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Preface

Preface
View an Introduction on YouTube

This book forms the lecture notes for my Massive Open Online Course (MOOC) on the web platform
Coursera. These lecture notes are divided into chapters called Lectures, and each Lecture corresponds
to a video on Coursera. I have also uploaded the Coursera videos to YouTube, and links are placed at
the top of each Lecture.

Most of the Lectures also contain problems for students to solve. Less experienced students may
find some of these problems difficult. Do not despair! The Lectures can be read and watched, and the
material understood and enjoyed without actually solving any problems. But mathematicians do like
to solve problems and I have selected those that I found to be interesting. Try some of them, but if you
get stuck, full solutions can be read in the Appendix.

My aim in writing these lecture notes was to place the mathematics at the level of an advanced
high school student. Proof by mathematical induction and matrices, however, may be unfamiliar to
a typical high school student and I have provided a short and hopefully readable discussion of these
topics in the Appendix. Although all the material presented here can be considered elementary, I
suspect that some, if not most, of the material may be unfamiliar to even professional mathematicians
since Fibonacci numbers and the golden ratio are topics not usually covered in a University course. So
I welcome both young and old, novice and experienced mathematicians to peruse these lecture notes,
watch my lecture videos, solve some problems, and enjoy the wonders of the Fibonacci sequence and
the golden ratio.

Jeffrey R. Chasnov
Hong Kong

Oct. 2016
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The Fibonacci sequence

Lecture 1

The Fibonacci sequence
View this lecture on YouTube

Fibonacci published in the year 1202 his now famous rabbit puzzle:

A man put a male-female pair of newly born rabbits in a field. Rabbits take a month to
mature before mating. One month after mating, females give birth to one male-female pair
and then mate again. No rabbits die. How many rabbit pairs are there after one year?

To solve, we construct Table 1.1. At the start of each month, the number of juvenile pairs, adult
pairs, and total number of pairs are shown. At the start of January, one pair of juvenile rabbits is
introduced into the population. At the start of February, this pair of rabbits has matured. At the start
of March, this pair has given birth to a new pair of juvenile rabbits. And so on.

month J F M A M J J A S O N D J
juvenile 1 0 1 1 2 3 5 8 13 21 34 55 89
adult 0 1 1 2 3 5 8 13 21 34 55 89 144
total 1 1 2 3 5 8 13 21 34 55 89 144 233

Table 1.1: Fibonacci’s rabbit population.

We define the Fibonacci numbers Fn to be the total number of rabbit pairs at the start of the nth
month. The number of rabbits pairs at the start of the 13th month, F13 = 233, can be taken as the
solution to Fibonacci’s puzzle.

Further examination of the Fibonacci numbers listed in Table 1.1, reveals that these numbers satisfy
the recursion relation

Fn+1 = Fn + Fn−1. (1.1)

This recursion relation gives the next Fibonacci number as the sum of the preceeding two numbers.
To start the recursion, we need to specify F1 and F2. In Fibonacci’s rabbit problem, the initial month
starts with only one rabbit pair so that F1 = 1. And this initial rabbit pair is newborn and takes one
month to mature before mating so F2 = 1.

The first few Fibonacci numbers, read from the table, are given by

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

and has become one of the most famous sequences in mathematics.

1
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The Fibonacci sequence
2 LECTURE 1. THE FIBONACCI SEQUENCE

Problems for Lecture 1

1. The Fibonacci numbers can be extended to zero and negative indices using the relation Fn = Fn+2 −
Fn+1. Determine F0 and find a general formula for F−n in terms of Fn. Prove your result using
mathematical induction.

2. The Lucas numbers are closely related to the Fibonacci numbers and satisfy the same recursion
relation Ln+1 = Ln + Ln−1, but with starting values L1 = 1 and L2 = 3. Determine the first 12 Lucas
numbers.

3. The generalized Fibonacci sequence satisfies fn+1 = fn + fn−1 with starting values f1 = p and
f2 = q. Using mathematical induction, prove that

fn+2 = Fn p + Fn+1q. (1.2)

4. Prove that
Ln = Fn−1 + Fn+1. (1.3)

5. Prove that
Fn =

1
5
(Ln−1 + Ln+1) .

6. The generating function for the Fibonacci sequence is given by the power series

f (x) =
∞

∑
n=1

Fnxn.

Assuming the power series converges, prove that

f (x) =
x

1 − x − x2 .

Solutions to the Problems
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The Fibonacci sequence redux

Lecture 2

The Fibonacci sequence redux
View this lecture on YouTube

We can solve another puzzle that also leads to the Fibonacci sequence:

How many ways can one climb a staircase with n steps, taking one or two steps at a time?

Any single climb can be represented by a string of ones and twos which sum to n. We define an as
the number of different strings that sum to n. In Table 1, we list the possible strings for the first five
values of n. It appears that the an’s form the beginning of the Fibonacci sequence.

To derive a relationship between an and the Fibonacci numbers, consider the set of strings that sum
to n. This set may be divided into two nonoverlapping subsets: those strings that start with one and
those strings that start with two. For the subset of strings that start with one, the remaining part of the
string must sum to n − 1; for the subset of strings that start with two, the remaining part of the string
must sum to n − 2. Therefore, the number of strings that sum to n is equal to the number of strings
that sum to n − 1 plus the number of strings that sum to n − 2. The number of strings that sum to
n − 1 is given by an−1 and the number of strings that sum to n − 2 is given by an−2, so that

an = an−1 + an−2.

And from the table we have a1 = 1 = F2 and a2 = 2 = F3, so that an = Fn+1 for all positive integers n.

n strings an
1 1 1
2 11, 2 2
3 111, 12, 21 3
4 1111, 112, 121, 211, 22 5
5 11111, 1112, 1121, 1211, 2111, 122, 212, 221 8

Table 2.1: Strings of ones and twos that add up to n.

3
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The Fibonacci sequence redux

4

4 LECTURE 2. THE FIBONACCI SEQUENCE REDUX

Problems for Lecture 2

1. Consider a string consisting of the first n natural numbers, 123 . . . n. For each number in the string,
allow it to either stay fixed or change places with one of its neighbors. Define an to be the number of
different strings that can be formed. Examples for the first four values of n are shown in Table 2.2.
Prove that an = Fn+1.

n strings an
1 1 1
2 12, 21 2
3 123, 132, 213 3
4 1234, 1243, 1324, 2134, 2143 5

Table 2.2: Strings of natural numbers obtained by allowing a number to stay fixed or change places
with its neighbor.

2. Consider a problem similar to that above, but now allow the first 1 to change places with the last
n, as if the string lies on a circle. Suppose n ≥ 3, and define bn as the number of different strings that
can be formed. Show that bn = Ln, where Ln is the nth Lucas number.

Solutions to the Problems
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The golden ratio

Lecture 3

The golden ratio
View this lecture on YouTube

x y

Figure 3.1: The golden ratio satisfies x/y = (x + y)/x.

We now present the classical definition of the golden ratio. Referring to Fig. 3.1, two positive numbers
x and y, with x > y are said to be in the golden ratio if the ratio between the larger number and the
smaller number is the same as the ratio between their sum and the larger number, that is,

x
y
=

x + y
x

. (3.1)

Denoting Φ = x/y to be the golden ratio, (Φ is the capital Greek letter Phi), the relation (3.1) becomes

Φ = 1 +
1
Φ

, (3.2)

or equivalently Φ is the positive root of the quadratic equation

Φ2 − Φ − 1 = 0. (3.3)

Straightforward application of the quadratic formula results in

Φ =

√
5 + 1
2

≈ 1.618.

The negative of the negative root of the quadratic equation (3.3) is what we will call the golden ratio
conjugate φ, (the small Greek letter phi), and is equal to

φ =

√
5 − 1
2

≈ 0.618.

The relationship between the golden ratio conjugate φ and the golden ratio Φ, is given by

φ = Φ − 1,

or using (3.2),

φ =
1
Φ

.
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The golden ratio

6

6 LECTURE 3. THE GOLDEN RATIO

Problems for Lecture 3

1. The golden ratio Φ and the golden ratio conjugate φ can be defined as

Φ =

√
5 + 1
2

, φ =

√
5 − 1
2

.

From these definitions, prove the following identities by direct calculation:

(a) φ = Φ − 1,

(b) φ = 1/Φ,

(c) Φ2 = Φ + 1,

(d) φ2 = −φ + 1,

2. Prove that the golden ratio satisfies the Fibonacci-like relationship

Φn+1 = Φn + Φn−1.

3. Prove that the golden ratio conjugate satisfies

φn−1 = φn + φn+1.

Solutions to the Problems
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Fibonacci numbers and the golden ratio

Lecture 4

Fibonacci numbers and the golden
ratio
View this lecture on YouTube

The recursion relation for the Fibonacci numbers is given by

Fn+1 = Fn + Fn−1.

Dividing by Fn yields
Fn+1

Fn
= 1 +

Fn−1

Fn
. (4.1)

We assume that the ratio of two consecutive Fibonacci numbers approaches a limit as n → ∞. Define
limn→∞ Fn+1/Fn = α so that limn→∞ Fn−1/Fn = 1/α. Taking the limit, (4.1) becomes α = 1 + 1/α, the
same identity satisfied by the golden ratio. Therefore, if the limit exists, the ratio of two consecutive
Fibonacci numbers must approach the golden ratio for large n, that is,

lim
n→∞

Fn+1

Fn
= Φ.

The ratio of consecutive Fibonacci numbers and this ratio minus the golden ratio is shown in Table
4.1. The last column appears to be approaching zero.

n Fn+1/Fn value Fn+1/Fn − Φ
1 1/1 1.0000 −0.6180
2 2/1 2.0000 0.3820
3 3/2 1.5000 −0.1180
4 5/3 1.6667 0.0486
5 8/5 1.6000 −0.0180
6 13/8 1.6250 0.0070
7 21/13 1.6154 −0.0026
8 34/21 1.6190 0.0010
9 55/34 1.6176 −0.0004
10 89/55 1.6182 0.0001

Table 4.1: Ratio of consecutive Fibonacci numbers approaches Φ.
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Fibonacci numbers and the golden ratio
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8 LECTURE 4. FIBONACCI NUMBERS AND THE GOLDEN RATIO

Problems for Lecture 4

1. Assuming limn→∞ Fn+1/Fn = Φ, prove that

lim
k→∞

Fk+n
Fk

= Φn.

2. Using Φ2 = Φ + 1, prove by mathematical induction the following linearization of powers of the
golden ratio:

Φn = FnΦ + Fn−1, (4.2)

where n is a positive integer and F0 = 0.

3. Using φ2 = −φ + 1, prove by mathematical induction the following linearization of powers of the
golden ratio conjugate:

(−φ)n = −Fnφ + Fn−1, (4.3)

where n is a positive integer and F0 = 0.

Solutions to the Problems
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Binet’s formula

Lecture 5

Binet’s formula
View this lecture on YouTube

The Fibonacci numbers are uniquely determined from their recursion relation,

Fn+1 = Fn + Fn−1, (5.1)

and the initial values, F1 = F2 = 1. An explicit formula for the Fibonacci numbers can be found, and
is called Binet’s Formula.

To solve (5.1) for the Fibonacci numbers, we first look at the equation

xn+1 = xn + xn−1. (5.2)

This equation is called a second-order, linear, homogeneous difference equation with constant coeffi-
cients, and its method of solution closely follows that of the analogous differential equation. The idea
is to guess the general form of a solution, find two such solutions, and then multiply these solutions
by unknown constants and add them. This results in a general solution to (5.2), and one can then solve
(5.1) by satisfying the specified initial values.

To begin, we guess the form of the solution to (5.2) as

xn = λn, (5.3)

where λ is an unknown constant. Substitution of this guess into (5.2) results in

λn+1 = λn + λn−1,

or upon division by λn−1 and rearrangement of terms,

λ2 − λ − 1 = 0.

Use of the quadratic formula yields two roots, both of which are already familiar. We have

λ1 =
1 +

√
5

2
= Φ, λ2 =

1 −
√

5
2

= −φ,

where Φ is the golden ratio and φ is the golden ratio conjugate.

We have thus found two independent solutions to (5.2) of the form (5.3), and we can now use these
two solutions to find a solution to (5.1). Multiplying the solutions by constants and adding them, we

9
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Binet’s formula

10

10 LECTURE 5. BINET’S FORMULA

obtain
Fn = c1Φn + c2(−φ)n, (5.4)

which must satisfy the initial values F1 = 1 and F2 = 1. The algebra for finding the unknown constants
can be made simpler, however, if instead of F2, we use the value F0 = F2 − F1 = 0.

Application of the values for F0 and F1 results in the system of equations given by

c1 + c2 = 0,

c1Φ − c2φ = 1.

We use the first equation to write c2 = −c1, and substitute into the second equation to get

c1(Φ + φ) = 1.

Since Φ + φ =
√

5, we can solve for c1 and c2 to obtain

c1 = 1/
√

5, c2 = −1/
√

5. (5.5)

Using (5.5) in (5.4) then derives the surprising formula

Fn =
Φn − (−φ)n

√
5

, (5.6)

known as Binet’s formula.
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Binet’s formula
11

Problems for Lecture 5

1. Prove Binet’s formula (5.6) by mathematical induction.

2. Use Binet’s formula to prove the limit

lim
n→∞

Fn+1/Fn = Φ.

3. Use the linearization formulas

Φn = FnΦ + Fn−1 (5.7)

(−φ)n = −Fnφ + Fn−1 (5.8)

to derive Binet’s formula.

4. Use the generating function for the Fibonacci sequence

∞

∑
n=1

Fnxn =
x

1 − x − x2

to derive Binet’s formula.

5. Determine the analogue to Binet’s formula for the Lucas numbers, defined as

Ln+1 = Ln + Ln−1

with the initial values L1 = 1 and L2 = 3. Again it will be simpler to define the value of L0 and use it
and L1 as the initial values.

6. Use Binet’s formula for Fn and the analogous formula for Ln to show that

Φn =
Ln +

√
5Fn

2
.

Solutions to the Problems
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The Fibonacci Q-matrix

Lecture 6

The Fibonacci Q-matrix
View this lecture on YouTube

month J F M A M J J A S O N D J
juvenile 1 0 1 1 2 3 5 8 13 21 34 55 89
adult 0 1 1 2 3 5 8 13 21 34 55 89 144

Table 6.1: Fibonacci’s rabbit population consists of juveniles and adults.

Consider again Fibonacci’s growing rabbit population of juvenile and adult rabbit pairs shown in
Table 6.1. Let an denote the number of adult rabbit pairs at the start of month n, and let bn denote the
number of juvenile rabbit pairs. The number of adult pairs at the start of month n + 1 is just the sum
of the number of adult and juvenile pairs at the start of month n. The number of juvenile pairs at the
start of month n + 1 is just the number of adult pairs at the start of month n. This can be written as a
system of recursion relations given by

an+1 = an + bn,

bn+1 = an;

or in matrix form as (
an+1

bn+1

)
=

(
1 1
1 0

)(
an

bn

)
. (6.1)

The matrix in (6.1) is called the Fibonacci Q-matrix, defined as

Q =

(
1 1
1 0

)
. (6.2)

Repeated multiplication by Q advances the population additional months. For example, advancing k
months is achieved by (

an+k

bn+k

)
= Qk

(
an

bn

)
.

Powers of the Q-matrix are related to the Fibonacci sequence. Observe what happens when we
multiply an arbitrary matrix by Q. We have

(
1 1
1 0

)(
a b
c d

)
=

(
a + c b + d

a b

)
.

Multiplication of a matrix by Q replaces the first row of the matrix by the sum of the first and second

13

Download free eBooks at bookboon.com

https://youtu.be/lTHVwsHJrG0


FIBONACCI NUMBERS AND  
THE GOLDEN RATIO

14

The Fibonacci Q-matrix
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14 LECTURE 6. THE FIBONACCI Q-MATRIX

rows, and the second row of the matrix by the first row.
If we rewrite Q itself in terms of the Fibonacci numbers as

Q =

(
F2 F1

F1 F0

)
,

and then make use of the Fibonacci recursion relation, we find

Q2 =

(
1 1
1 0

)(
F2 F1

F1 F0

)
=

(
F3 F2

F2 F1

)
.

In a similar fashion, Q3 is given by

Q3 =

(
1 1
1 0

)(
F3 F2

F2 F1

)
=

(
F4 F3

F3 F2

)
,

and so on. The self-evident pattern can be seen to be

Qn =

(
Fn+1 Fn

Fn Fn−1

)
. (6.3)
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The Fibonacci Q-matrix
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Problems for Lecture 6

1. Prove (6.3) by mathematical induction.

2. Using the relation QnQm = Qn+m, prove the Fibonacci addition formula

Fn+m = Fn−1Fm + FnFm+1. (6.4)

3. Use the Fibonacci addition formula to prove the Fibonacci double angle formulas

F2n−1 = F2
n−1 + F2

n , F2n = Fn (Fn−1 + Fn+1) . (6.5)

4. Show that
F2n = LnFn.

Solutions to the Problems
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Cassini’s identity

Lecture 7

Cassini’s identity
View this lecture on YouTube

Last lecture’s result for the Fibonacci Q-matrix is given by

Qn =

(
Fn+1 Fn

Fn Fn−1

)
, (7.1)

with

Q =

(
1 1
1 0

)
. (7.2)

From the theory of matrices and determinants (see Appendix B), we know that

det AB = det A det B.

Repeated application of this result yields

det Qn = (det Q)n. (7.3)

Applying (7.3) to (7.1) and (7.2) results directly in Cassini’s identity (1680),

Fn+1Fn−1 − F2
n = (−1)n. (7.4)

Examples of this equality can be obtained from the first few numbers of the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . We have

2 × 5 − 32 = 1,

3 × 8 − 52 = −1,

5 × 13 − 82 = 1,

8 × 21 − 132 = −1

13 × 34 − 212 = 1.

Cassini’s identity is the basis of an amusing dissection fallacy, called the Fibonacci bamboozlement,
discussed in the next lecture.
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18 LECTURE 7. CASSINI’S IDENTITY

Problems for Lecture 7

1. Prove Cassini’s identity by mathematical induction.

2. Using the Cassini’s identity (7.4) and the Fibonacci addition formula (6.4), prove Catalan’s identity

F2
n − Fn−rFn+r = (−1)n−rF2

r . (7.5)

Solutions to the Problems
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The Fibonacci bamboozlement

Lecture 8

The Fibonacci bamboozlement
View this lecture on YouTube

Cassini’s identity
Fn+1Fn−1 − F2

n = (−1)n

can be interpreted geometrically: Fn+1Fn−1 is the area of a rectangle of side lengths Fn+1 and Fn−1,
and F2

n is the area of a square of side length Fn. Cassini’s identity states that the absolute difference in
area between the rectangle and the square is only one unit of area. As n becomes large, this one unit
of area difference becomes small relative to the areas of the square and the rectangle, and Cassini’s
identity becomes the basis of an amusing dissection fallacy, called the Fibonacci bamboozlement.

To perform the Fibonacci bamboozlement, one dissects a square with side length Fn in such a way
that by rearranging the pieces, one appears able to construct a rectangle with side lengths Fn−1 and
Fn+1, with either one unit of area larger or smaller than the original square.

We illustrate this bamboozlement in Fig. 8.1 using a square of area 8 × 8 = 64, and a rectangle of
area 5 × 13 = 65, corresponding to n = 6 in Cassini’s identity. We begin by dissecting a square into
two rectangles, the bottom rectangle of dimension 8-by-5 and the top rectangle of dimension 8-by-3.
Here, 5 and 3 are the two Fibonacci numbers immediately preceeding 8.

The bottom 8-by-5 rectangle is then further dissected into two equal trapezoids. The bases of the
two trapezoids are the Fibonacci numbers 5 and 3, and the heights are 5. The top rectangle is further
dissected into two equal right triangles. The bases of the triangles are the Fibonacci number 8 and the
heights of the triangles are the Fibonacci number 3. The dissected square is shown in Fig. 8.1a.

To construct a rectangle of dimension 5-by-13, one of the trapezoids fits into the bottom of the
rectangle and the other trapezoid fits into the top of the rectangle. The two triangles then fill the
remaining spaces. The resulting rectangle is shown in Fig. 8.1b, and it superficially appears that the
the square has been recombined to form a rectangle of a larger area.

The honestly reconstructed rectangle, however, is shown in Fig. 8.2, where the missing unit area is
seen to be almost evenly distributed along the diagonal of the rectangle.

Why is the missing (or extra) unit area distributed along the diagonal of the rectangle? In our
example, the side slope of the trapezoids is given by F5/F3 = 5/2 = 2.5 while the slope of the
triangle’s hypotenuse is given by F6/F4 = 8/3 ≈ 2.67. This slight mismatch in slopes results in a
steady increase or decrease in distance between the trapezoid and the triangle when they are aligned.
Here, the gap between the trapezoid and the triangle can be easily hidden by splitting the difference
between the aligned pieces, as done in the dishonestly constructed rectangle.
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20 LECTURE 8. THE FIBONACCI BAMBOOZLEMENT

(a) Square of dimension 8-by-8 and area 64. (b) Rectangle of dimension 13-by-5 and area 65.

Figure 8.1: The Fibonacci Bamboozlement.

Figure 8.2: The honest rectangle. The white space shows the missing unit area.
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Problems for Lecture 8

1. Cut an 8 × 8 chess board, or ruled paper, into two trapezoids and two triangles, and fool your
friends by using the pieces to reconstruct a 5 × 13 rectangle.
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Sum of Fibonacci numbers

Lecture 9

Sum of Fibonacci numbers
View this lecture on YouTube

In this lecture, I derive the summation identity

n

∑
i=1

Fi = Fn+2 − 1. (9.1)

For example, consider the first eight Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, 21. With n = 6 in (9.1), we
have

n

∑
i=1

Fi = 1 + 1 + 2 + 3 + 5 + 8 = 20,

and
Fn+2 − 1 = 21 − 1 = 20.

One can use mathematical induction to prove (9.1), but a direct derivation uses the relation Fn =

Fn+2 − Fn+1. Constructing a list of identities, we have

Fn = Fn+2 − Fn+1

Fn−1 = Fn+1 − Fn

Fn−2 = Fn − Fn−1

...
...

F2 = F4 − F3

F1 = F3 − F2.

Adding all the left hand sides yields the sum over the first n Fibonacci numbers, and adding all the
right-hand-sides results in the cancellation of all terms except the first and the last. Using F2 = 1
results in (9.1).
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24 LECTURE 9. SUM OF FIBONACCI NUMBERS

Problems for Lecture 9

1. Prove by mathematical induction that the sum over the first n Fibonacci numbers is given by

n

∑
i=1

Fi = Fn+2 − 1. (9.2)

2. Prove by construction that the sum over the first n Lucas numbers is given by

n

∑
i=1

Li = Ln+2 − 3. (9.3)

3. Prove by construction that the sums over the first n odd or n even Fibonacci numbers are given by

n

∑
i=1

F2i−1 = F2n,
n

∑
i=1

F2i = F2n+1 − 1.

Solutions to the Problems
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Sum of Fibonacci numbers squared

Lecture 10

Sum of Fibonacci numbers squared
View this lecture on YouTube

In this lecture, I derive a combinatorial identity obtained by summing over the squares of the Fi-
bonacci numbers:

n

∑
i=1

F2
i = FnFn+1. (10.1)

For example, consider the first seven Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13. With n = 6 in (10.1), we have

12 + 12 + 22 + 32 + 52 + 82 = 8 × 13,

where by doing the arithmetic one finds that both sides are equal to 104.
To prove (10.1), we work with the right-hand side, using the Fibonacci recursion relation. We have

FnFn+1 = Fn(Fn + Fn−1)

= F2
n + Fn−1Fn

= F2
n + Fn−1(Fn−1 + Fn−2)

= F2
n + F2

n−1 + Fn−2Fn−1

= . . .

= F2
n + F2

n−1 + · · ·+ F2
2 + F1F2.

Because F2 = F1, the identity (10.1) is proved.
We will revisit this combinatorial identity in a later lecture.
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26 LECTURE 10. SUM OF FIBONACCI NUMBERS SQUARED

Problems for Lecture 10

1. Prove (10.1) by mathematical induction

2. Prove by construction that the sum over the first n Lucas numbers squared is given by

n

∑
i=1

L2
i = LnLn+1 − 2. (10.2)

Solutions to the Problems
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The golden rectangle

Lecture 11

The golden rectangle
View this lecture on YouTube

A golden rectangle is a rectangle whose side lengths are in the golden ratio. In a classical construction,
first one draws a square. Second, one draws a line from the midpoint of one side to a corner of the
opposite side. Third, one draws an arc from the corner to an extension of the side with the midpoint.
Fourth, one completes the rectangle. The procedure is illustrated in Fig. 11.1.

1

1

(a) Construct a square.

1/2

1
√

5/2

(b) Draw a line from midpoint to corner.

1/2
√

5/2

(c) Draw an arc using the internal line as radius.

(1 +
√

5)/2

1

(d) Complete the golden rectangle.

Figure 11.1: Classical construction of the golden rectangle.
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28 LECTURE 11. THE GOLDEN RECTANGLE

Problems for Lecture 11

1. Use the online software GeoGebra to construct a golden rectangle. Or try it with a real straightedge
and a compass!
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Spiraling squares

Lecture 12

Spiraling squares
View this lecture on YouTube

1

1

φ

Φ

Figure 12.1: Two golden rectangles. The full rectangle and the rectangle next to the square are both
golden rectangles. Here, φ = Φ − 1 = 1/Φ.

To construct a golden rectangle of length L = Φ and width W = 1, a smaller rectangle was attached to
a unit square as illustrated in Fig. 12.1. The smaller rectangle has vertical length L = 1 and horizontal
width W = Φ − 1, but since Φ − 1 = 1/Φ, the smaller rectangle satisfies L/W = Φ, and so it too is a
golden rectangle.

This smaller golden rectangle can again be subdivided into a still smaller square and golden rect-
angle, and this process can be continued ad infinitum. At each subdivision, the length of the square is
reduced by a factor of φ = 1/Φ.

The subdivisions can be done in either a clockwise or counterclockwise fashion. For clockwise, the
square is positioned first on the left, then top, then right, and then bottom of the rectangle, and so
on. Eventually, we obtain Fig. 12.2, where the side lengths of some of the squares are written in their
centers as powers of φ.

Notice that each golden rectangle in Fig. 12.2 is a reduced-scale copy of the whole. Objects con-
taining reduced-scale copies of themselves are called self-similar.
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Spiraling squares30 LECTURE 12. SPIRALING SQUARES

1
φ

φ2
φ3

φ4 φ5

φ6

Figure 12.2: Spiraling squares. The side lengths of the squares are the numbers in their centers.
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Problems for Lecture 12

1. Prove that
∞

∑
i=0

φ2i = Φ.

A visual proof of this identity is given by Fig. 12.2, where the left-hand-side is the sum of the areas of
all the imbedded squares and the right-hand-side is the area of the big rectangle.

Solutions to the Problems
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The golden spiral

Lecture 13

The golden spiral
View this lecture on YouTube

The celebrated golden spiral is a special case of the more general logarithmic spiral whose radius
r is given by

r = aebθ , (13.1)

where θ is the usual polar angle, and a and b are constants. Jacob Bernoulli (1655-1705) studied this
spiral in depth and gave it the name spira mirabilis, or miraculous spiral, asking that it be engraved on
his tombstone with the enscription “Eadem mutata resurgo”, roughly translated as “Although changed,
I arise the same.” A spiral was engraved at the bottom of his tombstone, but sadly it was not his
beloved logarithmic spiral.

The golden spiral is a logarithmic spiral whose radius either increases or decreases by a factor of
the golden ratio Φ with each one-quarter turn, that is, when θ increases by π/2. The golden spiral
therefore satisfies the equation

r = aΦ2θ/π . (13.2)

In our figure of the spiraling squares within the golden rectangle, the dimension of each succeeding
square decreases by a factor of Φ, with four squares composing each full turn of the spiral. It should
then be possible to inscribe a golden spiral within our figure of spiralling squares. We place the
central point of the spiral at the accumulation point of all the squares, and fit the parameter a so that
the golden spiral passes through opposite corners of the squares. The resulting beautiful golden spiral
is shown in Fig. 13.1.
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34 LECTURE 13. THE GOLDEN SPIRAL

Figure 13.1: The golden spiral. The central point is where the squares accumulate.
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The golden spiral
35

Problems for Lecture 13

1. Prove that the accumulation point of all the spiralling squares is the intersection point of the di-
agonal lines of the two largest golden rectangles, as illustrated below. Find the coordinates of this
intersection point.

1
φ
φ2

φ3

φ4 φ5

φ6

Solutions to the Problems
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An inner golden rectangle

Lecture 14

An inner golden rectangle
View this lecture on YouTube

Figure 14.1: Spiral center. The intersection of the red and blue diagonal lines marks the accumulation
point of all the golden rectangles, and locates the center of the golden spiral.

Consider again the spiralling squares shown in Fig. 14.1. As shown in the problems, if the diagonals
of the two largest golden rectangles are drawn, their intersection point marks the center of a golden
spiral.

By symmetry, we should be able to mark four possible spiral centers. These four centers are located
in Fig. 14.2 as the intersection of the red and blue diagonals. If we then draw the rectangle with vertices
at the four spiral centers, we obtain yet another golden rectangle, with horizontal length L = Φ/

√
5

and vertical width W = 1/
√

5.
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38 LECTURE 14. AN INNER GOLDEN RECTANGLE

1

Φ

Φ
√

5

1
√

5

Figure 14.2: An inner golden rectangle. The four spiral centers in a golden rectangle are indicated by
the intersections of the red and blue diagonals. These four points form the vertices of another golden
rectangle, whose sides are reduced from that of the original by the factor

√
5.
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An inner golden rectangle
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Problems for Lecture 14

1. Show that the inner golden rectangle with corners at the centers of the four possible golden spirals
is reduced in scale from the outer golden rectangle by the factor

√
5.

Solutions to the Problems
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The Fibonacci spiral

Lecture 15

The Fibonacci spiral
View this lecture on YouTube

Consider again the sum of the Fibonacci numbers squared:

n

∑
i=1

F2
i = FnFn+1. (15.1)

This identity can be interpreted as an area formula. The left-hand-side is the total area of squares with
sides given by the first n Fibonacci numbers; the right-hand-side is the area of a rectangle with sides
Fn and Fn+1.

For example, consider n = 2. The identity (15.1) states that the area of two unit squares is equal to
the area of a rectangle constructed by placing the two unit squares side-by-side, as illustrated in Fig.
15.1a.

For n = 3, we can position another square of side length two directly underneath the first two unit
squares. Now, the sum of the areas of the three squares is equal to the area of a 2-by-3 rectangle, as
illustrated in Fig. 15.1b. The identity (15.1) for larger n is made self-evident by continuing to tile the
plane with squares of side lengths given by consecutive Fibonacci numbers.

The most beautiful tiling occurs if we keep adding squares in a clockwise, or counterclockwise,
fashion. Fig. 15.2 shows the iconic result obtained from squares using the first six Fibonacci numbers,
where quarter circles are drawn within each square thereby reproducing the Fibonacci spiral.

Consider the close similarity between the golden spiral in Fig. 13.1 and the Fibonacci spiral in Fig.
15.2. Both figures contain spiralling squares, but in Fig. 15.2 the squares spiral outward, and in Fig.
13.1 the squares spiral inward. Because the ratio of two consecutive Fibonacci numbers approaches
the golden ratio, the Fibonacci spiral, as it spirals out, will eventually converge to the golden spiral.
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The Fibonacci spiral

42 LECTURE 15. THE FIBONACCI SPIRAL

1 1

(a) n = 2: 12 + 12 = 1 × 2.

1 1

2

(b) n = 3: 12 + 12 + 22 = 2 × 3.

Figure 15.1: Illustrating the sum of the Fibonacci numbers squared. The center numbers represent the
side lengths of the squares.

8
5

32
1 1

Figure 15.2: The sum of Fibonacci numbers squared for n = 6. The Fibonacci spiral is drawn.
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Fibonacci numbers in nature

Lecture 16

Fibonacci numbers in nature
View this lecture on YouTube

Figure 16.1: The flowering head of a sunflower.

Consider the photo of a sunflower shown in Fig. 16.1, and notice the apparent spirals in the flo-
rets radiating out from the center to the edge. These spirals appear to rotate both clockwise and
counterclockwise. By counting them, one finds 21 clockwise spirals and 34 counterclockwise spirals.
Surprisingly, the numbers 21 and 34 are consecutive Fibonacci numbers. In the following lectures, we
will try to explain why this might not be a coincidence.
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Continued fractions

Lecture 17

Continued fractions

View this lecture on YouTube

The appearance of consecutive Fibonacci numbers in some sunflower heads can be related to a very
special property of the golden ratio. To reveal that property requires first a short lesson on continued
fractions.

Recall that a rational number is any number that can be expressed as the quotient of two integers,
and an irrational number is any number that is not rational. Rational numbers have finite continued
fractions; irrational numbers have infinite continued fractions.

A finite continued fraction represents a rational number x as

x = a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

, (17.1)

where a1, a2, . . . , an are positive integers and a0 is any integer. The convenient shorthand form of
(17.1) is

x = [a0; a1, a2, . . . , an].

If x is irrational, then n → ∞.

Now for some examples. To construct the continued fraction of the rational number x = 3/5, we
can write

3/5 =
1

5/3
=

1
1 + 2/3

=
1

1 +
1

3/2

=
1

1 +
1

1 + 1/2

,

which is of the form (17.1), so that 3/5 = [0; 1, 1, 2].
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46 LECTURE 17. CONTINUED FRACTIONS

To construct the continued fraction of an irrational number, say π, we can write

π = 3 + 0.14159 . . .

= 3 +
1

7.06251 . . .

= 3 +
1

7 +
1

15.99659 . . .

,

and so on, yielding the beginning sequence π = [3; 7, 15, . . . ]. The historically important first-order
approximation is given by π ≈ [3; 7] = 22/7 = 3.142857 . . . , which was already known by Archimedes
in ancient times.

Finally, to determine the continued fraction for the golden ratio Φ, we can use a trick and write

Φ = 1 +
1
Φ

,

which is a recursive definition that can be continued as

Φ = 1 +
1

1 +
1
Φ

,

and so on, yielding the remarkably simple form

Φ = [1; 1̄],

where the bar indicates an infinite repetition.
Because the trailing ai’s are all equal to one, the continued fraction for the golden ratio (and other

related numbers with trailing ones) converges especially slowly. Furthermore, the successive rational
approximations to the golden ratio are just the ratios of consecutive Fibonacci numbers, that is, 1/1,
2/1, 3/2, 5/3, 8/5, and so on. Because of the very slow convergence of this sequence, we say that the
golden ratio is the most difficult number to approximate by a rational number. More poetically, the
golden ratio has been called the most irrational of the irrational numbers.

Download free eBooks at bookboon.com



FIBONACCI NUMBERS AND  
THE GOLDEN RATIO

47

Continued fractions

47

47

Problems for Lecture 17

1. Starting with
√

2 = 1+ (
√

2− 1), find a recursive definition for
√

2 and use it to derive its continued
fraction.

2. Use the same trick of Problem 1 to find the continued fraction for
√

3.

3. Show that e = [2; 1, 2, 1, 1, 4, . . . ]

4. Define xn to be the nth rational approximation to x obtained from its continued fraction, where, for
example, x0 = [a0; ], x1 = [a0; a1], and x2 = [a0; a1, a2]. Using Φ = [1; 1̄], verify that Φ0, Φ1, Φ2, and Φ3

are just the ratios of consecutive Fibonacci numbers.

5. Prove by induction that

Φn =
Fn+2

Fn+1
. (17.2)

Solutions to the Problems
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The golden angle

Lecture 18

The golden angle
View this lecture on YouTube

y

x

g

Figure 18.1: The golden angle g is determined from requiring x/y = Φ.

Our model of the sunflower will make use of the golden angle. The golden angle is defined as the
acute angle g that divides the circumference of a circle into two arcs with lengths in the golden ratio
(see Fig. 18.1).

The golden ratio Φ and the golden ratio conjugate φ satisfy

Φ =
x
y

, φ =
y
x

,

with Φ = 1 + φ. We can determine the golden angle by writing

g
2π

=
y

x + y
=

φ

1 + φ

=
φ

Φ
= φ2;

and since φ2 = 1 − φ, we obtain
g = 2π(1 − φ).

Expressed in degrees, this is g ≈ 137.5◦.
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50 LECTURE 18. THE GOLDEN ANGLE

To determine the continued fraction for g/2π, we write

g
2π

=
y

x + y
=

1
1 + Φ

=
1

1 + 1 +
1

1 +
1

1 + . . .

,

which yields g/2π = [0; 2, 1]. The trailing ones in the continued fraction ensure that g/2π is difficult
to represent as a rational number. Indeed, the successive rational approximations to g/2π can be
computed to be 1/2, 1/3, 2/5, 3/8, 5/13, and so on, which is just the sequence given by the ratio
Fn/Fn+2.
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Problems for Lecture 18

1. Define xn to be the nth rational approximation to x obtained from its continued fraction, where,
for example, x0 = [a0; ], x1 = [a0; a1], and x2 = [a0; a1, a2]. Using g/2π = [0; 2, 1̄], determine g0/2π,
g1/2π, g2/2π, and g3/2π.

2. Prove by induction that
gn

2π
=

Fn

Fn+2
. (18.1)

Solutions to the Problems
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A simple model for the growth of a
sunflower

Lecture 19

A simple model for the growth of a
sunflower
View this lecture on YouTube

We can now understand a simple model for the growth of a sunflower head, and why the Fibonacci
numbers might appear. Suppose that during development, florets are created close to the center of the
head and subsequently move radially outward with constant speed during growth. Also suppose that
as each new floret is created at the center, it is rotated through a constant angle before moving radially.
Our goal is to derive an angle of rotation that in some sense is optimum: the resulting sunflower head
consists of well-spaced florets.

Let us denote the rotation angle by 2πα. We first consider the possibility that α is a rational
number, say n/m, where n and m are positive integers with no common factors, and n < m. Since
after m rotations florets will return to the radial line on which they started, the resulting sunflower
head consists of florets lying along m straight lines. A simulation of such a sunflower head for α = 1/7
is shown in Fig. 19.1a, where one observes seven straight lines. Evidently, rational values for α do not
result in well-spaced florets.

What about irrational values? For α irrational, no number of rotations will return the florets to
their first radial line. Nevertheless, the resulting sunflower head may still not have well-spaced florets.
For example, if α = π − 3, then the resulting sunflower head looks like Fig. 19.1b. There, one can
see seven counterclockwise spirals. Recall that a good rational approximation to π is 22/7, which is
slightly larger than π. On every seventh counterclockwise rotation, new florets fall just short of the
radial line of florets created seven rotations ago.

The irrational numbers that are most likely to construct a sunflower head with well-spaced florets
are those that can not be well-approximated by rational numbers. Here, we choose the golden angle,
taking α = 1 − φ. The rational approximations to 1 − φ are given by Fn/Fn+2, so that the number of
spirals observed will correspond to the Fibonacci numbers.

Two simulations of the sunflower head with α = 1 − φ are shown in Fig. 19.2. These simulations
differ only by the choice of radial velocity, v0. In Fig. 19.2a, one counts 13 clockwise spirals and
21 counterclockwise spirals; in Fig. 19.2b, one counts 21 counter clockwise spirals and 34 clockwise
spirals, the same as the sunflower head shown in Fig. 16.1.
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54 LECTURE 19. THE GROWTH OF A SUNFLOWER

(a) (b)
Figure 19.1: Simulation of the sunflower model for (a) α = 1/7; (b) α = π − 3 and counterclockwise
rotation.

(a) (b)
Figure 19.2: Simulation of the sunflower model for α = 1 − φ and clockwise rotation. (a) v0 = 1/2; (b)
v0 = 1/4.
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Mathematical induction

Lecture A

Mathematical induction
View this lecture on YouTube

Mathematical induction is a method of proof used to establish a statement about the natural num-
bers. The standard example used to illustrate this form of proof is

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
, (A.1)

valid for n a positive integer. We will suppose that this formula is given, and that our task is to prove
it using mathematical induction.

The first step in the proof is to establish what is called the base case. Here, we prove that the given
statement is true for the smallest integer for which it is claimed to be valid:

Base case: For n = 1, the left-hand side of (A.1) equals one, and the right-hand side of (A.1) equals
(1 × 2)/2 = 1, so that (A.1) is true for n = 1.

The next step is called the induction step. Here one assumes that the statement is true for n = k,
and then proves it is true for n = k + 1. Once the induction step is proved, then the statement is
declared true for all integers greater than or equal to the base case.

Why is the proof then complete? Well, if the statement is true for n = 1 as shown in the base case,
then the induction step shows it is also true for n = 2. And if the statement is true for n = 2, then the
induction step shows it is true for n = 3. And so on, leading to the conclusion that the statement is
true for all the counting numbers starting from one.

So let us proceed to prove the induction step. The method of proof usually writes the left-hand side
of the statement when n = k + 1, and then makes use of the induction hypothesis—the assumption
that the statement is true for n = k—and some additional information to obtain the right-hand side of
the statement.

Induction step: Now, suppose (A.1) is true for n = k. Then

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) (from induction hypothesis)

=
k(k + 1) + 2(k + 1)

2
(from combining fractions)

=
(k + 1)(k + 2)

2
, (from factoring)

and since (k + 2) = (k + 1) + 1, we have shown that A.1 is true for n = k + 1. By the principle of

55
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induction, A.1 is therefore true for all positive integers n.
Because statements about the Fibonacci numbers Fn are typically statements true for n = 1, 2, 3, . . . ,

proofs can often make use of mathematical induction. Oftentimes, the induction step requires the
assumption that the statement is true for both n = k − 1 and n = k. When this happens, the base case
must verify the truth of the statement for both n = 1 and n = 2. Then if the statement is true for n = 1
and n = 2, it must be true for n = 3. And if the statement is true for n = 2 and n = 3, it must be true
for n = 4. And so on, leading to the conclusion that the statement is true for all positive integers n.
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Lecture B

Matrix algebra
For those readers who have never studied matrices or linear algebra, it will be helpful to understand

a few basic concepts. A matrix with n rows and m columns is called an n-by-m matrix. Here, we need
only consider the simple case of two-by-two matrices.

A two-by-two matrix A, with two rows and two columns, can be written as

A =

(
a b
c d

)
.

The first row has elements a and b, the second row has elements c and d. The first column has elements
a and c; the second column has elements b and d.

B.1 Addition and Multiplication
View this lecture on YouTube

Matrices can be added and multiplied. Matrices can be added if they have the same dimension,
and addition proceeds element by element, following

(
a b
c d

)
+

(
e f
g h

)
=

(
a + e b + f
c + g d + h

)
.

Matrices can be multiplied if the number of columns of the left matrix equals the number of rows of
the right matrix. A particular element in the resulting product matrix, say in row k and column l, is
obtained by multiplying and summing the elements in row k of the left matrix with the elements in
column l of the right matrix. For example, a two-by-two matrix can multiply a two-by-one column
vector as follows (

a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.

The first row of the left matrix is multiplied against and summed with the first (and only) column of
the right matrix to obtain the element in the first row and first column of the product matrix, and so
on for the element in the second row and first column. The product of two two-by-two matrices is
given by (

a b
c d

)(
e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
.
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B.2 Determinants

View this lecture on YouTube

Consider the system of equations given by

ax + by = 0,

cx + dy = 0,
(B.1)

which can be written in matrix form as
(

a b
c d

)(
x
y

)
=

(
0
0

)
.

When does there exist a nontrivial (not identically zero) solution for x and y?

To answer this question, we solve directly the system of equations given by (B.1). Multiplying the
first equation by d and the second by b, and subtracting the second equation from the first, results in

(ad − bc)x = 0.

Similarly, multiplying the first equation by c and the second by a, and subtracting the first equation
from the second, results in

(ad − bc)y = 0.

Therefore, a nontrivial solution of (B.1) exists only if ad − bc = 0. The quantity ad − bc defines the
determinant of the two-by-two matrix, that is

det

(
a b
c d

)
= ad − bc. (B.2)

The determinants of larger square matrices can be found similarly. Just for fun, I can show you the
determinant of a three-by-three matrix:

det




a b c
d e f
g h i


 = a(ei − f h)− b(di − f g) + c(dh − eg).

We will need the following result to prove Cassini’s identity:

det AB = det A det B.

Although this is a general result for all n-by-n square matrices, we need only the result for the 2-by-2
case, which can be easily proved by an explicit calculation.

Let

A =

(
a b
c d

)
B =

(
e f
g h

)
.

Then

AB =

(
ae + bg a f + bh
ce + dg c f + dh

)
,
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and

det AB = (ae + bg)(c f + dh)− (a f + bh)(ce + dg)

= (ace f + adeh + bc f g + bdgh)− (ace f + ad f g + bceh + bdgh)

= (adeh + bc f g)− (ad f g + bceh)

= ad(eh − f g)− bc(eh − f g)

= (ad − bc)(eh − f g)

= det A det B.
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Lecture C

Problem solutions
Solutions to the Problems for Lecture 1

1. We calculate the first few terms.

F0 = F2 − F1 = 0,
F−1 = F1 − F0 = 1,
F−2 = F0 − F−1 = −1,
F−3 = F−1 − F−2 = 2,
F−4 = F−2 − F−3 = −3,
F−5 = F−3 − F−4 = 5,
F−6 = F−4 − F−5 = −8.

The correct relation appears to be
F−n = (−1)n+1Fn. (C.1)

We now prove (C.1) by mathematical induction.

Base case: Our calculation above already shows that (C.1) is true for n = 1 and n = 2, that is, F−1 = F1

and F−2 = −F2.

Induction step: Suppose that (C.1) is true for positive integers n = k − 1 and n = k. Then we have

F−(k+1) = F−(k−1) − F−k (from definition)

= (−1)kFk−1 − (−1)k+1Fk (from induction hypothesis)

= (−1)k+2 (Fk−1 + Fk)

= (−1)k+2Fk+1, (from recursion relation)

so that (C.1) is true for n = k + 1. By the principle of induction, (C.1) is therefore true for all positive
integers.

2. 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322

3. We now prove (1.2) by mathematical induction.

Base case: To prove that (1.2) is true for n = 1, we write F1 p + F2q = p + q = f3. To prove that (1.2) is
true for n = 2, we write F2 p + F3q = p + 2q = f3 + f2 = f4.
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Induction step: Suppose that (1.2) is true for positive integers n = k − 1 and n = k. Then we have

fk+3 = fk+2 + fk+1

= (Fk p + Fk+1q) + (Fk−1 p + Fkq) (from induction hypothesis)

= (Fk + Fk−1) p + (Fk+1 + Fk) q

= Fk+1 p + Fk+2q, (from recursion relation)

so that (1.2) is true for n = k + 1. By the principle of induction, (1.2) is therefore true for all positive
integers.

4. To generate the Lucas sequence, we take p = 1 and q = 3. Therefore, we have

Ln = Fn−2 + 3Fn−1 (from (1.2))

= 2Fn−1 + (Fn−1 + Fn−2)

= Fn−1 + (Fn−1 + Fn) (from recursion relation)

= Fn−1 + Fn+1. (from recursion relation)

5. We have

1
5
(Ln−1 + Ln+1) =

1
5
((Fn−2 + Fn) + (Fn + Fn+2)) (from (1.3))

=
1
5
(Fn−2 + 2Fn + Fn + Fn+1) (from recursion relation)

=
1
5
(Fn−2 + 3Fn + Fn + Fn−1) (from recursion relation)

= Fn. (from recursion relation)

6. We write

f (x) = F1x + F2x2 + F3x3 + F4x4 + . . .

x f (x) = F1x2 + F2x3 + F3x4 + . . .

x2 f (x) = F1x3 + F2x4 + . . . .

We then subtract the second and third equation from the first, and use F1 = F2 = 1 and Fn+1 − Fn −
Fn−1 = 0 to obtain

(1 − x − x2) f (x) = x,

resulting in
f (x) =

x
1 − x − x2 .
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Solutions to the Problems for Lecture 2

1. Consider the set of different possible strings. This set may be divided into two nonoverlapping
subsets: those strings that start with one and those strings for which one and two are interchanged.
For the former, the remaining n − 1 numbers can form an−1 different strings. For the latter, the
remaining n − 2 numbers may can form an−2 different strings. The total number of different strings is
therefore given by the Fibonacci recursion relation

an = an−1 + an−2.

Together with a1 = 1 = F2 and a2 = 2 = F3, we obtain an = Fn+1.

2. Again consider the set of different possible strings. This set may be divided into two nonoverlapping
subsets: those strings for which the one and n are not interchanged, and those strings for which they
are interchanged. For the former, the number of different strings is given by an = Fn+1. For the latter,
the number of different strings is given by an−2 = Fn−1. We therefore have

bn = Fn+1 + Fn−1.

From (1.3), the relation satisfied by bn is the same as that satisfied by the nth Lucas number, so that
bn = Ln.
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Solutions to the Problems for Lecture 3

1.

(a)

Φ − 1 =

√
5 + 1
2

− 1

=

√
5 − 1
2

= φ,

(b)

1
Φ

=
2

1 +
√

5
× 1 −

√
5

1 −
√

5

=
2
(

1 −
√

5
)

−4

=

√
5 − 1
2

= φ.

(c)

Φ2 =

(√
5 + 1
2

)2

=
5 + 2

√
5 + 1

4

=

√
5 + 3
2

= Φ + 1.

(d)

φ2 =

(√
5 − 1
2

)2

=
5 − 2

√
5 + 1

4

=
−
√

5 + 3
2

= −φ + 1.

2. We multiply
1
Φ

= Φ − 1

by Φ and rearrange to obtain
Φ2 = Φ + 1.
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Multiplying both sides by Φn−1 yields the desired result:

Φn+1 = Φn + Φn−1.

3. We substitute φ = 1/Φ into
1
Φ

= Φ − 1

to obtain
φ =

1
φ
− 1.

Multiplying both sides by φn and rearranging terms yields the desired result:

φn−1 = φn + φn+1.
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Solutions to the Problems for Lecture 4

1. Write
Fk+n

Fk
=

Fk+n
Fk+n−1

× Fk+n−1
Fk+n−2

× · · · × Fk+1
Fk

.

Then taking limk→∞, and using

lim
j→∞

Fj

Fj−1
= Φ,

one obtains directly

lim
k→∞

Fk+n
Fk

= Φn.

2. We prove (4.2) by mathematical induction.

Base case: For n = 1, the relation (4.2) becomes Φ = Φ, which is true.

Induction step: Suppose that (4.2) is true for positive integer n = k. Then we have

Φk+1 = ΦΦk

= Φ (FkΦ + Fk−1) (from induction hypothesis)

= FkΦ2 + Fk−1Φ

= Fk (Φ + 1) + Fk−1Φ (from Φ2 = Φ + 1)

= (Fk + Fk−1)Φ + Fk

= Fk+1Φ + Fk (from recursion relation)

so that (4.2) is true for n = k + 1. By the principle of induction, (4.2) is therefore true for all positive
integers.

3. We prove (4.3) by mathematical induction.

Base case: For n = 1, the relation (4.3) becomes −φ = −φ, which is true.

Induction step: Suppose that (4.3) is true for positive integer n = k. Then we have

(−φ)k+1 = −φ(−φ)k

= −φ (−Fkφ + Fk−1) (from induction hypothesis)

= Fkφ2 − Fk−1φ

= Fk (−φ + 1)− Fk−1φ (from φ2 = −φ + 1)

= − (Fk + Fk−1) φ + Fk

= −Fk+1φ + Fk, (from recursion relation)

so that (4.3) is true for n = k + 1. By the principle of induction, (4.3) is therefore true for all positive
integers.
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Solutions to the Problems for Lecture 5

1. We prove 5.6 by mathematical induction.

Base case: When n = 1, the left side of (5.6) is F1 = 1 and the right side is (Φ + φ)/
√

5 = 1, so (5.6) is
true for n = 1. When n = 2, the left side of (5.6) is F2 = 1 and the right side is (Φ2 − φ2)/

√
5. We have

(Φ2 − φ2)√
5

=
(
√

5 + 1)2 − (
√

5 − 1)2

4
√

5

=
4
√

5
4
√

5

= 1

so (5.6) is also true for n = 2.

Induction step: We will need to make use of the identities

Φn+1 = Φn−1 + Φn, (C.2)

φn−1 = φn + φn+1. (C.3)

Now, suppose (5.6) is true for n = k − 1 and n = k. Then

Φk+1 − (−φ)k+1
√

5
=

(Φk−1 + Φk)− (−1)k+1(φk−1 − φk)√
5

(from (C.2) and (C.3))

=
(Φk−1 − (−φ)k−1) + (Φk)− (−φ)k

√
5

(from reorganizing terms)

= Fk−1 + Fk (from induction hypothesis)

= Fk+1, (from recursion relation)

so (5.6) is true for n = k + 1. By the principle of induction, (5.6) is therefore true for all positive
integers.

2.

lim
n→∞

Fn+1

Fn
= lim

n→∞

Φn+1 − (−φ)n+1

Φn − (−φ)n

= lim
n→∞

Φ + (−1)nφ(φ/Φ)n

1 + (−1)n+1(φ/Φ)n . (divide numerator and denominator by Φn)

And since
lim

n→∞
(φ/Φ)n = 0,

we obtain
lim

n→∞
Fn+1/Fn = Φ.

3. Subtract (5.8) from (5.7) to obtain

Fn (Φ + φ) = Φn − (−φ)n.
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With Φ + φ =
√

5, we obtain Binet’s formula

Fn =
Φn − (−φ)n

√
5

.

4. To derive Binet’s formula, we will Taylor series expand the function f (x) = x/(1 − x − x2) and
equate the coefficients of the resulting power series to the Fibonacci numbers.

The roots of the quadratic equation 1 − x − x2 = 0 are given by φ and −Φ so we can write

x
1 − x − x2 =

x
(φ − x)(Φ + x)

.

A partial-fraction expansion results in

x
(φ − x)(Φ + x)

=
1√
5

(
φ

φ − x
− Φ

Φ + x

)

=
1√
5

(
1

1 − Φx
− 1

1 + φx

)
,

where the last step uses φΦ = 1. We now use the Taylor-series expansions

1
1 − Φx

= 1 + Φx + Φ2x2 + Φ3x3 + . . . ,

1
1 − (−φ)x

= 1 + (−φ)x + (−φ)2x2 + (−φ)3x3 + . . . .

Subtracting the second expansion from the first results in

(
1

1 − Φx
− 1

1 + φx

)
= (Φ − (−φ)) x + (Φ2 − (−φ)2)x2 + (Φ3 − (−φ)3)x3 + . . . .

Therefore,

x
1 − x − x2 =

(
Φ − (−φ)√

5

)
x +

(
Φ2 − (−φ)2

√
5

)
x2 +

(
Φ3 − (−φ)3

√
5

)
x3 + . . . ,

and equating the coefficients of this Taylor-series expansion with the coefficients of the generating
function for the Fibonacci sequence results in Binet’s formula

Fn =
Φn − (−φ)n

√
5

.

5. The derivation follows the method we used to obtain Binet’s formula, but here the initial values
differ. We can use L0 = L2 − L1 = 2, and L1 = 1. The general solution to the Fibonacci recursion
relation is given by

Ln = c1Φn + c2(−φ)n.

Application of the two initial values that yields the Lucas sequence results in the system of equations
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given by

c1 + c2 = 2,

c1Φ − c2φ = 1.

Multiplying the first equation by φ and adding it to the second equation results in

c1(Φ + φ) = 2φ + 1.

Now 2φ + 1 = Φ + φ =
√

5. Therefore c1 = 1 and c2 = 1. Our solution is therefore

Ln = Φn + (−φ)n.

6. Binet’s formula and the analogous formula for the Lucas numbers are given by

Fn =
Φn − (−φ)n

√
5

, Ln = Φn + (−φ)n.

Add the equation for Ln to the equation for Fn multiplied by
√

5, and divide by two to obtain

Φn =
Ln +

√
5Fn

2
.
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Solutions to the Problems for Lecture 6

1. We prove (6.3) by mathematical induction.

Base case: For n = 1, we obtain from (6.3)

Q =

(
1 1
1 0

)
,

which is just the definition.

Induction step: Suppose that (6.3) is true for n = k. Then we have

Qk+1 = QQk

=

(
1 1
1 0

)(
Fk+1 Fk

Fk Fk−1

)
(from induction hypothesis)

=

(
Fk+1 + Fk Fk + Fk−1

Fk+1 Fk

)

=

(
Fk+2 Fk+1

Fk+1 Fk

)
, (from recursion relation)

so that (6.3) is true for n = k + 1. By the principle of induction, (6.3) is therefore true for all positive
integers.

2. We will use the formula

Qn =

(
Fn+1 Fn

Fn Fn−1

)
.

The relation QnQm = Qn+m is written as

(
Fn+1 Fn

Fn Fn−1

)(
Fm+1 Fm

Fm Fm−1

)
=

(
Fn+m+1 Fn+m

Fn+m Fn+m−1

)
.

Equating the first element of the resulting matrices yields

Fn+1Fm+1 + FnFm = Fn+m+1.

With the substitutions n → n − 1 and m → m, we obtain (6.4).

3. The first result can be obtained by taking m = n − 1 in (6.4); the second result can be obtained by
taking m = n.

4. Using Ln = Fn−1 + Fn+1 in the second formula of (6.5) yields the desired result.
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Solutions to the Problems for Lecture 7

1. We prove (7.4) by mathematical induction.

Base case: When n = 1 the left side of (7.4) is F2F0 − F2
1 = −1 and the right side is (−1)1 = −1, so (7.4)

is true for n = 1.

Induction step: Suppose (7.4) is true for n = k. Then

Fk+2Fk − F2
k+1 = (Fk + Fk+1) Fk − F2

k+1 (from recursion relation)

= F2
k + Fk+1 (Fk − Fk+1)

= F2
k − Fk+1Fk−1 (from recursion relation)

= −(−1)k (from induction hypothesis)

= (−1)k+1,

so (7.4) is true for n = k + 1. By the principle of induction, (7.4) is therefore true for all positive
integers.

2. We first rewrite (7.5) using a simple substitution. Let x = n − r and y = r. Then n = x + y and (7.5)
becomes

F2
x+y − FxFx+2y = (−1)xF2

y . (C.4)

We write

F2
x+y − FxFx+2y =

(
Fx−1Fy + FxFy+1

)2 −
(

Fx−1F2y + FxF2y+1
)

Fx (from (6.4))

= F2
x−1F2

y + 2Fx−1FxFyFy+1 + F2
x F2

y+1

− Fx−1Fx
(

Fy−1Fy + FyFy+1
)
− F2

x

(
F2

y + F2
y+1

)
(from (6.4))

= Fx−1FxFy
(

Fy+1 − Fy−1
)
+ F2

y

(
F2

x−1 − F2
x

)

= F2
y

(
Fx−1 (Fx−1 + Fx)− F2

x

)
(from recursion relation)

= F2
y

(
Fx−1Fx+1 − F2

x

)
(from recursion relation)

= (−1)xF2
y , (from (7.4))

which proves (C.4), and hence (7.5).
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Solutions to the Problems for Lecture 9

1. We prove (9.2) by mathematical induction.

Base case: When n = 1 the left side of (9.2) is F1 = 1 and the right side is F3 − 1 = 1, so (9.2) is true for
n = 1.

Induction step: Suppose (9.2) is true for n = k. Then

k+1

∑
i=1

Fi =
k

∑
i=1

Fi + Fk+1

= Fk+2 − 1 + Fk+1 (from induction hypothesis)

= (Fk+1 + Fk+2)− 1

= Fk+3 − 1, (from recursion relation)

so (9.2) is true for n = k + 1. By the principle of induction, (9.2) is therefore true for all positive
integers.

2. We use the relation Ln = Ln+2 − Ln+1. Constructing a list of identities, we obtain

Ln = Ln+2 − Ln+1

Ln−1 = Ln+1 − Ln

Ln−2 = Ln − Ln−1

...
...

L2 = L4 − L3

L1 = L3 − L2.

Adding all the left hand sides yields the sum over the first n Lucas numbers, and adding all the right-
hand-sides results in the cancellation of all terms except the first and the last. Using L2 = 3 results in
(9.3).

3. Here, we use the relation Fn+1 = Fn+2 − Fn. The first list of identities is

F2n−1 = F2n − F2n−2

F2n−3 = F2n−2 − F2n−4

F2n−5 = F2n−4 − F2n−6

...
...

F3 = F4 − F2

F1 = F2 − F0.

Adding the equations yields ∑n
i=1 F2i−1 = F2n − F0, and since F0 = 0 the result for odd Fibonacci

numbers is obtained.
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The second list of identities is

F2n = F2n+1 − F2n−1

F2n−2 = F2n−1 − F2n−3

F2n−4 = F2n−3 − F2n−5

...
...

F4 = F5 − F3

F2 = F3 − F1.

Adding the equations yields ∑n
i=1 F2i = F2n+1 − F1, and since F1 = 1 the result for even Fibonacci

numbers is obtained.
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Solutions to the Problems for Lecture 10

1. We prove (10.1) by mathematical induction.

Base case: When n = 1 the left side of (10.1) is F2
1 = 1 and the right side is F1F2 = 1, so (10.1) is true for

n = 1.

Induction step: Suppose (10.1) is true for n = k. Then

k+1

∑
i=1

F2
i =

k

∑
i=1

F2
i + F2

k+1

= FkFk+1 + F2
k+1 (from induction hypothesis)

= Fk+1 (Fk + Fk+1)

= Fk+1Fk+2, (from recursion relation)

so (10.1) is true for n = k + 1. By the principle of induction, (10.1) is therefore true for all positive
integers.

2. Write

LnLn+1 = Ln(Ln + Ln−1)

= L2
n + Ln−1Ln

= L2
n + Ln−1(Ln−1 + Ln−2)

= L2
n + L2

n−1 + Ln−2Ln−1

= . . .

= L2
n + L2

n−1 + · · ·+ L2
2 + L1L2

Because L1 = 1 and L2 = 3, we have L1L2 = L2
1 + 2, and bringing the two to the left-hand-side proves

the identity (10.2).
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Solutions to the Problems for Lecture 12

1. Let x = ∑∞
i=0 φ2i. Then

x = 1 + φ2 + φ4 + φ6 + . . . ,

φ2x = φ2 + φ4 + φ6 + . . . .

Subtracting equations, one obtains (1 − φ2)x = 1, or

x =
1

1 − φ2

=
Φ2

Φ2 − 1
(from φ = 1/Φ)

=
Φ2

Φ
(from Φ2 − Φ − 1 = 0)

= Φ.
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Solutions to the Problems for Lecture 13

1. We first obtain the equations for the two diagonal lines. Recall that Φ = 1 + φ = 1/φ. With
the origin of the coordinate system at the lower left-hand side of the largest golden rectangle, the
longer diagonal passes through the boundary points (0, 1) and (Φ, 0), and the shorter diagonal passes
through the boundary points (1, 0) and (Φ, 1). The two diagonal lines can then be determined to be

y = −φx + 1 (largest diagonal), (C.5)

y = Φx − Φ (smallest diagonal). (C.6)

Now, the figure of the spiralling squares is self-similar, and the first unrotated copy of the whole
can be seen to have the attached square of side length φ4. If we can show that the drawn diagonal
lines pass through the same boundary points of the reduced-size copy, then these two lines continue
to pass through all smaller copies and must eventually intersect at the accumulation point of all the
spiralling squares.

The longer diagonal of the reduced-size copy must pass through its boundary points (1, φ2) and
(1 + φ3, φ3), and we need to show that these points satisfy (C.5). We will need to make use of the
following relationship proved earlier:

φ2 = −φ + 1.

We proceed by substituting in the x values into the equation for the diagonal line to show that we
obtain the correct y values. For x = 1, (y = φ2), we have

y = −φ + 1,

= φ2,

and for x = 1 + φ3, (y = φ3), we have

y = −φ(1 + φ3) + 1

= 1 − φ − φ4

= 1 − φ − (1 − φ)2

= 1 − φ − 1 + 2φ − φ2

= φ(1 − φ)

= φ3.

Similarly, the shorter diagonal of the reduced-size copy must pass through its boundary points
(1 + φ3, φ2) and (1 + φ4, φ3), and we need to show that these points satisfy (C.6). For 1 + φ3, (y = φ2),
we have

y = Φ(1 + φ3)− Φ,

= φ2,

and for x = 1 + φ4, (y = φ3), we have

y = Φ(1 + φ4)− Φ

= φ3,
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completing our proof.
The accumation point of the squares is found from the intesection of (C.5) and (C.6). Equating the

values of y gives us the equation
−φx + 1 = Φx − Φ,

whose explicit solution can be found to be x = (5 + 3
√

5)/10. The value of y can now be found from
(C.5) and is given by y = (5 −

√
5)/10. The approximate numerical values for the coordinates are

(x, y) ≈ (1.1708, 0.2764).
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Solutions to the Problems for Lecture 14

1. We have already found that the coordinates of one of the centers of a golden spiral is given by

(x, y) =

(
5 + 3

√
5

10
,

5 −
√

5
10

)
. (C.7)

Note that the origin of the largest golden rectangle is taken to be at the bottom-left corner.
The centers of the four possible golden spirals are symmetric about the mid-point of the largest

golden rectangle, the midpoint having coordinates (Φ/2, 1/2). The four vertices can then be deter-
mined from (C.7) to have coordinates

(
Φ
2
+

5 +
√

5
20

,
1
2
−

√
5

10

)
,

(
Φ
2
− 5 +

√
5

20
,

1
2
−

√
5

10

)
,

(
Φ
2
− 5 +

√
5

20
,

1
2
+

√
5

10

)
,

(
Φ
2
+

5 +
√

5
20

,
1
2
+

√
5

10

)
.

The length of the two sides of the rectangle can then be calculated to be

L =
1 +

√
5

2
√

5
, W =

1√
5

,

which is just a golden rectangle reduced in dimensions by the factor of
√

5.
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Solutions to the Problems for Lecture 17

1. We have

√
2 = 1 + (

√
2 − 1)

= 1 +
1

1 +
√

2
,

which is a recursive definition that can be iterated as follows:

√
2 = 1 +

1

1 +
√

2

= 1 +
1

2 +
1

1 +
√

2

= 1 +
1

2 +
1

2 +
1

1 +
√

2

,

and so on, so that
√

2 = [1; 2̄].

2. We have

√
3 = 1 + (

√
3 − 1)

= 1 +
2

1 +
√

3
,

which is a recursive definition that can be iterated as follows:

√
3 = 1 +

2

1 +
√

3

= 1 +
2

2 +
2

1 +
√

3

= 1 +
1

1 +
1

1 +
√

3

= 1 +
1

1 +
1

2 +
2

1 +
√

3

,

and so on, so that
√

3 = [1; 1, 2].

Download free eBooks at bookboon.com



FIBONACCI NUMBERS AND  
THE GOLDEN RATIO

80

Problem solutions

80 APPENDIX C. PROBLEM SOLUTIONS

3. We have

e = 2 + 0.718281 . . .

= 2 +
1

1.392211 . . .

= 2 +
1

1 +
1

2.549646 . . .

= 2 +
1

1 +
1

2 +
1

1.819350 . . .

= 2 +
1

1 +
1

2 +
1

1 +
1

1.220479 . . .

= 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4.535573 . . .

,

giving us the beginning of the expansion e = [2; 1, 2, 1, 1, 4, . . . ]. Remarkably, this expansion continues
in a regular fashion as

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ]

and is sometimes called Euler’s continued fraction.

4. We have

Φ0 = [1; ] = 1 =
1
1
=

F2

F1
,

Φ1 = [1; 1] = 1 +
1
1
= 2 =

2
1
=

F3

F2
,

Φ2 = [1; 1, 1] = 1 +
1

1 +
1
1

=
3
2
=

F4

F3
,

Φ3 = [1; 1, 1, 1] = 1 +
1

1 +
1

1 +
1
1

=
5
3
=

F5

F4
.

5. We prove (17.2) by mathematical induction.
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Base case: Our previous calculation already shows that (17.2) is true for n = 0, 1, 2, and 3.

Induction step: Suppose that (17.2) is true for positive integers n = k. Then we write

Fk+3

Fk+2
=

Fk+1 + Fk+2

Fk+2
(from recursion relation)

= 1 +
Fk+1

Fk+2

= 1 +
1

Φk
(from induction hypothesis)

= Φk+1 (from inspection of the continued fraction)

so that (17.2) is true for n = k + 1. By the principle of induction, (17.2) is therefore true for all non-
negative integers.
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Solutions to the Problems for Lecture 18

1. We have
g0/2π = [0; ] = 0,

g1/2π = [0; 2] =
1
2
=

F1

F3
,

g2/2π = [0; 2, 1] =
1

2 +
1
1

=
1
3
=

F2

F4
,

g3/2π = [0; 2, 1, 1] =
1

2 +
1

1 +
1
1

=
2
5
=

F3

F5
.

2. We prove (18.1) by mathematical induction.

Base case: Our previous calculation already shows that (18.1) is true for n = 1, 2, and 3.

Induction step: Suppose that (18.1) is true for positive integers n = k. Then we write

Fk+1

Fk+3
=

Fk+1

Fk+1 + Fk+2
(from recursion relation)

=
1

1 +
Fk+2

Fk+1

=
1

1 + Φk
(from Φk = Fk+2/Fk+1)

=
gk+1

2π
(from inspection of the continued fraction)

so that (18.1) is true for n = k + 1. By the principle of induction, (18.1) is therefore true for all positive
integers.
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