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Preface

The purpose of these lecture notes is to provide an introduction to the general
theory of empirical risk minimization with an emphasis on excess risk bounds
and oracle inequalities in penalized problems. In the recent years, there have been
new developments in this area motivated by the study of new classes of methods
in machine learning such as large margin classification methods (boosting, kernel
machines). The main probabilistic tools involved in the analysis of these problems
are concentration and deviation inequalities by Talagrand along with other methods
of empirical processes theory (symmetrization inequalities, contraction inequality
for Rademacher sums, entropy and generic chaining bounds). Sparse recovery based
on `1-type penalization and low rank matrix recovery based on the nuclear norm
penalization are other active areas of research, where the main problems can be
stated in the framework of penalized empirical risk minimization, and concentration
inequalities and empirical processes tools proved to be very useful.

My interest in empirical processes started in the late 1970s and early 1980s.
It was largely influenced by the work of Vapnik and Chervonenkis on Glivenko–
Cantelli problem and on empirical risk minimization in pattern recognition, and,
especially, by the results of Dudley on uniform central limit theorems. Talagrand’s
concentration inequality proved in the 1990s was a major result with deep conse-
quences in the theory of empirical processes and related areas of statistics, and it
inspired many new approaches in analysis of empirical risk minimization problems.

Over the last years, the work of many people have had a profound impact on
my own research and on my view of the subject of these notes. I was lucky to
work together with several of them and to have numerous conversations and email
exchanges with many others. I am especially thankful to Peter Bartlett, Lucien
Birgé, Gilles Blanchard, Stephane Boucheron, Olivier Bousquet, Richard Dudley,
Sara van de Geer, Evarist Giné, Gabor Lugosi, Pascal Massart, David Mason,
Shahar Mendelson, Dmitry Panchenko, Alexandre Tsybakov, Aad van der Vaart,
Jon Wellner and Joel Zinn.
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I am thankful to the School of Mathematics, Georgia Institute of Technology and
to the Department of Mathematics and Statistics, University of New Mexico where
most of my work for the past years have taken place.

The research described in these notes has been supported in part by NSF grants
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I was working on the initial draft while visiting the Isaac Newton Institute for
Mathematical Sciences in Cambridge in 2008. I am thankful to the Institute for its
hospitality.
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Chapter 1
Introduction

We start with a brief overview of empirical risk minimization problems and of the
role of empirical and Rademacher processes in constructing distribution dependent
and data dependent excess risk bounds. We then discuss penalized empirical
risk minimization and oracle inequalities and conclude with sparse recovery and
low rank matrix recovery problems. Many important aspects of empirical risk
minimization are beyond the scope of these notes, in particular, the circle of
questions related to approximation theory (see well known papers by Cucker and
Smale [47], DeVore et al. [49] and references therein).

1.1 Abstract Empirical Risk Minimization

Let X;X1; : : : ; Xn; : : : be i.i.d. random variables defined on a probability space
.˝;˙;P/ and taking values in a measurable space .S;A / with common distri-
bution P: Let Pn denote the empirical measure based on the sample .X1; : : : ; Xn/
of the first n observations:

Pn WD n�1
nX

jD1
ıXj ;

where ıx; x 2 S is the Diracs’s measure. Let F be a class of measurable functions
f W S 7! R: In what follows, the values of a function f 2 F will be interpreted as
“losses” associated with certain “actions” and the expectation of f .X/;

Ef .X/ D
Z

S

fdP D Pf;

will be viewed as the risk of a certain “decision rule”. We will be interested in the
problem of risk minimization

Pf �! min; f 2 F (1.1)

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 1,
© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

in the cases when the distribution P is unknown and has to be estimated based on
the data .X1; : : : ; Xn/: Since the empirical measure Pn is a natural estimator of P;
the true risk can be estimated by the corresponding empirical risk,

n�1
nX

jD1
f .Xj / D

Z

S

fdPn D Pnf;

and the risk minimization problem has to be replaced by the empirical risk
minimization:

Pnf �! min; f 2 F : (1.2)

Many important methods of statistical estimation such as maximum likelihood
and more general M -estimation are versions of empirical risk minimization. The
general theory of empirical risk minimization has started with seminal paper of
Vapnik and Chervonenkis [147] (see Vapnik [146] for more references) although
some important ideas go back to much earlier work on asymptotic theory of
M -estimation. Vapnik and Chervonenkis were motivated by applications of empiri-
cal risk minimization in pattern recognition and learning theory that required the
development of the theory in a much more general framework than what was
common in statistical literature. Their key idea was to relate the quality of the
solution of empirical risk minimization problem to the accuracy of approximation
of the true distribution P by the empirical distribution Pn uniformly over function
classes representing losses of decision rules. Because of this, they have studied
general Glivenko–Cantelli problems about convergence of kPn � P kF to 0; where

kY kF WD sup
f 2F

jY.f /j

for Y W F 7! R. Vapnik and Chervonenkis introduced a number of important
characteristics of complexity of function classes, such as VC-dimensions and
random entropies, that control the accuracy of empirical approximation. These
results along with the development of classical limit theorems in Banach spaces
in the 1960s and 1970s led to the general theory of empirical processes that started
with the pathbreaking paper by Dudley [58] on central limit theorems for empirical
measures (see well known books by Dudley [59], Pollard [123], van der Vaart and
Wellner [148]).

In the 1990s, Talagrand studied isoperimetric inequalities for product measures
and, in particular, he proved a striking uniform version of Bernstein inequality
describing concentration of kPn � P kF around its expectation (see Talagrand
[138, 139]). This was a real breakthrough in the theory of empirical processes and
empirical risk minimization. At about the same time, a concept of oracle inequalities
has been developed in nonparametric statistics (see, e.g., Johnstone [74]). In modern
statistics, it is common to deal with a multitude of possible models that describe the
same data (for instance, a family of models for unknown regression functions of
varying complexity). An oracle inequality is a bound on the risk of a statistical
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estimator that shows that the performance of the estimator is almost (often, up to
numerical constants) as good as it would be if the statistician had an access to
an oracle that knows what the best model for the target function is. It happened
that concentration inequalities provide rather natural probabilistic tools needed
to develop oracle inequalities in a number of statistical problems. In particular,
Birgé and Massart [23], Barron et al. [12], and, more recently, Massart [106, 107]
suggested a general approach to model selection in a variety of statistical problems
such as density estimation, regression and classification that is based on penalized
empirical risk minimization. They used Talagrand’s concentration and deviation
inequalities in a systematic way to establish a number of oracle inequalities showing
some form of optimality of penalized empirical risk minimization as a model
selection tool.

In the recent years, new important classes of algorithms in machine learning
have been introduced that are based on empirical risk minimization. In particular,
large margin classification algorithms, such as boosting and support vector machines
(SVM), can be viewed as empirical risk minimization over infinite dimensional
functional spaces with special convex loss functions. In an attempt to understand
the nature of these classification methods and to explain their superb generalization
performance, there has been another round of work on the abstract theory of
empirical risk minimization. One of the main ideas was to use the sup-norms or
localized sup-norms of the Rademacher processes indexed by function classes to
develop a general approach to measuring the complexities of these classes (see
Koltchinskii [81], Bartlett et al. [14], Koltchinskii and Panchenko [92], Bousquet
et al. [34], Bartlett et al. [15], Lugosi and Wegkamp [104], Bartlett and Mendelson
[17]). This resulted in rather flexible definitions of distribution dependent and
data dependent complexities in an abstract framework as well as more specialized
complexities reflecting relevant parameters of specific learning machines. Moreover,
such complexities have been used as natural penalties in model selection methods.
This approach provided a general explanation of fast convergence rates in classi-
fication and other learning problems, the phenomenon discovered and studied by
several authors, in particular, by Mammen and Tsybakov [105] and in an influential
paper by Tsybakov [144].

1.2 Excess Risk: Distribution Dependent Bounds

Definition 1.1. Let

E .f / WD EP .f / WD EP .F If / WD Pf � inf
g2F

Pg:

This quantity will be called the excess risk of f 2 F :

Let
Of D Ofn 2 Argminf 2FPnf



4 1 Introduction

be a solution of the empirical risk minimization problem (1.2). The function Ofn is
used as an approximation of the solution of the true risk minimization problem (1.1)
and its excess risk EP . Ofn/ is a natural measure of accuracy of this approximation.

It is of interest to find tight upper bounds on the excess risk of Ofn that hold with
a high probability. Such bounds usually depend on certain “geometric” properties
of the function class F and on various measures of its “complexity” that determine
the accuracy of approximation of the true risk Pf by the empirical risk Pnf in a
neighborhood of a proper size of the minimal set of the true risk.

In fact, it is rather easy to describe a general approach to derivation of such
bounds in an abstract framework of empirical risk minimization discussed in these
notes. This approach does give a correct answer in many specific examples. To be
precise, define the ı-minimal set of the risk as

F .ı/ WD FP .ı/ WD ff W EP .f / � ıg:

Suppose, for simplicity, that the infimum of the risk Pf is attained at Nf 2 F (the
argument can be easily modified if the infimum is not attained in the class). Denote
Oı WD EP . Of /: Then Of ; Nf 2 F . Oı/ and Pn Of � Pn Nf : Therefore,

Oı D EP . Of / D P. Of � Nf / � Pn. Of � Nf /C .P � Pn/. Of � Nf /;

which implies
Oı � sup

f;g2F .Oı/
j.Pn � P/.f � g/j:

Imagine there exists a nonrandom upper bound

Un.ı/ � sup
f;g2F .ı/

j.Pn � P/.f � g/j (1.3)

that holds uniformly in ı with a high probability. Then, with the same probability,
the excess risk EP . Of / will be bounded by the largest solution of the inequality ı �
Un.ı/: There are many different ways to construct upper bounds on the sup-norms of
empirical processes. A very general approach is based on Talagrand’s concentration
inequalities. Assume for simplicity that functions in the class F take their values
in the interval Œ0; 1�: Based on the L2.P /-diameter DP .F I ı/ of the ı-minimal set
F .ı/ and the function

�n.F I ı/ WD E sup
f;g2F .ı/

j.Pn � P/.f � g/j;

define

NUn.ıI t/ WD K

�
�n.F I ı/CD.F I ı/

r
t

n
C t

n

�
:
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Talagrand’s concentration inequality then implies that with some numerical constant
K > 0; for all t > 0;

P

n
sup

f;g2F .ı/

j.Pn � P/.f � g/j � NUn.ıI t/
o

� e�t :

This observation provides an easy way to construct a function Un.ı/ such that (1.3)
holds with a high probability uniformly in ı (first, by defining such a function at a
discrete set of values of ı and then extending it to all the values by monotonicity).
By solving the inequality ı � Un.ı/; one can construct a bound Nın.F / such that
the probability PfEP . Ofn/ � Nın.F /g is small. Thus, constructing an upper bound
on the excess risk essentially reduces to solving a fixed point equation of the type
ı D Un.ı/: Such a fixed point method has been studied, for instance, in Massart
[106], Koltchinskii and Panchenko [92], Bartlett et al. [15], Koltchinskii [83] (and
in several other papers of these authors).

In the case of P -Donsker classes F ;

�n.F I ı/ � EkPn � P kF D O.n�1=2/;

which implies that
Nın.F / D O.n�1=2/:

Moreover, if the diameterD.F I ı/ of the ı-minimal set tends to 0 as ı ! 0 (which
is typically the case if the risk minimization problem (1.1) has a unique solution),
then, by asymptotic equicontinuity, we have

lim
ı!0

lim sup
n!1

n1=2�n.F I ı/ D 0;

which allows one to conclude that

Nın.F / D o.n�1=2/:

It happens that the bound Nın.F / is of asymptotically correct order as n ! 1
in many specific examples of risk minimization problem in statistics and learning
theory.

The bounds of this type are distribution dependent (that is, they depend on the
unknown distribution P ).

1.3 Rademacher Processes and Data Dependent Bounds
on Excess Risk

The next challenge is to construct data dependent upper confidence bounds on the
excess risk EP . Of / of empirical risk minimizers that depend only on the sample
.X1; : : : ; Xn/; but do not depend explicitly on the unknown distribution P: Such
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bounds can be used in model selection procedures. Their construction usually
requires the development of certain statistical estimates of the quantities involved
in the definition of the distribution dependent bound Nın.F / based on the sample
.X1; : : : ; Xn/: Namely, we have to estimate the expectation of the local sup-norm of
the empirical process �n.F I ı/ and the diameter of the ı-minimal set.

A natural way to estimate the empirical process is to replace it by the Rademacher
process

Rn.f / WD n�1
nX

jD1
"j f .Xj /; f 2 F ;

where f"j g are i.i.d. Rademacher random variables (that is, they are symmetric
Bernoulli random variables taking values C1 and �1with probability 1=2 each) that
are also independent of the data .X1; : : : ; Xn/: The processRn.f /; f 2 F depends
only on the data (and on the independent sequence of Rademacher random variables
that can be simulated). For each f 2 F ; Rn.f / is essentially the “correlation
coefficient” between the values of the function f at data points and independent
Rademacher noise. The fact that the sup-norm kRnkF of the Rademacher process is
“large” means that there exists a function f 2 F that fits the Rademacher noise very
well. This usually means that the class of functions is too complex for the purposes
of statistical estimation and performing empirical risk minimization over such a
class is likely to lead to overfitting. Thus, the size of sup-norms or local sup-norms
of the Rademacher process provides natural data dependent measures of complexity
of function classes used in statistical estimation. Symmetrization inequalities well
known in the theory of empirical processes show that the expected sup-norms of
Rademacher processes are within a constant from the corresponding sup-norms of
the empirical process. Moreover, using concentration inequalities, one can directly
relate the sup-norms of these two processes.

The ı-minimal sets (the level sets) of the true risk involved in the construction of
the bounds Nın.F / can be estimated by the level sets of the empirical risk. This is
based on ratio type inequalities for the excess risk, that is, on bounding the following
probabilities

P

�
sup

f 2F ;EP .f /�ı

ˇ̌
ˇ̌EPn.f /
EP .f /

� 1
ˇ̌
ˇ̌ � "

�
:

This problem is closely related to the study of ratio type empirical processes (see
Giné et al. [65], Giné and Koltchinskii [66] and references therein). Finally, the
L2.P /-diameter of the ı-minimal sets of P can be estimated by the L2.Pn/-
diameter of the ı-minimal sets of Pn: Thus, we can estimate all the distribution
dependent parameters involved in the construction of Nın.F / by their empirical
versions and, as a result, construct data-dependent upper bounds on the excess risk
EP . Of / that hold with a guaranteed high probability. The proofs of these facts heavily
rely on Talagrand’s concentration inequalities for empirical processes.
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1.4 Penalized Empirical Risk Minimization
and Oracle Inequalities

The data-dependent bounds on the excess risk can be used in general model selection
techniques in abstract empirical risk minimization problems. In such problems, there
is a need to deal with minimizing the risk over a very large class of functions F ;

and there is a specified family (“a sieve”) of subclasses fF˛; ˛ 2 Ag of varying
complexity that are used to approximate functions from F : Often, classes F˛

correspond to different statistical models. Instead of one empirical risk minimization
problem (1.2) one has to deal now with a family of problems

Pnf �! min; f 2 F˛; ˛ 2 A; (1.4)

that has a set of solutions f Ofn;˛ W ˛ 2 Ag: In many cases, there is a natural way
to measure the quality of the solution of each of the problems (1.4). For instance,
it can be based on distribution dependent upper bounds Nın.˛/ D Nın.F˛/ on the
excess risk EP .F˛I Ofn;˛/ discussed above. The goal of model selection is to provide
a data driven (adaptive) choice Ǫ D Ǫ .X1; : : : ; Xn/ of model index ˛ such that the
empirical risk minimization over the class F Ǫ results in an estimator Of D Ofn; Ǫ with

the nearly “optimal” excess risk EP .F I Of /: One of the most important approaches
to model selection is based on penalized empirical risk minimization, that is, on
solving the following problem

Ǫ WD argmin˛2A
�

min
f 2F˛

Pnf C O�n.˛/
�
; (1.5)

where O�n.˛/; ˛ 2 A are properly chosen complexity penalties. Often, O�n.˛/ is
designed as a data dependent upper bound on Nın.˛/; the “desired accuracy” of
empirical risk minimization for the class F˛: This approach has been developed
under several different names (Vapnik–Chervonenkis structural risk minimization,
method of sieves, etc.). Sometimes, it is convenient to write penalized empirical risk
minimization problem in the following form

Of WD argminf 2F

�
Pnf C pen.nIf /

�
;

where pen.nI �/ is a real valued complexity penalty defined on F : Denoting, for
each ˛ 2 R;

F˛ WD ff 2 F W pen.nIf / D ˛g
and defining O�n.˛/ D ˛; the problem can be again rewritten as (1.5).
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The bounds on the excess risk of Of D Ofn; Ǫ of the following type (with some
constant C )

EP .F I Of / � C inf
˛2A

�
inf

f 2F˛

EP .f /C Nın.˛/
�

(1.6)

that hold with a high probability are often used to express the optimality properties
of model selection. The meaning of these inequalities can be explained as follows.
Imagine that the minimum of the true risk in the class F is attained in a subclass
F˛ for some ˛ D ˛.P /: If there were an oracle that knew the model index ˛.P /;
then with the help of the oracle one could achieve the excess risk at least as small as
Nın.˛.P //: The model selection method for which the inequality (1.6) holds is not
using the help of the oracle. However, it follows from (1.6) that the excess risk of
the resulting estimator is upper bounded by C Nın.˛.P // (which is within a constant
of the performance of the oracle).

1.5 Concrete Empirical Risk Minimization Problems

Density estimation. The most popular method of statistical estimation, the maximum
likelihood method, can be viewed as a special case of empirical risk minimization.
Let � be a �-finite measure on .S;A / and let P be a statistical model, that
is, P is a family of probability densities with respect to �: In particular, P
can be a parametric model with a parameter set �; P D fp.�; �/ W � 2 �g:
A maximum likelihood estimator of unknown density p� 2 P based on i.i.d.
observations X1; : : : ; Xn sampled from p� is a solution of the following empirical
risk minimization problem

n�1
nX

jD1

�
� logp.Xj /

�
�! min; p 2 P : (1.7)

Another popular approach to density estimation is based on a penalized empirical
risk minimization problem

� 2

n

nX

jD1
p.Xj /C kpk2L2.�/ �! min; p 2 P : (1.8)

This approach can be explained as follows. The best L2.�/-approximation of the
density p� is obtained by solving

kp � p�k2L2.�/ D �2
Z

S

pp�d�C kpk2L2.�/ C kp�k2L2.�/ �! min; p 2 P :

The integral
R
S
pp�d� D Ep.X/ can be estimated by n�1Pn

jD1 p.Xj /, leading to
problem (1.8). Of course, in the case of complex enough models P; there might be
a need in complexity penalization in (1.7) and (1.8).
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Prediction problems. Empirical risk minimization is especially useful in a variety
of prediction problems. In these problems, the data consists of i.i.d. couples
.X1; Y1/; : : : .Xn; Yn/ in S � T with common distribution P: Assume that T � R:

Given another couple .X; Y / sampled from P; the goal is to predict Y based
on an observation of X: To formalize this problem, introduce a loss function
` W T � R 7! RC: Given g W S 7! R; denote .` � g/.x; y/ WD `.y; g.x//; which
will be interpreted as a loss suffered as a result of using g.x/ to predict y: Then the
risk associated with an “action” g is defined as

P.` � g/ D E`.Y; g.X//:

Given a set G of possible actions g; we want to minimize the risk:

P.` � g/ �! min; g 2 G :

The risk can be estimated based on the data .X1; Y1/; : : : ; .Xn; Yn/; which leads to
the following empirical risk minimization problem:

Pn.` � g/ D n�1
nX

jD1
`.Yj ; g.Xj // �! min; g 2 G :

Introducing the notation f WD ` � g and setting F WD f` � g W g 2 G g; one can
rewrite the problems in the form (1.1), (1.2).

Regression and classification are two most common examples of prediction
problems. In regression problems, the loss function is usually defined as `.yI u/ D
�.y � u/; where � is, most often, nonnegative, even and convex function with
�.0/ D 0: The empirical risk minimization becomes

n�1
nX

jD1
�.Yj � g.Xj // �! min; g 2 G :

The choice �.u/ D u2 is, by far, the most popular and it means fitting the regression
model using the least squares method.

In the case of binary classification problems, T WD f�1; 1g and it is natural to
consider a class G of binary functions (classifiers) g W S 7! f�1; 1g and to use the
binary loss `.yI u/ D I.y ¤ u/: The risk of a classifier g with respect to the binary
loss

P.` � g/ D PfY ¤ g.X/g
is just the probability of misclassification and, in learning theory, it is known as the
generalization error. A binary classifier that minimizes the generalization error over
all measurable binary functions is called the Bayes classifier and its generalization
error is called the Bayes risk. The corresponding empirical risk
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Pn.` � g/ D n�1
nX

jD1
I.Yj ¤ g.Xj //

is known as the training error. Minimizing the training error over G

n�1
nX

jD1
I.Yj ¤ g.Xj // �! min; g 2 G

is, usually, a computationally intractable problem (with an exception of very simple
families of classifiers G ) since the functional to be minimized lacks convexity,
smoothness or any other form of regularity.

Large margin classification. Large margin classification methods are based on
the idea of considering real valued classifiers g W S 7! R instead of binary
classifiers and replacing the binary loss by a convex “surrogate loss”. A real
valued classifier g can be easily transformed into binary: g 7! sign.g/: Define
`.y; u/ WD �.yu/; where � W R 7! RC is a convex nonincreasing function such
that �.u/ � I.�1;0�.u/; u 2 R: The product Yg.X/ is called the margin of classifier
g on the training example .X; Y /: If Yg.X/ � 0; .X; Y / is correctly classified
by g; otherwise the example is misclassified. Given a convex set G of classifiers
g W S 7! R the risk minimization problem becomes

P.` � g/ D E�.Yg.X// �! min; g 2 G

and its empirical version is

Pn.` � g/ D n�1
nX

jD1
�.Yjg.Xj // �! min; g 2 G ; (1.9)

which are convex optimization problems.
It is well known that, under very mild conditions on the “surrogate loss” � (so

called classification calibration, see, e.g., [16]) the solution g� of the problem

P.` � g/ D E�.Yg.X// �! min; g W S 7! R

possesses the property that sign.g�/ is the Bayes classifier. Thus, it becomes
plausible that the empirical risk minimization problem (1.9) with a large enough
and properly chosen convex function class G would have a solution Og such that the
generalization error of the binary classifier sign. Og/ is close enough to the Bayes
risk. Because of the nature of the loss function (heavy penalization for negative and
even small positive margins), the solution Og tends to be a classifier with most of
the margins on the training data positive and large, which explains the name “large
margin classifiers”.
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Among common choices of the surrogate loss function are �.u/ D e�u (the
exponential loss), �.u/ D log2.1C e�u/ (the logit loss) and �.u/ D .1� u/_ 0 (the
hinge loss).

A possible choice of class G is

G WD conv.H / WD
� NX

jD1
	j hj ;N � 1; 	j � 0;

NX

jD1
	j hj ; hj 2 H

�
;

where H is a given base class of classifiers. Usually, H consists of binary
classifiers and it is a rather simple class such that the direct minimization of the
training error over H is computationally tractable. The problem (1.9) is then solved
by a version of gradient descent algorithm in a functional space. This leads to a
family of classification methods called boosting (also, voting methods, ensemble
methods, etc). Classifiers output by boosting are convex combinations of base
classifiers and the whole method is often interpreted in machine learning literature as
a way to combine simple base classifiers into more complex and powerful classifiers
with a much better generalization performance.

Another popular approach is based on penalized empirical risk minimization
in a reproducing kernel Hilbert space (RKHS) HK generated by a symmetric
nonnegatively definite kernel K W S � S 7! R: For instance, using the square of
the norm as a penalty results in the following problem:

n�1
nX

jD1
�.Yj g.Xj //C "kgk2HK

�! min; g 2 HK; (1.10)

where " > 0 is a regularization parameter. In the case of hinge loss �.u/ D .1�u/_0
the method is called support vector machine (SVM). By the basic properties of
RKHS, a function g 2 HK can be represented as g.x/ D hg;K.x; �/iHK : Because
of this, it is very easy to conclude that the solution Og of (1.10) must be in the linear
span of functions K.X1; �/; : : : ; K.Xn; �/: Thus, the problem (1.10) is essentially a
finite dimensional convex problem (in the case of hinge loss, it becomes a quadratic
programming problem).

1.6 Sparse Recovery Problems

Let H D fh1; : : : ; hN g be a given set of functions fromS into R called a dictionary.
Given 	 2 R

N ; denote f	 D PN
jD1 	j hj : Suppose that a function f� 2 l:s:.H / is

observed at random points X1; : : : ; Xn with common distribution˘;

Yj D f�.Xj /; j D 1; : : : ; n
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being the observations. The goal is to find a representation of f� in the dictionary,
that is, to find 	 2 R

N such that

f	.Xj / D Yj ; j D 1; : : : ; n: (1.11)

In the case when the functions in the dictionary are not linearly independent, such a
representation does not have to be unique. Moreover, if N > n; the system of linear
equations (1.11) is underdetermined and the set

L WD ˚
	 2 R

N W f	.Xj / D Yj ; j D 1; : : : ; n
�

is a nontrivial affine subspace of R
N : However, even in this case, the following

problem still makes sense:

k	k`0 D
NX

jD1
I.	j ¤ 0/ �! min; 	 2 L: (1.12)

In other words, the goal is to find the sparsest solution of the linear system (1.11).
In general, the sparse recovery problem (1.12) is not computationally tractable
since solving such a nonconvex optimization problem essentially requires searching
through all 2N coordinate subspaces of R

N and then solving the corresponding
linear systems. However, the following problem

k	k`1 D
NX

jD1
j	j j �! min; 	 2 L: (1.13)

is convex, and, moreover, it is a linear programming problem. It happens that
for some dictionaries H and distributions ˘ of design variables the solution of
problem (1.13) is unique and coincides with the sparsest solution 	� of problem
(1.12) (provided that k	�k`0 is sufficiently small). This fact is closely related
to some problems in convex geometry concerning the neighborliness of convex
polytopes.

More generally, one can study sparse recovery problems in the case when f� does
not necessarily belong to the linear span of the dictionary H and it is measured at
random locations Xj with some errors. Given i.i.d. sample .X1; Y1/; : : : ; .Xn; Yn/
and a loss function `; this naturally leads to the study of the following penalized
empirical risk minimization problem

O	" WD argmin	2RN

h
Pn.` � f	/C "k	k`1

i
(1.14)

which is an empirical version of the problem
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	" WD argmin	2RN

h
P.` � f	/C "k	k`1

i
; (1.15)

where " > 0 is a regularization parameter. It is assumed that the loss function
`.yI u/ is convex with respect to u which makes the optimization problems (1.14)
and (1.15) convex. This framework includes sparse recovery in both regression and
large margin classification contexts. In the case of regression with quadratic loss
`.y; u/ D .y � u/2; this penalization method has been called LASSO in statistical
literature. The sparse recovery algorithm (1.13) can be viewed as a version of (1.14)
with quadratic loss and with " D 0:

Another popular method of sparse recovery, introduced recently by Candes and
Tao [44] and called the Dantzig selector, is based on solving the following linear
programming problem

O	" 2 Argmin	2 O
"k	k`1 ;

where

O
" WD
�
	 2 R

N W max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
.f	.Xj / � Yj /hk.Xj /

ˇ̌
ˇ̌ � "=2

�
:

Note that the conditions defining the set O
" are just necessary conditions of
extremum in the LASSO-optimization problem

n�1
nX

jD1
.Yj � f	.Xj //2 C "k	k`1 �! min; 	 2 R

N ;

so, the Dantzig selector is closely related to the LASSO.
We will also study some other types of penalties that can be used in sparse

recovery problems such as, for instance, the entropy penalty
PN

jD1 	j log	j for
sparse recovery problems in the convex hull of the dictionary H :

Our goal will be to establish oracle inequalities showing that the methods of this
type allow one to find a sparse approximation of the target function (when it exists).

1.7 Recovering Low Rank Matrices

Let A 2 Mm1;m2.R/
1 be an unknownm1 �m2 matrix and X1; : : : ; Xn 2 Mm1;m2.R/

be given matrices. The goal is to recover A based on its measurements

Yj D hA;Xj i D tr.AX�
j /; j D 1; : : : ; n: (1.16)

1In this section, we are using the notations of linear algebra introduced in Sect. A.4.
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In the case when A is a large matrix, but its rank rank.A/ is relatively small, it is of
interest to recover A based on a relatively small number of linear measurements
(1.16) with n of the order .m1 _ m2/rank.A/ (up to constants and logarithmic
factors). This noncommutative generalization of sparse recovery problems has been
intensively studied in the recent years, see [41,45,70,71,124] and references therein.
As in the case of sparse recovery, the main methods of low rank matrix recovery are
based on convex relaxation of a rank minimization problem

rank.S/ �! min; S 2 L ; L WD
n
S W hS;Xj i D Yj ; j D 1; : : : ; n

o
; (1.17)

which is not computationally tractable. The most popular algorithm is based on
nuclear norm minimization:

kSk1 �! min; S 2 L ; L D
n
S W hS;Xj i D Yj ; j D 1; : : : ; n

o
: (1.18)

Of course, similar problems can be also considered under further constraints on
the set of matrices in question (for instance, when the matrices are Hermitian,
nonnegatively definite, etc).

Matrix completion, in which Yj ; j D 1; : : : ; n are noiseless observations of
randomly picked entries of the target matrix A; is a typical example of matrix
recovery problems that has been studied in a great detail. It can be viewed as a
special case of sampling from an orthonormal basis. LetEi ; i D 1; : : : ; m1m2 be an
orthonormal basis of Mm1;m2.C/ with respect to the Hilbert–Schmidt inner product
and let Xj ; j D 1; : : : ; n be i.i.d. random variables sampled from a distribution
˘ on the set fE1; : : : ; Em2g: Most often, ˘ is the uniform distribution that assigns
probability 1

m1m2
to each basis matrix Ei : Note that

EjhA;Xij2 D 1

m1m2

kAk22; A 2 Mm1;m2.R/:

In the case of matrix completion problems, fEi W i D 1; : : : ; m1m2g is the matrix
completion basis

n
e
m1
i ˝ e

m2
j W 1 � i � m1; 1 � j � m2

o
;

where fem1i W i D 1; : : : ; m1g; fem2j W j D 1; : : : ; m2g are the canonical bases of
R
m1;Rm2; respectively. Clearly, the Fourier coefficients hA; em1i ˝ e

m2
j i coincide

with the entries of matrix A: We will discuss only the case when the matrices
X1; : : : ; Xn are i.i.d. with uniform distribution in the matrix completion basis, which
corresponds to sampling the entries of the target matrix with replacement (although
it is even more natural to study the sampling without replacement, and it is often
done in the literature).
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Another example of sampling from an orthonormal basis is related to quantum
state tomography, an important problem in quantum statistics (see [70, 71]). The
goal is to estimate the density matrix � 2 Hm.C/ of a quantum system, which is
a Hermitian nonnegatively definite matrix of trace 1: The estimation is based on
measurements of n observables X1; : : : ; Xn 2 Hm.C/ under the assumption that,
for each measurement, the system is prepared in state �: In the noiseless case, � has
to be recovered based on the outcomes of the measurements

Yj D h�;Xj i D tr.�Xj /; j D 1; : : : ; n (1.19)

and the following version of (1.18) can be used:

kSk1 �! min; S 2 S ; hS;Xj i D Yj ; j D 1; : : : ; n (1.20)

where
S D

n
S 2 Hm.C/ W S � 0; tr.S/ D 1

o

is the set of all density matrices. As an example of an interesting design fXj g;
let m D 2k and consider the Pauli basis in the space of 2 � 2 matrices M2.C/:
Wi WD 1p

2
�i ; where

�1 WD
�
0 1

1 0

�
; �2 WD

�
0 �i
i 0

�
; �3 WD

�
1 0

0 �1
�

and �4 WD
�
1 0

0 1

�

are the Pauli matrices (they are both Hermitian and unitary). The Pauli basis in
the space Mm.C/ can be now defined by tensorizing the Pauli basis in M2.C/ W it
consists of all tensor productsWi1 ˝ � � � ˝Wik ; .i1; : : : ; ik/ 2 f1; 2; 3; 4gk: As in the
case of matrix completion,X1; : : : ; Xn are i.i.d. random variables sampled from the
uniform distribution in the Pauli basis and the state � has to be recovered based on
the outcomes of n measurements (1.19). Such a measurement model for a k qubit
system is relatively standard in quantum information, in particular, in quantum state
and quantum process tomography (see Nielsen and Chuang [120], Sect. 8.4.2).

One more example of a random design in matrix recovery problems is subgaus-
sian design (which is similar to the design of dictionaries in sparse recovery and
compressed sensing). Assume again that the matrix A 2 Hm.C/ to be recovered is
Hermitian and let X;X1; : : : ; Xn be i.i.d. random matrices in Hm.C/: Suppose that
hA;Xi is a subgaussian random variable for each A 2 Hm.C/ (see Sect. 3.1). One
specific example is the Gaussian design, where X is a symmetric random matrix
with real entries such that fXij W 1 � i � j � mg are independent centered
normal random variables with EX2

ii D 1; i D 1; : : : ; m and EX2
ij D 1

2
; i < j:

Another example is the Rademacher design, where Xii D "i i ; i D 1; : : : ; m and
Xij D 1p

2
"ij ; i < j; f"ij W 1 � i � j � mg being i.i.d. Rademacher random

variables (that is, random variables taking values C1 or �1 with probability 1=2
each). In both cases, EjhA;Xij2 D kAk22; A 2 Mm.C/; which means that X
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is an isotropic random matrix, and hA;Xi is a subgaussian random variable with
subgaussian parameter kAk2 (up to a constant).

In the case of matrix regression model

Yj D hA;Xj i C �j ; j D 1; : : : ; n; (1.21)

where A 2 Mm1;m2.R/ is an unknown target matrix and �j ; j D 1; : : : ; n are
i.i.d. mean zero random variables (random noise), one can replace the nuclear norm
minimization algorithm (1.18) by the following version of penalized empirical risk
minimization:

OA" WD argminS2Mm1;m2 .R/

�
n�1

nX

jD1

	
Yj � hS;Xj i


2 C "kSk1
�
;

where " > 0 is a regularization parameter. Such problems have been studied in
[40, 90, 127] and they will be discussed in Chap. 9 (for some other penalization
methods, for instance, von Neumann entropy penalization in density matrix estima-
tion problem, see also [88]). The main goal will be to establish oracle inequalities
for the error of matrix estimators that show how it depends on the rank of the target
matrix A; or, more generally, on the rank of oracles approximatingA:



Chapter 2
Empirical and Rademacher Processes

The empirical process is defined as

Zn WD n1=2.Pn � P/

and it can be viewed as a random measure. However, more often, it has been viewed
as a stochastic process indexed by a function class F W

Zn.f / D n1=2.Pn � P/.f /; f 2 F

(see Dudley [59] or van der Vaart and Wellner [148]).
The Rademacher process indexed by a class F was defined in Sect. 1.3 as

Rn.f / WD n�1
nX

iD1
"if .Xi /; f 2 F ;

f"ig being i.i.d. Rademacher random variables (that is, "i takes the values C1 and
�1 with probability 1=2 each) independent of fXig:

It should be mentioned that certain measurability assumptions are required in the
study of empirical and Rademacher processes. In particular, under these assump-
tions, such quantities as kPn �P kF are properly measurable random variables. We
refer to the books of Dudley [59], Chap. 5 and van der Vaart and Wellner [148],
Sect. 1.7 for precise formulations of these measurability assumptions. Some of the
bounds derived and used below hold even without the assumptions of this nature, if
the expectation is replaced by the outer expectation, as it is often done, for instance,
in [148]. Another option is to “define”

EkPn � P kF WD sup

�
EkPn � P kG W G � F ;G is finite

�
;

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 2,
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which provides a simple way to get around the measurability difficulties. Such an
approach has been frequently used by Talagrand (see, e.g., [140]). In what follows,
it will be assumed that the measurability problems have been resolved in one of
these ways.

2.1 Symmetrization Inequalities

The following important inequality reveals close relationships between empirical
and Rademacher processes.

Theorem 2.1. For any class F of P -integrable functions and for any convex
function ˚ W RC 7! RC

E˚

�
1

2
kRnkFc

�
� E˚

	
kPn � P kF



� E˚

	
2kRnkF



;

where Fc WD ff � Pf W f 2 F g: In particular,

1

2
EkRnkFc � EkPn � P kF � 2EkRnkF :

Proof. Assume that the random variables X1; : : : Xn are defined on a probability
space . N̋ ; Ṅ ; NP/: We will also need two other probability spaces: . Q̋ ; Q̇ ; QP/ and
.˝";˙";P"/: The main probability space on which all the random variables are
defined will be denoted .˝;˙;P/ and it will be the product space

.˝;˙;P/ D . N̋ ; Ṅ ; NP/ � . Q̋ ; Q̇ ; QP/ � .˝";˙";P"/:

The corresponding expectations will be denoted by NE; QE;E" and E: Let
. QX1; : : : ; QXn/ be an independent copy of .X1; : : : ; Xn/: Think of random variables
QX1; : : : ; QXn as being defined on . Q̋ ; Q̇ ; QP/: Denote QPn the empirical measure based

on . QX1; : : : ; QXn/ (it is an independent copy of Pn). Then QE QPnf D Pf and, using
Jensen’s inequality,

E˚
	
kPn � P kF



D NE˚

	
kPn � QE QPnkF



D NE˚

	
k QE.Pn � QPn/kF




� NE QE˚
	
kPn � QPnkF



D NE QE˚

�����n
�1

nX

jD1
.ıXj � ı QXj /

����
F

�
:

SinceX1; : : : ; Xn; QX1; : : : ; QXn are i.i.d., the distribution of .X1; : : : ; Xn; QX1; : : : ; QXn/
is invariant with respect to all permutations of the components. In particular, one
can switch any couple Xj ; QXj : Because of this,
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NE QE˚
�����n

�1
nX

jD1
.ıXj � ı QXj /

����
F

�
D NE QE˚

�����n
�1

nX

jD1
�j .ıXj � ı QXj /

����
F

�
;

for an arbitrary choice of �j D C1 or �j D �1: Define now i.i.d. Rademacher
random variables on .˝";˙";P"/ (thus, independent of .X1; : : : ; Xn; QX1; : : : ; QXn/).
Then, we have

NE QE˚
�����n

�1
nX

jD1
.ıXj � ı QXj /

����
F

�
D E"

NE QE˚
�����n

�1
nX

jD1
"j .ıXj � ı QXj /

����
F

�

and the proof can be completed as follows:

E˚
	
kPn � P kF



� E"

NE QE˚
�����n

�1
nX

jD1
"j .ıXj � ı QXj /

����
F

�

� 1

2
E"

NE˚
�
2

����n
�1

nX

jD1
"j ıXj

����
F

�
C 1

2
E"

QE˚
�
2

����n
�1

nX

jD1
"j ı QXj

����
F

�

D E˚
	
2kRnkF



:

The proof of the lower bound is similar. ut
The upper bound is called the symmetrization inequality and the lower bound is

sometimes called the desymmetrization inequality. The desymmetrization inequality
is often used together with the following elementary lower bound (in the case of
˚.u/ D u)

EkRnkFc � EkRnkF � sup
f 2F

jPf j EjRn.1/j �

� EkRnkF � sup
f 2F

jPf j E
1=2jn�1

nX

jD1
"j j2 D EkRnkF � supf 2F jPf jp

n
:

2.2 Comparison Inequalities for Rademacher Sums

Given a set T � R
n and i.i.d. Rademacher variables "i ; i D 1; 2; : : : ; it is of interest

to know how the expected value of the sup-norm of Rademacher sums indexed by T

Rn.T / WD E sup
t2T

ˇ̌
ˇ̌
nX

iD1
ti "i

ˇ̌
ˇ̌
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depends on the geometry of the set T: The following beautiful comparison inequality
for Rademacher sums is due to Talagrand and it is often used to control Rn.T / for
more complex sets T in terms of similar quantities for simpler sets.

Theorem 2.2. Let T � R
n and let 'i W R 7! R; i D 1; : : : ; n be functions such

that 'i.0/ D 0 and
j'i.u/� 'i.v/j � ju � vj; u; v 2 R

(that is, 'i are contractions). For all convex nondecreasing functions˚ W RC 7! RC,

E˚

�
1

2
sup
t2T

ˇ̌
ˇ̌
nX

iD1
'i .ti /"i

ˇ̌
ˇ̌
�

� E˚

�
sup
t2T

ˇ̌
ˇ̌
nX

iD1
ti "i

ˇ̌
ˇ̌
�
:

Proof. First, we prove that for a nondecreasing convex function ˚ W R 7! RC and
for an arbitrary A W T 7! R

E˚

�
sup
t2T

�
A.t/C

nX

iD1
'i .ti /"i

��
� E˚

�
sup
t2T

�
A.t/C

nX

iD1
ti "i

��
: (2.1)

We start with the case n D 1: Then, the bound is equivalent to the following

E˚
	

sup
t2T
Œt1 C "'.t2/�



� E˚

	
sup
t2T
Œt1 C "t2�




for an arbitrary set T � R
2 and an arbitrary contraction ': One can rewrite it as

1

2

�
˚
	

sup
t2T
Œt1 C '.t2/�



C ˚

	
sup
t2T
Œt1 � '.t2/�


�

� 1

2

�
˚
	

sup
t2T
Œt1 C t2�



C ˚

	
sup
t2T
Œt1 � t2�


�
:

If now .t1; t2/ 2 T denotes a point where supt2T Œt1 C '.t2/� is attained and
.s1; s2/ 2 T is a point where supt2T Œt1 �'.t2/� is attained, then it is enough to show
that

˚
	
t1 C '.t2/



C ˚

	
s1 � '.s2/



� ˚

	
sup
t2T
Œt1 C t2�



C˚

	
sup
t2T
Œt1 � t2�




(if the suprema are not attained, one can easily modify the argument). Clearly, we
have the following conditions:

t1 C '.t2/ � s1 C '.s2/ and t1 � '.t2/ � s1 � '.s2/:

First consider the case when t2 � 0; s2 � 0 and t2 � s2: In this case, we will prove
that

˚
	
t1 C '.t2/



C ˚

	
s1 � '.s2/



� ˚

	
t1 C t2



C ˚

	
s1 � s2



; (2.2)
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which would imply the bound. Indeed, for

a WD t1 C '.t2/; b WD t1 C t2; c WD s1 � s2; d WD s1 � '.s2/;

we have a � b and c � d since '.t2/ � t2; '.s2/ � s2 (by the assumption that '
is a contraction and '.0/ D 0). We also have that

b � a D t2 � '.t2/ � s2 � '.s2/ D d � c;

because again ' is a contraction and t2 � s2: Finally, we have

a D t1 C '.t2/ � s1 C '.s2/ � s1 � s2 D c:

Since the function ˚ is nondecreasing and convex, its increment over the interval
Œa; b� is larger than its increment over the interval Œc; d � (Œa; b� is longer than Œc; d �
and a � c), which is equivalent to (2.2).

If t2 � 0; s2 � 0 and s2 � t2; it is enough to use the change of notations .t; s/ 7!
.s; t/ and to replace ' with �':

The case t2 � 0; s2 � 0 can be now handled by using the transformation
.t1; t2/ 7! .t1;�t2/ and changing the function ' accordingly.

We have to consider the case t2 � 0; s2 � 0 (the only remaining case t2 � 0,
s2 � 0 would again follow by switching the names of t and s and replacing '
with �'). In this case, we have '.t2/ � t2; �'.s2/ � �s2; which, in view of
monotonicity of ˚; immediately implies

˚
	
t1 C '.t2/



C ˚

	
s1 � '.s2/



� ˚

	
t1 C t2



C ˚

	
s1 � s2



:

This completes the proof of (2.1) in the case n D 1:

In the general case, we have

E˚

�
sup
t2T

�
A.t/C

nX

iD1
'i .ti /"i

��

D E"1;:::;"n�1E"n˚

�
sup
t2T

�
A.t/C

n�1X

iD1
'i .ti /"i C "n'.tn/

��
:

The expectation E"n (conditional on "1; : : : ; "n�1) can be bounded using the result
in the case n D 1: This yields (after changing the order of integration)

E˚

�
sup
t2T

�
A.t/C

nX

iD1
'i .ti /"i

��
� E"nE"1;:::;"n�1˚

�
sup
t2T

�
A.t/C"ntnC

n�1X

iD1
'i .ti /"i

��
:

The proof of (2.1) can now be completed by an induction argument.
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Finally, to prove the inequality of the theorem, it is enough to write

E˚

�
1

2
sup
t2T

ˇ̌
ˇ̌
nX

iD1
'i .ti /"i

ˇ̌
ˇ̌
�

D E˚

�
1

2

��
sup
t2T

nX

iD1
'i .ti /"i

�

C
C
�

sup
t2T

nX

iD1
'i .ti /.�"i /

�

C

��

� 1

2

�
E˚

��
sup
t2T

nX

iD1
'i .ti /"i

�

C

�
C E˚

��
sup
t2T

nX

iD1
'i .ti /.�"i /

�

C

��
;

where aC WD a _ 0: Applying the inequality (2.1) to the function u 7! ˚.uC/,
which is convex and nondecreasing, completes the proof. ut

We will frequently use a corollary of the above comparison inequality that
provides upper bounds on the moments of the sup-norm of Rademacher process
Rn on the class

' ı F WD f' ı f W f 2 F g
in terms of the corresponding moments of the sup-norm of Rn on F and Lipschitz
constant of function ':

Theorem 2.3. Let ' W R 7! R be a contraction satisfying the condition '.0/ D 0:

For all convex nondecreasing functions ˚ W RC 7! RC;

E˚

�
1

2
kRnk'ıF

�
� E˚

	
kRnkF



:

In particular,
EkRnk'ıF � 2EkRnkF :

The inequality of Theorem 2.3 will be called the contraction inequality for
Rademacher processes.

A simple rescaling of the class F allows one to use the contraction inequality in
the case of an arbitrary function ' satisfying the Lipschitz condition

j'.u/� '.v/j � Lju � vj

on an arbitrary interval .a; b/ that contains the ranges of all the functions in F : In
this case, the last bound of Theorem 2.3 takes the form

EkRnk'ıF � 2LEkRnkF :

This implies, for instance, that
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E sup
f 2F

ˇ̌
ˇ̌n�1

nX

iD1
"if

2.Xi/

ˇ̌
ˇ̌ � 4UE sup

f 2F

ˇ̌
ˇ̌n�1

nX

iD1
"if .Xi /

ˇ̌
ˇ̌ (2.3)

provided that the functions in the class F are uniformly bounded by a constant U:

2.3 Concentration Inequalities

A well known, simple and useful concentration inequality for functions

Z D g.X1; : : : ; Xn/

of independent random variables with values in arbitrary spaces is valid under so
called bounded difference condition on g W there exist constants cj ; j D 1; : : : ; n

such that for all j D 1; : : : ; n and all x1; x2; : : : ; xj ; x0
j ; : : : ; xn

ˇ̌
ˇg.x1; : : : ; xj�1; xj ; xjC1; : : : ; xn/� g.x1; : : : ; xj�1; x0

j ; xjC1; : : : ; xn/
ˇ̌
ˇ � cj :

(2.4)

Theorem 2.4 (Bounded difference inequality). Under the condition (2.4),

PfZ � EZ � tg � exp

�
� 2t2Pn

jD1 c2j

�

and

PfZ � EZ � �tg � exp

�
� 2t2Pn

jD1 c2j

�
:

A standard proof of this inequality is based on bounding the exponential moment
Ee	.Z�EZ/; using the following martingale difference representation

Z � EZ D
nX

jD1

�
E.ZjX1; : : : ; Xj /� E.ZjX1; : : : ; Xj�1/

�
;

then using Markov inequality and optimizing the resulting bound with respect to
	 > 0:

In the case whenZ D X1C� � �CXn; the bounded difference inequality coincides
with Hoeffding inequality for sums of bounded independent random variables (see
Sect. A.2).

For a class F of functions uniformly bounded by a constant U; the bounded
difference inequality immediately implies the following bounds for kPn � P kF ;

providing a uniform version of Hoeffding inequality.
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Theorem 2.5. For all t > 0;

P

n
kPn � P kF � EkPn � P kF C tUp

n

o
� expf�t2=2g

and
P

n
kPn � P kF � EkPn � P kF � tUp

n

o
� expf�t2=2g:

Developing uniform versions of Bernstein’s inequality (see Sect. A.2) happened
to be a much harder problem that was solved in the famous papers by Talagrand
[138, 139] on concentration inequalities for product measures and empirical pro-
cesses.

Theorem 2.6 (Talagrand’s inequality). Let X1; : : : ; Xn be independent random
variables in S: For any class of functions F on S that is uniformly bounded by
a constant U > 0 and for all t > 0

P

( ˇ̌
ˇ̌
���

nX

iD1
f .Xi /

���
F

�E

���
nX

iD1
f .Xi /

���
F

ˇ̌
ˇ̌ � t

)
� K exp

�
� 1

K

t

U
log

�
1C tU

V

��
;

where K is a universal constant and V is any number satisfying

V � E sup
f 2F

nX

iD1
f 2.Xi/:

Using symmetrization inequality and contraction inequality for the square (2.3),
it is easy to show that in the case of i.i.d. random variables X1; : : : ; Xn with
distribution P

E sup
f 2F

nX

iD1
f 2.Xi/ � n sup

f 2F
Pf 2 C 8UE

����
nX

iD1
"if .Xi /

����
F

: (2.5)

The right hand side of this bound is a common choice of the quantity V involved in
Talagrand’s inequality. Moreover, in the case when Ef .X/ D 0; the desymmetriza-
tion inequality yields

E

����
nX

iD1
"if .Xi /

����
F

� 2E

����
nX

iD1
f .Xi /

����
F

:

As a result, one can use Talagrand’s inequality with

V D n sup
f 2F

Pf 2 C 16UE

����
nX

iD1
f .Xi /

����

and the size of
���
Pn

iD1 f .Xi /
���

F
is now controlled it terms of its expectation only.
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This form of Talagrand’s inequality is especially convenient and there have
been considerable efforts to find explicit and sharp values of the constants in such
inequalities. In particular, we will frequently use the bounds proved by Bousquet
[33] and Klein [77] (in fact, Klein and Rio [78] provide an improved version of
this inequality). Namely, for a class F of measurable functions from S into Œ0; 1�
(by a simple rescaling Œ0; 1� can be replaced by any bounded interval) the following
bounds hold for all t > 0 W
Bousquet bound

P

�
kPn�P kF � EkPn �P kF C

r
2
t

n

	
�2P .F /C 2EkPn � P kF



C t

3n

�
� e�t

Klein-Rio bound

P

�
kPn �P kF � EkPn �P kF �

r
2
t

n

	
�2P .F /C 2EkPn � P kF



� t

n

�
� e�t :

Here

�2P .F / WD sup
f 2F

	
Pf 2 � .Pf /2



:

We will also need a version of Talagrand’s inequality for unbounded classes of
functions. Given a class F of measurable functions f W S 7! R; denote by F
an envelope of F ; that is, a measurable function such that jf .x/j � F.x/; x 2 S ,
f 2 F : The next bounds follow from Theorem 4 of Adamczak [1]: for all ˛ 2 .0; 1�
there exists a constantK D K.˛/ such that

Adamczak bound

P

�
kPn�P kF � K

�
EkPn�P kF C�P .F /

r
t

n
C
��� max
1�j�n F.Xj /

���
 ˛

t1=˛

n

��
� e�t

and

P

�
EkPn�P kF � K

�
kPn�P kF C�P .F /

r
t

n
C
��� max
1�j�nF.Xj /

���
 ˛

t1=˛

n

��
� e�t :

Concentration inequalities can be also applied to the Rademacher process which
can be viewed as an empirical process based on the sample .X1; "1/; : : : ; .Xn; "n/ in
the space S � f�1; 1g and indexed by the class of functions QF WD f Qf W f 2 F g;
where Qf .x; u/ WD f .x/u; .x; u/ 2 S � f�1; 1g:
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2.4 Exponential Bounds for Sums of Independent
Random Matrices

In this section, we discuss very simple, but powerful noncommutative Bernstein
type inequalities that go back to Ahlswede and Winter [4]. The goal is to bound
the tail probability PfkX1 C � � � C Xnk � tg; where X1; : : : ; Xn are independent
Hermitian random m � m matrices with EXj D 0 and k � k is the operator norm.1

The proofs of such inequalities are based on a matrix extension of the classical proof
of Bernstein’s inequality for real valued random variables, but they also rely on
important matrix inequalities that have many applications in mathematical physics.
In the case of sums of i.i.d. random matrices, it is enough to use the following well
known Golden-Thompson inequality (see, e.g., Simon [133], p. 94):

Proposition 2.1. For arbitrary Hermitian m �m matrices A;B

tr.eACB/ � tr.eAeB/:

It is needed to control the matrix moment generating function

Etr expf	.X1 C � � � CXn/g:

This approach was used in the original paper by Ahlswede and Winter [4], but
also in [70, 88, 124]. However, it does not seem to provide the correct form of
“variance parameter” in the non i.i.d. case. We will use below another approach
suggested by Tropp [142] that is based on the following classical result by Lieb
[102] (Theorem 6).

Proposition 2.2. For all Hermitian matrices A; the function

GA.S/ WD tr expfAC logSg

is concave on the cone of Hermitian positively definite matrices.

Given independent Hermitian randomm�mmatricesX1; : : : ; Xn with EXj D 0;

denote
�2 WD n�1

���E.X2
1 C � � � CX2

n/
���:

Theorem 2.7. 1. Suppose that, for someU>0 and for all j D 1; : : : ; n; kXjk � U:

Then

P

�
kX1 C � � � CXnk � t

�
� 2m exp

�
� t2

2�2nC 2Ut=3

�
: (2.6)

2. Let ˛ � 1 and suppose that, for some U .˛/ > 0 and for all j D 1; : : : ; n;

1For the notations used in this section, see Sect. A.4.



2.4 Exponential Bounds for Sums of Independent Random Matrices 27

���kXjk
���
 ˛

_ 2E1=2kXj k2 � U .˛/:

Then, there exists a constantK > 0 such that

PfkX1 C � � � CXnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�/

�
: (2.7)

Inequality (2.6) is a direct noncommutative extension of classical Bernstein’s
inequality for sums of independent random variables. It is due to Ahlswede and
Winter [4] (see also [70, 124, 142]). In inequality (2.7), the L1-bound U on kXjk
is replaced by a weaker  ˛-norm. This inequality was proved in [88] in the i.i.d.
case and in [89] in the general case. We follow the last paper below. Note that, when
˛ ! 1; (2.7) coincides with (2.6) (up to constants).

Proof. Denote Yn WD X1 C � � � C Xn and observe that kYnk < t if and only if
�tIm < Yn < tIm: It follows that

PfkYnk � tg � PfYn 6< tImg C PfYn 6> �tImg: (2.8)

The next bounds are based on a simple matrix algebra:

PfYn 6< tImg D Pfe	Yn 6< e	tImg � P

n
tr
	
e	Yn



� e	t

o
� e�	t

Etr.e	Yn /: (2.9)

To bound the matrix moment generating function Etr.e	Yn/; observe that

Etr.e	Yn/ D EEntr expf	Yn�1 C log e	Xng D EEnG	Yn�1 .e
	Xn/:

where En denotes the conditional expectation given X1; : : : ; Xn�1: Using Lieb’s
theorem (see Proposition 2.2), Jensen’s inequality for the expectation En and the
independence of random matrices Xj ; we get

Etr.e	Yn/ � EG	Yn�1 .Ee
	Xn/ D Etr expf	Yn�1 C log Ee	Xng:

Using the same conditioning trick another time, we get

Etr.e	Yn/ � Etr expf	Yn�1 C log Ee	Xng
D EEn�1tr expf	Yn�2 C log Ee	Xn C log e	Xn�1g D EEnG	Yn�2Clog Ee	Xn .e

	Xn�1 /

and another application of Lieb’s theorem and Jensen’s inequality yields

Etr.e	Yn/ � Etr expf	Yn�2 C log Ee	Xn�1 C log Ee	Xng:
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Iterating this argument, we get

Etr.e	Yn/ � tr expflog Ee	X1 C log Ee	X2 C � � � C log Ee	Xng: (2.10)

Next we have to bound Ee	X for an arbitrary Hermitian random matrix with
EX D 0 and kXk � U: To this end, we use the Taylor expansion:

Ee	X D Im C E	2X2

�
1

2Š
C 	X

3Š
C 	2X2

4Š
C : : :

�

� Im C 	2EX2

�
1

2Š
C 	kXk

3Š
C 	2kXk2

4Š
C : : :

�

D Im C 	2EX2

�
e	kXk � 1 � 	kXk

	2kXk2
�
:

Under the assumption kXk � U; this yields

Ee	X � Im C 	2EX2

�
e	U � 1 � 	U

	2U 2

�
:

Denoting �.u/ WD eu�1�u
u2

; we easily get

log Ee	X � 	2EX2�.	U /:

We will use this bound for each random matrixXj and substitute the result in (2.10)
to get

Etr.e	Yn/ � tr exp
n
	2E.X2

1 C � � � CX2
n/�.	U /

o

� m exp
n
	2kE.X2

1 C � � � CX2
n/k�.	U /

o
:

In view of (2.9), it remains to follow the usual proof of Bernstein–Bennett type
inequalities to obtain (2.6).

To prove (2.7), we bound Ee	X in a slightly different way. We do it for an
arbitrary Hermitian random matrix with EX D 0 and

���kXk
���
 ˛

_ 2E1=2kXk2 � U .˛/:

For all 
 > 0; we get



2.4 Exponential Bounds for Sums of Independent Random Matrices 29

Ee	X � Im C 	2EX2

�
e	kXk � 1� 	kXk

	2kXk2
�

� Im C	2EX2

�
e	
 � 1�	


	2
2

�
C Im	

2
EkXk2

�
e	kXk � 1�	kXk

	2kXk2
�
I.kXk � 
/:

Take M WD 2.log2/1=˛U .˛/ and assume that 	 � 1=M: It follows that

EkXk2
�
e	kXk � 1 � 	kXk

	2kXk2
�
I.kXk � 
/ � M2

EekXk=MI.kXk � 
/ �

M2
E
1=2e2kXk=M

P
1=2fkXk � 
g:

Since, for ˛ � 1;

M D 2.log2/1=˛U .˛/ � 2
���kXk

���
 1

(see Sect. A.1), we get Ee2kXk=M � 2 and also

PfkXk � 
g � exp

�
�2˛ log 2

�



M

�˛�
:

Therefore, the following bound holds:

Ee	X � Im C 	2EX2

�
e	
 � 1 � 	


	2
2

�
C 21=2	2M2 exp

�
�2˛�1 log 2

�



M

�˛�
Im:

Take now 
 WD M 21=˛�1

.log 2/1=˛
log1=˛ M2

�2
and suppose that 	 satisfies the condition

	
 � 1: This yields the following bound

Ee	X � Im C C1

2
	2.EX2 C �2Im/;

which implies that

log Ee	X � C1

2
	2.EX2 C �2Im/

with some constant C1 > 0:We use the last bound for each random matrixXj ; j D
1; : : : ; n and deduce from (2.10) that, for some constants C1; C2 > 0 and for all 	
satisfying the condition

	 U .˛/

�
log

U .˛/

�

�1=˛
� C2; (2.11)

we have
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Etr.e	Yn/ � tr exp

�
C1

2
	2.EX2

1 C � � � C EX2
n C n�2Im/

�
;

which further implies that

Etr.e	Yn / � m expfC1	2n�2/g:

Combining this bound with (2.8) and (2.9), we get

PfkYnk � tg � 2m exp
n
�	t C C1	

2n�2
o
:

The last bound can be now minimized with respect to all 	 satisfying (2.11), which
yields that, for some constantK > 0;

PfkYnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�/

�
:

This proves inequality (2.7). ut
The next bounds immediately follow from (2.6) and (2.7): for all t > 0; with

probability at least 1 � e�t

����
X1 C � � � CXn

n

���� � 2

�
�

r
t C log.2m/

n

_
U
t C log.2m/

n

�
(2.12)

and, with some constant C > 0;

����
X1 C � � � CXn

n

���� � C

�
�

r
t C log.2m/

n

_

U .˛/

�
log

U .˛/

�

�1=˛
t C log.2m/

n

�
: (2.13)

Note that the size m of the matrices has only logarithmic impact on the bounds.
It is easy to derive Bernstein type exponential inequalities for rectangular

m1 �m2 random matrices from the inequalities of Theorem 2.7 for Hermitian
matrices. This is based on the following well known isomorphism trick (sometimes
called Paulsen dilation). Denote by Mm1;m2.R/ the space of all m1 � m2 matrices
with real entries and by Hm.C/ the space of all Hermitian m �m matrices. Define
the following linear mapping

J W Mm1;m2.R/ 7! Hm1Cm2.C/; where JS WD
�
O S

S� O

�
:

Clearly,
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.JS/2 WD
�
SS� 0

0 S�S

�
:

Therefore,
kJSk D kSS�k1=2 _ kS�Sk1=2 D kSk

and, for independent random matricesX1; : : : ; Xn in Mm1;m2.R/ with EXj D 0; we
have

�2 WD n�1	kE.X1X
�
1 /C � � � C E.XnX

�
n /k _ kE.X�

1 X1/C � � � C E.X�
n Xn/k




D n�1kE..JX1/
2 C � � � C .JXn/

2/k:

The following statement immediately follows from Theorem 2.7 by applying it
to the Hermitian random matrices JX1; : : : ; JXn:

Corollary 2.1. 1. Let m WD m1 C m2. Suppose that, for some U>0 and for all
jD1; : : : ; n; kXjk � U: Then

P

�
kX1 C � � � CXnk � t

�
� 2m exp

�
� t2

2�2nC 2Ut=3

�
: (2.14)

2. Let ˛ � 1 and suppose that for some U .˛/ > 0 and for all j D 1; : : : ; n;

���kXjk
���
 ˛

_ 2E1=2kXk2 � U .˛/:

Then, there exists a constantK > 0 such that

PfkX1 C � � � CXnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�X/

�
:

(2.15)

2.5 Further Comments

Initially, the theory of empirical processes dealt with asymptotic problems: uniform
versions of laws of large numbers, central limit theorem and laws of iterated
logarithm. It started with the work by Vapnik and Chervonenkis (see [147] and
references therein) on Glivenko-Cantelli problem and by Dudley [59] on the
central limit theorem (extensions of Kolmogorov–Donsker theorems). Other early
references include Koltchinskii [80], Pollard [122] and Giné and Zinn [69]. Since
Talagrand [138, 139] developed his concentration inequalities, the focus of the
theory has shifted to the development of bounds on sup-norms of empirical
processes with applications to a variety of problems in statistics, learning theory,
asymptotic geometric analysis, etc (see also [137]).
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Symmetrization inequalities of Sect. 2.1 were introduced to the theory of empiri-
cal processes by Giné and Zinn [69] (an earlier form of Rademacher symmetrization
was used by Koltchinskii [80] and Pollard [122]).

In Sect. 2.2, we follow the proof of Talagrand’s comparison inequality for
Rademacher sums given by Ledoux and Talagrand [101], Theorem 4.12.

Talagrand’s concentration inequalities for product measures and empirical pro-
cesses were proved in [138, 139]. Another approach to their proof, the entropy
method based on logarithmic Sobolev inequalities, was introduced by Ledoux. It
is discussed in detail in [100] and [107] (see also [30]). The bounded difference
inequality based on the martingale method is well known and can be found in many
books (e.g., [51, 107]).

Noncommutative Bernstein’s inequality (2.6) was discovered by Ahlswede and
Winter [4]. This inequality and its extensions proved to be very useful in the recent
work on low rank matrix recovery (see Gross et al. [71], Gross [70], Recht [124],
Koltchinskii [88]). Tropp [142] provides a detailed review of various inequalities of
this type.



Chapter 3
Bounding Expected Sup-Norms of Empirical
and Rademacher Processes

In what follows, we will use a number of bounds on expectation of suprema
of empirical and Rademacher processes. Because of symmetrization inequalities,
the problems of bounding expected suprema for these two stochastic processes
are equivalent. The bounds are usually based on various complexity measures of
function classes (such as linear dimension, VC-dimension, shattering numbers,
uniform covering numbers, random covering numbers, bracketing numbers, generic
chaining complexities, etc). It would be of interest to develop the bounds with
precise dependence on such geometric parameters as the L2.P /-diameter of the
class. Combining the bounds on expected suprema with Talagrand’s concentration
inequalities yields exponential inequalities for the tail probabilities of sup-norms.

3.1 Gaussian and Subgaussian Processes, Metric Entropies
and Generic Chaining Complexities

Recall that a random variable Y is called subgaussian with parameter �2; or Y 2
SG.�2/; iff for all 	 2 R

Ee	Y � e	
2�2=2:

Normal random variable with mean 0 and variance �2 belongs to SG.�2/: If " is a
Rademacher r.v., then " 2 SG.1/:

The next proposition gives two simple and important properties of subgaussian
random variables (see, e.g., [148], Sect. 2.2.1 for the proof of property (ii)).

Proposition 3.1. (i) If Y1; : : : ; Yn are independent random variables and Yj 2
SG.�2j /; then

Y1 C � � � C Yn 2 SG.�21 C � � � C �2n/:

(ii) For arbitrary Y1; : : : ; YN ; N � 2 such that Yj 2 SG.�2j /; j D 1; : : : ; N;

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 3,
© Springer-Verlag Berlin Heidelberg 2011
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E max
1�j�N jYj j � C max

1�j�N �j
p

logN;

where C is a numerical constant.

Let .T; d/ be a pseudo-metric space and Y.t/; t 2 T be a stochastic process. It is
called subgaussian with respect to d iff, for all t; s 2 T; Y.t/�Y.s/ 2 SG.d2.t; s//:

Denote D.T / D D.T; d/ the diameter of the space T: Let N.T; d; "/ be the
"-covering number of .T; d/; that is, the minimal number of balls of radius "
needed to cover T: Let M.T; d; "/ be the "-packing number of .T; d/; i.e., the
largest number of points in T separated from each other by at least a distance
of ": Obviously,

N.T; d; "/ � M.T; d; "/ � N.T; d; "=2/; " � 0:

As always,
H.T; d; "/ D logN.T; d; "/

is called the "-entropy of .T; d/:

Theorem 3.1 (Dudley’s entropy bounds). If Y.t/; t 2 T is a subgaussian process
with respect to d; then the following bounds hold with some numerical constant
C > 0W

E sup
t2T

Y.t/ � C

Z D.T /

0

H1=2.T; d; "/d"

and for all t0 2 T

E sup
t2T

jY.t/ � Y.t0/j � C

Z D.T /

0

H1=2.T; d; "/d":

The integral in the right hand side of the bound is often called Dudley’s entropy
integral.

For Gaussian processes, the following lower bound is also true (see [101],
Sect. 3.3).

Theorem 3.2 (Sudakov’s entropy bound). If Y.t/; t 2 T is a Gaussian process
and

d.t; s/ WD E
1=2.X.t/ � X.s//2; t; s 2 T;

then the following bound holds with some numerical constant C > 0 W

E sup
t2T

Y.t/ � C sup
">0

"H1=2.T; d; "/:

Note that, if Z is a standard normal vector in R
N and T � R

N ; then Sudakov’s
entropy bound immediately implies that, with some numerical constant C 0 > 0;

sup
">0

"H1=2.T; k � k`2 ; "/ � C 0
E sup
t2T

hZ; ti: (3.1)
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We will also need another inequality of a similar flavor that is often called dual
Sudakov’s inequality (see Pajor and Tomczak-Jaegermann [121]). Namely, let K �
R
N be a symmetric convex set (that is, u 2 K implies �u 2 K). Denote

ktkK WD sup
u2K

hu; ti:

Finally, denote BN
2 the unit ball in the space lN2 (that is, in R

N equipped with the
l2-norm). Then, the following bound holds with a numerical constant C 0 > 0 W

sup
">0

"H1=2.BN
2 ; k � kK; "/ � C 0

E sup
t2K

hZ; ti: (3.2)

Note that, for T D K; (3.1) provides an upper bound on the cardinality of minimal
coverings of the symmetric convex set K by the Euclidean balls of radius ": On the
other hand, (3.2) is a bound on the cardinality of minimal coverings of the Euclidean
unit ball BN

2 by the translations of the convex set "Kı; Kı being the polar set ofK:
In both cases, the bounds are dimension free.

The proof of Theorem 3.1 is based on the well known chaining method (see,
e.g., [101], Sect. 11.1) that also leads to more refined generic chaining bounds (see
Talagrand [140]). Talagrand’s generic chaining complexity of a metric space .T; d/
is defined as follows. An admissible sequence f�ngn�0 is an increasing sequence
of partitions of T (that is, each next partition is a refinement of the previous one)
such that card.�0/ D 1 and card.�n/ � 22

n
; n � 1: Given t 2 T; let �n.t/ denote

the unique subset from �n that contains t: For a set A � T; let D.A/ denote its
diameter. Define the generic chaining complexity �2.T I d/ as

�2.T I d/ WD inf
f�ngn�0

sup
t2T

X

n�0
2n=2D.�n.t//;

where the inf is taken over all admissible sequences of partitions.

Theorem 3.3 (Talagrand’s generic chaining bounds). If Y.t/; t 2 T is a cen-
tered Gaussian process with

d.t; s/ WD E
1=2.Y.t/ � Y.s//2; t; s 2 T;

then
K�1�2.T I d/ � E sup

t2T
Y.t/ � K�2.T I d/;

where K > 0 is a universal constant. The upper bound also holds for all subgaus-
sian processes with respect to d:

Of course, Talagrand’s generic chaining complexity is upper bounded by
Dudley’s entropy integral. In special cases, other upper bounds are also available
that might be sharper in specific applications. For instace, if T � H is the unit ball
in a Hilbert space H and d is the metric generated by an arbitrary norm in H; then,
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for some constant C > 0;

�2.T I d/ � C

�Z 1

0

"H.T I d I "/d"
�1=2

: (3.3)

This follows from a more general result by Talagrand [140] that applies also to
Banach spaces with p-convex norms for p � 2:

In addition to Gaussian processes, Rademacher sums provide another important
example of subgaussian processes. Given T � R

n; define

Y.t/ WD
nX

iD1
"i ti ; t D .t1; : : : ; tn/ 2 T;

where f"ig are i.i.d. Rademacher random variables. The stochastic process Y.t/,
t 2 T is called the Rademacher sum indexed by T: It is a subgaussian process with
respect to the Euclidean distance in R

n W

d.t; s/ D
� nX

iD1
.ti � si /

2

�1=2
:

The following result by Talagrand is a version of Sudakov’s type lower bound
for Rademacher sums (see [101], Sect. 4.5).

Denote

R.T / WD E" sup
t2T

ˇ̌
ˇ̌
ˇ

nX

iD1
"i ti

ˇ̌
ˇ̌
ˇ :

Theorem 3.4 (Talagrand). There exists a universal constant L such that

R.T / � 1

L
ıH1=2.T; d; ı/ (3.4)

whenever

R.T / sup
t2T

ktk`
1

� ı2

L
: (3.5)

3.2 Finite Classes of Functions

Suppose F is a finite class of measurable functions uniformly bounded by a
constant U > 0: Let N WD card.F / � 2: Denote �2 WD supf 2F Pf 2.

Theorem 3.5. There exist universal constantsK1;K2 such that

EkRnkF � K1U

r
logN

n
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and

EkRnkF � K2

�
�

r
logN

n

_
U

logN

n

�
:

Proof. Conditionally on X1; : : : ; Xn; the random variable

p
nRn.f / D 1p

n

nX

jD1
"j f .Xj /; f 2 F

is subgaussian with parameter kf kL2.Pn/: Therefore, it follows from Proposition
3.1, (ii) that

E"kRnkF � K sup
f 2F

kf kL2.Pn/
r

logN

n
:

The first bound now follows since supf 2F kf kL2.Pn/ � U: To prove the second
bound, denote F 2 WD ff 2 W f 2 F g and observe that

sup
f 2F

kf kL2.Pn/ � sup
f 2F

kf kL2.P / C
p

kPn � P kF2 ;

which implies
E sup
f 2F

kf kL2.Pn/ � � C
p

EkPn � P kF2 :

Using symmetrization and contraction inequalities, we get

EkPn � P kF2 � 2EkRnkF2 � 8UEkRnkF :

Hence,

EkRnkF � KE sup
f 2F

kf kL2.Pn/
r

logN

n
� K

�
� C

p
8UEkRnkF

�r
logN

n
:

The result now follows by bounding the solution with respect to EkRnkF of the
above inequality. ut

The same result can be also deduced from the following theorem (it is enough to
take q D logN ).

Theorem 3.6. There exists a universal constants K such that for all q � 2

E
1=qkRnkqF � E

1=qkRnkq`q.F / WD E
1=q

X

f 2F

jRn.f /jq

� K

�
�
.q � 1/1=2N 1=q

n1=2

_
U
.q � 1/N 2=q

n

�
:
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Proof. We will need the following simple property of Rademacher sums: for all
q � 2;

E
1=q

ˇ̌
ˇ̌
nX

iD1
˛i "i

ˇ̌
ˇ̌
q

� .q � 1/1=2
� nX

iD1
˛2i

�1=2

(see, e.g., de la Pena and Giné [50], p. 21). Using this inequality, we get

E"kRnkqF �
X

f 2F

E"jRn.f /jq � .q � 1/q=2n�q=2 X

f 2F

kf kqL2.Pn/

� .q � 1/q=2n�q=2N
�

sup
f 2F

Pnf
2

�q=2

� .q � 1/q=2n�q=2N
�
�2 C kPn � P kF2

�q=2
:

This easily implies

E
1=qkRnkqF � E

1=q
X

f 2F

jRn.f /jq (3.6)

� .q � 1/1=2n�1=2N 1=q21=2�1=q
�
� C E

1=qkPn � P kq=2
F2

�
:

It remains to use symmetrization and contraction inequalities to get

E
1=qkPn � P kq=2

F2 � 2U 1=2
E
1=qkRnkq=2F � 2U 1=2

q
E1=qkRnkqF ;

to substitute this bound into (3.6) and to solve the resulting inequality for
E
1=qkRnkqF to complete the proof. ut

3.3 Shattering Numbers and VC-classes of Sets

Let C be a class of subsets of S: Given a finite set F � S; denote

�C .F / WD cardfC \ F g;

where C \ F WD
n
C \ F W C 2 C

o
: Clearly,

�C .F / � 2card.F /:
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If �C .F / D 2card.F /; it is said that F is shattered by C : The numbers �C .F / are
called the shattering numbers of the class C :

Define

mC .n/ WD sup

�
�C .F / W F � S; card.F / � n

�
:

Clearly, mC .n/ � 2n; n � 1; and if, for some n; mC .n/ < 2n; then mC .k/ < 2k

for all k � n:

Let
V.C / WD minfn � 1 W mC .n/ < 2ng:

If mC .n/ D 2n for all n � 1; set V.C / D 1: The number V.C / is called the
Vapnik–Chervonenkis dimension (or the VC-dimension) of class C : If V.C / <
C1; then C is called the Vapnik–Chervonenkis class (or VC-class). It means that
no set F of cardinality n � V.C / is shattered by C :

Denote  
n

� k

!
WD
 
n

0

!
C � � � C

 
n

k

!
:

The following lemma (proved independently in somewhat different forms by
Sauer, Shelah, and also by Vapnik and Chervonenkis) is one of the main combi-
natorial facts related to VC-classes.

Theorem 3.7 (Sauer’s Lemma). Let F � S; card.F / D n: If

�C .F / >

 
n

� k � 1

!
;

then there exists a subset F 0 � F; card.F 0/ D k such that F 0 is shattered by C :

The Sauer’s Lemma immediately implies that, for a VC-class C ;

mC .n/ �
 

n

� V.C /� 1

!
;

which can be further bounded by

�
ne

V.C /�1

�V.C /�1
:

We will view P and Pn as functions defined on a class C of measurable sets
C 7! P.C /; C 7! Pn.C / and the Rademacher process will be also indexed by sets:

Rn.C / WD n�1
nX

jD1
"j IC .Xj /:

For Y W C 7! R; we still write kY kC WD supC2C jY.C /j. Denote F WD fIC W
C 2 C g.
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Theorem 3.8. There exists a numerical constantK > 0 such that

EkPn � P kC � KE

s
log�C .X1; : : : ; Xn/

n
� K

s
E log�C .X1; : : : ; Xn/

n
:

The drawback of this result is that it does not take into account the “size” of the
sets in the class C : A better bound is possible in the case when, for all C 2 C ;
P.C / is small. We will derive such an inequality in which the size of EkPn �P kC

is controlled in terms of random shattering numbers�C .X1; : : : ; Xn/ and of

kP kC D sup
C2C

P.C /

(and which implies the inequality of Theorem 3.8).

Theorem 3.9. There exists a numerical constantK > 0 such that

EkPn � P kC � KkP k1=2C E

s
log�C .X1; : : : ; Xn/

n

_
K

E log�C .X1; : : : ; Xn/

n

� KkP k1=2C

s
E log�C .X1; : : : ; Xn/

n

_
K

E log�C .X1; : : : ; Xn/

n
:

Proof. Let

T WD
�
.IC .X1/; : : : ; IC .Xn// W C 2 C

�
:

Clearly, card.T / D �C .X1; : : : ; Xn/ and

E"kRnkC D E" sup
t2T

ˇ̌
ˇ̌n�1

nX

iD1
"i ti

ˇ̌
ˇ̌:

For all t 2 T; n�1Pn
iD1 "i ti is a subgaussian random variable with parameter

n�1ktk`2 : Therefore, by Proposition 3.1,

E" sup
t2T

ˇ̌
ˇ̌n�1

nX

iD1
"i ti

ˇ̌
ˇ̌ � Kn�1 sup

t2T
ktk`2

q
log�C .X1; : : : ; Xn/:

Note that
n�1 sup

t2T
ktk`2 D n�1=2. sup

C2C
Pn.C //

1=2:

Hence,
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E"kRnkC � Kn�1=2
EkPnk1=2C

q
log�C .X1; : : : ; Xn/

� Kn�1=2
E

p
kPn � P kC C kP kC

q
log�C .X1; : : : ; Xn/

� Kn�1=2
E

p
kPn � P kC

q
log�C .X1; : : : ; Xn/

CKn�1=2pkP kC E

q
log�C .X1; : : : ; Xn/:

By symmetrization inequality,

EkPn � P kC � 2Kn�1=2
E

p
kPn � P kC

q
log�C .X1; : : : ; Xn/

C2Kn�1=2pkP kC E

q
log�C .X1; : : : ; Xn/

� 2Kn�1=2p
EkPn � P kC

q
E log�C .X1; : : : ; Xn/

C2Kn�1=2pkP kC E

q
log�C .X1; : : : ; Xn/;

where we also used Cauchy–Schwarz inequality. It remains to solve the resulting
inequality with respect to EkPn � P kC (or just to upper bound its solution) to get
the result. ut

In the case of VC-classes,

log�C .X1; : : : ; Xn/ � logmC .n/ � KV.C / logn

with some numerical constantK > 0: Thus, Theorem 3.9 yields the bound

EkPn � P kC � K

�
kP k1=2C

r
V.C / logn

n

_ V.C / logn

n

�
:

However, this bound is not sharp: the logarithmic factor involved in it can be
eliminated. To this end, the following bound on the covering numbers of a VC-
class C is needed. For an arbitrary probability measure Q on .S;A /; define the
distance

dQ.C1; C2/ D Q.C14C2/; C1; C2 2 C :

Theorem 3.10. There exists a universal constantK > 0 such that for any VC-class
C � A and for all probability measuresQ on .S;A /

N.C I dQI "/ � KV.C /.4e/V.C /
�
1

"

�V.C /�1
; " 2 .0; 1/:
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This result is due to Haussler and it is an improvement of an earlier bound by
Dudley (the proof and precise references can be found, e.g., in van der Vaart and
Wellner [148]).

By Theorem 3.10, we get

N.C I dPn I "/ � KV.C /.4e/V.C /
�
1

"

�V.C /�1
; " 2 .0; 1/:

Using this fact one can prove the following inequality:

EkPn � P kC � K

�
kP k1=2C

s

log
K

kP kC

r
V.C /

n

_ V.C / log K
kPkC

n

�
:

We are not giving its proof here. However, in the next section, we establish more
general results for VC-type classes of functions (see (3.17)) that do imply the above
bound.

3.4 Upper Entropy Bounds

Let N.F IL2.Pn/I "/ denote the minimal number of L2.Pn/-balls of radius "
covering F and let

�2n WD sup
f 2F

Pnf
2:

Also denote by �2.F IL2.Pn// Talagrand’s generic chaining complexity of F with
respect to the L2.Pn/-distance.

Theorem 3.11. The following bound holds with a numerical constant C > 0 W

EkRnkF � Cp
n

E�2.F IL2.Pn//:

As a consequence,

EkRnkF � Cp
n

E

Z 2�n

0

p
logN.F IL2.Pn/I "/d"

with some constant C > 0:

Proof. Conditionally on X1; : : : ; Xn; the process

p
nRn.f / D 1p

n

nX

jD1
"j f .Xj /; f 2 F
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is subgaussian with respect to the distance of the space L2.Pn/: Hence, it follows
from Theorem 3.3 that

E"kRnkF � Cn�1=2�2.F IL2.Pn//: (3.7)

Taking expectation of both sides, yields the first inequality. The second inequality
follows by bounding Talagrand’s generic chaining complexity from above by
Dudley’s entropy integral. ut

Following Giné and Koltchinskii [66], we will derive from Theorem 3.11 several
bounds under more special conditions on the random entropy. Assume that the
functions in F are uniformly bounded by a constant U > 0 and let F � U denote
a measurable envelope of F ; that is,

jf .x/j � F.x/; x 2 S; f 2 F :

We will assume that �2 is a number such that

sup
f 2F

Pf 2 � �2 � kF k2L2.P /

Most often, we will use �2 D supf 2F Pf 2:

LetH W Œ0;1/ 7! Œ0;1/ be a regularly varying function of exponent 0 � ˛ < 2,
strictly increasing for u � 1=2 and such that H.u/ D 0 for 0 � u < 1=2.

Theorem 3.12. If, for all " > 0 and n � 1;

logN.F ; L2.Pn/; "/ � H

�kF kL2.Pn/
"

�
; (3.8)

then there exists a constant C > 0 that depends only on H and such that

EkRnkF � C

"
�p
n

r
H
	kF kL2.P /

�


_ U

n
H
	kF kL2.P /

�


#
: (3.9)

In particular, if, for some C1 > 0;

n�2 � C1U
2H

�kF kL2.P /
�

�
;

then

EkRnkF � C�p
n

s

H

�kF kL2.P /
�

�
(3.10)

with a constant C > 0 that depends only on H and C1:
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Proof. Without loss of generality, assume that U D 1 (otherwise the result follows
by a simple rescaling of the class F ). Given function H; we will use constants
CH > 0 and DH > 0 for which

sup
v�1

R1
v u�2pH.u/du

v�1pH.v/

_
1�CH ;

Z 2

0

p
H.1=u/du D

Z 1

1=2

u�2pH.u/du �DH :

The bound of Theorem 3.11 implies that with some numerical constant C > 01

EkRnkF � Cn�1=2
E

Z 2�n

0

p
logN.F ; L2.Pn/; "/d"

� Cn�1=2
E

Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d"

� Cn�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d" I

	
kF kL2.Pn/ � 2kF kL2.P /



(3.11)

CCn�1=2
E

Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d" I

	
kF kL2.Pn/ > 2kF kL2.P /



:

It is very easy to bound the second term in the sum. First note that

Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d" � kF kL2.Pn/

Z 2

0

p
H.1=u/du � DHkF kL2.Pn/:

Then use Hölder’s inequality and Bernstein’s inequality to get

n�1=2
E

"Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d"I

�kF kL2.Pn/ > 2kF kL2.P /


#

(3.12)

� DHn
�1=2kF kL2.P / exp

�
�9
8
nkF k2L2.P /

�
� DH

2n
:

Bounding the first term is slightly more complicated. Recall the notation

F 2 WD ff 2 W f 2 F g:

Using symmetrization and contraction inequalities, we get

E�2n � �2 C EkPn �P kF2 � �2 C 2EkRnkF2 � �2 C 8EkRnkF DW B2: (3.13)

1The value of C might change from place to place.
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Since, for nonincreasing h; the function

u 7!
Z u

0

h.t/dt

is concave, we have, by the properties of H; that

n�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d" I.kF kL2.Pn/ � 2kF kL2.P //

� n�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d"

� n�1=2
Z 2.E�2n/

1=2

0

s

H

�
2kF kL2.P /

"

�
d"

� n�1=2
Z 2B

0

s

H

�
2kF kL2.P /

"

�
d"

D 2kF kL2.P /n�1=2
Z B=kF kL2.P /

0

s

H

�
1

"

�
d"

D 2n�1=2kF kL2.P /
Z C1

kF kL2.P /=B
u�2pH.u/du: (3.14)

In the case when B � kF kL2.P /; this yields the bound

n�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d" I.kF kL2.Pn/ � 2kF kL2.P //

� 2CHn
�1=2B

s

H

�kF kL2.P /
B

�
� 2CHn

�1=2B

s

H

�kF kL2.P /
�

�
:

In the case when B > kF kL2.P /; the bound becomes

n�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d" I.kF kL2.Pn/ � 2kF kL2.P //

� 2n�1=2kF kL2.P /
Z C1

1=2

u�2pH.u/du

� 2
DHp
H.1/

n�1=2kF kL2.P /
p
H.1/ � 2

DHp
H.1/

n�1=2B

s

H

�kF kL2.P /
�

�
;
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where we also used the assumption that

sup
f 2F

Pf 2 � �2 � kF k2L2.P /:

Thus, in both cases we have

n�1=2
E

Z 2�n

0

s

H

�
2kF kL2.P /

"

�
d" I.kF kL2.Pn/ � 2kF kL2.P //

� Cn�1=2B

s

H

�kF kL2.P /
�

�
(3.15)

with a constant C depending only onH:
Now, we deduce from inequality (3.15) that

n�1=2
E

"Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d"I

�kF kL2.Pn/ � 2kF kL2.P /


#

� Cn�1=2�

s

H

�kF kL2.P /
�

�
C p

8Cn�1=2p
EkRnkF

s

H

�kF kL2.P /
�

�
:

We will use the last bound together with inequalities (3.11) and (3.12). Denote

E WD EkRnkF :

Then, we end up with the following inequality

E � CDHn
�1CCn�1=2�

s

H

�kF kL2.P /
�

�
Cp

8Cn�1=2pE
s

H

�kF kL2.P /
�

�
:

Solving it with respect to E completes the proof. ut
The next bounds follow from Theorem 3.12 with �2 WD supf 2F Pf 2: If for

some A > 0; V > 0 and for all " > 0;

N.F IL2.Pn/I "/ �
�
AkF kL2.Pn/

"

�V
; (3.16)

then with some universal constant C > 0 (for �2 � const n�1)

EkRnkF � C

�r
V

n
�

r
log

AkF kL2.P /
�

_ V U

n
log

AkF kL2.P /
�

�
: (3.17)
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If for some A > 0; � 2 .0; 1/ and for all " > 0;

logN.F IL2.Pn/I "/ �
�
AkF kL2.Pn/

"

�2�
; (3.18)

then

EkRnkF � C

�
A�kF k�L2.P /p

n
�1��

_ A2�=.�C1/kF k2�=.�C1/
L2.P /

U .1��/=.1C�/

n1=.1C�/

�
: (3.19)

A function class F is called VC-subgraph iff

�
f.x; t/ W 0 � f .x/ � tg [ f.x; t/ W 0 � f .x/ � tg W f 2 F

�

is a VC-class. For a VC-subgraph class F ; the following bound holds with some
constants A; V > 0 and for all probability measuresQ on .S;A / W

N.F IL2.Q/I "/ �
�
AkF kL2.Q/

"

�V
; " > 0 (3.20)

(see, e.g., van der Vaart and Wellner [148], Theorem 2.6.7). Of course, this uniform
covering numbers condition does imply (3.16) and, as a consequence, (3.17).

We will call the function classes satisfying (3.16) VC-type classes.
If H is VC-type, then its convex hull conv.H / satisfies (3.18) with � WD V

VC2
(see van der Vaart and Wellner [148], Theorem 2.6.9). More precisely, the following
result holds.

Theorem 3.13. Let H be a class of measurable functions on .S;A / with a
measurable envelope F and let Q be a probability measure on .S;A /: Suppose
that F 2 L2.Q/ and

N.H IL2.Q/I "/ �
�
AkF kL2.Q/

"

�V
; " � kF kL2.Q/:

Then

logN.conv.H /IL2.Q/I "/ �
�
BkF kL2.Q/

"

�2V=.VC2/
; " � kF kL2.Q/

for some constant B that depends on A and V:

So, one can use the bound (3.19) for F � conv.H /: Note that in this bound the
envelope F of the class H itself should be used rather than an envelope of a subset
F of its convex hull (which might be smaller than F ).
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3.5 Lower Entropy Bounds

In this section, lower bounds on EkRnkF expressed in terms of entropy of the class
F will be proved. Again, we follow the paper by Giné and Koltchinskii [66]. In
what follows, the functionH satisfies the conditions of Theorem 3.12. Denote �2 D
supf 2F Pf 2:

Under the notations of Sect. 3.4, we introduce the following condition: with some
constant c > 0

logN.F ; L2.P /; �=2/ � cH

�kF kL2.P /
�

�
: (3.21)

Theorem 3.14. Suppose that F satisfies condition (3.8). There exist a universal
constant B > 0 and a constant C1 that depends only onH such that

EkRnkF � B
�p
n

p
logN.F ; L2.P /; �=2/ (3.22)

provided that

n�2 � C1U
2H

�
6kF kL2.P /

�

�
: (3.23)

Moreover, if in addition (3.21) holds, then, for some constants C2 depending only
on c; constant C3 depending only on H; and for all n such that (3.23) holds,

C2
�p
n

s

H

�kF kL2.P /
�

�
� EkRnkF � C3

�p
n

s

H

�kF kL2.P /
�

�
: (3.24)

Proof. Without loss of generality, we can assume that U D 1; so, the functions in
the class F are bounded by 1: The general case would follow by a simple rescaling.
First note that, under the assumptions of the theorem, inequality (3.10) holds, so,
we have with some constant C depending only on H

EkRnkF � C
�p
n

s

H

�kF kL2.P /
�

�
:

This already proves the right hand side of inequality (3.24).
It follows from Theorem 3.4 that

E"kRnkF � 1

8L

�p
n

p
logN.F ; L2.Pn/; �=8/; (3.25)

as soon as

E"kRnkF � �2

64L
: (3.26)
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To use this result, we will derive a lower bound on the right hand side of (3.25) and
an upper bound on the left hand side of (3.26) that hold with a high probability. Let
us bound first the right hand side of (3.25).

Let
M WD M.F ; L2.P /; �=2/

(recall that M.F ; L2.P /; �=2/ denotes the �=2-packing number of the class F �
L2.P /). We apply the law of large numbers to M functions in a maximal �=2-
separated subset of F and also to the envelope F: It implies that, for all " > 0; there
exists n and ! such that

M.F ; L2.P /; �=2/ � M.F ; L2.Pn.!//; .1 � "/�=2/
� N.F ; L2.Pn.!//; .1 � "/�=4/

and
kF kL2.Pn.!// � .1C "/kF kL2.P /:

Take " D 1=5: Then, by (3.8),

M.F ; L2.P /; �=2/ � exp

�
H

�
6kF kL2.P /

�

��
: (3.27)

Let f1; : : : ; fM be a maximal subset of F such that

P.fi � fj /
2 � �2=4 for all 1 � i ¤ j � M:

In addition, we have

P.fi � fj /
4 � 4P.fi � fj /2 � 16�2:

Bernstein’s inequality implies that

P

(
max

1�i¤j�M

 
nP.fi � fj /2 �

nX

kD1
.fi � fj /

2.Xk/

!
>
8

3
t C

p
32tn�2

)
�M2e�t :

Let t D ın�2: Since P.fi � fj /2 � �2=4 and (3.27) holds, we get

P

(
min

1�i¤j�M
1

n

nX

kD1
.fi � fj /

2.Xk/ � �2
	
1=4� 8ı=3�

p
32ı


)

� exp

�
6H

�
3kF kL2.P /

�

�
� ın�2

�
:

For ı D 1=.32 � 83/; this yields
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P

�
min

1�i¤j�M
Pn.fi � fj /2 � �2

16

�
� exp

�
H

�
6kF kL2.P /

�

�
� n�2

32 � 83
�
: (3.28)

Denote

E1 WD
�
! W M.F ; L2.Pn/; �=4/ � M

�
:

On this event,

N.F ; L2.Pn/; �=8/ � M.F ; L2.Pn/; �=4/ �
M D M.F ; L2.P /; �=2/ � N.F ; L2.P /; �=2/

and

P.E1/ � 1 � exp

�
H

�
6kF kL2.P /

�

�
� n�2

32 � 83
�
: (3.29)

Using symmetrization and contraction inequalities and condition (3.23), we have

EkPn � P kF2 � 2EkRnkF2 � 8EkRnkF � C
�p
n

s

H

�kF kL2.P /
�

�
� 6�2

(3.30)
(with a proper choice of constant C1 in (3.23)). Next, Bousquet’s version of
Talagrand’s inequality (see Sect. 2.3) yields the bound

P

(
kPn � P kF2 � 6�2 C �

r
26t

n
C t

3n

)
� e�t :

We take t D 26n�2: Then

P
˚kPn � P kF2 � 41�2

� � expf�26n�2g:

Denote

E2 WD
�
! W �2n D sup

f 2F
Pnf

2 < 42�2
�
: (3.31)

Then
P.E2/ > 1 � expf�26n�2g: (3.32)

Also, by Bernstein’s inequality, the event

E3 D f! W kF kL2.Pn/ � 2kF kL2.P /g (3.33)

has probability

P.E3/ � 1 � exp

�
�9
4
nkF k2L2.P /

�
: (3.34)
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On the event E2 \ E3, (3.7) and (3.23) yield that, with some constant C depending
only on H; the following bounds hold2:

E"kRnkF � Cp
n

Z 2�n

0

s

H

�kF kL2.Pn/
"

�
d"

� Cp
n

Z 2
p
42�

0

s

H

�
2kF kL2.P /

"

�
d"

� 2Cp
n

kF kL2.P /
Z 2

p
42�=kF kL2.P /

0

s

H

�
1

"

�
d"

D 2Cp
n

kF kL2.P /
Z C1

.2
p
42/�1kF kL2.P /=�

u�2pH.u/du:

Arguing as in the derivation of (3.15), the integral in the right hand side can be
bounded from above by

C
�p
n

s

H

�kF kL2.P /
�

�

with a constant C depending only onH: This leads to the following bound

E"kRnkF � C
�p
n

s

H

�kF kL2.P /
�

�
<

�2

64L
(3.35)

(which again holds with a proper choice of constant C1 in (3.23)). It follows from
(3.25) to (3.35) that

EkRnkF � 1

8L

�p
n

p
logN.F ; L2.P /; �=2/P.E1 \ E2 \ E3/ (3.36)

and that
P.E1 \ E2 \ E3/ �

1 � exp

�
H

�
6kF kL2.P /

�

�
� n�2

32 � 83
�

� expf�26n�2g � expf�9n�2=4g:

This last probability is larger than 1/2 by condition (3.23) with a proper value of C1:
Thus, (3.36) implies inequality (3.22). The left hand side of inequality (3.24) now
follows from (3.22) and (3.21), completing the proof. ut

2Note that C might change its value from place to place.
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3.6 Generic Chaining Complexities and Bounding Empirical
Processes Indexed by F 2

Generic chaining complexities can be used to control the size of empirical processes
indexed by a function class F (see [140]). For instance, one can define the com-
plexity �2.F IL2.P //; that is, �2.F I d/; where d is the L2.P /-distance. Another
useful distance is based on the  2-norm for random variables on the probability
space .S;A ; P / (see Sect. A.1). The generic chaining complexity that corresponds
to the  2-distance will be denoted by �2.F I 2/: In particular, these complexities
were used to bound the sup-norm of the empirical process indexed by the class
F 2 WD ff 2 W f 2 F g: This is of importance in a variety of applications including
sparse recovery problems. The goal is to control this empirical process in terms of
complexity measures of the class F rather than the class F 2: A standard approach
to this problem is to use the symmetrization inequality (to replace the empirical
process by the Rademacher process) followed by the comparison inequality for
Rademacher sums. However, for this approach, one has to deal with the uniformly
bounded class F (the Lipschitz constant in the comparison inequality would be in
this case 2 supf 2F kf k1). In many interesting applications (for instance, in sparse
recovery) the quantity supf 2F kf k1 might be infinite, or very large. To overcome
this difficulty Klartag and Mendelson [76]) started developing another approach
based on generic chaining bounds for empirical processes. Quite recently, following
this path, Mendelson [115] proved the following deep result.

Theorem 3.15. Suppose that F is a symmetric class, that is, f 2 F implies
�f 2 F ; and Pf D 0; f 2 F : Then, for some universal constantK > 0;

EkPn � P kF2 � K

�
sup
f 2F

kf k 1
�2.F I 2/p

n

_ �22 .F I 2/
n

�
:

We will discuss one more result in the same direction which provides a bound on
EkPn�P kF2 in terms ofL1.Pn/ generic chaining complexity �2.F IL1.Pn// of
class F : Denote �2 WD supf 2F Pf 2 and

�n;1.F / WD E�22 .F IL1.Pn//:

Theorem 3.16. There exists a universal constantK > 0 such that

E sup
f 2F

jPnf 2 � Pf 2j � K

�
�

r
�n;1.F /

n

_ �n;1.F /

n

�
: (3.37)

Proof. We start with the first bound of Theorem 3.11 and apply it together with
symmetrization inequality to class F 2 to get that with some constant C > 0



3.6 Generic Chaining Complexities and Bounding Empirical Processes Indexed by F 2 53

E sup
f 2F

jPnf 2 � Pf 2j � Cp
n

E�2.F
2IL2.Pn//: (3.38)

Next we have

kf 2 � g2k2L2.Pn/ D n�1
nX

jD1
jf 2.Xj / � g2.Xj /j2

D n�1
nX

jD1
.f .Xj / � g.Xj //2.f .Xj /C g.Xj //

2 � 4 sup
f 2F

Pnf
2kf � gk2L

1

.Pn/
;

which implies

kf 2 � g2kL2.Pn/ � 2�nkf � gkL
1

.Pn/; (3.39)

where �2n D supf 2F Pnf
2: It follows from (3.39) that

�2.F
2IL2.Pn// � 2�n�2.F IL1.Pn//:

and (3.38) implies that

E WD E sup
f 2F

jPnf 2 � Pf 2j � 2Cp
n

E�n�2.F IL1.Pn//

� 2Cp
n

E
1=2�2n

p
�n;1.F /:

Note also that

E
1=2�2n D E

1=2 sup
f 2F

Pnf
2 � E

1=2
	

sup
f 2F

jPnf 2 � Pf 2j C �2



� p
E C �:

Therefore, (3.40) implies that with some constant C > 0

E � 2Cp
n
.
p
E C �/

p
�n;1.F /;

and bound (3.37) easily follows by solving the last inequality for E: ut
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3.7 Function Classes in Hilbert Spaces

Suppose thatL is a finite dimensional subspace ofL2.P / with dim.L/ D d:Denote

 L.x/ WD 1p
d

sup
f 2L;kf kL2.P /�1

jf .x/j:

We will use the following Lp-version of Hoffmann–Jørgensen inequality: for all
independent mean zero random variables Yj ; j D 1; : : : ; n with values in a Banach
space B and with EkYjkp < C1; for some p � 1;

E
1=p

����
nX

jD1
Yj

����
p

� Kp

�
E

����
nX

jD1
Yj

����C E
1=p
	

max
1�i�n kYik


p�
; (3.40)

where Kp is a constant depending only on p (see Ledoux and Talagrand [101],
Theorem 6.20).

Proposition 3.2. Let F WD ff 2 L W kf kL2.P / � rg: Then

EkRnkF � E
1=2kRnk2F D r

r
d

n
:

Moreover, there exists a universal constantK such that whenever

E max
1�i�n 

2
L.Xi / � n

K2
;

we have

EkRnkF � 1

K
r

r
d

n
:

Proof. Let �1; : : : ; �d be an orthonormal basis of L: Then

kRnkF WD sup
f 2L;kf kL2.P /�r

jRn.f /j D sup

� ˇ̌
ˇ̌Rn

� dX

jD1
˛j �j

�ˇ̌
ˇ̌ W

dX

jD1
˛2j � r2

�

D sup

� ˇ̌
ˇ̌
dX

jD1
˛jRn.�j /

ˇ̌
ˇ̌ W

dX

jD1
˛2j � r2

�
D r

� dX

jD1
R2n.�j /

�1=2
:

Therefore,

EkRnk2F D r2
dX

jD1
ER2n.�j /;
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and the first statement follows since

ER2n.�j / D P�2j

n
; j D 1; : : : ; n:

The proof of the second statement follows from the first statement and inequality
(3.40), which immediately yields

r

r
d

n
D E

1=2kRnk2F � K2

�
EkRnkF C r

r
d

n

1p
n

E
1=2 max

1�i�n 
2
L.Xi /

�
;

and the result follows by assuming thatK D 2K2: ut
Let K be a symmetric nonnegatively definite square integrable kernel on S � S

and let HK be the corresponding reproducing kernel Hilbert space (RKHS), i.e.,
HK is the completion of the linear span of functions fK.x; �/ W x 2 Sg with respect
to the following inner product:

�X

i

˛iK.xi ; �/;
X

j

ˇjK.yi ; �/
�

K

D
X

i;j

˛iˇjK.xi ; yj /:

The corresponding norm will be denoted by k � kK: Let

F WD ff 2 HK W kf kK � 1 and kf kL2.P / � rg

Finally, let AK denote the linear integral operator from L2.P / into L2.P / with
kernelK;

AKf .x/ D
Z

S

K.x; y/f .y/P.dy/;

let f	i g denote its eigenvalues arranged in decreasing order and f�ig denote the
correspondingL2.P /-orthonormal eigenfunctions.

The following result is due to Mendelson [113].

Proposition 3.3. There exist universal constants C1; C2 > 0 such that

C1

�
n�1

1X

jD1
.	j ^ r2/

�1=2
� E

1=2kRnk2F � C2

�
n�1

1X

jD1
.	j ^ r2/

�1=2
:

In addition, there exists a universal constant C such that

EkRnkF � 1

C

�
n�1

1X

jD1
.	j ^ r2/

�1=2
�
p

supx2S K.x; x/
n

:
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Proof. By the well known properties of RKHS,

F D
� 1X

kD1
ck�k W c D .c1; c2; : : : / 2 E1 \ E2

�
;

where

E1 WD
�
c W

1X

kD1

c2k
	k

� 1

�
and E2 WD

�
c W

1X

kD1

c2k
r2

� 1

�
:

In other words, the set E1 is the ellipsoid in `2 (with the center at the origin) with
“half-axes”

p
	k and E2 is the ellipsoid with “half-axes” r (a ball of radius r). Let

E WD
�
c W

1X

kD1

c2k
	k ^ r2 � 1

�

denote the ellipsoid with “half-axes”
p
	k ^ r: A straightforward argument shows

that E � E1 \ E2 � p
2E : Hence,

sup
c2E

ˇ̌
ˇ̌Rn

� 1X

kD1
ck�k

�ˇ̌
ˇ̌ � kRnkF � p

2 sup
c2E

ˇ̌
ˇ̌Rn

� 1X

kD1
ck�k

�ˇ̌
ˇ̌:

Also, we have

sup
c2E

ˇ̌
ˇ̌Rn

� 1X

kD1
ck�k

�ˇ̌
ˇ̌
2

D sup
c2E

ˇ̌
ˇ̌

1X

kD1

ckp
	k ^ r

	p
	k ^ r



Rn.�k/

ˇ̌
ˇ̌
2

D
1X

kD1

	
	k ^ r2



R2n.�k/:

Hence,

E sup
c2E

ˇ̌
ˇ̌Rn

� 1X

kD1
ck�k

�ˇ̌
ˇ̌
2

D
1X

kD1

	
	k ^ r2



ER2n.�k/:

Since P�2k D 1; ER2n.�k/ D 1
n
; we get

E sup
c2E

ˇ̌
ˇ̌Rn

� 1X

kD1
ck�k

�ˇ̌
ˇ̌
2

D n�1
1X

kD1
.	k ^ r2/;

and the first bound follows.
The proof of the second bound is based on the observation that
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sup
f 2F

jf .x/j �
r

sup
x2S

K.x; x/

and on the same application of Hoffmann–Jørgensen inequality as in the previous
proposition. ut

A similar result with the identical proof holds for data-dependent Rademacher
complexity E"kRnkF : In this case, let f	.n/i g be the eigenvalues (arranged in

decreasing order) of the random matrix

�
n�1K.Xi ; Xj /

�n

i;jD1
(equivalently, of the

integral operator from L2.Pn/ into L2.Pn/ with kernel K).

Proposition 3.4. There exist universal constants C1; C2 > 0 such that

C1

�
n�1

nX

jD1
.	
.n/
j ^ r2/

�1=2
� E

1=2
" kRnk2F � C2

�
n�1

nX

jD1
.	
.n/
j ^ r2/

�1=2
:

In addition, there exists a universal constant C such that

E"kRnkF � 1

C

�
n�1

nX

jD1
.	
.n/
j ^ r2/

�1=2
�
p

supx2S K.x; x/
n

:

3.8 Further Comments

The main reference to the generic chaining method is the book by Talagrand [140].
Shattering numbers and Vapnik–Chervonenkis classes have been discussed in many
books [51, 59, 148].

Special cases of the inequalities discussed in Sect. 3.4 can be found in Talagrand
[137], Einmahl and Mason [60], Giné and Guillou [64], Mendelson [112], Giné et al.
[65]. Theorem 3.12 is given in Giné and Koltchinskii [66] (in a slightly more precise
form). Lower bounds proved in Sect. 3.5 are due to Giné and Koltchinskii [66].

A number of other entropy bounds on suprema of empirical and Rademacher
processes (in particular, in terms of so called bracketing numbers) can be found
in Dudley [59] and van der Vaart and Wellner [148]. Recently, van der Vaart and
Wellner [149] proved new versions of bounds under uniform entropy conditions
(both for bounded and for unbounded function classes).

Generic chaining complexities were used by Klartag and Mendelson [76] to
bound empirical processes indexed by the squares of functions. This method was
further developed in [117] and, especially, in [115]. Another approach is based
on L1.Pn/-covering numbers and generic chaining complexities (see Theorem
3.16). It goes back to Rudelson [128] and it was used in learning theory and sparse
recovery problems in [18,116]. Similar idea was also used by Giné and Mason [68].



Chapter 4
Excess Risk Bounds

In this chapter, we develop distribution dependent and data dependent upper bounds
on the excess risk EP . Ofn/ of an empirical risk minimizer

Ofn WD argminf 2FPnf: (4.1)

We will assume that such a minimizer exists (a simple modification of the results
is possible if Ofn is an approximate solution of (4.1)). Our approach to this problem
has been already outlined in Chap. 1 and it is closely related to the recent work of
Massart [106], Koltchinskii and Panchenko [92], Bartlett et al. [15], Bousquet et al.
[34], Koltchinskii [83], Bartlett and Mendelson [17].

4.1 Distribution Dependent Bounds and Ratio Bounds
for Excess Risk

To simplify the matter, assume that the functions in F take their values in Œ0; 1�:
Recall that the set

FP .ı/ WD
n
f 2 F W EP .f / � ı

o

is called the ı-minimal set of the risk P: In particular, FP .0/ is its minimal set.
Define �P W L2.P / � L2.P / 7! Œ0;C1/ such that

�2P .f; g/ � P.f � g/2 � .P.f � g//2; f; g 2 L2.P /:

Usually, �P is also a (pseudo)metric, such as

�2P .f; g/ D P.f � g/2 or �2P .f; g/ D P.f � g/2 � .P.f � g//2:

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 4,
© Springer-Verlag Berlin Heidelberg 2011
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Under the notations of Sect. 1.2,

D.ı/ WD DP .F I ı/ WD sup
f;g2F .ı/

�P .f; g/

is the �P -diameter of the ı-minimal set. Also, denote

F 0.ı/ WD
n
f � g W f; g 2 F .ı/

o

and
�n.ı/ WD �n.F IP I ı/ WD EkPn � P kF 0.ı/:

Let fıj gj�0 be a decreasing sequence of positive numbers with ı0 D 1 and let
ftj gj�0 be a sequence of positive numbers. For ı 2 .ıjC1; ıj �; define

Un.ı/ WD �n.ıj /C
r
2
tj

n
.D2.ıj /C 2�n.ıj //C tj

2n
: (4.2)

Finally, denote
ın.F IP/ WD supfı 2 .0; 1� W ı � Un.ı/g:

It is easy to check that
ın.F ; P / � Un.ın.F ; P //:

Obviously, the definitions of Un and ın.F ; P / depend on the choice of fıj g and
ftj g:

We start with the following simple inequality that provides a distribution
dependent upper bound on the excess risk EP . Ofn/:
Theorem 4.1. For all ı � ın.F IP/;

PfE . Ofn/ > ıg �
X

ıj�ı
e�tj :

Proof. It is enough to assume that ı > ın.F IP/ (otherwise, the result follows by
continuity). Denote Oı WD E . Ofn/: If Oı � ı � " > 0 and g 2 F ."/; we have

Oı D P Ofn � inf
g2F

Pg � P. Ofn � g/C "

� Pn. Ofn � g/C .P � Pn/.f � g/C " � kPn � P kF 0.Oı/ C ":

By letting " ! 0; this gives Oı � kPn � P kF 0.Oı/: Denote

En;j WD
�

kPn � P kF 0.ıj / � Un.ıj /

�
:
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It follows from Bousquet’s version of Talagrand’s inequality (see Sect. 2.3) that
P.En;j / � 1 � e�tj : Let

En WD
\

ıj�ı
En;j :

Then
P.En/ � 1 �

X

ıj�ı
e�tj :

On the event En; for all � � ı; kPn � P kF 0.�/ � Un.�/; which holds by the
definition of Un.ı/ and monotonicity of the function ı 7! kPn � P kF 0.ı/: Thus, on
the event f Oı � ıgTEn; we have

Oı � kPn � P kF 0.Oı/ � Un. Oı/;

which implies that ı � Oı � ın.F IP/; contradicting the assumption that ı >
ın.F IP/: Therefore, we must have f Oı � ıg � Ec

n; and the result follows. ut
We now turn to uniform bounds on the ratios of the excess empirical risk of a

function f 2 F to its true excess risk. The excess empirical risk is defined as

OEn.f / WD EPn.f /:

Given  W RC 7! RC; denote

 [.ı/ WD sup
��ı

 .�/

�

and

 ]."/ WD inf

�
ı > 0 W  [.ı/ � "

�
:

These transformations will be called the [-transform and the ]-transform of  ;
respectively. Some of their simple properties are summarized in Sect. A.3.

It happens that, with a high probability, the quantity

sup
f 2F ;E .f /�ı

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌

can be bounded from above by the function ı 7! Vn.ı/ WD U [
n.ı/:

Theorem 4.2. For all ı � ın.F IP/;

P

�
sup

f 2F ;E .f /�ı

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌ > Vn.ı/

�
�
X

ıj�ı
e�tj :



62 4 Excess Risk Bounds

Proof. Consider the event En defined in the proof of Theorem 4.1. For this event

P.En/ � 1 �
X

ıj�ı
e�tj ;

so, it is enough to prove that the inequality

sup
f 2F ;E .f /�ı

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌ � Vn.ı/

holds on the event En: To this end, note that on En; by the proof of Theorem 4.1,
Ofn 2 F .ı/: For all f 2 F such that � WD E .f / � ı; for arbitrary " 2 .0; ı/ and
g 2 F ."/; the following bounds hold:

� D E .f / � Pf � Pg C " � Pnf � Png C .P � Pn/.f � g/C "

� OEn.f /C kPn � P kF 0.�/ C " � OEn.f /C Un.�/C " � OEn.f /C Vn.ı/� C ";

which means that on the event En the condition E .f / � ı implies that

OEn.f / �
	
1 � Vn.ı/



E .f /:

Similarly, on En; the condition � WD E .f / � ı implies that

OEn.f / D Pnf � Pn Ofn � Pf � P Ofn C .Pn � P/.f � Ofn/ �

� E .f /C Un.�/ � E .f /C Vn.ı/� D
	
1C Vn.ı/



E .f /;

and the result follows. ut
A convenient choice of sequence fıj g is ıj WD q�j ; j � 0 with some fixed

q > 1: If tj D t > 0; j � 0; the corresponding functions Un.ı/ and Vn.ı/ will be
denoted by Un.ıI t/ and Vn.ıI t/; and ın.F IP/ will be denoted by ın.t/:

The following corollary is obvious.

Corollary 4.1. For all t > 0 and for all ı � ın.t/;

PfE . Ofn/ � ıg �
�

logq
q

ı

�
e�t

and

P

�
sup

f 2F ;E .f /�ı

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌ > Vn.ıI t/

�
�
�

logq
q

ı

�
e�t :
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It follows from the definition of ın.t/ that ın.t/ � t
n
: Because of this, the

probabilities in Corollary 4.1 can be bounded from above by logq
n
t

expf�tg (which
depends neither on the class F ; nor on P ). Most often, the logarithmic factor in
front of the exponent does not create a problem: in typical applications, ın.t/ is
upper bounded by ın C t

n
; where ın is larger than log log n

n
: Adding log logn to t

is enough to eliminate the impact of the logarithm. However, if ın D O.n�1/; the
presence of the logarithmic factor would result in a suboptimal bound. To tackle this
difficulty, we will use a slightly different choice of fıj g; ftj g:

For q > 1 and t > 0; denote

V t
n .�/ WD 2q

�
�[n.�/C

q
.D2/[.�/

r
t

n�
C t

n�

�
; � > 0:

Let
�tn WD �tn.F IP/ WD inff� W V t

n .�/ � 1g:
Theorem 4.3. For all t > 0

PfE . Ofn/ > �tng � Cqe
�t

and for all � � �tn

P

�
sup

f 2F ;E .f /��

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌ > V t

n .�/

�
� Cqe

�t ;

where
Cq WD q

q � 1
_ e:

Proof. Let � > �tn: Take ıj D q�j ; j � 0 and tj WD t
ıj
�

for some t > 0; � > 0:

The function Un.ı/; the quantity ın.F ; P /; etc, now correspond to this choice of
the sequences fıj g; ftj g: Then, it is easy to verify that for all ı � �

Un.ı/

ı
� 2q

�
sup
ıj��

�n.ıj /

ıj
C sup

ıj��
D.ıj /p
ıj

s
tıj

n�ıj
C tıj

n�ıj

�

� 2q

�
sup
ı��

�n.ı/

ı
C sup

ı��
D.ı/p
ı

r
t

n�
C t

n�

�

D 2q

�
�[n.�/C

q
.D2/[.�/

r
t

n�
C t

n�

�
D V t

n .�/: (4.3)

Since � > �tn and the function V t
n is strictly decreasing, we have V t

n .�/ < 1 and,
for all ı > �tn;

Un.ı/ � V t
n .�/ı < ı:
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Therefore, �tn � ın.F IP/: It follows from Theorem 4.1 that

PfE . Ofn/ � �g �
X

ıj��
e�tj :

The right hand side can be now bounded as follows:

X

ıj��
e�tj D

X

ıj��
exp

�
�t ıj
�

�
�
X

j�0
e�tqj

D e�t C q

q � 1
1X

jD1
q�j e�tqj .qj � qj�1/ � e�t C 1

q � 1
Z 1

1

e�txdx

D e�t C 1

q � 1
1

t
e�t � q

q � 1
e�t ; t � 1: (4.4)

This implies the first bound for t � 1 and it is trivial for t � 1 because of the
definition of the constant Cq:

To prove the second bound use Theorem 4.2 and note that, by (4.3), Vn.�/ �
V t
n .�/: The result follows from Theorem 4.2 and (4.4). ut

The result of Lemma 4.1 below is due to Massart [106, 107] (we formulate it in
a slightly different form). Suppose that F is a class of measurable functions from
S into Œ0; 1� and f� W S 7! Œ0; 1� is a measurable function such that with some
numerical constantD > 0

D.Pf � Pf�/ � �2P .f; f�/ � P.f � f�/2 � .P.f � f�//2; (4.5)

where �P is a (pseudo)metric. The assumptions of this type are frequently used in
model selection problems (see Sect. 6.3). They describe the link between the excess
risk (or the approximation error) Pf � P� and the variance of the “excess loss”
f � f�: This particular form of bound (4.5) is typical in regression problems with
L2-loss (see Sect. 5.1): the link function in this case is just the square. In some other
problems, such as classification under “low noise” assumption other link functions
are also used (see Sect. 5.3).

Assume, for simplicity, that the infimum of Pf over F is attained at a function
Nf 2 F (the result can be easily modified if this is not the case). Let

!n.ı/ WD !n.F I Nf I ı/ WD E sup
f 2F ;�2P .f;

Nf /�ı
j.Pn � P/.f � Nf /j:

Lemma 4.1. There exists a constant K > 0 such that for all " 2 .0; 1� and for all
t > 0

�tn.F IP/ � ".inf
F
Pf � Pf�/C 1

D
!]n

�
"

KD

�
C KD

"

t

n
:
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Proof. Note that

�n.ı/ D EkPn � P kF 0.ı/ � 2E sup
f 2F .ı/

j.Pn � P/.f � Nf /j:

For f 2 F .ı/;

�P .f; Nf / � �P .f; f�/C �P . Nf ; f�/ � p
D.Pf � Pf�/C

q
D.P Nf � Pf�/ �

�
q
D.Pf � P Nf /C 2

q
D.P Nf � Pf�/ �

p
Dı C 2

p
D� � p

2D.ı C 4�/;

where
� WD P Nf � Pf� D inf

F
Pf � Pf�:

As a result, it follows that

D.ı/ � 2
p
D.

p
ı C 2

p
�/ � p

8D.ı C 4�/

and
�n.ı/ � 2!n

	
2D.ı C 4�/



:

We will now bound the functions �[n.�/ and .D2/[.�/ involved in the definition of
V t
n .�/ (see the proof of Theorem 4.3). Denote 
 WD �

�
: Then

�[n.�/ D sup
ı��

�n.ı/

ı
� 2 sup

ı��

!n

�
2D.1C 4
/ı

�

ı
D 4D.1C4
/![n

�
2D.1C4
/�

�

and also

.D2/[.�/ D sup
ı��

D2.ı/

ı
� sup

ı��
8D.ı C 4�/

ı
� 8D.1C 4
/:

Therefore,

V t
n .�/ � 2q

�
4D.1C 4
/![n

�
2D.1C 4
/�

�
C 2

p
2D

p
1C 4


r
t

n�
C t

n�

�
:

Suppose that, for some " 2 .0; 1�; we have � � "� implying that 
 � 1
"
: Then we

can upper bound V t
n .�/ as follows:

V t
n .�/ � 2q

�
20D

"
![n

�
2D�

�
C 2

p
10

r
tD

n"�
C t

n�

�
:
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As soon as

� � 1

2D
!]n

�
"

KD

�_ KDt

n"

with a sufficiently largeK; the right hand side of the last bound can be made smaller
than 1: Thus, �tn is upper bounded either by "�; or by the expression

1

2D
!]n

�
"

KD

�_ KDt

n"
;

which implies the bound of the lemma. ut
Remark. By increasing the value of the constant K it is easy to upper bound the
quantity supf� W V t

n .�/ � 1=2g in exactly the same way.

The next statement follows immediately from Lemma 4.1 and Theorem 4.3.

Proposition 4.1. There exists a large enough constant K > 0 such that for all
" 2 .0; 1� and all t > 0

P

�
P Of � Pf� � .1C "/.inf

F
Pf � Pf�/C 1

D
!]n

�
"

KD

�
C KD

"

t

n

�
� Cqe

�t :

Let us call  W RC 7! RC a function of concave type if it is nondecreasing and
u 7!  .u/

u is decreasing. If, in addition, for some � 2 .0; 1/; u 7!  .u/
u� is decreasing,

 will be called a function of strictly concave type (with exponent � ). In particular,
if  .u/ WD '.u�/; or  .u/ WD '�.u/; where ' is a nondecreasing strictly concave
function with '.0/ D 0; then  is of concave type for � D 1 and of strictly concave
type for � < 1:

Proposition 4.2. Let ıj WD q�j ; j � 0 for some q > 1: If  is a function of strictly
concave type with some exponent � 2 .0; 1/; then

X

j Wıj�ı

 .ıj /

ıj
� c�;q

 .ı/

ı
;

where c�;q is a constant depending only on q; �:

Proof. Note that

X

j Wıj�ı

 .ıj /

ıj
D

X

j Wıj�ı

 .ıj /

ı
�
j ı
1��
j

�  .ı/

ı�

X

j Wıj�ı

1

ı
1��
j

D

D  .ı/

ı

X

j Wıj�ı

�
ı

ıj

�1��
�  .ı/

ı

X

j�0
q�j.1��/ D c�;q

 .ı/

ı
;

which implies the bound. ut
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Assume that �n.ı/ � L�n.ı/ and D.ı/ � LD.ı/; ı > 0; where L�n is a function
of strictly concave type with some exponent � 2 .0; 1/ and LD is a concave type
function. Define

LUn.ıI t/ WD LUn;t .ı/ WD LK
�

L�n.ı/C LD.ı/
r
t

n
C t

n

�

with some numerical constant LK: Then LUn.�I t/ is also a function of strictly concave
type. In this case, it is natural to define

LVn.ıI t/ WD LU [
n;t .ı/ D

LUn.ıI t/
ı

and Lın.t/ WD LU ]
n;t .1/:

Theorem 4.4. There exists a constant LK in the definition of the function LUn.ıI t/
such that for all t > 0

PfE . Ofn/ � Lın.t/g � e�t

and for all ı � Lın.t/;

P

�
sup

f 2F ;E .f /�ı

ˇ̌
ˇ̌ OEn.f /
E .f /

� 1

ˇ̌
ˇ̌ � LVn.ıI t/

�
� e�t :

Proof. It is similar to the proof of Theorem 4.2, but now our goal is to avoid using
the concentration inequality repeatedly for each value of ıj since this leads to a
logarithmic factor. The trick was previously used in Massart [106] and in the Ph.D.
dissertation of Bousquet (see also Bartlett et al. [15]). Define

Gı WD
[

��ı

ı

�

n
f � g W f; g 2 F .�/

o
:

Then the functions in Gı are bounded by 1 and

�P .Gı/ � sup
��ı

ı

�
sup

f;g2F .�/

�P .f � g/ � ı sup
��ı

LD.�/
�

� LD.ı/;

since LD is of concave type. Also, since L�n is of strictly concave type, Proposition
4.2 yields

EkPn � P kGı D E sup
j Wıj�ı

sup
�2.ıjC1;ıj �

ı

�
kPn � P kF 0.�/ �

� q
X

j Wıj�ı

ı

ıj
EkPn � P kF 0.ıj / � qı

X

j Wıj�ı

L�n.ıj /
ıj

� qc�;q L�n.ı/:
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Now, Talagrand’s concentration inequality implies that there exists an event E of
probability P.E/ � 1 � e�t such that on this event kPn � P kGı � LUn.ıI t/ (the
constant LK in the definition of LUn.ıI t/ should be chosen properly). Then, on the
event E; for all � � ı;

kPn � P kF 0.�/ � �

ı
LUn.ıI t/ � LVn.ıI t/�:

The rest repeats the proof of Theorems 4.1 and 4.2. ut
In the next theorem, we consider empirical risk minimization problems over

Donsker classes of functions under the assumption that, roughly speaking, the true
risk has unique minimum and, as a consequence, the ı-minimal sets F .ı/ shrink to
a set consisting of a single function as ı ! 0: It will be shown that in such cases the
excess risk is of the order oP.n

�1=2/:

Theorem 4.5. If F is a P -Donsker class and

DP .F I ı/ ! 0 as n ! 1;

then
EP . Ofn/ D oP.n

�1=2/ as n ! 1:

Proof. If F is a P -Donsker class, then the sequence of empirical processes

Zn.f / WD n1=2.Pnf � Pf /; f 2 F

is asymptotically equicontinuous, that is, for all " > 0

lim
ı!0

lim sup
n!1

P

�
sup

�P .f;g/�ı;f;g2F

ˇ̌
ˇZn.f / �Zn.g/

ˇ̌
ˇ � "

�
D 0:

(see, e.g., van der Vaart and Wellner [148], Sect. 2.1.2). This also implies (in the
case of uniformly bounded classes, by an application of Talagrand’s concentration
inequality) that

lim
ı!0

lim sup
n!1

E sup
�P .f;g/�ı;f;g2F

ˇ̌
ˇZn.f /�Zn.g/

ˇ̌
ˇ D 0:

Since DP .F I ı/ ! 0 as ı ! 0; it follows that

lim
ı!0

lim sup
n!1

n1=2�n.F IP I ı/ D lim
ı!0

lim sup
n!1

n1=2EkPn � P kF 0.ı/

� lim
ı!0

lim sup
n!1

E sup
�P .f;g/�D.F Iı/;f;g2F

ˇ̌
ˇZn.f /�Zn.g/

ˇ̌
ˇ D 0: (4.6)
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Without loss of generality, assume that D.ı/ � ı (otherwise, in what follows,
replaceD.ı/ byD.ı/_ı). Let now fıj g be a decreasing sequence such that ı0 D 1;

ıj ! 0 as j ! 1 and D.ıj / � e�.jC1/: Define

tj WD t C 2 log log
1

D.ıj /
� t C 2 log.j C 1/

and

U t
n.ı/ WD 2

h
�n.ıj /CD.ıj /

r
tj

n
C tj

n

i
; ı 2 .ıjC1; ıj �; j � 0:

Clearly, U t
n is an upper bound on the function Un (used in Theorem 4.1) provided

that Un is based on the same sequences fıj g; ftj g: Denote

ıtn WD supfı 2 .0; 1� W ı � U t
n.ı/g:

Then ıtn � ın.F IP/ and also ıtn � t
n
: It follows from Theorem 4.1 that

PfEP . Ofn/> ıtng �
X

ıj�ıtn
e�tj �

X

j�0
e�tj �

X

j�0
e�t�2 log.jC1/ D

X

j�1
j�2e�t � 2e�t :

The definitions of ıtn and U t
n easily imply that

ıtn � U t
n.ı

t
n/ � 2

h
�n.1/CD.1/

r
t C 2 log log.n=t/

n
C t C 2 log log.n=t/

n

i
;

which tends to 0 as n ! 1 since

�n.1/ � 2EkPn � P kF D O.n�1=2/ ! 0

for a Donsker class F andD.1/ < C1: Denote by jn the number for which

ıtn 2 .ıjnC1; ıjn�:

Then, clearly, jn ! 1 and ıjn ! 0 as n ! 1: Now, we have

n1=2ıtn � n1=2U t
n.ı

t
n/ � 2

h
n1=2�n.ıjn/

CD.ıjn/
q
t C 2 log log.1=D.ıjn//C t C 2 log log.n=t/

n1=2

i
;

and, in view of (4.6) and the assumption that D.ı/ ! 0; ı ! 0; it is easy to
conclude that, for all t > 0;

n1=2ıtn ! 0 as n ! 1:
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It remains to show that there is a choice of t D 
n ! 1 (slowly enough) such that

ı
nn D o.n�1=2/:

The claim of the theorem now follows from the bound

PfEP . Ofn/ > ı
nn g � 2e�
n ! 0 as n ! 1: ut

There is another version of the proof that is based on Theorem 4.3.
The condition D.F I ı/ ! 0 as ı ! 0 is quite natural when the true risk

minimization problem (1.1) has unique solution. In this case, such quantities as
ın.F IP/ often give correct (in a minimax sense) convergence rate for the excess
risk in risk minimization problems. However, if the minimum in (1.1) is not
unique, the diameter D.ı/ of the ı-minimal set is bounded away from 0: In such

cases, ın.F IP/ is bounded from below by c
q

1
n
: At the same time, the optimal

convergence rate of the excess risk to 0 is often better than this (in fact, it can be
close to n�1; e.g., in classification problems).

4.2 Rademacher Complexities and Data Dependent Bounds
on Excess Risk

In a variety of statistical problems, it is crucial to have data dependent upper and
lower confidence bounds on the sup-norm of the empirical process kPn � P kF for
a given function class F : This random variable is a natural measure of the accuracy
of approximation of an unknown distribution P by its empirical distribution Pn:
However, kPn � P kF depends on the unknown distribution P and, hence, it can
not be used directly. It happens that it is easy to construct rather simple upper and
lower bounds on kPn � P kF in terms of the sup-norm of Rademacher process
kRnkF : The last random variable depends only on the data X1; : : : ; Xn and on
random signs "1; : : : ; "n that are independent ofX1; : : : ; Xn and are easy to simulate.
Thus, kRnkF can be used as a data dependent complexity measure of the class F
that allows one to estimate the accuracy of approximation of P by Pn based on the
data. This bootstrap type approach was introduced independently by Koltchinskii
[81] and Bartlett et al. [14] and it was used to develop a general method of
model selection and complexity regularization in learning theory. It is based on
the following simple bounds. Their proof is very elementary and relies only on the
symmetrization and bounded difference inequalities.

Assume that the functions in the class F are uniformly bounded by a constant
U > 0:
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Theorem 4.6. For all t > 0;

P

�
kPn � P kF � 2kRnkF C 3tUp

n

�
� exp

�
� t

2

2

�

and

P

�
kPn � P kF � 1

2
kRnkF � 2tUp

n
� U

2
p
n

�
� exp

�
� t

2

2

�
:

Proof. Denote
Zn WD kPn � P kF � 2kRnkF :

Then, by symmetrization inequality, EZn � 0 and applying bounded difference
inequality to the random variable Zn easily yields

P

�
Zn � EZn C 3tUp

n

�
� exp

�
� t

2

2

�
;

which implies the first bound.
The second bound is proved similarly by considering the random variable

Zn WD kPn � P kF � 1

2
kRnkF � U

2
p
n

and using symmetrization and bounded difference inequalities. ut
Note that other versions of bootstrap, most notably, the classical Efron’s boot-

strap, can be also used in a similar way (see Fromont [61]).
The major drawback of Theorem 4.6 is that the error term does not take into

account the size of the variance of functions in the class F : In some sense, this is
a data dependent version of uniform Hoeffding inequality and what is often needed
is a data dependent version of uniform Bernstein type inequality. We provide such
a result below. It can be viewed as a statistical version of Talagrand’s concentration
inequality. Recently, Giné and Nickl [67] used some inequalities of similar nature
in adaptive density estimation.

Denote
�2P .F / WD sup

f 2F
Pf 2 and �2n.F / WD sup

f 2F
Pnf

2:

Theorem 4.7. There exists a numerical constantK > 0 such that for all t � 1 with
probability at least 1 � e�t the following bounds hold:

ˇ̌
ˇ̌kRnkF � EkRnkF

ˇ̌
ˇ̌ � K

�s
t

n

�
�2n.F /C U kRnkF

�
C tU

n

�
; (4.7)

EkRnkF � K

�
kRnkF C �n.F /

r
t

n
C tU

n

�
; (4.8)
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�2P .F / � K

�
�2n.F /C U kRnkF C tU

n

�
(4.9)

and

�2n.F / � K

�
�2P .F /C UEkRnkF C tU

n

�
: (4.10)

Also, for all t � 1 with probability at least 1 � e�t

EkPn � P kF � K

�
kRnkF C �n.F /

r
t

n
C tU

n

�
(4.11)

and

ˇ̌
ˇ̌kPn � P kF � EkPn � P kF

ˇ̌
ˇ̌ � K

�s
t

n

�
�2n.F /C U kRnkF

�
C tU

n

�
: (4.12)

Proof. It is enough to consider the case when U D 1=2: The general case then
follows by rescaling. Using Talagrand’s concentration inequality (to be specific,
Klein–Rio bound, see Sect. 2.3), we claim that on an event E of probability at least
1 � e�t

EkRnkF � kRnkF C
r
2t

n

	
�2P .F /C 2EkRnkF



C t

n
; (4.13)

which implies that

EkRnkF � kRnkF C �P .F /

r
2t

n
C t

n
C 2

r
1

2
EkRnkF

2t

n
�

� kRnkF C �P .F /

r
2t

n
C t

n
C 1

2
EkRnkF C 2t

n
;

or

EkRnkF � 2kRnkF C 2
p
2�P .F /

r
t

n
C 6t

n
: (4.14)

We will now upper bound �2P .F / in terms of �2n.F /: Denote F 2 WD ff 2 W
f 2 F g:Again, we apply Talagrand’s concentration inequality (namely, Bousquet’s
bound, Sect. 2.3) and show that on an event F of probability at least 1 � e�t

�2P .F / D sup
f 2F

Pf 2 � sup
f 2F

Pnf
2 C kPn � P kF2 �

� �2n.F /C EkPn � P kF2 C
r
2t

n

	
�2P .F /C 2EkPn � P kF2



C t

3n
;

where we also used the fact that
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sup
f 2F2

VarP .f 2/ � sup
f 2F

Pf 4 < sup
f 2F

Pf 2 D �2P .F /

since the functions from F are uniformly bounded byU D 1=2:Using symmetriza-
tion inequality and then contraction inequality for Rademacher processes, we get

EkPn � P kF2 � 2EkRnkF2 � 8EkRnkF :

Hence,

�2P .F / � �2n.F /C 8EkRnkF C �P .F /

r
2t

n
C 2

r
8t

n
EkRnkF C t

3n
�

� �2n.F /C 9EkRnkF C �P .F /

r
2t

n
C 9t

n
;

where the inequality 2
p
ab � a C b; a; b � 0 was applied. Next we use bound

(4.14) on EkRnkF to get

�2P .F / � �2n.F /C 18kRnkF C 19�P .F /

r
2t

n
C 100t

n
:

As before, we bound the term 19�P .F /

q
2t
n

D 2�19�P .F /p
2

q
t
n

using the inequality

2ab � a2 C b2; which gives

�2P .F / � 1

2
�2P .F /C �2n.F /C 18kRnkF C 500t

n
:

As a result, the following bound holds on the event E \ F :

�2P .F / � 2�2n.F /C 36kRnkF C 1000t

n
: (4.15)

It also implies that

�P .F / � p
2�n.F /C 6

p
kRnkF C 32

r
t

n
:

We use this bound on �P .F / in terms of �n.F / to derive from (4.14) that

EkRnkF � 2kRnkF C 4�n.F /

r
t

n
C

C12p2
p

kRnkF

r
t

n
C 100t

n
� 3kRnkF C 4�n.F /

r
t

n
C 172t

n
:
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The last bound holds on the same event E \ F of probability at least 1 � 2e�t :
This implies inequalities (4.8) and (4.9) of the theorem. Inequality (4.7) follows
from Talagrand’s inequality, specifically, from combination of Klein–Rio inequality
(4.13), the following application of Bousquet’s inequality

kRnkF � EkRnkF C
r
2t

n

	
�2P .F /C 2EkRnkF



C t

3n
(4.16)

and bounds (4.8), (4.9) that have been already proved. The proof of the next inequal-
ity (4.10) is another application of symmetrization, contraction and Talagrand’s
concentration and is similar to the proof of (4.9). The last two bounds follow from
the inequalities for the Rademacher process and symmetrization inequality.

Under the assumption t � 1; the exponent in the expression for probability can
be written as e�t without a constant in front of it. The constant can be removed by
increasing the value ofK: ut

We will use the above tools to construct data dependent bounds on the excess
risk. As in the previous section, we assume that the functions in the class F are
uniformly bounded by 1: First we show that the ı-minimal sets of the risk can be
estimated by the ı-minimal sets of the empirical risk provided that ı is not too small,
which is a consequence of Theorem 4.2. Let

OFn.ı/ WD FPn.ı/

be the ı-minimal set of Pn:

Lemma 4.2. Let ın̆ be a number such that ın̆ � U
]
n

	
1
2



: There exists an event of

probability at least 1 �P
ıj�ı˘

n
e�tj such that on this event, for all ı � ın̆ ;

F .ı/ � OFn.3ı=2/ and OFn.ı/ � F .2ı/:

Proof. It easily follows from the definitions that ın̆ � ın.F IP/: Denote

En WD
\

ıj�ı˘

n

En;j ;

where En;j are the events defined in the proof of Theorem 4.1. Then

P.En/ � 1 �
X

ıj�ı˘

n

e�tj :

It follows from the proof of Theorem 4.2, that, on the event En; for all f 2 F with
E .f / � ın̆ ;
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1

2
�

OEn.f /
E .f /

� 3

2
:

By the proof of Theorem 4.2, on the same event

kPn � P kF 0.ı˘

n /
� Un.ın̆ /:

Therefore, on the event En;

E .f / � 2 OEn.f / _ ın̆ ; f 2 F ; (4.17)

which implies that, for all ı � ın̆ ;
OFn.ı/ � F .2ı/: On the other hand, on the same

event En; for all f 2 F ; the assumption E .f / � ın̆ implies that OEn.f / � 3
2
E .f /

and the assumption E .f / � ın̆ implies that

OEn.f / � E .f /C kPn � P kF 0.ı˘

n /
� E .f /C Un.ın̆ / � ın̆ C Vn.ın̆ /ın̆ � 3

2
ın̆ :

Thus, for all f 2 F ;

OEn.f / � 3

2

	
E .f / _ ın̆



; (4.18)

which implies that on the event En; for all ı � ın̆ ;F .ı/ � OFn.3ı=2/: ut
Now we are ready to define an empirical version of excess risk bounds. It will be

convenient to use the following definition of �P :

�2P .f; g/ WD P.f � g/2:

Given a decreasing sequence fıj g of positive numbers with ı0 D 1 and a sequence
ftj g of real numbers, tj � 1; define

NUn.ı/ WD NK
�
�n.ıj /CD.ıj /

r
tj

n
C tj

n

�
; ı 2 .ıjC1; ıj �; j � 0;

where NK D 2: Comparing this with the definition (4.2) of the function Un; it is
easy to check that Un.ı/ � NUn.ı/; ı 2 .0; 1�: As a consequence, if we define Nın WD
NU ]
n .1=2/; then ın.F IP/ � Nın:
Empirical versions of the functions D and �n are defined by the following

relationships:

ODn.ı/ WD sup
f;g2 OFn.ı/

�Pn.f; g/ and O�n.ı/ WD kRnk OF 0

n.ı/
:
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Also, let

OUn.ı/ WD OK
�

O�n. Ocıj /C ODn. Ocıj /
r
tj

n
C tj

n

�
; ı 2 .ıjC1; ıj �; j � 0;

QUn.ı/ WD QK
�
�n. Qcıj /CD. Qcıj /

r
tj

n
C tj

n

�
; ı 2 .ıjC1; ıj �; j � 0;

where 2 � OK � QK; Oc; Qc � 1 are numerical constants. Define

NVn.ı/ WD NU [
n.ı/;

OVn.ı/ WD OU [
n.ı/;

QVn.ı/ WD QU [
n.ı/

and
Oın WD OU ]

n .1=2/;
Qın WD QU ]

n .1=2/:

The constants in the definitions of the functions NUn and QUn can be chosen in
such a way that for all ı Un.ı/ � NUn.ı/ � QUn.ı/; which yields the bound
ın.F IP/ � Nın � Qın: Since the definitions of the functions Un; NUn; QUn differ only
in the constants, it is plausible that the quantities ın.F IP/; Nın; Qın are of the same
order (in fact, it can be checked in numerous examples).

We will prove that with a high probability, for all ı; NUn.ı/ � OUn.ı/ � QUn.ı/;
so, OUn provides a data-dependent upper bound on NUn and QUn provides a distribution
dependent upper bound on OUn: This implies that, with a high probability, Nın � Oın �
Qın; which provides a data dependent bound Oın on the excess risk EP . Ofn/ which is of
correct size (up to a constant) in many cases.

Theorem 4.8. With the above notations,

P

n Nın � Oın � Qın
o

� 1 � 3
X

ıj�Nın
expf�tj g:

Proof. The proof follows from the inequalities of Theorem 4.7 and Lemma 4.2 in
a rather straightforward way. Note that Nın � U

]
n.1=2/; so we can use it as ın̆ in

Lemma 4.2. DenoteH the event introduced in the proof of this lemma (it was called
En in the proof). Then

P.H/ � 1 �
X

ıj�Nın
e�tj

and, on the eventH;

F .ı/ � OFn.3ı=2/ and OFn.ı/ � F .2ı/

for all ı � Nın:
First, the values of ı and t will be fixed. At the end, the resulting bounds will be

used for ı D ıj and t D tj : We will apply the inequalities of Theorem 4.7 to the
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function class F 0.ı/: It easily follows from bound (4.11) that there exists an event
F D F.ı/ of probability at least 1 � e�t such that, on the eventH \ F;

EkPn � P kF 0.ı/ � K

�
kRnk OF 0

n.3=2ı/
C ODn

	3
2
ı

r t

n
C t

n

�

with a properly chosen K: Recalling the definition of NUn and OUn; the last bound
immediately implies that with a straightforward choice of numerical constants OK; Oc;
the inequality NUn.ı/ � OUn.ı/ holds on the eventH \ F:

Quite similarly, using the inequalities of Theorem 4.7 (in particular, using bound
(4.10) to control the “empirical” diameter OD.ı/ in terms of the “true” diameter
D.ı/) and also the desymmetrization inequality, it is easy to see that there exists
an event G D G.ı/ of probability at least 1 � e�t such that the inequality
OUn.ı/ � QUn.ı/ holds on H \ G with properly chosen numerical constants QK; Qc

in the definition of QUn:
Using the resulting inequalities for ı D ıj � Nın yields

P.E/ � 1 � 3
X

ıj�Nın
expf�tj g;

where

E WD
�

8ıj � Nın W NUn.ıj / � OUn.ıj / � QUn.ıj /
�

	
[

j Wıj�Nın
.H \ F.ıj / \G.ıj //:

By the definitions of NUn; OUn and QUn; this also implies that, on the event E;

NUn.ı/ � OUn.ı/ � QUn.ı/

for all ı � Nın: By simple properties of ]-transform, we conclude that Nın � Oın � Qın
on the event E; which completes the proof. ut

It is easily seen from the proof of Theorem 4.8 and from the definitions and
constructions of the events involved in this proof as well as in the proofs of
Theorem 4.2 and Lemma 4.2 that on an eventE of probability at least 1�p; where
p D 3

P
ıj�Nın e

�tj ; the following conditions hold:

(i) Nın � Oın � Qın
(ii) E . Of / � Nın

(iii) for all f 2 F ;

E .f / � 2 OEn.f / _ Nın and OEn.f / � 3

2

	
E .f / _ Nın



I
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(iv) for all ı � Nın;
kPn � P kF 0.ı/ � Un.ı/:

Sometimes it is convenient to deal with different triples . Nın; Oın; Qın/ (defined
in terms of various complexity measures of the class F ) that still satisfy
conditions (i)–(iv) with a high probability. In fact, to satisfy conditions (ii)–
(iv) it is enough to choose Nın in such a way that

(v) Nın � U
]
n .1=2/:

This is reflected in the following definition.

Definition 4.1. Suppose sequences fıj g; ftj g and the corresponding function Un
are given. We will call Nın that depends on F and P an admissible distribu-
tion dependent bound on the excess risk iff it satisfies condition (v), and, as a
consequence, also conditions (ii)–(iv). If (ii)–(iv) hold on an event E such that
P.E/ � 1 � p; then Nın will be called an admissible bound of confidence level
1 � p: A triple . Nın; Oın; Qın/; such that Nın and Qın depend on F and P; Oın depends on
F and X1; : : : ; Xn; and, for some p 2 .0; 1/; conditions (i)–(v) hold on an event E
with P.E/ � 1 � p; will be called a triple bound on the excess risk of confidence
level 1 � p:

Such triple bounds will be used later in model selection methods based on
penalized empirical risk minimization.

4.3 Further Comments

Distribution dependent excess risk bounds of Sect. 4.1 are closely related to ratio
type empirical processes studied in the 1980s by many authors (notably, by
Alexander [5]). This connection was emphasized by Giné and Koltchinskii [66]
(see also Giné et al. [65]). It was understood long ago that convergence rates of
statistical estimators based on empirical risk minimization could often be found as
solutions of certain fixed point equations defined in terms of proper complexities
of underlying function classes and that such complexities are related to continuity
moduli of empirical processes (see, e.g., van der Vaart and Wellner [148], Sect. 3.2,
van de Geer [62], Shen and Wong [132]). Massart [106] and Koltchinskii and
Panchenko [92] started defining such fixed point based complexities in terms of
continuity moduli of empirical and Rademacher processes in a variety of problems
of statistical learning theory. This approach was developed further by Bartlett et al.
[15], Bousquet et al. [34] and Koltchinskii [83]. In the last paper, the data dependent
Rademacher complexities were defined in terms of ı-minimal sets of the true risk
and the L2.˘/-diameters of these sets play an important role in the analysis of the
problem. We followed this approach here. Bartlett and Mendelson [17] introduced
different definitions of localized Rademacher complexities that provided a way
to distinguish between bounding excess risk of empirical risk minimizers and
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estimating the level sets of the true risk. Boucheron and Massart [32] obtained
concentration inequalities for the excess empirical risk in terms of fixed point
complexities.

The idea to use Rademacher processes (“Rademacher bootstrap”) in order to
construct data dependent excess risk bounds was introduced by Koltchinskii [81]
and Bartlett et al. [14]. Koltchinskii and Panchenko [92] suggested a localized
version of such complexities (in the “zero error case”). This idea was developed
by Bartlett et al. [15], Bousquet et al. [34] and Koltchinskii [83]. “The statistical
version” of Talagrand’s concentration inequality (Theorem 4.7) was essentially used
(without stating it) in Koltchinskii [83]. We follow the approach of this paper in
our construction of data dependent Rademacher complexities. This construction
provides reasonable excess risk bounds only when the L2.P /-diameters of the
ı-minimal sets are small for small values of ı: This is not the case when the true
risk has multiple minima. Koltchinskii [83] gives a simple example showing that, in
the multiple minima case, the distribution dependent excess risk bounds developed
in the previous section are not always sharp. Moreover, there is a difficulty in
estimation of the level sets of the risk (the ı-minimal sets), which is of importance
in constructing data dependent excess risk bounds. Some more subtle geometric
characteristics of the class F that can be used in such cases to recover the correct
convergence rates were suggested in Koltchinskii [83]. However, the extension of
the theory of data dependent excess risk bounds to the multiple minima case remains
an open problem.

Rademacher complexities have been also used in other problems of statistical
learning theory, in particular, in margin type bounds on generalization error (see
[93–95]). Recently, Hanneke [73] and Koltchinskii [87] used localized Rademacher
complexities in the development of active learning algorithms.

Boucheron et al. [29] provide an excellent review of excess risk bounds in
empirical risk minimization and their role in classification problems. Some further
references can be found in this paper and in lecture notes by Massart [107]. Recent
results on lower bounds in empirical risk minimization can be found in Mendelson
[114].



Chapter 5
Examples of Excess Risk Bounds
in Prediction Problems

Let .X; Y / be a random couple in S�T; T � R with distributionP: The distribution
ofX will be denoted by˘: Assume that the random variableX is “observable” and
Y is to be predicted based on an observation of X: Let ` W T � R 7! R be a loss
function. Given a function g W S 7! R; the quantity .` � g/.x; y/ WD `.y; g.x// is
interpreted as a loss suffered when g.x/ is used to predict y: The problem of optimal
prediction can be viewed as a risk minimization

E`.Y; g.X// D P.` � g/ �! min; g W S 7! R:

Since the distribution P and the risk function g 7! P.` � g/ are unknown, the risk
minimization problem is usually replaced by the empirical risk minimization

Pn.` � g/ D n�1
nX

jD1
`.Yj ; g.Xj // �! min; g 2 G ;

where G is a given class of functions g W S 7! R and .X1; Y1/; : : : ; .Xn; Yn/ is a
sample of i.i.d. copies of .X; Y / (“training data”). Obviously, this can be viewed as a
special case of abstract empirical risk minimization problems discussed in Chap. 4.
In this case, the class F is the “loss class” F WD f` � g W g 2 G g and the goal of
this chapter is to derive excess risk bounds for concrete examples of loss functions
and function classes frequently used in statistics and learning theory.

Let �x denote a version of conditional distribution of Y given X D x: The
following representation of the risk holds under very mild regularity assumptions:

P.` � g/ D
Z

S

Z

T

`.yIg.x//�x.dy/˘.dx/:

Given a probability measure � on T; let

u� 2 Argminu2 NR
Z

T

`.yI u/�.dy/:

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 5,
© Springer-Verlag Berlin Heidelberg 2011
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Denote

g�.x/ WD u�x D argminu2 NR
Z

T

`.yI u/�x.dy/:

Assume that the function g� is well defined and properly measurable. Then, for all
g; P.` � g/ � P.` � g�/; which implies that g� is a point of global minimum of
P.` � g/:

Let
Ogn WD argming2GPn.` � g/

be a solution of the corresponding empirical risk minimization problem (for
simplicity, assume its existence).

The following assumption on the loss function ` is often used in the analysis
of the problem: there exists a function D.u; �/ � 0 such that for all measures
� D �x; x 2 S

Z

T

.`.y; u/� `.y; u�//
2�.dy/ � D.u; �/

Z

T

.`.y; u/ � `.y; u�//�.dy/: (5.1)

In the case when the functions in the class G take their values in Œ�M=2;M=2� and

D.u; �x/; juj � M=2; x 2 S

is uniformly bounded by a constant D > 0; it immediately follows from (5.1) (just
by plugging in u D g.x/; � D �x and integrating with respect to ˘ ) that, for all
g 2 G ,

P.` � g � ` � g�/2 � DP.` � g � ` � g�/: (5.2)

As a consequence, if g� 2 G ; then the L2.P /-diameter of the ı-minimal set of F
is bounded as follows:

D.F I ı/ � 2.Dı/1=2:

Moreover, even if g� 62 G ; condition (4.5) might still hold for the loss class F with
f� D ` � g�; providing a link between the excess risk (approximation error) and
the variance of the “excess loss” and opening a way for Massart’s type penalization
methods (see Sects. 4.1, 6.3).

5.1 Regression with Quadratic Loss

We start with regression problems with bounded response and with quadratic loss.
To be specific, assume that Y takes values in T D Œ0; 1� and `.y; u/ WD .y � u/2;
y 2T; u 2 R. The minimum of the risk

P.` � g/ D E.Y � g.X//2
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over the set of all measurable functions g W S 7! R is attained at the regression
function

g�.x/ WD �.x/ WD E.Y jX D x/:

If G is a class of measurable functions from S into Œ0; 1� such that g� 2 G ; then it
is easy to check that for all g 2 G

EP .` � g/ D kg � g�k2L2.˘/:

In general, the excess risk is given by

EP .` � g/ D kg � g�k2L2.˘/ � inf
h2G

kh � g�k2L2.˘/:

The following lemma provides an easy way to bound the excess risk from below in
the case of a convex class G and Ng WD argming2G kg � g�k2L2.˘/.
Lemma 5.1. If G is a convex class of functions, then

2EP .` � g/ � kg � Ngk2L2.˘/:

Proof. The identity

u2 C v2

2
�
�

u C v

2

�2
D .u � v/2

4

implies that

.g � g�/2 C . Ng � g�/2

2
D
�
g C Ng
2

� g�
�2

C .g � Ng/2
4

:

Integrating the last identity with respect to ˘ yields

kg � g�k2L2.˘/ C k Ng � g�k2L2.˘/
2

D
����
g C Ng
2

� g�
����
2

L2.˘/

C kg � Ngk2L2.˘/
4

:

Since G is convex and g; Ng 2 G ; we have gC Ng
2

2 G and

����
g C Ng
2

� g�
����
2

L2.˘/

� k Ng � g�k2L2.˘/:

Therefore,

kg � g�k2L2.˘/ C k Ng � g�k2L2.˘/
2

� k Ng � g�k2L2.˘/ C kg � Ngk2L2.˘/
4

;

implying the claim. ut



84 5 Examples of Excess Risk Bounds in Prediction Problems

As before, we denote F WD f` � g W g 2 G g: It follows from Lemma 5.1 that

F .ı/ � f` � g W kg � Ngk2L2.˘/ � 2ıg:

Also, for all functions g1; g2 2 G and all x 2 S; y 2 T;
ˇ̌
ˇ.` � g1/.x; y/ � .` � g2/.x; y/

ˇ̌
ˇ D

ˇ̌
ˇ.y � g1.x//

2 � .y � g2.x//2
ˇ̌
ˇ

D jg1.x/ � g2.x/jj2y � g1.x/ � g2.x/j � 2jg1.x/ � g2.x/j;

which implies

P
	
` � g1 � ` � g2


2 � 4kg1 � g2k2L2.˘/:
Hence

D.ı/�2 sup
n
kg1�g2kL2.˘/ W kg1� Ngk2L2.˘/ � 2ı; kg2� Ngk2L2.˘/ � 2ı

o
� 4

p
2
p
ı:

In addition, by symmetrization inequality,

�n.ı/ D EkPn � P kF 0.ı/ � 2EkRnkF 0.ı/

� 2E sup

� ˇ̌
ˇRn.` � g1 � ` � g2/

ˇ̌
ˇ W g1; g2 2 G ; kg1 � Ngk2L2.˘/

_ kg2 � Ngk2L2.˘/ � 2ı

�

� 4E sup
nˇ̌
ˇRn.` � g � ` � Ng/

ˇ̌
ˇ W g 2 G ; kg � Ngk2L2.˘/ � 2ı

o
;

and since `.y; �/ is Lipschitz with constant 2 on the interval Œ0; 1� one can use the
contraction inequality to get

�n.ı/ � 16E supfjRn.g � Ng/j W g 2 G ; kg � Ngk2L2.˘/ � 2ıg DW  n.ı/:

As a result, we get

�[n.�/ �  [n.�/ and
q
.D2/[.�/ � 4

p
2:

This yields an upper bound on the quantity �tn involved in Theorem 4.3:

�tn � K

�
 ]n

�
1

2q

�
C t

n

�
;

and the following statement is a corollary of this theorem.
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Theorem 5.1. Let G be a convex class of functions from S into Œ0; 1� and let Og
denotes the least squares estimator of the regression function

Og WD argming2G n
�1

nX

jD1
.Yj � g.Xj //

2:

Then, there exist constantsK > 0;C > 0 such that for all t > 0,

P

�
k Og � g�k2L2.˘/ � inf

g2G
kg � g�k2L2.˘/ CK

�
 ]n

�
1

2q

�
C t

n

��
� Ce�t :

A slightly weaker result holds in the case when the class G is not necessarily
convex. It follows from Lemma 4.1. Note that the condition

4.P.`�g/�P.`�g�// D 4kg�g�k2L2.˘/ DW �2P .`�g; `�g�/ � P.`�g�`�g�/2

is satisfied for all functions g W S 7! Œ0; 1�. Also,

!n.ı/ D E sup
4kg� Ngk2L2.˘/�ı

ˇ̌
ˇ.Pn � P/.` � g � ` � Ng/

ˇ̌
ˇ � 1

2
 n.ı=8/

(by symmetrization and contraction inequalities). Therefore, the following result
holds.

Theorem 5.2. Let G be a class of functions from S into Œ0; 1� and let Og denote
the least squares estimator of the regression function. Then, there exist constants
K > 0;C > 0 such that for all t > 0,

P

�
k Og � g�k2L2.˘/ � .1C "/ inf

g2G
kg � g�k2L2.˘/ C 1

4
 ]n

�
"

K

�
C Kt

n"

�
� Ce�t :

Clearly, similar results hold (with different constants) if the functions in G take
their values in an arbitrary bounded interval.

Several more specific examples are discussed below.

• Example 1. Finite dimensional classes. Suppose that L � L2.˘/ is a finite
dimensional linear space with dim.L/ D d < 1 and let G � L be a convex
class of functions taking values in a bounded interval (for simplicity, Œ0; 1�). It
follows from Proposition 3.2 that

 n.ı/ � C

r
dı

n

with some constant C > 0: Hence,

 ]n

�
1

2q

�
� K

d

n
;
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and Theorem 5.1 implies that

P

�
k Og � g�k2L2.˘/ � inf

g2G
kg � g�k2L2.˘/ CK

�
d

n
C t

n

��
� Ce�t

with some constantK > 0:

• Example 2. Reproducing kernel Hilbert spaces (RKHS). Suppose G is the
unit ball in RKHS HK :

G WD fh W khkHK � 1g:
Denote f	kg the eigenvalues of the integral operator from L2.˘/ into L2.˘/
with kernelK: Then Proposition 3.3 implies that

 n.ı/ � C

�
n�1

1X

jD1
.	j ^ ı/

�1=2
:

The function

ı 7!
�
n�1

1X

jD1
.	j ^ ı/

�1=2
DW �n.ı/

is strictly concave with �n.0/ D 0, and, as a result,

�[n.ı/ D �n.ı/

ı

is strictly decreasing. By a simple computation, Theorem 5.1 yields

P

�
k Og � g�k2L2.˘/ � inf

g2G
kg � g�k2L2.˘/ CK

�
�]n.1/C t

n

��
� Ce�t

with some constantK > 0:

• Example 3. VC-subgraph classes. Suppose that G is a VC-subgraph class of
functions g W S 7! Œ0; 1� of VC-dimension V: Then the function  n.ı/ can be
upper bounded using (3.17):

 n.ı/ � C

�r
V ı

n
log

1

ı

_ V

n
log

1

ı

�
:

Therefore

 ]n."/ � CV

n"2
log

n"2

V
:

Theorem 5.2 implies

P

�
k Og�g�k2L2.˘/ � .1C"/ inf

g2G
kg�g�k2L2.˘/CK

�
V

n"2
log

n"2

V
C t

n"

��
� Ce�t :
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• Example 4. Entropy conditions. In the case when the entropy of the class G
(random, uniform, bracketing, etc.) is bounded by O."�2�/ for some � 2 .0; 1/;

we typically have

 ]n."/ D O
	
n�1=.1C�/
:

For instance, if (3.18) holds, then it follows from (3.19) (with F 
 U D 1 for
simplicity) that

 n.ı/ � K

�
A�p
n
ı.1��/=2

_ A2�=.�C1/

n1=.1C�/

�
:

Therefore,

 ]n."/ � CA2�=.1C�/

.n"2/1=.1C�/
:

In this case Theorem 5.2 gives the bound

P

�
k Og�g�k2L2.˘/ � .1C "/ inf

g2G
kg�g�k2L2.˘/ CK

�
A2�=.1C�/

.n"2/1=.1C�/
C t

n"

��

� Ce�t :

• Example 5. Convex hulls. If

G WD conv.H / WD
�X

j

	j hj W
X

j

j	j j � 1; hj 2 H

�

is the symmetric convex hull of a given VC-type class H of measurable
functions from S into Œ0; 1�; then the condition of the previous example is
satisfied with � WD V

VC2 : This yields

 ]n."/ �
�
K.V /

n"2

� 1
2
2CV
1CV

and Theorem 5.1 yields

P

�
k Og � g�k2L2.˘/ � inf

g2G
kg � g�k2L2.˘/ CK

��
1

n

� 1
2
2CV
1CV

C t

n

��
� Ce�t

with some constantK > 0 depending on V .
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5.2 Empirical Risk Minimization with Convex Loss

A standard assumption on the loss function ` that makes the empirical risk
minimization problem computationally tractable is that `.y; �/ is a convex function
for all y 2 T: Assuming, in addition, that G is a convex class of functions, the
convexity of the loss implies that the empirical risk G 3 g 7! Pn.` � g/ is a convex
functional and the empirical risk minimization is a convex minimization problem.
We will call the problems of this type convex risk minimization. The least squares
and the L1-regression as well as some of the methods of large margin classification
(such as boosting) are examples of convex risk minimization.

The convexity assumption also simplifies the analysis of empirical risk minimiza-
tion problems. In particular, it makes easier proving the existence of the minimal
point g�; checking condition (5.1), etc. In this section, we extend the results for
L2-regression to this more general framework.

Assume the functions in G take their values in Œ�M=2;M=2�: We will need the
following assumptions on the loss function ` W
• ` satisfies the Lipschitz condition with some L > 0

8y 2 T 8u; v 2 Œ�M=2;M=2� j`.y; u/� `.y; v/j � Lju � vjI (5.3)

• The following assumption on convexity modulus of ` holds for some 
 > 0 W

8y 2 T 8u; v 2 Œ�M=2;M=2� `.y; u/C `.y; v/

2
� `

�
yI u C v

2

�
� 
ju � vj2:

(5.4)

Note that, if g� is bounded by M=2; conditions (5.3) and (5.4) imply (5.1) with
D.u; �/ � L2

2

. To see this, it is enough to use (5.4) with v D u�; � D �x and to

integrate it with respect to �: As a result, for the function

L.u/ WD
Z

T

`.y; u/�.dy/;

whose minimum is attained at u�; the following bound holds:

L.u/� L.u�/

2
D L.u/C L.u�/

2
�L.u�/

� L.u/C L.u�/

2
�L

�
u C u�
2

�
� 
ju � u�j2: (5.5)

On the other hand, the Lipschitz condition implies that
Z

T

j`.y; u/� `.y; u�/j2�.dy/ � L2ju � u�j2; (5.6)
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and (5.1) follows from (5.5) and (5.6). This nice and simple convexity argument has
been used repeatedly in the theory of excess risk bounds (see, for instance, Bartlett
et al. [16]). We will also use it in the proof of Theorem 5.3.

Theorem 5.3. Suppose that G is a convex class of functions taking values in
Œ�M=2;M=2�: Assume that the minimum of P.` � g/ over G is attained at Ng 2 G
and

!n.ı/ WD E sup
g2G ;kg� Ngk2L2.˘/�ı

jRn.g � Ng/j:

Denote

Og WD argming2GPn.` � g/:

Then there exist constantsK > 0;C > 0; c > 0 such that

P

�
P.` � Og/ � inf

g2G
P.` � g/CK

�

!]n

�
c


L

�
C L2




t

n

��
� Ce�t ; t > 0:

Proof. Note that by Lipschitz condition (5.3), for all g1; g2 2 G ;

P j` � g1 � ` � g2j2 � L2kg1 � g2k2L2.˘/:

On the other hand, by (5.4), for all g 2 G ; x 2 S; y 2 T;
`.y; g.x//C `.y; Ng.x//

2
� `

�
yI g.x/C Ng.x/

2

�
C
jg.x/ � Ng.x/j2:

Integrating this inequality and observing that gC Ng
2

2 G and hence

P

�
` �

�
g C Ng
2

��
� P.` � Ng/;

yields

P.` � g/C P.` � Ng/
2

� P.` � Ng/C
˘ jg � Ngj2;

or

P.` � g/� P.` � Ng/ � 2
˘ jg � Ngj2:

For the loss class F D f` �g W g 2 G g; this gives the following upper bound on the
L2.P /-diameter of the ı-minimal set F .ı/ W D2.ı/ � 2ı



. By symmetrization and

contraction inequalities, it is easy to bound
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�n.ı/ D EkPn � P kF 0.ı/

in terms of !n.ı/ W

�n.ı/ � CL!n

�
ı

2


�
:

By a simple computation, the quantity �tn used in Theorem 4.3 is bounded as
follows:

�tn � K

�

!]n

�
c


L

�
C L2




t

n

�
:

Under the additional assumption that ` is uniformly bounded by 1 in T �
Œ�M=2;M=2�; Theorem 4.3 implies the result. To get rid of the extra assumption,
suppose that ` is uniformly bounded by D on T � Œ�M=2;M=2�: Then the result
holds for the loss function `=D: For this loss function, L and 
 are replaced by
L=D and
=D; and the expression


!]n

�
c


L

�
C L2




t

n

becomes


=D!]n

�
c
=D

L=D

�
C L2=D2


=D

t

n
D 1

D

�

!]n

�
c


L

�
C L2




t

n

�
;

so the result follows by rescaling. ut
As an example, consider the case when G WD M conv.H / for a base class H

of functions from S into Œ�1=2; 1=2�: There are many powerful functional gradient
descent type algorithms (such as boosting) that provide an implementation of convex
empirical risk minimization over a convex hull or a linear span of a given base class.
Assume that condition (3.16) holds for the class H with some V > 0; i.e., H is a
VC-type class. Define

�n.M;L;
I t/ WD K

�

MV=.VC1/	L




_
1

.VC2/=.VC1/

n� 1
2
VC2
VC1 C L2




t

n

�

with a numerical constant K: The next result is a slightly generalized version of a
theorem due to Bartlett et al. [16].

Theorem 5.4. Under the conditions (5.3) and (5.4),

P

�
P.` � Ogn/ � min

g2G
P.` � g/C �n.M;L;
I t/

�
� Ce�t :
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Proof. To apply Theorem 5.3, it is enough to bound the function !n: Since
G WDM conv.H /; where H is a VC-type class of functions from S into
Œ�1=2; 1=2�; condition (3.16) holds for H with envelopeF 
1 (see Theorem 3.13).
Together with (3.19), this gives

!n.ı/ � C

�
M�

p
n
ı.1��/=2

_ M2�=.�C1/

n1=.1C�/

�

with � WD V
VC2 : Hence,

!]n."/ � C
M2�=.1C�/

n1=.1C�/
"�2=.1C�/

for " � 1: If `.y; �/ is bounded by 1 in T � Œ�M=2;M=2�; then Theorem 5.3 yields

P

�
P.` � Og/ � min

g2G
P.` � g/C �n.M;L;
I t/

�
� Ce�t :

To remove the assumption that ` is bounded by 1; one should use the same rescaling
argument as in the proof of Theorem 5.3. ut

5.3 Binary Classification Problems

Binary classification is a prediction problem with T D f�1; 1g and `.y; u/ WD
I.y ¤ u/; y; u 2 f�1; 1g (binary loss). It is a simple example of risk minimization
with a nonconvex loss function.

Measurable functions g W S 7! f�1; 1g are called classifiers. The risk of a
classifier g with respect to the binary loss

L.g/ WD P.` � g/ D EI.Y ¤ g.X// D PfY ¤ g.X/g

is called the generalization error. It is well known that the minimum of the
generalization error over the set of all classifiers is attained at the classifier

g�.x/ D sign.�.x//;

where �.x/ D E.Y jX D x/ is the regression function. The function g� is called the
Bayes classifier. It is also well known that for all classifiers g

L.g/ � L.g�/ D
Z

fxWg.x/¤g
�

.x/g
j�.x/j˘.dx/ (5.7)

(see, e.g., [51]).



92 5 Examples of Excess Risk Bounds in Prediction Problems

Suppose there exists h 2 .0; 1� such that for all x 2 S

j�.x/j � h: (5.8)

The parameter h characterizes the level of noise in classification problems: for small
values of h; �.x/ can get close to 0 and, in such cases, correct classification is harder
to achieve. The following condition provides a more flexible way to describe the
level of the noise:

˘fx W j�.x/j � tg � C t˛ (5.9)

for some ˛ > 0: It is often referred to as “Tsybakov’s low noise assumption” or
“Tsybakov’s margin assumption” (sometimes, condition (5.8) is called “Massart’s
low noise assumption”).

Lemma 5.2. Under condition (5.8),

L.g/ �L.g�/ � h˘.fx W g.x/ ¤ g�.x/g/:
Under condition (5.9),

L.g/ �L.g�/ � c˘�.fx W g.x/ ¤ g�.x/g/;
where � D 1C˛

˛
and c > 0 is a constant.

Proof. The first bound follows immediately from formula (5.7). To prove the second
bound, use the same formula to get

L.g/ � L.g�/ � t˘ fx W g.x/ ¤ g�.x/; j�.x/j > tg
� t˘ fx W g.x/ ¤ g�.x/g � t˘fx W j�.x/j � tg
� t˘ fx W g.x/ ¤ g�.x/g � C t1C˛:

It remains to substitute in the last bound the value of t that solves the equation

˘ fx W g.x/ ¤ g�.x/g D 2C t˛

to get the result. ut
Let G be a class of binary classifiers. Denote

Og WD argming2GLn.g/;

where

Ln.g/ WD n�1
nX

jD1
I.Yj ¤ g.Xj //

is the empirical risk with respect to the binary loss (the training error).
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First we obtain upper bounds on the excess risk L. Og/ � L.g�/ of Og in terms of
random shattering numbers

�G .X1; : : : ; Xn/ WD card

�
.g.X1/; : : : ; g.Xn// W g 2 G

�

and parameter h involved in condition (5.8).

Theorem 5.5. Suppose condition (5.8) holds with some h 2 .0; 1�: If g� 2 G ; then

P

�
L. Og/ �L.g�/ � K

�
E log�G .X1; : : : ; Xn/

nh
C t

nh

��
� Ce�t

with some constants K;C > 0: In the general case, when g� does not necessarily
belong to G ; the following bound holds for all " 2 .0; 1/ W

P

�
L. Og/ � L.g�/ � .1C "/

	
inf
g2G

L.g/ � L.g�/



CK

�
E log�G .X1; : : : ; Xn/

nh"2
C t

nh"

��
� Ce�t

Proof. Note that

j.` � g/.x; y/ � .` � g�/.x; y/j D I.g.x/ ¤ g�.x//;

which implies

���` � g � ` � g�
���
2

L2.P /
D P j.` � g/ � .` � g�/j2 D ˘fx W g.x/ ¤ g�.x/g:

As always, denote F WD f` � g W g 2 G g: Under the assumption g� 2 G ; the first
inequality of Lemma 5.2 implies that

F .ı/D
�
`�g W E .`�g/DL.g/�L.g�/� ı

�
�
�
`�g W

���`�g�`�g�
���
L2.P /

�
r
ı

h

�
;

so theL2.P /-diameterD.ı/ of the class F .ı/ satisfiesD.ı/ � 2

q
ı
h
:Next we have

�n.ı/ D EkPn�P kF 0.ı/ � 2E sup
g2G ;˘.fg¤g

�

g/�ı=h
j.Pn�P/.`�g�`�g�/j: (5.10)

Denote

D WD
�

f.x; y/ W y ¤ g.x/g W g 2 G

�
andD� WD f.x; y/ W y ¤ g�.x/g:
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It is easy to check that for

D1 WD f.x; y/ W y ¤ g1.x/g; D2 WD f.x; y/ W y ¤ g2.x/g;

we have

˘.fg1 ¤ g2g/ D P.D14D2/:

It follows from (5.10) that

�n.ı/ � 2E sup
D2D ;P.D4D

�

/�ı=h
j.Pn � P/.DnD�/j

C 2E sup
D2D ;P.D4D

�

/�ı=h
j.Pn � P/.D�nD/j:

Theorem 3.9 yields

�n.ı/ � K

�r
ı

h

s
E log�D..X1; Y1/; : : : ; .Xn; Yn//

n

_ E log�D..X1; Y1/; : : : ; .Xn; Yn//

n

�

with some constant K > 0. Also, it is easy to observe that

�D..X1; Y1/; : : : ; .Xn; Yn// D �G .X1; : : : ; Xn/

which gives the bound

�n.ı/ � K

�r
ı

h

s
E log�G .X1; : : : ; Xn/

n

_ E log�G .X1; : : : ; Xn/

n

�
:

The bounds on �n.ı/ andD.ı/ provide a way to control the quantity �tn involved in
Theorem 4.3:

�tn � K

�
E log�G .X1; : : : ; Xn/

nh
C t

nh

�

with some constant K > 0; which implies the first bound of the theorem.
The proof of the second bound follows the same lines and it is based on

Lemma 4.1. ut
The next theorem provides bounds on excess risk in terms of shattering numbers

under Tsybakov’s condition (5.9). We skip the proof which is similar to that of
Theorem 5.5.
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Theorem 5.6. Suppose condition (5.9) holds with some ˛ >0. Let � WD 1C˛
˛

.
If g� 2 G , then

P

�
L. Og/�L.g�/�K

��
E log�G .X1; : : : ; Xn/

n

��=.2��1/
C
�
t

n

��=.2��1/��
�Ce�t

with some constantsK;C > 0.

We will also mention the following result in spirit of Tsybakov [144].

Theorem 5.7. Suppose, for some A > 0; � 2 .0; 1/

logN.G IL2.Pn/I "/ �
�
A

"

�2�
; " > 0; (5.11)

and condition (5.9) holds with some ˛ > 0: Let � WD 1C˛
˛
: If g� 2 G ; then

P

�
L. Og/� L.g�/ � K

��
1

n

��=.2�C��1/
C
�
t

n

��=.2��1/��
� Ce�t

with some constantK;C > 0 depending on A.

The proof is very similar to the proofs of the previous results except that now
(3.19) is used to bound the empirical process. One can also use other notions of
entropy such as entropy with bracketing and obtain very similar results.

We conclude this section with a theorem by Giné and Koltchinskii [66] that
refines an earlier result by Massart and Nedelec [108]. To formulate it, let

C WD ˚fg D 1g W g 2 G
�
; C� WD fg� D 1g;

and define the following local version of Alexander’s capacity function of the class
C (see [5]):


.ı/ WD
˘
	S

C2C ;˘.C4C
�

/�ı.C4C�/



ı
:

Theorem 5.8. Suppose condition (5.8) holds with some h 2 .0; 1�: Suppose also
that C is a VC-class of VC-dimension V: If g� 2 G ; then

P

�
L. Og/ �L.g�/ � K

�
V

nh
log 


�
V

nh2

�
C t

nh

��
� Ce�t
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with some constants K;C > 0: In the general case, when g� does not necessarily
belong to G ; the following bound holds for all " 2 .0; 1/ W

P

�
L. Og/ � L.g�/ � .1C "/

	
inf
g2G

L.g/ � L.g�/



CK

�
V

nh"2
log 


�
V

nh2"2

�
C t

nh"

��
� Ce�t :

Proof. We give only a sketch of the proof that relies on bound (3.17). For instance,
to prove the second inequality this bound is used to control

!n.ı/ D E sup
g2G ;k`�g�`� Ngk2L2.P /�ı

j.Pn � P/.` � g � ` � Ng/j;

where Ng is a minimal point of P.` � g/ on G : To use (3.17) one has to find the
envelope

Fı.x; y/ WD sup
g2G ;k`�g�`� Ngk2L2.P /�ı

j` � g.x; y/ � ` � Ng.x; y/j:

Easy computations show that

kFıkL2.˘/ D 2
p
ı
.ı/

and an application of (3.17) yields

!n.ı/ � K

�r
V ı

n
log 
.ı/

_ V

n
log 
.ı/

�

with some constant K . This implies that, for all " 2 .0; 1/,

!]n."/ � K
V

n"2
log 


�
V

n"2

�

with some constant K > 0: Now we can use Lemma 4.1 to complete the proof of
the second bound of the theorem (condition (4.5) of this lemma holds withD D 1

h
).
ut

A straightforward upper bound on the capacity function 
.ı/ � 1
ı

leads to
the result of Massart and Nedelec [108] in which the main part of the error term
is V

nh
log

�
nh2

V



. However, it is easy to find examples in which the capacity 
.ı/

is uniformly bounded. For instance, suppose that S D Œ0; 1�d ;˘ is the Lebesgue
measure on S;C is a VC-class of convex sets, C� 2 C and ˘.C�/ > 0. Suppose
also that with some constant L > 0

L�1h.C; C�/ � ˘.C4C�/ � Lh.C;C�/; C 2 C ;
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where h is the Hausdorff distance. Then the boundedness of 
 easily follows. In such
cases, the main part of the error is of the order V

nh
(without a logarithmic factor).

5.4 Further Comments

The idea to control the variance of a loss in terms of its expectation has been
extensively used by Massart [106] (and even in a much earlier work of Birgé
and Massart) as well as in the learning theory literature Mendelson [112], Bartlett
et al. [16], Blanchard et al. [26], Bartlett et al. [15] (and even earlier, see [6, 19]).
L2.˘/-error bounds in regression problems with quadratic loss, given in

Examples 1–5 of Sect. 5.1, are well known. In particular, the bound of Example 2
(regression in RKHS) goes back to Mendelson [113] and the bound of Example 5
(regression in convex hulls) to Blanchard et al. [26]. Other important references on
L2-error bounds in regression problems include [11, 62, 72, 79].

Empirical risk minimization with convex loss was studied in detail by Blanchard
et al. [26] and Bartlett et al. [16]. In the last paper, rather subtle bounds relating
excess risks with respect to a “surrogate” convex loss and with respect to the binary
classification loss were also studied. Earlier, Zhang [155] provided initial versions of
such bounds in connection with his study of consistency of classification algorithms
(see also [103, 134] for other important results on this problem).

Classification problems under condition (5.9) (“Tsybakov’s low noise assump-
tion”) have been intensively studied by Mammen and Tsybakov [105] and, espe-
cially, by Tsybakov [144] (see also [145]). Condition (5.8) was later suggested by
Massart and used in a number of papers (see, e.g., [108]). Koltchinskii [83] provided
an interpretation of assumptions of this type as special cases of conditions on the
L2.˘/-diameters of ı-minimal sets of the true risk (see Chap. 4).

In the recent years, the capacity function 
 used in Theorem 5.8 (see also Giné
and Koltchinskii [66]) started playing an important role in the analysis of active
learning algorithms (see Hanneke [73] and Koltchinskii [87]).



Chapter 6
Penalized Empirical Risk Minimization
and Model Selection Problems

Let F be a class of measurable functions on .S;A / and let fFk W k � 1g be
a family of its subclasses Fk � F ; k � 1. The subclasses Fk will be used to
approximate a solution of the problem of risk minimization (1.1) over a large class
F by a family of solutions of “smaller” empirical risk minimization problems

Ofk WD Ofn;k WD argminf 2Fk
Pnf:

For simplicity, we assume that the solutions f Ofn;kg exist.
In what follows, we call

EP .F If / D Pf � inf
f 2F

Pf

the global excess risk of f 2 F . Given k � 1, we call EP .Fk If / D Pf �
inff 2Fk

Pf the local excess risk of f 2 Fk .
Usually, the classes Fk; k � 1 represent losses associated with certain statistical

models and the problem is to use the estimators f Ofn;kg to construct a function Of 2 F

(for instance, to choose one of the estimators Ofn;k) with a small value of the global
excess risk EP .F I Of /. To be more precise, suppose that there exists an index k.P /
such that

inf
Fk.P /

Pf D inf
F
Pf:

In other words, the risk minimizer over the whole class F belongs to a subclass
Fk.P /. A statistician does not know the distributionP and, hence, the index k.P / of

the correct model. Let Qın.k/ be an upper bound on the local excess risk EP .Fk I Ofn;k/
of Ofn;k that provides an “optimal”, or just a “desirable” accuracy of solution of
empirical risk minimization problem on the class Fk . If there were an oracle who
could tell the statistician that, say, k.P / D 5 is the correct index of the model,
then the risk minimization problem could be solved with an accuracy at least
Qın.5/. The model selection problem deals with constructing a data dependent index

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 6,
© Springer-Verlag Berlin Heidelberg 2011
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OkD Ok.X1; : : : ; Xn/ of the model such that the excess risk of Of WD Of
n; Ok is within a

constant from Qın.k.P // with a high probability. More generally, in the case when
the global minimum of the risk Pf; f 2 F is not attained in any of the classes Fk ,
one can still try to show that with a high probability

EP .F I Of / � C inf
k

�
inf
Fk

Pf � Pf� C Q�n.k/
�
;

where

f� WD argminf 2FPf:

For simplicity, assume the existence of a function f� 2 F at which the global
minimum of the risk Pf; f 2 F is attained. The quantities Q�n.k/ involved in
the above bound are “ideal” distribution dependent complexity penalties associated
with risk minimization over Fk and C is a constant (preferably, C D 1 or at least
close to 1). The inequalities that express such a property are often called oracle
inequalities.

Among the most popular approaches to model selection are penalization meth-
ods, in which Ok is defined as a solution of the following minimization problem

Ok WD argmink�1
n
Pn Ofk C O�n.k/

o
(6.1)

where O�n.k/ is a complexity penalty (generally, data dependent) associated with the
class (the model) Fk . In other words, instead of minimizing the empirical risk on
the whole class F we now minimize a penalized empirical risk.

We discuss below penalization strategies with the penalties based on data
dependent bounds on excess risk developed in the previous sections. Penalization
methods have been widely used in a variety of statistical problems, in particular, in
nonparametric regression. At the same time, there are difficulties in extending penal-
ization method of model selection to some other problems, such as nonparametric
classification.

To provide some motivation for the approach discussed below, note that ideally
one would want to find Ok by minimizing the global excess risk EP .F I Ofn;k/ of the
solutions of ERM problems with respect to k. This is impossible without the help
of the oracle. Instead, data dependent upper confidence bounds on the excess risk
have to be developed. The following trivial representation (that plays the role of
“bias-variance decomposition”)

EP .F I Ofn;k/ D inf
Fk

Pf � Pf� C EP .Fk I Ofn;k/

shows that a part of the problem is to come up with data dependent upper bounds
on the local excess risk EP .Fk I Ofn;k/. This was precisely the question studied in the
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previous sections. Another part of the problem is to bound infFk
Pf �Pf� in terms

of infFk
Pnf �Pnf�, which is what will be done in Lemma 6.3 below. Combining

these two bounds provides an upper bound on the global excess risk that can be now
minimized with respect to k (the term Pnf� can be dropped since it does not depend
on k).

Suppose that for each class Fk , the function Un.�/ D Un;k.�/ is given (it
was defined in Sect. 4.1 in terms of sequences fıj g ftj g that, in this case, might
also depend on k). In what follows, we will assume that, for each k � 1,
. Nın.k/; Oın.k/; Qın.k// is a triple bound on the excess risk for the class Fk of
confidence level 1 � pk (see Definition 4.1). Suppose p WD P1

kD1 pk < 1: Then,
there exists an event E of probability at least 1 � p such that on this event the
following properties hold for all k � 1 W

(i) U ]

n;k

	
1
2



� Nın.k/ � Oın.k/ � Qın.k/

(ii) E .Fk; Ofn;k/ � Nın.k/
(iii) for all f 2 Fk ,

EP .Fk; f / � 2EPn.Fk If / _ Nın.k/

and

EPn.Fk If / � 3

2

	
EP .Fk If / _ Nın.k/



I

(iv) for all ı � Nın.k/, kPn � P kF 0

k .ı/
� Un;k.ı/:

In the next sections, we study several special cases of general penalized empirical
risk minimization problem in which it will be possible to prove oracle inequalities.

6.1 Penalization in Monotone Families Fk

In this section, we make a simplifying assumption that fFkg is a monotone family,
that is, Fk � FkC1; k � 1. Let F WD S

j�1 Fj : Define

Ok WD argmink�1
h

inf
f 2Fk

Pnf C 4 Oın.k/
i

and Of WD Of Ok . The next statement is akin to the result of Bartlett [13].

Theorem 6.1. The following oracle inequality holds with probability at least 1�p W

EP .F I Of / � inf
j�1

h
inf
Fj

Pf � inf
F
Pf C 9 Qın.j /

i
:
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Proof. We will consider the eventE of probability at least 1�p on which properties
(i)–(iv) hold. Then, for all j � Ok,

EP .Fj I Of / � 2EPn.Fj I Of / _ Nın.j / � 2
h

inf
f 2F

Ok

Pnf � inf
f 2Fj

Pnf
i

C Nın.j /

� 2
h

inf
f 2F

Ok

Pnf C 4 Oın. Ok/� inf
f 2Fj

Pnf � 4 Oın.j /
i

C 9 Oın.j /;

which is bounded by 9 Qın.j / since, by the definition of Ok, the term in the bracket is
nonpositive and Oın.j / � Qın.j /. This implies

P Of � inf
f 2Fj

Pf C 9 Qın.j /:

The next case is when j < Ok and Oın.j / � Oın. Ok/=9. Then EP .F Ok I Of Ok/ � Nın. Ok/, and,
as a consequence,

P Of � inf
f 2F

Ok

Pf C Oın. Ok/ � inf
f 2Fj

Pf C 9 Qın.j /:

The last case to consider is when j < Ok and Oın.j / < Oın. Ok/=9. In this case, the
definition of Ok implies that

inf
f 2Fj

EPn.F Ok If / D inf
f 2Fj

Pnf � inf
f 2F

Ok

Pnf � 4. Oın. Ok/ � Oın.j // � 3 Oın. Ok/:

Hence,

3

2

�
inf

f 2Fj

EP .F Ok If / _ Nın. Ok/
�

� inf
f 2Fj

EPn.F Ok If / � 3 Oın. Ok/;

which yields
3 inf
f 2Fj

EP .F Ok If /C 3 Nın. Ok/ � 6 Oın. Ok/:

Therefore
inf

f 2Fj

EP .F Ok If / � Oın. Ok/ � EP .F Ok I Of /:

As a consequence,

P Of � inf
f 2Fj

Pf � inf
f 2Fj

Pf C 9 Qın.j /:

This completes the proof. ut
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Example 6.1. Consider a regression problem with quadratic loss and with a
bounded response variable Y 2 Œ0; 1� (see Sect. 5.1). Let Gk; k � 1 be convex
classes of functions g taking values in Œ0; 1� such that Gk � GkC1; k � 1:

Moreover, suppose that for all k � 1 Gk � Lk , where Lk is a finite dimensional
space of dimension dk. Let

Ogn;k WD argming2Gk
n�1

nX

jD1
.Yj � g.Xj //

2:

Take a nondecreasing sequence ftkg of positive numbers such that

X

k�1
e�tk D p 2 .0; 1/:

Define

Nın.k/ D Oın.k/ D Qın.k/ D K
dk C tk

n
; k � 1:

It is straightforward to see that, for a large enough constantK , . Nın.k/; Oın.k/; Qın.k//
is a triple bound of level 1 � e�tk (see Example 1, Sect. 5.1). Hence, if we define

Ok WD argmink�1
�

inf
g2Gk

n�1
nX

jD1
.Yj � g.Xj //2 C 4K

dk C tk

n

�

with a sufficiently large constantK and set Og WD Og
n; Ok , then it follows from Theorem

6.1 that with probability at least 1 � p

k Og � g�k2L2.˘/ � inf
k�1

�
inf
g2Gk

kg � g�k2L2.˘/ C 9K
dk C tk

n

�
:

Clearly, one can also construct triple bounds and implement this penalization
method in more complicated situations (see Examples 2–5 in Sect. 5.1) and for other
loss functions (for instance, for convex losses discussed in Sect. 5.2). Moreover,
one can use a general construction of triple bounds in Theorem 4.8 that provides
a universal approach to complexity penalization (which, however, is more of
theoretical interest).

Despite the fact that it is possible to prove nice and simple oracle inequalities
under the monotonicity assumption, this assumption might be restrictive and, in
what follows, we explore what can be done without it.



104 6 Penalized Empirical Risk Minimization and Model Selection Problems

6.2 Penalization by Empirical Risk Minima

In this section, we study a simple penalization technique in spirit of the work of
Lugosi and Wegkamp [104] in which the infimum of empirical risk infFk

Pnf is
explicitly involved in the penalty. It will be possible to prove rather natural oracle
inequalities for this penalization method. However, the drawback of this approach
is that, in most of the cases, it yields only suboptimal convergence rates.

Given triple bounds . Nın.k/; Oın.k/; Qın.k// of level 1 � pk for classes Fk , define
the following penalties:

O�.k/ WD O�n.k/ WD OK
�

Oın.k/C
r
tk

n
inf
Fk

Pnf C tk

n

�

and

Q�.k/ WD Q�n.k/ WD QK
�

Qın.k/C
r
tk

n
inf
Fk

Pf C tk

n

�
;

where OK; QK are sufficiently large numerical constants. Here Q�.k/ represents a
“desirable accuracy” of risk minimization on the class Fk .

The index estimate Ok is defined by minimizing the penalized empirical risk

Ok WD argmink�1
n
Pn Ofk C O�.k/

o

and, as always, Of WD Of Ok .

The next theorem provides an upper confidence bound on the risk of Of and an
oracle inequality for the global excess risk EP .F I Of /.
Theorem 6.2. There exists a choice of OK; QK such that for any sequence ftkg of
positive numbers, the following bounds hold:

P

�
P Of � inf

k�1

n
Pn Ofn;k C O�.k/

o�
�

1X

kD1

�
pk C e�tk

�

and

P

�
EP .F I Of / � inf

k�1

n
inf

f 2Fk

Pf � inf
f 2F

Pf C Q�.k/
o�

�
1X

kD1

�
pk C e�tk

�
:

Remark. Note that, unless infFk
Pf D 0, Q�.k/ D Q�n.k/ can not be smaller than

const n�1=2. In many cases (see Chap. 5), the excess risk bound Qın.k/ is smaller than
this, and the penalization method of this section is suboptimal.
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Proof. The following lemma is the main tool used in the proof.

Lemma 6.1. Let F be a class measurable functions from S into Œ0; 1�. If Nın is an
admissible distribution dependent bound of confidence level 1 � p; p 2 .0; 1/ (see
Definition 4.1), then the following inequality holds for all t > 0 W

P

� ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ � 2 Nın C

r
2t

n
inf
F
Pf C t

n

�
� p C e�t :

If . Nın; Oın; Qın/ is a triple bound of confidence level 1 � p, then

P

� ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ � 4 Oın C 2

r
2t

n
inf
F
Pnf C 8t

n

�
� p C e�t :

Proof. Let E be the event where conditions (i)–(iv) of Definition 4.1 hold. Then
P.E/ � 1 � p. On the event E, E . Ofn/ � Nın and, for all " < Nın and g 2 F ."/

ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ D

ˇ̌
ˇPn Ofn � inf

F
Pf

ˇ̌
ˇ

� P Ofn � inf
F
Pf C j.Pn � P/. Ofn � g/j C j.Pn � P/.g/j �

� Nın C kPn � P kF 0.Nın/ C j.Pn � P/.g/j: (6.2)

Also, on the same event E,

kPn � P kF 0.Nın/ � Un. Nın.t// � NVn. Nın/ Nın � Nın: (6.3)

By Bernstein’s inequality, with probability at least 1 � e�t

j.Pn � P/.g/j �
r
2
t

n
VarP g C 2t

3n
�
s

2
t

n

�
inf
F
Pf C "

�
C 2t

3n
; (6.4)

since g takes values in Œ0; 1�, g 2 F ."/, and VarP g � Pg2 � Pg � infF Pf C ":

It follows from (6.2), (6.3) and (6.4) that, on the event

E."/ WD E
\�

j.Pn � P/.g/j �
s

2
t

n

�
inf
F
Pf C "

�
C 2t

3n

�
; (6.5)

the following inequality holds:

ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ � 2 Nın C

s

2
t

n

�
inf
F
Pf C "

�
C t

n
: (6.6)
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Since the events E."/ are monotone in ", let " ! 0 to get

P.E.0// � 1 � p � e�t :

This yields the first bound of the lemma.
For the proof of the second bound, note that on the eventE.0/,

ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ �

r
2
t

n
j inf

F
Pnf � inf

F
Pf jC2 NınC

r
2
t

n
inf
F
Pnf C t

n
: (6.7)

Thus, either

j inf
F
Pnf � inf

F
Pf j � 8t

n
; or

2t

n
� j infF Pnf � infF Pf j

4
:

In the last case (6.7) implies that

ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ � 4 Nın C 2

r
2
t

n
inf
F
Pnf C 2t

n
:

The condition of the lemma allows us to replace (on the event E) Nın by Oın and to
get the following bound that holds with probability at least 1 � p � e�t W

ˇ̌
ˇinf

F
Pnf � inf

F
Pf

ˇ̌
ˇ � 4 Oın C 2

r
2
t

n
inf
F
Pnf C 8t

n
: ut

Now, we return to the proof of the theorem. For each class Fk and t D tk , define
the event Ek.0/ as in (6.5) with " D 0. Clearly,

P.Ek.0// � 1 � pk � e�tk :

Let
F WD

\

k�1
Ek.0/:

Then

P.F c/ �
1X

kD1

�
pk C e�tk

�
:

We use the following consequence of Lemma 6.1 and the definition of the triple
bounds: on the event F for all k � 1,

P Ofk � inf
f 2Fk

Pf � Nın.k/ � Oın.k/ � Qın.k/
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and

ˇ̌
ˇinf
Fk

Pnf � inf
Fk

Pf
ˇ̌
ˇ � 2 Nın.k/C

s
2tk

n
inf
Fk

Pf C tk

n
;

ˇ̌
ˇinf
Fk

Pnf � inf
Fk

Pf
ˇ̌
ˇ � 4 Oın.k/C 2

s
2tk

n
inf
Fk

Pnf C 8tk

n
:

Therefore,

P Of D P Of Ok � inf
F

Ok

Pf C Nın. Ok/ � inf
F

Ok

Pnf C 5 Oın. Ok/C 2

s
2t Ok
n

inf
F

Ok

Pnf C 8t Ok
n

�

� inf
F

Ok

Pnf C O�. Ok/ D inf
k

h
inf
Fk

Pnf C O�.k/
i
;

provided that the constant OK in the definition of O� was chosen properly. The first
bound of the theorem has been proved.

To prove the second bound, note that

r
tk

n
inf
Fk

Pnf �
r
tk

n
inf
Fk

Pf C
r
tk

n
j inf

Fk

Pnf � inf
Fk

Pf j

�
r
tk

n
inf
Fk

Pf C tk

2n
C 1

2
j inf

Fk

Pnf � inf
Fk

Pf j:

Therefore, on the event F , for all k,

O�.k/ D OK
�

Oın.k/C
r
tk

n
inf
Fk

Pnf C tk

n

�

�
QK
2

�
Qın.k/C

r
tk

n
inf
Fk

Pf C tk

n

�
D Q�.k/=2

and

ˇ̌
ˇinf
Fk

Pnf � inf
Fk

Pf
ˇ̌
ˇ � 2 Nın.k/C

s
2tk

n
inf
Fk

Pf C tk

n

�
QK
2

�
Qın.k/C

r
tk

n
inf
Fk

Pf C tk

n

�
D Q�.k/=2;

provided that the constant QK in the definition of Q�.k/ is large enough. As a result,
on the event F ,
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P Of � inf
k

h
inf
Fk

Pnf C O�.k/
i

� inf
k

h
inf
Fk

Pf C Q�.k/
i
;

proving the second bound. ut
Example 6.2. As an example, we derive some of the results of Lugosi and Wegkamp
[104] (in a slightly modified form). Suppose that F is a class of measurable func-
tions on S taking values in f0; 1g (binary functions). As before, let�F .X1; : : : ; Xn/

be the shattering number of the class F on the sample .X1; : : : ; Xn/ W

�F .X1; : : : ; Xn/ WD card

��
.f .X1/; : : : ; f .Xn// W f 2 F

��
:

Given a sequence fFkg, Fk � F of classes of binary functions, define the
following complexity penalties

O�.k/ WD OK
�s

inf
f 2Fk

Pnf
log�Fk .X1; : : : ; Xn/C tk

n
C log�Fk .X1; : : : ; Xn/C tk

n

�

and

Q�.k/ WD QK
�s

inf
f 2Fk

Pf
E log�Fk .X1; : : : ; Xn/C tk

n
C E log�Fk .X1; : : : ; Xn/C tk

n

�
:

Let Ok be a solution of the penalized empirical risk minimization problem

Ok WD argmink�1
�

min
Fk

Pnf C O�.k/
�
:

Denote Of WD Of
n; Ok .

Theorem 6.3. There exists a choice of OK; QK such that for all tk > 0,

P

�
EP .F I Of / � inf

k�1

n
inf

f 2Fk

Pf � inf
f 2F

Pf C Q�.k/
o�

�
1X

kD1
e�tk :

Note that penalization based on random shattering numbers is natural in classifi-
cation problems and the result of Theorem 6.3 can be easily stated in classification
setting. The result follows from Theorem 6.2 and the next lemma that provides a
version of triple bound on excess risk for classes of binary functions.
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Lemma 6.2. Given a class of binary functions F and t > 0, define

Nın WD NK
�s

inf
f 2F

Pf
E log�F .X1; : : : ; Xn/C t

n
C E log�F .X1; : : : ; Xn/C t

n

�
;

Oın WD OK
�s

inf
f 2F

Pnf
log�F .X1; : : : ; Xn/C t

n
C log�F .X1; : : : ; Xn/C t

n

�

and

Qın WD QK
�s

inf
f 2F

Pf
E log�F .X1; : : : ; Xn/C t

n
C E log�F .X1; : : : ; Xn/C t

n

�
:

There exists a choice of constants NK; OK; QK such that . Nın; Oın; Qın/ is a triple bound of
level 1 � e�t for the class F .

Proof. The following upper bounds on the L2.P /-diameter of the ı-minimal set
F .ı/ and on the function �n.ı/ hold:

D2.F I ı/ D sup
f;g2F .ı/

P.f � g/2 � sup
f;g2F .ı/

.Pf C Pg/ � 2. inf
f 2F

Pf C ı/:

By Theorem 3.9,

�n.ı/ � K

�s

2

�
inf
f 2F

Pf C ı

�
E log�F .X1; : : : ; Xn/

n
C E log�F .X1; : : : ; Xn/

n

�
:

A straightforward computation implies the next bound on the quantity �tn from
Theorem 4.3:

�tn � Nın D NK
�s

inf
f 2F

Pf
E log�F .X1; : : : ; Xn/C t

n
C E log�F .X1; : : : ; Xn/C t

n

�
;

provided that the constant NK is large enough. Moreover, with a proper choice of this
constant, Nın is an admissible bound of level 1 � e�t .

The following deviation inequality for shattering numbers is due to Boucheron
et al. [31]: with probability at least 1 � e�t

log�F .X1; : : : ; Xn/ � 2E log�F .X1; : : : ; Xn/C 2t

and

E log�F .X1; : : : ; Xn/ � 2 log�F .X1; : : : ; Xn/C 2t:
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Together with the first bound of Lemma 6.1, this easily implies that with probability
at least 1 � 8e�t , Nın � Oın � Qın: First we prove that Nın � Oın. To this end, we use
the first bound of Lemma 6.1 and the inequality 2ab � a2 C b2 to show that with
probability at least 1 � 2e�t

inf
F
Pf � inf

F
Pnf C 2 Nın C 2

r
t

2n
inf
F
Pf C t

3n
� inf

F
Pnf C 2 Nın C infF Pf

2
C 2t

n
:

Therefore,

inf
F
Pf � 2 inf

F
Pnf C 4 Nın C 4t

n
:

We substitute this inequality into the definition of Nın and replace E log�F

.X1; : : : ; Xn/ by the upper bound 2 log�F .X1; : : : ; Xn/ C 2t that holds with
probability at least 1 � e�t . It follows that, with some constant K ,

Nın � K

�s

inf
f 2F

Pnf
log�F .X1; : : : ; Xn/C t

n
C log�F .X1; : : : ; Xn/C t

n

�
C

C2
s

Nın
2

K2 log�F .X1; : : : ; Xn/C t

2n
;

Again, using the inequality 2ab � a2 C b2, we get the following bound that holds
with some constant OK and with probability at least 1 � 4e�t W

Nın � OK
�s

inf
f 2F

Pnf
log�F .X1; : : : ; Xn/C t

n
C log�F .X1; : : : ; Xn/C t

n

�
DW Oın:

The proof of the second inequality Oın � Qın is similar. By increasing the values of
the constants NK; OK; QK, it is easy to eliminate the numerical factor in front of e�t
and to obtain a triple bound of level 1 � e�t , as it was claimed. ut

6.3 Linking Excess Risk and Variance in Penalization

In a variety of regression and classification problems, the following assumption
plays the crucial role: for all f 2 F ,

Pf � Pf� � '

�p
VarP .f � f�/

�
; (6.8)
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where ' is a convex nondecreasing function on Œ0;C1/ with '.0/ D 0. In Chap. 5,
we have already dealt with several examples of this condition. For instance, in the
case of regression with quadratic loss `.y; u/ D .y�u/2 and with bounded response
Y 2 Œ0; 1�, condition (6.8) is satisfied for the loss class F D f` � g W g 2 G g, where
G is a class of functions from S into Œ0; 1�. In this case, one can take '.u/ D u2=2,
so the function ' does not depend on the unknown distribution P (except that the
assumption Y 2 Œ0; 1� is already a restriction on the class of distributions P ). On
the other hand, in classification problems, ' is related to the parameters of the noise
such as parameter ˛ in Tsybakov’s low noise assumption (5.9) or parameter h in
Massart’s low noise assumption (5.8). So, in this case, ' does depend on P . The
function ' describes the relationship between the excess risk Pf � P� and the
variance VarP .f � f�/ of the “excess loss” f � f�. In what follows, we will call '
the link function. It happens that the link function is involved in a rather natural way
in the construction of complexity penalties that provide optimal convergence rates
in many problems. Since the link function is generally distribution dependent, the
development of adaptive penalization methods of model selection is a challenge, for
instance, in classification setting.

We will assume that with some � > 0

'.uv/ � �'.u/'.v/; u; v � 0: (6.9)

Denote by

'�.v/ WD sup
u�0
Œuv � '.u/�

the conjugate of '. Then

uv � '.u/C '�.v/; u; v � 0:

Let . Nın.k/; Oın.k/; Qın.k// be a triple bound of level 1�pk for the class Fk; k � 1.
For a fixed " > 0, define the penalties as follows:

O�.k/ WD A."/ Oın.k/C '�	
r
2tk

"n



C tk

n

and

Q�.k/ WD A."/

1C �'.
p
"/

Qın.k/C 2

1C �'.
p
"/
'�
	r2tk

"n



C 2

1C �'.
p
"/

tk

n
;

where

A."/ WD 5

2
� �'.p"/:
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As before, Ok is defined by

Ok WD argmink�1
n
Pn Ofk C O�.k/

o

and Of WD Of
n; Ok .

Theorem 6.4. For any sequence ftkg of positive numbers,

P

�
EP .F I Of / � C."/ inf

k�1

n
inf

f 2Fk

Pf � inf
f 2F

Pf C Q�.k/
o�

�
1X

kD1

�
pk C e�tk

�
;

where

C."/ WD 1C �'.
p
"/

1� �'.
p
"/
:

Proof. The following lemma is needed in the proof.

Lemma 6.3. Let G � F and let . Nın; Oın; Qın/ be a triple bound of level 1�p for the
class G . For all t > 0, there exists an event E with probability at least 1 � p � e�t
such that on this event

inf
G
Pnf � Pnf� � .1C �'.

p
"//.inf

G
Pf � Pf�/C '�

	r 2t

"n



C t

n
(6.10)

and

inf
G
Pf �Pf� � .1��'.p"//�1

�
inf
G
Pnf �Pnf�C3

2
NınC'�

	r 2t

"n



C t

n

�
: (6.11)

In addition, if there exists Nı"n such that

Nın � ".inf
G
Pf � Pf�/C Nı"n;

then

inf
G
Pf � Pf� �

�
1 � '.p"/ � 3

2
"

��1�
inf
G
Pnf � Pnf�

C3

2
Nı"n C '�	

r
2t

"n



C t

n

�
: (6.12)

Proof. We assume, for simplicity, that Pf attains its minimum over G at some
Nf 2 G (the proof can be easily modified if the minimum is not attained). Let E 0 be
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the event from the Definition 4.1 of the triple bound and let

E WD
�

j.Pn � P/. Nf � f�/j �
r
2t

n
VarP . Nf � f�/C t

n

� \
E 0:

It follows from Bernstein inequality and the definition of the triple bound that

P.E/ � 1 � p � e�t :

On the event E ,

j.Pn � P/. Nf � f�/j �
r
2t

n
VarP . Nf � f�/C t

n

and

8f 2 G OEn.G If / D EPn.G If / � 3

2

�
EP .G If / _ Nın

�
:

Also,

Var1=2P . Nf � f�/ � '�1.P Nf � Pf�/:

Hence, on the event E,

j.P � Pn/. Nf � f�/j � '.
p
"'�1.P Nf � Pf�//C '�

	r 2t

"n



C t

n
�

� �'.
p
"/.P Nf � Pf�/C '�	

r
2t

"n



C t

n
;

implying

Pn. Nf � f�/ � .1C �'.
p
"//P. Nf � f�/C '�

	r 2t

"n



C t

n
(6.13)

and

P. Nf � f�/ � .1 � �'.
p
"//�1

�
Pn. Nf � f�/C '�

	r 2t

"n



C t

n

�
: (6.14)

(6.13) immediately yields the first bound of the lemma.
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Since, in addition, on the event E

Pn. Nf � f�/ D Pn Nf � inf
G
Pnf C inf

G
Pnf � Pnf� D OEn.G I Nf /C inf

G
Pnf � Pnf�

� inf
G
Pnf � Pnf� C 3

2

	
EP .G I Nf / _ Nın



;

and since EP .G I Nf / D 0, we get

Pn. Nf � f�/ � inf
G
Pnf � Pnf� C 3

2
Nın:

Along with (6.14), this implies

inf
G
Pf � Pf� D P. Nf � f�/

� .1 � �'.
p
"//�1

�
inf
G
Pnf � Pnf� C 3

2
Nın C '�

	r 2t

"n



C t

n

�
;

which is the second bound of the lemma.
Finally, to prove the third bound it is enough to substitute the bound on Nın into

(6.11) and to solve the resulting inequality with respect to infG Pf � Pf�. ut
Let Ek be the event defined in Lemma 6.3 for G D Fk and t D tk , so that

P.Ek/ � 1 � pk � e�tk :

Let E WD T
k�1 Ek: Then

P.E/ � 1 �
X

k�1

	
pk C e�tk



:

On the event E , for all k � 1

EP .Fk I Ofk/ D P Ofk � inf
Fk

Pf � Nın.k/

and

Nın.k/ � Oın.k/ � Qın.k/:
On the same event, first using bound (6.11) and then bound (6.10) of Lemma 6.3,
we get

EP .F I Of / D P Of � inf
F
Pf D P Of Ok � Pf�

D P Of Ok � inf
F

Ok

Pf C inf
F

Ok

Pf � Pf� � Nın. Ok/C inf
F

Ok

Pf � Pf�
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� .1 � �'.
p
"//�1

h
.1 � �'.

p
"// Nın. Ok/C inf

F
Ok

Pnf � Pnf�

C3

2
Nın. Ok/C '�	

r
2t Ok
"n



C t Ok
n

i

� .1 � �'.
p
"//�1

n
inf
k

h
inf
Fk

Pnf C .5=2� �'.
p
"// Oın.k/

C'�
	r2tk

"n



C tk

n

i
� Pnf�

o

D .1 � �'.
p
"//�1

n
inf
k

h
inf
Fk

Pnf C O�.k/
i

� Pnf�
o

� 1C �'.
p
"/

1 � �'.p"/ inf
k

h
inf
Fk

Pf � inf
F
Pf C 5=2� �'.p"/

1C �'.
p
"/

Qın.k/

C 2

1C �'.
p
"/
'�	

r
2tk

"n



C 2

.1C �'.
p
"//

tk

n

i

D 1C �'.
p
"/

1 � �'.p"/ inf
k

h
inf
Fk

Pf � inf
F
Pf C Q�.k/

i
;

and the result follows. ut
Remark 6.1. Suppose that, for each k, Nın.k/ is an admissible excess risk bound
for the class Fk on an event Ek with P.Ek/ � 1 � pk (see Definition 4.1). It is
easily seen from the proof of Theorem 6.4 that the same oracle inequality holds for
arbitrary penalties O�.k/ and Q�.k/ such that on the event Ek

O�.k/ � A."/ Nın.k/C '�	
r
2tk

"n



C tk

n

and

Q�.k/ � O�.k/
1C �'.

p
"/

C
'�
	q

2tk
"n




1C �'.
p
"/

C tk

.1C �'.
p
"//n

:

As it has been already mentioned, the dependence of the penalty on the link
function ' is the most troubling aspect of this approach since in such problems as
classification this function depends on the unknown parameters of the distribution
P (such as “low noise” constants ˛ in (5.9) and h in (5.8), see Sect. 5.3). Because
of this, it is of importance to know that, using Remark 6.1, it is easy to construct a
version of the penalties that do not depend on ' directly. Suppose that the number
of classes Fk is finite, say, N . Take

tk WD t C logN; k D 1; : : : ; N:
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Define

Ok WD argmin1�k�N
�

min
f 2Fk

Pnf C 5

2
Oın.k/

�

and Of WD Of Ok . Note that we also have

Ok WD argmin1�k�N
�

min
f 2Fk

Pnf C O�.k/
�
;

where

O�.k/ WD 5

2
Oın.k/C '�

	r2tk

"n



C tk

n

D 5

2
Oın.k/C '�	

r
2.t C logN/

"n



C t C logN

n
;

since tk in the additional two terms of the definition of O�.k/ does not depend on k.
Denote

Q�.k/ WD 5

2
Qın.k/C 2'�

	r2.t C logN/

"n



C 2

t C logN

n
:

Then it follows from Theorem 6.4 and from Remark 6.1 that

P

�
EP .F I Of / � C."/ inf

1�k�N

n
inf

f 2Fk

Pf � inf
f 2F

Pf C Q�.k/
o�

� e�t C
NX

kD1
pk:

(6.15)

Example 6.3. Consider, for instance, model selection in binary classification prob-
lems (see Sect. 5.3). Suppose that condition (5.8) holds with some h > 0 and, as a
result, condition (6.8) holds with '.u/ D hu2; u � 0; for f D `�g and f� D `�g�,
where g is a binary classifier, g� is the Bayes classifier and `.y; u/ D I.y ¤ u/ is
the binary loss. In this case, '�.v/ D v2=.4h/; v � 0.

Let fGkg be a family of classes of functions from S into f�1; 1g (binary
classifiers). For any k, define

Ogn;k WD argming2Gk
Ln.g/ D argming2Gk

n�1
nX

jD1
I.Yj ¤ g.Xj //:

Let Fk WD f` � g W g 2 Gkg: Denote . Nın.k/; Oın.k/; Qın.k// the standard triple bound
of Theorem 4.8 for the class Fk of level 1�pk . Suppose that

PN
kD1 pk D p 2 .0; 1/:

Define
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Ok WD argmin1�k�N
h

inf
g2Gk

Ln.g/C 5

2
Oın.k/

i

and Og WD Og
n; Ok . Then it easily follows from bound (6.15) that with probability at

least 1 � p � e�t

L. Og/� L.g�/ � C inf
1�k�N

�
inf
g2Gk

L.g/ �L.g�/C Qın.k/C t C logN

nh

�

(we have fixed " > 0 and the constant C depends on "). It is also easy to deduce
from the proof of Theorem 5.5 that, for the standard choice of Nın.k/,

Nın.k/ � C

�
inf
g2Gk

L.g/ �L.g�/C E log�Gk .X1; : : : ; Xn/

nh
C tk

nh

�
:

This leads to the following oracle inequality that holds with probability at least
1 � p � e�t and with some constant C > 0 W

L. Og/ � L.g�/ � C inf
1�k�N

�
inf
g2Gk

L.g/ �L.g�/C E log�Gk .X1; : : : ; Xn/

nh

�

C C
t C logN

nh
:

Thus, this penalization method is adaptive to the unknown noise parameter h.
We conclude this section with stating a result of Massart [106, 107] that can

be derived using the approach of Theorem 6.4. Suppose that fFkg is a sequence
of function classes such that condition (4.5) holds for each class Fk with some
constantDk � 1, that is,

Dk.Pf � Pf�/ � �2P .f; f�/ � VarP .f � f�/:

We will assume that the sequence fDkg is nondecreasing. Denote

Nı"n.k/ WD D�1
k !]n

�
"

KDk

�
C KDktk

n"
:

If K is large enough, then Lemma 4.1 implies the following bound:

Nın.k/ WD �tkn .Fk IP/ � ".inf
Fk

Pf � Pf�/C Nı"n.k/:

Also, it follows from the proof of Theorem 4.3 that Nın.k/ is an admissible excess
risk bound of level 1 � Cqe

�tk .
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Suppose that for each k there exist a data dependent bound Oı"n.k/ and a
distribution dependent bound Qı"n.k/ such that

P

�
Nı"n.k/ � Oı"n.k/ � Qı"n.k/

�
� 1 � pk; k � 1:

Define the following penalties:

O�"n.k/ WD 3 Oı"n.k/C
OKDktk

"n
and Q�"n.k/ WD 3 Qı"n.k/C

QKDktk

"n

with some numerical constants OK; QK. Let

Ok WD argmink�1
�

min
f 2Fk

Pnf C O�"n.k/
�

and Of WD Of Ok:

Theorem 6.5. There exist numerical constants OK; QK;C such that for any sequence
ftkg of positive numbers,

P

�
P Of � Pf� � 1C "

1 � "
inf
k�1

n
inf

f 2Fk

Pf � Pf� C Q�"n.k/
o�

�
1X

kD1

�
pk C .C C 1/e�tk

�
:

To prove this result one has to extend Theorem 6.4 to the case when condition
(6.8) holds for each function class Fk with a different link function 'k and to use
this extension for 'k.u/ D u2=Dk and '�

k .v/ D Dkv2=4.

6.4 Further Comments

Bartlett [13] suggested a simple and elegant derivation of oracle inequalities in the
case of monotone families. Theorem 6.1 is based on this approach. Penalization with
empirical risk minima was used by Lugosi and Wegkamp [104]. Section 6.3 is based
on the results of Koltchinskii [83]; Theorem 6.5 in this section is essentially due to
Massart [106]. Other useful references on oracle inequalities in penalized empirical
risk minimization are [7, 25, 26, 29, 107].

Birgé and Massart [24] introduced a concept of minimal penalties and advocated
an approach to the problem of calibration of data-dependent penalties based on so
called “slope heuristics”. So far, this approach has been mathematically justified for
several special models by Arlot and Massart [8] with a significant further progress
made in the dissertation by Saumard [131]. Concentration inequalities for empirical
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excess risk obtained by Boucheron and Massart [32] are of importance in this line
of work.

Oracle inequalities in penalized empirical risk minimization for kernel machines
have been studied by Blanchard et al. [25], Steinwart and Scovel [136], Steinwart
and Christmann [135]. Recently, Mendelson and Neeman [116] obtained very subtle
oracle inequalities in such problems based on a variety of methods (including,
generic chaining bounds).

The methods developed in this and in the previous chapters are also of importance
in the study of statistical aggregation procedures, see [35, 119, 143, 152, 153].



Chapter 7
Linear Programming in Sparse Recovery

As it was pointed out in the Introduction, many important sparse recovery methods
are based on empirical risk minimization with convex loss and convex complexity
penalty. Some interesting algorithms, for instance, the Dantzig selector by Candes
and Tao [44] can be formulated as linear programs. In this chapter, we develop
error bounds for such algorithms that require certain geometric assumptions on
the dictionary. They are expressed in terms of restricted isometry constants and
other related characteristics that depend both on the dictionary and on the design
distribution. Based on these geometric characteristics, we describe the conditions of
exact sparse recovery in the noiseless case as well as sparsity oracle inequalities for
the Dantzig selector in regression problems with random noise. These results rely
on comparison inequalities and exponential bounds for empirical and Rademacher
processes.

7.1 Sparse Recovery and Neighborliness of Convex Polytopes

Let H WD fh1; : : : ; hN g be a given finite set of measurable functions from S into R:

In what follows, it will be called a dictionary. Given J � f1; : : : ; N g; we will write
d.J / WD card.J /: For 	 D .	1; : : : ; 	N / 2 R

N ; denote

f	 D
NX

jD1
	j hj ; J	 D supp.	/ WD

n
j W 	j ¤ 0

o
and d.	/ WD d.J	/:

Suppose that a function f� 2 l:s:.H / D ff	 W 	 2 R
N g from the linear span of the

dictionary is observed (measured) at points X1; : : : ; Xn 2 S: For simplicity, we first
assume that there is no noise in the observations:

Yj D f�.Xj /; j D 1; : : : ; n:

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 7,
© Springer-Verlag Berlin Heidelberg 2011

121
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The goal is to recover a representation of f� in the dictionary. We are mostly
interested in the case when N > n (in fact, N can be much larger than n). Define

L WD
n
	 2 R

N W f	.Xj / D Yj ; j D 1; : : : ; n
o
:

Then, L is an affine subspace of dimension at least N � n; so, the representation of
f� in the dictionary is not unique. In such cases, it is of interest to find the sparsest
representation, which means solving the problem

k	k`0 D
NX

jD1
I.	j ¤ 0/ �! min; 	 2 L: (7.1)

If we introduce the following n�N matrixA WD
	
hj .Xi / W 1 � i � n; 1 � j � N




and denote Y the vector with componentsY1; : : : ; Yn; then problem (7.1) can be also
rewritten as

k	k`0 D
NX

jD1
I.	j ¤ 0/ �! min; A	 D Y: (7.2)

When N is large, such problems are computationally intractable since the function
to be minimized is non-smooth and non-convex. Essentially, solving (7.2) would
require searching through all 2N coordinate subspaces of R

N : Because of this, the
following convex relaxation of the problem is frequently used:

k	k`1 D
NX

jD1
j	j j �! min; 	 2 L; (7.3)

or, equivalently,

k	k`1 D
NX

jD1
j	j j �! min; A	 D Y: (7.4)

The last minimization problem is convex and, moreover, it is a linear programming
problem. However, the question is whether solving (7.3) has anything to do with
solving (7.1). Next result (due to Donoho [52]) gives an answer to this question by
reducing it to some interesting problems in the geometry of convex polytopes. To
formulate the result, define

P WD AU`1 D conv
	n
a1;�a1; : : : ; aN ;�aN

o

;

where U`1 WD f	 2 R
N W k	k`1 � 1g is the unit ball in `1 and a1; : : : ; aN 2 R

n are
columns of matrix A: Here and in what follows, UB denotes the closed unit ball of
a Banach space B centered at 0:
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Clearly, P is a centrally symmetric convex polytope in R
n with at most 2N

vertices. Such a centrally symmetric polytope is called d -neighborly if any set of
d C 1 vertices that does not contain antipodal vertices (such as ak and �ak) spans a
face of P:

Theorem 7.1. Suppose that N > n: The following two statements are equiva-
lent:

(i) The polytope P has 2N -vertices and is d -neighborly
(ii) Any solution 	 of the system of linear equations A	 D Y such that d.	/ � d

is the unique solution of problem (7.4)

The unit ball U`1 of `1 is a trivial example of an .N � 1/-neighborly centrally
symmetric polytope. However, it is hard to find nontrivial constructive examples of
such polytopes with a “high neighborliness”. Their existence is usually proved by
a probabilistic method, for instance, by choosing the design matrix A at random
and showing that the resulting random polytope P is d -neighborly for sufficiently
large d with a high probability. The problem has been studied for several classes
of random matrices (projections on an n-dimensional subspace picked at random
from the Grassmannian of all n-dimensional subspaces; random matrices with i.i.d.
Gaussian or Bernoulli entries, etc) both in the case of centrally symmetric polytopes
and without the restriction of central symmetry, see Vershik and Sporyshev [150],
Affentranger and Schneider [3] and, in connection with sparse recovery, Donoho
[52], Donoho and Tanner [57]. The approach taken in these papers is based on rather
subtle geometric analysis of the properties of high-dimensional convex polytopes, in
particular, on computation of their internal and external angles. This leads to rather
sharp estimates of the largest d for which the neighborliness still holds (in other
words, for which the phase transition occurs and the polytope starts losing faces).
Here we follow another approach that is close to Rudelson and Vershynin [129] and
Mendelson et al. [117]. This approach is more probabilistic, it is much simpler and
it addresses the sparse recovery problem more directly. On the other hand, it does
not give precise bounds on the maximal d for which sparse recovery is possible
(although it still provides correct answers up to constants).

7.2 Geometric Properties of the Dictionary

In what follows, we introduce several geometric characteristics of the dictionary H
that will be involved in error bounds for sparse recovery methods.

7.2.1 Cones of Dominant Coordinates

For J � f1; : : : ; N g and b 2 Œ0;C1�; define the following cone consisting of
vectors whose “dominant coordinates” are in J :
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Cb;J WD
�

u 2 R
N W

X

j 62J
juj j � b

X

j2J
juj j

�
:

Clearly, for b D C1; Cb;J D R
N : For b D 0; Cb;J is the linear subspace R

J of
vectors u 2 R

N with supp.u/ � J: For b D 1; we will write CJ WD C1;J : Such
cones will be called cones of dominant coordinates and some norms in R

N will be
compared on these cones.

Some useful geometric properties of the cones of dominant coordinates will
be summarized in the following lemma. It includes several well known facts (see
Candes and Tao [44], proof of Theorem 1; Ledoux and Talagrand [101], p. 421;
Mendelson et al. [117], Lemma 3.3).

With a minor abuse of notations, we identify in what follows vectors u 2 R
N

with supp.u/ � J; where J � f1; : : : ; N g; with vectors u D .uj W j 2 J / 2 R
J :

Lemma 7.1. Let J � f1; : : : ; N g and let d WD card.J /:

(i) Take u 2 Cb;J and denote J0 WD J: For s � 1; J1 will denote the set of s
coordinates in f1; : : : ; N g nJ0 for which juj j0s are the largest, J2 will be the set
of s coordinates in f1; : : : ; N g n .J0 [ J1/ for which juj j0s are the largest, etc.
(at the end, there might be fewer than s coordinates left). Denote u.k/ WD .uj W
j 2 Jk/: Then u D P

k�0 u.k/ and

X

k�2
ku.k/k`2 � bp

s

X

j2J
juj j � b

r
d

s

�X

j2J
juj j2

�1=2
:

In addition,

kuk`2 �
�
b

r
d

s
C 1

�� X

j2J0[J1
juj j2

�1=2
:

(ii) DenoteKJ WD Cb;J \U`2: There exists a set Md � U`2 such that d.u/ � d for
u 2 Md ;

card.Md / � 5d

 
N

� d

!

and
KJ � 2.2C b/conv.Md /:

Proof. To prove (i), note that, for all j 2 JkC1;

juj j � 1

s

X

i2Jk
jui j;

implying that
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� X

j2JkC1

juj j2
�1=2

� 1p
s

X

j2Jk
juj j:

Add these inequalities for k D 1; 2; : : : to get

X

k�2
ku.k/k`2 � 1p

s

X

j 62J
juj j � bp

s

X

j2J
juj j

� b

r
d

s

�X

j2J
juj j2

�1=2
� b

r
d

s

� X

j2J[J1
juj j2

�1=2
:

Therefore, for u 2 CJ ;

kuk`2 �
�
b

r
d

s
C 1

�� X

j2J0[J1
juj j2

�1=2
:

To prove (ii) denote

Jd WD
n
I � f1; : : : ; N g W d.I / � d

o

and observe that

KJ � .2C b/ conv

� [

I2Jd

BI

�
;

where

BI WD
�
.ui W i 2 I / W

X

i2I
jui j2 � 1

�
:

Indeed, it is enough to consider u 2 KJ and to use statement (i) with s D d: Then,
we have u.0/ 2 BJ0 ; u.1/ 2 BJ1 and

X

k�2
u.k/ 2 b conv

� [

I2Jd

BI

�
:

It is easy to see that if B is the unit Euclidean ball in R
d and M is a 1=2-net of this

ball, then
B � 2 conv.M/:

Here is a sketch of the proof of the last claim. For convex sets C1; C2 � R
N ; denote

by C1 C C2 their Minkowski sum

C1 C C2 D fx1 C x2 W x1 2 C1; x2 2 C2g:
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It follows that

B � M C 1

2
B � conv.M/C 1

2
B � conv.M/C 1

2
conv.M/C 1

4
B � : : :

conv.M/C 1

2
conv.M/C 1

4
conv.M/C � � � � 2conv.M/:

For each I with d.I / D d; denote MI a minimal 1=2-net of BI : Then,

KJ � 2.2C b/ conv

� [

I2Jd

MI

�
DW 2.2C b/ conv.Md /:

By an easy combinatorial argument,

card.Md / � 5d

 
N

� d

!
;

so, the proof is complete. ut

7.2.2 Restricted Isometry Constants and Related Characteristics

Given a probability measure˘ on S; denote

ˇ.b/.J I˘/ WD inf

�
ˇ > 0 W

X

j2J
j	j j � ˇ

����
NX

jD1
	j hj

����
L1.˘/

; 	 2 Cb;J
�

and

ˇ
.b/
2 .J I˘/ WD inf

�
ˇ > 0 W

X

j2J
j	j j2 � ˇ2

����
NX

jD1
	j hj

����
2

L2.˘/

; 	 2 Cb;J
�
:

Let
ˇ.J;˘/ WD ˇ.1/.J;˘/; ˇ2.J;˘/ WD ˇ

.1/
2 .J;˘/:

As soon as the distribution˘ is fixed, we will often suppress˘ in our notations and
write ˇ.J /; ˇ2.J /; etc. In the case when J D ;; we set ˇ.b/.J / D ˇ

.b/
2 .J / D 0:

Note that if J ¤ ; and h1; : : : ; hN are linearly independent in L1.˘/ or in L2.˘/;
then, for all b 2 .0;C1/; ˇ.b/.J / < C1 or, respectively, ˇ.b/2 .J / < C1: In the

case of orthonormal dictionary, ˇ.b/2 .J / D 1:

We will use several properties of ˇ.b/.J / and ˇ.b/2 .J / and their relationships with
other common characteristics of the dictionary.
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Let �.J / denote the minimal eigenvalue of the Gram matrix
�hhi ; hj iL2.˘/



i;j2J :

Also denote LJ the linear span of fhj W j 2 J g and let

�.J / WD sup
f 2LJ ;g2LJc ;f;g¤0

ˇ̌
ˇ̌ hf; giL2.˘/
kf kL2.˘/kgkL2.˘/

ˇ̌
ˇ̌:

Thus, �.J / is the largest “correlation coefficient” (or the largest cosine of the
angle) between functions in the linear span of a subset fhj W j 2 J g of the
dictionary and the linear span of its complement (compare �.J / with the notion
of canonical correlation in multivariate statistical analysis). In fact, we will rather
need a somewhat different quantity defined in terms of the cone Cb;J :

�.b/.J / WD sup
	2Cb;J

ˇ̌
ˇ
DP

j2J 	j hj ;
P

j 62J 	j hj
E

L2.˘/

ˇ̌
ˇ

���
P

j2J 	j hj
���
L2.˘/

���
P

j 62J 	j hj
���
L2.˘/

:

Clearly, �.b/.J / � �.J /:

Proposition 7.1. The following bound holds:

ˇ
.b/
2 .J / � 1

p
�.J /.1 � .�.b/.J //2/

: (7.5)

Proof. Indeed, let 	 2 Cb;J : The next inequality is obvious

���
X

j2J
	j hj

���
L2.˘/

� .1 � .�.b/.J //2/�1=2
���
NX

jD1
	j hj

���
L2.˘/

;

since for f D P
j2J 	j hj and g D P

j 62J 	j hj ; we have

kf C gk2L2.˘/ D .1 � cos2.˛//kf k2L2.˘/ C
	
kf kL2.˘/ cos.˛/C kgkL2.˘/


2

� .1 � .�.b/.J //2/kf k2L2.˘/;

where ˛ is the angle between f and g: This yields

�X

j2J
j	j j2

�1=2
� 1p

�.J /

���
X

j2J
	j hj

���
L2.˘/

� 1
p
�.J /.1 � .�.b/.J //2/

���
NX

jD1
	j hj

���
L2.˘/

;

which implies (7.5). ut
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Lemma 7.1 can be used to provide upper bounds on ˇ.b/2 .J /: To formulate such
bounds, we first introduce so called restricted isometry constants.

For d D 1; : : : ; N; let ıd .˘/ be the smallest ı > 0 such that, for all 	 2 R
N

with d.	/ � d;

.1 � ı/k	k`2 �
����
NX

jD1
	j hj

����
L2.˘/

� .1C ı/k	k`2 :

If ıd .˘/ < 1; then d -dimensional subspaces spanned on subsets of the dictionary
and equipped with (a) the L2.˘/-norm and (b) the `2-norm on vectors of coef-
ficients are “almost” isometric. For a given dictionary fh1; : : : ; hN g; the quantity
ıd .˘/ will be called the restricted isometry constant of dimension d with respect
to the measure˘: The dictionary satisfies a restricted isometry condition in L2.˘/
if ıd .˘/ is sufficiently small for a sufficiently large value of d (in sparse recovery,
this value is usually related to the underlying “sparsity” of the problem).

For I; J � f1; : : : ; N g; I \ J D ;; denote

r.I IJ / WD sup
f 2LI ;g2LJ ;f;g¤0

ˇ̌
ˇ̌ hf; giL2.˘/
kf kL2.˘/kgkL2.˘/

ˇ̌
ˇ̌:

Note that �.J / D r.J; J c/: Let

�d WD max
n
r.I; J / W I; J�f1; : : : ; N g; I \ J D ;; card.I / D 2d; card.J / D d

o
:

This quantity measures the correlation between linear spans of disjoint parts of the
dictionary of fixed “small cardinalities”, in this case, d and 2d .

Define

md WD inffkfukL2.˘/ W u 2 R
N ; kuk`2 D 1; d.u/ � d g

and
Md WD supfkfukL2.˘/ W u 2 R

N ; kuk`2 D 1; d.u/ � d g:
If md � 1 � Md � 2; the restricted isometry constant can be written as

ıd D .Md � 1/ _ .1 �md/:

Lemma 7.2. Suppose J � f1; : : : ; N g; d.J / D d and �d <
m2d
bMd

: Then

ˇ
.b/
2 .J / � 1

m2d � b�dMd

:

Proof. Denote PI the orthogonal projection on LI � L2.˘/: Under the notations
of Lemma 7.1 with s D d; for all u 2 CJ ;
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����
NX

jD1
uj hj

����
L2.˘/

�
����PJ0[J1

NX

jD1
uj hj

����
L2.˘/

�
����
X

j2J0[J1
uj hj

����
L2.˘/

�
����PJ0[J1

X

j 62J0[J1
uj hj

����
L2.˘/

�
����
X

j2J0[J1
uj hj

����
L2.˘/

�
X

k�2

����PJ0[J1
X

j2Jk
uj hj

����
L2.˘/

�
����
X

j2J0[J1
uj hj

����
L2.˘/

� �d
X

k�2

����
X

j2Jk
uj hj

����
L2.˘/

�
����
X

j2J0[J1
uj hj

����
L2.˘/

� �dMd

X

k�2
ku.k/k`2

�
����
X

j2J0[J1
uj hj

����
L2.˘/

� b�dMd

� X

j2J[J1
juj j2

�

�
����
X

j2J0[J1
uj hj

����
L2.˘/

� b�d
Md

m2d

����
X

j2J0[J1
uj hj

����
L2.˘/

D
�
1 � b�d

Md

m2d

�����
X

j2J0[J1
uj hj

����
L2.˘/

:

On the other hand,

�X

j2J
juj j2

�1=2
�
� X

j2J0[J1
juj j2

�1=2
� m�1

2d

����
X

j2J0[J1
uj hj

����
L2.˘/

;

implying that

�X

j2J
juj j2

�1=2
� m�1

2d

�
1 � b�d

Md

m2d

��1����
NX

jD1
uj hj

����
L2.˘/

:

Therefore,

ˇ2.J / � 1

m2d � b�dMd

: ut

It is easy to check that

�d � 1

2

��
1C ı3d

1 � ı2d

�2
C
�
1C ı3d

1 � ıd
�2

� 2
�_ 1

2

�
2�

�
1 � ı3d
1C ı2d

�2
�
�
1 � ı3d

1C ıd

�2�
:
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Together with Lemma 7.2 this implies that ˇ2.J / < C1 for any set J such that
card.J / � d; provided that ı3d � 1

8
(a sharper condition is also possible).

We will give a simple modification of Lemma 7.2 in spirit of [22].

Lemma 7.3. Recall the notations of Lemma 7.1. Suppose J � f1; : : : ; N g; d.J / D
d and, for some s � 1;

Ms

mdCs
<
1

b

r
s

d
:

Then

ˇ
.b/
2 .J / �

p
sp

smdCs � bp
dMs

:

Proof. For all u 2 Cb;J ;
�X

j2J
juj j2

�1=2
� 1

mdCs

����
X

j2J[J1
uj hj

����
L2.˘/

� 1

mdCs

����
NX

jD1
uj hj

����
L2.˘/

C 1

mdCs

����
X

j 62J[J1
uj hj

����
L2.˘/

:

To bound the last norm in the right hand side, note that

����
X

j 62J[J1
uj hj

����
L2.˘/

�
X

k�2

����
X

j2Jk
uj hj

����
L2.˘/

� Ms

X

k�2
ku.k/k`2 � Ms

r
d

s

�X

j2J
juj j2

�1=2
:

This yields the bound

�X

j2J
juj j2

�1=2
� 1

mdCs

����
NX

jD1
uj hj

����
L2.˘/

C Ms

mdCs

r
d

s

�X

j2J
juj j2

�1=2
;

which implies the result. ut

7.2.3 Alignment Coefficients

In what follows, we will use several quantities that describe a way in which vectors
in R

N ; especially, sparse vectors, are “aligned” with the dictionary. We will use the
following definitions. Let D � R

N be a convex set. For 	 2 D; denote by TD.	/
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the closure of the set

fv 2 R
N W 9t > 0 	C vt 2 Dg:

The set TD.	/ will be called the tangent cone of convex set D at point 	: Let

H WD
�

hhi ; hj iL2.˘/
�

i;jD1;:::;N

be the Gram matrix of the dictionary in the spaceL2.˘/:Whenever it is convenient,
H will be viewed as a linear transformation of R

N :

For a vector w 2 R
N and b > 0; we will denote Cb;w WD Cb;supp.w/; which is a

cone of vectors whose “dominant” coordinates are in supp.w/: Now define

a
.b/
H .D; 	;w/ WD sup

n
hw; ui`2 W u 2 �TD.	/\Cb;w; kfukL2.˘/ D 1

o
; b 2 Œ0;C1�:

The quantities a.b/H .D; 	;w/ for b 2 Œ0;1� will be called the alignment coefficients
of vector w; matrixH and convex set D at point 	 2 D: In applications that follow,
we want the alignment coefficient to be either negative, or, if positive, then small
enough.

The geometry of the set D could have an impact on the alignment coefficients
for some vectors w that are of interest in sparse recovery problems. For instance, if
L is a convex function on D and 	 2 D is its minimal point, then there exists a
subgradient w 2 @L.	/ of L at point 	 such that, for all u 2 TD.	/; hw; ui`2 � 0

(that is, the vector �w belongs to the normal cone of D at point 	; see Aubin and
Ekeland [9], Chap. 4, Sect. 2, Corollary 6). This implies that a.b/H .D; 	;w/ � 0: If
D D R

N ; then TD.	/ D R
N ; 	 2 R

N : In this case, we will write

a
.b/
H .w/ WD a

.b/
H .R

N ; 	;w/ D sup
n
hw; ui`2 W u 2 Cb;w; kfukL2.˘/ D 1

o
:

Despite the fact that the geometry of set D might be important, in many cases, we
are not taking it into account and replace a.b/H .D; 	;w/ by its upper bound a.b/H .w/:

Note that
kfuk2L2.˘/ D hHu; ui`2 D hH1=2u;H1=2ui`2 :

We will frequently use the following form of alignment coefficient

a
.1/
H .D; 	;w/ WD sup

n
hw; ui`2 W u 2 �TD.	/; kfukL2.˘/ D 1

o
;

or rather a simpler upper bound

a
.1/
H .w/ D a

.1/
H .RN ; 	;w/ D sup

n
hw; ui`2 W kfukL2.˘/ D 1

o
:
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The last quantity is a seminorm in R
N and, for all b; we have

a
.b/
H .w/ � a

.1/
H .w/ D sup

kH1=2uk`2D1
hw; ui`2 DW kwkH :

If H is nonsingular, we can further write

kwkH D sup
kH1=2uk`2D1

hH�1=2w;H1=2ui`2 D kH�1=2wk`2 :

Even when H is singular, we still have kwkH � kH�1=2wk`2 ; where, for w 2
Im.H1=2/ D H1=2

R
N ; one defines

kH�1=2wk`2 WD inffkvk`2 W H1=2v D wg

(which means factorization of the space with respect to Ker.H1=2/) and, for w 62
Im.H1=2/; the norm kH�1=2wk`2 becomes infinite.

Note also that, for b D 0;

a
.0/
H .w/ D a

.0/
H .R

N ; 	;w/ D sup
n
hw; ui`2 W kfukL2.˘/ D 1; supp.u/ D supp.w/

o
:

This also defines seminorms on subspaces of vectors w with a fixed support, say,

supp.w/ D J: IfHJ WD
�

hhi ; hj iL2.˘/
�

i;j2J
is the corresponding submatrix of the

Gram matrixH and HJ is nonsingular, then

a
.0/
H .w/ D kH�1=2

J wk`2 ;

so, in this case, the alignment coefficient depends only on “small” submatrices of
the Gram matrix corresponding to the support of w (which is, usually, sparse).

When 0 < b < C1; the definition of alignment coefficients involves cones of
dominant coordinates and their values are between the values in the two extreme
cases of b D 0 and b D 1:

It is easy to bound the alignment coefficient in terms of geometric characteristics
of the dictionary introduced earlier in this section. For instance, if J D supp.w/;
then

kwkH � kwk`2p
�.J /.1 � �2.J // � kwk`

1

p
d.J /

p
�.J /.1 � �2.J //

;

where �.J / is the minimal eigenvalue of the matrix HJ D �hhi ; hj iL2.˘/


i;j2J and

�.J / is the “canonical correlation” defined above.
One can also upper bound the alignment coefficient in terms of the quantity

ˇ2;b.wI˘/ WD ˇ
.b/
2 .supp.w/I˘/:
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Namely, the following bound is straightforward:

a
.b/
H .w/ � kwk`2ˇ2;b.wI˘/:

These upper bounds show that the size of the alignment coefficient is controlled
by the “sparsity” of the vector w as well as by some characteristics of the dictionary
(or its Gram matrix H ). For orthonormal dictionaries and for dictionaries that are
close enough to being orthonormal (so that, for instance, �.J / is bounded away
from 0 and �2.J / is bounded away from 1), the alignment coefficient is bounded
from above by a quantity of the order kwk`

1

p
d.J /:However, this is only an upper

bound and the alignment coefficient itself is a more flexible characteristic of rather
complicated geometric relationships between the vector w and the dictionary. Even
the quantity kH�1=2wk`2 (a rough upper bound on the alignment coefficient not
taking into account the geometry of the cone of dominant coordinates), depends not
only on the sparsity of w; but also on the way in which this vector is aligned with the
eigenspaces ofH: If w belongs to the linear span of the eigenspaces that correspond
to large eigenvalues of H; then kH�1=2wk`2 can be of the order kwk`2 :

Note that the geometry of the problem is the geometry of the Hilbert space
L2.˘/; so it strongly depends on the unknown distribution˘ of the design variable.

7.3 Sparse Recovery in Noiseless Problems

Let ˘n denote the empirical measure based on the points X1; : : : ; Xn (at the
moment, not necessarily random).

Proposition 7.2. Let O	 be a solution of (7.3). If 	� 2 L and ˇ2.J	� I˘n/ < C1;

then O	 D 	�:

Proof. Since O	 2 L and 	� 2 L; we have

fO	.Xj / D f	� .Xj /; j D 1; : : : ; n

implying that kfO	 � f	�kL2.˘n/ D 0: On the other hand, since O	 is a solution of

(7.3), we have kO	k`1 � k	�k`1 : This yields

X

j 62J	�

j O	j j �
X

j2J	�

.j O	j j � j	�
j j/ �

X

j2J	�

j O	j � 	�
j j:

Therefore, O	 � 	� 2 CJ	�

and
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kO	 � 	�k`1 � 2
X

j2J	�

j O	j � 	�
j j � 2

p
d.	�/

� X

j2J	�

j O	j � 	�
j j2
�1=2

� 2ˇ2.J	� I˘n/
p
d.	�/kfO	 � f	� kL2.˘n/ D 0;

implying the result. ut
In particular, it means that as soon as the restricted isometry condition holds for

the empirical distribution ˘n for a sufficiently large d with a sufficiently small ıd ;
the method (7.3) provides a solution of the sparse recovery problem for any target
vector 	� such that f� D f	� and d.	�/ � d: To be more precise, it follows from
the bounds of the previous section that the condition ı3d .˘n/ � 1=8 would suffice.
Candes [38] gives sharper bounds. The restricted isometry condition for˘n (which
can be also viewed as a condition on the design matrix A) has been also referred to
as the uniform uncertainty principle (UUP) (see, e.g., Candes and Tao [44]). It is
computationally hard to check UUP for a given large design matrix A: Moreover,
it is hard to construct n � N -matrices for which UUP holds. The main approach is
based on using random matrices of special type and proving that for such matrices
UUP holds for a sufficiently large d with a high probability. We will discuss below a
slightly different approach in which it is assumed that the design points X1; : : : ; Xn
are i.i.d. with common distribution ˘: It will be proved directly (without checking
UUP for the random matrix A) that, under certain conditions, (7.3) does provide a
solution of sparse recovery problem with a high probability.

Recall the definitions of  ˛-norms (see Appendix A.1) and, for C > 0;A � 1;

define


S WD
�
	 2 R

N W Cˇ.J	I˘/ max
1�k�N

khk.X/k 1
r
A logN

n
� 1=4

�
:

We will interpret 
S as a set of “sparse” vectors. Note that in the case when the
dictionary is L2.˘/-orthonormal, ˇ.J I˘/ � p

card.J /; so, indeed, 
S consists
of vectors with a sufficiently small d.	/ (that is, sparse).

In what follows we assume that A logN � n:

Recall that

L D
n
	 2 R

N W f	.Xj / D f�.Xj /; j D 1; : : : ; n
o
:

Theorem 7.2. Suppose f� D f	� ; 	� 2 R
N : Let A � 1: There exists a constant C

in the definition of the set 
S such that with probability at least 1 �N�A;

either L \
S D ;; or L \
S D fO	g:

In particular, if 	� 2 
S; then with the same probability O	 D 	�:

Proof. The following lemma is used in the proof.
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Lemma 7.4. There exists a constantC > 0 such that for allA � 1 with probability
at least 1 �N�A

sup
kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ � C max

1�k�N
khk.X/k 1

�r
A logN

n

_ A logN

n

�
:

Proof. LetRn.f / be the Rademacher process. We will use symmetrization inequal-
ity and then contraction inequality for exponential moments (see Sects. 2.1, 2.2). For
t > 0; we get

E exp

�
t sup

kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ
�

� E exp

�
2t sup

kuk`1�1

ˇ̌
ˇRn.jfuj/

ˇ̌
ˇ
�

� E exp

�
4t sup

kuk`1�1

ˇ̌
ˇRn.fu/

ˇ̌
ˇ
�
:

Since the mapping u 7! Rn.fu/ is linear, the supremum of Rn.fu/ over the set
fkuk`1 � 1g (which is a convex polytope) is attained at one of its vertices, and we
get

E exp

�
t sup

kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ
�

� E exp

�
4t max

1�k�N

ˇ̌
ˇRn.hk/

ˇ̌
ˇ
�

D N max
1�k�N E

�
exp

�
4tRn.hk/

� _
exp

�
�4tRn.hk/

��

� 2N max
1�k�N E exp

�
4tRn.hk/

�
� 2N max

1�k�N

�
E exp

�
4
t

n
"hk.X/

��n
:

To bound the last expectation and to complete the proof, follow the standard proof
of Bernstein’s inequality. ut

Assume that L \ 
S ¤ ; and let 	 2 L \ 
S: Arguing as in the proof of
Proposition 7.2, we get that, for all 	 2 L; O	 � 	 2 CJ	 and kfO	 � f	kL1.˘n/ D 0:

Therefore,

kO	 � 	k`1 �
X

j 62J	
j O	j j C

X

j2J	
j	j � O	j j

� 2
X

j2J	
j	j � O	j j � 2ˇ.J	/kfO	 � f	kL1.˘/: (7.6)

We will now upper bound kfO	 � f	kL1.˘/ in terms of kO	 � 	k`1 ; which will imply
the result. First, note that
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kfO	 � f	kL1.˘/ D kfO	 � f	kL1.˘n/ C .˘ �˘n/.jfO	 � f	j/
� sup

kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇkO	 � 	k`1 : (7.7)

By Lemma 7.4, with probability at least 1 � N�A (under the assumption that
A logN � n)

sup
kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ � C max

1�k�N khkk 1
r
A logN

n
:

This yields the following bound that holds with probability at least 1 �N�A:

kfO	 � f	kL1.˘/ � C max
1�k�N khkk 1

r
A logN

n
kO	 � 	k`1 : (7.8)

Together with (7.6), this implies

kO	 � 	k`1 � 2Cˇ.J	/ max
1�k�N

khkk 1
r
A logN

n
kO	 � 	k`1 :

It follows that, for 	 2 L \
S; with probability at least 1 �N�A;

kO	 � 	k`1 � 1

2
kO	 � 	k`1 ;

and, hence, O	 D 	: ut
It is of interest to study the problem under the following condition on the

dictionary and on the distribution˘ : for all 	 2 CJ
����
NX

jD1
	j hj

����
L1.˘/

�
����
NX

jD1
	j hj

����
L2.˘/

� B.J /

����
NX

jD1
	j hj

����
L1.˘/

(7.9)

with some constant B.J / > 0: This inequality always holds with some B.J / > 0
since any two norms on a finite dimensional space are equivalent. In fact, the first
bound is just Cauchy–Schwarz inequality. However, in general, the constant B.J /
does depend on J and we are interested in the situation when there is no such
dependence (or, at least, B.J / does not grow too fast as card.J / ! 1).

Example. • Gaussian dictionary. It will be said that h1; : : : ; hN is a Gaussian
dictionary with respect to ˘ iff .h1.X/; : : : ; hN .X// has a normal distribution in
R
N ; X having distribution ˘: In this case, condition (7.9) holds for all 	 2 R

N

with B.J / D B that does not depend on the dimension d.J /: Moreover, all the
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Lp norms for p � 1 and even  1- and  2-norms of
PN

jD1 	j hj are equivalent
up to numerical constants.

• Gaussian orthonormal dictionary. In this special case of Gaussian dictionaries,
h1.X/; : : : ; hN .X/ are i.i.d. standard normal random variables.

• Rademacher (Bernoulli) dictionary. In this example h1.X/; : : : ; hN .X/ are i.i.d.
Rademacher random variables. Condition (7.9) holds for this dictionary with an
absolute constant B.J / D B: Moreover, as in the case of Gaussian dictionaries,
all the Orlicz norms between L1 and  2 are equivalent on the linear span of
the dictionary up to numerical constants. This fact follows from the classical
Khinchin inequality (see Bobkov and Houdré [27] for a discussion of Khinchin
type inequalities and their connections with isoperimetric constants).

•  ˛-dictionary. Let ˛ � 1: It will be said that h1; : : : ; hN is a  ˛-dictionary with
respect to ˘ iff

kf	k ˛ � Bkf	kL1.˘/; 	 2 R
N

with an absolute constantB: Condition (7.9) obviously holds for ˛-dictionaries.
In particular,  2-dictionaries will be also called subgaussian dictionaries.
Clearly, this includes the examples of Gaussian and Rademacher dictionaries.

• Log-concave dictionary. Recall that a probability measure � in R
N is called log-

concave iff
�.tAC .1 � t/B/ � .�.A//t .�.B//1�t

for all Borel sets A;B � R
N and all t 2 Œ0; 1�: A log-concave measure � is

always supported in an affine subspace of R
N (that might coincide with the

whole space). Moreover, it has a density on its support that is a log-concave
function (i.e., its logarithm is concave). In particular, if K � R

N is a bounded
convex set, then uniform distribution in K is log-concave. It will be said that a
dictionary fh1; : : : ; hN g is log-concave with respect to ˘ iff the random vector
.h1.X/; : : : ; hN .X// has a log-concave distribution, X having distribution ˘:
A well known result of Borell [28] (see also Ledoux [100], Proposition 2.14)
implies that log-concave dictionaries satisfy the condition (7.9) with an absolute
constant B.J / D B (that does not depend on J ). Moreover, the same result
implies that for log-concave dictionaries

kf	k 1 � Bkf	kL1.˘/; 	 2 R
N

with an absolute constant B: Thus, logconcave dictionaries are examples of
 1-dictionary.

Under the condition (7.9),

ˇ.J / � B.J /ˇ2.J /
p
d.J /: (7.10)

If ˇ2.J / is bounded (as in the case of orthonormal dictionaries), then ˇ.J / is
“small” for sets J of small cardinality d.J /: In this case, the definition of the set of
“sparse vectors”
S can be rewritten in terms of ˇ2:
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However, we will give below another version of this result slightly improving the
logarithmic factor in the definition of the set of sparse vectors 
S and providing
bounds on the norms k � kL2.˘/ and k � k`2 :

Denote

ˇ2.d/ WD ˇ2.d I˘/ WD max
n
ˇ2.J / W J � f1; : : : ; N g; d.J / � 2d

o
:

Let

B.d/ WD max

(
B.J / W J � f1; : : : ; N g; d.J / � d

)
:

Finally, denote Nd the largest d satisfying the conditions d � N
e

�1; Ad log.N=d/
n

� 1;

and

CB.d/ˇ2.d/ sup
kuk`2�1;d.u/�d

kfuk 1
r
Ad log.N=d/

n
� 1=4:

We will now use the following definition of the set of “sparse” vectors:


S;2 WD f	 2 R
N W d.	/ � Nd g:

Recall the notation  
n

� k

!
WD

kX

jD0

 
n

j

!
:

Suppose f� D f	� ; 	� 2 R
N : Let A � 1: There exists a constant C in the

definition of the set 
S such that with probability at least 1 �N�A;

Theorem 7.3. Suppose that f� D f	� ; 	� 2 R
N and that condition (7.9) holds.

Let A � 1: There exists a constant C in the definition of 
S;2 such that, with
probability at least

1 � 5� NdA
 
N

� Nd

!�A
;

either L\
S;2 D ;; or L\
S D fO	g:
In particular, if 	� 2 
S;2; then with the same probability O	 D 	�:

Proof. We will use the following lemma.

Lemma 7.5. For J � f1; : : : ; N g with d.J / � d; letKJ WD CJ \U`2: There exists
a constant C > 0 such that, for all A � 1 with probability at least

1 � 5�dA
 
N

� d

!�A
;
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the following bound holds:

sup
u2KJ

ˇ̌
ˇ̌.˘n �˘/.jfuj/

ˇ̌
ˇ̌

� C sup
kuk`2�1;d.u/�d

kfuk 1
�r

Ad log.N=d/

n

_ Ad log.N=d/

n

�
:

Proof. It follows from statement (ii) of Lemma 7.1 with b D 1 that

KJ � 6 conv.Md /;

where Md is a set of vectors u from the unit ball fu 2 R
N W kuk`2 � 1g such that

d.u/ � d and

card.Md / � 5d

 
N

� d

!
:

Now, it is enough to repeat the proof of Lemma 7.4. In particular, we use
symmetrization and contraction inequalities to reduce bounding the exponential
moment of

sup
u2KJ

ˇ̌
ˇ̌.˘n �˘/.jfuj/

ˇ̌
ˇ̌

to bounding the exponential moment of supu2Md
jRn.fu/j; card.Md / playing now

the role of N: The bound on card.Md / implies that with some c > 0

log.card.Md // � cd log
N

d
;

and it is easy to complete the proof. ut
We now follow the proof of Theorem 7.2 with straightforward modifications.

Assume that L \
S;2 ¤ ; and let 	 2 L \
S;2: Instead of (7.7), we use

kfO	 � f	kL1.˘/ D kfO	 � f	kL1.˘n/ C .˘ �˘n/.jfO	 � f	j/
� sup

kuk`2�1;u2CJ	

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇkO	 � 	k`2 : (7.11)

To bound kO	�	k`2 note that, as in the proof of Theorem 7.2, O	�	 2 CJ	 and apply
Lemma 7.1 to u D O	 � 	; J D J	:

kO	 � 	k`2 � 2

� X

j2J0[J1
j O	j � 	j j2

�1=2
� 2ˇ2.d.	//kfO	 � f	kL2.˘/: (7.12)
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Use Lemma 7.5 to bound

sup
kuk`2�1;u2CJ	

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ

� C sup
kuk`2�1;d.u/� Nd

kfuk 1
s
A Nd log.N= Nd/

n
; (7.13)

which holds with probability at least 1�5� NdA� N
� Nd

�A

: It remains to substitute bounds
(7.12) and (7.13) in (7.11), to use (7.9) and to solve the resulting inequality with
respect to kfO	 � f	kL2.˘/: It follows that the last norm is equal to 0: In view of

(7.12), this implies that O	 D 	: ut
Remark. Note that, in the case of L2.˘/-orthonormal logconcave dictionary,
Theorem 7.3 easily implies that O	 D 	� with a high probability provided that

Ad.	�/ log.N=d.	�//
n

� c

for a sufficiently small c: Recently, Adamczak et al. [2] obtained sharp bounds
on empirical restricted isometry constants ıd .˘n/ for such dictionaries that imply
bounds on d.	�/ for which sparse recovery is possible with a little bit worse
logarithmic factor than what follows from Theorem 7.3 (of course, in this theorem
we are not providing any control of ıd .˘n/).

7.4 The Dantzig Selector

We now turn to the case when the target function f� is observed in an additive noise.
Moreover, it will not be assumed that f� belongs to the linear span of the dictionary,
but rather that it can be well approximated in the linear span. Consider the following
regression model with random design

Yj D f�.Xj /C �j ; j D 1; : : : ; n;

where X;X1; : : : ; Xn are i.i.d. random variables in a measurable space .S;A / with
distribution˘ and �; �1; : : : ; �n are i.i.d. random variables with E� D 0 independent
of .X1; : : : ; Xn/: Candes and Tao [44] developed a method of sparse recovery based
on linear programming suitable in this more general framework. They called it the
Dantzig selector.

Given " > 0; let

O
" WD
�
	 2 R

N W max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
.f	.Xj /� Yj /hk.Xj /

ˇ̌
ˇ̌ � "

�
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and define the Dantzig selector as

O	 WD O	" 2 Argmin	2 O
"k	k`1 :

It is easy to reduce the computation of O	" to a linear program. The Dantzig selector
is closely related to the `1-penalization method (called “LASSO” in statistical
literature, see Tibshirani [141]) and defined as a solution of the following penalized
empirical risk minimization problem:

n�1
nX

jD1
.f	.Xj /� Yj /

2 C 2"k	k`1 DW Ln.	/C 2"k	k`1 �! min : (7.14)

The set of constraints of the Dantzig selector can be written as

O
" D
n
	 W

���rLn.	/
���
`

1

� "
o

and the condition 	 2 O
" is necessary for 	 to be a solution of (7.14).
In [44], Candes and Tao studied the performance of the Dantzig selector in

the case of fixed design regression (nonrandom points X1; : : : ; Xn) under the

assumption that the design matrix A D
	
hj .Xi/




iD1;nIjD1;N satisfies the uniform

uncertainty principle (UUP). They stated that UUP holds with a high probability for
some random design matrices such as the “Gaussian ensemble” and the “Bernoulli
or Rademacher ensemble” (using the terminology of the previous section, Gaussian
and Rademacher dictionaries).

We will prove several “sparsity oracle inequalities” for the Dantzig selector in
spirit of recent results of Bunea et al. [36], van de Geer [63], Koltchinskii [84]
in the case of `1- or `p-penalized empirical risk minimization. We follow the
paper of Koltchinskii [85] that relies only on elementary empirical and Rademacher
processes methods (symmetrization and contraction inequalities for Rademacher
processes and Bernstein type exponential bounds), but does not use more advanced
techniques, such as concentration of measure and generic chaining. It is also close
to the approach of Sect. 7.3 and to recent papers by Rudelson and Vershynin [129]
and Mendelson et al. [117]. As in Sect. 7.3, our proofs of oracle inequalities in the
random design case are more direct, they are not based on a reduction to the fixed
design case and checking UUP for random matrices. The results also cover broader
families of design distributions. In particular, the assumption that the dictionary
is L2.˘/-orthonormal is replaced by the assumption that it satisfies the restricted
isometry condition with respect to ˘:

In what follows, the values of " > 0; A > 0 and C > 0 will be fixed and it will
be assumed that A logN

n
� 1: Consider the following set
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 WD 
".A/ WD
�
	 2 R

N W
ˇ̌
ˇhf	 � f�; hkiL2.˘/

ˇ̌
ˇ

CC
	
k.f	 � f�/.X/hk.X/k 1 C k�hk.X/k 1


rA logN

n
� "; k D 1; : : : ; N

�
;

consisting of vectors 	 (“oracles”) such that f	 provides a good approximation
of f�: In fact, 	 2 
".A/ implies that

max
1�k�N

ˇ̌
ˇhf	 � f�; hkiL2.˘/

ˇ̌
ˇ � ": (7.15)

This means that f	 � f� is “almost orthogonal” to the linear span of the dictionary.
Thus, f	 is close to the projection of f� on the linear span. Condition (7.15) is
necessary for 	 to be a minimal point of

	 7! kf	 � f�k2L2.˘/ C 2"k	k`1 ;

and minimizing the last function is a “population version” of LASSO problem (7.14)
(	 2 O
" is a necessary condition for (7.14)). Of course, the condition

" � max
1�k�N k�hk.X/k 1

r
A logN

n

is necessary for 
".A/ ¤ ;: It will be clear from the proof of Theorem 7.4 below
that 	 2 
".A/ implies 	 2 O
" with a high probability.

The next Theorems 7.4 and 7.5 show that if there exists a sufficiently sparse
vector 	 in the set O
" of constraints of the Dantzig selector, then, with a high
probability, the Dantzig selector belongs to a small ball around 	 in such norms as
k�k`1 ; k�k`2 :At the same time, the function fO	 belongs to a small ball around f	 with
respect to such norms as k � kL1.˘/ or k � kL2.˘/: The radius of this ball is determined
by the degree of sparsity of 	 and by the properties of the dictionary characterized
by such quantities as ˇ or ˇ2 (see Sect. 7.2). Essentially, the results show that the
Dantzig selector is adaptive to unknown degree of sparsity of the problem, provided
that the dictionary is not too far from being orthonormal in L2.˘/:

Recall the definition of the set of “sparse” vectors
S from the previous section.
Let

Q
 D Q
".A/ WD 
".A/\
S:

Theorem 7.4. There exists a constant C in the definitions of 
".A/;
S such that,
for A � 1 with probability at least 1 � N�A; the following bounds hold for all
	 2 O
" \
S W

kfO	 � f	kL1.˘/ � 16ˇ.J	/"

and
kO	 � 	k`1 � 32ˇ2.J	/":
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This implies that

kfO	 � f�kL1.˘/ � inf
	2 Q
".A/

�
kf	 � f�kL1.˘/ C 16ˇ.J	/"

�
:

If, in addition f� D f	� ; 	� 2 R
N ; then also

kO	 � 	�k`1 � inf
	2 Q
".A/

�
k	 � 	�k`1 C 32ˇ2.J	/"

�
:

Proof. We use the following lemma based on Bernstein’s inequality for  1-random
variables (see Sect. A.2).

Lemma 7.6. Let �.k/; �.k/1 ; : : : ; �
.k/
n be i.i.d. random variables with E�.k/ D 0 and

k�.k/k 1 < C1; k D 1; : : : ; N: There exists a numerical constant C > 0 such that,
for A � 1 with probability at least 1 �N�A for all k D 1; : : : ; N;

ˇ̌
ˇ̌n�1

nX

jD1
�
.k/
j

ˇ̌
ˇ̌ � Ck�.k/k 1

�r
A logN

n

_ A logN

n

�
:

For 	 2 O
" \ 
S; we will upper bound the norms kO	 � 	k`1 ; kfO	 � f	kL1.˘/
in terms of each other and solve the resulting inequalities, which will yield the first
two bounds of the theorem. As in the proof of Proposition 7.2 and Theorems 7.2,
7.3, 	 2 O
" and the definition of O	 imply that O	 � 	 2 CJ	 and

kO	 � 	k`1 � 2ˇ.J	/kfO	 � f	kL1.˘/: (7.16)

It remains to upper bound kfO	 � f	kL1.˘/ in terms of kO	 � 	k`1 : To this end, note
that

kfO	 � f	kL1.˘/ D kfO	 � f	kL1.˘n/ C .˘ �˘n/.jfO	 � f	j/
� kfO	 � f	kL1.˘n/ C sup

kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇkO	 � 	k`1 : (7.17)

The first term in the right hand side can be bounded as follows

kfO	 � f	k2L1.˘n/ � kfO	 � f	k2L2.˘n/ D hfO	 � f	; fO	 � f	iL2.˘n/

D
NX

kD1
. O	k � 	k/hfO	 � f	; hkiL2.˘n/ � kO	 � 	k`1 max

1�k�N

ˇ̌
ˇhfO	 � f	; hkiL2.˘n/

ˇ̌
ˇ:

Both O	 2 O
 and 	 2 O
; implying that
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max
1�k�N

ˇ̌
ˇhfO	 � f	; hkiL2.˘n/

ˇ̌
ˇ

� max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
.f	.Xj /� Yj /hk.Xj /

ˇ̌
ˇ̌

C max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
.fO	.Xj / � Yj /hk.Xj /

ˇ̌
ˇ̌ � 2":

Therefore,

kfO	 � f	kL1.˘n/ �
q
2"kO	� 	k`1 :

Now we bound the second term in the right hand side of (7.17). Under the
assumptionA logN � n; Lemma 7.4 implies that with probability at least 1�N�A

sup
kuk`1�1

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ � C max

1�k�N
khkk 1

r
A logN

n
:

Hence, we conclude from (7.17) that

kfO	 � f	kL1.˘/ �
q
2"kO	� 	k`1 CC max

1�k�N khkk 1
r
A logN

n
kO	�	k`1 : (7.18)

Combining this with (7.16) yields

kfO	 � f	kL1.˘/ �
q
4"ˇ.J	/kfO	 � f	kL1.˘/

C2C max
1�k�N khkk 1

r
A logN

n
ˇ.J	/kfO	 � f	kL1.˘/:

By the definition of 
S;

2C max
1�k�N

khkk 1
r
A logN

n
ˇ.J	/ � 1=2;

so, we end up with

kfO	 � f	kL1.˘/ � 2
q
4"ˇ.J	/kfO	 � f	kL1.˘/;

which implies the first bound of the theorem. The second bound holds because
of (7.16).
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Observe that for all 	 2 
;
ˇ̌
ˇ̌n�1

nX

jD1
.f	.Xj /� Yj /hk.Xj /

ˇ̌
ˇ̌ �

ˇ̌
ˇhf	 � f�; hkiL2.˘/

ˇ̌
ˇ

C
ˇ̌
ˇ̌n�1

nX

jD1

h
.f	.Xj /� f�.Xj //hk.Xj / � E.f	.X/ � f�.X//hk.X/

iˇ̌
ˇ̌

C
ˇ̌
ˇ̌n�1

nX

jD1
�j hk.Xj /

ˇ̌
ˇ̌:

Lemma 7.6 can be used to bound the second and the third terms: with probability at
least 1 � 2N�A

max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
.f	.Xj / � Yj /hk.Xj /

ˇ̌
ˇ̌ � max

1�k�N

�ˇ̌
ˇhf	 � f�; hkiL2.˘/

ˇ̌
ˇ

CC
	
k.f	 � f�/.X/hk.X/k 1 C k�hk.X/k 1


rA logN

n

�
� ":

This proves that for all 	 2 
; with probability at least 1 � 2N�A; we also have
	 2 O
:

For each of the remaining two bounds, let N	 be the vector for which the infimum
in the right hand side of the bound is attained. With probability at least 1 � 2N�A;
N	 2 O
" \
S: Hence, it is enough to use the first two bounds of the theorem and the
triangle inequality to finish the proof. ut

We will give another result about the Dantzig selector in which the properties of
the dictionary are characterized by the quantity ˇ2 instead of ˇ: Recall the definition
of the set of “sparse” vectors 
S;2 from the previous section and related notations
(ˇ2.d/; B.d/; etc) and define

Q
2 D Q
2
".A/ WD 
".A/ \
S;2:

Theorem 7.5. Suppose condition (7.9) holds. There exists a constant C in the
definitions of
".A/;
S;2 such that, for A � 1 with probability at least

1 � 5� NdA
 
N

� Nd

!�A
;

the following bounds hold for all 	 2 O
" \
S;2 W

kfO	 � f	kL2.˘/ � 16B2.d.	//ˇ2.d.	//
p
d.	/"
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and
kO	 � 	k`2 � 32B2.d.	//ˇ22.d.	//

p
d.	/":

Also, with probability at least 1 �N�A;

kfO	 � f�kL2.˘/ � inf
	2 Q
2".A/

�
kf	 � f�kL2.˘/ C 16B2.d.	//ˇ2.d.	//

p
d.	/"

�
:

If f� D f	� ; 	� 2 R
N ; then

kO	 � 	�k`2 � inf
	2 Q
2".A/

�
k	 � 	�k`2 C 32B2.d.	//ˇ22.d.	//

p
d.	/"

�
:

Proof. We follow the proof of Theorem 7.4. For 	 2 O
"\
S;2;we use the following
bound instead of (7.17):

kfO	 � f	kL1.˘/ D kfO	 � f	kL1.˘n/ C .˘ �˘n/.jfO	 � f	j/
� kfO	 � f	kL1.˘n/ C sup

kuk`2�1;u2CJ	

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇkO	 � 	k`2 : (7.19)

Again, we have O	 � 	 2 CJ	 ; and, using Lemma 7.1, we get for u D O	 � 	 and
J D J	:

kO	 � 	k`2 � 2

� X

j2J0[J1
j O	j � 	j j2

�1=2
� 2ˇ2.d.	//kfO	 � f	kL2.˘/: (7.20)

Lemma 7.5 now yields

sup
kuk`2�1;u2CJ	

ˇ̌
ˇ.˘n �˘/.jfuj/

ˇ̌
ˇ

� C sup
kuk`2�1;d.u/� Nd

kfuk 1
s
A Nd log.N= Nd/

n
; (7.21)

which holds with probability at least

1 � 5� NdA
 
N

� Nd

!�A
:

As in the proof of Theorem 7.4, we bound the first term in the right hand side of
(7.19):

kfO	 � f	kL1.˘n/ �
q
2"kO	� 	k`1 : (7.22)
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In addition,

kO	 � 	k`1 � 2
X

j2J
j O	j � 	j j � 2

p
d.	/

� X

j2J[J1
j O	j � 	j j2

�1=2

� 2ˇ2.d.	//
p
d.	/kfO	 � f	kL2.˘/: (7.23)

Substitute bounds (7.20)–(7.22) and (7.23) into (7.19), use (7.9) and solve the
resulting inequality with respect to kfO	 � f	kL2.˘/: This gives the first bound of
the theorem.

The second bound follows from (7.20) and the remaining two bounds are proved
exactly as in Theorem 7.4. ut

In the fixed design case, the following result holds. Its proof is a simplified
version of the proofs of Theorems 7.4, 7.5.

Theorem 7.6. Suppose X1; : : : ; Xn are nonrandom design points in S and let ˘n

be the empirical measure based on X1; : : : ; Xn: Suppose also f� D f	� ; 	� 2 R
N :

There exists a constant C > 0 such that for all A � 1 and for all

" � Ck�k 2 max
1�k�N khkkL2.˘n/

r
A logN

n
;

with probability at least 1 �N�A the following bounds hold:

(7.24)

kfO	 � f	�kL2.˘n/ � 4ˇ2.J	� ; ˘n/
p
d.	�/";

kO	 � 	�k`1 � 8ˇ22.J	� ; ˘n/d.	
�/"

and
kO	 � 	�k`2 � 8ˇ22.d.	

�/;˘n/
p
d.	�/":

Proof. As in the proof of Theorem 7.4,

kfO	 � f	�kL2.˘n/ �
q
2"kO	 � 	�k`1 (7.25)

and
kO	 � 	�k`1 � 2ˇ2.J	� ; ˘n/

p
d.	�/kfO	 � f	� kL2.˘n/: (7.26)

These bounds hold provided that 	� 2 O
"; or

max
1�k�N

ˇ̌
ˇ̌n�1

nX

jD1
�j hk.Xj /

ˇ̌
ˇ̌ � ":
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If k�k 2 < C1 and

" � Ck�k 2 max
1�k�N khkkL2.˘n/

r
A logN

n
;

then usual bounds for random variables in Orlicz spaces imply that 	� 2 O
" with
probability at least 1 �N�A:

Combining (7.25) and (7.26) shows that with probability at least 1 �N�A

kfO	 � f	�kL2.˘n/ � 4ˇ2.J	� ; ˘n/
p
d.	�/"

and
kO	 � 	�k`1 � 8ˇ22.J	� ; ˘n/d.	

�/":

Using Lemma 7.1 and arguing as in the proof of Theorem 7.5, we also get

kO	 � 	�k`2 � 8ˇ22.d.	
�/;˘n/

p
d.	�/":

ut
Bounding ˇ2.J;˘n/ in terms of restricted isometry constants (see Lemma 7.2),

essentially, allows one to recover Theorem 1 of Candes and Tao [44] that was the
first result about the Dantzig selector in the fixed design case. Instead of doing this,
we turn again to the case of random design regression and conclude this section with
the derivation of the results of Candes and Tao [44] in the random design case.

To simplify the matter, assume that the following conditions hold:

• The dictionary fh1; : : : ; hN g is L2.˘/-orthonormal and, for some numerical
constant B > 0;

1

B
k	k`2 �

���
NX

jD1
	j hj

���
L1.˘/

� Bk	k`2

and
1

B
k	k`2 �

���
NX

jD1
	j hj

���
L 2 .˘/

� Bk	k`2 ; 	 2 R
N :

This is the case, for instance, for Gaussian and Rademacher dictionaries.
• The noise f�j g is a sequence of i.i.d. normal random variables with mean 0 and

variance �2:
• Finally, f� D f	� ; 	� 2 R

N :

The following corollary can be derived from the last bound of Theorem 7.5.
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Corollary 7.1. There exist constants C;D with the following property. Let A � 1

and suppose that

D

r
Ad.	�/ logN

n
� 1:

Then, for all " satisfying the condition

" � D�

r
A logN

n
;

the following bound holds with probability at least 1 �N�AW

kO	 � 	�k2`2 � C

NX

jD1
.j	�

j j2 ^ "2/ D C inf
J�f1;:::;N g

�X

j 62J
j	�
j j2 C d.J /"2

�
: (7.27)

In particular, this implies that

kO	 � 	�k2`2 � Cd.	�/"2:

The proof of (7.27) is based on applying the last bound of Theorem 7.5 to the
oracle 	 D N	� defined as follows:

N	�
j D 	�

j I.j	�
j j � "=3/; j D 1; : : : ; N:

7.5 Further Comments

Theoretical study of sparse recovery methods based on the `1-norm minimization
started with the work of Donoho [52–55] who understood the connections of
these problems with convex geometry in high dimensional spaces (other impor-
tant references include [42, 43, 56]). Rudelson and Vershynin [129] followed by
Mendelson et al. [117] used ideas and methods of high dimensional probability
and asymptotic geometric analysis (concentration of measure, generic chaining) in
further development of the theory of sparse recovery.

Geometric properties of the dictionaries discussed in Sect. 7.2 have been used
in many recent papers on sparse recovery as well as in other areas of analysis and
probability.

The Dantzig selector was introduced by Candes and Tao [44] who proved
sparsity oracle inequalities for this estimator. In the same paper, they also introduced
the restricted isometry constants that have been frequently used to quantify the
properties of the dictionary needed for sparse recovery.

Here we followed the approach to oracle inequalities for the Dantzig selector as
well as to the analysis of noiseless sparse recovery problems developed in [85].



Chapter 8
Convex Penalization in Sparse Recovery

We will discuss the role of penalized empirical risk minimization with convex
penalties in sparse recovery problems. This includes the `1-norm (LASSO) penalty
as well as strictly convex and smooth penalties, such as the negative entropy penalty
for sparse recovery in convex hulls. The goal is to show that, when the target
function can be well approximated by a “sparse” linear combination of functions
from a given dictionary, then solutions of penalized empirical risk minimization
problems with `1 and some other convex penalties are “approximately sparse” and
they approximate the target function with an error that depends on the “sparsity”.
As a result of this analysis, we derive sparsity oracle inequalities showing the
dependence of the excess risk of the empirical solution on the underlying sparsity
of the problem. These inequalities also involve various distribution dependent
geometric characteristics of the dictionary (such as restricted isometry constants
and alignment coefficients) and the error of sparse recovery crucially depends on
the geometry of the dictionary.

8.1 General Aspects of Convex Penalization

In this chapter we study an approach to sparse recovery based on penalized empirical
risk minimization of the following form:

O	" WD argmin	2D
�
Pn.` � f	/C "

NX

jD1
 .	j /

�
: (8.1)

We use the notations of Chap. 1, in particular, we denote

f	 WD
NX

jD1
	j hj ; 	 2 R

N ;

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 8,
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where H WD fh1; : : : ; hN g is a given finite dictionary of measurable functions from
S into Œ�1; 1�: The cardinality of the dictionary is usually very large (often, larger
than the sample size n). We will assume in what follows thatN � .logn/� for some
� > 0 (this is needed only to avoid additional terms of the order log log n

n
in several

inequalities).
We will also assume that is a convex even function and " � 0 is a regularization

parameter, and that D � R
N is a closed convex set.

The excess risk of f is defined as

E .f / WD P.` � f /� inf
gWS 7!R

P.` � g/ D P.` � f / � P.` � f�/;

where the infimum is taken over all measurable functions and it is assumed, for
simplicity, that it is attained at f� 2 L2.˘/: Moreover, it will be assumed in what
follows that f� is uniformly bounded by a constantM:

Definition 8.1. It will be said that ` W T � R 7! RC is a loss function of quadratic
type iff the following assumptions are satisfied:

(i) For all y 2 T; `.y; �/ is convex.
(ii) For all y 2 T; `.y; �/ is twice differentiable, `00

u is a uniformly bounded function
in T � R and

sup
y2T

`.yI 0/ < C1; sup
y2T

j`0
u.yI 0/j < C1:

(iii) Moreover, denote


.R/ WD 1

2
inf
y2T inf

juj�R
`00

u .y; u/: (8.2)

Then it is assumed that 
.R/ > 0;R > 0: Without loss of generality, it will be also
assumed that 
.R/ � 1;R > 0 (otherwise, it can be replaced by a lower bound).

For losses of quadratic type, the following property is obvious:


.kf k1 _M/kf � f�k2L2.˘/ � E .f / � Ckf � f�k2L2.˘/;

where C WD 1
2

supy2T;u2R
`00

u .y; u/:
There are many important examples of loss functions of quadratic type, most

notably, the quadratic loss `.y; u/ WD .y�u/2 in the case when T � R is a bounded
set. In this case, we can choose 
 D 1: In regression problems with a bounded
response variable, one can also consider more general loss functions of the form
`.y; u/ WD �.y � u/; where � is an even nonnegative convex twice continuously
differentiable function with �00 uniformly bounded in R; �.0/ D 0 and �00.u/ > 0,
u 2 R: In binary classification setting (that is, when T D f�1; 1g), one can choose
the loss `.y; u/ D �.yu/ with � being a nonnegative decreasing convex twice
continuously differentiable function such that � 00 is uniformly bounded in R and
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�00.u/ > 0; u 2 R: The loss function �.u/ D log2.1C e�u/ (often called the logit
loss) is a typical example.

The condition that the second derivative `00
u is uniformly bounded in T � R can

be often replaced by its uniform boundedness in T � Œ�a; a�; where Œ�a; a� is a
suitable interval. This allows one to cover several other choices of the loss function,
such as the exponential loss `.y; u/ WD e�yu in binary classification.

Clearly, the conditions that the loss `; the penalty function  and the domainD
are convex make the optimization problem (8.1) convex and, at least in principle,
computationally tractable; numerous methods of convex optimization can be used
to solve it (see, e.g., Ben-Tal and Nemirovski [20]).

In the recent literature, there has been considerable attention to the problem of
sparse recovery using LASSO type penalties, which is a special case of problem
(8.1). In this case, D D R

N ; so this is a problem of sparse recovery in the linear
span l:s:.H / of the dictionary, and  .u/ D juj; which means penalization with
`1-norm. It is also usually assumed that `.y; u/ D .y � u/2 (the case of regression
with quadratic loss). In this setting, it has been shown that sparse recovery is possible
under some geometric assumptions on the dictionary. They are often expressed in
terms of the Gram matrix of the dictionary, which in the case of random design
models is the matrix

H WD
�

hhi ; hj iL2.˘/
�

i;jD1;N
:

They take form of various conditions on the entries of this matrix (“coherence
coefficients”), or on its submatrices (in spirit of “uniform uncertainty principle” or
“restricted isometry” conditions, see Sect. 7.2). The essence of these assumptions is
to try to keep the dictionary not too far from being orthonormal in L2.˘/ which,
in some sense, is an ideal case for sparse recovery (see, e.g., Donoho [52–55],
Candes and Tao [44], Rudelson and Vershynin [129], Mendelson et al. [117], Bunea
et al. [36], van de Geer [63], Koltchinskii [82,84,85], Bickel et al. [22] among many
other papers that study both the random design and the fixed design problems).

We will study several special cases of problem (8.1). LASSO or `1-penalty is the
most common choice when D D R

N ; but it can be used in some other cases, too,
for instance, when D D U`1 (the unit ball of `1). This leads to a problem of sparse
recovery in the symmetric convex hull

convs.H / WD
�
f	 W 	 2 U`1

�
;

which can be viewed as a version of convex aggregation problem. Note that
empirical risk minimization with no penalty does not allow one to achieve sparse
recovery or even error rate faster than n�1=2 in this case (see Lecue and Mendelson
[99] for a counterexample). More generally, one can consider the case ofD D U`p ;

the unit ball in the space `p; with p � 1 and with  .u/ D jujp (that is, the penalty
becomes k	kp`p ); the same penalty can be also used when D D R

N : It was shown
by Koltchinskii [84] that sparse recovery is still possible if p is close enough to 1
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(say, of the order 1C 1= logN ). Another interesting example is

D D 
 WD
�
	 2 R

N W 	j � 0;

NX

jD1
	j D 1

�
;

that is, D is the simplex of all probability distributions in f1; : : : ; N g: This
corresponds to the sparse recovery problem in the convex hull of the dictionary

conv.H / WD
�
f	 W 	 2 


�
:

A possible choice of penalty in this case is

�H.	/ D
NX

jD1
	j log	j ;

where H.	/ is the entropy of probability distribution 	; this corresponds to the
choice  .u/ D u log u: Such a problem was studied in Koltchinskii [86] and it
will be also discussed below. We will also show in Sect. 9.4 that sparse recovery in
convex hulls can be achieved by empirical risk minimization with no penalty (which
is not possible in the case of symmetric convex hulls).

We will follow the approach of [84, 86]. This approach is based on the analysis
of necessary conditions of extremum in problem (8.1). For simplicity, consider the
case of D D R

N : In this case, for O	" to be a solution of (8.1), it is necessary that
0 2 @Ln;". O	"/; where

Ln;".	/ WD Pn.` � f	/C "

NX

jD1
 .	j /

and @ denotes the subdifferential of convex functions. If  is smooth, this leads to
the equations

Pn.`
0 � fO	" /hj C " 0. O	"j / D 0; j D 1; : : : ; N: (8.3)

Define

L".	/ WD P.` � f	/C "

NX

jD1
 .	j /

and

rL".	/ WD
�
P.`0 � f	/hj C " 0.	j /

�

jD1;:::;N
:
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The vector rL".	/ is the gradient and the subgradient of the convex functionL".	/
at point 	: It follows from (8.3) that

Pn.`
0 � fO	"/.fO	" � f	/C "

NX

jD1
 0. O	"j /. O	"j � 	j / D 0

and we also have

P.`0 � f	/.fO	" � f	/C "

NX

jD1
 0.	j /. O	"j � 	j / D

D
rL".	/; O	" � 	

E

`2
:

Subtracting the second equation from the first one yields the relationship

P.`0 � fO	" � `0 � f	/.fO	" � f	/C "

NX

jD1
. 0. O	"j /�  0.	j //. O	"j � 	j /

D
D
rL".	/; 	 � O	"

E

`2
C .P � Pn/.`0 � fO	"/.fO	" � f	/:

If ` is a loss of quadratic type and, in addition, 
.C1/ > 0; then

P.`0 � fO	" � `0 � f	/.fO	" � f	/ � ckfO	" � f	k2L2.˘/
with some constant c > 0 depending only on ` and the following inequality holds

ckfO	" � f	k2L2.˘/ C "

NX

jD1
. 0. O	"j /�  0.	j //. O	"j � 	j /

�
D
rL".	/; 	 � O	"

E

`2
C .P � Pn/.`

0 � fO	" /.fO	" � f	/: (8.4)

Inequality (8.4) provides some information about “sparsity” of O	" in terms of
“sparsity” of the oracle 	 and it also provides tight bounds on kfO	" � f	kL2.˘/:
Indeed, if J D J	 D supp.	/ and  0.0/ D 0 (which is the case, for instance, when
 .u/ D up for some p > 1), then

NX

jD1
. 0. O	"j / �  0.	j //. O	"j � 	j / �

X

j 62J
 0. O	"j / O	"j D

X

j 62J
j 0. O	"j /jj O	"j j

(note that all the terms in the sum in the left hand side are nonnegative since  is
convex and  0 is nondecreasing). Thus, the following bound holds
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ckfO	" � f	k2L2.˘/ C "
X

j 62J
j 0. O	"j /jj O	"j j

�
D
rL".	/; 	 � O	"

E

`2
C .P � Pn/.`0 � fO	"/.fO	" � f	/; (8.5)

in which the left hand side measures the L2-distance of fO	" from the oracle f	 as

well as the degree of sparsity of the empirical solution O	": This inequality will be

applied to sparse vectors 	 (“oracles”) such that the term
D
rL".	/; 	� O	"

E

`2
is either

negative, or, if positive, then small enough. This is the case, for instance, when the
subgradient rL".	/ is small in certain sense. In such cases, the left hand side is
controlled by the empirical process

.P � Pn/.`
0 � fO	"/.fO	" � f	/:

It happens that its size, in turn, depends on the L2-distance kfO	" � f	kL2.˘/ and

on the measure of “sparsity” of O	"; Pj 62J j 0. O	"j /jj O	"j j; which are precisely the
quantities involved in the left hand side of bound (8.5). Writing these bounds
precisely yields an inequality on these two quantities which can be solved to derive
the explicit bounds. In the case of strictly convex smooth penalty function  (such
as  .u/ D jujp; p > 1 or  .u/ D u log u), the same approach can be used also
in the case of “approximately sparse” oracles 	 (since the function  0 is strictly
increasing and smooth). A natural choice of oracle is

	" WD argmin	2D
�
P.` � f	/C "

NX

jD1
 .	j /

�
; (8.6)

for which in the smooth case
D
rL".	"/; 	" � O	"

E

`2
� 0 (if D D R

N ; we even

have rL".	"/ D 0). For this oracle, the bounds on kfO	" � f	"kL2.˘/ and on the

degree of sparsity of O	" do not depend on the properties of the dictionary, but only
on “approximate sparsity” of 	": As a consequence, it is also possible to bound
the “random error” jE .fO	" / � E .f	" /j in terms of “approximate sparsity” of 	": It
happens that bounding the “approximation error” E .f	" / is a different problem with
not entirely the same geometric parameters responsible for the size of the error. The
approximation error is much more sensitive to the properties of the dictionary, in
particular, of its Gram matrixH that depends on the unknown design distribution˘:

The case of `1-penalty is more complicated since the penalty is neither strictly
convex, nor smooth. In this case there is no special advantage in using 	" as
an oracle since this vector is not necessarily sparse. It is rather approximately
sparse, but bound (8.4) does not provide a way to control the random L2-error
kfO	" � f	"kL2.˘/ in terms of approximate sparsity of the oracle (note that in this
case  0.	/ D sign.	/). A possible way to tackle the problem is to study a set
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of oracles 	 for which
D
rL".	/; 	 � O	"

E

`2
is negative, or, if positive, then small

enough. This can be expressed in terms of certain quantities that describe a way in
which the subgradient rL".	/ is aligned with the dictionary. Such quantities also
emerge rather naturally in attempts to control the approximation error E .f	" / in the
case of smooth strictly convex penalties.

In this chapter, we concentrate on the case when the domain D is bounded. In
[84], for the `p-penalization with p close to 1; upper and lower bounds on kO	"k`1
in terms of k	c"k`1 for proper values of c have been proved (when the domain D
is not necessarily bounded). Such bounds can be used to extend oracle inequalities
of the following sections to the case of unbounded domain. We do not pursue this
approach here, but in Chap. 9, we will obtain several results for sparse recovery in
unbounded domains as corollaries of more general statement concerning low rank
matrix recovery. This will be done when ` is the quadratic loss.

8.2 `1-Penalization and Oracle Inequalities

The following penalized empirical risk minimization problem will be studied:

O	" WD argmin	2U`1

�
Pn.` � f	/C "k	k`1

�
; (8.7)

where " � 0 is a regularization parameter. As always, we denote 	" a solution of
the “true” version of the problem:

	" WD argmin	2U`1

�
P.` � f	/C "k	k`1

�
:

Let
L".	/ WD P.` � f	/C "k	k`1 :

For 	 2 R
N ; let rL".	/ 2 @L".	/ be the vector with components

P.`0 � f	/hj C "sj .	/; j D 1; : : : ; N

where sj D sj .	/ D sign.	j / (assume that sign.0/ D 0). The vector rL".	/ is
a subgradient of the function L" at point 	: Note that @juj D fC1g for u > 0;

@juj D f�1g for u < 0 and @juj D Œ�1; 1� for u D 0:

In the case of `1-penalization, we are going to compare the empirical solution O	"
with an oracle 	 2 U`1 that will be characterized by its “sparsity” as well as by a
measure of “alignment” of the subgradient rL".	/ 2 @L".	/ with the dictionary.

We will use the following versions of the alignment coefficient for vectors
rL".	/ and s.	/:
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˛C."; 	/ WD a
.1/
H

	
U`1; 	;rL".	/



_ 0

and

˛.	/ WD a
.2/
H

	
U`1; 	; s.	/



_ 0; ˛C.	/ WD a

.1/
H

	
U`1; 	; s.	/



_ 0:

Clearly, ˛.	/ � ˛C.	/ and it is easy to check that

˛C."; 	/ � kPL .`
0 � f	/kL2.P / C "˛C.	/;

where L denotes the linear span of the dictionary fh1; : : : ; hN g in the space L2.P /
(with a minor abuse of notation, we view functions hj defined on S as functions on
S � T ) and PL denotes the orthogonal projection on L � L2.P /: In the case of
quadratic type losses, the first term in the right hand side can be upper bounded as
follows:

kPL .`
0 � f	/kL2.P / D kPL .`

0 � f	 � `0 � f�/kL2.P / � Ckf	 � f�kL2.˘/;

whereC depends only on `: Thus, the quantity kPL .`
0�f	/kL2.P / is upper bounded

by the L2-error of approximation of the target function f� in the linear span of the
dictionary. The second term ˛C.	/ is based on the alignment coefficient of vector
s.	/ with the dictionary. It depends on the sparsity of oracle 	 as well as on the
geometry of the dictionary.

Theorem 8.1. There exist constants D > 0 and C > 0 depending only on ` such
that, for all N	 2 U`1; for J D supp. N	/ and d WD d.J / D card.J /; for all A � 1

and for all

" � D

r
d C A logN

n
; (8.8)

the following bound holds with probability at least 1 �N�A:

kfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	"j j � C

�
d C A logN

n

_
˛2C."; N	/

�
:

Moreover, with the same probability

kfO	"�fN	k2L2.˘/C"
X

j 62J
j O	"j j �C

�
d C A logN

n

_���PL .`
0�fN	/

���
2

L2.P /

_
˛2. N	/"2

�
:

Note that, if we formally pass to the limit as n ! 1 in the bounds of the theorem,
we get the following bounds for the true solution 	" that hold for all " > 0:
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kf	" � fN	k2L2.˘/ C "
X

j 62J
j	"j j � C˛2C."; N	/

and

kf	" � fN	k2L2.˘/ C "
X

j 62J
j	"j j � C

����PL .`
0 � fN	/

���
2

L2.P /

_
˛2. N	/"2

�
:

These bounds can be proved directly by modifying and simplifying the proofs in the
empirical case given below. They show that the true penalized solution 	" provides
an approximation of “sparse” oracle vectors N	 2 U`1 that are, in some sense, well
aligned with the dictionary. In particular, the second bound shows that f	" is close
in the space L2.˘/ to “sparse” oracles fN	 such that the vector s. N	/ is well aligned
with the dictionary and fN	 is close to the target function f� in L2.˘/:Moreover, 	"

is “approximately sparse” in the sense that it is supported in supp. N	/ up to a small
`1-error. The same properties hold for the empirical solution O	" with an additional
error term dCA logN

n
that depends only on the degree of sparsity of N	; but not on

the geometry of the dictionary. In some sense, the meaning of this result is that
the empirical solution O	" provides “sparse recovery” if and only if the true solution
	" does (regardless of the properties of the dictionary). This is even more apparent
in the versions of these results for strictly convex penalties discussed in the next
section.

No condition on the dictionary is needed for the bounds of the theorem to be true
(except uniform boundedness of functions hj ). On the other hand, the assumption

on "; " � D

q
dCA logN

n
; essentially, relates the regularization parameter to the

unknown sparsity of the problem. To get around this difficulty, we will prove another

version of the theorem in which it is only assumed that " � D

q
A logN
n

; but, on
the other hand, there is more dependence of the error bounds on the geometry
of the dictionary. At the same time, the error in this result is controlled not by
d D card.J /; but rather by the dimension of a linear spaceL providing a reasonably
good approximation of the functions fhj W j 2 J g (such a dimension could be much
smaller than card.J /). To formulate the result, some further notation will be needed.

Given a linear subspace L � L2.˘/; denote

U.L/ WD sup
f 2L;kf kL2.˘/D1

kf k1 C 1:

If IL W .L; k � kL2.˘// 7! .L; k � k1/ is the identity operator, then U.L/ � 1 is
the norm of the operator IL: We will use this quantity only for finite dimensional
subspaces. In such case, for any L2.˘/-orthonormal basis �1; : : : ; �d of L;

U.L/ � max
1�j�d

k�j k1
p
d C 1;
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where d WD dim.L/: In what follows, let PL be the orthogonal projector onto L
and L? be the orthogonal complement of L: We are interested in subspaces L such
that

• dim.L/ and U.L/ are not very large.
• Functions fhj W j 2 J g in the “relevant” part of the dictionary can be approxi-

mated well by the functions from L so that the quantity maxj2J kPL?

hjkL2.˘/
is small.

Theorem 8.2. Suppose that

" � D

r
A logN

n
(8.9)

with a large enough constant D > 0 depending only on `: For all N	 2 U`1; for
J D supp. N	/; for all subspaces L of L2.˘/ with d WD dim.L/ and for all A � 1;

the following bound holds with probability at least 1 � N�A and with a constant
C > 0 depending only on `:

kfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	"j j (8.10)

� C

�
d C A logN

n

_
max
j2J kPL?

hjkL2.˘/
r
A logN

n

_ U.L/ logN

n

_
˛2C."I N	/

�
:

Moreover, with the same probability

kfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	"j j (8.11)

� C

�
d C A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_

���PL .`
0 � fN	/

���
2

L2.P /

_
˛2. N	/"2

�
:

The next two corollaries provide bounds on kO	" � N	k`1 in terms of the quantity
ˇ2;2. N	;˘/ (see Sect. 7.2.3); they follow in a straightforward way from the proofs of
the theorems.

Corollary 8.1. Under the assumptions and notations of Theorem 8.1, the following
bound holds with probability at least 1 �N�A:
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kfO	" � fN	k2L2.˘/ C "kO	" � N	k`1

� C

�
d C A logN

n

_���PL .`
0 � fN	/

���
2

L2.P /

_
ˇ22;2.

N	;˘/d"2
�
:

Corollary 8.2. Under the assumptions and notations of Theorem 8.2, the following
bound holds with probability at least 1 �N�A:

kfO	" � fN	k2L2.˘/ C "kO	" � N	k`1 (8.12)

� C

�
d C A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_

���PL .`
0 � fN	/

���
2

L2.P /

_
ˇ22;2.

N	;˘/d.JN	/"
2

�
:

We now turn to the proof of Theorem 8.2.

Proof. Note that subgradients of convex function

	 7! Pn.` � f	/C "k	k`1 DW Ln;".	/

are the vectors in R
N with components

Pn.`
0 � f	/hj C "�j ; j D 1; : : : ; N

where �j 2 Œ�1; 1�; �j D sign.	j / if 	j ¤ 0: It follows from necessary conditions
of extremum in problem (8.7) that there exist numbers Osj 2 Œ�1; 1� such that Osj D
sign. O	"j / when O	"j ¤ 0 and, for all u 2 TU`1 . O	"/;

NX

jD1

	
Pn.`

0 � fO	" /hjuj C "Osjuj



� 0: (8.13)

Indeed, since O	" is a minimal point of Ln;" in U`1; there exists w 2 @Ln;". O	"/ such
that �w belongs to the normal cone NU`1 .

O	"/ of the convex set U`1 at point O	" (see
Aubin and Ekeland [9], Chap. 4, Sect. 2, Corollary 6). This immediately implies
(8.13). Since N	 2 U`1; we have N	 � O	" 2 TU`1 .

O	"/; and the next inequality follows
from (8.13).

Pn.`
0 � fO	"/.fO	" � fN	/C "

NX

jD1
Osj . O	j � N	j / � 0: (8.14)

Recalling the definition sj D sj . N	/ D sign. N	j / and
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rL". N	/ D
�
P.`0 � fN	/hj C "sj

�

jD1;:::;N
;

we also have

P.`0 � fN	/.fO	" � fN	/C "

NX

jD1
sj . O	j � N	j / D

D
rL". N	/; O	" � N	

E

`2
: (8.15)

Subtracting (8.15) from (8.14) yields by a simple algebra

Pn.`
0 � fO	" � `0 � fN	/.fO	" � fN	/C "

NX

jD1
.Osj � sj /. O	j � N	j /

�
D
rL". N	/; N	 � O	"

E

`2
C .P � Pn/.`

0 � fN	/.fO	" � fN	/ (8.16)

and

P.`0 � fO	" � `0 � fN	/.fO	" � fN	/C "

NX

jD1
.Osj � sj /. O	j � N	j /

�
D
rL". N	/; N	 � O	"

E

`2
C .P � Pn/.`0 � fO	"/.fO	" � fN	/: (8.17)

We use inequalities (8.16) and (8.17) to control the “approximate sparsity” of
empirical solution O	" in terms of “sparsity” of the “oracle” N	 and to obtain bounds
on kfO	" � fN	kL2.˘/: As always, we use notations J WD JN	 WD supp. N	/: By the
conditions on the loss (namely, the boundedness of its second derivative away
from 0), we have

P.`0 � fO	" � `0 � fN	/.fO	" � fN	/ � ckfO	" � fN	k2L2.˘/;

where c D 
.1/ (note that kfN	k1 � 1 and kfO	"k1 � 1). Observe also that, for
all j ,

.Osj � sj /. O	j � N	j / � 0

(by monotonicity of subdifferential of convex function u 7! juj). For j 62 J; we
have N	j D 0 and sj D 0: Therefore, (8.17) implies that

ckfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	j j

�
D
rL". N	/; N	 � O	"

E

`2
C .P � Pn/.`

0 � fO	" /.fO	" � fN	/: (8.18)
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Consider first the case when
D
rL". N	/; N	 � O	"

E

`2
� .P � Pn/.`0 � fO	"/.fO	" � fN	/: (8.19)

In this case, (8.18) implies that

ckfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	j j � 2

D
rL". N	/; N	 � O	"

E

`2
; (8.20)

which, in view of the definition of ˛C."; N	/; yields

ckfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	j j � 2˛C."; N	/kfO	" � fN	kL2.˘/: (8.21)

Therefore,

kfO	" � fN	kL2.˘/ � 2

c
˛C."; N	/;

and, as a consequence, with some constant C > 0 depending only on `

kfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	j j � C˛2C."; N	/: (8.22)

If D
rL". N	/; N	 � O	"

E

`2
< .P � Pn/.`

0 � fO	" /.fO	" � fN	/; (8.23)

then (8.18) implies that

ckfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	j j � 2.P � Pn/.`

0 � fO	" /.fO	" � fN	/: (8.24)

Denote


.ıI�/ WD
n
	 2 U`1 W kf	 � fN	kL2.˘/ � ı;

X

j 62J
j	j j � �

o
;

˛n.ıI�/ WD sup
n
j.Pn � P/..`0 � f	/.f	 � fN	//j W 	 2 
.ıI�/

o
:

To bound ˛n.ı;�/; the following lemma will be used.

Lemma 8.1. Under the assumptions of Theorem 8.2, there exists a constant C that
depends only on ` such that with probability at least 1 �N�A; for all

n�1=2 � ı � 1 and n�1=2 � � � 1 (8.25)
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the following bound holds:

˛n.ıI�/ � ˇn.ıI�/ WD C

�
ı

r
d C A logN

n

_
�

r
A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
: (8.26)

Take
ı D kfO	" � f	"kL2.˘/ and � D

X

j 62J
O	"j : (8.27)

If ı � n�1=2;� � n�1=2; then Lemma 8.1 and (8.24) imply the following bound:

cı2 C "� � 2ˇn.ı;�/: (8.28)

If ı < n�1=2 or � < n�1=2; then ı and � should be replaced in the expression
for ˇn.ı;�/ by n�1=2: With this change, bound (8.28) still holds and the proof
goes through with some simplifications. Thus, we will consider only the main case
when ı � n�1=2;� � n�1=2: In this case, the inequality (8.28) has to be solved
to complete the proof. It follows from this inequality (with a proper change of
constant C ) that

"� � C�

r
A logN

n
C C

�
ı

r
d C A logN

n

_

max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
:

As soon as D in condition (8.9) is such that D � 2C; we can write

"� � C

�
ı

r
d C A logN

n

_

max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�

(again the value of constant C might have changed). Under the assumption (8.9) on
" (assuming also thatD � 1), it is easy to derive that

� � �.ı/ WD C

�
ı

"

r
d CA logN

n

_

max
j2J kPL?

hj kL2.˘/
_ U.L/ logN

n"

_r
A logN

n

�
:
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Note that ˇn.ı;�/ is nondecreasing in � and replace� in (8.28) by�.ı/ to get the
following bound:

ı2 � C

�
ı

r
d CA logN

n

_ ı

"

r
d CA logN

n

r
A logN

n

_ U.L/ logN

n"

r
A logN

n

_

max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
:

We skip the second term in the maximum and modify the third term because
1
"

q
A logN
n

� 1: As a result, we get

ı2 � C

�
ı

r
d C A logN

n

_
max
j2J kPL?

hjkL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
:

Solving the last inequality with respect to ı yields the following bound on ı2:

ı2 � C

�
d C A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

�
:

(8.29)

We substitute the last bound back into the expression for �.ı/ to get:

� � C

�
d C A logN

n"

_
max
j2J kPL?

hjk1=2L2.˘/
1

"

�
A logN

n

�1=4r
d C A logN

n

_

r
U.L/ logN

n"

r
d C A logN

n"

_
max
j2J kPL?

hjkL2.˘/
_ U.L/ logN

n"

_r
A logN

n

�
:

Using the inequality ab � .a2 C b2/=2 and the condition 1
"

q
A logN
n

� 1; we can
simplify the resulting bound as follows
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� � C

�
d CA logN

n"

_
max
j2J kPL?

hj kL2.˘/
_ U.L/ logN

n"

_r
A logN

n

�

(8.30)

with a proper change of C that depends only on `: Finally, bounds (8.29) and (8.30)
can be substituted in the expression for ˇn.ı;�/: By a simple computation and in
view of Lemma 8.1, we get the following bound on ˛n.ı;�/ that holds for ı;�
defined by (8.27) with probability at least 1 �N�A:

˛n.ı;�/ � C

�
d C A logN

n
C max

j2J kPL?
hj kL2.˘/

r
A logN

n
C U.L/ logN

n

�
:

Combining this with (8.24) yields

ckfO	" � fN	k2L2.˘/ C "
X

j 62J
j O	"j j

� C

�
d C A logN

n
C max

j2J kPL?
hj kL2.˘/

r
A logN

n
C U.L/ logN

n

�
; (8.31)

which holds under condition (8.23).
Together with bound (8.22), that is true under the alternative condition (8.19),

this gives (8.10).
To prove bound (8.11), we again use (8.18), but this time we control the term

D
rL". N	/; N	 � O	"

E

somewhat differently. First note that

D
rL". N	/; N	 � O	"

E

`2
D
D
`0 � fN	; fN	 � fO	"

E

L2.P /
C "hs. N	/; N	 � O	"i`2 :

This implies that

D
rL". N	/; N	 � O	"

E

`2
�
���PL .`

0 � fN	/
���
L2.P /

kfN	 � fO	"kL2.˘/ C "
X

j2J
sj . N	j � O	"j /

� 1

2c

���PL .`
0 � fN	/

���
2

L2.P /
C c

2
kfN	 � fO	"k2L2.˘/ C "

X

j2J
sj . N	j � O	"j /:
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Combining this with bound (8.18) yields the following inequality

c

2
kfN	 � fO	"k2L2.˘/ C "

X

j 62J
j O	"j j

� "
X

j2J
sj . N	j � O	"j /C 1

2c

���PL .`
0 � fN	/

���
2

L2.P /
C .P � Pn/.`0 � fO	"/.fO	" � fN	/:

If

"
X

j2J
sj . N	j � O	"j / � 1

2c

���PL .`
0 � fN	/

���
2

L2.P /
C .P � Pn/.`0 � fO	"/.fO	" � fN	/;

then
c

2
kfN	 � fO	"k2L2.˘/ C "

X

j 62J
j O	"j j � 2"

X

j2J
sj . N	j � O	"j /;

which implies X

j 62J
j O	"j j � 2

X

j2J
j N	j � O	"j j;

or O	" � N	 2 C2;N	: The definition of ˛. N	/ then implies the bound

c

2
kfN	 � fO	"k2L2.˘/ C "

X

j 62J
j O	"j j � 2"˛. N	/kfN	 � fO	"kL2.˘/:

Solving this inequality with respect to kfN	 � fO	"kL2.˘/ proves (8.11) in this case.
If

"
X

j2J
sj . N	j � O	"j / � 1

2c

���PL .`
0 � fN	/

���
2

L2.P /
C .P � Pn/.`

0 � fO	"/.fO	" � fN	/

and
1

2c

���PL .`
0 � fN	/

���
2

L2.P /
� .P � Pn/.`

0 � fO	"/.fO	" � fN	/;

we get
c

2
kfN	 � fO	"k2L2.˘/ C "

X

j 62J
j O	"j j � 2

c

���PL .`
0 � fN	/

���
2

L2.P /
;

which also implies (8.11) with a proper choice of constant C in the bound.
Thus, it remains to consider the case when

"
X

j2J
sj . N	j � O	"j / � 1

2c

���PL .`
0 � fN	/

���
2

L2.P /
C .P � Pn/.`

0 � fO	"/.fO	" � fN	/
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and
1

2c

���PL .`
0 � fN	/

���
2

L2.P /
� .P � Pn/.`

0 � fO	"/.fO	" � fN	/;

which implies

c

2
kfN	 � fO	"k2L2.˘/ C "

X

j 62J
j O	"j j � 4.P � Pn/.`

0 � fO	" /.fO	" � fN	/:

In this case, we repeat the argument based on Lemma 8.1 to show that with
probability at least 1 �N�A

c

2
kfO	" � fN	k2L2.˘/ C "

X

j 62J
j O	"j j

� C

�
d C A logN

n
C max

j2J kPL?
hj kL2.˘/

r
A logN

n
C U.L/ logN

n

�
;

which again implies (8.11). This completes the proof. ut
We will now give the proof of Lemma 8.1.

Proof. First we use Talagrand’s concentration inequality to get that with probability
at least 1 � e�t

˛n.ıI�/ � 2

�
E˛n.ıI�/C Cı

r
t

n
C C t

n

�
: (8.32)

Next, symmetrization inequality followed by contraction inequality for Rademacher
sums yield:

E˛n.ıI�/ � 2E sup
n
jRn..`0 � f	/.f	 � fN	//j W 	 2 
.ıI�/

o

� CE sup
n
jRn.f	 � fN	/j W 	 2 
.ıI�/

o
(8.33)

with a constant C depending only on `: In contraction inequality part, we write

`0.f	.�//.f	.�/� fN	.�// D `0.fN	.�/C u/u
ˇ̌
ˇ
uDf	.	/�fN	.	/

and use the fact that the function

Œ�1; 1� 3 u 7! `0.fN	.�/C u/u

satisfies the Lipschitz condition with a constant depending only on `:
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The following representation is straightforward:

f	 � fN	 D PL.f	 � fN	/C
X

j2J
.	j � N	j /PL?

hj C
X

j 62J
	jPL?

hj : (8.34)

For all 	 2 
.ı;�/;

kPL.f	 � fN	/kL2.˘/ � kf	 � fN	kL2.˘/ � ı

and PL.f	 � fN	/ 2 L: Since L is a d -dimensional subspace,

E sup
n
jRn.PL.f	 � fN	//j W 	 2 
.ıI�/

o
� Cı

r
d

n

(see Proposition 3.2). On the other hand, 	; N	 2 U`1; so, we have
P

j2J j	j �
N	j j � 2: Hence,

E sup
nˇ̌
ˇRn

	X

j2J
.	j � N	j /PL?

hj


ˇ̌
ˇ W 	 2 
.ıI�/

o
� 2E max

j2J jRn.PL?
hj /j:

Note also that

kPL?
hjk1 � kPLhjk1 C khj k1 � .U.L/� 1/kPLhj kL2.˘/ C 1

� .U.L/� 1/khj kL2.˘/ C 1 � U.L/;

and Theorem 3.5 yields

E max
j2J jRn.PL?

hj /j � C

�
max
j2J kPL?

hjkL2.˘/
r

logN

n
C U.L/

logN

n

�
:

Similarly, for all 	 2 
.ı;�/;Pj 62J j	j j � � and

E sup
nˇ̌
ˇRn

	X

j 62J
	jPL?

hj


ˇ̌
ˇ W 	 2 
.ıI�/

o
� �E max

j 62J
jRn.PL?

hj /j:

Another application of Theorem 3.5, together with the fact that

kPL?
hjkL2.˘/ � khj kL2.˘/ � 1;

results in the bound

E max
j 62J

jRn.PL?
hj /j � C

�r
logN

n
C U.L/

logN

n

�
;
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Now we use representation (8.34) and bound (8.33). It easily follows that

E˛n.ı;�/ � C

�
ı

r
d

n

_
�

r
logN

n

_

max
j2J kPL?

hjkL2.˘/
r

logN

n

_ U.L/ logN

n

�
: (8.35)

Substituting this bound into (8.32) shows that with probability 1 � e�t

˛n.ı;�/ � Q̌
n.ı;�; t/ WD C

�
ı

r
d

n

_
�

r
logN

n

_

max
j2J kPL?

hj kL2.˘/
r

logN

n

_ U.L/ logN

n

_
ı

r
t

n

_ t

n

�
(8.36)

with a constant C > 0 depending only on `:
It remains to prove that, with a high probability, the above bounds hold uniformly

in ı;� satisfying (8.25). Let ıj WD 2�j and �j WD 2�j : We will replace t by
t C 2 log.j C 1/C 2 log.k C 1/: By the union bound, with probability at least

1 �
X

j;k�0
expf�t � 2 log.j C 1/� 2 log.k C 1/g

D 1 �
	X

j�0
.j C 1/�2


2
expf�tg � 1 � 4e�t ;

the following bound holds

˛n.ıI�/ � Q̌
n

	
ıj ;�k; t C 2 log j C 2 logk



;

for all ı and � satisfying (8.25) and for all j; k such that

ı 2 .ıjC1; ıj � and� 2 .�kC1;�k�:

Using the fact that

2 log j � 2 log log2
	 1
ıj



� 2 log log2

	2
ı




and

2 logk � 2 log log2
	 2
�



;
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we get

Q̌
n

	
ıj ;�k; t C 2 log j C 2 logk




� Q̌
n

	
2ı; 2�; t C 2 log log2

	2
ı



C 2 log log2

	 2
�




DW Ň

n.ıI�I t/:

As a result, with probability at least 1� 4e�t ; for all ı and � satisfying (8.25),

˛n.ıI�/ � Ň
n.ıI�I t/:

Take now t D A logN C log 4; so that 4e�t D N�A: With some constant C that
depends only on `;

Ň
n.ıI�I t/ � C

�
ı

r
d

n

_
ı

r
A logN

n

_
ı

vuut2 log log2
	
2
ı




n

_

ı

vuut2 log log2
	
2
�




n

_
�

r
logN

n

_
max
j2J kPL?

hjkL2.˘/
r

logN

n

_

U.L/ logN

n

_ 2 log log2
	
2
ı




n

_ 2 log log2
	
2
�




n

_ A logN

n

�
:

For all ı and � satisfying (8.25),

2 log log2
	
2
ı




n
� C

log logn

n
and

2 log log2
	
2
�




n
� C

log logn

n
:

Assumptions on N; n; imply that A logN � � log logn: Thus, for all ı and �
satisfying (8.25),

˛n.ı;�/ � Ň
n.ıI�I t/ � C

�
ı

r
d

n

_
ı

r
A logN

n

_
�

r
logN

n

_

max
j2J kPL?

hjkL2.˘/
r

logN

n

_ U.L/ logN

n

_ A logN

n

�
: (8.37)

The last bound holds with probability at least 1 �N�A proving the lemma. ut
The proof of Theorem 8.1 is quite similar. The following lemma is used instead

of Lemma 8.1.

Lemma 8.2. Under the assumptions of Theorem 8.1, there exists a constant C that
depends only on ` such that with probability at least 1 �N�A; for all

n�1=2 � ı � 1 and n�1=2 � � � 1;
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the following bound holds:

˛n.ıI�/ � ˇn.ıI�/ WD

C

�
ı

r
d C A logN

n

_
�

r
d C A logN

n

_ A logN

n

�
: (8.38)

In Theorems 8.1 and 8.2, we used a special version of subgradient rL". N	/:More
generally, one can consider an arbitrary couple . N	;rL". N	// where N	 2 U`1 and
rL". N	/ 2 @L". N	/: This couple can be viewed as “an oracle” in our problem. As
before,

rL". N	/ D
	
.P.`0 � fN	//hj C "sj




jD1;:::;N ;

but now sj D sj . N	/ are arbitrary numbers from Œ�1; 1� satisfying the condition

sj D sign. N	j /; N	j ¤ 0:

The next results provide modifications of Theorems 8.1 and 8.2 for such more
general “oracles”.

Denote
˛.b/.	/ WD a

.b/
H

	
U`1; 	; s.	/



_ 0

for some fixed b > 0:

Theorem 8.3. There exist constants D > 0 and C > 0 depending only on ` with
the following property. Let N	 2 U`1 and

rL". N	/ D
	
.P.`0 � fN	//hj C "sj




jD1;:::;N 2 @L". N	/:

Let J � f1; : : : ; N g; J 	 supp. N	/ with d WD d.J / D card.J /: Suppose that, for
some � 2 .0; 1/;

jsj j � 1 � �; j 62 J:
Then, for all A � 1 and for all

" � D

r
d C A logN

n
; (8.39)

the following bound holds with probability at least 1 �N�A:

kfO	" � fN	k2L2.˘/ C "�
X

j 62J
j O	"j j � C

�
d CA logN

n

_
˛2C."; N	/

�
:
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Moreover, with the same probability,

kfO	" � fN	k2L2.˘/ C "�
X

j 62J
j O	"j j

� C

�
d C A logN

n

_���PL .`
0 � fN	/

���
2

L2.P /

_	
˛.2=�/. N	/


2
"2
�
:

Theorem 8.4. Suppose that

" � D

r
A logN

n
(8.40)

with a large enough constantD > 0 depending only on `: Let N	 2 U`1 and

rL". N	/ D
	
.P.`0 � fN	//hj C "sj




jD1;:::;N 2 @L". N	/:

Let J � f1; : : : ; N g; J 	 supp. N	/: Suppose that, for some � 2 .0; 1/;

jsj j � 1 � �; j 62 J:

Then, for all subspaces L of L2.˘/ with d WD dim.L/ and for all A � 1; the
following bound holds with probability at least 1�N�A and with a constant C > 0

depending only on `:

kfO	" � fN	k2L2.˘/ C "�
X

j 62J
j O	"j j (8.41)

� C

�
d C A logN

n

_
max
j2J kPL?

hjkL2.˘/
r
A logN

n

_

U.L/ logN

n

_
˛2C."I N	/

�
:

Moreover, with the same probability

kfO	" � fN	k2L2.˘/ C "�
X

j 62J
j O	"j j (8.42)

� C

�
d C A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_���PL .`
0 � fN	/

���
2

L2.P /

_	
˛.2=�/. N	/


2
"2
�
:
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For some choices of vector N	 and of subgradient rL". N	/; the alignment
coefficient might be smaller than for the choice we used in Theorems 8.1 and 8.2
resulting in tighter bounds. An appealing choice would be N	 D 	";

	" D argmin	2U`1

�
P.` � f	/C "k	k`1

�
;

since in this case it is possible to take rL".	"/ 2 @L".	"/ such that

a
.b/
H .U`1 ; 	

";rL".	"// � 0

(this follows from the necessary conditions of extremum). Therefore, with this
choice, we have ˛C."; 	"/ D 0; which means that for the oracle vector 	" there
exists a version of subgradient that is “well aligned” with the dictionary.

We have the following corollaries in which both theL2-error kfO	"�f	"kL2.˘/ and

the degree of “approximate sparsity” of the empirical solution O	" are controlled by
the “sparsity” of the “oracle” without any geometric assumptions on the dictionary.

Corollary 8.3. There exist constants D > 0 and C > 0 depending only on ` with
the following property. Let

rL".	"/ D
	
.P.`0 � f	"//hj C "sj




jD1;:::;N 2 @L".	"/

be such that, for all u 2 TU`1 .	"/;

hrL".	"/; ui`2 � 0:

Let J � f1; : : : ; N g; J 	 supp. N	/ with d WD d.J / D card.J /: Suppose that, for
some � 2 .0; 1/;

jsj j � 1 � �; j 62 J:
Then, for all A � 1 and for all

" � D

r
d C A logN

n
; (8.43)

the following bound holds with probability at least 1 �N�A:

kfO	" � f	"k2L2.˘/ C "�
X

j 62J
j O	"j j � C

d C A logN

n
:

Corollary 8.4. Suppose that

" � D

r
A logN

n
(8.44)
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with a large enough constantD > 0 depending only on `: Let

rL".	"/ D
	
.P.`0 � f	"//hj C "sj




jD1;:::;N 2 @L".	"/

be such that, for all u 2 TU`1 .	"/;

hrL".	"/; ui`2 � 0:

Let J � f1; : : : ; N g; J 	 supp. N	/: Suppose that, for some � 2 .0; 1/;

jsj j � 1 � �; j 62 J:

Then, for all subspaces L of L2.˘/ with d WD dim.L/ and for all A � 1; the
following bound holds with probability at least 1�N�A and with a constant C > 0

depending only on `:

kfO	" � f	"k2L2.˘/ C "�
X

j 62J
j O	"j j (8.45)

� C

�
d CA logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

�
:

8.3 Entropy Penalization and Sparse Recovery
in Convex Hulls: Random Error Bounds

As before, it will be assumed that ` is a loss function of quadratic type (see
Definition 8.1). Denote


 WD f.	1; : : : ; 	N / W 	j � 0; j D 1; : : : ; N;

NX

jD1
	j D 1g:

The following penalized empirical risk minimization problem will be studied:

O	" WD argmin	2

�
Pn.` � f	/� "H.	/

�

D argmin	2

�
Pn.` � f	/C "

NX

jD1
	j log	j

�
; (8.46)
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where " � 0 is a regularization parameter and

H.	/ D �
NX

jD1
	j log	j

is the entropy of 	: Since, for all y; `.y; �/ is convex, the empirical risk Pn.` � f	/
is a convex function of 	: Since also the set 
 is convex and so is the function
	 7! �H.	/; the problem (8.46) is a convex optimization problem.

It is natural to compare this problem with its distribution dependent version

	" WD argmin	2

�
P.` � f	/� "H.	/

�

D argmin	2

�
P.` � f	/C "

NX

jD1
	j log	j

�
: (8.47)

Note that the minimum of the penalty �H.	/ is attained at the uniform
distribution 	j D N�1; j D 1; : : : ; N: Because of this, at the first glance, �H.	/
penalizes for “sparsity” rather than for “non-sparsity”. However, we will show that if
	" is “approximately sparse”, then O	" has a similar property with a high probability.
Moreover, the approximate sparsity of 	" will allow us to control kfO	" � f	"kL2.˘/
andK. O	"; 	"/; where

K.	; �/ WD K.	j�/CK.�j	/

is the symmetrized Kullback–Leibler distance between 	 and �;

K.	j�/ WD
NX

jD1
	j log

�
	j

�j

�

being the Kullback–Leibler divergence between 	; �:
In particular, it will follow from our results that for any set J � f1; : : : ; N g with

card.J / D d and such that

X

j 62J
	"j �

r
logN

n
;

with a high probability,

kfO	" � f	"k2L2.˘/ C "K. O	"I	"/ � C
d C logN

n
:



8.3 Entropy Penalization and Sparse Recovery in Convex Hulls: Random Error Bounds 177

This easily implies upper bounds on “the random error” jE .fO	"/� E .f	" /j in terms
of “approximate sparsity” of 	":

Some further geometric parameters (such as “the alignment coefficient” intro-
duced in Sect. 7.2.3) provide a way to control “the approximation error” E .f	"/: As
a result, if there exists a “sparse” vector 	 2 
 for which the excess risk E .f	/
is small and 	 is properly “aligned” with the dictionary, then 	" is approximately
sparse and its excess risk E .f	" / is controlled by sparsity of 	 and its “alignment”
with the dictionary. Together with sparsity bounds on the random error this yields
oracle inequalities on the excess risk E .fO	" / showing that this estimation method
provides certain degree of adaptation to the unknown “sparsity” of the problem.

The first result in this direction is the following theorem that provides the bounds
on approximate sparsity of O	" in terms of approximate sparsity of 	" as well as the
bounds on the L2-error of approximation of f	" by fO	" and the Kullback–Leibler

error of approximation of 	" by O	":
Theorem 8.5. There exist constants D > 0 and C > 0 depending only on ` such
that, for all J � f1; : : : ; N g with d WD d.J / D card.J /; for all A � 1 and for all

" � D

r
d C A logN

n
; (8.48)

the following bounds hold with probability at least 1 �N�A:

X

j 62J
O	"j � C

�X

j 62J
	"j C

r
d C A logN

n

�
;

X

j 62J
	"j � C

�X

j 62J
O	"j C

r
d C A logN

n

�

and

kfO	" � f	"k2L2.˘/ C "K. O	"; 	"/ � C

�
d C A logN

n

_X

j 62J
	"j

r
d C A logN

n

�
:

Similarly to what was done in Sect. 8.2, we will also establish another version
of these bounds that hold for smaller values of " (the quantity U.L/ introduced in
Sect. 8.2 will be involved in these bounds).

Theorem 8.6. Suppose that

" � D

r
A logN

n
(8.49)
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with a large enough constant D > 0 depending only on `: For all J � f1; : : : ; N g;
for all subspaces L of L2.˘/ with d WD dim.L/ and for all A � 1; the following
bounds hold with probability at least 1�N�A and with a constantC > 0 depending
only on `:

X

j 62J
O	"j � C

�X

j 62J
	"jCd C A logN

n"
Cmax

j2J kPL?
hj kL2.˘/C

U.L/ logN

n"

�
; (8.50)

X

j 62J
	"j � C

�X

j 62J
O	"j C d C A logN

n"
Cmax

j2J kPL?
hj kL2.˘/C

U.L/ logN

n"

�
(8.51)

and

kfO	" � f	"k2L2.˘/ C "K. O	"; 	"/ � C

�
d C A logN

n

_X

j 62J
	"j

r
A logN

n

_

max
j2J kPL?

hjkL2.˘/
r
A logN

n

_ U.L/ logN

n

�
: (8.52)

If, for some J;
X

j 62J
	"j �

r
A logN

n

and, for some L with U.L/ � d; hj 2 L; j 2 J; then bound (8.52) simplifies and
becomes

kfO	" � f	"k2L2.˘/ C "K. O	"; 	"/ � C
Ad logN

n
:

In particular, it means that the sizes of the random errors kfO	" � f	"k2L2.˘/ and

K. O	"; 	"/ are controlled by the dimension d of the linear span L of the “relevant
part” of the dictionary fhj W j 2 J g: Note that d can be much smaller than card.J /
in the case when the functions in the dictionary are not linearly independent (so, the
lack of “orthogonality” of the dictionary might help to reduce the random error).

The proofs of Theorems 8.5 and 8.6 are quite similar. We give only the proof of
Theorem 8.6.

Proof. We use the method described in Sec. 8.1. In the current case, necessary
conditions of minima in minimization problems defining 	" and O	" can be written
as follows:

P.`0 � f	" /.fO	" � f	"/C "

NX

jD1
.log	"j C 1/. O	"j � 	"j / � 0 (8.53)

and

Pn.`
0 � fO	" /.fO	" � f	"/C "

NX

jD1
.log O	"j C 1/. O	"j � 	"j / � 0: (8.54)
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The inequality (8.53) follows from the fact that the directional derivative of the
penalized risk function (smooth and convex)


 3 	 7! P.` � f	/C "

NX

jD1
	j log	j

at the point of its minimum 	" is nonnegative in the direction of any point of the
convex set 
; in particular, in the direction of O	": The same observation in the case
of penalized empirical risk leads to inequality (8.54). Subtract (8.53) from (8.54)
and replace P by Pn in (8.54) to get

P
	
.`0 � fO	"/ � .`0 � f	"/



.fO	" � f	"/C "

NX

jD1

	
log O	"j � log	"j



. O	"j � 	"j /

� .P � Pn/.`
0 � fO	" /.fO	" � f	"/: (8.55)

It is easy to see that

NX

jD1

	
log O	"j � log	"j



. O	"j � 	"j / D

NX

jD1

�
log

O	"j
	"j

�
. O	"j � 	"j / D K. O	"; 	"/

and rewrite bound (8.55) as

P
	
.`0 � fO	" /� .`0 � f	" /



.fO	" � f	"/C "K. O	"I	"/

� .P � Pn/.`
0 � fO	"/.fO	" � f	" /: (8.56)

We use the following simple inequality

K. O	"; 	"/ D
NX

jD1

�
log

O	"j
	"j

�
. O	"j � 	"j /

� log 2

2

X

j WO	"j�2	"j

O	"j C log 2

2

X

j W	"j�2O	"j
	"j ; (8.57)

which implies that for all J � f1; : : : ; N g
X

j 62J
O	"j � 2

X

j 62J
	"j C 2

log 2
K. O	"; 	"/ (8.58)
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and X

j 62J
	"j � 2

X

j 62J
O	"j C 2

log 2
K. O	"; 	"/: (8.59)

IfK. O	"; 	"/ is small, the last bounds show that “sparsity patterns” of vectors O	" and
	" are closely related. Then, it follows from (8.56) that

"
X

j 62J
O	"j � 2"

X

j 62J
	"j C 2

log 2
.P � Pn/.`0 � fO	"/.fO	" � f	" /: (8.60)

As in the previous section, for the loss functions of quadratic type, we have

P
	
.`0 � fO	"/� .`0 � f	"/



.fO	" � f	" / � ckfO	" � f	"k2L2.˘/;

where c D 
.1/: Note that kf	"k1 � 1 and kfO	"k1 � 1: Then, bound (8.56) yields

ckfO	" � f	"k2 C "K. O	"; 	"/ � .P � Pn/.`
0 � fO	" /.fO	" � f	"/: (8.61)

Following the methodology of Sect. 8.1, we have now to control the empirical
process .P � Pn/.`0 � fO	"/.fO	" � f	" /: To this end, let


.ıI�/ WD
n
	 2 
 W kf	 � f	"kL2.˘/ � ı;

X

j 62J
	j � �

o

and

˛n.ıI�/ WD sup
n
j.Pn � P/..`0 � f	/.f	 � f	"//j W 	 2 
.ıI�/

o
:

The following two lemmas are similar to Lemmas 8.2 and 8.1 of the previous
section. Their proofs are also similar and we skip them.

Lemma 8.3. Under the assumptions of Theorem 8.5, there exists constant C that
depends only on ` such that with probability at least 1 �N�A; for all

n�1=2 � ı � 1 and n�1=2 � � � 1

the following bound holds:

˛n.ıI�/ � ˇn.ıI�/ WD C

�
ı

r
d C A logN

n

_
�

r
d C A logN

n

_X

j 62J
	"j

r
d C A logN

n

_ A logN

n

�
: (8.62)
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Lemma 8.4. Under the assumptions of Theorem 8.6, there exists constant C that
depends only on ` such that with probability at least 1 �N�A; for all

n�1=2 � ı � 1 and n�1=2 � � � 1 (8.63)

the following bound holds:

˛n.ıI�/ � ˇn.ıI�/ WD C

�
ı

r
d C A logN

n

_
�

r
A logN

n

_X

j 62J
	"j

r
A logN

n

_
max
j2J kPL?

hjkL2.˘/
r
A logN

n

_

U.L/ logN

n

_ A logN

n

�
: (8.64)

We now proceed exactly as in the proof of Theorem 8.2. Let

ı D kfO	" � f	"kL2.˘/ and � D
X

j 62J
O	"j ; (8.65)

and suppose ı � n�1=2;� � n�1=2 (the case ı < n�1=2 or � < n�1=2 is even
simpler). Then, by Lemma 8.4 and bounds (8.61), (8.60), the following inequalities
hold with probability at least 1 �N�A:

cı2 � ˇn.ı;�/ (8.66)

and

"� � 2"
X

j 62J
	"j C 2

log 2
ˇn.ı;�/; (8.67)

where ˇn.ı;�/ is defined in (8.64). Thus, it remains to solve the inequalities (8.66),
(8.67) to complete the proof. First, rewrite (8.67) (with a possible change of constant
C ) as

"� � C�

r
A logN

n
C C

�
"
X

j 62J
	"j

_
ı

r
d C A logN

n

_

X

j 62J
	"j

r
A logN

n

_
max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
:

If the constantD in condition (8.49) satisfies D � 2C _ 1; then the term

X

j 62J
	"j

r
A logN

n
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in the maximum can be dropped since it is smaller than the first term "
P

j 62J 	"j ;
and the bound can be easily rewritten as follows:

� � �.ı/ WD C

�X

j 62J
	"j

_ ı

"

r
d C A logN

n

_
max
j2J kPL?

hjkL2.˘/
_

U.L/ logN

n"

_r
A logN

n

�
:

Using the fact that ˇn.ı;�/ is nondecreasing in �; substituting �.ı/ instead of �
in (8.66) and dropping the smallest terms, we get

ı2 � C

�
ı

r
d C A logN

n

_X

j 62J
	"j

r
A logN

n

_

max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

_ A logN

n

�
:

Solving the inequality yields the following bound on ı2:

ı2 � C

�
d C A logN

n

_X

j 62J
	"j

r
A logN

n

_
(8.68)

max
j2J kPL?

hj kL2.˘/
r
A logN

n

_ U.L/ logN

n

�
:

We substitute this into the expression for�.ı/ which results in the following bound
on �:

� � C

�X

j 62J
	"j

_ d C A logN

n"

_�X

j 62J
	"j

�1=2
1

"

�
A logN

n

�1=4

r
d C A logN

n

_r
U.L/ logN

n"

r
d CA logN

n

_

max
j2J kPL?

hj k1=2L2.˘/
1

"

�
A logN

n

�1=4r
d C A logN

n

_

max
j2J kPL?

hj kL2.˘/
_ U.L/ logN

n"

_r
A logN

n

�
;

The inequality ab � .a2 C b2/=2 and the condition 1
"

q
A logN
n

� 1; allows us to
simplify the last bound and to get
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� � C

�X

j 62J
	"j

_ d CA logN

n"

_
max
j2J kPL?

hj kL2.˘/
_

U.L/ logN

n"

_r
A logN

n

�
(8.69)

with a constant C depending only on `: Substitute bounds (8.68) and (8.69) in the
expression for ˇn.ı;�/:With a little further work and using Lemma 8.4, we get the
following bound on ˛n.ı;�/ that holds for ı;� defined by (8.65) with probability
at least 1 �N�A:

˛n.ı;�/ � C

�
d CA logN

n
C
X

j 62J
	"j

r
A logN

n

_

max
j2J kPL?

hjkL2.˘/
r
A logN

n

_ U.L/ logN

n

�
:

This bound and (8.61) imply that

ckfO	" � f	"k2L2.˘/ C "K. O	"; 	"/ � C

�
d CA logN

n
C
X

j 62J
	"j

r
A logN

n

_

max
j2J kPL?

hjkL2.˘/
r
A logN

n

_ U.L/ logN

n

�
; (8.70)

and (8.52) follows. Bound (8.50) is an immediate consequence of (8.69); bound
(8.51) follows from (8.59) and (8.70). ut

From Theorems 8.5, 8.6 and the properties of the loss function, we will easily
deduce the next result.

As in Sect. 8.2, let L be the linear span of the dictionary fh1; : : : ; hN g in the
space L2.P / and let PL be the orthogonal projector on L � L2.P /: Define

g" WD PL .`
0 � f	"/:

Theorem 8.7. Under the conditions of Theorem 8.5, the following bound holds with
probability at least 1 �N�A; with a constant C > 0 depending only on ` and with
d D card.J /W
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ˇ̌
ˇ̌P.` � fO	"/ � P.` � f	"/

ˇ̌
ˇ̌ � C

�
d C A logN

n

_X

j 62J
	"j

r
d CA logN

n

�_

C1=2kg"kL2.˘/
�
d C A logN

n

_X

j 62J
	"j

r
d C A logN

n

�1=2
: (8.71)

Similarly, under the conditions of Theorem 8.6, with probability at least 1 � N�A
and with d D dim.L/

ˇ̌
ˇ̌P.` � fO	"/� P.` � f	" /

ˇ̌
ˇ̌

� C

�
d C A logN

n

_�X

j 62J
	"j

_
max
j2J kPL?

hj kL2.˘/
�

r
A logN

n

_ U.L/ logN

n

�_
C1=2kg"kL2.˘/

�
d C A logN

n

_

�X

j 62J
	"j

_
max
j2J kPL?

hj kL2.˘/
�r

A logN

n

_ U.L/ logN

n

�1=2
: (8.72)

Proof. For the losses of quadratic type,

.` � fO	" /.x; y/ � .` � f	"/.x; y/ D .`0 � f	"/.x; y/.fO	" � f	" /.x/CR.x; y/;

where
jR.x; y/j � C.fO	" � f	"/

2.x/:

Integrate with respect to P and get

ˇ̌
ˇP.` � fO	"/ � P.` � f	"/ � P.`0 � f	"/.fO	" � f	"/

ˇ̌
ˇ � CkfO	" � f	"k2L2.˘/:

Since
ˇ̌
ˇP.`0 � f	"/.fO	" � f	" /

ˇ̌
ˇ D

ˇ̌
ˇ
D
`0 � f	" ; fO	" � f	"

E

L2.P /

ˇ̌
ˇ

D
ˇ̌
ˇ
D
PL .`

0 � f	" /; fO	" � f	"
E

L2.P /

ˇ̌
ˇ � kg"kL2.P /kfO	" � f	"kL2.˘/

Theorems 8.5 and 8.6 imply the result. ut
Recall that f� is a function that minimizes the risk P.` � f / and that f�

is uniformly bounded by a constant M: It follows from necessary conditions of
minimum that
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P.`0 � f�/hj D 0; j D 1; : : : ; N;

or `0 � f� 2 L ?: For any function Nf uniformly bounded by M and such that
`0 � Nf 2 L ? (for instance, for f�), the following bounds hold

kg"kL2.˘/ D kPL .`
0 � f	"/kL2.P / D kPL .`

0 � f	" � `0 � Nf /kL2.P /
� k.`0 � f	" � `0 � Nf /kL2.P / � Ckf	" � Nf kL2.˘/

since `0 is Lipschitz with respect to the second variable.
Since ` is the loss of quadratic type, we have, for all 	 2 
;

E .f	/ � 1

2

.kf�k1 _ 1/kf	 � f�k2L2.˘/ DW 
kf	 � f�k2L2.˘/: (8.73)

Note that
jE .fO	"/ � E .f	"/j D jP.` � fO	"/ � P.` � f	"/j:

Thus, Theorem 8.7 implies the following bound on the random error jE .fO	" / �
E .f	"/j: under the conditions of Theorem 8.5, with probability at least 1 �N�A

ˇ̌
ˇ̌E .fO	"/ � E .f	" /

ˇ̌
ˇ̌ � C

�
d C A logN

n

_X

j 62J
	"j

r
d C A logN

n

�_

C1=2

r
E .f	"/




�
d C A logN

n

_X

j 62J
	"j

r
d C A logN

n

�1=2
; (8.74)

where d D d.J /; and under the conditions of Theorem 8.6, with probability at least
1 �N�A

ˇ̌
ˇ̌E .fO	"/� E .f	"/

ˇ̌
ˇ̌

� C

�
d C A logN

n

_�X

j 62J
	"j

_
max
j2J kPL?

hjkL2.˘/
�

r
A logN

n

_ U.L/ logN

n

�_
C1=2

r
E .f	"/




�
d C A logN

n

_

�X

j 62J
	"j

_
max
j2J kPL?

hjkL2.˘/
�r

A logN

n

_ U.L/ logN

n

�1=2
; (8.75)

where d D dim.L/:
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8.4 Approximation Error Bounds, Alignment and Oracle
Inequalities

To consider the approximation error, we will use the definitions of alignment
coefficients from Sect. 7.2.3. For 	 2 R

N ; let sNj .	/ WD log.eN 2	j /; j 2 supp.	/
and sNj .	/ WD 0; j 62 supp.	/: Note that log	j C 1 is the derivative of the
function 	 log	 involved in the definition of the penalty and, for j 2 supp.	/;
sNj .	/ D log	j C 1C 2 logN: Introduce the following vector

sN .	/ WD .sN1 .	/; : : : ; s
N
N .	//:

We will show that both the approximation error E .f	"/ and the “approximate
sparsity” of 	" can be controlled in terms of the alignment coefficient of the vector
sN .	/ for an arbitrary “oracle” vector 	 2 
: We will use the following version of
the alignment coefficient:

˛N .	/ WD a
.b/
H .
; 	; s

N .	// _ 0;

where
b WD b.	/ WD 2ksN .	/k`

1

:

Theorem 8.8. There exists a constant C > 0 that depends only on ` and on the
constant M such that kf�k1 � M with the following property. For all " > 0 and
all 	 2 
;

E .f	" /C "
X

j 62supp.	/

	"j � 2E .f	/C C

�
˛2N .	/"

2 C "

N

�
: (8.76)

Proof. The definition of 	" implies that, for all 	 2 
;

E .f	"/C "

NX

jD1
	"j log.N 2	"j / � E .f	/C "

NX

jD1
	j log.N 2	j /

By convexity of the function u 7! u log.N 2u/ and the fact that its derivative is
log.eN 2u/;

E .f	" /C "
X

j 62J	
	"j log.N 2	"j /

� E .f	/C "
X

j2J	

	
	j log.N 2	j /� 	"j log.N 2	"j /




� E .f	/C "
X

j2J	
log.eN 2	j /.	j � 	"j /: (8.77)
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Note that

"
X

j 62J	
	"j D "

X

j 62J	
	"j log.N 2	"j /

C"
X

j 62J	;	"j�eN�2

	"j

	
1 � log.N 2	"j /



C "

X

j 62J	;	"j >eN�2

	"j

	
1 � log.N 2	"j /



:

We have
"

X

j 62J	;	"j >eN�2

	"j

	
1 � log.N 2	"j /



� 0:

Moreover, the function

.0; eN�2� 3 x 7! x.1 � log.N 2x//

is nonnegative, its maximum is attained at x D N�2 and this maximum is equal
to N�2: Therefore, we have

"
X

j 62J	;	"j�eN�2

	"j

	
1 � log.N 2	"j /



� "

X

j 62J	;	"j�eN�2

N�2 � "N�1:

It follows that
"
X

j 62J	
	"j � "

X

j 62J	
	"j log.N 2	"j /C "N�1:

Recalling (8.77), we get

E .f	"/C "
X

j 62J	
	"j � E .f	/C "

X

j2J	
log.eN 2	j /.	j � 	"j /C "N�1:

If
E .f	/C "N�1 � "

X

j2J	
log.eN 2	j /.	j � 	"j /;

then
E .f	"/C "

X

j 62J	
	"j � 2E .f	/C 2"N�1;

and the bound of the theorem follows. Otherwise, we have

E .f	" /C "
X

j 62J	
	"j � 2"

X

j2J	
log.eN 2	j /.	j � 	"j /;
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which, in particular, implies that

X

j 62J	
	"j � 2ksN .	/k`

1

X

j2J	
j	j � 	"j j:

This means that 	 � 	" 2 Cb;	: The definition of ˛N .	/ implies in this case that

E .f	" /C "
X

j 62J	
	"j � 2"

X

j2J	
log.eN 2	j /.	j � 	"j / � 2"˛N .	/kf	 � f	"kL2.˘/:

Since ` is a loss of quadratic type, we have

kf	 � f	"kL2.˘/ � kf	 � f�kL2.˘/ C kf	" � f�kL2.˘/ �
r

E .f	/



C
r

E .f	"/




(see (8.73)). This yields

E .f	"/C "
X

j 62J	
	"j � 2"˛N .	/

�r
E .f	/



C
r

E .f	"/




�
:

Using the fact that

2"˛N .	/

r
E .f	" /



� 2

˛2N .	/"
2



C 1

2
E .f	"/

and

2"˛N .	/

r
E .f	/



� 2

˛2N .	/"
2



C 1

2
E .f	/;

we get
1

2
E .f	"/C "

X

j 62J	
	"j � 1

2
E .f	/C 4

˛2N .	/"
2



;

which completes the proof. ut
Theorem 8.8 and random error bounds (8.74), (8.75) imply oracle inequalities

for the excess risk E .fO	"/: The next corollary is based on (8.75).

Corollary 8.5. Under the conditions and the notations of Theorems 8.6, 8.8, for all
	 2 
 with J D supp.	/ and for all subspaces L of L2.˘/ with d WD dim.L/;
the following bound holds with probability at least 1�N�A and with a constant C
depending on ` and on M :
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E .fO	"/ � 4E .f	/C C

�
d C A logN

n
C max

j2J kPL?
hjkL2.˘/

r
A logN

n
C

U.L/ logN

n
C ˛2N .	/"

2 C "

N

�
:

Remark. Note that the constants in front of E .f	/ in the bounds of Theorem 8.8
and Corollary 8.5 can be replaced by 1 C ı; ı > 0 at a price of C being dependent
on ı:

8.5 Further Comments

`1-penalization in linear regression problems is often called LASSO, the term
introduced by Tibshirani [141].

Sparsity oracle inequalities for this method have been studied by many authors, in
particular, Bickel et al. [22], Bunea et al. [36], van de Geer [63], Koltchinskii [84]. In
these papers, some form of restricted isometry property or its generalizations have
been used (which means strong geometric assumptions on the dictionary viewed
either as a subset of L2.˘n/ in the fixed design case, or as a subset of L2.˘/ in
the random design case). The version of sparsity oracle inequalities presented here
is close to what was considered in [84]. Candes and Plan [39] study the problem
of sparse recovery under weaker geometric assumptions in the case when the target
vector is random.

Other type of risk bounds for LASSO (under very mild assumptions on the
dictionary, but with “slow” error rates) were obtained by Bartlett et al. [18], Rigollet
and Tsybakov [126], and Massart and Meynet [109].

Extensions of LASSO and related methods of complexity penalization to sparse
recovery problems in high-dimensional additive modeling and multiple kernel
learning can be found in Koltchinskii and Yuan [96, 97], Meier et al. [111].

There has been a considerable amount of work on entropy penalization in
information theory and statistics, for instance, in problems of aggregation of
statistical estimators using exponential weighting and in PAC-Bayesian methods
of learning theory (see, e.g., McAllester [110], Catoni [46], Audibert [10], Zhang
[154, 156, 157] and references therein). Dalalyan and Tsybakov [48] studied PAC-
Bayesian method with special priors in sparse recovery problems.

The approach to sparse recovery in convex hulls based on entropy penalization
was suggested by Koltchinskii [86] and it was followed in this chapter. In [86], this
method was also used in density estimation problems (see [37] for another approach
to sparse density estimation). Earlier, Koltchinskii [84] suggested to use k � kp`p
as complexity penalty, which is also a strictly convex function for p > 1: It was
shown that, when p D 1 C c

logN ; the estimator based on penalized empirical risk
minimization with such a penalty satisfies random error bounds and sparsity oracle
inequalities of the same type as for entropy penalty. Koltchinskii and Minsker [91]
studied extensions of the entropy penalization method to sparse recovery in infinite
dictionaries.



Chapter 9
Low Rank Matrix Recovery: Nuclear Norm
Penalization

In this chapter, we discuss a problem of estimation of a large target matrix based
on a finite number of noisy measurements of linear functionals (often, random)
of this matrix. The underlying assumption is that the target matrix is of small
rank and the goal is to determine how the estimation error depends on the rank
as well as on other important parameters of the problem such as the number of
measurements and the variance of the noise. This problem can be viewed as a
natural noncommutative extension of sparse recovery problems discussed in the
previous chapters. As a matter of fact, low rank recovery is equivalent to sparse
recovery when all the matrices in question are diagonal. There are several important
instances of such problems, in particular, matrix completion [41, 45, 70, 124],
matrix regression [40, 90, 127] and the problem of density matrix estimation in
quantum state tomography [70, 71, 88]. We will study some of these problems
using general empirical processes techniques developed in the first several chapters.
Noncommutative Bernstein type inequalities established in Sect. 2.4 will play a
very special role in our analysis. The main results will be obtained for Hermitian
matrices. So called “Paulsen dilation” (see Sect. 2.4) can be then used to tackle
the case of rectangular matrices. Throughout the chapter, we use the notations
introduced in Sect. A.4.

9.1 Geometric Parameters of Low Rank Recovery
and Other Preliminaries

In the results that follow, we will need matrix extensions of some of the geometric
parameters introduced in Sect. 7.2.

Given a subspaceL � C
m; PL denotes the orthogonal projection ontoL:We will

need the following linear mappings PL W Hm.C/ 7! Hm.C/ and P?
L W Hm.C/ 7!

Hm.C/ W
PL.B/ WD B � PL?

BPL?
; P?

L .B/ D PL?
BPL?

:

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7 9,
© Springer-Verlag Berlin Heidelberg 2011
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Note that, for all Hermitian matrices B; rank.PL.B// � 2dim.L/:
Given b 2 Œ0;C1�; a subspace L � C

m and a closed convex subset D �
Hm.C/; consider the following cone in the space Hm.C/ W

K .DILI b/ WD
n
B 2 l:s:.D/ W kP?

L .B/k1 � bkPL.B/k1
o
:

Roughly, in the case when dim.L/ is small, the cone K .DILI b/ consists of
matrices B for which “the low rank part” PL.B/ is dominant and “the high rank
part” P?

L .B/ is “small”. Note that, for b D 0;K .DILI 0/ is a subspace of matrices
of low rank and, for b D C1;K .DILI C1/ coincides with the whole linear span
of D:

Given a probability distribution˘ in Hm.C/; define

ˇ
.b/
2 .DILI˘/ WD inf

n
ˇ > 0 W kPL.B/k2 � ˇkBkL2.˘/; B 2 K .DILI b/

o
:

Clearly, D1 � D2 implies that ˇ.b/2 .D1ILI˘/ � ˇ
.b/
2 .D2ILI˘/: We will write

ˇ
.b/
2 .LI˘/ WD ˇ

.b/
2 .Hm.C/ILI˘/:

As in Sect. 7.2, we will also introduce a matrix version of restricted isometry
constants. Namely, given r � m; define

ır WD ır.˘/ WD

inf
n
ı > 0 W .1 � ı/kBk2 � kBkL2.˘/ � .1C ı/kBk2; B 2 Hm.C/; rank.B/ � r

o
:

The quantity ır .˘/ will be called the matrix restricted isometry constant of rank
r with respect to the distribution ˘: A matrix restricted isometry condition holds
for ˘ if ır.˘/ is “sufficiently small” for a certain value of r (in low rank recovery
problems, it usually depends on the rank of the target matrix).

Define also the following measure of “correlation” between two orthogonal (in
the Hilbert–Schmidt sense) matrices of small rank:

�r WD �r.˘/ WD sup

� ˇ̌
ˇ̌ hB1;B2iL2.˘/
kB1kL2.˘/kB2kL2.˘/

ˇ̌
ˇ̌ W B1;B2 2 Hm.C/;

rank.B1/ � 3r; rank.B2/ � r; hB1;B2i D 0

�
:

Finally, define

mr WD mr.˘/ WD inf
n
kBkL2.˘/ W B 2 Hm.C/; kBk2 D 1; rank.B/ � r

o
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and

Mr WD Mr.˘/ WD sup
n
kBkL2.˘/ W B 2 Hm.C/; kBk2 D 1; rank.B/ � r

o
:

If mr � 1 � Mr � 2; the matrix restricted isometry constant can be written as

ır D .Mr � 1/_ .1 �mr/:

Also, a simple geometric argument shows that

�r � 1

2

��
1C ı4r

1 � ı3r

�2
C
�
1C ı4r

1 � ır

�2
� 2

�_ 1

2

�
2 �

�
1 � ı4r
1C ı3r

�2
�
�
1 � ı4r

1C ır

�2�
:

The next statement is a matrix version of Lemma 7.2 and its proof is a rather
straightforward modification of the proof in the vector case.

Lemma 9.1. Let L � C
m be a subspace with dim.L/ D r: Suppose that �r <

m3r

b
p
2Mr

: Then, for all B 2 K .Hm.C/ILI b/;

kPL.B/k2 � 1

m3r � bp
2�rMr

kBkL2.˘/;

and, as a consequence,

ˇ
.b/
2 .LI˘/ � 1

m3r � b
p
2�rMr

:

Also, for all B 2 K .Hm.C/ILI b/;

kBk2 � .2b2 C 1/1=2

m3r � bp
2�rMr

kBkL2.˘/:

It follows from Lemma 9.1 that as soon as ı4r � c for a sufficiently small c > 0;
ˇ
.b/
2 .LI˘/ is bounded from above by a constant C (depending on c) provided that

dim.L/ � r:

To control the quantities mr and Mr; it is convenient to discretize the infimum
and the supremum in their definitions, that is, to consider

m"
r WD m"

r.˘/ WD inf
n
kBkL2.˘/ W B 2 S "

r

o

and
M"
r WD M"

r .˘/ WD sup
n
kBkL2.˘/ W B 2 S "

r

o
;

where S "
r is a minimal proper "-net for the set
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Sr WD
n
B 2 Hm.C/ W kBk2 D 1; rank.B/ � r

o

(that is, a set of points of Sr of the smallest possible cardinality such that any
S 2 Sr is within distance " from the set).

Lemma 9.2. For all " < 2�1=2; the following bounds hold:

Mr.˘/ � M"
r .˘/

1� p
2"

(9.1)

and

mr.˘/ � m"
r.˘/ �

p
2M"

r .˘/"

1 � p
2"

: (9.2)

Proof. Note that, for all B1;B2 2 Sr ;

kB1 � B2kL2.˘/ � p
2Mr.˘/kB1 � B2k2: (9.3)

Indeed, since rank.B1 � B2/ � 2r; this matrix can be represented as B1 � B2 D
A1 C A2; where A1;A2 2 Hm.C/; rank.A1/ � r; rank.A2/ � r and A1 ? A2 with
respect to the Hilbert–Schmidt inner product (to obtain such a representation it is
enough to write down the spectral decomposition of B1 �B2 and to split it into two
orthogonal parts of rank at most r). Therefore,

kB1 � B2kL2.˘/ � kA1kL2.˘/ C kA2kL2.˘/ � Mr.˘/.kA1k2 C kA2k2/
� Mr.˘/

p
2.kA1k22 C kA2k22/1=2 D Mr.˘/

p
2kA1 C A2k2 D p

2Mr.˘/kB1 � B2k2:

It immediately follows from (9.3) that

Mr.˘/ � M"
r .˘/C sup

B2Sr ;B02S "
r ;kB�B0k2�"

kB�B 0kL2.˘/ � M"
r .˘/C

p
2Mr.˘/";

which implies

Mr.˘/ � M"
r .˘/

1 � p
2"
:

Similarly,

mr.˘/ � m"
r.˘/ � p

2Mr.˘/" � m"
r.˘/ �

p
2M"

r .˘/"

1 � p
2"

: ut

Clearly, as soon as

sup
B2S "

r

ˇ̌
ˇkBk2L2.˘/ � 1

ˇ̌
ˇ � 	;

we have M"
r � p

1C 	 and m"
r � p

1 � 	; and it follows from Lemma 9.2 that
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Mr.˘/ �
p
1C 	

1� p
2"

(9.4)

and

mr.˘/ �
p
1 � 	 �

p
2.1C 	/"

1� p
2"

: (9.5)

When both 	 and " are small enough, this guarantees that Mr.˘/ and mr.˘/ are
close to 1 and ır .˘/ is small.

Lemma 9.2 is usually combined with the following bound on the covering
numbers of the set Sr of all matrices of rank r and of unit Hilbert–Schmidt norm
(see also Candes and Plan [40]).

Lemma 9.3. The following bound holds:

card.S "
r / �

�
18

"

�.2mC1/r
:

Proof. Given two Hermitian matrices B; NB 2 Sr with spectral representations

B D
rX

jD1
	j .ej ˝ ej /; NB D

rX

jD1
N	j . Nej ˝ Nej /;

we have
kB � NBk2 � k	 � N	k`2 C 2 max

1�j�r jej � Nej j; (9.6)

where 	; N	 2 R
r are the vectors of the eigenvalues of B; NB; respectively. Indeed,

we have

����
rX

jD1
	j .ej ˝ ej / �

rX

jD1
N	j . Nej ˝ Nej /

����
2

�
����

rX

jD1
.	j � N	j /.ej ˝ ej /

����
2

C
����

rX

jD1
N	j ..ej � Nej /˝ ej /

����
2

C
����

rX

jD1
N	j . Nej ˝ .ej � Nej //

����
2

;

and it is easy to see that the first term in the right hand side is equal to k	� N	k`2 and
the two remaining terms are both bounded by max1�j�r jej � Nej j: For instance, we
have

����
rX

jD1
N	j ..ej � Nej /˝ ej /

����
2

2

D
rX

jD1
N	2jk.ej � Nej /˝ ejk22

D
rX

jD1
N	2j jej � Nej j2jej j2 �

rX

jD1
N	2j max

1�j�r jej � Nej j2 � max
1�j�r jej � Nej j2;
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where we used the facts that the matrices .ej � Nej / ˝ ej are orthogonal and, for
NB 2 Sr ;

Pr
jD1 N	2j D 1:

It remains to observe that there exists an "=3-covering of the unit ball in R
r of

cardinality at most . 9
"
/r : On the other hand, there exists a proper "=6-covering of

the set
U WD

n
.u1; : : : ; ur / W uj 2 C

m; juj j D 1
o

with respect to the metric

d..u1; : : : ; ur /; .v1; : : : ; vr // D max
1�j�r juj � vj j

that has cardinality at most . 18
"
/2mr : This also implies the existence of a proper

"=3-covering of a subset V � U;

V WD
n
.e1; : : : ; er / W e1; : : : ; er orthonormal in C

m
o
:

In view of (9.6), this implies the existence of an "-covering of Sr of the desired
cardinality. ut

9.2 Matrix Regression with Fixed Design

In this section, we study the following regression problem

Yj D hA;Xj i C �j ; j D 1; : : : ; n; (9.7)

where Xj 2 Hm.C/; j D 1; : : : ; n are nonrandom Hermitian m � m matrices,
�; �j ; j D 1; : : : ; n are i.i.d. mean zero random variables with �2� WD E�2 < C1
(i.i.d. random noise) and A is an unknown Hermitian target matrix to be estimated
based on the observations .X1; Y1/; : : : ; .Xn; Yn/: Assume that A 2 D � Hm.C/;

where D is a given closed convex set of Hermitian matrices and consider the
following nuclear norm penalized least squares estimator:

OA" WD argminS2D

�
n�1

nX

jD1
.Yj � hS;Xj i/2 C "kSk1

�
; (9.8)

where " > 0 is a regularization parameter. Our goal is to develop upper bounds on
the prediction error k OA" � Ak2L2.˘n/; where ˘n is the empirical distribution based
on .X1; : : : ; Xn/:

We will use the quantity ˇ.b/.DILI˘n/ with b D 5 and with L WD supp.S/;
where S 2 Hm.C/: For simplicity, denote

ˇn.S/ WD ˇ.5/.DI supp.S/I˘n/:
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We will also use the following characteristics of the noise �j ; j D 1; : : : ; n and
of the design matrices Xj ; j D 1; : : : ; n W

�2� WD E�2; U
.˛/

� WD k�k ˛ _ .2��/; ˛ � 1

and

�2X WD �2X;n WD
����n

�1
nX

jD1
X2
j

����; UX WD UX;n WD max
1�j�n kXjk:

The next theorem is the main result of this section.

Theorem 9.1. Let ˛ � 1; t > 0 and suppose that

" � D

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

� UX

���X

�
t C log.2m/

n

�
:

There exists a constantD > 0 in the above condition on " such that with probability
at least 1 � e�t

k OA" �Ak2L2.˘n/ � inf
S2D

�
kS �Ak2L2.˘n/ C 2"kSk1

�
(9.9)

and

k OA" � Ak2L2.˘n/ � inf
S2D

�
kS � Ak2L2.˘n/ C "2ˇn.S/rank.S/

�
: (9.10)

It immediately follows from the bounds of the theorem that

k OA" �Ak2L2.˘n/ � "2ˇn.A/rank.A/ ^ 2"kAk1:

If, for r D rank.A/; ır .˘n/ is sufficiently small (that is, ˘n satisfies a “matrix
restricted isometry” condition), then ˇn.A/ is bounded by a constant and the bound
becomes

k OA" �Ak2L2.˘n/ � C"2rank.A/ ^ 2"kAk1:
Proof. The definition of the estimator OA" implies that, for all S 2 Hm.C/;

k OA"k2L2.˘n/ �
�
2

n

nX

jD1
YjXj ; OA"

�
C "k OA"k1

� kSk2L2.˘n/ �
�
2

n

nX

jD1
YjXj ; S

�
C "kSk1:
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Also, note that E.YjXj / D hA;Xj iXj : This implies that

1

n

nX

jD1
.YjXj � E.YjXj // D 1

n

nX

jD1
�jXj DW �:

Therefore, we have

k OA"k2L2.˘n/ � 2h OA";AiL2.˘n/ � kSk2L2.˘n/ � 2hS;AiL2.˘n/
Ch2�; OA" � Si C ".kSk1 � k OA"k1/;

which implies

k OA" �Ak2L2.˘n/ � kS � Ak2L2.˘n/ C 2�k OA" � Sk1 C ".kSk1 � k OA"k1/; (9.11)

where� WD k�k: Under the assumption " � 2�; this yields

k OA" � Ak2L2.˘n/ � kS �Ak2L2.˘n/ C ".k OA" � Sk1 C kSk1 � k OA"k1/
� kS � Ak2L2.˘n/ C 2"kSk1: (9.12)

It follows from Theorem 2.7 that, for some constantC > 0;with probability at least
1 � e�t

� � C

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

� UX

���X

�
t C log.2m/

n

�
:

(9.13)
Thus, bound (9.9) follows from (9.12) provided that D � 2C:

To prove the second bound, we use a necessary condition of extremum in problem
(9.8): there exists OV 2 @k OA"k1 such that, for all S 2 D;

2h OA"; OA" � SiL2.˘n/ �
�
2

n

nX

jD1
YjXj ; OA" � S

�
C "h OV ; OA" � Si � 0: (9.14)

To see this, note that since OA" is a minimizer of the functional

Ln.S/ WD n�1
nX

jD1
.Yj � hS;Xj i/2 C "kSk1;

there exists B 2 @Ln. OA"/ such that �B belongs to the normal cone of convex set
D at the point OA" (see, e.g., Aubin and Ekeland [9], Chap. 4, Sect. 2, Corollary 6).
A simple computation of subdifferential ofLn shows that such aB has the following
representation:
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B WD 2

Z

Hm.C/

h OA";H iH˘n.dH/� 2

n

nX

jD1
YjXj C " OV

for some OV 2 @k OA"k1: Since �B belongs to the normal cone of D at OA";

hB; OA" � Si � 0;

and (9.14) holds. Consider an arbitrary S 2 D of rank r with spectral representation
S D Pr

jD1 	j .ej ˝ ej / and with supportL: Then, (9.14) easily implies that, for an
arbitrary V 2 @kSk1;

2h OA"�A; OA"�SiL2.˘n/C"h OV �V; OA"�Si � �"hV; OA"�SiCh2�; OA"�Si: (9.15)

It follows from monotonicity of subdifferential of convex function k � k1 that

h OV � V; OA" � Si � 0:

On the other hand, a well known computation of subdifferential of the nuclear norm
(see Sect. A.4) implies that

V WD
rX

jD1
sign.	j /.ej ˝ ej /C PL?

WPL?
D sign.S/C PL?

WPL?
;

where W 2 Hm.C/ and kW k � 1: Since L is the support of S; it follows from the
duality between nuclear and operator norms that there exists a matrix W such that
kW k � 1 and

hPL?

WPL?

; OA" � Si D hPL?

WPL?

; OA"i D hW;PL?

OA"PL?

i D kPL?

OA"PL?

k1:

For such a choice of W; (9.15) implies that

2h OA" �A; OA" � SiL2.˘n/ C "kPL?

OA"PL?
k1

� �"hsign.S/; OA" � Si C h2�; OA" � Si: (9.16)

We will also use the following simple identity:

2h OA" �A; OA" � SiL2.˘n/ D k OA" �Ak2L2.˘n/ C k OA" � Sk2L2.˘n/ � kS �Ak2L2.˘n/:
(9.17)

Note that if h OA" �A; OA" � SiL2.˘n/ � 0; then (9.17) implies that k OA" �Ak2L2.˘n/ �
kS � Ak2L2.˘n/; and (9.10) trivially holds. On the other hand, if

h OA" �A; OA" � SiL2.˘n/ � 0;
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then it easily follows from (9.16) that

"kP?
L .

OA" �S/k1 � "kPL. OA" �S/k1 C 2�.kPL. OA" �S/k1 C kP?
L .

OA" �S/k1/:

As a result, under the condition " � 3�; we get that

kP?
L .

OA" � S/k1 � 5kPL. OA" � S/k1; (9.18)

or OA" �S 2 K .D; L; 5/: Therefore, recalling the definition of ˇn.S/; we also have

kPL. OA" � S/k2 � ˇn.S/k OA" � SkL2.˘n/: (9.19)

Now, using the fact that

jhsign.S/; OA" � Sij D jhsign.S/;PL. OA" � S/ij
� ksign.S/k2kPL. OA" � S/k2 D p

rank.S/kPL. OA" � S/k2;

we can deduce from (9.16), (9.17) and (9.19) that

k OA" � Ak2L2.˘n/ C k OA" � Sk2L2.˘n/ C "kPL?

OA"PL?

k1 (9.20)

� kS � Ak2L2.˘n/ C "
p

rank.S/ˇn.S/k OA" � SkL2.˘n/ C h2�; OA" � Si:

Finally, we have

h�; OA" � Si D hPL.�/; OA" � Si C hP?
L .�/;

OA" � Si � (9.21)

� 
kPL. OA" � S/k2 C � kP?
L .A

" � S/k1;

where

 WD kPL.�/k2; � WD kP?

L .�/k:
Note that � � k�k D 2� and


2 D kPL�k22 C kP?
L �PLk22

� rank.S/kPL�k2 C rank.S/kP?
L �PLk2 � 2rank.S/�2;

where we used the facts that rank.PL�/ � rank.S/; rank.PL?
�PL/ � rank.S/

and kPL�k � k�k; kPL?
�PLk � k�k: As a consequence,


 �
p
2rank.S/�:
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Now, we can deduce from (9.20) and (9.21) that

k OA" � Ak2L2.˘n/ C k OA" � Sk2L2.˘n/ C "kPL?

OA"PL?
k1

� kS � Ak2L2.˘n/ C "
p

rank.S/ˇn.S/k OA" � SkL2.˘n/
C2�kPL?

OA"PL?
k1 C 2

p
2rank.S/�ˇn.S/k OA" � SkL2.˘n/: (9.22)

If " � 3� (which, in view of (9.13), holds provided that D � 3C ), then (9.22)
implies that

k OA" � Ak2L2.˘n/ � kS �Ak2L2.˘n/ C "2ˇ2n.S/rank.S/;

and (9.10) follows. ut
It is worth mentioning that Theorem 9.1 implies sparsity oracle inequalities in

the vector recovery problems discussed in the previous chapters. It is enough to
use this theorem in the case when D is the space of all diagonal m � m matrices
with real entries and the design matrices Xj also belong to D: In this case, for
all S 2 D, rank.S/ is equal to the number of nonzero diagonal entries. Also, if
e1; : : : ; em denotes the canonical basis, L D LJ is the subspace spanned on fej W
j 2 J g and ˘ is a probability distribution in D; then the quantity ˇ.b/2 .DILI˘/
coincides with ˇ.b/2 .J I˘/ defined in Sect. 7.2. Note also that, for S 2 D; kSk1
coincides with the `1-norm of the vector of diagonal entries of S and the operator
norm kSk coincides with the `1-norm of the same vector. The quantities �2X and
UX become

�2X D
����n

�1
nX

jD1
X2
j

����
`

1

; UX WD max
1�j�n kXj k`

1

(with an obvious interpretation of diagonal matrices Xj as vectors of their diagonal
entries).

Under the notations of Chaps. 7–8, it is easy to deduce from Theorem 9.1 a
corollary for the LASSO-estimator

O	" WD argmin	2Rm

�
n�1

nX

jD1
.Yj � f	.Xj //

2 C "k	k1
�

(9.23)

of parameter 	� 2 R
m in the following regression model with fixed design:

Yj D f	
�

.Xj /C �j ; j D 1; : : : ; n:

Here

f	 WD
mX

jD1
	j hj ; 	 D .	1; : : : ; 	m/ 2 R

m;
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h1; : : : ; hm W S 7! R is a dictionary and X1; : : : ; Xn 2 S are nonrandom design
points.

In this case, denote

�2X WD max
1�k�m

ˇ̌
ˇ̌n�1

nX

jD1
h2k.Xj /

ˇ̌
ˇ̌; UX WD max

1�k�m max
1�j�n jhk.Xj /j:

and
ˇn.	/ WD ˇ

.5/
2 .J	I˘n/;

where J	 WD supp.	/:

Corollary 9.1. Let ˛ � 1; t > 0 and suppose that

" � D

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

� UX

���X

�
t C log.2m/

n

�
:

There exists a constantD > 0 in the above condition on " such that with probability
at least 1 � e�t

kfO	" � f	
�

k2L2.˘n/ � inf
	2Rm

�
kf	 � f	

�

k2L2.˘n/ C 2"k	k`1
�

(9.24)

and

kfO	" � f	
�

k2L2.˘n/ � inf
	2Rm

�
k	 � 	�k2L2.˘n/ C "2ˇn.	/card.J	/

�
: (9.25)

The case of matrix regression with rectangularm1�m2 matrices from Mm1;m2.R/

can be easily reduced to the Hermitian case using so called Paulsen dilation already
discussed in Sect. 2.4. In this case, we still deal with the regression model (9.7) with
fixed design matrices X1; : : : ; Xn 2 Mm1;m2.R/ and we are interested in the nuclear
norm penalized least squares estimator

OA" WD argminS2Mm1;m2 .R/

�
n�1

nX

jD1
.Yj � hS;Xj i/2 C "kSk1

�
: (9.26)

Recall that J W Mm1;m2.R/ 7! Hm1Cm2.C/ is defined as follows (see also
Sect. 2.4)

JS WD
�
O S

S� O

�

and let NJ WD 1p
2
J: Also observe that

h NJS1; NJS2i D hS1; S2i; S1; S2 2 Mm1;m2.R/
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and, for a random matrix X in Mm1;m2.R/ with distribution˘;

kAk2L2.˘/ D EhA;Xi2 D Eh NJA; NJXi2 D k NJAk2
L2.˘ı NJ�1/

:

Moreover, k NJSk1 D p
2kSk1; S 2 Mm1;m2.R/:

Consider a linear subspace D WD NJMm1;m2.R/ � Hm1Cm2.C/: Then, it is
straightforward to see that

NJ OA" D argminS2D

�
n�1

nX

jD1
.Yj � hS; NJXj i/2 C "p

2
kSk1

�
;

and, applying the bounds of Theorem 9.1 to NJ OA"; one can derive similar bounds for
OA" in the rectangular matrix case. We leave further details to the reader.

9.3 Matrix Regression with Subgaussian Design

We will study a matrix regression problem

Yj D f�.Xj /C �j ; j D 1; : : : ; n; (9.27)

where fXj g are i.i.d. subgaussian Hermitian m � m matrices, f�j g are i.i.d. mean
zero random variables, fXj g and f�j g are independent. The goal is to estimate the
regression function f� W Hm.C/ 7! R:We are especially interested in the case when
f�.�/ can be well approximated by a linear oracle hS; �i; where S 2 Hm.C/ is a
Hermitian matrix of a small rank. We consider the following estimator based on
penalized empirical risk minimization with quadratic loss and with nuclear norm
penalty:

OA" WD argminS2D

�
n�1

nX

jD1
.Yj � hS;Xj i/2 C "kSk1

�
; (9.28)

where D � Hm.C/ is a closed convex set that supposedly contains reasonably
good oracles and that can coincide with the whole space Hm.C/; and " > 0 is a
regularization parameter.

To be more specific, let X be a Hermitian random matrix with distribution ˘
such that, for some constant 
 > 0 and for all Hermitian matrices A 2 Hm.C/;

hA;Xi is a subgaussian random variable with parameter 
2kAk2L2.˘/: This property
implies that EX D 0 and, for some constant 
1 > 0;

���hA;Xi
���
 2

� 
1kAkL2.˘/; A 2 Mm.C/: (9.29)
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We will also assume that, for some constant 
2 > 0 and for all u; v 2 C
m with

juj D jvj D 1;

EjhXu; vij2 D kv ˝ uk2L2.˘/ � 
2: (9.30)

A Hermitian random matrix X satisfying these conditions will be called a subgaus-
sian matrix. If, in addition, X satisfies the following assumption (that is stronger
than (9.30))

kAk2L2.˘/ D EjhA;Xij2 D kAk22; A 2 Mm.C/; (9.31)

then X will be called an isotropic subgaussian matrix. As it was pointed out in
Sect. 1.7, this includes the following important examples:

• Gaussian matrices: X is a symmetric random matrix with real entries such that
fXij W 1 � i � j � mg are independent centered normal random variables with
EX2

ii D 1; i D 1; : : : ; m and EX2
ij D 1

2
; i < j ;

• Rademacher matrices: Xii D "i i ; i D 1; : : : ; m and Xij D 1p
2
"ij ; i < j;

f"ij W 1 � i � j � mg being i.i.d. Rademacher random variables.

Simple properties of Orlicz norms (see Sect. A.1) imply that for subgaussian
matrices

kAkLp.˘/ D E
1=p
ˇ̌
ˇhA;Xi

ˇ̌
ˇ
p � cp
1
2kAkL2.˘/

and
kAk 1 WD

���hA;Xi
���
 1

� c
1
2kAkL2.˘/; A 2 Mm.C/; p � 1;

with some numerical constants cp > 0 and c > 0:
The following fact is well known (see, e.g., [130], Proposition 2.4).

Proposition 9.1. Let X be a subgaussian m � m matrix. There exists a constant
B > 0 such that ���kXk

���
 2

� B
p
m:

Proof. Consider an "-net M � Sm�1 WD fu 2 C
m W juj D 1g of the smallest

cardinality. Then, card.M/ � .1C 2="/2m and it is easy to check that

kXk D sup
u;v2Sm�1

jhXu; vij � .1 � 2"/�2 max
u;v2M jhXu; vij:

Let " D 1=4: We will use standard bounds for Orlicz norms of a maximum (see
Sect. A.1) to get that, for some constants C1; C2; B > 0;

���kXk
���
 2

� 4
���max

u;v2MhXu; vi
���
 2

� C1 
�1
2 .card2.M// max

u;v2M

���hXu; vi
���
 2

� C2
p

log card.M/ max
u;v2M kv ˝ ukL2.˘/ � B

p
m: ut
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Given S 2 Hm.C/; denote fS the linear functional fS.�/ WD hS; �i:Our goal is to
obtain oracle inequalities on theL2.˘/ prediction error kf OA" �f�k2L2.˘/ in terms of

the L2.˘/-approximation error kfS � f�k2L2.˘/ of f� by low rank oracles S 2 D:

One possible approach to this problem is to show that, in the case of i.i.d.
subgaussian design, the matrix restricted isometry property holds for the empirical
distribution ˘n with a high probability and then to use the oracle inequalities for
fixed design matrix regression proved in Sect. 9.2 (see Candes and Plan [40], where
a similar program was implemented). Below we develop a version of this approach
in the case when f� is a linear functional, f�.�/ D hA; �i; so, Theorem 9.1 can
be applied directly. We also do it only in the case of subgaussian isotropic design.
We do not derive an oracle inequality, just a bound on the Hilbert–Schmidt error
k OA" �Ak22 in terms of the rank of A: Later in this section, we develop a more direct
approach to oracle inequalities for the random design regression.

As in Sect. 9.2, denote �2� WD E�2; U
.˛/

� WD k�k ˛ _ .2��/; ˛ � 1: We will also
use the following notations:

�2X;n D
����n

�1
nX

jD1
X2
j

����; UX;n WD max
1�j�n kXj k:

Theorem 9.2. Suppose that X is an isotropic subgaussian matrix and X1; : : : ; Xn
are its i.i.d. copies. Let ˛ � 1; t > 0 and suppose that

" � D

�
���X;n

r
t C log.2m/

n

_

U
.˛/

� UX;n log1=˛
�
U
.˛/

� UX;n

���X;n

�
t C log.2m/

n

�
: (9.32)

There exists a constant D > 0 in the above condition on " and constants
C >0; � >0; ˇ > 0; ı0 > 0 with the following property. For all ı 2 .0; ı0/ and
for all

n � �ı�2 log.1=ı/m rank.A/;

with probability at least 1 � e�t � e�ˇnı2 ;

k OA" �Ak22 � C min
	
"kAk1; "2 rank.A/



: (9.33)

Moreover, there exists a constant D1 > 0 such that, for all t 2 .0; n/; the condition
(9.32) on " holds with probability at least 1 � 2e�t provided that
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" � D1

�
��

r
m.t C log.2m//

n

_

U
.˛/

� log1=˛
�
U
.˛/

�

��

�p
m.t C logn/.t C log.2m//

n

�
: (9.34)

Proof. We will use the bounds of Theorem 9.1 applying them to S D A: Denote
r WD rank.A/: To bound ˇn.A/; we apply Lemma 9.1 for the empirical measure
˘n: The quantities Mr.˘n/; m3r .˘n/ and �r.˘n/ will be bounded in terms of the
restricted isometry constants ı4r .˘n/: It is enough to show that ı4r .˘n/ is small
enough (smaller than some ı0 2 .0; 1/) to guarantee that ˇn.A/ is bounded by
a constant. Moreover, it follows from the proof of Theorem 9.1 (see (9.18)) that
OA" � A 2 K .D; L; 5/ with L D supp.A/; and, in this case, the last bound of

Lemma 9.1 implies that k OA"�Ak22 � C1k OA�Ak2L2.˘n/ for some constantC1: Thus,
to prove (9.33), it is enough to control ı4r .˘n/:

We use Lemmas 9.2 and 9.3 to derive the following result.

Lemma 9.4. Suppose thatX is a subgaussian isotropic random matrix. There exist
constants � > 0; � > 0 such that for all 1 � r � m and all ı 2 .0; 1=2/

P

n
ır.˘n/ � ı

o
� expf�ˇnı2g;

provided that n � �ı�2 log.1=ı/mr:

Proof. Since X is isotropic subgaussian, for all B 2 Hm.C/ with kBk2 D 1;

khB;Xi2k 1 � c; for some constant c: Let " 2 .0; 1=2/ and 	 2 .0; 1/: Using
a version of Bernstein’s inequality for random variables with bounded  1-norms,
the union bound and Lemma 9.3, we get that with some constant c1 > 0

P

n
sup
B2S "

r

ˇ̌
ˇkBk2L2.˘n/ � 1

ˇ̌
ˇ � 	

o

� card.S "
r / sup

B2S "
r

P

� ˇ̌
ˇ̌n�1

nX

jD1
hB;Xj i2 � EhB;Xi2

ˇ̌
ˇ̌ � 	

�

� 2card.S "
r / exp

n
�c1.	2 ^ 	/n

o
� 2

�
18

"

�.2mC1/r
exp

n
�c1.	2 ^ 	/n

o
:

Therefore, if

n � 6 log.18="/

c1	2
mr;

then, with probability at least 1 � e�.c1=2/	2n;

sup
B2S "

r

jkBk2L2.˘n/ � 1j � 	:
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We can choose 	; " in such a way that

p
1C 	

1 � p
2"

� 1C ı and
p
1 � 	 �

p
2.1C 	/"

1 � p
2"

� 1 � ı

(note that, to satisfy these bounds, it is enough to choose 	 and " proportional to ı
with some numerical constants). Then, bounds (9.4) and (9.5) (that followed from
Lemma 9.2) imply that Mr.˘n/ � 1C ı; mr.˘n/ � 1 � ı and ır .˘n/ � ı; which
holds with probability at least 1 � e�ˇnı2 for some constant ˇ > 0: ut

It remains to prove the last statement of the Theorem. To this end, note that

�2X;n D
����n

�1
nX

jD1
X2
j

���� � EkXk2 C n�1
nX

jD1
.kXjk2 � EkXk2/:

For a subgaussian isotropic matrix X; we have

EkXk2 � c1m;
���kXk2

���
 1

� c2m;

for some constants c1; c2 > 0: It easily follows from a version of Bernstein’s
inequality for random variables with bounded  1-norms (see Sect. A.2) that, for
some constant c3 > 0 and with probability at least 1 � e�t ;

ˇ̌
ˇ̌n�1

nX

jD1
.kXjk2 � EkXk2/

ˇ̌
ˇ̌ � c3m

 r
t

n

_ t

n

!
� c3m

provided that t � n: Therefore, we also have that, for some c4 > 0; �2X;n � c4m:On
the other hand, it easily follows from the properties of Orlicz norms and the union
bound that for some c5 > 0

P

n
UX;n � c5

p
m.tClogn/

o
� nP

n
kXk � c5

p
m.tClogn/

o
� ne�.tClog n/ D e�t :

Thus, with probability at least 1� e�t ;

UX;n � c5
p
m.t C logn/:

Since in the bound (9.32) �X;n; UX;n can be replaced by upper bounds, it is easy to
complete the proof. ut

Theorem 9.2 essentially shows that, in the case of subgaussian isotropic design,
the nuclear norm penalized least squares estimator OA" recovers the target matrix

with the Hilbert–Schmidt error k OA" � Ak22 of the order C
�2� m rank.A/

n
(with a proper

choice of regularization parameter ").
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We now turn to a somewhat different approach to bounding the error of (9.28)
without a reduction to the fixed design case. We will obtain a general oracle
inequality for a subgaussian (not necessarily isotropic) design.

Assume that � 2 L 2.P/ and denote

U
.2/

� WD k�k 2 _ .2��/:

Recall the notation fA.�/ WD hA; �i: Let us view functions fromL2.˘/ as random
variables defined on the space Hm.C/ with probability measure ˘ and let L �
L2.˘/ be a subspace of subgaussian random variables such that f� 2 L ; for all
A 2 Hm.C/; hA; �i 2 L ; and, for some constant 
1 > 0;

kf k 2 � 
1kf kL2.˘/; f 2 L (9.35)

(compare with (9.29)). We assume also that condition (9.30) holds.
Recall the notation ˇ.b/.DILI˘/ of Sect. 9.1 and define

ˇ.S/ WD ˇ.5/.DI supp.S/I˘/:

Finally, denote

q."/ WD q.DI "/ WD inf
S2D

h
kfS � f�k2L2.˘/ C "kSk1

i
:

Observe that
q."/ � kf�k2L2.˘/

(take S D 0 in the expression after the infimum defining q."/). Note also that if, for
some S 2 D;

kSk1 � 1

2

q."/

"
;

then
q."/ � 2kfS � f�k2L2.˘/: (9.36)

Indeed,

q."/

"
� kfS � f�k2L2.˘/

"
C kSk1 � kfS � f�k2L2.˘/

"
C 1

2

q."/

"
;

implying (9.36).
Given t > 0 and " > 0; denote

� WD log
	

logn _ logm _ j log "j _ log kf�kL2.˘/ _ 2


;

tn;m WD .t C �/ lognC log.2m/:
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Theorem 9.3. There exist constants c; C;D > 0 with the following property.
Suppose that t � 1;

" � D

�
��

r
m.t C log.2m//

n

_
U
.2/

� log

�
U
.2/

�

��

�
m1=2.t C log.2m//

n

�
(9.37)

and tn;m � cn: Then, the following bound holds with probability at least 1 � e�t W

kf OA" � f�k2L2.˘/ � inf
S2D

�
2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 C

�
kSk21 _ q2."/

"2

�
mtn;m

n
C n�1

��
: (9.38)

Proof. Throughout the proof, C; c; c1; ::: denote constants (typically, numerical
or dependent only on irrelevant parameters) whose values might be different in
different parts of the proof. Recall the definitions and notations used in the proof
of Theorem 9.1, in particular, the definitions of � and � W

� D n�1
nX

jD1
�jXj ; � D k�k:

Step 1. Bounding the norm k OA"k1: We start with the following lemma:

Lemma 9.5. There exists a constant C > 0 such that, for all " � 4�; with
probability at least 1 � e�n

k OA"k1 � C
q."/

"
:

Proof. We argue exactly as in the proof of Theorem 9.1 to get the following version
of bound (9.11): for all S 2 D;

kf OA" � f�k2L2.˘n/ C "k OA"k1 � kfS � f�k2L2.˘n/ C 2�k OA" � Sk1 C "kSk1; (9.39)

which implies

kf OA" � f�k2L2.˘n/ C "k OA"k1 (9.40)

� kfS � f�k2L2.˘/ C .˘n �˘/.fS � f�/2 C 2�k OA" � Sk1 C "kSk1:

Since .fS � f�/2 2 L 1.˘/ and, moreover,

k.fS � f�/2k 1 � ckfS � f�k2L2.˘/
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for some constant c > 0; we can use a version of Bernstein’s inequality for L 1
random variables (see Sect. A.2) to get that, with some constant c1 > 0 and with
probability at least 1 � e�t ;

ˇ̌
ˇ.˘n �˘/.fS � f�/2

ˇ̌
ˇ � c1kfS � f�k2L2.˘/

�r
t

n

_ t

n

�
: (9.41)

As a consequence, for t � n; we get from (9.40) that

"k OA"k1 � kfS � f�k2L2.˘/
�
1C c1

r
t

n

�
C 2�.k OA"k1 C kSk1/C "kSk1:

As soon as " � 4�; this implies

"

2
k OA"k1 � kfS � f�k2L2.˘/

�
1C c1

r
t

n

�
C 3

2
"kSk1:

For t D n; we get

k OA"k1 � 2.1C c1/

"
kfS � f�k2L2.˘/ C 3kSk1; (9.42)

which holds with probability at least 1 � e�n and under the assumption " � 4�:

The bound of the lemma follows by applying (9.42) to the value of S for which the
infimum in the definition of q."/ is attained. ut

Since q."/ � kf�k2L2.˘/; under the assumptions of Lemma 9.5, we have

k OA"k1 � C

"
kf�k2L2.˘/ (9.43)

(again with probability at least 1 � e�n).
Next, observe that

kf OA" � f�k2L2.˘/ � 2
	
kf OA"k2L2.˘/ C kf�k2L2.˘/



(9.44)

� c
	
k OA"k21EkXk2 C kf�k2L2.˘/



� c1

	
mk OA"k21 C kf�k2L2.˘/




� c1

�
mkf�k4L2.˘/

"2
_ kf�k2L2.˘/

�
;

where we used bound (9.43) and Proposition 9.1. Now it is easy to see that it will
be enough to consider S 2 D for which
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kfS � f�k2L2.˘/ � c1

�
mkf�k4L2.˘/

"2
_ kf�k2L2.˘/

�

(otherwise bound (9.38) of the theorem trivially holds). This implies that, for
some c,

kf OA" � fSkL2.˘/ � c

�
m1=2kf�k2L2.˘/

"
_ kf�kL2.˘/

�
: (9.45)

Step 2. Reduction to the bounds on empirical processes. Arguing again as in the
proof of Theorem 9.1, we get the following version of bound (9.16):

2hf OA" � f�; f OA" � fSiL2.˘n/ C "kPL?

OA"PL?

k1
� �"hsign.S/; OA" � Si C h2�; OA" � Si: (9.46)

If hf OA" � f�; f OA" � fS iL2.˘n/ � 0 and " � 3�; then (9.46) implies that OA" � S 2
K .D; L; 5/; where L D supp.S/ (see the proof of Theorem 9.1). Because of this,

kPL. OA" � S/k2 � ˇ.S/k OA" � SkL2.˘/: (9.47)

Replacing in the left hand side of (9.46)˘n by˘ and using the identity

2hf OA" � f�; f OA" � fS iL2.˘/
D kf OA" � f�k2L2.˘/ C kf OA" � fSk2L2.˘/ � kfS � f�k2L2.˘/; (9.48)

we get

kf OA" � f�k2L2.˘/ C kf OA" � fSk2L2.˘/ C "kPL?

OA"PL?
k1 (9.49)

� kfS � f�k2L2.˘/ � "hsign.S/; OA" � Si C h2�; OA" � Si
C2.˘ �˘n/.fS � f�/.f OA" � fS/C 2.˘ �˘n/.f OA" � fS/2:

This inequality will be used when hf OA" � f�; f OA" � fSiL2.˘n/ � 0 (case A).
Alternatively, when hf OA" �f�; f OA" �fS iL2.˘n/ < 0 (case B), a simpler bound holds
instead of (9.49):

kf OA" � f�k2L2.˘/ C kf OA" � fSk2L2.˘/ (9.50)

� kfS � f�k2L2.˘/ C 2.˘ �˘n/.fS � f�/.f OA" � fS/C 2.˘ �˘n/.f OA" � fS/
2:

It remains to bound the empirical processes in the right hand sides of (9.49) and
(9.50) in each of these two cases:
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h2�; OA" � Si D
�
2

n

nX

jD1
�jXj ; OA" � S

�
;

2.˘ �˘n/.f OA" � fS/
2 and 2.˘ �˘n/.fS � f�/.f OA" � fS/:

Step 3. Bounding h�; OA" � Si: We use slightly modified bounds from the proof
of Theorem 9.1 to control h�; OA" � Si; which is needed only in case A:

h�; OA" � Si D hPL.�/; OA" � Si C hP?
L .�/;

OA" � Si �
� 
kPL. OA" � S/k2 C � kP?

L .A
" � S/k1;

where

 WD kPL.�/k2; � WD kP?

L .�/k:
Using the fact that, in case A, OA" � S 2 K .D; L; 5/ and (9.47) holds, and arguing
as in the proof of Theorem 9.1, we get

h�; OA" � Si � �kPL?

OA"PL?
k1 Cp

2rank.S/�ˇ.S/k OA" � SkL2.˘/
� �kPL?

OA"PL?

k1 C 2rank.S/ˇ2.S/�2 C 1

4
kf OA" � fSk2L2.˘/: (9.51)

SinceX is a subgaussian random matrix, we can use Proposition 9.1 to get that with
some constant c

�X WD kE.X � EX/2k1=2 � kEX2k1=2 � E
1=2kXk2 � c

p
m

and U .2/
X WD

���kXk
���
 2

� c
p
m: It easily follows that

���kXkj�j
���
 1

� c1

���kXk
���
 2

k�k 2 � c2
p
mk�k 2 :

Therefore, the second bound of Theorem 2.7 with ˛ D 1 implies that, with
probability at least 1 � e�t ;

� � N� WD (9.52)

C

�
��

r
m.t C log.2m//

n

_
U
.2/

� log

�
U
.2/

�

��

�
m1=2.t C log.2m//

n

�
;

which will be used in combination with bound (9.51).

Step 4. Bounding .˘ �˘n/.fS � f�/.f OA" � fS/. Note that



9.3 Matrix Regression with Subgaussian Design 213

ˇ̌
ˇ.˘ �˘n/.fS � f�/.f OA" � fS/

ˇ̌
ˇ D jh�; OA" � Sij

� k� kk OA" � Sk1 � k� k.k OA"k1 C kSk1/; (9.53)

where

� WD n�1
nX

jD1

h
.fS .Xj / � f�.Xj //Xj � E.fS .Xj /� f�.Xj //Xj

i
: (9.54)

Observe that with some constant c > 0
���EjfS.X/� f�.X/j2X2

��� � EjfS.X/� f�.X/j2kXk2

� E
1=2jfS.X/� f�.X/j4E1=2kXk4 � cmkfS � f�k2L2.˘/;

by the properties of subgaussian matrix X and “subgaussian subspace” L : Also,
with some c > 0;

���.fS .X/ � f�.X//kXk
���
 1

� c
p
mkfS � f�kL2.˘/:

Therefore, we can use again exponential inequalities of Theorem 2.7 to bound � as
follows: with probability at least 1 � e�t and with some c > 0;

k� k � ckfS � f�kL2.˘/
�r

m.t C log.2m//

n

_ m1=2.t C log.2m//

n

�
: (9.55)

Under the assumption t C log.2m/ � n; we now deduce from (9.53), (9.55) and
Lemma 9.5 that, with probability at least 1 � 2e�t ;

ˇ̌
ˇ.˘ �˘n/.fS � f�/.f OA" � fS/

ˇ̌
ˇ

� C

�
q."/

"

_
kSk1

�
kfS � f�kL2.˘/

r
m.t C log.2m//

n
:

This leads to the bound

ˇ̌
ˇ.˘ �˘n/.fS � f�/.f OA" � fS/

ˇ̌
ˇ � 1

4
kfS � f�k2L2.˘/

CC
�

kSk21 _ q2."/

"2

�
m.t C log.2m//

n
(9.56)

which holds with some constant C > 0 and with the same probability.
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Step 5. Bounding .˘ �˘n/.f OA" � fS/
2. Here we will use the following lemma.

Given ı > 0 and R > 0; denote

�n.ı;R/ WD sup

� ˇ̌
ˇ̌n�1

nX

jD1
hS1 � S2;Xj i2 � kS1 � S2k2L2.˘/

ˇ̌
ˇ̌ W

S1; S2 2 Hm.C/; kS1 � S2kL2.˘/ � ı; kS1k1 � R; kS2k1 � R

�
:

Lemma 9.6. Suppose X1; : : : ; Xn are i.i.d. copies of a subgaussian matrix X

satisfying conditions (9.29), (9.30). Let ı > 0 and R > 0: There exists a constant
C > 0 such that, for all t > 0; with probability at least 1 � e�t

�n.ı; R/ � C

�
ıR

r
m

n

_ R2m

n

_
ı2
r
t

n

_ R2mt logn

n

�
: (9.57)

Moreover, if 0 < ı� < ıC; then, with some constant C > 0 and with probability at
least 1 � e�t ; for all ı 2 Œı�; ıC�;

�n.ı; R/ � C

�
ıR

r
m

n

_ R2m

n

_
ı2
r
t C �

n

_ R2m.t C �/ logn

n

�
; (9.58)

where

� WD 2 log log2

�
2ıC
ı�

�
:

Proof. Clearly, the following representation of the quantity�n.ı;R/ holds:

�n.ı;R/ WD sup
f 2Fı;R

ˇ̌
ˇ̌n�1

nX

jD1
.f 2.Xj /� Pf 2/

ˇ̌
ˇ̌;

where

Fı;R WD fhS1�S2; �i W S1; S2 2 Hm.C/; kS1�S2kL2.˘/ � ı; kS1k1 � R; kS2k1 �Rg:

To bound this empirical process, we use a powerful inequality of Mendelson (see
Theorem 3.15). It implies that

E�n.ı;R/ � c

�
sup

f 2Fı;R

kf k 1
�2.Fı;RI 2/p

n

_ �22 .Fı;RI 2/
n

�
(9.59)

where c > 0 is a constant. By assumption (9.29), the  1 and  2-norms of functions
from the class Fı;R can be bounded by the L2.P /-norm (up to a constant).
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Therefore,
sup

f 2Fı;R

kf k 1 � cı: (9.60)

The next aim is to bound Talagrand’s generic chaining complexities. First note that

�2.Fı;RI 2/ � �2.Fı;RI ck � kL2.˘// (9.61)

for some c > 0 (again, by the bound on the  2-norm). Let W˘.f /; f 2 L2.˘/

denote the isonormal Gaussian process, that is, a centered Gaussian process with
covariance

EW˘.f /W˘.g/ D
Z

Hm.C/

fgd˘:

We can also write

W˘.f / D
Z

Hm.C/

f .x/W˘.dx/;

where W˘.B/ WD W˘.IB/ for Borel subsets B � Hm.C/: Clearly, by linearity of
W˘ IW˘.hS; �i/ D hS;Gi; where G is a random matrix with the entries

gij WD
Z

Hm.C/

xijW˘.dx/:

Note thatG is a Gaussian matrix and, as a consequence, it is subgaussian. Moreover,
it satisfies condition (9.30) since, for u; v 2 C

m with juj D jvj D 1;

EjhGu; vij2 D EjW˘.hv ˝ u; �i/j2 D kv ˝ uk2L2.˘/ � 
2:

It follows from Talagrand’s generic chaining bound (see Theorem 3.3) that, for some
constant C > 0;

�2.Fı;RI ck � kL2.˘// � C!.GI ı; R/; (9.62)

where

!.GI ı; R/ WD E sup
kS1�S2kL2.˘/�ı;kS1k1�R;kS2k1�R

jW˘.hS1 � S2; �i/j:

Bounds (9.59), (9.60), (9.61) and (9.62) imply that

E�n.ı;R/ � C

�
ı
!.GI ı; R/p

n

_ !2.GI ı; R/
n

�
: (9.63)

Observe that, under the assumption kS1k1 � R; kS2k1 � R;

ˇ̌
ˇhS1 � S2;Gi

ˇ̌
ˇ � kS1 � S2k1kGk � 2RkGk:
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It follows from Proposition 9.1 that

!.GI ı; R/ � 2REkGk � cR
p
m:

The last bound can be substituted in (9.63) to give that, for some constant C > 0;

E�n.ı;R/ � C

�
ıR

r
m

n

_ R2m

n

�
(9.64)

To complete the proof, we use Adamczak’s version of Talagrand’s concentration
inequality for unbounded function classes (see Sect. 2.3). To apply this inequality,
one has to bound the uniform variance and the envelope of the function class F 2

ı;R:

The uniform variance is bounded as follows: with some constant c > 0;

sup
f 2Fı;R

.Pf 4/1=2 D sup
kS1�S2kL2.˘/�ı;kS1k1�R;kS2k1�R

E
1=2hS1 � S2;Xi4 D

sup
kfS1�fS2kL2.˘/�ı;kS1k1�R;kS2k1�R

kfS1 � fS2k2L4.˘/ � cı2;

where we used the equivalence properties of the norms in Orlicz spaces. For the
envelope, we have the following bound:

sup
f 2Fı;R

f 2.X/ D sup
kS1�S2kL2.˘/�ı;kS1k1�R;kS2k1�R

hS1 � S2;Xi2 � 4R2kXk2

and
��� max
1�i�n sup

f 2Fı;R

f 2.Xi /
���
 1

� c1R
2
���kXk2

���
 1

logn � c2R
2
���kXk

���
2

 2
logn � c3R

2m logn;

for some constants c1; c2; c3 > 0:Here we used well known inequalities for maxima
of random variables in Orlicz spaces (see Sect. A.1). Adamczak’s inequality now
yields that, with some constant C > 0 and with probability at least 1 � e�t ;

�n.ı; R/ � 2E�n.ı;R/C Cı2
r
t

n
C C

R2mt logn

n
: (9.65)

It remains to combine (9.64) with (9.65) to get that with probability at least 1� e�t

�n.ı; R/ � C

�
ıR

r
m

n

_ R2m

n

_
ı2
r
t

n

_ R2mt logn

n

�
: (9.66)
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The second claim is proved by a standard discretization argument based on the union
bound and on the monotonicity of �n.ıIR/ and its upper bound with respect to ı
(see, e.g., Lemma 8.1 for a similar argument). ut

We will use the second bound of Lemma 9.6 to control .˘ � ˘n/.f OA" � fS/
2:

By a simple algebra (in particular, using the inequality ab � a2=8C 2b2 and using
the fact that tn;m � cn for a sufficiently small constant c), this bound implies that
with some sufficiently large constant C > 0

�n.ı;R/ � 1

4
ı2 C C

R2m.t C �/ logn

n
: (9.67)

Clearly, we also have

ˇ̌
ˇ.˘ �˘n/.f OA" � fS/

2
ˇ̌
ˇ � �n

	
kSk1 _ k OA"k1I kf OA" � fSkL2.˘/



: (9.68)

Due to Lemma 9.5 and (9.45), we now use bound (9.67) for

R WD C

�
q."/

"

_
kSk1

�
;

ı� D n�1=2 and

ıC WD c

�
m1=2kf�k2L2.˘/

"
_ kf�kL2.˘/

�
_ n�1=2:

We get from bounds (9.67) and (9.68) that with some constant C > 0 and with
probability at least 1 � e�t

ˇ̌
ˇ.˘ �˘n/.f OA" � fS/

2
ˇ̌
ˇ � 1

4
kf OA" � fSk2L2.˘/

CC
�

kSk21 _ q2."/

"2

�
m.t C �/ logn

n
; (9.69)

where
� D log

	
logn _ logm _ j log "j _ log kf�kL2.˘/ _ 2



:

Bound (9.69) holds provided that ı� � kf OA" � fSkL2.˘/ � ıC: Note that we do
have kf OA" � fSkL2.˘/ � ıC because of (9.45). In the case when kf OA" � fSkL2.˘/ �
ı�; the proof of (9.38) even simplifies, so, we consider only the main case when
kf OA" � fSkL2.˘/ � ı�:

Step 6. Conclusion. To complete the proof, it is enough to use bound (9.49) in
case A and bound (9.50) in case B in combination with the resulting bounds on
empirical processes obtained in steps 3–5 (namely, bounds (9.51), (9.52), (9.56)
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and (9.69)). By a simple algebra, we get the following bound

kf OA" � f�k2L2.˘/ � 2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 C

�
kSk21 _ q2."/

"2

�
mtn;m

n
C n�1

�
(9.70)

that holds with probability at least 1 � 4e�t : A simple adjustment of constant C
allows one to rewrite the probability bound as 1�e�t ; which establishes (9.38). ut

The following corollary clarifies the meaning of bound (9.38) of Theorem 9.3
and explains the role of quantity q."/ in this bound.

Corollary 9.2. Under the assumptions of Theorem 9.3, for all S 2 D with kSk1 �
q."/

2"
; the following bound holds with probability at least 1 � e�t W

kf OA" � f�k2L2.˘/ � 2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 C kSk21mtn;m C 1

n

�
: (9.71)

On the other hand, for all S 2 D with kSk1 � q."/

2"
; with the same probability,

kf OA" � f�k2L2.˘/

�
�
2C C

q."/

"2
mtn;m

n

�
kfS � f�k2L2.˘/ C C

�
ˇ2.S/rank.S/"2 C n�1

�
: (9.72)

If

C
q."/

"2
mtn;m

n
� 1; (9.73)

this implies that

kf OA" � f�k2L2.˘/ � 3kfS � f�k2L2.˘/ C C
	
ˇ2.S/rank.S/"2 C n�1
: (9.74)

Proof. For all S 2 D with kSk1 � q."/

2"
; (9.38) immediately implies (9.71).

Alternatively, if kSk1 � q."/

2"
; we have q."/ � 2kfS � f�k2L2.˘/ (see (9.36)) and

(9.38) implies (9.72). ut
Remarks. • Note that the leading constants 2 in oracle inequalities (9.38), (9.71)
or 3 in (9.74) can be replaced by 1Cı (with constantC becoming of the order 1

ı
).

• Note also that, when kSk1 � q."/

2"
and, as a consequence, q."/ � 2kfS �

f�k2L2.˘/; condition (9.73) is satisfied provided that
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" � D1kfS � f�kL2.˘/
r
mtn;m

n
(9.75)

for a sufficiently large constant D1 > 0: This yields the following corollary.

Corollary 9.3. Suppose the assumptions of Theorem 9.3 hold. For all S 2 D

satisfying condition (9.75) with sufficiently large constant D1 > 0; the following
bound holds with probability at least 1 � e�t W

kf OA" � f�k2L2.˘/ � 2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 C kSk21mtn;m C 1

n

�
: (9.76)

• In the case when the set D is bounded, the following version of Theorem 9.3
holds.

Theorem 9.4. Suppose that D � Hm.C/ is a bounded closed convex set and

RD WD sup
S2D

kSk1:

There exist constants c; C;D > 0 with the following property. Suppose that t � 1

and

" � D

�
��

r
m.t C log.2m//

n

_
U
.2/

� log

�
U
.2/

�

��

�
m1=2.t C log.2m//

n

�
: (9.77)

Denote

� WD log log2.mRD/ and tn;m WD .t C �/ lognC log.2m/

and suppose that tn;m � cn: Then, the following bound holds with probability at
least 1 � e�t W

kf OA" � f�k2L2.˘/ � inf
S2D

�
2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 CR2

D

mtn;m

n
C n�1

��
: (9.78)

9.4 Other Types of Design in Matrix Regression

In this section, we study matrix regression problem (9.27) under somewhat different
assumptions on the design variables X1; : : : ; Xn: In particular, our goal is to cover
an important case of sampling from an orthonormal basis, that is, the case when
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X1; : : : ; Xn are i.i.d. random variables sampled from a distribution ˘ (most often,
uniform) in an orthonormal basis E1; : : : ; Em2 of Mm.C/ that consists of Hermitian
matrices.

We will study nuclear norm penalized least squares estimator (9.28) with some
value of regularization parameter " > 0 and establish oracle inequalities of the
same type as in Theorem 9.3. One of the challenges will be to replace the bound
of Lemma 9.6 that relied on the assumption that X1; : : : ; Xn were i.i.d. subgaussian
matrices with another bound on empirical processes indexed by functions hS; �i2:
To this end, we use an approach based on L1.Pn/-covering numbers that was
developed in a different context by Rudelson [128] and, in high-dimensional
learning problems, by Mendelson and Neeman [116] (see also [18, 98]). It is based
on Theorem 3.16.

Assume that, for some constant UX > 0; kXk � UX (the case when kXk has a
bounded 1-norm can be handled similarly). In this section, we also use the notation

�2X D kEX2k:

We will need below the quantity

�n WD �n;1.F / D E�22 .F IL1.Pn//;

based on generic chaining complexities with respect to L1.˘n/-distance, intro-
duced and used earlier in Theorem 3.16. It will be used for the class

F WD fhS; �i W S 2 l:s:.D/; kSk1 � 1g:

It will be shown below (see Proposition 9.2) that in typical situations �n grows as a
power of logn: In particular, we will see that, for D D Hm.C/;

�n � KE max
1�j�nkXj k22 log2 n:

For t � 1 and " � 0; denote

� WD log
	

logn _ logUX _ log " _ log kf�kL
1

.˘/ _ 2


;

tn;m WD �n C U 2
X.t C � C log.2m//: (9.79)

We will also use a modified version of function q."/ from the previous section.
Given t � 1; it is defined as follows:

q."/ WD qt .DI "/ WD inf
S2D

�
kfS � f�k2L2.˘/ C "kSk1 C kfS � f�k2L

1

.˘/

t

n

�
:
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Clearly,

q."/ � kf�k2L2.˘/ C kf�k2L
1

.˘/

t

n
: (9.80)

Moreover, if for some S 2 D;

kSk1 � 1

2

q."/

"
;

then
q."/ � 2kfS � f�k2L2.˘/ C 2kfS � f�k2L

1

.˘n/

t

n
: (9.81)

As in the previous section,

ˇ.S/ WD ˇ.5/.DI supp.S/I˘/:

Assume that, for some ˛ � 1; � 2 L ˛ .P/ and denote

�2� WD E�2; U
.˛/

� WD k�k ˛ _ .2��/:

The following theorem is the main result of this section.

Theorem 9.5. There exist constants c; C;D > 0 with the following property.
Suppose that t � 1; tn;m � cn and also that

" � D

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

�

��

UX

�X

�
t C log.2m/

n

�
:

(9.82)

Then the following bound holds with probability at least 1 � e�t W

kf OA" � f�k2L2.˘/ � inf
S2D

�
2kfS � f�k2L2.˘/ C C

�
ˇ2.S/rank.S/"2 (9.83)

C
�

kSk21 _ q2."/

"2

�
tn;m

n
C kfS � f�k2L

1

.˘/

t C log.2m/

n
C n�1

��
:

Proof. We follow the proof of Theorem 9.3 with some modifications and use the
notations of this proof as well as the preceding proof of Theorem 9.1.

Step 1. Bounding the norm k OA"k1. In this case, we need the following version of
Lemma 9.5.

Lemma 9.7. There exists a constant C > 0 such that, for all " � 4� on an event
of probability at least 1 � e�t ;

k OA"k1 � C
q."/

"
: (9.84)
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Proof. We repeat the proof of Lemma 9.5 using instead of (9.41) the bound

ˇ̌
ˇ.˘n �˘/.fS � f�/2

ˇ̌
ˇ

� c1

�
kfS � f�kL2.˘/kfS � f�kL

1

.˘/

r
t

n

_
kfS � f�k2L

1

.˘/

t

n

�
(9.85)

that easily follows from the usual Bernstein inequality and that holds with probabil-
ity at least 1�e�t :Repeating the argument that follows in the proof of Lemma 9.5, it
is easy to conclude that, for " � 4�; bound (9.84) holds with some constant C > 0

and on an event of probability at least 1 � e�t : ut
Note that, bounds (9.84) and (9.80) yield

k OA"k1 � C

"

�
kf�k2L2.˘/ C kf�k2L

1

.˘/

t

n

�
(9.86)

that holds with probability at least 1 � e�t and with some C > 0: Using this bound
for t � n and arguing as in the proof of Theorem 9.3, we get that with some constant
c1 > 0

kf OA" � f�k2L2.˘/ � 2
	
kf OA"k2L2.˘/ C kf�k2L2.˘/



(9.87)

� 2
	
k OA"k21EkXk2 C kf�k2L2.˘/



� 2

	
U 2
Xk OA"k21 C kf�k2L2.˘/




� c1

�
U 2
Xkf�k4L

1

.˘/

"2
_ kf�k2L2.˘/

�
:

Hence, it is enough to consider only the oracles S 2 D for which

kfS � f�k2L2.˘/ � c1

�
U 2
Xkf�k4L

1

.˘/

"2
_ kf�k2L2.˘/

�
;

otherwise, the bound of the theorem trivially holds. This implies that, for some c;

kf OA" � fSkL2.˘/ � c

�
UXkf�k2L

1

.˘/

"
_ kf�kL2.˘/

�
: (9.88)

The last bound holds with probability at least 1 � e�t and on the same event where
(9.86) holds.

Step 2. Reduction to the bounds on empirical processes. This step is the same as
in the proof of Theorem 9.3 and it results in bounds (9.49), (9.50) that have to be
used in cases A and B, respectively.
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Step 3. Bounding h�; OA" �Si: The changes in this step are minor. We still derive
bound (9.51), but the bound on� that follows from Theorem 2.7 is slightly different:
with probability at least 1 � e�t ;

� � N� WD (9.89)

C

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

�

��

UX

�X

�
t C log.2m/

n

�
:

This bound will be used in combination with (9.51).

Step 4. Bounding .˘ � ˘n/.fS � f�/.f OA" � fS/: The changes in this step are
also minor: the bound on k� k becomes

k� k � cUX

�
kfS � f�kL2.˘/

r
t C log.2m/

n

_
kfS � f�kL

1

.˘/

t C log.2m/

n

�

(9.90)

and it holds with probability at least 1 � e�t and with some c > 0: It follows from
(9.53), (9.90) and Lemma 9.7 that, with probability at least 1 � 2e�t ;

ˇ̌
ˇ.˘ �˘n/.fS � f�/.f OA" � fS/

ˇ̌
ˇ

� CUX

�
kSk1 _ q."/

"

��
kfS � f�kL2.˘/

r
m.t C log.2m//

n

_

kfS � f�kL
1

.˘/

t C log.2m/

n

�
:

As a result, we easily get the bound

ˇ̌
ˇ.˘ �˘n/.fS � f�/.f OA" � fS/

ˇ̌
ˇ � 1

4
kfS � f�k2L2.˘/ (9.91)

CCU 2
X

�
kSk21 _ q2."/

"2

�
t C log.2m/

n
C 1

4
kfS � f�k2L

1

.˘/

t C log.2m/

n

which holds with some constant C > 0 and with the same probability.

Step 5. Bounding .˘�˘n/.f OA" �fS/2:We have to control .˘�˘n/.f OA" �fS/2
which would allow us to complete the proof of the theorem. Recall the notation

�n.ı;R/ WD sup

� ˇ̌
ˇ̌n�1

nX

jD1
hS1 � S2;Xj i2 � kS1 � S2k2L2.˘/

ˇ̌
ˇ̌ W

S1; S2 2 Hm.C/; kS1 � S2kL2.˘/ � ı; kS1k1 � R; kS2k1 � R

�
:
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We are now in a position to prove a version of Lemma 9.6.

Lemma 9.8. Let X1; : : : ; Xn be i.i.d. copies of a random Hermitian m � m

matrix X . Let ı > 0 and R > 0: There exists a constant C > 0 such that, for
all t > 0; with probability at least 1 � e�t

�n.ı; R/ � C

�
ıR

r
�n

n

_ R2�n

n

_
ıRUX

r
t

n

_ R2U 2
X t

n

�
: (9.92)

Moreover, if 0 < ı� < ıC; then, with some constant C > 0 and with probability at
least 1 � e�t ; for all ı 2 Œı�; ıC�;

�n.ı; R/ � C

�
ıR

r
�n

n

_ R2�n

n

_
ıRUX

r
t C �

n

_ R2U 2
X.t C �/

n

�
: (9.93)

where

� WD 2 log log2

�
2ıC
ı�

�
:

Proof. Applying bound (3.37) to the class

F WD fhS; �i W S 2 l:s:.D/; kSk1 � 1; kSkL2.˘/ � ıg;

we get

E sup
kSk1�1;kSkL2.˘/�ı

ˇ̌
ˇ.˘n �˘/hS; �i2

ˇ̌
ˇ � C

�
ı

r
�n

n

_ �n

n

�
:

This bound easily implies that

E�n.ı;R/ D 4R2E�n

�
ı

2R
I 1
2

�
� (9.94)

4R2E sup
kSk1�1;kSkL2.˘/�ı=.2R/

ˇ̌
ˇ.˘n �˘/hS; �i2

ˇ̌
ˇ � 4C

�
ıR

r
�n

n

_ R2�n

n

�
:

The rest of the proof is based on repeating the concentration argument of Lemma 9.6
with minor modifications. ut

We are now ready to provide an upper bound on .˘ �˘n/.f OA" � fS/
2: In view

of Lemma 9.7 and (9.88), we will use Lemma 9.8 with ı� WD n�1=2;

ıC WD c

�
UXkf�k2L

1

.˘/

"
_ kf�kL2.˘/

�
_ n�1=2
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and

R WD C

�
kSk1 _ q."/

"

�
:

It follows from (9.88) that kf OA" � fSkL2.˘/ � ıC and the second statement of
Lemma 9.8 implies that with probability at least 1 � e�t ;

.˘ �˘n/.f OA" � fS/2 � �n

	
kf OA" � fSkL2.˘/IR




� C

�
kf OA" � fSkL2.˘/R

r
�n

n

_

R2�n

n

_
RUXkf OA" � fSkL2.˘/

r
t C �

n

_ R2U 2
X.t C �/

n

�

provided that
kf OA" � fSkL2.˘/ � ı� D n�1=2

(we are not going to consider the case when kf OA" � fSkL2.˘/ is smaller than n�1=2;
but it only simplifies the proof). Therefore, we can easily conclude that, with some
C 0 > 0;

.˘ �˘n/.f OA" � fS/
2 � 1

8
kf OA" � fSk2L2.˘/ C C 0R2

U 2
X.t C �/C �n

n
:

It remains to substitute in the last bound the expression for R:
Step 6. Conclusion. To complete the proof, it is enough to combine the bounds

of Steps 1–5 (as it was also done in the proof of Theorem 9.3). A simple inspection
of probability bounds involved in the above arguments shows that the bound of the
theorem holds with probability at least 1 � 5e�t ; which can be rewritten as 1 � e�t
with a proper adjustment of the constants. ut

Arguing as in the proofs of Corollaries 9.2 and 9.3, one can show the following
statement.

Corollary 9.4. Suppose that all the notations and assumptions of Theorem 9.5,
including (9.82), hold. Then, for all S 2 D; such that

" � D

�
kfS � f�kL2.˘/

_
kfS � f�kL

1

.˘/

r
t

n

�r
tn;m

n
;

with probability at least 1 � e�t ;

kf OA" � f�k2L2.˘/ � 2kfS � f�k2L2.˘/ C C

�
ˇ2.S/rank.S/"2 (9.95)

CkSk21tn;m
n

C kfS � f�k2L
1

.˘/

t C log.2m/

n
C n�1

�
:
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Note that in the case of sampling from an orthonormal basis E1; : : : ; Em2 (that
is, when ˘ is a probability distribution supported in the basis), the L1.˘/-norm
involved in the bounds of Theorem 9.5 coincides with the `1-norm:

kf kL
1

.˘/ D max
1�j�m2

jf .Ej /j; f W Hm.C/ 7! R:

We now turn to the problem of bounding the quantity �n WD �n;1.F /; where

F WD fhS; �i W S 2 Hm.C/; kSk1 � 1g:

Proposition 9.2. With some numerical constantK > 0; the following bound holds:

�n;1.F / � K log2 n E max
1�j�n kXj k22:

Proof. In fact, we will even prove that

�n;1.G / � K log2 n E max
1�j�n kXj k22;

where G WD fhS; �i W kSk2 � 1g 	 F : Note that

max
1�j�n jhS;Xj ij D sup

A2K
hS;Ai D kSkK ;

where K WD conv
n
Xj ;�Xj ; j D 1; : : : ; n

o
: Since B2 D fS W kSk2 � 1g is the

unit ball in a Hilbert space, we can use bound (3.3) to control �2.G IL1.Pn// as
follows:

�2.G IL1.Pn// D �2.B2I k � kK / � C

�Z 1

0

"H.B2I k � kK I "/d"
�1=2

; (9.96)

where C > 0 is a constant. Note that jf .Xj /j � kXj k2; f 2 G ; which implies

n
.f .X1/; : : : ; f .Xn// W f 2 G

o
� Œ�Vn; Vn�n;

where Vn WD max1�j�n kXj k2: Bounding the `n1-covering numbers of the cube
Œ�Vn; Vn�n; we get

N.B2I k � kK I "/ D N.G IL1.Pn/I "/ �
�
Vn

"
C 1

�n
; " � Vn: (9.97)

This bound will be used for small values of "; but, for larger values, we need a
bound with logarithmic dependence on n that can be derived from dual Sudakov’s
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bound (3.2). Take an orthonormal basis E1; : : : ; EN ; N D m.mC1/=2 of the space
Hm.C/ and use the isometry

Hm.C/ 3 S 7!
	
hS;E1i; : : : ; hS;EN i



2 `N2

to identify the unit ball B2 in Hm.C/ with the unit ball BN
2 in `N2 : It follows from

dual Sudakov’s bound (3.2) that, conditionally on X1; : : : ; Xn;

"H1=2.B2I k � kK I "/ D "H1=2.BN
2 I k � kK I "/

� C 0
EZ sup

t2K
hZ; ti`N2 D C 0

EZ max
1�j�nhZ;Xj i`N2 � C1Vn

p
logn;

where Z is a standard normal vector in R
N .D `N2 / and C1; C 0 > 0 are numerical

constants (with a minor abuse of notation, we identify matrices in Hm.C/ with
vectors in `N2 in the above relationships). As a result, the following bound holds:

H.B2I k � kK I "/ � C2
1

"2
V 2
n logn: (9.98)

Let ın WD n�1=2: We will use (9.97) for " � ınVn and (9.98) for " 2 .ınVn; Vn�: In
view of (9.96), we get the following bound:

�n;1.G / D E�22 .G IL1.Pn//

� C

�
nE

Z ınVn

0

log

�
Vn

"
C 1

�
"d"C C2

1 logn EV 2
n

Z Vn

ınVn

1

"
d"

�

D C

�
nEV 2

n

Z ın

0

log

�
1

"
C 1

�
"d"C C2

1 logn EV 2
n log

1

ın

�

� K 0
�
nı2n log

1

ın
C logn log

1

ın

�
EV 2

n � K log2 n E max
1�j�n kXj k22

with some constant K > 0: ut
In the case when the set D is bounded with RD WD supS2D

kSk1; it is easy to
derive a version of Theorem 9.5 with control of the error in terms of RD: To this
end, for t � 1; define

� WD log
	

logn _ logUX _ logRD _ log kf�kL2.˘/ _ 2


;

tn;m WD �n C U 2
X.t C � C log.2m//: (9.99)

Theorem 9.6. There exist constants c; C;D > 0 with the following property.
Suppose that tn;m � cn and also that (9.82) holds. Then the following bound holds
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with probability at least 1 � e�t W

kf OA" � f�k2L2.˘/ � inf
S2D

�
2kfS � f�k2L2.˘/ C C

�
ˇ2.S/rank.S/"2 (9.100)

CR2
D
tn;m

n
C kfS � f�k2L

1

.˘/

t C log.2m/

n
C n�1

��
:

Suppose now that f�.�/ WD hA; �i for some matrix A 2 Hm.C/; that D is a closed
convex subset of Hm.C/ and that A 2 D: In particular, it includes the case when
D D Hm.C/: Then, one can use S D A as an oracle in Corollary 9.4 to get the
following result.

Corollary 9.5. Under the notations of Theorem 9.5 and under the conditions tn;m �
cn and (9.82), the following bound holds with probability at least 1 � e�t W

k OA" �Ak2L2.˘/ � C

�
ˇ2.A/rank.A/"2 C kAk21tn;m C 1

n

�
: (9.101)

Next we turn to a couple of examples in which X;X1; : : : ; Xn are i.i.d. random
matrices sampled from an orthonormal basis in the space Mm.C/ of all m � m

matrices or in the space Hm.C/ of m � m Hermitian matrices. We will not discuss
similar problems for rectangular matrices, but it has been already shown at the end
of Sect. 9.2 how these problems can be reduced to the Hermitian case using the
Paulsen dilation.

Matrix Completion. As a first example, consider an orthonormal basis fEkj W
k; j D 1; : : : ; mg of the space Hm.C/; where

Ekk WD ek ˝ ek; k D 1; : : : ; m;

Ekj WD 1p
2
.ek ˝ ej C ej ˝ ek/; 1 � k < j � m and

Ejk WD ip
2
.ek ˝ ej � ej ˝ ek/; 1 � k < j � m:

Note that, for all A 2 Hm.C/ and for all k; hA;Ekki D Akk; and for k < j;

hA;Ekj i D p
2Re.Ajk/; hA;Ejki D p

2Im.Ajk/: Let ˘ denote the uniform
distribution in the basis fEkj W k; j D 1; : : : ; mg: Then, for all matrices B;
kBk2

L2.˘/
D m�2kBk22; which implies that ˇ.B/ � m: Sampling from the

distribution ˘ is equivalent to sampling the real parts and the imaginary parts of
the entries of matrix A at random with replacement.

Note that

�2X D kEX2k D sup
v2Cm;jvjD1

EhX2v; vi D sup
v2Cm;jvjD1

EjXvj2:
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For X D Ekk; we have jXvj2 D jhv; ekij2; and, for X D Ekj ; k < j;

jXvj2 D 1

2

ˇ̌
ˇhek; viej C hej ; viek

ˇ̌
ˇ
2 D 1

2
jhek; vij2 C 1

2
jhej ; vij2:

This easily implies that �2X � 2
m
: We also have kXk � 1; so, we can take UX D 1:

In the case of i.i.d. Gaussian noise with mean 0 and variance �2
� ; condition (9.82)

with ˛ D 2 can be written as

" � D��

�r
t C log.2m/

mn

_
log1=2 m

t C log.2m/

n

�
:

with a large enough constantD > 0: Assuming for simplicity that

m.t C log.2m// logm

n
� 1; (9.102)

one can take

" D D��

r
t C log.2m/

mn
: (9.103)

With this choice of regularization parameter " and under the assumption thatA 2 D;

Corollary 9.5 implies the following.

Corollary 9.6. Under the conditions tn;m � cn; (9.102) and (9.103), the following
bound holds with probability at least 1 � e�t W

k OA" �Ak2L2.˘/ � C

�
�2�
m rank.A/.t C log.2m//

n
C kAk21tn;m

n
C n�1

�
: (9.104)

Sampling from the Pauli basis. Another example is sampling from the Pauli basis
already discussed in Sect. 1.7. Recall that the Pauli basis in the space of 2 � 2

matrices M2.C/ was defined as Wi WD 1p
2
�i ; i D 1; 2; 3; 4; where

�1 WD
�
0 1

1 0

�
; �2 WD

�
0 �i
i 0

�
; �3 WD

�
1 0

0 �1
�

and �4 WD
�
1 0

0 1

�

are the Pauli matrices.. Let m D 2k; k � 1: The Pauli basis in the space Mm.C/

consists of all tensor productsWi1 ˝ � � � ˝Wik ; .i1; : : : ; ik/ 2 f1; 2; 3; 4gk: Assume
that ˘ is the uniform distribution in this basis and X;X1; : : : ; Xn are i.i.d. random
matrices sampled from ˘: Then, we have kBk2

L2.˘/
D m�2kBk22; implying that

ˇ.B/ � m: It is also easy to see that kXk � 2�k=2 D m�1=2: Therefore, one can
take UX D m�1=2 and we have

�2X � EkXk2 � m�1:
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In condition (9.82), �X can be replaced by an upper bound, say, UX D m�1=2: In
the case of centered Gaussian noise, condition (9.82) can be rewritten as

" � D��

�r
t C log.2m/

nm

_ t C log.2m/

n
p
m

�
:

Under the assumption t C log.2m/ � n; one can use the value of regularization
parameter

" D D��

r
t C log.2m/

nm
(9.105)

with a sufficiently large constant D:
As before, assume that D � Hm.C/ is a closed convex subset that contains A:

Corollary 9.7. Under the conditions tn;m � cn and (9.105), the following bound
holds with probability at least 1 � e�t W

k OA" �Ak2L2.˘/ � C

�
�2�
m rank.A/.t C log.2m//

n
C kAk21tn;m

n
C n�1

�
: (9.106)

An interesting special case is when D is the set of all density matrices, that is,
Hermitian nonnegatively definite matrices of trace 1: Such matrices describe the
states of a quantum system and Yj ; j D 1; : : : ; n can be viewed as measurements
of observables Xj ; j D 1; : : : ; n; provided that the system has been prepared each
time in the same state. The problem of estimation of the unknown state (density
matrix) based on measurement .X1; Y1/; : : : ; .Xn; Yn/ is very basic in quantum state
tomography, see [70, 71, 120]. In this case, for all " � 0; the estimator OA" coincides
with the unpenalized least squares estimator OA;

OA WD argminS2D
n�1

nX

jD1

	
Yj � hS;Xj i


2
:

Indeed, for all S 2 D; kSk1 D tr.S/ D 1; so, the penalty term in the definition
of OA" is a constant on the set D: However, the bound of Corollary 9.7 and other
bounds of this type hold for the estimator OA: For instance, the oracle inequality of
Theorem 9.6 takes in this case the following form

kf OA � f�k2L2.˘/ � 2kfS � f�k2L2.˘/

CC
�
ˇ2.S/rank.S/"2 C kfS � f�k2L

1

.˘/

tn;m

n
C tn;m

n

�

and it holds for all density matrices S:
Another interesting special case is when D � Hm.C/ is a closed convex set

of diagonal m � m matrices that can be identified with m-dimensional vectors, so
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that D can be viewed as a convex subset of R
m: As we have already pointed out

in Sect. 9.2, this special case of low rank recovery is equivalent to the usual sparse
recovery discussed in Chaps. 7–8 and the results on nuclear norm penalized least
squares estimators, such as Theorem 9.5, easily imply oracle inequalities for the
LASSO. This reduction has been already discussed in Sect. 9.2, so, we will only
formulate here a corollary of Theorem 9.5. We will use the notations of Chaps. 7–8
and of Sect. 9.2. In particular, denote ˇ.	/ WD ˇ

.5/
2 .J	I˘/; where J	 WD supp.	/:

We will also assume that the functions in the dictionary fh1; : : : ; hmg are uniformly
bounded and denote

�2X WD max
1�k�m

˘h2k; UX WD max
1�k�m

khkkL
1

.˘/:

We will use the quantity tn;m defined by (9.79) with �n D �n;1.F /; where

F WD
n
f	 W 	 2 l:s:.D/; k	k`1 � 1

o

(which, in the case under consideration, is equivalent to the general definition used
in Theorem 9.5). We also use the notation

q."/ WD qt .DI "/ WD inf
	2D

�
kf	 � f�k2L2.˘/ C "k	k`1 C kf	 � f�k2L

1

.˘/

t

n

�
:

Corollary 9.8. There exist constants c; C;D > 0 with the following property.
Suppose that tn;m � cn and that

" � D

�
���X

r
t C log.2m/

n

_
U
.˛/

� UX log1=˛
�
U
.˛/

�

��

UX

�X

�
t C log.2m/

n

�
:

(9.107)
Then the following bound holds with probability at least 1 � e�t W

kfO	" � f�k2L2.˘/ � inf
	2D

�
2kf	 � f�k2L2.˘/ C C

�
ˇ2.	/card.J	/"2 (9.108)

C
�

k	k2`1 _ q2."/

"2

�
tn;m

n
C kf	 � f�k2L

1

.˘/

t C log.2m/

n
C n�1

��
:

In the case when

D WD
�
.	1; : : : ; 	m/ W 	j � 0;

mX

jD1
	j D 1

�
;

the estimators O	"; " � 0 coincide with the least squares estimator over the convex
hull of the dictionary
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O	 WD argmin	2D
n�1

nX

jD1
.Yj � f	.Xj //

2;

so, the oracle inequality of Corollary 9.8 applies to the least squares estimator O	:
The following proposition can be used to bound the quantity �n involved in the

definition of tn;m and in oracle inequality (9.108).

Proposition 9.3. There exists a constantK > 0 such that

�n � KU2
X log3 n logm: (9.109)

Proof. The proof is based on a version of well known Maurey’s argument (see,
for instance, Lemma 2.6.11 in [148]). We will start with bounding the L1.˘n/-
covering numbers of the convex hull of the dictionary

G WD conv.fh1; : : : ; hmg/ D
�
f	 W 	j � 0;

mX

jD1
	j D 1

�
:

Any vector 	 with 	j � 0 and
Pm

jD1 	j D 1 can be viewed as a probability
distribution on the dictionary fh1; : : : ; hmg: Let �; �1; : : : ; �N be an i.i.d. sample
from this distribution (that is, �j takes value hk with probability 	k) defined on
a probability space .˝ 0; ˙ 0;P0/: Clearly, E

0� D f	: We will apply symmetrization
inequality followed by Theorem 3.5 to an empirical process based on .�1; : : : ; �N /
to get

E
0
���N�1

NX

jD1
�j � f	

���
L

1

.˘n/
� CUX

r
logn

N
:

It follows that there exists !0 2 ˝ 0 such that

���N�1
NX

jD1
�j .!

0/ � f	
���
L

1

.˘n/
� CUX

r
logn

N
:

Note that the number of possible choices of .�1; : : : ; �N /; where �j 2 fh1; : : : ; hmg;
is at most mN: Let N be the smallest number for which CUX

q
log n
N

� "; which
implies

N � C1U
2
X

logn

"2
: (9.110)

Then N.G IL1.˘n/I "/ � mN : Note also that

F D ff	 W k	k`1 � 1g D conv.f0; h1;�h1; : : : ; hm;�hmg/:

Hence, we have
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N.F IL1.˘n/I "/ � .2mC 1/N : (9.111)

On the other hand, we have an obvious bound (see also the proof of Proposition 9.2)

N.F IL1.Pn/I "/ �
�
UX

"
C 1

�n
; " � UX (9.112)

and we will use (9.111) for " � UXn
�1=2 and (9.112) for " � UXn

�1=2: We
can bound the generic chaining complexity �2.F IL1.˘n// in terms of Dudley’s
entropy integral, use (9.112) and (9.111) in the respective intervals of values of "
and also use (9.110) to get

�2.F IL1.˘n// � C2

�Z UXn
�1=2

0

s

n log

�
UX

"
C 1

�
d"

C
Z UX

UXn�1=2

p
log.2mC 1/UX

p
logn

d"

"

�

D C2

�p
nUX

Z n�1=2

0

s

log

�
1

"
C 1

�
d"C UX

p
log.2mC 1/ logn log.n1=2/

�

� C3UX
p

logm log3=2 n: (9.113)

It immediately follows that

�n D �n;1.F / D E�22 .F IL1.˘n// � KU2
X log3 n logm: ut

9.5 Further Comments

Nuclear norm minimization has been used for a while as a heuristic approach to
low rank matrix recovery. Theoretical understanding of this method in the case
of noiseless matrix completion started with the papers by Recht et al. [125] and
Candes and Recht [41]. Generally speaking, matrix completion with no error is
impossible unless almost all the entries of the matrix are observed (it is enough
to consider a matrix with only one non-zero entry: for such a matrix, the probability
to miss the non-zero entry is close to 1 unless the number of the observed entries
is comparable with the total number of entries in the matrix). However, under a
reasonable assumption that the row and column spaces of the target matrix have
“low coherence”, these authors were able to prove that it is possible to recover the
matrix based on a much smaller number of measurements and that this number
depends on the rank of the target matrix. Candes and Tao [45] obtained the first
tight bound on the number of randomly sampled entries needed for precise matrix
completion. For an m �m matrix, this number is equal to mr (up to a logarithmic
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factor), where r is the rank of the matrix. The proof of this result was rather involved
and relied heavily on noncommutative probability and random matrix theory. Sharp
bounds for precise matrix completion were also obtained by Keshavan et al. [75].
Gross et al. [71] and Gross [70] developed a different approach to the analysis of low
rank matrix recovery problems based on a noncommutative version of Bernstein’s
inequality developed earlier by Ahlswede and Winter [4]. Using this inequality,
they simplified the argument of Candes and Tao, improved the logarithmic factor in
their bound and extended the result to a broader class of matrix recovery problems
based on sampling of Fourier coefficients in a given basis in the space of matrices,
including important problems in quantum state tomography. Tropp [142] provided
a review of exponential inequalities for sums of independent random matrices and
matrix valued martingales extending the initial result of Ahlswede and Winter [4]
(see also [88] for a  ˛-version of such exponential bounds).

Candes and Plan [40], Rohde and Tsybakov [127], Koltchinskii [88], Negahban
and Wainwright [118], Koltchinskii et al. [90], Lecué and Gaiffas [98] started
developing error bounds in low rank matrix recovery in the presence of noise. Our
approach to the matrix regression with subgaussian isotropic design in the first part
of Sect. 9.3 (reduction to the fixed design case using a matrix version of restricted
isometry condition) is akin to the approach in [40] and the proof of Theorem 9.1 in
Sect. 9.2 resembles the proof of the main result in [90]. In addition to the approach
based on nuclear norm penalization, Rohde and Tsybakov [127] obtained error
bounds for some other methods of low rank recovery based on the penalization
with Schatten “p-norms” with p < 1 and studied a number of examples including
multi-task learning. Koltchinskii [88] obtained “low rank oracle inequalities” for
estimators of a density matrix (in quantum state tomography) based on penalized
least squares method with a complexity penalty based on von Neumann entropy.
Lecué and Gaiffas [98] studied a number of complexity penalties including a matrix
version of “elastic nets” for which they proved oracle inequalities with “slow rates”.
Koltchinskii et al. [90] studied a modification of nuclear norm penalized least
squares method suitable in the case of random design matrix regression problems
with known design distribution (in the case of fixed design regression, this method
coincides with the penalized least squares). They also obtained minimax lower
bounds for low rank matrix recovery problems.

Propositions 9.2 and 9.3 are similar to what has been already used in sparse and
low rank recovery (see Bartlett et al. [18] and Lecué and Gaiffas [98]).

The literature on low rank matrix recovery is vast, it keeps growing and it is not
our goal here to provide its comprehensive review. Some further references can be
found in the papers cited above.



Appendix A
Auxiliary Material

A.1 Orlicz Norms

We frequently use Orlicz norms k � k of random variables. Given a convex
nondecreasing function  W RC 7! RC with  .0/ D 0 and a random variable �
on a probability space .˝;˙;P/; define

k�k WD inf

�
C > 0 W E 

� j�j
C

�
� 1

�

(see Ledoux and Talagrand [101], van der Vaart and Wellner [148], de la Pena and
Giné [50]). If we want to emphasize the dependence of the Orlicz norms on the
probability measure, we write k � kL .P/ (similarly, k � kL .P /; k � kL .˘/; etc).

If  .u/ D up for some p � 1; then the  -norm coincides with the usual Lp-
norm. Some other useful choices of function correspond to Orlicz norms in spaces
of random variables with subgaussian or subexponential tails. For ˛ > 0; define

 ˛.u/ WD eu˛ � 1; u � 0:

Most often,  2- and  1-norms are used (the first one being the “subgaussian norm”
and the second one being the “subexponential norm”). Note that, for ˛ < 1; the
function ˛ is not convex and, as a result, k�k ˛ is not a norm. However, to overcome
this difficulty, it is enough to modify ˛ in a neighborhood of 0: As it is common in
the literature, we ignore this minor inconvenience and use k � k ˛ as a norm even for
˛ < 1: Moreover, usually, we need the  ˛-norms for ˛ � 1: The following bounds
are well known (see [148], p. 95):

k�k ˛1 � .log 2/˛1=˛2k�k ˛2 ; 1 � ˛1 � ˛2

and, for all p 2 .m � 1;m�; m D 2; 3; : : : k�kLp � mŠk�k 1 :
It easily follows from the definition of  ˛-norms that

V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems, Lecture Notes in Mathematics 2033, DOI 10.1007/978-3-642-22147-7,
© Springer-Verlag Berlin Heidelberg 2011
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Pfj�j � tg � 2 exp

�
�
�

t

k�k ˛

�˛�
:

Another well known fact is that, for many convex nondecreasing functions  ;
including  .u/ D up with p � 1 and  ˛ with ˛ � 1; for all N � 1 and for all
random variables �1; : : : ; �N

��� max
1�k�N �k

���
 

� K max
1�k�N k�kk  �1.N /;

whereK is a constant depending on  (see, e.g., [148], Lemma 2.2.2).

A.2 Classical Exponential Inequalities

LetX1; : : : ; Xn be independent random variables with EXj D 0; j D 1; : : : ; n:We
state below several classical exponential bounds for the sum

Sn WD X1 C � � � CXn:

Denote B2
n WD EX2

1 C � � � C EX2
n:

• Bernstein’s inequality. Suppose jXj j � U; j D 1; : : : ; n: Then,

PfSn � tg � exp

�
� t2

2B2
n

�
1C tU

3B2n

�
�
:

• Bennett’s inequality. Suppose jXj j � U; j D 1; : : : ; n: Then,

PfSn � tg � exp

�
�B

2
n

U 2
h

�
tU

B2
n

��
;

where h.u/ WD .1C u/ log.1C u/� u:
• Hoeffding’s inequality. Suppose aj < bj ; j D 1; : : : ; n; Xj 2 Œaj ; bj �;

EXj D 0, j D 1; : : : ; n: Then,

P

n
Sn � t

o
� exp

�
� 2t2Pn

jD1.bj � aj /2

�
; t � 0:

• Bernstein’s type inequality for  1-random variables. Suppose kXjk 1 � V:

Then,

PfSn � tg � exp

�
�c
�
t2

nV 2

^ t

V

��
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with some universal constant c > 0:

Bernstein’s inequality easily implies that, for all t > 0; with probability at least
1 � e�t

jSnj � C.Bn
p
t _ Ut/;

where C is a numerical constant. We frequently use this form of Bernstein’s
inequality and other inequalities of similar type.

A.3 Properties of ]- and [-Transforms

Here we provide some properties of ]- and [-transforms introduced in Sect. 4.1 and
used in the construction of excess risk bounds. The proofs of these properties are
rather elementary. We are mainly interested in ]-transform.

1. If  .u/ D o.u/ as u ! 1; then the function  ] is defined on .0;C1/ and is
a nonincreasing function on this interval.

2. If 1 �  2; then ]1 �  
]
2 :Moreover, if 1.ı/ �  2.ı/ either for all ı� ]2."/;

or for all ı� ]1."/� 
 with an arbitrary 
 > 0; then also  ]1."/� ]2."/:
3. For all a > 0;

.a /]."/ D  ]."=a/:

4. If " D "1 C � � � C "m; then

 
]
1."/

_
� � �
_
 ]m."/ � . 1 C � � � C  m/

]."/ �  
]
1."1/

_
� � �
_
 ]m."m/:

5. If  .u/ 
 c; then
 ]."/ D c=":

6. If  .u/ WD u˛ with ˛ � 1; then

 ]."/ WD "�1=.1�˛/:

7. For c > 0; denote  c.ı/ WD  .cı/: Then

 ]c ."/ D 1

c
 ]."=c/:

If  is nondecreasing and c � 1; then

c ].u/ �  ].u=c/:

8. For c > 0; denote  c.ı/ WD  .ı C c/: Then for all u > 0; " 2 .0; 1�

 ]c .u/ � . ]."u=2/� c/ _ c":
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Recall the definitions of functions of concave type and strictly concave type
from Sect. 4.1.

9. If  is of concave type, then  ] is the inverse of the function

ı 7!  .ı/

ı
:

In this case,
 ].cu/ �  ].u/=c

for c � 1 and
 ].cu/ �  ].u/=c

for c � 1:

10. If  is of strictly concave type with exponent �; then for c � 1

 ].cu/ �  ].u/c� 1
1�� :

A.4 Some Notations and Facts in Linear Algebra

Let L be a linear space. The following notations are frequently used: l:s:.B/ for a
linear span of a subset B � L;

l:s:.B/ WD
� nX

jD1
	j xj W n � 1; 	j 2 R; xj 2 B

�
I

conv.B/ for its convex hull,

conv.B/ WD
� nX

jD1
	j xj W n � 1; 	j � 0;

nX

jD1
	j D 1; xj 2 B

�
I

and convs.B/ for its symmetric convex hull,

convs.B/ WD
� nX

jD1
	j xj W n � 1; 	j 2 R;

nX

jD1
j	j j � 1; xj 2 B

�
:

For vectors u; v 2 C
m or u; v 2 R

m; hu; vi denotes the standard Euclidean inner
product of u and vI juj denotes the corresponding norm of u: Notations kuk`2 or
kuk`m2 are also used for the same purpose.

For vectors u; v in C
m (or other real and complex Euclidean spaces), u˝v denotes

their tensor product, that is, the linear transformation defined by
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.u ˝ v/x D hv; xiu:

Given a subspace L � C
m (more generally, a subspace of any Euclidean

space), PL denotes the orthogonal projection ontoL and L? denotes the orthogonal
complement of L:

We use the notations Mm1;m2.R/ and Mm1;m2.C/ for the spaces of all m1 � m2

matrices with real or complex entries, respectively. In the case whenm1 D m2 D m;

we use the notations Mm.R/ and Mm.C/: The space of all Hermitianm�mmatrices
is denoted by Hm.C/: For A;B 2 Hm.C/; the notation A � B means that B �A is
nonnegatively definite.

We denote by rank.A/ the rank of a matrix A and by tr.A/ the trace of a
square matrix A: Given A 2 Mm1;m2.C/; A

� denotes its adjoint matrix. We use the
notations h�; �i for the Hilbert–Schmidt inner product of two matrices of the same
size,

hA;Bi D tr.AB�/;

k � k for the operator norm of matrices and k � kp; p � 1 for their Schatten p-norm:

kAkp WD
�X

k

�
p

k .A/

�1=p
;

where f�k.A/g denote the singular values of the matrix A (usually, arranged in a
nonincreasing order). In particular, k � k2 is the Hilbert–Schmidt or Frobenius norm
and k � k1 is the nuclear norm. The notation k � k is reserved for the operator norm.
Given a probability distribution ˘ in Hm.C/; we also associate with a matrix B 2
Hm.C/ the linear functional hB; �i and define the L2.˘/ norm of B as the L2.˘/-
norm of this functional:

kBk2L2.˘/ WD
Z

Hm.C/

hB; xi2˘.dx/:

We use the corresponding inner product h�; �iL2.˘/ in the space of matrices.
For a matrix S 2 Hm.C/ of rank r with spectral decomposition

S D
rX

jD1
	j .ej ˝ ej /;

where e1; : : : ; er are the eigenvectors corresponding to the non-zero eigenvalues
	1; : : : ; 	r ; define the support of S as supp.S/ WD l:s:.fe1; : : : ; erg/: Also, define

jS j WD
p
S2 D

rX

jD1
j	j j.ej ˝ ej /

and
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sign.S/ WD
rX

jD1
sign.	j /.ej ˝ ej /:

It is well known that the subdifferential of the convex function Hm.C/ 3 S 7! kSk1
has the following representation (see, e.g., [151]):

@kSk1 D
n
sign.S/C PL?

WPL?
W kW k � 1

o
;

where L WD supp.S/:
Some other facts of linear algebra used in Chap. 9 can be found in [21].
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