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Introduction

Introduction

The aim of this book is to present some the basic mathematics that is needed by
computer scientists. The reader is not expected to be a mathematician and we
hope will find what follows useful.

Just a word of warning. Unless you are one of the irritating minority math-
ematics is hard. You cannot just read a mathematics book like a novel. The
combination of the compression made by the symbols used and the precision of
the argument makes this impossible. It takes time and effort to decipher the
mathematics and understand the meaning.

It is a little like programming, it takes time to understand a lot of code and
you never understand how to write code by just reading a manual - you have to
do it! Mathematics is exactly the same, you need to do it.

5
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Chapter 1

Numbers

Defendit numerus: There is safety in numbers

We begin by talking about numbers. This may seen rather elementary but is does
set the scene and introduce a lot of notation. In addition much of what follows is
important in computing.

1.0.1 Integers

We begin by assuming you are familiar with the integers

1,2,3,4,. . .,101,102, . . . , n, . . . , 232582657 − 1, . . .,

sometime called the whole numbers. These are just the numbers we use for count-
ing. To these integers we add the zero, 0, defined as

0 + any integer n = 0 + n = n + 0 = n

Once we have the integers and zero mathematicians create negative integers by
defining (−n) as:
the number which when added to n gives zero, so n + (−n) = (−n) + n = 0.

Eventually we get fed up with writing n+(−n) = 0 and write this as n−n = 0.
We have now got the positive and negative integers {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

You are probably used to arithmetic with integers which follows simple rules.
To be on the safe side we itemize them, so for integers a and b

1. a + b = b + a

2. a × b = b × a or ab = ba

3. −a × b = −ab

7
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4. (−a) × (−b) = ab

5. To save space we write ak as a shorthand for a multiplied by itself k times.
So 34 = 3 × 3 × 3 × 3 and 210 = 1024. Note an × am = an+m

6. Do note that n0=1.

Factors and Primes

Many integers are products of smaller integers, for example 2 × 3 × 7 = 42. Here
2, 3 and 7 are called the factors of 42 and the splitting of 42 into the individual
components is known as factorization. This can be a difficult exercise for large
integers, indeed it is so difficult that it is the basis of some methods in cryptography.

Of course not all integers have factors and those that do not, such as

3, 5, 7, 11, 13, . . . , 2216091 − 1, . . .

are known as primes. Primes have long fascinated mathematicians and others see

http://primes.utm.edu/,

and there is a considerable industry looking for primes and fast ways of factorizing
integers.

To get much further we need to consider division, which for integers can be
tricky since we may have a result which is not an integer. Division may give rise
to a remainder, for example

9 = 2 × 4 + 1.

and so if we try to divide 9 by 4 we have a remainder of 1 .
In general for any integers a and b

b = k × a + r

where r is the remainder. If r is zero then we say a divides b written a | b. A
single vertical bar is used to denote divisibility. For example 2 | 128, 7 | 49 but 3
does not divide 4, symbolically 3 � 4.

Aside

To find the factors of an integer we can just attempt division by primes i.e.
2, 3, 5, 7, 11, 19, . . . . If it is divisible by k then k is a factor and we try again.
When we cannot divide by k we take the next prime and continue until we are left
with a prime. So for example:

1. 2394/2=1197 can’t divide by 2 again so try 3
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2. 1197/3=399

3. 399/3 = 133 can’t divide by 3 again so try 7 ( not divisible by 5)

4. 133/7 = 19 which is prime so 2394 =2 × 3 × 3 × 7 × 19

Modular arithmetic

The mod operator you meet in computer languages simply gives the remainder
after division. For example,

1. 25 mod 4 = 1 because 25 ÷ 4 = 6 remainder 1.

2. 19 mod 5 = 4 since 19 = 3 × 5 + 4 .

3. 24 mod 5 = 4.

4. 99 mod 11 = 0.

There are some complications when negative numbers are used, but we will ignore
them. We also point out that you will often see these results written in a slightly
different way i.e. 24 = 4 mod 5 or 21 = 0 mod 7. which just means 24 mod 5 =

4 and 27 mod 7 = 0

Modular arithmetic is sometimes called clock arithmetic. Suppose we take a
24 hour clock so 9 in the morning is 09.00 and 9 in the evening is 21.00. If I start
a journey at 07.00 and it takes 25 hours then I will arrive at 08.00. We can think
of this as 7+25 = 32 and 32 mod 24 = 8. All we are doing is starting at 7 and
going around the (25 hour) clock face until we get to 8. I have always thought this
is a complex example so take a simpler version.

Four people sit around a table and we label their positions 1 to 4. We have a
pointer point to position 1 which we spin. Suppose it spins 11 and three quarters
or 47 quarters. The it is pointing at 47 mod 4 or 3.

1

2

3

4

�

�
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The Euclidean algorithm

Algorithms which are schemes for computing and we cannot resist putting one
in at this point. The Euclidean algorithm for finding the gcd is one of the oldest
algorithms known, it appeared in Euclid’s Elements around 300 BC. It gives a way
of finding the greatest common divisor (gcd) of two numbers. That is the largest
number which will divide them both.

Our aim is to find a a way of finding the greatest common divisor, gcd(a, b) of
two integers a and b.
Suppose a is an integer smaller than b.

1. Then to find the greatest common factor between a and b, divide b by a. If
the remainder is zero, then b is a multiple of a and we are done.

2. If not, divide the divisor a by the remainder.

Continue this process, dividing the last divisor by the last remainder, until the
remainder is zero. The last non-zero remainder is then the greatest common factor
of the integers a and b.

Download free eBooks at bookboon.com
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The algorithm is illustrated by the following example. Consider 72 and 246.
We have the following 4 steps:

1. 246 = 3 × 72 + 30 or 246 mod 72 = 30

2. 72 = 2 × 30 + 12 or 72 mod 30 = 12

3. 30 = 2 × 12 + 6 or 30 mod 12 = 6

4. 12 = 2 × 6 + 0

so the gcd is 6.
There are several websites that offer Java applications using this algorithm, we

give a Python function

def gcd(a,b):

""" the euclidean algorithm """

if b == 0:

return a

else:

return gcd(b, (a%b))

Those of you who would like to see a direct application of some these ideas to
computing should look at the section on random numbers

1.0.2 Rationals and Reals

Of course life would be hard if we only had integers and it is a short step to the
rationals or fractions. By a rational number we mean a number that can be written
as P/Q where P and Q are integers. Examples are

1

2

3

4

7

11

7

6

These numbers arise in an obvious way, you can imagine a ruler divided into ’iths’
and then we can measure a length in ’iths’. Mathematicians, of course, have more
complicated definitions based on modular arithmetic . They would argue that for
every integer n, excluding zero, there is an inverse, written 1/n which has the
property that

n × 1

n
=

1

n
× n = 1

Of course multiplying 1/n by m gives a fraction m/n. These are often called
rational numbers.

We can manage with the simple idea of fractions.
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One problem we encounter is that there are numbers which are neither integers
or rationals but something else. The Greeks were surprised and confused when it
was demonstrated that

√
2 could not be written exactly as a fraction. Technically

there are no integer values P and Q such that P/Q =
√

2.

From our point of view we will not need to delve much further into the details,
especially as we can get good enough approximation using fractions. For example
22/7 is a reasonable approximation for π while 355/113 is better. You will find
people refer to the real numbers, sometimes written R, by which they mean all the
numbers we have discussed to date.

Notation

As you will have realized by now there is a good deal of notation and we list some
of the symbols and functions you may meet.

• If x is less than y then we write x < y. If there is a possibility that they
might be equal then x ≤ y. Of course we can write these the other way
around. So y > x or y ≥ x. Obviously we can also say y is greater than x

or greater than or equal to x

• The floor function of a real number x, denoted by �x� or floor(x), is a
function that returns the largest integer less than or equal to x. So �2.7� = 2

and �−3.6� = −4. The function floor in Java and Python performs this
operation. There is an obvious(?) connection to mod since b mod a can
be written b−floor(b÷a)×a. So 25 mod 4 = 25−�25/4�×4 = 25−6×4 =

1
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• A less used function is the ceiling function, written �x� or ceil(x) or ceiling(x),
is the function that returns the smallest integer not less than x. Hence
�2.7� = 3.

• The modulus of x written | x | is just x when x ≥ 0 and −x when x < 0. So
| 2 |= 2 and | −6 |= 6. The famous result about the modulus is that for any
x and y

| x + y |≤| x | + | y |

• We met ab when we discussed integers and in the same way we can have xy

when x and y are not integers. We discuss this in detail when we meet the
exponential function. Note however

– a0=1 for all a �= 1

– 0b = 0 for all values of b including zero.

1.0.3 Number Systems

We are so used to working in a decimal system we forget that it is a recent invention
and was a revolutionary idea. It is time we looked carefully at how we represent
numbers. We normally use the decimal system so 3459 is shorthand for 3 + 4 ×
100+5+9. The position of the digit is vital as it enables us to distinguish between
30 and 3. The decimal system is a positional numeral system; it has positions for
units, tens, hundreds and so on. The position of each digit implies the multiplier
(a power of ten) to be used with that digit and each position has a value ten times
that of the position to its right.

Notice we may save space by writing 1000 as 103 the 3 denoting the number of
zeros. So 100000 = 105. If the superscript is negative then we mean a fraction e.g
103 = 1/1000. Perhaps the cleverest part of the positional system was the addition
of the decimal point allowing us to include decimal fractions. Thus 123.456 is
equivalent to

1×100+2×10+3+ numbers after the point +4×1/10+5×1/100+6×1/1000

Multiplier . . . 102 101 100 . 10−1 10−2 10−3 . . .

digits . . . 1 2 3 . 4 5 6 . . .

↑
decimal point

However there is no real reason why we should use powers of 10, or base 10.
The Babylonians use base 60 and base 12 was very common during the middle
ages in Europe. Today the common number systems are

3459 is shorthand for 3 x 1000 + 4 x
100 + 5 x 10 + 9.
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• Decimal number system: symbols 0-9; base 10

• Binary number system:symbols symbols 0,1; base 2

• Hexadecimal number system:symbols 0-9,A-F; base 16
here A ≡ 10 , B ≡ 11 , C ≡ 12 , D ≡13 E ≡ 14 , F≡ 15.

• Octal number system: symbols 0-7; base 8

Binary

In the binary scale we express numbers in powers of 2 rather than the 10s of the
decimal scale. For some numbers this is easy so, if recall 20 = 1,

Decimal in powers of 2 power of 2 Binary number
number 3 2 1 0

8 = 23 1 0 0 0 1000
7 = 22 + 21 + 20 0 1 1 1 111
6 = 22 + 21 0 1 1 0 110
5 = 22 + 20 0 1 0 1 101
4 = 22 0 1 0 0 100
3 = 21 + 20 0 0 1 1 11
2 = 21 0 0 1 0 10
1 = 20 0 0 0 1 1

As in decimal we write this with the position of the digit representing the power,
the first place after the decimal being the 20 position the next the 21 and so on.
To convert a decimal number to binary we can use our mod operator.

As an example consider 88 in decimal or 8810. We would like to write it as a
binary. We take the number and successively divide mod 2. See below

Step number n xn �xn/2� xn mod 2

0 88 44 0
1 44 22 0
2 22 11 0
3 11 5 1
4 5 2 1
5 2 1 0
6 1 0 1

Writing the last column in reverse, that is from the bottom up, we have 1011000
which is the binary for of 88, i.e.8810 = 10110002.
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Binary decimals are less common but quite possible, thus 101.1011 is just
22 + 20 + 2−1 + 2−3 + 2−4 which is, after some calculation 5.6875. We have see how
to turn the integer part of a decimal number into a binary number and we can do
the same with a decimal fraction. Consider 0.6875. As before we draw up a table

Step number n xn xn × 2 �xn × 2�
0 0.6875 1.375 1
1 0.375 0.75 0
2 0.75 1.5 1
3 0.5 1 1

giving reading down 0.687510 = 10112

Beware it is possible to get into a non-ending cycle when we have a non
terminating decimal. For example 0.4.

Step number n xn xn2 �xn × 2�
0 0.4 0.8 0
1 0.8 1.6 1
2 0.6 1.2 1
3 0.2 0.4 0
4 0.4 0.8 0 ← here we repeat
3 0.8 1.6 1
4 . . . . . .

so 0.410 = 0.0110011001100 . . .2
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• Addition in binary

– 0+0 = 0

– 0+1 = 1

– 1+1 = 10 so we carry 1 and leave a zero

– 1+1+1 = 1+(1+0)=1+10=11 .

We can write this in very much the same way as for a decimal addition

1 1 0 1 0 1
+ 1 0 1 1 1 0
1 1 0 0 0 1 1 Sum

↑ ↑

the right hand uparrow show where we carry a 1. The left hand one shows
where we have 1 + 1 + 1 so we carry a 1 and have a 1 left over

• To subtract

1 1 0 1 0 1
- 1 0 1 1 1 0

0 0 0 1 1 1 difference

Multiplication in decimal

1 2 5 6 7 8 Multiplicand
× 3 8 7 Multiplier

8 7 9 7 4 6 times 7
1 0 0 5 4 2 4 Shift left one and times 8
3 7 7 0 3 4 Shift left two and times 3
4 8 6 3 7 3 8 6 Add to get product

Multiplication in binary

1 0 0 1 1 1 0 Multiplicand
× 1 0 1 Multiplier

1 0 0 1 1 1 0 times 1
0 0 0 0 0 0 0 Shift left one and times 0

1 0 0 1 1 1 0 Shift left two and times 1
1 1 0 0 0 0 1 1 0 Add to get the product

As you can see multiplication in binary is easy.
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Octal

Base 8 or octal does not bring any new problems. We use the symbols 0, 1, 2,. . . ,7
and the position denotes the power of 8. So 128 is 1× 8+ 2 = 10 in decimal, while
30218 is

3 × 83 + 0 × 82 + 2 × 8 + 1 × 80 = 1536 + 16 + 1 = 1553

in decimal. Obviously we do not need the symbol for 9 as 910 = 8 + 1 = 118 in
octal. To convert a decimal number to octal we can use our mod operator as we
did in the binary case.

As an example consider 1553 in decimal or 155310. We would like to write it
as an octal number. We take the number and successively divide mod 8. See below

Step number n xn �xn/8� xn mod 8

0 1553 194 1
1 194 24 2
2 24 3 0
3 3 0 3

Writing the last column in reverse we have 3021 which is the octal number we
require since

3 × 83 + 0 × 82 + 2 × 8 + 1 × 80 = 1553

There is a simple link between octal and binary if we notice that

7 = 22 + 21 + 20 = 1112 3 = 21 + 20 = 112

6 = 22 + 21 = 1102 2 = 21 = 102

5 = 22 + 20 = 1012 1 = +21 = 12

4 = 22 = 1002 0 = 02

You might like to check that 1553 is

11000010001

in binary.
Separating this into blocks of 3 gives

11 000 010 001

If we use our table to write the digit corresponding to each binary block of 3 we
have

3 0 2 1
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which is our octal representation!
As in the binary case we can also have octal fractions, for example 0.30128.

This is a way of representing

3 × 1/81 + 0 × 1/82 + 1 × 1/83 + 2 × 1/84

To convert 0.30128 to decimal we proceed as for the binary case only here we use
8 rather that 2 to give

Step number n xn 8 × xn �8xn�
0 0.3012 2.4096 2
1 0.4096 3.2768 3
2 0.2768 2.2144 2
3 0.2144 1.7152 1
4 0.7152 5.72165 5
5 0.7216 5.7728 5
6 0.7728 6.1824 6
7 0.1824 1.4592 1
8 0.4592 3.6736 3
9 0.6736 5.3888 5
10 0.3888 3.1104 3
11. 0.1104002 0.8832016 0
12 0.8832016 7.0656128 7
13 0.06561279 0.52490234 0
14 0.5249023 4.1992188 4
15 0.1992188 1.5937500 1
16 0.59375 4.75000 4
17 0.75 6.00 6
18 0 0

giving reading down 0.30128 = 0.23215561353070414610

hexadecimal

Base 16 is more complicated because we need more symbols. We have the integers
0 to 9 and we also use A ≡ 10 , B ≡ 11 , C ≡ 12 , D ≡13 E ≡ 14 , F≡ 15.

So 12316 is 1 × 162 + 2 × 161 + 3 in decimal and A2E16 is 10 × 162 + 2 ×
161 + 14 in decimal. The good thing about hex is that each of the symbols cor-
responds to a 4 digit binary sequence ( if we allow leading zeros). This means
we can easily translate from hex to binary as below 0101111010110101001022 =

0101 1110 1011 0101 0010

= 5 E B 5 216 = 5EB5216
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exercises

1. Factorize

(a) 3096

(b) 1234

(c) 24 − 1

2. It was thought that 2p − 1 was prime when p is a prime. Shown that this is
not true when p = 11

3. Find the gcd for 3096 and 1234.

4. Write the following decimal numbers in binary

(a) 25610

(b) 24 − 1

(c) 549

(d) 12.34
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5. Convert the following binary numbers into decimal numbers and explain your
answers.

(a) 101.0012

(b) 1011112

(c) 0.101012

(d) 11.00012

(e) 10012

(f) 0.112

6. Convert the following decimal numbers into binary numbers and explain your
answers.

(a) 5010

(b) 7010

(c) 6410

(d) 39.5610

(e) 20.62510

(f) 13.1110 (8 significant digits )

7. Add the following numbers in binary and explain your answers.

(a) 1112 + 1112

(b) 11102 + 112

(c) 111012 + 110012

8. Multiply the following numbers in binary and explain your answers.

(a) 11102 ×112

(b) 1112 ×1012
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Chapter 2

The statement calculus and logic

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.

Lewis Carroll

You will have encountered several languages - your native language or the one in
which we are currently communicating( English) and other natural languages such
as Spanish, German etc. You may also have encountered programming languages
like Python or C. You have certainly met some mathematics if you have got this
far.

A language in which we describe another language is called a metalanguage. For
almost all of mathematics, the metalanguage is English with some extra notation.

In computing we need to define, and use, languages and formal notation so it
is essential that we have a clear and precise metalanguage. We begin by looking
at some English expressions which we could use in computing. Most sentences in
English can be thought of as a series of statements combined using connectives
such as “and”, “or”, “if . . . then . . .”

For example the sentence “if it is raining and I go outside then I get wet” is
constructed from the three simple statements:

1. “It is raining.”

2. “I go outside.”

3. “I get wet.”

Whether the original sentence is true or not depends upon the truth or not of these
three simple statements.

If a statement is true we shall say that its logical value is true, and if it is false,
its logical value is false. As a shorthand we shall use the letter T for true and F
for false.

21

Download free eBooks at bookboon.com



Mathematics for Computer Scientists

21 

The statement calculus and logic
22 CHAPTER 2. THE STATEMENT CALCULUS AND LOGIC

We will build compound statements from simple statements like “it is raining”,
“it is sunny” by connecting them with and and or In order to make things shorter
and we hope more readable, we introduce symbolic notation.

1. Negation will be denoted by ¬.

2. “and” by ∧.

3. “or” by ∨.

We now look at these connectives in a little more detail.

Negation ¬

The negation of a statement is false when the statement is true and is true if the
statement is false. So a statement and its negation always have different truth
values. For example “It is hot” and “It is not hot.” In logic you need to be quite
clear about meanings so the negation of,

“All computer scientists are men”

is

“Some computer scientists are men”

NOT

“No computer scientists are men.”

The first and third statement are both false!
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In symbolic terms if p is a statement, say “ it is raining” , then ¬p is its
negation. That is ¬p is the statement “it is not raining”. We summarize the truth
or otherwise of the statements in a truth table, see table 2.1.

p ¬p

T F
F T

Table 2.1: Truth table for negation (¬)

In the truth table 2.1 the first row reads in plain English - “If p is true then
¬p is false” and row two “If p is false then ¬p is true’.

Conjunction ∧

Similarly, if p and q are statements, then p ∧ q is read as “p and q” . This
(confusingly) is called the conjunction of p and q.

So if p is the statement “ it is green” while q is the statement ” it is an apple”
then

p ∧ q is the statement “It is green and it is an apple ”

We often write this in the shorter form:
If p=“ it is green” and q = ” it is an apple” then p ∧ q = “It is green and it is an
apple ”

Clearly this statement is true only when both p and q are true. If either of
them is false then the compound statement is false. It will be helpful if we have a
precise definition of ∧ and we can get one using a truth table.

p q p ∧ q

T T T
T F F
F T F
F F F

Table 2.2: The truth table for ∧

From table 2 we see that if p and q are both true then p ∧ q is also true. If p

is true and q is false then p ∧ q is false.
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Disjunction ∨

Suppose we now look at “or”. In logic we use p∨q as a symbolic way of writing p

or q. The truth table in this case is given in table 2.3 This version of “or” , which

p q p ∨ q

T T T
T F T
F T T
F F F

Table 2.3: The truth table for ∨

is the common one used in logic is sometimes known as the “inclusive or” because
we can have p ∨ q true if either one of p and q is true or if both are true.

You could of course define the exclusive or , say �≡ as having the truth table in
2.4

p q p �≡ q

T T F
T F T
F T T
F F F

Table 2.4: The truth table for �≡

The Conditional ⇒
A rather more interesting connective is “implies” as in p “implies” q. This can be
written many ways, for example

• p implies q

• If p then q

• q if p

• p is a sufficient condition for q

I am sure you can think of other variants. We shall use the symbolic form p ⇒ q

and the truth table for our definition is given in table 2.5.
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p q p ⇒ q

T T T
T F F
F T T
F F T

Table 2.5: The truth table for ⇒

We sometimes call p the hypothesis and q the consequence or conclusion. Many
people find it confusing when they read that “ p only if q” is the same as “If p

then q”. Notice that “ p only if q” says that p cannot be true when q is not true,
in other words the statement is false if p is true but q is false. When p is false q

may be true or false.
You need to be aware that “ q only if p” is NOT a way of expressing “ p ⇒ q.

We see this by checking the truth values. The truth value in line 3 of table 2.5 is
the critical difference.

You might like to check that “ ¬p ∨ q is equivalent to p ⇒ q, see the table
below

p ¬p q ¬p ∨ q

T F T T
T F F F
F T T T
F T F T

Table 2.6: The truth table for ⇒

Notice that our definition of implication is rather broader than the usual usage.
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Typically you might say

“if the sun shines today we will have a barbecue” .

The hypothesis and the conclusion are linked in some sensible way and the state-
ment is true unless it is sunny and we do not have a barbecue. By contrast the
statement

“If the sun shines today 19 is prime”

is true from the definition of an implication because the conclusion is always true
no matter if it is sunny or not. If we consider

“if the sun shines today 8 is prime”

The statement is obviously false if today is sunny because 8 is never prime. How-
ever the whole statement is true when the sun does not shine today even though
8 is never prime. Of course we are unlikely to make statements like these in real
life.

The Biconditional ⇐⇒
Suppose p and q are two statements. Then the statement “p if and only if q” is
called the biconditional and denoted by p ⇐⇒ q or iff. Yes there are two f’s! It
is true only when p and q have the same logical values, i.e., when either both are
true or both are false.

You may also meet the equivalent

• p iff q

• p is necessary and sufficient for q

The truth table is shown in figure 2.7. For example we might say

p q p ⇐⇒ q

T T T
T F F
F T F
F F T

Table 2.7: The truth table for ⇐⇒

You can go to the match if and only if you buy a ticket.

This sort of construction is not very common in ordinary language and it is often
hard to decide whether a biconditional is implied in ordinary speech. In math-
ematics or computing you need to be clear if you are dealing with implication
p ⇒ q or the biconditional p ⇐⇒ q
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Converse, contrapositive and inverse

Propositional logic has lots of terminology. So If p ⇒ q then

• q ⇒ p is the converse.

• ¬q ⇒ ¬p is the contrapositive.

• ¬p ⇒ ¬q is the inverse.

Truth tables

It is probably obvious that we aim to use logic to help us in checking arguments.
We hope to be able to translate from English to symbols. Thus if p is “John learns
to cook” and q is “ John will find a job” then p ⇒ q represents . ”If John learns
to cook” and then John will find a job” In problems like these the truth table,
while cumbersome can be very helpful in giving a mechanical means of checking
the truth values of arguments.

To construct tables for compound statements such as p ∨ ¬q ⇒ (p ∧ q) we
need to think about the order we work out the truth values of symbols. The table
2.8 gives the order of precedence.

Precedence 1(Highest) 2 3 4 5(Lowest)
Operator ¬ ∧ ∨ ⇒ ⇐⇒

Table 2.8: Operator precedence

So we negate first, then and etc. As in algebra we also use brackets to indicate
that we evaluate the terms in brackets first. Thus for (p ∨ q) ∧ r we evaluate the
term in brackets (p ∨ q) first. Thus

p q (p ∨ q) ¬p (p ∨ q) ∨ ¬p

T T T F T
T F T F T
F T T T T
F F F T T

precidence - - 1 2 3

The vital point about logical statements and about truth tables is :
Two symbolic statements are equivalent if they have the same truth table.
and two statements p1 and p2 are equivalent, we will write p1 ⇐⇒ p2.
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Thus, for example, the statements (p ∨ q) ∧ ¬p and ¬p ∧ q are equivalent.
We can deduce this from the truth tables, see table 2.9

p q p ∨ q p (p ∨ q) ∧ ¬p p ¬p q ¬p ∧ q

T T T F F T F T F
T F T F F T F F F
F T T T T F T T T
F F F T F F T F F

Table 2.9: The truth tables for (p ∨ q) ∧ ¬p and(¬p ∧ q)

The reader can use truth table to verify the following equivalences.

1. ¬(p ∨ q) ⇐⇒ ¬p ∧ ¬q

2. ¬(p ∧ q) ⇐⇒ ¬p ∨ ¬q

One can avoid writing truth tables in table 2.9 and verify the first equivalence
as follows:
p ∨ q is false only when both p and q are false. Therefore ¬(p ∨ q) is true only
when both p and q are false. Similarly, ¬p ∧ ¬q is true only when both ¬p and
¬q are true, which is when p and q are false. This proves the equivalence.

Exercise

Construct truth tables for

1. ¬(p ∧ q)

2. ¬(p ∨ q) ∧ ¬(q ∨ p)

3. (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)

4. (p ∨ q ⇒ r) ∧ (r ⇒ s)

5. (p ∨ q ⇒ r) ∧ (r ⇒ s) ⇒ (p ⇒ r)
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Arguments

We now look briefly at logical arguments and begin with some definitions. Defini-
tion:

• A statement that is always true is called a tautology.

• A statement that is always false is called a contradiction.

So a statement is

1. A tautology if its truth table has no value F.

2. A contradiction if its truth table has no value T.

Notice you may find some writers who say that a formula ( in the statement
calculus we have just described ) is valid rather than use the term tautology. The
symbol � A is often used as a shorthand for “A is a tautology” or “ A is valid”.

Examples

1. The statement p ∨ ¬p is a tautology, while the statement p ∧ ¬p is a con-
tradiction.

2. The statement ((p ∨ q) ∧ p) ⇐⇒ p is a tautology.

3. Two statements p1 and p2 are equivalent when p1 ⇐⇒ p2 is a tautology,
and so p1 ≡ p2 when p1 ⇐⇒ p2 is a tautology.

Definition 1: Given two statements p1 and p2 we say that p1 implies p2 if
p1 ⇒ p2 is a tautology.

In everyday life we often encounter situations where we make conclusions based
on evidence. In a courtroom the fate of the accused may depend the defence prov-
ing that the opposing side’s arguments are not valid. A typical task in theoretical
sciences is to logically come to conclusions given premises. That is to provide
principles for reasoning.

A scientist might say

“if all the premises are true then we have the following conclusion.”

Thus they would assert that the conditional

“if all the premises are true then we have the following conclusion”

is a tautology, or that the premises imply his/her conclusion. If his/her reasoning
is correct we say that his argument is valid.
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Definition 2: A conditional of the form

( a conjunction of statements) implies c

where c is a statement, is called an argument. Symbolically

p1, p2, . . . , pm ⇒ c

The statements in the conjunction on the left side of the conditional are called
premises, while c is called the conclusion.

An argument is valid if it is a tautology, that is, if the premises imply the
conclusion ( every line of the truth table is T), otherwise it is invalid. So we might
have a sequence of premises p1, p2, p3, . . . , pm for which c is a valid consequence,
symbolically

p1, p2, p3, . . . , pm � c

You should note that

1. A conjunction of several statements is true only when all the statements are
true.

2. A conditional is false only when the antecedent ( the left hand side) is true
and the consequent ( the right hand side) is false.

3. Therefore, an argument is invalid only when there is a situation where all
the premises are true, but the conclusion is false. If such a situation cannot
occur, the argument is valid.

Exercise s:

1. Is the following argument valid?

All birds are mammals and the platypus is a bird. Therefore, the
platypus is a mammal.

Note the premises may be wrong but we are interested in the argument.

2. Sketch how you might show that the statements below below imply that “It
rained”. Beware this is a big truth table so you are probably best to ensure
you understand the method.

If it does not rain or if it is not foggy then the regatta will be held
and the lifeboat demonstration will go on. If the regatta is held
then the trophy will be awarded.

and
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the trophy was not awarded.

3. Show that the following argument is valid.

Blodwin works hard. If Blodwin works hard then she is a dull girl.
If Blodwin is a dull girl she will not get the job therefore Blodwin
will not get the job.

So far we have used truth tables only to determine the validity of arguments that
are given in symbolic form. However, we can do the same with other arguments by
first rewriting them in symbolic form. This is illustrated in the following example.

Either I shall go home or stay and have a drink. I shall not go home.
Therefore I stay and have a drink.

Suppose p= I shall go home and q = I shall stay and have a drink. The argument
is ¬p ⇒ q.

p ¬p q ¬p ⇒ q

T F T T
T F F F
F T T T
F T F F

Table 2.10: The truth table for ⇒

From the truth table table 2.10 we have a F and so the argument is not valid
is , we do not have a tautology. We summarize the process of determining the
validity of arguments as follows.
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2.0.4 Analyzing Arguments Using Truth Tables

• Step 1: Translate the premises and the conclusion into symbolic form.

• Step 2: Write the truth table for the premises and the conclusion.

• Step 3: Determine if there is a row in which all the premises are true and
the conclusion is false. If yes, the argument is invalid, otherwise it is valid.

However truth table can become unwieldy if we have several premises. Consider
the following

p, r, (p ∧ q) → ¬r � ¬q

Given we have p, q and r we need 8 rows (23) in our table 2.11 as we need all
combinations of p, q and r. If we examine line 3 in table 2.11 we can see that
when p, r, (p ∧ q) → ¬r are all true ( we can ignore q ) then the result ¬q is true
and we have a tautology.

p q r p ∧ q ⇒ ¬r ¬q

T T T F F
T T F T F
T F T T T ←
T F F T T
F T T T T
F T F T F
F F T T T
F F F T T

Table 2.11: Truth table with p, q and r

Now suppose we have p, q, r, s and t. Our table will have 25 = 32 rows.
Take as an example :
If I go to my first class tomorrow , then I must get up early, and if I go to the
dance tonight, I will stay up late. If I stay up late and get up early, then I will
be forced to exist on only five hours sleep. I cannot exist on five hours of sleep.
Therefore I must either miss my fist class tomorrow or not go to the dance.

• Let p be “ I go to my first class tomorrow”

• Let q be “ I must get up early”

• Let r be “ I go to the dance ”

• Let s be “ I stay up late ”.
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• Let t be “I can exist on five hours sleep”.

The premises are
(p ⇒ q) ∧ (r ⇒ t), s ∧ q ⇒ t,¬t

and the conclusion is ¬p ∨ ¬r. We will prove that ¬p ∨ ¬r is a valid consequence
of the premises.

Of course we could write out a truth table, however we can try to be cunning.

1. Take the consequence ¬p ∨ ¬r and assume that it is FALSE.

2. Then both p and r must be TRUE.

3. The first premise (p ⇒ q) ∧ (r ⇒ t) implies that q and t are true.

4. So t is true and the last premise is ¬t is assumed TRUE so we have a
contradiction.

5. Thus our premise is valid.

I think you might agree that this is a good deal shorter than using truth tables!.

Exercises

Show that

1. � (p ⇒ q) ⇒ ((q ⇒ r)) ⇒ (p ⇒ r))

2. � p ⇒ (¬q ⇒ ¬p) ⇒ q)

We add some tables of tautologies which enable us to eliminate conditionals and
biconditionals.

1. � p ⇒ q ⇐⇒ ¬p ∨ q

2. � p ⇒ q ⇐⇒ ¬(p ∨ ¬q)

3. � p ∨ q ⇐⇒ ¬p → q

4. � p ∨ q ⇐⇒ ¬(p ⇒ ¬q)

5. � p ∨ q ⇐⇒ ¬p → q
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6. � p ∨ q ⇐⇒ ¬p → q

7. � p ∧ q ⇐⇒ ¬(p ⇒ ¬q)

8. � p ∧ q ⇐⇒ ¬(¬p ∨ ¬q)

9. � (p ⇐⇒ q) ⇐⇒ (p ⇒ q) ∧ (q ⇒ p)

Normal forms

A statement is in disjunctive normal form (DNF) if it is a disjunction i.e. a
sequence of ∨’s consisting of one or more disjuncts. Each disjuncts is a conjunction,
∧, of one or more literals (i.e., statement letters and negations of statement letters.
For example

1. p

2. (p ∧ q) ∨ (p ∧ ¬r)

3. (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q)

4. p ∨ (q ∧ r)

However ¬(p∨q) is not a disjunctive normal form(¬ is the outermost operator) nor
is p∨(q∧(r∨s) as a ∨ is inside a ∧. Converting a formula to DNF involves using
logical equivalences, such as the double negative elimination, De Morgan’s laws,
and the distributive law. All logical formulas can be converted into disjunctive
normal form but conversion to DNF can lead to an explosion in the size of of the
expression.

A formula is in conjunctive normal form (CNF ) if it is a conjunction of clauses,
where a clause is a disjunction of literals. Essentially we have the same form as a
DNF but we use ∧ rather than ∨. As a normal form, it is useful ( as is the DNF)
in theorem proving.

We leave with some ideas which are both important and common in mathe-
matics.
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2.0.5 Contradiction and consistency

We say a contradiction is a formula that always takes the value F, for example
p ∧ ¬p. Then a set of statements p1, p2, . . . , pn is inconsistent if a contradiction
can be drawn as a valid consequence of this set.

p1, p2, . . . , pn � q ∧ ¬q for some formula b if a contradiction can be derived
as a valid consequence of p1, p2, . . . , pn � q and ¬q

Mathematics is full of proofs by contradiction or Reductio ad absurdum (Latin
for ”reduction to the absurd”). For example

There are infinitely many prime numbers.

Assume to the contrary that there are only finitely many prime numbers, and all
of them are listed as follows: n1, n2 . . . , pm. Consider the number

q = n1 × n2 × . . . × pm + 1

Then the number q is either prime or composite. If we divided any of the listed
primes ni into q, there would result a remainder of 1 for each i = 1, 2, ...,m Thus,
q cannot be composite. We conclude that q is a prime number, not among the
primes listed above, contradicting our assumption that all primes are in the list
n1, n2 . . . , nm. Thus there are and infinite number of primes.

there is no smallest rational number greater than 0

Remember that a ration can be written as the ratio of two integers p/q say.
Assume n0 = p/q is the smallest rational bigger that zero. Consider n0/2. It

is clear that n0/2 < n0 and n0 is rational. Thus we have a contradiction and can
assume that there is no smallest rational number greater than 0.
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Mathematical Induction

I have hardly ever known a mathematician who was capable of rea-
soning.

Plato (427 BC - 347 BC), The Republic

The integers , 1, 2, 3, 4, . . . are also known as the natural numbers and Mathematical
induction is a technique for proving a theorem, or a formula, that is asserted about
every natural number. Suppose for example we believe

1 + 2 + 3 + ... + n = n(n + 1)/2

that is the sum of consecutive numbers from 1 to n is given by the formula on the
right. We want to prove that this will be true for all n. As a start we can test the
formula for any given number, say n = 3:

1 + 2 + 3 = 3 × 4/2 = 6

It is also true for n = 4

1 + 2 + 3 + 4 = 4 × 5/2 = 10

But how are we to prove this rule for every value of n? The method of proof we
now describe is called the principle of mathematical induction. The idea is simple.
Suppose we have some statement that is true for a particular natural number n

and we want to prove that it is true for every value of n from 1, 2, 3, . . . If all the
following are true

1. When a statement is true for some natural number n, say k.

2. When it is also true for its successor, k + 1.

3. The statement is true for some value n, usually n = 1.

37
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then the statement is true for every natural number n.
This is because, when the statement is true for n = 1, then according to 2, it

will also be true for 2. But that implies it will be true for 3; which implies it will
be true for 4. And so on. Hence it will be true for every natural number and thus
is true for all n.

To prove a result by induction, then, we must prove parts 1, 2 and 3 above.
The hypothesis of step 1

“The statement is true for n = k”

is called the induction assumption, or the induction hypothesis. It is what we
assume when we prove a theorem by induction.

Example

Prove that the sum of the first n natural numbers is given by this formula:

Sn = 1 + 2 + 3 + ... + n = n(n + 1)/2

We will call this statement Sn, because it depends on n. Now we do steps 1
and 2 above.

1. First, we will assume that the statement is true for n = k that is, we will
assume that Sk is true so

Sk = 1 + 2 + 3 + ... + k = k(k + 1)/2

Note this is the induction assumption.

2. Assuming this, we must prove that S(k+1) is also true. That is, we need to
show:

S(k+1) = 1 + 2 + 3 + ... + (k + 1) = (k + 1)(k + 2)/2

To do that, we will simply add the next term (k + 1) to both sides of the
induction assumption,

S(k+1) = S(k+1) + (k + 1) =

1 + 2 + 3 + . . . + (k + 1) = k(k + 1)/2 + (k + 1) = (k + 1)(k + 2)/2

This is line 2, which is we wanted to show.

3. Next, we must show that the statement is true for n = 1. We have S(1) =

1 = 1 × 2/2. The formula therefore is true for n = 1.

We have now fulfilled both conditions of the principle of mathematical induction.
Sn is therefore true for every natural number.
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Example

We prove that 8n−3n is divisible by 5 for all n ∈ N. The proof is by mathematical
induction.

1. Assume the result holds for n = k, that is 8k − 3k mod 5 = 0. Then
8k+1 − 3k+1 = 8 × 8k − 3 × 3k.

2. Now the clever step

8k+1−3k+1 = 8×8k−3×3k = 3×8k−3×3k+5×8k = 3×(8k−3k)+5×8k

But 8k − 3k is divisible by 5 (by the induction hypothesis) and 5 × 8k is
obviously a multiple of 5. Therefore it follows that (8k+1 − 3k+1) is divisible
by 5. Hence, the result holds for n = k + 1.

3. The result holds for n = 1 because 8 − 3 = 5 and so is divisible by 5.

So we have shown that the result holds for all n - by induction.
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Another Example

We prove this rule of exponents:

(ab)n = anbn, for every natural number n.

Call this statement S(n) and assume that it is true when n = k; that is, we assume
S(k) = (ab)k = akbk is true.

We must now prove that S(k + 1) is true, that is

S(k + 1) = (ab)k+1 = ak+1bk+1

Simply by multiplying both sides of line (3) by ab gives :

(ab)kab = akbkab = akabkb

since the order of factors does not matter,

(ab)kab = ak+1bk+1.

Which is what we wanted to show. So, we have shown that if the theorem is
true for any specific natural number k, then it is also true for its successor, k + 1.
Next, we must show that the theorem is true for n = 1 which is trivial since
(ab)1 = ab = a1b1.

This theorem is therefore true for every natural number n.

Exercises

In each of the following 0 ≤ n is an integer

1. Prove that n2 + n is even.

2. Prove that
∑n

i=1 n2 = n(n + 1)(2n + 1)/6.

3. Prove that 1 + 4 + 7 + . . . + (3n − 2) = n(3n − 1)/2.

4. Prove that n! ≥ 2n when n > 1
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Sets

Philosophers have not found it easy to sort out sets . . .

D. M. Armstrong,

It is useful to have a way of describing a collection of “things” and the mathe-
matical name for such a collection is a set. So the collection of colours {Red,Blue,
Green } is a set we might call A and write as A={Red, Blue, Green } . Other
examples are

1. {1, 3, 7, 14}

2. {1, 2, 3, 5, 7, 11 . . .} the set of all prime numbers.

3. { Matthew, Mark, Luke, John}

4. {k : k is an integer and k is divisible by 4} here the contents are defined by
a rule.

5. { All songs available on iTunes} again the contents are defined by a rule.

We do not care about the order of the elements of a set so {1, 2, 3} is the same
as {3,2,1}.

Of course we may want to do things with sets and there is a whole mathemat-
ical language attached as you might expect. For example you will often see the
statement a belongs to the set A written as a ∈ A. The symbol /∈ is, of course,
the converse i.e. does not belong to.

So

• Mark ∈ {Matthew, Mark, Luke, John}

• Abergail /∈ {Matthew, Mark, Luke, John} .

41
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• 7∈ {1,2,3,4,5,6,7}

There are some sets that have special symbols because they are used a lot.
Examples are

1. The set with nothing in it, called the empty set is written as ∅.

2. N = {1, 2, 3, . . .} the set of natural numbers.

3. Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} the integers.

4. Q = the set of fractions.

5. R = the set of real numbers.

6. The set that contains everything is called the universal set written S, U or
∅.

Finally we will write Ā when we mean the set of things which are not in A.

Subsets

It is probably obvious that some set are “bigger” than others, for example {A,B,C,D,E}
and {B,C,D}. We formalize this idea by defining subsets.

If the set B contains all the elements in the set A together with some others
then we write A ⊂ B. We say that A is a subset of B. So
{Matthew, Mark, Luke, John} ⊂ {Matthew, Mark, Luke, John, Thomas }

We can of course write this the other way around, so A ⊂ B is the same as
B ⊃ A.

1. Formally for A ⊂ B we say if a ∈ A then a ∈ B or

a ∈ A ⇒ a ∈ B

2. If B is a subset but might possibly be the same as A then we use A⊆B.

3. We will use A = B to mean A contains exactly the same things as B. Note
that if A ⊆ B and B ⊆ A then A = B.

In our logical symbolism we have

(A ⊆ B) ∧ (B ⊆ A) ⇒ A = B.
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The power set of A, written, P(A), or 2A, is the set of all subsets of A. So if
A = { Matthew, Mark, Luke } then P(A) is the set with eight elements
{ Matthew, Mark, Luke }
{ Matthew, Mark }
{ Matthew, Luke }
{ Mark, Luke }
{ Matthew }
{ Mark }
{ Luke }
∅
The number of elements in a set A is called the cardinality of A and written ‖A‖.
So if A = { Matthew, Mark, Luke, John} then ‖A‖=4.

Venn Diagrams and Manipulating Sets

We intend to manipulate sets and it helps to introduce Venn diagrams to illustrate
what we are up to. We can think of the universal set S as a rectangle and a set,
say A as the interior of the circle drawn in S, see figure 4.1 The speckled area is

Figure 4.1: Venn diagram of set A and universal set S

A while the remainder of the area of the rectangle is Ā. We see immediately that
A together with Ā make up S
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Intersection

We can write the set of items that belong to both the set A and the set B as A∩B.
Formally (x ∈ A) ∧ (x ∈ B) ⇒ (x ∈ A ∩ B).

We call this the intersection of A and B or, less formally, A and B. In terms of
the Venn diagram in figure 4.2 the two circles represent A and B while the overlap
(in black) is the intersection. As examples

Figure 4.2: Venn diagram of A ∩ B

1. {1,2,3,4} ∩ { 3,4,5,6,7} ={ 3,4}. Notice 3 ∈ { 3,4} while 1 /∈ { 3,4}.

2. {1,2,3,4} ∩ { 13,14,15,16,27} =∅.

3. {Abergail, Ann, Blodwin, Bronwin, Clair,}∩ { Abergail, Bronwin, Gareth,
Ian} = {Abergail, Bronwin, }.

4. In figure 4.2 we see A ∩ Ā = ∅ so A and Ā have nothing in common.

5. A ∩ B ⊂ B and A ∩ B ⊂ A

Union:

We can write the set of items that belong to the set A or the set B or to both as
A ∪ B. Formally (x ∈ A) ∨ (x ∈ B) ⇒ x ∈ (A ∪ B).

We call this the union of A and B or, less formally, A or B. The corresponding
diagram is 4.3 Here the speckled area represents A ∪ B
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Figure 4.3: Venn diagram of set A ∪ B (speckled) and universal set S

As examples we have

1. {1,2,3,4}
⋃

{ 3,4,5,6,7} ={ 1,2,3,4,5,6,7}

2. { Blue,Green}
⋃

{ Red,Green} ={ Red,Blue , Green}

3. In figure 4.2 we see A ∪ Ā = S so A and Ā together make up S.

4. If A ⊂ B then A ∪ B ⊂ B

We can now use our basic definitions to get some results.
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1. A= ¯̄A The set Ā consists of all the elements of S ( the universal set) which

do not belong to A. So ¯̄A is the set of elements that do not belong to Ā,
or the elements of S which do not belong to Ā . That is the elements that
belong to A.

Or suppose a ∈ ¯̄A ⇒ a /∈ Ā ⇒ a ∈ A

2. (A ∩ B) = Ā ∪ B̄

We have a ∈ (A ∩ B) ⇒ a /∈ (A∩B) ⇒ (a /∈ A)∨(a /∈ B) ⇒ (a ∈ Ā)∨(a ∈
B̄) ⇒ a ∈ Ā ∪ B̄

There is a table of useful results in table 4.1. Notice each rule in the left column
has a dual rule in the right. This dual has the ∪ symbol replace by ∩

A ∪ A = A A ∩ A = A

(A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩ B) ∩ C = A ∩ (B ∩ C)

A ∪ B = B ∪ A A ∩ B = B ∩ A

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ ∅ = A A ∩ S = A

A ∪ S = S A ∩ ∅ = ∅
A ∪ Ā = S A ∩ Ā = ∅

(A ∪ B) = Ā ∩ B̄ (A ∩ B) = Ā ∪ B̄

Table 4.1: Rules for set operations

Cartesian Product

Suppose we have two sets A and B. We define the Cartesian Product P = A × B

to be the set of ordered pairs (a, b) where a ∈ A and b ∈ B. Or

P = {(a, b) : (a ∈ A) ∧ (b ∈ B)}.

The pair (a, b) is ordered in the sense that the first term (a) comes from the set
A in A × B. The obvious example and hence the name comes from the geometry
of the plane. We usually write (x, y) to denote the coordinates of a point on the
plane. This is an ordered pair! If we take real values x and y with x ∈ R and
y ∈ R then the Cartesian product is R × R

1. Suppose A = {a, b} and B = {1, 2} then A×B = {(a, 1), (a, 2), (b, 1), (b, 2)}.

2. We can extend to 3 or more sets so A × B × C is the set of ordered triples
(a, b, c).
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4.0.6 Relations and functions

Given two sets A and B and the product A×B we define a relation between A and
B as a subset R of A × B. We say that a ∈ A and b ∈ B are related if (a, b) ∈ R,
more commonly written aRb. This is a quite obscure definition unless we look at
the rule giving the subset.

Take the simple example of A = {1, 2, 3, 4, 5, 6} and B = {1, 2, 3, 4, 5, 6} then
A × B is the array of pairs below - a set of 36 pairs.




(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)





A relation R is the subset {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} or the set
{(i, j) : i = j}. Other example are

1. R = {(i, j) : i + j = 8} = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

2. R = {(i, j) : i = 2j} = {(2, 1), (4, 2), (6, 3)}

3. R = {i < j} =




(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 3) (2, 4) (2, 5) (2, 6)

(3, 4) (3, 5) (3, 6)

(4, 5) (4, 6)

(5, 6)




As you can see we can think of the relation R as a rule connecting elements of A

to elements of B. The relation aRb between 2 sets A and B can be represented as
in figure 4.4

For example

1. if A={ one, two, three, four, five} and B = {1, 2, 3, 4, 5} we can define R as
the set of pairs {(word, number of letters)} eg. {(one, 3), (two, 3), (three,5),
. . .}

2. If A={ 2,4,8,16,32} and B={1,2,3,4,5} then we might define R as the set
{ (2,1),(4,2),(8,3),(16,4),(32,5)}

1. The domain of relation {(x, y)} is the set of all the first numbers of the
ordered pairs. In other words, the domain is all of the x-values.

2. The range of relation {(x, y)} is the set of the second numbers in each pair,
or the y-values.
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Figure 4.4: The relation R between 2 sets A and B

There are all kinds of names for special types of relations. Some of them are

1. reflexive: for all x ∈ X it follows that xRx. For example, ”greater than or
equal to” is a reflexive relation but ”greater than” is not.

2. symmetric: for all x and y in X it follows that if xRy then yRx. ”Is a blood
relative of” is a symmetric relation, because x is a blood relative of y if and
only if y is a blood relative of x.

3. antisymmetric: for all x and y in X it follows that if xRy and yRx then
x = y. ”Greater than or equal to” is an antisymmetric relation, because if
x ≥ y and y ≥ x, then x = y.
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2. symmetric: for all x and y in X it follows that if xRy then yRx. ”Is a blood
relative of” is a symmetric relation, because x is a blood relative of y if and
only if y is a blood relative of x.

3. antisymmetric: for all x and y in X it follows that if xRy and yRx then
x = y. ”Greater than or equal to” is an antisymmetric relation, because if
x ≥ y and y ≥ x, then x = y.
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4. asymmetric: for all x and y in X it follows that if xRy then not yRx. ”Greater
than” is an asymmetric relation, because ifx > y then y �> x.

5. transitive: for all x, y and z in X it follows that if xRy and yRz then xRz.
”Is an ancestor of” is a transitive relation, because if x is an ancestor of y

and y is an ancestor of z, then x is an ancestor of z.

6. Euclidean: for all x, y and z in X it follows that if xRy and xRz, then yRz.

7. A relation which is reflexive, symmetric and transitive is called an equivalence
relation.

You can now speculate as the name “Relational Database”.

exercises

1. If A − B is the set of elements x that satisfy x ∈ A and x /∈ B draw a Venn
diagram for A − B

2. Prove that for sets A, B and C

(a) If A ⊆ B and B ⊆ C then A ⊆ C

(b) If A ⊆ B and B ⊂ C then A ⊂ C

(c) If A ⊂ B and B ⊆ C then A ⊂ C

(d) If A ⊂ B and B ⊂ C then A ⊂ C

3. Recall that Z = {0, 1, 2, 3, 4, . . .} and we define the following sets

(a) A = {x ∈ Z : for some integer y > 0, x = 2y}

(b) B = {x ∈ Z : for some integer y > 0, x = 2y − 1}

(c) A = {x ∈ Z : for some integer x < 10}

Describe Ā, ¯(A ∪ B), C̄, A − C̄, andC − (A ∪ B)

4. Show that for all sets A, B and C

(A ∩ B) ∪ C = A ∩ (B ∪ C)

iff C ⊆ A

5. What is the cardinalty of {{1, 2}, {3}, 1}.

6. Give the domain and the range of each of the following relations. Draw the
graph in each case.
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(a) {(x, y) ∈ R × R} | x2 + 4y2 = 1}

(b) {(x, y) ∈ R × R} | x2 = y2}

(c) {(x, y) ∈ R × R} | 0 ≤ y, y ≤ x and x + 1y ≤ 1}

7. Define the relation � between the ordered pairs {(x, y) and (u, v) where
x, y, v, v ∈ Z} where (x, y) � (u, v) means xv = yu. Show that � is an
equivalence relation.
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Chapter 5

Counting

There are three types of people in this world: Those who can count,
and those who can’t.

Counting seem quite simple but this is quite deceptive, especially when we have
complicated system. If you do not believe me have a look at the probability section.
To make like a little simpler we lay down some rules.

Sets

If we have two sets A and B the number of item in the sets ( the cardinality) is
written ‖A‖ and ‖B‖. Then we can show that

‖A ∪ B‖ = ‖A‖ + ‖B‖ − ‖A ∩ B‖

This is fairly easy to see if you use a Venn diagram. For 3 sets

‖A ∪ B‖ = ‖A‖ + ‖B‖ + ‖C‖ − ‖A ∩ B‖ − ‖B ∩ C‖ − ‖A ∩ C‖ + ‖A ∩ B ∩ C‖

Example

Let S be the set of all outcomes when two dice (one blue ; one green) are thrown.
Let A be the subset of outcomes in which both dice are odd, and let B be the subset
of outcomes in which both dice are even. We write C for the set of outcomes when
the two dice have the same number showing.

How many elements are there in the following sets?

It is useful to have the set S set out as below

51
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1 1 1 2 1 3 1 4 1 5 1 6
2 1 2 2 2 3 2 4 2 5 2 6
3 1 3 2 3 3 3 4 3 5 3 6
4 1 4 2 4 3 4 4 4 5 4 6
5 1 5 2 5 3 5 4 5 5 5 6
6 1 6 2 6 3 6 4 6 5 6 6

then we have

1. ‖A‖ = 9

2. ‖B‖ = 9

3. ‖C‖ = 6

4. ‖A ∩ B‖=0

5. ‖A ∪ B‖ = 18

6. ‖A ∩ C‖ = ‖(1, 1), (3, 3), (5, 5)‖ = 3

7. ‖A ∪ C‖ = ‖A‖ + ‖C‖ − ‖A ∩ C‖ = 9 + 6 − 3 = 12

Chains of actions

If we have to perform two actions in sequence and the first can be done m ways
while the second can be done in n there will be mn possibilities in total.

• Suppose we wish to pick 2 people from 9. The first can be picked in 9 ways
the second in 8 giving 9 × 8 = 72 possibilities in total.

• If we roll a die and then toss a coin there are 6 × 2 = 12 possibilities.
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This extends to several successive actions. Thus

1. If we roll a die 3 times then there are 6 × 6 = 216 possibilities.

2. If we toss a coin 7 times there are 2 × 2 × 2 × 2 × 2 × 2 × 2 = 27 = 128

possibilities.

3. My bicycle lock has 4 rotors each with 10 digits. That gives 10×10×10×10 =

104 combinations.

4. Suppose you have to provide an 8 character password for a credit card com-
pany. They say that you can use a to z ( case is ignored) and 0 to 1 but
there must be at least one number and at least one letter.

there are 26 letters and 10 numbers so you can make 836 possible passwords.
Of these there are 810 which are all numbers and 826 which are all letters.
This gives 836 − 826 − 810 = 3.245 × 1032 allowable passwords.

Permutations

Suppose I have n distinct items and I want to arrange them in a line. I can do
this in

n × (n − 1) × (n − 2) × (n − 3) × · · · × 3 × 2 × 1

We compute this product so often it has a special symbol n!. However to avoid
problems we define

1! = 0 and 0! = 1

So 3! = 3 × 2 × 1 = 6 while 5! = 5 × 4 × 3 × 2 × 1 = 120

If we look at the characters in (1D4Y) there are 4! = 24 possible distinct
arrangements.

Sometimes we do not have all distinct items. We might have n item of which r

are identical then there are n!/r! different possible arrangements. So WALLY can
be arranged in 5!/2! = 60 ways.

It is simpler to just state a rule in the more general case:
Suppose we have n objects and

• there are n1 of type 1.

• there are n2 of type 2.

• · · · · · ·

• there are nk of type k.
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The total number of items in n, so n = n1 + n2 + · · ·nk then there are

n!

n1!n2!n3! · · ·nk!

possible arrangements.
Suppose we have 3 white, 4 red and 4 black balls. They can be arranged in a

row in
11!

3!4!4!
= 11550

possible ways while the letters in WALLY can be arranged in

5!

2!1!1!1!
= 60 ways

Combinations

The number of ways of picking k items from a group of size n is written
(

n
k

)
or

(for the traditionalists) nCk. The definition is

(
n

k

)
=

n!

(n − k)!k!

So the number of ways of picking 5 students from a group of 19 is

(
19

5

)
=

19!

5!14!
=

19 × 18 × 17 × 16

4 × 3 × 2 × 2
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Examples

1. Suppose you want to win the lottery. There are 49 numbers and you can
pick 6. This can be done in

49!

6!43!
= 13983816 ways

so your chances of a win are 1/13983816.

2. How many ways can you pick 5 correct numbers in the lottery. There are(
6
5

)
ways to pick the 5 correct numbers and 49-6=43 ways of picking the

remaining number. This gives 6 × 43 ways.

3. When we pick 3 correct numbers there are
(

6
3

)
ways of picking the winning

numbers and
(

43
3

)
ways of picking the losing ones. This gives

(
6
3

)
×

(
43
3

)
=

20 × 12341 = 246820 ways in all.

5.0.7 Binomial Expansions

Now we have combinations we can examine a very useful result known as the
binomial expansion. To start we can show that

(a + b)2 = a2 + 2ab + b2

and
(a + b)3 = a3 + 3a2b + 3ab2 + b3

In general we can prove that for an integer n > 0

(a+b)n = an+

(
n

1

)
an−1b+

(
n

2

)
an−2b2+· · ·+

(
n

n − 2

)
a2bn−2+

(
n

n − 1

)
abn−1+bn

or

(a + b)n =

n∑
i=0

(
n

i

)
an−ibi.

This can be done by induction, but there isis a page or so of algebra!
For example

(2 + x)5 = 25 +

(
5

1

)
24x +

(
5

2

)
23x2 +

(
5

3

)
22x2 +

(
5

4

)
2x4 + x5

or
(2 + x)5 = 25 + 5 × 24x + 10 × 23x2 + 10 × 22x2 + 5 × 2x4 + x5
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Suppose you were given
(
3x + 5/x3

)8
and you wanted the term in the expansion

which did not have an x. From the above the general term is

(
8

i

)
(3x3)8−i(5/x3)i.

The x terms cancel when 8 − i = 3i or i = 2. Then the term is

(
8

2

)
(3x3)6(5/x3)2 =

(
8

2

)
3652

We can do something similar for non-integral n as follows:

(1+x)n = 1+nx+
n(n − 1)

1.2
x2+

n(n − 1)(n − 2)

1.2.3
+· · ·+n(n − 1)(n − 2) · · · (n − k + 1)

1.2.3 · · ·k
xk+· · ·

but this is only true when |x| < 1.

Thus (1 + x)1/2 = 1 +
(

1
2

)
x1/2 +

(
1
2

) (
−1

2

)
x−1/2 +

(
1
2

) (
−1

2

) (
−3

2

)
x−3/2 + . . .

Examples

1. Suppose we look at sports scholarships awarded by American universities.
A total of 147,000 scholarships were earned in 2001. Out of the 5,500 schol-
arships for athletics, 1500 were earned by women. Women earned 75,000
scholarships in total. How many men earned scholarships in athletics?

2. In clinical trials of the suntan lotion, Delta Sun, 100 test subjects experi-
enced third degree burns or nausea (or both). Of these, a total of 35 people
experienced third degree burns, and 25 experienced both third degree burns
and nausea. How many subjects experienced nausea?

3. A total of 1055 0 MSc degrees were earned in 2002. Out of the 41 MSc
degrees in music and music therapy, 5 were earned by men. Men earned 650
MSc degrees. How many women earned MSc degrees in fields other than
music and music therapy?

4. A survey of 200 credit card customers revealed that 98 of them have a Visa
account, 113 of them have a Master Card, 62 of them have a Visa account
and a American Express, 36 of them have a Master Card account and an
American Express, 47 of them have only a Master Card account, 32 have a
Visa account and a Master Card account and an American Express. Assume
that every customer has at least one of the services. The number of customers
who have only have a Visa card is?
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5. So for example from the New York Times According to a New York Times
report on the 16 top-performing restaurant chains

(a) 11 serve breakfast.

(b) 11 serve beer.

(c) 10 have full table service i.e. they server alcohol and all meals.

All 16 offered at least one of these services. A total of 5 were classified as
”family chains,” meaning that they serve breakfast, but do not serve alcohol.
Further a total of five serve breakfast and have full table service, while none
serve breakfast, beer, and also have full table service. We ask

(a) ( How many serve beer and breakfast?

(b) How many serve beer but not breakfast?

(c) How many serve breakfast, but neither have full table service, nor serve
beer?

(d) How many serve beer and have full table service?

6. When | x |< 1 then show that

• 1/(1 − x) = 1 + x + x2 + x3 + x4 + · · · + xn + · · ·

• 1/(1 − x)1/2 = 1 + (1/2)x + (1/2)(−1/2)x2

1.2
+ (1/2)(−1/2)(−3/2)x3

1.2.3
+ x4 + · · ·

• 1/(1 − x)2 = 1 + 2x + 3x2 + 4x3 + 5x4 + . . . + nxn−1 + . . .

7. Expand (1 + 2x)7

8. Which is the coefficient of the term without an x in (x + 2/x)11.

9. Find an approximation for (0.95)11.

10. Find the first 3 terms of the expansion of (1 + x)1/4.
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Chapter 6

Functions

Mathematicians are like Frenchmen: whatever you say to them they
translate into their own language and forthwith it is something entirely
different.

Johann Wolfgang von Goethe

One of the most fundamental ( and useful) ideas in mathematics is that of a
function. As a preliminary definition suppose we have two sets X and Yand we
also have a rule which assigns to every x ∈ X a UNIQUE value y ∈ Y. We will call
the rule f and say that for each x there is a y = f(x) in the set Y. This is a very
wide definition and one that is very similar to that of a relation , the critical point
is that for each a there is a unique value y. A common way of writing functions is

f : X → Y

which illustrates that we have two sets X and Y together with a rule f giving values
in Y for values in X. We can think of the pairs (x, y) or more clearly (x, f(x)).
This set of pairs is the graph of the function

In what follows we show how functions arise from the idea of relations and come
up with some of the main definitions. You need to keep in mind the simple idea
a function is a rule that takes in x values and produces y values. It is probably
enough to visualize f as a device which when given an x value produces a y.

59
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f the function� �

x y = f(x)
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Figure 6.1: Function f

Clearly if you think of f as a machine we need to take care about what we are
allowed to put in, x, and have a good idea of the range of what comes out, y. It
is these technical issues we look at next.

The set X is called the domain of the function f and Y is codomain. We are
normally more interested in the set of values { f(x) : x ∈ X}. This is the range R

sometimes called the image of the function. See figure 6.1

Examples

We can have
f : X → Y

where

1. f(x) = 2x where X = {x : 0 ≤ x < ∞} and Y = {y : 0 ≤ x < ∞}

2. f(x) =
√

x where X = {x : 0 ≤ x < ∞} and Y = {y : 0 ≤ y < ∞}

3. f(x) = sin−1(x) where X = {x : −π/2 ≤ x < pi/2} and Y = {−1 ≤ y ≤ 1}

If we think of the possibilities we have

• There may be some points in Y (the codomain) which cannot be reached
by function f. If we take all the points in X and apply f we get a set
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Range of A

Domain A

Figure 6.2: An onto function

R = {f(x) : x ∈ X} which is the range of the function f. Notice R is a subset
of Y i.e.R ⊂ Y.

• Surjections (or onto functions) have the property that for every y in the
codomain there is an x in the domain such that f(x) = y. If you look at 6.1
you can see that in this case the codomain is bigger than the range of the
function. See figure 6.2 If the range and codomain are the same then out
function is a surjection. This means every y has a corresponding x for which
y = f(x)

• Another important kind of function is the injection (or one-to-one function),
which have the property that if x1 = x2 then y1 must equal y2. See figure
6.3

• Lastly we call functions bijections, when they are are both one-to-one and
onto.

A more straightforward example is as follows. Suppose we define

f : X → Y

where f(x) = 2x and X = {x : 0 ≤ x < ∞} and Y = {y : −∞ ≤ x < ∞}. The range
of the function is R = {y : 0 ≤ x < ∞} while the codomain Y has negative values
which we cannot reach using our function.

Composition of functions

The composition of two or more functions uses the output of one function, say f,
as the input of another, say g. The functions f : X → Y and g : Y → Z can be
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Figure 6.3: An 1 to 1 function

composed by applying f to an argument x to obtain y = f(x) and then applying
g to y to obtain z = g(y). See figure 6.4. The composite function formed in this
way from f and g can be written g(f(x)) or g ◦ f. This last form can be a bit
dangerous as the order can be different in different subjects. Using composition
we can construct complex functions from simple ones, which is the point of the
exercise.

One interesting function, given f, would be the function g for which x=g(f(x)).
In other words g is the inverse function. Not all functions have inverses, in fact
there is an inverse g written f−1 if and only if f is bijective. In this case x =

f−1(f(x)) = f(f−1(x)).

The arrows and blob diagrams are not the usual way we draw functions. You
will recall that the technical description of f : X → Y is the set of values (x, f(x))

Suppose we take the reals R so our function takes real values and gives us a
new set of reals, say f(x) = x3 we take x values , compute y = f(x) for these
values and plot them as in figure 6.6. Plotting functions is a vital skill, you know
very little about a function until you have drawn the graph. It need not be very
accurate, mathematicians often talk about sketching a function. By this they
mean a drawing which is not completely accurate but which illustrates the main
characteristics of the function,

Now we might reasonably does every sensible looking function have an inverse?
An example consider f(x) = x2 which is plotted in figure 6.8. There is now problem
in the definition of f for all real values of x, that is the domain is R and the
codomain R. However if we examine the inverse we have a problem.

if we take y=4, this may arise from x=2 or x=-2. So there is not an f−1 = y−1/2

! If we change the domain we can get around this. Suppose we define R+ = {x :
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Figure 6.4: Composition of two functions f and g

Figure 6.5: The inverse f and g = f−1

Examples

1. Suppose f(x) = x2 and g(y) = 1/y then g(f(x)) = 1/x2. We of course have
to take care about the definition if the range and the domain to avoid x = 0

2. When f(x) = x2 and g(x) = x1/2 g is the inverse function when f is defined
on the positive reals.
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Figure 6.6: Plot of f(x) = x3
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Figure 6.7: Plot of f(x) = x3 − 2x2 − x + 2
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Figure 6.8: Plot of f(x) = x2
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Figure 6.9: Plot of f(x) = x2

0 ≤ x < ∞} and consider f(x) = x2 defined on R+ i.e.

R+ : f → R+

In this case we do not have the problem of negative values of x. Every value of y

arises from a unique x.
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Exercises

For the following pairs evaluate g(f(x)) and f(g(x)).

1. f(x) = 1/x, g(x) = x2

2. f(x) = 3 + 4x, g(x) = 2x − 5

3. f(x) = x + 1, g(x) = x − 1

6.0.8 Important functions

Over time we have come to see that some functions crop up again and again in
applications. This seems a good point to look at some of these.

polynomials

We call functions like f(x) = apx
p + ap−1x

p−1 + . . . + a1x + a0 polynomials and
these usually have a domain consisting of the reals. In out example the coefficients
a0, a1, . . . , ap are numbers and our polynomial is said to have order p. Examples
are

1. f(x) = x + 2

2. f(x) = x3 − x2 + x + 2

3. f(x) = x17 − 11

4. f(x) = x2 − 3x + 2

67
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Zeros

Very often we need to know for what values of x for which f(x) = apx
p+ap−1x

p−1+

. . . + a1x + a0 = 0 is zero. The values are called the zeros or the roots of the
polynomial. We can prove that a polynomial of degree p has at most p roots which
helps a little. The simplest to way to find zeros is to factorize the polynomial so if

f(x) = x3 − 6 ∗ x2 + 11x − 6 = (x − 1)(x − 2)(x − 3)

so f(x) = 0 when x = 1, 2, 3.

Factorization is (as for integers ) rather difficult. The best strategy is to try
and guess one zero, say x=a and then divide the polynomial by (x-a). We then
repeat. Polynomial division is just like long division. So to divide x3−6x2+11x−6

by x − 1:

x − 1
)

x3 − 6x2 + 11x − 6

write out the sum

x2

x − 1
)

x3 − 6x2 + 11x − 6

find the power of x to multiply x − 1

x2

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

multiply x − 1 by x2 as shown.

x2

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

− 5x2 + 11x

subtract as shown.

x2 − 5x

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

− 5x2 + 11x

find a multiplier to multiply x − 1 to get a −5x2

x2 − 5x

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

− 5x2 + 11x

5x2 − 5x

6x − 6

multiply x − 1 and subtract as shown
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x2 − 5x

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

− 5x2 + 11x

5x2 − 5x

6x − 6

find a multiplier to multiply x − 1 to get a 6x

x2 − 5x + 6

x − 1
)

x3 − 6x2 + 11x − 6

− x3 + x2

− 5x2 + 11x

5x2 − 5x

6x − 6

− 6x + 6

0

nothing left so we stop!

The answer is x2 − 5x + 6. If there is something left then it is the remainder.
Hence x − 3

x − 2
)

x2 − 5x + 6

− x2 + 2x

− 3x + 6

3x − 6

0

The answer is x2 − 5x + 6 = (x − 2)(x − 3).
However suppose we try x − 4

x − 1
)

x2 − 5x + 6

− x2 + x

− 4x + 6

4x − 4

2

We have a remainder and the answer is x2 − 5x + 6 = (x − 1)(x − 4) + 2.

Exercises

Factorize

1. 2x3 − x2 − 7x + 6

2. 2x3 − 3 ∗ x2 − 5x + 6
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The power function

Suppose we take values x from the reals and consider the function P(x) = xa for
some value a. We can suppose that a is also real. So we have

R : P → R

An example might be P(x) = x2 or P(x) = x1.5. In the second case we clearly have
to redefine the domain. Can you see why? The properties of the power function

1. xa × xb = xa+b

2. x0 = 1

Logarithms

We know that we can write powers of numbers, so

100 = 1 101 = 2 102 = 100 102 = 1000 . . .

and 100.5 = 3.162278 . . ..
Now consider the backwards problem:

Given y can we find an x such that y = 10x.

In other words if we define the power function y = P(x) = 10x for x ∈ R, as above,
then what is the inverse of this P−1(y)? It may help to look at figure 6.10. We
have plotted dotted lines from (1.5,0) to the curve. Going from x vertically to the
curve and then to the y axis gives the power value P(x) = y. The reverse path
from y to x is the logarithm.
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Figure 6.10: Plot of f(x) = 10x

The inverse of p(x) is call the logarithm or log and is written log10(x). So

log10(1) = 0 log10(10) = 1 log10(100) = 0 log1000(1) = . . .

Often we are lazy and drop the 10 and just write log(x)

Because we know that log is the inverse of the power function we have some
useful rules

1. log(u) + log(v) = log(uv)

2. log(uv) = v log(uv)

3. log(u − log(v) = log
(

u
v

)

4. −log(u) = log
(

1
u

)

Of course we did not have to choose 10 in our definitions. We could have choose
2, like many engineers, or any positive number a say. We then write y = loga(x)

to indicate the number y which satisfies x = ay. The loga(x) is called the log of
x to base a.

For reasons which will (we hope) become apparent mathematicians like to use
natural logs which have a base e = 2.718282 . . .. because they are used so often
rather than write loge(x) you will often see them written as ln(x) or just as log(x).
All logs satisfy the rules set out in the list 6.0.8. We shall be lazy and just use
logarithms to base e.
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We can of course express logs in one base as logs in another. Suppose x =

aloga(x) = blogb(x) then taking logs gives

loga(x) = loga(b) logb(x)

Sometime it is natural to express powers as base 2 for example y = P(x) = 2x.
Mathematicians often use the number e so the power definition is y = ex which
you will often see written as y = exp(x) since ex is called the exponential function.

6.1 Functions and angular measure

We look briefly at the measurement of angles. Angular measure has been important
from the very beginning of human history both in astronomy and navigation.
Consider a circle with the angle θ made with the x axis as shown. Unlike maps in
mathematics the reference line is not North but along the x axis and if we rotate
anti-clockwise we sweep out an angle θ. The angle is traditionally measured in
degrees, minutes and seconds. We will stick to degrees for the moment.

�

�

�

θ

x

y

�

�

�
If we sweep anti-clockwise through 360 degrees we sweep out a circle. 180 degrees
is a half circle and 720 = 3 × 360 two circles. Rotations in a clockwise direction
are assumed to be negative degrees, so −90o = 270o

To complicate things a little we can also measure the angle in an equivalent
way by measuring the length of the arc we make out on the circle as we sweep
through the angle θ. Suppose this is s. For a circle of radius 1 s is a measure of
the angle, although in different units called radians. So one circle is 2π radians
and 90o is π/2 radians. We convert from degrees to radians as follows
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degrees radians
θ 2πθ/360

360s/(2π) s

If you look at most “scientific calculators” you will see a button for switching from
degrees to radians and vice versa.

The trigonometric functions

Of course we can measure angles in other ways. Suppose we look at the angle θ

in the diagram. The ratio of the y and x values is related to the angle. Roman
surveyors would often choose and angle by fixing the x value and the y value. As
you can. imagine, five steps and then 3 steps vertically gives the same angle no
matter where you are

x

yr

θ

Thus from the diagram θ is related to y/x. In fact we define y/x to be the tangent
of θ written as tan θ = y/x. The inverse function is tan−1 θ = y/x or sometimes
arctan θ = y/x The reader might like to examine our triable and see why the
tangent of 90o does not exist. We provide a plot of the tangent from 0 to just
under 90 degrees in figure 6.11. If we keep the definition on the domain 0 ≤ θ < 90

as is (relatively) simple. While the domain is easily extended we leave this to those
of you will interests in this direction.

Of course we do not have to use tangents, although they are probably the
most practical in applications. Alternative are to use the ratio y/r the height y

divided by the radius of the circle r. This is called the sine function and written
sin θ = y/x.

In a similar we we could use the cosine written cos θ = x/r. Both of these
functions are plotted in figure 6.12 There are lots of links between these functions,
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Figure 6.11: tan x

for example

tan θ =
sin θ

cos θ

This can be deduced quite simple from the definitions. Try it yourself!
The trigonometric functions are periodic in that if we plot them over a large

part of the axis they repeat as in figure 6.13
Out next step is the study of the shapes of functions which brings us to Cal-

culus.
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Sequences

Reason’s last step is the recognition that there are an infinite number
of things which are beyond it. Pascal

We write a sequence a1, a2, a3, · · · , an, · · · as {an} and our interest is normally
whether the sequence tends to a limit A written

• an → A as n → ∞.

• or limn→∞ an = A

However there are many interesting sequences where limits are not the main inter-
est. For example the Fibonacci sequence. In Fibonacci’s Liber Abaci (1202) poses
the following problem

How Many Pairs of Rabbits Are Created by One Pair in One Year:
A certain man had one pair of rabbits together in a certain enclosed
place, and one wishes to know how many are created from the pair
in one year when it is the nature of them in a single month to bear
another pair, and in the second month those born to bear also.

The resulting sequence is

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

and each term is the sum of the previous two terms. An interesting aside is that
the nth Fibonacci number F(n) can we written as

F(n) = [φn − (1 − φ)n] /
√

5 where φ = (1 +
√

5)/2 � 1.618 . . .

which is a surprise since F(n) is an integer and the formula contains
√

5. For lots
more on sequences see

http://www.research.att.com/ njas/sequences/

77
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7.0.1 Limits of sequences

We turn our attention to the behaviour of sequences such as {an} as n becomes
very large.

1. A sequence may approach a finite value A. We say that it tends to a limit,
so for example we write

1,

(
1

2

)
,

(
1

2

)2

,

(
1

2

)3

. . .

(
1

2

)n

, . . .

or

1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 . . .

as {(
1

2

)n}

and we shall see that
{(

1

2

)n}
→ 0 as n → ∞

2. If a sequence does not converge it may go to ±∞, that is keep increasing or
decreasing.

1 2 4 8 16 32 64 128 256 512 1024 . . .

Informally {2n} → ∞ as → ∞.

3. A sequence may just oscillate

1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1

Limit

We need a definition of a limit and after 2000 years of trying we use :
{an} → A as → ∞ if and only if, given any number ε there is an N such that for
n ≥ N |an − A| < ε.

In essence I give you a guarantee that I can get as close as you wish to a limit
(if it exists) for all members of the sequence with sufficiently large N, that is after
N all the values of the sequence satisfy | an − A |< ε. The idea is that if there is
a limit then if you give me some tolerance, here ε, I can guarantee that for some
point in the sequence all the terms beyond that all lie within ε of the limit.
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Examples

• { 1
n
} → 0.

• {xn} → 0 for |x| < 1.

• We argue as follows:
Suppose you give me a (small) value for ε. I can then choose a value N

where N > 1/ε. We can do this as, for | x |< 1

. . . | x |4<| x |3<| x |2<| x |

It then follows that as N > 1/ε then ε > 1/N. But if n > N then 1/n < 1/N

so we can say:
if we choose N > 1/ε the when N > n | 1/n − 0 |< ε and so 1/n → 0

• We argue as follows:
Suppose you give me a (small) value for ε. I can then choose a value N

where | x |N< ε. Or N log | x |< log ε. Rearranging

N >
log ε

log | x |
beware the signs!

But if log | x |< 1 then

log | x |2< log | x |, log | x |3< log | x |2, . . . log | x |n< log | x |n+1

So we choose N > log ε/ log | x | then when N > n | xn |=| xn − 0 |< ε

and so | xn |→ 0
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. . . | x |4<| x |3<| x |2<| x |

It then follows that as N > 1/ε then ε > 1/N. But if n > N then 1/n < 1/N

so we can say:
if we choose N > 1/ε the when N > n | 1/n − 0 |< ε and so 1/n → 0

• We argue as follows:
Suppose you give me a (small) value for ε. I can then choose a value N

where | x |N< ε. Or N log | x |< log ε. Rearranging

N >
log ε

log | x |
beware the signs!

But if log | x |< 1 then

log | x |2< log | x |, log | x |3< log | x |2, . . . log | x |n< log | x |n+1

So we choose N > log ε/ log | x | then when N > n | xn |=| xn − 0 |< ε

and so | xn |→ 0
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Rules

Manipulating expressions like | an − a | can be tricky so it is easier to develop
some rules. Using these is very much easier as we shall see.

If {an} and {bn} are two sequences and {an} → A while {bn} → B then

• {an ± bn} → A ± B

• {anbn} → AB

• {an/bn} → A/B provided B is nonzero as are the {bn}.

• For a constant c we have {can} → cA

also

• If {an} → ±∞ then {1/an} → 0

• If {an} → ±∞ while {bn} → B (finite B) then{an + bn} → ±∞
• If {an} → ∞ while {bn} → B (finite B) then{anbn} → ±∞ depending on the

sign of B.

We can look at rational functions as follows

1. {
n + 1

n + 13

}
=

{
1 + 1/n

1 + 13/n

}
→

{
1 + 0

1 + 0

}
→ 1

2. {
n2 − 3n + 11

n4 + 13n2 − n + 43

}
=

{
1/n2 − 3/n3 + 11/n4

1 + 13/n2 − 1/n3 + 43/n4

}
→

{
0 − 0 + 0

1 + 0 − 0 + 0

}
→ 0/1 → 0

3. {
n + 1

n + 13xn

}
=

{
1 + 1/n

1 + 13xn/n

}
→ 1/1 → 1 | x |< 1

4. {
3n + 1

4n + 13

}
=

{
(3/4)n + 1/4n

1 + 13(1/4)n

}
→ 0/1 = 0 → 1

Subsequence

A subsequence of a sequence {an} is an infinite succession of its terms picked out in
any way. Note that if the original series converges to A so does any subsequence.
If an+1 ≥ an we say the subsequence is increasing while if an+1 ≤ an we say
the subsequence is decreasing. Increasing or decreasing sequences are sometimes
called monatonic.
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Bounded

If an increasing sequence is bounded above then it must converge to a limit. Simi-
larly If an decreasing sequence is bounded below then it must converge to a limit.

7.1 Series

A series is the sum of terms of a sequence written

u1 + u2 + u3 + · · · + uN =

N∑
i=1

ui

We use capital sigma ( Σ) for sums and by

b∑
i=a

ui

we mean the sum of terms like ui for i taking the values a to b. Of course there
are many series we sum, for example we have met the Binomial series and we have
the following useful results.
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• 1 + 2 + 3 + 4 + · · · + N =
∑N

i=1 = N(N + 1)/2

• 12 + 22 + 32 + 42 + · · · + N2 =
∑N

i=1 i2 = N(2N + 1)(N + 1)/6

• 13 + 23 + 33 + 43 + · · · + N3 =
∑N

i=1 i3 = [N(N + 1)/2]
2

• 11
2

+ 1
2

1
3

+ · · · + 1
N

1
N+1

=
∑N

i=1

(
1

i(i+1)

)
= 1 − 1

N+1

• 1 + x + x2 + x3 + · · · + xN =
∑N

i=0 xi =
(
1 − xN+1

)
/(1 − x)

7.1.1 Infinite series

If we want the sum of the infinite series
∑∞

i=1 ui -if such a thing exists - we need to
be clear we mean. Assume that all the terms in the series are non-negative, that
is 0 ≤ ui. Consider the partial sums

S1 = u1

S2 = u1 + u2

S3 = u1 + u2 + u3

S4 = u1 + u2 + u3 + u4

· · ·

SN = u1 + u2 + u3 + · · · + uN

· · ·

If the sequence {Sn} converges to a limit S then we say that the series
∑∞

i=1 ui is
convergent and the sum is S. Otherwise we say the series diverges or is divergent.

Examples

•
∑∞

n=1
1
n

is divergent.
We can argue: Let

S4 = 1 +
1

2
+

1

3
+

1

4
= 1 +

1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

1

2
> 2

and

S8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1 +

1

2
+

1

2
+

1

2
> 3/2
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S16 = 1+
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

)

> 1 +
1

2
+

1

2
+

1

2
+

1

2
> 6/2

In general we can ( with care show )

S2k >
k

2
+ 1

So we can make the partial sums of 2k terms as large as we like and they are
increasing and unbounded. Thus the series must be divergent.

This has an important consequence if un → 0 it does not mean that the
sum is convergent. It may be but it may not be!

•
∑∞

n=0 xn is convergent for |x| < 1 and the sum is 1/(1−x). When |x| > 1 the
series is divergent.

We can argue that

N∑
n=0

xn =
1 − xN−1

1 − x
→ 1/(1 − x)

and since we have an explicit form for the sum the result follows.

•
∑∞

n=1
1

n(n+1)
converges and the sum is 1 since

N∑
n=1

1

n(n + 1)
−

N∑
n=1

(
1

n
−

1

(n + 1)

)
= 1 −

1

N + 1

•
∑∞

n=1
1

nα is divergent for α ≥ 1 and convergent otherwise.

Some Rules for series of positive terms

• If
∑∞

n=1 un and
∑∞

n=1 vn are both convergent with sums S and T then∑∞
n=1(un ± vn) converges to S ± T.

• If
∑∞

n=1 un converges then adding or subtracting a finite number of terms
does not affect convergence, it will however affect the sum.
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• If un does not converge to zero then
∑∞

n=1 un does not converge.

• The comparison test: If
∑∞

n=1 un and
∑∞

n=1 vn are two series of positive
terms and if {un/vn} tends to a non zero finite limit R then the series either
both converge or both diverge.

• The Ratio test: If
∑∞

n=1 un is a series of positive terms and suppose {un+1/un} →
L then

– If L < 1 the series converges.

– If L > 1 the series diverges.

– If L = 1 the question is unresolved.

• The integral test: Suppose we have
∑∞

n=1 un and f(n) = un for some function
f which satisfies

1. f(x) is decreasing as x increases.

2. f(x) > 0 for x ≥ 1

Then

1. 0 <
∑N

n=1 un −
∫N+1

1
f(x)dx < f(1)

2. The sum converges if the integral
∫∞

1
f(x)dx is finite and diverges if∫∞

1
f(x)dx is infinite.

Absolute Convergence

We say that
∑∞

n=1 un is absolutely convergent if
∑∞

n=1 | un | converges. If∑∞
n=1 |un| does not converge but

∑∞
n=1 un does then we say the series is con-

ditionally convergent. The nice thing about absolutely convergent series is we can
rearrange the terms without affecting the convergence or the sum.

Alternating sign test

On simple test for non conditionally convergent series is the alternating sign test.
Suppose we have a decreasing sequence of positive terms {un} and let

S = u1 − u2 + u3 − u4 + . . . + (−1)nun . . .

Then S converges. For example

1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
. . .
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Power series

A series of the form

S = a0 + a1x + a1x + a2x
2 + a3x

3 . . . =

∞∑
n=0

anxn

is called a power series Many power series only converge for values of x which
satisfy | x |< R for some value R. This value is called the radius of convergence.
We can usually rind R using the ratio test, for example

S = 1 +
(x

5

)
+

(x

5

)2

+
(x

5

)3

+
(x

5

)4

. . .

Then

| un+1/un |=

∣∣∣∣
(x

5

)n+1

/
(x

5

)n
∣∣∣∣ =

∣∣∣
(x

5

)∣∣∣

for this to be less than 1 we need | x |< 5 You can then check x ± 5 separately.

Exercises

1. Write down the first five terms of each of the sequences defined below

(a) an = 1 − (0.2)n

(b) an = 1 − (−0.2)n

(c) an = (n2 + 1)/(n + 1).

(d) an = 3/an−1 a1 = −1

2. Graph the sequences in question 1.

3. Decide which of the following sequences converges and find the limit if it
exists.

(a) 2 − (0.2)n

(b) 2 − (−0.2)n

(c) (n + 1)/(n2 + 1)

(d) (4 + n)/(3n − 2)

(e) (4 + n)

(f) (n2 − n + 2)/(5n2 + 4n + 1)

(g) 2n −
(
−1

2

)
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4. How large must n be for (1/3)
n to be less that

(a) 0.01

(b) 10−6

5. Find a number N such that n2/2n ≤ 0.001 if n > N.

6. Suppose an = x1/n x > 1

(a) Show that the sequence is decreasing.

(b) Show that the sequence is bounded below.

(c) Is the sequence convergent?

7. Show that
1 + 3 + 5 + · · · + (2N − 1) = N2

8. Find
N∑

n=1

1

(n + 1)(n + 2)

9. Decide which of the following sums are convergent.

(a)
∑∞

n=1 1/(2n − 1)

(b)
∑∞

n=1 2/(n2 + 3)

(c)
∑∞

n=1 1/
√

2n − 1
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Chapter 8

Calculus

I’m very good at integral and differential calculus, I know the sci-
entific names of beings animalculous; In short, in matters vegetable,
animal, and mineral, I am the very model of a modern Major-General.

The Pirates of Penzance. Act 1.

We have looked at limits of sequences, now I want to look at limits of functions.
Suppose we have a function f(x) defined on an interval a ≤ x ≤ b. I have a
sequence x1, x2, · · · , xn which tends to a limit x0. Can I say that the sequence
f(x1), f(x2, . . . , f(xn) tends to � and what do I mean? We normally define the limit
as follows:

We say that f(x) → f(x0) as x → x0 if for any ε > 0 there is a value
δ > 0 such that | x − x0 |< δ ⇒| f(x) − � |< ε

This is in the same spirit as our previous definition for sequences. We can be as
close as we wish to the limiting value �.

For example (x − 2)4 → 0 as x → 2. If you given me an 0 < ε < 1 then if
| x − 2 |≤ δ we know | (x − 2)4 − 0 |≤ δ4. So provided δ ≤ ε we have a limit as
x → 0!

�

�

1.0 2.0 3.0 4.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

87

Download free eBooks at bookboon.com



Mathematics for Computer Scientists

84 

Calculus

88 CHAPTER 8. CALCULUS

�

�

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

-0.5

In the second case we plot sin (1/x). This starts to oscillate faster and faster as it
approaches zero and ( it is not quite simple to show) does not have a limit.
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8.0.2 Continuity and Differentiability

We did not specify which direction we used to approach the limiting value, from
above or from below. This might be important as in the diagram below where the

function has a jump at x0.

x0

f(x)

x →

We like continuous functions, these are functions where f(x) → f(x0) as x → x0

from above and below. You can think of these as functions you can draw without
lifting your pencil off the page. Continuous functions have lots of nice properties.

If we have a continuous function we might reasonably look at the slope of the
curve at any point. This may have a real physical meaning. So suppose we have
the track of a car. We might plot the distance it travels, East say, against time.

If the difference between the distance at times t0 and t1 is D then D/(t1 − t0)

gives the approximate speed. This is just the procedure followed by average speed
cameras on roads! However what we have observed is an average speed. If we want
an estimate of speed at a particular time t we need t0 and t1 to approach t.

t0 t1t
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x

y

x + δx

f(x + δx)

f(x)
θ

If we take the times to be t and t+δt, where δt means a small extra bit of t, then
we want

f(t + δt) − f(t)

(t + δt − t)

as δt becomes small or more explicitly

f(t + δt) − f(t)

δt
as t → 0

This limit gives the derivative which is the slope of the curve f(t) at the point t

and is written f
′
(t) or

df

dx
= lim

δt→0

f(t + δt) − f(t)

δt
(8.1)

Suppose we take y = f(t) = 3 − 4t, a line with constant negative slope. Using the
equation 8.1 we have

df

dx
= lim

δt→0

3 − 4(t + δt) − 3 + 4t

δt
=

−4δt

δt
= −4

If we now have y = x2 − 3 we have, writing x for t

df

dx
= lim

δt→0

(x + δx)2 − 3 − x2 + 3

δx
=

x2 + 2xδx + (δx)2 − 3 − x2 + 3

δx
=

2xδx + (δx)2

δx
= 2x+δx = 2x

So at x=2 the slope is zero while when x is negative the slope is down and then
is upwards when x is greater that zero. You might find it useful to consider the
plot. Note that if we take a point on a curve and draw a straight line whose slope
is f

′
(x) this line is known as the tangent at x.
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Of course life is too short for working out the derivatives dy/dx like this from first
principles so we tend to use rules ( derived from first principles ).

1.
d

dx
[af(x)] = a

df

dx
where a is a constant.

2.
d

dx
[f(x) + g(x)] =

df

dx

dg

dx

3.
d

dx
[f(x)g(x)] = f(x)

dg

dx
+ g(x)

df

dx

4.
d

dx

1

f(x)
= −

1

f2(x)

df

dx

5.
d

dx
[xn] = nxn−1 when n �= 0 and zero otherwise.

6.
df(g(x))

dx
= f

′
(g(x))g

′
(x) using ′ for the derivative.
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This set of rules makes like very easy, so

d

dx
(3x2 − 11x + 59) = 3 × 2x − 11

d

dx

1

(3x2 − 11x + 59)
= −

6x − 11

(3x2 − 11x + 59)2

d

dx
(3x2 − 11x + 59)(x − 1) = (6x − 11)(x − 1) + (3x2 − 11x + 59)(1)

Example

Suppose we would like to show that sin x ≤ x for 0 ≤ x ≤ π/2. We know that
when x = 0 x = sin x = 0. But

dx

dx
= 1 and

d sin x

dx
= cos x

Since cos x ≤ 1 in the interval it implies that sin x grows more slowly than x and
the result follows.

Once we move away from polynomials life gets a little more complex. In reality
you need to know the derivative to be able to proceed so you need a list such as
in table 8.1. Note that the derivative of exp(x) is just exp(x). So for example

Table 8.1: Table of derivatives: all logs are base e and a is a constant

Function Derivative
exp(ax) a exp(ax)

ax ax log(a)

log(ax)
1

x
xx xx(1 + log x)

sin(ax) a cos(x)

cos(ax) −a sin(x)

tan(ax)
a

cos2(x)

• If y = exp(−x2) then
d exp(−x2)

dx
= exp(−x2)(−2x)

• If y = log(3x2 − 4x + 1) then
d log(3x2 − 4x + 1)

dx
=

6x − 4

(3x2 − 4x + 1)

It is important to remember that the formulas only work for logarithms to base e

and trigonometric functions, sin, cos etc expressed in radians.
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higher derivatives

Since
dy

dx
is a function we might wish to differentiate it again to get

d
[

dy
dx

]
dx

called

the second derivative and written
d2y

dx2
. If we differentiate 4 times we write

d4y

dx4

and in general

dny

dxn
n = 2, 3, 4, . . .

So if y = log(x) we have

dy

dx
=

1

x

d2y

dx2
= −

1

x2

d3y

dx3
=

2

x3

d4y

dx4
= −

6

x4
. . .

Maxima and minima

One common use for the derivative is to find the maximum or minimum of a
function. It is easy to see that if we have a maximum or minimum of a function
then the derivative is zero. Consider y = 1

3
x3 + 1

2
x2 − 6x + 8

�

�

2 4-2-4

10

20

30

40

-10

-20

-30

f(x) = 1
3
x3 + 1

2
x2 − 6x + 8

We compute
df

dx
= x2 + x − 6 which is zero when x2 + x − 6 = (x + 3)(x − 2) = 0

or x = −3 and x = 2 and from the plot it we see that we have found the turning
points of the function. These are the local maxima and minima.

However when we step back and look at the whole picture it is possible to we

have a stationary point i.e.
df

dx
= 0 which is not a turning point and hence we

need a local max or minimum rule:
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dy

dx
= 0

dy

dx
< 0 for x < x0

dy

dx
> 0 for x < x0

dy

dx
> 0 for x > x0

dy

dx
< 0 for x > x0

x0 is a minimum x0 is a maximum

d2y

dx2
> 0

d2y

dx2
< 0

1. The function f(x) = 1
3
x3 + 1

2
x2 − 6x + 8 has derivative

dy

dx
= x2 + x − 6 so

at x = 2 we have dy
dx

= 0. When x < 2 the derivative is negative while when
x > 2 it is positive so we have a minimum.

2. Or perhaps simpler
d2y

dx2
= 2x + 1 > 0 at x = 2 so we have a minimum.

3. When x = −3 again dy
dx

= 0. For x < −3dy
dx

> 0 while when x > −3dy
dx

< 0

implying a maximum.

4. Again for simplicity
d2y

dx2
= 2x+1 < 0 at x = −3 hence we have a maximum.
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Example

Suppose we make steel cans. If the form of the can is a cylinder of height h and
radius r the volume of the can is V = πr2h and the area of the steel used is
A = 2πrh + 2πr2.

We want the volume to be 64cc. and hence V = πr2h = 64 which gives
h = 64/(πr2). The area is therefore A = 2πrh + 2πr2 = 128/r2 + 2πr2

To minimize the area we compute

dA

dr
= −128/r2 + 4πr

which is zero when 4πr3 = 128 giving r � 2.17 and h = 64/(πr2) � 4.34.

To check that this is a minimum

d2A

dr2
= 256/r3 + 4π

which is positive when r is positive so we have a minimum.

The Taylor Expansion

We leave you with one useful approximation. If we have a function f(x) then we
have

f(x + a) = f(x) + a
df

dx
+

a2

2!

df2

dx2
+ . . . +

an

n!

dfn

dxn
+ . . .

When a is small and we evaluate the derivatives at x. For example if we take sin x

the derivatives are cos x, −sinx, −cosx, sinx, . . . . So at x = 0 since sin 0 = 0

and cos 0 = 1

sin(a) = a −
a3

3!
+

a5

5!
−

a7

7!
− . . .

8.0.3 Newton-Raphson method

We now examine a method, known as the Newton-Raphson method, that makes
use of the derivative of the function to find a zero of that function. Suppose we
have reason to believe that there is a zero of f(x) near the pointx0. The Taylor
expansion for f(x) about x0 can be written as:

f(x) = f(x0) + (x − x0)f
′
(x0) +

1

2!
(x − x2

0f
′′
(x0) + . . .

If we drop the terms of this expansion beyond the first order term we have

f(x) = f(x0) + (x − x0)f
′
(x0)
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Now set f(x) = 0 to find the next approximation, x1, to the zero of f(x), we
find:

f(x1) = f(x0) + (x1 − x0)f
′
(x0) = 0

or

x1 = x0 −
f(x0)

f
′(x0)

This provides us with an iteration scheme which may well converge on the zero
of f(x), under appropriate conditions.

example

Suppose we want the cube root of 2 or the value of x for which f(x) = x3 − 2 = 0.
Here f

′
(x) = 3x2 so

x1 = x0 −
x3

0 − 2

3x2
0

Starting with x0 = 1 we have x1 = 1.333333 and using this value for x0 we get
x1 = 1.263889. The steps are laid out below

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921

Or suppose f(x) = sin x − cos x then f
′
(x) = cos x + sin x and so

x1 = x0 −
sin x0 − cos x0

cos x0 + sin x0

then starting with x0 = 1 we have

Step Estimate
1 1
2 0.7820419
3 0.7853982
4 0.7853982
5 0.7853982

To examine the conditions under which this iteration converges, we consider the
iteration function

g(x) = x −
f(x)

f
′(x)
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whose derivative is:

g
′
(x) = 1 −

(f
′
(x))2 − f(x)f

′′
(x)

(f ′(x))2
=

f(x)f
′′
(x)

(f ′(x))2

At the actual zero, f(x) = 0, so that as long as f
′
(x) = 0, we have g

′
(x) = 0 at

the zero of f(x). In addition we would like the iteration function to get smaller,
that is | g

′
(x) |< 1. We conclude that the Newton-Raphson method converges in

the interval where.
f(x)f

′′
(x)

(f ′(x))2
< 1

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921
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8.0.4 Integrals and Integration

Many important problems can be reduced to finding the area under a curve between
two points a and b

a bx →

f(x)

The obvious idea is to split the area into small rectangles and sum the area of
these. So if we take the rectangle between xj and xj+1 this has a height of f(xj)

and an area of f(xj)(xj+1 − xj). If we add all such rectangles this gives an gives an
approximation to the area. We do better when the width of the rectangles gets
small so if we choose all the widths as δ our approximation is

∑
f(xj)δx for a = x1, x2, . . . , xn = b

When we shrink δx to zero we have the area we need and write

∫b

a

f(x)dx

The
∫

sign was originally a capital S, for sum.
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a bx →

f(x)

xj xj+1

f(xj)

We avoid technicalities and define the definite integral of a functionf(x) between
a and b as ∫b

a

f(x)dx

which is the area under the curve, see figure 8.1 Using the idea of areas we have

Figure 8.1: Areas under f(x)

some rule for integrals

1. If a ≤ c ≤ b then
∫b

a
f(x)dx =

∫c

a
f(x)dx +

∫b

c
f(x)dx

2. For a constant c
∫b

a
cf(x)dx = c

∫b

a
f(x)dx

3. For two functions f(x) and g(x)
∫b

a
c (f(x) + g(x))dx =

∫b

a
f(x)dx+

∫b

a
g(x)dx
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Perhaps the most important result about integration is the fundamental theorem
of calculus. It is easy to follow, if not to prove. Suppose we have a function f(x)

and we define

F(x) =

∫x

a

f(t)dt

Then
dF(x)

dx
=

d

dx

(∫x

a

f(t)dt

)
= f(x)

In other words integration is rather like the reverse of differentiation. We need to
be a bit careful so define F(x) as the primitive of f(x) if

dF(x)

dx
= f(x)

So log x is a primitive for 1/x as is log x+ 23. The primitive is normally called the
indefinite integral

∫
f(x)dx of f(x) and is defined up to a constant, so

∫
f(x)dx =

F(x) + constant

If the limits of the integration exist, say a and b then we have the definite
integral ∫b

a

f(x)dx = F(b) − F(a) (8.2)

We can of course spend time looking at functions which differentiate to what
we want. Normally however we use tables ( or our memory) So

f(x) F(x) =
∫

f(x)dx

xn (n �= −1) xn/(n + 1)

1/x log x

exp(ax) exp(ax)/a

log x x log x − x

ax ax/ log a

sin(ax) −cos(ax)/a

cos(ax) sin(ax)/a

1/
√

a2 − x2 sin−1(x/a) (−1 < x < a)

1/(a2 − x2) tan−1(x/a)

Example

1.
∫

x2dx = x3/3 + constant

2.
∫3

−2
x2dx =

[
x3/3

]3

−2
= (3)3/3 − (−2)3/3 = (27 + 8)/3

3.
∫10

1
= 1/xdx = [log x]

10
1 = log 10 − log 1 = 2.30 . . . − 0

4.
∫1/2

0
dx/

√
1 − x2 = [sin1(x)]

10
1 = sin−1(1/2) − sin−1(0) = π/6
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Exercises

Evaluate the following integrals and check your solutions by differentiating.

1.
∫

x3dx

2.
∫

1/x2dx

3.
∫
(25 + x2)−1dx

Evaluate

1.
∫7

3
log xdx

2.
∫2

1
x−3/2dx

3.
∫2a

a
(a2 + x2)−1dx
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Chapter 9

Algebra: Matrices, Vectors etc.

The human mind has never invented a labor-saving machine equal
to algebra

Author Unknown

We now meet the ideas of matrices and vectors. While they may seem rather
odd at first they are vital for studies in almost all subjects. The easiest way to see
the power of the idea is to consider simultaneous equations. Suppose we have the
set of equations

3x − 5y = 12

x + 5y = 24

We can find the solution x = 9 y = 3 in several ways . For example if we add
the second equation to the first we have equations

4x = 36

x + 5y = 24.

Thus x = 9 and substituting 9 in the second equation gives 9 + 5y = 24 or
5y = 15 giving y = 3. Many mathematical models result in sets of simultaneous
equations, like these except much more complex which need to be solved, or per-
haps just to be examined. To do this more easily the matrix was invented. The
essence of the set of equations

3x − 5y = 12

x + 5y = 24

is captured in the array or matrix of coefficients

(
3 −5

1 5

)
or the augmented

matrix

(
3 −5 12

1 5 0

)
These arrays of numbers are called matrices. To save

103

Download free eBooks at bookboon.com



Mathematics for Computer Scientists

99 

Algebra: Matrices, Vectors etc.
104 CHAPTER 9. ALGEBRA: MATRICES, VECTORS ETC.

space we often give matrices names in boldface, for example

A =




3 −5 12

1 5 24

6 8 −3

11 0 0




or

X =

(
3 −5 12 0

1 5 24 0

)
.

We define an r × c matrix as a rectangular array of numbers with r rows and
c columns, for example A above is a 4 × 3 matrix while X is 2 × 4 is

A matrix with just one column is called a column vector while one with just
one row is a row vector, for example a column vector

a =




3

1

6




and a row vector
b =

(
3 −5 12 −19

)

We use matrices in ways which keep our links with systems of equations. Before
looking at the arithmetic of matrices we see how we can use them to come up with
a general method of solving equations.

9.0.5 Equation Solving.

If you were to look at ways people use to solve equations you would be able do
deduce some simple rules.

1. Equations can be multipled by a non-zero constant

2. Equations can be interchanged

3. Equations can be added or subtracted to other equations

If equations are manipulated following these rules they may look different but they
have the same solutions as when you started. We can solve equations by writing
the coefficients in the augmented matrix form and manipulating as follows

1. rows of the matrix may be interchanged

2. rows of the matrix may be multiplied by a nonzero constant.
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3. rows can be added (or subtracted ) to (from) other rows

Our aim is to reduce the matrix to what is known as row echelon form. This means
that:

• the leading non zero term in each row is a one.

• Also the leading 1 in the first row lies to the left of that in the second row
and so on. More precisely the leading 1 in any row lies to the left of the
leading ones in all the rows below it.

For example




1 −5 12

0 0 24

0 0 0


 or




1 −5 12

0 1 24

0 0 1


 or




1 1 12 −19

0 1 1 0

0 0 1 3

0 0 0 1




The reason for this will become apparent when we do it.
Lets try it out: We start with the equations

2x + y + 2z = 10

x − 2y + 3z = 2

−x + y + z = 0

in this case the coefficients are



2 1 2 10

1 −2 3 2

−1 1 1 0




We are allowed to manipulate rows, these are row operations, to try and get to
the row echelon form. Thus we have

1. Add row 2 to row 3 to get




2 1 2 10

1 −2 3 2

0 −1 4 2




2. Subtract row 2 from row 1 to get




1 3 −1 8

1 −2 3 2

0 −1 4 2




3. Subtract row 1 from row 2




1 3 −1 8

0 −5 4 −6

0 −1 4 2
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4. Tidy to get




1 3 −1 8

0 5 −4 6

0 1 −4 −2




5. Subtract 5 times row 3 from row 2 to get




1 3 −1 8

0 0 16 16

0 1 −4 −2




6. Interchange rows 2 and 3




1 3 −1 8

0 1 −4 −2

0 0 16 16




7. Tidy




1 3 −1 8

0 1 −4 −2

0 0 1 1




This seems more like row echelon .
This last matrix corresponds to the set of equations

x + 3y − z = 8

y − 4z = −2

z = 1

These are much easier to solve! Here

z = 1 y = 2 x = 3.

106 CHAPTER 9. ALGEBRA: MATRICES, VECTORS ETC.
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It is often nicer to go a bit further and get rid of as much of the upper triangle
as possible. Clearly the leading 1 in each row can be used to get zeros in the
column above it. The resulting matrix is called reduced row echelon form of the
original matrix. Here we get




1 3 −1 8

0 1 −4 −2

0 0 1 1


 →




1 3 0 9

0 1 0 2

0 0 1 1


 →




1 0 0 3

0 1 0 2

0 0 1 1




It does really matter a great deal to us which we use since we are only interested
in solutions.

Lets look at another example

6x + 3y + 6z = 9

x + 2y = 16

4x + 5y + 1z = 18

The augmented form is 


6 3 6 9

1 2 0 6

4 5 1 18




We have



6 3 6 9

1 2 0 6

4 5 1 1


 →




0 −9 6 −27

1 2 0 6

0 −3 1 −6


 →




1 2 0 6

0 3 −2 9

0 3 −1 −6


 → . . . →




1 2 0 6

0 1 −2/3 3

0 0 1 −3




Some steps have been concatenated!

What can go wrong

In reality nothing much can go wrong but we need to examine a couple of cases
where the results we obtain require some thought.

1. Suppose we end up with a row of zeros. This is no problem, except when
the number of non-zero rows is less that the number of variables. This just
means there is not an unique solution e.g

x + 2y − z = 0

x + z = 3

2x + 2y = 3
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We have



1 2 −1 0

1 0 1 3

2 2 0 3


 → · · · →




1 2 −1 0

0 1 −2 −3

0 0 0 0


 →




1 2 1 −6

0 1 −1 −3/2

0 0 0 0




This corresponds to

x + y + z = −69

y − z = −3/2

Now there is a solution for these equations but it is not the explicit unique
type we have been dealing with up to now. If z is known, say z0 then it
follows x = 3−z0 and y = (2z0−3)/2. We have a solution for every z0 value.
Technically there are an infinite number of solutions. It is obvious if you
think about it that if you have fewer equations than variables (unknowns)
then you will not have a simple solution.

If we have 2 rows all zero then we have to give a value to two variables, if 3
then 3 variables and so on.

2. No Solution
Of course your equations may not have a solution in that they are contra-
dictory, for example:

x = 1 y = 3 x = −2 z = 16

We recognize the equations are contradictory ( have no solutions at all ) in
the following way. If we have a row of which is all zero except for the very
last element then the equations have no solution. For example:
Suppose we have the equations

x − 2y − 3z = 1

2x + cy + 6z = 6

−x + 3y +(c − 3)z = 0

where c is some constant. We proceed to row echelon



1 −2 3 1

2 c 6 6

−1 3 c − 3 0


 →




1 −2 3 2

0 c + 6 0 4

0 1 c 0
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Before we go further what happens if c = −6? The middle row of our matrix
corresponds to 0=4 which is nonsense. Thus the original equation set does
not have a solution when c = −6

However we will just carry on




1 −2 3 1

2 c 6 6

−1 3 c − 3 0


 →




1 −2 3 1

0 c + 6 2c 6

0 1 c 1


 →




1 −2 3 1

0 0 2c − c(c + 6) 4

0 1 c 0




→



1 −2 3 1

0 1 c 0

0 0 2c − c(c + 6) 6


 →




1 −2 3 1

0 1 c 0

0 0 −4c − c2 1




Now if −4c − c2 = 0, that is c = 0, or c = −4 our last equation is 0 = 1

which is clearly nonsense! This means that the original equations had no
solution.

You may feel that this is a bit of a sledge hammer to crack a nut, but there is
a real purpose to our exercise. If you move away from the trivial cases then the
scheme we have outlined above is the best approach. It is also the technique use
in the computer programs available for equation solving. In addition the shape of
the reduced row echelon form tell us a lot about matrices. Often we have a system
of equations where we have some parameters e.g. using our techniques above we
can find the range of values, or perhaps the values themselves when solutions are
possible.

The row elimination ideas we have outlined are known as Gaussian elimination
in numerical circles. The algorithms which bear tis name, while very much slicker
are based on these simple ideas.
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Exercises

1. Solve

(a)

2x + 3y = 7

5x − y = 9

(b)

x + 3y + 3z = 1

2x + 5y + 7z = 1

−2x − 4y − 5z = 1

(c)

v − w − x − y − z = 1

2v − w + 3x + 4z = 2

2v − 2w + 2x + y + z = 1

v + x + 2y + z = 0

(d)

w + 2x − 3y − 4z = 6

w + 3x + y − 2z = 4

2w + 5x − 2y − 5z = 10

2. Consider the equations

v − w − x − y − z = 1

2v − w + 3x + 4z = 2

2v − 2w + 2x + y + z = 1

v + x + 2y + z = c

For what values of c do these equations have a unique solution? Are there
any values of c for which there is no solution?
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9.0.6 More on Matrices

If we have an n × m matrix A we need some way of referring to a particular
element. It is common to refer to the (ij)th element meaning the element in row
i and column j. We think of the matrix as having the form

A =




a11 a12 · · · a1,n−1 a1n

a21 a22 . . . a2,n−1 a2n

a31 a32 · · · a3,n−1 a3n

cdots · · · · · · · · · · · ·
am1 am2 · · · am,n−1 am,n




If we have a typical ijth element we sometimes write

A = (aij)

The unit matrix is an n×n matrix with ones on the diagonal and zeros elsewhere,
usually written I for example

(
1 0

0 1

)
or




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




So A is a unit matrix if

1. It is square.

2. The elements aij satisfy aii = 1 for all i and aij = 0 for all i �= j

9.0.7 Addition and Subtraction

We can add or subtract matrices that have the same dimensions by just adding or
subtracting the corresponding elements. For example

(
a11 a12

a21 a22

)
+

(
b11 b12

b21 b22

)
=

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

and (
a11 a12

a21 a22

)
−

(
b11 b12

b21 b22

)
=

(
a11 − b11 a12 − b12

a21 − b21 a22 − b22

)

when A =




1 2

3 4

4 0


 and B =




−4 −3

−2 −1

0 5


 then A + B =




−3 −1

1 3

4 1




while A − B =




5 5

5 5

4 5
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Multiplication by a scalar ( number)

We can multiply a matrix A by a number s to give sA which is the matrix whose
elements are those of A multiplied by s, so if

A =




a11 a12 · · · a1,n−1 a1n

a21 a22 . . . a2,n−1 a2n

a31 a32 · · · a3,n−1 a3n

· · · · · · · · · · · · · · ·
am1 am2 · · · am,n−1 am,n




then

sA =




sa11 sa12 · · · sa1,n−1 sa1n

sa21 sa22 . . . sa2,n−1 sa2n

sa31 sa32 · · · sa3,n−1 sa3n

· · · · · · · · · · · · · · ·
sam1 sam2 · · · sam,n−1 sam,n




We use the term scalar for quantities that are not vectors.

Transpose of a matrix

If we take a matrix A and write the columns as rows then the new matrix is called
the transpose A written AT or A

′

Thus if A =

(
1 2 4

11 12 0

)
then AT =




1 11

2 12

4 5


 Notice that (AT)T = A.

Any matrix that satisfies

A = AT

is said to be symmetric. If

A = −AT

then it is anti-symmetric.

Multiplication of Matrices

This is a rather more complicated topic. We define multiplication in a rather
complex way so that we keep a connection with systems of equations. Suppose A

is an n × p matrix and B is a p × m matrix. Then the (ij)th element of AB is

p∑
k=1

aikbkj = ai1b1j + ai2b2j + ai3b3j + ai4b4j + . . . + aip−1bp−1j + aipbpj
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Note that AB is an n × m matrix. One way of thinking of this is to notice that
the (ij)th element of the product matrix is made up by multiplying elements in
the ith row of the first matrix by the corresponding elements in the jth column of
the second matrix. The products are then summed.

examples

(
1 2 3

)



7

6

4


 = 1 × 7 + 2 × 6 + 3 × 4 = 31




7

6

4


 (

1 2 3
)

=




7 14 21

6 12 18

4 8 12




(
1 2

4 12

) (
1 4

2 9

)
=

(
5 22

28 124

)

Some consequences are

• You can only multiply matrices if they have the right dimensions.

• In general AB �= BA

• AI = A

• IA = A but I has different dimensions to that above

• A0 = 0

• 0A = 0 but 0, a matrix of zeros, has different dimensions to that above
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As we said the reason for this strange idea is so that it ties in with linear
equations, thus if

x + 2y = u

4x + 9y = v

and

v + 4y = 3

2v − y = 0

these can be written in matrix form

Ax =

(
1 2

4 9

) (
x

y

)
=

(
u

v

)
= u

and

Bu =

(
1 4

2 −1

) (
u

v

)
=

(
3

0

)

So we can write both e can write systems of equations as one matrix equation

BAx =

(
3

0

)

(
1 4

2 −1

) (
1 2

4 9

)
x =

(
17 38

−2 −5

)
x =

(
3

0

)

This is exactly the same set of equations we would have had if we had eliminated
u and v without any matrices.

Inverses

So we have a whole set of algebraic operations we can use to play with matrices,
except we have not defined division since if we can multiply then why not divide?

For a ( non-zero) number z we can define the inverse z−1 which satisfies

zz−1 = z−1z = 1.

In the same way we say that the matrix A has an inverse A−1. if there is a matrix
A−1 which satisfies

A−1A = AA−1 = I.

Beware not all matrices have inverses! Those that do are said to be non-singular
otherwise a matrix which does not have an inverse said to be is singular. If you
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think about it you will see that only square matrices can have inverses. Suppose
A is an n × n matrix and B is another n × n matrix. If

AB = BA = I

where I is an n × n unit matrix then B is the inverse of A. Notice A must be
square but not all square matrices have inverses.

We can of course find the inverse by solving equations. For example
(

a b

c d

) (
e f

g h

)
=

(
1 0

0 1

)

So (
ae + bg af + bh

ce + dg cf + dh

)
=

(
1 0

0 1

)

we then solve the four equations .

ae + bg = 1

af + bh = 0

ce + dg = 0

cf + dh = 1

Not a very promising approach. However we can use the row-echelon ideas to get
an inverse. All we do is take a matrix A and paste next to it a unit matrix I .
Write this augmented matrix as B = (AI).

We row reduce B to reduced row echelon form. The position of the original I

is the inverse. For example suppose A =

(
1 2

4 9

)
then

B = (AI)

(
1 2 1 0

4 9 0 1

)

We get using row operations
(

1 2 1 0

4 9 0 1

)
→

(
1 2 1 0

0 1 −4 1

)
→

(
1 0 9 2

0 1 −4 1

)

and the inverse is A−1 =

(
9 2

−4 1

)

Of course we check
(

1 2

4 9

) (
9 2

−4 1

)
=

(
9 2

−4 1

) (
1 2

4 9

)
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What can go wrong?

1. If you manage to convert the left hand matrix A to a unit matrix I then you
have succeeded.

2. Sometimes as you manipulate the augmented matrix B you introduce a row
of zeros into the position where you placed A. In this case you can stop as
there is no solution.

Consider A =




6 3 6

1 2 0

4 5 0


. The augmented matrix is B =




6 3 6 1 0 0

1 2 0 0 1 0

4 5 1 0 0 0




Now using row operations we have



6 3 6 1 0 0

1 2 0 0 1 0

4 5 1 0 0 0


 →




0 −9 6 1 −6 0

1 2 0 0 1 0

0 −3 1 0 0 1


 →




0 0 3 1 −6 0

1 2 0 0 1 0

0 −3 1 0 −4 1




→



1 2 0 0 1 0

0 1 −1/3 0 −4/3 −1/3

0 0 1 1/3 2 1


 →




1 0 0 −2/9 −3 4/3

0 1 0 1/9 2 −1/3

0 0 1 1/3 2 −1




giving us our inverse 


−2/9 −3 4/3

1/9 2 −1/3

1/3 2 0




Consider now A =




6 3 6

1 2 0

4 8 0


. The augmented matrix is B =




6 3 6 1 0 0

1 2 0 0 1 0

4 8 0 0 1 0




Now using row operations we have



6 3 6 1 0 0

1 2 0 0 1 0

4 8 0 0 0 0


 →




0 −9 6 1 −6 0

1 2 0 0 1 0

0 0 0 0 0 0




Given the zeros we know there is no inverse!
Of course we can think of solving equations using inverse matrices. It is almost

always better to use row operations on the augmented matrix but we can proceed
as follows. If we have the equations

6x + 3y + 6z = 9

x + 2y = 6

4x + 5y + z = 18
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this can be written as



6 3 6

1 2 0

4 5 1







x

y

z


 =




9

6

18




so




x

y

z


 =




6 3 6

1 2 0

4 5 1




−1 


9

6

18


 =




−2/9 −3 4/3

1/9 2 −2/3

1/3 2 1







9

6

18




In general if
Ax = b

then
x = A−1b

provided A−1 exists.
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Summary

1. The transpose of A written AT is the matrix made by writing the rows of A

as columns in AT.

2. A is symmetric if A = AT

3. The zero matrix is the n × m array of zeros e.g




0 0 0

0 0 0

0 0 0




4. The unit matrix I ( of order n) is the n×m matrix with 1’s on the diagonal

and zeros elsewhere e.g.




1 0 0

0 1 0

0 0 1




5. The matrix A has an inverse B iff AB = BA = I. B is written A−1.

6. A matrix which has an inverse is said to be non-singular.

7. Do remember that except in special cases AB �= BA

Exercises

1. Given A =




1 −1 1

−3 2 −1

−2 1 0


 and B =




1 2 3

2 4 6

1 2 0


 compute AB and BA

2. Show that




0 −2 3

2 0 4

−3 −4 3


 is skew symmetric.

3. If A =




2 −2 4

−1 3 4

1 −2 0


 show that A = A2

4. Show that ABT = BTAT

5. Show that the inverse of AB is B−1A−1

6. Find the inverse of




2 3 1

1 2 3

3 2 2


 and




2 4 3 2

3 6 5 2

2 5 2 −3

4 5 14 0




Download free eBooks at bookboon.com



Mathematics for Computer Scientists

114 

Algebra: Matrices, Vectors etc.
9.1. DETERMINANTS 119

Geometry

We write the point (x, y) in the plane as the vector x =

(
x

y

)
. If A is a 2 × 2

matrix Ax transforms x into a new point. Suppose A =

(
1 1/2

0 1

)
Then

1. A

(
0

0

)
=

(
0

0

)

2. A

(
1

0

)
=

(
1

0

)

3. A

(
0

1

)
=

(
1/2

1

)

4. A

(
1

1

)
=

(
3/2

1

)

If we plot the 4 points (0,0),(0,1),(1,1),(0,1) and their transforms we get

−2 −1 0 1 2

−2
−1

0
1

2

x

y

9.1 Determinants

Consider the matrix

(
a b

c d

)
. We can show that this has an inverse

(
e f

g d

)

when ∇ = ad−bc �= 0, see 9.0.7. The quantity ∇ is called the determinant of the
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matrix A =

(
a b

c d

)
and is written

∣∣∣∣
a b

c d

∣∣∣∣ or det(A). Similarly




a b c

d e f

g h i




has an inverse when
∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f

h i

∣∣∣∣ − b

∣∣∣∣
d f

g i

∣∣∣∣ + c

∣∣∣∣
d e

g h

∣∣∣∣ �= 0

The general definition of a determinant of an n × n matrix A is as follows.

1. If n = 1 then det( A) = a11

2. if n > 1 Let Mij be the determinant of the (n−1)×(n−1) matrix obtained
from A by deleting row i and column j. Mij is called a minor.

Then

det(A) = a11M11−a12M12+a13M13−a14M14+. . . (−1)n+1a1nM1n =

n∑
j=1

(−1)j+1a1jM1j

Determinants are pretty nasty but we are fortunate as we really only need them
for n = 1, 2 or 3.

9.2 Properties of the Determinant

1. Any matrix A and its transpose AT have the same determinant, i.e. det(A)=det(AT).

Note: This is useful since it implies that whenever we use rows, a similar
behavior will result if we use columns. In particular we will see how row
elementary operations are helpful in finding the determinant.

2. The determinant of a triangular matrix is the product of the entries on the

diagonal, that is




a b c

0 e f

0 0 i


 = aei

3. If we interchange two rows, the determinant of the new matrix is the opposite
sign of the old one, that is




a b c

d e f

g h i


 = −




d e f

a b c

g h i
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4. If we multiply one row by a constant, the determinant of the new ma-
trix is the determinant of the old one multiplied by the constant, that is


a b c

d e f

λg λh λi


 = λ




a b c

d e f

g h i


 In particular, if all the entries in one

row are zero, then the determinant is zero.

5. If we add one row to another one multiplied by a constant, the determinant of

the new matrix is the same as the old one, that is




a b c

d e f

λa + g λb + h λc + i


 =




a b c

d e f

g h i




Note that whenever you want to replace a row by something (through ele-
mentary operations), do not multiply the row itself by a constant. Otherwise,
it is easy to make errors, see property 4

6. det(AB)=det(A)det(B)

7. A is invertible if and only if det(A) �= 0. Note in that case det(A−1)=1/det(A)

While determinants can be useful in geometry and theory they are complex and
quite difficult to handle. Our last result is for completeness and links matrix
inverses with determinants.

Recall that the n×n matrix A does not have an inverse when det(A)=0. How-
ever the connection between determinants and matrices is more complex. Suppose
we define a new matrix, the adjoint of A say adj(A) as

adjA =
(
(−1)i+1Mij

)T
=




M11 −M12 · · · (−1)n+1M1,n

−M21 M22 · · · (−1)n+2M2,n

· · · · · · · · · · · ·
(−1)n+1Mn1 (−1)n+2Mn2 · · · (−1)2nMnn




T

Here the Mij are just the minors defined above.

So if A =




1 2 3

1 3 5

1 5 · · ·


 then adj(A)=




11 −7 2

−9 9 −3

1 −2 1




T

=




11 −9 1

−7 9 −2

2 −3 1




Why is anyone interested in the adjoint? The main reason is

A−1 =
adjA

det(A)

Of course you would have to have a very special reason to compute an inverse this
way.
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9.2.1 Cramer’s Rule

Suppose we have the set of equations

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

and let D =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
Then Cramer’ s rule states that

x =
1

D

∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

a3 b3 c3

∣∣∣∣∣∣

y =
1

D

∣∣∣∣∣∣
a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣

z =
1

D

∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣
There is even a more general case. Suppose we have

Ax = d

where xT = (x1, x2, . . . , xn) and dT = (d1, d2, . . . , dn). Let D =det(A).
Then

xk =
1

D




a11 · · · a1(k−1) d1 a1(k+1) · · · a1n

· · · · · · · · · · · · · · · · · · · · ·
an1 · · · an(k−1) dn an(k+1) · · · ann




While this is a nice formula you would have to be mad to use it to solve equations
since the best way of evaluating big determinants is by row reduction, and this
gives solutions directly.

Exercises

1. Evaluate

∣∣∣∣
2 4

3 6

∣∣∣∣
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2. Evaluate

∣∣∣∣∣∣
2 4 3

3 6 5

2 5 2

∣∣∣∣∣∣

3. Evaluate

∣∣∣∣∣∣
x 1 2

x2 2x + 1 x3

0 3x − 2 2

∣∣∣∣∣∣

4. If A =




a b 0 0

c d 0 0

0 0 e f

0 0 g 14


 show that

det(A) =

∣∣∣∣
a b

c d

∣∣∣∣
∣∣∣∣

e f

g d

∣∣∣∣
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Probability

Probability theory is nothing but common sense reduced to calcula-
tion.

Pierre Simon Laplace

In what follows we are going to cover the basics of probability. The ideas are
reasonably straightforward, however as it involves counting it is very easy to make
mistakes - as we shall see.

Suppose we perform an experiment whose outcome is not perfectly predictable
e.g. roll a die or toss a coin. Imagine we make a list of all possible outcomes, call
this list S the sample space. So

• If we toss a coin S consists of {Head, Tail}, we write S = {Head, Tail},

• If we roll a die S={ 1,2,3,4,5,6}

• If a princess kisses a frog then we have two possibilities
S={ we get a prince, we get an embarrassed frog}

• When we roll two dice then S is the set of pairs

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

An event A is a collection of outcomes of interest, for example rolling two dice and
getting a double. In this case the event A is defined as

125
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A ={ (1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}.

Suppose that the event B is that the sum is less that 4 when we roll two dice, then

B={ (1,1),(1,2),(2,1)} .

If two events A and B have no elements in common then we say they are mutually
exclusive. For example let A be the event {At least one 6} that is

A={(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,)}

Since A and B have no elements in common they are mutually exclusive. Define
the event C as

C={ (2,3),(5,7)}

Then A and C are also mutually exclusive. If D={sum exceeds 10} then A and
D are not mutually exclusive! Check this yourself.

Combining events

• It is handy to have a symbol for not A, we use ∼ A but we are not very picky
and not A is acceptable.

• The event A and B, often written A∩B is the set of outcomes which belong
both to A and to B.

• The event A or B, often written A ∪ B is the set of outcomes which belong
either to A or to B or to both.

You will recognise the notation from the earlier discussion on sets.

Suppose S={0,1,2,3,4,5,6,7,8,9} then if we define A={1,3,5,7,9} and B={4,5,7}
we have

• A ∩ B = A and B = {5,7}

• While A ∪ B = A or B = {1,3,4,5,7,9}

• ∼ B=not B = 1,2,3,4,8,9
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10.0.2 Probability - the rules

Now to each event we are going to assign a measure ( in some way ) called the
probability. We will write the probability of an event A as P[A]. We will set out
some rules for probabilities, the main ones are as follows:

1. 0 ≤ P[A] ≤ 1.

2. P[S] = 1

3. For mutually exclusive events A and B P[A or B] = P[A] + P[B]

We will add a few extra rules

(i) For mutually exclusive events A1 and A2 and A3 · · ·An then

P[A1 ∪ A2 ∪ A3 · · · ∪ An · · · ] = P[A1] + P[A2] + P[A3] + · · · + P[An] + · · ·

or written differently

P[A1 or A2 or A3 · · · or An · · · ] = P[A1] + P[A2] + P[A3] + · · ·+ P[An] + · · ·

(ii) For an event A

P[ not A] = 1 − P[A]

(iii) For events A and B

P[A or B] = P[A] + P[B] − P[A and B]

All this is a bit fiddley but is not really very hard. If you were not too confused
at this point you will have noticed that we do not have a way of getting the
probabilities. This is a difficult point except in the case we are going to discuss.

10.0.3 Equally likely events

Suppose that every outcome of an experiment is equally likely. Then we can show
from the rules above for any event A

P[A] =
the number of outcomes in A

the number of possible outcomes
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This means we can do some calculations.

examples

1. Suppose that the outcomes

• that a baby is a girl

• that a baby is a boy

are equally likely. Then as there are two possible outcomes we have P[girl]=1/2=P[boy].

2. Suppose now a family has 3 children, the possibilities are

BB BG GB GG

and so P[ one boy and one girl]= 2/4=1/2 while P[two girls]=1/4

3. The famous statistician R A Fisher had seven daughters. If you count the
possible sequences BBBBBBB to GGGGGGG you will find that there are
27 = 128. Only one sequence is all girl so the probability of this event is
1/128.

4. A pair of dice is thrown. What is the probability of getting totals of 7 and
11. Suppose now we throw the two dice twice. What is the probability of
getting a total of 11 and 7 in this case?

5. We draw 2 balls from an urn containing 6 white and 5 black, WHat is the
probability that we get one white and one black ball?

As you can see we really need some help in counting.

ExercisesS

1. A poker hand consists of 5 cards drawn from a pack of 52. What is the
probability that a hand is a straight, that is 5 cards in numerical order, but
not all of the same suit.

2. What is the probability that a poker hand is a full house, that is a triple and
a pair.

3. A and B flip a coin in turn. The first to get a head wins. Find the sample
space. What is the probability that A wins?
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4. The game of craps is played as follows: A player rolls two dice. If the sum is
a 2, 3 or 12 he loses. If the sum is a seven or an 11 he wins. Otherwise the
player rolls the dice until he gets his initial score, in which case he wins or
gets a 7 in which case he loses. What is the probability of winning?

5. A man has n keys, one of which will open his door. He tries keys at ran-
dom, discarding those that don’t work until he opens the door. What is the
probability that he is successful on the kth try.

6. The birthday problem How many people should be in a room to make the
probability of two or more having the same birthday more than 0.5? This is
quite difficult and a simpler approach is to consider the probability that no
two people have the same birthday.

It is often a useful dodge in probability to look at P[ not A] when P[A] is
hard.

So P[ no coincidences] =

365 × 364 × 363 × · · · × (365 − n + 1)

365 × 365 × · · · × 365

= 1×(1−364/365)×(1−364/365)×(1−363/365)×· · ·×(1−(365−n+1)/365)

Number Probability
15 0.74709868
16 0.71639599
17 0.68499233
18 0.65308858
19 0.62088147
20 0.58856162
21 0.55631166
22 0.52430469
23 0.49270277
24 0.46165574
25 0.43130030
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10.0.4 Conditional Probability

Sometime it is natural to talk of the probability of an event A given some other
event has occurred. We write the probability of A given B as P[A | B] and define
it as

P[A | B] =
P[A ∩ B]

P[B]

Remember this is a fancy way of writing

P[A | B] =
P[A and B]

P[B]

While conditional probabilities can have interesting philosophical implications they
also allow one to do calculations. Thus

P[A] = P[A | B]P[B] + P[A |∼ B]P[∼ B]

or more generally if B1, B2, · · · are the only possibilities so
∑n

i=1 Bi = 1 then

P[A] =

n∑
i=1

P[A | Bi]P[Bi]
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Not A
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Examples

1. Consider the table below.

Employed Unemployed Total
Male 460 40 500

Female 140 260 400
Total 600 300 900

Then

• P[ Male] = 500/900

• P[ Male and Unemployed] =40/900

• P[ Unemployed — Male] =40/500 = P[ Unemployed and Male] /P[Male]
= 40/900 ÷ 500/900 =40/500.

2. Suppose we buy widgets from 3 suppliers A,B and C. They supply all pro-
duction and the number of defective items per batch as well as their share
of our supply is given below.

A B C
Supplier

Proportion supplied 0.60 0.30 0.10
Proportion defective 0.03 0.05 0.07

What proportion of widgets are defective?
We know

• P[defective|A] = 0.03

• P[defective|B]=0.03

• P[defective|C]=0.07

so using the formula we have
P[defective]=P[defective|A]×P[A]+P[defective|B]×P[B]+P[defective|C]×P[C]
So P[defective] = 0.03 × 0.6 + 0.03 × 0.3 + 0.07 × 0.1 = 0.034
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10.0.5 Bayes

We also have Bayes Theorem

P[A|B] =
P[B|A]P[A]

P[B]
(10.1)

or

P[A|B] ∝ P[B|A]P[A] (10.2)

Here ∝ means equal to but multiplied by a constant.

You will often find that you can compute P[A | B] when really you want
P[B | A]. Bayes theorem gives you the means for turning one into the other.

Examples

1. Take the data in the example 2 above. We know that P[defective | A]=0.03
and we found that P[defective]=0.034. Then suppose we pick up a defective
component and ask what is the probability that it come from A. Thus we
need P[A | defective].

We can use Bayes to give

P[A | defective] = P[defective | A]P[A]/P[defective]

= 0.03 × 0.6/0.34 = 9/17 = 0.529.

2. Suppose that the probability that a person has a disease P[D] = 0.01. A test
is available which is correct 90% of the time. If we use Y to denote that the
test is positive and ∼ Y negative we mean

P[Y|D] = P[∼ Y| ∼ D] = 0.9

Now the probability of a yes is

P[Y] = P[Y|D]P[D] + P[Y| ∼ D]P[∼ D] = 0.9 × 0.01 + 0.1 × 0.99 = 0.108.

The more interesting case is

P[D|Y] =
P[Y|D]P[D]

P[Y]
= 0.009/0.108 = 0.0833
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Exercises

1. An insurance broker believes that a quarter of drivers are accident prone.
What is more the probability of an accident prone driver making a claim
is 1/3 while for a non accident prone drive the probability is 1/5. What is
the probability of a claim? On his way home the broker sees that one of his
customers has driven his car into a tree. What is the probability that this
customer is accident prone?

2. An urn contains 4 red and 6 green balls. One ball is drawn at random and
it’s colour observed. It is then returned to the urn and 3 new balls of the
same colour are added to the urn, which now contains 13 balls. A second
ball is now drawn from the urn.

(a) What is the probability that the first ball drawn was green?

(b) What is the probability of getting a red ball given the first ball drawn
was green

(c) What is the probability of getting a green ball in the second draw?

3. Sometime used by unscrupulous students of probability -
We have 3 cards. The first card has two red sides, the second two black sides.
The remaining card has one black and one red side. Otherwise the cards are
identical.

The three cards are mixed in a hat and one card is selected at random an
placed on a table. If the exposed side is red what is the probability that the
hidden side is black?
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same colour are added to the urn, which now contains 13 balls. A second
ball is now drawn from the urn.

(a) What is the probability that the first ball drawn was green?

(b) What is the probability of getting a red ball given the first ball drawn
was green

(c) What is the probability of getting a green ball in the second draw?

3. Sometime used by unscrupulous students of probability -
We have 3 cards. The first card has two red sides, the second two black sides.
The remaining card has one black and one red side. Otherwise the cards are
identical.

The three cards are mixed in a hat and one card is selected at random an
placed on a table. If the exposed side is red what is the probability that the
hidden side is black?
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Independence

If P[A|B] = P[A] then we say A and B are independent. This is usually written in
the equivalent form

P[A ∩ B] = P[A]P[B]

Independent is very useful and plays a central role in statistics.

10.0.6 Random Variables and distributions

If we conduct and experiment and see an outcome we almost always code the
outcome in same way, say H,T for head and tail or even 0,1. The coding is known
as a random variable, usually written as a capital such as X. If we toss a coin we
can say that the outcome is X. The actual values may be head, head, tail, giving
the sequence of values of X as H, H, T, . . We use random variables when we have
probability distributions, that is lists of possible outcomes and probabilities, such
as in the table

k 0 1 2 3
P[X = k] 0.1 0.3 0.5 0.1

We point out that the sum of the probabilities must be one, that is
∑3

k=0 P[X = k]

We define the cumulative distribution function (c.d.f.) F(x) as the cumulative sum
of the probabilities

F(x) =

k∑
x=0

P[X = k]

So in the example above

k 0 1 2 3
P[X = k] 0.1 0.3 0.5 0.1

F(x) 0.1 0.4 0.9 1.0

It is more usual to give a formula for a random variable, for example

P[x = k] = 0.3 × 0.7x−1 x = 1, 2, 3, · · ·

As the formula is commonly shorter you can see why.
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10.1 Expectation

We can also view probability from the point of view of what happens in the long
run. Given a random variable X define the expected value of X written E[X] as

E[X] =
∑
allx

xP[X = x]

The expected value can be regarded as the long run average. So if we roll a fail
die and the outcome is X then P[X = i] = 1/6 i = 1, 2, · · · , 6] and so

E[X] = 1 × 1

6
+ 2 × 1

6
+ · · · + 6 × 1

6
= 3.5

You can be sure that if you roll a die you will never get 3.5, however if you rolled
a die and kept an average of the score you will find that this will approach 3.5, see
the plot below

0 20 40 60 80 100

1.0
1.5

2.0
2.5

3.0
3.5

no rolls

run
nin

g a
ve

rag
e s

co
re

For a coin we have Head and Tail. Suppose we count head as 1 and tail as zero,
then

P[X = 1] = 1/2 and P[X = 0] = 1/2

and so E[X] = 1 × 1
2

+ 0 × 1
2

= 1
2
. A similar experiment gives the following
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10.1.1 Moments

Some important expected values in statistics are the moments

µr = E[Xr] r = 1, 2, . . .

since we can usually estimate these while probabilities are much more difficult.
You will have met the

• mean µ = E[X]

• The variance σ2 = E[(X − µ)2].

• The parameter σ is known as the standard deviation.

The central moments are defined as

µr = E[(X − µ)
r
] r = 1, 2, . . .

The third and fourth moments E[(X−µ)3],E[(X−µ)4] are less commonly used.
We can prove an interesting link between the mean µ and the variance σ2. The
result s known as Chebyshev’s inequality

P[|X − µ| > ε] ≤
[σ

ε

]2

(10.3)

This tells us that departure from the mean have small probability when σ is small.
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10.1.2 Some Discrete Probability Distributions

We shall run through some of the most common and important discrete probability
distributions.

The Discrete Uniform distribution

Suppose X can take one values 1, 2, · · · , n with equal probability, that is

P[X = k] =
1

n
k = 1, 2, · · · , n (10.4)

• The mean is E[X] = n+1
2

• the variance is var(X) = 1
3
n3 + 1

4
n2 + 2

3
n − 1

4

For example a die is thrown, the distribution of the score X is uniform on the
integer 1 to 6.

The Binomial distribution

Suppose we have a series if trials each of which has two outcomes, success S and
failure F. We assume that the probability of success, p, is constant, so for every
trial

P[ Success] = p and P[ failure ] = 1 − p

e the probability of X successes in n trails is given by

P[X = k] =

(
n

k

)
pk(1 − p)n−k k = 0, 1, 2, · · ·n (10.5)

• The mean is E[X] = np

• the variance is var(X) = np(1 − p)

The probability that a person will survive a serious blood disease is 0.4. If
15 people have the disease the number of survivors X has a Binomial B(15,0.4)
distribution.

• P[X = 3] =
(

15
3

)
(0.4)3(0.6)12

• P[X ≤ 8] =
∑8

x=0

(
15
x

)
(0.4)x(0.6)15−x

• P[3 ≤ X ≤ 8] = P[X ≤ 8] − P[X ≤ 2] =
∑8

x=2

(
15
x

)
(0.4)x(0.6)15−x
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Applying expectation using the Binomial

A more interesting use is:
Suppose we wish to test whether N people have a disease. It would seem that
the only way to do this is to take a blood test, which will require N blood tests.
Suppose we try the following:

1. We pool the blood of k < N people.

2. If the combined sample is negative we have k people without the disease.

3. If the pooled test is positive we then test all k people individually, resulting
in k + 1 tests in all.

4. Repeat until everyone is diagnosed

What does this save us?
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Assume the probability of a person having the disease is p and that we have a
Binomial distribution for the number with the disease. Then for a group of k

1. P[ just 1 test] = (1 − p)k

2. P[ k+1 tests] = 1 − P[ just 1 test] = 1 − (1 − p)k

So the expected number of tests is

E[ no. of tests] = (1 − p)k + (k + 1)
(
1 − (1 − p)k

)
= k

(
1 − (1 − p)k

)
+ 1

This does give a considerable saving in the number of tests, see the diagram below
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The Hypergeometric distribution

Suppose we have N items and D of these are defective. I take a sample of size n
from these items, then the probability that this sample contains k defectives is

P[X = k] =

(
N−D
n−k

)(
D
k

)
(

N
n

) k = 0, 1, 2, · · ·n (10.6)

• The mean is E[X] = nD
N

• the variance is var(X) = (N−n)
(N−1)

nD
N

(
1 − D

N

)

While situations involving the Hypergeometric are common ii common practice to
approximate with the Binomial when N is large compared to D. We set p = D/N

and sue

P[X = k] =

(
n

k

)
pk(1 − p)N−k k = 0, 1, 2, · · ·n
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The Poisson distribution

Suppose events occur at random

P[X = k] =
λke−λ

k!
k = 1, 2, · · · , n (10.7)

• The mean is E[X] = λ

• the variance is var(X) = λ

The average number of oil tankers arriving per day at a port is 10. The facilities
at the port can handle at most 15 arrivals in a day. What is the probability that
the port will not be able to handle all the arrivals in a day? The variable X is
Poisson λ = 10 so

P[X ≥ 16] =

∞∑
x=16

10x

x!
exp(−10) = 1 −

15∑
x=0

10x

x!
exp(−10) = 1 − 0.9513
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10.1.3 Continuous variables

All the cases we have considered so far have been where X takes discrete values.
This does not have to be true - we can imagine X taking a continuous set of values.
SInce we have though of a probability at X=k we might think of the probability
of X being in some small interval x, x + δx This probability will be

P[x ≤ X ≤ x + δx] = f(x)δx

The function f(x) is called the probability density function.

�

�

1.0

2.0

3.0
�

�

f(x)

��
δx

x

The probability, as can be seen from the sketch is made up of boxes, and if we add
these together we get a probability.

Personally I find it simpler to think of the cumulative distribution function
F(x) which is defined as P[X ≤ x] = F(x). This is just a probability and is what
you find in tables. We relate this to the density function by

F(x) =

∫x

−∞
f(t)dt

It is then not difficult to show that

P[a ≤ X ≤ b] =

∫b

a

f(t)dt

Typical shapes are
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10.1.4 Some Continuous Probability Distributions

Uniform Distribution

Here X is uniformly distributed on a range, say (a, b) so

f(x) =
1

b − a
(10.8)

It follows that F(x) = P[X ≤ x] = x−a
b−a

and P[c ≤ X ≤ d] = d−c
b−a

• The mean is E[X] = a+b
2

• the variance is var(X) = 1
12

(b − a)2

This is a useful model for a random choice in he interval froma to b.

Exponential Distribution

Here X is distributed on the range (0,∞) and

f(x) = λ exp(−λx) (10.9)

where λ is a constant. It follows that F(x) = P[X ≤ x] = 1 − exp(λx) and
P[c ≤ X ≤ d] = exp(λc)1 − exp(λd)

• The mean is E[X] = 1
λ

• the variance is var(X) = 1
λ2

Normal Distribution

Here X is distributed on the range (−∞,∞) and

f(x) =
1√

2πσ2
exp

{
−

(x − µ)2

2σ2

}
(10.10)

where µ and σ are constants.

• The mean is E[X] = µ

• the variance is var(X) = σ2

The normal distribution crops up all over the place the problem is that there is
no simple way of working out the probabilities. They can be computed but you
either need the algorithm or tables.
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Normal Computation

Suppose X has a Normal distribution with mean µ and Variance σ2, often written
N (µ, σ2). We can show that X is related to a Standard Normal variable z, that is
z is N(0,1) by

z =
X − µ

σ
(10.11)

And of course we have the reverse

X = µ + σ × z (10.12)

Now the standard normal is what is given in the tables do we convert our
problem into a standard one.

1. Suppose X is N (100, 92) Then

(a) P[X ≤ 70] = P
[
z = X−100

9
≤ 70−100

9
≤ −3.33

]
= 0.004

(b) P[X ≤ 95] = P
[
z = X−100

9
≤ 95−100

9
≤ −5/9

]
= 0.2893

(c) P[X ≥ 109] = 1 − P
[
z = X−100

9
≥ 109−100

9
≥ 1

]
= 1 − 0.2893

(d) P[70 ≤ X ≤ 109] = P[X ≥ 109] − P[X ≤ 70] = 0.7017 − 0.004

Suppose we wish to find the value a so that P[X ≤ a] = 0.95. Then

P[X ≥ a] = P[z =
X − 100

9
≥ z =

a − 100

9
] = 0.9

From tables a−100
9

= 1.645 and so a = 100 + 1.645 × 9

Another example

Suppose we know

1. P[X < 2] = 0.05

2. P[X > 14] = 0.25

So we have
P[X < 2] = P[z = (X − µ)/σ < (2 − µ)/σ] = 0.05

and so from tables (2 − µ)/σ = −1.645

We also have P[X > 14] = 0.25 or

P[X < 14] = P[z < (X − µ)/σ < (X − µ)/σ] = 1 − 0.25 = 0.975

Hence (14 − µ)/σ = 1.96 We have a pair of equations
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1. 2 − µ = −σ × 1.645

2. 14 − µ = σ × 1.96

Solving gives
(14 − µ) − (2 − µ) = 12 = 0.315σ

or σ = 3.32871 and so µ = 7.475728

The Normal approximation to the Binomial

A Binomial variable X which is B(n, p) can be approximated by a Normal variable
Y, mean np, variance np(1 − p). This can be very useful as the Binomial tables
provided are not very extensive. This is known as the Normal approximation to
the Binomial.

In this case
z = (Y − np)/

√
(np(1 − p))

is standard Normal.

Example

Suppose X is number of 6’s in 40 rolls of a die. Let Y be N(40
6
, 40

6
5
6
). Then

P[X < 5] � P[Y < 5] = P[z <
5 − 20/3√

50/9
] = Φ(−0.7071068) = 0.2398

You can refine this approximation but we will settle for this at the moment.

Exercises

1. A die is rolled, what is the probability that

(a) The outcome is even.

(b) The outcome is a prime.

(c) The outcome exceeds 2.

(d) The outcome is -1.

(e) The outcome is less than 12.

2. Two dice are rolled. What is the probability that

(a) The sum of the upturned faces is 7?

(b) The score on one die is exactly twice the score on the other.
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(c) You throw a double, that is the dice each have the same score.

3. Suppose we toss a coin 3 times. Find the probability distribution of

(a) X=the number of tails.

(b) Y = the number of runs. Here a run is a string of heads or tails. So for
HTT Y=2.

4. The student population in the Maths department at the University of San
Diego was made up as follows

• 10% were from California

• 6% were of Spanish origin

• 2% were from California and of Spanish origin.

If a student from the class was to be drawn at random what is the probability
that they are

(a) From California or of Spanish origin.

(b) Neither from California nor of Spanish origin.

(c) Of Spanish origin but not from California
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5. For two events A and B the following probabilities are known

P[A] = 0.52 P[B] = 0.36 P[A ∪ B] = 0.68

Determine the probabilities

(a) P[A ∩ B]

(b) P[∼ A]

(c) P[∼ B]

6. A hospital trust classifies a group of middle aged men according to body
weight and the incidence of hypertension. The results are given in the table.

Overweight Normal Weight Underweight Total
Hypertensive 0.10 0.08 0.02 0.20

Not Hypertensive 0.15 0.45 0.20 0.80
Total 0.25 0.53 0.22 1.00

(a) What is the probability that a person selected at random from this
group will have hypertension?

(b) A person selected at random from this group is found to be overweight,
what is the probability that this person is also hypertensive?

(c) Find P[hypertensive ∪ Underweight]

(d) Find P[hypertensive ∪ Not Underweight]

7. Two cards are drawn from an ordinary deck of 52 cards. What is the prob-
ability of drawing

(a) Two aces.

(b) The two black aces.

(c) Two cards from the court cards K,Q,J

8. Five cards are drawn from a deck of cards. What is the chance that

(a) Four cards are aces

(b) Four cards are the same i.e. 4 10’s, 4 9’2 etc.

(c) All the cards are of the same suit.

(d) All the card are of the same suit and are in sequence.
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9. A student of statistics was told that there was a chance of 1 in a million that
there was a bomb on an aircraft. The reasoned that there would be a one in
1012 chance of being two bombs on a plane. He thus decided that he should
take a bomb with him ( defused - he was not stupid) to reduce the odds of
an explosion.

Assuming no security problems is this a sensible strategy?

10. There are four tickets numbered 1,2,3,4. A two digit number is formed by
drawing a ticket at random from the four and a second from the remaining
three. So if the tickets were 4 and 1 the resulting number would be 41. What
is the probability that

(a) The resulting number is even.

(b) The resulting number exceeds 20

(c) The resulting number is between 22 and 30.

11. Three production lines contribute to the total pool of parts used by a com-
pany.

• Line 1 contributes 20% and 15% of items are defective.

• Line 2 contributes 50% and 5% of items are defective.

• Line 3 contributes 30% and 6% of items are defective.

(a) What percentage of items in the pool are defective?

(b) Suppose an item was selected at random and found to be defective,
what is the probability that it came from line 1?

(c) Suppose an item was selected at random and found not to be defective,
what is the probability that it came from line 1?
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10.2 The Normal distribution

This table gives the cumulative probabilities for the standard
normal distribution, that is

P[Z ≤ z] =

∫z

−∞
1√
2π

exp(−x2/2)dx

This is the shaded area in the figure.
z 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.7 -0.08 -0.09

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.0 0.5000 - - - - - - - - -
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This table gives the cumulative probabilities for the standard
normal distribution, that is

P[Z ≤ z] =

∫z

−∞
1√
2π

exp(−x2/2)dx

This is the shaded area in the figure.
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Chapter 11

Looking at Data

It is very much more difficult to handle data rather than to construct nice probability
arguments. We begin by considering the problems of handling data. The first questions
are the provenance of the data.

• Is it reliable?

• Who collected it?

• Is it what it is said to be?

• Is it a sample and from what population?

Such questions are important because if the data is wrong no amount of statistical theory
will make it better. Collecting your own data is the best as you should know what is
going on. Almost all statistical theory is based on the assumption that the observations
are independent and in consequence there is a large body of methodology on sampling
and data collection.

11.1 Looking at data

Once you have the data what is he next step? If it is presented as a table ( do read
the description) it may well be worth reordering the table and normalising the entries.
Simplifying and rounding can be very effective, especially in reports. After gathering
data, it pays to look at the data in as many ways as possible. Any unusual or interesting
patterns in the data should be flagged for further investigation.

The Histogram

Anyone who does not draw a picture of their data deserves all the problems that they
will undoubtedly encounter. The basic picture is the histogram. For the histogram we
split the range of the data into intervals and count the number of observations in each

153
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interval. We then construct a diagram made up of rectangles erected on each interval.
The area of the rectangle being proportional to the count.

110 190 55 65 43 15 40 32
11 44 76 23 28 12 15 57
19 63 70 12 17 33 49 16
150 29 18 21 60 43 23 36
22 11 26 29 82 6 21 64
84 73 54 44 82 16 95 29
30 27 85 35 5 22 52 19
18 175 10 20 29 16 16 20
17 6 47 130 115 37 50 17
41 61 116 55 67 26 51 9
50 73 43 80 52 17 22 28
8 27 32 75 10 45

Table 11.1: Dorsal lengths of octapods
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11.1.1 Summary Statistics

Location This is often called the ”measure of central tendency” in our textbooks, or the
”centre” of the dataset in other sources. Common measures of location are the
mean and median. Less common measures are the mode and the truncated mean.
Given observations x1, x2, . . . , xn

• The sample mean is just 1
n

∑n
i=1 xi written x̄. For the Octopods it is 44.67021.

• The median is the middle value, we arrange the observations in order and if
n is odd pick the middle one. If n is even then we take the average of the
two middle values. For the Octopods it is 32.5
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• A truncated mean is the mean of a data set where some large or small (or
both) observations have been deleted.

As you might expect the median is much less influenced by outliers - it is a robust
estimate.

Histogram of oct

oct

Fre
qu

en
cy

0 50 100 150 200

0
5

10
15

20
25

Example

The Australian Bureau of Meteorology collects data on rainfall across Australia.
Given below is the mean monthly rainfall in Broken Hill as well as the median
monthly rainfall.

Average Monthly Rainfall in Broken Hill (in millimeters) 1900 to 1990
Month Mean Median
Jan 23 9
Feb 24 10
Mar 18 9
Apr 19 9
May 22 13
Jun 22 15
Jul 17 15
Aug 19 17
Sep 20 12
Oct 25 15
Nov 19 10
Dec 20 7
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(a) Note that the median monthly rainfall is January is much smaller than the
mean monthly rainfall. What does this imply about the shape of the distri-
bution of the rainfall data for the month of January?

(b) Which measure of central tendency, the mean or the median, is more ap-
propriate for describing rainfall in Broken Hill? Justify your answer using
knowledge of mean and median.

(c) Use the above table to calculate the total yearly rainfall for Broken Hill.

(d) In the north of Australia, the wet season occurs from November to April.
Broken Hill, in central Australia, is occasionally drenched by a northern
storm during these months. These storms tend drop a large amount of rain
in a comparatively short time. How does the table reflect this fact?

Spread This is the amount of variation in the data. Common measures of spread are the
sample variance, standard deviation and the interquartile range. Less common is
the range. The traditional measure is the sample variance

s2 =
1

n

n∑
i=1

(xi − x̄)2

and the square root of the sample variance known as the standard deviation

s2 =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

For the octopods s=36.06159. Alternatives are:

The range This is defined as
range = largest data value - smallest data value
this is obviously not very robust and hence is not often used which is a shame.

Interquartile Range The interquartile range Q3-Q1, while simple in concept, has caused much
grief to introductory statistics teachers since different respectable sources
define it in different respectable ways! First we find the lower quartile Q1,
this is the k = (n/4)th of the ordered observations. If k is not an integer we
take the integer part of k plus 1 otherwise we take k+ 1. The upper quartile
Q3 is obtained by counting down from the upper end of the ordered sample.
This is a good robust measure of spread. For the Octopods Q3-Q1= 59.25
-19.00 = 40.25.
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Shape

The shape of a dataset is commonly categorized as symmetric, left-skewed, right-skewed
or bi-modal. The shape is an important factor informing the decisions on the best
measure of location and spread. There are several summary measures. The sample
third moment

κ3 =
1

ns3

n∑
i=1

(xi − x̄)3

measures skewness-it is zero for a symmetric distribution. The fourth moment

κ4 =
1

ns4

n∑
i=1

(xi − x̄)3

gives a flat top measure. It is 3 for a normal variable!

Outliers

Outliers are data values that lie away from the general cluster of other data values.
Each outlier needs to be examined to determine if it represents a possible value from the
population being studied, in which case it should be retained, or if it is non-representative
(or an error) in which case it can be excluded. It may be that an outlier is the most
important feature of a dataset. It is said that the ozone hole above the South Pole had
been detected by a satellite years before it was detected by ground-based observations,
but the values were tossed out by a computer program because they were smaller than
were thought possible.

Clustering

Clustering implies that the data tends to bunch up around certain values.

Granularity

Granularity implies that only certain discrete values are allowed, e.g. a company may
only pay salaries in multiples of £1,000. A dotplot shows granularity as stacks of dots
separated by gaps. Data that is discrete often shows granularity because of its discrete-
ness. Continuous data can show granularity if the data is rounded.

11.1.2 Diagrams

There is much to be said for drawing pictures. It is hard to imagine a data set where a
histogram is not useful. If your computer program does not draw pictures then replace
it! I rather like to smooth the histogram to get an idea of the shape of the p.d.f.

Note however we need to take care even with the humble histogram! Ideally a
histogram should show the shape of the distribution of the data. For some datasets but
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the choice of bin width can have a profound effect on how the histogram displays the
data.

Stem and Leaf charts

If you are in a computer-free environment a stem-and-leaf plot can be a quick an effective
way of drawing up such a chart. Consider the data below

27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56

stem leaves freq cum freq

2 789 3 3
3 0123456789 10 13
4 0123456789 10 23
5 0123456 7 30

Such a stem and leaf chart is valuable in giving an approximate histogram and giving
the basis for some interesting data summaries. As you can see it is fairly easy to find
the median, range etc. from the stem and leaf chart.

Dotplots

A traditional dotplot resembles a stemplot lying on its back, with dots replacing the
values on the leaves. It does a good job of displaying the shape, location and spread of
the distribution, as well as showing evidence of clusters, granularity and outliers. And for
smallish datasets a dotplot is easy to construct, so the dotplot is a particularly valuable
tool for the statistics student who is working without technology.

Box-Plots

Another useful picture is the box plot. Here we mark the quartiles Q1 Q2 on an axis and
draw a box whose ends are at these points. The ends of the vertical lines or ”whiskers”
indicate the minimum and maximum data values, unless outliers are present in which
case the whiskers extend to a maximum of 1.5 times the inter-quartile range. The points
outside the ends of the whiskers are outliers or suspected outliers. can be very useful,
especially when making comparisons.

One drawback of boxplots is that they tend to emphasize the tails of a distribution,
which are the least certain points in the data set. They also hide many of the details
of the distribution. Displaying a histogram in conjunction with the boxplot helps. Both
are important tools for exploratory data analysis.
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11.2 Scatter Diagram

A common diagram is the scatter diagram where we plot x values against y values. We
illustrate the ideas with two examples.

Breast cancer

In a 1965 report, Lea discussed the relationship between mean annual temperature and
the mortality rate for a type of breast cancer in women. The subjects were residents of
certain regions of Great Britain, Norway, and Sweden. A simple regression of mortality
index on temperature shows a strong positive relationship between the two variables.

Data

Data contains the mean annual temperature (in degrees F) and Mortality Index for
neoplasms of the female breast. Data were taken from certain regions of Great Britain,
Norway, and Sweden. Number of cases: 16 Variable Names

1. Mortality: Mortality index for neoplasms of the female breast

2. Temperature: Mean annual temperature (in degrees F) The Data:
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Mortality Temperature
102.5 51.3
104.5 49.9
100.4 50
95.9 49.2
87 48.5
95 47.8

88.6 47.3
89.2 45.1
78.9 46.3
84.6 42.1
81.7 44.2
72.2 43.5
65.1 42.3
68.1 40.2
67.3 31.8
52.5 34
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