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Preface

History

The studies of random geometrical objects go back to the famous Buffon needle
problem. Similar to the ideas of Geometric Probabilities that can be traced back to
the first results in probability theory, the concept of a random set was mentioned
for the first time together with the mathematical foundations of Probability Theory.
A.N. Kolmogorov [321, p. 46] wrote in 1933:

Let G be a measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event & of a field of prob-
ability a definite measurable plane region G. We shall denote by J the area
of the region G and by P(x, y) the probability that the point (x, y) belongs

to the region G. Then
EW) = // P(x, y)dxdy.

One can notice that this is the formulation of Robbins’ theorem and P(x, y) is the
coverage function of the random set G.

The further progress in the theory of random sets relied on the developments in
the following areas:

e studies of random elements in abstract spaces, for example groups and algebras,
see Grenander [210];
the general theory of stochastic processes, see Dellacherie [131];
advances in image analysis and microscopy that required a satisfactory mathe-
matical theory of distributions for binary images (or random sets), see Serra [532].

The mathematical theory of random sets can be traced back to the book by Math-
eron [381]. G. Matheron formulated the exact definition of a random closed set and
developed the relevant techniques that enriched the convex geometry and laid out the
foundations of mathematical morphology. Broadly speaking, the convex geometry
contribution concerned properties of functionals of random sets, while the morpho-
logical part concentrated on operations with the sets themselves.
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The relationship between random sets and convex geometry later on has been
thoroughly explored within the stochastic geometry literature, see, e.g. Weil and
Wieacker [607]. Within the stochastic geometry, random sets represent one type of
objects along with point processes, random tessellations, etc., see Stoyan, Kendall
and Mecke [544]. The main techniques stem from convex and integral geometry, see
Schneider [520] and Schneider and Weil[523].

The mathematical morphology part of G. Matheron’s book gave rise to numerous
applications in image processing (Dougherty [146]) and abstract studies of opera-
tions with sets, often in the framework of the lattice theory (Heijmans [228]).

Since 1975 when G. Matheron’s book [381] was published, the theory of ran-
dom sets has enjoyed substantial developments. D.G. Kendall’s seminal paper [295]
already contained the first steps into many directions such as lattices, weak con-
vergence, spectral representation, infinite divisibility. Many of these concepts have
been elaborated later on in connection to the relevant ideas in pure mathematics. This
made many of the concepts and notation used in [295] obsolete, so that we will follow
the modern terminology that fits better into the system developed by G. Matheron;
most of his notation was taken as the basis for the current text.

The modern directions in random sets theory concern

relationships to the theories of semigroups and continuous lattices;
properties of capacities;
limit theorems for Minkowski sums and relevant techniques from probabilities in
Banach spaces;

e limit theorems for unions of random sets, which are related to the theory of ex-
treme values;

e stochastic optimisation ideas in relation to random sets that appear as epigraphs
of random functions;

e studies of properties of level sets and excursions of stochastic processes.

These directions constitute the main core of this book which aims to cast the random
sets theory in the conventional probabilistic framework that involves distributional
properties, limit theorems and the relevant analytical tools.

Central topics of the book

The whole story told in this book concentrates on several important concepts in the
theory of random sets.

The first concept is the capacity functional that determines the distribution of a
random closed set in a locally compact Hausdorff separable space. It is related to
positive definite functions on semigroups and lattices. Unlike probability measures,
the capacity functional is non-additive. The studies of non-additive measures are
abundant, especially, in view of applications to game theory, where the non-additive
measure determines the gain attained by a coalition of players. The capacity func-
tional can be used to characterise the weak convergence of random sets and some
properties of their distributions. In particular, this concerns unions of random closed
sets, where the regular variation property of the capacity functional is of primary
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importance. It is possible to consider random capacities that unify the concepts of a
random closed set and a random upper semicontinuous function. However, the ca-
pacity functional does not help to deal with a number of other issues, for instance to
define the expectation of a random closed set.

Here the leading role is taken over by the concept of a selection, which is a
(single-valued) random element that almost surely belongs to a random set. In this
framework it is convenient to view a random closed set as a multifunction (or set-
valued function) on a probability space and use the well-developed machinery of
set-valued analysis. It is possible to find a countable family of selections that com-
pletely fills the random closed set and is called its Castaing representation. By taking
expectations of integrable selections, one defines the selection expectation of a ran-
dom closed set. However, the families of all selections are very rich even for simple
random sets.

Fortunately, it is possible to overcome this difficulty by using the concept of the
support function. The selection expectation of a random set defined of a non-atomic
probability space is always convex and can be alternatively defined by taking the
expectation of the support function. The Minkowski sum of random sets is defined
as the set of sums of all their points or all their selections and can be equivalently
formalised using the arithmetic sum of the support functions. Therefore, limit theo-
rems for Minkowski sums of random sets can be derived from the existing results in
Banach spaces, since the family of support functions can be embedded into a Banach
space. The support function concept establishes numerous links to convex geometry
ideas. It also makes it possible to study set-valued processes, e.g. set-valued martin-
gales and set-valued shot-noise.

Important examples of random closed sets appear as epigraphs of random lower
semicontinuous functions. Viewing the epigraphs as random closed sets makes it
possible to obtain results for lower semicontinuous functions under the weakest pos-
sible conditions. In particular, this concerns the convergence of minimum values and
minimisers, which is the subject of stochastic optimisation theory.

It is possible to consider the family of closed sets as both a semigroup and a
lattice. Therefore, random closed sets are simply a special case of general lattice- or
semigroup-valued random elements. The concept of probability measure on a lattice
is indispensable in the modern theory of random sets.

It is convenient to work with random closed sets, which is the typical setting in
this book, although in some places we mention random open sets and random Borel
sets.

Plan

Since the concept of a set is central for mathematics, the book is highly interdisci-
plinary and aims to unite a number of mathematical theories and concepts: capac-
ities, convex geometry, set-valued analysis, topology, harmonic analysis on semi-
groups, continuous lattices, non-additive measures and upper/lower probabilities,
limit theorems in Banach spaces, general theory of stochastic processes, extreme
values, stochastic optimisation, point processes and random measures.
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The book starts with a definition of random closed sets. The space E which ran-
dom sets belong to, is very often assumed to be locally compact Hausdorff with a
countable base. The Euclidean space R? is a generic example (apart from rare mo-
ments when E is a line). Often we switch to the more general case of E being a
Polish space or Banach space (if a linear structure is essential). Then the Choquet
theorem concerning the existence of random sets distributions is proved and rela-
tionships with set-valued analysis (or multifunctions) and lattices are explained. The
rest of Chapter 1 relies on the concept of the capacity functional. First it highlights
relationships between capacity functionals and properties of random sets, then de-
velops some analytic theory, convergence concepts, applications to point processes
and random capacities and finally explains various interpretations for capacities that
stem from game theory, imprecise probabilities and robust statistics.

Chapter 2 concerns expectation concepts for random closed sets. The main part
is devoted to the selection (or Aumann) expectation that is based on the idea of the
selection. Chapter 3 continues this topic by dealing with Minkowski sums of random
sets. The dual representation of the selection expectation — as a set of expectations of
all selections and as the expectation of the support function — makes it possible to re-
fer to limit theorems in Banach spaces in order to prove the corresponding results for
random closed sets. The generality of presentation varies in order to explain which
properties of the carrier space [E are essential for particular results.

The scheme of unions for random sets is closely related to extremes of random
variables and further generalisations for pointwise extremes of stochastic processes.
Chapter 4 describes the main results for the union scheme and explains the back-
ground ideas that mostly stem from the studies of lattice-valued random elements.

Chapter 5 is devoted to links between random sets and stochastic processes. On
the one hand, this concerns set-valued processes that develop in time, in particular,
set-valued martingales. On the other hand, the subject matter concerns random sets
interpretations of conventional stochastic processes, where random sets appear as
graphs, level sets or epigraphs (hypographs).

The Appendices summarise the necessary mathematical background that is nor-
mally scattered between various texts. There is an extensive bibliography and a de-
tailed subject index.

Several areas that are related to random sets are only mentioned in brief. For
instance, these areas include the theory of set-indexed processes, where random sets
appear as stopping times (or stopping sets), excursions of random fields and potential
theory for Markov processes that provides further examples of capacities related to
hitting times and paths of stochastic processes.

It is planned that a companion volume to this book will concern models of ran-
dom sets (germ-grain models, random fractals, growth processes, etc), convex ge-
ometry techniques, statistical inference for stationary and compact random sets and
related modelling issues in image analysis.
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Conventions

The numbering follows a two-digit pattern, where the first digit is the section num-
ber of the current chapter. When referring to results from other chapters, we add
the chapter number using the three digit numbering scheme. When referring to the
Appendices, the first digit is a letter that designates the particular appendix. The
statements in theorems and propositions are mostly numbered by Roman numbers,
while the conditions usually follow Arabic numeration.

A rough dependence guide between the sections.

Although the main concepts in this book are used throughout the whole presenta-
tion, it is anticipated that a reader will be able to read the book from the middle. The
concepts are often restated and notation is set to be as consistent as possible taking
into account various conventions within a number of mathematical areas that build
up this book.

The problems scattered through the text are essentially open, meaning that their
solutions are currently not known to the author.

The supporting information (e.g. bibliographies) for this book is available through
Springer WEB site or from

http://www.cx.unibe.ch/~ilya/rsbook/index.html
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1

Random Closed Sets and Capacity Functionals

1 The Choquet theorem

1.1 Set-valued random elements

As the name suggests, a random set is an object with values being sets, so that the
corresponding record space is the space of subsets of a given carrier space. At this
stage, a mere definition of a general random element like a random set presents little
difficulty as soon as a o -algebra on the record space is specified. The principal new
feature is that random sets may have something inside (different to random variables
and random vectors) and the development of this idea is crucial in the studies of
random sets. Because the family of all sets is too large, it is usual to consider random
closed sets defined as random elements in the space of closed subsets of a certain
topological space E. The family of closed subsets of [E is denoted by F, while X and
G denote respectively the family of all compact and open subsets of E. It is often
assumed that [ is a locally compact Hausdorff second countable topological space
(LCHS space). The Euclidean space R? is a generic example of such space .

Let us fix a complete probability space (§2, §, P) which will be used throughout
to define random elements. It is natural to call an F-valued random element a random
closed set. However, one should be more specific about measurability issues, which
acquire considerably more importance when studying random elements in complex
spaces. In other words, when defining a random element it is necessary to specify
which information is available in terms of the observable events from the o -algebra §
in £2. It is essential to ensure that the measurability requirement is restrictive enough
to ensure that all functionals of interest become random variables. At the same time,
the measurability condition must not be too strict in order to include as many random
elements as possible. The following definition describes a rather flexible and useful
concept of a random closed set.

Definition 1.1 (Definition of a random closed set). A map X: 2 — F is called a
random closed set if, for every compact set K in E,

w: XNK£0 €5. (1.1)
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Condition (1.1) simply means that observing X one can always say if X hits or
misses any given compact set K. In more abstract language, (1.1) says that the map
X: 2 — F is measurable as a map between the underlying probability space and
the space F equipped with the o-algebra *B(F) generatedby {F € F : FNK # ()}
for K running through the family /C of compact subsets of E. Note that B(F) is
called the Effros o-algebra, which is discussed in greater detail in Section 2.1 for the
case of a general Polish space E. As in Appendix B, we write

Fxk={FeF: FNK #0}.
The o -algebra generated by Fx for all K from /C clearly contains
FE={FeF: FNK=0}.
Furthermore, for every G from the family G of open sets,

Fo={(FeF: FNG# 0 =Tk,

where {K,,,n > 1} is a sequence of compact sets such that K,, 1 G (here the local
compactness of E is essential). Therefore, Fg € B(F) for all G € G. It should be
noted that the Fell topology on F (discussed in Appendix B) is generated by open
sets Fg for G € G and FX for K € K. Therefore, the o-algebra generated by Fx
for K € K coincides with the Borel o-algebra generated by the Fell topology on F.
It is possible to reformulate Definition 1.1 as follows.

Definition 1.1. A map X : £2 + F is called a random closed set if X is measurable
with respect to the Borel o-algebra on F with respect to the Fell topology, i.e.

X ') ={w: X(weX}eF

for each X € B(F).

Then (1.1) can be formulated as
XN Fr)={w: X(w)eFgleF. (1.2)

As in Appendix D, we often write X~ (K) instead of X “N(Fg). Itis easy to see that
(1.2) implies the measurability of a number of further events, e.g. {X N G # ¢} for
every G € G, {XNF # (¢} and {X C F}forevery F € F.

Since o-algebra B(F) is the Borel o-algebra with respect to a topology on F,
this often leads to the conclusion that f(X) is a random closed set if X is a random
closed set and the map f: F — F is continuous or semicontinuous (and therefore
measurable).

Example 1.2 (Simple examples of random closed sets).
(i) If £ is a random element in E (measurable with respect to the Borel o -algebra
on E), then the singleton X = {£} is a random closed set.
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(ii) If £ is a random variable, then X = (—o0, £] is a random closed set on the
line E = R!. Indeed, {X N K # @} = {€ > inf K} is a measurable event for every
K C E. Along the same line, X = (—o00, &1] x -+ - x (—00, &;] is a random closed
subset of R if (&1, ..., &) is a d-dimensional random vector.

(iii) If&p, &, &3 are three random vectors in R9, then the triangle with vertices &1, &
and &3 is a random closed set. If £ is a random vector in R? and 7 is a non-negative
random variable, then random ball B),(§) of radius 7 centred at & is a random closed
set. While it is possible to deduce this directly from Definition 1.1, it is easier to refer
to general results established later on in Theorem 2.25.

(iv) Let ¢y, x € E, be a real-valued stochastic process on E with continuous sample
paths. Then its level set X = {x : ¢, = t} is a random closed set for every t € R.
Indeed, {X N K = ¥} = {infycg {x > t}U{sup,cx {x < t} is measurable. Similarly,
{x: ¢ <t}and {x : ¢, > t} are random closed sets.

X = (&) §
X - (—OO, ‘S]

Cx

&3
X = By(§)

&1

Figure 1.1. Simple examples of random closed sets.

Example 1.3 (Random variables associated with random closed sets).

(i) Itis easy to see that the norm || X|| = sup{||x] : x € X} for a random closed
set X in E = R? is a random variable (with possibly infinite values). The event
{lIX]| > 7} means that X hits an open set G being the complement to the closed ball
of radius ¢ centred at the origin.

(ii) For every x € E the indicator 1x(x) (equal to 1 if x € X and to zero otherwise)
is a random variable.

(iii) If 1 is a locally finite Borel measure on E, then @ (X) is a random variable.
This follows directly from Fubini’s theorem since p(X) = f 1x(x)u(dx), see Sec-
tion 4.4.
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If two random closed sets X and Y share the same distribution, then we write

X L Y. This means that P{X € X} = P{Y € X} for every measurable family of
closed sets X' € B(F).

1.2 Capacity functionals
Definition

The distribution of a random closed set X is determined by P(X) = P{X € &’}
for all X € *B(F). The particular choice of X = Fkx and P{X € Fx} =
P{X N K # @} is useful since the families Fg, K € K, generate the Borel o -algebra
B(F).

Definition 1.4 (Capacity functional). A functional Ty : IC — [0, 1] given by
Tx(K)=P{XNK #0}, Kek, (1.3)

is said to be the capacity functional of X. We write T (K) instead of Tx(K) where
no ambiguity occurs.

Example 1.5 (Capacity functionals of simple random sets).

(i) If X = {&¢} is arandom singleton, then Ty (K) = P {¢ € K}, so that the capacity
functional is the probability distribution of &.

(i) Let X = {&;, &} be the set formed by two independent identically distributed
random elements in E. Then Tx(K) = 1 — (1 — P {&; € K})?. For instance if £ and
& are the numbers shown by two dice, then Ty ({6}) is the probability that at least
one dice shows six.
(iii) Let X = (—o0, &] be a random closed set in R, where & is a random variable.
Then Tx(K) =P {& > infK} forall K € K.
(iv) If X = {x e E: ¢, > t} for areal-valued sample continuous stochastic process
L, x € E, then Tx(K) =P {SqueK x> t}.

It follows immediately from the definition of T = Ty that
TW =0, (1.4)

and
0<T(K)<l1l, KeK. (1.5)

Since Fk, | Fk as K, | K, the continuity property of the probability measure P
implies that T is upper semicontinuous (see Proposition D.7), i.e.

T(Ky) | T(K) as K, | Kink. (1.6)

Properties (1.4) and (1.6) mean that 7 is a (topological) precapacity that can be
extended to the family of all subsets of [E as described in Appendix E.
It is easy to see that the capacity functional T is monotone, i.e.

T(K\) <T(K2) ifK,CK».
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Moreover, T satisfies a stronger monotonicity property described below. With every
functional T defined on a family of (compact) sets we can associate the following
successive differences:

Ak, T(K)=T(K)—T(K UK), (1.7)
Ak, - Ag,T(K) = Ak, - Ak, T(K)
— Ak, A, T(KUK,), n>2. (18)

If T from (1.3) is a capacity functional of X, then

Ak, T(K) =P{XNK # 0} —P{XN(KUK)) # 0}
=-P{XNK #0, XNK =0} .

K,

X

Figure 1.2. Set X from F II<(1 Ky, K3'

Applying this argument consecutively yields an important relationship between
the higher-order successive differences and the distribution of X

—Ag, AR T(K)=P{XNK =0 XNK; #0, i=1,....n)
=P{xeFf x| (1.9)

.....

where
Fyk, ={FE€F: FNK=0, FNK| #0.....FNK, #0},
see Figure 1.2. In particular, (1.9) implies

Ak, - Ag,T(K) <0 (1.10)

foralln >1and K, Ky, ..., K, € K.
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Example 1.6 (Higher-order differences).
(i) Let X = {£} be a random singleton with distribution P. Then

Ak, A, T(K) =Pl e (K1N---NK,NKO} .

(i) Let X = (—o00, 1] x (—00, &] be a random closed set in the plane R2. Then
—AT{y, z}) forx = (a, ),y = (b, ¢), z = (a, d) is the probability that & lies in
the rectangle [a, b) x [c, d), see Figure 1.3.

(iii) Let X = {x : & > 0} for a continuous random function ¢. Then

—AKn---AKlT(KFPisupéx<o, Sup £, =0, i =1,...,n

xek xek;

Figure 1.3. Random closed set from Example 1.6(ii).

The properties of the capacity functional T resemble those of the distribution
function. The upper semicontinuity property (1.6) is similar to the right-continuity,
and (1.10) generalises the monotonicity concept. However, in contrast to measures,
functional T is not additive, but only subadditive, i.e.

T'(K1UKy) <T(K1)+T(K2) (1.11)

for all compact sets K1 and K>.

Example 1.7 (Non-additive capacity functional). If X = B, (&) is the ball of radius
r centred at a random point £ in R?, then Tx(K) = P{¢& € K"}, which is not a
measure, since the r-envelopes K| and K; are not necessarily disjoint for disjoint
K| and K».

Complete alternation and monotonicity

Because of the importance of properties (1.6) and (1.10) it is natural to consider
general functionals on /C that satisfy these properties without immediate reference
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to distributions of random closed sets. A real-valued functional ¢ on /C which satis-
fies (1.4), (1.5), (1.6) and (1.10) is said to be a capacity functional. In other words, a
capacity functional is a functional on C which takes values in [0, 1], equals O on the
empty set and is upper semicontinuous and completely alternating on /C. The latter
concept is addressed in the following definition.

Definition 1.8 (Completely alternating and completely U-monotone functionals).
Let D be a family of sets which is closed under finite unions (so that M1 U M, € D
if M, M, € D). A real-valued functional ¢ defined on D is said to be
(i) completely alternating or completely U-alternating (notation ¢ € A(D) or ¢ €
Au(D)) if

Ak, Ak oK) <0, n>1, K.Kyi,....K, €D. (1.12)

If (1.12) holds for all n < m, then ¢ is said to be alternating of degree m (or
m-alternating).
(ii) completely U-monotone (notation ¢ € My (D)) if

Ak, - Agp(K)>0, n>1, K,Ky,...,K,€D.

As (1.10) shows, the capacity functional 7" is completely alternating. Defini-
tion 1.8 is usually applied to the case when D = K. It complies with Definition G.5
applied to the semigroup D with the union being the semigroup operation. Another
natural semigroup operation is the intersection of sets, which leads to other (however
closely related) concepts of alternating and monotone functionals. Similar to the def-
inition of Ak, --- Ak, ¢(K), we introduce the following successive differences

Vg, 9(K) = ¢(K) — (KN Ky), (1.13)

Vi, - Vi 9(K) = Vi, - Vg 9(K)
— Vi,V e(KNKy), n>=2. (114

The following definition is a direct counterpart of Definition 1.8.

Definition 1.9 (Completely N-alternating and completely monotone functionals).
Let D be a family of sets which is closed under finite intersections. A real-valued
functional ¢ defined on D is said to be

(i) completely N-alternating (notation ¢ € An(D)) if

Vi, - Vk,9(K) <0, n>1, K,Ky,...,K, €D;

(ii) completely monotone or completely N-monotone (notation ¢ € M(D) or ¢ €
Mn (D)) if

Vi, - Vk,o(K)>0, n>1, K,Ky,...,K, €D.

When saying that ¢ is completely alternating we always mean that ¢ is com-
pletely U-alternating, while ¢ being completely monotone means that ¢ is com-
pletely N-monotone. For every functional ¢ on D with values in [0, 1], its dual func-
tional
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9(K)=1-9(K®, K°eD, (1.15)

is defined on the family D’ = {K® : K € D} of complements to the sets from D.

Proposition 1.10. Let ¢: D + [0, 1]. Then
(i) ¢ € Ay(D) if and only if, for any fixed L € D,

—ALp(K) =9(KUL)—¢(K) € Muy(D);

(ii) ¢ € An(D) if and only if, for any fixed L € D,

—Vip(K) = 9o(KNL)—¢(K) € Mn(D) .

(iii) Let ¢: D +> [0, 1]. Then ¢ € Ay(D) (respectively ¢ € An(D)) if and only
functional $(K) € Mn(D’) (respectively ¢(K) € My(D")) for the dual func-
tional p on D' = {K®: K € D}.

Proof. (i) It suffices to note that

Ak, .- Ak (=ALp(K)) = =ALAg, ... A, 9(K)

with a similar relationship valid for the successive differences based on intersections.
Statement (ii) is proved similarly. The proof of (iii) is a matter of verification that

Ak, - Ak, 9(K) = —Vge - - VKf‘ﬁ(KC)- o

Alternation and monotonicity of capacity functionals
Every measure u is a completely alternating functional, since
—Ag,  Agu(K) = p((K1U--- UK, \K) =2 0.

In particular, Ag, u(K) = —u(Ky) if K and K are disjoint.
Note that ¢ is increasing if and only if

Ak 9(K) = ¢(K) —o(K UK1)
is non-positive. Furthermore, for n = 2,
Ag, Ak 9(K) = ¢(K) — (K UK1) —9(KUK3) +¢(KUK UK3).
Therefore, (1.12) for n = 2 is equivalent to
oK)+ oKUK UK) <@p(KUK))+ ¢(KUK>). (1.16)
In particular, if K = ¢ and ¢(¥) = 0, then

(K1 U K2) < (K1) +¢(K2), (1.17)
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meaning that ¢ is subadditive. Clearly, if ¢ = p is a measure, then (1.17) turns
into an equality for disjoint K1 and K. For an increasing ¢, inequality (1.16) is
equivalent to

p(K1 N K2) + (K1 UK3) < ¢(K1) + ¢(K2) (1.18)

for all Ky and K>. A functional ¢ satisfying (1.18) is called concave or strongly
subadditive. Functionals satisfying the reverse inequality in (1.18) are called con-
vex or strongly superadditive. If only Ak, ¢(K) and Ak, Ag,¢(K) are non-positive,
then ¢ is called 2-alternating. Therefore, ¢ is 2-alternating if it is both concave and
monotone.

According to Definition E.8, a function ¢: P +— [—00, +00] on the family P
of all subsets of E is called a capacity (or K-capacity) if it satisfies the following
conditions:

(i) M c M’ implies p(M) < p(M");
(i) M, 1 M implies p(My,) 1 (M);
(iili) K, | K for compact sets K,,, K implies ¢(K,) | ¢(K).

Definition 1.8 singles out those capacities which are completely alternating or
completely monotone. Since the family I forms a semigroup with union being the
semigroup operation and the neutral element being the empty set, it is possible to
use the results of Appendix G within this context. It follows from Theorem G.6 that
each completely alternating capacity is negative definite on IC. Theorem G.8 states
that ¢ € Ay(K) (respectively ¢ € An(K)) if and only if e 7% € My (K) (respectively
e " € Mn(K)) for all # > 0. Let us formulate one particularly important corollary
of this fact.

Proposition 1.11. If ¢ is a completely alternating non-negative capacity with pos-
sibly infinite values, then T(K) = 1 — e~¥%) is a completely alternating capacity
with values in [0, 1].

Proposition 1.11 is often used to construct a capacity functional from a com-
pletely alternating upper semicontinuous capacity that may take values greater than
1. The random closed set with the capacity functional 7" from Proposition 1.11 is
infinite divisible for unions, see Chapter 4.

Extension of capacity functional

As explained in Appendix E, a capacity ¢ defined on K can be naturally extended
onto the family P of all subsets of [E keeping alternation or the monotonicity prop-
erties enjoyed by ¢. In its application to capacity functionals of random closed sets,
put

T*(G)=sup{T(K): Ke K, K C G}, Geg, (1.19)

and
T*(M) =inf{T*(G): GeG,GDM}, MecP. (1.20)
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Theorem 1.12 (Consistency of extension).
(i) T*(K) =T(K) foreachK € K.
(ii) For each Borel set B,

T*(B) =sup{T(K): K € K, K C B}.

Proof. The first statement follows from the upper semicontinuity of 7. Note that
T*(K) is a limit of 7*(G,) for a sequence of open sets G, | K. By choosing K,, €
K such that K C K,, C G,, we deduce that T (K,,) | T*(K), while at the same time
T(K,) | T(K) since T is upper semicontinuous. The second statement is a corollary
from the more intricate Choquet capacitability theorem, see Theorem E.9. O

Since the extension 7* coincides with 7' on /C, in the following we use the same
notation T to denote the extension, i.e. 7(G) or T (B) denotes the values of the
extended 7T on arbitrary open set G and Borel set B. Theorem 1.12 and the continuity
property of probability measures imply 7 (B) = P {X N B # ¢} for all Borel B.

The Choquet theorem

Since the o-algebra B(F) is rich, it is difficult to explicitly assign a measure to
its elements. Nonetheless, since the o-algebra B(F) is generated by the families
Fk, K € K, it is quite natural to expect that a capacity functional on K determines
uniquely the distribution of a random closed set. The following fundamental theorem
singles out upper semicontinuous completely alternating capacities on K as those
which correspond to distributions of random closed sets. The uniqueness part easily
follows from the fact that o-algebra B(F) is generated by Fx for K € K. It is
the existence part that is more complicated. The proof of the Choquet theorem is
presented in Section 1.3.

Theorem 1.13 (Choquet theorem). Let E be a LCHS space. A functional T : I +—
[0, 1] such that T (¥) = 0 is the capacity functional of a (necessarily unique) random
closed set in E if and only if T is upper semicontinuous and completely alternating.

The following results follow from the uniqueness part of the Choquet theorem.

Proposition 1.14. Let E be a LCHS space.
(i) The capacity functional Tx of a random closed set X is a probability measure if

and only if X is a random singleton.

(ii) Tx is a sub-probability measure (i.e. a measure with the total mass not exceed-
ing 1) if and only if X with probability I consists of at most a single point, i.e.
P {card(X) > 1} = 0.

(iii) A random closed set X is deterministic if and only if Tx (K) takes only values
Oor I foreach K € K.

Proposition 1.14(iii) (and the uniqueness part of the Choquet theorem) does not
hold in an arbitrary (e.g. not locally compact) space E. For instance, if E = R with
the discrete metric, then compact sets are necessarily finite, so that 7x(K) = 0 for
each K € KCif X = {£} is a random singleton with a non-atomic distribution.



1 The Choquet theorem 11
Macitive capacity functionals
A functional T is said to be maxitive if
T(K1UK) =max(T (K1), T(K2)) (1.21)

for all compact sets K; and K». Maxitive functionals arise naturally in the theory
of extremal processes, see Norberg [430, 431]. Every sup-measure (defined in Ap-
pendix E) is maxitive, while the converse is false since the definition of sup-measures
involves taking a supremum over an arbitrary family of sets on the right-hand side
of (1.21). If T is maxitive on /C, then (1.21) also holds for the extension of 7' onto
the family of open sets and all subsets of [E.

Example 1.15 (Maxitive capacity). Define a maxitive capacity T by
T(K)=sup{f(x): x € K}, (1.22)

where f: E + [0, 1] is an upper semicontinuous function. Then T = fV is the
sup-integral of f as defined in Appendix E. This capacity functional 7" describes the
distribution of the random closed set X = {x € E: f(x) > «}, where « is a random
variable uniformly distributed on [0, 1].

The following proposition shows that Example 1.15 actually describes all maxi-
tive capacities that correspond to distributions of random closed sets. In a sense, the
upper semicontinuity assumption makes it possible to move from finite maximum
in (1.21) to a general supremum over all singletons.

Proposition 1.16 (Maxitive upper semicontinuous capacities). If 7 is a maxitive
upper semicontinuous functional with values in [0, 1], then T is given by (1.22) for
an upper semicontinuous function f: E +— [0, 1].

Proof. Since T is upper semicontinuous, f(x) = T ({x}) is an upper semicontinuous
function and 7'(K,) | T ({x}) if K,, | {x}. This implies that for each x € E and any
& > 0 there exists a neighbourhood G (x) of x such that T(G.(x)) < f(x) + ¢.
Every K € K is covered by G.(x), x € K, so that K has a finite subcover of
G¢(x1),...,Ge(xy). Then (1.21) implies

T'(K) = max(T(Ge(x1), ..., T(Ge(xp))) = max(f(x1), ..., f(xn) +&,

whence (1.22) immediately holds. O

Proposition 1.16 means that together with the upper semicontinuity assumption,
(1.21) implies that T is a sup measure. If (1.21) holds for all K| and K7 from a family
of sets D closed under finite unions, then 7 is called maxitive on D.

Theorem 1.17 (Complete alternation of a maxitive capacity). Every functional ¢
maxitive on a family D closed under finite unions is completely alternating on D.
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Proof. Consider arbitrary K, K1, K2, ... € D. Let us prove by induction that

Ak, - Ak 9(K) = ¢(K) —o(K U K1) (1.23)
given that (K1) = min(¢(K;), i = 1,...,n). This fact is evident for n = 1. As-
sume that ¢ (K1) = min(p(K;), i = 1,...,n+ 1). Using the induction assumption,

it is easy to see that

Ak, Ak e(K) = Ak, - Ak 9(K) — Ak, -+ - Ak (K U Kpy1)
=[p(K) —o(KUKD] = [p(KUKpy1) — (KUK, 11 UK)p].

By the maxitivity assumption and the choice of K7,

(KU Kyt1) — (KUK, UKy)
= max(p(K), p(Ky+1)) — max(e(K), o(Kpt1), (K1) =0.

Now the monotonicity of ¢ implies that the left-hand side of (1.23) is non-positive,
i.e. ¢ is completely alternating. O

For example, the Hausdor{f dimension is a maxitive functional on sets in RY, and
so is completely alternating. However, it is not upper semicontinuous, whence there
is no random closed set whose capacity functional is the Hausdorff dimension.

Independence and conditional distributions

Definition 1.18 (Independent random sets). Random closed sets X1, ..., X, are
said to be independent if

P{Xl eXla---aXn e-)(n}ZP{Xl e-)(1}"‘1){)(n eXn}
forall X1, ..., A, € B(F).

The Choquet theorem can be used to characterise independent random closed
sets in a LCHS space.

Proposition 1.19. Random closed sets X1, ..., X, are independent if and only if
n
P(XiNKi # D Xa VK # 0} = [ [ Tx,(K)
i=1

forall Ky, ..., K, € K.

Conditional distributions of random sets can be derived in the same way as con-
ditional distributions of random elements in an abstract measurable space. However,
this is not the case for conditional expectation, as the latter refers to a linear structure
on the space of sets, see Chapter 2.

If $ is a sub-o-algebra of §, then the conditional probabilities Tx (K [$) =
P{X N K # (|9} are defined in the usual way. As noticed in Section 1.4, it suffices
to define the capacity functional on a countable family 4 of compact sets, which sim-
plifies the measurability issues. The family Tx (K |$)), K € A, is a random capacity
functional that defines the conditional distribution X given §).
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1.3 Proofs of the Choquet theorem
Measure-theoretic proof

The proof given by Matheron [381] is based on the routine application of the
measure-theoretic arguments related to extension of measures from algebras to o-
algebras. In fact, the idea goes back to the fundamental paper by Choquet [98] and
his theorem on characterisation of positive definite functionals on cones. Here we
discuss only sufficiency, since the necessity is evident from the explanations pro-
vided in Section 1.2.

Let us start with several auxiliary lemmas. The first two are entirely non-
topological and their proofs do not refer to any topological assumption on the carrier
space E.

Lemma 1.20. Let V be a family of subsets of [E which contains {} and is closed
under finite unions. Let U be the family which is closed under finite intersections
and generated by Fy and FV for V € V. Then Y is an algebra and each non-empty
Y € U can be represented as

=%y . (1.24)

forsomen > Oand V,Vy,...,V, e VwithV; ¢ VUV, fori # j (then (1.24)

is said to be a reduced representation of ). If Y = f“//,/ is another reduced
1

representation of Y, then V. = V', n = k, and for eachi € {1,...,n} there exists
jief{l,...,n}suchthat VUV, = VUV;l_.

Proof. The family ‘U is closed under finite intersections and ¥ = Fy € L. If Y € U,
then the complement to ),

F\NY=Fur"MuF2ru.uE

n—1

I

is a finite union of sets from ¥. Hence ‘U is an algebra.

If Y satisfies (1.24) with V; C V U V; for some i # j, then the set V; can
be eliminated without changing ). Therefore, a reduced representation of ) exists.
Consider two reduced representations of a non-empty ). Without loss of generality
assume that there exists a point x € V' \ V. Since ) # 0, there exist k points (some
of them may be identical) x1, ..., x such that x; € V]f \V/,1 <j<kand

14 _ _ TV
{X1, . ..,xk} € fvllw’ ) = JJ = ‘7:V1 v, -

,,,,,

.....

{x,x1,...,x¢} ¢ f“//,, v The obtained contradiction shows that V = V',
k

.....

Choose y € Vy \ Vandy; ¢ V; \ (VUV,),i = 1,...,n — 1. Since

{vi,.-. yn—1} ¢ YV and {y, y1,...,yn—1} € Y, there exists j, € {1,...,k} such
that y € Vl’.n and y; ¢ V/fn fori =1,...,n — 1. For any other point y’ € V,, \ V we
similarly conclude that y’ € V]fn, whence V, \ V C V]fn and
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Vo, C VU Vj{n .

Using identical arguments in the other direction we obtain V/’ \VcV, Ifi, #n,
this leads to V;, C V;, U V and so contradicts the assumption that ) has a reduced
representation. Thus, i, =n and V,\V = V; \ V. The proof'is finished by repeating
these arguments for every otherset V;,i = 1,...,n — 1. O

Lemma 1.21. In the notation of Lemma 1.20, let T be a completely alternating func-
tional on V such that T () = 0,0 < T < 1. Then there exists a unique additive map
P:0 +— [0, 1] such that P(#)) = 0 and P(Fy) = T(V) forall V € V. This map is
given by

PQ)=—-Ay,---AyT(V), (1.25)

v, Is any representation of Y € U.

.....

Proof. By the add1t1v1ty property, we get

Py, ) =P&F), . ) —PEFE, ), (1.26)

Va—1

.....

which immediately shows that the only additive extension of P(Fy) = T (V) is given
by (1.25). It is easy to show that the right-hand side of (1.25) retains its value if any
representation of ) is replaced by its reduced representation. Furthermore,

Ay, - Ay, T(V) = Ayuy - Ayvuv T(V),

which, together with Lemma 1.20, show that P(}) is identical for any reduced rep-
resentation of ). The function P is non-negative since 7" is completely alternating
and P(¥) = P(Fy) = T (V) = 0. Furthermore, (1.26) implies

P(Fy y)<PFy oy )< <PF)=1-TV)<1.

It remains to show that P is additive. Let ) and )’ be two disjoint non-empty ele-
ments of U with the reduced representations

.....

such that Y U Y’ € . Since

/ VUV _
YOV =Fy vy =9

without loss of generality assume that V,, € V U V', Since ) U Y’ € 9, this union
itself has a reduced representation

YUY =F ..

150 m

If V = E, then Y = {#} if all subscripts in the representation of )} are empty, or
Y = () otherwise, so that the additivity is trivial. Assume that there exists x ¢ V
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andx; € V;\V,i=1,...,n.Then F = {x,x],...,x,} € V. Since F € Y U),
we have FNV" =, i.e.x ¢ V”. Therefore, V” C V. Similar arguments lead to
V" c V’/, whence

vicwvnv).

Let us show that V” = V. Assume that there exist points x € V\V” andx’ € V/\V".
Choose points x/" € V" \ V" fori = 1,...,m. Then {x,x’,x{, ..., x,} € YUY,
so that {x,x'} NV = @ or {x,x’} N V' = @. Since both these statements lead to
contradictions, we conclude that V. = V” or V' = V”. The latter is impossible,
since then V,, C VUV’ = V leads to ) = . Therefore, V = V”, V C V' and
Vo C V"

For each F € YU), the condition FNV, # @yields F ¢ ), while FNV, = @
implies F € ). Thus,

Vv
Y=QUIHnFy, = Fvr vy,
Y =Quy)nFhe=7F

Vi Vi
Then
—PQ) = Av,Ayy--- Ay T(V)
= Ayy - A T(V) = Ay Ay T(V U V)
=-PQUY)+PQ),
which implies the additivity of P on J. O

The following lemma uses the upper semicontinuity assumption on 7" and the
local compactness of E.

Lemma 1.22. Let T be a completely alternating upper semicontinuous functional on
K. By the same letter denote its extension defined by (1.19) and (1.20). Consider any
two open sets G and G, any K € K, a sequence {K,,n > 1} C K suchthat K, 1 G
and a sequence {G,,n > 1} C G such that G, | K and G,, D cl(G,+1) € K for
everyn > 1. Then

T(GoUKUG) = nlgrgo T(GoUG,UK,).
Proof. Since T is monotone,
T(GoUKUK,) <T(GoUG,UK,) <T(GoUG,UG).
For each open G’ D GoUGUK we have G’ D G, for sufficiently large n. By (1.20),

T(GoUG,UG) | T(GoU G U K). Similarly, T(K U K, U Gg) converges to
T(K UG U Gy), since T is continuous from below. O
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Proof of the Choquet theorem. Let ) be the family of sets V = GUK where G € G
and K € K. Itis possible to extend 7" to a completely alternating capacity on V. By
Lemma 1.21, formula (1.25) determines an additive map from U to [0, 1]. Note that
0 generates the o -algebra B(F). By known results on extensions of measures from
an algebra to the corresponding o-algebra (see Neveu [424, Prop. 1.6.2]) it suffices
to find a family U’ C U which consists of compact sets (in the Fell topology on F)
such that foreach Y € U

P(Y) =sup{P(Y) : V' € U'}. (1.27)
Let U’ consist of .7-'1((;l K, where n > 0, G € G and Ky,..., K, € K. Then

the elements of U’ are compact in the Fell topology and U’ C . It remains to
prove (1.27).

Let) = ]—"V v, € Y with V = Gy U Ky, Gy € G and Ky € K. There exists
a sequence {Gk,k >" 1} of open sets such that G | Ko and G D cl(Gg4+1) € K
for all k > 1. Hence V is a limit of a decreasing sequence of open sets Go U Gy.
Similarly, for each i € {1,...,n}, V; can be obtained as a limit of an increasing
sequence {K;x, k > 1} of compact sets. Define

GoUGy
Vi = lek Kok

Then )y € U’ and Yy 1 Y as k — oo. In order to show that P()%) 1 P()) note that

PO)=-T(V)+ Y T(VUV) =Y T(VUVyUVp)+---,
i i1<ir

PQO)) = —T(GoUGi) + »_ T(GoU G U Kix)
= Y T(GoUGHUKy UKi) + -+ .

i1 <ip

Since both the sums above are finite and, by Lemma 1.22, each of the summands in
the second sum converges to the corresponding summand of the first sum, one has

PO 1 PQ). m

Harmonic analysis proof

Now we outline a proof which refers to techniques from harmonic analysis on semi-
groups, see Berg, Christensen and Ressel [61]. It is based on Theorem G.10 of Ap-
pendix G which characterises positive definite functions on idempotent semigroups.
The family K of compact sets is an Abelian semigroup with respect to the union
operation. The union operation is idempotent, i.e. K U K = K. The key idea of
the proof is to identify all (continuous in some sense) semicharacters on (IC,U) as
elements of F.
Let 7 be the set of all subsemigroups I of (I, U), which satisfy

K,.Lel = KULel and KCL,Lel = Kel. (1.28)
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Define K = {I € Z: K e I} and equip Z with the coarsest topology in which the
sets K and T\ K are open for all K € K. Let 1; denote the map 1;(K) = 1g¢;
from K into {0, 1}. Furthermore, Z, denotes the set of all / € Z such that 1; is upper
semicontinuous.

Lemma 1.23. For F € FletIr =K ={K e K: KNF =@). Then F — I is
a bijection between F and Z, and the inverse mapping is [ — E \ Uger Int K.

Proof. Itis obvious that Ir € Z. If K N F = {, then there exists an open neighbour-
hood of K which does not intersect £, so that the function 1;,. is upper semicontin-
uous.

Let I € Z,. With each K € I, the family / contains a neighbourhood of K with
a compact closure, whence

U k=Jmxk.

Kel Kel

Therefore, F = E \ Uger Int K is closed and I C Ip.If L € IF, then L is covered
by Int K, K € I. Therefore, L is covered by a finite number of compact sets from 7,

LCcIntkKjuU.--UIntK, C KjU---UK,.

Because of (1.28), we see that L € I, hence [ = If.
Finally, if F and F, are different closed sets and x € Fi\ F,, then {x} € I, \IF,,
so that /r, # I, confirming the bijectivity. O

The following proposition strengthens the result of Lemma 1.23.
Proposition 1.24. The mapping c¢: 7 + F defined by

() =E\ U Int K

Kel

is continuous on Z with respect to the Fell topology on F, and maps Z, bijectively
onto F.

Proof. 1t suffices to prove that ¢ Y (FK) and ¢~ (Fg) are open in Z for K € K and
G € G. Note that ¢(I) N K = { is equivalent to the existence of L € I such that
K C Int L. Therefore,
FH= U L. (1.29)
LelC, KCnt L
which shows that ¢~ ! (FX) is open in Z, since Lis open.

Similarly, c(I) N G # ¢ is equivalent to the existence of K € K\ I such that
K C G, hence

TFo= |J @6

KeK,KcG

isopenin Z. O
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Proof of the Choquet theorem. Let T be an upper semicontinuous completely alter-
nating capacity such that 7(¥) = 0 and 0 < T < 1. It follows from the upper
semicontinuity condition that

O(K) =sup{Q(L): Le K, K CIntL},

where Q(K) =1 —T(K).

Note that 7 is isomorphic to the set of semicharacters on (I, U), i.e. real-valued
maps K — R satisfying x (@) = 1, x(K U L) = x(K)x (L), see Appendix G.
Theorem G.6 implies that the functional Q = 1 — T is positive definite on £, i.e.

> cidj QK UK;) =0

ij=1

for complex cy, ..., cn,, n > 1, where ¢; denotes the complex conjugate to ¢;. By
Theorem G.10, there exists a measure v on Z such that

OK)=v({I€Z: Kel})=v(K).

Now (1.29) and the continuity property of Radon measures (sup, V(G¢) = v(UyGy)
for upward filtering family of open sets G) yield

v(Urek. kcmr L) = sup(v(L) : L e K, K CIntL} = v(c  (FK)).

Hence Q(K) = u(FX), where p is the image of measure v under the continuous
mapping c: Z +— F. The uniqueness part is straightforward, since the families of
sets F 11<<1 K, generate B(F). m|

,,,,,

Another proof given by Norberg [432] is based on powerful techniques from
the theory of lattices and is also applicable for random closed sets in non-Hausdorff
spaces, see Section 3.4.

1.4 Separating classes

The Choquet theorem establishes that a probability measure on B(F) can be deter-
mined by its values on Fg for K € K, i.e. the capacity functional on /C. However,
the capacity functional defined on the whole family /C of compact sets is still rather
difficult to define constructively, because the family K is too rich and it is generally
complicated to check the complete alternation conditions imposed on the capacity
functional. Fortunately, in some cases it is possible to reduce the family of compact
sets such that an upper semicontinuous completely alternating functional on this fam-
ily extends to a unique probability measure on B(F), i.e. defines a distribution of
a unique random closed set. In some cases it is possible to achieve this by consid-
ering random closed sets with special realisations, e.g. those which are convex with
probability one, see Section 7. Below we discuss possibilities of restricting the ca-
pacity functional in such a way that the restriction still determines the distribution of
a general random closed set. Recall that
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By ={BeB{E): cIB ek}

denotes the family of all relatively compact Borel sets in E.

Definition 1.25 (Separating class). A class A C DBy is called separating if § € A
and, for all K € K and G € G with K C G, there exists an A € A such that
K C A C G, see Figure 1.4. A family of sets Ay is said to be a pre-separating class
if the family of finite unions of sets from .4 forms a separating class.

Figure 1.4. Set A from a separating class.

It follows from the topological assumptions on [E (locally compact Hausdorff
second countable) that, for each pair K C G from Definition 1.25, there exists an
open set G| with a compact closure such that K C G; C G C G. Definition 1.25
implies the existence of A € A such that K C IntA C A C G. Since E is second
countable, this means that every separating class includes a countable separating
subclass.

Let¢: A+ [0, co] be an increasing function on a separating class .A. Define its
outer extension ¢~ and the inner extension ¢° by

¢ (K)=inf{p(A): Ae A, K CIntA}, Kek, (1.30)

?*(G) = sup{p(A): Ae A, clACG}, Geg. (1.31)
If ¢y is the restriction of ¢ onto a separating subclass A; C A, then ¢ = ¢~ and
o0 = w?. Note also that 9=~ = @0~ = ¢~ and % = 0 = ¢0.

Definition 1.26 (Continuity set). A set B € By is said to be a continuity set of ¢ if
@"(IntB) = ¢~ (cl B), (1.32)

where we allow for co = co. Let G, denote the family of continuity sets for ¢.

The family &, N K (and &) is a separating class itself. For each pair K C G
with c1 G € K, consider an increasing family of compact sets K;, 0 < ¢ < 1, such
that Ko = K and K; 1 G ast 1 1. Then there are at most a countable number of ¢
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such that K; ¢ &,, whence we can pick any other Ky € G, as a set separating K
and G.

If A C K and ¢ is upper semicontinuous on A, then ¢~ = ¢. This is simi-
lar to the property of extensions of upper semicontinuous capacities formulated in
Theorem 1.12.

Theorem 1.27 (Capacity functional on a separating class). Let A be a separating
class, closed under finite unions. Suppose that ¢ : A +— [0, 1] is completely alternat-
ing on A with ¢() = 0. Then there exists a unique random set X with the capacity
functional T(K) = ¢~ (K) forall K € K. In particular, if A C K and ¢ is an upper
semicontinuous completely alternating functional on A, then there exists a unique
random closed set with the capacity functional T equal to ¢ on A.

Proof. The functional ¢~ is completely alternating if ¢ is too. Furthermore, the
functional ¢~ is upper semicontinuous, so that the Choquet theorem is applicable
togp . [}

Important separating classes are the family of /Cyp, of all finite unions of balls of
positive radii, or the class Kyp of all finite unions of parallelepipeds, see Salinetti
and Wets [512] and Lyashenko [367]. Both these classes can be replaced with their
countable subfamilies of balls with rational centres and radii and parallelepipeds with
rational vertices. The following proposition includes the particular cases mentioned
above.

Proposition 1.28. Let Ky be the family of the closures for all relatively compact
sets from a base of the topology on E. Then Ky is a separating class and, for each
capacity functional T on Ky, there is a unique random closed set X such that T (K) =
P{X NK # @} forall K € K.

Example 1.29. Let E = R be the real line. Consider the family o that consists
of finite unions of closed bounded segments. It follows from Proposition 1.28 that
the values of a capacity functional 7' on Ky determine uniquely the distribution of a
random closed subset of R. It is easy to see that T is upper semicontinuous on Ky if
and only if 7 ([a, b]) is right-continuous with respect to b and left-continuous with
respect to a.

1.5 Random compact sets

If E is locally compact, then the family /C of all compact sets is a measurable subclass
of F,i.e. K € B(F). Indeed,

K=|JIFeF: FCK,,

n>1

where {K,, n > 1} is a sequence of compact sets such that K,, 1 £ as n — oco. Note
that IC € B(F) also for a general metric separable space E with B(F) being the
Effros o-algebra (see Definition 2.1), since
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’C:ﬂlLJI U {(FeF: FCU_ Bim)},

1o Xn €Q

where Q is a countable dense set in E (recall that B, (x) denotes the closed ball of
radius r centred at x). The above argument spells out the fact that a closed set is
compact if it possesses a finite m~!-net for all m > 1.

Definition 1.30 (Random compact set). A random closed set X with almost surely
compact values (so that X € K a.s.) is called a random compact set.

Alternatively, it is possible to construct a random compact set directly as a K-
valued random element. The myopic topology on K (or the Hausdorff metric if E
is a metric space) on K generates the Borel o-algebra ®B(K) on K that can be used
to define a random compact set as a measurable /C-valued map X: 2 +— K, see
Appendix C. By Theorem C.5(iii), the o-algebra ®B(K) is generated by {K € K :
K NG # ¢} for G € G. If E is locally compact, then every open set can be approx-
imated by compact sets, whence B(K) = B(F) N L, i.e. the Borel o-algebra on
K coincides with the trace of B(F) on K. Therefore, these two natural approaches
to define a random compact set produce the same object if E is locally compact. In
a general topological space [E, Definition 1.30 is consistently used to define random
compact sets. If JC does not belong to B(F), the condition X € I a.s. is understood
as

sup{P{X e)V}: YeB(F), YCK}=1.

The following result is a sort of “tightness” theorem for distributions of random
compact sets.

Theorem 1.31 (Tightness for random compact sets). Let X be a random compact
setin a Polish space E. For all ¢ > 0 there exists K € K suchthatP{X C K} > 1—e¢.

Proof. Let Q = {x¢, k > 1} be a countable dense set in E. Note that
n
lim P {X <y Bl/m(xk)} =1.
k=1
Choose n = ny, such that
n
P{X CHBl/m(xk)} >1- 2(; .

Define a compact set K as

K = ﬂ [ Bl/m(xk):| .
1

m>1 Lk=

Then
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P{(X ¢ K}=P me[ Bl/m(xk)] #
1

m>1 Lk=

SZP:X¢[GBl/m(xk)]}§SZZm=8. O
k=1

m=1 m=>1

1.6 Further functionals related to random sets
Avoidance, containment and inclusion functionals

The capacity functional Tx (K ) is defined as the probability that X hits a compact set
K and therefore is often called the hitting functional of X. Along the same line, it is
possible to define further functionals associated with a random closed set X.

Definition 1.32. For a random closed set X,
Ox(K)=P{XNK=0}, Kek,
is said to be the avoidance functional,
Cx(F)=P{XCF}, FekF,
is the containment functional, and
Ix(K)y=P{KCX}, Kek,

is the inclusion functional.

All these functionals can be extended onto the family of open sets and all sets in
the same way at it has been done for the capacity functional by means of (1.19) and
(1.20). Let us list several obvious relationships between the introduced functionals

Ox(K)=1-Tx(K),
Cx(F) = Qx(F°) =1 —Tx(F°),
Ix(K) = Qxe(K) =1 — Txe(K).

The inclusion functional is related to the capacity functional of the complement X°©,
the latter being an open random set, see Section 4.6. The avoidance functional is
completely U-monotone on C, see Definition 1.8. The containment functional is
completely N-monotone (also called completely monotone) on F, see Definition 1.9.
The containment functional defined on open sets is the dual functional to the capacity
functional, see (1.15).

Assume that E is a LCHS space. A simple reformulation of the Choquet theorem
shows that the avoidance functional Qx (K), K € C, determines uniquely the distri-
bution of X. The same is true for the containment functional Cx (F), F € F, defined
on the family of closed sets. The containment functional Cx (K) restricted to K € IC
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may be degenerated for a non-compact X and so does not determine the distribution
of X. However, if X is a random compact set, then

Cx(F) = lim Cx(FNKy),

where {K,, n > 1} is an increasing sequence of compact sets such that K,, 1 E. It is
worthwhile to mention the following simple fact.

Proposition 1.33 (Containment functional of a random compact set). The distri-
bution of a random compact set X is uniquely determined by its containment func-
tional Cx(K), K € K.

It is often useful to consider the inclusion functional Ix (L) defined on sets L
from the family J of finite subsets of E. The continuity of probability measures from
the above immediately yields

Ix(K) =inf{Ix(L): L €3, L C K} (1.33)

first for countable K and then for each K € K referring to the separability of E.
As (1.33) shows, the inclusion functional Ix(L), L € J, can be uniquely extended
onto the whole class /. However, the inclusion functional, in general, does not deter-
mine uniquely the distribution of X. For example, if X = {£} is a random singleton
with & having an absolutely continuous distribution, then /x(K) vanishes on each
non-empty K, see also Section 4.2.

Coverage function and covariance

It is easy to specify relationships between the capacity functional and the inclusion
functional on finite sets. First, if K = {x} is a singleton, then

px(x) = Tx({x}) = Ix({x}) (1.34)

is called the coverage function of X. The following proposition follows from the
upper semicontinuity of the capacity functional.

Proposition 1.34. The coverage function px(x), x € E, is upper semicontinuous.

For two-point sets, the corresponding inclusion functional
Tx (x1,x2) = Ix({x1, x2}) = P{{x1, x2} C X} (1.35)

is called the covariance function of X. It is easy to see that the covariance function is
positive definite. The covariance can be expressed using the capacity functional on
two-point sets and the coverage function as

Zx(x1,x2) = px(x1) + px(x2) — Tx({x1, x2}) .

The n-point coverage probabilities can be calculated from the capacity functional
using the inclusion-exclusion formula as
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Ix(fxr, o) =P{{xr, oo xn} C X = —Agy - A Tx (9)

Therefore, the inclusion functional Ix (L), L € 7, and the capacity functional T'x (L),
L € 7, restricted to the family J of finite sets can be expressed from each other by
solving systems of linear equations.

By integrating the covariance function of X one obtains

K(Z)=f2x(x,x4rz)dx=/P{{x,x+z}CX}dx
=Emes(XN(X —2)),

called the geometric covariogram of X.

Covariances of stationary random sets

If X is stationary (see Definition 4.1), then the covariance function is continuous and
depends on the difference between the arguments, i.e. X'y (x1, x2) = X (x1 — x2). If
X is a stationary isotropic random set, then Xy (x1, x2) depends only on r = ||x; —
x2]|. Then, in many applications, it is useful to approximate X' (r) by the exponential
covariance function given by

2(r) = p(l — ple ™ + p?,

where p is the common value for pyx(x).
The function y (x) = X' (0) — X (x) is called the variogram. Then

1
V(x—y)=Z[P{xeX,y¢X}+P{X¢X,y€X}].

Open problem 1.35. Characterise those functions that may appear as covariances
(or variograms) of stationary random closed sets. It is well known that the properties
y(0) =0, y(=h) = y(h) and

n

Z cicjy(xi —x;) <0

i,j=1

for any n > 1, x1, ..., x,, and real numbers c1, ..., ¢, that sum to O (the condi-
tional negative definiteness of y) single out those functions that appear as variograms
of random fields. Further conditions are required to ensure the existence of the in-
dicator random field (or random closed set) with variogram y. G. Matheron (see
Lantuéjoul [344, p. 27]) conjectured that such y should satisty

n

Z cicjy(xi —x;) <0

i,j=1

foranyn > 1, x1,...,xy,and ¢y, ..., ¢, € {—1,0, 1} that sum to 1.



2 Measurability and selections 25

The covariance function X'(-) can be used to develop a spectral theory of sta-
tionary random closed sets. For a Borel set A in RY, define its random measure
w(A) = mes (A N X) (see Section 8.3). If

Cov(A) =/Z‘(x)dx,

A

then
/mesd (AN (B + h))Cov(dh)
Rd
is the covariance between u(A) and p(B). It is shown in Koch, Ohser and Schla-

ditz [320] that there exists a finite measure v on R?, called the Bartlett spectrum,
such that

/ ()T (x)dx = / Y )v(du)
Rd R4

where v is the Fourier transform of a function ¥ which decays sufficiently fast.

Mobius inversion

If E is a finite space, then the distribution of a random closed set is naturally deter-
mined by a finite set of probabilities Py(F) = P{X = F} for all F C E. These
probabilities can be found from the containment functional by the Mobius inversion
formula

Px(F) = Z (- A\ v (K)y, FCE, (1.36)

KCF

where card(-) is the cardinality of the corresponding set (note that all closed sets in a
finite space are also compact). In the other direction,

Cx(F)= ) Px(K).

KcCF

2 Measurability and selections

2.1 Multifunctions in metric spaces
Effros measurability

Let (£2, §, P) be a probability space. A map X : 2 — F from £2 into the space F of
closed subsets of E is called a (closed-valued) multifunction or set-valued function.
As before, F is the family of closed subsets of [E, but now the space E is assumed
to be a Polish (complete separable metric) space. We aim to define random closed
sets in [E as measurable multifunctions, so that it is vital to introduce the appropriate
measurability concept.
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Definition 2.1 (Effros measurability). A map X: 2 +— F is called Effros measur-
able if
X (G)={ow: X(w)NG #0}eF

for each G € G, i.e. for each open set G. The Effros o-algebra on F is generated by
the families F¢ forall G € G.

Sometimes, an Effros measurable multifunction is called weakly measurable as
opposed to a strongly measurable X which satisfies X~ (F) = {w : X(w) N F #
?} € § for every closed set F.

Itis possible to view a multifunction X as composed of single-valued measurable
functions which “fitinside” X. Such functions are called selections of X. Note that an
[E-valued random element £ is a measurable map & : §2 — E where the measurability
is understood with respect to the conventional Borel o-algebra ®5 on E.

X(w)

Figure 2.1. A multifunction X and its selection &.

Definition 2.2 (Measurable selection). A random element & with values in E is
called a (measurable) selection of X if £&(w) € X (w) for almost all w € £2. The
family of all selections of X is denoted by S(X).

Fundamental measurability theorem

If E is locally compact, then an Effros measurable multifunction is exactly a random
closed set as defined in Section 1.1. Indeed, each open set in a locally compact space
can be approximated from below by a sequence of compact sets, so that X~ (G) € §
for all open G if and only if X~ (K) € § for all K € K. In a general Polish space
other measurability definitions are possible. The following theorem of C. Himmel-
berg establishes the equivalence of several possible concepts. Its proof can be found
in Himmelberg [257] and Castaing and Valadier [91].

Theorem 2.3 (Fundamental measurability theorem for multifunctions). Let E be
a separable metric space. Consider the following statements.

(1) X~ (B) € § forevery B € B(E).

(2) X~ (F)e§forevery F € F.

(3) X~ (G) e § forevery G € G, i.e. X is Effros measurable.
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(4) The distance function p(y, X) = inf{p(y, x) : x € X} is arandom variable for
eachy € E.
(5) There exists a sequence {£,} of measurable selections of X such that

X =cl{§,, n>1}.
(6) The graph of X
Graph(X) = {(w,x) € 2 xE: x € X(w)}

belongs to § ® B(E) (the product o -algebra of § and B (E)).
Then the following results hold.
D D= 2=03) < D= ().
(ii) If E is a Polish space (i.e. E is also complete) then (3) < (5).
(iii) If E is a Polish space and the probability space (§2,§,P) is complete, then
(1)—(6) are equivalent.

A measurable map X: 2 — F is called a random closed set in E. Since we
always assume that [E is Polish and the probability space is complete, Theorem 2.3
implies that all listed measurability definitions (1)—(6) are equivalent, so that X may
be called measurable if it satisfies any one of them. Unless E is locally compact, it
does not suffice to assume that X~ (K) = {w : X N K # @} € § for every compact
set K.

Definition 2.4 (0-algebra generated by X). The minimal o-algebra §x generated
by a random closed set X is generated by the events X (G) = {w € £2 : X(w) N
G # @) for G € G.

Clearly, §x is the minimal o-algebra on §2 which ensures that X is Effros mea-
surable. Because of Theorem 2.3, it is possible to generate §x using any of the con-
ditions (1)—(4) or (6) of Theorem 2.3. If E is locally compact, Fx is generated by
X~ (K), K € K.

Measurability of special multifunctions

If X is arandom convex weakly compact subset of a Banach space (so that almost all
realisations of X are weakly compact convex sets in ), then it is possible to provide
a simpler criterion for the measurability of X.

Proposition 2.5 (Measurability of convex-valued multifunction). If the dual space
[E* is separable, then a weakly compact convex-valued multifunction is measurable
if and only if X is scalarly measurable, i.e. the support function of X

h(X,u) =sup{(x,u): x € X}

is a random variable for each continuous linear functional u € E*, where (x, u)
denotes the value of u at x.
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Proof. Necessity immediately follows from property (5) of Theorem 2.3, since
h(Xs Ll) = Sup{@nv M) - n Z 1}
Sufficiency. Let B} be the unit ball in the dual space E*. Then, for each z € E,

p(z, X) = inf sup (z —x,u).

xeX ueBf

Since x — (z — x, u) is a concave function and both X and Bf‘ are convex, it is
possible to swap inf and sup. Therefore,

p(z, X) = sup [(z, u) — sup(x, u):|

ueBy xeX

= sup [(z, un) — h(X, u,)]

un€B}
is measurable, where {u,, n > 1} is dense in BI‘. O

The following result provides an especially simple criterion of the measurability
for regular closed multifunctions. Recall that a set F is regular closed if F coincides
with the closure of its interior, i.e. F' = cl(Int F').

Theorem 2.6 (Measurability of regular closed multifunction). A multifunction X
with almost surely regular closed values in a Polish space E is a random closed set
(i.e. X is Effros measurable) if and only if {w : x € X (w)} € § forevery x € E.

Proof. Necessity is evident from Theorem 2.3. For sufficiency, fix a countable dense
set Q = {x,,n > 1} in E. For each x,, A, = {w : x, € X(w)} € §. Then
Un>14An = {w 1 X(w) # @} is measurable, so that without loss of generality we
may assume that X () is not empty for all w.

Define an E-valued random element £ by putting £ (w) = x1 if w € Ay, §(w) =
xpifw € Ax \ Ay, E(w) = x3if w € A3\ (A1 U Ay), etc. Then & is a measurable
selection of X. Define a countable family of measurable selections as

9 A 9
@)= {0 P
&(w), otherwise,

Note that cl(X N Q) = X, since X is regular closed. Then X = cl{§,, n > 1},
whence X is measurable by Theorem 2.3. O

Borel interpretation of Effros o -algebra

In order to study the convergence of random closed sets, it is essential to know when
the Effros o-algebra coincides with the Borel o -algebra ‘B(F) generated by an ap-
propriate topology on F, i.e.

o{Fc, G €G}=B(F). 2.1
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This question has been already addressed in Section 1.1, where it was explained that
the Effros o-algebra is generated by the Fell topology on F if E is a locally compact
space. The following theorem summarises several important results of this kind for
a Polish space E. Recall that the Wijsman topology is a topology of pointwise con-
vergence of distance functions of closed sets, see Appendix B for a survey of various
topologies on F.

Theorem 2.7 (Effros o -algebra and topologies on F).
(i) If E is a separable metric space, then the Wijsman topology generates the Borel
o -algebra that fulfils (2.1).
(ii) If E is locally compact, then (2.1) holds if F is equipped with the Fell topology.
(iii) The Effros o -algebra induced on the family of compact sets K coincides with
the Borel o -algebra generated by the Hausdortf metric.

Proof.

(i) First, prove that F is separable with respect to the Wijsman topology. Let Q be
the family of all finite subsets of a countable dense set Q in E. For each F € F it
is possible to find a countable set F’ = {xi, x2,...} C F such that F = cl F’'. Let
F, be a set from Q such that py (F,, F,) < n~!, where F) ={x1...,x,}. Then F,
converges to F' in Wijsman topology, since

P, FDy—n~t < p(x, Fy) < p(x, E)) +n"!

for each x € E, so that it suffices to notice that p(x, F,) — p(x, F) asn — oo.
Since F is separable, the Borel o -algebra corresponding to the Wijsman topology
is generated by
{(FeF:|lpx,F)—px, F)l <r} (22)

forx € Q, Fo € F and positive rational r. It is easily seen that every set given by
(2.2) belongs to the Effros o -algebra. For the reverse inclusion, referring to the sepa-
rability of IE, it suffices to show that, for each open ball B (xg) = {x : p(x, xo) < €},
theset {F : FNBY(x) # ¥} belongs to the Borel-Wijsman o-algebra. This is indeed
the case, since

{F: FOBX(x)# 0y ={F: |p(xo, F) — p(xo, {xoh)| <r}.

(ii) follows from (i), since the Fell topology generates the same Borel o-algebra as
the Wijsman topology if [E is locally compact, see Theorem B.13(ii).
(iii) is an immediate corollary from Theorem C.5(iii). m]

If E is a Banach space such that the dual space E* is separable, then the slice
topology (see Beer [56] and Hess [243]) generates the Borel o-algebra which co-
incides with the Effros o-algebra on F. If E is a reflexive Banach space, then the
Mosco and slice topologies coincide, so that the Mosco topology can be used in-
stead, see Beer [56, Cor. 5.4.14].
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Approximability of random closed sets

It is possible to work out further measurability properties relying on approximations
of random closed sets by random sets with at most a finite number of values.

Definition 2.8 (Simple random sets). A random closed set X is called simple, if
it assumes at most a finite number of values, so that there exists a finite measurable
partition Ay, ..., A, of £2 and sets Fi, ..., F,, € F such that X(w) = F; for all
weA,l<i<n.

It is known (see Appendix B) that the space F is separable in the Fell topology
if E is LCHS. The separability of F ensures that in this case each random closed set
is an almost sure limit (in the Fell topology) of simple random sets. For a general
separable metric space E, this is not always the case.

Definition 2.9 (Approximable random sets). A random closed set X is called ap-
proximable (with respect to some topology or metric on F) if X is an almost sure
limit of a sequence of simple random closed sets (in the chosen topology or metric).

If the convergence in Definition 2.9 is understood with respect to a metric, then
the equivalent concept is the total measurability of X, meaning the existence of a
sequence of simple random sets that converges to X in probability, see Section 6.2.

Note that approximations of X by simple random sets are always understood with
respect to the topology such that the corresponding Borel o -algebra satisfies (2.1).
To be more specific, it is sensible to call X Hausdorff approximable, Wijsman ap-
proximable, Mosco approximable, etc. depending on the chosen topology.

Proposition 2.10 (Approximability of random sets). Assume that (2.1) holds for
an appropriate topology on F . Then the approximability property of a random closed
set X is equivalent to one of the following conditions.
(i) There exists a subset 2’ C 2 of a full measure such that {X (w) : w € '} is
a separable subset of F with respect to the chosen topology.
(ii) The distribution Py induced by P on F is a Radon probability measure on
B(F), i.e. foreach) € B(F),

Px () = sup{Px(X) : X iscompactin F, X C YV},

where the compactness is understood with respect to the topology satisty-
ing (2.1).

Proof.

(i) follows from a general result on random elements in topological spaces, see
Vakhaniya, Tarieladze and Chobanyan [568, Prop. 1.1.9].

(i) If X is approximable, then there exists a sequence {wyr,k > 1} such that
{X(wr), k = 1} is dense in {X(w) : w € 2\ £20} with P(£2p) = 0. Ulam’s
theorem [568, Th. 2.3.1] together with (i) complete the proof. O
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The following result implies that a measurable random closed (respectively com-
pact) set can be equivalently defined as a Wijsman (respectively Hausdorff) approx-
imable multifunction.

Theorem 2.11 (Wijsman and Hausdorff approximability). In a Polish space E,
(i) every random closed set is Wijsman approximable;
(ii) every random compact set is Hausdorff approximable.

Proof.

(i) It is shown in the proof of Theorem 2.7(iii) that the space F with the Wijsman
topology is separable if E is Polish. Then (i) follows from Proposition 2.10(i).

(i) It suffices to show that K is separable with respect to the Hausdorff metric py;.
Let Q be a countable dense set in [E. Then the (countable) family Q of all finite
sequences of elements of QQ is dense in K. For this, fix any K € K and ¢ > 0. Then
the balls of radius ¢ centred at the points of Q cover K. Therefore, K has a finite
cover, which means that p(K, Q) < ¢ forsome Q € Q. O

It should be noted that a bounded random closed set X in a Polish space is not
always Hausdorff approximable, even if the realisations of X are almost surely con-
vex.

Example 2.12 (Non-approximable random closed sets). Consider the probability
space £2 = [0, 1] with the Lebesgue o -algebra and the Lebesgue measure P.

(i) Let E be the Banach space of real-valued continuous functions on [0, 1] with
the uniform norm. Define a multifunction with closed convex values as X (w) = {x €
E: x| <1, x(w) =0} forw € £2. Then

p(x, X (w)) = max(supmax(|x(¢)| — 1, 0), x(w))
t#w
is a random variable for every x € E, so that X is a random closed set by Theo-
rem 2.3. However, X cannot be obtained as an almost sure limit in the Hausdorff
metric of simple random closed sets, since py (X (»), X () = 1 for w # &', con-
trary to Proposition 2.10(i).

(ii) Let E = ¢2 be the space of square-summable sequences. For each v € 2 =
[0, 1] take its binary expansion w = Z;‘;l ®, 27" with w, equal O or 1. Let

X(a)):{xeﬁz: Ixl <1, x, =0forw, =0, n>1}.

Then X is not Hausdorff approximable, since o (X (w), X () = 1 for w # o'.

2.2 Selections of random closed sets
Fundamental selection theorem

Recall that S(X) denotes the family of all (measurable) selections of X. The funda-
mental measurability theorem for multifunctions (Theorem 2.3) implies the follow-
ing existence theorem for selections.
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Theorem 2.13 (Fundamental selection theorem). If X is an Effros measurable
closed-valued almost surely non-empty multifunction in a Polish space E, then
S(X) £ 0.

The fundamental selection theorem can be proved directly by constructing a se-
quence of random elements &, with values in a countable dense subset of [E such that
0, X) <27 "and p(&,, En—1) < 27" forall n > 1 on a set of full measure. The
completeness of E is crucial to ensure that the sequence of £, possesses an almost
sure limit, which becomes the required selection of X. The full proof can be found
in Kuratowski and Ryll-Nardzewski [339], Castaing and Valadier [91, Th. II1.6] or
Aubin and Frankowska [30, Th. 8.1.3].

It should be noted that Theorem 2.3(ii) implies not only the mere existence of
selections, but a stronger fact that the selections “fill” X, so that X equals the closure
of a countable set of its selections.

Definition 2.14 (Castaing representation). A countable family of selections &, €
S(X), n > 1, is said to be the Castaing representation of X if X = cl{§,, n > 1}.

Characterisation of distributions of random sets by their selections

The family of selections S(X) depends not only on X, but also on the underlying
probability space. For instance, a two-point deterministic set X = {0, 1} has only
two trivial (deterministic) selections if § = {0, £2} is the trivial o-algebra, while
if § is richer, then random variables with possible values 0 and 1 appear as selec-
tions. Even if the probability space is fixed and non-atomic, then the situation is not
straightforward. The following example describes two identically distributed random
closed sets X and Y defined on the same probability space such that S(X) # S(Y).

Example 2.15 (Identically distributed random sets with different selections). Let
2 = [0, 1] with the o-algebra § of Lebesgue measurable subsets and the Lebesgue
measure P. Define two random closed (even compact) subsets of E = R as X (w) =
{—w,w}and Y (w) = {—s(w), s(w)} where s(w) = 2w if w < 1/2and s(w) = 2w—1
if o > 1/2. It is easy to see that X and Y are identically distributed. However, the
selection of Y

n(w) = s(w)lo,1/2)(@) — s(@)112,11(@)
has a distribution which is not shared by any selection of X.

The situation described in Example 2.15 can be explained if one observes that the
selection 7 belongs to the weak closure of S(X), i.e.  is the weak limit of a sequence
{&,,n > 1} C S(X). Taking the weak closure of the family of random elements
is identical to taking the weak closure of the corresponding family of distributions
{P: : & € S(X)}. It is well known (see Billingsley [70]) that the weak convergence
of random elements (or their distributions) can be metrised by the Prokhorov metric
given by

p(Py,Py) =inf{e > 0: P(B) <Py(B°") + ¢ forall B € B(E)} (2.3)
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for probability measures P; and P, where B®~ is the open e-envelope of B. Further
we write p(§, n) instead of p(Pg, P)).

Theorem 2.16 (Selections of identically distributed random sets). Consider two
non-atomic probability spaces (£2,§,P) and (2',F,P’) and two random closed
sets X and Y in a Polish space E defined respectively on §2 and 2. If X and Y are
identically distributed, then the weak closures of S(X) and S(Y') coincide.

Proof. Let& € S(X) and let ¢ > 0. We have to find n € S(Y) such that p(&, n) < e.

It follows from Proposition 2.10(ii) (applied to singletons) that there exists a compact

set K such that P{¢ € By} < e, where Bp = E \ K is the complement to K. Let

Bq, ..., By, be apartition of K into disjoint Borel sets of diameter less than ¢. Define

ci =Pl eBj}andA; =Y (B)) ={we 2': Y(w)NB; # @) fori =0,1,...,m.
Since X and Y are identically distributed,

P(X N B; # 0} =P{Y N B # 0} =P (Ujes A})

forevery I C {0, 1, ..., m}, where By = U;¢ B;. Since the B;’s are disjoint,

PXNB #0) =P By =) PlEeB)=) c.

iel iel

Then
P (Uit A) =PIXN B # 0} = ) ¢
iel
foreach/ C {0,1,...,m} and

m
P (U A =1= Zci.
i=0

By a combinatorial result (Halmos and Vaughan [218], Hart and Kohlberg [223])

which holds for non-atomic probability spaces, there exists a partition A, A}, ..., A,
of 2’ such that A, C A; and P'(A)) = ¢; fori = 0,1,..., m. Define n(w) for
w € A’ to be a selection of ¥ N cl(B;). Then n € S(Y) and p(&, n) < ¢. m]

For a o-algebra $ C §, let Sg(X) be the family of selections of X that are
$-measurable. The following result states that the weak closed convex hulls of the
family of §-measurable selections of X and § xy-measurable selections of X coincide,
where §x is the o-algebra generated by X, see Definition 2.4. If the probability space
is atomless, then taking convex hulls is no longer necessary.

Theorem 2.17 (F- and § x-measurable selections). If X is a random closed set in
a Polish space E, then the closed convex hulls in the weak topology of S(X) and
Sz, (X) coincide.
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Proof. Although the statement follows from Theorem 2.16, we present here an inde-
pendent proof. Without loss of generality, assume that X is almost surely non-empty.
Since §x C F, it suffices to show that an arbitrary selection & € S(X) belongs to the
closed convex hull of Sg, (X). Let f: E + R be a bounded continuous function.
Since bounded continuous functions are dual to probability measures on E we need
to show that for every & > 0 there is n € Sz, (X) suchthat E f(§) < E f(n) +e.
Note that Y = cl f(X) is arandom compact set in R! that is also § x -measurable.
Seta = sup Y. Then [¢—e&, «]NY is an almost surely non-empty and § x-measurable
random closed set, see Theorem 2.25(iv). By the fundamental selection theorem, it
admits a §x-measurable selection ¢. Furthermore, a random closed set Z = X N
f (e is non-empty and so also admits a § x-measurable selection 7 that satisfies

f(n) = ¢. Finally
Ef¢)=<Ea <El+e=<Ef(n) +e. o

Proposition 2.18. Two random closed sets X and Y in a Polish space [E are identi-
cally distributed if and only if Sg, (X) = S5, (Y).

Proof. Sufficiency. If X and Y are not identically distributed, then P {X N G # ¢} #
P{Y NG # ¢} for some G € G, see Theorem 2.28. Without loss of generality as-
sume that P{X N G # ¥} > P{Y N G # ¥}. Using the Castaing representation of X
whose members are § y-measurable (such a representation exists by Theorem 2.3),
one can construct a selection & € Sz, (X) such that £ € G whenever X N G # 0.
Then for any n € Sz, (Y) we have

PneGl<P{YNG#0} <P{XNG £} =P € G},

which shows that no such 1, shares the distribution with &.

Necessity. Consider £ € Sz, (X). Then there exists a measurable map ¢: 7 +— E
such that & = @(X). Therefore, n = @(Y) is §y-measurable and has the same
distribution as &. Furthermore, p(¢(X), X) has the same distribution as p(¢(Y), Y).
Thus, 7 is a selection of Y, since p(¢(X), X) vanishes almost surely. O

Selectionability of distributions

Because the families of selections for identically distributed random sets may be
different, it is natural to associate selections with the distribution of X rather than its
representation as a multifunction on a particular probability space.

Definition 2.19 (Selectionable distributions). A probability distribution p on E is
selectionable with respect to a distribution v on F if there is a random closed set X
with the distribution v and a selection £ € S(X) with distribution . The family of
all probability measures on E which are selectionable with respect to a probability
measure v on F is denoted by S(v).

The following result obtained by Artstein [19] is a corollary from necessary and
sufficient conditions for proper matching. If [E is locally compact, it is possible to
deduce it from the ordered coupling theorem proved in Section 4.8.
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Theorem 2.20 (Selectionability). A probability distribution (v on a Polish space E
is selectionable with respect to the distribution v on F if and only if

n(K) =v({F: FNK #0}) 24

forall K € K.

Families of selections

The following results are formulated for random compact sets in Polish spaces. It
should be noted that their variants for random closed (non-compact) sets in locally
compact spaces are possible to obtain using one-point compactification (see Ap-
pendix A) and allowing for a positive mass to be assigned to the compactifying point.

Proposition 2.21 (Selections of random compact sets). For each probability mea-
sure v on K, the family S(v) is a convex compact set with respect to the weak con-
vergence of measures and their arithmetic addition.

Proof. If 1, uz € S(v), then (2.4) immediately implies that cpey + (1 —c)uz € S(v)
for every ¢ € [0, 1]. Furthermore, (2.4) can be written for all open F, so that S(v) is
closed in the weak topology by Billingsley [70, p. 24, (iv)]. By Proposition 2.10(ii)
and Theorem 2.7(iii), there exists a compact set ' C K such that v(K') > 1 — ¢ for
any fixed ¢ > 0. The union of all sets from K’ is a compact subset K’ of E. By (2.4),
w(K’) > 1 — g, so that S(v) is tight and weakly compact by the Prokhorov theorem,
see Billingsley [70, p. 62]. O

Similar to the definition of the Hausdorff metric on the space of compact sets, it is
possible to define a distance between compact families of probability measures. Let
M be the metric space of all probability measures on [E with the Prokhorov metric p.
For two compact sets A1, A» C M, define

pH(A1, A2) = max | sup inf p(u,v), sup inf p(u,v)| .
HEA]| veAr VEA) HEA)

The following result is proved by Artstein [16] similar to Theorem 2.16.

Theorem 2.22 (Continuity for families of selections). The function v — S(v) is
pH-continuous, i.e. if v, — v weakly on K, then py(S(v,), S(v)) — 0 asn — oo.

Theorem 2.22, in particular, immediately implies Theorem 2.16 for random com-
pact sets, noticing that the Hausdorff metric does not distinguish between the sets and
their closures. Moreover, if v, weakly converges to v on X, then the weak closure of
S(v,) converges to the weak closure of S(v).
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Steiner point and selection operators

If X is an almost surely non-empty random convex compact set in R? (see Defini-
tion 4.32), then its particularly important selection is given by the Steiner point s(X)
defined in Appendix F. As shown in Dentcheva [136], the Steiner point possesses
a number of useful smoothness properties as a function of X. For instance, the in-
equality |[s(K) —s(L)|| < dpy(K, L) for each K, L € K implies that the Steiner
point is a Lipschitz function on I with respect to the Hausdorff metric. It is shown
by Aubin and Frankowska [30, Th. 9.4.1] that the Steiner point can be equivalently
defined as

s(X) = ;d /m(H(X, w)du (2.5)

B

where Bj is the unit ball in R9, HX,u) ={x € X : h(X,u) = (x,u)} is the
u-face of X (or the subdifferential 04 (X, u) of the support function as defined in
Appendix F) and m(H (X, u)) is the point in H (X, u) with the smallest norm. It
follows from Theorem 2.27 (see also (2.6)) that m(H (X, 1)) is a random element in
E. Formula (2.5) can be amended to define a generalised Steiner point as

su(X) =fm(H(X, u))pu(du) ,

By

where p is a probability measure on Bj. A convexity argument implies that s, (X)
is a selection of X. As shown by Dentcheva [136, Lemma 5.4], s, (X) are dense in
X for all probability measures p absolutely continuous with respect to the Lebesgue
measure.

The (generalised) Steiner points are particular examples of maps from co K’ into
E which are continuous with respect to the Hausdorff metric. Recall that K’ (re-
spectively F’) denote the families of non-void compact (respectively closed) sets,
while co K" and co F' are formed by convex sets from the corresponding families.
Rephrasing the concept of a selection, an Effros measurable map §: 7' +— Eis called
a selection operator if f(F) € F for every non-empty closed set F.

Proposition 2.23 (Castaing representation using selection operators). There ex-
ists a sequence of selection operators {f,,n > 1} such that F = cl{f,(F), n > 1}
forevery F € F'.

Proof. Consider the multifunction defined on F by I(F) = F for all closed F.
This is a measurable map with respect to the Effros o-algebra. Now the Castaing
representation of / provides the required family of selection operators. O

A selection operator f is continuous if it is continuous in the Wijsman topology.
The existence of a continuous selection operator on co F’ for a separable Banach
space E is shown in Gao and Zhang [187].
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Open problem 2.24. Find an explicit construction of the Castaing representation
for non-convex random closed sets that may be similar to the representation using
weighted Steiner points in the convex case.

It is possible to define a tangent cone to a random closed set as the limit of
(X —&)/tast | 0, where & is a selection of X. The limit is considered in the Fell
topology if E = R? and in the Mosco sense if E is a Banach space.

2.3 Measurability of set-theoretic operations
Set-theoretic operations

Because we always assume that E is Polish and the probability space is complete,
Theorem 2.3 provides a number of equivalent definitions of measurable multifunc-
tions which help to prove the measurability of operations with random closed sets.
The Minkowski (elementwise) addition that appears in part (v) of the following theo-
rem is defined in Appendix A and the limits for sequences of sets in (viii) are defined
in Appendix B.

Theorem 2.25 (Measurability of set-theoretic operations). If X is a random closed

set in a Polish space E, then the following multifunctions are random closed sets:
(i) co (X), the closed convex hull of X ;

(ii) aX if o is a random variable;

(iii) cl(X®), the closed complement to X, cl(Int(X)), the closure of the interior of

X, and 0 X, the boundary of X.

If X and Y are two random closed sets, then

(iv) X UY and X NY are random closed sets;

(v) cl(X + Y) is a random closed set (if E is a Banach space);

(vi) if both X and Y are bounded, then py(X, Y) is a random variable.

If{X,, n > 1} is a sequence of random closed sets, then

(vii) cl(U,>1X,) and N,>1X, are random closed sets;

(viii) lim sup X, and lim inf X, are random closed sets.

Proof.

(i) Without loss of generality assume that X # ¢ a.s. Consider the Castaing rep-
resentation {&,,n > 1} of X. Then the countable family of convex combinations of
{&,, n > 1} with rational coefficients is dense in co (X), so that co (X) admits its
Castaing representation and, therefore, is measurable.

(ii) follows immediately from the fact that {«&,, n > 1} is the Castaing representa-

tion of a X.
(iii) Forevery G € G, {cl(X®) N G = ¥} = {G C X}, so it suffices to show that the
latter event is measurable. Let {F;,, n > 1} be an increasing sequence of closed sets
such that F,, 1 G. Then {G C X} = N,>1{F, C X}, so that it suffices to show that
{F C X} is measurable for every F' € F. Since there exists a countable set of points
{xx, k > 1} which are dense in F, {F C X} = Mi>1{xx € X} € §.
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Furthermore, cl(Int X) is measurable, since cl(Int X) = cl(Y®) for ¥ = cl(X©).
The boundary of X can be represented as dX = X Ncl(X®), so that the measurability
of X would follow from (iv).

(iv) is a particular case of (vii) to be proved later on.

(wyvi) If {&,, n > 1} and {5,,, m > 1} are the Castaing representations of X and Y
respectively, then {&, + n,,, n, m > 1} is the Castaing representation of cl(X + Y),
whence cl(X + Y) is measurable. Furthermore,

pu (X, Y) = py({&n, n = 1}, {1, m = 1})

is measurable.
(vii) If G € G, then

(clUn1X) NG # 0} = [ JIXa NG #£0) €3,

n>1

which confirms the measurability of cl(U,>1X,). To show the measurability of
countable intersections observe that

Graph(Ny>1Xp) = m Graph(X,) ,

n>1

so that N,>1 X, is measurable by Theorem 2.3.
(viii) Note that X; = {x : p(x, X,;) < ¢} is arandom closed set, since its graph

Graph(X%) = {(w, x) : p(x, X,) < &}

is measurable, since p (-, -) is a (F ® B(E), B(R))-measurable function. Now (viii)
follows from (vii) taking into account that

o B 1/k
liminf X, = (el J () %,
k>1 m>1n=m

limsup X,, = ﬂ CI(U Xn). m]

—
n— 00 m>1  n=m

Inverse function and infimum

It is possible to formulate several results on inverse functions in the language of
random closed sets.

Theorem 2.26 (Random inverse functions). Let X and Y be random closed sets in
Polish spaces E and E' respectively. Let ¢, = {y(w), x € E, be an almost surely
continuous E'-valued stochastic process. Then Z = {x € X : ¢, € Y} is a random
closed set.

If¢x NY # O as. (where {x = {{, : x € X} is the image of X under ¢),
then there exists an E-valued random element & such that {¢ € Y a.s. In particular, if
Y = {n} is a singleton and n € {x a.s., then there exists an [E-valued random element
& such thatn = g¢ a.s.
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Proof. Note that ¢(w, x) = (®, {x(®)) is measurable with respect to the product
o-algebra § ® B(E), whence {(w,x) : ¢(w,x) € B} € § ® B(E) for every
B € B(E'). The proof is finished by observing that

Graph(Z) = Graph(X) N (pfl(Graph(Y))
is a measurable subset of £2 x E. O

The following result concerns the measurability of infimum taken over a random
closed set, see Figure 2.2. It can be easily proved using the Castaing representation
for its first statement and referring to Theorem 2.26 for the second one.

X

Y = argmin,_y ¢

X

Figure 2.2. The minimum « and argmin inside X of a random function ¢.

Theorem 2.27 (Measurability of infimum). Let X be an almost surely non-empty
random closed set in Polish space IE and let {, be an almost surely continuous
stochastic process with values in R. Then

(i) the infimum of ¢, overx € X,

o = inf &y,
xeX

is a random variable;
(ii) the set of minimum points,

Y={xeX: {=a}=argmin .y,

is a random closed set.

In particular, this implies that the support function
h(X,u) =sup{(x,u): x € X}, uek*,
is a random variable if E is a Banach space. Furthermore, the «-envelope of X

X={x: p(x,X) =0}
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is a random closed set if « is a non-negative random variable. If £ is an E-valued
random element, then p (¢, X) = inf{p(&,x) : x € X} is a random variable; the
metric projection of £ onto X

projx(§) ={x e X : p(x,§) = p(§, X)} (2.6)

is a random closed set.

2.4 Random closed sets in Polish spaces

The distribution of a random closed set in a Polish space E is determined by a proba-
bility measure on the Effros o-algebra. The following theorem provides a uniqueness
result.

Theorem 2.28 (Equality in distribution). Let X and Y be two random closed sets
in a Polish space E. Then the following statements are equivalent.
(i) X andY are identically distributed.
(ii) For each opensetG,P{X NG # #} =P{Y NG # ¥}.
(iii) For each finite set x1, . . ., x,, € [E the random vectors (p(x1, X), ..., p(xn, X))
and (p(x1,Y), ..., p(xy, Y)) are identically distributed.

Proof. (i) and (ii) are equivalent, since the Effros o-algebra is generated by the
events that appear in (ii). Furthermore, (i) and (iii) are equivalent, since, by The-
orem 2.7(i) the Effros o-algebra coincides with the Borel o-algebra generated by
the Wijsman topology. Therefore, p(x, X), x € E, is a continuous stochastic pro-
cess whose finite-dimensional distributions are uniquely identified by (iii). Note that
p(x, X), x € E, is called the distance function of X, see Definition 2.2.5. O

The capacity functional of a random closed set X on the family of open sets
Tx(G) =P{XNG #0}, Geg,

or its counterpart Tx (F), FF € F, on the family of closed sets uniquely identify
the distribution of X. It is easily seen that 7 is a completely alternating capacity
on G or F. Its semicontinuity property causes potential difficulties. For example,
T (F,) | T(F) does not necessarily follow from F,, | F. Note however, that the
capacity functional on the family of compact sets no longer determines uniquely the
distribution of X if [E is not locally compact.

The Choquet theorem (for a locally compact space [E) implies that for every com-
pletely alternating upper semicontinuous capacity 7" with values in [0, 1] there is a
unique random closed set X having T as its capacity functional. Unfortunately, the
corresponding existence result for random closed sets in general Polish spaces is not
known. It should be noted that it is not possible to deduce it immediately from the
theory outlined later on in Section 3, since the corresponding lattice fails to have a
second countable Scott topology.
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Nguyen and Nguyen [428] showed that the Choquet theorem does not hold on
any non-compact Polish space under the assumptions that 7" is completely alternating
on G and satisfies

T(Gp) 1 T(G) if G, 1 G in the Hausdorff metric . (2.7)

If E is the unit ball in a Hilbert space, then the Kuratowski measure of non-
compactness T(G) = nc(G), see Appendix A, is a functional which is completely
alternating, satisfies (2.7) but at the same time violates the o -subadditivity property,
so that there exists an open set G such that

T(G) £ ) T(Gw) 2.8)

n=1

for a decomposition G = U, G, into the union of open sets. This means that no
random closed set can have T as its capacity functional.

Another counterexample can be provided as follows. Let T(G) = 0 if G is
bounded and 1 otherwise. Then T is maxitive, hence is completely alternating. It
also satisfies (2.7). However, (2.8) does not hold for G,, = UZ:l {G;{} with G;{ being
a bounded neighbourhood of x; from a countable set {x,, n > 1} in E leading to
violation of (2.8). Therefore, (2.7) is too weak even for a locally compact space E.

Using the inclusion functional of X defined on finite sets, it is easy to come up
with a consistent family of finite-dimensional distributions for the indicator random
function 1y (x). However extra conditions are needed to ensure that this becomes an
indicator function of a closed set. The inclusion functional also ceases to be infor-
mative if the coverage function py(x) = P {x € X} vanishes.

Open problem 2.29. Generalise the Choquet theorem for random closed sets in
general Polish spaces.

2.5 Non-closed random sets

A measurable subset Y of §£2 x E equipped with the product o -algebra § ® ‘B(E) is
called a random set. Every such Y can be equivalently defined as a multifunction

Xw)y={xekE: (w,x) €Y},

so that X is also called a random set. Then X: £2 — ‘B is a set-valued function
with values being Borel subsets of E and ¥ = Graph(X) becomes the graph of
X. Sometimes, X is called a graph-measurable random set to stress the fact that the
graph of X is a measurable set in the product space. However, X no longer has closed
values whence the fundamental measurability theorem is not applicable to confirm
the equivalence of various measurability definitions.

A set-valued function X : 2 +— ‘B is called Borel measurable if {w : X (w) N
B # ()} € § for all B € ®B. Because the probability space is assumed to be com-
plete, every graph-measurable random set X is also Borel measurable. The inverse
implication is in general wrong.
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The family B(R?) with the metric given by the Lebesgue measure of the sym-
metric difference is a Polish space, so that a random Borel set in RY can be defined
as a random element with respect to the corresponding Borel o-algebra, see Straka
and St&pén [548].

Alternatively, it is possible to define a general random set X as a random indica-
tor function ¢ (x) = 1x(x), so that X is a random set if {(x) is a stochastic process
on E. Then the distribution of ¢ can be determined by its finite-dimensional distri-
butions. However, a number of interesting random closed sets lead to non-separable
random functions whose finite-dimensional distributions are degenerated, see Sec-
tion 4.2. A particularly important example of random open sets will be considered in
Section 4.6.

3 Lattice-theoretic framework

3.1 Basic constructions

Because of the partial order on the family of closed sets, it is quite natural to treat the
family of sets as a lattice. Below we will provide a brief summary of basic concepts
from the theory of continuous lattices.

Let L be a partially ordered set (poset). A non-empty set D C L is called directed
if x, y € D implies that x < z and y < z for some z € D. Assume that each directed
set D has supremum Vv D (then L is called up-complete). A poset L is called a semi-
lattice if each non-empty finite set has an infimum and is called a latfice if each
non-empty finite set has both infimum and supremum. Furthermore, L is a complete
lattice if every subset of L has a supremum and an infimum.

We say that x is way below y and write x < y if y < VD for every directed set
D implies x < z for some z € D. Further we always assume that L is continuous,
ie. foreachx € L, the set {y € L : y « x} is directed with supremum x. A set
U C L is called Scott open if U is an upper set, that is

tx={yel: x<y}cU forallx eU,

and if x € U implies the existence of some y € U with y <« x. The collection of all
Scott open sets is a topology on I, which is denoted by Scott(IL). A base of the Scott
topology on I consists of {y e L : x < y}.

A set F C L is a filter if it is a non-empty upper set such that for each pair
X,y € F there exists z € F satisfying z < x and z < y. Denote by £ = OFilt(L)
the collection of all Scott open filters on L. Note that £ is a continuous poset itself,
so that it is possible to define the topology Scott(£) and the family OFilt(£). The
mapping

x—=Ly={FeLl:xeF}, xel, 3.1)

is an isomorphism between L and £, which is called the Lawson duality. Let o (L)
be the minimal o-algebra on L. generated by the family £. A subset Q C L is called
separating if x < y implies that x < g < y for some g € Q.
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Example 3.1 (Real line). Let L = [0, co) be the real half-line with the conventional
order. It is a lattice and it becomes a complete lattice if the infinity is included, i.e.
L = [0, oo]. Furthermore, x < y if and only if x < y. Scott open sets are (x, 00)
for x > 0. These sets form the family OFilt(£), which is also a lattice. The Lawson
duality maps x to the family of sets (y, co) with y < x, alternatively x — [0, y).

Proposition 3.2 (see Norberg [432]). Let L be a continuous poset. The following
four conditions are equivalent:
(i) Scott(IL) is second countable;
(ii) L contains a countable separating set;
(iii) L contains a countable separating set;
(iv) Scott(L) is second countable.

Further, L is assumed to have a second countable Scott topology implying that I
contains a countable separating subset Q.

3.2 Existence of measures on partially ordered sets

Consider a non-negative mapping A defined on a collection F,. of filters in a poset L.
Assume that [F. is closed under non-empty countable intersections and

MK) = lim A(Ky) if Ky | K €Fe, Ky €Fe, nz 1, (3.2)

Assume that
Vk, - VKI)\(K) >0 (3.3)

foralln > 1 and K, Ky,...,K, € F., see (1.13) and (1.14) for the definition
of the successive differences V. According to Definition 1.9, (3.3) means that X is
completely monotone (more exactly, completely N-monotone) on F,.

Fix a collection F,, of filters on IL, which is closed under finite non-empty inter-
sections and is dual to F, in the following sense.

Assumptions 3.3.
(i) Each K e F. is the limit of a decreasing sequence of sets from [F,, and each

G € I, is the limit of an increasing sequence of sets from F..

(i) f K € Gand K,, ? G, where K, K|, K>,... € F.and G € F,, then K C K,
for some n.

(i) If K, | K C Up>1G, with K, Ky, K>, ... € F. and Gy, G2, ... € F,, then
K,, C Uy<m G, for some m.

(iv) Foreach G € FF, there exists K € F. such that G C K.

Although generic elements of . and [F,, are denoted by K and G respectively,
the letters K and G do not stand in this context for generic compact and open sets.

Theorem 3.4 (Measures on posets). If 1 satisfies (3.2) and (3.3) and Assump-
tions 3.3 hold, then ) extends to a measure on the minimal o -algebra over F.. This
extension is unique if . = U,>1 K, for some K1, K>, ... € F,.
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Example 3.5 (Measure on R). Let L = R and let IF. (respectively [F,) be the family
of sets (—o0, x] (respectively (—oo, x)) for x € R. Then A(K), K € F, is a function
of the right end-point x of K. The condition on A means that A is a right-continuous
non-decreasing function, which generates a measure on R.

Example 3.6 (Measure on F). Let L. be the family F of closed sets in a LCHS
space [E. Furthermore, let F. consist of F G forG € GandletF, = {F K K e K}.
Note that FO1 N FC2 = FO1Y62 and FOr | FC if and only if G, + G.If A(FO) =
Q0(G), then

Ve MFY) = 0(G) — Q(GUG) = Ak, Q(K),
Vien - Ve, MFO) = Ag, -+ Ag, Q(G)

and (3.3) means that 7 = 1 — Q is a completely alternating functional on G. The cho-
sen families F. and F, satisfy Assumptions 3.3 and F = U;>1 F Gn for a sequence
of open sets {G,, n > 1}, so that Theorem 3.4 is applicable in the current framework
and yields a variant of the Choquet theorem for capacity functionals defined on open
subsets of E.

The proof of Theorem 3.4 is based on a series of intermediate results, which are
similar to the measure-theoretic proof of the Choquet theorem in Section 1.3. Below
we will only outline the lemmas and propositions that constitute the proof, referring
to Norberg [432] for the full details.

Introduce the family

V={KNG: K eF., G eF,}
which is similar to the family )V in Lemma 1.20. Following the same line, define
V={(V\(ViU---UVy): V,V,...,V, eV, n>0}.

In the context of Example 3.6, the family U consists of elements of the type
f{({l%%l ’’’’’ K, UG, where K, Ky,..., K, € Kand G,Gy,...,G, € G

Lemma 3.7. The family *U is a semiring (i.e. it is closed under finite intersections
and the set-difference of any two elements is a union of a finite number of disjoint
elements from *Y); it is also an algebra if L € V.

Any representation Y = V \ (V; U---UV,) of a non-empty member ¥ € U is
said to be reducedif n = O orif V; C V foralli =1,...,n and V; = V; whenever
Vi C V;. The following proposition generalises Lemma 1.20.

Proposition 3.8. Every non-empty Y € ‘U has a reduced representation. If V \ (V1 U
---UVp) and V'\ (V/U---UV,) are two reduced representations of Y, then V =V,
m=nandV; =V/,1<i<n.
Extend A onto V by approximating each element of VV from below using elements
of F.
AV)y=sup{MK): KeF., KCV}, VeV.
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Lemma 3.9. Whenever V, Vi, Vo € V, we have A(V N Vy) < A(V}) and
AVAVD+HAVNAV) <AV)+A2VNViNnV).

Lemma 3.10. Let V;, V/ € V for 1 <i <n.IfV/ C V; foralli, then

MO Vi) = MOy V) < Y Vi) = M(V)))

i=1

This leads to the following statements which are similar to Lemma 1.22.

Proposition 3.11.
@) LetV,Vi,Vp,...eV.IfV, | V, then

A(V) = lim A(V,).
n—o0
@ii) IfV eVandK, ? G forG €F,, K1, K2, ... € F, then

MV NG) = lim A(VNKy).

(iii) Let V € V. If K, © G and G, | K with K,K,K»>,... € F. and
G,G1,Gy,...€F,, then

MV NKNG) = lim A(V N K NGy).
n—

Define the higher order differences for the function A defined on V in exactly the
same way as was done in (1.13) and (1.14) on the family .. Since Vy, --- Vy, A(V)
does not depend on the order of the subscripts Vj, ..., V1, it is convenient to write
VvA(F) instead of Vy, --- Ay, A(F) with V. = {Vy, ..., V,}. For convenience, put
Vgr(F) = A(F).

Lemma 3.12. If V\ (Vi U---UV,) and V'\ (V] U---UV,) are two (not necessarily
reduced) representations of Y € U, then

an PN VVI)"(V) = an/ o VVI/)\,(V/) .

Lemma 3.12 shows that the value of VyA(V) only depends on the member ¥ =
V A\ (Vi U---UV,), but not on its representation. Therefore, we can extend A to the
semiring ‘U by putting

MV \UV) = WA(F), VeV, VcC) finite. (3.4)

Proposition 3.13. The mapping A from (3.4) is additive and non-negative on *J.
The additivity is proved similarly to Lemma 1.21, while the non-negativity can

be obtained by approximating elements of V with elements of F.. The last steps of

the proof aim to show that A can be extended to a measure on the o -algebra generated
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by V. First, extend A onto the ring Dy generated by U (so that 9 is closed under finite
intersections and set-differences). It suffices to show that A is countably subadditive,
i.e.

MR L0 if R,LO,Ri,Ry,...€T. (3.5)

Define
Y={K\UG: K € F., G CF, finite} .

Then whenever N,>1Y, = @ for some Y1, Y2,... € Y, we have N,<;n ¥, = @ for
some finite m.

Proposition 3.14. For each R € U we have
AMR) =sup{A(U!_ Y :n=1,Y,€),Y;CR, 1<i<n}.

Finally, it is possible to show that (3.5) holds, whence A extends to a measure on
the o -algebra generated by *U. This o -algebra coincides with the o -algebra generated
by F.. If L = U,K,, with K1, K»,... € F. and pu is another function satisfying
w(K) = A(K) forall K € F,, then w(R) = A(R) forall R € ‘i], whence u = A.

3.3 Locally finite measures on posets

A measure A on L is said to be locally finite if it is locally finite with respect to the
Scott topology, which is equivalent to the condition

AMTx) <oo, xel.

The following result follows from Theorem 3.4 for F, = {1t x : x € L} and
F,={Fel: F <L}

Theorem 3.15 (Locally finite measure on L). Let I be a continuous lattice and
assume Scott(IL) to be second countable. Then A(x) = A(1 x), x € L, defines a
bijection between the family of locally finite measures A on L and the family of
mappings A: L — Ry satisfying

Alx) = lim A(x,), x, T x, x,x1,x2,...€L, (3.6)
n—0o0
and
Vi, -V AXx) >0, n>1, x,x1,x2,...,x, €, 3.7
where

Vi Ax) = Ax) — A(x V x1),
Vi Vg AX) =V, -V Ax) =V, -V Ax VX)), n>=2.

n—1

Note that (1 x1) N (1 x2) =1 (x1 V x2), so the above definition of the suc-
cessive differences complies with (1.13) and (1.14). Condition (3.7) means that A

is a completely monotone function on the semigroup (L, V) (see Appendix G), i.e.
A € M(L).
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Example 3.16 (Distributions of random variables). The real line is a lattice which
is not continuous, since it is not up-complete. But (—oo, oo] is a continuous lattice
and also [—o0, 00) under the reverse order. With this reverse order, 1 x = [—o00, x].
Thus, as a special case of Theorem 3.15, one obtains the well known correspon-
dence between locally finite measures on the extended real line and increasing right-
continuous functions.

Whenever F € L, there are x1, x2, ... € L such that (4 x,) + F asn — oco. By
the continuity of measures we obtain

AMF) =supAi(tx), FeLl,

xeF

and the dual relationship

M(tx) = inf A(F). xel.

The following theorem establishes the existence of locally finite measures on L.
Note that £, is defined in (3.1).

Theorem 3.17 (Locally finite measure on £). Let L be a continuous semi-lattice
with a top I and a second countable Scott topology. The formula (L) = A(x),
x € L, defines a bijection between the family of locally finite measures A on £ and
the family of mappings A: L + [0, oo] which are finiteonL, = {x e L : x < I}
and satisfy (3.6) and (3.7), where the latter holds for all x, x1, ..., x, € L.

Because of the Lawson duality between L. and £, we arrive at the following
conclusion.

Corollary 3.18 (Measures on L and functionals on £). Let . be a continuous semi-
lattice with a top 1 and a second countable Scott topology. The formula

Q(F) =AMF), FeL,

defines a bijection between the family of locally finite measures A on L and the
family of mappings Q: L + [0, co] which are finiteon L, = {F € L: F < L}
and satisfy

Q(F) = lim Q(Fy). FytF., F.Fi,F....eL, (3.8)

n

and completely monotone on L,, i.e.

Ve, Ve Q(F)>0, n>1, F,F,...,F, €L,. (3.9

3.4 Existence of random sets distributions

It turns out that the abstract results of the previous section can be used to prove the
Choquet theorem and to extend it for random closed sets in non-Hausdorff spaces.
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First, assume that E is a LCHS (and so metrisable) space. Consider the lattice of
all closed subsets of [E with the reversed inclusion order, so that F; < F> means
F1 D Fp.NotethattM ={F € F: F C M} and F1 < F> means Int F| D F>.

It is important to show that the elements of OFilt(F) are exactly the families

FX={(FeF: FNK=¢}), Kek.

It is easy to see that X € OFilt(F). In the other direction, i/ € OFilt(F) implies
that Y = U,>1 (1 F,) where F, € F and such that F,,1| < F, foralln > 1, see
Norberg [432]. Therefore,

U=|JIFeF: FCF)=|JIFeF: FcnF,)

n>1 n>1
={FeF: FNM =}
=FM

where M is a closed set being the complement to U,,~1 (Int F},). Let us show that M
is a compact set. Define
o
F=()Dn.
i=1

where
n

Dy =[\E\ M NK)™). (3.10)
i=1

K;,i > 1, is a monotone sequence of compact sets such that UK; = E, ¢, | Oisa
sequence of positive numbers and (M N K;)*" is the e,-envelope of M N K;. Assume
that M is unbounded. Since FM is open in Scott topology, for each F € FM there
exists F/ € FM such that F/ « F. The latter means that F > ND for directed
D implies that F/ > D for some D € D. However, the latter is not possible for
D = {D,,n > 1} defined in (3.10), since

F'S (\E\ (M N K)™)

i=1

implies F' N M # (. Therefore, the family £ = OFilt(F) can be identified with K
and the Choquet theorem follows from Corollary 3.18.

The lattice framework makes it possible to relax the topological conditions im-
posed on E and prove the Choquet theorem for non-Hausdorff topological spaces.
Let E be a space endowed with a second countable topology G which is also a con-
tinuous lattice. As before, F is the collection of all closed sets, but X now denotes
the family of all compact and saturated sets. A set K is called saturated if it is equal
to the intersection of all open sets G D K. Note that we do not assume any of the
separation properties for E. If E is a T space (so that all singletons are closed), then
each subset of [ is saturated.
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A non-empty F € F is said to be irreducible it F C F; U F> for two closed
sets Fi and F> implies that FF C Fj or F C F>. Assume that E is sober, which
means every irreducible set is the topological closure of a singleton corresponding to
a unique element of E. All Hausdorff spaces are sober. The relevance of this concept
to the lattice framework is explained by the fact that any continuous poset endowed
with its Scott topology is sober.

Consider a lattice L being the family F of all closed sets in E with the reverse
inclusion, so that the empty set is the top of IL. Then L is continuous and has a second
countable Scott topology. The family K is a continuous semi-lattice under the same
order. If K € K, then FX belongs to the family OFilt(LL) of open filters of L = F.
The mapping K +— FX, K e K, is an isomorphism between X and OFilt(F), which
shows that Scott(K) is second countable.

Corollary 3.18 applied to . = F establishes a correspondence Q(K) = A(FX)
between a function Q that satisfies (3.8) and (3.9) and a locally finite measure A
on F. The corresponding measure A is a probability measure if Q(¥) = 1. In view
of Example 3.6, the above conditions are equivalent to the fact that 7 = 1 — Q
is a capacity functional. Therefore, Corollary 3.18 yields an extension of the Cho-
quet theorem for random closed sets in a second countable sober space [E having a
continuous topology (that also implies that [E is locally compact).

4 Capacity functionals and properties of random closed sets

4.1 Invariance and stationarity
Stationary and isotropic random sets

If g is any function (or transformation) acting on E, then the distribution of X is

said to be invariant with respect to g (or g-invariant) if X 4 g(X), i.e. X and its
image under g are identically distributed. If X is g-invariant for each g from a group
of transformations G acting on X, then x is called G-invariant. Particularly impor-
tant cases appear if E = R? is the Euclidean space and G is either the group of
translations on R? or the group of all rotations or the group of all rigid motions.

Definition 4.1 (Stationary and isotropic random sets).
(i) A random closed set X in R is called stationary if

x4 (X +a) (4.1

for all @ € RY, i.e. the distribution of X is invariant under all non-random
translations. If (4.1) holds for all a from a linear subspace H C R4, then X is
called H-stationary.

. . . d
(i) A random closed set X in R? is called isotropic if X ~ (gX) for each deter-
ministic rotation g.
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Proposition 4.2 (Stationarity implies unboundedness). A stationary almost surely
non-empty random closed set X in R? is unbounded with probability 1 and co (X) =
R? almost surely for the closed convex hull co (X) of X.

Proof. Since X is almost surely non-empty, its support function 4 (X, ) does not

take the value —oo. The stationarity of X implies 7 (X, u) 4 (h(X,u) + (a, u)) for
all a € R?. Putting a = u shows that h(X, u) is infinite with probability one for
all u # 0. Applying this argument for a countable dense set of u on the unit sphere
yields that co (X) = R? a.s., whence X is also almost surely unbounded. O

Proposition 4.2 implies that a stationary convex set is either empty almost surely
or is almost surely equal to the whole space.
The following proposition follows immediately from the Choquet theorem.

Proposition 4.3 (Invariance properties of the capacity functional).
(i) A random closed set X is stationary if and only if its capacity functional is
translation invariant, i.e. Tx (K + a) = Tx(K) forall K € K anda € R?.
(ii) A random closed set X is isotropic if and only if its capacity functional is rota-
tion invariant, i.e. Tx(gK) = Tx(K) for all K € K and all rotations g.

Stationary random sets on the line

Consider a random closed set X on the real line E = R. Then X is stationary if
and only if Tx(K) = Tx(K + a) foralla € R and K € K. It is possible to relax
this condition by imposing it for some subfamilies of compact sets K. For instance,
X is said to be first-order stationary if Tx([x,y]) = Tx([x + a,y + a]) for all
x,y,a € R; X is second-order stationary if Tx (K) = Tx(K + a) for all a € R and
K being unions of two segments, etc.

Proposition 4.4. Let T be a completely alternating functional on the family Ko of
finite unions of segments in R. If T is first-order stationary and a(x) = T ([0, x]) is
right continuous at x = 0, then T is upper semicontinuous on K.

Proof. 1t was noticed in Example 1.29 that it suffices to show that 7'([x, y]) is right-
continuous with respect to y and left-continuous with respect to x. Because of the
first-order stationarity, 7 ([x, y]) = T([0, y — x]), so that it suffices to show that
the function a(x) = T ([0, x]) is right-continuous for all x > 0. The 2-alternation
property (1.16) of T applied for K = {0}, K1 = [0, u] and K> = [—x, O] implies

a(w)—a©)>=alx+u)—alkx), u,x=>0,
whence a is right-continuous for all x > 0. O

The concept of first- and second-order stationary sets in R can be extended to
the higher-dimensional case and any family of sets M C /C, so that X is called nth-
order stationary on M if Tx(K{ U ---U K,) +a) = Tx(K; U---U K,) for all
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Ki,....K, e Manda € R4, Often M is chosen to be a pre-separating class, for
example, the family of all balls in R,

An important case appears if M is a family of singletons. Then X is first (re-
spectively second) order stationary if its indicator function is the first (respectively
second) order stationary random field. If ¢, is a strictly stationary continuous ran-
dom field on R¢, then the corresponding level set X = {x : ¢, = 1} is a stationary
random closed set in RY for every 7 € R.

A random closed set X is said to be quasi-stationary if P {X € Y} = 0 for any
Y € B(F) implies P{(X +a) € Y} = 0 for each a € R?. This property can be
equivalently reformulated by using higher-order differences (1.8) and choosing J =

Self-similarity

A random closed set X in RY is said to be self-similar if X coincides in distribution
with c¢X for every ¢ > 0. This is the case if and only if the capacity functional
satisfies T (cK) = T(K) forevery K € K and ¢ > 0.

Example 4.5 (Self-similar sets).

(i) Let C be a deterministic cone in R?. If X is a random (not necessarily isotropic)
rotation of C, then X is self-similar. This is also the case if all realisations of X are
cones.

(i) Let X = {r = 0: w, = 0} be the set of zeroes for the Wiener process w;. Then
X is self-similar, although it is not a cone itself. Section 5.2.1.

(iii) The measure A on B(RY) with density A(x) = |x|~¢ satisfies A(cK) =
A(K) for every ¢ > 0 and K € K. The capacity functional 7(K) = 1 — e~ AK)
defines a self-similar random closed set which is the Poisson random set in Rd, see
Definition 8.8.

If X is self-similar and a.s. non-empty, then 0 belongs to X almost surely. There-
fore, a non-trivial self-similar set cannot be stationary.

Proposition 4.6 (Logarithm of self-similar set). If X is a self-similar random closed
set in (0, 00), then its logarithm Y = {log(x) : x € X} is a stationary random closed
setinR.

Proof. Forevery K € K(R) and a € R, the set (K + a) hits Y if and only if e“eX
hits X, where eX = {e' : t € K}. By the self-similarity of X,

P!e“eKﬂX;é(Z)}:P[eKﬂX;é@}=P{KOY7£(Z)}. O

4.2 Separable random sets and inclusion functionals
Finite-dimensional distributions of the indicator process

Consider a random function ¢, x € E, with the only possible values being O or 1.
Then ¢, is an indicator 1z(x) of a (not necessarily closed) set Z C E. By Kol-
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mogorov’s extension theorem, the distribution of ¢, is determined by the finite-
dimensional distributions

Plex=1,xeK, ;y=0,yeL}=P{KCZ LNZ=0}

for K and L from the family J of finite subsets of [E (note that the empty set is
considered to be an element of J). The above probabilities can be expressed in terms
of the hitting functional of Z

Tz(K)=P{ZNK #£0}, Ke7J,
since

P{LNZ=0}=1-Tz(L),
PlxeZ LNZ=0}=Tz(LUI{x}) —Tz(L),
P(KUXWCZ LNZ=0=P{KCZ LNZ="0%)
—P{KCZ (LUXHNZ=0}.

The family of finite-dimensional distributions of the indicator function is consistent
if and only if 77 (K) is a completely alternating capacity on J. Therefore, every com-
pletely alternating capacity 7' on the family J with values in [0, 1] defines uniquely
the distribution of a random indicator function on an arbitrary space E. However, this
indicator function may correspond to a non-closed random set.

Proposition 4.7 (Extension of capacity on finite sets). Let E be a LCHS space. A
completely alternating functional T : J + [0, 1] satisfying T (¥) = O is the capacity
functional of a random closed set if and only if T is upper semicontinuous on J,
where the latter is equipped with the topology induced by the myopic topology on
the family K of compact sets.

Proof. We have to prove sufficiency only. Extend T onto the family G of open sets
and then onto the family of compact sets by

T*(G)=sup{T(L): LCG, LeTJ}, GegG, (4.2)
T*(K)=inf{T*(G): K CG, GegG}, Kek. 4.3)

Then T*(K) becomes a completely alternating upper semicontinuous functional on
KC, so that the Choquet theorem implies the existence of a random closed set with the
capacity functional 7*. It remains to show that 7* coincides with 7" on J.

LetG, | Land T*(G,) | T*(L) asn — oo. Then there is a sequence {L,, n >
1} € Jsuchthat T(L,) | T*(L)and L, | L asn — oo. Since L, convergesto L in
the myopic topology on J, the upper semicontinuity of 7" implies limsup 7' (L,) <
T(L). Hence T*(L) < T(L). The proof finishes by combining this fact with the
obvious inequality 7*(L) > T (L). O
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Separability

It is essential to note that Proposition 4.7 establishes the existence but not the unique-
ness of a random closed set with the capacity functional defined on finite sets. Dif-
ferent random closed sets may share the same capacity functional restricted onto J.

The simplest example is provided by a random singleton X = {£} with & having
an absolutely continuous distribution in R?. Then X hits every finite set with prob-
ability zero, so that the capacity functional restricted on J is indistinguishable with
the capacity functional of the almost surely empty set. If A is a closed set in R¢ with
a zero Lebesgue measure, then X = A + £ is also indistinguishable from the empty
set if the capacity functional is restricted on the family J. This implies that for any
other random closed set Y

P(YNL#P=P{YUX)NL#P}, LeT,

meaning that Y and Y U X have identical capacity functionals restricted on J.

Definition 4.8 (Separability and separant). A random closed set X is said to be
separable if there exists a countable dense set Q C E such that X almost surely
coincides with cl(X N Q). Every such Q is called a separant of X.

Definition 4.8 relies on the fact that cI(X N Q) is a random closed set. Indeed, for
every open G,

L[XNQNG=={(XNQNG=B={XNB=0}e3,

where B = Q N G, so that the conclusion follows from the fundamental measurabil-
ity theorem. Clearly, X = {£} and X = A 4 £ are not separable if £ has an absolutely
continuous distribution and the Lebesgue measure of A vanishes. The following the-
orem establishes the existence of a separable random closed set determined by a
completely alternating functional on J.

Theorem 4.9 (Distribution of a separable random set). Assume that E is a LCHS
space. Let T be a completely alternating functional on J with values in [0, 1] such
that T () = 0 and let T* be the extension of T defined by (4.2) and (4.3).

(i) There exists a random closed set X such that Tx(K) = T*(K) forall K € K
and Ty is the smallest capacity functional such that T(L) < Tx(L) for all
Lel.

(ii) The random closed set X is separable. If Q is its separant, then X = cl(Z N Q)
a.s. for the random (not necessarily closed) set Z determined by the values of
T on7J.

(iii) A random closed set X such that Tx (L) = T (L) for all L € J exists if and only
if
T*"{xhH=T{x}), xeE. 4.4)

In this case cl(X N Q) is the unique separable random closed set whose capacity
functional coincides with T onJ.
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Proof.
(i) The existence directly follows from the Choquet theorem. If 7** is a capacity
functional such that 7**(L) > T'(L) for all L € J, then

T*(G) > sup{T**(L): L C G, L € 3}
>sup{T(L): LC G, LeJ}=T"G).

Thus, T**(K) > T*(K) forall K € K.

(ii) Let Gp be a countable base of the topology on E. For every G € Gy define Q¢
to be the union of sets {L,,, n > 1} C J chosen so that L,, C G and T'(L,) 1 T*(G)
as n — 00. Let QQy be the union of sets Q¢ for G € Gy. Then

T*(G)=P{ZNQyNG #0}, GEeqg, (4.5)

noticing that {Z N Qo N G # @} is a measurable event since Qp is countable. By
approximating any G € G with unions of elements of Gy it may be shown that (4.5)
holds for all G € G. Since

P{ZNQoNG#B)=P{cl(ZNQy)NG £V}, Geg,

the random closed set cl(Z N Qo) has the capacity functional 7*(G) on the family of
open sets. Therefore, X coincides in distribution with cl(Z N Qp). The set Qp may
be taken as a separant of X, since cl1(Z N Q) N Qg D Z N Q.

If Q is another separant for X, then Q U Qy is also a separant for X, whence

T*(G) =P{ZNQNG # %)
—P{(ZNQyNG # W)
—P{ZN(QUQNG#M, Geg.

By pairwise inclusions of the events involved in the above chain of equalities, we
deduce thatcl(Z N Q) =cl(ZNQp) = X a.s.
(iii) Since QU L is a separant for Z,

xeZ)c{xecd(ZN@QUxH)} ={x ecl(ZNQ)),

where the equality is understood as equivalence up to a set of probability zero.
By (44), P{x e cl(ZNQ)} = P{x € Z}. Therefore, events {x € Z} and {x €
cl(Z N Q)} coincide up to a set of probability zero, whence 7*(L) = T (L) for all
L € 7. The uniqueness follows from (i). m]

The separability concept of random closed sets is similar to the concept of
the separability for stochastic processes, see Doob [142] and Gihman and Skoro-
hod [193]. The random closed set X is separable if and only if its indicator function
is a separable stochastic process. This means that separable random sets can be ex-
plored through their indicator functions. Furthermore, the separability assumption
allows us to treat non-closed random sets using methods typical in the theory of
stochastic processes. Quite differently from the theory of stochastic processes where
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the separability is a usual assumption, many interesting random closed sets are not
separable. For instance, such a simple random set like a random singleton X = {£}
is not separable and corresponds to a non-separable indicator function if £ has an
absolutely continuous distribution.

Since distributions of separable random closed sets are uniquely identified by the
values of their capacity functionals on the family of finite sets, Theorem 4.9(iii) can
be reformulated using inclusion functionals.

Proposition 4.10 (Inclusion functional for separable random sets). A distribution
of a separable random closed set X is uniquely determined by its inclusion functional
Ix(L)=P{L C X} forL €73.

P-continuity

The following definition formulates a continuity assumption related to the capacity
functional restricted onto J. Recall that Proposition 1.34 establishes the upper semi-
continuity of the coverage function px(x) = Tx({x}), x € E.

Definition 4.11 (P-continuity). A random closed set X is called P-continuous at
xo € Eif px(x) = P{x € X} is continuous at xq as a function of x. Furthermore, X
is called P-continuous if it is P-continuous at every xo € E.

Proposition 4.12 (P-continuity and separability).
(i) A random closed set X is P-continuous at xq if and only if

lim P{xoe X, x ¢ X} =0, (4.6)
X—> X0

or, equivalently,
lim P{xo ¢ X, x € X} =0.
X—>X(

(ii) If a separable random closed set X is P-continuous, then every countable dense
set Q C E is a separant for X.

(iii) If X is P-continuous, then for every two countable dense sets Q and Q" we have
cd(XNQ) =cd(XNQ) as.

Proof.
(i) Clearly,
P{xo € X, x ¢ X} = Tx({xo, x}) — Tx({x}).

Since T is upper semicontinuous, lim SUPy T ({x0,x}) < T({xo0}), whence the
P-continuity at xg is equivalent to (4.6).

(ii) Note that (4.6) means that the indicator function of X is a stochastically contin-
uous random function, see Gihman and Skorohod [193]. It is well known that every
separable stochastically continuous random function has any countable dense set as
its separant.

(iili) By Doob’s theorem, the indicator function of X is stochastically equivalent to
a separable random function. This separable function is the indicator of the random
closed set cI(X N Q), where the choice of Q is immaterial because of (ii). m]
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A.s.-continuous random sets

Definition 4.13 (a.s.-continuity). A random closed set X is called a.s.-continuous
if P{x € X} =0 forevery x € E.

Note that 9 X (the boundary of X) is a random closed set by Theorem 2.25(iii). If
reformulated for the indicator function of X, Definition 4.13 means that the indicator
function has a discontinuity at any given point with probability zero. The property of
X being a.s.-continuous can be verified using a restriction of the capacity functional
onto the family of finite sets.

Proposition 4.14 (a.s.-continuity and separability).

(i) A random closed set X is a.s.-continuous if and only if X is P-continuous and
cl(X N Q) is a.s.-continuous for some countable dense set Q C E.

(ii) If X is an a.s.-continuous random closed set, then cl(Int(X)) = cl(X N Q) a.s.
for every countable dense set Q and cl(Int(X)) is the random closed set that
appears in Theorem 4.9(i) with the distribution derived from Tx (L) for L € 7.
If, in addition, X is separable, then X = cl(Int X) almost surely, i.e. X is regular
closed.

Proof.
(i) If X is a.s.-continuous, then X is P-continuous since

reaxyo (M UtreX, yu ¢ X)

n>1m=n
for all sequences y, — x, whence (4.6) holds. If Y = cl(X N Q), then
Y CaX Cc Y)UX°nX),

whence Y is a.s.-continuous.

If X is P-continuous, then the capacity functionals of X and Y coincide on J.
Therefore, P{x e (Y)u (y° ﬂX)} = 0 for all x € E, whence P{x € 90X} =
P{x e oY} =0.

(ii) If X is a.s.-continuous, then (X N Q) C Int X a.s. for every countable dense set
Q. Therefore, cl(X N Q) C cl(Int(X)) a.s. The evident reverse inclusion completes
the proof. O

4.3 Regenerative events
p-function

For random closed sets on the line, the calculation of the inclusion functional on
the family of finite sets can be considerably simplified by imposing a regenerative

property.
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Definition 4.15 (Regenerative event). A separable random closed set X on the pos-
itive half line such that X contains the origin almost surely, i.e. 0 € X a.s., is said to
be a regenerative event (or regenerative phenomenon) if

Ix({tr, ... ) = Ix({i D Ix ({2 — 11}) - - Ix ({tn — tn—1})
foralln >2and0 < t; < --- < t,, where Iy is the inclusion functional of X.

Proposition 4.10 implies that the distribution of a regenerative event is deter-
mined by its coverage function

pt)=PlteX}, >0, 4.7

which is called the p-function of X. All possible p-functions can be characterised by
their monotonicity property that is similar to the monotonicity properties of capacity
functionals. By the usual inclusion-exclusion formula using p one obtains the avoid-
ance functional Q({t1, ..., ,}) forall #1,...,t, > 0. This observation easily leads
to the following result.

Proposition 4.16. A real valued function p(t), t > 0, is a p-function of a regenera-

tive event if and only if the avoidance functional Q({t1, ..., t,}) corresponding to p
is non-negative and Q({t1, ..., t,}) = O({t1, ... . ty, tyy1}) forallt;y < --- < t, <
In+1-

Note that p(0) = 1 by the imposed assumption that X contains the origin al-
most surely. A p-function and the corresponding regenerative event are said to be
standard if p(t) — 1 ast | 0. The inequalities for Q from Proposition 4.16 can
be restated for the p-function, which leads to the following results proved in King-
man [308].

Theorem 4.17 (Properties of p-function). Every standard p-function is positive,
uniformly continuous on R and of bounded variation in every finite interval. The
limit
g =1lim:~'(1 = p@t)) (4.8)
t10

exists in [0, oo] and g = 0 if and only if p identically equals to 1.
Theorem 4.18 (Laplace transform of p-function). For every standard p-function
p, there exists a unique positive measure j+ on (0, co] with
/ (1 —e Hu(dt) < oo, 4.9)
(0,00]

such that the Laplace transform r (6) = fooo et p(t)dt satisfies

b 0+ / (1 —e u(dr) (4.10)
r(6) ’
]

(0,00

for all 6 with a positive real part. Equation (4.10) establishes a one-to-one correspon-
dence between standard p-functions and positive measures (. satistying (4.9).
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Lévy measure and subordinator

The measure u that appears in (4.10) is called the Lévy measure of the corresponding
regenerative event. If ¢ from (4.8) is finite, the regenerative event is called stable as
opposed to an instantaneous X which has ¢ = oo. For a stable X, u((0, x]) =
q F (x), where F is the cumulative distribution function of a strictly positive random
variable. Then X is the so-called alternating renewal process, i.e. X is the union of
exponentially distributed segments with mean length 1/g separated by segments of
random length with distribution F (all lengths are mutually independent).

If p is a standard p-function, then lim;_, oo p(f) = (1 4+ a)~', where a =
f(o, o)X w(dx). If u({oo}) > 0, then X is bounded almost surely and is called tran-
sient. If @ = oo, then X is called null, while a < oo identifies a positive X.

Example 4.19 (Alternating renewal process).

(i) If u is the measure of mass A concentrated at {1}, then X is the union of ex-
ponentially distributed segments with mean A ™! separated by unit gaps. Then (4.10)
implies r(0) = (A +6 — xe~%) L.

(i) If 4 has the density Ae™*', then X is the union of exponentially distributed
segments with mean 1 separated by exponentially distributed gaps with mean 1/A.
Thenr (@) = (A +60)0~ 1@ + A1+ 1)L

Each standard regenerative event X can be represented as the image {{(x) : x >
0} of an increasing process with independent increments ¢ (called subordinator)
starting from zero and whose cumulant is

Be e = exp—x [0+ [ 01—

(0,00]

As will be shown in Section 5.2.3, this relationship to subordinators holds for the
even more general case of strong Markov (or regenerative) random sets. This general
case includes also non-separable sets whose distributions are not necessarily deter-
mined by their p-functions.

For standard regenerative events the avoidance functional on intervals can be
expressed using the p-function and the Lévy measure p that appears in (4.10).

Proposition 4.20 (Avoidance functional of a regenerative event). For every stan-
dard regenerative event with p-function p and Lévy measure [,

Ox((1,9) =P{XN[t,5) =0}

t

= /p(v),u([s —v,o0Ddv, O<t<s <00, 4.11)
0

and
w(ls, o0]) = liﬁ}s_lQX((e, s), s>0. 4.12)
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Proof. The p-function p is the density of the potential measure U of the subordinator

(x),i.e.

o]

UA) =E / 14(2(x))dx.
0
IfT(t) =inf{x > 0: ¢(x) > t} is the first passage time strictly above ¢, then

Ox((1,9) =P{(T®)—) =1, ¢(T (1)) =5} .
It follows from Bertoin [65, Prop. 2, p. 76] that the latter probability is given by

t o0 t
//U(dv)u(dz —y) = /p(v)u([s — v, 00])dv.
0 s 0

Finally, (4.12) can be easily derived by passing to the limit in (4.11). O

Related results will be discussed in greater generality in Section 5.2.3.

4.4 Robbins’ theorem

In many cases the capacity functional of X can be used to evaluate the expectation
of w(X), where u is a measure on E. The key point is to observe that

n(X) = f 1x (x)p(dx),
E
see also Example 1.3(iii). If i is locally finite, then Fubini’s theorem yields the fol-
lowing result.

Theorem 4.21 (Robbins’ theorem). Let X be a random closed set in a Polish space
E. If u is a locally finite measure on Borel sets, then (1 (X) is a random variable and

Eu(X) = /P{x € X} u(dx) (4.13)
E

in the sense that if one side is finite then so is the other and they are equal.

Proof. 1t suffices to show that 1r(x): E x F +— {0, 1} is jointly measurable with
respect to B (E) ® B(F), namely,

{0, F) : 1p(x) =0} ={(x, F) : x ¢ F}

= U{(x,F): xeG, FNG =0}
GeGy

= J G xF% e BE) @BF).
GeGy

where Gy is a countable base of topology on E. O
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Apart from calculating the expected value of £ (X), Theorem 4.21 can sometimes
be used in the other direction to deduce that px(x) vanishes if Eu(X) = 0 for a
sufficiently rich family of measures . An easy generalisation of (4.13) for higher-
order moments is

E(M(X)k):/---/P{{xl,...,xk} C X)dx;---dxg, (4.14)

i.e. the higher-order moments of @ (X) can be obtained as multiple integrals of the
inclusion functional I'x({xy, ..., xx}) of X. An extension of Robbins’ theorem for
random capacities is discussed in Section 8.5.

Robbins’ theorem does not hold for measures which are not locally finite; indeed
neither does Fubini’s theorem, see e.g. Mattila [382, p. 14]. For example, if 1 is the
counting measure and X = {£} is a random singleton with £ having an absolutely
continuous distribution, the left-hand side of (4.13) equals 1, while P{x € X} = 0
for all x, whence the right-hand side vanishes. Similar examples can be easily con-
structed for X being a point process or any other random set with a vanishing cover-
age function and non-vanishing ©(X). For instance, X may be a random collection of
curves with £ (X) being the total curve length. Therefore, Robbins’ theorem does not
apply to many interesting geometric measures, in particular, the Hausdorff measures.
Even the measurability of 1 (X) may fail as the following example shows.

Example 4.22 (Non-measurable ;.(X)). Let g: R? — [1, 00) be a non-measurable
function. Define a measure on R? by
if K is finite,
(K = EXEK g(x) if K is finite

otherwise .

Then it is not true that (X)) is a random variable for every random closed set X. For
example, if X = {£} is a random singleton, then ©(X) = g(&) is not necessarily a
random variable.

4.5 Hausdorff dimension
Bounds on Hausdorff dimension using intersection probabilities

By Robbins’ theorem, a random closed set X in R has a positive Lebesgue measure
if and only if its coverage function p(x) = P {x € X} is positive on a set of a positive
measure. Then the Hausdorff dimension of X is d. If X is a random singleton (and
so has the Hausdorff dimension zero), then 7' (K) is positive if K has a non-empty
interior that includes a part of the support of X. In general, the Hausdorff dimen-
sion of X may be assessed by considering the capacity functional on some specially
designed sets.

For n > 1, split the unit cube [0, l]d in RY into 24 dyadic half-open cubes
with side length 27", Let Z" (p) be the union of such cubes where each cube has the
probability p € (0, 1) of being included independently of other cubes at any other
stage n. Define
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Z(py=()2"p).
n>0
The following result shows that the Hausdorff dimension of set K can be explored
by considering the intersection of K with Z(p).

Proposition 4.23 (Intersections with Z(p)). Let« > 0 and let K be a closed subset
of [0, 1]¢.
(i) IfK intersects Z = Z(2~%) with positive probability, then dimyg(K) > «.
(i) If X is a random subset of [0, 119 and X intersects the independent random
set Z = Z(27%) with positive probability, then dimyg(X) > « with positive
probability.

Proof.
(i) Let b = P{KNZ # @} > 0. Then, for any collection of sets A; formed as
unions of dyadic cubes such that K C UA;, we have

b < ZP{A, NZ#0) < ZP{A, NZ"Q2™%) £ 0} < Zdiam(Aj)“ ,
J J J
where n; is defined so that A; is composed of the cubes of side length 27"%/. The
Carathéodory construction defined in Example E.1 applied for the family M of
dyadic cubes yields the so-called net measure N (K). It is known (see Mattila [382,

Sec. 5.2]) that
H(K) < N*(K) < 4%d“/*H*(K) .

If dimyK = B < «, then there exists a collection of dyadic cubes covering K
such that Z j diam(Aj)/3 < b, contrary to the assumption. Therefore, dimyK > «.
(ii) By taking conditional expectation and using (i) for a deterministic set K one
obtains that

0<P{XNZ#W}

=EP{XNZ#0|Z})

= E(laimux=oP (X N Z # 0| Z})

< E(Liimyx=o) = P{dimpX > o} . |
Theorem 4.24 (Lower bound on the Hausdorff dimension). If a random closed set
X has Tx (K) > 0 for all deterministic sets K withdimyK > g, thendimyX > d—p
with positive probability.
Proof. Let Z1 and Z; be two independent random sets such that Z; 4 Z (2_(d _ﬂ))
and Z, ¥ Z(2~#~)). Then

Zin 7, L 7o)y
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By the theory of branching processes, Z(2~@~#)) is non-empty with positive proba-
bility, since the number of daughter cubes at every step has the expected value 2¢ >
1. By Proposition 4.23(ii) and letting ¢ — 0, one obtains that dimyZ(2~“~#)) > g
with positive probability.

The condition of the theorem implies that P {X N Z@Q~d=p=e) #* (2)} > 0 for
& > 0 and dimgX > d — B with positive probability by Proposition 4.23(ii). O

Intersection-equivalence and capacity-equivalence

It is well known that two functions are equivalent at x if their ratio is bounded away
from zero and infinity in the neighbourhood of x. It is possible to extend this concept
for random (closed) sets using their capacity functionals.

Definition 4.25 (Intersection-equivalent random sets). Two random closed sets X
and Y in a Polish space E are intersection-equivalent in the open set G, if there exist
constants c1, ¢ > 0 such that for any closed set F C G,

1Ty (F) < Tx(F) < 2Ty (F). (4.15)

Note that (4.15) means that the ratio Tx (F)/ Ty (F) is bounded above and below
by positive constants that do not depend on F' C G. Two random singletons X = {§}
and Y = {n} with absolutely continuous distributions are intersection-equivalent if
the ratio of the densities of £ and 7 is bounded away from zero and infinity.

Let cap ; denote the capacity obtained by (E.7) with the kernel

k(x,y)= f(x—=yID
for a decreasing function f: R4 +— [0, oo].
Definition 4.26 (Capacity equivalence). Two (random) sets X and Y are capacity
equivalent if there exist positive constants ¢ and ¢; such that
creap(Y) = cap,(X) < capcap,(Y)
for all decreasing functions f.
The following results are proved by Pemantle, Peres and Shapiro [451].
Theorem 4.27 (Random sets generated by Brownian motion).
(i) The trace of spatial Brownian motion in R? with d > 3 is capacity-equivalent
to the unit square [0, 112
(ii) The zero-set X = {t € [0, 1] : w; = 0} for the Wiener process w; is capacity-

equivalent to the middle—é Cantor set K that consists of all points in [0, 1] that
have only digits 0 and 3 in their 4-adic expansions.
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4.6 Random open sets

It is natural to define random open sets as complements to random closed sets, so
that Y : £2 +— @ is called a random open set if its complement X = Y° is a random
closed set. Since {Y°* N F = ¢} = {F C Y}, Y is a random open set if and only
if {FF C Y} is a measurable event for every F' € F. Theorem 2.28 implies that the
distribution of Y is uniquely determined by its inclusion functional

Iy(F)=P{FCY}, FerF.

Proposition 4.28 (Closure and interior of random sets). Assume that E is LCHS.
(i) IfY is a random open set, then its closure X = cl(Y) is a random closed set.
(ii) If X is a random closed set, then its interior Y = Int(X) is a random open set.

Proof.

(i) It suffices to note that {cl(Y) NG =¥} = {Y NG =¥} = {G C Y% isa
measurable event for every open set G.

(ii) Forevery F € F,{F C Y} = {F Ncl(X®) = @}, so that the statement follows
from Theorem 2.25(iii). O

The fact that cl(Y') is a random closed set for an open Y does not imply that Y is
a random open set. Proposition 4.28 justifies correctness of the following definition.

Definition 4.29 (Regular closed random set). A random closed set X is called
regular closed if X = cl(Int(X)) a.s. A random open set Y is called regular open if
Y = Int(cl(Y)) a.s.

Theorem 2.6 implies that X is a random regular closed set if X takes values in
the family of regular closed sets and {x € X} is a measurable event for every x € E.
It follows from Theorem 4.9 that the distribution of every regular closed set X is
uniquely determined by its inclusion functional /x defined on the family J of finite
sets.

It should be noted that for a general open random set Y the inclusion functional
cannot be extended uniquely from the family J of finite sets onto K. For instance, if
Y = X°© where X = {£} is a random singleton with non-atomic &, then Iy (L) = 1
for every finite set L. This situation differs from the case of random closed sets, see
(1.33). The following result follows from Theorem 4.9.

Proposition 4.30 (Inclusion functional of random open set). Let E be a LCHS
space. For every functional I : J — [0, 1] such that 1 — [ is a capacity functional on
J there is a unique random open set Y such that P{L C Y} = I(L) forall L € J and
Y is a separable random closed set.

In particular, if Y is a random convex open set in R4 (i.e. Y € coG a.s), then its
complement is a separable random closed set. This yields the following corollary.

Corollary 4.31 (Distribution of random open convex set). Let I be a functional on
the family J of finite sets in R4 such that I1(W) =1,1I(L) € [0,1] forall L € 73,
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1 — I is a completely alternating functional on J, [ (L,) — I (L) ifco(L,) | co(L)
and I (L) = I(L U {x}) ifco(L) = co(L U {x}). Then there exists a unique random
convex open set Y with the inclusion functional I.

4.7 C-additive capacities and random convex sets
C-additivity

Using capacity functionals, it is possible to provide necessary and sufficient condi-
tions for a random closed set X to be almost surely convex. Denote by co F (re-
spectively co K) the family of convex closed (respectively compact) sets in a Banach
space E. The families co F and co K are Effros measurable, for instance,

Fl\oF) =) JFeF: x.y})CF. (cx+(—-0c)y) ¢ F}. (416
x,y€QceQy

where [x, y] denotes the segment with end-points x and y, Q is a countable dense
set in R and @ is the set of rational points in [0, 1].

Definition 4.32 (Convex random set). A random closed (respectively compact) set
X is called random convex closed set (respectively random convex compact set) if
X € coF (respectively X € coK) a.s.

To characterise random convex sets in terms of their capacity functionals we
make use of the Choquet theorem and so need to assume that E is locally compact.
Without loss of generality consider E = R?.

Definition 4.33 (Separated sets). Two compact sets K| and K3 in R4 are said to be
separated by a compact set K if, for every x1 € K; and xo € K>, there is ¢ € [0, 1]
such that cx; + (1 — ¢)xz € K.

It is easy to see that every two convex compact sets K1 and K> such that K1 U K>
is also convex are separated by L = KN K>, see Figure 4.1. The following definition
strengthens the subadditive property (1.16) of general capacities.

K, K K>

K>
a) b)

Figure 4.1. a) K| and K, separated by K; b) K| and K, separated by K| N K».
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Definition 4.34 (C-additive capacity).
(i) A capacity ¢ is said to be C-additive on IC if

@(K) + (KUK UK>) =¢(KUK)) +¢(KUK>) (4.17)

for each K1, K> € K that are separated by K € K.
(ii) A capacity ¢ is said to be C-additive on co K if

P(K1 N K2) + (K1 UK2) = @(K1) +¢(K2) (4.18)

forall K|, K € co/C suchthat K; U K, € co K.

Every measure is C-additive with (4.17) valid for disjoint K; and K, without
assuming that K separates K1 and K».

Theorem 4.35 (Convexity and C-additivity). Let Tx be the capacity functional of
a random closed set X in R?. Then the following statements are equivalent.
(i) X is almost surely convex.
(ii) Tx is C-additive on K.
(iii) Ty is C-additive on co IC.

Proof. If X is a.s. convex, then, for every K| and K> separated by K, Defini-
tion 4.34(i) implies that

0=P{XNK=0, XNK1#0, XNKy#0}=—-Ag, Ak, Tx(K),

whence Ty satisfies (4.17) so that (ii) follows from (i). Furthermore, (iii) follows
from (ii) since K1 and K> are separated by K1 N K>.

It remains to prove that the C-additivity of Tx on co K implies that X is a.s.
convex. For every two points x, y € R?andz = cx + (1 —c)y with ¢ € [0, 1],

P{{x,y} C X, 2¢ X} =Tx(K1) + Tx(K2) — Tx(K1 N K3) — Tx (K1 UK>)
=0,

which is easily seen by applying (4.18) to K1 = [x, z] and K7 = [z, y]. Therefore,
the probabilities of all events from the countable union in the right-hand side of (4.16)
vanish. O

Open problem 4.36. Characterise, in terms of the capacity functional Ty, the prop-
erty that random closed set X almost surely belongs to the convex ring, i.e. almost
all realisations of X are finite unions of convex compact sets.

Open problem 4.37. Apart from the characterisation of convexity it is very difficult
to characterise geometric properties of X using its capacity functional. Is it possible
to characterise connectivity properties of X using 7y ? In particular, this concerns the
existence of unbounded connected components, the question typical in continuum
percolation theory, see Meester and Roy [387].
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Semi-Markov random sets

Definition 4.38 (Semi-Markov random set). A random closed set X in R is said
to be semi-Markov if its avoidance functional Qx satisfies

Ox (KUK UK2)Qx(K) = Qx(KUK)Qx(KUK>)
for all K, K, € K that are separated by K € K.
The above definition is equivalent to the property that

Yx (K) = —log(Qx(K))

is a C-additive functional on K. This property will be further discussed in Sec-
tion 4.1.2 in relation to the union infinite divisibility concept.

Proposition 4.39. A random closed set X is semi-Markov if and only if X N K| and
X N K, are conditionally independent given {X N K = (}} for K that separates K|
and K».

Proof. Let K’ and K” be two compact sets. Then
P{(XﬂKl)ﬂK/z(Z), (XﬂKz)ﬂK”zﬂ‘XﬂKzQ)}

= O0x((KiNK )UK, NK")UK)/Qx(K)
= Q0x(KiNK"NOx(KaNK"),

since (K1 NK") and (KN K") are also separated by K. Proposition 1.19 (formulated
for the avoidance functional) finishes the proof. O

Let X be a stationary semi-Markov random closed set. For every unit vector u
and 71, o > 0, Definition 4.38 applied to K1 = [0, tju], K2 = [©iu, (t1 + t2)u] and
K = {trju} implies that

qu,t1 +10)go = qu, t1)q(u, ),

where g(u,t) = Qx ([0, tu]) and g0 = Qx({0}). Since g (u, t) is monotone with
respect to 7,

—0(u)t

q(u,t) = qoe t>0,

where 6(u) = 6(—u) for all u. On the line (if d = 1) or for isotropic X, q(u,t) =
q (1) does not depend on u and satisfies ¢ (¢) = goe ™%, 1 > 0.

Examples of semi-Markov stationary random sets on the line are provided by al-
ternating renewal processes given by the union of disjoint random segments of i.i.d.
lengths separated by a sequence of i.i.d. exponentially distributed gaps, cf Exam-
ple 4.19. In particular, if the segments shrink to points, then we obtain a stationary
Poisson point process on the real line. Note also that a regenerative event is the com-
plement of a semi-Markov (non-stationary) set.

Open problem 4.40. Characterise semi-Markov sets in R?. Under an additional
assumption of the infinite divisibility for unions, such sets have been characterised
in Matheron [381, Th. 5.4.1].
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4.8 Comparison of random sets
Comparison of random elements

Let L be a Polish space partially ordered by a relation <, so that the set {(x, y) €
L xLL: x < y}isclosed in the product topology on L x L. A function f: L —~ R
is called increasing if x < y implies f(x) < f(y). A subset A C L is increasing if
its indicator is an increasing function, i.e. x € A and x < y together imply y € A.
The family of all bounded increasing functions (respectively sets) on L is denoted by
J (L) (respectively Jp(IL)). In the lattice theory increasing sets are called upper sets.

Consider two L-valued random elements &1 and & which correspond to the prob-
ability measures P; and P on the family ‘B(IL) of Borel subsets of .. We say that
&1 (or Py) is stochastically smaller than & (or P») and write & < & (or P <4 P»)
if Ef(&1) < E f(&) forevery f € J(LL). This is equivalent to the requirement that
P (A) < P>(A) forevery A € Jo(IL).

Theorem 4.41 (Stochastic order for probability measures). The following condi-

tions are equivalent for any two probability measures P; and P2 on B (LL).

(1) Py <4 Py.

(2) There exists a probability measure on {(x,y) € L x L : x < y} with the first
marginal Py and the second marginal P;.

(3) There exists a real-valued random variable o and two measurable functions f
and g mapping R into L with f < g such that the distribution of f(«) is P| and
that of g(«) is P3.

(4) There exist two LL-valued random elements é 1 and 52 (providing an ordered
coupling of &1 and &) such that 51 < §2 a.s. and the distribution of §i is P;,
i=1,2.

(5) P1(A) < Py(A) forall closed A € Jo(IL).

Stochastic order for random sets

In the case of random closed sets, . becomes the family F = F(E) of all closed
subsets of E ordered by inclusion. Assume that E is a LCHS space. Then Theo-
rem B.2(iii) implies that F is a Polish space in the Fell topology. It is easy to see
that {(F1, F2) : F1 C F} is closed in the product Fell topology on F x F. The-
orem 4.41 is therefore applicable, so that a random closed set X with distribution
P, is stochastically smaller than a random closed set Y with distribution P, if and
only if P1()) < P2()) for every V € Jo(F), such that, with every F € ), the
family ) contains all closed sets F/ O F. In terms of X and Y this condition can be
formulated as

P{X eV} <P{Y € )} 4.19)

for every increasing family ) of closed sets. An example of such family is YV = Fg
for any K € K. Then (4.19) implies
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Tx(K) <Ty(K), KEeK, (4.20)

where Tx and Ty are the capacity functionals of X and Y respectively. By similar
arguments,

PXNKI £0,... . Xy NKy 0 <P{YNK| £0,....Y, Ky #0} (4.21)

foreveryn > landall Ky, ..., K, € K. Using the successive differences introduced
in (1.7) and (1.8), it is possible to rewrite (4.21) as

AKn"'AKlTX(@)zAKn"'AKlTY(@)~ (4.22)

It should be noted that (4.22) is obtained by specialising (4.19) for V = Fg, .. k,-
Although these families of closed sets do not exhaust all possible choices of )V €
Jo(F), the following result confirms that (4.22) is a sufficient condition for (4.19).

Theorem 4.42 (Stochastic order for random closed sets). Let [E be a LCHS space.
For two random closed sets X and Y, X is stochastically smaller than Y if and only
if (4.21) or (4.22) holds for every n > 1 and all compact (or, equivalently, all open,
or all closed) sets K1, ..., K,.

Proof. The necessity of (4.21) follows from (4.19) for all compact sets K1, ..., K,
and furthermore for all closed/open sets by approximations.

A family ) C F is called decreasing if F € Y and F' C F imply F' € ).
It suffices to prove that (4.21) implies P {X ¢ YV} < P{Y ¢ )} for every decreasing
family ) which is open in the Fell topology.

It is useful to consider the family F endowed with decreasing topology having
the base X, K € K. Let us show that a decreasing family ) is open in decreasing
topology if F,, | F for any F,, F € Y implies F,, € ) for some n. Suppose that F
does not belong to the interior of ). Then F N K # @ if FK c yfor K € K. For
every s ¢ F pick Gy € G and K; € K such that s € Gy C Ky C F°. Because of
the second countability property, F¢ = Un>1Gy, for a sequence {s,,n > 1}. Then
N?_, G, | F, so that by the assumed condition on ), N?_, GS € Y for some n.
Furthermore, K = ﬂ;’zl K, € Kand FNK = @.If a closed set H does not intersect
K, then H C ﬂ;‘zlei, so that H € ), since Y is decreasing. Thus, FK ¢ Yand
F N K = {) contrary to the assumption.

The decreasing topology is second countable. To show this, consider a countable
base Go of G which consists of open sets with compact closures and note that FNK =
@ implies K C FC, so that a finite collection of G; € Gy satisfies K C U;G; C
U; cl(G;) C FC. Thus, F NU; cl(G;) = @, i.e. a countable base of the decreasing
topology is composed of the families FX for K being finite unions of sets from Go.

Consider a decreasing set ) open in the Fell topology. Let F,,, F € Y, n >
1, with F,, | F. Then F, converges to F in the Fell topology, so that F,, € )Y
for sufficiently large n (since ) is open). By the above arguments, ) is open in
the decreasing topology. Since the decreasing topology is second countable, ) =
Up>1FKn for some K1, K7, ... € K. Now (4.21) implies
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P(X ¢ Y} = imP("}_ (X N K; # )
< HmP(_ {Y N K; #0) =P{Y ¢ V),

which finishes the proof. O

Application to selections

If (4.20) holds, then X is said to be smaller in capacity than Y. It should be noted
that (4.20) is not sufficient in general to deduce that X is stochastically smaller than
Y.

Example 4.43 (Smaller in capacity does not imply stochastically smaller).

(i) Consider a two-points space E = {a, b} with the discrete topology (so that
all subsets are open). Let X be empty with probability 2/3 and X = {a, b} other-
wise. A random closed set Y takes values {a} and {b} with probabilities 3/8 each
and the value {a, b} with probability 1/4. Then (4.20) holds for all K, whereas
P{X = {a, b}} > P{Y = {a, b}} which is impossible if X is stochastically smaller
than Y.

(ii) Consider a random closed set X on the line which is equal to [1/3, 2/3] with
probability 1/2 and to [0, 1] otherwise. Let Y take values [0, 2/3] and [1/3, 1] with
probabilities 1/2. Then X is smaller in capacity than Y. Let f(B) = 1if B D [0, 1]
and f(B) = 0 otherwise. Then E f(X) = 1/2 is strictly greater than E f(Y) = 0, so
that X is not stochastically smaller than Y.

However, (4.20) does imply that X <y Y if X is a singleton as the following
result shows.

Corollary 4.44 (Selectionable distributions). Assume E is LCHS. An E-valued
random element § is stochastically smaller than a random closed set Y if and only if

P{Ec G <P{YNG #0} = Ty(G) (4.23)

for all G € G (alternatively, open sets G can be replaced by compact sets K € K or
closed sets F € F).

Proof. Since necessity is trivial, we have to prove sufficiency only. Put X = {&} (the
proof also works for a non-Hausdorff sober space E with X given by the closure of
{€}). By (4.23),

P(XNG1 £W,....,XNG, £ 9} =P{E € (NGy)}
<P{¥ynaG;) # 4}
<P{YNG #D,....YNGy #0} .

By Theorem 4.42, X < Y, which immediately yields the required statement. O
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Since {Y C F} = {¥Y N F® = @} for F € F,itis easy to see that (4.23) is
equivalent to the condition P{Y C F} < P{& € F} for all F € F. The fact that
s d
{€} <s Y means that there exists a random element & ~ & and a random closed

set ¥ L Y such that § is a selection of Y. Then the distribution P of & is called
Y-selectionable, see Section 2.2. An application of Theorem 3 from Strassen [550]
shows that if P is dominated by T, then

P(A) = Eu(A), (4.24)

where u is a random measure supported by X . For instance, ; may be chosen to be an
atomic measure concentrated at a selection of X, so that P becomes the distribution
of the corresponding selection.

5 Calculus with capacities

5.1 Choquet integral
Definition and basic properties

Consider a function f that maps E into Ry = [0, 00). If ¢ is a functional defined
on subsets of [E such that ¢({x : f > t}) is well defined for every ¢t > 0, then the
Choquet integral of f with respect to ¢ is defined as

f Fdp = / o(lx: [ = 1)dr. 5.1)
0

This integral can be restricted to a subset M C E as

oo

[ ra0=[ riwao= [t enms r=mar.
M 0

In particular, the definition of the Choquet integral is applicable if f is a measur-
able function and ¢ is one of functionals determined by a random closed set X, e.g.
the capacity functional Ty or the containment functional Cy.

Theorem 5.1 (Choquet integral with respect to distributions of random sets).

Let X be an almost surely non-empty random closed set. For every measurable non-
negative function f,

f fdTx = Esup f(X), (5.2)

/deX = Einf £(X), (5.3)

where f(X) = {f(x) : x € X}. If X may be empty with positive probability, then
(5.2) holds with sup ¥ = 0.
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Proof. The proof follows from Fubini’s theorem, since

oo

f FdTy = / Ty(br: fG) = s

0
00

:/P{(th}dt
0
=E«a,

where o = sup{f(x) : x € X}. The second statement can be proved similarly. O

Proposition 5.2 (Properties of Choquet integral). Consider non-negative functions
f and g for which the Choquet integral (5.1) is defined for a subadditive functional
@. Then

(i) foreveryc >0, [(cf)dp =c [ fdg;

(i) foreverya >0, [(f +a)dp =a+ [ fdy;
(i) [(f+g)dp < [ fdp+ [gde.

Proof. For ¢ = Tx, the proofs immediately follow from Theorem 5.1. The general
case can be easily handled using the subadditivity of ¢, see [135]. O

Since

/deXS/deX (5.4)

with a superlinear functional of f in the left and a sublinear functional in the right-
hand side, the sandwich theorem (Theorem A.5) implies that there exists a linear
functional of f sandwiched between the two sides of (5.4). This linear functional can
be represented as an integral f fdu, where the corresponding probability measure i
can be identified as the distribution of a selection of X.

Example 5.3 (Choquet integral with respect to sup-measure). Let ¢ = f be the
sup-measure generated by an upper semicontinuous function f: E +— [0, 1]. The
corresponding random closed set X appears as {x : f(x) > «} for « uniformly
distributed on [0, 1], see Example 1.15. By Theorem 5.1, fgd(p = Esup{g(x) :

f(x) = e} In particular, [}, fdg = ¢(M)* and [, gdg = g(») f ().

Comonotonic additivity

It is easy to check either directly or with the help of Theorem 5.1 that if ¢ is a
measure, then | fdg coincides with the usual definition of the Lebesgue integral.
In difference to the Lebesgue integral, the Choquet integral is not additive in gen-
eral. However, its additivity property can be verified if the integrated functions are
comonotonic as described in the following definition.
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Definition 5.4 (Comonotonic functions). Real-valued functions f and g are called
comonotonic if (f(x) — f(x"))(g(x) — g(x")) > 0 for all x, x’ € E. Furthermore,
f and g are strongly comonotonic if, for all x, x" € E, f(x) < f(x’) if and only if
g(x) < g(x").

The following proposition is easy to prove for ¢ = Ty by using Theorem 5.1 and
the fact that

sup{af(x) +bg(x): x € X} =asup f(X) + bsupg(X)

if f and g are comonotonic. The case of a general ¢ is considered in Dellacherie [130]
and Denneberg [135].

Theorem 5.5 (Comonotonic additivity). For every two comonotonic functions f
and g and everya,b > 0

/(af+bg)d<p=affd<p+bfgdso

holds for every functional ¢.

The comonotonicity establishes an equivalence relationship on the family of
functions, so that a finite collection of functions is comonotonic if and only if all
functions are pairwise comonotonic.

If ¢(E) = 1, the Choquet integral can be consistently defined for not necessarily
non-negative functions as

o) 0
/ fdp = f o(lx: f(r) = thdi — / = o((x: f(x) = )ldr.
0 —00

This integral is called the upper integral, while the lower integral is defined as

00 0
L) f fdp = f =g f00) < ldi — / o(lx: f0x) < tdr.
0 —0Q

Itis easy to see that the upper integral with respect to the capacity functional T’y coin-
cides with the lower integral with respect to the containment functional, the property
shared by each pair of dual capacities. Similarly to Theorem 5.1, it is easy to see that
if X is almost surely non-empty, then

fdex = E|sup /(X)]. /dex — Einf f(X)|.

5.2 The Radon-Nikodym theorem for capacities
Indefinite Choquet integral

Observe that the Choquet integral of f with respect to a capacity ¢ yields a new
capacity as
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w(K)szd(p, Kek. (5.5
K

Then v is said to be an indefinite integral of ¢ and the function f is called the
Radon—Nikodym derivative of 1y with respect to ¢, i.e.

fx) = dlp()c), xekE.
de

Proposition 5.6 (Alternation and semicontinuity). The degree of alternation (mono-
tonicity) of Y defined by (5.5) is not less than the analogous degree of ¢. In particu-

lar if ¢ is completely alternating (monotonic), then so is . The capacity v is upper

semicontinuous if both f and ¢ are upper semicontinuous.

Proof. 1t is easy to see that

o0

Ak, Ak, ¥ (K) ZfAK,, - Agp(fx € Kt f(x) = r]dr,
0

whence ¥ is alternating (monotonic) of a certain degree if ¢ is. The upper semicon-
tinuity of ¢ follows from the monotone convergence theorem. O

In particular, if ¢ = Tx and E sup f(X) < 1, then

Ty (K) = / fdTx =EfY(X N K) (5.6)
K

is a capacity functional of a certain random closed set Y. Therefore, the Choquet
integral provides a way of introducing new capacity functionals of random closed
sets.

Example 5.7 (Capacity functional defined by indefinite integrals). Let 7y be
defined by (5.6).

() If f(x) =1f(x) for F € F,then Ty(K) =P {X N K N F # @} is the capacity
functionalof Y = X N F.

(i) Let f(x) = 1F,(x) + plg,(x) with p € (0, 1) and disjoint closed sets F7 and
F>. Then Y is the union of X N Fj and the random set that equals X N F, with
probability p independently of X and is empty otherwise.
(iii) Let f(x) = e I*l on B = RY. Then Y is the intersection of X and independent
random ball Bg centred at the origin with the exponentially distributed radius of
mean 1. Indeed,

P{XNKNB; #0} =P{& > p0, X NK)}
=Ee?OXNK) — g rV(XNK).
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(iv) Let X = {£¢} be a random singleton. If sup f = 1, then
Ty (K) = E(f(§)1k (§))

is a probability measure, i.e. Y is a random singleton too.
(v) Let X be a stationary Poisson point process in R? with intensity 1, see Defini-
tion 8.7. Then

sup f
EfY(XNK)= / (1 _ o~ mes({xek: f(X)zs})> dr .

Absolute continuity

If the capacity functionals of X and Y are related by (5.6), then Ty (K') = 0O given that
Tx(K) = 0. This is a particular case of absolute continuity of capacities as defined
below.

Definition 5.8 (Absolutely continuous capacities). A capacity v is absolutely con-
tinuous with respect to ¢ (notation ¢ < ¢) if, forevery K € IC, ¢ (K) = 0 provided
@(K) =0.

While absolute continuity of measures implies the existence of the corresponding
Radon-Nikodym derivative, this is no longer true for capacities. To see this, consider
the case of a finite E of cardinality n. Then f is determined by n numbers, which
clearly do not suffice to define uniquely a capacity on subsets of [E that may need up
to 2" — 1 numbers to be completely determined.

Strong decomposition and Radon-Nikodym theorem

Let us formulate here a general Radon—Nikodym theorem for capacities ¢ and 1 that
are monotone, subadditive and continuous from below. The pair (¢, V) is said to
have a strong decomposition property if, for every t > 0, there exists a measurable
set A; such that the following conditions hold

1(Y(A) —¥(B)) <¢(A) —e(B) if BCACA, (5.7
t(W(A) =Y (ANA))>e(A) —p(ANA;) forall A. (5.8)

Every two measures (u, v) possess a strong decomposition property and A; can be
derived from the Hahn decomposition of the signed measure v — w. The strong
decomposition property can be formulated as follows.

Definition 5.9 (Strong decomposition property). The pair (¢, ¥) has a strong
decomposition property if, for every t > 0, there exists a set A; such that, for
w; = t¥ — @, the set function w;(A; U -) is non-decreasing and w;(A; N -) is non-
increasing.

The following result is proved by Graf [208].
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Theorem 5.10 (Radon-Nikodym theorem for capacities). For every two capaci-
ties ¢ and V, v is an indefinite integral of ¢ if and only if (¢, ¥) has the strong
decomposition property and v < ¢.

Open problem 5.11. Consider a random closed set with the capacity functional 7'.
For a fixed L € K define T.(K) = P{XNK #0, XNL #@}, K € K. Itis
evident that 77, < T. Does the pair (T, T7,) possess a strong decomposition property
and, if yes, what is the corresponding Radon—Nikodym derivative?

Open problem 5.12. Interpret the conditions of the Radon—-Nikodym theorem for
capacities (Theorem 5.10) for completely alternating capacities that correspond to
distributions of random closed sets. As a first step, note that (5.7) and (5.8) written
for y = Tx and ¢ = Ty mean that tPx(F%) < Py(F¥)if B C A C A, and
Py (FL) > Py (FL™) for all A.

5.3 Dominating probability measures
Upper probability

Let E be a LCHS space. Corollary 4.44 says that if the capacity functional Tx of
a non-empty random closed set X dominates a probability measure x, then X pos-
sesses a selection with distribution . Let Py be the family of all probability mea-
sures u that are dominated by Ty, i.e. u(K) < Tx(K) for each K € K. Note
that Py can be alternatively defined as the family of all measures that dominate the
containment functional Cy, implying that all measures from Py are “sandwiched”
between Cx and Tx. The following result establishes that the capacity functional is
upper probability, i.e. it equals the upper envelope of all probability measures that it
dominates.

Theorem 5.13 (Capacity functional as upper probability). For every almost surely
non-empty random closed set X in a LCHS space,

Tx(K) =sup{u(K): nePx}, Kek.

Proof. Consider an arbitrary K € K. Let £ be a selection of X NK if XN K # ) and
otherwise let £ be equal to any other selection of X \ K (note that X \ K is closed
if XN K =#). Then & € K if and only if X N K # @. If u is the distribution of &,
then p is dominated by Tx and u(K) = Tx(K). O

Proposition 5.14. For every bounded upper semicontinuous non-negative function
f on E and a capacity functional T there exists a probability measure y such that
T(lx: f(x)=1) =plx: f(x)=1)) forallt = 0.

Proof. Consider arandom closed set X with the capacity functional 7. The statement
is easily seen by identifying the required p with the distribution of a selection § €
S(X) that satisfies f(&) = sup f(X). O
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The capacity T is said to be dichotomous if, for each compact set K and each
& > 0, there are disjoint compact sets K1 and K> contained in K such that 7 (K;) >
T (K) — e. It is known that the Newton capacity is dichotomous with ¢ = 0. Also it
is easy to see that the maxitive capacity f" is dichotomous if f is continuous near
its maximum point. Note that a probability measure is not dichotomous.

The capacity functional Ty is called equalised if (Cx (K )+ Tx(K))/2 is a prob-
ability measure. If X # @ a.s., Theorem 5.1 implies that Ty is equalised if and only
if

1(f) = E(sup f(X) + inf f (X))

is a linear functional of f. This is the case if X = {&, n} consists of at most two
points, since

E [max(f(£), f(n) +min(f (&), fm)] =E[f(E) + f(n)]

is a linear functional of f.

Finite space case

For capacities on finite spaces, the Mobius inversion can be used to obtain a sufficient
domination condition.

Proposition 5.15 (Dominating measures on finite spaces). Assume that E is fi-
nite. Let Cx be a containment functional and let Px be its Mobius inverse defined
by (1.36). Then every measure p satisfying

p(ix) =Y (B, x)Px(B)

B>x
dominates Cx. Here A(B, x) is any non-negative function defined forx € B C E
satisfying
ZA(B,x)zl, BCE.
B>x

The following result provides a characterisation of equalised capacity functionals
for the case of finite E.

Proposition 5.16 (Equalised capacity functionals on finite space). Let [E be a finite
space. Then Ty is equalised if and only if the cardinality of X is at most 2.

Proof. For every L C E denote P(L) = P{X = L}. Then C(K) = ) ; ¢ P(L)
and T(K) = 3" g2y P(L). The equalising condition yields

0= (C({x}) + T({x}) —2

xeE

=Y P(xh+ > Y P(L)-2> P(L).

xeE xeE Lax LCE
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Rearrangement of the terms verifies that

card(EE)
X Pwy= >k Y P
xelE Lax k=1 card(L)=k
card(EE)
= >k Yy PWL+2 Y P+ P,
k=3 card(L)=k card(L)=2 xek
Therefore,
card(E)
0= Z (k —2) Z P(L),
k=3 card(L)=k
meaning that P(L) = 0 whenever card(L) > 2. m]

Open problem 5.17. Characterise equalised capacity functionals on a non-finite
space E.

5.4 Carathéodory’s extension

Carathéodory’s construction described in Appendix E makes it possible to construct
a measure ¢ from a given capacity ¢ on a family of sets. Fix a family of sets M
that contains all open balls and is used to construct ¢ as described in (E.1) and (E.2).
Henceforth we assume that E = R?.

Proposition 5.18 (Subadditivity and extension of a measure).
(i) If ¢ is subadditive on M, i.e. (M| U M>) < (M) 4+ ¢ (M>) for all My, M> €
M, then ¢ < ¢ on M.
(ii) If ¢ is the restriction to M of a locally finite measure j, then ¢ = .

Proof.

(i) follows from the fact that Carathéodory’s construction preserves the monotonic-
ity property.

(ii) Clearly, ¢ > p and ¢(M) = (M) for every M € M. Let G be a relatively
compact open set, so that £ (G) < oo and ¢(G) < oo also. By the Besicovitch cov-
ering theorem (see Federer [167, Th. 2.8.15]), there is a countable disjoint collection
of balls {B,,n > 1} contained in G such that ¢(C) = 0 for C = G \ Un>1 B,.
Hence 1(C) = 0. But then -

P(G) =Y @(By) =Y _ n(By) = pu(G) — u(C) = pu(A).
n=1 n>1
Thus, u agrees with ¢ on relatively compact open sets, and hence on Borel sets. O

In view of applications discussed later on in Section 8.5, consider Carathéodory’s
extension v of the product of two capacities v and ¢. Write fV for a sup-measure
generated by a function f.
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Theorem 5.19 (Extension of the product). Suppose ¢ = v is a locally finite mea-
sure.
(i) Assume that v is a uniformly bounded capacity. Then f(x) = v({x}) is an
upper semicontinuous function and, for all Borel A,

vp(A) =/fdu-
A

(i) Let f: R? — R, be a bounded upper semicontinuous function such that
+ PP
/ x Jfdu < oo for all compact sets K. Then, for all Borel A,

[Ye(A) = / fdw. (5.9)
A

Proof. We prove only (ii); statement (i) is similar. Write v = fV¢ and n(A) =
fA fdu. Suppose A is Borel with n(A) < oo. Choosing ¢ > 0, partition A into a
finite number of disjoint Borel sets B; such that

D ailg < fl4 <) ailp +e (5.10)
i

1

for some a; € R. Integrating over B; yields that
aipn(Bi) = n(Bi) = (ai +&)u(Bj) .

Since 1 is bounded on compact sets, it is also a locally finite measure and there exist
open sets G; D B; such that

n(Gi) < (A +e)n(Bi), w(Gi) < +e)u(B).

By the Besicovitch covering theorem there are open balls C,; C G; covering v-
almost all of G; such that diam(Cp;) < 8 and f(xy) < fY(Cpi) < f(xpi) + €,
where x,,; is the centre of C;.

By (5.10) we have a; < f(xp;) < a; +esothata; < fY(Cui) < a; +2¢. Hence
for each i

(FY@)s(Bi) < Y [ (Cat)p(Cui) < (ai +26) Y ¢(Cpi)

n>1 n>1
giving

v(B;) < (a; +2&) sup 9s5(G;) = (a; +2&)u(G;) < (a; +2&)(1 + &)u(B;),
§>0

so that
v(A) > (a; +26)(1 + &) (By).
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Since ¢ was arbitrary we have v(A) < n(A).

Next we prove that (5.9) holds for each upper semicontinuous step-function f =
Zailgi, where o; > Oforalli = 1,...,k and By, ..., By are disjoint Borel sets.
Since the B; are disjoint we have fV¢(A) =Y, fV¢(ANB;). For any é-cover {C,}
of AN B;, without loss of generality discarding sets C,, which do not intersect AN B;,
we have fV(C,) > o, so that

(fYe)s(ANB;) > aips(AN B;) .

Therefore, fV¢(A N B;) > a;u(A N B;). Finally,

FYe(A) =Y fYe(ANB) = > ain(ANB;) = / fdp = / fdu.
AN(UB)) A
From this we obtain (5.9) for the step-function f.
Now approximate f by p-integrable upper semicontinuous step-functions f;

such that f;(x) 1+ f(x) asn — oo for all x € A. By the monotone convergence
theorem,

V(A) = FYo(A) = (f)"9(A) = f fldu — / Fdu = n(A)
A A

so thatv = 1. O

The following proposition concerns one particularly important case of ¢ being
the indicator capacity (K) = 1rng £p generated by a closed set F. If v is a locally
finite (Radon) measure, then Equation (5.11) below is the special case of (5.9) with
f being the indicator of F. A simple argument based on checking that any §-cover of
FNK canbe extended to a §-cover of K without increasing the sum ) ¢(M,)v(M,,)
shows that the result holds without assuming that v is a locally finite measure.

Proposition 5.20. For a closed set F C R? Jet p(K) = 1 Fnk -y be the indicator
capacity. Then, for every set function v, ¢uv is the restriction of v to F, i.e.

ou(K) = 0(FNK). (5.11)

5.5 Derivatives of capacities

Definition

The definition of the derivative for capacities relies on the vague convergence concept
for capacities defined in Appendix E. Assume throughout that E = R¢.

Definition 5.21 (Derivative for capacities). A capacity ¢ is said to be differentiable
at K € KCif, for some o > 0 (called the exponent of the derivative), the capacity

@(K + (1L U{0}) — ¢(K)

tO[

Lelk,
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converges vaguely as a function of L to dz¢(K) as ¢ | 0. The limit dz¢(K) (called
the derivative of ¢ at K) may be infinite, but it is assumed that 0 < d ¢ (K) < oo
for at least one L € K.

If K = {x} is a singleton, write d; ¢ (x) instead of d; ¢ ({x}). The differential of a
measure u is defined by Faro, Navarro and Sancho [166] as the weak limit of (x +
tL)/t* ast | 0. In our terms this corresponds to dz u({x}), since a differentiable
measure satisfies p({x}) = 0.

Example 5.22 (Derivative at singletons). If ¢ does not charge singletons (i.e.
o({x}) = 0 for all x), is homogeneous and translation invariant, then dy¢(x) =
@(L). If 11 is a measure R? with density p with respect to the Lebesgue measure,
then dzu(x) = p(x) mes(L). Similarly,

dep({x1, ..., xn}) =mes(L)Zp(x,~). (5.12)
i=1

Derivatives of capacity functionals

If ¢ = T is the capacity functional of a random closed set X, then dz7(K) is
completely alternating as a function of L and is upper semicontinuous as a vague
limit of upper semicontinuous capacities. By Proposition 1.11,

TX(L) =1—exp{—d;T(K)}, LeKk, (5.13)
is a capacity functional of a random closed set. Considered as a function of L, the
derivative dz T (K) is homogeneous of order «, that is d., T(K) = ¢*d; T (K) for
all ¢ > 0. In the theory of random sets homogeneous capacities arise naturally as

probability distributions of union-stable random closed sets, see Section 4.1.3. For
example, the derivative in (5.12) corresponds to the Poisson point process with in-

tensity Y p(x;).
If L contains the origin, then d;, T (K) appears as the normalised limit of

T(K+tL)UL)—T(K)=P{XNK =0, XN (K +1L) # 0} .

The event in the right-hand side means that X hits a neighbourhood of K while not
touching K itself. Define Z,, = XU - -UX,, fori.i.d.random closed sets X1, X», ...
with the capacity functional 7 that is differentiable at K € K. Then, foreach L €
with0 € L,

P(Z,N (K +n" L) £ 0| Z,NK =0}
—1- [P{Xm(KJrn*l/“L) — 91X NK =Q)]]”

[ T(K +n~Yer)y—T(K)]"
I 1 —T(K)

converges vaguely as n — oo to

T(K):l—exp{ AL T(K) }

1= T(K)
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Derivative of the Lebesgue measure

Assume that ;o = mes is the Lebesgue measure in R,

Theorem 5.23 (Derivative of the Lebesgue measure). If K is a regular closed con-
vex compact set, then

drpu(K) = / h(L,u)Sq—1(K,du), Lek, (5.14)
sd—1

where h(L, u) is the support function of L and S;_1(K, du) is the area measure of
K, see Appendix F.

Lemma 5.24. If K is a regular closed convex compact set, then, for each L € IC,
dp(K) = deoqry it (K) . (5.15)
Proof. Without loss of generality assume that 0 € L. If L = {0, x}, then
wW(K +tco(L)) —u(K +tL)y=o0(t) ast 0.

The same argument implies (5.15) for each finite L. A general L € K can be ap-
proximated from the above by a sequence {L,,n > 1} of polyhedrons, such that
co(Ly) = co(F}) for some finite set F; C Ly, n > 1. Thendy, n(K) = deor,) it (K)
and (5.15) follows from the upper semicontinuity of dz i (K) with respectto L. O

Proof of Theorem 5.23. By Lemma 5.24 it suffices to assume that L € co K. The
translative integral formula (see Schneider [520, Eq. (4.5.32)]) yields

d—1
(K +1L) = p(tL) + Y Vi(K, tL) + u(K) .
k=1

The functionals Vi (-, L) and Vi (K, -) are additive; the first is homogeneous of de-
gree k, while the second is homogeneous of degree (d — k). The proof is finished by
noticing that the functional V4_1 (K, L) equals the right-hand side of (5.14). O

Example 5.25 (Derivative of sup-measure). Assume that ¢ = f for an upper
semicontinuous function f. The set

argmaxy f ={x € K : f(x) = fV(K)}

is not empty, since f is upper semicontinuous. If there exists a point x € argmaxy f
such thatx € Int K, then x € K+tL for all sufficiently small 7, whence d¢(K) = 0.
To exclude this trivial case, assume that argmaxy f is a subset of 9K .

Assume that f is continuous in a neighbourhood of K and continuously differ-
entiable in a neighbourhood of argmaxy f. The derivative of the sup-measure (with
the exponent o« = 1) is given by
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dp(K) = sup  h(L, f'(x)). (5.16)

xeargmaxy f

This is easily seen by using the Taylor expansion for f(y) with y € x + ¢L and
x € argmaxg f. The random set Z with the capacity functional (5.13) is the union
of half-spaces

Z= U {z: (z ffx) = &},

xeargmaxy f

where & has the exponential distribution with mean 1.

Union of independent random sets
If X1 and X, are independent random closed sets, then
Tx,ux,(K) =1— (1 —Tx, (K))(1 — Tx,(K)) .

If the capacity functionals T, and Ty, are differentiable at K with the same expo-
nent «, then

drTx,ux,(K) = (1 — Tx,(K)d Tx,(K) + (1 — Tx,(K))d.Tx,(K) .

Example 5.26. Let X = {&, n} where £ and n are independent random points with
distributions P and P,,. Then

deTx(K) =Pi{n ¢ K}d Pe(K) +P{§ ¢ K}d Py (K).

If £ and 7 have absolutely continuous distributions with densities pg and p,, then
drTx(x) = (pg(x) + py(x)) mes(L) .

Differentiation of the Choquet integral

Below we will find a derivative of the capacity given by the Choquet integral. For a
capacity ¢, we write ¢(x) instead of ¢ ({x}).

Theorem 5.27 (Derivative of Choquet integral at singleton). Let

w<1<>=/fd¢, Kek.
K

for a continuous non-negative function f and a capacity ¢, which is differentiable at
{x} with exponent «.
(i) If p(x) = 0 and/or f is Lipschitz of order § > « in a neighbourhood of x, then
Y is differentiable at {x} with exponent o and

dey(x) = f(x)dLe(x).
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(ii) If« > 1, (x) > 0, f is continuously differentiable in a neighbourhood of
x and ¢ is upper semicontinuous at {x}, then Y is differentiable at {x} with
exponent 1 and

f)drp(x) + 9L, f'(x)), a=1,

(p(x)h(Lv f/(-x))s o > 1

Proof. By the definition of the Choquet integral,

dey(x) = {

t_a[ / fd§0—/d€0:| =t_“/[(p((x+tL)ﬂFs)—go({x}ﬂFs)]ds
x+tL {x} 0
=t L+t L +1t7%,

where Fy = {x : f(x) > s} and

inf f(x+zL)
ren=r [ gt i) - gt
0
(L) —
—infroetin 0T ta) PO i),
e
ey = / [p((x + (L) O Fy) — p(x)]ds
inf f(x+tL)
L —
< 9”(x+tta) YO ry—inf fx+1L)] — 0 ast 40,
and
sup f(x+tL)
T =1"¢ f o((x +tL) N Fy)ds .
o)

(i) If o(x) = 0, then

p((x+1L)NFy) _ o(x +1L) —(x)

» » — drex),

whence 1~ I3 converges to zero. This holds also if f is Lipschitz, since
I3 <@ +1L)(sup f(x +1L) = f(x)).

(ii) In this case I converges to zero if @ > 1 and to f(x)d e(x) if & = 1.
Furthermore,
tL) — tL) —
(p(x)supf(ert ) — f(x) 5f113§<p(x+tL)supf(x+t ) f(X).

Both sides converge to ¢ (x)h(L, f'(x)). O
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Example 5.28. If ¢ = p is the Lebesgue measure and ¢ (K) = f x Jdu (in this case
the Choquet integral coincides with the Lebesgue integral), Theorem 5.27 implies
that dp ¥ (x) = f(x)u(L). Assume now that ¢(K) = u(K") for fixed r > 0, where
K" is the r-envelope of K. By (5.14),

dr(x) = dL (B, (0)) = r4~! f ML M (@) = b,
Sd—1

where b(L) is the mean width of L. If ¥ = f fdg, then Theorem 5.27(ii) implies
that
1 d—1 d ’
dey(x) = 5" wgb(L) f(x) + rsqh(L, f'(x)).
If d = 2, the corresponding random closed set with the capacity functional (5.13) is
the union of two independent random sets: the half-space {z : rég(z, f/(x)) > &)
with the exponentially distributed & of mean 1 and the other being the stationary

isotropic Poisson line process with intensity 7 f(x)r?~!, see Stoyan, Kendall and
Mecke [544, p. 250].

Corollary 5.29 (Radon-Nikodym derivative). If ¢ is the Choquet integral of a
differentiable capacity ¢ and ¢(x) = O for all x, then, for each L € K with0 € L,

w(K)zdew(x)d(p, Kek.
dre(x)

where the function dp ¥ (x)/dLe(x) is independent of L and yields the Radon—
Nikodym derivative of Yy with respect to ¢.

Note that Corollary 5.29 is trivial if ¢ and v are measures.

6 Convergence

6.1 Weak convergence
Continuity sets

The weak convergence of random closed sets is a special case of the weak conver-
gence of probability measures, since a random closed set is a particular case of a
general random element and can be associated with a probability measure on B (F).

Definition 6.1 (Weak convergence). A sequence of random closed sets {X,,, n > 1}
is said to converge weakly (or converge in distribution) to a random closed set X

with distribution P (notation X, 4 X) if the corresponding probability measures
{P,,n > 1} converge weakly to P, i.e.

P,(Y) = P() asn— o0 (6.1)

for each ) € B(F) such that P(d))) = 0, where the boundary of ) is defined with
respect to a topology on F that generates the Effros o -algebra.
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If E is a LCHS space, then the boundary of ) in Definition 6.1 is taken in the
Fell topology. Since in this case the family F of closed sets is compact (see Theo-
rem B.2(i)), no tightness conditions are needed for the weak convergence of random
closed sets in LCHS spaces, i.e. all families of distributions of random closed sets
are relatively compact. This fact can be formulated as follows.

Theorem 6.2 (Helly theorem for random sets). If E is a LCHS space, then every
sequence {X,,n > 1} of random closed sets has a weakly convergent subsequence.

It is difficult to check (6.1) for all ) from B(F). The first natural step is to use
Y = Fk for K running through K.

Lemma 6.3. Let E be a LCHS space. For each K € IC,
P(Fk) = P(Fink) (6.2)
implies P(0 Fg) = 0.

Proof. Let us show that the interior of Fg in the Fell topology contains Fin g . If
FNIntK # ¢ and F, Painlevé—Kuratowski converges to F, then F, N IntK #
for all sufficiently large n, see Corollary B.7. It suffices to note that that the Fell
topology coincides with the Painlevé—Kuratowski convergence if [E is LCHS, see
Theorem B.6. Since F is closed, 0 Fx C Fk \ Fintk, s0 that P(0Fk) = 0if (6.2)
holds. O

Note that (6.2) is equivalentto P{X N K # @, X NIntK =@} =0 or
Tx(K)=Tx(IntK)
for the corresponding random closed set X, where Ty (Int K) is defined using (1.19).
The following definition is a special case of Definition 1.26.

Definition 6.4 (Continuity family). The family of relatively compact Borel sets B
satisfying
Tx(cl B) = Tx(IntB)

is called the continuity family of X and denoted by &1, or Gy.

It is shown by Molchanov [394] that G x contains all regular closed compact sets
if X is stationary.

Pointwise convergence of capacity functionals

It is straightforward to deduce from Lemma 6.3 that X, < X yields Tx,(K) —
Tx(K) as n — oo for every compact set K € Gy. The following theorem charac-
terises the weak convergence of random closed sets in terms of the pointwise con-
vergence of capacity functionals.
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Theorem 6.5 (Convergence of capacity functionals). A sequence of random closed
sets {X,,n > 1} in a LCHS space converges weakly to a random closed set X if and
only if

Tx,(K) — Tx(K) asn — o0 (6.3)

foreachK € 6x N K.

It is possible to prove Theorem 6.5 directly by first showing that Ty, (G) —
Tx (G) for all open sets G such that Tx (G) = Tx(cl G), then deducing from this
convergence of probability measures on the families ) = fg ’’’’’ G, WithP(@3)) =0
and finally referring to Theorem 2.2 of Billingsley [70]. Alternatively, Theorem 6.5
can be obtained as a particular case of Theorem 6.8 below.

Example 6.6 (Convergence of random singletons). If X, = {§,}, n > 1, then the
weak convergence of X, is equivalent to the weak convergence of &, in the conven-
tional sense, see Billingsley [70]. Then P {§, € K} = Ty, (K), so that (6.3) is read
as the weak convergence of the sequence {&,,n > 1}.

Example 6.7 (Convergence of random balls). Random balls X,, = By, (§,), n >
1, converge weakly if (n,, &,) converge weakly as random elements in the product
space Ry x E. Indeed, X,, N K # @ if and only if

(m-&0) € F=JWr} x K"
r>0
with F being a closed set. Since the map B,(x) — (r, x) is a continuous bijection

between the family of balls and R} x E, X, —d> X implies that (n,, &) converges
weakly as n — oo.

Convergence determining classes

The following important theorem relies on Definition 1.25 of the separating class and
refers to the notation introduced in Section 1.4. Its formulation involves the capacity
functionals extended to the family of all subsets of E by means of (1.19) and (1.20).

Theorem 6.8 (Characterisation of weak convergence). A sequence of random
closed sets {X,,n > 1} in a LCHS space converges weakly to a random closed set
X if there exists a separating class A and an increasing set function ¢ : A +— [0, 1]
such that

(pO(IntB) <liminfTx,(B) < limsup Tx,(B) < ¢ (clA) (6.4)
n n
forall A € A. Then Tx(K) = ¢ (K) forall K € K and Tx(G) = goO(G) for all
GeG. IfACG,, thenTx(B) = ¢(B) forall B € A.

Proof. Fix K € K and choose a sequence {B,,, m > 1} C A such that B, | K and
K C clBp+1 C Int By, forallm > 1. By (6.4) and (1.30),
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limsup T, (K) <limsupTx,(Bn) < ¢ (clBy) = ¢ (K).

n—oQo n—oQo

A similar argument yields

liminf Ty, (K) > liminf Ty, (Int K) > (pO (IntK) .
n—00 n—00

Therefore,
lim Tx,(K) =¢ (K)
n—00

forall K € KN &,. If {X,), k = 1} is a subsequence of {X,,n > 1}, then, by
Theorem 6.2, it has a subsequence that converges weakly to a random closed set
X. Then Tx(K) = ¢ (K) for all K from K N &, N &x. Every K € K can be
approximated from the above by a sequence {K,,n > 1} C KN &, N &x such
that IntK,, | K. Since Ty, = Tx by the semicontinuity of Tx and ¢~ = ¢~,
we obtain that Ty (K) = ¢~ (K) for all K € K. The same argument shows that
Tx/(K) = ¢~ (K) for every possible weak limit X" of {X, ), k > 1}. The Choquet

theorem implies X L X'. Tt follows from Billingsley [70, Th. 2.3] that X, 4 x.
Similar arguments can be used to show that Tx (G) = ¢%(G) for all G € G, whence
Gx = Gw. [m}

Corollary 6.9 (Sufficient condition for weak convergence). Let A be a separating
class in a LCHS space. If Tx, (B) — Tx(B) asn — oo for all B € AN Gy, then

d
X, — X asn — o0.

Corollary 6.9 implies Theorem 6.5 for A = /. Other typically used separating
classes are the class of finite unions of balls of positive radii (or the countable class
of finite unions of balls with rational midpoints and positive rational radii) and the
class of finite unions of parallelepipeds. These classes are called convergence deter-
mining. In general, a family M C K is said to determine the weak convergence if
the pointwise convergence of the capacity functionals on M N &7 yields the weak
convergence of distributions for the corresponding random closed sets.

Convergence of Choquet integrals and selections

It is well known that the weak convergence of random variables is characterised
by the convergence of expectations for every bounded continuous function of the
variables. A parallel result holds for random closed sets. Recall that E fV(X) =
E sup f(X) for a non-negative measurable function f equals the Choquet integral of
f with respect to Ty, see Theorem 5.1.

Proposition 6.10 (Convergence of Choquet integrals). A sequence {X,,n > 1}
of random closed sets converges weakly to a random closed set X if and only if
E Y (X,) converges to E f¥(X) for every continuous function f: E > R with a
bounded support.
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Proof. 1t suffices to consider non-negative functions f. Denote Fy = {x : f(x) >
s}. Note that Tx(F;) # Tx(IntF;) for at most a countable set of s. Therefore,
Tx,(Fs) — Tx(s) for almost all s > 0, whence the convergence of the Choquet
integrals easily follows. The inverse implication follows from the fact that the indi-
cator function g(x) = 1k (x) can be approximated from below and from above by
continuous functions with bounded supports. O

The weak convergence of random closed sets in a general Polish space E with
a metric p can be characterised in terms of the weak convergence of their distance
functions. In line with Theorem 2.28, a sequence {X,,n > 1} of random closed
sets converges weakly to X if and only if the finite-dimensional distributions of the
process p(x, X,) converge to the finite-dimensional distributions of p(x, X), x € E,
see Salinetti and Wets [512].

The weak convergence of random convex closed sets implies the convergence of
their selections.

Proposition 6.11. Let {X,,,n > 1} be a sequence of almost surely non-empty ran-

. d .
dom convex closed sets in a separable Banach space, such that X, — X. Then X is
a random convex closed set and there exists a sequence of selections &, € S(X,,),

n > 1, such that &, > & with & € S(X).
Proof. Since the family co 7’ of non-empty convex closed sets is closed in F,

P{X € coF'} > limsupP{X, e coF'} =1.

n— o0

Let f be a continuous selection operator on co 7, see Section 2.2. Define selections
of X and X,, by & = f(X) and &, = §(X,), n > 1.If g is a bounded continuous func-

tion on IE, then g(f(F)) is a continuous real-valued function on co F’. Now X, —d> X
implies Eg(f(X;)) — Eg(j(X)), which means Eg(§,) — Eg(§), i.e. &, —d> & O

Open problem 6.12. Does X, 4 X as n — oo for not necessarily convex random
closed sets imply that there is a sequence of selection &, € S(X,) and & € S(X)

such that &, 4 &7 By Proposition 6.11, this holds for random convex sets.

Proposition 6.13 (Convergence of support functions). Let {X,,,n > 1} be a se-
quence of almost surely non-empty random convex compact sets. Then X,, converges
weakly to a random convex compact set X if and only if the finite-dimensional dis-
tributions of h(X,, -) converge to those of h(X, -) and sup, P{||X,]| > ¢} — O as
¢ — 00.

Proof. 1t suffices to show that the imposed conditions imply the weak convergence
of the support functions in the space of continuous functions on the unit sphere. The
corresponding tightness condition (see Billingsley [70]) requires
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0 n—oo lu—v]j<s

%imlimsupP { sup |h(Xy, u) — h(Xy, v)| > s} =0.
The inequality for the support functions (F.4) yields

P: sup |1 (X, u) — h(Xy, v)| = 8} = P{|X,|l = &/} ,
|

lu—vll<é

whence the condition of the theorem implies that the sequence A (X, -) is tight. O

Convergence to a singleton

In optimisation problems it is often possible to assume that a sequence of random
closed sets converges to a random closed set X which is either empty or consists
of a single point, i.e. P {card(X) > 1} = 0. The following theorem deals with the
convergence of selections for such sequences. Note that a random element & is said
to be a generalised selection of X if £ € X a.s. on the event {X # (}. Recall that a
sequence of random elements {&,, n > 1} is tight if for all ¢ > O there is a compact
set K C EsuchthatP{§, € K} > 1 — ¢ forall n.

Theorem 6.14 (Weak convergence to a singleton). Let {X,,, n > 1} be a sequence
of random closed sets in a Polish space E. Assume that X, weakly converges to a
random closed set X such that card(X) < 1 a.s. and P{X,, # 0} — P{X # @}. Let
&, and & be generalised selections of X, and X respectively. Then &, converges in
distribution to & if at least one of the following conditions holds

(i) the sequence {&,,n > 1} is tight;

(ii) P{card(X,) > 1} — 0.

Proof.

(i) Assume without loss of generality that X is almost surely non-empty. By The-
orem E.6, it suffices to show that limsupP {§, € F} < P{£ € F} forall F € F. Fix
& > 0 and let K be a compact set such that P{&, € K} > 1 — e forall n > 1. Then

P{f, e F}—e <P{§ e (FNK)} <P{X,N(FNK)#0}.

Since Frnk is closed in F and X, —d> X,

limsupP{X, N(FNK)#0} <P{XN(FNK)#0}.

n— oo

Since X is assumed to be a.s. non-empty, X = {£} is a singleton, whence

limsupP{§, € F} <Tx(FNK)+¢e¢=P{£ € F} + ¢,

n—oo

so letting ¢ | O finishes the proof.
(ii) Forevery F € Gy, one has

P{X,NF #0, card(X,) =1} = P{§, € F} =P{X, NF #0},

so that the required weak convergence follows from the imposed conditions. O
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Semi-differentiability

In sensitivity studies of optimisation problems it is essential to be able to deduce
the weak convergence of set-valued functions from the weak convergence of their
arguments. Let F: R” > F(R?) be a multifunction measurable with respect to
the Borel o-algebra on R and the Effros o-algebra on F(R?), see Appendix D. If
& is a random vector in R™ with distribution P, then F (&) is a random closed set
in R?. Let P be a probability measure on R”. The multifunction F is called P-a.s.
semi-differentiable at zo € R™ relative to xo € F(zp) if there exists a multifunction
Fgo,xo: R” > F(R?) such that

/ _ . -1 /
on,xo(z) = tLOl,lg’lﬁz 7 [F(zo+tz') — x0]
holds for all points z except those in a set of P-measure zero. The following result
follows directly from the continuous mapping theorem, see Billingsley [70, Th. 5.5].

Theorem 6.15 (Weak convergence of semi-differentiable multifunctions). Let
{&,, n > 1} be a sequence of random vectors in R™ such that a,; 1 (&, — z0) converges
in distribution to a random vector & with distribution P, where {a,,n > 1} is a se-
quence of positive normalising constants and z¢ is a non-random point in R™. If F is
P-a.s. semi-differentiable at z( relative to a point xo € F(zo), then a,; L(F (&) — x0)
converges in distribution to FZ’O’X0 &).

If F(x) = {f(x)} is a single valued function, Theorem 6.15 implies that
a7 ' (f (&) — f(z0)) converges in distribution to f’(z0)&.

6.2 Convergence almost surely and in probability
Definition

Itis easy to define the almost sure convergence of random closed sets using one of the

topologies on F described in Appendix B. For example, X, 5 X as.if X, (w) =
X (w) for almost all w € £2. If E is locally compact, this convergence is equivalent
to the almost sure convergence in the Fell topology. In this case the indication of the
topology is usually omitted and we write X,, — X a.s. The almost sure convergence
of random compact sets is usually defined with respect to the Hausdorff metric as
Pp(Xn, X) — Oas.

As a consequence of a general property of probability measures in topological
spaces, the almost sure convergence of random closed sets (in the Fell topology)
implies their weak convergence. On the other hand, a weakly convergent sequence
of random closed sets can be realised on a single probability space as an almost
surely convergent sequence, see Wichura [610].

Example 6.16 (A.s. convergence of convex hulls). Let K be a convex compact set
in RY with sufficiently smooth boundary d K . Choose n independent random points
uniformly distributed in K and denote by P, their convex hull. Then P, is a random



6 Convergence 91

polyhedron, such that P, — K almost surely as n — oo. Since the classical paper
by Rényi and Sulanke [478], the rate of convergence for various functionals of P,
(e.g. its area mesy (P,;)) and the corresponding limit theorems have been the focus of
attention of many probabilists. For instance, if d = 2 and the curvature k(x) does not
vanish for all x € 0K, then

’1li)ngon2/3[mesz(K) —Emes;(P,))] = (2/3)1/3F(5/3)mesz(K)2/3/k1/3(s)ds,
0K

see Schneider [519]. Further results in this direction can be found in Braker and
Hsing [76], Groeneboom [212] and McClure and Vitale [385].

Deterministic limits

Deriving the almost sure convergence of random closed sets in the Fell topology
involves checking the conditions (F1) and (F2) of Corollary B.7. These conditions
can be reformulated for the sets K and G from some countable subfamilies of X and
G and then applied for a sequence of random sets with a non-random limit.

Proposition 6.17 (A.s. convergence to deterministic limit). A sequence X,,,n > 1,
of random closed sets in a LCHS space a.s. converges to a deterministic closed set F
if and only if the following conditions hold.

(RI1) IfKNF =@ for K € K, then

o o
P{X,NK £ 0 i.o.}:P:ﬂ U{X,,mK ;e@}} =0,
n=1 m=n
where “i.0.” means “infinitely often”.
(R2) If GNF # W for G € G, then

P{X,NG =0 i.o.}:P:ﬂ U{X,,ﬂG:OJ}}:O.

n=1 m=n
These conditions can be relaxed by replacing K in (R1) with a separating class A C
K and G in (R2) with A’ = {IntK : K € A}.
Proposition C.10 together with a usual separability argument based on choosing

a countable dense set yields the following result concerning the almost sure conver-
gence of random compact sets.

Proposition 6.18 (A.s. convergence of random compact sets). Let V be a closed
subset of IC and let {X,,,n > 1} be a sequence of V-valued random sets such that
cl(U, X)) is compact almost surely. If dy(X,, V) (see (C.2)) a.s. converges for each
V eV, then {X,,n > 1} converges a.s. in the Hausdortff metric.

In a Banach space it is possible to define weak and strong almost sure limits
of a sequence of random closed sets. Hiai [253] showed that if sup,. [| X,| < oo
a.s. in a reflexive space E, then there exists a random closed set X such that X =
w-imsup X, a.s.
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Convergence in probability

In order to define the convergence of random closed sets in probability, it is necessary
to assume that [E is a metric space. Recall that F°~ is the open g-envelope of F.

Definition 6.19 (Convergence in probability). A sequence {X,,n > 1} is said to
converge in probability if, for every ¢ > 0 and K € K,

P{[(Xn\X“)U(X\Xff)]ﬂK#@}—)O asn — oo. (6.5)
For brevity, it is sensible to denote

Yen =Xp \XTH)UX\X;7)
so that (6.5) means that Y, , —d> ¢ for each ¢ > 0.

Lemma 6.20 (Convergent subsequences). If the random closed sets {X,,n > 1}
converge in probability to X, then there exists a subsequence {n(i), i > 1} such that
X)) — X almost surely as i — 00.

Proof. Choose a sequence {(¢;, K;)} C (R4 x K) such that g; | 0, Z?il & < 00
and K; 1 E. By (6.5), for every i > 1 it is possible to find an integer n(i) such that
the sequence {n(i),i > 1} is strictly increasing and P {Ygi,n NK; # @} < g; for all
n > n(i). Then

o o0
ZP{YS,'Jl(i) NK; # 0} < 281‘ < 00
i=1 i=1
and, by the Borel-Cantelli lemma, Y, ;) N K; 7 ¥ at most a finite number of times.
For every ¢ > 0 and K € K, we get Y ;) C Y, n() and K C K; for sufficiently
large i. Therefore,

kli}go PUZ{Yeniy NK #0}) =0.

This implies Y¢ ;) — ¥ a.s., whence X,,;; — X a.s. by Proposition B.3. O

Theorem 6.21. Let p be any metric on F that is compatible with the Fell topol-
ogy. If X and X,,, n > 1, are random closed sets, then the following statements are
equivalent:
(i) X, — X in probability;
(ii)) p(X,, X) — 0 in probability;
(iii) every subsequence of {X,, n > 1} contains a further subsequence that con-
verges to X almost surely.

Proof. The implication (i)=>(ii) follows from Lemma 6.20. Condition (iii) means
that any subsequence of random variables {p(X,, X), n > 1} contains a further sub-
sequence converging almost surely to zero. This fact for real-valued random variables
is equivalent to (ii).
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The implication (ii)=>(i) is easy to prove by assuming that (i) does not hold,
so there is a subsequence {X,¢),i > 1} such that P{Y, i N K # @} > & for
some fixed ¢ > 0 and K € K. Now (ii) implies X, k) — X a.s. for a further
subsequence. By Proposition B.3, Y¢ ,;k)) — ¥ a.s. contrary to the assumption. O

Corollary 6.22. If X,, — X in probability, then X, —d> X asn — oo.

Proof. For every bounded continuous function g: F + R, the dominated conver-
gence theorem and Theorem 6.21 imply that every subsequence of {Eg(X,),n > 1}
contains a further subsequence converging to Eg(X), whence Eg(X,,) converges to
Eg(X). O

6.3 Probability metrics
Probability metrics in general spaces

In this section we discuss probability metrics in the space of random closed sets
distributions which generalise well known concepts of the uniform distance and the
Lévy distance between distributions of random variables and the Prokhorov metric
for random elements in metric spaces.

Definition 6.23 (Probability metric). A probability metric m(&, ) is a numerical
function on the space of distributions of random elements, which satisfies the fol-
lowing conditions

m(§,n) =0 implies P{§=n}=1,

mé&,n) =m®,§),
m(,n) <mé, ) +m,n),

for all random elements &, n and ¢ .

Since a random compact set is a K-valued random element, probability metrics
for random compact sets can be defined by specialising general metrics for the case
of random elements in the space K equipped with the Hausdorff metric p};. For
instance, the Prokhorov metric uses only the metric structure of the carrier space
(see Rachev [470, p. 30]) and can be defined for random compact sets as

p(X.Y)=infle >0: P{X e Y} <P{Y € Y} +¢& Ve BWK)},

where )* is the e-neighbourhood of Y C K in the Hausdorff metric. Another metric
can be defined as

Kp(X, Y):inf{s >0: P{,oH(X, Y) >8} <8} ,

where X and Y are random compact sets. This metric Ky metrises the convergence
of random compact sets in probability with respect to the Hausdorff metric. An ana-
logue of the so-called “engineering” metric (see Rachev [470, p. 5]) is defined as



94 1 Random Closed Sets and Capacity Functionals
In(X,Y) =Epy(X,Y).

The above mentioned metrics are compound [470, p. 39], i.e. their values depend
on the joint distributions of X and Y as opposed to simple metrics that depend only
on their marginal distributions. It is well known that simple metrics are more con-
venient, since they can be naturally applied to limit theorems. However, many inter-
esting simple metrics for random variables are defined by means of their densities or
characteristic functions, which are quite difficult to extend for random closed sets.

Probability metrics based on Castaing representation

Another possible approach to define probability metrics for random sets relies on
their Castaing representation using selections. If m is a probability metric for random
elements in [E, then a metric

mH(X,Y)zmax{ sup inf m(&,n), sup inf m(é,n)}
geS(x)NeS() neS(y)§€S(X)

for a.s. non-empty random closed sets X and Y is introduced in the same way as the
Hausdorff metric is constructed from a metric on E.

Example 6.24 (Engineering metric). Let E = R and choose m to be the sim-
ple “engineering” metric on the space of integrable random vectors, i.e. m(¢, ) =
p(E&, En). Assume that both X and Y have at least one integrable selection. Then

my(X,Y)=max sup inf p(x,y), sup inf p(x,y)
xeEX YEEY yeEy ¥€EX

= py(EX.EY),

where EX (respectively EY) is the set of expectations of all integrable selections
of X (respectively Y). The set EX is the selection expectation of X, which will be
studied in detail in Section 2.1.2. Thus, my (X, Y) is the Hausdorff distance between
the selection expectations of X and Y. Unfortunately, for a more complicated metric
m the evaluation of my for random sets is very difficult, since the family of selections
is rich even for simple random sets.

Probability metrics based on capacity functionals

A useful generalisation of classical probability metrics can be obtained by replac-
ing distribution functions in their definitions with capacity functionals. The uniform
distance between the random closed sets X and Y is defined as

wX,Y; A =sup{|Tx(K) —Ty(K)|: K € A}, (6.6)

where A is a subclass of IC. The Lévy metric is defined as follows
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£(X,Y; A =inf{r>0:
Tx(K) <Ty(K")+r, Ty(K) <Tx(K")+r, K € A}, (6.7)
where K" is the r-envelope of K. Hereafter we omit A if A = K, ie. w(X,Y) =
w(X,Y; K)and £(X,Y) = £(X,Y; K) etc.

Example 6.25. Let X = {£} and Y = {n} be random singletons. Then £(X,Y) is
the Lévy—Prokhorov distance between £ and n (see Zolotarev [630]) and u(X, Y)
coincides with the total variation distance between the distributions of & and 7.

Weak convergence

The following result shows that the Lévy metric determines the weak convergence
of random sets.

Theorem 6.26 (Lévy metric and weak convergence). Let A C K be a separating
class. A sequence {X,,n > 1} of random closed sets converges weakly to a random
closed set X if and only if £(X,, X; A(K¢)) — 0 asn — oo for each Ky € K,
where A(Kog) ={K € A: K C Ko}.

Proof. Sufficiency. Let £(X,, X; A(Kg)) — 0 asn — oo, It follows from (6.7)
that, for K € A(Ky) N Sy,

Tx(K) < Tx,(K*") + &, and Tx,(K) < Tx(K*™) + ey, n>1, (6.8)

where ¢, | 0 as n — 00. Assume that Tx (K) > 0, whence Int K # . Since A is a
separating class, there exists a sequence {K,,n > 1} C A such that

Tx(Ky) t Tx(IntK) = Tx (K) (6.9)
and K" C K forall n > 1. Since (6.8) holds on A(Kj),
Tx,(Kn) < Tx, (K;") + en < Tx, (K) + &n.
Thus,
Tx(K) —en — (Tx(K) — Tx(Ky)) = Tx, (K) = Tx(K) + &,
+ (Tx (K*) = Tx(K)) .

The upper semicontinuity of Tx and (6.9) yield that Tx,(K) — Tx(K) asn — oo.

Necessity. If X, —d> X, then Tx, (K) — Tx(K) foreach K € ANGy.Lete > 0
and K¢ € K be specified. Consider compact sets K1, ..., K, which form an e-net
of A(Kjp) in the Hausdorff metric. It is easy to show that K lr " belongs to Sy for some
ri € [g,2¢],1 <i < m. It follows from the pointwise convergence of the capacity
functionals on K lr " that for a certain integer ng and every n > ny,

ITx,(K/) = Tx (K[ )| <e, 1<i<m.
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Let K ; be the nearest neighbour of an arbitrary K € A from the chosen e-net. Then,
for all n > nyo,

Tx,(K) < Tx,(K§) < Tx, (K;) < Tx(K}) + & < Tx(K*) +3s.  (6.10)

Similarly,
Tx(K) < Tx, (K) + 3¢ . 6.11)

Thus, £(X,, X; A(Kp)) < 3e. Letting & go to zero proves the necessity. O

Corollary 6.27. A sequence of random closed sets {X,,, n > 1} converges weakly to
a random compact set X if and only if £(X,, X) — 0 asn — oo.

Proof. Sufficiency immediately follows from Theorem 6.26.

Necessity. Let {K,,n > 1} be an increasing sequence of compact sets, such that
K, 1 R4 as n — co. Then TX(Rd) — Tx(K,) < ¢ for a certain n. It is easy to show
that K/ = K,f belongs to Gx for some § > 0, whence

Tx,(RY) — Tx, (K') < ¢

for sufficiently large n. Inequalities (6.10) and (6.11) hold for each K c K'. If
K ¢ K’, then

Tx,(K) < Tx, (K NK') +¢& < Tx(K*) + 4¢

and
Tx(K) < Tx, (K3) + 4¢ .

Hence £(X,,, X) - 0asn — oo. O

Uniform convergence

The convergence in the uniform metric does not follow in general from the pointwise
convergence of capacity functionals. The following result shows that the uniform
convergence is related to the weak convergence of inner envelopes of random sets.
For every set F and § > 0, F~% = {x : Bs(x) C F} is the inner parallel set of F.
Note that the weak convergence of outer envelopes X ,‘3 to X% follows from the weak
convergence of the corresponding random closed sets.

Proposition 6.28 (Uniform convergence and inner envelopes). Let X, 5 4 X8
asn — oo forevery § > 0, where X is an almost surely regular closed random set
such thatP{Int X N K # @} = Tx(K) foreach K € K. Thenu(X,, X, K(Kp)) — 0
for every Ko € K.

Proof. Without loss of generality assume that E is compact and Ky = E. It is easy
to see that T’y is continuous in the Hausdorff metric on & and so Gx = K. For every
§ > 0 fix a finite §-net N5 = {Ky, ..., K5} of K in the Hausdorff metric. For
every K € K denote by Ns(K) the element of N5 closest to K. Then
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Tx,(K) = Tx(K) < max | Tx, (KP) — Tx(KD)| + sup (Tx(K®) — Tx(K)) .
=i=m Ke

The first term converges to zero as n — oo, while the second one can be made
arbitrarily small by the choice of §. Furthermore,

Tx, (K) = Tx(K) = Ty -5 (N5(K)*) = Tx(K) .

The right-hand side is smaller in absolute value than

sup |Ty-2s(K®) — Ty-25(K*)| + sup [Tx(K®) — Ty (K)|]
KeNs " KeN;

+ sup [Tx (K?) — Tx(K)].
KelC

The first term converges to zero by the convergence assumption, the second con-
verges to zero by the assumptions imposed on X, while the third term converges to
zero by the continuity of T. O

Further probability metrics for random closed sets can be defined using the fol-
lowing idea. Let H be a family of functions that map F into R. For h € H write h"
for the sup-integral of &. Put

my (X, Y) = sup |Ehv(X)—EhV(Y)|. (6.12)
heH

If the family H contains all indicators, then my is a probability metric. If 7 = 1k is
an indicator function, then ERY (X) — ERY(Y) = Tx(K) — Ty(K). In general, my
is a probability metric if the family H is so rich that the values EhY (X) forh € H
determine uniquely the distribution of X. Since EiY (X) equals the Choquet integral
f hdTy, the metric defined by (6.12) is a generalisation of the integral metric from
Muller [417].

7 Random sets and hitting processes

7.1 Hitting processes

As we have seen, the distribution of a random closed set in a LCHS space is uniquely
determined by the hitting probabilities of compact sets or open sets. This means that
arandom closed set X is identifiable by its hitting process

0(G) =1xngp, Geg,

considered to be a random function on G, or the process {(K) = lyngxp being a
random function on /C, see Figure 7.1. Note that

E¢(K) =Tx(K) =P{XNK # 0} .
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¢(K)=1

¢M) =1

¢(L)y=0

Figure 7.1. Hitting process ¢ generated by X.

The process ¢ can be extended from its values on a separating class A using (1.30)
and (1.31). The following result deals with the extension of hitting processes and is
similar to Theorem 1.27 that concerns extensions of capacity functionals defined on
separating classes. The notation ¢ ~ and ¢ also appears in Theorem 1.27.

Theorem 7.1 (Extension of the hitting process). Let A C By be separating and
closed under finite union class and let £ (A), A € A, be an increasing {0, 1}-valued
random process satistying ¢ (¥)) = 0 and

Z(A1UAp) =max(¢(A1),C(A2)) as. forall Aj, Ay e A. (7.1)

Then there exists a random closed set X such that with probability one 1xng 1y =
{7 (K) forevery K € K and 1xnG1p = ¢%(G) for every G € G. If also

O(IntA) = ¢ (clA) as., Ac A, (7.2)

then the hitting process generated by X is an extension of ¢. If A C I, then (7.2)
may be replaced by ¢ (A) = ¢~ (A) a.s. forall A € A, and if A C G, then both (7.1)
and (7.2) may be replaced by

C(Un=14An) = sup£(A,)  as. (7.3)

n>1
for all sequences {A,,n > 1} C A such that U,>1 A, € A.

Proof. Tt is easy to see that (G| U G3) = max(¢%(Gy), ¢%(G»)) as. for all
G1, G2 € G. The same holds simultaneously for all G|, G» from a countable sepa-
rating class Gp C G.

If {x1,...,x,} C K, then K is covered by Ay, ..., A, where x; € IntA; and
A; € A for all i. Therefore,

T(K)y=sup¢ ({x}), Kek.
xek
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IfX ={xeE: ¢ ({x}) = 1}, then the hitting process generated by X coincides
with £~ on K, i.e. 1xnx=p = ¢~ (K) for all K e K. Therefore, the hitting process
coincides with £ on G.

If A € A satisfies ¢(IntA) = ¢~ (cl A), then Ixnmeazs = lxncaxp. The
last two assertions are easy to prove noticing that (7.3) implies (7.1) and ¢(A) =
c%(nt A) forall A € A. o

7.2 Trapping systems
T -closure

A hitting process defined on a rich family of sets (e.g. on a separating class) is a rather
complicated object. It is quite natural to attempt to restrict it to a smaller family of
sets, even at the cost of an incomplete characterisation of the sets that generate this
hitting process.

Letus fix a family 7 of Borel sets called a trapping system. The only assumptions
on 7 are that every set A € 7 is non-empty and all traps cover E. Assume that every
set F C E is accessible only through the knowledge of whether or not F hits sets
from the trapping system 7. In other words, instead of F we observe its hitting
process 1pngp for K e 7. With every set F C E we associate its 7 -closure
cl(F; T) defined as the intersection of all sets A€ suchthat AN F =@ and A € 7.

It is easy to see that F C cl(F; 7) and the 7 -closure is a monotone idempotent
operation, i.e. cI(Fy; 7) C cl(Fa; T) for Fy C F> and cl(cl(F;7); T) = cl(F; 7).
A set F is called 7 -closed if F = cl(F; 7). However, unlike the topological closure,
the 7 -closure does not distribute over intersections or finite unions.

Example 7.2 (Trapping by disks). In R? consider the family 7 of all disks of
radius r. If r — o0, then the corresponding 7 -closure coincides with the convex
hull operation. Otherwise, the 7 -closure of F' is a subset of the convex hull of F,
which is obtained by rolling a disk of radius r outside F', see Figure 7.2.

Figure 7.2. 7 -closure of F using the family of disks in R2.
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Incidence functions

A zero-one function f over 7 is called a strong incidence function if A C Ujcr A;
and f(A) = 1 imply f(A;) for some i € I from an arbitrary family of traps A;,
i €l,andatrap A € 7. A weak incidence function satisfies the above requirement
for finite collections A;, i € I, only. The hitting process 1yna-p, A € 7, generated
by any set M is a strong incidence function.

Proposition 7.3 (Strong incidence functions). A zero-one function f over a trap-
ping system 7 is a strong incidence function if and only if f is the hitting process
on T generated by the set

F= (] A

AeT, f(A)=0

This is the unique 7 -closed set which generates the hitting process f .

Proof. For arbitrary A € 7, f(A) = Oimplies ANF = #. If AN F = ¢, then
A is covered by the union of sets A’ € 7 with f(A’) = 0, whence f(A) = 0 by
the condition imposed on strong incidence functions. Thus, f is a hitting process
generated by F. It is easy to see that F is 7 -closed. Any two 7 -closed sets are
identical if and only if they avoid the same traps, which immediately implies the
uniqueness. O

The above result makes it possible to treat 7 -closed sets as strong incidence
functions on the corresponding trapping system 7. If 7 is the family G of all open
sets, then the 7 -closure becomes the topological closure and the family of 7 -closed
sets coincides with the family F of all closed sets. The flexibility associated with a
choice of trapping system makes it possible to adjust the trapping system 7 in order
to obtain a rather general family of subsets of [E as the family of 7 -closed sets. The
following easy result formalises such a choice.

Proposition 7.4 (7 -closed sets). A system Z of subsets of E is identifiable with the
system of T -closed sets for a suitably chosen trapping system T if and only if Z
contains ¥, E and is closed under arbitrary intersections. The corresponding trapping
system may be obtained as the family of all sets F® where F € Z and F # E.

It suffices to take 7 that consists of all the sets F¢, F € Z’, where Z’ is a subclass
of Z such that every F € Z (F # E) can be obtained as an intersection of sets from
Z’.1f the conditions on Z imposed in Proposition 7.4 are not satisfied, then it is still
possible to come up with a trapping system which yields a family of 7 -closed sets
larger than Z. Each F € Z is 7 -closed for each trapping system 7 such that each
element of Z can be expressed as an intersection of complements of sets from 7.

Random weak and strong incidence functions

Let 7y consist of the empty set and all finite unions of traps from 7. Any incidence
function can be naturally extended onto the family 7( as f(UA;) = max;(f(A;)).
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Since the definition of weak incidence functions involves values of the function on
any finite collection of traps, it is possible to define a random weak incidence function
as a stochastic process ¢ defined on 7y such that {(UA;) = max; (¢(A;)) a.s. for all
finite collections A; € 7. Then T(A) = P{¢(A) = 1} for A € 7, determines the
finite-dimensional distributions of ¢ (A), A € 7y, as

P{s(A) =0, 5(A) =1,....8(An) = 1} = Ay, - Ax T(A),

see (1.9). Therefore, the distribution of a random weak incidence function can be
defined by a completely alternating functional on 7y, with values in [0, 1].

However, random strong incidence functions are more important from the point
of view of their possible interpretation as random 7 -closed sets, see Proposition 7.3.
Their definition involves arbitrary collections of traps, which calls for arguments
similar to the separability concept in the studies of stochastic processes. In order to
be able to construct a random strong incidence function the trapping system ought to
satisfy some separability assumptions.

Definition 7.5 (c-traps and trapping space). A trap A is called a c-trap, when every
covering by traps of cl(A; 7') can be reduced to a finite subcovering. The pair (E, 7')
is called a trapping space if T is a trapping system and also
(i) with every trap A we can associate a countable system of subtraps of A in such
a way that all possible subtraps of A can be obtained as unions of some traps
from the chosen countable system;
(ii) if x € A € 7, then x belongs to a c-trap whose 7 -closure is contained in A.

If 7 is the system of all open sets, then the above requirements are clearly sat-
isfied if [E is a LCHS space. The c-traps are relatively compact open sets and the
countable system in Definition 7.5(i) is the base of the topology.

Theorem 7.6 (Random strong incidence functions). Let (E,7) be a trapping
space. A completely alternating function T on 7, with values in [0, 1] such that
T () = 0 corresponds to a random strong incidence function (or, equivalently a
random 7T -closed set) if and only if T is continuous from below, i.e., for every trap
A € T, T(A) equals the supremum of T(U?_, A;) for every n > 1 and all c-traps
Ay, ..., Ay suchthat U?_| A; C A.

Theorem 7.6 can be interpreted from the general point of view of measures on
lattices described in Section 3. If the corresponding lattice operation is defined by
F1 v F, = cl(F1 N F»; T), then the conditions on the trapping space ensure that
the corresponding Scott topology is second countable, see Proposition 3.2. No other
topological assumptions are made on E.

Random closed sets with special realisations

If random closed sets take values in a subfamily Z of the family F of all closed
sets, then this additional information can be used to reduce the family of compact
sets needed to define the capacity functional and still ensure the uniqueness. In this
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context it is desirable to construct the probability measure on the whole o-algebra
B(F). The following theorem provides alternative conditions that make it possible.

Theorem 7.7 (Distributions of random closed sets with restriction on realisa-
tions). Let E be a LCHS space. Consider Z C F and 7 C K and suppose that the
following conditions hold.

(i) 7 is closed with respect to finite unions.

(ii) There exists a countable subclass G' C G such that any K € T is the limit of
a decreasing sequence of sets from G’ and also any G € G’ is the limit of an
increasing sequence from 7T .

(iii) Forany G € G'U{#} and Ky, ..., K, € T,n > 0, the family

,,,,,

is non-empty, provided K; \ G # ) forall 1 <i < n.
(iv) The o-algebra o (Z) generated by

i]—"glen NZ:KeTUW),Gied. 1<ix< n}

coincides with the o-algebra B(F) N Z ={Y N Z: Y € B(F)} induced by
B(F) on Z.
Let Z be the closure of Z in the Fell topology. If T : T + [0, 1] is a completely al-
ternating upper semicontinuous functional with T () = 0, then there is a (necessary
unique) probability P on o (2) satistying P {Fx N Z} = T(K) forall K € 7.

7.3 Distributions of random convex sets
Containment functional of random convex compact sets

In the following assume that E is the finite-dimensional Euclidean space R?. A ran-
dom closed set X in R? is said to be convex if its realisations are almost surely
convex, i.e. X belongs to coF almost surely, see Definition 4.32. Of course, the
Choquet theorem implies that the distribution of each random convex closed set X in
R is determined by the corresponding capacity functional. However, there is a more
economical way to define distributions of random convex compact sets.

Theorem 7.8 (Distribution of convex compact sets). The distribution of a random
convex compact set X in R? is determined uniquely by the values of the containment
functional Cx(K) = P{X C K} for K € co K. Moreover, it suffices to consider all
K being convex polytopes.

Proof. By Proposition 2.5, X is a random convex compact set in R if and only if the
support function (X, u) is a random variable for every u from the unit sphere S?~!.
The finite-dimensional distributions of the stochastic process h(X, u), u € S9-1 are
uniquely determined by the containment functional of X. For example,
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P{n(X,u) =t} = lim Cx(H, (1) N By),

where H (1) = {x : (x,u) <t} and {B,, n > 1} is an increasing sequence of balls
of radius n centred at the origin. O

Theorem 7.8 can be obtained using lattice-theoretic arguments described in Sec-
tion 3.4. If X is a non-convex random compact set, then the containment functional
Cx(K), K € co K, does determine the distribution of co(X). The containment func-
tional can be extended onto the family co F of convex closed sets by

Cx(F)=P{XCF}, FecoF.

The containment functional is a completely monotone capacity on co F, see Defini-
tion 1.9. In other words, it satisfies the following conditions:

(I1) Cyx is upper semicontinuous, i.e. Cx (Fy,) | Cx(F)if F, | F asn — oo for
F, F|,F,...€coF.

(I2) The recurrently defined functionals Vg, --- Vg, Cx (F) are non-negative for all
Fi,...,F, ecoFandn > 1, see (1.14).

Note that

Vi, - VECx(F)=P{XCF, X¢F, 1<i=<n}.

Unbounded random convex closed sets

Although it is tempting to extend Theorem 7.8 for a not necessarily compact random
closed set X by considering its containment functional Cx (F) for F' € co F, the fol-
lowing example shows that the distribution of a general non-compact convex random
closed set cannot be determined by its containment functional on co F.

Example 7.9 (Unbounded random convex closed set). Let X be the half-space
which touches the unit ball B; at a random point uniformly distributed on its bound-
ary. Then Cx(F) = O foreach F € coF, F # R4, so that this containment func-
tional does not determine the distribution of X.

Now consider a special family of random convex closed (not necessarily com-
pact) sets whose distributions are characterised by the containment functionals. Let
X be arandom convex closed set which is not necessarily compact. Define

Ly ={ueS" " h(X,u) <ooas.}, (7.4)

where h(X, u) is the support function of X. Then Ly is a convex subset of s4 -1
where the convexity means that the cone generated by L x is convex. Note that Ly is
not necessarily closed or open. For a convex set L C S?~!, define a family of convex
closed sets as

C(Ly={F ecoF: h(F,u) =o0,u ¢ L, h(F,u) <oo,ucL}. (7.5)
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Clearly, if X € C(L) a.s., then Ly = L. In the following we consider random sets
with values in C(L). Consider a o-algebra o (L) on C(L) generated by the families
{F € C(L) : F C G} for all open convex G. Since the same o -algebra is generated
if G is taken from the family of all open half-spaces, X is a o (L)-measurable random
element if and only if #(X, u), u € L, is a random function.

Proposition 7.10. For each convex set L C S?-1 o (L) = B(F) NC(L), ie. the
o -algebra o (L) coincides with the o -algebra induced by B(F) on the family C(L).

Proof. One-side inclusion o (L) C B(F) N C(L) is evident. For each F € co F,
the support function A (F, u) equals the supremum of continuous linear functions
and, therefore, is lower semicontinuous. Furthermore, if u,, — u as n — oo and
u,uy,uy, ... € L,then h(F,u,) — h(F, u) for each F € C(L). Consider a count-
able dense set L’ C L and a compact set K. For each F from F K'NC(L) there exists
a hyperplane which separates F and K, see Hiriart-Urruty and Lemaréchal [258,
Cor. 4.1.3]. Because of the continuity of the support function on L, it is possible to
find a hyperplane which separates F and K and has a normal from L. Therefore,
FX NC(L) is a countable union of sets from o (L). O

By the same arguments as in Theorem 7.8, we obtain the following result.

Proposition 7.11 (Distribution of random convex closed set). The distribution of
arandom closed set X with realisations in C(L) for some non-empty convex set L C
S4-1 s uniquely determined by the containment functional Cx (F) for F € C(L).

Weak convergence of random convex compact sets

It is well known (see Billingsley [70, p. 15]) that a class of events that determines
the distribution is not necessarily a convergence determining class. In other words,
while the probabilities of a given family of events may determine the distribution
uniquely, this does not mean that the pointwise convergence on all continuity events
from the same family automatically implies the weak convergence. However, for
random convex compact sets, the pointwise convergence of containment functionals
does imply the weak convergence.

Theorem 7.12. A sequence {X,,,n > 1} of random convex compact sets converges
weakly to a random closed set X if

Cx,(K) = Cx(K) asn— oo (7.6)

for every K € co K such that Cx(K) = Cx(Int K).

A proof can be produced using support functions of random compact sets,
since (7.6) for all K € co K implies the convergence of the finite-dimensional distri-
butions of the support functions of X,,. The corresponding tightness condition in the
space of continuous functions easily follows from the Lipschitz property of the sup-

port functions (see Theorem F.1) and the fact that (7.6) implies || X, || 4 1X] if K is
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chosen to be an arbitrary ball, see also Proposition 6.13. Furthermore, it is possible
to show that it suffices to require (7.6) for K from a suitably chosen separating class
of convex compact sets, e.g. from the family of all compact polytopes.

Star-shaped sets

A random closed set X in R is said to be star-shaped with respect to a deterministic
point a € R? if ¢(X —a) C (X —a) as. for all ¢ € [0, 1]. This is equivalent to
the requirement that ¢ € X a.s. and [a, £] C X a.s. for every selection & € S(X).
Clearly, every convex set is star-shaped. Every star-shaped set corresponds to its
radius-vector function rx (u) = sup{t > 0 : a + tu € X}. Since the distribution of
a star-shaped set is determined uniquely by the finite-dimensional distributions of its
radius-vector function, the containment functional Cx (F') for all star-shaped closed
sets F determines uniquely the distribution of X.

A random closed set X is star-shaped with respect to its selection & if X — & is
star-shaped with respect to the origin. Let Y be the set of all selections £& € S(X)
such that X is star-shaped with respect to &. The set Y is called the kernel of X.

Theorem 7.13. Let X be a random compact set. Then its kernel is a random compact
convex set.

Proof. Without loss of generality we can assume that X is star-shaped with respect
to the origin. Otherwise one can consider an appropriate random translation of X. It
is easy to see that Y is closed. Furthermore, for any two selections &, n € Y and any
selection ¢ € S(X), the triangle with vertices &, n and ¢ is contained in X. Hence
the set Y is convex.

If Y has non-empty interior (and so is regular closed), it is easy to show that Y is
a random closed set. By Theorem 2.6, it suffices to show that {y € Y} is measurable
for any y. This event can be represented as the intersection of the events [y, §] C X
for all £ from a Castaing representation of X.

In the general case, consider the r-envelope X”. Then the kernel Y, of X" con-
tains a neighbourhood of the origin. Indeed, if ||y|| < r, then, for any point x € X,
the segment [y, x] lies within the Hausdorff distance at most r from [0, x] C X,
whence [y, x] is contained in X”. Hence Y, is regular closed and so is a random
compact convex set. The proof is finished by observing that Y, converges almost
surely to the kernel of X asr | 0. O

8 Point processes and random measures

8.1 Random sets and point processes
Locally finite measures

A measure p on the family B of Borel sets in E is called counting if it takes only
non-negative integer values. A counting measure p is locally finite if p is finite on
bounded subsets of E.
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Proposition 8.1 (Support of locally finite measure). Let E be a LCHS space. If
is a locally finite measure on [E, then

(i) the support of 1 is closed, i.e. suppu € F;

(ii) forall G € G, suppu N G # (¥ if and only if u(G) > 0.

Proof. 1f x ¢ supp p, then x € G for an open set G with u(G) = 0. Therefore,
G C (supp 1)°, which means that (supp )€ is open and supp u is closed. Since E is
second countable, u((supp ©)¢) = 0. m]

Applied to a counting measure (1, Proposition 8.1 implies that supp u is a locally
finite set, i.e. supp p has at most a finite number of points in any compact set.

The family N of all counting measures can be endowed with a o-algebra gener-
ated by {u € N : u(B) =k} fork =0,1,2,... and B € B, so that a random
counting measure can be defined as a random element N in A/. A random count-
ing measure is also called a point process. The measurability condition implies that
N(B), the number of points in a Borel set B, is a random variable. A point process
(or the corresponding counting measure) is called simple if sup, N({x}) < 1 a.s.
The following important result follows from Proposition 8.1 and the fundamental
measurability theorem (Theorem 2.3).

Corollary 8.2 (Counting measures and point processes). Let E be LCHS. Then N
is a simple point process if and only if supp N is a locally finite random closed set in
E.

Since the map F +— card(F N K) is measurable on F for every K € K, it
is easily seen that the family of locally finite sets belongs to ‘B(F). Therefore, the
event {X is locally finite} is measurable for every random closed set X .

A point process is said to be stationary if its distribution is invariant under trans-
lations. This is equivalent to the statement that supp N is a stationary locally finite
random closed set.

Application of the Choquet theorem

Corollary 8.2 yields the following interesting conclusion, which immediately follows
from the Choquet theorem. The letter N is used to denote both the random counting
measure and the random locally finite set being its support.

Theorem 8.3 (Distribution of a simple point process). The distribution of a sim-
ple point process N in a LCHS space is uniquely determined by the probabilities
P{NNK =0} (or P{N(K) =0}) for all K € K. Alternatively, the distribution of
N is determined uniquely by P{N NG # (¥} forallG € G.

Let us define by
ON(K)=P{N(K) =0}, Kek,

the avoidance functional generated by a simple point process N. Since Oy (K) is
the avoidance functional of the random closed set supp N, Ty (K) =1 — Oy (K) is
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a completely alternating upper semicontinuous functional. It is quite natural to ask
if it is possible to single out those capacity (or avoidance) functionals which gener-
ate distributions of locally finite random sets and so can be interpreted as capacity
(or avoidance) functionals corresponding to simple point processes. The following
result provides necessary and sufficient conditions for this. It can be equivalently
reformulated for the avoidance functional instead of the capacity functional.

Proposition 8.4. A capacity functional T defines a locally finite random closed set if
and only if, for every compact set K and every ¢ > 0, there exists k, > 1 such that,
whenever K = UioilB,- and the B; are disjoint, one has

T(K)—e<—Y Ap - Ap T(K\(UF_ Bi)), (8.1)

where the sum ranges over all non-empty, finite subcollections {B;,, ..., B;} C
{B1, By, ...} withk < k.

Proof. Let X be arandom closed set with the capacity functional 7. In view of (1.9),
condition (8.1) can be reformulated as

P{XNK # @} (8.2)
—ZP!XHB” £0....,XNB; #0, Xﬂ(K\(U]]‘-leij))z(b}<8.

The left-hand side of (8.2) is smaller than P{X N K # @, card(X N K) > k.}. If X
is locally finite, then P {card(X N K) > k.} is smaller than ¢ for sufficiently large k,
so that (8.2) is a necessary condition for the local finiteness.

Now assume that (8.1) holds. Let {A;’, 1 <i < m;},n > 1, be an increasing
sequence of finite partitions of K € KC, so that K = U; A7 and each set A, 1 <
i < my, 1s a union of sets from {A?H, 1 < j < my41}. Furthermore, let Y, be the
cardinality of {i : A7 NX # #}. ThenY,, < Y41 and the number of points in X N K
is at most lim,,_, » ¥,,. Now (8.2) implies P{Y,, > k.} < ¢, so that lim,_,» Y, is
finite almost surely. O

In general, it is difficult and often impossible to verify the assumptions of Propo-
sition 8.4. Consider a particular case of E = R and translation-invariant capacity
functionals, with the aim of characterising locally finite stationary random closed
sets on the line in terms of their capacity functionals. For every r > 0 put

q() = Q0x((0,1) =1-Tx((0,1) =P{XN(0,1) =0} .

Proposition 8.5 (Stationary locally finite random sets on the line). Let X be a
stationary random closed subset of R. If X is locally finite, then

) q(0+) =1.
On the other hand, X is locally finite if one of the following equivalent conditions is
satisfied:

(ii) q has a finite right-hand derivative at 0;
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(iii) lim,— o0 2"(1 —q(27")) < oo.
Proof. 1f X is locally finite, then

1= q(0+) =lmP (X 1 (0,0) £ 0} =0,
t

so (i) is necessary.

Note that (ii) and (iii) are equivalent because of the monotonicity of g. Let us
show that (iii) implies that X N [0, 1] is almost surely finite, whence X is necessarily
locally finite. Foreveryn > 1l and k =0, ..., 2" — 2 introduce events

A, k) ={XNk2™", k+ D2 #0, XN[(k+ 127", (k+2)27") # 0}

and put
22

Ay = A k).

k=0
Then X N [0, 1] is almost surely finite if no more than a finite number of events
A1, Az, ... occurs. For this, it suffices to show that

ZP(A(n)) < 00. (8.3)

n>1
By stationarity,
P(A(n, k)) = P(A(n, 0))
—2P{XN[0,27") # @} — P iX n10,27"+1) £ @}
=1-23Q7")+§Q ") =2by — by,
where g(t) = P{X N[0,¢) =0@}and b, =1 — g(27"). Then

m m

iP(A(n, ) < > 2"P(A(n,0)) = iz" (2b) = Y 2"y

n=1 n=1 n=1 n=1

=22"b,, — by) .
Note that
qt) = q(t) 2q@) —P{0¢ X} =q@) — (1 —-¢q0+)) =q@),

so that g(t) = ¢(¢). Now condition (iii) implies that 2"*b,, = 2"(1 — q(27™)) is
bounded, which yields (8.3). O
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Ordered coupling and thinning

The following result is a corollary of Theorem 4.42 on the ordered coupling for
random sets. It establishes a condition for a point process N’ to be a thinning of
another point process N. Recall that a thinning of N is defined as a point process N’
which is a subset of N, see Stoyan, Kendall and Mecke [544, p. 146].

Proposition 8.6 (Thinning of point processes). Let N’ and N be two simple point
processes on a LCHS space E. Then N’ can be realised as a thinning of N (so that
N’ is stochastically smaller than N) if and only if

P{N'NG #0,....NNG, #0} <P{NNG1#¥,...., NNG, # 0}

foreveryn > 1and Gy, ...,G, € G.

Poisson point process

One particularly important example of a point process is the Poisson point process
defined as follows.

Definition 8.7 (Poisson point process). Let A be a locally finite measure on a topo-

logical space E with Borel o-algebra 8. The Poisson point process I1, with the

intensity measure A is a random subset of R? such that the following properties are

satisfied.

(1) For each bounded set B the random variable card(/T4 N B) (number of points
in IT4 N B) has a Poisson distribution with mean A(B).

(2) Numbers of points of 1,4 in each of disjoint sets By, ..., B, are independent
for every n > 2 and any collection of disjoint Borel sets.

The capacity functional of the locally finite random set corresponding to 74
equals the probability that the Poisson random variable with mean A(K) does not
vanish, whence

T, (K) =P{ITANK # @} = 1 — exp{—A(K)}. (8.4)

If A is absolutely continuous with respect to the Lebesgue measure, then the corre-
sponding Radon—Nikodym derivative (or density) X is called the intensity function.
If E = R and A is proportional to the Lebesgue measure, then the Poisson point
process is said to be stationary. It is possible to extend Definition 8.7 for the case
when A is not locally finite.

Definition 8.8 (Poisson random set). Let F be a closed subset of E. Assume that
A(K) < oo for any compact set K N F = ) and A(K) = oo otherwise. A Poisson
random set I1, with intensity A is the union of F' and the Poisson point process on
F°© with intensity measure A.

It should be noted that the capacity functional of the Poisson random set I, is
also given by (8.4).
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Example 8.9. Let A be a measure on E = RY (d > 2) with the density A(x) =
x| 2. Then A is infinite in any neighbourhood of the origin, but locally finite on
R4 \ {0}. The corresponding Poisson random set contains the origin almost surely
and is a Poisson point process on R¥ \ {0}.

Let B be a measurable space. A point process in the product space E x B is
called a marked point process with the second component being the mark and the
first component called the location. A point process is called independently marked
if the marks at different points are independent.

If N is a general point process, the expectation A(K) = EN(K) is called the
intensity measure of N. The following useful fact, known as the Campbell theorem,
makes it possible to evaluate expectations of sums defined on point processes.

Theorem 8.10 (Campbell theorem). If N is a point process with the intensity mea-

sure A, then
E [ > f(x)] = f f(x)Adx)
E

xeN

for each measurable function f: E — R.

Weak convergence of point processes

The conditions for the weak convergence of random closed sets can be specified to
show the weak convergence of point processes. If N is a simple point process, then
the corresponding family of continuity sets is defined as

Gy ={Be®Bx: N(OB)=0 as.}.

Alternatively, Gy can be defined as the family of all relatively compact Borel sets B
such that N(cl B) = N(Int B) a.s.

Proposition 8.11 (Continuity sets for point process). If N is a simple point process,
then Gy = Gy, where X = supp N.

Proof. 1t suffices to note that
P{XNclB#¥, XNIntB =0} =P{N@OB) =0} . O

Although the distribution of a simple point process is determined by its hitting (or
avoidance) probabilities, the pointwise convergence of those probabilities does not
suffice to ensure the weak convergence of the point processes. The following result
shows that an additional condition ought to be satisfied in order to obtain a simple
point process in the limit.

Theorem 8.12 (Weak convergence of point processes). Let N and {N,,n > 1} be
point processes in a LCHS space E. Assume that N is simple. Let A C By be a
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separating class and Ay C &y be a pre-separating class. Then N, weakly converges
to N if

nli)ngoP{Nn(A)=O}=P{N(A) =0}, AecA, (8.5)
and
limsupP{N,(A) > 1} <P{N(A) > 1}, A€ Ay. (8.6)

If A C Gy, then (8.5) and (8.6) are also necessary for the convergence N, —d> N.

Proof. By (8.5) and Theorem 6.8, supp N, 4 supp N as random closed sets. Since
both the space of all counting measures and the space of closed sets are Polish with
respect to the vague topology (for measures) and the Fell topology (for closed sets)
and the map N + supp N is measurable, Proposition E.7 implies that we can assume
(passing to random elements defined on the same probability space) that

supp N, 5 supp N a.s. (8.7)
First, prove that
lim sup min(N, (A), 1) < N(A) <liminf N,(A), A€ Gy. (8.8)
n— 00 n—00
For the first of these inequalities, it suffices to assume that N(A) = 0 and so

N(clA) = 0 (since A € Gy). Then (8.7) together with the definition of the Fell
topology (Appendix B) imply that supp N, N A = ¢ for all sufficiently large n,
whence lim sup,,_, ., min(N,(A), 1) = 0. For the second inequality in (8.8), assume
that N(A) = m > 0. Since Gy is a separating class and N is simple, it is possible
to choose Ay, ..., A, € Gy such that N(Ay) = N(Int A;) = 1 for every k. Then
supp N, N Int A; # @ for all sufficiently large n. Thus, liminf N, (Ax) > 1 and

m m
N(A) =m < Zlinig%an(Ak) < 1311310ng Na(Ag) = liminf Ny (A).
k=1 k=1

Let us show that for A € Ay it is possible to replace min(N, (A), 1) by N, (A) in
the left-hand side of (8.8). Note that, for m and n being non-negative integers,

{m>1}U{m <min(n,2)} ={n>1}U{m=0,n=1}U{m > 1>n},

where all unions are disjoint. Substitutingm = N(A) andn = N,(A), (8.8) and (8.6)
imply that
linc}oP{N(A) <min(N,(A),2)} =0, AecA. (8.9)
n—

For each set B C A € Ay,

{Nn(B) > N(B)} C {Ny(A) > N(A)} U {Na(A\ B) < N(A\ B)}
C {min(N,(A),2) > N(A)} U{N(A) > 1}
U{N.(A\ B) < N(A\ B)}.
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Fix any B € Gy and K € K such that cl B C Int K. Because Ay is a pre-separating
class, it is possible to find Ay, ..., A, € Ap with diameters less than a fixed number
&> 0suchthat B C (AjU---UA,) C K. Then (8.8) and (8.9) yield that

limsup P {N, (B) > N(B)} < P(U{_{N(A) > 1}). (8.10)

n— oo

Since N is a simple point process, the right-hand side of (8.10) is bounded by
P {0 < ¢}, where « is a positive random variable being the smallest distance between
the points of (supp N) N K. Since ¢ > 0 is arbitrary,

P{N,(A) > N(A)} - 0 asn— 0.

Combining this with (8.8) implies that N,(B) converges to N(B) is probabil-

ity. In particular, the m-tuple (N, (A1), ..., N,(Ay)) converges in distribution to
(N(A1), ..., N(Ay)). By Kallenberg [287, Th. 4.2], the point process N,, converges
weakly to N. O

8.2 A representation of random sets as point processes

The space E in the definition of a point process can be a rather general measurable
space. Typical examples include the Euclidean space R?, the space of all compact
sets /C, the space of all compact convex sets co /C, the space of all upper semicontin-
uous functions, etc.

In particular, a locally finite point process on /C is a countable family of compact
sets K1, K2, ... such that only a finite number of the K;’s hits any given bounded
set. This local finiteness property ensures that

X=KiUKyU--- (8.11)

is a closed set, which is also measurable, since {X N G = ¢} = N;{K; N G = B} is
measurable for every open G.

The following decomposition theorem states that rather general random closed
sets in E = R? can be obtained using (8.11) with K, K7, ... being convex compact
sets. The random set X is said to belong to the extended convex ring R if X N W
belongs to the convex ring R for each convex compact set W, i.e. X N W is a union
of at most a finite number of convex compact sets, see Appendix F.

Theorem 8.13 (Decomposition theorem). If X is a random closed set in E = R4
with values in the extended convex ring, then there exists a point process N =
{Y1, Y2, ...} on the family co K’ of non-empty convex compact sets such that

X=YUY,U---. (8.12)

If X is stationary, then the point process N can be chosen to be stationary (with
respect to translations of sets from co K').
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Figure 8.1. Representation (8.12).

Let us start with two auxiliary results. For a non-empty K € R, let n(K) be
the minimal number n > 1 such that K is a union of n convex compact sets. By
agreement, put n(¥) = 0.

Lemma 8.14. The mapn: R — {0, 1,2, ...} is measurable and R is a union of an
at most countable family of closed subsets of IC.

Proof. For eachn > O define R, = {K € R : n(K) < n}. Since R = U,>0R,,
it suffices to show that R, is a closed subset of C for every n > 0. Assume that K;
converges to K in the Fell topology, where K; € R,,i > 1. Then K; = U?leij
with K;; € coK'. It is easy to see that {K;;} are uniformly bounded, so that there
exists a subsequence {ix, k > 1} such that K;, ; — K} as k — oo. Hence K;;, —

U’;:lK;. € Ry, so that R, is closed. o

Let (co IC)8° be the family of all finite sequences (K7, ..., K;;), m > 0, of con-
vex compact sets with the standard o -algebra. Note that (co K)™ denotes the family
of m-tuples of convex compact sets for fixed m.

Lemma 8.15. There exists a measurable map s: R > (co K)g° such that s(K) =

(Kl, ey Kn(K)) and
n(K)

Us(K) = U Ki=K
i=1
foreachK € R.

Proof. The families R,, = {K € R : n(K) = n}, n > 0, are pairwise disjoint. For
every fixed n,
F(K)={(K1,...,Kp): U_ Ki =K}

is a set-valued map from R, into (co K)". Consider a closed family ) C (co K)".
For every m > 1 let

m = {(K1 0 Bp(0),.... Kn N Bp(0): (Ki,...,Ky) €V},

where B, (0) is the ball of radius m centred at the origin. Then



114 1 Random Closed Sets and Capacity Functionals

(KeRy: FEINY #0) = JIK € Ru: F(K)N Y #9)

m=1

o0
= U R N{U_ Ki : (K1, ..., Kn) € V).
m=1

Note that {U?_ | K; : (K1,...,K,;) € Yu} is compact in K and so measur-
able, which implies the measurability of F. By the fundamental selection theorem
(Theorem 2.13), there exists a measurable selection s: R,, +— (co /)" such that
s(K) € F(K). The required map on R can be obtained by combining these measur-
able selections for n > 0. O

Proof of Theorem 8.13. Without loss of generality assume that X is almost surely
non-empty. Let C = {x = (x1,...,x4) € R4 . [xil < 1/2,1 <i < d} be
the unit cube in RY and let C, = C + z from z from Z? (the integer grid in RY).
Furthermore, let £ be a random vector uniformly distributed in C. Using the map s
from Lemma 8.15 define

NX) = [ JIs(x n(C.+8)—2)+2l.

zeZd

This map is a measurable map from R into the family of locally finite collections of
convex compact sets. Thus, N(X) is a point process on co K’ which satisfies (8.12).
If X is stationary, then, for every x € R4, we have

NX) +x=JIS(XN(C;+8) —2) +2+x]
zeZ4

U —x)n (. +&-x) -2 +z+x]

z€Z4

= JB&Xn(C+6) -+ =NX),

zeZ4

e

so that N(X) is indeed stationary. O

It is possible to extend the above result to show that the point process N is in-
variant with respect to any rigid motion for which X is invariant. To prove this, it is
possible to use the group of invariant motions to “randomise” the cubic tiling.

Let us associate with each Y; from (8.12) a point ¢(Y;) in such a way that c(¥; +
x) = Y; + x for all x. For instance, c(Y;) can be the centre of gravity of Y;. Then
instead of (8.12) X can be represented as

X = Jew)+r) (8.13)

with Yl.0 = Y; — c(Y;). This representation is called a germ-grain model, where the
points c(Y;) are called germs and the corresponding sets Yi0 are grains. A particu-
larly important case of this construction appears if N is a Poisson process on co K;
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then X is called a Boolean model, see Molchanov [406] and Stoyan, Kendall and
Mecke [544]. In this case the germs form a Poisson point process independently
marked by i.i.d. grains.

Similarly to Theorem 8.13, it is possible to show that a general random closed
set X can be represented as a union-set for a point process on K. The corresponding
point process can be trivially obtained as ¥, = (X N C;) for z € Z4.

8.3 Random sets and random measures
Random measures associated with random sets

Similarly to the o-algebra on the family A of all counting measures used to define
a random point process, the family M of all locally finite measures on E can be
equipped with a o -algebra generated by {u € M : w(B) > t} for every B € B and
t > 0. A random measure M is an M-valued random element, i.e. M (B) is a random
variable for each Borel set B.

The fundamental construction which delivers random measures related to ran-
dom closed sets can be described as follows. Let X be a random closed set in £ and
let « be a fixed measure on [E such that (B N X) is almost surely finite for every
bounded Borel set B. Then M(B) = u(B N X) is a locally finite random measure.
This construction can be generalised by taking a measurable random function ¢ (x),
x € E, and letting

M(B) = / ¢(x)dp(x) .
XNB

Particularly important examples of random measures associated with random
closed sets are related to the Hausdorff measures. If H¢~! is the (d — 1)-dimensional
Hausdorff measure, then M (B) = H?~!1(X N B) (if it exists) is called the surface
measure generated by X. Further examples are provided by the curvature measures
described in Appendix F.

A natural question whether a random measure determines the distribution of a
random closed set has been answered positively in Section 8.1 for counting measures
and the corresponding locally finite random sets. However, in general, this is not
the case. For instance, if X = {£} is a singleton (or any other random set of zero
Lebesgue measure), then the random measure M (B) = mes(X N B) vanishes and
does not determine the distribution of X. Note that the support of a measure u is
defined to be the set of all x € [E such that x € G for an open set G implies u(G) >
0. The support of u can be alternatively defined as

supp = ) elfx; € Q: (B (x))) > 0},
i=1

where ¢; | 0 and Q is a countable dense set in E. Proposition 8.1 yields the following
result.
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Proposition 8.16 (Support of a random measure). For every random measure [i,
supp p is a random closed set whose distribution is uniquely determined by the dis-
tribution of .

Intersections of random sets

Let {X,,n > 1} be a sequence of i.i.d. random closed sets in a space [E which itself
is a second countable compact group G. Assume that all these sets have G-invariant
distributions, see Section 4.1. Let v be the Haar measure on G. It is interesting to
find out whether or not the event

An = {Xa N (U2 X)) = 0) (8.14)

occurs for infinitely many 7z, meaning that a new X, infinitely often fits in the gap
left free by the previous sets. By the Hewitt—Savage zero-one law this happens with
probability either zero or one, so that P(limsup A,) is either 0 or 1. A necessary
condition for

P(limsupA,) =0 (8.15)

isP{X;NX;#0|X;} > 0fori # j. A sufficient condition can be formulated us-
ing random measures {{t,, n > 1} such that X,, = supp u,, n > 1. The convolution
of w1 and inverted w2 is defined as

(11 % 12)(B) = f p@opa(xB™Y, B eB@G).
G
Proposition 8.17 (Random sets in a group). Let {i,, n > 1} be a sequence of i.i.d.
random probability measures on G such that (1, (x ~' B) has the same distribution as
wn(B) forallx € G and B € B(Q). If u; * i ; is almost surely absolutely continuous

with respecttov fori # j with a mean square integrable density g, then (8.15) holds
for A, defined by (8.14) with X,, = supp tp, n > 1.

Proof. Observe that

n—1
P(A,) =E []—[ P{X;NX,=0| un}]

i=1
=E[®XinX2=0]u)"].

By the Borel-Cantelli lemma, it suffices to show that

E [Z(P{Xl ape =®|M2})n_l:| =E [P{Xl N Xz #@IM}_I] < 00.

n=1

Let B, be a ball centred at the identity in any metric on G compatible with the
topology. Using the inequality P {o > 0} > (E«)?/E(«?) for a random variable o,
we can write
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P(Xi X2 # 0] pa) = limP { f / 15, (v2 " @y)pa(dz) > 0 m}

. (E [(11 % f12)(Be) | n2])?
> lim sup

10 E{(u1* 12)(Be)? | 2]
—1
= (lil;%nfE [(v(Bg)‘l(m * [12)(Be))* | m]) ,

where we have used the fact that E [,ul * /1] = v for every finite deterministic prob-
ability measure p. Fatou’s lemma and Jensen’s inequality imply

E[P(x1 0 X2 2012} "] < liminf B [(0B0) 7 a1 # i) (B0

S ?
zlllgll%)nfE (v(Bg) /lBg(y)g()’)V(dy)> ]

1 2
= limnf f <v(B£) / 138<xy)g<y)v(dy>) v(dx)}

1
<timinfE || / / 138<xy)g2<y)v(dy>v<dx)}

=E [/ g%y)v(dy)} <00, O

8.4 Random capacities

Consider a general capacity ¢ defined on subsets of a LCHS space E. It is only
assumed that ¢ () = 0, ¢ is increasing and upper semicontinuous on . More ex-
actly, such functionals on /C are called topological precapacities (see Appendix E),
but we will use the term capacity without risk of ambiguity. The family of capacities
is equipped with the vague topology, which is generated by {¢ : ¢(K) < ¢t} and
{p: ¢(G) >t} where K € K, G € Gandt > 0. The Borel o-algebra generated
by the vague topology is the smallest o -algebra which makes the map ¢ — ¢(K)
measurable for every K € K.

A random capacity (also denoted by ¢) is a random element in the family of all
capacities which is measurable with respect to the Borel o -algebra generated by the
vague topology, i.e. ¢(K) and ¢(G) are random variables for each compact K and
open G. It is also possible to define random capacities that satisfy certain properties,
for example, random strongly subadditive capacities, random sup-measures, etc.

A random capacity ¢ gives rise to the family of continuity sets defined by

Sy ={B € Bi: ¢(ntB) = p(cl(B)) as.}.

It is important to know when it is possible to extend a random function defined
on a separating class A to a capacity on Borel subsets of E. A random function ¢
on A is a stochastic process indexed by A, defined by means of finite-dimensional
distributions (¢(A1), ..., ¢(A,)) where Ay,..., A, € Aandn > 1.
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Proposition 8.18 (Extension of random capacity). Let E be a LCHS space and let

¢ be a random process on a separating class A that consists of relatively compact

sets. Assume that ¢(¥) = 0 a.s. and

(1) P{p(A)) <t, p(Ay) <t} =P{p(Ay) <t}forallt > 0and Ay, Ay € A such
that A; C Ay;

(2) ¢(A,) weakly converges to ¢(A) it A, | A forall A, A, Az, ... € A with
cl(Ap+1) CIntA,, n > 1;

(3) ¢(A,) weakly converges to ¢(A) it A, 1+ A forall A, A1, Az, ... € A with
cl(A,) CIntA,41,n > 1.

Then there exists a random capacity ¢* such that A C Sy« and ¢(A) = ¢*(A) for

all A € A.

Proof. A separating class always contains a countable separating class, so that we
can consider a countable separating class Ag C A. It follows from (1) that ¢ is
increasing on A with probability one. On this set of probability one, it is possible
to extend ¢ to ¢* on B(E) by (1.30) and (1.31). Then ¢ and ¢* coincide on A and
AcC GW*- [}

If A C K, then Proposition 8.18 holds without condition (3). Similarly, if A C
G, then (2) can be dropped. If A C K and A is closed under finite union, then
the properties of ¢ usually hold for its extension. For example, if ¢ is completely
alternating on A, then so is ¢*. This is easy to see by choosing a countable separating
subclass of .4, where all those properties hold with probability one.

The convergence of random capacities in distribution is defined in a conventional
way using the vague topology.

Proposition 8.19 (Weak convergence of random capacities). Let ¢, ¢1, @2, ... be

random capacities. Then ¢, 4 @ if and only if there exists a separating class A with
elements being bounded Borel sets, such that the random vector (¢,(A), A € Ap)
weakly converges to (¢(A), A € Aop) for each finite subfamily Ay C S,,.

Proof. The necessity is a direct implication of Billingsley [70, Th. 5.5]. To prove the
sufficiency, note that the map ¢ — ¢* is continuous in the vague topology. Since ¢,
converges in distribution to ¢ as a stochastic process on A, their extensions converge
in distribution by the continuous mapping theorem, see Billingsley [70, p. 29]. O

Definition 8.20 (Completely random capacity). A random capacity ¢ is called
completely random if (K1), ..., (K,) are independent whenever K1, ..., K, are
disjoint sets from the domain of definition of ¢.

The family of capacities can be considered as a lattice. By applying the lattice-
theoretic technique, it is possible to show that ¢; is stochastically smaller than ¢,

(respectively ¢ 4 ¢2) if and only if the random vector (¢1(G1), ..., 91(Gy)) is
stochastically smaller than (respectively coincides in distribution with) the random
vector (¢2(G1), ..., 92(Gp)) forevery n > 1 and each Gy, ..., G, € G, see Nor-
berg [433].
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The concept of a random capacity covers random closed sets (including point
processes), random upper semicontinuous functions, random measures and sup-
measures. If X is a random set, then

©(K) = 1xnk £p (8.16)

is a random capacity called indicator random capacity; every random measure is a
random capacity; and the random sup-measure

p(K) = fY(K) = Sugf(X)

is a random capacity if f is a random upper semicontinuous function.

8.5 Robbin’s theorem for random capacities
Carathéodory’s extension of a capacity

A random capacity ¢ can be extended to a measure ¢ by Carathéodory’s extension
described in Appendix E. As in Section 5.4, assume that the family M used to define
this extension contains all open balls.

Lemma 8.21 (Carathéodory’s extension using a subclass). Let M C G consist of
open sets and let B be a subclass of M which is closed under finite unions. Assume
that any set M € M is a (possibly uncountable) union of members of 3. Then, for
each capacity ¢, its Carathéodory extensions using M and B coincide.

Proof. 1t suffices to show that (Z)({M and (ZJ? (defined by (E.1) for the families M and
B respectively) coincide on the family of all compact sets. Let K be compact; clearly
it suffices to consider only finite §-covers in (E.1). Let {M}, ..., M, } be a family
of §-covers from M such that (p(M,i) — (Z)({VI(K) as i — 0o0. We can find sets
Bj € B such that B; C M and {Bi, ..., Briu} cover K. Thus,

@5 (K) < 1im Y " o(B)) <1im Y o(M}) = ¢3'(K) .

On the other hand, (Z)f > ¢§M, since B C M. O

For example, Lemma 8.21 applies when M is the family of all open sets and B
is the class of all finite unions of elements from an open base for the topology.

Proposition 8.22 (Carathéodory’s extension as random measure). Assume that
M is a subtamily of G that has a countable subclass B as in Lemma 8.21. If ¢ is a
random capacity, then ¢ is a random measure on R?.

Proof. Clearly u = ¢ is a measure almost surely. It suffices to show that the value
w(K) is a random variable for each compact set K. Since (E.2) involves monotone
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pointwise limits, it suffices to show that ¢s(K) is a random variable for each compact
set K. For any a > 0,

(@(K) > a) = {inf YoM > af = {D e >a} . @17

where the infimum and intersection are taken over the family of all §-covers of K
by sets from M. By Lemma 8.21, M can be replaced with B. Since K is compact,
the intersection in (8.17) is taken over finite subsets of B. Hence ¢s5(K) is a random
variable. O

Capacity version of Robbins’ theorem

Definition 8.23 (Integrable random capacity). A random capacity ¢ is called in-
tegrable if E@(K) < oo for each K € K. For an integrable random capacity ¢ the
functional (E¢@)(K) = E¢(K) is a capacity called the intensity of ¢.

If ¢ is a random measure, then E¢ is the corresponding intensity measure. In
particular, if ¢ = N is a counting measure generated by a point process N, then EN
is the intensity measure of N. If X is a random closed set, then

Elxngzp =P{XNK # 0} = Tx(K)

is the capacity functional of X. Robbins’ Theorem 4.21 can now be expressed as
follows.

Theorem 8.24 (Robbins’ theorem, capacity version). Let X be a random closed
set in R and p a locally finite measure. Then, for the indicator capacity p(K) =
1xnk -+, we have

Epu =Txp .
Proof. By Proposition 5.20 the left side is Ex(X N -). Since Ty is bounded and p is
Radon, Theorem 5.19(i) shows
Txpu(K) = /P{x € X} p(dx).
K

The two sides are equal by Fubini’s theorem. O

General conditions that would guarantee
Egpv = Egu (8.18)

for a random capacity ¢ and a deterministic capa