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Preface to the Third Edition

Main innovations in this edition concern the averaging principle. A new section
on deterministic perturbations of one-degree-of-freedom systems was added in
Chap. 8. We show there that pure deterministic perturbations of an oscillator
may lead to a stochastic, in a certain sense, long-time behavior of the system, if
the corresponding Hamiltonian has saddle points. To give a rigorous meaning to
this statement, one should, first, regularize the system by the addition of small
random perturbations. It turns out that the stochasticity of long-time behavior is
independent of the regularization. The stochasticity is an intrinsic property of the
original system related to the instability of saddle points. This shows usefulness
of a joint consideration of classical theory of deterministic perturbations together
with stochastic perturbations.

We added a new Chap. 9 where deterministic and stochastic perturbations
of systems with many degrees of freedom are considered. Because of the reso-
nances, stochastic regularization in this case is even more important.

Small changes in the chapters where long-time behavior of the perturbed sys-
tem is determined by large deviations were made. Most of these changes, ac-
tually, concern the terminology. In particular, we explained that the notion of
sub-limiting distribution for a given initial point and a time scale is identical to
the notion of metastability. We also explained that the stochastic resonance is a
manifestation of metastability and the theory of this effect is a part of the large
deviation theory. We also made some comments on the notion of quasi-potential
which we introduced more than forty years ago. One should say that many of
notions and results presented in this book became quite popular in applications,
and many of them were later rediscovered in applied papers.

We also added references to recent papers where the proofs of some conjec-
tures included in previous editions were obtained.

College Park, Maryland
New Orleans, Louisiana

M.I. Freidlin
A.D. Wentzell



Preface to the Second Edition

The first edition of this book was published in 1979 in Russian. Most of the mate-
rial presented was related to large-deviation theory for stochastic processes. This
theory was developed more or less at the same time by different authors in differ-
ent countries. This book was the first monograph in which large-deviation theory
for stochastic processes was presented. Since then a number of books specially
dedicated to large-deviation theory have been published, including S. R. S. Varad-
han [4], A. D. Wentzell [10], J.-D. Deuschel and D. W. Stroock [1], A. Dembo
and O. Zeitouni [1]. Just a few changes were made for this edition in the part
where large deviations are treated. The most essential is the addition of two new
sections in the last chapter. Large deviations for infinite-dimensional systems are
briefly considered in one new section, and the applications of large-deviation the-
ory to wave front propagation for reaction-diffusion equations are considered in
another one.

Large-deviation theory is not the only class of limit theorems arising in the
context of random perturbations of dynamical systems. We therefore included in
the second edition a number of new results related to the averaging principle.
Random perturbations of classical dynamical systems under certain conditions
lead to diffusion processes on graphs. Such problems are considered in the new
Chap. 8. Some new results concerning fast oscillating perturbations of dynamical
systems with conservation laws are included in Chap. 7. A few small additions
and corrections were made in the other chapters as well. We would like to thank
Ruth Pfeiffer and Fred Torcaso for their help in the preparation of the second
edition of this book.

College Park, Maryland
New Orleans, Louisiana

M.I. Freidlin
A.D. Wentzell



Preface

Asymptotical problems have always played an important role in probability the-
ory. In classical probability theory dealing mainly with sequences of independent
variables, theorems of the type of laws of large numbers, theorems of the type of
the central limit theorem, and theorems on large deviations constitute a major
part of all investigations. In recent years, when random processes have become
the main subject of study, asymptotic investigations have continued to play a ma-
jor role. We can say that in the theory of random processes such investigations
play an even greater role than in classical probability theory, because it is ap-
parently impossible to obtain simple exact formulas in problems connected with
large classes of random processes.

Asymptotical investigations in the theory of random processes include results
of the types of both the laws of large numbers and the central limit theorem and, in
the past decade, theorems on large deviations. Of course, all these problems have
acquired new aspects and new interpretations in the theory of random processes.

One of the important schemes leading to the study of various limit theorems
for random processes is dynamical systems subject to the effect of random per-
turbations. Several theoretical and applied problems lead to this scheme. It is
often natural to assume that, in one sense or another, the random perturbations
are small compared to the deterministic constituents of the motion. The problem
of studying small random perturbations of dynamical systems has been posed in
the paper by Pontrjagin, Andronov, and Vitt [1]. The results obtained in this arti-
cle relate to one-dimensional and partly two-dimensional dynamical systems and
perturbations leading to diffusion processes. Other types of random perturbations
may also be considered; in particular, those arising in connection with the aver-
aging principle. Here the smallness of the effect of perturbations is ensured by
the fact that they oscillate quickly.

The contents of the book consists of various asymptotic problems arising as
the parameter characterizing the smallness of random perturbations converges
to zero. Of course, the authors could not consider all conceivable schemes of
small random perturbations of dynamical systems. In particular, the book does
not consider at all dynamical systems generated by random vector fields. Much
attention is given to the study of the effect of perturbations on large time inter-
vals. On such intervals small perturbations essentially influence the behavior of
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the system in general. In order to take account of this influence, we have to be
able to estimate the probabilities of rare events, i.e., we need theorems on the
asymptotics of probabilities of large deviations for random processes. The book
studies these asymptotics and their applications to problems of the behavior of a
random process on large time intervals, such as the problem of the limit behavior
of the invariant measure, the problem of exit of a random process from a domain,
and the problem of stability under random perturbations. Some of these problems
have been formulated for a long time and others are comparatively new.

The problems being studied can be considered as problems of the asymp-
totic study of integrals in a function space, and the fundamental method used
can be considered as an infinite-dimensional generalization of the well-known
method of Laplace. These constructions are linked to contemporary research in
asymptotic methods. In the cases where, as a result of the effect of perturbations,
diffusion processes are obtained, we arrive at problems closely connected with
elliptic and parabolic differential equations with a small parameter. Our investi-
gations imply some new results concerning such equations. We are interested in
these connections and as a rule include the corresponding formulations in terms
of differential equations.

We would like to note that this book is being written when the theory of large
deviations for random processes is just being created. There have been a series of
achievements but there is still much to be done. Therefore, the book treats some
topics that have not yet taken their final form (part of the material is presented in
a survey form). At the same time, some new research is not reflected at all in the
book. The authors attempted to minimize the deficiencies connected with this.

The book is written for mathematicians but can also be used by specialists of
adjacent fields. The fact is that although the proofs use quite intricate mathemat-
ical constructions, the results admit a simple formulation as a rule.
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Introduction

Let b(x) be a continuous vector field in Rr. First we discuss nonrandom pertur-
bations of a dynamical system

ẋt = b(xt). (1)

We may consider the perturbed system

Ẋt = b(Xt, ψt), (2)

where b(x, y) is a function jointly continuous in its two arguments and turning
into b(x) for y = 0. We shall speak of small perturbations if the function ψ giving
the perturbing effect is small in one sense or another.

We may speak of problems of the following kind: the convergence of the
solution Xt of the perturbed system to the solution xt of the unperturbed system
as the effect of the perturbation decreases, approximate expressions of various
accuracies for the deviations Xt − xt caused by the perturbations, and the same
problems for various functionals of a solution (for example, the first exit time
from a given domain D).

To solve the kind of problems related to a finite time interval we require less
of the function b(x, y) than in problems connected with an infinite interval (or
a finite interval growing unboundedly as the perturbing effect decreases). The
simplest result related to a finite interval is the following: if the solution of the
system (1) with initial condition x0 at t = 0 is unique, then the solution Xt of
system (2) with initial condition X0 converges to xt uniformly in t ∈ [0, T ] as
X0 → x0 and ‖ψ‖0T = sup0≤t≤T |ψt| → 0. If the function b(x, y) is differ-
entiable with respect to the pair of its arguments, then we can linearize it near
the point x = xt, y = 0 and obtain a linear approximation δt of Xt − xt as the
solution of the linear system

δ̇it =
∑

j

∂bi

∂xj
(xt, 0)δ

j
t +

∑

k

∂bi

∂yk
(xt, 0) · ψk

t ; (3)

under sufficiently weak conditions, the norm sup0≤t≤T |Xt − xt − δt| of the
remainder will be o(|X0 − x0| + ‖ψ‖0T ). If b(x, y) is still smoother, then we
have the decomposition
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Xt = xt + δt + γt + o(|X0 − x0|2 + ‖ψ‖20T ), (4)

in which γt depends quadratically on perturbations of the initial conditions and
the right side (the function γt can be determined from a system of linear differ-
ential equations with a quadratic function of ψt, δt on the right side), etc.

We may consider a scheme

Ẋε
t = b(Xε

t , εψt) (5)

depending on a small parameter ε, where ψt is a given function. In this case for
the solution Xε

t with initial condition Xε
0 = x0 we can obtain a decomposition

xt + εY
(1)
t + ε2Y

(2)
t + · · ·+ εnY

(n)
t (6)

in powers of ε with the remainder infinitely small compared with εn, uniformly
on any finite interval [0, T ].

Under more stringent restrictions on the function b(x, y), results of this kind
can be obtained for perturbations ψ, which are not small in the norm of uniform
convergence but rather, for example, in some Lp-norm or another.

As far as results connected with an infinite time interval are concerned, sta-
bility properties of the unperturbed system (1) as t→∞ are essential.

Let x∗ be an equilibrium position of system (1), i.e., let b(x∗) = 0. Let this
equilibrium position be asymptotically stable, i.e., for any neighborhood U � x∗
let there exist a small neighborhood V of x∗ such that for any x0 ∈ V the trajec-
tory xt starting at x0 does not leave U for t ≥ 0 and converges to x∗ as t → ∞.
Denote by G∗ the set of initial points x0 from which there start solutions con-
verging to x∗ as t → ∞. For any neighborhood U of x∗ and any point x0 ∈ G∗
there exist δ > 0 and T > 0 such that for

|X0 − x0| < δ, sup0≤t<∞ |ψt| < δ

the solution Xt of system (2) with initial condition x0 does not go out of U for
t ≥ T . This holds uniformly in x0 within any compact subset of G∗ (i.e., δ and
T can be chosen the same for all points x0 of this compactum). This also implies
the uniform convergence of Xt to xt on the infinite interval [0,∞) provided that
X0 → x0, sup0≤t<∞ |ψt| → 0.

On the other hand, if the equilibrium position x∗ does not have the indicated
stability properties, then by means of arbitrarily small perturbations, the solution
Xt of the perturbed system can be “carried away” from x∗ for sufficiently large
t even if the initial point X0 equals x∗. In particular, there are cases where the
solution xt of the unperturbed system cannot leave some domain D for t ≥ 0,
but the solution Xt of the system obtained from the initial one by an arbitrarily
small perturbation leaves the domain in finite time.

Some of these results also hold for trajectories attracted not to a point x∗ but
rather a compact set of limit points, for example, for trajectories winding on a
limit cycle.
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There are situations where besides the fact that the perturbations are small,
we have sufficient information on their statistical character. In this case it is ap-
propriate to develop various mathematical models of small random perturbations.

The consideration of random perturbations extends the notion of perturba-
tions considered in classical settings at least in two directions. Firstly, the re-
quirements of smallness become less stringent: instead of absolute smallness for
all t (or in integral norm) it may be assumed that the perturbations are small
only in mean over the ensemble of all possible perturbations. Small random per-
turbations may assume large values but the probability of these large values is
small. Secondly, the consideration of random processes as perturbations extends
the notion of the stationarity character of perturbations. Instead of assuming that
the perturbations themselves do not change with time, we may assume that the
factors which form the statistical structure of the perturbations are constant, i.e.,
the perturbations are stationary as random processes.

Such an extension of the notion of a perturbation leads to effects not charac-
teristic of small deterministic perturbations. Especially important new properties
occur in considering a long lasting effect of small random perturbations.

We shall see what models of small random perturbations may be like and
what problems are natural to consider concerning them. We begin with perturba-
tions of the form

Ẋε
t = b(Xε

t , εψt), (7)

where ψt is a given random process, for example, a stationary Gaussian process
with known correlation function. (Nonparametric problems connected with arbi-
trarily random processes which belong to certain classes and are small in some
sense are by far more complicated.) For the sake of simplicity, let the initial point
X0 not depend on ε: Xε

0 = x0. If the solution of system (7) is unique, then the
random perturbation ψ(t) leads to a random process Xε

t .
The first problem which arises is the following: Will Xε

t converge to the
solution xt of the unperturbed system as ε→ 0? We may consider various kinds
of probabilistic convergence: convergence with probability 1, in probability, and
in mean. If sup0≤t≤T |ψt| < ∞ with probability 1, then, ignoring the fact that
the realization of ψt is random, we may apply the results presented above to
perturbations of the form εψt and obtain, under various conditions on b(x, y),
that Xε

t → xt with probability 1, uniformly in t ∈ [0, T ] and that

Xε
t = xt + εY

(1)
t + o(ε) (8)

or
Xε

t = xt + εY
(1)
t + · · ·+ εnY

(n)
t + o(εn) (9)

(o(ε) and o(εn) are understood as being satisfied with probability 1 uniformly in
t ∈ [0, T ] as ε→ 0).

Nevertheless, it is not convergence with probability 1 which represents the
main interest from the point of view of possible applications. In considering small
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random perturbations, perhaps we shall not have to do with Xε
t for various ε

simultaneously but only for one small ε. We shall be interested in questions such
as: Can we guarantee with practical certainty that for a small ε the value of Xε

t is
close to xt? What will the order of the deviation Xε

t − xt be? What can be said
about the distribution of the values of the random process Xε

t and functionals
thereof? etc. Fortunately, convergence with probability 1 implies convergence in
probability, so that Xε

t will converge to xt in probability, uniformly in t ∈ [0, T ]
as ε→ 0:

P
{

sup
0≤t≤T

|Xε
t − xt| ≥ δ

}
→ 0 (10)

for any δ > 0.
For convergence in mean we have to impose still further restrictions on

b(x, y) and ψt; we shall not discuss this.
From the sharper result (8) it follows that the random process

Y ε
t =

Xε
t − xt

ε

converges to a random process Y (1)
t in the sense of distributions as ε → 0 (this

latter process is connected with the random perturbing effect ψt through linear
differential equations). In particular, this implies that if ψt is a Gaussian process,
then in first approximation, the random process Xε

t will be Gaussian with mean
xt and correlation function proportional to ε2. This implies the following result:
if f is a smooth scalar-valued function in Rr and grad f(xt0) �= 0, then

P

{
f(Xε

t0)− f(xt0)

ε
≤ x

}
= Φ

(
x

σ

)
+ o(1) (11)

as ε → 0, where Φ(y) =
∫ y

−∞(1/
√
2π)e−z2/2 dz is the Laplace function and

σ is determined from grad f(xt0) and the value of the correlation function of
Y

(1)
t at the point (t0, t0). We may obtain sharper results from (9): an expansion

of the remainder o(1) in powers of ε. We may also obtain results relative to
asymptotic distributions of functionals of Y ε

t , 0 ≤ t ≤ T , and sharpenings of
them, connected with asymptotic expansions.

Hence for random perturbations of the form (7) we may pose and solve a se-
ries of problems characteristic of the limit theorems of probability theory. Results
on the convergence in probability of a random solution of the perturbed system
to a nonrandom function correspond to laws of large numbers for sums of inde-
pendent random variables. We can speak of the limit distribution under a suitable
normalization; this corresponds to results of the type of the central limit theorem.
Also as in sharpenings of the central limit theorem, we may obtain asymptotic
expansions in powers of the parameter.

In the limit theorems for sums of independent random variables there is still
another direction: the study of probabilities of large deviations (after normaliza-
tion) of a sum from the mean. Of course, all these probabilities converge to zero.
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Nevertheless we may study the problem of finding simple expressions equivalent
to them or the problem of sharper (or rougher) asymptotics of them. The first gen-
eral results concerning large deviations for sums of independent random variables
have been obtained by Cramér [1]. These results have to do with asymptotics, up
to equivalence, of probabilities of the form

P

{
ξ1 + · · ·+ ξn − nm

σ
√
n

> x

}
(12)

as n→∞, x→∞ and also asymptotic expansions for such probabilities (under
more stringent restrictions).

We may be interested in analogous problems for a family of random processes
Xε

t arising as a result of small random perturbations of a dynamical system. For
example, let A be a set in a function space on the interval [0, T ], which does not
contain the unperturbed trajectory xt (and is at a positive distance from it). Then
the probability

P{Xε ∈ A} (13)

of the event that the perturbed trajectory Xε
t belongs to A, of course, converges

to 0 as ε→ 0, but what is the asymptotics of this infinitely small probability?
It may seem that such digging into extremely rare events contradicts the gen-

eral spirit of probability theory, which ignores events of small probability. Never-
theless, it is exactly this determination of which almost unlikely events related to
the random process Xε

t on a finite interval are “more improbable” and which are
“less improbable,” that, in several cases, serves as a key to the question of what
the behavior, with probability close to 1, of the process Xε

t will be on an infinite
time interval (or on an interval growing with decreasing ε).

Indeed, for the sake of definiteness, we consider the particular case of pertur-
bations of the form (7):

Ẋε
t = b(Xε

t ) + εψt. (14)

Furthermore, let ψt be a stationary Gaussian process. Assume that the trajectories
of the unperturbed system (1), beginning at points of a bounded domain D, do
not leave this domain for t ≥ 0 and are attracted to a stable equilibrium position
x∗ as t → ∞. Will the trajectories of the perturbed system (14) also have this
property with probability near 1? The results above related to small nonrandom
perturbations cannot help us answer this question, since the supremum of |ψt|
for t ∈ [0,∞) is infinite with probability 1 (if we do not consider the case of
“very degenerate” processes ψt). We have to approach this question differently.
We divide the time axis [0,∞) into a countable number of intervals of length T .
On each of these intervals, for small ε, the most likely behavior of Xε

t is such
that the supremum of |Xε

t − xt| over the interval is small. (For intervals with
large indices, Xε

t will be simply close to x∗ with overwhelming probability.)
All other ways of behavior, in particular, the exit of Xε

t from D on a given time
interval, will have small probabilities for small ε. Nonetheless, these probabilities
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are positive for any ε > 0. (Again, we exclude from our considerations the class
of “very degenerate” random processes ψt.) For a given ε > 0 the probability

P{Xε
t /∈ D for some t ∈ [kT, (k + 1)T ]} (15)

will be almost the same for all intervals with large indices. If the events involving
the behavior of our random process on different time intervals were independent,
we would obtain from this that sooner or later, with probability 1, the process
Xε

t leaves D and the first exit time τ ε has an approximately exponential distribu-
tion with parameter T−1P{Xε

t exits from D for some t ∈ [kT, (k + 1)T ]}. The
same will happen if these events are not exactly independent but the dependence
between them decreases for distant intervals in a certain manner. This can be en-
sured by some weak dependence properties of the perturbing random process ψt.

Hence for problems connected with the exit of Xε
t from a domain for small ε,

it is essential to know the asymptotics of the probabilities of improbable events
(“large deviations”) involving the behavior of Xε

t on finite time intervals. In the
case of small Gaussian perturbations it turns out that these probabilities have
asymptotics of the form exp{−Cε2} as ε → 0 (rough asymptotics, i.e., not up
to equivalence but logarithmic equivalence). It turns out that we can introduce
a functional S(ϕ) defined on smooth functions (which are smoother than the
trajectories of Xε

t ), such that

P{ρ(Xε, ϕ) < δ} ≈ exp{−ε−2S(ϕ)} (16)

for small positive δ and ε, where ρ is the distance in a function space (say, in
the space of continuous functions on the interval from T1 to T2; for the precise
meaning of formula (16), cf. Chap. 3). The value of the functional at a given
function characterizes the difficulty of the passage of Xε

t near the function. The
probability of an unlikely event consists of the contributions exp{−ε−2S(ϕ)}
corresponding to neighborhoods of separate functions ϕ; as ε → 0, only the
summand with smallest S(ϕ) becomes essential. Therefore, it is natural that the
constant C providing the asymptotics is determined as the infimum of S(ϕ) over
the corresponding set of functions ϕ. Thus for the probability in formula (15) the
infimum has to be taken over smooth functions ϕt leaving D for t ∈ [kT, (k +
1)T ]. (Exact formulations and the form of the functional S(ϕ) may be found in
Sect. 5, Chap. 4; there we discuss its application to finding the asymptotics of the
exit time τ ε as ε→ 0.)

Another problem related to the behavior of Xε
t on an infinite time interval

is the problem of the limit behavior of the stationary distribution με of Xε
t as

ε → 0. This limit behavior is connected with the limit sets of the dynamical
system (1). Indeed, the stationary distribution shows how much time the process
spends in one set or another. It is plausible to expect that for small ε the process
Xε

t will spend an overwhelming amount of time near limit sets of the dynamical
system and, most likely, near stable limit sets. If system (1) has only one stable
limit set K, then the measure με converges weakly to a measure concentrated
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on K as ε → 0 (we do not formulate our assertions in so precise a way that we
take account of the possibility of the existence of distinct limits μεi for different
sequences εi → 0). However, if there are several stable sets, even if there are at
least two, K1 and K2, then the situation becomes unclear; it depends on the exact
form of small perturbations.

The problem of what happens to the stationary distribution of a random pro-
cess arising as an effect of random perturbations of a dynamical system when
these perturbations decrease has been posed in the paper of Pontrjagin, Andronov,
and Vitt [1]. The approach applied in this article does not relate to perturbations of
the form (14) but rather perturbations under whose influence there arise diffusion
processes (given by formulas (19) and (20) below). This approach is based on
solving the Fokker–Planck differential equation; in the one-dimensional case the
problem of finding the asymptotics of the stationary distribution has been solved
completely (cf. also Bernstein’s article [1] which appeared in the same period).
Some results involving the stationary distribution in the two-dimensional case
have also been obtained.

Our approach is not based on equations for the probability density of the sta-
tionary distribution but rather the study of probabilities of improbable events. We
outline the scheme of application of this approach to the problem of asymptotics
of the stationary distribution.

The process Xε
t spends most of the time in neighborhoods of the stable limit

sets K1 and K2, it occasionally moves to a significant distance from K1 or K2

and returns to the same set, and it very seldom passes from K1 to K2 or con-
versely. If we establish that the probability of the passage of Xε

t from K1 to K2

over a long time T (not depending on ε) converges to 0 with rate

exp{−V12ε
−2}

as ε→ 0, and the probability of passage from K2 to K1 has the order

exp{−V21ε
−2}

and V12 < V21, then it becomes plausible that for small ε the process spends most
of the time in the neighborhood of K2. This is so since a successful “attempt” at
passage from K1 to K2 will fall on a smaller number of time intervals [kT, (k +
1)T ] spent by the process near K1, than a successful attempt at passage from K2

to K1 with respect to the number of time intervals of length T spent near K2.
Then με will converge to a measure concentrated on K2. The constants V12 and
V21 can be determined as the infima of the functional S(ϕ) over the smooth
functions ϕ passing from K1 to K2 and conversely on an interval of length T
(more precisely, they can be determined as the limits of these infima as T →∞).

The program of the study limit behavior which we have outlined here is car-
ried out not for random perturbations of the form (14) but rather perturbations
leading to Markov processes; the exact formulations and results are given in
Sect. 4, Chap. 6.
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As we have already noted, random perturbations of the form (14) do not rep-
resent the only scheme of random perturbations which we shall consider (and not
even the scheme to which we shall pay the greatest attention). An immediate gen-
eralization of it may be considered, in which the random process ψt is replaced
by a generalized random process, a “white noise,” which can be defined as the
derivative (in the sense of distributions) of the Wiener process wt:

Ẋε
t = b(Xε

t ) + εẇt. (17)

Upon integrating (17), it takes the following form which does not contain distri-
butions:

Xε
t = X0 +

∫ t

0

b(Xε
s ) ds+ ε(wt − w0). (18)

For perturbations of this form we can solve a larger number of interesting prob-
lems than for perturbations of the form (14), since they lead to a Markov process
Xε

t .
A further generalization is perturbations which depend on the point of the

space and are of the form

Xε
t = b(Xε

t ) + εσ(Xε
t )ẇt, (19)

where σ(x) is a matrix-valued function. The precise meaning of (19) can be for-
mulated in the language of stochastic integrals in the following way:

Xε
t = X0 +

∫ t

0

b(Xε
s ) ds+ ε

∫ t

0

σ(Xε
s ) dws. (20)

Every solution of (20) is also a Markov process (a diffusion process with drift
vector b(x) and diffusion matrix ε2σ(x)σ∗(x)). For perturbations of the white
noise type, given by formulas (19), (20), we can also obtain results on conver-
gence to the trajectories of the unperturbed system, of the type (10), and results
on expansions of the type (9) in powers of ε, from which we can obtain results on
asymptotic Gaussian character (for example, of the type (11)). Of course, since
the white noise is a generalized process whose realizations are not bounded func-
tions in any sense, these results cannot be obtained from the results concerning
nonrandom perturbations mentioned at the beginning of the introduction; they
have to be obtained independently (cf. Sect. 2, Chap. 2).

For perturbations of the white noise type we establish results concerning
probabilities of large deviations of the trajectory Xε

t from the trajectory xt of
the dynamical system (cf. Sect. 1, Chap. 4 and Sect. 3, Chap. 5). Moreover, be-
cause of the Markovian character of the processes, they become even simpler; in
particular, the functional S(ϕ) indicating the difficulty of passage of a trajectory
near a function takes the following simple form:
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S(ϕ) =
1

2

∫ ∑

i,j

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt)) dt,

where (aij(x)) = (σ(x)σ∗(x))−1.
What other schemes of small random perturbations of dynamical systems

shall we consider? What families of random processes will arise in our study?
The generalizations may go in several directions and it is not clear which of
these directions are preferred to others. Nevertheless, the problem may be posed
in a different way: In what case may a given family of random processes be
considered as a result of a random perturbation of the dynamical system (1)?

First, in the same way as we may consider the trajectory of a dynamical sys-
tem, issued from any point, we have to be able to begin the random process
at any point x of the space at any time t0. Further the random process under
consideration should depend on a parameter h characterizing the smallness of
perturbations. For the sake of simplicity, we shall assume h is a positive numer-
ical parameter converging to zero (in Sect. 3, Chap. 5 families depending on a
two-dimensional parameter are considered). Hence for every real t0, x ∈ Rr and
h > 0, Xt0,x;h

t is a random process with values in Rr, such that Xt0,x;h
t0 = x.

We shall say that Xt0,x;h
t is a result of small random perturbations of system (1)

if Xt0,x;h
t converges in probability to the solution xt0,x

t of the unperturbed sys-
tem (1) with the initial condition xt0,x

t0 = x as h ↓ 0.
This scheme incorporates many families of random processes, arising in var-

ious problems naturally but not necessarily as a result of the “distortion” of some
initial dynamical system.

EXAMPLE 0.1. Let {ξn} be a sequence of independent identically distributed
r-dimensional random vectors. For t0 ∈ R1, x ∈ Rr, h > 0 we put

Xt0,x;h
t = x+ h

[h−1t]−1∑

k=[h−1t0]

ξk. (21)

It is easy to see that Xt0,x;h converges in probability to xt0,x = x + (t − t0)m,
uniformly on every finite time interval as h ↓ 0 (provided that the mathematical
expectation m = Mξk exists), i.e., it converges to the trajectory of the dynamical
system (1) with b(x) ≡ m.

EXAMPLE 0.2. For every h > 0 we construct a Markov process on the real
line in the following way. Let two nonnegative continuous functions l(x) and
r(x) on the real line be given. Our process, beginning at a point x, jumps to the
point x − h with probability h−1l(x) dt over time dt, to the point x + h with
probability h−1r(x) dt, and it remains at x with the complementary probability.
An approximate calculation of the mathematical expectation and variance of the
increment of the process over a small time interval Δt shows that as h ↓ 0, the
random process converges to the deterministic, nonrandom process described by
(1) with b(x) = r(x)− l(x) (the exact results are in Sect. 2, Chap. 5).
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Still another class of examples: ξt is a stationary random process and Xh
t =

Xt0,x;h
t is the solution of the system

Ẋh
t = b(Xh

t , ξh−1t) (22)

with initial condition x at time t0. It can be proved under sufficiently weak as-
sumptions that Xh

t converges to a solution of (1) with b(x) = Mb(r, ξs) as h ↓ 0
(Mb(x, ξs) does not depend on s; the exact results may be found in Sect. 2,
Chap. 7).

In the first example, the convergence in probability of Xt0,x;h
t as h ↓ 0 is a law

of large numbers for the sequence {ξn}. Therefore, in general we shall speak of
results establishing the convergence in probability of random processes of a given
family to the trajectories of a dynamical system as of results of the type of the
law of large numbers. Similarly, results involving the convergence, in the sense of
distributions, of a family of random processes Xt0,x;h

t −xt0,x
t after an appropriate

normalization to a Gaussian process are results of the type of the central limit
theorem. Results involving large deviations are results involving the asymptotics
of probabilities of events that the realization of a random process falls in some
sets of functions, not containing the trajectory xt0,x

t of the unperturbed dynamical
system. We say a few words on results of the last kind.

For the random step function (21) constructed from the independent random
variables ξk, the results of the type of large deviations are connected, of course,
with the asymptotics, as n→∞, of probabilities of the form

P

{
ξ1 + · · ·+ ξn

n
> x

}
. (23)

The results concerning the asymptotics of probabilities (23) can be divided into
two groups: for rapidly decreasing “tails” of the distribution of the terms ξi, the
principal term of the probability is due to uniformly not too large summands and
the asymptotics has the form exp{−Cn} (up to logarithmic equivalence); if, on
the other hand, the “tails” of the ξi decrease slowly, then the principal part of
probability (23) is due to one or more summands of order nx and the probability
has the same order as nP{ξi > nx}. The first general results concerning large
deviations were obtained by Cramér under the assumption that the exponential
moments Mezξi are finite, at least for all sufficiently small z; they belong to the
first group of results. The results, considered in this book, on large deviations for
families of random processes are also generalizations of results belonging to the
first group. The assumptions under which they are obtained include analogues of
the Cramér condition Mezξi < ∞. Moreover, approximately half of the devices
used in obtaining these results is a generalization of Cramér’s method (cf. Sects. 2
and 3, Chap. 3 and Sects. 1 and 2, Chap. 5).

Furthermore, in this book we only consider rough results on large deviations,
which hold up to logarithmic equivalence. In connection with this we introduce
a notation for rough (logarithmic) equivalence:
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Ah � Bh (h ↓ 0), (24)

if lnAh ∼ lnBh as h ↓ 0.
Cramér’s results and a great many subsequent results are not rough but sharp

(up to equivalence and even sharper). Nevertheless, we have to take into con-
sideration that random processes are more complicated objects than sums of in-
dependent variables. One may try to obtain sharp results on the asymptotics of
large deviations for families of random processes; some results have indeed been
obtained in this direction. However, in this respect there is an essentially differ-
ent direction of research: from theorems on large deviations one tries to obtain
various other interesting results on the asymptotic behavior of families of ran-
dom processes which are deterministic in the limit (which may be considered as
a result of small random perturbations of a dynamical system). In the authors’
opinion, one can deduce more interesting rough consequences from rough theo-
rems on large deviations than sharp consequences from sharp theorems.

Hence we shall consider results of three kinds: results of the type of the law
of large numbers, of the type of the central limit theorem, and rough results of the
type of large deviations (and, of course, all sorts of consequences of these results).
The results of the first type are the weakest; they follow from results of the second
or third type. Sometimes we shall speak of them in the first place because it is
easier to obtain them and because they are a sort of test of the correctness of a
family of random processes to appear in general as a result of small perturbations
of a dynamical system.

The results of the second and third types are independent of each other and
neither is stronger than the other. Therefore, in some cases we do not consider
results of the type of the central limit theorem but rather discuss large deviations
immediately (and in the process of obtaining results in this area, we obtain results
of the type of the law of large numbers automatically).

The random perturbations are said to be homogeneous in time if the distribu-
tions of the values of the arising random process at any finite number of moments
of time does not change if we simultaneously shift these moments and the initial
moment t0 along the time axis. In this case all that can be said about perturbations
can be formulated naturally in terms of the family Xx,h

t of random processes be-
ginning at the point x at time 0: Xx,h

0 = x. Among the schemes of random
perturbations we consider, only (21) is not homogeneous in time.

We discuss the content of the book briefly. First we note that we consider
problems in probability theory in close connection with problems of the theory
of partial differential equations. To the random processes arising as a result of
small random perturbations there correspond problems connected with equations
containing a small parameter. We study the random perturbations by direct prob-
abilistic methods and then deduce consequences concerning the corresponding
problems for partial differential equations. The problems involving the connec-
tion between the theory of Markov processes and that of partial differential equa-
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tions are discussed in Chap. 1. There we recall the necessary information from
the theory of random processes.

In Chap. 2 we consider mainly schemes of random perturbations of the form
Ẋε

t = b(Xε
t , εξt) or Ẋε

t = b(Xε
t ) + εσ(Xε

t )ẇt, where ẇt is a white noise
process. We discuss results of the type of the law of large numbers in Sect. 1, we
discuss sharper results, connected with asymptotic expansions in Sect. 2, and the
application of these results to partial differential equations in Sect. 3.

In Chap. 3, for the first time in this book, we consider results involving large
deviations for a very simple family of random processes, namely, for the Wiener
process wt multiplied by a small parameter ε. The rough asymptotics of prob-
abilities of large deviations can be described by means of the action functional.
The action functional appears in all subsequent chapters. The general questions
involving the description of large deviations by means of such functionals consti-
tute the content of Sect. 3 of this chapter. We calculate the action functional for
families of Gaussian processes in Sect. 4.

Chapter 4 is devoted mainly to the study of perturbations of dynamical sys-
tems by a white noise process. We determine the action functional for the cor-
responding family of random processes. We study the problem of exit from a
neighborhood of a stable equilibrium position of a dynamical system, due to ran-
dom perturbations, and we determine the asymptotics of the average exit time of
the neighborhood and the position at the first exit time. In the same chapter we
study the asymptotics of the invariant measure for a dynamical system with one
equilibrium position. The problems to be considered are closely connected with
the behavior, as ε → 0, of the solution of problems for elliptic equations with a
small parameter at the derivatives of the highest order. The limit behavior of the
solution of Dirichlet’s problem for an elliptic equation of the second order with
a small parameter at the derivatives of the highest order in the case where the
characteristics of the corresponding degenerate equation go out to the boundary
was studied by Levinson [1]. In Chap. 4 this limit behavior is studied in the case
where the characteristics are attracted to a stable equilibrium position inside the
domain. (The case of a more complicated behavior of the characteristics is con-
sidered in Chap. 6.) We consider Gaussian perturbations of the general form in
the last section of Chap. 4.

In Chap. 5 we generalize results of Chap. 4 to a sufficiently large class of fam-
ilies of Markov processes (including processes with discontinuous trajectories).
Here the connection with theorems on large deviations for sums of independent
random variables becomes clearer; in particular, there appears the apparatus of
Legendre transforms of convex functions, which is a natural tool in this area
(a separate section is devoted to Legendre transforms).

In Chap. 6 the generalization goes in a different direction: from problems
for systems with one equilibrium position to systems with a more complicated
structure of equilibrium positions, limit sets, etc. Here an essential role is played
by sets of points equivalent to each other in the sense of a certain equivalence
relation connected with the system and the perturbations. In the case of a finite
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number of critical sets, the perturbed system can be approximated in some sense
by a finite Markov chain with transition probabilities depending on the small pa-
rameter. For the description of the limit behavior of such chains a peculiar appa-
ratus of discrete character, connected with graphs, is developed. A large portion
of the results of this chapter admits a formulation in the language of differential
equations.

In Chap. 7 we consider problems connected with the averaging principle.
Principally, we consider random processes defined by equations of the form
Ẋε

t = b(Xε
t , ξt/ε), where ξt is a stationary process with sufficiently good mix-

ing properties. For the family of random processes Xε
t we establish theorems

of the type of the law of large numbers, the central limit theorem, and finally,
of large deviations. Special attention is paid to the last group of questions. In
Sect. 6, Chap. 7 we study the behavior of Xε

t on large time intervals. Here we
also consider examples and the corresponding problems of the theory of partial
differential equations. In Chap. 7 we also consider systems of differential equa-
tions in which the velocity of the fast motion depends on the “slow” variables.

White noise perturbations of Hamiltonian systems are considered
in Chap. 8. Let b(x) in (17) be a Hamiltonian vector field in R2 : b(x) =
(∂H(x)/∂x2,−∂H(x)/∂x1), where H(x), x ∈ R2, is a smooth function. Let
lim|x|→∞ H(x) = ∞. Then all the points of the phase space R2 are equivalent
for the process Xε

t defined by (17) from the large-deviation point of view. This
means, roughly speaking, that for any x ∈ R2 and any open set E = R2 one can
find a nonrandom t = t(ε) such that the probability that Xε

t goes from x to E
in the time t(ε) is, at least, not exponentially small as ε ↓ 0. Here the averaging
principle rather than large-deviation theory allows us to calculate asymptotic be-
havior of many interesting characteristics of the process Xε

t as ε ↓ 0. One can
single out a fast and a slow component of Xε

t as ε ↓ 0: The fast component is
close to the deterministic motion with a fixed slow component. The slow compo-
nent H(Xε

t/ε), at least locally, is close to the one-dimensional diffusion governed
by an operator with the coefficients defined by averaging with respect to the fast
component. But if the Hamiltonian H(x) has more than one critical point, the
slow component H(Xε

t/ε) does not converge in general to a Markov process as
ε ↓ 0. To have a Markov process the limit should consider a projection of Xε

t on
the graph homeomorphic to the set of all connected components of the level sets
of H(x), provided with the natural topology. We describe in Chap. 8 the diffusion
processes on graphs and calculate the process which is the limit of the slow com-
ponent of Xε

t as ε ↓ 0. As usual, such a result concerning the diffusion process
implies a new result concerning the PDEs with a small diffusion coefficient and
the Hamiltonian field as a drift. The limit of the solutions of a Dirichlet problem
for such an equation is found as the solution of an appropriate boundary problem
in a domain on the graph.

In the last section of Chap. 8, pure deterministic perturbations of Hamiltonian
systems with one degree of freedom are considered. If the Hamiltonian has saddle
points, the classical averaging does not work, and a stochastic process on the
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graph corresponding to the Hamiltonian should be considered as the limiting
slow motion for this pure deterministic system. To give a rigorous meaning to this
statement, various stochastic regularizations of the system are considered; but the
resulting limiting slow motion is independent of the type of regularization.

Perturbations of Hamiltonian systems with many degrees of freedom are stud-
ied in Chap. 9. As is known, in the many-degrees-of-freedom case, because of
the resonances, the limit of the slow component for the system with a fixed ini-
tial point may not exist. Assuming that the set of resonance frequencies is “small
enough”, the limit of the slow component exists in the sense of convergence in
the Lebesgue measure for the initial points. This is equivalent to regularization
of the system by stochastic perturbations of the initial point. But even in the case
of one degree of freedom, examples show that if the Hamiltonian has more than
two saddle points, this type of regularization does not provide the convergence
of the slow motion; this convergence can be provided by stochastic perturbations
of the equation. We show in Chap. 9 that in the many-degrees-of-freedom case,
the averaging principle in a domain without critical points can be regularized by
stochastic perturbations of the equation, if the resonance set has the Lebesgue
measure zero. We apply these results to a system of weakly coupled oscillators.
The phase space of the slow motion is in this case an open book Π—a multidi-
mensional counterpart of a graph. We calculate the limiting slow motion, which is
a stochastic process on Π, deterministic inside the “pages” and having a stochas-
tic behavior at the “binding” of the book.

Chapter 10 contains the applications of the results obtained in the preceding
chapters to the study of stability with respect to small random perturbations. We
introduce a certain numerical characteristic of stability, which is connected with
the action functional. A series of optimal stabilization problems is considered.

The last, eleventh, chapter has the character of a survey. We discuss sharp-
enings of theorems on large deviations, large deviations for random measures,
results concerning the action functional for diffusion processes with reflection at
the boundary, random perturbations of infinite-dimensional systems, and appli-
cations of large-deviation theory to asymptotic problems for reaction-diffusion
equations.

Since the first edition of this book was published, many papers have appeared
that generalize and refine some of the results included there. Some further results
and references can be found in Day [1], [2] (exit problem for processes with small
diffusion). The averaging principle is studied in Kifer [4], [5], Liptser [1], [2], and
Gulinsky and Veretennikov [1]. Problems concerning infinite-dimensional sys-
tems are considered in Da Prato and Zabczyk [1]. Further references can be found
in these publications and in the monographs on large-deviation theory mentioned
in the Preface to the Second Edition.



Chapter 1

Random Perturbations

1 Probabilities and Random Variables

We shall assume known the basic facts of the Lebesgue integral and measure
theory, as well as probability theory. The necessary information concerning these
topics is contained, for example, in the corresponding chapters of the book by
Kolmogorov and Fomin [1] and in the book by Gikhman and Skorokhod [1]. In
this chapter we introduce notation and recall some information from the theory
of stochastic processes in an appropriate form. We shall not provide proofs but
rather references to the pertinent literature.

According to Kolmogorov’s axiomatics, at the base of all probability theory
is a triple {Ω,F ,P} of objects called a probability field or probability space.
Here Ω is a nonempty set, which is interpreted as the space of elementary events.
The second object, F , is a σ-algebra of subsets of Ω. Finally, P is a probability
measure on the σ-algebra F , i.e., a countably additive nonnegative set function
normalized by the condition P(Ω) = 1. The elements of the σ-algebra F are
called events.

The most important objects of probability theory are random variables, i.e.,
functions ξ(ω) defined on Ω with values on the real line R1 such that {ω : ξ(ω) <
x} ∈ F for every x ∈ R1. In general, a random variable ξ(ω) with values in a
measurable space (X,B) is a measurable mapping of (Ω,F ) into (X,B).1

If as (X,B) we take the r-dimensional space Rr with the σ-algebra Br

of Borel sets, then the corresponding mapping ξ(ω) is called an r-dimensional
random variable. The probability measure defined by the equality

μ(D) = P{ξ(ω) ∈ D}, D ∈ B

on the σ-algebra B is called the distribution of the random variable ξ(ω).
For random variables ξ(ω) with values in R1 the mathematical expecta-

tion Mξ(ω) =
∫
Ω
ξ(ω)P (dω) is defined provided that this integral exists as

a Lebesgue integral. In this book we shall use repeatedly Chebyshev’s inequality

1 A measurable space is a set X together with a σ-algebra B of subsets of X . The measur-
ability of a mapping means that the inverse image of every measurable set is measurable.
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2 1. Random Perturbations

P{ξ(ω) ≥ a} ≤ Mf(ξ)

f(a)

for any nonnegative monotone increasing function f(·) on R1 provided that
Mf(ξ) <∞.

For integrals on parts of Ω we shall sometimes use the notation
∫

A

ξ(ω)P(dω) = M(A; ξ).

If in the space (X,B) a topology is given and the open sets are measurable,
then we can speak of the convergence of random variables with values in (X,B).
Various kinds of convergence can be considered. A sequence of r-dimensional
random variables ξn(ω) is said to converge in probability to an r-dimensional
random variable ξ(ω) if limn→∞ P{|ξn(ω) − ξ(ω)| > δ} = 0 for any δ > 0,
where |ξn(ω) − ξ(ω)| is the Euclidean length of the vector ξn(ω) − ξ(ω). If
limn→∞ M|ξn(ω) − ξ(ω)|2 = 0, then we say that ξn converges to ξ in mean
square. Finally, a sequence ξn converges to ξ with probability 1 or almost surely
if P{limn→∞ ξn(ω) = ξ(ω)} = 1.

If ξn → ξ in mean square, then Mξn → Mξ, as follows from the Cauchy–
Bunyakovsky inequality. If ξn → ξ almost surely or in probability, then for the
convergence of Mξn to Mξ we must impose additional assumptions. For example,
it is sufficient to assume that the absolute values of variables ξn do not exceed a
certain random variable η(ω) having finite mathematical expectation (Lebesgue’s
theorem). We shall use repeatedly this and other theorems on the passage to the
limit under the mathematical expectation sign. All the needed information con-
cerning this question can be found in the book by Kolmogorov and Fomin [1].

Let G be a σ-subalgebra of the σ-algebra F and suppose G is complete with
respect to the measure P (this means that the σ-algebra G contains, together with
every set A, all sets from F differing from A by a set of probability 0).

Let η be a one-dimensional random variable having finite mathematical ex-
pectation. The conditional mathematical expectation of η with respect to the σ-
algebra G , denoted by M(η|G ), is defined as the function on Ω measurable with
respect to the σ-algebra G for which

∫

A

M(η|G )P (dω) =

∫

A

η(ω)P(dω)

for every A ∈ G . The existence of the random variable M(η|G ) follows from the
Radon–Nikodym theorem. The same theorem implies that any two such random
variables coincide everywhere except, maybe, on a set of measure 0. If the ran-
dom variable χA(ω) is equal to 1 on some set A ∈ F and 0 for ω �= A, then
M(χA|G ) is called the conditional probability of the event A with respect to the
σ-algebra G and is denoted by P(A|G ). We list the basic properties of conditional
mathematical expectations.

1. M(η|G ) ≥ 0 if η ≥ 0.
2. M(ξ + η|G ) = M(ξ|G ) +M(η|G ) if each term on the right exists.
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3. M(ξη|G ) = ξM(η|G ) if Mξη and Mη are defined and ξ is measurable with
respect to the σ-algebra G .

4. Let G 1 and G 2 be two σ-algebras such that G 1 ⊆ G 2 ⊆ F . We have
M(ξ|G 1) = M((Mξ|G 2)|G 1).

5. Assume that the random variable ξ does not depend on the σ-algebra G , i.e.,
P({ξ ∈ D} ∩ A) = P{ξ ∈ D} · P(A) for any Borel set D and any A ∈ G .
Then M(ξ|G ) = Mξ provided that the latter mathematical expectation exists.

We note that the conditional mathematical expectation is defined up to values
on a set of probability 0, and that all equalities between conditional mathematical
expectations are satisfied everywhere with the possible exception of a subset of
the space Ω having probability 0. In those cases which do not lead to misunder-
standing, we shall not state this explicitly.

The proofs of Properties 1–5 and other properties of conditional mathematical
expectations and conditional probabilities may be found in the book by Gikhman
and Skorokhod [1].

2 Random Processes. General Properties

Let us consider a probability space {Ω,F ,P}, a measurable space (X,B), and
a set T on the real line. A family of random variables ξt(ω), t ∈ T with values
in (X,B) is called a random process. The parameter t is usually called time
and the space X the phase space of the random process ξt(ω). Usually, we shall
consider random processes whose phase space is either the Euclidean space Rr

or a smooth manifold. In Chaps. 8 and 9, we consider also stochastic processes on
graphs and on their multidimensional counterparts. Some classical problems lead
to consideration of such processes. For every fixed ω ∈ Ω we obtain a function
ξt, t ∈ T with values in X , which is called a trajectory, realization, or sample
function of the process ξt(ω).

The collection of distributions μt1,...,tr of the random variables (ξt1 , ξt2 , . . . ,
ξtr ) for all r = 1, 2, 3, . . . and t1, . . . , tr ∈ T is called the family of finite-
dimensional distributions of ξt. If T is a countable set, then the finite-dimensional
distributions determine the random process to the degree of uniqueness usual in
probability theory. In the case where T is an interval of the real line, as is known,
there is essential nonuniqueness. For example, one can have two processes with
the same finite-dimensional distributions yet one has continuous trajectories for
almost all ω and the other has discontinuous trajectories. To avoid this nonunique-
ness, the requirement of separability of processes is introduced in the general
theory. For all processes to be considered in this book there exist with probabil-
ity one continuous variants or right continuous variants. Such a right continuous
process is determined essentially uniquely by its finite-dimensional distributions.
We shall always consider continuous or right continuous modifications, without
stating this explicitly.
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With every random process ξt, t ∈ T one can associate σ-algebras F≤t =

F ξ
≤t = σ{ξs, s ≤ t} and F≥t = F ξ

≥t = σ{ξs, s ≥ t}, which are the smallest
σ-algebras with respect to which the random variables ξs(ω) are measurable for
s ≤ t and s ≥ t, respectively. It is clear that for t1 < t2 we have the inclusion

F ξ
≤t1

⊆ F ξ
≤t2

. In what follows we often consider the conditional mathematical

expectations M(η|F ξ
≤t), which will sometimes be denoted by M(η|ξs, s ≤ t).

By M(η|ξt) we denote the conditional mathematical expectation with respect to
the σ-algebra generated by the random variable ξt. Analogous notation will be
used for conditional probabilities.

Assume given a nondecreasing family of σ-algebras Nt : Nt1 ⊆ Nt2 for
0 ≤ t1 ≤ t2; t1, t2 ∈ T . We denote by N the smallest σ-algebra containing all
σ-algebras Nt for t ≥ 0. A random variable τ(ω) assuming nonnegative values
and the value +∞ is called a Markov time (or a random variable not depending
on the future) with respect to the family of σ-algebras Nt if {ω : τ(ω) ≤ t} ∈
Nt for every t ∈ T . An important example of Markov time is the first hitting
time of a closed set in Rr by a process ξt continuous with probability 1. Here the
role of the σ-algebras Nt is played by the nondecreasing family of σ-algebras
F ξ

≤t = σ(ξs, s ≤ t).
We denote by Nτ the collection of the sets A ⊆ N for which

A ∩ {τ ≤ t} ∈ Nt

for all t ∈ T . It is easy to verify that Nτ is a σ-algebra and τ is measurable
with respect to this σ-algebra. If a process ξt is right continuous, and τ is a
Markov time with respect to the σ-algebras Nt = F ξ

≤t, then the value ξτ is also
measurable with respect to Nτ = F≤τ . The proofs of these assertions and a
series of other properties of Markov times can be found in Wentzell’s book [1].

The description of a random process by means of its finite-dimensional distri-
butions is very cumbersome and is usually employed only in problems connected
with the foundations of the theory. Interesting results can be obtained for spe-
cial classes of random processes. We mention here the basic classes of processes
which occur in the book.

Gaussian Processes. We recall that an r-dimensional random variable ξ =
(ξ1, . . . , ξr) is said to be Gaussian if its characteristic function

f ξ(z) = M exp{i(z, ξ)}, z ∈ Rr,

has the form fξ(z) = exp{i(z,m)− (Rz, z)/2}, where z = (z1, . . . , zr) ∈ Rr.
(z, ξ) =

∑r
1 zkξ

k,m = (m1, . . . ,mr) is the vector of mathematical expecta-

tions, i.e., mk = Mξk and R = (Rij) is the covariance matrix, i.e.,

Rij = M(ξi −mi)(ξj −mj).

A random process ξt, t ∈ T is said to be Gaussian if all of its finite-dimensional
distributions are Gaussian. Since a Gaussian distribution is determined by its
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mathematical expectation and covariance matrix, all finite-dimensional distri-
butions of a Gaussian process ξt are completely determined by two functions:
m(t) = Mξt and the correlation function

R(s, t) = M(ξs −m(s))(ξt −m(t)).

We shall usually consider Gaussian processes for t ∈ T = [0, T0] and assume
that the functions m(t) and R(s, t) are continuous for s, t ∈ [0, T0]. Under these
assumptions, the process ξt is continuous in mean square and it can be assumed
that

∫ T0

0
|ξs|2 ds <∞ for almost all ω. If in addition to the continuity of m(t), we

assume that the function R(s, t) has some smoothness properties, for example,
that it has a mixed second derivative for s = t, then there exists a continuous
modification of ξt. This means that on the same probability space on which ξt(ω)
is defined, there exists a random process ξ∗t (ω) such that P{ξt(ω) = ξ∗t (ω)} = 1
for t ∈ [0, T0] and the functions ξ∗t (ω) are continuous on the interval [0, T0] for
almost all ω ∈ Ω (cf. Gikhman and Skorokhod [1]).

With a process ξt, t ∈ [0, T0] there is associated the operator

A : (Aϕ)t =

∫ T0

0

R(s, t)ϕs ds,

called the correlation operator. If the function R(s, t) is continuous, then A is a
symmetric completely continuous operator in the Hilbert space L2

[0,T0]
of func-

tions defined on [0, T0] and with values in R1. As usual, the norm in this space is
given by the equality ‖ϕ‖ = (

∫ T0

0
|ϕs|2 ds)1/2.

We shall also consider multidimensional Gaussian processes

ξt = (ξ1t , . . . , ξ
r
t ).

In this case m(t) = Mξt is a vector-valued function and R(s, t) = (Rij(s, t)),
where Rij(s, t) = M(ξis−mi(s))(ξij−mj(t)); i, j = 1, 2, . . . , r. The correlation
operator acts in the space of functions with values in Rr.

Markov processes are, roughly speaking, random processes whose behavior
after a fixed time t under the condition that the behavior of the process is given
until time t (inclusive) is the same as if the process began at the point Xt at
time t. This phrase can be turned into a precise definition in several ways. For
this we need a certain technique connected with the circumstance that we have to
stipulate the possibility of “emitting” the process from every point of the space
in which it takes place.

Let (Ω,F ) and (X,B) be measurable spaces and in Ω let a nondecreasing
system of σ-algebras Nt ⊆ F , t ∈ T be chosen, where T is either the set
{0, 1, 2, . . .} of nonnegative integers or the right half-line [0,∞).

A Markov process (more precisely, a homogeneous Markov process) with
respect to the system of σ-algebras Nt is, by definition, a collection of the fol-
lowing objects:
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(A) a random process Xt(ω), t ∈ T , ω ∈ Ω with values in X;
(B) a collection of probability measures Px(A) defined for x ∈ X and A ∈ F .

The following conditions are assumed to be satisfied:

(1) for every t ∈ T the random variable Xt(ω) is measurable with respect to the
σ-algebra Nt;

(2) for any t ∈ T and Γ ∈ B the function Px{Xt ∈ Γ} = P (t, x,Γ) is measur-
able in the variable x with respect to the σ-algebra B;

(3) P (0, x,X\{x}) = 0;
(4) if t, u ∈ T , t ≤ u, x ∈ X , Γ ∈ B, then the equality

Px{Xu ∈ Γ|Nt} = P (u− t,Xt,Γ)

holds almost surely with respect to the measure Px.

The function P (t, x,Γ) is called the transition function of the Markov pro-
cess.

If there is a topology in X and B is the σ-algebra of Borel sets in X , i.e.,
the σ-algebra generated by the open sets, then we can speak of various continuity
properties of the Markov process. The weakest of these properties is stochastic
continuity.

A Markov process is said to be stochastically continuous if its transition func-
tion has the following property: limt↓0 P (t, x,X\U) = 0 for every x ∈ X and
every neighborhood U of x. We shall consider only stochastically continuous
Markov processes.

A Markov process Xt is considered on not only one probability space but
rather a whole family of probability spaces {Ω,F ,Px}. The concept of a pro-
cess that it can be emitted from every point x of the space can be expressed by
making the trajectories of the process depend on x and by making the probabil-
ities independent of x. Let {Ω,F ,P} be a probability space and Nt, t ∈ T a
nondecreasing system of σ-algebras.

A Markov family (with respect to the above system of σ-algebras) is, by
definition, a collection of random processes Xx

t (ω), t ∈ T , x ∈ X which satisfies
the following conditions:

(1) for every t ∈ T and x ∈ X the random variable X∗
t (ω) is measurable with

respect to Nt;
(2) P{Xx

t ∈ Γ} = P (t, x,Γ) is a B-measurable function of x;
(3) P{0, x,X{x}) = 0;
(4) if t, u ∈ T , t ≤ u, x if X and Γ ∈ B, then

P{Xx
u ∈ Γ|Nt} = P (u− t,Xx

t ,Γ)

almost surely with respect to P.
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The notions of a Markov process and a Markov family introduced above are
special cases of the corresponding concepts in Dynkin’s book [2]. It is easy to
construct a Markov process corresponding to a given Markov family Xx

t (ω) on
a probability space {Ω,F ,P}. For this it is sufficient to set

Ω′ = Ω×X, Xt(ω
′) = Xx

t (ω) for ω′ = (ω, x);

Px{Xt ∈ Γ} = P{Xx
t ∈ Γ}.

It can be proved (cf. Dynkin [2]) that the random process Xt(ω
′) and the collec-

tion of the probability measures Px, x ∈ X on Ω′ form a Markov process. The
Markov process (Xt,Px) thus constructed will be called the Markov process cor-
responding to the family Xx

t .
In what follows we shall use both Markov families and Markov processes. If

the index x appears in the trajectories of Xx
t , then a Markov family is considered

and if the index appears in the probability Px, then the corresponding process is
considered. Mathematical expectation with respect to Px will be denoted by Mx.

Usually, we shall consider random processes defined by differential equations
of the form Ẋt = b(Xt, ξt(ω)), where ξt(ω) is a random process. The solutions
of this equation are defined for all possible initial conditions X0 = x ∈ X . Let
Xx

t be the solution issued from the point x: Xx
0 = x. Under certain conditions,

the processes Xx
t (ω) form a Markov family with respect to the nondecreasing

system of σ-algebras F ξ
≤t = σ{ξs, s ≤ t}. We shall use the notation Px and Mx

for probabilities and mathematical expectations connected with the process Xx
t

in the case of non-Markovian processes, as well. The index x will indicate the
initial condition under which the differential equation is being solved.

It follows from the definition of a Markov process that if the position of a
process is known at time t, then the events determined by the process before and
after time t are independent. If we fix the position of a process at a random time
τ(ω), then the events determined by the behavior of the Markov process before
and after time τ(ω) may turn out to be dependent even if τ(ω) is a Markov
time. Those Markov processes for which these events are independent for every
Markov time τ(ω) are called strong Markov processes. For a precise definition,
cf. Dynkin [2]. A Markov process (Xt,P) with respect to a nondecreasing system
of σ-algebras Nt is said to be strong Markov if for every Markov time τ with
respect to the σ-algebras Nt and for all t ≥ 0, x ∈ X , and Γ ∈ B the relation

Px{Xτ+t ∈ Γ|Nτ} = P (t,Xτ ,Γ)

is satisfied for almost all points of the set Ωτ = {ω ∈ Ω : τ(ω) < ∞} with
respect to the measure Px.

Conditions ensuring that a given Markov process is a strong Markov process
together with various properties of strong Markov processes, are discussed in
detail in Dynkin’s book [2]. We note that all Markov processes considered in the
present book are strong Markov.
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As a simple important example of a Markov process may serve a Markov
chain with a finite number of states. This is a Markov process in which the pa-
rameter t assumes the values 0, 1, 2, . . . and the phase space X consists of a finite
number of points: X = {e1, . . . , en}. A homogeneous Markov chain (we shall
only encounter such chains in this book) is given by the square matrix P = (pij)
(i, j = 1, . . . , n) of one-step transition probabilities: Pei{X1 = ej} = pij . It
follows from the definition of a Markov process that if the row vector q(s) =
(q1(s)), . . . , qn(s)) describes the distribution of Xs(ω) (i.e.,

Px{Xs = ei} = qi(s)),

then q(t) = q(s)P t−s for t > s. A row vector q̄ = (q̄1, . . . , q̄n), q̄i ≥ 0,∑
i q̄i = 1, for which q̄P = q̄ is called an invariant distribution of the Markov

process. Every chain with a finite number of states admits an invariant distribu-
tion. If all entries of P (or a power of it) are different from zero, then the invariant
distribution q̄ is unique and limt→∞ Px{Xt(ω) = ei} = q̄i for all x and ei ∈ X .
This assertion, called the ergodic theorem for Markov chains, can be carried over
to Markov processes of the general kind.

In the forthcoming sections we shall return to Markov processes. Now we
recall some more classes of processes.

We say that a random process ξt(ω), t ≥ 0 in the phase space (Rr,Br) is a
process with independent increments if the increments

ξtn − ξtn−1, ξtn−1 − ξtn−2, . . . , ξt2 − ξt1

are independent random variables for any tn > tn−1 > · · · > t1 ≥ 0.
The Poisson process is an example of such a process. It is a random process

νt, t ≥ 0 assuming nonnegative integral values, having independent increments
and right continuous trajectories with probability one for which

P{νt − νs = k} = [(t− s)λ]k

k!
e−(t−s)λ; 0 ≤ s < t; k = 0, 1, . . . ,

where λ is a positive parameter.
In the next section we shall consider another process with independent incre-

ments, the Wiener process, which plays an important role in the theory of random
processes.

For a process with independent increments we may associate the Markov
family Xx

t = x + ξt − ξ0 and the Markov process which corresponds to this
family. Another class of processes, the class of martingales, is also closely con-
nected with processes with independent increments.

A random process ξt, t ∈ T is called a martingale with respect to a nonde-
creasing family of σ-algebras Nt if the random variable ξt is measurable with
respect to Nt for every t ∈ T and Mξt < ∞ and M(ξt|Ns) = ξs for s, t ∈ T ,
s < t. If M(ξt|Ns) ≤ ξs, then the process ξt is called a supermartingale.
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A detailed exposition of the theory of martingales can be found in Doob’s
book [1].

A random process ξt(ω), −∞ < t < ∞ is said to be stationary (in the strict
sense) if for a given natural number r and given t1, . . . , tr the distribution of the
random variable (ξt1+h, ξt2+h, . . . , ξtr+h) is the same for all real numbers h. It
is clear that if M|ξt|2 exists for a stationary process ξt, then Mξt = m = const
and the correlation function R(s, t) = M(ξs−m)(ξt−m) depends only on t−s.

Finally, we recall the notion of weak convergence of measures corresponding
to a family of random processes. Every random process Xt(ω) defines a mapping
of the probability space {Ω,F ,P} into the space of trajectories. This mapping
induces a probability measure μ in the space of trajectories. In many problems in
probability theory, random processes are considered up to the distributions which
the processes induce in the space of trajectories. In connection with this, an im-
portant role is played by those types of convergence of random processes which
mean convergence, in one sense or another, of the distributions in the space of
trajectories. For the sake of definiteness, let Xε

t , t ∈ [0, T ], ε > 0, be a family of
random processes whose trajectories are, with probability one, continuous func-
tions defined on [0, T ] with values in Rr. As usual, we denote by C0T (R

r) the
space of such functions with the topology of uniform convergence. Let με be the
family of measures corresponding to the processes Xε

t in C0T (R
r). We say that

the measure με on C0T (R
r) converges weakly to a measure μ as ε→ 0 if

lim
ε→0

∫
f(x)με (dx) =

∫
f(x)μ (dx)

for every continuous bounded functional f(x) on C0T (R
r). In Prokhorov [1]

(cf. also Gikhman and Skorokhod [1]) conditions of compactness in the topol-
ogy of weak convergence are studied for a family of measures corresponding to
random processes. If the family of measures με is weakly compact and the finite-
dimensional distributions corresponding to the random processes Xε

t converge to
the distributions of some process Xt, then the measures με converge weakly to
the measure μ corresponding to the process Xt.

3 Wiener Process. Stochastic Integral

A Wiener process is, by definition, a Gaussian process wt, t ∈ [0,∞) with values
in R1 having the following properties:

(1) Mwt = 0 for t ≥ 0;
(2) Mwswt = min(s, t);
(3) for almost all ω, the trajectories of wt(ω) are continuous in t ∈ [0,∞).

It can be proved (cf., for example, Gikhman and Skorokhod [1]) that a process
with these properties exists on an appropriate probability space {Ω,F ,P}. From
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the Gaussianness of wt it follows that for arbitrary moments of time tn > tn−1 >
· · · > t1 ≥ 0 the random variables

wtn − wtn−1, wtn−1 − wtn−2, . . . , wt2 − wt1

have a joint Gaussian distribution and from property (2) it follows that they are
uncorrelated: M(wti+1 − wti)(wtj+1 − wtj ) = 0 for i, j = 1, 2, . . . , n; i �= j.
We conclude from this that the increments of a Wiener process are independent.
We note that the increment of a Wiener process from time s to t, s < t has a
Gaussian distribution and M(wt − ws) = 0, M(wt − ws)

2 = t − s. It can be
calculated that M|wt − ws| =

√
2π−1(t− s).

We recall some properties of a Wiener process. The upper limits (lim sup) of
almost all trajectories of a Wiener process are +∞ and the lower limits (lim inf)
are −∞. From this it follows in particular that the trajectories of a Wiener
process pass through zero infinitely many times with probability 1 and the set
{t : wt(ω) = 0} is unbounded for almost all ω. The realizations of a Wiener
process are continuous by definition. Nevertheless, with probability 1 they are
nowhere differentiable and have infinite variation on every time interval. It can
be proved that with probability one the trajectories of a Wiener process satisfy a
Hölder condition with any exponent α < 1/2 but do not satisfy it with exponents
α ≥ 1/2. We also note the following useful identity:

P
{

sup
0≤s≤T

ws > a
}
= 2P{wT > a}.

Every random process ξt(ω), t ∈ T with values in a measurable space (X,B)
can be considered as a mapping of the space (Ω,F ) into a space of functions de-
fined on T , with values in X . In particular, a Wiener process wt(ω), t ∈ [0, T ]
determines a mapping of Ω into the space C0

0T (R
1) of continuous functions on

[0, T ] which are zero at t = 0. This mapping determines a probability mea-
sure μw in C0

0T (R
1), which is called the Wiener measure. The support of the

Wiener measure is the whole space C0
0T (R

1). This means that an arbitrary small
neighborhood (in the uniform topology) of every function ϕ ∈ C0

0T (R
1) has

positive Wiener measure.
A collection of r independent Wiener processes w1

t (ω), w
2
t (ω), . . . , w

r
t (ω) is

called an r-dimensional Wiener process.
The important role of the Wiener process in the theory of random processes

can be explained to a large degree by the fact that many classes of random pro-
cesses with continuous trajectories admit a convenient representation in terms of
a Wiener process. This representation is given by means of the stochastic integral.
We recall the construction and properties of the stochastic integral.

Suppose we are given a probability space {Ω,F ,P}, a nondecreasing family
of σ-algebras Nt, t ≥ 0, Nt ⊆ F , and a Wiener process wt on {Ω,F ,P}. We
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assume that the σ-algebras Nt are such that Fw
≤t ⊆ Nt for every t ≥ 0 and

M(wt − ws|Ns) = 0; M(|wt − ws|2|Ns) = t− s

for every 0 ≤ s ≤ t. This will be so, at any rate, if Nt = Fw
≤t.

We say that a random process f(t, ω), t ≥ 0 measurable in the pair (t, ω)
does not depend on the future (with respect to the family of σ-algebras Nt) if
f(t, ω) is measurable with respect to Nt for every t > 0. We denote by H2

a,b,
0 ≤ a < b < ∞, the set of functions f(t, ω) not depending on the future and
such that

∫ b

a
M|f(t, ω)|2 dt < ∞. For such functions we define Itô’s stochastic

integral
∫ b

a
f(s, ω) dws. We note that since the trajectories of a Wiener process

have infinite variation over any interval, this integral cannot be defined as a Stielt-
jes integral. Itô’s integral is first defined for step functions belonging to H2

a,b. If
t0 = a < t1 < t2 < · · · < tn = b, f(s, ω) = fi(ω) for s ∈ [ti, ti+1),
i = 0, 1, . . . , n− 1 and f(s, ω) ∈ H2

a,b, then we set

∫ b

a

f(s, ω) dws =

n−1∑

i=0

fi(ω)(wti+1 − wti).

Consequently, we assign the variable ηf (ω) =
∫ b

a
f(s, ω) dws to the step func-

tion f(s, ω) ∈ Hb
a,b. If we introduce the norm

‖f‖H2 =

(∫ b

a

M|f(s, ω)|2 ds
)1/2

in H2
a,b and the norm ‖ηf‖ = (Mη2f )

1/2 in the space of random variables, then
the mapping f → ηf is norm-preserving, as is easy to see. This mapping, defined
first only for step functions, can be extended to the closure with preservation of
the norm. It can be proved that the closure of the set of step functions in H2

a,b

coincides with H2
a,b. Therefore, to every element f ∈ H2

a,b there corresponds
a random variable ηf , which is called Itô’s stochastic integral of the function

f(s, ω) and is denoted by
∫ b

a
f(s, ω) dws. We list the basic properties of the

stochastic integral (f(s, ω), g(s, ω) ∈ H2
a,b):

1.
∫ b

a
(αf(s, ω) + βg(s, ω)) dws = α

∫ b

a
f(s, ω) dws + β

∫ b

a
g(s, ω) dws;

2. M(
∫ b

a
f(s, ω) dws|Na) = 0;

3. M(
∫ b

a
f(s, ω) dws

∫ b

a
g(s, ω) dws|Na) = M(

∫ b

a
f(s, ω)g(s, ω) ds|Na),

in particular,

M

((∫ b

a

f(s, ω) dwa

)2∣∣∣∣Na

)
= M

(∫ b

a

f2(s, ω) ds

∣∣∣∣Na

)
.
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We note that the stochastic integral is defined up to an ω-set of measure zero
and all equalities listed above are satisfied almost surely with respect to the mea-
sure P on Ω.

Now we consider the stochastic integral as a function of the upper limit of
the integral. We denote by χt(s) the function equal to 1 for s ≤ t and zero for
s > t. If f(s, ω) ∈ H2

a,b, then χt(s)f(s, ω) ∈ H2
a,b for every t. We define

∫ t

a
f(s, ω) dws for t ∈ [a, b] by means of the equality

∫ t

a

f(s, ω) dws =

∫ b

a

χt(s)f(s, ω) dws.

Since for every t, the integral
∫ b

a
χt(s)f(s, ω) dws is determined up to events

of probability zero, we have some arbitrariness in the definition of the left side. It
can be proved that the right side can be defined for every t in such a way that the
stochastic integral on the left side will be a continuous function of the upper limit
for almost all ω. Whenever in this book, we consider stochastic integrals with a
varying upper limit, we always have in mind the variant which is continuous with
probability 1.

It follows from the above properties of the stochastic integral that the stochas-
tic process ξt =

∫ t

a
f(s, ω) dws, together with the nondecreasing family of σ-

algebras Nt, forms a martingale. This martingale has continuous trajectories with
probability 1 and

M(ξ2t |Na) = M

(∫ t

a

f2(s, ω) ds

∣∣∣∣Na

)
<∞.

For these martingales we have the following generalized Kolmogorov inequality:

P

{
max
a≤t≤b

∣∣∣∣
∫ t

a

f(s, ω) dws

∣∣∣∣ > c

∣∣∣∣Na

}
≤ 1

c2
M

(∫ b

a

f2(s, ω) ds

∣∣∣∣Na

)
.

Sometimes we have to consider the stochastic integral with a random time
as the upper limit. Let τ be a Markov time with respect to a nondecreasing sys-
tem of σ-algebras Nt, t ≥ 0 and let χτ (s) be equal to 1 for s ≤ τ and 0 for
s < τ . If χτ (s)f(s, ω) ∈ H2

0,∞, then
∫ τ

0
f(s, ω) dws =

∫∞
0

χτ (s)f(s, ω) dws

and M
∫ τ

0
f(s, ω) dws = 0.

In particular, χτ (s)f(s, ω) ∈ H2
0,∞, if |f(s, ω)| < c < ∞ for all s > 0 for

almost all ω and if Mτ <∞.
Let wt = {wi

t} now be an r-dimensional Wiener process and let Nt be the
σ-algebra generated by the random variables ws for s ≤ t. The stochastic integral

∫ b

a

Φ(s, ω) dws

is defined in a natural manner for matrix-valued functions Φ(s, ω) with entries
belonging to H2

a,b. Namely, if wt is understood as an r-dimensional column
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vector and the matrix Φ(s, ω) = (Φij(s, ω)) has r columns and l rows, then∫ b

a
Φ(s, ω) dws is the l-dimensional random variable whose ith component is

equal to the sum
r∑

j=1

∫ b

a

Φij(s, w) dw
j
s.

We consider the l-dimensional random process

Xt =

∫ t

a

Φ(s, ω) dws +

∫ t

a

Ψ(s, ω) ds, t ∈ [a, b].

Here the first term is the integral with respect to the r-dimensional Wiener pro-
cess which we have just described and in the second term,

Ψ(s, ω) = {Ψi(s, ω)}

is an l-dimensional random process. The relation defining Xt is sometimes writ-
ten in the form

dXt = Φ(t, ω) dwt +Ψ(t, ω) dt,

and the expression Φ(t, ω) dwt + Ψ(t, ω) dt is called the stochastic differential
of Xt.

Let a function u(t, x), t ∈ [a, b], x ∈ Rl have a continuous first derivative
with respect to t and continuous second derivatives with respect to the space
variables. In the theory of the stochastic integral an important role is played by
Itô’s formula giving an expression for the stochastic differential of the random
process ηt = u(t,Xt):

dηt =

r∑

k=1

l∑

i=1

∂u

∂xi
(t,Xt)Φik(t, ω) dw

k
t

+

[
∂u

∂t
(t,Xt) +

l∑

i=1

∂u

∂xi
(t,Xt)Ψ

i(t, ω)

+
1

2

r∑

k=1

i∑

i,j=1

Φik(t, ω)Φjk(t, ω)
∂2u

∂xi∂xi
(t,Xt)

]
dt.

A detailed exposition of the construction and proofs of all properties listed
here of the stochastic integral together with additional properties can be found in
the books by Gikhman and Skorokhod [1] and McKean [1].

As we have already noted, by means of the stochastic integral we can obtain
representations of some classes of random processes in terms of the Wiener pro-
cess. Let us discuss the representation of Gaussian processes in detail. We obtain
a representation of the Gaussian process with mean zero and correlation function
R(s, t), which we assume to be continuous for s, t ∈ [0, T ]. If considered in the
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space L2
0,T , the correlation operator A of such a process is completely continu-

ous, nonnegative definite, symmetric and of finite trace. Let e1(t), . . . , en(t), . . .
be its eigenfunctions and let λ1, λ2, . . . , λn, . . . be the corresponding eigenval-
ues. It is known (Riesz and Szökefalvi-Nagy [1]) that the kernel of such an oper-
ator can be expressed in the form

R(s, t) =
∑

k

λkek(s)ek(t).

We set
G(s, t) =

∑

k

√
λkek(s)ek(t).

It follows from the finiteness of the trace of A that this series is always conver-
gent in the space L2

[0,T ]×[0,T ] of square integrable functions on [0, T ]× [0, T ]. It
follows easily from the definition of G(s, t) that

∫ T

0

G(s, t1)G(s, t2) ds = R(t1, t2).

We consider the stochastic integral

Xt =

∫ T

0

G(s, t) dws.

This stochastic integral with respect to the Wiener process wt exists, since the
integrand does not depend on chance and

∫ T

0
G2(s, t) ds = R(t, t) < ∞. It

follows from previously mentioned properties of the stochastic integral that Xt

is a Gaussian process and

MXt = 0; MXt1Xt2 = M

(∫ T

0

G(s, t1) dws ·
∫ T

0

G(s, t2) dws

)

=

∫ T

0

G(s, t1)G(s, t2) ds = R(t1, t2).

Consequently, we have obtained a representation for the Gaussian process with
vanishing mean and correlation function R(s, t) as a stochastic integral of the
nonrandom function G(s, t).

Sometimes we consider a so-called white noise process ẇt, the derivative of
a Wiener process wt. As we have already mentioned, the derivative of a Wiener
process does not exist in the ordinary sense. Nevertheless, the stochastic integral
enables us to give a meaning to some expressions containing ẇt. Having defined
Itô’s integral for functions f(s, ω) ∈ H2

0,T , we may set

∫ T

0

f(s, ω) dws =

∫ T

0

f(s, ω)ẇs ds,
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assuming that the left side defines the right side. In particular, the formula defin-
ing the process Xt can be written in the form

Xt =

∫ T

0

G(s, t)ẇs ds

and we may say that the Gaussian process Xt is the result of applying the integral
operator with kernel G(s, t) to the white noise process (this kernel is sometimes
called the impulse response of the operator).

A large class of martingales continuous in the time variable admits a repre-
sentation in the form of a stochastic integral with respect to the Wiener process.
In Sect. 5 we construct diffusion processes starting from a Wiener process.

4 Markov Processes and Semigroups

Let (Xt,Px) be a Markov process on a phase space (X,B) and let P (t, x,Γ)
be its transition function. We denote by B the Banach space of bounded B-
measurable functions on X with the norm ‖f‖ = supx∈X |f(x)|. With the
Markov process (or with its transition function) we may associate the family of
operators Tt, t ≥ 0 acting in B according to the formula

(Ttf)(x) = Mxf(Xt) =

∫

X

f(y)P (t, x, dy).

Since P (t, x,Γ) is a probability measure as a function of Γ, the operators Tt

preserve nonnegativity and do not increase norm: if f(x) ≥ 0, then

Ttf(x) ≥ 0, ‖Ttf‖ ≤ ‖f‖.

It follows from the Markov property that

Tt+sf(x) = Mxf(Xt+s) = Mx(MXtf(Xs)) = Tt(Tsf)(x),

i.e., the operators Tt form a semigroup: TtTs = Tt+s. Consequently, with every
Markov process (Xt,Px) there is associated the contraction semigroup Tt acting
in the space B of bounded measurable functions on the phase space.

The contraction semigroup is, of course, also associated with the Markov
family Xx

t (defined on the probability space (Ω,F ,P) not depending on x):

(Ttf)(x) = Mf(Xx
t ) =

∫

X

f(y)P (t, x, dy).

If the function f(x) is the indicator χΓ(x) of a set Γ ⊆ X (i.e., the function
equal to 1 on Γ and 0 outside Γ), then we obtain TtχΓ(x) = P (t, x,Γ) and the
semigroup property Tt+sχΓ(x) = Tt(TsχΓ) can be written in the form
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P (t+ s, x,Γ) =

∫

x

P (t, x, dy)P (s, y,Γ),

which is called the Chapman–Kolmogorov equation.
With the transition function P (t, x,Γ) we may associate another operator

semigroup Ut, t ≥ 0 acting in the Banach space V of finite countability additive
set functions on (X,B) with the norm ‖μ‖∗ defined as the total variation of the
set function μ:

(Utμ)(Γ) =

∫

X

P (t, x,Γ)μ(dx); μ ∈ V, Γ ∈ B.

As is easy to see, the operators Tt and Ut are conjugate to each other in the sense
that ∫

X

Ttf(x)μ (dx) =

∫

X

f(x)(Utμ)(dx); f ∈ B, μ ∈ V.

The semigroup Ut describes the evolution of the one-dimensional distribu-
tions of the Markov process. Namely, if we consider the Markov process as be-
ginning not at a given point x ∈ X but rather at a random point X0 with distri-
bution μ : P{X0 ∈ Γ} = μ(Γ), the distribution at time t will be exactly Utμ:

P{Xt ∈ Γ} =
∫

X

P{X0 ∈ dx}P (t, x,Γ) = (Utμ)(Γ), Γ ∈ B.

A measure μ on (X,B) is called an invariant measure of the Markov process
if Utμ = μ for all t ≥ 0. It is clear that the invariant measures form a cone in V.
If μ(X) = 1, then the invariant measure μ is also called a stationary probability
distribution.

The infinitesimal generator A of the semigroup Tt (it is also the infinitesimal
generator of the Markov process (Xt,Px) or the Markov family Xx

t with the
given transition function) is defined by the equality

Af = lim
t↓0

Ttf − f

t
.

Here convergence is understood as convergence in norm, i.e., the equality means
that limt↓0 ‖t−1(Ttf − f) − Af‖ = 0. The operator A is not defined for all
elements of B in general. The domain of A is a vector subspace, which is denoted
by DA. It is everywhere dense in the space

B0 =
{
f ∈ B : lim

t↓0
‖Ttf − f‖ = 0

}
.

The infinitesimal generator determines the semigroup Tt uniquely on B0. If the
transition function is stochastically continuous, then the semigroup Tt considered
only on B0 (and consequently, the infinitesimal generator A, as well) determines
uniquely the transition function and all finite-dimensional distributions of the
Markov process (Markov family).
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In the theory of semigroups it is proved that for every f ∈ DA the function
ut(x) = Ttf(x) is a solution of the abstract Cauchy problem

∂ut(x)

∂t
= Aut(x), lim

t↓0
ut(x) = f(x).

The solution of this problem is always unique in the class of bounded functions.
The infinitesimal generator A∗ of the semigroup Ut can be defined analo-

gously. For μ belonging to the domain of A∗, the function

νt(Γ) = Utμ(Γ), Γ ∈ B,

is a solution of the corresponding Cauchy problem. In particular, it can be verified
easily that every invariant measure belongs to the domain of A∗ and A∗μ = 0.

A detailed exposition of the semigroup theory of Markov processes can be
found in Dynkin’s book [2].

We consider examples of Markov processes and their infinitesimal genera-
tors.

FIRST EXAMPLE. Let X be a finite set and let B be the collection of its subsets.
A Markov process with such a phase space is called a Markov process with a
finite number of states. With every such process there is associated a system of
functions pij(t) (i, j ∈ X, t ≥ 0) satisfying the following conditions:

(1) pij(t) ≥ 0 for i, j ∈ X , t ≥ 0;
(2)
∑

j∈X pij(t) = 1;
(3) pij(0) = 0 for i �= j, pii(0) = 1 for i ∈ X;
(4) pij(s+ t) =

∑
k∈X pik(t)pkj(s).

The transition function of the process can be expressed in terms of the functions
pij(t) in the following way:

P (t, x,Γ) =
∑

y∈Γ

pxy(t); x ∈ X, Γ ∈ B, t ≥ 0.

We shall only consider stochastically continuous processes with a finite num-
ber of states. For these processes the functions pij(t) satisfy the additional con-
dition

(5) limt↓0 pij(t) = pij(0).

It can be proved under conditions (1)–(5) that the right derivatives at zero
qij = p′ij(0) exist. We introduce the matrix P (t) = (pij(t)); and use the notation
Q = (qij).

We calculate the infinitesimal generator A of our Markov process and the
infinitesimal generator A∗ of the adjoint operator semigroup Ut.

The space B of bounded measurable functions on X and the space V of
countably additive set functions on B are finite-dimensional linear spaces with
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dimension equal to the number of elements of X . We identify the elements of B
with column vectors and the elements of V with row vectors. The semigroup Tt

acts on vectors belonging to B according to the formula

Ttf = P (t)f.

The infinitesimal generator A of the semigroup is defined on the whole of B
and is given by the formula

Af = lim
t↓0

Ttf − f

t
= Qf.

The adjoint semigroup Ut is given by multiplication by the matrix P (t) on the
right and its infinitesimal generator is given by multiplication by the matrix Q on
the right. It can be proved easily that Q has at least one left eigenvector m ∈ V
with eigenvalue zero (mQ = 0) and with nonnegative components whose sum
is equal to one. Every such vector defines a stationary distribution of the process
with a finite number of states. If all entries of Q are different from zero, then the
stationary distribution is unique.

SECOND EXAMPLE. Let νt be a Poisson process starting at zero (cf. Sect. 2).
The collection of the processes νxt = x + νt, x ∈ R1, forms a Markov family
with respect to the σ-algebras Nt = F ν

≤t (as phase space we take the real line
R1). The corresponding semigroup Tt acts according to the formula

Ttf(x) =

∞∑

k=0

f(x+ k)e−λt (λt)
k

k!

in the space of bounded measurable functions and its infinitesimal generator A
has the form

Af(x) = λ[f(x+ 1)− f(x)].

Intuitively, the Poisson process can be described in the following way. If at
some moment the trajectory is at the point x, then it spends an additional random
time τ at x and then jumps 1 to the right, arriving at the point x+1, it spends some
time in this position and then jumps to x + 2 and so on. The random variable τ
follows an exponential distribution:

P{τ > t} = exp{−λt}.

For a Poisson process, the number λ is the same for all states and also the length
of a jump is fixed. We obtain a jump-like Markov process of the general form if
we allow λ (describing the distribution of the time until exit from the state x) to
depend on x and consider jumps whose lengths are random with a distribution
depending on the initial state. A jump-like process (which can be considered
not only on a line but also in r-space Rr) can be described by the infinitesimal
generator
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Af(x) = λ(x)

∫
[f(x+ u)− f(x)]μx (du).

Here integration is carried out over all space except for the point 0, λ(x) char-
acterizes the distribution of the time until exit from x, and the measure μx(du)
gives the distribution of the jump length.

In the next section we shall consider a large class of Markov processes
(Markov families) with continuous trajectories and the corresponding infinitesi-
mal generators.

5 Diffusion Processes and Differential Equations

Let wt be an l-dimensional Wiener process and let Nt be the σ-algebra generated
by the random variables ws for s ≤ t. We consider the stochastic differential
equation

Ẋt = b(Xt) + σ(Xt)ẇt, X0 = x

in Rr. Here b(x) = (b1(x), . . . , br(x)) is a vector field in Rr and σ(x) = (σi
j(x))

is a matrix having l columns and r rows. By a solution of this equation we un-
derstand a random process Xt = Xt(ω) which satisfies the relation

Xt − x =

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dws,

with probability 1 for every t ≥ 0. We shall usually assume that the coefficients
bi(x), σi

j(x) satisfy the following conditions:

(1)
∑

i |bi(x)− bi(y)|+
∑

i,j |σi
j(x)− σi

j(y)| ≤ K|x− y|; x, y ∈ Rr,
(2)
∑

i |bi(x)|+
∑

i,j |σi
j(x)| ≤ K(|x|+ 1),

where |x| is the Euclidean length of the vector x ∈ Rr and K is a positive
constant.

Under these conditions it can be proved that the above stochastic differential
equation has a solution Xx

t (ω), t ≥ 0 which is continuous with probability 1, the
random variable Xx

t (ω) is measurable with respect to the σ-algebra Nt for every
t ≥ 0, and

∫ b

a
M|Xx

t |2 dt < ∞ for any b > a ≥ 0. For every t ≥ 0, any two
solutions of a stochastic differential equation having these properties coincide for
almost all ω ∈ Ω.

Using the independence of the increments of a Wiener process and the
uniqueness of the solution, it can be proved (Dynkin [2]) that the set of processes
Xx

t for all possible initial points x ∈ Rr forms a Markov family with respect
to the system of the σ-algebras Nt. It can be proved that the Markov process
corresponding to this family is a strong Markov process.

Consequently, a stochastic differential equation determines a strong Markov
process. This process is called a random diffusion process.
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We shall study the infinitesimal generator of the diffusion process. Let the
function u(x), x ∈ Rr have bounded continuous derivatives up to the second
order. By Itô’s formula we obtain

u(Xx
t )− u(x) =

∫ t

0

(∇u(Xx
s ), σ(X

x
s ) dws) +

∫ t

0

Lu(Xx
s ) ds.

Here ∇u(x) is the gradient of u(x), the quantity under the first integral sign
on the right side is the Euclidean scalar product of the vectors ∇u(Xx

s ) and
σ(Xx

s ) dws, and the differential operator L has the form

Lu(x) =
1

2

r∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

r∑

i=1

bi(x)
∂u

∂xi
(x),

where a(x) = (aij(x)) = σ(x)σ∗(x) is a square matrix of order r. It follows
from the above expression for u(Xx

t )− u(x) that u(x) ∈ DA and

Au(x) = lim
t↓0

Mxu(X
x
t )− u(x)

t
= lim

t↓0

1

t

∫ t

0

MLu(Xx
s ) ds = Lu(x).

Here we have used the continuity of the function Lu(x) and the fact that the
mathematical expectation of the stochastic integral is equal to zero.

Hence the infinitesimal generator of the diffusion process is defined and co-
incides with L for smooth functions. The operator L is sometimes called the
differential generator of the diffusion process, the functions aij(x) are called dif-
fusion coefficients and b(x) is called the drift vector. It is easy to see that the
matrix (aij(x)) of diffusion coefficients is nonnegative definite, i.e.,

r∑

i,j=1

aij(x)λiλj ≥ 0

for any real λ1, . . . , λr. Conversely, if a nonnegative definite matrix (aij(x))
and a vector b(x) are given with sufficiently smooth entries, then we can con-
struct a diffusion process with diffusion coefficients aij(x) and drift b(x). This
can be done, for example, by means of a stochastic differential equation: if the
matrix σ(x) is such that σ(x)σ∗(x) = (aij(x)), then the solutions of the equa-
tion Ẋt = b(Xt) − σ(Xt)ẇt form a diffusion process with diffusion coeffi-
cients aij(x) and drift b(x). For the existence and uniqueness of solutions of
the stochastic differential equation it is necessary that the coefficients σ(x) and
b(x) satisfy certain regularity requirements. For example, as has already been
indicated, it is sufficient that σ(x) and b(x) satisfy a Lipschitz condition. A rep-
resentation of (aij(x)) in the form (aij(x)) = σ(x)σ∗(x) with entries σi

j(x)

satisfying a Lipschitz condition is always possible whenever the functions aij(x)
are twice continuously differentiable (Freidlin [5]). If det(aij(x)) �= 0, then for
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such a representation it is sufficient that the functions aij(x) satisfy a Lipschitz
condition.

Consequently, every operator

L =
1

2

r∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

r∑

i=1

bi(x)
∂

∂xi

with nonnegative definite matrix (aij(x)) and sufficiently smooth coefficients has
a corresponding diffusion process. This diffusion process is determined essen-
tially uniquely by its differential generator: any two processes with a common
differential generator induce the same distribution in the space of trajectories.
This is true in all cases where the coefficients aij(x) and bi(x) satisfy some
weak regularity conditions, which are always satisfied in our investigations.

In a majority of problems in probability theory we are interested in those
properties of a random process which are determined by the corresponding dis-
tribution in the space of trajectories and do not depend on the concrete represen-
tation of the process. In connection with this we shall often say: “Let us consider
the diffusion process corresponding to the differential operator L,” without spec-
ifying how this process is actually given.

A diffusion process corresponding to the operator L can be constructed with-
out appealing to stochastic differential equations. For example, if the diffusion
matrix is nondegenerate, then a corresponding process can be constructed start-
ing from the existence theorem for solutions of the parabolic equation ∂u/∂t =
Lu(t, x). Relying on results of the theory of differential equations, we can estab-
lish a series of important properties of diffusion processes. For example, we can
give conditions under which the transition function has a density. In many prob-
lems connected with degeneracies in one way or another, it seems to be more
convenient to use stochastic differential equations.

We mention some particular cases. If aij(x) = 0 for all i, j = 1, 2, . . . , r,
then L turns into an operator of the first order:

L =

r∑

i=1

bi(x)
∂

∂xi
.

In this case, the stochastic differential equations turn into the following system
of ordinary differential equations:

ẋt = b(xt), x0 = x.

Consequently, to any differential operator of the first order there corresponds
a Markov process which represents a deterministic motion given by solutions of
an ordinary differential equation. In the theory of differential equations, this ordi-
nary differential equation is called the equation of characteristics and its solutions
are the characteristics of the operator L.
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Another particular case is when all drift coefficients bj(x) ≡ 0 and the diffu-
sion coefficients form a unit matrix: aij(x) = δij . Then, L = Δ/2, where Δ is
the Laplace operator. The corresponding Markov family has the form

wx
t = x+ wt,

i.e., to the operator Δ/2 there corresponds the family of processes which are
obtained by translating the Wiener process by the vector x ∈ Rr. For the sake
of brevity, the Markov process (wt,Px) connected with this family will also be
called a Wiener process. The index in the probability or the mathematical expec-
tation will indicate that the trajectory wx

t = x + wt is considered. For example,
Px{wt ∈ Γ} = P{x+ wt ∈ Γ}, Mxf(wt) = Mf(x+ wt).

It is easy to see that if all coefficients of L are constant, then the corresponding
Markov family consists of Gaussian processes of the form

Xx
t = x− σwt + bt.

The diffusion process will also be Gaussian if the diffusion coefficients are con-
stant and the drift depends linearly on x.

Now let (Xt,Px) be a diffusion process, A the infinitesimal generator of
the process, and L the corresponding differential operator. Let us consider the
Cauchy problem

∂u(t, x)

∂t
= Lu(t, x); u(0, x) = f(x),

x ∈ Rr, t > 0.

A generalized solution of this problem is, by definition, a solution of the follow-
ing Cauchy problem:

∂ut

∂t
= Aut, u0 = f.

The operator A is an extension of L, so that this definition is unambiguous. As
has been noted in Sect. 3, the solution of the abstract Cauchy problem exists in
every case where f ∈ DA and can be written in the form

ut(x) = Mxf(Xt) = Ttf(x).

If the classical solution u(t, x) of the Cauchy problem exists, then, since Au =
Lu for smooth functions u = u(t, x), the function u(t, x) is also a solution of the
abstract Cauchy problem and u(t, x) = Ttf(x) by the uniqueness of the solution
of the abstract problem. This representation can be extended to solutions of the
Cauchy problem with an arbitrary bounded continuous initial function not neces-
sarily belonging to DA. This follows from the maximum principle for parabolic
equations.

If the matrix (aij(x)) is nondegenerate and the coefficients of L are suffi-
ciently regular (for example, they satisfy a Lipschitz condition), then the equa-
tion ∂u/∂t = Lu has the fundamental solution p(t, x, y), i.e., the solution of
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the Cauchy problem with initial function δ(x − y). As can be seen easily, this
fundamental solution is the density of the transition function:

P (t, x,Γ) =

∫

Γ

p(t, x, y) dy.

The equation ∂u/∂t = Lu is called the backward Kolmogorov equation of the
diffusion process (Xt,Px).

Let c(x) be a bounded uniformly continuous function on Rr. Consider the
family of operators

T̃tf(x) = Mxf(Xt) exp

{∫ t

0

c(Xs) ds

}
, t ≥ 0,

in the space of bounded measurable functions on Rr. The operators T̃t form a
semigroup (cf., for example, Dynkin [2]). Taking into account that

exp

{∫ t

0

c(Xs) ds

}
= 1 +

∫ t

0

c(Xs) ds+ o(t)

as t ↓ 0, it is easy to prove that if f ∈ DA and the coefficients of the operator L
are uniformly bounded on Rr, then f belongs to the domain of the infinitesimal
generator Ã of the semigroup T̃t and Ãf(x) = Af(x) + c(x)f(x), where A
is the infinitesimal generator of the semigroup Ttf(x) = Mxf(Xt). Using this
observation, it can be proved that for a bounded continuous function f(x) the
solution of the Cauchy problem

∂v(t, x)

∂t
= Lv(t, x) + c(x)v(t, x), x ∈ Rr, t > 0,

v(0, x) = f(x)

can be written in the form

v(t, x) = T̃tf(x) = Mxf(Xt) exp

{∫ t

0

c(Xs) ds

}
.

A representation in the form of the expectation of a functional of the tra-
jectories of the corresponding process can also be given for the solution of a
nonhomogeneous equation: if

∂w

∂t
= Lw + c(x)w + g(x), w(0, x) = 0,

then

w(t, x) = Mx

∫ t

0

g(Xs) exp

{∫ s

0

c(Xu) du

}
ds.

A probabilistic representation of solutions of an equation with coefficients
depending on t and x can be given in terms of the mean value of functionals of
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trajectories of the process determined by the nonhomogeneous stochastic differ-
ential equation

Ẋt = b(t,Xt) + σ(t,Xt)ẇt, Xt0 = x.

The solutions of this equation exist for any x ∈ Rr, t0 ≥ 0 if the coefficients
are continuous in t and x and satisfy a Lipschitz condition in x with a constant
independent of t (Gikhman and Skorokhod [1]). The set of the processes Xt0,x

t

for all t0 ≥ 0 and x ∈ Rr forms a nonhomogeneous Markov family (cf. Dynkin
[1]).

In the phase space Rr of a diffusion process (Xt,Px) let a bounded domain
D with a smooth boundary ∂D be given. Denote by τ the first exit time of the
process from the domain D : τ = τ(ω) = inf{t : Xt /∈ D}. In many problems
we are interested in the mean of functionals depending on the behavior of the
process from time 0 to time τ ; for example, expressions of the form

Mx

∫ τ

0

f(Xs) ds, Mx exp

{∫ τ

0

f(Xs) ds

}
, etc.

These expressions as functions of the initial point x are solutions of boundary
value problems for the differential generator L of the process (Xt,Px). In the
domain D let us consider Dirichlet’s problem

Lu(x) + c(x)u(x) = f(x), x ∈ D;

u(x)|x∈∂D = ψ(x).

It is assumed that c(x), f(x), for x ∈ Rr, and ψ(x), for x ∈ ∂D, are bounded
continuous functions and c(x) ≤ 0. Concerning the operator L we assume that it
is uniformly nondegenerate in D∪∂D, i.e.,

∑
aij(x)λiλj ≥ k

∑
λ2
i , k > 0, and

all coefficients satisfy a Lipschitz condition. Under these conditions, the function

ũ(x) = −Mx

∫ τ

0

f(Xt) exp

{∫ t

0

c(Xs) ds

}
dt

+Mxψ(Xτ ) exp

{∫ τ

0

c(Xs) ds

}

is the unique solution of the above Dirichlet problem.
In order to prove this, first we assume that the solution u(x) of Dirichlet’s

problem can be extended with preservation of smoothness to the whole space Rr.
We write Yt =

∫ t

0
c(Xs) ds and apply Itô’s formula to the function u(Xt)e

Yt :

u(Xt) exp

[∫ t

0

c(Xs) ds

]
− u(x) =

∫ t

0

(eYs∇u(Xs), σ(Xs) dws)

+

∫ t

0

eYsf(Xs) ds
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+

∫ t

0

eYs [Lu(Xs)− f(Xs)] ds

+

∫ t

0

u(Xs)e
Ysc(Xs) ds.

This equality is satisfied for all t ≥ 0 with probability 1. We now replace t
by the random variable τ . For s < τ the trajectory Xs does not leave D, and
therefore, Lu(Xs) = f(Xs)− c(Xs)u(Xs). Hence for t = τ the last two terms
on the right side of the equality obtained by means of Itô’s formula cancel each
other. The random variable τ is a Markov time with respect to the σ-algebras Nt.
Under the assumptions made concerning the domain and the process, we have
Mxτ < K <∞. Therefore

Mx

∫ τ

0

(eYs∇u(Xs), σ(Xs) dws) = 0,

utilizing these remarks, we obtain

Mxu(Xτ ) exp

[∫ τ

0

c(Xs) ds

]
− u(x) = Mx

∫ τ

0

f(Xs) exp

[∫ s

0

c(Xv) dv

]
ds.

Our assertion follows from this in the case where u(x) can be extended smoothly
to the whole space Rr. In order to obtain a proof in the general case, we have
to approximate the domain D with an increasing sequence of domains Dn ⊂ D
with sufficiently smooth boundaries ∂Dn. As boundary functions we have to
choose the values, on ∂Dn, of the solution u(x) of Dirichlet’s problem in D.

We mention some special cases. If c(x) ≡ 0, ψ(x) ≡ 0 and f(x) ≡ −1, then
ũ(x) = Mxτ . The function ũ(x) is the unique solution of the problem

Lũ(x) = −1 for x ∈ D, ũ(x)|∂D = 0.

If c(x) ≡ 0, f(x) ≡ 0, then for ũ(x) = Mxψ(Xτ ) we obtain the problem

Lũ(x) = 0, x ∈ D; ũ(x)|∂D = ψ(x).

If c(x) > 0, then, as is well known, Dirichlet’s problem can “go out to the
spectrum”; the solution of the equation Lu+c(x)u = 0 with vanishing boundary
values may not be unique in this case. On the other hand, if c(x) ≤ c0 <∞, and
Mxe

c0τ < ∞ for x ∈ D, then it can be proved that the solution of Dirichlet’s
problem is unique and the formulas giving a representation of the solution in the
form of the expectation of a functional of the corresponding process remain valid
(Khasminskii [2]). It can be proved that sup{c : Mxe

cτ < ∞} = λ1 is the
smallest eigenvalue of the problem

−Lu = λ1u, u|∂D = 0.

We will need not only equations for expectations associated with diffusion
processes, but also certain inequalities.
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If u(x) is a function that is smooth in D and continuous in its closure D∪∂D,
Lu(x) ≤ c0 < 0 for x ∈ D, then

Mxτ ≤
u(x)−min{u(x) : x ∈ ∂D}

c0
; (5.1)

if u(x) is positive in D ∪ ∂D, and Lu(x)− λu(x) ≤ 0, x ∈ D, then

Mxe
−λτ ≤ u(x)

min{u(x) : x ∈ ∂D} . (5.2)

A representation in the form of the expectation of a functional of trajectories
of the corresponding process can be given for the solution of a mixed problem
for a parabolic equation. For example, the solution w(t, x) of the problem

∂w

∂t
= Lw, t > 0, x ∈ D;

w(0, x) = f(x), x ∈ D; w(t, x)|t>0,x∈∂D = ψ(x)

can be represented in the form

w(t, x) = Mx{τ > t; f(Xt)}+Mx{τ ≤ t;ψ(Xτ )},

under some regularity assumptions on the coefficients of the operator, the bound-
ary of the domain D and the functions f(x) and ψ(x).

On the one hand, we can view the formulas mentioned in this section which
connect the expectations of certain functionals of a diffusion process with solu-
tions of the corresponding boundary value problems as a method of calculating
these expectations by solving differential equations. On the other hand, we can
study the properties of the functionals and their mathematical expectations by
methods of probability theory in order to use this information for the study of
solutions of boundary value problems. In our book the second point of view will
be predominant.

A representation in the form of the mathematical expectation of a functional
of trajectories of the corresponding process can also be given for several other
boundary value problems, for example, for Neumann’s problem, the third bound-
ary value problem (Freidlin [3], Ikeda [1]).

Now we turn to the behavior of a diffusion process as t→∞. For the sake of
simplicity, we shall assume that the diffusion matrix and the drift vector consist
of bounded entries satisfying a Lipschitz condition and

r∑

i,j=1

aij(x)λiλj ≥ k

r∑

i=1

λ2
i , k > 0,

for x ∈ Rr and for all real λ1, . . . , λr. Such a nondegenerate diffusion process
may have trajectories of two different types: either trajectories going out to infin-
ity as t → ∞ with probability Px = 1 for any x ∈ Rr or trajectories which re-
turn to a given bounded region after an arbitrary large t with probability Px = 1,
x ∈ Rr although Px{limf→∞ |Xt| =∞} = 1.
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The diffusion processes which have trajectories of the second type are said to
be recurrent. The processes for which Px{limt→∞ |Xt| = ∞} = 1, are said to
be transient. It is easy to prove that the trajectories of a recurrent process hit every
open set of the phase space with probability Px = 1 for any x ∈ Rr. We denote
by τ = inf{t : |Xt| < 1} the first entrance time of the unit ball with center at the
origin. For a recurrent process, Px{τ < ∞} = 1. If Mxτ < ∞ for any x ∈ Rr,
then the process (Xt,Px) is said to be positively recurrent, otherwise it is said to
be null recurrent. The Wiener process in R1 or R2 serves as an example of a null
recurrent process. The Wiener process in Rr is transient for r ≥ 3. If, uniformly
for all x ∈ Rr lying outside some ball, the projection of the drift b(x) onto the
radius vector connecting the origin of coordinates with the point x is negative and
bounded from below in its absolute value, then the process (Xt,Px) is positively
recurrent. It is possible to give stronger sufficient conditions for recurrence and
positive recurrence in terms of so-called barriers—nonnegative functions V (x),
x ∈ Rr for which LV (x) has a definite sign and which behave in a certain way at
infinity. The recurrence or transience of a diffusion process is closely connected
with the formulation of boundary value problems for the operator L in unbounded
domains. For example, the exterior Dirichlet problem for the Laplace operator in
R2, where the corresponding process is recurrent, has a unique solution in the
class of bounded functions while in order to select the unique solution of the
exterior Dirichlet problem for the operator Δ in R3, it is necessary to prescribe
the limit of the solution as |x| → ∞.

It can be proved that if a diffusion process (Xt,Px) is positively recurrent,
then it has a unique stationary probability distribution μ(Γ), Γ ∈ Br, i.e., a
probability measure for which Utμ(Γ) =

∫
Rr μ(dx)P (t, x,Γ) = μ(Γ). This

measure has a density m(x) which is the unique solution of the problem

L∗m(x) = 0 for x ∈ Rr, m(x) > 0,

∫

Rr

m(x) dx = 1.

Here L∗ is the formal adjoint of L:

L∗m(x) =
1

2

r∑

i,j=1

∂2

∂xj∂xi
(aij(x)m(x))−

r∑

i=1

∂

∂xi
(bi(x)m(x)).

For positively recurrent diffusion processes the law of large numbers holds in the
following form:

Px

{
lim

T→∞

1

T

∫ T

0

f(Xs) ds =

∫

Rr

f(x)m(x) dx

}
= 1

for arbitrary x ∈ Rr and any bounded measurable function f(x) on Rr. The
process Xx

t , t ∈ [0, T ] defined by the stochastic differential equation

Ẋx
t = b(Xx

t ) + σ(Xx
t )ẇt, Xx

0 = x,
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as every other random process induces a probability distribution in the space of
trajectories. Since the trajectories of Xx

t are continuous with probability 1, this
distribution is concentrated in the space Cx

0T of continuous functions assuming
the value x at t = 0. We denote by μx the measure corresponding to Xx

t in Cx
0T .

Together with Xx
t , we consider the process Y x

t satisfying the stochastic differen-
tial equation

Ẏ x
t = b(Y x

t ) + σ(Y x
t )ẇt + f(t, Y x

t ), Y x
0 = x.

The processes Y x
t and Xx

t coincide for t = 0; they differ by the drift vector
f(t, Yt). Let μY be the measure corresponding to the process Yt in Cx

0T . We will
be particularly interested in the question of when the measures μX and μY are
absolutely continuous with respect to each other and what the density of one mea-
sure with respect to the other looks like. Suppose there exists an r-dimensional
vector ϕ(t, x) with components bounded by an absolute constant and such that
σ(x)ϕ(t, x) = f(t, x). Then μX and μY are absolutely continuous with respect
to each other and the density dμY /dμX has the form

dμY

dμX
(Xx) = exp

{∫ T

0

(ϕ(t,Xx
t ), dwt)−

1

2

∫ T

0

|ϕ(t,Xx
t )|2 dt

}

(Girsanov [1], Gikhman and Skorokhod [1]). In particular, if the diffusion matrix
a(x) = σ(x)σ∗(x) is uniformly nondegenerate for x ∈ Rr, then μX and μY

are absolutely continuous with respect to each other for any bounded measurable
f(t, x). If Xx

t = x+ wt is the Wiener process and

Y x
t = x+ wt +

∫ t

0

f(s) ds,

then
dμY

dμX
= exp

{∫ T

0

(f(s), dws)−
1

2

∫ T

0

|f(s)|2 ds
}
.

The last equality holds provided that
∫ T

0
|f(s)|2 ds <∞.



Chapter 2

Small Random Perturbations on a Finite Time
Interval

1 Zeroth Order Approximation

In the space Rr we consider the following system of ordinary differential equa-
tions:

Xε
t = b(Xε

t , εξt), Xε
0 = x. (1.1)

Here ξt(ω), t ≥ 0 is a random process on a probability space {Ω,F ,P}with val-
ues in Rl and ε is a small numerical parameter. We assume that the trajectories
of ξt(ω) are right continuous, bounded and have at most a finite number of points
of discontinuity on every interval [0, T ], T < ∞. At the points of discontinuity
of ξt, where as a rule, (1.1) cannot be satisfied, we impose the requirement of
continuity of Xε

t . The vector field b(x, y) = (b1(x, y), . . . , br(x, y)), x ∈ Rr,
y ∈ Rl is assumed to be jointly continuous in its variables. Under these condi-
tions the solution of problem (1.1) exists for almost all ω ∈ Ω on a sufficiently
small interval [0, T ], T = T (ω).

Let b(x, 0) = b(x). We consider the random process Xε
t as a result of small

perturbations of the system

ẋt = b(xt), x0 = x. (1.2)

Theorem 1.1. Assume that the vector field b(x, y), x ∈ Rr, y ∈ Rl is continuous
and that (1.2) has a unique solution on the interval [0, T ]. Then, for sufficiently
small ε, the solution of (1.1) is defined for t ∈ [0, T ] and

P
{
lim
ε→0

max
0≤t≤T

|Xε
t − xt| = 0

}
= 1.

Strictly speaking, this result does not have a probabilistic character and be-
longs to the theory of ordinary differential equations. We are not going to give a
detailed proof but only note that the existence of the solution Xε

t on the whole
interval [0, T ] follows from the proof of Peano’s theorem on the existence of the
solution of an ordinary differential equation (cf., for example, Coddington and
Levinson [1]) and the convergence follows from Arzela’s theorem on compact-
ness of sets in C0T if we take into account that the solution of (1.2) is unique.

Now in Rr we consider the stochastic differential equation with a small pa-
rameter
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Ẋε
t = b(Xε

t ) + εσ(Xε
t )ẇt, Xε

t = x. (1.3)

This equation might be considered as a special case of (1.1) with b(x, y) = b(x)+
σ(x)y. Nevertheless, here for y we have substituted a white noise process, whose
trajectories are not only discontinuous functions but distributions in the general
case. Therefore the convergence of the solution of (1.3) to the solution of (1.2),
which is obtained for ε = 0, has to be considered separately.

Theorem 1.2. Assume that the coefficients of (1.3) satisfy a Lipschitz condition
and increase no faster than linearly:

∑

i

[bi(x)− bi(y)]2 +
∑

i,j

[σi
j(x)− σi

j(y)]
2 ≤ K2|x− y|2,

∑

i

[bi(x)]2 +
∑

i,j

[σi
j(x)]

2 ≤ K2(1 + |x|2).

Then for all t > 0 and δ > 0 we have

M|Xε
t − xt|2 ≤ ε2a(t), lim

ε→0
P
{
max
0≤s≤t

|Xε
s − xs| > δ

}
= 0,

where a(t) is a monotone increasing function, which is expressed in terms of |x|
and K.

For the proof, we need the following lemma, which we shall use several times
in what follows.

Lemma 1.1. Let m(t), t ∈ [0, T ], be a nonnegative function satisfying the rela-
tion

m(t) ≤ C + α

∫ t

0

m(s) ds, t ∈ [0, T ], (1.4)

with C, α > 0. Then
m(t) ≤ Ceαt

for t ∈ [0, T ].

Proof. From inequality (1.4) we obtain

m(t)

(
C + α

∫ t

0

m(s) ds

)−1

≤ 1.

Integrating both sides from 0 to t, we obtain

ln

(
C + α

∫ t

0

m(s) ds

)
− lnC ≤ αt,

which implies that

C + α

∫ t

0

m(s) ds ≤ Ceαt.

The last inequality and (1.4) imply the assertion of the lemma.
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Now we begin the proof of the theorem. We prove that M|Xε
t |2 is bounded

uniformly in ε ∈ [0, 1]. For this, we apply Itô’s formula (cf. Sect. 3, Chap. 1) to
the function 1+ |Xε

t |2. Taking into account that the mathematical expectation of
the stochastic integral in this formula vanishes, we obtain

1 +M|Xε
t |2 = 1 + |x|2 + 2

∫ t

0

M(Xε
s , b(X

ε
s )) ds

+ ε2
∫ t

0

M
∑

i,j

[σi
j(X

ε
s )]

2 ds.

Since the coefficients of (1.3) increase no faster than linearly, the last relation
implies the estimate

1 +M|Xε
t |2 ≤ 1 + |x|2 + 2

∫ t

0

M
√
|Xε

s |2K2(1 + |Xε
s |2) ds

+ ε2K2

∫ t

0

(1 +M |Xε
s |2) ds

≤ 1 + |x|2 + (2K + ε2K2)

∫ t

0

(1 +M|Xε
s |2) ds.

Using Lemma 1.1, we conclude that

1 +M|Xε
t |2 < (1 + |x|2) exp[(2K + ε2K2)t]. (1.5)

Now we apply Itô’s formula to the function |Xε
t − xt|2 and take the mathe-

matical expectation on both sides of the equality:

M|Xε
t − xt|2 = 2

∫ t

0

M(Xε
s − xs, b(X

ε
s )− b(xs)) ds

+ ε2
∫ t

0

M
∑

i,j

[σi
j(X

ε
s )]

2 ds.

It follows from this relation that

M|Xε
t − xt|2 ≤ 2K

∫ t

0

M|Xε
s − xs|2 ds+ ε2K2

∫ t

0

(1 +M|Xε
s |2) ds,

and using Lemma 1.1, we obtain

M|Xε
t − xt|2 ≤ e2Kt · ε2K2

∫ t

0

(1 +M|Xε
s |2) ds.

Combining the last inequality and (1.5), we obtain the first assertion of the theo-
rem:
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M|Xε
t − xt|2 ≤ ε2K2e2Kt(1 + |x|2)

∫ t

0

exp[(2K + ε2K2)s] ds ≤ ε2a(t).

Now we prove the second assertion of Theorem 1.2. It follows from the defi-
nition of Xε

t and xt that

max
0≤s≤t

|Xε
s − xs| ≤

∫ t

0

|b(Xε
s )− b(xs)| ds+ ε max

0≤s≤t

∣∣∣∣
∫ s

0

σ(Xε
v) dwv

∣∣∣∣. (1.6)

From Chebyshev’s inequality and the first assertion of the theorem we obtain an
estimate of the first term on the right side of (1.6):

P

{∫ t

0

|b(Xε
s )− b(xs)| ds >

δ

2

}
≤ 4δ−2M

[∫ t

0

|b(Xε
s )− b(xs)| ds

]2

≤ 4tK2δ−2

∫ t

0

M|Xε
s − xs|2 ds

≤ 4tK2δ−2ε2
∫ t

0

a(s) ds

= ε2δ−2a1(t). (1.7)

The estimation of the second term in (1.6) can be accomplished with use of
the generalized Kolmogorov inequality for stochastic integrals:

P

{
ε max
0≤s≤t

∣∣∣∣
∫ s

0

σ(Xε
v) dwv

∣∣∣∣ >
δ

2

}
≤ 4δ−2ε2

∫ t

0

∑

i,j

M[σi
j(X

ε
s )]

2 ds

= ε2δ−2a2(t). (1.8)

Estimates (1.6)–(1.8) imply the last assertion of the theorem. ��
In some respect we make more stringent assumptions in Theorem 1.2 than in

Theorem 1.1. We assumed that the coefficients satisfied a Lipschitz condition in-
stead of continuity. However, we obtained a stronger result in that not only did we
prove that Xε

t converges to xt, but we also obtain estimates of the rate of conver-
gence. If we make even more stringent assumptions concerning the smoothness
of the coefficients, then the difference Xε

t −xt can be estimated more accurately.
We shall return to this question in the next section. Now we will obtain a re-
sult on the zeroth approximation for a differential equation with a right side of a
sufficiently general form.

We consider the differential equation

Ẋε
t = b(ε, t,Xε

t , ω), Xε
0 = x

in Rn. Here b(ε, t, x, ω) = (b1(ε, t, x, ω), . . . , br(ε, t, x, ω)) is an r-dimensional
vector defined for x ∈ Rr, t � 0, ε > 0 and ω ∈ Ω.

We assume that the field b(ε, t, x, ω) is continuous in t and x for almost all ω
for any ε > 0,
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sup
t≥Δ,ε∈(0,1]

M|b(ε, t, x, ω)|2 <∞,

and for some K > 0 we have

sup
t≥0,ε∈(0,1]

|b(ε, t, x, ω)− b(ε, t, y, ω)| ≤ K|x− y|

almost surely for any x, y ∈ Rr, t ≥ 0, ε > 0. We note that continuity in ε for
fixed t, x, ω is not assumed.

Theorem 1.3. We assume that there exists a continuous function b̄(t, x), t > 0,
x ∈ Rr such that for any δ > 0, T > 0, x ∈ Rr we have

lim
ε→0

P

{∣∣∣∣
∫ t0+T

t0

b(ε, t, x, ω) dt−
∫ t0+T

t0

b̄(t, x) dt

∣∣∣∣ > δ

}
= 0 (1.9)

uniformly in t0 ≥ 0. Then the equation

˙̄xt = b̄(t, x̄t), x̄0 = x (1.10)

has a unique solution and

lim
ε→0

P
{

max
0≤t≤T

|Xε
t − x̄t| > δ

}
= 0

for every T > 0 and δ > 0.

Proof. First we note that the function b̄(t, x) satisfies a Lipschitz condition in
x with the same constant as the function b(ε, t, x, ω). Indeed, since the function
b̄(t, x) is continuous, by the mean value theorem we have

∫ t+Δ

t

b̄(s, x) ds = b̄(t, x)Δ + o(Δ), Δ→ 0.

Taking account of (1.9), we obtain that

|b̄(t, x)− b̄(t, y)| = 1

Δ

∣∣∣∣
∫ t+Δ

t

b̄(s, x) ds−
∫ t+Δ

t

b̄(s, y) ds

∣∣∣∣+
o(Δ)

Δ

≤ 1

Δ

∣∣∣∣
∫ t+Δ

t

b(ε, s, x, ω) ds−
∫ t+Δ

t

b(ε, s, y, ω) ds

∣∣∣∣

+
o(Δ)

Δ
+ δε

≤ K|x− y|+ o(Δ)

Δ
+ δε,

where δε = δε(t, ω)→ 0 in probability as ε→ 0.
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Since this inequality holds for arbitrary small ε and Δ we have

|b̄(t, x)− b̄(t, y)| ≤ K|x− y|. (1.11)

It follows from (1.11) that (1.10) has a unique solution.
By the definition of Xε

t and x̄t we have

Xε
t − x̄t =

∫ t

0

[b(ε, s,Xε
s , ω)− b̄(s, x̄s)] ds

=

∫ t

0

[b(ε, s,Xε
s , ω)− b(ε, s, x̄s, ω)] ds

+

∫ t

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds.

Define m(t) = mε(t) = max0≤s≤t |Xε
s − x̄s|. Using the preceding formula, we

obtain the inequality

m(t) ≤ K ·
∫ t

0

m(s) ds+ max
0≤t1≤t

∣∣∣∣
∫ t1

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

∣∣∣∣.

Then we obtain by Lemma 1.1 that

m(T ) ≤ eKT max
0≤t≤T

∣∣∣∣
∫ t

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

∣∣∣∣, (1.12)

where T is an arbitrary positive number.
We now show that the maximum on the right side of (1.12) converges to zero

in probability as ε → 0. Let n be a large integer, which we will choose later.
Using the Lipschitz condition we have for t ∈ [0, T ],

∫ t

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

=

n−1∑

k=0

∫ (k+1)t/n

kt/n

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

=

n−1∑

k=0

∫ (k+1)t/n

kt/n

[b(ε, s, x̄kt/n, ω)− b̄(s, x̄kt/n)] ds

+
n−1∑

k=0

∫ (k+1)t/n

kt/n

[b(ε, s, x̄s, ω)− b(ε, s, x̄kt/n, ω)] ds

+

n−1∑

k=0

∫ (k+1)t/n

kt/n

[b̄(s, x̄kt/n)− b̄(s, x̄s)] ds

=

n−1∑

k=0

∫ (k+1)t/n

kt/n

[b(ε, s, x̄kt/n, ω)− b̄(s, x̄kt/n)] ds+ ρεn,t, (1.13)
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where |ρεn,t| < C/n and C is a constant depending on the Lipschitz constant K
and T .

By condition (1.9), the sum on the last side of the formula converges to zero
in probability for given n. Consequently, (1.13) implies that

lim
ε→0

P

{
max

0≤k≤n

∣∣∣∣
∫ kT/n

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

∣∣∣∣ >
δ

2

}
= 0 (1.14)

for n > 4C/δ.
Moreover, we note that

P

{
max
0≤t≤T

∣∣∣∣
∫ t

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)] ds

∣∣∣∣ > δ

}

≤ P

{
max

0≤k≤n

∣∣∣∣
∫ kT/n

0

[b(ε, s, x̄s, ω)− b̄(s, x̄s)]

∣∣∣∣ ds >
δ

2

}

+ P

{
max

0≤k≤n

∫ (k+1)T/n

kT/n

|b(ε, s, x̄s, ω)− b̄(s, x̄s)| ds >
δ

2

}
. (1.15)

We estimate the last term by means of Chebyshev’s inequality:

P

{
max

k

∫ (k+1)T/n

kT/n

|b(ε, s, x̄s, ω)− b̄(s, x̄s)| ds >
δ

2

}

≤ n ·max
k

P

{∫ (k+1)T/n

kT/n

|b(ε, s, x̄s, ω)− b̄(s, x̄s)| ds >
δ

2

}

≤ n
4

δ2
T 2

n2
sup

ε≥0,ε∈(0,1]

M|b(ε, s, x̄s, ω)− b̄(s, x̄s)|2

≤ 4T 2

nδ2
sup

s≥0,ε∈(0,1]

M[|b̄(s, x̄s)|+ |b(ε, s, 0, ω)|+K|x̄s|]2

≤ C1T

nδ2
, (1.16)

where C1 is a constant. Here we have used the fact that

sup
s≥0,ε∈(0,1]

M|b(ε, s, 0, ω)|2 <∞.

It follows from (1.14)–(1.16) that the right side of (1.12) converges to zero in
probability as ε→ 0. This completes the proof of Theorem 1.3. ��

The random process Xε
t considered in Theorem 1.3 can be viewed as a result

of random perturbations of system (1.10). We shall return to the study of similar
perturbations in Chap. 7.
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2 Expansion in Powers of a Small Parameter

We return to the study of (1.1) and (1.3). In this section we obtain an expansion
of Xε

t in powers of the small parameter ε provided that the functions b(x, y) are
sufficiently smooth.

We follow the usual approach of perturbation theory to obtain an expansion

Xε
t = X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t + · · · (2.1)

of Xε
t in powers of ε. We substitute this expansion with unknown coefficients

X
(0)
t , . . . , X

(k)
t , . . . into (1.1) and expand the right sides in powers of ε. Equat-

ing the coefficients of the same powers on the left and right, we obtain differ-
ential equations for the successive calculation of the coefficients X(0)

t , X
(1)
t , . . .

in (2.1).
We discuss how the right side of (1.1) is expanded in powers of ε. Let X(ε)

be any power series with coefficients from Rr:

X(ε) = c0 + c1ε+ · · ·+ ckε
k + · · · .

We write

Φk = Φk(c0, c1, . . . , ck, y) =
1

k!

dkb(X(ε), εy)

dεk

∣∣∣∣
ε=0

.

It is easy to see that Φk depends linearly on ck for k ≥ 1 and Φk is a polynomial
of degree k in the variable y. In particular,

Φ0 = b(c0, 0),

Φ1 = B1(c0, 0)c1 +B2(c0, 0)y,

where B1(x, y) = (∂bi(x, y)/∂xk) is a square matrix of order r and B2(x, y) =
(∂bi(x, y)/∂yk) is a matrix having r rows and l columns. It is clear from the
definition of Φk that the difference Φk − B1(c0, 0)ck = Ψk(c0, c1, . . . , ck−1, y)
is independent of ck.

Carrying out the above program, we expand both sides of (1.1) in powers
of ε:

Ẋ
(0)
t + εẊ

(t)
t + · · ·+ εkẊ

(k)
t + · · ·

= Φ0(X
(0)
t , ξt) + εΦ1(X

(0)
t , X

(1)
t , ξt) + · · ·

+ εkΦk(X
(0)
t , . . . , X

(k)
t , ξt) + · · · .

Hence we obtain the differential equations
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Ẋ
(0)
t = Φ0(X

(0)
t , ξt) = b(X

(0)
t , 0),

Ẋ
(1)
t = Φ1(X

(0)
t , X

(1)
t , ξt) = B1(X

(0)
t , 0)X

(1)
t +B2(X

(0)
t , 0)ξt,

...

Ẋ
(k)
t = Φk(X

(0)
t , . . . , X

(k)
t , ξt)

= B1(X
(0)
t , 0)X

(k)
t +Ψk(X

(0)
t , . . . , X

(k−1)
t , ξt).

...

(2.2)

To these differential equations we add the initial conditions X
(0)
0 = x,X

(1)
0 =

0, . . . , X
(k)
0 = 0, . . . . If b(x, y) is sufficiently smooth, then (2.2), together

with the initial conditions, determine the functions X
(0)
t , X

(1)
t , . . . , X

(k)
t , . . .

uniquely. The zeroth approximation is determined from the first equation of sys-
tem (2.2), which coincides with (1.2). If X(0)

t is known, then the second equation
in (2.2) is a linear equation in X

(1)
t . In general, if the functions X(0)

t , . . . , X
(k−1)
t

are known, then the equation for X(k)
t will be a nonhomogeneous linear equation

with coefficients depending on time.

Theorem 2.1. Suppose the trajectories of a process ξt(ω) are continuous with
probability 1 and that the function b(x, y), x ∈ Rr, y ∈ Rl, has k + 1 bounded
continuous partial derivatives with respect to x and y. Then

Xε
t = X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t +Rε

k+1(t),

where the functions X(i)
t , i = 0, 1, . . . , k, are determined from system (2.2) and

sup
0≤t≤T

|Rε
k+1(t)| < C(ω)εk+1, P{C(ω) <∞} = 1.

Proof. From the definition of Xε
t , X(i)

t , i = 0, 1, . . . , k, it follows that the func-
tion Rε

k+1(t) = Xε
t −

∑k
i=0 ε

iX
(i)
t satisfies the relation

Ṙε
k+1(t) = b(Xε

t , εξt)−
k∑

i=0

εiΦi(X
(0)
t , . . . , X

(i)
t , ξt)

=

[
b(Xε

t , εξt)− b

(
k∑

i=0

εiX
(i)
t , εξt

)]

+

[
b

(
k∑

i=0

εiX
(i)
t , εξt

)
−

k∑

i=0

εiΦi(X
(0)
t , . . . , X

(i)
t , ξt)

]
. (2.3)

Since the first derivatives of b(x, y) are bounded then the first term on the right
side of (2.3) can be estimated in the following way:
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∣∣∣∣∣b(X
ε
t , εξt)− b

(
k∑

i=0

εiX
(i)
t , εξt

)∣∣∣∣∣ ≤ K1|Rε
k+1(t)|, (2.4)

where K1 is a constant.
In the Taylor series of b(

∑k
i=0 ε

iX
(i)
t , εξt) about (X(0)

t , 0), the coefficients
of εi are equal to Φi up to i = k. It follows that

∣∣∣∣∣b
(

k∑

i=0

εiX
(i)
t , εξt

)
−

k∑

i=0

εiΦi(X
(0)
t , . . . , X

(i)
t , ξt)

∣∣∣∣∣

≤
∑

0≤j≤k−1
1≤i1≤k;...;1≤ij≤k

Ki1,...,ijε
i1+···+ij+k+1−j |X(i1)

t | · · · |X(ij)
t ||ξt|k+1−j .

(2.5)

Here Ki1,...,ij are constants depending on the maximum absolute value of the
(k + 1)st derivatives of b(x, y), on i1, . . . , ij and on the dimension.

The following lemma provides an estimate for |X(i)
t |.

Lemma 2.1. There exist constants Ci <∞ such that

|X(i)
t | ≤ Ci ·

(
max
0≤s≤t

|ξs|
)i

for all t ≤ T .

The lemma can be proved by induction (using (2.2), of course).
If we integrate (2.3) from 0 to t and take into account that Rε

k+1(0) = 0 and
inequalities (2.4), (2.5) and Lemma 2.1, as well, we obtain

|Rε
k+1(t)| ≤ K1

∫ t

0

|Rε
k+1(s)| ds+K2t

k(k+1)∑

i=k+1

[
ε · max

0≤s≤t
|ξs|
]i
,

where K2 is a constant. For ε ≤ (2max0≤s≤T |ξs|)−1 the sum on the right side
does not exceed 2εk+1(max0≤s≤t |ξs|)k+1. Using Lemma 1.1, we obtain

|Rε
k+1(t)| ≤ εk+12K2e

K1t
(
max
0≤s≤t

|ξs|
)k+1

.

This completes the proof of the theorem. ��
Consequently, if b(x, y) is sufficiently smooth, then Xε

t can be calculated
to any accuracy. For this we have to integrate the equations for X(i)

t . All these
equations are linear and have approximately the same structure. The zeroth ap-
proximation X

(0)
t is a nonrandom function while all approximations beginning
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with the first one are random processes. We remark that X(1)
t is determined from

the equation

Ẋ
(1)
t = B1(X

(0)
t , 0)X

(1)
t +B2(X

(0)
t , 0)ξt; X

(1)
0 = 0.

It is clear from this that X(1)
t can be obtained from ξt by means of a linear (non-

random) transformation. In particular, if ξt is a Gaussian process, then X
(1)
t is

also Gaussian, and consequently, the approximation X
(0)
t +εX

(1)
t of Xε

t to within
values of order ε2 is a Gaussian process.

We discuss the one-dimensional case in more detail: Xε
t is a process in R1

and ξt is a one-dimensional process. Then the equation for X(1)
t can be solved

by quadratures:

X
(1)
t =

∫ t

0

b′2(X
(0)
s , 0)ξs exp

{∫ t

s

b′1(X
(0)
u , 0) du

}
ds.

We write out the equation for X(2)
t :

Ẋ
(2)
t = b′1(X

(0)
t , 0)X

(2)
t +

1

2
[b′′11(X

(0)
t , 0)(X

(1)
t )2

+ 2b′′12(X
(0)
t , 0)X

(1)
t ξt + b′′22(X

(0)
t , 0)ξ2t ],

X
(2)
0 = 0.

Here b′1 and b′2 are the derivatives of b(x, y) with respect to x and y and the b′′ij

are the second derivatives of the same function. The equation for X(2)
t can also

be solved by quadratures. X(2)
t is a quadratic functional of the process ξt. The

equations for X(i)
t look similar for i = 3, 4, . . . and can be integrated successively

by quadratures.
These equations become especially simple if X0 = x is an equilibrium po-

sition of the unperturbed system. In this case the functions X(i)
t can be found as

solutions of nonhomogeneous linear equations with constant coefficients.
Theorem 2.1 can be used to calculate the expansions, in powers of a small

parameter, of smooth functions of Xε
t and their mathematical expectations. For

example, if the first and second derivatives of a function f(x) are bounded, then

Mf(Xε
t ) = M[f(X

(0)
t ) + (∇f(X

(0)
t ), X

(1)
t )ε+O(ε2)]

= f(X
(0)
t ) + ε(∇f(X

(0)
t ),MX

(1)
t ) +O(ε2),

where the function m(t) = MX
(1)
t is a solution of the differential equation

ṁ(t) = B1(X
(0)
t , 0)m(t) +B2(X

(0)
t , 0)Mξt.

We now consider (1.3). Formally we can consider (1.3) as a special case of (1.1)
with b(x, y) = b(x) + σ(x)y. Assuming b(x) and σ(x) are sufficiently smooth,
we can write down (2.2) for this case:
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Ẋ
(0)
t = b(X

(0)
t ), X

(0)
0 = Xε

0 = x,

Ẋ
(1)
t = B(X

(0)
t )X

(1)
t + σ(X

(0)
t )ẇt, X

(1)
0 = 0,

...

Ẋ
(k)
t = Φk(X

(0)
t , . . . , X

(k)
t , ẇt), X

(k)
0 = 0.

...

(2.6)

Here B(x) = (∂bi(x)/∂xj). These equations are all linear in ẇt. The set of the
first k equations of system (2.6) may be considered as a stochastic differential
equation for the process Xk+1

t = (X
(0)
t , X

(1)
t , . . . , X

(k)
t ). If b(x) and σ(x) have

bounded derivatives up to order k + 1, then this stochastic differential equation
has a unique solution and determines a (k + 1)-dimensional Markov process.
As in the case of (1.1), the zeroth approximation is a deterministic motion along
the trajectories of the unperturbed dynamical system (1.2). The process X(1)

t can
be determined from a stochastic differential equation whose drift vector depends
linearly on X

(1)
t and the diffusion coefficients depend only on t. It can be verified

easily that X(1)
t is a Gaussian process. (It follows, for example, from the fact that

the solution of a stochastic differential equation can be constructed by the method
of successive approximations.) Therefore, the solution of (1.3) to within values of
order ε2 is a Gaussian Markov process X(0)

t + εX
(1)
t which is nonhomogeneous

in time.
As an example, we consider the one-dimensional stochastic differential equa-

tion
Ẋε

t = b(Xε
t ) + εẇt, Xε

0 = x.

The zeroth approximation X
(0)
t is the solution of the equation Ẋ

(0)
t = b(X

(0)
t ),

X
(0)
0 = x. For X(1)

t we obtain the equation

Ẋ
(1)
t = b′(X

(0)
t )X

(1)
t + ẇt.

If we consider X(0)
t known, then the solution of this equation can be written in

the form

X
(1)
t =

∫ t

0

exp

{∫ t

s

b′(X(0)
u ) du

}
dws.

Therefore

Xε
t = X

(0)
t + ε

∫ t

0

exp

{∫ t

s

b′(X0
u) du

}
dws + o(ε).

We formulate the following theorem concerning the expansion of the solution
of the stochastic differential equation in powers of a small parameter ε.
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Theorem 2.2. Suppose the coefficients bi(x) and σi
j(x) have bounded partial

derivatives up to order k + 1 inclusive.
Then for the solution Xε

t of (1.3) we have the expansion

Xε
t = X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t +Rε

k+1(t), (2.7)

where X
(0)
t , X

(1)
t , . . . , X

(k)
t are determined from (2.6). The random process

Xk+1
t = (X

(0)
t , . . . , X

(k)
t ) is determined by the first k + 1 equations of sys-

tem (2.6). The process Xε
t is approximated to within values of order ε2 by the

Gaussian process X(0)
t + εX

(1)
t . The remainder in (2.7) satisfies the inequality

sup
0≤t≤T

(M|Rε
k+1(t)|2)1/2 ≤ Cεk+1, C <∞.

The proof of this theorem differs from that of Theorem 2.1 in some tech-
nical details only. However, these technical details require tedious calculations
connected with the proof of the differentiability of a solution of a stochastic
differential equation with respect to a parameter. These questions are outside
the scope of our main theme, and therefore, we do not give the proof of Theo-
rem 2.2 here. The proof can be found in Blagoveshchenskii and Freidlin [1] and
Blagoveshchenskii [1].

From the expansion

Xε
t = X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t + o(εk) (2.8)

of the realizations of Xε
t it is easy to obtain expansions in powers of ε for smooth

functionals of realizations. Let the functional F be Fréchet differentiable at the
point X(0). The derivative of F at this point is a linear functional F ′(X(0);h). In
this case we have

F (Xε) = F (X(0)) + εF ′(X(0);X(1)) + o(ε) (2.9)

as ε → 0, where o(ε) is understood in the same way as in (2.8) (uniformly in
t ∈ [0, T ] for almost all ω or in the sense of convergence in probability uniformly
in t).

In the case where X
(1)
t is a Gaussian random process, from the expansion

(2.9) we obtain that the value of the functional F (Xε) is asymptotically normal
with standard deviation proportional to ε. The coefficient of proportionality in
this asymptotic standard deviation can be expressed in terms of the derivative
F ′(X(0);h) and the correlation function of X(1)

t (the asymptotic mean is equal
to F (X(0)) provided that MX

(1)
t = 0).

Now consider the case where F is twice differentiable, the second derivative
being a bilinear functional F ′′(X(0);h1, h2). We obtain the following expansion
to within values of order o(ε2) as ε→ 0:
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F (Xε) = F (X(0)) + εF ′(X(0);X(1))

+ ε2
[
1

2
F ′′(X(0);X(1), X(1)) + F ′(X(0);X(2))

]

+ o(ε2); (2.10)

and so on.
For example, if the functional F has the form

F (ϕ) =

∫ T

0

g(ϕt) dt, (2.11)

then formulas (2.9) and (2.10) take the forms (for the sake of simple notation, we
consider the one-dimensional case):

∫ T

0

g(Xε
t ) dt =

∫ T

0

g(X
(0)
t ) dt+ ε

∫ T

0

g′(X
(0)
t )X

(1)
t dt+ o(ε); (2.12)

∫ T

0

g(Xε
t ) dt =

∫ T

0

g(X
(0)
t ) dt+ ε

∫ T

0

g′(X
(0)
t )X

(1)
t dt

+ ε2
[
1

2

∫ T

0

g′′(X
(0)
t )(X

(1)
t )2 dt

+

∫ T

0

g′(X
(0)
t )X

(2)
t dt

]
+ o(ε2). (2.13)

In problems connected with random processes, we often have to consider
functionals defined in terms of the first exit time of a domain D. In the case of
a domain with a smooth boundary, the functional τ(ϕ) = min{t : ϕt /∈ D}
will not be Fréchet differentiable or even continuous at all points ϕ of the space
of continuous functions. Nevertheless, it will be differentiable at all points ϕ for
which ϕt has a derivative for t = τ(ϕ) whose direction is not tangent to the
boundary. We shall not prove this in the language of derivatives of functionals
but rather formulate it directly in the language of expansions in powers of ε.

Theorem 2.3. Suppose (2.8) holds with k = 1. Let t0 be the first time of exit
of X(0)

t from a domain D and let τ ε be the first time of exit of Xε
t from D. Let

the boundary ∂D of D be once differentiable at the point X(0)
t0 and let n be the

exterior normal at this point. Suppose that (Ẋ(0)
t0 , n) > 0. Then we have

τ ε = t0 − ε
(X

(1)
t0 , n)

(Ẋ
(0)
t0 , n)

+ o(ε), (2.14)

Xε
τε = X

(0)
t0 + ε

[
X

(1)
t0 − Ẋ

(0)
t0

(X
(1)
t0 , n)

(Ẋ
(0)
t0 , n)

]
+ o(ε) (2.15)
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as ε → 0 (here o(ε) is understood in the sense of convergence with probabil-
ity 1 or convergence in probability depending on how o(ε) is interpreted in the
expansion (2.8)).

Proof. We use the expansion (2.8) on the interval [0, T ], where T > t0. First we
obtain that τ ε → t0 as ε→ 0. From this we obtain

Xε
τε = X

(0)
τε + εX

(1)
τε + o(ε)

= X
(0)
t0 + (τ ε − t0)Ẋ

(0)
t0 + o(τ ε − t0) + εX

(1)
t0 + o(ε). (2.16)

Taking the scalar product of (2.16) and n, we obtain

(Xε
τε−X(0)

t0 , n) = (τ ε−t0)(Ẋ(0)
t0 , n)+o(τ ε−t0) + ε(X

(1)
t0 , n)+o(ε). (2.17)

On the other hand, because of the smoothness of ∂D at the point X(0)
t0 , the

scalar product on the left side of (2.17) will be infinitesimal compared to Xε
τε −

X
(0)
t0 . It follows from this and from (2.16) that

(Xε
τε −X

(0)
t0 , n) = o(τ ε − t0) + o(ε). (2.18)

From (2.17) and (2.18) we obtain the expansion (2.14) for τ ε. Substituting the
expansion in (2.16) again, we obtain (2.15).

The coefficient of ε in the expansion (2.15) can be obtained by projecting
X

(1)
t0 parallel to X

(0)
t0 onto the tangent hyperplane at X(0)

t0 .

If the expansion (2.8) holds with k = 2, the function X
(0)
t is twice differen-

tiable and the random function X
(1)
t is once differentiable, then we can obtain an

expansion of τ ε and Xε
τε to within o(ε2) (although the corresponding functional

is twice differentiable only on some subspace). On the other hand, if X(1)
t is not

differentiable (this happens in the case of diffusion processes with small diffu-
sion, considered in Theorem 2.2) then we do not obtain an expansion for τ ε to
within o(ε2). We explain why this is so.

The fact is that in the proof of Theorem 2.3 we did not use the circumstance
that τ ε is exactly the first time of reaching the boundary but only that it is a
time when Xε

t is on the boundary, converging to t0. If we consider a process
Xε

t of a simple form: Xε
t = x0 + t + εwt, then the first time τ ε of reaching

a point x1 > x0 and the last time σε of being at x1 differ by a quantity of
order ε2. Indeed, by virtue of the strong Markov property with respect to the
Markov time τ ε, we obtain that the distribution of σε − τ ε is the same as that
of the random variable ζε = max{t : t + εwt = 0}. Then, we use the fact that
ε−2(tε2 + εwtε2) = t+ ε−1wtε2 = t+ w̃t, where w̃t is again a Wiener process
issued from zero and ζε = ε2ζ̃, where ζ̃ = max{t : t+ w̃t = 0}.
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3 Elliptic and Parabolic Differential Equations with a Small
Parameter at the Derivatives of Highest Order

In the theory of differential equations of elliptic or parabolic type, much attention
is devoted to the study of the behavior, as ε→ 0, of solutions of boundary value
problems for equations of the form Lεuε + c(x)uε = f(x) or ∂vε/∂t = Lεvε +
c(x)vε+g(x), where Lε is an elliptic differential operator with a small parameter
at the derivatives of highest order:

Lε =
ε2

2

r∑

i,j=1

aij(x)
∂2

∂xi ∂xj
+

r∑

i=1

bi(x)
∂

∂xi
.

As was said in Chap. 1, with every such operator Lε (whose coefficients are
assumed to be sufficiently regular) there is associated a diffusion process Xε,x

t .
This diffusion process can be given by means of the stochastic equation

Ẋε,x
t = b(Xε,x

t ) + εσ(Xε,x
t )ẇt, Xε,x

0 = x, (3.1)

where σ(x)σ∗(x) = (aij(x)), b(x) = (b1(x), . . . , br(x)). For this process we
shall sometimes use the notation Xε,x

t , sometimes Xε
t (x) (in the framework of

the notion of a Markov family), sometimes Xε
t and in which case we shall write

the index x in the probability and consider the Markov process (Xε
t ,Px).

In the preceding two sections of this chapter we obtained several results con-
cerning the behavior of solutions Xε,x

t (ω) of (3.1) as ε→ 0. Since the solutions
of the boundary value problems for Lε can be written as mean values of some
functionals of the trajectories of the family (Xε,x

t ,P) results concerning the be-
havior of solutions of boundary value problems as ε → 0 can be obtained from
the behavior of Xε,x

t (ω) as ε → 0. The present section is devoted to these ques-
tions.

We consider the Cauchy problem

∂vε(t, x)

∂t
= Lεvε(t, x) + c(x)vε(t, x) + g(x); t > 0, x ∈ Rr,

vε(0, x) = f(x)

(3.2)

for ε > 0 and together with it the problem for the first-order operator which is
obtained for ε = 0:

∂v0(t, x)

∂t
= L0v0 + c(x)v0 + g(x); t > 0, x ∈ Rr, v0(0, x) = f(x). (3.3)

We assume that the following conditions are satisfied.

(1) the function c(x) is uniformly continuous and bounded for x ∈ Rr;
(2) the coefficients of L1 satisfy a Lipschitz condition;
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(3) k−2
∑

λ2
t ≤

∑r
i,j=1 a

ij(x)λiλj ≤ k2
∑

λ2
i for any real λ1, λ2, . . . , λr and

x ∈ Rr, where k2 is a positive constant.

Under these conditions, the solutions of problems (3.2) and (3.3) exists and
are unique.

All results of this paragraph remain valid in the case where the form∑
aij(x)λiλj is only nonnegative definite. However, in the case of degeneracies

the formulation of boundary value problems has to be adjusted and the notion
of a generalized solution has to be introduced. We shall make the adjustments
necessary in the case of degeneracies after an analysis of the nondegenerate case.

Theorem 3.1. If conditions (1)–(3) are satisfied, then the limit limε→0 v
ε(t, x) =

v0(t, x) exists for every bounded continuous initial function f(x), x ∈ Rr. The
function v0(t, x) is a solution of problem (3.3).

For the proof we note first of all that if condition (3) is satisfied, then there
exists a matrix σ(x) with entries satisfying a Lipschitz condition for which
σ(x)σ∗(x) = (aij(x)) (cf. Sect. 5, Chap. 1).

The solution of (3.2) can be represented in the following way:

vε(t, x) = Mf(Xε,x
t ) exp

[∫ t

0

c(Xε,x
s ) ds

]

+M

∫ t

0

g(Xε,x
s ) exp

[∫ s

0

c(Xε,x
u ) du

]
ds, (3.4)

where Xε,x
t is the Markov family constructed by means of (3.1). It follows from

Theorem 1.2 that the processes Xε,x
s (ω) converge to X0,x

s (the solution of (1.2)
with initial condition X0,x

0 = x) in probability uniformly on the interval [0, t]
as ε → 0. Taking into account that there is a bounded continuous functional of
Xε,x

s (ω) under the sign of mathematical expectation in (3.4), by the Lebesgue
dominated convergence theorem we conclude that

lim
ε↓0

vε(t, x) = f(X0,x
t ) exp

[∫ t

0

c(X0,x
s ) ds

]

+

∫ t

0

g(X0,x
s ) exp

[∫ s

0

c(X0,x
u ) du

]
ds.

An easy substitution shows that the function on the right side of the equality is a
solution of problem (3.3). Theorem 3.1 is proved. ��

If we assume that the coefficients of Lε have bounded derivatives up to order
k + 1 inclusive, then the matrix σ(x) can be chosen so that its entries also have
k + 1 bounded derivatives. In this case, by virtue of Theorem 2.2 we can write
down an expansion for Xε,x

t in powers of ε up to order k. If the functions f(x),
c(x), and g(x) have k + 1 bounded derivatives, then, as follows from (2.7), we
have an expansion in powers of ε up to order k with remainder of order εk+1.
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Hence, for example, if g(x) ≡ c(x) ≡ 0 and r = 1, then the solution of
problem (3.2) can be written in the form

vε(t, x) = Mxf(X
ε
t )

= Mxf(X
(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t +Rε

k+1(t))

=

k∑

i=0

εiMxGi +O(εk+1), (3.5)

where X(0)
t , X

(1)
t , . . . , X

(k)
t are the coefficients mentioned in Theorem 2.2 of the

expansion of Xt in powers of the small parameter;

Gi = Gi(X
(0)
t , . . . , X

(i)
t ) =

1

i!

di

dεi
f(X

(0)
t + εX

(1)
t + · · ·+ εkX

(k)
t )|ε=0.

We can derive from formula (3.5) and the equations defining the processes X(i)
t

that the coefficients of the odd powers of ε vanish. The coefficients of ε2m are the
solutions of some first-order partial differential equations; they can, of course, be
found by solving systems of ordinary differential equations.

We illustrate the method of finding the coefficients of the expansion of
vε(t, x) in the simplest case, i.e., for dimension 1 and up to terms of order ε2.
For the coefficients of the expansion in powers of e of the solution of the stochas-
tic differential equation

Ẋε
t = b(Xε

t ) + εσ(Xε
t )ẇt, Xε

0 = x, (3.6)

we write out the first three equations in (2.6):

Ẋ
(0)
t = b(X

(0)
t ), X

(0)
0 = x; (3.7)

Ẋ
(1)
t = b′(X

(0)
t )X

(1)
t + σ(X

(0)
t )ẇt, X

(1)
0 = 0, (3.8)

Ẋ
(2)
t = b′(X

(0)
t )X

(2)
t +

1

2
b′′(X

(0)
t )(X

(1)
t )2 + σ′(X

(0)
t )X

(1)
t ẇt,

(3.9)
X

(2)
0 = 0.

The function X
(0)
t is nonrandom and another notation for it is xt(x).

If f is a twice continuously differentiable function, then we have the expan-
sion

f(Xε
t ) = f(X

(0)
t ) + εf ′(X

(0)
t )X

(1)
t

+ ε2
[
f ′(X

(0)
t )X

(2)
t +

1

2
f ′′(X

(0)
t )(X

(1)
t )2

]
+ o(ε2). (3.10)

We take mathematical expectation on both sides:



3 Elliptic and Parabolic Differential Equations with a Small Parameter 47

vε(t, x) = Mxf(x
ε
t ) = f(xt, (x)) + εf ′(xt(x))MxX

(1)
t

+ ε2[f ′(xt(x))MxX
(2)
t +

1

2
f ′′(xt(x))Mx(X

(1)
t )2] + o(ε2). (3.11)

Since the process X(1)
t is Gaussian with zero mean, the coefficient of ε van-

ishes. To obtain Mx(X
(1)
t )2, we apply formula (3.8) and Itô’s formula:

d

dt
(X

(1)
t )2 = 2b′(X

(0)
t )(X

(1)
t )2 + 2σ(X

(0)
t )b′(X

(0)
t )ẇt + σ(X

(0)
t )2. (3.12)

Taking mathematical expectation on both sides, we obtain the following non-
homogeneous linear differential equation for Mx(X

(1)
t )2 with initial condition

Mx(X
(1)
0 )2 = 0:

d

dt
M(X

(1)
t )2 = 2b′(xt(x))Mx(X

(1)
t )2 + a(xt(x)). (3.13)

Solving this equation, we also find the solution of the equation for MxX
(2)
t ,

which can be obtained by taking the mathematical expectation of (3.9):

d

dt
MxX

(2)
t = b′(xt(x))MxX

(2)
t +

1

2
b′′(xt(x))Mx(X

(1)
t )2, MxX

(2)
0 = 0.

(3.14)

Hence for the determination of the coefficients of the expansion of vε(t, x)
in powers of ε to within order 2, it is sufficient to solve the nonlinear equation
ẋt(x) = b(xt(x)) and the two linear equations (3.13) and (3.14).

The same result can be obtained in a simpler way by using standard meth-
ods of the theory of differential equations. Nevertheless, methods of probability
theory can also be applied to less standard asymptotic problems. For example,
suppose the function f is not smooth at a point y = xt(x) but has a power-like
“corner”: f(z) = f(y) +C|z− y|α + o(|z− y|α) as z → y, 0 < α ≤ 1. We use
the expansion

Xε
s = xs(x) + εX(1)

s + o(ε)

of Xε
s . For s = t we obtain

Xε
t = y + εX

(1)
t + o(ε),

f(Xε
t ) = f(y) + εαC|X(1)

t |α + o(εα),

vε(t, x) = Mxf(X
ε
t ) = f(y) + εαCMx|X(1)

t |α + o(εα).

We obtain the mathematical expectation above by using the fact that X(1)
t is

Gaussian; it is equal to
∫ ∞

−∞
|u|α 1√

2πMx(X
(1)
t )2

exp[−u2/2Mx(X
(1)
t )2] du

=
(2Mx(X

(1)
t )2)α/2√
π

· Γ
(
α

2
+

1

2

)
.
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If f vanishes in the neighborhood of X(0)
t , the position of the unperturbed

dynamical system (1.2) at time t, then all terms of (3.5) vanish. It turns out that
in this case vε(t, x) is logarithmically equivalent to exp{−Cε−2}, where C is a
constant. We return to this case in the following chapter.

Now we consider Dirichlet’s problem for the elliptic equation with a small
parameter

ε2

2

r∑

i,j

aij(x)
∂2uε

∂xi∂xj
+

r∑

i=1

bi(x)
∂uε

∂xi
+ c(x)uε(x) = Lεuε + c(x)uε = g(x),

uε(x)|∂D = ψ(x). (3.15)

in a bounded domain D ∈ Rr with boundary ∂D.

We assume that the coefficients satisfy conditions (1)–(3) and c(x) ≤ 0. For
the sake of simplicity, the boundary ∂D of D is assumed to be smooth and the
function ψ(x), x ∈ ∂D continuous. Under these conditions, there exists a unique
solution of problem (3.15) for every ε �= 0. This solution can be written in the
form (cf. Sect. 5, Chap. 1)

uε(x) = Mx

[
ψ(Xε

τε) exp

[∫ τε

0

c(Xε
s ) ds

]

−
∫ τε

0

g(xε
s) exp

[∫ s

0

c(Xε
v) dv

]
ds

]
, (3.16)

where (Xε
t ,Px) is the Markov process defined by (3.1) and τ ε = min{t :

Xε
t /∈ D}. In case we use the notation Xε

t (x), we also write τ ε(x).
We shall say that a trajectory xt(x), x ∈ D of system (1.2) leaves D in a

regular manner if T (x) = min{t : xt(x) /∈ D} <∞ and xT (x)+δ(x) /∈ D∪∂D
for sufficiently small δ > 0.

Theorem 3.2. Suppose conditions (1)–(3) are satisfied and the domain D is
bounded and has a smooth boundary. If c(x) < 0 for all x ∈ D ∪ ∂D and
for a given x, the trajectory xt(x), t ≥ 0 does not leave D, then limε→0 u

ε(x) =
u0(x) exists and

u0(x) = −
∫ ∞

0

g(xs(x)) exp

[∫ s

0

c(xv(x)) dv

]
ds.

If c(x) ≤ 0 for all x ∈ D ∪ ∂D and for a given x, the trajectory xt(x) leaves D
in a regular manner, then

lim
ε→0

uε(x) = u0(x) = ψ(xT (x)(x)) exp

[∫ T (x)

0

c(xs(x)) ds

]

−
∫ T (x)

0

g(xs(x)) exp

[∫ s

0

c(xv(x)) dv

]
ds.
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Proof. First let T (x) = +∞. For every T < ∞, the distance of the trajectory
segment xs(x), 0 ≤ s ≤ T from ∂D is positive. We denote this distance by δT .
For every α > 0 and a sufficiently small ε0 > 0 we have

P

{
max

0≤s≤T
|Xε

s (x)− xs(x)| >
δT
2

}
< α (3.17)

for ε < ε0. This follows from the second assertion of Theorem 1.2. From the
definition of δT and (3.17) it follows that

P{τ ε(x) < T} < α. (3.18)

We write

c0 = min
x∈D∪∂D

|c(x)|, ψ0 = max
x∈∂D

|ψ(x)|, g0 = max
x∈D∪∂D

|g(x)|.

On the basis of (3.18) we arrive at the following estimation:
∣∣∣∣u

ε(x) +

∫ ∞

0

g(xs(x)) exp

[∫ s

0

c(xv(x)) dv

]
ds

∣∣∣∣

≤ ψ0e
−c0T +

∫ ∞

T

g0e
−c0s ds+ α(ψ0 + g0c

−1
0 )

+M

∫ T

0

∣∣∣∣g(X
ε
s (x)) exp

[∫ s

0

c(Xε
v(x)) dv

]

− g(xs(x)) exp

[∫ s

0

c(xv(x)) dv

]∣∣∣∣ ds.

Since α and e−c0T can be chosen arbitrarily small for ε sufficiently small and
sup0≤s≤T |Xε

s (x)−xs(x)| → 0 in probability as ε→ 0, the first assertion of the
theorem follows from the last inequality.

Now let xt(x) leave D in a regular manner (Fig. 1). We have τ ε(x)→ T (x)
in probability as ε→ 0. Indeed, for every sufficiently small δ > 0 we have

xT (x)−δ(x) ∈ D, xT (x)+δ(x) /∈ D ∪ ∂D.

Let δ1 be the distance of the trajectory segment xs(x), s ∈ [0, T (x) − δ] from
∂D, let δ2 be the distance of xT (x)+δ(x) from ∂D, and let δ̄ = min(δ1, δ2). By
Theorem 1.2 we have

lim
ε→0

P
{

sup
0≤s≤T (x)+δ

|Xε
s (x)− xs(x)| > δ̄

}
= 0.

This implies that τ ε(x) ∈ [T (x)− δ, T (x) + δ] with probability converging to 1
as ε→ 0. This means that τ ε(ε)→ T (x) in probability. Using this circumstance
and Theorem 1.2, the last assertion of the theorem follows from (3.16).

The passage to the limit under the sign of mathematical expectation is legit-
imate by virtue of the uniform boundedness of the expression under the sign of
mathematical expectation.
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Figure 1.

Now let c(x) be of an arbitrary sign. We only assume that it is continuous. In
this case problem (3.15) may go out to the spectrum in general: its solution may
not exist for every right side and may not be unique. As was discussed in Sect. 5,
Chap. 1, in order that this does not occur it is sufficient that c(x) ≤ c0 for x ∈ D
and Mxe

c0τ <∞.

Lemma 3.1. Suppose that for every x ∈ D, the trajectory xt(x) leaves D in a
regular manner and T (x) ≤ T0 <∞ for x ∈ D. For some δ > 0, let

max
T (x)≤t≤T (x)+δ

ρ(xt(x), D ∪ ∂D) ≥ c > 0

for all x ∈ D. Then for any λ there exist A(λ) and ε(λ) > 0 such that

sup
x∈D

Mxe
λτε

≤ A(λ) <∞

for ε ≤ ε(λ).

Proof. As follows from the analysis carried out in the proof of Theorem 3.2, if
xt(x) leaves D in a regular manner, then τ ε(x)→ T (x) in probability as ε→ 0.
The conditions T (x) ≤ T0 and max ρ(xt(x), D ∪ ∂D) ≥ c imply that for every
δ > 0 there exists ε0 > 0 such that for ε < ε0 we have

P{|τ ε(x)− T (x)| > δ} < δ

for all x ∈ D. This implies that

sup
x∈D

Px{τ ε > 2T0} < δ. (3.19)

Moreover, using (3.19) and the Markov property of (Xε
t ,Px), we obtain

sup
x∈D

Px{τ ε > n · 2T0} = sup
x∈D

Mx{τ ε > (n− 1) · 2T0;PXε
(n−1)2T0

{τ ε > 2T0}}

≤ δ · sup
x∈D

Px{τ ε > (n− 1)2T0}.
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It follows from this inequality that

Px{τ ε > n · 2T0} < δn

for every integer n and x ∈ D.
Since δ can be chosen arbitrarily small for ε sufficiently small, from the last

inequality we obtain the assertion of the lemma:

Mxe
λτε

≤
∞∑

n=0

eλ·2T0(n+1)Px{τ ε > 2T0n}

≤ eλ·2T0 ·
∞∑

n=0

(eλ·2T0δ)n = A(λ) <∞. ��

Corollary. For every k > 0 there exists a constant B = B(k) such that tk ≤
Bet. By Lemma 3.1 this implies that

Mx(τ
ε)k ≤ B(k)Mxe

τε

≤ B(k)A(1) = Ã <∞.

Theorem 3.3. Suppose that conditions (1)–(3) are satisfied, the domain D is
bounded and has a smooth boundary ∂D and the function ψ(x) is continuous
on ∂D. Suppose furthermore that for all x ∈ D, the trajectories xt(x) leave D
in a regular manner,

sup
x∈D

T (x) ≤ T0 <∞,

and
max

T (x)≤t≤T (x)+δ
ρ(xt(x), D ∪ ∂D) ≥ c > 0.

Then for every continuous function c(x), x ∈ D ∪ ∂D, the problem (3.15) has a
unique solution for sufficiently small ε and

lim
ε→0

uε(x) = u0(x) = ψ(xT (x)(x)) exp

[∫ T (x)

0

c(xs(x)) ds

]

−
∫ T (x)

0

g(xs(x)) exp

[∫ s

0

c(xv(x)) dv

]
ds.

Proof. As was indicated in Sect. 5 in Chap. 1, the existence of a unique solution
of problem (3.15) and the validity of (3.16) are guaranteed if

Mx exp
{
τ ε · max

x∈D∪∂D
c(x)

}
≤ A <∞.

Therefore, the first assertion of the theorem follows from Lemma 3.1.
The second assertion follows from (3.16) if we note that for any t > 0 and

x ∈ D we have
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τ ε(x)→ T (x), sup
0≤s≤t

|Xε
s (x)− xs(x)| → 0

in probability as ε→ 0 and note that the mathematical expectation of the square
of the random variable in (3.16) under the sign of mathematical expectation is
bounded uniformly in ε < ε0 provided that ε0 is sufficiently small.

Remark 3.1. If T (x) < ∞ but the trajectory xt(x) does not leave D in a regu-
lar manner, then, as follows from simple examples, the limit function may have
discontinuities on this trajectory.

Remark 3.2. It is easy to verify that the limit function u0(x) in Theorem 3.3 sat-
isfies the following first-order equation obtained for ε = 0:

L0u0(x) + c(x)u0(x) =
r∑

i=1

bi(x)
∂u0

∂xi
+ c(x)u0(x) = g(x).

The function u0(x) is chosen from the solutions of this equation by the condition
that it coincides with ψ(x) at those points of the boundary of D through which
the trajectories xt(x) leave D.

Remark 3.3. Now let us allow the matrix (aij(x)) to have degeneracies. In this
case problem (3.15) must be modified. First, we cannot prescribe boundary con-
ditions at all points of the boundary. This is easily seen from the example of
first-order equations; boundary conditions will not be assumed at some points of
the boundary. Second, a classical solution may not exist even in the case of in-
finitely differentiable coefficients, and it is necessary to introduce the notion of a
generalized solution. Third and finally, a generalized solution may not be unique
without additional assumptions. To construct a theory of such equations with a
nonnegative characteristic form, we can use methods of probability theory. The
first results in this area were actually obtained in this way (Freidlin [1], [4], [6]).
Some of these results were subsequently obtained by traditional methods of the
theory of differential equations. If the entries of (aij(x)) have bounded second
derivatives, then there exists a factorization (aij(x)) = σ(x)σ∗(x), where the
entries of σ(x) satisfy a Lipschitz condition. In this case the process (Xε,Px)
corresponding to the operator Lε is constructed by means of (3.1). In Freidlin’s
publications [1] and [4], this process is used to make precise the formulation of
boundary value problems for Lε, to introduce the notion of a generalized solu-
tion, to prove existence and uniqueness theorems, and to study the smoothness of
a generalized solution.

In particular, if the functions aij(x) have bounded second derivatives and
satisfy the hypotheses of Theorem 3.2 or Theorem 3.3, respectively (with the ex-
ception of nondegeneracy), then for every sufficiently small ε, the generalized
solution exists, is unique, and satisfies (3.16). In this case the assertion of The-
orem 3.2 (Theorem 3.3) also holds if by uε(x) we understand the generalized
solution.

After similar adjustments, Theorem 3.1 also remains valid.
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Theorems 3.2 and 3.3 used results concerning the limit behavior of Xε
t which

are of the type of law of large numbers. From finer results (expansions in powers
of ε) we can obtain finer consequences concerning the asymptotics of the solution
of Dirichlet’s problem. Concerning the expansion of the solution in powers of a
small parameter (in the case of smooth boundary conditions), the best results are
not obtained by methods of pure probability theory but rather by purely analytical
or combined (cf. Holland [1]) methods. We consider an example with nonsmooth
boundary conditions.

Let the characteristic xt(x), t ≥ 0 issued from an interior point x of a do-
main D with a smooth boundary leave the domain, intersecting its boundary for
the value t0 of the parameter; at the point y = xt0(x) the vector b(y) is di-
rected strictly outside the domain. Let uε be a solution of the Dirichlet problem
Lεuε = 0, uε → 1 as we approach some subdomain Γ1 of the boundary and
uε → 0 as we approach the interior points of ∂D\Γ1 (and uε is assumed to be
bounded everywhere). Suppose that the surface area of the boundary of Γ1 is
equal to zero. Then the solution uε(x) is unique and can be represented in the
form

uε(x) = MxχΓ1(X
ε
τε).

If y is an interior point of Γ1 or ∂D\Γ1, then the value of uε at the point
x converges to 1 or 0, respectively, as ε → 0 (results concerning the rate of
convergence must rely on results of the type of large deviations; cf. Chap. 6,
Theorems 2.1 and 2.2). On the other hand, if y belongs to the boundary of the do-
main Γ1, then the expansion (2.15) reduces the problem of asymptotics of uε(x)
to the problem of asymptotics of the probability that the Gaussian random vector
X

(0)
t0 − Ẋ

(0)
t0 [(X

(1)
t0 , n)/(Ẋ

(0)
t0 , n)] hits the ε−1 times magnified projection of Γ1

onto the tangent plane (tangent line in the two-dimensional case). In particular, in
the two-dimensional case if Γ1 is a segment of an arc with y as one endpoint, then
limε→0 u

ε(x) = 1
2 . The same is true in the higher dimensional case provided that

the boundary of Γ1 is smooth at y. If this boundary has a “corner” at y, then the
problem reduces to the problem of the probability that a normal random vector
with mean zero falls into an angle (solid angle, cone) with vertex at zero. Using
an affine transformation, one can calculate the angle (solid angle).



Chapter 3

Action Functional

1 Laplace’s Method in a Function Space

We consider a random process Xε
t = Xε

t (x) in the space Rr defined by the
stochastic differential equation

Ẋε
t = b(Xε

t ) + εẇt, Xε
0 = x. (1.1)

Here, as usual, wt is a Wiener process in Rr and the field b(x) is assumed to be
sufficiently smooth. As is shown in Sect. 1, Chap. 2, as ε→ 0, the trajectories of
Xε

t converge in probability to the solution of the unperturbed equation

ẋt = b(xt), x0 = x, (1.2)

uniformly on every finite time interval. In the special case which we are consid-
ering it is easy to give an estimate of the probability

P
{

sup
0≤t≤T

∣∣Xε
t (x)− xt(x)

∣∣ > δ
}

which is sharper than that given in Chap. 2. Indeed, it follows from equations
(1.1) and (1.2) that

Xε
t (x)− xt(x) =

∫ t

0

[b(Xε
s (x))− b(xs(x))] ds+ εwt. (1.3)

Assuming that b(x) satisfies a Lipschitz condition with constant K, we obtain
from (1.3) that

sup
0≤t≤T

|Xε
t − xt| ≤ εeKT sup

0≤t≤T
|wt|. (1.4)

This implies that the probability of the deviation of Xε
t (x) from the trajectory of

the dynamical system decreases exponentially with decreasing ε:

P
{

sup
0≤t≤T

|Xε
t (x)− xt(x)| > δ

}
≤ P

{
sup

0≤t≤T
|wt| >

δ

ε
e−KT

}

≤ 2P

{
|wT | >

δ

2ε
e−KT

}

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
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= O

((
δ2

ε2T
e−2KT

)(r/2)−1

× exp

(
− δ2

8ε2T
e−2KT

))

= O(e−Cε−2

),

where C is a positive constant (depending on δ, K, and T ).
This estimation means that if a subset A of the space of continuous func-

tions on the interval from 0 to T contains a function xt(x) together with its
δ-neighborhood in this space, then the main contribution to the probability
P{Xε(x) ∈ A} is given by this δ-neighborhood; the probability of the remaining
part of A is exponentially small.

In many problems we are interested in probabilities P{Xε(x) ∈ A} for sets
A not containing the function xt(x) together with its neighborhood. Such prob-
lems arise, for example, in connection with the study of stability under random
perturbations, when we are mainly interested in the probability of exit from a
neighborhood of a stable equilibrium position or of a stable limit cycle in a given
time or we are interested in the mean exit time from such a neighborhood. As we
shall see, similar problems arise in the study of the limit behavior of an invariant
measure of a diffusion process Xε

t as ε → 0, in connection with the study of
elliptic differential equations with a small parameter at the derivatives of highest
order and in other problems.

If the function xt(x) together with some neighborhood of it is not contained
in A, then P{Xε(x) ∈ A} → 0 as ε → 0. It turns out that in this case, under
certain assumptions on A, there exists a function ϕ ∈ A such that the principal
part of the probability measure of A is concentrated near ϕ; more precisely, for
any neighborhood U(ϕ) of ϕ we have

P{Xε(x) ∈ A\U(ϕ)} = o(P{Xε(x) ∈ U(ϕ)})

as ε→ 0.
A similar situation arises in applying Laplace’s method to calculate the

asymptotics as ε → 0 of integrals of the form
∫ b

a
e−ε−1f(x)g(x) dx. If x0 is

the only minimum point of the continuous function f(x) on the interval [a, b]
and the function g(x) is continuous and positive, then the major contribution
to this integral is given by the neighborhood of x0. Indeed, let U1 be a neigh-
borhood of x0. Since x0 is the only minimum point of f in [a, b], we have
minx∈[a,b]\U1

f(x) > f(x0) + γ, where γ is a positive number. Using this esti-
mate, we obtain

∫

[a,b]\U1

g(x) exp{−ε−1f(x)} dx

< (b− a) max
x∈[a,b]

g(x) exp{ε−1f(x0) + γ}. (1.5)
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For the integral over the neighborhood of x0, we obtain the following lower esti-
mate:
∫

U1

g(x) exp{−ε−1f(x)} dx >

∫ x0+δ

x0+δ

g(x) exp{−ε−1(f(x0) + γ/2)} dx

> 2δ min
x∈[a,b]

g(x) exp{−ε−1(f(x0) + γ/2)},

(1.6)

where δ is chosen from the conditions: max|x−x0|≤δ f(x) < f(x0) + γ/2, {x :
|x − x0| < δ} ⊂ U1. It follows from estimates (1.5) and (1.6) that the integral∫ b

a
g(x) exp{−ε−1f(x)} dx is logarithmically equivalent to exp{−ε−1f(x0)}

as ε→ 0, i.e.,

lim
ε→0

ε ln

∫ b

a

g(x) exp{−ε−1f(x)} dx = −f(x0).

Using the Taylor expansion of f around x0, we can obtain more accurate asymp-
totic formulas for the integral

∫ b

a
g(x) exp{−ε−1f(x)} dx.

The situation is analogous in the calculation of probabilities of various events
connected with the process Xε

t . It turns out that we can introduce a functional
S(ϕ) of a function on the interval [0, T ] such that for sufficiently small ε and δ
we have

P{‖Xε − ϕ‖ < δ} ≈ exp{−ε−2S(ϕ)}.

(The precise meaning of this formula will be explained in the following sections.)
If the minimum of S(ϕ) on the set A is attained at ϕ̃, then in analogy

with Laplace’s method we may expect that for small ε, the basic contribution
to P{Xε ∈ A} is given by a neighborhood of ϕ̃. In order to prove this, we need
to obtain a lower estimate of P{‖Xε −ϕ‖ < δ} of the type of estimate (1.6) and
an upper estimate of the type of estimate (1.5) for the probability of the remaining
portion of A. We carry out this program in the present chapter.

The idea of applying similar constructions in asymptotic problems in a func-
tion space goes back to R. Feynman’s work in quantum mechanics (cf. Feynman
and Hibbs [1]). If there exists a classical mechanical system for which the ac-
tion on the trajectory ϕt is S(ϕ), then, as is known, the motion of this system
takes place along extremals of the functional S(ϕ). The same functional can be
used for a quantum mechanical description of a system. In a quantum mechan-
ical motion various trajectories are possible and to every trajectory ϕt there is
assigned the weight C exp{(i/h)S(ϕ)}, called the probability amplitude. (To
give this a precise meaning is a difficult problem.) Here h is the Planck constant
and C is a normalizing factor. The probability amplitude of a set of trajectories
can be calculated by summing (integrating) the contributions of the trajectories
which constitute the set. The square of the absolute value of the probability am-
plitude corresponding to a set of trajectories is interpreted as the probability of the
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corresponding quantum mechanical motion. Such an approach is convenient in
problems connected with the quasiclassical approximation in quantum mechan-
ics, i.e., where the various characteristics of motion are approximated by their
principal terms as h → 0 and by successive corrections. Hence in Feynman’s
description of a quantum mechanical system, the correspondence principle, as-
serting that every quantum mechanical motion turns into a classical one as h→ 0,
follows immediately from the circumstance that in summing probability ampli-
tudes, for small h the major contribution to the sum is given by the trajectories
ϕ which are extremals of the action functional, i.e., the classical trajectories. The
contribution of the other trajectories will be significantly smaller because of the
oscillation of the probability amplitude. This reasoning is an infinite-dimensional
analogue of the principle of stationary phase, according to which the major con-
tribution to the integral

∫
g(x) exp{ih−1S(x)} dx

is given by the stationary points of the function S(x).
The functional S(ϕ) which we have introduced for the study of the behavior

as ε → 0 of probabilities of events connected with the process Xε
t plays a role

analogous to that of the action functional in Feynman’s description of a quantum
mechanical system; only our arguments are an infinite-dimensional analogue of
Laplace’s method rather than the method of stationary phase (and therefore, they
are simpler).

In analogy with quantum mechanical problems, we shall call ε−2S(ϕ) the
action functional for the corresponding family of random processes. Of course,
this does not mean that we give this functional a mechanical interpretation; we
only have in mind the analogy with the role played by the action in Feynman’s
approach to quantum mechanics.

In the next section we introduce the action functional and obtain the neces-
sary estimates for the process Xε

t = εwt i.e., in the case where the vector field
b(x) is identically zero. The form of the action functional and the corresponding
estimates for a process Xt with an arbitrary field b(x) and also for some other
processes will be established in Sect. 4 of this chapter and in Sect. 1 of the next
chapter.

2 Exponential Estimates

We denote by CT1T2 = CT1T2(R
r) the set of continuous functions on the in-

terval [T1, T2] with values in Rr. In this space we shall consider the metric
ρT1T2(ϕ, ψ) = supT1≤t≤T2

|ϕt − ψt|. For absolutely continuous functions ϕt

we define the functional

S(ϕ) = ST1T2(ϕ) =
1

2

∫ T2

T1

|ϕ̇t|2 ds;
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if a function ϕ ∈ CT1T2 is not absolutely continuous on [T1, T2] or the integral
is divergent, then we set S(ϕ) = +∞.

Let wt be a Wiener process in Rr, w0 = 0.
The action functional for the family of random processes Xε

t = εwt is, by
definition, the functional IεT1T2

(ϕ) = ε−2ST1T2(ϕ); the functional ST1T2(ϕ) will
be called the normalized action functional for the family εwt.

Theorem 2.1. For any δ, γ, K > 0 there exist ε0 > 0 such that

P{ρ0T (Xε, ϕ) < δ} ≥ exp{−ε−2[S0T (ϕ) + γ]}

for 0 < ε ≤ ε0, where T > 0 and ϕ ∈ C0T are such that ϕ0 = 0 and T +
S0T (ϕ) ≤ K.

This theorem gives a lower estimate of the probability of “passing through
the δ-tube about ϕ”. In calculating P{Xε ∈ A} for a set A ⊂ C0T , this theorem
enables us to give a lower estimate of the neighborhood of an extremal ϕ̃ ∈ A.
In order to be able to apply Laplace’s method, we also have to give an upper
estimate of the probability that a trajectory of Xε moves far from the “most
probable” function ϕ̃. The necessary estimate is contained in the theorem below.

Theorem 2.2. Let s be a positive number. Write

Φ(s) = {ϕ ∈ C0T , ϕ0 = 0, S0T (ϕ) ≤ s}.

For any δ > 0, γ > 0, and s0 > 0 there exists an ε0 > 0 such that for 0 < ε ≤ ε0
and s < s0 we have

P{ρ0T (Xε,Φ(s)) ≥ δ} ≤ exp{−ε−2(s− γ)}.

Proof of Theorem 2.1. If S0T (ϕ) ≤ K < ∞, then ϕ is absolutely continuous
and

∫ T

0
|ϕ̇s|2 ds <∞. We consider the random process Y ε

t = Xε
t −ϕt obtained

from Xε
t = εwt by the shift by ϕ. A shift by a function having a square inte-

grable derivative induces an absolute continuous change of measures in C0T . If
μεw is the measure in C0T corresponding to the process Xε

t = εwt and μY ε is
the measure corresponding to Y ε

t , then the density of the second measure with
respect to the first one has the form

dμY ε

dμεw
(εw) = exp

{
−ε−1

∫ T

0

(ϕ̇s, dws)−
ε−2

2

∫ T

0

|ϕ̇|2 ds
}
.

Using this expression, we obtain

P{ρ0T (Xε, ϕ) < δ}

= P{ρ0T (Y ε, 0) < δ} =
∫

{ρ0T (εw,0)<δ}

dμY ε

dμεw
(εw)P(dw)
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= exp

{
−ε−2

2

∫ T

0

|ϕ̇s|2 ds
}

×
∫

{ρ0T (εw,0)<δ}
exp

{
−ε−1

∫ T

0

(ϕ̇s, dws)

}
P (dω). (2.1)

It is easy to see that the probability of the set on which we integrate converges to
1 uniformly in T ≤ K as ε→ 0. This follows, for example, from Kolmogorov’s
inequality. In particular, we can choose a positive number ε1 such that

P{ρ0T (εw, 0) < δ} ≥ 3

4
(2.2)

for ε < ε1 and T ≤ K. Moreover, by Chebyshev’s inequality we have

P

{
−ε−1

∫ T

0

(ϕ̇s, dws) ≤ 2
√
2ε−1

√
S0T (ϕ)

}

≤ P

{∣∣∣∣ε
−1

∫ T

0

(ϕ̇s, dws)

∣∣∣∣ ≥ 2
√
2ε−1

√
S0T (ϕ)

}

≤
ε−2M(

∫ T

0
(ϕ̇s, dws))

2

8ε−2S0T (ϕ)
= 1/4,

i.e.,

P

{
exp

{
−ε−1

∫ T

0

(ϕ̇s, dws)

}
≥ exp

{
−2
√
2ε−1

√
S0T (ϕ)

}}
≥ 3/4. (2.3)

From estimates (2.2) and (2.3) we conclude that

∫

{ρ0T (εw,0)<δ}
exp

{
−ε−1

∫ T

0

(ϕ̇s, dws)

}
P(dw)

>
1

2
exp
{
−2
√
2ε−1

√
S0T (ϕ)

}
,

and therefore,

P{ρ0T (Xε, ϕ) < δ} > 1

2
exp{−ε−2S0T (ϕ)− 2

√
2ε−1

√
S0T (ϕ)}.

This implies the assertion of Theorem 2.1. ��

Proof of Theorem 2.2. We have to estimate the probability that the trajectories of
our process move far from the set of small values of the functional S0T (ϕ). On
the trajectories of Xε

t = εwt themselves, the action functional is equal to +∞
and we approximate the functions of Xε

t by smoother functions. We denote by
lεt , 0 ≤ t ≤ T the random polygon with vertices at the points (0, 0), (Δ, Xε

Δ),
(2Δ, Xε

2Δ), . . . , (T,X
ε
T ). We shall choose Δ later and now we only say that T/Δ
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is an integer. The event {ρ0T (Xε,Φ(s)) ≥ δ} may occur in two ways: either
with ρ0T (X

ε, lε) < δ or with p0T (X
ε, lε) ≥ δ. In the first case we certainly

have lε /∈ Φ(s), i.e., S0T (l
ε) > s. From this we obtain

P{ρ0T (Xε,Φ(s)) ≥ δ} ≤ P{S0T (l
ε) > s}+ P{ρ0T (Xε, lε) ≥ δ}. (2.4)

To estimate the first probability, we transform S0T (l
ε):

S0T (l
ε) =

1

2

∫ T

0

|l̇εt |2 dt =
ε2

2

T/Δ∑

k=1

|wkΔ − w(k−1)Δ|2

Δ
.

As a consequence of self-similarity and independence of the increments of a
Wiener process, the sum

∑T/Δ
k=1 Δ−1|wkΔ−w(k−1)Δ|2 is distributed in the same

way as
∑rT/Δ

i=1 ξ2i , where the ξi are independent random variables having normal
distribution with parameters (0, 1):

P{S0T (l
ε) > s} = P

{
rT/Δ∑

i=1

ξ2i > 2ε−2s

}
.

We estimate the right side by means of Chebyshev’s exponential inequality. Since

M exp

{
1− α

2
ξ2i

}
= Cα <∞

for every α > 0, we have

P{S0T (l
ε) > s} = P

{
rT/Δ∑

i=1

ξ2i > 2ε−2s

}
≤

M exp{ 1−α
2

∑rT/Δ
i=1 ξ2i }

exp{ε−2s(1− α)}

= CrT/Δ
α exp{−ε−2s(1− α)}.

This implies that there exists an ε0 > 0 such that

P{S0T (l
ε) > s} ≤ 1

2
exp{−ε−2(s− γ)} (2.5)

for ε < ε0 and s ≤ s0.
Now we estimate the second term in inequality (2.4):

P{ρ0T (Xε, lε) ≥ δ} ≤
T/Δ∑

k=1

P
{

max
(k−1)Δ≤t≤kΔ

|Xε
t − lεt | ≥ δ

}

=
T

Δ
P
{

max
0≤t≤Δ

|Xε
t − lεt | ≥ δ

}

≤ T

Δ
P
{

max
0≤t≤Δ

|εwt| ≥
δ

2

}
. (2.6)



2 Exponential Estimates 61

Here we have used the facts that for distinct k’s, the random variables
max(k−1)Δ≤t≤kΔ |Xε

t − lεt | are identically distributed and

P
{

max
0≤t≤Δ

|Xε
t − lεt | ≥ δ

}
= P

{
max

0≤t≤Δ

∣∣∣∣εwt − ε
t

Δ
wΔ

∣∣∣∣ ≥ δ

}

≤ P
{

max
0≤t≤Δ

|εwt| ≥
δ

2

}
.

Continuing estimation (2.6) and taking account of the inequality

P{wi
Δ > z} ≤

√
Δ

z
√
2π

exp(−z2/2Δ)

true for a normal random variable wi
Δ with mean 0 and variance Δ, we have

P{ρ0T (Xε, lε) ≥ δ} ≤ T

Δ
P
{

max
0≤t≤Δ

|εwt| >
δ

2

}
≤ 4rT

Δ
P{wt

Δ > δ/2rε}

≤ 4rT

Δ
· 2rε

δ
√
2π

√
Δexp

(
− δ2

8r2Δε2

)
. (2.7)

Now it is sufficient to take Δ < δ2/4r2s0, and the right side of (2.7) will be
smaller than 1

2 exp{−ε−2(s − γ)} for ε sufficiently small and s ≤ s0. This and
inequalities (2.4) and (2.5) imply the assertion of the theorem. ��

We establish some properties of the functional S0T (ϕ).

Lemma 2.1.

(a) The functional S0T (ϕ) is lower semicontinuous in the sense of uniform con-
vergence, i.e., if a sequence ϕ(n) converges to ϕ in C0T , then S0T (ϕ) ≤
limn→∞ S0T (ϕ

(n)).
(b) The set of functions ϕt, 0 ≤ t ≤ T such that ϕ0 belongs to some compact

subset of Rr and S0T (ϕ) ≤ s0 <∞ is compact.

Proof. (a) It is sufficient to consider the case where the finite limit
limn→∞ S0T (ϕ

(n)) exists. We use the following fact (cf. Riesz and Szökefalvi-
Nagy [1], p. 86): a function ϕt is absolutely continuous and its derivative is square
integrable if and only if

sup
0≤t0<t1<···<tN≤T

N∑

i=1

|ϕti − ϕti−1 |2
ti − ti−1

(2.8)

is finite and in this case the supremum is equal to
∫ T

0
|ϕ̇t|2 dt.

Expression (2.8) is equal to

sup
0≤t0<t1<···<tN≤T

lim
n→∞

N∑

i=1

|ϕ(n)
ti − ϕ

(n)
ti−1
|2

ti − ti−1
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≤ lim
n→∞

sup
0≤t0<t1<···<tN≤T

N∑

i=1

|ϕ(n)
ti − ϕ

(n)
ti−1
|2

ti − ti−1

= lim
n→∞

∫ T

0

|ϕ̇(n)
s |2 ds = 2 lim

n→∞
S0T (ϕ

(n)) <∞.

This implies that ϕ is absolutely continuous and S0T (ϕ) ≤ limn→∞ S0T (ϕ
(n)).

(b) From the estimation
∫ T

0
|ϕ̇s|2 ds = 2S0T (ϕ) ≤ 2s0 we obtain that

|ϕt| =
∣∣∣∣ϕ0 +

∫ t

0

ϕ̇s ds

∣∣∣∣ ≤ |ϕ0|+

√

T

∫ T

0

|ϕ̇s|2 ds ≤ |ϕ0|+
√

2Ts0.

Consequently, all functions of our set are uniformly bounded. This estimation
implies the equicontinuity of the functions ϕ:

|ϕt+h − ϕt| ≤
∫ t+h

t

|ϕ̇s| ds ≤

√

h

∫ t+h

t

|ϕ̇s|2 ds

≤
√
2S(ϕ)

√
h ≤

√
2s0
√
h.

The compactness follows from Arzela’s theorem. ��

Corollary. On every nonempty closed set in C0T for which the initial values
of ϕ0 are contained in some compact set, the functional S0T (ϕ) attains its small-
est value and values close to the smallest value are assumed by the functional
only near functions at which the minimum is attained.

Theorem 2.3. Let a function ϕ ∈ C0T be such that ϕ0 = 0, S0T (ϕ) < ∞. We
have

lim
δ↓0

lim
ε↓0

ε2 lnP{ρ0T (Xε, ϕ) < δ} = lim
δ↓0

lim
ε↓0

ε2 lnP{ρ0T (Xε, ϕ) < δ}

= −S0T (ϕ).

Proof. For the proof of this theorem, it is sufficient to establish that for every
γ > 0 and every sufficiently small δ0 > 0 there exists an ε0 > 0 such that

exp{−ε−2(S0T (ϕ)− γ)} ≥ P{ρ0T (Xε, ϕ) < δ0}
≥ exp{−ε−2(S0T (ϕ) + γ)} (2.9)

for 0 < ε < ε0. The right-hand inequality constitutes the assertion in Theo-
rem 2.1. We prove the left-hand inequality. We choose δ0 > 0 so small that

inf
ψ:ρ0T (ϕ,ψ)≤δ0

S0T (ϕ) > S0T (ϕ)− γ/4.

This can be done relying on Lemma 2.1. By the corollary to the same lemma, we
have



3 Action Functional. General Properties 63

δ1 = ρ0T ({ψ : ρ0T (ϕ, ψ) ≤ δ0},Φ(S0T (ϕ)− γ/2)) > 0.

We apply Theorem 2.2:

P{ρ0T (Xε, ϕ) < δ0} ≤ P{ρ0T (Xε,Φ(S0T (ϕ)− γ/2)) > δ1}
≤ exp{−ε−2(S0T (ϕ)− γ)}

whenever ε is sufficiently small. By the same token inequalities (2.9), and with
them Theorem 2.3, are proved. ��

The proofs of Theorems 2.1 and 2.2 reproduce in the simplest case of the
process Xε

t = εwt the construction used in the articles [1] and [4] by Wentzell
and Freidlin. In this special case, analogous results were obtained in Schilder’s
article [1].

3 Action Functional. General Properties

The content of Sect. 2 may be divided into two parts: one which is concerned
with the Wiener process and the other which relates in general to ways of de-
scribing the rough (to within logarithmic equivalence) asymptotics of families of
measures in metric spaces. We consider these questions separately.

Let X be a metric space with metric ρ. On the σ-algebra of its Borel subsets
let μh be a family of probability measures depending on a parameter h > 0. We
shall be interested in the asymptotics of μh as h ↓ 0 (the changes which have to
be made if we consider convergence to another limit or to ∞ or if we consider a
parameter not on the real line but in a more general set, are obvious).

Let λ(h) be a positive real-valued function going to +∞ as h ↓ 0 and let
S(x) be a function on X assuming values in [0,∞]. We shall say that λ(h)S(x)
is an action function for μh as h ↓ 0 if the following assertions hold:

(0) the set Φ(s) = {x : S(x) ≤ s} is compact for every s ≥ 0;
(I) for any δ > 0, any γ > 0 and any x ∈ X there exists an h0 > 0 such that

μh{y : ρ(x, y) < δ} ≥ exp{−λ(h)[S(x) + γ]} (3.1)

for all h ≤ h0;
(II) for any δ > 0, any γ > 0 and any s > 0 there exists an h0 > 0 such that

μh{y : ρ(y,Φ(s)) ≥ δ} ≤ exp{−λ(h)(s− γ)} (3.2)

for h ≤ h0.

If ξh is a family of random elements of X defined on the probability spaces
{Ωh,Fh,Ph}, then the action function for the family of the distributions μh,
μh(A) = Ph{ξh ∈ A} is called the action function for the family ξh. In this case
formulas (3.1) and (3.2) take the form
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Ph{ρ(ξh, x) < δ} ≥ exp{−λ(h)[S(x) + γ]}, (3.1′)

Ph{ρ(ξh,Φ(s)) ≥ δ} ≤ exp{−λ(h)(s− γ)}. (3.2′)

Separately, the functions S(x) and λ(h) will be called the normalized action
function and normalizing coefficient. It is clear that the decomposition of an ac-
tion function into two factors λ(h) and S(x) is not unique; moreover, λ(h) can
always be replaced by a function λ1(h) ∼ λ(h). Nevertheless, we shall prove
below that for a given normalizing coefficient, the normalized action function is
uniquely defined.

EXAMPLE 3.1. X = R1, μh is the Poisson distribution with parameter h for
every h > 0, and we are interested in the behavior of μh as h ↓ 0. Here λ(h) =
− lnh; S(x) = x for every nonnegative integer x and S(x) = +∞ for the
remaining x.

If X is a function space, we shall use the term action functional. Hence for
the family of random processes εwt, where wt is a Wiener process, t ∈ [0, T ]

and w0 = 0, a normalized action functional as ε→ 0 is S(ϕ) = 1
2

∫ T

0
|ϕ̇t| dt for

absolutely continuous ϕt, 0 ≤ t ≤ T , ϕ0 = 0, and S(ϕ) = +∞ for all other ϕ
and the normalizing coefficient is equal to ε−2 (as the space X we take the space
of continuous functions on the interval [0, T ] with the metric corresponding to
uniform convergence).

We note that condition (0) implies that S(x) attains its minimum on every
nonempty closed set. It is sufficient to consider only the case of a closed A ⊆ X
with SA = inf{S(x) : x ∈ A} < ∞. We choose a sequence of points xn ∈ A
such that sn = S(xn) ↓ sA. The nested compact sets Φ(sn) ∩ A are nonempty
(since Φ(sn) ∩ A � xn), and therefore, their intersection is nonempty and con-
tains a point xA, S(xA) = sA.

It would be desirable to obtain immediately a large number of examples of
families of random processes for which we could determine an action functional.
The following result (Freidlin [7]) helps us with that.

Theorem 3.1. Let λ(h)Sμ(x) be the action function for a family of measures μh

on a space X (with metric ρX ) as h ↓ 0. Let ϕ be a continuous mapping of X
into a space Y with metric ρY and let a measure νh on Y be given by the formula
νh(A) = μh(ϕ−1(A)). The asymptotics of the family of measures νh as h ↓ 0
is given by the action function λ(h)Sν(y), where Sν(y) = min{Sμ(x) : x ∈
ϕ−1(y)} (the minimum over the empty set is set to be equal to +∞).

Proof. We introduce the following notation:

Φμ(s) = {x : Sμ(x) ≤ s}, Φν(s) = {y : Sν(y) ≤ s}.

It is easy to see that Φν(s) = ϕ(Φμ(s)), from which we obtain easily that Sν

satisfies condition (0).
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We prove condition (I). We fix an arbitrary y ∈ Y and a neighborhood of it.
If Sν(y) = ∞, then there is nothing to prove. If Sν(y) < ∞, then there exists
an x such that ϕ(x) = y, Sν(y) = Sμ(x). We choose a neighborhood of x
whose image is contained in the selected neighborhood of y and thus obtain the
condition to be proved.

Now we pass to condition (II). The pre-image of the set {y : ρY (y,Φ
ν(s)) ≥

δ} under ϕ is closed and does not intersect the compact set Φμ(s). Therefore, we
can choose a positive δ′ such that the δ′-neighborhood of Φμ(s) does not intersect
ϕ−1{y : ρY (y,Φ

ν(s)) ≥ δ}. From inequality (3.2) with ρX , Φμ and δ′ in place
of δ, we obtain a similar inequality for νh, ρY , and δ. ��
Remark. The results of type Theorem 3.1 are called the contraction principle.

Using this theorem in the special case where X and Y are the same space
with distinct metrics, we obtain that if λ(h)S(x) is an action function for a fam-
ily of measures μh as h ↓ 0 in a metric ρ1 and another metric ρ2 is such that
ρ2(x, y)→ 0 if ρ1(x, y) → 0, then λ(h)S(x) is an action function in the metric
ρ2, as well. Of course, this simple assertion can be obtained directly. From this
we obtain, in particular, that ε−2S0T (ϕ) = (1/2ε2)

∫ T

0
|ϕ̇t|2 dt remains an ac-

tion functional for the family of the processes εwt, 0 ≤ t ≤ T as ε ↓ 0 if we
consider the metric of the Hilbert space L2

0T .
The following examples are more interesting.

EXAMPLE 3.2. Let G(s, t) be a k times continuously differentiable function on
the square [0, T ] × [0, T ], k ≥ 1. In the space C0T we consider the operator G̃
defined by the formula

G̃ϕt =

∫ T

0

G(s, t) dϕs.

Here the integral is understood in the sense of Stieltjes and by the assumed
smoothness of G, integration by parts is allowed:

G̃ϕt = G(T, t)ϕT −G(0, t)ϕ0 −
∫ T

0

∂G(s, t)

∂s
ϕs ds.

This equality shows that G̃ is a continuous mapping of C0T into the space C(k−1)
0T

of functions having k − 1 continuous derivatives with the metric

ρk−1(ϕ, ψ) = max
0≤i≤k−1
0≤t≤T

∣∣∣∣
di(ϕt − ψt)

dti

∣∣∣∣.

We calculate the action functional for the family of the random processes

Xε
t = εG̃wt = ε

∫ T

0

G(s, t) dws

in C
(k−1)
0T as ε → 0. By Theorem 3.1, the normalizing coefficient remains the

same and the normalized action functional is given by the equality



66 3. Action Functional

SX(ϕ) = SX
0T (ϕ) = min{Sw

0T (ψ) : G̃ψ = ϕ}

= min

{
1

2

∫ T

0

|ψ̇s|2 ds : Gψ = ϕ

}
;

if there are no ψ for which G̃ψ = ϕ, then SX(ϕ) = +∞.
We introduce an auxiliary operator G in L2

0T , given by the formula

Gf(t) =

∫ T

0

G(s, t)f(s) ds,

and express SX
0T in terms of the inverse of G. This will not be a one-to-one

operator in general, since G vanishes on some subspace L0 ⊆ L2
0T , which may

be nontrivial. We make the inverse operator one-to-one artificially, by setting
G−1ϕ = ψ, where ψ is the unique function in L2

0T orthogonal to L0 and such
that Gψ = ϕ. The operator G−1 is defined on the range of G.

If SX(ϕ) <∞, then there exists a function ψ ∈ C0T such that G̃ψ = ϕ and
Sw
0T (ψ) <∞. Then ψ is absolutely continuous and G̃ψ = Gψ̇. Therefore,

SX
0T (ϕ) = min

{
1

2

∫ T

0

|ψ̇s|2 ds : G̃ψ = ϕ

}
= min

{
1

2
‖f‖2 : Gf = ϕ

}
,

where ‖f‖ is the norm of f in L2
0T . Any element f for which Gf = ϕ can be

represented in the form f = G−1ϕ+f ′, where f ′ ∈ L0. Taking into account that
G−1ϕ is orthogonal to L0, we obtain ‖f‖2 = ‖G−1ϕ‖2 + ‖f ′‖2 ≥ ‖G−1ϕ‖2.
This means that SX

0T (ϕ) =
1
2‖G−1ϕ‖2 for ϕ in the range of G. For the remaining

ϕ ∈ C
(k−1)
0T the functional assumes the value +∞.

EXAMPLE 3.3. We consider a random process Xε
t on the interval [0, T ], satisfy-

ing the linear differential equation

P

(
d

dt

)
Xε

t ≡
n∑

k=0

ak
dkXε

t

dtk
= εẇt,

where ẇt is a one-dimensional white noise process. In order to choose a unique
solution, we have to prescribe n boundary conditions; for the sake of simplicity,
we assume them to be homogeneous linear and nonrandom. We denote by G(s, t)
the Green’s function of the boundary value problem connected with the opera-
tor P (d/dt) and our boundary conditions (cf. Coddington and Levinson [1]).
The process Xε

t can be represented in the form Xε
t = ε

∫ T

0
G(s, t) dws, i.e.,

Xε = G̃(εw). In this case the corresponding operator has the single-valued in-
verse G−1 = P (d/dt) with domain consisting of the functions satisfying the
boundary conditions. From this we conclude that the action functional for the
family of the processes Xε

t as ε→ 0 is ε−2SX
0T (ϕ), where

SX
0T (ϕ) =

1

2

∫ T

0

∣∣∣∣P
(

d

dt

)
ϕ

∣∣∣∣
2

dt,
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and if ϕ does not satisfy the boundary conditions or the derivative dn−1ϕt/dt
n−1

is not absolutely continuous, then SX
0T (ϕ) = +∞.

The action functional has an analogous form in the case of a family of mul-
tidimensional random processes which are the solution of a system of linear dif-
ferential equations on the right side of which there is a white noise multiplied by
a small parameter.

In the next chapter (Sect. 1), by means of the method based on Theorem 3.1,
we establish that for a family of diffusion processes arising as a result of a
perturbation of a dynamical system ẋ = b(xt) by adding to the right side a
white noise multiplied by a small parameter, the action functional is equal to
(1/2ε2)

∫ T

0
|ϕ̇t − b(ϕt)|2 dt.

We consider the conditions (0), (I), and (II) in more detail.
In the case of a complete space X , condition (0) can be split into two: lower

semicontinuity of S(x) on X (which is equivalent to closedness of Φ(s) for ev-
ery s) and relative compactness of Φ(s). Such a splitting is convenient in the
verification of the condition (cf. Lemma 2.1). The condition of semicontinuity of
S is not stringent: it is easy to prove that if the functions λ(h) and S(x) satisfy
conditions (I) and (II), then so do λ(h) and the lower semicontinuous function
S(x) = S(x) ∧ limy→x S(y). (The method of redefining the normalized action
functional by semicontinuity is used in a somewhat more refined form in the
proof of Theorem 2.1 of Chap. 5.)

Theorem 3.2. Condition (I), together with the condition of relative compactness
of Φ(s), is equivalent to the condition:

(Ieq) for any δ > 0, γ > 0 and s0 > 0 there exists h0 > 0 such that inequality
(3.1) is satisfied for all h ≤ h0 and all x ∈ Φ(s0).

Condition (II) implies the following:

(IIeq) for any δ > 0, γ > 0 and s0 > 0 there exists an h0 > 0 such that inequality
(3.2) is satisfied for all h ≤ h0 and s ≤ s0.

Conditions (0) and (II) imply the following:

(II+) for any δ > 0 and s ≥ 0 there exist γ > 0 and h0 > 0 such that

μh{y : ρ(y,Φ(s)) ≥ δ} ≤ exp{−λ(h)(s+ γ)} (3.3)

for all h ≤ h0.

Proof. We only prove the last assertion. The values of S on the closed set A =
{y : ρ(y,Φ(s)) ≥ δ} are greater than s. Therefore, the infimum of S(y) on this
set is greater than s. We select a positive γ so that

inf{S(y) : y ∈ A} > s+ 2γ;

then A ∩ Φ(s+ 2γ) = ∅. We select a positive δ′ not exceeding ρ(A,Φ(s+ 2γ))
(this distance is positive by virtue of the compactness of the second set) and use
inequality (3.2) for δ′ in place of δ and s+ 2γ in place of s. ��
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Conditions (I) and (II) were introduced in describing the rough asymptotics
of probabilities of large deviations in the papers [1], [4] of Wentzell and Freidlin.
There are other methods of description; however, under condition (0) they are
equivalent to the one given here.

In Varadhan’s paper [1] the following conditions occur instead of conditions
(I) and (II):

(I′) for any open A ⊆ X we have

lim
h↓0

λ(h)−1 lnμh(A) ≥ inf{S(x) : x ∈ A}; (3.4)

(II′) for any closed A ⊆ X we have

lim
h↓0

λ(h)−1 lnμh(A) ≤ − inf{S(x) : x ∈ A}. (3.5)

Theorem 3.3. Conditions (I) and (I′) are equivalent. Condition (II′) implies (II)
and conditions (0) and (II) imply (II′)

Consequently, (I) ⇔ (I′), (II) ⇔ (II′) under condition (0).

Proof. The implications (I′) ⇒ (I), (I) ⇒ (I′) and (II′) ⇒ (II) can be proved
very simply. We prove, for example, the last one. The set A = {y : ρ(y,Φ(s)) ≥
δ} is closed and S(y) > s in it. Therefore, inf{S(y) : y ∈ A} ≥ s. From (II′)
we obtain: limh↓0 λ(h)

−1 lnμh(A) ≤ −s, which means that for every γ > 0 and
h sufficiently small we have: λ(h)−1 lnμh(A) ≤ −s+ γ, i.e., (3.2) is satisfied.

Now let (0) and (II) be satisfied. We prove (II′). Choose an arbitrary γ > 0
and put s = inf{S(y) : y ∈ A} − γ. The closed set A does not intersect the
compact set Φ(s). Therefore, δ = ρ(A,Φ(s)) > 0. We use inequality (3.2) and
obtain that

μh(A) ≤ μh{y : ρ(y,Φ(s)) ≥ δ}
≤ exp{−λ(h)(s− γ)} = exp{−λ(h)(inf{S(y) : y ∈ A} − 2γ)}

for sufficiently small h. Taking logarithms, dividing by the normalizing coeffi-
cient λ(h) and passing to the limit, we obtain that limh↓0 λ(h)

−1 lnμh(A) ≤
− inf{S(y) : y ∈ A}+ 2γ, which implies (3.5), since γ > 0 is arbitrary. ��

In Borovkov’s paper [1] the rough asymptotics of probabilities of large devi-
ations is characterized by one condition instead of the two conditions (I) and (II)
or (I′) and (II′).

We shall say that a set A ⊆ X is regular (with respect to the function S) if
the infimum of S on the closure of A coincides with the infimum of S on the set
of interior points of A:

inf{S(x) : x ∈ [A]} = inf{S(x) : x ∈ (A)}.

We introduce the following condition:



3 Action Functional. General Properties 69

(I 1
2 ) for any regular Borel set A ⊆ X ,

lim
h↓0

λ(h)−1 lnμh(A) = − inf{S(x) : x ∈ A}. (3.6)

Theorem 3.4. Conditions (0), (I) and (II) imply (I 1
2 ). Moreover, if A is a regular

set and min{S(x) : x ∈ [A]} is attained at a unique point x0, then

lim
h↓0

μh(A ∩ {x : ρ(x0, x) < δ})
μh(A)

= 1 (3.7)

for every δ > 0.
Conversely, conditions (0) and (I 1

2 ) imply (I) and (II).

We note that in terms of random elements of X , (3.7) can be rewritten in the
form

lim
h↓0

Ph{ρ(x0, ξ
h) < δ|ξh ∈ A} = 1. (3.7′)

Proof. We use the equivalences (I) ⇔ (I′) and (II) ⇔ (II′) already established
(under condition (0)). That (I′) and (II′) imply (I 1

2 ) is obvious. Moreover, if
A is a non-Borel regular set, then (3.6) is satisfied if μh(A) is replaced by the
corresponding inner and outer measures.

To obtain relation (3.7), we observe that

min{S(x) : x ∈ [A], ρ(x, x0) ≥ δ} > S(x0).

We obtain from (3.5) that

lim
h↓0

λ(h)−1 lnμh{x ∈ A : ρ(x0, x) ≥ δ}

≤ lim
h↓0

λ(h)−1 lnμh{x ∈ [A] : ρ(x0, x) ≥ δ} < −S(x0).

This means that μh{x ∈ A : ρ(x0, x) ≥ δ} converges to zero faster than
μh(A) � exp{−λ(h)S(x0)}.

We show that (I 1
2 ) implies (I′) and (II′). For any positive δ and any set A ⊂ X

we denote by A+δ the δ-neighborhood of A and A−δ the set of points which lie at
a distance greater than δ from the complement of A. We set s(±δ) = inf{S(x) :
x ∈ A±δ} (infimum over the empty set is assumed to be equal to +∞). The
function s is defined for all real values of the argument; at zero we define it to be
inf{S(x) : x ∈ A}. It is easy to see that it is a nonincreasing function which is
continuous except at possibly a countable number of points.

If A is an open set, then s is left continuous at zero. Therefore, for an arbi-
trarily small γ > 0 there exists a δ > 0 such that s(−δ) < s(0) − γ, and s is
continuous at −δ. The latter ensures the applicability of (3.6) to A−δ . We obtain
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lim
h↓0

λ(h)−1 lnμh(A) ≥ lim
h↓0

λ(h)−1 lnμh(A−δ) > −s(0)− γ.

Since γ is arbitrary, this implies (3.4).
In the case of a closed set A we use condition (0) to establish the right con-

tinuity of s at zero and then we repeat the same reasoning with A+δ replacing
A−δ. ��

EXAMPLE 3.4. Let A be the exterior of a ball in L2
0T : A = {ϕ ∈ L2

0T : ‖ϕ‖ >
c}. This set is regular with respect to the functional SX

0T considered in Exam-
ple 3.3. To verify this, we multiply all elements of A by a number q smaller than
but close to one. The open set q ·A = q · (A) absorbs [A] and the infimum of the
functional as well as all of its values change insignificantly (they are multiplied
by q2).

Since A is regular, we have

lim
ε→0

ε2 lnP{‖Xε‖ > c} = lim
ε→0

ε2 lnP{‖Xε‖ ≥ c}

= −min

{
1

2

∥∥∥∥P
(

d

dt

)
ϕ

∥∥∥∥
2}

, (3.8)

where the minimum is taken over all functions ϕ satisfying the boundary condi-
tions and equal to c in norm.

We consider the special case where the operator P (d/dt) with the bound-
ary conditions is self-adjoint in L2

0T . Then it has a complete orthonormal sys-
tem of eigenfunctions ek(t), k = 1, 2, . . . , corresponding to the eigenvalues λk,
k = 1, 2, . . . (cf., for example, Coddington and Levinson [1]). If a function ϕ
in L2

0T is representable in the form
∑

ckek, then P (d/dt)ϕ =
∑∞

k=1 ckλkek
and ‖P (d/dt)ϕ‖2 =

∑
c2kλ

2
k. This implies that the minimum in (3.8) is equal

to c2/2 multiplied by λ2
1, the square of the eigenvalue with the smallest absolute

value. Consequently,

lim
ε→0

ε2 lnP{‖Xε‖ > c} = −c2λ2
1/2. (3.9)

The infimum of S(ϕ) on the sphere of radius c in L2
0T is attained on the eigen-

functions, multiplied by c, corresponding to the eigenvalue λ1. If this eigenvalue
is simple (and −λ1 is not an eigenvalue), then there are only two such functions:
ce1 and −ce1. Then for any δ > 0 we have

lim
ε↓0

P{‖Xε − ce1‖ < δ or ‖Xε + ce1‖ < δ|‖Xε‖ > c} = 1.

The same is true for the conditional probability under the condition ‖Xε‖ ≥ c.
A concrete example: P (d/dt)ϕ = d2ϕ/dt2, boundary conditions: ϕ0 =

ϕT = 0. This operator is self-adjoint. The equation ϕ′′ = λϕ, ϕ0 = ϕT = 0
for the eigenfunctions has the solution: λ = λk = −k2π2/T 2; ek(t) =
(
√
2/T ) sin(kπt/T ). The eigenvalues are simple. We have
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Figure 2.

lim
ε→0

ε2 lnP{‖Xε‖ > c} = −c2π4

2T 4

for every δ > 0 the conditional probability that Xε is in the δ-neighborhood
of one of the functions ±c(

√
2/T ) sin(πt/T ), under the condition that ‖Xε‖ is

greater (not smaller) than c, converges to 1 as ε→ 0.
If our differential operator with certain boundary conditions is not self-

adjoint, then λ2
1 in (3.9) must be replaced with the smallest eigenvalue of the

product of the operator (with the boundary conditions) with its adjoint.

EXAMPLE 3.5. Let b(x) be a continuous function from Rr into Rr. On the space
C0T of continuous functions on the interval [0, T ] with values in Rr, consider the
functional S0T (ϕ) equal to 1

2

∫ T

0
|ϕ̇s − b(ϕs)|2 ds, if ϕ is absolutely continuous

and ϕ0 = x0 to +∞ on the rest of C0T . Let an open set D � x0, D �= Rr be
such that there exist interior points of the complement of D arbitrarily close to
every point of the boundary ∂D of D (i.e., ∂D = ∂[D]). Let us denote by AD

the open set of continuous functions ϕt, 0 ≤ t ≤ T such that ϕt ∈ D for all
t ∈ [0, T ]. We prove that ĀD = C0T \AD is a regular set with respect to S0T .

Let the minimum of S0T on the closed set ĀD be attained at the function
ϕt, 0 ≤ t ≤ T , ϕ0 = x0 (Fig. 2). This function certainly reaches the boundary
at some point t0 �= 0: ϕt0 ∈ ∂D. The minimum is finite, because there exist
arbitrarily smooth functions issued from x0 and leaving D in the time interval
[0, T ]; this implies that the function ϕt is absolutely continuous.

For any δ > 0 there exists an interior point xδ of Rr\D in the (δ-neighbor-
hood of the point ϕt0 . We put

ϕδ
t = ϕt +

t

t0
(xδ − ϕt0), 0 ≤ t ≤ T ;

this function belongs to the interior of ĀD. We prove that S0T (ϕ
δ) → S0T (ϕ)

as δ ↓ 0. This implies the regularity of ĀD. We have

S0T (ϕ
δ)− S0T (ϕ) =

1

2

∫ T

0

[|ϕ̇δ
t − b(ϕδ

t )|2 − |ϕ̇t − b(ϕt)|2] dt
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=

∫ T

0

(ϕ̇δ
t − b(ϕδ

t )− ϕ̇t + b(ϕt), ϕ̇t − b(ϕt)) dt

+
1

2

∫ T

0

|ϕ̇δ
t − b(ϕδ

t )− ϕ̇t + b(ϕt)|2 dt.

On the other hand, ϕ̇δ
t−b(ϕδ

t )−ϕ̇t+b(ϕt) = t−1
0 (xδ−ϕt0)+b(ϕt)−b(ϕδ

t )→ 0
uniformly in t ∈ [0, T ] as δ ↓ 0. Consequently, the scalar product of this function
with ϕ̇t − b(ϕt) and its scalar square in L2

0T also converge to zero.
In Chap. 4 we prove that ε2S0T (ϕ) is the action functional for the family of

diffusion processes Xε
t described by the equation Ẋε

t = b(Ẋε
t ) + εẇt, Xε

0 = x0

(provided that b satisfies a Lipschitz condition). Then as ε → 0 we have: P{Xε
t

exits from D for some value t ∈ [0, T ]} � exp{−ε−2 minϕ∈ĀD
S0T (ϕ)}. If this

minimum is attained at a unique function, then the trajectories of Xε
t , going out

of D lie near this function with an overwhelming probability for small ε.
We note that if D does not satisfy the condition ∂D = ∂[D], then the corre-

sponding set ĀD may not be regular.
If the boundary ∂D is smooth, then we can prove that AD is regular with

respect to the same functional.

The last remark is concerned with the notion of regularity: if the action func-
tion is continuous (which was not the case in several examples related to function
spaces), then a sufficient condition of regularity of the set A is the coincidence of
∂(A) with ∂[A].

Here is another form of the description of rough asymptotics (the integral
description):

(III) If F (x) is a bounded continuous function on X , then

lim
h↓0

λ(h)−1 ln

∫

X

exp{λ(h)F (x)}μh(dx) = max
x
{F (x)− S(x)}. (3.10)

This condition (under condition (0)) is also equivalent to conditions (I′) and (II′)
(or (I) and (II)). A deduction of (III) (and even more complicated integral condi-
tions) from (I′) and (II′) is contained in Varadhan’s article [1].

We mention still another general assertion.

Theorem 3.5. The value of the normalized action function at an element x ∈ X
can be expressed by either of the following two limits:

S(x) = − lim
δ↓0

lim
h↓0

λ(h)−1 lnμh{y : ρ(x, y) < δ}

= − lim
δ↓0

lim
h↓0

λ(h)−1 lnμh{y : ρ(x, y) < δ}. (3.11)

Proof. From condition (I) we deduce that limδ↓0 limh↓0 ≥ −S(x), and from
conditions (II) and (0) that limδ↓0 limh↓0 ≤ −S(x). We prove the second one.
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For any γ > 0, the compact set Φ(S(x) − γ) does not contain x. We choose a
positive δ smaller than one half of the distance of x from this compact set. We
have

μh{y : ρ(x, y) < δ} ≤ μh{y : ρ(y,Φ(S(x)− γ)) ≥ δ}.

By (3.2), this does not exceed exp{−λ(h)(S(x)− 2γ)} for h sufficiently small.
This gives us the necessary assertion. ��

We note that we cannot replace conditions (I), (II) (under condition (0)) by
relations (3.11). Relations (3.11) do not imply (II), as the following example
shows: X = R1, μh is a mixture, with equal weights, of the normal distribution
with mean 0 and variance h and the normal distribution with mean 0 and variance
exp{e1/h2}, and λ(h) = h−1. Here limδ↓0 limh↓0 λ(h)

−1 lnμh{y : ρ(x, y) <
δ} = −x2/2 for all x; the function x2/2 satisfies (0) but (II) is not satisfied.

We formulate, in a general language, the methods used for the verification of
conditions (I) and (II) in Sect. 2 (they will be used in Sect. 4 and Sects. 1 and 2
of Chap. 5 as well). To deduce (I), we select a function gx(y) on X so that the
family of measures μ̃h(dy) = exp{λ(h)gx(y)}μh(dy) converge to a measure
concentrated at x; then we use the fact that

μh{y : ρ(x, y) < δ} =
∫

{y:ρ(x,y)<δ}
exp{−λ(h)gx(y)} μ̃h(dy).

On a part of the domain of integration with a sufficiently large μ̃h-measure we
estimate gx(y) from above: gx(y) ≤ gx(x) + γ (we use Chebyshev’s inequality)
and we take gx(x) as S(x). This method was used by Cramér [1] to obtain precise
rather than rough results in the study of distributions of sums of independent
random variables.

We have obtained condition (II) in the following way: we chose a function
x̃(x) such that its values belong to {y : S(y) < ∞} and a set A such that
ρ(x̃(x), x) ≤ δ for x ∈ A. Further we used the inequality

μh{x : ρ(x,Φ(s)) ≥ δ} ≤ μh(X\A) + μh{x ∈ A : x̃(x) /∈ Φ(s)}.

We estimated the first term by means of Kolmogorov’s exponential inequality
and the second term also by means of Chebyshev’s exponential inequality:

μh{x ∈ A : x̃(x) /∈ Φ(s)} = μh{x ∈ A : S(x̃(x)) > s}

≤
∫

A

exp{(1− κ)λ(h)S(x̃(x))}μh(dx)

× exp{−(1− κ)λ(h)s}.

Of course, the problem of estimating the integral on A is solved separately in
each case.
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Finally, we discuss the peculiarities arising in considering families of mea-
sures depending, besides the main parameter h, on another parameter x assuming
values in a space X (X will have the meaning of the point from which the trajec-
tory of the perturbed dynamical system is issued; we restrict ourselves to the case
of perturbations which are homogeneous in time). First, we shall consider not just
one space of functions and one metric; instead for any T > 0, we shall consider
a space of functions defined on the interval [0, T ] and a metric ρ0T . Correspond-
ingly, the normalized action functional will depend on the interval: S = S0T . (In
the case of perturbations considered in Chaps. 4, 5, and 7, this functional turns
out to have the form S0T (ϕ) =

∫ T

0
L(ϕt, ϕ̇t) dt, and it is convenient to define

it analogously for all intervals [T1, T2], −∞ ≤ T1 < T2 ≤ +∞ on the real
line.)

Moreover, to every point x ∈ X and every value of the parameter h there
will correspond its own measure in the space of functions on the interval [0, T ].
We can follow two routes: we either consider a whole family of functionals de-
pending on the parameter x (the functional corresponding to x is assumed to be
equal to +∞ for all functions ϕ̇t for which ϕ0 �= x) or introduce a new def-
inition of the action functional suitable for the situation. We follow the second
route.

Let {Ωh,Fh,Ph
x} be a family of probability spaces depending on the param-

eters h > 0 and x running through the values of a metric space X and let Xh
t ,

t ≥ 0 be a random process on this space with values in X . Let ρ0T be a metric in
the space of functions on [0, T ] with values in X and let SOT (ϕ) be a functional
on this space. We say that λ(h)SOT (ϕ) is the action functional for the family
of the random processes (Xh

t P
h
x ) uniformly in a class A of subsets of X if we

have:

(0c) the functional S0T is lower semicontinuous and the sum of the Φx(s) for
x ∈ K is compact for any compact set K ⊆ X , where Φx(s) is the set of
functions on [0, T ] such that ϕ0 = x and S0T (ϕ) ≤ s;

(Iu) for any δ > 0, any γ > 0, any s0 > 0 and any A ∈ A there exists an
h0 > 0 such that

Ph
x{ρ0T (Xh, ϕ) < δ} ≥ exp{−λ(h)[S0T (ϕ) + γ]} (3.12)

for all h < h0, all x ∈ A and all ϕ ∈ Φx(s0);
(IIu) for any δ > 0, γ > 0, s0 > 0 and any A ∈ A there exists an h0 > 0 such

that
Ph
x{ρ0T (Xh,Φx(s)) ≥ δ} ≤ exp{−λ(h)(s− γ)} (3.13)

for all h ≤ h0, s ≤ s0 and x ∈ A.

For example, in Chap. 4 we prove that (1/2ε2)
∫ T

0
|ϕ̇s − b(ϕs)|2 ds is an

action functional for the family of processes given by the stochastic equation
Ẋε

t = b(Xε
t ) + εẇt, uniformly on the whole space as ε→ 0.
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4 Action Functional for Gaussian Random Processes
and Fields

Let Xt be a Gaussian random process defined for 0 ≤ t ≤ T , with val-
ues in Rr and having mean zero and correlation matrix a(s, t) = (aij(s, t)),
aij(s, t) = MXi

sX
j
t . The functions aij(s, t) will be assumed to be square inte-

grable on [0, T ]× [0, T ].
We denote by A the correlation operator of Xt acting in the Hilbert space

L2
0T of functions on [0, T ] with values in Rr: Aft =

∫ T

0
a(s, t)fs ds. The scalar

product in this space is (f, g) =
∫ T

0

∑r
i=1 f

i(s)gi(s) ds, and the norm is ‖f‖ =
(f, f)1/2. We retain the notation (f, g) for the integral

∫ T

0
(fs, gs) ds in the case

where the functions do not belong to L2
0T but the integral is defined in some

sense. For example, if ẇt is an r-dimensional white noise process, then (f, ẇ) =∫ T

0
f(s) dws.
We assume that A has finite trace. As is known (Gikhman and Skorokhod [2],

Chap. V, Sect. 5), this implies that the trajectories of Xt belong to L2
0T . We denote

by A1/2 the nonnegative symmetric square root of A. The operator A1/2 as well
as A are integral operators with a square integrable kernel. In order to reconstruct
this kernel, we consider the eigenfunctions e1(t), . . . , en(t), . . . of A and the cor-
responding eigenvalues λ1, . . . , λn, . . . . Since a(s, t) is a correlation function,
A is nonnegative definite, i.e., λk ≥ 0. We put G(s, t) =

∑
λ
1/2
k ek(s)ek(t). The

operator A has finite trace
∑

λk < ∞. Therefore, the series
∑

λ
1/2
k ek(s)ek(t)

is convergent in L2
[0,T ]×[0T ]. The function G(s, t) is precisely the kernel of the

integral operator A1/2. In order to see this, it is sufficient to note that the eigen-
functions of the operator with kernel G(s, t) coincide with the eigenfunctions of
A and its eigenvalues are square roots of the corresponding eigenvalues of A.

The random process Xt admits an integral representation in terms of the ker-
nel of A1/2:

Xt =

∫ T

0

G(s, t) dws,

where ws is an r-dimensional Wiener process. We shall write this equality in the
form Xt = A1/2ẇt. In order to prove it, it is sufficient to note that X̃ = A1,2ẇ
is a Gaussian process with MX̃l = 0 and

MX̃sX̃t =

∫ T

0

G(s, u)G(t, u) du = a(s, t).

The operators A and A1/2 nullify some subspace L0 ⊆ L2
0T . This sub-

space is nontrivial in general, and therefore, for a definition of the inverses A−1

and A−1/2, additional agreements are needed. We define the inverses by setting
A−1ϕ = ψ1, A−1/2ϕ = ψ2 if Aψ1 = ϕ, A1/2ψ2 = ϕ and ψ1, ψ2 are orthogonal
to L0. Consequently, A−1 and A−1/2 are defined uniquely on the ranges of A
and A1/2, respectively.
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On L2
0T we consider the functional S(ϕ) equal to 1

2‖A−1/2ϕ‖2; if A−1/2ϕ
is not defined, we set S(ϕ) = +∞. For functions ϕ for which A−1 is de-
fined, we have S(ϕ) = 1

2 (A
−1ϕ,ϕ), i.e., S(ϕ) is an extension of the functional

1
2 (A

−1ϕ,ϕ).

Theorem 4.1. The functional S(ϕ) is a normalized action functional for the
Gaussian process Xε

t = εXt in L2
0T as ε → 0. The normalizing function is

λ(ε) = ε−2.

Proof. Let GN (s, t) be a symmetric positive definite continuously differentiable
kernel on the square [0, T ]× [0, T ] such that

∫ T

0

∫ T

0

[G(s, t)−GN (s, t)]2 ds dt <
1

N
,

where G(s, t) is the kernel of A1/2. We denote by GN the operator with kernel
GN (s, t). First we verify the inequality

P{‖Xε − ϕ‖ < δ} ≥ exp{−ε−2(S(ϕ) + γ)} (4.1)

for any δ, γ > 0 for sufficiently small positive ε. If S(ϕ) = +∞, then (4.1) is
obvious. Let S(ϕ) <∞. There exists a ψ ∈ L2

0T orthogonal to L0 and such that
A1/2ψ = ϕ. We put ϕN = GNψ and XN = GN ẇ. Choose N0 so large that
‖ϕN − ϕ‖ ≤ ‖ψ‖(

∫ T

0

∫ T

0
|G(s, t) − GN (s, t)]2 ds dt)1/2 < δ/3 for N ≥ N0.

For such N we have

{‖εX − ϕ‖ < δ} ⊇ {‖εX − εXN‖ < δ/3, ‖εXN − ϕN‖ < δ/3}.

From this we obtain

P{‖εX−ϕ‖ < δ} ≥ P

{
‖εXN−ϕN‖ <

δ

3

}
−P{‖εX−εXN‖ ≥ δ/3}. (4.2)

Since GN (s, t) is a continuously differentiable kernel, in estimating the first term
of the right side, we can use the result of Example 3.2:

P{‖εXN − ϕN‖ < δ/3} ≥ exp{−ε−2(S(ϕ) + γ)} (4.3)

for ε smaller than some ε1. Here we have used the fact that

G−1
N ϕN = ψ = A−1/2ϕ, S(ϕ) =

1

2
‖ψ‖2 =

1

2
‖G−1

N ϕN‖2.

Moreover, using Chebyshev’s inequality, we obtain

P{‖εX − εXN‖ ≥ δ/3}

= P

{∫ T

0

[∫ T

0

(G(s, t)−GN (s, t)) dws

]2
dt ≥ δ2

9ε2

}
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≤ e−aε−2

M exp

{
9a

δ2

∫ T

0

[∫ T

0

(G(s, t)−GN (s, t)) dws

]2
dt

}
(4.4)

for an arbitrary a > 0. For sufficiently large N , the mathematical expectation
on the right side is finite. To see this, we introduce the eigenfunctions ϕk and
corresponding eigenvalues μk, k = 1, 2, . . . of the symmetric square integrable
kernel ΓN (s, t) = G(s, t)−GN (s, t). It is easy to verify the following equalities:

ΓN (s, t) =
∑

μkϕk(s)ϕk(t),

∑
μ2
k =

∫ T

0

∫ T

0

ΓN (s, t)2 ds dt,

∫ T

0

ΓN (s, t) dws =
∑

k

μkϕk(t)

∫ T

0

ϕk(s) dws,

∫ T

0

[∫ T

0

ΓN (s, t) dws

]2
dt =

∑

k

μ2
k

[∫ T

0

ϕk(s) dws

]2
.

The random variables ξk =
∫ T

0
ϕk(s) dws have normal distribution with mean

zero and variance one and they are independent for distinct k. Taking account of
these properties, we obtain

M exp

{
9a

δ2

∫ T

0

[∫ T

0

ΓN (s, t) dws

]2
dt

}
= M exp

{
9a

δ2

∑
μ2
kξ

2
k

}

=

∞∏

k=1

M exp

{
9a

δ2
μ2
kξ

2
k

}
=

∞∏

k=1

(
1− 18a

δ2
μ2
k

)−1/2

. (4.5)

The last equality holds if (18a/δ2)μ2
k < 1 for all k. Since

∑
μ2
k =

∫ T

0

∫ T

0

ΓN (s, t)2 ds dt→ 0

as N →∞, relation (4.5) is satisfied for all N larger than some N1 = N1(a, δ).
The convergence of the series

∑
μ2
k implies the convergence of the infinite prod-

uct in (4.5). Consequently, if N > N1 then the mathematical expectation on the
right side of (4.4) is finite and for a = S(ϕ) + γ and for ε sufficiently small we
obtain

P{‖εX − εXN‖ ≥ δ/3} ≤ const · exp{−ε−2(S(ϕ) + γ)}. (4.6)

Combining estimates (4.2), (4.3), and (4.6), we obtain (4.1).
Now we prove that for any s > 0, γ > 0, δ > 0 there exists an ε0 such that

P{ρ(εX,Φ(s)) ≥ δ} ≤ exp{−ε−2(s− γ)} (4.7)

for ε ≤ ε0, where Φ(s) = {ϕ ∈ L2
0T : S(ϕ) ≤ s}.



78 3. Action Functional

Along with the image Φ(s) of the ball of radius
√
2s in L2

0T under the
mapping A1/2, we consider the image ΦN (s) of the same ball under GN . Let
N > 6s/δ. Taking account of the definition of GN (s, t), we obtain

sup
ϕ:‖ϕ‖≤

√
2s

‖Gϕ−GNϕ‖2

= sup
ϕ:‖ϕ‖≤

√
2s

∫ T

0

[∫ T

0

(G(s, t)−GN (s, t))ϕs ds

]2
dt

≤ sup
ϕ:‖ϕ‖≤

√
2s

∫ T

0

∫ T

0

(G(s, t)−GN (s, t))2 ds dt‖ϕ‖2

≤ δ/3.

From this we obtain

P{ρ(εX,Φ(s)) ≥ δ} ≤ P{‖εX − εXN‖ ≥ δ/3}
+ P{ρ(εXN ,ΦN (s)) ≥ δ/3} (4.8)

for N > 6s/δ. By virtue of (4.4), the first term on the right side can be made
smaller than exp{−ε−2(s− γ/2)} for N sufficiently large. The estimate

P{ρ(εXN ,ΦN (s)) ≥ δ/3} ≤ exp{−ε−2(s− γ/2)}

of the second term follows from Example 3.2. Relying on these estimates, we can
derive (4.7) from (4.8). Theorem 4.1 is proved. ��

Remark. As was established in the preceding section, estimates (4.1) and (4.7)
are satisfied for sufficiently small ε uniformly in all functions ϕ with S(ϕ) ≤
const and for all s ≤ s0 <∞, respectively.

In the above proof, taken from Freidlin [1], the main role was played by the
representation Xt = A1/2ẇt of the Gaussian process Xt. This representation
enabled us to reduce the calculation of the action functional for the family of
processes εXt in L2

0T to the estimates obtained in Sect. 2 of the corresponding
probabilities for the Wiener process (for the uniform metric). We are going to
formulate and prove a theorem very close to Theorem 4.1; nevertheless, we shall
not rely on the estimates for the Wiener process in the uniform metric but rather
reproduce proofs from Sect. 2 in a Hilbert space setting (cf. Wentzell [4]). This
enables us to write out an expression of the action functional for Gaussian random
processes and fields in various Hilbert norms. Of course, a Gaussian random
field Xz can also be represented in the form

∫ T

0
G(s, z) dws and we can use the

arguments in the proof of Theorem 4.1. Nevertheless, this representation is not
as natural for a random process.

Let H be a real Hilbert space. We preserve the notation ( , ) and ‖ ‖ for the
scalar product and norm of H. In H we consider a Gaussian random element X
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with mean 0 and correlation functional B(f, g) = M(X, f)(X, g). This bilin-
ear functional can be represented in the form B(f, g) = (Af, g) where A is a
self-adjoint linear operator which turns out to be automatically nonnegative defi-
nite and completely continuous with a finite trace (Gikhman and Skorokhod [2],
Chap. V, Sect. 5). As earlier, we write S(ϕ) = 1

2‖A−1/2ϕ‖2. If A−1/2ϕ is not
defined, we set S(ϕ) = +∞. In order to make A−1/2 single-valued, as A−1/2ϕ
we again choose that element ψ which is orthogonal to the null space of A and
for which A1/2ψ = ϕ.

Theorem 4.2. Let s, δ and γ be arbitrary positive numbers. We have

P{‖εX − ϕ‖ < δ} ≥ exp{−ε−2(S(ϕ) + γ)} (4.9)

for ε > 0 sufficiently small. Inequality (4.9) is satisfied uniformly for all ϕ with
S(ϕ) ≤ s <∞. If Φ(s) = {ϕ ∈ H : S(ϕ) ≤ s}, then

P{ρ(εX,Φ(s)) ≥ δ} ≤ exp{−ε−2(s− γ)} (4.10)

for ε > 0 sufficiently small. Inequality (4.10) is satisfied uniformly for all s ≤
s0 <∞.

Proof. Let ei, i = 1, 2, . . . be orthonormal eigenfunctions of A and let λi be
the corresponding eigenvalues. We denote by Xi and ϕi the coordinates of X
and ϕ in the basis e1, e2, . . . . Here Xi = (X, ei), i = 1, 2, . . . , are independent
Gaussian random variables with mean zero and variance MX2

i = M(X, ei)
2 =

(Aei, ei) = λi. The functional S(ϕ) can be represented in the following way:
S(ϕ) = 1

2‖A−1/2ϕ‖2 = 1
2

∑
(ϕ2

i /λi). We assume that S(ϕ) < ∞. Then the
joint distribution of the Gaussian random variables Xj − ε−1ϕj , i = 1, 2, . . . ,
has a density p with respect to the distribution of the variables Xi, i = 1, 2, . . . :

p(x1, . . . , xn, . . .) =

∞∏

i=1

exp

{
−λ−1

i ε−1ϕixi −
λ−1
i

2
ε−2ϕ2

i

}
.

Therefore,

P{‖εX − ϕ‖ < δ‖ = P

{ ∞∑

i=1

(Xi − ε−1ϕi)
2 < (δ/ε)2

}

= M
{∑

X2
i < (δ/ε)2; p(X1, X2, . . .)

}

= M

{
‖X‖2 < (δ/ε)2;

× exp

{
ε−1

∞∑

i=1

λ−1
i ϕiXi − ε−2S(ϕ)

}}
. (4.11)

Using Chebyshev’s inequality, we find that
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P{‖X‖2 < (δ/ε)2} ≥ 1− ε2δ−2M‖X‖2 = 1− ε2δ−2
∞∑

i=1

λi ≥ 3/4

for ε ≤ 2δ(
∑∞

i=1 λi)
−1/2 and

P
{∣∣∣
∑

λ−1
i ϕiXi

∣∣∣ < K
}
≥ 1−K−2M

( ∞∑

i=1

λ−1
i ϕiXi

)2

= 1−K−2
∞∑

i=1

λ−1
i ϕ2

i = 1− 2K−2S(ϕ) ≥ 3/4

for K ≥ 2
√
2
√
S(ϕ). It follows from these inequalities that the random variable

under the sign of mathematical expectation in (4.11) is greater than
exp{−ε−2S(ϕ) − ε−1K} with probability not smaller than 1/2. This implies
inequality (4.9).

Now we prove the second assertion of the theorem. We denote by X̃ the
random vector with coordinates (X1, X2, . . . , Xi0 , 0, 0, . . .). The choice of the
index i0 will be specified later. It is easy to verify that

P{ρ(εX,Φ(s)) ≥ δ} ≤ P{εX̃ /∈ Φ(s)}+ P{ρ(X, X̃) ≥ δ/ε}. (4.12)

The first probability is equal to

P{S(εX̃) > s} = P{S(X̃) > sε−2} = P

{
i0∑

i=1

λ−1
i X2

i > 2sε−2

}
. (4.13)

The random variable
∑i0

i=1 λ
−1
i X2

i is the sum of squares of i0 independent
normal random variables with parameters (0, 1), and consequently, has a χ2-
distribution with i0 degrees of freedom. Using the expression for the density of a
χ2-distribution, we obtain

P{εX̃ /∈ Φ(s)} = P

{
i0∑

i=1

λ−1
i X2

i > 2sε−2

}

=

∫ ∞

2sε−2

1

Γ(i0/2)2i0/2
xi0/2−1e−x/2 dx

≤ const · ε−i0 exp{−ε−2s} (4.14)

for ε > 0 sufficiently small. The second probability in (4.12) can be estimated by
means of Chebyshev’s exponential inequality:

P{ρ(X, X̃) > δ/ε} ≤ exp

{
− c

2
(δ/ε)2

}
M exp

{
c

2
ρ(X, X̃)2

}
. (4.15)
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The mathematical expectation on the right side is finite for sufficiently large i0.
This can be proved in the same way as the finiteness of the mathematical expec-
tation in (4.4); we have to take account of the convergence of the series

∑∞
i=1 λi.

Substituting c = 2sδ−2 in (4.15), we have

P{ρ(X, X̃) > δ/ε} ≤ const · exp{−sε−2} (4.16)

for sufficiently large i0. Combining formulas (4.13), (4.14) and (4.16), we obtain
the last assertion of the theorem. ��

This theorem enables us to calculate the action functional for Gaussian ran-
dom processes and fields in arbitrary Hilbert norms. It is only required that the
realizations of the process belong to the corresponding Hilbert space. In many
examples, for example, in problems concerning the crossing of a level by a ran-
dom process or field, it is desirable to have estimations in the uniform norm. We
can use imbedding theorems to obtain such estimations.

Let D be a bounded domain in Rr with smooth boundary. Let us denote by
Wl

2 the function space on D obtained from the space of infinitely differentiable
functions in D by completing it in the norm

‖u‖W ′
2
=

(∑

|q|≤l

∫

D

(u(q)(x))2 dx

)1/2

,

where q = (q1, . . . , qr), |q| =
∑

qi and u(q) = ∂|q|u/∂xq1
1 · · · ∂xqr

r . The space
Wl

2 with this norm is a separable Hilbert space (Sobolev [1]). Roughly speak-
ing, Wl

2 consists of functions having square integrable derivatives of order l. In
order that the realizations of a Gaussian random field Xz , z ∈ D ⊂ Rr with
mean zero and correlation function a(u, v) = MXuXv belong to Wl

2(D), it
is sufficient (cf., for example, Gikhman and Skorokhod [1]) that the correlation
function have continuous derivatives up to order 2l inclusive. Let m be a multi-
index (m1, . . . ,mr), mt ≥ 0, and let |m| = m1 + m2 + · · · + mr ≤ l − r/2.
For all x ∈ D we have the estimation

∣∣∣∣
∂|m|u(x)

∂xm1
1 · · · ∂xmr

r

∣∣∣∣ ≤ const · ‖u‖W l
2
.

This inequality comprises the content of an imbedding theorem (cf. Sobolev [1]
or Ladyzhenskaya and Ural’tseva [1], Theorem 2.1). It follows easily from this
that if the correlation function of a random field has continuous derivatives of
order 2l in D ∪ ∂D, then estimates (4.9) and (4.10) are satisfied in the metric of
C

(m)
D for m < l < r/2. Moreover, the functional S(ϕ) is defined by the equality

S(ϕ) = 1
2‖A−1/2ϕ‖2, where A is the correlation operator. As above, A−1/2 is

made single-valued by requiring the orthogonality of A−1/2ϕ to the null space
of A. If A−1/2ϕ is not defined, then S(ϕ) = +∞. In particular, for 2l > r,
estimates (4.9) and (4.10) hold in the norm of CD.

If we apply sharper imbedding theorems to obtain estimates in CD, we can
reduce the requirements on the smoothness of the correlation function.
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Lemma 4.1.

(a) The set Φ(s) = {ϕ ∈ H : S(ϕ) ≤ s}, s <∞ is compact in H;
(b) the functional S(ϕ) is lower semicontinuous, i.e., if ‖ϕn − ϕ‖ → 0 as

n→∞, then S(ϕ) < limn→∞ S(ϕn).

Proof. First we prove (b). We consider the Hilbert space H1 ⊂ H obtained
by completing the domain DA−1/2 in the norm ‖f‖1 = ‖A−1/2f‖. This ex-
pression indeed defines a norm, since A−1/2 is linear and does not vanish
on nonzero elements. It is sufficient to prove our assertion for a sequence ϕn

such that limn→∞ S(ϕn) exists and is finite. For such a sequence, ‖ϕn‖1 =
[2S(ϕn)]

1/2 ≤ const < ∞ for all n. Since the set {ϕn} is bounded, it is
weakly compact, i.e., there exists an element ϕ̃ ∈ H1 such that some subse-
quence ϕni converges weakly to ϕ̃ in H1 : (ϕnl

·f)H1 = (A−1/2ϕn, A
−1/2f)→

(ϕ̃, f)H1 = (A−1/2ϕ̃, A−1/2f) as i→∞ for any f ∈ H1. This implies that ϕni

converges weakly to ϕ̃ in H. Indeed, let g ∈ H. We have Ag ∈ H1 and

(ϕni , g) = (A1/2A1/2ϕni , g) = (A−1/2ϕni, A
1/2g)

= (A−1/2ϕni , A
−1/2Ag) = (ϕni , Ag)H1 → 0

as i→∞. By virtue of the uniqueness of weak limits in H we obtain that ϕ̃ = ϕ.
Now we obtain assertion (b) of the lemma from the lower semicontinuity of the
norm in the weak topology.

Assertion (a) of the lemma follows from (b) and from the fact that A, and
thus A1/2, are completely continuous. ��

Remark. It follows from the proof that S(ϕ) is lower semicontinuous in the
topology of weak convergence in H.

We indicate some more properties of S(ϕ), clarifying its probabilistic mean-
ing.

Theorem 4.3. Let ϕ ∈ DA−1/2 . We have

lim
δ↓0

lim
ε↓0

ε2 lnP{‖εX − ϕ‖ < δ} = −S(ϕ); (4.17)

lim
δ↓0

P{‖εX − ϕ‖ < δ}
P{‖εX‖ < δ} = exp{−ε−2S(ϕ)}. (4.18)

Proof. The first assertion was proved in a general setting Sect. 3. We prove the
second assertion only for ϕ ∈ DA−1 . (Concerning a proof for ϕ ∈ DA−1/2 , cf.
Sytaya [1]; there is a sharpening of the first assertion of the theorem there.) Using
the notation of Theorem 4.2, from equality (4.11) we obtain

P{‖εX − ϕ‖ < δ} = M

{
‖εX‖ < δ; exp

{
ε−1

∞∑

i=1

λ−1
i ϕixi − ε−2S(ϕ)

}}
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= exp{−ε−2S(ϕ)}M
{
‖εX‖ < δ;

× exp

{
ε−1

∞∑

i=1

λ−1
i ϕiXi

}}
. (4.19)

If ϕ ∈ DA−1 , then |
∑

λ−1
i ϕiXi| = |(A−1ϕ,X)| ≤ ‖A−1ϕ‖‖X‖. From this

we conclude that

lim
δ↓0

M{‖εX‖ < δ; exp{ε−1
∑

λ−1
i ϕiXi}}

P{‖εX‖ < δ} = 1.

The last equality and (4.19) imply the second assertion of the theorem. ��

Remark. Relation (4.18) is also interesting in problems not containing a small
parameter. It can be interpreted as an assertion stating that for a Gaussian random
field (process) X , the functional exp{−S(ϕ)} plays the role of a nonnormalized
probability density with respect to “uniform distribution in the Hilbert space H.”

Example 4.1. Let D be a bounded domain in Rr with smooth boundary ∂D. Let
Xz be a Gaussian random field defined for z ∈ D∪∂D and having mean zero and
correlation function a(z1, z2). We assume that a(z1, z2) has continuous deriva-
tives through order r+2. Then the realizations of Xz have square integrable par-
tial derivatives up to order [r/2]+1 on D with probability 1. In other words, these
realizations belong to W

[r/2]+1
2 (D), and consequently, by the above imbedding

theorem, X ∈ CD∪∂D and

‖X‖c ≤ const · ‖X‖
w

[r/2]+1
2

.

This implies that the functional S(ϕ) defined as 1
2‖A−1/2ϕ‖2 if A−1/2ϕ is de-

fined and as +∞ for the remaining ϕ, is a normalized action functional for the
random field εXz as ε→ 0 not only in W

[r/2]+1
2 but also in CD∪∂D.

We put G = {ϕ ∈ CD∪∂D : maxz∈D∪∂D |ϕ(z)| ≥ 1}. We study the behav-
ior of P{εX ∈ G} as ε→ 0. Every element of the boundary of the closed set G
can be moved into the interior of G by multiplying it by a number arbitrarily
close to 1. Since S(αϕ) = α2S(ϕ), this implies the regularity of G with respect
to S(ϕ). Therefore, by Theorem 3.4 we have

lim
ε→0

ε2 lnP{εX ∈ G} = − inf
ϕ∈G

S(ϕ).

We calculate the infimum.
We denote by ek(z) and λk the eigenfunctions and the corresponding eigen-

values of the symmetric kernel a(z1z2). It is known that a(z1, z2) =
∑

λk×
ek(z1)ek(z2). We calculate the value of S at the function ϕz0(z) = a(z0, z) =∑

λkek(z0)ek(z). We have
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S(ϕz0) =
1

2
‖A−1/2ϕz0‖2 =

1

2

∑
λ−1
k (ϕz0 , ek)

=
1

2

∑
λke

2
k(z0) =

1

2
a(z0, z0).

Let the function a(z, z) attain its maximum on D ∪ ∂D at the point ẑ. Put

ϕ̂(z) = a(ẑ, ẑ)−1ϕẑ(z).

At ẑ the function ϕ̂ assumes the value 1; S(ϕ̂) = 1
2a(ẑ, ẑ)

−1. We show that S(ϕ̂)
is the infimum of S(ϕ) on G. Indeed, let ϕ(z) =

∑
ckek(z) be any function

assuming a value not smaller than 1 at some point z̄. Using the Cauchy inequality,
we obtain

S(ϕ) · a(z̄, z̄) = 1

2

∑
λ−1
k c2k

∑
λke

2
k(z̄)

≥ 1

2

∑
ckek(z̄) =

1

2
ϕ(z̄) ≥ 1

2
.

This implies

S(ϕ) ≥ 1

2
a(z̄, z̄)−1 ≥ 1

2
a(ẑ, ẑ)−1. (4.20)

Hence infϕ∈G S(ϕ) = 1
2a(ẑ, ẑ)

−1.
If we assume that ẑ is the only absolute maximum point of the function

a(z, z) on D ∪ ∂D, then the equality in (4.20) can be attained only for ck =
λkek(ẑ)a(ẑ, ẑ)

−1, k = 1, 2, . . . , i.e., the infimum of S(ϕ) is attained only for
ϕ(z) = ϕ̂(z). Theorem 3.4 yields

lim
ε→0

ε2 lnP{εX ∈ G} = −1

2
a(ẑ, ẑ)−1 = −1

2

(
max

z∈D∪∂D
a(z, z)

)−1

.

If a(ẑ, ẑ) > a(z, z) for all remaining points z of D ∪ ∂D, then

lim
ε→0

P
{
sup
z
|εXz − ϕ̂(z)| < δ|εX ∈ G

}
= 1

for every δ > 0.
In the case of a homogeneous random field Xz there exists no function ϕ

along which the realizations of εXz reach the level 1 with overwhelming proba-
bility as ε → 0 under the condition that they reach it at all. Nevertheless, in this
case, the functions a(z0, z) for various z0 can be obtained from each other by
shifts and it can be proved that

lim
ε→0

P

{
max

z∈D∪∂D

∣∣∣∣εXz −
a(z − z0)

a(a)

∣∣∣∣ < δ|εXz0 ≥ 1

}
= 1,

where δ > 0, a(z) = a(z0, z0 + z).



Chapter 4

Gaussian Perturbations of Dynamical Systems.
Neighborhood of an Equilibrium Point

1 Action Functional

In this chapter we shall consider perturbations of a dynamical system

ẋt = b(xt), x0 = x, b(x) = (b1(x), . . . , br(x)) (1.1)

by a white noise process or by a Gaussian process in general. Unless otherwise
stated, we shall assume that the functions bi are bounded and satisfy a Lipschitz
condition: |b(x) − b(y)| ≤ K|x − y|, |b(x)| ≤ K < ∞. Here we pay particular
attention to the case where the perturbed process has the form

Ẋε
t = b(Xε

t ) + εẇt, Xε
0 = x, (1.2)

where wt is an r-dimensional Wiener process. In Chap. 2 we mentioned that as
ε → 0, the processes Xε

t converge in probability to the trajectories of the dy-
namical system (1.1), uniformly on every finite interval [0, T ]. This result can
be viewed as a version of the law of large numbers. In Chap. 2 there is also an
assertion, concerning the processes Xε

t , of the type of the central limit theorem:
the normalized difference (Xε

t − xt) converges to a Gaussian process. This re-
sult characterizes deviations of order ε from the limiting dynamical system. In
this chapter we study the asymptotics of probabilities of large (or order 1) devi-
ations for the family Xε

t of processes and consider a series of problems relating
to the behavior of the perturbed process on large time intervals. In the last sec-
tion we consider large deviations for the processes Xε

t , which are defined by the
equations

Ẋε
t = b(Xε

t , εζt), Xε
0 = x, (1.3)

where ζt is a Gaussian process in Rl and b (x, y), x ∈ Rr, y ∈ Rl is a continuous
function for which b(x, 0) = b(x).

Let ψt be a continuous function on [0, T ] with values in Rr. In C0T (R
r) we

consider the operator Bx : ψ → v, where v = vt is the solution of the equation

vt = x+

∫ t

0

b(vs) ds+ ψt, t ∈ [0, T ]. (1.4)

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
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It is easy to prove that under the assumptions made concerning b(x), the
solution of (1.4) exists and is unique for any continuous function ψ and any x ∈
Rr. The operator Bx has the inverse

(B−1
x v)t = ψt = vt − x−

∫ t

0

b(vs) ds.

Lemma 1.1. Suppose the function b(x) satisfies the Lipschitz condition

|b(x)− b(y)| ≤ K|x− y|.

Then the operator Bx in C0T (R
r) satisfies the Lipschitz condition

‖Bxϕ−Bxψ‖ ≤ eKT ‖ϕ− ψ‖; ϕ, ψ ∈ C0T (R
r).

Proof. By the definition of Bx, for u = Bxϕ, v = Bxψ we have

|ut − vt| =
∣∣∣∣
∫ t

0

(b(us)− b(vs)) ds+ (ϕt − ψt)

∣∣∣∣

≤ K

∫ t

0

|us − vs| ds+ ‖ϕ− ψ‖, t ∈ [0, T ].

Relying on Lemma 1.1 of Chap. 2, this implies the assertion of Lemma 1.1. ��

On C0T (R
r) we consider the functional S(ϕ) = S0T (ϕ) which is defined

by the equality

S0T (ϕ) =
1

2

∫ T

0

|ϕ̇s − b(ϕs)|2 ds

for absolutely continuous functions and we set S0T (ϕ) = +∞ for the remaining
ϕ ∈ C0T (R

r).

Theorem 1.1. The functional ε−2S(ϕ) is the action functional for the family Xε
t

of processes defined by (1.2) in C0T (R
r) as ε→ 0 uniformly with respect to the

initial point x ∈ Rr.

Proof. For every fixed x, the assertion follows from Theorem 3.1 of Chap. 3 and
Lemma 1.1 if we take account of the form of the actional functional for the family
of processes εwt.

Indeed, since Bx is continuous in C0T (R
r) and has an inverse, the action

functional for the family of the processes Xε = Bx(εw) has the form ε−2S(ϕ),
where

S(ϕ) =
1

2

∫ T

0

∣∣∣∣
d

dt
(B−1

x ϕ)t

∣∣∣∣
2

dt =
1

2

∫ T

0

|ϕ̇t − b(ϕt)|2 dt,

if the function (B−1
x ϕ)t = ϕt − x −

∫ t

0
b(ϕs) ds is absolutely continuous. It is

clear that this function is absolutely continuous if and only if ϕt is so.
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Now we have to prove uniformity in x. The fulfillment of formulas (3.12),
and (3.13) of Chap. 3 for small values of the parameter for all x ∈ Rr follows
immediately from the uniform continuity of Bx in x (a Lipschitz condition with
a constant independent of x). It remains to prove (0c) of Sect. 3 of Chap. 3:
the lower semicontinuity of S0T and the compactness of

⋃
x∈K Φx(s) for any

compact set K. This can be deduced from the fact that (x, ψ)→ Bxψ is a home-
omorphism if we consider only ψ with ψ0 = 0. ��

This implies in particular that the infimum of S0T (ϕ) on any bounded closed
subset of C0T (R

r) is attained and S0T assumes values close to the smallest value
only near functions at which the minimum is attained.

We note that if S0T (ϕ) = 0, then the function ϕ defined on [0, T ] is a trajec-
tory of the dynamical system (1.1), since in this case, ϕ is absolutely continuous
and satisfies the condition ϕ̇t = b(ϕt) almost everywhere on [0, T ].

We consider some simple applications of Theorem 1.1. Let D be a domain
in Rr, let ∂D be its boundary, let c(x) be a bounded continuous function on Rr,
and let g(x) be a bounded continuous function defined on ∂D.

We write τ ε = min{t : Xε
t /∈ D}, where Xε

t is a solution of (1.2) and

HD(t, x) = {ϕ ∈ C0T (R
r) : ϕ0 = x, ϕt ∈ D ∪ ∂D},

H̄D(t, x) = {ϕ ∈ C0T (R
r) : ϕ0 = x, ϕs /∈ D for some s ∈ [0, t]}.

Theorem 1.2. Suppose that the boundary of D coincides with the boundary of
its closure. We have

lim
ε→0

ε2 lnPx{Xε
t ∈ D} = − min

ϕ∈HD(t,x)
S0T (ϕ), (1.5)

lim
ε→0

ε2 lnPx{τ ε ≤ t} = − min
ϕ∈H̄D(t,x)

S0T (ϕ). (1.6)

If the extremal ϕ̂s providing the minimum of S0t(ϕ) on H̄D(t, x) is unique and it
assumes a value in ∂D at only one value ŝ ∈ [0, t], then

lim
ε→0

Mx{τ ε ≤ t; g(Xε
τε) exp{

∫ τε

0
c(Xε

s ) ds}}
Px{τ ε ≤ t} = g(ϕ̂ŝ) exp

{∫ ŝ

0

c(ϕ̂s) ds

}
.

(1.7)

Proof. Since ε−2S0T (ϕ) is the action functional for the family of processes Xε
t ,

relations (1.5) and (1.6) follow from Theorem 3.4 of Chap. 3. In seeing this,
we have to use the regularity of HD(t, x) and H̄D(t, x), which was proved in
Example 3.5 of Chap. 3.

To prove (1.7), we consider the events Aδ
1 = {τ ε ≤ t, ρ0t(X

ε, ϕ̂) < δ},
Aδ

2 = {τ ε ≤ t, ρ0t(X
ε, ϕ̂) ≥ δ}. On the set Aδ

1 we have

∣∣∣∣g(ϕ̂s) exp

{∫ ŝ

0

c(ϕ̂s) ds

}
− g(Xε

τε) exp

{∫ τε

0

c(Xε
s ) ds

}∣∣∣∣ < λδ, (1.8)
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where λδ → 0 as δ ↓ 0. This estimate follows from the circumstance that the time
spent by the curve ϕ̂s in the δ-neighborhood of the point ϕ̂ŝ ∈ ∂D converges to
zero as δ ↓ 0 and after the time ŝ, the extremal ϕ̂s does not hit ∂D. The relations
Aδ

1 ∪Aδ
2 = {τ ε ≤ t} and (1.8) imply the inequality

(
g(ϕ̂ŝ) exp

{∫ ŝ

0

c(ϕ̂s) ds

}
− λδ

)
[Px{τ ε ≤ t} − Px(A

δ
2)]− ‖g‖e‖c‖tPx(A

δ
2)

≤ Mx

{
τ ε ≤ t; g(Xε

τε) exp

{∫ τε

0

c(Xε
s ) ds

}}

≤
(
g(ϕ̂ŝ) exp

{∫ ŝ

0

c(ϕ̂s) ds

}
+ λδ

)
Px{τ ε ≤ t}+ ‖g‖e‖c‖tPx(A

δ
2), (1.9)

where ‖c‖ = sup |c(x)|, ‖g‖ = sup |g{x)|. Since ϕ̂ is the only extremal of the
action functional on H̄D(t, x), the value of S0t at functions reaching ∂D and
being at a distance not smaller than δ from ϕ̂ is greater than S0t(ϕ̂)+ γ, where γ
is some positive number. Using Theorem 1.1 (the upper estimate with γ/2 instead
of γ), we obtain that

Px(A
δ
2) ≤ exp{−ε−2(S0t(ϕ̂) + γ/2)}

for ε sufficiently small.
Taking account of relation (1.6), from this we conclude that

lim
ε→0

Px(A
δ
2)/Px{τ ε ≤ t} = 0. (1.10)

If we now divide inequality (1.9) by Px{τ ε ≤ t} and take account of (1.10)
and the fact that limδ↓0 λδ = 0, we obtain (1.7). ��

Thus, the calculation of the principal term of the logarithmic asymptotics of
probabilities of events concerning the process Xε

t has been reduced to the solu-
tion of some variational problems. These problems are of a standard character.
For the extremals we have the ordinary Euler equation and the minimum itself
can be found conveniently by means of the Hamilton–Jacobi equation (cf., for
example, Gel’fand and Fomin [1]). If we write

V (t, x, y) = min
ϕ0=x,ϕt=y

S0t(ϕ),

then

min
ϕ∈HD(t,x)

S0t(ϕ) = min
y∈D∪∂D

V (t, x, y),

min
ϕ∈H̄D(t,x)

S0t(ϕ) = min
0≤s≤t
y/∈D

V (s, x, y).

The Hamilton–Jacobi equation for V (t, x, y) has the form



2 The Problem of Exit from a Domain 89

∂V (t, x, y)

∂t
+

1

2
|∇yV (t, x, y)|2 + (b(y),∇yV (t, x, y)) = 0, (1.11)

where∇y is the gradient operator in the variable y. We have to add the conditions
V (0, x, x) = 0, V (t, x, y) ≥ 0 to (1.11).

Concluding this section, we note that the functions

us(t, x) = Px{Xε
t ∈ D}, vε(t, x) = Px{τ ε ≤ t},

wε(t, x) = Mx

{
τ ε ≤ t; g(Xε

τε) exp

{∫ εε

0

c(Xε
s ) ds

}}

are the solutions of the following problems:

∂uε

∂t
=

ε2

2
Δuε + (b(x),∇xu

ε), x ∈ Rr, t > 0;

uε(0, x) = 1 for x ∈ D,

uε(0, x) = 0 for x /∈ D;

∂vε

∂t
=

ε2

2
Δvε + (b(x),∇xv

ε), x ∈ D, t > 0;

vε(0, x) = 0, vε(t, x)|x∈∂D = 1;

∂wε

∂t
=

ε2

2
Δwε + (b(x),∇xw

ε) + c(x)wε, x ∈ D, t > 0;

wε(0, x) = 0,

W ε(t, x)|x∈∂D = g(x);

so that Theorem 1.2 can be viewed as assertions, concerning the behavior as the
parameter converges to zero, of solutions of differential equations with a small
parameter at the derivatives of the highest order.

2 The Problem of Exit from a Domain

Let D be a bounded domain in Rr and let ∂D be its boundary, which we assume
to be smooth for the sake of simplicity. If the trajectory xt(x) of the system (1.1)
issued from the point x ∈ D leaves D ∪ ∂D within finite time, then for small
ε, the trajectories of the process Xε

t issued from x leave D within the same time
with probability close to one and the first exit from D takes place near the exit
point of xt(x) from D with overwhelming probability (cf. Chap. 2).

In this paragraph we shall assume that (b(x), n(x)) < 0 for x ∈ ∂D, where
n(x) is the exterior normal to the boundary of D, so that the curves xt(x) cannot
leave D for x ∈ D. The trajectories of Xε

t issued from a point x ∈ D leave
D with probability 1 (in the case of (b(x), n(x)) < 0 too, for every ε �= 0).
Nevertheless, the point of exit and the time necessary for reaching the boundary
are not any more determined by the trajectory xt(x) of the dynamical system for
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small ε, but rather depend on the form of the field b(x) in the whole domain D
in general. Here we study the problem of exit from D for the simplest structure
of b(x) in D which is compatible with the condition (b(x), n(x)) < 0. A more
general case will be considered in Chap. 6.

Let O ∈ Rr be an asymptotically stable equilibrium position of system (1.1),
i.e., for every neighborhood E1 of O let there exist a smaller neighborhood E2

such that the trajectories of system (1.1), starting in E2 converge to zero without
leaving E1 as t→∞.

We say that D is attracted to O if the trajectories xt(x), x ∈ D converge to
the equilibrium position O without leaving D as t→∞.

The quasipotential of the dynamical system (1.1) with respect to the point O,
is, by definition, the function V (O, x) defined by the equality

V (O, x) = inf{ST1T2(ϕ) : ϕ ∈ CT1T2(R
r), ϕT1 = O,ϕT2 = x, T1 ≤ T2}.

We note that the endpoints of the interval [T1, T2] are not fixed. The meaning of
the term “quasipotential” will be clarified in the next section. It is easy to verify
that V (O, x) ≥ 0, V (O,O) = 0 and the function V (O, x) is continuous.

Theorem 2.1. Let O be a stable equilibrium position of system (1.1) and suppose
that the domain D is attracted to O and (b(x), n(x)) < 0 for x ∈ ∂D. Suppose
furthermore that there exists a unique point y0 ∈ ∂D for which V (O, y0) =
miny∈∂D V (O, y). Then

lim
ε→0

Px{ρ{Xε
τε , y0) < δ} = 1,

for every δ > 0 and x ∈ D, where τ ε = inf{t : Xε
t ∈ ∂D}.

The proof of this theorem will be done according to the following plan. First
we show (by means of Lemma 2.1) that with probability converging to 1 as
ε → 0, the Markov trajectories Xε

t issued from any point x ∈ D hit a small
neighborhood of the equilibrium position before they go out to ∂D (Fig. 3). Since
Xε

t is a strong Markov process, this implies that it is sufficient to study how the
trajectories starting in a small neighborhood of O go out of the domain.

Let Γ and γ be two small spheres of radii μ and μ/2 with their center at the
equilibrium position O (Fig. 4). We introduce an increasing sequence of Markov
times τ0, σ0, τ1, σ1, τ2, . . . in the following way: τ0 = 0 and σn = inf{t > τn :
Xε

t ∈ Γ}, τn = inf{t > σn−1 : Xε
t ∈ γ ∪ ∂D} (if at a certain step, the

process Xε
t does not reach the set Γ any more, we set the corresponding Markov

time and all subsequent ones equal to +∞. We note that infinite τn’s or σn’s
can be avoided if we change the field b(x) outside D in an appropriate way).
The sequence Zn = Xε

τn forms a Markov chain on the set γ ∪ ∂D (generally
speaking, a nonconservative chain: Zn is not defined if τn = ∞ but this can
happen only after exit to ∂D). For small ε, this Markov chain passes from any
point x ∈ γ ∪ ∂D to the set γ in one step with overwhelming probability. On



2 The Problem of Exit from a Domain 91

Figure 3.

Figure 4.

the other hand, it turns out that if the chain indeed passes from x ∈ γ onto ∂D,
then with probability converging to 1 as ε → 0, this passage takes place into a
point lying in the neighborhood of the minimum point y0 of the quasipotential:
for every δ > 0 we have

lim
ε→0

Pz{|Z1 − y0| < δ|Z1 ∈ ∂D} = 1 (2.1)
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uniformly in z ∈ γ. The assertion of the theorem can be deduced easily from
this.

The proof of (2.1) will of course, use the action functional and its properties.
We formulate and prove the auxiliary assertions needed for the proof.

Lemma 2.1. Let F be a compact set in Rr and let T and δ be positive numbers.
There exist positive numbers ε0 and β such that

Px{ρ0T (Xε, x(x)) ≥ δ} ≤ exp{−ε−2β},

for any x ∈ F and ε < ε0, where xt(x) is the trajectory of the dynamical system
issued from x.

Proof. Put

G(x) = {ϕ ∈ C0T : ϕ0 = x, ρ0T (ϕ, x(x)) ≥ δ}.

By the corollary to Theorem 1.1, the infimum d of S0T (ϕ) on the closed set⋃
x∈F G(x) is attained at some element of this set. The functional S0T vanishes

only on trajectories of the dynamical system. Therefore, d > 0.
For any d′ < d, the sets

⋃
x∈F G(x) and

⋃
x∈F Φx(d

′) are disjoint. Let us
denote the distance between them by δ′. (δ′ is positive because the first set is
closed and the second is compact.) We use Theorem 1.1: for any γ > 0 we have

P{ρ0T (Xε, x(x)) ≥ δ} = Px{Xε ∈ G(x)} ≤ Px{ρ0T (Xε
0 ,Φx(d

′) ≥ δ′)}
≤ exp{ε−2(d′ − γ)}

for sufficiently small ε and for all x ∈ F . Hence the assertion of the lemma holds
for β = d′ − γ (as β we can therefore choose any number smaller than d). ��

In what follows, we denote by Eδ(a) the δ-neighborhood of a point a ∈ Rr.
We shall need the following lemma in Sect. 4, as well.

Lemma 2.2. Suppose that the point O is a stable equilibrium position of system
(1.1), the domain D is attracted to O and (b(x), n(x)) < 0 for x ∈ ∂D. Then for
any α > 0 we have:

(a) there exist positive constants a and T0 such that for any function ϕt assuming
its values in the set D ∪ ∂D\Eα(O) for t ∈ [0, T ], we have the inequality
S0T (ϕ) > a(T − T0);

(b) there exist positive constants c and T0 such that for all sufficiently small
ε > 0 and any x ∈ D ∪ ∂D\Eα(O) we have the inequality

Px{ζα > T} ≤ exp{−ε−2c(T − T0)},

where ζα = inf{t: Xε
t /∈ D\Eα(O)}.
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Proof. (a) Let Eα′(O) be a neighborhood of O such that the trajectories xt(x)
of the dynamical system issued from Eα′(O) never leave Eα(O). We denote by
T (α, x) the time spent by xt(x) until reaching Eα′(O). Since D is attracted to O,
we have T (α, x) <∞ for x ∈ D ∪ ∂D. The function T (α, x) is upper semicon-
tinuous in x (because xt(x) depends continuously on x). Consequently, it attains
its largest value T0 = maxx∈D∪∂D T (α, x) <∞.

The set of functions from C0T0 , assuming their values in D ∪ ∂D\Eα(O), is
closed in C0T0 . By the corollary to Theorem 1.1, the functional S0T0 attains its
infimum on this set. This infimum is different from zero, since otherwise some
trajectory of the dynamical system would belong to this set.

Hence for all such functions, S0T0(ϕ) ≥ A > 0. By the additivity of S,
for functions ϕ spending time T longer than T0 in D ∪ ∂D\Eα(O), we have
S0T (ϕ) ≥ A; for functions spending time T ≥ 2T0 in D ∪ ∂D\Eα(O), we have
S0T (ϕ) > 2A, etc. In general, we have

S0T (ϕ) > A[T/T0] > A(T/T0 − 1) = a(T − T0).

(b) From the circumstances that D is attracted to O and that (b(x), n(x)) < 0
on the boundary of D, it follows that the same properties will be enjoyed by
the δ-neighborhood of D for sufficiently small δ > 0. We shall assume that δ
is smaller than α/2. By assertion (a), there exist constants T0 and A such that
S0T0(ϕ) > A for functions which do not leave the closed δ-neighborhood of D
and do not get into Eα/2(O). For x ∈ D, the functions in the set ΦX(A) = {ϕ :
ϕ0 = x, S0T0(ϕ) ≤ A} reach Eα/2(O) or leave the δ-neighborhood of D during
the time from 0 to T0; the trajectories of Xε

t for which ζα > T0 are at a distance
not smaller than δ from this set. By Theorem 1.1, this implies that for small ε and
all x ∈ D we have

Px{ζα > T0} ≤ exp{−ε−2(A− γ)}.

Then we use the Markov property:

Px{ζα > (n+ 1)T0} = Mx[ζα > nT0;PXε
nT0
{ζα > T0}]

≤ Px{ζα > nT0} · sup
y∈D

Py{ζα > T0};

and we obtain by induction that

Px{ζα > T} ≤ Px

{
ζα >

[
T

T0

]
T0

}
≤
[
sup
y∈D

Py{ζα > T0}
][T/T0]

≤ exp

{
−ε−2

(
T

T0
− 1

)
(A− γ)

}
.

Hence as c, we may take (A− γ)T0, where γ is an arbitrarily small number. ��

We formulate another simple lemma.
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Lemma 2.3. There exists a positive constant L such that for any x and y ∈ Rr

there exists a smooth function ϕt, ϕ0 = x, ϕT = y, T = |x − y| for which
S0T (ϕ) < L · |x− y|.

Indeed, we may put ϕt = x+ [(y − x)/(|y − x|)].
We now pass to the proof of the theorem. Let δ > 0. We write

d = min{V (O, y) : y ∈ ∂D, |y − y0| ≥ δ} − V (O, y0).

Since y0 is the only minimum place of V , we have d > 0.
We choose a positive number μ < d/5L such that the sphere Γ of radius μ

and center O is inside D (L is the constant from Lemma 2.3).

Lemma 2.4. For sufficiently small ε we have

Px{Z1 ∈ ∂D} ≥ exp{−ε−2(V (O, y0) + 0.45d)}

for all x ∈ γ. (We recall that γ is the sphere of radius μ/2 and center O.)

Proof. We choose a point y1 outside D ∪ ∂D at a distance not greater than μ/2
from y0. There exists T > 0 such that for any point x ∈ γ there exists a function
ϕx
t , 0 ≤ t ≤ T , ϕx

0 = x, ϕx
T = y1, S0T (ϕ

x) ≤ V (O, y0) + 0.4d.

Indeed, first of all we choose a function ϕ
(1)
t , 0 ≤ t ≤ T1, ϕ(1)

0 = O, ϕ(1)
T1

=

y0 such that S0T1(ϕ
(1)) ≤ V (O, y0) + 0.1d. We cut off its first portion up to the

point x1 = ϕ
(1)
t1 of the last intersection of ϕ(1)

t with Γ, i.e., we introduce the new

function ϕ
(2)
t = ϕ

(1)
t1+t, 0 ≤ t ≤ T2 = T1 − t1. We have ϕ

(2)
0 = x1, ϕ(2)

T = y0,
S0T2(ϕ

(2)) = St1T1(ϕ
(1)) ≤ V (O, y0) + 0.1d. Moreover, by Lemma 2.3, we

choose functions ϕ
(3)
t , 0 ≤ t ≤ T3 = μ, ϕ(3)

0 = O, ϕ(3)
T3

= x1, S0T3(ϕ
(3)) ≤

0.2d; ϕ(4)
t , 0 ≤ t ≤ T4, ϕ(4)

0 = y0, ϕ(4)
T4

= y1, S0T4(ϕ
(4)) ≤ 0.1d. Finally, by

the same lemma, for any x ∈ γ we choose a function ϕ
(5)
t , 0 ≤ t ≤ T5 = μ/2,

ϕ
(5)
t = x, ϕ(5)

T5
= O, S0T5(ϕ

(5)) ≤ 0.1d depending on x. We construct the

function ϕx
t out of pieces ϕ(5), ϕ(3), ϕ(2), and ϕ(4): ϕx

t = ϕ
(5)
t for 0 ≤ t ≤ T5;

= ϕ
(3)
t−T5

for T5 ≤ t ≤ T5 + T3; = ϕ
(2)
t−T5−T3

for T5 + T3 ≤ t ≤ T5 + T3 + T2;

= ϕ
(4)
t−T5−T3−T2

for T5 + T3 + T2 ≤ t ≤ T5 + T3 + T2 + T4 (Fig. 5).
We choose the positive δ′ smaller than μ/4 and the distance of y1 from ∂D

and use Theorem 1.1. For ε smaller than some ε0 and for all x ∈ γ we obtain

Px{ρ0T (Xε, ϕx) < δ′} ≥ exp{−ε−2(V (O, y0) + 0.4d+ 0.05d)}.

On the other hand, if a trajectory of Xε
t passes at a distance smaller than δ′ from

the curve ϕx
t , then it hits the δ′-neighborhood of y1 and intersects ∂D on the way,

not hitting γ after reaching Γ. Consequently, the probability that Z1 belongs to
∂D is not smaller than exp{−ε−2(V (O, y0) + 0.45d)}. ��
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Figure 5.

Lemma 2.5. For sufficiently small ε we have

Px{Z1 ∈ ∂D\Eδ(y0)} ≤ exp{−ε−2(V (O, y0) + 0.55d)}

for all x ∈ γ.

Proof. We recall that Z1 = Xe
τ1 , where τ1 = inf{t > σ0 : X2

t ∈ γ ∪ ∂D}. We
introduce the notation τ(γ ∪ ∂D) = inf{t > 0 : Xε

t ∈ γ ∪ ∂D}. The random
variable Z1 is nothing else but the variable Xε

τ(γ∪∂D) calculated for the segment,
shifted by σ0 on the time axis, of a trajectory after time σ0. We use the strong
Markov property with respect to the Markov time σ0. We obtain

Px{Z1 ∈ ∂D\Eδ(y0)} = MxPXε
σ0
{Xε

τ(γ∪∂D) ∈ ∂D\Eδ(y0)}.

Since Xε
σ0
∈ Γ, this probability does not exceed

sup
x∈Γ

Px{Xε
τ(γ∪∂D) ∈ ∂D\Eδ(y0)}

for any x ∈ γ. We estimate the latter probability.
By Lemma 2.2, for any c > 0 there exists T such that Px{τ(γ ∪ ∂D) >

T} ≤ exp{−ε−2c} for all x ∈ Γ and ε smaller than some ε0. As c we
take, say, V (O, y0) + d. To obtain the estimate needed, it remains to estimate
Px{τ(γ ∪ ∂D) ≤ T,Xε

τ(γ∪∂D) ∈ ∂D\Eδ(y0)}. We obtain this estimate by
means of Theorem 1.1.

We consider the closure of the μ/2-neighborhood of ∂D\Eδ(y0); we denote it
by K. No function ϕt, 0 ≤ t ≤ T , ϕ0 ∈ Γ such that S0T (ϕ) ≤ V (O, y0)+0.65d
hits K. Indeed, let us assume that ϕt1 ∈ K for some t1 ≤ T . Then S0t1(ϕ) ≤
S0T (ϕ) ≤ V (O, y0) + 0.65d. By Lemma 2.3, we take the functions ϕ

(1)
t , 0 ≤

t ≤ T1, ϕ(1)
0 = O, ϕ(1)

T1
= ϕ0, with S0T1(ϕ

(1)) ≤ 0.2d and ϕ
(2)
t , 0 ≤ t ≤ T2,
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ϕ
(2)
0 = ϕt1 , ϕ(2)

T2
∈ ∂D\Eδ(y0) with S0T2(ϕ

(2)) ≤ 0.1d and out of pieces ϕ(1),

ϕ and ϕ(2) we build a new function: ϕ̂(t) = ϕ
(1)
t for 0 ≤ t ≤ T1; = ϕt−T1

for T1 ≤ t ≤ T1 + t1; = ϕ
(2)
t−T1−t1

for T1 + t1 ≤ t ≤ T1 + t1 + T2. Then

φ̂0 = O, ϕ̂T1+t1+T2 ∈ ∂D\Eγ(y0) and S0T1+t1+T2(ϕ̂) ≤ 0.2d + V (0, y0) +
0.1d + 0.65d. This is smaller than the infimum of V (O, y) for y ∈ ∂D\Eδ(y0),
which is impossible.

This means that all functions from
⋃

x∈Γ Φx(V (O, y0) + 0.65d) pass at a
distance not smaller than μ/2 from ∂D\Eδ(y0). Using Theorem 1.1, we obtain
for sufficiently small ε and all x ∈ Γ that

Px{τ(γ ∪ ∂D) ≤ T,Xε
τ(γ∪∂D) ∈ ∂D\Eδ(y0)}

≤ Px{ρ0T (Xε,Φx(V (O, y0) + 0.65d)) ≥ μ/2}
≤ exp{−ε−2(V (O, y0) + 0.65d− 0.05d)},

Px{Xε
τ(γ∪∂D) ∈ ∂D\Eδ(y0)} ≤ Px{τ(γ ∪ ∂D) > T}+ Px{τ(γ ∪ ∂D) ≤ T,

Xε
τ(γ∪∂D) ∈ ∂D\Eδ(y0)}

≤ exp{−ε−2(V (O, y0) + d)}
+ exp{−ε−2(V (O, y0) + 0.6d)}

≤ exp{−ε−2(V (O, y0) + 0.55d)}.

It follows from Lemmas 2.4 and 2.5 that

Px{Z1 ∈ ∂D\Eδ(y0)} ≤ Px{Z1 ∈ ∂D} exp{−ε−2 · 0.1d}

for sufficiently small ε and all x ∈ γ. We denote by ν the smallest n for which
Zn ∈ ∂D. Using the strong Markov property, for x ∈ γ we find that

Px{|Xε
τε − y0| ≥ δ}

= Px{Zν ∈ ∂D\Eδ(y0)}

=

∞∑

n=1

Px{ν = n,Zn ∈ ∂D\Eδ(y0)}

=

∞∑

n=1

Mx{Z1 ∈ γ, . . . , Zn−1 ∈ γ;PZn−1{Z1 ∈ ∂D\Eδ(y0)}}

≤
∞∑

n=1

Mx{Z1 ∈ γ, . . . , Zn−1 ∈ γ;PZn−1{Z1 ∈ ∂D} · exp{−ε−2 · 0.1d}}

=

∞∑

n=1

Px{ν = n} · exp{−ε−2 · 0.1d}

= exp{−ε−2 · 0.1d} → 0

as ε→ 0. Consequently, the theorem is proved for x ∈ γ.
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If x is an arbitrary point in D, then

Px{|Xε
τε − y0| ≥ δ} ≤ Px{Xε

τ(γ∪∂D) ∈ ∂D}
+ Px{Xε

τ(γ∪∂D) ∈ γ, |Xε
τε − y0| ≥ δ}.

The first probability converges to zero according to Lemma 2.1. Using the strong
Markov property, we write the second one in the form

Mx{Xε
τ(γ∪∂D) ∈ γ;PXε

τ(γ∪D)
{|Xε

τε − y0| ≥ δ}},

which converges to zero by what has already been proved. ��

In the language of the theory of differential equations, Theorem 2.1 can be
formulated in the following equivalent form.

Theorem 2.2. Let g(x) be a continuous function defined on the boundary ∂D of
a domain D. Let us consider the Dirichlet problem

ε2

2
Δuε(x) +

r∑

i=1

bi(x)
∂uε

∂xi
(x) = 0, x ∈ D;

uε(x) = g(x), x ∈ ∂D.

If the hypotheses of Theorem 2.1 are satisfied, then limε→0 u
ε(x) = g(y0).

Proof. The proof follows easily from the formula uε(x) = Mxg(X
ε
τε) (cf.

Sect. 5, Chap. 1) if we take account of the continuity and boundedness of g(x).
On the other hand, we can obtain Theorem 2.1 from Theorem 2.2 by means of
the same formula. ��

Under additional assumptions, we can obtain more accurate information on
how a trajectory of Xε

t goes out of D for small ε.
Now it will be more convenient to use the notation Xε(t), ϕ(t) instead of

Xε
t , ϕt, etc.

We have defined V (O, y) as the infimum of S0T (ϕ) for all functions ϕ(t),
0 ≤ t ≤ T going from O to y. This infimum is usually not attained (cf. ex-
amples in the next section). However, it is attained for functions defined on a
semiaxis infinite from the left: there exists a function ϕ(t), −∞ ≤ t ≤ T such
that ϕ(−∞) = O, ϕ(T ) = y, S−∞,T (ϕ) = V (O, y). We shall not prove this
but rather include it as a condition in the theorem we are going to formulate.
(The assertion is contained in Wentzell and Freidlin [4] as Lemma 3.3 with the
outlines of a proof.) The extremal ϕ(t) is not unique: along with it, any translate
ϕ̃(t) = ϕ(t+ a), −∞ ≤ t ≤ T − a of it will also be an extremal.

We introduce the following definition. Let G be a neighborhood of O with
smooth boundary ∂G. A curve ϕ(t) leading from O to the boundary ∂D of D,
necessarily intersects ∂G somewhere. Let us denote by θδG(ϕ) the last moment
of time at which ϕ(t) is on ∂G : θ∂G(ϕ) = sup{t : ϕt ∈ ∂G}. If for some
α > 0, the function ϕ(t) assumes values inside G for t ∈ [θ∂G(ϕ)−α, θ∂G(ϕ)],
then we shall say that ϕ(t) leaves G in a regular manner.
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Figure 6.

Theorem 2.3. Suppose that the hypotheses of Theorem 2.1 are satisfied and there
exists an extremal ϕ̂(t), −∞ < t ≤ T , unique up to translations and going from
O to ∂G (namely, to the point y0, Fig. 6). Let us extend ϕ̂(t) by continuity to
t ≥ T in an arbitrary way.

Let G ⊂ D be a neighborhood with smooth boundary of the equilibrium
position and suppose that the extremal ϕ̂(t) leaves this neighborhood in a regular
manner. Let us denote by θε∂G the last moment of time at which the trajectory of
Xε(t) is on ∂G until exit onto ∂D : θε∂G = max{t < τ ε : Xε(t) ∈ ∂G}. For
any δ > 0 and x ∈ D we have

lim
ε→0

Px

{
max

θε
∂G≤t≤τε

|Xε(t)− ϕ̂(t− θε∂G + θ∂G(ϕ̂))| < δ
}
= 1.

In other words, with probability converging to 1 as ε→ 0, the last portion of
the Markov trajectory until exit to ∂D but after exit from G is located in a small
neighborhood of the extremal ϕ̂(t) translated in an appropriate way.

The proof of this theorem can be carried out according to the same plan as
that of Theorem 2.1. We ascertain that for functions ϕ(t), 0 ≤ t ≤ T leading
from O to ∂D and lying at a distance greater than δ/2 from all translates of
the extremal, we have S0T (ϕ) ≥ V (O, y0) + d, where d is a positive constant.
Then we choose μ ≤ d/5L ∧ δ/2 and the spheres γ and Γ. The functions ϕ(t),
0 ≤ t ≤ T starting on Γ, lying farther than δ/2 from the translates of ϕ̂(t) and
such that S0T (ϕ) < V (O, y0)+0.65d, do not reach the μ/2-neighborhood of D.
As in the proof of Theorem 2.1, from this we can conclude that
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Px

{
τ(γ ∪ ∂D) ≤ T,Xε(τ(γ ∪ ∂D)) ∈ ∂D,

max
θε
∂G≤t≤τε

|Xε(t)− ϕ̂(t− θε∂G + θ∂G(ϕ̂))| ≥ δ
}

≤ exp{−ε−2(V (O, y0) + 0.6d)}

for all x ∈ Γ and

Px

{
Xε(τ(γ ∪ ∂D)) ∈ ∂D, max

θε
∂G≤t≤τε

|Xε(t)− ϕ̂(t− θε∂G + θ∂G(ϕ̂))| ≥ δ
}

≤ Px{Xε(τ(γ ∪ ∂D)) ∈ ∂D} exp{−ε−2 · 0.1d}

for all x ∈ γ, from which we obtain the assertion of the theorem for these x and
then for all x ∈ D. ��

If the dynamical system (1.1) has more than one stable equilibrium position
in D, then before it leaves the domain, the trajectory of Xε

t can pass from one
stable equilibrium position to another. In this case, the point of exit from the do-
main depends on the initial point. We consider such a more complicated structure
of a dynamical system in Chap 6. Here we discuss the case where system (1.1)
has a unique limit cycle in D.

As a concrete example, let D be a planar domain homeomorphic to a ring.
The boundary ∂D is assumed to be smooth, as before. We assume that system
(1.1) has a unique limit cycle Π in D and D is attracted to Π, i.e., the trajectory
xt(x) for x ∈ D converges to Π with increasing t, without leaving D. On the
boundary ∂D we assume that the earlier condition (b(x), n(x)) < 0 is satisfied.

The quasipotential of system (1.1) with respect to Π is, by definition, the
function

V (Π, x) = inf{ST1T2(ϕ) : ϕT1 ∈ Π, ϕT2 = x}.
The following theorem can be proved in the same way as Theorem 2.1.

Theorem 2.4. Suppose that the domain D is attracted to a stable limit cycle Π
and (b(x), n(x)) < 0 for x ∈ ∂D. Furthermore, suppose that there exists a
unique point y0 ∈ ∂D for which

V (Π, y0) = min
y∈∂D

V (Π, y).

Then
lim
ε→0

Px{|Xε
τε − y0| < δ} = 1,

for every δ > 0 and x ∈ D.

The assertion of Theorem 2.4 remains valid in the case where not the whole
domain D is attracted to Π but only its part exterior to Π, provided that the
interior part does not have an exit to ∂D. Then the cycle may be stable only from
the outside.

If the extremal of the functional S(ϕ) from Π to ∂D is unique up to transla-
tions, then an analogue of Theorem 2.3 can be proved.
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3 Properties of the Quasipotential. Examples

In the preceding section it was shown that if we know the function V (O, x), i.e.,
the quasipotential of the dynamical system, then we can find the point y0 on the
boundary of the domain, near which the Markov trajectories of Xε

t starting inside
the domain reach the boundary for small ε. In the next section we show that this
function is important in other problems, as well. For example, the principal term
of the asymptotics of the mean time Mxτ

ε spent by a trajectory of Xε
t before

reaching the boundary of a domain can be expressed in terms of V (O, x). The
behavior of the invariant measure of Xε

t as ε→ 0 can also be described in terms
of V (O, x).

In this section we study the problem of calculating the quasipotential V (O, x),
establish some properties of the extremals of the functional S(ϕ) and consider
examples. We shall only deal with the quasipotential of a dynamical system with
respect to a stable equilibrium position; the case of the quasipotential with respect
to a stable limit cycle can be considered analogously.

Theorem 3.1. Suppose that the vector field b(x) admits the decomposition

b(x) = −∇U(x) + l(x), (3.1)

where the function U(x) is continuously differentiable in D ∪ ∂D, U(O) = 0,
U(x) > 0 and∇U(x) �= 0 for x �= 0 and (l(x),∇U(x)) = 0. Then the quasipo-
tential V (O, x) of the dynamical system (1.1) with respect to O coincides with
2U(x) at all points x ∈ D ∪ ∂D for which U(x) ≤ U0 = miny∈∂D U(y). If
U(x) is twice continuously differentiable, then the unique extremal of the func-
tional S(ϕ) on the set of functions ϕs, −∞ ≤ s ≤ T , leading from O to x is
given by the equation

ϕ̇s = ∇U(ϕs) + l(ϕs), s ∈ (−∞, T ), ϕT = x. (3.2)

Proof. If the function ϕs for s ∈ [T1, T2] does not exit from D ∪ ∂D, then the
relation U(ϕT2)− U(ϕT1) =

∫ T2

T1
(∇U(ϕs), ϕ̇s) ds implies the inequality

ST1T2(ϕ) =
1

2

∫ T2

T1

|ϕ̇s −∇U(ϕs)− l(ϕs)|2 ds+ 2

∫ T2

T1

(ϕ̇s,∇U(ϕs)) ds

≥ 2[U(ϕT2)− U(ϕT1)]. (3.3)

From this we can conclude that ST1T2(ϕ) ≥ 2U(x) for any curve ϕs, ϕT1 = 0,
ϕT2 = x, where x is such that U(x) ≤ U0. Indeed, if this curve does not leave
D ∪ ∂D over the time from T1 to T2, then the assertion follows from (3.3) (we
recall that U(O) = 0). If, on the other hand, ϕs leaves D ∪ ∂D, then it crosses
the level surface U(x) = U0 at some time T̃ ∈ (T1, T2). By the nonnegativity
and additivity of S(ϕ), we obtain

ST1T2(ϕ) ≥ ST1T̃
(ϕ) ≥ 2U(ϕT̃ ) = 2U0 ≥ 2U(x).
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On the other hand, if ϕ̂s is a solution of (3.2), then ϕ̂−∞ = O. This follows
from the facts that dU(ϕ̂s)/ds = |∇U(ϕ̂s)|2 > 0 for ϕ̂s �= O and O is the only
zero of U(x). From this we obtain

S−∞,T (ϕ̂) = 2

∫ T

−∞
( ˙̂ϕs,∇U(ϕ̂s)) ds = 2[U(x)− U(O)] = 2U(x).

Consequently, for any curve ϕs connecting O and x we have: S(ϕ) ≥ 2U(x) =
S(ϕ̂). Therefore, V (O, x) = inf S(ϕ) = 2U(x), and ϕs is an extremal.

If U(x) is twice continuously differentiable, then the solution of (3.2) is
unique, and consequently, the extremal from O to x normalized by the condi-
tion ϕT = x is also unique. ��

It follows from the theorem just proved that if b(x) has a potential, i.e., b(x) =
−∇U(x), then V (O, x) differs from U(x) only by a multiplicative constant. This
is the reason why we call V a quasipotential.

If b(x) has a decomposition (3.1), then from the orthogonality condition for
∇U(x) and l(x) = b(x) +∇U(x) we obtain the equation for the quasipotential:

1

2
(∇V (O, x),∇V (O, x)) + (b(x),∇V (O, x)) = 0, (3.4)

which is, in essence, Jacobi’s equation for the variational problem defining the
quasipotential. Theorem 3.1 says that the solution of this equation, satisfying the
conditions V (O,O) = 0, V (O, x) > 0 and ∇V (O, x) �= 0 for x �= 0, is the
quasipotential. It can be proved that conversely, if the quasipotential V (O, x) is
continuously differentiable, then it satisfies (3.4), i.e., we have decomposition
(3.1). However, it is easy to find examples showing that V (O, x) may not be
differentiable.

The function V (O, x) cannot be arbitrarily bad: it satisfies a Lipschitz condi-
tion; this can be derived easily from Lemma 2.3.

Now we pass to the study of extremals of S(ϕ) going from O to x. For them
we can write Euler’s equations in the usual way:

ϕ̈k
t −

r∑

j=1

(
∂bk

∂xj
(ϕt)−

∂bj

∂xk
(ϕt)

)
ϕ̇j
t −

r∑

j=1

bj(ϕt)
∂bj

∂xk
(ϕt) = 0, 1 ≤ k ≤ r.

If b(x) has the decomposition (3.1), then we can write the simpler equations
(3.2) for the extremals. From these equations we can draw a series of qualitative
conclusions on the behavior of extremals. At every point of the domain, the ve-
locity of the motion on an extremal is equal to ∇U(x) + l(x) according to (3.2),
whereas b(x) = −∇U(x) + l(x). From this we conclude that the velocity of the
motion on an extremal is equal, in norm, to the velocity of the motion of trajec-
tories of the system: |∇U(x) + l(x)| = |−∇U(x) + l(x)| = |b(x)|. The last
assertion remains valid if we do not assume the existence of the decomposition
of b(x). This follows from the lemma below.
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Lemma 3.1. Let S(ϕ) <∞. Let us denote by ϕ̃ the function obtained from ϕ by
changing the parameter in such a way that | ˙̃ϕt| = |b(ϕ̃t)| for almost all s. We
have S(ϕ̃) ≤ S(ϕ), where equality is attained only if |ϕ̇s| = |b(ϕs)| for almost
all s.

Proof. For the substitution s = s(t), ϕ̃t = ϕs(t) we obtain

S(ϕ) =
1

2

∫ T2

T1

|b(ϕs)− ϕ̇s|2 ds

=
1

2

∫ t(T2)

t(T1)

|b(ϕ̃t)− ˙̃ϕtṡ(t)
−1|2ṡ(t) dt

=
1

2

∫ t(T2)

t(T1)

(|b(ϕ̃t)|2ṡ(t) + | ˙̃ϕt|2ṡ(t)−1) dt−
∫ t(T2)

t(T1)

(b(ϕ̃t), ˙̃ϕt) dt

≥
∫ t(T2)

t(T1)

|b(ϕ̃t)| · | ˙̃ϕt| dt−
∫ t(T2)

t(T1)

(b(ϕ̃t), ˙̃ϕt) dt, (3.5)

where t(s) is the inverse function of s(t). In (3.5) we have used the inequality
αx2 + α−1y2 ≥ 2xy, true for any positive α. We define the function s(t) by the
equality

t =

∫ s(t)

0

|ϕ̇n||b(ϕu)|−1 du.

This function is monotone increasing and ϕ̃t = ϕs(t) is absolutely continuous
in t. For this function we have | ˙̃ϕt| = |b(ϕ̃t)| for almost all t and inequality (3.5)
turns into the equality

S(ϕ̃) =

∫ t(T2)

t(T1)

|b(ϕ̃t)| · | ˙̃ϕt| dt−
∫ t(T2)

t(T1)

(b(ϕ̃t), ˙̃ϕt) dt.

This proves the lemma. ��

Remark. Lemma 3.1 implies that the quasi-potential U(x) can be evaluated not
as the infimum of the action functional over the set of all functions ϕ : [T1, T2] �→
R

n, ϕT1 = O, ϕT2 = x, T1 ≤ T2, but over the set of curves connecting the
points O and x, the optimal parametrization on the curve being determined by
|ϕ̇t| = |b(ϕt)|. For a curve ϕ̂ in R

n described parametrically by a function ϕ :
[T1, T2] �→ R

n we take

Ŝ(φ̂) =

∫ T2

T1

[
|b(ϕt)| −

(
b(ϕt) ·

ϕ̇t

|ϕ̇t|

)]
· |ϕ̇t| dt

=

∫

ϕ̂

[|b(φ)− b(ϕ) · n(ϕ)] dl

= 2

∫

ϕ̂

|b(φ)| · sin2 ∠(n(ϕ), b(ϕ))
2

dl
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(the integral obviously depends only on the curve ϕ̂ and does not depend on its
parametrization ϕt).

Here dl is the length element on the curve ϕ̂, and ∠(n(ϕ), b(ϕ)) is the angle
between the vector b(ϕ) and the unit vector n(ϕ) tangent to ϕ̂ at the point ϕ. If
we take as ϕt the function ϕ̃t introduced in the proof of the lemma, we get that
U(x) = inf{Ŝ(ϕ̂) : the curve ϕ̂ connects O and x}.

Now we consider some examples.

EXAMPLE 3.1. Let us consider the dynamical system ẋt = b(xt) on the real
line, where b(0) = 0, b(x) > 0 for x < 0 and b(x) < 0 for x > 0 and D is an
interval (α1, α2) ⊂ R1 containing the point 0. If we write U(x) = −

∫ x

0
b(y) dy,

then b(x) = −dU/dx, so that in the one-dimensional case every field has a
potential. It follows from Theorems 2.1 and 3.1 that for small ε, with probability
close to one, the first exit of the process Xε

t = x +
∫ t

0
b(Xε

s ) ds + εwt from the
interval (α1, α2) takes place through that endpoint αi at which U(x) assumes
the smaller value. For the sake of definiteness, let U(α1) < U(α2). The equation
for the extremal has the form ˙̂ϕs = −b(ϕ̂s); we have to take that solution ϕ̂s,
−∞ < s ≤ T , of this equation which converges to zero as s → −∞ and for
which ϕ̂T = α1.

In the one-dimensional case, the function vε(x) = Px{Xε
τε = α1} can be

calculated explicitly by solving the corresponding boundary value problem. We
obtain

vε(x) =

∫ α2

x

e2ε
−2U(y) dy ·

(∫ α2

α1

e−2ε−2U(y) dy

)−1

.

Of course it is easy to see from this formula that limε→0 Px{Xε
τε = α1} = 1 if

U(α1) < U(α2).
Using the explicit form of vε(x), it is interesting to study how Xt exits from

(α1, α2) if U(α1) = U(α2). In this case, Theorem 2.1 is not applicable.
Using Laplace’s method for the asymptotic estimation of integrals (cf., for

example, Evgrafov [1]), we obtain that for x ∈ (α1, α2),
∫ α2

x

e2ε
−2U(y) dy ∼ ε2

2

exp{2ε−2U(α2)}
|U ′(α2)|

,

∫ x

α1

e2ε
−2U(y) dy ∼ ε2

2

exp{2ε−2U(α1)}
|U ′(α1)|

as ε → 0. From this we find that if U(α1) = U(α2) and U ′(αi) �= 0, i = 1, 2,
then

Px{Xε
τε = αi} →

|U ′(αi)|−1

|U ′(α1)|−1 + |U ′(α2)|−1

as ε→ 0.
Consequently, in this case the trajectories of Xε

t exit from the interval through
both ends with positive probability as ε → 0. The probability of exit through αi

is inversely proportional to |U ′(αi)| = |b(αi)|.
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EXAMPLE 3.2. Let us consider a homogeneous linear system ẋt = Axt in Rr

with constant coefficients. Assume that the matrix A is normal, i.e., AA∗ = A∗A
and that the symmetric matrix A+A∗ is negative definite. In this case, the origin
of coordinates O is an asymptotically stable equilibrium position. Indeed, the
solution of our system can be represented in the form xt = eAtx0, where x0

is the initial position. The normality of eAt follows from that of A. Using this
observation and the relation eAteA

∗t = e(A+A∗)t, we obtain

|xt|2 = (eAtx0, e
Atx0) = (e(A+A∗)tx0, x0) ≤ |x0| · |e(A+A∗)tx0|.

Since A + A∗ is negative definite, we have |e(A+A∗)tx0| → 0. Consequently,
|xt|2 → 0 for any initial condition x0.

It is easy to verify by direct differentiation that the vector field Ax admits the
decomposition

Ax = −∇
(
−A+A∗

4
x, x

)
+

A−A∗

2
x. (3.6)

Moreover, the vector fields ∇(−1
4 (A + A∗)x, x) = −1

2 (A + A∗)x and 1
2 (A −

A∗)x are orthogonal:
(
−1

2
(A+A∗)x,

1

2
(A−A∗)x

)
= −1

4
[(Ax,Ax)− (A∗x,A∗x)]

= −1

4
[(A∗Ax, x)− (AA∗x, x)] = 0.

Let the right sides of our system be perturbed by a white noise:

Ẋε
t = AXε

t + εẇt.

We are interested in how the trajectories of Xε
t exit from a bounded domain D

containing the equilibrium position O. From Theorem 3.1 and formula (3.6) we
conclude that the quasipotential V (O, x) of our dynamical system with respect
to the equilibrium position O is equal to −1

2 ((A + A∗)x, x). In order to find
the point on the boundary ∂D of D near which the trajectories of Xε

t first leave
D with probability converging to 1 as ε → 0, we have to find the minimum of
V (O, x) on ∂D. The equation for the extremals has the form

ϕ̇t = −
1

2
(A+A∗)ϕt +

1

2
(A−A∗)ϕt = −A∗ϕt.

If y0 ∈ ∂D is the unique point where V (O, x) attains its smallest value on ∂D,
then the last piece of a Markov trajectory is near the extremal entering this point.
Up to a shift of time, the equation of this trajectory can be written in the form
ϕ̂t = e−A∗ty0.
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Figure 7.

For example, let a dynamical system

ẋ1
t = −x1

t − x2
t ,

ẋ2
t = x1

t − x2
t ,

be given in the plane R2. The matrix of this system is normal and the origin of co-
ordinates is asymptotically stable. The trajectories of the system are logarithmic
spirals winding on the origin in the clockwise direction (Fig. 7). The quasipoten-
tial is equal to [(x1)2+(x2)2], so that with overwhelming probability for small ε,
Xε

t exits from D near the point y0 ∈ ∂D which is closest to the origin. It is easy
to verify that the extremals are also logarithmic spirals but this time unwinding
from O in the clockwise direction.

The case of general linear system Ẋ = AX , not necessarily with a normal
matrix A is considered in Chen and Freidlin [1].

4 Asymptotics of the Mean Exit Time and Invariant Measure
for the Neighborhood of an Equilibrium Position

As in Sect. 2, let D be a bounded domain in Rr, O ∈ D a stable equilibrium
position of the system (1.1), τ ε the time of first exit of a process Xε

t from D.
Under the assumption that D is attracted to O, in this section we calculate the
principal term of lnMxτ

ε as ε → 0 and also that of lnmε(D̄), where mε(·) is
the invariant measure of the process Xε

t , D̄ = Rr\D. Since the existence of an
invariant measure and its properties depend on the behavior of b(x) not only for
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x ∈ D, in the study of mε(D̄) we have to make some assumptions concerning
b(x) in the whole space Rr.

Theorem 4.1. Let O be an asymptotically stable equilibrium position of the sys-
tem (1.1) and assume that the domain D ⊂ Rr is attracted to O. Furthermore,
assume that the boundary ∂D of D is a smooth manifold and (b(x), n(x)) < 0
for x ∈ ∂D, where n(x) is the exterior normal of the boundary of D. Then for
x ∈ D we have

lim
ε→0

ε2 lnMxτ
ε = min

y∈∂D
V (O, y). (4.1)

Here the function V (O, y) is the quasipotential of the dynamical system (1.1)
with respect to O.

The proof of this theorem uses arguments, constructions and notation em-
ployed in the proof of Theorem 2.1.

To prove (4.1), it is sufficient to verify that for any d > 0, there exists an ε0
such that for ε < ε0 we have

(a) ε2 lnMxτ
ε < V0 + d.

(b) ε2 lnMxτ
ε > V0 − d.

First we prove inequality (a). We choose positive numbers μ, h, T1, and T2

such that the following conditions are satisfied: firstly, all trajectories of the un-
perturbed system, starting at points x ∈ D ∪ ∂D, hit the μ/2-neighborhood of
the equilibrium position before time T1 and after time T1 they do not leave this
neighborhood; secondly, for every point x lying in the ball G = {x ∈ Rr :
|x − O| ≤ μ}, there exists a function ϕx

T such that ϕx
0 = x, ϕx

t reaches the ex-
terior of the h-neighborhood of D at a time T (x) ≤ T2 and ϕx

t does not hit the
μ/2-neighborhood of O after exit from G and S0T (x)(ϕ

x) < V0 + d/2.
The first of these assumptions can be satisfied because O is an asymptotically

stable equilibrium position, D is attracted to O and for x ∈ ∂D, we have the
inequality (b(x), n(x)) < 0.

The functions ϕx
t occurring in the second condition were constructed in

Sect. 2.
From the definition of the action functional, we obtain for y ∈ G that

Py

{
sup

0≤t≤T (y)

|Xε
t − ϕy

t | < h
}
≥ exp

{
−ε−2

(
S0T (y)(ϕ

y) +
d

2

)}

≥ exp{−ε−2(V0 + d)},

whenever ε is sufficiently small.
Since the point ϕy

T (y) does not belong to the h-neighborhood of D, from the
last inequality we conclude that

Py{τ ε < T2} ≥ Py{τ ε < T (y)} ≥ exp{−ε−2(V0 + d)} (4.2)

for sufficiently small ε and y ∈ G.
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We denote by σ the first entrance time of G : σ = min{t : Xε
t ∈ G}. Using

the strong Markov property of Xε
t , for any x ∈ D and sufficiently small ε we

obtain

Px{τ ε < T1 + T2} ≥ Mx{σ < T ;Pxε{τ ε < T2}}
≥ Px{σ < T1} · exp{−ε−2(V0 + d)}

≥ 1

2
exp{−ε−2(V0 + d)}. (4.3)

Here we have used inequality (4.2) for the estimation of PXε
σ
{τ ε < T2} and the

fact that the trajectories of Xε
t converge in probability to xt uniformly on [0, T1]

as ε→ 0.
Then, using the Markov property of Xε

t , from (4.3) we obtain

Mxτ
ε ≤

∞∑

n=0

(n+ 1)(T1 + T2)Px{n(T1 + T2) < τ ε ≤ (n+ 1)(T1 + T2)}

= (T1 + T2)

∞∑

n=0

Px{τ ε > n(T1 + T2)}

≤ (T1 + T2)

∞∑

n=0

[
1−min

z∈D
Pz{τ ε ≤ T1 + T2}

]n

= (T1 + T2)

∞∑

n=0

(
min
z∈D

Pz{τ ε ≤ T1 + T2}
)−1

≤ 2(T1 + T2) exp{ε−2(V0 + d)},

whenever ε is sufficiently small. This implies assertion (a).
Now we prove assertion (b). We introduce the Markov times τk, σk and the

Markov chain Zn defined in the proof of Theorem 2.1. The phase space of Zn is
the set γ∪∂D, where γ = {x ∈ Rr : |x−O| = μ/2}. For the one-step transition
probabilities of this chain we have the estimate

P(x, ∂D) ≤ max
γ∈Γ

Py{τ1 = τ ε}

= max
γ∈Γ

[Py{τ ε = τ1 < T}+ Py{τ ε = τ1 ≥ T}]. (4.4)

As follows from Lemma 2.2, T can be chosen so large that the second prob-
ability have the estimate

Py{τ ε = τ1 ≥ T} ≤ 1

2
exp{−ε−2(V0 − h)}. (4.5)

In order to estimate the first probability, we note that the trajectories of Xε
t , 0 ≤

t ≤ T , for which τ ε = τ1 < T are a positive distance from the set {ϕ ∈
C0T (R

r) : ϕ0 = y, S0T (ϕ) < V0 − h/2} of functions provided that h > 0
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is arbitrary and μ is sufficiently small. By virtue of the properties of the action
functional, we obtain from this that

Py{τ ε = τ1 < T} < exp{−ε−2(V0 − h)}

for y ∈ Γ and sufficiently small ε, μ > 0.
It follows from the last inequality and estimates (4.4) and (4.5) that

P(x, ∂D) ≤ exp{−ε−2(V0 − h)}, (4.6)

whenever ε, μ are sufficiently small.
As in Theorem 2.1, we denote by ν the smallest n for which Zn = Xε

τn ∈
∂D. It follows from (4.6) that

Px{ν > n} ≥ [1− exp{−ε−2(V0 − h)}]n−1

for x ∈ γ. It is obvious that τ ε = (τ1 − τ0) + (τ2 − τ1) + · · · + (τν − τν−1).
Therefore, Mxτ

ε =
∑∞

n=1 Mx{ν ≥ n; τn − τn−1}.
Using the strong Markov property of Xε

t with respect to the time σn−1, we
obtain that

Mx{ν ≥ n; τn − τn−1} ≥ Mx{ν ≥ n; τn − σn−1}
≥ Px{ν ≥ n} · inf

x∈Γ
Mxτ1.

The last infimum is greater than some positive constant t1 independent of ε. This
follows from the circumstance that the trajectories of the dynamical system spend
some positive time going from Γ to γ.

Combining all estimates obtained so far, we obtain that

Mxτ
ε > t1

∑

n

min
z∈γ

Pz{ν ≥ n}

≥ t1
∑

n

(1− exp{−ε−2(V0 − h)})n−1 = t1 exp{ε−2(V0 − h)}

for sufficiently small ε and μ and x ∈ y.
This implies assertion (b) for x ∈ y. For any x ∈ D, taking into account that

Px{τ ε > τ1} → 1 as ε→ 0, we have

Mxτ
ε = Mx{τ ε ≤ τ1; τ

ε}+Mx{τ ε > τ1; τ
ε}

≥ Mx{τ ε > τ1;M
ε
τ1τ

ε}

> t1 exp{(V0 − h)ε−2}Px{τ ε > τ1} >
t1
2
exp{ε−2(V0 − h)}.

By the same token, we have proved assertion (b) for any x ∈ D. ��
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Remark. Analyzing the proof of this theorem, we can see that the assumptions
that the manifold ∂D is smooth and (b(x), n(x)) < 0 for x ∈ ∂D can be relaxed.
It is sufficient to assume instead of them that the boundary of D and that of the
closure of D coincide and for any x ∈ ∂D, the trajectory xt(x) of the dynamical
system is situated in D for all t > 0.

We mention one more result relating to the distribution of the random vari-
able τ ε, the first exit time of D.

Theorem 4.2. Suppose that the hypotheses of Theorem 4.1 are satisfied. Then for
every α > 0 and x ∈ D we have

lim
ε→0

Px{eε
−2(V0−α) < τ ε < eε

−2(V0+α)} = 1.

Proof. If
lim
ε→0

Px{τ ε > eε
−2(V0+α)} > 0

for some α > 0, then
lim
ε→0

ε2 lnMxτ
ε ≥ V0 + α,

which contradicts Theorem 4.1. Therefore, for any α > 0 and x ∈ D we have

lim
ε→0

Px{τ ε < exp{ε−2(V0 + α)}} = 1. (4.7)

Further, using the notation introduced in the proof of Theorem 2.1, we can write:

Px{τ ε < eε
−2(V0−α)}

≤ Mx

{
τ1 < τ ε,

∞∑

n=1

PXε
τ1
{ν = n, τ ε < exp{ε−2(V0 − α)}}

}

+ Px{τ ε = τ1}. (4.8)

The last probability on the right side of (4.8) converges to zero. We estimate
the remaining terms. Let mε = [C exp{ε−2(V0 − α)}]; we choose the constant
C later. For x ∈ γ we have

∞∑

n=1

Px{ν = n, τ ε < exp{ε−2(V0 − α)}}

≤ Px{ν < mε}+
∞∑

n=mε

Px{ν = n, τn < exp{ε−2(V0 − α)}}

≤ Px{ν < mε}+ Px{τmε < exp{ε−2(V0 − α)}}. (4.9)

Using the inequality Px{ν = 1} < exp{−ε−2(V0− h)}, which holds for x ∈ γ,
h > 0 and sufficiently small ε, we obtain that
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Px{ν < mε} ≤ 1− (1− exp{−ε−2(V0 − h)})mε → 0 (4.10)

as ε→ 0, for any C, α > 0 and h sufficiently small.
We estimate the second term on the right side of (4.9). There exists θ > 0

such that Px{τ1 > θ} ≥ 1/2 for all x ∈ y and ε > 0. For the number Sm

of successes in m Bernoulli trials with probability of success 1/2, we have the
inequality

P{Sm > m/3} > 1− δ

for m > m0. Since τm = (τ1 − τ0) + (τ2 − τ1) + · · ·+ (τm − τm−1), using the
strong Markov property of the process, we obtain that

Pz{τmε < eε
−2(V0−α)} = Px

{
τmε

mε
<

1

C

}
< δ, (4.11)

if θ/3 > 1/C and mε is sufficiently large.
Combining estimates (4.8)–(4.11), we arrive at the relation

lim
ε→0

Px{τ ε < eε
−2(V0−α)} = 0, x ∈ D. (4.12)

The assertion of the theorem follows from (4.7) and (4.12). ��

Remark. One can show, under conditions of Theorem 1 (see Day [1]), that

lim
ε↓0

Px

{
τ ε

Exτ ε
> t

}
= e−t, x ∈ D.

Now we pass to the study of the behavior, as ε→ 0, of the invariant measure
of Xε

t defined by (1.2). For the existence of a finite invariant measure, we have to
make some assumptions on the behavior of b(x) in the neighborhood of infinity.
If we do not make any assumptions, then the trajectories of Xε

t may, for example,
go out to infinity with probability 1; in this case no finite invariant measure exists.
We shall assume that outside a sufficiently large ball with center at the origin, the
projection of b(x) onto the position vector r(x) of the point x is negative and
separated from zero, i.e., there exists a large number N such that (b(x), r(x)) <
−1/N for |x| > N .

This condition, which will be called condition A in what follows, guarantees
that Xε

t returns to the neighborhood of the origin sufficiently fast and thus there
exists an invariant measure. A proof of this can be found in Khas’minskii [1];
the same book contains more general conditions guaranteeing the existence of a
finite invariant measure.

If there exists an invariant measure με(·) of Xε
t , then it is absolutely continu-

ous with respect to Lebesgue measure and the density mε(x) = dμε/dx satisfies
the stationary forward Kolmogorov equation. In our case, this equation has the
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form
ε2

2
Δmε(x)−

r∑

1

∂

∂xi
(bi(x)mε(x)) = 0. (4.13)

Together with the additional conditions
∫
Rr m

ε(x) dx = 1, mε(x) > 0, this
equation determines the function mε(x) uniquely.

First we consider the case of a potential field b(x): b(x) = −∇U(x). In this
case, the conditions of the existence of a finite invariant measure mean that the
potential U(x) increases sufficiently fast with increasing |x|; for example, faster
than some linear function α|x| + β. It turns out that if b(x) has a potential, then
the density of the invariant measure can be calculated explicitly. An immediate
substitution into (4.13) shows that

mε(x) = cε exp{−2ε−2U(x)}, (4.14)

where cε is a normalizing factor defined by the normalization condition cε =
(
∫
Rr exp{−2ε−2U(x)} dx)−1. The convergence of the integral occurring here is

a necessary and sufficient condition for the existence of a finite invariant measure
in the case where a potential exists.

Let D be a domain in Rr. We have με(D) = cε
∫
D
exp{−2ε−2U(x)} dx.

Using this representation, we can study the limit behavior of με as ε → 0. Let
U(x) ≥ 0 and assume that at some point O, the potential vanishes: U(O) = 0.
Then it is easy to verify that

ε2 lnμε(D) = ε2 ln cε + ε2 ln

∫

D

exp{−2ε−2U(x)} dx

→ − inf
x∈D

2U(x) (4.15)

as ε→ 0. By Laplace’s method, we can find a more accurate asymptotics of με(·)
as ε→ 0 (cf. Bernstein [1] and Nevel’son [1]). If b(x) does not have a potential,
then we cannot write an explicit expression for the density of the invariant mea-
sure in general. Nevertheless, it turns out that relation (4.15) is preserved if by
2U(x) we understand the quasipotential of b(x).

Theorem 4.3. Let the point O be the unique stable equilibrium position of system
(1.1) and let the whole space Rr be attracted to O. Furthermore, assume that
condition A is satisfied. Then the process Xε

t has a unique invariant measure με

for every ε > 0 and we have

lim
ε→0

ε2 lnμε(D) = − inf
x∈D

V (O, x), (4.16)

for any domain D ⊂ Rr with compact boundary ∂D common for D and the
closure of D, where V (O, x) is the quasipotential of b(x) with respect to O:

V (O, x) = inf{S0T (ϕ) : ϕ ∈ C0T (R
r), ϕ0 = O,ϕT = x, T > 0}

(Fig. 8).
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Figure 8.

We outline the proof of this theorem. As we have already noted, condition
A implies the existence and uniqueness of a finite invariant measure. To prove
(4.16), it is sufficient to verify that for any h > 0 there exists ε0 = ε0(h) such
that for ε < ε0 we have the inequalities

(a) με(D) > exp{−ε−2(V0 + h)},
(b) με(D) < exp{−ε−2(V0 − h)},
where V0 = infx∈D V (O, x).

If V0 = 0, then inequalities (a) and (b) are obvious. We discuss the case
V0 > 0. It is clear that V0 > 0 only if ρ(O,D) = ρ0 > 0. For the proof
of inequalities (a) and (b), we use the following representation of the invari-
ant measure. As earlier, let γ and Γ be the spheres of radii μ/2 and μ, respec-
tively, with center at the equilibrium position O and let μ < ρ0. As in the
proof of Theorem 2.1, we consider the increasing sequence of Markov times
τ0, σ0, τ1, σ1, τ2, . . . . Condition A implies that all these times are finite with
probability 1.

The sequence Xε
τ1 , X

ε
τ2 , . . . , X

ε
τn , . . . forms a Markov chain with compact

phase space γ. The transition probabilities of this chain have positive density with
respect to Lebesgue measure on γ. This implies that the chain has a unique nor-
malized invariant measure lε(dx). As follows, for example, from Khas’minskii
[1], the normalized invariant measure με(·) of Xε

t can be expressed in terms of
the invariant measure of {Xε

τn} on γ in the following way:

με(D) = cε

∫

γ

Mx

∫ τ1

0

χD(Xε
s ) ds l

ε(dx), (4.17)

where χD(x) is the indicator of D and the factor cε is determined from the nor-
malization condition με(Rr) = 1. We set τD = min{t : Xε

t ∈ D ∪ ∂D}. From
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(4.17) we obtain

με(D) = cε

∫

y

Mx

∫ τ1

0

χD(Xε
s ) ds l

ε(dx)

≤ cε max
x∈γ

Px{τD < τ1} · max
y∈∂D

Myτ1. (4.18)

It follows from condition A and the compactness of ∂D that

max
y∈∂D

Myτ1 < a1 <∞ (4.19)

uniformly in ε < ε0 < 1. Moreover, it follows from the proof of Theorem 2.1
that for sufficiently small μ and ε and x ∈ y we have

Px{τD < τ1} < exp{−ε−2(V0 − h/2)}. (4.20)

Taking account of the relation

cε =

(∫

γ

Mxτ1 l
ε(dx)

)−1

,

it is easy to see that for sufficiently small μ and ε,

0 < ln cε <
h

2ε2
. (4.21)

We conclude from estimates (4.18)–(4.21) that for sufficiently small ε we have

lnμε(D) <
h

2ε2
− V0 − h/2

ε2
= −V0 − h

ε2
.

In order to prove (b), we introduce the set D−β = {x ∈ D : ρ(x, ∂D) > β}.
For sufficiently small β, this set is nonempty and infx∈D−β

V (O, x) < V0+h/4.
If x ∈ γ and ε, μ > 0 are sufficiently small, then

Px{min{t : Xε
t ∈ D−β} < τ1} > exp{−ε−2(V0 + h/2)},

inf
x∈D−β

Mx

∫ τ1

0

χD(Xε
s ) ds > a2 > 0.

Combining these estimates, we obtain from (4.17) that for small ε,

με(D) ≥ cε ·min
x∈γ

Px{min{t : Xε
t ∈ Dβ} < τ1} inf

x∈D−β

Mx

∫ τ1

0

χD(Xε
s ) ds

≥ cε exp{−ε−2(V0 + h/2)} · a2.

Takig account of (4.21), from this we obtain assertion (b). ��
We note that if b(x) has stable equilibrium positions other than zero, then

the assertion of Theorem 4.3 is not true in general. The behavior of the invariant
measure in the case of a field b(x) of a more general form will be considered in
Chap. 6.
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5 Gaussian Perturbations of General Form

Let the function b(x, y), x ∈ Rr, y ∈ Rl with values in Rr be such that
|b(x1, y1)− b(x2, y2)| ≤ K · (|x1 − x2|+ |y1 − y2|).

We consider a random process Xε
t = Xε

t (x), t ≥ 0, satisfying the differential
equation

Ẋε
t = b(Xε

t , εζt), Xε
0 = x, (5.1)

where ζt is a Gaussian random process in Rl.
We shall assume that ζt has zero mean and continuous trajectories with prob-

ability 1. As is known, for the continuity it is sufficient that the correlation matrix
a(s, t) = (aij(s, t)), aij(s, t) = Mζisζ

j
t have twice differentiable entries. We

write b(x) = b(x, 0). The process Xε
t can be considered as a result of small

perturbations of the dynamical system xt = xt(x):

ẋt = b(xt), x0 = x.

It was proved in Chap. 2 that Xε
t → xt uniformly on every finite time interval

as ε → 0. In the same chapter we studied the expansion of Xε
t in powers of the

small parameter ε. In the present section we deal with large deviations of Xε
t

from the trajectories of the dynamical system xt.
For continuous functions ϕs, s ≥ 0, with values in Rl we define an operator

Bx(ϕ) = u by the formula

u = ut =

∫ t

0

b(us, ϕs) ds+ x.

In other words, ut = Bx(ϕ) is the solution of (5.1), where εζt is replaced by ϕt

and we take the initial condition u0 = x. In terms of Bx we can write: Xε
t =

Bx(εζ).
We shall denote by ‖ · ‖c and ‖ · ‖L2 the norms in C0T (R

r) and L2
0T (R

l)
respectively.

Lemma 5.1. Suppose that the functions b(x, y) satisfy a Lipschitz condition with
constant K and u = Bx(ϕ), v = Bx(ψ), where ϕ, ψ ∈ C0T (R

r). Then

‖u− v‖C ≤ K
√
TeKT ‖ϕ− ψ‖L2 .

Proof. By the definition of Bx, we have

|ut − vt| =
∣∣∣∣
∫ t

0

[b(us, ϕs)− b(vs, ψs)] ds

∣∣∣∣

≤ K

∫ t

0

|us − vs| ds+K

∫ t

0

|ϕs − ψs| ds.

We conclude from this by means of Lemma 1.1 of Chap. 2 that

‖u− v‖C ≤ eKTK

∫ T

0

|ϕs − ψs| ds ≤ K
√
TeKT ‖ϕ− ψ‖L2 . ��
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We denote by A the correlation operator of ζs. It acts in L2
0T (R

l) by the
formula

Aϕt =

∫ T

0

a(s, t)ϕs ds.

As has been shown in the preceding chapter, the action functional of the fam-
ily of processes εζt in L2

0T (R
l) as ε→ 0 has the form

Sζ
0T (ϕ) =

1

2
‖A−1/2ϕ‖2L2 . (5.2)

If A−1/2ϕ is not defined, then we set Sζ
0T (ϕ) = +∞.

We put

S(ϕ) = SX
0T (ϕ) = inf

ψ:Bx(ψ)=ϕ

1

2
‖A−1/2ψ‖2L2 .

Theorem 5.1. Let Xε
t be the random process defined by (5.1). The functional

SX
0T (ϕ) is the normalized action functional for the family of processes Xε in

C0T (R
r); the normalizing coefficient is f(ε) = ε−2.

Proof. Since Bx acts continuously from L2
0T (R

l) into C0T (R
r) and the ac-

tion functional of the family ε in L2
0T (R

l) has the form (5.2), by Theorem 3.1
in Chap. 3 the action functional of the family of processes Xε = Bx(εζ) in
C0T (R

r) as ε → 0 is given by the formula SX
0T (ϕ) =

infψ:Bx(ψ)=ϕ
1
2‖A−1/2ψ‖2L2

. ��

EXAMPLE 5.1. Let r = l = 1 and let system (5.1) have the form Ẋε
t =

− arctan(Xε
t − εζt), Xε

t = x. In this case Bx has an inverse: B−1
x (ϕ) =

tan ϕ̇+ϕ. The action functional of the family Xε
t can be written in the following

way:

SX
0T =

1

2

∫ T

0

|A−1/2(tan ϕ̇s + ϕs)|2 ds,

where A is the correlation operator of ζt.
For example, if ζt is a Wiener process, then

SX
0T (ϕ) =

1

2

∫ T

0

∣∣∣∣
d

ds
(tan ϕ̇s + ϕs)

∣∣∣∣
2

ds =
1

2

∫ T

0

∣∣∣∣
ϕ̈s

cos2 ϕ̇s
+ ϕ̇s

∣∣∣∣
2

ds.

Knowing the action functional, we can determine the rate of convergence to
zero of probabilities of various events connected with the perturbed system on a
finite time interval and thus obtain results analogous to Theorem 1.2 (cf. Nguen
Viet Fu [1], [2]). If the perturbations are of a stationary character, we may hope
to also obtain results, analogous to those of Sects. 2, 4, concerning the most
probable behavior, for small ε, of the trajectories Xε

t (x) of the perturbed system
on infinite time intervals or on time intervals growing with decreasing ε.
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For example, let O be an asymptotically stable equilibrium position of the
system ẋt = b(xt), inside a domain D, on the boundary of which the field b(x)
is directed strictly inside D. We consider the time

τ ε(x) = min{t ≥ 0;Xε
t (x) /∈ D}

of first exit from D. We may try to prove the following analogue of Theorem 4.1:

lim
ε→0

ε2 lnMτ ε(x) = V0 = inf{S0T (ϕ) : ϕ0 = O,ϕT ∈ ∂D;T > 0}. (5.3)

Nevertheless, it becomes clear immediately that this is not so simple. First of
all, an analysis of the presupposed plan of proof shows that the role of the limit
of ε2 lnMτ ε(x) may also be presumably played by

V ∗
0 = inf{S−∞,T (ϕ) : ϕt = O,−∞ < t ≤ 0, ϕT ∈ ∂D;T > 0}

for the same reason. In the case of Markov perturbations, V0 and V ∗
0 obviously

coincide but in the non-Markov case they may not. Moreover, in the proof of The-
orems 2.1, 4.1, and 4.2, we have used a construction involving cycles, dividing
a trajectory of the Markov process Xε

t into parts, the dependence among which
could be accounted for and turned out to be sufficiently small.

For an arbitrary stationary perturbation εζt we do not have anything sim-
ilar: we have to impose, on the stationary process ζt, conditions ensuring the
weakening of dependence as time goes. Since we are dealing with probabilities
converging to zero (probabilities of large deviations), the strong mixing property

sup{|P(A ∩B)− P(A)P(B)| : A ∈ F ζ
≤s, B ∈ F ζ

≥s}
≤ α(t− s)→ 0 (t− s→∞)

turns out to be insufficient; we need more precise conditions. These problems
are considered in Grin’s works [1], [2]; in particular, for a certain class of pro-
cesses Xε

t , the infima V0 and V ∗
0 coincide and (5.3) is satisfied.



Chapter 5

Perturbations Leading to Markov Processes

1 Legendre Transformation

In this chapter we shall consider theorems on the asymptotics of probabilities of
large deviations for Markov random processes. These processes can be viewed
as generalizations of the scheme of summing independent random variables; the
constructions used in the study of large deviations for Markov processes gener-
alize constructions encountered in the study of sums of independent terms.

The first general limit theorems for probabilities of large deviations of sums
of independent random variables are contained in Cramér’s paper [1]. The basic
assumption there is the finiteness of exponential moments; the results can be for-
mulated in terms of the Legendre transforms of some convex functions connected
with the exponential moments of the random variables.

The families of random processes we are going to consider are analogues of
the schemes of sums of random variables with finite exponential moments, so
that Legendre’s transformation turns out to be essential in our case, as well. First
we consider this transformation and its application to families of measures in
finite-dimensional spaces.

Let H(a) be a function of an r-dimensional vector argument, assuming its
values in (−∞,+∞] and not identically equal to +∞. Suppose that H(α) is con-
vex and lower semicontinuous. (We note that the condition of semicontinuity—
and even continuity—is satisfied automatically for all α with the exception of the
boundary of the set {α : H(α) < ∞}.) To this function the Legendre transfor-
mation assigns the function defined by the formula

L(β) = sup
α

[(α, β)−H(α)], (1.1)

where (α, β) =
∑r

i=1 αiβ
i is the scalar product.

It is easy to prove that L is again a function of the same class as H , i.e., it
is convex, lower semicontinuous, assuming values in (−∞,+∞] and not iden-
tically equal to +∞. The following properties of Legendre’s transformation can
be found in Rockafellar’s book [1]. The inverse of Legendre’s transformation is
itself:

H(α) = sup
β
[(α, β)− L(β)] (1.2)

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
DOI 10.1007/978-3-642-25847-3_5, c© Springer-Verlag Berlin Heidelberg 2012
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(Rockafellar [1], Theorem 12.2). The functions L and H coupled by relations
(1.1) and (1.2) are said to be conjugate, which we shall denote in the following
way: H(α) ↔ L(β). At points α0 interior for the set {α : H(α) < ∞} with
respect to its affine hull, H is subdifferentiable, i.e., it has a (generally nonunique)
subgradient, a vector β0 such that for all α,

H(α) ≥ H(α0) + (α− α0, β0) (1.3)

(Rockafellar [1], Theorem 23.4; geometrically speaking, a subgradient is the an-
gular coefficient of a nonvertical supporting plane of the set of points above the
graph of the function). The multi-valued mapping assigning to every point the set
of subgradients of the function H at that point is the inverse of the same mapping
for L, i.e., (1.3) for all α is equivalent to the inequality

L(β) ≥ L(β0) + (α0, β − β0) (1.4)

for all β (Rockafellar [1], Theorem 23.5, Corollary 23.5.1). We have L(β)→∞
as |β| → ∞ if and only if H(α) <∞ in some neighborhood of α = 0.

For functions H , L which are smooth inside their domains of finiteness, the
determination of the conjugate function reduces to the classical Legendre trans-
formation: we have to find the solution α = α(β) of the equation ∇H(α) = β
and L(β) is determined from the formula

L(β) = (α(β), β)−H(α(β)); (1.5)

moreover, we have α(β) = ∇L(β). If one of the functions conjugate to each
other is continuously differentiable n ≥ 2 times, and the matrix of second-order
derivatives is positive definite, then the other function has the same smoothness
and the matrices of the second-order derivatives at corresponding points are in-
verses of each other:

(
∂2L(β)

∂βi∂βj

)
=

(
∂2H

∂αi∂αj
(α(β))

)−1

.

Example 1.1. Let H(α) = r(eα − 1) + l(e−α − 1), α ∈ R1; r, l > 0. Upon
solving the equation H ′(α) = reα − le−α = β, we find that

α(β) = ln
β +

√
β2 + 4rl

2r
;

L(β) = β ln
β +

√
β2 + 4rl

2r
−
√
β2 + 4rl + r + 1.

It turns out that the rough asymptotics of families of probability measures in
Rr can be connected with the Legendre transform of the logarithm of exponential
moments. The following two theorems are borrowed from Gärtner [2], [3] with
some changes.
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Let μh be a family of probability measures in Rr and put

Hh(α) = ln

∫

Rr

exp{(α, x)}μh(dx).

The function Hh is convex: by the Hölder inequality, for 0 < c < 1 we have

Hh(cα1 + (1− c)α2) = ln

∫

Rr

exp
{
c(α1, x)} exp{(1− c)(α2, x)}μh(dx)

≤ ln

[(∫

Rr

exp{(α1, x)}μh(dx)

)c

·
(∫

Rr

exp{(α2, x)}μh(dx)

)1−c]

= cHh(α1) + (1− c)Hh(α2);

Hh is lower semicontinuous (this can be proved easily by means of Fatou’s
lemma), assumes values in (−∞,+∞] and is not identically equal to +∞, since
Hh(0) = 0.

Let λ(h) be a numerical-valued function converging to +∞ as h ↓ 0. We
assume that the limit

H(α) = lim
h↓0

λ(h)−1Hh(λ(h)α) (1.6)

exists for all α. This function is also convex and H(0) = 0. We stipulate that
it be lower semicontinuous, not assume the value −∞ and be finite in some
neighborhood of α = 0. Let L(β)↔ H(α).

Theorem 1.1. For the family of measures μh and the functions λ and L, condition
(II) of Sect. 3, Chap. 3 holds, i.e., for any δ > 0, γ > 0, s > 0 there exists h0 > 0
such that for all h ≤ h0 we have

μh{y : ρ(y,Φ(s)) ≥ δ} ≤ exp{−λ(h)(s− γ)}, (1.7)

where Φ(s) = {β : L(β) ≤ s}.

Proof. The set Φ(s) can be represented as an uncountable intersection of half-
spaces:

Φ(s) =
⋂

α

{β : (α, β)−H(α) ≤ s}.

This set is compact, because L is lower semicontinuous and converges to +∞ at
infinity. We consider the boundary

∂Φ+δ(s) = {y : ρ(y,Φ(s)) = δ}

of the δ-neighborhood of Φ(s). For every point y of this compact set, there exists
α such that (α, y) − H(α) > s. Hence the open half-spaces
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{y : (α, y)−H(α) > s} cover the compact set ∂Φ+δ(s). From these α we
choose a finite number α1, . . . , αn. We obtain that the convex polyhedron

n⋂

i=1

{y : (αi, y)−H(αi) ≤ s}

contains Φ(s) and does not intersect ∂Φ+δ(s). This implies that the polyhedron
lies in the δ-neighborhood of Φ(s).

Using Chebyshev’s exponential inequality, we obtain the estimate

μh{y : ρ(y,Φ(s)) ≥ δ} ≤ μh

(
n⋃

i=1

{y : (αi, y)−H(αi) > s}
)

≤
n∑

i=1

μh{y : (αi, y)−H(αi) > s}

≤
n∑

i=1

∫

Rr

exp{λ(h)[(αi, y)−H(αi)− s]}μh(dy)

=

n∑

i=1

exp{λ(h)[λ(h)−1Hh(λ(h)αi)−H(αi)]}

× exp{−λ(h)s}.

We obtain (1.7) from this by taking account of (1.6). ��

We shall say that a convex function L is strictly convex at a point β0 if there
exists α0 such that

L(β) > L(β0) + (α0, β − β0) (1.8)

for all β �= β0. For a function L to be strictly convex at all points interior to the set
{β : L(β) <∞} with respect to its affine hull (with the notation of Rockafellar’s
book [1], Sects. 4, 6, at the points of the set ri(domL)), it is sufficient that the
function H conjugate to L be sufficiently smooth, i.e., that the set {α : H(α) <
∞} have interior points, H be differentiable at them and if a sequence of points
αi converges to a boundary point of the set {α : H(α) < ∞}, then we have
|∇H(αi)| → ∞ (cf. Rockafellar [1], Theorem 26.3).

Theorem 1.2. Let the assumptions imposed on μh, Hh and H earlier be satis-
fied. Moreover, let the function L be strictly convex at the points of a dense subset
of {β : L(β) <∞}.

For the family of measures μh and the functions λ and L, condition (I) of
Sect. 3 of Chap. 3 is satisfied, i.e., for any δ > 0, γ > 0 and x ∈ Rr there exists
h0 > 0 such that for h < h0 we have

μh{y : ρ(y, x) < δ} ≥ exp{−λ(h)[L(x) + γ]}. (1.9)
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Proof. It is sufficient to prove the assertion of the theorem for points x at which L
is strictly convex. Indeed, the fulfillment of the assertion of the theorem for such x
is equivalent to its fulfillment for all x, the same function λ and the function L̃(x)
defined as L(x) if L is strictly convex at x and as +∞ otherwise. At the points
where L(x) < L̃(x), we have to use the circumstance that L(x) = limy→x L̃(y),
and the remark made in Sect. 3 of Chap. 3.

Suppose that L is strictly convex at x. We choose α0 so that L(β) > L(x) +
(α0, β − x) for β �= x. Then we have

H(α0) = sup
β
[(α0, β)− L(β)] = (α0, x)− L(x). (1.10)

Since H(α0) is finite, Hh(λ(h)α0) is also finite for sufficiently small h. For such
h we consider the probability measure μh,α0 defined by the relation

μh,α0(Γ) =

∫

Γ

exp{λ(h)(α0, y)−Hh(λ(h)α0)}μh(dy).

We use the mutual absolute continuity of μh and μh,α0 :

μh{y : ρ(y, x) < δ} =
∫

{y:ρ(y,x)<δ}
exp{−λ(h)(α0, y)

+Hh(λ(h)α0)}μh,α0(dy). (1.11)

We put δ′ = δ ∧ γ/3|α0| and estimate the integral (1.11) from below by the
product of the μh,α0 -measure of the δ′-neighborhood of x with the infimum of
the function under the integral sign:

μh{y : ρ(y, x) < δ} ≥ μh,α0{y : ρ(y, x) < δ′}
× exp{−λ(h)[(α0, x)− λ(h)−1Hh(λ(h)α0)]}

× exp

{
−λ(h)γ

3

}
.

By (1.6) and (1.10), the second factor here is not smaller than

exp{−λ(h)[L(x) + γ/3]}

if h is sufficiently small. If we prove that μh,α0{y : ρ(y, x) < δ′} → 1 as h ↓ 0,
then everything will be proved.

For this we apply Theorem 1.1 to the family of measures μh,α0 . We calculate
the characteristics of this family:

Hh,α0(α) = ln

∫

Rr

exp{(α, y)}μh,α0(dy)

= Hh(α+ λ(h)α0)−Hh(λ(h)α0);

Hα0(α) = lim
h↓0

λ(h)−1Hh,α0(λ(h)α) = H(α0 + α)−H(α0);
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Lα0(β) = L(β)− [(α0, β)−H(α0)].

The function Lα0(β) vanishes at β = x and is nonnegative everywhere (since
Hα0(0) = 0). Lα0 is strictly convex at x since L(β) is. This implies that Lα0(β)
is strictly positive for all β �= x and

γ0 = min{Lα0(β) : ρ(β, x) ≥ δ′/2} > 0.

We use estimate (1.7) with δ′/2 instead of δ, positive γ < γ0 and s ∈ (γ, γ0).
We obtain for sufficiently small h that

μh,α0{γ : ρ(y, x) ≥ δ′} ≤ μh,α0{y : ρ(y,Φα0(s)) ≥ δ′/2}
≤ exp{−λ(h)(s− γ)},

which converges to zero as h ↓ 0. ��

Consequently, if the hypotheses of Theorems 1.1 and 1.2 are satisfied, then
λ(h)L(x) is the action function for the family of measures μh as h ↓ 0.

The following example shows that the requirement of strict convexity of L
on a set dense in {β : L(β) <∞} cannot be omitted.

Example 1.2. For the family of Poisson distributions (μh(Γ) =
∑

k∈Γ(h
ke−h/

k!)) we have: Hh(α) = h · (eα−1). If we are interested in values of h converging
to zero and put λ(h) = − lnh, then we obtain

H(α) = lim
h↓0

(− lnh)−1 lnHh(−α lnh)

= lim
h↓0

h−α+1 − h

− lnh
=

{
0, α ≤ 1,

+∞, α > 1;

L(β) =

{
+∞, β < 0,

β, β ≥ 0.

But, the normalized action function found by us in Sect. 3, Chap. 3 is different
from +∞ only for nonnegative integral values of the argument.

Another example: we take a continuous finite function S(x) which is not
convex and is such that S(x)/|x| → ∞ as |x| → ∞ and minS(x) = 0. As
μh we take the probability measure with density C(h) exp{−λ(h)S(x)}, where
λ(h) → ∞ as h ↓ 0. Here the normalized action function will be S(x) but the
Legendre transform of the function

H(α) = lim
h↓0

λ(h)−1 ln

∫
exp{λ(h)(α, x)}μh(dx)

will be equal not to S(x) but rather the convex hull L(x) of S(x). In those do-
mains where S is not convex, L will be linear and consequently, not strictly con-
vex.
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The following examples show how the theorems proved above can be ap-
plied to obtain rough limit theorems on large deviations for sums of indepen-
dent random variables. Or course, they can be derived from the precise results of
Cramér [1] (at least in the one-dimensional case).

Example 1.3. Let ξ1, ξ2, . . . , ξn, . . . be a sequence of independent identically dis-
tributed random vectors and let

H0(α) = lnMe(α,ξi)

be finite for sufficiently small |α|. We are interested in the rough asymptotics as
n→∞ of the distribution of the arithmetic mean (ξ1 + · · ·+ ξn)/n.

We have

Hn(α) = lnM exp

{(
α,

ξ1 + · · ·+ ξn
n

)}
= nH0(n

−1α).

We put λ(n) = n. Then not only does λ(n)−1Hn(λ(n)α) converge to H0(α)
but it also coincides with it.

The function H0 is infinitely differentiable at interior points of the set {α :
H0(α) <∞}. If it also satisfies the condition |∇H0(αi)| → ∞ as the points αi

converge to a boundary point of the above set, then its Legendre transform L0 is
strictly convex and the asymptotics of the distribution of the arithmetic mean is
given by the action function n · L0(x).

Example 1.4. Under the hypotheses of the preceding example, we consider the
distributions of the random vectors (ξ1 + ξ2 + · · ·+ ξn−nMξk)/Bn, where Bn

is a sequence going to∞ faster than
√
n but slower than n. We have

Hn(α) = lnM exp

{(
α,

ξ1 + · · ·+ ξn − nMξk
Bn

)}

= n

[
H0

(
α

Bn

)
−
(

α

Bn
,∇H0(0)

)]

= n

[
1

2

∑

i,j

∂2H0

∂αi∂αj
(0)

αiαj

B2
n

+ o

(
|α|2
B2

n

)]
.

If as the normalizing coefficient λ(n) we take B2
n/n, then we obtain

H(α) = lim
n→∞

λ(n)−1Hn(λ(n)α) =
1

2

∑

i,j

∂2H0

∂αi∂αj
(0)αiαj .

If the matrix of this quadratic form, i.e., the covariance matrix of the random
vector ξn is nonsingular, then the Legendre transform of H has the form

L(β) =
1

2

∑

i,j

aijβ
iβj ,
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where (aij) = ((∂2H0/∂αi∂αj)(0))
−1. The action function for the family of

the random vectors under consideration is (B2
n/n)L(x). In particular, this means

that

lim
δ↓0

lim
n→∞

n

B2
n

lnP

{∣∣∣∣
ξ1 + · · ·+ ξn − nMξk

Bn
− x

∣∣∣∣ < δ

}
= −1

2

∑

i,j

aijx
ixj .

2 Locally Infinitely Divisible Processes

Discontinuous Markov processes which can be considered as a result of random
perturbations of dynamical systems arise in various problems. We consider an
example.

Let two nonnegative functions l(x) and r(x) be given on the real line. For ev-
ery h > 0 we consider the following Markov process Xh

t on those points of the
real line which are multiples of h: if the process begins at a point x, then over time
dt it jumps distance h to the right with probability h−1r(x) dt (up to infinitesi-
mals of higher order as dt → 0) and to the left with probability h−1l(x) dt (it
jumps more than once with probability o(dt)). For small h, in first approxima-
tion the process can be described by the differential equation ẋt = r(xt)− l(xt)
(the exact meaning of this is as follows: under certain assumptions on r and l it
can be proved that as h ↓ 0, Xh

t converges in probability to the solution of the
differential equation with the same initial condition).

A more concrete version of this example is as follows: in a culture medium of
volume V there are bacteria whose rates c+ and c− of division and death depend
on the concentration of bacteria in the given volume. An appropriate mathemati-
cal model of the process of the variation of concentration of bacteria with time is a
Markov process Xh

t of the form described above with h = V −1, r(x) = x·c+(x)
and l(x) = x · c−(x).

It is natural to consider the process Xh
t as a result of a random perturbation

of the differential equation ẋt = r(xt)− l(xt) (a result of a small random pertur-
bation for small h). As in the case of perturbations of the type of a white noise,
we may be interested in probabilities of events of the form {ρ0T (Xh, ϕ) < δ},
etc. (probabilities of “large deviations”).

As we have already mentioned, the first approximation of Xh
t for small h

is the solution of the differential equation; the second approximation will be a
diffusion process with drift r(x)− l(x) and small local variance

h(r(x) + l(x)).

Nevertheless, this approximation does not work for large deviations: as we shall
see, the probabilities of large deviations for the family of processes Xh

t can be
described by means of an action functional not coinciding with the action func-
tional of the diffusion processes.

We describe a general scheme which includes the above example.
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In r-space Rr let us be given: a vector-valued function b(x) = (b1(x), . . . ,
br(x)), a matrix-valued function (aij(x)) (of order r, symmetric and nonnegative
definite) and for every x ∈ Rr a measure μx on Rr\{0} such that

∫

Rr\{0}
|β|2 μx(dβ) <∞.

For every h > 0 let (Xh
t ,P

h
x) be a Markov process in Rr with right continuous

trajectories and infinitesimal generator Ah defined for twice continuously differ-
entiable functions with compact support by the formula

Ahf(x) =
∑

i

bi(x)
∂f(x)

∂xi
+

h

2

∑

i,j

aij(x)
∂2f(x)

∂xi∂xj

+ h−1

∫

Rr\{0}

[
f(x+ hβ)− f(x)− h

∑

i

βi ∂f(x)

∂xi

]
μx(dβ).

(2.1)

If aij(x) = 0 and μx is finite for all x, then Xh
t moves in the following way:

it jumps a finite number of times over any finite time and the density of jumps
at x is h−1μx(R

r\{0}) (i.e., if the process is near x, then over time dt it makes
a jump with probability h−1μx(R

r\{0}) dt up to infinitesimals of higher order
as dt → 0); the distribution of the length of a jump is given by the measure
μx(R

r\{0})−1 · μx(h
−1 dβ) (again, as dt → 0); between jumps the process

moves in accordance with the dynamical system ẋt = b̃(xt) where

b̃(x) = b(x)−
∫

Rr\{0}
β μx(dβ).

On the other hand, if μx(R
r\{0}) = ∞, then the process jumps infinitely many

times over a finite time.
The process under consideration above is a special case of our scheme with

r = 1, measure μx concentrated at the points±1, μx{1} = r(x), μx{−1} = l(x)
and b(x) = r(x)− l(x).

If the measure μx is concentrated at 0 for every x, then the integral term in for-
mula (2.1) vanishes and Ah turns into a differential operator of the second order.
In this case (Xh

t ,Px) is a family of diffusion processes with a small diffusion co-
efficient and the corresponding trajectories are continuous with probability one.
In the general case (Xh

t ,Px) combines a continuous diffusion motion and jumps.
The scheme introduced by us is a generalization of the scheme of processes

with independent increments—the continuous version of the scheme of sums of
independent random variables. It is known that in the study of large deviations
for sums of independent random variables, an important role is played by the
condition of finiteness of exponential moments (cf., for example, Cramér [1]).
We introduce this condition for our scheme, as well: we shall assume that for all
α = (α1, . . . , αr), the expression
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H(x, α) =
∑

i

bi(x)αi +
1

2

∑

i,j

aij(x)αiαj

+

∫

Rr\{0}

(
exp

{∑

i

αiβ
i

}
− 1−

∑

i

αiβ
i

)
μx(dβ) (2.2)

is finite. The function H is convex and analytic in the second argument. It van-
ishes at zero.

The connection of H with the Markov process (Xh
t ,Px) can be described in

the following way: if we apply the operator Ah defined by formula (2.1) to the
function exp{

∑
i αix

i}, then we obtain h−1H(x, hα) exp{
∑

i αix
i}.

We denote by L(x, β) the Legendre transform of H(x, α) with respect to
the second variable. The equality H(x, 0) = 0 implies that L is nonnegative;
it vanishes at β = b(x). The function L may assume the value +∞; however,
inside the domain where it is finite, L is smooth.

For the example considered above we have: H(x, α) = r(x)(eα − 1) +
l(x)(e−α−1), and the function L has the form indicated in the preceding section
with r(x) and l(x) replacing r and l.

For a function ϕt, T1 ≤ t ≤ T2, with values in Rr, we define a functional by
the formula

S(ϕ) = ST1T2(ϕ) =

∫ T2

T1

L(ϕt, ϕ̇t) dt, (2.3)

if ϕ is absolutely continuous and the integral is convergent; otherwise we put
ST1T2(ϕ) = +∞. This functional will be a normalized action functional (and
the normalizing coefficient will be h−1).

In particular, if the measure μx is concentrated at 0 and (aij) is the identity
matrix, then, as follows from results of Chap. 4, the action functional has the
form (2.3), where L(ϕ, ϕ̇) = 1

2 · |ϕ̇ − b(ϕ)|2. In Wentzell and Freidlin [4] the
action functional is computed for a family of diffusion processes with an arbitrary
matrix (aij) (cf. the next section).

Families of infinitely divisible processes belonging to our scheme have been
considered in Borovkov [1]. We return to these classes of random processes in
the next section. Now we formulate a result which generalizes results of both
Wentzell and Freidlin [4] and Borovkov [1].

In order that h−1S0T (ϕ) be the action functional for the family of processes
(Xh

t ,Px), it is, of course, necessary to impose some restrictions on this family.
We formulate them in terms of the functions H and L.

I. There exists an everywhere finite nonnegative convex function H̄(α) such
that H̄(0) = 0 and H(x, α) ≤ H̄(α) for all x, α.

II. The function L(x, β) is finite for all values of the arguments; for any R > 0
there exists positive constants M and m such that L(x, β) ≤ M ,
|∇βL(x, β)| ≤ M ,

∑
ij(∂

2L/∂βi∂βj)(x, β)cicj ≥ m
∑

i(c
i)2 for all

x, c ∈ Rr and all β, |β| < R.
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The following requirement is between the simple continuity of H and L in
the first argument, which is insufficient for our purposes, and uniform continuity,
which is not satisfied even in the case of diffusion processes, i.e., for functions
H and L quadratic in the second argument.

III. ΔL(δ′) = sup
|y−y′|<δ′

sup
β

L(y′, β)− L(y, β)

1 + L(y, β)
→ 0 as δ′ → 0.

Condition III implies the following continuity condition for H:

H(y, (1 + ΔL(δ′))−1α)−H(y′, α) ≤ ΔL(δ′)(1 + ΔL(δ′))−1 (2.4)

for all α and |y − y′| < δ′, where ΔL(δ′)→ 0 as δ′ ↓ 0.

Theorem 2.1. Suppose that the functions H and L satisfy conditions I–III and
the functional S(ϕ) is defined by formula (2.3). Then h−1S(ϕ) is the action
functional for the family of processes (Xh

t ,P
h
x) in the metric

ρ0T (ϕ, ψ) = sup
0≤t≤T

|ϕt − ψt|

uniformly in the initial point as h ↓ 0.

The proof (under somewhat more relaxed conditions) is contained in Went-
zell [7], [8] (see also Wentzell [10]).

First of all we have to prove that S0T is lower semicontinuous and the el-
ements of the set {ϕ : S0T (ϕ) ≤ s} are equicontinuous. We do not include
this purely analytic part of the proof here; we mention that similar results can be
found in the book by Ioffe and Tikhomirov [1], Chap. 9, Sect. 1.

We mention a lemma, also without proof, having to do with the properties of
S0T (for a proof, see Wentzell [7], [8], [10]).

Lemma 2.1. Let condition III be satisfied. For every s0 > 0 there exists Δt > 0
such that for any partition of the interval from 0 to T by points 0 = t0 < t1 <
· · · < tn−1 < tn = T , max(tj+1 − tj) ≤ Δt, and for any function ϕt, 0 ≤ t ≤
T , for which S0T (ϕ) ≤ s0 we have S0T (l) ≤ S0T (ϕ) + γ, where l is a polygon
with vertices at the points (tj , ϕtj ).

Now, it has to be proved that for any δ > 0, γ > 0 and s0 > 0 there exists a
positive h0 such that for all h < h0 we have

Ph
x{ρ0T (Xh, ϕ) < δ} ≥ exp{−h−1[S0T (ϕ) + γ]}, (2.5)

where ϕ is an arbitrary function such that S0T (ϕ) ≤ s0, ϕ0 = x and that

Ph
x{ρ0T (Xh,Φx(s)) ≥ δ} ≤ exp

{
−h−1(s− γ)}, (2.6)

where Φx(s) = {ϕ : ϕ0 = x, S0T (ϕ) ≤ s} and x is any point from Rr and
s ≤ s0.
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For the sake of simple notation we give the proof in the one-dimensional case.
First we mention a few facts used in both parts of the proof.

Up to the term
∫ t

0
b(Xh

s ) ds of bounded variation, the process Xh
t is a square

integrable martingale. Therefore, the stochastic integral with respect to Xh
t is

meaningful. Let f(t, ω), 0 ≤ t ≤ T be a random function bounded in absolute
value by a constant C and progressively measurable with respect to the family of
σ-algebras F≤t = σ{Xh

s , s ≤ t} (i.e., for any t, the function f(s, ω) for s ≤ t
is measurable in the pair (s, ω) with respect to the product of the σ-algebra of
Borel subsets of the interval [0, t] and the σ-algebra F≤t). Then we can define
the stochastic integral ∫ T

0

f(t− 0, ω) dXh
t (2.7)

(cf. Kunita and Watanabe [1]). We need to integrate only random functions piece-
wise continuous in square mean; for them the integral (2.7) can be defined as the
limit, in the sense of convergence in probability, of Riemann sums

n−1∑

j=0

f(tj , ω)(X
h
tj+1

−Xh
tj )

as the partition 0 = t0 < t1 < · · · < tn = T becomes infinitely fine. If the
realizations of Xh

t have bounded variation and the realizations of f(t, ω) have
one-sided limits at every point, then the integral (2.7) can be viewed as an ordi-
nary Lebesgue–Stieltjes integral of the left-hand limit f(t− 0, ω) of the function
f(t, ω).

We need the following fact:

Mh
x exp

{∫ T

0

f(t− 0, ω) dXh
t − h−1

∫ T

0

H(Xh
t , hf(t, ω)) dt

}
= 1 (2.8)

(this can be derived from Itô’s formula for stochastic integrals with respect to
martingales, cf. Kunita and Watanabe [1]).

The proof of (2.5) is first carried out for piecewise smooth functions ϕ. As in
the case of diffusion, we use an absolutely continuous change of measures (the
idea of using such a change of measures is due to Cramér [1]).

We put α(t, x) = (∂L/∂β)(x, ϕ̇t). By condition II and the piecewise smooth-
ness of ϕ, the function α is bounded. Then, we put

P̃h
x(A) = Mh

x

[
A; exp

{
h−1

[∫ T

0

α(t− 0, Xh
t−0) dX

h
t

−
∫ T

0

H(Xh
t , α(t,H

h
t )) dt

]}]

for any event A ∈ F≤t.
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According to (2.8), Ph
x is a probability measure. With respect to this measure,

Xh
t turns out to be a Markov process again (cf. Gikhman and Skorokhod [2],

Chap. VII, Sect. 6) but now nonhomogeneous in time. Its infinitesimal generator
is given by the formula (cf. Grigelionis [1])

Ãh
t f(x) = b̃(t, x)f ′(x) +

h

2
a(x)f ′′(x)

+ h−1

∫

Rr\{0}
[f(x+ hβ)− f(x)− hf ′(x)β] m̃t,x(dβ),

where ha(x) is the former diffusion coefficient and the drift b̃ and measure m̃ can
be expressed in terms of the former ones by the formulas

b̃(t, x) =
∂H

∂α
(x, α(t, x)),

m̃t,x(dβ) = exp{α(t, x)β}mx(dβ).

By virtue of our choice of α(t, x) = (∂L/∂β)(x, ϕ̇t), the coefficient b̃ is inde-
pendent of x and equal to ϕ̇t. This means, in particular, that with respect to P̃h

x,
the process Xh

t −ϕt is a martingale (with vanishing mean, since ϕ0 = x) and its
variance is given by the formula

M̃h
x(X

h
t − ϕt)

2 = hM̃h
x

∫ t

0

∂2H

∂α2
(Xh

s , α(s,X
h
s )) ds. (2.9)

Since the density dP̃h
x/dP

h
x is positive, the measure Ph

x can be expressed by
integration with respect to P̃h

x:

Ph
x(A) = M̃h

x

[
A; exp

{
h−1

[
−
∫ T

0

α(t− 0, Xh
t−0) dX

h
t

+

∫ T

0

H(Xh
t , α(t,X

h
t )) dt

]}]
. (2.10)

We shall use this for the event Aδ = {sup0≤t≤T |Xh
t − ϕt| < δ}.

We put

D1 = sup
t,y

∂2H

∂α2
(y, α(t, y)),

D2 = sup
t,y

∂2H

∂α2
(y, α(t, y))α(t, y)2

(by condition II, these expressions are uniformly bounded for all functions ϕt for
which the derivative ϕ̇t is bounded by some constant). We introduce the random
events
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Ah
1 =

{
sup

0≤t≤T
|Xh

t − ϕt| < 2h1/2D
1/2
1

}
;

Ah
2 =

{∣∣∣∣
∫ T

0

α(t− 0, Xh
t−0) d(X

h
t − ϕt)

∣∣∣∣ < 2h1/2D
1/2
2

}
.

In both cases here on the left side of the inequality we have a martingale (with
respect to P̃h

x) with mean zero and on the right side a constant estimating from
above the doubled square mean deviation of the martingale. By the Kolmogorov
and Chebyshev inequalities we have

P̃h
x(A

h
1 ) ≥ 3/4, P̃h

x(A
h
2 ) ≥ 3/4.

For h ≤ (4D1)
−1δ2, the event Ah

1 implies Aδ . Therefore, Ph
x(Aδ) is es-

timated from below by the P̃h
x-probability of Ah

1 ∩ Ah
2 (which is not smaller

than 1/2) multiplied by the infimum of the exponential expression in (2.10) over
this intersection. The sum of integrals under the exponential sign can be reduced
to the form

−
∫ T

0

α(t− 0, Xh
t−0) d(X

h
t − ϕt)−

∫ T

0

[α(t,Xh
t )ϕ̇t −H(Xh

t , α(t,X
h
t ))] dt.

The first integral here does not exceed 2h1/2D
1/2
2 in absolute value for

ω ∈ Ah
1 ∩Ah

2 and the second one is equal to −
∫ T

0
L(Xh

t , ϕ̇t) dt. By virtue of
condition III, this integral (without the minus sign) does not exceed

∫ T

0

L(ϕt, ϕ̇t) dt(1 + ΔL(2h1/2D
1/2
1 )) + ΔL(2h1/2D

1/2
1 ) · T.

Finally, for h ≤ (4D1)
−1δ2 we obtain the estimate

Ph
x{ρ0T (Xh, ϕ) < δ} ≥ 1

2
exp{−h−1S0T (ϕ)− 2h−1/2D

1/2
2

− h−1ΔL(2h1/2D
1/2
1 )[T + S0T (ϕ)]}.

The factor 1/2 and all terms except−h−1S0T (ϕ) are absorbed by the term h−1γ
for sufficiently small h and we obtain inequality (2.5).

In order to establish that (2.5) is satisfied uniformly for not only functions
ϕt with |ϕ̇t| ≤ const but also all functions with S0T (ϕ) ≤ s0, we use the
equicontinuity of these functions and Lemma 2.1. We choose Δt > 0 such that
the oscillation of each of these functions ϕ on any interval of length not ex-
ceeding Δt is smaller than δ/2. We decrease this Δt if necessary so that for
any polygon l with vertices (tj , ϕtj ) such that max(tj+1 − tj) ≤ Δt we have
S0T (l) ≤ S0T (ϕ) + γ/2. We fix an equidistant partition of the interval from 0 to
T into intervals of length not exceeding Δt. Then for all polygons l determined
by functions ϕ with S0T (ϕ) ≤ s0 we have |lt| ≤ δ/2Δt. For h smaller than
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some h0, inequality (2.5) holds for these polygons with δ/2 instead of δ and γ/2
instead of γ. We use the circumstance that ρ0T (ϕ, l) < δ/2. We obtain

Ph
x{ρ0T (Xh, ϕ) < δ} ≥ Ph

x{ρ0T (Xh, l) < δ/2}
≥ exp{−h−1[S0T (ϕ) + γ]}.

Now we prove (2.6). Given a small positive number κ, we choose a positive
δ′ > δ/2 such that the expression ΔL(δ′) in condition III does not exceed κ. We
consider a random polygon lht , 0 ≤ t ≤ T with vertices at the points (0, Xh

0 ),
(Δt,Xh

Δt), (2Δt,Xh
2Δt), . . . , (T,X

h
T ), where the choice of Δt = T/n (n is an

integer) will be specified later. We introduce the events

Ah(i) =
{

sup
iΔt≤t≤(i+1)Δt

|Xh
t −Xh

iΔt| < δ′
}
,

i = 0, 1, . . . , n − 1. If all Ah(i) occurred, then we had p0T (X
h, lh) < δ; more-

over, ρ0T (Xh,Φx(s)) ≥ δ implies lh /∈ Φx(s). Therefore,

Ph
x{ρ0T (Xh,Φx(s)) ≥ δ} ≤ Ph

x

(
n−1⋃

i=0

Ah(i)

)

+ Ph
x

(
n−1⋂

i=0

Ah(i) ∩ {lh /∈ Φx(s)}
)
. (2.11)

The first probability does not exceed

n · sup
y

Ph
y

{
sup

0≤t≤Δt
|Xh

t − y| > δ′
}
.

By virtue of a well-known estimate (cf. Dynkin [1], Lemma 6.3), the supremum
of this probability does not exceed

2 sup
t≤Δt

sup
y

Ph
y{|Xh

t − y| > δ′/2}.

We estimate this probability by means of the exponential Chebyshev inequality:
for any C > 0 we have

Ph
y{|Xh

t − y| > δ′/2} ≤ [Mh
y exp{h−1C · (Xh

t − y)}

+Mh
y exp{−h−1C · (Xh

t − y)}]e−h−1Cδ′/2. (2.12)

It follows from (2.8) that the mathematical expectation here does not exceed
exp{h−1tH̄(±C)} ≤ exp{h−1ΔtH̄(±C)}. Now we choose C = 4s0/δ

′ and
we choose Δt so that ΔtH̄(±C) ≤ s0. Then the right side of (2.12) does not ex-
ceed 2 exp{−h−1s0} and the corresponding terms in (2.11) are negligible com-
pared to exp{−h−1(s− γ)}.
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The second term in (2.11) is estimated by means of the exponential Cheby-
shev inequality:

Ph
x

(
n−1⋂

i=0

Ah(i) ∩ {lh /∈ Φx(s)}
)

= Ph
x

(
n−1⋂

i=0

Ah(i) ∩ {S0T (l
h) > s}

)

≤ Mh
x

[
n−1⋂

i=0

Ah(i); exp{h−1(1 + κ)−2S0T (l
h)}
]

× exp{−h−1(1 + κ)−2s}. (2.13)

Using the choice of δ′, we obtain

S0T (l
h) =

n−1∑

i=0

∫ (i+1)Δt

iΔt

L

(
lht ,

Xh
(i+1)Δt −Xh

iΔt

Δt

)
dt

≤
n−1∑

i=0

Δt

[
L

(
Xh

iΔt,
Xh

(i+1)Δt −Xh
iΔt

Δt

)
· (1 + κ) + κ

]

= (1 + κ)

n−1∑

i=0

Δt · L
(
Xh

iΔt,
Xh

(i+1)Δt −Xh
iΔt

Δt

)
+ κT

for ω ∈
⋂n−1

i=0 Ah(i). Taking account of this, we obtain from (2.13) that

Ph
x

(
n−1⋂

i=0

Ah(i) ∩ {lh /∈ Φx(s)}
)

≤ Mh
x

[
n−1⋂

i=0

Ah(i);

n−1∏

i=0

exp

{
h−1(1 + κ)−1Δt

× L

(
Xh

iΔt,
Xh

(i+1)Δt −Xh
iΔt

Δt

)}]

× exp{h−1[−(1 + κ)−2s+ (1 + κ)−2
κT ]}. (2.14)

Using the Markov property with respect to the times Δt, 2Δt, . . . , (n−1)Δt,
we obtain that the mathematical expectation in this formula does not exceed

[
sup
y

Mh
y

[
Ah(0); exp

{
h−1(1 + κ)−1ΔtL

(
y,

Xh
Δt − y

Δt

)}]]n
. (2.15)

Here the second argument of L does not exceed δ′/Δt. For fixed y, we approx-
imate the function L(y, β), convex on the interval |β| < δ′/Δt, by means of
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Figure 9.

a polygon L′(y, β) circumscribed from below to an accuracy of κ. This can be
done by means of a polygon with the number N of links not depending on y,
for example, in the following way: we denote by β−i, β+i (i = 0, 1, 2, . . .) the
points at which L(y, β) = iκ (for i �= 0, there are two such points) and choose
the polygon formed by the tangent lines to the graph of L(y, β) at these points,
i.e., we put

L′(y, β) = max
−i0≤i≤i0

[
L(y, βi) +

∂L

∂β
(y, βi)(β − βi)

]
. (2.16)

Here the number N of points is equal to 2i0 + 1, where i0 is the integral part of
κ

−1 supy sup|β|≤δ′/Δt L(y, β). It is easy to see that L(y, β)− L′(y, β) ≤ κ for
|β| < δ′/Δt (Fig. 9).

Using the definition of L, the expression (2.16) can be rewritten in the form

L′(y, β) = max
−i0≤i≤i0

[αiβ −H(y, αi)], (2.17)

where the αi = ∂L(y, βi)/∂β depend on y. Taking account of this, we can see
that the mathematical expectation in formula (2.15) does not exceed

Mh
y

[
Ah(0); exp

{
h−1(1 + κ)−1 max

−i0≤i≤i0
[αi(X

h
Δt − y)

−ΔtH(y, αi)] + h−1(1 + κ)−1
κΔt

}]

≤ exp{h−1
κ(1 + κ)−1Δt}

·
i0∑

i=−i0

Mh
y [A

h(0); exp{h−1[(1 + κ)−1αi(X
h
Δt − y)

−Δt(1 + κ)−1H(y, αi)]}]. (2.18)

By (2.8) we have

Mh
y exp

{
h−1

[
(1 + κ)−1αi(X

h
Δt − y)−

∫ Δt

0

H(Xh
t , (1 + κ)−1αi) dt

]}
= 1.
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In order to use this, we subtract and add h−1
∫Δt

0
H(Xh

t , (1 +κ)−1αi) dt under
the exponential sign on the right side of (2.18). Using the choice of δ′ and in-
equality (2.4), we obtain that the ith mathematical expectation on the right side
of (2.18) does not exceed exp{h−1Δt · κ(1 + κ)−1}.

We combine the estimates obtained so far:

Ph
x{ρ0T (Xh,Φx(s)) ≥ δ} ≤ 4n exp{−h−1s}+ (2i0 + 1)n

× exp{h−1[−(1 + κ)−2s+ κ(l + κ)−2T + 2κ(1 + κ)−1T ]}. (2.19)

Since κ > 0 can be chosen arbitrarily small, for h smaller than or equal to some
h0 we obtain estimate (2.6) for all s ≤ s0.

3 Special Cases. Generalizations

In this section we derive theorems on large deviations for certain families of
Markov processes. They either follow from Theorem 2.1 or are close to it.

First of all, the hypotheses of Theorem 2.1 are satisfied for the families of
diffusion processes in Rr, given by the stochastic equations

Ẋε
t = b(Xε

t ) + εσ(Xε
t )ẇt, (3.1)

as the parameter ε converges to zero, provided that the drift coefficients bi(x) and
diffusion coefficients aij(x) =

∑r
k=1 σ

i
k(x)σ

i
k(x), i, j = 1, . . . , r are bounded

and uniformly continuous in x and the diffusion matrix is uniformly nondegen-
erate:

∑
ij a

ij(x)cicj ≥ μ
∑

i c
2
i , μ > 0. We calculate the characteristics of the

family of processes (Xε
t ,P

ε
x): the infinitesimal generator for functions f ∈ C(2)

has the form

Aεf(x) =
∑

i

bi(x)
∂f(x)

∂xi
+

ε2

2

∑

ij

aij(x)
∂2f(x)

∂xi∂xj
. (3.2)

The role of the parameter h of the preceding paragraph is played by ε2 and the
normalizing coefficient is ε−2. Moreover, we have

H(x, α) =
∑

bi(x)αi +
1

2

∑
aij(x)αiαj ; (3.3)

the Legendre transform of this function is

L(x, β) =
1

2

∑

ij

aij(x)(β
i − bi(x))(βj − bj(x)), (3.4)

where (aij(x)) = (aij(x))−1; the normalized action functional has the form (for
absolutely continuous ϕt, Ti ≤ t ≤ T2)
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ST1T2(ϕ) =
1

2

∫ T2

T1

∑

ij

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt)) dt. (3.5)

We verify conditions I–III of Theorem 2.1. As the function H̄ we may choose

H̄(α) = B|α|+ 1

2
A|α|2,

where B and A are constants majorizing |b(x)| and the largest eigenvalue of the
matrix (aij(x)). As the constant M = M(R) of condition II we may choose
μ−1(R + B + 1)2, and as m we may take A−1. Condition III is also satisfied:
the function ΔL(δ′) can be expressed in terms of the moduli of continuity of the
functions bi(x), aij(x) and the constants μ, A and B.

The following theorem deals with a slight generalization of this scheme and
in this case the proof of Theorem 2.1 needs only minor changes.

Theorem 3.1. Let the functions bi(x) and aij(x) be bounded and uniformly con-
tinuous in Rr, let the matrix (aij(x)) be symmetric for any x and let

∑

ij

aij(x)cicj ≥ μ
∑

i

c2i ,

where μ is a positive constant. Furthermore, suppose that b1ε(x), . . . , brε(x) uni-
formly converge to b1(x), . . . , br(x), respectively, as ε → 0, (Xε

t ,P
ε
x) is a diffu-

sion process in Rr with drift bε(x) = (b1ε(x), . . . , brε(x)) and diffusion matrix
ε2(aij(x)), and the functional S is given by formula (3.5). Then ε−2S0T (ϕ) is
the action functional for the family of processes (Xε

t ,P
ε
x) in the sense of the met-

ric ρ0T (ϕ, ψ) = sup0≤t≤T |ϕt − ψt|, uniformly with respect to the initial point
as ε→ 0.

Moreover, this result can be carried over to diffusion processes on a differen-
tiable manifold.

Theorem 3.2. Let M be an r-dimensional manifold of class C(3) with metric ρ.
Suppose that there exists a positive constant λ such that in the λ-neighborhood of
every point x0 ∈M we can introduce a common coordinate system Kx0 and the
distance ρ differs from the corresponding Euclidean distance only by a numerical
factor uniformly bounded for all Kx0 . For every ε > 0 let (Xε

t ,P
ε
x) be a diffusion

process on M (cf. McKean [1]) and suppose that in the coordinate system Kx0 ,
its infinitesimal generator can be written in the form

∑

i

biε(x)
∂

∂xi
+

ε2

2

∑

ij

aij(x)
∂2

∂xi∂xj
. (3.6)

(In passage to another coordinate system, the aij(x) are transformed as a ten-
sor and in the biε(x) there also occur terms of order ε2 containing derivatives of
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aij(x).) Suppose that biε(x) → bi(x) uniformly in all x such that ρ(x0, x) < λ
and all coordinate systems Kx0 as ε → 0, the functions bi(x), aij(x) are
bounded and uniformly continuous in all x, ρ(x0, x) < λ, and all Kx0 , and

∑

ij

aij(x)cicj ≥ μ
∑

i

c2i

for all c1, . . . , cr, where μ = const > 0. Let the functional S be given by for-
mula (3.5).

Then ε−2S0T (ϕ) is the action functional for the family of processes (Xε
t ,P

ε
x)

with respect to the metric ρ0T (ϕ, ψ) = sup0≤t≤T ρ(ϕt, ψt), uniformly with re-
spect to the initial point as ε→ 0.

The proof of Theorem 3.2 (and of Theorem 3.1) is contained in Sect. 1 of
Wentzell and Freidlin [4].

We consider some more families of Markov processes for which the action
functional can be written out easily by using formulas of the preceding section,
but the fact that the expression thus obtained is indeed the action functional does
not follow from Theorem 2.1.

Let π1h−1

t , . . . , πrh−1

t be independent Poisson processes with parameters
h−1λ1, . . . , h−1λr, respectively (λ1, . . . , λr are positive constants). We consider
the process ξht = (ξ1h1 , . . . , ξrht ), where ξiht = hπih−1

t . The infinitesimal genera-
tor of this Markov process is

Ahf(x1, . . . , xr) =h−1λ1[f(x1 + h, x2, . . . , xr)− f(x1, x2, . . . , xr)]

+ · · ·+ h−1λr[f(x1, . . . , xr + h)− f(x1, . . . , xr−1, xr)],
(3.7)

H(x, α) ≡ H(α) =

r∑

i=1

λi(eαi − 1), (3.8)

L(x, β) ≡ L(β) =

{∑r
i=1[β

i ln βi

λi − βi + λi] for β1 ≥ 0, . . . , βr ≥ 0,

+∞, if at least one of the βi < 0;

(3.9)

the functional S(ϕ) is defined as the integral

ST1T2(ϕ) =

∫ T2

T1

L(ϕ̇t) dt (3.10)

for absolutely continuous ϕt = (ϕ1
t , . . . , ϕ

r
t ) and as +∞ for all remaining ϕ

(the integral is equal to +∞ for all ϕt for which at least one coordinate is not a
nondecreasing function).

The hypotheses of Theorem 2.1 are not applicable, since L equals +∞ out-
side the set {β1 ≥ 0, . . . , βr ≥ 0}. Nevertheless, the following theorem holds.
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Theorem 3.3. The functional given by formulas (3.10) and (3.9) is the normal-
ized action functional for the family of processes ξht , uniformly with respect to
the initial point as h ↓ 0 (as normalizing coefficient we take, of course, h−1).

This is a special case of Borovkov’s results [1] (in fact, these results are con-
cerned formally only with the one-dimensional case; for r > 1 we can refer to
later work: Mogul’skii [1] and Wentzell [7], [8]).

The preceding results were related to the case where with the increase of the
parameter, the jumps of the Markov process occur as many times more often
as many times smaller they become. We formulate a result concerning the case
where this is not so.

As above, let π1α
t , . . . , πrα

t be independent Poisson processes with param-
eters αλ1, . . . , αλr. For α > 0 and h > 0 we put ξiαht = h(πiα

t − αλit),
i = 1, . . . , r.

Theorem 3.4. Put

ST1T2(ϕ) =
1

2

∫ T2

T1

r∑

i=1

(λi)−1(ϕ̇i
t)

2 dt (3.11)

for absolutely continuous ϕt, T1 ≤ t ≤ T2 and ST1T2(ϕ) = +∞ for the remain-
ing ϕt. Then (h2α)−1S0T (ϕ) is the action functional for the family of processes
ξαh = (ξ1αht , . . . , ξrαht ), 0 ≤ t ≤ T , uniformly with respect to the initial point
as hα→∞, h2α→ 0.

This is a special case of one of the theorems of the same article [1] by
Borovkov (the multidimensional case can be found in Mogul’skii [1]).

4 Consequences. Generalization of Results of Chap. 4

Let us see whether the results obtained by us in Sects. 2, 3 and 4 of Chap. 4 for
small perturbations of the type of a “white noise” of a dynamical system can be
carried over to small jump-like perturbations (or to perturbations of the type of
diffusion with varying diffusion).

Let ẋt = b(xt) be a dynamical system with one stable equilibrium position
O and let (Xh

t ,P
h
x) be a family of Markov processes of the form described in

Sect. 2. For this family, we may pose problems on the limit behavior as h ↓ 0
of the invariant measure μh, of the distribution of the point Xh

τh of exit from a
domain and of the mean time Mh

xτ
h of exit from a domain. We may conjecture

that the solutions will be connected with the function V (O, x) = inf{ST1T2(ϕ) :
ϕT1 = O, ϕT2 = x}. Namely, the invariant measure μh must be described by
the action function h−1V (O, x), the distribution of Xh

τh as h ↓ 0 must to be
concentrated near those points of the boundary at which miny∈∂D V (O, y) is
attained, Mh

xτ
h must be logarithmically equivalent to
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exp
{
h−1 min

y∈∂D
V (O, y)

}
;

and for small h, the exit from a domain must take place with overwhelming prob-
ability along an extremal of S(ϕ) leading from O to the boundary, etc.

The proofs in Sects. 2, 4 of Chap. 4 have to be changed in the following way.
Instead of the small spheres γ and Γ about the equilibrium position, we have to
take a small ball γ containing the equilibrium position and the exterior Γ of a
sphere of a somewhat larger radius (a jump-like process may simply jump over a
sphere). Instead of the chain Zn on the set γ ∪ ∂D, we consider a chain on the
sum of γ and the complement of D. A trajectory of Xh

t beginning at a point of
γ is not necessarily on a sphere of small radius (the boundary of Γ) at the first
entrance time of Γ. Nevertheless, the probability that at this time the process will
be at a distance larger than some δ > 0 from this sphere converges to zero faster
than any exponential exp{−Kh−1} as h ↓ 0. Theorems 2.1, 2.3, 2.4, 4.1 and
4.2 of Chap. 4 remain true for families (Xh

t ,P
h
x) satisfying the hypotheses of

Theorem 2.1.
Of course, these theorems are also true for families of diffusion processes

satisfying the hypotheses of Theorems 3.1 and 3.2. We give the corresponding
formulation in the language of differential equations, i.e., the generalization of
Theorem 2.2 of Chap. 4.

Theorem 4.1. Let O be a stable equilibrium position of the dynamical system
ẋt = b(xt) on a manifold M and let D be a domain in M with compact clo-
sure and smooth boundary ∂D. Suppose that the trajectories of the dynamical
system beginning at any point of D ∪ ∂D are attracted to O as t → ∞ and the
vector b(x) is directed strictly inside D at every boundary point. Furthermore,
let (Xε

t ,P
ε
x) be a family of diffusion processes on M with drift bε(x) (in local

coordinates) converging to b(x) as ε → 0 and diffusion matrix ε2(aij(x)) and
let the hypotheses of Theorem 3.2 be satisfied. For every ε > 0 let uε(x) be the
solution of Dirichlet’s problem

ε2

2

∑

ij

aij(x)
∂2uε(x)

∂xi∂xj
+
∑

i

biε(x)
∂uε(x)

∂xi
= 0, x ∈ D,

uε(x) = g(x), x ∈ ∂D,

with continuous boundary function g. Then limε→0 u
ε(x) = g(y0), where y0 is a

point on the boundary at which miny∈∂D V (O, y) is attained (it is assumed that
this point is unique).

The proof of the theorem below is entirely analogous to that of Theorem 4.3
of Chap. 4.

Theorem 4.2. Let the dynamical system ẋt = b(xt) in Rr have a unique equi-
librium position O which is stable and attracts the trajectories beginning at any
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point of Rr. For sufficiently large |x| let the inequality (x, b(x)) ≤ −c|x|, where
c is a positive constant, be satisfied. Suppose that the family of diffusion processes
(Xε

t ,P
ε
x) with drift bε(x)→ b(x) and diffusion matrix ε2(aij(x)) satisfies the hy-

potheses of Theorem 3.1. Then the normalized invariant measure με of (Xε
t ,P

ε
x)

as ε→ 0 is described by the action function ε−2V (O, x).

The formulation and proof of the corresponding theorem for diffusion pro-
cesses on a manifold is postponed until Sect. 4 of Chap. 6. The matter is that
this theorem will be quite simple for compact manifolds but the trajectories of
a dynamical system on such a manifold cannot be attracted to one stable equi-
librium position. For families of jump-like processes, the corresponding theorem
will also be more complicated than Theorem 4.3 of Chap. 4 or Theorem 4.2 of
this chapter.

We indicate the changes in Theorem 3.1 of Chap. 4 enabling us to determine
the quasipotential.

Let A be a subset of the domain D with boundary ∂D. The problem RA for
a first-order differential equation in D is, by definition, the problem of finding a
function U continuous in D ∪ ∂D, vanishing on A and positive outside A, con-
tinuously differentiable and satisfying the equation in question in (D ∪ ∂D)\A
and such that∇U(x) �= 0 for x ∈ (D ∪ ∂D)\A.

Theorem 4.3. Let H(x, α)↔ L(x, β) be strictly convex functions smooth in the
second argument and coupled by the Legendre transformation. Let ST1T2(ϕ) =∫ T2

T1
L(ϕt, ϕ̇t) dt (for absolutely continuous functions ϕ and +∞ otherwise). Let

A be a compact subset of D. Let us put

V (A, x) = inf{ST1T2(ϕ) : ϕT1 ∈ A,ϕT2 = x;−∞ ≤ T1 < T2 ≤ ∞}. (4.1)

Suppose that U is a solution of problem RA for the equation

H(x,∇U(x)) = 0 (4.2)

in D ∪ ∂D. Then U(x) = V (A, x) for all x for which U(x) ≤ min{U(y) : y ∈
∂D}. The infimum in (4.1) is attained at the solution of the equation

ϕ̇t = ∇αH(ϕt,∇U(ϕt)) (4.3)

with the final condition ϕT2 = x for any T2 <∞ (then the value of ϕ automati-
cally belongs to A for some T1, −∞ ≤ T1 < T2).

Theorem 3.1 of Chap. 4 is a special case of this with H(x, α) = (b(x), α) +
|α|2/2, A = {0}.

Proof. Let ϕt, T1 ≤ t ≤ T2, be any curve connecting A with x and lying entirely
in D∪∂D. We use the inequality L(x, β) ≥

∑
i αiβ

i−H(x, α), following from
definition (1.1). Substituting ϕt, ϕ̇t and∇U(ϕt) for x, β and α, we obtain
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ST1T2(ϕ) =

∫ T2

T1

L(ϕ̇t, ϕt) dt

≥
∫ T2

T1

∑

i

∂U

∂xi
(ϕt)ϕ̇

i
t dt−

∫ T2

T1

H(ϕt,∇U(ϕt)) dt.

The second integral is equal to zero by (4.2). The first one is U(ϕT2)−U(ϕT1) =
U(x). Hence ST1T2(ϕ) ≥ U(x). If U(x) ≤ min{U(y) : y ∈ ∂D}, then the
consideration of curves going through the boundary before hitting x does not
yield any advantage and V (A, x) ≥ U(x).

Now we show that the value U(x) can be attained. For this we construct an
extremal. We shall solve (4.3) for t ≤ T2 with the condition ϕT2 = x. A so-
lution exists as long as ϕt does not go out of (D ∪ ∂D)\A, since the right
side is continuous (the solution may not be unique). We have (d/dt)U(ϕt) =∑

i(dU/∂x
i)(ϕt) · ϕ̇i

t = L(ϕt, ϕ̇t)+H(ϕt,∇U(ϕt)). The second term is equal
to zero. The first term is positive, since L(x, β) ≥ 0 and vanishes only for β =
b(x) = ∇αH(x, 0), which is not equal to ∇αH(x,∇U(x)) for x /∈ A (because
∇U(x) �= 0). Hence U(ϕt) decreases with decreasing t. Consequently, ϕt does
not go out of D ∪ ∂D. We prove that for some T1 < T2 (maybe for T1 = −∞)
the curve ϕt enters A. If this were not so, then the solution ϕt would be defined
for all t < T2 and the limit limt→−∞ U(ϕt) > 0 would exist. However, this
would mean that ϕt does not hit some neighborhood of the compactum A. Out-
side this neighborhood we have (d/dt)U(ϕt) = L(ϕt, ϕ̇t) ≥ const > 0, which
contradicts the existence of a finite limit of U(ϕt) as t→ −∞.

Now we determine the value of S at the function we have just obtained:

ST1T2(ϕ) =

∫ T2

T1

L(ϕt, ϕ̇t) dt =

∫ T2

T1

d

dt
U(ϕt) dt

= U(ϕT2)− U(ϕT1) = U(x).

The theorem is proved. ��

The hypotheses of this theorem can be satisfied only in the case where all
trajectories of the dynamical system ẋt = b(xt) beginning at points of D ∪ ∂D
are attracted to A as t→∞ (or they enter A). The same is true for Theorem 3.1
of Chap. 4.

As an example, we consider the family of one-dimensional jump-like pro-
cesses introduced at the beginning of Sect. 2. If l(x) > r(x) for x > x0 and
l(x) < r(x) for x < x0, then the point x0 is a stable equilibrium position
for the equation ẋt = r(xt) − l(xt). We solve problem Rx0 for the equation
H(x, U ′(x)) = 0, where H(x, α) = r(x)(eα − 1) + l(x)(e−α − 1). Given x,
the function H(x, α) vanishes at α = 0 and at α = ln(l(x)/r(x)). For x �= x0

we have to take the second value, because it is required that U ′(x) �= 0 for
x �= x0. We find that U(x) =

∫ x

x0
ln(l(y)/r(y)) dy (this function is positive

for both x > x0 and x < x0). It is in fact the quasipotential. An extremal of
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the normalized action functional is nothing else but a solution of the differential
equation ϕ̇t = (∂H/∂α)(ϕt, U

′(ϕt)) = l(ϕt)− r(ϕt).
Now we obtain immediately the solution of a series of problems connected

with the family of processes (Xh
t ,P

h
x): the probability that the process leaves

an interval (x1, x2) � x0 through the left endpoint converges to 1 as h ↓ 0 if
U(x1) < U(x2) and to 0 if the opposite inequality holds (for U(x1) = U(x2)
the problem remains open); the mathematical expectation of the first exit time is
logarithmically equivalent to exp{h−1 min[U(x1), U(x2)]} (this result has been
obtained by another method by Labkovskii [1]) and so on. The asymptotics of the
invariant measure of (Xh

t ,P
h
x) as h ↓ 0 is given by the action function h−1U(x)

(this does not follow from the results formulated by us; however, in this case
as well as in the potential case, considered in Sect. 4, of Chap. 4, the invariant
measure can easily be calculated explicitly).



Chapter 6

Markov Perturbations on Large Time Intervals

1 Auxiliary Results. Equivalence Relation

In this chapter we consider families of diffusion processes (Xε
t ,P

ε
x) on a con-

nected manifold M . We shall assume that these families satisfy the hypothe-
ses of Theorem 3.2 of Chap. 5 and the behavior of probabilities of large de-
viations from the “most probable” trajectory—the trajectory of the dynamical
system ẋt = b(xt)—can be described as ε → 0, by the action functional
ε−2S(ϕ) = ε−2ST1T2(ϕ), where

S(ϕ) =
1

2

∫ T2

T1

∑

ij

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt)) dt.

We set forth results of Wentzell and Freidlin [4], [5] and some generalizations
thereof.

In problems connected with the behavior of Xε
t in a domain D ⊆M on large

time intervals (problems of exit from a domain and for D = M the problem of
invariant measure; concerning special cases, cf. Sects. 2, 4 of Chap. 4 and Sect. 4
of Chap. 5), an essential role is played by the function

VD(x, y) = inf{S0T (ϕ) : ϕ0 = x, ϕT = y, ϕt ∈ D ∪ ∂D for t ∈ [0, T ]},

where the infimum is taken over intervals [0, T ] of arbitrary length. For D = M
we shall use the notation VM (x, y) = V (x, y).

For small ε, the function VD(x, y) characterizes the difficulty of passage from
x to a small neighborhood of y, without leaving D (or D ∪ ∂D), within a “rea-
sonable” time. For D = M we can give this, for example, the following exact
meaning: it can be proved that

V (x, y) = lim
T→∞

lim
δ→0

lim
ε→0

[−ε2 lnPε
x{τδ ≤ T}],

where τδ is the first entrance time of the δ-neighborhood of y for the process Xε
t .

It is easy to see that VD is everywhere finite. Let us study its more complicated
properties.

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
DOI 10.1007/978-3-642-25847-3_6, c© Springer-Verlag Berlin Heidelberg 2012
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Lemma 1.1. There exists a constant L > 0 such that for any x, y ∈ M with
ρ(x, y) < λ, there exists a function ϕt, ϕ0 = x, ϕT = y, T = ρ(x, y), for which
S0T (ϕ) ≤ L · ρ(x, y).

This is Lemma 2.3 of Chap. 4, adapted to manifolds. Here λ > 0 is the
radius of the neighborhoods in which the coordinate systems Kx0 are defined
(cf. Sect. 3, Chap. 5).

This lemma implies that VD(x, y) is continuous for x, y ∈ D and if the
boundary is smooth, for x, y ∈ D ∪ ∂D.

Lemma 1.2. For any γ > 0 and any compactum K ⊆ D (in the case of a smooth
boundary, for K ⊆ D ∪ ∂D) there exists T0 such that for any x, y ∈ K there
exists a function ϕt, 0 ≤ t ≤ T , ϕ0 = x, ϕT = y, ϕt ∈ D for 0 < t < T ,
T ≤ T0 such that S0T (ϕ) ≤ VD(x, y) + γ.

For the proof, we choose a sufficiently dense finite δ-net {xi} of points in K;
we connect them with curves at which the action functional assumes values dif-
fering from the infimum by less than γ/2 and complete them with end sections
by using Lemma 1.1: from x to a point xi near x, then from xi to a point xj

near y, and from xj to y.
Let ϕt, 0 ≤ t ≤ T , be a continuous curve in M and let 0 = t0 < t1 <

· · · < tn = T be a partition of the interval from 0 to T , such that all values
ϕt for t ∈ [ti, ti+1] lie in one coordinate neighborhood Kxi . We can define a
“polygon” l inscribed in ϕ by defining lt for t ∈ [ti, ti+1] by means of coordinates
in Kxi : l

j
t = ϕj

ti [(ti+1 − t)/(ti+1 − ti)] + ϕj
ti+1

[(t− ti)/(ti+1 − ti)].

Lemma 1.3. For any K > 0 and any γ > 0 there exists a positive h such that for
any function ϕt, 0 ≤ t ≤ T , T + S0T (ϕ) ≤ K, and any partition of the interval
from 0 to T with max(ti+1 − ti) ≤ h we have

S0T (l) ≤ S0T (ϕ) + γ.

The first step of the proof is application of the equicontinuity of all such ϕ
in order to establish that for sufficiently small h, the values ϕt, ti ≤ t ≤ ti+1,
lie in one coordinate neighborhood Kxi and the number of different coordinate
systems Kxi is bounded from above by a number depending only on K. This is
the assertion of Lemma 2.1 of Chap. 5 concerning which we referred the reader
to Wentzell [7], [8] (however, for a function L(x, β) quadratic in β, the proof is
simpler).

We have already seen in the proof of Theorem 2.1 of Chap. 4 that in our ar-
guments we have to go out to a small distance from the boundary of D or, on
the other hand, we have to consider only points lying inside D at a positive dis-
tance from the boundary. Let ρ(x, y) be a Riemannian distance corresponding
to a smooth tensor gij(x) : (dρ)2 =

∑
ij gij(x) dx

i dxj . We denote by D+δ the
δ-neighborhood of D and by D−δ the set of points of D at a distance greater than
δ from the boundary. In the case of a compact twice continuously differentiable
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boundary ∂D, the boundaries ∂D+δ and ∂D−δ are also twice continuously dif-
ferentiable for sufficiently small δ. For points x lying between ∂D−δ and ∂D+δ

or on them, the following points are defined uniquely: (x)0 is the point on ∂D
closest to x; (x)−δ is the point on ∂D−δ closest to x; (x)+δ is the point on ∂D+δ

closest to x. The mappings x → (x)0, x → (x)−δ and x → (x)+δ are twice
continuously differentiable.

Lemma 1.4. Let ∂D be compact and twice continuously differentiable. For any
K > 0 and any γ > 0 there exists δ0 > 0 such that for any positive δ ≤ δ0 and
any function ϕt, 0 ≤ t ≤ T , T + S0T (ϕ) ≤ K, assuming its values in D ∪ ∂D,
there exists a function ϕ̃t, 0 ≤ t ≤ T̃ , having the following properties: The value
ϕ̃0 coincides with ϕ0 if ϕ0 ∈ D−δ ∪∂D−δ and is equal to (ϕ0)−δ otherwise; the
same is true for ϕ̃T , ϕT and S0T̃ (ϕ̃) ≤ S0T̃ (ϕ) + γ.

The same is true for D+δ and D replacing D and D−δ .

Proof. First of all we locally “straighten” the boundary, possibly decreasing λ
and in neighborhoods covering the boundary we choose new local coordinates
x1, x2, . . . , xr in which ∂D becomes the hyperplane {x1 = 0}, for points x in
a small neighborhood of the boundary outside D the coordinate x1 is equal to
ρ(x, ∂D) and for points near ∂D inside D, x1 = −ρ(x, ∂D). In these coordinate
systems, the coefficients aij(x), aij(x) will differ from those in the original stan-
dard systems Kx0 but will be uniformly bounded and continuous for all these
systems (with constants and moduli of continuity depending on the curvature
of ∂D).

The fact that S(ϕ) is quadratic is insignificant now. We only use the circum-
stance that it can be represented in the form

S0T (ϕ) =

∫ T

0

L(ϕt, ϕ̇t) dt,

where L(x, β) is convex and satisfies conditions II and III of Theorem 2.1 of
Chap. 5 in every local coordinate system.

We choose a positive λ′, not exceeding λ/2 or γ/3L (L is the constant in
Lemma 1.1). Using the equicontinuity of all functions ϕ under consideration, we
choose h0 > 0 such that the values of any of the ϕ on any interval of length not
greater than h0 lie in the λ′-neighborhood of the left endpoint. We decrease h0 so
that for the “polygon” l inscribed in ϕ with time step not exceeding h0, we have
S0T (l) ≤ S0T (ϕ) + γ/3 (cf. Lemma 1.3). Let us put n = [K/h0] + 1.

For any function ϕt defined on an interval of length T > h0, we take the par-
tition of the interval from 0 to T into n equal parts and consider the corresponding
polygon lt, 0 ≤ t ≤ T . In each of the local coordinate systems chosen by us, the
modulus of the derivative of lt does not exceed R = nλ′/h0 at any point. We
choose a positive δ0 ≤ λ′ such that ΔL(δ0) ≤ γ/(3K + γ) (cf. condition III
of Theorem 2.1, Chap. 5) and δ0 · n supx∈M,|β|≤R |(∂L/∂β′)(x, β)| ≤ γ/3 (cf.
condition II).
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For every δ ≤ δ0 and each of the functions ϕt under consideration we define
a function ϕ̃t, 0 ≤ t ≤ T̃ = T :

ϕ̃t =

{
lt if lt ∈ D−δ ∪ ∂D−δ

(lt)−δ otherwise.

This function satisfies the conditions concerning the initial and terminal points.
We estimate S0T (ϕ̃). We have

S0T (ϕ̃)− S0T (l) =

∫ T

0

[L(ϕ̃t, ˙̃ϕt)− L(ϕ̃t, l̇t)] dt

+

∫ T

0

[L(ϕ̃t, l̇t)− L(lt, l̇t)] dt. (1.1)

(The expression L(ϕ̃t, l̇t) is meaningful, since because of the choice δ0 ≤ λ′ ≤
λ/2, on the whole interval from iT/n to (i+ 1)T/n the points ϕ̃t and lt are in a
neighborhood where one of the local coordinate systems chosen by us acts.)

The value ϕ̃t is different from lt only when lt is in the δ-strip along the
boundary, i.e., on not more than n little intervals [ti, ti+1] ⊆ [iT/n, (i+1)T/n].
Moreover, only the first coordinates may be different. In the first integral in (1.1)
we have ˙̃ϕt and l̇t; the first of these derivatives, just as the second one, does not
exceed R in modulus (because it either coincides with lt or differs from lt by a
vanishing first coordinate). We have

∫ (i+1)T/n

iT/n

[L(ϕ̃t, ˙̃ϕt)− L(ϕ̃t, l̇t)] dt

=

∫ ti+1

ti

∂L

∂β1
(ϕ̃t, β(t)) · ( ˙̃ϕ1

1 − l̇1t ) dt. (1.2)

Here β(t) is a point of the interval connecting ˙̃ϕt with l̇t (which varies with t in
general), ˙̃ϕ1

t − l̇1t does not depend on t and is equal to

(ϕ̃1
ti+1

− l1ti+1
− ϕ̃1

ti + l1ti)(ti+1 − ti).

We pull this constant out of the integral. We use the facts that |∂L/∂β1| ≤
γ/3nδ0 and that 0 ≤ l1t − ϕ̃1

t ≤ δ for all t. We obtain that the integral (1.2)
does not exceed y/3n and the first integral in (1.1) is not greater than γ/3.

The second integral in (1.1) does not exceed

ΔL(δ) ·
∫ T

0

(1 + L(lt, l̇t)) dt ≤
γ

3K + γ
· (T + S0T (l)) ≤

γ

3
.

Finally,
S0T (ϕ̃) ≤ S0T (l) + 2γ/3 ≤ S0T (ϕ) + γ.



146 6. Markov Perturbations on Large Time Intervals

On the other hand, if T < h0, then ρ(ϕ0, ϕT ) ≤ λ′; the distances of ϕ0 and
ϕT from the points ϕ̃0 and ϕ̃T̃ do not exceed δ ≤ δ0 ≤ λ′, so that ρ(ϕ̃0, ϕ̃T̃ ) ≤
3λ′ ≤ γ/L. Using Lemma 1.1, we obtain that these points are connected by the
curve ϕ̃t, 0 ≤ t ≤ T̃ = ρ(ϕ̃0, ϕ̃T ), S0T̃ (ϕ̃) ≤ γ ≤ S0T (ϕ) + γ; this curve does
not leave D−δ ∪ ∂D−δ .

The proof can be preserved for curves ϕt in D+δ ∪ ∂D+δ and ϕ̃t in D∪ ∂D.
��

It follows from Lemma 1.4 that VD(x, y) changes little as D is changed to
D+δ with small δ, uniformly in x and y, varying within the boundaries of some
compactum in D ∪ ∂D. It also changes little as D is changed to D−δ . In this
case, if x or y lies outside D−δ ∪ ∂D−δ , then they have to be replaced by (x)−δ

or (y)−δ , respectively.
With VD(x, y) there is associated an equivalence relation∼D between points

of D ∪ ∂D : x ∼D y if VD(x, y) = VD(y, x) = 0. This relation depends only
on the dynamical system and does not change if the matrix (aij(x)) is changed
to another matrix for which the maximal and minimal eigenvalues are different
from each other by a bounded factor. For D = M , we simply write x ∼ y in
place of x∼M y. It is clear that x∼D y implies x ∼ y.

It follows from Lemma 1.1 that in the case of a smooth boundary ∂D, the
points equivalent to each other form a closed set.

Lemma 1.5. Let x ∼D y, y �= x. The trajectory xt(x) of the dynamical system
ẋt = b(xt) beginning at x lies in the set of points z ∼D x.

Proof. There exists a sequence of functions ϕ
(n)
t , 0 ≤ t ≤ Tn, ϕ(n)

0 = x,

ϕ
(n)
Tn

= y, lying entirely in D ∪ ∂D and such that S0Tn(ϕ
(n)) → 0. The Tn

are bounded from below by a positive constant, say T . For the functions ϕ
(n)
t

on the interval from 0 to T , the values of S0T converge to 0. Therefore, some
subsequence of these functions converges, uniformly on [0, T ], to a function ϕt

with S0T (ϕ) = 0, i.e., to the trajectory xt(x) of the dynamical system. The
points xt(x), 0 ≤ t ≤ T , are equivalent to x and y; this follows from the fact that
VD(x, ϕ

(n)
t ) and VD(ϕ

(n)
t , y) do not exceed S0Tn(ϕ

(n))→ 0 as n→∞.
We continue with xT (x). We choose that one of the points x and y which is

farther from xT (x). If it is, say, x, then we have ρ(xT (x), x) ≥ 1
2ρ(x, y). In the

same way as earlier, we obtain that over some time interval, xt(x) goes within
the set of points equivalent to x. These intervals are bounded from below by a
positive constant and thus we obtain our assertion for all t > 0 by successive
application of the above argument. It is easy to see that our assertion is also true
for t < 0. ��

Any ω-limit set, i.e., any set of partial limits of a trajectory of the dynamical
system as t → ∞, consists of equivalent points; this follows from Lemma 1.1.
A maximal set of points equivalent to each other, containing some ω-limit set
may consist of one ω-limit set, it may be the sum of a finite or infinite number
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Figure 10.

Figure 11.

of ω-limit sets, or it may contain further points not belonging to any ω-limit
set. Moreover, such a set contains, with every point, a whole trajectory of the
dynamical system.

We give some examples. Let the trajectories of a system be concentric circles
(Fig. 10). In this case, for any two points x, y of a closed trajectory we have
x ∼ y. However, x�D y for x �= y if D has the form indicated in the figure.

In Fig. 11, if the trajectories not drawn approach the trajectories drawn, there
are six different ω-limit sets: the point 1, the point 2, the exterior curve (including
the point 1), the union of the exterior curve and the intermediate curve, the union
of the intermediate curve and the interior curve, the interior curve; the union of
these ω-limit sets forms a maximal set of points equivalent to each other. In the
case where the trajectories not drawn move away from those drawn, the set of
equivalent points remains the same but there remain only two ω-limit sets: the
points 1 and 2.

Lemma 1.6. Let all points of a compactum K ⊆ D ∪ ∂D be equivalent to each
other but not equivalent to any other point in D ∪ ∂D. For any γ > 0, δ > 0 and
x, y ∈ K there exists a function ϕt, 0 ≤ t ≤ T , ϕ0 = x, ϕT = y, entirely in the
intersection of D∪∂D with the δ-neighborhood of K and such that S0T (ϕ) < γ.

Proof. We connect the points x and y with curves

ϕ
(n)
t ∈ D ∪ ∂D, 0 ≤ t ≤ Tn, γ > S0Tn(ϕ

(n))→ 0.
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If all curves ϕ(n) left the δ-neighborhood of K, then they would have a limit
point outside this δ-neighborhood, equivalent to x and y. ��

Lemma 1.7. Let all points of a compactum K be equivalent to each other and
let K �= M . Let us denote by τG the time of first exit of the process Xε

t from
the δ-neighborhood G of K. For any γ > 0 there exists δ > 0 such that for all
sufficiently small ε, x ∈ G we have

Mε
xτG < eγε

−2

. (1.3)

Proof. We choose a point z outside K such that ρ(z,K) < γ/3L ∧ λ where L
and λ are the constants from Lemma 1.1. We put δ = ρ(z,K)/2 and consider
the δ-neighborhood G ⊃ K. We denote by x′ the point of K closest to x (or any
of the closest points if there are several such points) and by y the point closest
to z. According to Lemma 1.2, for every pair of points x′, y ∈ K there exists a
function ϕt, 0 ≤ t ≤ T , ϕ0 = x′, ϕT = y, such that S0T (ϕ) < γ/3, and T
is bounded by some constant independent of the initial and terminal points. We
complete the curve ϕt at the beginning and at the end with little segments leading
from x to x′ and from y to z, with the values of S not exceeding γ/6 and γ/3,
respectively. Then the length of the time interval on which each of the functions
ϕ̃t is defined is uniformly bounded for x ∈ G by a constant T0 and the value
of S at each of these functions does not exceed 5γ/6. We extend the definition
of each of these functions up to the end of the interval [0, T0] as the solution of
ẋt = b(xt); this does not increase the value of S.

Now we use Theorem 3.2 of Chap. 5: for x ∈ G we have

Pε
x{τG < T0} ≥ Pε

x{ρ0T0(X
ε, ϕ̃) < δ} ≥ e−0.9y·ε−2

.

Using the Markov property, we obtain that

Pε
x{τG ≥ nT0} ≤ [1− e−0.9γ·ε−2

]n.

This yields

Mε
xτG ≤ T0

∞∑

n=0

[1− e−0.9γ·ε−2

]n = T0e
0.9γ·ε−2

.

Sacrificing 0.1γ in order to get rid of T0, we obtain the required estimate. ��

Lemma 1.8. Let K be an arbitrary compactum and let G be a neighborhood
of K. For any γ > 0 there exists γ > 0 such that for all sufficiently small ε and
x belonging to the closed δ-neighborhood g ∪ ∂g of K we have

Mε
x

∫ τG

0

χg(X
ε
t ) dt > e−γε−2

. (1.4)
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Proof. We connect the point x ∈ g∪∂g and the closest point x′ of K with a curve
ϕt with the value of S not greater than γ/3 (this can be done for sufficiently
small γ). We continue this curve by a solution of ẋt = b(xt) until exit from
g ∪ ∂g in such a way that the interval on which the curve is defined has length
not greater than some T < ∞ independent of x. The trajectory of Xε

t is at a
distance not greater than δ/2 from ϕt with probability not less than e−2γε−2/3

(for small ε); moreover, it is in g until exit from G, it spends a time bounded from
below by a constant t0 and the mathematical expectation in (1.4) is greater than
t0e

−2γε−2/3.
��

Now we prove a lemma which is a generalization of Lemma 2.2 of Chap. 4.

Lemma 1.9. Let K be a compact subset of M not containing any ω-limit set en-
tirely. There exist positive constants c and T0 such that for all sufficiently small ε
and any T > T0 and x ∈ K we have

Pε
x{τK > T} ≤ e−ε−2·c(T−T0), (1.5)

where τK is the time of first exit of Xε
t from K.

Proof. Using the continuous dependence of a solution on the initial conditions,
it is easy to see that for sufficiently small δ, the closed δ-neighborhood K+δ of
K does not contain any ω-limit set entirely, either. For x ∈ K+δ we denote by
τ(x) the time of first exit of the solution xt(x) from K+δ . We have τ(x) < ∞
for all x ∈ K+δ . The function τ(x) is upper semicontinuous, and consequently,
it attains its largest value maxx∈K+δ

τ(x) = T1 <∞.
We put T0 = T1+1 and consider all functions ϕt defined for 0 ≤ t ≤ T0 and

assuming values only in K+δ. The set of these functions is closed in the sense of
uniform convergence, and consequently, S0T attains its minimum A on this set.
The minimum is positive, since there are no trajectories of the dynamical system
among the functions under consideration.

Then, using Theorem 3.2 of Chap. 5, in the same way as in the proof of
Lemma 2.2 of Chap. 4, we obtain:

Pε
x{τK > T0} ≤ exp{−ε−2(A− γ)},

Pε
x{τK > T} ≤ exp

{
−ε−2

(
T

T0
− 1

)
(A− λ)

}
.

��

Corollary. It follows from Lemma 1.9 that for ε smaller than some ε0 and for all
x ∈ K we have

Mε
xτK ≤ T0 + ε2/c < T ′

0 = T0 + ε20/c.
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2 Markov Chains Connected with the Process (Xε
t ,P

ε
x)

In this section we shall assume that D is a domain with smooth boundary and
compact closure on a manifold M . We impose the following restrictions on the
structure of the dynamical system in D ∪ ∂D:

(A) in D there exist a finite number of compacta K1,K2, . . . ,Kl such that:

(1) for any two points x, y belonging to the same compactum we have x∼D y;
(2) if x ∈ Ki and y /∈ Ki then x�D y;
(3) every ω-limit set of the dynamical system ẋt = b(xt), lying entirely in D ∪

∂D, is contained in one of the Ki.

We have seen (Sects. 2, 4, Chap. 4 and Sect. 4, Chap. 5) that in the case of a
dynamical system with one (stable) equilibrium position O, for the study of the
behavior of the process Xε

t on large time intervals for small ε, an essential role is
played by the Markov chain Zn on the set γ ∪ ∂D, where γ is the boundary of a
small neighborhood of O. We have also seen that the asymptotics of the transition
probabilities of this chain are almost independent of the initial point x ∈ γ, so
that for small ε, the chain Zn behaves as a simple Markov chain with a finite
number of states. The asymptotics of the transition probabilities of the chain were
determined by the quantities V0 = min{V (O, y) : y ∈ ∂D}, min{V (O, y) :
y ∈ ∂D\Eδ(y0)}. For example, for small ε, the transition probability P (x, ∂D)
for x ∈ γ is between exp{−ε−2(V0 ± δ)}, where γ > 0 is small. We use an
analogous construction in the case of systems satisfying condition (A).

We introduce the following notation:

ṼD(Ki,Kj) = inf

{
S0T (ϕ) : ϕ0 ∈ Ki, ϕT ∈ Kj , ϕt ∈ (D ∪ ∂D)\

⋃

s =i,j

Ks

for 0 < t < T

}

(if there are no such functions, we set ṼD(Ki,Kj) = +∞). For x, y ∈ D ∪ ∂D
we set

ṼD(x,Kj) = inf

{
S0T (ϕ) : ϕ0 = x, ϕT ∈ Kj , ϕt ∈ (D ∪ ∂D)\

⋃

s =j

Ks

for 0 < t < T

}
;

ṼD(Ki, y) = inf

{
S0T (ϕ) : ϕ0 ∈ Ki, ϕT = y, ϕt ∈ (D ∪ ∂D)\

⋃

s =i

Ks

for 0 < t < T

}
;
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Figure 12.

ṼD(x, y) = inf

{
S0T (ϕ) : ϕ0 = x, ϕT = y, ϕt ∈ (D ∪ ∂D)\

⋃

s

Ks

for 0 < t < T

}
.

Finally,

ṼD(Ki, ∂D) = min
y∈∂D

ṼD(Ki, y);

ṼD(x, ∂D) = min
y∈∂D

ṼD(x, y).

It is these quantities which determine the asymptotics of transition probabilities
of the Markov chain connected with the process Xε

t .
We consider an example. Let M = R2 and let the trajectories of the dy-

namical system have the form depicted in Fig. 12. Then there are four compacta
consisting of equivalent points and containing the ω-limit sets.

It is easy to see that ṼD(K1, y) = 0 for all y inside the cycle K2 and in
particular, on K2 we have ṼD(K1,K2) = 0; ṼD(K1, y) = ∞ for all y outside
K2, whence ṼD(K1,K3) = ṼD(K1,K4) = ṼD(K1, ∂D) = ∞. In the same
way, ṼD(K3,K1) = ṼD(K4,K1) =∞. Further, the values ṼD(K2, y) are finite
and positive if y /∈ K2, etc. The following matrix of ṼD(Ki,Kj) is consistent
with the structure, depicted in Fig. 12, of trajectories of the dynamical system:

⎛

⎜⎜⎝

0 0 ∞ ∞
1 0 9 9
∞ 6 0 6
∞ 0 0 0

⎞

⎟⎟⎠ . (2.1)

(That ṼD(K2,K4) is equal to ṼD(K2,K3) and ṼD(K4,K2) = ṼD(K4,K3) = 0
can be proved easily.)
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Knowing ṼD(Ki,Kj) for all i, j, it is easy to determine

VD(Ki,Kj) = VD(x, y)|x∈Ki,y∈Kj .

Namely,

VD(Ki,Kj) = ṼD(Ki,Kj) ∧min
s

[ṼD(Ki,Ks) + ṼD(Ks,Kj)]

∧ min
s1,s2

[ṼD(Ki,Ks1) + ṼD(Ks1 ,Ks2) + ṼD(Ks2 ,Kj)]

∧ · · · ∧ min
s1,s2,...,sl−2

[ṼD(Ki,Ks1) + · · ·+ ṼD(Ksl−2
,Kj)].

We can express VD(Ki, y), VD(x,Kj), VD(x, y) similarly. This can be proved
by using Lemma 1.6. In the example considered by us, the VD(Ki,Kj) form the
following matrix: ⎛

⎜⎜⎝

0 0 9 9
1 0 9 9
7 6 0 6
1 0 0 0

⎞

⎟⎟⎠ . (2.2)

Let ρ0 be a positive number smaller than half of the minimum of the dis-
tances between Ki,Kj and between Ki, ∂D. Let ρ1 be a positive number
smaller than ρ0. We denote by C the set D ∪ ∂D from which we delete the ρ0-
neighborhoods of Ki, i = 1, . . . , l, by Γi the boundaries of the ρ0-neighborhoods
of the Ki, by gi the ρ1-neighborhoods of the Ki, and by g the union of the
gi. We introduce the random times τ0 = 0, σn = inf{t ≥ τn : Xε

t ∈ C},
τn = inf{t ≥ σn−1 : Xε

t ∈ ∂g∪∂D} and consider the Markov chain Zn = Xε
τn .

From n = 1 on, Zn belongs to ∂g ∪ ∂D. As far as the times σn are concerned,
Xε

σ0
can be any point of C; all the following Xε

σn
until the time of exit of Xε

t

to ∂D belong to one of the surfaces Γi and after exit to the boundary we have
τn = σn = τn+1 = σn+1 = · · · and the chain Zn stops.

The estimates of the transition probabilities of the Zn provide the following
two lemmas.

Lemma 2.1. For any γ > 0 there exists ρ0 > 0 (which can be chosen arbitrar-
ily small) such that for any ρ2, 0 < ρ2 < ρ0, there exists ρ1, 0 < ρ1 < ρ2
such that for any δ0 smaller than ρ0 and sufficiently small ε, for all x in the ρ2-
neighborhood Gi of the compactum Ki (i = 1, . . . , l) the one-step transition
probabilities of Zn satisfy the inequalities

exp{−ε−2(ṼD(Kt,Kj) + γ)} ≤ P (x, ∂gj)

≤ exp{−ε−2(ṼD(Ki,Kj)− γ)}; (2.3)

exp{−ε−2(ṼD(Ki, ∂D) + γ)} ≤ P (x, ∂D)

≤ exp{−ε−2(ṼD(Kt, ∂D)− γ)}; (2.4)

for all y ∈ ∂D we have
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exp{−ε−2(ṼD(Ki, y) + γ)} ≤ P (x, ∂D ∩ Eδ0(y))

≤ exp{−ε−2(ṼD(Ki, y)− γ)}. (2.5)

In particular, if D coincides with the whole manifold M (and M is compact),
then ∂D = ∅, the chain Zn has ∂g as its space of states, and (2.3) implies that
for x ∈ ∂gi, P (x, ∂gj) lies between exp{−ε−2(Ṽ (Ki,Kj)± γ)}.

We provide a figure for this and the next lemma (Fig. 13).

Proof. First of all, ṼD(Ki,Kj) = +∞ (or ṼD(Ki, ∂D) = +∞, ṼD(Ki, y) =
+∞) means that there is no smooth curve connecting Ki with Kj in D∪∂D and
not touching the other compacta (or connecting Ki with ∂D or y on the boundary,
respectively). From this it is easy to derive that they cannot be connected even
with a continuous curve not touching the indicated compacta. This implies that
for ṼD(Ki,Kj) = ∞ (or ṼD(Ki, ∂D) = ∞, ṼD(Ki, y) = ∞), the transition
probabilities in (2.3) (or (2.4), (2.5), respectively) are equal to zero. As far as the
finite ṼD(Ki,Kj), ṼD(Ki, y) are concerned, they are bounded by some V0 <∞.

We note that it is sufficient to prove (2.3) and (2.5); estimate (2.5) will imply
(2.4), since ∂D can be covered by a finite number of δ0-neighborhoods.

We choose a positive ρ0 smaller than γ/10L, λ/2 (L and λ are constants from
Lemma 1.1) and a third of the minimum distance between Ki, Kj and ∂D. Let a
ρ2, 0 < ρ2 < ρ0 be chosen. By Lemma 1.4 there exists a positive δ ≤ ρ0/2 such
that for all i, j = 1, . . . , l and y ∈ ∂D we have

ṼD+δ
(Ki,Kj) ≥ ṼD(Ki,Kj)− 0.1γ,

ṼD−δ
(Ki,Kj) ≤ ṼD(Ki,Kj) + 0.1γ,

ṼD+δ
(Ki, y) ≥ ṼD(Ki, y)− 0.1γ,

ṼD−δ
(Ki, (y)−δ) ≥ ṼD(Ki, y) + 0.1γ.

For every pair Ki, Kj for which ṼD(Ki,Kj) < ∞ we choose a function

ϕ
Ki,Kj

t , 0 ≤ t ≤ T = T (Ki,Kj), such that ϕKi,Kj

0 ∈ Ki, ϕ
Ki,Kj

T ∈ Kj ,
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ϕ
Ki,Kj

t does not touch
⋃

s =i,j Ks, does not leave D−δ ∪ ∂D−δ for 0 ≤ t ≤ T ,
and for which

S0T (ϕ
Ki,Kj ) ≤ ṼD(Ki,Kj) + 0.2γ.

Further, on ∂D we choose a ρ2-net y1, . . . , yN . For every pair Ki, yk for

which ṼD(Ki, yk) <∞, we choose a function ϕKi,yk
t , 0 ≤ t ≤ T = T (Ki, yk),

ϕKi,yk

0 ∈ Ki, ϕ
Ki,yk

T = (yk)−δ , which does not touch
⋃

s =i Ks, does not leave
D−δ ∪D−δ , and for which

S0T (ϕ
Ki,yk) ≤ ṼD(Ki, yk) + 0.2γ.

We fix a positive ρ1 smaller than ρ2, ρ0/2,

1

2
min

{
ρ

(
ϕ
Ki,Kj

t ,
⋃

s =i,j

Ks

)
: 0 ≤ t ≤ T (Ki,Kj), i, j = 1, . . . , l

}

and

1

2
min

{
ρ

(
ϕKi,yk
t ,

⋃

s =i

Ks

)
: 0 ≤ t ≤ T (Ki, yk), i = 1, . . . , l; k = 1, . . . , N

}
.

Let an arbitrary positive δ0 ≤ ρ0 be chosen. We derive estimates (2.3) and (2.5).
We choose a positive δ′ not exceeding δ, ρ1 or ρ0 − ρ2 and such that the δ′-

neighborhood of the segment of the normal passing through any point y ∈ ∂D
intersects the boundary in Eδ0(y). First we derive the lower estimates.

Let ṼD(Ki,Kj) < ∞. In accordance with Lemma 1.1, for any x ∈ Gi we
take a curve connecting x with a point x′ ∈ Ki for which the value of S does
not exceed 0.1γ; the distance between this curve and the set C is not smaller
than δ′. Then, according to Lemma 1.6, we find a curve in Gi which connects x′

with ϕ
Ki,Kj

0 ∈ Ki, with the value of S not greater than 0.1γ again. We combine
these curves, complete them with the curve ϕ

Ki,Kj

t and obtain a function ϕt,
0 ≤ t ≤ T (ϕt and T depend on x ∈ Gi and j), ϕ0 = x, ϕT ∈ Kj such
that S0T (ϕ) ≤ ṼD(Ki,Kj) + 0.4γ. For j = i we define ϕt so that it connects
x ∈ Gi with a point x′′ at distance ρ0 + δ′ from Ki and then with the closest
point of Ki; then S0T (ϕ) ≤ 0.6γ = ṼD(Ki,Kj) + 0.6γ. The lengths of the
intervals of definition of the functions ϕt constructed for all possible compacta
Ki,Kj and points x ∈ Gi can be bounded from above by a constant T0 < ∞
(cf. Lemmas 1.1 and 1.2). We extend all functions ϕt to the intervals from T to
T0 to be a solution of ẋt = b(xt) so that S0T0(ϕ) = S0T (ϕ).

If a trajectory of Xε
t passes at a distance from ϕt smaller than δ′ for 0 ≤

t ≤ T0, then the trajectory intersects Γi and reaches the δ′-neighborhood of
Kj without getting closer than ρ2 + δ′ to any of the other compacta; moreover,
Xε

τ1 ∈ ∂gj . Using Theorem 3.2 of Chap. 5, we obtain for ε not exceeding some
ε0 depending only on γ, V0, T0, and δ′:
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P (x, ∂gj) ≥ Pε
x{ρ0T0(X

ε, ϕ) < δ′}
≥ exp{−ε−2(S0T0(ϕ) + 0.1γ)}
> exp{−ε−2(ṼD(Ki,Kj) + γ)}.

The lower estimate in (2.3) has been obtained; we pass to estimate (2.5). Let
x ∈ Gi, y ∈ ∂D, ṼD(Ki, y) < ∞. We choose a point yk from our ρ0-net such
that ρ(yk, y) < ρ0; then ρ((yk)−δ, (y)−δ) < 2ρ0. We connect x and x′ ∈ Ki

with a curve with the value of S not greater than 0.1γ and x′ and ϕKi,yk

0 ∈ Ki

with the “value” of S not greater than 0.1γ. We complete the curve thus obtained
with ϕKi,yk

t . Then we reach (yk)−δ and the total value of S is not greater than
ṼD(Ki, y) + 0.5γ. We connect (yk)−δ with (y)+δ through (y)−δ , increasing the
value of S by no more than 0.3γ. Finally, we extend all functions constructed so
far to the same interval [0, T0] to be a solution of ẋt = b(xt) in such a way that
S0T0(ϕ) ≤ ṼD(Ki, y) + 0.8γ.

Using Theorem 3.2 of Chap. 5 again, we obtain the lower estimate in (2.5).
Now we obtain the upper estimates.
It is sufficient to prove estimates (2.3) and (2.5) for x ∈ Γi (this follows

from the strong Markov property). By virtue of the choice of ρ0 and δ′, for any
curve ϕt, 0 ≤ t ≤ T beginning on Γi, touching the δ′-neighborhood of ∂gj (the
(δ0 + δ′)-neighborhood of y ∈ ∂D), not touching the compacta Ks, s �= i, j and
not leaving D+δ ∪ ∂D+δ, we have: S0T (ϕ) ≥ ṼD(Ki,Kj) −0.3γ(S0T (ϕ) ≥
ṼD(Ki, y)−0.4γ). Using Lemma 1.9, we choose T1 such that for all sufficiently
small ε > 0 and x ∈ (D ∪ ∂D)\g we have Pε

x{τi > T1} ≤ exp{−ε−2V0}.
Any trajectory of Xε

t beginning at a point x ∈ Γi and being in ∂gj (in ∂D ∩
Eδ0(y)) at time τ1 either spends time T1 without touching ∂g ∪ ∂D or reaches
∂gj(∂D ∩ Eδ0(y)) over time T1; in this case

ρ0T1(X
ε,Φx(ṼD(Ki,Kj)− 0.3γ)) ≥ δ′

(ρ0T1(X
ε,Φx(ṼD(Ki, y)− 0.4γ)) ≥ δ′).

Therefore, for any x ∈ Γi, we have

Pε
x{Xε

τ1 ∈ ∂gj} ≤ Pε
x{τ1 > T1}
+ Pε

x{ρ0T1(X
ε,Φx(ṼD(Ki,Kj)− 0.3γ)) ≥ δ′}; (2.6)

Pε
x{Xε

τ1 ∈ ∂D ∪ Eδ0(y)} ≤ Pε
x{τ1 > T1}
+ Pε

x{ρ0T1(X
ε,Φx(ṼD(Ki, y)− 0.4γ))

≥ δ′}. (2.7)

For small ε the first probability on the right side of (2.6) and (2.7) does not exceed
exp{−ε−2V0} and by virtue of Theorem 3.2 of Chap. 5 the second one is smaller
than exp{−ε−2(ṼD(Ki,Kj)− 0.5γ)} (exp{−ε−2(ṼD(Ki, y)− 0.5γ)}) for all
x ∈ Γi. From this we obtain the upper estimates in (2.3) and (2.5). ��
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Lemma 2.2. For any γ > 0 there exists ρ0 > 0 (which can be chosen arbitrarily
small) such that for any ρ2, 0 < ρ2 < ρ0 there exists ρ1, 0 < ρ1 < ρ2 such
that for any δ0, 0 < δ0 ≤ ρ0, sufficiently small ε and all x outside the ρ2-
neighborhood of the compacta Ki and the boundary ∂D, the one-step transition
probabilities of the chain Zn satisfy the inequalities

exp{−ε−2(ṼD(x,Kj) + γ)} ≤ P (x, ∂gj) ≤ exp{−ε−2(ṼD(x,Kj)− γ)};
(2.8)

exp{−ε−2(ṼD(x, ∂D) + γ)} ≤ P (x, ∂D) ≤ exp{−ε−2(ṼD(x, ∂D)− γ)};
(2.9)

exp{−ε−2(ṼD(x, y) + γ)} ≤ P (x, ∂D ∩ Eδ0(y))

≤ exp{−ε−2(ṼD(x, y)− γ)}. (2.10)

Proof. We choose a ρ0 as in the proof of the preceding lemma. Let ρ2, 0 < ρ2 <
ρ0, be given. Let us denote by Cρ2 the compactum consisting of the points of
D ∪ ∂D except the ρ2-neighborhoods of Ki and ∂D. We choose δ, 0 ≤ δ ≤
ρ0/2, such that for all x ∈ Cρ2 , j = 1, . . . , l and y ∈ ∂D we have

ṼD+δ
(x,Kj) ≥ ṼD(x,Kj)− 0.1γ,

ṼD−δ
(x,Kj) ≤ ṼD(x,Kj) + 0.1γ,

ṼD+δ
(x, y) ≥ ṼD(x, y)− 0.1γ,

ṼD−δ
(x, (y)−δ) ≤ ṼD(x, y) + 0.1γ.

We choose ρ2-nets x1, . . . , xM in Cρ2 and y1, . . . , yN on ∂D. For every pair

xi,Kj for which ṼD(xi,Kj) < ∞ we select a function ϕ
xi,Kj

t , 0 ≤ t ≤ T =

T (xi,Kj), ϕ
xi,Kj

0 = xi, ϕ
xi,Kj

T ∈ Kj , which does not touch
⋃

s =j Ks, does not

leave Dδ ∪ ∂D−δ and for which S0T (ϕ
xi,Kj ) ≤ ṼD(xi,Kj) + 0.2γ. For ev-

ery pair xi, yk, ṼD(xi, yk) < ∞, we select a function ϕxi,yk
t , 0 ≤ t ≤ T =

T (xi, yk), ϕ
xi,yk

0 = xi, ϕ
xi,yk

T = (yk)−δ , not touching
⋃

s Ks, not leaving
D−δ ∪ ∂D−δ and such that S0T (ϕ

xi,yk) ≤ ṼD(xi, yk) + 0.2γ.
Further, we pick a positive ρ1 less than ρ2, ρ0/2 and half the minimum dis-

tance of the curves constructed in the proof from those compacta which they must
not approach and we pick a δ satisfying the same conditions as in the proof of
Lemma 2.1 and not exceeding ρ2 − ρ1; the proof can be carried out analogously.

��

Lemma 2.2 has a very simple special case where there are no compacta Ki,
i.e., there are no ω-limit sets of the dynamical system in D ∪ ∂D. In this case we
obtain immediately the following theorem.

Theorem 2.1. Suppose that the family (Xε
t ,P

ε
x) of diffusion processes satisfies

the hypotheses of Theorem 3.2 of Chap. 5 and the drift b(x) satisfies a Lipschitz
condition. Let D be a domain with compact closure and smooth boundary and
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assume that none of the ω-limit sets of the system ẋt = b(xt) lies entirely in
D ∪ ∂D. Then the asymptotics as ε → 0 of the distribution, at the time of exit
to the boundary, of the process beginning at x can be described by the action
function ε−2VD(x, y), y ∈ ∂D, uniformly in the initial point strictly inside D,
i.e., we have

lim
δ0→0

lim
ε→0

ε2 lnPε
x{Xε

τε ∈ Eδ0(y)} = −VD(x, y),

uniformly in x belonging to any compact subset of D and in y ∈ ∂D, where
τ ε = inf{t : Xε

t /∈ D}.

In particular, with probability converging to 1 as ε→ 0, the exit to the bound-
ary takes place in a small neighborhood of the set of the points at which the tra-
jectory xt(x), t ≥ 0, touches the boundary until exit from D ∪ ∂D. (Of course,
this simple result can be obtained more easily.)

The formulation of Theorem 2.1 in the language of differential equations
reads as follows:

Theorem 2.2. Suppose that uε(x) is the solution of the Dirichlet problem
Lεuε(x) = 0 in D, uε(x) = exp{ε−2F (x)} on ∂D, where in local co-
ordinates we have Lε =

∑
i b

iε(x)(∂/∂xi) + ε2/2
∑

ij a
ij(x)(∂2/∂xi∂xj),

biε(x) → bi(x) uniformly in x and the local coordinate systems Kx0 as ε → 0
and F is a continuous function. If none of the ω-limit sets of the system ẋt = b(xt)
lies entirely in D∪∂D, then uε(x) � exp{ε−2 maxy∈∂D(F (y)−VD(x, y))} as
ε → 0, uniformly in x belonging to any compact subset of D, where VD(x, y) is
defined by the coefficients bi(x), aij(x) in the same way as in Sect. 1.

In the case where there are ω-limit sets in D ∪ ∂D (and namely, in D) and
condition (A) is satisfied, for the study of problems connected with the behavior
of (Xε

t ,P
ε
x) we first have to study the limit behavior of Markov chains with

exponential asymptotics of the transition probabilities.

3 Lemmas on Markov Chains

For finite Markov chains an invariant measure, the distribution at the time of exit
from a set, the mean exit time, etc., can be expressed explicitly as the ratio of
some determinants, i.e., sums of products consisting of transition probabilities
(since the values of the invariant measure and of the other quantities involved are
positive, these sums only contain terms with a plus sign). Which products appear
in the various sums, can be described conveniently by means of graphs on the set
of states of the chain.

For chains on an infinite phase space divided into a finite number of parts for
which there are upper and lower estimates (of the type of those obtained in the
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preceding section) of the transition probabilities, in this section we obtain esti-
mates of values of an invariant measure, probabilities of exit to a set sooner than
to another (others), and so on. In the application of these results to a chain Zn

with estimates of the transition probabilities obtained in the preceding section, in
each sum we select one or several terms decreasing more slowly than the remain-
ing ones. The constant characterizing the rate of decrease of the sum of products
is, of course, determined as the minimum of the sums of constants characterizing
the rate of decrease of each of the transition probabilities (cf. Sects. 4, 5).

Let L be a finite set, whose elements will be denoted by the letters i, j, k, m,
n, etc. and let a subset W be selected in L. A graph consisting of arrows m→ n
(m ∈ L\W , n ∈ L, n �= m) is called a W -graph if it satisfies the following
conditions:

(1) every point m ∈ L\W is the initial point of exactly one arrow;
(2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the following condition:

(2′) for any point m ∈ L\W there exists a sequence of arrows leading from it to
some point n ∈W .

We denote by G(W ) the set of W -graphs; we shall use the letter g to de-
note graphs. If pij (i, j ∈ L, j �= i) are numbers, then

∏
(m→n)∈g Pmn will be

denoted by π(g).

Lemma 3.1. Let us consider a Markov chain with set of states L and transi-
tion probabilities pij and assume that every state can be reached from any other
state in a finite number of steps. Then the stationary distribution of the chain is
{(
∑

i∈L Qi)
−1Qi, i ∈ L}, where

Qi =
∑

g∈G(i)

π(g). (3.1)

Proof. The numbers Qi are positive. It is sufficient to prove that they satisfy the
system of equations

Qi =
∑

j∈L

Qjpji (i ∈ L),

since it is well known that the stationary distribution is the unique (up to a mul-
tiplicative constant) solution of this system. In the ith equation we carry the ith
term from the right side to the left side; we obtain that we have to verify the
equality

Qi

∑

k =i

pik =
∑

j =i

Qjpji. (3.2)

It is easy to see that if we substitute the numbers defined by formulas (3.1) in
(3.2), then on both sides we obtain the sum π(g) over all graphs g satisfying the
following conditions:
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(1) Every point m ∈ L is the initial point of exactly one arrow m → n (n �=
m,n ∈ L);

(2) in the graph there is exactly one closed cycle and this cycle contains the
point i. ��

Lemma 3.2. Let us be given a Markov chain on a phase space X divided into
disjoint sets Xi, where i runs over a finite set L. Suppose that there exist nonneg-
ative numbers pij (j �= i, i, j ∈ L) and a number a > 1 such that

a−1pij ≤ P (x,Xj) ≤ apij (x ∈ Xi, i �= j)

for the transition probabilities of our chain. Furthermore, suppose that every set
Xj can be reached from any state x sooner or later (for this it is necessary and
sufficient that for any j there exist a {j}-graph g such that π(g) > 0). Then

a2−2l

(∑

i∈L

Qi

)−1

Qi ≤ ν(Xi) ≤ a2l−2

(∑

i∈L

Qi

)−1

Qi

for any normalized invariant measure ν of our chain, where l is the number of
elements in L and the Qi are defined by formula (3.1).

Proof. For any pair i, j there exists a number s of steps such that the transition
probabilities P (s)(x,Xj) for x ∈ Xi can be estimated from below by a positive
constant. It follows from this that all ν(Xj) are positive. Let us consider a Markov
chain with transition probabilities pij = (1/ν(Xi))

∫
Xi

ν(dx)P (x,Xj). The sta-
tionary distribution of this chain is {ν(Xi), i ∈ L}, which can be estimated by
means of the expression given for it in Lemma 3.1. ��

Now we formulate an assertion which we shall use in the study of exit to the
boundary.

For i ∈ L\W , j ∈ W we denote by Gij(W ) the set of W -graphs in which
the sequence of arrows leading from i into W (cf. condition (2′)) ends at the
point j.

Lemma 3.3. Let us be given a Markov chain on a phase space X =
⋃

i∈L Xi,
Xi ∩ Xj = ∅ (i �= j), and assume that the transition probabilities of the chain
satisfy the inequalities

a−1pij ≤ P (x,Xj) ≤ apij (x ∈ Xi, j �= j), (3.3)

where a is a number greater than one. For x ∈ X and B ⊆
⋃

k∈W Xk we de-
note by qW (x,B) the probability that at the first entrance time of

⋃
k∈W Xk, the

particle performing a random walk in accordance with our chain hits B provided
that it starts from x.

If the number of points in L\W is equal to r, then
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a−4r

∑
g∈Gij(W ) π(g)∑
g∈G(W ) π(g)

≤ qW (x,Xj) ≤ a4
r

∑
g∈Gij(W ) π(g)∑
g∈G(W ) π(g)

(x ∈ Xi, i ∈ L\W, j ∈W ), (3.4)

provided that the denominator is positive.

Proof. We shall prove this by induction on r. For r = 1 we have W = L\{i}.
Using the Markov property, we obtain for x ∈ Xi that

qL\{i}(x,Xj) = P (x,Xj) +

∫

Xi

P (x, dy)P (y,Xj)

+

∫

Xi

P (x, dy1)

∫

Xi

P (y1, dy2)P (y2, Xj) + · · · .

Let us denote by Aij the infimum of P (x,Xj) over x ∈ Xi; let Bi =

infx∈Xi P (x,Xi); let us denote by Āij , B̄i the corresponding suprema. By as-
sumption,

∑
k =i pik > 0. This means that Bi, B̄i < 1. We have

Aij +AijBi +AijB
2
i + · · · ≤ QL\{i}(x,Xj) ≤ Āij + ĀijB̄i + ĀijB̄

2
i + · · · ,

i.e.,
Aij

1−Bi

≤ qL\{i}(x,Xj) ≤
Āij

1− B̄i
.

But, by assumption,

a−1pij ≤ Aij ≤ Āij ≤ apij ; 1−Bi = sup
α∈Xi

P

(
x,
⋃

k =i

Xk

)
≤ a

∑

k =i

pik.

(Analogously, 1−B̄i ≥ a−1
∑

k =i pik.) We obtain from this that (3.4) is satisfied
even with a2 instead of a4.

Now let (3.4) hold for all W such that L\W contains r elements, for all
i ∈ L\W and for all j ∈ W . We prove inequalities (3.4) for a set W such that
there are r + 1 points in L\W . Let i ∈ L\W , j ∈W and put

F =
⋃

k∈L\W
k =i

Xk.

We may hit Xj immediately after exit from Xi; we may hit F first and then Xj ;
we may hit F first, then return to Xi and then hit Xj without calling on F , etc.
In accordance with this, using the strong Markov property, we obtain

qW (x,Xj) = qL\{i}(x,Xj) +

∫

F

qL\{i}(x, dy)qW∪{i}(y,Xj)

+

∫

F

qL\{i}(x, dy)

∫

Xi

qW∪{i}(y, dx1)qL\{i}(x1, Xj)
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+

∫

F

qL\{i}(x, dy1)

∫

Xi

qW∪{i}(y1, dx1)

∫

F

qL\{i}(x1, dy2)

× qW∪{i}(y2, Xj) +

∫

F

qL\{i}(x, dy1)

∫

Xi

qW∪{i}(y1, dx1)

×
∫

F

qL\{i}(x1, dy2)

∫

Xi

qW∪{i}(y2, dx2)qL\{i}(x2, Xj) + · · · .

We introduce the notation

Cij = inf
x∈Xi

qL{i}(x,Xj),

Dij = inf
x∈Xi

∫

F

qL\{i}(x, dy)qW∪{i}(y,Xj),

Ei = inf
x∈Xi

∫

F

qL\{i}(x, dy)qW∪{i}(y,Xi)

and denote the corresponding suprema by C̄ij , D̄ij and Ēi (as B̄i, Ēi is also
smaller than 1). Using this notation, we can write

Cij +Dij + CijEi +DijEi + CijE
2
i +DijE

2
i + · · · ≤ qW (x,Xj)

≤ C̄ij + D̄ij + C̄ijĒi + D̄ijĒi + C̄ijĒ
2
i + D̄ijĒ

2
i + · · · ,

i.e.,
Cij +Dij

1− Ei

≤ qW (x,Xj) ≤
C̄ij + D̄ij

1− Ēi
.

In order to make the formulas half as bulky, we shall only consider the upper
estimate. Since (3.4) is proved for r = 1, we have C̄ij ≤ a4(pij/

∑
k =i pik). By

the induction hypothesis, we have

D̄ij ≤
∑

k∈L\W
k =i

a4
pik∑
k =i pik

a4
r

∑
g∈Gkj(W∪{i}) π(g)∑
g∈G(W∪{i}) π(g)

= a4+4r Hij∑
k =i pik ·Ki

.

The Hij here is the sum of the products π(g) over those graphs in Gij(W ) in
which the arrow beginning at i does not lead immediately to j and Ki is the sum
of the same products over all (W ∪ {i})-graphs. From this we obtain

C̄ij + D̄ij ≤ a4+4r pijKi +Hij∑
k =i pik ·Ki

,

where in the numerator we now have the sum of the π(g) over all graphs belong-
ing to Gij(W ).

Now we estimate the denominator 1−Ēi. From the condition that the denom-
inator in (3.4) does not vanish we obtain that if the chain begins at an arbitrary
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point, it will, with probability 1, hit
⋃

k∈W Xk, and consequently,
⋃

k∈W∪{i} Xk.
Therefore, qW∪{i}(y,Xi) = 1− qW∪{i}(y,

⋃
k∈W Xk) and

1− Ēi = inf
x∈Xi

{
1−

∫

F

qL\{i}(x, dy)

[
1− qW∪{i}

(
y,
⋃

k∈W

Xk

)]}

= inf
x∈Xi

{
qL\{i}

(
x,
⋃

k∈W

Xk

)

+

∫

F

qL\{i}(x, dy)qW∪{i}

(
y,
⋃

k∈W

Xk

)}
.

The first term is not less than a−4(
∑

k∈W pik/
∑

k =i pik); and the second one is
not less than

∑

t∈L\W
k =i

a−4 pit∑
k =i pik

∑

k∈W

a−4r

∑
q∈Gτk(W∪{i}) π(g)∑
g∈G(W∪{i}) π(g)

= a−4−4r Li∑
k =i pik ·Ki

.

The Li here is the sum of the products π(g) over those graphs in G(W ) in which
the arrow beginning at i leads to a point belonging to L\W . Bringing the esti-
mates of the first and second terms to a common denominator, we obtain that

1− Ēi ≥ a−4−4r
∑

k∈W pik ·Ki + Li∑
k =i p

ik ·Ki
.

In the numerator here we have the sum of the π(g) over all graphs g ∈ G(W ).
Finally, we obtain

C̄ij + D̄ij

1− Ēi
≤ a8+2·4r pijKi +Hij∑

k∈W pik ·Ki + Li
≤ a4

r+1 pijKi +Hij∑
k∈W pik ·Ki + Li

,

which gives the upper estimate in (3.4). Performing analogous calculations for
(Cij + Dij)/(1 − Ei), we obtain that (3.4) is proved for the case where the
number of elements in L\W is equal to r + 1.

The lemma is proved. ��

Lemma 3.4. Let us be given a Markov chain on a phase space

X =
⋃

i∈L

Xi, Xi ∩Xj = ∅ (i �= j),

with the estimates (3.3) for the transition probabilities. We denote by mW (x)
the mathematical expectation of the number of steps until the first entrance of
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⋃
k∈W Xk, calculated under the assumption that the initial state is x. If the num-

ber of points in L\W is equal to r, then for x ∈ Xi, i ∈ L\W we have

α−4r

∑
g∈G(W∪{i}) π(g) +

∑
j∈L\W,j =i

∑
g∈Gij(W∪{j}) π(g)∑

g∈G(W ) π(g)
≤ mW (x)

≤ a4
r

∑
g∈G(W∪{i}) π(g) +

∑
j∈L\W,j =i

∑
g∈Gij(W∪{j}) π(g)∑

g∈G(W ) π(g)
. (3.5)

Proof. If L\W consists of only one point i, then in the sum in the numerator we
have only one graph—the empty one; the product π(g) is, of course, taken to be
equal to 1. If L\W consists of more than one point, then the graphs over which
the sum is taken in the numerator can be described as follows: they are the graphs
without cycles, consisting of (r− 1) arrows m→ n, m ∈ L\W , n ∈ L, m �= n,
and not containing chains of arrows leading from i into W . We shall denote by
G(i � W ) the set of these graphs.

The proof will be carried out by induction again. First let r = 1, i.e., we
consider the first exit from Xi. The smallest number of steps until exit is equal
to 1; we have to add one to this if we hit Xi again in the first step; we have to
add one more 1 if the same happens in the second step, etc. Using the Markov
property, we obtain

mW (x) = mL\{i}(x) = 1 + P (x,Xi) +

∫

Xi

P (x, dx1)P (x1, Xi)

+

∫

Xi

P (x, dx1)

∫

Xi

P (x1, dx2)P (x2, Xi) + · · · .

This expression is between 1/(1−Bi) and 1/(1− B̄i), where Bi and B̄i are in-
troduced in the proof of Lemma 3.3. We obtain (3.5) for r = 1 from the estimates
of 1−Bi and 1− B̄i.

Now let (3.5) hold for all sets L\W with r elements and for all i ∈ L\W . We
prove (3.5) for L\W consisting of r + 1 points. As in the proof of Lemma 3.3,
we put F =

⋃
k∈L\W ;k =i Xk. The smallest value of the first entrance time of⋃

k∈W Xk is the first exit time of Xi; if at this time we hit F , then we have to add
the time spent in F ; if after exit from F we hit Xi again, then we also have to
add the time spent in Xi at this time, etc. Using the strong Markov property, we
can write this in terms of the functions mL\{i}(x),mW∪{i}(x) and the measures
qL\{i}(x, ·), qW∪{i}(x1, ·):

mW (x) = mL\{i}(x) +

∫

F

qL\{i}(x, dy)mW∪{i}(y)

+

∫

F

qL\{i}(x, dy)

∫

Xi

qW∪{i}(y, dx1)mL\{i}(x1)

+

∫

F

qL\{i}(x, dy1)

∫

Xi

qW∪{i}(y1, dx1)

∫

F

qL\{i}(x1, dy)
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×mW∪{i}(y2) +

∫

F

qL\{i}(x, dy1)

∫

Xi

qW∪{i}(y1, dx1)

×
∫

F

qL\{i}(x1, dy2)

∫

Xi

qW∪{i}(y2, dx2)mL\{i}(x2) + · · · .

We introduce the notation

M i = inf
x∈Xi

mL\{i}(x),

N i = inf
x∈Xi

∫

F

qL\{i}(x, dy)mW∪{i}(y).

The symbols M̄i and N̄i denote the corresponding suprema. Using this notation
and Ei, Ēi (introduced earlier), we obtain for x ∈ Xi that

M i +N i

1− Ei

≥ mW (x) ≤ M̄i + N̄i

1− Ēi
.

We have already estimated the denominators in this formula in the proof of
the preceding lemma and we have already proved that M i and M̄i are between
a∓4r/

∑
k =i pik. To estimate N i and N̄i, we use the estimates of qL\{i}(x,Xk)

and the estimates of mW∪{i}(y) for y ∈ Xk, which hold by the induction hy-
pothesis. We obtain that Nt and N̄t are between

∑

k∈L\W
k =i

a∓kpik∑
k =i pik

a∓4r Qik +Rik

Ki
,

where Ki has the same meaning as in the proof of the preceding lemma, Qik is
the sum of π(g) over the graphs belonging to G(W ∪ {i} ∪ {k}) and Rik is the
sum of π(g) over those graphs without cycles consisting of (r−1) arrows m→ n,
m ∈ L\W , m �= i, n ∈ L, n �= m, in which the chain of arrows beginning at
the point k does not lead to W . Bringing the fractions to a common denominator
and making the necessary simplifications, we obtain that for x ∈ Xi, mW (x) is
between

a∓4r+1 Ki +
∑

k∈L\W,k =i pikQik +
∑

k∈L\W,k =i pikRik∑
k∈W pikKi + Li

(3.6)

(the notation Li was introduced in Lemma 3.3). Here in the numerator we have
the sum of products π(g) which in fact has to appear in the numerator of formula
(3.5): namely, Ki is the sum of π(g) over the (W ∪ {i})-graphs, the second
term is the sum over those graphs without cycles consisting of (r − 1) arrows
m → n, m ∈ L\W , n ∈ W , n �= m, in which an arrow i → k, k /∈ W , goes
from i and there is no arrow going from k, and the third term is the sum of π(g)
over the same graphs in which a chain begins at i from more than one arrow and
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ends outside W . This, together with the denominator already computed, gives the
assertion of the lemma.

In order not to get confused, with the empty graph, we have to consider sep-
arately the passage from r = 1 to r = 2. In this case, L\W consists of two
elements i and k and Ki = pki +

∑
j∈W pkj , Qik + Rik = 1. In the numerator

in (3.6) we have pki+
∑

j∈W pkj +pik, so that the assertion of the lemma is true
in this case, as well. ��

4 The Problem of the Invariant Measure

By means of the results of the preceding two paragraphs, here we solve the
problem of rough asymptotics of the invariant measure of a diffusion process
with small diffusion on a compact manifold. We shall use the following formula,
which expresses, up to a factor, the invariant measure με of a diffusion process
(Xε

t ,P
ε
x) in terms of the invariant measure νε of the chain Zn on ∂g (we recall

that D = M , ∂D = ∅):

με(B) =

∫

∂g

νε(dy)Mε
y

∫ τ1

0

χB(X
ε
t ) dt (4.1)

(cf. Khas’minskii [1]). It is clear that for the determination of the asymptotics
of sums of products π(g) consisting of the numbers exp{−ε−2Ṽ (Ki,Kj)} we
need the quantities

W (Ki) = min
g∈G{i}

∑

(m→n)∈g

Ṽ (Km,Kn) (4.2)

(here Ṽ (Km,Kn) = ṼM (Km,Kn) is the infimum of the values of the normal-
ized action functional on curves connecting the mth compactum with the nth one
without touching the others).

Lemma 4.1. The minimum (4.2) can also be written in the form

W (Ki) = min
g∈G{i}

∑

(m→n)∈g

V (Km,Kn). (4.3)

Proof. It is clear that the minimum in (4.3) is not greater than that in (4.2) (be-
cause the inequality holds for the corresponding terms). It remains to prove the
reverse inequality. Let the minimum in (4.3) be attained for the graph g.

If m → n is an arrow from g and V (Km,Kn) = Ṽ (Km,Kn), we leave
m→ n as it is. If, on the other hand,

V (Km,Kn) = Ṽ (Km,Ki1) + · · ·+ Ṽ (Kis ,Kn)

(cf. Sect. 2), we replace it by the arrows m → i1, . . . , is → n. Then the sum
does not change but the {i}-graph ceases to be an {i}-graph. First of all, it may
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turn out that i coincides with one of the intermediate points ij , j = 1, . . . , s and
in the new graph there is an arrow i → ij+1 or i → n; in this case we omit it.
Then in the graph there may be a cycle containing the point n:

n→ ij → ij+1 → · · · → is → n.

This cycle did not appear in g; therefore, one of the points ij , ij+1, . . . , is was the
origin of an arrow leading to some other point; in this case we open the cycle by
omitting the new arrow (ij → ij+1 or ij+1 → ij+2 · · · or is → n). Finally, there
may still be points ij from which two arrows are issued. In this case we omit the
old arrows; then the sum does not increase and the graph thus constructed will
be an {i}-graph. Looking over all arrows in this way, we arrive at a graph g̃ for
which ∑

(m→n)∈g̃

Ṽ (Km,Kn) ≤
∑

(m→n)∈g

V (Km,Kn).

��

Theorem 4.1. Suppose that the system ẋt = b(xt) on a compact manifold M
satisfies condition (A) (cf. Sect. 2). Let με be the normalized invariant measure
of the diffusion process (Xε

t ,P
ε
x) and assume that the family of these processes

satisfies the hypotheses of Theorem 3.2 of Chap. 5. Then for any γ > 0 there
exists ρ1 > 0 (which can be chosen arbitrarily small) such that the με-measure
of the ρ1-neighborhood gi of the compactum Ki is between

exp{−ε−2(W (Ki)−min
i

W (Ki)± γ)}

for sufficiently small ε, where the W (Ki) are constants defined by formulas (4.2)
and (4.3).

Proof. In accordance with Lemmas 2.1, 1.7 and 1.8, we choose small positive
ρ1 < ρ2 < ρ0 such that estimates (2.3), (1.3) and (1.4) are satisfied for small
ε with γ/4l replacing γ. By Lemma 3.2, the values of the normalized invariant
measure νε of the chain Zn lie between

exp

{
−ε−2

(
W (Ki)−min

i
W (Ki)±

l − 1

l
γ

)}
.

For the estimation of με(gi) we use formula (4.1):

με(gi) =

∫

∂g

νε(dy)Mε
y

∫ τ1

0

χgi(X
ε
t ) dt =

∫

∂gi

νε(dy)Mε
y

∫ σ0

0

χgi(X
ε
t ) dt.

For ε small, this does not exceed exp{−ε−2(W (Ki) − mini W (Ki) − [(2l −
1)/4l]γ)} and is not less than exp{−ε−2(W (Ki) − mini W (Ki) + [(2l −
1)/4l]γ)}. The sum of these numbers is not less than

exp

{
−ε−2

[
2l − 1

l

]
γ

}
,
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from which we obtain

με(M) ≥ exp

{
−ε−2

[
2l − 1

4l

]
γ

}
.

In order to estimate με(M) from above, we use formula (4.1) again:

με(M) =

∫

∂g

νε(dy)Mε
yτ1 =

∫

∂g

νε(dy)[Mε
yσ0 +Mε

yM
ε
Xτ1]

≤ sup
y∈∂g

Mε
yσ0 + sup

x∈C
Mε

xτ1.

The first mean does not exceed exp{ε−2(γ/4l)} by virtue of (1.3) and the second
is not greater than some constant by virtue of the corollary to Lemma 1.9.

Normalizing με by dividing by με(M), we obtain the assertion of the theo-
rem. ��

If b(x) has a potential, i.e., it can be represented in the form b(x) = −∇U(x),
where∇ is the operator of taking gradient in the metric ds2 =

∑
aij(x) dx

i dxj ,
then we can write the following explicit formula for the density of the invariant
measure: mε(x) = Cε exp{−2ε−2U(x)}, where Cε is a normalizing factor. This
can be verified by substituting in the forward Kolmogorov equation; in the case
where (aij) is the identity matrix, cf. formula (4.14), Chap. 4. This represen-
tation of the invariant measure reduces the study of the limit behavior of the
invariant measure to the study of the asymptotics of a Laplace type integral (cf.
Kolmogorov [1]). Theorem 4.1 gives us an opportunity to study the limit behav-
ior of the invariant measure when no potential exists, and therefore, the explicit
form of the solution of the Kolmogorov equation cannot be used. However, the
results of this theorem are, of course, less sharp.

It follows from Theorem 4.1, in particular, that as ε → 0, the measure
με is concentrated in a small neighborhood of the union of the Ki for which
minW (Ki) is attained. This result was obtained in Wentzell and Freidlin [2],
[4]. In some cases, the character of the limit behavior of με can be given more
accurately.

Theorem 4.2. Suppose that the hypotheses of the preceding theorem are satisfied,
mini W (Ki) is attained at a unique Ki0 , and there exists only one normalized
invariant measure μ0 concentrated in Ki0 of the dynamical system ẋt = b(xt).
Then με converges weakly to μ0 as ε→ 0.

The proof is standard: of the facts related to our concrete family of processes
(Xε

t ,P
ε
x), we have to use that Mε

xf(X
ε
t ) → f(xt(x)) uniformly in x as ε → 0

for any continuous function f (the corollary to Theorem 1.2 of Chap. 2).
Results concerning the limit behavior of με in the case where more than one

invariant measure of the unperturbed dynamical system is concentrated in Ki0

have been obtained in two distinct situations. Let Ki0 be a smooth submanifold
of M .
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Kifer [2] considered the case where the dynamical system on Ki0 is a tran-
sitive Anosov system. (The class of Anosov systems is characterized by the con-
dition that the tangent fibering can be represented as a sum of three invariant
fiberings; in the first one the tangent vectors undergo an exponential expansion
as translated on trajectories of the system, in the second one they undergo an
exponential contraction, and the third one is a one-dimensional fibering induced
by the vector b(x) at every point. These systems form a sufficiently large set in
the space of all dynamical systems.) This case is close to that of a unique in-
variant measure. More precisely, in the case of Anosov systems, from the infinite
set of normalized invariant measures we can select one, say μ∗, connected with
the smooth structure on the manifold under consideration in a certain manner;
this measure has the property that the following condition of exponentially fast
mixing is satisfied for smooth functions:

∣∣∣∣
∫

ϕ1(xt1(x))ϕ2(xt2(x))μ∗(dx)−
∫

ϕ1(x)μ∗(dx)

∫
ϕ2(x)μ∗(dx)

∣∣∣∣

≤ const · ‖ϕ1‖1‖ϕ2‖1e−k|t1−t2|,

where ‖ ‖1 is the norm in the space C(1) of continuously differentiable functions.
The measure μ∗ appears in various limit problems concerning dynamical sys-
tems, connected with smoothness. It also turns out to be the limit of the invariant
measures με of the perturbed system, independently of the concrete characteris-
tics of the perturbations.

The second class of examples considered relates to the case where the man-
ifold Ki0 can be fibered into invariant manifolds on each of which the invariant
measure of the unperturbed system is unique. The limit behavior of με depends
on the structure of b(x) outside Ki0 and the concrete form of perturbations; it can
be determined if in the process Xε

t we select a “fast” and a “slow” motion and
use a technique connected with the averaging principle (cf. Sect. 9, Chap. 7). In
Khas’minskii’s paper [3] the limit of με is found in the following special case:
Ki0 coincides with the whole manifold M , which is the two-dimensional torus,
and in natural coordinates, the system has the form ẋ1

τ = b1(x), ẋ2
t = γb1(x),

b1(x) > 0. If γ is irrational, then the invariant measure of the dynamical system
is unique: it can be given by the density C · b1(x)−1. If γ is rational, then the
torus can be fibered into invariant circles with an invariant measure on each of
them. The density of the limit measure can be calculated and it does not coincide
with C · b1(x)−1 in general.

We introduce a definition helping to understand the character of the distribu-
tion of με among the neighborhoods of the Ki. We shall say that a set N ⊂ M
is stable if for any x ∈ N , y /∈ N we have V (x, y) > 0. Similarly to the equiv-
alence of points, the property of stability depends only on the structure of the
system ẋt = b(xt). The example illustrated in Fig. 11 shows that there may ex-
ist a stable compact set not containing any stable ω-limit set (i.e., such that any
trajectory of the dynamical system beginning near this set does not leave a small
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neighborhood of the set). In the example in Fig. 12, K2 and K3 are stable and
K1 and K4 are unstable.

Lemma 4.2. If a compactum Ki is unstable, then there exists a stable compactum
Kj such that V (Ki,Kj) = 0.

Proof. There exists x /∈ Ki such that V (Ki, x) = 0. We issue a trajectory xt(x),
t ≥ 0, from x. It leads us to its ω-limit set contained in one of the compacta Kj ;
furthermore, V (Ki,Kj) = V (x,Kj) = 0. The compactum Kj does not coincide
with Ki, otherwise x would have to be in Ki; if Kj is unstable, in the same
way we pass from it to another compactum, etc. Finally we arrive at a stable
compactum. ��

Lemma 4.3.

(a) Among the {i}-graphs for which the minimum (4.3) is attained there is one
in which from the index m, m �= i of each unstable compactum an arrow
m→ j is issued with V (Km,Kj) = 0 and with Kj stable.

(b) For a stable compactum Ki, the value W (Ki) can be calculated according
to (4.3), considering graphs on the set of indices of only stable compacta.

(c) If Kj is an unstable compactum, then

W (Kj) = min[W (Ki) + V (Ki,Kj)], (4.4)

where the minimum is taken over all stable compacta Ki.

Proof. (a) For an {i}-graph for which the minimum (4.3) is attained we consider
all m for which assertion (a) is not satisfied. Among these there are ones not
containing any arrow from the index of an unstable compactum.

If no arrow ends in m, we replace m→ n by m→ j with V (Km,Kj) = 0.
Then the {i}-graph remains an {i}-graph and the sum of the values of V corre-
sponding to the arrows decreases.

If the arrows ending in m are s1 → m, . . . , st → m, and Ks1 , . . . ,Kst are
stable, we also replace m → n by m → j, V (Km,Kj) = 0. If no cycle is
formed, then we obtain an {i}-graph with a smaller value of the sum. However,
a cycle m → j → · · · → sk → m may be formed. Then we replace sk → m
by sk → n; have V (Km,Kj)+V (Ksk ,Kn) = V (Ksk ,Kn) ≤ V (Ksk ,Km)+
V (Km,Kn), so that the sum of the values of V corresponding to the arrows does
not increase.

Repeating this operation, we get rid of all “bad” arrows.
(b) That the minimum over {i}-graphs on the set of indices of stable com-

pacta is not greater than the former minimum follows from (a). The reverse in-
equality follows from the fact that every {i}-graph on the set of indices of stable
compacta can be completed to an {i}-graph on the whole set {1, . . . , l} by adding
arrows with vanishing V , beginning at indices of unstable compacta.

(c) For any i �= j we have W (Kj) ≤ W (Ki) + V (Ki,Kj). Indeed, on
the right side we have the minimum of

∑
(m→n)∈g V (Km,Kn) over graphs in
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which every point is the initial point of exactly one arrow and there is exactly
one cycle i → j → · · · → i. Removing the arrow beginning at j, we obtain an
{i}-graph without increasing the sum.

If Kj is an unstable compactum, then we choose a stable compactum Ks such
that V (Kj ,Ks) = 0 and a graph g for which ming∈G(j)

∑
(m→n)∈g V (Km,Kn)

is attained and in which indices of unstable compacta are initial points of only
arrows with V (Km,Kn) = 0. We add the arrow j → s to this graph. Then a
cycle j → s → · · · → j is formed. In this cycle we choose the last index i
of a stable compactum before j. To the arrow i → k issued from i (k may be
equal to j) there corresponds V (Ki,Kk) = V (Ki,Kj). We throw this arrow
out and obtain an {i}-graph g′ for which

∑
(m→n)∈g V (Km,Kn) = W (Kj) −

V (Ki,Kj). This implies that W (Kj) ≥ min[W (Ki) + V (Ki,Kj)] over all
stable compacta Ki. ��

Formula (4.4) implies, among other things, that the minimum of W (Ki) may
be attained only at stable compacta.

We consider the example of a dynamical system on a sphere whose trajec-
tories, illustrated in the plane, have the form depicted in Fig. 12. Of course, the
system has another singular point, not in the figure, which is unstable; we have to
introduce the compactum K5 consisting of this point. If the values Ṽ (Ki,Kj),
1 ≤ i, j ≤ 4 are given by the matrix (2.1), then the values W (Kj) for stable
compacta are W (K2) = 6 and W (K3) = 9. We obtain that as ε → 0, the in-
variant measure με is concentrated in a small neighborhood of the limit cycle K2

and converges weakly to the unique invariant measure, concentrated in K2, of the
system ẋt = b(xt) (it is given by a density, with respect to arc length, inversely
proportional to the length of the vector b(xj)).

Theorem 4.3. For x ∈M let us set

W (x) = min[W (Ki) + V (Ki, x)], (4.5)

where the minimum can be taken over either all compacta or only stable com-
pacta. Let γ be an arbitrary positive number. For any sufficiently small neighbor-
hood Eρ(x) of x there exists ε0 > 0 such that for ε ≤ ε0 we have

exp
{
−ε−2

(
W (x)−min

i
W (Ki) + γ

)}

≤ με(Eρ(x)) ≤ exp
{
−ε−2

(
W (x)−min

i
W (Ki)− γ

)}
.

Proof. For a point x not belonging to any of the compacta Ki, we use the fol-
lowing device: to the compact K1, . . . ,Kl we add another compactum {x}. The
system of disjoint compacta thus obtained continues to satisfy condition (A) of
Sect. 2 and we can apply Theorem 4.1. The compactum {x} is unstable. There-
fore, the minimum of the values of W is attained at a compactum other than {x}
and W ({x}) can be calculated according to (4.5).
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Figure 14.

For a point x belonging to some Ki, we have W (x) = W (Ki). The value of
με(Eρ(x)) can be estimated from above by με(gi) and a lower estimate can be
obtained by means of Lemma 1.8. ��

Theorem 4.3 means that the asymptotics as ε → 0 of the invariant measure
με is given by the action function

ε−2
(
W (x)−min

i
W (Ki)

)
.

We consider the one-dimensional case, where everything can be calculated
to the end. Let the manifold M be the interval from 0 to 6, closed into a circle.
Let us consider a family of diffusion processes on it with infinitesimal generators
b(x)(d/dx) + (ε2/2)(d2/dx2), where b(x) = −U ′(x) and the graph of U(x) is
given in Fig. 14. The function U(x) has local extrema at the points 0, 1, 2, 3, 4,
5, 6 and its values at these points are 7, 1, 5, 0, 10, 2, 11, respectively. (This is
not the case, considered in Sect. 3, Chap. 4, of a potential field b(x), since U is
not continuous on the circle M .) There are six compacta containing ω-limit sets
of ẋt = b(xt): the point 0 (which is the same as 6), 1, 2, 3, 4 and 5; the points 1,
3 and 5 are stable.

We can determine the values of V (1, x) for 0 ≤ x ≤ 2 by solving problem
R1 for the equation b(x)V ′

x(1, x) +
1
2 (V

′
x(1, x))

2 = 0. We obtain V (1, x) =
2[U(x) − U(1)]. Analogously, V (3, x) = 2[U(x) − U(3)] for 2 ≤ x ≤ 4 and
V (5, x) = 2[U(x)−U(5)] for 4 ≤ x ≤ 6 (in all three cases it can be verified sep-
arately that for curves leading to a point x on a route different from the shortest,
the value of the functional is greater). Moreover, we find that

V (1, 3) = V (1, 2) = 8, V (1, 5) = V (1, 0) = 12,

V (3, 1) = V (3, 2) = 10, V (3, 5) = V (3, 4) = 20,

V (5, 1) = V (5, 0) = V (5, 6) = 18, V (5, 3) = V (5, 4) = 16.

On the set {1, 3, 5} we consider {i}-graphs and from them we select those
which minimize the sums (4.3). For i = 1 this turns out to be the graph 5 → 3,
3 → 1; consequently W (1) = 26. For i = 3 the sum is minimized by the graph
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Figure 15.

1 → 3, 5 → 3 and W (3) = 24. The value W (5) = 22 is attained for the graph
3→ 1, 1→ 5. The function W (x) can be expressed in the following way:

W (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

24 + 2U(x) for 0 ≤ x ≤ 3,

(24 + 2U(x)) ∧ 38 for 3 ≤ x ≤ 4,

18 + 2U(x) for 4 ≤ x ≤ 5,

(18 + 2U(x)) ∧ 38 for 5 ≤ x ≤ 6.

Subtracting its minimum W (5) = 22 from W , we obtain the normalized action
function for the invariant measure με as ε → 0; its graph is given in Fig. 15 (we
recall that the normalizing coefficient here is ε−2).

The reader may conjecture that as ε → 0, the invariant measure of a one-
dimensional diffusion process with a small diffusion is concentrated at the bottom
of the potential well with the highest walls; this conjecture is wrong.

5 The Problem of Exit from a Domain

In this section we do not assume any more that the manifold M is compact.
Instead, we assume that a domain D is given on it with smooth boundary and

compact closure and condition (A) of Sect. 2 is satisfied.
We consider graphs on the set of symbols {K1, . . . ,Kl, x, y, ∂D}. For x ∈ D,

y ∈ ∂D we put

WD(x, y) = min
g∈Gxy{y,∂D}

∑

(α→β)∈g

ṼD(α, β). (5.1)

(We recall that Gxy{y, ∂D} is the set of all graphs consisting of (l + 1) arrows
emanating from the points K1, . . . ,Kl, x and such that for each of these points
there exists a chain of arrows leading from the point to y or ∂D and for the initial
point x this chain ends at y.)
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Lemma 5.1. The minimum (5.1) can also be written in the form

WD(x, y) = min
g∈Gxy{y,∂D}

∑

{α→β}∈g

VD(α, β). (5.2)

The minimum value of WD(x, y) over all y ∈ ∂D does not depend on x and
is equal to

WD = min
g∈G{∂D}

∑

(α→β}∈g

VD(α, β), (5.3)

where either we consider {∂D}-graphs on the set {K1, . . . ,Kl, ∂D} or from this
set we delete the symbols Ki denoting unstable compacta.

The minima (5.1), (5.2) can also be written in the form

WD(x, y) = [ṼD(x, y) +WD] ∧min
i
[ṼD(x,Ki) +WD(Ki, y)]

= [VD(x, y) +WD] ∧min
i
[VD(x,Ki) +WD(Ki, y)], (5.4)

where WD(Ki, y) is defined as one of the following minima, in which there occur
graphs on the set {K1, . . . ,Kl, y, ∂D}:

WD(Ki, y) = min
g∈GKiy

{y,∂D}

∑

(α→β)∈g

ṼD(α, β)

= min
g∈GKiy

{y,∂D}

∑

(α→β)∈g

VD(α, β). (5.5)

In formula (5.3), VD(α, β) can also be replaced by V (α, β) (here α =
K1, . . . ,Kl and β is one of the Ki or ∂D).

The proof is analogous to those of Lemmas 4.1 and 4.3. Lemma 4.2 is re-
placed by the following lemma, which can be proved in the same way:

Lemma 5.2. If α is an unstable compactum Ki or a point x ∈ D\
⋃

i Ki,
then either there exists a stable compactum Kj such that VD(α,Kj) = 0 or
VD(α, ∂D) = 0.

Theorem 5.1. Let τ ε be the time of first exit of the process Xε
t from D. For any

compact subset F of D, any γ > 0 and any δ > 0 there exist δ0, 0 < δ0 ≤ δ and
ε0 > 0 such that for all ε ≤ ε0, x ∈ F and y ∈ ∂D we have

exp{−ε−2(WD(x, y)−WD + γ)} ≤ Pε
x{Xε

τ ∈ Eδ0(y)}
≤ exp{−ε−2(WD(x, y)−WD − γ)}, (5.6)

where WD is defined by formula (5.3) and WD(x, y) by formulas (5.1), (5.2) or
(5.5).

In other words, for a process beginning at the point x, the asymptotics of the
distribution as ε → 0 at the time of exit to the boundary is given by the action
function ε−2(WD(x, y)−WD), uniformly for all initial points strictly inside D.
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Proof. We put γ′ = γ · 4−l−1 and choose a corresponding ρ0 according to Lem-
mas 2.1 and 2.2. We choose a positive ρ2 smaller than ρ0 and the distance be-
tween F and ∂D. According to the same lemmas, we choose a positive ρ1 < ρ2
and use the construction described in Sect. 2, involving Zn.

For x ∈
⋃

i Gi we use Lemma 3.3 with L = {K1, . . . ,Kl, y, ∂D}, W =
{y, ∂D} and the following sets Xα, α ∈ L : G1, . . . , Gl, ∂D ∪ Eδ0(y), ∂D\
Eδ0(y) (beginning with n = 1, Zn ∈ Gi implies Zn ∈ ∂gi). The estimates for
the probabilities P (x,Xβ) for x ∈ Gi are given by formulas (2.3)–(2.5); we have
pαβ = exp{−ε−2ṼD(α, β)} and a = exp{ε−2γ′}. The

∑
g∈GKiy

{y,∂D} π(g) is

equivalent to a positive constant N multiplied by exp{−ε−2WD(Ki, y)}. (N is
equal to the number of graphs g ∈ GKiy{y, ∂D} at which the minimum of∑

(α→β)∈g ṼD(α, β) attained. The denominator in (3.3) is equivalent to a posi-
tive constant multiplied by exp{−ε−2WD}.) Taking into account that for x ∈ Gi,
WD(x, y) differs from WD(Ki, y) by not more than γ′, this implies the assertion
of the theorem for x ∈

⋃
i Gi.

If x ∈ F\
⋃

i Gi, we use the strong Markov property with respect to the
Markov time τ1:

Pε
x{Xε

τε ∈ Eδ0(y)} = Pε
x{Xε

τ1 ∈ Eδ0(y)}

+

l∑

i=1

Mε
x{Xε

τ1 ∈ ∂gi;P
ε
Xε

τ1
{Xε

τε ∈ Eδ0(y)}}. (5.7)

According to (2.10), the first probability is between exp{−ε−2(ṼD(x, y)±γ′)};
and according to what has already been proved, the probability under the sign
of mathematical expectation is between exp{−ε−2(WD(Ki, y) −WD ± (4l +
1)γ′)}. Using estimate (2.8), we obtain that the ith mathematical expectation in
(5.7) falls between exp{−ε−2(ṼD(x,Ki) + WD(Ki, y) + WD ± (4l + 1)γ′)},
and the whole sum (5.7) is between exp{−ε−2(WD(x, y)−WD ± (4l +2)γ′)},
where WD(x, y) is given by the first of formulas (5.4). This proves the theorem.
��

Theorem 5.1 enables us to establish, in particular, the most probable place of
exit of Xε

t to the boundary for small ε.

Theorem 5.2 (Wentzell and Freidlin [3], [4]). For every j = 1, . . . , l let Yi be
the set of points y ∈ ∂D at which the minimum of VD(Ki, y) is attained. Let the
point x be such that the trajectory xt(x), t ≥ 0, of the dynamical system, issued
from x, does not go out of D and is attracted to Ki. From the {∂D}-graphs on the
set {K1, . . . ,Kl, ∂D} we select those at which the minimum (5.3) is attained. In
each of these graphs we consider the chain of arrows leading from Ki into ∂D;
let the last arrow in the chain be Kj → ∂D. We denote by M(i) the set of all
such j in all selected graphs.

Then with probability converging to 1 as ε→ 0, the first exit to the boundary
of the trajectory of Xε

t , beginning at x, takes place in a small neighborhood of
the set

⋃
j∈M(i) Yj .
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Figure 16.

The assertion remains valid if all the VD, including those in formula (5.3),
are replaced by ṼD.

We return to the example illustrated in Fig. 12. We reproduce this figure
here (Fig. 16). Besides ṼD(Ki,Kj), let ṼD(K2, ∂D) = 8, ṼD(K3, ∂D) = 2,
ṼD(K4, ∂D) = 1 be given; ṼD(K1, ∂D) is necessarily equal to +∞. On ∂D we
single out the sets Y2, Y3 and Y4. Now there will be two {∂D}-graphs minimizing∑

(α→β)∈g ṼD(α, β): the first one consists of the arrows K1 → K2, K2 → ∂D,

K3 → ∂D and K4 → K2 and the second one is the same with K4 → K3 re-
placing K4 → K2. Consequently, M(1) = M(2) = {2}, M(3) = {3}, and
M(4) = {2, 3}.

The trajectories of the dynamical system emanating from a point x in the left-
hand part of D (to the left of the separatrices ending at the point K4) are attracted
to the cycle K2 with the exception of the unstable equilibrium position K1. The
points of the right-hand part are attracted to K3 and the points on the separating
line to K4. Consequently, for small ε, from points of the left half of D, the process
Xε

t goes out to ∂D in a small neighborhood of Y2, from points of the right half,
it hits ∂D near Y3 and from points of the separating line near Y2 or Y3.

If we increase ṼD(Ki, ∂D) so that ṼD(K2, ∂D) = 16, ṼD(K3, ∂D) = 10,
ṼD(K4, ∂D) = 9, then again there are two {∂D}-graphs minimizing the sum
(5.3): K1 → K2, K2 → K3, K3 → ∂D, K4 → K2 or K4 → K3; for all i we
have M(i) = {3}. Consequently, for small ε, the exit to the boundary from all
points of the domain will take place near Y3.

Now we turn to the problem of the time spent by the process Xε
t in D until

exit to the boundary.
We consider graphs on the set L = {K1, . . . ,Kl, x, ∂D}. We put

MD(x) = min
g∈G(x�{∂D})

∑

(α→β)∈g

ṼD(α, β). (5.8)

The notation G(α � W ) was introduced in Sect. 3 after formulating Lemma 3.4.
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Lemma 5.3. The minimum (5.8) can also be written as

MD(x) = min
g∈G(x�{∂D})

∑

(α→β)∈g

VD(α, β); (5.9)

MD(x) = WD ∧min
i
[VD(x,Ki) +MD(Ki)], (5.10)

where MD(Ki) is defined by the equality

MD(Ki) = min
g∈G(Ki�{∂D})

∑

(α→β)∈g

VD(α, β), (5.11)

where in the minimum we have graphs on the set {K1, . . . ,Kl, ∂D} (and WD is
defined by formula (5.3)).

In determining the minima (5.9) or (5.11), (5.10), one can omit all unstable
compacta Ki.

The proof is analogous to that of Lemmas 4.1 and 4.3 again.

Theorem 5.3. We have

lim
ε→0

ε2 lnMε
xτ

ε = WD −MD(x) (5.12)

uniformly in x belonging to any compact subset F of D.

Proof. We choose γ′, ρ0, ρ1, ρ2 as in the proof of the preceding theorem, but
with the additional condition that the mean exit time from the ρ0-neighborhood
of the Ki does not exceed exp{ε−2γ′} (cf. Lemma 1.7). We consider Markov
times τ0 (= 0), τ1, τ2, . . . and the chain Zn = Xε

τn . We denote by ν the index of
the step in which Zn first goes out to ∂D, i.e., the smallest n for which τ ε = τn.
Using the strong Markov property, we can write:

Mε
xτ

ε =

∞∑

n=0

Mε
x{Zn /∈ ∂D;Mε

Zn
τ1}.

Lemmas 1.7, 1.8 and 1.9 yield that in this sum Mε
Zn

τ1 does not exceed
2 exp{ε−2γ′} but is greater than exp{−ε−2 · γ′} (for small ε). Hence up to a
factor between [2 exp{ε−2γ′}]∓1, Mε

xτ
ε coincides with

∑∞
n=0 P

ε
x{Zn /∈ ∂D} =

Mε
xν. This mathematical expectation can be estimated by means of Lemma 3.4.

First for x ∈
⋃

i Gi we obtain, using estimates (2.3)–(2.5), that

exp{ε−2(WD −MD(Ki)− (4l + 1)γ′)}
≤ Mε

xτ1 ≤ 2 exp{ε−2(WD −MD(Ki) + (4l + 1)γ′)}, (5.13)

for small ε. Then for an initial point x ∈ F\
⋃

i Gi we obtain
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Mε
xτ

ε = Mε
xτ1 +

l∑

i=1

Mε
x{Z1 ∈ ∂gi;M

ε
Z1
τ ε}.

Taking account of the inequality Mε
xτ1 < 2 exp{ε−2γ′} and estimates (2.8)

(2.10) and (5.13), we obtain that Mε
xτ

ε is between exp{ε−2(WD−MD(x)∓γ)}.
This is true for x ∈

⋃
i Gi, as well. Since γ > 0 was arbitrarily small, we obtain

the assertion of the theorem. ��

We return to the example considered above (with ṼD(Ki,Kj) given by the
matrix (2.1) and ṼD(K2, ∂D) = 8, ṼD(K3, ∂D) = 2, ṼD(K4, ∂D) = 1). We
calculate the asymptotics of the mathematical expectation of the time τ ε of exit to
the boundary for trajectories beginning at the stable equilibrium position K3. We
find that WD = 10 (the minimum (5.3) is attained at the two graphs K1 → K2,
K2 → ∂D, K3 → ∂D, K4 → K2 or K4 → K3) and MD(K3) = 6 (the
minimum (5.11) is attained at the graphs K1 → K2, K3 → K4, K4 → K2;
K1 → K2, K3 → K2, K4 → K2; K1 → K2, K3 → K2, K4 → K3). Hence
the mathematical expectation of the exit time is logarithmically equivalent to
exp{ε−2(WD −MD(K3))} = exp{4ε−2}.

Considering Zn, we can understand why we obtain this average exit time.
Beginning in K3, the chain Zn makes a number of order

exp{ε−2VD(K3, ∂D)} = exp{2ε−2}

of steps on ∂g3, spending an amount of time of the same order with probability
close to 1 for small ε. After this, with probability close to 1, it goes out to ∂D
and with probability of order

exp{−ε−2(VD(K3,K2)− VD(K3, ∂D))} = exp{−4ε−2},

it passes to the stable cycle K2 (it may be delayed for a relatively small number of
steps near the unstable equilibrium position K4). After this has taken place, over a
time of order exp{ε−2VD(K2, ∂D)} = exp{8ε−2} the chain Zn performs tran-
sitions within the limits of ∂g2 and (approximately exp{ε−2 · VD(K2,K1)} =
exp{ε−2} times less often) ∂g1 with overwhelming probability. After this it goes
out to the boundary. Hence a mathematical expectation of order exp{4ε−2} arises
due to the less likely—of probability of order exp{−4ε−2}—values of order
exp{8ε−2}.

We recall that in the case of a domain attracted to one stable equilibrium
position, the average exit time Mε

xτ
ε has the same order as the boundaries of the

range of the most probable values of τ ε (Theorem 4.2 of Chap. 4). In particular,
any quantile of the distribution of τ is logarithmically equivalent to the average.
Our example shows that this is not so in general in the case where there are
several compacta Ki containing ω-limit sets in the domain D; the mathematical
expectation may tend to infinity essentially faster than the median and quantiles.

This restricts seriously the value of the above theorem as a result characteriz-
ing the limit behavior of the distribution of τ ε.
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We mention the corresponding result formulated in the language of differen-
tial equations.

Theorem 5.4. Let g(x) be a positive continuous function on D ∪ ∂D and let
vε(x) be the solution of the equation Lεvε(x) = −g(x) in D with vanishing
boundary conditions on ∂D. We have

vε(x) � exp{ε−2(WD −MD(x))}
uniformly in x belonging to any compact subset as ε→ 0.

6 Decomposition into Cycles. Sublimit Distributions—
Metastability

In the problems to which this chapter is devoted there are two large parameters:
ε−2 and t, the time over which the perturbed dynamical system is considered.
It is natural to study what happens when the convergence of these parameters to
infinity is coordinated in one way or another. We shall be interested in the limit
behavior of the measures Pε

x{Xε
t ∈ Γ}; we restrict ourselves to the case of a

compact manifold (as in Sect. 4).
The simplest case is where first ε−2 goes to infinity and then t does. Then all

is determined by the behavior of the unperturbed dynamical system. It is clear
that limt→∞ limε→0 P

ε
x{Xε

t ∈ Γ} = 1, if the open set Γ contains the whole
ω-limit set of the trajectory xt(x) beginning at the point x0(x) = x. This limit is
equal to zero if Γ is at a positive distance from the ω-limit set.

In Sect. 4 we considered the case where first t goes to infinity and then ε−2

does. Theorem 4.1 gives an opportunity to establish that

lim
ε→0

lim
t→∞

Pε
x{Xε

t ∈ Γ} = 1

for open sets Γ containing all compacta Ki at which the minimum of W (Ki)
is attained. In the case of general position this minimum is attained at one com-
pactum. If on this compactum there is concentrated a unique normalized invariant
measure μ0 of the dynamical system, then

lim
ε→0

lim
t→∞

Pε
x{Xε

t ∈ Γ} = μ0(Γ)

for all Γ with boundary of μ0-measure zero.
We study the behavior of Xε

t on time intervals of length t(ε−2) where t(ε−2)
is a function monotone increasing with increasing ε−2. It is clear that if t(ε−2)
increases sufficiently slowly, then over time t(ε−2) the trajectory of Xε

t cannot
move far from that stable compactum in whose domain of attraction the initial
point is. Over larger time intervals there are passages from the neighborhood
of this compactum to neighborhoods of others; first to the “closest” compactum
(in the sense of the action functional) and then to more and more “far away”
ones. First of all we establish in which order Xε

t enters the neighborhoods of the
compacta Ki.
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Theorem 6.1. Let L = {1, 2, . . . , l} and let Q be a subset of L. For the process
Xε

t let us consider the first entrance time τQ of the boundaries ∂gj of the ρ-
neighborhoods gj of the Kj with indices in L\Q. Let the process begin in gi ∪
∂gi, i ∈ Q. Then for sufficiently small ρ, with probability converging to 1 as
ε→ 0, Xε

τ belongs to one of the sets ∂gj such that in one of the (L\Q)-graphs g
at which the minimum

A(Q) = min
g∈G(L\Q)

∑

(m→n)∈g

Ṽ (Km,Kn) (6.1)

is attained, the chain of arrows beginning at i leads to j ∈ L\Q.

The proof can be carried out easily by means of Lemmas 2.1 and 3.3.
In this theorem Ṽ (Km,Kn) can be replaced by V (Km,Kn) and in this case

we can also omit all unstable compacta and consider only passages from one
stable compactum to another.

We consider an example. Let Ki, i = 1, 2, 3, 4, 5 be stable compacta con-
taining ω-limit sets and let the values V (Ki,Kj) be given by the matrix

⎛

⎜⎜⎜⎜⎝

0 4 9 13 12
7 0 5 10 11
6 8 0 17 15
3 6 8 0 2
5 7 10 3 0

⎞

⎟⎟⎟⎟⎠

Let the process begin near K1. We determine the {2, 3, 4, 5}-graph mini-
mizing the sum of values of V . This graph consists of the only arrow 1 → 2.
Therefore, the first of the compacta approached by the process will be K2.

Further, we see where we go from the neighborhood of K2. We put Q = {2}.
We find that the {1, 3, 4, 5}-graph 2→ 3 minimizes the sum (6.1). Consequently,
the next compactum approached by the process will be K3, with overwhelming
probability. Then, the graph 3→ 1 shows that the process returns to K1. Passages
from K1 to K2, from K2 to K3 and from K3 back to K1 take place many times,
but ultimately the process comes to one of the compacta K4, K5. In order to
see to which one exactly, we use Theorem 6.1 for Q = {1, 2, 3}. We find that the
minimum (6.1) is attained for the {4, 5}-graph 3→ 1, 1→ 2, 2→ 4. Hence with
probability close to 1 for small ε, if the process begins near K1, K2 or K3, then it
reaches the neighborhood of K4 sooner than that of K5. (We are not saying that
until this, the process performs passages between the compacta K1, K2 and K3

only in the most probable order K1 → K2 → K3 → K1. What is more, in our
case it can be proved that with probability close to 1, passages will take place in
the reverse order before reaching the neighborhood of K4.)

Afterwards the process goes from K4 to K5 and backwards (this is shown
by the graphs 4 → 5 and 5 → 4). Then it returns to the neighborhoods of the
compacta K1, K2 and K3; most probably to K1 first (as is shown by the graph
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5 → 4, 4 → 1). On large time intervals passages will take place between the
“cycles” K1 → K2 → K3 → K1 and K4 → K5 → K4; they take place
the most often in the way described above. Consequently, we obtain a “cycle of
cycles”—a cycle of rank two.

The passages between the Ki can be described by means of the hierarchy of
cycles in the general case, as well (Freidlin [9], [10]). Let K1, . . . ,Kl0 be stable
compacta and let Q be a subset of L = {1, 2, . . . , l0}. We assume that there
exists a unique (L\Q)-graph g∗ for which the minimum (6.1) is attained. We
define RQ(i), i ∈ Q as that element of L\Q which is the terminal point of the
chain of arrows going from i to L\Q in the graph g∗.

Now we describe the decomposition of L into hierarchy of cycles. We be-
gin with cycles of rank one. For every i0 ∈ L we consider the sequence
i0, i1, i2, . . . , in, . . . in which in = R{in−1}(in−1). Let n be the smallest index
for which there is a repetition: in = im, 0 ≤ m < n and for k smaller than n all
ik are different. Then the cycles of rank one generated by the element i0 ∈ L are,
by definite, the groups {i0}, {i1}, . . . , {im−1}, {im → im+1 → · · · → in−1 →
im}, where the last group is considered with the indicated cyclic order. Cycles
generated by distinct initial points i0 ∈ L either do not intersect or coincide; in
the latter case the cyclic order on them is one and the same. Hence the cycles of
rank one have been selected (some of them consist of only one point).

We continue the definition by recurrence. Let the cycles of rank (k − 1)
(briefly (k− 1)-cycles) πk−1

1 , πk−1
2 , . . . , πk−1

nk−1
be already defined. They are sets

of (k−2)-cycles equipped with a cyclic order. Ultimately, every cycle consists of
points—elements of L; we shall denote the set of point which constitute a cycle
by the same symbol as the cycle itself. We shall say that a cycle πk−1

j is a succes-

sor of πk−1
i and write πk−1

i → πk−1
j if Rk−1

πi
(m) ∈ πk−1

j for m ∈ πk−1
i . It can

be proved that the function Rπk−1
i

(m) assumes the same value for all m ∈ πk−1
i ,

so that the above definition is unambiguous.
Now we consider a cycle πk−1

i0
and a sequence of cycles πk−1

i0
→ πk−1

i1
→

· · ·→πk−1
im
→· · · beginning with it. In this sequence repetition begins from a

certain index. Let n be the smallest such index: πk−1
in

= πk−1
im

, 0 ≤ m < n. We
shall say that the cycle πk−1

i0
generates the cycles of rank k {πk−1

i0
}, {πk−1

i1
}, . . . ,

{πk−1
im−1

} (m cycles of rank k, each consisting of one cycle of the preceding rank)

and {πk−1
im

→ πk−1
im−1

→ · · · → πk−1
in−1

→ πk−1
im
}. Taking all initial (k− 1)-cycles

πk−1
i0

, we decompose all cycles of rank (k − 1) into k-cycles.
The cycles of rank zero are the points of L; for some k all (k − 1)-cycles

participate in one k-cycle, which exhausts the whole set L.
For small ε, the decomposition into cycles completely determines the most

probable order of traversing the neighborhoods of the stable compacta by trajec-
tories of Xε

t (of course, all this concerns the case of “general position,” where
every minimum (6.1) is attained only for one graph). Now we turn our attention
to the time spent by the process in one cycle or another.
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Theorem 6.2. Let π be a cycle. Let us put

C(π) = A(π)−min
i∈π

min
g∈Gπ{i}

∑

(m→n)∈g

V (Km,Kn), (6.2)

where A(π) is defined by formula (6.1) and Gπ{i} is the set of {i}-graphs over
the set π. Then for sufficiently small ρ > 0 we have

lim
ε→0

ε2 lnMε
xτπ = C(π) (6.3)

uniformly in x belonging to the ρ-neighborhood of
⋃

i∈π Ki and for any γ > 0
we have

lim
ε→0

Pε
x{eε

−2(C(π)−γ) < τπ < eε
−2(C(π)+γ)} = 1 (6.4)

uniformly in all indicated x.

Proof. Relation (6.3) can be derived from Theorem 5.3. We recall that for any
set Q ⊂ L (not a cycle), limε→0 ε

2 lnMε
xτQ depends on the choice of the point

x ∈
⋃

i∈Q gi in general (cf. Sect. 5). The proof of assertion (6.4) is analogous to
that of Theorem 4.2 of Chap. 4 and we omit it. ��

Let the initial point x belongs to the basin of a compactum Ki, i ∈ L =
{1, . . . , l}. Theorem 6.1 allows to calculate a sequence of cycles π0(x) = {i} ⊂
π1(x) ⊂ · · · ⊂ πk(x) ⊂ · · · ⊂ πm(x) (πk(x) has the rank k) such that the trajec-
tory Xε

t , Xε
0 = x, after reaching the union of basins attracted to Kj , j ∈ πk(x),

leaves this union for the basin of a compactum KN(πk(x)) belonging to a k-cycle
π′
k ∈ πk+1(x), k ∈ {0, 1, . . . ,m − 1}. The last cycle πm(x) in this sequence,

actually, is independent of x. In the generic case, the numbers N (πk(x)) and the
sequence π0(x), . . . , πm are defined in a unique way (by the numbers Vij). Note
that such a sequence is the same for all x attracted to Ki, so that one can write
πk(i) = πk(Ki) instead of πk(x).

Theorem 6.2 allows to find the exit rates ek(x) = C(πk(x)) = Ck(πk(i)) for
each cycle πk(x), k ∈ {0, 1, . . . ,m}, em(x) = ∞: For any δ > 0, the exit time
τ ε(πk(x)) is situated between exp{ ek(x)−δ

ε } and exp{ ek(x)+δ
ε } with probability

close to 1 as ε ↓ 0.
For each cycle π one can also define the rotation rate r(π) and the main state

m(π). The rotation rate for a k-cycle πk is defined by equalities: r(π0) = 0,
r(πk) = maxπk−1∈πk

e(πk−1), k ≥ 1, where the maximum is taken over all
(k − 1)-cycles forming πk. The time of one rotation over πk is logarithmically
equivalent to exp{ r(πk)

ε } as ε ↓ 0.
The main state m(πk) of a k-cycle πk can be defined by induction:m(π0) = j

if π0 = {j}; m(πk) = m(π∗
k−1), where π∗

k−1 is a rank k−1 subcycle of πk such
that e(π∗

k−1) = maxπk−1∈πk
e(πk−1).

We can introduce now the notion of the metastable state. For a given initial
point x ∈ R

n attracted to Ki and a time Tε, limε↓0 ε
2 lnTε = λ ≥ 0, the

metastable state KM(x,λ), M(x, λ) ∈ L, is defined as follows:
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If λk−1(x) < λ < λk(x) and λ > r(πk(x)), then M(x, λ) = m(πk(x)). If
λk−1(x) < λ < λk(x) but λ < r(πk(x)), consider the sequence of (k−1)-cycles
π(1), π(2), . . . , π(r), starting with (k − 1)-cycle π(1) containing N (πk−1(x))
forming the k-cycle πk(x). Let n = min{j : e(π(j)) > λ}. Such a number
n is well defined since r(πk) = max1≤j≤r e(π

(j)) > λ; if r(π(n)) < λ, define
M(x, λ) = m(π(n)). Otherwise consider the sequences of (k−2)-cycles forming
π(n) starting with the (k − 2)-cycle containing N (π(n−1)) and the first cycle
π̂ of this sequence such that e(π̂) > λ. If r(π̂) < λ, put M(x, λ) = m(π̂).
Otherwise, consider (k− 3)-cycles forming π̂ and so on until a cycle π∗ appears
with e(π∗) > λ and r(π∗) < λ, then put M(x, λ) = m(π∗). Such a cycle π∗

exists since for each 0-cycle π0, r(π0) = 0.

Theorem 6.3 (Freidlin [10]). Let x be attracted to Ki, λ ∈ (λk−1(x), λk(x)),
and limε↓0 ε

2 ln t(ε) = λ > 0. Then limε↓0 Px{Xε
t(ε) ∈ Γ} = 1 if Γ ⊃ {x ∈

R
n : |x−K(x, λ)| < δ} for some δ > 0; if the distance between Γ and K(x, λ)

is positive, limε↓0 Px{Xε
t(ε) ∈ Γ} = 0.

For any bounded continuous function f(x) and any δ > 0,

lim
ε↓0

Px

{∣∣∣∣
1

t(ε)

∫ t(ε)

0

f(Xε
s ) ds− f(KM(x,λ))

∣∣∣∣ > δ

}
= 0.

Proof. The proof of this theorem is based on the results of Sect. 4 and on Theo-
rems 6.1 and 6.2. We omit the details. ��

The theory of metastability based on large deviation theory was developed
in Freidlin [10] in 1977 (see also Freidlin [22], Oliviary and Vares [1]). In this
paper, instead of metastability, a very close notion of sublimit distribution was
used: sublimit distribution, for a given x and t(ε) � e

λ
ε concentrated (in the

generic case) on the metastable state KM(x,λ). The notion of sublimit distribu-
tion (metastable distribution) is, in a sense, more appropriate than metastable
state. Even in the case of general position, sublimit distribution is not necessar-
ily concentrated at one point: for instance, if KM(x,λ) is a limit cycle, the sub-
limit distribution is the invariant measure of the non-perturbed dynamical system
concentrated on this cycle. In more complex situation, the support of a sublimit
distribution can contain several asymptotically stable compacts Ki (see Athreya
and Freidlin [1], Freidlin and Koralov [1]).

We return to the example considered after Theorem 6.1. We illustrate the hi-
erarchy of cycles in Fig. 17: the cycles of rank zero (the points) are unified in
the cycles {1 → 2 → 3 → 1} and {4 → 5 → 4} of rank one and they are
unified in the only cycle of rank two. On the arrow beginning at each cycle π we
indicated the value of the constant C(π). If limε→0 ε

2 ln t(ε−2) is between 0 and
2, then over time t(ε−2), the process does not succeed in moving away from that
compactum Ki near which it began and the sublimit distribution corresponding
to the initial point x is concentrated on that Ki to whose domain of attraction x
belongs. Over time t(ε−2) for which limε→0 ε

2 ln t(ε−2) is between 2 and 3, a
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Figure 17.

moving away from the 0-cycle {4} takes place; i.e., the only thing what happens
is that if the process was near K4, then it passes to K5. Then the sublimit distribu-
tion is concentrated on K5, for initial points in the domain of attraction of K4 and
in the domain of attraction of K5. If limε→0 ε

2 ln t(ε−2) is between 3 and 4, then
over time t(ε−2) a limit distribution is established on the cycle {4 → 5 → 4},
but nothing else takes place. Since this distribution is concentrated at the point 5
corresponding to the compactum K5, the result is the same as for

lim
ε→0

ε2 ln t(ε−2)

between 2 and 3.
If limε→0 ε

2 ln t(ε−2) is between 4 and 5, a moving away from the cycle
{4 → 5 → 4} takes place, the process hits the neighborhood of K1 and passes
from there to K2, but not farther; the sublimit distribution is concentrated on K2

for initial points attracted to any compactum except K3 (and for points attracted
to K3 on K3). Finally, if limε→0 ε

−2 ln t(ε−2) > 5, then a limit distribution is
established (although a moving away from the cycle {1 → 2 → 3 → 1} and
even from the cycle {3} may not have taken place).

Now we can determine the sublimit distributions for initial points belonging
to the domain of attraction of any stable compactum. For example, for x attracted
to K4 we have limε→0 P

ε
x{Xε

t(ε−2) ∈ Γ} = 1 for open Γ ⊃ K4 provided that

0 < limε→0 ε
2 ln t(ε−2) ≤ limε→0 ε

2 ln t(ε−2) < 2; limε→0 P
ε
x{Xε

t(ε−2) ∈
Γ} = 1 for open Γ ⊃ K5 provided that 2 < limε→0 ε

2 ln t(ε−2) ≤ limε→0 ε
2×

ln t(ε−2) < 4. If these lower and upper limits are greater than 4 and smaller
than 5, then limε→0 P

ε
x{Xε

t(ε−2) ∈ Γ} = 1 for open sets Γ containing K2. Fi-

nally, if limε→0 ε
2 ln t(ε−2) > 5, then the distribution of Xε

t(ε−2) is attracted to
K3, independently of the initial point x.

Metastability leads to a number of interesting effects. One of them is the
stochastic resonance Benzi et al. [1]. Mathematical theory of this effect in the
framework of large deviations was presented in Freidlin [22]. Consider a system
with time dependent coefficients

Ẋε
t = b

(
t

Tε
, Xε

t

)
+ εσ

(
t

Tε
, Xε

t

)
Ẇt, Xε

0 = x ∈ R
n,
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where Tε � exp(λε−2), ε ↓ 0. Let, for instance, b(t, x) and σ(t, x) be step
functions in t: points 0 = t0 < t1 < · · · < tm = A exist such that b(t, x) =
bk(x), σ(t, x) = σk(x) for t ∈ [tk−1, tk), k ∈ {1, 2, . . . ,m}. We assume that the
vector fields bk(x) and matrix function σk(x) are regular enough, and matrices
ak(x) = σk(x)(σk(x))∗ are positive definite. Assume, for brevity, that all vector
fields bk(x) have the same asymptotically stable compacta K1, . . . ,Kl, and each
of them is an equilibrium point. For each bk(x) and σk(x), one can define the
action functional, corresponding numbers V k

ij , hierarchy of cycles, and functions
Mk(x, λ) defining metastable states (we assume, of course, that all systems are
generic).

Put α1(x, λ) = M1(x, λ), α2(x, λ) = M2(α1(x, λ), λ), . . . , αk(x, λ) =
Mk(αk−1(x, λ), λ), k ∈ {2, 3, . . . ,m}. Define

Φ(t) = Kαj(x,λ) for t ∈ [tj−1, tj), j = 1, . . . ,m.

Let Λ(B) be the Lebesgue measure of a set B ⊂ R
1.

One can derive from Theorem 6.3, that

Λ({t ∈ [0, A] : |Xε
tTε
− Φ(t)| > δ})→ 0

for each δ > 0 in probability Px as ε ↓ 0 (Freidlin [22]).
In particular, if b(t, x) and σ(t, x) are periodic in t, say, with period 1, then

the function Φ(t) will be also periodic starting from some t̂ ≥ 0 with an integer
period (maybe, different from 1, but not larger than l−1, where l is the number of
attractors Ki). If l = 2, the period is 1. One can consider the case of continuously
changing b(t, x) and σ(t, x), system with changing sets of attractors, different
types of convergence Xε

tTε
to Φ(t) (see the same reference).

We note that the problem of limit distribution of Xε
t(ε−2) is closely connected

with the stabilization problem of solutions of parabolic differential equations with
a small parameter (cf. the same article).

7 Eigenvalue Problems

Let L be an elliptic differential operator in a bounded domain D with smooth
boundary ∂D. As is known, the smallest eigenvalue λ1 of the operator −L with
zero boundary conditions is real, positive, and simple. It admits the following
probability theoretic characterization. Let (Xt,Px) be the diffusion process with
generator L and let τ be the time of first exit of Xt from D. Then λ1 forms the di-
vision between those λ for which Mxe

λτ <∞ and those for which Mxe
λτ =∞

(cf. Khas’minskii [2]).
The results concerning the action functional for the family of processes

(Xε
t ,P

ε
x) corresponding to the operators

Lε =
ε2

2

∑
aij(x)

∂2

∂xi∂xj
+
∑

bi(x)
∂

∂xi
(7.1)
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can be applied to determine the asymptotics of eigenvalues of−Lε as ε→ 0. Two
qualitatively different cases arise according as all trajectories of the dynamical
system ẋt = b(xt) leave D ∪ ∂D or there are stable ω-limit sets of the system
in D.

The first, simpler, case was considered in Wentzell [6]. As has been es-
tablished in Sect. 1 (Lemma 1.9), the probability that the trajectory of Xε

t

spends more than time T in D can be estimated from above by the expression
exp{−ε−2c(T − T0)}, c > 0. This implies that Mε

xe
λτε

< ∞ for λ < ε−2c,
and therefore, λε

1 ≥ ε−2c. The rate of convergence of λε
1 to infinity is given more

accurately by the following theorem.

Theorem 7.1. As ε→ 0 we have: λε
1 = (c1 + o(1))ε−2, where

c1 = lim
T→∞

T−1 min{S0T (ϕ) : ϕt ∈ D ∪ ∂D, 0 ≤ t ≤ T} (7.2)

and S0T is the normalized action functional for the family of diffusion processes
(Xε

t ,P
ε
x).

Proof. First of all we establish the existence of the limit (7.2). We denote the
minimum appearing in (7.2) by a(T ). Firstly, it is clear that a(T/n) ≤ a(T )/n
for any natural number n (because the value of S(ϕ) is less than or equal to
S0T (ϕ)/n for at least one of the intervals [kT/n, (k + 1)T/n]). From this we
obtain that for any T, T̃ > 0,

a(T ) ≥ [T/T̃ ] · a(T̃ ). (7.3)

In order to obtain the opposite estimation, we use the fact that there exist
positive T0 and A such that any two points x and y of D ∪ ∂D can be connected
with a curve ϕt(x, y), 0 ≤ t ≤ T (x, y) ≤ T0, such that

S0T (x,y)(ϕ(x, y)) ≤ A.

For some large T̃ let the minimum a(T̃ ) be attained for a function ϕ̃. We put
x = ϕ̃T̃ , y = ϕ̃0 and construct ϕt from pieces: ϕt = ϕ̃t for 0 ≤ t ≤ T̃ ;
ϕt = ϕt−T̃ (x, y) for T̃ ≤ t ≤ T̃ + T (x, y); we extend ϕ periodically with

period T̃ + T (x, y). For any positive T we obtain

S0T (ϕ) ≤ ([T/(T̃ + T (x, y))] + 1)(S0T (ϕ̃) + S0T (x,y)(ϕ(x, y))), (7.4)

a(T ) ≤ ([T/T̃ ] + 1)(a(T̃ ) +A). (7.5)

Dividing (7.3) and (7.5) by T and passing to the limit as T →∞, we obtain

T̃−1a(T̃ ) ≤ lim
T→∞

T−1a(T ) ≤ lim
T→∞

T−1a(T ) ≤ T̃−1(a(T̃ ) +A). (7.6)

Passing to the limit as T̃ →∞, we obtain that the limit (7.2) exists (and is finite).
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Now let τ ε be the time of first exit of Xε
t from D. We prove that

Mε
x exp{ε−2bτ ε} =∞ for sufficiently small ε if b > c1. It is easy to see that

lim
T→∞

T−1 sup
x,y∈D

min{S0T (ϕ) : ϕ0 = x, ϕT = y, ϕt ∈ D ∪ ∂D, 0 ≤ t ≤ T}

is also equal to c1. We choose a positive κ smaller than (b − c1)/3, and T such
that

T−1 sup
x,y∈D

min{S0T (ϕ) : ϕ0 = x, ϕT = y, ϕt ∈ D∪ ∂D, 0 ≤ t ≤ T} < c1+κ.

(7.7)
Now we choose δ > 0 such that

min{S0T (ϕ) : ϕ0 = x, ϕT = y, ϕt ∈ D−δ ∪ ∂D−δ, 0 ≤ t ≤ T}
< T (c1 + 2κ) (7.8)

for all x, y ∈ D−δ , where D−δ is the set of points of D at a distance greater
than δ from the boundary. This can be done according to Lemma 1.4 (T̃ = T ,
because the functions ϕt are defined on the same interval [0, T ]; cf. the proof of
Lemma 1.4). For arbitrary x ∈ D−δ , y ∈ D−2δ we choose a curve ϕt, 0 ≤ t ≤ T ,
connecting them inside D−δ ∪ ∂D−δ and such that S0T (ϕ) ≤ T (c1 + 2κ). By
Theorem 3.2 of Chap. 5 we obtain that for sufficiently small ε and all x ∈ D−δ ,

Pε
x{τ ε > T,Xε

T ∈ D−δ} ≥ Pε
x{ρ0T (Xε, ϕ) < δ}

≥ exp{−ε−2[S0T (ϕ) + κT ]}
≥ exp{−ε−2T (c1 + 3κ)}. (7.9)

Successive application of the Markov property (n− 1) times gives

Pε
x{τ ε > nT} ≥ exp{−nε−2T (c1 + 3κ)}.

From this we obtain for small ε and all n that

Mε
x exp{ε−2bτ ε} ≥ exp{ε−2bnT}Pε

x{τ ε > nT}
≥ exp{nε−2T (b− c1 − 3κ)},

which tends to infinity as n→∞. Therefore,

Mε
x exp{ε−2bτ ε} =∞.

Now we prove that if b < c1, then Mx exp{ε−2bτ ε} <∞ for small ε. Again
we choose 0 < κ < (c1 − b)/3 and T and δ > 0 such that

min{S0T (ϕ) : ϕt ∈ D+δ ∪ ∂D+δ, 0 ≤ t ≤ T} > T (c1 − 2κ) (7.10)

(we have applied Lemma 1.4 once more). The distance between the set of func-
tions ψt entirely in D for 0 ≤ t ≤ T and any of the sets
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Φx(T (c1 − 2κ)) = {ϕ : ϕ0 = x, S0T (ϕ) ≤ T (c1 − 2κ)}

is not less than δ. Therefore, by the upper estimate in Theorem 3.2 of Chap. 5,
for sufficiently small ε and all x ∈ D we have

Pε
x{τ ε > T} ≤ Pε

x{ρ0T (Xε,Φx(T (c1 − 2κ))) ≥ δ}
≤ exp{−ε−2T (c1 − 3κ)}. (7.11)

The Markov property gives us Pε
x{τ ε > nT} ≤ exp{−nε−2T (c1 − 3κ)}, and

Mε
x exp{ε−2bτ ε} ≤

∞∑

n=0

exp{ε−2b(n+ 1)T}Pε
x{nT < τ ε ≤ (n+ 1)T}

≤
∞∑

n=0

exp{ε−2b(n+ 1)T}Pε
x{τε > nT}

≥ exp{ε−2bT}
∞∑

n=0

exp{nε−2T (b− c1 + 3κ)} <∞.

The theorem is proved. ��

The following theorem helps us to obtain a large class of examples in which
the limit (7.2) can be calculated.

Theorem 7.2. Let the field b(x) have a potential with respect to the Riemannian
metric connected with the diffusion matrix, i.e., let there exist a function U(x),
smooth in D ∪ ∂D and such that

bi(x) = −
∑

j

aij(x)
∂U(x)

∂xj
. (7.12)

Then c1 is equal to

min
x∈D∪∂D

{
1

2

∑

ij

aij(x)b
i(x)bj(x)

}
, (7.13)

where (aij(x)) = (aij(x))−1.

Proof. We denote by c∗1 the minimum (7.13). Let the minimum a(T ) be attained
for the function ϕ:

a(T ) =

∫ T

0

1

2

∑
aij(ϕt)(ϕ̇

i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt)) dt. (7.14)

We transform the integral in the following way:

a(T ) =

∫ T

0

1

2

∑
aij(ϕt)ϕ̇

i
tϕ̇

j
t dt−

∫ T ∑
aij(ϕt)b

i(ϕt)ϕ̇
j
t dt
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+

∫ T

0

1

2

∑
aij(ϕt)b

i(ϕt)b
j(ϕt) dt.

The first integral here is nonnegative, the second is equal to U(ϕ0) − U(ϕT )
by (7.12), and the third is not smaller than c∗1 multiplied by T . This implies that
T−1a(T ) ≥ c∗1 − T−1C, where C is the maximum of U(x) − U(y) for all
x, y ∈ D ∪ ∂D. Passing to the limit as T → ∞, we obtain that c1 ≥ c∗1. The
inequality c1 ≤ c∗1 follows from the fact that for the function ϕt ≡ x0, where x0

is a point where the minimum (7.13) is attained, we have T−1S0T (ϕ) = c∗1. ��

Now we consider the opposite case—the case where D contains ω-limit sets
of the system ẋt = b(xt). We assume that condition (A) of Sect. 2 is satis-
fied (there exist a finite number of compacta K1, . . . ,Kl consisting of equivalent
points and containing all ω-limit sets). As we have already said, in this case our
process with a small diffusion can be approximated well by a Markov chain with
(l + 1) states corresponding to the compacta Ki and the boundary ∂D, having
transition probabilities of order

exp{−ε−2ṼD(Ki,Kj)},
exp{−ε−2ṼD(Ki, ∂D)}

(7.15)

(the transition probabilities from ∂D to Ki are assumed to be equal to 0 and the
diagonal elements of the matrix of transition probabilities are such that the sums
in rows are equal to 1).

It seems plausible that the condition of finiteness of Mε
xe

λτε is close to the
condition that the mathematical expectation of eλνε is finite, where νε is the
number of steps in the chain with the indicated transition probabilities until the
first entrance of ∂D. The negative of the logarithm of the largest eigenvalue of
the matrix of transition probabilities after the eigenvalue 1 turns out to be the
divisor between those λ for which the above mathematical expectation is finite
and those for which it is infinite.

The asymptotics of eigenvalues of a matrix with entries of order (7.15) can
be found in Wentzell’s note [3]. The justification of passage from the chain to the
diffusion process Xε

t is discussed in Wentzell [2].

Theorem 7.3. Let λε
1, λ

ε
2, . . . , λ

ε
l be the eigenvalues, except the eigenvalue 1, in-

dexed in decreasing order of their absolute values, of a stochastic matrix with
entries logarithmically equivalent to the expressions (7.15) as ε → 0. We define
constants V (k), k = 1, . . . , l, l + 1 by the formula

V (k) = min
g∈G(k)

∑

(α→β)∈g

ṼA(α, β), (7.16)

where G(k) is the set of W -graphs over the set L = {K1, . . . ,Kl, ∂D} such that
W contains k elements.
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(We note that for k = l + 1, we have W = L; in this case there is exactly one
W -graph, which is the empty graph and the sum in (7.16), just as V (l+1), is equal
to zero.)

Then for ε→ 0 we have

Re(1− λε
k) � exp{−(V (k) − V (k+1))ε−2}. (7.17)

The proof is analogous to those of Lemma 3.1 and other lemmas of Sect. 3:
the coefficients of the characteristic polynomial of the matrix of transition prob-
abilities from which the identity matrix is subtracted can be expressed as sums
of products π(g) over W -graphs. From this we obtain the asymptotics of the
coefficients, which in turn yields the asymptotics of the roots.

We note that the assertion of the theorem implies that V (k−1) − V (k) ≤
V (k) − V (k+1) ≤ V (k+1) − V (k+2). In the case of “general position,” where
these inequalities are strict, the eigenvalue λε

k turns out to be real and simple for
small ε (the principal eigenvalue λ1 is always real and simple).

As far as the justification of the passage from the asymptotic problem for
the Markov chain to the problem for the diffusion process is concerned, it is
divided into two parts: a construction, independent of the presence of the small
parameter ε, which connects diffusion processes with certain discrete chains and
estimates connected with the Markov chains Zn introduced in Sect. 2.

For the first part, the following lemma turns out to be essential.
Suppose that (Xt,Px) is a diffusion process with generator L in a bounded

domain D with smooth boundary, ∂g is a surface inside D, Γ is the surface of a
neighborhood of ∂g, separating ∂g from ∂D. Let us introduce the random times

σ0 = min{t;Xt ∈ Γ}, τ1 = min{t ≥ σ0 : Xt ∈ ∂g ∪ ∂D}.

For a > 0 we introduce the operators qa acting on bounded functions defined
on ∂g:

qaf(x) = Mx{Xτ1 ∈ ∂g; caτ1f(Xτ1)}, x ∈ ∂g. (7.18)

Lemma 7.1. The smallest eigenvalue λ1 of −L with zero boundary conditions
on ∂D is the division between those a for which the largest eigenvalue of qa is
smaller than 1 and those for which it is larger than 1.

The proof of this assertion and a generalization of it to other eigenvalues can
be found in Wentzell [5].

In order to apply this to diffusion processes with small diffusion, we choose
∂g =

⋃
i ∂gi and Γ =

⋃
i Γi in the same was as in Sect. 2 and for the correspond-

ing operators qεa we prove the following estimates.

Lemma 7.2. For any γ > 0 one can choose the radii of the neighborhoods of Ki

so small for all a ≤ e−γε−2

and sufficiently small ε we have

1 + ae−γε−2

≤ Mε
xe

δτ1 ≤ 1 + aeγε
−2

, x ∈ ∂g; (7.19)
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exp{−(ṼD(Ki,Kj) + γ)ε−2} ≤ qεaχgj (x)

= Mε
x{Xε

τ1 ∈ gj ; e
aτ1} ≤ exp{−(ṼD(Ki,Kj)− γ)ε−2}, x ∈ ∂gi;

(7.20)

exp{−(ṼD(Ki, ∂D) + γ)ε−2} ≤ Mε
x{Xε

τ1 ∈ ∂D; eaτ1}
≤ exp{−(ṼD(Ki, ∂D)− γ)ε−2}, x ∈ ∂gi. (7.21)

The proof is analogous to that of Lemmas 2.1 and 1.7; the upper estimates
are obtained with somewhat more work.

In conclusion, we obtain the following result.

Theorem 7.4. The smallest eigenvalue λε
1 of −Lε is logarithmically equivalent

to
exp{−ε−2(V (1) − V (2))} (7.22)

as ε→ 0, where V (1), V (2) are defined by formula (7.16).

In particular, if D contains a unique asymptotically stable equilibrium posi-
tion O, then

λε
1 � exp

{
−ε−2 min

y∈∂D
V (O, y)

}
, (7.23)

where V is a quasipotential.
Theorems 7.1 and 7.4 do not give anything interesting in the case where there

are only unstable sets inside D or the stable limit sets are on the boundary of
the domain. Some results concerning this case are contained in the paper [1] by
Devinatz, Ellis, and Friedman.

The results contained in Theorems 7.3 and 7.4 are related to results of Sect. 6.
In particular, the constants which are to be crossed by limε→0 ε

2 ln t(ε−2) as a
sublimit distribution changes to another one are nothing else but V (k) − V (k+1).

We clarify the mechanisms of this connection. Let (Xε
t ,P

ε
x) be a diffusion

process with small diffusion on a compact manifold M or a process in a closed
domain D ∪ ∂D, stopped after exit to the boundary and let f(x) be a continuous
function vanishing on ∂D. We assume that the function uε(t, x) = Mε

xf(X
ε
t )—

the solution of the corresponding problem for the equation ∂uε/∂t = Lεyε—can
be expanded in a series in the eigenfunctions eεi (x) of −Lε:

uε(t, x) =
∑

i

cεi e
−λε

i teεi (x) (7.24)

with coefficient cεi obtained by integrating f multiplied by the corresponding
eigenfunction ẽεi of the adjoint operator. (Since Lε is not self-adjoint, the exis-
tence of such an expansion is not automatic.) We assume that the first l0 eigen-
values are real, nonnegative and decrease exponentially fast:

λε
i � exp{−Ciε

−2}, +∞ ≥ C1 > C2 > · · · > Cl0 .
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Let the function t(ε−2) be such that Cj+1 < limε→0 ε
2 ln t(ε−2) ≤

limε→0 ln t(ε
−2) < Cj . We have limε→0 e

−λit(ε
−2) = 1 for 1 ≤ i ≤ j and

this limit is equal to zero for i > j. If the infinite remainder of the sum (7.24)
does not prevent it, we obtain

lim
ε→0

uε(t(ε−2), x) =

j∑

i=1

lim
ε→0

∫
f(y)ẽεi (y) dy · lim

ε→0
eεi (x). (7.25)

In other words, the character of the limit behavior of uε(t(ε−2), x) changes as
limε→0 ε

2 ln t(ε−2) crosses Cj .
This outlines the route following which we can derive conclusions concerning

the behavior of a process on exponentially increasing time intervals from results
involving exponentially small eigenvalues and the corresponding eigenfunctions.
The same method can be used for the more difficult inverse problem.



Chapter 7

The Averaging Principle. Fluctuations in Dynamical
Systems with Averaging

1 The Averaging Principle in the Theory of Ordinary
Differential Equations

Let us consider the system

Żε
t = εb(Zε

t , ξt), Zε
0 = x (1.1)

of ordinary differential equations in Rr, where ξt, t ≥ 0, is a function assuming
values in Rl, ε is a small numerical parameter and

b(x, y) = (b1(x, y), . . . , br(x, y)).

If the functions bi(x, y) do not increase too fast, then the solution of (1.1) con-
verges to Z0

t ≡ x as ε → 0, uniformly on every finite time interval [0, T ].
However, the behavior of Zε

t on time intervals of order ε−1 or of larger order
is usually of main interest since it is only times of order ε−1 over which signifi-
cant changes—such as exit from the neighborhood of an equilibrium position or
of a periodic trajectory—take place in system (1.1). In the study of the system
on intervals of the form [0, T ε−1], it is convenient to pass to new coordinates in
order that the time interval do not depend on ε. We set Xε

t = Zε
t/ε. Then the

equation for Xε
t assumes the form

Ẋε
t = b(Xε

t , ξt/ε), Xε
0 = x. (1.2)

The study of this system on a finite time interval is equivalent to the study of
system (1.1) on time intervals of order ε−1.

Let the function b(x, y) be bounded, continuous in x and y, and let it satisfy
a Lipschitz condition in x with a constant independent of y:

|b(x1, y)− b(x2, y)| ≤ K|x1 − x2|.

We assume that

lim
T→∞

1

T

∫ T

0

b(x, ξs) ds = b̄(x) (1.3)
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for x ∈ Rr. If this limit exists, then the function b̄(x) is obviously bounded
and satisfies a Lipschitz condition with the same constant K. Condition (1.3) is
satisfied, for example, if ξt is periodic or is a sum of periodic functions.

The displacement of the trajectory Xε
t over a small time Δ can be written in

the form

Xε
Δ − x =

∫ Δ

0

b(Xε
s , ξs/ε) ds

=

∫ Δ

0

b(x, ξs/ε) ds+

∫ Δ

0

[b(Xε
s , ξs/ε)− b(x, ξs/ε)] ds

= Δ

(
ε

Δ

∫ Δ/ε

0

b(x, ξs) ds

)
+ ρε(Δ).

The coefficient of Δ in the first term of the last side converges to b̄(x) as
ε/Δ→ 0, according to (1.3). The second term satisfies the inequality |ρε(Δ)| <
K̃Δ2. Consequently, the displacement of the trajectory Xε

t over a small time
differs from the displacement of the trajectory x̄t of the differential equation

˙̄xt = b̄(x̄t), x̄0 = x (1.4)

only by an infinitely small quantity compared to Δ as Δ → 0, ε/Δ → 0. If we
assume that the limit in (1.3) is uniform in x, then from this we obtain a proof
of the fact that the trajectory Xε

t converges to the solution of (1.4), uniformly on
every finite time interval as ε→ 0.

The assertion that the trajectory Xε
t is close to x̄t is called the averaging

principle.
An analogous principle can also be formulated in a more general situation.

We consider, for example, the system

Ẋε
t = b1(X

ε
t , ξ

ε
t ), Xε

0 = x,

ξ̇εt = ε−1b2(X
ε
t , ξ

ε
t ), ξε0 = y,

(1.5)

where x ∈ Rr, ξ ∈ Rl, and b1 and b2 are bounded, continuously differentiable
functions on Rr ⊗Rl with values in Rr and Rl, respectively. The velocity of the
motion of the variables ξ has order ε−1 as ε→ 0. Therefore, the ξ are called fast
variables, the space Rl the space of fast motion and the x slow variables.

We consider the fast motion ξt(x) for fixed slow variables x ∈ Rr:

ξ̇t(x) = b2(x, ξt(x)), ξ0(x) = y,

and assume that the limit

lim
T→∞

∫ T

0

b1(x, ξs(x)) ds = b̄1(x) (1.6)
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exists. For the sake of simplicity, let this limit be independent of the initial point
y of the trajectory ξs(x). The averaging principle for system (1.5) is the assertion
that under certain assumptions, displacement in the space of slow motion can be
approximated by the trajectory of the averaged system

˙̄xt = b̄1(x̄t), x̄0 = x.

For (1.2), the role of fast motion is played by ξεt = ξt/ε. In this case the
velocity of fast motion does not depend on the slow variables.

Although the averaging principle has long been applied to problems of celes-
tial mechanics, oscillation theory and radiophysics, no mathematically rigorous
justification of it had existed for a long time. The first general result in this area
was obtained by N. N. Bogolyubov (cf. Bogolyubov and Mitropol’skii [1]). He
proved that if the limit (1.3) exists uniformly in x, then the solution Xε

t of (1.2)
converges to the solution of the average system (1.4), uniformly on every in-
terval. Under certain assumptions, the rate of convergence was also estimated
and an asymptotic expansion in powers of the small parameter was constructed.
In Bogolyubov and Zubarev [1] (cf. also Bogolyubov and Mitropol’skii [1]),
these results were extended to some cases of system (1.5), namely to systems
in which the fast motion is one-dimensional and the equation for ξε has the form
ξ̇εt = ε−1b2(X

ε
t ) and to some more general systems. V. M. Volosov obtained a

series of results concerning the general case of system (1.5) (cf. Volosov [1]).
Nevertheless, in the case of multidimensional fast motions, the requirement of
uniform convergence to the limit in (1.6), which is usually imposed, excludes a
series of interesting problems, for example, problems arising in perturbations of
Hamiltonian systems. In a sufficiently general situation it can be proved that for
every T > 0 and ρ > 0, the Lebesgue measure of the set F ε

ρ of those initial con-
ditions in problem (1.5) for which sup0≤t≤T |Xε

t − x̄t| > ρ converges to zero
with ε. This result, obtained in Anosov [1], was later sharpened for systems of a
special form (cf. Neishtadt [1], [2], [3]).

Consequently, if a system of differential equations is reduced to the form (1.2)
or (1.5), then it is clear, at least formally, what the equation of zeroth approxima-
tion looks like. In some cases a procedure can be found for the determination of
higher approximations. In the study of concrete problems first we have to choose
the variables in such a way that the fast and slow motions be separated.

As an example, we consider the equation

ẍt + ω2x = εf(x, ẋ, t), x ∈ R1. (1.7)

If f(x, ẋ, t) = (1 − x2)ẋ, then this equation turns into the so-called van der Pol
equation describing oscillations in a lamp generator. For ε = 0 we obtain the
equation of a harmonic oscillator. In the phase plane (x, ẋ) the solutions of this
equation are the ellipses x = r cos(ωt + θ), ẋ = −rω sin(ωt + θ), on which
the phase point rotates with constant angular velocity ω. Without perturbations
(ε = 0), the amplitude r is determined by the initial conditions and does not
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change with time and for the phase we have ϕt = ωt + θ. If ε is now different
from zero, but small, then the amplitude r and the difference ϕt − ωt are not
constant in general. Nevertheless, one may expect that the rate of change of them
is small provided that ε is small. Indeed, passing from the variables (x, ẋ) to the
van der Pol variables (r, θ), we obtain

drε

dt
= εF1(ωt+ θε, rε, t), rε0 = r0,

dθε

dt
= εF2(ωt+ θε, rε, t), θε0 = θ0,

(1.8)

where the functions F1(s, r, t) and F2(s, r, t) are given by the equalities

F1(s, r, t) = −
1

ω
f(r cos s,−r sin s, t) sin s,

F2(s, r, t) = −
1

rω
f(r cos s,−r sin s, t) cos s.

Consequently, in the van der Pol variables (r, θ), the equation can be written in
the form (1.1). If f(x, ẋ, t) does not depend explicitly on t, then F1(ωt + θ, r)
and F2(ωt + θ, r) are periodic in t and condition (1.3) is satisfied. Therefore,
the averaging principle is applicable to system (1.8). In the case where f(x, ẋ, t)
depends periodically on the last argument, condition (1.3) is also satisfied. If the
frequency ω and the frequency ν of the function f in t are incommensurable,
then the averaged right sides of system (1.8) have the form (cf., for example,
Bogolyubov and Mitropol’skii [1])

F̄1(r) = −
1

4π2ω

∫ 2π

0

∫ 2π

0

f(r cosψ,−r sinψ, νt) sinψ dψ dt,

F̄2(r) = −
1

4π2rω

∫ 2π

0

∫ 2π

0

f(r cosψ,−r sinψ, νt) cosψ dψ dt.

(1.9)

It is easy to calculate the averaged right sides of system (1.8) for commensu-
rable ω and ν, as well. Relying on the averaging principle, we can derive that as
ε→ 0, the trajectory (rεt , θ

ε
t ) can be approximated by the trajectory (r̄εt , θ̄

ε
t ) of

the averaged system

˙̄rt = εF̄1(r̄t),
˙̄θt = F̄2(r̄t), r̄0 = r0, θ̄0 = θ0,

uniformly on the interval [0, T ε−1]. Using this approximation, we can derive
a number of interesting conclusions on the behavior of solutions of (1.7). For
example, let F̄ (r0) = 0 and let the function F̄1(r) be positive to the left of r0
and negative to the right of it, i.e., let r0 be the amplitude of an asymptotically
stable periodic solution of the averaged system. It can be shown by means of
the averaging principle that oscillations with amplitude close to r0 and frequency
close to ω occur in the system described by (1.7) with arbitrary initial conditions,
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provided that ε is sufficiently small. In the case where F̄1(r) has several zeros at
which it changes from positive to negative, the amplitude of oscillations over a
long time depends on the initial state. We shall return to the van der Pol equation
in Sect. 8.

Equation (1.7) describes a system which is obtained as a result of small per-
turbations of the equation of an oscillator. Perturbations of a mechanical system
of a more general form can also be considered. Let the system be conservative,
let us denote by H(p, q) its Hamiltonian, and let the equations of the perturbed
system have the form

dpεi
dt

= −∂H

∂qi
(pε, qε) + εf i

p(p
ε, qε),

dqεi
dt

=
∂H

∂pi
(pε, qε) + εf i

q(p
ε, qε), i = 1, 2, . . . , n.

If n = 1, p = x, q = ẋ and H(p, q) = q2+ω2p2, f1
p = 0, f1

q = f(p, q), then this
system is equivalent to (1.7). In the case of one degree of freedom (n = 1), if the
level sets H(p, q) = C = const are smooth curves homeomorphic to the circle,
new variables can also be introduced in such a way that the fast and slow motions
be separated. As such variables, we can take the value H of the Hamiltonian
H(p, q) and the angular coordinate ϕ on a level set. Since Ḣ(p, q) = 0 for the
unperturbed system, H(pεt , q

ε
t ) will change slowly.

It is clear that if we choose (H ′, ϕ) as variables, where H ′ is a smooth func-
tion of H , then H ′ also changes slowly. For example, in the van der Pol variables,
the slow variable is r =

√
H . In order that the system preserve the Hamiltonian

form, in place of the variables (H,ϕ), one often considers the so-called action-
angle variables (I, ϕ) (cf., for example, Arnold [1]), where I = H/ω. In the
multidimensional case the slowly varying variables will be first integrals of the
unperturbed system. In some cases (cf. Arnold [1], Chap. 10), in Hamiltonian
systems with n degrees of freedom we can also introduce action-angle variables
(I,ϕ); in these variables the fast and slow motions are separated and the system
of equations preserves the Hamiltonian form.

2 The Averaging Principle when the Fast Motion is a Random
Process

As has already been mentioned, condition (1.3), which implies the averaging
principle, is satisfied if the function ξt is periodic. On the other hand, this con-
dition can be viewed as a certain kind of law of large numbers: (1.3) is satisfied
if the values assumed by ξt at moments of time far away from each other are
“almost independent”.

In what follows we shall assume that the role of fast variables is played by a
random process. First we discuss the simpler case of (1.2), where the fast motion
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does not depend on the slow variables. Hence let ξt be a random process with
values in Rl. We shall assume that the function b(x, y) satisfies a Lipschitz con-
dition: |b(x1, y1)−b(x2, y2)| ≤ K(|x1−x2|+|y1−y2|). Concerning the process
ξt, we assume that its trajectories are continuous with probability one or on every
finite time interval they have a finite number of discontinuities of the first kind
and there are no discontinuities of the second kind. Under these assumptions,
the solution of (1.2) exists with probability 1 for any x ∈ Rr and it is defined
uniquely for all t ≥ 0.

If condition (1.3) is satisfied with probability 1 uniformly in x ∈ Rr, then the
ordinary averaging principle implies that with probability 1, the trajectory of Xε

t

converges to the solution of (1.4), uniformly on every finite interval (b̄(x) and x̄t

may depend on ω in general).
Less stringent assumptions can be imposed concerning the type of conver-

gence in (1.3). Then we obtain a weaker result in general.
We assume that there exists a vector field b̄(x) in Rr such that for any δ > 0

and x ∈ Rr we have

lim
T→∞

P

{∣∣∣∣
1

T

∫ t+T

t

b(x, ξs) ds− b̄(x)

∣∣∣∣ > δ

}
= 0, (2.1)

uniformly in t > 0. It follows from (2.1) that b̄(x) satisfies a Lipschitz condition
(with the same constant as b(x, y)). Therefore, there exists a unique solution of
the problem

˙̄xt = b̄(x̄t), x̄0 = x. (2.2)

The random process Xε
t can be considered as a result of random perturba-

tions of the dynamical system (2.2), small on the average. Relation (2.1) is an
assumption on the average in time smallness of random perturbations.

Theorem 2.1. Suppose that condition (2.1) is satisfied and supt M|b(x, ξt)|2 <
∞. Then for any T > 0 and δ > 0 we have

lim
ε→0

P
{

sup
0≤t≤T

|Xε
t − x̄t| > δ

}
= 0.

The assertion of this theorem follows easily from Theorem 1.3 of Chap. 2.
For this we need to put b(ε, s, x, ω) = b(x, ξs/ε(ω)) and note that condition (2.1)
can be written in the following form: for any T , δ > 0 and x ∈ Rr we have

lim
ε→0

P

{∣∣∣∣
∫ t+T

t

b(ε, s, x, ω) ds− T b̄(x)

∣∣∣∣ > δ

}
= 0,

uniformly in t. This is exactly the condition in Theorem 1.3 of Chap. 2.
We note that our arguments repeat, in essence, the proof of the averaging

principle in the deterministic case, which is contained in Gikhman [1] and Kras-
nosel’skii and Krein [1]. A similar result is contained in Khas’minskii [4].
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Condition (2.1), which is assumed in Theorem 2.1, is satisfied under quite
relaxed assumptions on the process ηxs = b(x, ξs) (x ∈ Rr is a parameter).
For example, if ηxs is stationary in the wide sense, then it is sufficient that the
diagonal entries of its correlation matrix (Rij(τ)) converge to zero as τ → ∞;
in this case, b̄(x) = Mb(x, ξs). In the nonstationary case it is sufficient that there
exist a function r(x, τ) such that limτ→∞ r(x, τ) = 0 and

|M(b(x, ξs)− b̄(x), b(x, ξs+τ )− b̄(x))| < r(x, τ).

We postpone examples until Sect. 8 and now study the difference Xε
t − x̄t in

more detail. In the deterministic case, where, for example, ξt is a periodic func-
tion, this difference is of order ε and we can write down the other terms of the
asymptotic expansion in integral powers of ε. In the study of probability theo-
retical problems we apparently have to consider typical the situation where the
random process ξt satisfies some condition of weak dependence, i.e., a condition
that the dependence between the variables ξt and ξt+τ becomes weaker in some
sense with increasing τ . It turns out that in this case the deviation of Xε

t from
x̄t is of another character. The difference Xε

t − x̄t is of order
√
ε, but no other

terms of the asymptotic expansion can be written down: as ε→ 0, the expression
(1/
√
ε)(Xε

t − x̄t) does not converge to any limit in general and only has a limit
distribution. In other words, whereas the averaging principle itself—the asser-
tion of Theorem 2.1—can be considered as a result of the type of laws of large
numbers, the behavior of the standardized difference (1/

√
ε)(Xε

t − x̄t) can be
described by an assertion of the type of the central limit theorem. In order to clar-
ify this, we consider the simplest system Ẋε

t = b(ξt/ε), in which the right sides
do not depend on x. If ξt satisfies the strong mixing condition of (cf. below), then
under weak additional restrictions, the distribution of the normalized difference
ξεt = (1/

√
ε)(Xε

t − x̄t) converges to a normal distribution as ε→ 0 (cf., for ex-
ample, Ibragimov and Linnik [1]). In the next section we show that under some
additional assumptions, the distributions of the normalized differences converge
to Gaussian distributions in the case of systems of general form, as well. What
is more, following Khas’minskii [4], we show that not only do the distributions
of the variables ξεt converge to Gaussian distributions for every fixed t, but as
ε → 0, the processes ξεt also converge, in the sense of weak convergence, to a
Gaussian Markov process and we also determine the characteristics of the limit
process. In the remaining sections we also study large deviations of order 1 of
Xε

t from x̄t and large deviations of order εκ , where κ ∈ (0, 1
2 ).

3 Normal Deviations from an Averaged System

We pass to the study of the difference between the solution Xε
t of system (1.2)

and the solution x̄t of the averaged system. It has been shown in the preceding
section that with probability close to 1 for ε small, the trajectory of Xε

t is situated
in a small neighborhood of the function x̄t for t ∈ [0, T ], T < ∞. Therefore,
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if we take the smoothness of the field b(x, y) into account, we may hope that
the difference Xε

t − x̄t can be approximated with the deviation, from x̄t, of the
solution of the system obtained from (1.2) by linearization in the neighborhood of
the trajectory of the averaged system. Consequently, the study of the normalized
difference ζεt = ε−1/2(Xε

t − x̄t) may be carried out according to the following
plan: firstly, we study the normalized deviation in the case of a linearized system;
secondly, we verify that the trajectory of the original system differs from that of
the linearized one by a quantity infinitely small compared to

√
ε as ε → 0. In

implementing the first part of our plan, we have to introduce notions and carry
out arguments very similar to those usually employed in the proof of the central
limit theorem for random processes. Moreover, since we would like to prove the
weak convergence of the processes rather than only convergence of the finite-
dimensional distributions, we also need to verify the weak compactness of the
family of processes ξεt .

We note that the study of large deviations of order εκ , where κ ∈ (0, 1
2 ), can

also be reduced to the study of deviations of the same order for the linearized
system. As to the probabilities of deviations of order 1 of Xε

t from x̄t for system
(1.2) and the linearized system, they have essentially different asymptotics.

We pass to the implementation of the above program of the study of devi-
ations of order

√
ε. For this we recall, the notion of strong mixing and some

properties of random processes satisfying the strong mixing condition.
In a probability space {Ω,F ,P} let us be given an increasing family of σ-

algebras F t
s : F t1

s1 ⊆ F t2
s2 for 0 ≤ s2 ≤ s1 ≤ t1 ≤ t2 ≤ ∞. We say that this

family satisfies the strong mixing condition with coefficient α(τ) if

sup
t

sup
ξ,η
|Mξη −MξMη| = α(τ) ↓ 0 (3.1)

as τ → ∞ go, where the supremum is taken over all F t
0-measurable ξ, |ξ| ≤ 1

and F∞
t+τ -measurable variables η, |η| ≤ 1.

It can be proved (cf. Rozanov [1]) that if ξ is an F t
0-measurable and η is an

F∞
t+τ -measurable random variable and M|ξ|2+δ <∞, M |η|2+δ <∞, then

|Mξη −MξMη| ≤ (M|ξ|2+δ)1/(2+δ)(M|η|2+δ)1/(2+δ) · 7[α(τ)]δ/(4+δ). (3.2)

If 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sm ≤ tm are arbitrary numbers, Δ =
min2≤k≤m(sk − tk−1) and the random variables η1, . . . , ηm are such that the ηk
are F tk

sk
-measurable and |ηk| ≤ 1, then

∣∣∣∣∣M
m∏

k=1

ηk −
m∏

k=1

Mηk

∣∣∣∣∣ ≤ (m− 1)α(Δ), (3.3)

where α(Δ) is the mixing coefficient for the σ-algebras F t
s .

We say that a random process ξt, t ≥ 0, satisfies the condition of strong
mixing with mixing coefficient α(τ) if the σ-algebras F t

s generated by the values
of the processes ξu for u ∈ [s, t] satisfy the condition (3.1) of strong mixing.
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Let ηt = (η1(t), . . . , η2k(t)) be a random process satisfying the condition of
strong mixing with coefficient α(τ). Suppose that for some m > 2 we have

M|ηi(t)|m(2k−1) < C,
∫ ∞

0

τn−1[α(τ)](m−2)/m dτ = An for n = 1, 2, . . . , k;

∫ t0+T

t0

|Mηi(t)| dt < B
√
T

for i = 1, 2, . . . , 2k, where C, B, and A1, . . . , Ak are positive constants. Then
there exists a constant C(2k), determined only by the constants C,B,A1, . . . , Ak,
such that
∣∣∣∣M
∫

D2k

· · ·
∫

η1(s1)η
2(s2) · · · · · η2k(s2k) ds1 · · · ds2k

∣∣∣∣ < C(2k)T
k, (3.4)

where D2k = {(s1, . . . , s2k) : si ∈ [t0, t0 + T ] for i = 1, . . . , 2k}. If D is
the direct product of two-dimensional convex domains D(1), . . . , D(k) such that
each of them can be enclosed in a square with side T and for all s ∈ [t0, t0 + T ]
we have the inequality |

∫ s

t0
Mηi(t) dt| < C, then

∣∣∣∣M
∫

D

· · ·
∫

η1(s1)η
2(s2) · · · · · η2k(s2k) ds1 · · · ds2k

∣∣∣∣ < C ′
(2k)T

k. (3.5)

The proof of estimates of the type of (3.4) takes its origin in the first publications
on limit theorems for weakly dependent random variables (cf. Bernstein [2]). In
the form presented here, estimates (3.4) and (3.5) are proved in Khas’minskii [4].

Now we formulate the fundamental result of this section.

Theorem 3.1. Let the functions bi(x, y), x ∈ Rr, y ∈ Rl, i = 1, . . . , r, have
bounded continuous first and second partial derivatives on the whole space. Sup-
pose that the random process ξt with values in Rl has piecewise continuous
trajectories with probability 1 and satisfies the condition of strong mixing with
coefficient α(τ) such that

∫∞
0

τ [α(τ)]1/5 dτ < ∞ and supx,t M|b(x, ξt)|3 <
N <∞. Moreover, let the following conditions be satisfied:

1. The limits

lim
T→∞

1

T

∫ t0+T

t0

Mb(x, ξs) ds = b̄(x),

lim
T→∞

1

T

∫ t0+T

t0

∫ t0+T

t0

Aki(x, s, t) ds dt = Aki(x),

exist uniformly in x ∈ Rr, t0 ≥ 0, where

Aki(x, s, t) = M[bk(x, ξs)−Mbk(x, ξs)][b
i(x, ξt)−Mbi(x, ξt)].
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2. For some C <∞ we have
∣∣∣∣
∫ τ

0

[Mb(x̄s, ξs/ε)− b̄(x̄s)] ds

∣∣∣∣ < Cε,

max
k,i

∣∣∣∣
∫ τ

0

[
M
∂bk

∂xi
(x̄s, ξs/ε)−

∂b̄k

∂xi
(x̄s)

]
ds

∣∣∣∣ < Cε

for all τ ∈ [0, T0].

Then as ε→ 0, the process

ζεt =
1√
ε
(Xε

t − x̄t)

converges weakly on the interval [0, T0] to a Gaussian Markov process ζ0t satis-
fying the system of linear differential equations

ζ̇0t = Ẇ 0
t +B(x̄t)ζ

0
t , ζ00 = 0, (3.6)

where w0
t is a Gaussian process with independent increments, vanishing math-

ematical expectation and correlation matrix (Rki(t)), Rki(t) = Mw0,k
t w0,i

t =∫ t

0
Aki(x̄s) ds and B(x) = (Bi

j(x)) = (∂b̄i/∂xj(x)).

Proof. We introduce the notation

B(x, y) = (Bi
j(x, y)) =

(
∂bi

∂xj
(x, y)

)
,

λε
t =

1√
ε

∫ t

0

[b(x̄s, ξs/ε)− b̄(x̄s)] ds,

Φ(s, ε, ω) = B(x̄s, ξs/ε)−B(x̄s),

Ψ(s, ε, ω) =
1√
ε
[b(x̄s +

√
εζεs , ξs/ε)− b(x̄s, ξs/ε)−B(x̄s, ξs/ε)ζ

ε
s

√
ε ].

It follows from the definition of Xε
t and x̄t that we have the following relation

for the normalized difference ζεt :

ζεt =
1√
ε

∫ t

0

[b(Xε
s , ξs/ε)− b̄(x̄s)] ds

= λε
t +

∫ t

0

B(x̄s)ζ
ε
s ds+

∫ t

0

Φ(s, ε, ω)ζεs ds+

∫ t

0

Ψ(s, ε, ω) ds. (3.7)

It is easy to see (it follows from the existence of bounded second derivatives
of bi(x, y)) that Ψ(s, ε, ω) is of order

√
ε(ζεs )

2. In general, the linearized equation
must contain a term corresponding to the third term on the right side of (3.7).
Nevertheless, as will follow from the discussion below, this term has a vanishing
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effect as ε→ 0, and therefore, we do not include it in the linearized system from
the very beginning.

Hence we consider the simplified linearized equation

Zε
t = λε

t +

∫ t

0

B(x̄s)Z
ε
s ds. (3.8)

In accordance with our plan, we first have to prove that as ε → 0, Zε
t converges

to a process ζ0t satisfying (3.6). For this we need the following lemma.

Lemma 3.1. The process λε
t converges weakly to the process w0

t defined in the
formulation of Theorem 3.1 as ε→ 0.

Proof. We divide the proof of the lemma into several steps.

1. First of all, we prove that the family of processes λε
t is weakly compact in

C0T0 . For this it is sufficient to show (cf. Prokhorov [1]) that for any s,
s+ h ∈ [0, T0] we have

M|λε
s+h − λε

s|4 ≤ Ch2, (3.9)

where C is a constant independent of ε. It is obviously sufficient to establish
an analogous estimation for every component of the process

λε
s = (λε,1(s), . . . , λε,r(s)).

From the assumption concerning the mixing coefficient of ξt and condition 2
it follows that estimate (3.4) is applicable to the process λε,k(s):

M|λε,k(s+ h)− λε,k(s)|4 = ε2M

∫ (s+h)/ε

s/ε

· · ·
∫ (s+h)/ε

s/ε

4∏

i=1

[bk(x̄εsi , ξsi)

− b̄k(x̄εsi)] ds1 ds2 ds3 ds4

≤ ε2C1
h2

ε2
= C1h

2.

This implies (3.9) and weak compactness.
2. The hypotheses of Theorem 3.1 imply the relations

lim
ε→0

Mλε
t = 0; lim

ε→0
Mλε,k(t)λε,l(t) =

∫ t

0

Akl(x̄s) ds. (3.10)

The first of these equalities follows from condition 2 of Theorem 3.1. From
the same condition we obtain that

Mλε,k(t)λε,l(t) =
1

ε

∫ t

0

∫ t

0

gkl(u, s, ε) ds du+ oε(1), (3.11)
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where we have used the notation gkl(u, s, ε) = M[bk(x̄u, ξu/ε) −
Mbk(x̄u, ξu/ε)]× [bl(x̄s, ξs/ε)−Mbl(x̄s, ξs/ε)]. In order to derive the second
equality in (3.10) from this, we put H = {(s, u) : 0 ≤ s ≤ t, 0 ≤ u ≤ t},
Δ = t/n, Ai = {(s, u) : iΔ ≤ s ≤ (i+ 1)Δ, iΔ ≤ u ≤ (i+ 1)Δ}, where
n is an integer; A =

⋃n−1
i=0 Ai and B = H\A. From (3.2) with δ = 1 we

obtain the estimate

|gkl(u, s, ε)| ≤ C2

[
α

(
u− s

ε

)]1/5
.

From this we obtain

∫

B

gkl(u, s, ε) du ds ≤ 2C2ε
2
n−1∑

i=0

∫ iΔ/ε

0

du

∫ (i+1)Δ/ε

iΔ/ε

ds[α(s− u)]1/5

≤ 4C2ε
2n

∫ ∞

0

u|α(u)|1/5 du. (3.12)

Taking account of the boundedness of the derivatives of bk(x, ξ) and condi-
tion 1 of Theorem 3.1, we see that

∫

A

gkl(u, s, ε) du ds = ε2
n−1∑

i=0

∫ (i+1)Δ/ε

iΔ/ε

ds

∫ (i+1)Δ/ε

iΔ/ε

du

×M[[bk(x̄iΔ, ξs)−Mbk(x̄iΔ, ξs)]

× [bl(x̄iΔ, ξu)−Mbl(x̄iΔ, ξu)]] +O(nΔ3)

= ε

[
n−1∑

i=0

Akl(x̄iΔ) ·Δ+Oε(1)

]
+O(1/n2). (3.13)

This equality holds as εn → 0 and n → ∞. From the boundedness of the
derivatives of b(x, y), condition 1 of Theorem 3.1 and the condition of strong
mixing it follows that the functions Akl(x) are continuous. Taking account
of this continuity and relations (3.11)–(3.13), we find that

Mλε,k(t)λε,l(t) =

∫ t

0

Akl(x̄s) ds+ γε,k,

where γε,n → 0 as εn→ 0 and εn2 →∞.
3. In conclusion, we show that λε

t converges weakly to the process w0
t defined

in the formulation of Theorem 3.1. From the weak compactness of the family
of measures corresponding to the processes λε

t in the space C0T0 it follows
that every sequence of such processes contains a subsequence converging to

some process λ̃t. If we show that the distribution of the limit process λ̃t does
not depend on the choice of the subsequence, then weak convergence will be
proved.
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It follows from step 2 that Mλ̃t = 0 and the entries of the covariance ma-
trix of the process λ̃t = (λ̃1(t), . . . , λ̃r(t)) have the form Mλ̃k(t)λ̃l(t) =∫ t

0
Akl(x̄s) ds. Moreover, λ̃t is a process with independent increments. In-

deed, let s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sm ≤ tm be arbitrary nonnegative
numbers and write Δ = min2≤k≤m(sk − tk−1). We apply inequality (3.3)
to the variables ηεl = exp{i(z, λε

tl
− λε

sl
)}, z ∈ Rr:

∣∣∣∣∣M exp

{
i

(
z,

m∑

l=1

(λε
tl
− λε

sl
)

)}
−

m∏

l=1

M exp{i(z, λε
tl
− λε

sl
)}
∣∣∣∣∣

≤ (m− 1)α(Δ/ε).

Taking into account that limτ→∞ α(τ) = 0, we conclude from this that for
the limit process λ̃t, the multivariate characteristic function of the vector
(λ̃t1 − λ̃s1 , λ̃t2 − λ̃s2 , . . . , λ̃tm − λ̃sm) is equal to the product of the charac-
teristic functions of the separate increments. Consequently, the limit process
λ̃t has independent increments.
Therefore, the limit process λ̃t has continuous trajectories, independent in-
crements, mean zero and the given covariance matrix (Mλ̃t(t)λ̃l(t)). As is
known, these properties determine λ̃t uniquely and λ̃t is necessarily Gaus-
sian (cf. Skorokhod [1]) and coincides with w0

t (in the sense of distributions).
The weak compactness of the family of measures corresponding to the pro-
cesses λε

t and the fact that this family has a unique limit point imply the weak
convergence of λε

t to w0
t . Lemma 3.1 is proved. ��

Now it is very easy to prove the weak convergence of the measure corre-
sponding to the process Zε

t to the measure corresponding to ξ0t . Indeed, (3.8)
defines a continuous mapping G : λε → Zε of C0T0 into itself. It is clear that if
the measure corresponding to λe converges weakly to the measure corresponding
to w0, then the measure corresponding to Zε = G(λε) converges weakly to the
measure corresponding to G(w0) = ζ0.

Hence we have carried out the first part of our plan. Now we estimate the
difference ζεt − Zε

t = Uε
t . From (3.7) and (3.8), for Uε

t we obtain the relation

Uε
t −

∫ t

0

B(x̄s, ξs/ε)U
ε
s ds =

∫ t

0

Φ(s, ε, ω)Zε
s ds+

∫ t

0

Ψ(s, ε, ω) ds. (3.14)

Since the entries of the matrix B(x, y) are bounded, relying on Lemma 1.1 of
Chap. 2, we conclude from the last equality that

|Uε
t | ≤ ect

[∣∣∣∣
∫ t

0

Φ(s, ε, ω)Zε
s ds

∣∣∣∣+
∣∣∣∣
∫ t

0

Ψ(s, ε, ω) ds

∣∣∣∣

]
, (3.15)

where c is a constant. If we show that the family of measures induced by the
processes ζεt in C0T0 is weakly compact and the right side of the last inequality
converges to zero in probability, then the proof of the theorem will be completed.
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First we prove that the right side of (3.15) converges to zero in probability as
ε→ 0. It follows from the boundedness of the partial derivatives of the functions
bi(x, y) that for some C1 we have

|Ψ(s, ε, ω)| ≤ C1

√
ε|ζεs |2. (3.16)

Taking account of the boundedness of M|λε
t |2, it is easy to derive from (3.7) that

M|ζεs | ≤ C2 <∞ for s ∈ [0, T0]. This and (3.16) imply the estimate

M

∣∣∣∣
∫ t

0

Ψ(s, ε, ω) ds

∣∣∣∣ ≤ C3t
√
ε. (3.17)

Now we estimate the first term on the right side of (3.15). We use the fol-
lowing representation of the solution of problem (3.8) in terms of the Green’s
function K(t, s) = (Ki

j(t, s)):

Zε
t = λε

t +

∫ t

0

K(t, s)λε
s ds. (3.18)

As is known, K(t, s) is continuously differentiable in the triangle

{(t, s) : 0 ≤ s ≤ t ≤ T0}.

For the norm of the matrix K(t, s) we have the estimate

‖K(t, s)‖ ≤ ‖B(x̄s)‖ exp{‖B(x̄s)‖|t− s|} < C4.

Using the representation (3.18), we find that

1

2
M

∣∣∣∣
∫ t

0

Φ(s, ε, ω)Zε
s ds

∣∣∣∣
2

≤ M

∣∣∣∣
∫ t

0

[B(x̄s, ξs/ε)−B(x̄s)]λ
ε
s ds

∣∣∣∣
2

+M

∣∣∣∣
∫ t

0

ds[B(x̄s, ξs/ε)−B(x̄s)]

∫ s

0

K(s, u)λε
u du

∣∣∣∣
2

. (3.19)

Let us denote by I1 and I2 the first and second terms on the right side of (3.19),
respectively. Let us put

ϕk(s/ε, ε, ω) = bk(x̄s, ξs/ε)− b̄k(x̄s),

ϕk
j (s/ε, ε, ω) =

∂bk

∂xj
(x̄s, ξs/ε)−

∂b̄k

∂xj
(x̄s).

Taking account of the definition of λε
t and applying estimate (3.5), we obtain
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I1 ≤ C(r)max
k,j

M

∣∣∣∣
1√
ε

∫ t

0

dsϕk
j (s/ε, ε, ω)

∫ s

0

ϕj(u/ε, ε, ω) du

∣∣∣∣
2

= ε3C(r)max
k,j

∫ t/ε

0

ds1

∫ t/ε

0

ds2

∫ s1

0

du1

∫ s2

0

du2 M[ϕk
j (s1, ε, ω)

× ϕk
j (s2, ε, ω)ϕ

j(u1, ε, ω)ϕ
j(u2, ε, ω)]

≤ C(r)C5ε
3(t/ε)2 = C6εt

2. (3.20)

Here C(r) is a constant depending on the dimension of the space.
In order to estimate I2, we note that the differentiability of the entries Ki

j(t, s)
of the matrix-valued Green’s function and condition 2 of the theorem imply the
estimate ∣∣∣∣

∫ t/ε

u/ε

Mϕi
j(s, ε, ω)K

j
k(εs, u) ds

∣∣∣∣ ≤ C7 <∞

for 0 ≤ u ≤ t ≤ T0. Using this estimate and inequality (3.5), we obtain

M

[
1√
ε

∫ t

0

ϕi
j(s/ε, ε, ω) ds

∫ s

0

Kj
k(s, u) du

∫ u

0

ϕk(v/ε, ε, ω) dv

]2

≤ ε3
∫ t

0

du1

∫ t

0

du2M

∫ t/ε

u1/ε

ds1

∫ t/ε

u2/ε

ds2

∫ u1/ε

0

dv1

∫ u2/ε

0

dv2

× ϕ̃(ε, s1, u1, ω)ϕ̃(ε, s2, u2, ω)ϕ
k(v1, ε, ω)ϕ

k(v2, ε, ω) ≤ C8εt
4,

where ϕ̃(ε, s, u, ω) = ϕi
j(s, ε, ω)K

j
k(εs, u). These inequalities imply the esti-

mate I2 < C9ε. Taking account of (3.19) and (3.20), we arrive at the inequality

M

∣∣∣∣
∫ t

0

Φ(s, ε, ω)Zε
s ds

∣∣∣∣
2

≤ C10ε, (3.21)

which holds for t ∈ [0, T0]. It follows from (3.15), (3.17) and (3.21) that
M|Uε

t | → 0 as ε→ 0.
In order to prove the weak compactness of the family of measures corre-

sponding to the ζεt , we note that ζεt and λε
t are connected with the relation

ζεt = λε
t +

1√
ε

∫ t

0

[b(Xε
s , ξs/ε)− b(x̄s, ξs/ε)] ds.

Taking account of estimate (3.9) and the boundedness of b(x, y), we can easily
obtain an estimate for ζεt , analogous to (3.9):

M|ζεt+h − ζεt |4 ≤ C̃h2.

This estimate guarantees the weak compactness of the family of the processes ζεt ,
t ∈ [0, T0]. The weak compactness and the convergence of the finite-dimensional
distributions imply the weak convergence of ζεt to ζ0t . This completes the proof
of Theorem 3.1. ��
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In Sect. 8 we shall consider some examples of the application of this theorem
and now we only make one remark. According to Theorem 3.1 we have

lim
εto0

MF (ζε) = MF (ζ0) (3.22)

if the functional F (ϕ) is bounded and continuous on C0T0 . For discontinuous
functionals, this passage to the limit is impossible in general. Nevertheless, if
for the limit process ζ0t , the set of points of discontinuity of F has probability
zero, then, as is easy to prove, relation (3.22) is preserved. For example, let us
be given a domain D ⊂ Rr with smooth boundary ∂D and let F (ϕ) = 1 if
τ(ϕ) = inf{t : ϕt ∈ ∂D} < T , and F (ϕ) = 0 for the remaining functions
in C0T (R

r). This functional is discontinuous at those ϕ which reach ∂D but
do not leave D ∪ ∂D until time T and at those ϕ for which τ(ϕ) = T . If the
matrix of the Aij(x̄s) is nonsingular, then for the limit process ζ0t , the set of
trajectories reaching ∂D until time T but not leaving D has probability zero.
This follows from the strong Markov property of the process and from the fact
that a nondegenerate diffusion process beginning at a point x ∈ ∂D hits both
sides of the smooth surface ∂D before any time t > 0 with probability 1. The
vanishing of the probability P{τ(ζ0) = T} follows from the existence of the
transition probability density of ζ0t . Consequently, P{τ(ζε) < T} converges to
P{τ(ζ0) < T} as ε → 0. In particular, choosing the ball of radius δ with center
at the point 0 as D, we obtain

lim
ε→0

P
{

sup
0≤t≤T

|Xε
t − x̄t| > δ

√
ε
}
= P{τ(ζ0) > T}.

The last probability can be calculated by solving the corresponding Kolmogorov
equation.

We mention another situation in which we encounter approximation by dif-
fusion processes for deviations from trajectories of the averaged system. If we
return to the “slow” time in which (1.1) is written, then the averaging principle
contained in Theorem 2.1 can be formulated in the following way: If condition
(2.1) is satisfied, then for any δ > 0 we have

lim
ε→0

P
{

sup
0≤t≤T/ε

|Zε
t − x̄εt| > δ

}
= 0,

where Zε
t is the solution of (1.1) and x̄t is the solution of the averaged system

(1.4). In the case b̄(x) ≡ 0 this theorem implies that in the time interval [0, T/ε]
the process Zε

t does not move away noticeably from the initial position. It turns
out that in this case, displacements of order 1 take place over time intervals of or-
der ε−2. Apparently, it was Stratonovich [1], who first called attention to this fact.
On the level of the rigor of physics, he established (cf. the same publication) that
under certain conditions, the family of processes Zε

t/ε2 converges to a diffusion
process and computed the characteristics of the limit process. A mathematically
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rigorous proof of this result was given by Khas’minskii [5]. A proof is given in
Borodin [1] under essentially less stringent assumptions.

Without precisely formulating the conditions, which, in addition to the equal-
ity b̄(x) ≡ 0, contain some assumptions concerning the boundedness of the
derivatives of the b(x, y) and also the sufficiently good mixing and the existence
of moments of ξt, we include the result here.

Let us introduce the notation

aik(x, s, t) = Mbi(x, ξs)b
k(x, ξt),

B(x, y) = (Bi
j(x, y)) =

(
∂bi(x, y)

∂xj

)
,

Ki(x, s, t) =

r∑

j=1

MBi
j(x, ξs)b

j(x, ξt).

Suppose that the limits

āik(x) = lim
T→∞

1

T

∫ t0+T

t0

∫ t0+T

t0

aik(x, s, t) ds dt,

K̄i(x) = lim
T→∞

1

T

∫ t0+T

t0

∫ t0+T

t0

Ki(x, s, t) ds dt

exist, uniformly in t0 > 0 and x ∈ Rr.
Then on the interval [0, T ], the process ηεt = Zε

t/ε2 converges weakly to the
diffusion process with generating operator

L =
1

2

r∑

i,k=1

āik(x)
∂2

∂xi∂xk
+

r∑

i=1

K̄i(x)
∂

∂xi

as ε→ 0. A precise formulation and proof can be found in Khas’minskii [5] and
Borodin [1].

A natural generalization of the last result is the limit theorem describing
the evolution of first integrals of a dynamical system. Consider (1.2), and as-
sume that the corresponding averaged system (1.4) has a first integral H(x) :
H(X̄t) = H(x) = constant for t ≥ 0. Let H(x) be a smooth function
with compact connected level sets C(y) = {x ∈ Rr : H(x) = y}. Since
Xε

t → X̄t as ε ↓ 0 uniformly on any finite time interval [0, T ] in probability,
max0≤t≤T |H(Xε

t ) − H(x)| → 0 as ε ↓ 0 in probability. To observe the evo-
lution of H(Xε

t ), one should consider time intervals growing together with ε−1.
Let us rescale time: X̂ε

t = Xε
t/ε. The functions X̂ε

t satisfy the equation

˙̂
Xε

t =
1

ε
b(X̂ε

t , ξt/ε2), X̂ε
0 = x ∈ Rr. (3.23)

We have:
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H(X̂ε
t )−H(x) =

1

ε

∫ t

0

(∇H(X̂ε
s ), b(X̂

ε
s , ξs/ε2)) ds

=
1

ε

∫ t

0

(∇H(X̂ε
s ), (b(X̂

ε
s , ξs/ε2)− b̄(X̂ε

s ))) ds.

Here we used the equality (∇H(x), b̄(x)) = 0, x ∈ Rr, which holds since H(x)
is a first integral of system (1.4).

Let ξt be a stationary stochastic process with good enough mixing properties.
Then the limit in (1.3) is equal to b̄(x) = Mb(x, ξt), and, due to the central limit
theorem,

1

ε

∫ t

0

(∇H(x), b(x, ξs/ε2)− b̄(x)) ds

converges as ε ↓ 0 in the distribution to a Gaussian random variable. Of course,
the characteristics of this Gaussian variable depend on x ∈ Rr.

Taking into account that the rates of change for X̂ε
t and ξt/ε2 have different

order, and that Xε
t converges to X̄t as ε ↓ 0, one can expect that, if the dynamical

system X̄t has some ergodic properties on the level sets C(y), the characteristics
of the limit of H(X̂ε

t ) as ε ↓ 0 depend only on H(X̂ε
t ) but not on the position

of X̂ε
t on C(H(X̂ε

t )). This means that the process H(X̂ε
t ), 0 ≤ t ≤ T , should

converge to a diffusion process Yt:

dYt = σ(Yt) dWt +B(Yt) dt, Y0 = H(x),

where Wt is a standard one-dimensional Wiener process. Thus, the convergence
to a diffusion process is the result not just of averaging with respect to the fast os-
cillating process ξt/ε2 , but also of the ergodic behavior of the averaged dynamical
system X̄t on the level sets of the first integral.

The result of Stratonovich, Khasminskii, and Borodin is a special case of
the limit theorem for first integrals: If b̄(x) ≡ 0, then each coordinate xi is a first
integral of the averaged system, and the evolution of X̂ε

t is, actually, the evolution
of the first integrals. No assumptions concerning the ergodicity on the level sets
is needed here, since each level set consists of one point.

To formulate the exact result, we restrict ourselves to the two-dimensional
case. Consider (3.23) for r = 2. Let ξt, −∞ < t < ∞, be a stationary pro-
cess with the values in Rm. Assume that the trajectories ξt have at most a finite
number of simple discontinuities on each finite time interval with probability 1.
Equation (1.2) is satisfied at the points where ξt/ε2 is continuous. The solution
is assumed to be continuous for all t ≥ 0. We assume also that the vector field
b(x, u), x ∈ R2, u ∈ Rm, is Lipschitz continuous and |b(x, u)| is bounded or
grows slowly; the function b̄(x) = Mb(x, ξt) then is also Lipschitz continuous.

Introduce the following conditions.

1. Let H(x), x ∈ R2, be a first integral for averaged system (1.4). Assume that
H(x) is three times differentiable and the sets C(y) = {x ∈ R2 : H(x) =
y} are closed connected curves in R2 without selfintersections. This means,
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in particular, that H(x) has a unique extremum point. We can assume without
loss of generality, that this point is the origin O ∈ R2, and that H(O) = 0,
H(x) > 0 for x �= 0. The trajectory X̄t performs periodic motion along
C(y), y = H(X̄0) with a period T (y). Assume that T (y) ≤ c(1 + y2) for
y ≥ 0 and some c > 0.

2. Let

|H(x)| < c(|x|2 + 1), |∇H(x)| ≤ c(|x|+ 1),
∣∣∣∣
∂2H(x)

∂xi∂xj

∣∣∣∣ ≤ c,

∣∣∣∣
∂3H(x)

∂xi∂xj∂xk

∣∣∣∣ ≤ c

for some c > 0 and for i, j, k ∈ {1, 2}, x ∈ R2. Let

|x|μ ≤ c(H(x) + 1)

for some 1 < μ ≤ 2.
3. Put g(x, z) = b(x, z)− b̄(x). Suppose a positive function q(z) and a constant

c > 0 exist such that

|b̄(x)| ≤ c(|x|+ 1), |∇b̄(x)| ≤ c,
∣∣∣∣
∂2b̄(x)

∂xi∂xj

∣∣∣∣ ≤ c, |g(x, z)| ≤ cq(z),

∣∣∣∣
∂g(x, z)

∂xi

∣∣∣∣ ≤
c

1 + |x|q(z), i, j ∈ {1, 2}, x ∈ R2, z ∈ Rm.

Let, for some p > (4(μ+ 1))/(μ− 1),

M|q(ξt)|ρ ≤ c.

The next assumption concerns the mixing properties of the process ξt(ω),
ω ∈ Ω, −∞ < t < ∞. Let F t

s be the σ-field generated by the process ξv
when −∞ ≤ s ≤ v ≤ t ≤ ∞. Define

β(τ) = sup
B∈F0

−∞×F∞
t

|(P0,τ (B)− (P0 × Pτ )(B))|,

where the measures P0,τ and P0×Pτ on the space Ω×Ω are defined by the
relations:

P0,τ (A1 ×A2) = P (A1 ∩A2),

(P0 × Pτ )(A1 ×A2) = P (A1)P (A2),

for A1 ∈ F 0
−∞, A2 ∈ F∞

τ .
We say that the process ξt satisfies the absolute regularity mixing condition
with the coefficient β(τ), if β(τ) ↓ 0 as τ →∞.
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It is known that the absolute regularity mixing condition is stronger than
mixing condition (3.1) (strong mixing condition). Note that since ξt is a sta-
tionary process, the supremum in t in (3.1) can be omitted. Some sufficient
conditions for these types of mixing properties and bounds for the coeffi-
cients α(τ) and β(τ) can be found in Ibragimov and Rozanov [1].

4. Assume that the stationary process ξt satisfies the absolute regularity mixing
conditions with the coefficient β(τ) such that

∫ ∞

0

τ3β(p−8)/p(τ) dτ < ∞,

β(p−8)/p(τ) < c ·min(1, τ−4)

(3.24)

for some c > 0 and the constant p defined in condition 3.
If

b(x, z) =
n∑

k=1

uk(x)vk(z), n <∞,

one can replace the absolute regularity condition by the strong mixing condi-
tion with the coefficient α(τ) satisfying (3.24) with β(τ) replaced by α(τ).
Define

g(x, z) = b(x, z)− b̄(x),

F (x, z) = (∇H(x), g(x, z)),

D(x, s) = MF (x, ξs)F (x, ξ0),

Q(x, s) = M(∇F (x, ξs), g(x, ξ0)),

where∇ is the gradient in x ∈ R2. Let

D(x) = 2

∫ ∞

0

D(x, s) ds,

Q(x) = 2

∫ ∞

0

Q(x, s) ds,

σ2(y) =
1

T (y)

∮

C(y)

D(x) dl

|b(x)| ,

B(y) =
1

T (y)

∮

C(y)

Q(x) dl

|b(x)| ,

where dl is the length element on C(y) = {x ∈ R2 : H(x) = y} and
T (y) =

∮
C(y)

(dl/|b(x)|) is the period of the rotation along C(y).

5. Assume that the functions σ2(y) and B(y) are Lipschitz continuous.

Theorem 3.2 (Borodin and Freidlin [1]). Let Y ε
t = H(X̂ε

t ), where X̂ε
t is the so-

lution of (3.22) and H(x) is the first integral of averaged equation (1.4). Suppose
that conditions 1–5 hold. Then for any 0 < T <∞, the processes Y ε

t , 0 ≤ t ≤ T ,
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converge weakly in the space of continuous functions φ : [0, T ]→ R1 to the dif-
fusion process Yt defined by the equation

dYt = σ(Yt) dWt +B(Yt) dt, Y0 = H(x).

The proof of this theorem and some of its modifications and generalizations
can be found in Borodin and Freidlin [1]. Some examples related to Theorem 3.2
are considered in Sect. 8.

We assumed in Theorem 3.2 that the first integral H(x) has just one critical
point. This assumption is essential. If for some y the level sets C(y) consist of
more than one connected component, the processes Y ε

t = H(X̂ε
t ), will not, in

general, converge to a Markov process. To have in the limit a Markov process, one
should extend the phase space. We consider such questions in the next chapter
for white noise perturbations of dynamical systems. The situation is similar in
the case of fast oscillating perturbations.

4 Large Deviations from an Averaged System

We have established that for small ε, over the time [0, T ] the process Xε
t is near

the trajectory x̄t of the averaged system with overwhelming probability and the
normalized deviations (1/

√
ε)(Xε

t−x̄t) form a random process, which converges
weakly to a Gaussian Markov process as ε → 0. If the averaged dynamical sys-
tem has an asymptotically stable equilibrium position or limit cycle and the initial
point Xε

0 = x is situated in the domain of attraction of this equilibrium position
or cycle, then it follows from the above results that with probability close to 1
for ε small, the trajectory of Xε

t hits the neighborhood of the equilibrium posi-
tion or the limit cycle and spends an arbitrarily long time T in it provided that ε
is sufficiently small. By means of Theorem 3.1 we can estimate the probability
that over a fixed time [0, T ] the trajectory of Xε

t does not leave a neighborhood
Dε of the equilibrium position if this neighborhood has linear dimensions of or-
der
√
ε. However, the above results do not enable us to estimate, in a precise way,

the probability that over the time [0, T ] the process Xε
t leaves a given neighbor-

hood, independent of ε, of the equilibrium position. We can only say that this
probability converges to zero. Theorems 2.1 and 3.1 do not enable us to study
events determined by the behavior of Xε

t on time intervals increasing with ε−1.
For example, by means of these theorems we cannot estimate the time spent by
Xε

t in a neighborhood D of an asymptotically stable equilibrium position until
the first exit time of D. Over a sufficiently long time, Xε

t goes from the neigh-
borhood of one equilibrium position of the averaged system to neighborhoods
of others. These passages take place “in spite of” the averaged motion, due to
prolonged deviations of ξt from its “typical” behavior. In one word, the situa-
tion here is completely analogous to that confronted in Chaps. 4–6: in order to
study all these questions, we need theorems on large deviations for the family
of processes Xε

t . For this family we are going to introduce an action functional
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and by means of it we shall study probabilities of events having small probability
for ε ! 1 and also the behavior of the process on time intervals increasing with
decreasing ε. These results were obtained in Freidlin [9], [11].

In what follows we assume for the sake of simplicity that not only are the
partial derivatives of the bi(x, y), x ∈ Rr, y ∈ Rr bounded but so are the bi(x, y)
themselves:

sup
i,j,x∈Rr,y∈Rl

(
|bi(x, y)|+

∣∣∣∣
∂bi

∂xj
(x, y)

∣∣∣∣+
∣∣∣∣
∂bi

∂yj
(x, y)

∣∣∣∣

)
< K <∞.

The assumption that |b(x, y)| is bounded could be replaced by an assumption on
the finiteness of some exponential moments of |b(x, ξt)| but this would lengthen
the proofs.

We shall say that condition F is satisfied if there exists a numerical-valued
function H(x, α), x ∈ Rr, α ∈ Rr such that

lim
ε→0

ε lnM exp

{
1

ε

∫ T

0

(αs, b(ϕs, ξs/ε)) ds

}
=

∫ T

0

H(ϕs, αs) ds, (4.1)

for any step functions ϕs, αs on the interval [0, T ] with values in Rr.
If as ϕs and αs we choose constants ϕ, α ∈ Rr, then we obtain from (4.1)

that

lim
T→∞

1

T
lnM exp

{∫ T

0

(α, b(ϕ, ξs)) ds

}
= H(ϕ, α). (4.2)

Lemma 4.1. The function H(x, α) is jointly continuous in its variables and con-
vex in the second argument.

Indeed, it follows from (4.2) that

|H(x+Δ, α+ δ)−H(x, α)| ≤ K|δ|+K|α||Δ|

and therefore, continuity is proved. The convexity in a also follows from (4.2) if
we take account of the convexity of the exponential function and the monotonic-
ity and concavity of the logarithmic function.

We define the function L(x, β) as the Legendre transform of H(x, α) in the
variables α:

L(x, β) = sup
α

[(α, β)−H(x, α)].

The function L(x, β) is convex in β and jointly lower semicontinuous in all vari-
ables; it assumes nonnegative values including +∞. It follows from the bound-
edness of b(x, y) that L(x, β) = +∞ outside some bounded set in the space of
the variables β.

The function L(x, β) is jointly lower semicontinuous in all variables. Indeed,
it follows from the definition of L(x, β) that for any x, β ∈ Rr and n > 0 there
exists αn = αn(x, β) such that
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L(x, β) < (αn, β)−H(x, αn) + 1/n.

Taking account of the continuity of H(x, α), from this we obtain that for some
δn = δn(x, β, αn) and |x− x′| < δn, |β − β′| < δn we have

(αn, β)−H(x, αn) < (αn, β
′) +H(x′, αn) + 1/n ≤ L(x′, β′) + 1/n.

Consequently, L(x, β) < L(x′, β′) + 2/n if |x − x′| < δn and |β − β′| < δn,
i.e., L(x, β) is jointly lower semicontinuous in all variables.

Remark 1. Condition F is equivalent to the assumption that the limit (4.1) exists
for every continuous ϕs, αs.

Remark 2. In general, the variables (x, α) and (x, β) vary in different spaces. If
(1.2) is considered on a manifold G, then x is a point in the manifold, α is an
element of the cotangent space at x, (x, α) is a point of the cotangent bundle and
(x, β) is a point of the tangent bundle.

On C0T (R
r) we introduce a functional S0T (ϕ):

S0T (ϕ) =

∫ T

0

L(ϕs, ϕ̇s) ds

if ϕs is absolutely continuous; we put S0T (ϕ) = +∞ for the remaining elements
ϕ of C0T (R

r).

Lemma 4.2. For any compactum F0 ⊂ Rr and any s < ∞, the set ΦF0(s) =
{ϕ ∈ C0T (R

r) : ϕ0 ∈ F0, S0T (ϕ) ≤ s} is compact in C0T (R
r). The functional

S0T (ϕ) is lower semicontinuous in C0T (R
r).

Proof. Since L(x, β) is equal to +∞ outside a bounded set in the space of the
variables β, the set ΦF0(s) may only contain functions whose derivatives are uni-
formly bounded. Taking account of the compactness of F0, it follows from this
that all functions in ΦF0(s) are uniformly bounded and equicontinuous. Conse-
quently, for the proof of the compactness of ΦF0(s) we only have to show that
ΦF0(s) is closed. The closedness of ΦF0(s) obviously follows from the lower
semicontinuity of S0T . As in Sect. 2, Chap. 5, concerning semicontinuity we
refer to the book [1] by Ioffe and Tichomirov. ��

Theorem 4.1 (Freidlin [9], [11]). Let condition F be satisfied and let H(x, α) be
differentiable with respect to α. The functional S0T (ϕ) is the normalized action
functional in C0T (R

r) for the family of processes Xε
t as ε→ 0, the normalizing

coefficient being f(ε) = ε−1, i.e., the set

Φx(s) = {ϕ ∈ C0T (R
r) : ϕ0 = x, S0T (ϕ) ≤ s}

is compact in C0T (R
r) and for any s, δ, γ > 0 and ϕ ∈ C0T (R

r), ϕ0 = x,
there exists ε0 > 0 such that for ε < ε0 we have
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P{ρ0T (Xε, ϕ) < δ} ≥ exp{−ε−1(S0T (ϕ) + γ)}, (4.3)

P{ρ0T (Xε,Φx(s)) > δ} ≤ exp{−ε−1(s− γ)}, (4.4)

where Xε
t is the solution of (1.2) with the initial condition Xε

0 = x.

We postpone the proof of this theorem until the next section and now discuss
some consequences of it and the verification of the conditions of the theorem for
some classes of processes. First of all we note that for any set A ⊂ Cx

0T (R
r) =

{ϕ ∈ C0T (R
r) : ϕ0 = x} we have

− inf
φ∈(A)

S(ϕ) ≤ lim
ε→0

ε lnP{Xε ∈ A}

≤ lim
ε→0

ε lnP[Xε ∈ A] ≤ − inf
ϕ∈[A]

S(ϕ), (4.5)

where [A] is the closure of A and (A) is the interior of A in Cx
0T (R

r). Estimates
(4.5) follow from general properties of an action functional (cf. Chap. 3). If the
infima in (4.5) over [A] and (A) coincide, then (4.5) implies the relation

lim
ε→0

ε lnP{Xε ∈ A} = − inf
ϕ∈A

S0T (ϕ). (4.6)

We would like to mention that because of the boundedness of |b(x, ξs)| and
the possible degeneracy of the random variables b(x, ξs), the condition of coin-
cidence of the infima of S0T (ϕ) over the sets [A] and (A) is more stringent than,
say, in the case of a functional corresponding to an additive perturbation of the
type of a white noise (cf. Chap. 4).

It follows from the compactness of Φx(s) that there exists ε0 > 0 such that
estimate (4.3) holds for ε < ε0 for any function ϕ ∈ Φx(s). Since b(x, y) satisfies
a Lipschitz condition, for any ϕx ∈ Cx

0T (R
r), ϕy ∈ Cy

0T (R
r) and δ > 0 we

have

{ω : ρ0T (X
ε, ϕx) < δ} ⊆ {ω : ρ0T (Y

ε, ϕy) < (eKT + 2)δ},

if p0T (ϕx, ϕy) < δ, where Xε = Xε
t and Y ε = Y ε

t are solutions of (1.2) with
initial conditions x and y, respectively and K is the Lipschitz constant. Relying
on estimates (4.3) and (4.5), from this we obtain that if ρ(ϕx, ϕy) < δ, then

inf
ψ∈Cy

0T (Rr),ρ(ψ,ϕy)<δ′
S0T (ψ) ≤ S0T (ϕ

x),

where δ′ = (eKT + 2)δ. Taking account of the last inequality, one can easily see
that

{ρ(Xε,Φx(s)) < δ} ⊆ {ρ(Y ε,Φy(s)) < δ′}

for |x − y| ≤ δ. With use of these estimates and inclusions, it is easy to derive
the following “uniform” version of Theorem 4.1′ from Theorem 4.1.
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Theorem 4.1′. Suppose that condition F is satisfied and H(x, α) is differen-
tiable with respect to α. The functional ε−1S0T (ϕ) is the action functional for
the family of processes Xε

t , uniformly with respect to the initial point x in any
compactum Q ⊂ Rr, as ε → 0. This means that the assertions of Theorem 4.1
hold and for any s, δ, γ > 0 and any compactum Q ⊂ Rr there exists ε0 > 0
such that inequalities (4.3) and (4.4) hold for every initial point x ∈ Q and every
ϕ ∈ Φx(s).

For a large class of important events, the infimum in (4.6) can be expressed
in terms of the function ux(t, z) = inf{S0t(ϕ) : ϕ0 = x, ϕt = z}. As a
rule, the initial point ϕ0 = x is assumed to be fixed, and therefore, we shall
omit the subscript x in ux(t, z). As is known, the function u(t, z) satisfies the
Hamilton–Jacobi equation. Since the Legendre transformation is involutive, the
Hamilton–Jacobi equation for u(t, z) has the form (cf., for example, Gel’fand
and Fomin [1])

∂u(t, z)

∂t
−H

(
x;

∂u

∂x1
, . . . ,

∂u

∂xn

)
= 0. (4.7)

The functional S0T (ϕ) vanishes for trajectories of the averaged system. In-
deed, from the concavity of lnx it follows that

H(x, α) = lim
T→∞

1

T
lnM exp

{∫ T

0

(α, b(x, ξs)) ds

}

≥ lim
T→∞

1

T
M

∫ T

0

(α, b(x, ξs)) ds

=

(
α, lim

T→∞

1

T

∫ T

0

Mb(x, ξs) ds

)
= (α, b̄(x)),

and consequently, L(ϕ, ϕ̇) = supα[(ϕ̇, α) − H(ϕ, α)] = 0 for ϕ̇ = b̄(ϕ). It
follows from the differentiability of H(x, α) with respect to α that the action
functional vanishes only at trajectories of the averaged system. We take for the
set A = {ϕ ∈ Cx

0T (R
r) : sup0≤t≤T |ϕt − x̄t| > δ}. Then we conclude from

(4.5) that for any δ > 0 we have

P
{

sup
0≤t≤T

|Xε
t − x̄t| > δ

}
≤ exp{−cε−1}

for sufficiently small ε, where c is an arbitrary number less than infϕ∈[A] S(ϕ).
This infimum is positive, since S(ϕ) > 0 for ϕ ∈ [A] and S is lower semi-
continuous. Consequently, if the hypotheses of Theorem 4.1 are satisfied, then
the probability of deviations of order 1 from the trajectory of the averaged system
is exponentially small.

In Sect. 8 we consider some examples of the application of Theorem 4.1 and
now discuss the problem of fulfillment of the hypotheses of Theorem 4.1 in the
case where ξt is a Markov process.
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Lemma 4.3. Suppose that ξt is a homogeneous Markov process with values in
D ⊆ Rr and for any x, α ∈ Rr let

lim
T→∞

1

T
lnMy exp

{∫ T

0

(α, b(x, ξs)) ds

}
= H(x, α) (4.8)

uniformly in y ∈ D. Then condition F is satisfied.

Proof. Let αs and zs be step functions and let αk and zk be their values on
[tk−1, tk), 0 = t0 < t1 < t2 < · · · < tn = T , respectively. Using the Markov
property, we can write

My exp

{
1

ε

∫ T

0

(αs, b(zs, ξs/ε)) ds

}

= My

[
exp

{
1

ε

∫ tn−1

0

(αs, b(zs, ξs/ε)) ds

}

×Mξtn−1/ε
exp

{
1

ε

∫ tn−tn−1

0

(αn, b(zn, ξs/ε)) ds

}]
.

From (4.8) it follows that
∣∣∣∣ε lnMy exp

{
1

ε

∫ tk−tk−1

0

(αk, b(zk, ξs/ε)) ds

}
−H(zk, αk)(tk − tk−1)

∣∣∣∣ < δk,

(4.9)

where δk → 0 uniformly in y ∈ D as ε→ 0. Repeating this estimation on every
interval [tk−1, tk), we obtain from (4.9) that

∣∣∣∣ε lnM exp

{
1

ε

∫ T

0

(αs, b(zs, ξs/ε)) ds−
n∑

k=1

H(zk, αk)(tk− tk−1)

}∣∣∣∣ <
n∑

k=1

δk.

This relation implies condition F . ��

For Markov processes we can formulate general conditions of Feller type
and on the positivity of transitional probabilities which guarantee the validity
of condition F and differentiability of H(x, α) with respect to α. We shall not
discuss the general case but rather the case where ξt is a Markov process with
a finite number of states. In Sect. 9 we consider the case of a diffusion pro-
cess ξt.

Let ξt, t ≥ 0, be a homogeneous stochastically continuous Markov process
with N states {1, 2, . . . , N}, let pij(t) be the probability of passage from i to
j over time t, and let P (t) = (pij(t)). We denote by Q = (qij) the matrix
consisting of the derivatives dpij(t)/dt at t = 0; as in known, these derivatives
exist.
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Theorem 4.2. Suppose that all entries of Q are different from zero. Let us denote
by Qα,x = (qα,xij ) the matrix whose entries are given by the equalities qα,xij =
qij + δij · (α, b(x, i)), where δij = 1 for i = j and δij = 0 for i �= j. Then Qα,x

has a simple real eigenvalue λ = λ(x, α) exceeding the real parts of all other
eigenvalues. This eigenvalue is differentiable with respect to α. Condition F is
satisfied and H(x, α) = λ(x, α).

Proof. If ξt is a Markov process, then the family of operators Tt, t ≥ 0, acting
on the set of bounded measurable functions on the phase space of ξt according to
the formula

Ttf(z) = Mzf(ξt) exp

{∫ t

0

(α, b(x, ξs)) ds

}
,

forms a positive semigroup. In our case the phase space consists of a finite num-
ber of points and the semigroup is a semigroup of matrices acting in the N -
dimensional space of vectors f = (f(1), . . . , f(N)). It is easy to calculate the
infinitesimal generator A of this semigroup:

A = lim
t↓0

Tt − E

t
= (qij + δij · (α, b(x, i))) = Qα,x.

By means of the infinitesimal generator the semigroup Tt can be represented
in the form Tt = exp{tQα,x}. Since by assumption qij �= 0, the entries of
the matrix Tt are positive if t > 0. By Frobenius’ theorem (Gantmakher [1]),
the eigenvalue with largest absolute value μ = μ(t, x, α) of such a matrix is
real, positive and simple. To it there corresponds an eigenvector e(t, x, α) =

(e1, . . . , eN ),
∑N

k=1 ek = 1, all of whose components are positive.
It is easy to derive from the semigroup property of the operators Tt that

e(t, x, α) does not actually depend on t and is an eigenvector of the matrix
Qx,α, i.e., Qx,αe(x, α) = λ(x, α)e(x, α). The corresponding eigenvalue λ(x, α)
is real, simple, exceeds the real parts of all other eigenvalues of Qx,α and
μ(t, x, α) = exp{t · λ(x, α)}. The differentiability of λ(x, α) with respect to
α follows from the differentiability of the entries of Qx,α and the simplicity of
the eigenvalue λ(x, α) (cf. Kato [1]).

By Lemma 4.3, in order to complete the proof of the theorem it is sufficient
to show that

lim
T→∞

1

T
lnMi exp

{∫ T

0

(α, b(x, ξs)) ds

}
= λ(x, α)

for i = 1, 2, . . . , N . This equality can obviously be rewritten in the following
equivalent form:

lim
T→∞

1

T
ln(Tt,1)(i) = λ(x, α), (4.10)

where 1 is the vector with components equal to one.
To prove (4.10) we use the fact that all components of the eigenvector e =

e(x, α) = (e1, . . . , eN ),
∑N

k=1 ek = 1, are positive : 0 < c < min1≤k≤N ek ≤
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max1≤k≤N ek ≤ 1. Using the positivity of the semigroup Tt, we can conclude
that

c(Tt1)(i) < (Tte)(i) = eλ(x,α)tei ≤ (Tt1)(i)

for i = 1, 2, . . . , N . We take the logarithm of this relation and divide by t:

1

t
ln c+

1

t
ln(Tt1)(i) <

1

t
ln(Tte)(i)

= λ(x, α) +
1

t
ln ei ≤

1

t
ln(Tt1)(i).

Letting t tend to ∞ in this chain of inequalities, we obtain (4.9). Theorem 4.2 is
proved. ��

We note that in the case considered in Theorem 4.2, an equation can be writ-
ten for the function u(t, z) introduced above, without determining the eigenvalue
λ(x, α) of Qx,α which has the largest real part. Indeed, λ(x, α) = λ is a root of
the characteristic equation

det(qij + δij [(α, b(x, i))− λ]) = 0. (4.11)

Since by (4.7) and Theorem 4.2, u(t, z) satisfies the Hamilton–Jacobi equation
(∂u/∂t)(t, z) = λ(z,∇zu), the function u(t, z) also has to satisfy the equation

det

(
qij − δij

[
(∇zu(t, z), b(z, i))−

∂u

∂t

])
= 0,

where we have to choose that solution of the equation for which ∂u/∂t is a root
of (4.11) for α = ∇zu(t, z), having the largest real part.

5 Large Deviations Continued

In this section we prove Theorem 4.1.
We choose a small number Δ > 0 such that T/Δ = n is an integer. Let

ψt : [0, T ]→ Rr be a piecewise constant right continuous function having points
of discontinuity only at points of the form kΔ, k = 1, 2, . . . , n − 1. Let us
consider the family of random processes

X̃ε,ψ
t = x+

∫ t

0

b(ψs, ξs/ε) ds

and write S̃0T (ϕ) = S̃ψ
0T (ϕ) =

∫ T

0
L(ψs, ϕ̇s) ds if ϕs is absolutely continuous

and S̃0T (ϕ) = +∞ for the remaining ϕ ∈ C0T (R
r). The functional S̃0T (ϕ)

is lower semicontinuous; the set Φx(s) = {ϕ ∈ C0T (R
r) : S̃0T (ϕ) ≤ s,

ϕ0 = x} is compact in C0T (R
r). This can be proved in exactly the same way as

in Lemma 4.2.
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Moreover, we note that the functional S̃ψ(ϕ) is lower semicontinuous in ψ
in the topology of uniform convergence for every ϕ. This follows easily from
Fatou’s lemma and the joint lower semicontinuity of L(x, β) in all variables: if
ψn → ψ, then

lim
n→∞

S̃ψ(n)

0T (ϕ) = lim
n→∞

∫ T

0

L(ψn
s , ϕ̇s) ds

≥
∫ T

0

lim
n→∞

L(ψn
s , ϕ̇s) ds ≥

∫ T

0

L(ψs, ϕ̇s) ds = S̃ψ
0T (ϕ).

Lemma 5.1. Let condition F be satisfied and let the function H(x, α) be differ-
entiable with respect to the variables α.

The functional S̃ψ(ϕ) is the normalized action functional in C0T (R
r) for the

family of processes X̃ε,ψ
t as ε→ 0, with normalizing coefficient f(ε) = ε−1.

Proof. Let α1, α2, . . . , αn ∈ Rr. We denote by α(s) the piecewise constant
function on [0, T ] which assumes the value

∑n
k=i αk for s ∈ ((i − 1)Δ, iΔ],

i = 1, 2, . . . , n. The function hx
ε (α1, α2, . . . , αn), where x is the initial condi-

tion X̃ε
0 = x, is defined by the equality

hx
ε (α1, . . . , αn) = ε lnM exp

{
ε−1

n∑

k=1

(αk, X̃
ε,ψ
kΔ )

}
.

Taking account of the definition of X̃ε,ψ
t , we may write

hx
ε (α1, . . . , αn) = ε lnM exp

{
ε−1

∫ T

0

(α(s), b(ψs, ξs/ε)) ds

}
+

(
x,

n∑

k=1

αk

)
.

This and condition F imply the existence of the limit hx(α1, . . . , αn) =
limε→0 h

x
ε (α1, . . . , αn) and the equality

hx(α1, . . . , αn) =

∫ T

0

H(ψs, α(s)) ds+

(
x,

n∑

k=1

αk

)
.

It is easy to see that the function hx(α1, . . . , αn) is convex in the variables
α1, . . . , αn. The differentiability of H(x, α) with respect to the second argument
implies the differentiability of hx(α1, . . . , αn).

We denote by lx(β1, . . . , βn), βk ∈ Rr, the Legendre transform of
hx(α1, . . . , αn). The function lx(β1, . . . , βn) can be expressed in terms of the
Legendre transform L(x, β) of H(x, α) in the following way:

lx(β1, . . . , βn) =

∫ T

0

L(ψs, β̇(s)) ds, (5.1)
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where β(s) is the piecewise linear function on [0, T ], having corners at the mul-
tiples of Δ and assuming the value βk at kΔ, β0 = x. Indeed, if x = 0, then by
the definition of Legendre’s transformation we have

l0(β1, . . . , βn) = sup
α1,...,αn

[
n∑

k=1

(αk, βk)−Δ

n∑

k=1

H

(
ψ(k−1)Δ,

n∑

i=k

αi

)]

= Δ sup
α2,...,αn

{
sup
α1

[
(α1, β1/Δ)−H

(
ψ0, α1 +

n∑

i=2

αi

)]

+

[
n∑

k=2

(αk, βk/Δ)−
n∑

k=2

H

(
ψ(k−1)Δ,

n∑

i=k

αi

)]}

= Δ sup
α2,...,αn

{
L(ψ0, β1/Δ) +

[
n∑

k=2

(
αk,

βk − β1

Δ

)

−
n∑

k=2

H

(
ψ(k−1)Δ,

n∑

i=k

αi

)]}

= ΔL(ψ0, β1/Δ) +Δ sup
α2,...,αn

[
n∑

k=2

(
αk,

βk − β1

Δ

)]

−
n∑

k=2

H

(
ψ(k−1)Δ,

n∑

i=k

αi

)]
.

Taking supremum with respect to α2 in the last term, as it was taken with respect
to α1 earlier, and then taking supremum with respect to α3 and so on, we arrive
at the relation

l0(β1, . . . , βn) =
n∑

k=1

Δ · L
(
ψ(k−1)Δ,

βk − βk−1

Δ

)
,

which is equivalent to (5.1) for x = 0. Taking into account that lx(β1, . . . , βn) =
l0(β1− x, . . . , βn− x), we obtain (5.1) for an arbitrary initial condition x ∈ Rr.

Let us put ηε = (X̃ε,ψ
Δ , X̃ε,ψ

2Δ , . . . , X̃ε,ψ
nΔ ). If X̃ε,ψ

t is a process in the r-
dimensional space, then ηε is a random variable with values in (Rr)n, the
product of n copies of Rr. It follows from the definition of hx(α1, . . . , αn)
that hx(α1, . . . , αn) = limε→0 ε lnM exp{ε−1(α,ηε)}, where α = (α1, α2,
. . . , αn). We write ΦΔ(s) = {e ∈ (Rr)n : lx(e1, . . . , en) ≤ s} for s < ∞
and ρ̄(e,g) = max |ek − gk|, where e = (e1, . . . , en) and g = (g1, . . . , gn) are
points of (Rr)n. It follows from Theorem 1.2 of Chap. 5 that for any s, δ, γ > 0
and e ∈ (Rr)n we have

P{ρ̄(ηε, e) < δ} ≥ exp{−ε−1(lx(e1, . . . , en) + γ)},

P{ρ̄(ηε,ΦΔ(s)) > δ} ≤ exp{−ε−1(s− γ)}
(5.2)
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for sufficiently small ε. Let ϕ ∈ C0T (R
r), ϕ0 = x, S̃0T (ϕ) < ∞, δ > 0. We

write ϕΔ = (ϕΔ, ϕ2Δ, . . . , ϕnΔ) ∈ (Rr)n. For sufficiently small δ′ = δ′(δ) and
Δ = Δ(δ) we have

P{ρ0T (X̃ε,ψ, ϕ) < δ} ≥ P{ρ̄(ηε,ϕΔ) < δ′}.

This inequality follows from the fact that the trajectories of X̃ε,ψ
t and any func-

tion ϕ for which S̃ψ(ϕ) < ∞ satisfy a Lipschitz condition. Estimating the right
side of the last inequality by means of the first of the inequalities (5.2), we obtain

P|ρ0T (X̃ε,ψ, ϕ) < δ} ≥ exp{−ε−1(lx(ϕΔ, . . . , ϕnΔ) + γ)}

= exp

{
−ε−1

(∫ T

0

L(ψs, ˙̄ϕs) ds+ γ

)}
(5.3)

for every γ > 0 and sufficiently small ε, where ϕ̄s is the piecewise linear function
having corners at the multiples of Δ and coinciding with ϕs at these points.

Taking account of the absolute continuity of ϕs and the convexity of L(x, β)
in β, we obtain

∫ T

0

L(ψs, ˙̄ϕs) ds =

n∑

k=1

L

(
ψ(k−1)Δ,

1

Δ

∫ kΔ

(k−1)Δ

ϕ̇s ds

)
Δ

≤
n∑

k=1

∫ kΔ

(k−1)Δ

L(ψ(k−1)Δ, ϕ̇s) ds

=

∫ T

0

L(ψs, ϕ̇s) ds = S̃ψ
0T (ϕ). (5.4)

Relations (5.3) and (5.4) imply the first of the two inequalities in the definition of
the action functional:

P{ρ0T (X̃ε,ψ, ϕ) < δ} ≥ exp{−ε−1(S̃ψ
0T (ϕ) + γ)}. (5.5)

To prove the second inequality, we note that we have the inclusion

{ω ∈ Ω : ρ0T (X̃
ε,ψ, Φ̃x(s)) > δ} ⊆ {ω ∈ Ω : ρ̄(ηε,ΦΔ(s)) > δ′}

for sufficiently small Δ(δ) and δ′(δ), where

Φ̃x(s) = {ϕ ∈ C0T (R
r) : ϕ0 = x, S̃ψ

0T (ϕ) ≤ s}.

This inclusion and the second estimate in (5.2) imply the required inequality

P{ρ0T (X̃ε,ψ, Φ̃x(s)) > δ} ≤ exp{−ε−1(s− γ)}. (5.6)

As has been remarked, the compactness of Φ̃x(s) can be proved in the same way
as in Lemma 4.2.

Lemma 5.1 is proved. ��
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As usual, this lemma and the lower semicontinuity of Sψ
0T (ϕ) imply that

− inf
ϕ∈(A)

S̃(ϕ) ≤ lim
ε→0

ε lnP{X̃ε,ψ ∈ A}

≤ lim
ε→0

ε lnP{X̃ε,ψ ∈ A} ≤ inf
ϕ∈[A]

S̃(ϕ) (5.7)

for every A ⊂ Cx
0T (R

r). Here (A) is the set of points of A, interior with respect
to the space Cx

0T (R
r).

Lemma 5.2. Suppose that the function H(x, α) is differentiable with respect to
the variables α. Let ψ(n) : [0, T ]→ Rr be a sequence of step functions uniformly
converging to some function ϕ ∈ C0T (R

r) as n → ∞. Then there exists a
sequence ϕn ∈ C0T (R

r), uniformly converging to ϕ, such that

lim
n→∞

∫ T

0

L(ψ(n)
s , ϕ̇(n)

s ) ds ≤ S0T (ϕ).

Proof. For an arbitrary partition 0 = t0 < t1 < t2 < · · · < tn−1 < tn = T we
have

∞ > S0T (ϕ) =

∫ T

0

L(ϕs, ϕ̇s) ds

=

∫ T

0

sup
α

[(ϕ̇s, α)−H(ϕs, α)] ds

≥
n∑

k=1

sup
α

∫ tk

tk−1

[(ϕ̇s, α)−H(ϕs, α)] ds

=
n∑

k=1

sup
α

[
(ϕtk − ϕtk−1

, α)−
∫ tk

tk−1

H(ϕs, α) ds

]
. (5.8)

We put

γk(α) =

∫ tk

tk−1

H(ϕs, α) ds; lk(β) = sup
α

[(α, β)− γk(α)].

It follows from the hypotheses of the lemma that the function γk(α) is convex
and differentiable. The function lk(β) is convex, nonnegative, and lower semi-
continuous. Relation (5.8) can be rewritten in the form

∞ > S0T (ϕ) ≥
n∑

k−1

lk(ϕtk − ϕtk−1
).

It is known (cf. Rockafellar [1]) that if lk(β) is a lower semicontinuous con-
vex function and β∗ ∈ {β : lk(β) < ∞} = Ak, then lk(β

∗) = limβ→β∗ lk(β),
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where the points β belong to Ãk, the interior of Ak with respect to its affine hull.1

Therefore, for every δ > 0 there exists a function ϕ̃t : [0, T ]→ Rr such that

sup
0≤t≤T

|ϕ̃t − ϕt| < δ, ϕ̃0 = ϕ0, ϕ̃tk − ϕ̃tk−1
∈ Ãk · (tk − tk−1)

and
n∑

k=1

lk(ϕtk − ϕtk−1
) >

n∑

k=1

lk(ϕ̃tk − ϕ̃tk−1
)− δ.

For such a function we have

S(ϕ) ≥
n∑

k=1

lk(ϕ̃tk − ϕ̃tk−1
)− δ. (5.9)

For points β ∈ Ãk, the supremum in the definition of lk(β) is attained (cf. Rock-
afellar [1]). By virtue of this, there exist αk ∈ Rr such that lk(ϕ̃tk − ϕ̃tk−1

) =
(ϕ̃tk − ϕ̃tk−1

, αk)−γk(αk); the αk satisfy the relation ϕ̃tk − ϕ̃tk−1
= ∇γk(αk).

Let ψ(m) be any sequence of step functions uniformly converging to ϕ as
m → ∞. We choose ϕ(m) according to the conditions: ϕ(m)

0 = ϕ0, ϕ̇(m)
s =

∇αH(ψ
(m)
s , αk) for s ∈ (tk−1, tk) and ϕ

(m)
tk+0

= ϕ
(m)
tk−0

. Then ϕ(m) converges to
ϕ̃s at the points 0, t1, t2, . . . , tn = T as m→∞. Indeed,

ϕ
(m)
tk

− ϕ
(m)
tk−1

=

∫ tk

tk−1

∇αH(ψ(m)
s , αk) ds

→
∫ tk

tk−1

∇αH(ϕs, αk) ds = ϕ̃tk − ϕ̃tk−1
. (5.10)

Here we have used the fact that the convergence of the convex functions γm
k (α) =∫ tk

tk−1
H(ψ

(m)
s , α) ds to the differentiable function γk(α) as m→∞ implies the

convergence∇γm
k (α)→ ∇γk(α) (Rockafellar [1]).

Since ϕ̇
(m)
s = ∇αH(ψ

(m)
s , αk) for s ∈ (tk−1, tk), we have

L(ψ(m)
s , ϕ̇(m)

s ) = sup
α

[(ϕ̇(m)
s , α)−H(ψ(m)

s , α)]

= (ϕ̇(m)
s , αk)−H(ψ(m)

s , αk). (5.11)

It follows from (5.10) and (5.11) that

1 The affine hull (aff A) of a set A ⊆ Rr is defined by the equality

aff A =

{
γ1x1 + · · ·+ γmxm : x1, . . . , xm ∈ A,

m∑

k=1

γk = 1

}
.
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∫ T

0

L(ϕ(m)
s , ϕ̇(m)

s ) ds =

n∑

k=1

∫ tk

tk−1

sup
α

[(ϕ̇(m)
s , α)−H(ψ(m)

s , α)] ds

=

n∑

k=1

[∫ tk

tk−1

(ϕ̇(m)
s , αk) ds−

∫ tk

tk−1

H(ψ(m)
s , αk) ds

]

→
n∑

k=1

lk(ϕ̃tk − ϕ̃tk−1
) ≤ S0T (ϕ) + δ (5.12)

as m→∞. Choosing δ and the intervals between the points tk sufficiently small,
we can bring ϕ

(m)
t and ϕt arbitrarily close to each other. This and (5.12) imply

the assertion of Lemma 5.2. ��

Now we pass directly to the proof of Theorem 4.1. Let ϕ ∈ C0T (R
r)

and S0T (ϕ) < ∞. We choose a step function ψλ and a function ϕλ such that
ρ0T (ϕ

λ, ϕ) < λ, sup0≤t≤T |ψλ
t −ϕt| < λ and

∫ T

0
L(ψλ

s , ϕ̇
λ
s ) ds < S0T {ϕ)+γ.

This can be done according to Lemma 5.2. It is easy to derive from the bounded-
ness of the functions bk(x, y) and their derivatives that

{ω : ρ0T (X
ε, ϕ) < δ} ⊇ {ω : ρ0T (X̃

ε,ψλ

, ϕλ) < δ′}

for any δ > 0 provided that λ = λ(δ) and δ′ = δ′(δ) are sufficiently small. This
inclusion and estimate (5.5) imply the inequality

P{ρ0T (Xε, ϕ) < δ} ≥ P{ρ0T (X̃ε,ψλ

, ϕλ) < δ′}
≥ exp{ε−1(S̃ψλ

(ϕλ) + γ)}
≥ exp{ε−1(S0T (ϕ) < 2γ)} (5.13)

for sufficiently small ε.
Now we prove the second inequality in the definition of the action functional.

First of all we note that since |b(x, y)| is bounded, the trajectory of Xε
t , just as

well as that of X̃ε,ψ
t , issued from a point x ∈ Rr belongs to some compactum

F ⊂ C0T (R
r) for t ∈ [0, T ]. It follows from the semicontinuity of the functional

S̃ψ
0T (ϕ) in ψ that for any γ > 0 there exists δ = δγ(ϕ) such that S̃ψ(ϕ) > s−γ/2

if ρ0T (ϕ, ψ) < δ and S0T (ϕ) > s. Relying on the semicontinuity of S̃ψ
0T (ϕ) in ϕ,

we conclude that the functional δγ(ϕ) is lower semicontinuous in ϕ ∈ C0T (R
r).

Consequently, δγ(ϕ) attains its infimum on every compactum.
Let F1 be the compactum obtained from F by omitting the δ/2-neighborhood

of the set Φx(s) = {ϕ ∈ C0T (R
r) : ϕ0 = x, S0T (ϕ) ≤ s}. Let us write

δ̄γ = infϕ∈F1 δγ(ϕ), δ
′ = δ̄γ/(4KT + 2), where K is a Lipschitz constant of

b(x, y).
Let us choose a finite δ′-net in F and let ϕ(1), . . . , ϕ(N) be the elements of

this net, not belonging to Φx(s). It is obvious that
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P{ρ0T (Xε,Φx(s)) > δ} ≤
N∑

i=1

P{ρ0T (Xε, ϕ(i)) < δ′} (5.14)

if δ′ < δ. From the Lipschitz continuity of b(x, y) for ρ0T (ϕ, ψ) we obtain the
inclusion

{ω : ρ0T (X
ε, ϕ) < δ′} ⊆ {ω : ρ0T (X̃

ε,ψ, ϕ) < (2KT + 1)δ′}. (5.15)

We choose step functions ψ(1), ψ(2), . . . , ψ(N) such that ρ0T (ψ(i), ϕ(i)) <
δ′/2 for i = 1, 2, . . . , N . Relations (5.14) and (5.15) imply the estimate

P{ρ0T (Xε,Φx(s)) > δ} ≤
n∑

i=1

P{ρ0T (X̃ε,ψ(i)

, ϕ(i)) < (2KT+1)δ′}. (5.16)

Every term on the right side of the last inequality can be estimated by means of
consequence (5.7) of Lemma 5.1. For every i = 1, . . . , N we have the estimate

P{ρ0T (X̃ε,ψ(i)

, ϕ(i)) < δ̄γ/2}
≤ exp{−ε−1[inf{S̃ψ(i)(ϕ) : ρ0T (ϕ,ϕ

(i)) < δ̄γ/2} − γ/4]}

for sufficiently small ε. It follows from the definition of δ̄γ that the infimum on
the right side of the last inequality is not less than s− γ/2, and consequently,

P{ρ0T (X̃ε,ψ(i)

, ϕ(i)) < δ̄γ/2} ≤ exp{−ε−1(s− γ)}. (5.17)

From (5.16) and (5.17) we obtain the lower estimate

P{ρ0T (Xε,Φx(s)) > δ} ≤ exp{−ε−1(s− γ)}

for sufficiently small ε. Theorem 4.1 is completely proved. ��

6 The Behavior of the System on Large Time Intervals

As we have seen in Chaps. 4 and 6, the behavior, on large time intervals, of a ran-
dom process obtained as a result of small perturbations of a dynamical system is
determined to a great extent by the character of large deviations. In this paragraph
we discuss a series of results concerning the behavior of the process Xε

t , the solu-
tion of system (1.2). These results are completely analogous to those expounded
in Chaps. 4 and 6. Because of this, we only give brief outlines of proofs, concen-
trating on the differences. We shall consider the case where the fast motion, i.e.,
ξt, is a Markov process with a finite number of states.

Let O ∈ Rr be an asymptotically stable equilibrium position of the averaged
system (2.2) and let D be a bounded domain containing O, whose boundary ∂D
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has a continuously rotating normal. We assume that the trajectories x̄t beginning
at points x̄0 = x ∈ D ∪ ∂D converge to O without leaving D as t→∞. We put
τ ε = inf{t : Xε

t /∈ D}. In contrast with the case considered in Chap. 4, τ ε may
be infinite with positive probability in general.

We introduce the function

V (x, y) = inf
ϕ∈Hx,y

S(ϕ),

where Hx,y is the set of functions ϕ with values in Rr, defined on all pos-
sible intervals [0, T ], T > 0, for which ϕ0 = x, ϕT = y. The function
V (x, y) can be expressed in terms of the function ux(t, y) appearing in Sect. 4:
V (x, y) = inft>0 ux(t, y). The function V (x, y) is lower semicontinuous in
all problems considered in this section; it can be equal to +∞. We write
V (x, ∂D) = infy∈∂D V (x, y).

Theorem 6.1 (Freidlin [11]). Let the hypotheses of Theorem 4.2 be satisfied. Sup-
pose that for every y ∈ ∂D we have

(b(y, i), n(y)) > 0 (6.1)

for some i = i(y), where n(y) is the exterior normal vector to ∂D at y.
If V (O, ∂D) <∞, then

lim
ε↓0

ε lnMxτ
ε = V (O, ∂D)

for any x ∈ D. If V (O, ∂D) = +∞, then

PO{τ ε =∞} = 1 (6.2)

for any ε > 0.

For the proof of this theorem we need the following lemma.

Lemma 6.1. Suppose that the hypotheses of Theorem 6.1 are satisfied. If
V (x0, ∂D) < ∞ for some x0 ∈ D, then V (x, ∂D) is continuous at x0. If
V (O, ∂D) < ∞, then V (x, ∂D) ≤ V (O, ∂D) < ∞ for all x ∈ D and
V (x, ∂D) is continuous.

Proof. Let Xε
t and Zε

t be solutions of (1.2) issued from x0 and z, respectively, at
time zero. For the difference Xε

t − Zε
t we have the inequality

|Xε
t − Zε

t | ≤ K

∫ t

0

|Xε
s − Zε

s | ds+ |x0 − z|, t ≥ 0.

From this by means of Lemma 1.1 of Chap. 2 we obtain

|Xε
t − Zε

t | ≤ eKT |x0 − z|. (6.3)
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If V (x0, ∂D) < ∞, then taking account of condition (6.1), for any γ > 0 and
sufficiently small δ > 0 we can construct a function ϕt, t ∈ [0, T ], ϕ0 = x0,
ρ(ϕT , D) > δ, for which S0T (ϕ) < V (x0, ∂D)+γ/4. Relying on Theorem 4.1,
from this we conclude that

P{τ εδ/2 < T} ≥ exp{−ε−1(V (x0, ∂D) + γ/2)} (6.4)

for sufficiently small ε > 0, where τ εδ/2 = inf{t : ρ(Xε
t , D) > δ/2}. Let |z −

x0| < e−KT δ/4 and let A be the event that the trajectory of Zε
t leaves D until

time T . It follows from (6.3) and (6.4) that

P(A) ≥ exp{−ε−1(V (x0, ∂D) + γ/2)}.

On the other hand, P(A) can be estimated from above according to Theorem 4.1:
we have

P(A) ≤ exp
{
−ε−1

(
inf
ϕ∈Ã

S0T (ϕ)− γ/4
)}

for sufficiently small ε > 0, where Ã is the set of functions belonging to
C0T (R

r) such that ϕ0 = z and ϕt leaves D before time T . We obtain from
the last two estimates that

V (z, ∂D) < inf
ϕ∈Ã

S0T (ϕ) ≤ V (x0, ∂D) + γ

for |x0 − z| < e−KT δ/4. On the other hand, the semicontinuity of V (x, ∂D)
implies the inequality

V (z, ∂D) > V (x0, ∂D)− γ,

provided that δ is sufficiently small. Therefore, |V (z, ∂D)−V (x0, ∂D)| < γ for
sufficiently small δ. The continuity at x0 is proved.

If V (O, ∂D) < ∞, then V (x, ∂D) is continuous at O. Let δ1 be such that
|V (z, ∂D) − V (O, ∂D)| < γ for |z − O| < δ1. Since the trajectory of the av-
eraged system, issued from a point x ∈ D, necessarily hits the δ1-neighborhood
of O and the action functional vanishes at trajectories of the averaged system,
we have V (x, ∂D) < V (O, ∂D) + γ. By virtue of the arbitrariness of γ, this
implies that V (x, ∂D) < ∞, and consequently, V (x, ∂D) is continuous every-
where in D. Lemma 6.1 is proved. ��

Now we outline the proof of Theorem 6.1. Due to the continuity of V (x, ∂D),
the proof of the first assertion of the theorem is completely analogous to that of
Theorem 2.1 in Chap. 4. We only have to take into account that the process Xε

t

which we are now considering is not a Markov process in general, and therefore,
we need to consider the pair (Xε

t , ξt/ε). This pair forms a Markov process.
We prove the last assertion of the theorem. We assume the contrary. Without

loss of generality, we may assume that (6.2) is not satisfied for ε = 1: the tra-
jectories of X1

t issued from the point X1
0 = O leave D with positive probability.
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Then by condition (6.1) the trajectories of X1
t leave some δ-neighborhood D+δ

of D, δ > 0, with positive probability: for some T we have

PO{τ1δ < T} > α > 0, (6.5)

where τ1δ = inf{t : X1
t /∈ D+δ}.

Let 0 < t1 < · · · < tn−1 < T , δ > 0, and let i0, i1, . . . , in−1, be a sequence
of integers. We consider the following set of step functions on [0, T ]:

A
t1,...,tn−1

i0,...,in−1
(δ) = {ψ : ψ(s) = ik for s ∈ [sk, sk+1),

k = 0, . . . , n− 1; s0 = 0, |sk − tk| < δ

for 1 ≤ k ≤ n− 1, sn = T ;ψ(T ) = in−1}.

Relation (6.5) implies that there exist an integer n > 0, moments of time
t1, . . . , tn−1, integers i0, i1, . . . , in−1 and δ′ > 0 such that the solution of the
equation

ẏt = b(yt, ψ(t)), y0 = O,

goes out of D+δ/2 before time T for any function ψ ∈ A
t1,...,tn−1

i0,...,in−1
(δ′). It is easy

to derive from the Markov property of ξt that for some c <∞ we have

P{ξt/ε ∈ A
t1,...,tn−1

i0,...,in−1
(δ′)} > e−cε−1

.

Taking account of this estimate, we arrive at the conclusion:

P{τ ε < T} > e−cε−1

(6.6)

for any ε > 0.
On the other hand, by Theorem 4.1 we have

lim
ε↓0

ε lnP{τ ε < T} ≤ − inf
ϕ∈HD

T

S0T (ϕ), (6.7)

where HD
T = {ϕ ∈ C0T (R

r) : ϕ0 = O,ϕs ∈ ∂D for some s ∈ [0, T ]}. Since
V (0, ∂D) ≤ infϕ∈HD

T
S0T (ϕ), we obtain from (6.6) and (6.7) that

V (O, ∂D) ≤ inf
ϕ∈HD

T

S(ϕ) ≤ lim
ε↓0

ε lnP{τ ε < T} < c <∞,

which contradicts the condition V (O, ∂D) = +∞. The contradiction thus ob-
tained proves the last assertion of Theorem 6.1. ��

We note that for V (O, ∂D) to be finite it is sufficient, for example, that for
some i = 1, 2, . . . , N the solution of the equation

ẋt = b(xt, i), x0 = O,

leave D.
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Analogously to Sect. 6, Chap. 7, for small ε we can solve the problem of
exit of Xε from a domain containing several equilibrium positions or limit sets
of a more general form. We only have to take into account that in the situation
considered in this section V (x, y) may be equal to +∞ and the corresponding
passages may not be possible in general. In particular, as we have seen in The-
orem 6.1, there may exist absorbing limit sets, i.e., limit sets with the property
that if a trajectory hits the domain of attraction of the set, then it never leaves
it. Analogously, there may exist absorbing cycles if, as was done in Chap. 6, we
consider the decomposition of all limit sets into a hierarchy of cycles.

If the condition of connectedness: for any indices i, j of the limit sets
K1, . . . ,Kl, of system (2.2), V (Ki,Kj) = V (x, y)|x∈Ki,y∈Kj < ∞, is satis-
fied, then all results of Sect. 6, Chap. 6 on fibering into cycles remain true.

In conclusion, we briefly treat invariant measures of Xε
t and their behavior as

ε ↓ 0. If the projection of the averaged vector field b̄(x) onto the position vector
connecting the origin of coordinates with the point x is negative and separated
from zero uniformly in x /∈ F , where F is a compactum in Rr, then it can be
proved that every process Xε

t has an invariant measure, at least for sufficiently
small ε. This invariant measure is not unique in general. If we do not make any
additional assumptions, then in general, the family με of invariant measures of
Xε

t has many cluster points (in the topology of weak convergence of measures)
as ε ↓ 0. If we assume that the condition of connectedness is satisfied, then there
is only one cluster point in the case of general position. It can be described by
means of the construction of {i}-graphs, considered in the preceding chapter (cf.
Freidlin [11]).

7 Not Very Large Deviations

We have already considered deviations of order ε1/2 and of order 1 of Xε
t

from x̄t. Here we discuss briefly deviations of order εκ , where κ ∈ (0, 1
2 ) (cf.

Baier and Freidlin [1]). These deviations have common features with both devia-
tions of order 1 (their probabilities converge to zero) and deviations of order ε1/2

(they are determined by the behavior of the functions b(x, y) near the averaged
trajectory). In connection with this, deviations of order εκ , κ ∈ (0, 1

2 ), are gov-
erned, as in the case of normal approximation, by the system obtained from (1.2)
by linearization near x̄t.

For the sake of brevity, in this section we restrict ourselves to deviations from
an equilibrium position of the averaged system, i.e., we shall assume that the
initial condition in (1.2) is an equilibrium position of the averaged system and it
coincides with the origin of coordinates: Xε

0 = 0, b̄(0) = 0. We assume that this
equilibrium position is asymptotically stable in the first approximation.

We introduce the notation
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b(0, y) = f(y),
∂bi

∂xj
(0, y) = Bi

j(y), B(y) = (Bi
j(y)),

lim
T→∞

1

T

∫ T

0

Bi
j(ξs) ds = B̄i

j , B̄ = (B̄i
j).

We assume that the limits exist in probability and B̄i
j = (∂b̄i/∂xj)(0).

We shall say that condition Fκ is satisfied if for any step function αs :
[0, T ]→ Rr we have

lim
ε↓0

ε1−2κ lnM exp

{
εκ−1

∫ T

0

(αs, f(ξs/ε)) ds

}
=

1

2

∫ T

0

(Cαs, αs) ds, (7.1)

where C is a constant symmetric matrix of order r. It is easy to see that (7.1) for
αs = α implies the equality

lim
T→∞

T 2κ−1 lnM exp

{
T−κ

∫ T

0

(α, f(ξs)) ds

}
=

1

2
(Cα, α). (7.2)

Under certain assumptions, which we shall not specify, C is the matrix of
second derivatives of the function H(x, α) introduced in Sect. 4 with respect to
the variables α evaluated at x = 0, α = 0.

In what follows, for simplicity, we shall assume that detC �= 0. If C is sin-
gular but has a nonzero eigenvalue, then all results can essentially be preserved;
only their formulation becomes more complicated.

For functions belonging to C0T (R
r) we define the functional

S(ϕ) = S0T (ϕ) =
1

2

∫ T

0

(C−1(ϕ̇s − B̄ϕs), ϕ̇s − B̄ϕs) ds,

if ϕs is absolutely continuous; for the remaining ϕ ∈ C0T (R
r) we put S(ϕ) =

+∞. We have already encountered this functional in Chap. 4; S(ϕ) is the nor-
malized action functional for the family of Gaussian processes ζλt defined by the
differential equation

ζ̇λt = B̄ζλt + λC1/2ẇt, (7.3)

where ẇt is a white noise process. Below we clarify the relationship between our
problem and (7.3).

Theorem 7.1. Suppose that condition Fκ is satisfied and detC �= 0. For some
γ > 1− 2κ let

lim
ε→0

εγ lnP

{
sup

0≤t≤T

∣∣∣∣ε
−κ

∫ t

0

(B(ξs/ε)− B̄)

∫ s

0

e(s−u)B̄f(ξu/ε) du ds

∣∣∣∣ > δ

}

= −∞ (7.4)

for any δ > 0. Moreover, suppose that there exist t0 ∈ (0, T ] and a function θ(t),
θ(t) > 0, limt↓0 θ(t) = 0, such that
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lim
ε↓0

sup
ε≤t<t0

0≤h≤T−t

ε1−2κ

∣∣∣∣lnM exp

{
±εκ−1

θ(t)

∫ h+t

h

f(ξs/ε) ds

}∣∣∣∣ <∞.

Then ε2κ−1S0T (ϕ) is the action functional for the family of processes Zε
t =

ε−κXε
t , κ ∈ (0, 1

2 ) in the space C0T (R
r) as ε ↓ 0, where Xε

t is the solution of
(1.2) with the initial condition Xε

0 = 0 (we recall that b̄(0) = 0).

The proof of this theorem is a combination of some arguments applied in the
proofs of Theorems 3.1 and 4.1. Therefore, we only outline it. Firstly, it can be
proved that ε2κ−1S(ϕ) is the action functional for the family of processes Zε

t if
ε2κ−1S(ϕ) is the action functional for the processes Z̃ε

t = ε−κX̃ε
t , where X̃ε

t is
the solution of the linearized system

˙̃Xε
t = f(ξt/ε) +B(ξt/ε)X̃

ε
t , X̃ε

0 = 0.

Then, using (7.4), it can be proved that the estimates of Z̃ε
t , appearing in the

definition of the action functional are satisfied if the same estimates hold for
Ẑε
t = ε−κX̂ε

t , where X̂ε
t is the solution of the equation

˙̂
Xε

t = f(ξt/ε) + B̄X̂ε
t . (7.5)

To obtain estimates for X̂ε
t first we calculate the action functional for the fam-

ily of processes ηεt = ε−κ

∫ t

0
f(ξs/ε) ds. By means of Theorem 3.1 of Chap. 3,

from this we calculate the action functional of X̂ε
t . Finally, the calculation of the

action functional for the processes ηεt can be carried out in the same way as it
was done in Lemma 4.3 (cf. also Gärtner [1]). In the course of this, we use the
last condition of the theorem.

Consequently, the functional S(ϕ) and the normalizing coefficient f(ε) =
ε2κ−1 characterize deviations of order εκ , κ ∈ (0, 1

2 ). In accordance with Theo-
rem 3.1, the process ε−1/2Xε

t converges to a Gaussian process ζ0t as ε → 0. As
is easy to see, in our case this Gaussian process ζ0t satisfies (7.3) for λ = 1. The
ratio Xε

t /ε
κ can be written in the form ε1/2−κ · ε−1/2Xε

t and we can interpret
Theorem 3.1 in the following way: the probabilities of deviations of order εκ ,
κ ∈ (0, 1

2 ), have the same asymptotics as deviations of order 1 caused by the
Gaussian noise λCẇ, λ = ε1/2−κ . Of course, this circumstance is in perfect
accordance with the fact that large but not very large deviations for sums of in-
dependent terms have the same asymptotics (in the principal terms) as the corre-
sponding deviations of the normal approximation (cf. Ibragimov and Linnik [1]).

Now we consider some random processes for which the hypotheses of Theo-
rem 7.1 can be verified and the matrix C can be calculated.

Theorem 7.2. Let ξt be a stochastically continuous Markov process with a fi-
nite number of states, let pij(t) be its transition probabilities, and let qij =
dpij(t)/dt|t=0. Suppose that all qij are different from zero. Let us denote by
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λ(α) the eigenvalue of the matrix Qα = (qαij), q
α
ij = qij + δij(α, b(0, i)) with the

largest real part. Then the hypotheses of Theorem 7.1 are satisfied for κ ∈ (0, 1
2 )

and C = (Cij), where Cij = ∂2λ(α)/∂αi∂αj |α=0.

The proof of this theorem uses the construction applied in the proof of Theo-
rem 4.2. First, in the same way as in Lemma 4.3, it can be proved that in the case
of the process ξt, condition Fκ follows from relation (7.2). To prove (7.2), we
note that

Mi exp

{
t−κ

∫ t

0

(α, f(ξs)) ds

}
= (T t−κα

t 1)(i), (7.6)

where Tα
t is the semigroup of operators acting in the space of functions g(i)

defined on the phase space of ξt according to the formula

(Tα
t g)(i) = Mig(ξt) exp

{∫ t

0

(α, f(ξs)) ds

}
.

Using the notation introduced in the proof of Theorem 4.2, we obtain

t2κ−1 ln c+ t2κ−1 ln(T t−κα
t 1)(i) ≤ t2κ−1 ln(T t−κα

t e)(i)

= t2κλ(t−κα) + t2κ−1 ln ei

≤ t2κ−1 ln(T t−κα
t 1)(i). (7.7)

We note that 1 is the largest eigenvalue in absolute value of Tα
t for α = 0.

Therefore, λ(0) = 0. Taking into account that b̄(0) = 0, it is easy to see that all
first derivatives of λ(α) vanish at α = 0. Therefore,

λ(α) =
1

2

∑

ij

∂2λ

∂αi∂αj
(0)αiαj + o(|α|2)

as |α| → 0. On account of the last equality, it follows from (7.7) that

lim
t→∞

t2κ−1 ln(T t−κα
t 1)(i) =

1

2

r∑

i,j=1

∂2λ

∂αi∂αj
(0)αiαj =

1

2
(Cα, α).

This and (7.6) imply (7.2) and thus condition Fκ . The verification of the remain-
ing conditions of Theorem 7.1 is left to the reader.

An analogous result holds, of course, for some other Markov processes, for
example, if ξt is a nondegenerate diffusion process on a compact space. Simi-
lar arguments enable us to verify conditions F and Fκ for some non-Markov
processes with good mixing properties, as well (cf. Sinai [1]).

We write out the Hamilton–Jacobi equation for the function u(t, x) =
inf{S0t(ϕ) : ϕ0 = 0, ϕt = x}. As has been said, the principal terms of the
asymptotics of many quantities of interest can be expressed in terms of this
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function. By calculating the Legendre transform of the function L(x, β) =
1
2 (C

−1(β − B̄x), β − B̄x), we arrive at the following equation for u(t, x):

∂u

∂t
=

1

2
(C∇xu,∇xu) + (B̄x,∇xu).

It is also possible to write out Euler’s equations for the extremals; in the case
under consideration, these equations are linear. Theorem 7.2 implies in particular
that

lim
ε→0

ε1−2κ lnP
{

sup
0≤t≤T

|Xε
t | > εκ · d

}
= −min{u(t, x) : |x| = d, t ∈ [0, T ]}

for κ ∈ (0, 1
2 ).

The deviations of order εκ determine the average time needed by the tra-
jectories of the process Xε

t , Xε
0 = 0, to exit from a domain Dε contain-

ing 0 if Dε is obtained from a given domain D by a stretching with coefficient
εκ : Dε = εκ ·D. Let

τ ε = inf{t : Xε
t ∈ Dε}, V (x) = inf

t≥0
u(t, x).

Theorem 7.3. Suppose that the hypotheses of Theorem 7.2 are satisfied, the ma-
trix C is nonsingular and Dε = εκ · D, κ ∈ (0, 1

2 ), where D is a bounded
domain with smooth boundary. Let us put V0 = minx∈∂D V (x). Then

lim
ε↓0

ε1−2κ lnM0τ
ε = V0,

lim
ε↓0

P0{eε
2κ−1(V0−γ) < τ ε < eε

2κ−1(V0+γ)} = 1

for any γ > 0.

The proof of this theorem is analogous to those of the corresponding results
of Chap. 4 and we omit it.

We say a few words concerning the calculation of V (x). Analogously to
Sect. 3, Chap. 4, it can be proved that V (x) is a solution of problem R0 for
the equation

1

2
(C∇V (x),∇V (x)) + (B̄x,∇V (x)) = 0.

An immediate verification shows that if C−1B̄ is symmetric, then V (x) =
−(C−1B̄x, x).

Concluding this section, we note that analogous estimates can be obtained
for not only deviations of order εκ , κ ∈ (0, 1

2 ), from an equilibrium position but
also deviations of order εκ from any averaged trajectory.
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8 Examples

EXAMPLE 8.1. First we consider the case where the right sides of (1.2) do not
depend on x and the process ξt is stationary. Then Xε

t can be expressed in the
form

Xε
t = x+

∫ t

0

b(ξs/ε) ds = x+ t(t/ε)−1

∫ t/ε

0

b(ξs/ε) ds.

We write m = Mb(ξs), Bij(τ) = M(bi(ξs+τ ) −mi)(bj(ξs) −mj) and assume
that

∑r
i=1 B

ii(τ) → 0 as τ → ∞. By means of the Chebyshev inequality, we
obtain from this for any δ > 0 that

P

{∣∣∣∣
1

T

∫ t+T

t

b(ξs) ds−m

∣∣∣∣ > δ

}

≤ 1

T 2δ2

∫ t+T

t

∫ t+T

t

r∑

i=1

M(bi(ξs)−mi)(bi(ξu)−mi) ds du

=
1

δ2T 2

∫ t+T

t

∫ t+T

t

r∑

i=1

Bii(u− s) du ds→ 0

uniformly in t ≥ 0 as T increases. Consequently, the hypotheses of Theorem 2.1
are satisfied in this case and sup0≤t≤T |Xε

t − x − mt| → 0 in probability as
ε → 0. If the process ξt has a mixing coefficient α(τ) decreasing sufficiently
fast and the functions b(y) increase not too fast (for example if they are bounded)
then Theorem 3.1 is applicable. In the case under consideration, this theorem is
the assertion that the family of processes

ζεt =
1√
ε
(Xε

t −mt− x) =
√
ε

∫ t/ε

0

[b(ξs)−m] ds

converges weakly, as ε → 0, to a Gaussian process ζt having mean zero and
correlation matrix (Mζitζ

j
s ) = (t ∧ s) ·K = (t ∧ s)(Kij), where

Kij =

∫ ∞

−∞
Bij(τ) dτ.

It is obvious that ζt has independent increments. The assertion that the distribu-
tion of ζεt converges to a Gaussian distribution (for a given t) constitutes the con-
tent of the central limit theorem for random processes (cf., for example, Rozanov
[1], Ibragimov and Linnik [1]).

If condition F of Sect. 4 is satisfied for the process Xε
t , then we can apply

Theorem 4.1, which enables us to estimate large (or order 1) deviations of Xε
t

from the linear function mt + x, t ∈ [0, T ]. Since the right side of (1.2) does
not depend on x, neither does the function H(x, α) defined by condition F , and
the normalized action functional S0T (ϕ) has the form S0T (ϕ) =

∫ T

0
L(ϕ̇s) ds,
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where L(β) is the Legendre transform of H(α). As has been explained earlier, it
is important to be able to determine the function

u(t, x) = inf{S0t(ϕ) : ϕ0 = x0, ϕi = x}

for the calculation of the asymptotics of the probabilities of many interesting
events. In the case considered here, the infimum and the extremal for which the
infimum is attained can be calculated easily. We shall assume that L(β) is strictly
convex. Then Euler’s equations

d

dt
∇L(ϕ̇) = 0

for the functional S(ϕ) show that only the straight lines ϕ̇ = c, c ∈ Rr are
extremals. Using conditions at the endpoints of the interval [0, t], we obtain that
the infimum is attained for the function ϕ̂s = x0 + [(x− x0)/t]s, and u(t, x) =
tL((x− x0)/t).

Suppose we would like to determine the asymptotics of lnP{Xε
t ∈ D} as

ε ↓ 0, where Xε
t =

∫ t

0
b(ξs/ε) ds, and D is a bounded set in Rr with boundary

∂D. It follows from Theorem 4.1 that

lim
ε↓0

ε lnP{Xε
t ∈ D} = −t · inf

x∈D∪∂D
L

(
x

t

)
,

provided that the infimum coincides with the infimum taken over all interior
points of D. If, moreover, the infimum is attained only at one point x̂ ∈ D∪ ∂D,
then it is easy to show that

lim
ε↓0

P{|Xε
t − x̂| < δ|Xε

t ∈ D ∪ ∂D} = 1

for any δ > 0.
For example, let ξt be defined by the equality

ξt = ηi for t ∈ [i, i+ 1), i is an integer, (8.1)

where η0, η1, . . . , ηn, . . . is a sequence of independent variables with a common
distribution function F (x). Then condition F is satisfied and

Hξ(α) = ln

∫ ∞

−∞
e(α,b(y)) dF (y),

provided that the integral under the logarithm is convergent. In this case Theo-
rem 4.1 is close to theorems on large deviations for sums of independent terms.
Theorem 4.1 is concerned with the rough, logarithmic, asymptotics of proba-
bilities of large deviations, while theorems on large deviations for sums usually
contain sharp asymptotics. On the other hand, Theorem 4.1 can be used to esti-
mate probabilities of events concerning the course of a process Xε

t on a whole
interval t ∈ [0, T ] and not only for events related to a given moment of time.
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EXAMPLE 8.2. Now let (1.2) have the form

Ẋε
t = b(Xε

t ) + σ(Xε
t )ξt/ε, Xε

0 = x ∈ Rr, (8.2)

where b(x) = (b1(x), . . . , br(x)), σ(x) = (σi
j(x)), and ξt is an r-dimensional

random process with Mξt = 0. The functions bi(x), σi
j(x) are assumed to be

bounded and sufficiently smooth. If the diagonal entries of the correlation matrix
B(s, t) of ξt converge to zero as |t− s| → ∞, then by virtue of Theorem 2.1 we
can conclude that Xε

t converges in probability to the solution of the differential
equation

˙̄xt = b(x̄t), x̄0 = x, (8.3)

uniformly on the interval 0 ≤ t ≤ T as ε ↓ 0. If ξt has good mixing properties,
then by means of Theorem 3.1 we can estimate the normal deviations from x̄t:
we can calculate the characteristics of the Gaussian process ζ0t , the limit of ζεt =
ε−1/2(Xε

t − x̄t).
We now assume that condition F is satisfied for the process ξt: there exists a

function Hξ(α) : R
r → R1 such that for any step function αs : [0, T ]→ Rr we

have

lim
ε↓0

ε lnM exp

{
ε−1

∫ T

0

(αs, ξs/ε) ds

}
=

∫ T

0

Hξ(αs) ds;

let Hξ(α) be differentiable with respect to α. As is easy to see, condition F is
satisfied for (8.2) and

H(x, α) = (b(x), α) +Hξ(σ
∗(x)α). (8.4)

The Legendre transform L(x, β) of H(x, α) can be expressed simply in terms of
the Legendre transform Lξ(β) of Hξ(α):

L(x, β) = Lξ(σ
−1(x)(β − b(x))),

provided that the matrix σ(x) is nonsingular.
For example, let ξt be a Markov process taking two values e1, e2 ∈ Rr, let

(pij(t)) be the matrix of transition probabilities and let qij = (dpij/dt)(0). As is
proved in Sect. 4, condition F is satisfied for ξt and Hξ(α) is equal to the largest
eigenvalue of (

q11 + (α, e1) q12
q21 q22 + (α, e2)

)
.

We consider the case where q11 = q22 = −q, e1 = −e2 = e ∈ Rr. Solving the
characteristic equation, we find that

Hξ(α) = −q +
√
q2 + (α, e)2,

and by means of relation (8.4) we obtain the function H(x, α) for the family of
processes Xε

t .
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We assume that 0 is an asymptotically stable equilibrium position for system
(8.3). For the determination of the asymptotics of the mean exit time of a domain
containing 0, of the point through which the exit takes place, of the asymptotics
of the invariant measure of Xε

t and of other interesting characteristics, we have
to calculate the function

V (x) = inf

{∫ T

0

L(ϕs, ϕ̇s) ds : ϕ0 = 0, ϕT = x, T > 0

}
,

as follows from Sect. 6. This function can be calculated as the solution of prob-
lem R0 (cf. Sect. 4, Chap. 5) for the equation

(b(x),∇V (x))− q +
√
q2 + (σ∗(x)∇V (x), e)2 = 0.

If system (8.3) has an asymptotically stable limit cycle Γ, then deviations from
this cycle can be described by the quasipotential VΓ(x), which can be determined
as the solution of problem RΓ (cf. Sect. 4, Chap. 5) for the same equation.

In this example we now consider deviations of order εκ , κ ∈ (0, 1
2 ), from the

equilibrium position 0. If condition Fκ is satisfied for ξt, i.e., if the limit

lim
ε↓0

ε1−2κ lnM exp

{
εκ−1

∫ T

0

(αs, ξs/ε) ds

}
=

1

2

∫ T

0

(Cξαs, αs) ds

exists, where Cξ is a symmetric matrix and αs is any step function on [0, T ],
then, as is easy to see, condition Fκ is also satisfied for the process Xε

t defined
by (8.2) and we have C = σ(0)Cξσ

∗(0). Let ξt be the Markov process with two
states considered above. As follows from Theorem 7.2, condition Fκ is satisfied
and Cξ = (∂2Hξ(α)/∂αi∂αj |α=0) = (1/q)(eiej), where e1, e2, . . . , er are the
components of the vector e. Consequently, in this case for the family of processes
Xε

t we obtain C = (1/q)σ(0)(eiej)σ∗(0).
It is easy to prove that conditions F and Fκ are satisfied for (8.2) and in the

case of the processes ξt defined by equality (8.1).

EXAMPLE 8.3. Let us consider the van der Pol equation with random perturba-
tions:

ẍ+ ω2x = ε[f(x, ẋ, νt) + ϕ(x, ẋ)ξt]. (8.5)

Here f(x, ẋ, νt) is a sufficiently smooth function, periodic in t with frequency
ν, ξt, is a stationary process in R1 with vanishing mathematical expectation and
correlation function K(τ), and ϕ(x, ẋ) is a smooth bounded function.

As in the deterministic case, by introducing the van der Pol variables (r, θ),
which are defined by the relations

x = r cos(ωt+ θ), ẋ = −rω sin(ωt+ θ),

and the “slow” time s = εt, (8.5) can be rewritten as a system of two equations
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drε

ds
= F1(ωs/ε+ θε, νs/ε, rε, ξs/ε),

dθε

ds
= F2(ωs/ε+ θε, νs/ε, rε, ξs/ε),

(8.6)

where

F1(τ, νt, r, ξ) = −
1

ω
[f(r cos τ,−rω sin τ, νt)

+ ϕ(r cos τ,−rω sin τ)ξ] sin τ,

F2(τ, νt, r, ξ) = −
1

rω
[f(r cos τ,−rω sin τ, νt)

+ ϕ(r cos τ,−rω sin τ)ξ] cos τ.

If K(τ) decreases with the increase of τ , then the right sides of (8.6) satisfy the
hypotheses of Theorem 7.1. Moreover, as is easy to verify,

lim
T→∞

1

T

∫ T

0

ϕ(r cos(ωs+ θ),−rω sin(ωs+ θ))ξs sin(ωs+ θ) ds

= lim
T→∞

1

T

∫ T

0

ϕ(r cos(ωs+ θ),−rω sin(ωs+ θ))ξs cos(ωs+ θ) ds

= 0,

so that the terms containing the factors ξs in the expressions for the functions
F1, F2 vanish upon averaging and the averaged equations have the same form as
in the absence of stochastic terms. If the ratio ω/ν is irrational (this case is said
to be nonresonant), then the averaged system has the form

dr̄

ds
= F̄1(r̄),

dθ̄

ds
= F̄2(r̄),

where the functions F̄1(r), F̄2(r) are given by formulas (1.9).
Now we assume, in addition, that ξt has finite moments up to order seven

inclusive and satisfies the strong mixing condition with a sufficiently rapidly
decreasing coefficient α(τ). By Theorem 3.1 the family of random processes
ε−1/2(rεt − r̄t, θ

ε
t − θ̄t), t ∈ [0, T ] converges weakly to the Gaussian Markov

process (ρt, ψt) which corresponds to the differential operator

Lu(ρ, ψ) =
1

2

(
A11(r̄t)

∂2u

∂ρ2
+ 2A12(r̄t)

∂2u

∂ρ∂ψ
+A22(r̄t)

∂2u

∂ψ2

)

+ ρ
dF̄1

dr
(r̄t)

∂u

∂ρ
+ ρ

dF̄2

dr
(r̄t)

∂u

∂ψ
,

where the functions Aij(r) are defined by the equalities
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A11(r) =
1

2πω3

∫ 2π

0

dt

∫ ∞

−∞
dsK

(
t− s

ω

)
ϕ(r cos t,−rω sin t)

× ϕ(r cos s,−rω sin s) sin s · sin t,

A22(r) =
1

2πr2ω3

∫ 2π

0

dt

∫ ∞

−∞
dsK

(
t− s

ω

)
ϕ(r cos t,−rω sin t)

× ϕ(r cos s,−rω sin s) cos t cos s,

A12(r) =
1

2πrω3

∫ 2π

0

dt

∫ ∞

−∞
dsK

(
t− s

ω

)
ϕ(r cos t,−rω sin t)

× ϕ(r cos s,−rω sin s) cos t sin s,

As was indicated in Sect. 1, if r0 is the only root of the equation F̄1(r) = 0
and the function F̄1(r) changes from positive to negative in passing through r0,
then independently of the initial conditions, periodic oscillations with amplitude
close to r0 and frequency close to ω are established in the system described by
(8.5) without random perturbations (ϕ ≡ 0) for sufficiently small ε. If random
perturbations are present, then, as follows from Theorem 7.1, with probability
converging to 1 as ε→ 0, the phase trajectories (Xs

t , Ẋ
ε
t ) approach a limit cycle

of the form

Γr0 = {(x, ẋ) : x = r0 cos(ωt+ θ), ẋ = −r0ω sin(ωt+ θ)},

over time of order ε−1 and they perform a motion close to the oscillations of
the unperturbed system along Γr0 , deviating from these oscillations from time
to time and returning to them again. We assume that at the initial moment the
system was moving along on the cycle Γr0 . Then on time intervals of order ε−1,
deviations from periodic oscillations have order

√
ε with overwhelming prob-

ability, according to Theorem 3.1. By means of this theorem we can calculate
various probabilistic characteristics of these deviations. For example, to calcu-
late the probability that the amplitude rεt deviates from r0 by more than h

√
ε at

least once over the time [0, T/ε], we need to solve the boundary value problem

∂u

∂s
(s, r) =

1

2
A11(r0)

∂2u

∂r2
+

dF̄1

dr
(r0)r

∂u

∂r
, −h < r < h;

u(0, r) = 0, u(s,−h) = u(s, h) = 1.

The desired probability will be close to u(T, 0) for ε! 1.
Deviations of order 1 take place over times of order greater than ε−1. To

study these deviations, we need to use the results of Sect. 4. For example, let
ξt = ηk for t ∈ [α− πk/ω, α+ πk/ω), where η0, η1, . . . , ηk, . . . are identically
distributed independent random variables and α is a random variable independent
of {ηj} and uniformly distributed in [0, 2π/ω]. It is easy to see that condition F
is satisfied for system (8.6) and

H(r, θ, α1, α2) = H(r, α1, α2)

= F̄1(r)α1 + F̄2(r)α2 +Hη(α1ϕ̄1(r) + α2ϕ̄2(r)),
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where

ϕ̄1(r) = −
1

2πω

∫ 2π

0

ϕ(r cos s,−rω sin s) sin s ds,

ϕ̄2(r) = −
1

2πrω

∫ 2π

0

ϕ(r cos s,−rω sin s) cos s ds,

Hη(τ) = lnMeτη1 .

The functions F̄1(r) and F̄2(r) are defined by equalities (1.9). As is shown in
Sects. 4 and 6, the asymptotics of various probability theoretical characteristics
of large deviations from the unperturbed motion can be calculated by means of
the function H(r, α1, α2). Let (a, b) � r0 and let τ ε = min{t : rεt /∈ (a, b)}. We
calculate limε↓0 ε lnMr,θτ

ε for r ∈ (a, b). It follows from the results of Sect. 6
that this limit is equal to min(u(a), u(b)), where the function u(r) is the quasipo-
tential of random perturbations on the half-line r ≥ 0. It can be determined as
the solution of problem Rr0 for the equation

H

(
r,
du

dr
, 0

)
= F̄1(r)

du

dr
+Hη

(
ϕ̄1(r)

du

dr

)
= 0. (8.7)

The solution of this problem obviously is reduced to the determination of the
nonzero root of the equation F̄1(r)z + Hη(ϕ̄1(r)z) = 0 and a subsequent inte-
gration. For example, let the variables ηk have a Gaussian distribution, Mηk = 0
and Dηk = σ2. In this case the results of Sect. 4 are applicable (cf. Grin’ [3]).
We have

Hη(τ) =
σ2τ2

2
, z(r) = − 2F̄1(r)

σ2ϕ̄2
1(r)

, and u(r) = −
∫ r

r0

2F̄1(ρ)

σ2ϕ̄2
1(ρ)

dρ.

Now we assume that the equation F̄1(r) = 0 has several roots r0 < r1 <
· · · < r2n and the function F̄1(r) changes sign from plus to minus at roots
with even indices and from minus to plus at roots with odd indices. If rε0 ∈
(r2k−1, r2k+1), then oscillations with amplitude close to r2k are established in
the system without random perturbations for small ε. In general, random per-
turbations lead to passages between stable limit cycles. Let u2k(r) be the so-
lution of problem Rr2k for (8.7) on the interval [r2k−1, r2k+1], u2k(r) < ∞
and u2k(r2k+1) < u2k(r2k−1). Then with probability close to 1 for ε small,
a passage takes place from the cycle Γr2k = {(r, θ) : r = r2k} to the cycle
Γr2(k+1)

and the average time needed for the passage is logarithmically equiva-
lent to exp{ε−1u2k(r2k+1)}.

We define a function V (r) on (0,∞) by the equalities

V (r) = ur0(r) for r ∈ (0, r1];

V (r) = V (r2k−1) + ur2k(r)− ur2k(r2k−1) for r ∈ [r2k−1, r2k+1].
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The function V (r) has local minima at the points r0, r2, . . . , r2n. We assume
that V (r) attains its absolute minimum at a unique point r2k∗ . Then, as follows
from results of Chap. 6, the limit cycle Γr2k∗ is the “most stable”: for small ε the
trajectories (rεt , θ

ε
t ) spend most of the time in the neighborhood of Γr2k∗ .

EXAMPLE 8.4. We consider the linear system

Ẋε
t = A(ξt/ε)X

ε
t + b(ξt/ε), Xε

0 = x. (8.8)

The entries of the matrix A(y) = (Ai
j(y)) and the components of the vector

b(y) = (b1(y), . . . , br(y)) are assumed to be bounded. Concerning the process
ξt we assume that it possesses a sufficiently rapidly decreasing mixing coefficient
and MA(ξt) = Ā = (Āi

j), Mb(ξt) = b̄. Relying on Theorem 2.1 we conclude
that Xε

t converges in probability to the solution of the differential equation

˙̄xt = Āx̄t + b̄, x̄0 = x,

uniformly on the interval 0 ≤ t ≤ T as ε ↓ 0. The solution of this equation can
be written as

x̄t =

∫ t

0

exp{Ā(t− s)}b̄ ds+ eĀtx.

To estimate normal deviations of Xε
t from x̄t, we need to use Theorem 3.1. For

the sake of simplicity we assume that ξt is stationary and b(y) = 0. We denote by
Kin

jm(τ) the joint correlation function of the processes Ai
j(ξt) and An

m(ξt) and
write

K̄in
jm =

∫ ∞

−∞
Kin

jm(τ) dτ, Gin(x) =
∑

j,m

K̄in
jmxjxm.

Then by Theorem 3.1 the normalized difference ζεt = ε−1/2(Xε
t − x̄t) con-

verges weakly to the Gaussian process ζt =
∫ t

0
e(t−s)Ā dηs as ε → 0, where

ηs is a Gaussian process with independent increments and mean zero such that
Mηiτη

n
τ =

∫ τ

0
Gin(x̄s) ds (cf. Khas’minskii [4]).

It is easy to give examples showing that the system obtained from (8.8) upon
averaging may have asymptotically stable stationary points even in cases where
the vector fields A(y)x+ b(y) do not have equilibrium positions for any value of
the parameter y or have unstable equilibrium positions. In the neighborhood of
such points the process Xε

t , ε! 1, spends a long time or is even attracted to them
with great probability. For the sake of definiteness, let ξt be the Markov process
with a finite number of states, considered in Theorem 4.2, let b̄ = 0 and let all
eigenvalues of the matrix Ā have negative real parts. Then the origin of coordi-
nates 0 is an asymptotically stable equilibrium position of the averaged system.
Let D be a bounded domain containing the origin and having boundary ∂D and
let V (x, ∂D) be the function introduced in Sect. 6. If V (0, ∂D) < ∞, then in
accordance with Theorem 6.1, the trajectories Xε

t , Xε
0 = x ∈ D, leave D over

time τ ε going to infinity in probability as ε → 0 and lnMxτ
ε ∼ ε−1V (0, ∂D).
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The case V (0, ∂D) = +∞ is illustrated by the following example. Let ξt be a
process with two states and let A(y) be equal to

A1 =

(
−ā 0
0 a

)
, A2 =

(
a 0
0 −ā

)

in these states, respectively. We consider the system Ẋε
t = A(ξt/ε)X

ε
t . If ξt

did not pass from one state to another, then for any initial state ξ0, the origin of
coordinates would be an unstable stationary point—a saddle. Let the matrix Q
for the process ξt have the form

Q =

(
−1 1
1 −1

)
.

The stationary distribution of this process is the uniform distribution, that is
( 12 ,

1
2 ). The averaged system

ẋ 1 =
1

2
(a− a)x1, ẋ 2 =

1

2
(a− a)x2

has an asymptotically stable equilibrium position at 0 if ā > a. It is easy to prove
that in this case the trajectories of Xε

t converge to 0 with probability 1 as t → 0
for any ε > 0, i.e., due to random passages of ξt, the system acquires stabil-
ity. By means of results of the present chapter we can calculate the logarithmic
asymptotics of Px{τ ε < ∞} as ε → 0, where τ ε = min{t : Xε

t /∈ D} (D is
a neighborhood of the equilibrium position) as well as the asymptotics of this
probability for x→ 0, ε = const.

EXAMPLE 8.5. Consider again (8.2). Let r = 2, b(x) = ∇̄H(x) = (∂H(x)/∂x2,
−∂H(x)/∂x1), and ξt, −∞ < t < ∞, be a two-dimensional mean zero sta-
tionary process with the correlation matrix B(τ). The averaged system is now a
Hamiltonian one:

˙̄Xt = ∇̄H(X̄t), X̄0 = x ∈ R2, (8.9)

and the Hamiltonian function H(x) is a first integral for (8.9). Assume that the
function H(x), the matrix σ(x), and the process ξt are such that conditions 1–5
of Theorem 3.2 are satisfied. Here

g(x, z) = σ(x)z,

F (x, z) = (∇H(x), σ(x)z),

D(x, s) = M(∇H(x), σ(x)ξs)(∇H(x), σ(x)ξ0),

Q(x, s) = M(∇(∇H(x), σ(x)ξs), σ(x)ξ0); x, z ∈ R2, s > 0.

(8.10)

Let B(τ) = (Bij(τ)), Bij(τ) = Mξiτ ξ
j
0,

B̄ =

∫ ∞

0

B(τ) dτ.
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The convergence of this integral follows from our assumptions. One can derive
from (8.10) that

D(x) = 2

∫ ∞

0

D(x, s) ds = (σ(x)B̄σ∗(x)∇H(x),∇H(x)).

Since B(τ) is a positive definite function, B̄ and σ(x)B̄σ∗(x) are also positive
definite. Thus one can introduce σ(y) such that

σ2(y) =

(∫

C(y)

dl

|∇H(x)|

)−1 ∫

C(y)

(σ(x)B̄σ∗(x)∇H(x),∇H(x)) dl

|∇H(x)| .

To write down the drift coefficient for the limiting process, we need some no-
tations. For any smooth vector field e(x) in R2 denote by ∇e(x) the matrix
(eij(x)), eij(x) = ∂ej(x)/∂x

i. Simple calculations show that

Q(x) =

∫ ∞

0

Q(x, s) ds = tr(σ∗(x) · ∇(σ∗(x)∇H(x)) · B̄),

and we have the following expression for the drift,

B(y) =

(∫

C(y)

d�

|∇H(x)|

)−1 ∫

C(y)

tr(σ∗(x) · ∇(σ∗(x)∇H(x)) · B̄) dl

|∇H(x)| .

Let, for example, σ(x) be the unit matrix. Then

D(x) = (B̄∇H(x),∇H(x)), Q(x) = tr(Ĥ(x)B̄),

where Ĥ(x) is the Hessian matrix for H(x) : Ĥij(x) = ∂2H(x)/∂xi∂xj .

9 The Averaging Principle for Stochastic Differential
Equations

We consider the system of differential equations

Ẋε = b(Xε, Y ε) + σ(Xε, Y ε)ẇ, Xε
0 = x,

Ẏ ε = ε−1B(Xε, Y ε) + ε−1/2C(Xε, Y ε)ẇ, Y ε
0 = y,

(9.1)

where

x ∈ Rr, y ∈ Rl, b(x, y) = (b1(x, y), . . . , br(x, y)),

B(x, y) = (B1(x, y), . . . , Bl(x, y)),

wt is an n-dimensional Wiener process and σ(x, y) = (σi
j(x, γ)), C(x, y) =

(Ci
j(x, y)) are matrices transforming Rn into Rr and Rl, respectively. The func-

tions bi(x, y), Bi(x, y), σi
j(x, y), C

i
j(x, y) are assumed to be bounded and satisfy
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a Lipschitz condition. By this example we illustrate equations of the type (1.5)
where the velocity of fast motion depends on the slow variables. We also note that
in contrast to the preceding sections, the slow variables in (9.1) form a random
process even for given Y ε

t , t ∈ [0, T ].
We introduce a random process Y xy

t , x ∈ Rr, y ∈ Rl, which is defined by
the stochastic differential equation

Ẏ xy
t = B(x, Y xy

t ) + C(x, Y xy
t )ẇt, Y xy

0 = y. (9.2)

The solutions of this equation form a Markov process in Rl, depending on x ∈
Rr as a parameter.

First we formulate and prove the averaging principle in the case where the
entries of the matrix σ(x, y) do not depend on y and then we indicate the changes
necessary for the consideration of the general case.

We assume that there exists a function b̄(x) = (b̄1(x), b̄2(x), . . . , b̄r(x)), x ∈
Rr, such that for any t ≥ 0, x ∈ Rr, y ∈ Rl we have

M

∣∣∣∣
1

T

∫ t+T

t

b(x, Y xy
s ) ds− b̄(x)

∣∣∣∣ < κ(T ), (9.3)

where κ(T )→ 0 as T →∞.

Theorem 9.1. Let the entries of σ(x, y) = σ(x) be independent of y and let
condition (9.3) be satisfied. Let us denote by X̄t the random process determined
in Rr by the differential equation2

˙̄Xt = b̄(X̄t) + σ(X̄t)ẇt, X̄0 = x.

Then for any T > 0, δ > 0, x ∈ Rr and y ∈ Rr we have

lim
ε→0

P
{

sup
0≤t≤T

|Xε
t − X̄t| > δ

}
= 0.

Proof. We consider a partition of [0, T ] into intervals of the same length Δ. We
construct auxiliary processes Ŷ ε

t and X̂ε
t by means of the relations

Ŷ ε
t = Y ε

kΔ +
1

ε

∫ t

kΔ

B(Xε
kΔ, Ŷ

ε
s ) ds+

1√
ε

∫ t

kΔ

C(Xε
kΔ, Ŷ

ε
s ) dws,

t ∈ [kΔ, (k + 1)Δ],

X̂ε
t = x+

∫ t

0

b(Xε
[s/Δ]Δ, Ŷ

ε
s ) ds+

∫ t

0

σ(Xε
s ) dws.

We show that the intervals Δ = Δ(ε) can be chosen such that ε−1Δ(ε) →
∞, Δ(ε)→ 0 as ε→ 0 and

2 In this equation, wt is the same Wiener process as in (9.1). Since b(x, y) satisfies a
Lipschitz condition, b̄(x) also satisfies a Lipschitz condition, so that the solution of the
equation exists and is unique.
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M|Y ε
t − Ŷ ε

t |2 → 0 (9.4)

uniformly in x ∈ Rr, y ∈ Rl and t ∈ [0, T ]. It follows from the definition of Y ε
t

and Ŷ ε
t that for t belonging to [kΔ, (k + 1)Δ] we have

M|Y ε
t − Ŷ ε

t |2 = M

∣∣∣∣
1

ε

∫ t

kΔ

[B(Xε
s , Y

ε
s )−B(Xε

kΔ, Ŷ
ε
s )] ds

+
1√
ε

∫ t

kΔ

[C(Xε
s , Y

ε
s )− C(Xε

kΔ, Ŷ
ε
s )] dws

∣∣∣∣
2

≤ C1
Δ

ε2

(∫ t

kΔ

M|Xε
s −Xε

kΔ|2 ds+
∫ t

kΔ

M|Y ε
s − Ŷ ε

s |2 ds
)

+
C2

ε

(∫ t

kΔ

M|Xε
s −Xε

kΔ|2 ds+
∫ t

kΔ

M|Y ε
s − Ŷ ε

s |2 ds
)

≤ C3

(
Δ

ε2
+

1

ε

)∫ t

kΔ

M|Xε
s −Xε

kΔ|2 ds

+ C4

(
Δ

ε2
+

1

ε

)∫ t

kΔ

M|Y ε
s − Ŷ ε

s |2 ds. (9.5)

Here and in what follows, we denote by Ci constants depending only on the
Lipschitz coefficients of (bi(x, y), B′(x, y), σi

j(x, y), C
i
j(x, y), the maximum of

the absolute values of these coefficients and the dimension of the space.
It follows from the boundedness of the coefficients of the stochastic equation

for Xε
s that for Δ < 1 we have the estimate

M|Xε
s −Xε

kΔ|2 ≤ C5|s− kΔ| (9.6)

for s ∈ [kΔ, (k + 1)Δ]. We obtain from this inequality and (9.5) that

M|Y ε
t − Ŷ ε

t |2 ≤ C6

(
1

ε
+

Δ

ε2

)
Δ2 + C6

(
Δ

ε2
+

1

ε

)∫ t

kΔ

M|Y ε
s − Ŷ ε

s |2 ds

for t ∈ [kΔ, (k + 1)Δ], from which we arrive at the relation

M|Y ε
t − Ŷ ε

t |2 ≤ C6

(
Δ

ε
+

Δ2

ε2

)
Δexp

{
C6

(
Δ2

ε2
+

Δ

ε

)}
.

From this we conclude that (9.4) is satisfied if we put

Δ = Δ(ε) = ε
4
√
ln ε−1.

Now we show that for any δ > 0 we have

P
{

sup
0≤t≤T

|Xε
t − X̂ε

t | > δ
}
→ 0 (9.7)
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as ε → 0 and Δ = Δ(ε) = ε
4
√
ln ε−1 uniformly in x ∈ Rr, y ∈ Rl. Indeed, it

follows from the definition of Xε
t and X̂ε

t that

P
{

sup
0≤t≤T

|Xε
t − X̂ε

t | > δ
}

≤ P

{∫ T

0

|b(Xε
s , Y

ε
s )− b(Xε

[s/Δ]Δ, Ŷ
ε
s )| ds > δ

}
.

Estimating the probability on the right side by means of Chebyshev’s inequality
and taking account of (9.4) and (9.6), we obtain (9.7). It is also easy to obtain
from (9.4) and (9.6) that

sup
0≤t≤T

M|Xε
t − X̂ε

t |2 → 0 (9.8)

as ε→ 0.
Now we show that sup0≤s≤T |X̂ε

t − X̄s| converges to zero in probability as
ε→ 0. The assertion of the theorem will obviously follow from this and (9.7).

First we note that it follows from the definition of Ŷ ε
t that for s ∈ [0,Δ] the

process Zs = Ŷ ε
kΔ+s coincides in distribution with the process Y Xε

kΔY ε
kΔ

s/ε defined
by (9.2). We only have to choose the Wiener process wt in (9.2) independent of
Xε

kΔ, Y ε
kΔ.

Taking into account that ε−1Δ(ε)→∞, we obtain, relying on (9.3), that

M

∣∣∣∣
∫ (k+1)Δ

kΔ

b(Xε
kΔ, Ŷ

ε
kΔ) dt−Δb̄(Xε

kΔ)

∣∣∣∣

= ΔM

∣∣∣∣
ε

Δ

∫ Δε

0

[b(Xε
kΔ, Zs)− b̄(Xε

kΔ)] ds

∣∣∣∣ ≤ Δ · κ(Δ/ε).

Using this estimate, we arrive at the relation

M

{
sup

0≤t≤T

∣∣∣∣
∫ t

0

b(Xε
[s/Δ]Δ, Ŷ

ε
s ) ds−

∫ t

0

b̄(Xε
s ) ds

∣∣∣∣

}

≤ M

{
max

0≤l≤[T/Δ]

∣∣∣∣∣

l∑

k=0

∫ (k+1)Δ

kΔ

[b(Xε
kΔ, Ŷ

ε
s )− b̄(Xε

kΔ)] ds

∣∣∣∣∣

}
+C7Δ

≤
[T/Δ]∑

k=0

M

∣∣∣∣
∫ (k+1)Δ

kΔ

[b(Xε
kΔ, Ŷ

ε
s )− b̄(Xε

kΔ)] ds

∣∣∣∣+ C7Δ

≤ C7Δ+ Tκ(Δ/ε)→ 0 (9.9)

as ε→ 0, since Δ(ε)→ 0, κ(Δ(ε)/ε)→ 0 as ε→ 0.

We estimate mε(t) = M|X̂ε
t − X̄t|2. It follows from the definition of X̄t and

X̂ε
t that
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X̂ε
t − X̄t =

∫ t

0

[b(Xε
[s/Δ]Δ, Ŷ

ε
s )− b̄(Xε

s )] ds

+

∫ t

0

[b̄(Xε
s )− b̄(X̄s)] ds+

∫ t

0

[σ(Xε
s )− σ(X̄s)] dws.

Upon squaring both sides and using some elementary inequalities and the Lips-
chitz condition, we arrive at the relation

mε(t) ≤ C8t

∫ t

0

mε(s) ds+ C9

∫ t

0

mε(s) ds

+ 3M

∣∣∣∣
∫ t

0

b(Xε
[s/Δ]Δ, Ŷ

ε
s ) ds−

∫ t

0

b̄(Xε
s ) ds

∣∣∣∣
2

.

We obtain from this relation that

mε(t) ≤ 3M

∣∣∣∣
∫ t

0

b(Xε
[s/Δ]Δ, Ŷs) ds−

∫ t

0

b̄(Xε
s ) ds

∣∣∣∣
2

· eC10(T+T 2)

for t ∈ [0, T ]. This implies by (9.9) that mε(t)→ 0 uniformly on [0, T ] as ε→ 0.
For δ > 0 we have the inequality

P
{

sup
0≤t≤T

|X̂ε
t − X̄t| > δ

}

≤ P

{
sup

0≤t≤T

∣∣∣∣
∫ t

0

[b(Xε
[s/Δ]Δ, Ŷ

ε
s )− b̄(Xε

s )] ds

∣∣∣∣ > δ/6

}

+ P

{∫ T

0

|b̄(X̄s)− b̄(X̂ε
s )| ds > δ/6

}

+ P

{∫ T

0

|b̄(X̂ε
s )− b̄(Xε

s )| ds > δ/6

}

+ P

{
sup

0≤t≤T

∣∣∣∣
∫ t

0

[σ(Xε
s )− σ(X̂ε

s )] dws

∣∣∣∣ > δ/6

}

+ P

{
sup

0≤t≤T

∣∣∣∣
∫ t

0

[σ(X̂ε
s )− σ(X̄s)] dws

∣∣∣∣ > δ/6

}
.

The first term on the right side converges to zero by virtue of (9.9). To prove that
the second and third terms also converge to zero, we need to use Chebyshev’s
inequality, relation (9.8) and the fact that mε(t)→ 0 as ε ↓ 0. The fourth and fifth
terms can be estimated by means of Kolmogorov’s inequality and also converge
to zero. Consequently, we obtain that sup0≤t≤T |X̂ε

t − X̄t| → 0 in probability as
ε ↓ 0. The assertion of Theorem 9.1 follows from this and (9.7). ��

Now we briefly discuss the case where the entries of σ depend on x and y.
We assume that condition (9.3) is satisfied, and moreover, there exists a matrix
ā(x) = (āij(x)) such that for any t ≥ 0, x ∈ Rr and y ∈ Rl we have
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max
i,j

M

∣∣∣∣
1

T

∫ t+T

t

∑

k

σi
k(x, Y

xy
s )σj

k(x, Y
xy
s ) ds− āij(x)

∣∣∣∣ < κ(T ), (9.10)

where κ(T ) → 0 as T → ∞ and Y xy
s is the solution of (9.2). Let X̃t be the

solution of the stochastic differential equation

˙̃Xt = b̄(X̃t) + σ̄(X̃t)ẇt, X̃0 = x1

where σ̄(x) = (ā(x))1/2 and wt is an r-dimensional Wiener process. It turns
out that in this case Xε

t converges to X̃t. However, the convergence has to be
understood in a somewhat weaker sense. Namely, the measure corresponding to
Xε

t in the space of trajectories converges weakly to the measure corresponding to
X̃t as ε ↓ 0. We shall not include the proof of this assertion here but rather refer
the reader to Khas’minskii [6] for a proof. We note that in that work the averaging
principle is proved under assumptions allowing some growth of the coefficients.
Conditions (9.3) and (9.10) are also replaced by less stringent ones.

We consider an example. Let (rε, ϕε) be the two-dimensional Markov pro-
cess governed by the differential operator

Lε =
1

2

∂2

∂r2
+ b(r, ϕ)

∂

∂r
+

1

ε

[
B(r, ϕ)

∂

∂ϕ
+

1

2
C2(r, ϕ)

∂2

∂ϕ2

]
.

This process can also be described by the stochastic equations

ṙε = b(rε, ϕε) + ẇ1,

ϕ̇ε = ε−1B(rε, ϕε) + ε−1/2C(rε, ϕε)ẇ2.

We assume that the functions b(r, ϕ), B(r, ϕ) and C(r, ϕ) are 2π-periodic in ϕ

and C(r, ϕ) ≥ c0 > 0. In this case the process ϕ̃(r0)
t obtained from the process

ϕ
(r0)
t = ϕ

(r0)
0 +

∫ t

0

B(r0, ϕ
(r0)
s ) ds+

∫ t

0

C(r0, ϕ
(r0)
s ) dws

by identifying the values differing by an integral multiple of 2π is a nondegen-
erate Markov process on the circle. This process has a unique invariant measure
on the circle with density m(r0, ϕ) and there exist C, λ > 0 such that for any
bounded measurable function f(ϕ) on the circle

∣∣∣∣Mϕ0f(ϕ̃
(r0)
t )−

∫ 2π

0

f(ϕ)m(r0, ϕ) dϕ

∣∣∣∣ ≤ Ce−λt sup
0≤ϕ≤2π

|f(ϕ)|

(cf., for example, Freidlin [3]). This implies relation (9.3). Indeed, putting b̄(r) =∫ 2π

0
b(r, ϕ)m(r, ϕ) dϕ, we obtain
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(
Mϕ0

∣∣∣∣
1

T

∫ T

0

b(r, ϕ(r)
s ) ds− b̄(r)

∣∣∣∣

)2

≤ Mϕ0

∣∣∣∣
1

T

∫ T

0

b(r, ϕ(r)
s ) ds− b̄(r)

∣∣∣∣
2

=
1

T 2

∫ T

0

∫ T

0

Mϕ0(b(r, ϕ
(r)
s )− b̄(r))(b(r, ϕ

(r)
t )− b̄(r)) ds dt

=
2

T 2

∫ T

0

ds

∫ T

s

Mϕ0(b(r, ϕ
(r)
s )− b̄(r))Mϕ0(b(r, ϕ

(r)
t−s)− b̄(r)) dt

≤ max
r,ϕ

|b(r, ϕ)| C
T 2

∫ T

0

ds

∫ T

s

e−λ(t−s)dt→ 0

as T →∞.
Hence by Theorem 9.1, rεt converges in probability to the diffusion process

r̄t satisfying the differential equation

˙̄rt = b̄(r̄t) + ẇ1
t , r̄0 = rε0 = r,

uniformly on the interval 0 ≤ t ≤ T as ε ↓ 0.
If a functional F [rεt , 0 ≤ t ≤ T ] of the process rεt is continuous in C0T (R

1),
then what has been said implies that F [rεt , 0 ≤ t ≤ T ] → F [r̄t, 0 ≤ t ≤ T ]
in probability as ε ↓ 0. The convergence is preserved if F has discontinuities
such that the set of functions at which F is discontinuous has measure zero with
respect to the measure induced by the limit process r̄t in the function space.

The results discussed in this section can be used for the study of the behav-
ior, as ε ↓ 0, of solutions of some elliptic or parabolic equations with a small
parameter.

Consider, for example, the Dirichlet problem

Lεuε(r, ϕ) = 0, r ∈ (r1, r2);

uε(r1, ϕ) = C1, uε(r2, ϕ) = C2

(9.11)

in the domain D = {(r, ϕ) : 0 < r1 < r < r2}. If (r, ϕ) are interpreted as
polar coordinates in the plane, then the above domain is the ring bounded by
the concentric circles of radii r1 and r2, respectively, and center at the origin of
coordinates. As is known, the solution of this problem can be written in the form

uε(r, ϕ) = C1Pr,ϕ{rετε = r1}+ C2Pr,ϕ{rετε = r2},

where τ ε = inf{t : rεt /∈ [r1, r2]}. We write τ = inf{t : r̄t /∈ [r1, r2]}. It is easy
to verify that maxr1≤r≤r2 Pr{τ > T} → 0 as T → ∞ and that the boundary
points of [r1, r2] are regular for r̄t in [r1, r2], i.e., that Pri{τ = 0} = 1, i = 1, 2
(cf. Wentzell [1]). This and the uniform convergence in probability of rεt to r̄t on
every finite interval [0, T ] imply that
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lim
ε↓0

uε(r, ϕ) = ū(r) = C1Pr(r̄τ = r1}+ C2Pr{r̄τ = r2}.

The function ū(r) can be determined as the solution of the problem

1

2
ū′′(r) + b̄(r)ū′(r) = 0, r ∈ (r1, r2).

ū(r1) = C1, ū(r2) = C2.

Solving this problem, we obtain that

lim
ε↓0

uε(r, ϕ) = ū(r) = C1 + (C2 − C1)

∫ r

r1

exp

{
−2
∫ y

0

b̄(x) dx

}
dy

×
(∫ r2

r1

exp

{
−2
∫ y

0

b̄(x) dx

}
dy

)−1

.

Some examples of a more general character can be found in Khas’minskii [6].
Now we consider large deviations in systems of the type (9.1). We restrict

ourselves to the case where there is no diffusion in the slow motion and the fast
motion takes place on a compact manifold and the diffusion coefficients with
respect to the fast variables do not depend on the slow variables.

Let M , E be two Riemannian manifolds of class C∞. Suppose that E is
compact and dimM = r, dimE = l. We denote by TMx and TEy the tangent
spaces of M and E at x ∈ M and y ∈ E, respectively. We consider a family
of vector fields b(x, y) on M , depending on y ∈ E as a parameter and a fam-
ily B(x, y) of fields on E, depending on x ∈ M . On E we consider an elliptic
differential operator L of the second order, mapping constants to zero. The func-
tions b(x, y), B(x, y) as well as the coefficients of L are assumed to be infinitely
differentiable with respect to their variables.

On the direct product M × E we consider the family of Markov processes
Zε
t = (Xε

t , Y
ε
t ) governed by the operators

L f(x, y) = (b(x, y),∇xf(x, y)) + ε−1[Lyf(x, y) + (B(x, y),∇yf(x, y))],

where∇x,∇y are the gradient operators on M and E, respectively. In coordinate
form the trajectory of the process, Zε

t = (Xε
t , Y

ε
t ) can be given by the system of

stochastic equations

Ẋε
t = b(Xε

t , Y
ε
t ),

Ẏ ε
t = ε−1[B(Xε

t , Y
ε
t ) + g(Y ε

t )] + ε−1/2C(Y ε
t )ẇt,

(9.12)

where g(y) = (g1(y), . . . , gl(y)) are the coefficients of first order derivatives
in L, the matrix C(y) is connected with the coefficients aij(y) of higher or-
der differentiations in L by the relation C(y)C∗(y) = (aij(y)) and wt is an
l-dimensional Wiener process.
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If M is not compact, then we have to impose an assumption on b(x, y) that
it does not grow too fast: for any T > 0 and x ∈ M there exists a compactum
F ⊂M , x ∈ F , such that Pxy{Xε

t ∈ F for t ∈ [0, T ]} = 1 for every y ∈ E and
ε > 0.

Let α be an element of the dual T ∗Mx of TMx. We introduce the differential
operator R = R(x, z, α) acting on functions f(y), y ∈ E, according to the
formula

R(x, z, α)f(y) = Lf(y) + (B(z, y),∇yf(y)) + (α, b(x, y))f(y);

x, z ∈ M and α ∈ T ∗Mx are parameters. For all values of the parameters,
R(x, z, α) is an elliptic differential operator in the space of functions defined
on E. It is the restriction, to smooth functions, of the infinitesimal generator
of a positive semigroup. Analogously to Sect. 4, we can deduce from this that
R(x, z, α) has a simple eigenvalue μ(x, z, α) with largest real part. This eigen-
value is real and by virtue of its simplicity, it is differentiable with respect to the
parameters x, z, α.

We introduce the diffusion process Y z
t , z ∈ M , on E, governed by the oper-

ator
Nz = L+ (B(z, y),∇y).

Lemma 9.1. Let α ∈ T ∗Mx and let F be a compactum in M . The limit

lim
T→∞

lnMy exp

{∫ T

0

(α, b(x, Y z
ε )) ds

}
= μ(x, z, α)

uniformly in x, z ∈ F and y ∈ E. The function μ(x, z, α) is convex downward in
the variables α.

Proof. Let us write V (x, y, α) = (α, b(x, y)). The family of operators TV
t acting

in the space of bounded measurable functions on E according to the formula

TV
t f(y) = Myf(Y

z
t ) exp

{∫ t

0

V (x, Y z
s , α) ds

}

forms a positive semigroup. The assertion of Lemma 9.1 can be derived from this
analogously to the proof of Theorem 4.2. ��

Let us denote by L(x, z, β) (x, z ∈ M,β ∈ TMx) the Legendre transform
of the function μ(x, z, α) with respect to the last argument:

L(x, z, β) = sup
α

[(α, β)− μ(x, z, α)].

We shall sometimes consider L(x, z, β) with coinciding first two arguments. We
write L(x, x, β) = L(x, β). This function is obviously the Legendre transform
of μ(x, x, α). We note that L(x, z, α) is lower semicontinuous.
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Theorem 9.2 (Freidlin [11]). Let Xε
t be the first component of the Markov pro-

cess Zε
t governed by the operator L ε on M × E. Let us put

S0T (ϕ) =

∫ T

0

L(ϕs, ϕ̇s) ds

for absolutely continuous functions ϕ ∈ C0T (M); for the remaining ϕ ∈
C0T (M) we set S0T (ϕ) = +∞.

The functional ε−1S0T (ϕ) is the action functional for the family of processes
Xε

t , t ∈ [0, T ] in C0T (M) as ε ↓ 0.

Proof. Together with the process Zε
t = (Xε

t , Y
ε
t ), we consider the process Z̃ε

t =
(X̃ε

t , Ỹ
ε
t ), where

˙̃Xε
t = b(X̃ε

t , Ỹ
ε
t ),

˙̃Y ε
t = ε−1g(Ỹ ε

t ) + ε−1/2C(Ỹ ε
t )ẇt.

We write e(x, y) = C−1(y)B(x, y). The process Z̃ε
t differs from Zε

t by a change
of the drift vector in the variables in which there is a nondegenerate diffusion, so
that the measures corresponding to these processes in the space of trajectories are
absolutely continuous with respect to each other. Taking account of this observa-
tion, we obtain for any function ϕ : [0, T ]→M and δ > 0 that

Px,y{ρ0T (Xε, ϕ) < δ} = Mx,y

{
ρ0T (X̃

ε, ϕ) < δ;

exp

{
ε−1/2

∫ T

0

(e(X̃ε
s , Ỹ

ε
s ), dws)− (2ε)−1

∫ T

0

|e(X̃ε
s , Ỹ

ε
s )|2 ds

}}
.

(9.13)

Let ψ(n) : [0, T ]→M be a step function such that ρ0T (ϕ, ψ(n)) < 1/n. For
any γ, C > 0 we have

P

{
ε−1/2

∣∣∣∣
∫ T

0

(e(X̃ε
s , Ỹ

ε
s ), dws)−

∫ T

0

(e(ψ(n)
s , Ỹ ε

s ), dws)

∣∣∣∣

>
γ

4ε
; ρ0T (X̃

ε, ϕ) < δ

}
< exp{−Cε−1}

for sufficiently small δ and 1/n. This estimate can be verified by means of the
exponential Chebyshev inequality. We obtain from this and (9.13) that for any
ϕ ∈ C0T (M) and γ > 0 we have
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Mx,y

{
ρ0T (X̃

ε, ϕ) < δ; exp

{
ε−1/2

∫ T

0

(e(ψ(n)
s , Ỹ ε

s ), dws)

− (2ε)−1

∫ T

0

|e(ψ(n)
s , Ỹ ε

s )|2 ds−
γ

3ε

}}

≤ Px,y{ρ0T (Xε, ϕ) < δ}

≤ Mx,y

{
ρ0T (X̃

ε, ϕ) < δ; exp

{
ε−1/2

∫ T

0

(e(ψ(n)
s , Ỹ ε

s ), dws)

− (2ε)−1

∫ T

0

|e(ψ(n)
s , Ỹ ε

s )|2 ds+
γ

3ε

}}
(9.14)

for sufficiently small δ and 1/n.
We introduce still another process, Ẑε

t = (X̂ε
t , Ŷ

ε
t ), which is defined by the

stochastic equations

˙̂
Xε

t = b(X̂ε
t , Ŷ

ε
t ),

˙̂
Y ε
t = ε−1g(Ŷ ε

t ) + ε−1B(ψ
(n)
t , Ŷ ε

t ) + ε−1/2C(Ŷ ε
t )ẇt

in coordinate form.
Taking account of the absolute continuity of the measures corresponding to

Zε
t and Ẑε

t , it follows from inequality (9.14) that

e−γ/2ε <
Px,y{ρ0T (Xε, ϕ) < δ}
Px,y{ρ0T (X̂ε, ϕ) < δ}

< eγ/2ε (9.15)

for sufficiently small δ and 1/n.
Let t1 < t2 < · · · < tm−1 be the points where ψ

(n)
t has jumps, t0 = 0,

tm = T and ψ
(n)
t = ψ(k) for t ∈ [tk, tk+1), k = 0, 1, . . . ,m − 1. The pro-

cess X̂ε
t satisfies the hypotheses of Theorem 4.1 on every interval [tk, tk+1). The

role of ξt/ε is played by Ŷ ξ
t , which can be represented in the form Ŷ ε

t = Ŷ 1
t/ε,

˙̂
Y 1
t = g(Ŷ 1

t ) + B(ψ(k), Ŷ 1
t ) + C(Ŷ 1

t )ẇt. The fulfillment of condition F fol-
lows from Lemmas 4.2 and 9.1. The corresponding functional has the form∫ tk+1

tk
L(ψ(k), ϕs, ϕ̇s) ds for absolutely continuous functions. It follows from

this and (9.15) that for any γ > 0 and sufficiently small δ and 1/n there ex-
ists ε0 > 0 such that for ε < ε0 we have the estimates

exp

{
−ε−1

(∫ T

0

L(ψ(n)
s , ϕs, ϕ̇s) ds+

γ

2

)}

≤ Px,y{ρ0T (Xε, ϕ) < δ}

≤ exp

{
−ε−1

(∫ T

0

L(ψ(n)
s , ϕs, ϕ̇s) ds−

γ

2

)}
. (9.16)

The concluding part of the proof of this theorem can be carried out in the same
way as the end of the proof of Theorem 4.1. We leave it to the reader. ��
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Remark 1. The assertion of Theorem 9.2 remains true if the manifold E is re-
placed by a compact manifold Ẽ with boundary and as the process Zε

t =
(Xε

t , Y
ε
t ), we choose a process in M × Ẽ, which is governed by the operator

L ε at interior points and for y belonging to the boundary ∂Ẽ of Ẽ it satisfies
some boundary conditions, for example, the condition of reflection along a field
n(y) where n(y) is a vector field on ∂Ẽ, tangent to Ẽ but not tangent to ∂Ẽ. The
study of such a process can be reduced to the study of a process on the manifold
M × E′, where E′ is the manifold without boundary, obtained by pasting two
copies of Ẽ along the boundary ∂Ẽ (cf. Freidlin [3]).

Remark 2. It is easy to write out the action functional characterizing deviations
of order εκ , κ ∈ (0, 1

2 ) of the process Xε
t defined by (9.12) from the aver-

aged system. For example, let the origin of coordinates 0 be an equilibrium
position of the averaged system. Then the action functional for the process
Zε
t = ε−κXε

t has the same form as in Theorem 7.1; as the matrix C we have to
take (∂2μ(0, 0, α)/∂αi∂αj) for α = 0.

Remark 3. The generalization of Theorem 9.2 to the case of fast motion depend-
ing on slow motion was obtained in Veretennikov [1]. See also Kifer [6].

As a majority of results related to diffusion processes, the theorem given here
on large deviations is closely connected with some problems for differential equa-
tions of the second order with a nonnegative characteristic form. We consider an
example. Let Y ε

t = ξt/ε, where ξt is a Wiener process on the interval [−1, 1]
with reflection at the endpoints. We define a process Xε

t in Rr by the differential
equation Ẋε

t = b(Xε
t , Y

ε
t ). To write out the action functional for the family of

processes Xε
t , in accordance with Theorem 9.2 and Remark 1 (or according to

Theorem 4.1; the fast and slow motions are separated here), we need to consider
the eigenvalue problem

Nu(y) =
1

2

d2u

dy2
+ (α, b(x, y))u = λu(y),

du

∂y

∣∣∣∣
y=±1

= 0.

Let λ = λ(x, α) be the eigenvalue of the operator N with largest real part and
let L(x, β) be the Legendre transform of λ(x, α) with respect to the second ar-
gument. Then the normalized action functional for the processes Xε

t as ε ↓ 0 has
the form S0T (ϕ) =

∫ T

0
L(ϕs, ϕ̇s) ds for absolutely continuous functions. As was

explained earlier, to determine the asymptotics of Pxy{Xε
t ∈ D}, D ⊂ Rr, as

ε ↓ 0 and the asymptotics of the probabilities of other events connected with Xε
t ,

we need to calculate ux(t, z) = inf{S0t(ϕ) : ϕ ∈ Ht(x, z)}, where Ht(x, z) is
the set of functions ϕ such that ϕ0 = x, ϕt = z. The initial point x is assumed to
be given and we sometimes omit it in our notation. As follows from Theorem 4.1,
the action functional vanishes for trajectories of the averaged system and only for
them. It can be proved that in our case the averaged system has the form

˙̄xt = b̄(x̄t), b̄(x) =
1

2

∫ 1

−1

b(x, y) dy, (9.17)
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so that if the point z lies on the trajectory x̄t of system (9.17) for which x̄0 = x
and x̄t0 = z, then u(t0, z) = 0. For the determination of u(t, z) we may use the
Hamilton–Jacobi equation. In the case being considered it has the form

∂u

∂t
= λ(z,∇zu). (9.18)

Since N is a self-adjoint semibounded operator, for its largest eigenvalue
λ(x, α) we have the representation

λ(x, α) = min∑

{
1

2

∫ 1

−1

[f ′(y)]2 dy −
∫ 1

−1

(α, b(x, y))f2(y) dy

}
,

where
∑

= {f :
∫ 1

−1
|f(y)|2 dy = 1, f ′(1) = f ′(−1) = 0}. It follows from this

that the solutions of (9.18) satisfy the following nonlinear differential equation:

∂u

∂t
(t, z) = min∑

{
1

2

∫ 1

−1

[f ′(y)]2 dy −
∫ 1

−1

(∇zu, b(z, y))f
2(y) dy

}
.

Consequently, an equation can be given for u(t, z) without determining the first
eigenvalue of N .

Suppose we would like to determine the asymptotics, as ε ↓ 0, of vε(t, x, y) =
Mxyf(X

ε
t ), where f(x):Rr → R1 is a smooth nonnegative function, differ-

ent from zero on a set G ⊂ Rr. It is easy to see that vε(t, x, y) → f(x̄t(x)),
where x̄t(x) is the solution of the averaged system (9.17) with initial condition
x̄0(x) = x. In particular, if x̄t(x) /∈ G, then vε(t, x, y)→ 0 as ε ↓ 0. The rate of
convergence of vε(t, x, y) to zero can be estimated by means of the theorem on
large deviations for the family of processes Xε

t :

lim
ε↓0

ε ln vε(t, x, y) = − inf
z∈G∪∂G

ux(t, z). (9.19)

As is known, vε(t, x, y) is a solution of the problem

∂vε

∂t
=

1

2ε

∂2vε

∂y2
+

r∑

i=1

bi(x, y)
∂vε

∂xi
, x ∈ Rr, y ∈ (−1, 1), t > 0,

vε(0, x, y) = f(x),
∂vε

∂y
(t, x, y)

∣∣∣∣
y=±1

= 0.

(9.20)

The function v̄(t, x) = f(x̄t(x)) obviously satisfies the equation

∂v̄

∂t
(t, x) =

r∑

i=1

b̄i(x)
∂v̄

∂xi
, t > 0, x ∈ Rr;

v̄(0, x) = f(x),

(9.21)

where b̄i(x) = 1
2

∫ 1

−1
bi(x, y) dy. Therefore, the convergence of Xε

t to the trajec-
tories of system (9.17) implies the convergence of the solution of problem (9.20)
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to the solution of problem (9.21) as ε ↓ 0. Relation (9.18) enables us to estimate
the rate of this convergence.

As we have seen in Chaps. 4 and 6, in stationary problems with a small pa-
rameter, large deviations may determine the principal term of asymptotics, not
only the terms converging to zero with ε. We consider the stationary problem
corresponding to (9.20). For the sake of brevity, we shall assume that r = 1:

Lεwε(x, y) =
1

2ε

∂2w2

∂y2
+ b(x, y)

∂wε

∂x
= 0, x ∈ (−1, 1), y ∈ (−1, 1),

∂wε

∂y
(x, y)

∣∣∣∣
y=±1

= 0, wε(1, y)|y∈Γ+ = ψ(1, y),

wε(−1, y)|y∈Γ− = ψ(−1, y),

(9.22)

where Γ+ = {y ∈ [−1, 1] : b(1, y) > 0}, Γ− = {y ∈ [−1, 1] : b(−1, y) < 0},
ψ(1, y) and ψ(−1, y) are continuous functions defined for y ∈ [−1, 1]. A solu-
tion, at least a generalized solution, of problem (9.22) always exists but without
additional assumptions it is not unique (cf. Freidlin [1], [3]). We require that for
every x0 ∈ [−1, 1] there exists y0 = y0(x0) such that either b(x, y0) > 0 for
x ≥ x0 or b(x, y0) < 0 for x ≤ x0. This condition ensures the uniqueness of the
solution of problem (9.22). If Zε

t = (Xε
t , Y

ε
t ) is the process in the strip |y| ≤ 1

with reflection along the normal to the boundary, governed by the operator Lε for
|y| < 1, x ∈ (−∞,∞) and τ ε = min{t : |Xε

t | = 1}, then the unique solution of
problem (9.22) can be written in the form wε(x, y) = Mx,yψ(X

ε
τε , Y ε

tε).
Now we consider the averaged dynamical system (9.17) on the real line. We

assume that the trajectories of the averaged equation, beginning at any point x ∈
[−1, 1], leave [−1, 1]. It is then obvious that b̄(x) does not change sign. For the
sake of definiteness, let b̄(x) > 0 for x ∈ [−1, 1]. If we assume in addition that
b(1, y) ≥ 0 for y ∈ [−1, 1], then it is easy to prove that

lim
ε↓0

wε(x, y) =

∫ 1

−1

ψ(1, y)b(1, y) dy

(∫ 1

−1

b(1, y) dy

)−1

.

If we do not assume that b(1, y) ≥ 0 for y ∈ [−1, 1] in (1.9), then the situa-
tion becomes much more complicated. Concerning this, cf. Sarafyan, Safaryan,
and Freidlin [1]. This work also discusses the case where the trajectories of the
averaged motion do not leave (−1, 1).



Chapter 8

Random Perturbations of Hamiltonian Systems

1 Introduction

Consider the dynamical system in Rr defined by a smooth vector field b(x):

ẋt = b(xt), x0 = x ∈ Rr. (1.1)

In Chaps. 2–6 we have considered small random perturbations of system (1.1)
described by the equation

˙̃Xε
t = b(X̃ε

t ) + ε ˙̃wt, X̃ε
0 = x, (1.2)

where w̃t is a Wiener process, and ε a small parameter (we reserve the nota-
tion without ˜ for another Wiener process and another stochastic equation). The
long-time behavior of the process X̃ε

t was described in Chap. 6 in terms that pre-
supposed identification of points x, y of the space that are equivalent under the
equivalence relation that was introduced in Sect. 1 of that chapter. But for some
dynamical systems all points of the phase space are equivalent—e.g., if the tra-
jectories of the dynamical system are of the form shown in Fig. 10. An important
class of such systems is provided by Hamiltonian systems.

A dynamical system (1.1) in R2n is called a Hamiltonian system if there
exists a smooth function H(x), x ∈ R2n, such that

b(x) = ∇̄H(x) =

(
−∂H(p, q)

∂q1
, . . . ,−∂H(p, q)

∂qn
;
∂H(p, q)

∂p1
, . . . ,

∂H(p, q)

∂pn

)
,

x = (p, q) = (p1, . . . , pn; q1, . . . , qn) ∈ R2n.
The function H(p, q) is called the Hamiltonian, and n is the number of de-

grees of freedom. It is well known that H(x) is an integral of motion: H(xt) =
H(pt, qt) = H(p0, q0) is a constant; and the flow (pt, qt) preserves the Euclidean
volume in R2n. The invariant measure concentrated on a trajectory of the dynam-
ical system is proportional to dl/|b(x)|, where dl is the length along the trajectory.

We consider in this chapter Hamiltonian systems with one degree of freedom:

ẋt(x) = ∇̄H(xt(x)), x0(x) = x ∈ R2. (1.3)
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Figure 18.

We assume that H(x) is smooth enough and lim|x|→∞ H(x) = +∞. A typical
example is shown in Fig. 18(a). The trajectories of the corresponding system are
shown in Fig. 18(c). These trajectories consist of five families of periodic orbits
and separatrices dividing these families: three families of closed trajectories en-
circling exactly one of the stable equilibrium points x3, x4, or x5 (the regions
covered by the trajectories are denoted by D3, D4, and D5, respectively); the
family of closed trajectories encircling x3 and x4 (they cover the region D2); and
the family of closed trajectories encircling all equilibrium points (the orbits of
this family cover the region D1). These families are separated by two ∞-shaped
curves with crossing points x1 and x2. Each∞-shaped curve consists of an equi-
librium point (x1 or x2) and two trajectories approaching the equilibrium point
as t→ ±∞.

Note that if the Hamiltonian has the shape shown in Fig. 19(a), the self-
intersecting separatrix may look like that in Fig. 19(d). Still in this case we call it
loosely an∞-shaped curve.

Consider the perturbed system corresponding to (1.3):

˙̃Xε
t = ∇̄H(X̃ε

t ) + ε ˙̃wt, X̃ε
0 = x ∈ R2. (1.4)
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Figure 19.

Here w̃t is a two-dimensional Wiener process, and ε, a small parameter. The mo-
tion X̃ε

t , roughly speaking, consists of fast rotation along the nonperturbed tra-
jectories and slow motion across them; so this is a situation where the averaging
principle is to be expected to hold (see Chap. 7).

To study slow motion across the deterministic orbits it is convenient to rescale
the time. Consider, along with X̃ε

t , the process Xε
t described by

Ẋε
t =

1

ε2
∇̄H(Xε

t ) + ẇt, Xε
0 = x ∈ R2, (1.5)

where wt is a two-dimensional Wiener process. It is easy to see that the process
Xε

t coincides, in the sense of probability distributions, with X̃ε
t/ε2 . We denote by

Pε
x the probabilities evaluated under the assumption that X̃ε

0 = x or Xε
0 = x.

The diffusions X̃ε
t , Xε

t defined by (1.4) and (1.5) have generating differential
operators

L̃ε = b(x) · ∇+
ε2

2
Δ, Lε =

1

ε2
b(x) · ∇+

1

2
Δ,

where b(x) = ∇̄H(x), and the Lebesgue measure is invariant for these processes,
as it is for system (1.3). (The same is true for other forms of perturbations of the
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system (1.3) that lead to diffusions with generators

L̃ε = b(x) · ∇+ ε2L0, Lε =
1

ε2
b(x) · ∇+ L0,

where L0 is a self-adjoint elliptic operator; but for simplicity we stick to the case
of L0 = 1

2Δ.)
If the diffusions X̃ε, Xε are moving in a region covered by closed trajecto-

ries xt(x) (in one of the regions Dk in Fig. 18(c)), the results of Khas’minskii
[6] can be applied, and the averaging principle holds: for small ε the motion in
the direction of these trajectories is approximately the same as the nonrandom
motion along the same closed trajectory, and the process makes very many ro-
tations before it moves to another trajectory at a significant distance from the
initial one; the motion from one trajectory to another (“across” the trajectories)
is approximately a diffusion whose characteristics at some point (trajectory) are
obtained by averaging with respect to the invariant measure concentrated on this
closed trajectory. This diffusion is “slow” in the case of the process X̃ε

t , but it has
a “natural” time scale in the case of Xε

t .
As for the characteristics of this diffusion on the trajectories, let us use the

function H as the coordinate of a trajectory (H can take the same value on dif-
ferent trajectories, so it is only a local coordinate). Let us apply Itô’s formula to
H(Xε

t ):

dH(Xε
t ) = ∇H(Xε

t ) ·
1

ε2
b(Xε

t ) dt+∇H(Xε
t ) · dwt +

1

2
ΔH(Xε

t ) dt.

The dot product∇H · b = 0 since b(x) = ∇̄H(x), so

H(Xε
t ) = H(Xε

0) +

∫ t

0

∇H(Xε
s ) · dws +

∫ t

0

1

2
ΔH(Xε

s ) ds. (1.6)

Since Xε
t rotates many times along the trajectories of the Hamiltonian system

before H(Xε
t ) changes considerably, the integral of 1

2ΔH(Xε
s ) is approximately

equal to the integral
∫ t

0
B(H(Xε

s )) ds, where

B(H) =

∮
( 12ΔH(x)/|b(x)|) dl∮

(1/|b(x)|) dl , (1.7)

the integrals being taken over the connected component of the level curve {x :
H(x) = H} lying in the region considered. As for the stochastic integral in (1.6),
it is well known that it can be represented as

∫ t

0

∇H(W ε
s ) · dws = W

(∫ t

0

|∇H(Xε
s )|2 ds

)
, (1.8)

where W (·) is a one-dimensional Wiener process, W (0) = 0 (see, e.g., Frei-
dlin [15], Chap. 1). The argument in this Wiener process is approximately∫ t

0
A(H(Xε

s )) ds, where
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A(H) =

∮
(|∇H(x)|2/|b(x)|) dl∮

(1/|b(x)|) dl , (1.9)

the integrals being taken over the same curve as in (1.7) (we may mention that
|b(x)| = |∇H(x)|, so the integrand in the upper integral is equal to |∇H(x)|).
This suggests that the “slow” process on the trajectories is, for small ε, approxi-
mately the same as the diffusion corresponding to the differential operator

Lf(H) =
1

2
A(H)f ′′(H) +B(H)f ′(H).

This describes the “slow” process in the space obtained by identifying all
points on the same trajectory of (1.3); but only while the process Xε

t is moving
in a region covered by closed trajectories. But this process can move from one
region covered by closed trajectories to another, and such regions are separated by
the components of level curves {x : H(x) = H} that are not closed trajectories
(see Fig. 18(c)).

If we identify all points belonging to the same component of a level curve {x :
H(x) = H}, we obtain a graph consisting of several segments, corresponding:
I1, to the trajectories in the domain D1 outside the outer ∞-curve; I2, to the
trajectories in D2 between the outer and the inner ∞-curve; I3 and I4, to the
trajectories inside the two loops of the inner∞-curve (domains D3 and D4), and
I5, to those inside the right loop of the outer∞-curve (domain D5) (see Fig. 18).

The ends of the segments are vertices O1 and O2 corresponding to the ∞-
curves, O3, O4, O5 corresponding to the extrema x3, x4, x5 (it happens that
the curves corresponding to O1, O2 each contain one critical point of H: a saddle
point). Let us complement our graph by a vertex O∞ being the end of the segment
I1 that corresponds to the point at infinity. Let us denote the graph thus obtained
by Γ.

Let Y (x) be the identification mapping ascribing to each point x ∈ R2 the
corresponding point of the graph. We denote the function H carried over to the
graph Γ under this mapping also by H (we take H(O∞) = +∞). The function
H can be taken as the local coordinate on this graph. Couples (i,H), where i
is the number of the segment Ii, define global coordinates on the graph. Several
such couples may correspond to a vertex.

The graph has the structure of a tree in the case of a system in R2; but for a
system on a different manifold it may have loops.

Note that the function i(x), x ∈ R2, the number of the segment of the graph Γ
containing the point Y (x), is preserved along each trajectory of the unperturbed
dynamical system: i(Xx

t ) = i(x) for every t. This means that i(x) is a first
integral of the system (1.1)—a discrete one. If the Hamiltonian has more than
one critical point, then there are points x, y ∈ R2 such that H(x) = H(y) and
i(x) �= i(y). In this case the system (1.1) has two independent first integrals,
H(x) and i(x). This is, actually, the reason why H(Xε

t ) does not converge to a
Markov process as ε → 0 in the case of several critical points. If there is more
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than one first integral, we have to take a larger phase space, including all first
integrals as the coordinates in it.

In the present case, it is two coordinates (i,H).
The couple (i(Xε

t ), H(Xε
t )) = Y (Xε

t ) is a stochastic process on the graph Γ,
and it is reasonable to expect that as ε → 0, this process converges in a sense to
some diffusion process Yt on the graph Γ.

The problem about diffusions on graphs arising as limits of fast motion
of dynamical systems was first proposed in Burdzeiko, Ignatov, Khas’minskii,
Shakhgil’dyan [1]. Some results concerning random perturbations of Hamilto-
nian systems with one degree of freedom leading to random processes on graphs
were considered by G. Wolansky [1], [2]. We present here the results of Frei-
dlin and Wentzell [2]. Some other asymptotic problems for diffusion processes
in which the limiting process is a diffusion process on a graph were considered
in Freidlin and Wentzell [3].

What can we say about the limiting process Yt?
First of all, with each segment Ii of the graph we can associate a differential

operator acting on functions on this segment:

Lif(H) =
1

2
Ai(H)f ′′(H) +Bi(H)f ′(H); (1.10)

Ai(H), Bi(H) are defined by formulas (1.9) and (1.7) with the integrals taken
over the connected component of the level curve {x : H(x) = H} lying in
the region Di corresponding to Ii. These differential operators determine the
behavior of the limiting process Yt on Γ, but only as long as it moves inside
one segment of the graph. What can we say about the process after it leaves the
segment of the graph where it started?

The problem naturally arises of describing the class of diffusions on a graph
that are governed by the given differential operators while inside its segments.
This problem was considered by W. Feller [1], for one segment. It turned out that
in order to determine the behavior of the process after it goes out of the interior
of the segment, some boundary conditions must be given, but only for those ends
of the segment that are accessible from the inside. Criteria of accessibility of an
end from the inside, and also of reaching the insider from an end were given. One
of them: if the integral

∫
exp

{
−
∫

2B(H)

A(H)
dH

}
dH (1.11)

diverges at the end Hk, then Hk is not accessible from the inside. These criteria,
and also the boundary conditions, are formulated in a simpler way if we represent
the differential operator Lf as a generalized second derivative (d/dv)((d/du)f)
with respect to two increasing functions u(H), v(H) (see Feller [2] and Mandl
[1]). For example, the condition of the integral (1.11) diverging at Hk is replaced
by unboundedness of u(H) near Hk (in fact, (1.11) is an expression for u(H));
the end Hk is accessible from inside and the inside is accessible from Hk if and
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only if u(H), v(H) are bounded at Hk. Another condition for inaccessibility that
we need: if

∫
v(H) du(H) diverges at Hk, then the end Hk is not accessible from

the inside.
Representing the differential operator in the form of a generalized second

derivative is especially convenient in our case, because the operators (1.10) de-
generate at the ends of the segment Ii: its coefficients Ai(H), Bi(H) given by
formulas (1.9) and (1.7) have finite limits, but Ai(H) → 0 at these ends (in the
case of nondegenerate critical points, at an inverse logarithmic rate at an end cor-
responding to a level curve that contains a saddle point, and linearly at an end
corresponding to an extremum).

Feller’s result can be carried over to diffusions on graphs; if some segments
Ii meet at a vertex Ok (which we write as Ii ∼ Ok) and Ok is accessible from
the inside of at least one segment, then some “interior boundary” conditions (or
“gluing” conditions) have to be prescribed at Ok. (If the vertex Ok is inaccessible
from any of the segments, no condition has to be given.) If for all segments Ii ∼
Ok the end of Ii corresponding to Ok is accessible from the inside of Ii, and
the inside of Ii can be reached from this end, then the general interior boundary
condition can be written in the form

αkLf(Ok) =
∑

i:Ii∼Ok

(±βki)
df

dui
(Ok), (1.12)

where Lf(Ok) is the common limit at Ok of the functions Lif defined by (1.10)
for all segments Ii ∼ Ok; ui is the function on Ii used in the representation
Li = (d/dvi)(d/dui); αi ≥ 0, βki ≥ 0, and the βki is taken with + if the
function ui has its minimum at Ok, and with—if it has its maximum there; and
αk+

∑
i:Ii∼Ok

βki > 0 (otherwise the condition (1.12) is reduced to 0 = 0). The
coefficient αk is not zero if and only if the process spends a positive time at the
point Ok. (Theorem 2.1 of the next section is formulated only in the case αk = 0,
and only as a theorem about the existence and uniqueness of a diffusion corre-
sponding to given gluing conditions; in Freidlin and Wentzell [3] the formulation
is more extensive.)

Before considering our problem in a more concrete way, let us introduce some
notations:

The indicator function of a set A is denoted by χA(·); the supremum norm in
the function space, by ‖ ‖; the closure of a set A, by Ā;

Di denotes the set of all points x ∈ R2 such that Y (x) belongs to the interior
of the segment Ii;
Ck = {x : Yx = Ok};
Cki = Ck ∩ ∂Di;
for H being one of the values of the function H(x),
C(H) = {x : H(x) = H};
for H being one of the values of the function H(x) on D̄i,
Ci(H) = {x ∈ D̄i : H(x) = H};
for two such numbers H1 < H2,
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Figure 20. Case of xk being an extremum

Di(H1, H2) = Di(H2, H1) = {x ∈ Di : H1 < H(x) < H2};
for a vertex Ok and a small number δ > 0,
Dk(±δ) is the connected component of the set {H(Ok)−δ < x < H(Ok)+
δ} containing Ck;
D(±δ) =

⋃
k Dk(±δ);

for a vertex Ok, a segment Ii ∼ Ok, and a small δ > 0,
Cki(δ) = {x ∈ Di : H(x) = H(Ok)± δ}
(the sets Cki(δ) are the connected components of the boundary of Dk(±δ));
if D with some subscripts, and the like denotes a region in R2, τ ε with the
same subscripts, and the like denotes the first time at which the process Xε

t

leaves the region; for example, τ εk(±δ) = min{t : Xε
t /∈ Dk(±δ)}; and τ̃ ε

with the same subscripts and the like denotes the corresponding time for the
process X̃ε

t .

The pictures of the domains Dk(±δ) and Di(H(Ok) ± δ,H ′) are different
for a vertex corresponding to an extremum point xk and for one corresponding
to a level curve containing a saddle point xk; they are shown in Figs. 20 and 21.

In the notations we introduced, the coefficients Ai(H), Bi(H) can be written
as

Ai(H) =

∮
Ci(H)

(|∇H(x)|2/|b(x)|) dl
∮
Ci(H)

(1/|b(x)|) dl ,

Bi(H) =

∮
Ci(H)

( 12ΔH(x)/|b(x)|) dl
∮
Ci(H)

(1/|b(x)|) dl ,

(1.13)

Integrals of the kind used in (1.13) can be expressed in another form, and differ-
entiated with respect to the variable H using the following lemma.

Lemma 1.1. Let f be a function that is continuously differentiable in the closed
region D̄i(H1, H2). Then for H,H0 ∈ [H1, H2],
∮

Ci(H)

f(x)|∇H(x)| dl =
∮

Ci(H0)

f(x)|∇H(x)| dl

±
∫∫

Di(H0,H)

[∇f(x) · ∇H(x) + f(x)ΔH(x)] dx,
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Figure 21. Case of xk being a saddle point

where the sign + or − is taken according to whether the gradient ∇H(x) at
Ci(H) is pointing outside the region Di(H0, H) or inside it; and

d

dH

∮

Ci(H)

f(x)|∇H(x)| dl =
∮

Ci(H)

[
∇f(x) · ∇H(x)

|∇H(x)| + f(x)
ΔH(x)

|∇H(x)|

]
dl.

The integral in the denominator in (1.13) is handled by means of Lemma 1.1
with f(x) = 1/|∇H(x)|2; those in the numerators, with f(x) ≡ 1 and with
f(x) = ΔH(x)/|∇H(x)|2.

By Lemma 1.1, the coefficients Ai(H), Bi(H) are continuously differen-
tiable at the interior points of the interval H(Ii) at least k − 1 times if H(x) is
continuously differentiable k times.

Let us consider the behavior of these coefficients as H approaches the ends of
the interval H(Ii), restricting ourselves to the case of the function H having only
nondegenerate critical points (i.e., with nondegenerate matrix (∂2H/∂xi∂xj) of
second derivatives).

As H approaches an end of the interval H(Ii) corresponding to a nondegen-
erate extremum xk of the Hamiltonian, the integral

∫
Ci(H)

(1/|∇H|) dl, which is
equal to the period of the orbit Ci(H), converges to

Tk = 2π

/√
∂2H

∂p2
(xk)

∂2H

∂q2
(xk)−

(
∂2H

∂p∂q
(xk)

)2

> 0;

∮

Ci(H)

|∇H| dl ∼ const · (H −H(Ok))→ 0;

and ∮

Ci(H)

(ΔH/|∇H|) dl→ Tk ·ΔH(xk).

So Ai(H) → 0 as H → H(Ok) = H(xk), Bi(H) → 1
2ΔH(xk) (positive if xk

is a minimum, and negative in the case of a maximum).
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If H approaches H(Ok), where Ok corresponds to a level curve contain-
ing a nondegenerate saddle point, we have

∮
Ci(H)

(1/|∇H|) dl ∼ const · |ln|H−
H(Ok)|| → ∞;

∮
Ci(H)

|∇H|dl→
∮
Cki
|∇H|dl > 0. The coefficientAi(H)→ 0

(at an inverse logarithmic rate); and it can be shown that in this case too
Bi(H)→ 1

2ΔH(xk) (which can be positive, negative, or zero).
One can obtain some accurate estimates of the derivatives A′

i(H), B′
i(H) as

H approaches the ends of H(Ii) corresponding to critical points of the Hamilto-
nian, but we do not need such. What we need, and what is easily obtained from
Lemma 1.1, is that

|A′
i(H)|, |B′

i(H)| ≤ |H −H(Ok)|−A0 (1.14)

for sufficiently small |H −H(Ok)|, where A0 is some positive constant.
A second corollary of Lemma 1.1 is that the derivatives of the functions

vi(H), ui(H) in the representation Li = (d/dvi)(d/dui) can be chosen as fol-
lows:

v′i(H) =

∮

Ci(H)

1

|∇H(x)| dl, (1.15)

u′
i(H) = 2

(∮

Ci(H)

|∇H(x)| dl
)−1

. (1.16)

Indeed

d

dvi

(
df

dui

)
=

1

v′i(H)u′
i(H)

· f ′′(H) +
1

v′i(H)

(
1

u′
i(H)

)′
· f ′(H),

the first coefficient is Ai(H), and the derivative of
∮
Ci(H)

|∇H| dl is equal to∮
Ci(H)

(∇H/|∇H|) dl. The function vi(H) can be taken equal to ± the area
enclosed by Ci(H).

Let us consider the vertices Ok of the graph from the point of view of their
accessibility. The functions vi(H) are bounded at all vertices Ok except at O∞.
Now,

lim
H→H(Ok)

u′
i(H) = 2

(∮

Cki

|∇H(x)| dl
)−1

(1.17)

(if ui(H(Ok)) is finite, this limit is the one-sided derivative of ui at H(Ok)). The
limit (1.17) is finite for a vertex Ok corresponding to a separatrix containing a
saddle point, and the function ui is bounded at the end corresponding to Ok; the
point Ok is accessible. Since u′

i(H) has a finite positive limit at the end H(Ok)
corresponding to Ok, we can rewrite the interior boundary condition (1.12) in the
form

αkLf(Ok) =
∑

i:Ii∼Ok

(±βki)f
′
i(H(Ok)), (1.18)
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where f ′
i denotes the derivative with respect to the local coordinate H on the ith

segment, the coefficients βki (that are different from those in the formulas (1.12))
are taken with + if H ≥ H(Ok) on Ii, and with − if H ≤ H(Ok) on Ii.

As for a vertex Ok corresponding to an extremum xk, we have
∮
Ci(H)

|∇H| dl
∼ const · (H −H(xk))

2, ui(H) ∼ −const · (H −H(xk))
−1 as H → H(xk),

so the end Ok corresponding to an extremum xk is inaccessible.
For the vertex O∞, we have: vi(H) = 2(u′

i(H))−1, the integral∫∞
H0

vi(H) dui(H) =
∫∞
H0

vi(H)u′
i(H) dH =

∫∞
H0

2 dH diverges, and this ver-
tex is inaccessible.

We prove (Theorem 2.2) that the process Y (Xε
t ) converges to a diffusion

process Yt on the graph Γ in the sense of weak convergence of distributions in
the space of continuous functions with values in the graph Γ; and we find the
interior boundary conditions at the vertices Ok that correspond to curves with
saddle points on them. The coefficients αk in the conditions (1.18) turn out to
be 0.

Let us outline a plan of the proof.
The proof consists of several parts ensuring that:

(1) a continuous limiting process Yt exists;
(2) it is the diffusion process corresponding to the operator Li before its leaving

the interior of the segment Ii;
(3) it spends zero time at the vertices Ok;
(4) the behavior of the process after it reaches a vertex Ok does not depend on

where it came from (so that it has a strong Markov character also with respect
to the times of reaching a vertex);

(5) the coefficients βki in the interior boundary conditions (1.18) are such and
such.

A more precise formulation is as follows.
(1) The family of distributions of Y (Xε

•) in the space of continuous functions
is tight (weakly precompact). This is the statement of Lemma 3.2.

We can reformulate the points (2) and (3) of our plan in terms of averaging
in every finite time interval and spending little time in neighborhoods of Ck in
every finite time interval; but instead we use the Laplace transforms:

(2) for every λ > 0 for every smooth function f on an interval [H1, H2]
consisting of interior points of the interval H(Ii) we have

Mε
x

[
e−λτε

i (H1,H2)f(H(Xε
τε
i (H1,H2)

))

+

∫ τε
i (H1,H2)

0

e−λt[λf(H(Xε
t ))− Lif(H(Xε

t ))] dt

]

− f(H(x)) = O(k(ε)), (1.19)

uniformly with respect to x ∈ Di(H1, H2), where k(ε) → 0 as ε → 0. This is
the statement of Lemma 3.3.
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An intermediate stage in proving (1.19) is estimating

Mε
x

∫ τε
i (H1,H2)

0

e−λtg(Xε
t ) dt (1.20)

for functions g in the region Di(H1, H2) such that the integral
∮
g(x)/|b(x)| dl

over each closed trajectory in the region in equal to 0 (Lemma 4.1).
(3) We prove that there exists a function h(δ), limδ→0 h(δ) = 0, such that for

every fixed δ > 0,

Mε
x

∫ ∞

0

e−λtχDk(±δ)(X
ε
t ) dt ≤ h(δ) (1.21)

for sufficiently small ε and for all x ∈ R2.
The form (1.21) of this property is easier to understand (little time is spent

by the process Y (Xε
t ) in a neighborhood of any vertex Ok), but it is easier to

prove and to use in the proof of our main result in the form of an estimate for

Mε
x

∫ τε
k(±δ)

0
e−λt dt for all x ∈ Dk(±δ). Such estimates turn out to be different

for vertices corresponding to extremum points and to those that correspond to
curves containing saddle points; they are given in Lemmas 3.4 and 3.5.

(4) We prove that for every small δ > 0 there exists δ′, 0 < δ′ < δ, such that
the probabilities Pε

x{Xε
τε
k(±δ) ∈ Ckj(δ)} almost do not depend on x if it changes

on
⋃

i Cki(δ
′) (the beginning of the proof of Lemma 3.6).

(5) To find the coefficients βki we use the fact that the invariant measure μ of
the process Xε

t is the Lebesgue measure, so the limiting process for Y (Xε
t ) must

have the invariant measure μ ◦ Y −1.
One can find the discussion of some generalizations of the problem described

in Sect. 7. In particular, there we consider briefly perturbations of systems with
conservation laws. Perturbations of Hamiltonian systems on tori may lead to pro-
cesses on graphs that spend a positive time at some vertices. Degenerate perturba-
tions of Hamiltonian systems, in particular, perturbations of a nonlinear oscillator
with one degree of freedom, are also considered in Sect. 7. In addition, we briefly
consider there the multidimensional case and the case of several conservation
laws.

2 Main Results

Theorem 2.1. Let Γ be a graph consisting of closed segments I1, . . . , IN and
vertices O1, . . . , OM . Let a coordinate be defined in the interior of each seg-
ment Ii; let ui(y), vi(y), for every segment Ii, be two functions on its interior
that increase (strictly) as the coordinate increases; and let ui be continuous.
Suppose that the vertices are divided into two classes: interior vertices, for which
limy→Ok

ui(y), limy→Ok
vi(y) are finite for all segments Ii meeting at Ok (no-

tation: Ii ∼ Ok); and exterior vertices, such that only one segment Ii enters Ok,
and

∫
(c+ vi(y)) dui(y) diverges at the end Ok for some constant c.
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For each interior vertex Ok, let βki be nonnegative constants defined for i
such that Ii ∼ Ok;

∑
i:Ii∼Ok

βki > 0. Consider the set D(A) ⊂ C(Γ) consisting
of all functions f such that

f has a continuous generalized derivative (d/dvi)(d/dui)f in the interior of
each segment Ii;

finite limits limy→Ok
(d/dvi)(d/dui)f(y) exist at every vertex Ok, and they

do not depend on the segment Ii ∼ Ok;
for each interior vertex Ok,

∑′

i:Ii∼Ok

βki lim
y→Ok

df

dui
(y)−

∑′′

i:Ii∼Ok

βki lim
y→Ok

df

dui
(y) = 0, (2.1)

where the sum
∑′ contains all i such that the coordinate on the ith segment has

a minimum at Ok, and
∑′′, those for which it has a maximum.

Define the operator A with domain of definition D(A) by Af(y) = (d/dvi)×
(d/dui)f(y) in the interior of every segment Ii, and at the vertices, as the limit
of this expression.

Then there exists a strong Markov process (yt,Py) on Γ with continuous
trajectories whose infinitesimal operator is A.

If we take the space C[0,∞) of all continuous functions on [0,∞) with values
in Γ as the sample space for this process, with yt being the value of a function of
this space at the point t, such a process is unique.

If Ok is an exterior vertex, and y �= Ok, then with Py-probability 1 the pro-
cess never reaches Ok.

The proof can be carried out similarly to that of the corresponding result for
diffusions on an interval. First we verify the fulfillment of the conditions of the
Hille–Yosida theorem; then existence of a continuous-path version of the Markov
process is proved; and so on: see Mandl [1] or the original papers by Feller [1],
[2]. Diffusion processes on graphs have been considered in some papers, in par-
ticular, in Baxter and Chacon [1]. The corresponding Theorem 3.1 in Freidlin and
Wentzell [3] allows considering only interior vertices.

In the situation of a graph associated with a Hamiltonian system, the vertices
corresponding to level curves of the Hamiltonian containing saddle points are
interior vertices, and those corresponding to extrema and to the point at infinity,
exterior.

Theorem 2.2. Let the Hamiltonian H(x), x ∈ R2, be four times continuously
differentiable with bounded second derivatives, H(x) ≥ A1|x|2, |∇H(x)| ≥
A2|x|, ΔH(x) ≥ A3 for sufficiently large |x|, where A1, A2, A3 are positive
constants. Let H(x) have a finite number of critical points x1, . . . , xN , at which
the matrix of second derivatives is nondegenerate. Let every level curve Ck (see
notations in Sect. 1) contain only one critical point xk.

Let (Xε
t ,P

ε
x) be the diffusion process on R2 corresponding to the differential

operator Lεf(x) = 1
2Δf(x) + ε−2∇̄H(x) · ∇f(x). Then the distribution of
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the process Y (Xε
t ) in the space of continuous functions on [0,∞) with values

in Y (R2)(⊂ Γ) with respect to Pε
x converges weakly to the probability measure

PY (x), where (yt,Py) is the process on the graph whose existence is stated in
Theorem 2.1, corresponding to the functions ui, vi defined by formulas (1.15)
and (1.16), and to the coefficients βki given by

βki =

∮

Cki

|∇H(x)| dl. (2.2)

The proof is given in Sects. 3–6, and now we give an application to partial
differential equations.

Let G be a bounded region in R2 with smooth boundary ∂G. Consider the
Dirichlet problem

Lεfε(x) =
1

2
Δfε(x) +

1

ε2
∇̄H(x) · ∇fε(x) = −g(x), x ∈ G,

fε(x) = ψ(x), x ∈ ∂G.
(2.3)

Here H(x) is the same as in Theorem 2.2, ψ(x) and g(x) are continuous func-
tions on ∂G and on G ∪ ∂G, respectively, and ε is a small parameter.

It is well known that the behavior of fε(x) as ε→ 0 depends on the behavior
of the trajectories of the dynamical system ẋt = ∇̄H(xt): If the trajectory xt(x),
t ≥ 0, starting at x0(x) = x hits the boundary ∂G at a point z(x) ∈ ∂G, and
∇̄H(z(x))·n(z(x)) �= 0 (n(z(x)) is the outward normal vector to ∂G at the point
z(x)), then fε(x)→ ψ(z(x)) as ε→ 0 (see, e.g., Freidlin [15]; no integral of the
function g is involved in this formula, because, in the case we are considering,
the trajectory Xε

t leaves the region G in a time of order ε2). If xt(x) does not
leave the region G, the situation is more complicated.

Let Ĝ be the subset of G covered by the orbits Ci(H) that belong entirely
to G : Ĝ =

⋃
i,H:Ci(H)⊂G Ci(H); and let ΓG be the subset of the graph Γ that

corresponds to Ĝ ⊂ R2 : ΓG = Y (Ĝ) = {(i,H) : Ci(H) ⊂ G}.
(i) Assume that the set ΓG is connected (otherwise one should consider its con-

nected components separately). Suppose that the boundary of consists of the
points (ik, Hk), k = 1, . . . , l. Each of the curves Cik(Hk), (ik, Hk) ∈ ∂ΓG,
has a nonempty intersection with ∂G.

(ii) Assume that for each (ik, Hk) ∈ ∂ΓG the intersection Cik(Hk) ∩ ∂G con-
sists of exactly one point zk. This should be considered as the main case.
Later we discuss the case of Cik(Hk) ∩ ∂G consisting of more than one
point.

(iii) Assume that ∂ΓG contains no vertices. Let Λ be the set of all vertices that
belong to ΓG. Let Λ = Λ1 ∪ Λ2, where Λ1 consists interior vertices, and
Λ2, of exterior vertices.

Theorem 2.3. If for a point x ∈ G the trajectory xt(x), t ≥ 0, hits the boundary
∂G at a point z(x) ∈ ∂G, and ∇̄H(z(x)) · n(z(x)) �= 0, then
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lim
ε→0

fε(x) = ψ(z(x)).

If x ∈ Ĝ, and if the Hamiltonian H(x) satisfies the conditions of Theo-
rem 2.2, and conditions (i), (ii), and (iii) are fulfilled, then

lim
ε→0

fε(x) = f(i(x), H(x)),

where f(i,H) is the solution of the following Dirichlet problem on ΓG,

1

2
Ai(H)f ′′(i,H) +Bi(H)f ′(i,H) = −ĝ(i,H), (i,H) ∈ ΓG,

f(ik, Hk) = ψ(zk) for (ik, Hk) ∈ ∂ΓG,

f(i,H) is continuous on ΓG;
∑

i:Ii∈Ok

(±βki)f
′(i,H(Ok)) = 0 for Ok ∈ Λ1.

(2.4)

Here

Ai(H) =

∮
Ci(H)

|∇H(x)| dl
∮
Ci(H)

|∇H(x)|−1 dl
, Bi(H) =

∮
Ci(H)

ΔH(x)/2|∇H(x)| dl
∮
Ci(H)

|ΔH(x)|−1 dl
,

βki are defined by (2.2) and taken with + if H ≥ H(Ok) for (i,H) ∈ Ii, and
with − if H ≤ H(Ok) for (i,H) ∈ Ii; and

ĝ(i,H) =

∮
Ci(H)

g(x)|∇H(x)|−1 dl
∮
Ci(H)

|∇H(x)|−1 dl
.

The solution of problem (2.4) exists and is unique. If the functions ui(H), vi(H)
are defined by (1.15), (1.16), then

f(i,H) = f̃(i,H) + a
(1)
i ui(H) + a

(2)
i , (2.5)

where

f̃(i,H) =

∫ H

H(Ok)

[∫ z

H(Ok)

ĝ(i, y)v′i(y) dy

]
u′
i(z) dz,

Ok being an end of the segment Ii. The constants a
(1)
i , a(2)i are determined

uniquely by the boundary conditions on ∂G, the continuity, and the gluing con-
ditions (2.1) at the vertices belonging to Λ1.

The proof of this theorem is based on Theorem 2.2 and includes the following
statements.

1. The solutions of problems (2.3) and (2.4) can be represented as follows.

fε(x) = Mε
xψ(X

ε
τε) +Mε

x

∫ τε

0

g(Xε
s ) dx,
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f(i,H) = M(i,H)ψ(Yτ0) +M(i,H)

∫ τ0

0

ĝ(Ys) ds,

where τ ε is the first exit time from G for Xε
t : τ ε = min{t : Xε

t /∈ G},
τ0, the first exit time from ΓG for the process yt of Theorem 2.2: τ0 =
min{t : yt /∈ ΓG} and M(i,H) = My is the expectation corresponding to the
probability Py associated with the process yt on the graph.

2. Mε
xτ

ε ≤ A < ∞ for every small ε �= 0 and for every x ∈ G. The proof
of this statement consists of two main parts. First we get a bound for the
mean exit time from a region U such that the closure of Y (U) contains no
vertices, and this is done in the standard way. Another bound is obtained
for the expected exit time from a region D such that Y (D) belongs to a
neighborhood of a vertex of Γ; for this Lemmas 3.4 and 3.5 are used.

3. Aik(Hk) > 0 for all k, (ik, Hk) ∈ ∂ΓG, and thus every (ik, Hk) is a regular
point of the boundary ∂ΓG for the process (yt,Py).

4. If we denote α(k,H) = inf{|∇H(x)| : x ∈ Ck(H)}, then for every posi-
tive δ,

lim
h→0

lim
ε→0

Pε
x

{∣∣∣∣
1

h

∫ h

0

g(Xε
t ) ds− ĝ(i(x), H(x))

∣∣∣∣ > δ

}
= 0

uniformly in x such that α(Y (x)) ≥ α > 0.

EXAMPLE. Let us consider the boundary-value problem (2.3) with g(x) ≡ 0,
H(x) as shown in Fig. 18, and the region G as shown in Fig. 22(a).

The region G has two holes. Its boundary touches the orbits at the points z1,
z2, z3. In the part of G outside the region bounded by the dotted line the trajecto-
ries of the dynamical system leave the region G. For x ∈ G\(Ĝ ∪ ∂Ĝ) the limit
of fε(x) is equal to the value of the boundary function at the point at which the
trajectory xt(x) first leaves G. To evaluate limε→0 f

ε(x) for x ∈ Ĝ (Ĝ is shown
separately in Fig. 22(c)) one must consider the graph Γ corresponding to our
Hamiltonian and its part ΓG ⊂ Γ corresponding to the region G (see Fig. 22(b)).
In our example ∂ΓG consists of three points (4, H1), (5, H2), and (1, H3). The
boundary conditions at ∂ΓG are:

f(4, H1) = ψ(z1), f(5, H2) = ψ(z2), f(1, H3) = ψ(z3).

Since the right-hand side of the equation in problem (2.4) is equal to 0, on ev-
ery segment Ii the limiting solution f(i,H) is a linear function of the function
ui(H). Since the functions ui(H) are unbounded at the vertices of the second
class (in particular, at O3), and the solution f(i,H) is bounded, this solution is
constant on the segment I3. On the remaining segments the formulas (2.5) give
the limiting solution up to two constants on each of the segments I1, I2, I4, I5.
So we have nine unknown constants. To determine them we have three bound-
ary conditions, four equations arising from continuity conditions at O1 and O2,
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Figure 22.

and two gluing conditions at these vertices. So we have a system of nine linear
equations with nine unknowns. This system has a unique solution.

Another class of examples is that with g(x) ≡ 1 and ψ(x) ≡ 0. The solution
of the corresponding problem (2.3) is the expectation Mε

xτ
ε. So Theorem 2.3

provides the method of finding the limit of the expected exit time of the process
Xε

t from a region G (or the main term of the asymptotic of the expectation Mε
xτ̃

ε

of the exit time for the process X̃ε
t as ε→ 0).

Remark. We assumed in Theorem 2.3 that for each (ik, Hk) ∈ ∂ΓG the set
Cik(Hk) ∩ ∂G consists of exactly one point zk. The opposite case is that this
intersection is equal to Cik(Hk). In this case one should replace the boundary
condition f(ik, Hk) = ψ(zk) by

f(ik, Hk) = ψ̄k,

where

ψ̄k =

∮
Cik

(Hk)
ψ(x) · |∇H(x)| dl

∮
Cik

(Hk)
|∇H(x)| dl .
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If ∂G ∩ Cik(Hk) consists of more than one point but does not coincide with
Cik(Hk), the situation is more complicated.

3 Proof of Theorem 2.2

Before proving Theorem 2.2 we formulate the necessary lemmas and introduce
some notations. The proof of the lemmas is given in Sects. 4 and 5.

Lemma 3.1. Let M be a metric space; Y , a continuous mapping M �→ Y (M),
Y (M) being a complete separable metric space. Let (Xε

t ,P
ε
x) be a family of

Markov processes in M ; suppose that the process Y (Xε
t ) has continuous trajec-

tories (in Theorem 2.2, the process Xε
t itself has continuous paths; but we want to

formulate our lemma so that it can be applied in a wider class of situations). Let
(yt,Py) be a Markov process with continuous paths in Y (M) whose infinitesi-
mal operator is A with domain of definition D(A). Let us suppose that the space
C[0,∞) of continuous functions on [0,∞) with values in Γ is taken as the sample
space, so that the distribution of the process in the space of continuous functions
is simply Py . Let Ψ be a subset of the space C(Y (M)) such that for measures
μ1, μ2 on Y (M) the equality

∫
f dμ1 =

∫
f dμ2 for all f ∈ Ψ implies μ1 = μ2.

Let D be a subset of D(A) such that for every f ∈ Ψ and λ > 0 the equation
λF −AF = f has a solution F ∈ D.

Suppose that for every x ∈M the family of distributions Qε
x of Y (Xε

•) in the
space C[0,∞) corresponding to the probabilities Pε

x for all ε is tight; and that
for every compact K ⊆ Y (M), for every f ∈ D and every λ > 0,

Mε
x

∫ ∞

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt→ f(Y (x)) (3.1)

as ε→ 0, uniformly in x ∈ Y −1(K).
Then Qε

x converges weakly as ε→ 0 to the probability measure PY (x).

The lemmas that follow are formulated under the assumption that the condi-
tions of Theorem 2.2 are satisfied.

Lemma 3.2. The family of distributions Qε
x (those of Y (Xε

•) with respect to the
probability measures Pε

x in the space C[0,∞)) with small nonzero ε is tight.

It can also be proved that the family {Qε
x} with small ε and x changing in an

arbitrary compact subset of R2 is tight.

Lemma 3.3. For every fixed H1 < H2 belonging to the interior of the interval
H(Ii), for every function f on [H1, H2] that is three times continuously differen-
tiable on this closed interval, and for every positive number λ,

Mε
x

[
e−λτε

i (H1,H2)f(H(Xε
τε
i (H1,H2)

))
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+

∫ τε
i (H1,H2)

0

e−λt[λf(H(Xε
t ))− Lif(H(Xε

t ))] dt

]

→ f(H(x)) (3.2)

as ε→ 0, uniformly with respect to x ∈ D̄i(H1, H2).

Lemma 3.4. Let Ok be an exterior vertex (one corresponding to an extremum of
the Hamiltonian). Then for every positive λ and κ there exists δ3.4 > 0 such that
for sufficiently small ε for all x ∈ Dk(±δ3.4),

Mε
x

∫ τε
k(±δ3.4)

0

e−λt dt < κ. (3.3)

Lemma 3.5. Let Ok be an interior vertex (corresponding to a curve containing a
saddle point). Then for every positive λ and κ there exists δ3.5 > 0 such that for
0 < δ < δ3.5 for sufficiently small ε for all x ∈ Dk(±δ),

Mε
x

∫ τε
k(±δ)

0

e−λt dt < κ · δ. (3.3′)

Remark. Formulas (3.3) and (3.3′) are almost the same as Mε
xτ

ε
k(±δ) < κ or κδ,

and such inequalities can also be proved; but it is these formulas rather than the
more natural estimates for Mε

xτ
ε
k(±δ) that are used in the proof of Theorem 2.2.

Lemma 3.6. Define, for Ii ∼ Ok, pki = βki/(
∑

i:Ii∼Ok
βki), where βki are

defined by formula (2.2). For any positive κ there exists a positive δ3.6 such that
for 0 < δ ≤ δ3.6 there exists δ′3.6 = δ′3.6(δ) > 0 such that for sufficiently small ε,

|Pε
x{Xε

τε
k(±δ) ∈ Cki(δ)} − pki| < κ (3.4)

for all x ∈ D̄k(±δ′3.6).

Proof of Theorem 2.2. Make use of Lemma 3.1. As the set Ψ we take the subset
of C(Γ) consisting of all functions that are twice continuously differentiable with
respect to the local coordinate H inside each segment Ii; D is the subset of D(A)
consisting of functions with four continuous derivatives inside each segment.

The tightness required in Lemma 3.1 is the statement of Lemma 3.2; so what
remains is to prove that the difference of both sides in (3.1) is smaller than an
arbitrary positive number η for sufficiently small ε for every x ∈ R2.

Let a function f ∈ D, a number λ > 0, and a point x ∈ R2 be fixed.
Choose H0 > maxk H(Ok) so that

Mε
xe

−λT ε

<
η

2(‖f‖+ λ−1‖λf −Af‖) (3.5)

for all sufficiently small ε, where T ε = T ε(H0) = min{t : H(Xε
t ) ≥ H0} (this

is possible by Lemma 3.2).
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To prove that
∣∣∣∣M

ε
x

∫ ∞

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt− f(Y (x))

∣∣∣∣ < η

it is sufficient to prove that

∣∣∣∣M
ε
x

[
e−λT ε

f(Y (Xε
T ε)) +

∫ T ε

0

e−λt[λf(Y (Xε
t ))

−Af(Y (Xε
t ))] dt

]
− f(Y (x))

∣∣∣∣ < η/2. (3.6)

Now we take small positive δ and δ′ < δ and consider cycles between the
successive times of leaving the set

⋃
k Dk(±δ) and reaching the set

⋃
k,i Cki(δ

′),
before the process reaches the level curve C(H0): define Markov times τ0 ≤
σ1 ≤ τ1 ≤ σ2 ≤ · · · by τ0 = 0,

σn = min

{
t ≥ τn−1 : Xε

t /∈
⋃

k

Dk(±δ)
}
,

τn = min

{
t ≥ σn : Xε

t ∈
⋃

k,i

Cki(δ
′)
⋃

C(H0)

}

(after the process reaches C(H0), all τn and σn are equal to T ε). The difference
in (3.6) can be represented as the sum over time intervals from τn to σn+1 and
from σn to τn: it is equal to

Mε
x

∞∑

n=0

[
e−λσn+1f(Y (Xε

σn+1
))− e−λτnf(Y (Xε

τn))

+

∫ σn+1

τn

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]

+Mε
x

∞∑

n=1

[
e−λτnf(Y (Xε

τn))− e−λσnf(Y (Xε
σn

))

+

∫ τn

σn

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
(3.7)

(the formally infinite sums are finite for every trajectory for which T ε <∞).
We can write the expectations of the sums as infinite sums of expectations:

∞∑

n=0

Mε
x

[
e−λσn+1f(Y (Xε

σn+1
))− e−λτnf(Y (Xε

τn))

+

∫ σn+1

τn

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
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+

∞∑

n=1

Mε
x

[
e−λτnf(Y (Xε

τn))− e−λσnf(Y (Xε
σn

))

+

∫ τn

σn

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
(3.8)

if the sums
∑∞

n=0 M
ε
x{τn < T ε; e−λτn},

∑∞
n=1 M

ε
x{σn < T ε; e−λσn} < ∞.

So the first thing is to estimate these sums (which are approximately the same as
the expected number of cycles—to be precise, of cycles that contribute a signifi-
cant amount to the sum).

Let us denote by D(H0, δ
′) the region

{x : H(x) < H0}
∖⋃

k

D̄k(±δ′)

(D(H0, δ) is the same set with δ in lieu of δ′). The random time τn, n ≥ 1, is the
first exit time from D(H0, δ

′) after the time σn. Use the strong Markov property
with respect to σn:

Mε
x{τn < T ε; e−λτn} = Mε

x{σn < T ε; e−λσnφε
1(X

ε
σn

)}, (3.9)

where

φε
1(z) = Mε

z

{
Xε

τε(H0,δ′)
∈
⋃

k,i

Cki(δ
′); e−λτε(H0,δ

′)

}
(3.10)

(according to our system, we use the notation τ ε(H0, δ
′) for the first exit time

from the region D(H0, δ
′)). It is clear that Xε

σn
∈ D̄(H0, δ) for every n, so

Mε
x{τn < T ε; e−λτn} ≤ Mε

x{σn < T ε; e−λσn} ·max{φε
1(z) : z ∈ D̄(H0, δ)}

≤ Mε
x{τn−1 < T ε; e−λτn−1}
·max{φε

1(z) : z ∈ D̄(H0, δ)},

and by induction

Mε
x{τn < T ε; e−λτn} ≤ [max{φε

1(z) : z ∈ D̄(H0, δ)}]n. (3.11)

Since in defining the set D(H0, δ) we delete neighborhoods of all separatrices
and of extremum points, the set D̄(H0, δ) splits into pieces that lie each within
its own region Di. Suppose the ends of the segment Ii are the vertices Ok, Ok′ ,
Hi1 = H(Ok) < Hi2 = H(Ok′). Define, for every small δ ≥ 0,

Hδ
i1 = Hi1 + δ,

Hδ
i2 =

{
Hi2 − δ if Hi2 �= +∞, i.e., if Ok′ �= O∞,

H0 if one of the ends of Ii is the vertex O∞.

Then D̄(H0, δ) =
⋃

i D̄i(H
δ
i1, H

δ
i2).
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Suppose the process Xε
t starts at a point z ∈ D̄i(H

δ
i1, H

δ
i2). In the region

Di(H
δ′

i1 , H
δ′

i2) averaging takes place: we can apply Lemma 3.3 to estimate the
expectation

Mε
z

{
Xε

τε(H0,δ′)
∈
⋃

k,i

Cki(δ
′); e−λτε(H0,δ

′)

}
.

The idea is to evaluate the corresponding expectation for the limiting (the aver-
aged) process, and to use it as the approximation for φε

1.
Let U δ′

i (H) be the solution of the boundary-value problem

LiU
δ′

i (H)− λU δ′

i (H) = 0, Hδ′

i1 < H < Hδ′

i2 , U δ′

i (Hδ′

i1) = 1,

U δ′

i (Hδ′

i2) =

{
1 if Ok′ �= O∞,

0 if Ok′ = O∞ (and Hδ′

i2 = H0).

Applying Lemma 3.3 to this function, we obtain that

φε
1(z)→ U δ′

i (H(z)), (3.12)

uniformly in z ∈ D̄i(H
δ′

i1 , H
′
i2).

It is clear that the solution U δ′

i (H) is strictly less than 1 for Hδ′

i1 < H < Hδ′

i2 ;
and it is equal to 0 at the boundary point H0 if one of the ends of Ii is O∞.
Therefore

max{U δ′

i (H) : Hδ
i1 ≤ H ≤ Hδ

i2}
is strictly less than 1. For sufficiently small ε the maximum

max{φε
1(z) : z ∈ Di(H

δ
i1, H

δ
i2)}

is also strictly smaller than 1; so

max{φε
1(z) : z ∈ D̄(H0, δ)} > 1,

∞∑

n=1

Mε
x{τn > T ε; e−λτn} ≤

∞∑

n=0

[max{φε
1(z) : z ∈ D̄(H0, δ)}]n

= (1−max{φε
1(z) : z ∈ D̄(H0, δ)})−1 <∞,

and
∞∑

n=1

Mε
x{σn < T ε; e−λσn} ≤

∞∑

n=0

Mε
x{τn < T ε; e−λτn}

is estimated by the same quantity. So the transition from (3.7) to (3.8) is possible.
We need to know how these sums depend on δ. By (3.12) we have for suffi-

ciently small ε:

∞∑

n=0

Mε
x{τn < T ε; e−λτn}

≤ 2(1−max{U δ′

i (H) : Hδ
i1 ≤ H ≤ Hδ

i2})−1. (3.13)
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If we make δ′ → 0, the solution U δ′

i (H) converges to U0
i (H), also a solution of

the same equation on the interval (H0
i1, H

0
i2), with boundary values 1 at the ends

that are interior vertices, and with limits < 1 at any other end (0 at the right-hand
end if this is H0). The function U0

i (H) is downward convex with respect to the
function ui(H); so

max{U0
i (H) : Hδ

i1 ≤ H ≤ Hδ
i2} ≤ max(U0

i (H
δ
i1), U

0
i (H

δ
i2)).

If H0
ij = Hij is an end corresponding to an interior vertex, we have 1 −

U0(Hδ
ij) ∼ Aij |u(Hδ

ij) − u(H0
ij)| as δ → 0, where Aij is a positive constant.

Since the one-sided derivative of ui(H) with respect to H exists and is positive
at such ends (see formula (1.17)), we have U0(Hδ

ij) < 1 − Ãijδ for sufficiently

small δ, where Ãij > 0. At all other ends we have U0(Hδ
ij) < 1 − Bij for

small δ, Bij > 0. So we obtain max{U0
i (H) : Hδ

i1 ≤ H ≤ Hδ
i2} ≤ 1 − Aiδ,

Ai > 0.
Now, for every small positive δ there exists δ′0, 0 < δ′0 < δ, such that for

all δ′, 0 < δ′ ≤ δ′0,

max{U δ′

i (H) : Hδ
i1 ≤ H ≤ Hδ

i2} ≤ 1− Ai

2
δ,

and by (3.13) we have

∞∑

n=0

Mε
x{τn < T ε; e−λτn} < Cδ−1, (3.14)

where C is a constant (there exists a constant δ0 > 0 such that, for every positive
δ ≤ δ0, this holds for all δ′, 0 < δ′ ≤ δ′0 = δ′0(δ), for sufficiently small ε and for
all x).

Now we return to the sums (3.8) (being the expression for the difference in
(3.6)). Using the strong Markov property with respect to the Markov times τn,
σn, we can write:

Mε
x

[
e−λT ε

f(Y (Xε
T ε))

+

∫ T ε

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
− f(Y (x))

=

∞∑

n=0

Mε
x{τn < T ε; e−λτnφε

2(X
ε
τn)}

+

∞∑

n=1

Mε
x{σn < T ε; e−λσnφε

3(X
ε
σn

)}, (3.15)
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where

φε
2(z) = Mε

z

[
e−λτε(±δ)f(Y (Xε

τε(±δ)))

+

∫ τε(±δ)

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
− f(Y (z))

(3.16)

(τ ε(±δ) being the time at which the process Xε
t leaves D(±δ) =

⋃
k Dk(±δ)),

φε
3(z) = Mε

z

[
e−λτε(H0,δ

′)f(Y (Xε
τε(H0,δ′)

))

+

∫ τε(H0,δ
′)

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]
− f(Y (z)).

(3.17)

The argument Xε
σn

in φε
3, as that in φε

1 in (3.9), belongs to D̄(δ). As for Xε
τn ,

it is the initial point x for n = 0, but for n ≥ 1 it belongs to
⋃

k,i Cki(δ
′)∪C(H0).

Clearly the function φε
2(z) = 0 for z /∈

⋃
k Dk(±δ), in particular, on C(H0), so

the absolute value of the expression (3.15) does not exceed

|φε
2(x)|+

∞∑

n=1

Mε
x{τn < T ε; e−λτn} ·max

{
|φε

2(z)| : z ∈
⋃

k,i

Cki(δ
′)

}

+

∞∑

n=1

Mε
x{σn < T ε; e−λσn} ·max{|φε

3(z)| : z ∈ D̄(H0, δ)}. (3.18)

By Lemma 3.3, |φε
3(z)| is arbitrarily small for sufficiently small ε, uniformly

in z ∈ D̄(H0, δ
′) ⊃ D̄(H0, δ), so

∞∑

n=1

Mε
x{σn < T ε; e−λσn} ·max{|φε

3(z)| : z ∈ D̄(H0, δ)} < η/20 (3.19)

for sufficiently small ε, and this is true for every function f on Γ that is smooth
on the segments Ii, even if it does not satisfy the gluing conditions.

As for φε
2, we cannot see at once that it converges to 0 as ε → 0, but we can

make it small by choosing δ and δ′. This is not enough, because max{|φε
2(z)| :

z ∈
⋃

k,i Cki(δ
′)} is multiplied by the sum that increases at the rate of δ−1 (see

(3.14)) as δ → 0; so we have to obtain an estimate for φε
2(z) for an arbitrary

z ∈ D(±δ), and a sharper one for z ∈
⋃

k,i Cki(δ
′).

We estimate φε
2(z) in different ways for an arbitrary z belonging to D(±δ)

(which is used to estimate the first summand in (3.18)), in the case of z ∈ Cki(δ
′),

where Ok is an interior vertex, and in that of an exterior Ok.
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Clearly, for z ∈ Dk(±δ),

|φε
2(z)| ≤ |Mε

zf(Y (Xε
τε
k(±δ)))− f(Y (z))|+ [λ‖f‖

+ ‖λf −Af‖] ·Mε
z

∫ τε
k(±δ)

0

e−λt dt. (3.20)

Choose a positive δ1 so that for every vertex Ok

|f(y)− f(Ok)| < η/20 for all y ∈ D̄k(±δ1)

(we are using continuity of the function f ) and that

Mε
z

∫ τε
k(±δ1)

0

e−λt dt <
η

20[λ‖f‖+ ‖λf −Af‖]

for sufficiently small ε and all z ∈ D̄k(±δ1) (we are using Lemmas 3.4 and 3.5).
Then for δ ≤ δ1 and for sufficiently small ε

|φε
2(z)| < η/10 for all z ∈ D̄(±δ). (3.21)

Next case: z ∈ Cki(δ
′); the vertex Ok is an interior one.

Using the fact that the one-sided derivatives f ′
i(Ok) exist, choose a positive δ2

so that ∣∣∣∣
f(y)− f(Ok)

H(y)−H(Ok)
− f ′

i(Ok)

∣∣∣∣ <
η

20C

for y ∈ Ii ∩ D̄(±δ2) for all segments Ii meeting at Ok, where C is the constant
of the estimate (3.14).

Choose δ3 > 0, by Lemma 3.5, so that for 0 < δ ≤ δ3 for sufficiently small
ε and for all z ∈ Dk(±δ),

Mε
x

∫ τk(±δ)

0

e−λt dt < δ · η

20C[λ‖f‖+ ‖λf −Af‖] . (3.22)

Choose a positive δ4, by Lemma 3.6, so that for 0 < δ ≤ δ4 there exists a
δ′4 = δ′4(δ), 0 < δ′4 < δ, such that

|Pε
z{Xε

τε(±δ) ∈ Cki(δ)} − pki| <
η

20C
∑

i:Ii∼Ok
|f ′

i(Ok)|

for sufficiently small ε and for all z ∈ D̄k(±δ′k).
Using continuity of f again, choose, for every δ > 0, a positive δ′5 =

δ′5(δ) < δ so that
|f(y)− f(Ok)| < δ · η/20 (3.23)

for all y ∈ D̄k(±δ′5).
Now for 0 < δ ≤ min(δ2, δ3, δ4), 0 < δ′ ≤ min(δ′4(δ), δ

′
5(δ)), for suffi-

ciently small ε and for all z ∈ Cki(δ
′) ⊂ D̄k(±δ′4) ∩ D̄k(±δ′5) we have
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|Mε
zf(Y (Xε

τε
k(±δ)))− f(Y (z))| ≤

∣∣∣∣
∑

i:Ii∼Ok

pki · [f(i,H(Ok)± δ)− f(Ok)]

∣∣∣∣

+
∑

i:Ii∼Ok

|Pε
z{Xε

τε(±δ) ∈ Cki(δ)} − pki|

· |f(i,H(Ok)± δ)− f(Ok)|
+ |f(Ok)− f(Y (z))|. (3.24)

In the first summand on the right-hand side the quantity in the brackets differs
from δ ·f ′

i(Ok) by not more than δ ·η/20C, so the first summand does not exceed
∣∣∣∣
∑

i:Ii∼Ok

pki · δ · f ′
i(Ok)

∣∣∣∣+
∑

i:Ii∼Ok

pki · δ ·
η

20C
.

The first summand here is equal to 0 because the gluing condition is satisfied
at Ok, and the second one is equal to δ · η/20C.

Using the inequality

|f(i,H(Ok)± δ)− f(Ok)| ≤ δ · |f ′
i(Ok)|+ δ · η/20C,

we see that the second summand on the right-hand side of (3.24) is not greater
than

∑

i:Ii∼Ok

η

20C
∑

i:Ii∼Ok
|f ′

i(Ok)|
· δ · |f ′

i(Ok)|+ 3δ · η/20C = δ · 0.2η/C

(3δ · η/20C because the number of segments meeting at Ok is equal to 3 if the
level curves do not contain more than one critical point, and |Pε

z{Xε
τε(±δ) ∈

Cki(δ)} − pki| ≤ 1).
The third summand on the right-hand side of (3.24) is not greater than δ ·

η/20C by (3.23).
By (3.22), the second summand on the right-hand side of (3.20) is not greater

than δ · η/20C, and

|φε
2(z)| ≤ δ · 0.3η/C for z ∈ Cki(δ

′) (3.25)

(for interior vertices Ok).
The last case is that of z ∈ Cki(δ

′), Ok being an exterior vertex (remember,
only one segment Ii enters a vertex corresponding to an extremum point).

Let us use again the technique by which we obtained formulas (3.15)–(3.18).
Choose a positive δ′′ < δ′, and consider smaller cycles between reaching two
sets, taking δ′ instead of δ, δ′′ instead of δ′, and Cki(δ) instead of C(H0) (ev-
erything in a neighborhood of an extremum point xk). Namely, let us introduce
Markov times σ′

1 ≤ τ ′1 ≤ σ′
2 ≤ τ ′2 ≤ · · · by σ′

1 = 0, τ ′n = min{t ≥ σ′
n : Xε

t ∈
Cki(δ

′′) ∪ Cki(δ)}, σ′
n = min{t ≥ τ ′n−1 : Xε

t /∈ Dk(±δ′)} (after the process
reaches Cki(δ), all τ ′n and σ′

n are equal to τ εk(±δ); the difference is that, since



284 8. Random Perturbations of Hamiltonian Systems

we are starting from a point z ∈ Cki(δ
′), we have σ′

1 = 0, so we do not need to
consider τ ′0). We have

φε
2(z) =

∞∑

n=1

Mε
z{τ ′n < τ εk (±δ); e−λτ ′

nφ4(X
ε
τ ′
n
)}

+

∞∑

n=1

Mε
z{σ′

n < τ εk (±δ);E−λσ′
nφε

5(X
ε
τ ′
n
)}, (3.26)

φε
4(z

′) = Mε
z′

[
e−λτε

k(±δ′)f(Y (Xε
τε
k(±δ′)))

+

∫ τε
k(±δ′)

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]

− f(Y (z′)), (3.27)

φε
5(z

′) = Mε
z′

[
e−λτε

i (H(Ok)±δ,H(Ok)±δ′′)f(Y (Xε
τε
i (H(Ok)±δ,H(Ok)±δ′′)))

+

∫ τε
i (H(Ok)±δ,H(Ok)±δ′′)

0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

]

− f(Y (z′)), (3.28)

where τ εi (H(Ok)± δ,H(Ok)± δ′′), according to our system of notations, is the
time at which the process leaves the region Di(H(Ok) ± δ,H(Ok) ± δ′′) (this
region is the same as the difference Dk(±δ)\D̄k(±δ′′)); and for z ∈ Cki(δ

′),

|φε
2(z)| ≤

∞∑

n=1

Mε
z{τ ′n < τ εk(±δ); e−λτ ′

n}

·max

{
|φε

4(z
′)| : z ∈

⋃

i:Ii∼Ok

Cki(δ
′′)

}

+

∞∑

n=1

Mε
z{σ′

n < τ εk(±δ); e−λσ′
n}

·max

{
|φε

5(z
′)| : z ∈

⋃

i:Ii∼Ok

Cki(δ
′)

}
. (3.29)

Again φε
5(z

′) can be made arbitrarily small by Lemma 3.3; similarly to (3.19),
for sufficiently small ε,

∞∑

n=1

Mε
z{σ′

n < τ εk(±δ); e−λσ′
n} ·max

{
|φε

5(z
′)| : z′ ∈

⋃

i:Ii∼Ok

Cki(δ
′)

}

< δ · η/20C (3.30)

for all z ∈ Cki(δ
′).
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Similarly to the way we obtained (3.21), we can, for every δ > 0, choose
a positive δ′6 = δ′6(δ) < δ so small that for sufficiently small ε for all z′ ∈
D̄k(±δ′),

|φε
4(z

′)| < δ · η/10C; (3.31)

and similarly to (3.9)–(3.11), we obtain:

Mε
z{τ ′n < τ εk (±δ); e−λτ ′

n} ≤ [max{φε
6(z

′) : z′ ∈ Cki(δ
′)]n, (3.32)

φε
6(z

′) = Mε
z′{Xε

τε
i (H(Ok)±δ,H(Ok)±δ′′) ∈ Cki(δ

′); e−λτε
i (H(Ok)±δ,H(Ok)±δ′′)}.

(3.33)

Suppose the process Xε
t starts from a point z ∈ Cki(δ

′). Let us consider
a solution V δ

i (H) of the differential equation LiV
δ
i (H) − λV δ

i (H) = 0 with
V δ
i (H(Ok)± δ) = 0. This solution is determined uniquely up to a multiplicative

constant. It does not change the sign between H(Ok) and H(Ok) ± δ, and it
converges to +∞ or to −∞ as H → H(Ok) (since the function ui(H) has an
infinite limit at H(Ok)). Applying Lemma 3.3 to the function V δ

i (H), we obtain
that

φε
6(z

′)→ V δ
i (H(z′))

V δ
i (H(Ok)± δ)

(3.34)

as ε→ 0, uniformly in z′ ∈ Di(H(Ok)± δ′′, H(Ok)± δ). Since |V δ
i (H(Ok)±

δ′′)| → ∞ as δ′′ → 0, for every δ′ > 0 we can choose δ′′i = δ′′(δ, δ′), 0 < δ′′i <
δ′, so that V δ

i (H(Ok) ± δ′)/V δ
i (H(Ok) ± δ′′) < 1

2 for 0 < δ′′ ≤ δ′′i . Then for
δ′′ ≤ mini δ

′′
i and for sufficiently small ε,

φε
6(z

′) <
2

3
for z′ ∈ Cki(δ

′).

Using this together with (3.29)–(3.31), we obtain that for sufficiently small δ, for
δ′ ≤ mini(δ

′
i(δ)) < δ, for 0 < δ′′ ≤ mini(δ

′′
i (δ, δ

′)) < δ′, and for sufficiently
small ε we have:

|φε
2(z)| ≤ δ · 0.25η/C for z ∈

⋃

i:Ii∼Ok

Cki(δ
′),

and together with (3.25) this yields max{|φε
2(z)| : z ∈

⋃
k,i Cki(δ

′)} ≤ δ ·
0.4η/C. Using this and estimates (3.18), (3.19), (3.14), and (3.21), we obtain that
the difference in (3.6) is smaller than 0.1η + (C/δ) · δ · 0.3η/C + 0.05η < η/2.

This proves the theorem. ��

4 Proof of Lemmas 3.1 to 3.4

Proof of Lemma 3.1. The tool we use to establish weak convergence is martin-
gale problems. See Stroock and Varadhan [1], [2], [3], where martingale prob-
lems are formulated in terms of the space C∞ of infinitely differentiable func-
tions; we use some other sets of functions.
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Let us denote the difference of the left-hand side of (3.1) and its limit in
the right-hand side by Δε(x). Let G(y1, . . . , yn), yi ∈ Y (M), be a bounded
measurable function. Then, by the Markov property of the process (Xε

t ,P
ε
x), for

any 0 ≤ t1 < · · · < tn ≤ t0 we have

Mε
xG(Y (Xε

t1), . . . , Y (Xε
tn)) ·

[∫ ∞

t0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

− e−λt0f(Y (Xε
t0))

]
= Mε

xG(Y (Xε
t1), . . . , Y (Xε

tn)) · e
−λt0Δε(Xε

t0).

We can represent this expectation as the sum of expectations taken over the event
{Y (Xε

t0) ∈ K} and over its complement, obtaining

Mε
x{Y (Xε

t0) ∈ K;G(Y (Xε
t1), . . . , Y (Xε

tn)) · e
−λt0Δε(Xε

t0)}
+Mε

x{Y (Xε
t0) /∈ K;G(Y (Xε

t1), . . . , Y (Xε
tn)) · e

−λt0Δε(Xε
t0)}.

The second expectation does not exceed ‖G‖·e−λt0 ·supz,ε Δε(z)·Pε
x{Y (Xε

t0) /∈
K} ≤ ‖G‖ · e−λt0 · (2‖f‖ + λ−1‖Af‖) · Pε

x{Y (Xε
t0) /∈ K}, and can be made

arbitrarily small for all ε by choosing a compact K ⊆ Y (M).
The first expectation is not greater than ‖G‖ · e−λt0 · supz∈Y −1(K) Δ

ε(z),
and can be made small by choosing ε sufficiently small. So we obtain

Mε
xG(Y (Xε

t1), . . . , Y (Xε
tn)) ·

[∫ ∞

t0

e−λt[λf(Y (Xε
t ))−Af(Y (Xε

t ))] dt

− e−λt0f(Y (Xε
t0))

]
→ 0 (ε→ 0).

We can rewrite this formula using the expectations with respect to the mea-
sure Qε

x in the space C[0,∞), which we denote by M̃ε
x:

M̃ε
xG(yt1 , . . . , ytn) ·

[∫ ∞

t0

e−λt[λf(yt)−Af(yt)] dt

− e−λt0f(yt0)

]
→ 0 (ε→ 0). (4.1)

Since the family of distributions {Qε
x} is tight, there exists a sequence εn → 0

such that Qεn
x converges weakly to a probability measure P̃. Let us denote the

expectation corresponding to this probability by M̃.
If the function G is continuous, the functional of y• ∈ C[0,∞) under the

expectation sign in (4.1) is also continuous, and we can write:

M̃G(yt1 , . . . , ytn) ·
[∫ ∞

t0

e−λt[λf(yt)−Af(yt)] dt− e−λt0f(yt0)

]
= 0.

Changing the order of integration and integrating by parts, we obtain
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∫ ∞

t0

λe−λtM̃G(yt1 , . . . , ytn) ·
[
f(yt)− f(yt0)−

∫ t

t0

Af(ys) ds

]
dt = 0.

Since a continuous function is determined uniquely by its Laplace transform, this
means that M̃G(yt1 , . . . , ytn) · [f(yt) − f(yt0) −

∫ t

t0
Af(ys) ds] = 0 for all n

and 0 ≤ t1 < · · · < tn ≤ t0; so the random function f(yt) −
∫ t

0
Af(ys) ds

is a martingale with respect to the family of σ-algebras F[0,t] generated by the
functionals y• �→ ys, s ∈ [0, t], and the probability measure P̃.

In other words, the probability measure is the solution of a martingale prob-
lem corresponding to the contraction of the operator A defined on the set D ⊆
C(Y (M)), with the starting point Y (x) (which is clear because Y (Xε

0) = Y (x)
almost surely with respect to each of the probabilities Pε

x).
Now, the condition of existence of a solution F ∈ D of the equation

λF − AF = f for f ∈ Ψ ensures uniqueness of the solution of the martin-
gale problem. This statement is a variant of Theorem 6.3.2 (with condition (ii))
of Stroock and Varadhan [3], only freed from reference to the space C∞ of in-
finitely differentiable functions and adapted to time-homogeneous processes.

So P̃ = PY (x). The fact that not only the sequence Qεn
x converges weakly

to PY (x), but also Qε
x as ε→ 0, is proved in the usual way.

The remaining lemmas involve many estimates with various positive con-
stants, which we denote by the letter A with some subscript.

We very often make use of Itô’s formula applied to e−λtf(H(Xε
t )), where f

is a smooth function, λ ≥ 0:

e−λtf(H(Xε
t )) = f(H(Xε

0)) +

∫ t

0

e−λsf ′(H(Xε
s ))∇H(Xε

s ) · dws

+

∫ t

0

e−λs[−λf(H(Xε
s )) +

1

2
f ′′(H(Xε

s ))|∇H(Xε
s )|2

+
1

2
f ′(H(Xε

s ))ΔH(Xε)] ds, (4.2)

Mε
xe

−λτf(H(Xε
τ )) = f(H(x)) +Mε

x

∫ τ

0

e−λs[−λf(H(Xε
s ))

+
1

2
f ′′(H(Xε

s ))|∇H(Xε
s )|2

+
1

2
f ′(H(Xε

s ))ΔH(Xε)] ds (4.3)

for the time τ of going out of an arbitrary bounded region. In particular, for λ = 0,
f(H) = H ,

Mε
xH(Xε

t ) = H(x) +Mε
x

∫ t

0

1

2
ΔH(Xε

s ) ds, (4.4)

Mε
xH(Xε

τ ) = H(x) +Mε
x

∫ τ

0

1

2
ΔH(Xε

s ) ds. (4.5)

��
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Proof of Lemma 3.2. Introducing the graph, we did not describe the metric on it.
Now we do this: for any two points y, y′ ∈ Y (R2), consider all paths on the graph
that connect these points following the segments Ii : y = (i0, H0)↔ (i0, H1) =
Ok1 = (i1, H1) ↔ (i1, H2) = Ok2 = (i2, H2) ↔ · · · ↔ (il−1, Hl−1) =
Okl−1

= (il, Hl−1)↔ (il, Hl) = y′, and take

ρ(y, y′) = min
l−1∑

i=0

|Hi+1 −Hi|,

where the minimum is taken over all such paths.
In order to prove the tightness it is sufficient to prove that:
(1) for every T > 0 and δ > 0 there exists a number H0 such that

Pε
x

{
max
0≤t≤T

H(Xε
t ) ≥ H0

}
< δ (4.6)

(2) for every compact subset K ⊂ R2 and for every sufficiently small ρ > 0
there exists a constant Aρ such that for every a ∈ K there exists a function fa

ρ (y)
on Y (R2) such that fa

ρ (a) = 1, fa
ρ (y) = 0 for ρ(y, a) ≥ ρ, 0 ≤ fa

ρ (y) ≤ 1
everywhere, and fa

ρ (Y (Xε
t )) +Aρt is a submartingale for all ε (see Stroock and

Varadhan [3]).
As for (1), we can write, using formula (4.4),

Mε
xH(Xε

t ) ≤ H(x) +
A4

2
t, (4.7)

where A4 ≥ supΔH(x) (the constant denoted A0 was introduced in (1.14), and
A1, A2, A3 in the formulation of Theorem 2.2). Using Kolmogorov’s inequality,
we obtain for H0 > H(x) + (A4/2)T ,

Pε
x

{
max
0≤t≤T

H(Xε
t ) ≥ H0

}
≤

Mε
x

∫ T

0
|∇H(Xε

t )|2 dt
H0 −H(x)− (A4/2)T

≤
∫ T

0
[A5 +A6M

ε
xH(Xε

t )] dt

H0 −H(x)− (A4/2)T
,

and using (4.7), we obtain (4.6).
Let us prove (2).
Let h(x) be a fixed smooth function such that 0 ≤ h(x) ≤ 1, h(x) = 1 for

x ≤ 0, and h(x) = 0 for x ≥ 1.
Let us take a positive ρ smaller than half the length of the shortest segment of

the graph. Let a be a point of Y (R2). If the distance from a to the nearest vertex
of the graph is greater than 2ρ/5, we put fa

ρ (y) = h(5ρ(y, a)/ρ); if ρ(a,Ok) ≤
2ρ/5, we put fa

ρ (y) = h(5ρ(y,Ok)/ρ−2). In both cases the function fa
ρ (y) = 0

outside the ρ-neighborhood of the point a.
Now let us consider the functions fa

ρ (Y (x)), x ∈ R2. These functions are
expressed by the formulas fa

ρ (Y (x)) = h(5|H(x) −H(a)|/ρ), or fa
ρ (Y (x)) =
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h(5|H(x)−H(a)|/ρ− 2), or the identical 0 in different regions, and the regions
in which different formulas are valid overlap. The functions |H(x) − H(a)|,
|H(x) − H(Ok)| are smooth except on the lines where H(x) = H(a) or
|H(Ok)|; so the functions fa

ρ (Y (x)) are smooth outside these lines. But also
they are smooth in some neighborhoods of these lines, because h′(0) = h′′(0) =
h′(−2) = h′′(−2) = 0, and the functions h(|x|), h(|x| − 2) are smooth. So the
functions fa

ρ (Y (x)) are twice continuously differentiable everywhere, and their
gradients are orthogonal to ∇̄H(x).

Apply Itô’s formula:

fa
ρ (Y (Xε

t )) = fa
ρ (Y (Xε

0)) +

∫ t

0

∇fa
ρ (Y (Xε

s )) · dws +

∫ t

0

1

2
Δfa

ρ (Y (Xε
s )) ds,

and take

Aρ = sup
a∈K,x∈R2

1

2
Δfa

ρ (Y (x))

≤ 1

2

[
sup

x∈[0,1]

|h′(x)| · 5
ρ
· sup
x∈K

|ΔH(x)|

+ sup
x∈[0,1]

|h′′(x)| · 25
ρ2
· sup
x∈K

|∇H(x)|2
]
.

The lemma is proved. ��

Proof of Lemma 3.4. Let us use formula (4.5) with τ = τ εk (±δ). The boundary
∂Dk(±δ) consists of one component, and either H(Xε

τε
k(±δ)) is always equal to

H(xk) + δ, or always to H(xk) − δ (depending on whether xk is a minimum
or a maximum of the Hamiltonian). Since the point xk is a nondegenerate ex-
tremum point, we have ΔH(xk) �= 0. Of course, |ΔH(x)| > 1

2 |ΔH(xk)| in a
neighborhood of this point, so for sufficiently small δ > 0,

Mε
xτ

ε
k (±δ) ≤

|H(xk)± δ −H(x)|
inf{| 12ΔH(x)| : x ∈ Dk(±δ)}

≤ 4δ

|ΔH(xk)|

for all x ∈ Dk(±δ) and for all ε (and the expectation on the left-hand side of
(3.3) is smaller still).

Lemmas 3.3 and 3.5 are formulated for domains Di(H1, H2), Dk(±δ) that
do not depend on ε; but we obtain versions of these lemmas with domains de-
pending on ε : Dk(±δ) with δ = δ(ε) > 0 decreasing with ε (but not too fast),
and for Di(H1, H2) with one of the ends H1, H2—or both—being possibly at a
distance δ(ε) from an end of the interval H(Ii). Lemma 4.2 is the ε-dependent
version of Lemma 3.3, including this lemma as a particular case; and Lemma 5.1
is the time-dependent version of Lemma 3.5, which does not include it as a par-
ticular case. In the proof of Lemma 3.5 both Lemmas 4.2 and 5.1 are used. The
proofs rely on a rather complicated system of smaller lemmas.
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Let us formulate two ε-dependent versions of Lemma 3.3.
Let Gi(H1, H2) be the class of all functions g defined in the closed region

D̄i(H1, H2), satisfying a Lipschitz condition |g(x′)− g(x)| ≤ Lip(g) · |x′ − x|,
and such that ∮

Ci(H)

g(x)
dl

|b(x)| = 0

for all H ∈ (H1, H2). ��

Lemma 4.1. There exist (small) positive constants A7, A8 such that for every
positive A9 for every H1, H2 ≤ A9 in the interval H(Ii) at a distance not less
than δ = δ(ε) = εA7 from the ends of H(Ii), for every positive λ, for sufficiently
small ε, for every g ∈ Gi(H1, H2), and for every x ∈ Di(H1, H2),

∣∣∣∣M
ε
x

∫ τε
i (H1,H2)

0

e−λtg(Xε
t ) dt

∣∣∣∣ ≤ (‖g‖+ Lip(g)) · εA8 . (4.8)

Lemma 4.2. Under the conditions of the previous lemma, there exist such posi-
tive constants A10, A11 that for sufficiently small ε, for every H1, H2 ≤ A9 in
the interval H(Ii) at a distance not less than δ = δ(ε) = εA10 from its ends, for
every x ∈ Di(H1, H2), and for every smooth function f on the interval [H1, H2],

∣∣∣∣M
ε
x

[
e−λτε

i (H1,H2)f(H(Xε
τε
i (H1,H2)

))

+

∫ τε
i (H1,H2)

0

e−λt[λf(H(Xε
t ))− Lif(H(Xε

t ))] dt

]
− f(H(x))

∣∣∣∣

≤ (‖f ′‖+ ‖f ′′‖+ ‖f ′′′‖)εA11 . (4.9)

Lemma 3.3 is a particular case of this lemma.
Lemma 4.2 is proved simply enough if Lemma 4.1 is proved. To prove

Lemma 4.1 we use the fact that our process Xε
t moves fast along the trajecto-

ries of the Hamiltonian system (and more slowly across them). It is convenient
for us to consider the “slow” process X̃ε

t . The following lemma makes precise
the statement about our process moving along the trajectories.

Lemma 4.3. For every positive η,

Pε
x

{
max
0≤t≤T

|X̃ε
t − xt(x)| ≥ η

}
≤ 3

(
e2LT − 1

2L

)2
ε4

η4
, (4.10)

where L is the Lipschitz constant of the function ∇̄H (the same as that of ∇H);
and

Mε
x|X̃ε

t − xt(x)| ≤
(
e2Lt − 1

2L

)1/2

ε. (4.11)
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Proof. Applying Itô’s formula to the random function |X̃ε
t − xt(x)|2, we obtain:

|X̃ε
t − xt(x)|2 =

∫ t

0

[2(X̃ε
s − xs(x)) · (b(X̃ε

s )− b(xs(x))) + ε2] ds

+

∫ t

0

2ε(X̃ε
s − xs(x)) · dws

≤
∫ t

0

2L|X̃ε
s − xs(x)|2 ds+ ε2t+

∫ t

0

2ε(X̃ε
s − xs(x)) · dws,

Mε
x|X̃ε

t − xt(x)|2 ≤ 2L

∫ t

0

Mε
x|X̃ε

s − xs(x)|2 ds+ ε2t.

Using the Gronwall–Bellman inequality, we have:

Mε
x|X̃ε

t − xt(x)|2 ≤
e2Lt − 1

2L
ε2.

The estimate (4.11) follows from this at once.
Applying Itô’s formula to |X̃ε

t − xt(x)|4, we obtain in the same way:

|X̃ε
t − xt(x)|4 ≤

∫ t

0

[4L|X̃ε
s − xs(x)|4 + 6ε2|X̃ε

s − xs(x)|2] ds

+

∫ t

0

4ε|X̃ε
s − xs(x)|2(X̃ε

s − xs(x)) · dws, (4.12)

Mε
x|X̃ε

t − xt(x)|4 ≤ 3ε4
(
e2Lt − 1

2L

)2

.

Putting the Markov time τ = min{t : |X̃ε
t − xt(x)| ≥ η} ∧ T instead of t

in (4.12) and taking the expectation (the idea of the Kolmogorov inequality), we
obtain

η4 · Pε
x

{
max
0≤t≤T

|X̃ε
t − xt(x)| ≥ η

}
≤ Mε

x|X̃ε
τ − xτ (x)|4

≤ Mε
x

∫ τ

0

[4L|X̃ε
s − xs(x)|4 + 6ε2|X̃ε

s − xs(x)|2] ds

≤
∫ T

0

Mε
x[4L|X̃ε

s − xs(x)|4 + 6ε2|X̃ε
s − xs(x)|2] ds

≤ 3ε4
(
e2LT − 1

2L

)2

.

Note that Lemma 4.3 implies not only convergence in probability X̃ε
t →P

xt(x) that is uniform in every finite time interval [0, T ], but also in the interval
[0, c|ln ε|] that grows indefinitely as ε decreases, where the constant c < L−1.
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The most likely behavior of the process X̃ε
t (or Xε

t ) in the region Di(H1, H2)
is rotating many times along the closed trajectories filling this region. We have
to devise some way to count these rotations, adopting some definition of what a
rotation is. No problem arises in the case of rotations of a solution xt(x) of the
unperturbed system ẋt = ∇̄H(xt): we can consider the first time at which xt(x)
returns to the same point x0(x) = x. But the diffusion process X̃ε

t never returns
to X̃ε

0 . Let us take a curve ∂ in D̄i(H1, H2) running across all trajectories xt(x)
in this region so that every trajectory (level curve of the Hamiltonian) intersects
∂ at one point. Unfortunately, the time at which X̃ε

t returns to this curve cannot
serve as the definition of a rotation time, because a trajectory X̃ε

t starting at some
point of ∂ returns to this curve infinitely many times at arbitrarily small positive
times. So to define a “rotation,” we take two curves ∂ and ∂′ running across the
trajectories at two different places, and define τ̃0 < σ̃1 < τ̃1 < σ̃2 < τ̃2 < · · ·
by

τ̃0 = 0, σ̃n = min{t ≥ τ̃n−1 : X̃ε
t ∈ ∂′},

τ̃n = min{t ≥ σ̃n : X̃ε
t ∈ ∂}.

(4.13)

For the process X̃ε
t starting at the curve ∂, the times τ̃1, τ̃2, . . . (up to the time

τ̃ εi (H1, H2) at which the process leaves Di(H1, H2)) can be considered as the
times at which the first rotation ends, the second one ends, and so on.

Let T (x) be the period of the trajectory starting at the point x; t(x) =
min{t > 0 : xt(x) ∈ ∂}, t′(x) = min{t > 0 : xt(x) ∈ ∂′}. For x ∈ ∂ we
have t′(x) < t(x) = T (x). ��

Lemma 4.4. Let H1 < H ′
1 < H ′

2 < H2 be some numbers in the interval H(Ii).
Let the closed region D̄i(H

′
1, H

′
2) lie at a distance greater than some positive d

from the complement of the region Di(H1, H2); and let the distance between the
curves ∂, ∂′ be greater than 2d. Let there exist positive constants B and h such
that for all x ∈ ∂ ∩ D̄i(H

′
1, H

′
2) the distance of xt(x) from the curve ∂,

ρ(xt(x), ∂) >

⎧
⎪⎪⎨

⎪⎪⎩

Bt for 0 < t ≤ h,

d for h ≤ t ≤ T (x)− h,

B(T (x)− t) for T (x)− h ≤ t < T (x)

(it is clear that B ≤ min{|b(x)| : x ∈ D̄i(H
′
1, H

′
2)}).

Suppose that B̄h ≤ d, where B̄ = max{|b(x)| : x ∈ D̄i(H
′
1, H

′
2)}.

Then for x ∈ ∂ ∩ D̄i(H
′
1, H

′
2) and 0 < Δt ≤ h,

Pε
x{|τ̃1 − T (x)| ≥ Δt} ≤ 3

(
e2L(T (x)+h) − 1

2L

)2

· ε4

B4Δt4
, (4.14)

and for every λ > 0,
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Figure 23.

Mε
x

∣∣∣∣
∫ T (x)

τ̃1

e−λε2tdt

∣∣∣∣ ≤
4

33/4

(
e2L(T (x)+h) − 1

2L

)1/2

· ε
B

+ 3

(
e2L(T (x)+h) − 1

2L

)2

· ε2

B4h4λ
, (4.15)

Mε
xe

−λe2τ̃1 ≤ e−λε2(T (x)−h) + 3

(
e2L(T (x)+h) − 1

2L

)2

· ε4

B4h4
. (4.16)

For all x ∈ D̄i(H
′
1, H

′
2),

Pε
x{τ̃1 ≥ 2T (x) + h} ≤ 3

(
e2L(T (x)+h) − 1

2L

)2

· ε4

B4h4
, (4.17)

Mε
x

∫ τ̃1

0

e−λε2t dt ≤ 2T (x) + h+ 3

(
e2L(2T (x)+h) − 1

2L

)2

· ε2

B4h4λ
. (4.18)

Proof. Let us introduce two regions: D1 = {x ∈ Di(H1, H2)\(∂∪∂′) : t′(x) <
t(x)}, D2 = {x ∈ Di(H1, H2)\(∂ ∩ ∂′) : t(x) < t′(x)} (see Fig. 23).

Let us consider a point x ∈ ∂ ∩ D̄i(H
′
1, H

′
2). For 0 < t ≤ Δt we have

xt(x) ∈ D1; this point lies at a distance not greater than B̄Δt ≤ d from ∂,
and so is at a distance greater than d from ∂′. For T (x) − Δt ≤ t < T (x)
the point xt(x) lies in D2, and for T (x) < t ≤ T (x) + Δt again in D1. For
Δt ≤ t ≤ T (x) − Δt the point xt(x) lies at a distance at least BΔt from the
curve ∂.

Now suppose a trajectory X̃ε
t starting at X̃ε

0 = x (remember, x ∈ ∂ ∩
D̄i(H

′
1, H

′
2)) is such that max0≤t≤T (x)+h |X̃ε

t −xt(x)| < BΔt. First of all, this
trajectory does not leave Di(H1, H2) before the time T (x)+h. It does not inter-
sect ∂′ for 0 ≤ t ≤ Δt, and so σ̃1 > Δt. Since xΔt(x) ∈ D1 lies at a distance at
least BΔt from ∂, we have also X̃ε

Δt ∈ D1. For t between Δt and T (x) −Δt,
the trajectory X̃ε

t does not intersect ∂. Since the points xT (x)−Δt(x) ∈ D2,
xT (x)+Δt(x) ∈ D1 lie at a distance at least BΔt from the curve ∂, we have
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also X̃ε
T (x)−Δt ∈ D2, X̃ε

T (x)+Δt ∈ D1. So between the times Δt and T (x)−Δt

the trajectory X̃ε
t passes from D1 to D2, intersecting ∂′ (and therefore σ̃1 is be-

tween Δt and T (x) − Δt), and between T (x) − Δt and T (x) + Δt (but not
between σ̃1 and T (x)−Δt) the trajectory passes from D2 to D1, intersecting ∂.
So, finally, T (x)−Δt < τ̃1 < T (x) + Δt.

So we have proved the inclusion of the events:
{

max
0≤t≤T (x)+h

|X̃ε
t − xt(x)| < BΔt

}
⊆ {|τ̃1 − T (x)| < Δt};

and the inequality

Pε
x{|τ̃1 − T (x)| ≥ Δt} ≤ Pε

x

{
max

0≤t≤T (x)+h
|X̃ε

t − xt(x)| ≥ BΔt
}

together with Lemma 4.3 yields (4.14).
Now,

Mε
x

∣∣∣∣
∫ T (x)

τ̃1

e−λε2t dt

∣∣∣∣ ≤ Mε
x{|τ̃1 − T (x)| < h; |τ̃1 − T (x)|}

+Mε
x

{
|τ̃1 − T (x)| ≥ h;

∫ ∞

0

e−λε2t dt

}
.

The second term is equal to (λε2)−1 · Pε
x{|τ̃1 − T (x)| ≥ h} and is estimated

using (4.14); the first one is also estimated by (4.14) and the following elementary
lemma applied to the random variable |τ̃1 − T (x)| ∧ h. ��

Lemma 4.5. If a nonnegative random variable ξ is such that P{ξ ≥ x} ≤ C/x4

for every x > 0, then Mξ ≤ 4
3C

1/4.

So we have (4.15). The estimate (4.16) follows from (4.14) and the fact that
Mε

xe
−λε2τ̃1 = Mε

x{τ̃1 ≤ T (x)− h; e−λε2τ̃1}+Mε
x{τ̃1 > T (x)− h; e−λε2τ̃1}.

As for the initial point X̃ε
0 = x /∈ ∂, the trajectory X̃ε

t that is close to xt(x)
need not cross the curve ∂′ and ∂ after this within the time T (x)+h, but is bound
to do so within two rotations plus h, and the estimate (4.17) is proved the same
way as the more precise (4.14); (4.18) follows immediately.

Proof of Lemma 4.1. The expectation in (4.8) can be written as

ε2Mε
x

∫ τ̃ε
i (H1,H2)

0

e−λε2tg(X̃ε
t ) dt.

Take two curves ∂, ∂′ in a slightly larger region D̄i(H1 − δ/2, H2 + δ/2), and
consider the sequence of Markov times τ̃k defined by (4.13). Let ν = max{k :
τ̃k < τ̃ εi (H1, H2)}. We have
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∫ τε
i (H1,H2)

0

e−λε2tg(Xε
t ) dt =

ν−1∑

k=0

∫ τ̃k+1

τ̃k

e−λε2tg(Xε
t ) dt

+

∫ τε
i (H1,H2)

τ̃ν

e−λε2tg(Xε
t ) dt. (4.19)

We are going to apply Lemma 4.3 with Di(H1 − δ/2, H2 + δ/2) instead
of Di(H1, H2) and D̄i(H1, H2) instead of D̄i(H

′
1, H

′
2). We have to estimate

T (x), B̄, choose the curves ∂, ∂′, and estimate the constants B, h, d.
We have B̄ ≤ max{|∇H(x)| : H(x) ≤ A9}; the distance from D̄i(H1, H2)

to the complement of Di(H1− δ/2, H2+ δ/2) is not less than δ/2B̄. Let us take
d = δ/2B̄ (so the first condition imposed on d is satisfied; the rest is taken care
of later).

The period T (x) of an orbit xt(x) going through a point x ∈ Di is positive,
it has a finite limit as x approaches an extremum point xk (such that the corre-
sponding vertex Ok is one of the ends of the segment Ii), and it grows at the rate
of const · |ln |H(x) − H(Ok)|| as x approaches the curve Cki if it contains a
saddle point of the Hamiltonian. In any case, we have A12 ≤ T (x) ≤ A13|ln δ|
for x ∈ D̄i(H1, H2).

Take two points x0 and x′
0 on a fixed level curve Ci(H0) in the region Di,

and consider solutions yt(x0), yt(x′
0), −∞ < t < ∞, of ẏt = ∇H(yt) going

through the points x0, x′
0; the curves described by these solutions are orthogonal

to the level curves of the Hamiltonian. Let us take ∂, ∂′ being the parts of the
curves described by yt(x0), yt(x′

0) in the region D̄i(H1 − δ/2, H2 + δ/2).
The curves described by yt(x0), yt(x′

0) may enter the same critical point xk

as t → ∞ or t → −∞ (they certainly enter the same critical point if one of the
ends of the segment Ii corresponds to an extremum of the Hamiltonian), but from
different directions. The distance from Di(H1−δ/2, H2+δ/2) to a critical point
is clearly not less than A14

√
δ, and it is easy to see that the distance between the

curves ∂ and ∂′ is at least A15

√
δ. This distance is greater than d = δ/2B̄ for

sufficiently small δ (i.e., for sufficiently small ε).
Also we can take B = A16

√
δ. We could have taken h = const as far as it

concerns the requirements ρ(xt(x), ∂) > Bt for x ∈ ∂∩D̄i(H1, H2), 0 < t ≤ h,
ρ(xt(x), ∂) > B(T (x) − t) for the same x and T (x) − h ≤ t < T (x); but we
also have to ensure that B̄h < d, so we take h = A17

√
δ.

Now, if we choose the constant A7 so that A7 · (2LA13 + 1) < 1
2 , then for

sufficiently small ε we obtain from (4.15), (4.16), and (4.18),

Mε
x

∣∣∣∣
∫ T (x)

τ̃1

e−λε2t dt

∣∣∣∣ ≤ εA18 (4.20)

for x ∈ ∂ ∩ D̄i(H1, H2), where A18 < min(1 − A7 · (LA13 + 1
2 ), 2 − 4A7 ·

(LA13 + 1)),

Mε
xe

−λε2τ̃1 ≤ 1− λ

2
A12 · ε2 (4.21)
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for x ∈ ∂ ∩ D̄i(H1, H2), and

Mε
x

∫ τ̃1

0

e−λε2t dt ≤ 2A13A7 · |ln ε|+ 1 (4.22)

for all x ∈ D̄i(H1, H2).
Now let us extend the function g to the whole plane so that ‖g‖ and the

Lipschitz constant Lip(g) do not increase. Let us add to the right-hand side of
(4.19) and subtract from it

∫ τν+1

τε
i (H1,H2)

e−λε2tg(X̃ε
t ) dt; then we can represent

this right-hand side as

∞∑

k=0

[
χ{τ̃k<τ̃ε

i (H1,H2)} ·
∫ τ̃k+1

τ̃k

e−λε2tg(X̃ε
t ) dt

]
−
∫ τ̃ν+1

τ̃ε
i (H1,H2)

e−λε2tg(X̃ε
t ) dt.

Since Mε
x

∑∞
k=0 |I{τ̃k<τ̃ε

i (H1,H2)} ·
∫ τ̃k+1

τ̃k
e−λε2tg(X̃ε

t ) dt| ≤ ‖g‖/λε2 <∞,

we can write the expectation of the infinite sum as the sum of expectations:

Mε
x

∫ τ̃ε
i (H1,H2)

0

e−λε2tg(X̃ε
t ) dt

=

∞∑

k=0

Mε
x

{
τ̃k < τ̃ εi (H1, H2);

∫ τ̃k+1

τ̃k

e−λε2tg(X̃ε
t ) dt

}

−Mε
x

∫ τ̃ν+1

τ̃ε
i (H1,H2)

e−λε2tg(X̃ε
t ) dt. (4.23)

The last integral does not exceed ‖g‖ times the integral of e−λε2t from the
time τ̃ εi (H1, H2) until the end of the cycle starting at this time of reaching ∂′ and
∂ after that. Applying the strong Markov property with respect to the Markov
time τ̃ εi (H1, H2) and making use of (4.22), we obtain:
∣∣∣∣M

ε
x

∫ τ̃ν+1

τ̃ε
i (H1,H2)

e−λε2tg(X̃ε
t ) dt

∣∣∣∣ ≤ ‖g‖ ·M
ε
x

[
Mε

z

∫ τ̃1

0

e−λε2t dt

]

z=X̃τ̃ε
i (H1,H2)

≤ (2A13A7 · |ln ε|+ 1)‖g‖. (4.24)

Applying the strong Markov property with respect to τ̃k to the kth summand
in the infinite sum in (4.23), we obtain:

Mε
x

{
τ̃k < τ̃ εi (H1, H2);

∫ τ̃k+1

τ̃k

e−λε2tg(X̃ε
t ) dt

}

= Mε
x

{
τ̃k < τ̃ εi (H1, H2); e

−λε2τ̃kMε
z

∫ τ̃1

0

e−λε2tg(X̃ε
t ) dt

∣∣∣∣
z=X̃ε

τ̃k

}
.

So we can write an estimate for the infinite sum in (4.23) that is quite similar to
the estimate (3.18):
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∣∣∣∣
∞∑

k=0

Mε
x

{
τ̃k < τ̃ εi (H1, H2);

∫ τ̃k+1

τ̃k

e−λε2tg(X̃ε
t ) dt

}∣∣∣∣

≤
∣∣∣∣M

ε
x

∫ τ̃1

0

e−λε2tg(X̃ε
t ) dt

∣∣∣∣+ max
z∈∂∩D̄i(H1,H2)

∣∣∣∣M
ε
z

∫ τ̃1

0

e−λε2tg(X̃ε
t ) dt

∣∣∣∣

·
∞∑

k=1

Mε
x{τ̃k < τ̃ εi (H1, H2); e

−ε2τ̃k}. (4.25)

Similarly to (3.11), the sum on the right-hand side is not greater than

∞∑

k=0

[
max

z∈∂∩D̄i(H1,H2)
Mε

ze
−λ2τ̃1

]k
=
[
1− max

z∈∂∩D̄i(H1,H2)
Mε

ze
−λε2τ̃1

]−1

≤ 2

λA12
ε−2 (4.26)

for sufficiently small ε (see (4.21)).
As for the integral

∫ τ̃1
0

e−λε2tg(X̃ε
t ) dt, it is approximately equal to

∫ T (z)

0

g(xt(z)) dt =

∮

Ci(H(z))

g(x)
dl

|b(x)| = 0.

Let us estimate the expectation of the difference: for z ∈ ∂ ∩Di(H1, H2),
∣∣∣∣M

ε
z

∫ τ̃1

0

e−λε2tg(X̃ε
t ) dt−

∫ T (z)

0

g(xt(z)) dt

∣∣∣∣

≤ ‖g‖ ·Mε
z

∣∣∣∣
∫ T (z)

τ̃1

e−λε2t dt

∣∣∣∣

+ ‖g‖ ·
∫ T (z)

0

(1− e−λε2t) dt+ Lip(g) ·
∫ T (z)

0

Mε
z|X̃ε

t − xt(z)| dt.

The first expectation on the right-hand side is estimated by (4.20); the second
integral is not greater than λε2 · T (z)2/2 ≤ (λ/2)A13, A7ε

2 ln2 ε < εA18 ; and
the last integral, by (4.9), does not exceed

ε

∫ T (z)

0

√
e2Lt − 1

2L
dt < ε · e

LT (z)

L
< const · ε1−LA13A7 < εA18 .

So we have for sufficiently small ε for all z ∈ ∂ ∩Di(H1, H2):
∣∣∣∣M

ε
z

∫ τ̃1

0

e−λε2tg(X̃ε
t ) dt

∣∣∣∣ ≤ 2(‖g‖+ Lip(g)) · εA18 . (4.27)

The first term in (4.25) is estimated by means of (4.22). Putting this estimate
together with (4.24)–(4.27), and remembering to multiply the expectation by ε2,
we obtain for small ε:
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∣∣∣∣M
ε
x

∫ τε
i (H1,H2)

0

e−λtg(Xε
t ) dt

∣∣∣∣ ≤ (4A13A7 + 2)ε2|ln ε|+ 4

λA12
εA18 .

So the estimate of the lemma is true if A7 < 1/(4LA13 + 2), and as A8 can take
any positive number that is smaller than min(1 − A7 · (LA13 + 1

2 ), 2 − 4A7 ·
(LA13 + 1)). ��

Proof of Lemma 4.2. Apply formula (4.3) to τ εi (H1, H2):

Mε
xe

−λτε
i (H1,H2)f(H(Xε

τε
i (H1,H2)

))− f(H(x))

= Mε
x

∫ τε
i (H1,H2)

0

e−λt[−λf(H(Xε
t ))

+
1

2
f ′′(H(Xε

t ))|∇H(Xε
t )|2 +

1

2
f ′(H(Xε

t ))ΔH(Xε
t )] dt.

The right-hand side differs from the expectation of the integral in (4.9) only by

Mε
x

∫ τε
i (H1,H2)

0

e−λtg(Xε
t ) dt,

where

g(x) =
1

2
f ′′(H(x))[|∇H(x)|2 −Ai(H(x))]

+ f ′(H(x))

[
1

2
ΔH(x)−Bi(H(x))

]
.

The definition (1.13) of the coefficients Ai(H), Bi(H) implies g ∈ Gi(H1, H2).
In order to apply Lemma 4.1, we have to estimate the supremum norm of g and
its Lipschitz constant.

Since |∇H(x)|2, ΔH(x) are bounded in every bounded region, and the co-
efficients Ai(H), Bi(H) in every finite subinterval of H(Ii), we have ‖g‖ ≤
A19(‖f ′‖ + ‖f ′′‖). As for the Lipschitz condition, we have Lip(f (k)(H)) ≤
A20‖f (k+1)‖, where A20 = max{|∇H(x)| : H(x) ≤ A9};

Lip

(
1

2
f ′′(H)|∇H|2 + 1

2
f ′(H)ΔH

)

≤ 1

2
[A3

20‖f ′′′‖+A21‖f ′′‖+A20 ·A22‖f ′′‖+A23‖f ′‖],

where

A21 = max{|∇(|∇H(x)|2)| : H(x) ≤ A9},
A22 = max{|ΔH(x)| : H(x) ≤ A9},

A23 = max{|∇(ΔH(x))| : H(x) ≤ A9},
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Lip

(
1

2
f ′′(H)Ai(H) + f ′(H)Bi(H)

)

≤ 1

2

[
A20‖f ′′′‖ · max

H1≤H≤H2

Ai(H) + ‖f ′′‖ · max
H1≤H≤H2

|A′
i(H)|

]

+
[
A20‖f ′′‖ · max

H1≤H≤H2

|Bi(H)|+ ‖f ′‖ · max
H1≤H≤H2

|B′
i(H)|

]
.

Using the estimate (1.14), we obtain

Lip(g) ≤ A24(‖f ′‖+ ‖f ′′‖+ ‖f ′′′‖)δ−A0

= A24(‖f ′‖+ ‖f ′′‖+ ‖f ′′′‖)ε−A0A10 .

Taking positive A10 < min(A8/A0, A7), A11 < A8 − A0A10, and applying
Lemma 4.1, we prove Lemma 4.2 and with it, also Lemma 3.3.

Now let us formulate a lemma that follows from Lemma 4.2 and that is used
in the proof of Lemma 3.6. ��

Lemma 4.6. Let [H1, H2] be a subinterval of the interval H(Ii). Let g be a con-
tinuous function on [H1, H2]; ϕ, a function defined only at the points H1, H2.
Then, for the time τ εi (H1, H2) of leaving the region Di(H1, H2),

lim
ε→0

Mε
x

[
ϕ(H(Xε

τε
i (H1,H2)

)) +

∫ τε
i (H1,H2)

0

g(H(Xε
t )) dt

]
= f(H(x)) (4.28)

uniformly in x ∈ D̄i(H1, H2), where

f(H) =
ui(H2)− ui(H)

ui(H2)− ui(H1)

[
ϕ(H1) +

∫ H

H1

(ui(H)− ui(H1))g(h) dvi(H)

]

+
ui(H)− ui(H1)

ui(H2)− ui(H1)

[
ϕ(H2) +

∫ H2

H

(ui(H2)− ui(H))g(h) dvi(H)

]
.

(4.29)

Proof. Lemma 4.2 has to do with functions of the value of the process multiplied
by an exponentially decreasing function. To be able to tell anything about ex-
pectations without such multiplication, we need an estimate for the expectation
Mε

xτ
ε
i (H1, H2). ��

Lemma 4.7. For all x ∈ D̄i(H1, H2),

Mε
xτ

ε
i (H1, H2) ≤ A25 =

2b

B2
exp

{
B(H2 −H1)

b

}
, (4.30)

where

b = max{|∇H(x)| : x ∈ D̄i(H1, H2)} > 0,

B = max{|ΔH(x)| : x ∈ D̄i(H1, H2)} <∞.
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Proof. Use formula (4.3) with λ = 0 and

f(H) = cosh((2B/b)(H − (H1 +H2)/2)).

Now let us prove Lemma 4.6. The function f is the solution of the boundary-
value problem

Lif(x) = −g(H), H1 < H < H2,

f(Hj) = ϕ(Hj), j = 1, 2.

It is enough to prove (4.28) for smooth g and f (because a continuous g can be
uniformly approximated by smooth functions, and Mε

xτ
ε
i (H1, H2) is uniformly

bounded by Lemma 4.7). By Lemma 4.2,
∣∣∣∣M

ε
x

[
e−λτε

i (H1,H2)ϕ(H(Xε
τε
i (H1,H2)

)) +

∫ τε
i (H1,H2)

0

e−λt[λf(H(Xε
t ))

+ g(H(Xε
t ))] dt

]
− f(H(x))

∣∣∣∣ ≤ A26ε
A11 , (4.31)

where the constant A26 may depend on λ > 0.
The difference between the expectation in (4.28) and that in (4.30) does not

exceed

‖ϕ‖ ·Mε
x(1− ε−λτε

i (H1,H2) + ‖f‖ ·Mε
x

∫ τε
i (H1,H2)

0

λe−λt dt

+ ‖g‖ ·Mε
x

∫ τ
ε(H1,H2)
i

0

(1− e−λt) dt

≤ 2‖f‖ · λMε
xτ

ε
i (H1, H2) + ‖g‖ · λMε

x(τ
ε
i (H1, H2))

2

≤ 2λ(‖f‖ ·A25 + ‖g‖ ·A2
25),

because Mε(τ εi (H1, H2))
2/2 ≤ Mε

xτ
ε
i (H1, H2) · supy Mε

yτ
ε
i (H1, H2).

Taking λ small enough, and then ε small enough, we make the difference
between the expectation in (4.29) and f(H(x)) small.

Lemma 4.6 is proved. ��

5 Proof of Lemma 3.5

Let us formulate the ε-dependent version of Lemma 3.5 (not implying this lemma
immediately).

Lemma 5.1. Let Ok be an interior vertex corresponding to a level curve Ck that
contains a saddle point xk. There exists a positive constant A27 < 1

2 such that
for δ = δ(ε) such that δ(ε)|ln ε| → 0 as ε→ 0, δ(ε) ≥ εA27 we have

Mε
xτ

ε
k(±δ) = O(δ2|ln ε|)

as ε→ 0, uniformly in x ∈ Dk(±δ).
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Proof. Let us return to formulas (1.6), (1.8):

H(Xε
t ) = H(Xε

0) +W

(∫ t

0

|∇H(Xε
s )|2 ds

)
+

∫ t

0

1

2
ΔH(Xε

s ) ds.

The time τ εk(±δ) comes at the latest when |H(Xε
t ) − H(Xε

0)| has reached the
level 2δ. It occurs, in particular, if the integral

∫ t

0
1
2ΔH(Xε

s ) ds is small in ab-

solute value, and the stochastic integral (the value of W (
∫ t

0
|∇H(Xε

s )|2 ds)) is
large. A precise formulation is as follows:

{∫ t0

0

∣∣∣∣
1

2
ΔH(Xε

s )

∣∣∣∣ ds < δ, max
0≤t≤t0

∣∣∣∣W
(∫ t

0

|∇H(Xε
s )|2 ds

)∣∣∣∣ > 3δ

}

⊆ {τ εk(±δ) < t0}.

We are going to use the fact that if Cδ2 ≤
∫ t0
0
|∇H(Xε

s )|2 ds, we have

max
0≤t≤t0

∣∣∣∣W
(∫ t

0

|∇H(Xε
s )|2 ds

)∣∣∣∣ ≥ |W (Cδ2)|,

and that the random variable W (Cδ2) has a normal distribution with zero mean
and variance Cδ2. We have

{τ εk(±δ) ≥ t0}

⊆
{
τ εk(±δ) ≥ t0,

∫ t0

0

|∇H(Xε
s )|2 ds < Cδ2

}

∪
{
τ εk(±δ) ≥ τ0,

∫ t0

0

|∇H(Xε
s )|2 ds ≥ Cδ2, |W (Cδ2)| ≥ 3δ

}

∪
{
τ εk(±δ) ≥ τ0,

∫ t0

0

|∇H(Xε
s )|2 ds ≥ Cδ2, |W (Cδ2)| < 3δ

}
.

Suppose
∫ t0
0
| 12ΔH(Xε

s )| ds < δ for all trajectories Xε
t such that τ εk(±δ) ≥ t0.

Then the second event on the right-hand side cannot occur, and the third one is a
part of the event {W (Cδ2) < 3δ}. Using the normal distribution, we have for all
x ∈ Dk(±δ),

Pε
x{τ εk(±δ) ≥ t0} ≤ Pε

x

{
τ εk(±δ) ≥ t0,

∫ t0

0

|∇H(Xε
s )|2 ds < Cδ2

}

+

∫ 3/
√
C

−3/
√
C

1√
2π

e−y2/2 dy. (5.1)

It does not matter much for our proof what C we take in this estimate. Let us
take C = 9; then the last integral is equal to 0.6826.
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Figure 24.

Of course, | 12ΔH| ≤ A28 in some neighborhood of the curve Ck; so if, for

small δ, we take t0 < δ/A28, the inequality
∫ t0
0
| 12ΔH(Xε

s )| ds < δ is guaran-
teed. So we have to estimate, for some t0 = t0(δ) < δ/A28, the first summand
on the right-hand side of (5.1).

To do this, we consider once again cycles between reaching two lines. Just
as in the proof of Lemma 4.1, introduce curves ∂, ∂′ in a slightly larger region
D̄k(±2δ):

∂ = {x ∈ D̄k(±2δ) : |x− xk| = A29

√
δ},

∂′ = {x ∈ D̄k(±2δ) : |x− xk| = A30

√
δ}.

Just as in the proof of Lemma 4.1, let us consider the “slow” process X̃ε
t . Define

Markov times τ̃0 < σ̃1 < τ̃1 < σ̃2 < · · · by

τ̃0 = 0, σ̃i = min{t ≥ τ̃i−1 : X̃ε
t ∈ ∂′}, τ̃i = min{t ≥ σ̃i : X̃

ε
t ∈ ∂}.

For sufficiently large positive constants A29 < A30 the curves ∂, ∂′ each consist
of four arcs: two across the “sleeves” of Dk(±2δ) in which the solutions of the
Hamiltonian system go out of the neighborhood of the saddle point, and two
across the “sleeves” through which the trajectories go into the central, cross-like
part of Dk(±2δ). Let us denote the corresponding parts by ∂out, ∂′

out, ∂in, ∂′
in

(they each consist of two arcs; see Fig. 24).
Before the time τ̃ εk (±δ), the times σ̃i are those at which the process X̃ε

t goes
out of the central part of the region Dk(±δ); and τ̃i, i > 0, are those at which it,
after going through one of the two “handles” of this region, reaches its boundary.
Lemmas 5.2 and 5.3 are taking care of the spaces between these times.
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Let Dc be one of the two outer “handles” of the region Dk(±δ); e.g., its left
part between the lines ∂out and ∂in (or the right part); τ̃c will denote the first time
at which the process X̃ε

t leaves this region. ��

Lemma 5.2. There exist positive constants A31, A32, A33 such that for suffi-
ciently small ε and small δ ≥ εA31 ,

Mε
xτ̃

ε
c ≤ A32 · |ln δ|, (5.2)

for every x ∈ Dc;
Pε
x{X̃ε

τ̃ε
c
∈ ∂in} → 1 (ε→ 0), (5.3)

uniformly in x ∈ ∂′; and

Pε
x

{∫ τ̃ε
c

0

|∇H(X̃ε
s )|2 ds > A33

}
→ 1 (ε→ 0), (5.4)

uniformly in x ∈ ∂′
out.

Proof. The proof is similar to those of Lemmas 4.4 and 4.1, and relies on the
same Lemma 4.3. As in the beginning of the proof of Lemma 4.1, we have B̄ =
max{|b(x)| : x ∈ Dk(±2δ)} ≤ A34; again we take d = δ/2B. The time Tc(x)
in which the trajectory xt(x) leaves the region Dc (through the line ∂in, of course)
is bounded by A35 · |ln δ|, and the time the trajectory starting on ∂′

out spends in
the set {x : |x− xk| ≥ A36} is at least A37 if we choose the constant A36 small
enough and if δ is small. We can take B = A38

√
δ and h = A39

√
δ so that for

all for x ∈ Dc,

ρ(xt(x), ∂) >

⎧
⎪⎨

⎪⎩

Bt for 0 < t ≤ h,

d for h ≤ t ≤ Tc(x)− h,

B(Tc(x)− t) for Tc(x)− h ≤ t < Tc(x).

We obtain, by Lemma 4.3, the estimates (5.3), (5.4), and

sup{Pε
z{τ εc > A35|ln δ|+ 1} : z ∈ Dc}

≤ sup{Pε
z{τ εc > Tc(z) + h} : z ∈ Dc} → 0 (ε→ 0),

Pε
x{τ εc > n · (A35|ln δ|+ 1)} ≤ [sup{Pε

z{τ εc > A35|ln δ|+ 1} : z ∈ Dc}]n,

Mε
xτ

ε
c ≤

A35|ln δ|+ 1

1− sup{Pε
z{τ εc > A35|ln δ|+ 1} : z ∈ Dc}

≤ A32 · |ln δ|

for sufficiently small ε.
Now let Dx be the cross-like part of Dk(±δ) between the lines ∂′ : Dx =

{x ∈ Dk(±δ) : |x− xk| < A30

√
δ} (see Fig. 25). Let τ̃ εx = min{t : X̃ε

t /∈ Dx}.
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Figure 25.

Lemma 5.3. For some choice of positive constants A29 < A30, if δ = δ(ε) is
such that δ(ε)→ 0, δ(ε)/ε2 →∞ as ε→ 0, we have

Mε
xτ̃

ε
x = O(ln(δ/ε2)) (5.5)

uniformly in x ∈ Dx;

Pε
x{τ̃ εx < τ̃ εk (±δ) or X̃ε

τ̃ε
x
∈ ∂′

out} → 1 (5.6)

as ε→ 0, uniformly in x ∈ ∂.

Proof. By the Morse lemma, one can introduce new coordinates ξ, η (in lieu
of p, q) in a neighborhood of xk so that the point xk is the origin, and the two
branches of the∞-shaped curve are the axes ξ and η. Let the ξ-axis be the branch
along which the saddle point xk is unstable for the dynamical system. In the new
coordinates the operator L̃ε has the form:

L̃εf(x) =
ε2

2

[
a11(x)

∂2f(x)

∂ξ2
+ 2a12(x)

∂2f(x)

∂ξ∂η
+ a22(x)

∂2f(x)

∂η2

]
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+B1(x)
∂f(x)

∂ξ
+B2(x)

∂f(x)

∂η

+ ε2
[
b̃1(x)

∂f(x)

∂ξ
+ b̃2(x)

∂f(x)

∂η

]
, (5.7)

where the coefficients aij(x), Bi(x), b̃i(x) are smooth, and the symmetric matrix
(aij(x)) is positive definite. The second sum here is equal to ∇̄H(x) · ∇f(x).
Because of the fact that xk is a nondegenerate saddle point of the Hamiltonian,
and because of our choice of the axes, we have

B1(0, η) = B2(ξ, 0) = 0;
∂B1

∂ξ
> 0,

∂B2

∂η
< 0.

The functions aij(ξ, η), Bi(ξ, η), b̃i(ξ, η) are defined in a neighborhood of
the point (0, 0); let us extend these functions of the whole plane so that aij , b̃i

are bounded,

aii(ξ, η) ≥ a0 > 0, B1(0, η) = B2(ξ, 0) = 0,

∂B1

∂ξ
≥ B0 > 0,

∂B2

∂η
≤ −B0

everywhere.
We use the notation (ξ̃εt , η̃

ε
t ) for the diffusion in the plane governed by the

operator (5.7) with coefficients extended as described above. Before the process
X̃ε

t leaves a neighborhood of xk, ξ̃εt and η̃εt are the ξ- and η-coordinates of this
process.

The curves ∂, ∂′ are no longer parts of circles in our new coordinates, but
for small δ they are approximately parts of ellipses the ratio of whose sizes is√
A30/A29. We can choose positive constants A29 < A30, A40, and A41 < A42

so that, for small positive δ, |ξ| < A40

√
δ for x ∈ ∂′, |η| < A41

√
δ for x ∈ ∂,

and |η| > A42

√
δ for x ∈ ∂′

in.
Let us consider the times τ̃ εout = min{t : |ξ̃εt | = A40

√
δ} and τ̃ εin = min{t :

|η̃εt | = A42

√
δ}. It is clear that τ̃ εx ≤ τ̃ εout; and if the process X̃ε

t starts from a
point X̃ε

0 = x ∈ ∂, and τ̃ εout < τ̃ εin, then it leaves the region Dx either through
one of its sides (that are trajectories of the system), or through ∂′

out.
It turns out that the time τ̃ εout is of order of ln(δ/ε2), whereas τ̃ εin is of order

at least δ/ε2, i.e., infinitely large compared with τ̃ εout (one can prove using large-
deviation estimates similar to Theorem 4.2, Chap. 4, that τ̃ εin is, in fact, of order
exp{const δ/ε2}, but we do not need that). The proof is based on comparing the
processes ξ̃εt , η̃εt (that need not be Markov ones if taken separately) with one-
dimensional diffusions.

Let us introduce the function F (x) =
∫ x

0
e−y2

[
∫ y

0
ez

2

dz] dy. Using
l’Hôpital’s rule, we prove that F (x) ∼ 1

2 lnx as x → ∞. Let us consider the
function
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uε(ξ) = 2B−1
0 [F (

√
B0A40

√
δ/ε)− F (

√
B0ξ/ε)].

This function is the solution of the boundary-value problem

ε2

2

d2uε

dξ2
+B0ξ

duε

dξ
= −1, uε(±A40

√
δ) = 0;

so uε(ξ) is the expectation of the time of leaving the interval (−A40

√
δ, A40

√
δ)

for the one-dimensional diffusion process with generator (ε2/2)(d2/dξ2) +
B0ξ(d/dξ), starting from a point ξ ∈ (−A40

√
δ, A40

√
δ).

Let us apply the operator L̃ε to the function uε on the plane, depending on
the ξ-coordinate only:

L̃εuε(x) = a11(x) · (2
√
B0ξ/ε)F

′(
√

B0ξ/ε)− 1

−B1(x)
2

B0
(
√

B0/ε)F
′(
√

B0ξ/ε)

− 2ε

B0
b̃1(x)F ′(

√
B0ξ/ε).

We have B1(ξ, η) = B1(0, η) + (∂B1/∂ξ)(ξ̃, η), L̃εvε(x) ≤ −a0 + (2ε/C) ·
sup |b̃1(x)| · max |F ′(x)| ≤ −a0/2 for sufficiently small ε, and we obtain by
formula (5.1) of Chap. 1:

Mε
xτ̃

ε
out ≤

uε(ξ)

a0/2
≤ A43 · ln(δ/ε2).

By Chebyshev’s inequality,

Pε
x{τ̃ εout ≥ (δ/ε2)1/2} → 0

as ε→ 0, uniformly in x.
Now let us consider the function vε(η) = eB0(η/ε)

2

. This function is a posi-
tive solution of the equation

ε2

2

d2vε

dη2
−B0η

dvε

dη
−B0v

ε = 0,

so the (−B0)-exponential moment of the exit time for the one-dimensional dif-
fusion with generator ((ε2/2)(d2/dη2))−B0η(d/dη) can be expressed through

it. Applying the operator L̃ε to the function vε(η), we obtain:

L̃εvε(x) =

[
a22(x) ·

(
B0+

2B2
0η

2

ε2

)
+B2(x) ·2B0η

ε2
+ b̃2(x) ·2B0η

]
eB0(η/ε)

2

.

For sufficiently small |η| we have L̃εvε − B0v
ε ≤ 0, and by formula (5.2) of

Chap. 1,
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Mε
xe

−B0τ̃
ε
in ≤ vε(η)

vε(A42

√
δ)
.

For x ∈ ∂ we have Mε
xe

−B0τ̃
ε
in ≤ eB0(A

2
41−A2

42)δ/ε
2

, and by Chebyshev’s in-
equality

Pε
x{τ̃ εin ≤ (δ/ε2)1/2} = Pε

x{e−B0τ̃
ε
in ≥ e−B0(δ/ε

2)1/2}

≤ Mε
xe

−B0τ̃
ε
in

e−B0(δ/ε2)1/2
≤ e−B0(A

2
42−A2

41)δ/ε
2+B0(δ/ε

2)1/2 → 0

as ε→ 0, uniformly in x ∈ ∂.
This proves Lemma 5.3. ��

Let us finish the proof of Lemma 5.1. Return to Fig. 24. The first probability
on the right-hand side of (5.1), in which we have taken C = 9, is equal to

Pε
x

{
τ̃ εk(±δ) ≥ t0/ε

2,

∫ t0/ε
2

0

|∇H(X̃ε
s )|2 ds < 9δ2/ε2

}
. (5.8)

For an arbitrary natural n this probability does not exceed

Pε
x

{
τ̃n < t0/ε

2 ≤ τ̃ ε(±δ),
∫ τ̃n

0

|∇H(X̃ε
s )|2 ds < 9δ2/ε2

}

+ Pε
x{τ̃n ∧ τ̃ εk(±δ) ≥ t0/ε

2}. (5.9)

The second probability is estimated by Chebyshev’s inequality:

Pε
x{τ̃n ∧ τ̃ εk (±δ) ≥ t0/ε

2} ≤ Mε
x(τ̃n ∧ τ̃ εk(±δ))

t0/ε2
. (5.10)

Using the strong Markov property with respect to the Markov times τ̃i, σ̃i, we
obtain, by Lemmas 5.2 and 5.3, for sufficiently small ε,

Mε
x(τ̃n ∧ τ̃ εk(±δ)) ≤ n · [sup{Mε

z τ̃
ε
x : z ∈ Dx}+ sup{Mε

z τ̃
ε
c : z ∈ Dc}]

≤ n ·A44|ln ε|. (5.11)

To estimate the first probability in (5.9), we use the exponential Chebyshev
inequality: for a > 0,

Pε
x

{
τ̃n < t0/ε

2 ≤ τ̃ ε(±δ), exp
{
−a
∫ τ̃n

0

|∇H(X̃ε
s )|2 ds

}
≥ e−9aδ2/ε2

}

≤
Mε

x{τ̃n < τ̃ ε(±δ); exp{−a
∫ τ̃n
0
|ΔH(X̃ε

s )|2 ds}}
e−9aδ2/ε2

. (5.12)

Using the strong Markov property with respect to the times τ̃i, we can write
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Mε
x

{
τ̃n < τ̃ ε(±δ); exp

{
−a
∫ τ̃n

0

|∇H(X̃ε
s )|2 ds

}}

≤
[
sup
z∈∂

Mε
z

{
τ̃1 < τ̃ ε(±δ); exp

{
−a
∫ τ̃1

0

|∇H(X̃ε
s )|2 ds

}}]n−1

.

Let us use the strong Markov property with respect to the Markov time σ̃1 (which,
for the process starting at a point X̃ε

0 = z ∈ ∂, coincides with the time τ̃ εx if it is
smaller than τ̃ εk(±δ)):

Mε
z

{
τ̃1 < τ̃ ε(±δ); exp

{
−a
∫ τ̃1

0

|∇H(X̃ε
s )|2 ds

}}

≤ Mε
z

{
τ̃ εx < τ̃ εk(±δ); exp

{
−a
∫ τ̃ε

x

0

|∇H(X̃ε
s )|2 ds

}
· φε

7(X̃
ε
τ̃ε
x
)

}
, (5.13)

where

φε
7(z

′) = Mε
z

{
τ̃ εk < τ̃ εc (±δ); exp

{
−a
∫ τ̃ε

c

0

|∇H(X̃ε
s )|2 ds

}}
.

The argument in φε
7 always belongs to ∂′. For z′ ∈ ∂′

in, we have φε
7(z

′) < 1, and
for z′ ∈ ∂′

out we use the inequality

φε
7(z

′) < Pε
z′

{∫ τ̃ε
c

0

|∇H(X̃ε
s )|2 ds ≤ A33

}

+ Pε
z′

{∫ τ̃ε
c

0

|ΔH(X̃ε
s )|2 ds > A33

}
· e−aA33 .

Again, it does not matter much what a we take; let us take a = A−1
33 . By

Lemma 5.2, this expression, for sufficiently small ε and for every z′ ∈ ∂′, is
smaller than e−1 plus an arbitrarily small quantity.

Now, the expression (5.13) does not exceed

Pε
z{τ̃ εk < τ̃ εk(±δ), X̃ε

τ̃ε
x
∈ ∂′

in}+ Pε
z{τ̃ εx < τ̃ εk(±δ), X̃ε

τ̃ε
x
∈ ∂′

out}
· sup{φε

7(z
′) : z′ ∈ ∂′

out},

and by Lemma 5.3, for sufficiently small ε and for every z ∈ ∂, is smaller than
e−1 plus an arbitrarily small quantity.

Now let us take n = n(ε)→∞ that is equivalent to 10A−1
33 δ(ε)

2ε2 as ε→ 0.
Then, by the estimate (5.12) and the following, the first summand in (5.9) goes
to 0 as ε → 0, uniformly in x ∈ Dk(±δ). If we take t0 = 100A44A

−1
33 δ

2|ln ε|,
the second summand in (5.9) is estimated by a quantity that converges to 0.1
as ε → 0 (see (5.10) and (5.11)), and the probability (5.8) is less than 0.11 for
sufficiently small ε and all x ∈ Dk(±δ).

Remember also that for (5.1) to be satisfied we postulated that t0 should be
smaller than δ/A28: this is satisfied for sufficiently small ε, because we require
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that δ(ε)|ln ε| → 0. So by (5.1) we have Pε
x{τ εk(±δ) ≥ t0} ≤ 0.8 for sufficiently

small ε and x ∈ Dk(±δ).
Application of the Markov property yields Pε

x{τ εk(±δ) ≥ nt0} ≤ 0.8n, and

Mε
xτ

ε
k(±δ) ≤

t0
1− 0.8

= 500A44A
−1
33 δ

2|ln ε|.

Lemma 5.1 is proved. ��

Proof of Lemma 3.5. We are going to prove that there exist positive constants
A45, A46, A47 such that

Mε
x

∫ τε
k(±δ)

0

e−λt dt ≤ A45δ
2|ln δ| (5.14)

for all sufficiently small ε, εA46 ≤ δ ≤ A47, and x ∈ Dk(±δ).
Take δ0 = δ0(ε) = εA46/3, and consider the cycles between the Markov

times τ0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ · · · , where

τ0 = 0, σn = min{t ≥ τn−1 : Xε
t /∈ Dk(±δ0)},

and τn = min{t ≥ σn : Xε
t ∈

⋃
i Cki(δ0) ∪

⋃
i Cki(δ)}. The expectation in

(5.14) is equal to

∞∑

n=0

Mε
x

{
τn < τ εk(±δ);

∫ σn+1

τn

e−λt dt

}

+

∞∑

n=1

Mε
x

{
σn < τ εk(±δ);

∫ τn

σn

e−λt dt

}

≤
∞∑

n=0

Mε
x{τn < τ εk (±δ); e−λτn} · sup{Mε

zτ
ε
k(±2δ0) : z ∈ Dk(±2δ0)}

+

∞∑

n=1

Mε
x{σn < τ εk (±δ); e−λσn}

· sup
{
Mε

z

∫ τ1

0

e−λtdt : z ∈
⋃

i

Cki(2δ0)

}
(5.15)

(the strong Markov property is used).
The first supremum is estimated by Lemma 5.1; it is O(δ20 |ln ε|) ≤

A48δ0δ|ln δ|. For a path starting at a point z ∈ Cki(2δ0), the time τ1 is noth-
ing but τ εi (H(Ok) ± δ0, H(Ok) ± δ). To estimate its Mε

z-expectation, we apply
Lemma 4.2 to the solution of the boundary-value problem

λfi(H)− Lifi(H) = 1,

fi(H(Ok)± δ0) = fi(H(Ok)± δ) = 0.
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It is easy to see that fi(H) ≤ A49δ
2|ln δ|, fi(H(Ok)±2δ0) ≤ A50δ0δ|ln δ|, and

‖f (m)
i ‖ ≤ Amδ2−m|ln δ|. By Lemma 4.2 we have

Mε
z

∫ τ1

0

e−λt dt

= Mε
z

∫ τε
i (H(Ok)±δ0,H(Ok)±δ)

0

e−λt[λfi(H(Xε
t ))− Lifi(H(Xε

t ))] dt

≤ fi(H(z)) + (‖f ′
i‖+ ‖f ′′

i ‖+ ‖f ′′′
i ‖)εA11 .

The first term is not greater than A50δ0δ|ln δ|; the second is infinitely small com-
pared to δ0δ|ln δ| if we choose A46 small enough. So both supremums in (5.15)
are O(δ0δ|ln δ|).

Now, using the strong Markov property, we obtain the estimates:

∞∑

n=1

Mε
x{σn < τ εk(±δ); e−λσn}

≤
∞∑

n=0

Mε
x{τn < τ εk (±δ); e−λτn}

≤
∞∑

n=0

[
sup

{
Mε

z

{
Xε

τ1 ∈
⋃

i

Cki(δ0); e
−λτ1

}}]n
. (5.16)

Let Fi be the solution of the boundary-value problem

λFi(H)− LiFi(H) = 0,

Fi(H(Ok)± δ0) = 1, Fi(H(Ok)± δ) = 0.

For this solution Fi(H(Ok)± 2δ0) ≤ 1−Akiδ0/δ; so, applying Lemma 4.2, we
get for sufficiently small ε and for z ∈ Cki(2δ0),

Mε
z

{
Xε

τ1 ∈
⋃

i

Cki(δ0); e
−λτ1

}
≤ 1−Akiδ0/(2δ),

and the sum (5.16) does not exceed 2δ/(δ0 mini Aki). This yields (5.14). ��

Remark. It is easy to deduce from formula (5.14) that

Mε
xτ

ε
k (±δ) ≤ A51δ

2|ln δ| (5.17)

for all sufficiently small ε, εA52 ≤ δ ≤ A53, and x ∈ Dk(±δ). To do this, we use

the fact that τk(±δ) ≤ (1− e−1)−1
∫ τk(±δ)

0
e−λt dt for τk(±δ) < 1/λ,

Pε
x{τk(±δ) ≥ 1/λ} ≤ A45δ

2|ln δ|/(1− e−1),

Pε
x{τk(±δ) ≥ n/λ} ≤ [A45δ

2|ln δ|/(1− e−1)]n.
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6 Proof of Lemma 3.6

We use a result in partial differential equations, which we give here without proof,
reformulated to fit out particular problem.

Let L ε be a two-dimensional second-order differential operator in the do-
main D = (H1, H2)× (−∞,∞) given by

L ε = ε−2 ∂

∂θ
+ a11(H, θ)

∂2

∂H2
+ 2a12(H, θ)

∂2

∂H∂θ
+ a22(H, θ)

∂2

∂θ2

+ b1(H, θ)
∂

∂H
+ b2(H, θ)

∂

∂θ
, (6.1)

where A(ξ2 + η2) ≤ a11(H, θ)ξ2 +2a12(H, θ)ξη+ a22(H, θ)η2 ≤ Ā(ξ2 + η2)
for all (H, θ) ∈ D and real ξ, η, 0 < A ≤ Ā <∞, and |bi(H, θ)| ≤ B̄.

Lemma 6.1 (See Krylov and Safonov [1]). For every δ > 0 there exist constants
α = α(A, Ā) ∈ (0, 1) and N = N(A, Ā, B̄, δ) <∞ such that

|u(H ′, θ′)− u(H, θ)| ≤ N(|H ′ −H|+ ε2|θ′ − θ|)α · sup
D
|u| (6.2)

for every solution u of the equation L εu = 0, for all H,H ′ ∈ (H1 + δ,H2− δ),
and all θ, θ′. Neither α nor N depend on ε.

Using this result, we obtain a lemma that is important in the proof of
Lemma 3.6 (in which we apply it to the numbers H(Ok) ± δ′/2, H(Ok) ± δ′,
and H(Ok)± 2δ′).

Lemma 6.2. For a segment Ii of our graph, let H1 < H < H2 be numbers in
the interior of the interval H(Ii). Then

lim
ε→0

max
x1,x2∈Ci(H)

max
f :‖f‖≤1

|Mε
x1
f(Xε

τε
i (H1,H2)

)−Mε
x2
f(Xε

τε
i (H1,H2)

)| = 0 (6.3)

(the functions f over which the maximum is taken are defined on ∂Di(H1, H2)).

Proof. The function uε(x) = Pε
x{Xε

τε
i (H1,H2)

∈ γ} is a solution of the equa-
tion Lεuε(x) = 0 in the domain Di(H1, H2). Introducing new coordinates in
this annulus-shaped domain: the value of the Hamiltonian H , and the periodic
“angular” coordinate θ, we have Lε = ε−2B(H, θ) · (∂/∂θ) + 1

2Δ with positive
B(H, θ), and dividing the equation by B(H, θ) brings the operator to the form
(6.1). The estimate (6.2) with H ′ = H proves (6.3) (the rate of convergence
is that of const · ε2α, where the positive exponent depends on H1, H2, and the
constant also on H).

Now let us prove Lemma 3.6.
We want to prove that for Ij ∼ Ok for every δ > 0, for sufficiently small δ′,

0 < δ′ < δ, the difference
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|Pε
x{Xε

τε
k(±δ) ∈ Ckj(δ)} − pkj |

is small for sufficiently small ε and for all x ∈ D̄k(±δ′), where pkj are given by
pkj = βkj/

∑
i:Ii∼Ok

βki.
The first step is proving that for every i such that Ii ∼ Ok and for every

function f on ∂Dk(±δ) with ‖f‖ ≤ 1 (in particular, for f(z) = χCkj(δ)(z)),

lim
ε→0

max
x1,x2∈Cki(δ′)

|F ε(x1)− F ε(x2)| = 0, (6.4)

where
F ε(x) = Mε

xf(X
ε
τε
k(±δ)). (6.5)

Take δ′′ and δ′′′ so that 0 < δ′′ < δ′ < δ′′′ < δ. Let us apply the strong
Markov property with respect to the time τ εi (H(Ok) ± δ′′, H(Ok) ± δ′′′) <
τ εk(±δ): for xm ∈ Cki(δ

′), m = 1, 2, we have

F ε(xm) = Mε
xm

F ε(Xε
τε
i (H(Ok)±δ′′,H(Ok)±δ′′′)).

Now (6.4) follows from Lemma 6.2.
The second step is proving that for every δ > 0 and every κ > 0 there

exists δ′, 0 < δ′ < δ, such that for sufficiently small ε,

max
x1,x2∈D̄k(±δ′)

|F ε(x1)− F ε(x2)| < κ. (6.6)

There are exactly three regions, Di0 , Di1 , and Di2 , that are separated by the
separatrix Ck, one of them, Di0 , adjoining the whole curve Ck, and Di1 , Di2

adjoining only parts of it (so that Cki0 = Ck = Cki1 ∪ Cki2 ). We have either
H(x) > H(Ok) for x ∈ Di0 and H(x) < H(Ok) for x ∈ Di1 ∪Di2 , or all signs
are opposite.

Let τ be the first time at which the process Xε
t reaches Cki0(δ

′) or Cki1(δ)∪
Cki2(δ). Since τ ≤ τ εk (±δ) for the process starting at a point x ∈ D̄k(±δ′),
we can apply the strong Markov property with respect to τ . We have for x ∈
D̄k(±δ′),

F ε(x) = Mε
x{Xε

τ ∈ Cki1(δ)∪Cki2(δ); f(X
ε
τ )}+Mε

x{Xε
τ ∈ Cki0(δ);F

ε(Xε
τ )},

Pε
x{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)} · inf
z∈∂Dk(±δ)

f(z)

+ Pε
x{Xε

τ ∈ Cki0(δ)} · inf
z∈Cki0

(δ′)
F ε(z)

≤ F ε(x)

≤ Pε
x{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)} · sup
z∈∂Dk(±δ)

f(z)

+ Pε
x{Xε

τ ∈ Cki0(δ)} · sup
z∈Cki0

(δ′)
F ε(z),
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therefore for x1, x2 ∈ D̄k(±δ′),

|F ε(x1)− F ε(x2)| ≤
[

sup
z∈∂Dk(±δ)

f(z)− inf
z∈∂Dk(±δ)

f(z)
]

×max(Pε
x1
{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)},Pε
x2
{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)})

+
[

sup
z∈Cki0

(δ′)
F ε(z)− inf

z∈Cki0
(δ′)

F ε(z)
]
.

The second difference, by (6.4), is arbitrarily small if ε is small enough. Let us
estimate Pε{Xε ∈ Cki1(δ) ∪ Cki2(δ)} for x ∈ D̄k(±δ′).

Apply formula (4.5):

Mε
xH(Xε

τ )−H(x) = Mε
x

∫ τ

0

1

2
ΔH(Xε

t ) dt. (6.7)

Here Xε
τ ∈ Cki0(δ

′) ∪ Cki1(δ) ∪ Cki2(δ). The function H takes the value
H(Ok) ± δ′ on Cki0(δ

′), and the value H(Ok) ∓ δ on Cki1(δ) ∪ Cki2(δ). The
left-hand side in (6.7) is equal to

[H(Ok)± δ′] · [1− Pε
x{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)}]
+ [H(Ok)∓ δ] · Pε

x{Xε
τ ∈ Cki1(δ) ∪ Cki2(δ)},

so (6.7) can be rewritten as

(δ + δ′) · Pε
x{Xε

τ ∈ Cki1(δ) ∪ Cki2(δ)

= δ′ ± [H(Ok)−H(x)]∓Mε
x

∫ τ

0

1

2
ΔH(Xε

t ) dt

≤ 2δ′ +

∣∣∣∣M
ε
x

∫ τ

0

1

2
ΔH(Xε

t ) dt

∣∣∣∣,

and the expectation of the integral does not exceed

1

2
sup |ΔH| ·Mε

xτ ≤
1

2
sup |ΔH| ·Mε

xτ
ε
k (±δ) ≤ A54 · δ2|ln δ|

for sufficiently small ε by (5.17). So for sufficiently small ε,

Pε
x{Xε

τ ∈ Cki1(δ) ∪ Cki1(δ)} ≤
2δ′

δ
+A54δ|ln δ|,

which can be made arbitrarily small by choosing small positive δ, and then small
positive δ′ < δ. So the second step of our proof is complete.

It is true that we formulated our statement for an arbitrary positive δ, and
finished with establishing it only for sufficiently small δ. But, first of all, small
δ are enough for our purpose of proving our main theorem; and secondly, this
happened because we used the very rough inequality Mε

xτ ≤ Mε
xτ

ε
k(±δ), and

it is very easy to verify (6.6) for arbitrary positive δ, making use of the strong
Markov property.
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So Pε
x{Xε

τε
k(±δ) ∈ Cki(δ)} has approximately the same value for all x ∈

D̄k(±δ′) (for δ′ small enough and ε small enough). What remains is to prove
that this value is approximately pkj = βkj/

∑
i:Ii∼Ok

βki, where βki are given
by formula (2.2). To do this, we use the fact that the invariant measure μ for
the process (Xε

t ,P
ε
x), which is the Lebesgue measure, can be written as an inte-

gral with respect to the invariant measure of the imbedded Markov chain. Let us
adduce this result in our specific case.

Let us choose a number H0 that is greater than all H(xk) + 2δ. Let Cδ =⋃
k,i Cki(δ) ∪ C(H0 − δ), Cδ′ =

⋃
k,i Cki(δ

′) ∪ C(H0 − δ′). Introduce the
random times τ0 ≤ σ0 < τ1 < σ1 < · · · < τn < σn < · · · by τ0 = 0,
σk = min{t ≥ τk : Xε

t ∈ Cδ}, τk = min{t ≥ σk−1 : Xε
t ∈ C ′

δ}. The sequence
Xε

τk
, k = 0, 1, 2, . . . , n, . . . , is a Markov chain (for k ≥ 1, all Xε

τk
∈ Cδ′); and

if Xε
0 ∈ Cδ , the sequence Xε

σk
, k = 0, 1, 2, . . . , n, . . . , is also a Markov chain

on Cδ .
Every invariant measure μ of the process (Xε

t ,P
ε
x) can be represented in the

form

μ(A) =

∫

Cδ

νε(dx)Mε
x

∫ σ1

0

χA(X
ε
t ) dt

=

∫

Cδ′

ν′ε(dx)Mε
x

∫ τ1

0

χA(X
ε
t ) dt, (6.8)

where νε, ν′ε are measures on Cδ , Cδ′ satisfying the system of integral equations

νε(B) =

∫

Cδ′

ν′ε(dx)Pε
x{Xε

σ0
∈ B},

ν′ε(C) =

∫

Cδ

νε(dx)Pε
x{Xε

τ1 ∈ C}
(6.9)

(see Khas’minskii [7], also Wentzell [5]). These measures are invariant measures
of the Markov chains Xε

σk
, Xε

τk
.

The measures νε, ν′ε are nonzero (since μ �= 0), and for every Ii ∼ Ok,

νε(Cki(δ)) > 0, ν′ε(Cki(δ
′)) > 0,

because starting from each of these sets, or from C(H0 − δ) (or Cki(δ
′)) it is

possible, with positive probability, to reach every other Cki(δ), Cki(δ
′) in a finite

number of steps (cycles). So we can introduce the averages:

pεkj =

∫
⋃

i:Ii∼Ok
Cki(δ′)

ν′ε(dx)Pε
x{Xε

τε
k(±δ) ∈ Ckj(δ)}

ν′ε(
⋃

i:Ii∼Ok
Cki(δ′))

. (6.10)

According to (6.6),

|Pε
x{Xε

τε
k(±δ) ∈ Ckj(δ)} − pεkj | < κ (6.11)

for all x ∈ D̄k(±δ′).
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If the process Xε
t starts in the set Cδ′ , it cannot be in Ckj(δ) at time τ1

unless it started in
⋃

i:Ii∼Ok
Cki(δ

′). Therefore, by the first equation in (6.9),

νε(
⋃

i:Ii∼Ok
Cki(δ)) = ν′ε(

⋃
i:Ii∼Ok

Cki(δ
′)), and the numerator in (6.10) is

nothing but νε(Ckj(δ)). So (6.11) can be rewritten as
∣∣∣∣P

ε
x{Xε

τε
k(±δ) ∈ Ckj(δ)} −

νε(Ckj(δ))∑
i:Ii∼Ok

νε(Cki(δ))

∣∣∣∣ < κ (6.12)

for sufficiently small positive δ′ < δ, sufficiently small ε, and x ∈ D̄k(±δ′).
So the next step is to estimate νε(Ckj(δ)) for small δ > 0, small δ′,

0 < δ′ < δ, and small ε.
We have not used formula (6.8) yet. This formula implies the corresponding

equality for the integrals with respect to the measure μ (the Lebesgue measure):
if G(x), x ∈ R2, is integrable, we have

∫∫

R2

G(x)μ(dx) =

∫∫

R2

G(x) dx =

∫∫

Cδ

νε(dx)Mε
x

∫ σ1

0

G(Xε
t ) dt.

If the function G(x) is equal to 0 in the region {x : H(x) > H0 − δ} and in all
regions Dk(±δ), then

∫ σ1

τ1
G(Xε

t ) dt = 0, and

∫∫

R2

G(x) dx =

∫

Cδ

νε(dx)Mε
x

∫ τ1

0

G(Xε
t ) dt. (6.13)

Let us consider an arbitrary segment Ij of the graph with ends Ok1 and Ok2 .
Let us denote Hk1 = H(Ok1), Hk2 = H(Ok2), except if the vertex Ok2 corre-
sponds to the point at infinity, in which case we take Hk2 = H0. Let g(H) be
an arbitrary continuous function on the interval H(Ij) that is equal to 0 outside
its subinterval (Hk1 + δ,Hk2 − δ). Consider the function G(x) that is equal to
g(H(x)) in the domain Dj , and to 0 outside Dj . The left-hand side of (6.13) can
be rewritten as

∫∫

Dj

g(H(x)) dx =

∫ Hk2
−δ

Hk1
+δ

g(H) dvj(H),

where uj(H) is the function whose derivative is given by formula (1.15).
For the expectation in the right-hand side of (6.13), formulas (4.28) and (4.29)

hold, and we can write
∫ Hk2

−δ

Hk1
+δ

g(H) dvj(H) = νε(Ck1j(δ))

[
uj(Hk1 + δ)− uj(Hk1 + δ′)

uj(Hk2 − δ′)− uj(Hk1 + δ′)

×
∫ Hk2

−δ

Hk1
+δ

(uj(Hk2 − δ′)− uj(H))g(H) dv′j(H) + o(1)

]

+ νε(Ck2j(δ))

[
uj(Hk2 − δ′)− uj(Hk2 − δ)

uj(Hk2 − δ′)− uj(Hk1 + δ′)
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×
∫ Hk2

−δ

Hk1
+δ

(uj(H)− uj(Hk1 + δ′))g(H) dv′j(H) + o(1)

]
,

where the o(1) go to 0 as ε→ 0.
In order for this to be true for an arbitrary continuous function g, it is neces-

sary that the limits of νε(Ck1j(δ)), ν
ε(Ck2j(δ)) exist as ε→ 0, namely,

lim
ε→0

νε(Ck1j(δ)) =
1

uj(Hk1 + δ)− uj(Hk1 + δ′)
,

lim
ε→0

νε(Ck2j(δ)) =
1

uj(Hk2 − δ′)− uj(Hk2 − δ)
.

But by formula (1.17), uj(H
′)−uj(H) ∼ 2(

∮
Ckij

|∇H(x)| dl)−1 ·(H ′−H)

as H , H ′ → Hki (we disregard the case of Hk2 = H0). This means that, for
sufficiently small δ and ε,

∣∣∣∣ν
ε(Ckj(δ))−

βkj

2(δ − δ′)

∣∣∣∣ <
κ

δ − δ′
.

Together with formula (6.12), this yields

|Pε
x{Xε

τε
k(±δ) ∈ Ckj(δ)} − pkj | < 2κ,

and Lemma 3.6 is proved. ��

7 Remarks and Generalizations

1 Let a system
Ẋt = b(Xt), X0 = x ∈ R2, (7.1)

in the plane have a smooth first integral H(x) : H(Xt) = H(x) for t ≥ 0. As-
sume that H(x) has a finite number of critical points and lim|x|→∞ H(x) =∞.
Since H(x) is a first integral,∇H(x) · b(x) = 0, x ∈ R2, and thus

b(x) = β(x)∇̄H(x),

where β(x) is a scalar. Consider small white noise perturbations of such a system:

˙̃Xε
t = β(X̃ε

t )∇̄H(X̃ε
t ) + ε ˙̃Wt, X̃ε

0 = x. (7.2)

Here W̃t is the Wiener process in R2, 0 < ε ! 1. If β(x) ≡ constant, system
(7.1) is Hamiltonian. If β(x) �≡ constant but does not change its sign, the situation
is similar to the Hamiltonian case. But if β(x) changes its sign, the problem
becomes more complicated: even if H(x) has just one critical point, the slow
component of the perturbed process may not converge to a Markov process as



7 Remarks and Generalizations 317

Figure 26.

ε → 0. To have a Markov limit, it may be impossible to avoid consideration of
processes on graphs. We restrict ourselves to just an example (see Freidlin [19]).

Let H(x), x ∈ R2, have just one minimum at the origin and H(0) = 0, and
let the level sets C(y) = {x ∈ R2 : H(x) = y}, y > 0, be smooth curves
homeomorphic to the circle (see Fig. 26). Suppose β(x) is negative inside the
loop ABCDEFA and positive outside this loop. Here, A, C, D, F are the points
where the loop {x ∈ R2 : β(x) = 0} is tangent to the level curve of H(x); B is
the point where the trajectory starting at F crosses AC for the first time, and E
is the point at which the trajectory starting at A crosses FD for the first time.

The dynamical system on a level set C(y) has a unique invariant measure
if y /∈ (H(C), H(D)). The density of this measure with respect to the length
element on C(y) is const × (|β(x)||∇H(x)|)−1. But, for y ∈ (H(C), H(D)),
the dynamical system has more than one equilibrium point on C(y). An invariant
measure is concentrated at each of these equilibrium points. The dynamical sys-
tem has four rest points when y ∈ (H(B), H(A)): two stable and two unstable.
This results in the formation of a new “stable” first integral independent of H(x).

To define this new first integral k(x), denote by x
(1)
0 (y) the point of inter-

section of C(y) and the arc FED of the curve γ = {x ∈ R2 : β(x) = 0}.
Denote the intersection point of C(y) and of the arc ABC by x

(2)
0 (y). We as-

sume that there exists at most one such point x(1)
0 (y) and at most one x

(2)
0 (y).

It is clear that x(1)
0 (y) exists for H(F ) < y < H(D), and x

(2)
0 (y) exists for

H(C) < y < H(A).
Define k(x), x ∈ R2, as follows.

k(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, if x(1)
0 (H(x)), x

(2)
0 (H(x)) exist, and x belongs to the domain of

attraction of x(i)
0 (H(x)), i = 1, 2;

1, if H(x) ≥ H(D), or if x belongs to the arc CMD;

2, if H(x) ≤ H(C), or if x belongs to the arc ANF.
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It is easy to see that k(x) is a first integral for the system shown in Fig. 26(a).
Let now X̃ε

t be the perturbed process defined by (7.2) for the dynamical
system shown in Fig. 26(a). Let Xε

t be the corresponding rescaled process:
Xε

t = X̃ε
t/ε2 .

Consider the graph Γ in Fig. 26(b). The pairs (i,H), H ≥ H(0) = 0, i ∈
{1, 2}, can be used as coordinates on Γ. The points (1, H(F )) and (2, H(B)) as
well as (1, H(E)) and (2, H(A)) are identified.

Define the mapping Y (x) : R2 → Γ by Y (x) = (k(x), H(x)), and let
Y ε
t = Y (Xε

t ).
It is easy to see that, when H(Xε

t ) /∈ [H(C), H(D)], the fast component of
the process Xε

t has distribution on C(H(Xε
t )) close to the unique invariant mea-

sure of the nonperturbed system on the corresponding level set of H(x). When
H(xε

t ) ∈ (H(C), H(B))∪(H(A), H(D)), the distribution of the fast component
is close to the measure concentrated at the stable rest point of the nonperturbed
system on the corresponding level set. But when H(Xε

t ) ∈ (H(B), H(A)), the
fast coordinate of the Xε

t is concentrated near one of the points x
(1)
0 (H(Xε

t ))

or x(2)
0 (H(Xε

t )), depending upon the side from which H(Xε
t ) last entered the

segment [H(B), H(A)]. If ε! 1, the process Xε
t “jumps” from F to B along a

deterministic trajectory. Similarly, Xε
t “jumps” from A to E.

Using these arguments, one can check that the processes Y ε
t converge weakly

as ε→ 0 in the space of continuous functions on [0, T ], T <∞, with the values
in Γ to a diffusion process Yt on Γ. The process Yt is defined as follows. Let
T (y) =

∮
C(y)

[|β(x)||∇H(x)|]−1 d� and

A1(y) =

{
[T (y)]−1

∮
C(y)

|∇H(y)|2 d�
|β(y)| , y > H(D),

|∇H(x
(1)
0 (y))|2, H(F ) ≤ y ≤ H(D);

B1(y) =

{
(2T (y))−1

∮
C(y)

ΔH(x) d�
|β(x)∇H(x)| , y > H(D),

1
2ΔH(x

(1)
0 (y)), H(F ) ≤ y ≤ H(D);

A2(y) =

{
[T (y)]−1

∮
C(y)

|∇H(y)|2 d�
|β(y)| , y < H(C),

|∇H(x
(2)
0 (y))|2, H(C) ≤ y ≤ H(A);

B2(y) =

{
(2T (y))−1

∮
C(y)

ΔH(x) d�
|β(x)∇H(x)| , y < H(C),

1
2ΔH(x

(2)
0 (y)), H(C) ≤ y ≤ H(AD).

Define the operators Li, i = 1, 2,

Li =
1

2
Ai(y)

d2

dy2
+Bi(y)

d

dy
.

The process Yt on Γ is governed by the operator L1 on the upper part of the
graph Γ (i = 1), and by L2 on the lower part (i = 2). The operator L2 degener-
ates at the point (0, 2) ∈ Γ, so that this point is inaccessible for the process Yt.
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Figure 27.

To define the process Yt for all t ≥ 0 in a unique way, one should add the gluing
conditions at the points (1, H(F )) identified with (2, H(B)) and at (1, H(E))
identified with (2, H(A)). These gluing conditions define the behavior of the
process at the vertices. As we have already seen, the gluing conditions describe
the domain of definition of the generator for the process Yt. Let Yt be the pro-
cess on Γ such that its generator is defined for functions f(i, y), (i, y) ∈ Γ,
which are continuous on Γ, smooth on {(i, y) ∈ Γ : y ≥ H(F ), i = 1} and on
{(i, y) ∈ Γ : y ≤ H(A), i = 2}, and satisfy L1f(1, H(F )) = L2f(2, H(B))
and L1f(1, H(E)) = L2f(2, H(A)). Obviously, these gluing conditions have
the form described earlier in this chapter with one of βki = 0 for k = 1, 2. The
generator coincides with L1 at the points of the set {(i, y) ∈ Γ : y > H(F ),
i = 1} and with L2 at the points of {(i, y) ∈ Γ : y < H(A), i = 2}. The limiting
process Yt on Γ is determined by these conditions in a unique way.

2 We have seen that the graphs associated with the Hamiltonian systems in R2

always have a structure of a tree. If we consider dynamical systems in the phase
space of a more complicated topological structure, the corresponding graph, on
which the slow motion of the perturbed system should be considered, can have
loops. Consider, for example, the dynamical system on the two-dimensional torus
T 2 with Hamiltonian H(x) defined as follows. Let the torus be imbedded in R3

and the symmetry axis of the torus be parallel to a plane Π (see Fig. 27(a)), and
H(x) be equal to the distance of a point x ∈ T 2 from Π. The trajectories of
the system then lie in the planes parallel to Π as shown in Fig. 27(a). The set of
connected components of the level sets of the Hamiltonian H is homeomorphic to
the graph Γ shown in Fig. 27(b). This graph has a loop. One can describe the slow
motion for the diffusion process resulting from small white noise perturbations
of the dynamical system in the same way as in the case of the systems in R2.

The dynamical system of this example is not a generic Hamiltonian system
on T 2. Generic Hamiltonian systems on two-dimensional tori were studied in
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Figure 28.

Arnold [2] and Sinai and Khanin [1]. In particular, it was shown there that a
generic dynamical system on T 2 preserving the area has the following structure.
There are finitely many loops in T 2 such that inside each loop the system behaves
as a Hamiltonian system in a finite part of the plane. Each trajectory lying in the
exterior of all loops is dense in the exterior. These trajectories form one ergodic
class. There are two such loops in the example shown in Fig. 28.

The Hamiltonian H of such a system on T 2 is multivalued, but its gradient
∇H(x), x ∈ T 2, is a smooth vector field on the torus. Consider small white noise
perturbation of such a system:

˙̃Xε
t = ∇̄H(x̃ε

t ) + ε ˙̃Wt, Xε
t = x̃ε

t/ε2 .

To study the slow component of the perturbed process, we should identify some
points of the phase space. First, as we did before, we should identify all the
points of each periodic trajectory. But here we have an additional identification:
since the trajectories of the dynamical system outside the loops are dense in the
exterior of the loops, all the points of the exterior should be glued together. The
set of all the connected components of the level sets of the Hamiltonian, provided
with the natural topology, is homeomorphic in this case to a graph Γ having the
following structure: the exterior of the loops corresponds to one vertex O0. The
number of branches connected with O0 is equal to the number of loops. Each
branch describes the set of connected components of the Hamiltonian level sets
inside the corresponding loop. For example, the left branch of the graph Γ shown
in Fig. 28(c), consisting of the edges O0O2, O2O1, O2O3, describes the set of
connected components inside the loop γ1.

Let H1, H2, . . . , HN be the values of the Hamiltonian function on the loops
γ1, . . . , γN . Denote by H̄(x), x ∈ T 2, the function equal to zero outside the
loops and equal to H(x) − Hk inside the kth loop, k = 1, . . . , N . Let all the
edges of Γ be indexed by the numbers 1, . . . , n. The pairs (k, y), where k is the
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number of the edge containing a point z ∈ Γ and y is the value of H̄(x) on the
level set component corresponding to z, form a coordinate system on Γ. Consider
the mapping Y : T 2 �→ Γ, Y (x) = (k(x), H̄(x)).

Then one can expect that the processes Y ε
t = Y (Xε

t ), 0 ≤ t ≤ T , T < ∞,
converge weakly in the space of continuous functions on [0, T ] with the values in
Γ to a diffusion process Yt on Γ. One can prove in the same way as in the case of
Hamiltonian systems in R2, that the limiting process is governed inside the edges
by the operators obtained by averaging with respect to the invariant density of the
fast motion. The gluing conditions at all the vertices besides O0 have the same
form as before. But the gluing condition at O0 is special. The uniform distribution
on T 2 is invariant for any process Xε

t , ε > 0. Thus, the time each of them spends
in the exterior of the loops is proportional to the area of the exterior. Therefore,
the limiting process Yt spends a positive amount of time at the vertex O0, that
corresponds to the exterior of the loops. The process Yt spends zero time at all
other vertices.

To calculate the gluing conditions at O0, assume that the Hamiltonian H(x)
inside each loop has just one extremum (like inside the loop γ2 in Fig. 28). Since
the gluing conditions at O0 are determined by the behavior of the process Xε

t

in a neighborhood of the loops, we can assume this without loss of generality.
Let the area of the torus T 2 be equal to one, and the area of the exterior of the
loops be equal to α. Denote by μ the measure on Γ such that μ{O0} = α,
(dμ/dH)(k,H) = Tk(H) inside the kth edge, where

Tk(H) =

∮

Ck(H)

|∇H(x)|−1 d�,

Ck(H) is the component of the level set C(H) = {x ∈ T 2 : H̄(x) = H} inside
the kth loop. It is easy to check that Tk(H̄) = |dSk(H̄)/dH̄|, where Sk(H̄) is
the area of the domain bounded by Ck(H̄). Taking this into account, one can
check that μ is the normalized invariant measure for the processes Y ε

t = Y (Xε
t )

on Γ for any ε > 0, and it is invariant for the limiting process Yt as well.
On the other hand, a diffusion process on Γ with the generator A has an

invariant measure μ if and only if
∫

Γ

Au(k, y) dμ = 0 (7.3)

for any continuous function u(z), z ∈ Γ, that is smooth at the interior points of
the edges and such that Au(z) is also continuous. Taking into account that the
operator A for the process Yt coincides with the differential operator

Lk =
1

2Tk(H̄)

d

dH

(
ak(H̄)

d

dH

)
, ak(H̄) =

∮

Ck(H̄)

|∇H(x)| d�,

inside any edge Ik of the graph Γ, we conclude from (7.3) that the measure μ is
invariant for the process Yt only if
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αAu(O0) =
1

2

N∑

k=1

(±1)ak(0)
du

dH
(k,O0). (7.4)

Here (du/dH)(k,O0) means the derivative of the function u(z), z ∈ Γ along
the kth edge Ik ∼ O0 at the point O0. Sign “+” should be taken in the kth
term if H̄(x) < 0 on Ik, and sign “−” if H̄(x) > 0 on Ik. Equality (7.4) gives
us the gluing condition at the vertex O0. These arguments were suggested in
Freidlin [21].

To make these arguments rigorous, one should prove that the limiting process
on Γ is Markovian. The complete proof was, first, given by Sowers [1] in a quite
special case. The general result was obtained by Dolgopyat and Koralov [1], [2].

3 Consider an oscillator with one degree of freedom,

q̈t + f(qt) = 0. (7.5)

Let the force f(q) be a smooth generic function, F (q) =
∫ q

0
f(z) dz. Assume that

lim|q|→∞ F (q) =∞. One can introduce the Hamiltonian H(p, q) = 1
2p

2+F (q)
of system (7.5) and rewrite (7.5) in the Hamiltonian form,

q̇t =
∂H

∂p
(pt, qt) ≡ Pt,

ṗt = −
∂H

∂q
(pt, qt) ≡ −f(qt).

(7.6)

If we denote by x the point (p, q) of the phase space, (7.6) have the form ẋt =
∇̄H(xt).

Consider now perturbations of (7.5) by white noise,

¨̃qεt + f(q̃εt ) = ε ˙̃Wt. (7.7)

Here W̃t is the Wiener process in R1, 0 < ε ! 1. One can rewrite (7.7) as a
system:

˙̃qεt = p̃εt ,

˙̃pεt = −f(q̃εt ) + ε ˙̃Wt.
(7.8)

Now we have the degenerate process (0, εW̃t) in R2 as the perturbation. Al-
though the general construction and the scheme of reasoning in this case are
more or less the same as in the nondegenerate case, some additional estimates are
needed, especially when we prove the Markov property and calculate the gluing
conditions for the limiting process. On the other hand, we show that the char-
acteristics of the limiting process, in the case under consideration, have simple
geometric sense. Here we follow Freidlin and Weber [1].

As in the case of nondegenerate perturbations, the process (p̃εt , q̃
ε
t ) in R2 de-

fined by (7.8) has, roughly speaking, fast and slow components. The fast compo-
nent corresponds to the motion along the nonperturbed periodic trajectories, and
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the slow component corresponds to the motion transversal to the deterministic
trajectories. The fast component can be characterized by the invariant density of
the nonperturbed system on the corresponding periodic trajectory.

To describe the slow component, it is convenient to rescale the time: put pεt =
p̃εt/ε2 , q

ε
t = q̃εt/ε2 . Then the function, pεt , qεt satisfies the equations

q̇εt =
1

ε2
Pε
t ,

ṗεt = −
1

ε2
f(qεt ) + Ẇt,

(7.9)

where Wt is a Wiener process in R1.
First, let us consider the case of the force f(q) having just one zero, say at

q = 0. Then the slow component of the process defined by (7.9) can be charac-
terized by how H(pεt , q

ε
t ) changes. Using the Itô formula, we have

H(pεt , q
ε
t )−H(p0, q0) =

∫ t

0

H ′
p(p

ε
s, q

ε
s) dWs +

1

2

∫ t

0

H ′′
pp(p

ε
s, p

ε
s) ds.

We made use of the orthogonality of∇H(p, q) and ∇̄H(p, q). Applying the stan-
dard averaging procedure with respect to the invariant density of the fast motion
with the frozen slow component, one can easily prove that for any T > 0 the
processes Y ε

t = H(pεt , q
ε
t ) converge weakly in the space of continuous functions

on [0, T ] to the diffusion process Yt on [0,∞), corresponding to the operator

L =
1

2
A(y)

d2

dy2
+B(y)

d

dy
,

A(y) =
1

T (y)

∮

C(y)

H2
p (p, q) d�

|∇H(p, q)| , (7.10)

B(y) =
1

2T (y)

∮

C(y)

H ′′
pp d�

|∇H(p, q)| ,

where T (y) =
∮
C(y)

(d�/|∇H(p, q)|) is the period of the nonperturbed oscilla-

tions with the energy H(p, q) = y. Here, as before, C(y) = {(p, q) ∈ R2 :
H(p, q) = y}; d� is the length element on C(y). The point 0 is inaccessible for
the process Yt on [0,∞). The proof of this convergence can be carried out in the
same way as in the nondegenerate case.

Using the Gauss formula, one can check that

d

dy
[A(y)T (y)] = B(y)T (y).

Thus,

L =
1

2T (y)

d

dy

(
a(y)

d

dy

)
,

where a(y) = A(y)T (y).
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Now, since H(p, q) = 1
2p

2 + F (q), the contour C(y) can be described as
follows.

C(y) = {(p, q) ∈ R2 : α(y) ≤ q ≤ β(y), p = ±
√

2(y − F (q))}, (7.11)

where α(y), β(y) are the roots of the equation F (q) = y. Note, that since
F ′(q) = f(q) has just one zero at q = 0, and lim|q|→∞ F (q) =∞, the equation
F (q) = y has exactly two roots for any y > 0. Using (7.11), we calculate:

d� = dq

√

1 +
f2(q)

2(y − F (q))
; H2

p (p, q) = p2 = 2(y − F (q))

and |∇H(p, q)|2 = f2(q) + 2(y − F (q)) for (p, q) ∈ C(y). Thus,

a(y) =

∮

C(y)

H2
p (p, q) d�

|∇H(p, q)| = 2

∫ β(y)

α(y)

dq
√
2(y − F (q)) = S(y),

where S(y) is the area of the domain bounded by C(y). Taking into account that
the period T (y) = dS(y)/dy, one can rewrite the operator defined by (7.10) in
the form

L =
1

2S′(y)

1

dy

(
S(y)

d

dy

)
. (7.12)

Now let f(q) have more than one zero. Then the level sets of the Hamil-
tonian H(p, q) = 1

2p
2 + F (q) may have more than one component. Let Γ =

{O1, . . . , Om; I1, . . . , In} be the graph homeomorphic to the set of connected
components of the level sets of H(x, y), provided with the natural topology.
Let Y : R2 → Γ be the mapping introduced earlier in this chapter, Y (x) =
(k(x), H(x)), where k(x) ∈ {1, . . . , n} is the number of the edge containing the
point of Γ corresponding to the nonperturbed trajectory starting at x ∈ R2. The
pair (k,H) forms the coordinates on Γ.

If f(q) has just one zero, the graph Γ is reduced to one edge [0,∞). But
if the number of zeros is greater than one, the function k(x) is not a constant,
and k(x) is an additional, independent of H(x), first integral of the nonperturbed
system. This implies that the process H(pεt , q

ε
t ) in the case of many zeros no

longer converges to a Markov process (if f(q) has no special symmetries; but
remember that we assume that f(q) is generic). To have in the limit a Markov
process, we should, as in the case of the nondegenerate perturbations, extend the
phase space by inclusion of the additional first integral. In other words, we should
consider the processes Y ε

t = Y (pεt , q
ε
t ) on the graph Γ related to the Hamiltonian

H(p, q).
To describe the limiting process on Γ, define a function S(z), z = (k, y) ∈ Γ:

put S(k, y) equal to the area bounded by the component Ck(y) of the level set
C(y), corresponding to the point z = (k, y) ∈ Γ\{O1, . . . , Om}. If z = (k, y)
is a vertex, corresponding to the extremum of H(p, q) (exterior vertex), then
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S(z) = 0. If z = O� is a vertex corresponding to a saddle point of H(x) (interior
vertex), then S(z) has a discontinuity at O�. Each interior vertex is an end for
three edges, say, Ii1 , Ii2 , and Ii3 . It is easy to see that limz→O�, z∈Iir S(z) =
Sir(O�), r = 1, 2, 3 exist. These limits Sir (O�), in general, are different for
r = 1, 2, 3, and one of them is equal to the sum of the other two.

Theorem 7.1. Let f(q) ∈ C∞, F (q) =
∫ q

0
f(s) ds, lim|q|→∞ F (q) = ∞.

Assume that f(q) has a finite number of simple zeros and the values of F (q)
at different critical points are different. Then for any T > 0, the process
Zε
t = Y (pεt , q

ε
t ) on Γ converges weakly in the space of continuous functions

on [0, T ] with values in Γ to a Markov diffusion process Zt as ε ↓ 0. The limiting
process Zt is governed by the operator

Lk =
1

2S′
y(k, y)

d

dy

(
S(k, y)

d

dy

)

inside the edge Ik ⊂ Γ, k = 1, . . . , n, and by the gluing conditions at the vertices:
a bounded continuous on Γ and smooth inside the edges function g(z), z ∈ Γ,
belongs to the domain of definition of the generator A of the limiting process Zt if
and only if Ag is continuous on Γ, and at any interior (corresponding to a saddle
point of H(p, q)) vertex O� of Γ, the following equality holds.

Si1(O�)
di1g

dy
(O�) + Si2(O�)

di2g

dy
(O�) = Si3(O�)

di3g

dy
(O�).

Here Sik(O�) = limz→O�, z∈Iik
S(z), Iik ∼ O�, k = 1, 2, 3; we assume that

H(Y −1(z)) < H(Y −1(O�)) or H(Y −1(z)) > H(Y −1(O�)) simultaneously
for z ∈ Ii1 ∪ Ii2 .

The operators Lk, k = 1, . . . , n and the gluing conditions define the limiting
process Zt in a unique way.

The proof of this theorem is carried out, in general, using the same scheme as
in the case of nondegenerate perturbations. The most essential difference arises
in the proof of the Markov property (step 4) in the plan described in Sect. 1. We
use here a priori bounds of Hörmander type instead of Krylov and Safonov [1].
The detailed proof of Theorem 7.1 can be found in Freidlin and Weber [1], [2].
The degenerate perturbations of a general Hamiltonian system with one degree
of freedom are considered in that paper as well.

One can consider more general perturbations:

q̇εt =
1

ε
pεt ,

ṗεt = −
1

ε
F ′(qεt ) + σ(qεt )Ẇt,

(7.13)

where σ(q) > σ0 > 0 is a bounded smooth function.
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For any point (i, y) of the graph Γ corresponding to H(p, q) = p2

2 + F (q),
except the interior vertices, define

ai(y) =

∫

Gi(y)

σ2(q) dp dq.

Here Gi(y) is the domain in R
2 bounded by Y −1(i, y). If Ok is an interior ver-

tex and edges Ik0 , Ik1 , Ik2 ∼ Ok, the ∞-shaped curve Y −1(Ok) bounds two
domains Gk1 and Gk2 such that Y −1(Ikj) ⊂ Gkj , j = 1, 2. Put

βkj =

∫

Gkj

σ2(q) dp dq, j = 1, 2,

βk0 = −(βk1 + βk2).

Introduce a diffusion process Zt on Γ which is governed by the operator

Li =
1

2S′(i, y)

d

dy

(
ai(y)

d

dy

)

inside the edge Ii ⊂ Γ, where S(i, y) is the area of the domain Gi(y) and
S′(i, y) = dS(i,y)

dy ; at the vertices of Γ, the process Zt is governed by gluing
conditions: a continuous bounded function g(z), z ∈ Γ, belongs to the domain
of the generator A of the process Zt if and only if Ag is continuous on Γ and at
each interior vertex Ok, the following equality holds

βk1
d1g

dy
(Ok) + βk2

d2g

dy
(Ok) = βk0

d0g

dy
(Ok),

where dj

dy is the derivative along Ikj , j = 0, 1, 2.

Theorem 7.2. Let F (q) satisfies the conditions of Theorem 7.1, (pεt , q
ε
t ) be the

solution of (7.13). Then for any T > 0, the slow component Y (pεt , q
ε
t ) = Zε

t

converges weakly in the space of continuous functions f : [0, T ] → Γ to the
diffusion process Zt on Γ.

Proof. The proof of this theorem is similar to the proof of Theorem 7.1 (see
Freidlin and Weber [2]). ��

4 Consider the diffusion process (Xt, Px) in Rr corresponding to the operator

L =
1

2

r∑

i,j=1

Aij(x)
∂2

∂xi∂xj
+

r∑

i=1

Bi(x)
∂

∂xi
.

We say that a function H(x) is a first integral for the process (Xt, Px), if

Px{H(Xt) = H(x)} = 1, x ∈ Rr.
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If the function H(x), x ∈ Rr, is smooth, then H(x) is a first integral for the
process Xt if and only if for any x ∈ Rr,

r∑

i,j=1

Aij(x)
∂H

∂xi
(x)

∂H

∂xj
(x) = 0, LH(x) = 0.

This follows immediately from the Itô formula. Of course, just degenerate dif-
fusion processes can have a nontrivial first integral. If all diffusion coefficients
are equal to zero, the process turns into a dynamical system defined by the
vector field B(x) = (B1(x), . . . , Br(x)), and these conditions into equality
B(x) · ∇H(x) = 0, x ∈ Rr.

Trajectories of the process governed by the operator L can be described by
the equation

dXt = σ0(Xt) dWt +B(Xt) dt, X0 = x ∈ Rr,

where σ0(x)σ
∗
0(x) = (Aij(x)) and Wt is the Wiener process. Consider now

random perturbations of the process Xt:

dX̃ε
t = σ0(X̃

ε
t ) dWt +B(Xt) dt+ εσ1(X̃

ε
t ) dW̃t + ε2b(X̃ε

t ) dt;

here σ1(x)σ
∗
1(x) = (aij(x)), b(x) = (b1(x), . . . , br(x)), W̃t is a Wiener process

independent of Wt. Let us rescale the time: Xε
t = X̃ε

t/ε2 . The generator of the
new process Xε

t is

Lε =
1

ε2
L+ L1, L1 =

1

2

r∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

r∑

i=1

bi(x)
∂

∂xi
.

Assume that the operator L1 is uniformly elliptic with smooth bounded coeffi-
cients. Suppose the nonperturbed process Xt has a smooth first integral H(x).
Assume that H(x) is a generic function. It has a finite number of nondegenerate
critical points, and each level set contains at most one critical point. Moreover, let
lim|x|→∞ H(x) =∞, minx∈R2 H(x) = 0. Let C(y) = {x ∈ R2 : H(x) = y},
y ≥ 0. The set C(y) is compact and consists of a finite number n(y) of connected
components Ck(y), C(y) =

⋃n(y)
k=1 Ck(y).

The process Xt is degenerate since it has a nontrivial first integral. But
we assume that

∑r
i,j=1 A

ij(x)eiej ≥ ak(y)|e|2 for any e = (e1, . . . , er),
e · ∇H(x) = 0, x ∈ Ck(y), with some ak(y) > 0, if Ck(y) has no critical
points. The last assumption means that the process Xt is not degenerate if con-
sidered on a nonsingular manifold Ck(y). The manifold Ck(y) is compact. Thus,
the process Xt has on any nonsingular Ck(y) a unique invariant density Mk

y (x).
If Ck(y) contains a critical point O, we assume that the process Xt considered
on Ck(y) has just one invariant probability measure concentrated at the point O.
Under these conditions, the limiting behavior of the process Xε

t was studied in
Freidlin and Weber [3].
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One can introduce fast and slow components of the perturbed process (Xε
t ,

Px): the fast motion along the level sets of the first integral and the slow motion
in the transversal direction. The slow motion can be described, at least in a neigh-
borhood of a nonsingular level set Ck(y), by the evolution of H(Xε

t ). The fast
component near the manifold Ck(y) has a distribution close to the distribution
with the density Mk

y (y) if 0 < ε! 1.
To describe the evolution of the slow component, let us apply the Itô formula

to H(Xε
t ):

H(Xε
t )−H(x) =

1

ε

∫ t

0

∇H(Xε
s ) · σ0(X

ε
s ) dWs +

1

ε2

∫ t

0

LH(Xε
s ) ds

+

∫ t

0

∇H(Xε
s ) · σ1(X

ε
s ) dW̃s +

∫ t

0

L1H(Xε
s ) ds.

(7.14)

Since H(x) is a smooth first integral, condition (7.13) is fulfilled. Therefore, the
first two integrals on the right-hand side of (7.14) having large factors vanish:

H(Xε
t )−H(x) =

∫ t

0

∇H(Xε
s ) · σ1(X

ε
s ) dW̃s +

∫ t

0

L1H(Xε
s ) ds. (7.15)

Consider now the graph Γ homeomorphic to the set of connected components
of the level sets of the function H(x). Let Γ consist of the edges I1, . . . , In and
vertices O1, . . . , Om. Let Y : Rr → Γ be the mapping defined earlier in this
chapter in the case r = 2 : Y (x) is the point of Γ corresponding to the connected
component of C(H(x)) containing the point x ∈ Rr; Y (x) = (k(x), H(x)),
where (k,H) are the coordinates on Γ. The function k(x), as well as H(x), is a
first integral for the process Xt.

Consider the random processes Y ε
t = Y (Xε

t ) on Γ, ε > 0. These processes
converge weakly to a diffusion process Yt on Γ as ε ↓ 0. To calculate the charac-
teristics of the limiting process, consider, first, an interior point (y, k) of the edge
Ik ⊂ Γ. Let Ck(y) be the corresponding level set component. Then, using (7.15)
and the fact that the process Xt on Ck(y) is ergodic and Mk

y (x) is its limiting
density, one can prove that the process Yt inside Ik is governed by the operator

L̄k =
1

2
āk(y)

d2

dy2
+ b̄k(y)

d

dy
,

āk(y) =

∮

Ck(y)

r∑

i,j=1

aij(x)
∂H(x)

∂xi

∂H(x)

∂xj
Mk

y (x) dx,

b̄k(y) =

∮

Ck(y)

L1H(x)Mk
y (x) dx.

To determine the limiting process Yt for all t ≥ 0, the behavior of the process
after touching the vertices should be described. One can prove that the exterior
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vertices are inaccessible. To calculate the gluing conditions at the interior ver-
tices, one can, sometimes, use the same approach as we used before. Assume that
the processes in Rr corresponding to the operators L and L1 have the same invari-
ant density M(x). Then the density M(x) is invariant for the process (Xε

t , Px)
for any ε > 0. Define the measure μ̄ on Γ as the projection on Γ of the measure
μ, μ(D) =

∫
D
M(x) dx, D ⊂ Rr:

μ̄(γ) = μ(Y −1(γ));

γ is a Borel set in Γ. Then the measure μ̄ will be invariant for the processes Y ε
t ,

ε > 0, and for the limiting process Yt. Now, if we know that Yt is a continuous
Markov process on Γ, the gluing conditions at a vertex Ok are described by a
set of nonnegative constants αk, βk1, . . . , βk�, where � is the number of edges
connected with Ok. These constants can be chosen in a unique way so that the
process Yt has the prescribed invariant measure (see details in Freidlin and We-
ber [4]).

For example, one can use such an approach if

L = L̂+B(x) · ∇, L1 = L̂1 + b(x) · ∇,

where L̂ and L̂1 are self-adjoint operators and the vector fields B(x) and b(x)
are divergence free. The Lebesgue measure is invariant for L and L1 in this case.

Note that if the process (Xt, Px) degenerates in a dynamical system, to repeat
our construction and arguments, we should assume that the dynamical system has
a unique invariant measure on each connected component Ck(y). This assump-
tion, in the case when the dimension of the manifolds Ck(y) is greater than 1, is
rather restrictive. One can expect that the convergence to a diffusion process on
the graph still holds under a less restrictive assumption, namely, that the dynam-
ical system on Ck(y) has a unique invariant measure stable with respect to small
random perturbations.

5 The nonperturbed process (Xt, Px) (or the dynamical system) in Rr governed
by the operator L may have several smooth first integrals H1(x), . . . , H�(x);
� < r. Let

C(y) = {x ∈ Rr : H1(x) = y1, . . . , H�(x) = y�}, y = (y1, . . . , y�) ∈ R�.

The set C(y) may be empty for some y ∈ R�. Let C(y) consist of n(y) connected
components: C(y) =

⋃n(y)
k=1 Ck(y). Assume that at least one of the first integrals,

say H1(x), tends to +∞ as |x| → ∞. Then each Ck(y) is compact.
A point x ∈ Rr is called nonsingular if the matrix (∂Hi(x)/∂x

j), 1 ≤ i ≤ �,
1 ≤ j ≤ r, has the maximal rank �. Assume that the nonperturbed process at
a nonsingular point x ∈ Rr is nondegenerate, if considered on the manifold
C(H1(x), . . . , H�(x)). This means that

∑

i,j

Aij(x)eiej ≥ a(x)|e|2, a(x) > 0,
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for any e = (e1, . . . , er) such that e · ∇Hk(x) = 0, k = 1, . . . , �. Then, the dif-
fusion process Xt on each Ck(y), consisting of nonsingular points, has a unique
invariant measure. Let Mk

y (x), y ∈ R�, y ∈ Ck(y), be the density of that mea-
sure.

The collection of all connected components of the level sets C(y), y ∈ R�,
provided with the natural topology is homeomorphic to a set Γ consisting of
glued �-dimensional pieces. The interior points of these pieces correspond to the
nonsingular components Ck(y).

Define the mapping Y : Rr �→ Γ : Y (x), x ∈ Rr, is the point of Γ cor-
responding to the connected component of C(H1(x), . . . , H�(x)) containing x.
One can expect that the stochastic processes Y ε

t = Y {Xε
t ), where Xε

t corre-
sponds to Lε = (1/ε2)L + L1, converge weakly (in the space of continuous
functions on [0, T ] with values in Γ, provided with the uniform topology) to a
diffusion process Yt on Γ as ε→ 0.

Inside an �-dimensional piece γk ⊂ Γ, the matrix (∂Hi(x)/∂x
j) has rank �,

and the values of the first integrals H1(x), . . . , H�(x) can be used as coordinates.
The process Yt in these coordinates is governed by an operator

L̄k =
1

2

�∑

i,j=1

āijk (y)
∂2

∂yi∂yj
+

�∑

i=1

b̄ik(y)
∂

∂yi
.

The coefficients āijk (y) and b̄ik(y) can be calculated by the averaging procedure

with respect to the density Mk
y (x):

āijk (y) =

∮

Ck(y)

r∑

m,n=1

Amn(x)
∂Hi(x)

∂xm

∂Hj(x)

∂xn
Mk

y (x) dx,

b̄ik(y) =

∮

Ck(y)

LHi(x)M
k
y (x) dx.

To determine the limiting process, Yt for all t ≥ 0, one should supplement the
operators L̄k governing the process inside the �-dimensional pieces, by the gluing
conditions in the places where several �-dimensional pieces are glued together.
These gluing conditions should be, in a sense, similar to the boundary conditions
for the multidimensional process (see Wentzell [9]).

6 In the conclusion of this section, we would like to mention one more asymp-
totic problem leading to a process on a graph.

Consider the Wiener process Xε
t in the domain Gε ⊂ Rr, shown in Fig. 29(a),

with the normal reflection on the boundary. The domain Gε consists of a ball of
the radius ρε and of three cylinders of radii εr1, εr2, εr3, respectively. Let the
axes of these cylinders intersect at center O of the ball. It is natural to expect that
the projection of the process Xε

t on the “skeleton” Γ of the domain Gε, shown in
Fig. 29(b), converges to a stochastic process on Γ, as ε ↓ 0. One can check that,
inside each edge of the graph, the limiting process will be the one-dimensional
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Figure 29.

Wiener process. Assuming that near the points A, B, C, the boundary of Gε con-
sists of a piece of the plane orthogonal to the axis of the corresponding cylinder,
it is easy to see that the limiting process has instantaneous reflection at the points
A, B, C ∈ Γ. To determine the limiting process for all t ≥ 0, we should describe
its behavior at the vertex O.

The gluing condition at O depends on the relation between ρε and ε. If
εmaxk rk ≤ ρε ! ε(r−1)/r, the gluing condition has the form

3∑

i=1

rr−1
i

du

dyi
(0) = 0, (7.16)

where d/dyi means the differentiation along the ith edge and yi is the distance
from O. Condition (7.16) means that the limiting process spends time zero at
the vertex. If ρε # ε(r−1)/r, then the point O is a trap for the process: after
touching O, the trajectory stays there forever. The gluing condition in this case is

u′′(0) = 0,

independently of the edge along which this derivative is calculated.
If limε↓0 ρ

εε(r−1)/r = κ, then the domain of the generator of the limiting
process consists of continuous functions u(x), x ∈ Γ, for which u′′(x) is also
continuous and

3∑

i=1

rr−1
i

du

dyi
(0) =

κrΓ( 12 )Γ(
r+1
2 )

Γ( r+2
2 )

u′′(0).



332 8. Random Perturbations of Hamiltonian Systems

The limiting process in this case spends a positive time at O.
This problem and some other problems leading to the processes on graphs

were considered in Freidlin and Wentzell [4] in Freidlin [21].

8 Deterministic Perturbations of Hamiltonian Systems.
One Degree of Freedom

Consider deterministic perturbations of an oscillator

¨̃qεt = −F ′( ˙̃qεt ) + ε2β( ˙̃qεt , q̃
ε
t ), q̃ε0 = q ∈ R

1, ˙̃qε0 = p ∈ R
1. (8.1)

We assume that the Hamiltonian H(p, q) = p2

2 + F (q) of the nonperturbed
system satisfies the assumptions introduced in this chapter: it is smooth enough,
lim|x|→∞ H(x) = ∞, where x = (p, q), H(x) has a finite number of critical
points and each of them is not degenerate. Note that the Hamiltonian in this case
has no local maxima.

A typical example of the perturbation in (8.1) which we are interested in is
the classical friction: β(p, q) = −p = −q̇.

It is clear that on each finite time interval q̃εt converges uniformly as ε ↓ 0
to the solution of the nonperturbed equation with the same initial conditions. To
describe the deviations from the nonperturbed motion on time intervals growing
together with ε−1, it is convenient to rescale time: Put qεt = q̃εt/ε2 . Then we come
to the system

ṗεt = −
1

ε2
F ′(qεt ) + β(pεt , q

ε
t ), q̇εt =

1

ε2
pεt . (8.2)

The trajectory Xε
t = (pεt , q

ε
t ) has a fast component, which is close to the

nonperturbed motion with a “fast time,” and the slow component, which, as we
have already seen, is the projection Y (Xε

t ) of Xε
t on the graph Γ corresponding

to H(x). If H(x) has just one well, Γ consists of one edge, and the slow motion
can be completely characterized by H(Xε

t ). The classical averaging principle
(see, for instance, Arnold [1], Chap. 10) gives that H(Xε

t ) converges uniformly
on each finite time interval as ε ↓ 0 to the solution Yt of the equation

Ẏt =
1

T (Yt)
β̄(Yt), Y0 = H(Xε

0), (8.3)

where T (y) =
∮
C(y)

d�
|∇H(x)| is the period of oscillations with the energy y for

the nonperturbed system, β̄(y) =
∮
C(y)

∇H(x)·β(x)
|∇H(x)| d� =

∫
G(y)

∂β(p,q)
∂p dp dq,

C(y) = {x ∈ R
2 : H(x) = y}, G(y) is the domain in R

2 bounded by C(y). For
a general one degree of freedom Hamiltonian system with one well Hamiltonian
perturbed by a vector field ε2B(x), which (after the time change) has the form
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Figure 30.

Ẋε
t =

1

ε2
∇̄H(Xε

t ) +B(Xε
t ), Xε

0 = x ∈ R
2, (8.4)

the result is similar: just β̄(y) =
∫
G(y)

divB(x) dx. System (8.2) is, of course, a
special case of the last equation with B(x) = (β(x), 0).

Suppose now that H(x) = p2

2 + F (q) has one saddle point at O2 and
H(O2) = 0. The phase picture of the nonperturbed system, the corresponding
graph Γ, and the∞-shaped curve C(0) are shown in Fig. 30.

Assume, that the perturbation in (8.1) is “friction-like”: ∂β(p,q)
∂p < 0; for (8.4)

friction-like perturbation means that divB(x) < 0. Later, we are going to con-
sider perturbations without this assumption.

After the addition of friction-like perturbation, the stable, but not asymptoti-
cally stable equilibriums O1 and O3 become asymptotically stable equilibriums
O′

1 and O′
3. The saddle point O2 goes to the saddle point O′

2 for the perturbed
system. The distance between Oi and O′

i is less than Aε2 for some constant A
and ε ! 1. Separatrices of the saddle point O′

2 are shown in Fig. 31. They,
roughly speaking, divide the plane outside the∞-shaped curve C(0) in ribbons:
the gray ribbon enters the neighborhood of O′

1, and the white ribbon enters the
neighborhood of O′

3.
Consider the separatrix containing a point a. Let γ be the curve (depending

on ε) orthogonal to the perturbed trajectories Xε
t and containing a. Assume that

the separatrix first time comes back to γ at a point c ∈ γ (Fig. 31). Consider the
domain E1 ∈ R

2 bounded by a piece of the separatrix between the points a and
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Figure 31.

c and by the part γac of γ between the points a and c. The flux of the vector field
1
ε2 ∇̄H(x)+B(x) through the boundary ∂E1 of E1 is equal to−

∫
γac
| 1ε2 ∇̄H(x)+

B(x)| d�, where d� is the length element on γ. The divergence theorem implies

−
∫

γac

∣∣∣∣
1

ε2
∇̄H(x) +B(x)

∣∣∣∣ d� =
∫

E1

divB(x) dx. (8.5)

Let Uδ(x) = {y ∈ R
2 : |x − y| < δ}. Equality (8.5) implies the following

bounds.

Lemma 8.1. Assume that a separatrix contains a point a and comes back to the
curve γ containing a and orthogonal to the perturbed trajectory at a point c.
Assume that the piece γac of γ between the points a and c has no intersections
with the separatrix. Let E1 be the domain in R

2 bounded by the piece of separatrix
connecting a and c and by γac. Assume that E1 contains Uδ(O1) either Uδ(O3)
or both of them. Then constants A1, A2, A3 exist such that, for small ε > 0,

A1ε
2 < |a− c| < A2ε

2, H(a)−H(c) > A3ε
2.

For any δ > 0 and a /∈ Uδ(O
′
1) ∪ Uδ(O

′
2) ∪ Uδ(O

′
3), |a| ≤ 1

δ , the constants
A1, A2, A3 can be chosen the same.

Let a point x be situated outside the ∞ shaped curve C(0). To be specific,
let x belong to the white ribbon. Let γ be the curve orthogonal to perturbed tra-
jectories containing x, and a, b, c be the intersection points of γ with separatrices
neighboring to x (Fig. 31). The curve γ and a, b, c depend not just on x but also
on ε.
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Lemma 8.2. Let x be a point outside C(0), and the points a, b, c be defined as
above. Then

lim
ε↓0

|b− a|
|c− b| =

∫
G1

divB(x) dx
∫
G2

divB(x) dx
, (8.6)

where G1 and G2 are domains bounded by C(0) (Fig. 30).

Proof. The proof consists of two steps. First, let us show that the limit in (8.6) is
independent of x. Let b′ be another point on the same separatrix as b. Let a′ and
c′ be the closest to b intersection points of the curve γ′ orthogonal to perturbed
trajectories and containing b′ with another separatrix (Fig. 31).

In the domain {x ∈ R
2 : H(x) > H(O2) + δ}, δ > 0, one can make a

nonsingular change of variables (p, q) → (H,ϕ) such that the perturbed system
(after the time change) has the form

Ḣε
t = β̃1(H

ε
t , ϕ

ε
t ), ϕ̇ε

t =
1

ε2
Ω(Hε

t ) + β̃2(H
ε
t , ϕ

ε
t ),

β̃i(H,ϕ) = β̃i(H,ϕ+ 2π).

Existence of such variables (H,ϕ) follows from the existence of action-angle
coordinates for our system (Arnold [1], §52).

Now one can make a time change (divide both equations by (Ω(H) +
εβ̃2(H,ϕ))) so that the system can be written as follows

Hε
t = β̂(ε,Hε

t , ϕ
ε
t ), ϕε

t =
1

ε2
, (8.7)

where β̂ is bounded together with its first derivatives for H ≤ H0 < ∞. Let
system (8.7) be supplemented by initial conditions Hε

0 = h, ϕε
0 = ϕ. Note

that system (8.7) has the same trajectories as (8.4); just the velocity along the
trajectories was changed.

It follows from the classical averaging principle that Hε
t , Hε

0 = h converges
as ε ↓ 0 uniformly on each finite time interval to the solution of the averaged
equation

Ḣt = β̄(Ht) =
1

2π

∫ 2π

0

β(0, Ht, ϕ) dϕ, H0 = h,

and dHε
t

dh converges as ε ↓ 0 to the solution dHt

dh of the equation

d

dt

(
dHt

dh

)
=

dβ̄

dH
(Ht)

dHt

dh
,

dH0

dh
= 1

for any T > 0,

lim
ε↓0

max
0≤t≤T

|Hε
t −Ht| = 0, lim

ε↓0
max
0≤t≤T

∣∣∣∣
dHε

t

dh
− dHt

dh

∣∣∣∣ = 0. (8.8)
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Consider small neighborhoods of the points b and b′ (Fig. 31). Let the punc-
tured lines be the lines of the constant angle coordinate, so that ϕ(ã) = ϕ(b) =
ϕ(c̃), ϕ(a′′) = ϕ(b′) = ϕ(c′′); here ã and c̃ are intersection points of lines
ϕ = ϕ(b) with H = H(a) and H = H(c) respectively; a′′ and c′′ are defined in
a similar way. Let the solution of (8.7) starting at b reaches b′ at time t1. Then,
because of the structure of system (8.7), the trajectories started at ã and c̃ at time
t1 be, respectively, at a′′ and at c′′.

Let γ+ and γ− be the curves orthogonal to perturbed trajectories, γ+ � c̃,
γ− � ã; γ′

+ and γ′
− are orthogonal to perturbed trajectories, γ′

+ � c′′, γ′
− � a′′.

Let m and n be the intersection points of the line H = H(b) with γ− and γ+
respectively, m′ and n′ be the intersection points of H = H(b) = H(b′) with γ′

+

and γ′
−.

Taking into account Lemma 8.1, we derive from (8.8) that

lim
ε↓0

[
|ã− n|
|c̃−m| −

|a′′ − n′|
|c′′ −m′|

]
= 0.

This relation implies that the limit in (8.6), if exists, is independent of x ∈
{x ∈ R

2 : H(x) > H(O2)}:

lim
ε↓0

[
|a− b|
|b− c| −

|a′ − b′|
|b′ − c′|

]
= 0. (8.9)

Now we will prove that the limit in (8.6) exists and is equal to the right-
hand side of (8.6). Let δ > 0 be small. Choose a point x in the δ-neighborhood
of C(0) outside the ∞-shaped curve. Consider the domain Gδ

1 ⊂ R
2 bounded

by the piece γab of the curve γ between the points a and b and by perturbed
trajectories starting respectively at a and at b. Applying the divergence theorem
to the vector field 1

ε∇H(x) + β(x) in Gδ
1, we get:

∫

γab

[
1

ε
∇H(x) + β(x)

]
d� =

∫

Gδ
1

div β(x) dx.

Note that |areaGδ
1 − areaG1| < c1δ for a constant c1 independent of δ.

Therefore the last equality implies that

1

ε
∇H(x) · |b− a| =

∫

G1

div β(x) dx+ ρ1(δ) + ρ2(ε),

lim
δ↓0

ρ1(δ) = 0, lim
ε↓0

ρ2(ε) = 0.

In the similar way,

1

ε
∇H(x) · |b− c| =

∫

G2

div β(x) dx+ ρ′1(δ) + ρ′2(ε),

lim
δ↓0

ρ′1(δ) = 0, lim
ε↓0

ρ′2(ε) = 0.
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Therefore
∣∣∣∣
|b− a|
|b− c| −

∫
G1

div β(x) dx
∫
G2

div β(x) dx

∣∣∣∣ < c2ρ3(ε, δ), lim
ε,δ↓0

ρ3(ε, δ) = 0.

This bound, together with (8.9) imply the statement of Lemma 8.2. ��

Let a be the intersection point of γ and the closest to x separatrix such that
H(a) > H(x). Let this separatrix sequentially crosses γ at points b and c. Let x′

be the intersection point of Xε
t (x), t > 0, with γbc.

Lemma 8.3. Constants A4, A5, A6 > 0 exist such that, for ε > 0 small enough,

H(x)−H(x′) > A4ε
2, A5ε

2 < |x− x′| < A6ε
2. (8.10)

For any δ > 0, the constants A4, A5, A6 can be chosen the same for all x such
that |x| ≤ 1

δ , x /∈ Uδ(O
′
1) ∪ Uδ(O

′
2) ∪ Uδ(O

′
3). Suppose x1, x2, x3 ∈ γab, and

y1, y2, y3 are the intersection points of Xε
t (x1), Xε

t (x2), Xε
t (x3) respectively

with a curve γ′ orthogonal to perturbed trajectories. Then

lim
ε↓0

|x1 − x2|
|x3 − x2|

= lim
ε↓0

|y1 − y2|
|y3 − y2|

. (8.11)

In particular, one can take x1 = a, x3 = b (then Xε
t (a), X

ε
t (b) are separa-

trices).

The proof of this lemma is similar to the proof of Lemma 8.1 (bounds (8.10))
and to the proof of equality (8.7) (equality (8.11)) and we omit it.

Remark. Let x1 = a, x2 ∈ γab, x3 = b �= x2. Then (8.11) is preserved if
Xε

t (b) enters O′
2 before intersecting γ′, if y3 is the intersection point of γ′ with

the separatrix exiting O′
2 (Fig. 33).

Our goal now is to estimate the time of “one rotation” of Xε
t (x) around O′

1

either O′
3 or around both of them. First, note that if x is situated outside a fixed

(independent of ε) neighborhood of the ∞-shaped curve C(0), the trajectory
Xε

t (x) comes back to corresponding curve γ � x (Fig. 32), at least, if ε > 0 is
small enough. The time of such a rotation Tε(x) < ε2A(x) (recall that we made
time change t → t

ε2 ); A(x) here is independent of ε and bounded uniformly in
each level set disjoint with C(0).

If x is close to C(0), then Xε
t (x) comes to a δ-neighborhood Uδ(O

′
2) of O′

2

in a time less than ε2Aδ , Aδ < ∞. But the time spent by the trajectory inside
Uδ(O

′
2) of O′

2 can be large even for small ε; in particular, the separatrices entering
O′

2 never leaves Uδ(O
′
2). So we should consider trajectories started at distance δ

from O′
2 in more detail.

Note that in two-dimensional case, a neighborhood U of a saddle point ex-
ists such that the system can be reduced to a linear one in U by a nonsingular
diffeomorphism of the class C1,α, α > 0 (Hartman [1], Theorem 7.1).
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Figure 32.

Figure 33.

In our case, the system depends on a parameter ε, but one can check that
neighborhood U and α > 0 can be chosen the same for all small enough ε,
and the C1,α-norm of the functions defining the diffeomorphism are bounded
uniformly in ε.

Let δ > 0 be so small that U2δ(O
′
2), for ε small enough, belongs to the

neighborhood U of O′
2 where our perturbed system can be linearized. The saddle

point O′
2 (Fig. 34) under this transformation goes to the origin O, the separatrices

of O′
2 go to the axes x̂ and ŷ, the trajectories Xε

t go to the trajectories of the linear
system (Fig. 35).

One can explicitly calculate the time θ(ĥ, δ̂) which the linear system trajec-
tory needs to go from a point (ĥ, ŷ0) to (δ̂, ŷ1) (Fig. 34):

θ(ĥ, δ̂) = const ·
∣∣∣∣ln

ĥ

δ̂

∣∣∣∣. (8.12)
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Figure 34.

Figure 35.

Let a perturbed trajectory enter Uδ(O
′
2) at a point x ∈ ∂Uδ(O

′
2), H(x) > 0,

and exits Uδ(O
′
2) at a point y ∈ ∂Uδ(O

′
2). We can assume that x and y are

close enough to the pieces of the separatrices which go to the axises x̂, ŷ after
the linearization so that the curves γ and γ′ orthogonal to perturbed trajectories
and containing x and y respectively cross these pieces of separatrices at points a
and a′ (Fig. 36). Let the distance between x and the last piece of the separatrix
entering O′

2 be equal to h. Consider the closest to x separatrix γ at a point b such
that H(b) > H(x). Let l be the distance between x and this separatrix.

If there is at least one whole ribbon between x and the piece of the separatrix
entering O′

2 (and containing point a), the trajectory Xε
t (x) makes a complete ro-

tation around both O′
1 and O′

3 and crosses γ at a point x′ ∈ γ. The time spent
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Figure 36.

by this trajectory outside Uδ(O
′
2) is bounded from above by A7ε

2. Since the per-
turbed system can be linearized in U2δ(O

′
2) by a C1,α-diffeomorphism, equality

(8.12) implies that the transition from x to y takes time less than A8ε
2|lnh|; A7

and A8, in particular, depend on δ, but are independent of ε.
The trajectory Xε

t (x) comes to ∂Uδ(O
′
2) again at the point z (Fig. 36). It

follows from the divergence theorem that the distance from z to the last piece
of the separatrix entering O2 (and containing the point v in Fig. 36), in the case
when Xε

t (x) comes back to x′ ∈ γ, is bounded from below and from above by
A9h and A10h respectively. Therefore the transition from z to z′ also takes time
less than A11ε

2|lnh|.
Consider now the case when between the initial point y ∈ ∂Uδ(O

′
2) and

the last piece of the separatrix entering O′
2 there is no whole ribbon (Fig. 37).

Transition between y and y′, because of the same reasons as above, takes time
less than A12ε

2|lnh|, where h is distance between y and the last piece of sep-
aratrix entering O′

2. But complete rotation of the trajectory Xε
t (y) includes also

the transition from z to y′′. The distance from z to the separatrix entering O′
2

is bounded from below and from above by A13l and A14l respectively, where
l is the distance between y and the closest to y separatrix crossing γ at a
point b such that H(b) > H(y). Therefore, the transition time between z and
y′′ is less than A15ε

2|ln l|, and the whole rotation time for Xε
t (y) is less than

A16ε
2(|lnh|+ |ln l|) for ε > 0 small enough.

Denote by Tε(x) the time of complete rotation for the trajectory Xε
t (x),

∇H(x) �= 0:

Tε(x) = min{t > 0 : Xε
t (x) crosses twice one of the curves γ or γ′}.
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Figure 37.

Summarizing these bounds and taking into account that outside Uδ(O
′
1) ∪

Uδ(O
′
2) ∪ Uδ(O

′
3) each trajectory Xε

t (x) spends time bounded uniformly in ε,
we get the following result.

Lemma 8.4. Let Xε
t (x) enter Uδ(O

′
2) at a point y = y(x) ∈ ∂Uδ(O

′
2), and let

h = h(x) be the distance between y(x) and the last piece of a separatrix entering
O′

2. Let γ be the curve orthogonal to perturbed trajectories and containing y(x).
If in one complete rotation, Xε

t (y(x)) come back to γ, then

Tε(x) ≤ A17ε
2|lnh(x)|. (8.13)

If Xε
t (y(x)) does not come back to γ′, and l(x) is the distance from y(x) to

the closest separatrix, which crosses γ at a point b, such that H(b) > H(x), then
for ε > 0 small enough,

Tε(x) < A18ε
2(|lnh(x)|+ |ln l(x)|). (8.14)

Constant A17, A18 can be chosen the same for all x �∈ Uδ(O
′
1) ∪ Uδ(O

′
2) ∪

Uδ(O
′
3), |x| < 1

δ , and all ε > 0 small enough.

Let α be a small positive number. Denote by Eα = Eα(ε) the set of points
x ∈ R

2 such that the distance between x and the closest separatrix is greater than
ε2α. Let E g

α be the intersection of Eα with the gray ribbon; E w
α be the intersection

with the white ribbon.
Denote by Λε(x, β) the time when Xε

t (x) reaches C(β):

Λε(x, β) = inf{t > 0 : H(Xε
t (x)) = β};

if H(x) > 0 and |β| is small, Λε(x, β) <∞ for all small ε > 0.
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Lemma 8.5. Let H(x0) > 0 and let μ > 0 be so small that H(x) > 0 for x ∈
U2μ(x0). There exist α0, β0 > 0 and A19 such that for each x ∈ Uμ(x0) ∩ Eα,
α ∈ (0, α0), β ∈ (0, β0),

Λε(x,−β)− Λε(x, β) < A19β lnβ−1 (8.15)

for ε < ε0. Here A19, in particular, depends on α and β but is independent of ε;
ε0 > 0 depends on α and β.

Proof. Without loss of generality, we can assume that U2μ(x0) ∩ Uδ(O
′
2) = ∅;

otherwise, we choose smaller δ > 0. Put

Λ̃ε(x, β) = inf

{
t > 0 :

β

2
≤ H(Xε

t (x)) ≤
3β

2
, Xε

t (x) ∈ ∂Uδ(O
′
2),

∇̄H(Xε
t (x)) is directed inside ∂Uδ(O

′
2)

}
.

It is easy to see that A20 = A20(β) exists such that

Λε(x, β)− Λ̃ε(x, β) < A20ε
2

for ε > 0 small enough. Therefore, to prove (8.15), it is sufficient to prove that,
for small enough ε > 0,

Λε(x,−β) < A19β lnβ−1 (8.16)

just for x ∈ V ε
δ,β = {y : β

2 ≤ H(y) ≤ 3β
2 , y ∈ ∂Uδ(O

′
2), ∇̄H(y) is directed

inside Uδ(O
′
2)}.

For ε, β0 > 0 small enough the trajectory Xε
t (x), x ∈ C(β), 0 < |β| < 2β0,

crosses ∂Uδ(O
′
2) at a point y = y(x, ε, β) which is close to C(0) ∩ ∂Uδ(O

′
2).

Denote by h(y) the distance between y and the closest piece of a separatrix which
goes to an axis in the linearization diffeomorphism (these pieces are denoted
by 1, 2, 3, 4 in Fig. 36). Let β0 > 0 be so small that C(2β0) does not cross
Uδ(O

′
1) ∪ Uδ(O

′
3) and for some A21 = A21(δ), A22 = A22(δ),

A21H(y) ≤ h(y) ≤ A22H(y) (8.17)

for any x ∈ C(β), |β| < 2β0. Such A21, A22 > 0 exist since H(x) = 0 for
x ∈ C(0) and |∇H(x)| > α0 > 0 if |H(x)| ≤ 2β0 and x �∈ Uδ(O

′
2).

Consider the sequence of complete rotations for a perturbed trajectory Xε
t (x),

x ∈ V ε
δ,β , |β| ≤ β0. According to Lemma 8.3, the value of the Hamiltonian

decreases in each such rotation not less than by A23(δ)ε
2 and not more than by

A24(δ)ε
2. Then, because of (8.17) the distance h to the last pieces of separatrices

decreases in each rotation not less than by A25ε
2 and not more than by A26ε

2.
Since x ∈ Eα, according to Lemma 8.3 and the Remark to this lemma, the dis-

tance between Xε
t (x) and the separatrices outside the δ-neighborhoods of equi-

libriums is greater than A27αε
2 for some A27 > 0 independent of ε and α.
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Then, taking into account the bounds (8.13) and (8.14) of Lemma 8.4 for the
time of complete rotation, we conclude that for small enough ε, α > 0, x ∈ V ε

δ,β

and some A28 = A28(α, β) > 0,

Λε(x,−β) < A28

[ β

ε2
]∑

k:|k|=1

ε2|ln |kε2||. (8.18)

The sum in the right-hand side of (8.18) converges as ε ↓ 0 to
∫ β

−β

|ln |z|| dz = −2
∫ β

0

|ln z| dz = 2(β lnβ−1 + β) ≤ 3β lnβ−1.

This bound together with (8.18) imply (8.16) and the statement of Lemma 8.5.
��

Now we are in a position to consider the averaging principle for one-degree-
of-freedom Hamiltonian systems with multiwell Hamiltonian. First, let us note
that the classical version of the averaging principle with uniform convergence of
the slow component on any finite time interval (after the time change) with any
initial point does not hold. To see this note that the whole picture in Fig. 31
shrinks to the ∞-shaped curve C(0) as ε ↓ 0. Therefore the initial point x,
H(x) > 0, turn by turn belongs to the white or to the gray ribbon. As one
can derive from Lemma 8.5, when x is not too close to separatrices, Xε

t (x)
enters G1 or G2 in a finite time; if x ∈ Eα and H(x) ≤ H0 < ∞, then
T0 = T0(H0, α, μ) < ∞ exists such that H(Xε

t (x)) < −μ for t > T0 if μ,
α and ε = ε(α) are small enough. Since slow components in G1 and in G2, in
general, are different, limε↓0 H(Xε

t (x)) does not exist for t ≥ T0.
One can try to prove a weaker version of the averaging principle with con-

vergence of the slow component Y (Xε
t (x)) not for each initial point but in the

Lebesgue measure in the set of initial points. Such an approach allows, in particu-
lar, to overcome, under certain assumptions, difficulties related to the resonances
in systems with many degrees of freedom (see Lochak and Meunier [1] and ref-
erences there). This approach, which is, actually, equivalent to a regularization of
the problem by stochastic perturbations of the initial conditions, can be useful in
the multi-well Hamiltonian case.

Consider perturbations of an oscillator with one degree of freedom:

Xε,μ
t =

1

ε2
∇̄H(Xε,μ

t ) +B(Xε,μ
t ), Xε,μ

0 = x+ μξ. (8.19)

Here 0 < μ ! 1, ξ is a random variable distributed uniformly in the unit
circle {y ∈ R

2 : |y| ≤ 1}. The assumptions about H(x) and B(x) are the
same as before: H(x) is smooth, generic, lim|x|→∞ H(x) = ∞, H(x) has two
minima at O1 and O3 and a saddle point at O2, H(O2) = 0; B(x) is smooth and
divB(x) < 0. Later we will consider briefly Hamiltonians with more than two
wells and more general perturbations.
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Figure 38.

Equation (8.3) can be considered for each of three edges of the graph Γ cor-
responding to H(x):

ẏ
(i)
t =

1

Ti(y
(i)
t )

B̄(i)(y
(i)
t ),

Ti(z) =

∮

Ci(z)

d�

|∇H(x)| , B(i)(z) =

∫

Gi(z)

divB(x) dx,

(8.20)

where Ci(z) = Y −1(i, z) and Gi(z) is the domain in R
2 bounded by Ci(z),

i ∈ {1, 2, 3}.
Equation (8.20) for i = 1 can be solved for each initial condition y

(1)
0 =

y > 0, such a solution is unique, and y
(1)
t reaches 0 in a finite time T0(y). If

i = 2, 3, (8.20) with initial condition y
(i)
0 = y < 0 has a unique solution; if

y
(i)
0 = 0, (8.20) has a unique solution ỹ

(i)
t if we additionally assume that ỹ(i)t < 0

for t > 0.
Define two continuous functions ŷ1t (y) and ŷ2t (y), t ≥ 0, as follows: ŷ10 =

ŷ20 = y > 0,

ŷ1t (y) =

⎧
⎨

⎩
y
(1)
t , y

(1)
0 = y, 0 ≤ t ≤ T0(y),

ỹ
(2)
t−T0(y)

, T0(y) ≤ t <∞;

ŷ2t (y) =

⎧
⎨

⎩
y
(1)
t , y

(1)
0 = y, 0 ≤ t ≤ T0(y),

ỹ
(3)
t−T0(y)

, T0(y) ≤ t <∞.

Let us cut out αε2-neighborhoods of the separatrices (μ-neighborhood of a
point x0, H(x0) > 0, is shown in Fig. 38); recall that Eα is the exterior of the
εα-neighborhood of the separatrices, E g

α is the intersection of Eα with the gray
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ribbon, E w
α is the intersection of Eα with the white ribbon. In particular, E g

0 (E w
0 )

is whole gray (white) ribbon.
The classical averaging principle together with Lemma 8.5 imply that for

each x ∈ Uμ(x0) ∩ E g
α, H(x) = y > 0, for any λ, T > 0, and any small enough

α, μ > 0, there exists ε0 > 0 such that

max
0≤t≤T

|H(Xε
t (x))− ŷ1t (y)| < λ (8.21)

for 0 < ε < ε0.
Similarly, for each x ∈ Uμ(x0) ∩ E w

α , H(x) = y > 0,

max
0≤t≤T

|H(Xε
t (x))− ŷ2t (y)| < λ (8.22)

for 0 < ε < ε0.
Let H(x) > 0 for x ∈ Uμ(x0) so that Y : Uμ(x0) → I1 ⊂ Γ. Define a

stochastic process Y μ
t (x0), t ≥ 0, on Γ as follows:

Y μ
t (x0) = (1, ŷ1t (H(x0 + μξ))) for 0 ≤ t ≤ T0(x+ μξ).

At the time T0(x+μξ) the process Y μ
t (x0) reaches O2 and without any delay

goes to I1 or I2 with probabilities

p1 =

∫
G1

divB(x) dx
∫
G1∪G2

divB(x) dx
, p2 =

∫
G2

divB(x) dx
∫
G1∪G2

divB(x) dx
(8.23)

respectively, independently of the random variable ξ; Y μ
t (x0) = (1,

ŷ2t−T0(x0+μξ)(x0 + μξ)) for T0(x0 + μξ) ≤ t < ∞ if Y μ
t (x0) enters I1 at time

T0(x+μξ), and Y μ
t (x0) = (2, ŷ3t−T0(x0+μξ)(x0+μξ)) for T0(x0+μξ) ≤ t <∞

if Y μ
t (x0) enters I2 at time T0(x+ μξ).
In particular, one can consider a process Ȳt(x0) = Y 0

t (x0) on Γ. The pro-
cess Ȳt(x0) is deterministic inside the edges; its stochasticity concentrated at the
vertex O2: after reaching O2, Ȳt(x0) immediately goes to I1 or to I2 with prob-
abilities p1 or p2 defined by equalities (8.23).

Denote by S(D), D ⊂ R
2, the area of a domain D. Since the point x0 + μξ

is distributed uniformly in Uμ(x0),
∣∣∣∣P{X

ε
t (x0 + μξ) enters G1} −

S(E g
0 ∩ Uμ(x0))

S(Uμ(x0))

∣∣∣∣→ 0,

∣∣∣∣P{X
ε
t (x0 + μξ) enters G2} −

S(E w
0 ∩ Uμ(x0))

S(Uμ(x0))

∣∣∣∣→ 0,

(8.24)

as ε ↓ 0. According to Lemma 8.2,

lim
ε↓0

S(E g
0 ∩ Uμ(x0))

S(Uμ(x0))
= p1, lim

ε↓0

S(E w
0 ∩ Uμ(x0))

S(Uμ(x0))
= p2, (8.25)

where p1 and p2 are defined in (8.23).
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Taking into account that S(E g
α ∩ Uμ(x0)) → S(E g

0 ∩ Uμ(x0)) and S(E w
α ∩

Uμ(x0)) → S(E w
0 ∩ Uμ(x0)) as α ↓ 0, we derive from (8.21)–(8.25) that, for

each T > 0, the slow component Y (Xε,μ
t ) of Xε,μ

t converges weakly in the
space of continuous functions on [0, T ] with values in Γ to the process Y μ

t (x0).
It is easy to see that Y μ

t (x0) converges weakly to Ȳt(x0) as μ ↓ 0.
Summing up these arguments we get the following result:

Theorem 8.1 (Brin and Freidlin [1]). Let Xε,μ
t be the solution of (8.19), and

Y ε,μ
t = Y (Xε

t , μ) be the slow component of Xε,μ
t . Then, for each T > 0, Y ε,μ

t

converges weakly in the space of continuous functions f : [0, T ] → Γ to the pro-
cess Ȳt(x0) as, first, ε ↓ 0 an then μ ↓ 0.

Remark. Instead of taking the double limit of Y ε,μ
• (x0) first in ε ↓ 0 and then

in μ ↓ 0, one can consider the limit (in the weak sense) of Y ε,μ
• (x0) as ε, μ ↓ 0

so that εμ−1 → 0. Such a limit exists and coincides with Ȳ•(x0). Without the
condition εμ−1 → 0, the limit, in general, does not exist.

Theorem 8.1 can be easily extended to the case of Hamiltonians having more
than two local minima and no local maxima, if the perturbation is friction-like.
Note that in the case of (8.1), the Hamiltonian H(p, q) = p2

2 +F (q) has no local
maxima.

Define a continuous Markov process Ȳt(y) on Γ in the following way: Inside
the edges Ȳt(y) satisfies (8.20), Y0(y) = y ∈ Γ. Let Oi be an interior vertex of
Γ, and Ii1 , Ii2 ∼ Oi be the edges where the H-coordinate is less than H(Oi); let
Gi1 and Gi2 be the domains in R

2 bounded by the∞-shaped curve Y −1(Oi), so
that Y −1(Iik) ⊂ Gik, k = 1, 2. Put

pik =

∫
Gik

divB(x) dx
∫
Gi1∪Gi2

divB(x) dx
, k = 1, 2. (8.26)

When Ȳt(y) comes to Oi, it immediately leaves Oi for Ii1 or Ii2 with proba-
bilities pi1 and pi2 respectively independently of the past. The exterior vertices
are inaccessible for Ȳt, and we can put Ȳt(y) ≡ y if y is an exterior vertex. Then
Theorem 8.1 holds for multiwell Hamiltonian if the perturbations are friction-like
and Yt(y) is the process defined above.

If H(x) has just one saddle point, one can replace the assumption that the
perturbation is friction-like by a weaker assumption:

∫

G1

divB(x) dx �= 0,

∫

G2

divB(x) dx �= 0,

∫

G1∪G2

divB(x) dx �= 0.

(8.27)

Of course, if B(x) is not friction-like, the limiting slow motion Ȳt(y) can have
equilibriums inside the edges; if there is just one edge along which Ȳt(y) exits the
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saddle point, the limiting slow motion will be deterministic for any initial point
y ∈ Γ.

But it turns out that in the case of more than one saddle point the limit of Y ε,μ
t

as ε ↓ 0 does not exist for a wide class of perturbations (see Brin and Freidlin [1],
where this is discussed). So that perturbations of the initial conditions turn out
not sufficient, in general, for a regularization of the problem. On the other hand,
it is natural to assume that not the initial conditions but the equations themselves
undergo small stochastic perturbations.

We will show now that adding stochastic perturbations to the equation, one
can regularize the problem of general deterministic perturbations of one-degree-
of-freedom Hamiltonian systems. One should stress that the stochastic process
appearing as the limiting slow motion is the same for different regularizations.
In particular, if the regularization by stochastic perturbation of the initial condi-
tions exists, the limiting slow motion is the same as in regularization by various
stochastic perturbations of the equation. So that the stochasticity of the limiting
slow motion is an intrinsic property of deterministic perturbations of a determin-
istic system. Additional stochastic perturbations serve just for a regularization of
the problem. The stochasticity of the limiting slow motion, is, actually, a result
of instabilities in the nonperturbed system.

To be specific, we consider regularization of (8.1).
Define a stochastic process q̃ε,κt by the equation

¨̃qε,κt = −F ′(q̃ε,κt ) + ε2β( ˙̃qε,κt , q̃ε,κt ) + εκσ(q̃ε,κt )Ẇt.

Here Wt is a one-dimensional Wiener process, 0 < ε, κ! 1, σ(q) ≥ σ0 > 0
is a bounded smooth function. The process q̃ε,κt is the result of perturbations of q̃εt
defined by (8.1) by a noise which is smaller than the deterministic perturbations.
This becomes clear, if we rescale time t→ t

ε2 , qε,κt = q̃ε,κt/ε2 , pε,κt = ˙̃qε,κt/ε2 :

q̇ε,κt =
1

ε2
pε,κt ,

ṗε,κt = − 1

ε2
F ′(qε,κt ) + β(pε,κt , qε,κt ) + κσ(qε,κt )Ẇt.

(8.28)

The generator of diffusion process Xε,κ
t = (pε,κt , qε,κt ) on smooth functions

is equal to Lε,κ:

Lε,κu(p, q) =
κ2

2
σ2(q)

∂2u

∂p2
− 1

ε2
F ′(q)

∂u

∂p
+ β(p, q)

∂u

∂p
+

1

ε2
p
∂u

∂q
.

The slow component of Xε,κ
t is the projection Y (Xε,κ

t ) = Y ε,κ
t of Xε,κ

t on
the graph Γ corresponding to H(p, q). Our goal now is to show that the processes
Y ε,κ
t converge weakly as, first, ε ↓ 0 and then κ ↓ 0 to the process Ȳt(y), y =

Y (x), x = Xε,κ
0 , introduced earlier in this section.

We consider, first, the limit of Y ε,κ
t as ε ↓ 0 and κ is fixed. Define a diffusion

process Y κ
t on Γ which is governed by the operators
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Li = Lκ
i =

κ2

2Ti(y)

d

dy

(
āi(y)

d

dy

)
+ β̄i(y)

d

dy
, y ∈ Ii ⊂ Γ, (8.29)

inside the edges and by gluing conditions at the vertices. Here

Ti(y) =

∮

Ci(y)

d�

|∇H(x)| , āi(y) =

∫

Gi(y)

σ2(q) dp dq,

β̄i(y) =

∫

Gi(y)

∂β

∂q
(p, q) dp dq.

As before, Ci(y) = Y −1(i, y), Gi(y) ⊂ R
2 is the domain bounded by Ci(y).

A bounded continuous on Γ and smooth inside the edges function u(i, y) belongs
to the domain DAκ of the generator Aκ of the process Y κ

t if and only if Aκu
is continuous and bounded on Γ, and the following conditions are satisfied at
each interior vertex Ok ∈ Γ: Let Ii0 , Ii1 , Ii2 ∼ Ok; let Gk1 and Gk2 be the
domains bounded by separatrices associated with Ok, Gkj ⊃ Y −1(Iij ), j = 1, 2,
βkj =

∫
Gkj

σ2(p, q) dp dq, j ∈ {1, 2}, βk0 = −(βk1+βk2). Then u(i, y) ∈ DAκ

if and only if
2∑

j=0

βkjDju(Ok) = 0,

where Dj means differentiation in y along Iij . The process Y κ
t on Γ is defined

by these conditions in a unique way.

Theorem 8.2. The processes Y ε,κ
t = Y (Xε,κ

t ) converge weakly in the space of
continuous functions f : [0, T ]→ Γ to the diffusion process Y κ

t as ε ↓ 0.

Proof. Proof of this theorem follows the arguments of the proof of Theorem 2.2
(or of Theorem 7.2) and based on statements similar to Lemmas 3.2–3.6.

The tightness of processes Y ε,κ
t in the weak topology (analogy to Lemma 3.2)

can be proved in the same way as Lemma 3.2. Naturally modified equality (3.2)
(in particular, the operators Li should be defined by formulas (8.29)) also can be
proved similarly to Lemma 3.3.

But there are two differences with Theorem 2.2: First, perturbations in the
case of Theorem 8.2 (and in Theorem 7.2) are degenerate, and one should use
the Hörmander type a priori bounds. This question was addressed in Freidlin and
Weber [1], [2], [3], where Theorem 7.2 was proved and some generalizations
were considered. The second difference with Theorems 2.2 and 7.2 is due to
the additional drift term in the process Xε,κ

t . If β ≡ 0 in (8.28), the Lebesgue
measure is invariant for the process Xε,κ

t for any ε and κ, and this is used for
calculation of the gluing conditions.

To overcome the difficulties caused by the drift term, consider the process
X̂ε,κ

t defined by (8.28) with β ≡ 0. Note that the measures μT and μ̂T in the
space of trajectories on the time interval [0, T ] induced by Xε,κ

t and X̂ε,κ
t re-
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spectively are absolutely continuous one with respect to another. According to
the Girsanov formula

dμT

dμ̂T
= exp{Iε,κT }, Iε,κT =

∫ T

0

β(X̂ε,μ
s ) dWs

κσ(X̂ε,κ
s )

− 1

2κ2

∫ T

0

β2(X̂ε,κ
s ) ds

σ2(X̂ε,κ
s )

.

Lemma 8.6. Assume that |β(p, q)| ≤ β0, σ(q) > σ0 > 0. For each T0 > 0,
κ > 0, there exist a constant A29 such that for any ε, T ∈ [0, T0], x ∈ R

2,

Mx(I
ε,κ
T − 1)2 ≤ A29T

κ2
.

Proof. Proof is simple: applying the Itô formula to (Iε,κT − 1)2 and taking ex-
pected value, we have

Mx(I
ε,κ
T − 1)2 = Mx

∫ T

0

exp{2Iε,κt } β2(X̂ε,κ
t )

κ2σ2(Xε,κ
t )

dt

≤ β2
0

σ2
0κ

2

∫ T

0

Mx exp{2Iε,κt } dt

=
β2
0

σ2
0κ

2

∫ T

0

Mx exp

{∫ T

0

2β(X̂ε,μ
s ) dWs

κσ(X̂ε,κ
s )

− 2

κ2

∫ T

0

β2(X̂ε,κ
s ) ds

σ2(X̂ε,κ
s )

}

· exp
{

1

κ2

∫ T

0

β2(X̂ε,κ
s ) ds

σ2(X̂ε,κ
s )

}

≤ β2
0

κ2σ2
0

· T exp

{
T0β

2
0

κ2σ2
0

}
= A29T.

We used the fact that

Mx exp

{∫ T

0

2β(X̂ε,μ
s ) dWs

κσ(X̂ε,κ
s )

− 2

κ2

∫ T

0

β2(X̂ε,κ
s ) ds

σ2(X̂ε,κ
s )

}
= 1.

��

The next lemma gives the bounds similar to Lemmas 3.4 and 3.5; here
τ ε,κk (±δ) = min{t : Xε,κ

t /∈ Dk(±δ)}, domains Dk(±δ) were defined in
Sect. 1, τ̂ ε,κk (±δ) is the notation for τ ε,κk (±δ) as β ≡ 0.

Lemma 8.7. Let Ok be an interior vertex. Then for any λ, μ, κ > 0 there exists
δ0 > 0 such that for 0 < δ < δ0,

Mx

∫ τε,κ
k (±δ)

0

exp{−λt} dt < μδ (8.30)

for sufficiently small ε > 0 and all κ ∈ Dk(±δ).
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If Oj is an exterior vertex, then for any λ, μ, κ > 0 and each x ∈ Dj(±δ),

Mx

∫ τε,κ
j (±δ)

0

exp{−λt} dt < μ

for sufficiently small ε > 0.

Proof. We use the fact that these bounds hold in the case β ≡ 0. The detailed
proof of this statement for the case σ(q) ≡ 1, β ≡ 0 can be found in Freidlin and
Weber [1]; for arbitrary smooth bounded from below σ(q), the proof is similar.
Therefore one can find δ0 > 0 and ε0 = ε0(δ) such that

Mx

∫ τ̂ε,κ
k

0

exp{−λt} dt < μδ

2
(8.31)

for x ∈ Dk(±δ), δ < δ0, and 0 < ε < ε0(δ).

Choose T < min(μδ4 , μ2δ2λ2κ
16A29

). Let δ < δ0, ε < ε0(δ), x ∈ Dk(±δ). Denote
by χ1 the indicator function of the set {τ ε,κk (±δ) < T}. Using Lemma 8.7 and
(8.31), we get:

Mx

∫ τε,κ
k (±δ)

0

exp(−λt) dt

= Mxχ1

∫ τε,κ
k (±δ)

0

exp(−λt) dt+Mx(1− χ1)

∫ τε,κ
k (±δ)

0

exp(−λt) dt

≤ T +Mx

∫ τ̂ε,κ
k

0

exp(−λt) dt+Mx(I
ε,κ
T − 1)

∫ τ̂ε,κ
k (±δ)

0

exp(−λt) dt

≤ 2μδ

4
+

1

λ
[Mx(I

ε,κ
T − 1)2]1/2 < μδ.

The second statement of Lemma 8.7 can be proved in a similar way using the
corresponding result for the process X̂ε,κ

t . ��

Let Ok be an interior vertex, Ik0 , Ik1 , Ik2 ∼ Ok, Gk1 and Gk2 be the domain
bounded by the∞-shaped curve Y −1(Ok) so that Y −1(Ikj ) ⊂ Gkj , j ∈ {1, 2}.
Consider points ∂δ

0 , ∂δ
1 , ∂δ

2 ⊂ Γ: ∂δ
0 = (i0, H(Ok) + δ), ∂δ

1 = (i1, H(Ok)− δ),
∂δ
2 = (i2, H(Ok)− δ). Put βkj =

∫
Gkj

σ2(q) dp dq, j ∈ {1, 2}, βk0 = −(βk1 +

βk2), pkj =
βkj

|βk0| , j ∈ {1, 2}, pk0 = 1
2 .

The next lemma is a counterpart of Lemma 3.6.

Lemma 8.8. Let Ok be an interior vertex. Then for any μ > 0 there exists δ0 > 0
such that for each δ ∈ (0, δ0) one can find δ′ > 0 such that for sufficiently small
ε > 0

|Px{Y (Xε,κ
τε,κ
k (±δ)

) = ∂δ
j } − pkj | < μ (8.32)

for any x ∈ Dk(±δ′) and j ∈ {0, 1, 2}.
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Proof. Let T > 0 be so small that T < μ2κ2

16A29
. Similar to the bound (5.17), in the

case of β ≡ 0, we have:

Mxτ̃
ε,κ
k (±δ) ≤ A30δ

2|ln δ| (8.33)

for δ ∈ (0, δ1) with small enough δ1 > 0, x ∈ Dk(±δ) and small enough ε > 0
(see details in Freidlin and Weber [1]). Also for the process X̂ε,κ

t , the statement of
Lemma 8.8 holds. Let δ0 ≤ δ1 and δ′ be so small that for x ∈ Dk(±δ)∪∂Dk(±δ)
and 0 < δ < δ0,

|Px{Y (X̂τ̂ε,κ
k

) = ∂δ
j } − pkj | <

μ

2
(8.34)

for small enough ε > 0, and 2
T A30δ

2
0 |ln δ0| < μ

4 . Denote by χ2 the indica-
tor function of the event {τ̂ ε,κk (±δ) ≤ T} and by χ3 the indicator function of
{Y (X̂τ̂ε,κ

k (±δ)) = ∂δ
j }. Then, using (8.32), (8.33), (8.34), and Lemma 8.6, we

get for δ ∈ (0, δ0), x ∈ Dk(±δ) and small enough ε > 0:

|Px{Y (Xτε,κ
k (±δ)) = ∂δ

j } − pkj |
≤ |Mxχ3 − pkj |+ |Mxχ1χ3(I

ε,κ
T − 1)|+ 2Mx(1− χ1)

+ |Mx(1− χ2)(I
ε,κ
T − 1)|

≤ μ

2
+ 2A30

1

T
δ2|ln δ|+ [Mx(I

ε,κ
T − 1)2]1/2 ≤ 3μ

4
+

√
A29T

κ2
< μ.

The Theorem 8.3 can be derived from these lemmas in the same way as The-
orem 2.2 was derived from Lemmas 3.2–3.6 (see details in Freidlin and Weber
[1], [2]). ��

Now, we will prove the weak convergence of processes Y κ
t on Γ as κ ↓ 0.

First, note that the family of processes Y κ
t , 0 ≤ t ≤ T , 0 < κ ≤ 1, is tight in the

weak topology. This follows from the tightness of the family Y ε,κ
t = Y (Xε,κ

t )
and the weak convergence of Y ε,κ

t to Y κ
t .

Define a process Ȳt = Ȳt(y), Ȳ0(y) = y, on Γ as follows. Inside of each edge
Ii ⊂ Γ, Ȳt is the deterministic motion governed by the equation

˙̄Yt =
1

Ti(Ȳt)
β̄i(Ȳt), β̄i(y) =

∫

Gi(y)

∂β(p, q)

∂p
dp dq,

Ti(y) =

∫

Ci(y)

d�

|∇H(x)| =
dS(Gi(y))

dy
,

where S(Gi(y)) is the area of the domain Gi(y) bounded by Ci(y) = Y −1(i, y).
If Oj is an exterior vertex and Ȳ0 = Oj , put Ȳt ≡ Oj for all t ≥ 0. It is easy

to see that if an initial point Ȳ0 is not an exterior vertex, then Ȳt never enters any
exterior vertex in a finite time.

Interior vertices can be reached by Ȳt in a finite time. Let Ok ∈ Γ be an
interior vertex, Ii0 , Ii1 , Ii2 ∼ Ok (Fig. 39), Gk1 and Gk2 be the domains bounded
by Y −1(Ok) such that Gkj ⊃ Y (Iij ) for j = 1, 2; Gk0 = Gk1 ∪Gk2 .
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Figure 39.

We assume for brevity that for each interior vertex Ok ∈ Γ

β̄j(Ok) =

∫

Gkj

∂β(p, q)

∂p
dp dq �= 0, j ∈ {0, 1, 2}. (8.35)

An edge Iij ∼ Ok is called an exit edge for Ok, if j = 0 and β̄0(Ok) > 0 or

if j = 1, 2 and β̄j(Ok) < 0; otherwise the edge Iij is called an entrance edge for
Ok. It is obvious, that if (8.35) is satisfied, each interior vertex has at least one
exit edge and at least one entrance edge. If an interior vertex Ok has just one exit
edge, the process Ȳt leaves Ok immediately after entering it for this exit edge.

If Ok has two exit edges, say, Iij and Iil , then Ȳt also leaves Ok immediately
and goes to Iij or to Iil with probabilities

pij (Ok) =
|β̄j(Ok)|

|β̄j(Ok) + β̄l(Ok)|
,

pil(Ok) =
|β̄l(Ok)|

|β̄j(Ok) + β̄l(Ok)|
, j, l ∈ {0, 1, 2}

independently of the past.
Such a stochastic process Ȳt exists and is defined in a unique way.

Theorem 8.3. Assume that conditions (8.35) are satisfied. Then the process Y κ
t

converge weakly on any finite time interval to Ȳt(y), y = Y κ
0 , as κ ↓ 0.

Proof. We are already mentioned that the family {Y κ
t }, Y κ

0 = y, is tight, so that
to prove the theorem, we should check that each limiting point of this family has
the properties included in the definition of Ȳt.

Inside each edge, the process Y κ
t can be described by a stochastic differential

equation, and the convergence of Y κ
t to Ȳt as ε ↓ 0 can be derived from The-

orem 1.2 of Chap. 2. Taking into account that exterior vertices are inaccessible
for Ȳt in a finite time, one can derive from Theorem 1.2 of Chap. 2, that exterior
vertices are inaccessible for each limiting point of the family {Y κ

t }, κ ↓ 0.
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Let Ok be an interior vertex and δ be a small positive number. Denote
by Ek(δ) the connected component of the set {z ∈ Γ : |H(Y −1(z)) −
H(Y −1(Ok))| < δ} containing Ok (in Fig. 39, the set Ek(δ) is the neighborhood
of Ok bounded by the points ∂δ

0 , ∂
δ
1 , ∂

δ
2). Let τκk (δ) = min{t : Y κ

t /∈ Ek(δ)}.
The following two lemmas show that the limiting process should behave near an
interior vertex as the process Ȳt.

Lemma 8.9. If Ok is an interior vertex, then small δ1, κ1 > 0 and a constant
A31 exist such that

Mi,yτ
κ
k (δ) ≤ A31δ|ln δ|,

for any κ ∈ (0, κ1), δ ∈ (0, δ1), and all (i, y) ∈ Ek(δ).

Lemma 8.10. If an interior point Ok has just one exit edge Iil ∼ Ok, l ∈
{0, 1, 2}, then for any μ > 0 there exists δ1 > 0 such that for each δ ∈ (0, δ1)
one can find δ′ ∈ (0, δ) such that

|Pi,y{Y κ
τκ
k (δ) = ∂δ

il
} − 1| < μ,

for any (i, y) ∈ Ek(δ
′) and κ > 0 small enough.

If an interior vertex Ok has two exit edges Iil and Iij , l, j ∈ {0, 1, 2}, then
for any μ > 0, there exists δ1 > 0 such that for each δ ∈ (0, δ1) one can find
δ′ ∈ (0, δ) such that

|Pi,y{Y κ
τκ
k (δ) = ∂δ

l } − pl(Ok)| < μ,

|Pi,y{Y κ
τκ
k (δ) = ∂δ

j } − pj(Ok)| < μ,

for any (i, y) ∈ Ek(δ
′) and κ > 0 small enough.

Proof. Proof of these lemmas is based on the possibility to calculate functions
uκ(i, y) = Mi,yτ

κ
k (δ) and vκl (i, y) = Pi,y{Y κ

τκ
k (δ) = ∂δ

l } explicitly.
The function uκ(i, y) is the solution of the problem

Lκ
i u

κ(i, y) = −1, (i, y) ∈ Ek(δ), u(il, ∂
δ
l ) = 0, l ∈ {0, 1, 2},

the function u(i, y) should be continuous in Ek(δ) and satisfies the gluing condi-
tions for Y κ

t at the vertex Ok.
The function vκ(i, y) is the solution of the problem

Lκ
i v

κ
l (i, y) = 0, (i, y) ∈ Ek(δ), vκl (∂

δ
l ) = 1, vκl (∂

δ
k) = 0 if j �= l;

vκl should be continuous in Ek(δ) and satisfies the gluing conditions for Y κ
t at Ok.

Each of these boundary-value problems has a unique solution. To avoid bulky
calculations, one can use the comparison arguments (maximum principle) and
random time change. Using these explicit formulas, it is not difficult to calculate
the limits as κ ↓ 0. Detailed calculations one can find in Brin and Freidlin [1]. ��
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The tightness of processes Y κ
t , 0 ≤ t ≤ T , in the weak topology, convergence

inside the edges, and Lemmas 8.9, 8.10 imply Theorem 8.4. ��

Combining Theorems 8.3 and 8.4, we get the following result:

Theorem 8.4 (Brin and Freidlin [1]). Let conditions (8.35) be satisfied. Then the
slow component Y ε,κ

t = Y (Xε,κ
t ) of the process Xε,κ

t , Xε,κ
0 = x, 0 ≤ t ≤ T ,

defined by (8.28) converges weakly to the process Ȳt = Ȳt(y), y = Y (x), when,
first, ε ↓ 0 and then κ ↓ 0.

Remark. It is worth noting that, although the gluing conditions for Y κ
t at Ok

are independent of β(p, q) and defined just by the Hamiltonian and the diffusion
coefficients, the exit probabilities for Ȳt, in the case when Ok has two exit edges,
are defined just by β(p, q). This is, actually, a manifestation of the fact that the
stochasticity of Ȳt is an intrinsic property of deterministic perturbations of the
deterministic system. The diffusion term serves just for a regularization of the
problem.

Note also that if the regularization by stochastic perturbations of initial con-
ditions exists, it coincides with Ȳt.



Chapter 9

The Multidimensional Case

1 Slow Component Lives on an Open Book Space

In Chap. 8 we considered stochastic and deterministic perturbations of two-
dimensional dynamical systems with one first integral. Let us consider now an
(m+ n)-dimensional system

Ẋ(t) = B(X(t)) (1.1)

with n first integrals z1(x), . . . , zn(x); i.e. smooth functions such that the scalar
products∇z1(x)·B(x), . . . ,∇zn(x)·B(x) are identically zero. (Our notations
will be a little different: we’ll write the time argument in parentheses rather than
a subscript, subscripts being reserved for coordinate numbers; and we’ll denote
the identification mapping with a Gothic letter.) If, as in the case m = n = 1, we
identify all points x within every connected component of m-dimensional level
surfaces {x : z1(x) = const, . . . , zn(x) = const} we obtain a space Γ of n di-
mensions; Γ consists, typically, of some number of n-dimensional “faces” having
the structure of a manifold, that join, sometimes several at a time, at “faces” of
smaller dimensions. Such a space equipped with the natural topology is called
an open book (see, e.g., Ranicki [1]); its n-dimensional faces are called pages,
and the faces of smaller dimensions form the binding of the book. Let Y be the
corresponding identification mapping. We can introduce (local) coordinates on
Γ taking z1(x), . . . , zn(x) as the first n coordinates, and the number i(x) of
the page containing the point Y(x) as its (n + 1)-st, discrete coordinate (local
coordinates because one page can “flow” into another).

The open book Γ is the space on which we should consider the “slow com-
ponent” of the motion corresponding to small perturbations of system (1.1). Let
us consider an example and draw some pictures.

Let m = 1, n = 2, the system (1.1) having the form

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ1(t) = b1(X1(t), X2(t), Z(t)),

Ẋ2(t) = b2(X1(t), X2(t), Z(t)),

Ż(t) = 0,

(1.2)

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
DOI 10.1007/978-3-642-25847-3_9, c© Springer-Verlag Berlin Heidelberg 2012
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where, for every fixed z, the system Ẋi(t) = bi(X1(t), X2(t), z), i = 1, 2, has a
first integral H(x, z) = H(x1, x2, z) (that is,

∑2
i=1 b

i(x1, x2, z) ·∂H/∂xi ≡ 0),
the function H(x, z) going to ∞ as |x| → ∞. The two first integrals of the
system (1.2) are z and H . If Yz(x), for a fixed z, is the identification mapping
associated with the first integral H(x, z), the identification mapping Y corre-
sponding to the two first integrals z and H is given by Y(x, z) = (Yz(x), z).

Suppose that for z1 < z < z2 the function H has two minima at the points
x1(z) and x2(z), and the system Ẋi(t) = bi(X1(t), X2(t), z), i = 1, 2, three
equilibrium points: centers x1(z), x2(z), and a saddle point x3(z). After identi-
fying all points in every connected component of a level set of the function H in
every horizontal section we get a graph with three vertices Ok(z) = Yz(xk(z))
and three edges: Ii(z), i = 1, 2, connecting Oi(z) with O3(z), and I3(z) going
from O3(z) “to infinity”.

Suppose that for z < z1 the function H(x, z) has only one minimum point
x1(z) (the function x1(z), z ≤ z2, being continuous), and for z > z2 it keeps
only the minimum at x2(z); these points are the only equilibrium points of the
system at level z. (Of course at the levels z = z1 or z2 there are two equilibrium
points.) Let us draw the solution curves of the system (1.2) at the levels z1, z2,
and a little lower and higher than z1 and z2, and the corresponding graphs being
sections of the open book Γ at these levels; and a picture of the open book itself.

Note that the book in Fig. 40 can be placed without self-intersections in the
three-dimensional space; but it’s not one we would care to be reading—or solving
differential equations on (the more so because the coefficients of the equations to
consider are likely to have singularities at the binding).

Now we return to the general case, and consider small white-noise-type per-
turbations of this system that, after an appropriate time-scale change, are de-
scribed by the stochastic equation

dXε(t) = [ε−2B(Xε(t)) + β(Xε(t))] dt+ σ(Xε(t)) dW (t) (1.3)

(W (t) being a multidimensional Wiener process). The case of the matrix σ ≡ 0
is that of deterministic perturbations, for nonzero σ it is white-noise-type pertur-
bations.

The identification mapping Y provides a kind of splitting of the process
Xε(t) into two “components”: the slow component Y ε(t) = Y(Xε(t)) tak-
ing values in Γ, and the fast one, which is the fast motion of Xε(t) along the
level surfaces according, roughly speaking, to the system (1.1) (with an appro-
priate time-scale change). The problem of limiting behavior of the slow compo-
nent Y ε(t) as ε → 0 arises, to be formulated precisely in terms of distributions
in the space C([0,∞),Γ) of continuous functions [0,∞) �→ Γ and their weak
convergence.

If the dynamical system (1.1) is ergodic on each (almost each) connected
component of the level surfaces with an invariant measure having a density on
this connected component, then before Y ε(t) changes significantly, mixing in
accordance with the dynamical system steps in, and some version of averaging
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(a) Solution curves at different levels

(b) Sections of Γ at different levels

Figure 40.
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(c) Open book Γ

Figure 40. (Continued)

principle must take place. The behavior of Y ε(t) within the same n-dimensional
page of Γ is likely to be, for small ε, approximately the same as that of a diffusion
process on this n-dimensional face, whose coefficients at a point y ∈ Γ are
obtained by averaging some quantities with respect to the invariant measure on
the m-dimensional surface Y−1(y). At the binding of the book, the probabilities
to go to one or another of the pages meeting at a certain manifold of a smaller
dimension are also likely to be averaged over the m-dimensional surfaces. Thus,
one is to expect that the stochastic process Y ε(t) = Y(Xε(t)), which is not
a Markov process, is, for small ε, close in some sense to a Markov process on
the open book Γ: a continuous Markov process, which can be called a diffusion
process on the open book. (The behavior of this limiting process at the binding of
the book is likely to be identified by gluing conditions at manifolds of a smaller
dimension, describing the domain of the definition of the generating operator.)

Several problems arise at once:

• Let a linear operator A be given in the space of continuous functions on Γ, be-
ing a differential operator inside the pages of Γ, its domain D being restricted
by “gluing conditions” at the binding. Does there exist a unique Markov pro-
cess on Γ with continuous trajectories (a diffusion process on Γ), governed
by the operator A?
The question can be formulated in the language of martingale problems. The
main thing in answering this question is ascertaining that there exists a solu-
tion of the parabolic equation ∂u(t,y)/∂t = Au(t,y), y ∈ Γ, with initial
condition u(0,y) = f(y); or, in the language of Laplace transforms, that
there exists, for every λ > 0, a solution F ∈ D of the equation λF−AF = f .
A very important thing is establishing the existence of solutions for a large
enough set of functions f : this is needed to obtain uniqueness of solution of
the martingale problem corresponding to the operator A.
While in the case of the open book being just a graph the equation λF −
AF = f is a linear ordinary differential equation, and finding its solution
satisfying the gluing conditions is reduced to solving a system of finitely
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many linear algebraic equation with the number of unknowns equal to the
number of equations, the partial differential equations λF − AF = f or
∂u(t,y)/∂t = Au(t,y), u(0,y) = f(y) are not easy to solve; we are able
to do this only in special cases.

• Establishing weak convergence of the distributions of the stochastic process
Y ε(t) within one page of the open book, and finding the coefficients of the
differential operator A.
For m = 1, if B(x) �= 0, the connected components of level “surfaces”
that lie in regions without singularities are just closed trajectories of the sys-
tem (1.1); and we can introduce on these trajectories an “angle” coordi-
nate ϕ = ϕ(x) taking values in a circle of unit length, so that for a solution
X(t) of (1.1), ϕ(X(t)) moves uniformly on a circle, with different non-zero
speed on different circles.
For m > 1 it is also possible that we can introduce on the connected compo-
nents of the level surfaces lying within a domain without singularities 1-cyclic
coordinates ϕ1, . . . , ϕm, so that these surfaces can be identified with m-
dimensional tori, with uniform motion whose speed vector ω is different for
different tori. In this case (z,ϕ) = (z1, . . . , zn, ϕ1, . . . , ϕm) serve as local
coordinates in X (in classical mechanics such coordinates are called “action–
angle” coordinates, see, for example, Arnold [1]); and the system (1.1) within
one region without singularities can be written in these coordinates as fol-
lows:

Ż(t) = 0,

ϕ̇(t) = ω(Z(t)).
(1.4)

For m = 1 some kind of mixing within the closed trajectories always does
take place, and the idea of finding the limiting local characteristics of the pro-
cess in the space Γ by averaging the perturbation over the closed trajectories
is easily verified as true. If m > 1, there are, typically, m-dimensional tori on
which mixing takes place, and they alternate with such on which there is no
mixing (tori with the components of the velocity ω being rationally indepen-
dent, and those with components that are rationally dependent). Since there
are “more” irrational numbers than rational ones, we are inclined to think
that surfaces with mixing will prevail over those without mixing, and that the
averaging method of evaluating the limiting local characteristics will work
also in the case m > 1. Averaging principle for deterministic perturbations
of dynamical systems with many degrees of freedom was studied extensively:
Anosov [1], Kasuga [1], [2], [3], Arnold [1], Neishtadt [1], [2], [3].

• Establishing that the process Y ε(t) becomes “more and more Markov” as
ε decreases. The key to this is establishing that the distribution of the first
hitting point at a surface Y

−1(y) starting from a point in another surface
Y

−1(y′) depends, for small ε, only on y′, and not on the choice of a point
x ∈Y

−1(y′).
• Finding the gluing conditions that should be prescribed at the (n − 1)-

dimensional parts of the binding of the open book Γ could be similar to find-
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ing the gluing conditions at the vertices of a graph in the case of m = n = 1.
But what conditions should be prescribed at the parts of the binding of smaller
dimensions?
As for some more conditions one should impose at the parts of the binding of
smaller dimensions, we may hope that these small-dimensional parts are not
accessible from outside them, and no conditions (apart from boundedness) at
them are needed.

Of these problems, we can solve, in a pretty general setting, that about mix-
ing and weak convergence within one page of the open book (so we can handle
random perturbations of system (1.1) while Y ε(t) moves in the interior of the
page shown in Fig. 40, before reaching its boundaries); and the rest, only under
some special conditions (definitely not in the case of Γ pictured in Fig. 40).

2 The Results Outside the Singularities

In this section we consider, following Freidlin and Wentzell [5], the case of a re-
gion corresponding to one page of the open book, with action–angle coordinates
introduced in it.

Let Z be a bounded region in R
n with a boundary ∂Z of class C2,α (twice

differentiable with second derivatives α-Hölder continuous, α > 0) and clo-
sure [Z]; Tm, the m-dimensional torus with 1-cyclic coordinates ϕ1, . . . , ϕm.
Let ω(z) = (ω1(z), . . . , ωm(z)) be a function of z ∈ Z having uniformly con-
tinuous first and second partial derivatives; and let bi(z,ϕ), cj(z,ϕ), σk

i (z,ϕ),
τkj (z,ϕ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be Lipschitz-continuous functions on Z×T

m.
Let Xε(t) = (Zε(t),ϕε(t)) = (Zε

1(t), . . . , Z
ε
n(t);ϕ

ε
1(t), . . . , ϕ

ε
m(t)) be a

diffusion process on [Z]× T
m, described by stochastic equations

dZε
i (t) = bi(Z

ε(t),ϕε(t)) dt+
∑

k

σk
i (Z

ε(t),ϕε(t)) dWk(t),

dϕε
j(t) = [ε−2ωj(Z

ε(t)) + cj(Z
ε(t),ϕε(t))] dt

+
∑

k

τkj (Z
ε(t),ϕε(t)) dWk(t)

(2.1)

before the time τ∂ at which it reaches the boundary, ∂Z × T
m; suppose the

process Xε(t) stops at the time τ∂ (Wk(t) are independent Wiener processes).
The function ω plays the role of B in (1.3); for σk

i = τkj = 0, (2.1) is exactly the
form of the perturbed system considered in Neishtadt [1], [2], [3], Lochak and
Meunier [1]. In particular, white-noise perturbations of a Hamiltonian system
admitting action–angle coordinates can be written in the form (2.1).

For every x = (z,ϕ) ∈ [Z]×T
m let us consider the solution Xε(t) of (2.1)

with the initial condition Zε(0) = z, ϕε(0) = ϕ. Let Pε
x = Pε

(z,ϕ) be the
probability measure in the probability space on which this stochastic process
(and W k(t) too) is defined.
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Let C be the space of continuous functions on [0,∞) with values in [Z]. Let
με
x = με

(z,ϕ) be the distribution of the first component Zε of our process in the
space C: for a Borel subset A of this space με

x(A) = Pε
x{Zε(•) ∈ A}.

Let us consider the functions

aij(z,ϕ) =
∑

k

σk
i (z,ϕ)σ

k
j (z,ϕ),

aij(z) =

∫

T
m

aij(z,ϕ) dϕ,

bi(z) =

∫

T
m

bi(z,ϕ) dϕ.

(2.2)

Let Z(t) be the diffusion process in [Z] with drift coefficients bi(z) and diffusion
matrix (aij(z)), stopping at the time that it reaches the boundary, ∂Z. Consider
the process Z(t) starting at an arbitrary point z ∈ [Z]. Let Pz be the proba-
bility measure being the distribution of this process in the space of continuous
functions.

Let us introduce our main restriction on ω(z) = (ω1(z), . . . , ωm(z)):

Condition �. The set of points z ∈ Z for which the components of the vec-
tor ω(z) are rationally dependent has zero Lebesgue measure (that is, for every
integer-component vector k �= 0 the set {z ∈ Z : k · ω(z) = 0} has zero
Lebesgue measure).

Theorem 2.1. Suppose the conditions mentioned at the beginning of this section
are satisfied, and also the condition �. Suppose the diffusion matrix (aij(z,ϕ))
is uniformly non-degenerate for all z ∈ Z, ϕ ∈ T

m.
Then for every z ∈ [Z] and ϕ ∈ T

m the distribution με
(z,ϕ) converges weakly,

as ε→ 0, to Pz .

Let us begin the proof. First we establish, in the usual way, that the family
of distributions με

(z,ϕ) is tight. Here we are using the fact that the coefficients bi
and σk

i in (2.1) are bounded. We are omitting all details of the proof.
Now, we’ll be characterizing diffusion processes as solutions of martingale

problems. Thus, Pz is the solution of the martingale problem associated with the
differential operator

Lf(z) =

{
1
2

∑n
i,j=1 aij(z)

∂2f
∂zi∂zj

+
∑n

i=1 bi(z)
∂f
∂zi

, z ∈ Z,

0, z ∈ ∂Z

(with the domain D consisting of all continuous functions in [Z] with uni-
formly continuous first and second partial derivatives in Z), and with the ini-
tial distribution concentrated at the point z; the probability measure in the space
C([0,∞), [Z]× T

m) corresponding to the stochastic process Xε(t) is the solu-
tion of the martingale problem associated with the differential operator
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Lεf(z,ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

∑n+m
i,j=1 αij(z,ϕ)

∂2f
∂xi∂xj

+ ε−2
∑m

j=1 ωj(z)
∂f
∂ϕj

+
∑m+n

i=1 βi(z,ϕ)
∂f
∂xi

, z ∈ Z,

0, z ∈ ∂Z,

where the coordinates xi, 1 ≤ i ≤ n +m, are either zi or ϕi−n, and the coef-
ficients αij , βi are expressed in terms of the coefficients in (2.1) (in particular,
βi = ci−n for n+ 1 ≤ i ≤ n+m).

Now, according to Lemma 3.1, Chap. 8, we have the convergence με
(z,ϕ) → Pz

if the solution of the equation λF − LF = f exists for every positive λ and a
dense set of continuous right-hand sides f , and if for every positive λ (or every
sufficiently large positive λ) and for every function f ∈ D

Mε
(z,ϕ)

∫ ∞

0

e−λt[λf(Zε(t))− Lf(Zε(t))] dt→ f(z) (2.3)

as ε ↓ 0, uniformly in z ∈ [Z] and ϕ ∈ T
m, where Mε

(z,ϕ) is the expectation
corresponding to the probability measure Pε

(z,ϕ).

The equation λF − LF = f with condition F ∈ D is equivalent to the
same equation with the Dirichlet condition F |∂Z = λ−1f ; so we can guarantee
that it has a solution for all f that are twice continuously differentiable with
second derivatives satisfying a Hölder condition (see Gilbarg and Trudinger [1],
Theorem 6.19), and the set of such functions is dense.

The main thing is to prove (2.3).
Using the fact that (Xε(t),Pε

x) is a diffusion process with generating opera-
tor Lε, we obtain the equality

Mε
(z,ϕ)

∫ ∞

0

e−λt[λf(Zε(t))− Lεf(Zε(t),ϕε(t))] dt = f(z).

The function f depends only on the z-coordinate, but the operator Lε takes
it to one depending also on ϕ; namely, we have, for z ∈ Z:

Lεf(z,ϕ) =
1

2

n∑

i,j=1

aij(z,ϕ)
∂2f

∂zi∂zj
+

n∑

i=1

bi(z,ϕ)
∂f

∂zi

(which does not depend on ε).
Because of the way in which the coefficients of the operator L are defined,

we have:
∫
T
m Lεf(z,ϕ) dϕ = Lf(z); and for z ∈ ∂Z both functions are equal

to 0. So it is enough to prove that, for every bounded uniformly continuous func-
tion g(z,ϕ) on Z × T

m with
∫

T
m

g(z,ϕ) dϕ = 0 (2.4)

for all z,
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lim
ε→0

Mε
(z,ϕ)

∫ τ∂

0

e−λtg(Zε(t),ϕε(t)) dt = 0, (2.5)

uniformly in (z,ϕ) ∈ [Z] × T
m, where τ∂ is the time at which Zε(t) reaches

the boundary, ∂Z.
In the case of m = 1, i.e. of closed periodical trajectories, (2.5) can be proved

using the fact that
∫ 1

0
g(z, ϕ) dϕ = 0, and there exists a function G on the cir-

cle T1 being the solution of the equation ω(z)·∂G/∂ϕ = g. In the case of m > 1
we cannot solve the equation ω(z) ·∇G = g; but we can solve it approximately,
as it is done in Neishtadt [1], [2], [3], with good approximation if z is outside
some exceptional set. This is done in Sect. 4. In Sect. 5 we check that, under the
conditions of Theorem 2.1, the process Zε(t) spends little time in this excep-
tional set, so good approximation prevails, which enables us to prove (2.5).

Now we’ll construct an approximate solution of the equation ω(z) ·∇G = g.

Lemma 2.1. Let g(z,ϕ) be a bounded uniformly continuous function on Z×T
m

such that for all z ∈ Z the equality (2.4) is satisfied.
Then for every positive η there exist a natural N and a positive C such that

for every positive κ there exists a function G(z,ϕ), bounded and continuous
together with its partial derivatives up to order 2, such that

|ω(z) ·∇ϕG(z,ϕ)− g(z,ϕ)| ≤ C

for all z, ϕ; and
|ω(z) ·∇ϕG(z,ϕ)− g(z,ϕ)| ≤ η

for all z ∈ Z such that

min
k:k =0,‖k‖<N

|k · ω(z)| ≥ κ (2.6)

and all ϕ.

(For k = (k1, . . . , km) ∈ Z
m, the norm ‖k‖ is defined as max(|k1|, . . . ,

|km|).)
The proof follows the ideas of Neishtadt [1], [2], [3]. Let us extend the func-

tion g continuously to the boundary. There exists a function

g̃(z,ϕ) =
∑

k:k =0,‖k‖<N

c̃k(z) · e2πik·ϕ, z ∈ [Z], ϕ ∈ T
m, (2.7)

with bounded continuous c̃k(z), such that

|g̃(z,ϕ)− g(z,ϕ)| < η/2 (2.8)

for all z and ϕ. This function can be found as the Fejér sum: the sum (2.7) with
bounded continuous coefficients
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c̃k(z) =

m∏

j=1

(
1− |kj |

N

)
·
∫

T
m

e−2πik·ϕg(z,ϕ) dϕ

(note that c̃0(z) ≡ 0); that the inequality (2.8) is satisfied for sufficiently large N
for all z and ϕ follows from the fact that g(z,ϕ) is uniformly continuous.

After this, for every k �= 0, ‖k‖ < N , we find a function ˜̃ck(z) that is
bounded and continuous together with its derivatives up to order 2, and such that
|˜̃ck(z)− c̃k(z)| < η/2(2N − 1)m for z ∈ [Z]; and take

˜̃g(z,ϕ) =
∑

k:k =0,‖k‖<N

˜̃ck(z) · e2πik·ϕ.

We have: |˜̃g(z,ϕ)− g̃(z,ϕ)| < η/2 for all z and ϕ.
Let h(y) be a twice continuously differentiable function such that h(y) = 1/y

for |y| ≥ 1, and 0 ≤ yh(y) ≤ 1 for all y (we could have written an explicit
formula for h(y), but there is really no need for that). Take

G(z,ϕ) = G
κ
(z,ϕ) =

∑

k:k =0,‖k‖<N

1

2πiκ
h

(
k · ω(z)

κ

)
· ˜̃ck(z) · e2πik·ϕ.

This function is clearly bounded and continuous with its derivatives up to order 2.
And we have:

ω(z) ·∇ϕG(z,ϕ)− ˜̃g(z,ϕ)

=
∑

k:k =0,‖k‖<N

[
k · ω(z)

κ

· h
(
k · ω(z)

κ

)
− 1

]
· ˜̃ck(z) · e2πik·ϕ.

This function is not greater than
∑

k:k =0,‖k‖<N ‖˜̃ck‖ for all z, ϕ, and is equal
to 0 for z for which the inequality (2.6) is satisfied. Combining this with |g̃−g| <
η/2, |˜̃g − g̃| < η/2, we get our statement with C =

∑
k:k =0,‖k‖<N ‖˜̃ck‖+ η.

Lemma 2.2. Let λ > 0. Let the family of diffusions ((Zε(t),ϕε(t)),Pε
(z,ϕ)) on

[Z] × T
m be such that for every positive η and k ∈ Z

m, k �= 0 there exists a
positive κ such that

∣∣∣∣M
ε
(z,ϕ)

∫ τ∂

0

e−λtχ[−κ,κ](k · ω(Zε(t))) dt

∣∣∣∣ < η (2.9)

for all sufficiently small ε, all z ∈ Z and all ϕ, where τ∂ is the time at which the
process reaches the boundary.

Let g(z,ϕ) be a uniformly continuous function on Z × T
m satisfying the

equality (2.4).
Then (2.5) is satisfied, uniformly in z ∈ [Z] and ϕ ∈ T

m.
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Proof. For a twice continuously differentiable function G in [Z]×Tm the random
function

e−λtG(Zε(t),ϕε(t))−
∫ t

0

e−λs[LεG(Zε(s),ϕε(s))− λG(Zε(s),ϕε(s))] ds

is a martingale with respect to the probability measure Pε
(z,ϕ); so we have:

Mε
(z,ϕ)

[
e−λτ∂G(Zε(τ∂),ϕ

ε(τ∂))

−
∫ τ∂

0

e−λt[LεG(Zε(t),ϕε(t))− λG(Zε(t),ϕε(t))] dt

]

= G(z,ϕ).

We have, for z ∈ Z:

LεG(z,ϕ) = ε−2ω(z) ·∇ϕG(z,ϕ) +
1

2

∑

i,j

αij(z,ϕ)
∂2G

∂xi∂xj

+
∑

i

βi(z,ϕ)
∂G

∂xi
;

so

Mε
(z,ϕ)

∫ τ∂

0

e−λtω(Zε(t)) ·∇ϕG(Zε(t),ϕε(t)) dt

= ε2 ·Mε
(z,ϕ)

[
e−λτ∂G(Zε(τ∂),ϕ

ε(τ∂)) +

∫ τ∂

0

e−λt

[
λG(Zε(t),ϕε(t))

− 1

2

∑

i,j

αij(Z
ε(t),ϕε(t))

∂2G

∂xi∂xj
−
∑

i

βi(Z
ε(t),ϕε(t))

∂G

∂xi

]
dt

−G(z,ϕ)

]
, (2.10)

which converges to 0 uniformly as ε→ 0.
Now let η be an arbitrary positive number; let N and C be taken as in

Lemma 2.1. Let κk be taken so that (2.9) is satisfied with η/C(2N − 1)m in-
stead of η; let κ = min{κk : k �= 0, ‖k‖ < N}. Choose the function G as in
Lemma 2.1.

For positive ε that are so small that the expression (2.10) is not greater than η
in absolute value, we have:

∣∣∣∣M
ε
(z,ϕ)

∫ τ∂

0

e−λtg(Zε(t),ϕε(t)) dt

∣∣∣∣

< η +Mε
(z,ϕ)

∫ τ∂

0

e−λt|g − ω ·∇ϕG|
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·
∏

k:k =0,‖k‖<N

[1− χ[−κ,κ](k · ω(Zε(t)))] dt

+
∑

k:k =0,‖k‖<N

Mε
(z,ϕ)

∫ τ∂

0

e−λt|g − ω ·∇ϕG|

· χ[−κ,κ](k · ω(Zε(t)))] dt < η + η/λ+ η,

which can be made arbitrarily small.
Now we have to prove that, under the conditions of Theorem 2.1, for the

process (Zε(t),ϕε(t)) the condition of Lemma 2.2 is satisfied. It is enough to
prove that for every positive η there exists a κ > 0 such that for every set C ⊂ Z
with Lebesgue measure ≤ κ, for every ε > 0, for every z0 ∈ Z and ϕ0 ∈ T

m

mε
(z0,ϕ0)

(C) = Mε
(z0,ϕ0)

∫ τ∂

0

e−λtχC(Z
ε(t)) dt < η. (2.11)

For a Borel D ⊆ Z × T
m, let us denote

Mε
(z0,ϕ0)

(D) = Mε
(z0,ϕ0)

∫ τ∂

0

e−λtχD(Zε(t),ϕε(t)) dt.

It is clear that

Mε
(z0,ϕ0)

(dz dϕ) = mε
(z0,ϕ0)

(dz) · qε(z0,ϕ0)
(z, dϕ),

where the measure qε(z0,ϕ0)
(z, •) depends on z in a measurable way, and

qε(z0,ϕ0)
(z,Tm) = 1.

Let φ(z) be a smooth function that is equal to 0 in some neighborhood of the
boundary ∂Z and outside Z. Applying Itô’s formula to e−λtφ(Zε(t)), we get:

Mε
(z0,ϕ0)

∫ τ∂

0

e−λt[λφ(Zε(t))− Lεφ(Zε(t),ϕε(t))] dt = φ(z0),

or, using the measures introduced above,

λ

∫

Z

φ(z)mε
(z0,ϕ0)

(dz)−
∫

Z

[∫

T
m

[
1

2

∑

ij

aij(z,ϕ)
∂2φ

∂zi∂zj
(z)

+
∑

i

bi(z,ϕ)
∂φ

∂zi
(z)

]
qε(z0,ϕ0)

(z, dϕ)

]
mε

(z0,ϕ0)
(dz) = φ(z0).

Denoting

Aij(z) =

∫

T
m

aij(z,ϕ) q
ε
(z0,ϕ0)

(z, dϕ)

(for simplicity of notations, we do not show its dependence on ε or (z0,ϕ0)),
we obtain:
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∫

Z

1

2

∑

ij

Aij(z)
∂2φ

∂zi∂zj
(z)mε

(z0,ϕ0)
(dz)

≤ 2 sup
z
|φ(z)|+ λ−1 sup

z,ϕ
|b(z,ϕ)| · sup

z
|∇φ(z)|.

To the measure mε
(z0,ϕ0)

we can apply Theorem 2.1 of Bogachev, Krylov,

and Röckner [1] concluding that this measure has a density with respect to the
Lebesgue measure, and this density belongs to Ln/(n−1), with its Ln/(n−1)-norm
bounded uniformly with respect to ε and (z0,ϕ0). (It is true that the formulation
given in Bogachev, Krylov, and Röckner [1] states only that the density belongs
to L

n/(n−1)
loc , and says nothing about its norm being uniformly bounded—but this

is only because the coefficients Aij there are supposed to belong only to L1
loc. In

our case, using the fact that our coefficients are uniformly bounded and uniformly
non-degenerate, it is easy to obtain from Theorem 2.1 the result with uniform
Ln/(n−1)-boundedness of the density.)

This proves our Theorem 2.1.

In Freidlin and Wentzell [5] it is proved that Theorem 2.1 remains true if,
instead of the diffusion matrix (aij(z,ϕ)) being non-degenerate, we require only
that the averaged matrix (aij(z)) is.

3 Weakly Coupled Oscillators. Formulation of the Results

The results of the previous section are obtained for the situation that the open
book Γ is just a region in a Euclidean space. Obtaining results in the case of
a more general open book requires results on existence of smooth solutions of
partial differential equations on an open book; and we don’t have such results.
Fortunately, for a special class of dynamical systems we can circumvent this
difficulty; and all other arising problems are also solved in this case.

Let Hi(x), i = 1, . . . , n, x = (ξ1, ξ2) ∈ R
2, be smooth functions such that,

for sufficiently large |x|, Hi(x) ≥ A1|x|2, A2|x| ≤ |∇Hi(x)| ≤ A3|x|, and

the matrix of the second derivatives (∂
2Hi(x)
∂ξj∂ξr

)j,r=1,2 is bounded and uniformly

positive definite for large |x|. Let ∇Hi(x) = (∂Hi

∂ξ2
,−∂Hi

∂ξ1
) be the skew gradient

of the function Hi(x).
The functions Hi will play the role of Hamiltonians of some oscillators. As-

sume that these Hamiltonians are generic: each of them has a finite number of
critical points, which are non-degenerate, not more than one for each connected
component of a level set {x : Hi(x) = const}.

Let Γi be the graph obtained by identifying all points of R2 belonging to the
same connected component of the level set {x : Hi(x) = const} with vertices
Oik (that are classified as exterior and interior vertices) and edges Iil; let Yi :
R

2 �→ Γi be the corresponding identification mappings. We define the function
Hi on the graph Γi by Hi(y) = Hi(Y

−1
i (y)) (the function Hi(x) takes the same
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value on the whole set Y−1
i (y)). As coordinates of a point y ∈ Γi we’ll take

the couple (l,H), where l is the number of the edge Iil containing the point y
(the coordinate l is chosen in three ways for y being an exterior vertex), and
H = Hi(y).

Let us consider a system of n independent one-degree-of-freedom oscillators
described by

Ẋi(t) = ∇Hi(Xi(t)), i = 1, . . . , n. (3.1)

This is a system with n degrees of freedom with Hamiltonian H(x) =∑n
i=1 Hi(xi), x = (x1, . . . , xn) ∈ R

2n; it can be written in the form

Ẋ(t) = ∇H(X(t)), (3.2)

X(t) = (X1(t), . . . , Xn(t)). The Hamiltonian system (3.2) is, of course, a com-
pletely integrable one with n first integrals H1(x1), . . . , Hn(xn).

If we introduce perturbing terms into (3.2) whose i-th component depends
not only on Xi(t), but rather on the whole X(t), the oscillators described by
this equation are no longer independent, they are coupled. In the case of small
perturbations, the equation of the form (1.3) arising after a time-scale change
describes what can be considered weakly coupled oscillators.

We consider the case of weakly coupled oscillators described by the equation

dXε(t) = [ε−2∇H(Xε(t)) + β(Xε(t))] dt+ σ dW (t), (3.3)

where W (t) is a 2n-dimensional Wiener process, and β(x) = (β1(x), . . . ,
βn(x)) and σ are a 2n-vector function and a (2n × 2n)-matrix having 2 × 2
nonzero matrices σi = (σi;jk)

2
j,k=1 on the diagonal, and 0 elsewhere (for sim-

plicity’s sake, we don’t consider matrices depending on x; if β(x) ≡ 0, the
components Xi(t) of X(t) are independent).

The open book Γ on which we should consider the slow component of the
process Xε(t) is in this case the direct product Γ1 × · · · × Γn, and the iden-
tification mapping Y : R

2n �→ Γ is given by Y(x) = Y(x1, . . . , xn) =
(Y1(x1), . . . ,Yn(xn)). The (n− 1)-dimensional part of the binding of the open
book consists of pieces that are products of n − 1 edges of graphs Γi, i �= i0,
and a one-point set consisting of a vertex of the graph Γi0 (i0 = 1, . . . , n); and
lower-dimension parts of products with vertices of two or more graphs Γi.

Now we are going to define the differential operator L on the open book Γ,
together with the gluing conditions, governing the limiting diffusion process on
it. The differential operator is written in a way that is similar to what we did
in Chap. 8, as well as the gluing conditions at the (n − 1)-dimensional part of
the binding. In the case of one degree of freedom considered in that chapter the
graph Γ is one-dimensional; there are gluing conditions at the binding—which
consists of finitely many points: vertices; and that’s all. In the case of n > 1
there are parts of the binding of dimensions n − 2 (and for n > 2, also smaller
dimensions). A question arises: should we prescribe gluing conditions at these
smaller-dimensional parts of the binding, and if yes, what should they be?
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But it turns out that these parts of dimensions≤ n−2 are not accessible from
outside (see Sect. 4). We are accustomed to no supplementary conditions being
needed at an inaccessible part of the boundary (in our case, internal “boundary”);
and it turns out that no supplementary conditions are needed at the parts of the
binding of dimensions ≤ n− 2.

We’ll be using the following notations being slight modifications of those in
Sect. 1 of Chap. 8: the fact of an edge Iil having a vertex Oik as one of its ends
will be noted as Iil ∼ Oik; Dil will denote the set of all points x ∈ R

2 such that
Yi(x) belongs to the interior of the edge Iil; Ci(l,H) = {x ∈ Dil : Hi(x) =
H}; for internal points y = (l,H) of an edge Iil

Ti(y) =

∮

Ci(y)

1

|∇Hi(x)|
�(dx), (3.4)

where �(dx) denotes integration with respect to the curve length: this is the period
of rotation of the trajectory governed by the system Ẋ(t) = ∇Hi(X(t)) along
the curve Ci(y). For x ∈ R

2, we take Ti(x) = Ti(Yi(x)). Also we define, for
such points y, a measure μi

y concentrated on Ci(y) by

μi
y(A) = Ti(y)

−1

∮

Ci(y)

χA(x)

|∇Hi(x)|
�(dx);

for y = (l,H) being a vertex Oik ∈ Γi, we define μi
y as a unit mass concentrated

at the equilibrium point xik ∈ Y
−1
i (Oik).

The measure μi
y clearly depends on y ∈ Γi in a weakly continuous way.

Now we define

ai;jr =

2∑

t=1

σi;jtσi;rt, 1 ≤ j, r ≤ 2;

Ai(y) =

∮

Ci(y)

2∑

j,r=1

ai;jr ·
∂Hi

∂ξj

∂Hi

∂ξr
μi
y(dx),

Bi(y) =
1

2

∮

Ci(y)

2∑

j,r=1

ai;jr ·
∂2Hi(x)

∂ξj∂ξr
μi
y(dx)

for y = (l,H) ∈ Γi; and for y = (y1, . . . , yn) ∈ Γ we take bi(y) = Bi(yi) +
βi(y), where

βi(y) =

∮

C1(y1)

· · ·
∮

Cn(yn)

βi(x1, . . . , xn) ·∇Hi(xi)μ
1
y1
(dx1) · · ·μn

yn
(dxn).

(3.5)
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Let Oik be an interior vertex of the graph Γi; we have Oik = (l1, Hik) =
(l2, Hik) = (l3, Hik), where Hik = Hi(Oik), and l1, l2, l3 are the numbers of
the edges Iils , s = 1, 2, 3, meeting at Oik. Let us define Ci;kls as the part of the
curve Ci(Oik) that forms a part of the boundary of Y −1

i (Iils \ {Oik}). One of
Ci;kls coincides with the whole curve Ci(Oik), consisting of two “loops”; and
the other two Ci;kls are these loops taken separately.

We define

αi;kls =

∮

Ci;kls

2∑

j,r=1

ai;jr ·
∂Hi

∂ξj
∂Hi

∂ξr

|∇Hi(x)|
�(dx), s = 1, 2, 3. (3.6)

Now for y = (l,H) being an interior point of an edge Iil ⊆ Γi, and for every
function f(y) = f(l,H) that is twice continuously differentiable in H , we take

Li0f(y) =
Ai(y)

2
· d

2f(l,H)

dH2
+Bi(y) ·

df(l,H)

dH
.

A function f(y) = f(l,H) on Γi is said to belong to Di if the following
requirements are satisfied: it is continuous on Γi and has a finite limit as y →∞
(in other words: it is continuous on Γi ∪ {∞}); it is twice continuously differen-
tiable (with respect to H) on the interior parts of the edges Iil of the graph; for
every vertex Oik = (l,Hik) of the graph and every edge Iil ∼ Oik a finite limit
limH→Hik

df(l,H)
dH exists; finite limits

lim
y→Oik

Li0f(y) (3.7)

exist for all vertices Oik, and a finite limit limy→∞ Li0f(y) too; and f satisfies
the gluing conditions

3∑

s=1

(±αi;kls) · lim
H→Hik

df(ls, H)

dH
= 0 (3.8)

at every interior vertex Oik = (l1, Hik) = (l2, Hik) = (l3, Hik), where the
sign “+” is taken if the edge Ii;ls consists of points (ls, H) with H ≥ Hik, and
“−” if H ≤ Hik for (ls, H) ∈ Ii;ls .

For f ∈ Di, we define the value of the function Li0f at a vertex Oik as the
limit (3.7).

After defining operators Li0 on the graphs Γi we go to defining the differen-
tial operator on the open book Γ.

By definition, a function f(y) = f(y1, . . . , yn) = f(l1, H1, . . . , ln, Hn) on
Γ = Γ1 × · · · × Γn belongs to D if the following conditions are satisfied:

f is bounded and continuous on Γ1 × · · · × Γn;
f has first and second continuous partial derivatives in Hi for yi = (li, Hi)
in the interior parts of edges Iili of the graph Γi, i = 1, . . . , n (so that we can
apply the operator Li0 to f in its argument yi);
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for every vertex Oik = (l,Hik) ∈ Γi, every edge of this graph Iil ∼ Oik,
and arbitrary points yj0 ∈ Γj , j �= i, a finite limit

lim
Hi→Hik,yj→yj0,j =i

∂f(y1, . . . , l, Hi, . . . , yn)

∂Hi

(with yi approaching Oik along the edge Iil) exists;
the functions Li0f(y1, . . . , yn) are bounded, and finite limits

lim
yi→Oik,yj→yj0,j =i

Li0f(y1, . . . , yn)

exist for all vertices Oik ∈ Γi and all yj0 ∈ Γj , j �= i, where the operator Li0

is applied to the function f in its i-th argument;
f satisfies the gluing conditions

3∑

s=1

(±αi;ks) · lim
Hi→Hik,yj→yj0,j =i

∂f(y1, . . . , ls, Hi, . . . , yn)

∂Hi
= 0 (3.9)

for every interior vertex Oik = (l1, Hik) = (l2, Hik) = (l3, Hik) of the
graph Γi, i = 1, . . . , n, and all points yj ∈ Γj , j �= i.

We’ll be also considering a smaller domain D0 consisting of all linear com-
binations of functions f having the form f(y1, . . . , yn) = f1(y1) · · · fn(yn),
where fi ∈ Di, i = 1, . . . , n.

Now we define the operator L.
For a function f ∈D we define the function Lf(y), y ∈ Γ, by

Lf(y) = Lf(y1, . . . , yn) =

n∑

i=1

bi(y) ·
∂f

∂Hi
+

1

2

n∑

i=1

Ai(yi) ·
∂2f

∂H2
i

,

where bi(y) = Bi(yi) + βi(y), and the summands are replaced by the cor-
responding limits for yi being vertices of Γi. The limits at vertices Oik ∈ Γi

exist because they do for the operators Li0, and the coefficients βi(y) (defined
by (3.5)) in the difference of the operators L −

∑n
i=1 Li0 have zero limits at

vertices, this being because the measure μi
Oik

is concentrated at the critical
point xik ∈ Y

−1
i (Oik), and ∇Hi(xik) = 0. So the function Lf(y) is con-

tinuous on Γ.
Considering the averaged operator L on the domain D is more natural; how-

ever for our purposes and methods of proof we need it only on a much smaller
domain D0.

Now we are going to formulate our results about stochastically perturbed
weakly coupled oscillators.

Theorem 3.1. There exists a unique solution Py of the martingale problem as-
sociated with the operator L (with domain D or D0) with initial condition of
starting from an arbitrary point y ∈ Γ.
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The probability measures Py are defined on the space C([0,∞),Γ) of con-
tinuous functions y(•) on the interval [0,∞) with values in Γ; it follows from
the fact that Py is the unique solution of the martingale problem that the pair
(y(t),Py) is a strong Markov process (see Ethier and Kurtz [1], Theorem 4.2 of
Chap. 4).

We have introduced the notation Ti(x) for the period of the solution of
Ẋ(t) = Hi(X(t)) starting from the point x (see the paragraph containing for-
mula (2.1)). The corresponding frequency will be ωi(x) = 1/Ti(x).

Let us introduce our main restriction on these frequencies (see the previous
section):

Condition �. The set of points x = (x1, . . . , xn) ∈ R
2n for which the frequen-

cies ω1(x1), . . . , ωn(xn) are rationally dependent has zero Lebesgue measure.

Theorem 3.2. Suppose that the Hamiltonians Hi(x) satisfy the conditions intro-
duced above, that β is bounded, and Condition � is satisfied. Then for every point
x ∈ R

2n the function-space distribution of Y ε(•) with respect to the probability
Pε
x converges weakly as ε→ 0 to the probability measure PY(x).

4 The Markov Process (Y (t),Py) on Γ: Existence
and Uniqueness; Inaccessibility of Bn−2

First of all we are going to prove Theorem 3.1—in the formulation with do-
main D0. If we take β(x) ≡ 0 and consider the corresponding operator L0, we
have: L0f(y) =

∑n
i=1 Li0f(y1, . . . , yn), where the operator Li0 is applied to

the function in its i-th argument.

Lemma 4.1. There exists a unique solution P0y of the martingale problem asso-
ciated with the operator L0 (with domain D0) with initial condition P0y{y(0) =
y} = 1 for an arbitrary point y ∈ Γ.

Proof. As for the existence, let Pi0;yi , 1 ≤ i ≤ n, be the solution of the
martingale problem associated with the operator Li0 with the initial condition
Pi0;yi{y(0) = yi} = 1. Clearly the probability measure P0;y = P10;y1 × · · · ×
Pn0;yn (the joint distribution of n independent solutions of the one-dimensional
martingale problems) is a solution of the martingale problem corresponding to
the operator L0 (with the domain D0); and this establishes the existence.

Is this solution unique?
Let us take u0(y) = u0(y1, . . . , yn) =

∏n
i=1 ui0(yi), u0i ∈ Di. Let ui(t, y),

t ≥ 0, y ∈ Γi, be the solution of the problem ∂ui(t,y)
∂t = Li0ui(t, y), ui(0, y) =

ui0(y), ui(t, •) ∈ Di, t > 0. Then the function u(t,y) =
∏n

i=1 ui(t, yi) clearly

solves the problem ∂u(t,y)
∂t = L0u(t,y), u(t, •) ∈ D0. Since linear combina-

tions of functions belonging to D0 form a dense set in the space of continuous
functions, the existence and uniqueness problem is solved.
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Of course, there would be no point in proving this lemma if it were only
for proving weak convergence of the function-space distribution of the process
Y ε(t) with β(x) ≡ 0 to P0Y(x) (convergence of the direct product of convergent
measures). But it turns out that we can change the drift coefficients in the gen-
erating operator by making an absolutely continuous change of the probability
measure.

Lemma 4.2. Let e(y) = (e1(y), . . . , en(y)) be a measurable function on Γ
such that ei(y) = 0 for yi being a vertex of Γi, and the functions Ai(yi) ·
ei(y)

2 are bounded. Let C[0,∞) be the space of continuous functions y(t) =
(y1(t), . . . , yn(t)), 0 ≤ t < ∞, yi(t) ∈ Γi. Let us introduce the random func-
tions

mi(t) = Hi(yi(t))−
∫ t

0

bi(y(s)) ds. (4.1)

Suppose P is a solution of the martingale problem associated with the oper-
ator L with domain DL.

Then the random functions (4.1) are square-integrable martingales with re-
spect to P, and stochastic integrals

∫ t

0
ei(y(s)) dmi(s) are defined. Take

π[0, t] = exp

{
n∑

i=1

∫ t

0

ei(y(s)) dmi(s)−
1

2

n∑

i=1

∫ t

0

Ai(yi(s))ei(y(s))
2 ds

}
,

and define the probability measure P̂ by P̂(B) = M(B;π[0, t]) (M(B; ) being
the expectation corresponding to the probability measure P taken over the set B)
for events B belonging to the algebra

⋃
0≤t<∞ σ{y(s), 0 ≤ s ≤ t} and by

extension on the σ-algebra generated by all random variables y(t), 0 ≤ t <∞.
Then P̂ is a solution of the martingale problem corresponding to the linear

operator L̂ defined the same way as L, with the same coefficients Ai(yi) as L,
but with b̂i(y) = bi(y) +Ai(yi) · ei(y), and the same domain DL as L.

This lemma is Proposition 3.1 in the paper Freidlin and Wentzell [7]. It is
similar to Girsanov’s theorem for diffusion processes in a Euclidean space. We
are not giving its proof, which is also similar to that of Girsanov’s theorem, and
is obtained as a slight modification of that of Propositions 5.3, 6.1 in Freidlin and
Wentzell [6].

Now we can take P = P0y (the probability measure solving the martin-
gale problem associated with the operator L0 with domain DL = D0), and
ei(y) = βi(y)/Ai(yi) (replacing it with 0 when y is a vertex of the graph Γi).
If the perturbing drift function β(x) is bounded, the functions Ai(yi) · ei(y)2 =
βi(y)

2/Ai(yi), are bounded, because for yi = (l,H) close to an interior ver-
tex Oik = (l,Hik), y = (y1, . . . , yn) we have βi(y) = O( 1

| ln |H−Hik|| ),

Ai(yi) ∼ const
| ln |H−Hik|| ; near exterior vertices βi(y) = O(|H−Hik|1/2), Ai(yi) ∼

const·|H−Hik|; and as H →∞, we have βi(y) = O(
√
H), Ai(yi) ≥ const·H .
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So we can apply Lemma 4.2 and get the probability measure P̂ solving the mar-
tingale problem associated with the operator L. This takes care of the existence
problem.

For uniqueness, we apply the same lemma with P = Py (a measure solving
the martingale problem associated with L, with the initial distribution concen-
trated at the point y) and ei(y) = −βi(y)/Ai(yi); the probability measure P̂
solves the martingale problem associated with the operator L0. From the unique-
ness of this measure (Lemma 4.1) we deduce uniqueness for the martingale prob-
lem associated with L.

Of course, (not-more-than) uniqueness of the solution of the martingale prob-
lem holds also for the operator L considered on a wider domain D; the statement
of existence is established only after we prove weak convergence to the solution
of the martingale problem for the operator with domain D0.

Now we go to inaccessibility of the (n − 2)-dimensional part Bn−2 of
the binding; we are going to follow the main steps in Sect. 5 of Freidlin and
Wentzell [7], but without all detail.

First of all, we can consider the problem for the process with zero additional
drift β(y) ≡ 0—because of the mutual absolute continuity of the corresponding
probability measures.

Next, we have to consider only the parts of Bn−2 that are defined by {y1 =
O1k1 , y2 = O2k2}, where O1k1 and O2k2 are interior vertices of the graphs Γ1,
Γ2, because exterior vertices are inaccessible by the one-dimensional diffusion—
see Chap. 8 (of course, instead of the graphs Γ1, Γ2 we can take any graphs Γi,
Γj , i �= j).

Inaccessibility of the point 0 by a two-dimensional Wiener process (or of an
(n−2)-dimensional space by an n-dimensional one) is proved using the function
F (y) = − ln |y| that goes to∞ as y → 0, and satisfies the equation ΔF (y) = 0
for y �= 0; to prove the same thing for the Wiener process with a drift added (that
is, for the diffusion process with generator 1

2Δ + b(y) · ∇) this function won’t
do, but we can do it with the function F (y) = ln | ln |y|| that also goes to∞ at 0,
and satisfies the inequality ΔF (y) < 0 for y close enough to the point 0. The
diffusion coefficients Ai(y) decrease logarithmically as y approaches an interior
vertex Oiki : not too fast, but the function ln | ln |y|| is not good enough; however,
the same idea works with a little more technicalities.

Lemma 4.3 (Proposition 5.1 in Freidlin and Wentzell [7]). Let the Hamiltonian
Hi be three times continuously differentiable and generic as described in the
beginning of Sect. 3. Let Oik = (l,Hik) be an interior vertex of the graph Γi,
and let Iil be an edge of Γi whose one end is Oik.

Then there exist constants Ai
kl > 0 and Bi

kl such that

Ai(l,H) =
Ai

kl

| ln |H −Hik||
+

Bi
kl

| ln |H −Hik||2

+O

(
1

| ln |H −Hik||2 ·
√
|H −Hik|

)
(4.2)
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as H → Hik.

Lemma 4.4 (Proposition 5.2 in Freidlin and Wentzell [7]). Let O1k1 , O2k2 be two
interior vertices of the graphs Γ1, Γ2; let I11, I12, I13 be three edges meeting at
O1k1 , and I21, I22, I23 at O2k2 . Suppose that (4.2) is satisfied with i = 1, 2,
k = k1, k2, l = 1, 2, 3.

Then the set {y : y1 = O1k1 , y2 = O2k2} is inaccessible for the diffusion
process Y (t) on Γ corresponding to the operator L starting from points outside
this set.

Proof. For further simplicity of notations, let us introduce new coordinates, de-
noted with the letter z, along the edges Iil ⊆ Γi, i = 1, 2, l = 1, 2, 3, changing
between 0 and some ri;kl > 0, so that the new diffusion coefficient

Ai(l, z) =
1

| ln z| +
Ci

kl

| ln z|2 +O

(
1

| ln z|2 ·
√
z

)

as z ↓ 0.
For i = 1, 2 let us define functions hi(y), y ∈ Γi, in the following way. At

the vertex Oiki we take hi(Oiki) = 0; in a neighborhood of this vertex, along
the edges Iil, l = 1, 2, 3, for y = (l, z), 0 < z ≤ R, we take hi(y) = z2 ·
| ln z| + Di

klz
2, where Di

kl = 1 − Ci
kl. Here R is a positive number that is not

greater than ri;kil/3, taken so that the derivative h′
i(l, z) > 0 for 0 < z ≤ R. On

the remaining part of the edge Iil we define hi(y) = hi(l, z) so that it is a non-
decreasing function that is twice continuously differentiable in z, and hi(l, z) =
1/2e for z ≥ 2ri;kil/3 (for sufficiently small positive R it is possible). Finally,
on the rest of the graph Γi we define hi(y) ≡ 1/2e.

Now for y = (y1, y2, . . . , yn) we take F (y) = f(h1(y1) + h2(y2)), where
f(u) = ln ln | lnu| for 0 < u ≤ 1/e.

Of course F (y) → ∞ as (y1, y2) → (O1k1 , O2k2). Calculations (which can
be found in Freidlin and Wentzell [7]) show that LF (y) < 0 in some neighbor-
hood of the point y = 0; and from this we’ll deduce inaccessibility of the set
{y : y1 = O1k1 , y2 = O2k2}.

The function F does not belong to D0 (it is not even defined for y1 = O1k1 ,
y2 = O2k2 ). Let us take R so that LF (y) < 0 for 0 < h1(y1) + h2(y2) < R,
and an arbitrary positive ρ < R. Let us take a sequence of polynomials fm(u)
such that fm(u) → f(u), f ′

m(u) → f ′(u), f ′′
m(u) → f ′′(u) as m → ∞, uni-

formly in the interval [ρ,R]. The functions Fm(y) = fm(h1(y1) + h2(y2)) are
linear combinations of the products of the form h1(y1)

m1 ·h2(y2)
m2 , and for the

functions hi(yi)
mi the first derivatives at the point yi = Oiki are equal to 0, so

the gluing conditions are satisfied for every choice of coefficients αi;kl. So we
have Fm ∈D0.

Let τρR be the first time the diffusion process (Y (t),Py) leaves the set
AρR = {y : ρ < h1(y1) + h2(y2) < R} (if there were two edges attached
to each of vertices Oiki , the set AρR in the (y1, y2)-plane would be something
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like an annulus; but with three edges meeting at each of Oiki we cannot draw a
realistic picture of it). We have for y ∈ AρR:

MyFm(Y (τρR)) = Fm(y) +My

∫ τρR

0

LFm(Y (t)) dt;

limit passage as m→∞ yields the same with F instead of Fm, and

MyF (Y (τρR)) < F (y).

The left-hand side is the expectation of a random variable taking the values f(ρ)
and f(R); from this we get that the probability to reach the ρ-part of the boundary
is not greater than

f(h1(y1) + h2(y2))− f(R)

f(ρ)− f(R)
.

This fraction goes to 0 as ρ ↓ 0, from which it follows that the probability to
reach the set {y : y1 = O1k1 , y2 = O2k2} before {y : h1(y1) + h2(y2) = R} is
equal to 0. This implies inaccessibility.

5 Proof of Theorem 3.2

What remains to prove the weak convergence of the function-space distributions
to the probability measure PY(x) is: checking tightness of the family of distribu-
tions; and proving that

Mε
x

∫ ∞

0

e−λt[λf(Y ε(t))−Lf(Y ε(t))] dt− f(Y(x))→ 0 (5.1)

as ε→ 0 for every function f ∈D and for every positive λ.
Since we are using Theorem 2.1, we carry out the proof in the case of the

matrices σi being non-degenerate. The modification of the proof to accomodate
matrices σi of rank 1 can be found in Freidlin and Weber [1].

The tightness is pretty easy to establish—it is done the same way as in Chap. 8
and the papers cited there; we are not going to stop at it.

As for proving (5.1), we are going to prove that

Mε
x

[
e−λτf(Y ε(τ)) +

∫ τ

0

e−λt[ ] dt− f(Y(x))

]
→ 0 (5.2)

as ε → 0, where [ ] is the same bracket as in (5.1), and τ is the time at which
the process Y ε(t) leaves a region Γ0 ⊂ Γ (we are not showing the dependence
of τ on ε to avoid cumbersome notations); we are going to prove it for larger
and larger subregions Γ0. Because of the uniqueness result that we already have,
(5.2) means that the distribution of the random function Y ε(•) stopped at the
time τ converges weakly to that of the process Y (•) stopped at the time when it
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leaves Γ0: to express it shorter but less precisely, weak convergence takes place
before the time of leaving Γ0.

The first step is

Lemma 5.1. For every i = 1, . . . , n, let Γi0 be an open subedge of an edge
Iili of the graph Γi: a subedge whose ends are interior points of Iili ; and let
Γ0 = Γ10 × · · · × Γn0.

Then for every f ∈ D and every λ > 0 (5.2) is satisfied, uniformly in x ∈
Y

−1(Γ0).

Proof. In each region Y
−1
i (Γi0) ⊂ R

2 (which is homeomorphic to an annulus)
we introduce action-angle coordinates: Hi(x) and ϕi(x), the last one changing
in the unit circle, so that for Y ε(t) = (Y ε

1 (t), . . . , Y
ε
n (t)) = (Hε

1(t), ϕ
ε
1(t), . . . ,

Hε
n(t), ϕ

ε
n(t)) we have dϕε

i (t) = [ε−2ωi(H
ε
i (t)) + ci(X

ε(t))] dt +
σ̃i(Y

ε
i (t)) dWi(t). Then we apply the results of Sect. 2: formula (2.3).

Now, for a fixed i, 1 ≤ i ≤ n, let Γ̂i0 = {y ∈ Γi : Hi(y) < H0} for some

large number H0; Γ0 = Γ10×· · ·×Γi−1,0× Γ̂i0×Γi+1,0×· · ·×Γn0 (we don’t
spend time considering separately the cases i = 1 or i = n).

Lemma 5.2 (which is, in fact, Theorem 3 of Freidlin and Wentzell [6]). Formula
(5.2) is satisfied for our new Γ0, uniformly in x ∈Y

−1(Γ0).

Proof. Let Gi0 = Y
−1
i (Γi0). For small positive δ, a vertex Oik ∈ Γi and an edge

Iil ∼ Oik we define Ci;kl(δ) = {x : Yi(x) = (l,Hi(Oik)±δ)}; and take Dik =
Y

−1
i (
⋃

l:Iil∼Oik
{(l,H) : |H − H(Oik)| < δ}) (for small δ, Dik is the region

bounded by
⋃

l Ci;kl(δ)). For 0 < δ′ < δ we define τ0 = 0, σm = min{t ≥
τm−1 : X

ε
i (t) /∈

⋃
k Dik(±δ)}, τm = min{t ≥ σm : Xε

i (t) ∈
⋃

k,l Ci;kl(δ
′)}.

The expression under the expectation sign in (5.2) can be written as

∑

τm<τ

[
e−λτmf(Y ε(σm+1 ∧ τ)) +

∫ σm+1∧τ

τm

e−λt[ ] dt− f(Y ε(τm))

]

+
∑

σm<τ

[
e−λσmf(Y ε(τm ∧ τ)) +

∫ τm∧τ

σm

e−λt[ ] dt− f(Y ε(σm))

]
.

(5.3)

Just as in the proof of Theorem 2.2 of Chap. 8, using the strong Markov prop-
erty we represent the expectation of the second sum here as

∑∞
m=1 M

ε
x{σm < τ ;

e−λσmφε
3(X

ε(σm))}, where

φε
3(z) = Mz

[
e−λ(τ1∧τ)f(Y ε(τ1 ∧ τ)) +

∫ τ1∧τ

0

e−λt[ ] dt

]
− f(Y(z))

(the notation φε
3 is the same as in Chap. 8). The function φε

3(z) is taken at an
argument whose i-th (two-dimensional) coordinate belongs to the complement
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of
⋃

k Dik(±δ), and by Lemma 5.1 it converges to 0 as ε → 0, uniformly in z
changing over this set.

As for the first sum in (5.3), it can be represented as

∑

τm<τ

[
e−λσm+1f(Y ε(σm+1)) +

∫ σm+1

τm

e−λt[ ] dt− f(Y ε(τm))

]

−
∞∑

m=0

χ{τm<τ≤σm+1} ·
[
e−λτf(Y ε(σm+1))

−
∫ σm+1

τ

e−λt[ ] dt− e−λτf(Y ε(τ))

]
;

using the strong Markov property, we can write its expectation as

∞∑

m=0

Mε
x{τm < τ ; e−λτmφε

2(X
ε(τm))}

−
∞∑

m=0

Mε
x{τm < τ ≤ σm+1; e

−λτφε
2(X

ε(τ))}, (5.4)

where

φε
2(z) = Mε

z

[
e−λσ1f(Y ε(σ1)) +

∫ σ1

0

e−λt[ ] dt

]
− f(Y(z)). (5.5)

Estimating φε
2(z) is pretty easy in the case of β(x) ≡ 0, because the i-th

coordinate Xε
i (t) is a diffusion process (independent from other coordinates),

and σ1 is determined only using this one coordinate. So we can apply the results
of Chap. 8 here, getting, in particular, that the expectations Mε

0z

∫ τ1
0

e−λt dt are
small if δ is chosen small (Mε

0z is the expectation associated with the process
Xε

0(t) with β(x) ≡ 0 starting from the point z); that is, in fact, τ1 is small
(Lemmas 3.4 and 3.5, Chap. 8).

In fact, we get different estimates for φε
2(z): a rougher one to use in the zeroth

summand of the first sum in (5.4) and in the second sum, and a more precise one
for the summands with m ≥ 1 in the first sum: in the first case the argument in φε

2

can be an arbitrary point in G10×· · ·×Gi−1,0×
⋃

k Dik(±δ)×Gi+1,0×· · ·×Gn0,
while in the second case it belongs to G10 × · · · × Gi−1,0 ×

⋃
k,l Ci;kl(δ

′) ×
Gi+1,0 × · · · ×Gn0.

By Lemmas 3.4 and 3.5, Chap. 8, the Mε
0z-expectation of the integral in (5.5)

is small, as well as that of 1− e−λσ1 ; so φε
2(z) differs from

Mε
0z[f(Y

ε
0(σ1))− f(Y(z))] (5.6)

not more than by some small κ. We subtract from and add to the expression in the
brackets f(Y ε

01(σ1), . . . , Y
ε
0,i−1(σ1), yi, Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1)); and apply to

the first difference Taylor’s formula with the first derivative, and to the second
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that with the first and second derivatives (the function f is twice differentiable
with respect to the coordinates with numbers j �= i). The expectation of the first
difference is O(δ); that of the second one is equal to

∑

j =i

∂f

∂Hi
·Mε

0z[Hj(X
ε
j (σ1))−Hj(zj)] +O

(∑

j =i

[Hj(X
ε
j (σ1))−Hj(zj)]

2

)
.

Because the differences Hj(X
ε
j (σ1)) − Hj(zj) are represented as a stochastic

integral plus a non-stochastic one, we have:

Mε
0z[f(Y

ε
01(σ1), . . . , Y

ε
0,i−1(σ1), yi, Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1))− f(Y(z))]

= O(Mε
0zσ1),

which is estimated by κ in the case of an exterior vertex (Lemma 3.4, Chap. 8),
and by κ · δ in the case of an interior one (Lemma 3.5, Chap. 8).

So for all z ∈ G10 × · · · ×Gi−1,0 ×
⋃

k Dik(±δ)×Gi+1,0 × · · · ×Gn0 the
expectation (5.6) is small (if δ is chosen small enough).

Now to a more precise estimate for z ∈ G10×· · ·×Gi−1,0×
⋃

k,l Ci;kl(δ
′)×

Gi+1,0 × · · · ×Gn0. We have to estimate

Mε
0z[f(Y

ε
0(σ1))− f(Y ε

01(σ1), . . . , Y
ε
0,i−1(σ1), yi, Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1))].

The point Y ε
0i(σ1) ∈ Γi is equal to one the points (l,H(Oik)± δ), where Iil are

the edges meeting at Oik; so

f(Y ε
0(σ1)) = f(Y ε

01(σ1), . . . , Y
ε
0,i−1(σ1), l, Hi(Oik), Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1))

+
∂f

∂Hi
· (±δ).

The probabilities of Y ε
0i(σ1) = (l,H(Oik) ± δ) were evaluated in Lemma 3.6,

Chap. 8, so the terms with the derivatives almost cancel (just as in the proof of
Theorem 2.2, Chap. 8), and the expectation of the difference

f(Y ε
0(σ1))− f(Y ε

01(σ1), . . . , Y
ε
0,i−1(σ1), l, Hi(Oik), Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1))

is small (estimated by κ ·δ for Oik being an interior vertex). As for the difference

f(Y ε
01(σ1), . . . , Y

ε
0,i−1(σ1), l, Hi(Oik), Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1))

− f(Y ε
01(σ1), . . . , Y

ε
0,i−1(σ1),Yi(zi), Y

ε
0,i+1(σ1), . . . , Y

ε
0n(σ1)),

it is made small by choosing δ′ very small. Then the proof follows that of Theo-
rem 2.2, Chap. 8.

Now to the case of β(x) �≡ 0.
The function-space distribution of Xε(•), if we consider it only on the events

that are observed before time σ1, is absolutely continuous with respect to that of
the zero-β process Xε

0(•) with density
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πε = exp

{∫ σ1

0

g(Xε
0(t)) · dW (t)− 1

2

∫ σ1

0

|g(Xε
0(t))|2 dt

}

(see Girsanov [1]). For a random variable η that is observed before the time σ1

we have: Mε
xη = Mε

0x[η · πε].
Since the (random) time σ1 is small, the stochastic and the non-stochastic

integrals are both small, and the density πε is close to 1. This allows us to esti-
mate φε

2(z) by almost the same bounds as with β(x) ≡ 0 (using such things as
Schwarz’ inequality).

Lemma 5.3. Let the conditions imposed on the Hamiltonians Hi and on β(x) in
Theorem 3.2 be satisfied. For small d > 0, let Γi(≤ d) be the union of closed
d-neighborhoods of all vertices Oik ∈ Γi:

Γi(≤ d) =
⋃

Oik∈Γi,Iil∼Oik

{(l,H) : |H −Hi(Oik)| ≤ d};

let us define Γ(d) by

Γ(d) = Γ
∖ ⋃

1≤i<j≤n

Γ1 × · · · × Γi−1 × Γi(≤ d)× Γi+1 × · · · × Γj−1

× Γj(≤ d)× Γj+1 × · · · × Γn

(the open book Γ from which some neighborhood of the (n−2)-dimensional part
of the binding is deleted); Γ0 = {y = (y1, . . . , yn) ∈ Γ(d) : Hi(yi) < H0, 1 ≤
i ≤ n}.

Then for every f ∈ D and every λ > 0 (5.2) is satisfied, uniformly in x ∈
Y

−1(Γ0).

Proof. Choose a positive δ < d. Let us define τ0 = 0;

τ1 = min{t ≥ 0 : one of Y ε
j (t) ∈ Γj(≤ d), or Y ε(t) /∈ Γ0};

and for m > 0 we define τm+1 as being equal to τm if Y ε(τm) /∈ Γ0, and by

τm+1 = min{t ≥ τm : one of Y ε
j (t) ∈ Γj(≤ δ), 1 ≤ j ≤ n, j �= k,

or Y ε(t) /∈ Γ0}

if Y ε
k (τm) ∈ Γk(≤ δ) (in this step of our proof we don’t need any times σm

alternating with τm).
Note that there can be only one k such that Y ε

k (τm) ∈ Γk(≤ δ), because
if both this and Y ε

j (τm) ∈ Γj(≤ δ), j �= k, held, then Y ε(τm) would have
been deep inside Γ1 × · · · × Γk−1 × Γk(≤ d) × Γk+1 × · · · × Γj−1 × Γj

(≤ d)× Γj+1 × · · · × Γn, and the time τm would be after leaving Γ0.
It is clear that all τm, starting with some m, are equal to τ .



5 Proof of Theorem 3.2 381

We have:

Mε
x

[
e−λτf(Y ε(τ)) +

∫ τ

0

e−λt[ ] dt

]
− f(Y(x))

=

∞∑

m=0

Mε
x

[
e−λτm+1f(Y ε(τm+1))

+

∫ τm+1

τm

e−λt[ ] dt− e−λτmf(Y ε(τm))

]
. (5.7)

The zeroth summand converges to 0, uniformly in x = (x1, . . . , xn), by
Lemma 5.1, where we take as Γi0 the edge of the graph Γi containing the
point Yi(xi) with δ-neighborhoods of its ends deleted. To the m-th summand in
(5.7), m > 1, we apply the strong Markov property with respect to τm; and we
get that it is equal to Mε

xψ
ε(Xε(τm)), where ψε(x′) = ψε(x′

1, . . . , x
′
n) = 0 if

Y(x′) /∈ Γ0, and

ψε(x′) = Mε
x′

[
e−λσkf(Y ε(σk)) +

∫ σk

0

e−λt[ ] dt

]
− f(Y(x′))

if Yk(x
′
k) ∈ Γk(≤ δ), where

σk = min{t ≥ 0 : one of Y ε
j (t) ∈ Γj(≤ δ), j �= k, or Y ε(t) /∈ Γ0}.

By Lemma 5.2, we have that ψε(x′) → 0 as ε → 0, uniformly in x′ (as Γk0

we take {y ∈ Γk : Hk(y) < H0}, and as Γj0, j �= k, the edge of the graph Γj

containing the point Yj(x
′
j) with δ-neighborhoods of its ends deleted).

To conclude the proof, we show that the expectation Mε
x

∑
m:τm<τ e

−λτm is
uniformly bounded for small positive ε; and this is done taking into account that
between the times τm and τm+1 < τ the process Y ε(t) has to travel at least the
positive distance d− δ.

Lemma 5.4. For Γ0 = Γ(d) (5.2) is satisfied, uniformly in every compact part
of Y−1(Γ(d)).

Proof. Limit passage as H0 →∞.

Lemma 5.5. Let Γ0 = {y : Hi(yi) < H0, 1 ≤ i ≤ n}. Then for every positive
d, f ∈D and λ > 0 (5.2) is satisfied, uniformly in x ∈Y

−1(Γ(d)).

(This is, in fact, the final result in Freidlin and Wentzell [6]—plus its formu-
lation in the language of weak convergence.)

Proof. For 0 < δ < d, let τδ be the first time at which the process Y ε(t) leaves
the set Γ(δ). By Lemma 5.4 the function-space distribution of the process Y ε(•)
stopped at the time τδ converges weakly to that of the diffusion process Y (•) on
Γ stopped at the first time of leaving Γ(δ); therefore limε→0 P

ε
x{τδ > T}, for
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an arbitrary T , is not smaller than the corresponding probability PY(x){τδ > T}
for the process Y (t) starting from the point Y(x), and that uniformly in x ∈
Y

−1(Γ(δ)); if κ > 0, we have Pε
x{τδ > T} ≥ PY(x){τδ > T} − κ for suffi-

ciently small ε. By Lemma 4.4, the last probability goes to 1 as δ ↓ 0, uniformly
in x changing in every compact part of Y−1(Γ(d)). So for sufficiently small δ
and ε we have Pε

x{τδ > T} > 1− 2κ for all x in a compact part of Y−1(Γ(d));
Mε

xe
−λτδ ≤ 2κ+ e−λT . Choosing T large enough, and then δ small enough, we

obtain from (5.2) for τδ that Mε
x

∫∞
0

e−λt[ ] dt − f(Y(x)) is small for ε small
enough, that is, the statement of Lemma 5.5.

Lemma 5.6. We have (5.1) satisfied, uniformly in x changing in every compact
set.

Proof. (We are writing it in more detail, because it cannot be found in Freidlin
and Wentzell [5]). We have to prove, for an arbitrary positive κ, that the difference
of both sides in (5.1) is smaller than κ for x in an arbitrary compact set K =
{x : Hi(xi) ≤ H0, 1 ≤ i ≤ n}, for ε small enough. We’ll do it estimating the
expected times spent by the stochastic process Y ε(t) in subsets of Γ.

The stochastic processes Hi(Xi(t)) satisfy the stochastic equations

dHi(X
ε
i (t)) = ∇Hi(X

ε
i (t)) · σidWi(t) +

[
∇Hi(X

ε
i (t)) · βi(X

ε(t))

+
1

2

2∑

j,r=1

ai;jr
∂2Hi(X

ε
i (t))

∂ξj∂ξr

]
dt (5.8)

with coefficients estimated independently of ε. Let H∗ be a number greater than
H0 and every number Hi(Oik); let τ∗ be the time at which Y ε(t) leaves the set
Γ∗ = {y : Hi(yi) < H∗, 1 ≤ i ≤ n}. Just as in Sect. 2, let us introduce the
measures

mε
x(C) = Mε

x

∫ τ∗

0

e−λtχC(H1(X1(t)), . . . , Hn(Xn(t))) dt, C ⊆ R
n,

Mε
x(D) = Mε

x

∫ τ∗

0

e−λtχD(X(t)) dt, D ⊆ Y
−1(Γ∗).

Using again the results of Bogachev, Krylov, and Röckner [1] we get that the mea-
sure mε

x has a density with respect to the Lebesgue measure with its Ln/(n−1)-
norm bounded uniformly in ε and x.

The same is true for the measure

m̂ε
x(E) = Mε

x

∫ τ∗

0

e−λtχE(Y
ε(t)) dt, E ⊆ Γ∗,

because it is projected into mε
x under the mapping y �→ (H1(y1), . . . , Hn(yn)).
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Now let τh be a random time, independent of the process Xε(t), having a
uniform distribution in the interval [0, h] (h > 0). We have, by the Markov prop-
erty:

Mε
x

[∫ ∞

0

e−λt[ ] dt− f(Y(x))

]

= Mε
x

[
e−λτhf(Y (τh)) +

∫ τh

0

e−λt[ ] dt

]

+Mε
xe

−λτhφ(Xε(τh)), (5.9)

where

φε(z) = Mε
x

∫ ∞

0

e−λt[ ] dt− f(Y(z)).

Since f is continuous, and ‖f‖ = sup |f(y)|, ‖λf − Lf‖ are finite, we can
choose a positive h so that the first summand in the right-hand side of (5.9) is
less than κ/4.

The coefficients in (5.8) are estimated independently of ε and growing not
faster than linearly at infinity; so there exists such an H∗ > H0 that for every ε
the probability

Pε
x

{
max
1≤i≤n

max
0≤t≤h

Hi(X
ε
i (t)) ≥ H∗

}
<

κ

4(‖f‖+ λ−1‖λf −Lf‖)

for all x ∈ K.
The second summand in the right-hand side of (5.9) can be rewritten as

Mε
x{Y ε(t) /∈ Γ∗ for some t ∈ [0, h]; e−λτhφ(Xε(τh))}
+Mε

x{Y ε(t) ∈ Γ∗ for all t ∈ [0, h]; e−λτhφ(Xε(τh))};

the first expectation is less than κ/4, and the second is not greater than

sup
z∈Y−1(Γ∗∩Γ(d))

|φ(z)|+ sup
z∈Y−1(Γ∗)

|φ(z)| · Pε
x{Y ε(t) ∈ Γ∗

for all t ∈ [0, h],Y ε(τh) /∈ Γ(d)}.

The probability in this formula can be rewritten as

1

h

∫ h

0

Pε
x{Y ε(t) ∈ Γ∗ for all t ∈ [0, h],Y ε(τh) /∈ Γ(d)} dt

≤ const · m̂ε
x(Γ∗ \ Γ(d)).

Choosing a positive d small enough, we make the Lebesgue measure of the set
Γ∗ \ Γ(d) small, and we can make const · supε supx m̂ε

x(Γ∗ \ Γ(d)) < κ/4.
Finally, by Lemma 5.5, supz∈Y−1(Γ∗∩Γ(d)) |φ(z)| < κ/4 for sufficiently small ε,
which proves our lemma.

This means that Theorem 3.2 is proved.
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6 Deterministic Coupling

In this section, we, following Freidlin and Wentzell [7], consider deterministic
coupling of oscillators. The perturbed system, in this case, is described by (1.3)
with σ(x) ≡ 0:

Ẋε(t) =
1

ε2
∇̄H(Xε(t)) + β(Xε(t)), Xε(0) = x ∈ R

2n. (6.1)

The slow component of Xε(t) is the projection Y ε(t) = Y(Xε(t)) on the
open book Γ corresponding to the Hamiltonian H(x) =

∑n
i=1 Hi(xi).

One can show that the limit of Y ε(t) as ε ↓ 0 may not exist even within
one page (see, for instance, V.I. Arnold [3]). The problem should be regularized
and a weaker topology should be considered, similar to the case of one degree of
freedom (see Sect. 8, Chap. 8). Within one page, stochastic perturbations of the
initial conditions (Anosov [1], Neishtadt [1], [2], [3], Lochak and Meunier [1]) or
perturbations of the equation (Freidlin and Wentzell [5], Sect. 2) can be used for
regularization. But the slow component Y ε(t) can go from one page to another
in a finite bounded from above as ε ↓ 0 time. Then the regularization by stochas-
tic perturbation of initial conditions, in general, does not work, and we have to
consider regularization by the addition of a small noise in the equation.

Let Xε,κ(t) be the solution of equation

Ẋε,κ(t) =
1

ε2
∇̄H(Xε,κ(t)) + β(Xε,κ(t)) + κσẆ t,

Xε,κ
0 = x.

(6.2)

Here σ is a 2n× 2n-matrix having, as in Sect. 3, 2× 2-matrices σi = (σi;jk)
with constant entries on the diagonal and zeros elsewhere. The slow component
of Xε,κ

t is the process Y ε,κ
t which is the projection of Xε,κ

t on the open book Γ:
Y ε,κ

t = Y(Xε,κ
t ).

For a fixed κ > 0, one can apply Theorem 3.2: Under mild additional con-
ditions (including condition (�) of Sect. 3), Y ε,κ

t converges weakly in the space
of continuous functions ϕ : [0, T ]→ Γ to a diffusion process Y κ

t on Γ as ε ↓ 0.
The process Y κ

t is governed inside the pages of Γ by the operator

Lκf(y) = κ2

(
1

2

n∑

i=1

Ai(yi)
∂2f

∂H2
i

+

n∑

i=1

Bi(yi)
∂f

∂Hi

)
+

n∑

i=1

β̄i(y)
∂f

∂Hi
, (6.3)

where Ai(yi), Bi(yi) and β̄i(y) are defined in Sect. 3.
The operator Lκ defines Y κ

t inside each page. To describe the behavior of
Y κ

t for all t > 0, one should add gluing conditions on the accessible part of the
binding. The accessible part consists of (n − 1)-dimensional pieces of the form
{Oi0k} ×

∏
i:i =i0

Iik, where Oi0k is an interior of a graph Γi0 corresponding to
Hi0(xi0). The gluing conditions on each such piece are described by equalities
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Figure 41.

(3.6), (3.9). Note that the coefficients in the gluing conditions are determined just
by diffusion coefficients of Lκ. They are independent of the drift coefficients and
of κ. Moreover, they are the same at all points of each accessible piece {Oi0k}×∏

i:i =i0
Iil.

Now we should consider the limit of Y κ
t as κ ↓ 0. The form of operator

(6.3) implies that inside each page (outside an arbitrary small neighborhood of
the binding), Y κ

t converges to the deterministic motion along the vector field
β̄(y) = (β̄1(y), . . . , β̄n(y)). This simple statement is a slight generalization of
Theorem 1.2 of Chap. 2 and can be proved in the same way.

The behavior of limiting process on the binding turns out to be independent
of the diffusion coefficients and is defined entirely by the deterministic pertur-
bations. This follows from corresponding bound for the case of one oscillator
presented in Sect. 8, Chap. 8, and comparison theorems for the generator of pro-
cess Y ε,κ

t on Γ. The general result is a bit bulk, so we restrict ourselves to a
special case.

Consider the case of two oscillators. Moreover, assume that one of the os-
cillators has Hamiltonian H1(x1) = 1

2p
2
1 + F1(q1), x1 = (p1, q1) ∈ R

2,
with just one saddle point O12 and two minima O11 and O13; the Hamiltonian
H2(x2) = 1

2p
2
2 + F2(q2), x2 = (p2, q2) ∈ R

2, has just one minimum O21

(Fig. 41). As usual, we assume that both Hamiltonians are smooth, generic, and
limxi→∞ Hi(xi) =∞, i = 1, 2.

Besides the Hamiltonians H1(p1, q1) and H2(p2, q2), corresponding graphs
Γ1 and Γ2, and phase pictures for each oscillator, the∞-shaped curve {(p1, q1) :
H1(p1, q1) = H1(O12)} confining domains G1 and G2 is shown in Fig. 41.

The non-perturbed oscillators are described by equations

q̈1(t) = −F ′
1(q1), q̈2(t) = −F ′

2(q2).

Let the deterministic perturbations lead to equations (after the time rescaling)
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Figure 42.

q̈ε1(t) = −
1

ε
F ′
1(q

ε
1) + β1(q̇

ε
1, q

ε
1; q̇

ε
2, q

ε
2),

q̈ε2(t) = −
1

ε
F ′
2(q

ε
2) + β2(q̇

ε
1, q

ε
1; q̇

ε
2, q

ε
2).

(6.4)

Note that β1 and β2 are scalar functions here. Assume for brevity that the
perturbation of the first oscillator is friction-like:

∂β(p1, q1; p2, q2)

∂p1
< 0. (6.5)

The slow component Y ε,0
t of this motion as 0 < ε ! 1 is the projection

Y(Xε
t ) of Xε

t = (q̇ε1(t), q
ε
1(t); q̇

ε
2(t), q

ε
2(t)) on the open book Γ = Γ1×Γ2. The

open book consists of 3 pages (Fig. 42).
Here Y1(p1, q1) = (i,H1(p1, q1)) ∈ Γ1 if (p1, q1) ∈ Gi, i = 1, 2, (see

Fig. 41) and H1(p1, q1) < H1(O12); if H1(p1, q1) > H1(O12), Y(p1, q1) =
(3, H1(p1, q1)). Since graph Γ2 has just one edge, Y2(p2, q2) = (1,
H2(p2, q2)) ∈ Γ2 for all (p2, q2) ∈ R

2. The identification mapping Y : R2 ×
R

2 → Γ = Γ1 × Γ2 is the product Y(p1, q1, p2, q2) = Y(p1, q1)×Y(p2, q2).
One can show that if Y maps the initial point for system (6.4) to page 3 of

Γ, the limit of slow component Y ε,0
t = Y(Xε

t ) as ε ↓ 0 for large enough t does
not exist. To regularize the problem, we add a small noise to the right hand side
of system (6.4):

q̈ε,κ1 (t) = −1

ε
F ′
1(q

ε,κ
1 ) + β1(q̇

ε,κ
1 , qε,κ1 ; q̇ε,κ2 , qε,κ2 ) +

√
κσ1Ẇ

1
t ,

q̈ε,κ2 (t) = −1

ε
F ′
2(q

ε,κ
2 ) + β2(q̇

ε,κ
1 , qε,κ1 ; q̇ε,κ2 , qε,κ2 ) +

√
κσ2Ẇ

2
t .

(6.6)
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Here σ1 and σ2 are positive constants, and W 1
t , W 2

t are independent one
dimensional Wiener processes. The slow component of the process Xε,κ

t =
(q̇ε,κ1 (t), qε,κ1 (t); q̇ε,κ2 (t), qε,κ2 (t)) is the projection Y ε,κ

t = Y(Xε,κ
t ) of Xε,κ

t

on Γ.
Let Ci(z) = {(p, q) ∈ R

2 : Hi(p, q) = z}, i = 1, 2. The level set C1(z),
z ∈ (0, H1(O12)), consists of two connected components: C11(z) and C12(z)
bounding respectively domains G11(z) containing O11 and G12(z) containing
O13. If z > H1(O12), C1(z) consists of just one component bounding a domain
G13(z); we also use the notation C13(z) for C1(z) if z > H1(O12). The level
set C2(z) consists of one component for any z ∈ R

1; we will use the notation
C21(z) for C2(z) and G21(z) for the domain bounded by C21(z) = C2(z).

Denote by Tij(z) the period of rotation along Cij(z):

Tij(z) =

∮

Cij(z)

d�

|∇H(x)| .

Let Sij(z) be the area of Gij(z). One can check that Tij(z) =
dSij(z)

dz .
Denote by Y κ

t a diffusion process on Γ which is defined as follows: Inside
j-th page, j = 1, 2, 3, Y κ

t is governed by the operator Lj :

Ljf(j,H1, H2) =
κ2

2

2∑

k=1

1

Tkj(Hk)

d

dHk

(
ākj(Hk)

df

dHk

)

+
1

T1j(H1)T2j(H2)

2∑

k=1

β̄kj(H1, H2)
df

dHk
,

ākj(Hk) =

∮

Ckj(Hk)

(
σ2
k 0
0 0

)
∇Hk ·

∇Hk

|∇Hk|
d� = σ2

kSkj(Hk),

β̄kj(H1, H2)

=

∮

Ckj(H1)

∮

C21(H2)

∇Hk(pk, qk) · (βk(p1, q1; p2, q2), 0) d�1d�2
|∇H1(p1, q1)||∇H2(p2, q2)|

.

To define the process Y κ
t for all t > 0, one should add gluing conditions

on the accessible for Y κ
t part of the binding of Γ. It is easy to check that the

accessible part of the binding consists of interior points of the interval {O12} ×
I21 ⊂ Γ.

Let the domain of the generator of the process Y κ
t on Γ consists of functions

f(i,H1, H2) (the first variable i is the number of a page) such that f(i,H1, H2)
is smooth inside each page, continuous on Γ together with Lif(i,H1, H2) and,
on I21 satisfies the equality

S1
∂f(1, H1, H2)

∂H1
+ S2

∂f(2, H1, H2)

∂H1

− (S1 + S2)
∂f(3, H1, H2)

∂H1

∣∣∣∣
H1=H1(O12),H2>0

= 0, (6.7)



388 9. The Multidimensional Case

where S1 and S2 are, respectively, areas of domains G1 and G2 bounded by the
curve {(p1, q1) ∈ R

2 : H1(p1, q1) = H1(O12)} (Fig. 41).
Assume that F1(q) and F2(q) satisfy the conditions formulated above (see

Fig. 41), 0 < a0 ≤ F ′
i (q) ≤ a1 < ∞ for some constants a0, a1 and |q| large

enough. Let condition (∗) be satisfied. Then the process Y ε,κ
t = Y(Xε,κ

t ) on Γ
converge weakly in the space of continuous functions [0, T ] → Γ, 0 < T < ∞,
to the process Y ε,κ

t as ε ↓ 0.
The proof of this statement is similar to the proof of Theorem 3.2. One just

should take into account the following:

• The diffusion matrix for process Xε,κ
t defined by (6.6) is degenerate. But,

as it was mentioned in the end of Sect. 2, Theorem 2.1 remains true if we
require that just the averaged diffusion matrix is non-degenerate. In our case,
the averaged diffusion matrix is the diagonal 2 × 2-matrix with elements
σ2
1S1j(H1), σ2

2S21(H2) at a point (j,H1, H2) ∈ Γ, j is the number of the
page.

• Although the four-dimensional process Xε,κ
t defined by (6.6) is degenerate,

the measure in the space of trajectories on any finite time interval is absolutely
continuous with respect to such a measure for the process with β1 ≡ β2 ≡ 0.
This property allows to check that the gluing conditions on {O12} × I21 for
the process Y κ

t with the deterministic perturbation and without it are the
same.

• In the proof of Theorem 3.2, we used some estimates from Chap. 8 which
were proved under assumption that the perturbed process with pure stochas-
tic perturbations is a non-degenerate diffusion. The process Xε,κ

t , 0 < κ,
defined by (6.6) is degenerate. But since for corresponding differential oper-
ator Hörmander’s conditions are satisfied, all necessary for our proof bounds
are preserved (see Freidlin and Weber [2]).

We omit the details of the proof of convergence of Y ε,κ
t to Y κ

t as ε ↓ 0.
Now we should consider the behavior of Y κ

t as κ ↓ 0. To be specific, assume
that Y κ

0 = (3, H0
1 , H

0
2 ) belongs to p. 3 (Fig. 42).

Introduce a stochastic process Y t on Γ: Let Y 0 = Y κ
t = (3, H0

1 , H
0
2 ). Inside

the i-th page, i = 1, 2, 3, the process is deterministic and is governed by equation

Ḣk(t) = β̄ik(H1, H2), k = 1, 2. (6.8)

One can check that, because of (6.5), Y t, Y 0 = (3, H1, H2), comes to
{O12} × I21 in a finite time t0 = t0(H1, H2). Assume for brevity that Y t0

is situated inside the interval {O12} × I21. Let, after hitting the binding at Y t0 ,
the process Y t goes to page 1 or page 2 without any delay on the binding, re-
spectively, with probabilities

Pi(H2(t0)) =
β̄i1(H1(O12), H2(t0))

β̄11(H1(O12), H2(t0)) + β̄21(H1(O12), H2(t0))
, i = 1, 2,

and the continue the motion according to (6.8).
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Process Y κ
t converges weakly as κ ↓ 0 to the process Y t. The proof of this

statement consists of several steps. First, one should prove that Y κ
t converges to

Y t on each page (before it hits a δ-neighborhood of {O12} × I21). This simple
statement is a slit generalization of Theorem 1.2 of Chap. 2, and can be proved in
a similar way. Second, one should show that the mean value of the exit time τκδ
of the process Y κ

t from a δ-neighborhood of {O12} × I21 tends to zero as δ ↓ 0
uniformly in κ for all points of the δ-neighborhood. Third, one should check that

lim
κ↓0

P(i,H1,H2){Y
κ
t belongs to page k}

=

⎧
⎨

⎩

pk, if i = 3, k ∈ {1, 2};
1, if i = k = 1 or i = k = 2;
0, if i ∈ {1, 2}, k = 3.

(6.9)

The probabilities P1 and P2 are defined above. To get an appropriate bound
for the exit time from the δ-neighborhood and to prove (6.9), one can, first, to
consider the case of β1(p1, q1; p2, q2) independent of p2, q2. In this case we are
dealing with an one-degree-of-freedom system, and the mean exit time and exit
probabilities for Y κ

t of corresponding ordinary differential equations with glu-
ing condition at O12 and appropriate boundary conditions on the boundary of
δ-neighborhood of the vertex O12 on Γ1. Then one can prove the convergence
of exit time to zero and (6.9). Actually, it is sufficient to check these statements
for constant β̄i1. Then, using the comparison theorems (maximum principle), one
can get the statements for the general case. The fact that the coefficients in the
gluing condition (6.7) are constant (independent of H2) simplifies application of
the comparison theorems.

Combining all the arguments above we get the following result:

Theorem 6.1. Assume that all conditions on the potentials F1(q1) and F2(q)
mentioned above are satisfied as well as condition (∗). Suppose that the pertur-
bations βi(p1, q1; p2, q2) grow not faster than linearly as p21+q21+p22+q22 →∞
and condition (6.5) is satisfied.

Then for each T > 0, the slow component Y ε,κ
t = Y(Xε,κ

t ) of the process
Xε,κ

t defined by (6.6) converges weakly in the space of continuous functions
[0, T ] → Γ to the process Y t defined by (6.8) and (6.9) as first ε ↓ 0 and then
κ ↓ 0.



Chapter 10

Stability Under Random Perturbations

1 Formulation of the Problem

In the theory of ordinary differential equations much work is devoted to the study
of stability of solutions with respect to small perturbations of the initial condi-
tions or of the right side of an equation. In this chapter we consider some prob-
lems concerning stability under random perturbations. First we recall the basic
notions of classical stability theory. Let the dynamical system

ẋt = b(xt) (1.1)

in Rr have an equilibrium position at the point O : b(O) = 0.
The equilibrium position O is said to be stable (Lyapunov stable) if for every

neighborhood U1 of O there exists a neighborhood U2 of O such that the solu-
tions of (1.1) with initial condition x0 = x ∈ U2 do not leave U1 for positive t.
If, in addition, limt→∞ xt = O for trajectories issued from points x0 = x suf-
ficiently close to O, then the equilibrium position O is said to be asymptotically
stable.

With stability with respect to perturbations of the initial conditions there is
closely connected the problem of stability under continuously acting perturba-
tions. To clarify the meaning of this problem, along with (1.1), we consider the
equation

˙̃xt = b(x̃t) + ζt, (1.2)

where ζt is a bounded continuous function on the half-line [0,∞) with values
in Rr. The problem of stability under continuously acting perturbations can be
formulated in the following way: under what conditions on the field b(x) does
the solution of problem (1.2) with initial condition x̃0 = x converge uniformly
on [0,∞) to the constant solution x̃t ≡ O, as |x − O| + sup0≤t<∞ |ζt| → 0.
It can be proved that if the equilibrium position is stable, in a sufficiently strong
sense, with respect to small perturbations of the initial conditions, then it is also
stable under continuously acting perturbations. For example, if the equilibrium
position is asymptotically stable, i.e.,

lim
t→∞

xt = O

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
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uniformly in x0 = x belonging to some neighborhood of O, then O is also stable
with respect to small continuously acting perturbations (cf. Malkin [1]).

The situation changes essentially if we omit the condition of boundedness of
ζt on [0,∞). In this case the solutions of (1.2) may, in general, leave any neigh-
borhood of the equilibrium position even if the equilibrium position is stable with
respect to perturbations of the initial conditions in the strongest sense. Actually,
the very notion of smallness of continuously acting perturbations needs to be
adjusted in this case.

Now let ζt in (1.2) be a random process: ζt = ζt(ω). If the perturbations ζt(ω)
are uniformly small in probability, i.e., sup0≤t<∞|ζt(ω)| → 0 in probability, then
the situation is not different from the deterministic case: if the point O is stable
for system (1.1) in a sufficiently strong sense, then as

sup
0≤t<∞

ζt(ω)

converges to zero in probability and the initial condition x0 = x converges to O,
we have: P{sup0≤t<∞|xt − O| ≥ δ} → 0 for any δ > 0. Nevertheless, the
assumption that ζt, converges to zero uniformly on the whole half-line [0,∞) is
too stringent in a majority of problems. An assumption of the following kind is
more natural: supt M|ζt|2 or some other characteristic of the process ζt converges
to zero, which makes large values of |ζt| unlikely at every fixed time t but allows
the functions |ζt(ω)| to assume large values at some moments of time depending
on ω. Under assumptions of this kind, the trajectories of the process x̃t may, in
general, leave any neighborhood of the equilibrium position sooner or later. For
example, if ζt is a stationary Gaussian process, then the trajectories of x̃t have
arbitrarily large deviations from the equilibrium position with probability one
regardless of how small M|ζt|2 = α �= 0 is.

To clarify the character of problems, involving stability under random pertur-
bations, to be discussed in this chapter, we consider an object whose state can
be described by a point x ∈ Rr. We assume that in the absence of random per-
turbations, the evolution of this object can be described by (1.1), and random
perturbations ζt(ω) lead to an evolution which can be described by the equation

Ẋt = b(Xt, ζt). (1.3)

As ζt, we also allow some generalized random processes for which (1.3) is mean-
ingful (there exists a unique solution of (1.3) for any initial point x0 = x ∈ Rr).
For example, we shall consider the case where b(x, y) = b(x) + σ(x)y and ζt is
a white noise process or the derivative of a Poisson process.

We assume that there exists a domain D ⊂ Rr such that as long as the phase
point characterizing the state of our object belongs to D, the object does not
undergo essential changes and when the phase point leaves D, the object gets
destroyed. Such a domain D will be called a critical domain.

Let Xx
t be the solution of (1.3) with initial condition Xx

0 = x. We introduce
the random variable τx = min{t : Xx

t /∈ D}—the time elapsed until the de-
struction of the object. As the measure of stability of the system with respect to
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random perturbations ζt relative to the domain D, it is natural to choose various
theoretical probability characteristics of τx.1 Hence if we are interested in our
object only over a time interval [0, T ], then as the measure of instability of the
system, we may choose P{τx ≤ T}. If the time interval is not given before-
hand, then stability can be characterized by Mτx. In cases where the sojourn of
the phase point outside D does not lead to destruction of the object but is only
undesirable, as the measure of stability, we may choose the value of the invariant
measure of the process for the complement of D (if there exists an invariant mea-
sure). This measure will characterize the ratio of the time spent by the trajectory
Xx

t outside D.
However, a precise calculation of these theoretical probability characteristics

is possible only rarely, mainly when Xx
t turns out to be a Markov process or

a component of a Markov process in a higher dimensional space. As is known,
in the Markov case the probabilities and mean values under consideration are
solutions of some boundary value problems for appropriate equations. Even in
those cases where equations and boundary conditions can be written down, it
is not at all simple to obtain useful information from the equations. So it is of
interest to determine various kinds of asymptotics of the mentioned theoretical
probability characteristics as one parameter or another, occurring in the equation,
converges to zero.

In a wide class of problems we may assume that the intensity of the noise
is small in some sense compared with the deterministic factors determining the
evolution of the system. Consequently, a small parameter appears in the problem.
If O is an asymptotically stable equilibrium position of the unperturbed system,
then exit from a domain D takes place due to small random perturbations, in
spite of the deterministic constituents. As we know, in such situations estimates
of P{τx ≤ T} and Mτx are given by means of an action functional. Although
in this way we can only calculate the rough, logarithmic, asymptotics, this is
usually sufficient in many problems. For example, the logarithmic asymptotics
enables us to compare various critical domains, various vector fields b(x, y) and
also enables us to solve some problems of optimal stabilization.

This approach is developed in the article by Wentzell and Freidlin [5].
We introduce several different formulations of stability problems and outline

methods of their solution.
Let Xh

t , t ≥ 0, be the family of random processes in Rr, obtained as a result
of small random perturbations of system (1.1); the probabilities and mathematical
expectations corresponding to a given value of the parameter and a given initial
point will be denoted by Ph

x, Mh
x, respectively. Let λ(h)S0T (ϕ) be the action

functional for the family of processes Xh
t with respect to the metric ρ0T (ϕ, ψ) =

1 We note that τx may turn out to be equal to ∞ with positive probability. If the random
perturbations vanish at the equilibrium position O itself, then P{τx < ∞} may converge
to 0 as x → O. For differential equations with perturbations vanishing as the equilibrium
position is approached, a stability theory close to the classical theory can be created (cf.
Khas’minskii [1]).
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sup0≤t≤T |ϕt − ψt| as h ↓ 0. It is clear that S0T vanishes for trajectories of
system (1.1) and only for them.

Let O be a stable equilibrium position of system (1.1), let D be a domain
containing O, and let τD = inf{t : Xh

t /∈ D} be the time of first exit of the
process from D. We are interested in the stability of the system on a finite time
interval [0, T ]. We shall characterize stability by the asymptotics of Ph

x{τD ≤ T}
as h ↓ 0.

It is appropriate to introduce the following measure of stability of our system
with respect to the given random perturbations and domain D:

V T,x
D = inf

{
S0T (ϕ) : ϕ ∈

⋃

0≤t≤T

⋃

y/∈D

Hxy(t)

}
,

where the set Hxy(t) consists of all functions ϕs defined for s ∈ [0, T ], such that
ϕ0 = x and ϕt = y. The sense of this measure of stability is the following: if the
infima of S0T over the closure and interior of

⋃
0≤t≤T

⋃
y/∈D Hxy(t) coincide,

then Ph
x{τD < T} is logarithmically equivalent to

exp{−λ(h)V t,x
D }.

We note that for the coincidence of the infima over the closure and the interior it
is sufficient (in the case of a functional S0T of the form considered in Chaps. 4–5)
that D coincide with the interior of its closure.

The measure of stability V T,x
D is given by inf0≤t≤T,y/∈D u(t, x, y), where

u(t, x, y) = inf{S0T (ϕ) : ϕ ∈ Hx,y(t)} can be determined from the Jacobi
equation.

The problem in which there is no fixed time interval [0, T ] of observation is
characterized by another measure of stability. We define μD as the infimum of
the values of the functional S0T of the functions ϕt defined on intervals [0, T ] of
any length, such that ϕ0 = O, ϕT /∈ D. We may calculate μD as the infimum,
over y /∈ D, of the quasipotential

V (O, y) = inf{S0T (ϕ) : ϕ0 = O,ϕT = y; 0 < T <∞},

which can be calculated (Theorem 4.3 of Chap. 5) as the solution of an appro-
priate problem for a partial differential equation of the first order. According
to results of Chaps. 4–7, under suitable assumptions on the processes Xh

t and
the domain D, the mean exit time Mh

x τD of D is logarithmically equivalent to
exp{λ(h)μD} for all points x belonging to D for which the trajectory of system
(1.1) issued from x converges to the equilibrium position O, without leaving D
(Theorem 4.1 of Chap. 4, Theorem 5.3 of Chap. 6 and Theorem 6.1 of Chap. 7).
In this case the mathematical expectation represents a typical value of the exit
time to within logarithmic equivalence. Namely, for any γ > 0 we have

lim
h↓0

Ph
x{exp{λ(h)[μD − γ]} < τD < exp{λ(h)[μD + γ]}} = 1
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(Theorem 4.2 of Chap. 4). Further, the value of the normalized invariant measure
of Xh

t for the set Rr\D is logarithmically equivalent to

exp{−λ(h)μD}

(Theorem 4.3 of Chap. 4 and Theorem 4.2 of Chap. 5). Consequently, if the time
interval is not fixed beforehand, then the constant μD is, in some sense, a univer-
sal measure of stability for perturbations and critical domain of the kinds being
considered. If the critical domain is not given, then such a universal characteristic
of stability of the equilibrium position is the quasipotential V (O, y) of random
perturbations.

The “most dangerous point” on the boundary of the critical domain can be
expressed in terms of V (O, y): under certain assumptions, the “destruction” of
the object takes place, with overwhelming probability for small h, near the points
y ∈ ∂D where V (O, y) attains its infimum over ∂D.

Now we consider the problem of selecting an optimal critical domain. We
assume that for domains D containing the equilibrium position O of the unper-
turbed system, a monotone functional H(D) is defined: for the sake of definite-
ness, we assume that this functional has the form

∫
D
h(x) dx, where h(x) is a

positive function. From the domains D with a given value H0 of H(D) we try to
select one with the smallest probability of exit from the domain over a given time
T or with the largest mathematical expectation of the exit time. The optimal crit-
ical domain depends on the parameter h in general. We shall seek an asymptotic
solution of the problem, i.e., we shall try to construct a domain which is better
than any other domain (independent of h) for sufficiently small h.

It is clear that the problem is reduced to maximization of the corresponding
measure of stability, V T,x

D or μD. It is easy to see that it has to be solved in the
following way: we choose domains Dc of the form

{
y : inf

0≤t≤T
u(t, x, y) < c

}

(or {y : V (O, y) < c}, respectively); from the increasing family of these do-
mains we choose that one for which H(Dc) = H0. If the function

inf
0≤t≤T

u(t, x, y)

(or V (O, y)) is smooth in y, then the good properties of Dc are guaranteed. Any
domain whose boundary is not a level surface of the function

inf
0≤t≤T

u(t, x, y)

(V (O, y), respectively) can be made smaller with preservation of the value of
infy/∈D inf0≤t≤T u(t, x, y) (or infy/∈D V (O, y)), and then be replaced by a larger
domain Dc with the former value of H .
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For example for the system ẋt = Axt with a normal matrix A and pertur-
bations of the type of a “white noise” (i.e., Ẋε

t = AXε
t + εwt), the optimal

critical domain for the problem without a fixed time interval is an ellipsoid (cf.
Example 3.2, Chap. 4).

We pass to problems of optimal stabilization.
We assume that the perturbed equation (1.3) contains a parameter (or sev-

eral parameters) which can be controlled. A choice of the way of control of the
process consists of a choice of the form of dependence of the controlling pa-
rameter on values of the controlled random process. We introduce the following
restriction on the character of this dependence. To every form a of dependence of
the controlling parameter on values of the process let there correspond a family
of random processes Xa,h

t . For all of them we assume that there exists an action
functional λ(h)Sa(ϕ) in which the normalizing coefficient λ(h) does not depend
on the choice of control.

The solution of certain problems of optimal control of a process for small
h is connected with the functional Sa(ϕ) = Sa

0T (ϕ) and the quasipotential
V a(x, y) = inf{Sa

0T (ϕ) : ϕ0 = x, ϕT = y; 0 ≤ T < ∞}. In particular, it
is plausible that the problem of the choice of control maximizing the mean exit
time of a domain D (asymptotically as h ↓ 0) is connected with the function

V̄ (x, y) = supV a(x, y), (1.4)

where the supremum is taken over all admissible ways of control.
We restrict ourselves to controlled Markov processes, homogeneous in time.

As admissible controls we shall consider those in which the value of the con-
trolling parameter at a given time t is a definite function a(Xt) of the value of
the process at the same moment of time. Such controls lead to Markov processes
Xa,h

t , homogeneous in time (cf. Krylov [2]); at every point x their local charac-
teristics depend on x and on the value of the controlling parameter a(x) at x.

Hence let the class of admissible controls consist of functions a(x) whose
values at every point x belong to the set Π(x) of admissible controls at x (and
which are subject to some regularity conditions). To every admissible function
there corresponds a Markov process (Xa,h

t ,Pa,h
x ) (the corresponding mathemat-

ical expectation, normalized action functional, and quasipotential will be denoted
by Ma,h

x , Sa
0T (ϕ), and V a(x, y)). We shall consider the following problem: we

seek a function a which maximizes

lim
h↓0

λ(h)−1 lnMh,a
x τD.

As we have already mentioned, the solution of this problem is most likely
connected with the function V̄ (x, y) defined by formula (1.4). A series of ques-
tions arises here: How can the maximal quasipotential V̄ (x, y) be determined?
How can the optimal control problem be solved by means of it? In the following
sections we consider these questions (for a certain class of controlled Markov
processes) with examples.



396 10. Stability Under Random Perturbations

2 The Problem of Optimal Stabilization

The class of families of random processes for which we shall consider the prob-
lem is the family of locally infinitely divisible processes considered in Chap. 5.
We assume that at every x ∈ Rr we are given a set Π(x) ⊆ Rl. To every
pair x ∈ Rr, a ∈ Π(x) let there correspond: a vector b(x, a) = (b1(x, a), . . . ,
br(x, a)), a symmetric nonnegative definite matrix (aij(x, a)) of order r, and a
measure μ(x, a, ·) on Rr\{0}, such that

∫
|β|2μ(x, a, dβ) <∞.

We define the process (Xh,a
t , Ph,a

x ) corresponding to the value h of the pa-
rameter (from (0,∞)) and the choice a(x) of the control function (a(x) belongs
to Π(x) for every x) to be the Markov process with infinitesimal generator de-
fined for twice continuously differentiable functions with compact support by the
formula

Ah,af(x) =
∑

bi(x, a(x))
∂f(x)

∂xi
+

h

2

∑
aij(x, a(x))

∂2f(x)

∂xi∂xj

+ h−1

∫

Rr\{0}

[
f(x+ hβ)− f(x)− h

∑ ∂f(x)

∂xi
βi

]

× μ(x, a(x), dβ). (2.1)

Of course, it may turn out that no Markov process corresponds to a given
function a(x) for some h > 0; in this case we shall consider the control function
inadmissible. We denote by A the class of admissible controls.

A large number of publications is devoted to the problem of finding condi-
tions guaranteeing that to a given set of local characteristics there corresponds a
locally infinitely divisible process; this problem has been studied especially ex-
tensively in the case of diffusion processes, i.e., where μ ≡ 0. For example, it
is sufficient that the diffusion matrix be uniformly nondegenerate and continu-
ous and the drift vector be bounded and measurable (cf. Krylov [1], Stroock and
Varadhan [1], [2]). The case of a μ, different from zero, has been considered in
Komatsu [1], Stroock [1], Lepeltier and Marchal [1], etc.

For a varying choice of a(x), the probabilities of unlikely events for
(Xh,a

t ,Ph,a
t ) are connected with the function of three variables

H(x, a, α) =
∑

bi(x, a)αi +
1

2

∑
aij(x, a)αiαj

+

∫

Rr\{0}

[
exp
{∑

βiαi

}
− 1−

∑
βiαi

]

× μ(x, a, dβ), (2.2)

which, together with its derivatives with respect to αi, we shall assume to be
finite and continuous in all arguments. Under the hypotheses of Theorem 2.1 of
Chap. 5, the action functional for the family of processes (Xh,a

t ,Ph,a
t ) as h ↓ 0

is given by the formula
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h−1Sa
0T (ϕ) = h−1

∫ T

0

L(ϕt, a(ϕt), ϕ̇t) dt, (2.3)

where L(x, a, β) is the Legendre transform of H(x, a, α) in the third argument.
In Chap. 5 we required that the functions H(x, α), L(x, β) be continuous

in x. Therefore, it would be desirable to consider only continuous controlling
functions a(x). However, it is known that in problems of optimal control we can
only rarely get along with continuous controls. It turns out that the necessary
results can be carried over to the case where the controls are discontinuous at one
point (or a finite number of points) but the results cannot be preserved in general
if discontinuity occurs on a curve (or on a surface). Therefore, we introduce the
following class of functions. Let a(x) be defined on Rr with values in Rl. We
shall write a ∈ Π if a is continuous for all x ∈ Rr except, maybe, one point and
for every x the value of a belongs to the set Π(x) of admissible controls at x.

Theorems 2.1–2.3 for diffusion processes are contained in Wentzell and Frei-
dlin [5].

Theorem 2.1. Let τD be the time of exit of the process Xh,a
t from a bounded

domain D whose boundary coincides with the boundary of its closure. For any
control function a ∈ Π ∩ A we have

lim
h↓0

h lnMh,a
x τD ≤ V0 = max

x0∈D
min
y∈∂D

sup
a∈Π

V a(x0, y) (2.4)

uniformly in x ∈ D.

We note that V a is in turn the infimum of the values of Sa(ϕ) for functions
leading from x0 to y, so that the right side of (2.4) contains a quite complicated
combination of maxima and minima: max min sup inf.

The proof of the theorem can be carried out in the following way. For any
γ > 0 we choose T > 0 such that for any control function a ∈ Π and any
x0 ∈ D there exists a function ϕt, 0 ≤ t ≤ T , such that ϕ0 = x0, ϕt leaves D
for some t ∈ [0, T ] and Sa

0T (ϕ) ≤ V0 + γ. Then we prove the lemma below.

Lemma 2.1. For any a ∈ Π ∩ A we have

Ph,a
x {τD ≤ T + 1} ≥ exp{−h−1(V0 + 2γ)} (2.5)

for sufficiently small h and all x ∈ D.

The proof can be carried out as that of part (a) of Theorem 4.1 of Chap. 4:
the function ϕt is extended beyond D; we use the lower estimate given by The-
orem 2.1 of Chap. 5, of the probability of passing through a tube. The only dif-
ference is that the hypotheses of Theorem 2.1 of Chap. 5 are not satisfied in the
neighborhood of the point x∗ where a(x) is discontinuous. Nevertheless, the cor-
responding segment of the function ϕt can be replaced by a straight line segment
and the lower estimate is given by the following lemma.
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Lemma 2.2. Let (Xh,a
t ,Ph,a

x ) be a family of locally infinitely divisible processes
with infinitesimal generator of the form (2.1) and let the corresponding function
H(x, a(x), α), along with its first and second derivatives with respect to α, be
bounded in any finite domain of variation of α (but it may be arbitrarily discon-
tinuous as a function x). Then for any γ > 0 and any δ > 0 there exists ρ0 > 0
such that

Ph,a
x {ρ0t0(Xh,a, ϕ) < δ} ≥ exp{−γh−1} (2.6)

for sufficiently small h > 0, for all x, y such that |y − x| ≤ ρ0, where ϕt =
x+ t[(y − x)/(|y − x|)], 0 ≤ t ≤ t0 = |y − x|.

The proof copies the corresponding part of the proof of Theorem 2.1 of
Chap. 5 but without using the continuity of H or L.

After the proof of (2.5), the proof of Theorem 2.1 can be completed by ap-
plying the Markov property:

Ph,a
x {τD > n(T + 1)} ≤ [1− exp{−h−1(V0 + 2γ)}]n;

Mh,a
x τD ≤ (T + 1)

∞∑

n=0

Ph,a
x {τD > n(T + 1)}

≤ (T + 1) exp{−h−1(V0 + 2γ)}.

Now we put
H(x, α) = inf

a∈Π(x)
H(x, a, α).

Theorem 2.2. Let V̄ (x) be the solution of problem Rx0 for the equation

H(x,∇V̄ (x)) = 0 (2.7)

in a domain D. For any function a belonging to Π (i.e., a is continuous every-
where except one point and a(x) ∈ Π(x) for every x) for the quasipotential we
have

V a(x0, x) < V̄ (x)

for all x in the set

B =
{
x ∈ D ∪ ∂D : V̄ (x) ≤ inf

y∈∂D
V̄ (y)

}
.

Moreover, suppose that there exists a function a(x, α), continuous on the set
{(x, α) : x �= x0, α �= 0, H(x, α) = 0}, such that a(x, α) ∈ Π(x) and

H(x, a(x, α), α) = H(x, α) = 0.

Then
sup
a∈Π

V a(x0, x) = V̄ (x)

for all x ∈ B and the supremum is attained for the function a(x) = a(x,∇V̄ (x)).
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Figure 43.

Proof. Suppose that for some a ∈ Π, x ∈ B and ε > 0 we have

V α(x0, x) > ε+ (1 + ε)V̄ (x).

We may assume that ε �= ε∗ = [V a(x0, x∗)− V̄ (x∗)]/[1 + V̄ (x∗)], where x∗ is
the point where a(x) is discontinuous.

We consider the set A = B ∩ {x : V a(x0, x) > ε + (1 + ε)V̄ (x)}; this
set is open in B. We put V0 = inf{V̄ (x) : x ∈ A}. The infimum V0 is not
attained; let x∞ be a limit point of A on the level surface {x : V̄ (x) = V0}.
Let x1, . . . , xn, . . . be a sequence of points of A converging to c∞ (Fig. 43). It
is clear that the points of the surface {x : V̄ (x) = V0} do not belong to A and
V̄ (xn) > V0. We note that by virtue of the choice of ε �= ε∗, the point x∞ does
not coincide with the point x∗ of discontinuity of a.

We consider the vectors ∇V̄ (x∞) and β∞ = ∇αH(x∞, a(x∞),∇V̄ (x∞)).
By virtue of the properties of the Legendre transformation,

(∇V̄ (x∞), β∞) = L(x∞, a(x∞), β∞) +H(x∞, a(x∞),∇V̄ (x∞)). (2.8)

The function L(x∞, a(x∞), β) is nonnegative everywhere and vanishes only at
β = ∇αH(x∞, a(x∞), 0). On the other hand, ∇V̄ (x∞) �= 0 (because V̄ is
the solution of problem Rx0 ). Therefore, the first term in (2.8) is positive. The
second term is not less than H(x∞,∇V̄ (x∞)) = 0. Therefore, the scalar product
(∇V̄ (x∞), β∞) is positive, i.e., the vector β∞ is directed outside the surface
{x : V̄ (x) = V0} at x∞. By virtue of the continuity of ∇V̄ (x), the situation is
the same at points close to x∞.

For every point xn we define the function

ϕ
(n)
t = xn + tβ∞, t ≤ 0.

For xn sufficiently close to x∞ (i.e., for sufficiently large n), the straight line
ϕ
(n)
t intersects the surface {x : V̄ (x) = V0} for a small negative value tn, where

|tn| ∼
V̄ (xn)− V0

(∇V̄ (x∞), β∞)

as n→∞. The denominator here is not less than L(x∞, a(x∞), β∞), so that
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|tn| ≤
V̄ (xn)− V0

L(x∞, a(x∞), β∞)
(1 + o(1))

as n→∞.
We estimate the value of the functional Sa of the function ϕ

(n)
t for tn ≤

t ≤ 0:

Sa
tn0(ϕ

(n)) =

∫ 0

tn

L(ϕ
(n)
t , a(ϕ

(n)
t ), β∞) dt

∼ |tn|L(x∞, a(x∞), β∞) ≤ (V̄ (xn)− V0)(1 + o(1)) (2.9)

as n→∞. By virtue of the definition of the quasipotential V a we have

V a(x0, xn) ≤ V a(x0, ϕ
(n)
tn ) + Sa

tn0(ϕ
(n)).

The first term here does not exceed ε + (1 + ε)V̄ (ϕ
(n)
tn ) = ε + (1 + ε)V0; the

second term can be estimated by formula (2.9). Consequently, the inequality

V a(x0, xn) < ε+ (1 + ε)V0 + (1 + ε)(V̄ (xn)− V0) = ε+ (1 + ε)V̄ (xn)

is satisfied for sufficiently large n. On the other hand, this contradicts the fact that
xn ∈ A, i.e., that V a(x0, xn) > ε + (1 + ε)V̄ (xn). It follows that A is empty.
The first part of the theorem is proved.

For the proof of the second part it is sufficient to apply Theorem 4.3 of
Chap. 5 to the functions H(x, a(x), α)↔ L(x, a(x), β), continuous for x = x0,
where a(x) = a(x,∇V̄ (x)). ��

Now we assume that there exists a function a(x, α) mentioned in the hypoth-
esis of Theorem 2.2, for every x0 ∈ D there exists a function V̄ (x) = V̄x0(x)
satisfying the hypotheses of Theorem 2.2 and for every x0, the function ax0(x) =
a(x,∇x, V̄x0(x)) belongs to the class A of admissible controls. These conditions
imply, in particular, that for any two points x0, x1 ∈ D, sufficiently close to
each other, there exists a control function a(x) such that there is a “most prob-
able” trajectory from x1 to x0—a solution of the equation ẋt = b(xt, a(xt)).
We introduce the additional requirement that 0 is an isolated point of the set
{α : H(x, α) = 0} for every x. Then x0 can be reached from x1 over a finite
time and it is easy to prove that the same remains true for arbitrary x0, x1 ∈ D,
not only for points close to each other.

Theorem 2.3. Let the conditions just formulated be satisfied. We choose a point
x0 for which miny∈∂D V̄x0(y) attains the maximum (equal to V0). We choose the
control function ā(x) in the following way: in the set

Bx0 =
{
x : V̄x0(x) ≤ min

y∈∂D
V̄x0(y)

}

we put ā(x) = a(x,∇x, V̄x0(x)); for the remaining x we define ā(x) in an ar-
bitrary way, only ensuring that ā(x) is continuous and that from any point of D
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the solution of the system ẋt = b(xt, a(xt)) reaches the set Bx0 for positive t,
remaining in D. Then

lim
h↓0

h lnMh,ā
x τD = V0 (2.10)

for any x ∈ D.

Together with Theorem 2.1, this theorem means that the function ā is a solu-
tion of our optimal stabilization problem.

The proof can be carried out in the following way: for the points of Bx0 ,
the function V̄x0(x) is a Lyapunov function for the system ẋt = b(xt, ā(xt)).
This, together with the structure of ā(x) for the remaining x, shows that x0 is
the unique stable equilibrium position, which attracts the trajectories issued from
points of the domain. Now (2.10) follows from Theorem 4.1 of Chap. 4, general-
ized as indicated in Sect. 4, Chap. 5.

3 Examples

At the end of Chap. 5 we considered the example of calculating the quasipotential
and the asymptotics of the mean exit time of a neighborhood of a stable equilib-
rium position and of the invariant measure for the family of one-dimensional pro-
cesses jumping distance h to the right and to the left with probabilities h−1r(x) dt
and h−1l(x) dt over time dt. By the same token, we determined the characteris-
tics of the stability of an equilibrium position. This example admits various in-
terpretations; in particular, the process of division and death of a large number of
cells (cf. Sect. 2, Chap. 5). The problem of stability of an equilibrium position of
such a system, i.e., the problem of determining the time over which the number of
cells remains below a given level may represent a great interest, especially if we
consider, for example, the number of cells of a certain kind in the blood system
of an organism rather than the number of bacteria in a culture.

Another concrete interpretation of the same scheme is a system consisting
of a large number of elements N , which go out of work independently of each
other after an exponential time of service. These elements start to be repaired;
the maintenance time is exponential with coefficient μ depending on the ratio of
the elements having gone out of work. The change of this ratio x with time is
a process of the indicated form with h = N−1, r(x) = (1 − x) · λ (λ is the
coefficient of the distribution of the time of service) and l(x) = xμ(x).

A nonexponential maintenance time or a nonexponential time between sub-
sequent cell divisions lead to other schemes, cf. Freidlin [8] and Levina, Leon-
tovich, and Pyatetskii-Shapiro [1].

We consider examples of optimal stabilization.

EXAMPLE 3.1. Let the family of controlled processes have the same structure at
all points; in other words, let the function H and the set of admissible controls at
a given point be independent of x:
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H(x, a, α) ≡ H(a, α) : Π(x) ≡ Π.

In this case the function H is also independent of x:

H(x, α) ≡ H(α) = inf
a∈Π

H(a, α)

and (2.7) turns into
H(∇V̄ (x)) = 0. (3.1)

The function H(α) vanishes only for one vector in every direction (except
α = 0). The locus of the terminal points of these vectors will be denoted by A.
Equation (3.1) may be rewritten in the form ∇V̄ (x) ∈ A.

Equation (3.1) has an infinite set of solutions—the r-dimensional planes of
the form V̄x0α0(x) = (α0, x − x0), α0 ∈ A—but none of them is a solution
of problem Rx0 for the equation. To find this solution, we note that the solu-
tion planes depend on the (r − 1)-dimensional parameter α0 ∈ A and a one-
dimensional parameter independent of α0 on the scalar product (α0, x0). This
family is a complete integral of (3.1). As is known (cf. Courant and Lax [1],
p. 111), the envelope of any (r− 1)-parameter family of these solutions is also a
solution. If for a fixed x0, the family of planes V̄x0α0(x) has a smooth envelope,
then this envelope is the desired solution V̄x0(x) of problem Rx0 .

This solution is given by a conic surface at any rate (i.e., V̄x0(x) is a positively
homogeneous function of degree one in x − x0); it is convenient to define it by
means of its (r − 1)-dimensional level surface

U1 = {x− x0 : V̄x0(x) = 1}

(it is independent of x0). The surface U1 has one point β0 on every ray emanating
from the origin. We shall see how to find this point.

Let the generator of the cone V̄x0(x), corresponding to a point β0, be a line
of tangency of the cone with the plane V̄x0α0(x) (α0 is determined uniquely,
because the direction of this vector is given: it is the direction of the exterior
normal to U1 at β0). The intersection with the horizontal plane at height 1 is
the (r − 1)-dimensional plane {β : (α0, β) = 1}, which is tangent to U1 at β0

(Fig. 44). The point of this plane which is the closest to the origin is situated at
distance |α0|−1 in the same direction from the origin as α0, i.e., it is the point
I(α0) obtained from α0 by inversion with respect to the unit sphere with center
at 0.

Hence to find the level surface U1, we have to invert the surface A; through
every point of the surface I(A) thus obtained we consider the plane orthogonal
to the corresponding radius and take the envelope of these planes, This geometric
transformation does not always lead to a smooth convex surface: “corners” or
cuspidal edges may appear. Criteria may be given for the smoothness of U1 in
terms of the centers of curvature of the original surface A.

If the surface U1 turns out to be smooth (continuously differentiable), then the
solution of the optimal control problem may be obtained in the following way.
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Figure 44.

In D we inscribe the largest figure homothetic to U1 with positive coefficient of
homothety c, i.e., the figure x0 + cU1, where x0 is a point of D (not defined
in a unique way in general). Inside this figure, the optimal control field ā(x)
is defined in the following way: we choose a point β0 ∈ U1 situated on the
ray in the direction of x − x0; we determine the corresponding point α0 of A;
as ā(x) we choose that value a0 of the controlling parameter in Π for which
mina∈Π H(a, α0) is attained (this minimum is equal to H(α0) = 0; we assume
that the minimum is attained and that a0 depends continuously on α0 belonging
to A).

Consequently, the value of the control parameter ā(x) is constant on every
radius issued from x0. At points x lying outside x0 + cU1, the field ā(x) may
be defined almost arbitrarily, it only has to drive all points inside the indicated
surface.

The mean exit time is logarithmically equivalent to exp{ch−1} as h ↓ 0.
In Wentzell and Freidlin [5], a special case of this example was considered,

where the subject was the control of a diffusion process with small diffusion by
means of the choice of the drift.

EXAMPLE 3.2. We consider a dynamical system perturbed by a small white
noise; it can be subjected to control effects whose magnitude is under our con-
trol but which themselves may contain a noise. The mathematical model of the
situation is as follows:

Ẋε,a
t = b(Xε,a

t ) + εσ(Xε,a
t )ẇt + a(Xε,a

t )[b̃(Xε,a
t ) + εσ̃(Xε,a

t ) ˙̃wt],

where wt, w̃t are independent Wiener processes and a(x) is a control function,
which is chosen within the limits of the set Π(x).

We consider the simplest case: the process is one-dimensional, σ̃, b̃, and σ are
positive constants, b(x) is a continuous function, D is the interval (x1, x2) and
the controlling parameter a(x) varies within the limits

±
[
2b̃−1 max

[x1,x2]
|b(x)|+ σ̃−1σ

]

at every point (or within the limits of any larger segment Π(x)).
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We have

H(x, a, α) = (b(x) + ab̃)α+
1

2
(σ2 + a2σ̃2)α2;

H(x, α) = min
a

H(x, a, α) = b(x)α− b̃2

2σ̃2
+

1

2
σ2α2

for |α| ≥ [2σ̃2b̃−2 max[x1,x2] |b(x)| + σσ̃b̃−1]1. The minimum here is attained
for a = −b̃σ̃−2α−1. The function H(x, α) vanishes for

α = α1(x) = −
b(x)

σ2
−

√
b(x)2

σ4
+

b̃2

σ2σ̃2
< 0

and for

α = α2(x) = −
b(x)

σ2
+

√
b(x)2

σ4
+

b̃2

σ2σ̃2
> 0,

and also for α = 0, which is, by the way, immaterial for the determination of the
optimal quasipotential (it can be proved easily that |α1(x)| and |α2(x)| surpass
the indicated boundary for |α|). Problem Rx0 for the equation H(x, V̄ ′

x0
(x)) = 0

reduces to the equation

V̄ ′
x0
(x) =

{
α1(x) for x1 ≤ x < x0,

α2(x) for x0 < x ≤ x2

with the additional condition limx→x0 V̄x0(x) = 0. It is easy to see that
min(V̄x0(x1), V̄x0(x2)) attains its largest value for an x0 for which V̄x0(x1) and
V̄x0(x2) are equal to each other. This leads to the following equation for x0:

∫ x0

x1

[√
b(x)2

σ4
+

b̃2

σ2σ̃2
+

b(x)

σ2

]
dx =

∫ x2

x0

[√
b(x)2

σ4
+

b̃2

σ2σ̃2
− b(x)

σ2

]
dx,

which has a unique solution. After finding the optimal equilibrium position x0,
we can determine the optimal control according to the formula

ā(x) =

{
−b̃σ̃−2α1(x)

−1 to the left of x0,

−b̃σ̃−2α2(x)
−1 to the right of x0.



Chapter 11

Sharpenings and Generalizations

1 Local Theorems and Sharp Asymptotics

In Chaps. 3, 4, 5 and 7 we established limit theorems on large deviations, in-
volving the rough asymptotics of probabilities of the type P{Xh ∈ A}. There
arises the following question: Is it possible to obtain subtler results for fami-
lies of random processes (similar to those obtained for sums of independent ran-
dom variables)—local limit theorems on large deviations and theorems on sharp
asymptotics? There is some work in this direction; we give a survey of the results
in this section.

If Xh
t is a family of random processes, a local theorem on large deviations

may involve the asymptotics, as h ↓ 0, of the density pht (y) of the distribution of
the value of the process being considered at time t, where the point y is different
from the “most probable” value of x(t) for small h (we take into account that the
density is not defined uniquely in general; we have to indicate that we speak of,
for example, the continuous version of density). We may prove local theorems in-
volving the joint density pht1,...,tn(y1, . . . , yn) of random variables Xh

t1 , . . . , X
h
tn .

We may also consider the asymptotics of the density of the distribution of a func-
tional F (Xh) at points different from the “most probable” value of F (x(·)).

However, obtaining these kinds of results involving a large class of function-
als F and families of random processes Xh is unrealistic for the time being, at
least because we need to obtain results on the existence of a continuous density
of the distribution of F (Xh) beforehand. For the same reason, positive results in
the area of local theorems on large deviations involving densities of values of a
process at separate moments of time up to now are restricted to families of diffu-
sion processes, for which the problem of the existence of a density is well studied
and solved in the affirmative (sense) under insignificant restrictions, in the case of
a nonsingular diffusion matrix. The transition probability density ph(t, x, y) for
the value of a diffusion process Xh

t under the assumption that Xh
0 = x has the

meaning of the fundamental solution of the corresponding parabolic differential
equation (or that of the Green’s function for the corresponding problem in the
case of a diffusion process in a domain with attainable boundary). This provides
a base for both an additional method of study of the density ph and the area of
possible applications.

M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,
Grundlehren der mathematischen Wissenschaften 260,
DOI 10.1007/978-3-642-25847-3_11, c© Springer-Verlag Berlin Heidelberg 2012
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We begin with Friedman’s work [1] because its results are connected more
directly with what has been discussed (although it appeared a little later than
Kifer’s work [1] containing stronger results). Let ph(t, x, y) be the fundamental
solution of the equation ∂u/∂t = Lhu in the r-dimensional space, where

Lhu =
h

2

∑
aij(x)

∂2u

∂xi∂xj
+
∑

bi(x)
∂u

∂xi
; (1.1)

in other words, ph(t, x, y) is the continuous version of the transition probability
density of the corresponding diffusion process (Xh

t ,P
h
x). (Here it is more conve-

nient to denote the small parameter in the diffusion matrix by h rather than ε2, as
had been done beginning with Chap. 4.) We put

V (t, x, y) = min{S0t(ϕ) : ϕ0 = x, ϕt = y}, (1.2)

where h−1S0t is the action functional for the family of processes (Xh
t ,P

h
x). The

functional S0t is given, as we know, by the formula

S0t(ϕ) =
1

2

∫ t

0

∑
aij(ϕs)(ϕ̇

i
s − bi(ϕs))(ϕ̇

j
s − bj(ϕs)) ds, (1.3)

where (aij(x)) = (aij(x))−1. It can be proved that

lim
h↓0

h ln ph(t, x, y) = −V (t, x, y). (1.4)

This rough local theorem on large deviations is obtained by applying rough (in-
tegral) theorems of Wentzell and Freidlin [4] and estimates from Aronson [1]:

ph(t, x, y) ≤ A0

(ht)r/2
exp

{
−c0|y − x(t, x)|2

ht

}
,

ph(t, x, y) ≥ A1

(ht)r/2
exp

{
−c1|y − x(t, x)|2

ht

}

− A2

(ht)r/2−α
exp

{
−c2|(y − x(t, x))|2

ht

}

for sufficiently small t, where the Ai, ci and α are positive constants and x(t, x)
is the solution of the system ẋ = b(x) with initial condition x(0, x) = x.

Further, if (Xh
t ,P

h
x) is the diffusion process corresponding to Lh in a domain

D with smooth boundary ∂D, vanishing upon reaching the boundary, then its
transition probability density qh(t, x, y) is the Green’s function for the equation
∂u/∂t = Lhu with boundary condition u = 0 on ∂D. It is proved that

lim
h↓0

h ln qh(t, x, y) = −VD(t, x, y), (1.5)

where VD(t, x, y) is defined as the infimum of S0T (ϕ) for curves ϕ connecting
x and y over time t, without leaving D. This implies in particular that
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lim
h↓0

qh(t, x, y)

ph(t, x, y)
= 0 (1.6)

if all extremals for which the minimum (1.2) is attained leave D ∪ ∂D. The
following opposite result can also be proved: if all extremals pass inside D, then

lim
h↓0

qh(t, x, y)

ph(t, x, y)
= 1. (1.7)

(According to M. Kac’s terminology, the process Xh
t “does not feel” the bound-

ary for small h.)
In the scheme being considered we may also include, in a natural way (and

almost precisely), questions involving the asymptotics, for small values of time,
of the transition density of a diffusion process (of the fundamental solution of
a parabolic equation) not depending on a parameter. Indeed, let p(t, x, y) be the
transition probability density of the diffusion process (Xt,Px) corresponding to
the elliptic operator

Lu =
1

2

∑
aij(x)

∂2u

∂xj∂xj
+
∑

bi(x)
∂u

∂xi
.

We consider the family of diffusion processes Xh
t = Xht, h > 0. The transition

density p(h, x, y) of Xt over time h is equal to the transition density ph(1, x, y)
of Xh

t over time 1. The process (Xh
t ,P

h
x) is governed by the differential operator

Lhu = hLu =
h

2

∑
aij(x)

∂2u

∂xi∂xj
+ h

∑
bi(x)

∂u

∂xi
. (1.8)

The drift coefficients h · bi(x) converge to zero as h ↓ 0, so that the family of
operators (1.8) is almost the same as the family (1.1) with the bi(x) replaced by
zero. In any event, the action functional may be written out without difficulty: it
has the form h−1S0t(ϕ), where

S0t(ϕ) =
1

2

∫ t

0

∑
aij(ϕs)ϕ̇

i
sϕ̇

j
s ds. (1.9)

The problem of finding the minimum of this functional can be solved in terms
of the following Riemannian metric ρ(x, y) connected with the matrix (aij):

ρ(x, y) = min
ϕ0=x,ϕt=y

∫ t

0

[∑
aij(ϕs)ϕ̇

i
sϕ̇

j
s

]1/2
ds.

It is easy to prove that the minimum of the functional (1.9) for all parametriza-
tions ϕs, 0 ≤ s ≤ t, of a given curve is equal to the square of the Riemannian
length of the curve multiplied by (2t)−1. Consequently, the minimum (1.2) is
equal to (2t)−1ρ(x, y)2.

Application of formula (1.4) yields
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lim
h↓0

h ln p(h, x, y) = −1

2
ρ(x, y)2. (1.10)

Accordingly, for the transition density of the diffusion process which vanishes on
the boundary of D we obtain

lim
h↓0

h ln q(h, x, y) = −1

2
ρD(x, y)2, (1.11)

where ρD(x, y) is the infimum of the Riemannian lengths of the curves connect-
ing x and y, without leaving D. There are also results, corresponding to (1.6),
(1.7), involving the ratio of the densities q and p for small values of the time ar-
gument. In particular, the “principle of not feeling of the boundary” assumes the
form

lim
t↓0

q(t, x, y)

p(t, x, y)
= 1 (1.12)

if all shortest geodesics connecting x and y lie entirely in D.
The results (1.10)–(1.12) were obtained in Varadhan [2], [3] (the result (1.12)

in the special case of a Wiener process was obtained in Ciesielski [1]).
In Kifer [1], [3] and Molchanov [1] sharp versions of these results were ob-

tained. In obtaining them, an essential role is played by the corresponding rough
results (it is insignificant whether in local or integral form): they provide an op-
portunity to exclude from the consideration all but a neighborhood of an extremal
(extremals) of the action functional; after this, the problem becomes local.

The sharp asymptotics of the transition probability density from x to y turns
out to depend on whether x and y are conjugate or not on an extremal connecting
them (cf. Gel’fand and Fomin [1]). In the case where x and y are nonconjugate
and the coefficients of the operator smooth, not only can the asymptotics of the
density up to equivalence be obtained but an asymptotic expansion in powers of
the small parameter can also be obtained for the family of processes correspond-
ing to the operators (1.1) we have

ph(t, x, y) = (2πht)−r/2 exp{h−1V (t, x, y)}[K0(t, x, y)

+ hK1(t, x, y) + · · ·+ hmKm(t, x, y) + o(hm)] (1.13)

as h ↓ 0 (Kifer [3]); for the process with generator (1.8) we have

p(t, x, y) = (2πt)−r/2 exp{−ρ(x, y)2/2t}[K0(x, y)

+ tK1(x, y) + · · ·+ tmKm(x, y) + o(tm)] (1.14)

as t ↓ 0 (Molchanov [1]). Methods in probability theory are combined with ana-
lytic methods in these publications. We outline the proof of expansion (1.13) in
the simplest case, moreover for m = 0, i.e., the proof of the existence of the finite
limit

lim
h↓0

(2πht)r/2ph(t, x, y) exp{h−1V (t, x, y)}. (1.15)
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Let the operator Lh have the form

Lhu =
h

2
Δu+

∑
bi(x)

∂u

∂xi
. (1.16)

The process corresponding to this operator may be given by means of the stochas-
tic equation

Ẋh
s = b(Xh

s ) + h1/2ẇs, Xh
0 = x, (1.17)

where ws is an r-dimensional Wiener process. Along with Xh
s , we consider the

diffusion process Y h
s , nonhomogeneous in time, given by the stochastic equation

Ẏ h
s = ϕ̇s + h1/2ẇs, Y h

0 = x, (1.18)

where ϕs, 0 ≤ s ≤ t, is an extremal of the action functional from x to y over
time t (we assume that it is unique). The density of the distribution of Y h

t can be
written out easily: it is equal to the density of the normal distribution with mean
ϕt and covariance matrix htE; at y it is equal to (2πht)−r/2.

The ratio of the probability densities of Xh
t and Y h

t is equal to the limit of
the ratio

P{Xh
t ∈ y +D}/P{Y h

t ∈ y +D} (1.19)

as the diameter of the neighborhood D of the origin of coordinates converges to
zero. We use the fact that the measures in C0t(R

r), corresponding to the random
processes Xh

s and Y h
s , are absolutely continuous with respect to each other; the

density has the form

dμXh

dμY h

(Y h) = exp

{
h−1/2

∫ t

0

(b(Y h
s )− ϕ̇s, dws)

− (2h)−1

∫ t

0

|b(Y h
s )− ϕ̇s|2 ds

}
. (1.20)

The absolute continuity enables us to express the probability of any event con-
nected with Xh in the form of an integral of a functional of Y h; in particular,

P{Xh
t ∈ y +D} = M

{
Y h
t ∈ y +D;

dμXh

dμY h

(Y h)

}
.

Expression (1.19) assumes the form

M

{
exp

{
h−1/2

∫ t

0

(b(Y h
s )− ϕ̇s, dws)

− (2h)−1

∫ t

0

|b(Y h
s )− ϕ̇s|2 ds

}∣∣∣∣Y
h
t ∈ y +D

}

= M

{
exp

{
h−1/2

∫ t

0

(b(ϕs + h1/2ws)− ϕ̇s, dws)
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− (2h)−1

∫ t

0

|b(ϕs + h1/2ws)− ϕ̇s|2 ds
}∣∣∣∣wt ∈ h−1/2D

}

(we use the fact that w0 = 0 and Y h
s = ϕs + h1/2ws for 0 ≤ s ≤ t).

If D (and together with it, h−1/2D) shrinks to zero, we obtain the conditional
mathematical expectation under the condition wt = 0. Hence

ph(t, x, y)

(2πht)−r/2
= M

{
exp

{
h−1/2

∫ t

0

(b(ϕs + h1/2ws)− ϕ̇s, dws)

− (2h)−1

∫ t

0

|b(ϕs + h1/2ws)− ϕ̇s|2 ds
}∣∣∣∣wt = 0

}
. (1.21)

(Formula (1.21) has already been obtained by Hunt [1].)
To establish the existence of the limit (1.15) as h ↓ 0, first of all we truncate

the mathematical expectation (1.21) by multiplying the exponential expression
by the indicator of the event {max0≤s≤t |h1/2ws| < δ}. The circumstance that
the omitted part may be neglected as h ↓ 0 may be established by means of
rough estimates connected with the action functional. Then we transform the
exponent by taking account of the smoothness of b. In the first integral we take
the expansion of b(ϕs + h1/2ws) in powers of h1/2ws up to terms of the first
order and in the second integral up to terms of the second order. The principal
term arising in the second integral is equal to

−(2h)−1

∫ t

0

|b(ϕs)− ϕ̇s|2 ds,

and upon substitution into (1.15) it cancels with h−1V (t, x, y). If we verify that
the terms of order h−1/2 also cancel each other, it only remains to be proved
that the terms of order 1 and the infinitely small terms as h ↓ 0 do not hinder
convergence (this can be done in the case where x and y are not conjugate).

We discuss the terms of order h−1/2, arising from the first integral in (1.21).
We integrate by parts:

h−1/2

∫ t

0

(b(ϕs)− ϕ̇s, dws) = h−1/2(b(ϕt)− ϕ̇t, wt)

− h−1/2

∫ t

0

(
ws,

d

ds
(b(ϕs)− ϕ̇s)

)
ds.

The integrated term vanishes by virtue of the condition wt = 0. The expression
(d/ds)(b(ϕs) − ϕ̇s) can be transformed by taking account of Euler’s equation
for an extremal. It is easy to see that the integral cancels with the terms of order
h−1/2, arising from the second integral in (1.21).

It can be seen from the proof outlined here that the coefficient K0(t, x, y) in
the expansion (1.13) has the meaning of the conditional mathematical expectation
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of the exponential function of a quadratic functional of a Wiener process under
the condition wt = 0.

The situation is not more complicated in the case where x and y are connected
with a finite number of extremals and they are not conjugate to each other on any
of these extremals. In the case of conjugate points the transition density over time
t can be expressed by means of the Chapman–Kolmogorov equation in terms of a
transition density over a shorter time. In the integral thus obtained, the main role
is played by densities at nonconjugate points and the asymptotics is obtained by
applying Laplace’s method (the finite-dimensional one). For the density p(t, x, y)
as t ↓ 0, this is done in Molchanov [1]; in particular, for various structures of the
set of minimal geodesics connecting x and y, there arise asymptotic expressions
of the form p(t, x, y) ∼ Ct−αe−ρ(x,y)2/2t with varying α.

Concerning sharp asymptotics in problems involving large deviations not
reducing to one-dimensional or finite-dimensional distributions, little has been
done yet. The results obtained in this area do not relate to probabilities
Ph{Xh ∈ A} or densities but rather to mathematical expectations

Mh exp{h−1F (Xh)}, (1.22)

where F is a smooth functional (the normalizing coefficient is assumed to be
equal to h−1). The consideration of problems of this kind is natural as a first
step, since even in the case of large deviations for sums of independent two-
dimensional random vectors, the sharp asymptotics of integrals analogous to
(1.22) can be found much easier than the sharp asymptotics of the probability
of hitting a domain.

The expression (1.22) is logarithmically equivalent to

exp{h−1 max[F − S]},

where S is the normalized action functional. If the extremal ϕ providing this
maximum is unique, then the mathematical expectation (1.22) differs from

Mh{ρ(Xh, ϕ) < δ; exp{h−1F (Xh)}} (1.23)

by a number which is exponentially small compared with (1.22) or (1.23). This
enables us to localize the problem.

The plan of further study is analogous, to a great degree, to what has been
done in Cramér [1]: the generalized Cramér transformation is performed, which
transforms the measure Ph into a new probability measure P̂h such that the “most
probable” trajectory of Xh

t with respect to P̂h turns out to be the extremal ϕt

for h small. With respect to the new probability measure, the random process
h−1/2[Xh

t − ϕt] turns out to be asymptotically Gaussian with characteristics
which are easy to determine. If the functionals F and S are twice differentiable
at ϕ (the requirement of smoothness of S can be reduced to smoothness require-
ments of local characteristics of the family of processes Xh

t ) and the quadratic
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functional corresponding to the second derivative (F ′′ − S′′)(ϕ) is strictly nega-
tive definite, then for the means (1.23) and (1.22) we obtain the following sharp
asymptotics:

Mh exp{h−1F (Xh)} ∼ K0 exp{h−1[F (ϕ)− S(ϕ)]} (1.24)

as h ↓ 0. The constant K0 can be expressed as the mathematical expectation of a
certain functional of a Gaussian random process.

If F and S are ν +2 times differentiable, then for (1.22), (1.23) we obtain an
asymptotic expansion of the form

exp{h−1[F (ϕ)− S(ϕ)]}(K0 +K1h+ · · ·+K[ν/2]h
[ν/2] + o(hν/2)). (1.25)

Analogous results may be obtained for the mathematical expectations of
functionals of the form G(Xh) exp{h−1F (Xh)}.

This program has been realized in Schilder [1] for the family of random pro-
cesses Xh

t = h−1/2wt, where wt is a Wiener process and in Dubrovskii [1], [2],
[3] for the families of locally infinitely divisible Markov processes, considered
by us in Chap. 5. We note that in the case considered in Schilder [1], the part
connected with the asymptotic Gaussianness of h−1/2[Xh

t − ϕt] with respect to
P̂h falls out of our scheme outlined here (because of the triviality of that part). In
exactly the same way, in this simple situation we do not need to be aware of the
connection of the employed method with H. Cramér’s method.

2 Large Deviations for Random Measures

We consider a Wiener process ξt on the interval [0, 1] with reflection at the end-
points. For every Borel set Γ ⊆ [0, 1] we may consider a random variable πT (Γ),
the proportion of time spent by ξt in Γ for t ∈ [0, T ]:

πT (Γ) =
1

T

∫ T

0

χΓ(ξs) ds. (2.1)

The random variable nT (Γ) = πT (Γ, ω) is a probability measure in Γ. In the
space of measures on [0, 1], let a metric ρ be given, for example, the metric de-
fined by the equality

ρ(μ, ν) = sup
0≤x≤1

|μ[0, x]− ν[0, x]|. (2.2)

It is known that for any initial point ξ0 = x ∈ [0, 1], the measure πT converges
to Lebesgue measure l on [0, 1] with probability 1 as T → ∞. If A is a set
in the space of measures, at a positive distance from Lebesgue measure l, then
Px{πT ∈ A} → 0 as T → ∞, i.e., the event {ω : πT ∈ A} is related to large
deviations.
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Of course, formula (2.1) defines a random measure πT (Γ) for every measur-
able random process ξt(ω), t ≥ 0. If this process is, for example, stationary and
ergodic, then by Birkhoff’s theorem, πT (Γ) converges to a nonrandom measure
m(Γ) (to the one-dimensional distribution of the process) as T → ∞ and the
deviations of πT from m which do not converge to zero belong to the area of
large deviations.

Families of random measures, converging in probability to a nonrandom mea-
sure, also arise in other situations, in particular, in problems concerning the in-
tersection of a level. For example, let ξt be a stationary process with sufficiently
regular trajectories and let ηTt = ξTt(T > 0). Along with ξt we may consider the
family of random measures πT on [0, 1], where πT (Γ) is the number, normalized
by dividing by T , of intersections, taking place for t ∈ Γ ⊆ [0, 1], of a given level
by ηTt . Under certain regularity conditions on ξt, the measure πT converges, as
T →∞, to Lebesgue measure multiplied by the average number of intersections
over the time unit.

We may consider limit theorems of various kinds for random measures. Here
we discuss some results concerning the behavior of probabilities of large devi-
ations. The rough asymptotics of probabilities of large deviations for measures
(2.1), connected with Markov processes, was studied in a series of publications
by Donsker and Varadhan [1], [2], [3], [4]. Independently of them, general results
were obtained by Gärtner [2], [3]. Gärtner also applied these results to Markov
and diffusion processes and considered a series of examples. Our exposition is
close to Gärtner’s work.

Let (E,B) be a measurable space. We denote by B the space of bounded
measurable functions on E and by V the space of finite countably additive set
functions (charges) on the σ-algebra B. We introduce the notation 〈μ, f〉 =∫
E
f(x)μ(dx).
In V we may consider the B∗-weak topology (cf. Dunford and Schwartz [1])

given by neighborhoods of the form

{μ : |〈μ− μ0, fi〉| < δ, i = 1, . . . , n},

f ∈ B. Along with it, we shall consider a metric ρ and the corresponding topol-
ogy in V.

We shall only consider metrics given in the following way. A system M of
functions f ∈ B bounded in absolute value by one is fixed and we put

ρ(μ, ν) = sup
f∈M

|〈μ, f〉 − 〈ν, f〉|; μ, ν ∈ V. (2.3)

Of course, in order that equality (2.3) define a metric, we need to take a suf-
ficiently rich supply of functions f : every charge μ ∈ V need to be defined
uniquely by the integrals 〈μ, f〉 for f ∈M.

Let a finite measure m be fixed on (E,B). We shall say that a metric ρ,
defined by (2.3) in V, satisfies condition (1) if for every δ > 0 there exist finite
systems A = Aδ , B = Bδ of measurable functions on E, bounded in absolute
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value by one, such that 〈m,w〉 ≤ δ for w ∈ B and for every f ∈ M there exist
v ∈ A and w ∈ B for which |f − v| ≤ w.

Condition (1) enables us to reduce the study of large deviations for measures
to the study of large deviations for random vectors in a finite-dimensional space
and to use the results of Sect. 1, Chap. 5.

The metric (2.2) in V = V([0, 1]) is a special case of the metric (2.3) with the
system M consisting of the indicators of all intervals [0, x]; it satisfies condition
(1) if as m we choose Lebesgue measure. As Aδ we may choose the indica-
tors of the intervals of the form [0, kδ] and as Bδ , the indicators of the intervals
[kδ, (k+1)δ]. Another example of a metric satisfying condition (1): E is a com-
pactum, B is the σ-algebra of its Borel subsets, ρ is the metric corresponding
to the family M of functions bounded in absolute value by one and satisfying
a Lipschitz condition with constant 1 (this metric corresponds to C∗-weak con-
vergence in the space V, considered usually in probability theory). If m is any
measure with m(E) = 1, then as Aδ we may choose a finite δ-net in M and as
Bδ we may choose the singleton consisting of the constant δ function.

We fix a complete probability space {Ω,F ,P}. A mapping π : Ω×B → R1

is called a random measure if π(·, A) is a random variable for every A ∈ B and
π(ω, ·) is a measure for almost all ω.

In what follows we shall often consider sets of the form

{ω : ρ(π(ω, ·), μ) < δ}.

In order that these sets be measurable for any μ ∈ V and δ > 0, it is sufficient to
assume that in M there exists a countable subset M0 such that for every function
f ∈ M and every measure μ there exists a bounded sequence of elements fn
of M0, converging to f almost everywhere with respect to μ. We shall always
assume that this condition is satisfied.

Now let us be given a family of random measures πh, depending on a pa-
rameter h. For the sake of simplicity we assume that h is a positive numerical
parameter.

Our fundamental assumption consists in the following. There exists a func-
tion λ(h) converging to +∞ as h ↓ 0 and such that the finite limit

H(f) = lim
h↓0

λ(h)−1 lnM exp{λ(h)〈πh, f〉} (2.4)

exists for every f ∈ B. As in Sect. 1, Chap. 5, it can be proved that H(f) is
a convex functional. We make the following assumptions concerning this func-
tional:

A.1. The functional H(f) is Gâteau differentiable, i.e., the function h(γ) =
H(f + γg), γ ∈ R1, is differentiable for every f, g ∈ B.

A.2. If a bounded sequence {fn} of measurable functions on E converges to an
f ∈ B in measure with respect to the measure m (m is the measure singled
out on (E,B)), then H(fn)→ H(f).
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We denote by S(μ) the Legendre transform of the functional H(f):

S(μ) = sup
f∈B

[〈μ, f〉 −H(f)], μ ∈ V. (2.5)

It is easy to see that S(μ) is a convex functional on V, assuming nonnegative
values, possibly including +∞.

We list the basic properties of S. In the meanwhile we introduce some nota-
tion to be used in what follows.

B.1. In order that S(μ) < ∞, it is necessary that the charge μ be a measure.
If πh(E) = 1 with probability 1, then S(μ) < ∞ only for measures μ
with μ(E) = 1. The functional S is lower semicontinuous with respect to
B∗-weak convergence.

B.2. For any s ≥ 0, the measures μ such that S(μ) ≤ s are uniformly bounded
and uniformly absolutely continuous with respect to m.

B.3. If condition (1) is satisfied, then S is lower semicontinuous in the topology
induced by the metric ρ and the set

Φ(s) = {μ ∈ V : S(μ) ≤ s},

s <∞, is compact in this topology.
B.4. Let A be a finite system of functions belonging to B. We write

ρA(μ, ν) = sup
v∈A

|〈μ, v〉 − 〈ν, v〉|,

SA(μ) = sup
f∈L (A)

[〈μ, f〉 −H(f)],

where L (A) is the linear hull of A. Moreover, we write ΦA(s) = {μ ∈ V :
SA(μ) ≤ s}, s ∈ [0,∞). (We note that ρA(μ, ν) = 0 does not necessarily
imply that μ = ν.) For any δ > 0 and s ≥ 0 we have the inequality

inf{S(ν) : ρA(ν, μ) < δ} ≤ SA(μ) (2.6)

and the inclusion

ΦA(s) ⊆ {Φ(s)}ρA+δ = {μ ∈ V : ρA(μ,Φ(s)) < δ}. (2.7)

We outline the proofs of these properties (complete proofs may be found in
Gärtner [3]).

B.1 may be proved very simply. We do not even have to use assumptions A.1,
A.2. For example: if μ(A) < 0 for some A ∈ B, then

S(μ) ≥ sup
γ≤0

[〈μ, γχA〉 −H(γχA)] ≥ sup
γ≤0

γμ(A) =∞.

Here we have used the fact that H(f) ≤ 0 for f ≤ 0.
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B.2. If S(μ) ≤ s, then we use the fact that the supremum (2.5) is not smaller
than the value of the expression in square brackets for f = γχA, γ > 0. We
obtain

μ(A) ≤ H(γχA) + s

γ
.

The boundedness follows from this immediately. To verify the uniform absolute
continuity, it is sufficient to prove that for any ε > 0 there exists δ > 0 such that
m(A) < δ implies μ(A) < ε for all measures μ ∈ Φ(s). We choose γ such that
s/γ is smaller than ε/2; condition A.2 implies that there exists δ > 0 such that
H(γχA) < γε/2 if m(A) < δ.

B.3. The compactness of Φ(s) in the B∗-weak topology follows from B.1
and B.2. It only remains to be shown that μn, μ ∈ Φ(s), μn → μ in the B∗-weak
topology imply that ρ(μn, μ) → 0. This can be deduced from (1) by using the
uniform absolute continuity of the μn and μ.

B.4. According to A.1 the derivative H ′(f)(h) = limγ→0 γ
−1(Hf + γh)−

H(f)) exists, which is a linear functional of h ∈ B. The equality μf (A) =
H ′(f)(χA) defines a finite positive countably additive (by virtue of assump-
tion A.2) measure on (E,B). It follows from the properties of convex func-
tions (cf. Rockafellar [1]; we have already used these properties in the proof of
Lemma 5.2 of Chap. 7) that it is sufficient to prove inequality (2.6) for measures μ
for which the supremum in the definition of SA(μ) is attained for some function
f0 ∈ L (A). Then for all h ∈ L (A) we have: 〈μ, h〉 = H ′(f0)(h) = 〈μf0 , h〉.
It is easy to deduce from the definition of μf0 that the upward convex functional
a(f) = 〈μf0 , f〉 − H(f), f ∈ B, attains its maximum for f = f0. From this
we obtain S(μf0) = 〈μf0 , f0〉 − H(f0) = 〈μ, f0〉 − H(f0) = SA(μ), where
ρA(μ

f0 , μ) = 0 (ρA is a semimetric!). This proves inequality (2.6) and along
with it, inclusion (2.7).

Now we formulate the fundamental result of this section.

Theorem 2.1. Let the metric p satisfy condition (1), let the limit (2.4) exist, and
let the functional H(f) satisfy conditions A.1 and A.2. Then λ(h)S(μ) is the
action functional for the family of random measures πh in the metric space (V, ρ)
as h ↓ 0; i.e., for any γ, δ, s > 0 and μ ∈ V we have

P{ρ(πh, μ) < δ} ≥ exp{−λ(h)[S(μ) + γ]}, (2.8)

P{ρ(πh,Φ(s)) ≥ δ} ≤ exp{−λ(h)[s− γ]} (2.9)

for sufficiently small h, where Φ(s) = {μ ∈ V : S(μ) ≤ s}.

Proof. First we obtain estimate (2.8). If S(μ) = +∞, there is nothing to be
proved. Therefore, we assume that S(μ) < ∞. We use condition (1) for δ1 > 0.
We obtain the estimate

ρ(πh, μ) ≤ ρA(π
h, μ) + max

w∈B
〈πh, w〉+max

w∈B
〈μ,w〉. (2.10)
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Since by B.2, the measure μ is absolutely continuous with respect to m, the last
term on the right side of (2.10) is smaller than δ/4 for sufficiently small δ1.
Consequently,

P{ρ(πh, μ) < δ} ≥ P{ρA(πh, μ) < δ/2} − P
{
max
w∈B

〈πh, w〉 ≥ δ/4
}
. (2.11)

Applying Theorem 1.2 of Chap. 5 to the family of finite-dimensional vectors
ηh = {πh(v)}v∈A, h ↓ 0, and taking into account that in a finite-dimensional
space all norms are equivalent, we obtain the estimate

P{ρA(πh, μ) < δ/2} ≥ exp{−λ(h)[SA(μ) + γ/2]}
≥ exp{−λ(h)[S(μ) + γ/2]}. (2.12)

Now we estimate the subtrahend in (2.11). The exponential Chebyshev in-
equality yields

P{〈πh, w〉 > δ/4} ≤ exp

{
−κλ(h)δ

4

}
M exp{κλ(h)〈πh, w〉}

= exp

{
−λ(h)

[
κ

δ

4
− λ(h)−1 lnM exp{λ(h)〈πh,κw〉}

]}

for any κ > 0. The expression in square brackets converges to κ(δ/4)−H(κw)
as h ↓ 0. If we choose κ sufficiently large and then decrease δ1 so that H(κw)
be sufficiently small for all w ∈ B (this can be done by virtue of condition A.2),
we obtain κ(δ/4)−H(κw) > S(μ) + γ for all w ∈ B. This implies that

P{〈πh, w〉 ≥ δ/4} ≤ exp{−λ(h)[S(μ) + γ]} (2.13)

for sufficiently small h > 0. Estimate (2.8) follows from (2.11)–(2.13).
Now we deduce (2.9). We use condition (1) again. By virtue of B.2 we have

maxw∈B〈μ,w〉 < δ/4 for sufficiently small positive δ1 and for all μ ∈ Φ(s).
From this and (2.10) we conclude that

P{ρ(πh,Φ(s)) ≥ δ} ≤ P{ρA(πh,Φ(s)) ≥ δ/2}

+ P
{
max
w∈B

〈πh, w〉 ≥ δ/4
}
. (2.14)

Let the functions v1, . . . , vn ∈ A form a basis of the linear space L (A). To
estimate the first term on the right side of (2.14), we use the inclusion ΦA(s) ⊆
{Φ(s)}ρA

+δ/4 (cf. formula (2.7)) and apply Theorem 1.1 of Chap. 5 to the family

of finite-dimensional vectors ηh = (πh(v1), . . . , π
h(vn)):

P{ρA(πh,Φ(s)) ≥ δ/2} ≤ P{ρA(πh,ΦA(s)) ≥ δ/4} ≤ exp{−λ(h)(s−γ/2)}.

The second term in (2.14) can be estimated by means of (2.13) and we obtain
estimate (2.9) for small h. ��
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We consider an example. Let (ξt,Px) be a diffusion process on a compact
manifold E of class C(∞), controlled by an elliptic differential operator L with
infinitely differentiable coefficients. Let us consider the family of random mea-
sures πT defined by formula (2.1). We verify that this family satisfies the condi-
tion that the limit (2.4) exists, where instead of h ↓ 0, the parameter T goes to∞
and as the function λ we take T : for any function f ∈ B, the finite limit

H(f) = lim
T→∞

T−1 lnMx exp

{∫ T

0

f(ξs) ds

}
(2.15)

exists. As in the proof of Theorem 4.2 of Chap. 7, for this we note that the family
of operators

T f
t g(x) = Mx exp

{∫ T

0

f(ξs) ds

}
g(ξt)

forms a semigroup acting in B. If g(x) is a nonnegative function belonging to B,
assuming positive values on some open set, then the function T f

t g(x) is strictly
positive for any t > 0. As in the proof of Theorem 4.2 of Chap. 7, we may de-
duce from this that the limit (2.15) exists and is equal to λ(f), the logarithm of
the spectral radius of T f

1 (cf., for example, Kato [1]). The fulfillment of condi-
tions A.l and A.2 follows from results of perturbation theory. Moreover, it is easy
to prove that the supremum in the definition of S(μ) may be taken for not all
functions belonging to B but only continuous ones:

S(μ) = sup
f∈C

[〈μ, f〉 − λ(f)]. (2.16)

For continuous functions f the logarithm of the spectral radius of T f
1 coincides

with that eigenvalue of the infinitesimal generator Af of the semigroup T f
1 which

has the largest real part: this eigenvalue is real and simple. For smooth functions,
Af coincides with the elliptic differential operator L + f . This implies that by
λ(f) in formula (2.16) we may understand the maximal eigenvalue of L+ f .

The random measure πT is a probability measure for every T > 0. According
to B.1, the functional S(μ) is finite only for probability measures μ. Since λ(f +
c) = λ(f) + c for any constant c, the supremum in (2.16) may be taken only
for those f ∈ C for which λ(f) = 0. On the other hand, the functions f for
which λ(f) = 0 are exactly those functions which can be represented in the form
−Lu/u, u > 0. Consequently, for probability measures μ, the definition of S(μ)
may be rewritten in the form

S(μ) = − inf
u>0

〈
μ,

Lu

u

〉
. (2.17)

For measures μ admitting a smooth positive density with respect to the Rie-
mannian volume m induced by the Riemannian metric connected with the prin-
cipal terms of L, we may write out Euler’s equation for an extremal of problem
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(2.17) and obtain an expression for S(μ), not containing the infimum. In particu-
lar, if L is self-adjoint with respect to m, then the equation for an extremal can be
solved explicitly. The infimum in (2.17) is attained for u =

√
dμ/dm and S(μ)

can be written in the form

S(μ) =
1

8

∫

E

|∇ dμ
dm |2
dμ
dm

dm.

The functional S(μ) may be calculated analogously for measures πT in the
case where (ξt,Px) is a process in a bounded domain with reflection at the bound-
ary (Gärtner [2]).

3 Processes with Small Diffusion with Reflection
at the Boundary

In Chaps. 2–6 we considered the application of methods in probability theory to
the first boundary value problem for differential equations with a small parameter
at the derivatives of highest order. There naturally arises the question of what can
be done for the second boundary value problem or for a mixed boundary value
problem, where Dirichlet conditions are given on some parts of the boundary and
Neumann conditions on other parts.

Let the smooth boundary of a bounded domain D consist of two components,
∂1D and ∂2D. We shall consider the boundary value problem

Lεuε(x) ≡ ε2

2

∑
aij(x)

∂2uε

∂xi∂xj
+
∑

bi(x)
∂uε

∂xi
= 0, x ∈ D,

∂uε(x)

∂l

∣∣∣∣
∂1D

= 0, uε(x)|∂2D = f(x),
(3.1)

where ∂/∂l is the derivative in some nontangential direction; the coefficients of
the equation, the direction l and the function f are assumed to be sufficiently
smooth functions of x. This problem has a unique solution, which can be written
in the form uε(x) = Mε

xf(X
ε
τε), where (Xε

t ,P
ε
x) is the diffusion process in

D ∪ ∂1D, governed by Lε in D, undergoing reflection in the direction l on the
part ∂1D of the boundary; τ ε = min{t : Xε

t ∈ ∂2D} (Fig. 45). The asymptotics
of the solution uε may be deduced from results involving the limit behavior of
Xε

t for small ε. We begin with results of the type of laws of large numbers.
Along with Xε

t , we consider the dynamical system ẋt = b(xt) in D, obtained
from Xε

t for ε = 0. It follows from results of Chap. 2 that with probability close
to one for small ε, the trajectory of Xε

t , beginning at a point x ∈ D, is close to
the trajectory xt(x) of the dynamical system until the time of exit of xt(x) to the
boundary (if this time is finite). From this we obtain the following: if xt(x) goes
to ∂2D sooner than to ∂1D and at the place y(x) of exit, the field b is directed
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Figure 45.

strictly outside the domain, then the value uε(x) of the solution of problem (3.1)
at the given point x ∈ D converges to f(y(x)) as ε→ 0.

If Xε
t begins at a point x ∈ ∂1D (or, moving near the trajectory of the dy-

namical system, reaches ∂1D sooner than ∂2D), then its most probable behavior
depends on whether b(x) is directed strictly inside or outside the domain. In the
first case, Xε

t will be close to the trajectory, issued from x ∈ ∂1D, of the same
dynamical system ẋt = b(xt). From this we obtain the following result.

Theorem 3.1. Let the field b be directed strictly inside D on ∂1D and strictly
outside D on ∂2D. Let all trajectories of the dynamical system ẋt = b(xt),
beginning at points x ∈ D∪∂1D, exit from D (naturally, through ∂2D). Then the
solution uε(x) of problem (3.1) converges to the solution u0(x) of the degenerate
problem

∑
bi(x)

∂u0

∂xi
= 0, x ∈ D,

u0(x)|∂2D = f(x),

(3.2)

uniformly for x ∈ D ∪ ∂D as ε→ 0.

If b is directed strictly outside D on ∂1D, then the trajectory of the dynamical
system goes out ofD∪∂1D through ∂1D and Xε

t is deprived of the opportunity of
following it. It turns out that in this case Xε

t begins to move along a trajectory of
the system ẋt = b̂(xt) on ∂1D, where b̂ is obtained by projecting b parallel to the
direction onto the tangential direction. This result also admits a formulation in the
language of partial differential equations but in a situation different from the case
of a boundary consisting of two components, considered here (cf. Freidlin [2]).

In the case where the trajectories of the dynamical system do not leave D
through ∂2D but instead enter D through ∂2D, results of the type of laws of
large numbers are not sufficient for the determination of limε→0 u

ε(x). A study
of large deviations for diffusion processes with reflection and of the asymptotics
of solutions of the corresponding boundary value problems was carried out in
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Zhivoglyadova and Freidlin [1] and Anderson and Orey [1]. We present the re-
sults of these publications briefly.

We discuss Anderson’s and Orey’s [1] construction enabling us to construct
a diffusion process with reflection by means of stochastic equations, beginning
with a Wiener process. We restrict ourselves to the case of a process in the half-
plane R2

+ = {(x1, x2) : x1 ≥ 0} with reflection along the normal direction of
the boundary, i.e., along the x1-direction. We introduce a mapping Γ of C0T (R

2)
into C0T (R

2
+): for ξ ∈ C0T (R

2) we define the value ηt = Γt(ξ) of the function
η = Γ(ξ) by the equalities

ηt = (η1t , η
2
t ), η2t = ζ2t ,

η1t = ζ1t −min
(
0, min

0≤s≤t
ζ1s

)
.

(3.3)

It is clear that Γ(ξ) ∈ C0T (R
2
+), the mapping Γ is continuous and

|Γs(ξ)− Γs(ξ̃)| ≤ 2|ξs − ξ̃s|.

We would like to construct a diffusion process with reflection at the bound-
ary of R2

+, with diffusion matrix (aij(x)) and drift b(x) = (b1(x), b2(x)). We
represent the diffusion matrix in the form (aij(x)) = σ(x)σ∗(x), where σ(x)
is a bounded matrix-valued function with entries satisfying a Lipschitz condition
(such a matrix exists if the aij(x), together with their derivatives, are bounded
and continuous). We define the functionals σt(ζ) and bt(ζ) on C0T (R

2) by
putting

σt(ζ) = σ(Γt(ζ)), bt(ζ) = b(Γt(ζ)).

We consider the stochastic equation

X̃t = x+

∫ t

0

σs(X̃) dws +

∫ t

0

bs(X̃) ds, x ∈ R2
+.

The existence and uniqueness theorem for such equations can be proved in the
same way as for standard stochastic differential equations. It turns out that the
random process Xt = Γt(X̃) is exactly the diffusion process with reflection in
R2

+, having the given diffusion and drift coefficients.
Now let us assume that there is a small parameter in the equation. For the

sake of simplicity, we restrict ourselves to the case where σ is the identity matrix
multiplied by ε:

X̃ε
t = x+ εwt +

∫ t

0

bs(X̃
ε) ds; (3.4)

the corresponding process with reflection will also be equipped with the index
ε : Xε

t = Γt(X̃
ε). It can be proved that the solution of (3.4) can be obtained by

applying a continuous mapping Bx to the function εw ∈ C0T (R
2) (the proof is

the same as that of Lemma 1.1 of Chap. 4). Hence the process Xε with reflec-
tion can be obtained from εw by means of the composition of two continuous
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mappings: Xε = Γ(Bx(εw)). Using general properties of the action functional
(Sect. 3, Chap. 3), we obtain that the action functional for the family of processes
Xε

t in C0T as ε→ 0 has the form ε−2S+
0T (ϕ), where

S+
0T (ϕ) = min

χ:Γ(Bx(χ))=ϕ

1

2

∫ T

0

|χ̇s|2 ds. (3.5)

On the other hand, Bx is invertible:

(B−1
x ψ)t = ψt − x−

∫ t

0

bs(ψ) ds;

taking account of this, expression (3.5) can be rewritten as

S+
0T (ϕ) = min

ψ:Γ(ψ)=ϕ

1

2

∫ T

0

|ψ̇s − b(ϕs)|2 ds (3.6)

(we use the fact that bs(ψ) = b(Γs(ψ)) = b(ϕs)).
It is easy to verify that the minimum (3.6) is equal to

S+
0T (ϕ) =

1

2

∫ T

0

|ϕ̇s − b̂(ϕs)|2 ds, (3.7)

where b̂(x) is the field coinciding with b(x) everywhere except at those points of
∂1D at which b(x) is directed outside D; at these points b̂(x) is defined as the
projection of b(x) onto the direction of the boundary. The minimum is attained
for the function ψ defined by the equalities

ψt = (ψ1
t , ψ

2
t ), ψ2

t = ϕ2
t ,

ψ1
t = ϕ1

t +

∫ t

0

χ{0}(ϕ
1
s)min(0, b1(0, ϕ2

s)) ds.
(3.8)

A formula analogous to (3.7) also holds for a varying matrix (aij(x)) and
for processes in an arbitrary domain D with reflection along any smooth field l,
nontangent to the boundary, as well.

Results involving the action functional imply, in particular, that for ε → 0
the trajectory of Xε

t converges in probability to a function at which S+ vanishes,
i.e., to a solution of the system ẋt = b̂(xt).

Now we present those results involving the asymptotics of solutions of prob-
lem (3.1) which follow from the above result (cf. Zhivoglyadova and Frei-
dlin [1]). Let D be the ring in the plane, having the form {(r, θ) : 1 < r < 2} in
the polar coordinates (r, θ). We consider the problem

Lεuε ≡ ε2

2

(
∂2uε

∂r2
+

∂2uε

∂θ2

)
+ br(r, 0)

∂uε

∂r
+ bθ(r, θ)

∂uε

∂θ
= 0, x ∈ D,

∂uε

∂r
(1, θ) = 0, uε(2, θ) = f(θ).

(3.9)
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We shall say that condition 1 is satisfied if the trajectories, beginning in D,
of the dynamical system ẋt = b(xt) go to ∂1D = {r = 1} sooner than to
∂2D = {r = 2) and br{1, θ) < 0 for all θ.

We assume that on the interval [0, 2π] the function bθ(1, θ) has a finite number
of zeros. Let K1,K2, . . . ,Kl be those of them at which bθ(1, θ) changes its sign
from plus to minus as θ increases.

We consider

V (Ki, y) = inf{S+
0T (ϕ) : ϕ0 = Ki, ϕT = y;T > 0}

and assume that for any i, the minimum of V (Ki, y) for y ∈ ∂2D is attained at a
unique point yi = (2, θi). We put V (Ki, ∂2D) = V (Ki, yi).

Theorem 3.2. Let the above conditions be satisfied. Let g∗ be the unique {∂2D}-
graph over the set of symbols {K1, . . . ,Kl, ∂2D} for which the minimum of∑

(α→β)∈g V (α, β) is attained over all {∂2D}-graphs g. Let the trajectory, be-
ginning at a point x ∈ D, of the system ẋt = b(xt) go out to the circle ∂1D
at the point (1, θx): for x ∈ ∂1D, as θx we choose the angular coordinate of x.
Let Ki be the point to which the solution of the equation θ̇t = bθ(1, θt) with
initial condition θx is attracted as t → ∞. Then limε→0 u

ε(x) = f(θk), where
Kk → ∂2D is the last arrow in the path leading from Ki to ∂2D in g∗.

The proof of this theorem can be carried out in the same way as that of The-
orem 5.2 of Chap. 6.

4 Wave Fronts in Semilinear PDEs and Large Deviations

Consider the Cauchy problem

∂u(t, x)

∂t
=

D

2

∂2u

∂x2
+ cu, t > 0, x ∈ R1,

u(0, x) = χ−(x) =

{
1, x ≤ 0,

0, x > 0.

(4.1)

Here c and D are positive constants. Let Xt be the process in R1 corresponding
to (D/2)(d2/dx2) : Ẋt =

√
DẆt. Then we have:

u(t, x) = Mxχ
−(Xt)e

ct = ectP{x+
√
DWt ≤ 0}

= ect
1√
2πt

∫ −x/
√
D

−∞
e−y2/2t dy.

One can easily derive from this equality that for any α > 0

u(t, αt) ≈ exp

{
t

(
c− α2

2D

)}
, t→∞.
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If α∗ =
√
2cD, then

lim
t→∞

sup
x≥(α∗+h)t

u(t, x) = 0, lim
t→∞

inf
x≤(α∗−h)t

u(t, x) =∞ (4.2)

for any h > 0. This means that the region of large values of u(t, x) propagates,
roughly speaking, with the speed α∗ =

√
2cD.

Now let the constant c in (4.1) be replaced by a smooth function c(u) such
that

c(u) > 0, for u < 1,

c(u) < 0, for u > 1,

c = c(0) = max
u≥0

c(u);

(4.3)

∂u(t, x)

∂t
=

D

2

∂2u

∂x2
+ f(u), t > 0, x ∈ R1,

u(0, x) = χ−(x),

(4.4)

where f(u) = c(u)u.
Applying the Feynman–Kac formula, one can obtain the following equation

for u(t, x)

u(t, x) = Mxχ
−(Xt) exp

{∫ t

0

c(u(t− s,Xs)) dx

}
. (4.5)

Since, according to (4.3), c(u) ≤ c(0) = c, we conclude from (4.5),

0 ≤ u(t, x) ≤ ectPx{Xt ≤ 0},

and thus the first of the equalities (4.2) holds for the solution of the nonlinear
problem. The second equality of (4.2), of course, does not hold for the solu-
tion of problem (4.4). Since c(u) < 0 for u > 1, the solution never exceeds 1.
But as we show later, one can prove using the large deviation estimates that
limt→∞ infx≤(α∗−h)t u(t, x) = 1 for any h > 0, where u(t, x) is the solution of
(4.4).

Equation (4.4) appeared, first, in Fisher [1] and in Kolmogorov, Petrovskii,
and Piskunov [1]. The rigorous results for nonlinearities f(u) = c(u)u satisfying
(4.3) were obtained in the second of these papers. Therefore, this nonlinearity
is called KPP-type nonlinearity. It was shown in Kolmogorov, Petrovskii, and
Piskunov [1] that the solution of problem (4.4) with a KPP-type nonlinear term
behaves for large t, roughly speaking, as a running wave:

u(t, x) ≈ v(x− α∗t), t→∞,

where α∗ =
√
2Dc, c = f ′(0), and v(z) is the unique solution of the problem
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D

2
v′′(z) + α∗v′(z) + f(v(z)) = 0, −∞ < z <∞,

v(−∞) = 1, v(+∞) = 1, v(0) =
1

2
.

Thus, the asymptotic behavior of u(t, x) for large t is characterized by the asymp-
totic speed α∗ and by the shape of the wave v(z).

Instead of considering large t and x, one can introduce a small parameter
ε > 0: put uε(t, x) = u(t/ε, x/ε). Then the function uε(t, x) is the solution of
the problem

∂uε(t, x)

∂t
=

εD

2

∂2uε

∂x2
+

1

ε
f(uε),

uε(0, x) = χ−(x).

(4.6)

One can expect that uε(t, x) = u(t/ε, x/ε) ≈ v((x−α∗t)/ε) ≈ χ−(x−α∗t) as
ε ↓ 0. This means that the first approximation has to do only with the asymptotic
speed α∗, and does not involve the asymptotic shape v(z).

Consider now a generalization of problem (4.6) (see Freidlin [12], [14],
[17], [18]):

∂uε(t, x)

∂t
=

ε

2

r∑

i,j=1

aij(x)
∂2uε

∂xi∂xj
+

1

ε
f(x, uε), t > 0, x ∈ Rr,

uε(0, x) = g(x) ≥ 0.

(4.7)

A number of interesting problems, like the small diffusion asymptotics for
reaction-diffusion equations (RDEs) with slowly changing coefficients, can be
reduced to (4.7) after a proper time and space rescaling. We assume that the co-
efficients aij(x) and f(x, u) are smooth enough, a

∑r
i=1 λ

2
i ≤

∑
aij(x)λiλj ≤

ā
∑r

i=1 λ
2
i for some 0 < a < ā; the function f(x, u) = c(x, u)u, where c(x, u)

satisfies conditions (4.3) for any x ∈ Rr (in other words, f(x, u) is of KPP-type
for any x ∈ Rr). Denote by G0 the support of the initial function g(x). We as-
sume that 0 ≤ g(x) ≤ ḡ <∞ and that the closure [G0] of G0 coincides with the
closure of the interior (G0) of G : [(G0)] = [G0]. Moreover, assume that g(x) is
continuous in (G0).

Denote by (Xε
t ,Px) the diffusion process in Rr governed by the operator

Lε =
ε

2

r∑

i,j=1

aij(x)
∂2

∂xi∂xj
.

The Feynman–Kac formula yields an equation for uε(t, x),

uε(t, x) = Mxg(X
ε
t ) exp

{
1

ε

∫ t

0

c(Xε
s , u

ε(t− s,Xε
s )) ds

}
. (4.8)

First, assume that c(x, 0) = c = constant. Then, taking into account that
c(x, u) ≤ c(x, 0) = c, we derive from (4.8),
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0 ≤ uε(t, x) ≤ Mxg(X
ε
t )e

ct/ε ≤ ḡect/εPx{Xε
t ∈ G0}. (4.9)

The action functional for the family of processes Xε
s , 0 ≤ s ≤ t, in the space of

continuous functions is equal to

1

ε
S0t(φ) =

1

2ε

∫ t

0

r∑

i,j=1

aij(φs)φ̇
i
sφ̇

j
s ds,

where φ is absolutely continuous, (aij(x)) = (aij(x))−1, and

lim
ε↓0

ε lnPx{Xε
t ∈ G0} = − inf{S0t(φ) : φ ∈ C0t, φ0 = x, φt ∈ G0}. (4.10)

Denote by ρ(x, y) the Riemannian distance in Rr corresponding to the form
ds2 =

∑r
i,j=i aij(x) dx

i dxj . One can check that the infimum in (4.10) is actu-
ally equal to (1/2t)ρ2(x,G0). We derive from (4.9) and (4.10),

0 ≤ uε(t, x) ≤ ḡectPx{Xε
t ∈ G0} � exp

{
1

ε

(
ct− ρ2(x,G0)

2t

)}
.

It follows from the last bound that

lim
ε↓0

uε(t, x) = 0, if ρ(x,G0) > t
√
2c, t > 0. (4.11)

We now outline the proof of the equality

lim
ε↓0

uε(t, x) = 1, if ρ(x,G0) < t
√
2c, t > 0. (4.12)

Let us first prove that

lim
ε↓0

ε lnuε(t, x) = 0, (4.13)

if ρ(x,G0) = t
√
2c, t > 0. If K is a compact set in {t > 0, x ∈ Rr}, then the

convergence in (4.13) is uniform in (t, x) ∈ K ∩ {ρ(x,G0) = t
√
2c}. One can

derive from the maximum principle that

lim
ε↓0

uε(t, x) < 1, t > 0, x ∈ Rr. (4.14)

Therefore, to prove (4.13) it is sufficient to show that

lim
ε↓0

ε lnuε(t, x) ≥ 0, (4.15)

if ρ(x,G0) = t
√
2c, t > 0.

Let φ∗
s , 0 ≤ s ≤ t, be the shortest geodesic connecting x and [G0] with

the parameter s proportional to the Riemannian distance from x. For any small
δ > 0, choose z ∈ (G0), |z − φ∗

t | < δ, and define
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φδ
s =

⎧
⎪⎪⎨

⎪⎪⎩

x, 0 ≤ s ≤ δ,

φ∗
t(s−δ)/(t−δ), δ ≤ s ≤ t− δ,

hs, t− δ ≤ s ≤ t,

where hs is the linear function such that ht−δ = φ∗
t(t−2δ)/(t−δ) and ht = z.

Denote by Eμ, μ > 0, the μ-neighborhood in C0t of the function φδ
s, and by χμ

the indicator of this set in C0t. Let μ > 0 be chosen so small that the ball in Rr

of radius 2μ centered at z belongs to (G0) and for any ψ ∈ Eμ

min
δ≤s≤t−δ

d(ψs, Gs) = d0 > 0,

where d(·, ·) is the Euclidean distance in Rr and Gs = {x ∈ Rr, ρ(x,G0) ≤
s
√
2c}. Such a choice of μ is possible since d(φδ

s, Gs) ≥ d1 > 0 for δ ≤ s ≤
t− δ. Then (4.11) implies that uε(t− s, φs)→ 0 as ε ↓ 0 for δ ≤ s ≤ t− δ and
ψ ∈ Eμ, and thus c(ψs, u

ε(t− s, ψs))→ c(ψs, 0) = c as ε ↓ 0 for such ψ and s.
Since S0t(φ

∗) = ρ2(x,G0)/2t, one can derive from the definition of φδ
s that

for any h > 0 there exists δ > 0 so small that

S0t(φ
δ)− ρ2(x,G0)

2t
< h.

Let g0 = min{g(x) : |x− z| ≤ μ}. It follows from (4.8) that

uε(t, x) ≥ Mxg(X
ε
t )χμ(X

ε) exp

{
1

ε

∫ t

0

c(Xε
s , u

ε(t− s,Xε
s )) ds

}

≥ g0e
(c(t−3δ))/εPx{Eμ}

≥ g0e
c(t−3δ)/ε

exp

{
−1

ε

(
ρ2(x,G0)

2t
+ 2h

)}
(4.16)

for ε > 0 small enough. In (4.16) we used the lower bound from the definition
of the action functional. Taking into account that ρ(x,G0) = t

√
2c, we derive

(4.15) from (4.16).
We now prove (4.12). Suppose it is not true. Then, taking into account (4.14),

x0 ∈ Rr and t0 > 0 exist such that

ρ(x0, G0) < t0
√
2c, lim

ε↓0
uε(t0, x0) < 1− 2h (4.17)

for some h > 0. Let U = Uε be the connected component of the set

{(t, x) : t > 0, x ∈ Rr, ρ(x0, G0) < t
√
2c, uε(t, x) < 1− h},

containing the point (t0, x0). The boundary ∂U of the set U ⊂ Rr+1 consists of
sets ∂U1 and ∂U2:
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∂U1 = ∂U ∩ {(t, x) : t > 0, x ∈ Rr, uε(t, x) = 1− h},
∂U2 = ∂U ∩ ({(t, x) : t > 0, ρ(x,G0) = t

√
2c} ∪ {(t, x) : t = 0, x ∈ G0}).

Define τ ε = min{s : (t − s,Xε
s ) ∈ U} and let χε

i , i ∈ {1, 2}, be the indicator
function of the set of trajectories Xε for which (t − τ ε, Xε

τε) ∈ ∂Ui. Let λ1 be
the distance in Rr+1 between (t0, x0) and the surface {(t, x) : t > 0, ρ(x,G0) =
t
√
2c}, λ = λ1∧ t0. Let χε

0 denote the indicator function of the set of trajectories
Xε, such that max0≤s≤t |Xε

s − x| ≤ λ.
Using the strong Markov property, one can derive from (4.8),

uε(t0, x0) = Mx0u
ε(t0 − τ ε, Xε

τε) exp

{
1

ε

∫ τε

0

c(Xε
s , u

ε(t0 − s,Xε
s )) ds

}

≤
2∑

i=1

Mx0χ
ε
iχ

ε
0u

ε(t0 − τ ε, Xε
τε)

× exp

{
1

ε

∫ τε

0

c(Xε, uε(t0 − s,Xε
s )) ds

}
. (4.18)

The first term of the sum in the right-hand side of (4.18) can be bounded from
below by (1 − h)Mx0χ

ε
1χ

ε
0, since uε(t, x) = 1 − h on ∂U1 and c(x, u) ≥ 0. To

estimate the second term, note that τ ε > λ and

min
0≤s≤τε

c(Xε
s , u

ε(t0 − s,Xε
s )) ≥ min

0≤u≤1−h
|x−x0|≤λ

c(x, u) = c0 > 0,

if (t0 − τ ε, Xε
τε) ∈ ∂U2. Thus, the second term in the right-hand side of (4.18)

is greater than
Mx0χ

ε
0χ

ε
2e

(c0λ)/εuε(t0 − τ ε, Xε
τε).

Using bound (4.13), we conclude that the last expression is bounded from below
by Mx0χ

ε
0χ

ε
2 if ε > 0 is small enough.

Combining these bounds together, one can derive from (4.18):

uε(t0, x0) ≥ (1− h)Mx0χ
ε
1χ

ε
0 +Mx0χ

ε
2χ

ε
0 ≥ 1− h−Mx0(1− χε

0)

for ε small enough. Since Mx0χ
ε
0 → 1 as ε ↓ 0, the last inequality implies that

ε0 > 0 exists such that

uε(t0, x0) ≥ 1− 3h

2
for 0 < ε < ε0.

This bound contradicts (4.17) and thus (4.12) holds.
Equalities (4.11) and (4.12) mean that, in the case c(x, 0) = c = constant,

the motion of the interface separating areas where uε(t, x) is close to 0 and to 1
for 0 < ε! 1, can be described by the Huygens principle with the velocity field
v(x, e), x, e ∈ Rr, |e| = 1, which is homogeneous and isotropic if calculated
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with respect to the Riemannian metric (·, ·) corresponding to the form ds2 =∑2
i,j=1 aij(x) dx

i dxj , (aij(x)) = (aij(x))−1, and |v(x, e)| =
√
2c. If Gt =

{x ∈ Rr : limε↓0 u
ε(t, x) = 1}, t > 0, then

Gt+h = {x ∈ Rr : ρ(x,Gt) < h
√
2c}, h > 0.

In particular, if G0 = Gε
0 is a ball of radius ε with the center at a point z ∈

Rr, and g(x) = gε(x) is the indicator function of Gε
0 ⊂ Rr, then Gt is the

Riemannian ball of radius t
√
2c with the center at z.

Now let c(x, 0) = max0≤u c(x, u) = c(x) not be a constant. Put

V (t, x) = inf

{∫ t

0

[
c(φs)−

1

2

r∑

i,j=1

aij(φs)φ̇
i
sφ̇

j
s

]
ds : φ ∈ C0t,

φ0 = x, φt ∈ G0

}
.

One can check that V (t, x) is a Lipschitz continuous function increasing in t. It
follows from (4.8) and (4.3) that

uε(t, x) ≤ Mxg(X
ε
t ) exp

{
1

ε

∫ t

0

C(Xε
s ) ds

}
.

The expectation in the right-hand side of the last inequality, as follows from
Sect. 3 of Chap. 3, is logarithmically equivalent to exp{(1/ε)V (t, x)}, ε ↓ 0.
Thus,

lim
ε↓0

uε(t, x) = 0, if V (t, x) < 0. (4.19)

If we could prove that

lim
ε↓0

uε(t, x) = 1, if V (t, x) > 0, (4.20)

then the equation V (t, x) = 0 would give us the position of the interface
(wavefront) separating areas where uε(t, x) is close to 0 and to 1 at time t.
But simple examples show that, in general, this is not true; the area where
limε↓0 u

ε(t, x) = 0 can be larger than prescribed by (4.19). This, actually, de-
pends on the behavior of the extremals in the variational problem defining
V (t, x).

We say that condition (N) is fulfilled if for any (t, x) such that V (t, x) = 0,

V (t, x) = sup

{∫ t

0

[
c(φs)−

1

2

r∑

i,j=1

aij(φs)φ̇
i
sφ̇

j
s

]
ds : φ ∈ C0t,

φ0 = x, φt ∈ [Gt], V (t− s, φs) < 0 for 0 < s < t

}
.
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Theorem 4.1. Let uε(t, x) be the solution of problem (4.7) with a KPP-type non-
linear term f(x, y) = c(x, u)u. Then

lim
ε↓0

uε(t, x) = 0

uniformly in (t, x) changing in any compact subset of {(t, x) : t > 0, x ∈ Rr,
V (t, x) < 0}.

If the condition (N) holds,

lim
ε↓0

uε(t, x) = 1

uniformly in any compact subset of {(t, x) : t > 0, x ∈ Rr, V (t, x) > 0}, and
the equation V (t, x) = 0 describes the position of the wavefront at time t.

The first statement of this theorem is a small refinement of (4.19). The proof
of the second statement is similar to the proof of (4.12) in the case c(x) = c =
constant; the condition (N) allows us to check that limε↓0 ε lnu

ε(t, x) = 0, if
t > 0 and V (t, x) = 0. The rest of the proof is based on (4.8), strong Markov
property, and condition (4.3), as in the case c(x) = constant. For the detailed
proof, see Freidlin [15].

The motion of the front in the case of variable c(x) = c(x, 0) has a number
of special features, which cannot be observed if c(x) = c = constant.

Consider, for example, the one-dimensional case

∂uε(t, x)

∂t
=

ε

2

∂2uε

∂x2
+

1

ε
c(x)uε(1− uε), t > 0, x ∈ R1,

uε(0, x) = χ−(x− β).

(4.21)

Here c(x) is a smooth increasing positive function; β > 0 is a constant. One can
check that the condition (N) is fulfilled in this case, and the equation V (t, x) =
Vβ(t, x) = 0 describes the position of the front at time t. If x > β, then

Vβ(t, x) = sup

{∫ t

0

[
c(φs)−

1

2
φ̇2
s

]
ds, φ0 = x, φt = β

}
.

Let, first, c(x) = 1 for x < 0 and c(x) = 1 + x for x > 0. Then the function
Vβ(t, x) can be calculated explicitly:

Vβ(t, x) =
t3

24
+ t

(
1 +

β + x

2

)
− (β − x)2

2t
, x > β,

Vβ(t, x) > 0, x < β.

The interface between areas where uε(t, x) → 1 and uε(t, x) → 0 as ε ↓ 0
moves in the positive direction, and solving the equation Vβ(t, x) = 0, we define
its position xβ(t) at time t > 0,
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xβ(t) =
t2

2
+ β +

√
t4

3
+ 2t2(1 + β).

The interface motion in this case has some particularities which are worth men-
tioning. Evaluate β̃ = x0(1), xβ̃(1), x0(2):

x0(1) = β̃ =
1

2
+

√
7

3
≈ 2.0,

x0(2) = 2 +

√
40

3
≈ 5.6,

xβ̃(0) = 1 +

√
7

3
+

√
10

3
+

√
28

3
≈ 5.1.

We see that x0(2) > xβ̃(1). This means that the motion of the front does not sat-
isfy the Markov property (i.e., the semigroup property): given the position of the
front at time 1, the behavior of the front before time 1 can influence the behavior
of the front after time 1. The evolution of the function uε(t, x) satisfies, of course,
the semigroup property: if uε(s, x) is known for x ∈ R1, then uε(t, x), t > s, can
be calculated in a unique way. However, it turns out that for c(x) �= constant, the
evolution of the main term of uε(t, x) as ε ↓ 0, which is a step function with val-
ues 0 and 1, already loses the semigroup property. To preserve this property, one
must extend the phase space. The phase space should include not just the point
where Vβ(t, x) is equal to zero, but the whole function vβ(t, x) = Vβ(t, x) ∧ 0.

The loss of the semigroup property also shows that the motion of the front
cannot be described by a Huygens principle.

One more property of the front motion in this example: Let uε
0(t, x) and

uε
1(t, x) be the solutions of (4.21) with different initial functions uε

0(0, x) =
χ−(x), uε

1(0, x) = 1− χ−(x− 1). In the first case, the front moves from x = 0
in the positive direction and its position at time t is given by x0(t). In the second
case, the front moves from x = 1 in the negative direction of the x-axis. Condi-
tion (N) is not satisfied in the last case, but one can prove that the position X̃(t)
of the front at time t is the solution of the equation (Freidlin [15]),

˙̃X(t) = −
√

c(X̃t), X̃0 = 1. (4.22)

In our example, c(x) = 1 + x for x > 0. Solving (4.22), one can find that the
front comes to x = 0 at time t1→0 ≈ 1.22 in the second case. On the other hand,
solving the equation xβ(t) = 1 for β = 0, we see that in the first case, the front
needs time t0→1 ≈ 0.57 to come from 0 to 1. Thus, the motion in the direction
in which c(x) increases is faster than in the opposite direction. This property is
also incompatible with the Huygens principle.

We have seen in this example that if c(x) is linearly increasing, the front
moves at an increasing, but finite, speed. It turns out that if c(x) increases fast



432 11. Sharpenings and Generalizations

Figure 46.

enough on a short interval, remaining smooth, the front may have a jump. For ex-
ample, consider problem (4.21) with β = 0 and take as c(x) a smooth increasing
function which coincides with the step function c̄(x) = 1 + 3(1 − χ−(x − h)),
h > 0, everywhere except a δ-neighborhood of the point x = h. One can check
that the condition (N) is satisfied in this case. But if δ is small enough, the solu-
tion x0 = x0(t) of the equation V (t, x0) = 0 has the form shown in Fig. 46.

This means that for 0 < t < T0, the front moves continuously. But at time t =
T0 (see Fig. 46) a new source arises at a point h′ close to h if δ is small enough.
The region where uε(t, x) is close to 1 for 0 < ε! 1 propagates from this source
in both directions, so that uε(t, x) is close to 1 at time t1 ∈ (T0, T1) on [0, x0(t1))
and on (y1(t1), y2(t1)). Outside the closure of these intervals uε(t1, x) → 0 as
ε ↓ 0. At time T1 both components meet. These and some other examples are
considered in more detail in Freidlin [14].

The condition (N) is not always satisfied. For example, if in problem (4.21)
c(x) is a decreasing function, then (N) is not fulfilled. To describe the behavior
of the wavefront in the general case, introduce the function

W (t, x) = sup

{
min

0≤a≤t

∫ a

0

[
c(φs)−

1

2

r∑

i,j=1

aij(φs)φ̇
i
sφ̇

j
s

]
ds :

φ ∈ C0t, φ0 = x, φt ∈ G0

}
.

One can prove that the function W (t, x) is Lipschitz, continuous, and nonposi-
tive. If the condition (N) is satisfied, then W (t, x) = V (t, x) ∧ 0.

Theorem 4.2. Let uε(t, x) be the solution of problem (4.7) with a KPP-type non-
linear term f(x, u) = c(x, u)u. Then
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(i) limε↓0 u
ε(t, x) = 0, uniformly in (t, x) ∈ F1, where F1 is a compact subset

of the set {(t, x) : t > 0, x ∈ Rr,W (t, x) < 0};
(ii) limε↓0 u

ε(t, x) = 1, uniformly in (t, x) ∈ F2, where F2 is a compact subset
of the interior of the set {(t, x) : t > 0, x ∈ Rr,W (t, x) = 0}.

The proof of this theorem and various examples can be found in Freidlin [17]
and Freidlin and Lee [1].

Various generalizations of problem (4.7) for KPP-type nonlinear terms can be
found in Freidlin [13], [18], [20], [21], and Freidlin and Lee [1]. In particular, one
can consider RDE-systems of the KPP-type, equations with nonlinear boundary
conditions, and degenerate reaction-diffusion equations. An analytic approach
to some of these problems is available at present as well; corresponding refer-
ences can be found in Freidlin and Lee [1]. Wavefront propagation in periodic
and in random media is studied in Gärtner and Freidlin [1], Freidlin [15], and
Gärtner [5].

Consider one-dimensional dynamical system u̇ = f(u). If f(u) is of the
KPP-1 type, the dynamical system has two equilibrium points: one unstable point
at u = 0 and one stable point at u = 1. One can consider problem (4.7) with such
a nonlinear term that the dynamical system has two stable rest points separated
by the unstable third one. Such nonlinear terms are called bistable. Problem (4.7)
with a nonlinear term that is bistable for each x ∈ Rr is of great interest. One can
prove that uε(t, x) also converges in this case to a step function as ε ↓ 0, and the
evolution of this step function can be described by a Huygens principle. These
results can be found in Gärtner [4].

5 Random Perturbations of Infinite-Dimensional Systems

We considered, in the previous chapters of this book, random perturbations of
finite-dimensional dynamical systems. Similar questions for infinite-dimensional
systems are of interest as well. From a general point of view, we face in the
infinite-dimensional case, again, problems of the law-of-large-numbers type, of
the central-limit-theorem type, and of the large-deviation type. But many new
interesting and rather delicate effects appear in this case.

A rich class of infinite-dimensional dynamical systems and semiflows is de-
scribed by evolutionary differential equations. For example, one can consider the
dynamical system associated with a linear hyperbolic equation or a semiflow as-
sociated with the reaction-diffusion equation

∂u(t, x)

∂t
= DΔu+ f(x, u), t > 0, x ∈ G ⊂ Rr,

u(0, x) = g(x), (5.1)

∂u(t, x)

∂n

∣∣∣∣
∂G

= 0.
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Here D is a positive constant, f(x, u) is a Lipschitz continuous function, and
n = n(x) is the interior normal to the boundary ∂G of the domain G. The do-
main G is assumed to be regular enough. Problem (5.1) is solvable for any con-
tinuous bounded g(x). The corresponding solution u(t, x) will be differentiable
in x ∈ G for any t > 0, even if g(x) is just continuous. This shows that problem
(5.1) cannot be solved, in general, for t < 0. Therefore, (5.1) defines a semiflow
Ttg(x) = u(t, x), t ≥ 0, but not a flow (dynamical system), in the space of
continuous functions.

Of course, there are many ways to introduce perturbations of the semiflow
Ttg. One can consider various kinds of perturbations of the equation, perturba-
tions of the domain, and perturbations of the boundary or initial conditions.

Let us start with additive perturbations of the equation. We restrict ourselves
to the case of one spatial variable and consider the periodic problem, so that we
do not have to care about the boundary conditions:

∂uε(t, x)

∂t
= D

∂2uε

∂x2
+ f(x, uε) + εζ(t, x), t > 0, x ∈ S1,

uε(0, x) = g(x).

(5.2)

We assume that the functions f(x, u), g(x), ζ(t, x) are 2π-periodic in x, so that
they can be considered for x belonging to the circle S1 of radius 1, and we con-
sider 2π-periodic in x solutions of problem (5.2). When ε = 0, problem (5.2)
defines a semiflow in the space CS1 of continuous functions on S1 provided with
the uniform topology.

What kind of noise ζ(t, x) will we consider? Of course, the smoother ζ(t, x),
the smoother the solution of (5.2). But on the other hand, the smoothness makes
statistical properties of the noise and of the solution more complicated. The sim-
plest (from the statistical point of view) noise ζ(t, x) is the space–time white
noise

ζ(t, x) =
∂2W (t, x)

∂t∂x
, t ≥ 0, x ∈ [0, 2π).

Here W (t, x), t ≥ 0, x ∈ R1, is the Brownian sheet, that is, the continuous, mean
zero Gaussian random field with the correlation function MW (s, x)W (t, y) =
(s∧t)(x∧y). One can prove that such a random field exists, but ∂2W (t, x)/∂t∂x
does not exist as a usual function. Therefore, we have to explain the solution of
problem (5.2) with ζ(t, x) = ∂2W (t, x)/∂t∂x.

A measurable function uε(t, x), t ≥ 0, x ∈ S1, is called the generalized
solution of (5.2) with ζ(t, x) = ∂2W (t, x)/∂t∂x, if

∫

S1

uε(t, x)φ(x) dx−
∫

S1

g(x)φ(x) dx

=

∫ t

0

∫

S1

[uε(s, x)Dφ′′(x)− f(x, uε(s, x))φ(x)] dx ds

+ ε

∫

S1

φ′(x)W (t, x) dx (5.3)
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for any φ ∈ C∞
S1 with probability 1. It is proved in Walsh [1] that such a solu-

tion exists and is unique, if f(x, u) is Lipschitz continuous and g ∈ CS1 . Some
properties of the solution were established in that paper as well. In particular, it
was shown that the solution is Hölder continuous and defines a Markov process
uε
t = uε(t, 0) in CS1 . The asymptotic behavior of uε

t as ε ↓ 0 was studied in
Faris and Jona-Lasinio [1] and in Freidlin [16].

Consider, first, the linear case,

∂vε(t, x)

∂t
= D

∂2vε

∂x2
− αvε + ε

∂2W (t, x)

∂t∂x
, t > 0, x ∈ S1,

vε(0, x) = g(x).

(5.4)

Here D, α > 0, W (t, x) is the Brownian sheet. The solution of (5.4) with g(x) ≡
0 is denoted by vε0(t, x), and let v0g(t, x) be the solution of (5.4) with ε = 0;
v0g(t, x) is not random.

It is clear that vε(t, x) = v0g(t, x) + vε0(t, x).
Due to the linearity of the problem, vε0(t, x) is a Gaussian mean zero random

field. One can solve problem (5.4) using the Fourier method. The eigenvalues
of the operator Lh(x) = Dh′′(x) − αh(x), x ∈ S1, are λk = Dk2 + α, k =
0, 1, 2, . . . . The normalized eigenfunctions corresponding to λk are π−1/2 cos kx
and π−1/2 sin kx. Then

vε(t, x) = v0g(t, x)+
ε√
2π

A0(t)+
ε√
π

∞∑

k=1

(Ak(t) sin kx+Bk(t) cos kx), (5.5)

where Ak(t) and Bk(t) are independent Omstein–Uhlenbleck processes, satisfy-
ing the equations

dAk(t) = dWk(t)− λkAk(t) dt, Ak(0) = 0,

dBk(t) = dW̃k(t)− λkBk(t) dt, Bk(0) = 0.

Here Wk(t) and W̃k(t) are independent Wiener processes. The correlation func-
tion of the field vε(t, x) has the form

M(vε(s, x)−Mvε(s, x))(vε(t, y)−Mvε(t, y)) = ε2B(s, x, t, y)

=
ε2

2π

∞∑

k=0

cos(x− y)

λk
(e−λk(t−s) − e−λk(t+s)); x, y ∈ S1, 0 ≤ s ≤ t.

(5.6)

One can view vεt = vε(t, ·), t ≥ 0, as a Markov process in CS1 (generalized
Omstein–Uhlenbeck process). Equalities (5.5) and (5.6) imply that the process
vεt has a limiting distribution με as t → ∞. The distribution με in CS1 is mean
zero Gaussian with the correlation function

ε2B(x, y) =
ε2

2π

∞∑

k=0

cos k(x− y)

λk
; (5.7)

με is the unique invariant measure of the process vεt in CS1 .
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Consider now the random field vε(t, x), 0 ≤ t ≤ T , x ∈ S1, for some
T ∈ (0,∞). It is easy to see that vε(t, x) converges to v0g(t, x) as ε→ 0, but with
a small probability vε(t, x) will be in a neighborhood of any function φ(t, x) ∈
C[0,T ]×S1 such that φ(0, x) = g(x), if ε > 0. The probabilities of such deviations
are characterized by an action functional. One can derive from Theorem 4.1 of
Chap. 3, and (5.6) that the action functional for the family vε(t, x) in L2

[0,T ]×S1

as ε→ 0 is ε−2Sv(φ), where

Sv(φ) =

{
1
2

∫
S1

∫ T

0
|φ′

t(t, x)−Dφ′′
xx(t, x) + αφ(t, x)|2 dt dx, φ ∈W 1,2

2

+∞, for the rest of L2
[0,T ]×S1 .

Here W 1,2
2 is the Sobolev space of functions on [0, T ]×S1 possessing generalized

square integrable derivatives of the first order in t and of the second order in x.
Note that there is a continuous imbedding of W 1,2 in C[0,T ]×S1 . We preserve

the same notation for the restriction of Sv(φ) on C[0,T ]×S1 . Using Theorem 4.1
of Chap. 3, and Femique’s bound for the probability of exceeding a high level by
a continuous Gaussian field (Fernique, Conze, and Gani [1]), one can prove that
ε−2Sv(φ) is the action functional for vε(t, x) in C[0,T ]×S1 as ε→ 0.

Consider now (5.2) with ζ(t, x) = ∂2W (t, x)/∂t∂x. Let F (x, u) =∫ u

0
f(x, z) dz, and

U(φ) =

∫ 2π

0

[
D

2

(
dφ

dx

)2

+ F (x, φ(x))

]
dx, φ ∈W 1

2 ,

where W 1
2 is the Sobolev space of functions on S1 having square integrable first

derivatives. It is readily checked that the variational derivative δU(φ)/δφ has the
form

δU(φ)

δφ
= −Dd2φ

dx2
− f(x, φ).

So the functional U(φ) is the potential for the semiflow in CS1 defined by (5.1):

∂u(t, x)

∂t
= −δU(u(t, x))

δu
.

We have seen in Chap. 4 that for finite-dimensional dynamical systems, poten-
tiality leads to certain simplifications. In particular, the density mε(x) of the in-
variant measure of the process

ẋε
t = −∇U(xε

t ) + εẆt

in Rr can be written down explicitly:

mε(x) = Cεe
−2ε−2U(x), x ∈ Rr,

C−1
ε =

∫

Rr

e−2ε−2U(x) dx.
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Convergence of the last integral is the necessary and sufficient condition for exis-
tence of a finite invariant measure. One could expect that a similar formula could
be written down for the invariant density mε(φ) of the process uε

t :

mε(φ) = constant× exp

{
− 2

ε2
U(φ)

}
. (5.8)

The difficulty involved here, first of all, is due to the fact that there is no counter-
part of Lebesgue measure in the corresponding space of functions. One can try
to avoid this difficulty in various ways.

First, for (5.8) to make sense, one can do the following. Denote by Eδ(φ) the
δ-neighborhood of the function φ in CS1-norm. If ν is the normalized invariant
measure for the process uε

t , then one can expect that

Pg

{
lim

T→∞

1

T

∫ T

0

χεδ(φ)(u
ε
t ) dt = ν(Eδ(φ))

}
= 1,

where χεδ(φ) the indicator of the set Eδ(φ). Then it is natural to call

exp{−(2/ε2)U(φ)} the nonnormalized density function of the stationary dis-
tribution of the process uε

t (with respect to nonexisting uniform distribution) pro-
vided

lim
δ↓0

lim
T→∞

∫ T

0
χεδ(φ1)(u

ε
t ) dt∫ T

0
χεδ(φ2)(u

ε
t ) dt

= exp

{
− 2

ε2
(U(φ1)− U(φ2))

}
. (5.9)

In (5.9), ε is fixed. It is intuitively clear from (5.9) that the invariant measure
concentrates as ε → 0 near the points where U(φ) has the absolute minimum.
One can try to give exact meaning not to (5.8) but to its intuitive implications,
which characterize the behavior of uε

t for ε! 1.
It is also possible to try to write down a formula for the density of the invari-

ant measure of the process uε
t with respect to an appropriate Gaussian measure

correctly defined in CS1 . Of course, the form of the density with respect to this
reference measure will differ from (5.8). We commence with this last approach.

As the reference measure in CS1 , we choose the Gaussian measure which is
the invariant measure for the process vεt in CS1 defined by (5.4). The measure με

has zero mean and the correlation function (5.7); α is a positive constant. Denote
by Mα,ε the expectation with respect to the measure με

α.

Theorem 5.1. Assume that for some α > 0

Aε = Mα,ε exp

{
− 2

ε2

∫ 2π

0

[F (x, φ(x))− 1

2
αφ2(x)] dx

}
<∞.

Denote by νε the measure in CS1 such that

dνε

dμε
α

(φ) = A−1
ε exp

{
− 2

ε2

∫ 2π

0

[F (x, φ(x))− 1

2
αφ2(x)] dx

}
.



438 11. Sharpenings and Generalizations

Then νε is the unique normalized invariant measure of the process uε
t in CS1

defined by (5.3). For any Borel set Γ ⊂ CS1 and g ∈ CS1 ,

Pg

{
lim

T→∞

1

T

∫ T

0

χΓ(u
ε
t ) dt = νε(Γ)

}
= 1.

The proof of this theorem can be found in Freidlin [16].
Equality (5.9) can be deduced from this theorem.
One can use Theorem 5.1 for studying the behavior of the invariant measure

νε as ε → 0. In particular, if the potential U(φ) has a unique point φ̂ ∈ CS1 of
the absolute minimum, then the measure νε is concentrated in a neighborhood of
φ̂ if 0 < ε! 1: for any δ > 0,

lim
ε→0

νε
{
φ ∈ CS1 : max

x∈S1
|φ(x)− φ̂(x)| > δ

}
= 0.

If the absolute minimum of U(φ) is attained at finitely many m points of CS1 ,
then the limiting invariant measure is distributed between these m points, and
under certain assumptions, the weight of each of these points can be calculated.

One can check that the field uε(t, x) can be obtained from vε(t, x) with
the help of a continuous invertible transformation B of the space C[0,T ]×S1 :
u(t, x) = B[v](t, x). Therefore, by Theorem 3.1 of Chap. 3, the action func-
tional for the family uε(t, x) as ε→ 0 in C[0,T ]×S1 has the form

ε−2Su(ψ) = ε−2Sν(B−1(ψ)), ψ ∈ C[0,T ]×S1 ,

where ε−2Sν is the action functional for νε(t, x) calculated above. This gives us
the following expression for Su(ψ).

Su(ψ) =

⎧
⎪⎨

⎪⎩

1
2

∫ T

0

∫ 2π

0
|∂ψ(t,x)

∂t −D ∂2ψ(t,x)
∂x2 − f(x, ψ(t, x))|2 dx dt,

ψ ∈W 1,2
2 ,

+∞, if φ ∈ C[0,T ]×S1\W 1,2
2 .

(5.10)

One can use this result, for example, for calculation of the asymptotics in the exit
problems for the process uε

t .
Consider now a system of reaction-diffusion equations perturbed by the

space–time white noise,

∂uε
k(t, x)

∂t
= Dk

∂2uε
k

∂x2
+ fk(x;u

ε
1, . . . , u

ε
n) + ε

∂2Wk(t, x)

∂t∂x
,

uε
k(0, x) = gk(x), t > 0, x ∈ S1, k ∈ {1, 2, . . . , n}.

(5.11)

Here Wk(t, x) are independent Brownian sheets. If the vector field (f1(x, u), . . . ,
fn(x, u)) = f(x, u), u ∈ Rn, for any x ∈ S1 is potential, that is, fk(x, u) =
−∂F (x, u)/∂uk for some potential F (x, u), k ∈ {1, . . . , n}, x ∈ S1, then the
semiflow u0

t = (u0
1(t, ·), . . . , u0

n(t, ·)) in [CS1 ]n is potential:
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∂u0
k

∂t
= −δU(u0)

δu0
k

,

U(φ) =

∫ 2π

0

[
1

2

h∑

k=1

Dk

(
dφk(x)

dx

)2

+ F (x, φ(x))

]
dx,

φ = (φ1(x), . . . , φn(x)).

One can give a representation for the invariant measure in this case similar to the
case of a single RDE. If the field f(x, u) is not potential, the semiflow (5.11)
is not potential as well. But even in the nonpotential case, one can calculate the
action functional for the family uε(t, x) defined by (5.11). It has a form similar
to (5.10). For example, this action functional allows one to calculate the limiting
behavior of the invariant measures as ε→ 0 in the nonpotential case.

If the spatial variable in (5.1) has dimension greater than 1, one cannot con-
sider perturbations of (5.1) by a space–time white noise; the corresponding equa-
tion has no solution in the case of such irregular perturbations. One can add to
(5.1) the noise εζ(t, x), where ζ(t, x) is the mean zero Gaussian field with a cor-
relation function R(s, x, t, y) = δ(t − s)r(x, y), where r(x, y) is smooth. Then
the perturbed process exists, but its statistical properties are more complicated
than in the white noise case. It is interesting to consider here the double asymp-
totic problem, when r(x, y) = (1/λd)r̃((x− y)/λ), where d is the dimension of
the space, and both ε and λ tend to zero; r(u) is assumed to be a smooth function
such that lim|u|→∞ r̃(u) = 0. Some results of this type one can find in Cerrai
and Freidlin [1].

The additive perturbations of the equation do not, of course, exhaust all inter-
esting ways to perturb a differential equation. Consider, for example, the follow-
ing linear Cauchy problem.

∂uε(t, x)

∂t
= aε(x)

∂2uε

∂x2
+ bε(x)

∂uε

∂x
= Lεuε, t > 0, x ∈ R1,

uε(0, x) = g(x).

(5.12)

Here aε(x) and bε(x) are random fields depending on a parameter ε > 0 and g(x)
is a continuous bounded function. Let, for example, aε(x) = a(x/ε), bε(x) =
b(x/ε), where (a(x), b(x)) is an ergodic stationary process. Then one can expect
that the semiflow uε

t defined by problem (5.12) converges as ε ↓ 0 to the semiflow
defined by the equation

∂u0(t, x)

∂t
= â

∂2u0

∂x2
+ b̂

∂u0

∂x
, u0(0, x) = g(x),

where â and b̂ are appropriate constants. This is an example of the homogeniza-
tion problem. One can ask a more general question: what are the conditions on
the coefficients (aε(x), bε(x)) in (5.12) that ensure convergence of corresponding
semiflows.



440 11. Sharpenings and Generalizations

It is useful to consider a generalization of problem (5.12). Let u(x), v(x)
be monotone increasing functions on R1, and let u(x) be continuous. One can
consider a generalized differential operator DvDu (see Feller [2]), where Du is
defined as

Duh(x) = lim
Δ→0

h(x+Δ)− h(x)

u(x+Δ)− u(x)
,

and Dv is defined in a similar way. The operator Lε in (5.12) also can be written
in the form DvεDuε with

uε(x) =

∫ x

0

dy · exp
{
−
∫ y

0

bε(z) dz

aε(z)

}
,

vε(x) =

∫ x

0

dy

aε(y)
exp

{∫ y

0

bε(z) dz

aε(z)

}
.

Note that the pairs (u, v), (u + c1, v + c2) and (au, a−1v), where c1, c2, a are
constants, a > 0, correspond to the same operator DvDu.

Consider the semiflow W ε
t , ε ≥ 0, defined by the equation

∂W ε(t, x)

∂t
= DvεDuεW ε(t, x),

uε(0, x) = g(x).

Then limε↓0(W
ε
t g −W 0

t g) = 0 for any continuous bounded g(x) if and only if
uε(x) → u0(x), vε(x) → v0(x) as ε ↓ 0 at any continuity point of the limiting
function (after a proper choice of the functions u0, v0 having to do with the
above-mentioned nonuniqueness) (Freidlin and Wentzell [4]). In particular, all
the homogenization results for (5.12) can be deduced from that statement. Such
a result, which is complete, in a sense, is known only in the case of one spatial
variable. Results concerning homogenization in the multidimensional case were
obtained by Kozlov [1] and Papanicolaou and Varadhan [1].

Some large deviation results for (5.12) with rapidly oscillating coefficients,
which are useful, in particular, when wavefronts in random media are studied,
were obtained in Gärtner and Freidlin [1] (see also Freidlin [15]). The corre-
sponding multidimensional problem is still open.

Perturbations of semiflows defined by PDEs caused by random perturbations
of the boundary conditions are considered in Freidlin and Wentzell [1]. Initial-
boundary problems for domains with many small holes are considered in Papan-
icolaou and Varadhan [2].
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