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Preface

In vector optimization one investigates optimal elements such as min-
imal, strongly minimal, properly minimal or weakly minimal elements
of a nonempty subset of a partially ordered linear space. The prob-
lem of determining at least one of these optimal elements, if they
exist at all, is also called a vector optimization problem. Problems of
this type can be found not only in mathematics but also in engineer-
ing and economics. Vector optimization problems arise, for example,
in functional analysis (the Hahn-Banach theorem, the Bishop-Phelps
lemma, Ekeland’s variational principle), multiobjective programming,
multi-criteria decision making, statistics (Bayes solutions, theory of
tests, minimal covariance matrices), approximation theory (location
theory, simultaneous approximation, solution of boundary value prob-
lems) and cooperative game theory (cooperative n player differential
games and, as a special case, optimal control problems). In the last
two decades vector optimization has been extended to problems with
set-valued maps. This new field of research, called set optimization,
seems to have important applications to variational inequalities and
optimization problems with multivalued data.

The roots of vector optimization go back to F.Y. Edgeworth (1881)
and V. Pareto (1906) who have already given the definition of the
standard optimality concept in multiobjective optimization. But in
mathematics this branch of optimization has started with the leg-
endary paper of H.W. Kuhn and A.W. Tucker (1951). Since about
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viii Preface

the end of the 1960’s research is intensively made in vector optimiza-
tion.

It is the aim of this book to present various basic and important
results of vector optimization in a general mathematical setting and
to demonstrate its usefulness in mathematics and engineering. An
extension to set optimization is also given. The first three parts are a
revised edition of the former book [160] of the author. The forth part
on engineering applications and the fifth part entitled extensions to
set optimization have been added.

The theoretical vector optimization results are contained in the
second part of this book. For a better understanding of the proofs
several theorems of convex analysis are recalled in the first part. This
part concisely summarizes the necessary background material and
may be viewed as an appendix.

The main part of this book begins on page 102 with a discussion of
several optimality notions together with some simple relations. Nec-
essary and sufficient conditions for optimal elements are obtained by
scalarization, i.e. the original vector optimization problem is replaced
by an optimization problem with a real-valued objective map. The
scalarizing functionals being used are certain linear functionals and
norms. Existence theorems for optimal elements are proved using
Zorn’s lemma and the scalarization theory. For vector optimization
problems with inequality and equality constraints a generalized La-
grange multiplier rule is given. Moreover, a duality theory is devel-
oped for convex maps. These results are also specialized to abstract
linear optimization problems. The third part of this book is devoted
to the application of the preceding general theory. For vector ap-
proximation problems the connections to simultaneous approximation
problems are shown and a generalized Kolmogorov condition is for-
mulated. Furthermore, nonlinear and linear Chebyshev problems are
considered in detail. The last section is entitled cooperative n player
differential games. These include optimal control problems. For these
games a maximum principle is proved.

In the part on engineering applications the developed theoretical
results are applied to multiobjective optimization problems arising in
engineering. After a presentation of the theoretical basics of multiob-
jective optimization numerical methods are discussed. Some of these
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methods are applied to concrete nonlinear multiobjective optimiza-
tion problems from electrical engineering, computer science, chemical
engineering and medical engineering. The last part extends the sec-
ond part of this book to set optimization. After an introduction to
this field of research including basic concepts the notion of the contin-
gent epiderivative is discussed in detail. Subdifferentials are the topic
together with a comprehensive chapter on optimality conditions in
set optimization.

This book should be readable for students in mathematics whose
background includes a basic knowledge in optimization and linear
functional analysis. Mathematically oriented engineers may be inter-
ested in the forth part on engineering applications.

The bibliography contains only a selection of references. A reader
who is interested in the first papers of vector optimization is requested
to consult the extensive older bibliographies of Achilles-Elster-Nehse
[1], Nehse [258] and Stadler [312].

This second edition is a revised version containing two new sec-
tions, additional remarks on the contribution of Edgeworth and Pareto
and an updated bibliography.

I am very grateful to Professors W. Krabs, R.H. Martin and B.
Brosowski for their support and valuable suggestions. I also thank Dr.
D. Diehl, Dr. G. Eichfelder and Dr. E. Schneider for useful comments.
Moreover, I am indebted to A. Garhammer, S. Gmeiner, Dr. J. Klose,
Dr. A. Merkel, Dr. B. Pfeiffer and H. Winkler for their assistance.

Erlangen, September 2010 Johannes Jahn
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Part I

Convex Analysis



2 I Convex Analysis

Convex analysis turns out to be a powerful tool for the investiga-
tion of vector optimization problems in a partially ordered linear space
for two main reasons. A partial ordering in a real linear space can be
characterized by a convex cone and, therefore, theorems concerning
convex cones are very useful. Furthermore, separation theorems are
especially helpful for the development of a Lagrangian theory. In this
first part which consists of three chapters we present all these results
on convex analysis which are necessary for the following theory on
vector optimization. The most important theorems are separation
theorems, a James theorem and a Krein-Rutman theorem.



Chapter 1

Linear Spaces

Although several results of the theory described in the second part
of this book are also valid in a rather abstract setting we restrict our
attention to real linear spaces. For convenience, we summarize in this
chapter the well-known definitions of linear spaces and convex sets
as well as the definition of (locally convex) topological linear spaces
and we consider a partial ordering in such a linear setting. Finally,
we investigate some special partially ordered linear spaces and list
various known properties.

1.1 Linear Spaces and Convex Sets

We recall the definition of a real linear space and present some other
notations.

Definition 1.1. Let X be a given set. Assume that an addition
on X, i.e. a map from X × X to X, and a scalar multiplication on
X, i.e. a map from R × X to X, is defined. The set X is called a
real linear space, if the following axioms are satisfied (for arbitrary
x, y, z ∈ X and λ, µ ∈ R):

(a) (x+ y) + z = x+ (y + z),

(b) x+ y = y + x,

(c) there is an element 0X ∈ X with x+ 0X = x for all x ∈ X,

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               
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4 Chapter 1. Linear Spaces

(d) for every x ∈ X there is a y ∈ X with x+ y = 0X ,

(e) λ(x+ y) = λx+ λy,

(f) (λ+ µ)x = λx+ µx,

(g) λ(µx) = (λµ)x,

(h) 1x = x.

The element 0X given under (c) is called the zero element of X.

Definition 1.2. Let S and T be nonempty subsets of a real linear
space X. Then we define the algebraic sum of S and T as

S + T := {x+ y | x ∈ S and y ∈ T}

and the algebraic difference of S and T as

S − T := {x− y | x ∈ S and y ∈ T}.

For an arbitrary λ ∈ R the notation λS will be used as

λS := {λx | x ∈ S}.

It is important to note that the set equation S+S = 2S does not
hold in general for a nonempty subset S of a real linear space.

Definition 1.3. Let X be a real linear space. The set X ′ is
defined to be the set of all linear maps from X to R. If we define for
all ϕ, ψ ∈ X ′ and all λ ∈ R

(ϕ+ ψ)(x) = ϕ(x) + ψ(x) for all x ∈ X

and
(λϕ)(x) = λϕ(x) for all x ∈ X,

then X ′ is a real linear space itself and it is called the algebraic dual
space of X. The algebraic dual space of X ′ is denoted by X ′′ and it
is called the second algebraic dual space of X.



1.1. Linear Spaces and Convex Sets 5

The most important class of subsets in a real linear space are
convex sets.

Definition 1.4. Let S be a subset of a real linear space X.

(a) Let some x̄ ∈ S be given. The set S is called starshaped at x̄, if
for every x ∈ S

λx+ (1 − λ)x̄ ∈ S for all λ ∈ [0, 1]

(see Fig. 1.1).

................................................................................................................................................................................................................................

..................
..................

..................
..................

..................
..................

................................................................................................................................................

................................................................................................................................................................................................

........................................................................

• x̄
S

Figure 1.1: A set S being starshaped at x̄.

(b) The set S is called convex, if for every x, y ∈ S

λx+ (1 − λ)y ∈ S for all λ ∈ [0, 1]

(see Fig. 1.2 and 1.3).
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Figure 1.2: Convex set.

• •
x y

Figure 1.3: Non-convex set.

(c) The set S is called balanced, if it is nonempty and

αS ⊂ S for all α ∈ [−1, 1].
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(d) The set S is called absolutely convex, if it is convex and balanced.

Obviously, the empty set is convex and a set which is starshaped
at every point is convex as well.

Remark 1.5.

(a) The intersection of arbitrarily many convex sets of a real linear
space is convex.

(b) If S and T are nonempty convex subsets of a real linear space
X, then the algebraic sum αS + βT is convex for all α, β ∈ R.
Consequently, for every x̄ ∈ X the translated set S + {x̄} is
convex as well.

Definition 1.6. Let S be a nonempty subset of a real linear space
X. The intersection of all convex subsets of X that contain S is called
the convex hull of S and is denoted co(S).

Remark 1.7. For two nonempty subsets S and T of a real linear
space we obtain for all α, β ∈ R

co(αS + βT ) = αco(S) + βco(T ).

Next, we consider sets which are algebraically open or closed.

Definition 1.8. Let S be a nonempty subset of a real linear space
X.

(a) The set

cor(S) := {x̄ ∈ S | for every x ∈ X there is a λ̄ > 0 with

x̄+ λx ∈ S for all λ ∈ [0, λ̄]}
is called the algebraic interior of S (or the core of S, see Fig.
1.4).



1.1. Linear Spaces and Convex Sets 7
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Figure 1.4: x̄ ∈ cor(S).

(b) The set S with S = cor(S) is called algebraically open.

(c) The set of all elements of X which do not belong to cor(S) and
cor(X\S) is called the algebraic boundary of S.

(d) An element x̄ ∈ X is called linearly accessible from S, if there
is an x ∈ S, x 6= x̄, with the property

λx+ (1 − λ)x̄ ∈ S for all λ ∈ (0, 1].

The union of S and the set of all linearly accessible elements
from S is called the algebraic closure of S and it is denoted by

lin(S) := S ∪ {x ∈ X | x is linearly accessible from S}.

In the case of S = lin(S) the set S is called algebraically closed.

(e) The set S is called algebraically bounded, if for every x̄ ∈ S and
every x ∈ X there is a λ̄ > 0 such that

x̄+ λx /∈ S for all λ ≥ λ̄.

These algebraic notions have a special geometric meaning. Take
the intersections of the set S with each straight line in the real linear
space X and consider these intersections as subsets of the real line R.
Then the set S is algebraically open, if these subsets are open; S is
algebraically closed, if these subsets are closed; and S is algebraically
bounded, if these subsets are bounded.



8 Chapter 1. Linear Spaces

Lemma 1.9. For a nonempty convex subset S of a real linear
space we have:

(a) x̄ ∈ cor(S), x̃ ∈ lin(S) =⇒ {λx̃+(1−λ)x̄|λ ∈ [0, 1)} ⊂ cor(S),

(b) cor(cor(S)) = cor(S),

(c) cor(S) and lin(S) are convex,

(d) cor(S) 6= ∅ =⇒ lin(cor(S)) = lin(S) and cor(lin(S)) = cor(S).

A proof of Lemma 1.9 which is rather technical may be found in
Kirsch-Warth-Werner [188, p. 9].

Another important class of subsets in a real linear space is intro-
duced in

Definition 1.10. Let C be a nonempty subset of a real linear
space X.

(a) The set C is called a cone, if

x ∈ C, λ ≥ 0 =⇒ λx ∈ C

(see Fig. 1.5).
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Figure 1.5: Cone.
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Figure 1.6: Pointed cone.

(b) A cone C is called pointed, if

C ∩ (−C) = {0X}

(see Fig. 1.6).
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(c) A cone C is called reproducing, if

C − C = X.

In this case one also says that C generates X.

(d) A nonempty convex subset B of a convex cone C 6= {0X} is
called a base for C, if each x ∈ C\{0X} has a unique represen-
tation of the form

x = λb for some λ > 0 and some b ∈ B

(see Fig. 1.7).
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x = λb

Figure 1.7: Base B for C.

Sometimes a cone is also called a wedge and a pointed wedge is
called a cone. But in this book we use the terms in Definition 1.10.

By definition each cone contains the zero element of the real linear
space. The simplest cones in a real linear space X are {0X} and X
itself. {0X} is also called the trivial cone. From a geometric point

Consequently, each cone is starshaped at 0X .
For the investigation of partial orderings convex cones are very

important. They are characterized by

Lemma 1.11. A cone C in a real linear space is convex if and
only if

C + C ⊂ C.

of view a nontrivial cone is a set of rays emanating from the origin.
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Proof.

(a) Assume that C is a convex cone. Then for every x, y ∈ C we
have

1

2
(x+ y) =

1

2
x+

1

2
y ∈ C

implying x+ y ∈ C. So, the inclusion C + C ⊂ C is true.

(b) For arbitrary x, y ∈ C and λ ∈ [0, 1] we obtain

λx ∈ C and (1 − λ)y ∈ C.

With the inclusion C + C ⊂ C we then get

λx+ (1 − λ)y ∈ C,

i.e. the cone C is convex.

2

The algebraic interior of a convex cone has interesting properties
listed below.

Lemma 1.12. Let C be a convex cone in a real linear space X
with a nonempty algebraic interior. Then:

(a) cor(C) ∪ {0X} is a convex cone,

(b) cor(C) = C + cor(C).

Proof.

(a) Take arbitrary x̄ ∈ cor(C) and µ > 0. For every x ∈ X there is
a λ̄ > 0 with

x̄+
λ

µ
x ∈ C for all λ ∈ [0, λ̄].
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Since C is a cone, we get

µ
(

x̄+
λ

µ
x
)

= µx̄+ λx ∈ C for all λ ∈ [0, λ̄].

So, we obtain µx̄ ∈ cor(C) and with Lemma 1.9, (c) the asser-
tion is obvious.

(b) The inclusion

cor(C) = {0X} + cor(C) ⊂ C + cor(C)

is clear. For the proof of the converse inclusion we take arbitrary
x̃ ∈ C, x̄ ∈ cor(C) and x ∈ X. Then there is a λ̄ > 0 with

x̄+ λx ∈ C for all λ ∈ [0, λ̄].

Since C is assumed to be convex, we conclude with Lemma 1.11

x̃+ x̄+ λx ∈ C for all λ ∈ [0, λ̄]

implying x̃+ x̄ ∈ cor(C). So, we conclude C+cor(C) ⊂ cor(C).

2

The following lemma gives a sufficient condition for a cone to be
reproducing.

Lemma 1.13. A cone C in a real linear space X is reproducing,
if cor(C) 6= ∅.

Proof. If cor(C) is nonempty, take some x̄ ∈ cor(C) and any
x ∈ X. Then there is a λ̄ > 0 with x̄+ λ̄x ∈ C implying

x ∈ 1

λ̄
C −

{1

λ̄
x̄
}

⊂ C − C.

So, we get X ⊂ C−C and together with the trivial inclusion C−C ⊂
X we obtain the assertion. 2

Next, we turn our attention to the notion of a base B of a nontriv-
ial convex cone. Because of the convexity of B and the uniqueness of
λ we have OX /∈ B.



12 Chapter 1. Linear Spaces

Lemma 1.14. Each nontrivial convex cone with a base in a real
linear space is pointed.

Proof. Let C be a nontrivial convex cone with base B. Take any
x ∈ C∩ (−C) and assume that x 6= 0X . Then there are b1, b2 ∈ B and
λ1, λ2 > 0 with x = λ1b1 = −λ2b2 implying λ1

λ1+λ2
b1 + λ2

λ1+λ2
b2 = 0X ∈

B. But this is a contradiction to the afore-mentioned remark. 2

Definition 1.15. Let S be a nonempty subset of a real linear
space. The cone

cone(S) := {x ∈ X | x = λs for some λ ≥ 0 and some s ∈ S}
is called the cone generated by S (see Fig. 1.8).
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Figure 1.8: Cone generated by S.

It is an important property of a base B of a cone C that cone(B) =
C. If 0X ∈ cor(S) for a nonempty subset S of a real linear space X,
then cone(S) = X.

1.2 Partially Ordered Linear Spaces

In addition to the linear structure of a space we consider a partial
ordering which is given in many real linear spaces being of practical
interest.
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Definition 1.16. Let X be a real linear space.

(a) Each nonempty subset R of the product space X ×X is called
a binary relation R on X (we write xRy for (x, y) ∈ R).

(b) Every binary relation ≤ onX is called a partial ordering onX, if
the following axioms are satisfied (for arbitrary w, x, y, z ∈ X):

(i) x ≤ x;

(ii) x ≤ y, y ≤ z =⇒ x ≤ z;

(iii) x ≤ y, w ≤ z =⇒ x+ w ≤ y + z;

(iv) x ≤ y, α ∈ R+ =⇒ αx ≤ αy.

(c) A partial ordering ≤ on X is called antisymmetric, if the fol-
lowing implication holds for arbitrary x, y ∈ X:

x ≤ y, y ≤ x =⇒ x = y.

In Definition 1.16, (b) with axiom (i) the partial ordering is reflex-
ive and with (ii) it is transitive. The axioms (iii) and (iv) guarantee
the compatibility of the partial ordering with the linear structure of
the space.

Definition 1.17. A real linear space equipped with a partial or-
dering is called a partially ordered linear space.

It is important to note that in a partially ordered linear space two
arbitrary elements cannot be compared, in general, in terms of the
partial ordering. A significant characterization of a partial ordering
in a real linear space is given by

Theorem 1.18. Let X be a real linear space.

(a) If ≤ is a partial ordering on X, then the set

C := {x ∈ X | 0X ≤ x}

is a convex cone. If, in addition, ≤ is antisymmetric, then C is
pointed.
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(b) If C is a convex cone in X, then the binary relation

≤C := {(x, y) ∈ X ×X | y − x ∈ C}

is a partial ordering on X. If, in addition, C is pointed, then
≤C is antisymmetric.

This theorem is easy to prove and is of great importance because
a partial ordering can be investigated using convex analysis.

The next definition is based on the result of Theorem 1.18.

Definition 1.19. A convex cone characterizing a partial ordering
in a real linear space is called an ordering cone.

Several authors also call an ordering cone a positive cone. We
denote ≤C as a partial ordering induced by a convex cone C.

Example 1.20. For X = Rn the ordering cone of the component-
wise partial ordering on Rn is given by

C := {x ∈ Rn | xi ≥ 0 for all i ∈ {1, . . . , n}} = Rn
+.

It is also called the natural ordering cone. Other ordering cones in
Rn are for instance

{x ∈ Rn | xi ≥ 0 for all i ∈ {1, . . . ,m} and

xi = 0 for all i ∈ {m+ 1, . . . , n}} for some 1 ≤ m < n

or {0Rn} and Rn itself. R+, R−, {0} and R are the only ordering cones
in R. Ordering cones of special infinite dimensional linear spaces will
be presented in Subsection 1.4.

Definition 1.21. Let X be a partially ordered linear space. For
arbitrary elements x, y ∈ X with x ≤ y the set

[x, y] := {z ∈ X | x ≤ z ≤ y}

is called the order interval between x and y (see Fig. 1.9)
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Figure 1.9: Order interval [x, y].

If C is the ordering cone in a partially ordered linear space, then
the order interval between x and y can be written as

[x, y] = ({x} + C) ∩ ({y} − C).

Lemma 1.22. Let X be a partially ordered linear space with the
ordering cone C. Let x, y ∈ X with x ∈ {y} − C (i.e. x ≤C y) be
arbitrarily given. Then we have for z := 1

2
(x+ y):

(a) The order interval [x− z, y − z] is absolutely convex.

(b) If cor(C) 6= ∅ and x ∈ {y} − cor(C), then z ∈ cor([x, y]).

(c) If C is algebraically closed, then [x, y] is algebraically closed.

(d) If C is algebraically closed and pointed, then [x, y] is algebrai-
cally bounded.

Proof.

(a) With the equality

[x− z, y − z] =
[

− 1

2
(y − x),

1

2
(y − x)

]

the assertion is obvious.

(b) Since

z = x+
1

2
(y − x) ∈ {x} + cor(C)
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and

z = y − 1

2
(y − x) ∈ {y} − cor(C),

we conclude z ∈ cor([x, y]).

(c) Because of the equality [x, y] = ({x} + C) ∩ ({y} − C) this
assertion is evident.

(d) First, if the pointed convex cone C is algebraically closed, then
the complement set X\C is algebraically open. For if we assume
that X\C is not algebraically open, then there is an x̄ ∈ X\C
and an h ∈ X so that for all λ̄ > 0

x̄+ λh ∈ C for some λ ∈ (0, λ̄].

Since C is convex, we conclude for some x := x̄+ λh ∈ C

µx+ (l − µ)x̄ ∈ C for all ∈ (0, 1]

which implies x̄ ∈ lin(C) = C. But this contradicts the as-
sumption x̄ /∈ C. So, the complement set X\C is algebraically
open.

In order to prove that [x, y] is algebraically bounded we take
any v ∈ [x, y] and any w ∈ X\{0X}. Then we consider the two
cases w /∈ C and w ∈ C. Assume that w /∈ C. Since X\C is
algebraically open, there is a λ̄ > 0 with

w + λ(v − x) ∈ X\C for all λ ∈ [0, λ̄].

The set (X\C) ∪ {0X} is a cone and, therefore, we obtain

1

λ
(w + λ(v − x)) ∈ X\C for all λ ∈ (0, λ̄]

or alternatively

λ
(

w +
1

λ
(v − x)

)

∈ X\C for all λ ∈
[1

λ̄
,∞
)

.

But then we have

v − x+ λw ∈ X\C for all λ ∈
[1

λ̄
,∞
)
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and

v + λw /∈ {x} + C for all λ ∈
[1

λ̄
,∞
)

which implies

v + λw /∈ [x, y] for all λ ∈
[1

λ̄
,∞
)

.

Next, assume that w ∈ C. Since the ordering cone C is assumed
to be pointed and w 6= 0X , we conclude w /∈ −C. With the same
arguments as before there is a ¯̄λ > 0 with

v + λw /∈ [x, y] for all λ ∈
[1
¯̄λ
,∞
)

.

Hence, the order interval [x, y] is algebraically bounded.

2

With a partial ordering on a real linear space it is also possible to
introduce a partial ordering on the algebraic dual space.

Definition 1.23. Let X be a real linear space with a convex cone
CX .

(a) The cone

CX′ := {x′ ∈ X ′ | x′(x) ≥ 0 for all x ∈ CX}

is called the dual cone for CX . The partial ordering in X ′ which
is induced by CX′ is called the dual partial ordering.

(b) The set

C#
X′ := {x′ ∈ X ′ | x′(x) > 0 for all x ∈ CX\{0X}}

is called the quasi-interior of the dual cone for CX .

Notice that CX′ is a convex cone so that Definition 1.23, (a) makes
sense. For CX = {0X} we obtain CX′ = X ′, and for CX = X we have
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CX′ = {0X′}. If the quasi-interior C#
X′ of the dual cone for CX is

nonempty, then C#
X′ ∪ {0X′} is a nontrivial convex cone. With the

following lemma we list some useful properties of dual cones without
proof.

Lemma 1.24. Let CX and DX be two convex cones in a real linear
space X with the dual cone CX′ and DX′, respectively. Then:

(a) CX ⊂ DX =⇒ DX′ ⊂ CX′;

(b) CX′ ∩DX′ is the dual cone for CX +DX ;

(c) CX ∪DX and CX +DX have the same dual cone;

(d) CX′ +DX′ is a subset of the dual cone for CX ∩DX .

In general, the quasi-interior of the dual cone does not coincide
with the algebraic interior of the dual cone but the following inclusion
holds.

Lemma 1.25. If CX is a convex cone in a real linear space X and
X ′ separates elements in X (i.e., two different elements in X may be
separated by a hyperplane), then

cor(CX′) ⊂ C#
X′ .

Proof. The assertion is trivial for CX = {0X} and for cor(CX′) =
∅. If CX 6= {0X} and cor(CX′) 6= ∅, then take any x̄ ∈ cor(CX′)
and assume that x̄ /∈ C#

X′ . Consequently, there is an x ∈ CX\{0X}
with x̄(x) ≤ 0. Since X ′ separates elements in X, there is a linear
functional x′ ∈ X ′ with the property x′(x) < 0. Then we conclude

(x̄+ λ(x′ − x̄))(x) = λx′(x) + (1 − λ)x̄(x) < 0 for all λ ∈ (0, 1]

which contradicts the assumption that x̄ ∈ cor(CX′). 2

Conditions under which the quasi-interior of the dual cone is non-
empty will be given in Subsection 3.4. The following result is very
similar to that of Lemma 1.25.
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Lemma 1.26. If CX is a convex cone in a real linear space X,
then

cor(CX) ⊂ {x ∈ X | x′(x) > 0 for all x′ ∈ CX′\{0X′}}.

Proof. Take any x̄ ∈ cor(CX) and any x′ ∈ CX′\{0X′}. Con-
sequently, there are an x ∈ X with x′(x) < 0 and a λ̄ > 0 with
x̄+ λ̄x ∈ CX . Hence, we obtain x′(x̄+ λ̄x) ≥ 0 and

x′(x̄) ≥ −λ̄x′(x) > 0

which leads to the assertion. 2

A consequence of Lemma 1.26 is given by

Lemma 1.27. Let CX be a convex cone in a real linear space X.

(a) If cor(CX) is nonempty, then CX′ is pointed.

(b) If C#
X′ is nonempty, then CX is pointed.

Proof.

(a) For every x′ ∈ CX′ ∩ (−CX′) we have

x′(x) = 0 for all x ∈ CX

and especially for some x̄ ∈ cor(CX) we get x′(x̄) = 0. With
Lemma 1.26 we obtain x′ = 0X′ , and this implies

CX′ ∩ (−CX′) = {0X′}.

(b) Take any x ∈ CX∩(−CX). If we assume that x 6= 0X′ we obtain
for every x′ ∈ C#

X′

x′(x) > 0 and x′(x) < 0

which is a contradiction. 2
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An important property of the quasi-interior of a dual cone is that
it can be used to characterize the base of the original cone.

Lemma 1.28. Let CX be a nontrivial convex cone in a real linear
space X.

(a) For every x′ ∈ C#
X′ the set B := {x ∈ CX | x′(x) = 1} is a base

for CX .

(b) In addition, let CX be reproducing and let CX have a base B.
Then there is an x′ ∈ C#

X′ with

B = {x ∈ CX | x′(x) = 1}.

Proof.

(a) Choose any x′ ∈ C#
X′ . Then we obtain for every x ∈ CX\{0X}

x′(x) > 0 and, therefore, x can be uniquely represented as

x = x′(x)
1

x′(x)
x for

1

x′(x)
x ∈ B.

Hence, the assertion is evident.

(b) We define the functional x′ : CX\{0X} → R+ with

x′(x) = λ(x) for all x ∈ CX\{0X}
where λ(x) is the positive number in the representation formula
for x. It is obvious that x′ is positively homogeneous. In order
to see that it is additive pick some elements x, y ∈ CX\{0X}.
Then we obtain

1

x′(x) + x′(y)
(x+ y) =

x′(x)

x′(x) + x′(y)

1

x′(x)
x

+
x′(y)

x′(x) + x′(y)

1

x′(y)
y ∈ B

because 1
x′(x)

x ∈ B, 1
x′(y)

y ∈ B and B is convex. Consequently,
we get

x′(x+ y) = x′(x) + x′(y) for all x, y ∈ CX\{0X}.
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Hence, x′ is a positively homogeneous and additive functional
on CX\{0X}. Next, we define x′(0X) := 0 and we see that this
extension is positively homogeneous and additive on CX as well.
Finally we extend x′ to X = CX − CX by defining

x′(x− y) := x′(x) − x′(y) for all x, y ∈ CX .

It is obvious that x′ is positively homogeneous and additive on
X, and since

x′(x− y) = x′(x) − x′(y) = −x′(y − x) for all x, y ∈ CX ,

x′ is also linear on X. With

x′(x) > 0 for all x ∈ CX\{0X}

we obtain x′ ∈ C#
X′ . The set equation

B = {x ∈ CX | x′(x) = 1}

is evident, if we use the definition of x′.

2

It is important to note that with Zorn’s lemma one does not need
the assumption X = CX − CX (i.e., CX is reproducing) in Lemma
1.28, (b). This assumption can be dropped as one may see in Lemma
3.3.

1.3 Topological Linear Spaces

In this section we investigate partially ordered linear spaces which
are equipped with a topology. The important spaces as locally con-
vex spaces and normed spaces are considered, and the connections
between topology and partial ordering are examined.

Definition 1.29. Let X be a nonempty set.

(a) A topology T on X is defined to be a set of subsets of X which
satisfy the following axioms:
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(i) every union of sets of T belongs to T ;

(ii) every finite intersection of sets of T belongs to T ;

(iii) ∅ ∈ T and X ∈ T .

In this case (X, T ) is called a topological space and the elements
of T are called open sets.

(b) Let S and T be two topologies on X. S is called finer than T
(or T is called coarser than S), if every T -open set is S-open.

(c) Let (X, T ) be a topological space, let S be a subset of X and
let some x ∈ X be a given element. The set S is called a
neighborhood of x, if there is an open set T with x ∈ T ⊂ S.
x is called an interior element of S, if there is a neighborhood
T of x contained in S. The set of all interior elements of S is
called the interior of S and it is denoted int(S). The set S is
called closed, if X\S is open. The set of all elements of X for
which every neighborhood meets the set S is called the closure
of S and it is denoted cl(S). The set S is called dense in X, if
X ⊂ cl(S).

(d) A topological space (X, T ) is called separable, if X contains a
countable dense subset.

(e) (i) A nonempty partially ordered set I is called directed, if two
arbitrary elements in I are majorized in I.

(ii) A map from a directed set I to a nonempty set X is called
a net and is denoted (xi)i∈I .

(iii) Let (X, T ) be a topological space. A net (xi)i∈I is called
to converge to some x ∈ X, if for every neighborhood U of
x there is an n ∈ I so that

xi ∈ U for all i ≥ n

(≤ denotes the partial ordering in I).

In this case we write x = lim
i∈I

xi.
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(iv) Let (X, T ) be a topological space. An element x ∈ X is
called a cluster point of a net (xi)i∈I , if for every neighbor-
hood U of x and every n ∈ I there is an i ∈ I with i ≥ n
so that xi ∈ U .

(f) A nonempty subset S of a topological space (X, T ) is called
compact, if every net in S has a cluster point in S.

(g) Let (X,S) and (Y, T ) be two topological spaces. A map f :
X → Y is called continuous at some x ∈ X, if to every neighbor-
hood V of f(x) there is a neighborhood U of x with f(U) ⊂ V .
f : X → Y is called continuous on X, if f is continuous at every
x ∈ X.

(h) A topological space (X, T ) is called separated (or a Hausdorff
space), if any two different elements have disjoint neighbor-
hoods.

An important class of topological spaces are so-called metric spa-
ces.

Definition 1.30.

(a) Let X be a nonempty set. A map d : X ×X → R+ is called a
metric, if (for all x, y, z ∈ X):

(i) d(x, y) = 0 ⇐⇒ x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

In this case (X, d) is called a metric space.

(b) A topological space (X, T ) is called metrizable, if its topology
can be defined by a metric.

If (X, d) is a metric space, then for any x ∈ X a set S(x) is called
a neighborhood of x, if there is an ε > 0 so that

{y ∈ X | d(x, y) < ε} ⊂ S(x).
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The set of all neighborhoods of x defines a topology on X.
Next, we consider a topological space (X, T ) where X is now a

real linear space. In this case we require that the topological and the
linear structure of the space are compatible.

Definition 1.31. Let X be a real linear space and let T be a
topology on X.

(a) (X, T ) is called a real topological linear space, if addition and
multiplication with reals are continuous, i.e. the maps

(x, y) 7→ x+ y with x, y ∈ X,

(α, x) 7→ αx with α ∈ R and x ∈ X

are continuous on X ×X and R×X, respectively. In many sit-
uations we use, for simplicity, the notation X instead of (X, T )
for a real topological linear space.

(b) A subset S of a real topological linear space X is called bounded,
if for each 0X-neighborhood U there is a λ ∈ R with the property
S ⊂ λU .

(c) A nonempty subset S of a real topological linear space X is
called complete, if each Cauchy net in S converges to some x ∈ S
(i.e. for every net (xi)i∈I in S with lim

(i,j)∈I×I
(xi − xj) = 0 there is

an x ∈ S with x = lim
i∈I

xi).

(d) A real topological linear spaceX is called quasi-complete, if each
nonempty, closed and bounded set in X is complete.

In Lemma 1.9 we listed some results on the algebraic interior and
closure of a set. Now we consider the relationships between these
notions and the corresponding topological notions. For a proof of
these results see Holmes [140, p. 59].

Lemma 1.32. Let S be a nonempty convex set of a real topological
linear space X. Then the closure cl(S) is convex. For int(S) 6= ∅ we
have:
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(a) int(S) = cor(S);

(b) cl(S) = cl(int(S)) and int(S) = int(cl(S));

(c) cl(S) = lin(S).

Definition 1.33. Let X be a real topological linear space.

(a) A subset B of the set S of neighborhoods of 0X is called a base
of neighborhoods of 0X , if for every S ∈ S there is a set T ∈ B
with T ⊂ S.

(b) If X has a base of convex neighborhoods of 0X , it is called a
real locally convex topological linear space or a real locally convex
space.

It can be shown that every topological linear space has a base of
balanced neighborhoods of the origin. But in many practical situ-
ations one needs convex neighborhoods of the origin and, therefore,
locally convex spaces are very useful in practice.

For certain results in vector optimization we will assume that the
algebraic sum of two sets is closed. A sufficient condition for the
property of being closed is given by

Lemma 1.34. In a real locally convex space X the algebraic sum
of a nonempty compact set and a nonempty closed set is closed.

For a proof see Robertson-Robertson [283, p. 53/54].
Next, we consider some other types of spaces which are important

for the vector optimization theory.

Definition 1.35. Let X and Y be real linear spaces, and let CY

be a convex cone in Y . A map ||| · ||| : X → CY is called a vectorial
norm, if the following conditions are satisfied (for all x, z ∈ X and all
λ ∈ R):

(a) |||x||| = 0Y ⇐⇒ x = 0X ;
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(b) |||λx||| = |λ| |||x|||;

(c) |||x+ z||| ≤CY
|||x||| + |||z|||.

If, in addition, Y = R and CY = R+ the map ||| · ||| is called a norm
and it is denoted ‖ · ‖. If the condition (a) is not fulfilled, the map
‖ · ‖ is called a seminorm.

Definition 1.36. Let X be a real linear space equipped with a
norm ‖ · ‖.

(a) The pair (X, ‖ · ‖) is called a real normed space (a real normed
space is a real topological linear space, if the topology is gener-
ated by the metric (x, y) 7→ ‖x− y‖).

(b) A complete real normed space is called a real Banach space.

A significant class of normed spaces are Hilbert spaces.

Definition 1.37. Let X be a real linear space.

(a) A map 〈.,.〉 : X × X → R is called an inner product, if the
following conditions are satisfied (for all x, y, z ∈ X and all
λ ∈ R):

(i) 〈x, x〉 > 0 for x 6= 0X ;

(ii) 〈x, y〉 = 〈y, x〉;
(iii) 〈λx, y〉 = λ〈x, y〉;
(iv) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉.

(b) If the real linear space X equipped with an inner product 〈.,.〉
is complete, the pair (X, 〈.,.〉) is called a Hilbert space (it is a
real normed space with the norm ‖ · ‖ defined by ‖x‖ =

√

〈x, x〉
for all x ∈ X).

Next, we turn our attention to dual spaces and we list some im-
portant definitions.
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Definition 1.38. Let X be a real linear space and let Y be a
nonempty subset of the algebraic dual space X ′.

(a) For every x′ ∈ Y there is a seminorm p : X → R given by

p(x) = |x′(x)| for all x ∈ X.

The coarsest topology on X making all these seminorms con-
tinuous is called the weak topology on X generated by Y and it
is denoted σ(X,Y ) (it is the weakest topology on X in which
all linear functionals which belong to Y are continuous).

(b) If X is equipped with a topology, then the subspace X∗ of all
continuous linear functionals which belong to X ′ is called the
topological dual space of X. For Y = X∗ σ(X,X∗) is simply
called the weak topology on X.

(c) If X is equipped with a topology, then the topology σ(X∗, X)
defined by the functionals

ϕ 7→ ϕ(x) for all x ∈ X and all ϕ ∈ X∗

is called the weak* topology.

A characterization of a separable normed space is given by

Lemma 1.39. A real normed space (X, ‖ · ‖) is separable if and
only if every ball in X∗ is weak*-metrizable.

For a proof of this lemma see, for instance, Holmes [140, p. 72].

Definition 1.40. A real normed space (X, ‖·‖) is called reflexive,
if the canonical embedding JX : X → X∗∗ defined by

JX(x)(ϕ) = ϕ(x) for all x ∈ X and all ϕ ∈ X∗

is surjective.

Every reflexive real normed space is complete and, therefore, it is
a real Banach space. For the applications the following assertion is
important (see Holmes [140, p. 126/127]).
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Lemma 1.41. A real Banach space (X, ‖ · ‖) is reflexive if and
only if the closed unit ball {x ∈ X | ‖x‖ ≤ 1} is weakly compact.

If in a topological linear space a partial ordering is given addition-
ally, it is important to know the relationships between the topology
and the ordering. First, we present the notion of a normal cone.

Definition 1.42.

(a) Let X be a real linear space with a partial ordering. The finest
locally convex topology on X for which every order interval is
bounded is called the order topology.

(b) Let (X, T ) be a real topological linear space equipped with an
ordering cone C. The convex cone C is called normal for the
topology T , if there is a base of neighborhoods of 0X consisting
of sets S with the property

S = (S + C) ∩ (S − C).

For a normed space a normal ordering cone can be characterized
by

Lemma 1.43. Let (X, ‖·‖) be a real normed space with an ordering
cone C. The convex cone C is normal for the norm topology if and
only if there is some λ > 0 so that for all y ∈ C

x ∈ [0X , y] =⇒ λ‖x‖ ≤ ‖y‖.

A proof of this lemma may be found in Peressini [273, p. 64].
Several results on normality are listed in the following lemma (see

Peressini [273] and Borwein [40]).

Lemma 1.44.

(a) In a real Banach space X an ordering cone CX is normal for the
norm topology if and only if the dual cone CX∗ is reproducing.
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(b) In a real locally convex space X an ordering cone CX is normal
for the weak topology σ(X,X∗) if and only if the dual cone CX∗

is reproducing.

(c) In a real locally convex space X a normal ordering cone is also
normal for the weak topology σ(X,X∗).

(d) In a real locally convex space an ordering cone with a bounded
base is normal.

Order intervals play an important role for the definition of a norm
in a real linear space. We list some properties.

Lemma 1.45. Let X be a real linear space with an ordering cone
C.

(a) If C 6= X and cor(C) 6= ∅, then there is a seminorm ‖ · ‖ on X
with the property that for all y ∈ cor(C)

x ∈ cor([0X , y]) =⇒ ‖x‖ < ‖y‖.

(b) If cor(C) 6= ∅ and C is algebraically closed and pointed, then
there is a norm ‖ · ‖ on X with the property that for all y ∈ C

x ∈ [0X , y] =⇒ ‖x‖ ≤ ‖y‖.

(c) If cor(C) 6= ∅ and C has a weakly compact base, then there is a
norm ‖ · ‖ on X with the property that for all y ∈ cor(C)

x ∈ [0X , y] =⇒ ‖x‖ ≤ ‖y‖.

The real normed space (X, ‖ · ‖) is even reflexive.

Proof.

(a) For an arbitrary z ∈ cor(C) we define a seminorm ‖ · ‖ on X
using the Minkowski functional

‖x‖ := inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ [−z, z]

}

for all x ∈ X.
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With Lemma 1.22, (a) and (b) the order interval [−z, z] is
absolutely convex with 0X ∈ cor([−z, z]) and, therefore, the
Minkowski functional is indeed a seminorm (compare Dunford-
Schwartz [91, p. 411]). Next, for an arbitrary y ∈ cor(C) we
obtain

1

‖y‖ cor([0X , y]) = cor
([

0X ,
1

‖y‖ y
])

⊂ cor([−z, z])
= {x ∈ X | ‖x‖ < 1}

resulting in

cor([0X , y]) ⊂ {x ∈ X | ‖x‖ < ‖y‖}.

Then the assertion is obvious.

(b) The proof of this part is similar to that under (a). For an
arbitrary z ∈ cor(C) we know that the Minkowski functional
‖ · ‖ on X given by

‖x‖ := inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ [−z, z]

}

for all x ∈ X

is a seminorm. Since, by Lemma 1.22, (d), the order interval is
even algebraically bounded, ‖·‖ is indeed a norm. With Lemma
1.22, (c) the order interval [−z, z] is also algebraically closed so
that this order interval can be written as

[−z, z] = {x ∈ X | ‖x‖ ≤ 1}.

Then we get for an arbitrary y ∈ C\{0X}
1

‖y‖ [0X , y] =
[

0X ,
1

‖y‖ y
]

⊂ {x ∈ X | ‖x‖ ≤ 1}

implying
[0X , y] ⊂ {x ∈ X | ‖x‖ ≤ ‖y‖}.

This last inclusion is even true for y = 0X . Then the assertion
is evident.
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(c) By Lemma 3.3 (see also Lemma 1.28, (b) under the additional
assumption that C is reproducing) there is a linear functional
x′ which belongs to the quasi-interior of the dual cone of C so
that the base B of C can be written as

B = {x ∈ C | x′(x) = 1}.
Since B is weakly compact, the set

S := {x ∈ C | x′(x) ≤ 1}
is weakly compact as well, and cor(C) 6= ∅ implies cor(S) 6= ∅.
For an arbitrary z ∈ cor(S) we define a norm using the order
interval [−z, z] which is weakly compact. Hence, with the same
arguments as in part (b) we see that ‖·‖ given by the Minkowski
functional is a norm and has the asserted monotonicity property.
By construction the unit ball [−z, z] is weakly compact and,
therefore, the real normed space (X, ‖ · ‖) is even reflexive. 2

Another essential property of an ordering cone is the Daniell prop-
erty.

Definition 1.46.

(a) Let X be a real topological linear space with an ordering cone
C. The convex cone C is called Daniell, if every decreasing net
(i.e. i ≤ j ⇒ xj ≤ xi) which has a lower bound converges to its
infimum.

(b) Let X be a real topological linear space with an ordering cone
C. X is called boundedly order complete, if every bounded de-
creasing net has an infimum.

Conditions ensuring the Daniell property are given by

Lemma 1.47.

(a) Let X be a real topological linear space with an ordering cone C.
If X has compact intervals and C is closed and pointed, then C
is Daniell.
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(b) Let X be a real locally convex linear space with an ordering
cone C. If X is reflexive and C is normal for the weak topology
σ(X,X∗), then C is weakly Daniell.

(c) If X is a real locally convex linear space and C is a complete
ordering cone which has a bounded base, then C is Daniell.

For these results (and even some more) see Borwein [40].

1.4 Some Examples

In this section we discuss some important linear spaces with respect
to their topology and their partial ordering. We restrict our attention
only to some special classes and we do not present these spaces in the
most general form.

Example 1.48.

(a) First, we consider for every p ∈ [1,∞) the sequence space

lp :=
{

(xi)i∈N

∣
∣
∣ xi ∈ R for all i ∈ N and

∞∑

i=1

|xi|p <∞
}

.

The real linear spaces lp are separable Banach spaces with re-
spect to the norm ‖ · ‖lp given by

‖x‖lp :=

(
∞∑

i=1

|xi|p
) 1

p

for all x ∈ lp.

For every p ∈ [1,∞) the so-called natural ordering cone is given
by

Clp := {x ∈ lp | xi ≥ 0 for all i ∈ N}.
This ordering cone has no topological interior; every element of
Clp belongs to the boundary. If we take another ordering cone
Dl1 where

Dl1 := {x ∈ l1 | all partial sums of x are non-negative},
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then Cl1 ⊂ Dl1 and for this ordering cone we have int(Dl1) 6= ∅
(e.g. (1, 0, 0, . . .) ∈ int(Dl1)).
The ordering cone Cl1 is Daniell and normal for the norm topol-
ogy and it has weakly compact order intervals and a bounded
base. The quasi-interior C#

l∗1
of the dual cone is nonempty (for

instance, the functional ϕ given by ϕ(x) =
∞∑

i=1

xi belongs to

C#
l∗1

).

(b) Another well-known sequence space is

l∞ :=
{

(xi)i∈N

∣
∣
∣ xi ∈ R for all i ∈ N and sup

i∈N

{|xi|} <∞
}

.

This is a real (non-separable) Banach space with the norm ‖·‖l∞

given by
‖x‖l∞ := sup

i∈N

{|xi|} for all x ∈ l∞.

The natural ordering cone

Cl∞ := {x ∈ l∞ | xi ≥ 0 for all i ∈ N}

has interior elements (e.g. (1, 1, . . .) ∈ int(Cl∞)). The unit ball
equals the order interval [−(1, 1, . . .), (1, 1, . . .)]. Cl∞ has also a
base but this base is not bounded. The quasi-interior C#

l∗∞
of

the dual cone is nonempty; for instance, the linear functional ϕ

given by ϕ(x) =
∞∑

i=1

xi

2i
is an element of C#

l∗∞
.

Example 1.49. Let Ω be any compact Hausdorff space. The real
linear space of all real-valued functions which are continuous on Ω is
denoted C(Ω). It is a real normed space with

‖f‖C(Ω) := sup
x∈Ω

{|f(x)|} for all f ∈ C(Ω).

The so-called natural ordering cone is given by

CC(Ω) := {f ∈ C(Ω) | f(x) ≥ 0 for all x ∈ Ω}.
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In this case the unit ball coincides with the order interval [−f, f ]
where f ∈ C(Ω) with

f(x) = 1 for all x ∈ Ω.

The ordering cone is closed and normal for the norm topology and it
has a nonempty topological interior. Even int(CC(Ω)∗) is nonempty.
The set of positive Radon measures of total mass 1 on Ω is a base
for the cone CC(Ω)∗ of positive Radon measures on Ω (recall that a
Radon measure on Ω is any continuous linear functional on C(Ω)).

Example 1.50. Let Ω be any compact Hausdorff space. Let
M(Ω) denote the linear space of all bounded Radon measures on Ω
equipped with the norm ‖ · ‖M(Ω) given by

‖µ‖M(Ω) := sup
{∫

Ω

f dµ
∣
∣
∣ f ∈ K(Ω) (linear space of real-

valued continuous functions with compact

support on Ω), |f(x)| ≤ 1 for all x ∈ Ω
}

and partially ordered by the convex cone CM(Ω) of positive Radon
measures on Ω. Then M(Ω) is a Banach space and CM(Ω) is closed
and normal for the norm topology.

Example 1.51.

(a) For a nonempty subset Ω of Rn and any p ∈ [1,∞) Lp(Ω)
denotes the real linear space of all (equivalence classes of) p-th
power Lebesgue-integrable functions f : Ω → R with the norm
‖ · ‖Lp(Ω) given by

‖f‖Lp(Ω) :=
(∫

Ω

|f(x)|p dx
) 1

p

for all f ∈ Lp(Ω).

For every p ∈ [1,∞) the real linear spaces Lp(Ω) are separable
Banach spaces. The so-called natural ordering cone is defined
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by

CLp(Ω) := {f ∈ Lp(Ω) | f(x) ≥ 0 almost everywhere on Ω}.

For every p ∈ [1,∞) the topological interior of the ordering
cone is empty. CLp(Ω) is normal for the norm topology for all
p ∈ [1,∞) and it is weakly Daniell for all p ∈ (1,∞). CL1(Ω)

has a bounded base. The linear space L2(Ω) is a real Hilbert
space and the quasi-interior C#

L2(Ω) of its dual ordering cone is
nonempty.

(b) The space L∞(Ω) is defined as the real linear space of all (equiv-
alence classes of) essentially bounded functions f : Ω → R
(∅ 6= Ω ⊂ Rn) with the norm ‖ · ‖L∞(Ω) given by

‖f‖L∞(Ω) := ess sup
x∈Ω

{|f(x)|} for all f ∈ L∞(Ω).

The ordering cone CL∞(Ω) is defined as

CL∞(Ω) := {f ∈ L∞(Ω) | f(x) ≥ 0 almost everywhere on Ω}.

It has a nonempty topological interior and it is weak* Daniell.

Example 1.52. Let D denote the real linear space of real-valued
functions with compact support in Rn having derivatives of all orders.
If D is equipped with the so-called Schwarz topology (e.g., see Per-
essini [273, p. 66]), then the topological dual space D∗ is the space of
distributions. Let CD denote the ordering cone in D which consists
of all non-negative functions in D. Then the dual cone CD∗ is an
ordering cone for D∗ which is closed and normal.

Notes

Partially ordered linear spaces were investigated already about 70
years ago by Kantorovitch [183], Kakutani [181] and others. For
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a complete historical review of this mathematical area we refer to
Nachbin [250]. Well-known books on partially ordered linear spaces
were written by Nakano [251] (see also Fuchs [105]), Nachbin [250],
Peressini [273], Vulikh [346] and Jameson [176]; convex cones are also
examined by Fuchssteiner-Lusky [106]. But also books on topological
linear spaces present several topics on partial orderings, e.g. Kelley-
Namioka [187], Schaefer [298], Day [85], Holmes [140] and Cristescu
[77]. In vector optimization partially ordered topological linear spaces
are investigated by Hurwicz [142], Vogel [342], Kirsch-Warth-Werner
[188], Penot [272] and in several papers of Borwein (e.g. [40]).

Vectorial norms were first introduced by Kantorovitch [184] who
developed a theory of linear spaces equipped with a vectorial norm.

It should be noted that various notions presented in this book are
used differently by some authors; for instance, “cone” and “quasi-
interior” sometimes have another meaning.



Chapter 2

Maps on Linear Spaces

In this chapter various important classes of maps are considered for
which one obtains interesting results in vector optimization. We espe-
cially consider convex maps and their generalizations and also several
types of differentials. It is the aim of this chapter to present a brief
survey on these maps.

2.1 Convex Maps

The importance of convex maps is based on the fact that the image
set of such a map has useful properties. One of these properties is
also valid for so-called convex-like maps which are investigated in this
section as well.

First, recall the definition of a linear map.

Definition 2.1. Let X and Y be real linear spaces. A map T :
X → Y is called linear, if for all x, y ∈ X and all λ, µ ∈ R

T (λx+ µy) = λT (x) + µT (y).

The set of continuous (bounded) linear maps between two real
normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is a linear space as well and
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it is denoted B(X,Y ). With the norm ‖ · ‖ : B(X,Y ) → R given by

‖T‖ = sup
x6=0X

‖T (x)‖Y

‖x‖X

for all T ∈ B(X,Y )

(B(X,Y ), ‖ · ‖) is even a normed space.
A linear map defines also a corresponding map as it may be seen

in

Definition 2.2. Let X and Y be real separated locally convex
linear spaces, and let T : X → Y be a linear map. A map T ∗ : Y ∗ →
X∗ given by

T ∗(y∗)(x) = y∗(T (x)) for all x ∈ X and all y∗ ∈ Y ∗

is called the adjoint (or conjugate and dual, respectively) of T .

It is obvious that the adjoint T ∗ is also a linear map. One can show
that it is uniquely determined. Adjoints are useful for the solution of
linear functional equations.

Theorem 2.3. Let X and Y be real separated locally convex linear
spaces, and let the elements x ∈ X, x∗ ∈ X∗, y ∈ Y and y∗ ∈ Y ∗ be
given.

(a) If there is a linear map T : X → Y with y = T (x) and x∗ =
T ∗(y∗), then y∗(y) = x∗(x).

(b) If x 6= 0X , y∗ 6= 0Y ∗ and y∗(y) = x∗(x), then there is a continu-
ous linear map T : X → Y with y = T (x) and x∗ = T ∗(y∗).

Proof.

(a) Let a linear map T : X → Y with y = T (x) and x∗ = T ∗(y∗)
be given. Then we get

y∗(y) = y∗(T (x)) = T ∗(y∗)(x) = x∗(x)

which completes the proof.
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(b) Assume that for x 6= 0X and y∗ 6= 0Y ∗ the functional equation

y∗(y) = x∗(x) (2.1)

is satisfied. In the following we consider the two cases x∗(x) 6= 0
and x∗(x) = 0.

(i) First assume that x∗(x) 6= 0. Then we define a map T :
X → Y by

T (z) =
x∗(z)

x∗(x)
y for all z ∈ X. (2.2)

Evidently, T is linear and continuous. From (2.1) and (2.2)
we conclude T (x) = y and

y∗(T (z)) =
x∗(z)

x∗(x)
y∗(y) = x∗(z) for all z ∈ X

which means x∗ = T ∗(y∗).

(ii) Now assume that x∗(x) = 0. Because of y∗ 6= 0Y ∗ there
is a ỹ 6= 0Y with y∗(ỹ) = 1. Since in a separated locally
convex space X∗ separates elements of X, x 6= 0X implies
the existence of some x̃∗ ∈ X∗ with x̃∗(x) = 1. Then we
define the map T : X → Y as follows

T (z) = x∗(z)ỹ + x̃∗(z)y for all z ∈ X. (2.3)

It is obvious that T is a continuous linear map. With (2.3)
we conclude

T (x) = x∗(x)ỹ + x̃∗(x)y = y.

Furthermore, we obtain with (2.3) and (2.1)

y∗(T (z)) = x∗(z)y∗(ỹ) + x̃∗(z)y∗(y) = x∗(z) for all z ∈ X

which implies x∗ = T ∗(y∗). 2
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The class of linear maps is contained in the class of convex maps.

Definition 2.4. Let X and Y be real linear spaces, CY be a
convex cone in Y , and let S be a nonempty convex subset of X. A
map f : S → Y is called convex (or CY -convex), if for all x, y ∈ S and
all λ ∈ [0, 1]

λf(x) + (1 − λ)f(y) − f(λx+ (1 − λ)y) ∈ CY (2.4)

(see Fig. 2.1 and 2.2). A map f : S → Y is called concave (or

........
........
....

....................

....................

....................


...........................

.....................
................

...............
.............
..............
.............
...........
...........
..........
..........
.........
..........
.........
..........
........
........
........
.........
.......
........
........
........
........
........
.......
..

.................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ..................

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

.

......

. f
•

•
•

•

x y

f(x)

f(y)

λx+ (1 − λ)y

f(λx+ (1 − λ)y)

λf(x) + (1 − λ)f(y)

Figure 2.1: Convex functional.

CY -concave), if −f is convex (see Fig. 2.3).

If ≤CY
is the partial ordering in Y induced by CY , then the con-

dition (2.4) can also be written as

f(λx+ (1 − λ)y) ≤CY
λf(x) + (1 − λ)f(y).

If f is a linear map, then f and −f are convex maps.

Definition 2.5. Let X and Y be real linear spaces, let CY be a
convex cone in Y , let S be a nonempty subset of X, and let f : S → Y
be a given map. The set

epi(f) := {(x, y) | x ∈ S, y ∈ {(f(x)} + CY } (2.5)
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Figure 2.3: Concave functional.

is called the epigraph of f (see Fig. 2.4).

Notice that the epigraph in (2.5) can also be written as

epi(f) = {(x, y) | x ∈ S, f(x) ≤CY
y}.

It turns out that a convex map can be characterized by its epi-
graph.

Theorem 2.6. Let X and Y be real linear spaces, let CY be a
convex cone in Y , let S be a nonempty subset of X and let f : S → Y
be a given map. Then f is convex if and only if epi(f) is a convex
set.
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Figure 2.4: Epigraph of a functional.

Proof.

(a) Let f be a convex map (then S is a convex set). For arbitrary
z1 = (x1, y1), z2 = (x2, y2) ∈ epi(f) and λ ∈ [0, 1] we obtain
λx1 + (1 − λ)x2 ∈ S and

λy1 + (1 − λ)y2 ∈ λ({f(x1)} + CY ) + (1 − λ)({f(x2)} + CY )

= {λf(x1) + (1 − λ)f(x2)} + CY

⊂ {f(λx1 + (1 − λ)x2)} + CY .

Consequently, we have λz1 +(1−λ)z2 ∈ epi(f). Thus, epi(f) is
a convex set.

(b) If epi(f) is a convex set, then S is convex as well. For arbi-
trary x1, x2 ∈ S and λ ∈ [0, 1] we obtain λ(x1, f(x1)) + (1 −
λ)(x2, f(x2)) ∈ epi(f) and

f(λx1 + (1 − λ)x2) ≤CY
λf(x1) + (1 − λ)f(x2).

Hence, f is a convex map. 2

Next, we list some other properties of convex maps.

Lemma 2.7. Let X, Y and Z be real linear spaces, let CY and
CZ be convex cones in Y and Z, respectively, and let S be a nonempty
convex subset of X.
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(a) If g : S → Y is an affine linear map (i.e. there is a b ∈ Y and
a linear map L : S → Y with g(x) = b + L(x) for all x ∈ S)
and f : Y → Z is a convex map, then the composition f ◦ g is
a convex map.

(b) If g : S → Y is a convex map and f : Y → Z is a convex and
monotonically increasing map (that is: y1 ≤CY

y2 ⇒ f(y1) ≤CZ

f(y2)), then the composition f ◦ g is a convex map.

Proof. Take arbitrary x1, x2 ∈ S and λ ∈ [0, 1]. Then we get for
part (a)

λ(f ◦ g)(x1) + (1 − λ)(f ◦ g)(x2) − (f ◦ g)(λx1 + (1 − λ)x2)

= λf(g(x1)) + (1 − λ)f(g(x2)) − f(g(λx1 + (1 − λ)x2))

= λf(g(x1)) + (1 − λ)f(g(x2)) − f(λg(x1) + (1 − λ)g(x2))

∈ CZ .

For the proof of part (b) we obtain with the convexity of g

λg(x1) + (1 − λ)g(x2) − g(λx1 + (1 − λ)x2) ∈ CY

and with the monotonicity of f

f(λg(x1) + (1 − λ)g(x2)) − f(g(λx1 + (1 − λ)x2)) ∈ CZ .

Since f is also convex, we get

λf(g(x1)) + (1 − λ)f(g(x2)) − f(λg(x1) + (1 − λ)g(x2)) ∈ CZ .

Consequently, we conclude

λf(g(x1)) + (1 − λ)f(g(x2)) − f(g(λx1 + (1 − λ)x2)) ∈ CZ

and

λ(f ◦ g)(x1) + (1 − λ)(f ◦ g)(x2) − (f ◦ g)(λx1 + (1 − λ)x2) ∈ CZ .

2
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In vector optimization one is often merely concerned with the
convexity of the set f(S)+CY instead of epi(f). In this case the notion
of convexity of f can be relaxed because the convexity of f(S) + CY

depends only on a property of the convex hull of f(S).

Lemma 2.8. Let X and Y be real linear spaces, let CY be a convex
cone in Y , let S be a nonempty subset of X and let f : S → Y be a
given map. Then the set f(S) + CY is convex if and only if

co(f(S)) ⊂ f(S) + CY . (2.6)

Proof.

(a) If the set f(S) + CY is convex, then with Remark 1.7

co(f(S)) ⊂ co(f(S)) + CY = co(f(S) + CY ) = f(S) + CY .

(b) If the inclusion (2.6) is true, then

co(f(S) + CY ) = co(f(S)) + CY ⊂ f(S) + CY

which implies that the set f(S) + CY is convex. 2

The inclusion (2.6) is used for the definition of convex-like maps.

Definition 2.9. Let X and Y be real linear spaces, let CY be a
convex cone, let S be a nonempty subset of X and let f : S → Y be
a given map. Then f is called convex-like, if for every x, y ∈ S and
every λ ∈ [0, 1] there is an s ∈ S with

λf(x) + (1 − λ)f(y) − f(s) ∈ CY

(or: f(s) ≤CY
λf(x) + (1 − λ)f(y)).

Example 2.10.

(a) Obviously, every convex map is convex-like.
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(b) Let the map f : [π,∞) → R2 be given by

f(x) = (x, sin x) for all x ∈ [π,∞)

where R2 is partially ordered in the componentwise sense. The
map f is convex-like but it is not convex.

Example 2.10, (b) shows that the class of convex-like maps is even
much larger than the class of convex maps. With Lemma 2.8 we get
immediately the following

Theorem 2.11. Let X and Y be real linear spaces, let CY be a
convex cone in Y , let S be a nonempty set and let f : S → Y be
a given map. Then the map f is convex-like if and only if the set
f(S) + CY is convex (see Fig. 2.5).

aaaa

#
#

##

f(S) f(S) + CY

aaaa
#

#
##

s CY0Y

Figure 2.5: Convex-like map f .

2.2 Differentiable Maps

In the context with optimality conditions we have to work with gen-
eralized derivatives of maps. Therefore, we discuss various differen-
tiability notions and we investigate the relationships among them.
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Definition 2.12. Let X be a real linear space, let Y be a real
topological linear space, let S be a nonempty subset of X, and let
f : S → Y be a given map.

(a) If for two elements x̄ ∈ S and h ∈ X the limit

f ′(x̄)(h) := lim
λ→0+

1

λ
(f(x̄+ λh) − f(x̄))

exists, then f ′(x̄)(h) is called the directional derivative of f at
x̄ in the direction h. If this limit exists for all h ∈ X, then f is
called directionally differentiable at x̄ (see Fig. 2.6).
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Figure 2.6: Directionally differentiable function.

(b) If for some x̄ ∈ S and all h ∈ X the limit

f ′(x̄)(h) := lim
λ→0

1

λ
(f(x̄+ λh) − f(x̄))

exists and if f ′(x̄) is a continuous linear map from X to Y ,
then f ′(x̄) is called the Gâteaux derivative of f at x̄ and f is
called Gâteaux differentiable at x̄.
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Notice that for the limit defining the directional and Gâteaux
derivative one considers arbitrary nets (λi)i∈N converging to 0, λi > 0
for all i ∈ N in part (a), with the additional property that x̄ + λih
belongs to the domain S for all i ∈ N. This restriction of the nets
converging to 0 can be dropped, for instance, if S equals the whole
space X.

Example 2.13. For the function f : R2 → R with

f(x1, x2) =

{
x2

1(1 + 1
x2

) if x2 6= 0

0 if x2 = 0

}

for all (x1, x2) ∈ R2

which is not continuous at 0R2 , we obtain the directional derivative

f ′(0R2)(h1, h2) = lim
λ→0+

1

λ
f(λ(h1, h2)) =

{
h2
1

h2
if h2 6= 0

0 if h2 = 0

}

in the direction (h1, h2) ∈ R2. Notice that f ′(0R2) is neither continu-
ous nor linear.

Sometimes it is very useful to have a derivative notion which does
not require any topology in Y . A possible generalization of a direc-
tional derivative which will be used in the second part of this book is
given by

Definition 2.14. Let X and Y be real linear spaces, let S be a
nonempty subset of X and let T be a nonempty subset of Y . More-
over, let a map f : S → Y and an element x̄ ∈ S be given. A map
f ′(x̄) : S − {x̄} → Y is called a directional variation of f at x̄ with
respect to T , if the following holds: Whenever there is an element
x ∈ S with x 6= x̄ and f ′(x̄)(x− x̄) ∈ T , then there is a λ̄ > 0 with

x̄+ λ(x− x̄) ∈ S for all λ ∈ (0, λ̄]

and
1

λ
(f(x̄+ λ(x− x̄)) − f(x̄)) ∈ T for all λ ∈ (0, λ̄].



48 Chapter 2. Maps on Linear Spaces

Example 2.15. Let X be a real linear space, let Y be a real topo-
logical linear space, and let S be a nonempty subset of X. Further,
let f : S → Y be a given map, and let x, x̄ ∈ S with x 6= x̄ be fixed.
Assume that there is a λ̄ > 0 with

x̄+ λ(x− x̄) ∈ S for all λ ∈ (0, λ̄].

(a) If f ′(x̄) is the directional derivative of f at x̄ in the direction
x− x̄, then f ′(x̄) is a directional variation of f at x̄ with respect
to all nonempty open subsets of Y .

(b) Let f be an affine linear map, i.e. there is a b ∈ Y and a linear
map L : S → Y with

f(x) = b+ L(x) for all x ∈ S.

If for some nonempty set T ⊂ Y L(x− x̄) ∈ T , then

1

λ
(f(x̄+ λ(x− x̄)) − f(x̄)) = L(x− x̄) ∈ T for all λ ∈ (0, λ̄].

Consequently, L is the directional variation of f at x̄ with re-
spect to all nonempty sets T ⊂ Y .

A less general but more satisfying derivative notion may be ob-
tained in normed spaces.

Definition 2.16. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let S be a nonempty open subset of X, and let f : S → Y be
a given map. Furthermore let an element x̄ ∈ S be given. If there is
a continuous linear map f ′(x̄) : X → Y with the property

lim
‖h‖X→0

‖f(x̄+ h) − f(x̄) − f ′(x̄)(h)‖Y

‖h‖X

= 0,

then f ′(x̄) is called the Fréchet derivative of f at x̄ and f is called
Fréchet differentiable at x̄.

According to this definition we obtain for Fréchet derivatives with
the notations used above

f(x̄+ h) = f(x̄) + f ′(x̄)(h) + o(‖h‖X)
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where the expression o(‖h‖X) of this Taylor series has the property

lim
‖h‖X→0

o(‖h‖X)

‖h‖X

= lim
‖h‖X→0

f(x̄+ h) − f(x̄) − f ′(x̄)(h)

‖h‖X

= 0Y .

With the next three assertions we present some known results on
Fréchet differentiability.

Lemma 2.17. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real normed spaces,
let S be a nonempty open subset of X, and let f : S → Y be a given
map. If the Fréchet derivative of f at some x̄ ∈ S exists, then the
Gâteaux derivative of f at x̄ exists as well and both are equal.

Proof. Let f ′(x̄) denote the Fréchet derivative of f at x̄. Then
we have

lim
λ→0

‖f(x̄+ λh) − f(x̄) − f ′(x̄)(λh)‖Y

‖λh‖X

= 0 for all h ∈ X\{0X}

implying

lim
λ→0

1

|λ|‖f(x̄+ λh) − f(x̄) − f ′(x̄)(λh)‖Y = 0 for all h ∈ X\{0X}.

Because of the linearity of f ′(x̄) we obtain

lim
λ→0

1

λ
[f(x̄+ λh) − f(x̄)] = f ′(x̄)(h) for all h ∈ X.

2

Corollary 2.18. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let S be a nonempty open subset of X, and let f : S → Y be
a given map. If f is Fréchet differentiable at some x̄ ∈ S, then the
Fréchet derivative is uniquely determined.

Proof. With Lemma 2.17 the Fréchet derivative coincides with
the Gâteaux derivative. Since the Gâteaux derivative is as a limit
uniquely determined, the Fréchet derivative is also uniquely deter-
mined. 2
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The following lemma says that Fréchet differentiability implies
continuity as well.

Lemma 2.19. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real normed spaces,
let S be a nonempty open subset of X, and let f : S → Y be a given
map. If f is Fréchet differentiable at some x̄ ∈ S, then f is continuous
at x̄.

Proof. To a sufficiently small ε > 0 there is a ball around x̄ so
that for all x̄+ h of this ball

‖f(x̄+ h) − f(x̄) − f ′(x̄)(h)‖Y ≤ ε‖h‖X .

Then we conclude for some α > 0

‖f(x̄+ h) − f(x̄)‖Y

= ‖f(x̄+ h) − f(x̄) − f ′(x̄)(h) + f ′(x̄)(h)‖Y

≤ ‖f(x̄+ h) − f(x̄) − f ′(x̄)(h)‖Y + ‖f ′(x̄)(h)‖Y

≤ ε‖h‖X + α‖h‖X

= (ε+ α)‖h‖X .

Consequently f is continuous at x̄. 2

The following theorem gives a characterization of a convex Fréchet
differentiable map.

Theorem 2.20. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let S be a nonempty open convex subset of X, let CY be a
closed convex cone in Y , and let a map f : S → Y be given which is
Fréchet differentiable at every x ∈ S. Then the map f is convex if
and only if

f(y) + f ′(y)(x− y) ≤CY
f(x) for all x, y ∈ S

(see Fig. 2.7).
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Figure 2.7: Illustration of the result of Thm. 2.20.

Proof.

(a) First, we assume that the map f is convex. Then it follows for
all x, y ∈ S and all λ ∈ (0, 1]

λf(x) + (1 − λ)f(y) − f(λx+ (1 − λ)y) ∈ CY

and

f(x) − f(y) − 1

λ
(f(y + λ(x− y)) − f(y)) ∈ CY .

Since f is assumed to be Fréchet differentiable at y and CY is
closed, we conclude

f(x) − f(y) − f ′(y)(x− y) ∈ CY

or alternatively

f(y) + f ′(y)(x− y) ≤CY
f(x).

(b) Next, we assume that

f(y) + f ′(y)(x− y) ≤CY
f(x) for all x, y ∈ S.

S is convex and, therefore, we obtain for all x, y ∈ S and all
λ ∈ [0, 1]

f(x)−f(λx+(1−λ)y)−f ′(λx+(1−λ)y)((1−λ)(x−y)) ∈ CY
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and

f(y) − f(λx+ (1 − λ)y) − f ′(λx+ (1 − λ)y)(−λ(x− y)) ∈ CY .

Since CY is a convex cone and Fréchet derivatives are linear
maps, we get

λf(x) − λf(λx+ (1 − λ)y)
−λ(1 − λ)f ′(λx+ (1 − λ)y)(x− y)
+(1 − λ)f(y) − (1 − λ)f(λx+ (1 − λ)y)
+(1 − λ)λf ′(λx+ (1 − λ)y)(x− y)
∈ CY

which implies

λf(x) + (1 − λ)f(y) − f(λx+ (1 − λ)y) ∈ CY .

Hence, f is a convex map.

2

The characterization of convex Fréchet differentiable maps pre-
sented in Theorem 2.20 is very helpful for the investigation of op-
timality conditions in vector optimization. This result leads to a
generalization of the (Fréchet) derivative for convex maps which are
not (Fréchet) differentiable.

Definition 2.21. Let X and Y be real topological linear spaces,
let CY be a convex cone in Y , and let f : X → Y be a given map.
For an arbitrary x̄ ∈ X the set

∂f(x̄) := {T ∈ B(X,Y ) | f(x̄+h)−f(x̄)−T (h) ∈ CY for all h ∈ X}
(where B(X,Y ) denotes the linear space of the continuous linear

maps from X to Y ) is called the subdifferential of f at x̄. Every
T ∈ ∂f(x̄) is called a subgradient of f at x̄ (see Fig. 2.8).

Example 2.22. Let X and Y be real topological linear spaces,
let CY be a pointed convex cone in Y , and let ||| · ||| : X → Y be a
vectorial norm. Then we have for every x̄ ∈ X

∂|||x̄||| = {T ∈B(X,Y ) | T (x̄) = |||x̄||| and T (x)≤CY
|||x||| for all x∈X}.
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y = f(x̄) + l1(x− x̄)

y = f(x̄) + l2(x− x̄)
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Figure 2.8: Subgradients of a convex functional.

Proof.

(a) First, choose an arbitrary T ∈ B(X,Y ) with T (x̄) = |||x̄||| and

|||x||| − T (x) ∈ CY for all x ∈ X.

Then we obtain for all h ∈ X

|||x̄+ h||| − |||x̄||| − T (h) = |||x̄+ h||| − T (x̄+ h) − |||x̄||| + T (x̄)

∈ CY

which implies T ∈ ∂|||x̄|||.
(b) Next, assume that any T ∈ ∂|||x̄||| is given. Then we get

|||x̄||| − T (x̄) = |||x̄+ x̄||| − |||x̄||| − T (x̄) ∈ CY

and
−|||x̄||| + T (x̄) = |||x̄− x̄||| − |||x̄||| − T (−x̄) ∈ CY .

Since CY is pointed, we conclude

|||x̄||| − T (x̄) ∈ (−CY ) ∩ CY = {0Y }
which means T (x̄) = |||x̄|||. Finally, we obtain

|||x||| − T (x) ∈ {|||x+ x̄||| − |||x̄||| − T (x)} + CY

⊂ CY + CY = CY for all x ∈ X.

This completes the proof. 2
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The next example is a special case of Example 2.22.

Example 2.23. Let (X, ‖ · ‖X) be a real normed space. Then we
have for every x̄ ∈ X

∂‖x̄‖X =

{
{x∗ ∈ X∗ | x∗(x̄) = ‖x̄‖X and ‖x∗‖X∗ = 1} if x̄ 6= 0X

{x∗ ∈ X∗ | ‖x∗‖X∗ ≤ 1} if x̄ = 0X

}

.

Proof. The assertion follows directly from the preceding example
for Y = R and CY = R+, if we notice that

‖x∗‖X∗ ≤ 1 ⇐⇒ x∗(x) ≤ ‖x‖X for all x ∈ X.

2

As a result of Example 2.23 the subdifferential of the norm at 0X

in a real normed space X coincides with the closed unit ball of the
dual space.

With the following sequence of assertions it can be shown under
appropriate assumptions that the subdifferential of a vectorial norm
can be used in order to characterize the directional derivative of such
a norm.

Lemma 2.24. Let X be a real linear space, let Y be a real topolog-
ical linear space, let CY be a convex cone in Y which is Daniell, and
let ||| · ||| : X → Y be a vectorial norm. Then the directional derivative
of the vectorial norm exists at every x̄ ∈ X and in every direction
h ∈ X.

Proof. Let f : X → Y be an arbitrary convex map with f(0X) =
0Y . Then we obtain for all x ∈ X and all α, β ∈ R with 0 < α ≤ β

α

β
f(βx)−f(αx) =

α

β
f(βx)+

β − α

β
f(0X)−f

(α

β
βx+

β − α

β
0X

)

∈ CY

resulting in
1

β
f(βx) − 1

α
f(αx) ∈ CY .
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If we take especially

f(x) = |||x̄+ x||| − |||x̄||| for all x ∈ X,

then f is convex and f(0X) = 0Y . Hence, the above result applies to
this special f , that is

1

β
(|||x̄+ βx||| − |||x̄|||) − 1

α
(|||x̄+ αx||| − |||x̄|||) ∈ CY

for all x ∈ X and all real numbers α, β with 0 < α ≤ β.
(2.7)

Next, we show that the difference quotient which appears in the def-
inition of the directional derivative is bounded. Since the vectorial
norm is a convex map, we get for all x ∈ X and all λ > 0

1

1 + λ
|||x̄+ λx||| +

λ

1 + λ
|||x̄− x||| − |||x̄|||

=
1

1 + λ
|||x̄+ λx||| +

λ

1 + λ
|||x̄− x|||

−
∣
∣
∣

∣
∣
∣

∣
∣
∣

1

1 + λ
(x̄+ λx) +

λ

1 + λ
(x̄− x)

∣
∣
∣

∣
∣
∣

∣
∣
∣

∈ CY

implying

1

λ
(|||x̄+ λx||| − |||x̄|||) ∈ {|||x̄||| − |||x̄− x|||} + CY .

This condition means that |||x̄||| − |||x̄− x||| is, for every λ > 0, a lower

bound of the difference quotient
1

λ
(|||x̄ + λx||| − |||x̄|||). Since CY is

assumed to be Daniell, we conclude with the condition (2.7) and the
boundedness property that the directional derivative of the vectorial
norm exists at every x̄ ∈ X and in every direction h ∈ X. 2

Lemma 2.25. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real reflexive Banach
spaces, and let CY be a closed convex cone in Y which is Daniell and
has a weakly compact base. If ||| · ||| : X → Y is a vectorial norm which
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is continuous at an x̄ ∈ X, then we have for the directional derivative
at x̄ ∈ X in every direction h ∈ X

T (h) ≤CY
|||x̄|||′(h) for all T ∈ ∂|||x̄|||.

Proof. Notice that with Lemma 2.24 the directional derivative
|||x̄|||′(h) exists for all x̄, h ∈ X. By a result of Zowe [370] the subdif-
ferential ∂|||x̄||| is nonempty. For every x̄, h ∈ X we get

|||x̄+ λh||| − |||x̄||| ∈ {T (x̄+ λh) − T (x̄)} + CY

= {λT (h)} + CY for all λ > 0 and all T ∈ ∂|||x̄|||.

Consequently, we have

1

λ
(|||x̄+ λh||| − |||x̄|||) ∈ {T (h)} + CY for all λ > 0 and all T ∈ ∂|||x̄|||.

Since CY is closed, we conclude

|||x̄|||′(h) ∈ {T (h)} + CY

which leads to the assertion. 2

For the announced characterization result of the directional deriva-
tive of a vectorial norm we need a special lemma on subdifferentials.

Lemma 2.26. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real reflexive Banach
spaces, and let CY be a convex cone in Y with a weakly compact base.
If f : X → Y is a convex map which is continuous at some x̄ ∈ X,
then

t ◦ ∂f(x̄) = ∂(t ◦ f)(x̄) for all t ∈ CY ∗ .

A proof of this lemma may be found in a paper of Zowe [370] even
in a more general form (compare also Valadier [336] and Borwein [40,
p. 437]).

Theorem 2.27. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real reflexive
Banach spaces, and let CY be a closed convex cone in Y which is
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Daniell and has a weakly compact base. If ||| · ||| : X → Y is a vectorial
norm which is continuous at an x̄ ∈ X, then the directional derivative
of f at x̄ in every direction h is given by

|||x̄|||′(h) = max {T (h) | T ∈ B(X,Y ), T (x̄) = |||x̄|||
and |||x||| − T (x) ∈ CY for all x ∈ X}

which means that there is a T̄ ∈ B(X,Y ) with T̄ (x̄) = |||x̄||| and

|||x||| − T̄ (x) ∈ CY for all x ∈ X

so that
|||x̄|||′(h) = T̄ (h)

and

|||x̄|||′(h) ∈ {T (h)} + CY for all T ∈ B(X,Y ) with T (x̄) = |||x̄|||
and |||x||| − T (x) ∈ CY for all x ∈ X.

Proof. Take any direction h ∈ X. From Example 2.22 and
Lemma 2.25 we obtain immediately

|||x̄|||′(h) ∈ {T (h)} + CY for all T ∈ B(X,Y ) with T (x̄) = |||x̄|||
and |||x||| − T (x) ∈ CY for all x ∈ X.

Therefore, we have only to show that there is a T̄ ∈ ∂|||x̄||| with
|||x̄|||′(h) = T̄ (h).

With Corollary 3.19 (which will be stated later) there is a continuous
linear functional t ∈ C#

Y ∗ . Then we consider the functional f :=
t ◦ ||| · ||| : X → R . f is continuous at x̄ and with Lemma 2.7, (b) it is
even convex. With Lemma 2.25 we conclude

f ′(x̄)(h) ≥ sup {x∗(h) | x∗ ∈ ∂f(x̄)},

and since ∂f(x̄) is weak∗-compact in X∗, this supremum is actually
attained, that is

f ′(x̄)(h) ≥ max {x∗(h) | x∗ ∈ ∂f(x̄)}.
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In order to prove the equality we assume that there is an α ∈ R with

f ′(x̄)(h) > α > max {x∗(h) | x∗ ∈ ∂f(x̄)}. (2.8)

If S denotes the linear hull of {h}, we define a linear functional l :
S → R by

l(λh) = λα for all λ ∈ R.

Then we get

l(λh) ≤ λf ′(x̄)(h) = f ′(x̄)(λh) for all λ ∈ R.

Since f ′(x̄) is sublinear, there is a continuous extension l̄ of l on X
with

l̄(x) ≤ f ′(x̄)(x) for all x ∈ X

which implies l̄ ∈ ∂f(x̄). But with l̄(h) = α we arrive at a contradic-
tion to (2.8).

Summarizing these results we obtain

f ′(x̄)(h) = max {x∗(h) | x∗ ∈ ∂f(x̄)}.
Consequently, there is an x∗ ∈ ∂f(x̄) with

f ′(x̄)(h) = x∗(h).

With Lemma 2.26 there is a T̄ ∈ ∂|||x̄||| with x∗ = t ◦ T̄ and we get

t ◦ |||x̄|||′(h) = (t ◦ |||x̄|||)′(h) = t ◦ T̄ (h). (2.9)

Assume that |||x̄|||′(h) 6= T̄ (h). Then we get from Lemma 2.25

|||x̄|||′(h) − T̄ (h) ∈ CY \{0Y }
and, therefore,

t ◦ |||x̄|||′(h) − t ◦ T̄ (h) > 0

which contradicts (2.9). Hence, |||x̄|||′(h) = T̄ (h) and this completes
the proof. 2

It should be noted that the assumptions of Theorem 2.27 are very
restrictive (they are fulfilled, for instance, for Y = Rn and CY = Rn

+).
The assertion remains valid under even weaker conditions and for
these investigations we refer to Borwein [40, p. 437].
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Notes

A lot of material on convex functions may be found in the books
of Rockafellar [284] and Roberts-Varberg [282]. For investigations
on convex relations in analysis we refer to a paper of Borwein [37].
Convex-like maps were first introduced by Vogel [341, p. 165] who
also formulated Theorem 2.11. In connection with a minisup theorem
Aubin [10, § 13.3] presented a similar statement like Theorem 2.11
for so-called γ-convex functionals.

A survey on differentials in nonlinear functional analysis may be
found in the extensive paper of Nashed [255]. The so-called directional
variation was introduced by Kirsch-Warth-Werner [188, p. 33] in a
more general form; they called it “B-Variation”. The differentiability
concept used in this book is based on a paper of Jahn-Sachs [172]. For
a further generalized differentiability notion compare also the paper of
Sachs [293]. The results on Fréchet differentiation can also be found
in the books of Luenberger [238] and Jahn [164]. Subdifferentials
were introduced by Moreaux and Rockafellar. We restrict ourselves
to refer to the lecture notes of Rockafellar [286]. The books of Holmes
[140], Ekeland-Temam [101] and Ioffe-Tihomirov [144] also present an
interesting overview on subdifferentials and their use in optimization.
Theorems on subdifferentials in partially ordered linear spaces may be
found in the papers of Valadier [336], Zowe [370], Elster-Nehse [102],
Penot [271] and Borwein [40].

Much of the work on vectorial norms described in the second sec-
tion is based on various results of Holmes [140] and Borwein [40].



Chapter 3

Some Fundamental
Theorems

For the investigation of vector optimization problems we need various
fundamental theorems of convex analysis which are presented in this
section. First, we formulate Zorn’s lemma and the Hahn-Banach the-
orem and, as a consequence, we examine several types of separation
theorems. Moreover, we discuss a James theorem on the characteri-
zation of weakly compact sets and we study two Krein-Rutman theo-
rems on the extension of positive linear functionals and the existence
of strictly positive linear functionals. Finally, we prove a Ljusternik
theorem on certain tangent cones.

3.1 Zorn’s Lemma and the Hahn-

Banach Theorem

For the presentation of Zorn’s lemma we need some useful definitions.

Definition 3.1. Let S be an arbitrary nonempty set which is
partially ordered by a reflexive and transitive binary relation ≤ (since
S is not assumed to have a linear structure, we do not require the
conditions (iii) and (iv) in Definition 1.16, (b) to be satisfied).

(a) The set S is called totally ordered, if for all x, y ∈ S either x ≤ y
or y ≤ x is true.
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(b) Let T be a nonempty subset of S. An element x̄ ∈ S is called
an upper bound of T , if

x ≤ x̄ for all x ∈ T.

x̄ ∈ S is called a lower bound of T , if

x̄ ≤ x for all x ∈ T.

(c) An element x̄ ∈ S is called a maximal element of S, if

x ∈ S, x̄ ≤ x =⇒ x ≤ x̄.

x̄ ∈ S is called a minimal element of S, if

x ∈ S, x ≤ x̄ =⇒ x̄ ≤ x.

(d) The set S is called inductively ordered from above (from below),
if every totally ordered subset of S has an upper (lower) bound.

With these notions we are able to formulate Zorn’s lemma.

Lemma 3.2. Let S be a nonempty set which is partially ordered by
a reflexive and transitive binary relation. If S is inductively ordered
from above (from below), then S has at least one maximal (minimal)
element.

Zorn’s lemma may be derived from the axiom of choice. A first
application of Zorn’s lemma leads to a characterization of a base of
a cone. This result refines Lemma 1.28. For the proof of the next
lemma recall that a subset L of a real linear space is called a linear
manifold, if

x, y ∈ L, λ ∈ R =⇒ λx+ (1 − λ)y ∈ L.

Lemma 3.3. Let CX be a nontrivial convex cone in a real linear
space X. A subset B of the ordering cone is a base for CX if and only
if there is a linear functional x′ ∈ C#

X′ with

B = {x ∈ CX | x′(x) = 1}.
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Proof. The “if” part of the assertion follows from Lemma 1.28,
(a). Therefore, we assume that B is a base for CX . Then we consider
the set S of all linear manifolds in X containing B but not 0X . The
set S is partially ordered with respect to the set theoretical inclusion.
By an application of Zorn’s lemma there is a maximal linear manifold
L̄ in S. And this maximal linear manifold L̄ is a hyperplane, that is,
there is a linear functional x′ ∈ X ′ with

L̄ = {x ∈ X | x′(x) = 1}.

Then we conclude
x′(x) = 1 for all x ∈ B

which implies x′ ∈ C#
X′ , and moreover, we obtain

B = {x ∈ CX | x′(x) = 1}.

2

The essential difference between Lemma 3.3 and Lemma 1.28 is
that we do not need the assumption that the ordering cone CX is
reproducing.

Another important application of Zorn’s lemma leads to the fa-
mous Hahn-Banach theorem.

Definition 3.4. Let X and Y be real linear spaces, and let CY

be a convex cone in Y . A map f : X → Y is called sublinear, if (for
all x, y ∈ X and all λ ≥ 0)

(a) f(λx) = λf(x),

(b) f(x+ y) ≤CY
f(x) + f(y).

In the case of Y = R and CY = R+ we speak of a sublinear
functional for which the condition (b) reads as

f(x+ y) ≤ f(x) + f(y).

For the proof of the Hahn-Banach theorem we need a couple of
lemmas.



64 Chapter 3. Some Fundamental Theorems

Lemma 3.5. The set S of all sublinear functionals on a real linear
space X is inductively ordered from below (with respect to a pointwise
ordering).

Proof. Let {fi}i∈I be a totally ordered subset of S. If we restrict
the functionals fi to the one dimensional subspaces of X, we conclude

f(x) := inf
i∈I

fi(x) > −∞ for all x.

As an infimum of sublinear functionals the functional f : X → R is
sublinear and a lower bound of the fi. 2

Lemma 3.6. Let S be a nonempty subset of a real linear space
X. Let g : X → R be a sublinear functional, and let h : S → R be a
given functional with

h(x) ≤ g(x) for all x ∈ S.

Moreover, let f : X → R denote a functional given by

f(x) = inf
y∈S
λ>0

(g(x+ λy) − λh(y)) for all x ∈ X.

Then the following holds:

(a) The functional f satisfies the inequality

f(x) ≤ g(x) for all x ∈ X. (3.1)

(b) For a linear functional l ∈ X ′ the conditions

l(x) ≤ g(x) for all x ∈ X. (3.2)

and
h(x) ≤ l(x) for all x ∈ S (3.3)

are equivalent to the inequality

l(x) ≤ f(x) for all x ∈ X. (3.4)
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(c) If the set S is convex and h is concave, then f is a sublinear
functional.

Proof. First, we remark that the functional f is well-defined.
For every x ∈ X, y ∈ S and λ > 0 we get

λh(y) ≤ λg(y) = g(λy) ≤ g(x+ λy) + g(−x)

implying

−g(−x) ≤ g(x+ λy) − λh(y).

Hence, the infimum exists and the functional f is well-defined.

(a) We show that f is bounded from above by g. With the inequal-
ity

g(x+ λy) − λh(y) ≤ g(x) + λ(g(y) − h(y))

for all x ∈ X, y ∈ S and λ > 0

we obtain

f(x) ≤ g(x) for all x ∈ X.

(b) We assume that for some l ∈ X ′ the inequalities (3.2) and (3.3)
are satisfied. Then we have for all x ∈ X, y ∈ S and λ > 0

l(x) = l(x+ λy) − λl(y) ≤ g(x+ λy) − λh(y)

which implies the inequality (3.4). Conversely, let for some
l ∈ X ′ the inequality (3.4) be fulfilled. Then with (3.1) the
inequality (3.2) holds trivially. For all x ∈ S we get

−l(x) = l(−x) ≤ f(−x) ≤ g(−x+ x) − h(x) = −h(x)

and

h(x) ≤ l(x).

Thus, the inequality (3.3) is true.
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(c) Finally, we assume that S is convex and h is concave. For all
x ∈ X and all µ > 0 we have

µf(x) = inf
y∈S
λ>0

(µg(x+ λy) − µλh(y))

= inf
y∈S
λ>0

(g(µx+ µλy) − µλh(y))

= f(µx)

which means that f is positively homogeneous. Since f(0X) =
0, f is non-negatively homogeneous as well. In order to show
that f is also subadditive we take arbitrary elements u, v ∈ S
and λ, µ > 0. Then w := λ

λ+µ
u+ µ

λ+µ
v ∈ S and

f(x+ y) ≤ g(x+ y + (λ+ µ)w) − (λ+ µ)h(w)

≤ g(x+ λu+ y + µv) − λh(u) − µh(v)

≤ g(x+ λu) − λh(u) + g(y + µv) − µh(v).

Consequently, we conclude

f(x+ y) ≤ f(x) + f(y).

Hence, f is a sublinear functional. 2

As a consequence of Lemma 3.6 we get the important result that
the linear functionals are exactly the minimal elements of the set of
all sublinear functionals.

Lemma 3.7. Let S be the set of all sublinear functionals on a real
linear space X which is partially ordered with respect to the pointwise
ordering. Then f ∈ S is a minimal element of S if and only if
f ∈ X ′.

Proof.

(a) Let arbitrary f ∈ X ′ and g ∈ S with

g(x) ≤ f(x) for all x ∈ X
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be given. Then we have

g(x) ≤ f(x) = −f(−x) ≤ −g(−x) ≤ g(x) for all x ∈ X

and, therefore, f = g. Consequently, f is a minimal element of
S.

(b) Let an arbitrary minimal element g of the set S be given. For
any fixed y ∈ X we define the functional f : X → R given by

f(x) = inf
λ>0

(g(x+ λy) − λg(y)) for all x ∈ X.

By Lemma 3.6, (c) (where we set S := {y}) f is a sublinear
functional. Since g is a minimal element of the set S and by
Lemma 3.6, (a)

f(x) ≤ g(x) for all x ∈ X,

we conclude f = g. Then we get for all x ∈ X

g(x) = f(x) ≤ g(x+ y) − g(y)

and

g(x+ y) ≥ g(x) + g(y).

But g is also subadditive and, therefore, we conclude

g(x+ y) = g(x) + g(y).

g is also homogeneous because for arbitrary µ > 0 and x ∈ X
the equation

0 = g(µx− µx) = µg(x) + g(−µx)

implies

g(−µx) = −µg(x).

Thus, g is a linear functional. 2
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Figure 3.1: Illustration of the result of Thm. 3.8.

Now, we are able to formulate the basic version of the Hahn-
Banach theorem.

Theorem 3.8. For every sublinear functional g on a real linear
space X there is a linear functional f ∈ X ′ with

f(x) ≤ g(x) for all x ∈ X

(see Fig. 3.1).

Proof. We consider the set S of all sublinear functionals h :
X → R with

h(x) ≤ g(x) for all x ∈ X.

With Lemma 3.5 the set S is inductively ordered from below (with
respect to a pointwise ordering) and by Zorn’s lemma S has at least
one minimal element f which is, by Lemma 3.7, a linear functional.
Finally, we conclude

f(x) ≤ g(x) for all x ∈ X.

2

Another consequence of Lemma 3.6 will be formulated as a sand-
wich version of the Hahn-Banach theorem.

Theorem 3.9. Let S be a nonempty convex subset of a real linear
space X. Let g : X → R be a sublinear functional, and let h : S → R
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be a concave functional with

h(x) ≤ g(x) for all x ∈ S.

Then there is a linear functional l ∈ X ′ with

l(x) ≤ g(x) for all x ∈ X

and
h(x) ≤ l(x) for all x ∈ S.

Proof. We apply the basic version of the Hahn-Banach theorem
to the functional f defined in Lemma 3.6. This is possible because, by
Lemma 3.6, (c), f is a sublinear functional. Hence, there is a linear
functional l ∈ X ′ with

l(x) ≤ f(x) for all x ∈ X

and with Lemma 3.6, (b) we obtain directly the desired sandwich
result. 2

Next, we present the famous extension theorem. This theorem is
weaker than the sandwich version of the Hahn-Banach theorem.

Theorem 3.10. Let S be a subspace of a real linear space X. Let
g : X → R be a sublinear functional, and let h : S → R be a linear
functional with

h(x) ≤ g(x) for all x ∈ S.

Then there is a linear functional l ∈ X ′ with

l(x) ≤ g(x) for all x ∈ X

and
h(x) = l(x) for all x ∈ S.

Proof. By Theorem 3.9 there is a linear functional l ∈ X ′ with

l(x) ≤ g(x) for all x ∈ X
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and
h(x) ≤ l(x) for all x ∈ S. (3.5)

Since h is linear on S, we obtain with Lemma 3.7 that the inequality
(3.5) implies

h(x) = l(x) for all x ∈ S.

This completes the proof. 2

Finally, we formulate another consequence of the sandwich version
of the Hahn-Banach theorem. This result is a convex version of the
Hahn-Banach theorem.

Theorem 3.11. Let S be a nonempty convex subset of a real linear
space X, and let g : X → R be a sublinear functional. Then there is
a linear functional l ∈ X ′ with

l(x) ≤ g(x) for all x ∈ X

and
inf
x∈S

l(x) = inf
x∈S

g(x).

Proof. We assume that α := inf
x∈S

g(x) is greater than −∞,

otherwise the assertion follows immediately from the basic version
of the Hahn-Banach theorem. If we define the functional h : S → R
given by

h(x) = α for all x ∈ S,

then we obtain from the sandwich version of the Hahn-Banach theo-
rem that there is a linear functional l ∈ X ′ with

l(x) ≤ g(x) for all x ∈ X

and
inf
x∈S

g(x) = h(y) ≤ l(y) for all y ∈ S.

But that implies also

inf
x∈S

l(x) = inf
x∈S

g(x).
2
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Until now, we studied only real-valued sublinear maps. But it is
also possible to formulate various versions of the Hahn-Banach the-
orem for vector-valued sublinear maps. We restrict ourselves to the
presentation of a generalized basic version of the Hahn-Banach theo-
rem.

Definition 3.12. Let (Y,≤) be a partially ordered linear space.
Then Y is said to have the least upper bound property, if every non-
empty subset S of Y with an upper bound has a least upper bound,
that is, if for every nonempty subset S of Y there is a y ∈ Y with

s ≤ y for all s ∈ S,

then there is a ȳ ∈ Y with

s ≤ ȳ for all s ∈ S

and
ȳ ≤ ỹ for every ỹ ∈ Y

with
s ≤ ỹ for all s ∈ S.

Theorem 3.13. Let X be a real linear space, and let (Y,≤) be a
partially ordered linear space which has the least upper bound property.
If g : X → Y is a sublinear map, then there is a linear map l : X → Y
with

l(x) ≤ g(x) for all x ∈ X.

For a proof of this generalized Hahn-Banach theorem we refer to
Zowe [373, p. 18].

3.2 Separation Theorems

For various profound results in vector optimization separation the-
orems turn out to be most important. In this section we present a
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basic version of the separation theorem and we study several other
versions which are of practical interest. The basic version of the sep-
aration theorem is a direct consequence of the convex version of the
Hahn-Banach theorem.

First, we formulate the basic version of the separation theorem.

Theorem 3.14. Let S and T be nonempty convex subsets of a
real linear space X with cor(S) 6= ∅. Then cor(S)∩T = ∅ if and only
if there are a linear functional l ∈ X ′\{0X′} and a real number α with

l(s) ≤ α ≤ l(t) for all s ∈ S and all t ∈ T (3.6)

and
l(s) < α for all s ∈ cor(S) (3.7)

(see Fig. 3.2).

.......
.......
.......
.......
.......
.......
........
........
........
........
.........

..........
..............

................................................................................................................................................................................................................................................................
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
............

...........
........... ........... ...........

...........
........
...
.......
....
......
.....
......
.....
......
.....

........
...

...........
............................................

...........
...........
...........
...........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

T

cor(S)

{x ∈ X | l(x) = α}

Figure 3.2: Illustration of the result of Thm. 3.14.

Proof.

(a) If there are an l ∈ X ′\{0X′} and an α ∈ R with the properties
(3.6) and (3.7), then it is evident that cor(S) ∩ T = ∅.

(b) Now, we assume that cor(S) ∩ T = ∅. For an arbitrary x̄ ∈
cor(S) we define the translated sets U := S − {x̄} and V :=
T − {x̄}. Since U is convex and 0X ∈ cor(U), the Minkowski
functional p : X → R given by

p(x) = inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ U

}

for all x ∈ X
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is sublinear (e.g., see Dunford-Schwartz [91, p. 411]). Then by
Theorem 3.11 there is a linear functional l ∈ X ′ with

l(x) ≤ p(x) for all x ∈ X (3.8)

and
inf
x∈V

l(x) = inf
x∈V

p(x). (3.9)

Since
p(x) ≤ 1 for all x ∈ U,

we obtain with (3.8)

l(x) ≤ 1 for all x ∈ U.

Moreover, since

p(x) ≥ 1 for x /∈ cor(U),

we conclude with (3.9) and the assumption cor(U) ∩ V = ∅

l(y) ≥ 1 for all y ∈ V.

Consequently, we have

l(x) ≤ 1 ≤ l(y) for all x ∈ U and all y ∈ V

resulting in

l(s) ≤ 1 + l(x̄) ≤ l(t) for all s ∈ S and all t ∈ T.

Obviously, l is not the zero functional. Hence, the first part
of the assertion is shown. For the proof of the second part we
observe only that

l(x) ≤ p(x) < 1 for all x ∈ cor(U)

which implies

l(s) < 1 + l(x̄) for all s ∈ cor(S).

2
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The basic version of the separation theorem is formulated in a
non-topological setting. In order to get a topological version of the
separation theorem we recall a result on the continuity of linear func-
tionals.

Lemma 3.15. Let X be a real topological linear space. A linear
functional l ∈ X ′ is discontinuous if and only if for every α ∈ R the
level set {x ∈ X | l(x) = α} is dense in X.

A proof of this topological result can be found in the book of
Holmes [140, p. 63].

With the last lemma we are now able to present the topological
version of the separation theorem which is also known as Eidelheit’s
separation theorem.

Theorem 3.16. Let S and T be nonempty convex subsets of a
real topological linear space X with int(S) 6= ∅. Then int(S) ∩ T = ∅
if and only if there are a continuous linear functional l ∈ X∗\{0X∗}
and a real number α with

l(s) ≤ α ≤ l(t) for all s ∈ S and all t ∈ T

and

l(s) < α for all s ∈ int(S). (3.10)

Proof. With Lemma 1.32, (a) we have int(S) = cor(S) and
with the basic version of the separation theorem the assertion follows
immediately, if we show the continuity of l. The inequality (3.10)
implies that {x ∈ X | l(x) = α} is not dense in X. Consequently,
with Lemma 3.15 the linear functional l is also continuous. This
completes the proof. 2

A well-known consequence of Eidelheit’s separation theorem is
that the dual space of a locally convex Hausdorff space X separates
elements of X.
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Corollary 3.17. For every nonzero element x in a real separated
locally convex space X there is a continuous linear functional l ∈
X∗\{0X∗} with l(x) 6= 0.

Proof. Since x is nonzero, there is a convex 0X-neighborhood
that does not contain x. Then the assertion follows directly from
Theorem 3.16. 2

Next, we study two separation theorems which are helpful in lo-
cally convex spaces.

Theorem 3.18. Let S be a nonempty closed convex subset of a
real locally convex space X. Then x ∈ X\S if and only if there are a
continuous linear functional l ∈ X∗\{0X∗} and a real number α with

l(x) < α ≤ l(s) for all s ∈ S. (3.11)

Proof.

(a) If for any x ∈ X there are an l ∈ X∗\{0X∗} and an α ∈ R with
the property (3.11), then we conclude immediately x /∈ S.

(b) Take an arbitrary x ∈ X\S. Since S is closed, there is a convex
neighborhoodN of x withN∩S = ∅. By Theorem 3.16 there are
a continuous linear functional l ∈ X∗\{0X∗} and a real number
α with

l(x) < α ≤ l(s) for all s ∈ S.

2

With Lemma 3.3 we know that a base of a convex cone CX in a real
linear spaceX can be characterized by a linear functional l ∈ C#

X′ . The
question under which assumption the functional l is even continuous
is answered in

Corollary 3.19. Let CX be a convex cone in a real locally con-
vex space X. If CX has a base, then the quasi-interior C#

X∗ of the
topological dual cone for CX is nonempty.
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Proof. Let B denote a base of the convex cone CX . From the
definition of B it follows that 0X /∈ lin(B) and with Lemma 1.32,
(c) we conclude even 0X /∈ cl(B). By Theorem 3.18 there are an
l ∈ X∗\{0X∗} and an α ∈ R with

0 < α ≤ l(b) for all b ∈ B.

Every x ∈ CX\{0X} can be uniquely represented as x = λb with a
λ > 0 and a b ∈ B. Consequently, we get for every x ∈ CX\{0X}

l(x) = λl(b) > 0

which implies l ∈ C#
X∗ . 2

The next separation theorem is more general than Theorem 3.18.

Theorem 3.20. Let S and T be nonempty convex subsets of a
real locally convex space X where S is compact and T is closed. Then
S ∩ T = ∅ if and only if there is a continuous linear functional l ∈
X∗\{0X∗} with

sup
s∈S

l(s) < inf
t∈T

l(t). (3.12)

Proof. Since S is compact and T is closed, by Lemma 1.34 the
algebraic difference T − S is closed. The set equation S ∩ T = ∅ is
equivalent to 0X /∈ T −S. Since S and T are convex, the set T −S is
convex as well. Then, by Theorem 3.18, the set equation S ∩ T = ∅
is equivalent to the existence of a continuous linear functional l ∈
X∗\{0X∗} and a real number α with

0 < α ≤ l(t− s) for all t ∈ T and all s ∈ S.

This inequality is equivalent to

0 < inf {l(t) − l(s) | t ∈ T, s ∈ S}
= inf {l(t) | t ∈ T} − sup {l(s) | s ∈ S}

implying
sup
s∈S

l(s) < inf
t∈T

l(t).
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This completes the proof. 2

It should be noticed that the last two separation theorems do
not require that one of the considered sets has a nonempty interior.
Instead we have a compactness assumption which is even stronger.

Before we present a special separation theorem for closed convex
cones we list various useful results on convex cones.

Lemma 3.21. Let CX be a convex cone in a real linear space X.

(a) If X is locally convex and CX is closed, then

CX = {x ∈ X | x∗(x) ≥ 0 for all x∗ ∈ CX∗}.

(b) If cor(CX) 6= ∅, then

cor(CX) = {x ∈ X | x′(x) > 0 for all x′ ∈ CX′\{0X′}}.

(c) If X is a real topological linear space and int(CX) 6= ∅, then

int(CX) = {x ∈ X | x∗(x) > 0 for all x∗ ∈ CX∗\{0X∗}}.

(d) Let X be locally convex and separated where the topology gives X
as the topological dual space of X∗. Moreover, let CX be closed
and int(CX∗) 6= ∅. Then we have

int(CX∗) = C#
X∗ .

Proof.

(a) We have only to show

CX ⊃ {x ∈ X | x∗(x) ≥ 0 for all x∗ ∈ CX∗}

because the converse inclusion follows immediately from the def-
inition of the dual cone CX∗ . Take any x ∈ X with

x∗(x) ≥ 0 for all x∗ ∈ CX∗ (3.13)
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and assume that x /∈ CX . Since CX is closed and convex, by
Theorem 3.18 there are an l ∈ X∗\{0X∗} and an α ∈ R with

l(x) < α ≤ l(c) for all c ∈ CX . (3.14)

Since CX is a cone, we conclude

l(c) ≥ 0 for all c ∈ CX (3.15)

which implies l ∈ CX∗ . Consequently, with the inequality (3.13)
we get l(x) ≥ 0. But this contradicts the inequality l(x) < 0
which can be derived from (3.14) and (3.15).

(b) The inclusion

cor(CX) ⊂ {x ∈ X | x′(x) > 0 for all x′ ∈ CX′\{0X′}}

was already shown in Lemma 1.26. For the proof of the converse
inclusion we take an arbitrary x ∈ X with

x′(x) > 0 for all x′ ∈ CX′\{0X′} (3.16)

(we study only the non-trivial case CX′ 6= {0X′}) and we assume
that x /∈ cor(CX). Then by the basic version of the separation
theorem there are an l ∈ X ′\{0X′} and an α ∈ R with

l(x) ≤ α ≤ l(c) for all c ∈ CX .

Since CX is a cone, we obtain l ∈ CX′\{0X′} and l(x) ≤ 0 which
contradicts the inequality (3.16).

(c) This assertion can be proved in analogy to the algebraic version
under (b). We remark only that by Lemma 1.32, (a) int(CX) =
cor(CX).

(d) With Lemma 1.32, (a) and Lemma 1.25 we obtain int(CX∗) ⊂
C#

X∗ . For the proof of the converse inclusion we take an arbi-
trary x∗ ∈ C#

X∗ and we assume that x∗ /∈ int(CX∗). Then by
Eidelheit’s separation theorem and the fact that X is the dual
space of X∗ there are an x ∈ X\{0X} and an α ∈ R with

x∗(x) ≤ α ≤ l(x) for all l ∈ CX∗ . (3.17)
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This inequality implies

l(x) ≥ 0 for all l ∈ CX∗ (3.18)

and with part (a) of this lemma we get x ∈ CX\{0X}. Con-
sequently, we have x∗(x) > 0 and from (3.17) and (3.18) we
conclude x∗(x) ≤ 0. But this is a contradiction. 2

Now, we are able to present the promised separation theorem for
closed convex cones.

Theorem 3.22. Let X be a real separated locally convex space
where the topology gives X as the topological dual space of X∗. More-
over, let S and T be closed convex cones in X with int(S∗) 6= ∅ (S∗

denotes the dual cone for S). Then (−S) ∩ T = {0X} if and only if
there is a continuous linear functional l ∈ X∗\{0X∗} with

l(x) ≤ 0 ≤ l(y) for all x ∈ −S and all y ∈ T (3.19)

and
l(x) < 0 for all x ∈ −S\{0X} (3.20)

(see Fig. 3.3).
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Figure 3.3: Illustration of the result of Thm. 3.22.

Proof.

(a) Let some l ∈ X∗\{0X∗} be given with the properties (3.19) and
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(3.20). If we assume that there is an x 6= 0X with x ∈ (−S)∩T ,
then we get from (3.19) and (3.20)

l(x) < 0 ≤ l(x)

which is a contradiction. Consequently, the set equation (−S)∩
T = {0X} is true.

(b) Now, assume that there is no l ∈ X∗\{0X∗} with the properties
(3.19) and (3.20). Then we obtain with Lemma 3.21, (d) that
int(S∗) ∩ T ∗ = ∅ where T ∗ denotes the dual cone for T . By
Eidelheit’s separation theorem and the fact that X is the topo-
logical dual space of X∗ there are an x ∈ X\{0X} and a real
number α with

s∗(x) ≤ α ≤ t∗(x) for all s∗ ∈ S∗ and all t∗ ∈ T ∗.

Since S∗ and T ∗ are cones, we obtain even

s∗(x) ≤ 0 ≤ t∗(x) for all s∗ ∈ S∗ and all t∗ ∈ T ∗.

With Lemma 3.21, (a) this inequality implies x ∈ (−S) ∩ T
which means that (−S) ∩ T 6= {0X}.

2

We finish this section with a remark on weakly closed convex sets
and with an additional strict separation theorem. This result is a
simple application of Theorem 3.18. But first, we recall a characteri-
zation of weak convergence.

Lemma 3.23. Let X be a real linear space and let Y be a subspace
of X ′. A net (xi)i∈I in X converges to some x ∈ X in the topology
σ(X,Y ) if and only if lim

i∈I
l(xi) = l(x) for all l ∈ Y .

Theorem 3.24. Let S be a nonempty convex subset of a real
locally convex space X. The set S is closed if and only if it is weakly
closed.
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Proof. Lemma 3.23 implies that every convergent net in X is
also weakly convergent and, therefore, every weakly closed set is also
closed. Next, we show that every closed convex set is also weakly
closed. Assume that S is closed and take an arbitrary x ∈ X\S. By
Theorem 3.18 there are a continuous linear functional l ∈ X∗\{0X∗}
and a real number α with

l(x) < α ≤ l(s) for all s ∈ S.

Hence, by Lemma 3.23 no net in S can converge weakly to x. This
implies that x does not belong to the weak closure of S. This com-
pletes the proof. 2

With Theorem 3.24 and Theorem 3.18 it is also possible to for-
mulate a strict separation theorem for reflexive Banach spaces where
we do not need the assumption that at least one set has a nonempty
interior.

Theorem 3.25. Let S and T be nonempty closed convex subsets
of a real reflexive Banach space (X, ‖ · ‖) where S is bounded. Then
S ∩ T = ∅ if and only if there is a continuous linear functional l ∈
X∗\{0X∗} with

sup
s∈S

l(s) < inf
t∈T

l(t).

Proof. Since in a reflexive Banach space a bounded closed convex
set is weakly compact, the set S is weakly compact. With Theorem
3.24 the set T is weakly closed, and with Lemma 1.34 we conclude
that T −S is weakly closed and, therefore, closed. Since S ∩T = ∅ is
equivalent to 0X /∈ T −S, we obtain the desired result with Theorem
3.18. 2

3.3 A James Theorem

In this section we study reflexive Banach spaces and characterize
weakly compact subsets. It is the aim to present a James theorem
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which is a famous and profound theorem of functional analysis. First,
we begin with a general version of a well-known Weierstraß theorem.

Theorem 3.26. Let S be a nonempty compact subset of a real
topological linear space X, and let f : S → R be a continuous func-
tional. Then f attains its supremum on S.

A consequence of this theorem is that every continuous linear func-
tional on a real Banach space attains its supremum on a weakly com-
pact set. The James theorem states that if every continuous linear
functional attains its supremum on a bounded and weakly closed sub-
set of a real Banach space, then this subset is weakly compact.

The James theorem reads as follows.

Theorem 3.27. Let S be a nonempty bounded and weakly closed
subset of a real quasi-complete locally convex space X. If every con-
tinuous linear functional l ∈ X∗ attains its supremum on S, then S
is weakly compact.

The proof of this theorem is rather complicated and technical.
Therefore, we restrict ourselves only on a short discussion of this the-
orem under the additional assumption that X is a separable Banach
space and S is the closed unit ball. For these investigations the fol-
lowing theorem on supporting hyperplanes (which is sometimes also
called bipolar theorem) is essential.

Theorem 3.28. Let X be a real linear space and let Y be a sub-
space of X ′. For every nonempty subset S of X the σ(X,Y )-closed
convex hull is

cl(co(S))σ(X,Y ) = {x ∈ X | l(x) ≤ sup
s∈S

l(s) for all l ∈ Y }.

Proof. Let T denote the set

T := {x ∈ X | l(x) ≤ sup
s∈S

l(s) for all l ∈ Y }.
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(a) First, we show cl(co(S))σ(X,Y ) ⊂ T . It is evident that S ⊂ T ,
and since T is convex, we conclude co(S) ⊂ T . But T is also
σ(X,Y )-closed and, therefore, we get

cl(co(S))σ(X,Y ) ⊂ T.

(b) Now, we prove the inclusion T ⊂ cl(co(S))σ(X,Y ). Take any x̄ ∈
X with x̄ /∈ cl(co(S))σ(X,Y ). Since X equipped with the topology
σ(X,Y ) is locally convex, by the separation theorem 3.18 there
are a σ(X,Y )-continuous linear functional l ∈ Y \{0X′} and a
real number α with

l(x̄) > α ≥ l(x) for all x ∈ co(S) (3.21)

(for this result observe that l is a σ(X,Y )-continuous linear
functional on X if and only if l ∈ Y ). With the inequality
(3.21) we obtain

l(x̄) > sup
s∈S

l(s)

which implies that x̄ /∈ T . This completes the proof.

2

The following lemma may be found in a paper of König [196,
Korollar 4.4].

Lemma 3.29. Let (X, ‖ · ‖) be a real Banach space, and let S
be a separable subset with the property that every continuous linear
functional l ∈ X∗ attains its supremum on S. Then we have

cl(co(S)) = cl(co(S))σ(X∗∗,X∗).

Now, we are able to prove a weaker version of the James theorem.

Theorem 3.30. Let (X, ‖·‖X) be a real separable Banach space. If
every continuous linear functional attains its supremum on the closed
unit ball

U(X) := {x ∈ X | ‖x‖X ≤ 1},
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then U(X) is weakly compact (which is equivalent to the reflexivity of
X).

Proof. With Lemma 3.29 we obtain

U(X) = cl(U(X))σ(X∗∗,X∗)

and with Theorem 3.28 we conclude

U(x) = {x∗∗ ∈ X∗∗ | x∗∗(l) ≤ sup
x∈U(X)

l(x) for all l ∈ X∗}

= U(X∗∗)

which implies that X is reflexive. Consequently, U(x) is weakly com-
pact. 2

The usefulness of Theorem 3.27 is illustrated by

Example 3.31. Let Ω be a nonempty subset of Rn. Then we
consider the function space L1(Ω) (compare Example 1.51) with the
natural partial ordering ≤ and we assert that for arbitrary functions
f1, f2 ∈ L1(Ω) with f1 ≤ f2 the order interval [f1, f2] is weakly
compact.

We prove this assertion with the James theorem (Theorem 3.27).
Since L1(Ω)∗ = L∞(Ω), we define for every l ∈ L∞(Ω) the function
g ∈ L1(Ω) with

g(x) =







f1(x) almost everywhere on {x ∈ Ω | l(x) < 0 on Ω}
f2(x) almost everywhere on {x ∈ Ω | l(x) > 0 on Ω}
0 otherwise

and we obtain

sup
f∈[f1,f2]

∫

Ω

l(x)f(x) dx =

∫

Ω

l(x)g(x) dx.

Consequently, every continuous linear functional attains its supremum
on [f1, f2] and, therefore, [f1, f2] is weakly compact.
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Next, we study some helpful consequences of the James theorem.

Definition 3.32. A nonempty subset S of a real normed space
(X, ‖ · ‖) is called proximinal, if every x ∈ X has at least one best
approximation from S, that is, for every x ∈ X there is an s̄ ∈ S with

‖x− s̄‖ ≤ ‖x− s‖ for all s ∈ S

(see Fig. 3.4).

.......
....

..................................................................
...........

...........
...........

...........
........... ........... ........... ........... ...........

...........
...........

.........
..
........
...
.......
....
......
.....

.......
....
......
.....
......
.....
.......
....

..........
............

..............................................................................................................
...........

...........
...........

...........
...........

...........
...........

...........
...........
...........

........... ........... ........... ........... ........... ........... ........... ...........
...........

...........
...........

...........
..........
.
..........
.
.........
..
........
...
........
...
.......
....

........................................................................................................................................................................................................................................................................................
.....................................

............

........................................................................................................

.......
.......
........
........
.........
..........
...........
...............

.............................

• •x

s̄

S

{y ∈ X | ‖x− y‖ = ‖x− s̄‖}

Figure 3.4: Best approximation.

It is evident that a proximinal set is necessarily closed, and every
compact set is proximinal.

Definition 3.33. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖). A functional f : S → R is called weakly lower
semicontinuous, if for every net (xi)i∈I in S which converges weakly
to some x ∈ S the inequality

f(x) ≤ lim inf
i∈I

f(xi)

is satisfied.

For instance, the norm ‖ · ‖ on X is weakly lower semicontinuous.
Conditions ensuring that a set is proximinal are given by
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Theorem 3.34. Every nonempty weak*-closed subset S of the dual
space X∗ of a real normed space (X, ‖ · ‖X) is proximinal.

Proof. Take any x ∈ X∗\S and any y ∈ S. Since every closed
ball in X∗ is weak*-compact, the set

S ∩ {x∗ ∈ X | ‖x∗‖X∗ ≤ ‖y‖X∗}

is weak*-compact as well. Notice that the functional X∗ ∋ z 7→
‖x−z‖X∗ is weakly* lower semicontinuous. Then the assertion follows
immediately. 2

The next corollary is a direct consequence of Theorem 3.34.

Corollary 3.35. Every nonempty weakly closed subset of a real
reflexive Banach space is proximinal.

Now, we are able to present an interesting characterization of re-
flexive Banach spaces.

Theorem 3.36. A real Banach space (X, ‖ · ‖) is reflexive, if and
only if

(a) every nonempty weakly closed subset of X is proximinal

or

(b) every pair of disjoint nonempty closed convex subsets of X, one
of which is bounded, can be strictly separated by a hyperplane.

Proof. If X is reflexive then the statements under (a) or (b)
follow from Corollary 3.35 and Theorem 3.25. Therefore, we study
only the case that X is not reflexive. In this case it follows that X
contains a nonreflexive separable subspace M . Then the closed unit
ball U(M) in M is not weakly compact. Consequently, by Theorem
3.30 there is a continuous linear functional l ∈M∗ with

l(x) < sup
u∈U(M)

l(u) for all x ∈ U(M).
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This implies that the closed convex sets

S := {x ∈M | l(x) ≥ sup
u∈U(M)

l(u)} (3.22)

and U(M) are disjoint.

(a) But then the weakly closed set S is not proximinal.

(b) Assume that the bounded closed convex set U(M) and the
closed convex set S can be strictly separated, i.e., there is a
continuous linear functional x∗ ∈M∗ with

sup
u∈U(M)

x∗(u) < inf
s∈S

x∗(s). (3.23)

The linear optimization problem

inf x∗(x)
subject to

l(x) ≥ sup
u∈U(M)

l(u)

x ∈M

is solvable if and only if x∗ = λl for some λ > 0. Hence, we get
with (3.23) and (3.22)

λ sup
u∈U(M)

l(u) < λ inf
s∈S

l(s) = λ sup
u∈U(M)

l(u)

which is a contradiction. This completes the proof.

2

3.4 Two Krein-Rutman Theorems

In the literature one finds very often a popular Krein-Rutman the-
orem which states a result on the extension of positive linear func-
tionals. Although this theorem will be presented in this section as
well, our main aim is another Krein-Rutman theorem which is not so
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well-known. This theorem provides sufficient conditions under which
strictly positive linear functionals exist or equivalently, it provides
conditions which garantee that the quasi-interior of the dual cone
is nonempty. It turns out that this result has many applications in
vector optimization.

First, we formulate the extension theorem for positive linear func-
tionals.

Theorem 3.37. Let X be a real linear space with a convex cone
CX which has a nonempty algebraic interior. Moreover, let M be a
subspace of X which contains an element in the algebraic interior of
CX . Then for every linear functional l ∈ CM ′ (with CM := CX ∩M)
there is a linear functional f ∈ CX′ with

f(x) = l(x) for all x ∈M.

Proof. Let S denote the span of M and CX . For an arbitrary
linear functional l ∈ CM ′ we define the sublinear functional g : S → R
given by

g(x) = inf {l(y) | y ∈M ∩ ({x} + CX)} for all x ∈ S.

Then g is sublinear and

l(x) ≤ g(x) for all x ∈M.

With the Hahn-Banach extension theorem there is a linear functional
f ∈ S ′ with

f(x) = l(x) for all x ∈M

and
f(x) ≤ g(x) for all x ∈ S.

In order to see that f ∈ CS′ take any x̄ ∈ CS. Then for an arbitrarily
chosen x ∈M ∩ CX we get

1

λ
x+ x̄ ∈ CX for all λ > 0.
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Consequently, we obtain

f(−x̄) ≤ g(−x̄) ≤ l
(1

λ
x
)

=
1

λ
l(x)

and in the limit for λ→ ∞

f(x̄) ≥ 0.

Thus, f ∈ CS′ and an additional extension argument completes the
proof. 2

Finally, we study the other announced Krein-Rutman theorem.

Theorem 3.38. In a real separable normed space (X, ‖·‖X) with a
closed pointed convex cone CX the quasi-interior C#

X∗ of the topological
dual cone is nonempty.

Proof. The assertion is evident for a trivial cone CX . Therefore,
we assume that CX 6= {0X}. By Lemma 1.39 the unit ball U(X∗) in
X∗ is weak*-metrizable. Since U(X∗)∩CX∗ is a weak*-compact subset
of X∗, it is weak*-separable. Let {l1, l2, . . .} be a countable weak*-
dense subset of U(X∗) ∩ CX∗ and consider the functional l : X → R
with

l(x) =
∞∑

i=1

1

2i
li(x) for all x ∈ X.

SinceX∗ is a Banach space and ‖li‖X∗ ≤ 1 for all i ∈ N, the functional
l exists and we get l ∈ CX∗ . Finally, we prove

l(x) > 0 for all x ∈ CX\{0X}. (3.24)

Assume that there is some x ∈ CX\{0X} with l(x) = 0. Then we
conclude

li(x) = 0 for all i ∈ N

and also
f(x) = 0 for all f ∈ CX∗ . (3.25)

Since CX is pointed and x ∈ CX\{0X}, we get −x /∈ CX . CX is closed
and, therefore, by Theorem 3.18 there is a continuous linear functional
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g ∈ CX∗\{0X∗} with g(x) > 0. But this is a contradiction to (3.25).
Hence, the inequality (3.24) is true which means that l ∈ C#

X∗ . 2

With Theorem 3.38 and Lemma 3.3 we obtain immediately

Corollary 3.39. Every nontrivial closed pointed convex cone in
a real separable normed space has a base.

Example 3.40. Let Ω be a nonempty subset of Rn, and let CLp(Ω)

be the natural ordering cone of the function space Lp(Ω) with p ∈
[1,∞) (compare Example 1.51). It can be easily checked that the
assumptions of Theorem 3.38 (and Corollary 3.39) are fulfilled in this
setting. Consequently, C#

Lp(Ω)∗ is nonempty and CLp(Ω) admits a base

for all p ∈ [1,∞).

The separability assumption in Theorem 3.38 and Corollary 3.39
is essential and cannot be dropped. Krein-Rutman [203, p. 218] gave
an interesting example which shows that the assertion fails in a non-
separable space.

3.5 Contingent Cones and a Lyusternik

Theorem

In this section we investigate contingent cones in normed spaces and
present several important properties of these cones. A contingent cone
to a set S at some x̄ ∈ cl(S) describes a local approximation of the
set S − {x̄}. This concept is very helpful for the investigation of op-
timality conditions. If the set S is given by equality constraints, then
the contingent cone is related to a set which one obtains by “lineariz-
ing” the constraints. This is essentially the result of the Lyusternik
theorem which will be formulated at the end of this section.

First, we introduce the helpful concept of contingent cones.

Definition 3.41. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖).

(a) Let some x̄ ∈ cl(S) be given. An element h ∈ X is called a
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tangent to S at x̄, if there are a sequence (xn)n∈N of elements
xn ∈ S and a sequence (λn)n∈N of positive real numbers λn so
that

x̄ = lim
n→∞

xn

and

h = lim
n→∞

λn(xn − x̄).

(b) The set T (S, x̄) of all tangents to S at x̄ is called the contingent
cone (or the Bouligand tangent cone) to S at x̄ (see Fig. 3.5).
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Figure 3.5: Two examples of contingent cones.
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For the definition of T (S, x̄) it is sufficient that x̄ belongs to the
closure of the set S. But later we will assume that x̄ is an element
of S. It is evident that the contingent cone is really a cone. If S is
a subset of a real normed space with a nonempty interior, then for
every x̄ ∈ int(S) we have T (S, x̄) = X.

The next lemma is easy to prove.

Lemma 3.42. Let S1 and S2 be nonempty subsets of a real normed
space. Then we have

(a) x̄ ∈ cl(S1) ⊂ cl(S2) =⇒ T (S1, x̄) ⊂ T (S2, x̄),

(b) x̄ ∈ cl(S1 ∩ S2) =⇒ T (S1 ∩ S2, x̄) ⊂ T (S1, x̄) ∩ T (S2, x̄).

In the following we study some helpful properties of contingent
cones.

Theorem 3.43. Let S be a nonempty subset of a real normed
space. If S is starshaped at some x̄ ∈ S, then

cone(S − {x̄}) ⊂ T (S, x̄).

Proof. Take any x ∈ S. Then we have

xn := x̄+
1

n
(x− x̄) =

1

n
x+

(

1 − 1

n

)

x̄ ∈ S for all n ∈ N.

Hence, we get x̄ = lim
n→∞

xn and x−x̄ = lim
n→∞

n(xn−x̄). But this implies

that x− x̄ belongs to the contingent cone T (S, x̄) and, therefore, we
obtain

S − {x̄} ⊂ T (S, x̄).

Since T (S, x̄) is a cone, it follows further

cone(S − {x̄}) ⊂ T (S, x̄).

2
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Theorem 3.44. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖). For every x̄ ∈ cl(S) we have

T (S, x̄) ⊂ cl(cone(S − {x̄})).

Proof. Take an arbitrary tangent h to S at x̄. Then there is a
sequence (xn)n∈N of elements in S and a sequence (λn)n∈N of positive
real numbers with x̄ = lim

n→∞
xn and h = lim

n→∞
λn(xn − x̄). The last

equation implies
h ∈ cl(cone(S − {x̄})).

2

With the next theorem we show that the contingent cone is always
closed.

Theorem 3.45. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖). Then the contingent cone T (S, x̄) is closed for every
x̄ ∈ cl(S).

Proof. Let (hn)n∈N be an arbitrary sequence in T (S, x̄) with
lim

n→∞
hn = h ∈ X. For every tangent hn there are a sequence (xni

)i∈N

of elements in S and a sequence (λni
)i∈N of positive real numbers with

x̄ = lim
i→∞

xni
and hn = lim

i→∞
λni

(xni
−x̄). Consequently, for every n ∈ N

there is an i(n) ∈ N with

‖xni
− x̄‖ ≤ 1

n
for all i ≥ i(n)

and

‖λni
(xni

− x̄) − hn‖ ≤ 1

n
for all i ≥ i(n).

If we define
yn := xni(n)

∈ S for all n ∈ N

and
µn := λni(n)

> 0 for all n ∈ N,
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then we get x̄ = lim
n→∞

yn and

‖µn(yn − x̄) − h‖ ≤ 1

n
+ ‖hn − h‖ for all n ∈ N

which implies
h = lim

n→∞
µn(yn − x̄).

Hence, h belongs to the contingent cone T (S, x̄). 2

With the last three theorems we get immediately the following

Corollary 3.46. Let S be a nonempty subset of a real normed
space. If S is starshaped at some x̄ ∈ S, then

T (S, x̄) = cl(cone(S − {x̄})).

With the next theorem we answer the question under which con-
ditions a contingent cone is even a convex cone.

Theorem 3.47. Let S be a nonempty convex subset of a real
normed space. Then the contingent cone T (S, x̄) is convex for every
x̄ ∈ S.

Proof. Since S is convex, S−{x̄} and cone(S−{x̄}) are convex as
well. With Lemma 1.32 we conclude that the set cl(cone(S−{x̄})) is
also convex. Finally, we get with Corollary 3.46 T (S, x̄) = cl(cone(S−
{x̄})). This completes the proof. 2

The next theorem indicates already the importance of contingent
cones in optimization theory.

Theorem 3.48. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖), and let f : X → R be a given functional.

(a) If the functional f is continuous and convex, then for every
x̄ ∈ S with the property

f(x̄) ≤ f(x) for all x ∈ S
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it follows

f(x̄) ≤ f(x̄+ h) for all h ∈ T (S, x̄).

(b) If the set S is starshaped at some x̄ ∈ S for which

f(x̄) ≤ f(x̄+ h) for all h ∈ T (S, x̄),

then
f(x̄) ≤ f(x) for all x ∈ S

(see Fig. 3.6).
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Figure 3.6: Illustration of the result of Thm. 3.48.

Proof.

(a) We choose an arbitrary x̄ ∈ S and assume that the statement

f(x̄) ≤ f(x̄+ h) for all h ∈ T (S, x̄)

does not hold. Then there are an h ∈ T (S, x̄)\{0X} and an
α > 0 with

f(x̄) − f(x̄+ h) > α > 0.
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Since h is a tangent to S at x̄, there is a sequence (xn)n∈N of
elements in S and a sequence (λn)n∈N of positive real numbers
with x̄ = lim

n→∞
xn and h = lim

n→∞
hn where hn := λn(xn − x̄) for

all n ∈ N. Since h 6= 0X , we conclude 0 = lim
n→∞

1

λn

. Then we

get for sufficiently large n ∈ N:

f(xn) = f
( 1

λn

(x̄+ hn) +
(

1 − 1

λn

)

x̄
)

≤ 1

λn

f(x̄+ hn) +
(

1 − 1

λn

)

f(x̄)

≤ 1

λn

(f(x̄+ h) + α) +
(

1 − 1

λn

)

f(x̄)

<
1

λn

f(x̄) +
(

1 − 1

λn

)

f(x̄)

= f(x̄).

Consequently, we obtain for a sufficiently large n ∈ N

f(xn) < f(x̄).

This contraposition leads to the assertion.

(b) If S is starshaped at x̄ ∈ S, then by Theorem 3.43 it follows
S − {x̄} ⊂ T (S, x̄). Therefore, the inequality

f(x̄) ≤ f(x̄+ h) for all h ∈ T (S, x̄)

implies
f(x̄) ≤ f(x) for all x ∈ S.

2

From now on we study the contingent cone of a special subset of a
Banach space which is the kernel of a given Fréchet differentiable map.
Under suitable assumptions the kernel of the Fréchet derivative of this
map is contained in the considered contingent cone. In essence, this
is the result of the Lyusternik theorem which is formulated precisely
in
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Theorem 3.49. Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be real Banach
spaces, and let h : X → Z be a given map. Furthermore, let some
x̄ ∈ S with

S := {x ∈ X | h(x) = 0Z}
be given. Let h be Fréchet differentiable on a neighborhood of x̄, let
h′(·) be continuous at x̄, and let h′(x̄) be surjective. Then it follows
for the contingent cone

L(S, x̄) := {x ∈ X | h′(x̄)(x) = 0Z} ⊂ T (S, x̄). (3.26)

The set L(S, x̄) is also called the linearizing cone to S at x̄. The
proof of Theorem 3.49 is very technical and complicated. It may be
found in the books of Ljusternik-Sobolew [227], Kirsch-Warth-Werner
[188], Werner [352] and Jahn [164, p. 96–102].

With the following theorem we show that the inclusion (3.26) also
holds in the opposite direction.

Theorem 3.50. Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be real normed
spaces, and let h : X → Z be a given map. Furthermore, let some
x̄ ∈ S with

S := {x ∈ X | h(x) = 0Z}
be given. If h is Fréchet differentiable at x̄, then it follows for the
contingent cone

T (S, x̄) ⊂ {x ∈ X | h′(x̄)(x) = 0Z}.

Proof. Let y ∈ T (S, x̄)\{0X} be an arbitrary tangent vector (the
assertion is evident for y = 0X). Then there are a sequence (xn)n∈N of
elements in S and a sequence (λn)n∈N of positive real numbers with

x̄ = lim
n→∞

xn

and
y = lim

n→∞
yn
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where

yn := λn(xn − x̄) for all n ∈ N.

Consequently, by the definition of the Fréchet derivative we obtain:

h′(x̄)(y) = h′(x̄)( lim
n→∞

λn(xn − x̄))

= lim
n→∞

λnh
′(x̄)(xn − x̄)

= − lim
n→∞

λn[h(xn) − h(x̄) − h′(x̄)(xn − x̄)]

= − lim
n→∞

‖yn‖
h(xn) − h(x̄) − h′(x̄)(xn − x̄)

‖xn − x̄‖
= 0Z .

2

Since the assumptions of Theorem 3.50 are weaker than those of
Theorem 3.49, we summarize the results of the two preceding theo-
rems as follows: Under the assumptions of Theorem 3.49 we conclude
for the contingent cone

T (S, x̄) = {x ∈ X | h′(x̄)(x) = 0Z}

(see Fig. 3.7).
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s
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Figure 3.7: Illustration of the remark on page 98.
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Notes

The characterization of a base of a convex cone in Lemma 3.3 can
be found in the book of Peressini [273, p. 26]. The presentation of
the different versions of the Hahn-Banach theorem and especially the
key lemma 3.6 is due to König [198] ([195], [196]). For a very general
version of the Hahn-Banach theorem we cite the paper of Rodé [287]
(and König [197]). For a generalization of the Hahn-Banach theorem
to vector-valued maps we refer to Zowe [371], [373], Elster-Nehse [103]
and Borwein [37].

The basic version of the separation theorem is a nontopological
version of Eidelheit’s separation theorem. Eidelheit [99] presented a
similar separation theorem in a real normed space. Theorem 3.24
was formulated by Mazur [243] in a normed setting. The results on
convex cones (Lemma 3.21) may be found in the book of Vogel [342].
The separation theorem for closed convex cones (Theorem 3.22) was
formulated by Borwein [34] and Vogel [342]. It can also be proved by
using a theorem of the alternative which was formulated by Lehmann-
Oettli [217] in a finite-dimensional setting (compare also Vogel [342,
p. 80]).

The so-called James theorem is developed in a sequence of papers
of James (e.g. [175]). The proof of Theorem 3.30 is due to König [196]
and Example 3.31 is discussed in a paper of Rodé [288]. Theorem 3.34
and Theorem 3.36 are taken from the books of Holmes [139] and [140],
respectively.

The two Krein-Rutman theorems were first published in 1948 in
Russian. The extension theorem may also be found in the books of
Day [85] and Holmes [140]. The proof of Theorem 3.38 is based on
a proof given by Borwein [40, p. 425] who gave also a formulation of
Corollary 3.39.

Contingent cones can also be formulated in separated topological
linear spaces using nets instead of sequences. Notice that in a sepa-
rated topological linear space the convergence of a net is unique in the
sense that every net converges to at most one element. But, in general,
in this setting the contingent cone is not always closed. If the space is
metrizable, then the contingent cone is closed. In a normed space the
presentation of this cone is simpler and we obtain the desired results.
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The well-known properties of these contingent cones listed in the last
section are discussed, for instance, in the books of Krabs [201] and
Jahn [164]. The Lyusternik theorem is based on a result of Lyusternik
[239]. A proof can be found in the books of Ljusternik-Sobolew [227],
Kirsch-Warth-Werner [188], Ioffe-Tihomirov [144], Werner [352] and
Jahn [164]. In the books of Girsanov [116] and Tichomirov [331] a
formulation of the Lyusternik theorem is given without proof.



Part II

Theory of Vector
Optimization
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Vector optimization problems are those where we are looking for
certain “optimal” elements of a nonempty subset of a partially or-
dered linear space. In this book we investigate optimal elements such
as minimal, strongly minimal, properly minimal and weakly minimal
elements. These notions are defined in chapter 4. Basic results con-
cerning the connection of vector optimization problems with scalar
optimization problems are studied in the fifth chapter. In chapter 6
we present existence theorems for these optima. The topic of chapter
7 is a generalized multiplier rule for abstract optimization problems.
Finally, in the last chapter of this second part we discuss a duality
theory for abstract optimization problems.

The first papers in this research area were published by Edgeworth
[94] (1881) and Pareto [268] (1906) who were the initiators of vector
optimization (compare also the notes on page 311). The actual de-
velopment of vector optimization begun with papers by Koopmans
[199] (1951) and Kuhn-Tucker [204] (1951). An interesting and de-
tailled article on the historical development of vector optimization
was published by Stadler [314].



Chapter 4

Optimality Notions

For the investigation of “optimal” elements of a nonempty subset of
a partially ordered linear space one is mainly interested in minimal or
maximal elements of this set. But in certain situations it also makes
sense to study several variants of these concepts; for example, strongly
minimal, properly minimal and weakly minimal elements (or strongly
maximal, properly maximal and weakly maximal elements). It is the
aim of this first chapter of the second part to present the definition
of these optimality notions together with some examples.

In Definition 3.1, (c) we defined already minimal and maximal
elements of a partially ordered set S which is not assumed to have a
linear structure. If S is a subset of a partially ordered linear space,
Definition 3.1, (c) is equivalent to

Definition 4.1. Let S be a nonempty subset of a partially ordered
linear space with an ordering cone C.

(a) An element x̄ ∈ S is called a minimal element of the set S, if

({x̄} − C) ∩ S ⊂ {x̄} + C. (4.1)

(b) An element x̄ ∈ S is called a maximal element of the set S, if

({x̄} + C) ∩ S ⊂ {x̄} − C. (4.2)
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If the ordering cone C is pointed, then the inclusions (4.1) and
(4.2) can be replaced by the set equations

({x̄} − C) ∩ S = {x̄} ( or: x ≤C x̄, x ∈ S ⇒ x = x̄)

and

({x̄} + C) ∩ S = {x̄} ( or: x̄ ≤C x, x ∈ S ⇒ x = x̄) ,

respectively (see Fig. 4.1). Since every maximal element of S is also
minimal with respect to the partial ordering induced by the convex
cone −C, without loss of generality it is sufficient to study the mini-
mality notion.
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Figure 4.1: Minimal and maximal elements of a set S.

Example 4.2. LetX be the real linear space of functionals defined
on a real linear space E and partially ordered by a pointwise ordering.
Moreover, let S denote the subset of X which consists of all sublinear
functionals on E. Then the algebraic dual space E ′ is the set of all
minimal elements of S. This assertion is proved in Lemma 3.7 and is
a key for the proof of the basic version of the Hahn-Banach theorem.
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Example 4.3. Let X and Y be partially ordered linear spaces
with the ordering cones CX and CY , and let T : X → Y be a given
linear map. We assume that there is a q ∈ Y so that the set S := {x ∈
CX | T (x) + q ∈ CY } is nonempty. Then an abstract complementary
problem leads to the problem of finding a minimal element of the set S
(for further details see the paper of Cryer-Dempster [78] and Borwein
[41]).

In the statistical decision theory and the theory of tests there are
many prominent problems where one investigates minimal elements of
a set (compare the book of Vogel [342]). The following example may
be interpreted as a problem of finding minimal covariance matrices.

Example 4.4. Let X be the real linear space of real symmetric
(n, n)-matrices, and let a partial ordering in X be given which is in-
duced by the convex cone C := {A ∈ X | A is positive semidefinite}.
Then we are looking for minimal elements of a nonempty subset S of
C. For example, if there is a matrix A ∈ S which has a minimal trace
among all matrices of S, then A is a minimal element of the set S.

Example 4.5. Let X and Y be real linear spaces, and let CY be
a convex cone in Y . Furthermore, let S be a nonempty subset of X,
and let f : S → Y be a given map. Then the abstract optimization
problem

min
x∈S

f(x) (4.3)

is to be interpreted in the following way: Determine a minimal solu-
tion x̄ ∈ S which is defined as the inverse image of a minimal element
f(x̄) of the image set f(S). If f is a vectorial norm (compare Defi-
nition 1.35), then the problem (4.3) is called a vector approximation
problem. This kind of problems is studied in detail in Chapter 9.

Now, we come to a vector optimization problem which arises in
game theory.

Example 4.6. We consider a cooperative n player game. Let
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X, Y1,..., Yn be real linear spaces, let S be a nonempty subset of
X, and let CY1 ,..., CYn be convex cones in Y1,..., Yn, respectively.
Moreover, let for every player an objective map fi : S → Yi (for every
i ∈ {1, . . . , n}) be given. Every player tries to minimize its goal map
fi on S. But since they play exclusively cooperatively (and, therefore,
this concept differs from that introduced by John von Neumann), they
cannot hurt each other. In order to be able to introduce an optimality

concept, it is convenient to define the product space Y :=
n∏

i=1

Yi, the

product ordering cone C :=
n∏

i=1

CYi
and a map f : X → Y given by

f = (f1, . . . , fn). Then an element x̄ ∈ S is called a minimal solution
(or an Edgeworth-Pareto optimal solution), if x̄ is the inverse image of
a minimal element of the image set f(S). The product ordering allows
an adequate description of the cooperation because an element x ∈ S
is preferred, if it is preferred by all players. Hence, cooperative n
player games can be formulated as an abstract optimization problem.
In Chapter 10 special cooperative games, namely cooperative n player
differential games, are discussed in detail.

The following lemma indicates that the minimal elements of a set
S and the minimal elements of the set S + C where C denotes the
ordering cone are closely related.

Lemma 4.7. Let S be a nonempty subset of a partially ordered
linear space with an ordering cone C.

(a) If the ordering cone C is pointed, then every minimal element
of the set S + C is also a minimal element of the set S.

(b) Every minimal element of the set S is also a minimal element
of the set S + C.

Proof.

(a) Let x̄ ∈ S + C be an arbitrary minimal element of the set
S + C. If we assume that x̄ /∈ S, then there is an element
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x 6= x̄ with x ∈ S and x̄ ∈ {x} + C. Consequently, we get
x ∈ ({x̄}−C)∩ (S+C) which contradicts the assumption that
x̄ is a minimal element of the set S + C. Hence, we obtain
x̄ ∈ S ⊂ S + C and, therefore, x̄ is also a minimal element of
the set S.

(b) Take an arbitrary minimal element x̄ ∈ S of the set S, and
choose any x ∈ ({x̄} − C) ∩ (S + C). Then there are elements
s ∈ S and c ∈ C so that x = s + c. Consequently, we obtain
s = x− c ∈ {x̄}−C, and since x̄ is a minimal element of the set
S, we conclude s ∈ {x̄}+C. But then we get also x ∈ {x̄}+C.
This completes the proof.

2

In some situations one is interested in an element of a set which is
a lower bound of this set. Such an optimal element is called strongly
minimal.

Definition 4.8. Let S be a nonempty subset of a partially ordered
linear space with an ordering cone C.

(a) An element x̄ ∈ S is called a strongly minimal element of the
set S, if

S ⊂ {x̄} + C ( or: x̄ ≤C x for all x ∈ S)

(see Fig. 4.2).

(b) An element x̄ ∈ S is called a strongly maximal element of the
set S, if

S ⊂ {x̄} − C ( or: x ≤C x̄ for all x ∈ S) .

In terms of lattice theory a strongly minimal element of a set S is
also called zero element of S and a strongly maximal element of S is
said to be one element of the set S.

The notion of strong minimality is very restrictive and is often not
applicable in practice.
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Figure 4.2: Strongly minimal element of a set S.

Example 4.9. Under the assumptions of Example 4.3 we consider
again the set S := {x ∈ CX | T (x) + q ∈ CY }. Obviously, if q ∈ CY ,
then 0X is a strongly minimal element of the set S.

The next lemma which is easy to prove gives a relation between
strongly minimal and minimal elements of a set.

Lemma 4.10. Let S be a nonempty subset of a partially ordered
linear space. Then every strongly minimal element of the set S is also
a minimal element of S.

Another refinement of the minimality notion is helpful from a
theoretical point of view. These optima are called properly minimal.
Until now there are various types of concepts of proper minimality.
We present here a definition introduced by Borwein [34] and Vogel
[342] in more general spaces.

Definition 4.11. Let S be a nonempty subset of a real normed
space (X, ‖ · ‖) whose partial ordering is induced by a convex cone C.

(a) An element x̄ ∈ S is called a properly minimal element of the set
S, if x̄ is a minimal element of the set S and the zero element
0X is a minimal element of the contingent cone T (S+C, x̄) (see
Fig. 4.3).

(b) An element x̄ ∈ S is called a properly maximal element of the set
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S, if x̄ is a maximal element of the set S and the zero element
0X is a maximal element of the contingent cone T (S − C, x̄).
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Figure 4.3: Properly minimal element of a set S.

It is evident that a properly minimal element of a set S is also a
minimal element of S.

Finally, we come to an optimality notion which is weaker than all
the considered notions.

Definition 4.12. Let S be a nonempty subset of a partially or-
dered linear space X with an ordering cone C which has a nonempty
algebraic interior.

(a) An element x̄ ∈ S is called a weakly minimal element of the set
S, if ({x̄} − cor(C)) ∩ S = ∅ (see Fig. 4.4).

(b) An element x̄ ∈ S is called a weakly maximal element of the set
S, if ({x̄} + cor(C)) ∩ S = ∅.
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Figure 4.4: Weakly minimal element of a set S.

Notice that the notions “minimal” and “weakly minimal” are
closely related. Take an arbitrary weakly minimal element x̄ ∈ S
of the set S, that is ({x̄} − cor(C)) ∩ S = ∅. By Lemma 1.12, (a)
the set Ĉ := cor(C) ∪ {0X} is a convex cone and it induces another
partial ordering in X. Consequently, x̄ is also a minimal element of
the set S with respect to the partial ordering induced by Ĉ. But this
observation is not very helpful from a practical point of view because
a partial ordering induced by Ĉ leads to certain embarrassments (for
instance, Ĉ is never algebraically closed). The concept of weak min-
imality is of theoretical interest, and it is not an appropriate notion
for applied problems.

The next lemma is similar to Lemma 4.7.

Lemma 4.13. Let S be a nonempty subset of a partially ordered
linear space with an ordering cone C with a nonempty algebraic inte-
rior.

(a) Every weakly minimal element x̄ ∈ S of the set S + C is also a
weakly minimal element of the set S.

(b) Every weakly minimal element x̄ ∈ S of the set S is also a
weakly minimal element of the set S + C.

Proof.

(a) For an arbitrary weakly minimal element x̄ ∈ S of the set S+C
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we have

({x̄} − cor(C)) ∩ S ⊂ ({x̄} − cor(C)) ∩ (S + C) = ∅

which implies that x̄ is also a weakly minimal element of the set
S.

(b) Take any element x̄ ∈ S which is not a weakly minimal element
of the set S+C. Then there is an element x ∈ ({x̄}− cor(C))∩
(S + C) 6= ∅ and there is an s ∈ S with x̄ − x ∈ cor(C) and
x− s ∈ C. Consequently, we get with Lemma 1.12, (b)

x̄− s = x̄− x+ x− s ∈ cor(C) + C = cor(C)

or alternatively s ∈ ({x̄} − cor(C)) ∩ S. Hence, x̄ is not a
weakly minimal element of the set S, and the assertion follows
by contraposition.

2

With the next lemma we investigate again the connections be-
tween minimal and weakly minimal elements of a set.

Lemma 4.14. Let S be a nonempty subset of a partially or-
dered linear space X with an ordering cone C for which C 6= X and
cor(C) 6= ∅. Then every minimal element of the set S is also a weakly
minimal element of the set S.

Proof. The assumption C 6= X implies (−cor(C)) ∩ C = ∅.
Therefore, for an arbitrary minimal element x̄ of S it follows

∅ = ({x̄} − cor(C)) ∩ ({x̄} + C)

= ({x̄} − cor(C)) ∩ ({x̄} − C) ∩ S
= ({x̄} − cor(C)) ∩ S

which means that x̄ is also a weakly minimal element of S. 2

In general, the converse statement of Lemma 4.14 is not true. This
fact is illustrated by
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Example 4.15. Consider the set

S := {(x1, x2) ∈ [0, 2]×[0, 2] | x2 ≥ 1−
√

1 − (x1 − 1)2 for x1 ∈ [0, 1]}

in X := R2 (see Fig. 4.5) with the natural ordering cone C := R2
+.

There are no strongly minimal elements of the set S. The set M of
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Figure 4.5: Illustration of the set S in Example 4.15.

all minimal elements of S is given as

M = {(x1, 1 −
√

1 − (x1 − 1)2) | x1 ∈ [0, 1]}.

The set Mp of all properly minimal elements of S reads as

Mp = M\{(0, 1), (1, 0)},

and the set Mw of all weakly minimal elements of S is

Mw = M ∪ {(0, x2) ∈ R2 | x2 ∈ (1, 2]} ∪ {(x1, 0) ∈ R2 | x1 ∈ (1, 2]}.

Consequently, we have

Mp ⊂
6=
M ⊂

6=
Mw.
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Notes

In engineering a vector optimization problem (like the one discussed
in Example 4.5) is also called a multiobjective (or multi criteria or
Edgeworth-Pareto) optimization problem, in economics one speaks
also of a problem of multi criteria decision making, and sometimes the
term polyoptimization has been used. In the applied sciences Edge-
worth [94] and Pareto [268] were probably the first who introduced an
optimality concept for such problems (compare also the notes on page
311). In engineering and economics minimal or maximal elements of
a set are often called efficient (Vogel [342]), Edgeworth-Pareto opti-
mal (Stadler [311] and [314]) or nondominated (Yu [365]). Lemma
4.7 can also be found in the book of Vogel [342]. Strongly minimal
elements are also investigated by Craven [76] and others. The notions
of proper and weak minimality are especially qualified for the study
of a generalized multiplier rule (see the paper of Borwein [34] and the
book of Kirsch-Warth-Werner [188]).

The notion of proper minimality (or proper efficiency) was first
introduced by Kuhn-Tucker [204] and modified by Geoffrion [112],
and later it was formulated in a more general framework (Benson-
Morin [27], Borwein [34], Vogel [342], Wendell-Lee [350], Wierzbicki
[356], Hartley [129], Benson [26], Borwein [36], Nieuwenhuis [261],
Henig [131] and Zhuang [369]). The notion of proper minimality which
is used in this book is due to Borwein. Proper efficiency plays an
important role in the book of Kaliszewski [182] in a finite dimensional
setting.

In the following we shortly present other definitions of proper min-
imality introduced for infinite dimensional spaces.

(a) Benson [26] gave the following definition:

Let S be a nonempty subset of a partially ordered linear space
with an ordering cone C. An element x̄ ∈ S is called a properly
minimal element of the set S (in the sense of Benson), if x̄ is
a minimal element of the set S and the zero element 0X is a
minimal element of the set cl(cone(S + C − {x̄})).
If X is normed and S is starshaped at x̄, then by Corollary 3.46
T (S+C, x̄) = cl(cone(S+C−{x̄})) and the proper minimality
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notion of Borwein and Benson coincide.

(b) Wierzbicki [356], [358], [359] introduced a definition by using a
second larger cone:

Let S be a nonempty subset of a partially ordered real normed
space (X, ‖ · ‖) with an ordering cone C, and assume that the
cone

Cε := {x ∈ X | inf
x̃∈C

‖x− x̃‖ ≤ ε‖x‖}.

is convex. An element x̄ ∈ S is called a properly minimal ele-
ment of the set S (in the sense of Wierzbicki), if x̄ is a minimal
element of S with respect to the partial ordering induced by Cε.

Obviously, Cε is always a cone and C ⊂ Cε.

(c) Henig [131] used the same idea of enlarging the ordering cone
and presented the following concept:

Let S be a nonempty subset of a topological real linear space X
with an ordering cone C. An element x̄ ∈ S is called a properly
minimal element of the set S, if there is a convex cone C̃ ⊂ X
with C\{0X} ⊂ int(C̃) so that x̄ is a minimal element of S with
respect to the partial ordering induced by C̃.

(d) Zhuang [369] created another type of proper minimality:

Let S be a nonempty subset of a real normed space (X, ‖ · ‖)
with an ordering cone C. An element x̄ ∈ S is called super
efficient (properly minimal in the sense of Zhuang), if there is a
real number α > 0 so that for the closed unit ball B

cl(cone(S − {x̄})) ∩ (B − C) ⊂ αB.

Relationships between super efficiency and other optimality con-
cepts are shown in [369] (for additional work on super efficiency
see also [46]).



Chapter 5

Scalarization

In general, scalarization means the replacement of a vector optimiza-
tion problem by a suitable scalar optimization problem which is an
optimization problem with a real-valued objective functional. It is a
fundamental principle in vector optimization that optimal elements
of a subset of a partially ordered linear space can be characterized as
optimal solutions of certain scalar optimization problems. Since the
scalar optimization theory is widely developed scalarization turns out
to be of great importance for the vector optimization theory.

We present families of scalar problems which fully describe the set
of all optimal elements under suitable assumptions.

5.1 Necessary Conditions for Optimal

Elements of a Set

In this section various necessary conditions for minimal, strongly min-
imal, properly minimal and weakly minimal elements are presented.

Before we discuss the minimality notion we introduce important
monotonicity concepts.

Definition 5.1. Let S be a nonempty subset of a subset T of a
partially ordered linear space with an ordering cone C.

(a) A functional f : T → R is called monotonically increasing on
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S, if for every x̄ ∈ S

x ∈ ({x̄} − C) ∩ S =⇒ f(x) ≤ f(x̄)
(or : x ≤C x̄, x ∈ S =⇒ f(x) ≤ f(x̄)).

(b) A functional f : T → R is called strongly monotonically increas-
ing on S, if for every x̄ ∈ S

x ∈ ({x̄} − C) ∩ S, x 6= x̄ =⇒ f(x) < f(x̄)
(or : x ≤C x̄, x ∈ S, x 6= x̄ =⇒ f(x) < f(x̄)).

(c) If cor(C) 6= ∅, then a functional f : T → R is called strictly
monotonically increasing on S, if for every x̄ ∈ S

x ∈ ({x̄} − cor(C)) ∩ S =⇒ f(x) < f(x̄).

If cor(C) 6= ∅, then every functional which is strongly monotoni-
cally increasing on S is also strictly monotonically increasing on S.

Example 5.2.

(a) Let S be any subset of a partially ordered linear space X with
the ordering cone CX . Every linear functional l ∈ CX′ is mono-
tonically increasing on S. Furthermore, every linear functional
l ∈ C#

X′ is strongly monotonically increasing on S. If cor(CX) 6=
∅, then by Lemma 3.21, (b) every linear functional l∈CX′\{0X′}
is strictly monotonically increasing on S.

(b) Consider the real linear space Lp(Ω) where p ∈ [1,∞) and Ω
is a nonempty subset of Rn. If we assume that this space is
equipped with the natural ordering cone CLp(Ω) (compare Ex-
ample 1.51, (a)), then the Lp(Ω)-norm is strongly monotonically
increasing on CLp(Ω). For the real linear space L∞(Ω) we obtain
under the same assumptions that the L∞(Ω)-norm is strictly
monotonically increasing on CL∞(Ω) (see the proof in Example
6.14, (a)).

(c) Let (X, 〈., .〉) be a partially ordered Hilbert space with an or-
dering cone CX . Then the norm on X is strongly monotonically
increasing on CX if and only if CX ⊂ CX∗ .
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Proof. First, we assume that the inclusion CX ⊂ CX∗ does not
hold. Then there are elements x, y ∈ CX with 〈x, y〉 < 0. For
an arbitrary α ∈ (0, 1) define zα := x+αy. Obviously, zα ∈ CX

and x ∈ ({zα} − CX) ∩ CX . But then we get for a sufficiently
small α ∈ (0, 1)

‖zα‖2 = 〈x+ αy, x+ αy〉
= 〈x, x〉 + 2α〈x, y〉 + α2〈y, y〉
< ‖x‖2.

Hence, the norm ‖ · ‖ is not strongly monotonically increasing
on CX .

Now, we assume that the inclusion CX ⊂ CX∗ holds. Choose
arbitrary y ∈ CX and x ∈ ({y} − CX) ∩ CX with x 6= y. Since
y + x ∈ CX , y − x ∈ CX and CX ⊂ CX∗ , we conclude

‖y‖2 − ‖x‖2 = 〈y − x, y + x〉 ≥ O.

But this implies only the monotonicity of the norm on CX . For
the proof of the strong monotonicity assume that ‖x‖ = ‖y‖.
Because of the monotonicity of the norm on CX we have

‖x‖ ≤ ‖λx+ (1 − λ)y‖ ≤ ‖y‖ for all λ ∈ [0, 1].

With the assumption ‖x‖ = ‖y‖ we obtain

‖λx+ (1 − λ)y‖ = λ‖x‖ + (1 − λ)‖y‖ for all λ ∈ [0, 1].

If we square this equation we get 〈x, y〉 = ‖x‖‖y‖. This Cauchy-
Schwarz equality implies that there is a β > 0 with x = βy.
Since we assumed ‖x‖ = ‖y‖, in the case of x 6= 0X we get β = 1
and x = y, and in the case x = 0X we immediately obtain x = y.
But this contradicts the assumption x 6= y. Consequently, the
norm on X is strongly monotonically increasing on CX . 2

Now, we begin with the discussion of the minimality notion.

Theorem 5.3. Let S be a nonempty subset of a partially ordered
linear space X with a pointed, algebraically closed ordering cone C



118 Chapter 5. Scalarization

which has a nonempty algebraic interior. If x̄ ∈ S is a minimal
element of the set S, then for every x̂ ∈ {x̄}− cor(C) there is a norm
‖ · ‖ on X which is monotonically increasing on C with the property

1 = ‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

Proof. Take an arbitrary element x̂ ∈ {x̄} − cor(C). As in the
proof of Lemma 1.45, (b) we define a norm ‖·‖ onX by the Minkowski
functional

‖x‖ = inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ [x̂− x̄, x̄− x̂]

}

for all x ∈ X.

Then the order interval [x̂− x̄, x̄− x̂] is the closed unit ball. Since x̄
is assumed to be a minimal element of the set S, we conclude

[x̂− x̄, x̄− x̂] ∩ (S − {x̂}) = {x̄− x̂}

which implies

1 = ‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

Finally, with the same arguments used in the proof of Lemma 1.45,
(b) we obtain for all c ∈ C

x ∈ [0X , c] =⇒ ‖x‖ ≤ ‖c‖.

This means that the norm ‖ · ‖ is monotonically increasing on C. 2

The preceding theorem states that under suitable assumptions
every minimal element x̄ of a set S is a unique best approximation
from the set S to some element which is “strictly” less than x̄. Hence,
vector optimization problems lead to approximation problems.

A simpler necessary condition can be obtained, if the set S +C is
convex.

Theorem 5.4. Let S be a nonempty subset of a partially ordered
linear space X with a pointed nontrivial ordering cone CX . If the set
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S + CX is convex and has a nonempty algebraic interior, then for
every minimal element x̄ ∈ S of the set S there is a linear functional
l ∈ CX′\{0X′} with the property

l(x̄) ≤ l(x) for all x ∈ S.

Proof. If x̄ ∈ S is a minimal element of the set S, then by
Lemma 4.7, (b) x̄ is also a minimal element of the set S+CX , that is

({x̄} − CX) ∩ (S + CX) = {x̄}.

Since {x̄} − CX and S + CX are convex, cor(S + CX) 6= ∅ and
x̄ /∈ cor(S + CX), by the separation theorem 3.14 there are a lin-
ear functional l ∈ X ′\{0X′} and a real number α with

l(x̄− c1) ≤ α ≤ l(x+ c2) for all x ∈ S and all c1, c2 ∈ CX .

Since CX is a cone, we immediately obtain l ∈ CX′\{0X′}. Moreover,
we get with c1 = c2 = 0X

l(x̄) ≤ l(x) for all x ∈ S.

2

If we consider an abstract optimization problem as defined in Ex-
ample 4.5, the set S (in Theorem 5.4) equals the image set of the
objective map. Then, by Theorem 2.11, the assumption that S +CX

is convex is equivalent to the assumption that the objective map is
convex-like.

The result of Theorem 5.4 can also be interpreted in the following
way: Under the stated assumptions for every minimal element x̄ there
is a linear functional l ∈ CX′\{0X′} so that x̄ is a minimal solution of
the scalar optimization problem

min
x∈S

l(x).

With the following theorem we formulate a necessary and suf-
ficient condition with linear functionals but without the convexity
assumption of Theorem 5.4.
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Theorem 5.5. Let S be a nonempty subset of a partially ordered
locally convex linear space X with a pointed closed ordering cone CX .
An element x̄ ∈ S is a minimal element of the set S if and only
if for every x ∈ S\{x̄} there is a continuous linear functional l ∈
CX∗\{0X∗} with l(x̄) < l(x).

Proof. Let x̄ ∈ S be a minimal element of the set S, i.e. ({x̄} −
CX) ∩ S = {x̄}. This set equation can also be interpreted in the
following way:

x /∈ {x̄} − CX for all x ∈ S\{x̄}. (5.1)

Since CX is closed and convex, the set {x̄}−CX is closed and convex as
well, and with Theorem 3.18 the statement (5.1) is equivalent to: For
every x ∈ S\{x̄} there is a continuous linear functional l ∈ CX∗\{0X∗}
with l(x̄) < l(x). 2

Roughly speaking, by Theorem 5.5 x̄ is a minimal element of S
if and only if CX∗\{0X∗} separates x̄ from every other element in S.
Theorem 5.5 is actually not a scalarization result. But with the same
arguments we get a scalarization result for strongly minimal elements
which is similar to that of Theorem 5.5.

Theorem 5.6. Let S be a nonempty subset of a partially ordered
locally convex linear space X with a closed ordering cone CX . An
element x̄ ∈ S is a strongly minimal element of the set S if and only
if for every l ∈ CX∗

l(x̄) ≤ l(x) for all x ∈ S.

Proof. Let x̄ ∈ S be a strongly minimal element of the set S,
i.e.

S ⊂ {x̄} + CX . (5.2)

Since CX is a closed convex cone and X is locally convex, by Lemma
3.21, (a)

CX = {x ∈ X | l(x) ≥ 0 for all l ∈ CX∗}.
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Hence, the inclusion (5.2) is equivalent to

S − {x̄} ⊂ {x ∈ X | l(x) ≥ 0 for all l ∈ CX∗}

which can also be interpreted in the following way: For every x ∈ S
it follows

l(x̄) ≤ l(x) for all l ∈ CX∗ .

2

Notice that we do not need any convexity assumption in Theorem
5.6. Thus, a strongly minimal element is a minimal solution for a
whole class of scalar optimization problems. This shows that this
optimality notion is indeed very strong.

Next, we turn our attention to the notion of proper minimality.

Theorem 5.7. Let S be a nonempty subset of a partially ordered
normed space (X, ‖·‖X) with an ordering cone CX which has a weakly
compact base. For some x̄ ∈ S let cone(T (S +CX , x̄)∪ (S − {x̄})) be
weakly closed. If x̄ is a properly minimal element of the set S, then
for every x̂ ∈ {x̄} − CX , x̂ 6= x̄, there is an (additional) continuous
norm ‖ · ‖ on X which is strongly monotonically increasing on CX

and which has the property

1 = ‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

Proof. The proof of this theorem is rather technical and, there-
fore, a short overview is given first in order to examine the geometry.
In part (1) it is shown that the base of the convex cone −CX and
the cone C generated by the set T (S + CX , x̄) ∪ (S − {x̄}) have a
positive “distance” ε. This allows us to construct another cone Ĉ in
the second part which is “larger” than the ordering cone CX but for
which (−Ĉ) ∩ C = {0X}. It can be shown that Ĉ is convex, closed,
pointed and that it has a nonempty interior. In part (3) we define
the desired norm ‖ · ‖ as the Minkowski functional with respect to an
appropriate order interval. Moreover, in part (4) several properties of
the norm are proved. Notice for the following proof that the ordering
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cone CX is pointed because it has a base (compare Lemma 3.3 and
Lemma 1.27, (b)).

(1) In the following let B denote the weakly compact base of the
ordering cone CX and let C denote the cone generated by T (S+
CX , x̄) ∪ (S − {x̄}), i.e.

C := cone(T (S + CX , x̄) ∪ (S − {x̄})).

Since B is weakly compact and for every x ∈ C the functional
‖x − ·‖X : X → R is weakly lower semicontinuous, for every
x ∈ C the scalar optimization problem

inf
y∈−B

‖x− y‖X

is solvable, i.e., there is a y(x) ∈ −B with the property that

‖x− y(x)‖X ≤ ‖x− y‖X for all y ∈ −B.

Next, we consider the scalar optimization problem

ε := inf
x∈C

‖x− y(x)‖X .

If we assume ε = 0, then there is an infimal net

(‖xi − y(xi)‖X)i∈I → 0 with xi ∈ C for all i ∈ I. (5.3)

Since B is weakly compact and C is weakly closed, the set C+B
is weakly closed, and the condition (5.3) implies

0X ∈ cl(C +B) ⊂ cl(C +B)σ(X,X∗) = C +B. (5.4)

x̄ is assumed to be a properly minimal element of the set S.
Consequently, 0X is a minimal element of the contingent cone
T (S+CX , x̄) and a minimal element of the set S−{x̄}, and we
obtain

{0X} = (−CX) ∩ T (S + CX , x̄) ∪ (−CX) ∩ (S − {x̄})
= (−CX) ∩ (T (S + CX , x̄) ∪ (S − {x̄}))



5.1. Necessary Conditions for Optimal Elements of a Set 123

and

{0X} = (−CX) ∩ cone(T (S + CX , x̄) ∪ (S − {x̄}))
⊃ (−B) ∩ C.

Since 0X /∈ B, we conclude (−B)∩C = ∅ which contradicts the
condition (5.4). Thus we get

0 < ε = inf
x∈C

inf
y∈−B

‖x− y‖X ,

i.e., the sets C and −B have a positive “distance” ε.

(2) Now, we “separate” the sets −B and C by a cone −Ĉ. Since
the base B is weakly compact and 0X /∈ B we obtain

0 < δ := inf
y∈B

‖y‖X .

For β := min{ ε
2
, δ

2
} > 0 we define the set U := B + N(0X , β)

(N(0X , β) denotes the closed ball around 0X with radius β). It is
evident that U is a convex set. Consequently, the cone generated
by U and its closure Ĉ := cl(cone(U)) is a convex cone. By
definition, this cone has a nonempty topological interior. In
order to see that Ĉ is pointed we investigate the cone C̃ :=
cone(B + N(0X ,

3
2
β)) which is a superset of Ĉ. If we assume

that there is an x̃ ∈ (−C̃) ∩ C̃ with x̃ 6= 0X , then there are a
λ > 0 and an x ∈ B + N(0X ,

3
2
β) with x̃ = λx. Because of

−x̃ = λ(−x) ∈ C̃ we obtain for some µ > 0

−µx ∈ B +N
(

0X ,
3

2
β
)

.

Hence, x and −µx are elements of the convex set B+N(0X ,
3
2
β)

which implies 0X ∈ B +N(0X ,
3
2
β). But this is a contradiction

to the choice of β ≤ δ
2
. Consequently, C̃ is pointed and with

Ĉ ⊂ C̃ the cone Ĉ is pointed as well.

(3) Next, we choose an arbitrary x̂ ∈ {x̄} − CX with x̂ 6= x̄ and we
define the order interval (with respect to the partial ordering
induced by Ĉ)

[x̂− x̄, x̄− x̂] := ({x̂− x̄} + Ĉ) ∩ ({x̄− x̂} − Ĉ).
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Because of the construction of Ĉ and the set U the element
x̄− x̂ belongs to the interior of Ĉ. Furthermore, Ĉ is closed and
pointed. Consequently, the Minkowski functional ‖ · ‖ : X → R
given by

‖x‖ := inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ [x̂− x̄, x̄− x̂]

}

for all x ∈ X

is a norm on X and

[x̂− x̄, x̄− x̂] = {x ∈ X | ‖x‖ ≤ 1}. (5.5)

(4) We have to show several properties of the norm ‖ · ‖. Since
0X belongs to the topological interior of the order interval [x̂−
x̄, x̄− x̂], there is an α > 0 with

N(0X , α) ⊂ [x̂− x̄, x̄− x̂]

which implies with (5.5)

‖x‖ ≤ α‖x‖X for all x ∈ X.

With this inequality it follows

∣
∣
∣‖x‖ − ‖y‖

∣
∣
∣ ≤ ‖x− y‖ ≤ α‖x− y‖X for all x, y ∈ X.

Hence, the norm ‖ · ‖ is continuous.

In order to see that the norm ‖ · ‖ is strongly monotonically
increasing on CX , observe that the norm is monotonically in-
creasing (with respect to Ĉ) on Ĉ, i.e.

x̃ ∈ Ĉ, x ∈ ({x̃} − Ĉ) ∩ Ĉ =⇒ ‖x‖ ≤ ‖x̃‖.

For every x̃ ∈ CX ⊂ Ĉ and every x ∈ ({x̃} − (CX\{0X})) ∩ CX

we have with CX\{0X} ⊂ int(Ĉ)

‖x‖ < ‖x̃‖.

Hence, ‖ · ‖ is strongly monotonically increasing on CX .
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Finally, we prove that x̄ is a unique solution of a certain ap-
proximation problem. Since x̄− x̂ belongs to the closure of the
unit ball, we obtain ‖x̄− x̂‖ = 1. Furthermore, we assert that

(−Ĉ) ∩ C = {0X}. (5.6)

Because of the construction of the set U and the choice of β ≤
ε
2

for every x ∈ C\{0X} there is an η > 0 with N(x, η) ∩
cone(U) = ∅ which implies x /∈ cl(cone(U)) = Ĉ. Hence, (−Ĉ)∩
(C\{0X}) = ∅ and the set equality (5.6) is evident. Moreover,
with (5.6) and (5.5) we conclude

[x̂− x̄, x̄− x̂] ∩ ({x̄− x̂} + C) = {x̄− x̂}

and

1 = ‖x̄− x̂‖ < ‖x̄− x̂+ x‖ for all x ∈ C\{0X}.

Since S − {x̄} ⊂ C, we get

1 = ‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

This completes the proof.

2

In the preceding theorem the ordering cone CX is assumed to have
a weakly compact base. Then CX is necessarily nontrivial, pointed
and closed. With the following lemmas we give sufficient conditions
under which various assumptions of Theorem 5.7 are fulfilled.

Lemma 5.8. Let (X, ‖·‖X) be a partially ordered reflexive Banach
space with a nontrivial closed ordering cone CX . The ordering cone
CX has a weakly compact base if and only if there is a continuous
linear functional l ∈ C#

X∗ so that the set {x ∈ CX | l(x) = 1} is
bounded.

Proof. This lemma is a consequence of Lemma 3.3 (the conti-
nuity of l can be obtained with Lemma 3.15) and the fact that X is
reflexive. 2
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Lemma 5.9. Let S be a nonempty subset of a partially ordered
normed space (X, ‖ · ‖X) with an ordering cone CX . If the set S+CX

is starshaped at some x̄ ∈ S and the contingent cone T (S + CX , x̄)
is weakly closed, then cone(T (S + CX , x̄) ∪ (S − {x̄})) is also weakly
closed.

Proof. Since the set S+CX is starshaped at x̄, we conclude with
Theorem 3.43

S − {x̄} ⊂ S + CX − {x̄} ⊂ T (S + CX , x̄).

Hence, we obtain

cone(T (S+CX , x̄)∪ (S−{x̄})) = cone(T (S+CX , x̄)) = T (S+CX , x̄)

which leads to the assertion. 2

Lemma 5.10. Let S be a nonempty subset of a partially ordered
normed space (X, ‖ · ‖X) with an ordering cone CX . If the set S+CX

is convex, then for every x̄ ∈ S the set cone(T (S+CX , x̄)∪(S−{x̄}))
is weakly closed.

Proof. The contingent cone T (S+CX , x̄) is closed (by Theorem
3.45) and also convex because of the convexity of the set S + CX

(see Theorem 3.47). Consequently, by Theorem 3.24 the contingent
cone T (S +CX , x̄) is weakly closed. Thus, the assertion follows from
Lemma 5.9. 2

The last lemma shows that the assumptions of Theorem 5.7 can
be reduced, if the set S+CX is convex. But in this case a scalarization
result which uses certain linear functionals is more interesting.

Theorem 5.11. Let S be a nonempty subset of a partially or-
dered normed space X where the topology gives X as the topological
dual space of X∗, and let CX be a closed ordering cone in X with
int(CX∗) 6= ∅. If the set S + CX is convex, then for every properly
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minimal element x̄ ∈ S of the set S there is a continuous linear func-
tional l ∈ C#

X∗ with the property

l(x̄) ≤ l(x) for all x ∈ S.

Proof. If x̄ ∈ S is a properly minimal element of the set S,
then the zero element 0X is a minimal element of the contingent cone
T (S + CX , x̄), i.e. (with Lemmas 3.21, (d) and 1.27, (b))

(−CX) ∩ T (S + CX , x̄) = {0X}. (5.7)

Since the set S + CX is convex, cone(S + CX − {x̄}) is also convex
and by Lemma 1.32 the closure cl(cone(S + CX − {x̄})) is convex as
well. By Theorem 3.43 and Theorem 3.44 we get T (S + CX , x̄) =
cl(cone(S+CX −{x̄})) which is convex. Then, by Theorem 3.22, the
set equation (5.7) is equivalent to the existence of a continuous linear
functional l ∈ X∗\{0X∗} with

l(−c) ≤ 0 ≤ l(t) for all c ∈ CX and all t ∈ T (S + CX , x̄) (5.8)

and
l(c) > 0 for all c ∈ CX\{0X}. (5.9)

With the inequality (5.9) we conclude l ∈ C#
X∗ . By Theorem 3.43 we

obtain further

S − {x̄} ⊂ S + CX − {x̄} ⊂ T (S + CX , x̄),

and, therefore, we get from the inequality (5.8)

l(x̄) ≤ l(x) for all x ∈ S.

2

The preceding theorem is comparable with Theorem 5.4 and The-
orem 5.6. But now the linear functional l belongs to the quasi-interior
of the dual ordering cone.

Finally, we present two necessary conditions for weakly minimal
elements.
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Theorem 5.12. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone C which has a nonempty alge-
braic interior. If x̄ ∈ S is a weakly minimal element of the set S,
then for every x̂ ∈ {x̄}− cor(C) there is a seminorm ‖ · ‖ on X which
is strictly monotonically increasing on cor(C) with the property

1 = ‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S.

Proof. Pick any element x̂ ∈ {x̄} − cor(C). As in the proof of
Lemma 1.45, (a) we define a seminorm ‖ · ‖ on X by the Minkowski
functional

‖x‖ = inf
λ>0

{

λ
∣
∣
∣

1

λ
x ∈ [x̂− x̄, x̄− x̂]

}

for all x ∈ X.

Then

cor([x̂− x̄, x̄− x̂]) = {x ∈ X | ‖x‖ < 1},
and since x̄ is weakly minimal, we have

{x ∈ X | ‖x‖ < 1} ∩ (S − {x̂}) = ∅

which implies

1 ≤ ‖x− x̂‖ for all x ∈ S.

x̄ − x̂ belongs to the algebraic boundary of the order interval [x̂ −
x̄, x̄− x̂] and, therefore, ‖x̄− x̂‖ = 1. With the same arguments as in
Lemma 1.45, (a) we conclude for all c ∈ cor(C)

x ∈ cor([0X , c]) =⇒ ‖x‖ < ‖c‖

which means that the seminorm ‖ ·‖ is strictly monotonically increas-
ing on cor(C). 2

It can be expected that for the weak minimality notion a special
scalarization result can be formulated under a convexity assumption
as well. This is done in
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Theorem 5.13. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone CX which has a nonempty alge-
braic interior. If the set S + CX is convex, then for every weakly
minimal element x̄ ∈ S of the set S there is a linear functional
l ∈ CX′\{0X′} with the property

l(x̄) ≤ l(x) for all x ∈ S.

Proof. Let x̄ ∈ S be a weakly minimal element of the set S.
By Lemma 4.13, (b) x̄ is also a weakly minimal element of the set
S+CX , i.e. ({x̄}− cor(CX))∩ (S+CX) = ∅. With Theorem 3.14 this
set equation implies that there are a linear functional l ∈ X ′\{0X′}
and a real number α with

l(x̄− c1) ≤ α ≤ l(s+ c2) for all c1 ∈ CX , s ∈ S and c2 ∈ CX .

Since CX is a cone, we get l ∈ CX′\{0X′} and the assertion is obvious.
2

In this section we presented mainly two types of scalarization re-
sults: a nonconvex version via approximation problems (Theorem 5.3,
5.7, 5.12) and a (in general) convex version with the aid of linear func-
tionals (Theorem 5.4, 5.11, 5.13). Only Theorem 5.5 and Theorem
5.6 are scalarization results with linear functionals without assuming
that the set S + C is convex.

5.2 Sufficient Conditions for Optimal

Elements of a Set

It is the aim of this section to investigate under which assumptions
the necessary conditions presented in Section 5.1 are also sufficient
for optimal elements of a set. We begin our discussion with the min-
imality notion.

Lemma 5.14. Let S be a nonempty subset of a partially ordered
linear space with a pointed ordering cone C. Moreover, let f : S → R
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be a given functional, and let an element x̄ ∈ S be given with the
property

f(x̄) ≤ f(x) for all x ∈ S. (5.10)

(a) If the functional f is monotonically increasing on S and if x̄ is
uniquely determined by (5.10), then x̄ is a minimal element of
the set S.

(b) If the functional f is strongly monotonically increasing on S,
then x̄ is a minimal element of the set S.

Proof. For the proof of both parts we assume that x̄ is not a
minimal element of the set S. Then there is an element x ∈ ({x̄}−C)∩
S with x 6= x̄. This implies f(x) ≤ f(x̄) in part (a) which contradicts
the unique solvability of the considered scalar optimization problem.
In part (b) we obtain f(x) < f(x̄) which is a contradiction to the
minimality of f at x̄. 2

Next, we apply Lemma 5.14 to a special class of functionals f ,
namely certain seminorms and linear functionals.

Theorem 5.15. Let S be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone C. Moreover, let ‖ · ‖ be
a seminorm on X, and let elements x̂ ∈ X and x̄ ∈ S with

S ⊂ {x̂} + C (5.11)

and

‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S

be given.

(a) If the seminorm ‖ · ‖ is monotonically increasing on C and if x̄
is the unique best approximation from the set S to x̄, then x̄ is
a minimal element of the set S.

(b) If the seminorm ‖ · ‖ is strongly monotonically increasing on C,
then x̄ is a minimal element of the set S.
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Proof. We prove only part (a) of the assertion. The proof of the
other part is similar. In order to be able to apply Lemma 5.14, (a)
we show the monotonicity of the functional ‖ · −x̂‖ on S. For every
s̄ ∈ S we obtain with the inclusion (5.11)

({s̄} − C) ∩ S ⊂ ({s̄} − C) ∩ ({x̂} + C) = [x̂, s̄] = {x̂} + [0X , s̄− x̂].

Consequently, we have for every x ∈ ({s̄} − C) ∩ S

x− x̂ ∈ [0X , s̄− x̂].

Hence, we conclude because of the monotonicity of the seminorm ‖ · ‖
on C

‖x− x̂‖ ≤ ‖s̄− x̂‖.
Consequently, the functional ‖ · −x̂‖ is monotonically increasing on
S. This completes the proof. 2

Theorem 5.3 and Theorem 5.15, (a) lead to a characterization of
minimal elements of a set.

Corollary 5.16. Let S be a nonempty subset of a partially ordered
linear space X with a pointed, algebraically closed ordering cone C
which has a nonempty algebraic interior. Moreover, let an element
x̂ ∈ X with S ⊂ {x̂} + cor(C) be given. An element x̄ ∈ S is a
minimal element of the set S if and only if there is a norm ‖ · ‖ on
X which is monotonically increasing on C with the property

‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

If the set S has no lower bound x̂, i.e., the inclusion (5.11) is not
fulfilled, approximation problems are still qualified for the determi-
nation of minimal elements of the set S (this idea is due to Rolewicz
[289]).

Theorem 5.17. Let S be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone C. Moreover, let a semi-
norm ‖ · ‖ on X and an element x̃ ∈ S be given so that for some
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x̄ ∈ S ∩ ({x̃} − C)

‖x̄− x̃‖ ≥ ‖x− x̃‖ for all x ∈ S ∩ ({x̃} − C). (5.12)

(a) If the seminorm ‖ · ‖ is monotonically increasing on C and if
x̄ is uniquely determined by the inequality (5.12), then x̄ is a
minimal element of the set S.

(b) If the seminorm ‖ · ‖ is strongly monotonically increasing on C,
then x̄ is a minimal element of the set S.

Proof. We proof only part (a) of this theorem. First, we show
that the functional −‖ · −x̃‖ is monotonically increasing on {x̃} −C.
For that purpose we take any arbitrary ȳ ∈ {x̃} − C and choose any

x ∈ ({ȳ} − C) ∩ ({x̃} − C) = {ȳ} − C.

Then we have x̃− x ∈ {x̃− ȳ}+C and x̃− ȳ ∈ {x̃− x}−C. But we
also have x̃ − ȳ ∈ C. Because of the monotonicity of the seminorm
on C we obtain

‖x̃− ȳ‖ ≤ ‖x̃− x‖
implying

−‖ȳ − x̃‖ ≥ −‖x− x̃‖.
Then Lemma 5.14, (a) is applicable and x̄ is a minimal element of the
set S ∩ ({x̃} − C), i.e.

({x̄} − C) ∩ S ∩ ({x̃} − C) = {x̄}.

Finally, the inclusion ({x̄} − C) ∩ S ⊂ {x̃} − C leads to

({x̄} − C) ∩ S = {x̄},

i.e., x̄ is a minimal element of the set S. 2

Notice that in Theorem 5.15 we have to determine a minimal “dis-
tance” between x̂ and the set S whereas in Theorem 5.17 a maximal
“distance” between x̃ and elements in the set S ∩ ({x̃}−C) has to be
determined.
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Now, we study certain linear functionals.

Theorem 5.18. Let S be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone CX .

(a) If there are a linear functional l ∈ CX′ and an element x̄ ∈ S
with

l(x̄) < l(x) for all x ∈ S\{x̄},
then x̄ is a minimal element of the set S.

(b) If there are a linear functional l ∈ C#
X′ and an element x̄ ∈ S

with
l(x̄) ≤ l(x) for all x ∈ S,

then x̄ is a minimal element of the set S.

Proof. The proof follows directly from Lemma 5.14 and the
remark in Example 5.2, (a). 2

Notice that the Krein-Rutman theorem 3.38 gives conditions un-
der which the set C#

X∗ is nonempty. If we compare Theorem 5.4 and
Theorem 5.18 we see that one cannot prove the sufficiency of the
necessary condition formulated in Theorem 5.4. Hence, one cannot
present a complete characterization like Corollary 5.16 for linear func-
tionals instead of norms.

Since we already characterized strongly minimal elements of a set
in Theorem 5.6, we study now the proper minimality notion.

Theorem 5.19. Let S be a nonempty subset of a partially ordered
normed space (X, ‖ · ‖X) with a pointed ordering cone C which has a
nonempty algebraic interior. Let ‖ · ‖ be any (additional) continuous
norm on X which is strongly monotonically increasing on C. More-
over, let an element x̂ ∈ X with S ⊂ {x̂} + cor(C) be given. If there
is an element x̄ ∈ S with the property

‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S, (5.13)

then x̄ is a properly minimal element of the set S.
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Proof. Since the norm ‖ · ‖ is strongly monotonically increasing
on C and S − {x̂} ⊂ cor(C), by Lemma 5.14, (b) x̄ is a minimal
element of the set S. Next, we prove that 0X is a minimal element of
the contingent cone T (S + C, x̄).

Since the norm ‖ · ‖ is assumed to be strongly monotonically in-
creasing on C, we obtain from (5.13)

‖x̄− x̂‖ ≤ ‖x− x̂‖ ≤ ‖x+ c− x̂‖ for all x ∈ S and all c ∈ C

resulting in

‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S + C. (5.14)

It is evident that the functional ‖·−x̂‖ is both convex and continuous
in the topology generated by the norm ‖ · ‖X . Then by Theorem 3.48,
(a) the inequality (5.14) implies

‖x̄− x̂‖ ≤ ‖x̄− x̂+ h‖ for all h ∈ T (S + C, x̄). (5.15)

With T := T (S + C, x̄) ∩ ({x̂ − x̄} + C) the inequality (5.15) is also
true for all h ∈ T , and by Lemma 5.14, (b) 0X is a minimal element
of the set T .

Now, we assume that 0X is not a minimal element of the contingent
cone T (S + C, x̄). Then there is an x ∈ (−C) ∩ T (S + C, x̄) with
x 6= 0X . Because of the inclusion S ⊂ {x̂} + cor(C) there is a λ > 0
with λx ∈ {x̂− x̄} + C. Consequently, we get

λx ∈ (−C) ∩ T (S + C, x̄) ∩ ({x̂− x̄} + C)

and, therefore, we have λx ∈ (−C)∩T which contradicts the fact that
0X is a minimal element of the set T . Hence, 0X is a minimal element
of the contingent cone T (S + C, x̄), and the assertion is obvious. 2

In Theorem 5.7 we do not need the assumptions cor(C) 6= ∅ and
x̂ ∈ {x̄} − cor(C) which play an important role in Theorem 5.19. On
the other hand in Theorem 5.19 it is not required that x̄ is uniquely
determined by the inequality (5.13). With Theorem 5.7 and Theo-
rem 5.19 we get immediately a characterization of properly minimal
elements.
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Corollary 5.20. Let S be a nonempty subset of a partially or-
dered normed space (X, ‖ · ‖X) with an ordering cone C which has a
nonempty algebraic interior and a weakly compact base. Moreover, let
an element x̂ ∈ X with S ⊂ {x̂}+cor(C) be given, and for some x̄ ∈ S
let the set cone(T (S +C, x̄) ∪ (S − {x̄})) be weakly closed. Then x̄ is
a properly minimal element of the set S if and only if there is an (ad-
ditional) continuous norm ‖ · ‖ on X which is strongly monotonically
increasing on C and which has the property

1 = ‖x̄− x̂‖ < ‖x− x̂‖ for all x ∈ S\{x̄}.

In the preceding corollary we assume that the ordering cone C
has a nonempty algebraic interior and a weakly compact base. Then
by Lemma 1.45, (c) there is an (additional) norm ‖ · ‖ on X so that
the real normed space (X, ‖ · ‖) is also reflexive. This shows that the
assumptions of Corollary 5.20 are very restrictive.

Another sufficient condition for properly minimal elements is given
by

Theorem 5.21. Let S be a nonempty subset of a partially or-
dered normed space X with a pointed ordering cone CX which has
a nonempty quasi-interior C#

X∗ of the topological dual ordering cone.
If there are a continuous linear functional l ∈ C#

X∗ and an element
x̄ ∈ S with the property

l(x̄) ≤ l(x) for all x ∈ S, (5.16)

then x̄ is a properly minimal element of the set S.

Proof. With Theorem 5.18, (b) we conclude that x̄ is a min-
imal element of the set S. Take any tangent h ∈ T (S + CX , x̄).
Then there are a sequence (xn)n∈N of elements in S + CX and a
sequence (λn)n∈N of positive real numbers with x̄ = lim

n→∞
xn and

h = lim
n→∞

λn(xn− x̄). The linear functional l is continuous and, there-

fore, we get l(x̄) = lim
n→∞

l(xn). Since the functional l is also strongly



136 Chapter 5. Scalarization

monotonically increasing on X, the inequality (5.16) implies

l(x̄) ≤ l(x) for all x ∈ S + CX .

Then it follows

l(h) = lim
n→∞

l(λn(xn − x̄))

= lim
n→∞

λn(l(xn) − l(x̄))

≥ 0.

Hence, we obtain

0 ≤ l(h) for all h ∈ T (S + CX , x̄).

Consequently, by Theorem 5.18, (b) 0X is a minimal element of the
contingent cone T (S + CX , x̄). This completes the proof. 2

With Theorem 5.11 and Theorem 5.21 we are able to formulate
the following characterization of properly minimal elements under a
convexity assumption.

Corollary 5.22. Let S be a nonempty subset of a partially or-
dered normed space X where the topology gives X as the topological
dual space of X∗, and let CX be a closed ordering cone in X with
int(CX∗) 6= ∅. Moreover, let the set S + CX be convex. An element
x̄ ∈ S is a properly minimal element of the set S if and only if there
is a continuous linear functional l ∈ C#

X∗ with the property

l(x̄) ≤ l(x) for all x ∈ S.

Notice that by Lemma 3.21, (d) we have int(CX∗) = C#
X∗ under

the assumptions of Corollary 5.22. Even though the characterization
result in Corollary 5.22 is very important for the theory in the follow-
ing sections, the assumptions are very restrictive and, therefore, we
modify the notion of proper minimality.

Definition 5.23. Let S be a nonempty subset of a partially or-
dered topological linear space X with an ordering cone CX which has
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a nonempty quasi-interior C#
X∗ of the topological dual ordering cone.

An element x̄ ∈ S is called an almost properly minimal element of the
set S, if there is a linear functional l ∈ C#

X∗ with the property

l(x̄) ≤ l(x) for all x ∈ S.

Recall that, by the Krein-Rutman theorem 3.38, in a partially
ordered separable normed space (X, ‖ · ‖) with a closed and pointed
ordering cone CX the set C#

X∗ is nonempty. Obviously, under the
assumptions of Corollary 5.22 the notions “properly minimal” and
“almost properly minimal” coincide. Moreover, by Theorem 5.18, (b)
every almost properly minimal element is a minimal element as well.

Finally, we turn our attention to the weak minimality notion. For
the following results we need a basic lemma.

Lemma 5.24. Let S be a nonempty subset of a partially ordered
linear space with an ordering cone C which has a nonempty algebraic
interior. Moreover, let f : S → R be a given functional which is
strictly monotonically increasing on S. If there is an element x̄ ∈ S
with the property

f(x̄) ≤ f(x) for all x ∈ S,

then x̄ is a weakly minimal element of the set S.

Proof. If x̄ ∈ S is not a weakly minimal element of the set S,
then we have f(x) < f(x̄) for some x ∈ ({x̄} − cor(C)) ∩ S which is
a contradiction to the minimality of f at x̄. 2

Theorem 5.25. Let S be a nonempty subset of a partially or-
dered linear space X with an ordering cone C which has a nonempty
algebraic interior. Moreover, let ‖ · ‖ be a seminorm on X which is
strictly monotonically increasing on C, and let an element x̂ ∈ X
with S ⊂ {x̂} + C be given. If there is an element x̄ ∈ S with

‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S,
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then x̄ is a weakly minimal element of the set S.

Proof. The proof of this theorem is analogous to the proof of
Theorem 5.15. 2

With Theorem 5.12 and Theorem 5.25 we get the following char-
acterization of weakly minimal elements of a set.

Corollary 5.26. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone C which has a nonempty alge-
braic interior. Moreover, let an element x̂ ∈ X with S ⊂ {x̂}+cor(C)
be given. An element x̄ ∈ S is a weakly minimal element of the set
S if and only if there is a seminorm ‖ · ‖ on X which is strictly
monotonically increasing on cor(C) with the property

‖x̄− x̂‖ ≤ ‖x− x̂‖ for all x ∈ S.

In contrast to Corollary 5.16 concerning minimal elements we do
not require in Corollary 5.26 that x̄ is a unique best approximation
to x̂ from S. For the following result we do not need the assumption
that a “strict” lower bound x̂ exists.

Theorem 5.27. Let S be a nonempty subset of a partially or-
dered linear space X with an ordering cone C which has a nonempty
algebraic interior. Moreover, let an element x̃ ∈ S and a seminorm
‖ · ‖ on X be given which is strictly monotonically increasing on C.
If there is an element x̄ ∈ S with the property

‖x̄− x̃‖ ≥ ‖x− x̃‖ for all x ∈ S ∩ ({x̃} − C),

then x̄ is a weakly minimal element of the set S.

The proof of Theorem 5.27 is similar to that of Theorem 5.17. The
next theorem is evident using Lemma 5.24.

Theorem 5.28. Let S be a nonempty subset of a partially or-
dered linear space X with an ordering cone CX which has a nonempty
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algebraic interior. If for some x̄ ∈ S there is a linear functional
l ∈ CX′\{0X′} with the property

l(x̄) ≤ l(x) for all x ∈ S,

then x̄ is a weakly minimal element of the set S.

Although we cannot formulate a complete characterization of min-
imal elements with the aid of linear functionals (compare Theorem 5.4
and Theorem 5.18), this can be done for weakly minimal elements.

Corollary 5.29. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone CX which has a nonempty al-
gebraic interior. Moreover, let the set S +CX be convex. An element
x̄ ∈ S is a weakly minimal element of the set S if and only if there is
a linear functional l ∈ CX′\{0X′} with the property

l(x̄) ≤ l(x) for all x ∈ S.

The preceding corollary follows from Theorem 5.13 and Theorem
5.28.

5.3 Parametric Approximation

Problems

The results on norm scalarization presented in the two preceding sec-
tions are now extended. We introduce special parametric norms for
scalarization which can be used for a complete characterization of
minimal and weakly minimal elements in the general nonconvex case.
The only assumption formulated is that the considered set has a strict
lower bound. It turns out that these parametric norms are well-known
norms in special cases arising in applications.

The parametric norms are introduced as follows:

Definition 5.30. Let Y be a real topological linear space partially
ordered by a closed pointed convex cone C with a nonempty interior
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int(C). For every a ∈ int(C) let ‖·‖a denote the Minkowski functional
of the order interval [−a, a], i.e.

‖y‖a := inf
{

λ > 0
∣
∣
∣

1

λ
y ∈ [−a, a]

}

for all y ∈ Y.

Since a belongs to the interior of the closed pointed convex cone C,
the order interval [−a, a] is an absolutely convex and absorbing (i.e.,
0Y ∈ cor([−a, a])) set which is algebraically bounded. Therefore, the
Minkowski functional of the order interval [−a, a] is indeed a norm
for every a ∈ int(C) (see [140]). Consequently, the parametric norm
is well defined and we have

[−a, a] = {y ∈ Y | ‖y‖a ≤ 1} for all a ∈ int(C) (5.17)

([140, p. 40]). In other words: The parametric norm ‖ · ‖a is chosen
in such a way that its unit ball equals the order interval [−a, a].

The following result gives a complete characterization of minimal
and weakly minimal elements with the aid of the parametric norm
‖ · ‖a. This theorem clarifies the relationship between vector opti-
mization and approximation theory.

Theorem 5.31. Let S be a nonempty subset of a real topological
linear space Y partially ordered by a closed pointed convex cone C
with a nonempty interior int(C). Moreover, let an element ŷ ∈ Y be
given with the property

S ⊂ {ŷ} + int(C). (5.18)

(a) An element ȳ ∈ S is a minimal element of the set S if and only
if there is an element a ∈ int(C) so that

‖ȳ − ŷ‖a < ‖y − ŷ‖a for all y ∈ S\{ȳ} (5.19)

(see Fig. 5.1).

(b) An element ȳ ∈ S is a weakly minimal element of the set S if
and only if there is an element a ∈ int(C) so that

‖ȳ − ŷ‖a ≤ ‖y − ŷ‖a for all y ∈ S. (5.20)
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Figure 5.1: Illustration of the result in Thm. 5.31, (a).

Proof. Let an arbitrary ŷ ∈ Y with the property (5.18) be
chosen.

(a) If ȳ is a minimal element of the set S, then we have

({ȳ} − C) ∩ S = {ȳ}

implying

({ȳ − ŷ} − C) ∩ (S − {ŷ}) = {ȳ − ŷ}. (5.21)

With the inclusion (5.18) we obtain ŷ − ȳ ∈ −int(C) and we
conclude that

S − {ŷ} ⊂ int(C) ⊂ {ŷ − ȳ} + int(C) ⊂ {ŷ − ȳ} + C. (5.22)

Consequently, the set equation (5.21) implies

({ŷ − ȳ} + C) ∩ ({ȳ − ŷ} − C) ∩ (S − {ŷ}) = {ȳ − ŷ}

and
[−(ȳ − ŷ), ȳ − ŷ] ∩ (S − {ŷ}) = {ȳ − ŷ}. (5.23)

If we notice the set equation (5.17), then (5.23) is equivalent to
the inequality (5.19) for a := ȳ − ŷ.

For the converse implication let for an arbitrary a ∈ int(C) a
solution ȳ ∈ S of the inequality (5.19) be given, and assume
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that ȳ is not a minimal element of the set S. Then there is a
y 6= ȳ with y ∈ ({ȳ} − C) ∩ S. Consequently, we have

y − ŷ ∈ {ȳ − ŷ} − C

which implies that

‖y − ŷ‖a ≤ ‖ȳ − ŷ‖a

by the definition of the parametric norm ‖ · ‖a. But this is a
contradiction to the inequality (5.19).

(b) Assume that ȳ is a weakly minimal element of the set S. Then
the set equation

({ȳ} − int(C)) ∩ S = ∅

is satisfied, and with (5.22) we get

({ŷ − ȳ} + int(C)) ∩ ({ȳ − ŷ} − int(C)) ∩ (S − {ŷ}) = ∅

and
int([−(ȳ − ŷ), ȳ − ŷ]) ∩ (S − {ŷ}) = ∅.

But this set equation implies

{y ∈ Y | ‖y‖a < 1} ∩ (S − {ŷ}) = ∅

for a := ȳ − ŷ. Hence, the inequality (5.20) is satisfied.

Finally, we prove the converse statement. Let an arbitrary a ∈
int(C) be given, and assume that a ȳ ∈ S solves the inequality
(5.20) which is not a weakly minimal element of the set S. Then
there is a

y ∈ ({ȳ} − int(C)) ∩ S,
and we get

y − ŷ ∈ {ȳ − ŷ} − int(C).

By the definition of the parametric norm ‖ · ‖a this implies that

‖y − ŷ‖a < ‖ȳ − ŷ‖a

which contradicts the inequality (5.20). 2
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Notice that by Theorem 5.31 every minimal and weakly minimal
element of a set can be characterized as a solution of a certain approx-
imation problem with a parametric norm. This result is even true for
a nonconvex set. The only requirement formulated by the inclusion
(5.18) says that the set S must have a strictly lower bound ŷ.

In the following lemmas we point out that the parametric norm
‖ · ‖a is well-known in special spaces.

Lemma 5.32. Let the linear space Rn be partially ordered in a
componentwise sense. Then for every vector a ∈ Rn with positive
components the parametric norm ‖ · ‖a is given as

‖y‖a = max
1≤i≤n

{ |yi|
ai

}

for all y ∈ Rn.

Proof. The proof of this lemma is obvious with the equation
(5.17), if we notice that for every a ∈ Rn with positive components
we have

[−a, a] = {y ∈ Rn | |yi| ≤ ai for all i ∈ {1, . . . , n}}.

2

The parametric norm in Lemma 5.32 is the weighted maximum
norm (or the weighted Chebyshev norm). A similar result is obtained
in the space of continuous functions.

Lemma 5.33. Let the linear space Cn([t0, t1]) (linear space of
continuous functions defined on [t0, t1] with 0 < t0 < t1 < ∞ and
having values in Rn) be equipped with the usual maximum norm and
partially ordered by the natural ordering cone

C :={y∈Cn([t0, t1]) | yi(t)≥0 for all t∈ [t0, t1] and all i∈{1, . . . , n}}.

Then for every function a ∈ Cn([t0, t1]) with

ai(t) > 0 for all t ∈ [t0, t1] and all i ∈ {1, . . . , n}



144 Chapter 5. Scalarization

the parametric norm ‖ · ‖a is given as

‖y‖a = max
t∈[t0,t1]

1≤i≤n

{ |yi(t)|
ai(t)

}

for all y ∈ Cn([t0, t1]).

Proof. Let a ∈ Cn([t0, t1]) be an arbitrary function which is
componentwise and pointwise positive. Then we get

[−a, a] = {y ∈ Cn([t0, t1]) | |yi(t)| ≤ ai(t)

for all t ∈ [t0, t1] and all i ∈ {1, . . . , n}},

and the assertion is obvious with the equation (5.17). 2

The next lemma shows that in the space of continuous linear op-
erators the parametric norm equals the weighted operator norm.

Lemma 5.34. Let (X, 〈·, ·〉) be a real Hilbert space, let B(X,X)
denote the linear space of continuous linear operators T : X → X,
and let the linear space

Y := {T ∈ B(X,X) | T is self-adjoint}

be given which is equipped with the operator norm ‖ · ‖ given as

‖T‖ = sup
x6=0X

{ |〈Tx, x〉|
〈x, x〉

}

for all T ∈ Y

and partially ordered by the natural ordering cone

C := {T ∈ Y | 〈Tx, x〉 ≥ 0 for all x ∈ X}.

Then for every positive definite operator A ∈ Y the parametric norm
‖ · ‖A is given as

‖T‖A = sup
x6=0X

{ |〈Tx, x〉|
〈Ax, x〉

}

for all T ∈ Y.
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Proof. For this proof we remark only that for every positive
definite operator A ∈ Y we obtain

[−A,A] = {T ∈ Y | |〈Tx, x〉| ≤ 〈Ax, x〉 for all x ∈ X}.

Then the assertion follows from the equation (5.17). 2

Using the preceding lemmas we can specialize the formulation of
Theorem 5.31 for concrete applications. First we present a result for
a multiobjective optimization problem.

Corollary 5.35. Let M be a nonempty set, and let f : M → Rn

be a given vector function. The linear space Rn is assumed to be
partially ordered in a componentwise sense. Assume that there is a
ŷ ∈ Rn with the property that

ŷi < fi(x) for all x ∈M and all i ∈ {1, . . . , n}.

(a) A vector x̄ ∈ M is a minimal solution of the multiobjective
optimization problem min

x∈M
f(x) (i.e., f(x̄) is a minimal element

of f(M)) if and only if there are positive real numbers a1, . . . , an

so that

max
1≤i≤n

{fi(x̄) − ŷi

ai

}

< max
1≤i≤n

{fi(x) − ŷi

ai

}

for all x ∈M with f(x) 6= f(x̄).

(b) A vector x̄ ∈ M is a weakly minimal solution of the multi-
objective optimization problem min

x∈M
f(x) (i.e., f(x̄) is a weakly

minimal element of f(M)) if and only if there are positive real
numbers a1, . . . , an so that

max
1≤i≤n

{fi(x̄) − ŷi

ai

}

≤ max
1≤i≤n

{fi(x) − ŷi

ai

}

for all x ∈M.

Proof. This corollary is a direct consequence of Theorem 5.31
and Lemma 5.32. 2
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Hence, optimal solutions of a general multiobjective optimization
problem can be characterized as solutions of certain Chebyshev ap-
proximation problems. This result is even true for nonconvex prob-
lems, if the objective functions f1, . . . , fn have a lower bound.

A well-known problem in statistics is the problem of the determi-
nation of minimal covariance matrices. In this context we consider
covariance operators defined on a real Hilbert space.

Corollary 5.36. Let the assumptions in Lemma 5.34 be satisfied,
and let S (set of covariance operators) be an arbitrary subset of Y
for which S ⊂ C.

(a) A covariance operator T̄ ∈ S is a minimal element of the set S
if and only if there is a positive definite operator A ∈ Y (i.e.,
there is an α > 0 with 〈Ax, x〉 ≥ α〈x, x〉 for all x ∈ X) so that

sup
x6=0X

{〈(T̄ + I)x, x〉
〈Ax, x〉

}

< sup
x6=0X

{〈(T + I)x, x〉
〈Ax, x〉

}

for all T ∈ S with T 6= T̄

(I denotes the identity operator).

(b) A covariance operator T̄ ∈ S is a weakly minimal element of the
set S if and only if there is a positive definite operator A ∈ Y
(i.e., there is an α > 0 with 〈Ax, x〉 ≥ α〈x, x〉 for all x ∈ X) so
that

sup
x6=0X

{〈(T̄ + I)x, x〉
〈Ax, x〉

}

≤ sup
x6=0X

{〈(T + I)x, x〉
〈Ax, x〉

}

for all T ∈ S

(I denotes the identity operator).

Proof. The cone C is pointed, convex, closed, and it has a
nonempty interior. This interior consists exactly of all positive defi-
nite operators of Y . Since S ⊂ C and I ∈ int(C), we conclude that

S − {−I} = S + {I} ⊂ C + int(C) = int(C).

Hence, the inclusion (5.18) is fulfilled for ŷ := −I. With Theorem
5.31 and Lemma 5.34 we then obtain the desired result. 2
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Since, in general, covariance matrices are positive semidefinite, the
inclusion S ⊂ C is always satisfied in this case. Therefore, it makes
sense to assume that S ⊂ C.

It is important to note that Corollary 5.36 is valid without any
assumption on the set S of covariance operators. Therefore, this result
is of practical interest. In the case of covariance matrices, it is known
from statistics that every covariance matrix which has the smallest
trace or for which its maximal eigenvalue is uniquely the smallest,
is a minimal covariance matrix. This is one possibility in order to
determine at least one minimal covariance matrix. With Corollary
5.36 we know that every minimal covariance matrix can be obtained
by determining the matrix for which the sum with the identity matrix
has a uniquely smallest weighted spectral norm.

Notes

Example 5.2, (c) is taken from a paper of Rolewicz [289] where the
mentioned inclusion CX ⊂ CX∗ is given by Wierzbicki [355]. Theorem
5.4 is perhaps the oldest necessary condition for minimal elements
(e.g., compare Arrow-Barankin-Blackwell [8], Karlin [185], Dinkel-
bach [87], Fandel [104], Vogel [342]). Theorem 5.3 and Theorem 5.12
extend a result given by Wierzbicki [356], [357], [358] for so-called or-
der preserving and order presenting functionals (compare also a paper
of Vogel [343] for convex problems). The necessary conditions which
are given with the aid of approximation problems can also be found
in the papers of Jahn [156], [157]. Theorem 5.11 is due to Borwein
[34].

Theorem 5.18 presents probably the best-known sufficient con-
dition for minimal elements (e.g., see Arrow-Barankin-Blackwell [8],
Hurwicz [142], Dinkelbach [87], Fandel [104] and Vogel [342]). The re-
sults of the second section are based on the papers of Jahn [156], [157].
Theorem 5.15, (b) also generalizes corresponding results of Rolewicz
[289] and Vogel [343]. For Y = Rn and the natural ordering cone
approximation problems (like these in the second section) are also
investigated by Dinkelbach [88], Salukvadze [294], Dinkelbach-Dürr
[89], Huang [141], Yu [364], Yu-Leitmann [366], Gearhart [110] and
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others. In the case of X = Rn and C = Rn
+ one can show that in

Corollary 5.16 the norm is actually a weighted Chebyshev norm (com-
pare the papers of Steuer-Choo [323] and Jahn [155]). The sufficiency
condition for properly minimal elements formulated in Theorem 5.19
generalizes a corresponding result of Dinkelbach-Dürr [89] in the case
of X = Rn and C = Rn

+. A similar abstract result is shown by Vo-
gel [343] under assumptions on C which are hard to check. Theorem
5.21 and Corollary 5.22 are taken from a paper of Borwein [34]. An
overview on the results of this chapter applied to vector optimization
problems in Operations Research is given in a paper of Jahn [158]
(compare also Section 11.2). Scalarization results for the notion of
proper minimality are also studied by Henig [131], [132] and Zhuang
[369].

The results of Section 5.3 are based on investigations of Jahn in
[161] (see also [163]). A result similar to Corollary 5.35 can also
be found in papers of Bowman [49] and Steuer-Choo [323]. Related
results on Chebyshev approximation were obtained by Dinkelbach
[88], Dinkelbach-Dürr [89], Yu [364], Yu-Leitmann [366] and Gearhart
[110]. The problem of the determination of minimal covariance ma-
trices was already investigated by Vogel [342].

Another well-known scalarization approach which is not discussed
in this book, is given by Pascoletti and Serafini [269] (see also [308]).
This theory is described in detail by Eichfelder [98]. A similar scalar-
ization theory has been independently developed by Tammer (Gerste-
witz) [113] (see also Tammer(Gerth)-Weidner [115]). This approach
also works in a general setting.



Chapter 6

Existence Theorems

In this chapter we study assumptions which guarantee that at least
one optimal element of a subset of a partially ordered linear space
exists. These investigations will be done for the minimality, proper
minimality and weak minimality notions. Strongly minimal elements
are not considered because this optimality notion is too restrictive.

Zorn’s lemma is the most important result which provides a suffi-
cient condition for the existence of a minimal element of a set. Recall
that we already used this lemma in order to prove some special exis-
tence results. From Lemma 3.5 and Zorn’s lemma it follows that the
set of sublinear functionals partially ordered in the natural way has
minimal elements. This fact is used in the proof of the basic version
of the Hahn-Banach theorem. Moreover, recall the proof of Lemma
3.3 where we show that a base of a cone is contained in a maximal
linear manifold which does not contain the zero element. This is also
a consequence of Zorn’s lemma.

In order to get existence results under weak assumptions on a set
we introduce the following

Definition 6.1. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone C. If for some x ∈ X the set
Sx = ({x} − C) ∩ S is nonempty, Sx is called a section of the set S
(see Fig. 6.1).

The assertion of the following lemma is evident.

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               
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Figure 6.1: Section Sx of a set S.

Lemma 6.2. Let S be a nonempty subset of a partially ordered
linear space X with an ordering cone C.

(a) Every minimal element of a section of the set S is also a mini-
mal element of the set S.

(b) If cor(C) 6= ∅, then every weakly minimal element of a section
of the set S is also a weakly minimal element of the set S.

It is important to remark that for the notion of proper minimality
a similar statement is not true in general.

We begin now with a discussion of the minimality notion. The
following existence result is a consequence of Zorn’s lemma.

Theorem 6.3. Let S be a nonempty subset of a partially ordered
topological linear space X with a closed ordering cone C. Then we
have:

(a) If the set S has a closed section which has a lower bound and the
ordering cone C is Daniell, then there is at least one minimal
element of the set S.

(b) If the set S has a closed and bounded section and the ordering
cone C is Daniell and boundedly order complete, then there is
at least one minimal element of the set S.

(c) If the set S has a compact section, then there is at least one
minimal element of the set S.
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Proof. Let Sx (for some x ∈ X) be an appropriate section of
the set S. If we show that the section Sx is inductively ordered from
below, then by Zorn’s lemma (Lemma 3.2) Sx has at least one minimal
element which is, by Lemma 6.2, (a), also a minimal element of the
set S.

Let {si}i∈I be any totally ordered subset of the section Sx. Let
F denote the set of all finite subsets of I which are partially ordered
with respect to the set theoretical inclusion. Then for every F ∈ F
the minimum

xF := min {si | i ∈ F}
exists and belongs to Sx. Consequently, (xF )F∈F is a decreasing net
in Sx. Next, we consider several cases.

(a) Sx is assumed to have a lower bound so that (xF )F∈F has an
infimum. Since Sx is closed and C is Daniell, (xF )F∈F converges
to its infimum which belongs to Sx. This implies that Sx is
inductively ordered from below.

(b) Since Sx is bounded and C is boundedly order complete, the
net (xF )F∈F has an infimum. The ordering cone C is Daniell
and, therefore, (xF )F∈F converges to its infimum. And since Sx

is closed, this infimum belongs to Sx. Hence, Sx is inductively
ordered from below.

(c) Now, Sx is assumed to be compact. The family of compact
subsets Ssi

(i ∈ I) has the finite intersection property, i.e., ev-
ery finite subfamily has a nonempty intersection. Since Sx is
compact, the family of subsets Ssi

(i ∈ I) has a nonempty in-
tersection (see Dunford-Schwartz [91, p. 17]), that is, there is
an element

x̂ ∈
⋂

i∈I

Ssi
=
⋂

i∈I

({si} − C) ∩ Sx.

Hence, x̂ is a lower bound of the subset {si}i∈I and belongs to
Sx. Consequently, the section Sx is inductively ordered from
below.

2
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Notice that the preceding theorem remains valid, if “section” is
replaced by the set itself.

Example 6.4. We consider again the problem formulated in Ex-
ample 4.3. Let X and Y be partially ordered topological linear spaces
with the closed ordering cones CX and CY where CY is also assumed to
be Daniell. Moreover, let T : X → Y be a continuous linear map and
let q ∈ Y be given so that the set S := {x ∈ CX | T (x) + q ∈ CY } is
nonempty. Clearly the set S is closed and has a lower bound (namely
0X). Then by Theorem 6.3, (a) the set S has at least one minimal
element.

The next result follows from Theorem 6.3, (c) and the James the-
orem.

Theorem 6.5. Let S be a nonempty subset of a real locally convex
space X.

(a) If S is weakly compact, then for every closed convex cone C in
X the set S has at least one minimal element with respect to the
partial ordering induced by C.

(b) In addition, let X be quasi-complete. If S is bounded and weakly
closed and for every closed convex cone C in X the set S has
at least one minimal element with respect to the partial ordering
induced by C, then S is weakly compact.

Proof.

(a) By Lemma 3.24 every closed convex cone C is also weakly closed.
Since S is weakly compact, then by Theorem 6.3, (c) S has at
least one minimal element with respect to the partial ordering
induced by C.

(b) It is evident that the functional 0X∗ attains its supremum on
the set S. Therefore, take an arbitrary continuous linear func-
tional l ∈ X∗\{0X∗} (if it exists) and define the set C := {x ∈
X | l(x) ≤ 0} which is a closed convex cone. Let x̄ ∈ S be a
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minimal element of the set S with respect to the partial ordering
induced by C, i.e.

({x̄} − C) ∩ S ⊂ {x̄} + C. (6.1)

Since
{x̄} − C = {x ∈ X | l(x) ≥ l(x̄)}

and
{x̄} + C = {x ∈ X | l(x) ≤ l(x̄)},

the inclusion (6.1) is equivalent to the implication

x ∈ S, l(x) ≥ l(x̄) =⇒ l(x) = l(x̄).

This implication can also be written as

l(x̄) ≥ l(x) for all x ∈ S.

This means that the functional l attains its supremum on S at
x̄. Then by the James theorem (Theorem 3.27) the set S is
weakly compact.

2

The preceding theorem shows that the weak compactness assump-
tion on a set plays an important role for the existence of minimal el-
ements. This theorem is immediately applicable to a closed unit ball
of a Banach space.

Corollary 6.6. A real Banach space is reflexive if and only if the
closed unit ball has at least one minimal element with respect to every
partial ordering induced by a closed convex cone.

Proof. The assertion is a direct consequence of Theorem 6.5,
if we observe that a real Banach space is reflexive if and only if the
closed unit ball is weakly compact (see Lemma 1.41). 2

Corollary 6.6 presents an interesting characterization of the reflex-
ivity of Banach spaces where the reflexivity is related to the existence
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of certain minimal elements. Recall that in Theorem 3.36, (a) the
reflexivity of a Banach space is already characterized by the existence
of a solution of certain approximation problems. Hence, there is a
close connection between these two types of characterization.

Next, we study existence theorems which follow from scalarization
results presented in Section 5.2.

Theorem 6.7. Assume that either assumption (a) or assumption
(b) below holds:

(a) Let S be a nonempty subset of a partially ordered normed space
(X, ‖·‖X) with a pointed ordering cone C, and let X be the topo-
logical dual space of a real normed space (Y, ‖ · ‖Y ). Moreover,
for some x ∈ X let a weak*-closed section Sx be given.

(b) Let S be a nonempty subset of a partially ordered reflexive Ba-
nach space (X, ‖ · ‖X) with a pointed ordering cone C. Further-
more, for some x ∈ X let a weakly closed section Sx be given.

If, in addition, the section Sx has a lower bound x̂ ∈ X, i.e. Sx ⊂
{x̂}+C, and the norm ‖ · ‖X is strongly monotonically increasing on
C, then the set S has at least one minimal element.

Proof. If the assumption (a) is satisfied, then by Theorem 3.34
the section Sx is proximinal. On the other hand, if the assumption
(b) is satisfied, then by Corollary 3.35 the section Sx is proximinal as
well. Consequently, there is an x̄ ∈ Sx with

‖x̄− x̂‖X ≤ ‖s− x̂‖X for all s ∈ Sx.

Since the norm ‖ · ‖X is strongly monotonically increasing on C, by
Theorem 5.15, (b) x̄ is a minimal element of Sx. Finally, an application
of Lemma 6.2, (a) completes the proof. 2

Example 6.8.

(a) As in Example 5.2, (b) we consider again the real linear space
Lp(Ω) where p ∈ (1,∞) and Ω is a nonempty subset of Rn.
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Assume that this space is partially ordered in a natural way
(compare Example 1.51, (a)). We know from Example 5.2, (b)
that the Lp(Ω)-norm is strongly monotonically increasing on the
ordering cone. Consequently, by Theorem 6.7 every subset of
Lp(Ω) which has a weakly closed section bounded from below
has at least one minimal element.

(b) Let S be a nonempty subset of a partially ordered Hilbert space
(X, 〈., .〉) with an ordering cone CX which has the property
CX ⊂ CX∗ (see Example 5.2, (c)). If S has a weakly closed
section bounded from below, then S has at least one minimal
element.

For the minimality notion a scalarization result concerning pos-
itive linear functionals leads to an existence theorem which is con-
tained in Theorem 6.5, (a). But for the proper minimality notion
such a scalarization result is helpful.

Theorem 6.9. Every weakly compact subset of a partially ordered
separable normed space with a closed pointed ordering cone has at
least one properly minimal element.

Proof. By a Krein-Rutman theorem (Theorem 3.38) the quasi-
interior of the topological dual cone is nonempty. Then every con-
tinuous linear functional which belongs to that quasi-interior attains
its infimum on a weakly compact set, and Theorem 5.21 leads to the
assertion. 2

A further existence theorem for properly minimal elements is given
by

Theorem 6.10. Assume that either assumption (a) or assumption
(b) below holds:

(a) Let S be a nonempty subset of a partially ordered normed space
(X, ‖·‖X) with a pointed ordering cone C which has a nonempty
algebraic interior, and let X be the topological dual space of a
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real normed space (Y, ‖ · ‖Y ). Moreover, let the set S be weak*-
closed.

(b) Let S be a nonempty subset of a partially ordered reflexive Ba-
nach space (X, ‖ · ‖X) with a pointed ordering cone C which has
a nonempty algebraic interior. Furthermore, let the set S be
weakly closed.

If, in addition, there is an x̂ ∈ X with S ⊂ {x̂} + cor(C) and the
norm ‖ · ‖X is strongly monotonically increasing on C, then the set S
has at least one properly minimal element.

Proof. The proof is similar to that of Theorem 6.7 where we use
now the scalarization result in Theorem 5.19. 2

Example 6.11. Let S be a nonempty subset of a partially or-
dered Hilbert space (X, 〈., .〉) with an ordering cone CX which has a
nonempty algebraic interior and for which CX ⊂ CX∗ (compare Ex-
ample 5.2, (c)). If S is weakly closed and there is an x̂ ∈ X with
S ⊂ {x̂}+ cor(CX), then the set S has at least one properly minimal
element.

Finally, we turn our attention to the weak minimality notion. Us-
ing Lemma 4.14 we can easily extend the existence theorems for min-
imal elements to weakly minimal elements, if we assume additionally
that the ordering cone C ⊂ X does not equal X and that it has a
nonempty algebraic interior. This is one possibility in order to get
existence results for the weak minimality notion. In the following
theorems we use directly appropriate scalarization results for this op-
timality notion.

Theorem 6.12. Let S be a nonempty subset of a partially ordered
locally convex space X with a closed ordering cone CX 6= X which has
a nonempty algebraic interior. If S has a weakly compact section,
then the set S has at least one weakly minimal element.

Proof. Since the ordering cone CX is closed and does not equal
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X, there is at least one continuous linear functional l ∈ CX∗\{0X∗}
(compare Theorem 3.18). This functional attains its infimum on a
weakly compact section of S which is, by Theorem 5.28, a weakly
minimal element of this section. An application of Lemma 6.2, (b)
completes the proof. 2

Notice that Theorem 6.12 could also be proved using Theorem 6.5,
(a) and Lemma 4.14.

Theorem 6.13. Assume that either assumption (a) or assumption
(b) below holds:

(a) Let S be a nonempty subset of a partially ordered normed space
(X, ‖ · ‖X) with an ordering cone C which has a nonempty al-
gebraic interior, and let X be the topological dual space of a
real normed space (Y, ‖ · ‖Y ). Moreover, for some x ∈ X let a
weak*-closed section Sx be given.

(b) Let S be a nonempty subset of a partially ordered reflexive Ba-
nach space (X, ‖ · ‖X) with an ordering cone C which has a
nonempty algebraic interior. Furthermore, for some x ∈ X let
a weakly closed section Sx be given.

If, in addition, the section Sx has a lower bound x̂ ∈ X, i.e. Sx ⊂
{x̂} + C, and the norm ‖ · ‖X is strictly monotonically increasing on
C, then the set S has at least one weakly minimal element.

Proof. The proof is similar to that of Theorem 6.7 where we
now use the scalarization result in Theorem 5.25. 2

Example 6.14.

(a) Let S be a nonempty subset of L∞(Ω) (compare Example 1.51,
(b)) which is assumed to be partially ordered in the natural
way. If the set S has a weak*-closed section bounded from
below, then S has at least one weakly minimal element.

Proof. If we consider the linear space L∞(Ω) as the topological
dual space of L1(Ω), then the assertion follows from Theorem
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6.13, if we show that the norm ‖·‖L∞(Ω) is strictly monotonically
increasing on the ordering cone C. It is evident that

int(C) = {f ∈L∞(Ω) | there is an α>0 with

f(x)≥α almost everywhere on Ω} 6= ∅.

By Lemma 1.32, (a) int(C) equals the algebraic interior of C.
Take any functions f, g ∈ C with f ∈ {g} − int(C). Then we
have g − f ∈ int(C) which implies that there is an α > 0 with

g(x) − f(x) ≥ α almost everywhere on Ω

and
g(x) ≥ α+ f(x) almost everywhere on Ω.

Consequently, we get

ess sup
x∈Ω

{g(x)} ≥ α+ ess sup
x∈Ω

{f(x)}

and
‖g‖L∞(Ω) > ‖f‖L∞(Ω).

Hence, the norm ‖ · ‖L∞(Ω) is strictly monotonically increasing
on C. 2

(b) Let C(Ω) be the partially ordered linear space of real-valued
continuous functions on a compact Hausdorff space Ω with the
natural ordering cone and the maximum norm (compare Exam-
ple 1.49). If S is a nonempty subset of C(Ω) which has a weakly
closed section in a reflexive subspace of C(Ω) and a lower bound
in this subspace, then the set S has at least one weakly minimal
element.

Proof. As in the proof of part (a) one can show that the max-
imum norm is strictly monotonically increasing on the ordering
cone. Then the assertion follows from Theorem 6.13. 2
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Notes

Theorem 6.3, Theorem 6.5 and Corollary 6.6 are due to Borwein [41].
But it should be mentioned that Theorem 6.3, (c) was first proved by
Vogel [342] and Theorem 6.3, (a) can essentially be found, without
proof, in a survey article of Penot [272]. For further existence re-
sults we refer to the papers of Bishop-Phelps [30] (for the Bishop and
Phelps lemma see also Holmes [140, p. 164]), Cesari-Suryanarayana
[57], [58], [59], Corley [70], Isac [145] and Chew [66]. Example 6.4 is
also discussed by Borwein [41]. The application of certain scalariza-
tion results in order to get existence theorems is also described in a
paper of Jahn [159].

In functional analysis existence theorems play an important role
for the proof of known results like Ekeland’s variational principle (see
Ekeland [100], Ekeland-Temam [101, p. 29–30] and Borwein [41, p.
72]). For further information we cite the papers of Phelps [274] and
the thesis of Landes [215].

Next, we give a short presentation of some of the results of Bishop-
Phelps [30]:

(a) Let (X, ‖ · ‖) be a real normed space, let l ∈ X∗ be an arbitrary
continuous linear functional, and let an arbitrary γ ∈ (0, 1) be
given. Then the cone

C(l, γ) := {x ∈ X | γ‖x‖ ≤ l(x)}

is called Bishop-Phelps cone.

Notice that this cone is convex and pointed and, therefore, it
can be used as an ordering cone in the space X.

(b) The following Bishop-Phelps lemma is a special type of an ex-
istence result for maximal elements:

Let S be a nonempty closed subset of a real Banach space (X,
‖ · ‖X), and let a continuous linear functional l ∈ X∗ be given
with ‖l‖X∗ = 1 and sup

x∈S
l(x) < ∞. Then for every x ∈ S and

every γ ∈ (0, 1) there is a maximal element x̄ ∈ {x} + C(l, γ)
of the set S with respect to the Bishop-Phelps ordering cone
C(l, γ).
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(c) The so-called Bishop-Phelps theorem is an important conse-
quence of this lemma:

Let S be a nonempty closed bounded and convex subset of a
real Banach space (X, ‖·‖). Then the set of support functionals
of S is dense in X∗.

Finally, we present Ekeland’s variational principle which is also a
consequence of a special existence argument for minimal elements:

Let (X, d) be a complete metric space, and let ϕ : X → R ∪ {+∞}
be a lower semicontinuous function bounded from below. Moreover,
let some ε > 0 and some x̄ ∈ X be arbitrarily given where

ϕ(x̄) ≤ inf
x∈X

ϕ(x) + ε.

Then there is an x̂ ∈ X with

ϕ(x̂) ≤ ϕ(x̄),

d(x̄, x̂) ≤ 1

and
ϕ(x) − ϕ(x̂) > −εd(x, x̂) for all x ∈ X\{x̂}.

It was shown by Landes [215] that Ekeland’s variational principle is
closely related with the Bishop-Phelps lemma: Both results can be
deduced from a Brézis-Browder theorem [51].



Chapter 7

Generalized Lagrange
Multiplier Rule

In this chapter we present a generalization of the famous and well-
known Lagrange multiplier rule published in 1797. Originally, La-
grange formulated his rule for the optimization of a real-valued func-
tion under side-conditions in the form of equalities. In this context we
investigate an abstract optimization problem (introduced in Example
4.5) with equality and inequality constraints. For this problem we de-
rive a generalized multiplier rule as a necessary optimality condition
and we show under which assumptions this multiplier rule is also suf-
ficient for optimality. The results are also applied to multiobjective
optimization problems.

7.1 Necessary Conditions for Minimal

and Weakly Minimal Elements

The derivation of necessary optimality conditions for minimal and
weakly minimal elements can be restricted to the weak minimality
notion. If the ordering cone does not equal the whole space and if
it has a nonempty algebraic interior, then, by Lemma 4.14, every
minimal element of a set is also a weakly minimal element of this
set. Hence, under this assumption a necessary condition for weakly
minimal elements is a necessary condition for minimal elements as
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well.
In this section we derive the generalized multiplier rule for Fréchet

differentiable maps, although this can be done for more general dif-
ferentiability notions. For an extensive presentation of these gener-
alizations the reader is referred to the book of Kirsch-Warth-Werner
[188].

The standard assumption for this section reads as follows:

Let (X, ‖ · ‖X) and (Z2, ‖ · ‖Z2) be real Banach spaces;
let (Y, ‖ · ‖Y ) and (Z1, ‖ · ‖Z1) be partially ordered
normed spaces;
let CY and CZ1 denote the ordering cones in Y and Z1,
respectively, which are assumed to have a nonempty
interior;

let Ŝ be a nonempty convex subset of X which has a
nonempty interior;
let f : X → Y , g : X → Z1 and h : X → Z2 be given
maps.







(7.1)

Under this assumption we define the constraint set

S := {x ∈ Ŝ | g(x) ∈ −CZ1 and h(x) = 0Z2}

(which is assumed to be nonempty) and we consider the abstract op-
timization problem

min
x∈S

f(x). (7.2)

The map f is also called the objective map. As indicated in Example
4.5 we define a solution of the problem (7.2) in the following way:

Definition 7.1. Let the abstract optimization problem (7.2) be
given under the assumption (7.1).

(a) An element x̄ ∈ S is called a minimal solution of the problem
(7.2), if f(x̄) is a minimal element of the image set f(S).

(b) An element x̄ ∈ S is called a weakly minimal solution of the
problem (7.2), if f(x̄) is a weakly minimal element of the image
set f(S).
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In order to obtain a necessary condition for a weakly minimal
solution of the abstract optimization problem (7.2), we need a basic
lemma on contingent cones.

Lemma 7.2. Let (X, ‖ · ‖X) be a real normed space, and let (Y,
‖ · ‖Y ) be a partially ordered normed space with an ordering cone CY

which has a nonempty interior. Moreover, let S be a nonempty subset
of X and let a map r : X → Y be given. If the map r is Fréchet
differentiable at some x̄ ∈ S with r(x̄) ∈ −CY , then

{h ∈ T (S, x̄) | r(x̄) + r′(x̄)(h) ∈ −int(CY )}
⊂ T ({x ∈ S | r(x) ∈ −int(CY )}, x̄)

(where T (., .) denotes the contingent cone introduced in Definition
3.41).

Proof. We choose an arbitrary h ∈ T (S, x̄) with the property
r(x̄) + r′(x̄)(h) ∈ −int(CY ). For h = 0X the assertion is trivial.
Therefore, we assume that h 6= 0X . Then there is a sequence (xn)n∈N

of elements xn ∈ S and a sequence (λn)n∈N of positive real numbers
λn so that

x̄ = lim
n→∞

xn

and

h = lim
n→∞

λn(xn − x̄).

If we set

hn := λn(xn − x̄) for all n ∈ N,

we get

r(xn) =
1

λn

[

λn(r(xn) − r(x̄) − r′(x̄)(xn − x̄)) + r′(x̄)(hn − h)

+r(x̄) + r′(x̄)(h)
]

+
(

1 − 1

λn

)

r(x̄) for all n ∈ N (7.3)

and

lim
n→∞

λn(r(xn) − r(x̄) − r′(x̄)(xn − x̄)) + r′(x̄)(hn − h) = 0Y . (7.4)
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By assumption we have

r(x̄) + r′(x̄)(h) ∈ −int(CY )

and, therefore, it follows with (7.4)

yn := λn(r(xn) − r(x̄) − r′(x̄)(xn − x̄)) + r′(x̄)(hn − h) + r(x̄)

+r′(x̄)(h)

∈ −int(CY ) for sufficiently large n ∈ N

and
1

λn

yn ∈ −int(CY ) for sufficiently large n ∈ N.

Since

(

1 − 1

λn

)

r(x̄) ∈ −CY for sufficiently large n ∈ N,

we conclude with (7.3), Lemma 1.12, (b) and Lemma 1.32, (a)

r(xn) =
1

λn

yn +
(

1 − 1

λn

)

r(x̄)

∈ −int(CY ) − CY

= −int(CY ) for sufficiently large n ∈ N.

But this leads to

h ∈ T ({x ∈ S | r(x) ∈ −int(CY )}, x̄).

2

With the preceding lemma and the Lyusternik theorem we ob-
tain a first necessary condition for a weakly minimal solution of the
problem (7.2).

Theorem 7.3. Let the abstract optimization problem (7.2) be
given under the assumption (7.1), and let x̄ ∈ S be a weakly min-
imal solution of the problem (7.2). Moreover, let f and g be Fréchet
differentiable at x̄ and let h be continuously Fréchet differentiable at
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x̄ where h′(x̄) is assumed to be surjective. Then there is no x ∈ int(Ŝ)
with

f ′(x̄)(x− x̄) ∈ −int(CY ),

g(x̄) + g′(x̄)(x− x̄) ∈ −int(CZ1)

and
h′(x̄)(x− x̄) = 0Z2 .

Proof. Assume that there is an x ∈ int(Ŝ) with f ′(x̄)(x − x̄) ∈
−int(CY ), g(x̄) + g′(x̄)(x − x̄) ∈ −int(CZ1) and h′(x̄)(x − x̄) = 0Z2 .
Then we get with the Lyusternik theorem (Theorem 3.49)

x− x̄ ∈ T ({s ∈ X | h(s) = 0Z2}, x̄).

Since Ŝ is convex and x ∈ int(Ŝ), we obtain x− x̄ ∈ T (S̃, x̄) where

S̃ := {s ∈ Ŝ | h(s) = 0Z2}.

Next, we define the map r : X → Y × Z1 by

r(x) =

(
f(x) − f(x̄)

g(x)

)

for all x ∈ X.

Obviously we have

r(x̄) =

(
0Y

g(x̄)

)

∈ (−CY ) × (−CZ1)

and, therefore, we conclude with Lemma 7.2

{h∈T (S̃, x̄) | f ′(x̄)(h)∈−int(CY ), g(x̄) + g′(x̄)(h)∈−int(CZ1)}
⊂ T ({s∈ S̃ | f(s) − f(x̄)∈−int(CY ), g(s)∈−int(CZ1)}, x̄).

Because of x − x̄ ∈ T (S̃, x̄), f ′(x̄)(x − x̄) ∈ −int(CY ) and g(x̄) +
g′(x̄)(x− x̄) ∈ −int(CZ1) we conclude

x− x̄ ∈ T ({s ∈ Ŝ | f(s) − f(x̄) ∈ −int(CY ),

g(s) ∈ −int(CZ1), h(s) = 0Z1}, x̄).
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But this implies that x̄ is no weakly minimal solution of the problem
(7.2). 2

Now, we are ready to present the promised multiplier rule which
generalizes a corresponding result of Lagrange. This necessary opti-
mality condition is based on the previous theorem and a separation
theorem.

Theorem 7.4. Let the abstract optimization problem (7.2) be
given under the assumption (7.1), and let x̄ ∈ S be a weakly minimal
solution of the problem (7.2). Moreover, let f and g be Fréchet dif-
ferentiable at x̄, let h be continuously Fréchet differentiable at x̄, and
let the image set h′(x̄)(X) be closed. Then there are continuous linear
functionals t ∈ CY ∗, u ∈ CZ∗

1
and v ∈ Z∗

2 with (t, u, v) 6= 0Y ∗×Z∗
1×Z∗

2

so that

(t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ (7.5)

and
(u ◦ g)(x̄) = 0. (7.6)

If, in addition, there is an x̂ ∈ int(Ŝ) with g(x̄) + g′(x̄)(x̂ − x̄) ∈
−int(CZ1) and h′(x̄)(x̂− x̄) = 0Z2 and if the map h′(x̄) is surjective,
then t 6= 0Y ∗.

Proof. First, we assume that h′(x̄) is not surjective. Then, by
an application of a separation theorem (Theorem 3.18), there is a
continuous linear functional v ∈ Z∗

2\{0Z∗
2
} with v ◦ h′(x̄) = 0X∗ . If

we set t = 0Y ∗ and u = 0Z∗
1
, we get immediately the conditions (7.5)

and (7.6). In this case the first part of the assertion is shown.

In the following assume that the map h′(x̄) is surjective. In this case
we define the set

M := {(f ′(x̄)(x− x̄) + y, g(x̄) + g′(x̄)(x− x̄) + z1, h
′(x̄)(x− x̄))

∈ Y × Z1 × Z2 | x ∈ int(Ŝ), y ∈ int(CY ), z1 ∈ int(CZ1)}
which can also be written as

M = (f ′(x̄), g′(x̄), h′(x̄))(int(Ŝ) − {x̄})
+int(CY ) × ({g(x̄)} + int(CZ1)) × {0Z2}.



7.1. Necessary Conditions for Minimal and Weakly Minimal Elements 167

The map h′(x̄) is continuous, linear and surjective. Then, by the
open map theorem, h′(x̄) maps every open subset of X onto an open
subset of Z2, and it is evident that the set M equals its interior. The
set M is a convex set because (f ′(x̄), g′(x̄), h′(x̄)) is a linear map and
int(Ŝ)−{x̄} is a convex set. Since x̄ ∈ S is a weakly minimal solution
of the problem (7.2), by the necessary condition given in Theorem 7.3
the zero element 0Y ×Z1×Z2 does not belong to the set M , i.e. we get

M ∩ {0Y ×Z1×Z2} = ∅.

The set M is convex and open and, therefore, by Eidelheit’s separa-
tion theorem (Theorem 3.16), the preceding set equation implies the
existence of continuous linear functionals t ∈ Y ∗, u ∈ Z∗

1 and v ∈ Z∗
2

with (t, u, v) 6= 0Y ∗×Z∗
1×Z∗

2
and

t(f ′(x̄)(x− x̄) + y) + u(g(x̄) + g′(x̄)(x− x̄) + z1) + v(h′(x̄)(x− x̄))

> 0 for all x ∈ int(Ŝ), y ∈ int(CY ) and z1 ∈ int(CZ1). (7.7)

With Lemma 1.32, (b) and the continuity of the arising maps we
obtain from the inequality (7.7)

t(f ′(x̄)(x− x̄) + y) + u(g(x̄) + g′(x̄)(x− x̄) + z1) + v(h′(x̄)(x− x̄))

≥ 0 for all x ∈ Ŝ, y ∈ CY and z1 ∈ CZ1 . (7.8)

From the inequality (7.8) we get for x = x̄

t(y) + u(g(x̄) + z1) ≥ 0 for all y ∈ CY and z1 ∈ CZ1 . (7.9)

For z1 = −g(x̄) ∈ CZ1 we conclude with the inequality (7.9)

t(y) ≥ 0 for all y ∈ CY

which implies t ∈ CY ∗ . For y = 0Y we obtain from the inequality
(7.9)

u(g(x̄)) ≥ −u(z1) for all z1 ∈ CZ1 . (7.10)

From this inequality it follows immediately that

u(z1) ≥ 0 for all z1 ∈ CZ1
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resulting in u ∈ CZ∗
1
. But the inequality (7.10) also implies u(g(x̄)) ≥

0. By assumption we have g(x̄) ∈ −CZ1 so that we get u(g(x̄)) ≤ 0.
Consequently, the equality (7.6) is true. For the proof of the inequality
(7.5) notice that for y = 0Y and z1 = −g(x̄) the inequality (7.8) leads
to

t(f ′(x̄)(x− x̄)) + u(g′(x̄)(x− x̄)) + v(h′(x̄)(x− x̄)) ≥ 0 for all x ∈ Ŝ

or alternatively

(t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ.

Finally, we investigate the case that, in addition to the given assump-
tions, there is an x̂ ∈ int(Ŝ) with g(x̄)+g′(x̄)(x̂− x̄) ∈ −int(CZ1) and
h′(x̄)(x̂ − x̄) = 0Z2 and the map h′(x̄) is surjective. In this case the
inequality (7.7) leads to

t(f ′(x̄)(x̂− x̄) + y) > 0 for all y ∈ int(CY )

which implies t 6= 0Y ∗ . 2

The necessary optimality conditions given in Theorem 7.4 gen-
eralize the well-known Lagrange multiplier rule. They also extend
the so-called F.-John conditions. The additional assumption formu-
lated in the second part of the preceding theorem under which the
functional t is nonzero is called a regularity assumption. If t 6= 0Y ∗ ,
then the necessary optimality conditions extend the so-called Karush-
Kuhn-Tucker-conditions.

If the superset Ŝ of the constraint set S equals the whole space
X, then the inequality (7.5) reduces to the equality

t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄) = 0X∗ .

The multiplier rule in Theorem 7.4 is formulated with a real-valued
Lagrangian t ◦ f + u ◦ g+ v ◦ h. It will become obvious from the next
theorem that this multiplier rule can also be formulated with a vector-
valued Lagrangian f +L1 ◦g+L2 ◦h where L1 and L2 are appropriate
linear maps. There is no difference if we use a real-valued or a vector-
valued Lagrangian.
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Theorem 7.5. Let the abstract optimization problem (7.2) be
given under the assumption (7.1). For some x̄ ∈ S assume that f , g
and h are Fréchet differentiable at x̄. Then the two statements (7.11)
and (7.12) below are equivalent:

There are continuous linear functionals
t ∈ CY ∗\{0Y ∗}, u ∈ CZ∗

1
and v ∈ Z∗

2 with the properties

(t◦f ′(x̄) + u◦g′(x̄) + v◦h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ
and (u ◦ g)(x̄) = 0.







(7.11)

There are a continuous linear map L1 : Z1 → Y
with L1(CZ1) ⊂ (int(CY ) ∪ {0Y }) and a continuous
linear map L2 : Z2 → Y with the properties
(f ′(x̄) + L1◦g′(x̄) + L2◦h′(x̄))(x− x̄) /∈−int(CY ) for all

x ∈ Ŝ and (L1 ◦ g)(x̄) = 0Y .







(7.12)

Proof. First, we assume that the statement (7.11) is true. By
Lemma 3.21, (c) there is a ỹ ∈ int(CY ) with t(ỹ) = 1. Then, following
an idea due to Borwein [34, p. 62], we define the maps L1 : Z1 → Y
and L2 : Z2 → Y by

L1(z1) = u(z1)ỹ for all z1 ∈ Z1 (7.13)

and

L2(z2) = v(z2)ỹ for all z2 ∈ Z2.

Obviously, L1 and L2 are continuous linear maps, and we have

L1(CZ1) ⊂ (int(CY ) ∪ {0Y }).

Furthermore, we obtain t ◦ L1 = u and t ◦ L2 = v. Consequently, the
inequality in the statement (7.11) can be written as

(t ◦ (f ′(x̄) + L1 ◦ g′(x̄) + L2 ◦ h′(x̄)))(x− x̄) ≥ 0 for all x ∈ Ŝ.

Then we conclude with the scalarization result of Corollary 5.29

(f ′(x̄) + L1 ◦ g′(x̄) + L2 ◦ h′(x̄))(x− x̄) /∈ −int(CY ) for all x ∈ Ŝ.
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Finally, with the equality (7.13) we get

(L1 ◦ g)(x̄) = (u ◦ g)(x̄)ỹ = 0Y .

Hence, the statement (7.12) is true.

For the second part of this proof we assume that the statement (7.12)
is true. Then we have

(f ′(x̄) + L1 ◦ g′(x̄) + L2 ◦ h′(x̄))(x− x̄) /∈ −int(CY ) for all x ∈ Ŝ.

By Corollary 5.29 and Lemma 3.15 there is a continuous linear func-
tional t ∈ CY ∗\{0Y ∗} with the property

(t ◦ f ′(x̄) + t ◦ L1 ◦ g′(x̄) + t ◦ L2 ◦ h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ.

If we define u := t ◦ L1 and v := t ◦ L2, we obtain

(t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ

and
(u ◦ g)(x̄) = (t ◦ L1 ◦ g)(x̄) = 0.

Furthermore, for every z1 ∈ CZ1 it follows

u(z1) = (t ◦ L1)(z1) ≥ 0

implying u ∈ CZ∗
1
. This completes the proof. 2

It is obvious from the previous proof that the image sets of the
maps L1 and L2 are one-dimensional subspaces of Y .

For abstract optimization problems without explicit constraints
the multiplier rule can also be used with g and h being the zero
maps. But in this case a separate investigation leads to a much more
general result.

Theorem 7.6. Let S be a nonempty subset of a real linear space
X, and let Y be a partially ordered linear space with an ordering cone
CY 6= Y which has a nonempty algebraic interior. Let f : S → Y be
a given map. If x̄ ∈ S is a weakly minimal solution of the abstract
optimization problem

min
x∈S

f(x) (7.14)
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and if f has a directional variation at x with respect to −cor(CY ),
then

f ′(x̄)(x− x̄) /∈ −cor(CY ) for all x ∈ S. (7.15)

Proof. If the condition (7.15) is not true, i.e. for some x ∈ S

f ′(x̄)(x− x̄) ∈ −cor(CY ),

then by Definition 2.14 there is a λ̄ > 0 with x̂ := x̄ + λ̄(x − x̄) ∈ S
and 1

λ̄
(f(x̂) − f(x̄)) ∈ −cor(CY ). Consequently, we have

f(x̂) ∈ ({f(x̄)} − cor(CY )) ∩ f(S)

which implies that x̄ is no weakly minimal solution of the abstract
optimization problem (7.14). 2

With the same argument as used in Theorem 7.5 the necessary op-
timality condition (7.15) in vector form is equivalent to an inequality,
if the directional variation of f at x̄ is convex-like.

Lemma 7.7. Let S be a nonempty subset of a real linear space
X, and let Y be a partially ordered linear space with an ordering cone
CY 6= Y which has a nonempty algebraic interior. Let f : S → Y be
a map which has a directional variation at some x̄ ∈ S with respect
to −cor(CY ). If there is a t ∈ CY ′\{0Y ′} with

(t ◦ f ′(x̄))(x− x̄) ≥ 0 for all x ∈ S, (7.16)

then the condition (7.15) holds. If the map f ′(x̄) is convex-like, then
the condition (7.15) implies the existence of a linear functional t ∈
CY ′\{0Y ′} with the property (7.16).

Proof. If we assume that there is a t ∈ CY ′\{0Y ′} with the prop-
erty (7.16), then, by Theorem 5.28, we get immediately the condition
(7.15).

Next we assume that the condition (7.15) holds. By Lemma 4.13, (b)
we obtain

((f ′(x̄)(S − {x̄})) + CY ) ∩ (−cor(CY )) = ∅.
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Since f ′(x̄) is assumed to be convex-like, by Theorem 5.13 there is
a linear functional t ∈ CY ′\{0Y ′} so that the inequality (7.16) is
satisfied. 2

At the end of this section we turn our attention again to the
generalized multiplier rule presented in Theorem 7.4. We specialize
this result to a so-called multiobjective optimization problem, i.e., we
consider the problem (7.2) in a finite dimensional setting.

Theorem 7.8. Let f : Rn → Rm, g : Rn → Rk and h : Rn → Rp

be given vector functions, and let the constraint set S be given as

S := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, . . . , k} and

hi(x) = 0 for all i ∈ {1, . . . , p}}.

Let x̄ ∈ S be a weakly minimal solution of the multiobjective optimiza-
tion problem min

x∈S
f(x) where the space Rm is assumed to be partially

ordered in a natural way. Let f and g be differentiable at x̄ and let h
be continuously differentiable at x̄. Moreover, let some x ∈ Rn exist
with

∇gi(x̄)
T (x− x̄) < 0 for all i ∈ I(x̄)

and

∇hi(x̄)
T (x− x̄) = 0 for all i ∈ {1, . . . , p}

where

I(x̄) := {i ∈ {1, . . . , k} | gi(x̄) = 0}
denotes the set of constraints being “active” at x̄. Furthermore, let the
gradients ∇h1(x̄), . . . ,∇hp(x̄) be linearly independent. Then there are
multipliers ti ≥ 0 (where at least one ti, i ∈ {1, . . . ,m}, is nonzero),
ui ≥ 0 (i ∈ I(x̄)) and vi ∈ R (i ∈ {1, . . . , p}) with the property

m∑

i=1

ti∇fi(x̄) +
∑

i∈I(x̄)

ui∇gi(x̄) +

p
∑

i=1

vi∇hi(x̄) = 0Rn .
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Proof. We verify the assumptions in Theorem 7.4. Since the gra-
dients ∇h1(x̄), . . . ,∇hp(x̄) are linearly independent, the linear map
h′(x̄) is surjective. The ordering cone in Z1 is given as CZ1 = Rk

+.
Consequently, we have

int(CZ1) = {x ∈ Rk | xi > 0 for all i ∈ {1, . . . , k}},

and we get for a sufficiently small λ > 0 and x̂ := λx+ (1 − λ)x̄

g(x̄) + g′(x̄)(x̂− x̄) = g(x̄) + g′(x̄)(λ(x− x̄))

=






g1(x̄) + λ∇g1(x̄)
T (x− x̄)

...
gk(x̄) + λ∇gk(x̄)

T (x− x̄)




 ∈ −int(CZ1)

and

h′(x̄)(x̂− x̄) = h′(x̄)(λ(x− x̄))

= λ






∇h1(x̄)
T (x− x̄)
...

∇hp(x̄)
T (x− x̄)




 = 0Rp .

Hence, the regularity assumption in Theorem 7.4 is fulfilled. Then
there are multipliers ti ≥ 0 (where at least one ti, i ∈ {1, . . . ,m},
is nonzero), ui ≥ 0 (i ∈ I(x̄)) and vi ∈ R (i ∈ {1, . . . , p}) with the
property

m∑

i=1

ti∇fi(x̄) +
k∑

i=1

ui∇gi(x̄) +

p
∑

i=1

vi∇hi(x̄) = 0Rn (7.17)

and
m∑

i=1

uigi(x̄) = 0. (7.18)

Because of
gi(x̄) ≤ 0 for all i ∈ {1, . . . , k},
ui ≥ 0 for all i ∈ {1, . . . , k}
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and the equality (7.18) we conclude

uigi(x̄) = 0 for all i ∈ {1, . . . , k}.
For every i ∈ {1, . . . , k}\I(x̄) we have gi(x̄) < 0 and, therefore, we
get ui = 0. Consequently, the equation (7.17) can be written as

m∑

i=1

ti∇fi(x̄) +
∑

i∈I(x̄)

ui∇gi(x̄) +

p
∑

i=1

vi∇hi(x̄) = 0Rn

which completes the proof. 2

7.2 Sufficient Conditions for Minimal

and Weakly Minimal Elements

In general, the necessary optimality conditions formulated in the pre-
vious section are not sufficient for minimal or weakly minimal solu-
tions without additional assumptions. Therefore, in the first part of
this section generalized quasiconvex maps are introduced. This gener-
alized convexity concept is very useful for the proof of the sufficiency
of the generalized multiplier rule which will be done in the second
part of this section.

7.2.1 Generalized Quasiconvex Maps

In Section 2.1 we have already investigated convex maps and intro-
duced one possible generalization. Another generalization of convex
maps is presented in

Definition 7.9. Let S be a nonempty convex subset of a real
linear space X, and let Y be a partially ordered linear space with an
ordering cone CY . A map f : S → Y is called quasiconvex if

x1, x2 ∈ S with f(x1) − f(x2) ∈ CY (7.19)

implies that

f(x1) − f(λx1 + (1 − λ)x2) ∈ CY for all λ ∈ [0, 1]. (7.20)
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Every convex map f : S → Y is also quasiconvex, because the
condition (7.19) implies

(1 − λ)(f(x1) − f(x2)) ∈ CY

and, therefore, we get (with (2.4))

f(x1) − f(λx1 + (1 − λ)x2) ∈ {(1 − λ)(f(x1) − f(x2))} + CY ⊂ CY .

A characterization of quasiconvex maps which is simple to prove
is given in

Lemma 7.10. Let S be a nonempty convex subset of a real linear
space X, and let Y be a partially ordered linear space with an ordering
cone CY . A map f : S → Y is quasiconvex if and only if for all x̄ ∈ S
the sets

Lx̄ := {x ∈ S\{x̄} | f(x̄) − f(x) ∈ CY } (7.21)

contain {λx+ (1 − λ)x̄ | λ ∈ [0, 1]} whenever x ∈ Lx̄.

Next, we extend the class of quasiconvex maps considerably by
the following definition.

Definition 7.11. Let S be a nonempty subset of a real linear
space X, and let C be a nonempty subset of a real linear space Y . Let
x̄ ∈ S be a given element. A map f : S → Y is called C-quasiconvex
at x̄ if the following holds: Whenever there is some x ∈ S\{x̄} with
f(x̄) − f(x) ∈ C, then there is some x̃ ∈ S\{x̄} with

λx̃+ (1 − λ)x̄ ∈ S for all λ ∈ (0, 1]
and

f(x̄) − f(λx̃+ (1 − λ)x̄) ∈ C for all λ ∈ (0, 1].






(7.22)

Example 7.12.

(a) Every quasiconvex map f : S → Y is CY -quasiconvex at all
x̄ ∈ S.
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(b) Let the map f : R → R2 be given by

f(x) = (x, sin x) for all x ∈ R

where the space R2 is partially ordered in the componentwise
sense. The map f is R2

+-quasiconvex at 0 but it is not quasi-
convex (at 0).

The following lemma shows that C-quasiconvexity of f at x̄ can
also be characterized by a property of the level set Lx̄ in (7.21).

Lemma 7.13. Let S be a nonempty subset of a real linear space
X, and let C be a nonempty subset of a real linear space Y . Let x̄ ∈ S
be a given element. A map f : S → Y is C-quasiconvex at x̄ if and
only if the set

Lx̄ := {x ∈ S\{x̄} | f(x̄) − f(x) ∈ C}
is empty or it contains a half-open line segment starting at x̄, exclud-
ing x̄.

Proof. Rewrite the condition (7.22) as

{λx̃+ (1 − λ)x̄ | λ ∈ [0, 1)} ⊂ Lx̄

and the statement of the lemma is clear. 2

As it may be seen from Lemma 7.13 the relaxation of the re-
quirement (7.20) to (7.22) by allowing x̃ 6= x2 extends the class of
quasiconvex maps considerably.

If one asks for conditions under which local minima are also global
minima, then it turns out that C-quasiconvexity characterizes this
property.

Definition 7.14. Let S be a nonempty subset of a real linear
space X, let Y be a partially ordered linear space with an ordering
cone CY , and let f : S → Y be a given map. Consider the abstract
optimization problem

min
x∈S

f(x). (7.23)
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(a) An element x̄ ∈ S is called a local minimal solution of the prob-
lem (7.23), if there is a set U ⊂ X with x̄ ∈ cor(U) so that x̄
is a minimal solution of the problem (7.23) with S replaced by
S ∩ cor(U).

(b) In addition, let the ordering cone have a nonempty algebraic
interior. An element x̄ ∈ S is called a local weakly minimal
solution of the problem (7.23), if there is a set U ⊂ X with
x̄ ∈ cor(U) so that x̄ is a weakly minimal solution of the problem
(7.23) with S replaced by S ∩ cor(U).

The following two theorems state a necessary and sufficient con-
dition under which local minima are also global minima.

Theorem 7.15. Let S be a nonempty subset of a real linear space
X, let Y be a partially ordered linear space with an ordering cone
CY 6= {0Y }, and let f : S → Y be a given map. Let x̄ ∈ S be a
local minimal solution of the problem (7.23). Then x̄ is a (global)
minimal solution of the problem (7.23) if and only if the map f is
(CY \(−CY ))-quasiconvex at x̄.

Proof. Suppose that x̄ ∈ S is a local minimal solution of the
problem (7.23). If x̄ is not a minimal solution, then there is an x ∈ S
with f(x̄)−f(x) ∈ CY \(−CY ). Assume f is (CY \(−CY ))-quasiconvex
at x̄, then there is an x̃ ∈ S\{x̄} with

λx̃+ (1 − λ)x̄ ∈ S for all λ ∈ (0, 1]

and

f(x̄) − f(λx̃+ (1 − λ)x̄) ∈ CY \(−CY ) for all λ ∈ (0, 1]. (7.24)

Since x̄ ∈ cor(U) there is a λ̄ ∈ (0, 1] with

λ̄x̃+ (1 − λ̄)x̄ ∈ S ∩ cor(U)

and with (7.24) we get

f(x̄) − f(λ̄x̃+ (1 − λ̄)x̄) ∈ CY \(−CY ).
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But this contradicts the assumption that x̄ is a local minimal solution
of the problem (7.23).

On the other hand if x̄ is a minimal solution of the problem (7.23),
then there is no x ∈ S with f(x̄) − f(x) ∈ CY \(−CY ) and the
(CY \(−CY ))-quasiconvexity of f at x̄ holds trivially. 2

The following theorem can be proved similarly.

Theorem 7.16. Let S be a nonempty subset of a real linear space
X, let Y be a partially ordered linear space with an ordering cone
CY which has a nonempty algebraic interior, and let f : S → Y be
a given map. Let x̄ ∈ S be a local weakly minimal solution of the
problem (7.23). Then x̄ is a (global) weakly minimal solution of the
problem (7.23) if and only if the map f is cor(CY )-quasiconvex at x̄.

For the generalized multiplier rule we assume that the consid-
ered maps are, in a certain sense, differentiable. Therefore, it is
reasonable to introduce an appropriate framework for differentiable
C-quasiconvexity. In the next definition we use the notion of a direc-
tional variation introduced in Definition 2.14.

Definition 7.17. Let S be a nonempty subset of a real linear
space X, and let C1 and C2 ⊂ C3 be nonempty subsets of a real
linear space Y . Moreover, let x̄ ∈ S be a given element and let a map
f : S → Y have a directional variation at x̄ with respect to C3. The
map f is called differentiably C1-C2-quasiconvex at x̄ if the following
holds: Whenever there is some x ∈ S with

x 6= x̄ and f(x) − f(x̄) ∈ C1, (7.25)

then there is an x̃ ∈ S\{x̄} with

λx̃+ (1 − λ)x̄ ∈ S for all λ ∈ (0, 1]
and

f ′(x̄)(x̃− x̄) ∈ C2.






(7.26)

In the case of C1 = C2 =: C the map f is simply called differentiably
C-quasiconvex at x̄.
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Example 7.18. Let S be a subset of a real normed space (X, ‖·‖X)
which has a nonempty interior, and let (Y, ‖·‖Y ) be a partially ordered
normed space with an ordering cone CY . Moreover, let f : S → Y be
a map which is Fréchet-differentiable at some x̄ ∈ S. Then the map
f is called pseudoconvex at x̄, if for all x ∈ S the following holds:

f ′(x̄)(x− x̄) ∈ CY =⇒ f(x) − f(x̄) ∈ CY .

This implication is equivalent to

f(x) − f(x̄) /∈ CY =⇒ f ′(x̄)(x− x̄) /∈ CY .

Therefore, every map f : S → Y which is pseudoconvex at x̄ is also
differentiably (Y \CY )-quasiconvex at x̄. This shows that the class of
pseudoconvex maps is contained in the larger class of differentiably
C1-C2-quasiconvex maps.

With the next theorem we investigate some relations between C-
quasiconvexity and differentiable C-quasiconvexity.

Theorem 7.19. Let S be a nonempty subset of a real linear space
X, and let C ⊂ Ĉ be nonempty subsets of a real linear space where
C ∪ {0Y } is assumed to be a cone. Moreover, let x̄ ∈ S be a given
element and let f : S → Y be a given map.

(a) If f is (−C)-quasiconvex at x̄ and has a directional variation
at x̄ with respect to Ĉ and Y \C, then f is differentiably C-
quasiconvex at x̄.

(b) If f is differentiably C-quasiconvex at x̄ with a directional vari-
ation of f at x̄ with respect to C, then f is (−C)-quasiconvex
at x̄.

Proof.

(a) Let some x ∈ S be given with (7.25). Since f is assumed to be
(−C)-quasiconvex at x̄, there is an x̃ ∈ S\{x̄} so that

λx̃+ (1 − λ)x̄ ∈ S for all λ ∈ (0, 1]
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and

f(x̄) − f(λx̃+ (1 − λ)x̄) ∈ −C for all λ ∈ (0, 1]. (7.27)

Suppose that for all directional variations of f at x̄ with respect
to Ĉ and Y \C f ′(x̄)(x̃ − x̄) /∈ C. Then, from the definition
of a directional variation with respect to Y \C there is a λ̄ > 0
with

x̄+ λ(x̃− x̄) ∈ S for all λ ∈ (0, λ̄]

and

1

λ
(f(x̄+ λ(x̃− x̄)) − f(x̄)) /∈ C for all λ ∈ (0, λ̄].

By assumption C ∪ {0Y } is a cone and, therefore, we conclude

f(x̄) − f(x̄+ λ(x̃− x̄)) /∈ −C for all λ ∈ (0, λ̄].

But this contradicts (7.27). Hence, for some directional varia-
tion of f at x̄ with respect to Ĉ and Y \C we have f ′(x̄)(x̃−x̄) ∈
C which shows that (7.25) implies (7.26) in Definition 7.17 with
C1 = C2 = C and C3 = Ĉ.

(b) Let some x ∈ S be given with x 6= x̄ and f(x)−f(x̄) ∈ C. Then
differentiable C-quasiconvexity of f at x̄ implies that there is
an x̃ ∈ S\{x̄} and a directional variation of f at x̄ with respect
to C with the property

λx̃+ (1 − λ)x̄ ∈ S for all λ ∈ [0, 1]

and f ′(x̄)(x̃− x̄) ∈ C. Then by Definition 2.14 there is a λ̄ > 0
with

x̄+ λ(x̃− x̄) ∈ S for all λ ∈ (0, λ̄]

and

1

λ
(f(x̄+ λ(x̃− x̄)) − f(x̄)) ∈ C for all λ ∈ (0, λ̄].

Observing that C ∪ {0Y } is a cone, we obtain

f(x̄) − f(x̄+ λ(x̃− x̄)) ∈ −C for all λ ∈ (0, λ̄]

and the proof of the (−C)-quasiconvexity of f at x̄ is complete.
2
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If one considers directional variations with respect to algebraically
open sets, in the previous theorem under (a) and (b), one should
assume that Ĉ and Y \C are algebraically open.

7.2.2 Sufficiency of the Generalized Multiplier
Rule

The generalized multiplier rule introduced in Section 7.1 is now in-
vestigated again. We prove that this multiplier rule is a sufficient
optimality condition for a substitute problem if and only if a certain
composite map is generalized quasiconvex. Finally we discuss the
results with respect to a multiobjective optimization problem.

Although we formulated the generalized multiplier rule for sim-
plicity in a normed setting, we investigate this optimality condition
now in a very general setting.

The standard assumption for the following results reads as follows:

Let Ŝ be a nonempty subset of a real linear
space X; let Y , Z1 and Z2 be partially ordered
linear spaces with the ordering cones CY , CZ1

and CZ2 , respectively; let CY have a nonempty
algebraic interior and let CZ2 be pointed;

let f : Ŝ → Y , g : Ŝ → Z1 and h : Ŝ → Z2 be
given maps; let the constraint set

S := {x ∈ Ŝ | g(x) ∈ −CZ1 and h(x) = 0Z2} be
nonempty.







(7.28)

Under this assumption we investigate again the abstract optimization
problem

min
x∈S

f(x). (7.29)

Theorem 7.20. Let the abstract optimization problem (7.29) be
given under the assumption (7.28), and suppose that for some x̄ ∈ S
there are nonempty sets G0, G1 and G2 with −cor(CY ) ⊂ G0 ⊂ Y ,
−CZ1 +cone({g(x̄)})−cone({g(x̄)}) ⊂ G1 ⊂ Z1 and 0Z2 ∈ G2 ⊂ Z2 so
that the maps f , g and h have directional variations at x̄ with respect
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to G0, G1 and G2, respectively. Assume that there are some

t ∈ CY ′\{0Y ′}, u ∈ CZ′
1

and v ∈ Z ′
2 (7.30)

with

(t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x− x̄) ≥ 0 for all x ∈ Ŝ (7.31)

and
(u ◦ g)(x̄) = 0. (7.32)

Then x̄ is a weakly minimal solution of the problem (7.29) with S
replaced by

S̄ := {x∈ Ŝ | g(x)∈−CZ1 +cone({g(x̄)})−cone({g(x̄)}), h(x) = 0Z2}

if and only if the composite map

(f, g, h) : Ŝ → Y × Z1 × Z2

is differentiably C-quasiconvex at x̄ with

C := (− cor(CY ))× (−CZ1 + cone({g(x̄)})− cone({g(x̄)}))× {0Z2}.
(7.33)

Proof. Assume that the generalized multiplier rule (7.30) - (7.32)
holds at some x̄ ∈ S. Then we assert that

(f ′(x̄)(x− x̄), g′(x̄)(x− x̄), h′(x̄)(x− x̄)) /∈ C for all x ∈ Ŝ. (7.34)

For the proof of this assertion assume that there is an x ∈ Ŝ with

f ′(x̄)(x− x̄) ∈ −cor(CY ),

g′(x̄)(x− x̄) ∈ −CZ1 + cone({g(x̄)}) − cone({g(x̄)}),
h′(x̄)(x− x̄) = 0Z2 .

With (7.30) and Lemma 1.26 we conclude for some α, β ≥ 0

(t ◦ f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x− x̄) < u(g′(x̄)(x− x̄))

≤ u(αg(x̄)) − u(βg(x̄))

= (α− β)u(g(x̄)).
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But this inequality contradicts (7.31) and (7.32). Hence, the condition
(7.34) holds.

If the composite map (f, g, h) is differentiably C-quasiconvex at x̄,
then it follows from (7.34)

(f(x) − f(x̄), g(x) − g(x̄), h(x) − h(x̄)) /∈ C for all x ∈ Ŝ. (7.35)

The condition (7.35) means that there is no x ∈ Ŝ with

f(x) ∈ {f(x̄)} − cor(CY ),

g(x) ∈ {g(x̄)} − CZ1 + cone({g(x̄)}) − cone({g(x̄)})
= −CZ1 + cone({g(x̄)}) − cone({g(x̄)}),

h(x) = 0Z2 .

If we notice that with

g(x̄) ∈ −CZ1 ⊂ −CZ1 + cone({g(x̄)}) − cone({g(x̄)})

it also follows x̄ ∈ S̄, then x̄ is a weakly minimal solution of the
abstract optimization problem

min
x∈S̄

f(x). (7.36)

Now we assume in the converse case that x̄ is a weakly minimal solu-
tion of the problem (7.36), then there is no x ∈ Ŝ with

f(x) ∈ {f(x̄)} − cor(CY ),

g(x) ∈ −CZ1 + cone({g(x̄)}) − cone({g(x̄)})
= {g(x̄)} − CZ1 + cone({g(x̄)}) − cone({g(x̄)}),

h(x) = 0Z2 ,

i.e., the condition (7.35) is satisfied for all x ∈ Ŝ. With the con-
dition (7.34) we conclude that the map (f, g, h) is differentiably C-
quasiconvex at x̄. 2

In the previous theorem we showed the equivalence of the gen-
eralized quasiconvexity with the sufficiency of the generalized multi-
plier rule of a substitute problem where S is replaced by S̄. The set
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cone({g(x̄)}) − cone({g(x̄)}) equals the onedimensional subspace of
Z1 spanned by g(x̄). Figure 7.1 illustrates the modified constraint set
S̄.
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Figure 7.1: Illustration of the set S̄.

For the original problem the following conclusion holds:

Corollary 7.21. Let the assumptions of Theorem 7.20 be satisfied
and let the map (f, g, h) be differentiably C-quasiconvex at x̄ ∈ S with
C given by (7.33). Then x̄ is a weakly minimal solution of the problem
(7.29).

Proof. By Theorem 7.20 x̄ ∈ S is a weakly minimal solution of
the problem (7.36). For every x ∈ S we have

g(x) ∈ −CZ1

⊂ −CZ1 + cone({g(x̄)}) − cone({g(x̄)}).

Consequently we get S ⊂ S̄ and, therefore, x̄ is also a weakly minimal
solution of the problem (7.29). 2

If the generalized quasiconvexity assumption in Theorem 7.20 is
strengthened, then a similar theorem holds for minimal solutions of
the problem (7.29).
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Theorem 7.22. Let all the assumptions of Theorem 7.20 be sat-
isfied. Then x̄ ∈ S is a minimal solution of the problem (7.36) if and
only if the composite map (f, g, h) is differentiably C1-C2-quasiconvex
at x̄ with

C1 := (−CY \CY ) × (−CZ1 + cone({g(x̄)}) − cone({g(x̄)})) × {0Z2}

and

C2 := (−cor(CY )) × (−CZ1 + cone({g(x̄)}) − cone({g(x̄)})) × {0Z2}.

The proof of this theorem is almost identical to the one of Theorem
7.20 and, therefore, it is omitted. A result which is similar to that of
Corollary 7.21 can also be obtained.

Finally, we investigate again the multiobjective optimization prob-
lem considered in Theorem 7.8. Recall that a real-valued function
f : Rn → R which has partial derivatives at some x̄ ∈ Rn is called
pseudoconvex at x̄, if for every x ∈ Rn

∇f(x̄)T (x− x̄) ≥ 0 =⇒ f(x) ≥ f(x̄)

(see Example 7.18 in the differentiable case), and it is quasiconvex at
x̄, if for every x ∈ Rn

f(x) ≤ f(x̄) =⇒ ∇f(x̄)T (x− x̄) ≤ 0

(e.g., compare Mangasarian [241, ch. 9]).

Lemma 7.23. Let f : Rn → Rm, g : Rn → Rk and h : Rn → Rp

be given vector functions. Let the constraint set S be given as

S := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, . . . , k} and

hi(x) = 0 for all i ∈ {1, . . . , p}}.

Let some x̄ ∈ S be given and assume that the space Rm is partially
ordered in a natural way. Let the vector functions f , g and h have
partial derivatives at x̄. If the functions f1, . . . , fm are pseudoconvex
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at x̄ and the functions h1, . . . , hp,−h1, . . . ,−hp and gi for all i ∈ I(x̄)
with

I(x̄) := {i ∈ {1, . . . , k} | gi(x̄) = 0}
are quasiconvex at x̄, then the composite vector function (f, g, h) is
differentiably C-quasiconvex at x̄ with

C := (−int(Rm
+ )) × (−Rk

+ + cone({g(x̄)}) − cone({g(x̄)})) × {0Rp}.

Proof. Let some x ∈ S be given with (7.25), i.e. x 6= x̄ and

fi(x) − fi(x̄) < 0 for all i ∈ {1, . . . ,m},
g(x) − g(x̄) ∈ −Rk

+ + cone({g(x̄)}) − cone({g(x̄)}) (7.37)

hi(x) − hi(x̄) = 0 for all i ∈ {1, . . . , p}.

The inequality (7.37) implies

gi(x) − gi(x̄) ≤ 0 for all i ∈ I(x̄).

Using the definition of pseudoconvex functions and the characteri-
zation of quasiconvex functions with partial derivatives the previous
inequalities imply

f ′
i(x̄)(x− x̄) < 0 for all i ∈ {1, . . . ,m},
g′i(x̄)(x− x̄) ≤ 0 for all i ∈ I(x̄),

h′i(x̄)(x− x̄) = 0 for all i ∈ {1, . . . , p}.

Since gi(x̄) < 0 for all i ∈ {1, . . . , k}\I(x̄), there are α, β ≥ 0 with

g′i(x̄)(x− x̄) ≤ (α− β)gi(x̄) for all i ∈ {1, . . . , k}.

Consequently, we get

(f, g, h)′(x̄)(x− x̄) ∈ C

and we conclude that the condition (7.26) is fulfilled with x̃ := x and
C2 := C. 2
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Lemma 7.23 shows in particular that the convexity type conditions
are only imposed on the active constraints. With Corollary 7.21 and
Lemma 7.23 we immediately obtain a sufficient condition for a weakly
minimal solution of a multiobjective optimization problem.

Corollary 7.24. Let f : Rn → Rm, g : Rn → Rk and h : Rn → Rp

be given vector functions. Let the constraint set S be given as

S := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, . . . , k} and

hi(x) = 0 for all i ∈ {1, . . . , p}},

and let the space Rm be partially ordered in the natural way. Let some
x̄ ∈ S be given and assume that the vector functions f , g and h have
partial derivatives at x̄. Let the functions f1, . . . , fm be pseudoconvex
at x̄ and let the functions h1, . . . , hp,−h1, . . . ,−hp and gi for all i ∈
I(x̄) with

I(x̄) := {i ∈ {1, . . . , k} | gi(x̄) = 0}
be quasiconvex at x̄. If there are multipliers ti ≥ 0 (where at least
one ti, i ∈ {1, . . . ,m}, is nonzero), ui ≥ 0 (i ∈ I(x̄)) and vi ∈ R
(i ∈ {1, . . . , p}) with the property

m∑

i=1

ti∇fi(x̄) +
∑

i∈I(x̄)

ui∇gi(x̄) +

p
∑

i=1

vi∇hi(x̄) = 0Rn ,

then x̄ is a weakly minimal solution of the multiobjective optimization
problem min

x∈S
f(x).

Notes

The investigation of necessary optimality conditions carried out in
Section 7.1 for Banach spaces and Fréchet differentiable maps can
be extended to much more general spaces and even to much more
general differentiability notions. Kirsch-Warth-Werner [188] discuss
these generalizations in their book in a profound way. The proof of the
necessary condition presented in this book is based on similar work
of Sachs [292], [293] and Kirsch-Warth-Werner [188]. The so-called F.
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John conditions were introduced by John [177] and the Karush-Kuhn-
Tucker conditions became popular by the work of Kuhn-Tucker [204].
For a discussion of these necessary conditions for abstract optimiza-
tion problems we also refer to Hurwicz [142], Borwein [34], Vogel [342],
Penot [272], Hartwig [130], Oettli [265], Borwein [37], Craven [76] and
Minami [247], [248], [249], and others. In a paper of Jahn-Sachs [173]
Theorem 7.5 can be found even in a non-topological setting. The nec-
essary optimality condition in Theorem 7.6 given by Jahn-Sachs [172]
extends a corresponding condition for scalar optimization problems
(e.g., see Luenberger [238, p. 178]). In the case of a vector-valued
objective map a similar condition is given by Sachs [292, p. 23], [293,
p. 505] and Penot [272, p. 8].

The presentation of Section 7.2 is based on a paper of Jahn-Sachs
[173]. The definition of quasiconvexity was first introduced by von
Neumann [345, p. 307] and Nikaidô [262]. For abstract optimization
problems this definition has been given by Hartwig [130] in a finite-
dimensional setting and by Craven [76], Nehse [256] and Peemöller
[270] for problems in infinite-dimensional spaces. Corollary 7.21 ex-
tends results of Vogel [342, p. 100], Hartwig [130, p. 313-314] (for
another optimality notion) and Craven [76, p. 666-667].



Chapter 8

Duality

It is well-known from scalar optimization that, under appropriate
assumptions, a maximization problem can be associated to a given
minimization problem so that both problems have the same optimal
values. Such a duality between a minimization and a maximization
problem can also be formulated in vector optimization. In the first
section we present a general duality principle for vector optimization
problems. The following sections are devoted to a duality theory
for abstract optimization problems. A generalization of the duality
results known from linear programming is also given.

8.1 A General Duality Principle

The duality principle presented in this section is simple and it is based
on a similar idea on which the duality theory for abstract optimization
problems examined in the following section is based as well. This
principle is designed in a way that, under appropriate assumptions, a
minimal element of a subset of a partially ordered linear space is also
a maximal element of an associated set.

Let P be a nonempty subset of a partially ordered linear space X
with a pointed ordering cone C 6= {0X}. Then we couple the primal
problem of determining a minimal element of the set P with a dual
problem of determining a maximal element of the complement set of
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P + (C\{0X}). The set P is also called the primal set, and the set

D := X\(P + (C\{0X})) (8.1)

is denoted as the dual set of our problem (see Fig. 8.1). The following
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Figure 8.1: Illustration of the primal set P and the dual set D.

duality investigations are concentrated on the question: Under which
assumption is a minimal element of the primal set P also a maximal
element of the dual set D and vice versa? The following lemma is a
key for the answer of this question.

Lemma 8.1. Let P be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone C 6= {0X}. If x̄ ∈ P ∩D
where D is defined in (8.1), then x̄ is a minimal element of the set P
and x̄ is a maximal element of the set D.

Proof. Since x̄ is an element of the dual set D, it follows that
x̄ /∈ P + (C\{0X}) implying ({x̄} − (C\{0X})) ∩ P = ∅. But x̄ also
belongs to the primal set P and, therefore, x̄ is a minimal element of
the set P .

Since D is the complement set of P + (C\{0X}), we have (P +
(C\{0X})) ∩ D = ∅ and especially ({x̄} + (C\{0X})) ∩ D = ∅. If
we notice that x̄ ∈ D, it is evident that x̄ is a maximal element of the
dual set D. 2
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The following duality theorem is a consequence of the previous
lemma.

Theorem 8.2. Let P be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone C 6= {0X}. Every mini-
mal element of the primal set P is also a maximal element of the dual
set D defined in (8.1).

Proof. Let x̄ ∈ P be a minimal element of the set P , and assume
that x̄ /∈ D. Then we have x̄ ∈ P+(C\{0X}) which is a contradiction
to the minimality of x̄. Consequently, x̄ belongs to the dual set D,
and Lemma 8.1 leads to the assertion. 2

The next theorem is a so-called converse duality theorem.

Theorem 8.3. Let P be a nonempty subset of a partially ordered
linear space X with a pointed ordering cone C 6= {0X}. If the comple-
ment set of P + C is algebraically open, then every maximal element
of the dual set D defined in (8.1) is also a minimal element of the set
P .

Proof. Let x̄ ∈ D be a maximal element of the set D, and
assume that x̄ /∈ P + C. Since the set X\(P + C) is algebraically
open, for every h ∈ C\{0X} there is a λ̄ > 0 so that

x̄+ λh ∈ X\(P + C) for all λ ∈ (0, λ̄].

Then it follows x̄ + λ̄h ∈ D which contradicts the maximality of x̄.
Consequently, x̄ is an element of the set P +C, and since x̄ does not
belong to P + (C\{0X}), we conclude x̄ ∈ P . Finally, Lemma 8.1
leads to the assertion. 2

If the set P +C is convex and algebraically closed, then the com-
plement set of P + C is algebraically open (compare also the proof
of Lemma 1.22, (d)). But notice that, in general, the duality princi-
ple outlined in the two preceding theorems works even without any
convexity assumptions on the set P or P + C.
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8.2 Duality Theorems for Abstract Op-

timization Problems

In this section abstract optimization problems with inequality con-
straints are investigated and duality results for the minimality and
weak minimality notion are presented. The following theory is based
on the Lagrange formalism of Chapter 7 (without differentiability as-
sumptions) and on the duality principle of the previous section.

First, we list the standard assumption for the following theory:

Let Ŝ be a nonempty convex subset of a real linear
space X; let Y and Z be partially ordered
topological linear spaces with ordering cones

CY 6= Y and CZ , respectively; let f : Ŝ → Y and

g : Ŝ → Z be convex maps; let the constraint set

S := {x ∈ Ŝ | g(x) ∈ −CZ}
be nonempty.







(8.2)

Notice that under this assumption the set f(S) + CY is convex
(compare Theorem 2.11). Then we examine the abstract optimization
problem

min
x∈S

f(x). (8.3)

Instead of investigating the optimal solutions of the problem (8.3) we
consider weakly minimal or almost properly minimal elements of the
set f(S) + CY . If the ordering cone CY has a nonempty interior, we
examine the problem:

Determine a weakly minimal element of the set
P1 := f(S) + CY .

}

(8.4)

If the quasi-interior C#
Y ∗ of the dual ordering cone CY ∗ is nonempty,

we formulate the problem:

Determine an almost properly minimal element of the
set P2 := f(S).

}

(8.5)
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Next we assign dual problems to these two primal problems. If int(CY )
6= ∅, we define the problem which is dual to (8.4):

Determine a weakly maximal element of the set
D1 := {y ∈ Y | there are continuous linear functionals

t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

(t ◦ f + u ◦ g)(x) ≥ t(y) for all x ∈ Ŝ}.







(8.6)

For C#
Y ∗ 6= ∅ we formulate the problem which is dual to (8.5):

Determine a maximal element of the set
D2 := {y ∈ Y | there are continuous linear functionals

t ∈ C#
Y ∗ and u ∈ CZ∗ with

(t ◦ f + u ◦ g)(x) ≥ t(y) for all x ∈ Ŝ}.







(8.7)

Notice that the Krein-Rutman theorem (Theorem 3.38) gives a suf-
ficient condition under which the set C#

Y ∗ is nonempty. Moreover,
if C#

Y ∗ is nonempty, by Lemma 1.27, (b) the ordering cone CY is
pointed and, therefore, the assumption CY 6= Y is fulfilled. If int(CY )
is nonempty, by Lemma 3.21, (c) and the assumption CY 6= Y the set
CY ∗\{0Y ∗} is nonempty.

With the next theorems we clarify in which sense the problems
(8.4) and (8.6) and the problems (8.5) and (8.7) are dual to each
other. First, we prove a weak duality theorem.

Theorem 8.4. Let the assumption (8.2) be satisfied, and consider
the problems (8.4) - (8.7).

(a) If int(CY ) 6= ∅, then for every ȳ ∈ D1 there is a t ∈ CY ∗\{0Y ∗}
with the property

t(ȳ) ≤ t(y) for all y ∈ P1.

(b) If C#
Y ∗ 6= ∅, then for every ȳ ∈ D2 there is a t ∈ C#

Y ∗ with the
property

t(ȳ) ≤ t(y) for all y ∈ P2.
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Proof. We fix an arbitrary ȳ ∈ D1 (ȳ ∈ D2, respectively).
Then there are continuous linear functionals t ∈ CY ∗\{0Y ∗} (t ∈ C#

Y ∗ ,
respectively) and u ∈ CZ∗ with

(t ◦ f + u ◦ g)(x) ≥ t(ȳ) for all x ∈ Ŝ

which implies
(t ◦ f)(x) ≥ t(ȳ) for all x ∈ S.

This inequality immediately leads to the assertions under (a) and (b).
2

The next lemma is useful for the proof of the following strong
duality results. It can be compared with Lemma 8.1.

Lemma 8.5. Let the assumption (8.2) be satisfied, and consider
the problems (8.4) - (8.7).

(a) Assume that int(CY ) is nonempty.

(i) If p ∈ P1 and d ∈ D1, then d− p /∈ cor(CY ).

(ii) If ȳ ∈ P1 ∩D1, then ȳ is a weakly minimal element of the
set P1 and ȳ is a weakly maximal element of the set D1.

(b) Assume that C#
Y ∗ is nonempty.

(i) If p ∈ P2 and d ∈ D2, then d− p /∈ CY \{0Y }.
(ii) If ȳ ∈ P2 ∩D2, then ȳ is an almost properly minimal ele-

ment of the set P2 and ȳ is a maximal element of the set
D2.

Proof.

(a) (i) Let p ∈ P1 and d ∈ D1 be arbitrarily given. If we assume
that d− p ∈ cor(CY ), then we get with Lemma 3.21, (b)

t(d− p) > 0 for all t ∈ CY ∗\{0Y ∗}

which contradicts Theorem 8.4, (a).
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(ii) Let any ȳ ∈ P1∩D1 be given. Then we obtain with Lemma
8.5, (a), (i)

d /∈ {ȳ} + cor(CY ) for all d ∈ D1

which implies that ȳ is a weakly maximal element of the
set D1. Moreover, with Theorem 8.4, (a) and Theorem
5.28 ȳ is also a weakly minimal element of the set P1.

(b) (i) Let arbitrary elements p ∈ P2 and d ∈ D2 be given. If we
assume that d− p ∈ CY \{0Y }, then we get

t(d− p) > 0 for all t ∈ C#
Y ∗

which contradicts Theorem 8.4, (b).

(ii) We fix any ȳ ∈ P2 ∩ D2. Then we get with Lemma 8.5,
(b), (i)

d /∈ {ȳ} + (CY \{0Y }) for all d ∈ D2.

Consequently, ȳ is a maximal element of the set D2. Fi-
nally, with Theorem 8.4, (b) ȳ is an almost properly mini-
mal element of the set P2 as well.

2

For the formulation of strong duality results we need the notions
of normality and stability which are known from the scalar optimiza-
tion theory (e.g., compare Ekeland-Temam [101, p. 51] or Rockafellar
[285]). In this book we use the following

Definition 8.6. Let the assumption (8.2) be satisfied, and let
ϕ : Ŝ → R be a convex functional.

(a) The scalar optimization problem

inf
x∈S

ϕ(x) (8.8)

is called normal if

inf
x∈S

ϕ(x) = sup
u∈CZ∗

inf
x∈Ŝ

(ϕ+ u ◦ g)(x)

(where we do not assume that this number is finite).
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(b) The scalar optimization problem (8.8) is called stable, if it is
normal and if the problem

sup
u∈CZ∗

inf
x∈Ŝ

(ϕ+ u ◦ g)(x)

has at least one solution.

Theorem 8.7. Let the assumption (8.2) be satisfied, and consider
the problems (8.4) - (8.7).

(a) Let int(CY ) be nonempty, and let ȳ be any weakly minimal ele-
ment of the set P1. Let t ∈ CY ∗\{0Y ∗} be a supporting functional
to the set P1 at ȳ (the existence of t is ensured by Theorem 5.13
and Lemma 3.15), and let the scalar optimization problem

inf
x∈S

(t ◦ f)(x) (8.9)

be stable. Then ȳ is also a weakly maximal element of the set
D1.

(b) Let C#
Y ∗ be nonempty, and let ȳ be an almost properly mini-

mal element of the set P2 with the continuous linear functional
t ∈ C#

Y ∗ given by Definition 5.23. Let the scalar optimization
problem (8.9) be stable. Then ȳ is also a maximal element of
the set D2.

Proof. For simplicity we prove only part (a) of the assertion. The
proof of the part (b) is similar. Let ȳ ∈ P1 be any weakly minimal
element of the set P1 and let t ∈ CY ∗\{0Y ∗} be a corresponding
supporting functional, i.e. we have

t(ȳ) ≤ t(y) for all y ∈ P1.

Consequently, there are an x̄ ∈ S and a c̄ ∈ CY with ȳ = f(x̄)+ c̄ and

t(f(x̄) + c̄) ≤ t(f(x) + c) for all x ∈ S and all c ∈ CY .
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From this inequality we get t(c̄) = 0 and

(t ◦ f)(x̄) ≤ (t ◦ f)(x) for all x ∈ S.

By Lemma 2.7, (b) and Example 5.2, (a) the functional t◦f is convex.
Hence, x̄ is a solution of the convex optimization problem (8.9) which
is assumed to be stable. Then there is a continuous linear functional
ū ∈ CZ∗ with

inf
x∈S

(t ◦ f)(x) = inf
x∈Ŝ

(t ◦ f + ū ◦ g)(x)

and

(t ◦ f + ū ◦ g)(x) ≥ t(f(x̄)) for all x ∈ Ŝ.

Consequently, ȳ belongs to the set P1 ∩ D1 and an application of
Lemma 8.5, (a), (ii) leads to the assertion. 2

If the abstract optimization problem (8.3) satisfies the generalized
Slater condition, i.e. there is an x ∈ Ŝ with g(x) ∈ −int(CZ), then
the stability assumption of the previous theorem is satisfied (for a
normed setting see, for instance, Krabs [201, p. 112–113]).

For the next duality result we need a technical lemma.

Lemma 8.8. Let the assumption (8.2) be satisfied, and consider
the problems (8.4) - (8.7). In addition, let Y be locally convex, and
let the set P1 be closed.

(a) If the scalar optimization problem

inf
x∈S

(t ◦ f)(x) (8.10)

is normal for all t ∈ CY ∗\{0Y ∗}, then the complement set of P1

is a subset of cor(D1).

(b) Let the sets C#
Y ∗ and D2 be nonempty. If the scalar optimization

problem (8.10) is normal for all t ∈ C#
Y ∗, then the complement

set of P2 + CY (= P1) is a subset of cor(D2).
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Proof.

(a) Choose an arbitrary element ȳ ∈ Y \P1. Since the real linear
space Y is locally convex and the set P1 is convex and closed,
by Theorem 3.18 there are a continuous linear functional t ∈
Y ∗\{0Y ∗} and a real number α with

t(ȳ) < α ≤ t(y) for all y ∈ P1.

Obviously we have t ∈ CY ∗\{0Y ∗}. Moreover, we get

t(ȳ) < inf
y∈P1

t(y) = inf
x∈S

(t ◦ f)(x). (8.11)

By assumption the scalar optimization problem

inf
x∈S

(t ◦ f)(x)

is normal. Therefore, we conclude with (8.11) for some u ∈ CZ∗

inf
x∈Ŝ

(t ◦ f + u ◦ g)(x) > t(ȳ).

But this implies ȳ ∈ cor(D1).

(b) Fix any ȳ ∈ Y \(P2 + CY ). Again, by a separation theorem
(Theorem 3.18) there are a continuous linear functional t ∈
CY ∗\{0Y ∗} and a real number α with

t(ȳ) < α ≤ t(y) for all y ∈ P2 + CY .

Since the set D2 is not empty, there is a ỹ ∈ D2 and with
Theorem 8.4, (b) there is a continuous linear functional t̃ ∈ C#

Y ∗

with
t̃(ỹ) ≤ t̃(y) for all y ∈ P2.

Next, we define for every λ ∈ (0, 1] a continuous linear func-
tional

tλ := λt̃+ (1 − λ)t

which belongs to C#
Y ∗ . Then we obtain with ε := α− t(ȳ) > 0

tλ(ȳ) = t(ȳ) + λ(t̃(ȳ) − t(ȳ))

= α− ε+ λ(t̃(ȳ) − α+ ε) for all λ ∈ (0, 1]
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and

tλ(y) ≥ α+ λ(t̃(ỹ) − α) for all λ ∈ (0, 1] and all y ∈ P2 + CY .

For a sufficiently small λ̄ we conclude

tλ̄(ȳ) < α− ε

2
≤ tλ̄(y) for all y ∈ P2 + CY

which implies

tλ̄(ȳ) < inf
y∈P2+CY

tλ̄(y) = inf
x∈S

(tλ̄ ◦ f)(x).

Because of the normality assumption we obtain for some u ∈
CZ∗ with this inequality

inf
x∈Ŝ

(tλ̄ ◦ f + u ◦ g)(x) > tλ̄(ȳ).

Hence, ȳ belongs to the algebraic interior of the set D2.

2

Again, if the abstract optimization problem (8.3) satisfies the gen-
eralized Slater condition, then the normality assumption in Lemma
8.8 is satisfied (for a normed setting see also Krabs [201, p. 103]).

Now we present a strong converse duality theorem.

Theorem 8.9. Let the assumption (8.2) be satisfied, and consider
the problems (8.4) - (8.7). In addition, let Y be locally convex, and
let the set P1 be closed.

(a) If the sets int(CY ) and D1 are nonempty and if the scalar opti-
mization problem (8.10) is normal for all t ∈ CY ∗\{0Y ∗}, then
every weakly minimal element of the set D1 is also a weakly
minimal element of the set P1.

(b) If the sets C#
Y ∗ and D2 are nonempty and if the scalar opti-

mization problem (8.10) is normal for all t ∈ C#
Y ∗, then every

maximal element of the set D2 is also an almost properly mini-
mal element of the set P2.
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Proof.

(a) Let ȳ be any weakly maximal element of the setD1. It is evident
that ȳ /∈ cor(D1) and, therefore, by Lemma 8.8, (a) ȳ ∈ P1.
Since ȳ ∈ P1 ∩ D1, by Lemma 8.5, (a), (ii) ȳ is also a weakly
minimal element of the set P1.

(b) Choose any maximal element ȳ of the set D2. Then we get
ȳ /∈ cor(D2) and with Lemma 8.8, (b) we conclude ȳ ∈ P2 +
CY . With Theorem 8.4, (b) we obtain even ȳ ∈ P2, and an
application of Lemma 8.5, (b), (ii) leads to the assertion.

2

Summarizing the results of this section we have under appropriate
assumptions that an element ȳ is a weakly minimal element of the set
P1 if and only if ȳ is a weakly maximal element of the set D1. Every
weakly minimal element of the set f(S) is also a weakly minimal
element of the set P1 = f(S) + CY , but conversely, not every weakly
minimal element of the set f(S) + CY is a weakly minimal element
of the set f(S). Consequently, this duality theory is not completely
applicable to the original abstract optimization problem (8.3). For
the other duality theory which is related to the original problem (8.3)
we have under suitable assumptions that an element ȳ is an almost
properly minimal element of the set P2 if and only if ȳ is a maximal
element of the set D2. The disadvantage of this theory is that it is
not possible to get a corresponding result for minimal elements of the
primal set P2.

8.3 Specialization to Abstract Linear

Optimization Problems

In this section we investigate special abstract optimization problems
namely linear problems. It is the aim to transform the dual sets D1

and D2 (defined in (8.6) and (8.7)) in such a way that the relationship
to the well-known dual problem in linear programming becomes more
transparent.
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The standard assumption which is needed now reads as follows:

Let X,Y and Z be partially ordered separated
locally convex topological linear spaces with
ordering cones CX , CY and CZ , respectively;
let CY 6= Y be nontrivial;
let C : X → Y and A : X → Z be continuous linear
maps;
let b ∈ Z be a fixed vector;
let the constraint set S := {x ∈ CX | A(x) − b ∈ CZ}
be nonempty.







(8.12)

Under this assumption we consider the two primal problems (8.4)
and (8.5) and formalize them as

w-min C(x) + y
subject to the constraints
A(x) − b ∈ CZ

x ∈ CX

y ∈ CY







(8.13)

and

a-p-min C(x)
subject to the constraints
A(x) − b ∈ CZ

x ∈ CX ,







(8.14)

respectively. In this special case the two dual sets D1 and D2 of the
problems (8.6) and (8.7) read

D1 = {y ∈ Y | there are continuous linear functionals

t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

t(C(x)) + u(−A(x) + b) ≥ t(y) for all x ∈ CX}
(8.15)

and

D2 = {y ∈ Y | there are continuous linear functionals

t ∈ C#
Y ∗ and u ∈ CZ∗ with

t(C(x)) + u(−A(x) + b) ≥ t(y) for all x ∈ CX}.
(8.16)
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The next lemma gives a standard re-expression of the sets (8.15)
and (8.16) without proof.

Lemma 8.10. Let the assumption (8.12) be satisfied, and consider
the sets in (8.15) and (8.16). Then:

(a)

D1 = {y ∈ Y | there are continuous linear functionals

t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

C∗(t) − A∗(u) ∈ CX∗ and t(y) ≤ u(b)}

(where C∗ and A∗ denote the adjoint maps of C and A, respec-
tively).

(b)

D2 = {y ∈ Y | there are continuous linear functionals

t ∈ C#
Y ∗ and u ∈ CZ∗ with

C∗(t) − A∗(u) ∈ CX∗ and t(y) ≤ u(b)}.

Another result which is simple to proof is given in

Lemma 8.11. Let the assumption (8.12) be satisfied, and consider
the sets in (8.15) and (8.16).

(a) If int(CY ) 6= ∅ and if ȳ is a weakly maximal element of the set
D1 where t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ are given by definition,
then it follows t(ȳ) = u(b).

(b) If C#
Y ∗ 6= ∅ and if ȳ is a maximal element of the set D2 where

t ∈ C#
Y ∗ and u ∈ CZ∗ are given by definition, then it follows

t(ȳ) = u(b).

Before we are able to prove the main result of this section we need
an additional lemma. For simplicity we define the sets

D̃1 = {y ∈ Y | there are a continuous linear functional

t ∈ CY ∗\{0Y ∗} and a continuous linear
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map T : Z → Y with y = T (b),

T ∗(t) ∈ CZ∗ and (C − TA)∗(t) ∈ CX∗}
(8.17)

and

D̃2 = {y ∈ Y | there are a continuous linear functional

t ∈ C#
Y ∗ and a continuous linear map

T : Z → Y with y = T (b), T ∗(t) ∈ CZ∗ and

(C − TA)∗(t) ∈ CX∗}.
(8.18)

Lemma 8.12. Let the assumption (8.12) be satisfied, and consider
the sets in (8.15) - (8.18). Then we have D̃1 ⊂ D1 and D̃2 ⊂ D2.

Proof. We restrict ourselves to the proof of the inclusion D̃1 ⊂
D1. The case D̃1 = ∅ is trivial. If D̃1 is nonempty, choose any element
y ∈ D̃1. Then there are a continuous linear functional t ∈ CY ∗\{0Y ∗}
and a continuous linear map T : Z → Y with y = T (b), T ∗(t) ∈ CZ∗

and (C−TA)∗(t) ∈ CX∗ . With Theorem 2.3, (a) we get for u := T ∗(t)
the equality t(y) = u(b). Since

(C − TA)∗(t) = C∗(t) − A∗(T ∗(t))

= C∗(t) − A∗(u),

by Lemma 8.10, (a) we conclude y ∈ D1. Hence, the inclusion D̃1 ⊂
D1 is true. 2

Using the previous lemmas and Theorem 2.3 we obtain

Theorem 8.13. Let the assumption (8.12) be satisfied, and con-
sider the sets in (8.15) - (8.18).

(a) Assume that int(CY ) is nonempty.

(i) Every weakly maximal element of the set D̃1 is also a weakly
maximal element of the set D1.
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(ii) If b 6= 0Z, then every weakly maximal element of the set
D1 is also a weakly maximal element of the set D̃1.

(b) Assume that the set C#
Y ∗ is nonempty.

(i) Every maximal element of the set D̃2 is also a maximal
element of the set D2.

(ii) If b 6= 0Z, then every maximal element of the set D2 is also
a maximal element of the set D̃2.

Proof. For simplicity we prove only part (a) of the assertion.
The proof of the other part is analogous.

(a) (i) First, we assume that b 6= 0Z . The case b = 0Z will be
treated later. Let ȳ be any weakly maximal element of the
set D̃1 with a continuous linear functional t ∈ CY ∗\{0Y ∗}
and a continuous linear map T : Z → Y given by defini-
tion. Then we get with Lemma 8.12 that ȳ = T (b) ∈ D1.

Assume that ȳ is no weakly maximal element of the set
D1. Then there is some ỹ ∈ ({ȳ} + cor(CY )) ∩ D1 with
continuous linear functionals t̃ ∈ CY ∗\{0Y ∗} and ũ ∈ CZ∗

given by definition. Without loss of generality the equality
t̃(ỹ) = ũ(b) can be assumed (otherwise choose an appro-
priate y ∈ cor(CY ) with t̃(ỹ + y) = ũ(b)). By Theorem
2.3, (b) there is a continuous linear map T̃ : Z → Y with
ỹ = T̃ (b) and T̃ ∗(t̃) = ũ. Because of

C∗(t̃) − A∗(ũ) ∈ CX∗

we get
(C − T̃A)∗(t̃) ∈ CX∗

Then we obtain ỹ ∈ ({ȳ}+cor(CY ))∩D̃1 which contradicts
the assumption that ȳ is a weakly maximal element of the
set D̃1. Hence, ȳ is a weakly maximal element of the set
D1.

Finally, we assume that b = 0Z . In this case we have
D̃1 = {0Y }. By Lemma 8.12 we get 0Y ∈ D1. If we
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assume that 0Y is not a weakly maximal element of the
set D1, then there is a ỹ ∈ cor(CY ) ∩D1 with continuous
linear functionals t̃ ∈ CY ∗\{0Y ∗} and ũ ∈ CZ∗ given by
definition. But then it follows t̃(ỹ) > 0 which contradicts
the inequality

t̃(ỹ) ≤ ũ(b) = 0.

Consequently, the zero element 0Y is a weakly maximal
element of the set D1.

(ii) Let ȳ be an arbitrary weakly maximal element of the set
D1. By Lemma 8.11, (a) it follows that t(ȳ) = u(b) where
the continuous linear functionals t ∈ CY ∗\{0Y ∗} and u ∈
CZ∗ are given by definition. With the same arguments
as in part (a), (i) we obtain ȳ ∈ D̃1 with ȳ instead of
ỹ, t instead of t̃ and u instead of ũ. By Lemma 8.12 we
conclude immediately that ȳ is a weakly maximal element
of the set D̃1.

2

It is the essential result of the previous theorem that under the
assumption b 6= 0Z (which is needed in only one direction) the dual
problems (8.6) and (8.7) with D1 and D2 given by (8.15) and (8.16),
respectively, are equivalent to abstract optimization problems formal-
ized as

w-max T (b)
subject to the constraints
(C − TA)∗(t) ∈ CX∗

T ∗(t) ∈ CZ∗

t ∈ CY ∗\{0Y ∗}
T ∈ L(Z, Y )







(8.19)

and

max T (b)
subject to the constraints
(C − TA)∗(t) ∈ CX∗

T ∗(t) ∈ CZ∗

t ∈ C#
Y ∗

T ∈ L(Z, Y )







(8.20)
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where L(Z, Y ) denotes the linear space of continuous linear maps
from Z to Y . Hence, the problem (8.19) is a possible dual problem to
the primal problem (8.13) and (8.20) is a dual problem to the primal
problem (8.14).

It is known from linear programming that the assumption b 6= 0Z

is not needed. In fact, in the case of Y = R Theorem 8.13 can
be proved without the assumption b 6= 0Z . For Y = R we have
namely CY ∗\{0Y ∗} = C#

Y ∗ = R+\{0} and, therefore, t is a positive
real number. Consequently, the equation t(ȳ) = u(b) leads to ȳ =
1
t
u(b). Hence, Theorem 2.3 is not used for the proof of Theorem 8.13.

But for abstract optimization problems the assumption b 6= 0Z is of
importance. In the case of b = 0Z we have D̃1 = D̃2 = {0Y }. Hence,
0Y is the only weakly maximal element (and maximal element) of the
set D̃1 (and D̃2, respectively). But one can present simple examples
which show that the sets P1 and P2 have nonzero weakly minimal
elements and nonzero almost properly minimal elements, respectively
(e.g., see also Brumelle [54] and Gerstewitz-Göpfert-Lampe [114]).
For instance, in the case of Y := R2 and CY := R2

+ the vector (−1, 1)
is a weakly minimal element of the set P1 = f(S)+CY (and an almost
properly minimal element of the set P2 = f(S)) where

f(S) := {(y1, y2) ∈ R2 | y1 + y2 ≥ 0}.

The vector (−1, 1) is also a weakly maximal element of the set D1

(and a maximal element of the set D2). But on the other hand we
have D̃1 = D̃2 = {0R2}.

It is simple to see that the two dual abstract optimization prob-
lems (8.19) and (8.20) generalize the known dual problem of linear
programming. We remarked before that in the case of Y = R t
is a positive real number. Therefore, after some elementary trans-
formations, the dual problems (8.19) and (8.20) reduce to the scalar
optimization problem

max T (b)
subject to the constraints
C − A∗(T ) ∈ CX∗

T ∈ CZ∗

where now T and C are real-valued maps.
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Notes

The duality approach of Section 8.2 is based on the duality theory
of Schönfeld [305] which is generalized using the duality theory of
Van Slyke-Wets [337] in the extended form of Krabs [201]. The du-
ality theory for the almost proper minimality notion can also be
found in a paper of Jahn [153]. The first duality results were ob-
tained by Gale-Kuhn-Tucker [108] who investigated problems with
a matrix-valued objective map. For abstract optimization problems
in infinite-dimensional spaces there are only a few papers presenting
such an approach. Breckner [50], Zowe [372], [373], Rosinger [291] and
Gerstewitz-Göpfert-Lampe [114] generalized the Fenchel formalism
to abstract optimization problems. Lehmann-Oettli [217] and Oettli
[264] use the weak minimality notion for their investigations. Rosinger
[290] examines dual problems in partially ordered sets. Nieuwenhuis
[260] extends the duality theory of Van Slyke-Wets [337]. A com-
parison of the normality concept used in this book and the concept
of Nieuwenhuis can be found in a paper of Borwein-Nieuwenhuis [44].
Lampe [214] carries out duality investigations using perturbation the-
ory, and Corley [71] develops a saddle point theoretical approach. In
the case of Y = Rn several nonlinear duality results are formulated
by Schönfeld [305], di Guglielmo [86], Gros [122], Tanino-Sawaragi
[327], Craven [75], Tanino-Sawaragi [328], Bitran [31], Brumelle [54],
Nehse [257], Kawasaki [186], Nakayama [252], Tanino [326], and oth-
ers. An overview on several duality concepts is given by Nakayama
[253]. Theorem 8.7, (b) may also be found in a similar form in a paper
of Borwein [34, p. 61, Thm. 3]. The results of Section 8.2 concerning
the weak minimality and weak maximality notion are essentially in-
cluded in a paper of Oettli [264]. For a comprehensive description of
duality theory we refer to the recent book [48] of Boţ-Grad-Wanka.

Gale-Kuhn-Tucker [108] were also the first who investigated the
duality between abstract linear optimization problems. The dual
problem (8.7) with D2 as in Lemma 8.10, (b) is the generalized dual
problem of Gale-Kuhn-Tucker [108]. The dual problem (8.19) general-
izes the dual problem of Isermann [148] formulated in a finite dimen-
sional setting. In this special case Isermann [149] and Gerstewitz-
Göpfert-Lampe [114] investigated the relationship between the sets

D2 and D̃2 as well.
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The theory of vector optimization developed in the previous part
of this book has many applications - not only in the applied sciences
like engineering and economics but also in mathematical areas like
approximation and games. As pointed out in Example 4.5 and Ex-
ample 4.6 vector approximation problems and cooperative n person
games are special abstract optimization problems. Therefore, many
theorems from vector optimization can be applied to these special
problems. In Chapter 9 we discuss several results for vector approx-
imation problems where we focus our attention mainly on necessary
and sufficient optimality conditions. Cooperative n person differential
games are the topic of Chapter 10. The main part of this chapter is
devoted to the study of a maximum principle for these games.



Chapter 9

Vector Approximation

Vector approximation problems are abstract approximation problems
where a vectorial norm is used instead of a usual (real-valued) norm.
Many important results known from approximation theory can be ex-
tended to this vector-valued case. After a short introduction we exam-
ine the relationship between vector approximation and simultaneous
approximation, and we present the so-called generalized Kolmogorov
condition. Moreover, we consider nonlinear and linear Chebyshev
vector approximation problems and we formulate a generalized alter-
nation theorem for these problems.

9.1 Introduction

In Example 4.5 we have already considered a vector approximation
problem in a general form. For instance, if one wants to approximate
not only a given function but also its derivative or its integral, then
such a problem is a vector approximation problem. In the following
we discuss a further example. We examine the free boundary Stefan
problem (discussed by Reemtsen [279]):

uxx(x, t) − ut(x, t) = 0, (x, t) ∈ D(s), (9.1)

ux(0, t) = g(t), 0 < t ≤ T, (9.2)

u(s(t), t) = 0, 0 < t ≤ T, (9.3)

ux(s(t), t) = −ṡ(t), 0 < t ≤ T, (9.4)

s(0) = 0 (9.5)
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where g ∈ C([0, T ]) is a non-positive function with g(0) < 0 and

D(s) := {(x, t) ∈ R2 | 0 < x < s(t), 0 < t ≤ T} for s ∈ C([0, T ]).

For the approximative solution of this problem one chooses the func-
tion

ū(x, t, a) =
l∑

i=0

aivi(x, t)

with

vi(x, t) =

[ i
2
]

∑

k=0

i!

(i− 2k)!k!
xi−2ktk

([ i
2
] denotes the largest integer number less than or equal to i

2
) and

s̄(t, b) = −g(0)t+

p
∑

i=1

bit
i+1

(compare Reemtsen [279, p. 31–32]). For every a ∈ Rl+1 ū satisfies
the partial differential equation (9.1) and for every b ∈ Rp s̄ satisfies
the equation (9.5). If we plug ū and s̄ in the equations (9.2), (9.3)
and (9.4), then we obtain the error functions ρ1, ρ2, ρ3 ∈ C([0, T ])
with

ρ1(t, a, b) := ūx(0, t, a) − g(t) =
l∑

i=1
i odd

ai
i!

((i− 1)/2)!
t(i−1)/2 − g(t),

ρ2(t, a, b) := ū(s̄(t, b), t, a) =
l∑

i=0

aivi(s̄(t, b), t)

and

ρ3(t, a, b) := ūx(s̄(t, b), t, a) + ˙̄s(t, b) =
l∑

i=1

aivix(s̄(t, b), t) + ˙̄s(t, b).

If ‖ · ‖ is any norm on C([0, T ]), we formulate the following vector
approximation problem for the approximative solution of the Stefan
problem: Determine minimal or weakly minimal elements of the set

{(‖ρ1(·, a, b)‖, ‖ρ2(·, a, b)‖, ‖ρ3(·, a, b)‖) | (a, b) ∈ Rl+1 × Rp}
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where the real linear space R3 is assumed to be partially ordered in
the natural way.

For a more general type of vector approximation problems consid-
ered in this chapter we have the standard assumption:

Let S be a nonempty subset of a real linear space X;
let Y be a partially ordered linear space with an
ordering cone CY ;
let ||| · ||| : X → Y be a vectorial norm (see
Definition 1.35);
let x̂ ∈ X be a given element.







(9.6)

Then we consider the vector approximation problem formalized as

min
x∈S

|||x− x̂||| (9.7)

which means that we are looking for inverse images of minimal (or
weakly minimal) elements of the set

V := {|||x− x̂||| | x ∈ S}. (9.8)

9.2 Simultaneous Approximation

In approximation theory a multiobjective approximation problem is
often treated as a so-called simultaneous approximation problem:

min
x∈S

‖ |||x− x̂||| ‖Y (9.9)

where we assume that the assumption (9.6) is satisfied and, in ad-
dition, ‖ · ‖Y is a (usual) norm on Y . The problem (9.9) is a scalar
optimization problem. In the following we investigate the question:
Are there any relationships between the solutions of the scalar opti-
mization problem (9.9) and the inverse images of minimal (or weakly
minimal) elements of the set V given in (9.8)? The answer of this
question can be given immediately using certain scalarization results.

Theorem 9.1. Let the assumption (9.6) be satisfied and, in addi-
tion, let the ordering cone CY be pointed and algebraically closed, and
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let it have a nonempty algebraic interior. Moreover, let the set V be
given as in (9.8) and assume that

|||x− x̂||| ∈ cor(CY ) for all x ∈ S. (9.10)

An element ȳ ∈ V (with an inverse image x̄ ∈ S) is a minimal
element of the set V if and only if there is a norm ‖ · ‖Y on Y which
is monotonically increasing on CY with the property

‖ |||x̄− x̂||| ‖Y < ‖ |||x− x̂||| ‖Y for all x ∈ S with ȳ 6= |||x− x̂|||.

Proof. This theorem follows immediately from Corollary 5.16,
if we notice that the condition (9.10) is equivalent to the inclusion
V ⊂ {0Y } + cor(CY ). 2

Theorem 9.2. Let the assumption (9.6) be satisfied and, in ad-
dition, let the ordering cone CY have a nonempty algebraic interior.
Moreover, let the set V be given as in (9.8) and assume that the con-
dition (9.10) is fulfilled. An element ȳ ∈ V (with an inverse image
x̄ ∈ S) is a weakly minimal element of the set V if and only if there
is a seminorm ‖ · ‖Y on Y which is strictly monotonically increasing
on cor(CY ) with the property

‖ |||x̄− x̂||| ‖Y ≤ ‖ |||x− x̂||| ‖Y for all x ∈ S.

Proof. Notice that the inclusion V ⊂ {0Y }+cor(CY ) is satisfied
and apply Corollary 5.26. 2

The last two theorems show the strong connection between vector
approximation and simultaneous approximation. After all, certain
simultaneous approximation problems are scalarized vector approxi-
mation problems.

It is also possible to scalarize the vector approximation problem
(9.7) by using linear functionals instead of norms.

Theorem 9.3. Let the assumption (9.6) be satisfied, and let CY

be pointed.
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(a) If there are a linear functional l ∈ C#
Y ′ and an element x̄ ∈ S

with the property

l(|||x̄− x̂|||) ≤ l(|||x− x̂|||) for all x ∈ S,

then |||x̄− x̂||| is a minimal element of the set V (given by (9.8)).

(b) In addition, let the set S be convex, and let the ordering cone
CY be nontrivial. If the set V + CY has a nonempty algebraic
interior and ȳ is a minimal element of the set V (with an inverse
image x̄ ∈ S), then there is a linear functional l ∈ CY ′\{0Y ′}
with the property

l(|||x̄− x̂|||) ≤ l(|||x− x̂|||) for all x ∈ S.

Proof. Part (a) of this theorem follows from Theorem 5.18, (b)
and part (b) is a consequence of Theorem 5.4 and the fact that the
set V + CY is convex. 2

Theorem 9.4. Let the assumption (9.6) be satisfied, and let the
ordering cone CY have a nonempty algebraic interior.

(a) If there are a linear functional l ∈ CY ′\{0Y ′} and an element
x̄ ∈ S with the property

l(|||x̄− x̂|||) ≤ l(|||x− x̂|||) for all x ∈ S,

then |||x̄ − x̂||| is a weakly minimal element of the set V (given
by (9.8)).

(b) In addition, let the set S be convex. If ȳ is a weakly minimal
element of the set V (with an inverse image x̄ ∈ S), then there
is a linear functional l ∈ CY ′\{0Y ′} with the property

l(|||x̄− x̂|||) ≤ l(|||x− x̂|||) for all x ∈ S.
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9.3 Generalized Kolmogorov Condition

In this section we discuss a generalization of the so-called Kolmogorov
condition for the vector approximation problem (9.7). The Kolmogo-
rov condition is a well-known optimality condition in approximation
theory. As in the previous section we investigate the vector approxi-
mation problem (9.7), but now, for simplicity, we turn our attention
only to the weak minimality notion. Results for the minimality and
strong minimality notion are given by Oettli [266].

The following theorem presents the generalized Kolmogorov con-
dition for weakly minimal elements of the set V .

Theorem 9.5. Let the assumption (9.6) be satisfied. Let Y be
order complete (i.e., every nonempty subset of Y which is bounded
from below has an infimum) and pseudo-Daniell (i.e., every curve
{y(λ) ∈ Y | λ ∈ (0, 1]} which decreases as λ ↓ 0 and is bounded from
below, if inf

λ∈(0,1]
y(λ) ∈ −cor(CY ), has the property: y(λ) ∈ cor(CY )

for sufficiently small λ > 0). Let CY have a nonempty abgebraic
interior, let S be convex, and let x̄ ∈ S be given. Then |||x̄ − x̂||| is a
weakly minimal element of the set V (given by (9.8)) if and only if
for every x ∈ S there is a linear map Tx : X → Y so that

Tx(x− x̄) /∈ −cor(CY ), (9.11)

Tx(x̃) ≤CY
|||x̃||| for all x̃ ∈ X (9.12)

and

Tx(x̄− x̂) = |||x̄− x̂|||. (9.13)

Proof.

(a) For every x ∈ S let a linear map Tx be given satisfying the
conditions (9.11), (9.12) and (9.13). Assume that x̄ is no weakly
minimal element of V . Then there is an x ∈ S with

|||x− x̂||| − |||x̄− x̂||| ∈ −cor(CY ).
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With (9.12) for x̃ := x− x̂ and (9.13) we obtain

Tx(x− x̄) = Tx(x− x̂) − Tx(x̄− x̂)

≤CY
|||x− x̂||| − |||x̄− x̂|||

∈ −cor(CY )

which contradicts the condition (9.11).

(b) Next, let x̄ ∈ S be a weakly minimal element of V . Fix an
arbitrary x ∈ S and define h̄ := x− x̄. In analogy to the proof
of Lemma 2.24 one can show that the directional derivative |||x̄−
x̂|||′(h̄) of the vectorial norm exists (here we use a definition of the
directional derivative given by inf

λ∈(0,1]

1
λ

(|||x̄−x̂+λh̄|||−|||x̄−x̂|||)).
Moreover, the map |||x̄− x̂|||′(·) is sublinear (see Zowe [373, Thm.
3.1.4]). By the vectorial version of the Hahn-Banach extension
theorem given by Zowe [373, Thm. 2.1.1] there is a linear map
Tx : X → Y with

Tx(h) ≤CY
|||x̄− x̂|||′(h) for all h ∈ X (9.14)

and

Tx(h̄) = |||x̄− x̂|||′(h̄). (9.15)

The inequality (9.14) implies

Tx(h) ≤CY
|||x̄− x̂+ h||| − |||x̄− x̂||| for all h ∈ X. (9.16)

For h = x̄ − x̂ we get Tx(x̄ − x̂) ≤CY
|||x̄ − x̂||| and for h =

−(x̄− x̂) we obtain Tx(−(x̄− x̂)) ≤CY
−|||x̄− x̂||| implying |||x̄−

x̂||| ≤CY
Tx(x̄ − x̂). Since CY is assumed to be pointed, the

equation (9.13) is shown. For the proof of the inequality (9.12)
we conclude with (9.16)

Tx(x̃) ≤CY
|||x̄− x̂+ x̃||| − |||x̄− x̂||| ≤CY

|||x̃||| for all x̃ ∈ X.

Finally, assume that the condition (9.11) does not hold, i.e., we
have

Tx(h̄) ∈ −cor(CY ).



218 Chapter 9. Vector Approximation

We then get with the equation (9.15) that |||x̄−x̂|||′(h̄)∈−cor(CY)
which implies, because Y is pseudo-Daniell,

|||x̄− x̂+λh̄|||− |||x̄− x̂||| ∈ −cor(CY ) for sufficiently small λ > 0.

This is a contradiction to the weak minimality of |||x̄− x̂|||.

2

Originally, the Kolmogorov condition was formulated in (scalar-
valued) linear Chebyshev approximation. If ||| · ||| is a usual (scalar-
valued) norm (i.e. Y = R), then this condition reads

max {x∗(x− x̄) | x∗(x̄− x̂) = ‖x̄− x̂‖X and ‖x∗‖X∗ = 1} ≥ 0

(e.g., see Jahn [164]). This inequality is equivalent to the conditions
(9.11), (9.12) and (9.13) in this special case.

9.4 Nonlinear Chebyshev Vector

Approximation

In this section we investigate the general vector approximation prob-
lem (9.7) in a special form. We assume that the vectorial norm is
given componentwise as a Chebyshev norm. For this special type of
problems we present an alternation theorem as a consequence of the
generalized Lagrange multiplier rule.

Now we have the following standard assumption denoted by (9.17):

Let S be a convex subset of Rn with a nonempty
interior;
let Ŝ be an open superset of S;
let Ω be a compact Hausdorff space with at least
n+ 2 elements;
let C(Ω) denote the real linear space of real-
valued continuous functions on Ω equipped with
the maximum norm ‖ · ‖ (see Example 1.49);
let f1, . . . , fm : Ŝ → C(Ω) be maps which are
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Fréchet differentiable on Ŝ;
let z1, . . . , zm ∈ C(Ω) be given functions;
let the space Rm be partially ordered in the
natural way. (9.17)

The vectorial norm which is used implicitly is given as

|||(y1, . . . , ym)||| := (‖y1‖, . . . , ‖ym‖) for all y1, . . . , ym ∈ C(Ω).

Then the general vector approximation problem (9.7) reduces to

min
x∈S






‖f1(x) − z1‖
...

‖fm(x) − zm‖




 (9.18)

and the set V is given as

V :=

{






‖f1(x) − z1‖
...

‖fm(x) − zm‖






∣
∣
∣
∣
x ∈ S

}

(9.19)

which is a subset of Rm. For our investigations we consider the set
V + Rm

+ given as

V + Rm
+ = {y ∈ Rm | there is an x ∈ S so that

‖fk(x) − zk‖ ≤ yk for all k ∈ {1, . . . ,m}}.

This set is the image set of the objective map of the following abstract
optimization problem formalized by

min y
subject to the constraints
fk(x)(t) − zk(t) − yk ≤ 0
−fk(x)(t) + zk(t) − yk ≤ 0

}
for all k ∈ {1, . . . ,m}
and all t ∈ Ω

x ∈ S, y ∈ Rm.







(9.20)

Roughly speaking, the problem (9.20) is obtained by introducing
“slack variables” in the vector approximation problem (9.18). Such a
transformation is advantageous because we can apply the generalized
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Lagrange multiplier rule in order to get an optimality condition for
the problem (9.18). With the following theorem we present, as a nec-
essary optimality condition, an alternation theorem for the nonlinear
Chebyshev vector approximation problem (9.18).

Theorem 9.6. Let the assumption (9.17) be satisfied, and let the
set V be given by (9.19). If ȳ is a weakly minimal element of the set
V (with an inverse image x̄ ∈ S) and if for every k ∈ {1, . . . ,m} the
Fréchet-derivative of fk at x̄ is given by

f ′
k(x̄)(x) =

n∑

i=1

xivki for all x ∈ S (9.21)

with certain functions vki ∈ C(Ω), then there are non-negative num-
bers τ1, . . . , τm where at least one τk is nonzero with the following
property: For every k ∈ {1, . . . ,m} with τk > 0 there are pk points
tk1, . . . , tkpk

∈ Ek(x̄) with

1 ≤ pk ≤ dim span {vk1, . . . , vkn, e, fk(x̄)− zk} ≤ n+2 (e ≡ 1 on Ω),

Ek(x̄) := {t ∈ Ω | |(fk(x̄) − zk)(t)| = ‖fk(x̄) − zk‖}
and there are real numbers λk1, . . . , λkpk

so that

pk∑

i=1

|λki| = 1, (9.22)

n∑

j=1

(xj − x̄j)
m∑

k=1
τk>0

τk

pk∑

i=1

λkivkj(tki) ≥ 0 for all x ∈ S (9.23)

and

λki 6= 0 for some i ∈ {1, . . . , pk}
=⇒ (fk(x̄) − zk)(tki) = ‖fk(x) − zk‖ sgn(λki). (9.24)

Proof. Since ȳ is assumed to be a weakly minimal element of
the set V , by Lemma 4.13, (b) ȳ is also a weakly minimal element
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of the set V + Rm
+ . Hence, (x̄, ȳ) is a weakly minimal solution of the

transformed problem (9.20). Then, by Theorem 7.4 (notice that the
regularity assumption is satisfied) there are non-negative numbers
τ1, . . . , τm where at least one τk is nonzero and certain continuous
linear functionals uk, wk ∈ CC(Ω)∗ , k ∈ {1, . . . ,m}, with

τk = uk(e) + wk(e) for all k ∈ {1, . . . ,m}, (9.25)

m∑

k=1

(uk − wk)(f
′
k(x̄)(x− x̄)) ≥ 0 for all x ∈ S, (9.26)

and

uk(fk(x̄) − zk − ȳke) = 0
wk(−fk(x̄) + zk − ȳke) = 0

}

for all k ∈ {1, . . . ,m}. (9.27)

It is clear that CC(Ω)∗ denotes the dual cone of the natural ordering
cone in C(Ω). If τk = 0 for some k ∈ {1, . . . ,m}, then it follows uk =
wk = 0C(Ω)∗ and nothing needs to be shown. Otherwise define ūk =
1
τk
uk, w̄k = 1

τk
wk and a representation theorem for linear functionals

on finite-dimensional subspaces of C(Ω) (see Krabs [201, IV 2.3–2.4])
gives the existence of qk points t+ki ∈ Ω and real numbers λ̄+

ki ≥ 0 for
i ∈ {1, . . . , qk} with

ūk(f) =

qk∑

i=1

λ̄+
kif(t+ki).

In a similar way there are rk points t−ki ∈ Ω and real numbers λ̄−ki ≥ 0
for i ∈ {1, . . . , rk} with

w̄k(f) =

rk∑

j=1

λ̄−kif(t−ki).

If we define
λki := λ̄+

ki for all i ∈ {1, . . . , qk}
and

λk i+qk
:= −λ̄−ki for all i ∈ {1, . . . , rk},

and if we set pk := qk + rk, then (9.25) is equivalent to (9.22),
and (9.26) is equivalent to (9.23). The analogous application of a
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known result from optimization (e.g., compare Krabs [201, Thm.
I.5.2]) leads to pk ≤ dim span {vk1, . . . , vkn, e, fk(x̄) − zk}. For ev-
ery k ∈ {1, . . . ,m} the equations (9.27) can be written as

qk∑

i=1

λki[(fk(x̄) − zk)(t
+
ki) − ‖fk(x̄) − zk‖] = 0

and
rk∑

i=1

λk i+qk
[(fk(x̄) − zk)(t

−
ki) + ‖fk(x̄) − zk‖] = 0

which is equivalent to the implication (9.24). 2

The preceding proof shows the usefulness of the generalized mul-
tiplier rule. Theorem 9.6 gives a necessary optimality condition for
the vector approximation problem (9.18). We know from Theorem
7.20 that the generalized multiplier rule is also a sufficient optimality
condition if and only if a composite map is in a certain sense differ-
entiably C-quasiconvex. The next theorem presents a so-called repre-
sentation condition which implies the differentiable C-quasiconvexity
of this composite map.

Theorem 9.7. Let the assumption (9.17) be satisfied, and let the
set V be given by (9.19). Moreover, let some ȳ ∈ V (with an inverse
image x̄ ∈ S) be given, and for every k ∈ {1, . . . ,m} let the Fréchet-
derivative of fk at x̄ be given by (9.21). Assume that there are non-
negative numbers τ1, . . . , τm where at least one τk is nonzero with the
following property: For every k ∈ {1, . . . ,m} with τk > 0 there are pk

points τk1, . . . , tkpk
∈ Ek(x̄) with

1 ≤ pk ≤ dim span {vk1, . . . , vkn, e, fk(x̄)− zk} ≤ n+2 (e ≡ 1 on Ω),

Ek(x̄) := {t ∈ Ω | |(fk(x̄) − zk)(t)| = ‖fk(x̄) − zk‖}
and there are real numbers λk1, . . . , λkpk

so that the conditions (9.22),
(9.23) and (9.24) are satisfied. Furthermore, let f1, . . . , fm satisfy
the representation condition, i.e., for every x ∈ S there are positive
functions Ψ1(x, x̄), . . . ,Ψm(x, x̄) ∈ C(Ω) and some x̃ ∈ S with

(fk(x) − fk(x̄))(t) = Ψk(x, x̄)(t) · (f ′
k(x̄)(x̃− x̄))(t)

for all t ∈ Ω and all k ∈ {1, . . . ,m}. (9.28)
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Then ȳ is a weakly minimal element of the set V .

Proof. It is obvious from the proof of the previous theorem that
the generalized multiplier rule is satisfied for the problem (9.20). In
the following the objective map of this problem is denoted by f , that
is

f(x, y) = y for all (x, y) ∈ S × Rm.

The constraint map g : S × Rm → C(Ω)2m is denoted by

g(x, y) =










f1(x) − z1 − y1e
−f1(x) + z1 − y1e

...
fm(x) − zm − yme
−fm(x) + zm − yme










for all (x, y) ∈ S × Rm.

The real linear space C(Ω)2m is assumed to be partially ordered in
the natural way (the ordering cone is denoted CC(Ω)2m). If we show
that the composite map (f, g) is differentiably C-quasiconvex at (x̄, ȳ)
with

C := (−int(Rm
+ )) × (−CC(Ω)2m + cone({g(x̄, ȳ)}) − cone({g(x̄, ȳ)})),

then, by Corollary 7.21, (x̄, ȳ) is a weakly minimal solution of the
problem (9.20). But this means that ȳ ∈ V is a weakly minimal
element of the set V + Rm

+ . But then we conclude with Lemma 4.13,
(a) that ȳ is also a weakly minimal element of the set V .

Hence, it remains to prove that the composite map (f, g) is differ-
entiably C-quasiconvex at (x̄, ȳ). Let (x, y) ∈ S × Rm be arbitrarily
given with the property

(f, g)(x, y) − (f, g)(x̄, ȳ) ∈ C

which means for some α, β ≥ 0

yk − ȳk < 0 for all k ∈ {1, . . . ,m},

fk(x) − yke− fk(x̄) + ȳke

≤ α(fk(x̄) − zk − ȳke) − β(fk(x̄) − zk − ȳke)

for all k ∈ {1, . . . ,m}, (9.29)
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−fk(x) − yke+ fk(x̄) + ȳke

≤ α(−fk(x̄) + zk − ȳke) − β(−fk(x̄) + zk − ȳke)

for all k ∈ {1, . . . ,m} (9.30)

(where e ≡ 1 on Ω). Then there are positive functions Ψ1(x, x̄), . . . ,
Ψm(x, x̄) ∈ C(Ω) and some x̃ ∈ S so that the equation (9.28) is satis-
fied. Furthermore there are positive real numbers α1, . . . , αm, β1, . . . ,
βm with

0 < αk ≤ Ψk(x, x̄)(t) ≤ βk for all k ∈ {1, . . . ,m} and all t ∈ Ω,

and we define

α̃ :=
α

max{β1, . . . , βm}
,

β̃ :=
β

min{α1, . . . , αm}
and

ỹk := ȳk +
1

βk

(yk − ȳk) < ȳk for all k ∈ {1, . . . ,m}.

Then the inequality (9.29) implies with (9.28) and the feasibility of
(x̄, ȳ)

f ′
k(x̄)(x̃− x̄)(t) − (ỹk − ȳk)

=
1

Ψk(x, x̄)(t)

(

fk(x) − fk(x̄)
)

(t) − 1

βk

(

yk − ȳk

)

≤ 1

Ψk(x, x̄)(t)

[

yk − ȳk + α(fk(x̄) − zk − ȳke)(t)

−β(fk(x̄) − zk − ȳke)(t)
]

− 1

βk

(

yk − ȳk

)

≤ α

βk

(

fk(x̄) − zk − ȳke
)

(t) − β

αk

(

fk(x̄) − zk − ȳke
)

(t)

+
( 1

Ψk(x, x̄)(t)
− 1

βk

)

(yk − ȳk)

≤ α̃(fk(x̄) − zk − ȳke)(t) − β̃(fk(x̄) − zk − ȳke)(t)

for all k ∈ {1, . . . ,m} and all t ∈ Ω.
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Similarly the inequality (9.30) implies

−f ′
k(x̄)(x̃− x̄)(t) − (ỹk − ȳk)

=
1

Ψk(x, x̄)(t)

(

− fk(x) + fk(x̄)
)

(t) − 1

βk

(

yk − ȳk

)

≤ 1

Ψk(x, x̄)(t)

[

yk − ȳk + α(−fk(x̄) + zk − ȳke)(t)

−β(−fk(x̄) + zk − ȳke)(t)
]

− 1

βk

(

yk − ȳk

)

≤ α

βk

(

− fk(x̄) + zk − ȳke
)

(t) − β

αk

(

− fk(x̄) + zk − ȳke
)

(t)

+
( 1

Ψk(x, x̄)(t)
− 1

βk

)

(yk − ȳk)

≤ α̃(−fk(x̄) + zk − ȳke)(t) − β̃(−fk(x̄) + zk − ȳke)(t)

for all k ∈ {1, . . . ,m} and all t ∈ Ω.

Hence we get

(f, g)′(x̄, ȳ)(x̃− x̄, ỹ − ȳ) ∈ C.

This completes the proof. 2

The representation condition in the previous theorem is satisfied
for rational approximating families: Let functions pki ∈ C(Ω), k ∈
{1, . . . ,m} and i ∈ {1, . . . , n}, be given and define for some nk ∈
{1, . . . , n− 1}, with k ∈ {1, . . . ,m},

fk(x)(t) =

nk∑

i=1

xipki(t)

n∑

i=nk+1

xipki(t)

for all x ∈ Rn and all t ∈ Ω

and

S :=
{

x ∈ Rn
∣
∣
∣

n∑

i=nk+1

xipki(t) > 0 for all t ∈ Ω
}

.
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An easy computation shows that the equality (9.28) holds with

Ψk(x, x̄)(t) =

n∑

i=nk+1

xipki(t)

n∑

i=nk+1

x̄ipki(t)

for all t ∈ Ω

where x = (x1, . . . , xn) and x̄ = (x̄1, . . . , x̄n). For further discussion
of these types of condition for the case m = 1 see Krabs [200].

9.5 Linear Chebyshev Vector Approxi-

mation

In the preceding section we investigated nonlinear Chebyshev vector
approximation problems. Obviously, these results can also be ap-
plied for linear problems. It is the aim of this section to demonstrate
the usefulness of the duality theory developed to abstract linear opti-
mization problems. Using the dual problem we are able to formulate
an alternation theorem which is comparable with the corresponding
result of the previous section.

Specializing the assumption (9.17) we obtain our standard as-
sumption as follows:

Let Ω be a compact Hausdorff space with at least
n+ 1 elements;
let C(Ω) denote the real linear space of real-
valued continuous functions on Ω equipped with
the maximum norm ‖ · ‖ (see Example 1.49);
for every k ∈ {1, . . . ,m} let some functions
vk1, . . . , vkn ∈ C(Ω) be given which are linearly
independent;
let z1, . . . , zm ∈ C(Ω) be given functions;
let the space Rm be partially ordered in the
natural way.







(9.31)

Under this special assumption the set V (defined in (9.19)) reduces
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to

V :=

{











∥
∥
∥

n∑

i=1

xiv1i − z1

∥
∥
∥

...
∥
∥
∥

n∑

i=1

xivmi − zm

∥
∥
∥











∣
∣
∣
∣
x ∈ Rn

}

. (9.32)

A vector approximation problem for which the image set of the ob-
jective map equals V is also called a linear Chebyshev vector approx-
imation problem. The following lemma shows that it makes sense to
examine this vector optimization problem.

Lemma 9.8. Let the assumption (9.31) be satisfied. The set V
(given in (9.32)) has at least one almost properly minimal element
and, therefore, also a minimal and weakly minimal element.

Proof. Notice that
m∑

k=1

‖·‖ is a norm on C(Ω)m. Then we obtain

with a known existence theorem (compare Meinardus [244, p. 1]) that
the scalar optimization problem

min
x∈Rn

m∑

k=1

∥
∥
∥

n∑

i=1

xivki − zk

∥
∥
∥

has at least one solution. Consequently, the set V has at least one
almost properly minimal element which is also minimal by Theorem
5.18, (b) and weakly minimal by Theorem 5.28. 2

9.5.1 Duality Results

In the following we formulate the dual problem of the linear Cheby-
shev vector approximation problem introduced previously. In Chapter
8 we presented duality results for two optimality notions. Since the
primal problem (8.4) with P1 = V + Rm

+ (where V is given by (9.32))
is not equivalent to the vector optimization problem of determining
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weakly minimal elements of the set V , we turn our attention to the
problem (8.5) with P2 = V which is formalized as follows:

a-p-min
x∈Rn











∥
∥
∥

n∑

i=1

xiv1i − z1

∥
∥
∥

...
∥
∥
∥

n∑

i=1

xivmi − zm

∥
∥
∥











. (9.33)

This problem is equivalent to the abstract optimization problem

a-p-min y

subject to the constraints
n∑

i=1

xivki(t) + yk ≥ zk(t)

−
n∑

1=1

xivki(t) + yk ≥ −zk(t)







for all t ∈ Ω and
all k ∈ {1, . . . ,m} (9.34)

x ∈ Rn, y ∈ Rm.

The problem formalized in (9.34) can also be interpreted in the fol-
lowing way: Determine an almost properly minimal element of the
set V + Rm

+ . Then the equivalence of the problems (9.33) and (9.34)
is to be understood in the sense that an element of the set V is an
almost properly minimal element of the set V if and only if it is an
almost properly minimal element of the set V + Rm

+ .

Definition 9.9. Let the assumption (9.31) be satisfied. If

ȳ =











∥
∥
∥

n∑

i=1

x̄iv1i − z1

∥
∥
∥

...
∥
∥
∥

n∑

i=1

x̄ivmi − zm

∥
∥
∥











(with x̄ ∈ Rn)

is an almost properly minimal element of the set V (given by (9.32)),
then x̄ is called an almost properly minimal solution of the linear
Chebyshev vector approximation problem (9.33).
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The problem (9.34) is an abstract semi-infinite linear optimization
problem. The dual problem reads as follows:

max











m∑

k=1

(z+∗
1k (zk) − z−∗

1k (zk))

...
m∑

k=1

(z+∗
mk(zk) − z−∗

mk(zk))











subject to the constraints
m∑

k=1

m∑

i=1

τi(z
+∗
ik (vkj) − z−∗

ik (vkj)) = 0 for all j ∈ {1, . . . , n}

m∑

i=1

τi(z
+∗
ik (e) + z−∗

ik (e)) = τk for all k ∈ {1, . . . ,m}

z+∗
ik , z

−∗
ik ∈ CZ∗

k
for all i, k ∈ {1, . . . ,m}

τ1, . . . , τm > 0.

(9.35)

By an easy computation one obtains this problem from the formu-
lation in (8.20). Here, Zk (with k ∈ {1, . . . ,m}) denotes the linear
subspace of C(Ω) spanned by vk1, . . . , vkn, e and zk (again e ≡ 1 on Ω).
CZ∗

k
denotes the ordering cone of the dual space Z∗

k . The max-term in
problem (9.35) means that we are looking for a maximal solution of
this problem, i.e., we are interested in a feasible element whose image
is a maximal element of the image set of the objective map.

Since Z1, . . . , Zm are finite-dimensional linear subspaces of C(Ω)
and e ∈ Zk for all k ∈ {1, . . . ,m}, every functional z+∗

ik , z
−∗
ik ∈ CZ∗

k

(with i, k ∈ {1, . . . ,m}) can be represented in the form

z+∗
ik (f) =

∑

l∈I+
ik

λ+
iklf(t+ikl)

z−∗
ik (f) =

∑

l∈I−ik

λ−iklf(t−ikl)







for all f ∈ Zk

(e.g., compare Krabs [201, IV 2.3–2.4]) where λ+
ikl ≥ 0, λ−ikl ≥ 0,

t+ikl ∈ Ω, t−ikl ∈ Ω, and I+
ik and I−ik are finite index sets. Using this rep-

resentation the problem (9.35) is equivalent to the following abstract
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optimization problem:

max













m∑

k=1

[ ∑

l∈I+
1k

λ+
1klzk(t

+
1kl) −

∑

l∈I−1k

λ−1klzk(t
−
1kl)
]

...
m∑

k=1

[ ∑

l∈I+
mk

λ+
mklzk(t

+
mkl) −

∑

l∈I−mk

λ−mklzk(t
−
mkl)

]













subject to the constraints
m∑

k=1

m∑

i=1

τi

[∑

l∈I+
ik

λ+
iklvkj(t

+
ikl) −

∑

l∈I−ik

λ−iklvkj(t
−
ikl)
]

= 0

for all j ∈ {1, . . . , n}
m∑

i=1

τi

[∑

l∈I+
ik

λ+
ikl +

∑

l∈I−ik

λ−ikl

]

= τk for all k ∈ {1, . . . ,m}

(

λ+
ikl ≥ 0 for all l ∈ I+

ik, λ
−
ikl ≥ 0 for all l ∈ I−ik

)

for all i, k ∈ {1, . . . ,m}
{t+ikl | l ∈ I+

ik} ∪ {t−ikl | l ∈ I−ik} ⊂ Ω for all i, k ∈ {1, . . . ,m}
τ1, . . . , τm > 0.

(9.36)

The problem (9.36) is formally the dual abstract optimization
problem of the linear Chebyshev vector approximation problem (9.33).
A first relationship between these two problems is given by

Theorem 9.10. Let the assumption (9.31) be satisfied. For every
almost properly minimal solution of the linear Chebyshev vector ap-
proximation problem (9.33) there is a maximal solution of the abstract
optimization problem (9.36) so that the images of the objective maps
are equal.

Proof. The problem (9.34) which is equivalent to the linear
Chebyshev vector approximation problem (9.33) satisfies the gen-
eralized Slater condition (for x = 0Rn and yk > ‖zk‖ for all k ∈
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{1, . . . ,m}). Consequently, the strong duality theorem (Theorem 8.7,
(b)) leads to the assertion. 2

From Lemma 9.8 and Theorem 9.10 it follows immediately that
the abstract optimization problem (9.36) has at least one maximal so-
lution. In addition to Theorem 9.10 a strong converse duality theorem
can be proved as well.

Theorem 9.11. Let the assumption (9.31) be satisfied. For every
maximal solution of the abstract optimization problem (9.36) there
is an almost properly minimal solution of the linear Chebyshev vector
approximation problem (9.33) so that the images of the objective maps
are equal.

Proof. The assertion follows from the strong converse duality
theorem 8.9, (b), if we varify the assumption that the set V + Rm

+ is
closed.

Let (yl)l∈N be an arbitrary sequence in V + Rm
+ converging to some

ȳ ∈ Rm. Then there are a sequence (xl)l∈N in Rn and a sequence
(zl)l∈N in Rm

+ with

yl
k =

∥
∥
∥

m∑

i=1

xl
ivki − zk

∥
∥
∥+ zl

k for all k ∈ {1, . . . ,m} and all l ∈ N.

Furthermore there is an l′ ∈ N with

yl
k ≤ ȳk + 1 for all k ∈ {1, . . . ,m} and all l ∈ N with l ≥ l′.

Consequently, we get for all k ∈ {1, . . . ,m} and all l ∈ N with l ≥ l′

‖zk‖ + ȳk + 1 ≥ ‖zk‖ +
∥
∥
∥

n∑

i=1

xl
ivki − zk

∥
∥
∥+ zl

k

≥
∥
∥
∥

n∑

i=1

xl
ivki

∥
∥
∥

=
∥
∥
∥

n∑

i=1

xl
i

‖xl‖Rn

vki

∥
∥
∥ ‖xl‖Rn , (9.37)
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if xl 6= 0Rn . In the inequality (9.37) ‖ · ‖Rn denotes the maximum
norm on Rn. Since the unit sphere

S := {x ∈ Rn | ‖x‖Rn = 1}

in Rn is compact, by a continuity argument for every k ∈ {1, . . . ,m}
there is an x̄k ∈ S with

γk :=
∥
∥
∥

n∑

i=1

x̄k
i vki

∥
∥
∥ ≤

∥
∥
∥

n∑

i=1

xivki

∥
∥
∥ for all x ∈ S.

Since for every k ∈ {1, . . . ,m} the functions vk1, . . . , vkn are linearly
independent, we obtain γk > 0. Then we conclude with the inequality
(9.37)

‖xl‖Rn ≤ 1

γk

(‖zk‖ + γ̄k + 1) for all k ∈ {1, . . . ,m} and

all l ∈ N with l ≥ l′. (9.38)

This inequality is also valid for xl = 0Rn (for the inequality (9.38)
compare also Collatz-Krabs [68, p. 184] and Reemtsen [279, p. 29]).
Consequently, the sequence (xl)l∈N has a subsequence (xlj)j∈N con-
verging to some x̄ ∈ Rn. Then we get

lim
j→∞

z
lj
k = ȳk −

∥
∥
∥

n∑

i=1

x̄ivki − zk

∥
∥
∥.

Since Rm
+ is closed, we also conclude

ȳk ≥
∥
∥
∥

n∑

i=1

x̄ivki − zk

∥
∥
∥ for all k ∈ {1, . . . ,m}

implying ȳ ∈ V + Rm
+ . 2

The dual problem (9.36) is a finite nonlinear optimization problem
although the primal problem (9.33) is a semi-infinite linear optimiza-
tion problem. The duality results are useful for the formulation of an
alternation theorem.
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9.5.2 An Alternation Theorem

In Section 9.4 we presented an alternation theorem for nonlinear
Chebyshev vector approximation problems which is valid for linear
Chebyshev vector approximation problems as well. But such an al-
ternation theorem can also be obtained with the preceding duality
results. In contrast to the theory in the scalar case we have the diffi-
culty with linear Chebyshev vector approximation problems that the
known complementary slackness theorem holds only in a weaker form.
Moreover, the conditions given in Theorem 9.13 do not follow imme-
diately from the constraints of the dual problem (9.36). In order to
get a similar result as in Theorem 9.6 these constraints have to be
transformed in an appropriate way.

Lemma 9.12. Let the assumption (9.31) be satisfied. Moreover,
let x be an almost properly minimal solution of the linear Chebyshev
vector approximation problem (9.33), and let the tuple (λ+

ikl, λ
−
ikl, t

+
ikl,

t−ikl, I
+
ik, I

−
ik, τ) be a maximal solution of the vector optimization prob-

lem (9.36) so that the images of the objective maps are equal. Then
it follows for all i, k ∈ {1, . . . ,m}:

λ+
ikl > 0 for some l ∈ I+

ik

=⇒
n∑

j=1

xjvkj(t
+
ikl) − zk(t

+
ikl) =

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥,

λ−ikl > 0 for some l ∈ I−ik

=⇒
n∑

j=1

xjvkj(t
−
ikl)− zk(t

−
ikl) = −

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥.

Proof. Let x be an almost properly minimal solution of the
linear Chebyshev vector approximation problem (9.33), and let the
tuple (λ+

ikl, λ
−
ikl, t

+
ikl, t

−
ikl, I

+
ik, I

−
ik, τ) be a maximal solution of the prob-

lem (9.36) with



234 Chapter 9. Vector Approximation

∥
∥
∥

n∑

j=1

xjvij − zi

∥
∥
∥ =

m∑

k=1

[∑

l∈I+
ik

λ+
iklzk(t

+
ikl) −

∑

l∈I−ik

λ−iklzk(t
−
ikl)
]

for all i ∈ {1, . . . ,m}. (9.39)

For the following transformations the equation (9.39) and the con-
straints of problem (9.36) are used:

m∑

k=1

m∑

i=1

τi
∑

l∈I+
ik

λ+
ikl

[ n∑

j=1

xjvkj(t
+
ikl) − zk(t

+
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

]

+
m∑

k=1

m∑

i=1

τi
∑

l∈I−ik

λ−ikl

[

−
n∑

j=1

xjvkj(t
−
ikl) + zk(t

−
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

]

=
m∑

k=1

m∑

i=1

τi

[∑

l∈I+
ik

λ+
ikl

(

− zk(t
+
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

)

+
∑

l∈I−ik

λ−ikl

(

zk(t
−
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

)]

=
m∑

i=1

τi

m∑

k=1

[

−
∑

l∈I+
ik

λ+
iklzk(t

+
ikl) +

∑

l∈I−ik

λ−iklzk(t
−
ikl)
]

+
m∑

k=1

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

m∑

i=1

τi

[∑

l∈I+
ik

λ+
ikl +

∑

l∈I−ik

λ−ikl

]

= −
m∑

i=1

τi

∥
∥
∥

n∑

j=1

xjvij − zi

∥
∥
∥+

m∑

k=1

τk

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

= 0.

If we notice that the coefficients λ+
ikl, λ

−
ikl are non-negative and the

coefficients τi are positive, from the previous equation it follows for
all i, k ∈ {1, . . . ,m}

∑

l∈I+
ik

λ+
ikl

[ n∑

j=1

xjvkj(t
+
ikl) − zk(t

+
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

]

= 0
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and

∑

l∈I−ik

λ−ikl

[

−
n∑

j=1

xjvkj(t
−
ikl) + zk(t

−
ikl) +

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

]

= 0.

Because of the nonnegativity of the coefficients λ+
ikl, λ

−
ikl and the terms

in brackets we immediately obtain the assertion. 2

With Lemma 9.12 we are now able to formulate the announced
alternation theorem for the linear Chebyshev vector approximation
problem (9.33).

Theorem 9.13. Let the assumption (9.31) be satisfied. An el-
ement x̄ ∈ Rn is an almost properly minimal solution of the linear
Chebyshev vector approximation problem (9.33) if and only if for ev-
ery k ∈ {1, . . . ,m} there are pk ≤ n + 1 elements t̄k1, . . . , t̄kpk

in the
set

Ek(x̄) :=
{

t ∈ Ω
∣
∣
∣

∣
∣
∣

n∑

i=1

x̄ivki(t) − zk(t)
∣
∣
∣ =

∥
∥
∥

n∑

i=1

x̄ivki − zk

∥
∥
∥

}

and real numbers λ̄k1, . . . , λ̄kpk
as well as a positive real number τ̄k so

that
pk∑

i=1

|λ̄ki| = 1 for all k ∈ {1, . . . ,m}, (9.40)

m∑

k=1

τ̄k

pk∑

i=1

λ̄kivkj(t̄ki) = 0 for all j ∈ {1, . . . , n} (9.41)

and

λ̄ki 6= 0 for some k ∈ {1, . . . ,m} and some i ∈ {1, . . . , pk}

=⇒
n∑

j=1

x̄jvkj(t̄ki) − zk(t̄ki) =
∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥ sgn (λ̄ki). (9.42)

Proof. First, we prove the sufficiency of the above conditions for
an almost properly minimal solution of the problem (9.33). Therefore,
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we assume that for some x̄ ∈ Rn and all k ∈ {1, . . . ,m} there are
arbitrarily given elements t̄ki ∈ Ek(x̄) and real numbers λ̄ki as well as
a positive real number τ̄k. Moreover, we assume that the equations
(9.40), (9.41) and the implication (9.42) are satisfied. Then we have:

m∑

k=1

τ̄k

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥

=
m∑

k=1

τ̄k

pk∑

i=1

|λ̄ki|
∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥ (by (9.40))

=
m∑

k=1

τ̄k

pk∑

i=1

sgn (λ̄ki) |λ̄ki|
( n∑

j=1

x̄jvkj(t̄ki) − zk(t̄ki)
)

(by (9.42))

=
m∑

k=1

τ̄k

pk∑

i=1

λ̄ki

n∑

j=1

x̄jvkj(t̄ki) −
m∑

k=1

τ̄k

pk∑

i=1

λ̄kizk(t̄ki)

= −
m∑

k=1

τ̄k

pk∑

i=1

λ̄kizk(t̄ki) (by (9.41))

=
m∑

k=1

τ̄k

pk∑

i=1

λ̄ki

n∑

j=1

xjvkj(t̄ki) −
m∑

k=1

τ̄k

pk∑

i=1

λ̄kizk(t̄ki) (by (9.41))

=
m∑

k=1

τ̄k

pk∑

i=1

λ̄ki

( n∑

j=1

xjvkj(t̄ki) − zk(t̄ki)
)

≤
m∑

k=1

τ̄k

pk∑

i=1

|λ̄ki|
∣
∣
∣

n∑

j=1

xjvkj(t̄ki) − zk(t̄ki)
∣
∣
∣

≤
m∑

k=1

τ̄k

pk∑

i=1

|λ̄ki|
∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥

=
m∑

k=1

τ̄k

∥
∥
∥

n∑

j=1

xjvkj − zk

∥
∥
∥ for all x ∈ Rn (by (9.40)).

Consequently, x̄ is an almost properly minimal solution of the linear
Chebyshev vector approximation problem (9.33).

Next, we prove the necessity of the conditions given in this theorem for
an arbitrary almost properly minimal solution x̄ of the problem (9.33).
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By Theorem 9.10 there is a maximal solution (λ+
ikl, λ

−
ikl, t

+
ikl, t

−
ikl, I

+
ik,

I−ik, τ) of the dual problem (9.36) so that the images of the objective
maps are equal. In particular, the following equations are satisfied:

m∑

k=1

m∑

i=1

τi

[∑

l∈I+
ik

λ+
iklvkj(t

+
ikl)−

∑

l∈I−ik

λ−iklvkj(t
−
ikl)
]

=0 for all j∈{1, . . . , n},

(9.43)
m∑

i=1

τi

[∑

l∈I+
ik

λ+
ikl +

∑

l∈I−ik

λ−ikl

]

= τk for all k ∈ {1, . . . ,m}. (9.44)

If we introduce new index sets I+
k , I−k and new variables λ+

kl, λ
−
kl, t

+
kl,

t−kl the terms

m∑

i=1

∑

l∈I+
ik

τiλ
+
iklvkj(t

+
ikl),

m∑

i=1

∑

l∈I−ik

τiλ
−
iklvkj(t

−
ikl),

m∑

i=1

∑

l∈I+
ik

τiλ
+
ikl and

m∑

i=1

∑

l∈I−ik

τiλ
−
ikl

appearing in the equations (9.43) and (9.44) can also be written in
the following way:

∑

l∈I+
k

λ+
klvkj(t

+
kl),

∑

l∈I−k

λ−klvkj(t
−
kl),

∑

l∈I+
k

λ+
kl and

∑

l∈I−k

λ−kl.

Then the equations (9.43) and (9.44) are equivalent to

m∑

k=1

[∑

l∈I+
k

λ+
klvkj(t

+
kl) −

∑

l∈I−k

λ−klvkj(t
−
kl)
]

= 0 for all j ∈ {1, . . . , n},

(9.45)
∑

l∈I+
k

λ+
kl +

∑

l∈I−k

λ−kl = τk for all k ∈ {1, . . . ,m}. (9.46)
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Now we replace the numbers λ+
kl and λ−kl by τkλ̃

+
kl and τkλ̃

−
kl, respec-

tively, and we obtain equations which are equivalent to (9.45) and
(9.46):

m∑

k=1

τk

[∑

l∈I+
k

λ̃+
klvkj(t

+
kl) −

∑

l∈I−k

λ̃−klvkj(t
−
kl)
]

= 0 for all j ∈ {1, . . . , n},

(9.47)
∑

l∈I+
k

λ̃+
kl +

∑

l∈I−k

λ̃−kl = 1 for all k ∈ {1, . . . ,m}. (9.48)

If we notice that the implications in Lemma 9.12 are true, then be-
cause of the positivity of the numbers τ1, . . . , τm the following impli-
cations are also true for the new variables (k ∈ {1, . . . ,m}):

λ̃+
kl > 0 for some l ∈ I+

k

=⇒
n∑

j=1

x̄jvkj(t
+
kl) − zk(t

+
kl) =

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥,

λ̃−kl > 0 for some l ∈ I−k

=⇒
n∑

j=1

x̄jvkj(t
−
kl) − zk(t

−
kl) = −

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥.

If we define for every k ∈ {1, . . . ,m} and every j ∈ {1, . . . , n} the
real number

βkj :=
∑

l∈I+
k

λ̃+
klvkj(t

+
kl) −

∑

l∈I−k

λ̃−klvkj(t
−
kl), (9.49)

then we have for all k ∈ {1, . . . ,m}
∑

l∈I+
k

λ̃+
klvkj(t

+
kl) −

∑

l∈I−k

λ̃−klvkj(t
−
kl) = βkj for all j ∈ {1, . . . , n}.

By an analogous application of a known result from optimization (for
instance, see Krabs [201, Thm. I.5.2]) for every k ∈ {1, . . . ,m} there
are index sets Î+

k ⊂ I+
k and Î−k ⊂ I−k where the magnitude of the set
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Î+
k ∪ Î−k is not larger than n + 1 and non-negative real numbers λ̂+

kl

and λ̂−kl so that:
∑

l∈Î+
k

λ̂+
klvkj(t

+
kl) −

∑

l∈Î−k

λ̂−klvkj(t
−
kl) = βkj for all j ∈ {1, . . . , n}, (9.50)

∑

l∈Î+
k

λ̂+
kl +

∑

l∈Î−k

λ̂−kl = 1, (9.51)

λ̂+
kl > 0 for some l ∈ Î+

k

=⇒
n∑

j=1

x̄jvkj(t
+
kl) − zk(t

+
kl) =

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥, (9.52)

λ̂−kl > 0 for some l ∈ Î−k

=⇒
n∑

j=1

x̄jvkj(t
−
kl) − zk(t

−
kl) = −

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥. (9.53)

With (9.47), (9.49) and (9.50) we get

m∑

k=1

τk

[∑

l∈Î+
k

λ̂+
klvkj(t

+
kl) −

∑

l∈Î−k

λ̂−klvkj(t
−
kl)
]

= 0 for all j ∈ {1, . . . , n}.

(9.54)
Finally, we define again some new variables λ̄+

kl := λ̂+
kl and λ̄−kl := −λ̂−kl.

Then we conclude with (9.54) and (9.51):

m∑

k=1

τk

[∑

l∈Î+
k

λ̄+
klvkj(t

+
kl) +

∑

l∈Î−k

λ̄−klvkj(t
−
kl)
]

= 0 for all j ∈ {1, . . . , n},

∑

l∈Î+
k

|λ̄+
kl| +

∑

l∈Î−k

|λ̄−kl| = 1 for all k ∈ {1, . . . ,m},

and from (9.52) and (9.53) we get the implications

λ̄+
kl 6= 0 for some k ∈ {1, . . . ,m} and some l ∈ Î+

k

=⇒
n∑

j=1

x̄jvkj(t
+
kl) − zk(t

+
kl) =

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥ sgn (λ̄+

kl),
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λ̄−kl > 0 for some k ∈ {1, . . . ,m} and some l ∈ Î−k

=⇒
n∑

j=1

x̄jvkj(t
−
kl) − zk(t

−
kl) =

∥
∥
∥

n∑

j=1

x̄jvkj − zk

∥
∥
∥ sgn (λ̄−kl).

This leads immediately to the assertion, if we notice that for every
k ∈ {1, . . . ,m} the set Î+

k ∪ Î−k consists of at most n+ 1 indices. 2

This alternation theorem gives necessary and sufficient conditions
for an almost properly minimal solution of the linear Chebyshev vec-
tor approximation problem (9.33). This result generalizes a known
theorem of linear Chebyshev approximation.

Example 9.14. We investigate the following linear Chebyshev
vector approximation problem

a-p-min
x∈R

(

‖xv − sinh ‖
‖xv′ − cosh ‖

)

. (9.55)

In our standard assumption (9.31) we have now Ω = [0, 2], m = 2,
n = 1, z1 = sinh, z2 = cosh, v11 = v (identity on [0, 2]) and v21 = v′

(≡ 1). With Theorem 9.13 the necessary and sufficient conditions for
an almost properly minimal solution x̄ of the linear Chebyshev vector
approximation problem (9.55) are given as:

|λ̄11| + |λ̄12| = 1,

|λ̄21| + |λ̄22| = 1,

τ̄1λ̄11t̄11 + τ̄1λ̄12t̄12 + τ̄2λ̄21 + τ̄2λ̄22 = 0,

λ̄11 6= 0 =⇒ x̄t̄11 − sinh t̄11 = ‖x̄v − sinh ‖ sgn (λ̄11),

λ̄12 6= 0 =⇒ x̄t̄12 − sinh t̄12 = ‖x̄v − sinh ‖ sgn (λ̄12),

λ̄21 6= 0 =⇒ x̄− cosh t̄21 = ‖x̄v′ − cosh ‖ sgn (λ̄21),

λ̄22 6= 0 =⇒ x̄− cosh t̄22 = ‖x̄v′ − cosh ‖ sgn (λ̄22),

t̄11, t̄12 ∈ E1(x̄),

t̄21, t̄22 ∈ E2(x̄),

λ̄11, λ̄12, λ̄21, λ̄22 ∈ R,

τ̄1, τ̄2 > 0.
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From these conditions one obtains after some calculations that x̄ is
an almost properly minimal solution of the linear Chebyshev vec-
tor approximation problem (9.55) if and only if x̄ ∈ [x̄1, x̄2] with
x̄1 ≈ 1.600233 and x̄2 ≈ 2.381098. Figure 9.1 illustrates the ap-
proximation of the functions sinh and cosh, if we choose the almost
properly minimal solution x̄ = 2.
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Figure 9.1: Illustration of the approximation of sinh and cosh using
x̄ = 2.

Notes

Several authors investigated vector approximation problems very
early, for instance, Bacopoulos [14], Gearhart [109] and others. The
example presented in the introduction of this chapter is discussed in
detail by Reemtsen [279].
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The results concerning the simultaneous approximation in Section
9.2 can essentially be found in a paper of Jahn [156]. Theorem 9.1 and
Theorem 9.2 extend some results of Bacopoulos-Godini-Singer [17]
(see also Bacopoulos-Singer [18], [19] and Bacopoulos-Godini-Singer
[15], [16]).

The generalized Kolmogorov condition generalizes an optimality
condition of Kolmogorov [194] which was introduced for linear Cheby-
shev approximation. For a discussion of this condition in the case of
scalar approximation the reader is referred to the book of Kirsch-
Warth-Werner [188] and a paper of Krabs [202]. Theorem 9.5 was
given by Oettli [266] in a more general form; he considers convex
maps instead of vectorial norms. Oettli’s paper generalizes results of
Wanka [347] who extended Theorem 9.5 in the book [160].

Section 9.4 on nonlinear Chebyshev vector approximation is based
on an article of Jahn-Sachs [173]. In the real-valued case the represen-
tation condition mentioned in Theorem 9.7 was introduced by Krabs
[200].

The results of the last section can also be found in a paper of Jahn
[154]. Problems of this type were also investigated by Behringer [24]
and Censor [56]. In the real-valued case a similar alternation theorem
can also be found in the book of Krabs [201, Thm. I.5.6]. Censor [56]
examined the necessity of the alternation result as well.



Chapter 10

Cooperative n Player
Differential Games

In contrast to the theory of cooperative games introduced by John von
Neumann, this chapter is devoted to deterministic differential games
with n players behaving exclusively cooperatively. Such games can be
described as vector optimization problems. After some basic remarks
on the cooperation concept we present necessary and sufficient condi-
tions for optimal and weakly optimal controls concerning a system of
ordinary differential equations. In the last section we discuss a special
cooperative differential game with a linear differential equation in a
Hilbert space.

10.1 Basic Remarks on the Cooperation

Concept

Cooperative n player differential games are especially qualified to be
formulated as vector optimization problems. The concept used in
this book differs from that of John von Neumann because the game
is assumed to be exclusively cooperative (e.g., compare also the book
of Burger [55, p. 29 and p. 129]). For our investigations we have the
following standard assumption denoted by (10.1):

We assume that n players (individuals or groups) take part in
the game (let n ∈ N be a fixed number). Let E be a real linear
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space and let Y1, . . . , Yn be given partially ordered linear spaces
with the ordering cones CY1 , . . . , CYn . In E let a nonempty
subset be given - the so-called set of all playable (n + 2)-tuples
(x, u1, . . . , un, t̂ ) where ui denotes a feasible control of player
i, x is a resulting state and t̂ represents the terminal time of
the control problem. In the following sections the set S will be
described in detail. The goal of the i-th player (i ∈ {1, . . . , n})
is formulated by an objective map vi : S → Yi.

Under the assumption (10.1) the cooperative game reads as fol-
lows: Determine a playable (n+ 2)-tuple (x̄, ū1, . . . , ūn, t̄ ) ∈ S which
is “preferred” by all players because of their cooperation.

For the mathematical description of the cooperation concept it is

reasonable to consider the product space Y :=
n∏

i=1

Yi with the product

partial ordering induced by the product ordering cone CY :=
n∏

i=1

CYi
,

and we define the objective map v : S → Y by

v(x, u1, . . . , un, t̂ ) =






v1(x, u1, . . . , un, t̂ )
...

vn(x, u1, . . . , un, t̂ )






for all (x, u1, . . . , un, t̂ ) ∈ S.

With this map we introduce the following

Definition 10.1. Let the assumption (10.1) be satisfied.

(a) A playable (n+ 2)-tuple (x̄, ū1, . . . , ūn, t̄ ) ∈ S is called optimal,

if v(x̄, ū1, . . . , ūn, t̄ ) is a minimal element of the set
n∏

i=1

vi(S). In

this case the control ūi (i ∈ {1, . . . , n}) is said to be an optimal
control of the i-th player.

(b) In addition, let the product ordering cone CY have a nonempty
algebraic interior. A playable (n+2)-tuple (x̄, ū1, . . . , ūn, t̄ ) ∈ S
is called weakly optimal, if v(x̄, ū1, . . . , ūn, t̄ ) is a weakly minimal
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element of the set
n∏

i=1

vi(S). In this case the control ūi (i ∈

{1, . . . , n}) is said to be a weakly optimal control of the i-th
player.

Using the product ordering we get an adequate description of the
cooperation, since playable (n+2)-tuples are “preferred” if and only if
they are “preferred” by each player. In the case of only one player, i.e.
for n = 1, this cooperative game reduces to a usual control problem
with a vector-valued objective map.

Finally, we note without proof how to obtain the dual ordering
cone and its quasi-interior with respect to the product space Y .

Lemma 10.2. Let the assumption (10.1) be satisfied, and let Y

and CY be given as Y :=
n∏

i=1

Yi and CY :=
n∏

i=1

CYi
, respectively. Then

the dual ordering cone CY ′ equals
n∏

i=1

CY ′
i

and its quasi-interior C#
Y ′

equals
n∏

i=1

C#
Y ′

i
. If Y1, . . . , Yn are topological linear spaces, then CY ∗ :=

n∏

i=1

CY ∗
i

and C#
Y ∗ :=

n∏

i=1

C#
Y ∗

i
.

10.2 A Maximum Principle

In this section we investigate a cooperative differential game where
the state equation is a nonlinear differential equation and the values of
the controls are restricted to a certain set. For this game we derive a
maximum principle as a necessary optimality condition which extends
the well-known maximum principle given by Pontryagin-Boltyanskii-
Gamkrelidze-Mishchenko [277] and Hestenes [133] to these games.
The question under which assumption this maximum principle is also
a sufficient optimality condition is investigated in the second part
of this section. The Hamilton-Jacobi-Bellmann equations are also
discussed in this context.
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In the following we consider a cooperative n player differential
game formulated in

Problem 10.3. On a fixed time interval [t0, t1] (with t0 < t1) let
the state equation be given as

ẋ(t) = f(x(t), u1(t), . . . , un(t)) almost everywhere on [t0, t1]. (10.2)

We assume that u1 ∈ Ls1
∞([t0, t1]), . . . , un ∈ Lsn

∞([t0, t1]) are the con-
trols of the n players (s1, . . . , sn ∈ N) satisfying the condition

ui(t) ∈ Ωi almost everywhere on [t0, t1].

Ω1, . . . ,Ωn are assumed to be nonempty subsets of the real linear
spaces Rs1 , . . . ,Rsn . Let f : Rm × Rs1 × · · · × Rsn → Rm (with m ∈
N) be a vector function which is Lipschitz continuous with respect
to x, u1, . . . , un. The solutions x of the differential equation (10.2)
are defined as absolutely continuous vector functions in the sense of
Carathéodory (e.g., see Curtain-Pritchard [82, p. 122]), i.e.

x ∈Wm
1,∞([t0, t1]) := {y : [t0, t1] → Rm | y is

absolutely continuous on [t0, t1]

and ẏ ∈ Lm
∞([t0, t1])}.

Let
x(t0) = x0 (10.3)

be the initial condition with some fixed x0 ∈ Rm; the terminal condi-
tion reads as

x(t1) ∈ Q (10.4)

where the target set Q is assumed to be a nonempty subset of Rm.
In this case the set S of all playable (n+2)-tuples (x, u1, . . . , un, t̂ ) is
defined as follows

S := {(x, u1, . . . , un, t̂ ) | t̂ ∈ [t0, t1]; for all i ∈ {1, . . . , n}
we have ui ∈ Lsi

∞([t0, t1]) and ui(t) ∈ Ωi

almost everywhere on [t0, t1]; x ∈Wm
1,∞([t0, t1]);

u1, . . . , un and x satisfy the equations (10.2) and

(10.3) and the condition (10.4)}.
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Let (Y1, ‖ · ‖Y1), . . . , (Yn, ‖ · ‖Yn) be real Banach spaces. Then the
objective map vi : S → Yi of the i-th player is assumed to be given as

vi(x, u1, . . . , un, t̂ ) = hi(x(t̂)) +

t̂∫

t0

f 0
i (x(t), u1(t), . . . , un(t)) dt

for all (x, u1, . . . , un, t̂ ) ∈ S (10.5)

where hi : Rm → Yi and f 0
i : Rm×Rs1×· · ·×Rsn → Yi are given maps.

For every (x, u1, . . . , un, t̂ ) ∈ S the composition f 0
i ◦ (x, u1, . . . , un) is

assumed to be Bochner integrable (e.g., compare Curtain-Pritchard
[82, p. 88]). Therefore, the integral appearing in (10.5) is a Bochner
integral.

10.2.1 Necessary Conditions for Optimal and
Weakly Optimal Controls

In this subsection we aim at an optimality condition for the cooper-
ative differential game outlined in Problem 10.3. For simplicity we
restrict ourselves to the special case that the terminal time t̂ = t1 is
fixed. In order to be able to prove our main result we need

Lemma 10.4. Let A be a matrix function on [t0, t1] with real
coefficients. If Φ is the unique solution of the equations

Φ̇(t) = A(t)Φ(t) almost everywhere on [t0, t1],
Φ(t0) = I (identity),

}

(10.6)

then for an arbitrary y ∈Wm
1,∞([t0, t1]) the function

x(·) = y(·) + Φ(·)
·∫

t0

Φ−1(s)A(s)y(s) ds (10.7)

satisfies the integral equation

x(·) −
·∫

t0

A(s)x(s) ds = y(·). (10.8)
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Proof. For an arbitrary y ∈ Wm
1,∞([t0, t1]) we get from (10.7)

using integration by parts that

x(·) −
·∫

t0

A(s)x(s) ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)A(s)y(s) ds

−
·∫

t0

A(s)
[

y(s) + Φ(s)

s∫

t0

Φ−1(σ)A(σ)y(σ) dσ
]

ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)A(s)y(s) ds−
·∫

t0

A(s)y(s) ds

−
·∫

t0

Φ̇(s)

s∫

t0

Φ−1(σ)A(σ)y(σ) dσ ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)A(s)y(s) ds−
·∫

t0

A(s)y(s) ds

−Φ(·)
·∫

t0

Φ−1(s)A(s)y(s) ds+

·∫

t0

Φ(s)Φ−1(s)A(s)y(s) ds

= y(·).
Hence, the equation (10.8) is satisfied. 2

Now we are able to formulate a Pontryagin maximum principle
for the cooperative n player differential game introduced in Problem
10.3.

Theorem 10.5. Let the cooperative n player differential game
formulated in Problem 10.3 be given with a fixed terminal time t̂ = t1
and the target set

Q := {x̃ ∈ Rm | g(x̃) = 0Rr}
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where g : Rm → Rr (with r ∈ N) is a continuously differentiable
vector function. The maps h1, . . . , hn and f 0

1 , . . . , f
0
n are assumed to

be continuously Fréchet differentiable. Let f be continuously partially
differentiable. Moreover, for every i ∈ {1, . . . , n} let the sets Ωi be
convex and let it have a nonempty interior. Let the ordering cones
CY1 , . . . , CYn have a nonempty algebraic interior. Let ū1, . . . , ūn be
weakly optimal controls of the n players, and let x̄ ∈ Wm

1,∞([t0, t1])

be the resulting state. Furthermore, let the matrix ∂g
∂x

(x̄(t1)) have
maximal rank. Then there are continuous linear functionals li ∈ CY ∗

i

(for all i ∈ {1, . . . , n}), a vector function w ∈ Wm
1,∞([t0, t1]) and a

vector a ∈ Rr so that (l1, . . . , ln, w) 6= (0Y ∗
1
, . . . , 0Y ∗

n
, 0W m

1,∞([t0,t1])) and

(a)

−ẇ(t)T = w(t)T ∂f

∂x
(x̄(t), ū1(t), . . . , ūn(t))

−
n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(t), ū1(t), . . . , ūn(t))

almost everywhere on [t0, t1], (10.9)

(b)

−w(t1)
T = aT ∂g

∂x
(x̄(t1)) +

n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)), (10.10)

(c) for every k ∈ {1, . . . , n} and every uk ∈ Lsk
∞([t0, t1]) with uk(t) ∈

Ωk almost everywhere on [t0, t1] we have

[

w(t)T ∂f

∂uk

(x̄(t), ū1(t), . . . , ūn(t))

−
n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(t), ū1(t), . . . , ūn(t))
]

(uk(t) − ūk(t)) ≤ 0

almost everywhere on [t0, t1]. (10.11)
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Proof. Let ū1, . . . , ūn be any weakly optimal controls of the
n players with a resulting state x̄. For a better formulation of the
considered cooperative game as an abstract optimization problem we
introduce the product space

L := Wm
1,∞([t0, t1]) × Ls1

∞([t0, t1]) × · · · × Lsn
∞([t0, t1]).

Instead of writing (x, u1, . . . , un) for an arbitrary element of L we use
the abbreviation (x, u). The objective map F : L → Y1 × · · · × Yn is
defined by

F (x, u) =










h1(x(t1)) +
t1∫

t0

f 0
1 (x(t), u(t)) dt

...

hn(x(t1)) +
t1∫

t0

f 0
n(x(t), u(t)) dt










for all (x, u) ∈ L,

and the constraint map G : L→ Wm
1,∞([t0, t1]) × Rr is given by

G(x, u) =







x(·) − x0 −
·∫

t0

f(x(s), u(s)) ds

g(x(t1))







for all (x, u) ∈ L.

Then the considered cooperative n player differential game can be
formulated as

min F (x, u)
subject to the constraints

(x, u) ∈ Ŝ := {(x, u) ∈ L | ui(t) ∈ Ωi almost everywhere
on [t0, t1] (i ∈ {1, . . . , n})}

G(x, u) = 0W m
1,∞([t0,t1])×Rr .







(10.12)

By assumption (x̄, ū) is a weakly minimal solution of this abstract
optimization problem. It is our aim to apply the generalized Lagrange
multiplier rule (Theorem 7.4) to this special problem. But first, we
briefly check the required assumptions. By an extensive computation
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one can see that F is Fréchet differentiable at (x̄, ū) and that the
Fréchet derivative of F at (x̄, ū) is given as

F ′(x̄, ū)(x, u) =











∂h1

∂x
(x̄(t1))x(t1)+

t1∫

t0

[
∂f0

1

∂x
(x̄(s), ū(s))x(s)+

n∑

j=1

∂f0
1

∂uj
(x̄(s), ū(s))uj(s)

]

ds

...

∂hn

∂x
(x̄(t1))x(t1)+

t1∫

t0

[
∂f0

n

∂x
(x̄(s), ū(s))x(s)+

n∑

j=1

∂f0
n

∂uj
(x̄(s), ū(s))uj(s)

]

ds












for all (x, u) ∈ L

(for a proof notice that for every Bochner integrable function y with
values in a real Banach space (Y, ‖ · ‖Y ) one has

∥
∥
∥

∫

y(s) ds
∥
∥
∥

Y
≤
∫

‖y(s)‖Y ds

where the integral on the left side of this inequality is a Bochner
integral and the integral on the right side is a Lebesgue integral).
Moreover, the map G is continuously Fréchet differentiable at (x̄, ū)
and its Fréchet derivative is given by

G′(x̄, ū)(x, u) =









x(·) −
·∫

t0

[∂f

∂x
(x̄(s), ū(s))x(s) +

n∑

j=1

∂f

∂uj

(x̄(s), ū(s))uj(s)
]

ds

∂g

∂x
(x̄(t1))x(t1)










for all (x, u) ∈ L.

Furthermore, since for every i ∈ {1, . . . , n} the sets Ωi are assumed
to be convex with a nonempty interior, the superset Ŝ defined in
problem (10.12) is also convex and it has a nonempty interior. Then,
by Theorem 7.4, there are linear functionals l1 ∈ CY ∗

1
, . . . , ln ∈ CY ∗

n

(compare also Lemma 10.2) and l ∈Wm
1,∞([t0, t1])

′ and a vector a ∈ Rr

with (l1, . . . , ln, l, a) 6= (0Y ∗
1
, . . . , 0Y ∗

n
, 0W m

1,∞([t0,t1])′ , 0Rr) and

((l1, . . . , ln)◦F ′(x̄, ū)+(l, a)◦G′(x̄, ū))(x−x̄, u−ū)≥0 for all (x, u)∈ Ŝ
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(since we do not prove that G′(x̄, ū)(L) is closed, we cannot assert
that the linear functional l is continuous). This inequality implies

n∑

i=1

li

[∂hi

∂x
(x̄(t1))(x(t1) − x̄(t1)) +

t1∫

t0

[∂f 0
i

∂x
(x̄(s), ū(s))(x(s) − x̄(s))

+
n∑

j=1

∂f 0
i

∂uj

(x̄(s), ū(s))(uj(s) − ūj(s))
]

ds
]

+ l
[

x(·) − x̄(·)

−
·∫

t0

[∂f

∂x
(x̄(s), ū(s))(x(s) − x̄(s))

+
n∑

j=1

∂f

∂uj

(x̄(s), ū(s))(uj(s) − ūj(s))
]

ds
]

+aT ∂g

∂x
(x̄(t1))(x(t1) − x̄(t1)) ≥ 0 for all (x, u) ∈ Ŝ. (10.13)

If we plug u = (ū1, . . . , ūn) into the inequality (10.13) we get

n∑

i=1

li

[∂hi

∂x
(x̄(t1))(x(t1) − x̄(t1))

+

t1∫

t0

∂f 0
i

∂x
(x̄(s), ū(s))(x(s) − x̄(s)) ds

]

+l
[

x(·) − x̄(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s))(x(s) − x̄(s)) ds

]

+aT ∂g

∂x
(x̄(t1))(x(t1) − x̄(t1)) ≥ 0 for all x ∈ Wm

1,∞([t0, t1])

resulting in

n∑

i=1

li

[∂hi

∂x
(x̄(t1))x(t1) +

t1∫

t0

∂f 0
i

∂x
(x̄(s), ū(s))x(s) ds

]

+l
[

x(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s))x(s) ds

]
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+aT ∂g

∂x
(x̄(t1))x(t1) = 0 for all x ∈Wm

1,∞([t0, t1]). (10.14)

For x = x̄ it follows from the inequality (10.13)

n∑

i=1

li

[
t1∫

t0

n∑

j=1

∂f 0
i

∂uj

(x̄(s), ū(s))(uj(s) − ūj(s)) ds
]

+l
[

−
·∫

t0

n∑

j=1

∂f

∂uj

(x̄(s), ū(s))(uj(s) − ūj(s)) ds
]

≥ 0

for all (u1, . . . , un) ∈ Ls1
∞([t0, t1]) × · · · × Lsn

∞([t0, t1])

with ui(t) ∈ Ωi almost everywhere on [t0, t1] (i ∈ {1, . . . , n}).

For every k∈{1, . . . , n} we obtain with uj = ūj for j∈{1, . . . , n}\{k}

n∑

i=1

li

[
t1∫

t0

∂f 0
i

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds
]

−l
[

·∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds
]

≥ 0

for all uk ∈ Lsk
∞([t0, t1]) with uk(t) ∈ Ωk

almost everywhere on [t0, t1]. (10.15)

Next, we investigate the equation (10.14) and we try to characterize
the linear functional l. For every y ∈ Wm

1,∞([t0, t1]) we obtain with

(10.14) and Lemma 10.4 where A(t) := ∂f
∂x

(x̄(t), ū(t)) and Φ is the
unique solution of (10.6)

l(y) = −
( n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)

x(t1)

−
n∑

i=1

li

(
t1∫

t0

∂f 0
i

∂x
(x̄(s), ū(s))x(s) ds

)

= −
( n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)(

y(t1)
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+Φ(t1)

t1∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s))y(s) ds

)

−
t1∫

t0

n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(s), ū(s))
(

y(s)

+Φ(s)

s∫

t0

Φ−1(σ)
∂f

∂x
(x̄(σ), ū(σ))y(σ) dσ

)

ds.

Notice that the li (i ∈ {1, . . . , n}) are written behind the integral
sign; this is possible because every li is a continuous linear functional
(compare Hille-Phillips [136, p. 83–84] or Warga [348, p. 82]). In the
following we use the abbreviations

b :=
n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)) + aT ∂g

∂x
(x̄(t1)),

c(s) :=
n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(s), ū(s))

and

d(s) :=
∂f

∂x
(x̄(s), ū(s)).

Using integration by parts we get for every y ∈Wm
1,∞([t0, t1])

l(y) = −b
(

y(t1) + Φ(t1)

t1∫

t0

Φ−1(s)d(s)y(s) ds
)

−
t1∫

t0

c(s)
(

y(s) + Φ(s)

s∫

t0

Φ−1(σ)d(σ)y(σ) dσ
)

ds

= −b
(

y(t1) + Φ(t1)

t1∫

t0

Φ−1(s)d(s)y(s) ds
)

−
t1∫

t0

c(s)y(s) ds

−
t1∫

t0

c(s)Φ(s) ds

t∫

t0

Φ−1(s)d(s)y(s) ds
∣
∣
∣

t1

t0
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+

t1∫

t0

t∫

t0

c(s)Φ(s) ds Φ−1(t)d(t)y(t) dt

= −b
(

y(t1) + Φ(t1)

t1∫

t0

Φ−1(s)d(s)y(s) ds
)

−
t1∫

t0

c(s)y(s) ds

−
t1∫

t0

c(s)Φ(s) ds

t1∫

t0

Φ−1(t)d(t)y(t) dt

+

t1∫

t0

t∫

t0

c(s)Φ(s) ds Φ−1(t)d(t)y(t) dt

= −b y(t1) +

t1∫

t0

[

− bΦ(t1)Φ
−1(t) d(t) − c(t)

−
t1∫

t

c(s)Φ(s) ds Φ−1(t)d(t)
]

y(t) dt.

For the expression in brackets we introduce the abbreviation p(t)T ,
that is

p(t)T = −bΦ(t1)Φ
−1(t) d(t) − c(t)

−
t1∫

t

c(s)Φ(s) ds Φ−1(t)d(t) almost everywhere on [t0, t1].

With the differential equation in (10.6) we obtain

˙Φ−1(t) = −Φ−1(t)Φ̇(t)Φ−1(t)

= −Φ−1(t)d(t)Φ(t)Φ−1(t)

= −Φ−1(t)d(t) almost everywhere on [t0, t1]

and, therefore, we conclude

p(t)T = bΦ(t1) ˙Φ−1(t) − c(t) +

t1∫

t

c(s)Φ(s) ds ˙Φ−1(t)

almost everywhere on [t0, t1].
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For

w(t)T := −bΦ(t1)Φ
−1(t) −

t1∫

t

c(s)Φ(s) ds Φ−1(t) for all t ∈ [t0, t1]

it follows

ẇ(t) = −p(t) almost everywhere on [t0, t1].

Then we get
w(t1) = −b

and

w(t)Td(t) − c(t)

= −bΦ(t1)Φ
−1(t)d(t) −

t1∫

t

c(s)Φ(s) ds Φ−1(t)d(t) − c(t)

= p(t)T = −ẇ(t)T almost everywhere on [t0, t1].

Consequently, w satisfies the differential equation

−ẇ(t)T = w(t)T ∂f

∂x
(x̄(t), ū(t)) −

n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(t), ū(t))

almost everywhere on [t0, t1]

and the terminal condition

−w(t1)
T =

n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)) + aT ∂g

∂x
(x̄(t1)). (10.16)

Hence, the conditions (10.9) and (10.10) are satisfied. Then the linear
functional l can be represented as

l(y) = w(t1)
Ty(t1) −

t1∫

t0

ẇ(t)Ty(t) dt for all y ∈ Wm
1,∞([t0, t1])

and, therefore, the linear functional l is continuous.
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Next, we assert that (l1, . . . , ln, w) 6= (0Y ∗
1
, . . . , 0Y ∗

n
, 0W m

1,∞([t0,t1])). If we

assume that the (n+ 1)-tuple (l1, . . . , ln, w) is zero, then we conclude
l = 0W m

1,∞([t0,t1])∗ , and with the equality (10.16) and the assumption

that ∂g
∂x

(x̄(t1)) has maximal rank it follows a = 0Rr as well. But this
contradicts the fact that the (n+ 2)-tuple (l1, . . . , ln, l, a) is nonzero.
Hence, the (n + 1)-tuple (l1, . . . , ln, w) is nonzero. Finally, we turn
our attention to the inequality (10.15). Using integration by parts we
obtain for every k ∈ {1, . . . , n}

0 ≤
t1∫

t0

n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(s), ū(s))(uk(s) − ūk(s)) ds

−l
(

·∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds
)

=

t1∫

t0

n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(s), ū(s))(uk(s) − ūk(s)) ds

−w(t1)
T

t1∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds

+

t1∫

t0

ẇ(t)T

t∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds dt

=

t1∫

t0

n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(s), ū(s))(uk(s) − ūk(s)) ds

−w(t1)
T

t1∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds

+w(t)T

t∫

t0

∂f

∂uk

(x̄(s), ū(s))(uk(s) − ūk(s)) ds
∣
∣
∣

t1

t0
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−
t1∫

t0

w(t)T ∂f

∂uk

(x̄(t), ū(t))(uk(t) − ūk(t)) dt

=

t1∫

t0

[ n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(t), ū(t)) − w(t)T ∂f

∂uk

(x̄(t), ū(t))
]

(uk(t) − ūk(t)) dt for all uk ∈ Lsk
∞([t0, t1])

with uk(t) ∈ Ωk almost everywhere on [t0, t1].

Then for every k ∈ {1, . . . , n} and every uk ∈ Lsk
∞([t0, t1]) with uk(t) ∈

Ωk almost everywhere on [t0, t1] we conclude

[

−
n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(t), ū(t))

−w(t)T ∂f

∂uk

(x̄(t), ū(t))
]

(uk(t) − ūk(t)) ≤ 0

almost everywhere on [t0, t1].

Consequently, the inequality (10.11) is satisfied which completes the
proof of this theorem. 2

The maximum principle of the preceding theorem consists mainly
of three types. The differential equation (10.9) is also called the ad-
joint equation, the terminal condition (10.10) is called transversality
condition and for every k ∈ {1, . . . , n} the inequality (10.11) is said to
be the local Pontryagin maximum principle (compare also the book of
Pontryagin-Boltyanskii-Gamkrelidze-Mishchenko [277]). If we define
the so-called Hamiltonian map

H : Wm
1,∞([t0, t1]) × Ls1

∞([t0, t1]) × · · · × Lsn
∞([t0, t1])

×Wm
1,∞([t0, t1]) × Y ∗

1 × · · · × Y ∗
n −→ Wm

1,∞([t0, t1])

by

H(x, u1, . . . , un, w, y
∗
1, . . . , y

∗
n)(t)

:= w(t)Tf(x(t), u1(t), . . . , un(t)) −
n∑

i=1

(y∗i ◦ f0
i )(x(t), u1(t), . . . , un(t))

almost everywhere on [t0, t1],
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then the adjoint equation (10.9) can be written as

−ẇ(t)T =
∂H

∂x
(x̄, ū1, . . . , ūn, w, l1, . . . , ln)(t)

almost everywhere on [t0, t1].

Moreover, in this case for every k ∈ {1, . . . , n} the local Pontryagin
maximum principle (10.11) can also be formulated as follows: For
every uk ∈ Lsk

∞([t0, t1]) with uk(t) ∈ Ωk almost everywhere on [t0, t1]
we have

∂H

∂uk

(x̄, ū1, . . . ūn, w, l1, . . . , ln)(t)(uk(t) − ūk(t)) ≤ 0

almost everywhere on [t0, t1].

The maximum principle of Theorem 10.5 is in fact an extended F.
John condition. In order to get a necessary optimality condition of the
Karush-Kuhn-Tucker type we need an additional regularity assump-
tion. Under this assumption the n-tuple (l1, . . . , ln) is even nonzero.
It can be shown that this regularity assumption is fulfilled, if, in addi-
tion to the assumptions of Theorem 10.5, the adjoint equation (10.9)
is completely controllable (for this notion see, for instance, Girsanov
[116, p. 65]). The proof of this assertion can be done as the proof of
a similar result presented in the book of Girsanov [116, p. 64–68].

Using Lemma 4.14 we finally present a maximum principle for
optimal controls of the n players.

Theorem 10.6. If the ordering cones CY1 , . . . , CYn are pointed,
then Theorem 10.5 remains valid if ū1, . . . , ūn are optimal controls of
the n players.

10.2.2 Sufficient Conditions for Optimal and
Weakly Optimal Controls

The maximum principle which is derived as a necessary optimal-
ity condition is now investigated again. We present conditions un-
der which the maximum principle is even sufficient for optimal and
weakly optimal controls. Another sufficient condition is given using
the Hamilton-Jacobi-Bellmann equations.
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First, we consider again Problem 10.3 with a fixed terminal time
t̂ = t1. In this case we get the following maximum principle as a
sufficient optimality condition.

Theorem 10.7. Let the cooperative n player differential game
formulated in Problem 10.3 be given with a fixed terminal time t̂ = t1
and the target set

Q := {x̃ ∈ Rm | g(x̃) = 0Rr}

where g : Rm → Rr (with r ∈ N) is a given vector function. Let any
(x̄, ū1, . . . , ūn, t1) ∈ S be given. Let the vector function g be differ-
entiable at x̄(t1); for every i ∈ {1, . . . , n} let the map hi be convex
at x̄(t1) and Fréchet differentiable at x̄(t1); for every i ∈ {1, . . . , n}
let the map f 0

i be convex and Fréchet differentiable; let the map f
be partially differentiable with respect to x, u1, . . . , un. For every i ∈
{1, . . . , n} let a continuous linear functional li ∈ C#

Y ∗
i

be given. More-

over, assume that there are a function w ∈ Wm
1,∞([t0, t1]) and a vector

a ∈ Rr so that for every (x, u1, . . . , un, t1) ∈ S the following conditions
are satisfied:

(a)

−ẇ(t)T = w(t)T ∂f

∂x
(x̄(t), ū1(t), . . . , ūn(t))

−
n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(t), ū1(t), . . . , ūn(t))

almost everywhere on [t0, t1]; (10.17)

(b)

−w(t1)
T = aT ∂g

∂x
(x̄(t1)) +

n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1)); (10.18)

(c) for every k ∈ {1, . . . , n} and every uk ∈ Lsk
∞([t0, t1]) with uk(t) ∈

Ωk almost everywhere on [t0, t1] we have

[

w(t)T ∂f

∂uk

(x̄(t), ū1(t), . . . , ūn(t))
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−
n∑

i=1

(

li ◦
∂f 0

i

∂uk

)

(x̄(t), ū1(t), . . . , ūn(t))
]

(uk(t) − ūk(t)) ≤ 0

almost everywhere on [t0, t1]; (10.19)

(d) let aTg(·) be quasiconvex at x̄(t1) (in a componentwise sense as
outlined on page 185), and almost everywhere on [t0, t1] let the
functional defined by −w(t)Tf(x(t), u1(t), . . . , un(t)) be convex
at (x̄(t), ū1(t), . . . , ūn(t)).

Then ū1, . . . , ūn are optimal controls of the n players.

Proof. Let any (n + 2)-tuple (x, u1, . . . , un, t1) ∈ S be given.
With the differential equations (10.17) and (10.2) we obtain

− d

dt
(w(t)T (x(t) − x̄(t)))

= −ẇ(t)T (x(t) − x̄(t)) − w(t)T (ẋ(t) − ˙̄x(t))

=
[

w(t)T ∂f

∂x
(x̄(t), ū1(t), . . . , ūn(t))

−
n∑

i=1

(

li ◦
∂f 0

i

∂x

)

(x̄(t), ū1(t), . . . , ūn(t))
]

(x(t) − x̄(t))

−w(t)T [f(x(t), u1(t), . . . , un(t)) − f(x̄(t), ū1(t), . . . , ūn(t))]

almost everywhere on [t0, t1].

Then we get

n∑

i=1

li(f
0
i (x(t), u1(t), . . . , un(t)) − f0

i (x̄(t), ū1(t), . . . , ūn(t)))

− d

dt
(w(t)T (x(t) − x̄(t)))

=
n∑

i=1

li

(

f0
i (x(t), u1(t), . . . , un(t)) − f0

i (x̄(t), ū1(t), . . . , ūn(t))

−∂f
0
i

∂x
(x̄(t), ū1(t), . . . , ūn(t))(x(t) − x̄(t))

)

−w(t)T
(

f(x(t), u1(t), . . . , un(t)) − f(x̄(t), ū1(t), . . . , ūn(t))
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−∂f
∂x

(x̄(t), ū1(t), . . . , ūn(t))(x(t) − x̄(t))
)

almost everywhere on [t0, t1]. (10.20)

Since every f 0
i (i ∈ {1, . . . , n}) is a convex map and Fréchet dif-

ferentiable and every li ∈ C#
Y ∗

i
(i ∈ {1, . . . , n}) is a continuous and

monotonically increasing linear functional, the functional li ◦ f0
i is

also convex (compare Lemma 2.7,(b)) and it is even Fréchet dif-
ferentiable. By assumption the vector function f is partially dif-
ferentiable with respect to x, u1, . . . , un; and almost everywhere on
[t0, t1] the functional defined by −w(t)Tf(x̃(t), ũ1(t), . . . , ũn(t)) (for
any (x̃, ũ1, . . . , ũn, t1) ∈ S) is convex at (x̄(t), ū1(t), . . . , ūn(t)). Con-
sequently we conclude using (10.20) and (10.19):

n∑

i=1

li(f
0
i (x(t), u1(t), . . . , un(t)) − f 0

i (x̄(t), ū1(t), . . . , ūn(t)))

− d

dt
(w(t)T (x(t) − x̄(t))) ≥ 0 almost everywhere on [t0, t1].

If we notice that x(t0) = x̄(t0) = x0, then integration leads to the
inequality

n∑

i=1

li

(
t1∫

t0

[f 0
i (x(t), u1(t), . . . , un(t)) − f 0

i (x̄(t), ū1(t), . . . , ūn(t))] dt
)

−w(t1)
T (x(t1) − x̄(t1)) ≥ 0. (10.21)

The inequality (10.21) is valid because for every i ∈ {1, . . . , n} li is a
continuous linear functional and the map f 0

i ◦(x̃, ũ1, . . . , ũn) is Bochner
integrable for all (x̃, ũ1, . . . , ũn, t1) ∈ S (see Hille-Phillips [136, p. 83–
84] or Warga [348, p. 82]). Obviously, the integral appearing in the
inequality (10.21) is a Bochner integral. With the equation (10.18)
and the Fréchet differentiability and convexity of the maps h1, . . . , hn

at x̄(t1) we conclude:

−w(t1)
T (x(t1) − x̄(t1))

= aT ∂g

∂x
(x̄(t1))(x(t1) − x̄(t1))
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+
n∑

i=1

(

li ◦
∂hi

∂x

)

(x̄(t1))(x(t1) − x̄(t1))

≤ aT ∂g

∂x
(x̄(t1))(x(t1) − x̄(t1))

+
n∑

i=1

li(hi(x(t1)) − hi(x̄(t1))). (10.22)

Because of the differentiability and quasiconvexity of aTg(·) at x̄(t1)
(compare page 185) the equation

0 = aTg(x(t1)) − aTg(x̄(t1))

implies the inequality

0 ≥ aT ∂g

∂x
(x̄(t1))(x(t1) − x̄(t1)). (10.23)

Then the inequalities (10.22) and (10.23) lead to the inequality

−w(t1)
T (x(t1) − x̄(t1)) ≤

n∑

i=1

li(hi(x(t1)) − hi(x̄(t1)))

which implies, with (10.21),

n∑

i=1

li

(

hi(x(t1)) +

t1∫

t0

f 0
i (x(t), u1(t), . . . , un(t)) dt

)

≥
n∑

i=1

li

(

hi(x̄(t1)) +

t1∫

t0

f 0
i (x̄(t), ū1(t), . . . , ūn(t)) dt

)

resulting in

n∑

i=1

li(vi(x, u1, . . . , un, t1)) ≥
n∑

i=1

li(vi(x̄, ū1, . . . , ūn, t1)).

Finally, an application of Theorem 5.18, (b) and Lemma 10.2 leads
to the assertion. 2
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A similar sufficient condition can also be formulated for weakly
optimal controls.

Theorem 10.8. Let the ordering cones CY1 , . . . , CYn have a non-
empty algebraic interior. If the sets C#

Y ∗
i

(i ∈ {1, . . . , n}) are replaced

by the dual ordering cones CY ∗
i

where for at least one i′ ∈ {1, . . . , n}
CY ∗

i′
6= {0Y ∗

i′
}, then Theorem 10.7 remains valid for weakly optimal

controls, i.e. in this case ū1, . . . , ūn are weakly optimal controls of the
n players.

Next, we consider an example which shows how the maximum
principle can be used for the determination of optimal controls

Example 10.9. Two divisions of a conglomerate company are in
competition because a certain product is produced by both divisions.
For a fixed planing period [0, t1] the rate of demand at time t1 and
the profits of both divisions should be maximized by advertising for
the product.

In the following x1(t) and x2(t) describe the rate of demand for both
factories at time t. u1(t) and u2(t) denote the rate of expenditure
for advertising for each division. Based on market observations it is
assumed that the change of the rate of demand depends on the rate
of demand and the rate of expenditure for advertising as follows:

ẋ1(t) = 12u1(t) − 2u1(t)
2 − x1(t) − u2(t)

ẋ2(t) = 12u2(t) − 2u2(t)
2 − x2(t) − u1(t)

} almost
everywhere
on [0, t1].

Moreover assume that

x1(0) = x10 and x2(0) = x20

where x10 and x20 are given initial rates of demand. For feasible
advertising intensities we require

u1(t) ∈ [0, û1] and u2(t) ∈ [0, û2] almost everywhere on [0, t1]

where û1 and û2 are positive real numbers. We assume that the profits
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of both divisions are given as

t1∫

0

(1

3
x1(t) − u1(t)

)

dt

and
t1∫

0

(1

3
x2(t) − u2(t)

)

dt,

respectively. Consequently, the objective maps v1 and v2 which have
to be minimized read as

v1(x, u1, u2, t1) =





−x1(t1)
t1∫

0

(u1(t) − 1
3
x1(t)) dt





and

v2(x, u1, u2, t1) =





−x2(t1)
t1∫

0

(u2(t) − 1
3
x2(t)) dt



 .

Finally, we assume that each division (player) can give a convex cone
CR2

1
and CR2

2
, respectively, for which C#

R2
1
6= ∅ and C#

R2
2
6= ∅ (we restrict

ourselves to the determination of optimal controls). For arbitrary

vectors

(
α1

β1

)

∈ C#

R2
1

and

(
α2

β2

)

∈ C#

R2
2

the function w with

w(t) =








(

α1 −
β1

3

)

et−t1 +
β1

3

(

α2 −
β2

3

)

et−t1 +
β2

3








for all t ∈ [0, t1]

satisfies the adjoint equation (10.17) and the transversality condition
(10.18) (in this case we have g ≡ 0Rr).

In order to get concrete results we choose, for simplicity, CR2
1

= CR2
2

=

R2
+. The weights are chosen as α1 = β1 = 1, α2 = 2 and β2 = 3. More-

over, we assume t1 = 1 and û1 = û2 = 4. Then the vector function
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w is componentwise non-negative on [0, 1]. The vector function f is
concave with respect to x, u1 and u2. Consequently, the assumption
(d) of Theorem 10.7 is satisfied. The controls ū1 and ū2 given by

ū1(t) =
6 + 21 et−1

4 + 8 et−1
for all t ∈ [0, 1]

and

ū2(t) =
13 + 17 et−1

6 + 6 et−1
for all t ∈ [0, 1]

satisfy the local Pontryagin maximum principle (10.19). In fact, ū1

and ū2 fulfill all assumptions of Theorem 10.7. Consequently, ū1 and
ū2 are optimal controls for both divisions (see Fig. 10.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.9

2

2.1

2.2

2.3

2.4

2.5

t

Figure 10.1: Illustration of the optimal controls ū1 (lower curve) and
ū2 (upper curve).

Using the Hamilton-Jacobi-Bellmann equations it is also possible
to formulate sufficient conditions for optimal controls. We present
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conditions for cooperative differential games with a free terminal time
t̂.

Theorem 10.10. Let the cooperative n player differential game
formulated in Problem 10.3 be given. Let (x̄, ū1, . . . , ūn, t̄ ) ∈ S be a
given (n + 2)-tuple. For every i ∈ {1, . . . , n} let a continuous linear
functional li ∈ C#

Y ∗
i

be given. Moreover, assume that there is a Lip-
schitz continuous function w : Rm → R with a componentwise weak
derivative ∂w

∂y
∈ Lm

∞([t0, t1]) so that for all (x, u1, . . . , un, t̂ ) ∈ S the
following holds:

(a)

w(x(t̂)) =
n∑

i=1

li(hi(x(t̂ ))), (10.24)

(b)

t̄∫

t0

[∂w

∂y
(x̄(t))f(x̄(t), ū1(t), . . . , ūn(t))

+
n∑

i=1

li(f
0
i (x̄(t), ū1(t), . . . , ūn(t)))

]

dt = 0, (10.25)

(c)

∂w

∂y
(x(t))f(x(t), u1(t), . . . , un(t))

+
n∑

i=1

li(f
0
i (x(t), u1(t), . . . , un(t))) ≥ 0

almost everywhere on [t0, t̂ ]. (10.26)

Then ū1, . . . , ūn are optimal controls of the n players.

Proof. Let (x, u1, . . . , un, t̂ ) ∈ S be any playable (n + 2)-tuple.
Then we obtain with (10.2), (10.24) and (10.3)

t̂∫

t0

∂w

∂y
(x(t))f(x(t), u1(t), . . . , un(t)) dt
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=

t̂∫

t0

∂w

∂y
(x(t))ẋ(t) dt

= w(x(t̂ )) − w(x(t0))

=
n∑

i=1

li(hi(x(t̂ ))) − w(x0). (10.27)

With (10.25), (10.2), (10.24) and (10.3) we analogously get

t̄∫

t0

[ n∑

i=1

li(f
0
i (x̄(t), ū1(t), . . . , ūn(t)))

]

dt

= −
t̄∫

t0

∂w

∂y
(x̄(t))f(x̄(t), ū1(t), . . . , ūn(t)) dt

= −
t̄∫

t0

∂w

∂y
(x̄(t)) ˙̄x(t) dt

= −
n∑

i=1

li(hi(x̄(t̄ ))) + w(x0).

With the equation (10.27) it follows

t̄∫

t0

[ n∑

i=1

li(f
0
i (x̄(t), ū1(t), . . . , ūn(t)))

]

dt

=
n∑

i=1

li(hi(x(t̂ )) − hi(x̄(t̄ )))

−
t̂∫

t0

∂w

∂y
(x(t))f(x(t), u1(t), . . . , un(t)) dt.

Then we get

n∑

i=1

li(vi(x, u1, . . . , un, t̂ )) −
n∑

i=1

li(vi(x̄, ū1, . . . , ūn, t̄ ))
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=
n∑

i=1

[

li(hi(x(t̂ )) − hi(x̄(t̄ )))

+li

(
t̂∫

t0

f 0
i (x(t), u1(t), . . . , un(t)) dt

−
t̄∫

t0

f 0
i (x̄(t), ū1(t), . . . , ūn(t)) dt

)]

=

t̂∫

t0

[∂w

∂y
(x(t))f(x(t), u1(t), . . . , un(t))

+
n∑

i=1

li(f
0
i (x(t), u1(t), . . . , un(t)))

]

dt

which is non-negative because of the inequality (10.26). For the last
conclusion we use the fact that every li (i ∈ {1, . . . , n}) is a continuous
linear functional (compare Hille-Phillips [136, p. 83–84] or Warga [348,
p. 82]). Finally, Theorem 5.18, (b) and Lemma 10.2 lead to the
assertion. 2

The assumption ∂w
∂y

∈ Lm
∞([t0, t1]) given in the previous theorem

can be replaced by the weaker assumption ∂w
∂y

∈ Lm
1 ([t0, t1]), if for all

(x, u1, . . . , un, t̂) ∈ S and all j ∈ {1, . . . ,m} the condition

fj(x(t), u1(t), . . . , un(t)) > 0 almost everywhere on [t0, t̂]

is satisfied (compare Warga [348, p. 98]).
An example which shows the applicability of Theorem 10.10 can

be found in the book of Leitmann [220, p. 32–36] (see also Leitmann-
Liu [223]).

The next theorem presents a similar result as Theorem 10.10 for
weakly optimal controls.

Theorem 10.11. Let the ordering cones CY1 , . . . , CYn have a non-
empty algebraic interior. If the sets C#

Y ∗
i

(i ∈ {1, . . . , n}) are replaced
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by the dual ordering cones CY ∗
i

where for at least one i′ ∈ {1, . . . , n}
CY ∗

i′
6= {0Y ∗

i′
}, then Theorem 10.10 remains valid for weakly optimal

controls, i.e. in this case ū1, . . . , ūn are weakly optimal controls of the
n players.

10.3 A Special Cooperative n Player

Differential Game

In this last section of this chapter a special cooperative differential
game is investigated which extends the so-called least squares problem
known from control theory.

Problem 10.12. We turn our attention to an infinite-dimensional
autonomous linear system

ẋ(t) = Ax(t) +
n∑

i=1

Biui(t) for all t ∈ (0, t1) (10.28)

with the initial condition

x(0) = x0 (10.29)

where t1 is a given positive terminal time. The state space (X, 〈., .〉X)
as well as the image spaces (Z1, 〈., .〉Z1), . . . , (Zn, 〈., .〉Zn) of the con-
trols are assumed to be real Hilbert spaces. Let x0 ∈ X be any given
element. For every i ∈ {1, . . . , n} let the control ui be an element of
the real linear space

L2([0, t1], Zi) :=
{

ui : [0, t1] → Zi

∣
∣
∣ ui is strongly

measurable and

t1∫

0

‖ui(t)‖2
Zi
dt <∞

}

.

The map A is assumed to be linear with the domain D(A) ⊂ X and
the range R(A) ⊂ X and it is assumed to be an infinitesimal generator
of a strongly continuous semigroup Tt (for further details see Hille-
Phillips [136], Ladas-Lakshmikantham [212], Barbu [22] or Martin
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[242]). For every i ∈ {1, . . . , n} let Bi : Zi → X be a continuous
linear map. Recall that a map x : [0, t1] → X is called a mild solution
of the system (10.28) with the initial condition (10.29), if

x(t) = Ttx0 +
n∑

i=1

t∫

0

Tt−sBiui(s) ds for all t ∈ [0, t1] (10.30)

(for instance, compare Barbu [22, p. 31]). The integral appearing in
(10.30) is a Bochner integral. In order to ensure that the represen-
tation (10.30) makes sense we assume x0 ∈ D(A). Since, in general,
every mild solution is not a solution of (10.28) and (10.29) as well
(e.g., see Martin [242, p. 296]), our following investigations are based
on the input-output-relation (10.30).

Every player tries to steer the system with minimal effort possibly
to the zero state. In other words: The i-th player minimizes the
objective map vi : S → Yi := R2 with

vi(x, u1, . . . , un, t̂ ) =





‖x(t1)‖X

‖ui‖L2([0,t1],Zi)



 for all (x, u1, . . . , un, t̂ ) ∈ S

where the set S of playable (n+ 2)-tuples (compare (10.1)) is defined
as

S := {(x, u1, . . . , un, t̂ ) | t̂ = t1, ui ∈ L2([0, t1], Zi)

for every i ∈ {1, . . . , n} and

x satisfies (10.30)}.

In the case of n = 1 the cooperative differential game formulated
in Problem 10.12 is known, in a similar form, in optimal control the-
ory as linear-quadratic problem or least squares problem (e.g., com-
pare Brockett [52], Curtain-Pritchard [82], [83] or Jacobson-Martin-
Pachter-Geveci [152]).

It is our aim to present optimal controls for the cooperative dif-
ferential game described in Problem 10.12. But first, we need two
technical lemmas.
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Lemma 10.13. Let Problem 10.12 be given, and for every i ∈
{1, . . . , n} let non-negative real numbers γi be fixed. In the class of
strongly continuous self-adjoint maps in B(X,X) (real linear space of
continuous linear maps from X to X) for which 〈z, Pty〉X is differ-
entiable by t for all y, z ∈ D(A), the map P. where Pt (t ∈ [0, t1]) is
given as

Ptz = T ∗
t1−tTt1−tz −

n∑

i=1

γi

t1∫

t

T ∗
s−tPsBiB

∗
i PsTs−tz ds for all z ∈ X

is the unique solution of the Bernoulli differential equation in scalar
product form

d

dt
〈z, Pty〉X + 〈Ptz, Ay〉X + 〈Az, Pty〉X −

n∑

i=1

γi〈PtBiB
∗
i Ptz, y〉X = 0

for all t ∈ [0, t1] and all y, z ∈ D(A) (10.31)

with the terminal condition

Pt1 = I (identity). (10.32)

Proof. The proof of this result can be done in analogy to a proof
of Curtain-Pritchard [83, pp. 93]. 2

Lemma 10.14. Let Problem 10.12 be given, and for every i ∈
{1, . . . , n} let non-negative real numbers γi be fixed. If P. is the so-
lution of the Bernoulli differential equation (10.31) with the terminal
condition (10.32), then we have for all u1 ∈ L2([0, t1], Z1), . . . , un ∈
L2([0, t1], Zn) with the corresponding mild solution x

0 = 〈x0, P0x0〉X − 〈x(t1), x(t1)〉X

+
n∑

i=1

t1∫

0

[γi〈B∗
i Ptx(t), B

∗
i Ptx(t)〉Zi

+ 2〈B∗
i Ptx(t), ui(t)〉Zi

] dt.
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Proof. For the proof of this lemma we refer to a proof of a similar
result in the book of Curtain-Pritchard [83, pp. 86]. 2

The next theorem presents the main result of this section.

Theorem 10.15. Let Problem 10.12 be given, and assume that
for every i ∈ {1, . . . , n} CYi

= R2
+ is the ordering cone in Yi. Let

(αi, βi) ∈ R2
+ (i ∈ {1, . . . , n}) with βi > 0 be given vectors. Moreover,

let P. be the solution of the Bernoulli differential equation (10.31) with
the terminal condition (10.32) for γi := α̂

βi
(i ∈ {1, . . . , n}) where

α̂ :=
n∑

j=1

αj. Then the feedback control ūi given by

ūi(t) = −γiB
∗
i Ptx(t) for all t ∈ [0, t1] (10.33)

is an optimal (and also a weakly optimal) control of the i-th player.

Proof. Let (αi, βi) ∈ R2
+ (i ∈ {1, . . . , n}) with βi > 0 be arbi-

trarily given vectors. Furthermore, let (x, u1, . . . , un, t1) ∈ S be any
playable (n + 2)-tuple with ui 6= ūi for at least one i ∈ {1, . . . , n}.
Then we conclude with Lemma 10.14 and the positivity of the βi’s:

n∑

i=1

(αi‖x(t1)‖2
X + βi‖ui‖2

L2([0,t1],Zi)
)

= α̂〈x(t1), x(t1)〉X +
n∑

i=1

βi

t1∫

0

〈ui(t), ui(t)〉Zi
dt

= α̂〈x0, P0x0〉X +
n∑

i=1

t1∫

0

[βi〈ui(t), ui(t)〉Zi

+α̂γi〈B∗
i Ptx(t), B

∗
i Ptx(t)〉Zi

+ 2α̂〈B∗
i Ptx(t), ui(t)〉Zi

] dt

= α̂〈x0, P0x0〉X +
n∑

i=1

βi

t1∫

0

[〈ui(t), ui(t)〉Zi

+2γi〈B∗
i Ptx(t), ui(t)〉Zi

+ γ2
i 〈B∗

i Ptx(t), B
∗
i Ptx(t)〉Zi

] dt
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= α̂〈x0, P0x0〉X +
n∑

i=1

βi

t1∫

0

〈ui(t)+γiB
∗
i Ptx(t), ui(t)+γiB

∗
i Ptx(t)〉Zi

dt

= α̂〈x0, P0x0〉X +
n∑

i=1

βi‖ui(·) + γiB
∗
i P.x(·)‖2

L2([0,t1],Zi)

> α̂〈x0, P0x0〉X

=
n∑

i=1

(αi‖x(t1)‖2
X + βi‖ūi‖2

L2([0,t1],Zi)
).

Finally, an application of Lemma 5.14, (a) and Lemma 5.24 leads to
the assertion. 2

In the case of only one player (n = 1) Theorem 10.15 has a triv-
ial consequence for the two following scalar parametric optimization
problems (with α, β > 0):

inf ‖x(t1)‖X

subject to the constraints

x(t) = Ttx0 +

t1∫

0

Tt−sB1u1(s) ds for all t ∈ [0, t1]

‖u1‖L2([0,t1],Z1) ≤ α,







(10.34)

inf ‖u1‖L2([0,t1],Z1)

subject to the constraints

x(t) = Ttx0 +

t1∫

0

Tt−sB1u1(s) ds for all t ∈ [0, t1]

‖x(t1)‖ ≤ β.







(10.35)

Corollary 10.16. Let the assumptions of Theorem 10.15 be sat-
isfied and assume n = 1. Let ū1 be a feedback control given by (10.33)
with the associated mild solution x̄. Then (x̄, ū1) solves the scalar op-
timization problems (10.34) and (10.35) for α := ‖ū1‖L2([0,t1],Z1) and
β := ‖x̄(t1)‖X .
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Proof. This corollary immediately follows from Theorem 10.15
and the definition of optimal controls (one can also use a general result
given by Vogel [344, p. 2]). 2

The following example shows the applicability of Theorem 10.15.

Example 10.17. Let a thin homogeneous bar with the length 1
and the diffusion coefficient a > 0 have an initial temperature distri-
bution x0. It is the aim to cool down the bar from above (player 1)
and from below (player 2) within one time unit with a minimal steer-
ing effort (the bar is assumed to be located in a horizontal plane). To
be more specific, we consider the heat equation

∂x

∂t
(z, t) = a

∂x2

∂z∂z
(z, t) + u1(z, t) − 2u2(z, t), 0 < z < 1, 0 < t < 1

with the boundary conditions

∂x

∂z
(0, t) =

∂x

∂z
(1, t) = 0, 0 < t < 1,

and the initial condition

x(z, 0) = x0(z), 0 < z < 1.

For the determination of optimal controls ū1 and ū2 using Theorem
10.15 we have to choose appropriate weights. But we omit that and
immediately assume that positive real numbers γ1 and γ2 are given.

The map A is defined by

Ax = a
∂x2

∂z∂z

where

D(A) =
{

x ∈ L2([0, 1])
∣
∣
∣
∂x

∂z
,

∂x

∂z∂z
∈ L2([0, 1]);

∂x

∂z
(0, ·) =

∂x

∂z
(1, ·) ≡ 0

}

.

It is known that A is self-adjoint and that it generates an analytical
semigroup (compare Curtain-Pritchard [83, p. 45–46]). The eigenval-
ues of A read

λi = −aπ2i2 for all i ∈ N ∪ {0}.
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Every eigenvalue is simple and associated eigenfunctions are, for in-
stance, ϕi with

ϕ0(z) = 1

and
ϕi(z) =

√
2 cos iπz for all i ∈ N

(for eigenvalues and eigenfunctions compare also Triebel [332, p. 301]).
The function system {ϕ0, ϕ1, . . .} is a complete orthonormal base in
L2([0, 1]), and every x ∈ L2([0, 1]) can be represented by

x =
∞∑

i=0

〈x, ϕi〉L2([0,1])ϕi

(e.g., see Triebel [332, p. 303–304]). Moreover, let us note that x ∈
D(A) if and only if

∞∑

i=0

λ2
i 〈x, ϕi〉2L2([0,1]) <∞

(compare Triebel [332, p. 273]). For the solution P. of the Bernoulli
differential equation (10.31) with the terminal condition (10.32) we
set (for t ∈ [0, 1])

Pty =
∞∑

i=0

pi(t)〈y, ϕi〉L2([0,1])ϕi for all y ∈ L2([0, 1]). (10.36)

By coefficient comparison we obtain from (10.31) and (10.32) for all
i ∈ N ∪ {0}:

ṗi(t) + 2λipi(t) − (γ1 + 4γ2)pi(t)
2 = 0

pi(1) = 1.

}

(10.37)

For every i ∈ N we get the solution of (10.37) as

p0(t) =
1

1 + (γ1 + 4γ2)(1 − t)

and

pi(t) =
−2λi

−(γ1 + 4γ2) + (−2λi + γ1 + 4γ2) e−2λi(1−t)
.
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Since for all i ∈ N ∪ {0} and all t ∈ [0, 1]

0 ≤ pi(t) ≤ 1,

Pt (by (10.36)) is well-defined and, in fact, it satisfies (10.31) and
(10.32). If we set x, ū1 and ū2 as

x(z, t) =
∞∑

i=0

xi(t)ϕi(z),

ū1(z, t) =
∞∑

i=0

ū1i
(t)ϕi(z)

and

ū2(z, t) =
∞∑

i=0

ū2i
(t)ϕi(z),

we obtain because of (10.33) for all i ∈ N ∪ {0}

ū1i
(t) =







−γ1x0(t)
1+(γ1+4γ2)(1−t)

if i = 0

−2aπ2i2γ1xi(t)

−(γ1+4γ2)+(2aπ2i2+γ1+4γ2) e2aπ2i2(1−t)
if i ∈ N

and

ū2i
(t) =







2γ2x0(t)
1+(γ1+4γ2)(1−t)

if i = 0

4aπ2i2γ2xi(t)

−(γ1+4γ2)+(2aπ2i2+γ1+4γ2) e2aπ2i2(1−t)
if i ∈ N.

Notes

Cooperative differential games are described, in a similar way as it
is done in the first section, by Vincent-Leitmann [340], Leitmann-
Rocklin-Vincent [225], Stalford [318], Blaquière-Juricek-Wiese [33],
Leitmann [220], Salz [296] and Vincent-Grantham [339] as well as
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in the proceedings edited by Blaquière [32], Leitmann-Marzollo [224]
and Leitmann [221]. Differential games where one does not have to
cooperate exclusively are treated by Juricek [180] and Schmitendorf-
Moriarty [302]. Control problems with a vector-valued objective map
are also investigated by Stern - Ben-Israel [320], Yu-Leitmann [367],
Salukvadze [295] and Leitmann [222].

The maximum principle as a necessary optimality condition is
derived along the lines of Girsanov [116]. The approach of Kirsch-
Warth-Werner [188] can also be used for the proof of the maximum
principle as a necessary optimality condition. Kirsch-Warth-Werner
[188] directly use the differential equation as an equality constraint.
Furthermore, the initial condition appears in the definition of the set
Ŝ. In their book one can also find a detailed proof of the Fréchet
differentiability of F and G (compare page 250) in the case of one
player. The maximum principle as a sufficient condition (Theorem
10.7) generalizes a similar result of Leitmann [220] and Salz [296].
Example 10.9 is based on a problem formulated by Starr [319] and
Leitmann [220]. The sufficient optimality condition given in Theorem
10.10 was already introduced by Leitmann [218] and later modified
by Stalford [317] (see also Leitmann [219] and [220]).

The presentation of the cooperative differential game discussed in
the last section of this chapter is closely related to investigations of
Curtain [79] and Curtain-Pritchard [80], [81] in the case of n = 1.
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Nowadays most of the optimization problems arising in technical
practice are problems with various objectives which have to be op-
timized simultaneously. These multiobjective optimization problems
are finite dimensional vector optimization problems with the natu-
ral partial ordering in the image space of the vector-valued objective
function. This part of the book is devoted to the application of the
theory of vector optimization to multiobjective optimization problems
arising in engineering.

In Chapter 11 we discuss how to specialize the optimality no-
tions defined in Chapter 4 to multiobjective optimization problems.
The important scalarization approaches, like the weighted sum and
weighted Chebyshev norm approaches, are examined for these special
problems because these methods are often used in engineering. Chap-
ter 12 treats numerical methods for the solution of multiobjective op-
timization problems in engineering. A modified method of Polak, the
Eichfelder-Polak method, interactive methods and a method for the
solution of discrete problems are presented. Finally, special engineer-
ing problems are described and solved in Chapter 13. We present the
optimal design of antennas in electrical engineering, we investigate the
optimization of a FDDI communication network in computer science,
we discuss bicriterial optimization problems in chemical engineering,
and we optimize the radio frequency field of a magnetic resonance
system in medical engineering.



Chapter 11

Theoretical Basics of
Multiobjective Optimization

This chapter introduces the basic concepts of multiobjective opti-
mization. After the discussion of a simple example from structural
engineering in the first section the definitions of several variants of the
Edgeworth-Pareto optimality notion are presented: weakly, properly,
strongly and essentially Edgeworth-Pareto optimal points. Relation-
ships between these different concepts are investigated and simple ex-
amples illustrate these notions. The second section is devoted to the
scalarization of multiobjective optimization problems. The weighted
sum and the weighted Chebyshev norm approach are investigated in
detail.

11.1 Basic Concepts

Optimization problems with several criteria arise in engineering, eco-
nomics, applied mathematics and physics. As a simple example we
discuss a design problem from structural engineering.

Example 11.1. We consider the design of a beam with a rectan-
gular cross-section and a given length l (see Fig. 11.1 and 11.2). The
height x1 and the width x2 have to be determined.

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               
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Figure 11.1: Longitudinal section.

x1

x2

Figure 11.2: Cross-section.

The design variables x1 and x2 have to be chosen in an area which
makes sense in practice. A certain stress condition must be satisfied,
i.e. the arising stresses cannot exceed a feasible stress. This leads to
the inequality

2000 ≤ x2
1x2.

Moreover, a certain stability of the beam must be guaranteed. In
order to avoid a beam which is too slim we require

x1 ≤ 4x2

and

x2 ≤ x1.

Finally, the design variables should be nonnegative which means

x1 ≥ 0, x2 ≥ 0.

Among all feasible values for x1 and x2 we are interested in those
which lead to a light and cheap construction. Instead of the weight
we can also take the volume of the beam given as lx1x2 as a possible
criterion (where we assume that the material is homogeneous). As a
measure for the costs we take the sectional area of a trunk from which
a beam of the height x1 and the width x2 can just be cut out. For
simplicity this trunk is assumed to be a cylinder. The sectional area
is given by π

4
(x2

1 + x2
2) (see Fig. 11.3).

Hence, we obtain a multiobjective optimization problem of the fol-
lowing form:
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Figure 11.3: Sectional area.

min

(
lx1x2

π
4
(x2

1 + x2
2)

)

subject to the constraints

2000 − x2
1x2 ≤ 0

x1 − 4x2 ≤ 0
−x1 + x2 ≤ 0

−x1 ≤ 0
−x2 ≤ 0.

In this chapter we investigate multiobjective optimization prob-
lems in finite dimensional spaces of the general form

min
x∈S

f(x). (11.1)

Here we have the following assumption.

Assumption 11.2. Let S be a nonempty subset of Rn (n ∈ N)
and let f : S → Rm (m ∈ N) be a given vector function. The image
space Rm is assumed to be partially ordered in a natural way (i.e.,
Rm

+ is the ordering cone).

In the case of m = 1 problem (11.1) reduces to a standard opti-
mization problem with a scalar-valued function f . Since f1, . . . , fm
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are various objectives to be optimized, one uses the name multiob-
jective optimization problem for (11.1). Actually it does not matter
whether we investigate maximization or minimization problems. In
this chapter we consider only minimization problems.

Minimization of a vector-valued function f means that we look for
preimages of minimal elements of the image set f(S) with respect to
the natural partial ordering (see Fig. 11.4). In practice the minimal

-

6

S

6

-

-

s
s

x̄

f(x̄)
f
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Figure 11.4: Preimage and image set of f .

elements of the image set f(S) do not play the central role but their
preimages.

Definition 11.3. Let Assumption 11.2 be satisfied. x̄ ∈ S is
called an Edgeworth-Pareto optimal point (or an efficient solution or
a minimal solution or a nondominated point) of problem (11.1), if
f(x̄) is a minimal element of the image set f(S) with respect to the
natural partial ordering, i.e., there is no x ∈ S with

fi(x) ≤ fi(x̄) for all i ∈ {1, . . . ,m}

and
f(x) 6= f(x̄).

The notion of efficient solutions is often used in economics whereas
the notion “Edgeworth-Pareto optimal” can be found in engineering,
and in applied mathematics one speaks of minimal solutions.
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Example 11.4. Consider the constraint set

S := {(x1, x2) ∈ R2 | x2
1 − x2 ≤ 0, x1 + 2x2 − 3 ≤ 0}

and the vector function f : S → R2 with

f(x1, x2) =

(
−x1

x1 + x2
2

)

for all (x1, x2) ∈ S.

The point (3
2
, 57

16
) is the only maximal element of T := f(S), and the

set of all minimal elements of T reads
{

(y1, y2) ∈ R2 | y1 ∈
[

−1,
1

2
3
√

2
]

and y2 = −y1 + y4
1

}

.

The set of all Edgeworth-Pareto optimal points is given as
{

(x1, x2) ∈ R2 | x1 ∈
[

−1

2
3
√

2, 1
]

and x2 = x2
1

}

(see Fig. 11.5).
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Figure 11.5: Minimal and maximal elements of T .

The Edgeworth-Pareto optimality concept is the main optimality
notion used in multiobjective optimization. But there are also other
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concepts being more weakly or more strongly formulated. First we
present a weaker optimality notion.

Definition 11.5. Let Assumption 11.2 be satisfied. x̄ ∈ S is
called a weakly Edgeworth-Pareto optimal point (or a weakly efficient
solution or a weakly minimal solution) of problem (11.1), if f(x̄) is
a weakly minimal element of the image set f(S) with respect to the
natural partial ordering, i.e., there is no x ∈ S with

fi(x) < fi(x̄) for all i ∈ {1, . . . ,m}.

This weak Edgeworth-Pareto optimality notion is often only used
if it is difficult to characterize theoretically Edgeworth-Pareto opti-
mal points or to determine them numerically. In general, in the ap-
plications one is not interested in weakly Edgeworth-Pareto optimal
solutions; this optimality notion is only of mathematical interest.

Example 11.6. We consider the multiobjective optimization
problem (11.1) with the set

S :=
{

(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1
}

,

and the identity f : S → R2 with

f(x1, x2) = (x1, x2) for all (x1, x2) ∈ S.

S describes a square in R2. Since f is the identity, the image set f(S)
equals S. The point (0,0) is the only Edgeworth-Pareto optimal point
whereas the set

{

(x1, x2) ∈ S | x1 = 0 or x2 = 0
}

is the set of all weakly Edgeworth-Pareto optimal points (see Fig.
11.6).
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Figure 11.6: Weakly Edgeworth-Pareto optimal points.

With Lemma 4.14 we immediately obtain the following result.

Theorem 11.7. Let Assumption 11.2 be satisfied. Every Edge-
worth-Pareto optimal point of problem (11.1) is a weakly Edgeworth-
Pareto optimal point of problem (11.1).

Notice that the converse statement of Theorem 11.7 is not true in
general (compare Example 11.6).

In the following we present a sharper optimality notion.

Definition 11.8. Let Assumption 11.2 be satisfied. x̄ ∈ S is
called a properly Edgeworth-Pareto optimal point (or a properly effi-
cient solution or a properly minimal solution) of problem (11.1), if x̄ is
an Edgeworth-Pareto optimal point and there is a real number µ > 0
so that for every i ∈ {1, . . . ,m} and every x ∈ S with fi(x) < fi(x̄)
at least one j ∈ {1, . . . ,m} exists with fj(x) > fj(x̄) and

fi(x̄) − fi(x)

fj(x) − fj(x̄)
≤ µ.

An Edgeworth-Pareto optimal point which is not properly Edgeworth-
Pareto optimal is also called an improperly Edgeworth-Pareto optimal
point .

In the applications improperly Edgeworth-Pareto optimal points
are not desired because a possible improvement of one component
leads to a drastic deterioration of another component.
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Example 11.9. For simplicity we investigate the multiobjective
optimization problem (11.1) with the unit circle

S :=
{

(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ 1
}

,

and the identity f : S → R2 with

f(x1, x2) = (x1, x2) for all (x1, x2) ∈ S.

The set of Edgeworth-Pareto optimal points reads
{

(x1, x2) ∈ R2 | x1 ∈ [−1, 0] and x2 = −
√

1 − x2
1

}

(see Fig. 11.7). Except the points (−1, 0) and (0,−1) all other Edge-
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Figure 11.7: Edgeworth-Pareto optimal points in Example 11.9.

worth-Pareto optimal points are also properly Edgeworth-Pareto opti-
mal points. In the following we show that the point x̄ := (−1, 0) is an
improperly Edgeworth-Pareto optimal point. For an arbitrary n ∈ N

consider the point x(n) :=
(

−1 + 1
n
,− 1

n

√
2n− 1

)

of the unit circle.

For every n ∈ N we have f1(x(n)) > f1(x̄) and f2(x(n)) < f2(x̄), and
we conclude

f2(x̄) − f2(x(n))

f1(x(n)) − f1(x̄)
=
x̄2 − x2(n)

x1(n) − x̄1

=
1
n

√
2n− 1

−1 + 1
n

+ 1
=

√
2n− 1

for all n ∈ N.
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It is obvious that an upper bound µ > 0 of this term does not ex-
ist. Consequently, x̄ = (−1, 0) is an improperly Edgeworth-Pareto
optimal point.

Example 11.10. It can be shown that one properly Edgeworth-
Pareto optimal point of the design problem discussed in Example 11.1
is, for instance, the point (10 3

√
4, 5 3

√
4). This solution leads to a beam

with the height 10 3
√

4 ≈ 15.874 and the width 5 3
√

4 ≈ 7.937.

Next we come to a very strong optimality notion.

Definition 11.11. Let Assumption 11.2 be satisfied. x̄ ∈ S is
called a strongly Edgeworth-Pareto optimal point (or a strongly effi-
cient solution or a strongly minimal solution) of problem (11.1), if
f(x̄) is a strongly minimal element of the image set f(S) with respect
to the natural partial ordering, i.e.

fi(x̄) ≤ fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.

This concept naturally generalizes the standard minimality notion
used in scalar optimization. But it is clear that this concept is too
strong for multiobjective optimization problems.

Example 11.12. Consider the multiobjective optimization prob-
lem in Example 11.6. Here the point (0,0) is a strongly Edgeworth-
Pareto optimal point. The problem discussed in Example 11.9 has no
strongly Edgeworth-Pareto optimal points.

Theorem 11.13. Let Assumption 11.2 be satisfied. Every strongly
Edgeworth-Pareto optimal point of problem (11.1) is an Edgeworth-
Pareto optimal point.

Proof. Let x̄ ∈ S be a strongly Edgeworth-Pareto optimal point,
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i.e.
fi(x̄) ≤ fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.

Then there is no x ∈ S with f(x) 6= f(x̄) and

fi(x) ≤ fi(x̄) for all i ∈ {1, . . . ,m}.
Hence, x̄ is an Edgeworth-Pareto optimal point. 2

Finally, we come to an optimality concept using the convex hull
of the image set f(S).

Definition 11.14. Let Assumption 11.2 be satisfied. x̄ ∈ S is
called an essentially Edgeworth-Pareto optimal point (or an essen-
tially efficient solution or an essentially minimal solution) of problem
(11.1), if f(x̄) is a minimal element of the convex hull of the image
set f(S).

Since the image set f(S) is contained in its convex hull it is evident
that every essentially Edgeworth-Pareto optimal point x̄ ∈ S is also an
Edgeworth-Pareto optimal point. Morover, there is also a relationship
to the strong Edgeworth-Pareto optimality concept.

Theorem 11.15. Let Assumption 11.2 be satisfied. Every strongly
Edgeworth-Pareto optimal point is an essentially Edgeworth-Pareto
optimal point.

Proof. Let x̄ ∈ S be a strongly Edgeworth-Pareto optimal point.
Then we have

fi(x̄) ≤ fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}
or

f(S) ⊂ {f(x̄)} + C

with C := Rm
+ (“+” denotes the algebraic sum of sets). Since the

set {f(x̄)} + C is convex, we conclude for the convex hull co(f(S))
of f(S) being the intersection of all convex subsets of Rm containing
f(S)

co(f(S)) ⊂ {f(x̄)} + C.



11.2. Special Scalarization Results 291

Then there is no y ∈ co(f(S)) with y 6= f(x̄) and

yi ≤ fi(x̄) for all i ∈ {1, . . . ,m}.

Hence, f(x̄) is a minimal element of the set co(f(S)), i.e. x̄ ∈ S is an
essentially Edgeworth-Pareto optimal point. 2

Example 11.16. Consider the multiobjective optimization prob-
lem (11.1) with the discrete constraint set

S := {(0, 3), (2, 2), (3, 0)},

and the identity as objective function f (see Fig. 11.8). Every feasible
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Figure 11.8: Constraint set S.

point is an Edgeworth-Pareto optimal point, but only the points (3, 0)
and (0, 3) are essentially Edgeworth-Pareto optimal points.

Summarizing the relationships between the presented optimality
concepts we obtain the diagram in Table 11.1. Notice that the con-
verse implications are not true in general.

11.2 Special Scalarization Results

In Chapter 5 scalarization techniques are discussed in detail. In eco-
nomics and engineering scalarized problems are also called auxiliary
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strong EP optimality
⇓

essential EP optimality
⇓

proper EP optimality ⇒ EP optimality ⇒ weak EP optimality

Table 11.1: Relationships between different Edgeworth-Pareto (EP)
optimality concepts.

problems, auxiliary programs or compromise models. We now present
two main approaches for the determination of Edgeworth-Pareto op-
timal points. We consider the weighted sum of the objectives and a
weighted Chebyshev norm approach. Moreover, we investigate special
scalar problems.

11.2.1 Weighted Sum Approach

Let Assumption 11.2 be satisfied and consider the multiobjective op-
timization problem

min
x∈S

f(x). (11.2)

If one formulates a scalar problem using linear functionals (e.g., see
Theorem 5.4), then we obtain for this special case the scalarized op-
timization problem

min
x∈S

m∑

i=1

tifi(x)

with appropriate weights t1, . . . , tm. This approach uses the weighted
sum of the components of the objective vector function. Therefore,
one speaks of a weighted sum approach. If one specializes the asser-
tions of Theorem 5.18, (a) and Theorem 5.28 for C := Rm

+ , then we
obtain the scalarization results given in Table 11.2. The result of the
following theorem is also considered in this table.
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Every solution of the scalar optimization problem

min
x∈S

m∑

i=1

tifi(x)

with

t1, . . . , tm > 0 t1, . . . , tm ≥ 0,
ti > 0 for some
i ∈ {1, . . . ,m},
where image
uniqueness of the
solution is given

t1, . . . , tm ≥ 0,
ti > 0 for some
i ∈ {1, . . . ,m},

is

a properly EP
optimal point
of problem (11.2).

an EP optimal
point of problem
(11.2).

a weakly EP
optimal point
of problem (11.2).

Table 11.2: Sufficient conditions for Edgeworth-Pareto (EP) optimal
points.
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Theorem 11.17. Let Assumption 11.2 be satisfied, and let t1, . . . ,
tm > 0 be given real numbers. If x̄ ∈ S is a solution of the scalar
optimization problem

min
x∈S

m∑

i=1

tifi(x), (11.3)

then x̄ is a properly Edgeworth-Pareto optimal point of the multiob-
jective optimization problem (11.2).

Proof. By Theorem 5.18, (b), x̄ is an Edgeworth-Pareto optimal
point of problem (11.2). Assume that x̄ is no properly Edgeworth-
Pareto optimal point. Then we choose

µ := (m− 1) max
i,j∈{1,...,m}

{
tj
ti

}

for m ≥ 2,

and we obtain for some i ∈ {1, . . . ,m} and some x ∈ S with fi(x) <
fi(x̄)

fi(x̄) − fi(x)

fj(x) − fj(x̄)
> µ for all j ∈ {1, . . . ,m} with fj(x) > fj(x̄).

This implies

fi(x̄) − fi(x) > µ (fj(x) − fj(x̄)) ≥ (m− 1)
tj
ti

(fj(x) − fj(x̄))

for all j ∈ {1, . . . ,m} \ {i}.
Multiplication with ti

m−1
and summation with respect to j 6= i leads

to

ti (fi(x̄) − fi(x)) >
m∑

j=1
j 6=i

tj(fj(x) − fj(x̄))

and

0 >
m∑

j=1

tj(fj(x) − fj(x̄))

implying
m∑

j=1

tjfj(x̄) >
m∑

j=1

tjfj(x)
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contradicting to the assumption that x̄ ∈ S is a solution of the scalar
optimization problem (11.3). 2

Example 11.18.

(a) In Example 11.4 we have already investigated the following mul-
tiobjective optimization problem (see also Fig. 11.5)

min

(
−x1

x1 + x2
2

)

subject to the constraints
x2

1 − x2 ≤ 0
x1 + 2x2 − 3 ≤ 0
x1, x2 ∈ R.

(11.4)

For the computation of a properly Edgeworth-Pareto optimal
point of this problem one can choose, for instance, t1 = 1 and
t2 = 2. Then one solves the scalar optimization problem

max x1 + 2x2
2

subject to the constraints
x2

1 − x2 ≤ 0
x1 + 2x2 − 3 ≤ 0
x1, x2 ∈ R.

(11.5)

x̄ = (−1
2
, 1

4
) is the unique solution of the problem (11.5). By

Theorem 11.17 x̄ is also a properly Edgeworth-Pareto optimal
point of the multiobjective optimization problem (11.4).

(b) The application of Theorem 5.18, (b) to discrete problems allows
a fast computation of Edgeworth-Pareto optimal points. As a
very simple example (see [90, p. 165]) all minimal elements of
the discrete set

S := {(−16,−9), (−6,−14), (−11,−13), (−10,−10)} ⊂ R2

are determined. For this purpose we choose the vector function
f : S → R2 with

f(x1, x2) = (x1, x2) for all (x1, x2) ∈ S.
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The minimal elements of S are exactly the Edgeworth-Pareto
optimal points of the problem

min
x∈S

f(x).

For the computation of these Edgeworth-Pareto optimal points
one can choose the weight vector t = (α, 1 − α) with α ∈ (0, 1)
and obtains the scalar optimization problem

min
(x1,x2)∈S

αx1 + (1 − α)x2

for arbitrary α ∈ (0, 1). The minimal elements of the set S are
given in Table 11.3.

α x̄ αx̄1 + (1 − α)x̄2

0 < α < 1
6

(−6,−14) −6α− 14(1 − α)

α = 1
6

(−6,−14) or (−11,−13) −38
3

1
6
< α < 4

9
(−11,−13) −11α− 13(1 − α)

α = 4
9

(−11,−13) or (−16,−9) −109
9

4
9
< α < 1 (−16,−9) −16α− 9(1 − α)

Table 11.3: Minimal elements of the set S for different parameters
(Example 11.18, (b)).

(c) The result of Theorem 5.18, (b) can be well applied in linear
multiobjective optimization. As an example let us determine all
Edgeworth-Pareto optimal points of the following problem (see
[87, pp. 155]):

min

(
−4x1 − 2x2

−8x1 − 10x2

)

subject to the constraints
x1 + x2 ≤ 70
x1 + 2x2 ≤ 100

x1 ≤ 60
x2 ≤ 40

x1, x2 ≥ 0.
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The constraint set of this example is illustrated in Fig. 11.9.
Again, let the vector t of the weights be given as t = (α, 1 − α)

6
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Figure 11.9: Constraint set in Example 11.18, (c).

with α ∈ (0, 1). Consequently, one obtains for α ∈ (0, 1) the
parametric optimization problem

min (−8 + 4α)x1 + (−10 + 8α)x2

subject to the constraints
x1 + x2 ≤ 70
x1 + 2x2 ≤ 100

x1 ≤ 60
x2 ≤ 40

x1, x2 ≥ 0.

All solutions of this problem are given in Table 11.4. These are
also Edgeworth-Pareto optimal points of the considered multi-
objective optimization problem.

Notice that for general nonlinear multiobjective optimization prob-
lems not every Edgeworth-Pareto optimal point can be determined
using the weighted sum approach. For instance, Figure 11.10 shows
that only two minimal points of the set T can be determined in such
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α x̄1 x̄2

0 < α < 2
5

20 40

2
5

20λ+ 40(1 − λ) 40λ+ 30(1 − λ)

2
5
< α < 6

7
40 30

6
7

40λ+ 60(1 − λ) 30λ+ 10(1 − λ)

6
7
< α < 1 60 10

Table 11.4: Edgeworth-Pareto optimal points for different parameters
(Example 11.18, (c)). λ ∈ [0, 1] can be arbitrarily chosen.

a way. Only these two points are supporting points of an appropri-
ate supporting function. The weighted sum approach seems to be

6
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Figure 11.10: Weighted sum approach in the nonconvex case.

only suitable for convex problems, like linear problems. In general,
this approach cannot be used for multiobjective optimization prob-
lems arising in engineering. For these problems other approaches,
for instance, like the weighted Chebyshev norm approach, are more
suitable.

We know from Chapter 5 that for multiobjective optimization
problems for which the set
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f(S) + Rm
+

:= {y ∈ Rm | yi ≥ fi(x) for some x ∈ S and all i ∈ {1, . . . ,m}}

is convex, the weighted sum approach is appropriate. The results
concerning the weighted sum approach are summarized in Table 11.5.
The corresponding mathematical results can be found in Theorem
5.18, (b), Theorem 5.4, Corollary 5.29 and the following corollary.

Corollary 11.19. Let Assumption 11.2 be satisfied, and let the
set f(S)+Rm

+ be convex. Then x̄ ∈ S is a properly Edgeworth-Pareto
optimal point of the multiobjective optimization problem (11.2) if and
only if there are real numbers t1, . . . , tm > 0 so that x̄ is a solution of
the scalar optimization problem (11.3).

Proof. One part of the assertion is shown in Theorem 11.17.
For the converse part assume that x̄ is a properly Edgeworth-Pareto
optimal point. Then there is a real number µ > 0 so that for every
i ∈ {1, . . . ,m} and every x ∈ S with fi(x) < fi(x̄) at least one
j ∈ {1, . . . ,m} exists with fj(x) > fj(x̄) and

fi(x̄) − fi(x)

fj(x) − fj(x̄)
≤ µ. (11.6)

Consequently, for every i ∈ {1, . . . ,m} the system

fi(x) < fi(x̄) (11.7)

fi(x) + µfj(x) < fi(x̄) + µfj(x̄)

for all j ∈ {1, . . . ,m}\{i} (11.8)

does not have a solution x ∈ S. In order to see this implication assume
that for some i ∈ {1, . . . ,m} the system (11.7), (11.8) would have a
solution x ∈ S. If there is no j ∈ {1, . . . ,m} with fj(x) > fj(x̄), x̄
cannot be properly Edgeworth-Pareto optimal. On the other hand,
if there is some j ∈ {1, . . . ,m} with fj(x) > fj(x̄), we obtain from
(11.8)

fi(x̄) − fi(x) > µ(fj(x) − fj(x̄))

contradicting the inequality (11.6).
Now we procede with the actual proof of the corollary and choose an
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arbitrary i ∈ {1, . . . ,m}. We define the nonempty set

Mi :=
















fi(x) + αi + µ(f1(x) + α1)
...

fi(x) + αi
...

fi(x) + αi + µ(fm(x) + αm)










∈ Rm

∣
∣
∣
∣
x ∈ S, α1, . . . , αm ≥ 0







.

Since f(S) + Rm
+ is assumed to be convex, one can show with simple

calculations that the set M is convex as well. If we set

ȳi :=










fi(x̄) + µf1(x̄)
...

fi(x̄)
...

fi(x̄) + µfm(x̄)










∈ Rm

and notice that the system (11.7), (11.8) is not solvable, we conclude

Mi ∩ int({ȳi} − Rm
+ ) = ∅.

Then by Eidelheit’s separation theorem (Theorem 3.16) there are real

numbers λ
(i)
1 , . . . , λ

(i)
m with λ(i) 6= 0Rm and

λ
(i)
1 (fi(x) + αi + µ(f1(x) + α1)) + · · · + λ

(i)
i (fi(x) + αi)

+ · · · + λ(i)
m (fi(x) + αi + µ(fm(x) + αm))

≥ λ
(i)
1 (fi(x̄) + µf1(x̄)) + · · · + λ

(i)
i fi(x̄)

+ · · · + λ(i)
m (fi(x̄) + µfm(x̄))

for all x ∈ S and all α1, . . . , αm ≥ 0. (11.9)

For x = x̄ we immediately obtain λ
(i)
1 , . . . , λ

(i)
m ≥ 0. For α1 = · · · =

αm = 0 we conclude from (11.9)

fi(x)
m∑

j=1

λ
(i)
j + µ

m∑

j=1
j 6=i

λ
(i)
j fj(x) ≥ fi(x̄)

m∑

j=1

λ
(i)
j + µ

m∑

j=1
j 6=i

λ
(i)
j fj(x̄)
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for all x ∈ S,

and because
m∑

j=1

λ
(i)
j > 0 we get

fi(x) + µ

m∑

j=1
j 6=i

λ
(i)
j

m∑

k=1

λ
(i)
k

fj(x) ≥ fi(x̄) + µ

m∑

j=1
j 6=i

λ
(i)
j

m∑

k=1

λ
(i)
k

fj(x̄)

for all x ∈ S. (11.10)

The inequality (11.10) holds for every i ∈ {1, . . . ,m}. Next, we sum
up these m inequalities and obtain

m∑

i=1

(

1 + µ
m∑

j=1
j 6=i

λ
(i)
j

m∑

k=1

λ
(i)
k

︸ ︷︷ ︸

=:ti>0

)

fi(x) ≥
m∑

i=1

(

1 + µ
m∑

j=1
j 6=i

λ
(i)
j

m∑

k=1

λ
(i)
k

︸ ︷︷ ︸

=ti

)

fi(x̄)

for all x ∈ S,

Consequently, x̄ ∈ S is a solution of the optimization problem (11.3).
2

In economics multiobjective optimization problems are very often
linear, i.e. they are of the form

min Cx
subject to the constraints

Ax ≤ b
x ∈ Rn

(11.11)

where C is a real (m,n) matrix, A is a real (k, n) matrix (with k ∈ N)
and b ∈ Rk is a given vector (compare Example 11.18, (c)). For these
problems the set f(S) + Rm

+ is always convex and, therefore, the re-
sults in Table 11.5 can be applied. Moreover, it can be shown that
Edgeworth-Pareto optimal points and properly Edgeworth-Pareto op-
timal points coincide in this case. This is the result of the following
theorem.
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If the set f(S) + Rm
+ is convex, then

a solution of the scalar optimization problem

min
x∈S

m∑

i=1

tifi(x)

is

a properly EP
optimal point
of problem (11.2)

an EP optimal
point of problem
(11.2)

a weakly EP
optimal point
of problem (11.2)

if and only if

t1, . . . , tm > 0.






t1, . . . , tm > 0
(suff. cond.).
t1, . . . , tm ≥ 0,
ti > 0 for some
i ∈ {1, . . . ,m},
(necess. cond.).

t1, . . . , tm ≥ 0,
ti > 0 for some
i ∈ {1, . . . ,m}.

Table 11.5: Necessary and sufficient conditions for Edgeworth-Pareto
(EP) optimal points.
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Theorem 11.20. Let the linear multiobjective optimization prob-
lem (11.11) be given where C is a real (m,n) matrix, A is a real (k, n)
matrix and b ∈ Rk is a given vector. Let the constraint set

S := {x ∈ Rn | Ax ≤ b}

be nonempty. The image space Rm is assumed to be partially ordered
in a natural way (i.e., Rm

+ is the ordering cone). Then x̄ ∈ S is an
Edgeworth-Pareto optimal point of the linear multiobjective optimiza-
tion problem (11.11) if and only if x̄ ∈ S is a properly Edgeworth-
Pareto optimal point of problem (11.11).

Proof. By definition every properly Edgeworth-Pareto optimal
point is also an Edgeworth-Pareto optimal point. For the proof of the
converse implication fix an arbitrary Edgeworth-Pareto optimal point
x̄ ∈ S. Then Cx̄ is a minimal element of the image set

T := {Cx ∈ Rm | x ∈ S},

that is
({Cx̄} − Rm

+ ) ∩ T = {Cx̄}
or, equivalently,

(−Rm
+ ) ∩ (T − {Cx̄}) = {0Rm}.

Since T is a polytop, the cone generated by T −{Cx̄} is a polyhedral
cone and we conclude

(−Rm
+ ) ∩ cone(T − {Cx̄}) = {0Rm}.

By a separation theorem for closed convex cones (Theorem 3.22) there
are real numbers t1, . . . , tm with ti 6= 0 for at least one i ∈ {1, . . . ,m}
so that

m∑

i=1

tiyi ≤ 0 ≤
m∑

i=1

tizi for all y ∈ −Rm
+ and all z ∈ cone(T − {Cx̄})

(11.12)
and

m∑

i=1

tiyi < 0 for all y ∈ −Rm
+\{0Rm}. (11.13)
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If we take the negative unit vectors in Rm, we obtain form the inequal-
ity (11.13) t1, . . . , tm > 0. The right inequality in (11.12) implies

m∑

i=1

ti(Cxi − Cx̄i) ≥ 0 for all x ∈ S

and
m∑

i=1

tiCx̄i ≤
m∑

i=1

tiCxi for all x ∈ S.

Consequently, we get with Theorem 11.17 that x̄ is a properly Edge-
worth-Pareto optimal point. 2

11.2.2 Weighted Chebyshev Norm Approach

In this subsection we investigate the scalarization with a weighted
Chebyshev norm. For general nonconvex multiobjective optimization
problems these norms are much more suitable than linear functionals.

Section 5.3 already presents a discussion of parametric approxi-
mation problems used for scalarization. In the case of multiobjec-
tive optimization these problems are approximation problems with a
weighted Chebyshev norm (see Corollary 5.35). Under Assumption
11.2 we investigate for some ŷ ∈ Rm the weighted Chebyshev approx-
imation problem

min
x∈S

max
1≤i≤m

{wi(fi(x) − ŷi)}. (11.14)

For the sake of convenience we reformulate Corollary 5.35 for engi-
neering applications.

Corollary 11.21. Let Assumption 11.2 be satisfied, and assume
that there is a ŷ ∈ Rm with the property that

ŷi < fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.
(a) x̄ ∈ S is an Edgeworth-Pareto optimal point of the multiobjec-

tive optimization problem (11.2) if and only if there are positive
real numbers w1, . . . , wm so that x̄ is an image unique solution
of the weighted Chebyshev approximation problem (11.14).
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(b) x̄ ∈ S is a weakly Edgeworth-Pareto optimal point of the mul-
tiobjective optimization problem (11.2) if and only if there are
positive real numbers w1, . . . , wm so that x̄ is a solution of the
weighted Chebyshev approximation problem (11.14).

Fig. 11.11 illustrates the result of the previous corollary. In Corol-
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Figure 11.11: Illustration of the weighted Chebyshev norm approach.

lary 11.21 it is assumed that ŷ is a strict lower bound of f . But the
assertion also remains true if

ŷi ≤ fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.

In practice, this is not a critical assumption because the objective
funtions f1, . . . , fm are often bounded from below.

For practical purposes we now transform the weighted Chebyshev
norm approximation problem (11.14). If we replace the max term
by a new variable λ, then problem (11.14) is equivalent to the scalar
optimization problem

min λ
subject to the constraints
λ = max

1≤i≤m
{wi(fi(x) − ŷi)}

x ∈ S, λ ∈ R.
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This problem is again equivalent to the problem

min λ
subject to the constraints

w1(f1(x) − ŷ1) − λ ≤ 0
...

wm(fm(x) − ŷm) − λ ≤ 0
x ∈ S, λ ∈ R.

If the set S is described by equality or inequality constraints, then this
problem can be solved with standard methods of nonlinear constraint
optimization. In the case of a linear multiobjective optimization prob-
lem this scalar problem is a linear optimization problem. This fact is
illustrated by the following example.

Example 11.22. For simplicity we consider the linear multiob-
jective optimization problem

min





x1 − x2

−x1 + x2

−1
2
x1 − 1

2
x2





subject to the constraints

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
x1, x2 ∈ R.

For the determination of a weakly Edgeworth-Pareto optimal point we
choose the weights w1 = w2 = w3 = 1 and the point ŷ = (−1,−1,−1)
being a lower bound of the objective vector function. Then we obtain
the scalarized optimization problem being equivalent to the weighted
Chebyshev approximation problem

min λ
subject to the constraints
x1 − x2 − λ+ 1 ≤ 0
−x1 + x2 − λ+ 1 ≤ 0

−1
2
x1 − 1

2
x2 − λ+ 1 ≤ 0

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

x1, x2, λ ∈ R.
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This is a standard linear optimization problem which can be solved
using the simplex method. Solutions are

x′1 = 1, x′2 = 1, λ′ = 1

and

x′′1 =
1

2
, x′′2 =

1

2
, λ′′ = 1.

By Corollary 11.21, (b) (x′1, x
′
2) and (x′′1, x

′′
2) are weakly Edgeworth-

Pareto optimal points of the considered multiobjective optimization
problem. The images of the vector function at these points are
f(x′1, x

′
2) = (0, 0,−1) and f(x′′1, x

′′
2) = (0, 0,−1

2
). One can check that

(x′1, x
′
2) is an Edgeworth-Pareto optimal point but (x′′1, x

′′
2) is not.

Another scalarization approach is similar to the weighted Cheby-
shev norm approach. Here one uses a scalarizing function ϕ : Rm → R
defined by

ϕ(y1, . . . , ym) = max
i∈{1,...,m}

{yi} for all (y1, . . . , ym) ∈ Rm

for the scalarization of the multiobjective optimization problem
(11.2). It can be easily seen that ϕ is strictly monotonically increas-
ing on Rm. For the proof of this assertion choose arbitrary vectors
x, y ∈ Rm with

xi < yi for all i ∈ {1, . . . ,m}.

Then it follows

ϕ(x) = max
i∈{1,...,m}

{xi} < max
i∈{1,...,m}

{yi} = ϕ(y).

A scalarization with the function ϕ has the advantage that one does
not need a lower bound of the objective funtions f1, . . . , fm.

11.2.3 Special Scalar Problems

In this subsection some special scalar optimization problems are pre-
sented which are interesting for applications and which can be derived
by known results.
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With the result of the next theorem we can examine whether a
feasible point is Edgeworth-Pareto optimal.

Theorem 11.23. Let Assumption 11.2 be satisfied, let t1, . . . , tm
> 0 be given real numbers, and let x̃ ∈ S be a given feasible point of
the multiobjective optimization problem (11.2). If x̄ is a solution of
the scalar optimization problem

min
m∑

i=1

tifi(x)

subject to the constraints
fi(x) ≤ fi(x̃) for all i ∈ {1, . . . ,m}

x ∈ S,

(11.15)

then x̄ is an Edgeworth-Pareto optimal point of problem (11.2). If x̃
is already an Edgeworth-Pareto optimal point of problem (11.2), then
x̃ is also a solution of the scalar optimization problem (11.15).

Proof. For positive real numbers t1, . . . , tm and for a given x̃ ∈ S
let x̄ be a solution of the scalar problem (11.15). Suppose that x̄ is
no Edgeworth-Pareto optimal point. Then there is some x ∈ S with
f(x) 6= f(x̄) and

fi(x) ≤ fi(x̄) for all i ∈ {1, . . . ,m}.

Consequently, we obtain

m∑

i=1

tifi(x) <
m∑

i=1

tifi(x̄)

and

fi(x) ≤ fi(x̄) ≤ fi(x̃) for all i ∈ {1, . . . ,m}.
But this contradicts the fact that x̄ solves the scalar problem (11.15).
If x̃ is already an Edgeworth-Pareto optimal point, then there is no
x ∈ S with f(x) 6= f(x̃) and

fi(x) ≤ fi(x̃) for all i ∈ {1, . . . ,m},
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i.e., there is no x ∈ S with
m∑

i=1

tifi(x) <
m∑

i=1

tifi(x̃)

and
fi(x) ≤ fi(x̃) for all i ∈ {1, . . . ,m}.

Then x̃ is a solution of the scalar optimization problem (11.15). 2

Theorem 11.23 can be used, for instance, if one cannot examine
the image uniqueness of a solution of a Chebyshev approximation
problem as an auxiliary problem. But this theorem should be applied
with care. For instance, if x̃ is already an Edgeworth-Pareto optimal
point, then the inequality constraints are active, i.e. these are equality
constraints. This fact may lead to numerical difficulties (notice that
then the known Slater condition is not satisfied).

Example 11.24. Consider again the multiobjective optimization
problem (11.4) in Example 11.18, (a). We then investigate the ques-
tion: Is the point

x̃ := (0.65386, 0.46750)

an Edgeworth-Pareto optimal point of this multiobjective optimiza-
tion problem? For an answer of this question we can solve the scalar
optimization problem (11.15) for t = (1, 1), for instance. The point

x̄ ≈ (0.65386, 0.42753)

is the unique solution of the scalar optimization problem (11.15), and
by Theorem 11.23 it is also an Edgeworth-Pareto optimal point of
the multiobjective optimization problem. Therefore, the point x̃ is
no Edgeworth-Pareto optimal point of problem (11.4).

The following scalarization approach is used in economics. It is
completely equivalent to an approach using the ℓ1 norm.

Theorem 11.25. Let Assumption 11.2 be satisfied, and let a point
ŷ ∈ Rm be given with

ŷi ≤ fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.
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Then every solution of the scalar optimization problem

min
m∑

i=1

(d+
i + d−i )

subject to the constraints
f(x) + d− − d+ = ŷ

d+
i , d

−
i ≥ 0 for all i ∈ {1, . . . ,m}

x ∈ S

(11.16)

is an Edgeworth-Pareto optimal point of the multiobjective optimiza-
tion problem (11.2).

Proof. First we show that problem (11.16) is equivalent to the
ℓ1 approximation problem

min
x∈S

‖f(x) − ŷ‖1. (11.17)

Suppose that (d̄+, d̄−, x̄) is an arbitrary solution of problem (11.16).
Let i ∈ {1, . . . ,m} be an arbitrary index. Then we have d̄+

i = 0 or
d̄−i = 0. For this proof assume that

δ := min{d̄+
i , d̄

−
i } > 0.

In this case the i-th equality constraint is satisfied for (d̄+
i − δ, d̄−i −

δ, x̄) ∈ R2
+ ×S but the objective function value decreases by 2δ. This

is a contradiction to the assumption that (d̄+, d̄−, x̄) is a solution of
problem (11.16). Then we conclude with d̄i := d̄+

i − d̄−i

d̄+
i + d̄−i = |d̄i|.

Consequently, (d̄, x̄) ∈ Rm ×S is a solution of the optimization prob-
lem

min
m∑

i=1

|di|

subject to the constraints
f(x) − ŷ = d

x ∈ S
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and, therefore, it is also a solution of the problem (11.17).
Next, we consider the optimization problem (11.17). For every i ∈
{1, . . . ,m} and every x ∈ S we define

d+
i := max{0, fi(x) − ŷi} ≥ 0

and

d−i := −min{0, fi(x) − ŷi} ≥ 0.

Then we have for every i ∈ {1, . . . ,m} and every x ∈ S

|fi(x) − ŷi| = d+
i + d−i

and

fi(x) − ŷi = d+
i − d−i .

Hence, a solution of the optimization problem (11.17) is also a solution
of problem (11.16). Because of the equivalence of the problems (11.16)
and (11.17) the assertion of this theorem follows from Theorem 5.15,
(b) (see also Example 5.2, (b)). 2

The proof of the preceding theorem points out that the scalar
optimization problem (11.16) is only a reformulated ℓ1 approximation
problem. Problem (11.16) is also called a goal programming problem.

Notes

As pointed out at the beginning of Part II of this book the first papers
in this research area were published by Edgeworth [94] (1881) and
Pareto [268] (1906). Both have given the standard optimality notion
in multiobjective optimization. Therefore, optimal points are called
Edgeworth-Pareto optimal points in the modern special literature.

Next, we give a brief historical sketch of the early works of Edge-
worth and Pareto.

• Edgeworth introduces notions in his book [94] on page 20: “Let
P , the utility of X, one party, = F (x y), and Π, the utility of
Y , the other party, = Φ(x y)”. Then he writes on page 21: “It
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is required to find a point (x y) such that, in whatever direc-
tion we take an infinitely small step, P and Π do not increase
together, but that, while one increases, the other decreases”.
Hence, Edgeworth presents Definition 11.3 for the special case
of two objectives.

• In the English translation of Pareto’s book [268] one finds on
page 261: “We will say that the members of a collectivity enjoy
maximum ophelimity in a certain position when it is impossible
to find a way of moving from that position very slightly in such
a manner that the ophelimity enjoyed by each of the individuals
of that collectivity increases or decreases. That is to say, any
small displacement in departing from that position necessarily
has the effect of increasing the ophelimity which certain indi-
viduals enjoy, and decreasing that which others enjoy, of being
agreeable to some and disagreeable to others”. The concept of
“ophelimity” used by Pareto, is explained on page 111: “In our
Cours we proposed to designate economic utility by the word
ophelimity , which some other authors have since adopted”, and
it is written on page 112: “For an individual, the ophelimity
of a certain quantity of a thing, added to another known quan-
tity (it can be equal to zero) which he already possesses, is the
pleasure which this quantity affords him”. In our modern terms
“ophelimity” can be identified with an objective function and
so, Definition 11.3 actually describes what Pareto explained.

These citations show that the works of Edgeworth and Pareto con-
cerning vector optimization are very close together and, therefore, it
makes sense to speak of Edgeworth-Pareto optimality as proposed by
Stadler [316]. It is historically not correct that optimal points are
called Pareto optimal points as it is done in various papers.

For remarks on the presented optimality notions we refer to the
notes at the end of Chapter 4. The concept of essentially Edgeworth-
Pareto optimal points has been proposed by Brucker [53] for discrete
problems.

The result in Corollary 11.19 (and Theorem 11.17) has been given
by Geoffrion [112]. Theorem 11.20 is based on an early result of Gale
[107, Thm. 9.7]. Here we present a proof using a separation theo-
rem for closed convex cones. Theorem 11.23 is based on a result of
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Charnes-Cooper [61] und Wendell-Lee [350]. The scalarization ap-
proach presented in Theorem 11.25 has been proposed by Ijiri [143].
Problems of goal programming are investigated in the book [304].
Example 11.22 is taken from [89, p. 72–73].



Chapter 12

Numerical Methods

During the past 40 years many methods have been developed for the
numerical solution of multiobjective optimization problems. Many
of these methods are only applicable to special problem classes. In
this chapter we present only some few methods which can be applied
to general multiobjective optimization problems. These are a method
proposed by Polak and an extension given by Eichfelder, a method for
discrete problems and in the class of interactive methods we present
the STEM method and a method of reference point approximation. In
principle, one can also use the scalarization results of Section 11.2 for
the determination of an Edgeworth-Pareto optimal point. But then it
remains an open question whether the determined Edgeworth-Pareto
optimal point is the subjectively best for the decision maker.

12.1 Modified Polak Method

For nonlinear multiobjective optimization problems Polak [276] has
proposed a method which can be used for the approximate determi-
nation of the whole set of images of Edgeworth-Pareto optimal points.
Although one is not always interested in this whole image set, this set
is very useful for the application of the method of reference point ap-
proximation. Moreover, it is then possible to solve the actual decision
problem in an effective way. A coupling of the Polak method and the
method of reference point approximation makes it possible to solve
interactively nonlinear multiobjective optimization problems. In the
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following we present the Polak method in a simplified form especially
for bicriterial optimization problems.

We consider the bicriterial optimization problem

min
x∈S

(
f1(x)

f2(x)

)

(12.1)

where S is a nonempty subset of Rn, and f1, f2 : S → R are given
functions. The image space R2 is assumed to be partially ordered in
a natural way (i.e., R2

+ is the ordering cone).

Algorithm 12.1. (modified Polak method)

Step 1: Determine the numbers

a := min
x∈S

f1(x)

and
b := f1(x̄) with f2(x̄) := min

x∈S
f2(x).

Step 2: For an arbitrary p ∈ N determine the discretization points

y
(k)
1 := a+ k

b− a

p
with k = 0, 1, 2, . . . , p.

Step 3: For every discretization point y
(k)
1 (k = 0, 1, 2, . . . , p) com-

pute a solution x(k) of the constrained optimization problem

min f2(x)
subject to the constraints

x ∈ S

f1(x) = y
(k)
1 ,

and set
y

(k)
2 := f2(x

(k)) for k = 0, 1, 2, . . . , p.

Step 4: Among the numbers y
(0)
2 , y

(1)
2 , . . . , y

(p)
2 delete those so that

the remaining numbers form a strongly monotonically de-
creasing sequence

y
(k0)
2 > y

(k1)
2 > y

(k2)
2 > . . .

with the goal that the remaining points x(k0), x(k1), x(k2), . . .
are Edgeworth-Pareto optimal.
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Step 5: Unite the vectors x(k0), x(k1), x(k2), . . . to a set being an
approximation of the set of all Edgeworth-Pareto optimal
points of the bicriterial optimization problem (12.1).

Figure 12.1 illustrates the approximation of the images of all Edge-
worth-Pareto optimal points using the modified Polak method. If all

-

6

y1

y2

r r r r r r r r r

s
s

s s s sy
(k)
2

y
(k)
1a b

f(S)

Figure 12.1: Determination of minimal elements of the set f(S) with
f = (f1, f2).

scalar optimization problems being subproblems in Algorithm 12.1,
are solvable, then the discrete set

{x(k0), x(k1), x(k2), . . .}

is an approximation of the set of all Edgeworth-Pareto optimal points
of the bicriterial optimization problem (12.1). The more discretization
points are chosen in step 2 the better is this approximation. If the
set of minimal elements of the image set f(S) is connected (being not
the case in Fig. 12.1), then the points

(y
(ki)
1 , y

(ki)
2 ) for i = 0, 1, 2, . . .

can be connected by straight lines for a better illustration of the curve
being given by the set of minimal elements of f(S). Since this curve
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is not smooth, in general, it does not make sense to use splines for
the approximation.

The modified Polak method is suitable for the approximation of
the set of Edgeworth-Pareto optimal points of the bicriterial optimiza-
tion problem (12.1). We will come back to this method in Subsection
12.3.2. The disadvantage of this method is the high numerical effort
because many scalar (nonlinear) constrained optimization problems
have to be solved. The extension by Eichfelder presented in Section
12.2 reduces the number of subproblems. For the solution of these
subproblems known methods of nonlinear optimization can be used.

If one implements the modified Polak method on a computer, the
difficulty arises that one needs global solutions of the subproblems.
Therefore, we actually have to apply methods of global optimization.

Example 12.2. We investigate the bicriterial optimization prob-
lem

min

(
x1

x2

)

subject to the constraints

x2 − 5
2
≤ 0

(x1 − 1
2
)2 − x2 − 9

2
≤ 0

−x1 − x2
2 ≤ 0

−(x1 + 1)2 − (x2 + 3)2 + 1 ≤ 0

(x1, x2) ∈ R2.

Figure 12.2 illustrates the image set of the objective map being equal
to the constraint set in this special case.

If one solves the scalar optimization problem given in Step 3 of
Algorithm 12.1 for the discretization point y

(k)
1 := −1

2
, then one ob-

tains x(k) := (−1
2
, 1

2

√
2) as a local solution of this problem. But the

global solution reads x̄(k) := (−1
2
,−3 + 1

2

√
3).

The preceding example shows that standard methods of nonlin-
ear optimization must be handled with care for the solution of the
subproblems of the modified Polak method. The following simple
tunneling technique for the solution of a global solution of the scalar
subproblems may be useful.
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Figure 12.2: Image set in Example 12.2.

Remark 12.3. Let a function ϕ : Rn → R be given. Then we
investigate the unconstrained optimization problem

min
x∈Rn

ϕ(x). (12.2)

We are interested in a global solution of this problem. Such a problem
arises, for instance, if one applies a penalty method to the scalar
subproblems in Algorithm 12.1.
For the following we assume that we already have an approximation
x̂ ∈ Rn of a global solution of problem (12.2) (for instance, a station-
ary point or only a local solution). For an arbitrary ε > 0 we then
consider the constrained optimization problem

min 1
ϕ(x̂)−ϕ(x)

subject to the constraints
ϕ(x) ≤ ϕ(x̂) − ε

x ∈ Rn.

(12.3)
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A solution x̄ of this problem has the property

ϕ(x̄) ≤ ϕ(x̂) − ε < ϕ(x̂).

Since we minimize 1
ϕ(x̂)−ϕ(x)

, we may expect ϕ(x̄) << ϕ(x̂). Figure
12.3 illustrates this tunneling effect for n = 1.
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Figure 12.3: Simplified illustration of the tunneling technique.

It is obvious that a solution of problem (12.3) is not a global solution
of problem (12.2), in general. But such a solution can be used as a
new starting point for a descent method for the solution of a global
solution of problem (12.2). This hybrid technique is based on the
fact that descent methods (like the BFGS method) compute iteration
points in the same “valley” where the starting point is located. If one
finds a new starting point by a “tunnel” to another “valley”, then this
new starting point can lead to another local solution with a smaller
value of the objective function.



12.2. Eichfelder-Polak Method 321

12.2 Eichfelder-Polak Method

The quality of approximation of minimal elements with the modified
Polak method can be improved with an adaptive control of the dis-
cretization points. This leads to the Eichfelder-Polak method which
determines a concise and representative approximation of the image
set of Edgeworth-Pareto optimal points.

We consider again the bicriterial optimization problem

min
x∈S

(
f1(x)

f2(x)

)

(12.4)

whith ∅ 6= S ⊂ Rn and given functions f1, f2 : S → R. Let R2
+ be

the ordering cone in the image space R2. In the second step of the
modified Polak method (Algorithm 12.1) one works with equally dis-
tributed discretization points. Figure 12.4 illustrates that this choice
of parameters may lead to images of Edgeworth-Pareto optimal points
which are not representative for the whole set of these image points.
This disadvantage can be avoided, if we use adaptive discretization
rules. It is our goal to find minimal elements which have nearly the
same distance from each other. Figure 12.5 shows that we then obtain
an approximation of minimal elements being concise and representa-
tive.

Next we describe the adaptive control of discretization parameters.

Remark 12.4. Assume that y
(k)
1 ∈ [a, b] is a given discretization

point (here we use the notation of Algorithm 12.1) and that the curve
describing all minimal elements of the image set f(S) has a tangent

in y
(k)
1 . If s(k) denotes the slope in y

(k)
1 , this tangent is given by

y2 = y
(k)
2 + s(k)(y1 − y

(k)
1 ) for all y1 ∈ [a, b].

For a given distance α > 0 we compute the point (y
(k+1)
1 , ȳ2) on this

tangent with

‖(y(k+1)
1 , ȳ2) − (y

(k)
1 , y

(k)
2 )‖ = α

⇐⇒ (y
(k+1)
1 − y

(k)
1 )2 + (ȳ2 − y

(k)
2 )2 = α2

⇐⇒ (y
(k+1)
1 − y

(k)
1 )2 + (s(k))2(y

(k+1)
1 − y

(k)
1 )2 = α2
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⇐⇒ (1 + (s(k))2)(y
(k+1)
1 − y

(k)
1 )2 = α2

⇐⇒ y
(k+1)
1 = y

(k)
1 ± α

√

1 + (s(k))2

(here ‖ · ‖ denotes the Euclidean norm). For simplicity we are only
interested in a formula for a backward discretization and, therefore,
we set

y
(k+1)
1 = y

(k)
1 − α

√

1 + (s(k))2
(12.5)

(compare also Figure 12.6). For this new parameter y
(k+1)
1 we compute
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y1
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(k)
1

y
(k)
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︸
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︸α
b

b

b

Figure 12.6: Illustration of the adaptation formula.

a solution x(k+1) of the subproblem

min f2(x)
subject to the constraints

x ∈ S

f1(x) = y
(k+1)
1 .

(12.6)

If we set

y
(k+1)
2 := f2(x

(k+1)),

the Euclidean distance ‖(y(k+1)
1 , y

(k+1)
2 ) − (y

(k)
1 , y

(k)
2 )‖ is nearly α in

the case that the tangent is a good approximation of the curve of
minimal elements. Under several assumptions it is shown in [98, Thm.
3.18] that the slope s(k) of the tangent equals the Lagrange multiplier

v(k) ∈ R of the equality constraint replaced by f1(x) = y
(k)
1 in the

subproblem (12.6). Then the formula (12.5) can be written in the
following adaptive form

y
(k+1)
1 = y

(k)
1 − α

√

1 + (v(k))2
.

Many numerical methods for the solution of the constrained optimiza-
tion problem (12.6) also determine Lagrange multipliers so that the
multiplier v(k) can be obtained without additional effort.
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Combining the adaptive control of discretization points with the
modified Polak method with backward discretization leads to

Algorithm 12.5. (Eichfelder-Polak method)

Step 1: Choose a small distance parameter α > 0.

Step 2: Determine the numbers

a := f1(x̄) = min
x∈S

f1(x)

and
b := f1(x

(0)) with f2(x
(0)) := min

x∈S
f2(x).

Step 3: Set

y
(0)
1 := b, y

(0)
2 := f2(x

(0)), y
(1)
1 := b− α, k := 1.

Step 4: While y
(k)
1 > a do

(i) Compute a solution x(k) of the constrained optimization
problem

min f2(x)
subject to the constraints

x ∈ S

f1(x) = y
(k)
1 .

Let v(k) ∈ R denote the Lagrange multiplier associated
to the equality constraint f1(x) = y

(k)
1 .

(ii) Set

y
(k)
2 := f2(x

(k)), y
(k+1)
1 = y

(k)
1 − α

√

1 + (v(k))2
, k := k+1.

Step 5: Set
y

(k)
1 := a, y

(k)
2 := f2(x̄).

Step 6: Among the numbers y
(k)
2 , y

(k−1)
2 , . . . , y

(0)
2 delete those so that

the remaining numbers form a strongly monotonically de-
creasing sequence

. . . > y
(k2)
2 > y

(k1)
2 > y

(k0)
2
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with the goal that the remaining points x(k0), x(k1), x(k2), . . .
are Edgeworth-Pareto optimal.

Step 7: Unite the vectors x(k0), x(k1), x(k2), . . . to a set being an
approximation of the set of all Edgeworth-Pareto optimal
points of the bicriterial optimization problem (12.4).

For the application of this method one has to pay attention to
the necessary assumptions. For instance, we have to assume a certain
smoothness of the curve of minimal elements of the image set f(S). If
the constrained optimization problem in Step 4 of Algorithm 12.5 is
solved with a sequential quadratic programming (SQP) method, then
the Lagrange multiplier v(k) is automatically computed.

12.3 Interactive Methods

In principle, the scalarization results presented in Section 11.2 can be
used for the numerical solution of multiobjective optimization prob-
lems. But these approaches need certain parameters being difficult to
choose. Even if one solves these scalar problems for various parame-
ters or even if one approximates the whole set of Edgeworth-Pareto
optimal points, a satisfying solution of the actual decision problem is
not found. The decision maker has to select an Edgeworth-Pareto op-
timal point being the subjectively best among all Edgeworth-Pareto
optimal points.

During the past 40 years so-called interactive methods have been
developed combining the numerical iteration process with subjective
thoughts of the decision maker. Therefore, a solution found by an
interactive method, is subjectively determined. Such a method is
characterized by a permanent change between an objective computa-
tion phase and a subjective decision phase.

In this section our investigations are concentrated to a modified
STEM method and a method of reference point approximation. Both
interactive methods are suitable for the solution of linear as well as
nonlinear multiobjective optimization problems.
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12.3.1 Modified STEM Method

Already 1971 Benayoun, de Montgolfier, Tergny and Laritchev [25]
have proposed a so-called STEM method (step method). This method
has been designed for the interactive solution of linear multiobjective
optimization problems. In the following we present this method in a
modified form so that nonlinear problems can be treated as well.

We consider the multiobjective optimization problem

min
x∈S

f(x) (12.7)

where S is a nonempty subset of Rn and f : S → Rm is a given vector
function with f = (f1, . . . , fm). The image space Rm is assumed to
be partially ordered in a natural way (i.e., Rm

+ is the ordering cone).
The following algorithm presents the STEM method in a simplified
form.

Algorithm 12.6. (STEM method)

Step 1: For every i = 1, . . . ,m determine the minimal values

ŷi := min
x∈S

fi(x)

of the functions f1, . . . , fm on S, and set

ŷ := (ŷ1, . . . , ŷm).

Moreover, set I := {1, . . . ,m} and J := ∅.
Step 2: The decision maker chooses the weights w1, . . . , wm of the

weighted Chebyshev norm ‖ · ‖.
Step 3: Determine a solution x̂(0) ∈ S of the optimization problem

min
x∈S

‖ŷ − f(x)‖,

and set k := 0.

Step 4: The decision maker chooses (if possible) an index i ∈ I in-
dicating that he accepts a deterioration of the value fi(x̂

(k))
in order to improve the value fj(x̂

(k)) for at least one other
objective function fj. If such a choice is not possible, then
the algorithm stops.
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Step 5: For the chosen index i ∈ I the decision maker gives a number
∆i for which the value fi(x̂

(k)) can be maximally increased.
Set αi := fi(x̂

(k)) + ∆i.

Step 6: Set

I := I\{i},

J := J ∪ {i}
and compute a solution x̂(k+1) of the scalar optimization
problem

min λ
subject to the constraints

x ∈ S
wi(fi(x) − ŷi) ≤ λ for all i ∈ I

fj(x) ≤ αj for all j ∈ J.

Step 7: Set k := k+1. If k = m, then the algorithm stops, otherwise
go to step 4.

There are some points which have to be noticed for this method.

Remark 12.7.

• The solutions of the scalar optimization problems in Step 3
and 6 of the preceding algorithm are not always Edgeworth-
Pareto optimal points of the multiobjective optimization prob-
lem (12.7). Therefore, one should check the Edgeworth-Pareto
optimality of these solutions using Theorem 11.23. But this
test leads to numerical difficulties (compare the remarks after
the proof of Theorem 11.23).

• For a more flexible iteration process one should admit the pos-
sibility that after every iteration the value ∆i can be revised.
This can be easily implemented on a computer.

• Instead of using ŷ one can also work with another point being
smaller than ŷ.

• If one implements the STEM method on a computer, one should
replace the scalar optimization problem in Step 3 by the follow-
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ing problem

min λ
subject to the constraints

x ∈ S
wi(fi(x) − ŷi) ≤ λ for all i = 1, . . . ,m.

If the original multiobjective optimization problem is a linear
problem, then the subproblems arising in Algorithm 12.6 can be re-
placed by linear optimization problems which can be solved by stan-
dard methods like the simplex method.

Example 12.8. We investigate the linear multiobjective opti-
mization problem

min





−1 −1 −3 1
−3 1 5 −1

0 −1 −5 −7



 x

subject to the constraints




1 1 3 −4
2 0 0 4
2 0 3 1



 x ≤





20
10
15





x ≥ 0R4 .

In Step 1 of Algorithm 12.6 we obtain

ŷ :=





−27.5
−15.0
−55.833



 .

In Step 2 the weights of the Chebyshev norm are chosen as 1. A first
solution x̂(0) is obtained in Step 3 as

x̂(0) :=







0
0

2.583
2.5






.
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But this point is not an Edgeworth-Pareto optimal point of the origi-
nal problem. If one solves the scalar problem in Theorem 11.23 (with
t1 = t2 = t3 = 1), one obtains the Edgeworth-Pareto optimal point

x̃(0) :=







0
12.917

0
2.5






.

This point x̃(0) instead of x̂(0) is used for the following iteration steps.
One computes

f(x̃(0)) :=





−10.417
10.417
−30.417



 .

Next, we assume that in the 4th and 5th step the decision maker
decides to deteriorate the third objective function by the value ∆3 :=
10 in order to improve the value of another objective function. A
solution of the scalar problem in Step 6 reads

x̂(1) :=







1.944
9.722

0
1.528







with f(x̂(1)) =





−10.139
2.361

−20.417



 .

It turns out that x̂(1) is an Edgeworth-Pareto optimal point of the
original problem. Now, we assume that the decision maker accepts a
deterioration of the second objective function by the value ∆2 := 5.
Then we get in the 6th step

x̂(2) :=







3.662
19.015

0
0.669







with f(x̂(2)) =





−22.008
7.361

−23.699



 .

x̂(2) is also an Edgeworth-Pareto optimal point of the original problem.
Since the first and the second objective function could be improved,
we assume that the decision maker terminates the iteration.
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12.3.2 Method of Reference Point Approxima-
tion

In the following let S ⊂ Rn be a given nonempty constraint set, and
let f : S → Rm be a given vector function. As before, the image
space Rm is assumed to be partially ordered in a natural way. Then
we investigate the multiobjective optimization problem

min
x∈S

f(x). (12.8)

Let M ⊂ S denote the set of all Edgeworth-Pareto optimal points of
this problem being assumed to be nonempty.

Assume that the decision maker can give a point ŷ ∈ Rm (a so-
called reference point) which should be realized as good as possible
by an image f(x) with x ∈ M . Then it makes sense to solve the
following approximation problem

min
x∈M

‖ŷ − f(x)‖. (12.9)

In principle, ‖ · ‖ may be any norm in Rm. Since the weighted Cheby-
shev norm can be well interpreted, we use this special norm. Notice
that the approximation problem (12.9) is not always solvable. In this
case problem (12.9) has to be modified.

In the following we present the resulting method of reference point
approximation in a simplified form.

Algorithm 12.9. (method of reference point approxima-
tion)

Step 1: The decision maker chooses the weights of the weighted
Chebyshev norm ‖ · ‖.

Step 2: The decision maker chooses an arbitrary reference point ŷ(1)

∈ Rm. Set i := 1.

Step 3: Compute a solution of the optimization problem

min
x∈M

‖ŷ(i) − f(x)‖.
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Step 4: This solution is presented to the decision maker who may
stop the algorithm. Otherwise the decision maker chooses
another reference point ŷ(i+1) and continues the algorithm
with i := i+ 1 in Step 3.

There are different ways in order to extend this algorithm. There-
fore, this algorithm describes only a class of methods. For instance,
the weights could be varied during the iteration process, and addi-
tional information could be provided making the choice of a reference
point easier.

Notice from a practical point of view that the set M of all Edge-
worth-Pareto optimal solutions of problem (12.8) has to be deter-
mined before Algorithm 12.9 can be started. The determination of
the set M may be impossible for complicated nonlinear problems.

It can be shown that the approximation problem (12.9) is a com-
plicated semi infinite optimization problem, that is a problem with
infinitely many constraints. This approximation problem can be es-
sentially simplified, if the reference point is a strict lower bound of
the image set f(S).

Theorem 12.10. Let the multiobjective optimization problem
(12.8) be given with a nonempty set M of Edgeworth-Pareto optimal
points, and let a ŷ ∈ Rm be arbitrarily chosen with

yi < fi(x) for all x ∈ S and all i ∈ {1, . . . ,m}.

If x̄ ∈ S is an image unique solution of the problem

min
x∈S

‖ŷ − f(x)‖,

then x̄ is a solution of the approximation problem (12.9).

Proof. By Corollary 11.21, (a) x̄ ∈ S is an Edgeworth-Pareto
optimal point of the multiobjective optimization problem (12.8), that
is x̄ ∈ M . Because of M ⊂ S the point x̄ ∈ M is then a solution of
the approximation problem

min
x∈M

‖ŷ − f(x)‖. 2
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In the following we show that Algorithm 12.9 can be well applied to
linear multiobjective and nonlinear bicriterial optimization problems.

The Linear Case

If one applies Algorithm 12.9 to problems of linear multiobjective
optimization, then the subproblem in the third step turns out to be
very simple. A solution of this subproblem can be determined by
solving finitely many linear optimization problems. The following
investigations are concentrated only to the third step of Algorithm
12.9.

We consider problem (12.8) in the special form of the linear mul-
tiobjective optimization problem

min Cx
subject to the constraints

Ax ≤ b
x ∈ Rn.

(12.10)

Let C denote a real (m,n) matrix, let A denote a real (q, n) matrix,
and let b be a vector in Rq. The ≤ relation has to be understood in
a componentwise sense. The constraint set

S := {x ∈ Rn | Ax ≤ b}

is assumed to be nonempty and bounded. Then S describes a bounded
convex polytop in Rn. If ‖ · ‖ denotes a weighted Chebyshev norm in
Rm, i.e.

‖y‖ := max
1≤i≤m

wi | yi | for all y ∈ Rm

with appropriate weights w1, . . . , wm > 0, then for a given reference
point ŷ ∈ Rm the approximation problem (12.9) can be written as

min
x∈M

max
1≤i≤m

wi | ŷi − (Cx)i | . (12.11)

By Theorem 11.20 the set M of all Edgeworth-Pareto optimal points
equals the set of all properly Edgeworth-Pareto optimal points. There-
fore, every Edgeworth-Pareto optimal point of the linear multiobjec-
tive optimization problem (12.10) is a solution of an appropriate linear
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optimization problem. These solutions are located on certain facets
and edges of the polytop S.

Using a modified simplex method it is possible to determine the
vertices of these facets and edges. In other words: A partition of the
set M can be determined in such a way that

M = M1 ∪M2 ∪ . . . ∪Ml,

with l ∈ N, ∅ 6= Mj ⊂M for all j ∈ {1, . . . , l}, and the following holds:

For every set Mj (j = 1, . . . , l) there are sj vertices x(j1), . . . , x(jsj ) ∈
M with

Mj =
{

x∈S
∣
∣
∣ x =

sj∑

k=1

λkx
(jk) with λ1, . . . , λsj

≥ 0 and

sj∑

k=1

λk = 1
}

.

(12.12)
These vertices can be determined by the Isermann method [147], for
instance. Figure 12.7 illustrates the partition of the set M .
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Figure 12.7: Partition of the set M = M1 ∪M2 ∪M3.

With the introduced partition of M problem (12.11) can also be
written as

min
x∈M1∪M2∪...∪Ml

max
1≤i≤m

wi | ŷi − (Cx)i | .
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One obtains a solution of this problem, if one solves for every j =
1, . . . , l an approximation problem of the form

min
x∈Mj

max
1≤i≤m

wi | ŷi − (Cx)i | . (12.13)

Among all solutions of these l problems one chooses the solution
with the smallest minimal value. Using the equation (12.12) prob-
lem (12.13) can also be written as

min max
1≤i≤m

wi

∣
∣
∣
∣
∣
ŷi −

sj∑

k=1

λk(Cx
(jk))i

∣
∣
∣
∣
∣

subject to the constraints
sj∑

k=1

λk = 1

λ1, . . . , λsj
≥ 0.

This problem is equivalent to the problem

min λ0

subject to the constraints

λ0 = max
1≤i≤m

wi

∣
∣
∣
∣
∣
ŷi −

sj∑

k=1

λk(Cx
(jk))i

∣
∣
∣
∣
∣

sj∑

k=1

λk = 1

λ0 ∈ R, λ1, . . . , λsj
≥ 0

being equivalent to

min λ0

subject to the constraints

λ0 ≥ wi

∣
∣
∣
∣
∣
ŷi −

sj∑

k=1

λk(Cx
(jk))i

∣
∣
∣
∣
∣

for all i = 1, . . . ,m

sj∑

k=1

λk = 1

λ0 ∈ R, λ1, . . . , λsj
≥ 0.
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Using the definition of the absolute value this problem can be written
as

min λ0

subject to the constraints

− 1

wi

λ0 −
sj∑

k=1

λk(Cx
(jk))i ≤ −ŷi

− 1

wi

λ0 +

sj∑

k=1

λk(Cx
(jk))i ≤ ŷi







for all i ∈ {1, . . . ,m}

sj∑

k=1

λk = 1

λ0 ∈ R, λ1, . . . , λsj
≥ 0.

This is a linear optimization problem which can be easily solved with
the simplex method

Summarising our investigations we obtain the following method:
If one applies the method of reference point approximation to a lin-
ear multiobjective optimization problem with bounded constraint set,
first of all one determines all facets, edges and the corresponding ver-
tices describing the set of all Edgeworth-Pareto optimal points, and
then one solves l linear optimization problems for every iteration and
one chooses the solution with the smallest minimal value in order to
get a solution of the subproblem in the third step of Algorithm 12.9.

In the following we discuss various examples being solved with
Algorithm 12.9. Here the weights of the weighted Chebyshev norm
are chosen as 1. The information concerning the vertices of the set
M are taken from [150].

Example 12.11. We investigate the linear multiobjective opti-
mization problem

min





−4 −1 −2
−1 −3 1

1 −1 −4



x

subject to the constraints
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1 1 1
2 2 1
1 −1 0



 x ≤





3
4
0





x ≥ 0R3 .

The set M of all Edgeworth-Pareto optimal points of this problem
contains 5 vertices and is generated by 2 facets or edges. For different
reference points we obtain solutions of the approximation problem
given in Table 12.1.

reference point minimal solution minimal value

ŷ(1)=(-10, -8, -15) (0, 1.0833, 1.8333) 6.5833
ŷ(2)=(-8, -6, -13) (0, 1.0833, 1.8333) 4.5833
ŷ(3)=(-7, -5, -12) (0, 1.0833, 1.8333) 3.5833
ŷ(4)=(-7, -5, -11) (0, 1.1667, 1.6667) 3.1667
ŷ(5)=(-7, -5, -10) (0, 1.25, 1.5) 2.75

Table 12.1: Compromise solutions (Example 12.11).

Example 12.12. We now consider the linear multiobjective op-
timization problem

min





−1 −3 2 0 −1
−3 1 0 −3 −1
−1 0 −2 0 −3



 x

subject to the constraints








2 4 0 0 3
0 0 2 5 4
5 0 0 0 0
0 0 0 2 0
5 5 2 0 0









x ≤









27
35
26
24
36









x ≥ 0R5 .

The set M of all Edgeworth-Pareto optimal points has 11 vertices
and 4 facets or edges. Table 12.2 gives some minimal solutions of the
approximation problem.
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reference point minimal solution minimal value

ŷ(1)=(-15, -40, -20) (5.2, 0.0526, 0, 4.9368, 2.5789) 7.0632

ŷ(2)=(-13, -39, -19) (5.2, 0, 0, 4.9273, 2.5909) 6.0273

ŷ(3)=(-12, -38, -19) (5.2, 0, 0, 4.7455, 2.8182) 5.3455

ŷ(4)=(-12, -37, -19) (5.2, 0, 0, 4.5636, 3.0455) 4.6636

ŷ(5)=(-12, -37, -18) (5.2, 0, 0, 4.7455, 2.8182) 4.3455

ŷ(6)=(-12, -37, -17) (5.2, 0.0526, 0, 4.9368, 2.5789) 4.0632

ŷ(7)=(-11, -35, -16.5) (5.2, 0.1053, 0, 4.6737, 2.9079) 2.5763

Table 12.2: Compromise solutions (Example 12.12).

Example 12.13. Finally we discuss the linear multiobjective op-
timization problem

min







0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1






x

subject to the constraints








2 4 0 0 0 0
4 3 0 0 0 0
1 1 0 0 0 0
0 −1 0 0 −1 −1

−1 −1 0 0 0 0









x ≤









24
28
8

−5.75
−7









(1, 0, 1,−1, 0, 0)x = 6

x ≥ 0R6 .

For this problem the set M of all Edgeworth-Pareto optimal points
consists of 3 vertices and 2 facets or edges. Numerical results are
given in Table 12.3.

The Bicriterial Nonlinear Case

For a nonlinear multiobjective optimization problem it is difficult to
solve the subproblem in Step 3 of Algorithm 12.9. But in the bicri-
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reference point minimal solution min. value

ŷ(1)=(-5, -5, -2, -2) (5.3929, 2.1429, 0.6071, 0, 3.6071, 0) 5.6071

ŷ(2)=(-2, -3, 0, -2) (4.9643, 2.7143, 1.0357, 0, 3.0357, 0) 3.0357

ŷ(3)=(1, -1, 0.5, 0) (3.8333, 4.0833, 2.1667, 0, 1.6667, 0) 1.1667

Table 12.3: Compromise solutions (Example 12.13).

terial case it is possible to approximate the set M of all Edgeworth-
Pareto optimal points by a discrete set (for instance, using the mod-
ified Polak method or the Eichfelder-Polak method). Then the ap-
proximation problem in the third step can be replaced by a related
problem with discrete constraint set. This modified problem is easy
to solve.

In the following we consider the bicriterial optimization problem

min
x∈S

(
f1(x)
f2(x)

)

(12.14)

where S is a nonempty subset in Rn and (f1, f2) : S → R2 is a
given vector function. Again, we use the componentwise ordering
in R2. If we combine the method of reference point approximation
(Algorithm 12.9) with the modified Polak method (Algorithm 12.1),
then we obtain the following interactive method for the solution of
problem (12.14).

Algorithm 12.14 (method of reference point approxima-
tion in the bicriterial case).

Part I. Computation phase

Step 1: Determine the numbers

a := min
x∈S

f1(x)

and

b := f1(x̃) with f2(x̃) = min
x∈S

f2(x).
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Step 2: For an arbitrary p ∈ N determine the discretization points

y
(k)
1 := a+ k

b− a

p
with k = 0, 1, 2, . . . , p.

Step 3: For every discretization point y
(k)
1 (k = 0, 1, . . . , p) compute

a (global) solution x(k) of the constrained optimization prob-
lem

f2(x
(k)) = min f2(x)

subject to the constraints
x ∈ S

f1(x) = y
(k)
1 ,

and set

y
(k)
2 := f2(x

(k)) for k = 0, 1, 2, . . . , p

(remark: It is important to work with a numerical method
of global optimization).

Step 4: Among the numbers y
(0)
2 , y

(1)
2 , . . . , y

(p)
2 delete those so that

the remaining numbers form a strongly monotonically de-
creasing sequence

y
(k0)
2 > y

(k1)
2 > y

(k2)
2 > . . .

with the goal that the remaining points x(k0), x(k1), x(k2), . . .
are Edgeworth-Pareto optimal, and set

M̃ := {x(k0), x(k1), x(k2), . . .}.

Part II. Decision phase

Step 5: The decision maker chooses the weights t1, t2 > 0 of the
weighted Chebyshev norm in R2.

Step 6: The decision maker chooses an arbitrary reference point ŷ(1)

∈ R2.
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Part III. Computation phase

Step 7: Set i := 1.

Step 8: Compute a point x̄(i) ∈ M̃ with the property

max
j=1,2

{tj|ŷ(i)
j − fj(x̄

(i))|} ≤ max
j=1,2

{tj|ŷ(i)
j − fj(x)|}

for all x ∈ M̃.

Part IV. Decision phase

Step 9: The point x̄(i) ∈ M̃ is presented to the decision maker. If the
decision maker accepts this point as the subjectively best,
then the algorithm stops; otherwise continue with the next
step.

Step 10: Using additional information about the original problem and
numerical results obtained in the third step, the decision
maker proposes a new reference point ŷ(i+1) ∈ R2.

Part V. Computation phase

Step 11: Set i := i+ 1, and go to Step 8.

Part I of Algorithm 12.14 is the computationally intensive part
whereas the parts II–V may run very fast online. On can apply this
algorithm in such a way that the first part is done offline, indepen-
dently from the other parts. The actually interactive part begins with
the set M̃ .

It is not necessary to choose equidistant discretization points y
(k)
1

in the second step of this algorithm. In some cases another choice
of descretization may be better (for instance, as it is done in the
Eichfelder-Polak method).

In the fifth step the decision maker can choose the weights of the
weigthed Chebyshev norm. This is of importance in order to be able
to compare the two objectives f1 and f2 without scaling the function
values. In the tenth step it should be possible to provide the decision
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maker with all information being available during the computation
phases. An essential aid is the graphical illustration of the image set
of the Edgeworth-Pareto optimal points. Then it is simpler to choose
an appropriate reference point.

Example 12.15. Again, we consider the bicriterial optimization
problem given in Example 12.2

min

(
x1

x2

)

subject to the constraints

x2 − 5
2
≤ 0

(x1 − 1
2
)2 − x2 − 9

2
≤ 0

−x1 − x2
2 ≤ 0

−(x1 + 1)2 − (x2 + 3)2 + 1 ≤ 0

(x1, x2) ∈ R2.

Since the objective map is the identity, the constraint set and the
image set are equal. This set is illustrated in Figure 12.2. If one

k f(x(k))
0 ( -2.131087, 2.422933)
1 ( -1.930941, 1.409813)
2 ( -1.731149, 1.315711)
3 ( -1.531138, 1.238715)
4 ( -1.331107, 1.156983)
5 ( -1.131001, -1.207556)
6 ( -0.931086, -2.002503)
7 ( -0.731135, -2.036241)
8 ( -0.526106, -2.117397)
9 ( -0.315858, -3.729672)
10 ( -0.115894, -4.013447)
11 ( 0.084136, -4.327440)
12 ( 0.500000, -4.500500)

Table 12.4: Elements of the set M̃ .
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applies Algorithm 12.14 to this problem, one obtains in Part I the
elements of the set M̃ given in Table 12.4 (notice that we have not
chosen equidistant discretization points in the second step).

If one connects the points given in Table 12.4 by straight lines
and if one notices that the set of all minimal points consists of three
non-connected parts, then one obtains a set illustrated in Figure 12.8.
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−3 −2 −1 1 2
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......
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..........................................................................................................................

..........................................................................................

.....................................................................................

y1

y2

Figure 12.8: Approximated set of all minimal elements.

If we choose the weights t1 = t2 = 1 in the fifth step of Algorithm
12.14, we get for various reference points the Edgeworth-Pareto opti-
mal points given in Table 12.5.

The method described in Algorithm 12.14 is an interactive method
being useful in practice because the decision maker has to provide
only simple information. In Sections 13.3 and 13.4 this algorithm is
applied to concrete problems from chemical engineering.
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reference point minimal solution minimal value

ŷ(1)=(-2, 0) (-1.331107, 1.156983) 1.156983
ŷ(2)=(0, 0) (-1.131001, -1.207556) 1.207556
ŷ(3)=(-1, 3) (-2.131087, 2.422933) 1.131087
ŷ(4)=(-2, 2) (-2.131087, 2.422933) 0.422933

Table 12.5: Compromise solutions.

12.4 Method for Discrete Problems

In this section we investigate the special case that we want to de-
termine the minimal elements of a set of finitely many points. In
practice, such a set consists of many points so that it is not possible
to use only the definition of minimality. Here we present a reduction
approach which can be used for the elemination of non-minimal ele-
ments in such a set and for the determination of all minimal elements.

In the following let S be a nonempty discrete subset of Rn being
partially ordered in a natural way. Let S consist of many vectors. We
are interested in the determination of all minimal elements of S.

Example 12.16. For instance, one obtains such a discrete prob-
lem by discretization of the image set of a continuous multiobjective
optimization problem. The discrete set generated in this way typically
contains many elements.

For complexity reasons it does not make sense to determine all
minimal elements using the definition. Therefore, one tries to reduce
the set S, that is to eliminate those elements in S which cannot be
minimal. Such a reduction of S can be carried out with the Graef-
Younes method.

Algorithm 12.17. (Graef-Younes method)

Input: S := {x(1), . . . , x(k)} ⊂ Rn

T := {x(1)}
for j = 2 : 1 : k do

if (x(j) /∈ T ) & (x(j) 6≥ x for all x ∈ T ) then
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T := T ∪ {x(j)}
end if

end for
Output: T

It is important to note that the if-condition in the preceding al-
gorithm is not so hard because one compares x(j) with all points in T
and not in S. In practice, the set T has much less elements than S.

The following theorem shows that Algorithm 12.17 is really a re-
duction or filter method.

Theorem 12.18. Under the assumptions of this section we assert:

(a) Algorithm 12.17 is well-defined.

(b) Algorithm 12.17 generates a nonempty set T ⊂ S.

(c) Every minimal element of the set S is also contained in the set
T generated by Algorithm 12.17.

Proof. The assertions under (a) and (b) are obvious. For the
proof of part (c) let x(j) be an arbitrary minimal element of S, and
assume that x(j) 6∈ T . Then there does not exist any x ∈ S\{x(j)}
with x ≤ x(j). Consequently, we have

x 6≤ x(j) for all x ∈ S\{x(j)},

and since T ⊂ S\{x(j)} we conclude

x 6≤ x(j) for all x ∈ T.

Hence, x(j) satisfies the condition in the if-statement of Algorithm
12.17, and x(j) is added to the set T . This is a contradiction to our
assumption. 2

Algorithm 12.17 is a self learning method which becomes better
and better step by step. The following example points out that the
reduction gains of the Graef-Younes method may be very large.
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Example 12.19. Again, we consider the multiobjective optimiza-
tion problem discussed in Example 12.2. Using a random generator
points in the constraint set being equal to the image set of the ob-
jective map, are produced. It is documented in [362] that the Graef-
Younes method reduces a set S containing 500,000 points to a set
T containing only 1,001 points. A total number of 471 points are
minimal elements. If one generates 5,000,000 points (see [362]), then
the Graef-Younes method reduces these points to only 3,067 points.
Among these points, only 1,497 are minimal elements. Hence, in both
cases about every second element of the set T is minimal.

Next we discuss an extension of the Graef-Younes method. Algo-
rithm 12.17 starts with a set S and generates a subset T . If we apply
Algorithm 12.17 to this set T with the modification that we check the
elements of T from the right to the left, i.e. backwards with respect to
the indices, we get the following method which generates all minimal
elements of the set S.

Algorithm 12.20. (Graef-Younes method with backward
iteration)

Input: S := {x(1), . . . , x(k)} ⊂ Rn

% Start the forward iteration
T := {x(1)}
for j = 2 : 1 : k do

if (x(j) /∈ T ) & (x(j) 6≥ x for all x ∈ T ) then
T := T ∪ {x(j)}

end if
end for
{t(1), . . . , t(p)} := T
% Start the backward iteration
U := {t(p)}
for j = p− 1 : −1 : 1 do

if (t(j) /∈ U) & (t(j) 6≥ x for all x ∈ U) then
U := U ∪ {t(j)}

end if
end for
Output: U
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The next theorem shows that this algorithm generates all minimal
elements of the set S.

Theorem 12.21. Under the assumptions of this section the
set U determined by Algorithm 12.20 exactly consists of all minimal
elements of the set S.

Proof. Let U =: {u(1), . . . , u(q)} be given for some q ∈ N. By
Theorem 12.18,(c) all minimal elements of the set S are contained
in the set U . Now we prove that every element of U is a minimal
element of S. Let u(j) ∈ U with 1 ≤ j ≤ q be arbitrarily chosen. By
the first part of Algorithm 12.20 (forward iteration) we obtain

u(j) 6= u(i) for all i < j (i ≥ 1)

and
u(j) � u(i) for all i < j (i ≥ 1).

From the second part of Algorithm 12.20 (backward iteration) it fol-
lows

u(j) 6= u(i) for all i > j (i ≤ q)

and
u(j) � u(i) for all i > j (i ≤ q).

Then we get

u(j) 6= u(i) for all i 6= j (1 ≤ i ≤ q)

and
u(j) � u(i) for all i 6= j (1 ≤ i ≤ q),

i.e., there is no u(i) ∈ U , u(i) 6= u(j) with u(i) ≤ u(j). Consequently,
u(j) is a minimal element of the set U . Since every minimal element
of the set S is contained in U , u(j) is also a minimal element of the
set S. 2

We demonstrate the usefulness of Algorithm 12.20 with a simple
example.

Example 12.22. For the bicriterial optimization problem



12.4. Method for Discrete Problems 347

min

(
−x1

x1 + x2
2 − cos 50x1

)

subject to the constraints
x2

1 − x2 ≤ 0
x1 + 2x2 − 3 ≤ 0

(x1, x2) ∈ R2

we compute random vectors satisfying the constraints and we deter-
mine the corresponding images of the objective vector function. These
image points form the set S consisting of 37,872 points. This set is
illustrated in Figure 12.9. If we apply Algorithm 12.20 to the set S,
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Figure 12.9: Set S.

we obtain the set T with 300 points and the set U with 134 points.
These two sets are illustrated in Figure 12.10 and Figure 12.11. This

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y1

y 2

Figure 12.10: Set T .
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Figure 12.11: Set U .
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example shows that the forward iteration of Algorithm 12.20 leads to
a drastic reduction of the set S and finally, the backward iteration
eliminates 166 non-minimal elements.

Notes

This chapter makes only a selection of the numerical methods cur-
rently used in multiobjective optimization. For a survey of standard
methods for the solution of nonlinear problems we refer to the book of
Hillermeier [137]. This book also describes a new generalized homo-
topy method for the solution of nonlinear multiobjective optimization
problems.

The modified Polak method is based on a method proposed by
Polak [276] for nonlinear multiobjective optimization problems with
several and not only two objectives. The presentation of Section 12.1
follows the lines in [169]. Example 12.2 is taken from [245]. The tun-
neling technique discussed in Remark 12.3 has been proposed in [169].
Although Monte-Carlo methods may be used for global optimization,
they have the disadvantage that they can only be applied to prob-
lems with some few variables. Nowadays there are modern methods
in global optimization for the solution of the scalar subproblems in
the modified Polak method. For these methods of global optimization
we refer to Schäffler [299]. In [300] a new stochastic method for global
unconstrained multiobjective optimization is given.

Section 12.2 is based on investigations of Eichfelder [97]. The
adaptive parameter control for scalarization methods is comprehen-
sively described in Eichfelder’s book [98]. This adaptation technique
can be applied to various scalarization methods. The Eichfelder-Polak
method can also be found in [98, Subsection 4.2.4] where a formula
for a forward discretization is used.

The investigations of Subsection 12.3.1 are based on the paper
[92]. Example 12.8 is taken from [92]. The discussion of the method
of reference point approximation follows the article [169]. The linear
case is treated in [162]. Example 12.11 is taken from [368], [147] and
[150]. Example 12.12 can be found in [150] and [322]. It is cited in
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[150] that Example 12.13 has been proposed in [321]. Algorithm 12.14
for the bicriterial nonlinear case has been published in [169]. Example
12.15 is taken from [169].

The discussion of a method for the solution of discrete multiob-
jective optimization problems in Section 12.4 follows the dissertation
[362] of Younes. The algorithmic conception of the Graef-Younes
method has been originally proposed by Graef [121]. Algorithm 12.17
is taken from the dissertation of Younes [362]. The presentation of the
Graef-Younes method with backward iteration is based on the paper
[171].



Chapter 13

Multiobjective Design
Problems

Multiobjective optimization problems turn up in almost all fields of
engineering. The application areas range from designs of electrical
switching circuits, machine parts, airplanes and weight-bearing struc-
tures (bridges, pylons etc.) to planning and controlling of water-
supply systems.

The configuration of industrial systems is an optimization task
whose multiobjective character is particularly obvious. Consider, e.g.,
the design of a vacuum pump. Such a pump should simultaneously
have maximum suction capacity, minimal power demand and min-
imal demand for operating liquid. Optimizing the variables which
characterize the geometry of a vacuum pump is, therefore, a multi-
objective optimization problem. Typical conflicting objectives within
industrial system design are the maximization of efficiency (or plant
productivity), the minimization of failure and the minimization of the
investment funds to be raised for the acquisition of the plant.

Another illustrative example is the search for optimal operating
points of internal combustion engines (see [307]). Here, one strives
for the simultaneous minimization of the specific fuel consumption,
the emission of NOx and the opacity of the exhaust gas as a measure
for the production of polluting particles.

In modern applications the mathematical modeling of multiobjec-
tive optimization problems plays an important role. Often, compre-
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hensive simulations have to be carried out for the evaluation of the
complicated objective functions and constraint functions.

In this chapter we present a detailed discussion of nonlinear mul-
tiobjective optimization problems arising in engineering. As an ap-
plication from electrical engineering we describe the optimal design
of rod antennas. The optimization of a FDDI communication net-
work in computer science is also discussed. From chemical engineer-
ing we analyse a fluidized reactor-heater system and a cross-current
multistage extraction process. As a special problem from medical en-
gineering we study the field design of a magnetic resonance system.
After a description of the used mathematical model we present the
constraints and objectives of these design problems. Solutions are
computed using the modified Polak method, the weighted Chebyshev
norm approach or the method of reference point approximation.

13.1 Design of Antennas

Antennas, i.e. devices for transmitting or receiving electromagnetic
energy, take on a variety of different forms. They can be as simple as
single dipols or arrays of dipols, or far more complicated structures
consisting of solid surfaces. It is a basic problem in antenna design to
construct the shape or choose the “feeding” of the antenna to optimize
the performance of the antenna. Many of the performance criteria
used in the literature are “conflicting”: Improving one criterion is only
possible to the cost of others. Therefore, in classical antenna theory
one tries to optimize one criterion and keeps the other restricted. This
leads to constrained scalar optimization problems.

In many cases it doesn’t seem to be clear a priori which per-
formance criterion has to be optimized and which to be restricted.
Therefore, we are in a classical case of a multiobjective optimization
problem. In this section we assume that the geometry of the antenna
is fixed and that we are able to vary the feeding of the antenna. It
is our aim to show how the modified Polak method (Algorithm 12.1)
can successfully be used to compute the set of Edgeworth-Pareto op-
timal points. We demonstrate this for a simple problem which arises
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naturally in directing the power of the antenna in a specific direction.

Now we describe the geometry of the antenna. Let the antenna be
a hollow infinite cylinder in x3-direction with constant cross-section
Ω ⊂ R2. We assume that Ω is open, bounded and simply connected
with C∞−boundary Γ. Let j = j(x1, x2) be the x3-component of a
current distribution which is assumed to be constant along the infinite
axis of the antenna. The physical current distribution is thus given
by the real part of j(x) e−iωt ẑ where ẑ denotes the unit vector in
x3-direction and ω describes the used frequency.

Now we define the performance criteria. The radiation efficiency
G(x̂) is defined as the ratio of the power radiated in a particular
direction x̂ to the total power fed to the antenna (ignoring normalizing
constants):

G(x̂) =
|u∞(x̂)|2
∫

Γ

|j|2ds , x̂ ∈ S1.

Here S1 denotes the unit sphere, j is the chosen surface current and

u∞(x̂) :=

∫

Γ

j(y) e−ikyT x̂ds(y)

is the so-called far field pattern or radiation pattern of the single layer
potential u. The wave number is denoted by k = ω

√
εµ where ε and

µ are the permittivity and permeability respectively in free space.
Certainly, we wish to maximize this efficiency in a particular direction
ϑ̂. We take a slightly different point of view and maximize the power
in the direction ϑ̂ under the constraint

∫

Γ

|j|2ds ≤ 1.

On the other hand we would like to minimize the power radiated
into other directions, given by some subset T of S1 (see Fig. 13.1).
Therefore we like to minimize the function

max
x̂∈T

|u∞(x̂)|.

Inserting the forms of u∞ this leads to the following bicriterial opti-
mization problem
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Figure 13.1: Radiation areas of the antenna.
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subject to the constraints (13.1)

j ∈ L2(Γ,C),

‖j‖L2(Γ,C) ≤ 1

where we assume that ϑ̂ ∈ S1 is a given direction, T is a nonempty
closed subset of S1 with positive measure (with respect to S1) and
k > 0 denotes the wave number. For a detailled description of the
mathematical model we refer to [179]. It can be shown that this
general multiobjective optimization problem (13.1) is solvable.

As a next step we take for Γ the unit circle in R2. Using polar
coordinates we can replace L2(Γ,C) by L2([0, 2π],C). If we assume,
in addition, that the subset T of S1 appearing in the original problem
(13.1) is connected, then T can now be identified with a closed interval
[t1, t2] ⊂ [0, 2π] (t1 < t2), and the direction ϑ̂ ∈ S1 corresponds to a
point t̂ ∈ [0, 2π]. Then the original problem (13.1) is equivalent to
the continuous problem
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min
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subject to the constraints (13.2)

ϕ ∈ L2([0, 2π],C),

‖ϕ‖L2([0,2π],C) ≤ 1

where t̂ ∈ [0, 2π] is given and k > 0 denotes the wave number.
It is well known that every function of L2([0, 2π],C) can be repre-

sented by its Fourier series of the form
∞∑

ν=−∞

zνe
iνt (t∈ [0, 2π]) with ap-

propriate Fourier coefficients zν ∈ C. The truncation of these Fourier
series leads to finitely many Fourier coefficients and, therefore, to
a finite dimensional bicriterial optimization problem. Then the dis-
cretized version of the continuous problem (13.2) for an arbitrary
n ∈ N0 reads as follows:

min
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subject to the constraints (13.3)

ϕ ∈ Xn,

‖ϕ‖L2([0,2π],C) ≤ 1

where t̂ ∈ [0, 2π] is given and k > 0 denotes the wave number. Here

Xn := span {eiνt | t ∈ [0, 2π], ν ∈ Z, |ν| ≤ n}
denotes a finite dimensional subspace of L2([0, 2π]),C). It is shown in
[179] that the multiobjective optimization problem (13.3) is solvable
for arbitrary n ∈ N0.
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Using the Jacobi-Anger expansion (see [216]) and Parseval’s equa-
tion the finite dimensional bicriterial problem (13.3) can be written
as

min










−
∣
∣
∣
∣
∣
2π

n∑

ν=−n

(−i)νJν(k)zνe
iνt̂
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∣
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2
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∣
∣
2π

n∑

ν=−n

(−i)νJν(k)zνe
iνt

∣
∣
∣
∣
∣

2










subject to the constraints (13.4)

zν ∈ C (ν ∈ Z, |ν| ≤ n),

2π
n∑

ν=−n

|zν |2 ≤ 1

(here Jν denotes the Bessel function of ν-th order). Because the
max term in the second objective is numerically complicated in this
form, we replace it by a slack variable (as it is done in Chebyshev
approximation). The disadvantage is that we obtain infinitely many
constraints and, therefore, the following semi-infinite bicriterial opti-
mization problem:

min








−4π2
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(−i)νJν(k)zνe
iνt̂
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∣
∣

2

δ








subject to the constraints (13.5)

zν ∈ C (ν ∈ Z, |ν| ≤ n),

2π
n∑

ν=−n

|zν |2 ≤ 1,

4π2

∣
∣
∣
∣
∣

n∑

ν=−n

(−i)νJν(k)zνe
iνt

∣
∣
∣
∣
∣

2

≤ δ for all t ∈ [t1, t2].

It is evident that the problems (13.4) and (13.5) are equivalent. In
order to get a problem with finitely many constraints we select finitely
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many points sη ∈ [t1, t2] (η = 0, 1, . . . , N) with N ∈ N. If we also
write zν = xν+iyν with xν , yν ∈ R, the problem (13.5) can be replaced
by the simpler problem

min








−4π2
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n∑
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(−i)νJν(k)(xν + iyν)e
iνt̂

∣
∣
∣
∣
∣

2

δ








subject to the constraints (13.6)

xν , yν ∈ R (ν ∈ Z, |ν| ≤ n),

2π
n∑

ν=−n

(
x2

ν + y2
ν

)
≤ 1,

4π2

∣
∣
∣
∣
∣

n∑

ν=−n

(−i)νJν(k)(xν + iyν)e
iνsη

∣
∣
∣
∣
∣

2

≤ δ for η = 0, . . . , N.

This bicriterial optimization problem has 4n + 3 real variables and
N + 2 inequality constraints. The arising functions are quadratic or
even linear. The first objective is quadratic and concave and the
second one is linear.

The bicriterial optimization problem (13.6) can be solved for dif-
ferent parameters. The following numerical results are obtained for
the special values t̂ = 0, t1 = 3

4
π, t2 = 5

4
π, N = 5, k = 10 and n = 10

with the special discretization points

sη :=
3

4
π + η

π

10
(η = 0, . . . , 5).

The figures are organized in such a way that the image set of all
Edgeworth-Pareto optimal points is approximated by 100 discretiza-
tion points obtained by the modified Polak method (Fig. 13.2) and
then the radiation characteristics represented by some of these points
is illustrated (Fig. 13.3). Here the radiation intensity

I(ϑ) = 4π2

∣
∣
∣
∣
∣

n∑

ν=−n

(−i)νJν(k)(xν + iyν)e
iνϑ

∣
∣
∣
∣
∣

2

, ϑ ∈ [0, 2π],
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Figure 13.2: Approximation of the images of Edgeworth-Pareto opti-
mal points.
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Figure 13.3: Radiation characteristics of Edgeworth-Pareto optimal
points given in Fig. 13.2.
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is illustrated with respect to the unit circle. This circle is then
the zero curve of the radiation characteristics. The graph of I is
radially drawn. Moreover, the Fourier coefficients in the form of
z =

(
z−n, z−(n−1), . . . , z0, . . . , zn−1, zn

)
∈ C2n+1 are computed for the

discretization point no. 25 as follows

z = ( −0.009276 + 0.025612i , −0.051782 + 0.142982i ,
+0.016229 − 0.044812i , +0.024146 − 0.066672i ,
+0.002190 − 0.006046i , +0.002254 − 0.006224i ,
−0.010658 + 0.029429i , +0.007835 − 0.021635i ,
−0.004423 + 0.012214i , −0.011581 + 0.031978i ,
+0.001747 + 0.004823i , −0.011581 + 0.031978i ,
−0.004423 + 0.012214i , +0.007835 − 0.021635i ,
−0.010658 + 0.029429i , +0.002254 − 0.006224i ,
+0.002190 − 0.006046i , +0.024146 − 0.066672i ,
+0.016229 − 0.044812i , −0.051782 + 0.142982i ,
−0.009276 + 0.025612i ).

13.2 Design of FDDI Computer

Networks

Communication networks are the essential base for distributed com-
putation and the exchange of information among computers. Besides
the ATM standard the FDDI (fiber distributed data interface) com-
munication protocol is used for the network of high speed computers.
It is physically realized as a fiber optics backbone network configured
as a ring, and it is commonly part of a complex hierarchy of different
bus systems (see Fig. 13.4).

Because of the increasing demands made on such a network (mul-
timedia, internet, transfer speed, change of loads) there is a need
for the improvement of the performance of the FDDI network. This
performance can only be improved by optimization of the protocol pa-
rameters. In the future an optimal network management is required,
since the performance of the FDDI fiber optics ring is physically lim-
ited. Computer experiments with the FDDI ring have shown that
very remarkable performance gains are possible ([281]).
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Figure 13.4: Typical FDDI Network.

Based on stochastic models Tangemann [325] and Klehmet [191]
developed formulas for the evaluation of the mean waiting time in a
station belonging to a FDDI network. Using these formulas it is pos-
sible to minimize the mean waiting times in FDDI rings. For realistic
applications the throughput of a station or the total throughput in
the FDDI ring is also of great importance as an optimization criterion.
An improvement of waiting times generally leads to a deterioration
of throughputs which is not desirable. Therefore, the consideration
of multiobjective functions has to be included in the developed math-
ematical models. Since we can formulate an objective function for
every computer belonging to such a FDDI ring, it makes sense to
investigate the whole system as a game where the stations “play co-
operatively”.

13.2.1 A Cooperative Game

A FDDI fiber optics ring connects several different computers (see
Fig. 13.4) called stations in this context. We assume that the net-
work consists of n ∈ N stations. The FDDI medium access protocol
allows to set certain variables for the management of this ring. For in-
stance, the target token rotation time (TTRT) parameter controlling
the maximal allowable time delay of message sending is an important
design variable. Another variable used in a synchronous mode is the
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so-called token holding time (THT). And the applied loads in the sta-
tions are possible parameters as well. Here we assume for simplicity
that we have a vector x ∈ Rm (with m ∈ N) representing all possible
variables. But this vector should also satisfy technological and model
theoretical constraints defining a feasible set S ⊂ Rm.

On the set of feasible points we want to minimize, for every station
i, a vector-valued function ϕi : S → Rpi with pi ∈ N (where we assume
that the space Rpi is partially ordered in a componentwise sense). For
instance, one could minimize the mean waiting time of a message to
be sent to a specific station in a network and one could simultaneously
maximize the throughput in the whole ring.

Since we obtain an optimization problem for every station, we have
the typical situation of a game where a station is to be understood as a
“player”. An improvement of the performance of the whole FDDI ring
can be reached, if the n players cooperate and are not only interested
to maximize their own profit. In this case we have a cooperative n
player game which reads as follows: Determine a feasible point x ∈ S
which is “preferred” by all players because of their cooperation.

Noncooperative games are also possible for such a network. For
instance, if we consider only the minimization of the mean waiting
time for one specific station, we obtain an improvement of the per-
formance of this station at the cost of the other stations. But if we
think of the total performance of the whole net, we have a cooperative
game.

Such cooperative games (in control theory) are investigated in
Chapter 10. For the description of the solution concept we introduce
an objective map f : S → Rp with p := p1 + · · · + pn and

f(x) =






ϕ1(x)
...

ϕn(x)




 for all x ∈ S.

Following Section 10.1 this cooperative n player game can be formu-
lated as a vector optimization problem of the following type:

min
x∈S

f(x). (13.7)

Using the componentwise ordering in Rp we get an adequate de-
scription of the cooperation, since feasible vectors are “preferred” if
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and only if they are “preferred” by each player. Optimal solutions of
this problem are defined as in Definition 10.1.

13.2.2 Minimization of Mean Waiting Times

Although the derivation of the general n players game developed in the
previous section does not use special properties of the FDDI medium
access protocol (IEEE 802.8), we now need an exact protocol defi-
nition for the description of the mean waiting times in such a ring.
We restrict ourselves to a short description of the functionality of this
network.

A token being a special sequence of bits rotates within the FDDI
ring. If a station obtains the token, it has the right to send data. The
FDDI protocol allows the transfer of synchronous and asynchronous
messages. For the asynchronous messages eight priority classes are
possible. These classes are served hierarchically: first the messages
of a high priority are sent, then the data of lower priority. This
procedure is stopped, if there are no further data available or the
submission time is terminated.

For the mathematical modeling one distinguishes two processes.
In every station one has arrival processes (for each priority class)
assumed to be Poisson distributed. In the ring one considers a server
model where the token plays the role of the server. Since the service
times are arbitrarily distributed, we have the problem of a M/G/1
queue. The resulting stochastical model allows to present formulas
for the mean waiting times in the stochastical mean. Estimates for
these mean waiting times have been developed by Tangemann [325]
and Klehmet [191].

The mean waiting time for synchronous messages at a station i
(with 1 ≤ i ≤ n) developed by Tangemann is given as

W T, syn
i :=

1 − ρi

(

1 − βi(2−ρ)
THTi(1−ρ)

)

1 − ρiC
THTi

·
A+

n∑

j=1

ρjC

THTj

[

ρj − (1 − ρj)
λjC

2

(

1 − βj

THTj

)]

βj

n∑

j=1

ρj

[

1 − ρj

(

1 − βj(2−ρ)

THTj(1−ρ)

)]
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and the formula for asynchronous messages reads

W T, asyn
i :=

1 − ρi

(

1 − βi(2−ρ)
(THTi−s)(1−ρ)

)

1 − (ρi+ρ)C
THTi−s

·
A+

n∑

j=1

(ρj+ρ)C

THTj−s

[

ρj − (1 − ρj)
λjC

2

(

1 − βj

THTj−s

)]

βj

n∑

j=1

ρj

[

1 − ρj

(

1 − βj(2−ρ)

(THTj−s)(1−ρ)

)] .

Here we set
C =

s

1 − ρ
, (13.8)

A =

ρ
n∑

j=1

λjβ
(2)
j

2(1 − ρ)
+
ρs(2)

2s
+

s

2(1 − ρ)

(

ρ2 −
n∑

j=1

ρ2
j

)

(13.9)

and the terms have the following meaning:

ρi ≡ applied load at station i,

ρ =
n∑

i=1

ρi ≡ throughput,

λi ≡ Poisson arrival rate at station i,
βi ≡ average service time at station i

(notice ρi = λiβi),

β
(2)
i ≡ second moment of βi,
s ≡ total switch over time,
s(2) ≡ second moment of s.

The formula for the mean waiting time at a station i (with 1 ≤ i ≤
n) given by Klehmet for the case of synchronous and asynchronous
messages reads

WK
i :=

1 − ρi + ρi

ki

(

1 + 1
1−ρ

)

1 − λiC
ki

·
A+ s

1−ρ

n∑

j=1

ρ2
j

kj
− ρiC

TTRT−C

n∑

j=1

βj(1−ρj)(λjC)2

2kj

n∑

j=1

Bj
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with C and A as in (13.8) and (13.9), respectively, and

Bj = ρj

(

1 − λjs

kj(1 − ρ)

) 1 − ρj +
ρj

kj

(

1 + 1
1−ρ

)

1 − λjC

kj

,

ki =







⌊
THTi

βi

⌋

for synchronous messages

⌊
TTRTi−C

βi
+ 0.5

⌋

for asynchronous messages







.

Here TTRTi represents the target token rotation time and means the
maximal allowable time delay of message sending with respect to the
i-th station.

In these formulas for the mean waiting times the loads ρ1, . . . , ρn,
the times TTRT1, . . . ,TTRTn and THT1, . . . ,THTn are possible vari-
ables. And these variables have to satisfy certain technological and
model theoretical constraints. For the mean waiting times given by
Tangemann we have the constraints

ρi ≥ αi for all i ∈ {1, . . . , n},
n∑

i=1

ρi ≥ ρmin,

THTi ≤ THTmax for all i ∈ {1, . . . , n}
and, in addition, for synchronous messages

(

1 +
s

THTi

)

ρi +
n∑

j=1
j 6=i

ρj ≤ 1 for all i ∈ {1, . . . , n}

and for asynchronous messages

(

1 +
s

THTi

)

ρi +
n∑

j=1
j 6=i

ρj ≤
THTi − s

THTi

for all i ∈ {1, . . . , n}.

αi ≥ 0 denotes the lower bound for the load ρi, ρmin means the min-
imal throughput and THTmax describes the maximal token holding
time.
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The constraints given by Klehmet are slightly different:

ρi ≥ αi for all i ∈ {1, . . . , n},
n∑

i=1

ρi ≥ ρmin,

THTi ≤ THTmax for all i ∈ {1, . . . , n}
and, in addition, for synchronous messages

(

1 +
s

THTi

)

ρi +
n∑

j=1
j 6=i

ρj ≤ 1 for all i ∈ {1, . . . , n}

and for asynchronous messages

(

1 +
s

TTRTi + 0.5βi

)

ρi +
n∑

j=1
j 6=i

ρj ≤ TTRTi + 0.5βi − s

TTRTi + 0.5βi

for all i ∈ {1, . . . , n}.

We use the same constants as before.
One can formulate games for which the objective functions of the

players are the mean waiting times or also games with vector-valued

objectives with the throughput ρ =
n∑

i=1

ρi as an additional objective.

13.2.3 Numerical Results

We consider a special FDDI ring investigated by Tangemann [325]
and Klehmet [191] and assume that it is a symmetric system, i.e.
for every station we have the same parameters. This ring consists
of n = 10 stations with the total switch over time s = 0.1 ms. The
second moment of s is assumed to be s(2) = 0.01 ms. The average
service times are β1 = . . . = β10 = 0.01 ms with the second moments
β

(2)
1 = . . . = β

(2)
10 = 0.001 ms. The upper bounds for the token holding

times and target token rotation times are THTmax = 0.8 ms and
TTRTmax = 4 ms. The minimal throughput is given as ρmin = 0.1.
Moreover, we set α1 = . . . = α10 = 0.01.
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With these constants we investigate the cooperative game of the
simultaneous minimization of the mean waiting times of every station,
i.e. we have the multiobjective optimization problem (13.7) where the
i-th component of f is the mean waiting time at the i-th station. For
the determination of Edgeworth-Pareto optimal points of problem
(13.7) we use the weighted Chebyshev norm approach presented in
Subsection 11.2.2. In Cor. 11.21 we assume that the mean waiting
times have a lower bound. Since times are nonnegative, such a lower
bound can be assumed but, in general, it cannot be shown that the
used mean waiting times formulas are nonnegative. But nevertheless
we use the weighted Chebyshev norm approach which means that
we minimize the worst case. For simplicity we choose the weights
w1 = . . . = w10 = 1 and set ŷ1 = . . . = ŷ10 = 0. Numerical results are
given in the tables 13.1 and 13.2.

ρ1start
ρ2start

ρ3start
. . . ρ10start

THTstart min maxstart min maxstart

ρ1opt
ρ2opt

ρ3opt
. . . ρ10opt

THTopt min maxopt min maxopt

W
T, syn

i
W K

i

0.010 0.010 0.010 . . . 0.010 0.20 0.06066 0.06095
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.030 0.030 0.030 . . . 0.030 0.20 0.09148 0.09291
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.050 0.050 0.050 . . . 0.050 0.20 0.14841 0.15311
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.100 0.044 0.044 . . . 0.044 0.20 0.14777 0.15282
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.044 0.100 0.044 . . . 0.044 0.20 0.14777 0.15282
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.040 0.060 0.040 . . . 0.060 0.20 0.14856 0.15344
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.060 0.040 0.060 . . . 0.040 0.20 0.14856 0.15344
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066
0.041 0.051 0.051 . . . 0.051 0.20 0.14842 0.15314
0.010 0.010 0.010 . . . 0.010 0.80 0.06058 0.06066

Table 13.1: Minmax approach in the case of synchronous messages.

The numerical results in these two tables show for several configu-
rations that we get the same optimal solution of the minmax problem.
An optimal network configuration can be reached, if we decrease the
loads at every station to the smallest possible load and increase the
target token rotation time or the token holding time to the largest
possible time. This seems to be a general optimization rule for these
cooperative games with respect to FDDI computer networks.

It is also interesting to see that in the case of small applied loads
ρistart we only get a small improvement of the waiting times whereas
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ρ1start
ρ2start

ρ3start
. . . ρ10start

THTstart/TTRTstart min maxstart min maxstart

ρ1opt
ρ2opt

ρ3opt
. . . ρ10opt

THTopt/TTRTopt min maxopt min maxopt

W
T, asyn

i
W K

i

0.010 0.010 0.010 . . . 0.010 0.20 / 1.30 0.06349 0.06062
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.030 0.030 0.030 . . . 0.030 0.20 / 1.30 0.12493 0.09109
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.050 0.050 0.050 . . . 0.050 0.20 / 1.30 0.22414 0.14641
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.100 0.044 0.044 . . . 0.044 0.20 / 1.30 0.23431 0.14584
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.044 0.100 0.044 . . . 0.044 0.20 / 1.30 0.23431 0.14584
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.040 0.060 0.040 . . . 0.060 0.20 / 1.30 0.22705 0.14774
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.060 0.040 0.060 . . . 0.040 0.20 / 1.30 0.22705 0.14774
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058
0.041 0.051 0.051 . . . 0.051 0.20 / 1.30 0.22443 0.14630
0.010 0.010 0.010 . . . 0.010 0.80 / 4.00 0.06085 0.06058

Table 13.2: Minmax approach in the case of asynchronous messages.

the optimization of configurations with large applied loads ρistart leads
to a significant decrease of the mean waiting times. But this decrease
is obtained at the cost of a decrease of applied loads ρiopt , i.e., a
decrease of the throughput of the network. Since the throughput
is also an important performance criterion, it should be used as an
additional objective.

13.3 Fluidized Reactor-Heater System

Kitagawa et al. consider in [190] a bicriterial optimization problem
which arises from minimizing simultaneously the total investment
and net operating costs of a fluidized reactor-heater system for an
exothermic chemical reaction. This system consists of a reactor, a
heat exchanger and a cooler.

The design variables are the extent of reaction (x1) and the tem-
perature (x2); in the next section it is shown that the third variable
x3 is not needed as a design variable. The aim is to minimize the
function f : R3 → R2 with

f(x1, x2, x3)

=

(

p01V (x1, x2)
αxβ

2 + p02x
γ
1 + p041{x1>ξ(x2)} + p06,g(x1 − ξ(x2))

ζ

p03/x1 − p05(x1 − ξ(x2))

)
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under the constraints

p11x
2
3x1 ≤ x2

2 (13.10)

p21(1 + x−1
1 )x2 ≤ x2

3 (13.11)

p31V (x1, x2) ≤ x3
3 (13.12)

x2 ∈
[

0,
1

p41

]

(13.13)

(p51x1 + p52)x2 ≤ 1 + p53x1 (13.14)

φe(x1, x2) > 0 (13.15)

x1 ∈ [0, 1]. (13.16)

Here f1 measures the total investment cost; due to the term

1{x1>ξ(x2)} :=

{
1, x1 > ξ(x2)

0, x1 ≤ ξ(x2)

(which specifies the investment cost for an auxiliary cooler) it is dis-
continuous. f2 measures the net operating costs. The constants and
functions mentioned above are

p01 = 1750, p02 = 15000, p03 = 6550, p04 = 3000
p06,g = 33000, p11 = 63.8, p21 = 0.00036, p31 = 0.85
p41 = 0.00121, p51 = 0, p52 = 0.00206, p53 = 2.76
p61 = 0.0362,

α = β = γ = ζ = 0.6

and

φe(x1, x2) = 55

(
1 − x1

2 − x1

)2

e−4770/x2 − 0.000014
x1

2 − x1

e−19270/x2 ,

ξ(x2) =
p52x2 − 1

p53 − p51x2

,

V (x1, x2) =
p61

x1

x1∫

0

1

φe(u, x2)
du.

φe is the net reaction rate, V denotes the volume, and ξ(x2) is the
value for x1 which guarantees that no auxiliary cooler is necessary.
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13.3.1 Simplification of the Constraints

Because of the special character of the constraints and the indepen-
dence of f from x3 we are able to eliminate the variable x3: The
condition “∃x3 ∈ R : (13.10) – (13.12) is valid” is equivalent to

(p31V (x1, x2))
2/3 ≤ x2

2

p11x1

(13.17)

p11p21(1 + x1) ≤ x2. (13.18)

The inequality (13.18) ensures x2 ≥ 0 because x1 ∈ [0, 1]. Thus we
can drop the condition x2 ≥ 0 in (13.13).

For values of x1 near to 1 V (x1, x2) rapidely increases. This is
the reason why Kitagawa et al. sharpen the constraint x1 ≤ 1 to
x1 ≤ 0.99999.

Now we can show that under this constraint x1 ≤ 0.99999 we have
φe(x1, x2) > 0:

Let a := 55e−4770/x2 and b := 0.000014e−19270/x2 for an arbitrarily
fixed x2. Then we have

φe(x1, x2) ≥ 0

⇐⇒ a

(
1 − x1

2 − x1

)2

− b
x1

2 − x1

≥ 0

⇐⇒ a(1 − x1)
2 − bx1(2 − x1)

(2 − x1)2
≥ 0

⇐⇒ a(1 − x1)
2 − bx1(2 − x1) ≥ 0

⇐⇒ (a+ b)x2
1 − 2(a+ b)x1 + a ≥ 0.

The quadratic equation (a + b)x2
1 − 2(a + b)x1 + a = 0 has the zeros

x1 = 1 ±
√

b
a+b

. Now

√

b

a+ b
=

√

0.000014e−19270/x2

0.000014e−19270/x2 + 55e−4770/x2

=
√

0.000014

√

1

0.000014 + 55e14500/x2

≤
√

0.000014

√

1

55e14500p41



370 Chapter 13. Multiobjective Design Problems

=

√

0.000014

55e77.545

< 10−5.

For values x1 ≤ 0.99999 we have shown φe(x1, x2) > 0, consequently
we can drop the inequality (13.15).

In view of these calculations we can substitute the constraints
(13.10) to (13.16) by the system of inequalities

(p31V (x1, x2))
2/3 ≤ x2

2

p11x1

p11p21(1 + x1) ≤ x2

x2 ≤ 1

p41

(p51x1 + p52)x2 ≤ 1 + p53x1

x1 ≥ 0

x1 ≤ 0.99999.

The integral in the definition of V can be solved symbolically
rather than using a numerical integration formula:

Defining ψ(x) := 1/φe(x) we have

ψ(x) =
1

a(1−x1

2−x1
)2 − x1

2−x1
b

=
(x1 − 2)2

a(1 − x1)2 − bx1(2 − x1)

=
(x1 − 2)2

a(x1 − 1)2 + bx1(x1 − 2)

=
(x1 − 2)2

(a+ b)x2
1 − 2(a+ b)x1 + a

.

In order to factorize the denominator we proceed as follows: The
solutions of the quadratic equation (a+ b)x2

1 − 2(a+ b)x1 + a = 0 in
x1 are

t1,2 = 1 ±
√

b

a+ b
.
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With d :=
√

b
a+b

, t1 := 1 + d and t2 := 1 − d we get

ψ(x) =
(x1 − 2)2

(x1 − t1)(x1 − t2)(a+ b)
.

Formal integration of h := (a+b)ψ with the computer algebra system
“maple” [60] yields

x1∫

0

h(x) dx = x1 +
4 ln( t2−x1

t1−x1
) + (4t1 − t21) ln(t1 − x1)

t2 − t1

+
(t22 − 4t2) ln(t2 − x1) + (4 + t21 − 4t1) ln t1

t2 − t1

+
(4t2 − 4 − t22) ln t2

t2 − t1
. (13.19)

13.3.2 Numerical Results

With the standard double precision in the programming language
C it seems to be difficult to evaluate the formula (13.19) correctly.
Therefore it is necessary to transform the formula to a form more
appropriate for floating point evaluation. The form

x1∫

0

h(x) dx

= x1 +
(−d2 − 2d+ 1) lp(d− x1) + (d+ 1)2(lp(−d) − lp(−d− x1))

2d

−(d− 1)2 lp(d)

2d

can be evaluated rather fast where lp(x) := ln(1+x) can be computed
better with the aid of an appropriate function in the programming
language C. But in order to obtain a better accuracy one should use
the following formula

x1∫

0

h(x) dx = x1
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+
d

2
(lp(−d) − lp(d− x1) − lp(−d− x1) − lp(d))

+ lp(−d) − lp(d− x1) − lp(−d− x1) + lp(d)

+ (lp(−d) + lp(d− x1) − lp(−d− x1) − lp(d))/(2d).

So the bicriterial optimization problem which has to be solved
reads as follows:

min

(

p01V (x1, x2)
αxβ

2 + p02x
γ
1 + p041{x1>ξ(x2)} + p06,g(x1 − ξ(x2))

ζ

p03/x1 − p05(x1 − ξ(x2))

)

subject to the constraints

(p31V (x1, x2))
2/3 ≤ x2

2

p11x1

p11p21(1 + x1) ≤ x2

x2 ≤ 1

p41

(p51x1 + p52)x2 ≤ 1 + p53x1

x1 ≥ 0

x1 ≤ 0.99999

where

V (x1, x2)

=
p61

x1(a+ b)
(x1 + lp(−d) − lp(d− x1) − lp(−d− x1) + lp(d)

+
d

2
(lp(−d) − lp(d− x1) − lp(−d− x1) − lp(d))

+(lp(−d) + lp(d− x1) − lp(−d− x1) − lp(d))/(2d))

with a := 55e−4770/x2 , b := 0.000014e−19270/x2 and d :=
√

b
a+b

.

This multiobjective optimization problem is solved by the method
of reference point approximation in the bicriterial case (Alg. 12.14)
with the weights t1 = 0.02 and t2 = 1 (Step 5 of Alg. 12.14). Possible
compromise solutions as best approximations from the image set of
Edgeworth-Pareto optimal points are given in Table 13.3.



13.4. A Cross-Current Multistage Extraction Process 373

reference point

estimate as best
approximation from

the image set of
EP optimal points

preimage of this estimate

(100000, 10000) (152022, 11878.3 ) (0.513385, 826.448)
(150000, 6000) (211169, 5842.24) (0.837227, 826.446)
(200000, 4000) (231012, 5372.81) (0.875274, 826.446)
(500000, 3000) (489157, 4183.88) (0.969510, 770.829)

(1000000, 3000) (1084990, 3749.83) (0.978737, 637.244)
(2000000, 3000) (2038190, 3513.11) (0.983297, 562.305)

Table 13.3: Compromise solutions

13.4 A Cross-Current Multistage

Extraction Process

Finally we discuss another bicriterial optimization problem described
by Kitagawa et al. [190], namely the design of a cross-current multi-
stage extraction process. It is the aim to maximize the profit f1 due
to separation and to minimize the costs f2 due to solvent consump-
tion. The constraints consist mainly of a system of material balance
equations.

In order to describe this problem mathematically, we consider for
some fixed n ∈ N the design variables x1, . . . , xn and u1, . . . , un. Then
the objective functions read as follows (see [190]):

f1(x1, . . . , xn, u1, . . . , un) := 0.2 − xn

and

f2(x1, . . . , xn, u1, . . . , un) :=
n∑

i=1

ui.

The constraints are given as follows:

xi−1 = xi + uiφ(xi) for all i ∈ {1, . . . , n} (13.20)

(where x0 := 0.2),

0.2 ≥ x1 ≥ . . . ≥ xn > 0 (13.21)
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and

u1, . . . , un ≥ 0 (13.22)

with

φ(α) :=







2.4α for 0 ≤ α ≤ 0.05
0.182 + 100(α− 0.15)3

−26175(α− 0.15)5

+3825000(α− 0.15)7

−158750000(α− 0.15)9 for 0.05 ≤ α ≤ 0.15
0.182 + 400(α− 0.15)3

−326400(α− 0.15)5

+140800000(α− 0.15)7

−20480000000(α− 0.15)9 for 0.15 ≤ α ≤ 0.2

(see Figure 13.5).

0 -x- 0.2  0 -y- 0.2

Figure 13.5: Graph of the function φ.

It is evident that the variables u1, . . . , un can be eliminated from
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the equations (13.20) with

ui =
xi−1 − xi

φ(xi)
.

Since φ(α) > 0 for all α ∈ (0, 0.2] and xi−1 − xi ≥ 0 for all i ∈
{1, . . . , n} by the inequalities (13.21), we get ui ≥ 0 for all i ∈ {1, . . . ,
n}, i.e., the inequalities (13.22) are satisfied. So, this bicriterial opti-
mization problem can be simplified to the problem

min






xn

n∑

i=1

xi−1 − xi

φ(xi)




 (13.23)

subject to the constraints

0.2 ≥ x1 ≥ . . . ≥ xn > 0

where x0 := 0.2.

The bicriterial optimization problem (13.23) can be solved nu-
merically for different values of n. Fig. 13.6 shows the calculated
approximations of the image set of Edgeworth Pareto optimal points
for n = 2 and n = 4. Using the method of reference point approxima-
tion in the bicriterial case (Alg. 12.14) one gets compromise solutions
for the weights t1 = 15 and t2 = 1 of the weighted Chebyshev norm
given in Table 13.4.

Reference point

Estimate as best
approximation from

the image set of
EP optimal points

Preimage of this estimate

(0.001, 100.0) (0.00010, 146.655 ) (0.195, 0.075, 0.035, 0.0001)
(0.01, 10.0) (0.00041, 6.1548) (0.0426, 0.0090, 0.0019, 0.0004)
(0.05, 1.0) (0.05007, 0.9073) (0.1215, 0.0817, 0.0626, 0.0500)
(0.1, 0.5) (0.10005, 0.5540) (0.1409, 0.1239, 0.1112, 0.1000)
(0.15, 0.1) (0.15002, 0.2744) (0.1560, 0.1502, 0.1501, 0.1500)

Table 13.4: Compromise solutions for n = 4.
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0 -x- 0.2  0 -y- 2

Figure 13.6: Approximation of the image set of Edgeworth Pareto
optimal points for n = 2 (upper curve) and n = 4 (lower curve).

13.5 Field Design of a Magnetic Reso-

nance System

Magnetic resonance (MR) systems are significant devices in medical
engineering which may produce images of soft tissue of the human
body with high resolution and good contrast. Among others, it is a
useful device for cancer diagnosis. The images are physically gener-
ated by the use of three types of magnetic fields: the main field, the
gradient field and the radio frequency (RF) field.

MR uses the spin of the atomic nuclei in a human body and it is
the hydrogen proton whose magnetic characteristics are used to gen-
erate images. One does not consider only one spin but a collection of
spins in a voxel being a small volume element. Without an external
magnetic field the spins in this voxel are randomly oriented and be-
cause of their superposition their effects vanish (see Figure 13.7). By
using the main field which is generated by super-conducting magnets,
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the spin magnets align in parallel or anti-parallel to the field (see Fig-
ure 13.8). There is a small majority of up spins in contrast to down
spins and this difference leads to a very weak magnetization of the

Figure 13.7: Arbitrary spins. Figure 13.8: Parallel and
anti-parallel aligned spins.

voxel. The spin magnet behaves like a magnetic top used by children;
this is called the spin precession (see Figure 13.9). With an additional

Figure 13.9: Spin precession.

RF pulse the magnetization flips. This stimulation with an RF pulse
leads to magnetic resonances in the body. In order to get the slices
that give us the images, we use a so-called gradient field with the ef-
fect that outside the defined slice the nuclear spins are not affected by
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the RF pulse. The obtained voxel information in a slice can then be
used for the construction of MR images via a 2-dimensional Fourier
transform. A possible MR image of a human head is given in Figure
13.10.

Figure 13.10: A so-called sagittal T1 MP-RAGE image taken up by
the 3 tesla system MAGNETOM Skyra produced by Siemens AG.
With kind permission of Siemens AG Healthcare Sector.

There are various optimization problems in the context of the
improvement of the quality of MR images. We restrict ourselves to
the description of the following bicriterial optimization problem. For
good MR images it is important to improve the homogenity of the
RF field for specific slices. Here we assume that the MR system uses
n ∈ N antennas. The complex design variables x1, . . . , xn ∈ C are
the so-called scattering variables. For a slice with p ∈ N voxels let
Hx

kℓ, H
y
kℓ ∈ C (for k ∈ {1, . . . , p} and ℓ ∈ {1, . . . , n}) denote the

cartesian components of the RF field of the k-th antenna in the ℓ-th
voxel, if we work with a current of amplitude 1 ampere and phase 0.
Then the objective function f1 which is a standard deviation, reads
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as follows

f1(x) :=

√

1
p−1

p∑

k=1

(

H−
k (x)H−

k (x) −
p∑

k=1

wkH
−
k (x)H−

k (x)

)2

p∑

k=1

wkH
−
k (x)H−

k (x)

for all x ∈ Cn

with

H−
k (x) :=

1

2

n∑

ℓ=1

xℓ(Hx
kl − iHy

kl) for all x ∈ Cn and k ∈ {1, . . . , p}

(here i denotes the imaginary unit and the overline means the conju-
gate complex number). Moreover, we would like to reduce the specific
absorption rate (SAR) which is the RF energy absorbed per time unit
and kilogram. Global energy absorption in the entire body is an im-
portant value for establishing safety thresholds. If m > 0 denotes the
mass of the patient and S ∈ R(n,n) denotes the so-called scattering
matrix, then the second objective function f2 is given by

f2(x) :=
1

2m
xT (I − STS)x for all x ∈ Cn

where I denotes the (n, n) identity matrix. f2 describes the global
SAR.

The constraints of this bicriterial problem are given by upper
bounds for the warming of the tissue within every voxel. The HUGO
body model which is a typical human body model based on anatomi-
cal data of the Visible Human Projectr, has more than 380,000 voxels
which means that this bicriterial optimization problem has more than
380,000 constraints. A discussion of these constraints cannot be done
in detail in this text. Using the modified Polak method (Algorithm
12.1) one obtains minimal solutions of this large-scale bicriterial prob-
lem with images in R2 illustrated in Figure 13.11. These results are
better than the realized parameters in an ordinary MR system which
uses a symmetric excitation pulse. Notice in Figure 13.11 that the
global SAR measured in w

kg
is considered per time unit which may be

very short because one considers only short RF pulses.
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Figure 13.11: Qualitative illustration of the image points of minimal
solutions and the image point of the standard excitation pulse.

Notes

A classical source for bibliographical references to application prob-
lems of vector optimization is [315], a more recent one is [84].

The investigations of the first subsection are based on the papers
[179] and [138]. For a standard reference text on antenna theory we
refer to [69]. The description of several performance criteria used
for the design of antennas is given in [4]. In [5], [6], [189] and [228]
one finds examples of scalar optimization problems which are actually
bicriterial problems where the second criterion is plugged in a con-
straint. The systematic application of multiobjective optimization
theory to antenna problems is a relatively new area. We refer to [2],
[7], [178], [179] and [3] for some theoretical and numerical results.

The game theoretic approach to the optimization of FDDI com-
puter networks is taken from [128]. Bicriterial problems for the opti-
mization of timed polling systems are already considered by Klehmet
[191], [192]. The numerical results presented in Subsection 13.2.3
show that the proposed game theoretic approach is a useful tool for
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the improvement of the performance of the total FDDI ring. Further
investigations indicate (see [127]) that only the use of the parameters
TTRT and THT when the loads ρ1, . . . , ρn are assumed to be constant
do not lead to significant improvements of the mean waiting time at a
specific station. Therefore, it is necessary to include more than these
two types of parameters in the optimization process.

The multiobjective optimization problems in Sections 13.3 and
13.4 are given by Kitagawa et al. [190], and the presentation of these
sections is based on [168].

The very short description of MR systems in Section 13.5 is based
on the text [309] published by Siemens AG. The specific bicriterial op-
timization problem is already considered by Bijick (Schneider), Diehl
and Renz [29] (compare also [28]). The numerical results qualita-
tively illustrated in Figure 13.11 are obtained by Bijick (Schneider)
[303]. The bicriterial problem in Section 13.5 is only one example
among various other multiobjective optimization problems arising in
medical engineering.
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Set optimization means optimization of sets or set-valued maps.
It is an extension of vector optimization to the set-valued case. In
the last two decades there has been an increasing interest in set op-
timization. Although the notions “set-valued optimization” and “set
optimization” are used in the literature, the second notion makes
more sense - as an extension of vector optimization.

General optimization problems with set-valued constraints or a
set-valued objective function are closely related to problems in sto-
chastic programming, fuzzy programming and optimal control. If the
values of a given function vary in a specified region, this fact could be
described using a membership function in the theory of fuzzy sets or
using information on the distribution of the function values. In this
general setting probability distributions or membership functions are
not needed because only sets are considered. Optimal control prob-
lems with differential inclusions belong to this class of set optimiza-
tion problems as well. Set optimization seems to have the potential
to become a bridge between different areas in optimization. And it is
a substantial extension of standard optimization theory. Set-valued
analysis is the most important tool for such an advancement in con-
tinuous optimization. And conversely, the development of set-valued
analysis receives important impulses from optimization.

In this fifth part we investigate vector optimization problems with
a set-valued objective map as special set optimization problems. We
consider unconstrained as well as constrained problems of this type.
The presented theory is an extension of the second part of this book.
The main topics are basic concepts, differentiability notions, subdif-
ferentials and the presentation of optimality conditions including the
generalized Lagrange multiplier rule.



Chapter 14

Basic Concepts and Results
of Set Optimization

In this chapter we consider vector optimization problems with a set-
valued objective map which has to be minimized or maximized. For
these set optimization problems we present basic concepts and first
results.

For the investigation of a vector optimization problem with a set-
valued objective map we need the following standard assumption.

Assumption 14.1. Let X and Y be real linear spaces, let S be
a nonempty subset of X, let Y be partially ordered by a convex cone
C ⊂ Y (then ≤C denotes the corresponding partial ordering), and let
F : S ⇉ Y be a set-valued map.

Throughout this fifth part we generally assume that the domain
of a set-valued map equals its effective domain, i.e. for every element
of the domain the image is a nonempty set.

Under Assumption 14.1 we consider the set optimization problem

min
x∈S

F (x). (14.1)

A minimizer of this problem is introduced as follows.

Definition 14.2. Let Assumption 14.1 be satisfied, and let F (S)
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:=
⋃

x∈S

F (x) denote the image set of F . Then a pair (x̄, ȳ) with x̄ ∈ S

and ȳ ∈ F (x̄) is called a minimizer of the problem (14.1), if ȳ is a
minimal element of the set F (S), i.e.

({ȳ} − C) ∩ F (S) ⊂ {ȳ} + C.

Example 14.3. Let Assumption 14.1 be satisfied.

(a) Assume that f, g : S → Y are given vector functions. Then
F : S ⇉ Y with

F (x) := {y ∈ Y | f(x) ≤C y ≤C g(x)}
is a possible set-valued map which may be used as an objective.
If f = g and C is pointed, then at every x ∈ S a corresponding
image y is uniquely determined, otherwise the values of y vary
in the order interval [f(x), g(x)] (see Fig. 14.1).
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Figure 14.1: Illustration of the set-valued map F in Example 14.3,(a).

(b) One special case of the previous example is obtained if a vector
function ϕ : S → Y is known and the y-values vary around
ϕ(x), i.e. we have

F (x) := {y ∈ Y | ϕ(x) − α ≤C y ≤C ϕ(x) + β}
where α, β ∈ C.
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(c) Another special case appears if we admit relative errors around
ϕ(x). Again, we assume that a vector function ϕ : S → Y is
known, and for an arbitrary ε > 0 we define

F (x) := {y ∈ Y | ϕ(x) − εϕ(x) ≤C y ≤C ϕ(x) + εϕ(x)}
= {y ∈ Y | (1 − ε)ϕ(x) ≤C y ≤C (1 + ε)ϕ(x)}.

The navigation of transportation robots leads to an industrial ap-
plication of set optimization ([301]). The navigation and control of
autonomous transportation robots is of particular importance. One
uses ultrasonic sensors determining the smallest distance to an obsta-
cle in the emission cone. Since the direction of the object cannot be
identified in this cone, the location of the object is set-valued. There-
fore, questions of navigation may lead to problems of set optimization.

It can be expected that the minimization of the set-valued map
F in Example 14.3,(a) has something to do with the minimization of
f . Therefore, under the assumptions given in Example 14.3,(a) we
consider the single-valued vector optimization problem

min
x∈S

f(x). (14.2)

Theorem 14.4. Let Assumption 14.1 be satisfied, let C be
pointed, let f : S → Y be a given function, and let F : S ⇉ Y
be defined as

F (x) := {y ∈ Y | f(x) ≤C y} for all x ∈ S.

(a) If (x̄, ȳ) is a minimizer of the problem (14.1), then ȳ = f(x̄)
and x̄ is a minimal solution of the problem (14.2).

(b) If x̄ is a minimal solution of the problem (14.2), then (x̄, f(x̄))
is a minimizer of the problem (14.1).

Proof.

(a) Since (x̄, ȳ) is a minimizer of the problem (14.1) and C is pointed
we have
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({ȳ} − C) ∩ F (S) = {ȳ}. (14.3)

Obviously it is

ȳ ∈ F (x̄) ⊂
⋃

x∈S

F (x) = F (S),

and, therefore, we conclude

({ȳ} − C) ∩ F (x̄) = {ȳ}. (14.4)

If we assume that ȳ 6= f(x̄), we obtain because of f(x̄) ≤C ȳ
a contradiction to (14.4). Consequently, ȳ = f(x̄), and by the
equation (14.3) and f(x̄) ∈ f(S) ⊂ F (S) we get ({f(x̄)} −
C)∩ f(S) = {f(x̄)}, i.e. x̄ is a minimal solution of the problem
(14.2).

(b) Assume that (x̄, f(x̄)) is not a minimizer of the problem (14.1).
Then there is an x̃ ∈ S with

({f(x̄)} − C) ∩ F (x̃) 6= {f(x̄)}. (14.5)

So we have for some y ∈ F (x̃)

y ≤C f(x̄), y 6= f(x̄) (by (14.5))

and
f(x̃) ≤C y (by the definition of F (x̃)).

Hence we get

f(x̃) ≤C f(x̄), f(x̃) 6= f(x̄).

But then x̄ is not a minimal solution of the problem (14.2).

2

The preceding theorem shows that in the special case discussed in
Example 14.3,(a) the set optimization problem (14.1) is equivalent to
the vector optimization problem (14.2) being simpler than the prob-
lem (14.1). Therefore, it is not necessary to work with such a general
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set-valued theory in this special case. Hence, a general set-valued
theory makes only sense for set-valued maps whose lower boundary
cannot be described by a function f as it is done in Example 14.3,(a).

Next, we mention another optimality notion for the set optimiza-
tion problem (14.1). Whereas the concept of a minimizer considers
only one point in the image F (x̄), it seems to be more natural to
use the whole image F (x̄). Then, instead of a pair (x̄, ȳ), one only
considers the element x̄ as it is known from standard optimization.
The considered partial ordering has been independently introduced
by Young [363], Nishnianidze [263] and presented by Kuroiwa [205]
in a modified form. Therefore, this partial ordering is called KNY
partial ordering.

Definition 14.5. Let Assumption 14.1 be satisfied. Then x̄ ∈ S
is called a minimal solution of the problem (14.1) if

F (x) 4 F (x̄), x ∈ S =⇒ F (x̄) 4 F (x).

Here 4 denotes the KNY partial ordering for sets and is defined by

A 4 B :⇐⇒ A ⊂ B − C and B ⊂ A+ C

(A and B are arbitrary nonempty subsets of Y ).

A 4 B means that for every a ∈ A there is a b ∈ B with a ≤C b,
and for every b ∈ B there is an a ∈ A with a ≤C b. Since every
element of both sets is considered, the concept of a minimal solution
uses the whole set F (x̄), and one does not consider only a special
element ȳ as in the definition of a minimizer. So this concept of a
minimal solution seems to be more natural.

Fig. 14.2 illustrates the KNY partial ordering 4 introduced in
Definition 14.5. The investigations in this book are based on the
standard optimality concept presented in Definition 14.2.

Now we turn our attention to a C-convex set-valued map F .

Definition 14.6. Let Assumption 14.1 be satisfied, and, in ad-
dition, let S be convex. The set-valued map F : S ⇉ Y is called
C-convex, if for all x1, x2 ∈ S and λ ∈ [0, 1]

λF (x1) + (1 − λ)F (x2) ⊂ F (λx1 + (1 − λ)x2) + C.
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Figure 14.2: Illustration of the KNY partial ordering 4 (here we have
A 4 B).

A known result from convex analysis says that C-convexity of a
map is characterized by the convexity of its epigraph (compare Thm.
2.6). We present its definition and then show this characterization.

Definition 14.7. Let Assumption 14.1 be satisfied, and, in ad-
dition, let S be convex. The set

epi(F ) := {(x, y) ∈ X × Y | x ∈ S, y ∈ F (x) + C}
is called the epigraph of F .

Lemma 14.8. Let Assumption 14.1 be satisfied, and, in addition,
let S be convex. Then F is C-convex if and only if epi(F ) is a convex
set.

Proof.

(a) Let F be C-convex. Take arbitrary elements (x1, y1), (x2, y2) ∈
epi(F ) and λ ∈ [0, 1]. Because of the convexity of S we have

λx1 + (1 − λ)x2 ∈ S, (14.6)

and since F is C-convex, we obtain

λy1 + (1 − λ)y2 ∈ λ(F (x1) + C) + (1 − λ)(F (x2) + C)



Notes 391

= λF (x1) + (1 − λ)F (x2) + C

⊂ F (λx1 + (1 − λ)x2) + C. (14.7)

The conditions (14.6) and (14.7) imply

λ(x1, y1) + (1 − λ)(x2, y2) ∈ epi(F ).

Consequently, epi(F ) is a convex set.

(b) Now assume that epi(F ) is a convex set. Let x1, x2 ∈ S, y1 ∈
F (x1), y2 ∈ F (x2) and λ ∈ [0, 1] be arbitrarily given. Because
of the convexity of epi(F ) we obtain

λ(x1, y1) + (1 − λ)(x2, y2) ∈ epi(F )

implying

λy1 + (1 − λ)y2 ∈ F (λ1x1 + (1 − λ)x2) + C.

Hence, F is C-convex.

2

Notes

Set optimization problems have been investigated by many authors,
for instance, there are papers on optimality conditions (e.g., [35],
[265], [39], [42], [74], [235], [237], [170], [64], [226], [120]), duality
theory (e.g., [278], [73], [236], [310]) and related topics (e.g., [369],
[193], [205], [93], [126], [335]). For further investigations we refer to
the special issue [65]. For the definition of a minimizer we also refer
to [234], [235], [170] and [165].

The KNY partial ordering has been originally defined by Young
[363] and Nishnianidze [263]. Nishnianidze used it for the analysis of
fixed points of set-valued maps. A modification independently given
by Kuroiwa [205] has been used for the definition of minimal solu-
tions. He has also presented different types of set partial orderings
which may be used for the definition of minimal solutions. The KNY
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partial ordering opens a new and wide field of research. Here the
investigation of the space of all subsets of Y plays an important role.
Optimality notions and existence results using the KNY partial order-
ing can be found in [333], [206] and [207]. Duality investigations are
carried out in [208]. The variational principle of Ekeland has also been
investigated in this setting [334]. The KNY partial ordering turns out
to be promising in set optimization. Additional order relations in set
optimization have been presented in [174].

Notice that the definition of C-convex set-valued maps and convex
set-valued maps are different. For the definition of convex set-valued
maps see, for instance, [13, p. 56–57].



Chapter 15

Contingent Epiderivatives

For the formulation of optimality conditions one needs an appropri-
ate differentiability concept for set-valued maps. In this chapter we
present the notion of contingent epiderivatives and generalized con-
tingent epiderivatives. We show properties of these contingent epi-
derivatives and discuss the special case of real-valued functions.

15.1 Contingent Derivatives and Contin-

gent Epiderivatives

The concept of contingent derivatives plays an important role in set-
valued analysis. But it turns out that the contingent epiderivative is
a better tool for the formulation of necessary and sufficient optimal-
ity conditions. Therefore, we investigate properties of this type of a
derivative in detail.

Definition 15.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, and let F : X ⇉ Y be a set-valued map.

(a) The set

graph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}

is called the graph of the map F .

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               

 
DOI 10.1007/978-3-642-17005-8_15, © Springer-Verlag Berlin Heidelberg 2011 

393



394 Chapter 15. Contingent Epiderivatives

(b) Let a pair (x̄, ȳ) ∈ graph(F ) be given. A set-valued map
DcF (x̄, ȳ) : X ⇉ Y whose graph equals the contingent cone
to the graph of F at (x̄, ȳ), i.e.

graph(DcF (x̄, ȳ)) = T (graph(F ), (x̄, ȳ)),

is called contingent derivative of F at (x̄, ȳ).

The importance of this notion of a derivative is based on the fact
that it extends the Fréchet differentiability concept very naturally to
the set-valued case.

Remark 15.2. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let f : X → Y be a single-valued map assumed to be Fréchet
differentiable at some x̄ ∈ X with a surjective Fréchet derivative f ′(x̄).
Then we conclude with Lyusternik’s Theorem 3.49 which implies in
essential that the contingent cone of an equality constraint equals the
linearized cone:

T (graph(f), (x̄, f(x̄)))

= T ({(x, y) ∈ X × Y | f(x) − y = 0}, (x̄, f(x̄))})
= {(x, y) ∈ X × Y | f ′(x̄)(x) − y = 0}
= graph(f ′(x̄)).

Hence, the Fréchet derivative f ′(x̄) coincides with the contingent
derivative Dcf(x̄, f(x̄)) (see Fig. 15.1).

This remark shows that the concept of the contingent derivative
is a quite natural extension of tangents. It is obvious that contingent
derivatives have a rich structure and play a central role in set-valued
analysis. And, therefore, this concept has also been used in set op-
timization. But it turns out that necessary optimality conditions
and sufficient optimality conditions do not coincide under standard
assumptions. This shows that contingent derivatives are not com-
pletely the right tool for the formulation of optimality conditions in
set optimization.
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Figure 15.1: Illustration of the result in Remark 15.2.

In order to get optimality conditions generalizing the known clas-
sical conditions we come to another differentiability notion, the so-
called contingent epiderivative.

Definition 15.3. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let Y be partially ordered by a convex cone C ⊂ Y , let S be a
nonempty subset of X, and let F : S ⇉ Y be a set-valued map. Let
a pair (x̄, ȳ) ∈ X × Y with x̄ ∈ S and ȳ ∈ F (x̄) be given. A single-
valued map DF (x̄, ȳ) : X → Y whose epigraph equals the contingent
cone to the epigraph of F at (x̄, ȳ), i.e.

epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)),

is called contingent epiderivative of F at (x̄, ȳ).

The essential differences between the definitions of the contingent
derivative and the contingent epiderivative are that the graph is now
replaced by the epigraph and the derivative is now single-valued. For
an illustration of this notion see Fig. 15.2.

Next, we consider again the set-valued map in Example 3,(a). The
contingent epiderivative of this map can be given with the aid of the
contingent epiderivative of f .
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Figure 15.2: Illustration of the contingent epiderivative for C = R+.

Lemma 15.4. Let Assumption 14.1 be satisfied, let F : S ⇉ Y
be given as

F (x) := {y ∈ Y | f(x) ≤C y ≤C g(x)}

with f, g : S → Y , and let x̄ ∈ S be arbitrarily given. If the contingent
epiderivative DF (x̄, f(x̄)) exists, then

DF (x̄, f(x̄)) = Df(x̄, f(x̄)).

Proof. Because of the definition of F we have

epi(F ) = {(x, y) ∈ X × Y | x ∈ S, f(x) ≤C y} = epi(f),

and, therefore, we conclude

epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ))

= T (epi(f), (x̄, ȳ)).

This leads to the assertion. 2
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15.2 Properties of Contingent Epideriva-

tives

For the presentation of various properties of contingent epiderivatives
we use the following standard assumption in this section.

Assumption 15.5. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be a real normed
spaces, let S be a nonempty subset of X, let Y be partially ordered
by a convex cone C ⊂ Y , let F : S ⇉ Y be a set-valued map, and let
x̄ ∈ S and ȳ ∈ F (x̄) be given elements.

Our first result is an existence theorem for contingent epideriva-
tives in the special case Y = R.

Theorem 15.6. Let Assumption 15.5 be satisfied with Y = R,
and assume that there are functions f, g : X → R with epi(f) ⊃
T (epi(F ), (x̄, ȳ))⊃epi(g). Then the contingent epiderivative DF (x̄, ȳ)
is given as

DF (x̄, ȳ)(x)=min{y ∈ R | (x, y) ∈ T (epi(F ), (x̄, ȳ))} for all x ∈ X.
(15.1)

Proof. We define the functional DF (x̄, ȳ) : X → R ∪ {−∞} by

DF (x̄, ȳ)(x) = inf{y ∈ R | (x, y) ∈ T (epi(F ), (x̄, ȳ))} for all x ∈ X.

Since epi(g) ⊂ T (epi(F ), (x̄, ȳ)), for every x ∈ X there is at least one
y ∈ R with (x, y) ∈ T (epi(F ), (x̄, ȳ)). So, DF (x̄, ȳ) is well-defined on
X. Now we show that it is the contingent epiderivative. For this proof
take an arbitrary x ∈ X. Then there is an infimal sequence (yn)n∈N

converging to DF (x̄, ȳ) with (x, yn) ∈ T (epi(F ), (x̄, ȳ)). Since the
contingent cone is always closed in a normed space, we conclude

(x,DF (x̄, ȳ)(x)) ∈ T (epi(F ), (x̄, ȳ)).

By assumption, −∞ < f(x) ≤ DF (x̄, ȳ)(x), and hence the equation
(15.1) is satisfied. It follows from this equation that

epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)).
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Hence, DF (x̄, ȳ) is the contingent epiderivative of F at (x̄, ȳ). 2

Corollary 15.7. Let Assumption 15.5 be satisfied with Y = R and
S = X, and, in addition, let F : X → R be a single-valued and convex
function being continuous at x̄. Then the contingent epiderivative
DF (x̄, ȳ) is given by the equation (15.1).

Proof. Since F is continuous at x̄ and convex, its subdifferential
∂F (x̄) (e.g., see [164]) is nonempty. Because of the convexity of F
its epigraph is convex as well, and, therefore, the contingent cone
T (epi(F ), (x̄, ȳ)) is convex (Theorem 3.47) and we obtain

epi(f) ⊃ T (epi(F ), (x̄, ȳ)) + {(x̄, ȳ)} ⊃ epi(F )

with
f(x) := l(x− x̄) + ȳ for all x ∈ S

for a subgradient l ∈ ∂F (x̄). Consequently, the assumption of Theo-
rem 15.6 is fulfilled, and Theorem 15.6 leads to the assertion. 2

The next result shows that contingent epiderivatives are unique,
if they exist.

Theorem 15.8. Let Assumption 15.5 be satisfied. If the contin-
gent epiderivative DF (x̄, ȳ) exists, then it is unique.

Proof. Assume that D̄F (x̄, ȳ) 6= DF (x̄, ȳ) is a contingent epi-
derivative as well. Then there is at least one x ∈ S with

D̄F (x̄, ȳ)(x) 6= DF (x̄, ȳ)(x)

and consequently

epi(D̄F (x̄, ȳ)) 6= epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)).

But this contradicts the assumption that D̄F (x̄, ȳ) is also a contingent
epiderivative. 2
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If (x̄, ȳ) belongs to the interior of epi(F ), the contingent cone
T (epi(F ), (x̄, ȳ)) equals the product space X×Y and in this case the
contingent epiderivative DF (x̄, ȳ) does not exist.

The next theorem gives a relationship between the contingent
derivative and the contingent epiderivative for C-convex maps.

Theorem 15.9. Let Assumption 15.5 be satisfied, and, in addi-
tion, let S = X, let C be closed, and let F be C-convex. If the contin-
gent derivative DcF (x̄, ȳ) and the contingent epiderivative DF (x̄, ȳ)
exist, then

epi(DcF (x̄, ȳ)) ⊂ epi(DF (x̄, ȳ)).

Proof. We have with Lemma 14.8

epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ))

= cl(cone(epi(F ) − {(x̄, ȳ)}))
= cl(cone(graph(F ) − {(x̄, ȳ)} + ({0X} × C)))

⊃ cl(cone(graph(F ) − {(x̄, ȳ)})) + cl({0X} × C)

= cl(cone(graph(F ) − {(x̄, ȳ)})) + ({0X} × C)

⊃ T (graph(F ), (x̄, ȳ)) + ({0X} × C)

= epi(DcF (x̄, ȳ))

(where “cone” denotes the cone generated by a set (Definition 1.15)).
2

Now we are able to present a special property of contingent epi-
derivatives in the C-convex case: they are sublinear, if they exist.
First, recall the definition of sublinearity in this abstract setting.

Definition 15.10. Let X be a real linear space, and let Y be a
real linear space partially ordered by a convex cone C ⊂ Y . A map
f : X → Y is called sublinear if

(a) f(αx) = αf(x) for all α ≥ 0 and all x ∈ X (positive homogen-
ity),
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(b) f(x1 + x2) ≤C f(x1) + f(x2) for all x1, x2 ∈ X (subadditivity).

Theorem 15.11. Let Assumption 15.5 be satisfied, and, in addi-
tion, let C be pointed, let S be convex, and let F be C-convex. If the
contingent epiderivative DF (x̄, ȳ) exists, then it is sublinear.

Proof. Since F is C-convex, by Lemma 15.8 epi(F ) is a convex
set. Hence the contingent cone T (epi(F ), (x̄, ȳ)) is convex and, there-
fore, the epigraph of DF (x̄, ȳ) is a convex cone. Now take any α > 0
and any x ∈ X. Since epi(DF (x̄, ȳ)) is a cone and (x,DF (x̄, ȳ)(x)) ∈
epi(DF (x̄, ȳ)), we get (αx, αDF (x̄, ȳ)(x)) ∈ epi(DF (x̄, ȳ)) implying

αDF (x̄, ȳ)(x) ∈ {DF (x̄, ȳ)(αx)} + C. (15.2)

But with (αx,DF (x̄, ȳ)(αx)) ∈ epi(DF (x̄, ȳ)) we also obtain (x,
1
α
DF (x̄, ȳ)(αx)) ∈ epi(DF (x̄, ȳ)) resulting in

1

α
DF (x̄, ȳ)(αx) ∈ {DF (x̄, ȳ)(x)} + C

or
αDF (x̄, ȳ)(x) ∈ {DF (x̄, ȳ)(αx)} − C. (15.3)

Since C is pointed, we conclude from the conditions (15.2) and (15.3)

αDF (x̄, ȳ)(x) = DF (x̄, ȳ)(αx). (15.4)

Moreover, from the condition (15.2) we obtain for α = 2 and x = 0X

2DF (x̄, ȳ)(0X) ∈ {DF (x̄, ȳ)(0X)} + C

implying
DF (x̄, ȳ)(0X) ∈ C (15.5)

Since (0X , 0Y ) ∈ epi(DF (x̄, ȳ)), we also have

DF (x̄, ȳ)(0X) ∈ −C. (15.6)

If we notice that C is pointed, we conclude DF (x̄, ȳ)(0X) = 0, i.e.,
the equation (15.4) holds for α = 0 as well. Hence, the contingent epi-
derivative is positively homogeneous. Next we show the subadditivity
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of DF (x̄, ȳ). Take arbitrary x1, x2 ∈ X. Since (x1, DF (x̄, ȳ)(x1)) ∈
epi(DF (x̄, ȳ)), (x2, DF (x̄, ȳ) (x2)) ∈ epi(DF (x̄, ȳ)) and epi(DF (x̄, ȳ))
is convex, we have

(
1

2
x1 +

1

2
x2,

1

2
DF (x̄, ȳ)(x1) +

1

2
DF (x̄, ȳ)(x2)) ∈ epi(DF (x̄, ȳ))

which implies

1

2
(DF (x̄, ȳ)(x1) +DF (x̄, ȳ)(x2)) ∈ {DF (x̄, ȳ)(

1

2
(x1 + x2))

︸ ︷︷ ︸

= 1
2
DF (x̄, ȳ)(x1 + x2)

} + C

or

DF (x̄, ȳ)(x1) +DF (x̄, ȳ)(x2) ∈ {DF (x̄, ȳ)(x1 + x2)} + C.

Hence, the contingent epiderivative is subadditive. 2

Notice that the positive homogenity of DF (x̄, ȳ) can be proved
without the additional convexity assumptions. For this proof we only
need that C is pointed.

This theorem shows that contingent epiderivatives have a rich
mathematical structure in the C-convex case. Using the generalized
Hahn-Banach Theorem 3.13 one gets a linear map as lower bound
of the sublinear contingent epiderivative, and, therefore, generalized
subgradients can be introduced in the same way as it is done in con-
vex analysis. These subdifferentials are investigated in the Sections
16.1 and 16.2.

15.3 Contingent Epiderivatives of Real-

Valued Functions

In this section we investigate the relationship between the contingent
epiderivative and the directional derivative in the special case that F
is a single-valued function.

Our special assumption reads as follows:



402 Chapter 15. Contingent Epiderivatives

Assumption 15.12. Let (X, ‖ · ‖X) be a real normed space, let
F : X → R be a single-valued function, and let x̄ ∈ X be given.

Theorem 15.13. Let Assumption 15.12 be satisfied. If the con-
tingent epiderivative DF (x̄, F (x̄)) exists, then it is lower semicontin-
uous.

Proof. Since the contingent cone is always closed in a normed
space, the epigraph of the contingent epiderivative is closed as well,
and we conclude with a standard result that DF (x̄, F (x̄)) is lower
semicontinuous. 2

In order to give a relationship between the directional derivative
and the contingent epiderivative we need the following lemma.

Lemma 15.14. Let Assumption 15.12 be satisfied. If F is con-
tinuous at x̄ and convex, then

DF (x̄, F (x̄))(h) ≥ F ′(x̄)(h) for all h ∈ X (15.7)

(where F ′(x̄)(h) denotes the directional derivative of F at x̄ in the
direction h).

Proof. Notice that DF (x̄, F (x̄)) exists by Corollary 15.7. Be-
cause of the convexity of F we obtain

epi(DF (x̄, F (x̄)))

= T (epi(F ), (x̄, F (x̄)))

⊂ T (epi{F (x̄) + l(x− x̄)|x ∈ X}, (x̄, F (x̄)))

= epi{l(h)|h ∈ X} for all subgradients l ∈ ∂F (x̄)

(notice that the subdifferential ∂F (x̄) is nonempty (see [164])). So
we conclude

DF (x̄, F (x̄))(h) ≥ max
l∈∂F (x̄)

l(h) = F ′(x̄)(h) for all h ∈ X.

2
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The next theorem shows that the inequality (15.7) is already an
equality, or in other words, contingent epiderivative and directional
derivative coincide in this special case.

Theorem 15.15. Let Assumption 15.12 be satisfied. If F is con-
tinuous at x̄ and convex, then the contingent epiderivative equals the
directional derivative.

Proof. By Corollary 15.7 DF (x̄, F (x̄)) exists. With Lemma
15.14 we have for a fixed h ∈ X

DF (x̄, F (x̄))(h) ≥ l(h) for all l ∈ ∂F (x̄). (15.8)

Next we define the set

T := {(x̄+ λh, F (x̄) +DF (x̄, F (x̄))(λh) | λ ≥ 0}
= {(x̄+ λh, F (x̄) + λDF (x̄, F (x̄))(h) | λ ≥ 0}

(by Theorem 15.11).

Since F is continuous at x̄, epi(F ) has a nonempty interior. Then
we conclude T ∩ int(epi(F )) = ∅. By Eidelheit’s separation theorem
(Theorem 3.16) there are a continuous linear functional l̄ on X and
real numbers β and γ with the property (l̄, β) 6= (0X∗ , 0) and

l̄(x) + βα ≤ γ ≤ l̄(x̄+ λh) + β(F (x̄) + λDF (x̄, F (x̄))(h))

for all (x, α) ∈ epi(F ) and λ ≥ 0. (15.9)

With standard arguments (see [164, p. 57]) we obtain − 1
β
l̄ ∈ ∂F (x̄),

and with x = x̄, α = F (x̄), λ = 1 we conclude from (15.9)

DF (x̄, F (x̄))(h) ≤ − 1

β
l̄(h). (15.10)

The inequalities (15.8) and (15.10) imply

DF (x̄, F (x̄))(h) = max
l∈∂F (x̄)

l(h) = F ′(x̄)(h).

2
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Example 15.16. Consider the set-valued map F : X ⇉ R (where
(X, ‖ · ‖X) is a real normed space) with

F (x) = {y ∈ R | y ≥ ‖x‖} for all x ∈ X.

If we define f : X → R with

f(x) = ‖x‖ for all x ∈ X,

we have graph(F ) = epi(f). Consequently, we obtain with Theorem
15.15 for an arbitrary x̄ ∈ X \ {0X} and ȳ := ‖x̄‖

DF (x̄, ȳ)(h) = Df(x̄, f(x̄))(h)

= f ′(x̄)(h)

= max{l(h) | l ∈ ∂f(x̄)}
= max{l(h) | l ∈ X∗, l(x̄) = ‖x̄‖ and ‖l‖X∗ = 1}

for all h ∈ X

(see Example 2.23).

Finally we consider Example 14.3, (a) for a set-valued map F in
the special case of Y = R

Corollary 15.17. Let (X, ‖ · ‖X) be a real normed space, let F :
X ⇉ R be given as

F (x) := {y ∈ R | f(x) ≤ y ≤ g(x)} for all x ∈ X

with f, g : X → R, let x̄ ∈ X be arbitrarily given, and let f be
continuous at x̄ and convex. Then the contingent epiderivative of F
at (x̄, f(x̄)) exists and equals the directional derivative of f at x̄.

Proof. It is obvious that epi(F ) = epi(f). Since f is a convex
functional, its epigraph is convex and we get with Theorem 3.43

epi(f) ⊂ T (epi(f), (x̄, f(x̄))) + {(x̄, f(x̄))}
= T (epi(F ), (x̄, f(x̄))) + {(x̄, f(x̄))}.
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f is continuous at x̄ and convex and, therefore, there is a subgradient
l of f at x̄ (see [164]) with

epi(h) ⊃ T (epi(F ), (x̄, f(x̄))) + {(x̄, f(x̄))}
for

h(x) := l(x− x̄) + f(x̄) for all x ∈ X.

Hence, the assumptions of Theorem 15.6 are fulfilled and we conclude
that the contingent epiderivative DF (x̄, f(x̄)) exists. By Lemma 15.4
DF (x̄, f(x̄)) equals Df(x̄, f(x̄)) which, by Theorem 15.15, equals the
directional derivative of f at x̄. 2

15.4 Generalized Contingent Epideriva-

tives

In this section we use the following standard assumption:

Assumption 15.18. In addition to Assumption 15.5 let C be
pointed.

The following concept extends a characterization of a contingent
epiderivative given in Theorem 15.6 for a special case.

Definition 15.19. Let Assumption 15.18 be satisfied. A set-
valued map DgF (x̄, ȳ) : S −{x̄} ⇉ Y is called generalized contingent
epiderivative of F at (x̄, ȳ) if

DgF (x̄, ȳ)(x) = Min {y ∈ Y | (x, y) ∈ T (epi(F ), (x̄, ȳ))}
for all x ∈ S − {x̄}

where Min {. . .} denotes the set of all minimal elements of the con-
sidered set.

Notice that for some x ∈ S − {x̄} the set {y ∈ Y | (x, y) ∈
T (epi(F ), (x̄, ȳ))} may be empty. In this case we set DgF (x̄, ȳ)(x) =
∅.
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Next we show under appropriate assumptions that the general-
ized contingent epiderivative is a strictly positive homogeneous and
subadditive map in the case of S = X.

Definition 15.20. Under the assumptions in Definition 15.10 a
set-valued map F : X ⇉ Y is called

(a) strictly positive homogeneous if

F (αx) = αF (x) for all α > 0 and all x ∈ X,

(b) subadditive if

F (x1) + F (x2) ⊂ F (x1 + x2) + C for all x1, x2 ∈ X.

If the properties under (a) with α ≥ 0 and (b) hold, then F is called
sublinear.

Theorem 15.21. Let Assumption 15.18 be satisfied, let S = X,
and let for all x ∈ X, DgF (x̄, ȳ)(x) 6= ∅. Then DgF (x̄, ȳ) is strictly
positive homogeneous. Moreover, if F is C-convex and the set

G(x) := {y ∈ Y | (x, y) ∈ T (epi(F ), (x̄, ȳ))} (15.11)

fulfills the domination property for all x ∈ X (i.e. G(x) ⊂ MinG(x)+
C), then DgF (x̄, ȳ) is subadditive.

Proof. We take any α > 0 and x ∈ X. Then we obtain

1

α
DgF (x̄, ȳ)(αx) = Min

{
1

α
y ∈ Y

∣
∣
∣ (αx, y) ∈ T (epi(F ), (x̄, ȳ))

}

= Min {u ∈ Y | (αx, αu) ∈ T (epi(F ), (x̄, ȳ))}
= Min {u ∈ Y | (x, u) ∈ T (epi(F ), (x̄, ȳ))}
= DgF (x̄, ȳ)(x).

Thus
DgF (x̄, ȳ)(αx) = αDgF (x̄, ȳ)(x),

and DgF (x̄, ȳ) is strictly positive homogeneous.
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Next for x1, x2 ∈ X, y1 ∈ DgF (x̄, ȳ)(x1), y2 ∈ DgF (x̄, ȳ)(x2) we have
(x1, y1) ∈ T (epi(F ), (x̄, ȳ)) and (x2, y2) ∈ T (epi(F ), (x̄, ȳ)). Since F
is C-convex, epi(F ) is convex and then T (epi(F ), (x̄, ȳ)) is a convex
cone. Thus

(x1 + x2, y1 + y2) ∈ T (epi(F ), (x̄, ȳ))

implying

DgF (x̄, ȳ)(x1) +DgF (x̄, ȳ)(x2) ⊂ G(x1 + x2)

with G(x1 + x2) given by (15.11). By the domination property we
have

G(x1 + x2) ⊂ MinG(x1 + x2) + C = DgF (x̄, ȳ)(x1 + x2) + C

resulting in

DgF (x̄, ȳ)(x1) +DgF (x̄, ȳ)(x2) ⊂ DgF (x̄, ȳ)(x1 + x2) + C.

2

Remark 15.22. Let Assumption 15.18 be satisfied, and let F :
X → R be a real convex functional. Then the generalized contingent
epiderivative DgF is given by

DgF (x̄, ȳ)(x) = Min {y ∈ R | (x, y)∈T (epi(F ), (x̄, ȳ))} for all x∈X

and DgF is single-valued. Under the assumptions of Theorem 15.21
DgF (x̄, ȳ) is sublinear.

Now we give an existence theorem of DgF .

Theorem 15.23. Let Assumption 15.18 be satisfied, and let C be
closed and Daniell. Let for every x ∈ S the set G(x) given by (15.11)
have a lower bound. Then for all x ∈ S DgF (x̄, ȳ)(x) exists.

Proof. Since the contingent cone is always closed in a normed
space, then for every x ∈ S G(x) has a lower bound and is closed.
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From the existence theorem of minimal elements (see Theorem 6.3,
(a)) MinG(x) is nonempty, i.e. DgF (x̄, ȳ) is well defined. 2

Now we consider the relation between the generalized contingent
epiderivative and the contingent epiderivative.

Theorem 15.24. Let Assumption 15.18 be satisfied, let S = X,
and let the domination property hold. If the contingent epiderivative
DF (x̄, ȳ) exists and the set G(x) given by (15.11) fulfills the domina-
tion property for all x ∈ X, then

epi(DF (x̄, ȳ)) = epi(DgF (x̄, ȳ)).

Proof. By the definition of DgF we have

epi(DgF (x̄, ȳ)) ⊂ T (epi(F ), (x̄, ȳ)) + {0X} × C

= epi(DF (x̄, ȳ)) + {0X} × C

= epi(DF (x̄, ȳ))

resulting in
epi(DgF (x̄, ȳ)) ⊂ epi(DF (x̄, ȳ)).

Conversely, we suppose that (x, ỹ) ∈ epi(DF (x̄, ȳ)) and (x, ỹ) 6∈
epi(DgF (x̄, ȳ)), i.e.

ỹ 6∈ DgF (x̄, ȳ)(x) + C

or

ỹ 6∈ Min {y ∈ Y | (x, y) ∈ T (epi(F ), (x̄, ȳ))} + C. (15.12)

Since (x, ỹ) ∈ epi(DF (x̄, ȳ)), i.e. (x, ỹ) ∈ T (epi(F ), (x̄, ȳ)), then

ỹ ∈ {y ∈ Y | (x, y) ∈ T (epi(F ), (x̄, ȳ))} .

By the domination property there are y0 ∈ Min {y ∈ Y | (x, y) ∈
T (epi(F ), (x̄, ȳ))} and c0 ∈ C so that ỹ = y0 + c0. Thus

ỹ ∈ Min {y ∈ Y | (x, y) ∈ T (epi(F ), (x̄, ȳ))} + C,
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contradicting the condition (15.12). Hence

epiDF (x̄, ȳ) = epiDgF (x̄, ȳ).

2

Notes

The presentation of this chapter is based on the papers [170] and
[64]. Already 1981 Aubin [11] has introduced the notion of contingent
derivatives for set-valued maps. This concept is used in set-valued
analysis (e.g., see [13]) and also in set optimization (e.g., see [74],
[234] and [235]). Using this notion necessary optimality conditions
([74, Thm. 4.1]) and sufficient optimality conditions ([74, Thm. 4.2])
do not coincide under standard assumptions.

The concept of contingent epiderivative has been introduced by
Aubin [11, p. 178] with the name “upper contingent derivative” for
real-valued functions. Later the name “contingent epiderivative” is
used in the context of extended real-valued functions (see [13]). Def-
inition 15.3 can be found in [170].

Theorem 15.9 can be proved without the assumption that F is
C-convex. This extension has been done by Atasever [9].

In [13, p. 231] a result similar to that of Theorem 15.15 is men-
tioned for Fréchet differentiable functions. Generalized contingent
epiderivatives have been introduced in [64] and [23].

Calculus rules for contingent epiderivatives can be found in [167].
Under special assumptions these derivatives can be determined on a
computer ([96]).
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Subdifferential

There are different possibilities to introduce subgradients of set-valued
maps. One possible approach is a generalization of the standard defi-
nition known from convex analysis (see also Definition 2.21). Another
approach is based on a characterization of the subdifferential using
directional derivatives (e.g., see [164, Lemma 3.25]). Instead of the
directional derivative we now use the contingent epiderivative. Both
approaches are presented in this chapter.

16.1 Concept of Subdifferential

In this section we present a possible generalization of the concept
of the subdifferential of a convex functional to the case of a cone-
convex set-valued map. For these investigations we have the following
assumptions.

Assumption 16.1. Let Assumption 15.5 be satisfied, let S be
convex, let F : S ⇉ Y be C-convex, and let the contingent epideriva-
tive DF (x̄, ȳ) of F at (x̄, ȳ) exist.

Definition 16.2. Let Assumption 16.1 be satisfied.

(a) A linear map L : X → Y with

L(x) ≤C DF (x̄, ȳ)(x) for all x ∈ X (16.1)

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               

 
DOI 10.1007/978-3-642-17005-8_16, © Springer-Verlag Berlin Heidelberg 2011 

411



412 Chapter 16. Subdifferential

- x

y

6

PPPPPPPPPPP

�����������F

S

s

epi(F )

x̄

ȳ
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Figure 16.1: Subgradients of F at (x̄, ȳ).

is called a subgradient of F at (x̄, ȳ) (see Fig. 16.1).

(b) The set

∂F (x̄, ȳ)

:= {L : X → Y linear | L(x) ≤C DF (x̄, ȳ)(x) for all x ∈ X}
of all subgradients L of F at (x̄, ȳ) is called subdifferential of F
at (x̄, ȳ).

This definition is a natural extension of a known characterization
of the subdifferential of a convex functional (e.g., see [164, Lemma
3.25]) Here the directional derivative is replaced by the contingent
epiderivative and the usual ≤ ordering is replaced by the partial or-
dering ≤C induced by the convex cone C.

Obviously, the subdifferential is not defined, if the contingent epi-
derivative does not exist. Conditions ensuring the existence of the
contingent epiderivative are given in Theorem 15.6. Notice also that
the assumption of cone-convexity of F is actually not needed in Def-
inition 16.2.
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16.2 Properties of the Subdifferential

We now present basic properties of subdifferentials known from the
convex single-valued case. First we remark under which assumptions
the subdifferential is nonempty.

Theorem 16.3. Let Assumption 16.1 be satisfied, and, in addi-
tion, let S = X, let C be pointed, and let Y have the least upper bound
property. Then the subdifferential ∂F (x̄, ȳ) is nonempty.

Proof. By Theorem 15.11 the contingent epiderivative DF (x̄, ȳ)
is sublinear. Then, by the generalized Hahn-Banach Theorem 3.13,
there is a linear map L : X → Y with

L(x) ≤C DF (x̄, ȳ)(x) for all x ∈ X.

Hence, the subdifferential ∂F (x̄, ȳ) is nonempty. 2

Next, we show the convexity of the subdifferential.

Theorem 16.4. Let Assumption 16.1 be satisfied. Then the sub-
differential is convex.

Proof. For an empty subdifferential the assertion is trivial. Take
two arbitrary subgradients L1, L2 ∈ ∂F (x̄, ȳ) and an arbitrary λ ∈
[0, 1]. Then we obtain

λL1(x) + (1 − λ)L2(x) ≤C λDF (x̄, ȳ) + (1 − λ)DF (x̄, ȳ)

= DF (x̄, ȳ) for all x ∈ X.

Hence

λL1 + (1 − λ)L2 ∈ ∂F (x̄, ȳ).

2

The next result shows that the subdifferential is closed under ap-
propriate assumptions.
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Theorem 16.5. Let Assumption 16.1 be satisfied, and, in addi-
tion, let C be closed. If all subgradients are bounded, then the sub-
differential is closed (in the linear space of all linear bounded maps).

Proof. Choose an arbitrary sequence (Ln)n∈N of subgradients
converging to some linear bounded map L. Next, fix an arbitrary
x ∈ X. Then we obtain

‖Ln(x) − L(x)‖Y = ‖(Ln − L)(x)‖Y ≤ |||Ln − L||| ‖x‖X (16.2)

(||| · ||| denotes the operator norm). Since lim
n→∞

Ln = L, the inequality

(16.2) implies

lim
n→∞

Ln(x) = L(x). (16.3)

By the definition of the subgradients Ln we have

Ln(x) ≤C DF (x̄, ȳ)(x)

or

Ln(x) ∈ {DF (x̄, ȳ)(x)} − C,

and with (16.3) and the assumption that C is closed we conclude

L(x) ∈ {DF (x̄, ȳ)(x)} − C.

Hence, L is a subgradient and, therefore, the subdifferential is closed.
2

Notice that for X = Rn and Y = Rm linear maps are bounded,
and in this special case the subdifferential is closed whenever C is
closed.

The following result presents a condition under which the subdif-
ferential is singleton.

Theorem 16.6. Let Assumption 16.1 be satisfied, and, in addi-
tion, let C be pointed. If the contingent epiderivative DF (x̄, ȳ) of F
at (x̄, ȳ) is linear, then ∂F (x̄, ȳ) = {DF (x̄, ȳ)}.
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Proof. Since DF (x̄, ȳ) is linear, DF (x̄, ȳ) is a subgradient. As-
sume that there is another subgradient L 6= DF (x̄, ȳ). Then we
obtain

L(−x) ≤C DF (x̄, ȳ)(−x) for all x ∈ X

or
−L(x) ≤C −DF (x̄, ȳ)(x) for all x ∈ X.

This inequality implies (by addition of L(x) +DF (x̄, ȳ)(x))

DF (x̄, ȳ)(x) ≤C L(x) for all x ∈ X.

Since C is pointed, we get with (16.1)

DF (x̄, ȳ) = L,

a contradiction to our assumption. Hence, we conclude ∂F (x̄, ȳ)=
{DF (x̄, ȳ)}. 2

Finally, we discuss the relationship of the presented definition of
the subdifferential to the standard definition used in convex analysis.

First, we need a special result for C-convex maps.

Lemma 16.7. Let Assumption 16.1 be satisfied. Then

F (x) − {ȳ} ⊂ {DF (x̄, ȳ)(x− x̄)} + C for all x ∈ S.

Proof. Take arbitrary elements x ∈ S and y ∈ F (x). Then we
define a sequence (xn, yn)n∈N with

xn := x̄+
1

n
(x− x̄) for all n ∈ N

and

yn := ȳ +
1

n
(y − ȳ) for all n ∈ N.

Since S is a convex set and F is a C-convex map, it follows for all
n ∈ N

xn =

(

1 − 1

n

)

x̄+
1

n
x ∈ S
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and

yn =

(

1 − 1

n

)

ȳ +
1

n
y ∈ F

((

1 − 1

n

)

x̄+
1

n
x

)

+ C = F (xn) + C.

So, (xn, yn)n∈N is a sequence in the epigraph of F converging to (x̄, ȳ).
Moreover we obtain

lim
n→∞

n(xn − x̄, yn − ȳ) = (x− x̄, y − ȳ).

Consequently we get

(x− x̄, y − ȳ) ∈ T (epi(F ), (x̄, ȳ)) = epi(DF (x̄, ȳ))

implying

y − ȳ ∈ {DF (x̄, ȳ)(x− x̄)} + C.

2

Theorem 16.8. Let Assumption 16.1 be satisfied. Then every
subgradient L of F at (x̄, ȳ) fulfills the inequality

L(x− x̄) ≤C y − ȳ for all x ∈ S and y ∈ F (x).

Proof. By Lemma 16.7 we obtain

DF (x̄, ȳ)(x− x̄) ≤C y − ȳ for all x ∈ S and y ∈ F (x),

and with inequality (16.1) we conclude

L(x− x̄) ≤C y − ȳ for all x ∈ S and y ∈ F (x).

2



16.3. Weak Subgradients 417

16.3 Weak Subgradients

In this section we present the concept of weak subgradients. The
existence of a weak subgradient for a general set-valued map is shown
without the constraint that the considered map is a convex relation
(i.e. a set-valued map with a convex graph).

Assumption 16.9. Let Assumption 15.5 be satisfied, and let C
have a nonempty interior int (C).

Definition 16.10. A continuous linear map L ∈ L(X,Y ) is called
a weak subgradient of F at x̄ if

F (x) − F (x̄) − {L(x− x̄)} ⊂ Y \(−int (C)) for all x ∈ S. (16.4)

Remark 16.11. If F : X → R is a single-valued convex func-
tional, then the condition (16.4) can be written as

F (x) − F (x̄) − L(x− x̄) 6< 0 for all x ∈ X

or

F (x) ≥ F (x̄) + L(x− x̄) for all x ∈ X.

Hence, in this special case a weak subgradient is a subgradient known
from convex analysis.

In order to prove the existence of a weak subgradient we need a
technical lemma and the concept of upper semicontinuity.

Definition 16.12. Let Assumption 15.5 be satisfied. F is called
upper semicontinuous at x̄, if for any open set M in Y with F (x̄) ⊂M
there is a neighborhood N of the point x̄ so that F (N) ⊂M .

Lemma 16.13. Let Assumption 16.9 be satisfied, let S have a
nonempty interior int (S), let S be a convex subset of X, let F : S ⇉

Y be C-convex on S, let F be upper semicontinuous at x̄ ∈ intS, and



418 Chapter 16. Subdifferential

let −F (x̄) have a strict lower bound. Then epi(F ) is a convex subset
of X × Y and int (epi(F )) 6= ∅.

Proof. By Lemma 14.8 epi(F ) is convex. Now we prove that
int (epi(F )) 6= ∅. Since −F (x̄) has a strict lower bound, there is a
ỹ ∈ Y with F (x̄) ⊂ {ỹ} − intC. Since x̄ ∈ intS and F is upper
semicontinuous at x̄, there is some neighbourhood N of the zero in X
so that {x̄} +N ⊂ S and

F ({x̄} +N) ⊂ {ỹ} − int (C).

For an arbitrarily chosen ȳ ∈ {ỹ}+int (C) there is an open neighbor-
hood M of the zero in Y with

{ȳ} +M ⊂ {ỹ} + int (C).

Thus we conclude

{ȳ} +M − F ({x̄} +N) ⊂ {ỹ} + int (C) − ({ỹ} − int (C))

⊂ int (C) + int (C)

⊂ int (C) ⊂ C.

Hence we get
({x̄} +N, {ȳ} +M) ⊂ epi(F ),

i.e. int (epi(F )) 6= ∅. 2

Remark 16.14. It is obvious from the proof of the preceding
lemma that int (K) 6= ∅ for

K := {(x, y) ∈ X × Y | x ∈ S, y ∈ F (x) + int (C)} .

Theorem 16.15. Let Assumption 16.9 be satisfied, let S be convex
with a nonempty interior int (S), let x̄ ∈ int (S), let F : S ⇉ Y be
C-convex and upper semicontinuous at x̄, let F (x̄)−C be convex, let
F (x̄) and −F (x̄) have a strict lower bound, and let the set equation

F (x̄) ∩ (F (x̄) − int (C)) = ∅ (16.5)
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be fulfilled. Then there is a weak subgradient L of F at x̄ ∈ int (S)
satisfying for every x ∈ S the property

L(x− x̄) /∈ −int (C) ⇐⇒ L(x− x̄) ∈ C.

Proof. We define the set D := S − {x̄} and the set-valued map
H : D ⇉ Y with

H(x) = F (x+ x̄) − F (x̄) for all x ∈ D.

Then 0X ∈ int (D), D is convex, H is upper semicontinuous at 0X ,
and H(0X) has a strict lower bound. In order to see that H is C-
convex, take arbitrary x1, x2 ∈ D and λ ∈ (0, 1). Then it follows with
the C-convexity of F and the convexity of F (x̄) − C

λH(x1) + (1 − λ)H(x2)

= λF (x1 + x̄) + (1 − λ)F (x2 + x̄) − λF (x̄) − (1 − λ)F (x̄)

⊂ F (λx1 + (1 − λ)x2 + x̄) + C − F (x̄) + C

⊂ H(λx1 + (1 − λ)x2) + C.

Next we set

K := {(x, y) ∈ X × Y | x ∈ D, y ∈ H(x) + int (C)} .

By Remark 16.14 we obtain int (K) 6= ∅. Now we show that (0X , 0Y ) /∈
K. Suppose that (0X , 0Y ) ∈ K, then there is a y ∈ H(0X) so that
0 ∈ {y} + int (C) which implies H(0X) ∩ (−int (C)) 6= ∅, i.e.

(F (x̄) − F (x̄)) ∩ (−int (C)) 6= ∅

contradicting (16.5). By Eidelheit’s separation theorem (Theorem
3.16) there is a nonzero (−ρ, σ) ∈ X∗ × Y ∗ so that

−ρ(x) + σ(y) ≥ 0 for all (x, y) ∈ K. (16.6)

If σ = 0Y ∗ , then −ρ(x) ≥ 0 for all x ∈ D. Because of 0X ∈ int (D)
we obtain ρ = 0X∗ contradicting (−ρ, σ) 6= (0X∗ , 0Y ∗). Hence we get
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σ 6= 0Y ∗ . Moreover, observe from (16.6) that σ ∈ C∗. Then there is a
ȳ ∈ int (C) with σ(ȳ) = 1. We now define a map L : X → Y by

L(x) = ρ(x) ȳ for all x ∈ X.

Obviously, L is linear and continuous. Next we assert for this map L

F (x) − F (x̄) − {L(x− x̄)} ⊂ Y \(−int (C)) for all x ∈ S

or
y − L(x) /∈ −int (C) for all x ∈ D, y ∈ H(x). (16.7)

Suppose that there are some x ∈ D and some y ∈ H(x) with

y − L(x) ∈ −int (C).

Because of σ ∈ C∗\{0Y ∗} we then get

0 > σ(y − L(x)) = σ(y) − ρ(x)σ(ȳ) = σ(y) − ρ(x).

This is a contradiction to the inequality (16.6). Hence, the condition
(16.7) is fulfilled and, therefore, L is a weak subgradient. Finally, for
every x ∈ D we get the equivalences

L(x) 6∈ −int (C) ⇐⇒ ρ(x)ȳ 6∈ −int (C)

⇐⇒ ρ(x) ≥ 0

⇐⇒ L(x) ∈ C.

2

Remark 16.16.

(a) The following implication shows that the assumption (16.5) is
rather restrictive for the set F (x̄):

int (F (x̄)) 6= ∅ =⇒ F (x̄) ∩ (F (x̄) − int (C)) 6= ∅.

Hence the assumption (16.5) can only be fulfilled for a set F (x̄)
with an empty interior.

Proof. If int (F (x̄)) is nonempty, then there are a ȳ ∈ F (x̄)
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and a neighborhood M of ȳ so that M ⊂ F (x̄). Consequently
we obtain

F (x̄) ∩ (F (x̄) − int (C)) ⊃ M ∩ (M − int (C)) 6= ∅.

2

(b) If F : S → Y is single-valued as a special case, then the as-
sumption (16.5) is always fulfilled.

Notes

The theory of this chapter is based on the papers [20] and [64]. Lemma
16.7 can be found in [170]. The proof of this lemma makes use of the
idea of proof of Corley [74, Thm. 3.1] (Thm. 3.1 in [74] is based on
[12]).

Weak subgradients have been introduced by Yang [361].
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Optimality Conditions

Based on the concepts introduced in the preceding chapters we now
present optimality conditions for set optimization problems. These
conditions are discussed using contingent epiderivatives, subgradients
and weak subgradients. The main section of this chapter is devoted
to a generalization of the Lagrange multiplier rule. We present this
multiplier rule as a necessary optimality condition. Assumptions en-
suring that this multiplier rule is a sufficient optimality condition are
also given.

17.1 Optimality Conditions with Con-

tingent Epiderivatives

In this section we apply the concept of contingent epiderivatives in
order to obtain optimality conditions for a set optimization problem.
For these investigations we state the following assumption.

Assumption 17.1. Let (X, ‖ · ‖X) be a real normed space, let
S be a nonempty subset of X, let (Y, ‖ · ‖Y ) be a real normed space
partially ordered by a convex cone C ⊂ Y with nonempty interior
int(C), and let F : S ⇉ Y be a set-valued map.

Under this assumption we consider the set optimization problem

min
x∈S

F (x). (17.1)

J. Jahn, Vector Optimization: Theory, Applications, and Extensions,               

 
DOI 10.1007/978-3-642-17005-8_17, © Springer-Verlag Berlin Heidelberg 2011 

423



424 Chapter 17. Optimality Conditions

We know from vector optimization that the so-called weak mini-
mality notion is the appropriate concept for the formulation of nec-
essary and sufficient optimality conditions. This fact also holds for
the set-valued case. Therefore, in addition to the concept of a min-
imizer (given in Definition 14.2) we now introduce the notion of a
weak minimizer.

Definition 17.2. Let Assumption 17.1 be satisfied, and let

F (S) :=
⋃

x∈S

F (x) denote the image set of F . Then a pair (x̄, ȳ)

with x̄ ∈ S and ȳ ∈ F (x̄) is called a weak minimizer of the problem
(17.1), if ȳ is a weakly minimal element of the set F (S), i.e.

({ȳ} − int (C)) ∩ F (S) = ∅.

First we present a necessary optimality condition for the problem
(17.1).

Theorem 17.3. Let Assumption 17.1 be satisfied. If (x̄, ȳ) is a
weak minimizer of the problem (17.1) and the contingent epiderivative
DF (x̄, ȳ) exists, then

DF (x̄, ȳ)(x− x̄) /∈ −int(C) for all x ∈ S.

Proof. Let a pair (x̄, ȳ) with x̄ ∈ S and ȳ ∈ F (x̄) be arbitrarily
given. Assume that there is an x ∈ S with

y := DF (x̄, ȳ)(x− x̄) ∈ −int(C). (17.2)

By the definition of the contingent epiderivative (x− x̄, y) belongs to
the contingent cone of the epigraph of F at (x̄, ȳ). Then there are a
sequence (xn, yn)n∈N in epi(F ) and a sequence (λn)n∈N of positive real
numbers with (x̄, ȳ) = lim

n→∞
(xn, yn) and

(x− x̄, y) = lim
n→∞

λn(xn − x̄, yn − ȳ). (17.3)
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Because of the condition (17.2) and the equation (17.3) there is an
N ∈ N with

λn(yn − ȳ) ∈ −int(C) for all n ≥ N

resulting in
yn ∈ {ȳ} − int(C) for all n ≥ N (17.4)

because C is a cone. Since (xn, yn) ∈ epi(F ) for an arbitrary n ∈ N,
there is a ỹn ∈ F (xn) with

yn ∈ {ỹn} + C for all n ∈ N.

Consequently, we obtain with the condition (17.4) and the equality
int(C) + C = int(C) (compare Lemmas 1.12, (b) and 1.32, (a))

ỹn ∈ {yn} − C ⊂ {ȳ} − int(C) − C = {ȳ} − int(C) for all n ≥ N.

Hence, (x̄, ȳ) is not a weak minimizer of the problem (17.1). 2

This necessary condition generalizes a known necessary optimality
condition in vector optimization (see Theorem 7.6). It is also sufficient
under an appropriate convexity assumption.

Theorem 17.4. Let Assumption 17.1 be satisfied, and, in addi-
tion, let S be a convex set and let F be C-convex. If the contingent
epiderivative DF (x̄, ȳ) exists at an x̄ ∈ S and a ȳ ∈ F (x̄) and

DF (x̄, ȳ)(x− x̄) /∈ −int(C) for all x ∈ S,

then (x̄, ȳ) is a weak minimizer of the problem (17.1).

Proof. By assumption we have

{DF (x̄, ȳ)(x− x̄)} ∩ (−int(C)) = ∅ for all x ∈ S

which implies

({DF (x̄, ȳ)(x− x̄)} + C) ∩ (−int(C)) = ∅ for all x ∈ S

(compare Lemma 4.13, (b)). Then we obtain with Lemma 16.7

(F (x) − {ȳ}) ∩ (−int(C)) ⊂ ({DF (x̄, ȳ)(x− x̄) + C) ∩ (−int(C))

= ∅ for all x ∈ S.



426 Chapter 17. Optimality Conditions

This means that ȳ is a weakly minimal element of the set F (S) or, in
other words, (x̄, ȳ) is a weak minimizer of the problem (17.1). 2

Theorem 17.3 and 17.4 immediately lead to a characterization of
weak minimizers in convex set optimization.

Corollary 17.5. Let Assumption 17.1 be satisfied, and, in addi-
tion, let S be a convex set and let F be C-convex. Let the contingent
epiderivative DF (x̄, ȳ) exist at an x̄ ∈ S and a ȳ ∈ F (x̄). The pair
(x̄, ȳ) is a weak minimizer of the problem (17.1) if and only if

DF (x̄, ȳ)(x− x̄) /∈ −int(C) for all x ∈ S.

This corollary shows the importance of the concept of the con-
tingent epiderivative. With the aid of the contingent derivative it is
not possible to give such a characterization of weak minimizers in the
convex case.

Finally, we present a necessary and sufficient optimality condition
for strong minimizers.

Definition 17.6. Let Assumption 17.1 be satisfied, and let

F (S) :=
⋃

x∈S

F (x) denote the image set of F . Then a pair (x̄, ȳ)

with x̄ ∈ S and ȳ ∈ F (x̄) is called a strong minimizer of the problem
(17.1), if ȳ is a strongly minimal element of the set F (S), i.e.

F (S) ⊂ {ȳ} + C.

Theorem 17.7. Let Assumption 17.1 be satisfied, and, in addi-
tion, let C be closed, let S be a convex set and let F be C-convex.
Let the contingent epiderivative DF (x̄, ȳ) exist at an x̄ ∈ S and a
ȳ ∈ F (x̄). The pair (x̄, ȳ) is a strong minimizer of the problem (17.1)
if and only if

DF (x̄, ȳ)(x− x̄) ∈ C for all x ∈ S. (17.5)



17.1. Optimality Conditions with Contingent Epiderivatives 427

Proof. (a) Assume that the condition (17.5) is not fulfilled, i.e.
there is an x ∈ S with

DF (x̄, ȳ)(x− x̄) /∈ C. (17.6)

By the definition of the contingent epiderivative we have for x̂ := x−x̄
and ŷ := DF (x̄, ȳ)(x− x̄)

(x̂, ŷ) ∈ epi(DF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)).

Consequently, there are a sequence (xn, yn)n∈N of elements in epi(F )
and a sequence (λn)n∈N of positive real numbers with (x̄, ȳ) =
lim

n→∞
(xn, yn) and

(x̂, ŷ) = lim
n→∞

λn(xn − x̄, yn − ȳ).

Since C is closed, it follows from (17.6)

λn(yn − ȳ) /∈ C for sufficiently large n ∈ N

and

yn /∈ {ȳ} + C for sufficiently large n ∈ N. (17.7)

Because of

(xn, yn) ∈ epi(F ) for all n ∈ N

we write for every n ∈ N

yn = ỹn + cn with ỹn ∈ F (S) and cn ∈ C. (17.8)

The conditions (17.7) and (17.8) imply

ỹn + cn /∈ {ȳ} + C for sufficiently large n ∈ N

and

ỹn /∈ {ȳ} + C for sufficiently large n ∈ N.

Hence, ȳ is no strongly minimal element of F (S) and, therefore, (x̄, ȳ)
is no strong minimizer of the problem (17.1).
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(b) Assume that the condition (17.5) is fulfilled. Then we conclude
with Lemma 16.7

F (x) ⊂ {ȳ +DF (x̄, ȳ)(x− x̄)} + C

⊂ {ȳ} + C + C

= {ȳ} + C for all x ∈ S.

Hence, (x̄, ȳ) is a strong minimizer of the problem (17.1). 2

Notice that the assumption of C-convexity is only needed for the
proof of the sufficiency of the condition (17.5).

17.2 Optimality Conditions with Sub-

gradients

For strong minimizers an optimality condition based on the subdif-
ferential is now given. This result extends the well-known result of
convex analysis that a point is a minimal point of a convex functional
if and only if the null functional is a subgradient (e.g., see [164, Thm.
3.27]).

Theorem 17.8. Let Assumption 16.1 be satisfied.

(a) If the null map is a subgradient of F at (x̄, ȳ), then the pair (x̄, ȳ)
is a strong minimizer of the set optimization problem (17.1).

(b) In addition, let S equal X and let C be closed. If the pair (x̄, ȳ)
is a strong minimizer of the set optimization problem (17.1),
then the null map is a subgradient of F at (x̄, ȳ).

Proof.

(a) By Theorem 16.8 we conclude

0Y ≤C y − ȳ for all x ∈ S and y ∈ F (x)

or
ȳ ≤C y for all y ∈ F (S),
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i.e., (x̄, ȳ) is a strong minimizer of the set optimization problem
(17.1).

(b) By Theorem 17.7 we obtain for the strong minimizer (x̄, ȳ)

DF (x̄, ȳ)(x− x̄) ∈ C for all x ∈ S = X

or

0Y ≤C DF (x̄, ȳ)(x) for all x ∈ X.

Hence, the null map is a subgradient of F at (x̄, ȳ). 2

The preceding theorem immediately implies the following corol-
lary.

Corollary 17.9. Let Assumption 16.1 be satisfied, and, in addi-
tion, let S equal X and let C be closed. The pair (x̄, ȳ) is a strong
minimizer of the set optimization problem (17.1) if and only if the
null map is a subgradient of F at (x̄, ȳ).

17.3 Optimality Conditions with Weak

Subgradients

In this section we derive a sufficient optimality condition for set op-
timization problems in terms of weak subgradients.

Theorem 17.10. Let Assumption 16.9 be satisfied. If there is a
weak subgradient L of F at x̄ ∈ S so that

L(x− x̄) ∈ C for all x ∈ S, (17.9)

then for every ȳ ∈ F (x̄) (x̄, ȳ) is a weak minimizer of the set opti-
mization problem (17.1), and we have the property

F (x̄) ∩ (F (x̄) − int (C)) = ∅.
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Proof. Since L is a weak subgradient of F at x̄ ∈ S, then

F (x) − F (x̄) − {L(x− x̄)} ⊂W for all x ∈ S (17.10)

where W := Y \(−int (C)). Thus for every ȳ ∈ F (x̄) we have

F (x) − {ȳ} ⊂ {L(x− x̄)} +W ⊂ C +W = W for all x ∈ S

resulting in

F (S) ∩ ({ȳ} − int (C)) = ∅,

i.e. ȳ is a weakly minimal element of F (S). From (17.10) we have

F (x̄) − F (x̄) − {L(0Y )} ⊂W

implying

F (x̄) − F (x̄) ⊂W,

hence

F (x̄) ∩ (F (x̄) − int (C)) = ∅.

2

Remark 17.11. In the special case S = X the assumption (17.9)
reads

L(x− x̄) ∈ C for all x ∈ X.

If C is pointed, we then conclude

L(x) ∈ C ∩ (−C) = {0Y } for all x ∈ X

which means that L = 0L(X,Y ), or in other words: 0L(X,Y ) is a weak
subgradient of F at x̄ ∈ X. Hence we obtain the standard assumption
known from the theory of subgradients in convex analysis.



17.4. Generalized Lagrange Multiplier Rule 431

17.4 Generalized Lagrange Multiplier

Rule

More than 200 years ago Lagrange presented his multiplier rule as
an optimality condition for optimization problems with equality con-
straints (see [213]). In this section we extend the investigations in
Chapter 7 to general optimization problems with a set-valued objec-
tive map and a set-valued constraint, and we show that the Lagrange
multiplier rule remains valid in such a general setting as well.

Throughout this section we use the following standard assumption.

Assumption 17.12. Let (X, ‖ · ‖X) be a real normed space, let
(Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) be real normed spaces partially ordered by
convex pointed cones CY ⊂ Y and CZ ⊂ Z, respectively, let Ŝ be
a nonempty subset of X, and let F : Ŝ ⇉ Y and G : Ŝ ⇉ Z be
set-valued maps.

Under this assumption we consider the constrained set optimiza-
tion problem

min F (x)
subject to the constraints
G(x) ∩ (−CZ) 6= ∅
x ∈ Ŝ.







(17.11)

For simplicity let S := {x ∈ Ŝ | G(x) ∩ (−CZ) 6= ∅} denote the
feasible set of this problem which is assumed to be nonempty. If G
is single-valued, the constraint in (17.11) reduces to G(x) ∈ −CZ or
G(x) ≤CZ

0Z generalizing equality and inequality constraints. If, in
addition, F is single-valued, then the problem (17.11) is a general
vector optimization problem.

On the basis of the concept of contingent epiderivatives we prove in
Subsection 17.4.1 a multiplier rule as a necessary optimality condition
of problem (17.11) and discuss a regularity assumption. In Subsection
17.4.2 assumptions are presented which guarantee that this multiplier
rule is a sufficient optimality condition as well.



432 Chapter 17. Optimality Conditions

17.4.1 A Necessary Optimality Condition

We begin our investigations with a generalized Lagrange multiplier
rule as a necessary optimality condition for set optimization problems.

Theorem 17.13. Let Assumption 17.12 be satisfied. Let the cones
CY and CZ have a nonempty interior int(CY ) and int(CZ) respec-
tively, let the set Ŝ be convex and let the maps F and G be CY -
convex and CZ-convex, respectively. Assume that (x̄, ȳ) ∈ X×Y with
x̄ ∈ S and ȳ ∈ F (x̄) is a weak minimizer of the problem (17.11). Let
the contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) for an arbitrary
z̄ ∈ G(x̄)∩ (−CZ) exist. Then there are continuous linear functionals
t ∈ CY ∗ and u ∈ CZ∗ with (t, u) 6= (0Y ∗ , 0Z∗) so that

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ

and
u(z̄) = 0.

If, in addition to the above assumptions, the regularity assumption

{z | (y, z) ∈ D(F,G)(x̄, (ȳ, z̄))(cone(Ŝ−{x̄}))}+cone(CZ +{z̄}) = Z
(17.12)

is satisfied, then t 6= 0Y ∗.

Proof. In the product space Y × Z we define for an arbitrary
z̄ ∈ G(x̄) ∩ (−CZ) the following set

M :=
[ ⋃

x∈Ŝ

D(F,G)(x̄, (ȳ, z̄))(x− x̄)
]

+ (CY × (CZ + {z̄})).

The proof of this theorem consists of several steps. First, we prove
two important properties of this set M and then we apply a separa-
tion theorem in order to obtain the multiplier rule. Finally, we show
t 6= 0Y ∗ under the regularity assumption.

(a) We show that the nonempty set M is convex. We prove the
convexity for the translated set M ′ := M − {(0Y , z̄)} and immedi-
ately get the desired result. For this proof we fix two arbitrary pairs
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(y1, z1), (y2, z2) ∈M ′. Then there are elements x1, x2 ∈ Ŝ with

(yi, zi) ∈ D(F,G)(x̄, (ȳ, z̄))(xi − x̄) + (CY × CZ) for i = 1, 2

resulting in

(xi − x̄, (yi, zi)) ∈ T (epi(F,G), (x̄, (ȳ, z̄))) for i = 1, 2.

This contingent cone is convex because the map (F,G) is cone-convex
and, therefore, by Lemma 14.8 the epigraph epi(F,G) is a convex set.
Then we obtain for all λ ∈ [0, 1]

λ(x1 − x̄, (y1, z1)) + (1 − λ)(x2 − x̄, (y2, z2)) ∈ T (epi(F,G), (x̄, (ȳ, z̄)))

implying

(λy1 + (1 − λ)y2, λz1 + (1 − λ)z2)

∈ D(F,G)(x̄, (ȳ, z̄))(λx1 + (1 − λ)x2 − x̄) + (CY × CZ).

Consequently, the set M is convex.

(b) In the next step of the proof we show the equality

M ∩
[

( − int(CY )) × ( − int(CZ))
]

= ∅. (17.13)

Assume that this equality does not hold. Then there are elements
x ∈ Ŝ and (y, z) ∈ Y × Z with

(y, z + z̄) ∈
[

D(F,G)(x̄, (ȳ, z̄))(x− x̄) + (CY × (CZ + {z̄}))
]

∩
[

( − int(CY )) × ( − int(CZ))
]

. (17.14)

implying

(x− x̄, (y, z)) ∈ T (epi(F,G), (x̄, (ȳ, z̄))).

This means that there are sequences (xn, (yn, zn))n∈N of elements in
epi(F,G) and a sequence (λn)n∈N of positive real numbers with

(x̄, (ȳ, z̄)) = lim
n→∞

(xn, (yn, zn))
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and

(x− x̄, (y, z)) = lim
n→∞

λn(xn − x̄, (yn − ȳ, zn − z̄)). (17.15)

Since y ∈ −int(CY ) by (17.14), we conclude λn(yn − ȳ) ∈ −int(CY )
for sufficiently large n ∈ N resulting in

yn ∈ {ȳ} − int(CY ) for sufficiently large n ∈ N. (17.16)

Because of (xn, (yn, zn)) ∈ epi(F,G) for all n ∈ N there are elements
ŷn ∈ F (xn) with

yn ∈ {ŷn} + CY for all n ∈ N.

Together with (17.16) we obtain

ŷn ∈ {ȳ}− int(CY )−CY = {ȳ}− int(CY ) for sufficiently large n ∈ N

or

({ȳ} − int(CY )) ∩ F (xn) 6= ∅ for sufficiently large n ∈ N. (17.17)

Moreover, from (17.14) we conclude z+z̄ ∈ −int(CZ) and with (17.15)
we obtain

λn(zn − z̄) + z̄ ∈ −int(CZ) for sufficiently large n ∈ N

or

λn

(

zn −
(

1 − 1

λn

)

z̄
)

∈ −int(CZ) for sufficiently large n ∈ N

implying

zn −
(

1 − 1

λn

)

z̄ ∈ −int(CZ) for sufficiently large n ∈ N. (17.18)

Since y 6= 0Y (by (17.14)), we conclude with (17.15) that

λn > 1 for sufficiently large n ∈ N.
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By assumption we have z̄ ∈ −CZ and, therefore, we get from (17.18)

zn ∈ −CZ−int(CZ) = −int(CZ) for sufficiently large n ∈ N. (17.19)

Because of (xn, (yn, zn)) ∈ epi(F,G) for all n ∈ N there are elements
ẑn ∈ G(xn) with

zn ∈ {ẑn} + CZ for all n ∈ N.

Together with (17.19) we then get

ẑn ∈ {zn} − CZ ⊂ −int(CZ) for sufficiently large n ∈ N

and

ẑn ∈ G(xn) ∩ (−CZ) for sufficiently large n ∈ N. (17.20)

Hence, for a sufficiently large n ∈ N we have x̂n ∈ Ŝ, ({ȳ}−int(CY ))∩
F (xn) 6= ∅ (by (17.17)) and G(xn) ∩ (−CZ) 6= ∅ (by (17.20)) and,
therefore, (x̄, ȳ) is not a weak minimizer of the problem (17.12) which
is a contradiction to the assumption of the theorem.

(c) In this step we now prove the first part of the theorem. By part
(a) the set M is convex and by (b) the equality (17.13) holds. By
Eidelheit’s separation theorem (Theorem 3.16) there are continuous
linear functionals t ∈ Y ∗ and u ∈ Z∗ with (t, u) 6= (0Y ∗ , 0Z∗) and a
real number γ so that

t(cY ) + u(cZ) < γ ≤ t(y) + u(z) (17.21)

for all cY ∈ −int(CY ), cZ ∈ −int(CZ), (y, z) ∈M.

Since (0Y , z̄) ∈M , we obtain from (17.21) for cY = 0Y

u(cZ) ≤ u(z̄) for all cZ ∈ −int(CZ). (17.22)

If we assume that u(cZ) > 0 for a cZ ∈ −int(CZ), we get a contradic-
tion to (17.22) because CZ is a cone. Therefore, we obtain

u(cZ) ≤ 0 for all cZ ∈ −int(CZ)
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resulting in u ∈ CZ∗ because CZ ⊂ cl(int(CZ)). For (0Y , z̄) ∈ M and
cZ = 0Z we get from (17.21)

t(cY ) < u(z̄) ≤ 0 for all cY ∈ −int(CY ) (17.23)

(notice that z̄ ∈ −CZ and u ∈ CZ∗). This inequality implies t ∈ CY ∗ .
From (17.22) and (17.23) we immediately obtain u(z̄) = 0. In order
to prove the inequality of the multiplier rule we conclude from (17.21)
with cY = 0Y and cZ = 0Z

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ.

Hence, the first part of the theorem is shown.

(d) Finally, we prove t 6= 0Y ∗ under the regularity assumption (17.12).
For an arbitrary ẑ ∈ Z there are elements x ∈ Ŝ, cZ ∈ CZ and
nonnegative real numbers α and β with

ẑ = z + β(cZ + z̄) for (y, z) = D(F,G)(x̄, (ȳ, z̄))(α(x− x̄)).

Since D(F,G)(x̄, (ȳ, z̄)) is positively homogeneous by Theorem 15.11
(notice that we do not need convexity assumptions for this proof), we
can write

(y, z) = αD(F,G)(x̄, (ȳ, z̄))(x− x̄) =: α(ỹ, z̃).

Assume that t = 0Y ∗ . Then we conclude from the multiplier rule

u(ẑ) = u(z) + βu(cZ + z̄)

= αu(z̃)
︸︷︷︸

≥ 0

+β u(cZ)
︸ ︷︷ ︸

≥ 0

+β u(z̄)
︸︷︷︸

= 0

≥ 0.

Because ẑ is arbitrarily chosen we have

u(ẑ) ≥ 0 for all z ∈ Z

implying u = 0Z∗ . But this is a contradiction to (t, u) 6= (0Y ∗ , 0Z∗).
2
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Theorem 17.13 extends the Lagrange multiplier rule as neces-
sary optimality condition (compare Theorem 7.4) to set optimization.
Since a minimizer of the problem (17.11) is also a weak minimizer (see
Lemma 4.14), this multiplier rule is a necessary optimality condition
for a minimizer as well.

The regularity condition in Theorem 17.13 extends the Kurcyusz-
Robinson-Zowe regularity assumption (e.g., see [164]) to set optimiza-
tion problems. It is weaker than a generalized Slater condition (com-
pare Lemma 17.15). Although the regularity condition in Theorem
17.13 also includes the objective map F , one only uses the second
component of the contingent epiderivative of (F,G).

It is important to note that the maps F and G are assumed to
be cone-convex in Theorem 17.13 whereas convexity of the objective
function and the constraint function is not needed in the single-valued
scalar case (e.g., see [164, Thm. 5.3]). In fact, the cone-convexity is
only needed in part (a) of the proof in order to obtain the convexity of
the contingent cone. If we would modify the notion of the contingent
epiderivative in such a way that we replace the contingent cone by
Clarke’s tangent cone which is always convex, we could drop the cone-
convexity assumption in Theorem 17.13.

With the following example we illustrate the usefulness of the
necessary condition in Theorem 17.13.

Example 17.14. Let (X, ‖ · ‖X) be a real normed space, and let
f, g, h : X → R be given functionals. Then we consider the set-valued
map F : X ⇉ R with

F (x) := {y ∈ R | f(x) ≤ y ≤ g(x)}

and the set-valued map G : X ⇉ R (which is actually single-valued)
with

G(x) := {h(x)}.
Under these assumptions we investigate the optimization problem

min F (x)
subject to the constraints
G(x) ∩ (−R+) 6= ∅
x ∈ X.







(17.24)
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This is a special problem of the general type (17.11). Notice that the
constraint is equivalent to the inequality h(x) ≤ 0. If f = g this prob-
lem reduces to a standard optimization problem. But if the data of
the objective function of a standard problem are not exactly known,
it makes sense to replace the objective by a set-valued objective rep-
resenting fuzzy outcomes. In this example the values of the objective
may vary between the values of two known functions.
Next, we assume that (x̄, f(x̄)) is a weak minimizer of problem (17.24),
and that f and h are continuous at x̄ and convex. Since

epi(F,G) = {(x, (y, z)) ∈ X × R2 | x ∈ X, y ≥ f(x), z ≥ h(x)},

we conclude

T (epi(F,G), (x̄, (f(x̄), h(x̄)))) = epi(f, g)′(x̄),

i.e., the contingent epiderivative of (F,G) at (x̄, (f(x̄), h(x̄))) exists
and equals the directional derivative (f, h)′(x̄) = (f ′, h′)(x̄) of (f, h) at
x̄ (see Corollary 15.17 for the case of one functional). Consequently,
by the previous theorem there are nonnegative numbers t and u with
(t, u) 6= (0, 0) so that

tf ′(x̄)(x− x̄) + uh′(x̄)(x− x̄) ≥ 0 for all x ∈ X

and

uh(x̄) = 0.

If f ′(x̄) and h′(x̄) are linear (e.g., in the case of Fréchet differentiabil-
ity), we even conclude

tf ′(x̄) + uh′(x̄) = 0X∗

and

uh(x̄) = 0.

Finally, we discuss the regularity condition of Theorem 17.13 for this
problem. Assume that for every z < 0 there is an x ∈ X with
z = h′(x̄)(x). Then h′(x̄)(X) ⊃ −R+ and because of h(x̄) ≤ 0 we
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obtain

h′(x̄)(cone(X − {x̄})) + cone(R+ + {h(x̄)})

= h′(x̄)(X)
︸ ︷︷ ︸

⊃−R+

+

{
R if h(x̄) < 0
R+ if h(x̄) = 0

= R.

Hence, the general regularity condition (17.12) is satisfied in this case.

The next lemma shows that a generalization of the well-known
Slater condition implies the extended Kurcyusz-Robinson-Zowe con-
straint qualification.

Lemma 17.15. Let Assumption 17.12 be satisfied, let int(Ŝ) 6= ∅,
let x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄) ∩ (−CZ) be arbitrarily given, and
let the contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) exist. If there
is an x̂ ∈ int(Ŝ) with

z̄ + z ∈ −int(CZ) for (y, z) = D(F,G)(x̄, (ȳ, z̄))(x̂− x̄),

then the regularity assumption (17.12) is fulfilled.

Proof. Take an arbitrary ẑ ∈ Z. Since D(F,G)(x̄, (ȳ, z̄)) is
positive homogeneous by Theorem 15.11 (notice that we do not need
convexity assumptions for this proof), we obtain for a sufficiently large
λ > 0

λ(y, z) = D(F,G)(x̄, (ȳ, z̄))(λ(x̂− x̄))

∈ D(F,G)(x̄, (ȳ, z̄))(cone(S − {x̄}))

and

ẑ = λz + λ
[

−z̄ − z +
1

λ
ẑ

︸ ︷︷ ︸

∈ CZ

+z̄
]

∈ {z̃ | (y, z̃) ∈ D(F,G)(x̄, (ȳ, z̄))(cone(S − {x̄}))}
+cone(CZ + {z̄}).
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Hence, we conclude

Z ⊂ {z̃ | (y, z̃) ∈ D(F,G)(x̄, (ȳ, z̄))(cone(S−{x̄}))}+cone(CZ +{z̄}).

Because the converse inclusion is trivial, the regularity assumption
(17.12) is fulfilled. 2

The following example shows that the regularity condition (17.12)
can be satisfied although the regularity assumption in Lemma 17.15
is not fulfilled.

Example 17.16. We consider X = Z = L2[0, 1] with the natural
ordering cone

CZ := {x ∈ L2[0, 1] | x(t) ≥ 0 almost everywhere on [0, 1]}

(notice that int(CZ) = ∅). Take an arbitrary a ∈ L2[0, 1] and define
the set-valued map G : X ⇉ Z with

G(x) = {−x+ a} + CZ for all x ∈ X.

Then we investigate the constraint of problem (17.11)

G(x) ∩ (−CZ) 6= ∅, x ∈ X

being equivalent to

−x+ a ∈ −CZ , x ∈ X.

For instance, choose the objective map F : X ⇉ R with

F (x) = {〈x, x〉} for all x ∈ X

(〈·, ·〉 denotes the scalar product in X).

Since int(CZ) = ∅, it is obvious that Lemma 17.15 is not applicable in
this case. Therefore, we investigate the regularity assumption (17.12)
in Theorem 17.13. For an arbitrary x̄ ∈ X with z̄ := −x̄ + a ∈ −CZ

we obtain with

epi(F,G) = {(x, (y, z))∈X×R×Z | x ∈ X, y≥〈x, x〉, −x+a≤CZ
z}
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the equality

T (epi(F,G), (x̄, (〈x̄, x̄〉, z̄))) = epi(2〈x, ·〉,−id)

implying
D(F,G)(x̄, (ȳ, z̄)) = (2〈x, ·〉,−id)

(id denotes the identity). Then we get

−id(cone(X−{x̄}))+cone(CZ +{z̄}) = X+cone(CZ +{z̄}) = X = Z,

i.e., the regularity condition (17.12) in Theorem 17.13 is fulfilled.

17.4.2 A Sufficient Optimality Condition

In this subsection we answer the question under which assumptions
the multiplier rule in Theorem 17.13 is also a sufficient optimality
condition. It is known from standard optimization theory (see Sec-
tion 7.2) that convexity or generalized concepts like quasiconvexity
play the essential role. Therefore, we begin with an extension of the
quasiconvexity concept to set-valued maps.

Definition 17.17. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed
spaces, let Ŝ be a nonempty subset of X, let C̃ be a nonempty subset
of Y and let F : Ŝ ⇉ Y be a set-valued map whose contingent
epiderivative exists at (x̄, ȳ) with x̄ ∈ Ŝ and ȳ ∈ F (x̄). The map F is
called C̃-quasiconvex at (x̄, ȳ), if for all x ∈ Ŝ

(F (x) − {ȳ}) ∩ C̃ 6= ∅ =⇒ ({DF (x̄, ȳ)(x− x̄)} + CY ) ∩ C̃ 6= ∅.

This notion extends a concept introduced in Definition 7.17 for
problems in vector optimization. The following lemma shows that
cone-convexity implies quasiconvexity in this set-valued setting.

Lemma 17.18. Let Ŝ be a nonempty convex subset of a real
normed space (X, ‖·‖X), let C̃ be a nonempty subset of the real normed
space (Y, ‖ · ‖Y ) partially ordered by a convex pointed cone CY ⊂
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Y and let a set-valued map F : Ŝ ⇉ Y be given whose contingent
epiderivative exists at (x̄, ȳ) with x̄ ∈ Ŝ and ȳ ∈ F (x̄). If F is CY -
convex, then it is also C̃-quasiconvex at (x̄, ȳ).

Proof. Choose an arbitrary x ∈ Ŝ with

(F (x) − {ȳ}) ∩ C̃ 6= ∅.

Since F is CY -convex, we conclude with Lemma 16.7

F (x) − {ȳ} ⊂ {DF (x̄, ȳ)(x− x̄)} + CY .

Consequently we obtain

({DF (x̄, ȳ)(x− x̄)} + CY ) ∩ C̃ 6= ∅.

2

It is known from Theorem 7.20 that the quasiconvexity of a certain
composite map completely characterizes the sufficiency of a multiplier
rule. This idea is extended in the next theorem.

Theorem 17.19. Let Assumption 17.12 be satisfied. Let the cone
CY have a nonempty interior int(CY ), let the contingent derivative
of (F,G) exist at (x̄, (ȳ, z̄)) with x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄).
Moreover, assume that there are continuous linear functionals t ∈
CY ∗\{0Y ∗} and u ∈ CZ∗ with

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ
(17.25)

and
u(z̄) = 0. (17.26)

Then (x̄, ȳ) is a weak minimizer of F on

S̃ := {x ∈ Ŝ | G(x) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅}

if and only if the map (F,G) : Ŝ ⇉ Y × Z is C̃-quasiconvex at
(x̄, (ȳ, z̄)) with

C̃ := ( − int(CY )) × ( − CZ + cone(z̄) − cone(z̄)).
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Proof. First we show under the given assumptions
(

({y} + CY ) × ({z} + CZ)
)

∩ C̃ = ∅

for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ. (17.27)

For the proof of this assertion assume that there is an x ∈ Ŝ with
(

({y} + CY ) × ({z} + CZ)
)

∩ C̃ 6= ∅
for (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄),

i.e.
({y} + CY ) ∩ ( − int(CY )) 6= ∅ (17.28)

and

({z} + CZ) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅. (17.29)

The condition (17.28) implies

y ∈ −CY − int(CY ) = −int(CY ),

and with the condition (17.29) we obtain

z ∈ −CZ − CZ + cone(z̄) − cone(z̄) = −CZ + cone(z̄) − cone(z̄).

Consequently, we get with the equation (17.26)

t(y) + u(z) < 0

which contradicts the inequality (17.25). Hence, the set equation
(17.27) is satisfied.

Now we come to the actual proof of this theorem. First, we assume
that the map (F,G) is C̃-quasiconvex at (x̄, (ȳ, z̄)). Then we conclude
with the equality (17.27)

(

(F (x) − {ȳ}) × (G(x) − {z̄})
)

∩ C̃ = ∅ for all x ∈ Ŝ.

Hence, there is no x ∈ Ŝ with

(F (x) − {ȳ}) ∩ ( − int(CY )) 6= ∅
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and
(G(x) − {z̄}) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅.

Consequently, there is no x ∈ Ŝ with

(F (x) − {ȳ}) ∩ ( − int(CY )) 6= ∅

and
G(x) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅.

This means that (x̄, ȳ) is a weak minimizer of F on S̃.
Finally, we assume that (x̄, ȳ) is a weak minimizer of F on S̃.

Then there is no x ∈ Ŝ with

(F (x) − {ȳ}) ∩ ( − int(CY )) 6= ∅

and
G(x) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅

implying

(G(x) − {z̄}) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅.

Then we obtain
(

(F (x) − {ȳ}) × (G(x) − {z̄})
)

∩ C̃ = ∅ for all x ∈ Ŝ.

Together with the equality (17.27) we conclude that the map (F,G)
is C̃-quasiconvex. 2

Notice that the set cone(z̄) − cone(z̄) in Theorem 17.19 equals
the one dimensional linear subspace of Z generated by z̄, i.e. {λz̄ ∈
Z | λ ∈ R}.

Based on the result of Theorem 17.19 we can now formulate the
type of quasiconvexity which is needed for the multiplier rule to be a
sufficient optimality condition.

Corollary 17.20. Let Assumption 17.12 be satisfied. Let the cone
CY have a nonempty interior int(CY ), and let the contingent deriva-
tive of (F,G) exist at (x̄, (ȳ, z̄)) with x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄).
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If there are continuous linear functionals t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗

with

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ

and

u(z̄) = 0,

and if the map (F,G) : Ŝ ⇉ Y × Z is C̃-quasiconvex at (x̄, (ȳ, z̄))
with

C̃ := ( − int(CY )) × ( − CZ + cone(z̄) − cone(z̄)),

then (x̄, ȳ) is a weak minimizer of the problem (17.11).

Proof. By Theorem 17.19 (x̄, ȳ) is a weak minimizer of F on

S̃ = {x ∈ Ŝ | G(x) ∩ ( − CZ + cone(z̄) − cone(z̄)) 6= ∅}.

For every x ∈ S we obtain

∅ 6= G(x) ∩ (−CZ) ⊂ G(x) ∩ ( − CZ + cone(z̄) − cone(z̄))

implying x ∈ S̃. Hence, we have S ⊂ S̃ and (x̄, ȳ) is a weak minimizer
of the problem (17.11). 2

Example 17.21. We investigate the optimization problem in
Example 17.14 again. Since F is R+-convex (notice that f is a con-
vex functional) and G is R+-convex (notice that h is also a convex
functional), the composite map (F,G) : X ⇉ R×R has the required
quasiconvexity property. Hence, if there are real numbers t > 0 and
u ≥ 0 with

tf ′(x̄)(x− x̄) + uh′(x̄)(x− x̄) ≥ 0 for all x ∈ X

and
uh(x̄) = 0,

then (x̄, f(x̄)) is a weak minimizer of the optimization problem (17.11)
in Example 17.14.
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If we combine Theorem 17.13 and Corollary 17.20 we obtain the
main result of this section: a complete characterization of weak min-
imizers using the Lagrange multiplier rule.

Corollary 17.22. Let the cones CY and CZ have a nonempty
interior int(CY ) and int(CZ) respectively, let the set Ŝ be convex and
let the maps F and G be CY -convex and CZ-convex, respectively.
Assume that a pair (x̄, ȳ) ∈ X × Y with x̄ ∈ S and ȳ ∈ F (x̄) is
given. Let the contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) for an
arbitrary z̄ ∈ G(x̄) ∩ (−CZ) exist. Moreover, let the regularity as-
sumption (17.12) be satisfied. Then (x̄, ȳ) is a weak minimizer of the
problem (17.11) if and only if there are continuous linear functionals
t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ

and
u(z̄) = 0.

Notes

The results of Section 17.1 are taken from [170]. Optimality condi-
tions in set optimization were given by Corley [74] and Luc [234],
[235] using contingent derivatives. Oettli [265] introduced a differ-
entiability notion generalizing the Neustadt derivative known in the
single-valued case. Here we present a necessary optimality condition
for weak minimizers of the set optimization problem (17.1) using the
concept of contingent epiderivatives. The proofs of Theorems 17.3
and 17.4 make use of the idea of proof of Corley [74, Thms. 4.1 and
4.2]. The optimality condition for strong minimizers in Theorem 17.7
is based on a result of Aubin and Ekeland [12].

Section 17.2 is based on [20], and the presentation in Section 17.3
follows [64].

Section 17.4 extends the investigations in Chapter 7 to the set-
valued case. The results are taken from [120]. The basic idea for the
first part of the proof of Theorem 17.13 has been given by Corley [74]
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using a different differentiability concept. This idea of proof has also
been used by Luc and Malivert [237] (e.g., see Thm. 5.6) for the con-
tingent derivative. They have already proved an optimality condition
under a regularity assumption (a generalized Slater condition).

Optimality conditions for generalized contingent epiderivatives are
published in [166].
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[118] Göpfert, A., Nehse, R., Vektoroptimierung - Theorie, Verfahren und
Anwendungen (Teubner, Leipzig, 1990).
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