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Preface

Vector fields on manifolds play major roles in mathematics and other sciences.
In particular, the Poincaré–Hopf index theorem and its geometric counter-
part, the Gauss–Bonnet theorem, give rise to the theory of Chern classes, key
invariants of manifolds in geometry and topology.

One has often to face problems where the underlying space is no more a
manifold but a singular variety. Thus it is natural to ask what is the “good”
notion of index of a vector field, and of Chern classes, if the space acquires sin-
gularities. The question was explored by several authors with various answers,
starting with the pioneering work of M.-H. Schwartz and R. MacPherson.

We present these notions in the framework of the obstruction theory and
the Chern–Weil theory. The interplay between these two methods is one of
the main features of the monograph.

Marseille Jean-Paul Brasselet
Cuernavaca José Seade
Tokyo Tatsuo Suwa
September 2009
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1.1.2 Poincaré–Hopf Index at Nonisolated Points . . . . . . . . . . 3
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Introduction

The study of vector fields and flows near an isolated singularity, or stationary
point, has played for decades, and even centuries, a major role in several areas
of mathematics and in other sciences, notably in physics, biology, economics,
etc. The most basic invariant of a vector field at an isolated singularity is its
local Poincaré–Hopf index, which has been studied from very many different
viewpoints and there is a vast literature about it. At the same time, it is be-
coming more and more usual to face problems and situations in Mathematics
(and in other sciences) where the underlying space is not a manifold but a
singular variety. It is thus natural to ask what should be the “good” notion
of index of a vector field on a singular variety, depending on which properties
of the local index we have in mind.

For instance one has the theorem of Poincaré–Hopf saying that the sum
of the local indices of a vector field with isolated singularities on a closed
oriented manifold, is independent of the choice of the vector field and equals
the Euler–Poincaré characteristic of the manifold in question. Defining an
index for vector fields on singular varieties that has this property leads to the
Schwartz index, that we explain below.

Similarly, an important property of the local Poincaré–Hopf index is that
it is stable under perturbations, or in other words, that if we approximate the
given vector field by another vector field which has only Morse singularities,
then the local index of the initial vector field is the number of singularities
of its morsification counted with signs. Defining an index for vector fields on
singular varieties that has this property leads to a different index, the GSV
index.

There are other important properties of the local Poincaré–Hopf index
that give rise to various other indices when we look at singular varieties.
That makes the study of indices of vector fields over singular varieties an
interesting field of current research, which combines an amazing variety of
ideas and techniques coming from algebraic topology, differential geometry,
algebraic geometry, dynamical systems, mathematical physics, etc.

The goal of this monograph is to give an account of the various indices
of vector fields on singular varieties that are in the literature, the relations
among them, and the way how they relate with various generalizations of

xiii
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Chern classes to singular varieties. Indices of vector fields and Chern classes
of vector bundles are nowadays present in many branches of mathematics,
and these two concepts are linked together in an essential way.

This monograph goes together with [28] to give a global view of the theory
of indices and Chern classes for singular spaces. In [28] the focus is on the
theory of characteristic classes for singular varieties. Here the emphasis is on
indices and their relation with Chern classes. We do this following two of the
classical viewpoints for studying Chern classes, both introduced by Chern
himself. These are the topological viewpoint, thinking of Chern classes as
being the primary obstruction to constructing sections of appropriate fiber
bundles, and the differential-geometric viewpoint, via Chern–Weil theory,
where the corresponding classes are localized at the “singularities” of certain
connections via the theory of residues, which is largely indebted to R. Bott.

The interplay between these two viewpoints for studying indices and char-
acteristic classes, obstruction theory and Chern–Weil theory, is a key feature
of this monograph.

This work does not pretend to be comprehensive, and yet it offers a global
viewpoint of the theory of indices of vector fields and Chern classes of singular
varieties that can be of interest for people working in singularities, algebraic
and differential geometry, algebraic topology, and even in string theory and
mathematical physics. In each individual chapter we indicate additional ref-
erences to the literature, for further reading.

The study of indices of vector fields and Chern classes for singular vari-
eties started in the early 1960s with M.-H. Schwartz, and then continued by
R. MacPherson and many others. This is today an active field of research,
in which the foundations of the theory are being laid out by several authors,
and so are their relations with other branches of geometry, topology, and
singularity theory.

We start Chap. 1 with the basic, well-known, theory of indices of vector
fields and Chern classes that we need in the sequel, and we describe for
manifolds the two viewpoints that we use in the rest of the work to study
these invariants, namely localization via obstruction theory and localization
via Chern–Weil theory.

In Chap. 2 begins the discussion of indices of vector fields on singular
varieties. We start with the index introduced by M.-H. Schwartz (in [139,141])
in her study of Chern classes for singular varieties. For her purpose there was
no point in considering vector fields in general, but only a special class of
vector fields (and frames) that she called “radial,” which are obtained by the
important process of radial extension that she introduced. The generalization
of this index to other vector fields was first done by H. King and D. Trotman
in [96], and later independently in [6,49,149]. We call this the Schwartz index;
in the literature it is also called “radial index” because it measures how far
the vector field is from being radial. The corresponding discussion for frames
is done in Chap. 10.
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As mentioned above, one of the basic properties of the local index of
Poincaré–Hopf is that it is stable under perturbations. If we now consider an
analytic variety V defined, say, by a holomorphic function f : (Cn, 0)→ (C, 0)
with an isolated critical point at 0, and if v is a vector field on V , nonsingular
away from 0, then one would like “the index” of v at 0 to be stable under
small perturbations of both, the function f and the vector field v. This leads
naturally to another concept of index, now called the GSV index, introduced
in [71, 144,149], and this is the topic we envisage in Chap. 3.

This monograph mostly concerns vector fields on complex analytic vari-
eties; nevertheless, it is of course interesting to consider also the real analytic
case. This is what we do in Chap. 4, where we present the work of M. Aguilar,
J. Seade and A. Verjovsky in [6]. That chapter begins with a definition of
the Schwartz index in this setting, done independently in [6, 49, 96]. Then
we discuss the GSV index, which is now an integer if the singular variety V
is odd-dimensional, and an integer modulo 2 if the dimension of V is even.
The information one gets is related to previous work by M. Kervaire, C.T.C.
Wall and others, and provides an extension of the concept of Milnor number
for real analytic map-germs with isolated singularities which may not be al-
gebraically isolated. The viewpoint considered in this chapter is topological;
indices of vector fields on real analytic varieties are also considered in Chap. 7
from an algebraic viewpoint, following the work of X. Gómez-Mont et al.

Chapter 5 concerns the virtual index, introduced in [111] by D. Lehmann,
M. Soares and T. Suwa for holomorphic vector fields on complex analytic
varieties; the extension to continuous vector fields was done in [31,149]. This
index is defined via Chern–Weil theory. The idea comes from the fact that
a vector field with an isolated singularity provides a localization of the top
dimensional Chern class at the singular point of the vector field, and the
number one gets is the corresponding local index of Poincaré–Hopf. Similarly,
if (V, 0) is an isolated complete intersection singularity germ in C

n+k, an ICIS
for short, defined by functions f = (f1, . . . , fk), then a tangent vector field
on V , with an isolated singularity, together with the gradient vector fields
of the fi, defines a localization at 0 of the nth Chern class of the ambient
space, and the number one gets is the virtual index of the vector field. In
this context the virtual index coincides with the GSV index, however the
definition of the virtual index actually extends to the general setting of vector
fields with compact singular set defined on complex analytic varieties which
are “strong” local complete intersections.

The previous indices are all defined for continuous vector fields on singu-
lar varieties. However, in many situations the vector fields in question are
actually analytic, and this is the setting we envisage in Chaps. 6 and 7.

If the vector field is holomorphic, the localization theory via Chern–Weil
becomes richer because of the Bott vanishing theorem, producing further
interesting residues; this is the topic we study in Chap. 6. A holomorphic
vector field defines by integration a one-dimensional holomorphic foliation,
and the theory of residues can be developed for general singular holomor-
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phic foliations on certain singular varieties. We consider here one dimensional
singular holomorphic foliations, and we refer to [156] for a systematical treat-
ment of the general case. We have three types of residues that arise from a
Bott type vanishing theorem: (i) generalizations of Baum–Bott residues to
singular varieties, first introduced in [13, 14]; (ii) the Camacho–Sad index,
introduced in [42] and used to prove the separatrix theorem. Nowadays there
are many generalizations of this index; (iii) variations, introduced in [93] and
generalized in [113] (see also [39,40]). For a local separatrix of a holomorphic
vector field, the variation equals the sum of the GSV and the Camacho–Sad
indices (see Chap. 6 or Proposition 5 in [40]).

Another remarkable property of the index of Poincaré–Hopf is that, in the
case of a germ of holomorphic vector field v =

∑n
i=1 hi

∂
∂zi

on Cn with an
isolated singularity at 0, the local index equals the integer:

dimC On
/
(h1, . . . , hn) ,

where (h1, . . . , hn) is the ideal generated by the components of v in the ring
On of germs of holomorphic functions at 0 in Cn. This and other facts mo-
tivated the search for algebraic formulas for the index of vector fields on
singular varieties. The homological index of X. Gómez-Mont [68] is a answer
to that search. It considers an isolated singularity germ (V, 0) of arbitrary
dimension, and a holomorphic vector field on V , singular only at 0. One has
the Kähler differentials on V , and a Koszul complex (Ω•

V,0, v):

0 −→ Ωn
V,0 −→ Ωn−1

V,0 −→ · · · −→ OV,0 −→ 0 ,

where the arrows are given by contracting forms by the vector field v. The
homological index of v is defined to be the Euler characteristic of this com-
plex. If the ambient space V is smooth at 0, the complex is exact in all
dimensions, except in degree 0 where the corresponding homology group has
dimension equal to the local Poincaré–Hopf index of v at 0. If (V, 0) is an
ICIS, the recent article [17] of H.-C. Graf von Bothmer, W. Ebeling and X.
Gómez-Mont shows that this index coincides with the GSV index, a fact
previously known only for vector fields on hypersurface germs. We remark
however that the homological index is defined for vector fields on arbitrary
isolated normal singularity germs, while the GSV index is only defined on
complete intersection germs. Hence the homological index does provide a
new invariant for singular varieties which is not yet understood in general. It
would be interesting to know what this index measures globally, i.e., given a
compact variety W with isolated singularities and a holomorphic vector field
on it with isolated singularities, its total homological index an invariant of
W . What type of invariant is it? If W is a local complete intersection, this
is just the usual Euler–Poincaré characteristic of a smoothing of W , and as
explained in the text, this equals the 0-degree Fulton–Johnson class of W .
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In Chap. 7 we briefly describe the homological index, as well as work in this
spirit done for real analytic vector fields by X. Gómez-Mont, P. Mardešić and
L. Giraldo, generalizing to vector fields on real analytic hypersurface germs
the signature formula of Eisenbud–Levin and Khimshiashvili for the local
index of real analytic vector fields in Rn.

Chapter 8 concerns the local Euler obstruction, introduced by
R. MacPherson in [117] for constructing Chern classes of complex varieties.
In [33], J.-P. Brasselet and M.-H. Schwartz defined this invariant via vec-
tor fields, interpretation that was essential to prove (also in [33]) that the
Schwartz classes of singular varieties coincide with MacPherson’s classes via
Alexander duality. This viewpoint brings the local Euler obstruction into the
framework of “indices of vector fields on singular varieties” and yields to an-
other index, that we may call the local Euler obstruction of Whitney stratified
vector fields with isolated singularities; the classical local Euler obstruction
corresponding to the case of the radial vector field. The Brasselet–Schwartz
“Proportionality Theorem” of [33] shows that this index plays an important
role when considering liftings of stratified vector fields to sections of the Nash
bundle. If the vector field in question comes from the gradient of a function
on the singular variety, this local Euler obstruction is the “defect” studied
in [32]. By [150], this invariant measures the number of critical points of a
local perturbation of the given function which are contained in the regular
part of the singular variety, and it is related to several generalizations of the
Milnor number to the case of functions on singular varieties.

When considering smooth (real) manifolds, the tangent and cotangent
bundles are canonically isomorphic and it does not make much difference to
consider either vector fields or 1-forms in order to define their indices and
their relations with Chern classes. If the ambient space is a complex manifold,
this is no longer the case, but there are still ways for comparing indices of
vector fields and 1-forms, and to use these to study Chern classes of manifolds.
To some extent this is also true for singular varieties, but there are however
important differences and each of the two settings has its own advantages.

R. MacPherson defined the notion of local Euler obstruction in terms of
indices of 1-forms on singular varieties. Such indices also appear in the work of
C. Sabbah [134,135], particularly in relation with the local Euler obstruction.
The systematic study of indices of 1-forms on singular varieties started in a
series of articles by W. Ebeling and S. Gusein-Zade This has been, to some
extent, a study parallel to the one for vector fields, outlined above. This is
the subject of Chap. 9, briefly discussed in this monograph for completeness.

The last part of this work, Chaps. 10–13, concerns several generalizations
of Chern classes to the case of singular varieties from the viewpoint of lo-
calization theory, by means of indices of vector fields. We refer to [28] for a
detailed account on characteristic classes for singular varieties from a global
point of view.

In his 1946 original paper [44], S. S. Chern gave several equivalent def-
initions of his classes, with diverse points of view. In the case of singular
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varieties, there are several definitions of characteristic classes, given by various
authors. They correspond to various extensions one has of the concept of
“tangent bundle” as we go from manifolds to singular varieties. Each of these
viewpoints leads to a generalization of Chern classes to the case of singular
varieties, as described in [28]. In this monograph we focus on the relations
of Chern classes with various indices of vector fields and frames, considering
the following four generalizations of the tangent bundle:
(i) the union of the spaces tangent to each stratum of a Whitney stratification
of the singular variety;
(ii) the Nash bundle over the Nash blow up of the singular variety;
(iii) the virtual bundle TM |V − N |V if the variety V is defined by a holo-
morphic section of some bundle N over a complex manifold M ;
(iv) the tangent sheaf over the singular variety V .

The first generalization is due to M.-H. Schwartz in [139,141], considering
a singular complex analytic variety V embedded in a smooth one M which is
equipped with a Whitney stratification adapted to V ; she considers a class of
stratified frames to define characteristic classes of V which do not depend on
M nor on the various choices. These classes live in the cohomology of M with
support in V , i.e., H∗(M,M \ V ). Alexander duality takes this cohomology
into the homology of V , and if V is nonsingular the classes one gets in H∗(V )
are the homology Chern classes of the manifold, i.e., the Poincaré duals
of the usual Chern classes. The 0-dimensional part is the Euler–Poincaré
characteristic, which can be localized at the singular set of a vector field and
the local contribution is the Schwartz index. The generalization of this index
for frames and its relation with Chern classes are given in Chap. 10.

The second extension of the concept of tangent bundle, given by the Nash
bundle T̃ → Ṽ over the Nash transform Ṽ , was used by R. MacPherson [117]
to define Chern classes for singular varieties. First one gets the Mather classes
of V , also introduced in [117], which are by definition the image of the Chern
classes of T̃ carried into its homology via the Alexander morphism (which is
not an isomorphism in general) and then mapped to the homology of V by
the morphism ν : H∗(Ṽ )→ H∗(V ). MacPherson’s Chern classes for singular
varieties [117] live in the homology of V and can be thought of as being the
Mather classes of V weighted by the local Euler obstruction in a sense that
is made precise in 10.6. MacPherson’s classes satisfy important axioms and
functoriality properties conjectured by P. Deligne and A. Grothendieck in the
early 1970s.

Later, J.-P. Brasselet and M. H. Schwartz proved in [33] that the Alexander
isomorphism H∗(M,M \ V ) ∼= H∗(V ) carries the Schwartz classes into
MacPherson’s classes, so they are now called the Schwartz–MacPherson
classes of V .

The third way of extending the concept of tangent bundle to singular vari-
eties that we mentioned above was introduced by W. Fulton and K. Johnson
in [60]. Notice that if a variety V ⊂ M is defined by a regular section s of a
holomorphic bundle E over M , then the bundle N = E|V is, on the regular
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part Vreg, isomorphic to the normal bundle. One has an isomorphism (as C∞

vector bundles)
TM |Vreg = TVreg ⊕N |Vreg ,

and therefore the virtual bundle τV = [TM |V −N |V ], regarded as an element
in the K-theory group KU(V ), is called the virtual tangent bundle of V .
The homology Chern classes of the virtual tangent bundle τV are the Fulton–
Johnson classes of V . In this book we envisage only the case, where V is a
local complete intersection in the complex manifold M . When localized at
the singular set of a vector field, the local contribution to the 0-dimensional
part of the Fulton–Johnson class is the virtual index. When V has only
isolated singularities, this corresponds to the Euler–Poincaré characteristic
of a smoothing of V . The generalization of the virtual index for frames and
its relation with Chern classes are given in Chap. 11.

In general, these classes are different from the Schwartz–MacPherson
classes. If V has only isolated singularities, then (by [149,155]) the Schwartz–
MacPherson and Fulton–Johnson classes coincide in all dimensions other than
0, and in dimension 0 this difference is given by the local Milnor numbers of V
at its singular points. Hence it is natural to call Milnor classes the difference
between Fulton–Johnson and Schwartz–MacPherson classes. These classes
were studied by P. Aluffi [8], who called them μ-classes; there have been sig-
nificant contributions to the subject afterwards, either by Aluffi himself and
by various other authors, such as S. Yokura, A. Parusiński and P. Pragacz,
D. Lehmann, T. Ohmoto, J. Schürmann, and the authors of this monograph.
This is studied in Chap. 12.

Of course one may also compare Chern–Mather with Fulton–Johnson
classes. This was done in [125] for (strong) local complete intersections with
isolated singularities, using results of [149,155]. As in the previous case, these
classes coincide in all dimensions greater than 0; in dimension 0 their differ-
ence is given by the polar multiplicities of T. Gaffney. The corresponding
study for varieties with nonisolated singularities has not been done yet.

Finally, the fourth way for extending the concept of tangent bundle to sin-
gular varieties by considering the tangent sheaf ΘV , which is by definition the
dual of ΩV , the sheaf of Kähler differentials on V , fits within the framework
considered in [158] of Chern classes for coherent sheaves. We briefly describe
some of their properties in Chap. 13. In particular, if V is a local complete
intersection in M , then one has a canonical locally free resolution of ΩV and
the corresponding Chern classes essentially coincide with the Fulton–Johnson
classes, though the corresponding classes for ΘV differ from these.

In the sequel we explain how the various indices of vector fields that we
discuss in Chaps. 2–8 are related among themselves and how they relate to
some generalization of the Chern classes of manifolds to the case of singular
varieties. There is however something missing in this picture: so far we do
not know of a direct relation between the homological index and some type
of Chern classes for singular varieties, neither we know of a direct relation
between the Chern classes of the tangent sheaf (or its dual) and some index
of vector fields (or 1-forms).
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While writing this monograph we have tried to convey the reader a unified
view of the various generalizations for singular varieties one has of the im-
portant concepts of the local index of Poincaré–Hopf and Chern classes of
manifolds. These are topics of current research which keep developing and
the literature is vast, so we focused on the most classical approaches for this
subject. There are of course important topics that were just glanced here,
or maybe even not discussed at all, specially concerning new trends in alge-
braic geometry and topology, such as string theory and motivic integration.
Yet, we think the content of this monograph contributes to lay down the
foundations of a theory for singular varieties which is just beginning to be
developed and understood. This ought to play in the future such an impor-
tant role for understanding the geometry and topology of singular varieties
as they do for manifolds. And this should also have important applications to
other branches of knowledge, where it is important to consider vector fields
and flows on orbifolds and singular varieties.



Chapter 1

The Case of Manifolds

Abstract In this chapter we review briefly some of the fundamental results
of the classical theory of indices of vector fields and characteristic classes
of smooth manifolds. These were first defined in terms of obstructions to
the construction of vector fields and frames. In the case of a vector field
the Poincaré–Hopf Theorem says that Euler–Poincaré characteristic is the
obstruction to constructing a nonzero vector field tangent to a compact
manifold. Extension of this result to frames yields to the definition of Chern
classes from the viewpoint of obstruction theory.

There is another important point of view for defining characteristic classes
on the differential geometry side, this is the Chern–Weil theory. Sections 3
and 4 provide an introduction to that theory and the corresponding definition
of Chern classes.

Finally, Sect. 5 sets up one of the key features of this monograph: the inter-
play between localization via obstruction theory, which yields to the classical
relative characteristic classes, and localization via Chern–Weil theory, which
yields to the theory of residues. This is one way of thinking of the Poincaré–
Hopf Theorem and its generalizations.

Throughout the book, M will denote either a complex manifold of
(complex) dimension m, or a C∞ manifold of (real) dimension m′.

1.1 Poincaré–Hopf Index Theorem

1.1.1 Poincaré–Hopf Index at Isolated Points

Let v =
∑m′

i=1 fi∂/∂xi be a vector field on an open set U ⊂ Rm
′

with coor-
dinates {(x1, . . . , xm′)}. The vector field is said to be continuous, smooth,
analytic, etc., according as its components {f1, . . . , fm′} are continuous,
smooth, analytic, etc., respectively (here “smooth” means C∞, however in
most cases C1 is sufficient). A singularity a of v is a point where all of its
components vanish, i.e., fi(a) = 0 for all i = 1, . . . ,m′. The singularity is
isolated if at every point x near a there is at least one component of v which
is not zero.

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 1, 1
c© Springer-Verlag Berlin Heidelberg 2009
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The Poincaré–Hopf index of a vector field at an isolated singularity is its
most basic invariant, and it has many interesting properties. To define it, let
v be a continuous vector field on U with an isolated singularity at a, and let
Sε be a small sphere in U around a. Then the (local) Poincaré–Hopf index of
v at a, denoted by IndPH(v, a) (if there is no fear of confusion, we will denote
it simply by Ind(v, a)), is the degree of the Gauss map v

||v|| from Sε into the

unit sphere in Rm
′
.

If v and v′ are two such vector fields, then their local indices at a coincide
if and only if their Gauss maps are homotopic (special case of Hopf Theorem
[120]). That is equivalent to saying that their restrictions to the sphere Sε

are homotopic.
Let us consider now an m′-dimensional smooth manifold M , then a vec-

tor field on M is a section of its tangent bundle TM . Giving a local chart
(x1, . . . , xm′) on M , a vector field on M is locally expressed as above and the
definition of the local index at an isolated singularity extends in the obvious
way. The index does not depend on the local chart.

Definition 1.1.1. The total index of v, denoted

IndPH(v,M),

is the sum of all its local indices at the singular points.

A fundamental property of the total index is the following classical
theorem:

Theorem 1.1.1. (Poincaré–Hopf) Let M be a closed, oriented manifold
and v a continuous vector field on M with finitely many isolated singularities.
Then one has

IndPH(v,M) = χ(M),

independently of v, where χ(M) denotes the Euler–Poincaré characteristic
of M .

If M is now an oriented manifold with boundary, one has a similar theorem:

Theorem 1.1.2. Let M be a compact, oriented m′-manifold with boundary
∂M , and let v be a nonsingular vector field on a neighborhood U of ∂M .
Then:

(1) v can be extended to the interior of M with finitely many isolated singu-
larities.

(2) The total index of v in M is independent of the way we extend it to the
interior of M . In other words, the total index of v is fully determined by
its behavior near the boundary.

(3) If v is everywhere transverse to the boundary and pointing outwards from
M , then one has IndPH(v,M) = χ(M). If v is everywhere transverse to
∂M and pointing inwards M , then IndPH(v,M) = χ(M)− χ(∂M).



1.1 Poincaré–Hopf Index Theorem 3

Remark 1.1.1. It is worth saying that although IndPH(v,M) is determined by
its behavior near the boundary, it does depend on the topology of the interior
of M . In fact a formula of Morse and Pugh (c.f. [124, 133, 145]) provides
an explicit way to compute the index out of boundary data, generalizing a
classical formula of Poincaré for vector fields on the plane.

We remark also that one of the basic properties of the index is its stability
under perturbations. In other words, if v has an isolated singularity at a point
a in a manifold M of index Ind(v, a) and we make a small perturbation of v
to get a new vector field v̂ with isolated singularities, then Ind(v, a) will be
the sum of the local indices of v̂ at its singular points near a. In fact it is well-
known that every vector field can be morsified, i.e., approximated by vector
fields whose singularities are nondegenerate. Each such singularity has local
index ±1 and the number of such points, counted with signs, equals the index
of v at a. In short, the local index of v at a is the number of singularities,
counted with sign, into which a splits under a morsification of v. We will see
later that this basic property has its analogues in the case of vector fields on
singular varieties.

This stability of the index is also preserved for vector fields with noniso-
lated singularities. To make this precise we need to introduce a few concepts,
which will also be used later.

The following property of the local index is well-known and we leave the
proof as an exercise:

Proposition 1.1.1. Let v be a vector field around 0 ∈ R
m′

with an isolated
singularity at 0 of index Ind(v, 0), and let w be a vector field around 0 ∈ Rn

′

with an isolated singularity at 0 of index Ind(w, 0). Then the direct product
v⊕w is a vector field in Rm

′+n′
with an isolated singularity of index Ind(v, 0)·

Ind(w, 0).

A consequence of this result is the well-known fact that if M , N are closed,
oriented manifolds, then χ(M ×N) = χ(M) · χ(N). Another consequence of
1.1.1 that will be used later is that if we have a vector field v in R

m′
with an

isolated singularity at 0 of index Ind(v, 0), and if we extend it to Rm
′ × Rn

′

by taking the vector field w =
∑n′

i=1 yi∂/∂yi in Rn
′
, then the index does not

change, where (y1, . . . , yn′) are the coordinates on R
n′

. If we took the vector
field −

∑r
i=1 yi∂/∂yi +

∑n′

i=r+1 yi∂/∂yi in Rn
′
, then the index in Rm

′ × Rn
′

would be ±Ind(v, 0), depending on the parity of the number r of negative
signs.

1.1.2 Poincaré–Hopf Index at Nonisolated Points

In the following, singularities of the vector field v are not necessarily isolated
points. We still define a Poincaré–Hopf index in that case.
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Let M be a manifold with boundary ∂M . Let us consider a triangu-
lation (K) of M compatible with the boundary and (K ′) a barycentric
subdivision of (K). Using (K ′) one constructs the associated cellular dual
decomposition (D) of M : given a simplex σ in (K) of dimension s, its dual
d(σ) is the union of all simplices τ in (K ′) whose closure meets σ exactly at
its barycenter σ̂, that is τ ∩ σ = σ̂. If σ is in the interior of M , that is a cell,
if σ is in the boundary of M , that is a “half-cell.” It is an exercise to see that
the dimension of d(σ) is m′ − s. Taking the union of all these dual cells (or
half-cells) we get the dual decomposition (D) of (K); by construction its cells
and half-cells are all transverse to (K) (we refer to [25] for details including
orientation notions).

Let S be a compact connected (K)-subcomplex of the interior of M .

Definition 1.1.2. A cellular tube T around S in M is the union of cells (D)
which are dual of simplices in S.

This notion generalizes the concept of tubular neighborhood of a subman-
ifold S. If S is a submanifold without boundary, then T is a bundle on S,
whose fibers are discs. In general, that is not the case.

Remark 1.1.2. A cellular tube T around S has the following properties :
(1) T is a compact neighborhood of S, containing S in its interior and ∂T is
a retract of T \ S.
(2) T is a regular neighborhood of S, thus T retracts to S.
(3) We can assume the cellular tubes in M have smooth boundary [83].

Let us denote by U a neighborhood of S in M . If the triangulation is
sufficiently “fine,” then we can assume T ⊂ U .

According to Theorem 1.1.2, a nonsingular continuous vector field v on a
neighborhood of ∂T can be extended to the interior of T with finitely many
isolated singularities. The total index of v on T is defined as the sum of the
indices of the extension of v at these points.

Definition 1.1.3. Let v be a continuous vector field on a neighborhood U
of S in M , nonsingular on U \ S, then the Poincaré–Hopf index of v at S,
denoted IndPH(v, S) (or simply by Ind(v, S), if there is no ambiguity), is
defined as IndPH(v, T ).

This number IndPH(v, S) depends only on the behavior of v near S and
not on the choice of the neighborhood U , or of the tube T . Moreover, for
this index it does not matter what actually happens on S, we only care what
happens around S, but away from S. In particular, if v is “radial” from S,
i.e., if it is transverse to the boundary of a cellular tube around S pointing
outward, then IndPH(v, S) = χ(S).

Now let M be a compact oriented C∞ manifold possibly with boundary
∂M and v a continuous vector field on M , nonsingular on the boundary. From
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the above considerations, we may assume that the set S(v) of singular points
of v has only a finite number of components {Sλ}.

If M has no boundary, the Poincaré–Hopf Theorem implies that

∑

λ

IndPH(v, Sλ) = χ(M). (1.1.3)

If M has a boundary, the sum
∑

λ IndPH(v, Sλ) depends only on the
behavior of v near ∂M . For example, if v is pointing outwards everywhere
on ∂M , then we have the same formula (1.1.3). If v is pointing inwards
everywhere on ∂M , the right hand side becomes χ(M)−χ(∂M). In particular,
if the (real) dimension of M is even (as it will usually be the case in this book)
and if v is everywhere transverse to ∂M , then we have again the same formula
(1.1.3).

Here we introduce the concept of the difference which will be used in
the rest of the book. For this we let v and v′ be continuous vector fields
on a neighborhood U of S in M , nonsingular on U \ S. Let T and T ′ be
cellular tubes around S in U such that interior of T contains the closure of T ′

and denote X = T \ T ′. Let us consider w a vector field on X with isolated
singularities which restricts to v on ∂T and to v′ on ∂T ′; such a vector field
w always exists by Theorem 1.1.2. We may denote by d(v, v′) = IndPH(w,X)
the difference between v and v′. Then one has:

IndPH(v, S) = IndPH(v′, S) + d(v, v′). (1.1.4)

One can easily prove the following result that will be used later.

Proposition 1.1.2. Let M1 and M2 be compact oriented m′-manifolds,
m′ > 1, with the same boundary N = ∂M1 = ∂M2, and let v be a non-
singular vector field defined on a neighborhood of N . Then one has:

IndPH(v,M1)− IndPH(v,M2) = χ(M1)− χ(M2).

1.2 Poincaré and Alexander Dualities

We briefly review the classical case, which will be generalized to the case of
singular varieties in Sect. 10.4 below. In either case, we follow the descriptions
given in [25].

Let M be an oriented manifold of real dimension m′. We take a triangu-
lation (K) of M and the cellular decomposition (D) dual to (K), as before.
The groups of chains relative to (K) and (D) are denoted by C

(K)
∗ (M) and

C
(D)
∗ (M), respectively. Also, the groups of cochains relative to (K) and (D)

are denoted by C∗
(K)(M) and C∗

(D)(M), respectively. The intersection of an
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i-simplex σ and its dual (m′ − i)-cell d(σ) is transverse and consists of one
point, the barycenter σ̂ of σ.

First, if M is compact, we define a homomorphism

P : Cm′−i
(D) (M) −→ C

(K)
i (M) by P (c) =

∑

σ

〈c, d(σ)〉σ (1.2.1)

for an (m′ − i)-cochain c, where the sum is taken over all i-simplices σ of
M (we follow the orientation conventions in [25]). This induces the Poincaré
isomorphism

PM : Hm′−i(M) ∼−→ Hi(M).

Next, let S be a (K)-subcomplex of M whose geometric realization is also
denoted by S. Let C∗

(D)(M,M \S) denote the subgroup of C∗
(D)(M) consisting

of cochains which are zero on the cells not intersecting with S.
Suppose S is compact (M may not be compact). Then we may define a

homomorphism
A : Cm′−i

(D) (M,M \ S) −→ C
(K)
i (S)

taking, in the sum in (1.2.1), only i-simplices of S. This induces the Alexander
isomorphism

AM,S : Hm′−i(M,M \ S) ∼−→ Hi(S).

From the construction, we have the following

Proposition 1.2.1. If M is compact, we have the commutative diagram

Hm′−i(M,M \ S)
j∗−−−−→ Hm′−i(M)

�
⏐
⏐
�AM,S �

⏐
⏐
�PM

Hi(S) i∗−−−−→ Hi(M).

1.3 Chern Classes via Obstruction Theory

1.3.1 Chern Classes of Almost Complex Manifolds

Let us recall the definition of the Chern classes via obstruction theory [28,
89, 123, 153]. This can be done in full generality, however for simplicity we
consider first the case of Chern classes of almost-complex manifolds, and later
in this section we indicate how this generalizes to complex vector bundles in
general.

Now we assume we are given an almost complex m′ = 2m-manifold M ,
so its tangent bundle TM is endowed with the structure of a complex vector
bundle of rank m.
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Definition 1.3.1. An r-field on a subset A of M is a set v(r) = {v1, . . . , vr}
of r continuous vector fields defined on A. A singular point of v(r) is a point
where the vectors (vi) fail to be linearly independent. A nonsingular r-field
is also called an r-frame.

Let Wr,m be the Stiefel manifold of complex r-frames in C
m. Notice that

we will use r-frames which are not necessarily orthonormal, but this does
not change the results, because every frame is homotopic to an orthonormal
one. We know (see [153]) that Wr,m is (2m − 2r)-connected and its first
nonzero homotopy group is π2m−2r+1(Wr,m) 
 Z. The bundle of r-frames on
M , denoted by Wr(TM), is the bundle associated with the tangent bundle
and whose fiber over x ∈M is the set of r-frames in TxM (diffeomorphic to
Wr,m). In the following, we fix the notation q = m− r + 1.

The Chern class cq(M) ∈ H2q(M) is the first possibly nonzero obstruction
to constructing a section of Wr(TM). Let us recall the standard obstruction
theory process to construct this class. Let σ be a k-cell of the given cellular
decomposition (D), contained in an open subset U ⊂M on which the bundle
Wr(TM) is trivialized. If the section v(r) of Wr(TM) is already defined over
the boundary of σ, it defines a map:

∂σ 
 S
k−1 v(r)

−→Wr(TM)|U 
 U ×Wr,m
pr2−→Wr,m,

thus an element of πk−1(Wr,m).
If k ≤ 2m− 2r +1, this homotopy group is zero, so the section v(r) can be

extended to σ without singularity. It means that we can always construct a
section v(r) of Wr(TM) over the (2q − 1)-skeleton of (D).

If k = 2(m − r + 1) = 2q, we meet an obstruction. The r-frame on the
boundary of each cell σ defines an element, denoted by Ind(v(r), σ), in the
homotopy group π2q−1(Wr,m) 
 Z.

Definition 1.3.2. The integer Ind(v(r), σ) is the (Poincaré–Hopf) index of
the r-frame v(r) on the cell σ.

Notice that for this index, to be well defined, we need that the cell σ
has the correct dimension. This will be essential for our considerations in
Chap. 10.

The generators of π2q−1(Wr,m) being consistent (see [153]), this defines a
cochain

γ ∈ C2q(M ;π2q−1(Wr,m)),

by setting γ(σ) = Ind(v(r), σ), for each 2q-cell σ, and then by extending it
linearly. This cochain is actually a cocycle and the cohomology class that it
represents is the q-th Chern class cq(M) of M in H2q(M).

The class one gets in this way is independent of the various choices involved
in its definition. Note that cm(M) coincides with the Euler class of the un-
derlying real tangent bundle TRM , so these classes are natural generalization
of the Euler class.
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There is another useful definition of the index Ind(v(r), σ): let us write
the frame v(r) as (v(r−1), vr), where the last vector is individualized, and
suppose that v(r) is already defined on ∂σ. There is no obstruction to ex-
tending the (r − 1)-frame v(r−1) from ∂σ to σ because the dimension of the
obstruction for such an extension is 2(m − (r − 1) + 1) = dimσ + 2. The
(r − 1)-frame v(r−1), defined on σ, generates a complex subbundle Gr−1 of
rank (r − 1) of TM |σ and one can write

TM |σ 
 Gr−1 ⊕Qq ,

where Qq is an orthogonal complement of (complex) rank q = m− (r − 1).
The obstruction to extending the last vector vr inside a 2q-simplex σ as

a nonvanishing section of Qq is given by an element of π2q−1(Cq \ {0}) 
 Z

corresponding to the composition of the map vr : ∂σ 
 S2q−1 −→ Qq|U with
the projection on the fiber Cq \{0}. Let us denote by IndQq(vr, σ) the integer
so obtained. The obstruction to extending the r-frame v(r)|∂σ inside σ as an
r-frame tangent to M is the same as the obstruction to extending the last
vector vr inside σ as a non zero section of Qq. In fact there is a natural
isomorphism π2q−1(Wr,m) 
 π2q−1(Cq \ {0}) (for compatible orientations)
and by this isomorphism we have the equality of integers

Ind(v(r), σ) = IndQq(vr, σ).

A different choice of v(r−1) gives another choices of vr and of Qq, however all
such bundles Qq are homotopic and the index we obtain is the same.

Remark 1.3.1. The Chern classes of complex vector bundles in general are
defined in essentially the same way as above. If E is a complex vector bundle
of rank k > 0 over a locally finite simplicial complex B of dimension n ≥ k,
then one has Chern classes ci(E) ∈ H2i(B; Z), i = 1, . . . , k. The class ci(E)
is by definition the primary obstruction to constructing (k − i + 1) linearly
independent sections of E.

The class c0(E) is defined to be 1 and one has the total Chern class of E
defined by:

c∗(E) = 1 + c1(E) + · · ·+ ck(E)

This can be regarded as an element in the cohomology ring H∗(B) and it is
invertible in this ring.

1.3.2 Relative Chern Classes

Suppose now that (L) is a sub-complex of (D) whose geometric realization
|L| is also denoted by L. Assume that we are already given an r-frame v(r)

on the 2q-skeleton of L, denoted by L(2q). The same arguments as before say
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that we can always extend v(r) without singularity to L(2q) ∪D(2q−1). If we
wish to extend this frame to the 2q-skeleton of (D) we meet an obstruction
for each corresponding cell which is not in (L). This gives rise to a cochain
which vanishes on L and is a cocycle in H2q(M,L).

Definition 1.3.3. The relative Chern class

cq(M,L; v(r)) ∈ H2q(M,L),

is the class represented by the previous cocycle.

The image of cq(M,L; v(r)) by the natural map in H2q(M) is the usual Chern
class but as a relative class it does depend on the choice of the frame v(r)

on L. Let us discuss how the relative Chern class varies as we change the
r-frame.

If we have two frames v
(r)
1 and v

(r)
2 on L(2q) the difference between the

corresponding classes is given by the difference cocycle of the frames on L;
in the product L× I, suppose v

(r)
1 is defined at the level L× {0} and v

(r)
2 is

defined at the level L × {1}, then the difference cocycle d(v(r)
1 , v

(r)
2 ) is well

defined in
H2q(L× I, L× {0} ∪ L× {1}) 
 H2q−1(L),

as the obstruction to the extension of the given sections on the boundary of
L× I ([153] Sect. 33.3). As shown in [153], we have the following formula:

cq(M,L; v(r)
2 ) = cq(M,L; v(r)

1 ) + δd(v(r)
1 , v

(r)
2 ),

where δ : H2q−1(L) → H2q(M,L) is the connecting homomorphism. Also,
for three frames v

(r)
1 , v

(r)
2 , and v

(r)
3 as above, we have

d(v(r)
1 , v

(r)
3 ) = d(v(r)

1 , v
(r)
2 ) + d(v(r)

2 , v
(r)
3 ) (1.3.1)

For r = 1 the frames consist of a single vector field and the difference above
corresponds, via Poincaré duality, to the one previously defined for vector
fields (cf. 1.1.4).

In the sequel, we will show that the relative Chern class allows us to define
Chern class in homology.

Let S be a compact (K)-subcomplex of M , and U a neighborhood of S.
Let T be a cellular tube in U around S. Take an r-field v(r) defined on D(2q),
possibly with singularities. We suppose that the only singularities inside U
are located in S. This implies that v(r) has no singularities on (∂T )(2q) so
there is a well defined relative Chern class (see 1.3.3)

cq(T , ∂T ; v(r)) ∈ H2q(T , ∂T ).
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Definition 1.3.4. The Poincaré–Hopf class of v(r) at S, which is denoted by
PH(v(r), S), is the image of cq(T , ∂T ; v(r)) by the isomorphism H2q(T , ∂T ) 

H2q(T , T \ S) followed by the Alexander duality (see [25])

AM : H2q(T , T \ S) ∼−→ H2r−2(S). (1.3.2)

For r = 1 the frame consists of a single vector field v and the class
PH(v, S) ∈ H0(S) is identified with the Poincaré–Hopf index of v at S,
IndPH(v, S), previously defined (Definition 1.1.3).

Note that if dimS < 2r − 2, then PH(v(r), S) = 0.
The relation between the Poincaré–Hopf class of v(r) and the index we

defined above is the following:

PH(v(r), S) =
∑

Ind(v(r), d(σ))σ ,

where the sum runs over the 2(r − 1)-simplices σ of the triangulation of S
and d(σ) is the dual cell of σ (of dimension 2q).

Let us consider now the case of manifolds with boundary. Let M be a
compact almost complex 2m-manifold, with nonempty boundary ∂M . Let
(K) be a triangulation of M compatible with ∂M . The union of all “half-cells”
dual to simplices in ∂M , denoted by U is a regular neighborhood of ∂M . Its
boundary is denoted by ∂U , which is a union of (D)-cells and is homeomorphic
to ∂M . The pair (M \ (Int U), ∂U) is homeomorphic to (M,∂M) and one can
apply the previous construction.

Let v(r) be an r-field on the (2q)-skeleton of (D), with singularities located
on a compact subcomplex S in M \ (Int U). On the (2q)-skeleton of U , we
have a well defined r-frame v(r). Let {Sλ} be the connected components of
S. Then, by setting cr−1(M ; v(r)) = cq(M,∂M ; v(r)) � [M,∂M ], we have

∑

λ

(iλ)∗PH(v(r), Sλ) = cr−1(M ; v(r)) in H2r−2(M), (1.3.3)

where iλ : Sλ ↪→M is the inclusion.
In particular, the sum of the Poincaré–Hopf classes is determined by the

behavior of v(r) near ∂M and does not depend on the extension to the interior
of M . Note that we may assume that v(r) is nonsingular on D(2q−1).

If r = 1 and v(1) = {v}, the relative Chern class is also called the Euler
class of M relative to v and its evaluation on the orientation cycle of (M,∂M)
gives the index of v on M . Thus, if v is everywhere transverse to the boundary,
the formula (1.3.3) reduces to (1.1.3).

Remark 1.3.2. In the sequel we often speak of localizing Chern classes, which
can be done by two different methods: either obstruction theory or Chern–
Weil theory. The obstruction theoretical viewpoint comes from the above
concept of relative Chern classes: if S is a compact sub-complex of M , U a
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tubular neighborhood of S, and we are given an r-frame on the intersection
with U \ S with the appropriate skeleton (for some triangulation or cellular
decomposition of M), then the cycle that represents the corresponding Chern
class cq vanishes on ∂U . Hence we have a contribution for cq that is localized
in S, and another contribution in the complement of U . In the following
sections the geometric counterpart for making these localizations will be to
consider connections that are flat in the linear subspaces determined by the
frame. If r = 1 and S is a point, the “localization” one gets is simply the
contribution to χ(M) given by the local Poincaré–Hopf index of a vector field
at the isolated singularity.

1.4 Chern–Weil Theory of Characteristic Classes

In this section, we briefly review how to define characteristic classes of com-
plex vector bundles using connections. This approach allows us to obtain
precise results. If we combine this with the Čech-de Rham cohomology, this
method is particularly effective when we deal with the “localization problem.”

Let M be a C∞ manifold of dimension m′. For an open set U in M , we
denote by Ap(U) the complex vector space of complex valued C∞ p-forms
on U . Also, for a C∞ complex vector bundle E of rank k on M , we let
Ap(U,E) be the vector space of “E-valued p-forms” on U , i.e., C∞ sections
of the bundle

∧p(T c
R
M)∗ ⊗ E on U , where (T c

R
M)∗ denotes the dual of the

complexification of the real tangent bundle TRM of M . Thus A0(U) is the
ring of C∞ functions and A0(U,E) is the A0(U)-module of C∞ sections of
E on U .

Definition 1.4.1. A connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the “Leibniz rule”:

∇(fs) = df ⊗ s + f∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

Example 1.4.1. The exterior derivative

d : A0(M) −→ A1(M)

is a connection for the trivial line bundle M × C.

From the definition we have the following:

Lemma 1.4.1. A connection ∇ is a local operator, i.e., if a section s is
identically 0 on an open set U , so is ∇(s).
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Thus the restriction of ∇ to an open set U makes sense and it is a con-
nection for E|U .

Definition 1.4.2. Let ∇ be a connection for E on U . For a nonvanishing
section s of E on U , we say that ∇ is s-trivial, if ∇(s) = 0. More generally,
for an r-frame s = (s1, . . . , sr), ∇ is s-trivial, if ∇(si) = 0, i = 1, . . . , r.

Thus in Example 1.4.1, ∇ is trivial with respect to an arbitrary (nonzero)
constant section. From the definition we also have the following lemma.

Lemma 1.4.2. Let ∇1, . . . ,∇� be connections for E and f1, . . . , f� C∞ func-
tions on M with

∑�
i=1 fi ≡ 1. Then

∑�
i=1 fi∇i is a connection for E.

One of the consequences of the above lemmas is that every vector bundle
admits a connection. This can be shown by taking an open covering U of M
so that E is trivial on each open set in U , choosing a connection on each open
set trivial with respect to some frame of E, and then patching them together
by a partition of unity subordinate to U .

If ∇ is a connection for E, it induces a C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s) for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇. It is not difficult to see that

K(fs) = fK(s) for f ∈ A0(M) and s ∈ A0(M,E).

The fact that a connection is a local operator allows us to obtain local rep-
resentations of it and its curvature by matrices whose entries are differential
forms. Thus suppose that ∇ is a connection for a vector bundle E of rank k
and that E is trivial on U . If e = (e1, . . . , ek) is a frame of E on U , we may
write, for i = 1, . . . , k,

∇(ei) =
k∑

j=1

θji ⊗ ej, θji ∈ A1(U).

We call θ = (θij), the matrix whose (i, j) entry is θij , the connection matrix
of ∇ with respect to e. For an arbitrary section s on U , we may write s =∑k

i=1 fiei where the fi are C∞ functions on U and we compute
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∇(s) =
k∑

i=1

(dfi +
k∑

j=1

θijfj)⊗ ei.

Note that the connection ∇ is e-trivial if and only if θ = 0. Thus in this case
we have ∇(s) =

∑k
i=1 dfi ⊗ ei. Also, from the definition we get

K(ei) =
k∑

j=1

κji ⊗ ej , κij = dθij +
k∑

�=1

θi� ∧ θ�j .

We call κ = (κij) the curvature matrix of ∇ with respect to e. If e′ =
(e′1 . . . , e′k) is another frame of E on U ′, we have e′i =

∑k
j=1 ajiej for some

C∞ functions aji on U ∩ U ′. The matrix A = (aij) is nonsingular at each
point of U ∩ U ′. If we denote by θ′ and κ′ the connection and curvature
matrices of ∇ with respect to e′,

θ′ = A−1 · dA + A−1θA and κ′ = A−1κA in U ∩ U ′. (1.4.1)

Let m = [m′/2] and, for each i = 1, . . . ,m, let σi denote the ith elemen-
tary symmetric function in m variables X1, . . . , Xm, i.e., σi(X1, . . . , Xm) is
a polynomial of degree i defined by

m∏

i=1

(1 + Xi) = 1 + σ1(X1, . . . , Xm) + · · ·+ σm(X1, . . . , Xm).

Since differential forms of even degrees commute with one another with re-
spect to the exterior product, we may treat κ as an ordinary matrix whose
entries are numbers. We define a 2i-form σi(κ) on U by

det(I + κ) = 1 + σ1(κ) + · · ·+ σm(κ),

where I denotes the identity matrix of rank k. Note that σi(κ) = 0 for
i = k + 1, . . . ,m, and in particular, σ1(κ) is the trace tr(κ) and σk(κ) is the
determinant det(κ). Although σi(κ) depends on the connection ∇, by (1.4.1),
it does not depend on the choice of the frame of E and it defines a global
2i-form on M , which we denote by σi(∇). It is shown that the form is closed
([75, Ch.3, 3 Lemma], [123, Appendix C, Fundamental Lemma]). We set

ci(∇) =
(√
−1
2π

)i

σi(∇)

and call it the i-th Chern form.
If we have two connections∇ and∇′ for E, there is a (2i−1)-form ci(∇,∇′)

satisfying
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ci(∇,∇′) = −ci(∇′,∇) and d ci(∇,∇′) = ci(∇′)− ci(∇). (1.4.2)

In fact the form ci(∇,∇′) is constructed as follows. We consider the vector
bundle E × R→M × R and define the connection ∇̃ for it by

∇̃ = (1− t)∇+ t∇′,

where t denotes a coordinate on R. Denoting by [0, 1] the unit interval and
by π : M × [0, 1]→M the projection, we have the integration along the fiber

π∗ : A2i(M × [0, 1]) −→ A2i−1(M).

Then we set
ci(∇,∇′) = π∗(ci(∇̃)). (1.4.3)

A similar construction works for an arbitrary collection of finite number of
connections and the resulting differential form is called the Bott difference
form ([19, p. 65]).

From the above, we see that the class [ci(∇)] of the closed 2i-form ci(∇)
in the de Rham cohomology H2i(M, C) depends only on E and not on the
choice of the connection ∇. We denote this class by ci(E) and call it the i-th
Chern class ci(E) of E via the Chern–Weil theory. We call

c(E) = 1 + c1(E) + · · ·+ ck(E)

the total Chern class of E, which is considered as an element in the cohomol-
ogy ring H∗(M, C). Note that the class c(E) is invertible in H∗(M, C).

Remark 1.4.1. 1. It is known (see, e.g., [123]) that the class ci(E) defined as
above is the image of the class ci(E) in H2i(M, Z) defined via the obstruction
theory by the canonical homomorphism

H2i(M, Z) −→ H2i(M, C).

This fact can also be proved directly using an expression of the mapping
degree in terms of connections (see, e.g., [161]).

2. Let H be a hyperplane in the projective space CP
m. For the hyperplane

bundle LH , the line bundle determined by H , we have

c(LH) = 1 + hm,

where hm denotes the canonical generator of H2(CP
m, C) (the Poincaré dual

of the homology class [CP
m−1]). See Sect. 1.6.4 for the proof of a more precise

statement.
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More generally, if we have a symmetric polynomial ϕ, we may write ϕ =
P (σ1, σ2, . . . ) for some polynomial P . We define, for a connection ∇ for E,
the characteristic form ϕ(∇) for ϕ by ϕ(∇) = P (c1(∇), c2(∇), . . . ), which
is a closed form and defines the characteristic class ϕ(E) of E for ϕ in the
de Rham cohomology. We may also define the difference form ϕ(∇,∇′) by a
construction similar to the one for the Chern polynomials.

1.5 Čech-de Rham Cohomology

In the subsequent sections, we discuss “localizations of characteristic classes”
and for this purpose, the Chern–Weil theory adapted to the Čech-de Rham
cohomology is particularly relevant. The Čech-de Rham cohomology is de-
fined for an arbitrary covering of a manifold M , however for simplicity here
we only consider coverings of M consisting of two open sets. For details, we
refer to [20] and [156].

Let M be a C∞ manifold of dimension m′ and U = {U0, U1} an open
covering of M . We set U01 = U0 ∩ U1. Define the vector space Ap(U) as

Ap(U) = Ap(U0)⊕Ap(U1)⊕Ap−1(U01).

Thus an element ξ in Ap(U) is given by a triple ξ = (ξ0, ξ1, ξ01) with ξ0 a
p-form on U0, ξ1 a p-form on U1 and ξ01 a (p− 1)-form on U01.

We define the operator D : Ap(U)→ Ap+1(U) by

Dξ = (dξ0, dξ1, ξ1 − ξ0 − dξ01).

Then it is not difficult to see that D ◦ D = 0. This allows us to define a
cohomological complex, the Čech-de Rham complex :

· · · −→ Ap−1(U) D
(p−1)

−→ Ap(U) D
(p)

−→ Ap+1(U) −→ · · ·

Set Zp(U) = KerDp, Bp(U) = ImDp−1 and

Hp
D(U) = Zp(U)/Bp(U),

which is called the p-th Čech-de Rham cohomology of U . We denote the
image of ξ by the canonical surjection Zp(U)→ Hp

D(U) by [ξ].

Theorem 1.5.1. The map Ap(M)→ Ap(U) given by ω �→ (ω, ω, 0) induces
an isomorphism

α : Hp
dR(M) ∼−→ Hp

D(U).

Proof. It is not difficult to show that α is well-defined. To prove that α is
surjective, let ξ = (ξ0, ξ1, ξ01) be such that Dξ = 0. Let {ρ0, ρ1} be a partition
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of unity subordinated to the covering U . Define ω = ρ0ξ0 + ρ1ξ1 − dρ0 ∧ ξ01.
Then it is easy to see that dω = 0 and [(ω, ω, 0)] = [ξ]. The injectivity of α
is not difficult to show.

We define the “cup product”

Ap(U)×Aq(U) −→ Ap+q(U)

by assigning to ξ in Ap(U) and η in Aq(U) the element ξ � η in Ap+q(U)
given by

(ξ � η)i = ξi ∧ ηi, i = 0, 1, (ξ � η)01 = (−1)pξ0 ∧ η01 + ξ01 ∧ η1. (1.5.2)

Then we have D(ξ � η) = Dξ � η + (−1)pξ � Dη. Thus it induces the
cup product

Hp
D(U) ×Hq

D(U) −→ Hp+q
D (U)

compatible, via the isomorphism of 1.5.1, with the cup product in the
de Rham cohomology.

1.5.1 Integration on the Čech-de Rham Cohomology

Now we recall the integration on the Čech-de Rham cohomology (cf. [109]).
Suppose that the m′-dimensional manifold M is oriented and compact and
let U = {U0, U1} be a covering of M . Let R0, R1 ⊂ M be two compact
manifolds of dimension m′ with C∞ boundary with the following properties:
(1) Rj ⊂ Uj for j = 0, 1,
(2) IntR0 ∩ IntR1 = ∅ and
(3) R0 ∪R1 = M .

Let R01 = R0 ∩ R1 and give R01 the orientation as the boundary of R0;
R01 = ∂R0, equivalently give R01 the orientation opposite to that of the
boundary of R1; R01 = −∂R1. We define the integration

∫

M

: Am
′
(U) −→ C by

∫

M

ξ =
∫

R0

ξ0 +
∫

R1

ξ1 +
∫

R01

ξ01.

Then by the Stokes theorem, we see that if Dξ = 0 then
∫
M

ξ is
independent of {R0, R1} and that if ξ = Dη for some η ∈ Ap−1(U) then∫
M

ξ = 0. Thus we may define the integration

∫

M

: Hm′
D (U) −→ C,
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which is compatible with the integration on the de Rham cohomology via the
isomorphism of 1.5.1.

1.5.2 Relative Čech-de Rham Cohomology –
Alexander Duality

Next we define the relative Čech-de Rham cohomology and describe the
Alexander duality. Let M be an m′-dimensional oriented manifold (not nec-
essarily compact) and S a compact subset of M . Let U0 = M \ S and let U1

be an open neighborhood of S. We consider the covering U = {U0, U1} of M .
We set

Ap(U , U0) = { ξ = (ξ0, ξ1, ξ01) ∈ Ap(U) | ξ0 = 0 }.

Then we see that if ξ is in Ap(U , U0), Dξ is in Ap+1(U , U0). This gives rise
to another complex, called the relative Čech-de Rham complex, and we may
define the p-th relative Čech-de Rham cohomology of the pair (U , U0) as

Hp
D(U , U0) = KerDp/ImDp−1.

By the five lemma, we see that there is a natural isomorphism

Hp
D(U , U0) 
 Hp(M,M \ S; C).

Let R1 be a compact manifold of dimension m′ with C∞ boundary such
that S ⊂ IntR1 ⊂ R1 ⊂ U1. Let R0 = M \ IntR1. Note that R0 ⊂ U0. The
integral operator

∫
M (which is not defined in general for Am

′
(U) unless M is

compact) is well defined on Am
′
(U , U0):

∫

M

: Am
′
(U , U0) −→ C,

∫

M

ξ =
∫

R1

ξ1 +
∫

R01

ξ01,

and induces an operator
∫
M : Hm′

D (U , U0)→ C.
In the cup product Ap(U) × Am

′−p(U) → Am
′
(U) given as (1.5.2), we

see that if ξ0 = 0, the right hand side depends only on ξ1, ξ01, and η1. Thus
we have a pairing Ap(U , U0)×Am

′−p(U1)→ Am
′
(U , U0), which, followed by

the integration, gives a bilinear pairing

Ap(U , U0)×Am
′−p(U1) −→ C.

If we further assume that U1 is a regular neighborhood of S, this induces the
Alexander duality (cf 1.3.2 and [25])
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A : Hp(M,M \ S; C) 
 Hp
D(U , U0)

∼→ Hm′−p(U1, C)∗ 
 Hm′−p(S, C).
(1.5.3)

Proposition 1.5.1. [25] If M is compact, we have the commutative diagram

Hp(M,M \ S; C)
j∗−−−−→ Hp(M, C)

�
⏐
⏐
�A �

⏐
⏐
�P

Hm′−p(S, C) i∗−−−−→ Hm′−p(M, C),

where i and j denote, respectively, the inclusions S ↪→ M and (M, ∅) ↪→
(M,M \ S).

We finish this section by giving a fundamental example of computation of
relative Čech-de Rham cohomology.

Example 1.5.1. Let M = Rm
′

and S = {0} with m′ ≥ 2. In this case, U0 =
Rm

′ \ {0}, which retracts to Sm
′−1. Let U1 = Rm

′
. In this situation, we

compute Hp
D(U , U0). For p = 0, each element ξ in A0(U , U0) can be written

as ξ = (0, f, 0) for some C∞ function f on U1. If Dξ = 0, we have f ≡ 0 and
therefore H0

D(U , U0) = {0}. Next, an element ξ in A1(U , U0) can be written
as ξ = (0, ξ1, f) with ξ1 a 1-form on U1 and f a C∞ function on U0∩U1. If ξ is
a cocycle then dξ1 = 0 on U1 and df = ξ1 on U0∩U1. By the Poincaré lemma
the first condition implies that ξ1 = dg for some C∞ function g on U1 and
the second condition implies that f ≡ g + c for some c ∈ C. Therefore f has
a C∞ extension, still denoted by f , over {0} and ξ = (0, df, f) = D(0, f, 0).
Hence H1

D(U , U0) = {0}. For p ≥ 2 the map

Hp−1
dR (U0) −→ Hp

D(U , U0) given by [ω] �→ [(0, 0,−ω)]

can be shown to be an isomorphism (we leave the details to the reader) and
we have

Hp
D(U , U0) 
 Hp−1

dR (U0) 
 Hp−1(Sm
′−1) =

{
C, for p = m′,

0, for p = 2, . . . ,m′ − 1.

An explicit generator of Hm′−1(Sm
′−1) is given as follows ([75, p. 370]).

For x = (x1, . . . , xm′) in Rm
′
, we set Φ(x) = dx1 ∧ · · · ∧ dxm′ and

Φi(x) = (−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm′ .

Also, let Cm′ be the constant given by
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Cm′ =

{
(�−1)!
2π� , for m′ = 2�
(2�)!

22�+1π��!
, for m′ = 2� + 1.

Then the form

ψm′ = Cm′

∑m′

i=1 Φi(x)
‖x‖m′

is a closed (m′ − 1)-form on R
m′ \ 0 whose integral on the unit sphere S

m′−1

(in fact a sphere of arbitrary radius) is 1. Now we identify Cm with R2m,
then ψ2m = (βm + βm)/2, where

βm = C′
m

∑m
i=1 Φi(z) ∧ Φ(z)
‖z‖2m , C′

m = (−1)
m(m−1)

2
(m− 1)!

(2π
√
−1)m

. (1.5.4)

Then βm is a closed (m,m − 1)-form on C
m \ 0, real on S

2m−1 and∫
S2m−1 βm = 1. We call βm the Bochner–Martinelli kernel on Cm. Note that

β1 =
1

2π
√
−1

dz

z
,

is the Cauchy kernel on C.

1.6 Localization of Chern Classes

In a previous section we described the topological viewpoint for localizing
Chern classes on a given compact subset S of a manifold M , taking an ap-
propriate frame in the appropriate skeleton of a neighborhood of S. This
gives an explicit representative of the Chern class which represents it as a
relative cohomology class, with a specific contribution localized at S. We also
know (see for instance [14,19,123]) that Chern classes of manifolds and vector
bundles in general can be defined via Chern–Weil theory, using the curva-
ture tensor of a connection. To describe the localization of Chern classes, we
modify the Chern–Weil theory so that it is adapted to the Čech-de Rham
cohomology.

1.6.1 Characteristic Classes in the Čech-de Rham
Cohomology

Let M be a C∞ manifold and U = {U0, U1} an open covering of M . For a
vector bundle E over M , we take a connection ∇j on Uj , j = 0, 1, and let
ci(∇∗) be the element of A2i(U) given by
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ci(∇∗) = (ci(∇0), ci(∇1), ci(∇0,∇1)). (1.6.1)

Then we see that Dci(∇∗) = 0 and this defines a class [ci(∇∗)] in H2i
D (U). It

is not difficult to show the following

Theorem 1.6.2. The class [ci(∇∗)] ∈ H2i
D (U) corresponds to the Chern class

ci(E) ∈ H2i
dR(M) under the isomorphism of Theorem 1.5.1.

By a similar construction, we may define the characteristic class ϕ(E) for
a polynomial ϕ in the Chern polynomials in the Čech-de Rham cohomology.
It can be done also for virtual bundles (see Chap. 5).

Using Bott difference forms, we may define characteristic classes in the
Čech-de Rham cohomology for an arbitrary open covering of M .

This way of representing characteristic classes is particularly useful in deal-
ing with the “localization problem,” which we explain in the next subsection.
This theory involves vanishing theorems, one of which is given as follows.

Let E be a complex vector bundle of rank k on a C∞ manifold M . Let
s = (s1, . . . , sr) be an r-frame of E on an open set U . Recall that (Definition
1.4.2) a connection ∇ for E on U is s-trivial, if ∇(si) = 0 for i = 1, . . . , r.

Proposition 1.6.1. If ∇ is s-trivial, then

cj(∇) ≡ 0 for j ≥ k − r + 1.

Proof. For simplicity, we prove the proposition when r = 1. Let U ⊂ M be
an open set such that E|U 
 U ×Ck. Since s1 �= 0 everywhere on M , we may
take a frame e = (e1, . . . , ek) on U so that e1 = s1. Then all the entries of
the first row of the curvature matrix κ of ∇ with respect to e are zero. Since
ck(∇) = detκ, up to a constant, we have ck(∇) = 0.

1.6.2 Localization of Characteristic Classes
of Complex Vector Bundles

In this subsection, we explain how we obtain indices and residues in the
subsequent sections.

Let M be an oriented C∞ manifold of dimension m′ and E a C∞ complex
vector bundle of rank k over M . Also, let S be a closed set in M and U1

a neighborhood of S in M . Setting U0 = M \ S, we consider the covering
U = {U0, U1} of M . For a homogeneous symmetric polynomial ϕ of degree d,
the characteristic class ϕ(E) is represented by the cocycle ϕ(∇∗) in A2d(U)
given by

ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)),

where ∇0 and ∇1 denote connections for E on U0 and U1 respectively.
Sometimes, it happens that we have a “vanishing theorem” on U0 for some
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polynomials ϕ. Namely, there is some “geometric object” γ on U0, to which
is associated a class C of connections for E on U0 such that, for a connection
∇0 belonging to C and for a certain polynomial ϕ, we have

ϕ(∇0) ≡ 0.

We call a connection belonging to C special and a polynomial ϕ as above
adapted to γ. As we see below, this kind of vanishing defines a localization
of the relevant characteristic class. Moreover, if we have also the vanishing
of the Bott difference forms for families of special connections, we may show
that the localization does not depend on the connections involved. This is
the case in all the cases we consider below and we assume this hereafter.

Thus, if∇0 is special and if ϕ is adapted to γ, then the above cocycle ϕ(∇∗)
is in A2d(U , U0) and it defines a class in H2d(M,M \ S; C), which is denoted
by ϕS(E, γ). It is sent to the class ϕ(E) by the canonical homomorphism
j∗ : H2d(M,M \ S; C) → H2d(M, C). It is not difficult to see that the class
ϕS(E, γ) does not depend on the choice of the special connection ∇0 or the
connection ∇1.

We call ϕS(E, γ) the localization of ϕ(E) at S by γ. Suppose S is a compact
set admitting a regular neighborhood. Then we have the Alexander duality
(1.5.3)

A : H2d(M,M \ S; C) ∼−→ Hm′−2d(S, C).

Thus the class ϕS(E, γ) defines a class in Hm′−2d(S, C), which we call the
residue of γ for the class ϕ(E) at S and denote by Resϕ(γ,E;S).

We suppose that U1 is a regular neighborhood and let R1 be an
m′-dimensional manifold with C∞ boundary in U1 containing S in its interior
and we set R01 = −∂R1. Then the residue Resϕ(γ,E;S) is represented by
an (m′ − 2d)-cycle C in S such that

∫

C

η =
∫

R1

ϕ(∇1) ∧ η +
∫

R01

ϕ(∇0,∇1) ∧ η (1.6.3)

for every closed (m′−2d)-form η on U1. In particular, if 2d = m′, the residue
is a complex number given by

Resϕ(γ,E;S) =
∫

R1

ϕ(∇1) +
∫

R01

ϕ(∇0,∇1). (1.6.4)

Suppose moreover that S has a finite number of connected components
(Sλ)λ. Then we have a decomposition

Hm′−2d(S, C) =
⊕

λ

Hm′−2d(Sλ, C)
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and accordingly, we have the residue Resϕ(γ,E;Sλ) in Hm′−2d(Sλ, C) for
each λ. Replacing U1 by a regular neighborhood Uλ of Sλ, disjoint from the
other components, and R1 by an m′-dimensional manifold Rλ with boundary
in Uλ containing Sλ in its interior, we have an expression (1.6.3)λ or (1.6.4)λ
for the residue Resϕ(γ,E;Sλ) similar to (1.6.3) or (1.6.4).

From the above considerations and Proposition 1.5.1, we have the following
“residue theorem.”

Theorem 1.6.5. In the above situation,

(1) For each connected component Sλ of S, we have the residue Resϕ(γ,E;Sλ)
in the homology Hm′−2d(Sλ, C), which is determined by the local behavior of
γ near Sλ and is expressed as (1.6.3)λ or (1.6.4)λ.

(2) If M is compact,

∑

λ

(iλ)∗Resϕ(γ,E;Sλ) = ϕ(E) � [M ] in Hm′−2d(M, C),

where iλ : Sλ ↪→M denotes the inclusion.

Remark 1.6.1. If 2d = m′, we do not have to assume that S admits a regular
neighborhood. Simply take an arbitrary open neighborhood as U1 and define
Resϕ(γ,E;S) by (1.6.4) with R1 as above, then Theorem 1.6.5 is still valid.

1.6.3 Localization of the Top Chern Class

Let E be a C∞ complex vector bundle of rank k over an oriented C∞ manifold
M of dimension m′. Let s be a nonvanishing section of E on some open set U .
Recall that a connection ∇ for E on U is s-trivial, if ∇(s) = 0. If ∇ is an
s-trivial connection, we have the vanishing (Proposition 1.6.1)

ck(∇) = 0. (1.6.6)

Let S be a closed set in M and suppose we have a C∞ nonvanishing
section s of E on M \ S. Then, from the above fact, applying the arguments
in Sect. 1.6.2 taking ck as ϕ and s-trivial connections as special connections,
we see that there is a natural lifting ck(E, s) in H2k(M,M \ S; C) of the top
Chern class ck(E) in H2k(M, C). We call ck(E, s) the localization of ck(E)
with respect to the section s at S.

Also, if S is a compact set admitting a regular neighborhood, the class
ck(E, s) defines a class in Hm′−2k(S, C), which we call the residue of s for E
at S with respect to ck and denote by Resck(s, E;S). This residue corresponds
to what is called the “localized top Chern class” of E with respect to s in
[59, Sect. 14.1].



1.6 Localization of Chern Classes 23

The residue Resck(s, E;S) is represented by an (m′ − 2k)-cycle C in Sλ
satisfying (1.6.3). In particular, if 2k = m′, the residue is a complex number
given by (1.6.4) with ϕ = ck. If S has a finite number of connected compo-
nents (Sλ)λ, we have the residue Resck(s, E;Sλ) in Hm′−2k(Sλ, C) for each
λ. Moreover, Theorem 1.6.5 becomes

Theorem 1.6.7. In the above situation,

(1) For each connected component Sλ of S, we have the residue Resck(s, E;Sλ)
in the homology Hm′−2k(Sλ, C).

(2) If M is compact,

∑

λ

(iλ)∗Resck(s, E;Sλ) = ck(E) � [M ] in Hm′−2k(M, C).

Remark 1.6.2. 1. In fact it can be shown that the above residues are in the
integral homology and the equality in Theorem 1.6.7 holds in the integral
homology (see [161]).
2. A localization theory of Chern classes, other than the top one, by a finite
number of sections can be developed similarly (see [159–161]).

1.6.4 Hyperplane Bundle

As a basic example of the theory developed in the previous subsections, we
prove that the Poincaré dual of the first Chern of the hyperplane bundle LH
on a projective space is (the homology class of) the hyperplane H . In fact, we
prove a more precise statement that the Alexander dual of the localization
of the first Chern of LH by the canonical section is the fundamental class of
H in the homology of H . Note that the essential point in the proof is the
Cauchy integral formula; 1

2π
√
−1

∫
γ
dz
z = 1.

Let CP
m be the m-dimensional complex projective space with homoge-

neous coordinates [ζ0, . . . , ζm]. We denote by Wi the open set in CP
m defined

by ζi �= 0, i = 0, . . . ,m. Let H denote the hyperplane defined by ζ0 = 0 and
LH the line bundle determined by H . Recall that LH is defined by the system
of transition functions hij , hij = ζj/ζi. The canonical section s is represented
by the collection (si), where si is a holomorphic function on Wi given by
si = ζ0/ζi. Since the zero set of s is H , we have the localization c1(LH , s) of
c1(LH) in H2(CP

m, CP
m \H).

Theorem 1.6.8. The image of c1(LH , s) by the Alexander isomorphism

H2(CP
m, CP

m \H) ∼−→ H2m−2(H)

is the fundamental class [H ], i.e., Resc1(s, LH ;H) = [H ].
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Proof. Let U = {U0, U1} be the covering of CP
m consisting of U0 = CP

m \H
and a tubular neighborhood U1 of H with a C∞ retraction ρ : U1 → H . Let
∇0 be an s-trivial connection for LH on U0 so that c1(∇0) = 0 and ∇1 an
arbitrary connection for LH on U1. Then the class c1(LH , s) is represented by
the cocycle (0, c1(∇1), c1(∇0,∇1)) in A2(U , U0). Let R1 be a closed tubular
neighborhood of H in U1 and R01 = −∂R1. Our aim is to show that (cf.
(1.6.3)) ∫

H

η =
∫

R1

c1(∇1) ∧ η +
∫

R01

c1(∇0,∇1) ∧ η (1.6.9)

for every closed (2m− 2)-form η on U1.
Since the retraction map ρ induces an isomorphism ρ∗ : H2m−2

dR (H) ∼→
H2m−2
dR (U1), we see that there exist a closed (2m − 2)-form θ on H and a

(2m − 3)-form τ on U1 with η = ρ∗θ + d τ . By the Stokes theorem and
the property of the difference form c1(∇0,∇1), we see that it suffices to
prove (1.6.9) for η = ρ∗θ. For the left hand side, we have

∫
H ρ∗θ =

∫
H θ. To

compute the right hand side, we note that LH |U1 
 ρ∗(LH |H). Let ∇ be a
connection for LH |H and take as ∇1 the connection corresponding to ρ∗∇.
Then we have c1(∇1) ∧ ρ∗θ = ρ∗(c1(∇) ∧ θ) = 0, since c1(∇) ∧ θ is a 2m-
form on H . In the second term of the right hand side, R01 is an S1 bundle
over H with the orientation opposite to the natural one. Let ρ01 denote the
restriction of ρ to R01. Then by the projection formula, we have

∫

R01

c1(∇0,∇1) ∧ ρ∗θ = −
∫

H

(ρ01)∗c1(∇0,∇1) · θ,

where (ρ01)∗ denotes the integration along the fiber of ρ01 so that the form
(ρ01)∗c1(∇0,∇1) is in fact a function on H . It suffices to prove that this
function is identically equal to −1. Let p be an arbitrary point in H and
suppose it is in Wi, i �= 0. In the sequel, we identify LH |Wi with Wi ×C. On
Wi, the section s is represented by the function si = ζ0/ζi, which can also
be thought of as a fiber coordinate of the retraction ρ. Let ∇′ denote the
connection for LH |H on Wi ∩H trivial with respect to the frame � given by
�(q) = (q, 1) for q in Wi ∩H . We may modify ∇′ away from a neighborhood
of p to obtain a connection ∇ for LH |H on H . The pullback ∇1 = ρ∗∇
is a connection for LH which is trivial with respect to the frame �1 given
by �1(q) = (q, 1) for q in a neighborhood W of p in Wi. Now we try to find
c1(∇0,∇1) on W ∩U01 = W \H (cf. (1.4.3)). For this, let ∇̃ be the connection
for LH×R given by ∇̃ = (1− t)∇0+ t∇1. Let θi be the connection form of ∇i
with respect to the frame �1, i = 0, 1. Then θ1 = 0 and, since θ0 is s-trivial
and �1 = 1

z s, z = ζ0/ζi, by (1.4.1), we have θ0 = d
(

1
z

)
/ 1
z = − dzz . Thus the

connection form θ̃ of ∇̃ is given by

θ̃ = −(1− t)
dz

z
.
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Hence the curvature form κ̃ of ∇̃ is given by κ̃ = d θ̃ = dt∧ dz
z and we get

c1(∇0,∇1) =
√
−1

2π
π∗κ̃ = − 1

2π
√
−1

dz

z
,

where π∗ denotes the integration along the fiber of the projection map π :
W \H × [0, 1]→ W \H . Therefore, by the Cauchy integral formula, we have

(ρ01)∗c1(∇0,∇1) = −1

in a neighborhood of p.

See [157] and [161] for more general results and thorough discussions in
this direction.

1.6.5 Grothendieck Residues

As we have seen in the previous subsection and will see also in the sequel, the
residues of characteristic classes are deeply related to Grothendieck residues.
In this subsection, we briefly review this subject. For details, we refer to, e.g.,
[75].

Let U be a neighborhood of the origin 0 in Cm and f1, . . . , fm holomorphic
functions on U such that their common set of zeros consists only of 0. For a
holomorphic m-form ω on U , we set

Res0

[
ω

f1, . . . , fm

]

=
1

(2π
√
−1)m

∫

Γ

ω

f1 · · · fm
, (1.6.10)

where Γ is an m-cycle in U defined by

Γ = { z ∈ U | |f1(z)| = · · · = |fm(z)| = ε }

for a small positive number ε. We orient Γ so that the form dθ1 ∧ · · · ∧ dθm
is positive, θi = argfi.

Example 1.6.1. If m = 1, the above residue 1.6.10 is the usual Cauchy residue
at 0 of the meromorphic 1-form ω/f1.

Example 1.6.2. In the next subsection, we give various expressions for the
residue of the top Chern class at an isolated singularity of a section s.
If (f1, . . . , fm) denote local components of s around the singularity, the
Grothendieck residue with ω = df1 ∧ · · · ∧ dfm appears as an “analytic ex-
pression” of the residue. Thus we have
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Res0

[
df1 ∧ · · · ∧ dfm

f1, . . . , fm

]

= dimCOm/(f1, . . . , fm) = IndPH(v, 0), (1.6.11)

where v denotes the holomorphic vector field
∑m

i=1 fi · ∂/∂zi. This positive
integer is also interpreted as the intersection number (D1 · · ·Dm)0 at 0 of the
divisors Di defined by fi (cf. [75, Ch.5, 2], [157]).

Example 1.6.3. In particular, if fi = ∂f/∂zi for some f in Om, then the
residue is the Milnor number μ(V, 0) of the hypersurface V defined by f at 0;

Res0

[
d
(
∂f
∂z1

)
∧ · · · ∧ d

(
∂f
∂zm

)

∂f
∂z1

, . . . , ∂f
∂zm

]

= μ(V, 0).

We also call this number the multiplicity of f at 0 and denote it by m(f, 0)
(cf. Sect. 1.6.7-b below).

1.6.6 Residues at an Isolated Zero

Let E be a holomorphic vector bundle of rank m over a complex manifold M
of dimension m. Suppose we have a section s with an isolated zero at p in M .
In this situation, we have Rescm(s, E; p) in H0({p}, C) = C. In the following,
we give explicit expressions of this residue.

Let U be an open neighborhood of p where the bundle E is trivial with
holomorphic frame (e1, . . . , em). We write s =

∑m
i=1 fi ei with fi holomorphic

functions on U .

(I) Analytic expression

Theorem 1.6.12. In the above situation, we have

Rescm(s, E; p) = Resp

[
df1 ∧ · · · ∧ dfm

f1, . . . , fm

]

.

Proof. We indicate the proof for the case m = 1 (for m > 1, we use the
Čech-de Rham cohomology theory for m open sets, see [157], [160]). Thus
s = fe1 for some holomorphic function f on U . Let R be a closed disk about
p in U . In the expression (1.6.4) of the residue, we may take as∇1 an e1-trivial
connection on U , thus c1(∇1) ≡ 0 and

Resp(s, E; p) = −
∫

∂R

c1(∇0,∇1)

with ∇0 an s-trivial connection on U ′ = U \ {p}. The Bott difference form
c1(∇0,∇1) can be computed as in the proof of Theorem 1.6.8. If we let θi be
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the connection matrix of ∇i, i = 0, 1, with respect to the frame e1, we have
θ1 = 0 and θ0 = − dff . Thus this time we have

c1(∇0,∇1) = − 1
2π
√
−1

df

f
,

which proves the theorem (for the case m = 1).

Remark 1.6.3. For general m, if we take suitable connections we see that the
difference form is given by

cm(∇0,∇1) = −f∗βm,

where f = (f1, . . . , fm) and βm denotes the Bochner–Martinelli kernel on
Cm (cf. (1.5.4)). This gives a direct proof of Theorem 1.6.14 below. Thus we
reprove the fact that the Grothendieck residue in the above theorem is equal
to the mapping degree of f (cf. [75, Ch.5, 1. Lemma]).

(II) Algebraic expression

Theorem 1.6.13. In the above situation, we have

Rescm(s, E; p) = dimOm/(f1, . . . , fm).

This can be proved, for example, by perturbing the sections and using the
theory of Cohen–Macaulay rings (e.g., [160]).

(III) Topological Expression

Let S2m−1
ε denote a small 2m− 1 sphere in U with center p. Then we have

the mapping

ϕ =
f

‖f‖ : S
2m−1
ε −→ S

2m−1,

where S2m−1 denotes the unit sphere in Cm.

Theorem 1.6.14. In the above situation, we have

Rescm(s, E; p) = deg ϕ.

This can also be proved by perturbing the sections, see [75], [160].

Remark 1.6.4. There are similar expressions as above for the residues of
vector bundles on singular varieties with respect to an appropriate number
of sections (see [160]).
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1.6.7 Examples

(a) Poincaré–Hopf Index Theorem

Let M be a complex manifold of dimension m. We take as E the holomorphic
tangent bundle TM . Then a section of TM is a (complex) vector field v. One
can check (see, e.g., [161]) that the Poincaré–Hopf index IndPH(v, Sλ) of v at
a connected component Sλ of its zero set S, that we defined in 1.1.3 can be
expressed as

IndPH(v, Sλ) = Rescm(v, TM ;Sλ).

Then, if M is compact, by Theorem 1.6.7, we have

∑

λ

IndPH(v, Sλ) =
∫

M

cm(M),

where cm(M) = cm(TM) and it is known that the right hand side coin-
cides with the Euler–Poincaré characteristic χ(M) of M (“Gauss–Bonnet
formula”). Thus, by Theorem 1.6.7, we recover the Poincaré–Hopf theorem
in case v is holomorphic and the zeros are isolated.

(b) Multiplicity Formula

Let M be a complex manifold of dimension m. We take as E the holomorphic
cotangent bundle T ∗M . For a holomorphic function f on M , its differential
df is a section of T ∗M . The zero set S of df coincides with the critical set
C(f) of f . We define the multiplicity m(f, Sλ) of f at a connected component
Sλ of C(f) by

m(f, Sλ) = Rescm(df, T ∗M ;Sλ).

Note that, if Sλ consists of a point p, it coincides with the multiplicity m(f, p)
of f at p described in Example 1.6.3.

Now we consider the global situation. Let f : M → C be a holomorphic
map of M onto a complex curve (Riemann surface) C. The differential

df : TM −→ f∗TC

of f determines a section of T ∗M ⊗ f∗TC, which is also denoted by df . The
set of zeros of df is the critical set C(f) of f . Suppose C(f) is a compact
set with a finite number of connected components (Sλ)λ. Then we have the
residue Rescm(df, T ∗M⊗f∗TC;Sλ) for each λ. If M is compact, by Theorem
1.6.7, we have

∑

λ

Rescm(df, T ∗M ⊗ f∗TC;Sλ) =
∫

M

cm(T ∗M ⊗ f∗TC).
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We look at the both sides of the above more closely. In the sequel, we set
D(f) = f(C(f)), the set of critical values. Then, if M is compact, f defines
a C∞ fiber bundle structure on M \ C(f)→ C \D(f).

We refer to [87] for a precise proof of the following

Lemma 1.6.1. If M is compact, and if D(f) consists of isolated points,

∫

M

cm(T ∗M ⊗ f∗TC) = (−1)m(χ(M)− χ(F)χ(C)),

where F denotes a general fiber of f .

Suppose that f(Sλ) is a point. Taking a coordinate on C around f(Sλ),
we think of f as a holomorphic function near Sλ. Then we may write

Rescm(df, T ∗M ⊗ f∗TC;Sλ) = Rescm(df, T ∗M ;Sλ) = m(f, Sλ),

the multiplicity of f at Sλ. Thus we have

Theorem 1.6.15. Let f : M → C be a holomorphic map of a compact
complex manifold M of dimension m onto a complex curve C. If the critical
values D(f) of f consists of only isolated points, then

∑

λ

m(f, Sλ) = (−1)m(χ(M)− χ(F)χ(C)),

where the sum is taken over the connected components Sλ of C(f).

In particular, we have ([86], see also [59, Example 14.1.5]):

Corollary 1.6.1. In the above situation, if the critical set C(f) of f consists
of only isolated points,

∑

p∈C(f)

m(f, p) = (−1)m(χ(M)− χ(F)χ(C)).

See [87] for the definition of multiplicities of functions on possibly singular
varieties and formula similar to the above for these multiplicities.



Chapter 2

The Schwartz Index

Abstract The index of a tangent vector field in a singular point is
well-defined on manifolds, as described in the previous chapter. When
working with singular analytic varieties, it is necessary to give a sense to
the notion of “tangent” vector field and, once this is done, it is natural
to ask what should be the notion of “the index” at a singularity of the
suitable vector field. Indices of vector fields on singular varieties were first
considered by M.-H. Schwartz in [139,141] (see also [33,142]) in her study of
the Poincaré–Hopf Theorem and Chern classes for singular varieties. For her
purpose there was no point in considering vector fields in general, but only
a special class of vector fields that she called “radial,” which are obtained
by the important process of radial extension. In this chapter we explain the
definition of the corresponding index as it was defined by M.-H. Schwartz
for vector fields constructed by radial extension. Complete description and
constructions will be found in [28].

We define a natural extension of this index for arbitrary (stratified) vector
fields on singular varieties. This index is sometimes called “radial index” in
the literature, but we prefer to call it here the Schwartz index. The Schwartz
index for arbitrary stratified vector fields was first defined by H. King and
D. Trotman in [96], and later independently in [6, 49, 149]. In [30, 31] this
index was interpreted in differential-geometric terms and this was used to
study its relations with various characteristic classes for singular varieties.
This is discussed in [28] and in Chap. 10 below.

2.1 Isolated Singularity Case

Consider first the case where the space is a complex analytic variety V ⊂ Cm

of dimension n > 1 with an isolated singularity at 0. Let U be an open
ball around 0 ∈ Cm, small enough so that every sphere in U centered at 0
meets V transversally (see [120]). For simplicity we restrict the discussion
to U . Let vrad be a continuous vector field on V \ {0} which is transverse
(outwards-pointing) to all spheres Sε around 0 for ε small enough, and scale

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
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it so that it extends to a continuous section of TCm|V with an isolated zero
at 0. We call vrad a radial vector field at 0 ∈ V . Notice vrad can be further
extended to a tangent vector field v#

rad on U being everywhere transverse to
all spheres Sε centered at 0, thus getting a vector field on U which is radial.
By definition the Schwartz index of vrad is the Poincaré–Hopf index at 0 of
the radial extension v#

rad, so it is +1.
Let us consider now a continuous vector field v on V with an isolated

singularity at 0. By this we mean a continuous section v of TCm|V which
is tangent to V ∗ = V \ {0}. We want to define the Schwartz index of v; this
index is related to “the lack of radiality” of the vector field. It has various
names in the literature (c.f. [6, 49, 96, 149]), one of them being radial index.

We may now define the difference between v and vrad at 0 just as we did in
Chap. 1: consider small spheres Sε, Sε′ ; ε > ε′ > 0, and let w be a vector field
on the cylinder X in V bounded by the links Kε = Sε∩V and Kε′ = Sε′ ∩V ,
such that w has finitely many singularities in the interior of X , it restricts to
v on Kε and to vrad on Kε′ . The difference of v and vrad is defined as

d(v, vrad) = IndPH(w,X) ,

the Poincaré–Hopf index of w on X .

Definition 2.1.1 (Schwartz index: case of a variety V with isolated
singularity at 0 and v an arbitrary vector field on V with iso-
lated singularity at 0). One defines the Schwartz index of v at 0 ∈ V
to be:

IndSch(v, 0;V ) = 1 + d(v, vrad) .

The following result is well-known (see [6, 49, 149]). For vector fields with
radial singularities, this is a special case of the work of M.-H. Schwartz; the
general case follows easily from this.

Theorem 2.1.1. Let V be a compact complex analytic variety with isolated
singularities q1, · · · , qr in a complex manifold M , and let v be a continuous
vector field on V , singular at the qi and possibly at some other isolated points
in V . Let IndSch(v, V ) be the sum of the Schwartz indices of v at the qi plus
its Poincaré–Hopf index at the singularities of v in the regular part of V .
Then:

IndSch(v, V ) = χ(V )

The proof is very simple; we give it here because this illustrates arguments
used later. Assume first the vector field v is radial at each q1, · · · , qr, so its
local Schwartz index at each qi is 1. Now take small discs Di in M around each
qi and remove from V the interior of each V ∩Di; we get a manifold V ∗ which
is compact with boundary. The vector field is transverse to the boundary
everywhere. Hence its total Poincaré–Hopf index there equals χ(V ∗). The
result then follows from the Poincaré–Hopf index theorem because one has:

χ(V ) = r + χ(V ∗) .
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Now, if v is nonradial at (some) qi we do a simple trick: for each ε > 0
sufficiently small, denote by Bi,ε the ball in M of radius ε around qi (for some
metric) and set Ki,ε = V ∩ Bi,ε and V ∗ = V \

⋃
i(V ∩ Bi,ε) for some fixed

ε > 0 sufficiently small. By [121] each boundary component Ki,ε of V ∗ has a
neighborhood diffeomorphic to a cylinder Ki,ε× [0, 1]. Choose ε1, ε2 > 0 such
that ε > ε1 > ε2, and let Xε,ε1 and Xε1,ε2 be the cylinders in M bounded by
{Ki,ε,Ki,ε1} and {Ki,ε1 ,Ki,ε2} respectively. Put the vector field v on each
Ki,ε1 and on each Ki,ε and Ki,ε2 put a radial vector field vrad. Then the local
Schwartz index of v at each qi is 1 plus the difference d(v, vrad) between v
on Ki,ε1 and vrad on Ki,ε2 , which equals −d(vrad, v), the difference between
vrad on Ki,ε and v on Ki,ε1 . Hence this case reduces to the previous one of
radial vector fields, proving theorem 2.1.1. ��

The idea for defining the Schwartz index in general, if the singular set has
dimension more than 0, is similar in spirit to the case above, but it presents
some technical difficulties for which we need to introduce some concepts and
notation.

2.2 Whitney Stratifications

Here we make a short summary of what we need in the sequel about stratifi-
cations. We refer to [28,73,107] for more on the subject. A stratification of a
space X is a particularly nice decomposition of this space into pieces, all of
which smooth manifolds called the strata.

Definition 2.2.1. Let V be a complex analytic variety of dimension n in
some complex manifold M . An analytic stratification of V means a locally
finite family (Vα)α∈A of nonsingular analytic subspaces of V (i.e., each Vα is
a complex manifold) such that:

(1) The family is a partition of V , i.e., they are pairwise disjoint and their
union covers V .

(2) For each Vα, the closures in V of both V α and V α \Vα are analytic in V .

(3) For each pair (Vα, Vβ) such that Vα ∩ V β �= ∅ one has Vα ⊂ V β .

The highest dimensional stratum, which may not be connected, is called
the regular stratum and usually denoted by V0 or Vreg.

Definition 2.2.2. A stratification (Vα)α∈A of V is said to be Whitney if it
further satisfies the following two conditions, known as the Whitney condi-
tions (a) and (b), for every pair (Vα, Vβ) such that Vα ⊂ V β .

Let xi ∈ Vβ be an arbitrary sequence converging to some point y ∈ Vα and
yi ∈ Vα a sequence that also converges to y ∈ Vα. Suppose these sequences
are such that (in appropriate Grassmannian) the sequence of secant lines
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li = xiyi also converges to some limiting line l, and the tangent planes TxiVβ
converges to some limiting plane τ . The Whitney conditions (a) and (b) are
the following:

(a) The limit space τ contains the tangent space of the stratum Vα at y, i.e.,
TyVα ⊂ τ .

(b) The limit space τ contains all the limits of secants, i.e., l ⊂ τ .

One knows that condition (b) implies condition (a), but it is useful to have
both conditions stated explicitly.

Remark 2.2.1. Whitney stratifications are very important for several reasons,
some of which will become apparent along this text. Some important facts
about these stratifications are:

(1) Every closed (sub)analytic subset of an analytic manifold admits a Whit-
ney stratification.

(2) Whitney stratified spaces can be triangulated compatibly with the strat-
ification.

(3) The transversal intersection of two Whitney stratified spaces is a Whitney
stratified space, whose strata are the intersections of the strata of the two
spaces.

(4) Whitney stratifications are locally topologically trivial along the strata.
That is, given a complex (or real) analytic space V with a Whitney strat-
ification (Vα)α∈A, a point x ∈ Vα and a local embedding of (V, x) in Cm,
there is a neighborhood W of x in Cm, diffeomorphic to Δ × Uα, where Uα
is a ball, neighborhood of x in Vα and Δ is a small closed disk through x of
complex dimension m− dimC Vα, transverse to all the strata of V , and such
that W ∩ Vβ = (Δ ∩ Vβ) × Uα for each stratum Vβ with x ∈ Vβ (see [171,
§9], [5]). This is essentially a consequence of the Thom first Isotopy Lemma
(see [164]).

2.3 Radial Extension of Vector Fields

Let us describe briefly the radial extension technique developed by M.-H.
Schwartz. The idea is simple though there are technical difficulties that we
shall omit. A detailed exposition of this construction can be found in Sect. 7
of [33] or in [28].

We consider a complex analytic n-variety, i.e., a reduced complex analytic
space V of (complex) dimension n, embedded in a complex manifold M of
dimension m and endow M with a Whitney stratification adapted to V ; i.e.,
V is union of strata. Since each stratum Vα is itself a complex manifold we
have its tangent bundle TVα. The singular set of V is denoted by Sing(V )
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and the regular one Vreg = V \ Sing(V ). If V is reducible, we assume it is
pure dimensional.

Definition 2.3.1. A stratified vector field on V means a (continuous,
smooth) section v of the complex tangent bundle TM |V such that for
each x ∈ V the vector v(x) is contained in the tangent space of the stratum
Vα that contains x.

First we describe the local extension process. It is a consequence of the
local topological triviality as explained in iv) of Remark 2.2.1.

Let vα be a vector field in a neighborhood of a point x ∈ Vα with possi-
bly a singularity at x. According to iv) of Remark 2.2.1, there is a product
neighborhood W ∼= Δ× Uα of x in the ambient space. We may assume that
x is the only one possible singularity of vα in Uα.

Denoting by p1 : W → Δ and p2 : W → Uα the projections on the two
factors of the product, we have a decomposition

TW = p∗1TΔ⊕ p∗2TUα.

On one hand, the pull-back p∗2vα is a vector field on W , which is “parallel”
to vα. It is stratified, since it is tangent to the fibers of p1. On the other hand,
let Δ be equipped with the induced stratification and let vΔ be a stratified
vector field on Δ, which is radial in the usual sense and singular at x. Then
p∗1vΔ is a stratified vector field on W since it is tangent to the fibers of p2

and vΔ is stratified. It is thus radial in each slice Δ × {q} for q in Uα. The
local radial extension of vα in W is the following:

Definition 2.3.2. The local radial extension of vα, denoted by v, is the
stratified vector field defined on the neighborhood W as the sum:

v = p∗1vΔ + p∗2vα.

The fundamental property of the local radial extension is the following:

Lemma 2.3.1. The local radial extension v of vα has no singularity along
the boundary of W and is pointing outward W along its boundary. If vα has
a singularity at x with index IndPH(vα, x;Vα), then the local radial extension
v of vα admits x as unique singular point in W , and one has

IndPH(v, x;W ) = IndPH(vα, x;Vα).

Definition 2.3.3 (Schwartz index: case of a stratified variety V and
v the local radial extension vector field). Let v be a stratified vector
field obtained as in Definition 2.3.2. Then the Schwartz index of v at x on V
is defined to be the Poincaré–Hopf index of v on W :

IndSch(v, x;V ) = IndPH(v, x;W ).
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The local radial extension allows to define the global radial extension. Now
we assume V to be compact.

Let us denote the corresponding filtration of V by:

V = V reg = V n ⊃ V n−2 ⊃ · · · ⊃ V αj ⊃ · · · ⊃ V α2 ⊃ V α1 ⊃ Vα0

where Vαj are the (not necessarily connected) strata and Vα0 is the lowest
dimensional stratum. The radial extension technique is defined by induction
on the dimension of the strata.

In the first step, let us consider an arbitrary vector field vα0 with (finitely
many) isolated singularities on the stratum Vα0 , which is compact since V is.
One performs the local radial extension (Definition 2.3.2) in a tube T (Vα0 )
around Vα0 as in (1.1.2) above, union of neighborhoods W as in Definition
2.3.2. Let us denote by v the obtained vector field. If dimVα0 = 0, then v
is a stratified radial vector field in a ball around the point x0 ∈ Vα0 in M .
The vector field v is pointing outward T (Vα0 ) along its boundary and the
singularities of v in T (Vα0) are exactly those of vα0 in Vα0 . Furthermore,
Lemma 2.3.1 implies that the total Poincaré–Hopf index of v on T (Vα0 ) is
χ(Vα0).

The following step is to extend v around Vαj assuming the construction
being performed around Vαj−1 . That means v is already constructed in a tube
T (V αj−1) around V αj−1 , it is pointing outward T (V αj−1 ) along its boundary
and if x ∈ Vα ⊂ V αj−1 is a singularity of v, one has IndPH(v, x; T (V αj−1 )) =
IndPH(v, x;Vα).

The vector field v is defined on a neighborhood of V αj \ Vαj and can be
extended as a vector field still denoted by v with (finitely many) isolated
singularities within Vαj . One considers a tube T (V αj ) around V αj as in
(1.1.2) above, union of the tube T (V αj−1) around V αj \ Vαj = V αj−1 and of
neighborhoods W (as in Definition 2.3.2) around Vαj . Using the local radial
extension property one extends v in T (V αj ) in such a way as induction
hypotheses are satisfied.

We may summarize the previous discussion in the following theorem of
M.-H. Schwartz (see [33] or [28] for a detailed exposition and a complete
proof):

Theorem 2.3.1. ([139,142]) Let V be a complex analytic variety in a com-
plex manifold M , and let (Vα)α∈A be a Whitney stratification of M adapted
to V . Then there exists stratified vector fields on a neighborhood of V in M
constructed by radial extension as above. Every such vector field v satisfies:

(1) Given any stratum (Vα), the total Poincaré–Hopf index of v on T (V α) is
χ(V α).

(2) v is transverse, outwards pointing, to the boundary of every small regular
neighborhood of V in M .

(3) The Poincaré–Hopf index of v at each singularity x is the same if we
regard v as a vector field on the stratum that contains x or as a vector field
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in a neighborhood of x in M . Hence the total Schwartz index of v on V
is χ(V ).

2.4 The Schwartz Index on a Stratified Variety

The results described in the previous section tell us that given a compact
complex analytic variety V in a complex manifold M which is equipped with
a Whitney stratification {Vα} adapted to V , we may consider vector fields
on V obtained by radial extension. We now make similar considerations for
stratified vector fields in general, not necessarily obtained by radial extension.

2.4.1 Case of Vector Fields with an Isolated
Singularity

Let v be a stratified vector field on V with isolated singularities. We want to
define the Schwartz index of v at these points. Since the question is local, we
may assume M is Cm and the singular point is 0. If 0 is an isolated singularity
of V , the Schwartz index of v at 0 is defined in the first section of this chapter.
In general this can be done as follows.

Let us denote by Vα the stratum containing 0. We consider two balls Bε,
Bε′ centered at 0, with ε > ε′ > 0 without other singularity of v and small
enough so that their boundaries are transverse to all strata. Inside the smaller
Bε′ we consider a stratified radial vector field vrad with center 0 and pointing
outwards the ball. On the boundary ∂Bε of the larger one, we consider the
vector field v. One has

IndPH(vrad, 0;M) = +1.

Let us consider Kε,ε′ = (Bε \ Int Bε′) ∩ V . On the parts Sε′ = ∂Bε′ and
Sε = ∂Bε of the boundary of Kε,ε′ one has a vector field w defined by vrad and
v respectively. One extends w in Kε,ε′ by the radial extension process that
we described in the previous section as a stratified vector field with isolated
singularities pj so that we have

IndPH(w, pj ;Vβ) = IndPH(w, pj ; Cm)

where Vβ is the stratum containing pj .
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Definition 2.4.1. The difference of v and vrad is defined as:

d(v, vrad) =
∑

β

∑

j

IndPH(w, pj ;Kε,ε′),

where the sum on the right runs over the singular points of w in Kε,ε′ . This
integer does not depend on the choice of w.

Definition 2.4.2 (Schwartz index: case of a stratified variety V and
an arbitrary vector field v with isolated singularity). The Schwartz
index of v at 0 ∈ V is defined as:

IndSch(v, 0;V ) = 1 + d(v, vrad).

It is clear that if V is smooth at 0 then this index coincides with the usual
Poincaré–Hopf index; it also coincides with that in Sect. 1 above if 0 is an
isolated singularity of V and with the usual index of M.-H. Schwartz (2.3.3),
for vector fields obtained by radial extension.

The proof of the following theorem is exactly as that of 2.1.1 and we leave
the details to the reader.

Theorem 2.4.1. Let V be a compact, complex analytic variety in some com-
plex manifold M equipped with a Whitney stratification adapted to V . Let v be
a continuous, stratified vector field on a neighborhood of V in M , with isolated
singularities x1, · · · , xs, all contained in V , and denote by IndSch(v, xi;V ) the
corresponding local Schwartz indices at the singular points of V . Then one
has:

χ(V ) =
s∑

i=1

IndSch(v, xi;V ),

where χ(V ) is the Euler–Poincaré characteristic.

An immediate consequence of 2.4.1 is:

Corollary 2.4.1. Let V be as in Theorem 2.4.1. If there exists a continuous,
stratified vector field on a neighborhood of V in M with no singularities, then
Euler–Poincaré characteristic of V vanishes:

χ(V ) = 0.

2.4.2 Case of Vector Fields with Nonisolated
Singularity

Assume now we are given a vector field v defined on the regular part Vreg =
V \ Sing(V ) of V , and nonsingular away from some subcomplex S0 of Vreg.
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This situation was envisaged in [30, 31] (see also [6]). In this context one
will associate an index Ind(v, S;V ) to each compact connected component S
of Sing(V ); this is the Schwartz index of v at S. This construction is relevant
for the discussion in Chaps. 8–10 of characteristic classes of singular varieties.

Let S be a connected component of Sing(V ) and T (S) a cellular tube
around S with smooth boundary ∂T (S) (Remark 1.1.2). Let us denote by
TV (S) the intersection T (S) ∩ V . The boundary ∂T (S) is transverse to V
and intersection ∂T (S) ∩ V = ∂TV (S) lies in Vreg, hence is smooth.

Let τ be a vector field tangent to Vreg, defined in a neighborhood of the
boundary ∂TV (S) in Vreg and pointing outwards TV (S) along the boundary.

Then define the Schwartz index of τ at S by:

IndSch(τ, S) := χ(TV (S)) (= χ(S)).

Now, let us consider a vector field v defined and nonsingular on U \S with
U a neighborhood of S. We take two cellular tubes T (S) and T ′(S) as before
such that T ′(S) contains the closure of T (S).
T ′
V (S) of S denoted by N ′

S with smooth boundary. For simplicity, we sup-
pose that N ′

S contains the closure of NS . We suppose also that the only
singularities of v in N ′

S are on S. Let CS be the cylinder bounded by ∂NS

and ∂N ′
S , and let ζ be the vector field on ∂CS which is v on ∂N ′

S and τ
on ∂NS. Define the difference between v and τ at S, d(v, τ), just as we did
in Chap. 1: it is the total Poincaré–Hopf index of ζ in CS . Now define the
Schwartz (or radial) index of v at S to be:

IndSch(v, S) := IndSch(τ, S) + d(v, τ) = χ(NS) + d(v, τ). (2.4.2)

One has the following straightforward generalization of the Poincaré–Hopf
Theorem.

Theorem 2.4.3. Let V be a compact, oriented, analytic variety of dimen-
sion n. Let S1, . . . , Sp be the connected components of the singular set of V .
Let v be a continuous vector field on V , singular at S1, . . . , Sp and possibly at
some isolated points x1, . . . , xs in Vreg. Define the total radial index of v in
V , IndSch(v, V ), to be the sum of the radial indices IndSch(v, Sλ) at S1, . . . , Sp
and the usual Poincaré–Hopf index at x1, . . . , xs. Then

IndSch(v, V ) = χ(V ),

independently of v.

Proof. Let Sλ , λ = 1, . . . , p, be as above. Near each Sλ, the radial vector field
vrad is transverse to the smooth boundary Kλ of a regular neighborhood Nλ

of Sλ. Therefore
IndSch(vrad, Sλ) = χ(Sλ),
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by definition. Let
◦
Nλ be the interior of Nλ, a regular neighborhood of Sλ,

and set V ∗ = V − {
◦
N1 ∪ ... ∪

◦
Np}. Then V ∗ is a compact manifold with

boundary K = {K1 ∪ ... ∪ Kp}, and the vector field vrad is transverse to
K and points inwards. Therefore IndPH(vrad, V

∗) = χ(V ∗) − χ(K) , by the
theorem of Poincaré–Hopf for manifolds with boundary (I.1.2 above). On the
other hand

χ(V ) = χ(V ∗) + {χ(S1) + · · ·+ χ(Sp)} − χ(K).

Thus

χ(V ) = IndPH(vrad, V
∗) + {IndSch(vrad, S1) + · · ·+ IndSch(vrad, Sp)},

hence χ(V ) = IndSch(vrad, V ).
Now let v be some other vector field on V , singular at S1, . . . , Sp and

possibly at some smooth points of V . Then by definition:

IndSch(v, Sλ) = χ(Sλ) + dλ(v, vrad) ,

for each λ, where dλ(v, vrad) is the difference introduced before. Similarly, the
Poincaré–Hopf index of v in V ∗ is

IndPH(v, V ∗) = χ(V ∗)− χ(K) + {d1(v, vrad) + · · ·+ dr(v, vrad)} .

Hence

χ(V ) = IndPH(v, V ∗) + {IndSch(v, S1) + · · ·+ IndSch(v, Sr)} = IndSch(v, V ) ,

as claimed, because dλ(v, vrad) + dλ(vrad, v) = 0.

Remark 2.4.1. We notice that one has:

(1) IndSch(vrad, S) = χ(S) for radial vector fields,

(2) the radial index coincides with the Poincaré–Hopf index if S ⊂ Vreg and

(3) this index is independent of the ambient manifold M .

Given a singular variety V in a complex manifold M as above, and a
stratified vector field v on a neighborhood Û ⊂M of a connected component
S ⊂ Sing(V ) whose singularities are all in S, we have defined above two types
of Schwartz indices: on one hand, at each singularity xi of v we attach an
index IndSch(v, xi) and we have the sum over all of them. On the other hand
we can forget we have v on S, take it only on M \ S and define an index
IndSch(v, S) as above. Here we determine the relation among these indices.
Using the above construction, we have:
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Theorem 2.4.4. Let S be a connected component of the singular set of V .
We equip M with a Whitney stratification adapted to V and S. Let v be a
stratified vector field in a neighborhood Û of S in M without singularity on ∂Û
and whose singular points xi in Û are all contained in S. Let IndSch(v, S;V )
be the index of v at S as defined in 2.4.2, and at each singular point x1, · · · , xs
of v on S let IndSch(v, xi;V ) be the local index defined in 2.4.2. Then one
has:

IndSch(v, S;V ) =
s∑

i=1

IndSch(v, xi;V ).



Chapter 3

The GSV Index

Abstract One of the basic properties of the local Poincaré–Hopf index is
stability under perturbations. In other words, if a vector field has an isolated
singularity on an open set in Rn and if we perturb it slightly, then the singu-
larity may split into several singular points, with the property that the sum
of the indices of the perturbed vector field at these singular points equals
the index of the original vector field at its singularity. If we now consider an
analytic variety V defined by a holomorphic function f : (Cn+1, 0) → (C, 0)
with an isolated critical point at 0, and if v is a vector field on V , with an
isolated singularity at 0, then one may like “the index” of v at 0 to be stable
under small perturbations of both, the function f and the vector field v. This
leads naturally to another concept of index, called the GSV index, introduced
by X. Gómez-Mont, J. Seade and A. Verjovsky in [71, 144] for hypersurface
germs, and extended in [147] (see also [149]) to complete intersections. In
this chapter we define this index and we study some of its basic properties.
We first do it when the ambient space is an isolated complete intersection
singularity (ICIS for short), then we explain the recent generalization in [34]
to the case where the ambient variety has nonisolated singularities; this relies
on a proportionality theorem similar to the one proved in [33] for the local
Euler obstruction, that is discussed later in the text.

In the following chapters we will study other related indices: the GSV in-
dex can be interpreted via Chern–Weil theory as the virtual index introduced
by D. Lehmann, M. Soares and T. Suwa in [111], that we study in Chap. 5.
And if the vector field v is holomorphic, then the GSV index also coincides
with the homological index of Gómez-Mont [68], that we describe in Chap. 7.
There is also a recently defined logarithmic index in [7], which coincides with
the homological index and therefore, for ICIS, with the GSV index.

3.1 Vector Fields Tangent to a Hypersurface

The index we discuss in this chapter is associated to vector fields on germs
of hypersurface (or, more generally, complete intersection) singularities, and
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44 3 The GSV Index

the way how these vector fields extend to the ambient space. So we begin
with a brief discussion of this topic.

Let us denote by (V, 0) the germ of a complex analytic hypersurface in
Cn+1 given by a holomorphic function

f : (Cn+1, 0) −→ (C, 0),

which is defined on a small ball Bε and has a unique critical point at 0. Let
v be a continuous section of the bundle TCn+1|V . We notice that for each
x ∈ V ∗ = V \ {0}, the tangent space TxV

∗ consists of all vectors in TxCn+1

which are mapped to 0 by the derivative of f :

TxV
∗ = {ζ ∈ TxC

n+1
∣
∣ dfx(ζ) = 0 }.

For example, if f is the polynomial map in C2 defined by f(z1, z2) = z2
1 + z3

2 ,
then the line tangent to V = f−1(0) at a point (z1, z2), other than the origin,
is spanned by the vector ζ̃(z1, z2) = (−3z2

2 , 2z1). To see this notice one has

dfz = 2 z1dz1 + 3 z3
2dz2.

Hence:
dfz(ζ̃) = dfz(−3z2

2 , 2z1) = 0.

Now, a vector field v on V can be thought of as being a continuous map
(V, 0) v→ (Cn+1, 0) which is nonzero on V ∗ and whose image is contained in
the linear space tangent to V at each given point. Since V is a closed subset
of Bε, this map extends to a neighborhood of V in Cn+1. Geometrically this
means that the vector field v on V can always be extended to the ambient
space, or equivalently that v can always be considered as the restriction to
V of a vector field in the ambient space. However the extension of v to V
is by no means unique. Furthermore, all these statements also hold in the
holomorphic category:

Theorem 3.1.1. ([16]) Let V be a complex analytic variety in C
m with an

isolated singularity at 0. Then:

(1) There exist holomorphic vector fields on V with an isolated singularity at
0. In fact the space of such vector fields is infinite-dimensional.

(2) If v is a holomorphic vector field on V with an isolated singularity, then
there are infinitely many extensions of v to a neighborhood of 0 in the ambient
space with an isolated singularity.

As an example, if V is defined in C2 by a map f : (C2, 0) → (C, 0), then
the Hamiltonian vector field ζ̃(z1, z2) = (− ∂ f

∂z2
, ∂ f∂z1 ) is tangent to V and it

is zero only at the origin. Notice that this vector field is actually tangent to
all the fibers f−1(t). Let ζ be the restriction of ζ̃ to V . Notice that ζ can
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be extended to C2 in many other ways; for example, if g is a holomorphic
function on C2 that vanishes exactly on V and represents a nonzero element
in the local ring O(C2,0), then

ξ =
(

g − ∂ f

∂z2
, g +

∂ f

∂z1

)

,

coincides with ζ on V and is no longer tangent to the fibers of f ; choosing g
appropriately we can also assure that ξ has an isolated singularity at 0.

In C3 one has the following example of [68] (see also 3.3.2 and §2 in
Chap. 7). Let f : (C3, 0) → (C, 0) have an isolated critical point at 0, set
V = f−1(0) and choose the coordinates (z1, z2, z3) so that V meets only at 0
the analytic set where the partial derivatives of f with respect to z2 and z3

vanish:

V ∩
{

∂f

∂z2
=

∂f

∂z3
= 0
}

= {0}.

Define a holomorphic vector field in C3 by

ζ̃ =
(
f ,

∂f

∂z3
, − ∂f

∂z2

)
,

Notice ζ̃ has an isolated singularity at 0 and

df(ζ̃) = f
∂f

∂z1
,

hence df(ζ̃) vanishes at the points where f vanishes, so ζ̃ is tangent to V .
If we set ζ = ζ̃|V , then we have a holomorphic vector field on V with an
isolated singularity at the origin, and an extension ζ̃ of it to C3 which also
has an isolated singularity. Notice however that, unlike the previous example,
ζ̃ is no longer tangent to the fibers of f . Yet, we may forget we are given ζ̃
and just consider the vector field ζ on V . Since f vanishes exactly on V , ζ
takes the form ζ = (0, ∂f∂z3 , − ∂f

∂z2
) and we can extend it to a holomorphic

vector field ξ̃ on C3 defined by:

ξ̃ =
(
0 ,

∂f

∂z3
, − ∂f

∂z2

)
.

This is tangent to all the nonsingular hypersurfaces f−1(t), t �= 0. The singu-
lar set of ξ̃ is the complete intersection curve defined by the ideal ( ∂f∂z2 , ∂f

∂z3
),

which meets each nonsingular fiber f−1(t) at finitely many points, whose to-
tal sum (counting multiplicities) is constant (see Chap. 7). This constant is
an index that depends only on ζ and the way V is embedded in C3. This is
the index that we study below.
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Remark 3.1.1. We restricted the above discussion to vector fields on
hypersurfaces for simplicity, as an example. Of course it is important to
consider vector fields “tangent” to a singular variety in general. This is done
for instance in [38] and [65]. In [38] J. Bruce and R. Roberts show that given
the germ (V, 0) of a complex analytic variety with a possibly nonisolated
singularity at 0, there is a canonical stratification of V , that they call log-
arithmic, for which each holomorphic tangent vector field is stratified, and
furthermore the tangent space of each stratum is generated by such vector
fields. In general, the logarithmic stratification may not be locally finite;
when it is locally finite, then it is also Whitney.

3.2 The Index for Vector Fields on ICIS

Let (V, 0) be a germ of complex analytic variety of dimension n in Cn+k.
Recall that (cf. [116, (1.5)]) (V, 0) is a geometric complete intersection, if it is
defined as the common zero set of (germs of) k holomorphic functions. Also,
(V, 0) is a complete intersection if the ideal IV in On+k of function vanishing
on V is generated by k holomorphic functions.

Let (V, 0) be a germ of a complete intersection of dimension n with an
isolated singularity, defined by a holomorphic map

f = (f1, . . . , fk) : (Cn+k, 0) −→ (Ck, 0),

i.e., f1, . . . , fk generate the ideal IV . If n = 1 we further assume (for the mo-
ment, cf. Remark 3.2.2) that V is irreducible. Just as in [116], we abbreviate
an isolated complete intersection singularity germ as ICIS.

Since 0 is an isolated singularity of V , it follows that the (complex con-
jugate) gradient vector fields {gradf1, . . . , gradfk} are linearly independent
everywhere away from 0 and they are normal to V (for the usual hermitian
metric in Cn+k). Let v be a continuous vector field on V singular only at 0.
The set {v(x), gradf1(x), . . . , gradfk(x)} is a (k + 1)-frame at each point in
V ∗ := V \ {0}, and up to homotopy, it can be assumed to be orthonormal,
i.e., each vector has norm 1 and they are pairwise orthogonal. Thence these
vector fields define a continuous map from V ∗ into the Stiefel manifold of
complex orthonormal (k + 1)-frames in Cn+k, denoted Wk+1(n + k).

Let K = V ∩ Sε be the link of 0 in V . It is an oriented, real manifold of
dimension (2n− 1) and the above frame defines a continuous map

φv = (v, gradf1, . . . , gradfk) : K −→ Wk+1(n + k).

The Stiefel manifold Wk+1(n + k) is diffeomorphic to the homogeneous
space U(n + k)/U(n − 1) and therefore the homotopy sequence associated
to this fibration implies that Wk+1(n + k) is (2n − 2)-connected, while its
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homology in dimension (2n − 1) is isomorphic to Z. Hence the map φv has
a well defined degree deg(φv) ∈ Z, defined by means of the induced ho-
momorphism H2n−1(K) → H2n−1(Wk+1(n + k)) in the usual way. For this
we consider the generators of each of these groups corresponding to the el-
ement [1]. Notice that Wk+1(n + k) is a fiber bundle over Wk(n + k) with
fiber the sphere S2n−1; if (e1, · · · , en+k) is the canonical basis of Cn+k, then
the fiber γ over the k-frame (e1, · · · , ek) determines the canonical generator
[γ] of H2n−1(Wk+1(n + k)) 
 Z. If [K] is the fundamental class of K, then
(φv)∗[K] = λ · [γ] for some integer λ and the degree of φv is given by:

deg(φv) = λ.

Alternatively one can prove that every map from a closed oriented
(2n − 1)-manifold into Wk+1(n + k) factors by a map into the fiber
γ 
 S2n−1, essentially by transversality. Hence φv represents an element
in π2n−1Wk+1(n + k) 
 Z , so φv is classified by its degree. In other words,
up to homotopy, the map φv can be regarded as a map from the link K
into the sphere S2n−1, and deg(φv) is its degree in the usual sense (c.f. the
following chapter where this discussion is carefully done in the real case,
which is more delicate).

Definition 3.2.1. The GSV index of v at 0 ∈ V , IndGSV(v, 0), is the degree
of the above map φv.

This index depends not only on the topology of V near 0, but also on the
way V is embedded in the ambient space. For example, the singularities in
C3 defined by

{x2 + y7 + z14 = 0} and {x3 + y4 + z12 = 0},

are orientation preserving homeomorphic as abstract varieties, disregarding
the embedding, and one can prove that the GSV index of the radial vector
field is 79 in the first case and 67 in the latter; this follows from the fact (see
3.2.1 below) that for radial vector fields the GSV index is 1 + (−1)dim V μ,
where μ is the Milnor number, which in the examples above is known to be
78 and 66 respectively, by [121, Theorem 9.1].

We recall that one has a Milnor fibration associated to the map f , see [79,
116,121], and the Milnor fiber F can be regarded as a compact 2n-manifold
with boundary ∂F = K. Moreover, by the Transversal Isotopy Lemma there is
an ambient isotopy of the sphere Sε taking K into ∂F, which can be extended
to a collar of K, which goes into a collar of ∂F in F. Hence v can be regarded
as a nonsingular vector field on ∂F.

Theorem 3.2.1. The GSV index has the following properties:

(1) The GSV index of v at 0 equals the Poincaré–Hopf index of v in the Milnor
fiber:

IndGSV(v, 0) = IndPH(v,F).
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(2) If v is everywhere transverse to K, then

IndGSV(v, 0) = 1 + (−1)nμ ,

where n is the complex dimension of V and μ is the Milnor number of 0.

(3) One has:
μ = (−1)n

(
IndGSV(v, 0) − IndSch(v, 0)

)
,

independently of the choice of v.

Proof. Since the germ (V, 0) is an ICIS, the conjugate gradient vector fields
{gradf1, . . . , gradfk} are all linearly independent everywhere on F and
normal to this manifold, so the degree of φv can be identified with the ob-
struction to extending v to a tangent vector field on F. Hence IndGSV(v, 0) =
IndPH(v,F) as claimed in (1). Statement (2) follows from statement (1) to-
gether with Theorem 1.1.2 above and the fact that, by [79, 116, 121], the
Euler–Poincaré characteristic of F is 1 + (−1)nμ. For (3) we first notice that
this statement follows from (2) if v is radial. The general case follows from
this together with 1.1.2.

Remark 3.2.1. Theorem 3.2.1 says that if we perturb the mapping f by
adding to it a small constant, then the index is preserved in the sense that
the GSV index of the vector field on the singular fiber becomes the sum of
Poincaré–Hopf indices in the nearby fibers. One may of course look at more
general deformations of the map-germ f . From the previous discussion we
see that the way the GSV index changes when we perturb f does not depend
on the choice of vector field, but only on the way the topology of the Milnor
fiber changes, i.e., on the behavior of the Milnor number under perturba-
tions. This is an interesting subject that has been studied by several authors,
including Lazzeri, Gabrielov, Lê and Massey, among many others.

One has a Poincaré–Hopf type theorem for this index:

Theorem 3.2.2. Let V be a compact, complex analytic variety with isolated
singularities x1, . . . , xr, which are all isolated complete intersection germs.
Let v be a continuous vector field on V , singular at the xi

′s and possibly at
some other smooth points y1, . . . , ys of V . Let IndGSV(v, V ) denote the total
GSV index of v, i.e., the sum of the local GSV indices at the xi

′s and the
usual Poincaré–Hopf indices at the yi

′s. Then one has:

IndGSV(v, V ) = χ(V ) + (−1)n
r∑

i=1

μ(xi),

where μ(xi) is the Milnor number of V at xi.

Proof. The proof of this theorem is very similar to that of 2.1.1. One removes
from V conical neighborhoods Ni of the xi and replaces these by copies
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F1, . . . ,Fr of the corresponding Milnor fibers. The new manifold V̂ is smooth,
and if v is radial at each xi then its Euler characteristic is IndGSV(v, V ),
essentially by definition. But χ(V̂ ) equals χ(V ) + (−1)n

∑r
i=1 μ(xi) , proving

the theorem when v is radial at each xi. The general case follows easily from
this and Proposition 1.1.2.

Remark 3.2.2. In the above discussion we ruled out the case where the
dimension of V is 1 and V has several branches. This case is of course inter-
esting and it was first considered by Brunella [39, 40] and Khanedani–Suwa
[93] in their study of holomorphic 1-dimensional foliations on complex sur-
faces (cf. Chap. 6). In this case the GSV index is defined as the Poincaré–Hopf
index of an extension of v to a Milnor fiber. If a curve C has only one branch
at a singular point x0 this coincides with Definition 3.2.1. But if C has several
branches at x0 one has an integer attached by 3.2.1 to each branch. If C is
a plane curve, the relation among all these indices is well understood and
it is determined by the intersection number of the various branches. In fact,
Milnor in [121, Theorem 10.5 and Remark 10.10] proved that if C1, . . . , Cr
are the irreducible components of C then one has the formula:

μ =
r∑

i=1

μi + 2I − r + 1,

where μ, respectively μi, is the Milnor number of C, respectively Ci, at x0

and I is defined as
∑

i<j Ci · Cj . This formula implies that if v is a vector
field on C then we have

IndGSV(v, x0;C) :=
r∑

i=1

IndGSV(v, x0;Ci) = IndPH(v,Ft)− 2I,

where IndPH(v,Ft) is the Poincaré–Hopf index of an extension of v to a
Milnor fiber Ft of C at x0, a formula proved independently in [39] and [93].

Remark 3.2.3. We notice that the definition of the GSV index works equally
well for singularities which are only geometric complete intersections [116],
not necessarily algebraic complete intersections, i.e., all we need is that the
gradient vector fields of the functions that define V are linearly independent
everywhere on V \ {0}.

3.3 Some Applications and Examples

Example 3.3.1. In Sect. 1 we saw how given a function f : (C2, 0)→(C, 0)
with an isolated critical point at 0, the Hamiltonian vector field (− ∂ f

∂ z2
, ∂ f∂ z1 )

is tangent to V = f−1(0) and to all the fibers of f . Hence its GSV index is
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zero. More generally, consider a holomorphic function f : (C2n, 0) → (C, 0),
with an isolated critical point at 0. Its differential is

df =
∂ f

∂ z1
dz1 + · · ·+ ∂ f

∂ z2n
dz2n.

Let ζ̃ be an arbitrary vector field obtained by permuting in pairs the com-
ponents of Df and changing the sign in one of the components in each pair,
e.g.

ζ̃ =
(

− ∂ f

∂ z2
,

∂ f

∂ z1
, − ∂ f

∂ z4
,

∂ f

∂ z3

)

or

ζ̃ =
(

− ∂ f

∂ z3
, − ∂ f

∂ z4
,

∂ f

∂ z1
,

∂ f

∂ z2

)

.

In all cases one has df(ζ̃) ≡ 0 everywhere. This means that all these vector
fields are tangent to all fibers of f , in particular to V = f−1(0), so its GSV
index on V is zero.

Example 3.3.2. The following example is taken from [68] and will play an
important role in Chap. 7 for identifying the GSV and the homological indices.
Denote the coordinates of C2n+1 by (z0, z1, · · · , z2n) and, given a holomorphic
function f : (C2n+1, 0)→(C, 0) with an isolated critical point at 0, consider
the vector field:

ζ̃ =
(
f ,

∂f

∂z2
, − ∂f

∂z1
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)
.

Assume we have chosen the coordinates in such a way that ζ̃ has an isolated
singularity at 0, i.e., the hypersurface V = {f = 0} meets only at 0 the set
⋂2n
i=1{

∂f
∂zi

= 0}. We set ζ = ζ̃|V . Notice one has:

df(ζ̃) = f
∂f

∂z0
,

hence ζ is tangent to V and is also restriction to V of the vector field:

ξ̃ =
(
0,

∂f

∂z2
, − ∂f

∂z1
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)
,

defined in the ambient space and which is tangent to all the nonsingular
hypersurfaces f−1(t), t �= 0. The singular set of ξ̃ is the complete intersection
curve defined by the ideal ( ∂f∂z1 , · · · , ∂f

∂z2n
), which meets each nonsingular fiber

f−1(t) at finitely many points, whose total sum (counting multiplicities) is
the GSV index of ζ on V . A direct computation then shows that this index,
being the intersection number of two complex varieties is equal to:
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IndGSV(ζ, 0;V ) = dimC O2n+1

/(
f,

∂f

∂z1
, · · · , ∂f

∂z2n

)
,

this is the dimension of the complex vector space of germs of holomorphic
functions at 0 divided by the ideal (f, ∂f∂z1 , · · · , ∂f

∂z2n
):

Example 3.3.3. Consider now a Pham–Brieskorn polynomial in Cn+1 with
coordinates (z1, . . . , zn+1), that is a polynomial:

f(z) = zd11 + · · ·+ z
dn+1
n+1 ,

where di are integers ≥ 2. The variety

V = f−1(0) = {zd11 + · · ·+ z
dn+1
n+1 = 0}

is a hypersurface (complex codimension 1) with an isolated singularity at
0 ∈ Cn+1.

Let d be the least common multiple of the di, i = 1, . . . , n+1, set qi = d/di
and consider the action of the nonzero complex numbers C∗ on Cn+1 given
by:

t · (z1, . . . , zn+1) = (tq1z1, . . . , t
qn+1zn+1).

For each t ∈ C∗ one has:

f(t · (z1, . . . , zn+1)) = f(tq1z1, . . . , t
qn+1zn+1) = td · f(z1, . . . , zn+1).

Hence V is an invariant set for this action, i.e., V is a union of C
∗-orbits.

Every holomorphic flow determines a holomorphic vector field, and it is an
exercise to see that the vector field vrad on V corresponding to the above
C∗-action on V \ {0} is radial. If all di are equal, so that V is homogeneous,
then the vector field vrad is the usual radial vector field (z1, . . . , zn+1) up to
a constant. Thus, by 3.2.1 one has:

IndGSV(vrad, 0;V ) = 1 + (−1)n μ(V ),

where μ(V ) is the Milnor number of V . From [121], see also Example 5.7.1
below, we know:

μ(V ) = (d1 − 1)(d2 − 1) · · · (dn+1 − 1).

Hence:

IndGSV(vrad, 0;V ) = 1 + (−1)n[(d1 − 1)(d2 − 1) · · · (dn+1 − 1)] .

Thus we conclude:
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(1) If n is even, then IndGSV(vrad, 0;V ) > 0, so every extension of vrad to a
continuous vector field in the ambient space, tangent to some fibers of f (or
to all of them) will have singularities in each fiber where it is tangent to the
fiber.

(2) If n is odd and at least one di is ≥ 3, then IndGSV(vrad, 0;V ) < 0. This
means that vrad cannot be extended to a holomorphic vector field in the
ambient space being tangent to a fiber of f and having isolated singularities
on this fiber. If we could do that, then the index would be positive.

(3) If n is odd and all di are 2, so that μ(V ) = 1, then IndGSV(vrad, 0;V ) = 0
and we can extend vrad to the ambient space being tangent to the fibers of
f , and nonsingular there. The way to do this extension is not evident at a
first glance, but this is actually easy: suppose for simplicity that n = 1, so
we are in C2 (the argument in general is an obvious extension of this one).
Write the function f as

f(z1, z2) = z2
1 + z2

2 ,

so that vrad = (z1, z2) (we may drop the constant 2). Then consider the
family of vector fields vt = (1 − t) vrad + t ζ, where t takes values in the
interval [0, 1] and ζ is the Hamiltonian vector field ζ(z1, z2) = (−z2, z1). For
t = 0 we have vrad, for t = 1 this is ζ, and for each t ∈ (0, 1) this is a vector
field tangent to V and with an isolated singularity at 0. This family allows
us to deform the radial vector field vrad (on V ) continuously into the vector
field (−z2, z1), which extends in the obvious way to the ambient space, being
singular to all fibers of f and having a unique zero at 0.

3.4 The Case of Isolated Smoothable Singularities

More generally, let 0 be an isolated singularity in a pure dimensional complex
analytic variety Y . We say that this singularity is smoothable if there exists
a complex analytic variety X and a nonconstant analytic map,

F : X −→ C,

such that F−1(0) is (isomorphic to) Y and F−1(t) is nonsingular for all
t near 0. Assume for simplicity that X is embedded in an open subset U
of Cm. We know from [102, Th. 1.1] that for every ε >> η > 0 sufficiently
small, the restriction

F : F−1(Sη) ∩ Bε → Sη,

is a fiber bundle over Sη = {z ∈ C
∣
∣ |z| = η}. Therefore χ(Ft), the Euler–

Poincaré characteristic of each fiber

Ft = F−1(t) ∩ Bε, t ∈ Sη,

is independent of t.
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Now denote by v a continuous vector field on Y with an isolated singularity
at 0. By the Transversal Isotopy Lemma (see [4]) the intersection of Y with
the boundary sphere Sε of Bε is isotopic to the intersection of F−1(t) with
this sphere. It follows that we can think of v as being a vector field around the
boundary ∂Ft of Ft. By Theorem 1.1.2 above we know that we can extend v
to the interior of Ft with a finite number of singularities, each of which has
its local Poincaré–Hopf index; the sum of all these local indices is the total
Poincaré–Hopf index of v in Ft, that we denote by IndPH(v,Ft). One has:

Proposition 3.4.1. The number IndPH(v,Ft) is independent of the choice
of t and of the extension of v to the interior of this fiber. In particular, if v
is everywhere transverse to the local link of 0 in Y , then one has:

IndPH(v,Ft) = χ(Ft).

Proof. If v is everywhere transverse to the local link of 0 in Y , which is
isotopic to the boundary of the fibers Ft, the result is an immediate conse-
quence of the theorem of Poincaré–Hopf for manifolds with boundary (1.1.2),
together with the fact [102] that the Ft ′s are the fibers of a fiber bundle.
The proof in general follows from this theorem together with 1.1.2.

Definition 3.4.1. We define the GSV index of v in Y relative to the smooth-
ing given by F by:

IndGSV(v, Y ;F ) = IndPH(v,Ft).

It is worth noting that this index does depend on the choice of the analytic
map F chosen as a smoothing of Y and not only on Y and X . However, it is
shown in [29] that if the smoothing is given by a general linear form, then this
index determines the local Euler obstruction of X at 0 (see Chap. 8), which
depends only on Y . Hence the GSV index is independent of the smoothing if
this is given by a general linear form (this can also be proved directly). We
also notice that if (Y, 0) is a complete intersection germ then the smoothing
is essentially unique, because the base space of the universal deformation is
connected, and as we know already one has:

IndGSV(vrad, Y ;F ) = 1 + (−1)nμ,

where n is the dimension of Y and μ is its Milnor number at 0.

3.5 Nonisolated Singularities

The results in this section are proved in [34]. Here we extend the notion of
GSV index to vector fields on complete intersection germs with nonisolated
singularities, so long as one has the strict Thom wf -condition. We begin by
recalling this condition. Then we define the index and prove the proportion-
ality theorem of [34] for this index using a geometric argument.
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3.5.1 The Strict Thom Condition for Complex
Analytic Maps

Let f : X → Y be a morphism of reduced complex analytic spaces.

Definition 3.5.1. The morphism f is stratifiable if there exist Whitney
stratifications (Vα)α∈A, (Wγ)γ∈B of X and Y respectively, such that for each
α ∈ A there exists γ(α) ∈ B for which the restriction fα = f |Vα : Vα →Wγ(α)

is a complex analytic submersion.

By [82, Sect. 3], every proper complex analytic morphism is stratifiable.
In this case the first Isotopy Theorem of Thom–Mather implies that for each
stratum Wγ the induced morphism

f |f−1(Wγ) : f−1(Wγ) −→Wγ

is a topologically trivial fibration (see [106]).

Definition 3.5.2. Given α, β ∈ A with Vα ⊂ V β, one says that f satisfies
the Thom condition for the pair (Vβ , Vα) at a point x ∈ Vα relative to f
if it further satisfies that there is a neighborhood U of x ∈ X , a complex
analytic embedding of (U, x) ↪→ C

m and an analytic extension f̃ of f to a
neighborhood of x in Cm, such that for every sequence (xi)i∈I of points in Vβ
that converge to x for which the sequence of tangent spaces Txi(f̃−1(f̃(xi)∩
Vβ) has a limit T , then this limit contains the tangent space at x of f̃−1(f̃(x)∩
Vα), i.e.,

Tx
(
f−1(f̃(x) ∩ Vα)

)
⊂ T.

Definition 3.5.3. We say that the Whitney stratification (Vα)α∈A satisfies
the Thom af condition if it satisfies the above Thom condition relative to f
for each pair of strata (Vβ , Vα) with Vα ⊂ V β .

So the Thom af condition is in some sense like a Whitney (a) condition
relative to the fibers of the morphism f . Now we need to introduce a finer
condition. For details we refer to [81] where this concept is defined and studied
in a very general setting. For simplicity we restrict our discussion to what we
need for this work.

We recall the distance δ defined for two linear subspaces E and F in Cm by:

δ(E,F ) = supu∈E\{0}
v∈F\{0}

( |〈u, v〉|
‖u‖‖v‖

)
.

Let U be an open neighborhood of the origin in Cm = Cn+k and consider
a holomorphic map

f : (U, 0) −→ (Ck, 0) , m > k ≥ 1,
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defining a complete intersection germ V := f−1(0) of dimension n. Let
(Vα)α∈A be a Whitney stratification of V , let Δ be the discriminant of f
and set U0 = U \ f−1(Δ).

Definition 3.5.4. Given a stratum Vα we say that the pair (U0, Vα) satisfies
the strict Thom wf condition if for every xo ∈ Vα there is a neighborhood
Uxo in U and a constant C such that for every x ∈ Uxo \ V one has:

δ(TxoVα, Txf
−1(f(x))) ≤ C · d(x, xo),

where d is the Euclidian distance in Cn+k and δ is the distance between linear
subspaces of Cn+k defined above.

Definition 3.5.5. We say that the Whitney stratification (Vα)α∈A of X sat-
isfies the strict Thom wf condition if it satisfies the above wf condition for
all strata.

Notice that the af condition can be expressed saying that for each sequence
xi ∈ U \ {X} converging to xo one has, if the limit exists,

lim
i→∞

δ
(
TxoVα, Txif

−1(f(xi))
)

= 0.

Hence it is clear that the wf condition implies the af condition. They are
actually equivalent in the complex analytic setting, by Teissier’s work [163].

Consider again a holomorphic map

f : (U, 0) −→ (Ck, 0) , m > k ≥ 1,

defining a complete intersection germ V := f−1(0) of dimension n, and
assume there is a Whitney stratification of V that satisfies the Thom af
or wf condition for all strata. Let Δ be the discriminant of f and set
U0 = U \ f−1(Δ). Then:

Theorem 3.5.1. For every ε > 0 sufficiently small and δ = δ(ε) > 0 suffi-
ciently small with respect to ε, the map:

f :
(
Bε ∩ f−1(Dδ)

)
\ f−1(Δ) −→ (Dδ \Δ) ⊂ C

k,

where Bε is a small ball around 0 ∈ Cn+k and Dδ is a small ball around
0 ∈ Ck, is a locally trivial topological fibration.

The crucial point is to notice that the Thom af condition guarantees that
the fibers f−1(t) intersect transversely the boundary sphere Sε and therefore
one may apply the first Thom–Mather Isotopy Theorem to get a fibration. For
that one can follow the indications given by Lê in his proof of the fibration
theorem [102]. An alternative proof of this theorem follows from Verdier’s
work [167] about rugose vector fields and the Thom–Mather theorems.
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3.5.2 The Hypersurface Case

Let us now denote by (V, 0) a hypersurface in an open set U ⊂ Cn+1 defined
by a holomorphic function f : (U, 0)→ (C, 0). We endow V with a Whitney
stratification (Vα)α∈A. By [128] or [37] we can assume that the stratification
satisfies the wf condition.

Let us consider the subspace E of the tangent bundle TU of U consisting
of the union of the tangent bundles of all the strata. We recall (Chap. 2) that
a stratified vector field on V means a section of TU whose image is in E .

Let v be a stratified vector field on (V, 0) with an isolated singularity (zero)
at 0 ∈ V . We want to define an index of v at 0 ∈ V in the spirit of the GSV -
index. We recall that if V has an isolated singularity at 0 this index is equal
to the Poincaré–Hopf index of an extension of v to the Milnor fiber F of f ;
in particular this index is χ(F) if v is radial.

For this, let us consider a (sufficiently small) ball Bε around 0 ∈ U and
denote by T the Milnor tube f−1(Dδ)∩Bε, where Dδ is a (sufficiently small)
disk around 0 ∈ C. We let ∂T be the “boundary” f−1(Sδ)∩Bε of T , Sδ = ∂Dδ.

Let r be the radial vector field in C whose solutions are straight lines
converging to 0. By [167], it can be lifted to an integrable vector field r̃ in
T , whose solutions are arcs that start in ∂T , they finish in V and they are
transverse to all the tubes f−1(Sη) with η ∈]0, δ[. This vector field r̃ defines a
C∞ retraction ξ of T into V , with V as fixed point set. The restriction of ξ to
any fixed Milnor fiber F = f−1(t0) ∩Bε, t0 ∈ Sδ, provides a continuous map
π : F → V , which is surjective and it is C∞ over the regular part of V . We
call such map ξ, or also π, a tube map for V . Since the singular set Sing(V )
of V is a Zariski closed subset of V , we notice that we can choose the lifting
r̃ so that π−1(Vreg) is an open dense subset of F, where Vreg is the regular
part Vreg = V \ Sing(V ).

We want to use π to lift the stratified vector field v on V to a vector field
on F. Firstly, let us consider the case where V has an isolated singularity
at 0. The map π is a diffeomorphism restricted to a neighborhood N ⊂ F
of F ∩ ∂Bε. Then v can be lifted to a nonsingular vector field on N and
extended to the interior of F with finitely many singularities, by elementary
obstruction theory. The total Poincaré–Hopf index of this vector field on F
is the GSV index of v on V .

We want to generalize this construction to the case where the singularity
of V at 0 is not necessarily isolated. Let us consider (V, 0) as above, a possibly
nonisolated germ. We fix a Milnor fiber F = f−1(to) ∩ Bε for some to ∈ Sδ.
Given a point x ∈ F, we let γx be the solution of r̃ that starts at x. The
end-point of γx is the point π(x) ∈ V . We parameterize this arc γx by the
interval [0, 1], with γx(0) = x and γx(1) = π(x). We assume that this interval
[0, 1] is the straight arc in C going from to to 0, so that for each t ∈ [0, 1[, the
point γx(t) is in a unique Milnor fiber Ft = f−1(t)∩Bε. The family of tangent
spaces to Ft at the points γx(t) define a 1-parameter family of n-dimensional
subspaces of Cn+1, that converges to an n-plane Λπ(x) ⊂ Tπ(x)(U) when
t→ 1; one has an induced isomorphism TxF ∼= Λπ(x).
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Since the stratification satisfies Thom’s af condition, Λπ(x) contains the
space Tπ(x)Vα, tangent to the stratum that contains π(x). Hence, the given
vector v(π(x)) can be lifted to a vector ṽ(x) ∈ TxF. Thus we obtain a vector
field ṽ, nonsingular over the inverse image of V \{0}, which is open and dense
in F. The wf condition guarantees that this vector field ṽ is continuous
and nonzero on a neighborhood of F ∩ ∂Bε since v is assumed to have an
isolated singularity at 0. Thus ṽ has a well defined Poincaré–Hopf index in
F. Furthermore, by the wf condition the angle between v(π(x)) and ṽ(x) is
small. More precisely, given any α > 0 small, we can choose δ sufficiently
small with respect to α so that the angle between v(π(x)) and ṽ(x) is less
than α. This implies that if we replace ṽ by some other lifting of v, the
induced vector fields on F are homotopic. Since f induces a locally trivial
fibration over the punctured disk Dδ \ 0, then the homotopy class of ṽ does
not depend on the choice of the Milnor fiber. So we obtain:

Proposition 3.5.1. The Poincaré–Hopf index of ṽ in F depends only on
V ⊂ U and the vector field v. It is independent of the choices of the Milnor
fiber F as well as the liftings involved in its definition.

Definition 3.5.6. We call this integer the GSV index of v on V and we
denote it by IndGSV(v, 0).

3.5.3 The Complete Intersection Case

We now consider a holomorphic map

f : (U, 0) −→ (Ck, 0) , m > k ≥ 1,

on an open neighborhood of the origin in Cm = Cn+k, defining a complete in-
tersection germ V := f−1(0) of dimension n. Let Δ ⊂ Ck be the discriminant
of f and set U0 = U \ f−1(Δ).

The constructions are similar to those for hypersurfaces. The main
difference is that if k > 1 then there exists complete intersection germs
which do not admit any stratification satisfying the af condition, and we
actually need the wf condition. So we must add this assumption. Thus for
the rest of this section we assume we are given a Whitney stratification
(Vα)α∈A of U , adapted to V , satisfying the wf condition.

As before, let v be a stratified vector field on (V, 0) with an isolated sin-
gularity at 0 ∈ V . We want to define its GSV index.

Let us consider a small ball Bε around 0 ∈ U . Let vrad be an integrable
radial vector field in a sufficiently small (with respect to ε) disk Dδ around
0 ∈ Ck, whose solutions are arcs converging to 0 and for which Δ is an
invariant set. This is possible by [121,141] because Δ is semi-analytic in Ck.
We can assume further that for each t ∈ Dδ\Δ the (Milnor) fiber Ft = f−1(t)
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intersects the boundary sphere ∂Bε transversely. Set T = f−1(Dδ \Δ). The
wf condition implies that the map

f |T : T → Dδ \Δ

is a locally trivial fibration and by [167] we can lift vrad to vector field r̃ in
T , whose solutions are arcs that start in ∂T = f−1(Sδ \Δ), Sδ = ∂Dδ, they
finish in V and they are transverse to all the “tubes” f−1(Sη) with η ∈]0, δ[.

This vector field ṽrad defines a C∞ retraction ξ of T into V , with V as
fixed point set. The restriction of ξ to any fixed Milnor fiber F = f−1(t0)∩Bε,
t0 ∈ Sδ, provides a continuous map π : F → V which is surjective and it is
C∞ over the regular part of V . As before, we call such map ξ, or also π, a
tube map for V .

We use π to lift the stratified vector field v on V to a vector field on the
fixed Milnor fiber F. Given a point x ∈ F, we let γx be the solution of ṽrad

that starts at x. The end-point of γx is the point π(x) ∈ V . We parameterize
this arc γx by the interval [0, 1], with γx(0) = x and γx(1) = π(x). We assume
that this interval [0, 1] is the arc in Dδ going from to to 0, so that for each t ∈
[0, 1[ the point γx(t) is in a unique Milnor fiber Ft = f−1(t)∩Bε. The family
of tangent spaces to Ft at the points γx(t) define a 1-parameter family of n-
dimensional subspaces of Cn+k that converges to an n-plane Λπ(x) ⊂ Tπ(x)(U)
when t tends to 1; one has an induced isomorphism TxF 
 Λπ(x).

Just as for hypersurfaces, since the stratification satisfies Thom’s af con-
dition, Λπ(x) contains the space Tπ(x)Vα tangent to the stratum that contains
π(x). Hence, the given vector v(π(x)) can be lifted to a vector ṽ(x) ∈ TxF.
Thus we obtain a vector field ṽ, nonsingular over the inverse image of V \{0},
which is open and dense in F, and this vector field is continuous by the wf
condition; it is also nonzero on a neighborhood of F∩∂Bε since v is assumed
to have an isolated singularity at 0. Thus ṽ has a well defined Poincaré–Hopf
index in F. As before, the homotopy class of ṽ does not depend on the several
choices involved and we have:

Proposition 3.5.2. The Poincaré–Hopf index of ṽ in F depends only on
V ⊂ U and the vector field v. It is independent of the choices of the Milnor
fiber F as well as the liftings involved in its definition.

Definition 3.5.7. We call this integer the GSV index of v on V and we
denote it by IndGSV(v, 0).

3.6 The Proportionality Theorem

We consider again a holomorphic map

f : (U, 0) −→ (Ck, 0) , m > k ≥ 1,
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defining a complete intersection germ V := f−1(0) of dimension n and we
assume (Vα)α∈A is a Whitney stratification of U adapted to V satisfying
the wf condition. As we know, such a stratification always exists if k = 1;
for k > 1 we must assume its existence. Given a stratified vector field v on
V with an isolated singularity at 0 we have the index IndGSV(v, 0) defined
above. This is by definition the Poincaré–Hopf index of a lifting of v to a
Milnor fiber of f .

The goal now is to relate this index with other invariants of v and V . We
cannot yet answer this in general, but the theorem below gives an answer
for vector fields which are obtained by radial extension. We remark that in
[65] there is defined an index for holomorphic vector fields on varieties with
nonisolated singularities; it is likely that in the hypersurface case the two
indices coincide (see Chap. 7 below for more on this subject).

Let us consider first the case where v = vrad is a stratified radial vector
field, i.e., it is transverse to the boundary ∂Bε of every small ball Bε, pointing
outwards; it has a unique singular point (inside Bε) at 0. The Poincaré–Hopf
index of w at the point 0, denoted by IndPH(vrad, 0), is equal to 1, computed
either in the stratum Vα of V containing 0 (if dimVα > 0) or in the ambient
space C

n+k. The lifting ṽrad is a vector field on F transverse to the boundary
∂F, since the angle between ṽrad(x) and vrad(x) is small (by the wf condition).
Thus we obtain:

Proposition 3.6.1. If vrad is a stratified radial vector field pointing out-
wards the ball Bε along its boundary ∂Bε, then its GSV index equals the
Euler–Poincaré characteristic of the Milnor fiber F:

IndGSV(vrad, 0) = χ(F)

Let us consider now a stratified vector field v in general, defined on the
ball Bε ⊂ U , with a unique singularity at 0.

It follows from Proposition 1.1.1 that if v is a vector field obtained by radial
extension, then the Poincaré–Hopf index of v computed in the stratum Vα
equals the Poincaré–Hopf index of v computed in Cn+k (and this number is
the Schwartz index by definition). If the stratum containing x0 has dimension
0, then this index is +1.

We notice that we can always perturb the restriction of v on Vα to obtain a
new vector field w on Vα. Under such a perturbation xo splits into a number
x1, . . . , xq of singularities of w. Then the Poincaré–Hopf index of v|Vα at
xo equals the sum of the Poincaré–Hopf indices of w at x1, . . . , xq, by the
stability of the Poincaré–Hopf index. We can extend w to a neighborhood of
xo in V by radial extension, using M.-H. Schwartz technique, and obtain a
perturbation of v in a neighborhood of xo in V . In this case we have that the
Schwartz index of v at xo is the sum of the Schwartz indices at x1, . . . , xq.
Similarly one has the following lemma:

Lemma 3.6.1. (Stability of the index). Suppose v is obtained by radial ex-
tension in a neighborhood of xo ∈ Vα. Let w be a stratified vector field on V



60 3 The GSV Index

obtained by a small perturbation of v in the stratum Vα and extending this to
a neighborhood of xo by radial extension. Let x1, . . . , xq be the singularities
of w into which xo splits under this perturbation. Then:

IndGSV(v, xo) =
q∑

i=1

IndGSV(w, xi)

Proof. Consider the tube map π : F→ V where F is a local Milnor fiber of V
at xo. We know that this map lifts v to a vector field ṽ on F, non singular near
the boundary ∂F. By definition IndGSV(v, xo) is the Poincaré–Hopf index of ṽ
in F, and we know that this number is independent of the way we extend ṽ to
the interior of F, by Theorem 1.1.2. Thus the idea is to choose this extension
appropriately: we start by perturbing v as in the statement of Lemma 3.6.1
and lifting w to a vector field w̃ on F which coincides with ṽ near ∂F. By
Theorem 1.1.2 the total Poincaré–Hopf index of w̃ in F, IndPH(w̃,F), equals
IndGSV(v, xo). But

IndPH(w̃,F) =
q∑

i=1

IndGSV(w, xi)

by construction. Hence the lemma.

As corollary we obtain the Proportionality Theorem for vector fields of
[34]. An alternative proof is given in [28] in the spirit of that in [33]. The
present proof is reminiscent of M.-H. Schwartz’ proof of Théorème 4.2.3 in
[141].

Theorem 3.6.1. Let v be a stratified vector field in V obtained by radial
extension in a neighborhood of the singularity xo ∈ Vα ⊂ V . Then the GSV
index of v at xo ∈ V , IndGSV(v, xo), is proportional to the local Poincaré–
Hopf index IndPH(v, xo) of v at xo (regarded as a vector field in Vα):

IndGSV(v, xo) = IndPH(v, xo) · χ(F)

where F is the Milnor fiber of F.

Proof. If IndPH(v, xo) = 1 then v is homotopic to a radial vector field and the
claim follows from Proposition 3.6.1. Suppose now that IndPH(v, xo) = −1.
Let Dxo be a small disk in Vα around xo. By [153] we can always extend v|Vα

to a vector field w on a bigger disk D̂ in Vα containing Dxo , so that w is
transverse to the boundary of D̂, pointing outwards, and it has exactly three
singular points in D̂: xo, where the local index is −1 by hypothesis, and two
other points x1, x2 of local index 1. We may now construct a 1-parameter
family of vector fields on an open disk in Vα which collapses these three
singularities into a single one of index 1 at xo; we denote the resulting vector
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field by v̂. And we now extend all these vector fields by radial extension. By
Proposition 3.6.1 and Lemma 3.6.1 one has:

χ(F) = IndGSV(v̂, xo) =
2∑

i=0

IndGSV(w, xi) = IndGSV(v, xo) + 2χ(F).

Hence IndGSV(v, xo)=−χ(F) and the theorem is proved when IndPH(v, xo) =
−1. The general case follows easily: given v, we can always “morsify” its
restriction to Vα and extend the morsification by radial extension, to get a
vector field w whose singularities have all local Poincaré–Hopf indices ±1
in Vα. Thus the theorem follows from Proposition 3.6.1, Lemma 3.6.1 and
the above proof for the case of local index −1.

3.7 Geometric Applications

In this section we give applications of the GSV index to three different prob-
lems in geometry. The first gives a proof of a theorem by B. Teissier about
invariance of the Milnor number for algebraic knots; the second discusses
the triviality of the bundle that defines the canonical contact structure on
complex hypersurface germs; the third discusses the triviality of the normal
bundle on the regular part of a holomorphic foliation in the neighborhood of
an isolated singularity.

3.7.1 Topological Invariance of the Milnor Number

It was shown by Teissier in [162] that the Milnor number of hypersurface sin-
gularities is determined by the corresponding algebraic knot (Sε,K). That is,
Theorem 3.7.1. If two hypersurface germs (V1, 0), (V2, 0) in Cn+1 are such
that for sufficiently small spheres Sε1 , Sε2 the pairs (Sε1 ,K1) and (Sε2 ,K2)
are orientation preserving homeomorphic, then μ(V1) = μ(V2).

For n > 2 this can be proved using the GSV index. For this we will use
the following Proposition:

Proposition 3.7.1. Let (Sε,K) be an algebraic knot defined by a hypersur-
face germ (V, 0). Let vrad be the restriction to K of the unit outwards normal
vector field of Sε in Cn+1; let τ be some (any) nowhere-zero section of the
normal bundle ν(K) of K in Sε (which is a trivial bundle). Then the degree
of the map

(vrad, τ) : K −→ W2,n+1,

into the Stiefel manifold is an invariant of K, equal to

IndGSV(vrad, 0) = 1 + (−1)nμ(V ).
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Proof. It is clear that vrad is homotopic to a radial vector field tangent to V .
On the other hand, notice that the bundle ν(K) has complex dimension 1.
Hence every two never-zero sections of this bundle differ, up to homotopy,
by a map K → U(1) 
 S1. If n > 2 the link K is simply connected and
therefore every such map is nulhomotopic. This implies that every never-zero
section of ν(K) is homotopic (through never-zero sections) to the (complex
conjugate) gradient vector field of some function that defines the germ of V .
The result now follows from Theorem 3.2.1.

Now, given an orientation preserving diffeomorphism h : (Sε1 ,K1) →
(Sε2 ,K2) between algebraic knots, this carries the vector field vrad of the
first pair into a vector field which is necessarily transverse to the second
sphere, and therefore homotopic to the radial vector field. This also carries
the normal section of K1 in the sphere into a normal section of K2; therefore
the two singularities have same Milnor number by the proposition above.

If the map h above is only a homeomorphism and not a diffeomorphism,
one can argue as in [71] to show that one can replace the vector fields in the
statement above by the corresponding flows, and a homeomorphism carries
flows into flows. The idea is very simple: the given vector field defines a local
flow γt with no stationary points. Then choose a fixed time to > 0 so that
the flow is defined at each point of K1 at least for time to > 0 (this exists
by compactness). Now, for each x ∈ K1 take the oriented secant that joins x
and γto(x); this defines a vector field on Cn+1 restricted to K1, which is of
course homotopic to the original vector field. Now consider the flow hγth

−1.
The previous construction produces a vector field on K2. If we started with a
radial vector field on K1, the new vector field will be homotopic to the radial
vector field on K2. If we started with a normal vector field on K1, the new
vector field can be turned by a homotopy into a normal vector field for K2.
This proves the statement, i.e., that the Milnor number depends only on the
corresponding algebraic knot.

3.7.2 The Canonical Contact Structure on the Link

In this subsection, we intend to provide an application to the contact ge-
ometry, that is based on [146]. The main result is the following Theorem
3.7.2.

Let V ⊂ Cm be a complex analytic variety of dimension n > 1 with an
isolated singularity at 0 ∈ Cm. It is well-known that the diffeomorphism type
of its link K = V ∩ Se does not depend on the choices of the embedding
of V in Cm nor on the sphere Sε, provided this is small enough. Moreover,
according to [166] one has a natural contact structure CV on K, which is again
independent of the embedding of V in Cm and the choice of the sphere, up
to contactmorphism. We refer to CV as the canonical contact structure on K.
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To define this contact structure, notice that the normal bundle ν(K) of
K in V has a canonical trivialization given by the unit, outwards-pointing
vector field τ of K in V , which is the restriction to K of a radial vector field
vrad on V . The complex orthogonal complement v⊥rad of vrad at each point in
V ∗ = V \ {0} is an (n− 1)-dimensional complex plane in the tangent bundle
of TV ∗. A theorem of Varchenko establishes that the restriction of v⊥rad to
the link K, that we denote DV , determines the canonical contact structure
CV on K. If we set

√
−1 = i as usual, then the vector field i · τ is, up to

scaling, the Reeb vector field of the contact structure.
For example, if n = 2 and the germ (V, 0) is an ICIS, then one has a

nowhere-vanishing holomorphic 2-form Ω around 0 in V ; if we equip V ∗ with
the hermitian metric induced from that in Cm, then the 2-form Ω determines
a reduction of the structure group of T (V ∗) from U(2) to SU(2) ∼= Sp(1), so
it determines an Sp(1)-structure on the complex bundle T (V ∗) (see [143]).
If, as before, we denote by τ the unit outwards normal vector field of K in V ,
then the bundle DV is the trivial 1-dimensional complex bundle spanned by
the vector field j·τ , obtained by multiplying the vector τ(x) by the quaternion
j at each point of K.

Here we give a necessary and sufficient condition for DV to be a trivial
bundle when n > 2 and the germ of V at 0 is an ICIS:

Theorem 3.7.2. The complex bundle DV that defines the canonical contact
structure on K is C∞ trivial as a complex vector bundle if and only if the
Milnor number μ(V, 0) of the ICIS germ (V, 0) satisfies:

μ(V, 0) ≡ (−1)n−1 mod (n− 1)!,

equivalently, the Euler–Poincaré characteristic of the Milnor fiber satisfies

χ(F) ≡ 0 mod (n− 1)!.

For example, in the case of the quadric V = {z2
1 + · · ·+z2

n+1 = 0} in Cn+1,
the bundle DV is trivial if and only if n = 2 or n is an odd number.

Recall that V has an associated Milnor fibration [121], and Milnor proved
that the Milnor fiber F can be regarded as a compact manifold with bound-
ary the link K, and F is a parallelizable manifold with the homotopy type
of a bouquet of spheres of middle dimension, the number of spheres in this
bouquet being the Milnor number. So its Euler–Poincaré characteristic is
χ(F) = 1+(−1)nμ(V, 0). Then Theorem 3.7.2 essentially follows from the fol-
lowing Theorem 3.7.3 applied to a vector field which is everywhere transversal
to the link K. We recall that given a vector field v on V , singular only at 0,
its GSV index equals the Poincaré–Hopf index of an extension of v to a Mil-
nor fiber. Thus, Theorem 3.7.2 can be rephrased by saying that the complex
orthogonal complement of τ in T (V \ 0) is a trivial bundle if and only if the
GSV index of v is a multiple of (n−1)! (see [146] for details). This will follow
from the Theorem below taking as the manifold W the Milnor fiber F.
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Theorem 3.7.3. Let W be a 2n-dimensional, n ≥ 1, compact, connected
manifold with nonempty boundary ∂W and trivial tangent bundle; moreover,
fix a trivialization v

(n)
0 : TW → W × Cn and equip TW with the hermitian

metric induced from that in Cn. Assume further that W has the homotopy
type of a bouquet of n-spheres. Let v be a nowhere-zero, continuous vector field
on a neighborhood of ∂W in W . Then the complex orthogonal complement of
v in TW |∂W is a C∞ trivial complex bundle if and only if v extends to the
interior of W with total Poincaré–Hopf index a multiple of (n− 1)!.

We work always in the category of topological spaces and continuous maps,
so the proofs of these theorems actually discuss topological triviality of the
vector bundles in question. But everything becomes automatically C∞ be-
cause every continuous map between smooth manifolds can be approximated
by a smooth map.

Theorem 3.7.3 is a consequence of the following two lemmas 3.7.1 and
3.7.2:

Lemma 3.7.1. Let W be a 2n-dimensional, n ≥ 1, compact, connected man-
ifold with nonempty boundary ∂W and trivial tangent bundle, trivialized by
a complex n-frame v

(n)
0 : TW →W ×Cn. Let v be a continuous vector field,

defined and nonsingular on a neighborhood of ∂W in W . If IndPH(v,W ) is
a multiple of (n− 1)!, then v can be completed to a continuous trivialization
of the complex vector bundle TW |∂W . That is, there exist (n − 1) continu-
ous sections v2, ..., vn of TW |∂W , such that the set {v, v2, ..., vn} defines a
trivialization of TW |∂W .

Lemma 3.7.2. Let W be as above and assume further that W has the
homotopy type of a bouquet of n-spheres. Let v be a continuous section of
TW |∂W which can be completed to a trivialization of the complex bundle
TW |∂W ; i.e., there exist continuous sections v2, ..., vn of TW |∂W such that
the n-frame v(n) = {v, v2, ..., vn} defines a trivialization of TW |∂W as a com-
plex vector bundle. Then IndPH(v,W ) is a multiple of (n− 1)!.

The proofs of these lemmas are a little technical and they are given in
detail in [146]. Here we explain only the main ideas. To motivate these, we
restrict first to the case where W is the usual 2n-ball B2n with boundary
S2n−1. This explains where the term (n− 1)! comes from.

We recall there is a classical fibration

U(n− 1) ↪→ U(n) −→ S
2n−1,

and an associated long exact homotopy sequence,

· · ·→π2n−1(U(n))
p∗−→ π2n−1(S2n−1)→π2n−2(U(n− 1))→π2n−2(U(n))→· · ·

(3.7.4)
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We know that π2n−1(S2n−1) ∼= Z, and Bott’s calculations in [18] tell us
that:

(1) π2n−1(U(n)) ∼= Z,

(2) π2n−2(U(n− 1)) ∼= Z/(n− 1)!,

(3) π2n−2(U(n)) ∼= 0 and p∗ is multiplication by (n− 1)!.

Now observe that every continuous vector field on B2n which is nonsingular
away from the origin defines an element in π2n−1(S2n−1). And conversely,
every element in this homotopy group determines a homotopy class of vector
fields on B2n, which are nonsingular away from the origin, and these are
classified (up to homotopy) by their local Poincaré–Hopf index at 0. In other
words, we can think of π2n−1(S2n−1) as being (up to homotopy) the set of
vector fields on W which are nonsingular on S2n−1, and these are classified
by their local Poincaré–Hopf index at 0. Of course, homotopy of vector fields
means homotopy through never vanishing vector fields.

Let us now look at the group π2n−1(U(n)) and recall the classical con-
struction of “twisting a framing” by Kervaire in [90] (see also [91]). Equip the
tangent bundle TB2n|S2n−1 with a complex trivialization v

(n)
0 : TB2n|S2n−1 →

S2n−1 × Cn, which we assume to be given by the usual basis of TCn. We
further assume, for simplicity, that all frames here are unitary. Let [γ] be
an element in π2n−1(U(n)) and γ : S2n−1 → U(n) a representative of [γ].
Then, for each x ∈ S2n−1, γ(x) is a linear transformation of Cn, which car-
ries the basis determined by v

(n)
0 (x) into a new basis that we may denote by

γ∗(v
(n)
0 )(x). Doing this for all points in S2n−1 we get a new n-frame γ∗(v

(n)
0 )

on S2n−1.
Conversely, given the frame v

(n)
0 as above, and another unitary n-frame

v(n) on S2n−1, these two framings differ at each point x ∈ S2n−1 by an
element in U(n). Hence v(n) can be obtained as above, by twisting the frame
v
(n)
0 by an appropriate map S2n−1 → U(n). Therefore one has the following

well-known theorem (see Kervaire’s article for details):
Theorem. The homotopy classes of unitary frames on S2n−1 form a group,
isomorphic to π2n−1(U(n)).

We now observe that with these interpretations of π2n−1(S2n−1) and
π2n−1(U(n)), both isomorphic to Z, one has that the map p∗ in (3.7.4) can
be regarded as the map that associates to each unitary frame on S2n−1 the
Poincaré–Hopf index in the ball B2n of one of the n sections that define this
frame (all such sections have the same local index because they are linearly
independent everywhere).

Lemmas 3.7.1 and 3.7.2 then follow, for the case W = B2n, from the
exact sequence (3.7.4) and Bott’s computations in [18], implying that p∗ is
multiplication by (n− 1)!.

Now in general, for W as in 3.7.1, since W is parallelizable and has
nonempty boundary, there is an immersion ı : W → R2n ∼= Cn, by the
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immersion theorem of Hirsch–Poenarú (see [132]). Thus one has an induced

(Gauss-type) continuous map ∂W
ψv−→ S2n−1, defined by

ψv(x) =
Dı(v(x))
|Dı(v(x))| ,

where D is the derivative.
By obstruction theory (see [153]), v can be extended to all of W minus one

point, say xo, around which ı is an embedding. Thus ψv extends to a map
W \ {xo} → S2n−1. Hence the topological degree of ψv equals Ind(v,W ).
Moreover, by Hopf’s theorem, two maps ∂W→S2n−1 are homotopic if and
only if they have the same degree. Thus one has that some other vector field
v′ on a neighborhood of ∂W in W is homotopic to v (through never-vanishing
vector fields) if and only if Ind(v′,W ) = Ind(v,W ).

Now we assume that Ind(v,W ) is a multiple of (n− 1)!, i.e., Ind(v,W ) =
t(n − 1)! for some integer t. Let w be a vector field on W with index t and
nonvanishing on ∂W (since W has nonempty boundary ∂W , one has on W
vector fields with all possible Poincaré–Hopf total indices and never-zero on
∂W ). Following [90,91], twist the trivialization v

(n)
0 on the boundary ∂W as

before, using the corresponding map ψw obtained via an immersion of W in
Cn; we get a new trivialization v(n) = (ψw)∗(v

(n)
0 ) of TW |∂W . This means

that at each point x ∈ ∂W we change the basis of TxW given by v
(n)
0 into its

image by the linear map ψw(x) ∈ U(n). We claim that v
(n)
0 has v as one of

its n sections, up to homotopy; this will complete the proof of the lemma.
To prove the above claim notice first that, by the previous discussion, ψw

has degree t. This implies that the trivialization v
(n)
0 of TW |∂W represents

the element t · [γ] of π2n−1(U(n)) ∼= Z, where [γ] is the positive generator of
π2n−1(U(n)). Then the exact sequence 3.7.4 implies that the map p∗ carries
the class represented by v

(n)
0 in π2n−1(U(n)) into the class t · (n− 1)! · [σ] in

π2n−1(S2n−1), where [σ] is the positive generator of this group, and we arrive
to Lemma 3.7.1.

Now, for Lemma 3.7.2, we assume further that the manifold W 2n has the
homotopy type of a bouquet of n-spheres, n > 1. The proof of Lemma 3.7.2
relies on a careful use of the relative Chern classes that we introduced in
Chap. 1. We equip W with a triangulation compatible with the boundary
∂W , and we refer to v(n) as a complex framing on ∂W , meaning by this a
trivialization of the complex bundle TW |∂W . We try to extend v(n) to the
interior of W using the usual “stepwise” process: first to the 0-skeleton, then
the 1-skeleton and so on, as far as we can.

According to Steenrod [153] (compare with Chap. 1), the successive ob-
structions to extending v(n) as a complex framing over the interior of W are
elements in the relative cohomology H∗(W,∂W ; Z). In fact these obstructions
are cocycles that represent the Chern classes of W relative to the framing
v(n) on ∂W . Thus they live in the even-dimensional relative cohomology of
(W,∂W ).
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By Lefschetz duality one has Hi(W,∂W ) ∼= H2n−i(W ), hence all these
groups vanish, except for i = n, 2n, since W is assumed to have the homotopy
of a bouquet of n-spheres.

We now split the proof of 3.7.2 in two cases, according to the parity of n.
Assume first n is odd. Since Chern classes live in even dimensions, in this case
the only possible obstruction to extending v(n) to the interior of W is the
top relative Chern class cn(W, v(n)) ∈ H2n(W,∂W ; Z). By definition, this
class is the obstruction to extending to the interior of W one of the sections
that define v(n), that we can take to be v. Hence v(n) can be extended to all
of W minus one point, say xo, and IndPH(v,W ) can be regarded as being
both, the local Poincaré–Hopf index at xo of the extension of v to W \ {xo},
and also the Lefschetz dual cn(W, v(n))[W,∂W ] ∈ H0(W ) of the Chern class
cn(W, v(n)), where [W,∂W ] is the fundamental cycle of the pair.

Since v(n) is already extended to a trivialization of T (W \ {xo}), one has
that cn(W, v(n)) can be identified with the Chern class of a small disk Dε in
W centered at xo, relative to the framing v(n) on ∂Dε. Then Lemma 3.7.2
follows in this case from the previous discussion for the case where W was a
2n-disc.

Consider now the case n is even, say n = 2m, so W has real dimension
4m. In this case one can prove the following lemma (see [146] for details):

Lemma 3.7.3. The framing v(n) on ∂W extends to a trivialization v̂(n) of
the complex bundle T (W \ Sv(n)), where Sv(n) is an n-sphere embedded in

the interior
◦
W of W with trivial normal bundle. Hence v(n) extends to a

trivialization of the complex bundle T (W ) away from the interior of a compact
tubular neighborhood T̂ ∼= Sn × Bn of Sv(n) .

By this lemma, v̂(n) is a complex framing that extends v(n) to all of W
minus the interior Int T̂ of the solid torus T̂ ∼= Sn × Bn. We know from
Chap. 1 that

cn(W ; v(n))[W,∂W ] = IndPH(v,W ),

where [W,∂W ] is the fundamental cycle of the pair (W,∂W ), and

cn(W ; v(n))[W,∂W ] = cn(T̂, v̂(n))[T̂,T]

because v̂(n) extends v(n). We claim that the latter integer is a multiple of
(n− 1)!, which obviously completes the proof of lemma 3.7.2. For this, recall
πn(U(n)) = 0 if n > 1 (see [18]), so we can assume that v

(n)
o and v̂(n) coincide,

up to homotopy, over a parallel (Sn × ∗) of T, where ∗ is a point in ∂Bn.
Using this one may now show that the complex framing v̂(n) is obtained from
the trivialization v

(n)
o of TW , twisting it in a neighborhood of a point, using

Kervaire’s construction (see [146] for details). So the lemma follows from the
previous discussion for the case where W is a disc.

Remark 3.7.1. Notice that if a vector field v on the ICIS (V, 0) is a component
of a trivialization v(n) of the complex bundle TV ∗, then the GSV index of
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v equals (up to Lefschetz duality) the top Chern class of F relative to v(n).
The theorem above shows that for n > 2 not all vector fields satisfy this
condition, and therefore its GSV index cannot be always expressed as a Chern
class of TF relative to a trivialization over ∂F. However, if f1, · · · , fk are
functions defining the germ (V, 0), then (v, grad(f1), . . . , grad(fk)) determines
a trivialization of the bundle TCn+k|∂F, and the corresponding relative Chern
class of degree n equals the GSV index of v. This interpretation of the GSV
index as a Chern class is closely related to the virtual index studied in Chap. 5.

3.7.3 On the Normal Bundle of Holomorphic
Singular Foliations

An important problem in geometry, studied by several authors in various
contexts, is that of extendability of vector bundles. In this section we show
how the theory of indices of vector fields developed in this chapter can be
used to investigate this problem for the normal bundle of a foliation.

Let (V, 0) be an ICIS of dimension n ≥ 2, and let v a holomorphic vec-
tor field on V , singular only at 0. This vector field defines a 1-dimensional
holomorphic foliation F on V singular at 0. On V \ {0}, we have the tangent
bundle TF to the foliation and we define the normal bundle ν(F) to be the
quotient T (V \ {0})/TF .

The following result provides a topological obstruction for the extendabil-
ity of this bundle.

Corollary 3.7.1. Let (V, 0) and F be as above. Then the normal bundle to
F in V \ {0} extends to 0 as a (continuous or smooth) vector bundle if and
only if the GSV index of v is a multiple of (n− 1)!.

An example for which this condition is not satisfied is the one of a linear
vector field on V = Cn, n > 2, since in this case the index is 1. When n = 3
one can actually say a little more:

Corollary 3.7.2. Assume V has complex dimension 3. Let F be a holomor-
phic foliation on V spanned by a holomorphic vector field v, singular only at
0. Let ν(F) be the normal bundle of F in V ∗ = V \ {0}. Then the following
conditions are equivalent:

(1) The GSV index of v at 0 is even.

(2) The bundle ν(F) admits a nowhere-zero C∞ section.

(3) The bundle ν(F) is C∞ trivial and therefore extends to a bundle over V .

The first corollary above is obvious from Theorem 3.7.3. We notice only
that if the normal bundle ν(F) on V ∗ is trivial, then it is isomorphic to V ∗×
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Cn−1 and therefore extends to V as the trivial bundle V ×Cn−1. Conversely,
if the bundle ν(F) on V ∗ extends to 0, then it is necessarily trivial at 0, since
all bundles are locally trivial.

Concerning the second corollary, the equivalence between statements (1)
and (3) is immediate from Theorem 3.7.3, and it is obvious that (3) implies
(2), so we only must prove that (2) implies (3). Let ξ be a never-zero continu-
ous section of the normal bundle ν(F). This spans a 1-dimensional continuous
complex line sub-bundle L of ν(F). The bundle L is trivial iff ν(F) is trivial.
But the link K is 2-connected, by [121]. Hence every complex line bundle
over K is trivial.

Let us give an example. Let V be a hypersurface in C
2n defined by some

function f : (C2n, 0)→ (C, 0). Then the Hamiltonian vector field

ζ̃ =
( ∂f

∂z2
, − ∂f

∂z1
,

∂f

∂z4
, − ∂f

∂z3
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)

defined as in Example 3.3.1 has GSV index 0. Thus, by 3.7.3, the normal
bundle of the holomorphic foliation that v spans on V ∗ is topologically trivial.



Chapter 4

Indices of Vector Fields on Real
Analytic Varieties

Abstract In the previous chapters we focused on indices of vector fields on
complex analytic varieties. The real analytic setting also has its own interest,
and that is the subject of this chapter. The following presentation follows the
discussion by M. Aguilar, J. Seade and A. Verjovsky in [6] (see also [49]). We
describe indices analogous to the GSV and Schwartz indices for vector fields
on real analytic singular varieties. In this setting the GSV index is an integer
if the singular variety V is odd-dimensional, but it is defined only modulo 2
if the dimension of V is even.

The Schwartz and the GSV indices are defined, respectively, in Sects. 1
and 2; there we show that the Schwartz index classifies the homotopy classes
of vector fields near an isolated singularity. Section 3 provides a geometric
interpretation of the GSV index in the real analytic setting.

The information we get is related to previous work by M. Kervaire about
the curvatura integra of manifolds, and this is the subject we explore in Sect. 4.
Finally, in Sect. 5 we look at the relation of these indices with other invariants
of real analytic singularity germs studied previously by C. T. C. Wall and
others. This yields to an extension of the concept of Milnor number for real
analytic map-germs with isolated singularities which may not be algebraically
isolated.

We note that there are some related works such as [9, 10, 49, 69, 70].
Since in this chapter we consider only real analytic varieties and functions,

for simplicity, we will denote the dimensions here by m,n... instead of m′, n′...,
as in the rest of the book.

4.1 The Schwartz Index on Real Analytic Varieties

Let (V, 0) be the germ at 0 of an irreducible, pure dimensional real analytic
variety of dimension n in Rn+k with an isolated singularity at 0. We denote
by Vreg its regular part: Vreg := V \ {0}. As before, a continuous (smooth
or analytic) vector field on V means the restriction v to V of a continuous
(smooth or analytic) vector field on a neighborhood of V in Rn+k which

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 4, 71
c© Springer-Verlag Berlin Heidelberg 2009
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is tangent to Vreg. We want to define the Schwartz index of v at 0. As on
complex varieties, this index measures how far the vector field is from being
radial. We notice that as in the complex case, we may drop the condition of
having an isolated singularity and assume only that the singular set of V is
compact, see [6], but we restrict to the isolated singularity case for simplicity.

Assume first that the link K of V is connected. Let vrad be a radial vector
field at 0, i.e., vrad is transverse, outwards-pointing to the intersection of V
with every sufficiently small sphere Sε centered at 0. Define the difference
between v and vrad at 0 as before: consider small spheres Sε, Sε′ ; ε > ε′ > 0,
and let w be a vector field on the cylinder X in V bounded by the links
Kε = Sε ∩ V and Kε′ = Sε′ ∩ V , such that w has finitely many singularities
in the interior of X , it restricts to v on Kε and to vrad on Kε′ . The difference
of v and vrad is defined by:

d(v, vrad) = IndPH(w,X) ,

the Poincaré–Hopf index of w on X . Then define the Schwartz index of v at
0 ∈ V to be:

IndSch(v, 0;V ) = 1 + d(v, vrad).

In particular vrad has index 1 (which equals the Poincaré–Hopf index of its
radial extension to a ball in R

n+k).
If the analytic variety V is pure-dimensional, with an isolated singularity

at 0, but it has several irreducible components V1, · · · , Vr, and v is as above,
a vector field on a neighborhood of 0 in Rn+k, tangent to Vreg, one can define
the Schwartz multi-index Indmulti

Sch (v, 0):

Indmulti
Sch (v, 0) := (IndSch(v1, 0), . . . , IndSch(vr, 0)).

Notice that if V is a compact, oriented, pure dimensional, irreducible real
analytic variety and v is a vector field on V with only finitely many singu-
larities (or zeroes) x1, . . . , xs on Vreg, one has at each xi the local Schwartz
index of v. The Total Schwartz index IndSch(v, V ) of v in V is defined in the
obvious way and Theorem 2.1.1 generalizes to this setting:

IndSch(v, V ) = χ(V ).

A similar remark holds for the multi-index if V has several irreducible
components.

Let us now show that the Schwartz index classifies the homotopy classes
of continuous vector fields on V . Notice that the same arguments work in the
complex analytic case when the variety has an isolated singularity.

Definition 4.1.1. Let (V, 0) be a real analytic germ as above, and let v and
w be vector fields on V that vanish only at the singular point 0 ∈ V . We say
that v and w are homotopic if there exists a continuous 1-parameter family
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wt of vector fields on V , t ∈ [0, 1], such that w0 = v , w1 = w and for each t
the vector field wt vanishes only at 0 ∈ V . We denote by Θ(V, 0) the set of
homotopy classes of such vector fields.

We remark that it is important to demand that the homotopies be through
vector fields that vanish only at 0, otherwise all vector fields are homotopic.

Proposition 4.1.1. Let K1, . . . ,Kr be the connected components of the link
K. Then the set Θ(V, 0) corresponds bijectively with ⊕ri=1Z and a bijection
between Θ(V, 0) and ⊕ri=1Z is given by the Schwartz multi-index:

v �→ Indmulti
Sch (v, 0) := (IndSch(v1, 0), . . . , IndSch(vr, 0)).

Proof. Let Θ(K) be the set of homotopy classes of never vanishing vector
fields tangent to V on K. By [121], V is the cone over the link K. Hence,
there is a canonical bijection between Θ(V, 0) and Θ(K). We show that Θ(K)
is classified by the Schwartz multi-index, and that for each connected com-
ponent of K there is exactly one homotopy class of tangent vector fields
corresponding to each integer, which proves the statement. It is obviously
enough to consider the case where K is connected.

Recall that given vector fields v and v′ on V , never-zero on K (assumed
to be connected), the difference is well defined as in Chap. 1. It is clear that
if v and v′ are homotopic, then their difference is zero, so they have the
same Schwartz index. Conversely, if they have the same Schwartz index, then
their difference is 0, hence they are homotopic. Thus the homotopy classes
of such vector fields are classified by their Schwartz index. It remains to see
that there are vector fields of all possible Schwartz indices, but this is easy:
let ε > ε′ > 0 be sufficiently small, let Kε, K′

ε be links of these radius and
X ⊂ V the cylinder bounded by Kε, K′

ε. Put on K′
ε a vector field v of some

given Schwartz index, say I(v); now choose in the interior of X a small disk D

and put on it a vector field v′ of some index I ′. By [153] we can extend v and
v′ to a vector field w on X , non singular on Kε and with no other singularity
but that on D. By construction, the Schwartz index of w is I(v) + I ′.

4.2 The GSV Index on Real Analytic Varieties

We now consider the analogous of the GSV index for vector fields on real
analytic germs. For this we first need to define the index (or degree) of a
map from a smooth (n − 1)-manifold into the Stiefel manifold Vk+1,n+k of
orthonormal (k + 1)-frames in Rn+k, with k > 0, n > 1. We recall that
Vk+1,n+k is an (n − 1)-sphere bundle over Vk,n+k and that, by [164], one
has a canonical embedding γ : Sn−1 → Vk+1,n+k, which is the fiber over
(en+1, . . . , en+k) ∈ Vk,n+k, where e1, . . . , en+k is the canonical basis of Rn+k.
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The homotopy class of γ is a generator of πn−1(Vk+1,n+k), which is isomorphic
to Z if n is odd or to Z/2Z if n is even, since k > 0, see [153].

By the Universal Coefficient Theorem, we have an isomorphism

Hn−1(Vk+1,n+k;πn−1(Vk+1,n+k))
α→ Hom(Hn−1(Vk+1,n+k; Z), πn−1(Vk+1,n+k)).

Let h : πn−1(Vk+1,n+k) → Hn−1(Vk+1,n+k; Z) be the Hurewicz homomor-
phism. Since Vk+1,n+k is (n − 2)-connected, h is an isomorphism and it is
given by h[γ] = γ∗[Sn−1], where [Sn−1] is the fundamental class. Hence,

u := α−1(h−1) ∈ Hn−1(Vk+1,n+k;πn−1(Vk+1,n+k)),

is a characteristic element determined by the equality 〈u, γ∗[Sn−1]〉=[γ],
where 〈, 〉 denotes the Kronecker product. The generator [γ] ∈ πn−1(Vk+1,n+k))
gives the characteristic element u and an isomorphism from πn−1(Vk+1,n+k))
to Z or to Z/2Z.

Definition 4.2.1. Let N be an (n−1)-dimensional, closed oriented manifold
(maybe not connected) and let g : N → Vk+1,n+k be a map, n > 1, k > 0.
We define the degree of g as follows:

(1) If n is odd, then deg(g) := 〈g∗(u), [N ]〉 = 〈u, g∗[N ]〉 ∈ Z, where [N ] is
the fundamental class with integer coefficients.

(2) If n is even, then deg2(g) := 〈g∗(u), [N ]2〉 = 〈u, g∗[N ]2〉 ∈ Z/2Z, where
[N ]2 is the fundamental class with mod 2 coefficients.

Let us now denote by (V, 0) the germ of a geometric complete intersection
with an isolated singularity at 0. This means that V is defined by a real
analytic map

f := (f1, f2, . . . , fk) : U ⊂ R
n+k −→ R

k n > 1, k > 0,

where U is an open neighborhood of 0 in Rn+k, such that the gradient vector
fields (grad1, . . . , gradk) of the fi are linearly independent everywhere on
V \ {0}, and they are of course normal to V \ {0}. Let v be a continuous
vector field on V which is singular only at 0. Let us define now the index of v
at 0 following [6]. Notice that up to normalization one has a continuous map,

φv := (v, grad1, . . . , gradk) : K −→ Vk+1,n+k,

where Vk+1,n+k is the Stiefel manifold of orthonormal (k+1)-frames in Rn+k

and K is the link of 0 in V .

Definition 4.2.2. If n is odd, then the (real) GSV index of v at 0 is the
integer defined by

IndGSV(v, 0) = deg(φv).
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If n is even, then the (real) mod(2) GSV index of v at 0 is the integer modulo
2 defined by

IndGSV2(v, 0) = deg2(φv).

Definition 4.2.3. Let K1, . . . ,Kr be the connected components of K. If
n = dimV is odd, then we define the multi-index Indmulti

GSV (v) of a vector field
v on V by:

Indmulti
GSV (v, 0) = (deg(φv1), . . . ,deg(φvr )),

where φvi is the restriction of φv to the component Ki.

Similar considerations apply to the mod-2 index when n is even.

The following proposition gives a geometric interpretation of the
multi-indices:

Proposition 4.2.1. Let γ : Sn−1 → Vk+1,n+k be the canonical embedding
defined above, and let φ : K → Vk+1,n+k be a continuous map. Then there
exists a map φ̃ : K→ Sn−1, unique up to homotopy, such that γ ◦ φ̃ is homo-
topic to φ. Furthermore, if n is odd, then for each connected component Ki

of K the degree of φ̃ restricted to Ki equals the index Ind(φi) of φi := φ|Ki .
If n is even, then the reduction modulo 2 of the degree of φ̃ restricted to Ki

equals the index ind2(φi) of φi := φ|Ki .

In order to prove this proposition we prove first the following lemma, which
is also used later.

Lemma 4.2.1. Let K be as above, let K1, . . . ,Kr be the connected compo-
nents of K, and denote by gi the restriction to Ki of a map g : K→ Vk+1,n+k.

(1) If n is odd, then there is a bijection between the group of homotopy classes
of maps [K, Vk+1,n+k] and ⊕ri=1Z, given by [g] �→ (deg(g1), . . . ,deg(gr)).

(2) If n is even, then there is a bijection between [K, Vk+1,n+k] and
⊕ri=1Z/2Z, given by [g] �→ (deg2(g1), . . . ,deg2(gr)).

Proof. Clearly Hq(N ;πq(Vk+1,n+k)) ∼= 0 and Hq+1(N ;πq+1(Vk+1,n+k))
∼=0, for all q > n− 1. Therefore, by obstruction theory [153], Theorem 8.4.3,
there is a bijection between [N,Vk+1,n+k] and Hn−1(N ;πn−1(Vk+1,n+k)),
given by [g] �→ g∗(u), where u is as in 4.2.1 above. Now consider the follow-
ing composition:

[N,Vk+1,n+k]→ Hn−1(N ;R)
p−→∼= H0(N ;R)

r
⊕

i=1
ji

←−∼=

r⊕

i=1

H0(Ni;R)

r
⊕

i=1
εi

−→∼=

r⊕

i=1

R,

where p is Poincaré duality, ji : Ni → N are the inclusions, and each εi is the
augmentation. We take R = Z if n is odd and R = Z/2Z if n is even. Thus
one has a bijection
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ζ : [N,Vk+1,n+k] −→
r⊕

i=1

R.

Since p(a) = a ∩ [N ], we have that

deg(gi) := 〈g∗i (u), [Ni]〉 = εi(g∗i (u) ∩ [Ni]) = εipg
∗
i (u).

A straightforward calculation shows that ζ[g] = (deg(g1), . . . ,deg(gr)) if n is
odd and that ζ[g] = (deg2(g1), . . . ,deg2(gr)) if n is even.

Proof of Proposition 4.2.1: Consider first the case n odd. From the proof
of the previous lemma we know that we have a bijection

s : [K, Vk+1,n+k] −→ Hn−1(K; Z).

By obstruction theory we also have a bijection

t : [K, Sn−1] −→ Hn−1(K; Z).

Recall that γ induces a function

γ∗ : [K, Sn−1] −→ [K, Vk+1,n+k] ,

given by γ∗[f ] = [γ ◦ f ]. Then one can check that t = s ◦ γ∗. Thus γ∗ is a
bijection, as stated. The second statement now follows from the definition of
the index and the fact that f∗[K] = deg(f)[Sn−1].

The case n be even is proved in the same way, but now using the bijection:

[K, Vk+1,n+k]←→ Hn−1(K; Z/2Z) �

The following result is an immediate consequence of 4.1.2 and 4.2.1.

Proposition 4.2.2. Let K1, . . . ,Kr be the connected components of the
link K.

(1) If n is odd, then there is a bijection between Θ(V, 0) and ⊕ri=1Z, given by

[v] �→ Indmulti
GSV (v, 0) := (IndGSV(v1, 0), . . . , IndGSV(vr, 0)).

(2) If n is even, then there is a surjection from Θ(V, 0) to ⊕ri=1Z/2Z given
by

[v] �→ Indmulti
GSV2

(v, 0) := (IndGSV2(v1, 0), . . . , IndGSV2(vr, 0)).
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4.3 A Geometric Interpretation of the GSV Index

Let U be an open neighborhood of 0 in Rn+k. Consider the map

f := (f1, f2, . . . , fk) : (U, 0) −→ (Rk, 0), n > 1, k > 0,

that defines the isolated complete intersection singularity (V, 0), and con-
sider the fibers f−1(t) for t near 0. If t is a regular value of f , we call f−1(t)
a nonsingular level surface of f . Its intersection Ft := f−1(t) ∩ Dε with
a small disc Dε around 0 ∈ U ⊂ Rn+k is a nonsingular fiber of f . We re-
mark that we do not have in general a fibration as in the case of complex
singularities studied in [79, 116, 121]. However, by hypothesis 0 is an iso-
lated singularity in V , hence the Jacobian matrix Df(x) has rank k at each
x ∈ V \ {0}. Thus there exist ε > ε′ > 0 and δ > 0 sufficiently small with
respect to ε′, such that Df(x) has rank k on the set Ω of all x ∈ U such that
ε > ||x|| > ε′ and f(x) ∈ Δδ, where Δδ is a small ball in Rk centered at 0.
By Ehresmann fibration lemma, this implies that the restriction of f to Ω is
the projection map of a locally trivial fiber bundle over Δδ. The Transversal
Isotopy Theorem [4] implies that we can move V ∩Ω by an ambient isotopy
and take it into Ft ∩Ω, where Ft is a nonsingular fiber of f . This carries the
vector field v to a nowhere-zero vector field on Ft∩Ω, provided ε′ >> |t| > 0.
Thus one has the following lemma:

Lemma 4.3.1. There exists an ambient isotopy in Ω that carries V ∩Ω into
Ft ∩Ω and takes v into a nonsingular vector field, also denoted by v, defined
in a neighborhood of the boundary ∂Ft, and this boundary is isotopic to the
link K.

By Theorem 1.1.2 one can extend v to a vector field on the whole fiber Ft
with only one singular point, say p, in the interior of Ft. The local Poincaré–
Hopf index of v at p is independent on the way we extend v to the interior
of Ft, and this number is the Poincaré–Hopf index of v in Ft, IndPH(v,Ft).
We note that the gradient vector fields (grad1, . . . , gradk) are linearly inde-
pendent on all of Ft because t is a regular value of f . Thus, if we let Dε be a
small disk in Ft centered at p and ∂Dε is its boundary, then the above map

φv = (v, grad1, . . . , gradk) : K −→ Vk+1,n+k,

extends to a continuous map from all of Ft−Dε into Vk+1,n+k which factors
through ∂Dε

∼= S
n−1, up to homotopy. Thus the index of φv equals the index

of the corresponding map φv from a small sphere around p into Vk+1,n+k,
and the latter equals IndPH(v,Ft) by definition. Hence one has:

Theorem 4.3.1. Up to isotopy, the vector field v can be regarded as a vec-
tor field defined and never-zero on a neighborhood of the boundary of the
nonsingular fiber Ft and one has:
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(1) If n is odd, then IndGSV(v, 0) equals the Poincaré–Hopf index of v on Ft,
IndPH(v,Ft).

(2) If n is even, then the mod(2)-GSV index of v, IndGSV2(v, 0), is the re-
duction of IndPH(v,Ft) modulo 2.

In other words, if the dimension (n − 1) of K is even then the GSV -
index of v is the number of zeroes of an extension of v to the nonsingular
fiber Ft, counted with their local indices. If the dimension of K is odd, then
the reduction modulo 2 of the number of zeroes of v in Ft, counted with
local indices, equals IndGSV2(v, 0). Notice that this theorem and its proof are
reminiscent of [89], Lemma 2.

Remark 4.3.1. Recall that in the complex analytic case one has the GSV
index of the previous chapter, which is an integer, and its mod 2-reduction
coincides with the index defined in 4.2.3. In general, for real analytic map-
pings as above, if n is even (as for instance if the singularity germs is actually
complex analytic), one only has a GSV-index defined modulo 2. One might
be tempted to define an index over the integers as in Chap. 3, i.e., by looking
at the number of zeroes of the vector field on a nearby fiber. The problem is
that for n even, the number one gets depends on the choice of fiber and one
can only get a well defined index modulo 2 in this way (see Sect. 3 of Chap. 7
for a related discussion).

Of course this discussion is very much related to the important problem of
computing the Euler–Poincaré characteristic of the regular fibers of analytic
maps, and there is a vast literature about that topic.

When k = 1, the topology of the fibers may change as we pass from t > 0 to
t < 0, and one can speak of right and left GSV-indices. When n is even these
two indices coincide, but for n odd, in general they coincide only modulo 2.

4.4 Topological Invariants and Curvatura Integra

If Z is an oriented (n − 1)-dimensional closed submanifold of the Euclidean
space Rn, then its normal bundle is necessarily trivial. If ν is a section of the
normal bundle “pointing outwards” everywhere, then ν determines a map
from Z into the (n−1)-dimensional sphere Sn−1, the Gauss map, whose degree
is the curvatura integra of Z. Hopf’s generalization in [85] of the theorem of
Gauss states that if n− 1 is even then its curvatura integra is half the Euler–
Poincaré characteristic of Z, independently of the embedding. This theorem
was generalized by Kervaire in [89] to submanifolds of Euclidean space of
arbitrary dimensions, but embedded with trivial normal bundle. Let Zn−1

be an (n − 1)-manifold embedded in Rn+k and let v(k+1) := (u0, . . . , uk) be
a trivialization of its normal bundle. We call v(k+1) a framing of Z in R

n+k.
The framing defines a continuous map:

φ : Z −→ Vk+1,n+k.
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This map induces a homomorphism φ∗ : Hn−1(Z; Z) → Hn−1(Vk+1,n+k; Z),
which takes the fundamental class [Z] into cZ [g], where cZ is an integer
if (n − 1) is even or an integer modulo 2 when (n − 1) is odd and [g] is
the generator of Hn−1(Vk+1,n+k; Z). In either case Kervaire [89] calls cZ the
(generalized) curvatura integra of Z, and proved that if (n−1) is even, then cZ
is half the Euler–Poincaré characteristic of Z, independently of the embedding
of Z in Rn+k. For (n − 1) odd the similar statement is false in general but
it is true if Z bounds a stably-parallelizable manifold and if we replace “half
the Euler–Poincaré characteristic of Z” by the semi-characteristic of Z, as
shown below (following [6, 89]).

Definition 4.4.1. [89] Let Y be a manifold of dimension 2p− 1. The semi-
characteristic of Y with respect to a coefficient field Z/2Z is

χ 1
2
(Y ) =

p−1∑

i=0

rankHi(Y ; Z/2Z).

The following result is of interest in itself and we use it below. This is
mentioned in [89] with an outline of its proof, which is given in detail in [6].

Proposition 4.4.1. Let N be a compact, stably parallelizable manifold with
boundary ∂N . If the dimension n of N is even, then

χ(N) = χ 1
2
(∂N) mod 2.

Consider now the germ (V, 0) of a geometric complete intersection with an
isolated singularity at 0, defined by a real analytic map

f := (f1, f2, . . . , fk) : U ⊂ R
n+k −→ R

k, n > 1, k > 0,

where U is an open neighborhood of 0 in Rn+k. Let K be the link of 0 in V ,
which may not be connected; K has dimension n− 1.

Lemma 4.4.1. Let vrad be a radial, outwards-pointing vector field on V.

(1) If n is odd, then the GSV -index of vrad equals the curvatura integra of K.
Thus:

IndGSV(vrad, 0) =
1
2
χ(K).

(2) If n is even, then the mod(2) GSV -index of vrad equals the curvatura
integra of K.

Proof. Let vrad be as above. Up to homotopy, we can think of vrad as being the
unit outwards normal field of K in V and let (grad1, . . . , gradk) be as before,
the gradient vector fields of (f1, f2, . . . , fk). Then vrad and (grad1, . . . , gradk)
determine a continuous map from K into the Stiefel manifold Vk+1,n+k. By
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definition, the index of this map is the GSV -index of vrad. We recall that
cK is defined by the equality φ∗[K] = cK [g], where φ : K → Vk+1,n+k

is the map determined by the framing. But we have that [g] = γ∗[Sn−1],
where γ : Sn−1 → Vk+1,n+k is the generator of πn−1(Vk+1,n+k) mentioned in
Sect. 4.2. Hence φ∗[K] = cKγ∗[Sn−m1]. By 4.2.1,

deg(φ) = 〈φ∗(u), [K]〉 = 〈u, φ∗[K]〉,

and 〈u, γ∗[Sn−1]〉 = [γ]. Under the identification of πn−1(Vk+1,n+k) with Z,
[γ] corresponds to 1, so that 〈u, γ∗[Sn−1]〉 = 1. Therefore

deg(φ) = 〈u, φ∗[K]〉 = 〈u, cKγ∗[Sn−1]〉 = cK〈u, γ∗[Sn−1]〉 = cK.

Similarly for ind2(φ). Moreover, the index of the corresponding map into
Vk+1,n+k does not change if we replace vrad by any other vector field on V
which is also transverse to K and is radial, outwards pointing. The result now
follows from [89, Theorem VI].

We have the following theorem:

Theorem 4.4.1. Let vrad be a radial, outwards-pointing vector field on V,
and let Ft be a nonsingular fiber of f .

(1) If n is odd, then the GSV -index of vrad equals the curvatura integra of K
and we have:

IndGSV(vrad, 0) =
1
2
χ(K) = χ(Ft).

(2) If n is even, then the mod(2) GSV -index of vrad equals the curvatura
integra of K and we have:

IndGSV2(vrad, 0) = χ 1
2
(K) = χ(Ft) mod 2.

Proof. Statement (1) follows from the previous lemma and the fact that if X
is a compact, odd-dimensional manifold with boundary ∂X , then one always
has χ(∂X) = 2χ(X). Let us now assume that n is even. Also by the lemma
above we have that IndGSV2(vrad, 0) is the curvatura integra of K. Thus, by
[89], Lemma 2, we have

IndGSV2(vrad, 0) = χ(Ft) mod 2.

Hence, to complete the proof of (2) we must show that χ(Ft) = χ 1
2
(K) mod 2,

but this follows from 4.4.1.

The following is an immediate consequence of the theorem above.

Corollary 4.4.1. Let (V1, 0) and (V2, 0) be n-dimensional, isolated, complete
intersection germs in Rn+k. Let K1 and K2 be the corresponding links, and
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let F1
t and F2

t′ be the corresponding nonsingular fibers. Assume that K1 and
K2 are orientation-preserving homeomorphic. If n is odd, then

χ(F1
t ) = χ(F2

t′).

If n is even, then
χ(F1

t ) = χ(F2
t′) mod 2.

4.5 Relation with the Milnor Number
for Real Singularities

In the complex case, we know that if f : (Cn+1, 0)→ (C, 0) is a holomorphic
function with an isolated critical point at 0 ∈ Cn+1, then f determines a fiber
bundle,

f : f−1(S1
δ) ∩ Bε −→ S

1
δ ⊂ C,

where S1
δ ⊂ C is a small sphere and Bε ⊂ Cn+1 is a small ball. This is

equivalent to Milnor’s fibration [121]. The fiber F = Ft is called the Milnor
fiber of f and it has the homotopy type of a wedge of n-spheres. The number
μ = μ(f) of spheres in this wedge is the Milnor number of f . These definitions
and results extend to complete intersection germs by [79], and in fact, to some
extent, to “isolated singularities” in general, by [102]. By [79,121], for isolated
complete intersection singularity germs one has,

(−1)nμ = χ(F)− 1.

The Milnor number of such a singularity is a topological invariant in the sense
that if f, g define germs as above and if there exists an orientation preserving
local homeomorphism h in the domain, such that f = g◦h, then μ(f) = μ(g).

We recall that for vector fields on (isolated complete intersection) complex
singularities the GSV index is an integer and one has

IndGSV(vrad, V ) = χ(F),

where vrad is the radial vector field on the isolated complete intersection
singularity (V, 0).

For real singularities a Milnor fibration does not exist in general. However,
assume

f = (f1, . . . , fk) : (Rn+k, 0) −→ (Rk, 0),

is an irreducible, complete intersection such that its complexification

fC = (fC

1 , . . . , fC

k ) : (Cn+k, 0) −→ (Ck, 0),
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has an isolated singularity at 0 ∈ VC, where VC = {z ∈ Cn+k|fC(z) = 0}.
In this case one says that the singularity of f at 0 is algebraically isolated. For
these singularities, C.T.C. Wall introduced in [170] the following invariant,

ψ(K) =
1
2
β(K),

where K is the link of 0 in V = f−1(0) and

β(K) = dimZ2 H∗(K, Z2).

He proved that modulo 2, ψ(K) coincides with μ(fC) + 1 where μ(fC)
is the Milnor number of fC at 0. Hence the Milnor number μ(fC) of the
complexification, modulo 2, is a topological invariant of f . One also has the
map,

f : f−1(Sk−1
δ ) ∩Dε −→ S

k−1
δ ⊂ R

k,

where S
k−1
δ is a small sphere and Dε ⊂ Rn+k is a small ball, as in the complex

case. This is not a fiber bundle in general, however by the previous results
we have that for regular values sufficiently near 0 ∈ Rk, the Euler–Poincaré
characteristic of the fibers is independent of t if n is odd (modulo 2 for n
even). Hence, given f as above, one has a well defined “real Milnor number”
of f ,

μR(f) = χ(Ft)− 1,

where this equality is modulo 2 if n is even.

Theorem 4.5.1. Let v be a vector field on V singular only at 0 ∈ Rn+k.
Then:

(1) The number

μR(f) = (−1)n+1{IndGSV(v, 0;V )− IndSch(v, 0;V )} = (−1)(n+1)(χ(Ft)− 1)

is independent of the choice of the vector field v (modulo 2 if n is even).

(2) This is a topological invariant of f , i.e., if g is another complete inter-
section germ and h is a local orientation preserving homeomorphism of Rn+k

such that g = f ◦ h, then μR(g) = μR(f) (modulo 2 if n is even).

(3) Let vrad be a radial vector field on V and let ψ(K) be Wall’s invariant.
If n is odd, then :

ψ(K) = IndGSV(vrad, 0) =
1
2
χ(K) mod 2,

If n is even, then:

ψ(K) = IndGSV2(vrad, 0) = χ 1
2
(K) mod 2.
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(4) If the critical point of f is algebraically isolated, the real Milnor number
μR(f) modulo 2 coincides with the Milnor number μ(fC) of the complexifica-
tion.

(5) If W is a compact, oriented real analytic variety with isolated singularities
x1, . . . , xr, which are all complete intersection germs, and if v is a continuous
vector field on W , singular at the x′

i s and possibly at some smooth points of
W , then the total GSV index of v is

IndGSV(v,W ) = χ(W ) +
∑

i

μR(xi),

if the dimension n of W is odd, and if n is even, then

IndGSV2(v,W ) ≡ χ(W ) +
∑

i

μR(xi) mod 2,

where the total GSV index is defined in the obvious way.

Proof. Statements (1), (2), and (5) are now obvious. To prove (3) we note
that by definition:

ψ(K) =
1
2
β(K),

where
β(K) = dimZ2 H∗(K, Z2).

Hence,
ψ(K) ≡ β(Ft) mod 2,

by [170]. Thus the result follows because

β(Ft) ≡ χ(Ft) mod 2.

For statement (4) notice that by [170] we have that ψ(K) ≡ μ(fC)+1 mod 2,
and by definition ψ(K) ≡ μR(f) + 1.



Chapter 5

The Virtual Index

Abstract The virtual index was first introduced in [111] by D. Lehmann,
M. Soares and T. Suwa for holomorphic vector fields; the extension to con-
tinuous vector fields is immediate and has been done in [30, 31, 149]. If the
variety has only isolated singularities, the virtual index and the GSV index
coincide. The virtual index has several interesting features, as for instance
that it is relatively easy to compute when the vector field we deal with is
holomorphic, and also that it is defined for vector fields with singular set a
compact set of arbitrary dimension.

In this chapter we introduce the virtual index in the context of singular
varieties V which are local complete intersections defined by a section of a
holomorphic vector bundle N over a complex manifold M (see Sect. 5.1 be-
low). The virtual tangent bundle is then defined as (TM −N)|V , where TM
denotes the holomorphic tangent bundle of M .

One can think of the virtual index as being a localization of the top di-
mensional Chern class of the virtual tangent bundle, called virtual class, just
as the local index of Poincaré–Hopf is a localization of the top Chern class of
a manifold. The virtual index is in fact a residue which is the local contribu-
tion, relatively to a vector field v, of the top virtual class.

In Sect. 2, we show that Chern–Weil theory is very well adapted to this
situation, in the framework of Čech-de Rham cohomology, and Sect. 3 is de-
voted to the study of residues in this context. The properties of the virtual
index are detailed in the last sections of the chapter, in particular we prove
an integral formula for the virtual index.

5.1 The Virtual Tangent Bundle of a Local
Complete Intersection

In this section, the varieties we consider are “local complete intersections
defined by a section.” Namely, let V be a subvariety of dimension n in a
complex manifold M of dimension n + k. We say that V is a local complete
intersection defined by a section, if there exist a holomorphic vector bundle N
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of rank k over M and a holomorphic section s of N such that s is generically
transverse to the zero section and that V is the zero set of s. Note that, in
this case, the ideal sheaf of germs of holomorphic functions vanishing on V
is generated by the local components of s and V is in fact a local complete
intersection (cf. [165]), i.e., each point of V has a neighborhood which is a
complete intersection.

Let S be a compact set in V containing the singular set Sing(V ) of V
and with a finite number of connected components (Sλ)λ. Suppose we have
a nonvanishing C∞ vector field v on V \ S (⊂ Vreg).

If a component Sλ is in the regular part Vreg = V \Sing(V ) of V , we saw in
Chap. 1 that we can define the Poincaré–Hopf index IndPH(v, Sλ) of v at Sλ,
which is the localization by v of the top Chern class of the tangent bundle
TVreg at Sλ. The question now is what to do if Sλ contains singular points
of V , where there is no tangent bundle. The idea to define the virtual index
is to make a similar “localization” using the vector field and using the fact
that a variety V defined as above admits a virtual tangent bundle.

To define this bundle we notice that the restriction N |Vreg coincides with
the (holomorphic) normal bundle NVreg of Vreg in M so that we have an exact
sequence.

0 −→ TVreg −→ TM |Vreg −→ NVreg −→ 0. (5.1.1)

In view of this, we call N |V the normal bundle of V .

Definition 5.1.1. (cf. [60]) The virtual tangent bundle τV of V is defined by
τV = (TM −N)|V , regarded as an element in the complex K-theory KU(V ).

It is known that the equivalence class of this virtual bundle does not
depend on the choice of the embedding of V in M .

Recalling the fact that the total Chern class is invertible in the cohomology
ring, we define the total Chern class of the virtual tangent bundle by

c∗(τV ) = i∗(c∗(TM) · c∗(N)−1) ∈ H∗(V ),

where i : V ↪→ M denotes the embedding. The i-th Chern class of τV is by
definition the component of c∗(τV ) in dimension 2i, for i = 1, . . . , n.

It is clear that if V is nonsingular, then its virtual tangent bundle is equiv-
alent in KU(V ) to its usual tangent bundle and therefore the Chern classes
of the virtual tangent bundle are the usual Chern classes.

5.2 Chern–Weil Theory for Virtual Bundles

If we have a complex vector bundle Ei on a C∞ manifold M , for each
i = 0, . . . , q, we may consider the “virtual bundle” ξ =

∑q
i=0(−1)iEi as

an element in the K-group K(M) of M . We define its total Chern class c(ξ)
in H∗(M) by
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c(ξ) =
q∏

i=0

c(Ei)ε(i),

where ε(i) = (−1)i. The component of c(ξ) in H2j(M) is the j-th Chern class
cj(ξ) of ξ. In general, if ϕ is a symmetric polynomial, we may write ϕ(ξ) as
a polynomial in the Chern classes of ξ and express as a finite sum

ϕ(ξ) =
∑

k

ϕ
(0)
k (E0) · · ·ϕ(q)

k (Eq),

where, for each i and k, ϕ
(i)
k (Ei) is a polynomial in the Chern classes of Ei.

Letting ∇(i) be a connection for Ei, i = 0, . . . , q, we denote by ∇• the
family of connections (∇(q), . . . ,∇(0)). Then ϕ(ξ) is the cohomology class of
the differential form

ϕ(∇•) =
∑

k

ϕ
(0)
k (∇(0)) ∧ · · · ∧ ϕ

(q)
k (∇(q)).

In particular, c(ξ) is the class of

c(∇•) =
q∏

i=0

c(∇(i))ε(i)

and cj(ξ) is the class of the homogeneous component cj(∇•) of degree 2j in
c(∇•).

Now suppose we have two families of connections ∇•
ν = (∇(q)

ν , . . . ,∇(0)
ν ),

ν = 0, 1. Then, for a symmetric polynomial ϕ, we have a form ϕ(∇•
0,∇•

1)
satisfying

ϕ(∇•
0,∇•

1) = −ϕ(∇•
1,∇•

0) and dϕ(∇•
0,∇•

1) = ϕ(∇•
1)− ϕ(∇•

0).
(5.2.1)

In fact, this is done as in the case of single vector bundles (cf. (1.4.2)). Thus,
for each i = 0, . . . , q, we consider the vector bundle Ei × R → M × R and
let ∇̃(i) be the connection for it given by ∇̃(i) = (1 − t)∇(i)

0 + t∇(i)
1 . We set

∇̃• = (∇̃(q), . . . , ∇̃(0)) and define ϕ(∇•
0,∇•

1) = π∗(ϕ(∇̃•)), where π is the
projection M × [0, 1]→M .

A similar construction works for an arbitrary collection of finite number
of families of connections.

The form ϕ(∇•) is closed and defines the class ϕ(ξ). From the above, we
see that the class ϕ(ξ) depends only on ξ and not on the choice of ∇•.

Now let
0 −→ Eq

ψq−→ · · · −→ E1
ψ1−→ E0 −→ 0 (5.2.2)

be a sequence of vector bundles on M , and, for each i, let ∇(i) be a connec-
tion for Ei. We say that the family (∇(q), . . . ,∇(0)) is compatible with the
sequence if, for each i, the following diagram is commutative :
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A0(M,Ei)
∇(i)

−−−−→ A1(M,Ei)

ψi

⏐
⏐
�

⏐
⏐
�1⊗ψi

A0(M,Ei+1)
∇(i+1)

−−−−→ A1(M,Ei+1).

If the above sequence is exact, there is always a family∇•=(∇(q), . . . ,∇(0))
of connections compatible with the sequence and for such a family we have
([14, (4.22) Lemma])

c∗(∇•) = 1 in particular c∗(ξ) = 1, (5.2.3)

where ξ =
∑q
i=0(−1)iEi. From this we have the following:

Proposition 5.2.1. Suppose the sequence (5.2.2) is exact. Let ϕ be a sym-
metric polynomial and ∇• = (∇(q), . . . ,∇(0)), a family of connections com-
patible with (5.2.2). Then

ϕ(∇̌•
0) = ϕ(∇(0)

0 ) in particular ϕ(ξ̌) = ϕ(E0),

where ∇̌• denotes the family of connections (∇(q), . . . ,∇(1)) for the virtual
bundle ξ̌ =

∑q
i=1(−1)i−1Ei. Similarly for the other “partitions” of the virtual

bundle ξ.

Note that a similar statements hold for the Bott difference form of families
of connections.

Let M be a C∞ manifold, ξ =
∑q

i=0(−1)iEi a virtual bundle over M
and ϕ a symmetric polynomial, as before. Also let U = {U0, U1} be an open
covering of M . Choosing a family of connections ∇•

ν = (∇(q)
ν , . . . ,∇(1)

ν ) for ξ
on Uν , ν = 0, 1, we have a cochain

ϕ(∇•
�) = (ϕ(∇•

0), ϕ(∇•
1), ϕ(∇•

0,∇•
1)) (5.2.4)

in A∗(U). By (5.2.1), it is a cocycle and defines a class in the Čech-de Rham
cohomology H∗

D(U), which corresponds to the class ϕ(ξ) via the isomorphism
of Theorem 1.5.1.

Moreover, if we may choose ∇•
0 so that ϕ(∇•

0) = 0, the cocycle ϕ(∇•
�)

defines a class in the relative cohomology H∗
D(U , U0). This idea is used in the

localization theory of characteristic classes of virtual bundles.

5.3 Characteristic Numbers on Singular Varieties

Let V be an analytic variety of pure dimension n in a complex manifold M
of dimension n + k. We set Vreg = V \ Sing(V ) as before. First, suppose V is
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compact and let Û be a neighborhood of V in M . Also, let Û = {Û0, Û1} be
an open covering of Û and {R̂0, R̂1} a system of honey-comb cells adapted
to Û (cf. Sect. 1.5) such that V is transverse to R̂01 = ∂R̂0 = −∂R̂1. We set
Ri = R̂i∩V , i = 0, 1 and R01 = R̂01∩V . Then we may define the integration

∫

V

: A2n(Û)→ C by
∫

V

σ =
∫

R0

σ0 +
∫

R1

σ1 +
∫

R01

σ01 (5.3.1)

for σ = (σ0, σ1, σ01) in A2n(Û). It induces the integration on the cohomology

∫

V

: H2n
D (Û)→ C. (5.3.2)

We have H2n
D (Û) 
 H2n(Û , C) and the above integration is compatible

with the integration
∫
V : H2n(Û , C) → C induced from the integration of

2n-forms on Û over the 2n-cycle V .
Now suppose V may not be compact. Let S be a compact set in V such

that V \S ⊂ Vreg. Letting Û1 be a neighborhood of S in M and Û0 a tubular
neighborhood of V \S in M with a C∞ retraction ρ : Û0 → V \S, we consider
the covering Û = {Û0, Û1} of Û = Û0 ∪ Û1, which is an open neighborhood
of V in M . As in Sect. 1.5, we set Ar(Û , Û0) = { σ ∈ Ar(Û) | σ0 = 0 }.

Let R̂1 be a compact real 2(n+k)-dimensional manifold with C∞ boundary
in Û1 such that S is in its interior and that ∂R̂1 is transverse to V . We set
R1 = R̂1 ∩ V , R01 = −∂R1 = −∂R̂1 ∩ V . Then we can define the integration

∫

V

: A2n(Û , Û0)→ C by
∫

V

σ =
∫

R1

σ1 +
∫

R01

σ01 (5.3.3)

for σ = (0, σ1, σ01) in A2n(Û , Û0). This again induces the integration on the
cohomology ∫

V

: H2n
D (Û , Û0)→ C. (5.3.4)

Now suppose V is compact again and let S be as above. Then the following
diagram is commutative :

H2n
D (Û , Û0)

j∗−−−−→ H2n
D (Û)

⏐
⏐
�
∫

V

⏐
⏐
�
∫

V

C
=−−−−→ C,

(5.3.5)

where j∗ denotes the canonical homomorphism.

Remark 5.3.1. In the above, the assumption that V \ S is in the regular
part Vreg is not necessary. However, with this condition, to define a cochain
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σ = (σ0, σ1, σ01) in A2n(Û) we only need to define σ0 on V \S, since there is
a C∞ retraction ρ : Û0 → V \ S.

Again, let V be a variety of dimension n in a complex manifold M and S
a compact set in V (V may not be compact) such that V \ S ⊂ Vreg. Let Û1,
Û0, Û = {Û0, Û1} and Û = Û0 ∪ Û1 be as above. For a complex vector bundle
E over Û and a homogeneous symmetric polynomial ϕ of degree n, we try to
compute the restriction to V of the characteristic class ϕ(E). The character-
istic class ϕ(E) in H2n

D (Û) 
 H2n(Û , C) is represented by the cocycle ϕ(∇∗)
in A2n(Û) given by

ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)),

where ∇0 and ∇1 denote connections for E on Û0 and Û1, respectively. Note
that it is sufficient if ∇0 is defined only on U0 = V \ S (see Remark 5.3.1).
Suppose that there is some “geometric object” γ on V away from S, to which
is associated a class C of connections for E on U0 and that ∇0 is “special,”
i.e., ∇0 belongs to C, and ϕ is adapted to C (cf. Sect. 1.6.2). Then we have
the vanishing

ϕ(∇0) ≡ 0 (5.3.6)

and the above cocycle ϕ(∇∗) is in A2n(Û , Û0). Hence it defines a class
ϕS(E, γ) in the relative cohomology H2n

D (Û , Û0), which is sent to the class
ϕ(E) by the canonical homomorphism j∗ : H2n

D (Û , Û0)→ H2n
D (Û). The class

ϕS(E, γ) does not depend on the choice of the special connection ∇0 or the
connection ∇1.

Now suppose that S has a finite number of connected components (Sλ)λ.
For each λ, we take a neighborhood Ûλ of Sλ in U1 so that the Ûλ’s are
disjoint one another. Let R̂λ be a compact 2(n + k)-dimensional manifold
with C∞ boundary in Ûλ such that Sλ is in its interior and that ∂R̂λ is
transverse to V . We set Rλ = R̂λ ∩ V and R0λ = −∂R̂λ.

Definition 5.3.1. We define the residue Resϕ(γ,E;Sλ) by

Resϕ(γ,E;Sλ) =
∫

Rλ

ϕ(∇1) +
∫

R0λ

ϕ(∇0,∇1).

From the above considerations and the commutative diagram (5.3.5), we
have the following residue theorem on singular varieties:

Theorem 5.3.7. In the above situation,

(1) For each connected component Sλ of S, we have the residue Resϕ(γ,E;Sλ),
which is determined by the local behavior of γ near Sλ and is given by the
formula in Definition 5.3.1.

(2) If V is compact,
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∑

λ

Resϕ(γ,E;Sλ) =
∫

V

ϕ(E).

Remark 5.3.2. 1. Similar considerations work for virtual bundles as long as
we have some vanishing as (5.3.6).

2. For the case of polynomials of degree lower than n, where the residues are
defined in the homology of S, see [156, Ch.VI, 4].

5.4 The Virtual Index

Let V be a local complete intersection of dimension n defined by a section
of a holomorphic vector bundle N of rank k over a complex manifold M of
dimension n+ k (cf. Sect. 5.1). Let τV = (TM −N)|V be the virtual tangent
bundle of V , as before. In the sequel, we set τ = TM −N .

Let S be a compact set in V containing the singular set Sing(V ) of V .
Suppose we have a C∞ vector field v on V \ S. Then we will see that the
top Chern class cn(τV ) of the virtual tangent bundle is localized on S, the
virtual index being defined to be the associated residue.

Let Û1, Û0, Û = {Û0, Û1} and Û = Û0 ∪ Û1 be as in Sect. 5.3. Also, let ∇0

and ∇′
0 be connections for TM |Vreg and N |Vreg , respectively, on U0 = V \ S

and let ∇1 and ∇′
1 be connections for TM and N , respectively, on Û1. We

set ∇•
0 = (∇0,∇′

0) and ∇•
1 = (∇1,∇′

1). Then the characteristic class cn(τ) in
H2n
D (Û) 
 H2n(Û , C) is represented by the cocycle cn(∇•

∗) in A2n(Û) given by

cn(∇•
∗) = (cn(∇•

0), c
n(∇•

1), c
n(∇•

0,∇•
1)).

Now we take connections ∇′′
0 , ∇0 and ∇′

0 for TVreg, TM |Vreg and NVreg ,
respectively, on U0 so that

(1) ∇′′
0 is v-trivial, i.e., ∇′′

0(v) = 0, and that
(2) the triple (∇′′

0 ,∇0,∇′
0) is compatible with (5.1.1):

0 −→ TVreg −→ TM |Vreg −→ NVreg −→ 0.

Then we have
cn(∇•

0) = cn(∇′′
0 ) = 0

because of (1) and (2) above (cf. Propositions 5.2.1 and 1.6.1) and the
above cocycle cn(∇•

∗) is in A2n(Û , Û0). Hence it defines a class cn(τ, v)
in H2n

D (Û , Û0), which is sent to cn(τ) by the canonical homomorphism
j∗ : H2n

D (Û , Û0)→ H2n
D (Û). We define the virtual index IndVir(v, S) to be the

corresponding residue. If S admits a finite number of connected components
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(Sλ)λ, then we have the virtual index IndVir(v, Sλ) for each λ. Let Rλ and
R0λ be as in Sect. 5.3. Then we may rephrase the definition of the virtual
index as (cf. [111, 149]).

Definition 5.4.1. The virtual index of v at Sλ is defined by

IndVir(v, Sλ) =
∫

Rλ

cn(∇•
1) +

∫

R0λ

cn(∇•
0,∇•

1).

It is not difficult to show the following (cf. [156, Ch.IV, Lemma 3.3])

Lemma 5.4.1. If Sλ is in Vreg, IndVir(v, Sλ) = IndPH(v, Sλ).

From Theorem 5.3.7, we have the following :

Theorem 5.4.1. In the above situation, if V is compact,

∑

λ

IndVir(v, Sλ) =
∫

V

cn(τ).

5.5 Identification with GSV Index When
Singularities are Isolated

The following proposition is proved as [111, Lemma 5]. Here we reproduce
the proof as given in [149].

Theorem 5.5.1. Let x be an isolated singular point of a variety V as above
and let v̂ be a C∞ vector field on a neighborhood Û of x in M , which is
possibly singular only at x and is tangent to Vreg. Then, for the vector field
v on U \ {z}, U = Û ∩ V , induced by v̂,

IndVir(v, x) = IndGSV(v, x).

Proof. By taking a smaller Û , if necessary, we may assume that there is a
system f = (f1, . . . , fk) of holomorphic functions on Û which generates the
ideal of functions vanishing on V ∩ Û . Denoting by C(f) the critical set of
f : Û → Ck, we set Û = Û \ C(f). Then we have the exact sequence, which
extends (5.1.1) (restricted to V ∩ Û) :

0 −→ Tf |Û −→ TM |Û −→ N |Û −→ 0, (5.5.2)

where Tf |Û is the bundle of vectors tangent to the fibers of f . Starting from
v̂, we may construct a C∞ vector field v′ on Û so that it is tangent to (the
regular part of) each fiber of f , its singular set Ŝ contains C(f) and that
the intersection of Ŝ and the fiber is compact. This is done by taking a C∞
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splitting of (5.5.2). Let vt denote the restriction of v′ to the fiber f−1(t), for t

in Ck near 0, and St the intersection Ŝ ∩ f−1(t), which contains the singular
set of f−1(t). We compute IndVir(vt, St), the sum of virtual indices of vt over
the components of St, using (the restriction to Vt of) connections as follows.
We take connections ∇′′

0 , ∇0 and ∇′
0 for Tf |Û , TM |Û and NÛ , respectively,

on Û \ Ŝ so that

(1) ∇′′
0 is v′-trivial and that

(2) the triple (∇′′
0 ,∇0,∇′

0) is compatible with (5.5.2).

We let ∇1 and ∇′
1 be arbitrary connections for TM and N , respectively,

on Û . Then we see that IndVir(vt, St) depends continuously on t. For a regular
value t, this is IndGSV(v, a), which is an integer (Lemma 5.4.1 and Theorem
3.2.1). Thus it does not depend on t, since the regular values are dense. While
for t = 0, this is equal to IndVir(v, a) and the theorem follows.

5.6 A Generalization of the Adjunction Formula

The classical Adjunction Formula says that, if C is a compact nonsingu-
lar curve (Riemann surface) in a complex surface M (complex manifold of
dimension 2), then we have

2− 2g = −(KM + C) · C

where KM is the canonical divisor of M , g is the genus of C and the dot means
intersection of cycles. This formula follows from classical relations among
characteristic classes. In fact, 2−2g is χ(C) and this equals c1(TC)[C], the self
intersection number C2 is the Poincaré dual of the first Chern class of the
normal bundle of C, i.e., C2 = c1(NC)[C]. The canonical divisor KM is the
Poincaré dual of −c1(TM), essentially by definition; hence the intersection
product KM · C equals −c1(TM |C)[C]. Therefore the Adjunction formula
follows from the exact sequence

0 −→ TC −→ TM |C −→ NC −→ 0.

This formula was generalized by Kodaira [99, 2.2] for a possibly singular
curve C in a complex surface M as:

χ(C̃) = −(KM + C) · C +
r∑

i=1

c(C, xi), (5.6.1)

where C̃ is a nonsingular model of C and c(C, xi) is an invariant of C at
the singular point xi, which is related to the Milnor number μ(C, xi) by
c(C, xi) = μ(C, xi) + si − 1 with si the number of (local) branches of C at
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xi. Since χ(C̃)−
∑r

i=1(si − 1) = χ(C), (5.6.1) is equivalent to

χ(C) = −(KM + C) · C +
r∑

i=1

μ(C, xi), (5.6.2)

From the results of the previous sections, we have a generalization of this
formula to the higher dimensional case:

Theorem 5.6.3. Let V be a local complete intersection of dimension n in
M defined by a section. If V is compact and has only isolated singularities
x1, . . . , xr, whose Milnor numbers are denoted by μi, then

χ(V ) =
∫

V

cn(τ) + (−1)n+1
r∑

i=1

μi.

Proof. First we claim that if V is as above, then there exists a C∞ vector
field v on V , singular at the xi’s and at a (possibly empty) finite set of
other points. In fact, from [121] we know that there is a C∞ vector field v̂i
on a neighborhood Bi of each xi in M , which is singular only at xi and is
tangent to V . Let Di = Bi ∩ V and let vi be the restriction of v̂i to Di.
Then V ∗ = V \ ∪ri=1Int(Di) is a smooth manifold with boundary, and the
vi’s determine a nonsingular vector field on the boundary of V ∗. This can be
extended to a C∞ vector field on all of V ∗, with at most a finite number of
singularities, proving the claim. Now, let v be a vector field on V singular at
the xi’s and at a (possibly empty) finite set of other points xr+1, . . . , xr+s.
By Theorem 3.2.2 one has:

r+s∑

i=1

IndGSV(v, xi) = χ(V ) + (−1)n
r∑

i=1

μi.

Since the singularities of V are all isolated, Theorem 5.5.1 above says that in
the above formula, all GSV indices can be considered to be virtual indices.
Finally Theorem 5.4.1 tells us that the total sum of virtual indices equals∫
V cn(τ).

Note that we need only the compactness of V but not of M .

Remark 5.6.1. 1. If V is nonsingular, we have cn(τV ) = cn(TV ). Hence the
formula in Theorem 5.6.3 reduces to the “Gauss-Bonnet formula”

∫

V

cn(V ) = χ(V ).

2. If V is a complete intersection in M = CP
n+k, N is determined by its

multi-degree (d1, . . . , dk) and we have (cf. e.g., [84, §22])
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∫

V

cn(τ) =

[

(1 + h)n+k+1 ·
k∏

i=1

di
1 + di h

]

n

, (5.6.4)

where h denotes the first Chern class of the hyperplane bundle and [ ]n the
coefficient of hn in [ ]. Thus we may compute χ(V ) from Theorem 5.6.3.

Let V0 be a nonsingular complete intersection in CP
n+k of dimension n

with the same multi-degree as V . Then we have χ(V0) =
∫
V0

cn(V0), which
is also given by the right hand side of (5.6.4). Hence we have the following
formula, which is readily proved by a direct argument as well (cf. [45, Ch.5,
(4.4) Corollary]) :

χ(V ) = χ(V0) + (−1)n+1
s∑

i=1

μ(V, pi).

3. A generalized Milnor number is defined for each compact connected com-
ponent of the singular set of a hypersurface and a formula for the sum of these
numbers is proved in [127]. The formula coincides with the one in Theorem
5.6.3, if the singularities are isolated. See also [130].

5.7 An Integral Formula for the Virtual Index

In this section, we give an integral formula for the virtual index of a holo-
morphic vector field at an isolated singular point. This is done in [111] and
is a special case of more general residue theory for holomorphic vector fields.

Since the problem is local, let Û be a neighborhood of the origin 0 in
Cn+k and V a complete intersection in Û defined by h1 = · · · = hk = 0,
with isolated singularity at 0. Let v̂ be a holomorphic vector field on Û ,
which is tangent to and nonsingular on V \ {0}. We may choose a coordinate
system (z1, . . . , zn+k) on Û (see Theorem 6.3.1 below) so that, if we write as
v̂ =

∑n+k
i=1 ai

∂
∂zi

, the set of common zeros of a1, . . . , an, h1, . . . , hk consists
of only 0. Let A denote the (n + k) × (n + k) matrix whose (i, j) entry
is ∂ai

∂zj
and C the k × k matrix whose (i, j) entry cij is determined by the

“tangency condition” v̂(hi) =
∑k

i=1 cijhj . Let λn = [c(A) · c(C)−1]n denote
the coefficient of tn in the power series expansion of

det(I + tA) · det(I + tC)−1.

With these, we have the following theorem ([111]):

Theorem 5.7.1. The virtual index at 0 of the restriction v of v̂ to V is
given by
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IndVir(v, 0) =
1

(2π
√
−1)n

∫

Γ

λn dz1 ∧ · · · ∧ dzn
a1 · · · an

,

where Γ is the n-cycle in V given by

Γ = { q ∈ Û ∩ V | |ai(q)| = εi, i = 1, . . . , n }

for small positive numbers εi. It is oriented so that dθ1 ∧ · · · ∧ dθn ≥ 0,
θi = arg ai.

This is a special case of a more general formula for the residues of virtual
tangent bundle, see Theorem 6.3.11 below.

Example 5.7.1. Let d1, . . . , dn+1 be nonzero rational numbers and f a polyno-
mial in (z1, . . . , zn+1). We say that f is a weighted homogeneous polynomial of
type (d1, . . . , dn+1) if it is a linear combination of monomials zp11 · · · z

pn+1
n+1 such

that
∑n+1
i=1 pi/di = 1. This is equivalent to saying that there exist nonzero

integers q1, . . . , qn+1 and a positive integer d such that

f(tq1z1, . . . , t
qn+1zn+1) = td f(z1, . . . , zn+1).

In this case, di = d/qi, i = 1, . . . , n + 1.
Let V be a hypersurface in C

n+1 = {(z1, . . . , zn+1)} defined by a weighted
homogeneous polynomial f of type (d1, . . . , dn+1) with isolated singularity at
the origin 0. For the holomorphic vector field v̂ =

∑n+1
i=1 zi/di ·∂/∂zi, we have

v̂(f) = f and thus V is invariant by v̂. Let v denote the vector field on the
nonsingular part of V induced from v̂. We assume that f is regular in zn+1.
This implies that dn+1 is a positive integer and f is regular in zn+1 of order
dn+1. If we let ai = zi/di, i = 1, . . . , n + 1, we have V (a1, . . . , an, f) = {0}.
Using the formula in Theorem 5.7.1, we compute

IndVir(v, 0) = 1 + (−1)n(d1 − 1)(d2 − 1) · · · (dn+1 − 1).

Note that, since v is transverse to the boundary of the Milnor fiber of f ,
IndVir(v, 0) is also equal to the Euler number 1 + (−1)nμ(V, 0) of the Milnor
fiber, where μ(V, 0) denotes the Milnor number of V at 0. Thus we reprove
the formula

μ(V, 0) = (d1 − 1)(d2 − 1) · · · (dn+1 − 1)

for the Milnor number ([122]).

Remark 5.7.1. Yayoi Nakamura (Kinki University, Osaka, Japan) developed
a systematic computer program to calculate Grothendieck residues. She used
it and the formula of Theorem 5.7.1 to compute the virtual index (i.e., GSV
index) of certain holomorphic vector fields, given as examples in [17]. She
obtained the same numbers as the ones in [17] (exposed during the in Russian-
Japanese Conference November 2007, Tokyo).



Chapter 6

The Case of Holomorphic Vector Fields

Abstract We have seen that for vector fields, there are indices such as the
Poincaré–Hopf index and the virtual index, that arise from localizations of
certain Chern classes. If the vector field is holomorphic, the localization the-
ory becomes richer because of the Bott vanishing theorem, and this produces
further interesting residues. This theory can be developed for general sin-
gular foliations on certain singular varieties. We consider here the case of
holomorphic vector fields and the slightly more general case of one dimen-
sional singular foliations. We refer to [156] for a systematical treatment of
the general case.

Here we have three types of residues:
(1) Baum–Bott residues and generalizations to singular varieties,
(2) Camacho–Sad index and various generalizations,
(3) Variations and generalizations.

In all the above cases the residues arise from a Bott type vanishing theo-
rem, which in turn comes from an action of the vector field or the foliation
on some vector bundle or virtual bundle. The residues of type (1) were first
introduced by R. Baum and P. Bott in [13,14]. In general these arise from the
action of the foliation on the normal sheaf of the foliation. The Camacho–Sad
index (2) was introduced in [42] and was effectively used to prove the exis-
tence of a separatrix at a singular point of a holomorphic vector field on the
complex plane. Nowadays there are many generalizations of this index, see
Remark 6.3.3 below. These residues arise from the action of the foliation on
the normal bundle of an invariant subvariety. The residues of type (3) were
first introduced by B. Khanedani and T. Suwa in [93] and generalized in
[113]; see also the related articles [39] and [40] by M. Brunella. These type of
residues arise from the action of the foliation on the ambient tangent bundle.
These three types of residues are listed above in historical order, but they
are explained below in the reversed order, for logical reasons.

In each case, the residue at an isolated singularity can be expressed in
terms of a Grothendieck residue on singular variety.

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 6, 97
c© Springer-Verlag Berlin Heidelberg 2009
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6.1 Baum–Bott Residues of Holomorphic Vector Fields

Let M be a complex manifold of dimension m. For a holomorphic vector field
(holomorphic section of TM) v on M , we set

S(v) = { p ∈M | v(p) = 0}

and call it the singular set of v. It is an analytic variety in M . We set M0 =
M \ S(v).

Definition 6.1.1. We say that a holomorphic vector bundle E on M0 is a
holomorphic v-bundle, if it admits a holomorphic action of v, i.e., if there
exists a C-linear map

αv : A0(M0, E) −→ A0(M0, E)

satisfying the following conditions, for f in A0(M0) and s in A0(M0, E):
(1) αv(fs) = v(f)s + fαv(s) and
(2) αv(s) is holomorphic if s is.

Definition 6.1.2. We say that a connection ∇ for E is a v-connection if
(1) ∇s(v) = αv(s), for s ∈ A0(M0, E), and
(2) ∇ is of type (1, 0).

Here we recall that a connection ∇ for a holomorphic vector bundle E is
said to be of type (1, 0), if the entries of the connection matrix of ∇ with
respect to a holomorphic frame of E are forms of type (1, 0).

We quote the following theorem (cf. [14, 19, 156]):

Theorem 6.1.1. (Bott vanishing theorem I) In the above situation, if ∇ is
a v-connection for E, for a homogeneous symmetric polynomial ϕ of degree
m, one has:

ϕ(∇) ≡ 0.

Note that a similar result holds for the difference form of a finite number
of connections and for families of v-connections of virtual bundles.

We see that TM0 becomes a holomorphic v-bundle by the action

αv : A0(M0, TM0) −→ A0(M0, TM0)

given by αv(w) = [v, w]. Note that there exists a v-connection which is
v-trivial.

We will see that, for a homogeneous symmetric polynomial ϕ of degree m,
the class ϕ(TM) is localized at S(v). Here the vector field v is the “geometric
object” of Sect. 1.6.2, a “special connection” is a v-connection and the relevant
“vanishing theorem” is Theorem 6.1.1.
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Set S = S(v). Then from the arguments in Sect. 1.6.2, we have a class in
H2m(M,M \ S; C), which we denote by ϕS(TM, v) and call the localization
of ϕ(TM) by v at S. It is sent to ϕ(TM) by the canonical homomorphism
j∗ : H2m(M,M \ S; C)→ H2m(M, C).

Definition 6.1.3. Suppose S = S(v) is compact. The Baum–Bott residue
Resϕ(v, TM ;S) (sometimes abbreviated as Resϕ(v, S)) is the image of the
class ϕS(TM, v) by the Alexander isomorphism

H2m(M,M \ S; C) ∼−→ H0(S, C).

The residue Resϕ(v, TM ;S) is a complex number given by the right hand
side of (1.6.4).

If S has only a finite number of connected components (Sλ)λ, we have the
residue Resϕ(v, TM ;Sλ) for each λ.

The above residues are originally introduced in [13, 14], where they are
defined using forms with compact support.

From the above argument and Theorem 1.6.5, we have the following
theorem.

Theorem 6.1.2. In the above situation,

(1) For each connected component Sλ of S(v), we have a well-defined residue
Resϕ(v, TM ;Sλ).

(2) If M is compact,

∑

λ

Resϕ(v, TM ;Sλ) =
∫

M

ϕ(TM).

Remark 6.1.1. We may choose the connection ∇0 above so that it is also
v-trivial. Thus, if ϕ = cm, the residue Rescm(v, TM ;S) coincides with the
Poincaré–Hopf index; Rescm(v, TM ;S) = IndPH(v, S) and the formula in the
above theorem becomes the Poincaré–Hopf formula.

Now we compute the residue at an isolated singular point. In the definition
of the residue, if S consists of a point, we may choose as U a coordinate
neighborhood so that TM is trivial on U . Since the problem is local, we
assume that U is a neighborhood of the origin 0 in Cm = {(z1, . . . , zm)} and
that S = {0}. We write the vector field v explicitly as

v =
m∑

i=1

ai
∂

∂zi

with ai holomorphic functions on U and set A = (∂ai/∂zj).
In general, for a square matrix H whose entries are holomorphic functions

near 0 and for elementary symmetric functions σi of m variables, we define
the holomorphic functions σi(H) by
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det(I + tH) = 1 + tσ1(H) + · · ·+ tmσm(H).

We set ϕ(H) = P (σ1(H), . . . , σm(H)) for a symmetric polynomial ϕ =
P (σ1, . . . , σm).

With these we have the following theorem, which is also originally due to
[13,14], where it is proved in the context of forms with compact support. See
[156, Ch.III, Theorem 5.5] for a proof using the Čech-de Rham cohomology,
the technique being originally due to [110].

Theorem 6.1.3. In the above situation, for a homogeneous symmetric poly-
nomial ϕ of degree m,

Resϕ(v, 0) = Res0

[
ϕ(A)dz1 ∧ · · · ∧ dzm

a1, . . . , am

]

.

Remark 6.1.2. 1. The above definition of the matrix ϕ(H) differs from that
in [156] by a normalization constant, i.e., in [156], it is defined as ϕ(H) =
P (c1(H), . . . , cm(H)), ci(H) =

(√
−1/2π

)i
σi(H).

2. In particular, if ϕ = cm =
(√
−1/2π

)m
σm, noting that

σm(A) dz1 ∧ · · · ∧ dzm = det(A) dz1 ∧ · · · ∧ dzm = da1 ∧ · · · ∧ dam,

we have

Rescm(v, 0) = Res0

[
da1 ∧ · · · ∧ dam

a1, . . . , am

]

,

which represents the Poincaré–Hopf index IndPH(v, 0) of v at 0 (cf. Example
1.6.2).

Example 6.1.1. Let v be the vector field on Cm = {(z1, . . . , zm)} given by

v =
m∑

i=1

λizi
∂

∂zi
, λi ∈ C.

Then, since A in this case is the diagonal matrix with diagonal entries
λ1, . . . , λm, the residue with respect to a polynomial ϕ of degree m is given by

Resϕ(v, 0) =
ϕ(λ1, . . . , λm)

λ1 · · ·λm
.

Thus, in general, the Baum–Bott residues are not necessarily integers (and
even not real numbers).
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6.2 One-Dimensional Singular Foliations

On complex manifolds, we encounter “one-dimensional foliations” more often
than global holomorphic vector fields and the generalization of the previous
theory to this case is not difficult.

Let M be a complex manifold of dimension m. First we give the following
definition.

Definition 6.2.1. A dimension one singular holomorphic foliationF on M is
determined by a system {(Uα, vα, fαβ)}, where {Uα} is an open covering of M ,
vα is a holomorphic vector field on Uα, for each α, and fαβ is a nonvanishing
holomorphic function on Uα ∩ Uβ , for each pair (α, β), such that

vβ = fαβvα on Uα ∩ Uβ. (6.2.1)

Let F = {(Uα, vα, fαβ)} be a one-dimensional foliation. We call vα a gen-
erator of F on Uα. If we denote by S(vα) the set of zeros of vα on Uα, since
S(vα) and S(vβ) coincide in Uα∩Uβ by (6.2.1), the union

⋃
α S(vα) is an ana-

lytic set in M , which we call the singular set of the foliation F and denote by
S(F). On M \S(F), F defines a nonsingular foliation of dimension one. The
integral curves of vα in Uα \ S(vα) patch together to obtain a decomposition
of M \ S(F) into a disjoint union of one-dimensional submanifolds (leaves
of the foliation). Since the system {fαβ} satisfies the cocycle condition, it
determines a line bundle, which we denote by F and call the tangent bundle
of the foliation. We have a vector bundle homomorphism

ι : F −→ TM,

which assigns to a section s of F represented by a collection (fα) of holomor-
phic functions fα the vector field v = fαvα, which is independent of α by
(6.2.1). The homomorphism ι fails to be injective exactly on S(F). Hence on
M0 = M \ S(F), we have the quotient bundle NF0 = TM0/F0 (the normal
bundle of the foliation), where F0 = F |M0 , so that we have the following
exact sequence on M0 :

0 −→ F0
ι−→ TM0

η−→ NF0 −→ 0. (6.2.2)

We call TM − F the virtual normal bundle of the foliation.
In the case of one-dimensional foliations, the relevant vanishing theorem

comes from an “action” of F0.

Definition 6.2.2. Let F0 be as above. An action of F0 on a holomorphic
vector bundle E over M0 is a C-bilinear map

α : A0(M0, F )×A0(M0, E) −→ A0(M0, E)
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satisfying the following conditions, for f in A0(M0), u and v in A0(M0, F )
and s in A0(M0, E) :
(1) α([u, v], s) = α(u, α(v, s)) − α(v, α(u, s)),
(2) α(fu, s) = fα(u, s),
(3) α(u, fs) = u(f)s + fα(u, s) and
(4) α(u, s) is holomorphic whenever u and s are.

A vector bundle E with an action of F0 is called an F0-bundle.

Definition 6.2.3. Let α be an action of F0 on E. An F0-connection (or
α-connection, if it is necessary to specify the action) for E is a connection for
E which satisfies the following conditions:
(1) ∇s(u) = α(u, s), for s ∈ A0(M0, E) and u ∈ A0(M0, F ), and
(2) ∇ is of type (1, 0).

Remark 6.2.1. Let v be a nonvanishing holomorphic vector field on M0 and
Fv the subbundle of TM0 spanned by v. Let E be a holomorphic vector
bundle and suppose we have an action of v on E (cf. Definition 6.1.1). Then
E becomes an Fv-bundle with the action α given by

α(fv, s) = fαv(s).

(Note that every element u of A0(M0, F ) is of the form u = fv for some
f ∈ A0(M0).) In this case a v-connection is an Fv-connection.

We also have the following

Theorem 6.2.3. (Bott vanishing theorem II) In the above situation, if ∇ is
a F0-connection for E, then, for a homogeneous symmetric polynomial ϕ of
degree m, one has:

ϕ(∇) ≡ 0.

Now we see that the map

α : A0(M0, F0)×A0(M0, NF0) −→ A0(M0, NF0)

defined by α(v, η(w)) = η([v, w]) is well-defined and makes NF0 an F0-bundle.
Let νF = TM − F be the virtual normal bundle of the foliation F . We

will see that, for a homogeneous symmetric polynomial ϕ of degree m, the
characteristic class ϕ(νF ) is localized at S(F).

Let S = S(F), U0 = M \ S and U1 an open neighborhood of S in M . Let
∇•

0 = (∇′
0,∇0) be a pair of connections for F and TM , respectively, on U0

and ∇•
1 = (∇′

1,∇1) one for F and TM on U1. Then ϕ(νF ) is represented by
the cocycle

ϕ(∇•
∗) = (ϕ(∇•

0), ϕ(∇•
1), ϕ(∇•

0,∇•
1))

in A2m(Û). Now let∇ be an F0-connection for NF0 on U0 and choose (∇′
0,∇0)

so that the triple (∇′
0,∇0,∇) is compatible with the sequence (6.2.2) on U0.

Then, by Proposition 5.2.1 and Theorem 6.2.3,
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ϕ(∇•
0) = ϕ(∇) = 0

and thus ϕ(∇•
∗) is in A2m(Û , U0) and it defines a class in H2m(M,M \S; C),

which we denote by ϕS(νF ,F) and call it localization of ϕ(νF ) by the foliation
F at S.

If S is compact, as in Sect. 1.6.2, we have the residue Resϕ(F , νF ;S) (also
called the Baum–Bott residue). We sometimes abbreviate it as Resϕ(F , S).
Moreover, if S has a finite number of connected components (Sλ)λ, we have
the residue Resϕ(F , νF ;Sλ) for each λ.

Let Rλ be a real 2m-dimensional manifold with C∞ boundary in U1 con-
taining Sλ in its interior and disjoint from the other components. Let also
R0λ = −∂Rλ. Then the residue Resϕ(F , νF ;S) is a complex number given by

Resϕ(F , νF ;Sλ) =
∫

Rλ

ϕ(∇•
1) +

∫

R0λ

ϕ(∇•
0,∇•

1). (6.2.4)

The above residues are also originally introduced in [13, 14], where the
residues are defined using forms with compact support.

From the above argument and Theorem 1.6.5, we have the following
theorem.

Theorem 6.2.5. In the above situation,

(1) For each connected component Sλ of S(F), we have a well-defined residue
Resϕ(F , νF ;Sλ), given by (6.2.4).

(2) If M is compact,

∑

λ

Resϕ(F , νF ;Sλ) =
∫

M

ϕ(νF ).

Remark 6.2.2. 1. Suppose there is a generator v of F in a neighborhood of
Sλ. Then, we may show ([156, Ch.III, Remark 7.7.1]) that

Resϕ(F , νF ;Sλ) = Resϕ(v, TM ;Sλ),

where the right hand side is the residue in Sect. 6.1. In particular, if
Sλ consists of a point p, then Resϕ(F , νF ; p) is given by the formula in
Theorem 6.1.3.

If F is generated by a global vector field, then F is trivial and the results
reduce to those in Sect. 6.1
2. Note that, in general, the bundle TM0 or F0 does not admit F0-actions
and that the bundle NF0 does not extend to a bundle on M . Thus the residue
Resϕ(F , νF ;S) is not of the type considered in the first part of Sect. 6.3.4 or
Sect. 6.3.3 below.
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3. The bundle map F → TM induces an injective map on the sheaf level with
quotient NF , which is the normal sheaf of the foliation. We have ϕ(νF ) =
ϕ(NF ). The residue theory for general singular foliation is developed using
the sheaf NF ([14, 156]).
4. See [147] for the case of manifolds with boundary.

6.3 Residues of Holomorphic Vector Fields
on Singular Varieties

Let M be a complex manifold of dimension m = n + k and V an analytic
variety of pure dimension n in M . If there is a holomorphic vector field, or
more generally a one-dimensional singular foliation, leaving V invariant, we
have three kinds of residues which we describe in the following subsections.
The residue at an isolated singularity is expressed in terms of Grothendieck
residue relative to the subvariety V .

6.3.1 Grothendieck Residues Relative to a Subvariety

Let Û be a neighborhood of 0 in Cn+k and V a subvariety of dimension n in Û
which contains 0 as at most an isolated singular point. Also, let f1, . . . , fn be
holomorphic functions on Û and V (f1, . . . , fn) the variety defined by them.
We assume that V (f1, . . . , fn)∩ V = {0}. For a holomorphic n-from ω on Û ,
the Grothendieck residue relative to V is defined by (e.g., [156, Ch.IV, 8])

Res0

[
ω

f1, . . . , fn

]

V

=
(

1
2π
√
−1

)n ∫

Γ

ω

f1 · · · fn
,

where Γ is the n-cycle in V given by

Γ = { q ∈ Û ∩ V | |fi(q)| = εi, i = 1, . . . , n }

for small positive numbers εi. It is oriented so that darg(f1) ∧ · · · ∧
darg(fn)≥ 0.

If k = 0, it reduces to the usual Grothendieck residue (cf. Sect. 1.6.5), in
which case we omit the suffix V .

If V is a complete intersection defined by h1 = · · · = hk = 0 in Û , we have

Res0

[
ω

f1, . . . , fn

]

V

= Res0

[
ω ∧ dh1 ∧ · · · ∧ dhk
f1, . . . , fn, h1, . . . , hk

]

.
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In the subsequent subsections, the following theorem ([112, Lemma 3])
is useful for expressing the residue in terms of the Grothendieck residue
as above.

Theorem 6.3.1. (Existence of a good coordinate system) Let (V, 0) be a
complete intersection in Cn+k and v̂ a holomorphic vector field on a neigh-
borhood of 0 in C

n+k. Suppose that S(v̂)∩V = {0}. Then there exists a local
coordinate system (z1, . . . , zn+k) about 0 such that, if we express v̂ as

v̂ =
n+k∑

i=1

ai(z1, . . . , zn+k)
∂

∂zi

and if we denote by (h1, . . . , hk) a system of defining functions of V near 0,
the set of common zeros of the holomorphic functions a1, . . . , an, h1, . . . , hk
consists only of 0.

Remark 6.3.1. In the above, it is not necessary to assume that v̂ is tangent
to Vreg.

6.3.2 Residues for the Ambient Tangent Bundle
(Generalized Variation)

Let M and V be as before and let v̂ be a holomorphic vector field on a
neighborhood of V . We say that v̂ leaves V invariant (or is logarithmic for
V , cf. [136]), if v̂ is tangent to the nonsingular part Vreg of V . Suppose v̂ is
such a vector field and let v be the vector field on Vreg induced from v̂. We
set S = S(v, V ) = S(v) ∪ Sing(V ). Then TM |V0 , V0 = V \ S is a v-bundle
with the action

αv : A0(V0, TM |V0) −→ A0(V0, TM |V0)

given as follows. For w ∈ A0(V0, TM |V0), taking its extension ŵ to some
neighborhood of V0, we set

αv(w) = [v̂, ŵ]|V0 . (6.3.2)

Then it does not depend on the extension ŵ and defines a holomorphic
action.

Let Û0, Û1, Û and Û = Û0 ∪ Û1 be as in Sect. 5.3. Because of this
action, the characteristic class ϕ(TM) in H2n

D (Û) is lifted to a class ϕ(TM, v̂)
in H2n

D (Û , Û0). Moreover, if S is compact, this localization give rise to a
residue, which we denote by Resϕ(v̂, TM |V ;S) instead of Resϕ(v, TM |V ;S),
since it depends on the extension v̂ of v. This residue is introduced in
[112, 3,Example 2], see also [113].

From Theorem 5.3.7, we have the following theorem.
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Theorem 6.3.3. In the above situation, for each connected component Sλ
of S(v, V ) and a homogeneous symmetric polynomial ϕ of degree n, we have
the residue Resϕ(v̂, TM |V ;Sλ) and, if V is compact,

∑

λ

Resϕ(v̂, TM |V ;Sλ) =
∫

V

ϕ(TM).

Now we assume that S consists of an isolated point p, v̂ is defined near
p and that V is a complete intersection near p. Let (z1, . . . , zn+k) be a lo-
cal coordinate system on M near p and let A be the Jacobian matrix of
(a1, . . . , an+k) with respect to (z1, . . . , zn+k). Then we have the following
formula (cf. [156, Ch. IV, Theorem 5.3]).

Theorem 6.3.4. In the above situation, if (z1, . . . , zn+k) is a coordinate sys-
tem as in Theorem 6.3.1,

Resϕ(v̂, TM |V ; p) = Resp

[
ϕ(A)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]

V

.

Now suppose more generally that we have a one-dimensional foliation F
on M leaving V invariant, i.e., every vector field locally defining F leaves
V invariant. We denote by FV the one-dimensional foliation induced on the
nonsingular part of V and set S = S(F , V ) = (S(F) ∩ V )) ∪ Sing(V ) and
V0 = V \ S(F , V ). We also set FV = F |V and FV0 = F |V0 . Recall that on
M0 there is a vector bundle NF0 and the exact sequence (6.2.2). The action
of F0 on NF0 induces an action of FV0 on NF0 |V0 . Thus the restriction to
V of characteristic class ϕ(νF ) of the virtual normal bundle νF = TM − F
of the foliation F for a homogeneous symmetric polynomial ϕ of degree n is
localized at the singular set S. Moreover, if S is compact, we have the residue
Resϕ(F , νF |V ;S).

From Theorem 5.3.7, we have the following

Theorem 6.3.5. In the above situation, for each connected component Sλ
of S(F , V ) and a homogeneous symmetric polynomial ϕ of degree n, we have
the residue Resϕ(F , νF |V ;Sλ) and, if V is compact,

∑

λ

Resϕ(F , νF |V ;Sλ) =
∫

V

ϕ(νF ).

Remark 6.3.2. 1. Suppose there is a vector field v̂ defining F on a neighbor-
hood Û of S in M . Then we have

Resϕ(F , νF |V ;S) = Resϕ(v̂, TM |V ;S).



6.3 Residues of Holomorphic Vector Fields on Singular Varieties 107

In particular, if S consists of a point p, then Resϕ(F , νF |V ; p) is given by
the formula in Theorem 6.3.4. If F is generated by a global vector field v̂,
then FV is trivial and the results reduce to those of v̂ for TM |V .

2. If n = k = 1, V = C is a (possibly singular) curve in a (nonsingular)
complex surface M . We have the residue essentially only for ϕ = c1 and
S(F , C) consists of isolated points. The residue Resc1(F , νF |C ; p) coincides
with the “variation” Var(F , C; p) introduced in [93] and Theorem 6.3.5 gives
a formula for the sum of the variations, which is proved in [93] by a different
approach.

6.3.3 Residues for the Normal Bundle (Residues
of Type Camacho–Sad)

The residues in this subsection are introduced in [112], generalizing the ones
already known in various special cases (cf. Remark 6.3.3 below).

In this section, we assume that V is an LCI of dimension n defined by a
section of a holomorphic vector bundle N over M . Recall that N |Vreg = NVreg ,
the normal bundle of the regular part Vreg. We set NV = N |V . Let v̂ be
a holomorphic vector field on a neighborhood of V in M which leaves V
invariant. Letting v be the vector field on (the regular part of) V induced by v̂,
we define the singular set S = S(v, V ) as before. Then NV0 , V0 = V \S(v, V ),
is a v-bundle with the action

αv : A0(V0, NV0) −→ A0(V0, NV0)

given as follows. Recall the exact sequence

0 −→ TVreg −→ TM |Vreg

π−→ NVreg −→ 0.

For ν ∈ A0(V0, NV0), we may write ν = π(ŵ|V0) with ŵ a section of TM
in a neighborhood of V0. Then we set

αv(ν) = π([v̂, ŵ]|V0). (6.3.6)

Then it does not depend on the choice of ŵ and defines a holomorphic action.
For a symmetric homogeneous polynomial ϕ of degree n, we have the local-
ization of ϕ(NV ) at S, which we denote by ϕ(NV , v̂), instead of ϕ(NV , v),
since it depends on the extension v̂ of v. Moreover, if S is compact, we have
the residue Resϕ(v̂, NV ;S). From Theorem 5.3.7, we have the following

Theorem 6.3.7. In the above situation, for each connected component Sλ
of S(v, V ) and a homogeneous symmetric polynomial ϕ of degree n, we have
the residue Resϕ(v̂, NV ;Sλ) and, if V is compact,
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∑

λ

Resϕ(v̂, NV ;Sλ) =
∫

V

ϕ(N).

Now we assume that S consists of an isolated point p. If we let f =
(f1, . . . , fk) be a system of defining functions of V near p, the condition that
V is invariant by v̂ is expressed as

v̂(fi) =
k∑

i=1

kijfj,

for some holomorphic functions kij ([136], [38]). Let K = (kij) and ϕ a
homogeneous symmetric polynomial of degree n. Then we have the following
formula (cf. [156, Ch. IV, Theorem 6.3]).

Theorem 6.3.8. In the above situation, if (z1, . . . , zn+k) denotes a coordi-
nate system as in Theorem 6.3.1,

Resϕ(v̂, NV ; p) = Resp

[
ϕ(K)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]

V

.

Now suppose we have a one-dimensional foliation F on M leaving V in-
variant. We denote by FV the one-dimensional foliation induced on Vreg and
set S = S(F , V ) = (S(F) ∩ V )) ∪ Sing(V ) and V0 = V \ S as before. Let
F be the tangent bundle of F and set FV0 = F |V0 as in Sect. 6.3.2. Then
we see that there is an action of FV0 on NV0 and, for a homogeneous sym-
metric polynomial ϕ of degree n, there is a localization ϕ(NV ,F) of ϕ(NV )
by F . Moreover, if S is compact, we have the residue Resϕ(F , NV ;S). From
Theorem 5.3.7, we have the following

Theorem 6.3.9. In the above situation, for each connected component Sλ
of S(F , V ) and a homogeneous symmetric polynomial ϕ of degree n, we have
the residue Resϕ(F , NV ;Sλ), and if V is compact,

∑

λ

Resϕ(F , NV ;Sλ) =
∫

V

ϕ(N).

Remark 6.3.3. 1. Suppose there is a vector field v̂ defining F on a neighbor-
hood Û of S in M . Then we have

Resϕ(F , NV ;S) = Resϕ(v̂, NV ;S).

In particular, if S consists of a point p, then Resϕ(F , NV ; p) is given by
the formula in Theorem 6.3.8. If F is generated by a global vector field v̂,
then F is trivial and the results reduce to those of v̂ for NV .
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2. If n = k = 1, V = C is a (possibly singular) curve in a (nonsingular)
complex surface M . We have the residue essentially only for ϕ = c1 and
S(F , C) consists of isolated points. If C is nonsingular at p, the residue
Resc1(F , NC ; p) coincides with the index defined by C. Camacho and P. Sad
in [42] and, in general, it coincides with the one defined by T. Suwa in [154],
which is also equal to the one defined by A. Lins Neto in [114], provided C
is locally irreducible at p. Also, if C is compact, we have, by Theorem 6.3.9,

∑

p∈S(F ,C)

Resc1(F , NC ; p) =
∫

C

c1(N) = C2,

where C2 denotes the self-intersection number of C in X . This is the for-
mula proved in [42] when C is nonsingular and is the one proved in [154]
in general. Equivalent formulas are obtained for X = CP

2 in [114]. We call
Resc1(F , NC ; p) the Camacho–Sad index and also denote it by IndCS(F , C; p).

3. If V is nonsingular, Theorems 6.3.7, 6.3.8 and 6.3.9 reduce to the ones
in [110]. In particular, the formula in 6.3.8 becomes as follows. If p is a
nonsingular point of V , we may take a local coordinate system (z1, . . . , zn+k)
so that f1 = zn+1, . . . , fk = zn+k define V near p. Then the invariance
condition for V by v̂ is that an+1, . . . , an+k vanish on V . Thus (z1, . . . , zn+k)
is a good coordinate system in the sense of Theorem 6.3.1. On the other
hand, kij and ∂an+i/∂zn+j are equal on V .

Let us denote by A the Jacobian matrix ∂(a1, . . . , an+k)/∂(z1, . . . , zn+k)
and by A1 and A2 the Jacobian sub-matrices

A1 = ∂(a1, . . . , an)/∂(z1, . . . , zn)
A2 = ∂(an+1, . . . , an+k)/∂(zn+1, . . . , zn+k).

We recover the formula

Resϕ(F , NV ; p) = Resp

[
ϕ(A2)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]

V

in [110, Théorème 1].

4. Theorem 6.3.9 is generalized to the case of higher dimensional singular
foliations on M (cf. B. Gmira [67], J.-P. Brasselet in ([115], Remark 1), A. Lins
Neto [115], D. Lehmann [110] and for a general setting T. Suwa [156]).

5. In [1], M. Abate proved a Camacho–Sad type index theorem for fixed
curves of holomorphic self-maps of complex surfaces and used it to prove the
existence of a parabolic curve at a fixed point of a holomorphic self-map of the
complex plane. Then it was realized by M. Abate, F. Bracci and F. Tovena
that the index theorem can be proved and generalized in the framework of
the residue theory for holomorphic foliations as explained in this section, see
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[2,21,24]. Furthermore, in [3] the residue theories for holomorphic maps and
for foliations are unified and much generalized using a version of vanishing
theorem finer than the one we expect to have by assuming the involutiveness.

In [22,23], the residue theory for fixed subvarieties of holomorphic self-map
of certain singular varieties is developed. It is used to prove the existence of
a parabolic curve at a fixed point of a holomorphic self-map of surfaces with
certain type of singularity.

6.3.4 Residues for the Virtual Tangent Bundle
(Singular Baum–Bott)

Let M , V , v̂, v and S = S(v, V ) be as in the previous section. Recall that
the virtual tangent bundle of V is defined by τV = TM |V − NV . From the
actions of v on the bundles TM |V and NV given by (6.3.2) and (6.3.6),
respectively, we have the localization ϕ(τV , v̂) of ϕ(τV ) for a symmetric ho-
mogeneous polynomial of degree n. Moreover, if S is compact, we have the
residue Resϕ(v̂, τV ;Sλ) for each connected component Sλ of S. From Theorem
5.3.7, we have the following theorem ([156, Ch.IV, Theorem 7.1]).

Theorem 6.3.10. In the above situation, for each connected component Sλ
of S(v, V ) and a homogeneous symmetric polynomial ϕ of degree n, we have
the residue Resϕ(v̂, τV ;Sλ), and if V is compact,

∑

λ

Resϕ(v̂, τV ;Sλ) =
∫

V

ϕ(τ).

Now we assume that Sλ consists of an isolated point p and that we have
a vector field v̂ defined in a neighborhood of p in M . For a homogeneous
symmetric polynomial ϕ of degree n, we write ϕ =

∑
� ϕ� ·ϕ′

� so that ϕ(τ) =∑
� ϕ�(TM) · ϕ′

�(N) and set ϕ(H) :=
∑
� ϕ�(A) · ϕ′

�(K). Then we have the
following formula (cf. [156, Ch. IV, Theorem 7.2]).

Theorem 6.3.11. In the above situation, if (z1, . . . , zn+k) denotes a coordi-
nate system as in Theorem 6.3.1,

Resϕ(v̂, τV ; p) = Resp

[
ϕ(H)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]

V

.

In particular, if ϕ = cn, the above formula coincides with the formula in
Theorem 5.7.1 (cf. Proposition 6.3.1 below). These residues together with the
formulas as above are given in [111].

Remark 6.3.4. If p is a regular point of V , then we may take a coordinate
system (z1, . . . , zn+k) about p as in Remark 6.3.3, 3. Then, on V , K = A2
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and ∂ap+i/∂zj = 0 for i = 1, . . . , k and j = 1, . . . , n. Hence the formula in
Theorem 6.3.11 reduces to

Resϕ(v̂, τV ; p) = Resp

[
ϕ(A1)dz1 ∧ · · · ∧ dzn

a1, . . . , an

]

V

,

which is the Baum–Bott residue (Theorem 6.1.3) on V .

In fact, for this residue, we only need a vector field on the nonsingular
part of V . Thus, suppose we are given a holomorphic vector field v on the
regular part of V . We denote by S = S(v, V ) the union of Sing(V ) and the
singular set S(v) of v and set V0 = V \S. Let U , U0 and Û1 be as before. On
V0, TV0 is a v-bundle with the action given in Sect. 6.1. This action defines
a localization ϕ(τV , v) of ϕ(τV ) at S. If S is compact, we have the residue
Resϕ(v, τV ;Sλ) for each connected component Sλ of S.

Note that, if we have an extension v̂ of v, we have

Resϕ(v̂, τV ;Sλ) = Resϕ(v, τV ;Sλ).

Note also that, if Sλ is in the regular part of V , then, we have

Resϕ(v, τV ;Sλ) = Resϕ(v, TV ;Sλ),

the residue in Sect. 6.1.

Theorem 6.3.12. Let v be a holomorphic vector field on the regular part
Vreg of a variety V of dimension n as above and ϕ a homogeneous symmetric
polynomial of degree n. For each connected component Sλ of S(v, V ), we have
the residue Resϕ(v, τV ;Sλ), and if V is compact,

∑

λ

Resϕ(v, τV ;Sλ) =
∫

V

ϕ(τ).

We also have the following (cf. [156, Ch.IV, Proposition 7.8])

Proposition 6.3.1. In the above situation,

Rescn(v, τV ;Sλ) = IndVir(v, Sλ).

Now suppose we have a one-dimensional foliation F on M leaving V in-
variant. We denote by FV the one-dimensional foliation induced on Vreg and
set S = S(F , V ) = (S(F) ∩ V )) ∪ Sing(V ), M0 = M \ S(F) and V0 = V \ S.
Let F be the tangent bundle of F and set F0 = F |M0 and FV0 = F |V0 as
before. Recall that NF0 |V0 and NV0 are FV0 -bundles with the actions given
in Sects. 6.3.2 and 6.3.3. If we set NFV0

= TV0/FV0 , it is also an FV0 -bundle
with the action given in Sect. 6.2.
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We try to compute the restriction to V of the class ϕ(TM −N −F ) of the
virtual bundle TM−N−F = νF −N = τ −F for a homogeneous symmetric
polynomial ϕ of degree n. In fact there are two ways to localize the class.
Namely, we have the residue Resϕ(F , (νF − N)|V ;S) of F on (νF − N)|V ,
which come from the actions of FV0 on NF0 |V0 and NV0 , and the residue
Resϕ(FV , (τ − F )|V ;S) of FV on (τ − F )|V , which comes from the action
of FV0 on NFV0

. However, it can be shown that in fact the two residues are
equal ([156, Ch.IV, (7.11)]):

Resϕ(F , (νF −N)|V ;S) = Resϕ(FV , (τ − F )|V ;S). (6.3.13)

Denoting by νFV the restriction (TM−N−F )|V = (νF−N)|V = (τ−F )|V ,
we denote the above residue by Resϕ(FV , νFV ;S). We quote the following
theorem from [156, Ch.IV, Theorem 7.12].

Theorem 6.3.14. In the above situation, for each connected component Sλ
of S(F , V ) and a homogeneous symmetric polynomial ϕ of degree n, the
residue Resϕ(FV , νFV ;Sλ) is defined, and if V is compact,

∑

λ

Resϕ(FV , νFV ;Sλ) =
∫

V

ϕ(τ − F ).

Remark 6.3.5. 1. Suppose there is a vector field v̂ defining F on a neighbor-
hood Û of S in M . Then we have

Resϕ(F , (νF −N)|V ;S) = Resϕ(v̂, τV ;S).

In particular, if S consists of a point p, the residue

Resϕ(FV , νFV ; p) = Resϕ(F , (νF −N)|V ; p)

is given by the formula in Theorem 6.3.11. If F is generated by a global vector
field v̂, then F is trivial and the results reduce to those of v̂ for τV .

2. Note that, in general, the bundle TM |V0 or FV0 does not admit FV0 -actions
and that the bundle NF0 |V0 or NFV0

does not extend to a bundle on V .

3. If V is nonsingular, the virtual bundle νFV is equivalent to TV − FV and
the above theory reduces to the one in Sect. 6.2.

4. Theorem 6.3.14 is generalized to the case of higher dimensional singular
foliations on M (see [156, Ch.VI]).

From Proposition 6.3.1, (6.3.13) and Remark 6.3.5, 1, we have the following:

Proposition 6.3.2. Let M , V and F be as above and let S be a compact
connected component of S(F , V ). Suppose there is a vector field v̂ defining F
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on a neighborhood Û of S in M and denote by v the vector field on Û ∩ Vreg

induced from v̂. Then IndVir(v, S) does not depend on the choice of such a
vector field v̂ and is an invariant of FV .

In particular, considering the case S = {p}, from Theorem 5.5.1, we have:

Corollary 6.3.1. In the above situation, IndGSV(v, p) is an invariant of the
foliation FV .

In view of the above, we denote IndGSV(v, p) by IndGSV(FV , p). The fol-
lowing theorem is a consequence of Theorems 5.5.1, 5.6.3 and 6.3.14 and
Proposition 6.3.1.

Theorem 6.3.15. Let M , V and F be as above. Assume that V is compact
and that S(F , V ) consists of a finite number of points p1, . . . , pr. Then

r∑

i=1

IndGSV(FV , pi) =
∫

V

cn(τ − F ).

Remark 6.3.6. 1. If n = k = 1, V = C is a (possibly singular) curve in
a (nonsingular) complex surface. We have c1(τ − F ) = c1(τ) − c1(F ) and∫
C c1(τ) =: χ ′(C), the virtual Euler–Poincaré characteristic of C. Hence the

above formula becomes

r∑

i=1

IndGSV(FC , pi) = χ ′(C)−
∫

C

c1(F ),

which is proved independently in [93] and by Brunella [39], by different
approaches.

There are some interesting relations among the residues in Sects. 6.3.2–
6.3.4. A general formula is given in [156, Ch.IV, 7]. Here we give a formula
in the case n = k = 1. Thus V = C is a possibly singular curve in (a
nonsingular) surface M . In this case, we have

IndGSV(FC , p) = Var(F , C; p)− IndCS(F , C; p).

There are explicit examples of the residues in [156, Ch.IV, 8]. Example 5.7.1
is one of them.



Chapter 7

The Homological Index and Algebraic
Formulas

Abstract We have already defined and studied several indices of vector
fields on singular varieties, each of them being related to some property of
the index of Poincaré–Hopf, or to some extension of the tangent bundle to the
case of singular varieties. There is another line of research with remarkable
works by various authors, that originates in the well-known fact (cf. Example
1.6.2) that for a holomorphic vector field v in Cn with an isolated singularity
at 0, the local Poincaré–Hopf index satisfies:

IndPH(v, 0) = dim OCn,0/(a1, · · · , an), (7.0.1)

where (a1, · · · , an) is the ideal generated by the components of v. In the real
analytic setting, the equivalent statement is given by the formula of Eisenbud–
Levin–Khimshiashvili, expressing the local Poincaré–Hopf index through the
signature of a certain quadratic form.

These facts motivated the search for algebraic formulas for indices of vec-
tor fields on singular varieties. A major contribution in this direction was
given by V. I. Arnold for gradient vector fields. There are also significant
contributions by various authors, such as X. Gómez-Mont, S. Gusein-Zade,
W. Ebeling and others.

In this chapter we give a glance of some of the research in this direction, and
we refer to the literature for more on that topic. We discuss first the homolog-
ical index for holomorphic vector fields, introduced by X. Gómez-Mont and
further studied by himself in collaboration with Ch. Bonatti, P. Mardešić,
L. Giraldo, H.-C. G. von Bothmer and W. Ebeling. In the last section of
this chapter we discuss briefly the Eisenbud–Levin–Khimshiashvili formula
for the index of real analytic vector fields, and its generalization to singular
varieties.

The homological index has the important property of being defined for
holomorphic vector fields on arbitrary complex analytic isolated singularity
germs (V, 0). When the germ (V, 0) is a complete intersection, the homologi-
cal index coincides with the GSV-index, by [17, 68].

If we now let V be a compact complex variety with isolated singularities,
one has a well-defined notion of the total homological index for holomorphic

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 7, 115
c© Springer-Verlag Berlin Heidelberg 2009
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vector fields on V with isolated singularities, defined in the usual way. This
total index is independent of the choice of vector field, being therefore an
invariant of V . If V is a local complete intersection as in Sect. 5.4, then the
corresponding global invariant is the 0-degree Fulton–Johnson class of V (see
in Chap. 11).

It would be interesting to know what the homological index measures for
singular germs and varieties which are not local ICIS. This is related with
extending the notion of Milnor number to isolated singularity germs which
are not complete intersections (see Chap. 9).

7.1 The Homological Index

The basic references for this section are the articles by Gómez-Mont and
various co-authors, see [17, 62–65,68–70]. See also [7, 92, 97].

An algebraic formula for the index of holomorphic vector fields on singular
varieties was given in [71], inspired by (7.0.1), but that formula applies only
under very stringent conditions: for holomorphic vector fields on a hypersur-
face germ V which are tangent to the fibers of a defining function f of V .

Using the fact that in the classical case, when the ambient space is smooth,
the Poincaré–Hopf local index can be interpreted as the Euler-characteristic
of a certain Koszul complex (see [75]), Gómez-Mont introduced in [68] a
notion of the homological index of holomorphic vector fields. Let us explain
this invariant.

Let (V, 0) ⊂ (Cm, 0) be a germ of a complex analytic variety of pure
dimension n, which is regular on V \ {0}. So V is either regular at 0 or else
it has an isolated singular point at the origin. A vector field v on (V, 0) can
always be defined as the restriction to V of a vector field v̂ in the ambient
space which is tangent to V \ {0}; v is holomorphic if v̂ can be chosen to
be holomorphic. So we may write v as v = (a1, · · · , am) where the ai are
restriction to V of holomorphic functions on a neighborhood of 0 in (Cm, 0).

It is worth noting that given any space V as above, there are always holo-
morphic vector fields on V with an isolated singularity at 0. This nontrivial
fact is indeed a weak form of a stronger result ([16, p. 19]): in the space
Θ(V, 0) of germs of holomorphic vector fields on V at 0, those having an iso-
lated singularity form a connected, dense open subset Θ0(V, 0). Essentially
the same result implies also that every v ∈ Θ0(V, 0) can be extended to a
germ of holomorphic vector field in Cm with an isolated singularity, though
it can also be extended with a singular locus of dimension more that 0, a
fact that may be useful for explicit computations (c.f. the last part of the
following section).

A (germ of) holomorphic j-form on V at 0 means the restriction to V
of a holomorphic j-form on a neighborhood of 0 in Cm; two such forms in
Cm are equivalent if their restrictions to V coincide on a neighborhood of
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0 ∈ V . We denote by Ωj
V,0 the space of all such forms (germs); these are the

Kähler differential forms on V at 0. So Ω0
V,0 is the local structure ring O(V,0)

of holomorphic functions on V at 0 and each Ωj
V,0 is an Ω0

V,0-module. Notice
that if the germ of V at 0 is determined by (f1, · · · , fk) then one has:

Ωj
V,0 := Ωj

Cm,0/(f1Ω
j
Cm,0 +df1∧Ωj−1

Cm,0 , . . . , fkΩ
j
Cm,0 +dfk∧Ωj−1

Cm,0), (7.1.1)

where d is the exterior derivative.
Now, given a holomorphic vector field v̂ at 0 ∈ Cm with an isolated singu-

larity at the origin, and a differential form ω ∈ Ωj
Cm,0, we can always contract

ω by v in the usual way, thus getting a differential form iv(ω) ∈ Ωj−1
Cm,0. If

v = v̂|V is tangent to V , then contraction is well defined at the level of
differential forms on V at 0 and one gets a complex (Ω•

V,0, v):

0 −→ Ωn
V,0 −→ Ωn−1

V,0 −→ · · · −→ OV,0 −→ 0, (7.1.2)

where the arrows are contraction by v and n is the dimension of V ; of course
one also has differential forms of degree > n, but those forms do not play a
significant role here. We consider the homology groups of this complex:

Hj(Ω•
V,0, v) = Ker (Ωj

V,0 → Ωj−1
V,0 )/Im (Ωj+1

V,0 → Ωj
V,0)

The first observation in [68] is that if V is regular at 0, so that its germ at 0
is that of Cn at the origin, and if v = (a1, · · · , an) has an isolated singularity
at 0, then this is the usual Koszul complex. In that case, its homology groups
vanish for j > 0, while

H0(Ω•
V,0, v) ∼= OCn,0

/
(a1, · · · , an).

In particular the complex is exact if v(0) �= 0. Since the contraction maps are
OV,0-module maps, this implies that if V has an isolated singularity at the
origin, then the homology groups of this complex are concentrated at 0, and
they are finite dimensional because the sheaves of Kähler differentials on V
are coherent. Hence it makes sense to define, for V a complex analytic germ
with an isolated singularity at 0 and v a holomorphic vector field on V with
an isolated singularity at 0:

Definition 7.1.1. The homological index Indhom(v, 0;V ) of the holomor-
phic vector field v on (V, 0) is the Euler characteristic of the above complex:

Indhom(v, 0;V ) =
n∑

i=0

(−1)ihi(Ω•
V,0, v),
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where hi(Ω•
V,0, v) is the dimension of the corresponding homology group as

a vector space over C.

We recall that an important property of the Poincaré–Hopf local index is
its stability under perturbations. This means that if we perturb v slightly
in a neighborhood of an isolated singularity, then this zero of v may split
into a number of isolated singularities of the new vector field v′, such that
the sum of indices of v′ at these singular points equals the index of v. If the
ambient space V has an isolated singularity at 0, then every vector field on V
necessarily vanishes at 0, since in the ambient space the vector field defines
a local flow with 0 as fixed point. Hence every perturbation of v producing
a vector field tangent to V must also vanish at 0, but new singularities may
arise with this perturbation. The homological index satisfies a stability under
this type of perturbations (called the “Law of Conservation of Number” in
[64, 68]):

Theorem 7.1.3. (Gómez-Mont [68, Theorem 1.2]) For every holomorphic
vector field v′ on V sufficiently close to v one has:

Indhom(v, 0;V ) = Indhom(v′, 0;V ) +
∑

IndPH(v′),

where the sum on the right runs over the singularities of v′ at regular points
of V near 0.

This theorem is a special case of the following general theorem of [64]:

Theorem 7.1.4. (Law of Conservation of Number) Let T and V be complex
analytic spaces with T reduced and locally irreducible, and let π : T × V → T
be the projection to the first factor. Let K∗ be a complex of OT×V coherent
sheaves,

0 −→ Kn −→ Kn−1 −→ · · · −→ K0 −→ 0,

where the sheaves Kj are OT -flat and the support of the homology sheaves
Hj(K∗) is π-finite. Then, for every (t0, p0) ∈ T × V there are neighborhoods
T ′ and V ′ of t0 and p0, respectively, such that for every t ∈ T ′ we have:

χ(K∗
t0,p0) =

∑

q∈V ′
χ(K∗

t,q),

where χ denotes the Euler characteristic of the homology groups (vector
spaces) of the corresponding complexes.

As mentioned before, it is proved in [17] that if the germ (V, 0) is an ICIS
then the homological and GSV indices coincide, a fact previously known
only for hypersurface germs (see [68]). Theorem 7.1.3 plays a key-role for
identifying these indices, as we explain below in the case of hypersurfaces.
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Remark 7.1.1. 1. Given V and v as above, the Schwartz index of v at 0,
introduced in Chap. 2, is also defined, and one can easily show, using Theorem
7.1.3, that the difference:

IndSch − Indhom

is a constant that depends only of the space V and not on the choice of the
vector field v. What is this constant?. We will see in Sect. 2 below that for
hypersurface singularities this is the Milnor number (up to sign). By [17] the
same statement holds for ICIS.

2. If V is smooth at 0 then the Poincaré–Hopf local index of every holomorphic
vector field is necessarily ≥ 0. The analogous statement for the GSV-index is
easily seen to be false if V is singular. For example, if V is the affine curve
in C2 defined by the homogeneous polynomial:

f(x, y) = xk + yk, k > 1,

then the radial vector field v = (x, y) is obviously tangent to V , singular only
at 0, and a straight-forward computation using the formulas in Sect. 2 below
shows that its GSV index (which equals the homological one) is 1− (k− 1)2,
which is negative if k > 2. However the results in [16] show that in all cases
there is a smallest possible index that the holomorphic vector fields on an
isolated singularity germ (V, 0) may attain, and this index is attained by an
open and dense set in the space of germs of holomorphic vector fields at 0;
what is this lower bound?

Obviously this provides an invariant of the singularity which is interesting
to study. This is closely related to asking what is a generic vector field on a
singular variety?
Conjecture: Let (V, 0) be an ICIS germ of dimension n ≥ 1, with Milnor
number μ ≥ 1, and let v be a holomorphic vector field on V with an isolated
singularity at 0. Then the Poincaré–Hopf index of any continuous extension
of v to a nearby Milnor fiber of V is ≥ 1 + (−1)nμ.

It is not hard to show that this conjecture is true for curves, i.e., when V
has complex dimension 1, and for quasi-homogeneous germs of all dimensions.

7.2 The Hypersurface Case

Let us restrict the discussion to the case when V is a hypersurface, follow-
ing [68]. The aim now is twofold: on one hand we want to give an algebraic
expression to compute the homological index using linear algebra, as in the
case of vector fields in Cn. On the other hand we use this algebraic formula,
together with the stability property 7.1.4 of the index, to show that for hy-
persurfaces the homological and the GSV indices coincide. To establish the
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algebraic facts in [68] that lead to these statements is not an easy task and
requires hard computations, so we only sketch here some of the main points.
We refer to Gómez-Mont’s article for the actual proofs and details. We refer
to [17] for the equivalent arguments for the index of vector fields on complete
intersection singularities.

Let B = Bn+1 be an open ball around the origin in Cn+1 and let f :
Bn+1 → C be a holomorphic function with 0 ∈ Cn+1 as its only critical
point. Hence the 1-form

∑n+1
i=1

∂f
dzi

dzi vanishes only at 0 ∈ Cn+1, where ∂f
dzi

denotes the partial derivative of f with respect to zi. Let If be the Jacobian
ideal ( ∂fdz1 , · · · ,

∂f
dzn+1

) ⊂ OB,0 of f . Given a vector field v tangent to V , with
a unique singularity at 0, restriction of a vector field v̂ = (a1, · · · , an+1) on
B with a unique singularity at the origin, it is shown in [68, Theorem 2] that
the homology groups Hi(Ω•

V,0, v) of the complex (7.1.2) have dimensions:

h0(Ω•
V,0, v) = dimCOB,0/(f, a1, · · · , an+1),

hn(Ω•
V,0, v) = dimCOB,0/(f, If ),

hi(Ω•
V,0, v) = λ, for i = 1, . . . , n− 1,

where 0 ≤ λ ≤ dimCOB,0/(f, If) is the integer:

λ = dimCOB,0/(f, a1, · · · , an+1) + dimCOB,0/(
df

f
(v̂), a1, · · · , an+1)

− dimCOB,0/(a1, · · · , an+1),

noticing that the tangency condition for v̂ means that v̂(df) is a multiple
of f , so that df

f (v̂) is a holomorphic function on B. As a consequence of
these computations Gómez-Mont deduced the following expressions for the
homological index (Theorem 1 in [68]).

Theorem 7.2.1. Let (V, 0) be an isolated hypersurface singularity (germ) of
dimension n in Cn+1, and let v be the restriction to V of a holomorphic vector
field v̂ on a neighborhood B of 0 in Cn+1, which has an isolated singularity
at 0 and is tangent to V .

(1) If n is odd, then the homological index of v is:

Indhom(v, 0;V ) = dimCOB,0/(f, a1, · · · , an+1)− dimCOB,0/(f, If ).

(2) If n is even, then:

Indhom(v, 0;V ) = dimCOB,0/(a1, · · · , an+1)

− dimCOB,0/(
df

f
(v̂), a1, · · · , an+1) + dimCOB,0/(f, If ).
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The next step is easy once we have Theorem 7.1.3 above, i.e., the stability
of the index under perturbations. In fact, one has:

Lemma 7.2.1. The difference

Indhom(v, 0;V ) − IndGSV(v, 0;V ) = k,

is a constant that depends only on K and not on the choice of vector field.

The proof of this lemma is an exercise: both indices satisfy a “Law of
conservation of Number”; in the case of the homological index this is Theorem
7.1.3, while for the GSV index this is an immediate consequence of the fact
that it equals the Poincaré–Hopf index of any continuous extension of the
vector field to the Milnor fiber. This implies that the difference between both
indices (GSV and homological) is locally constant on the space Θ0(V, 0) of
germs at 0 of holomorphic vector fields tangent to V , because both indices
coincide with the usual index of Poincaré–Hopf on Vreg. Hence this difference
is constant on all of Θ0(V, 0), since this space is connected. ��

Notice that for the previous lemma we did not use the fact that V is a
hypersurface: the same statement holds for local complete intersections, and
in general for every isolated singularity germ if we replace the GSV index by
the Schwartz index (of course in that case the constant k will be different).

Thus, in order to prove that for hypersurface singularities the GSV and
homological indices coincide, we only need to find an appropriate vector field
for which one can show that the constant k vanishes, and this is what Gómez-
Mont does in the last Sect. 3.2 of [68]. It is proved in [17] that a similar
argument works to identify both indices on complete intersection germs. The
hard, and possibly most interesting, part in that case is to find algebraic
formulae for the index that actually allow explicit computations.

To complete the arguments in the hypersurface case one must distinguish
again between even and odd dimensions. If the dimension of V is odd, so that
V is defined by the holomorphic map (germ) (C2n, 0)

f→ (C, 0), then one has
the Hamiltonian vector field

ζ =
( ∂f

∂z2
, − ∂f

∂z1
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)

defined on all of C
2n and with 0 as its only singularity. The differential of

f is:

df(z1, · · · , z2n) =
∂f

∂z1
(z1, · · · , z2n) dz1 + · · ·+ ∂f

∂z2n
(z1, · · · , z2n) dz2n.

Thus one has:
df(ζ) ≡ 0
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everywhere on C2n \{0}. This means that ζ is not only tangent to the hyper-
surface V := f−1(0), but it is also tangent to all the nonsingular hypersurfaces
Vt := f−1(t), and with no singularity on each Vt, t �= 0. This implies that its
GSV index is 0. On the other hand, in this case Theorem 7.2.1 says that the
homological index is:

dimCOC2n,0/(f, a1, · · · , a2n) − dimCOC2n,0/(f, If ) = 0,

since in this case the components of ζ are the partial derivatives of f , so they
generate the Jacobian ideal If . Hence both indices coincide for vector fields
on hypersurface singularities of odd dimension.

When the dimension of V is even the considerations are similar in spirit:
one constructs a holomorphic vector field on every such singularity germ,
whose homological and GSV indices can be computed explicitly and to show
that they coincide. However the construction of such examples is not that
simple now. Let us denote the coordinates of C2n+1 by (z0, z1, · · · , z2n) and
consider the vector field:

v̂ =
(
f ,

∂f

∂z2
, − ∂f

∂z1
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)
,

We assume we have chosen the coordinates in such a way that v̂ has an
isolated singularity at 0, i.e., that the hypersurface V = {f = 0} meets only
at 0 the set

⋂2n
i=1{

∂f
∂zi

= 0}. We set v = v̂|V . Notice one has:

df

f
(v̂) =

∂f

∂z0
,

hence v is tangent to V . Since v̂ has an isolated singularity at 0, the homo-
logical index of v on V can be computed using v̂ in the formula 7.2.1. One
has:

Indhom(v, 0;V ) = dimCOB,0/(f,
∂f

∂z0
, · · · , ∂f

∂z2n
).

Now we must compute the GSV index of v and compare it with the homo-
logical index. For this Gómez-Mont notices that v is also the restriction to V
of the holomorphic vector field:

û =
(
0 ,

∂f

∂z2
, − ∂f

∂z1
, · · · , ∂f

∂z2n
, − ∂f

∂z2n−1

)
,

which is tangent to all the nonsingular hypersurfaces f−1(t), t �= 0. The
singular set of û is the complete intersection curve defined by the ideal
( ∂f∂z1 , · · · , ∂f

∂z2n
), which meets each nonsingular fiber f−1(t) at finitely many

points, whose total sum (counting multiplicities) is the GSV-index of v on
V . A direct computation then shows that this index equals the homological
one. Thus we arrive to the following Theorem 3.5 of [68]:
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Theorem 7.2.2. Let (V, 0) be an isolated hypersurface germ in Cn+1, n>1.
Then the homological index of every holomorphic vector field on V with an
isolated singularity, equals the Poincaré–Hopf index of every continuous ex-
tension of v to a Milnor fiber of V .

Remark 7.2.1. 1. The formula of Gómez-Mont in 7.2.1 requires that the ex-
tension v̂ of the vector field v to the ambient space also has an isolated
singularity. O. Klehn in [97] gives an algebraic formula for the index that
only requires v̂ to have an isolated singularity on V . In [98] the same author
studies the particular case of vector fields that extend to the ambient space
being tangent to the fibers of some smoothing and he gives an algebraic for-
mula for the index of such holomorphic vector fields when the ambient space
has dimension 1 (compare with the algebraic formula in [71]). This formula
also applies to the real analytic case.

2. If V is a compact hypersurface with isolated singularities in a complex
manifold M and one has a global holomorphic vector field on V with isolated
singularities, then one can define its total homological index in the obvious
way. Since this index coincides with the GSV-index, which coincides with the
virtual index, it follows that the total homological index is independent of the
choice of vector field and equals the 0-degree Fulton–Johnson class of V , i.e.,
the Euler–Poincaré characteristic of a global smoothing of V (see Chap. 11).
B. Khanedani in [92] extended the definition of the homological index to
sections of general linear fibered spaces over complex analytic spaces, and
proved that the total sum of indices is independent of the choice of section.
It would be interesting to determine what this sum is.

3. The definition of the homological index was extended in [65] to holomorphic
vector fields with an isolated singularity on hypersurface germs with noniso-
lated singularities; an algebraic formula to compute this index is also given
in that article when the singular locus has dimension 1. We know from [38]
that every complex analytic germ (V, 0) has a logarithmic stratification which
is Whitney regular when the germ is holonomic (i.e., when the stratification
has finitely many strata). In this case it is natural to ask if the homological
index also coincides with the GSV-index defined in Chap. 3 if one considers
the logarithmic stratification.

7.3 The Index of Real Analytic Vector Fields

It is natural to ask whether one can also find an algebraic formula for comput-
ing the index of a C∞, or real analytic, vector field at an isolated singularity.
It seems that this question was first raised by V. I. Arnold (c.f. [172]), and the
answer was given independently by D. Eisenbud and H. Levine in [58] and by
G.N. Khimshiashvili in [94], proving that the index can be computed as the
signature of an appropriate bilinear form. This signature formula is proved
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in [10] by means of a limit process concerning functions on a finite set with
involution, while the proof in [58] is of an algebraic nature and has a number
of important consequences. This formula, usually known as the Eisenbud–
Levine formula, was used by Arnold in [9] to give an upper bound for the
index of homogeneous real analytic vector fields with an isolated singularity
in terms of the degrees of the components. In [95] the signature formula is
used to generalize the Petrovskii–Oleinik inequalities in real algebraic geom-
etry. There is also an algebraic formula in [9, 10] for the index of gradient
vector fields in terms of signatures of certain quadratic forms, and this leads
to a formula for the Euler characteristic of the fibers of real valued analytic
mappings. These results have also motivated interesting research in this vein
for real analytic vector fields on singular varieties.

7.3.1 The Signature Formula
of Eisenbud–Levine–Khimshiashvili

The formula of [58, 94] is somehow the paradigm of all the later algebraic
formulas for indices of analytic vector fields on real analytic singular varieties.

Let us denote by ARn,0 the local ring of germs of real analytic real-valued
functions, and consider a germ of a vector field v = (a1, · · · , an) at 0, where
the components are elements in ARn,0. We let Bv be the local algebra of v:

Bv := ARn,0/(a1, · · · , an),

where (a1, · · · , an) denotes the ideal generated by the components of v. The
dimension of Bv as a vector space over C is the multiplicity λ(v) of v at 0. If
λ(v) <∞, then v necessarily has an isolated zero at 0, but the converse is not
necessarily true: λ(v) < ∞ is equivalent to saying that the complexification
vC of v has an isolated singularity at 0. In this case we say that the singularity
of v at 0 ∈ Rn is algebraically isolated. The signature formula of [58] and [94]
deals with such vector fields. In fact the theorem in [58] is proved for C∞

vector fields with an isolated singularity of “finite multiplicity.”
It is noticed in [58] that the multiplicity alone does not determine the

local index, as it does in the complex case, and one needs to get further
information from the local ring in order to determine the index. For this,
given an analytic vector field v with finite multiplicity, let Jv be the Jacobian
of v, i.e., the (local) function whose value at each point is the determinant
of the matrix: ⎛

⎜
⎝

∂a1
∂x1
· · · ∂a1

∂xn

...
. . .

...
∂an

∂x1
· · · ∂an

∂xn

⎞

⎟
⎠
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For simplicity we also denote by Jv the residue class of the Jacobian in the
local ring Bv. Now observe that Bv is actually an algebra and given a linear

functional φ : Bv → R one can define a map Bv ×Bv
〈f,g〉−→ R by:

〈f, g〉 = 〈f, g〉φ = φ(fg),

so the map 〈, 〉 is given by the composition,

Bv ×Bv
·−→ Bv

φ−→ R.

This is clearly a bilinear form. Let Sgn(v) denote the signature of this bilinear
form, i.e., the number of positive eigenvalues minus the number of negative
eigenvalues. Then one has the index formula of [58, 94]:

Theorem 7.3.1. One can always choose the linear form φ so that φ(Jv) > 0,
and in this case one has:

IndPH(v, 0) = Sgn(v),

independently of the choice of φ.

We refer to either [58] or [10] for a proof of this theorem. As an example
[58], consider the vector field on R2 ∼= C given by v(z) = z2, which we regard
as the real analytic vector field (x2 − y2, 2xy) with local index 2. A basis for
its local algebra Bv is given by {1, x, y, Jv}, where Jv = 4(x2 + y2} is the
Jacobian. One can take as φ the linear functional that takes Jv into 1 and
all the other basis elements into 0. The matrix of the corresponding bilinear
form is:

⎛

⎜
⎜
⎝

0 0 0 1
0 1

8 0 0
0 0 1

8 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

whose signature is 2.

Remark 7.3.1. If the real analytic vector field has an isolated singularity that
is not algebraically isolated, the signature formula for the index does not hold
for several reasons. In [43] V. Castellanos used the Koszul complex analogous
to (7.1.2) with real analytic forms replacing the holomorphic ones, to obtain
a signature formula in this setting.
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7.3.2 The Index on Real Hypersurface Singularities

We know that for real analytic hypersurfaces there is not “a” Milnor fiber
but there are fibers to the left and to the right of a critical value, say 0 ∈ R,
with possibly different topology. Therefore one can not define in general an
index in the spirit of the GSV-index, i.e., a well-defined integer associated to
each vector field with an isolated singularity, which measures the number of
zeroes of an extension of the vector field to a Milnor fiber: the number one
gets depends on the choice of Milnor fiber (see [6] or Chap. 4 above).

If the hypersurface is odd dimensional, things are simpler from the topolog-
ical viewpoint because the Euler–Poincaré characteristic of the Milnor fiber
is well defined; however for even dimensions this is only well defined mod-
ulo 2. Still, the formulas by Arnold in [9, p. 3] show that for gradient vector
fields, the algebra behind the function determines the Euler characteristic of
the fibers in all cases: it is 1 ± σ where σ is the signature of an appropriate
bilinear form on the local ring (algebra) of the singularity.

This suggests that something can be done for vector fields in general on
real analytic hypersurface singularities. This program was carried out in-
dependently (and differently) by Gómez-Mont and Mardešić on one hand
([69, 70], see also [62, 66]) and by Ebeling and Gusein-Zade [49] on the other
hand.

The work in [49] is somehow inspired by the formulas in [78,166]; for this
the authors define an index of vector fields with an isolated singularity, which
is the radial index that we introduced in Chaps. 2 and 4, and then they give an
algebraic formula to compute this index when the vector field is the gradient
of a function.

The work of Gómez-Mont and Mardešić is closely related to the formula in
[58,94]; let us have a glance of what they do. Let U be an open neighborhood
around 0 in R

n+1, and let f : (U, 0)→ (R, 0) be analytic with an algebraically
isolated singularity at 0 ( i.e., its complexification has an isolated singularity);
set V = f−1(0). Let A be the local ring of f at 0 (an algebra in fact):

A = ARn+1,0/(
∂f

∂x1
, · · · , ∂f

∂xn+1
),

where ( ∂f∂x1
, · · · , ∂f

∂xn+1
) = Jf is the Jacobian ideal of f . This algebra is finite

dimensional because of the assumption that V has an algebraically isolated
singularity, and it has a distinguished element: the class of the Hessian,

Hess(f) := det
(( ∂2f

∂xi∂xj

))
∈ A.

This class generates an ideal in A which is minimal in the sense that it is
contained in every nonzero ideal of A (see [58, 94]).
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Now consider a real analytic vector field v on V ∩ U , tangent to V and
with an algebraically isolated singularity at 0. Thus v is the restriction to V
of a real analytic vector field v̂ on a ball B ⊂ R

n+1, such that df(v)(x) = 0
for each x ∈ V . Since the ideal of functions vanishing on V is generated by
f , one has that df(v) is a multiple of f , so the assumption of v being tangent
to V is actually equivalent to saying that there exists hv ∈ ARn+1,0 so that
df(v) = fhv.

Following [69, 70], we consider the local algebra of v = (a1, · · · , an+1):

Bv = ARn+1,0/(a1, · · · , an+1).

This algebra is also finite dimensional because v has an algebraically isolated
singularity, and it also has a distinguished element: the class of the Jacobian
of v:

Jv := det
(( ∂ai

∂xj

))
∈ Bv.

We know that in the signature formula of [58,94] for the index (when the
ambient space is smooth), the Jacobian Jv and the signature of a certain
quadratic form determine the index. In the case envisaged here one must
consider the relative Jacobian Jf (v) and the relative Hessian Hess(f) intro-
duced respectively in [69,70]. It is shown that Jv is divisible by hv in Bv and
thus the relative Jacobian Jf (v) is a well-defined element (see [69, p. 1528]),

Jf (v) :=
Jv
hv
∈ Bv/AnnBv (hv),

where AnnBv (hv) is the annihaltor, hv being as above. It is proved that there
is a linear map � : Bv/Ann(h) → R such that �(Jf (v)) > 0. The product
in Bv/Ann(h) together with � defines a bilinear form on Bv/Ann(h). Let
SgnV,0(v) denote the signature of this bilinear form.

It is proved in [69] that the function SgnV,0 “behaves like an index” in the
sense that for n even it satisfies the law of conservation of number:

SgnV,0(v) = SgnV,0(vt) +
∑

x∈V \{0}
vt(x)=0

IndexPH(vt, x;V \ {0})

for x close to 0 and vt tangent to V and close to v. The same formula holds
for n odd under a certain additional hypothesis.

Similarly, the relative Hessian is defined in [70] by:

Hessrel(f) :=
Hess(f)

hv
∈ A/AnnA(hv).
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It is shown in [70] that one can also construct a linear functional �′ on
A/AnnA(hv) so that:

�′(Hessrel(f)) > 0;

the construction of this functional follows the line of the general theory devel-
oped in [10,58,94]. As before, one may use this functional to define a bilinear
form. Let SgnA(hv) denote the signature of this bilinear form.

Now, if V has odd dimension n ≥ 1, the Euler–Poincaré characteristic of
the fibers Vt = f−1(t) ∩Dε, t �= 0 is well defined, and so is the index IndGSV

defined in Chap. 3: it is the Poincaré–Hopf index of an extension of v to a non-
singular fiber f−1(t), t �= 0. In this case Theorem 1 of [70] gives an algebraic
formula for the index of an analytic vector field which is tangent to V :

Theorem 7.3.2. Let n ≥ 1 be an odd integer, let V = f−1(0) ⊂ Rn+1 be
a real analytic hypersurface with an algebraically isolated singularity at 0,
and let v be a real analytic vector field on V with an algebraically isolated
singularity at 0. Then:

IndGSV(v) = Sgn(V,0)(v) − SgnA(hv),

where hv = df(v)/f ∈ A.

We refer to [70] for the proof of this result and for several explanations
giving insights of the geometry and algebra behind this formula. Notice that
if V is regular at 0, then this formula reduces to the one in [58,94]. We refer
to [69] for a discussion when V is even-dimensional.



Chapter 8

The Local Euler Obstruction

Abstract The local Euler obstruction was first introduced by R. MacPherson
in [117] as an ingredient for the construction of characteristic classes of sin-
gular complex algebraic varieties. An equivalent definition was given by J.-P.
Brasselet and M.-H. Schwartz in [33] using vector fields. Their viewpoint
brings the local Euler obstruction into the framework of “indices of vector
fields on singular varieties,” though the definition only considers radial vector
fields. This approach is most convenient for our study which is based on [29,
32] and shows relations with other indices. There are various other definitions
and interpretations, in particular due to Gonzalez-Sprinberg [72], Verdier,
Lê-Teissier and others. The survey [27] provides an overview on the subject.

Section 1 below is devoted to the definition of the local Euler obstruction
and some of its main properties. The behavior of the local Euler obstruc-
tion relatively to hyperplane sections is described in Sect. 2, following [29].
In Sect. 3 and the thereafter we study a generalization of the local Euler
obstruction introduced in [32] and called the Euler obstruction of the func-
tion, or also the “Euler defect”; this is an invariant associated to map-germs
on singular varieties. MacPherson’s local Euler obstruction corresponds to
the square of the function distance to the given point. It is shown in [150],
and explained in the last section of this chapter, that this invariant can be
expressed in terms of the number of critical points in the regular part of a
Morsification of the function.

8.1 Definition of the Euler Obstruction. The Nash
Blow Up

We begin by recalling the definition of the Nash transformation of a singular
variety V of dimension n. Since the definition is local we may restrict to
germs of varieties.

Let (V, 0) be a reduced, pure-dimensional complex analytic singularity
germ of dimension n in an open set U ⊂ Cm. Let G(n,m) denote the
Grassmanian of complex n-planes in Cm. On the regular part Vreg of V there

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 8, 129
c© Springer-Verlag Berlin Heidelberg 2009
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is a map σ : Vreg → U ×G(n,m) defined by σ(x) = (x, Tx(Vreg)). The Nash
transformation Ṽ of V is the closure of Im(σ) in U ×G(n,m). It is a (usually
singular) complex analytic space endowed with an analytic projection map

ν : Ṽ −→ V

which is a biholomorphism away from ν−1(Sing(V )) . Notice that each point
y ∈ Sing(V ) is being replaced by all limits of planes TxiVreg for sequences
{xi} in Vreg converging to y.

Let us consider the tautological bundle over G(n,m) and denote by T the
corresponding trivial extension bundle over U × G(n,m). We denote by π

the projection map of this bundle. Let T̃ be the restriction of T to Ṽ , with
projection map π. The bundle T̃ on Ṽ is called the Nash bundle of V . An
element of T̃ is written (x, P, v) where x ∈ U , P is a n-plane in C

m based at
x and v is a vector in P . So we have maps:

T̃
π−→ Ṽ

ν−→ V.

Let us consider a complex analytic stratification (Vα)α∈A of V satisfying
the Whitney conditions. Adding the stratum U \ V we obtain a Whitney
stratification of U . Let us denote by TU |V the restriction to V of the tangent
bundle of U . We know that a stratified vector field v on V means a continuous
section of TU |V such that if x ∈ Vα ∩ V then v(x) ∈ Tx(Vα). By Whitney
condition (a) one has the following lemma of [33]:

Lemma 8.1.1. Every stratified vector field v on a subset A ⊂ V has a canon-
ical lifting to a section ṽ of the Nash bundle T̃ over ν−1(A) ⊂ Ṽ .

Now consider a stratified radial vector field v(x) in a neighborhood of {0}
in V , i.e., there is ε0 such that for every 0 < ε ≤ ε0, v(x) is pointing outwards
the ball Bε over the boundary Sε := ∂Bε.

The following interpretation of the local Euler obstruction has been given
by Brasselet–Schwartz [33]. We refer to [117] for the original definition which
uses 1-forms instead of vector fields (see also Chap. 9 below).

Definition 8.1.1. Let v be a radial vector field on V ∩Sε and ṽ the lifting of
v on ν−1(V ∩Sε) to a section of the Nash bundle. The local Euler obstruction
(or simply the Euler obstruction) EuV (0) is defined to be the obstruction to
extending ṽ as a nowhere zero section of T̃ over ν−1(V ∩ Bε).

More precisely, let O(ṽ) ∈ H2d
(
ν−1(V ∩Bε), ν−1(V ∩Sε)

)
be the obstruc-

tion cocycle to extending ṽ as a nowhere zero section of T̃ inside ν−1(V ∩Bε).
The local Euler obstruction EuV (0) is defined as the evaluation of the cocycle
O(ṽ) on the fundamental class of the pair

(
ν−1(V ∩ Bε), ν−1(V ∩ Sε)

)
. The

Euler obstruction is an integer.
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Remark 8.1.1. We notice that for ε > 0 small enough, if ṽ is a nowhere zero
section of T̃ defined on ν−1(V ∩ Sε) which lifts a vector field transverse to
V ∩Sε, then the Euler obstruction EuV (0) equals the obstruction to extending
ṽ as a nowhere zero section of T̃ over ν−1(V ∩ Bε). This is a consequence of
the fact that every section ṽ as above is homotopic to a section of T̃ over
ν−1(V ∩ Sε) obtained by lifting a radial vector field of V at 0. Hence, to
calculate the Euler obstruction of (V, 0) it suffices to construct a nowhere
zero section of T̃ defined on ν−1(V ∩ Sε) which lifts a vector field transverse
to V ∩ Sε. Of course one also needs to understand how this section extends
to ν−1(V ∩ Bε).

The following result summarizes some basic properties of the Euler ob-
struction:

Theorem 8.1.1. The Euler obstruction satisfies:

(1) EuV (x) = 1 if x is a regular point of V .

(2) EuV×V ′(x× x′) = EuV (x) · EuV ′(x′).

(3) If V is locally reducible at x and Vi are its irreducible components, then
EuV (x) =

∑
EuVi(x).

(4) EuV (x) is a constructible function on V , in fact it is constant along the
strata of a Whitney stratification.

These statements are all contained in [117], except for (iv) which is im-
plicitly stated there and we refer to [33] for a detailed proof. Now we have
the following result of [33].

8.1.1 Proportionality Theorem for Vector Fields

In this section, we prove the Proportionality Theorem for vector fields in [33]:

Theorem 8.1.2. Let v be a stratified vector field on V which is obtained
by radial extension in a neighborhood of a singularity x ∈ Vα. Let ṽ be the
canonical lifting of v to a section of the Nash bundle T̃ over the boundary
of ν−1(V ∩ Bε(x)), where Bε(x) is a small ball around x in Cm. Let O(ṽ) ∈
H2n

(
ν−1(V ∩Bε(x)), ν−1(V ∩Sε(x))

)
be the obstruction cocycle to extending

ṽ as a nowhere zero section of T̃ inside ν−1(V ∩ Bε(x)) and let EuV (v, x)
be the evaluation of O(ṽ) on the fundamental class of the pair

(
ν−1(V ∩

Bε(x)), ν−1(V ∩ Sε(x))
)
. Then one has:

EuV (v, x) = IndPH(v, x;Vα) · EuV (x) (8.1.2)

where IndPH(v, x;Vα) is the Poincaré–Hopf index at x of the restriction of v
to the stratum that contains x.
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In short this theorem says that the obstruction EuV (v, x) to extend the
lifting ṽ as a section of the Nash bundle inside ν−1(V ∩ Bε(x)) is propor-
tional to the Poincaré–Hopf index of v at x, the proportionality factor being
precisely the local Euler obstruction.

Let p be a point in a stratum Vα with nα = dimC Vα > 0. Let B a ball
around p in M , small enough so that TVα is trivial on B∩Vα, and set S = ∂B.
We denote by T×M , T×Vα and T̃× the bundles obtained from TM , TVα and
T̃ , respectively, by removing the zero sections.

We denote by θ(M,V ; p) the set of homotopy classes of stratified vector
fields on V obtained by radial extension of some vector field around p on Vα.
We remark that, by [48] Theorem 1.1, this set coincides with the set of usual
homotopy classes of stratified vector fields.

On the other hand, we denote by θ(Vα, p) the set of (usual) homotopy
classes of vector fields of Vα, defined and nonvanishing on S ∩ Vα. Note that
Sα := S ∩ Vα is a (2nα − 1)-sphere, so that such a vector field vα defines a
map

ϕvα : Sα
vα−→ T×Vα|Sα

h−→ Sα × C
nα \ {0} pr2−→ C

nα \ {0},

where h is an isomorphism.
This correspondence induces a bijection of θ(Vα, p) onto the homotopy

group π2nα−1(Cnα\{0}) 
 Z, where the isomorphism is given by the mapping
degree. A vector field vα as above may be extended to a vector field on B

with isolated singularity at p. Recall that, by definition, IndPH(vα, Vα; p) is
the mapping degree of ϕvα . In summary, θ(Vα, p) 
 Z, which is generated by
the class [vα,rad] of a radial vector field on Vα, singular at p.

Lemma 8.1.2. There is a natural bijection between θ(M,V ; p) and θ(Vα, p).
Thus

θ(M,V ; p) 
 Z.

It is generated by the class [vrad] of a stratified radial vector field. Moreover,
the elements in θ(M,V ; p) are classified by their local Schwartz index at p.

Proof. Note that the map

θ(M,V ; p) −→ θ(Vα, p)

given by restriction is well-defined. It is surjective by the radial extension pro-
cess above. We also see that it is injective by applying a similar construction
to homotopies on Sα.

Let us recall the classical construction to describe the element [k · vα,rad]
in θ(Vα, p). If k > 0, let ∨kSα denote the bouquet of k copies of Sα obtained
by collapsing to a point k half-spheres of dimension (2nα − 2) in Sα through
the north and south poles. We have a collapsing map κ : Sα → ∨kSα and a
map ϕ : ∨kSα → Cnα \ {0}, which is equal to ϕvα,rad

on each Sα. Then, we
define the map k · ϕvα,rad

as the composition

ϕ ◦ κ : Sα −→ C
nα \ {0}.



8.2 Euler Obstruction and Hyperplane Sections 133

The element in θ(Vα, p) corresponding to [k · vα,rad] is the homotopy class
of the vector field k · vα,rad := h−1(x, ϕ ◦ κ(x)) on Sα. If k = −λ < 0,
one can provide a similar description taking the bouquet of λ spheres and
using, instead of vα,rad, a real linear diagonal vector field in Cnα having the
2nα-vector (−1, 1, · · · , 1) as its diagonal coefficients.

Proof of Theorem 8.1.2. Let nα = dimC Vα. If nα = 0, then v = vrad and
we have identity 8.1.2. Thus we assume that nα > 0 hereafter.

We denote by vrad a stratified radial vector field at p. The vector field v is
stratified and nonvanishing on a small sphere S around p. By Lemma 8.1.2,
we have a stratified homotopy

ψ : (S ∩ V )× [0, 1] −→ T×M |S∩V

between v and k · vrad, k = IndSch(v, V ; p). Here k · vrad denotes the radial
extension of the vector field k · vα,rad on S ∩ V . Thus we have

∂ Imψ = v(S ∩ V )− k · vrad(S ∩ V )

as chains in T×M |S∩V . Since ψ is stratified, we can lift it to a homotopy

ψ̃ : ν−1(S ∩ V )× [0, 1] −→ T̃×|ν−1(S∩V )

and we have

∂ Im ψ̃ = ṽ(ν−1(S ∩ V ))− (k̃ · vrad)(ν−1(S ∩ V ))

as chains in T̃×|ν−1(S∩V ).
The description following Lemma 8.1.2 shows that

(k̃ · vrad)(ν−1(S ∩ V )) = k · ṽrad(ν−1(S ∩ V ))

as chains in T̃×|ν−1(S∩V ).
Taking a triangulation or a cellular decomposition of ν−1(B ∩ V ) and

extending the homotopy ψ̃ to the (2n − 1)-skeleton of the decomposition,
we see that the obstruction to extending ṽ is k = IndSch(v, V ; p) times the
obstruction to extending ṽrad. By definition of the Euler obstruction, we have
the theorem. �

8.2 Euler Obstruction and Hyperplane Sections

The idea of studying the Euler obstruction “à la” Lefschetz, using hyperplane
sections, is found in the work of Dubson [46] and Kato [88]. Also in [106] there
are results in this spirit for the Euler obstruction and also for the Chern
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classes of singular varieties. The approach we follow here is that of [29, 32],
which is topological.

We start with the following lemma, which is a special case of well-known
results about Lefschetz pencils. Let us denote by L the space of complex linear
forms on Cm. Fix a Whitney stratification of V . There are a finite number of
strata of this Whitney stratification which contain 0 in their closure, and we
assume that the representative of (V, 0) is chosen small enough so that these
are the only strata of V .

Lemma 8.2.1. [29] There exists a nonempty Zariski open set Ω in L such
that for every l ∈ Ω, there exists a representative V of (V, 0) so that:

(1) for each x ∈ V , the hyperplane l−1(0) is transverse in C
m to every limit

of tangent spaces in TVreg of points in Vreg converging to x,

(2) for each y in the closure V α in V of each strata Vα, α = 1, . . . , �, the
hyperplane l−1(0) is transverse in C

m to every limit of tangent spaces in TVα
of points converging to y.

In particular, for each l ∈ Ω one has for the Nash transformation

Ṽ ⊂ C
m × (G(n,m) \H∗),

where H∗ := {T ∈ G(n,m) such that l(T ) = 0}.

Then we can state the following Theorem:

Theorem 8.2.1. [29] Let (V, 0) be a germ of an equidimensional complex
analytic space in Cm. Let Vα, α = 1, . . . , �, be the (connected) strata of a
Whitney stratification of a small representative V of (V, 0) such that 0 is in
the closure of every stratum. Then for each l ∈ Ω as in 8.2.1 there is ε0 such
that for any ε, ε0 > ε > 0 and t0 �= 0 sufficiently small, we have the following
formula for the Euler obstruction of (V, 0):

EuV (0) =
�∑

α=1

χ(Vα ∩ Bε ∩ l−1(t0)) · EuV (Vα),

where χ denotes the Euler–Poincaré characteristic and EuV (Vα) is the value
of the Euler obstruction of V at any point of Vα, α = 1, . . . , �.

Theorem 8.2.1 has been proved in [29], an alternative proof is given by
Schürmann in [137]. We notice that the formula above is somehow in the
spirit of the formula by Lê–Teissier in [106].

Remark 8.2.1. As noticed in [32], Theorem 8.2.1 can be stated through the
framework of bivariant theory [26,61] : the local Euler obstruction, as a con-
structible function, satisfies the local Euler condition with respect to general
linear forms.
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In the statement of Theorem 8.2.1 the closed ball may be replaced by an
open ball, and/or the Euler characteristic may be replaced by the compactly
supported Euler characteristic (see [26, 135]); these all agree locally. Also
notice that the formula in 8.2.1 is similar to the index formula in [47].

Let us give some consequences of the theorem. We notice that the generic
slice V ∩ Bε ∩ l−1(t0) in 8.2.1 is by definition (see [73]) the complex link of 0
in V . In the case of an isolated singularity the complex link is smooth and
there is only one stratum appearing in the sum in Theorem 8.2.1. In this case
the theorem gives:

Corollary 8.2.1. Let V be an equidimensional complex analytic subspace of
Cm with an isolated singularity at 0. The Euler obstruction of V at 0 equals
the GSV index of the radial vector field on a general hyperplane section V ∩H.

The corollary is an immediate consequence of the theorem above and the
definition of the GSV index in Chap. 3. We notice that this proves that the
corresponding GSV index does not depend on the choice of the linear form.

In the case of a complete intersection of dimension n with isolated singular-
ity the corresponding complex link is the Milnor fiber F of the linear function
l. By [79] F has the homotopy type of a bouquet of spheres of real dimension
n − 1 and the number of such spheres is called the Milnor number μ of the
singularity. Thus the Euler characteristic χ(F) equals 1 + (−1)n−1μ(V ∩H)
and we have the formula of [46, 88], see also [106, (6.2.1)]:

Corollary 8.2.2. Let V be a complex analytic complete intersection in Cm

with an isolated singularity at 0. The Euler obstruction of V at 0 equals
1 + (−1)n−1μ(n−1), where μ(n−1) is the Milnor number at 0 of a general
hyperplane section of V .

Corollary 8.2.3. Let V be an equidimensional complex analytic space of
dimension n in Cm whose singular set Sing(V ) is 1-dimensional at 0. Let l
be a general linear form defined on Cm and denote by Ft, the local Milnor
fiber at 0 of the restriction of l to V . The singularities of Ft are the points
Ft ∩ Sing(V ) =: {x1, . . . , xm}. Then,

EuV (0) = χ(Ft)−m +
m∑

1

EuV (xi).

Proof. This is a consequence of 8.2.1, of the remark

χ(Ft)−m = χ(Ft − Sing(V ))

and of the fact that the local Euler obstruction at a nonsingular point is equal
to 1. Observe that, since each xi is an isolated singular point of Ft, we can
apply 8.2.1 to compute the right hand side of 8.2.3, because

EuV (xi) = EuFt(xi) .

We may also apply 8.2.2 if the singularities of Ft are complete intersections.
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8.3 The Local Euler Obstruction of a Function

In this section we define an invariant introduced by J.P. Brasselet, D. Massey,
A. J. Parameswaran and J. Seade in [32], which measures in a way how far
the equality given in Theorem 8.2.1 is from being true if we replace the
generic linear form l by some other function on V with at most an isolated
stratified critical point at 0. For this it is convenient to think of the local Euler
obstruction as defining an index for stratified vector fields. To be precise, let
(V, 0) be again a complex analytic germ contained in an open subset U of
Cm and endowed with a complex analytic Whitney stratification {Vα}. We
assume further that every stratum contains 0 in its closure. For every point
x ∈ V , we will denote by Vα(x) the stratum containing x. We recall first some
well-known concepts about singularity theory which originate in the work of
R. Thom.

Let f : V → C be a holomorphic function which is the restriction of a
holomorphic function f̂ : U → C. We recall [73] that a critical point of f

is a point x ∈ V such that df̂(x)(Tx(Vα(x))) = 0. We say, following [103],
[73], that f has an isolated singularity at 0 ∈ V relative to the given Whitney
stratification, if f has no critical points in a punctured neighborhood of 0 in V .

Let us denote by gradf̂(x) the conjugated gradient vector field of f̂ at a

point x ∈ U , defined by gradf̂(x) := ( ∂f̃∂x1
, ..., ∂f̂

∂xm
) , where the bar denotes

complex conjugation. From now on we assume that f has an isolated singular-
ity at 0 ∈ V . This implies that the kernel Ker(df̂) is transverse to Tx(Vα(x))
in any point x ∈ V \ {0}. Therefore at each point x ∈ V \ {0}, we have:

Angle〈gradf̂(x), Tx(Vα(x))〉 < π/2 ,

so the projection of gradf̂(x) on Tx(Vα(x)), denoted by ζα(x), is not zero.
Let Vβ be a stratum such that Vα ⊂ V β , and let π : Uα → Vα be a tubular

neighborhood of Vα in U . Following the construction of M.-H. Schwartz in
[141, §2] we see that the Whitney condition (a) implies that at each point
y ∈ Vβ ∩ Uα, the angle of ζβ(y) and of the parallel extension of ζα(π(y)) is
small. This property implies that these two vector fields are homotopic on
the boundary of Uα. Therefore, we can glue together the vector fields ζα to
obtain a stratified vector field on V , denoted by gradV f . This vector field is
homotopic to gradf̂ |V and one has gradV f �= 0 unless x = 0.

Definition 8.3.1. Let ν : Ṽ → V be the Nash transformation of V . We
define the local Euler obstruction of f on V at 0, denoted Euf,V (0), to be the
Euler obstruction EugradV f,V

(0) (see Definition 8.1.1) of the stratified vector
field gradV f at 0 ∈ V .

In other words, let ζ̃ be the lifting of gradV f as a section of the Nash
bundle T̃ over Ṽ without singularity over ν−1(V ∩Sε), where Sε = ∂Bε is the
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boundary of a small sphere around 0. Let O(ζ̃) ∈ H2n
(
ν−1(V ∩Bε), ν−1(V ∩

Sε)
)

be the obstruction cocycle to the extension of ζ̃ as a nowhere zero section
of T̃ inside ν−1(V ∩ Bε). Then the local Euler obstruction Euf,V (0) is the
evaluation of O(ζ̃) on the fundamental class of the pair (ν−1(V ∩Bε), ν−1(V ∩
Sε)).

We notice that all these definitions and constructions also work when f
is the restriction to V of a real analytic function on the ambient space. For
instance, we can take f to be the function “distance to 0 on V ,” then gradV f
is a radial vector field and the invariant Euf,V (0) is the usual local Euler
Obstruction of V at 0.

We remark that the usual Hermitian metric on C
m defines a Riemannian

metric which allows us to identify the real vector bundles TCm and T ∗Cm.
The latter is the holomorphic cotangent bundle and under the above identi-
fication df̃ corresponds to the conjugate gradient vector field.

A reason for considering the conjugate gradient vector field gradV f , and
not the usual gradient vector field gradV f , is given by the following Lemma,
where f can be taken to be the restriction to V of either a real or complex
analytic function on the ambient space. This lemma is also used in the proof
of the main result in this chapter, Theorem 8.4.1.

Lemma 8.3.1. Up to homotopy, the vector field gradf̃ is the lifting of a
constant vector field on C, via df̃ .

Proof. The gradient vector field satisfies

df̃(gradf̃(x)) = ||gradf̃(x)||2 ∈ R \ {0} for x ∈ V \ {0},

so it is the lifting, up to scaling, of a constant vector field on a small disk
in C.

8.4 The Euler Obstruction and the Euler Defect

Now we have the following result of [32]; this compares the Euler obstruction
of the space V with that of a function on V . According to Proposition 8.5.1,
Theorem 8.2.1 is a special case of Theorem 8.4.1 taking f to be a general
linear form.

Theorem 8.4.1. Let f : (V, 0) → (C, 0) have an isolated singularity at
0∈V . One has:

EuV (0) =

(
∑

α

χ(Vα ∩ Bε ∩ f−1(t0)) · EuV (Vα)

)

+ Euf,V (0).
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In other words, the invariant Euf,V (0) measures the difference:

EuV (0) −
(
∑

α

χ(Vα ∩ Bε ∩ f−1(t0)) · EuV (Vα)

)

,

so it can be regarded as the “defect” for the local Euler obstruction of V
to satisfy the Euler condition with respect to the function f . In this way
one can generalize the definition of the Euler obstruction to functions with
nonisolated singularities and one gets the Euler defect introduced in [32]. This
arises as a natural application of Massey’s work [118,119] on intersections of
characteristic cycles and derived categories.

The main step for proving 8.4.1 is the lemma below. To state this lemma
we need some notation. We choose ε > 0 sufficiently small so that every
sphere Sε′ in U centered at 0 and radius ε′ ≤ ε intersects transversally every
stratum in V \ {0}. Choose δ > 0 small enough so that for each t in the disk
Dδ of radius δ around 0 ∈ C, the hypersurface f−1(t) intersects transversally
the sphere Sε. Now choose ε′ with 0 < ε′ < ε, and a point t0 ∈ Dδ such that
Yt0 := f−1(t0) does not meet the sphere Sε′ . We notice that the strata Vα
intersect Yt0 transversally and provide a Whitney stratification of this space.

Lemma 8.4.1. There is a stratified vector field w on Vε′,ε = V ∩ (Bε \
Int(Bε′ )) such that:

(1) it coincides with gradV f on V ∩Sε′ and its restriction to V ∩Sε is radial;
it is tangent to Yt0 ,

(2) w has only a finite number of zeroes, and they are all contained in Yt0 ,

(3) at each zero x, w is transversally radial to the stratum containing x (i.e.,
it is transverse to the boundary of a tubular neighborhood of the stratum).

For the proof of Lemma 8.4.1, we refer the reader to [32]. The first steps
of the proof are an interesting application of M.H. Schwartz techniques in
order to construct the vector field w on a tube Bε ∩f−1(Dδ)\ {0}, transverse
(outwards pointing) to the boundary of the tube. The final step is to extend
this vector field to all of V using Theorem 2.3 in [29]. Let us show how one
deduces Theorem 8.4.1 from Lemma 8.4.1 (see [32]):

Proof of Theorem 8.4.1: (Assuming Lemma 8.4.1.) We first notice that if
ξ is a stratified vector field on a neighborhood of {0} in V which is everywhere
transverse to a small sphere Sε, then ξ is homotopic to a radial vector field
by elementary obstruction theory. Hence to compute the Euler obstruction
it is enough to consider vector fields transverse to Sε.

The restriction of the vector field w of 8.4.1 to ∂(Vε′,ε) is a stratified vector
field, so it can be lifted as a section w̃ of the Nash bundle T̃ on ν−1(∂(Vε′,ε))
by 8.1.1. Let us denote by Obs(w̃, ν−1(Vε)) the obstruction to extending w̃
to ν−1(Vε). One has:
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Obs(w̃, ν−1(Vε)) = Obs(w̃, ν−1(Vε′ )) + Obs(w̃, ν−1(Vε′,ε))

By statement (1) in Lemma 8.4.1 this formula becomes

EuV (0) = Euf,V (0) + Obs(w̃, ν−1(Vε′,ε)) .

By statement (3) in the Lemma 8.4.1 the contribution of Obs(w̃, ν−1(Vε′,ε))
is concentrated on ν−1(Yt0 ∩ Bε). Statements (3) and (4), together with the
“Theorem of Proportionality” ([33], Théorème 11.1), Theorem 8.1.2 above,
imply that the contribution of each singularity x of w to Obs(w̃, ν−1(Vε′,ε)) is
EuV (x)-times the local Poincaré–Hopf index of w at x, regarded as a vector
field on the stratum Vα(x). Furthermore (by (2) and (4)), the sum of the
Poincaré–Hopf indices of the restriction of w to Vα ∩ Yt0 is χ(Vα ∩ Yt0 ∩Bε),
and Theorem 8.4.1 follows. �

Remark: The results of this section have been generalized in [76] to the
case of functions with values in Ck, k ≥ 1.

8.5 The Euler Defect at General Points

By definition, if 0 is a smooth point of V and a regular point of f then
Euf,V (0) = 0 since in this case Euf,V (0) is the Poincaré–Hopf index of a
vector field at a nonsingular point. In Proposition 8.5.1 below we prove that
this is the case in a more general situation.

Definition 8.5.1. Let (V, 0) ⊂ (U, 0) be a germ of analytic set in Cm

equipped with a Whitney stratification and let f : (V, 0)→ (C, 0) be a holo-
morphic function, restriction of a regular holomorphic function f̂ : (U, 0) →
(C, 0). We say that 0 is a general point of f if the hyperplane Ker df̂(0) is
transverse in Cm to every generalized tangent space at 0, i.e. to every limit of
tangent spaces Txi(Vα), for every Vα and every sequence xi ∈ Vα converging
to 0.

We notice that for every f as above the general points of f form a
nonempty open set on each (open) stratum of V , essentially by Sard’s the-
orem. We also remark that this definition provides a coordinate free way
of looking at the general linear forms considered in Theorem 8.2.1. In fact
the previous definition is equivalent to saying that with an appropriate local
change of coordinates f̂ is a linear form in U , and it is general with respect
to V .

Proposition 8.5.1. Let 0 be a general point of f : (V, 0)→ (C, 0). Then

Euf,V (0) = 0.
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The proof of this Proposition is implicit within the proof of 2.3 in [29] and
is also a consequence of Theorems 8.2.1 and 8.4.1 together. However we prove
it here, following [32], for completeness and because this is how one deduces
formula 8.2.1 from 8.4.1.

Proof. In a first step define the map

T̃ ⊂ (U ×G(n,m)) × C
m F̃−→ Dδ ⊂ C

by F̃ (x, T, y) = df̂x(y), where Dδ is a small disk around 0. As 0 is a general
point of f , then K̃ = T̃ ∩ F̃−1(0) is a sub-bundle of T̃ of (complex) codimen-
sion 1 and dF̃ maps the orthogonal complement of K̃ isomorphically over
T (Dδ). In fact, since f̂ has an isolated singularity at 0 in V , away from 0 the
kernel Ker(df̂) is transverse to each stratum and its orthogonal complement
(in each stratum) determines a sub-bundle Q of TCm|V \{0}; the restriction of
df̂ to Q is an isomorphism between Q and T (Dδ). Furthermore, since Ker(df̂ )
is transverse to each limit of tangent spaces at points (xi) ∈ Vreg converging
to 0, it follows that Q lifts to a sub-bundle of T̃ of dimension 1, which is pre-
cisely the orthogonal complement of K̃. This implies that each nowhere-zero
vector field on Dδ lifts compatibly to a vector field on V \ {0} and also to a
section of T̃ |V . Finally notice that the gradient vector field gradV f can be
obtained by lifting such a vector field, which we know from Lemma 8.3.1.

8.6 The Euler Obstruction via Morse Theory

This section is taken from [150], by J. Seade, M. Tibăr and A. Verjovsky. Here
we show how stratified Morse theory yields to a clear understanding of what
the invariant Euf,V (x) is for arbitrary functions with an isolated singularity.
These results can also be deduced from Schürmann’s book [138], and also
from the work of D. Massey, [118, 119]. For this we recall the definition of
complex stratified Morse singularities (see Goresky–MacPherson [73], p. 52).

Definition 8.6.1. Let Vα be a Whitney stratification of V and let f : V → C

be the restriction to V of a holomorphic function f̂ : Cm → C; assume for
simplicity 0 = f(x). One says that f : (V, x) → (C, 0) has a stratified Morse
critical point at x ∈ V if the dimension of the stratum Vα that contains x is
≥ 1, the restriction of f to Vα has a Morse singularity at x and f is general
with respect to all other strata containing x in its closure, i.e., Ker df̂(x) is
transverse in Cm to every limit of tangent spaces Txi(Vβ), for every stratum
Vβ such that Vα ⊂ V β and every sequence xi ∈ Vβ converging to x.

We recall that every map-germ f on (V, 0) can be morsified, i.e., approx-
imated by Morse singularities. This is proved in [104] for f with an isolated
singularity.
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The theorem below is contained in [150]. Notice that 8.5.1 is included here.

Theorem 8.6.1. Let f be a holomorphic function germ on (V, 0) with an
isolated singularity (stratified critical point) at 0, restriction of a function f̂
on an open set in Cm. Let Vα ⊂ V be the stratum that contains 0. Then:

(1) If dim Vα < dimV and Ker df̂ does not vanish on any generalized tan-
gent space of the regular stratum (in particular if f is Morse at 0), then
Euf,V (0)= 0.

(2) If f has a stratified Morse singularity at 0 ∈ Vα and dimVα = dimV = n,
then Euf,V (0) = (−1)n.

(3) In general, the number of critical points of a Morsification of f in the
regular part of V is (−1)n+1Euf,V (0).

Proof. Take a small enough ball Bε in Cm, centered at 0 and of radius ε > 0.
Let v be the gradient vector field gradV fV restricted to the sphere V ∩ ∂Bε

and consider the lift ṽ to the Nash blow-up Ṽ given by 8.1.1. By hypothesis
the kernel of df̂ does not vanish on any limit of tangent spaces at points in
the regular stratum Vreg. Since Ṽ is obtained by attaching to TVreg all limits
of tangent spaces of points in Vreg, one has that if 0 /∈ Vreg, then by the
definition of stratified Morse points, the section ṽ of T̃ can be extended over
ν−1(V ∩Bε) without zeros, just as in the proof of 8.5.1. This proves the first
statement in 5.4.

To prove the second statement of 5.4 we notice that in this case the variety
V is locally isomorphic to Cn at 0, so its Nash transform is Cn and the Nash
bundle T̃ is the tangent bundle of Cn. Hence, by definition, Euf,V (0) is the
Poincaré–Hopf index at 0 of the gradient vector field gradf = ( ∂f∂x1

, ..., ∂f
∂xm

) .
This equals (−1)n-times the Poincaré–Hopf index at 0 of the vector field
gradf = ( ∂f∂x1

, ..., ∂f
∂xm

) . Hence our claim is equivalent to saying that the
Milnor number μ of f is the degree of gradf , which is Milnor’s Theorem 7.2
in [121].

Finally statement (iii) is an immediate consequence of the previous two
statements and the morsification theorem: perturb f to obtain a Morse func-
tion fM on V . It is clear that Euf,V (0) equals the sum

∑
j EufM ,V (qj), where

the sum runs over the Morse critical points qj of fM , since f and fM can be
assumed to coincide away from a small neighborhood of 0.

Remark: In [151] there are several formulae relating the invariant Euf,V (0)
with other invariants of functions on singular varieties. In [77] this invariant
is related with the Bruce–Roberts Milnor number defined in [38].



Chapter 9

Indices for 1-Forms

Abstract When considering smooth (real) manifolds, the tangent and
cotangent bundles are isomorphic and it does not make much difference
to consider either vector fields or 1-forms in order to define their indices
and their relations with characteristic classes. When the ambient space is
a complex manifold, this is no longer the case, but there are still ways for
comparing indices of vector fields and 1-forms, and to use these to study
Chern classes of manifolds. To some extent this is also true for singular
varieties, but there are however important differences and each of the two
settings has its own advantages.

In this chapter we briefly review the various indices of 1-forms on singular
varieties through the light of the indices of vector fields discussed earlier. We
define in that way the Schwartz index, the radial index, the GSV index, the
homological index and the local Euler obstruction, and we study some of
their relations and properties.

In this short presentation we include work done by various authors, par-
ticularly by W. Ebeling and S. Gusein-Zade, as well as ourselves in [36].
In the last section we discuss briefly the “indices of collections of 1-forms”
introduced by W. Ebeling and S. Gusein-Zade: just as the index of a 1-form
corresponds to the “top Chern class” (of a manifold or of a singular variety,
in a sense that will be made precise in later chapters), so too the indices of
collections of 1-forms correspond to other Chern numbers.

Let us mention that in his book [138], J. Schürmann introduces methods
to studying singular varieties via micro-local analysis, and part of what we
say below can also be considered in that framework.

9.1 Some Basic Facts About 1-Forms

In this section we study some basic facts about the geometry of 1-forms and
the interplay between real and complex valued 1-forms on (almost) complex
manifolds, which plays an important role in the sequel. The material here is
all contained in the literature; we include it for completeness and to set up

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 9, 143
c© Springer-Verlag Berlin Heidelberg 2009
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our notation with no possible ambiguities. We give precise references when
appropriate.

Let M be an almost complex manifold of real dimension 2m > 0. Let TM
be its complex tangent bundle. We denote by T ∗M the cotangent bundle of
M , dual of TM ; each fiber (T ∗M)x consists of the C-linear maps TMx → C.
We denote by TRM the underlying real tangent bundle of M ; it is a real
vector bundle of fiber dimension 2m, endowed with a canonical orientation.
Its dual T ∗

R
M has fiber the R-linear maps (TRM)x → R.

Definition 9.1.1. Let A be a subset of M . By a real (valued) 1-form η on
A we mean the restriction to A of a continuous section of the bundle T ∗

R
M ,

i.e., for each x ∈ A, ηx is an R- linear map (TRM)x → R. We usually drop
the word “valued” here and speak only of real 1-forms on A. Similarly, a
complex 1-form ω on A means the restriction to A of a continuous section of
the bundle T ∗M , i.e., for each x ∈ A, ωx is a C-linear map (TM)x → C.

Notice that the kernel of a real form η at a point x is either the whole fiber
(TRM)x or a real hyperplane in it. In the first case we say that x is a singular
point (or zero) of η. In the second case the kernel ker ηx splits (TRM)x in
two half spaces (TRM±)x; in one of these the form takes positive values, in
the other it takes negative values.

We recall that a vector field v in R
2m is radial at a point x if it is transverse

to every sufficiently small sphere around x in R2m. The duality between real
1-forms and vector fields assigns to each tangent vector ∂/∂xi the form dxi
(extending it by linearity to all tangent vectors). This motivates the following
definition ([49, 50]):

Definition 9.1.2. A real 1-form η on M is radial (outwards-pointing) at a
point x ∈M if, locally, it is dual over R to a radial outwards-pointing vector
field at x. Inwards-pointing radial vector fields are defined similarly.

In other words, η is radial at a point x if it is everywhere positive when
evaluated in some radial vector field at x. Thus, for instance, if for a fixed
x ∈M we let ρx(x) be the function ‖x− x‖2 (for some Riemannian metric),
then its differential is a radial form.

Remark 9.1.1. The concept of radial forms was introduced in [49]. In [50]
radial forms are defined using more relaxed conditions than we do here. How-
ever this is a concept taken from the corresponding notion of radial vector
fields, so we use definition 9.1.2.

A complex 1-form ω on A ⊂ M can be written in terms of its real and
imaginary parts:

ω = Re (ω) + i Im (ω).

Both Re (ω) and Im (ω) are real 1-forms, and the linearity of ω implies that
for each tangent vector one has:

Im (ω)(v) = −Re (ω)(iv),
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thus
ω(v) = Re (ω)(v) − i Re (ω)(iv).

In other words the form ω is determined by its real part and one has a 1-to-1
correspondence between real and complex forms, assigning to each complex
form its real part, and conversely, to a real 1-form η corresponds the complex
form ω defined by:

ω(v) = η(v) − iη(iv).

This statement (observed in [50],[73]) refines the obvious fact that a com-
plex hyperplane P in Cm, say defined by a linear form H , is the intersection
of the real hyperplanes Ĥ := {ReH = 0} and i Ĥ. This justifies the following
definition:

Definition 9.1.3. A complex 1-form ω is radial at a point x ∈M if its real
part is radial at x.

Recall that the Euler class of an oriented vector bundle is the primary
obstruction to constructing a nonzero section [153]. In the case of the bundle
T ∗

R
M , this class equals the Euler class of the underlying real tangent bundle

TRM , since they are isomorphic. Thus, if M is compact then its Euler class
evaluated on the orientation cycle of M gives the Euler–Poincaré character-
istic χ(M). We can say this in different words: let η be a real 1-form on M
with isolated (hence finitely many) singularities x1, · · · , xr. At each xi this

1-form defines a map, Sε
η/‖η‖−→ S2m−1, from a small (2m − 1)-sphere Sε in

M around xi into the unit sphere in the fiber (T ∗
R
M)x. If we equip M and

T ∗
R
M with the orientations induced by the almost complex structure on M ,

the degree of this map is the Poincaré–Hopf local index of η at xi, that we
may denote by IndPH(η, xi). Then the total index of η in M is by definition
the sum of its local indices at the xi and it equals χ(M). Its Poincaré dual
class in H2m(M) is the Euler class of T ∗

R
M ∼= TRM .

More generally, if M is a compact C∞ manifold of real dimension 2m with
nonempty boundary ∂M and a complex structure in its tangent bundle, one
can speak of real and complex valued 1-forms as above. Elementary obstruc-
tion theory (see [153]) implies that one can always find real and complex
1-forms on M with isolated singularities, all contained in the interior of M .
In fact, if a real 1-form η is defined in a neighborhood of ∂M in M and it
is nonsingular there, then we can always extend it to the interior of M with
finitely many singularities, and its total index in M does not depend on the
choice of the extension.

Definition 9.1.4. Let M be an almost complex manifold with boundary ∂M
and let ω be a (real or complex) 1-form on M , nonsingular on a neighborhood
of ∂M . The form ω is radial at the boundary if for each vector v(x) ∈ TM , x ∈
∂M , which is normal to the boundary (for some metric), pointing outwards
of M , one has Reω(v(x)) > 0 (for real values 1-forms, Reω = ω).
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By the theorem of Poincaré–Hopf for manifolds with boundary, if a real
1-form η is radial at the boundary and M is compact, then the total index
of η is χ(M).

We now make similar considerations for complex 1-forms. We let M be a
compact, C∞ manifold of real dimension 2m (with or without boundary
∂M), with a complex structure in its tangent bundle TM . Let T ∗M be
as before, the cotangent bundle of M , i.e., the bundle of complex valued
continuous 1-forms. The top Chern class cm(T ∗M) is the primary obstruction
to constructing a section of this bundle, i.e., if M has empty boundary,
then cm(T ∗M) is the number of points, counted with their local indices,
of the zeroes of a section ω of T ∗M (i.e., a complex 1-form) with isolated
singularities (i.e., points where it vanishes). It is well-known that one has:

cm(T ∗M) = (−1)m cm(TM).

This corresponds to the fact that at each isolated singularity xi of ω one has
two local indices: one of them is the index of its real part defined as above,

IndPH(Reω, xi); the other is the degree of the map Sε
ω/‖ω‖−→ S2m−1, that we

denote by IndPH(ω, xi). These two indices are related by the equality:

IndPH(ω, xi) = (−1)m IndPH(Re ω, xi),

and the index on the right corresponds to the local Poincaré–Hopf index of
the vector field defined by duality near xi. For example, the form ω =

∑
zidzi

in Cm has index 1 at 0, while its real part
∑

(xidxi−yidyi) has index (−1)m.
If we take M as above, compact and with possibly nonempty boundary,

and ω is a complex 1-form with isolated singularities in the interior of M and
radial on the boundary, then (by the previous considerations) the total index
of ω in M is (−1)m χ(M). We summarize some of the previous discussion in
the following theorem ([49, 50]):

Theorem 9.1.1. Let M be a compact, C∞ manifold of real dimension 2m
(with or without boundary ∂M), with a complex structure in its tangent bun-
dle TM . Let T ∗

R
M and T ∗M be as before, the bundles of real and complex

valued continuous 1-forms on M , respectively. Then:

(1) Every real 1-form η on M determines a complex 1-form ω by the formula

ω(v) = η(v)− iη(iv)

so the real part of ω is Reω = η.

(2) The local Poincaré–Hopf indices at an isolated singularity of a complex
1-form and its real part are related by:

IndPH(ω, xi) = (−1)m IndPH(Re ω, xi).
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(3) If a real 1-form on M is radial at the boundary ∂M , then its total
Poincaré–Hopf index in M is χ(M). In particular, a radial real 1-form has
local index 1.

(4) If a complex 1-form on M is radial at the boundary ∂M , then its total
Poincaré–Hopf index in M is (−1)mχ(M).

Remark 9.1.2. One may consider frames of complex 1-forms on M instead of
a single 1-form. This means considering sets of k complex 1-forms, whose sin-
gularities are the points where these forms become linearly dependent over
C. By definition (see [153]) the primary obstruction to constructing such
a frame is the Chern class cm−k+1(T ∗M), so these classes have an expres-
sion similar to 1.6 but using indices of frames of 1-forms. One always has
ci(T ∗M) = (−1)ici(TM). Thus the Chern classes, and all the Chern num-
bers of M , can be computed using indices of either vector fields or 1-forms.

9.2 Radial Extension and the Schwartz Index

In the sequel we will be interested in considering forms defined on singular
varieties in a complex manifold, so we introduce some standard notation. Let
V be a reduced, equidimensional complex analytic space of dimension n in a
complex manifold M of dimension m, endowed with a Whitney stratification
{Vα} adapted to V , i.e., V is a union of strata.

The following definition is an immediate extension for 1-forms of the cor-
responding (standard) definition for functions on stratified spaces in terms of
its differential (c.f. [50, 73, 102]).

Definition 9.2.1. Let ω be a (real or complex) 1-form on V , i.e., a continu-
ous section of either T ∗

R
M |V or T ∗M |V . A singularity of ω with respect to the

Whitney stratification {Vα} means a point x where the kernel of ω contains
the tangent space of the corresponding stratum.

This means that the pull back of the form to Vα vanishes at x.
In Sect. 1 we introduced the notion of radial forms, which is dual to the

“radiality” for vector fields. We now extend this notion relaxing the condition
of radiality in the directions tangent to the strata. From now on, unless it
is otherwise stated explicitly, by a singularity of a 1-form on V we mean a
singularity in the stratified sense, i.e., in the sense of Definition 9.2.1.

Definition 9.2.2. Let ω be a (real or complex) 1-form on V . The form is
normally radial at a point x ∈ Vα ⊂ V if it is radial when restricted to
vectors which are not tangent to the stratum Vα. In other words, for every
vector v(y) tangent to M at a point y /∈ Vα, y sufficiently close to x and v(y)
pointing outwards a tubular neighborhood of the stratum Vα, Reω(v) is not
zero and has constant sign for all such vectors.



148 9 Indices for 1-Forms

Obviously a radial 1-form is also normally radial, since it is radial in all
directions.

For each point x in a stratum Vα, one has a neighborhood Ux of x in M
which is diffeomorphic to the product Uα×Dα, where Uα = Ux ∩ Vα and Dα

is a small disk in M transverse to Vα. Let π be the projection π : Ux → Uα
and p the projection p : Ux → Dα. One has an isomorphism:

T ∗Ux ∼= π∗T ∗Uα ⊕ p∗T ∗
Dα.

For a (real or complex) 1-form ω, to be normally radial at x says that up
to a local change of coordinates in M , ω is the direct sum of the pull back
of a (real or complex) form on Uα, i.e., a section of the (real or complex)
cotangent bundle T ∗Uα, and a section of the (real or complex) cotangent
bundle T ∗Dα which is a radial form in the disc.

We can proceed, for 1-forms, to the classical construction of radial exten-
sion introduced by M.-H. Schwartz in [139, 141] for stratified vector fields
and frames. Locally, the construction can be described as follows. Firstly we
consider real 1-forms. Let η be a 1-form on Uα, denote by η̂ its pull back to
a section of π∗T ∗

R
Uα. This corresponds to the parallel extension of stratified

vector fields done by Schwartz. Now consider the function ρ given by the
square of the distance to the origin in Dα. The form p∗dρ on Ux vanishes on
Uα and away from Uα its kernel is transverse to the strata of V by Whitney
conditions.

The sum η′ = η̂ + p∗dρ defines a normally radial 1-form on Ux which
coincides with η on Uα; away from Uα its kernel is transverse to the strata
of V . Thus, if η is nonsingular at x, then η′ is nonsingular everywhere on
Ux. If η has an isolated singularity at x ∈ Vα, then η′ also has an isolated
singularity there. In particular, if the dimension of the stratum Vα is zero
then η′ is a radial form in the sense of Sect. 1.

Following the terminology of [139,141] we say that the form η′ is obtained
from η by radial extension.

Since the index in M of a normally radial form is its index in the stratum
times the index of a radial form in the disk Dα, we obtain the following
important property of forms constructed by radial extension.

Proposition 9.2.1. Let η be a real 1-form on the stratum Vα with an isolated
singularity at a point x with local Poincaré–Hopf index IndPH(η, x, Vα). Let
η′ the 1-form on a neighborhood of x in M obtained by radial extension. Then
the index of η in the stratum equals the index of η′ in M :

IndPH(η, x;Vα) = IndPH(η′, x;M).

Definition 9.2.3. The Schwartz index of the continuous real 1-form η
at an isolated singularity x ∈ Vα ⊂ V , denoted IndSch(η, x;V ), is the
Poincaré–Hopf index of the 1-form η′ obtained from η by radial extension; or
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equivalently, if the stratum of x has dimension more than 0, IndSch(η, x;V )
is the Poincaré–Hopf index at x of η in the stratum Vα.

If x is an isolated singularity of V then every 1-form on V must be singular
at x since its kernel contains the “tangent space” of the stratum. In this case
the index of the form in the stratum is defined to be 1, and this is consistent
with the previous definition since in this case the radial extension of η is
actually radial at x, so it has index 1 in the ambient space.

The previous process is easily adapted to give radial extension for complex
1-forms. Let ω be such a form on Vα; let η be its real part. We extend η as
above, by radial extension, to obtain a real 1-form η′ which is normally radial
at x. Then we use statement (1) in Theorem 9.1.1 above to obtain a complex
1-form ω′ on Ux that extends ω and is also normally radial at x. If we prefer,
we can make this process in a different but equivalent way: first make a
parallel extension of ω to Ux as above, using the projection π; denote by
ω̂ this complex 1-form. Now use (1) of Theorem 9.1.1) to define a complex
1-form d̂ρ on Ux whose real part is dρ, and take the direct sum of ω̂ and d̂ρ
at each point to obtain the extension ω′. We say that ω′ is obtained from ω
by radial extension.

We have the equivalent of Proposition 9.2.1 for complex forms, modified
with the appropriate signs:

(−1)s IndPH(ω, x, Vα) = (−1)m IndPH(ω′, x,M),

where 2s is the real dimension of Vα and 2m that of M .

Definition 9.2.4. The Schwartz index of the continuous complex 1-form ω
at an isolated singularity x ∈ Vα ⊂ V , denoted IndSch(ω, x, V ), is (−1)n-times
the index of its real part:

IndSch(ω, x;V ) = (−1)nIndSch(Reω, x;V ).

9.3 Local Euler Obstruction of a 1-Form
and the Proportionality Theorem

In this section, we are concerned with a local situation, so we take the n-
dimensional complex variety V to be embedded in an open ball B ⊂ Cm

centered at the origin 0.
The local Euler obstruction of a 1-form was introduced in [52] in analogy

with the case of vector fields discussed in the previous chapter. Let us recall
its definition.

On the regular part of V one has the map σ : Vreg → G(n,m) into the
Grassmannian of complex n-planes in Cm, that assigns to each point the
corresponding tangent space of Vreg. Let us recall (Sect. 8.1) that one has
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the Nash bundle T̃
p→ Ṽ , restriction to the Nash blow-up Ṽ of the tautological

bundle over B×G(n,m).
The corresponding dual bundles of complex and real 1-forms are denoted

by T̃ ∗ p→ Ṽ and T̃ ∗
R

p→ Ṽ , respectively. Observe that a point in T̃ ∗ is a triple
(x, P, ω) where x is in V , P is an n-plane in the tangent space TxB which is
limit of a sequence {(TVreg)xi}, where the xi are points in the regular part
of V converging to x, and ω is a C-linear map P → C. (Similarly for T̃ ∗

R
.)

Let us denote by ρ the function given by the square of the distance to 0.
We recall that MacPherson in [117] observed that the Whitney condition (a)
implies that the pull-back of the differential dρ defines a never-zero section
d̃ρ of T̃ ∗

R
over ν−1(Sε ∩ V ) ⊂ Ṽ , where Sε is the boundary of a small ball Bε

in B centered at 0. The obstruction to extending d̃ρ as a never-zero section of
T̃ ∗

R
over ν−1(Bε∩V ) ⊂ Ṽ is a cohomology class in H2n(ν−1(Bε∩V ), ν−1(Sε∩

V ); Z), and MacPherson defined the local Euler obstruction EuV (0) of V at
0 to be the integer obtained by evaluating this class on the orientation cycle
[ν−1(Bε ∩ V ), ν−1(Sε ∩ V )].

More generally, given a section η of T ∗
R
B|A, A ⊂ V , there is a canonical

way of constructing a section η̃ of T̃ ∗
R
|Ã, Ã = ν−1A, which is described in the

following. The same construction works for complex forms. First, taking the
pull-back ν∗η, we get a section of ν∗T ∗

R
B|V . Then η̃ is obtained by projecting

ν∗η to a section of T̃ ∗
R

by the canonical bundle homomorphism

ν∗T ∗
RB|V −→ T̃ ∗

R .

Thus the value of η̃ at a point (x, P ) is simply the restriction of the linear
map η(x) : (TRB)x → R to P . We call η̃ the canonical lifting of η.

By the Whitney condition (a), if a ∈ Vα is the limit point of the sequence
{xi} ∈ Vreg such that P = lim(TVreg)xi and if the kernel of η is transverse
to Vα, then the linear form η̃ will be nonvanishing on P . Thus, if η has an
isolated singularity at the point 0 ∈ V (in the stratified sense), then we have
a never-zero section η̃ of the dual Nash bundle T̃ ∗

R
over ν−1(Sε ∩ V ) ⊂ Ṽ .

Let o(η) ∈ H2n(ν−1(Bε ∩ V ), ν−1(Sε ∩ V ); Z) be the cohomology class of the
obstruction cycle to extend this to a section of T̃ ∗

R
over ν−1(Bε ∩ V ). Then

define (c.f. [32, 50]):

Definition 9.3.1. The local Euler obstruction of the real differential form
η at an isolated singularity is the integer EuV (η, 0) obtained by evaluating
the obstruction cohomology class o(η) on the orientation cycle [ν−1(Bε ∩
V ), ν−1(Sε ∩ V )].

MacPherson’s local Euler obstruction EuV (0) corresponds to taking the
differential of the square of the function distance to 0.

In the complex case, one can perform the same construction, using the
corresponding complex bundles. If ω is a complex differential form, section of
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T ∗B|A with an isolated singularity, one can define the local Euler obstruction
EuV (ω, 0). Notice that it is equal to that of its real part up to sign:

EuV (ω, 0) = (−1)nEuV (Reω, 0). (9.3.1)

This is an immediate consequence of the relation between the Chern
classes of a complex vector bundle and those of its dual.

We note that the idea of considering the (complex) dual Nash bundle was
already present in [134], where Sabbah introduces a local Euler obstruction
EǔV (0) that satisfies EǔV (0) = (−1)nEuV (0). See also [137], Sect. 5.2.

We also notice (see [151, Corollary 3.2] and [52, Proposition 4]) that if
(V, 0) is a reduced complex analytic germ with an isolated singularity at 0
and f is a holomorphic function on V with an isolated singularity at 0, then
one has

EuV (df, 0) = (−1)dimV [χ(F�)− χ(Ff )],

where F∗ denotes the Milnor fiber and � is a generic linear function on V (so
that F� is the complex link of 0 in V in the sense of [73]).

Just as for vector fields (see Chap. 8) one has in this situation the following:

Theorem 9.3.2. Let Vα ⊂ V be the stratum containing 0, EuV (0) the local
Euler obstruction of V at 0 and ω a (real or complex) 1-form on Vα with
an isolated singularity at 0. Then the local Euler obstruction of the radial
extension ω′ of ω and the Schwartz index of ω at 0 are related by the following
proportionality formula:

EuV (ω′, 0) = EuV (0) · IndSch(ω, 0;V ).

The Theorem can be proved by one of the two ways we used for proving
Theorem 3.6.1 or Theorem 8.1.2 (for details see [36]).

9.4 The Radial Index

In [50,51] the authors introduced an index of 1-forms with isolated singulari-
ties on (real) analytic varieties, that they called radial index in analogy with
the previously defined index for vector fields (see [6, 49, 96, 148] or Chaps. 2
and 4 above). This index measures the “lack of radiality” of such a 1-form.
The corresponding notion for complex 1-forms with isolated singularities on
complex analytic varieties was introduced in [57] (see also [52]). Here we
briefly explain this index, essentially following [57].

Let (V, 0) ⊂ (Cm, 0) be a germ of a purely n-dimensional complex analytic
variety with an isolated singularity at the origin 0. Let ω be a continuous
1-form on V with an isolated singularity at the origin 0, so ω is a continuous,
nowhere-vanishing section of the complex cotangent bundle of V \ {0}.
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Let us fix a radial vector field vrad on (V, 0), e.g., the gradient on the
smooth part of V of the real valued function ‖z‖ with respect to a Riemannian
metric.

Definition 9.4.1. A real (or complex) 1-form on V is radial at 0 if, near the
origin, its value on the radial vector field vrad has positive real part at each
point in a punctured neighborhood of the origin 0 in V . We denote such a
form by ωrad.

The space of such 1-forms is connected.
Let ω1 and ω2 be 1-forms on (V, 0) with isolated singularities at the origin.

Choose ε > ε′ > 0 sufficiently small, let Kε = V ∩Sε and Kε′ = V ∩Sε′ be the
corresponding links, and let Z be the cylinder V ∩ [Bε \ Int(Bε′)], where Bρ

is the ball of radius ρ around the origin 0 in Cm, Sρ is its boundary. Let ω̃ be
a 1-form on the cylinder Z which coincides with ω1 in a neighborhood of Kε

and with ω2 in a neighborhood of Kε′ and which has isolated singular points
q1, . . . , qs inside Z. The sum d(ω1, ω2) of the (usual) local indices Ind(ω̃, qi)
of the form ω̃ at these points depends only on the forms ω1 and ω2 and will
be called the difference of these forms. One has d(ω1, ω2) = −d(ω2, ω1).

Definition 9.4.2. The radial index at 0, Indrad(ω, 0;V ), of the 1-form ω on
V is defined by

Indrad (ω, 0;V ) = (−1)n + d(ω, ωrad).

Remark 9.4.1. Notice this definition is similar to that of the Schwartz index
of vector fields given in the first section of Chap. 2. Also notice that the index
of a radial 1-form ωrad is equal to (−1)n. The sign is chosen so that this index
coincides with the usual one if V is smooth at 0.

Remark 9.4.2. We know from Sect. 1 in this chapter that there is a one-to-
one correspondence between complex 1-forms on a complex analytic manifold
V \ {0} and real 1-forms on it. The radial index of a complex 1-form can be
expressed through the corresponding index of its real part, defined in [50,51],
and viceversa. As before, the radial index Indrad (ω, 0;V ) of a complex 1-form
ω equals (−1)n-times the radial index of its real part.

Example 9.4.1. Let ω be a holomorphic 1-form on a curve singularity (C, 0)
with C = ∪ri=1Ci, where Ci are the irreducible components of C. Let ti be a
uniformization parameter on the component Ci and let the restriction ω|Ci

be of the form

(aitmi

i + terms of higher degree) dti , ai �= 0.

Then Indrad (ω|Ci
, 0;Ci) = mi. Therefore d(ω|Ci

, ωrad|Ci
) = mi + 1,

d(ω, ωrad) =
∑r
i=1(mi + 1), Indrad (ω, 0;V ) =

∑r
i=1 mi + (r − 1).
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Remark 9.4.3. The radial index obviously satisfies a law of conservation of
number: if ω′ is a 1-form on V close to ω, then,

Indrad(ω, 0;V ) = Indrad(ω′, 0;V ) +
∑

Indrad(ω′, x;V ),

where the sum on the right hand side is over all those points x in a small
punctured neighborhood of the origin 0 in V where the form ω′ vanishes (this
follows from the fact that d(ω1, ω3) = d(ω1, ω2) + d(ω2, ω3)). This stability
property of the index will be used in the last section.

Remark 9.4.4. In [52] Ebeling and Gusein-Zade define the radial index in a
more general setting, analogous to the way we defined this index for vector
fields in 2.4.2, and the theorem below holds in that more general setting.

Recall that if M is a compact complex manifold and ω is a complex 1-form
on it with isolated singularities, then one has the usual local Poincaré–Hopf
index at each singular point. These add up to the total index of the 1-form,
which equals the Euler–Poincaré characteristic of M :

IndPH(ω;M) = (−1)mχ(M),

independently of the 1-form. This is actually a special case of the last state-
ment in Theorem 9.1.1, taking the boundary to be empty. We also know
that in the case of vector fields, the work of M.-H. Schwartz shows that if
V is now a compact complex analytic singular variety and v is a stratified
vector field on V obtained by radial extension, then its total index equals
the Euler–Poincaré characteristic χ(V ). As explained in Chap. 2, this result
extends easily to arbitrary vector fields on V , provided they are stratified
and with isolated singularities, using the radial index.

These results extend naturally to 1-forms on singular varieties, as observed
by W. Ebeling and S. Gusein-Zade in [50, 51]. One gets:

Theorem 9.4.1. Let V be a compact complex analytic variety of dimension
n and ω a differential complex 1-form on V with isolated singularities. Let
Indrad(ω;V ) denote the total radial index of ω, i.e., the sum of all its local
radial indices at its singular points. Then:

Indrad(ω;V ) = (−1)nχ(V ).

9.5 The GSV Index

We look first at the case studied by Ebeling and Gusein-Zade, i.e., when the
variety V is an isolated complete intersection germ; then we envisage the case
when V has nonisolated singularities, following [36].
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9.5.1 Isolated Singularity Case

We recall (Chap. 3) that the GSV index of a continuous vector field v on an
isolated complete intersection germ (V, 0) is the degree of the map:

φv = (v, gradf1, ..., gradfk) : K →Wk+1(n + k),

from the link K of V into the Stiefel manifold Wk+1(n+k), where (f1, . . . , fk)
are functions that define the ICIS germ (V, 0) and v is assumed to be nonzero
away from 0. As we know, this index equals the Poincaré–Hopf index of an
extension of v to a Milnor fiber F. The analogous index was defined in [50,51]
for 1-forms on V .

Let ω be a complex-valued 1-form on V with an isolated singularity at 0.
Then its GSV index equals the degree of the map:

ψω = (ω, df1, . . . , dfk) : K →W ∗
k+1(n + k),

where W ∗
k+1(n + k) denotes the bundle associated to the cotangent bun-

dle T ∗(Cn+k)|V with fiber the corresponding Stiefel manifold of complex
orthonormal (k + 1)-frames in the dual of Cn+k. As noticed in [50, 51], this
index equals the Poincaré–Hopf index of the 1-form on a Milnor fiber of f ,
i.e., it equals the number of zeroes, counted with multiplicities, of any exten-
sion of ω to a Milnor fiber Vt = f−1(t)∩Bε of (V, 0). (The proof is similar to
that for vector fields given in Chap. 3.)

A remarkable difference of this index with the analogous one for vector
fields was observed in [50, 51]: if the differential 1-form is holomorphic, then
its index can be regarded as an intersection number of complex manifolds,
while for vector fields, the definition of the GSV index involves the conjugate
gradient vector fields, which are anti-holomorphic. Thence, in the case of
holomorphic 1-forms we can use powerful techniques of algebraic geometry
to compute its index. More precisely, assume the 1-form ω is holomorphic, and
let I be the ideal in OCn+k,0 generated by f1, . . . , fk and the (k+1)× (k +1)-
minors of the matrix: ⎛

⎜
⎜
⎜
⎜
⎝

∂f1
∂x1
· · · ∂f1

∂xn+k

... · · ·
...

∂fk

∂x1
· · · ∂fk

∂xn+k

A1 · · · An+k

⎞

⎟
⎟
⎟
⎟
⎠

.

Then one has the following theorem of W. Ebeling and S. Gusein-Zade (see
[50, 51]):

Theorem 9.5.1.

IndGSV (ω, 0;V ) = dimCOCn+k,0/I.
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This formula extends the one obtained by Lê D.T. and G.-M. Greuel for
the case when ω is the differential of a function ([74, 101]); in that case the
formula gives the Milnor number of the function and is known as the Lê-
Greuel formula for the Milnor number.

Remark 9.5.1. The above index can be regarded in the more general setting of
residues of Chern classes defined by a finite number of holomorphic sections.
See [160], where various expressions of the residues as in Sect. 1.6.6 are given.
The formula (9.5.1) is a particular case of the algebraic expression there.

It is clear that the GSV index satisfies the same law of conservation of
number satisfied by the radial index: if ω′ is a 1-form on V close to ω, then:

IndGSV(ω, 0;V ) = IndGSV(ω′, 0;V ) +
∑

Indrad(ω′, x;V ),

where the sum on the right hand side is over all those points x in a small
punctured neighborhood of the origin 0 in V where the form ω′ vanishes.
This implies:

Proposition 9.5.1. Let μ(V, 0) be the Milnor number of the isolated com-
plete intersection singularity (V, 0). For any 1-form ω on (V, 0) with an
isolated singularity at the origin 0 one has

μ(V, 0) = IndGSV (ω, 0;V ) − Indrad (ω, 0;V ) .

9.5.2 Nonisolated Singularity Case

If V has nonisolated singularities one may not have a Milnor fibration in
general, but one does if V has a Whitney stratification satisfying Thom’s
af -condition, for the functions that define V (c.f. [34, 103,107]).

Let (V, 0) be a complete intersection of complex dimension n defined in
an open ball B in C

n+k by functions f = (f1, · · · , fk), and assume 0 is a
singular point of V (not necessarily an isolated singularity). As before, we
endow B with a Whitney stratification {Vα} adapted to V , and we assume the
stratification has the Thom property relatively to f . In particular, if k = 1
then we always have such stratifications, by [82]. For k > 1 we must assume
such a stratification exists.

Let ω be as before, a (real or complex) 1-form on B, and assume its re-
striction to V has an isolated singularity at 0. The kernel of ω(0) contains
the tangent space of the stratum Vα containing 0, but if x �= 0, the kernel of
ω(x) is transverse to the stratum containing x. Now let F = Ft be a Milnor
fiber of V , i.e., F = f−1(t) ∩ Bε, where Bε is a sufficiently small ball in B

around 0 and t ∈ Ck is a regular value of f with ‖t‖ sufficiently small with
respect to ε. Notice that the af -condition implies that for every sequence
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tn of regular values converging to 0, and for every sequence {xn} of points
in the corresponding Milnor fibers converging to a point x ∈ V so that the
sequence of tangent spaces {(TFtn)xn} has a limit T , one has that T contains
the space (TVα)x, tangent to the stratum that contains x. By transversality
this implies that choosing the regular value t sufficiently close to 0 we can
assure that the kernel of ω is transverse to the Milnor fiber at every point in
its boundary ∂F. Thus its pull-back to F is a 1-form on this smooth manifold,
and it is never-zero on its boundary, thence ω has a well-defined Poincaré–
Hopf index in F as in Sect. 1. This index depends only on the restriction of
ω to V and on the topology of the Milnor fiber F, which is well-defined once
we fix the defining function f (which is assumed to satisfy the af -condition
for some Whitney stratification).

Definition 9.5.1. The GSV index of ω at 0 ∈ V relative to f , IndGSV(ω, 0; f),
is the Poincaré–Hopf index of ω in F.

In other words this index measures the number of points (counted with
signs) in which a generic perturbation of ω is tangent to F. In fact the in-

clusion F
i

↪→M pulls the form ω to a section of the (real or complex, as the
case may be) cotangent bundle of F, which is never-zero near the boundary
∂F since ω has an isolated singularity at 0 and, by hypothesis, the map f
satisfies the Thom af -condition. One gets the following result, which is due
to W. Ebeling and S. Gusein-Zade [50] when V has an isolated singularity:

Theorem 9.5.2. If the form ω is real then

IndGSV(ω, 0; f) = e(F;ω)[F], (9.5.3)

where e(F;ω) ∈ H2n(F, ∂F) is the Euler class of the real cotangent bundle
T ∗

R
F relative to the section defined by ω on the boundary, and [F] is the

orientation cycle of the pair (F, ∂F). If ω is a complex form, then one has:

IndGSV(ω, 0; f) = cn(T ∗F;ω)[F], (9.5.4)

where cn(T ∗F;ω) is the top Chern class of the cotangent bundle of F relative
to the form ω on the boundary ∂F.

Notice this is analogous to the construction done in Sect. 1.3.2. In this case
one can, alternatively, express the index as the relative Chern class:

IndGSV(ω, 0; f) = cn(T ∗M |F;Ω) [F], (9.5.5)

where Ω is the frame of k + 1 complex 1-forms on the boundary of F defined
by

Ω = (ω, df1, df2, · · · , dfk),
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since the forms (df1, · · · , dfk) are linearly independent everywhere on F.
Notice that if the form ω is holomorphic, then this index is necessarily non-
negative because it can be regarded as an intersection number of complex
submanifolds. For every complex 1-form one has:

IndGSV(ω, 0; f) = (−1)nIndGSV(Reω, 0; f).

We remark that if V has an isolated singularity at 0, then this is the index
defined in [50], i.e., the degree of the map from the link K of V into the
Stiefel manifold of complex (k+1)-frames in the dual (C∗)n+k given by the
map (ω, df1, · · · , dfk). Also notice that this index is somehow dual to the index
envisaged in 3.5 for vector fields, which is related to the top Fulton–Johnson
class of singular hypersurfaces, as we shall see in Chap. 11.

So, given the (nonisolated) complete intersection singularity (V, 0) and a
(real or complex) 1-form ω on V with an isolated singularity at 0, one has
three different indices: the Euler obstruction (Sect. 9.3 in this chapter), the
GSV index just defined and the index of its pull back to a 1-form on the
stratum containing 0. One also has the index of the form in the ambient
manifold M . For differential forms obtained by radial extension, the index
in the stratum equals its index in M , and this is by definition the Schwartz
index. The following proportionality theorem is analogous to the one in [34]
for vector fields that we discussed in Chap. 3 above.

Theorem 9.5.6. Let ω be a (real or complex) 1-form on the stratum Vα of 0
with an isolated singularity at 0. Then the GSV index of its radial extension
ω′ is proportional to the Schwartz index, the proportionality factor being the
Euler–Poincaré characteristic of the Milnor fiber F:

IndGSV(ω′, 0; f) = χ(F) · IndSch(ω, 0;V ).

The proof is similar to that of Theorem 9.3.2.

Remark 9.5.2. We notice that Theorems 9.3.2 and 9.5.6 can also be proved
using the stability of the index under perturbations, just as we did for vec-
tor fields. More precisely, one can easily show that the Euler obstruction
EuV (ω, x) and the GSV index are stable when we perturb the 1-form (or the
vector field) in the stratum and then extend it radially; then the sum of the
indices at the singularities of the new 1-form (vector field) give the corre-
sponding index for the original singularity. This implies the proportionality
of the indices.
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9.6 The Homological Index

This and the following sections are taken from [57]. Here we introduce the
homological index of a 1-form on a complex analytic variety with an isolated
singular point. This is analogous to, and inspired by, the homological index
for vector fields defined in [68] and discussed in Chap. 7. As in the case of
vector fields, when the ambient space is an ICIS, this index coincides with
the previously defined GSV index of 9.5.1.

Let (V, 0) ⊂ (Cm, 0) be an arbitrary germ of an analytic variety of pure
dimension n with an isolated singular point at the origin (not necessarily a
complete intersection). Given a holomorphic form ω on (V, 0) with an isolated
singularity, we consider the complex (Ω•

V,0,∧ω):

0 −→ OV,0 −→ Ω1
V,0 −→ · · · −→ Ωn

V,0 −→ 0,

where Ωi
V,0 are the modules of germs of Kähler differential forms on (V, 0) as

in 7.1.1, and the arrows are given by the exterior product by the form ω.
This complex is the dual of the Koszul complex considered in Chap. 7, and

it was used by G.-M. Greuel in [74] for complete intersections. The sheaves
Ωi
V,0 are coherent sheaves and the homology groups of the complex (Ω•

V,0,∧ω)
are concentrated at the origin and therefore are finite dimensional.

Definition 9.6.1. The homological index Indhom(ω, 0;V ) of the 1-form ω on
(V, 0) is (−1)n times the Euler characteristic of the above complex:

Indhom(ω, 0;V ) =
n∑

i=0

(−1)n−ihi(Ω•
V,0,∧ω), (9.6.1)

where hi(Ω•
V,0,∧ω) is the dimension of the corresponding homology group as

a vector space over C.

Theorem 9.6.2. Let ω be a holomorphic 1-form on V with an isolated sin-
gularity at the origin 0.

(1) If V is smooth, then Indhom (ω, 0;V ) equals the usual local index of the
1-form ω.

(2) The homological index satisfies the law of conservation of number: if ω′

is a holomorphic 1-form on V close to ω (in the space of all holomorphic
1-forms on V ), then:

Indhom(ω, 0;V ) = Indhom(ω′, 0;V ) +
∑

Indhom(ω′, x, V ),

where the sum on the right hand side is over all those points x in a small
punctured neighborhood of the origin 0 in V where the form ω′ vanishes.
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(3) If (V, 0) is an isolated complete intersection singularity, then the homo-
logical index Indhom (ω, 0;V ) coincides with the GSV index IndGSV (ω, 0;V ).

The proof of this theorem is an exercise using [64] and [74]. In fact, state-
ment (1) is straightforward and it is a special case of statement (3). Statement
(2) is a particular case of the main theorem in [64], which is Theorem 7.1.4
above. For statement (3) we notice that on an isolated complete intersection
singularity (V, 0)) the index IndGSVω also satisfies the law of conservation of
number and coincides with the homological index Indhom ω on smooth vari-
eties. This implies that the difference between these two indices is a locally
constant, and therefore constant, function on the space of 1-forms on (V, 0)
with an isolated singular point at the origin. Therefore it suffices to prove
(3) for ω = df where f is a holomorphic function on (V, 0) with an isolated
critical point at the origin. Then Lemma 1.6 in [74] implies that the homol-
ogy groups of the complex (Ω•

V,0,∧df) vanish in dimensions i = 0, 1, ..., n−1.
The statement then follows from the Remark following Lemma 5.3 of [74]
(see also [51]). ��
Remark 9.6.1. The minimal value of the homological index Indhom (ω, 0;V )
is attained by restrictions to V of generic 1-forms on Cm which do not vanish
at the origin. The subset of forms with this index in Ω1

V,0 is open, dense and
connected. Moreover, each 1-form ω can be approximated by a 1-form, the
index of which at the origin coincides with the minimal one and all its zeros
on V \ {0} are nondegenerate. This approximation can be chosen of the form
ω + εd� for a linear function �.

Remark 9.6.2. We notice that one has an invariant for functions on (V, 0)
with an isolated singularity at the origin defined by f �→ Indhom df . By the
theorem above, if (V, 0) is an isolated complete intersection singularity, this
invariant counts the number of critical points of the function f on a Milnor
fiber.

Remark 9.6.3. Let (C, 0) be an analytic curve singularity and let (C̄, 0̄) be
its normalization. Let τ = dim Ker(Ω1

C,0 → Ω1
C̄,0̄

), λ = dimC(ωC,0/c(Ω1
C,0)),

where ωC,0 is the dualizing module of Grothendieck, c : Ω1
C,0 → ωC,0 is the

class map (see [41]). In the article [123] of D. Mond and D. Van Straten
there is considered a Milnor number of a function f on a curve singular-
ity introduced by V. Goryunov. One can see that this Milnor number can
be defined for a 1-form ω with an isolated singularity on (C, 0) as well (as
dimC(ωC,0/ω ∧ OC,0)) and is equal to Indhom ω + λ− τ .

9.7 On the Milnor Number of an Isolated Singularity

We know from 9.5.1 that if (V, 0) is an ICIS germ and ω is a 1-form on it
with an isolated singularity at 0, then the Milnor number of (V, 0) equals the
difference of the GSV and radial indices,
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μ(V, 0) = IndGSV(ω, 0;V )− Indrad(ω, 0;V ).

If the germ (V, 0) is an isolated singularity but is not complete intersection,
one does not have a Milnor number in general, neither one has a GSV index
for forms nor vector fields. However the radial index is always defined, and
so is the homological index if the forms are holomorphic; we also know that
the homological index coincides with the GSV index if (V, 0) is a complete
intersection germ. The laws of conservation of numbers for the homologi-
cal and the radial indices of 1-forms, together with the fact that these two
indices coincide on smooth varieties imply that their difference is a locally
constant, and therefore constant, function on the space of 1-forms on V with
isolated singularities at the origin. Therefore one has the following statement
from [57]:

Proposition 9.7.1. Let (V, 0) be a germ of a complex analytic space of pure
dimension n with an isolated singular point at the origin. Then the difference

ν(V, 0) = Indhom (ω, 0;V )− Indrad (ω, 0;V )

between the homological and the radial indices does not depend on the
1-form ω.

This proposition, together with 9.5.1, allows us to think of ν(V, 0) as a
generalized Milnor number of the singularity (V, 0).

There are other invariants of isolated singularities of complex analytic vari-
eties which coincide with the Milnor number for isolated complete intersection
singularities. One of them is (−1)n times the reduced Euler characteristic,
i.e., the Euler characteristic minus 1, of the absolute de Rham complex of
(V, 0). In [57] is proved the following theorem:

Theorem 9.7.1. For a curve singularity (C, 0),

ν(C, 0) = dimC Ω1
C,0/dOC,0,

where d is the usual exterior derivative.

In other words this theorem says that the radial index (which is defined
topologically) equals the difference between the Euler characteristics of the
usual de Rham complex and the complex given by multiplication by the
1-form ω. This might be a special case of a general theorem for singular
varieties in the spirit of the results of C. Simpson [152] and others for complex
manifolds.

The idea of the proof is to consider the normalization π : (C̄, 0̄) → (C, 0)
of the curve and the commutative diagrams:
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0 → OC,0 ∧ω−−−→ Ω1
C,0 −−−→ Ω1

C,0/ω ∧ OC,0 → 0⏐
⏐
⏐
�π

∗
0

⏐
⏐
⏐
�π

∗
1

⏐
⏐
⏐
�

0 → OC̄,0̄
∧ω̄−−−→ Ω1

C̄,0̄
−−−→ Ω1

C̄,0̄
/ω̄ ∧ OC̄,0̄ → 0

0 → mC,0
d−−−→ Ω1

C,0 → Ω1
C,0/dOC,0 → 0⏐

⏐
⏐
�π̃

∗
0

⏐
⏐
⏐
�π

∗
1 ↓

0 → mC̄,0̄
d−−−→ Ω1

C̄,0̄
→ 0

where mC,0 is the maximal ideal in the ring OC,0, mC̄,0̄ is the ideal of germs
of functions on the normalization (C̄, 0̄), equal to zero at all the points in 0̄.
Then the snake Lemma yields to 9.7.1 (see [57, 4.3] for the complete proof).

Remark 9.7.1. A notion of a generalized Milnor number of a curve singularity
(C, 0) was introduced in [41] as dimC ωC,0/dOC,0, where ωC,0 is the dualizing
module of Grothendieck. For smoothable curve singularities, it is equal to
1 − χ(C̃), where C̃ is a smoothing of (C, 0). Here we recall that all smooth-
ings of a curve singularity have the same Euler characteristic. From the
proof of Theorem 6.1.3 in [41], it follows that the Milnor number defined by
R.-O. Buchweitz and G.-M. Greuel is equal to ν(C, 0) + λ − τ , where τ and
λ are defined in Remark 9.6.3. For complete intersection curve singularities
one has λ = τ .

9.8 Indices for Collections of 1-Forms

We know already that on a smooth closed manifold M , the index of a vector
field, or a 1-form, leads towards the Euler–Poincaré characteristic of M , which
is the Poincaré dual of the top Chern class when the manifold is (almost)
complex. In other words, if M has complex dimension m, then the total
index of a 1-form ω on M with isolated singularities satisfies:

IndPH(ω;M) = (−1)mcm(M)[M ].

We also know from the previous chapters that one has similar statements
for vector fields on compact complex analytic varieties, the precise statement
one gets depending on the concept of index one is using. In fact, as we shall
see in Chaps. 10–13 of this monograph, these are related to various concepts
of “Chern classes” one has for singular varieties, which coincide with the usual
Chern classes in the case of manifolds. For the radial index one gets χ(V ),
this is the 0-degree Schwartz–MacPherson class of V . For the GSV-index one
gets the 0-degree Fulton–Johnson class of V , which (with some restrictions)
equals the Euler–Poincaré characteristic of a smoothing V̂ as in the proof of
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Theorem 3.2.2. For the local Euler obstruction one gets the top Chern class
of the Nash bundle over the Nash blow up of V .

Now, in the case of manifolds the number cm(M)[M ] is one of the Chern
numbers the manifold has, but there are several others. One has a Chern
number

cj1(M) cj2(M) · · · cjr (M) [M ],

whenever j1, ..., jr are positive integers which add up to m. In the next chap-
ters of this monograph we shall explore various ways of generalizing the Chern
classes of complex manifolds to the case of singular varieties, and as we shall
explain, these are related in one or another way to studying indices of ap-
propriate vector fields or frames, as described in Chap. 1. These yield to
homology (or cohomology) classes which represent various generalizations
of Chern classes for singular varieties (of course there can be other means
to constructing Chern classes for singular varieties, for instance using the
MacPherson functor [117]).

Yet, there is another question that arises naturally in the context of this
book: the cj1(M) are cohomology classes in H2ji(M ; Z), but the evaluation
cj1(M)cj2(M) · · · cjr (M)[M ] is an actual number, in fact an integer. Is there a
way of defining an index associated to this number in a similar way as the local
Poincaré–Hopf index of a vector field (or 1-form) is associated to the Chern
number cm(M)[M ]? Moreover, what can we say about this question when the
ambient space is now a singular variety? what information these invariants
give about singular varieties? These and other questions are addressed by
W. Ebeling and S. Gusein-Zade in a series of articles (see [53–56]).

Before looking at this matter, let us envisage some related facts about the
Chern numbers of manifolds.

We recall from Chap. 1 that given a complex manifold M of dimension m,
its Chern class cr(M) ∈ H2r(M) is the primary obstruction to constructing
an (m − r + 1)-frame in M . In other words, let Wm−r+1(m) be the Stiefel
manifold of complex orthonormal (m − r + 1)-frames in Cm. This manifold
is diffeomorphic to U(m)/U(r− 1) and therefore it is (2r− 2)-connected and
its first nonzero homology and homotopy groups are H2r−1(Wm−r+1(m)) ∼=
π2r−1(Wm−r+1(m)) ∼= Z (see [153]).

Now let Wm−r+1(m)(TM) denote the fibre bundle over M whose fibre
at each point x is the Stiefel manifold Wm−r+1(m) of complex orthonormal
(m − r + 1)-frames in TxM ∼= Cm. Let us try to construct a section of this
bundle via the usual stepwise process. We triangulate M in some (any) way
and construct a section of Wm−r+1(m)(TM) step by step, starting from the
0-skeleton, then the 1-skeleton and so on, as far as we can. The fact that
the fiber is (2r − 2)-connected tells us that we can construct such a section
up to the (2r − 1)-skeleton of the triangulation. The first possibly nonzero
obstruction arises when we try to extend the section over the 2r-skeleton. We
thus get an element in π2r−1(Wm−r+1(m)) ∼= Z associated to each 2r-cell (or
simplex). This defines a cochain of dimension 2r, which is actually a cocycle
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and, by definition, represents the cohomology class cr(M). Notice that the
Poincaré dual of cr(M) is a homology class of dimension 2m− 2r.

Now look at the class cm−r(M). The analogous discussion says that this is
the primary obstruction to constructing an r+1-frame on M . This class lives
in H2m−2r(M) and its Poincaré dual is a homology class of dimension 2r.

Suppose we can represent the Poincaré dual of cr(M) by an oriented sub-
manifold Cm−r of M , which therefore has dimension 2m−2r. Similarly, let Cr
be an oriented submanifold of M of dimension 2r representing the Poincaré
dual of cm−r(M). If these two manifolds intersect, then we can always move
them slightly to make them have transverse intersections. By dimensional rea-
sons, this means that they meet at points, which come equipped with a ±1,
depending on whether or not the tangent spaces of Cr and Cm−r at the meet-
ing point yield the positive or negative orientation of TxM . Counting all these
points with their corresponding signs we get an integer that we may denote
Cm−r · Cr. This integer is precisely the Chern number cr(M) cm−r(M)[M ].

Geometrically this means that away from Cm−r we have a frame
v
(r)
1 = (v1

1 , ..., v
1
r+1), and these vector fields become linearly depen-

dant when we are in Cr. Similarly, away from Cm−r we have a frame
v
(n−r)
2 = (v2

1 , ..., v
2
m−r+1), and the vector fields in this frame become linearly

dependant when we are in Cr. The points that contribute towards the Chern
number cr(M) cm−r(M)[M ] are those in the intersection of Cr and Cm−r.
This inspires the following definition (which mimics that in [55]).

A point x ∈M is nonsingular for the collection of vector fields

{(v1
1 , ..., v

1
r+1), (v

2
1 , ..., v

2
m−r+1)}

if at least one of the two sets of vectors {v1
1 , ..., v

1
r+1} and {v2

1 , ..., v
2
m−r+1)}

is linearly independent at x. Otherwise we say that x is a singular point of
the collection {v(r)

1 , v
(n−r)
2 }.

In other words, the singular points of the collection of vector fields

{(v1
1 , ..., v

1
r+1), (v

2
1 , ..., v

2
m−r+1)}

are the points that count for the Chern number crcm−r[M ]. And the way
each singular point contributes towards this Chern number in the example
above is ±1 because of the transversality assumptions we made. In general
this is an integer that can be regarded as a local index associated to the
corresponding collection of vector fields at each singular point.

Now suppose we are given integers r1, ..., rs such that r1 + ... + rs = m.
One has a Chern number cr1(M) · · · crs(M) [M ], and the previous discussion
extends to this setting, to say that this number is the intersection number of
the cycles representing the Poincaré duals of the corresponding Chern classes.
Each Chern class crj corresponds, by duality, to the set of points where a
certain family of vector fields becomes linearly dependent, the singularities
of the corresponding frame vm−rj+1. A point x ∈ M is nonsingular for the
collection of vector fields
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{v(m−r1+1), · · · , v(m−rs+1)}

if at least one of the sets of vectors v(m−rj+1) is linearly independent at x.
Otherwise we say that x is a singular point of the collection of vector fields.
Notice that each singular point x0 of the collection comes naturally equipped
with a local index,

Ind({v(m−r1+1), · · · , v(m−rs+1)}, x0) ∈ Z,

given by the intersection product of the cycles determined by the points
where each of the sets of vectors v(m−rj+1) fails to be linearly independent.
More precisely, recall from Chap. 1 that the obstruction cocycle for a frame
v(m−rj+1) lives in dimension 2rj ; such a frame can be assumed to be nonsin-
gular over the 2rj − 1 skeleton of an appropriate cell decomposition of M ,
and it has at most isolated singularities in the 2rj-skeleton, located at the
barycenter σ̂ of each cell σ of dimension 2rj . At each such singular point,
the frame has its local index Ind(v(m−rj+1), σ̂), as defined in 1.3.2. Then the
local index of the collection at each singular point x0 is the product of the
local indices of the corresponding frames:

Ind({v(m−r1+1), · · · , v(m−rs+1)}, x0)

= Ind(v(m−r1+1), x0) · · · Ind(v(m−r1+1), x0),

recalling that a singularity of the collection means a singularity of each frame.
Now suppose M is a compact, almost complex manifold with nonempty

boundary ∂M , and we are given a collection of vector fields

V = {v(m−r1+1), · · · , v(m−rs+1)},

on a neighborhood U of ∂M in M and with no singularities of the collection
U . Then classical obstruction theory, as explained in Chap. 1, says that we
can extend this collection of vector fields to all of M with finitely many singu-
larities, and their total sum, counted with their local index, is independent of
the extension. We thus have a Chern number (cr1 · · · crs)V(M)[M,∂M ] ∈ Z

which depends only on M and the choice of the collection V near the bound-
ary. We may call this the Chern number of M relative to the collection V , in
analogy with the relative Chern classes introduced in Chap. 1.

Notice that similar considerations apply if we replace TM by some other
complex bundle over M of same dimension, in particular the cotangent bundle
T ∗M . Furthermore, we can make similar considerations for other complex
vector bundles of dimension m over complex varieties of dimension m, as for
instance the Nash bundle over the Nash blow up of a singular variety, and
we shall do so in a moment.

These ideas are all behind the work of Ebeling and Gusein-Zade about
indices of collections of 1-forms on singular varieties, that we now envisage.
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There are two main situations we consider, following [53–56]. One of this
leads to a generalization of the GSV-index, the other to a generalization of
the Euler defect.

9.8.1 The GSV Index for Collections of 1-Forms

Consider an ICIS germ (V, 0) defined by a holomorphic map f : (Cn+k, 0)→
(Ck, 0), and let V∗ be a collection of 1-forms on V with an isolated singularity
at 0. That is, V∗ consists of a set {ω(n−r1+1), · · · , ω(n−rs+1)} of frames of
1-forms on V ∗ := V \ {0}, each such frame consisting of a number rj of lin-
early independent 1-forms on V , linearly independent in some neighborhood
of 0 in V . For simplicity we assume, with no loss of generality, that the rep-
resentative of V is small enough, so that each frame ω(n−r1+1) is nonsingular
on all of V ∗ := V \ {0}.

Let ε > 0 be small enough so that K = V ∩ Sε is the link of V , and
let 0 < δ << ε be small enough so that for each regular value t of f with
|t| ≤ δ one has that the fiber Ft = f−1(t) meets the sphere Sε transversally.
As in Chap. 3, we have that Ft is an almost complex manifold with bound-
ary, and the transversal Isotopy Lemma (or the first Thom–Mather Isotopy
theorem) tell us that the boundary ∂Ft is isotopic (in the ambient space) to
K. Therefore, we can move the collection V∗ to a collection of 1− forms on
a neighborhood of ∂Ft in Ft, with no singular point. By the previous discus-
sion, this collection determines a well-defined Chern number of the cotangent
bundle T ∗Ft relative to the collection of 1-forms V∗.

This is the GSV index of the collection of 1-forms defined by Ebeling and
Gusein-Zade. If the collection V∗ consists of a single 1-form, this is the GSV
index previously envisaged in this chapter. The same construction applied to
a vector field is the GSV index of Chap. 3.

In concordance with Theorem 9.5.1, if all the 1-forms in the collection
are holomorphic, then the authors express this index as the dimension of a
certain vector space (see [55, Theorem 2.2]). This generalizes the Lê-Greuel
formula for the Milnor number of an ICIS germ.

9.8.2 Local Chern Obstructions

Assume now that (V, 0) is the germ of a reduced complex analytic space in
Cm of pure dimension n, and equip V with a Whitney stratification so that
{0} is a stratum. If ω is a 1-form on Cm with an isolated singularity at 0, then
one has its local Euler obstruction defined in 9.3.1 above. We recall briefly
its definition. Let Ṽ

ν→ V be the Nash blow up of V , and T̃ ∗ π→ Ṽ the dual of
its Nash bundle. Then the 1-form ω lifts canonically to a section ω̃ of T̃ ∗ over
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ν−1((V ∩ Bε) \ {0}), where Bε is a small ball centered at 0. Its local Euler
obstruction, denoted Euω,V(0), is by definition the obstruction to extending
ω̃ as a section of T̃ ∗ over ν−1(V ∩ Bε). More precisely, if we denote such an
obstruction by Obs(ω̃, ν−1(V ∩Bε)) ∈ H2n(ν−1(V ∩Bε), ν−1(V ∩∂Bε)), then
by definition Euω,V(0) is the integer one gets by evaluating Obs(ω̃, ν−1(V ∩
Bε)) in the fundamental cycle of the pair (ν−1(V ∩ Bε), ν−1(V ∩ ∂Bε)).

This corresponds to considering the top Chern class of the Nash bun-
dle over the Nash blow up, relative to the 1-form defined on the boundary
ν−1(V ∩ ∂Bε).

Essentially the same construction goes through for collections of 1-forms
on V instead of a single 1-form, but in this case one must pay attention
not only to the singularities of the collection, but also to another type of
“bad points,” called special points. One gets the local Chern obstructions of
Ebeling and Gusein-Zade. This defines local invariants of the germ (V, 0) that
generalize the local Euler obstruction of 1-forms.

Furthermore, one has that for an ICIS germ (V, P ), the difference between
the GSV index and the local Chern obstruction of a collection of 1-forms
does not depend on the collection, so it is an invariant of the singularity
(Theorem 3.4 in [55]). It would be interesting to explore these new invariants
of singularities.

We refer to [52–56] for more on this interesting topic.



Chapter 10

The Schwartz Classes

Abstract As mentioned before, the first generalization of Chern classes to
singular varieties is due to M.-H. Schwartz, using obstruction theory and
radial frames. These classes are the primary obstructions to constructing a
special type of stratified frames on V that she called radial frames. To avoid
possible misunderstandings, here we prefer to call them frames constructed
by radial extension, as in the case of vector fields. We refer to [28, 33] for
details of the construction and we content ourselves with summarizing here
their main properties. It was shown in [33] that these classes correspond, by
Alexander isomorphism, to the MacPherson classes, that we discuss briefly
in the last section of this chapter.

In this chapter we provide a viewpoint for studying Schwartz–MacPherson
classes which is particularly close to the theory of indices of vector fields that
we develop in this book, both from the topological and the differential geomet-
ric sides. In the first three sections, we discuss the Schwartz index of frames
and a method for defining the Schwartz classes of singular varieties using
arbitrary stratified frames, not necessarily constructed by radial extension.
As a corollary we obtain that the Schwartz classes are the primary obstruc-
tion to constructing a stratified frame (any frame, not necessarily radial) on
the skeleton of the appropriate dimension and for an appropriate cellular
decomposition: if such a frame exists, then the corresponding Schwartz class
vanishes (the converse is false in general).

In Sect. 4, we use the methods of [31], joint work with D. Lehmann, for con-
structing localized Schwartz classes in both the topological and differential
geometric contexts, via Chern–Weil theory and using stratified frames. The
last section discusses briefly MacPherson and Mather classes (see [28, 117]).

10.1 The Local Schwartz Index of a Frame

We know already from Chap. 2 how to define the Schwartz index of a vector
field constructed by radial extension, and that notion was generalized to give
an index for vector fields in general, using the difference between the given

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 10, 167
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vector field and a radial one (2.4.2). In this section we extend these concepts
to frames, using the difference cocycle (see [153]), in order to define the local
Schwartz index for arbitrary stratified frames.

The idea for constructing frames by radial extension is similar to that for
constructing vector fields by radial extension, that we described in Chap. 2
(see [142]). We consider as before, a compact, complex analytic n-dimensional
variety V embedded in a complex m-manifold M , endowed with a Whitney
stratification {Vα} adapted to V . We use a cellular decomposition (D), dual
to a triangulation of M compatible with the stratification. The cells σ of (D)
are transverse to the strata Vα. In general, elements σ ∩ Vα of (D) are not
cells, but that is the case for the smallest dimensional stratum Vα meeting σ.

The concept of stratified vector fields, introduced in Chap. 2, extends in
the obvious way to frames:

Definition 10.1.1. Let A be a subspace of M . A stratified r-frame on A is
an r-field v(r) = {v1, ..., vr} consisting of stratified vector fields v1, . . . , vr, lin-
early independent everywhere. By a singularity of an r-frame we mean a point
z ∈ A where the r vectors v1(z), . . . , vr(z) fail to be linearly independent.

Let σ be a (D)-cell of dimension 2(m − r + 1), dual of a simplex in the
(complex) d-dimensional stratum Vα. Then σα = σ ∩ Vα is a cell of (real)
dimension 2d − 2r + 2. Suppose we have a stratified r-frame v(r) defined
on the boundary of σα. We thus have an associated map v(r) : ∂σα →
Wr,d, which determines an element in π2d−2r+1(Wr,d) 
 Z. This defines an
index Ind(v(r), σα) ∈ Z, as in Chap. 1, that by abuse of notation we call the
Poincaré–Hopf index of the frame v(r) on σα. The frame can of course be
extended by a homothecy to all of σα minus its barycenter aσ, Notice that
if we write the frame v(r) as (v(r−1), vr), where v(r−1) is the (r − 1) frame
determined by the first r−1 vector fields in v(r), then v(r−1) extends without
singularities to the interior of σα, by dimensional reasons. It spans a bundle
Sp{v(r−1)}. Then the index Ind(v(r), σα) equals the degree of the map from
∂σα into the unit sphere of the fiber over aσ of orthogonal complement of the
bundle Sp{v(r−1)}, defined by the last vector field vr (normalized).

The M.-H. Schwartz’s radial extension technique can be used to extend
each of the components of v(r) in a neighborhood of σα in M (see [28]). In
this way we obtain a stratified r-frame on a punctured neighborhood of aσ
in the 2(m − r + 1)-cell σ of (D). The boundary of σ is a (2m − 2r + 1)-
sphere. This defines a map ∂σ → Wr,m which represents an element in
π2m−2r+1(Wr,m) 
 Z and therefore defines an index in Z. Since by construc-
tion the frame is radial in all directions normal to the stratum Vα, it follows
that this index coincides with the previously defined index Ind(v(r), σα). One
has:

Theorem 10.1.1. Let Vα be a (complex) d-dimensional stratum in V and
suppose σα = σ∩Vα is a (2d− 2r + 2)-cell. Let v(r) be an r-frame defined on
the boundary of σα Let us write v(r) = (v(r−1), vr) where v(r−1) is the (r− 1)
frame determined by the first r − 1 components (vector fields) in v(r). Then:
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(1) the (r−1)-frame v(r−1) can be extended to a frame (with no singularities)
on the whole cell σ and

(2) the index IndPH(v(r), σ) of v(r) in σ can be defined in either of the three
equivalent ways:

(a) as the element in π2d−2r+1(Wr,d) 
 Z represented by ∂σα
v(r)

−→Wr,d,
(b) as the element in π2d−2r+1(S2d−2r+1) 
 Z represented by ∂σα

vr−→
S2d−2r+1; the map into the fiber of the orthogonal complement of the bundle
Sp{v(r−1)} spanned by v(r−1) and

(c) as the element in π2m−2r+1(Wr,m) 
 Z represented by ∂σ
v̂(r)

−→ Wr,m,
where v̂(r) is a (stratified) radial extension of v(r) to the boundary of the cell
σ ∈ (D) whose intersection with Vα is σα.

Definition 10.1.2. Let v(r) be an r-frame as above, defined on the boundary
of a cell σ∩Vα of dimension 2d−2r+2, where d is the dimension of the stratum
Vα. The integer obtained in 10.1.1 is the Schwartz index of the r-frame v(r)

on the cell σ. We denote it IndSch(v(r), σ).

Example 10.1.1. Consider the 2-cell e2 in C3 defined by {(0, 0, z)
∣
∣ |z| ≤ 1}.

The 3-frame on e2 defined by v(3) = ( ∂∂x , ∂
∂y ,

∂
∂z ) obviously has index 0, since

it does not vanish anywhere. Consider now the 3-frame on e2 defined by:

v(3) = (
∂

∂x
,

∂

∂y
, zk

∂

∂z
), k ≥ 1.

Using the second definition above we see that the index of this frame equals
the Poincaré–Hopf index at 0 ∈ C of the holomorphic vector field zk ∂

∂z , so it
has index k. Notice that we may consider only a 2-frame on e2, for example
v(2) = ( ∂

∂x , z
k ∂
∂z ); this has a singularity at {(0, 0, 0)}, but in this case one

can get rid of this singularity by deforming the frame by an appropriate
homotopy, since the 2-frame on the boundary extends to the interior if and
only if the corresponding map into W2,3 is nulhomotopic, but this Stiefel
manifold is diffeomorphic to S3, so it is simply connected. In the previous
case the 3-frames on ∂e2 = S1 correspond to the elements in the fundamental
group of the unitary group U(3) 
W3,3, π1(U(3)) 
 Z.

Let σ be a cell of (D) of dimension 2m− 2r + 2 that meets the (complex)
d-dimensional stratum Vα along the cell σα. One denotes by aσ the barycenter
of the cell σ. Let the stratified frame v(r) be defined (with no singularity) on
the boundary of σ. One defines:

Definition 10.1.3. We say that v(r) is normally radial at aσ if for each
stratum Vβ having aσ in its closure and for each sufficiently small tube Tε(Vα)
around Vα in M , one has that each component v1, ..., vr of v(r) is transverse
(pointing outwards) to the intersection V β ∩ Tε(Vα).
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As in the case of vector fields, up to homotopy realized by stratified vector
fields, every normally radial frame at aσ is obtained by radial extension of
its restriction to Vα.

For normally radial frames one has that its Poincaré–Hopf index in the
stratum equals the Poincaré–Hopf index in M , and so one has a well defined
Schwartz index as before. Notice this says nothing about the behavior of the
frame in the stratum Vα containing aσ.

Example 10.1.2. Consider the 4-cell e = {(0, y, z)
∣
∣ |y2| + |z|2 ≤ 1} in C3 =

{(x, y, z)} and the Whitney stratification of the unit ball B in C3 consisting
of the strata

{
e, B \ {e}

}
. The 2-frame

v(2) = (x
∂

∂x
+

∂

∂y
, x

∂

∂x
+ zk

∂

∂z
), k ≥ 1,

is stratified, normally radial and it has Schwartz index k.

Now we wish to distinguish the normally radial stratified frames with the
“simplest” possible behavior in the stratum Vα of aσ. Write such a frame v(r)

in the form (v(r−1), vr) as before; we assume the frame v(r−1) is extended to
the cell σ with no singularity, so the only singularity of v(r) in σ is that of
the vector field vr at the barycenter aσ. Let Q ⊂ TM |σ̃ be the orthogonal
complement (for some Riemannian metric) of the bundle Sp{v(r−1)}; the
Schwartz index of v(r) at aσ is the Poincaré–Hopf index of the section vr of Q.

Definition 10.1.4. Let v(r) be a stratified r-frame defined on a neighbor-
hood in M of a point x in a stratum Vα of V of dimension d. We say that
v(r) is radial at x if it is normally radial in M and it is radial in the stratum
of x, i.e., it has Schwartz index 1.

Example 10.1.3. With the same data than Example 10.1.2, the 2-frame v(2) =(
∂
∂y , z ∂

∂z

)
is radial on the stratum e of B, but it is not normally radial. The

frame (
x

∂

∂x
+

∂

∂y
, x

∂

∂x
+ z

∂

∂z

)
,

is radial in the stratum e and it is also normally radial, so it is radial in the
ambient space.

We now define the local Schwartz index for arbitrary (stratified) frames;
this is similar to 2.4.2. Let v(r) be an r-frame defined on the boundary of
a (D)-cell σ of dimension 2m − 2r + 2, whose barycenter is a point aσ ∈
Vα ⊂ V . We extend v(r) to a stratified frame on all of σ \ {aσ}. Recall that,
by construction, the cell σ meets transversally all the Whitney strata Vβ

containing Vα in their closure. Let v
(r)
rad be a stratified radial frame around

aσ. We define the difference between v(r) and v
(r)
rad at aσ as follows. Consider

sufficiently small spheres Sε, Sε′ in M , ε > ε′ > 0, centered at aσ, and
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consider the frame v(r) on Sε ∩ σ ∩ V and v
(r)
rad on Sε′ ∩ σ ∩ V . We use again

the Schwartz’s technique of radial extension to get a stratified r-frame w(r)

on the intersection of σ with the cylinder

X = [(V ∩ Be) \ (V ∩
◦
Be′)]

in V bounded by Kε = Sε ∩ V and Kε′ = Sε′ ∩ V , having finitely many
singularities in the interior of X . At each of these singular points its index in
the stratum, IndPH(w(r), X ∩ σ), equals its index in the ambient space Cm.
The difference of v(r) and v

(r)
rad is defined as:

d(v(r), v
(r)
rad) =

∑
IndPH(w(r), X ∩ σ),

where the sum on the right runs over the singular points of w(r) in X and each
singularity is being counted with the local index of w(r) in the corresponding
stratum. As in the work of M.-H. Schwartz, we can check that this integer
does not depend on the choice of w(r).

Definition 10.1.5. The Schwartz (or radial) index of the stratified r-field
v(r) at aσ ∈ V is:

IndSch(v(r), aσ;V ) = 1 + d(v(r), v
(r)
rad) = 1 +

∑
Ind(w(r), X ∩ σ),

where the sum on the right is taken over the singularities of w(r) in all strata
in X ∩ σ.

10.2 Proportionality Theorem

The Proportionality Theorem, due to [33], is the key point in the proof of the
equality of Schwartz and MacPherson classes via the Alexander isomorphism.

Let ν : Ṽ → V be the Nash modification of V . Let σ be a cell of dimension
2(m− r +1) and v(r) a stratified r-field on σ∩V with an isolated singularity
at the barycenter aσ of σ. Since v(r) is nonsingular on ∂σ∩V , it can be lifted
to an r-frame ṽ(r) of T̃ over ν−1(∂σ ∩ V ), as in the case of vector fields. One
obtains, over ν−1(∂σ ∩ V ), a section of the bundle T̃r associated to T̃ and
whose fiber in a point x̃ is the set of r-frames in T̃x̃. Let o(ṽ(r)) denote the
class in H2(n−r+1)(ν−1(σ ∩ V ), ν−1(∂σ ∩ V )) of the obstruction cocycle to
extending ṽ(r) further to a section of T̃r|ν−1(σ̃).

Definition 10.2.1. The local Euler obstruction EuV (v(r), aσ) of the strat-
ified r-field v(r) at the isolated singularity aσ is the integer obtained by
evaluating o(ṽ(r)) on the orientation cycle [ν−1(σ ∩ V ), ν−1(∂σ ∩ V )].
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Theorem 10.2.1. [33] Let v(r) be a stratified r-frame on σ \ {aσ}, where σ
is a cell of (D) of dimension 2m − 2r + 2 and aσ is its barycenter. Let Vα
be the stratum that contains aσ, dimCVα = d. Assume further that v(r) is
normally radial at aσ. One has:

EuV (v(r), aσ) = EuV (aσ) · IndSch(v(r), σ).

A possible proof is to use the stability of the Euler obstruction EuV (v(r), a)
under appropriate perturbations and to prove the Theorem in the same way
as Theorem 3.6.1. We give a proof adapted from the one of [33] but which is
simpler (see [35]).

Proof. If r = 1, this is Theorem 8.1.2.
If r > 1, we know that, up to homotopy, the normally radial frame can be

considered as obtained by radial extension of its restriction to Vα. Then, we
reduce the problem to the case r = 1 in the following way.
1. Taking, if necessary, a smaller cell σ (that is necessary if the boundary of
σ ∩ Vα does not lie entirely in the interior of the stratum Vα), one proceeds
as follows: Let us denote by σα = σ ∩ Vα, and consider D a small closed disc
of complex dimension r−1 with center p transverse to σα in Vα. By the local
triviality property of Whitney stratifications, there is a neighborhood Ω of p
in M homeomorphic to D×σ and stratified by {D× (σ∩Vβ)}β where Vβ are
the strata which meet σ.

Let us write v
(r)
α as (v(r−1)

α , vα,r), where v
(r−1)
α is the (r−1)-frame consist-

ing of the first (r − 1) vector fields. By hypothesis, v
(r−1)
α has no singularity

on ∂σ ∩ Vα; and by dimensional reasons, obstruction theory says that it ex-
tends to a vector field on all of σ ∩ Vα (because it represents a class in a
homotopy group which is trivial). Thus we may choose a radial extension
v(r) = (v(r−1), vr) on σ where the (r− 1)-field v(r−1) is nonsingular and vr is
a radial extension of the vector field vα,r.

Let E denote the trivial subbundle of TM |σ of rank r − 1 spanned by
v(r−1) (over the complex numbers) and Q the orthogonal complement of E
in TM |σ for some metric;

TM |σ = E ⊕Q. (10.2.2)

The bundle E extends to a neighborhood of p in M and we get, denoting
also by E and Q the extensions of E and Q, a decomposition

TM |Ω = E ⊕Q. (10.2.3)

The bundles E and Q can be interpreted as π∗
1TD and π∗

2Tσ, respectively,
where π1 : Ω → D and π2 : Ω → σ denote the projections.

Now we may think of vr as a stratified section of Tσ. Let vD denote a
radial vector field on D at p. Then the sum
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v0 = π∗
1vD + π∗

2vr (10.2.4)

is a vector field on Ω, singular at p. We claim that v0 is stratified ; that
follows from the choice of the stratification in Ω = D × σ, the fact that vr
is a stratified vector field on σ and the fact that π∗

1vD or π∗
2vr is tangent to

each fiber of π2 or π1, respectively. Moreover, from the construction we see
that v0 is a radial extension of the vector field (π1|Vα)∗vD + (π2|Vα)∗vα,r on
Vα.

Let ṽ0 be the lifting of v0 as a section of T̃ over ν−1(S∩V ), where S = ∂Ω.
If we denote by o(ṽ0, T̃ ) the class of the obstruction cocycle to extending ṽ0

to a nonvanishing section over ν−1(Ω ∩ V ), by definition we have

Eu(v0, V ; p) = o(ṽ0, T̃ )[ν−1(Ω ∩ V ), ν−1(S ∩ V )].

In the following steps 2 and 3, we prove that

Eu(v(r), V ; p) = Eu(v0, V ; p). (10.2.5)

This will finish the proof of Theorem 10.2.1, since Theorem 8.1.2 implies

Eu(v0, V ; p) = Eu(V, p) · IndSch(v0, V ; p)

and by definition, we have

IndSch(v0, V ; p) = IndSch(vr, V ; p) = IndSch(v(r), V ; p).

2. Expression of Eu(v(r), V ; p).
Using the decomposition (10.2.2), we obtain a decomposition on ν−1(σ):

ν∗TM |σ = ν∗E ⊕ ν∗Q.

Since the r-field (v(r−1), vr) is stratified and nonsingular on ∂σ ∩ V , it lifts
to an r-frame ṽ(r) = (ṽ(r−1), ṽr) of the Nash bundle T̃ over ν−1(∂σ ∩ V ).
Moreover, since v(r−1) is nonsingular on σ∩V , ν∗E (restricted to ν−1(σ∩V ))
is a subbundle of T̃ |ν−1(σ∩V ) and we have a decomposition:

T̃ |ν−1(σ∩V ) = ν∗E ⊕ P̃ , (10.2.6)

where P̃ is a subbundle of ν∗Q|ν−1(σ∩V ). We may think of ṽr as a section of
P̃ which is nonvanishing on ν−1(∂σ∩V ). If we denote by o(ṽr, P̃ ) the class in
H2(n−r+1)(ν−1(σ ∩ V ), ν−1(∂σ ∩ V )) of the obstruction cocycle to extending
this to a nonvanishing section over ν−1(σ ∩ V ), we have

Eu(v(r), V ; p) = o(ṽr, P̃ )[ν−1(σ ∩ V ), ν−1(∂σ ∩ V )]. (10.2.7)
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3. Expression of Eu(v0, V ; p).
Using the (stratified) decomposition (10.2.4), let ṽ0 = (π̃∗

1vD, π̃∗
2vr) be the

lifting of the respective vector fields to sections of T̃ over ν−1(S ∩ V ), where
π̃∗

1vD = ν∗π∗
1vD is a section of ν∗E and π̃∗

2vr is a section of P̃ .
Now, in the decomposition (10.2.3), since E is in SV , i.e., the vectors in

E are stratified, the pull-back ν∗E (restricted to ν−1(Ω ∩V )) is a subbundle
of T̃ |ν−1(Ω∩V ) and we have a decomposition

T̃ |ν−1(Ω∩V ) = ν∗E ⊕ P̃ ,

where P̃ is a subbundle of ν∗Q|ν−1(Ω∩V ), extending P̃ in (10.2.6).
Let us denote by o(ν∗π∗

1vD, ν∗E) the class of the obstruction cocycle to
extending ν∗π∗

1vD, a section of ν∗E nonvanishing on ν−1((∂D × σ) ∩ V ) =
ν−1(∂D × (σ ∩ V )), to a nonvanishing section on ν−1(Ω ∩ V ). In the same
way, we denote by o(π̃∗

2vr, P̃ ) the class of the obstruction cocycle to extending
π̃∗

2vr, a section of P̃ nonvanishing on ν−1((D×∂σ)∩V ) = ν−1(D× (∂σ∩V )),
to a nonvanishing section on ν−1(Ω ∩ V ). Then we have

o(ṽ0, T̃ ) = o(ν∗π∗
1vD, ν∗E) ! o(π̃∗

2vr, P̃ ),

where ! denotes the cup product. We have o(ν∗π∗
1vD, ν∗E) = ν∗π∗

1o(vD, TD).
Since Ω ∩V = D× (σ∩V ) and o(vD, TD) is a generator of H2r−2(D, ∂D), we
get

o(ν∗π∗
1vD, ν∗E) " [ν−1(Ω ∩ V ), ν−1(S ∩ V )] = [ν−1(σ ∩ V ), ν−1(∂σ ∩ V )],

where " denotes the cap product. Since the restriction of o(π̃∗
2vr, P̃ ) to ν−1σ

is equal to o(ṽr , P̃ ), we obtain

Eu(v0, V ; p) = o(ṽr, P̃ )[ν−1(σ ∩ V ), ν−1(∂σ ∩ V )]. (10.2.8)

From (10.2.8) and (10.2.7), we obtain (10.2.5) and the theorem.

Remark 10.2.1. Notice that both proofs above are easily adapted to prove
the equivalent theorem for coframes on V , i.e., for frames of 1-forms on V .
This gives relations between the dual Schwartz classes of V (which can be
represented by Chern classes of the cotangent bundle T ∗(U), U being now
a regular neighborhood of V in M , relative to a coframe on U \ V obtained
by radial extension) and the corresponding Chern classes of the dual Nash
bundle T̃ ∗. This is related to the recent work of Ebeling and Gusein-Zade
about indices of “collections” of 1-forms [55].
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10.3 The Schwartz Classes

As we mentioned before, Schwartz classes are the obstructions to constructing
stratified frames on V obtained by radial extension. We recall (see [28, 33]
for details) that to constructing these frames we take appropriate stratifi-
cations, triangulations and dual cellular decompositions as before, and we
construct r-frame vrad with isolated singularities in the barycenters of the
cells in (D)(2m−2r+2), by induction on the dimension of the strata. If, as
before, we write frames as v(r) = (v(r−1), vr), then one has that one can con-
struct on the 2q-skeleton (D)(2q) of (D) in M a frame v

(r)
rad = (v(r−1)

rad , vrad)
whose main properties are:

(1) v
(r)
rad has only isolated singularities on (D)(2q); these are the singularities

of the last vector field vrad, while the (r− 1) frame (v(r−1)
rad ) is nonsingular on

(D)(2q). The vector field vrad is nonsingular on (D)(2q−1).

(2) it is everywhere pointing outwards from cellular tubes around V and
cellular tubes around the strata Vα. That is, it is everywhere normally radial.
Hence the Schwartz index IndSch can be evaluated as in either of the 3 ways
described in Theorem 10.1.1 above.

These are the frames obtained by radial extension. A motivation for consid-
ering such frames is that they are in a sense “canonical,” up to homotopy, and
these are the only frames one can construct “explicitly” on singular varieties
in general.

Let us now denote by T̂V a cellular tube around V in M and consider
a radial r-frame v

(r)
rad on (D)(2q). By construction this frame is nonsingular

on T̂V \ V . It determines a 2q-cochain γq ∈ C2q(T̂V , ∂T̂V ) whose value on a
2q-cell σ is < γq · σ >= IndSch(v

(r)
rad, σ) if σ intersects V and 0 elsewhere.

It is proved in [33,141] that this cochain is actually a cocycle, representing
a cohomology class cq(V ) ∈ H2q(T̂V , ∂T̂V ) 
 H2q(M,M \V ). This class does
not depend on the choices of the Whitney stratification of M , the triangu-
lations, nor the r-frame v(r), so long as it is constructed by radial extension
(see [141], [142] and [28]).

Definition 10.3.1. The class cq(V ) ∈ H2q(M,M \ V ) is the q-th Schwartz
class of V .

The same construction can be performed for a stratified r − frame, r ≥
1, which is nonsingular on (D)(2m−2r+1) and has isolated singularities on
(D)2m−2r+2. Then the Schwartz indices of v(r), defined as in 10.1.5, determine
a cocycle in the same way. One obtains a relative class

cq(T̂V , ∂T̂V ; v(r)) ∈ H2q(T̂V , T̂V \ V ) ∼= H2q(M,M \ V ) (10.3.0)

and the following Theorem:
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Theorem 10.3.1. Given V ⊂ M as before, equipped with a Whitney strat-
ification adapted to V and a compatible triangulation (K), we let (D) be
the dual cellular decomposition and denote (D)j the union of all cells of
dimension j. If v(r) is a stratified r − frame, r ≥ 1, which is nonsingu-
lar on (D)(2m−2r+1) and has isolated singularities on (D)2m−2r+2, then the
Schwartz indices of v(r), defined as in 10.1.5, determine a cocycle as in 10.3.1,
cq(V ; v(r)) ∈ H2q(M,M \ V ), q = 2m − 2r + 2, and this cocycle represents
the corresponding Schwartz class of V .

The proof is immediate from the definitions and properties of Schwartz
index. Just as for vector fields 2.4.1, one has:

Corollary 10.3.1. With the above hypothesis and notation, if there exists
some stratified r − frame which is nonsingular on (D)(2m−2r+2), then the
corresponding Schwartz class of V vanishes.

Since H2q(M,M \ V ) 
 H2m−2q(V ) by Alexander duality, these classes
can be thought of as living in the homology of V . We denote by ci(V ),
i = m − q = n − p, the image of cq(V ) in H2i(V ) and call it the homology
Schwartz class.

10.4 Alexander and Other Homomorphisms

The basic reference for this section is [25] (see also [28] and [31]). Here we
adapt to the singular case the discussion started in Sect. 1.3 concerning the
Alexander homomorphism and other related topics.

Let V be a pure n-dimensional subvariety in an m-dimensional complex
manifold M and let (K), (K ′) and (D) be as before, (K) is a triangula-
tion of M adapted to V , (K ′) its first barycentric subdivision and (D) the
corresponding dual cell decomposition.

First, if V is compact, we define a homomorphism

P : C2n−i
(K′) (V ) −→ C

(K)
i (V ) by P (c) =

∑

σ

〈c, d(s) ∩ V 〉 (10.4.1)

for a (2n−i)-cochain c and a (2n+2k−i)-cell d(s) dual of the simplex s, where
the sum is taken over all i-simplices σ of V . This induces a homomorphism

PV : H2n−i(V ) −→ Hi(V ),

which is called the Poincaré homomorphism. If V is nonsingular, this is the
Poincaré isomorphism.

Next, let S be a compact (K)-subcomplex of V (V may not be compact).
We define a homomorphism
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A : C2n−i
(K′) (V, V \ S) −→ C

(K)
i (S)

taking, in the sum of (10.4.1), only i-simplices of S. Then this induces a
homomorphism

AV,S : H2n−i(V, V \ S) −→ Hi(S),

which is called the Alexander homomorphism. If V is nonsingular, this is the
Alexander isomorphism. If V is compact, we have a commutative diagram
similar to the one in Sect. 1.2.

Next we introduce Gysin and Thom homomorphisms. We define a homo-
morphism

G : C2n−i
(K′) (V ) −→ C2m−i

(D) (M) by 〈G(c), d(s)〉 = 〈c, d(s) ∩ V 〉
(10.4.2)

for a (2n−i)-cochain c and a (2m−i)-cell d(s). This induces a homomorphism

GV,M : H2n−i(V ) −→ H2m−i(M), (10.4.3)

which is called the Gysin homomorphism. From the definition, we see that,
if M is compact, the following diagram is commutative:

H2n−i(V )
GV,M−−−−→ H2m−i(M)

⏐
⏐
�PV �

⏐
⏐
�PM

Hi(V ) i∗−−−−→ Hi(M).

(10.4.4)

The Gysin homomorphism GV,M is sometimes denoted by i∗.
Note that from the expression (10.4.2), we see that the homomorphism

G lifts to a homomorphism

T : C2n−i
(K′) (V ) −→ C2m−i

(D) (M,M \ V ). (10.4.5)

This induces a homomorphism

TV,M : H2n−i(V ) −→ H2m−i(M,M \ V ), (10.4.6)

which is called the Thom homomorphism. From the definition, we see that,
if V is compact, the following diagram is commutative:

H2n−i(V )
TV,M−−−−→ H2m−i(M,M \ V )

⏐
⏐
�PV �

⏐
⏐
�AM,V

Hi(V ) =−−−−→ Hi(V ).

(10.4.7)
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We may write GV,M = j∗◦TV,M with j∗ : H2m−i(M,M\V )→ H2m−i(M)
the canonical homomorphism.

Let S be a subset of V as before. In the homomorphism (10.4.2), if σ is a
(D)-cell not intersecting with S, then σ ∩ V is a (K ′)-chain not intersecting
with S. Thus it induces a homomorphism

T : C2n−i
(K′) (V, V \ S) −→ C2m−i

(D) (M,M \ S). (10.4.8)

This in turn induces a homomorphism

TS,V,M : H2n−i(V, V \ S) −→ H2m−i(M,M \ S), (10.4.9)

which is also called the Thom homomorphism. From the definition, we see
that the following diagram is commutative:

H2n−i(V, V \ S)
TS,V,M−−−−−→ H2m−i(M,M \ S)

⏐
⏐
�AV,S �

⏐
⏐
�AM,S

Hi(S) =−−−−→ Hi(S).

(10.4.10)

In the sequel, we consider either the case S is a compact connected sub-
complex in the regular part Vreg = V \ Sing(V ) or the case S is a compact
connected component of Sing(V ). In the former case, AV,S is the Alexander
isomorphism discussed in Sect. 1.3. In the latter case, let Û be an open neigh-
borhood of S in M , denote U = Û ∩ V , and assume that U \ S is in Vreg.
We let T̂ ⊂ Û be a tube, union of (D)-cells which are dual of (K)-simplices
contained in S, as in 1.1.2. We can assume ∂T̂ is transverse to Vreg and set
T = T̂ ∩ V . We write ∂T = V ∩ ∂T̂ , which is a hypersurface in Vreg. With
these, we apply the above homomorphisms to the pairs (Û , Û \S) 
 (T̂ , ∂T̂ )
and (U,U \ S) 
 (T , ∂T ).

10.5 Localization of the Schwartz Classes

In this section we follow [31]. We denote by S a compact connected (K)-
subcomplex of V such that S ∩ D(2p) is either a subset of the regular part
V0 = Vreg or a component of Sing(V ). We are writing p = n − r + 1 and
q = m−r+1, where n = dimC V and m = dimC M , thus we have q−p = m−n.
Let us denote by U a neighborhood of S in V such that U \ S still intersects
(D)(2p) in V0.
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10.5.1 The Topological Viewpoint

It follows from the above discussion that there exist stratified r-fields on
(D)(2q) ∩U whose singularities are all located on S. Let v

(r)
1 and v

(r)
2 be two

such r-fields and let us consider a tube T in U around S. There is a well
defined secondary characteristic class d(v(r)

1 , v
(r)
2 ) ∈ H2p−1(∂T ) called the

difference and defined as in Sect. 1.3.2. Let δ : H2p−1(∂T ) −→ H2p(T , ∂T )
be the connecting homomorphism and let AV : H2p(T , ∂T ) −→ Hr−1(S) be
the Alexander homomorphism. We set

dS(v(r)
1 , v

(r)
2 ) = AV δ d(v(r)

1 , v
(r)
2 ).

Definition 10.5.1. For an r-frame v(r) on (D)(2q) ∩ (U \ S), we define the
Schwartz class Sch(v(r), S) of v(r) at S to be the class in H2r−2(S) given by:

Sch(v(r), S) =

{
PH(v(r), S) if S ∩ (D)(2q) ⊂ V0,

cr−1(S) + dS(v(r)
rad, v

(r)) if S ⊂ Sing(V ),

where v
(r)
rad is a frame constructed by radial extension, PH is the Poincaré–

Hopf class defined in Definition 1.3.4 for S ⊂ V0, and cr−1(S) is the
homological Schwartz class.

In particular for the frame v
(r)
rad, Sch(v(r)

rad, S) = cr−1(S) ∈ H2r−2(S). We
also remark that if r = 1, the class Sch(v(r)

rad, S) is the Schwartz index of the
vector field defined in Chap. 2.

From the definition we get that for two r-frames v
(r)
1 and v

(r)
2 on (D)(2p)∩

(U \ S),
Sch(v(r)

2 , S) = Sch(v(r)
1 , S) + dS(v(r)

1 , v
(r)
2 ). (10.5.1)

Let us consider now a neighborhood U of Sing(V ) in V . We know already
that there exist stratified r-fields on (D)(2q) ∩U whose singularities are all in
Sing(V ). Elementary obstruction theory [153] then tells us that every such
r-field can be extended to all of (D)(2q) ∩ V0 with a singular set which is
a subcomplex of V0. More generally, let Σ be a compact (K)-subcomplex
in V0 disjoint from a neighborhood U1 of Sing(V ) in V . We denote by (Sλ)
the connected components of Sing(V ) ∪ Σ and set V ∗ = V \ U1. Let iλ
and ι be the inclusions Sλ ↪→ V and V ∗ ↪→ V , respectively. The second
one induces a homomorphism ι∗ in homology with compact supports. The
following theorem is similar to formula 1.1.3, the proof is easy using 10.5.1
above.

Theorem 10.5.2. Let V be a compact complex analytic n-variety embedded
in a complex m-manifold M and let Σ be a subcomplex in V0 as above. For
every stratified r-frame v(r) on (D)(2q) ∩ (V0 −Σ), q = m− r + 1, we have
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∑

λ

(iλ)∗Sch(v(r), Sλ) = cr−1(V ).

Thus, decomposing the previous summation according to the fact that Sλ is
in Sing(V ) or in Σ, we get :

∑

Sλ⊂Sing(V )

(iλ)∗Sch(v(r), Sλ) + ι∗cr−1(V ∗; v(r)) = cr−1(V ),

where the sum is taken over the connected components of Sing(V ). In partic-
ular, for a radial r-frame v

(r)
rad, we have:

cr−1(V ) =
∑

Sλ⊂Sing(V )

(iλ)∗cr−1(Sλ) + ι∗cr−1(V ∗; v(r)
rad).

Remark 10.5.1. In other words this theorem is telling us that to define the
Schwartz class cq(V ) ∈ H2q(M,M \ V ; Z) we may consider any stratified
r-frame v(r), q = m − r + 1, on (D)(2q) ∩ Û , then cq(V ) is the obstruction
to extending it to a stratified r-frame on V ∩ (D)(2q). The contributions for
cq(V ) are splitted in two parts. On one hand we have the contribution of
the regular part ι∗cr−1(V ∗; v(r)); this is the usual Chern class of V minus
an open regular neighborhood of Sing(V ) relative to the choice of frame v(r)

on its boundary (in the appropriate skeleton). On the other hand we have
the individual contributions of each connected component of the singular set
(iλ)∗Sch(v(r), Sλ). Each of these depends on the choice of frame, but their
total sum is cq(V ) independent of the frame, a result in the spirit of the
Poincaré–Hopf Theorem for vector fields.

Remark 10.5.2. Again, just as in 2.4.4, one may consider a stratified r-frame
v(r) on the intersection of (D)(2q) with a neighborhood Û ⊂ M of a con-
nected component S ⊂ Sing(V ) whose singularities are all in S. We have
defined above a localization Sch(v(r), S) of the Schwartz class cr−1 at S. But
in the previous section we defined a local index for v(r) at each isolated sin-
gularity. Taking into account only the singularities of v(r) in S we get another
localization of cr−1 at S, say Ŝch(v(r), S). The proof of 2.4.4 can be easily
adapted to this case, thus showing that both localizations of the Schwartz
class coincide.

10.5.2 The Differential Geometric Viewpoint

We consider a (D)-cellular tube T̂ around S in Û as before. Let us denote
by (D′) the cellular decomposition of M dual to a barycentric subdivision
(K ′) of (K). The cells of (D′) consist of simplices of the second barycentric
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subdivision (K ′′) of (K). We denote by R̂ the (D′)-cellular tube around S.
Thus R̂ is in the interior of T̂ and the (D)-cells are transverse to ∂R̂. We
endow RM with the ordinary orientation as the boundary. We setR = R̂∩V .

Suppose we have an r-frame v(r) on (U \ S) ∩ D(2q), q = m − r + 1, we
may describe the Schwartz class Sch(v(r), S) of v(r) at S as follows.

First we consider the case where S is in the regular part V0 of V (thus U
is also in V0) and give a differential geometric interpretation of the Poincaré–
Hopf class PH(v(r), S). The relative class cp(T , ∂T ; v(r)) defined as in 10.3.0
is now defined by taking an “v(r)-trivial connection” for TU away from S.
To be more precise, let ∇ be a connection for TU on U and let ∇0 be an
v(r)-trivial connection for TU on a neighborhood of (U \ S) ∩ D(2q) in U .
Here ∇0 being v(r)-trivial means that ∇0(v) = 0 for every member v of v(r)

so that cp(∇0) = 0 (see, for example, [156, Ch.II, 9], ). Then the image ξ
of cp(T , ∂T ; v(r)) by the Thom–Gysin homomorphism τ : H2p(U,U \ S) →
H2q(Û , Û \ S) is represented by the cocycle

γ �→
∫

γ∩R
cp(∇) +

∫

γ∩∂R
cp(∇,∇0), (10.5.3)

for a relative cycle γ ∈ C
(D)
2q (T̂ , ∂T̂ ) [108, 109], where C

(D)
k (A) denotes

the chains of dimension k in the (D)-complex A. The Poincaré–Hopf class
PH(v(r), S) is then given by AV cp(T , ∂T ; v(r)) = AM ξ (see (10.4)).

Now suppose S may be a component of Sing(V ) and let v
(r)
rad be a radial

r-frame on (Û \ S) ∩ D(2q). Recall that the Schwartz class of v
(r)
rad at S is

given by Sch(v(r)
rad, S) = cr−1(S) = AM cq(S), where cq(S) ∈ H2q(T̂ , ∂T̂ ) 


H2q(Û , Û \ S) is the q-th Schwartz class of S. We may assume that v
(r)
rad is

given on a neighborhood Ŵ of (Û \S)∩D(2q). We denote by ∇̂ a connection
for TM on Û and by ∇̂0 an v

(r)
0 -trivial connection for TM on Ŵ . From the

definitions, we have the following.

Proposition 10.5.1. The relative class cq(S) is represented by the cocycle

γ �→
∫

γ∩R̂
cq(∇̂) +

∫

γ∩∂R̂
cq(∇̂, ∇̂0),

for a relative cycle γ ∈ C
(D)
2q (T̂ , ∂T̂ ).

A differential geometric description for the Schwartz class of a general
frame is obtained by combining the above and the following formula for the
difference cocycle, introduced earlier (see Sect. 1.3.2). Let S be either a com-
pact connected (K)-subcomplex in V0 or a connected component of Sing(V )
as before. Let v

(r)
1 and v

(r)
2 be two r-frames on (U \ S) ∩ D(2q). We may

assume that v
(r)
1 and v

(r)
2 are given on a neighborhood W of (U \ S) ∩D(2q)
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in U . For each i = 1, 2, let ∇i be an v
(r)
i -trivial connection for TV0 on W .

We refer [31, Lemma 3.4] for the proof of the following

Lemma 10.5.1. The difference δd(v(r)
1 , v

(r)
2 ) is in H2p(U,U\S) whose image

by the Thom–Gysin homomorphism τ : H2p(U,U \ S) → H2q(Û , Û \ S) is
represented by the cocycle

γ �→
∫

γ∩∂R
cp(∇1,∇2),

for a relative cycle γ ∈ C
(D)
2q (T̂ , ∂T̂ ).

10.6 MacPherson and Mather Classes

Let us discuss briefly the MacPherson classes (see [117], [28]). We use the local
Euler obstruction, defined in Chap. 8. This obstruction satisfies the following
property: there exists (unique) integers {nα} for which the equation

∑
nα EuV α

(x) = 1 (10.6.1)

is satisfied for all points x in V , where the sum runs over all strata Vα
containing x in their closure. This statement is obvious for points in the
regular stratum, for the points in Sing(V ) (10.6.1) can be easily proved by
induction.

Consider now (see Chap. 8) the Nash blow up Ṽ
ν−→ V of V , the Nash

bundle T̃
π−→ Ṽ , and the Chern classes of T̃ , cj(T̃ ) ∈ H2j(Ṽ ). The Poincaré

homomorphism (in general not an isomorphism):

βṼ : H2j(Ṽ )
∩[Ṽ ]−→ H2n−2j(Ṽ ),

carries these into homology classes which can be pushed forward into the
homology of V via the homomorphism ν∗ induced by the projection.

Definition 10.6.1. The Mather classes of V are:

cMa
n−j(V ) = ν∗(cj(T̃ ) ∩ [Ṽ ]) ∈ H2(n−j)(Ṽ ) , j = 0, ..., n.

This definition can be applied to every compact complex analytic space, in
particular to the closure V α of each stratum Vα ⊂ V , which is again complex
analytic, and compact. One can define the Mather classes of V α in the same
way as above. Since these classes live in homology, the inclusion V α

ι
↪→ V

carries them into the homology of V .
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Definition 10.6.2. The MacPherson class of degree r − 1 is defined by:

cr−1(V ) = cMa
r−1(

∑
nα V α) =

∑
nα ι∗c

Ma
r−1(V α),

where the nα are the integers characterized by the equation 10.6.1.

The relation between Mather classes on one side and MacPherson classes
on the other side follows form MacPherson’s definition itself: his construc-
tion uses Mather classes, taking into account the values of the local Euler
obstruction along the strata. The precise relation between Mather classes
and Schwartz classes was determined in [33] (see 10.6.2 below), and this is
a key point for the identification of Schwartz and MacPherson classes. The
MacPherson classes live in H∗(V ). It is proved in [33] that the Alexander ho-
momorphism Hj(M,M \ V ) → H2m−j(V ) carries the Schwartz classes into
MacPherson’s. A key step in that proof is the Proportionality Theorem of
[33], that we discussed in Sect. 10.2.

Notice that the Schwartz indices of frames determine the elementary cocy-
cle in 10.3 that defines the corresponding Schwartz class. Thus the theorem
above establishes a deep connection between Schwartz classes and Mather
classes. This relation is made precise in the following theorem of [33, Th.
4.1] that we state without proof (for a complete proof, see [28]). Recall that
the Euler obstruction is constant on Whitney strata ([33, 10.2]), so we write
EuVα to denote the Euler obstruction at points in the stratum Vα.

Theorem 10.6.2. Let v(r) be a frame as in 10.3, the Schwartz–MacPherson
class cr−1(V ) ∈ H2(r−1)(V ) is represented by the cycle

∑

si⊂V, dim si=2(r−1)

IndSch(v(r), ai) · si,

where ai denotes the barycenter of si. The Mather class cMa
r−1(V ) of degree

(r − 1) is represented in H2(r−1)(V ) by the cycle

∑

si⊂V, dim si=2(r−1)

EuV (ai) · IndSch(v(r), ai) · si

Once we have this expression for a cycle representing the Mather classes
as weighted Schwartz classes, the identification of Schwartz and MacPherson
classes follows (see [28, 33]).

Since the definition of Schwartz classes and MacPherson classes is com-
pletely different, the fact that they coincide brings a deep richness into the
subject. Schwartz classes are geometrically defined and allow us to under-
stand what these classes measure in terms of obstruction theory, but they
are hard to work with. On the contrary MacPherson classes are in a way
more difficult to grasp, but they have useful factorial properties. This makes
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them be powerful invariants and easy to work with. These important invari-
ants of singular varieties have been widely studied by many authors. We refer
to [28] for a complete account on the subject.

In the sequel we refer to these as Schwartz–MacPherson classes, or just SM-
classes for short, and we denote them cSM

∗ . The class cSM
i lives in H2i(V ; Z),

i = 0, · · · , n.



Chapter 11

The Virtual Classes

Abstract The constructions described in the previous chapter, mostly based
on [31, 33, 139], provide geometric insights of the Schwartz–MacPherson
classes via obstruction theory and localization. These approaches are useful
for understanding what the classes measure from the viewpoint of indices of
vector fields and frames. The Fulton–Johnson classes [59,60] provide another
way of generalizing the Chern class of complex manifolds to the case of singu-
lar varieties. In the context we consider, they coincide with the virtual classes
(see Sect. 11.1).

In this chapter we define and study the virtual classes from a viewpoint
similar to the one we used in the previous chapter for the Schwartz–
MacPherson classes. This is based on our articles [31, 34], joint work with
D. Lehmann.

If the variety V is globally defined by a function on M , the virtual classes
can be localized topologically and one can interpret them as “weighted”
Schwartz classes. That is explained in Sect. 11.3 where we prove the Pro-
portionality theorem of [34] for this index. This theorem is analogous to, and
inspired by, the similar theorem of [33] for the Schwartz index, proved in the
previous chapter.

In Sect. 11.4, the localization of virtual classes is performed using the differ-
ential geometric method of [31], i.e., Chern–Weil theory, and using stratified
frames. In that context, we construct localized “Fulton–Johnson classes” at
the singular set of the given frames. While Sects. 11.1–11.3 are of a local
nature, Sect. 11.4 is global.

11.1 Virtual Classes

We recall from Chap. 5 that if V is a compact local complete intersection of
dimension n in a manifold M of dimension m = n + k, defined as the zero
set of a holomorphic section s of a holomorphic vector bundle N of rank k
over M , then V has the virtual tangent bundle τV = [TM − N ]|V regarded
as an element in complex K-theory KU(V ).

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 11, 185
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The total Chern class of the virtual tangent bundle is defined in the usual
way:

c∗(τV ) = c∗(TM |V ) ! c∗(N |V )−1 in H∗(V ) .

The pth Chern class of τV is the component of c∗(τV ) in dimension 2p, for
p = 1, ..., n. That is, cp(τV ) is the coefficient of tp in the expansion of

(1 +
m∑

i=1

tici(TM |V )) (1 +
k∑

j=1

tjcj(N |V ))−1.

Definition 11.1.1. The virtual cohomology (Chern) classes of the local
complete intersection V , denoted cpvir(V ), are the Chern classes of the vir-
tual tangent bundle τV . One has also the corresponding total virtual class
c∗vir(V ) = 1 + c1

vir(V ) + · · · + cnvir(V ). The homology virtual class of V of
degree p is the image of the virtual class cn−pvir (V ) under the Poincaré homo-
morphism H2n−∗(V )→ H∗(V ).

Theorem 11.1.1. The total homology virtual class of V coincides with the
Fulton–Johnson “canonical” class of V defined in [59, 60], we denote it by
cFJ
∗ (V ) ∈ H2∗(V ).

In the sequel we often refer to the components of cFJ
∗ (V ) as FJ-classes

and denote them cFJ
i (V ) ∈ H2i(V ; Z). The book of Fulton [59], as well as

several articles of Aluffi, and Parusiński–Pragacz explore these classes from
the algebraic geometry viewpoint. Here we are mostly concerned with the
topological and differential-geometric aspects of the theory, particularly in
their relations with indices of vector field and frames, and that is the subject
we explore in that chapter (see also [28] for the algebraic-topology viewpoint).

There are some special cases in which the geometry and topology of these
classes is particularly apparent. To explain this, consider first the case where
the variety V has isolated singularities. The 0-degree FJ-class is the image
under the Alexander homomorphism of the top Chern class cn(τV ) of the vir-
tual tangent bundle; we know already from Chap. 5 that this class, evaluated
on the orientation cycle [V ], equals the total virtual index of every vector field
on V with isolated singularities. Since for isolated singularities the virtual in-
dex coincides with the GSV index, this means that this FJ-class equals the
Euler–Poincaré characteristic of a smoothing of V , i.e., the (almost complex)
manifold V # obtained by cutting off neighborhoods of the singular points
and replacing them by local Milnor fibers. Given a vector field v on V # with
isolated singularities (whose zero set represents a 0-dimensional homology
class which is the Poincaré-dual of its top Chern class cn(V #)), one has that
as V # degenerates to V , the vector field v degenerates to a vector field on V
and its zeros determine the 0-degree FJ-class.

It turns out that under certain conditions, which are stringent but still
rather general, this is what happens for all FJ-classes: if the variety V can
be embedded in an analytic family of complex manifolds Vt that degenerate
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to V , then the FJ-classes of V “correspond” to the homology Chern classes
of the Vt. This was first observed in [129].

Let us explain this more carefully. Assume V is defined by a regular holo-
morphic section s of a vector bundle E over a complex manifold M as before.
The singular set Sing(V ) is the set of points where s is not transverse to the
zero-section. Assume further that there exists a family {st}, t ∈ C, such that
for t = 0 the section s0 is s, and for t �= 0 the section st is transverse to the
zero-section, so its zero set is a complex submanifold Vt of M . Each Vt has
its usual Chern classes cj(Vt) ∈ H2j(Vt), and Poincaré duality on Vt carries
them into homology classes ci(Vt) ∈ H2i(Vt), i = n − j. These are usually
called the homology Chern classes of the manifold in question. By compact-
ness, given a tube T around V in M , there is an ε > 0 sufficiently small so
that if 0 < |t| < ε then the manifold Vt is fully contained in T . The inclusion
Vt

ι→ T induces a morphism in homology H∗(Vt)
ι∗→ H∗(T ). The tube T has

V as a deformation retract, so one has also a morphism H∗(T ) r∗→ H∗(V ).
One has:

Theorem 11.1.2. [129] The morphism

r∗ ◦ ι∗ : H∗(Vt) −→ H∗(V ),

carries the homology Chern classes of Vt into the FJ-classes of V .

The proof of this result is in fact an immediate consequence of the invari-
ance of Chern classes under specialization.

11.2 Lifting a Frame to the Milnor Fiber

In this section we define an index for stratified frames generalizing the GSV
index defined in Chap. 3 for vector fields on hypersurface germs with noniso-
lated singularities.

Let us denote by U an open neighborhood of the origin in C
n+1, n > 0

and let us consider a holomorphic function

f : (U, 0) −→ (C, 0),

defining a hypersurface germ V := f−1(0). We know from [128] that there
is a Whitney stratification {Vα}α∈A of V that satisfies the strict Thom
wf -condition for all strata (see 3.5.3).

Then one has a locally trivial fiber bundle (see Chap. 3):

f :
(
(
Bε ∩ f−1(Dδ)

)
\ f−1(0)

)

−→ (Dδ \ {0}) ⊂ C,
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for every ε > 0 sufficiently small and δ = δ(ε) > 0 sufficiently small with
respect to ε, where Bε is a small ball around 0 ∈ Cn+1 and Dδ is a small ball
around 0 ∈ C.

We know already from Chap. 3 that given a stratified vector field v on V
with an isolated singularity at a point x ∈ V , we can lift v to a local Milnor
fiber F(x) of V at x and the Poincaré–Hopf index of this lifting to F(x) is well
defined and gives an invariant of v at x ∈ V that we called the GSV index.
We proved that if v is obtained by radial extension then its GSV index at
x is proportional to the Schwartz index of v at x, the proportionality factor
being the Euler characteristic of F(x) (Theorem 3.6.1). We are going to make
the analogous constructions for frames.

Let us recall the tube map π : F → V , from a local Milnor fiber into V ,
introduced in 3.5.3, that we use to lift vectors from V to F. We do it only
for hypersurfaces. Consider a small ball Bε around 0 ∈ U . Let ρ be a radial
vector field in a sufficiently small (with respect to ε) disk Dδ around 0 ∈ C,
whose solutions are arcs converging to 0. We can assume further that for each
t ∈ Dδ \ {0} the (Milnor) fiber Ft = f−1(t) intersects the boundary sphere
Sε = ∂Bε transversely. Set T = f−1(Dδ \ {0}). As we know,

f |T : T −→ Dδ \ {0}

is a locally trivial fiber bundle, and by [167] we can lift ρ to a rugose (hence
integrable) vector field ρ̂ in T , whose solutions are arcs that start in ∂T =
f−1((Sδ) \ {0}), Sδ = ∂Dδ, they finish in V and they are transverse to all the
“tubes” f−1(Sη) with η ∈]0, δ[.

This vector field ρ̂ defines a C∞ retraction ξ of T into V , with V as fixed
point set. The restriction of ξ to any fixed Milnor fiber F = f−1(t0) ∩ Bε,
t0 ∈ Sδ, provides a continuous map π : F → V which is surjective and it is
C∞ over the regular part of V . As before, we call such map ξ, or also π, a
tube map for V .

We use π to lift the stratified frame v(r) on V to an r-frame ṽ(r) on F.
Given a point x ∈ F, we let γx be the solution of ρ̂ that starts at x. The
end-point of γx is the point π(x) ∈ V . We parameterize this arc γx by the
interval [0, 1], with γx(0) = x and γx(1) = π(x). We assume that this interval
[0, 1] is the arc in Dδ going from to to 0, so that for each t ∈ [0, 1[, the point
γx(t) is in a unique Milnor fiber Ft = f−1(t) ∩ Bε. The family of tangent
spaces to Ft at the points γx(t) define a 1-parameter family of n-dimensional
subspaces of Cn+1, that converges to an n-plane Λπ(x) ⊂ Tπ(x)(U) when t
goes to 1; one has an induced isomorphism TxF(x) 
 Λπ(x).

Since the stratification satisfies Thom’s af -condition, Λπ(x) contains the
space Tπ(x)Vα, tangent to the stratum that contains π(x). Hence, the given
frame v(r) can be lifted to a frame ṽ(r) in TxF(x). Thus, if the frame v(r)

is defined without singularity on a set A ⊂ V , we obtain an r-frame ṽ(r)

over the inverse image π−1(A) ⊂ F. The fact that the stratification further
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satisfies the strict Thom’s wf -condition guarantees that this r-frame ṽ(r) is
continuous.

We summarize this discussion in the following proposition:

Proposition 11.2.1. Let v(r) be a continuous r-frame defined without sin-
gularity on a subset A ⊂ V . Assume the map f that defines the complete
intersection V satisfies the strict Thom wf -condition at all points in V . Let
F be a local Milnor fiber for V at 0 and let π : F→ V be a tube map. Then
we can lift v(r) to a continuous r-frame ṽ(r) on π−1(A) ⊂ F using the map π.

As before, we denote by {Vα} the strata of a stratification of V ∩ Bε,
restriction of a Whitney stratification of U to V , and we denote by {Wβ} a
Whitney stratification of F such that:

(1) π : F −→ X ∩ Bε is a stratified map,
(2) for every β, the restriction of π to Wβ is a map of constant rank from Wβ

to a stratum Vα of X , where π is the tube map.
Such stratifications exist by [73]. We notice that each π−1(Vα) is union of

strata {Wβ}.
In the case of isolated singularities, the construction by Lê [105] of

“polyèdres d’effondrement” allows us to prove that there are triangulations
of U and F compatible with the previous stratifications, and such that π is
a simplicial map. For non necessarily isolated singularities, let us consider a
triangulation (K) of X compatible with the stratification {Vα}; as the restric-
tion of π to each stratum {Wβ} of F has constant rank, the intersection of
the inverse image of a simplex of (K) with the strata Wβ can be decomposed
into cells satisfying the following proposition:

Proposition 11.2.2. There is a simplicial triangulation (K) of U com-
patible with the stratification {Vα} and a cellular decomposition (K̃) of F
compatible with the stratification {Wβ}, such that for each cell s̃β of (K̃),
there is a simplex sα of (K) such that π(s̃β) = sα and the restriction of π to
each open cell s̃β has constant rank.

11.3 The Fulton–Johnson Classes

In Chap. 3 we stated and proved the Proportionality Theorem for the GSV
index of a vector field. Here we extend that result to r-frames, r ≥ 1. The
method above for lifting a vector field from V to a local Milnor fiber works
for frames. Using the notations introduced in 10.1, we have:

Theorem 11.3.1. (Proportionality Theorem for frames). Let v(r) be an
r-frame constructed by radial extension, with isolated singularities on the
2q-cells σi, with index I(v(r), ai) at the barycenter {ai} of σi. Then the
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obstruction to the extension of ṽ(r) as a section of Wr(TF) (see 1.3.1) on
β̃i = π−1(σi ∩ V ) is

Obs (ṽ(r),Wr(TF), β̃i) = χ(Fai) · I(v(r), ai).

The proof is similar to the one of Theorem 10.2.1 using the liftings defined
in 3.6.1.

A corollary is the following expression of virtual classes:

Theorem 11.3.2. Let us assume that V ⊂ M is a hypersurface, defined by
V = f−1(0), where f : M → D is a holomorphic function into an open disk
D around 0 in C. For each point a ∈ V , let Fa denote a local Milnor fiber,
and let χ(Fa) be its Euler–Poincaré characteristic. Then the Fulton–Johnson
class cFJ

r−1(V ) of V of degree (r−1) is represented in H2(r−1)(V ) by the cycle

∑

σi⊂V, dimσi=2(r−1)

χ(Fai) I(v(r), ai) · σi (11.3.3)

For this, let us denote by Vt the fibers f−1(t), t �= 0. This is a 1-parameter
family of n-dimensional complex submanifolds of M that degenerate to V
when t = 0.

Since for t �= 0 each Vt is a smooth complex manifold, its Chern classes
ci(Vt) ∈ H2i(Vt) are well defined, and since it is compact, by Poincaré duality
one can think of these as homology classes in H2n−2i(Vt), denoted by cn−i(Vt).
The class in degree 0, corresponding to cn(Vt), is the Euler–Poincaré charac-
teristic of Vt.

We notice that, by the compactness of V , given a regular neighborhood
N of V in M , we can find t sufficiently small so that Vt ⊂ N . Thus, one has
a homomorphism,

i∗ : H∗(Vt) −→ H∗(N ),

induced by the inclusion. One also has:

r∗ : H∗(N ) −→ H∗(V ),

induced by a retraction r from N into V . The composition:

ψ = r∗ ◦ i∗ : H∗(Vt) −→ H∗(V )

is the Verdier specialization map. Notice that by construction, for each x ∈ V ,
ψ is induced by the degenerating map π of Sect. 2 above, which is now globally
defined on all of Vt. In other words, the Verdier specialization map is in this
case the homomorphism in homology induced by the map π : Vt → V defined
(locally) in Sect. 2 above.

For each Vt, t �= 0, one has that [TVt] = [TM − N ]|Vt in K-theory. Thus
the Chern classes of Vt are those of the virtual bundle [TM−N ]|Vt . By [168],
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the homology specialization map ψ carries the Chern classes of TM |Vt and
N |Vt into the Chern classes of TM |V and N |V , respectively. Thus, as noticed
in [131], one has:

cFJ
∗ (V ) = ψ c∗(Vt). (11.3.4)

Let ṽ(r) be, as before, a lifting to Vt via the degenerating map π, of a
frame v(r) on the 2p-skeleton of V with isolated singularities. The Chern class
cp(Vt) is represented by the obstruction cocycle γ̃ satisfying

〈γ̃, β̃i〉 = Obs (ṽ(r),Wr(TF)Vt, β̃i).

where β̃i = π−1(σi ∩ V ).
By Theorem 11.3.1 one has: 〈γ̃, β̃α〉 = χ(Faσα

) · I(v(r), aσα). We conclude,
using the following observation and Proposition 11.2.2 (see [28]):

Lemma 11.3.1. Let γ̃ be a cocycle in Z2p(Vt) representing the Chern class
cp(Vt) and let us denote kα = 〈γ̃, β̃α〉. Then the cycle

∑
kασα for σα ⊂ V and

dimσα = 2r − 2 is homologous to π∗(γ̃ ∩ [Vt]) in Z2(r−1)(V )and represents
the Fulton–Johnson class cFJ

r−1(V ).

11.4 Localization of the Virtual Classes

In order to define the Milnor classes in a later section, and to calculate them
in some cases, we develop the localization theory of virtual classes in the
framework of Chern–Weil theory adapted to stratifications and triangula-
tions. Here we use the notation introduced in the previous sections.

We now suppose that V is a compact local complete intersection of
dimension n in a complex manifold M of dimension m, defined as the zero
set of a holomorphic section s of a holomorphic vector bundle N of rank
k = m − n over M . The restriction N |V0 coincides with the normal bundle
NV0 of V0 = V \ Sing(V ) in M and we have an exact sequence of vector
bundles,

0 −→ TV0 −→ TM |V0

π−→ NV0 −→ 0. (11.4.1)

The virtual class of an r-frame is defined by localizing cp(τV ) by the frame,
where τV denotes the virtual tangent bundle (Sect. 5.1). To be more precise,
let us consider a subset S and suitable neighborhoods as in the previous
sections. Let v(r) be an r-frame on (U\S)∩D(2q). Let∇ and∇′ be connections
for TM and N , respectively, on Û and set ∇• = (∇,∇′). Also, let ∇0 and
∇′

0 be connections for TM and N , respectively, on a neighborhood W of
(U \ S) ∩D(2q) in U such that the pair ∇•

0 = (∇0,∇′
0) is compatible and ∇0

is v(r)-trivial. If we consider the 2q-cochain given by
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γ �→
∫

γ∩R
cp(∇•) +

∫

γ∩∂R
cp(∇•,∇•

0), γ ∈ C
(D)
2q (T̂ , ∂T̂ ), (11.4.2)

it is a cocycle independent of the choices of connections, where ∇0 is v(r)-
trivial, and defines an element η in H2q(Û , Û \ S).

Definition 11.4.1. We define the virtual class Vir(v(r), S) of v(r) at S to
be the image of η by the Alexander isomorphism AM : H2q(Û , Û \ S) →
H2r−2(S).

Recall that, if S is in V0, the Poincaré–Hopf class PH(v(r), S) ∈ H2r−2(S)
is dual to the class represented by the cocycle (10.5.3). Thus in this case,
from Proposition 5.2.1 and a similar statement for the difference forms, we
have

Vir(v(r), S) = PH(v(r), S).

The following formula for two r-frames v
(r)
1 and v

(r)
2 as above, analogous

to (10.5.1), is a consequence of Lemma 10.5.1 and Proposition 5.2.1.

Vir(v(r)
2 , S) = Vir(v(r)

1 , S) + dS(v(r)
1 , v

(r)
2 ). (11.4.3)

Also the following theorem, analogous to Theorem 10.5.2, follows from
the previous discussion.

Theorem 11.4.4. Let Σ be a subset in V0 as in Theorem 10.5.2. With the
above hypotheses and notation, if v(r) is an r-frame on (V0 \Σ) ∩D(2p), we
have, in H2r−2(V ),

∑

S⊂Sing(V )

i∗Vir(v(r), S) + ι∗cr−1(V ∗, v(r)) = cFJ
r−1(V ),

where the sum is taken over the connected components of the singular set
Sing(V ) and cr−1(V ∗; v(r)) is the Chern class of V ∗ relative to v(r), so that

ι∗cr−1(V ∗; v(r)) =
∑

S⊂Σ
i∗PH(v(r),S).
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Milnor Number and Milnor Classes

Abstract Both Schwartz–MacPherson and Fulton–Johnson classes generalize
Chern classes to the case of singular varieties. It is known that for local com-
plete intersections with isolated singularities, the 0-degree SM and FJ classes
differ by the local Milnor numbers [149] and all other classes coincide [155].
As we explain in the sequel, if V has nonisolated singularities, the difference
cSMi (V ) − cFJi (V ) of the SM and FJ classes is, for each i, a homology class
with support in the homology H2i(Sing(V )) of the singular set of V . That is
the reason for which their difference was called in [30,31] the Milnor class of
degree i. These classes have been also considered, from different viewpoints,
by other authors, most notably by P. Aluffi, T. Ohmoto, A. Parusiński, P.
Pragacz, J. Schürmann, S. Yokura.

In this chapter we introduce the Milnor classes of a local complete inter-
section V of dimension n ≥ 1 in a complex manifold M , defined by a regular
section s of a holomorphic bundle N over M . The aim of this chapter is
to show that, as mentioned above, the Milnor classes are localized at the
connected components of the singular set of V : If S is such a component
then one has Milnor classes μi(V, S) of V at S in degrees i = 0, · · · , dimS.
The 0-degree class coincides with the generalized Milnor number of V at S,
introduced by Parusiński in [127] (if V is a hypersurface in M). The sum
of all the Milnor classes over the connected components of Sing(V ) gives
the global Milnor classes studied in [8, 126, 131, 169]. See [28] for another
presentation.

The method we use for constructing the localized Milnor classes comes
from [31] and uses Chern–Weil theory. The idea is to use stratified frames
to localize at the singular set the Schwartz–MacPherson and the Fulton–
Johnson classes, in such a way that the difference of these localizations is
canonical.

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 12, 193
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12.1 Milnor Classes

For most authors, Milnor classes are globally defined as elements in H∗(V, Z),
on the other hand in [31], these classes are localized at the singular set of
V from the beginning. We explain this in a moment, first we introduce the
global classes; there is one such class in each degree:

Definition 12.1.1. For each r = 0, 1, · · · , n−1, the r-th Milnor class μr(V )
of V is:

μr(V ) = (−1)n+1
(
cSM
r (V ) − cFJ

r (V )
)

in H2r(V, Z).

The difference class

μ∗(V ) = (−1)n−1(cSM
∗ (V )− cFJ

∗ (V ))

is called the (total) Milnor class of V .

In fact, FJ-classes and SM-classes coincide with the usual Chern classes in
the regular part of V . Thus Milnor classes ought to be concentrated in the
singular set Sing(V ). The results of [31,129] prove that this is indeed the case.
Since the results of [149, 155] prove that in the case of isolated singularities
this contribution corresponds to the local Milnor number at each singular
point, and this is a local invariant of the singularity (not a global one), we
considered in [31] Milnor classes localized at the connected components of
the singular set of V . For each connected component S of Sing(V ), the r-th
Milnor class μr(V, S) of V at S is a homology class in H2r(S, Z) . There is one
such class for each r = 0, 1, · · · , s, where s is the dimension of the component
S. The inclusion S ↪→ V maps the homology of S into that of V , and adding
up the contributions in each dimension of all the connected components of
Sing(V ) we get the corresponding global Milnor classes.

For hypersurfaces, the 0-degree localized Milnor class μ0(V, S) ∈ H0(S)

 Z coincides with the generalized Milnor number of Parusiński [127], that we
will discuss in Sect. 12.4. Thus μ0(V, S) can be also considered as a generalized
Milnor number for complete intersections.

Each connected component S has a contribution μr(V, S) to the global
Milnor class μr(V ) up to the dimension of S. Therefore, if Sing(V ) has di-
mension 0, then all Milnor classes vanish in dimensions r > 0, i.e., the SM
and FJ classes coincide for all r > 0. If some component has dimension 1,
then we have corresponding Milnor classes in dimensions 0, 1, and so on.

Since for isolated singularities the “Milnor classes” are just the Milnor
numbers, which can be regarded as the number of vanishing cycles in the
local Milnor fibers, it was natural to ask in [31] whether Milnor classes are
related to the vanishing homology. Answers were given in [31] in particular
cases, one of them is the Lefschetz type Theorem 12.3.1.
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12.2 Localization of Milnor Classes

Let V be a local complete intersection of dimension n defined by a section
of a vector bundle N over the ambient complex manifold M of dimension
m = n + k, as in the previous section. We introduce the Milnor classes of V
at a connected component S of Sing(V ). For r ≥ 1, let v(r) be an r-frame on
(U \ S) ∩D(2q), where U is a neighborhood of S in V such that U \ S ⊂ V0

and q = m− r + 1.

Definition 12.2.1. The (r − 1)-st Milnor class μr−1(V, S) of V at S is de-
fined by

μr−1(V, S) = (−1)n+1
(
Sch(v(r), S)−Vir(v(r), S)

)
in H2r−2(S),

which is independent of the choice of v(r) by (10.5.1) and (11.4.3).

We call μ∗(V, S) =
∑

r≥0 μr(V, S) ∈ H∗(S) the total Milnor class of V
at S. Note that μr(V, S) = 0 for r > dimC S. Since there exist always frames
as in Theorems 10.5.2 and 11.4.4, we have:

Theorem 12.2.1. For a subvariety V of a complex manifold M as above,

c∗(V ) = cFJ
∗ (V ) + (−1)n+1

∑

S

i∗μ∗(V, S) in H∗(V ),

where the sum is taken over the connected components S of Sing(V ).

In particular, if the singularities of V are isolated points, then the Milnor
classes are zero, except in degree 0 where they coincide with the usual Milnor
numbers of [79,116,121]. Hence, in this case the SM classes and the FJ classes
of V coincide in all dimensions, except in degree 0, where their difference is
given by the sum of the usual Milnor numbers, recovering the formula in
[149,155].

Remark 12.2.1. 1. The classes PH(v(r), S), Sch(v(r), S) and Vir(v(r), S) may
be defined for an r-frame v(r) on the intersection of a neighborhood of ∂T
(in V ) and D(2q), where T = T̂ ∩ V with T̂ a cellular tube around S.
2. If r = 1, i.e., v(1) = (v), PH(v, S), Sch(v, S) and Vir(v, S) are called and
denoted, respectively, the Poincaré–Hopf index IndPH(v, S), the Schwartz
index IndSch(v, S) and the virtual index IndVir(v, S) of the vector field v
[71,111,148,149]. The corresponding Milnor class μ0(V, S) is a number which
will be discussed in Sect. 12.4.
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12.3 Differential Geometric Point of View

In this section, we give a Lefschetz type formula for the Milnor classes at
a nonsingular connected component S of the singular set of V under the
assumption that V satisfies the Whitney condition along S. For the detailed
proof, we refer to [31].

Let Û be a tubular neighborhood of S in M with C∞ projection ρ̂ : Û → S.
We set U = Û ∩ V and U0 = U \ S and denote by ρ and ρ0, respectively,
the restrictions of ρ̂ to U and U0. From the Whitney condition, we see that
the fibers of ρ are transverse to V and that S is a deformation retract of
U with retraction ρ. We identify ρ∗0(N |S) with NU0 , and ρ̂∗(N |S) with N |Û .
The bundle T ρ̂ of vectors in T Û tangent to the fibers of ρ̂ admits a complex
structure, since it is C∞ isomorphic with the normal bundle of the complex
submanifold S in V . Let T̂ be a (D)-cellular tube around S in Û and R̂ a
(D′)-cellular tube in T̂ as in Sect. 10.5.2. We set T = T̂ ∩ V and R = R̂ ∩ V
as before.

Let s denote the complex dimension of S and let v(r−1) be an (r−1)-frame
on the 2(s−r+1)-skeleton S∩D(2q) of S. In what follows, we set � = s−r+1.
By the Schwartz construction, there exists a radial r-field v

(r)
0 = (v(r−1)

0 , v0)
on T̂ ∩ D(2q) such that v

(r−1)
0 extends v(r−1). The radial vector field v0 is

tangent to U0 and possibly has singularities in the barycenters of 2�-cells in
S ∩D(2q). We may assume that v0 is tangent to the fibers of ρ̂ near ∂R̂.

Let v be a vector field on U0 ∩D(2q) which is nonsingular and tangent to
the fibers of ρ in a neighborhood U ′

0 of ∂R so that v(r) = (v(r−1)
0 , v) is an

r-frame on U ′
0 ∩D(2q). For example, the above v0 has these properties.

For a point x in S ∩ D(2q), let Ûx denote the fiber of ρ̂ at x and set
Ux = Ûx ∩ V , which is the fiber of ρ at x. We also set Rx = R ∩ Ux. The
restriction of v to Ux determines the Schwartz index IndSch(v, S) and the
virtual index IndVir(v, S) on Ux. By the Whitney condition, these indices do
not depend on x.

Recall that we have the difference dS(v(r)
0 , v(r)) in H2r−2(S). We also have

the difference d(v0, v), which is an integer, of v0 and v as vector fields on Ux.

Lemma 12.3.1. We have

dS(v(r)
0 , v(r)) = d(v0, v) · cr−1(S).

Proof. We consider the exact sequence of vector bundles on U0:

0 −→ Tρ0 −→ TU0 −→ ρ∗0TS −→ 0,

where Tρ0 denotes the bundle of vectors in TU0 tangent to the fibers of ρ0. We
may assume that v

(r)
0 and v(r) are r-frames on a neighborhood W of U ′

0∩D(2q).
Let ∇ρ1 and ∇ρ2 be, respectively, v0-trivial and v-trivial connections for Tρ0
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on W . Also let ∇S be a v
(r−1)
0 -trivial connection for TS on a neighborhood

of S∩D(2q). We take connections ∇1 and ∇2 for TU0 so that (∇ρ1,∇1, ρ
∗
0∇S)

and (∇ρ2,∇2, ρ
∗
0∇S) are both compatible with the above sequence. Thus ∇1

is v
(r)
0 -trivial and ∇2 is v(r)-trivial on W . By Lemma 10.5.1, the homology

class dS(v(r)
0 , v(r)) is determined by

cp(∇1,∇2) =
∑

i+j=p

ci(∇ρ1,∇
ρ
2) · ρ∗0cj(∇S). (12.3.1)

We recall the commutative diagram

H2q(Û , Û \ S) ∼−−−−→
ρ̂∗

H2�(S)

�
⏐
⏐
�AM �

⏐
⏐
�

H2r−2(S) =−−−−→ H2r−2(S),

(12.3.2)

where the first row is the inverse of the Thom isomorphism, given by inte-
gration along the fibers of ρ̂, and the second column is Poincaré duality. The
dual of the first row in (12.3.2) gives an isomorphism

H2q(Û , Û \ S) ∼←− H2�(S),

which shows that every relative 2q-cycle γ (is homologous to a cycle which)
fibers over a 2�-cycle ζ of S. By the projection formula, we get from (12.3.1)
(note that the rank of the bundle Tρ0 is n− s):

∫

γ∩∂R
cp(∇1,∇2) =

∫

∂Rx

cn−s(∇ρ1,∇
ρ
2) ·
∫

ζ

c�(∇S),

where x is a point in ζ. Noting that the first factor in the right hand side is
d(v0, v), we proved the lemma, in view of (12.3.2).

Since IndSch(v(r)
0 , S) = cr−1(S) and IndSch(v0, x) = 1, from Lemma 12.3.1,

we have the following:

Theorem 12.3.3. Let S be a nonsingular component of Sing(V ) such that
V satisfies the Whitney condition along S, then,

Sch(v(r), S) = IndSch(v, x) · cr−1(S).

Now we wish to obtain a formula for the virtual class analogous to the one
in Theorem 12.3.3. First, we consider the exact sequence of vector bundles
on U0:

0 −→ Tρ0 −→ T ρ̂|U0 −→ NU0 −→ 0. (12.3.4)
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We compute the Chern classes cj(τρ) of the virtual bundle τρ = (T ρ̂−N)|U
on U and will see that there is a canonical lifting cjS(τρ) in H2j(U,U \ S),
for j > n − s = rank Tρ0, of cj(τρ) ∈ H2j(U). For this, we consider the
covering U of Û consisting of U itself and a tubular neighborhood Û0 of U0

and represent cj(τρM ), τρM = T ρ̂−N , as a Čech-de Rham cocycle on U (cf.
[102, 156], here we use the notation in [156, Ch.II]).

Let ∇ρ0 be a connection for Tρ0. Let ∇N be a connection for N |S and
take a connection ∇ρ̂0 for T ρ̂|U0 so that (∇ρ0,∇

ρ̂
0, ρ

∗
0∇N ) is compatible with

(12.3.4). Let ∇̂ρ̂ be a connection for T ρ̂ on Û . We set ∇ρ̂• = (∇̂ρ̂, ρ̂∗∇N )
and ∇ρ̂•0 = (∇ρ̂0, ρ∗0∇N ). Then cj(τρ̂) is represented by a cocycle in A2j(U) =
A2j(Û0)⊕A2j(Û)⊕A2j−1(Û0), where A∗( ) denotes the space of differential
forms on the relevant open set, given by

cj(∇•
�) = (cj(∇ρ̂•0 ), cj(∇ρ̂•), cj(∇ρ̂•0 ,∇ρ̂•)).

Note that, since Û0 retracts to U0, it suffices to give forms on U0. Since the
family (∇ρ0,∇

ρ̂
0, ρ

∗
0∇N ) is compatible with (12.3.4), we have

cj(∇ρ̂•0 ) = cj(∇ρ0),

which vanishes for j > n−s by the rank reason. Thus, for j > n−s, the cocycle
cj(∇•

�) is in A2j(U , Û0) = {0} ⊕ A2j(Û) ⊕ A2j−1(Û0). Since the cohomology
of A∗(U , Û0) is canonically isomorphic with H∗(U,U \S) [156, Ch.VI, 4], this
cocycle defines a class, denoted cjS(τρ), in H2j(U,U \S), which is mapped to
cj(τρ) by the canonical homomorphism H2j(U,U \ S) → H2j(U). The class
cjS(τρ) does not depend on the choices of various connections. It should be also
noted that it does not depend on the frames we discussed earlier. Denoting
by A2i(S) the space of 2i-forms on S, we have the integration along the fibers
of ρ [156, Ch.II, 5] ρ∗ : A2(n−s+i)(U , Û0) → A2i(S), which commutes with
the differentials and induces a map on the cohomology level :

ρ∗ : H2(n−s+i)(U,U \ S) −→ H2i(S).

On the cocycle level, ρ∗ assigns to cn−s+i(∇•
�), i > 0, the 2i-form αi on S

given by

αi = ρ∗c
n−s+i(∇ρ̂•M ) + (∂ρ)∗cn−s+i(∇ρ̂•M ,∇ρ̂•0 ), (12.3.5)

where ρ∗ and (∂ρ)∗ denote the integration along the fibers of ρ|R and ρ|∂R.
We note that, in the following formulas, the classes ρ∗c

n−s+i
S (τρ) for i =

1, . . . , k − 1 are involved and they do not appear if k = 1 ( i.e., V is a
hypersurface). We denote by [ ]i the component of degree 2i of the relevant
cohomology class.
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Theorem 12.3.6. With the hypotheses of Theorem 12.3.3, we have

Vir(v(r), S) =
[(

IndVir(v, x) · (c∗(N)− ck(N)) + IndSch(v, x) · ck(N)

+
k−1∑

j=1

j∑

i=1

cj−i(N) · ρ∗cn−s+iS (τρ)
)

· c∗(N)−1 · c∗(S)
]�

� [S].

From Theorems 12.3.3 and 12.3.6, we get the following Lefschetz type
formula for the Milnor class.

Corollary 12.3.1. Let S be a nonsingular connected component of Sing(V )
such that V satisfies the Whitney condition along S. Then

μ∗(V, S) =
(

(−1)sμ(V ∩H,x) · (c∗(N)− ck(N))

+(−1)n
k−1∑

j=1

j∑

i=1

cj−i(N) · ρ∗cn−s+iS (τρ)
)

· c∗(N)−1 · c∗(S) � [S],

where H denotes an (m − s)-dimensional plane transverse to S in M . In
particular, if k = 1,

μ∗(V, S) = (−1)sμ(V ∩H,x) · c∗(N)−1 · c∗(S) � [S].

Also, for arbitrary k,

μs(V, S) = (−1)sμ(V ∩H,x) · [S].

Remark 12.3.1. 1. In [131], the Milnor class of a hypersurface V is defined
by μ∗(V ) = (−1)n

(
c∗(V ) − c∗(τV ) " [V ]

)
and a formula for this is given

as a sum of the contributions from the strata of a stratification of V . This
result was obtained earlier for the Milnor number μ0(V ) in [130] and, for
the Milnor class, it was conjectured in [169]. If the stratum is a nonsingular
component of Sing(V ), its contribution coincides with the one given in the
second formula above.
2. In fact, the formulas in Corollary 12.3.1 hold under an assumption weaker
than the Whitney condition. Namely, we only need that there is a Whitney
stratification of M compatible with V and S such that the 2(�−r)-skeleton S∩
D2(q−1) of S is in the top dimensional stratum of S. Accordingly, under this
assumption, we have a formula for μr(V, S) taking the terms of corresponding
dimension in the above formulas (see [31]).
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12.4 Generalized Milnor Number

As in the previous sections, let V ⊂ M be defined by a holomorphic section
of a vector bundle of rank k and let S be a connected component of Sing(V ).

Definition 12.4.1. The generalized Milnor number μ(V, S) of V at S is de-
fined as

μ(V, S) = (−1)n+1
(
IndSch(v, S)− IndVir(v, S)

)
,

where v is a vector field on a neighborhood U of S in V , nonsingular on U \S.

This definition does not depend on the choice of the vector field v and
is equal to μ0(V, S) in Definition 12.2.1. If (V, a) is an isolated complete
intersection singularity germ, for a radial vector field v0, IndSch(v0, a) = 1
and IndVir(v0, a) = χ(F), where F denotes the Milnor fiber. Thus the above
Milnor number coincides with the usual one in [79, 116,121].

We recall that the classical Milnor number of an isolated singular point
[121] has been generalized to the case of nonisolated hypersurface singularities
by A. Parusiński [127] in the following way. Recall that a hypersurface V in
M is always defined by a holomorphic section s of a line bundle N over
M . There is a canonical vector bundle homomorphism π : TM |V → N |V
which extends the one in (11.4.1). Note that Sing(V ) coincides with the set
of points in V where π fails to be surjective. Now let ∇′ be a connection for
N of type (1, 0). This means that in the decomposition ∇′ = ∇(1,0) +∇(0,1)

of ∇′ into the (1, 0) and (0, 1) components, we have ∇(0,1) = ∂̄. Since s is
holomorphic, we have ∇′s = ∇(1,0)s, which is a C∞ section t of T ∗M ⊗ N .
Write π̃ : TM → N the corresponding bundle homomorphism. Let S be a
compact component of Sing(V ) and Û a neighborhood of S in M disjoint from
the other components. It is shown in [127] that S coincides with a connected
component of the zero set of t. Then Parusiński defines the Milnor number
μS(V ) to be the intersection number in Û of the section t of T ∗M ⊗N with
the zero section. We refer to [31] for the proof of the following

Theorem 12.4.1. For a hypersurface V , we have

μS(V ) = μ(V, S).



Chapter 13

Characteristic Classes of Coherent
Sheaves on Singular Varieties

Abstract As we have seen along this book, for a singular variety V , there
are several definitions of Chern classes, the Mather class, the Schwartz–
MacPherson class, the Fulton–Johnson class and so forth. They are in the
homology of V and, if V is nonsingular, they all reduce to the Poincaré dual
of the Chern class c∗(TV ) of the tangent bundle TV of V . On the other hand,
for a coherent sheaf F on V , the (cohomology) Chern character ch∗(F) or
the Chern class c∗(F) makes sense if either V is nonsingular or F is locally
free. In this chapter, we propose a definition of the homology Chern char-
acter ch∗(F) or the Chern class c∗(F) for a coherent sheaf F on a possibly
singular variety V . In this direction, the homology Chern character or the
Chern class is defined in [140] (see also [100]) using the Nash type modifi-
cation of V relative to the linear space associated to the coherent sheaf F .
Also, the homology Todd class τ(F) is introduced in [15] to describe their
Riemann-Roch theorem. Our class is closely related to the latter.

The variety V we consider in this chapter is a local complete intersection
defined by a section of a holomorphic vector bundle over the ambient complex
manifold M . If F is a locally free sheaf on V , then the class ch∗(F) coincides
with the image of ch∗(F) by the Poincaré homomorphism H∗(V )→ H∗(V ).
This fact follows from the Riemann-Roch theorem for the embedding of V
into M , which we prove at the level of Čech-de Rham cocycles. We also
compute the Chern character and the Chern class of the tangent sheaf of V ,
in the case V has only isolated singularities.

13.1 Local Chern Classes and Characters
in the Čech-de Rham Cohomology

Let M be a C∞ manifold and E a C∞ complex vector bundle E over M . For
a connection ∇ of E, let K denote its curvature and set A = (

√
−1/2π)K.

We represent K locally by a curvature matrix. Recall that the total Chern
form is defined by (cf. Sect. 1.4)

c∗(∇) = det(I + A).

J.-P. Brasselet et al., Vector Fields on Singular Varieties,
Lecture Notes in Mathematics 1987, DOI 10.1007/978-3-642-05205-7 13, 201
c© Springer-Verlag Berlin Heidelberg 2009
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We further define the Chern character form and the Todd form by

ch∗(∇) = tr(eA),

td(∇) = det
(

A

I − e−A

)

.

Note that I − e−A is divisible by A and the result is invertible so that

td−1(∇) = det
(

I − e−A

A

)

also makes sense. If we set si(∇) = tr(A)i, the homogeneous piece of degree
2i in tr(A), then it is a closed 2i-form on M . Denoting by � the rank of E,
we have

c∗(∇) = 1 +
�∑

i=1

ci(∇) and ch∗(∇) = � +
∑

i≥1

si(∇)
i!

.

The forms ci = ci(∇) and si = si(∇) are related by Newton’s formula:

si − c1si−1 + c2si−2 − · · ·+ (−1)ii ci = 0, i ≥ 1. (13.1.1)

The class of ch∗(∇) in H∗(M, C) is the (cohomology) Chern character
ch∗(E) of E. Each homogeneous piece of td(∇) is also closed and the class
of td(∇) in H∗(M, C) is the Todd class td(E) of E. Note that the constant
term in td(∇) is 1 and that td(∇) can be expressed as a series (in fact a
polynomial) in ci(∇). We have the following fundamental formula [80, III,
Corollary 5.4]:

�∑

i=0

(−1)ich∗(Λi∇∗) = td−1(∇) · c�(∇), (13.1.2)

where ∇∗ denotes the connection for E∗ dual to ∇ and Λi∇∗ the connection
for ΛiE∗ induced by ∇∗. Here we set Λ0E∗ = M × C (the trivial line bun-
dle) and Λ0∇∗ = d. See, e.g., [84, Theorem 10.1.1] for the above formula in
cohomology.

Let ξ =
∑q

i=0(−1)iEi be a virtual bundle and ∇• = (∇(q), . . . ,∇(0)) a
family of connections, each ∇(i) being a connection for Ei. We set

c∗(∇•) =
q∏

i=0

c∗(∇(i))ε(i) and ch∗(∇•) =
q∑

i=0

(−1)ich∗(∇(i)),
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where ε(i) = (−1)i. If we denote by ci = ci(∇•) and si/i! = si(∇•)/i! the
homogeneous pieces of degree 2i in c∗(∇•) and ch∗(∇•), respectively, they
are again related by (13.1.1). More generally, if ϕ = ϕ(c1, c2, . . . ) is a series
in ci (we call such a series a symmetric series), we may define a form ϕ(∇•)
(cf. Sect. 5.2). It is a closed form and its class ϕ(ξ) in the cohomology ring
H∗(M ; C) is the characteristic class of ξ with respect to ϕ. Suppose further
that we have two families of connections ∇•

ν = (∇(q)
ν , . . . ,∇(0)

ν ), ν = 0, 1,
for ξ. Then, we have the “difference form” ϕ(∇•

0,∇•
1) satisfying (5.2.1).

Now we state a lemma which will be used to describe explicitly the differ-
ence between the cocycle for the product of two symmetries series and the
product of cocycles for these series. For the proof we refer to [158, Lemma 1.5]
Note that ϕψ(∇•) = ϕ(∇•)·ψ(∇•), for symmetric series ϕ and ψ and a family
of connections ∇•.

Lemma 13.1.1. In the above situation, for two symmetric series ϕ and ψ,
we have

ϕψ(∇•
0,∇•

1) = ϕ(∇•
0) · ψ(∇•

0,∇•
1) + ϕ(∇•

0,∇•
1) · ψ(∇•

1)− d τ01,

where
τ01 = π∗(ϕ(π∗∇•

0, ∇̃•) · dψ(π∗∇•
1, ∇̃•)).

Let M be as above and let U be an open covering of M consisting of two
open sets U0 and U1.

If ξ =
∑q

i=0(−1)iEi is a virtual bundle, we take a family of connections
∇•
ν = (∇(q)

ν , . . . ,∇(0)
ν ) for ξ on each Uν , ν = 0, 1. Recall that, for the collection

∇•
� = (∇•

0,∇•
1) and a symmetric series ϕ, we have the cochain ϕ(∇•

�) as
defined by (5.2.4) in A∗(U). It is a cocycle and defines a class [ϕ(∇•

�)] in
H∗
D(U). It corresponds to the class ϕ(ξ) under the isomorphism H∗

D(U) 

H∗(M ; C).

From Lemma 13.1.1, we have the following:

Proposition 13.1.1. For two symmetric series ϕ and ψ, we have, in A∗(U),

ϕψ(∇•
�) = ϕ(∇•

�) � ψ(∇•
�) + Dτ,

where τ = (0, 0, τ01) with τ01 a form on U01 as given in Lemma 13.1.1.

Now we discuss the localization theory of characteristic classes as consid-
ered above.

To describe these, let M be as above and let S be a closed set in M .
Letting U0 = M \ S and U1 a neighborhood of S in M , we consider the
covering U = {U0, U1} of M . Note that the cup product of a cochain in
A∗(U) and a cochain in A∗(U , U0) is in A∗(U , U0) and this induces a natural
H∗(M ; C)-module structure on H∗(M,M \ S; C).
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Remark 13.1.1. In the situation of Proposition 13.1.1, if ψ(∇•
�) is in

A∗(U , U0), i.e., if ψ(∇•
0) = 0, then so is ϕψ(∇•

�), since ϕψ(∇•
0) =

ϕ(∇•
0) · ψ(∇•

0). The proposition shows that the class ϕψ(ξ) coincides with
ϕ(ξ) � ψ(ξ) in H∗(M,M \ S; C), since τ is also in A∗(U , U0).

Now we consider the localization of the Chern classes of a virtual bundle
by exactness.

Let
0 −→ Eq

hq−→ · · · h1−→ E0 −→ 0 (13.1.3)

be a complex of C∞ complex vector bundles over M which is exact on U0.
Then we will see below that, for each i > 0, there is a canonical localization
ciS(ξ) in H2i(M,M \ S; C) of the Chern class ci(ξ) in H2i(M ; C) of the vir-
tual bundle ξ =

∑q
i=0(−1)iEi. For this, we recall the following “vanishing

theorem” ([14, Lemma (4.22)]) for a family of connections “compatible” with
the sequence (13.1.3) (cf. (5.2.3)):

Lemma 13.1.2. If ∇•
0 is a family of connections on U0 compatible with

(13.1.3), then, for each i > 0,

ci(∇•
0) = 0.

In fact, the above holds for the difference form of a finite number of families
of connections compatible with (13.1.3) on U0. For a symmetric series ϕ
without constant term, we also have a similar vanishing ϕ(∇•

0) = 0.
Let ∇•

0 be a family of connections compatible with (13.1.3) on U0 and ∇•
1

an arbitrary family of connections for ξ =
∑q

i=0(−1)iEi on U1. Then the
class ci(ξ) is represented by the cocycle

ci(∇•
�) = (ci(∇•

0), ci(∇•
1), ci(∇•

0,∇•
1))

in A2i(U). By Lemma 13.1.2, we have ci(∇•
0) = 0 and thus the cocycle is

in A2i(U , U0) and it defines a class ciS(ξ) in H2i(M,M \ S; C). It is sent to
ci(ξ) by the canonical homomorphism j∗. It is not difficult to see that the
class ciS(ξ) does not depend on the choice of the family of connections ∇•

0

compatible with (13.1.3) or on the choice of the family of connections ∇•
1.

If ϕ is a symmetric series without constant term, we may also define the
localized class ϕS(ξ) of ϕ(ξ). In particular, noting that the alternating sum
of the ranks of Ei is zero, if M \S �= ∅, we have the localized Chern character
ch∗
S(ξ) in the relative cohomology H∗(M,M \ S; C), which is sent to ch∗(ξ)

by the homomorphism j∗. It is the class of the cocycle

ch∗(∇•
�) = (0, ch∗(∇•

1), ch∗(∇•
0,∇•

1))

in A∗(U , U0).
Let E be another vector bundle over M and ∇ a connection for E on M .

Then its Chern character ch∗(E) is the class of the cocycle
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ch∗(∇) = (ch∗(∇), ch∗(∇), 0)

in A∗(U). The complex

0 −→ E ⊗ Eq −→ · · · −→ E ⊗ E0 −→ 0

is exact on U0 and the family∇⊗∇•
0 = (∇⊗∇(q)

0 , . . . ,∇⊗∇(0)
0 ) of connections

is compatible with the above sequence on U0. We set E⊗ξ =
∑q

i=0(−1)iE⊗Ei

and let ∇⊗∇•
1 denote the family (∇⊗∇(q)

1 , . . . ,∇⊗∇(0)
1 ). Then ch∗(E ⊗ ξ)

is the class of the cocycle

ch∗(∇⊗∇•
�) = (0, ch∗(∇⊗∇•

1), ch∗(∇⊗∇•
0,∇⊗∇•

1)).

We have

ch∗(∇⊗∇•
1) = ch∗(∇) · ch∗(∇•

1),
ch∗(∇⊗∇•

0,∇⊗∇•
1) = ch∗(∇) · ch∗(∇•

0,∇•
1).

Hence, recalling the definition of the cup product, we have

ch∗(∇⊗∇•
�) = ch∗(∇) � ch∗(∇•

�) (13.1.4)

in A∗(U , U0). In particular, we have

ch∗
S(E ⊗ ξ) = ch∗(E) � ch∗

S(ξ).

Remark 13.1.2. The local Chern characters defined as above have all the
necessary properties and should coincide with the ones in [86]. Hence they
are in the cohomology H∗(M,M \ S; Q) with Q coefficients. Also, the local
Chern classes above are in the image of H∗(M,M \S; Z)→ H∗(M,M \S; C).
See also [15] for local Chern characters.

Now let M be a complex manifold and denote byOM andAM , respectively,
the sheaves of germs of holomorphic functions and of real analytic functions
on M . If U is a relatively compact open set in M and if F is a coherent
OU -module, there is a complex of real analytic vector bundles on U as (1.8)
such that at the sheaf level

0 −→ AU (Eq) −→ · · · −→ AU (E0) −→ AU ⊗OU F −→ 0 (13.1.5)

is exact [11]. We call such a sequence a resolution of F by vector bun-
dles. We define the Chern character ch∗(F) of F by ch∗(F) = ch∗(ξ),
ξ =

∑q
i=0(−1)iEi. Then it does not depend on the choice of the resolu-

tion. If we denote by S the support of F , then it is an analytic set in U and
on U \ S, the sequence (13.1.3) is exact. Thus we have the localized Chern
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character ch∗
S(F) in H∗(U,U \ S; C). If E is a vector bundle over U , the

characteristic classes of E ⊗ F are those of E ⊗ ξ. Hence, from (13.1.4), we
have

ch∗
S(E ⊗ F) = ch∗(E) � ch∗

S(F). (13.1.6)

Note that the above equality also holds if we replace E by a virtual bundle
over U .

13.2 Thom Class

Let M be a complex manifold of dimension m = n + k and V a compact
analytic subvariety of pure dimension n in M . We denote by i the embedding
V ↪→M . If V =

⋃r
i=1 Vi is the irreducible decomposition of V , we set [V ] =∑r

i=1[Vi] in H2n(V ).
Recall that (10.4.6) we have the Thom homomorphism

T : Hp(V ) −→ Hp+2k(M,M \ V ).

For the class [1] in H0(V ), we denote T ([1]) in H2k(M,M \ V ) by ΨV , and
call it the Thom class of V in M .

Let U be a regular neighborhood of V in M with continuous retraction
ρ : U → V . We have, by excision, H∗(M,M \ V ) 
 H∗(U,U \ V ). Note that
for σ in H∗(U) and τ in H∗(U,U \ V ), we have

A(σ � τ) = i∗σ � A(τ),

where A denotes the Alexander isomorphism (see Sects. 1.2 and 10.4)

A : H∗(U,U \ V ) −→ H∗(V ).

Hence the Thom homomorphism T is given, for a class α in Hp(V ), by

T (α) = ρ∗(α) � ΨV . (13.2.1)

We also have the Gysin homomorphism (10.4.3)

i∗ : Hp(V )→ Hp+2k(M),

which satisfy i∗ = j∗◦T . Note that, if M is compact, we have the commutative
diagram (cf. Sect. 10.4)
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Hp(V ) T−−−−→ Hp+2k(M,M \ V )
j∗−−−−→ Hp+2k(M)

⏐
⏐
�PV �

⏐
⏐
�A �

⏐
⏐
�PM

H2n−p(V ) =−−−−→ H2n−p(V ) i∗−−−−→ H2n−p(M).

In this and the subsequent sections, we consider the following two cases:
(i) V is nonsingular,
(ii) V is a local complete intersection defined by a section (see Sect. 5.1).

First, suppose V is nonsingular and let p : NV → V be the normal bundle
of V in M . In this case, P and T are isomorphisms. We may take as U above
a tubular neighborhood so that ρ is C∞. Then ρ : U → V is isomorphic
with p : W → V for a neighborhood W of the zero section in NV , which we
identify with V . The bundle ρ∗NV is also isomorphic with p∗NV . Thus we
have an isomorphism

H∗(M,M \ V ) 
 H∗(NV , NV \ V ).

The Thom class ΨV of V corresponds to the Thom class ΨNV of the bundle
NV under this isomorphism and the Thom homomorphism corresponds to
the Thom isomorphism TNV : Hp(V ) ∼→ Hp+2k(NV , NV \ V ). Note that, if
we denote by sΔ the diagonal section of the bundle p∗NV over NV , its zero
set is V and we have ([156, Ch.III, Theorem 4.4])

ΨNV = ck(p∗NV , sΔ).

Second, recall that a subvariety V of codimension k in M is a local com-
plete intersection (abbreviated as LCI) in M if the ideal sheaf IV in OM of
functions vanishing on V is locally generated by k functions. In this case,
the normal sheaf NV = HomOV (IV /I2

V ,OV ) is a locally free OV -module,
OV = OM/IV . We denote by NV the associated vector bundle.

If V is an LCI defined by a section s of a vector bundle N of rank k over
M (cf. Sect. 5.1), NV = N |V and we have (cf. [157], [161])

ΨV = ck(N, s). (13.2.2)

13.3 Riemann-Roch Theorem for Embeddings

Let V be a compact subvariety in a complex manifold M , which is either of
type (i) or (ii) in the previous section. Let U be a regular neighborhood of V
in M with a continuous retraction ρ : U → V . In the case (ii), suppose V is
defined by a section s of a vector bundle N over M . In the case (i), (M,V )
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is C∞ diffeomorphic with (NV , V ) and, in the latter, V is defined by the
diagonal section sΔ of the bundle p∗NV over NV . In what follows we write
NV by M anew and set N = p∗NV and s = sΔ. Thus in either case we may
express the Thom class ΨV as (13.2.2). In the case (i), we may take as U a
tubular neighborhood and we may assume that ρ is the restriction of p to U .

Let U0 = M \ V and U1 a neighborhood of V as before. Also, let ∇0 be
an s-trivial connection for N on U0 and ∇1 an arbitrary connection for N
on U1. We consider the vector bundle N × R over U01 × R and let ∇̃ be the
connection for it given by ∇̃ = (1− t)∇0 + t∇1. Let Λ•∇∗

ν denote the family
of connections (Λk∇∗

ν , . . . , Λ
0∇∗

ν) on Uν , for ν = 0, 1. Also denote by Λ•∇̃∗

the family (Λk∇̃∗, . . . , Λ0∇̃∗). Let π : U01 × [0, 1] → U01 be the projection.
Recall that, in A∗(U),

ch∗(Λ•∇∗
�) = (ch∗(Λ•∇∗

0), ch∗(Λ•∇∗
1), ch∗(Λ•∇∗

0, Λ
•∇∗

1))

whose class in H∗(M ; C) is ch∗(λN∗), λN∗ =
∑k
i=0(−1)iΛiN∗.

Theorem 13.3.1. The cocycle ch∗(Λ•∇∗
�) is in A∗(U , U0) and is given by

ch∗(Λ•∇∗
�) = td−1(∇�) � ck(∇�) + Dτ,

where τ = (0, 0, τ01), τ01 = π∗(td−1(π∗∇0, ∇̃) · d ck(π∗∇1, ∇̃)).

Proof. By (13.1.2), we have

ch∗(Λ•∇∗
0) = td−1(∇0) · ck(∇0) = 0,

ch∗(Λ•∇∗
1) = td−1(∇1) · ck(∇1),

ch∗(Λ•∇∗
0, Λ

•∇∗
1) = π∗ch∗(Λ•∇̃∗)

= π∗(td−1(∇̃) · ck(∇̃)) = (td−1 · ck)(∇0,∇1).

Hence we see that
ch∗(Λ•∇∗

�) = (td−1 · ck)(∇�)

and the theorem follows from Proposition 13.1.1 (see also Remark 13.1.1).

Remark 13.3.1. Consider the Koszul complex associated to s [59, B.3]:

0 −→ ΛkN∗ −→ · · · −→ Λ1N∗ −→ Λ0N∗ −→ 0, (13.3.2)

which is exact on U0 = M \ V . It is not difficult to see that the family Λ•∇∗
0

is compatible with the sequence (13.3.2) on U0. The fact that ch∗(Λ•∇∗
0) = 0

also follows from this (cf. Lemma 13.1.2).

Let F be a coherent OV -module. The direct image i!F is a coherent OM -
module, which is simply F extended by zero on M \V , and thus we have the
localized Chern character ch∗

V (i!F) in H∗(M,M \ V ; C).
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In the case (i), we take a resolution of F of the form (13.1.5) on V . Then
we have ch∗(F) = ch∗(ξ), ξ =

∑q
i=0(−1)iEi. Let ∇(i) be a connection for Ei,

i = 0, . . . , q, and denote by∇F the family of connections (ρ∗∇(0), . . . , ρ∗∇(q)),
for the virtual bundle ρ∗ξ over U .

In the case (ii), we assume that F is locally free and thus F = OV (F ) for
some vector bundle F over V . Since the classification of continuous vector
bundles and that of C∞ vector bundles coincide over paracompact manifold s,
we may assume that ρ∗F is a C∞ vector bundle and let ∇F be a connection
for ρ∗F on U .

In either case, let ch∗(∇F
� ) denote the cocycle

ch∗(∇F
� ) = (ch∗(∇F ), ch∗(∇F ), 0)

in A∗(U)|U , whose class in H∗(U ; C) is ρ∗ch∗(F).

Corollary 13.3.1. In the above situation, we have

ch∗(∇F
� ) � ch∗(Λ•∇∗

�) = ch∗(∇F
� ) � td−1(∇�) � ck(∇�) + D(ch∗(∇F

� ) � τ)

in A∗(U , U0)|U .

Corollary 13.3.2. Let V be a compact subvariety in M and F a coherent
OV -module. We have the following formulas in either one of the cases:
(i) V is nonsingular,
(ii) V is an LCI defined by a section and F is locally free.

ch∗
V (i!F) = T (ch∗(F) � td−1(NV )) in H∗(M,M \ V ; C),

ch∗(i!F) = i∗(ch∗(F) � td−1(NV )) in H∗(M ; C).

Proof. The Koszul complex (13.3.2) gives a locally free resolution of i!OV :

0 −→ OM (ΛkN∗) −→ · · · −→ OM (Λ0N∗) −→ i!OV −→ 0.

If we compute the local class ch∗
V (i!OV ) using this resolution, we see that it

is represented by ch∗(Λ•∇∗
�). We have, by (13.1.6),

ch∗
V (i!F) =

{
ch∗(ρ∗ξ ⊗ i!OV ) = ch∗(ρ∗ξ) � ch∗

V (i!OV ), in the case (i)

ch∗(ρ∗F ⊗ i!OV ) = ch∗(ρ∗F ) � ch∗
V (i!OV ), in the case (ii).

Recall that either ch∗(ρ∗ξ) or ch∗(ρ∗F ) is represented by ch∗(∇F
� ). Recalling

also that N |U 
 ρ∗NV and ck(N, s) = ΨV (the Thom class), by Corollary
13.3.1, we get

ch∗
V (i!F) = ρ∗(ch∗(F) � td−1(NV )) � ΨV .
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By (13.2.1), we get the first formula. The second follows from the first.

Remark 13.3.2. 1. The equalities in Corollary 13.3.2 hold in cohomology with
Q coefficients (cf. Remarks 13.1.2).

2. In the case V is nonsingular, the formulas are proved in [12].

3. In [86], a similar formula is proved for the Thom class of a vector bundle.
Namely, let p : E → X be a complex vector bundle of rank � over a topological
space X . Then, in our notation,

ch∗
X(λE∗) = p∗td−1(E) � ΨE,

where λE∗ =
∑r
i=0(−1)iΛip∗E∗ and ΨE denotes the Thom class of E. If X is

a C∞ manifold, this formula is proved at the level of Čech-de Rham cocycles
as above; in the situation of Theorem 13.3.1, simply let M = E, V = X
(identified with the zero section of E), N = p∗E and s = sΔ and note that
ΨE = c�(p∗E, sΔ).

4. In the algebraic category, the formulas are proved for a locally free OV -
module on an LCI by analyzing the graph construction in [15, 3. Proposition].
Note that their general Riemann-Roch theorem does not directly imply the
formulas.

5. These formulas are also proved at the level of differential forms and currents
in [80].

13.4 Homology Chern Characters and Classes

Let V be a subvariety of pure codimension k in a complex manifold M .
Suppose that V is an LCI. Thus the ideal sheaf IV of functions vanish-
ing on V is locally generated by k functions and the normal sheaf NV =
HomOV (IV /I2

V ,OV ) is locally free. We denote by NV the associated vector
bundle and let τV = TM |V − NV be the virtual tangent bundle of V (cf.
Sect. 5.1). Note that it does not depend on the embedding i : V ↪→M .

Definition 13.4.1. For a coherent OV -module F , we define the homology
Chern character ch∗(F) by

ch∗(F) = tdNV � A(ch∗
V (i!F)).

Remark 13.4.1. 1. If V is an LCI defined by a section of a vector bundle N
over M , we may write

ch∗(F) = A(tdN � ch∗
V (i!F)).
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2. The above definition is related to the (homology) Todd class τ(F) of F in
[15] by

ch∗(F) = (td−1τV ) � τ(F).

In [15], τ(F) is defined using an embedding of V , but it is shown that τ(F)
is independent of the embedding for a projective variety V . Thus ch∗(F) is
also independent of the embedding in this case.

The following directly follows from the definition.

Proposition 13.4.1. (1) For an exact sequence of coherent OV -modules

0 −→ Fq −→ · · · −→ F0 −→ 0,

we have
q∑

i=0

(−1)ich∗(Fi) = 0.

(2) For a vector bundle E over V and a coherent OV -module F ,

ch∗(E ⊗ F) = ch∗(E) � ch∗(F).

The following is a direct consequence of Corollary 13.3.2.

Proposition 13.4.2. Suppose either V is nonsingular or V is defined by a
section and F is locally free. Then we have

ch∗(F) = ch∗(F) � [V ].

In particular, for the structure sheaf OV ,

ch∗(OV ) = [V ].

If ch∗(F) is in the image of the Poincaré homomorphism H∗(V )→ H∗(V ),
we may define the homology Chern class c∗(F) via Newton’s formula. Namely,
suppose

ch∗(F) = σ∗ � [V ],

for some σ∗ in H∗(V ) and write σ∗ =
∑
i≥0

σi

i! with σi in H2i(V ). Then we
define γ∗ = 1 +

∑
i≥1 γi with γi in H2i(V ) by

σi − γ1σi−1 + γ2σi−2 − · · ·+ (−1)iiγi = 0, i ≥ 1.

If we define the homology Chern class c∗(F) of F by

c∗(F) = γ∗ � [V ],
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then it is not difficult to check that the definition does not depend on the
choice of σ∗.

Example 13.4.1. Suppose either V is nonsingular or V is defined by a section
and F is locally free. Then, from Proposition 13.4.2,

c∗(F) = c∗(F) � [V ].

In particular,
c∗(OV ) = [V ].

13.5 Characteristic Classes of the Tangent Sheaf

Let V be an LCI defined by a section of a vector bundle N over a complex
manifold M . Denoting by ΩM and ΩV the sheaves of holomorphic 1-forms
on M and V , respectively, we have the exact sequence

0 −→ IV /I2
V −→ ΩM ⊗OM OV −→ ΩV −→ 0.

Let ΘM = OM (TM) be the tangent sheaf of M . We define the tangent
sheaf ΘV of V by ΘV = HomOV (ΩV ,OV ), which is independent of the
embedding V ↪→M . From the above sequence, we have the exact sequence

0 −→ ΘV −→ ΘM ⊗OM OV −→ NV −→ Ext1OV
(ΩV ,OV ) −→ 0.

Setting E = Ext1OV
(ΩV ,OV ), we get, from Propositions 13.4.1 and 13.4.2,

ch∗(ΘV ) = ch∗(τV ) � [V ] + ch∗(E).

If p is an isolated singular point of V , by the Riemann-Roch theorem for
the embedding p ↪→ M , we have ch∗(E) = τ(V, p)[p], where τ(V, p) =
dim Ext1OV

(ΩV ,OV )p is the Tjurina number of V at p. Thus we have the
following:

Theorem 13.5.1. Let V be an LCI of dimension n (≥ 1) defined by a section
with isolated singularities p1, . . . , ps. For the tangent sheaf ΘV of V , we have

ch∗(ΘV ) = ch∗(τV ) � [V ] +
s∑

i=1

τ(V, pi) [pi],

c∗(ΘV ) = c∗(τV ) � [V ] + (−1)n+1(n− 1)!
s∑

i=1

τ(V, pi) [pi].
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Recall that the class c∗(τV ) � [V ] coincides with the Fulton–Johnson class
cFJ
∗ (V ) of V , in this case.

Let (V, p) be an isolated complete intersection singularity. If it admits a
good C∗-action in the sense of [116, 9.B], then τ(V, p) = μ(V, p), the Milnor
number of V at p ([74, 3. Satz], [116, (9.10) Proposition]). On the other hand,
for a variety as in Theorem 13.5.1, the Schwartz–MacPherson class c∗(V ) of
V is given by a formula in [155] (cf. Theorem 12.2.1). Hence we have

Corollary 13.5.1. Let V be as in Theorem 13.5.1 with n = 1 or 2. If V
admits a good C∗-action near each singular point pi, then

c∗(ΘV ) = c∗(V ).

Remark 13.5.1. It would be an interesting problem to compare the class
ch∗(F) with the homology Chern character of F as defined in [140] (see
also [100]).
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Math. France, Paris, p. 21–38, 2005.

35. J.-P. Brasselet, J. Seade and T. Suwa, A proof of the proportionality theorem,
Preprint 2005.

36. J.-P. Brasselet, J. Seade and T. Suwa, Proportionality of Indices of 1-Forms
on Singular Varieties, in “Singularities in geometry and topology 2004”, ed.
J.-P. Brasselet et al., Proceedings of the 3rd Franco-Japanese colloquium on
singularities, Hokkaido, Japan. Advanced Studies in Pure Mathematics 46, 49–65
(2007).
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Astérisque 130 (1985), 161–192.
135. C. Sabbah, Espaces conormaux bivariants, Thèse, Université de Paris VII, 1986.
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Lecture Notes in Math., pages 314–491. Springer, Berlin, 1982.

164. R. Thom, Quelques propriétés globales des variétés différentiables, Comm. Math.
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Index

(D) dual cellular decomposition, 4
(K) a triangulation of a variety, 4
E → M vector bundle over M , 8
G(k, m) Grassmanian of complex

k-planes in Cm, 129
Hp

D Čech-de Rham cohomology, 15
M manifold, 1
TM tangent bundle of M , 6
V (real or complex) analytic variety, 31
Vreg the regular part of V , 35
Vk,m Stiefel manifold of orthogonal

k-frames in Rm, 73
Wk,m Stiefel manifold of unitary

k-frames in Cm, 7
Bε closed ball with radius ε, 33
Dδ closed disk with radius δ, 56
Ft Milnor fiber, 47
ΩV cotangent sheaf of V , 212
ΘV tangent sheaf of V , 212
χ( ) Euler–Poincaré characteristic, 2
χ 1

2
( ) semi-characteristic, 79

IndGSV2 modulo (2) GSV index, 75
IndGSV GSV index, 47
IndPH Poincaré–Hopf index, 2
IndSch Schwartz index, 32
IndVir virtual index, 91
Indhom homological index, 117
Indrad radial index, 32
CPm projective space, 14
OV structure sheaf, 207
TV cellular tube around V , 4
μr(V, S) Milnor class localized at S, 193
μ Milnor number, 26
μr(V ) Milnor class of V , 194
∇ a connection, 11
grad(f) complex conjugate of gradient

vector field of f , 46
σ a simplex or cell, 4
Sn n-dimensional sphere, 2

ϕ a symmetric polynomial, 15
Ṽ the Nash transform of V , 130
c̃i(V ) Schwartz class of V in

H∗(M, M \ V ), 175
{Vα}α∈A a stratification, 33
aσ the barycenter of σ, 4
ci(M) ith-Chern class of M , 7
ci(∇) ith-Chern form of ∇, 13
ci(∇,∇′) Bott’s difference form, 13
ci
vir(V ) virtual class in cohomology, 186

cFJ
j (V ) Fulton–Johnson class, 186

cMa
j (V ) Mather class, 182

cSM
j (V ) Schwartz–MacPherson class of

V in H∗(V ), 183
d(v, v′) difference of the indices of v, v′,

5, 73
m(f, S) multiplicity of f at S, 26
v(r) r-field or r-frame, 7
vrad radial vector field, 32
ch∗(F) Chern character of the coherent

sheaf F , 201
EuV (v, x) local Euler obstruction of a

vector field v, 132
EuV (x) local Euler obstruction, 130
Euf,V (x) local Euler obstruction of a

function f , 139
PH(v(r), S) Poincaré–Hopf class of v(r)

localized at S, 10
Resϕ(γ, E; S) residue of ϕ(E) at S with

respect to γ, 21
Sch(v(r), S) Schwartz class of r-field

v(r) localized at S, 181
ch∗(F) homology Chern character of a

coherent sheaf F , 210
Sing(V ) the singular part of V , 34

adjunction formula, 93
Alexander duality, 10, 17, 176
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Baum–Bott residues, xvi, 97, 98, 110
Bott vanishing theorem, 98, 102

Camacho–Sad index, xvi, 97, 107, 109
cellular tube, 4
Chern class, 6

of a bundle, 8
of a manifold, 7
of virtual tangent bundle, 186
relative –, 8

Chern–Weil theory, 11, 86
connection, 11
contact structure, 62
curvature, 12

difference cocycle, 9
dual cell, 4
dual decomposition, 4

Euler class, 10
Euler obstruction, 53, 130

and hyperplane sections, 133
and the Euler defect, 137, 139
of a function, 136, 137
via Morse theory, 140

Euler–Poincaré characteristic, 2

FJ class, 186, 194
frame, 7
Fulton–Johnson class, xix, 185, 186, 189

Gauss-Bonnet formula, 94
geometric complete intersection, 74
Grothendieck residues, 104
GSV index, 47, 53, 128, 135, 186

and the curvatura integra, 80
and the Milnor number (real case),

81
for 1-forms, 153, 154, 156
on curves with several branches, 49
on germs with nonisolated singulari-

ties, 58
on real analytic germs, 73, 74

Homological index, 115, 117
algebraic formula, 120
and GSV index, 121
for 1-forms, 158
law of conservation, 118

ICIS an isolated complete intersection
singularity, 46

MacPherson class, xviii, 182, 183
Mather class, 182, 183
Milnor class, 193, 194
Milnor fiber, 63, 81, 135, 159, 187
Milnor number, xv, 48, 71, 81, 155, 159,

161, 193, 194
morsification, 3

Nash bundle, xviii, 130, 138, 150, 151,
182

Nash transformation, 130
normally radial, 169
normally radial 1-forms, 147

obstruction theory, 6

Poincaré–Hopf class, 9
Poincaré–Hopf index, 1, 4

for 1-forms, 146
of frames, 7, 168
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