.
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It is then proved that the only lottery rule that will uniquely satisfy all three of

these axioms is the Average Rule, where tj ¼ 1
n

Pn
i¼1

qi;j. Nitzan (1975) considers

additional properties of the Average Rule.

Fishburn (1975) comments on Intriligator (1973), and cautions against the inter-

pretation of the qi; j terms as denoting the strength of preference that the ith voter has
for Candidate Cj. In particular, a voter might very well have some given measure of

strength of preference over the set of candidates, but still vote for the most preferred

candidate with certainty.

The use of lottery systems to meet the concerns expressed above by Flood

(1980) are not related to the possibility that voters’ have uncertainty in preferences

on candidates, but instead use preliminary election outcomes to establish proba-

bilities for a lottery to prevent a “tyranny of the majority”. Heckelman (2007)

discusses properties of proportional lottery rules, as mentioned above, noting that

the principle behind the use of proportional lottery rules is consistent with the

Average Rule when voters are not certain about their preferences. Heckelman

(2003) considers a single-stage lottery procedure for selecting the winner of an

election in which the win probabilities for each candidate are based on the relative

BR scores that each receives.

8.6.2.3 Sequential Lottery Rules

Sequential lottery rules extend the idea of single-stage lottery rules to paired compar-

isons on candidates. With this procedure, a pair of candidates is selected at random

and the winner is determined by lottery. The winner then goes on to the next round to

run against another randomly selected candidate from the set of candidates that has

not been eliminated. The winner is again determined by lottery, with the winner

proceeding to the next round. This goes on until one candidate is left, with all other

candidates having been eliminated. The probability that a candidate wins by lottery in

any pairwise voting round is obtained as the proportion of voters who prefer that

candidate by PMR to the other candidate in the pair. Mueller (1989) formalizes a

definition of such a sequential lottery rule and then considers the Condorcet Effi-

ciency of the election procedure that is defined. Chen and Heckelman (2005) extend

this type of analysis to determine the limiting probability as n ! 1 that the BR

winner and the PMRW are elected by a sequential lottery rule.

Representations have been obtained that can be used to obtain the strict Con-

dorcet Efficiency of the sequential Pairwise Proportional Lottery Rule (PPLR) in

three-candidate elections. Gehrlein and Berg (1992) obtain one such representation

for the limiting case with IC as

CES
PPLR 3;1; IC�ð Þ ¼ 1

4
: (8.42)

This suggests that PPLR has a remarkably small value of Condorcet Efficiency,

and it is of interest to determine if the introduction of a small degree of dependence
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among voters’ preferences with IAC has a significant impact on the result. It is

shown in Gehrlein (1991) that

CES
PPLR 3; n; IAC�ð Þ ¼ 47n4 þ 354n3 þ 787n2 þ 450nþ 42

105n2 nþ 3ð Þ2 : (8.43)

As n ! 1, CES
PPLR 3;1; IAC�ð Þ ¼ 47=105 ¼ 0:4476, so a relatively low Con-

dorcet Efficiency is still obtained, but the increase over IC result from (8.42) is

dramatic. Gehrlein and Berg (1992) suggest that these very small values of strict

Condorcet Efficiency might result from the fact that PPLR could be resulting

in cycles with no winner being determined. Alternative measures of Condorcet

Efficiency are therefore introduced that are denoted by CET
PPLR 3; n; IC�ð Þ and

CET
PPLR 3; n; IAC�ð Þ, where a PPLR winner is selected at random in the event that

a PPLR cycle exists.

Representations for CET
PPLR 3;1; IC�ð Þ and CET

PPLR 3; n; IAC�ð Þ are obtained in

Gehrlein (2007), with

CET
PPLR 3;1; IC�ð Þ ¼ 1

3
(8.44)

CET
PPLR 3; n; IAC�ð Þ ¼ 435n4 þ 3120n3 þ 6442n2 þ 3072nþ 371

840n2 nþ 3ð Þ2 : (8.45)

CET
PPLR 3;1; IAC�ð Þ ¼ 0:5178, so by allowing for random tie-breaking of PPLR

cycles, the relative value of Condorcet Efficiency increases, but it is very obvious

that PPLR’s perform poorly on this basis. Representations are also obtained for

non-proportional lottery rules.
The propensity of PPLR to reproduce the complete PMR ranking on three

candidates with IAC is denoted as CRES
PPLR 3; n; IAC�ð Þ, and it is obtained in

Gehrlein (1991)

CRES
PPLR 3; n; IAC�ð Þ

¼ 3943n5 þ 32577n4 þ 85034n3 þ 73350n2 þ 19695nþ 441

13440n3 nþ 3ð Þ2
(8.46)

In the limit that n ! 1, CRES
PPLR 3;1; IAC�ð Þ ¼ 3943=13440 ¼ 0:2934, so

there is only a small probability that PPLR’s will be completely consistent with

three-candidate elections.

8.6.3 Median Voting Rule

Young (1995) discusses various approaches that can be used to measure differences

in statistical settings. When differences between cardinal measures are considered,
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the use of arithmetic means is generally appropriate. However, when differences or

distances between ordinal rankings are considered, medians are more appropriate.

This suggests that any process that aggregates individual ordinal rankings to find an

overall ranking that has the closest overall ‘proximity’ to the individual rankings

should be based on median measures from the individual rankings. Bassett and

Persky (1999) extend this notion by suggesting the use of a Median Voting Rule
(MVR) as an alternative to BR. The winner is selected as the candidate with the

smallest average ranking in voters’ preferences with BR. It is suggested that the

winner should instead be selected as the candidate with the smallest median ranking

in voters’ preferences. The primary motivation behind suggesting this rule is that

MVR should be less susceptible to strategic misrepresentation of preferences than

BR is.

Some qualities of MVR are evaluated in Gehrlein and Lepelley (2003). The

necessary conditions to allow strategic manipulation of MVR by an individual voter

are determined, to allow the development of a representation for the probability,

PMVR
IM 3; n; IACð Þ, that MVR can be manipulated by an individual voter in a three-

candidate election under IAC, with

PMVR
IM 3; n; IACð Þ ¼ 5

16

9n4 þ 56n3 � 162n2 þ 904n� 1575

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þ
� �

;

for odd n: (8.47)

In the limit that n ! 1, PMVR
IM 3;1; IACð Þ ! 0, but we know from Chap. 7 that

this is also true for PR and BR, so MVR has no advantage in preventing individual

manipulation over either of PR or BR for large electorates. However, computed

values for small n indicate that PMVR
IM 3; n; IACð Þ is indeed significantly smaller than

PBR
IM 3; n; IACð Þ, as suggested by Bassett and Persky (1999). But, PPR

IM 3; n; IACð Þ is
only slightly greater than PMVR

IM 3; n; IACð Þ. Thus, we find that MVR does not show

any consistent superiority over all other voting rules, based on the probability that

an individual voter can manipulate an election outcome.

This analysis is extended to consider the probability PVR
CM 3; n; IACð Þ that VR can

be manipulated by a coalition of voters, and EUPIA is used for MVR to find

PMVR
CM 3; n; IACð Þ ¼ ð9nþ 23Þðn� 1Þ

32ðnþ 2Þðnþ 4Þ ; for odd n: (8.48)

In the limit as n ! 1, (8.48) gives PMVR
CM 3;1; IACð Þ ¼ 9=32 ¼ 0:2813 and

(7.67) gives PPR
CM 3;1; IACð Þ ¼ 0:2917. We also know limiting BR results from

Chap. 7 that PBR
CM 3;1; IACð Þ ¼ 0:5025, so just as in the analysis of individual

manipulation results above, while MVR is generally significantly less susceptible to

manipulation by a coalition than BR, it does not show any consistent superiority

over all other voting rules, most notably PR. It is very important to note that this

analysis is being performed with the assumption of naı̈ve voters, and the results

could be significantly changed if non-naı̈ve voters were to be considered.
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It is clearly of interest to consider the Condorcet Efficiency of MVR, and this

representation is found to be

CES
MVR 3; n; IACð Þ ¼ ðnþ 7Þð3nþ 7Þ

5ðnþ 3Þ2 ; for odd n: (8.49)

In the limit that n ! 1, CES
MVR 3;1; IACð Þ ¼ 3=5 ¼ 0:6000, to clearly show

that MVR performs very poorly on the basis of Condorcet Efficiency in comparison

to previous limiting efficiencies of CES
BR 3;1; IACð Þ ¼ 0:9111 from (5.49) and

CES
PR 3;1; IACð Þ ¼ 0:8815 from (5.45).

Another major issue that arises in the consideration of MVR is related to the

probability, PMVR
Dec 3; n; IACð Þ, that it will produce a Decisive Outcome, which refers

to the existence of a strict winner without any ties. Results from Lepelley and

Gehrlein (1999) lead directly to a representation for PMVR
Dec 3; n; IACð Þ as

PMVR
Dec 3; n; IACð Þ ¼ 3ðnþ 7Þð3nþ 7Þ

16ðnþ 2Þðnþ 4Þ ; for odd n: (8.50)

Gehrlein and Lepelley (2003) use EUPIA to obtain

PPR
Dec 3; n; IACð Þ ¼ 36n4 þ 377n3 þ 1349n2 þ 2343nþ 2295

36ðnþ 1Þðnþ 2Þðnþ 4Þðnþ 5Þ ;

for n ¼ 3 6ð Þ . . . (8.51)

PBR
Dec 3; n; IACð Þ ¼ 24n3 þ 239n2 þ 732nþ 765

24ðnþ 2Þðnþ 4Þðnþ 5Þ ; for n ¼ 3 6ð Þ . . . : (8.52)

In the limit that n ! 1, it follows directly from (8.50) through (8.52) that

PMVR
Dec 3; n; IACð Þ ¼ 9=16 ¼ 0:5626 and PPR

Dec 3; n; IACð Þ ¼ PBR
Dec 3; n; IACð Þ ¼ 1, so

that MVR also performs very poorly in comparison to both PR and BR on the

basis of decisiveness. Based on all characteristics, MVR is not a viable replacement

for PR, and it is inferior to BR on the basis of both Condorcet Efficiency and

decisiveness. The concerns that have been expressed about the calculated manipu-

lation probabilities for BR with naı̈ve voters were also discounted in Chap. 7.

Laslier (2009) also emphasizes some other limitations of MVR in a recent paper.

8.7 Conclusion

Two scenarios are found to exist that produce very high probabilities of observing

voter situations for which all WSR’s will elect the PMRW. The obvious case occurs

when Parameter t� has values to reflect the existence of a Strong Positively Unify-

ing Candidate. The second scenario exists when Parameter c is maximized, and
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Parameter c� is minimized, such that there is an equal distribution of candidates to

the middle ranked positions. However, a number of other scenarios exist that give a

very low probability of such an outcome, so there is good reason to be careful in

determining which WSR should be selected for use. It is typically observed that this

probability decreases as voting situations move farther away from perfect measures

of group mutual coherence, but there are exceptions. The most notable among these

exceptions exist for Parameters c and c�, which behave in the opposite manner than

what is anticipated.

Three additional voting rules are considered, and all are developed to some

degree to minimize the potential impact of strategic manipulation. AV is shown to

have many advantages that are all heavily dependent on the assumption of dichoto-

mous voters’ preferences. However, AV shows weakness when compared to

CSR’s, and particularly to BR, on the basis of Condorcet Efficiency.

PPLR has great potential to avoid manipulation, but it displays extremely poor

performance on the basis of Condorcet Efficiency. MVR is found to exhibit

significantly less susceptibility to manipulation than BR with an analysis that is

based on the assumption of naı̈ve voters, which was discounted in Chap. 7. In

addition, MVR yields very low levels of Condorcet Efficiency and it also proves to

be a very poor voting rule on the basis of decisiveness.
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Chapter 9

Complete PMR Ranking Efficiencies

9.1 Introduction

The Borda Compromise gives a good foundation for determining how an election

should be held when the objective is to determine only a winning candidate and

nothing is known a priori about the basic model that describes how voters’ form

their preferences on candidates. When the objective is to maximize the probability

that the PMRW is elected, BR can be expected to perform well, while minimizing

the risk that very poor performance might be observed, which can happen with the

other common voting rules. Our attention now turns to considering the effective-

ness of voting rules at matching the complete PMR ranking on candidates. Some

attention will also be given to the evaluation of voting rules on their ability to select

a committee, rather than simply select a single winner.

9.2 Candidate Ranking Sensitivity to WSR Selection

A number of studies have concerned themselves with the possibility that different

rankings on candidates might be obtained if different weighting systems are used

for WSR’s. Fishburn (1981a) considered a situation with two distinct WSR’s, W
and V, for m-candidate elections. For W and V to be distinct WSR’s, a voting

situation must exist for which W and V would produce different rankings on the

candidates. For example, this would not be the case for any scenario in which

vi ¼ awi þ b for all 1 � i � mwith positive constants a and b. Given distinctW and

V, it is shown that there is a voting situation for some value of n, such that the

candidate rankings that are obtained by using W and V are completely reversed.

Saari (1984) extended this result to consider k arbitrary rankings on m candi-

dates and k distinct WSR’s. It is shown that a voting situation can be found for

some value of n such that each of the k distinct WSR’s will produce a different

W.V. Gehrlein and D. Lepelley, Voting Paradoxes and Group Coherence,
Studies in Choice and Welfare, DOI 10.1007/978-3-642-03107-6_9,
# Springer-Verlag Berlin Heidelberg 2011
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ranking on the candidates, for all possible k � m� 1 with m � 3. It is also shown

that this result is not true for the particular case in which k ¼ m. That is, it is
possible to specify m distinct rankings on candidates and m distinct WSR’s, such

that no voting situation will produce the specified rankings from the specified

WSR’s for any value of n.
Saari (1992b) continues on a different track by considering the number of

different candidate rankings that can be obtained from a given voting situation by

using all possible WSR’s. Let qm denote the proportion of the m! possible candidate
rankings in an m-candidate election that can be obtained by modifying the WSR’s

that are used with a given voting situation. Then q�m is the maximum possible value

of qm that can be obtained over all possible voting situations. It is shown that

q�m � 0:53 for all m � 3. In addition, q�m increases as m increases and q�m ! 1 as

m ! 1. As a result, almost any candidate ranking might be obtained with large m,
depending on the WSR that is selected.

9.2.1 Empirical Results

Given the conclusion that just about any possible candidate ranking might be

observed in theory by changing the WSR that is being used, it is of significant

interest to have some idea of what might happen in practice, when some level of

group mutual coherence could have an impact on the types of voting situations that

are actually observed. There is limited empirical evidence that is available to

investigate this question, since very few elections require voters to list their rank

ordered preferences for all candidates.

Benoit (1992) performs an empirical analysis of the procedure that the Baseball

Writers Association of America uses to select players to win the Most Valuable

Player (MVP) Awards for Major League Baseball in the US. The procedure for

selecting a winner asks voters to rank their ten most preferred nominees in each of

the American and National League divisions. Candidates in the rankings then

receive weights of (14,9,8,7, . . . ,2,1) according to the reported rankings. The

study investigates the likelihood that slight modifications to this particular WSR

might alter the final selection of the MVP in each division, given the actual voter

rankings that were reported from 1943 through 1989. A number of cases resulted in

nearly unanimous support for a particular candidate as first place choice, so that no

modification of the WSR could change the outcome. However, cases did exist in

which the outcome of voting showed significant sensitivity to the weights that are

used. As a particular example, Mickey Mantle did win the MVP award three times,

and he would also have won the award two additional times with a slightly different

WSR. This limited evidence leads to the conclusion that different rankings defi-

nitely might be observed if different WSR’s are used, but this certainly is not

always the case.
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9.2.2 Probability Representations for the Same WSR Ranking

A representation for the limiting joint probability JRP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ that both

Rule l and Rule l0 obtain the same ranking for three candidates under the IC

assumption, with no requirement that a PMRW exists, is obtained in Gehrlein and

Fishburn (1983) as

JRP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ ¼ 1

6
þ 3

2p
Sin�1 2 f l; l0ð Þð Þ � Sin�1 f l; l0ð Þð Þ� �

þ 3

2p2
Sin�1 2 f l; l0ð Þð Þ� �2� Sin�1 f l; l0ð Þð Þ� �2

h i
;

(9.1)

where

f l; l0ð Þ ¼ 2� l� l0 þ 2ll0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lþ l2Þð1� l0 þ l0

2Þ
q : (9.2)

Given the representation for JRP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ in (9.1) and the definition of

f l; l0ð Þ in (9.2) it follows directly that

JRP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ ¼ JRP

WSR 1�l0ð Þ
WSR 1�lð Þ 3;1; ICð Þ: (9.3)

Computed values of JRP
WSR l0ð Þ
WSR lð Þ 3;1; ICð Þ from (9.1) are listed in Table 9.1 for

each l; l0 ¼ 0:00 0:10ð Þ1:00.
Whenever the difference between l and l0 is less than 0.2, there is a probability

of at least 0.798 of getting the same ranking with the two associated WSR’s. If one

of the rules is BR, there is always at least a probability of 0.589 of having the same

rankings. The lowest coincidence probability is associated with the use of PR and

NPR, where there is a greater than 67% chance that the two rankings will be

different. Saari and Tataru (1999) develop an alternative representation for

JRPNPR
PR 3;1; ICð Þ by geometric means that has a similar value to the one that is

observed in Table 9.1. Differences in candidate rankings can clearly be observed

with the use of different WSR’s with a probability that is not trivial, so the selection

of the WSR that is used becomes an important issue.

9.3 Condorcet Ranking Efficiency

Attention is now directed to the determination of which voting rule we should

choose if the objective is to maximize Condorcet Ranking Efficiency, which is the

conditional probability that candidate rankings are identical for both PMR and a

specified voting rule, given that a strict PMR ranking exists.
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9.3.1 Empirical Results

Regenwetter et al. (2007) uses data from a set of five-candidate elections that were

held by a professional organization, where the number of voters ranged from 17,482

through 20,239. Voters were asked to rank all of the candidates in each case, but

they did not always do so in every case. Complete rankings were deduced in this

situation in two different ways. The first of these procedures used statistical analysis

that was developed in Regenwetter et al. (2006) to reconstruct the complete pre-

ference rankings of voters who did not report preferences on all candidates. The

second procedure used the partial ranking of candidates that was reported on

each ballot and placed all unlisted candidates as being in an indifference class of

candidates that is less preferred than all reported candidates, giving weak ordered

preferences for voters who did not rank all candidates.

The procedure that was used in the study then generated complete rankings on

candidates with PR, BR and PMR along with estimates of the confidence that the

resulting rankings for each method represented the true aggregate preferences of the

population. A transitive PMR relationship was found in all cases with a very high

degree of confidence. Results indicate that there is nearly perfect agreement

between PMR and BR rankings in all cases, and both rankings had a high associated

degree of confidence. The rankings that were obtained by PR did not have the same

associated degree of confidence as PMR and BR. However, the winner by PR was

the same as the winner with PMR and BR in all cases. There were discrepancies

between the PR rankings and the rankings by PMR and BR, but the associated

differences were not found to be dramatic in nature. These results give strong

support to the use of BR to obtain complete PMR rankings.

9.3.2 The Impact of Social Homogeneity

Let CESR
WSR lð Þ m; n; IC

�ð Þ denote the Condorcet Ranking Efficiency for Rule l. This
definition requires that a strict PMR ranking must exist for m candidates under the

assumption of IC. With three candidates and odd n, a strict PMR ranking must exist

if a PMRW exists. Following the logic of previous analysis, the impact of social

homogeneity on Condorcet Ranking Efficiency will be considered by observing

differences between the cases of IC and IAC.

A limiting representation for CESR
WSR lð Þ 3;1; IC�ð Þ as n ! 1 with three candi-

dates is developed in Gehrlein (2004c) as a direct extension of arguments that led to

the representation for CES
WSR lð Þ 3;1; IC�ð Þ in (5.23). This representation is devel-

oped in terms of a five-variate normal positive orthant probability, F5 R1
� �

, with

CESR
WSR lð Þ 3;1; IC�ð Þ ¼ 6F5 R1ð Þ

PS
PMRW 3;1; ICð Þ : (9.4)
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Correlation matrix R1 is defined by

R1 ¼

1 � 1
3

1
3

ffiffiffi
2
3z

q
�

ffiffiffi
1
6z

q

1 1
3

�
ffiffiffi
1
6z

q ffiffiffi
2
3z

q

1
ffiffiffi
1
6z

q ffiffiffi
1
6z

q
1 � 1

2

1

2
66666664

3
77777775
; (9.5)

where z ¼ 1� l 1� lð Þ.
It follows from the definition of correlation matrix R1 in (9.5) and the definition

of z that CESR
WSR lð Þ 3;1; IC�ð Þ ¼ CESR

WSR 1�lð Þ 3;1; IC�ð Þ. However, a much more

general result follows directly from Corollary 3.2.

Corollary 9.1 CESR
WSR lð Þ 3; n; IC

�ð Þ ¼ CESR
WSR 1�lð Þ 3; n; IC

�ð Þ
CESR

WSR lð Þ 3; n; IAC
�ð Þ ¼ CESR

WSR 1�lð Þ 3; n; IAC
�ð Þ

CESR
WSR lð Þ 3; L;MC�ð Þ ¼ CESR

WSR 1�lð Þ 3; L;MC�ð Þ:

Symmetry in values of Condorcet Ranking Efficiency therefore exists around
l ¼ 1=2 for each of IC, IAC and MC.

The form of R1 in (9.5) does not have all terms increasing or decreasing as z
changes. A direct proof that F5 R1

� �
, and therefore CESR

WSR lð Þ 3;1; IC�ð Þ, changes
consistently as z changes on the interval 0 � z � 1=2 is therefore not available.

Some evidence of the general behavior of CESR
WSR lð Þ 3;1; IC�ð Þ is observed by using

a procedure form Gehrlein (1979) to obtain numerical values of F5 R1
� �

. The

resulting computed values of CESR
WSR lð Þ 3;1; IC�ð Þ are obtained and listed in

Table 9.2 for each value of l ¼ 0:00 0:05ð Þ0:50.
The computed values in Table 9.2 show that CESR

WSR lð Þ 3;1; IC�ð Þ consistently
increases over the interval 0 � l � 1=2 to be maximized by BR and minimized by

Table 9.2 Computed values

of CESR
WSR lð Þ 3;1;X�ð Þ for

X� 2 IC�; IAC�f g

l IC� IAC�

0.00 0.5758 0.5611

0.05 0.5999 0.5922

0.10 0.6256 0.6241

0.15 0.6526 0.6564

0.20 0.6802 0.6884

0.25 0.7080 0.7195

0.30 0.7351 0.7490

0.35 0.7603 0.7759

0.40 0.7811 0.7987

0.45 0.7957 0.8154

0.50 0.8008 0.8222
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PR and NPR, which is consistent with observation of CES
WSR lð Þ 3;1; IC�ð Þ when

only a single winner was being sought.

Some very interesting differences for Condorcet Ranking Efficiency are

observed when this analysis is extended to IAC. EUPIA is used to obtain repre-

sentations for CESR
WSR lð Þ 3; n; IAC

�ð Þ with some specific Rule l, with

CESR
PR 3; n; IAC�ð Þ ¼ 303n4 þ 2896n3 þ 9302n2 þ 13224nþ 4995

540ðnþ 1Þðnþ 3Þ2ðnþ 5Þ ;

for n ¼ 9 12ð Þ . . . : (9.6)

CESR
BR 3; n; IAC�ð Þ ¼ 111n4 þ 1212n3 þ 4694n2 þ 8868nþ 10395

135ðnþ 1Þðnþ 3Þ2ðnþ 5Þ ;

for n ¼ 9 6ð Þ . . . : (9.7)

Cervone et al. (2005) use the same type of analysis that led to the representation

for P
WSR lð Þ
SgBP 3;1; IAC�ð Þ in (3.66), to obtain the limiting representation for Con-

dorcet Ranking Efficiency as n ! 1 with IAC:

CESR
WSR lð Þ 3;1;IAC�ð Þ

¼909�2649lþ827l2þ2086l3þ3512l4�10651l5þ7891l6�1948l7þ24l8

405ð1�lÞ3ð1þlÞð2�lÞð2�3lÞ ;

for 0�l�1=2: ð9:8Þ

The representation in (9.8) verifies the limiting value of the representations in

(9.6) with l ¼ 0 and (9.7) with l ¼ 1=2. Computed values are obtained for

CESR
WSR lð Þ 3;1; IAC�ð Þ from (9.8) with each l ¼ 0:00 0:05ð Þ0:50 and the results are

listed in Table 9.2. The computed values in Table 9.2 do not change significantly

between IC and IAC, so the degree of dependence among voters’ preferences that

is introduced with IAC has very little impact on Condorcet Ranking Efficiency.

Contrary to what was observed previously in the analysis of CES
WSR lð Þ 3;1; IAC�ð Þ,

a consistent increase in CESR
WSR lð Þ 3;1; IAC�ð Þ is observed over the interval

0 � l � 1=2, so that it is maximized by BR and minimized by PR and NPR. This

suggests that the superiority of BR is likely to be much more robust on the basis of

Condorcet Ranking Efficiency than it was for Condorcet Efficiency of selecting a

single winner.

9.3.3 The Presence of a PMR Cycle

The Condorcet Efficiency of WSR’s when a PMR cycle is present with three

candidates was considered in Chap. 7 with the development of a representation

for CESC
WSR lð Þ 3;1; ICcð Þ in (7.59). This was done by developing a model in which
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the weakest link of the PMR cycle was broken to create a PMRW. The same logic is

used here to consider the Condorcet Ranking Efficiency of WSR’s, since the

reversal of the PMR relationship on the pair of candidates with the weakest link

actually creates an induced PMR ranking.

A representation for the Condorcet Ranking Efficiency, CESRC
WSR lð Þ 3;1; ICcð Þ,

when a PMR cycle is present in the limit as n ! 1 with the assumption of IC is

obtained in Gehrlein (2004c) as

CESRC
WSR lð Þ 3;1; ICcð Þ ¼ 6F5 R2ð Þ

PS
PMRC 3;1; ICð Þ : (9.9)

A representation for PS
PMRC 3;1; ICð Þ is given in (7.57), and correlation matrix

R2 is defined by

R2 ¼

1 1
2

�
ffiffi
2
3

q ffiffiffi
3
8z

q
0

1 �
ffiffi
2
3

q
0

ffiffiffi
3
8z

q

1 �
ffiffiffi
1
9z

q
�

ffiffiffi
1
9z

q
1 � 1

2

1

2
66666664

3
77777775
; (9.10)

where z ¼ 1� l 1� lð Þ.
Earlier discussion leads toCESRC

WSR lð Þ 3;1; ICcð Þ ¼ CESRC
WSR 1�lð Þ 3;1; ICcð Þ and the

fact that no general statement can be made about how CESRC
WSR lð Þ 3;1; ICcð Þ changes

over the interval 0 � l � 1=2. However, this behavior can be observed by looking

at computed values from (9.9).

Computed values of F5 R2ð Þ are obtained by numerical methods with a proce-

dure in Gehrlein (1979) to produce values of CESRC
WSR lð Þ 3;1; ICcð Þ from (9.9). The

resulting values are listed in Table 9.3 for each l ¼ 0:00 0:05ð Þ0:50.
The results of Table 9.3 clearly show that CESRC

WSR lð Þ 3;1; ICcð Þ increases over the
interval l ¼ 0:00 0:05ð Þ0:50, so that it is maximized by BR and minimized by PR

and NPR. These values of Condorcet Ranking Efficiency show that while BR

exhibits the best performance, there is still a small probability that it will produce

the same PMR ranking that is induced by breaking the weakest link in a PMR cycle.

Some results are obtained for CESRC
WSR lð Þ 3; n; IAC

cð Þ from EUPIA with the assump-

tion of IAC for special cases of Rule l:

CESRC
PR 3; n; IACcð Þ ¼ 34n4 þ 109n3 � 1251n2 þ 1319nþ 20525

36ð3n3 þ 3n2 � 107nþ 53Þðnþ 5Þ ;

for n ¼ 13 12ð Þ . . . : (9.11)

CESRC
BR 3; n; IACcð Þ ¼ 3n3 þ 3n2 þ 53n� 107

3ð3n3 þ 3n2 � 107nþ 53Þ ; for n ¼ 13 6ð Þ . . . : (9.12)
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Gehrlein (2004) contains a typographical error for the representation in (9.11).

A proof that follows the logic of Corollary 3.1 is also presented to show that

CESRC
WSR lð Þ 3; n; IAC

cð Þ ¼ CESRC
WSR 1�lð Þ 3; n; IAC

cð Þ.
A procedure from Tovey (1997) is used to obtain Mont-Carlo simulation esti-

mates of limiting values of CESRC
WSR lð Þ 3;1; IACcð Þ, and the results are listed in Table

9.3 for each l ¼ 0:00 0:05ð Þ0:50. The entries in Table 9.3 are very close to the

limiting values with PR from (9.11) and BR from (9.12). It is also clear that

CESRC
WSR lð Þ 3;1; IACcð Þ increases over the interval l ¼ 0:00 0:05ð Þ0:50, so it is max-

imized by BR and minimized by PR and NPR. The additional degree of dependence

in voters preferences that enters with IAC shows only marginal improvements in

Condorcet Ranking Efficiency when results are compared to IC. So, while BR

exhibits the best performance with IAC, there is still only a small probability that it

will produce the same PMR ranking that is induced by breaking the weakest link in

a PMR cycle.

9.3.4 The Impact of Group Mutual Coherence

There is evidence so far that BR will perform very well on the basis of Condorcet

Ranking Efficiency, and that it does not show significant changes with the intro-

duction of some degree of social homogeneity in the form of the degree of

dependence among voters’ preferences. It is clearly of interest to determine if this

same pattern of behavior continues for BR when our analysis is extended to

consider measures of group mutual coherence in voting situations.

9.3.4.1 Weak Measures of Group Mutual Coherence

We begin the analysis of the impact of weak measures of group mutual coherence

on Condorcet Ranking Efficiency by considering single-stage voting rules.

Table 9.3 Computed values

of CESRC
WSR lð Þ 3;1;Xcð Þ for

Xc 2 ICc; IACcf g

l ICc IACc

0.00 0.2659 0.3151

0.05 0.2732 0.3189

0.10 0.2814 0.3211

0.15 0.2905 0.3221

0.20 0.3005 0.3250

0.25 0.3114 0.3248

0.30 0.3228 0.3262

0.35 0.3383 0.3289

0.40 0.3498 0.3296

0.45 0.3567 0.3330

0.50 0.3594 0.3338

9.3 Condorcet Ranking Efficiency 339



Single Stage Voting Rules

The EUPIA2 procedure is used to obtain representations for CESR
VR 3; n j IAC�

b kð Þ� �
for both PR and NPR, and the results are summarized as follows:

CESR
PR 3; n j IAC�

b kð Þ� � ¼
k þ 1ð Þf9ð322k3 þ 766k2 þ 433k þ 147Þ � 9ð92k2 þ 304k þ 61Þn
� 9ð27k � 37Þn2 þ 83n3g � 54d2kð2k þ 8þ nÞ � 4d12nþ1fðk þ 1Þð55þ 24nÞ
� 27d2kð2� 2k þ nÞg � 32d12nþ11ðk þ 1Þð19þ 3nÞ þ 108d12nþ9f3ðk þ 1Þ
þ d2kð2� 2k þ nÞg � 32d12nþ7ðk þ 1Þð17þ 3nÞ � 4d12nþ5fðk þ 1Þð71þ 24nÞ
� 27d2kð2� 2k þ nÞg

2
6666666664

3
7777777775

144ðk þ 1Þfkð�17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3g ;

for 0 � k � n� 1ð Þ=6

� 27ð2464k4 þ 4160k3 þ 1952k2 þ 928k þ 15Þ
þ 216ð344k3 þ 456k2 þ 136k þ 55Þn� 18ð1680k2 þ 1680k þ 77Þn2

þ 48ð100k þ 81Þn3 � 121n4 � 2592d2k þ 16d12nþ1f12ð144k2 þ 310k þ 91Þ
� ð576k þ 799Þnþ 24n2 � 648d2kðk þ 1Þg þ 128d12nþ11f3ð72k2 þ 124k þ 5Þ
� 2ð36k þ 53Þnþ 3n2g þ 1296d12nþ9f8k þ 12þ n� 8d2kðk þ 1Þg
þ 128d12nþ7f3ð72k2 þ 128k þ 5Þ � 2ð36k þ 55Þnþ 3n2g
þ 16d12nþ5f12ð144k2 þ 302k þ 91Þ � ð576k þ 767Þnþ 24n2 � 648d2kðk þ 1Þg

2
66666666666666664

3
77777777777777775

3456ðk þ 1Þfkð�17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3g ;

for nþ 1ð Þ=6 � k � nþ 1ð Þ=4

ð3k�nÞf27ð121k3þ90k2þ8k�8Þ�9ð273k2þ180kþ37Þn
þ9ð61kþ18Þn2�46n3g�81d2k�324d12nþ9ð2�d2kÞð3k�nÞ
�4d12nþ1½2f3ð36k2þ53kþ2Þ�ð72kþ53Þnþ12n2g�81d2kð3k�nÞ�
�16d12nþ11f3ð18k2�13kþ1Þ�ð36k�13Þnþ6n2g�1612nþ7f3ð18k2�14kþ1Þ
�2ð18k�7Þnþ6n2g�4d12nþ5½2f3ð36k2þ55kþ2Þ�ð72kþ55Þnþ12n2g
�81d2kð3k�nÞ�

2
6666666666664

3
7777777777775

54ðn�3kÞfðnþ1Þðn2þ2nþ9Þ�6ðn2þ1Þkþ18nk2�18k3g ;

for nþ3ð Þ=4� k� n�1ð Þ=3:
(9.13)
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CESR
NPR 3; n j IAC�

b kð Þ� � ¼

3
ðk þ 1Þfð2k � 1Þð6k2 þ 31k þ 13Þ þ 2ð2k2 � 23k � 4Þn

� ð9k � 7Þn2 þ 2n3g þ d2kð2k þ 3Þð2k � 1� nÞ2

2
4

3
5

8ðk þ 1Þfkð�17þ 21k þ 11k2Þ þ ð5� 26k � 4k2Þnþ 3ð2� kÞn2 þ n3g ;

for 0 � k � n� 1ð Þ=4

3ð2k � 1� nÞ2fð3k þ 2� nÞðk � 2� nÞ þ d2kð2k þ 3Þg
4ðn� 3kÞfðnþ 1Þðn2 þ 2nþ 9Þ � 6ðn2 þ 1Þk þ 18nk2 � 18k3g ;

for nþ 1ð Þ=4 � k � n� 1ð Þ=3: (9.14)

The complicated nature of the representations in (9.13) and (9.14) make them of

limited value, except to lead to the limiting representations as n ! 1. These

limiting representations are given as:

CESR
PR 3;1j IAC�

b akð Þ� � ¼ 83� 243ak � 828a2k þ 2898a3k
144ð1� 3ak � 4a2k þ 11a3kÞ

; for 0 � ak � 1=6

�121þ 4800ak � 30240a2k þ 74304a3k � 66528a4k
3456akð1� 3ak � 4a2k þ 11a3kÞ

; for 1=6 � ak � 1=4

46� 549ak þ 2457a2k � 3267a3k
54ð1� 6ak þ 18a2k � 18a3kÞ

; for 1=4 � ak � 1=3: (9.15)

CESR
NPR 3;1j IAC�

b akð Þ� � ¼ 3ð1� 2akÞð2� 5ak � 6a2kÞ
8ð1� 3ak � 4a2k þ 11a3kÞ

; for 0 � ak � 1=4

3ð1� 2akÞ2ð1� akÞ
4ð1� 6ak þ 18a2k � 18a3kÞ

; for 1=4 � ak � 1=3: (9.16)

It was not feasible to obtain a representation for CESR
BR 3; n j IAC�

b kð Þ� �
with

EUPIA2 due to the complexity of the representation and the complicated periodi-

cities of the parameters. A limiting representation for CESR
BR 3;1j IAC�

b akð Þ� �
is

obtained in Lepelley and Gehrlein (2010b) with the parameterized version of

Barvinok’s algorithm
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CESR
BR 3;1j IAC�

b akð Þ� � ¼ 40� 120ak � 152a2k þ 369a3k
48ð1� 3ak � 4a2k þ 11a3kÞ

; for 0 � ak � 1=6

1þ 136ak � 264a2k � 1472a3k þ 2772a4k
192akð1� 3ak � 4a2k þ 11a3kÞ

; for 1=6 � ak � 1=5

41� 664ak þ 5736a2k � 21472a3k þ 27772a4k
192akð1� 3ak � 4a2k þ 11a3kÞ

; for 1=5 � ak � 1=4

�77þ 520ak � 840a2k � 1568a3k þ 4484a4k
96ð3ak � 1Þð1� 6ak þ 18a2k � 18a3kÞ

; for 1=4 � ak � 2=7

525� 6792ak þ 33768a2k � 75264a3k þ 62744a4k
96ð1� 3akÞð1� 6ak þ 18a2k � 18a3kÞ

; for 2=7 � ak � 3=10

5� 43ak þ 153a2k � 177a3k
4ð1� 6ak þ 18a2k � 18a3kÞ

; for 3=10 � ak � 1=3: (9.17)

Computed values of CESR
VR 3;1j IAC�

b akð Þ� �
are obtained respectively from

(9.15)–(9.17) for each VR 2 PR;NPR;BRf g, and the associated values are listed

in Table 9.4 for each ak ¼ 0:00 0:02ð Þ0:32 and a ¼ 1=3.
General trends in CESR

VR 3;1jIAC�
b akð Þ� �

for Parameter b from Table 9.4 are most

easily observed in the graphical representation of these values in Fig. 9.1. The

results of Fig. 9.1 show that CESR
NPR 3;1jIAC�

b akð Þ� �
continuously decreases as

ak increases, to reflect voting situations that are farther removed from having a

perfect Positively Unifying Candidate. The results for PR slowly decrease over the

range 0 � ak � 0:21, and then continue to increase significantly as ak continues to
increase to 1/3. The most striking observation from Fig. 9.1 is that BR remains

relatively stable over the entire range of ak for Parameter b, and that it dominates

both PR and NPR, with the exception that CESR
PR 3;1jIAC�

b 1=3ð Þ� �
is identical to

CESR
BR 3;1jIAC�

b 1=3ð Þ� �
, which follows from (9.15) and (9.17).

The extension of this type of analysis to the consideration of the general behavior

of CESR
VR 3;1jIAC�

t akð Þ� �
for VR 2 PR;NPR;BRf g with Parameter t becomes quite

simple as a result of some interesting observations that follow directly from

Theorem 3.3.

Corollary 9.2 CESR
PR 3; njIAC�

t kð Þ� � ¼ CESR
NPR 3; njIAC�

b kð Þ� �

CESR
NPR 3; njIAC�

t kð Þ� � ¼ CESR
PR 3; njIAC�

b kð Þ� �

CESR
BR 3; njIAC�

t kð Þ� � ¼ CESR
BR 3; njIAC�

b kð Þ� �
:
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The general behavior of CESR
VR 3;1jIAC�

t akð Þ� �
as Parameter t changes is there-

fore identical what we have just observed regarding changes in Parameter b, with an
interchange between the Condorcet Ranking Efficiencies of PR and NPR. It can

therefore easily be concluded that the Condorcet Ranking Efficiency of BR remains

relatively stable over the entire range of ak for Parameter t, and that BR dominates

both PR and NPR.

Condorcet Ranking Efficiency with Parameter b
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Fig. 9.1 Computed values of CESR
VR 3;1j IAC�

b akð Þ� �
for VR 2 PR, NPR, BRf g

Table 9.4 Computed values

of CESR
VR 3;1j IAC�

b akð Þ� �
for

VR 2 PR;NPR;BRf g
ak VR

PR NPR BR

0.00 0.5764 0.7500 0.8333

0.02 0.5759 0.7279 0.8334

0.04 0.5730 0.7065 0.8335

0.06 0.5678 0.6855 0.8337

0.08 0.5606 0.6647 0.8338

0.10 0.5518 0.6438 0.8336

0.12 0.5418 0.6225 0.8331

0.14 0.5315 0.6003 0.8318

0.16 0.5222 0.5767 0.8295

0.18 0.5163 0.5509 0.8252

0.20 0.5178 0.5213 0.8177

0.22 0.5327 0.4858 0.8055

0.24 0.5717 0.4394 0.7905

0.26 0.6491 0.3756 0.7862

0.28 0.7269 0.3111 0.7973

0.30 0.7885 0.2515 0.8166

0.32 0.8257 0.1983 0.8303

1/3 0.8333 0.1667 0.8333
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The extension of this analysis to Parameter c can be simplified by another

observation that follows directly from Theorem 3.3.

Corollary 9.3 CESR
PR 3; njIAC�

c kð Þ� � ¼ CESR
NPR 3; njIAC�

c kð Þ� �
.

It is not possible to obtain a closed form representation for CESR
PR 3; njIAC�

c kð Þ� �
with EUPIA2, due to its complexity. But, a limiting representation is obtained

for both PR and BR from the parameterized version of Barvinok’s algorithm,

with:

CESR
PR 3;1jIAC�

c akð Þ� � ¼ 236� 702ak þ 1716a2k � 6421a3k
36ð16� 54ak � 28a2k þ 139a3kÞ

0; for 0 � ak � 1=8

3þ 140ak þ 450a2k � 4428a3k þ 5867a4k
36akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=8 � ak � 1=6

�1þ 1488ak � 4860a2k þ 10584a3k � 30894a4k
216akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=6 � ak � 1=5

89� 312ak þ 8640a2k � 34416a3k þ 25356a4k
216akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=5 � ak � 1=4

�163þ 2136ak þ 3456a2k � 45936a3k þ 62220a4k
216ð3ak � 1Þð1� 29ak þ 63a2k � 39a3kÞ

; for 1=4 � ak � 3=10

263� 2727ak þ 12933a2k � 17685a3k
54ð�1þ 29ak � 63a2k þ 39a3kÞ

; for 3=10 � ak � 1=3: (9.18)

CESR
BR 3;1jIAC�

c akð Þ� � ¼ 5ð16� 48ak � 96a2k þ 309a3kÞ
6ð16� 54ak � 28a2k þ 139a3kÞ

; for 0 � ak � 1=6

�2þ 448ak � 1632a2k � 672a3k þ 5133a4k
30akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=6 � ak � 1=5

�27þ 948ak � 5382a2k þ 11828a3k � 10492a4k
30akð16� 54ak � 28a2k þ 139a3kÞ

; for 1=5 � ak � 1=4

3þ 468ak � 2502a2k þ 4148a3k � 2812a4k
30ð3ak � 1Þð1� 29ak þ 63a2k � 39a3kÞ

; for 1=4 � ak � 2=7

23� 151ak þ 693a2k � 933a3k
6ð�1þ 29ak � 63a2k þ 39a3kÞ

; for 2=7 � ak � 1=3: (9.19)
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Computed values of CESR
VR 3;1jIAC�

c akð Þ� �
are obtained respectively from

(9.18) and (9.19) for PR and BR for each ak ¼ 0:00 0:02ð Þ0:32 and a ¼ 1=3, and
the resulting values are listed in Table 9.5.

The trends in Table 9.5 are very clear. Values of CESR
PR 3;1jIAC�

c akð Þ� �
, and

therefore CESR
NPR 3;1jIAC�

c akð Þ� �
also, continuously increase over the entire range

of 0 � ak � 1=3 as voting situations become more distant from a situation with a

perfect Polarizing Candidate. The Condorcet Ranking Efficiency of BR is quite

stable over the entire range, and it dominates PR and NPR, except for the case with

CESR
PR 3; n; IAC�

c 1=3ð Þ� � ¼ CESR
NPR 3; n; IAC�

c 1=3ð Þ� � ¼ CESR
BR 3; n; IAC�

c 1=3ð Þ� �
.

These results show the completely consistent result that BR dominates both PR and

NPR in terms of Condorcet Ranking Efficiency for all weakmeasures of groupmutual

coherence over their entire range of possible values. The next step is to determine if

this complete BR dominance extends to the analysis of two-stage voting rules.

Two-Stage Voting Rules

Representations for CESR
VR 3; njIAC�

b kð Þ� �
with PER and NPER do not need to be

determined as a result of the following observations.

Theorem 9.1 CESR
PER 3; njIAC�

b kð Þ� � ¼ CES
NPR 3; njIAC�

t kð Þ� �
for odd n.

Proof Suppose that Candidate A is the PMRW in a voting situation for which

Parameter t has a specified value of k. If A is also the strict winner by NPR, it has

the smallest number of last place rankings in voters’ preferences for any candi-

date. Following the definitions of Theorem 3.3, the equally likely dual voting

situation will have Parameter b with the same specified value of k, while A will be

Table 9.5 Computed values

of CESR
VR 3;1jIAC�

c akð Þ� �
for

VR 2 PR;BRf g
ak VR

PR BR

0.00 0.4097 0.8333

0.02 0.4147 0.8386

0.04 0.4231 0.8419

0.06 0.4349 0.8433

0.08 0.4502 0.8428

0.10 0.4689 0.8405

0.12 0.4909 0.8364

0.14 0.5162 0.8307

0.16 0.5447 0.8236

0.18 0.5768 0.8156

0.20 0.6128 0.8076

0.22 0.6518 0.8009

0.24 0.6921 0.7970

0.26 0.7302 0.7867

0.28 0.7630 0.7996

0.30 0.7891 0.8044

0.32 0.8059 0.8085

1/3 0.8095 0.8095
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the PMRL with the smallest number of first place voter preference rankings for

any candidate. Candidate A must therefore be eliminated in the first round of PER

voting, to place the PMRL as last in the voting outcome ranking. The remaining

candidate that is the PMRW in the dual voting situation must then be selected as

the winner of the second stage of PER with odd n, to be ranked first in the voting

outcome ranking. □

Theorem 9.2 CESR
NPER 3; njIAC�

b kð Þ� � ¼ CES
PR 3; njIAC�

t kð Þ� �
for odd n.

Proof Suppose that Candidate A is the PMRW in a voting situation for which

Parameter t has a specified value of k. If A is also the strict winner by PR, it has the

greatest number of first place rankings in voters’ preferences for any candidate. The

equally likely dual voting situation will have Parameter b with the same specified

value of k, while Awill be the PMRLwith the greatest number of last place rankings

in voters’ preferences. Candidate Amust therefore be eliminated in the first round of

NPER voting to place the PMRL as last in the voting outcome ranking. The

remaining candidate that is the PMRW in the dual voting situation must then be

selected as the winner of the second stage of NPER with odd n, to be ranked first in
the voting outcome ranking. □

Figure 9.2 shows the graphical representation of values that then result for

CESR
PER 3;1jIAC�

b akð Þ� �
that are derived from Table 6.3, CESR

NPER 3;1jIAC�
b akð Þ� �

that are derived from Table 6.2 and CESR
BR 3;1jIAC�

b akð Þ� �
that are taken directly

from Table 9.4. The results in Fig. 9.2 show that BR dominates PER on the basis of

Condorcet Ranking Efficiency over a wide range of Parameter b values with

0 � ak � 0:27, with PER having slightly greater efficiency values over the remain-

der of the range. NPER dominates BR over the wide range of Parameter b values

that spans 0 � ak � 0:24. The difficulty is that the Condorcet Ranking Efficiency is
decreasing rapidly for NPER over the region with 0:24 � ak � 1=3, declining to a

very low value of CESR
NPER 3;1jIAC�

b 1=3ð Þ� � ¼ CES
PR 3;1jIAC�

t 1=3ð Þ� � ¼ 1=3,

from (6.8). The use of NPER looks very good over a wide range of Parameter

Condorcet Ranking Efficiency with Parameter b
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VR 3;1jIAC�

b akð Þ� �
for VR 2 PER, NPER, BRf g
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b values, but it does allow for the possibility of very poor outcomes, while BR

consistently displays relatively good performance on the basis of Condorcet Rank-

ing Efficiency.

When attention is turned to Parameter t, proof techniques like those that were used
in the development of Theorems 9.1 and 9.2 can easily be employed to show that:

Theorem 9.3 CESR
PER 3; njIAC�

t kð Þ� � ¼ CES
NPR 3; njIAC�

b kð Þ� �
for odd n

Theorem 9.4 CESR
NPER 3; njIAC�

t kð Þ� � ¼ CES
PR 3; njIAC�

b kð Þ� �
for odd n.

Figure 9.3 shows a graphical representation of the values that result for

CESR
PER 3;1jIAC�

t akð Þ� �
that are derived from Table 6.3, CESR

NPER 3;1jIAC�
t akð Þ� �

that are derived from Table 6.2 and CESR
BR 3;1jIAC�

b akð Þ� �
that are taken directly

from Table 9.4. The results in Fig. 9.3 show that BR dominates PER on the basis of

Condorcet Ranking Efficiency over the entire range of all possible Parameter t
values, with a consistently increasing margin of dominance for BR over PER as ak
increases. Similarly, NPER has greater Condorcet Ranking Efficiency than BR over

the entire range of Parameter t values. The margin of dominance for NPER over BR

consistently increases as ak increases, but the differences do not become nearly as

large as the differences that are observed in the comparison of BR to PER.

Just as in the case with Parameter t, the proof techniques that are used in the

development of Theorems 9.1 and 9.2 can easily be employed here to show that:

Theorem 9.5 CESR
PER 3; njIAC�

c kð Þ� � ¼ CES
NPR 3; njIAC�

c kð Þ� �
for odd n

Theorem 9.6 CESR
NPER 3; njIAC�

c kð Þ� � ¼ CES
PR 3; njIAC�

c kð Þ� �
for odd n.

Figure 9.4 shows a graphical representation of the values that result for

CESR
PER 3;1jIAC�

c akð Þ� �
that are derived from Table 6.3, CESR

NPER 3;1jIAC�
c akð Þ� �

that are derived from Table 6.2 and CESR
BR 3;1jIAC�

b akð Þ� �
that are taken directly

from Table 9.5.
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The results in Fig. 9.4 show that NPER has greater Condorcet Ranking Efficiency

than BR over the entire range of Parameter c values. The margin of dominance for

NPER over BR consistently increases as ak increases, but the differences do not

become large. This is nearly identical to the differences in behavior for NPER and

BR that were observed for Parameter t. The results in Fig. 9.4 show that BR

dominates PER on the basis of Condorcet Ranking Efficiency over a wide range of

Parameter b values with 0 � ak � 0:25, with PER having greater efficiency values

over the remainder of the range. These results follow a similar pattern to what was

observed in the relative performance of BR and PER for Parameter b.
It can generally be concluded with weak measures of group mutual coherence

that BR dominates PER. In turn, NPER dominates BR in almost all cases, but the

possibility exists in which NPER could behave very poorly with large values of

Parameter b, to reflect a scenario in which voting situations are relatively far

removed from having a perfect Positively Unifying Candidate.

9.3.4.2 Strong Measures of Group Mutual Coherence

The next step of our analysis is to extend this study to consider the impact of strong

measures of group mutual coherence on Condorcet Ranking Efficiency, and this is

started by considering single-stage voting rules.

Single Stage Voting Rules

The analysis of strong measures of group mutual coherence begins with an evalua-

tion of Parameter b�, and limiting representations for CESR
VR 3;1jIAC�

b� akð Þ� �
with

each VR 2 PR, NPR, BRf g are obtained in Lepelley and Gehrlein (2010b), with:
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CESR
PR 3;1jIAC�

b� akð Þ� � ¼ �3591a3k þ 4401a2k � 1737ak þ 208

54ð18a3k � 18a2k þ 6ak � 1Þ ;

for 1=3 � ak � 3=8

61776a4k � 102816a3k þ 60480a2k � 14448ak þ 1141

864ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 5=12

20304a4k � 33696a3k þ 17280a2k � 2448ak � 109

864ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 5=12 � ak � 1=2

432a4k � 1728a3k þ 2592a2k � 1392ak þ 149

3456akðak � 1Þ3 ; for 1=2 � ak � 2=3

32a4k � 96a2k þ 80ak � 15

128akð1� akÞ3
; for 2=3 � ak � 3=4

7ak � 3

4ak
; for 3=4 � ak � 1: (9.20)

CESR
NPR 3;1jIAC�

b� akð Þ� � ¼ 87a3k � 99a2k þ 31ak � 3

8ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=3 � ak � 1=2

5ak þ 3

16ak
; for 1=2 � ak � 1: (9.21)

CESR
BR 3;1jIAC�

b� akð Þ� � ¼ 15a3k þ 9a2k � 11ak þ 1

4ð18a3k � 18a2k þ 6ak � 1Þ ; for 1=3 � ak � 3=8

3961a4k � 6180a3k þ 3582a2k � 906ak þ 84

12ð1� 3akÞð18a3k � 18a2k þ 6ak � 1Þ ; for 3=8 � ak � 2=5

1453a4k � 2640a3k þ 1836a2k � 588ak þ 72

24ð3ak � 1Þð18a3k � 18a2k þ 6ak � 1Þ ; for 2=5 � ak � 1=2

621a4k � 1680a3k þ 1692a2k � 744ak þ 118

48akðak � 1Þ3 ; for 1=2 � ak � 2=3

9ak � 1

8ak
; for 2=3 � ak � 1: (9.22)
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The limiting result that CESR
VR 3;1jIAC�

b� 1ð Þ� � ¼ 1 is proved for all odd n in

Theorem 9.7 for PR and in Theorem 9.8 for BR.

Theorem 9.7 CESR
PR 3; njIAC�

b� nð Þ� � ¼ 1, for odd n.

Proof Some candidate is ranked as least preferred by every voter in such a voting

situation with to make that candidate the PMRL. Whichever remaining candidate is

ranked as most preferred by a majority of voters must therefore be both the strict

PMRW and the strict winner by PR. □

Theorem 9.8 CESR
BR 3; njIAC�

b� nð Þ� � ¼ 1, for odd n.

Proof Some candidate is ranked as least preferred by every voter in such a voting

situation to make it the PMRL with a WSR score of zero, to make it the lowest

ranked candidate by BR. Neither of the two remaining candidates is ever ranked as

least preferred by any voter, and the remaining candidate that is ranked as most

preferred by a majority of voters must therefore be both the PMRW and the

candidate with the greatest total WSR score by BR. □

Computed values CESR
VR 3;1jIAC�

b� akð Þ� �
for VR 2 PR, NPR, BRf g are

obtained from (9.20)–(9.22) for each ak ¼ 0:35 0:05ð Þ1:00 along with ak ¼ 0:33,
and the results are listed in Table 9.6. The results show some unusual patterns that

are best detected from a graphical representation of the data in Fig. 9.5.

The Condorcet Ranking Efficiency of PR decreases significantly over the range

of Parameter b� values in the interval 0:33 � ak � 0:50, and it drops to a value of

approximately 0.40. After that, the efficiency of PR significantly increases over the

range of values with 0:50 � ak � 1:00, with an efficiency value of 1.00 when

ak ¼ 1:00. NPR exhibits the opposite behavior, by increasing over the interval of

Parameter b� values with 0:33 � ak � 0:50 and then decreasing over the interval

0:50 � ak � 1:00. The important observation is that BR dominates both PR and

Table 9.6 Computed values

of CESR
VR 3;1jIAC�

b� akð Þ� �
for

VR 2 PR, NPR, BRf g
ak VR

PR NPR BR

0.33 0.8333 0.1667 0.8333

0.35 0.8220 0.2053 0.8285

0.40 0.7029 0.3323 0.7642

0.45 0.5495 0.4797 0.7023

0.50 0.4074 0.6875 0.7292

0.55 0.4647 0.6534 0.8541

0.60 0.5300 0.6250 0.9106

0.65 0.6034 0.6010 0.9327

0.70 0.6792 0.5804 0.9464

0.75 0.7500 0.5625 0.9583

0.80 0.8125 0.5469 0.9688

0.85 0.8676 0.5331 0.9779

0.90 0.9167 0.5208 0.9861

0.95 0.9605 0.5099 0.9934

1.00 1.0000 0.5000 1.0000
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NPR over the entire range of Parameter b� values. The Condorcet Ranking Effi-

ciency of BR is not as stable as it was with weak measures, but it does not display

the dramatic shifts in behavior like those that are observed with both PR and NPR.

It is rather simple to analyze the impact that changes in Parameter t� have on the
Condorcet Ranking Efficiency of the single-stage voting rules as a result of some

observations that follow directly from Theorem 3.3.

Corollary 9.4 CESR
PR 3; njIAC�

t� kð Þ� � ¼ CESR
NPR 3; njIAC�

b� kð Þ� �

CESR
NPR 3; njIAC�

t� kð Þ� � ¼ CESR
PR 3; njIAC�

b� kð Þ� �
CESR

BR 3; njIAC�
t� kð Þ� � ¼ CESR

BR 3; njIAC�
b� kð Þ� �

:

The conclusions about changes in the Condorcet Ranking Efficiency of voting

rules as Parameter t� changes can therefore be drawn from the related conclusions

that have just been drawn regarding Parameter b�, by interchanging PR and NPR.

So, BR dominates both PR and NPR over the entire range of Parameter t� values.
While the Condorcet Ranking Efficiency of BR is not as stable as it was with weak

measures of group mutual coherence, it does not display the dramatic shifts in

behavior that are observed with both PR and NPR as Parameter t� changes.

When we consider the impact that Parameter c� has on the Condorcet Ranking

Efficiency of voting rules, the scope of the problem is reduced from an observation

that mirrors Corollary 9.3, since it follows directly from Theorem 3.3 that

Corollary 9.5 CESR
PR 3; njIAC�

c� akð Þ� � ¼ CESR
NPR 3; njIAC�

c� akð Þ� �
.

Lepelley and Gehrlein (2010b) also obtain the limiting representations for

CESR
VR 3;1jIAC�

c� akð Þ� �
for VR 2 PR;BRf g, with
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CESR
PR 3;1jIAC�

c� akð Þ� � ¼ �17901a3k þ 22653a2k � 9135ak þ 1055

54ð123a3k � 99a2k þ 25ak � 5Þ ;

for 1=3 � ak � 3=8

21390a4k � 42696a3k þ 27540a2k � 6456ak þ 409

108ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 5=12

20082a4k � 26424a3k þ 15660a2k � 5544ak þ 841

108ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 5=12 � ak � 3=7

70503a4k � 112860a3k þ 71226a2k � 21420ak þ 2542

108ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=7 � ak � 1=2

1545a4k � 4644a3k þ 5670a2k � 3372ak þ 815

108ð17ak � 1Þð1� akÞ3
; for 1=2 � ak � 2=3

565a4k � 1620a3k þ 1566a2k � 540ak þ 27

36ð17ak � 1Þðak � 1Þ3 ; for 2=3 � ak � 3=4

51ð1� akÞ
4ð17ak � 1Þ ; 3=4 � ak � 1: (9.23)

CESR
BR 3;1jIAC�

c� akð Þ� � ¼ �525a3k þ 765a2k � 335ak þ 31

6ð123a3k � 99a2k þ 25ak � 5Þ ; for 1=3 � ak � 3=8

41911a4k � 56004a3k þ 28746a2k � 7404ak þ 831

90ð3ak � 1Þð123a3k � 99a2k þ 25ak � 5Þ ; for 3=8 � ak � 3=7

71a4k � 10684a3k þ 11706a2k � 3884ak þ 391

60ð1� 3akÞð123a3k � 99a2k þ 25ak � 5Þ ; for 3=7 � ak � 1=2

1991a4k � 4604a3k þ 4026a2k � 1724ak þ 351

60ð17ak � 1Þð1� akÞ3
; for 1=2 � ak � 2=3

1249ak � 289

60ð17ak � 1Þ ; 2=3 � ak � 1: (9.24)

Computed values CESR
VR 3;1jIAC�

c� akð Þ� �
for VR 2 PR;BRf g are obtained from

(9.23) and (9.24) for each ak ¼ 0:35 0:05ð Þ1:00, along with ak ¼ 0:33, and the

results are listed in Table 9.7. The trends for changes in Condorcet Ranking

Efficiency with Parameter c� are very clear from the results in Table 9.7. Values

of CESR
PR 3;1jIAC�

c� akð Þ� �
, and therefore CESR

NPR 3;1jIAC�
c� akð Þ� �

, continuously

decrease over the entire range of values with 1=3 � ak � 1, as voting situations

become closer to a voting situation with a perfect Strong Centrist Candidate.
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The extreme observation that CESR
NPR 3;1jIAC�

c� 1ð Þ� � ¼ 0 is formally shown in

Theorem 9.9.

Theorem 9.9 CESR
PR 3;1jIAC�

c� 1ð Þ� � ¼ 0.

Proof When Parameter c� has a value with ak¼1, some candidate is ranked in the

middle of every voter’s preference ranking. Whichever remaining candidate is

ranked first by a majority of voters must therefore be the PMRW, and it must

also be the strict PR winner. The other remaining candidate must be the PMRL

since it must be ranked as least preferred by a majority of voters. Since this middle

ranked candidate is never the most preferred candidate for any voter, it must be

ranked last by PR, unless the PMRL is always ranked as least preferred to create a

PR tie with the middle ranked candidate. In the limiting case as n ! 1 the

probability of such a PR tie vanishes, so the middle ranked candidate will be ranked

in last place by PR while it is not the PMRL. □

TheCondorcet Ranking Efficiency of BR behaves very differently thanwhat has just

been observed with PR and NPR, since it consistently increases over the entire range

of values for Parameter c�, with the extreme result that is shown in Theorem 9.10.

Theorem 9.10 CESR
BR 3; njIAC�

c� nð Þ� � ¼ 1, for odd n.

Proof When Parameter c� has a value with k ¼ n, some candidate is ranked in

the middle of every voter’s preference ranking. Whichever remaining candidate is

ranked first by a majority of voters must be the PMRW, and this candidate will have

an average WSR score from voters that is greater than 1/2 with BR. The other

remaining candidate must be the PMRL, since it must be ranked as least preferred

by a majority of voters, and its average WSR score must be less than 1/2 with BR.

The candidate that is always ranked in the middle of voters’ preferences is neither

the PMRW nor the PMRL, and its average WSR score is equal to 1/2 with BR. The

BR and PMR rankings must therefore be identical. □

Table 9.7 Computed values

of CESR
VR 3;1jIAC�

c� akð Þ� �
for

VR 2 PR;BRf g
ak VR

PR BR

0.33 0.8095 0.8095

0.35 0.8040 0.8080

0.40 0.7494 0.7969

0.45 0.6850 0.7908

0.50 0.6179 0.7900

0.55 0.5392 0.8075

0.60 0.4738 0.8359

0.65 0.4128 0.8671

0.70 0.3458 0.8950

0.75 0.2713 0.9188

0.80 0.2024 0.9394

0.85 0.1422 0.9574

0.90 0.0892 0.9733

0.95 0.0421 0.9874

1.00 0.0000 1.0000
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BR therefore dominates both PR and NPR for Parameter c�, except for the case with
CESR

PR 3; 1; IAC�
c� 1=3ð Þ� �¼CESR

NPR 3;1; IAC�
c� 1=3ð Þ� �¼CESR

BR 3;1; IAC�
c� 1=3ð Þ� �

.

Therefore, BR dominates both PR and NPR in terms of Condorcet Ranking Efficiency

for all strong measures of group mutual coherence.

Two-Stage Voting Rules

Just as we observed previously for the case of Parameter b, representations for

CESR
VR 3; njIAC�

b� kð Þ� �
do not need to be determined with PER and NPER, due to

results that follow directly from Theorems 9.1 and 9.2.

Corollary 9.6 CESR
PER 3; n j IAC�

b� kð Þ� � ¼ CES
NPR 3; njIAC�

t� kð Þ� �
for odd n.

CESR
NPER 3; n j IAC�

b� kð Þ� � ¼ CES
PR 3; n j IAC�

t� kð Þ� �
for odd n:

A graphical representation of values of CESR
VR 3;1jIAC�

b� akð Þ� �
that then follow

respectively from Table 6.8 for PER, Table 6.7 for NPER and Table 9.6 for BR is

shown in Fig. 9.6 for each ak ¼ 0:35 0:05ð Þ1:00.
The fact that CESR

VR 3;1jIAC�
b� 1ð Þ� � ¼ 1 in Fig. 9.6 follows from Theorem 6.6

for PER, from Theorem 6.2 for NPER, and from Theorem 9.8 for BR.

The results in Fig. 9.6 indicate that PER has slightly greater Condorcet

Ranking Efficiency than BR for voting situations that are far removed from

the condition of a perfect Strong Negatively Unifying Candidate, with 1=3 �
ak � 0:40. BR dominates PER over the remainder of the range of possible values

of Parameter b�, with PER showing very poor performance in some cases. In

particular, it stands out thatCESR
PER 3;1jIAC�

b� 0:5ð Þ� �
< 0:5000:NPER dominates BR
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354 9 Complete PMR Ranking Efficiencies



over the range of Parameter b� values with 0:45 � ak � 1:00. However, for voting
situations that are far removed from having a perfect Strong Negatively Unifying

Candidate, NPER exhibits very poor performance on the basis of Condorcet

Ranking Efficiency.

When analysis is extended to the consideration of Parameter t�, we find results

like Theorems 9.3 and 9.4.

Corollary 9.7 CESR
PER 3; n j IAC�

t� kð Þ� � ¼ CES
NPR 3; njIAC�

b� kð Þ� �
for odd n

CESR
NPER 3; n j IAC�

t� kð Þ� � ¼ CES
PR 3; njIAC�

b� kð Þ� �
for odd n:

A graphical representation of values of CESR
VR 3;1jIAC�

b� akð Þ� �
that then follow

respectively from Table 6.8 for PER and Table 6.7 for NPER is shown in Fig. 9.7

for each ak ¼ 0:35 0:05ð Þ1:00.
The results of Fig. 9.7 show that both BR an NPER dominate PER over the entire

range of Parameter t� values. Moreover, the Condorcet Ranking Efficiency of PER

never exceeds a value of 0.70. The fact that CESR
NPER 3;1jIAC�

t� 1ð Þ� � ¼ 1 follows

from Theorem 6.7, and differences between NPER and BR are very small over the

range of Parameter t� values with 0:55 � ak � 1:00. NPER is consistently superior

to BR on the basis of Condorcet Ranking Efficiency over the remainder of the range

of all Parameter t� values, but BR never performs poorly.

When analysis is extended to the consideration of Parameter c�, we find again

that no new representations must be found as a result of Corollary 9.8 that follows

directly from Theorems 9.5 and 9.6.

Corollary 9.8 CESR
PER 3; njIAC�

c� kð Þ� � ¼ CES
NPR 3; njIAC�

c� kð Þ� �
for odd n

CESR
NPER 3; njIAC�

c� kð Þ� � ¼ CES
PR 3; njIAC�

c� kð Þ� �
for odd n:
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A graphical representation of values of CESR
VR 3;1jIAC�

c� akð Þ� �
that follow

respectively from Table 6.8 for PER and Table 6.7 for NPER is shown in Fig. 9.8

for each ak ¼ 0:35 0:05ð Þ1:00.
The results in Fig. 9.8 show that PER has slightly greater values of Condorcet

Ranking Efficiency than BR does for voting situations that are far removed from the

condition of having a perfect Strong Centrist Candidate, with 1=3 � ak � 0:50.
However, CESR

PER 3;1jIAC�
c� akð Þ� �

continuously decreases to display extremely

poor performance, with the extreme observation that CESR
PER 3;1jIAC�

c� 1ð Þ� � ¼ 0,

which follows from Corollary 9.8 and Theorem 6.8. BR performs better than NPER

over the range 0:55 � ak<1:00. The fact that CESR
NPER 3;1jIAC�

c� 1ð Þ� � ¼ 1 follows

from the results of Corollary 9.8 and Theorem 6.7. NPER has a performance that is

superior to BR over the remainder of the range of all possible Parameter c� values,
but BR never performs poorly.

9.3.4.3 Summary of Condorcet Ranking Efficiency Results

The results that are observed for Condorcet Ranking Efficiency are very similar to

the results that were observed previously for Condorcet Efficiency, when the

objective was to select a single winner. The Condorcet Ranking Efficiency of BR

remains somewhat stable across the complete range of all measures of group mutual

coherence. BR generally dominates both PR and NPR for all weak and strong

measures of group mutual coherence, particularly for Parameter c and Parameter c�.
While PER does display superior performance to BR over a small range of some

parameters, it very frequently exhibits extremely poor performance on the basis of

Condorcet Ranking Efficiency and it is not a viable option for consideration. The

efficiency of NPER is very often superior to that of BR, but there are ranges in
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which NPER performs very poorly for both Parameter b and Parameter b�, while
BR does not do so. Since we can not somehow exclude the possibility that voters are

obtaining preference rankings with some model that will fall into the ranges in

which NPER performs very poorly, the Borda Compromise still has a good

foundation for Condorcet Ranking Efficiencies.

9.4 Condorcet Committees

All of the analysis to this point has focused on elections that are trying to select a

single winner from a set of available candidates. When the problem changes to a

scenario in which a group of voters is trying to elect a committee, a number of new

paradoxes that are related to this particular problem can be observed.

9.4.1 Committee Election Paradoxes

Staring (1986) developed the notions of two paradoxes of voting that pertain

directly to selecting committees. In particular, there are n voters and m candidates.

The election procedure selects k candidates to a committee, by asking each voter to

vote for their k most preferred candidates. The candidates are selected for inclusion

in the committee according to their ranking by the total number of votes received,

following the general logic of the use of a CSR to select a single winner.

The Increasing Committee Size Paradox is demonstrated by using an example

voting situation withm¼ 9 and n¼ 12 in Fig. 9.9. To explain this paradox, it is only

necessary to list the four top-ranked candidates from voter’s preference rankings

and the number of voters with each of these partial rankings on candidates.

The paradox is observed when we consider the outcomes from elections with this

profile for the cases of k ¼ 2, 3 and 4. When we consider the case of k ¼ 2,

candidates C1;C2; . . . ;C9 receive a total of 4, 4, 2, 2, 2, 2, 2, 3, 3 votes respectively.

The winners will be C1 and C2. When we consider the case of k ¼ 3, candidates

C1;C2; . . . ;C9 receive a total of 4, 4, 5, 5, 5, 3, 4, 3, 3 votes respectively. The

winners will be C3, C4 and C5. When we consider the case of k ¼ 4, candidates

C1;C2; . . . ;C9 receive a total of 5, 4, 5, 5, 5, 6, 6, 6, 6 votes respectively. The

winners will be C6, C7, C8 and C9. Thus, by increasing k, we find that the candidates

C1 C1

C1

C1

C2 C2

C2

C3

C3 C3

C3 C4 C4

C4C4

C5

C5 C5 C5

C5

C6

C6C6

C6

C7 C7

C7

C7 C7

C7

2 21 1 1 1 1 1 1 1

C8 C8

C8C8 C9

C9 C9C9

C9 C9

Fig. 9.9 An example voting situation exhibiting the Increasing Committee Size Paradox
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that are elected to the committees change for each k, and that there is no overlap

whatsoever of committee membership for committees that are formed by using any

smaller values of k.
An example of the Leaving Member Paradox is shown in Fig. 9.10 with a voting

situation using m ¼ 5 and n ¼ 12.

A committee is elected with k ¼ 2 to start this example. Candidates

C1;C2; . . . ;C5 receive a total of 12, 5, 3, 2, 2 votes respectively. Candidates C1

and C2 will be the winners, and C3 will be the third ranked candidate. Then, suppose

that C1 must immediately drop out of office for some reason. It seems very

reasonable to simply appoint C3 to the committee to replace C1, since C3 was

ranked third in total votes received. This would result in the elected committee

being composed of C2 and C3.

Another option would be to remove C1 as a candidate and then hold the election

over again with the remaining four candidates. The reduced profile, with C1

removed, is given in Fig. 9.11.

By holding the election again with k ¼ 2, candidates C2;C3;C4;C5 receive a

total of 5, 3, 8, 8 votes respectively. Candidates C4 and C5 become the elected

committee members under the new election scenario, while neither was considered

for election to the committee from the results of the original election with C1

included in the profile. This is an example of the leaving member paradox. The

use of such variations of CSR’s to select committees obviously leads to a number of

paradoxical outcomes that could be observed.

Mitchell and Trumbull (1992) consider slightly more general voting rules to

select k-member committees. The particular voting scheme that they examine has

voters cast votes for their k� most preferred candidates. Two particular paradoxes

are considered. The first is the situation in which a candidate is elected under a vote

for k� candidates rule, and then that candidate is not a winner for larger values of k�.
This situation is referred to as having the existence of a “marker” in the vote for k�

candidate election. The second paradox exists when the PMRW is not selected

among the k candidates.

C1 C1

C1 C1 C1C2

C2 C2 C2

C2

C3

C3 C3

C3 C3

C4

C4 C4

C4

C4

C5

C5

C5 C5

C5

4 2 21 3

Fig. 9.10 An example voting

situation exhibiting the

Leaving Member Paradox

C2

C2 C2 C2

C2 C3

C3 C3

C3 C3

C4

C4

C4

C4 C4

C5

C5C5

C5C5

4 2 21 3

Fig. 9.11 A reduced voting

situation exhibiting the

Leaving Member Paradox
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Monte-Carlo simulation was used to consider a situation in which each voter

ranked nine candidates. Then profiles were generated from possible rankings

under IC for n ¼ 100, n ¼ 1,000 and n ¼ 10000. These profiles were then checked

for the number of times that each of the two paradoxes occurred for each

combination of k ¼ 1, 2, 3, 4 and k� ¼ 5, 6, 7, 8, 9. Since a marker could exist

for voting rules up to k�, it follows that there are more possibilities for a marker to

exist as k� increases if k is fixed, so the probability of observing the first of these

voting paradoxes should increase as k� increases. The surprising result is the

magnitude of this probability. The smallest observed probability shows that a

marker exists in 56% of profiles. Other results show that this probability increases

as both k� and n increase.

The probability that the PMRW is selected as a committee member tends to

decrease as both k� and n increase under IC. With k� ¼ 5 and n ¼ 100 the

probability that the PMRW is included among winners is approximately 90%.

This probability drops to about 74% with k� ¼ 9 and n ¼ 10,000. This suggests

that there is a rather large probability of observing either paradox with IC. Several

variations of the simulation were performed to introduce degrees of homogeneity of

preference into voting situations. The existence of homogeneity is shown to signifi-

cantly reduce the likelihood of observing both paradoxes.

It is interesting to consider the probability that the PMRW will be elected as a

committee member with these voting rules, but another approach considers exten-

sions of the PMR principle to obtain definitions of a Condorcet Committee.

9.4.2 Condorcet Committee Definitions

Arguments over the way in which the notions behind PMR should be extended to

the case of electing members of a committee have a long history. One of these

definitions evolves from an early dispute that Dodgson (1884, 1885a, b) was

involved in with the Society for Proportional Representation regarding the issue

of which committee membership best represents the preferences of an electorate.

Dodgson gives an example in which a group is trying to elect a committee of

three members from five candidates. In this example, the candidates are Chamber-

lain (A), Gladstone (B), Goschen (C), Hartington (D), and Northcote (E). The voting
outcome from an election gives the voter preference rankings on candidates that are

shown in Fig. 9.12.

B D B A C E

D B A B B -

C C D D D -

A A C C A -

E E E E E -

3030 2980 2020 1100 790 2079

Fig. 9.12 Example voting

situation from Dodgson

(1885a)
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Dodgson specifies that Candidates A, B, C and D are liberal candidates, and

that E is a conservative candidate. The fact that the 2079 conservative electors

only rank their candidate would suggest that they are indifferent, or equally

unhappy, with the possibility of any of the other candidates. It is then argued

that A, B and D should be elected to the committee “as a matter of justice”, by

comparing pairs of candidates for entry. The logic is that the pair B and D are

obvious selections, since 6010 of the 11999 voters rank B and D first. Next,

Dodgson argues for the inclusion of A as the third member of the committee,

since “over and above these” 6010 voters, we have 3120 voters who place the pair

A and B as their two most preferred candidates. Dodgson then goes on to show that

the system that was proposed by the Society for Proportional Representation

would have elected B, C and D and states that the election of Goschen (C)
“would bring in the wrong man”.

The Society for Proportional Representation responds that the election of Goschen

(C) by their procedure in Dodgson’s example is, in fact, the proper choice over

Chamberlain (A). Their argument against Dodgson is that there are 9920 “liberal

electors” in this example for whom a preference comparison between A and C are

known. Of these 9920 electors, 6800 prefer C to A, with only 3120 preferring A to C.
Thus, Goschen (C) should be the winner, based on a direct PMR comparison between

Candidates A and C. The argument of the Society for Proportional Representation is

therefore based on individual comparisons of candidates who are in the committee,

versus not in the committee. Dodgson responds to the criticism of the Society with an

example to show that it is possible to continue their logic and have PMR cycles in the

entry and removal of candidates from such an elected set.

The first definition of a Condorcet Committee that we consider follows from the

basic idea of the argument that was presented by the Society for Proportional

Representation, and a formal definition is given in Gehrlein (1985b). Let

CW � Cm denote a possible subset of candidates to be elected to a committee.

Then, CW is a Condorcet committee if CiMCj for all Ci 2 CW and all Cj 2 CmnCW .

Previous observations by Dodgson make it clear that a Condorcet committee does

not necessarily exist according to this definition for a specified #CW with a given

n and m. However, since PMR is transitive when voters have single-peaked

preferences or dichotomous preferences, a Condorcet committee will always exist

according to this definition whenever either of these restrictions holds.

Felsenthal and Machover (1992) develop the same definition for a Condorcet

committee as in Gehrlein (1985b), and they suggest that this definition is valid when

the goal is to select the PMRW as a single winner, but that it might not be effective

when the goal is to select a committee that reflects a “microcosm of society”. Hill

(1988) previously made a similar observation. Numerous studies have been con-

ducted to develop methods to choose committees that would tend to more accu-

rately reflect the mix of preferences of the population that the committee will

represent. For example, see Good and Tideman (1976), Chamberlin and Courant

(1983) and Benoit and Kornhauser (1994).

Fishburn (1981b, c) develops a second definition of a Condorcet committee that

is based on the notion of PMR. In these studies, attention is moved away from
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directly considering the relative position of individual candidates in voters’ prefer-

ence rankings. Instead, a determination is made of what the preference rankings of

voters would be on the combinations of candidates in all possible committees with a

specified number of members, given the voters’ preference rankings on individual

candidates. A Condorcet committee is then determined on the basis of elections that

would be performed by having PMR comparisons between possible pairs of

committees with the same number of members in each committee. The Condorcet

committee is then defined as that particular committee of a given size that is

preferred by PMR to all other committees of the same size.

Fishburn (1981b) makes some interesting observations when considering this

definition of a Condorcet committee when individual voters have dichotomous

preferences on candidates. For any given voter, H �ð Þ denotes the subset of

candidates among the more preferred candidates and L �ð Þ denotes the subset of

less preferred candidates in the voter’s dichotomous preference order. Some mech-

anism is required to determine how each voter would then rank committees of a

specified size, k, given their preferences on the candidates. Fishburn defines this

mechanism as Condition P. Let CX and CY denote two possible committees of k
candidates. Then, Condition P is defined on a given voter’s pairwise preference on

committees such that

CX � CY , # CX \ H �ð Þ� �
># CY \ H �ð Þ� �

: (9.25)

That is, a voter will prefer committee CX to CY if CX contains more candidates in

the voter’s more preferred set of candidates than committee CY does.

Unlike the results obtained by Inada (1964) for the election of a single candidate,

Fishburn (1981b) gives an example on four candidates {A, B, C, D} in which voters
with dichotomous preferences have PMR cycles on committees when Condition

P determines individual voter’s preferences on the committees. This PMR cycle

refers to a majority of voters who actually have a preference on a given pair of

committees, since Condition P allows for voter indifference between two commit-

tees. Voters who are indifferent between pairs of committees are assumed to abstain

from voting in that particular PMR comparison. In this example, the individual

voters’ dichotomous preferences on candidates are shown in Fig. 9.13.

We see, for example, that committee {A, B} has a three voters to two majority

over committee {A, C}. This results under Condition P with the three voters of

Voter
Type

Number
of VotersH (  ) L(  )

1 AB CD 3

2 C ABD 2

3 D ABC 2

Fig. 9.13 An example voting situation with dichotomous preferences from Fishburn (1981b)
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Type 1 preferring {A, B} to {A, C} and the two voters of Type 2 preferring {A, C}
to {A, B}. Voters of Type 3 are indifferent between {A, B} and {A, C} and do not

vote for this particular PMR comparison of committees. Using the same logic, we

find that {A, C} has a three to two majority over {C, D}, with voters of Type 2 not
voting. Then, the cycle is complete with {C, D} having a four to three majority

over {A, B}.
Fishburn (1981c) shows that imposing the condition of single-peaked prefer-

ences on voter’s preferences on individual candidates is insufficient to ensure the

existence of a majority committee, for k > 1. The study considers the additional

restrictions that are required on individual voter’s preferences on candidates to

ensure the existence on a Condorcet committee. A Condorcet committee must exist

when voters have single-peaked preferences on candidates; with the additional

restriction that each voter must also have the same most preferred candidate in

his or her preference ranking. Thus, the conditions that require the existence of a

PMRW in single-candidate elections fail to be sufficient to require the existence

of a Condorcet committee of more than one member, given Fishburn’s definition of

a Condorcet committee.

Several studies have been conducted to consider various aspects of these two

definitions of a Condorcet committee. For example, see Kaymak and Sanver

(2003) and Ratliff (2003). A general conclusion seems to be that the definition

of a Condorcet committee from Fishburn (1981b, c) is more appropriate in

situations in which committee members are expected to reflect a “microcosm”

of the society that it is supposed to represent. The definition from Gehrlein

(1985b) is more appropriate if the elected committee represents a list of candi-

dates that are to be passed along for further deliberation that will lead to the

selection of the final winning candidate from that set. Barberà and Coelho (2008)

compare the two definitions of a Condorcet committee and they formulate a

“Random Chooser Game” in which agents act strategically and cooperatively.

Using this game as a basis, it is shown that when any procedure that meets some

basic restrictions is used to elect candidates to a committee, the set of candidates

in that committee can only be a strong Nash equilibrium outcome if the committee

membership is consistent with the definition of a Condorcet committee from

Gehrlein (1985b).

A limited amount of work has been done to develop representations for the

probability that a Condorcet committee exists, with either definition of the term.

Gehrlein (1985b) does present results for the probability, PS
CCðkÞ m; n; ICð Þ, that a

Condorcet committee with k members exists for n voters with m candidates under

the assumption of IC. The results refer to the definition of a Condorcet committee as

defined above in reference to that study.

Since every voting situation has the same probability of being observed as its

dual voting situation, it follows directly from the definition of a Condorcet commit-

tee that

PS
CC kð Þ m; n; ICð Þ ¼ PS

CC m�kð Þ m; n; ICð Þ: (9.26)
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For the special case that k ¼ 1,

PS
CC 1ð Þ m; n; ICð Þ ¼ PS

CC m�1ð Þ m; n; ICð Þ ¼ PS
PMRW m; n; ICð Þ: (9.27)

A representation from Gehrlein and Fishburn (1978b) leads to

PS
CC 2ð Þ 4;1; ICð Þ ¼ 3

8
þ 6

p2

ð1=3

0

Cos�1½ � x=ð1� 2x2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼ 0:7395: (9.28)

To develop more general limiting representations for PS
CCðkÞ m; n; ICð Þ, we define

k m� kð Þ discrete variables of the form Xi
j; ‘ for the ith individual voter’s preferences

that will be used to obtain the joint probability, QS
CC kð Þ m; n; ICð Þ, that CjMC‘ for

each 1 � j � k and k þ 1 � ‘ � m in a random voter profile. This follows the

development of the representation for CES
CSR kð Þ m;1; IC�ð Þ in (5.36), with

Xi
j;‘ ¼þ 1: if Cj � C‘ for the ith voter

� 1: if C‘ � Cj for the ith voter: (9.29)

A representation for QS
CC kð Þ m; n; ICð Þ can be obtained as the joint probability with

k m� kð Þ variables, such that Xi
j; ‘>0 for each 1 � j � k and k þ 1 � ‘ � m. With

the assumption of IC, it is easily shown that E
�
Xi
j;‘

� ¼ 0. Previous arguments that

were based on the Central Limit Theorem have shown that the limiting distribution

QS
CC kð Þ m;1; ICð Þ as n ! 1 is equivalent to the multivariate-normal positive orthant

probability, Fk m�kð Þ R m; kð Þð Þ, that Xj; ‘
ffiffiffi
n

p � E Xj; ‘
ffiffiffi
n

p� �
for each 1 � j � k and

k þ 1 � ‘ � m. The correlation matrix for this multivariate normal distribution,

R m; kð Þ, has correlation terms Cor
�
Xi
a; b;X

i
c; d

�
between the pairs of variables Xi

a; b

and Xi
c; d that are equal to 1/3 if either a ¼ c or b ¼ d. Otherwise, the correlation

between each pair of variables is zero.

There are Cm
k different combinations of candidates that could form a Condorcet

committee of k candidates, and the symmetry of IC with respect to candidates leads to

PS
CC kð Þ m;1; ICð Þ ¼ Cm

k Q
S
CC kð Þ m;1; ICð Þ ¼ Cm

k Fk m�kð Þ R m; kð Þð Þ: (9.30)

Precise analytical representations for PS
CC kð Þ m;1; ICð Þ become quite intractable

for m � 5, so Gehrlein (1985b) obtains Monte-Carlo simulation estimates for

values of Fk m�kð Þ R m; kð Þð Þ, and then obtains the associated estimates of

PS
CC kð Þ m;1; ICð Þ. Table 9.8 lists the estimates for PS

CCðkÞ m;1; ICð Þ for each

1 � k � m� 1 with 3 � m � 7, and the results suggest that PS
CCðkÞ m;1; ICð Þ

decreases as k increases for the range 1 � k � m=2.
It is clear that PS

CCðkÞ m;1; ICð Þ becomes small for m at all large. For six or more

candidates, a Condorcet committee exists with a less than even chance for commit-

tee sizes in the range 2 � k � m� 2:
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9.4.3 Condorcet Committee Efficiency

It is definitely of interest to consider how effective the most common voting rules

are at selecting the Condorcet committee, whenever such a committee exists. Let

CE
CCðkÞ
CSRðqÞ m; n; IC

�ð Þ denote the conditional probability that the k candidates with the
greatest CSR scores with Rule Cm

q are the same candidates that form a Condorcet

committee of k members, given that such a Condorcet committee exists. This

probability is referred to as the Condorcet Committee Efficiency of the CSR.
A limiting representation for CE

CCðkÞ
CSRðqÞ m;1; IC�ð Þ as n ! 1 is developed in

Gehrlein (1985b) as an extension of the development of the representation above for

PS
CCðkÞ m;1; ICð Þ. An additional k m� kð Þ discrete variables of the form Yi

j;‘ for the

ith individual voter’s preferences are used to obtain the joint probability,

Z
CCðkÞ
CSRðqÞ m; n; ICð Þ, that both CjMC‘ and Cj beats C‘ with Rule Cm

q for each 1 � j � k

and k þ 1 � ‘ � m in a random voter profile. Following the definitions in (5.37):

Yi
j;‘ ¼þ 1: if Cj is among the q most preferred candidates and C‘ is not

� 1: if C‘ is among the q most preferred candidates and Cj is not

0 : otherwise: (9.31)

Then, the limiting probability Z
CCðkÞ
CSRðqÞ m;1; ICð Þ is defined as a 2k m� kð Þ

variable normal positive orthant probability, F2k m�kð Þ R0 m;qð Þð Þ, that both

Xj;‘
ffiffiffi
n

p � E Xj;‘
ffiffiffi
n

p� �
and Yj;‘

ffiffiffi
n

p � E Yj;‘
ffiffiffi
n

p� �
for each 1 � j � k and

k þ 1 � ‘ � m. The correlation matrix for this multivariate normal distribution,

R0 m; qð Þ, has correlation terms Cor Xi
a;b; Y

i
c;d

	 

that are defined between the pairs of

variables Xi
a;b and Yi

c;d, with distinct a, b, c and d, such that:

Cor Xi
a;c;X

i
b;c

	 

¼ Cor Xi

a;c;X
i
a;d

	 

¼ 1=3

Cor Xi
a;b;X

i
c;d

	 

¼ Cor Yi

a;b; Y
i
c;d

	 

¼ Cor Xi

a;b; Y
i
c;d

	 

¼ 0

Table 9.8 Monte-Carlo

simulation estimates for

PS
CCðkÞ m;1; ICð Þ from

Gehrlein (1985b)

k m

3 4 5 6 7

1 0.916 0.837 0.716 0.692 0.641

2 0.938 0.736 0.575 0.483 0.410

3 – 0.824 0.598 0.437 0.350

4 – – 0.750 0.479 0.312

5 – – – 0.656 0.450

6 – – – – 0.628
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Cor Yi
a;c; Y

i
b;c

	 

¼ Cor Yi

a;c; Y
i
a;d

	 

¼ 1=2

Cor Xi
a;c; Y

i
b;c

	 

¼ Cor Xi

a;c; Y
i
a;d

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q m� qð Þ
2m m� 1ð Þ

s

Cor Xi
a;c; Y

i
a;c

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q m� qð Þ
m m� 1ð Þ

s
: (9.32)

There are Cm
k different combinations of candidates that could form a Condorcet

committee of k candidates, and the symmetry of IC with respect to candidates

leads to

CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ ¼ Cm

k

Z
CCðkÞ
CSRðqÞ m;1; ICð Þ
PS
CCðkÞ m;1; ICð Þ ¼ Cm

k

F2k m�kð Þ R0 m; qð Þð Þ
PS
CCðkÞ m;1; ICð Þ : (9.33)

The definition of CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ in (9.33) and the form of R0 m; qð Þ in

(9.32) lead directly to two results:

CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ ¼ CE

CC m�kð Þ
CSR qð Þ m;1; IC�ð Þ: (9.34)

CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ ¼ CE

CC kð Þ
CSR m�qð Þ m;1; IC�ð Þ: (9.35)

The previously used result from Slepian (1962) can also be applied here for any

specified value of k to show that

CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ � CE

CC kð Þ
CSR q�1ð Þ m;1; IC�ð Þ; for 2 � q � m=2: (9.36)

So, just as when we considered the case of selecting a single winner, the

maximum Condorcet Committee Efficiency is obtained by the CSR that has voters

cast a vote for half of the number of available candidates.

Monte-Carlo simulation estimates for CE
CC kð Þ
CSR qð Þ m;1; IC�ð Þ are listed respec-

tively for 4 � m � 6 in Tables 9.9–9.11.

Table 9.9 Monte-Carlo

simulation estimates for

CE
CC kð Þ
CSR qð Þ 4;1; IC�ð Þ

from Gehrlein (1985b)

q k

1 2 3

1 0.648 0.555 0.632

2 0.731 0.693 0.751
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9.4.4 Condorcet Committee Efficiency Summary

The results indicate that the probability that a Condorcet committee exists can be

relatively small for m at all large. The estimated Condorcet Committee Efficiencies

indicate that PR performs very poorly, with a less than even chance of selecting a

Condorcet committee of any size withm ¼ 6. It is observed for allm that significant

improvements to Condorcet Committee Efficiency can be obtained by using the

most efficient CSR, rather than using PR.

Table 9.11 Monte-Carlo

simulation estimates for

CE
CC kð Þ
CSR qð Þ 6;1; IC�ð Þ from

Gehrlein (1985b)

q k

1 2 3 4 5

1 0.458 0.313 0.275 0.377 0.489

2 0.646 0.521 0.522 0.498 0.647

3 0.701 0.620 0.562 0.641 0.712

Table 9.10 Monte-Carlo

simulation estimates for

CE
CC kð Þ
CSR qð Þ 5;1; IC�ð Þ from

Gehrlein (1985b)

q k

1 2 3 4

1 0.564 0.436 0.421 0.560

2 0.681 0.617 0.602 0.683
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Brion M (1988) Points entiers dans les polyhèdres convexes. Ann Sci Ec Norm Supérieure 21

(4):653–663

Browne EC, Hamm KE (1996) Legislative politics and the paradox of voting: Electoral reform in

Fourth Republic France. Br J Polit Sci 26:165–198

Browning EK (1972) A note on cyclical majorities. Public Choice 12:111

Buchanan JM (1970) The public finances. Richard D. Irwin Press, Homewood, IL

Bullock CS, Johnson JK (1985) Runoff elections in Georgia. J Polit 47:937–946

Callaos N, Lesso W, Callaos B (1980) Mathematical solution to the voter paradox. In: Lasker GE

(ed) Applied systems and cybernetics II: systems concepts, models and methodology, Perga-

mon Press, Elmsford, NY, pp 841–847

Cervone D, Gehrlein WV, Zwicker W (2005) Which scoring rule maximizes Condorcet efficiency

under IAC? Theory Decis 58:145–185

Chamberlin JR (1986) Discovering manipulated social choices: the coincidence of cycles and

manipulated outcomes. Public Choice 51:295–313

Chamberlin JR, Cohen MD (1978) Toward applicable social choice theory: a comparison of social

choice functions under spatial model assumptions. Am Polit Sci Rev 72:1341–1356

Chamberlin JR, Courant PN (1983) Representative deliberations and representative decisions:

proportional representation and the Borda Rule. Am Polit Sci Rev 77:718–733

368 References



Chamberlin JR, Cohen JL, Coombs CH (1984) Social choice observed: five presidential elections

of the APA. J Polit 46:479–502

Chen FH, Heckelman JC (2005) Winning probabilities in a pairwise lottery system with three

alternatives. Econ Theory 26:607–617

Cheng MC (1969) The orthant probability of four Gaussian variables. Ann Math Stat 40:152–161

Clauss P, Loechner V (1996) Parametric analysis of polyhedral iteration spaces. In: Proceedings of

IEEE International Conference on Application Specific Array Processors, Chicago, IL, p 415

Clauss P, Loechner V, Wilde D (1997) Deriving formulae to count solutions to parametrized linear

systems using Ehrhart polynomials: applications to the analysis of nested-loop programs.

University of Strasbourg, ICPS Technical Report RR 97–01

Coggins JS, Perali CF (1998) 64% Majority rule in Ducal Venice: Voting for the Doge. Public

Choice 97:709–723

Colman AM, Poutney I (1978) Borda’s voting paradox: theoretical likelihood and electoral

occurrences. Behav Sci 23:15–20

Cramér H (1946) Mathematical Methods of Statistics. Princeton University Press, Princeton NJ

de Borda J (1784) A paper on elections by ballot. In: Sommerlad F, McLean I (1989, eds) The

political theory of Condorcet, University of Oxford Working Paper, Oxford, pp 122–129

de Condorcet M (1785a) An essay on the application of probability theory to plurality decision

making: an election between three candidates. In: Sommerlad F, McLean I (1989, eds) The

political theory of Condorcet, University of Oxford Working Paper, Oxford, pp 69–80

de Condorcet M (1785b) An essay on the application of probability theory to plurality decision

making: Elections. In: Sommerlad F, McLean I (1989, eds) The political theory of Condorcet,

University of Oxford Working Paper, Oxford, pp 81–89

de Condorcet M (1785c) An essay on the application of probability theory to plurality decision

making: Hypothesis eleven. In: Sommerlad F, McLean I (1989, eds) The political theory of

Condorcet, University of Oxford Working Paper, Oxford, pp 90–108

de Condorcet M (1788a) On the form of decisions made by plurality vote. In: Sommerlad F,

McLean I (1989, eds) The political theory of Condorcet. University of Oxford Working Paper,

Oxford, pp 152–166

de Condorcet M (1788b) On discovering the plurality will in an election. In: Sommerlad F,

McLean I (1989, eds) The political theory of Condorcet, University of Oxford Working

Paper, Oxford, pp 141–151

de Condorcet M (1789) On the form of elections. In: Sommerlad F, McLean I (1989, eds) The

political theory of Condorcet, University of Oxford Working Paper, Oxford, pp 167–193

de Condorcet M (1793) A general survey of science – concerning the application of calculus to the

political and moral sciences. In: Sommerlad F, McLean I (1989, eds) The political theory of

Condorcet, University of Oxford Working Paper, Oxford, pp 4–10

D’Angelo A, Eskandari A, Szidarovszky (1998) Social choice procedures in water-resource

management. J Environ Manage 52:203–210

Dasgupta P, Maskin E (2004) The fairest vote of all. Sci Am 290:92–97

Daudt H, DW Rae DW (1976) The Ostrogorski Paradox: a peculiarity of compound majority

decision. Eur J Polit Res 4:391–398

Daunou PCF (1803) A paper on elections by ballot. In: Sommerlad F, McLean I (1991, eds) The

political theory of Condorcet II, University of Oxford Working Paper, Oxford, pp 235–279

David FN, Mallows CL (1961) The variance of Spearman’s rho in normal samples. Biometrika

48:19–28

Deb R (1976) On constructing generalized voting paradoxes. Econometrica 43:347–351

Deb R, Kelsey D (1987) On constructing a generalized Ostrogorski paradox: necessary and

sufficient conditions. Math Soc Sci 14:161–174

Debord B (1992) An axiomatic characterization of Borda’s k-choice function. Soc Choice Welfare

9:337–344

DeGrazia A (1953) Mathematical derivation of an election scheme. Isis 44:42–51

References 369



Dietz HA, Goodman MJ (1987) An empirical analysis of preferences in the 1983 multicandidate

Peruvian mayoral election. Am J Polit Sci 31:281–295

Diss M, Gehrlein WV (2009) Borda’s Paradox and weighted scoring rules. University of Caen,

France, unpublished manuscript

Diss M, Merlin V (2009) On the stability of a triplet of voting rules. University of Caen, France,

unpublished manuscript

Diss M, Louichi A, Merlin V, Smaoui H (2009) On the stability of a scoring rules set under the IAC

hypothesis. University of Caen, France, unpublished manuscript

Diss M, Merlin V, Valognes F (2010) On the Condorcet efficiency of approval voting and

extended scoring rules for three alternatives. University of Caen, France, unpublished manu-

script

Dobra J (1983) An approach to empirical studies in voter paradoxes: An update and extension.

Public Choice 41:241–250

Dodgson CL (1884) The principles of parliamentary representation. Harrison and Sons Publishers,

London

Dodgson CL (1885a) The principles of parliamentary representation: postscript to Supplement.

E. Baxter Publisher, Oxford

Dodgson CL (1885b) The principles of parliamentary representation: Supplement. E. Baxter

Publisher, Oxford

Downs A (1961) In defense of majority voting. J Polit Econ 69:192–199

Dryzek JS, List C (2003) Social choice theory and deliberative democracy: a reconcilliation. Br J

Polit Sci 33:1–28

Dyer JS, Miles RF (1976) An application of collective choice theory to the selection of trajectories

for the Mariner Jupiter/Saturn project. Oper Res 24:220–244

Dym CL, Wood WH, Scott MJ (2002) Rank ordering engineering designs: Pairwise comparison

charts and Borda counts. Res Eng Des 13:236–242
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