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Abstract This work considers the Lagrangian in classical mechanics and in special
relativity in a setting of arithmetic, algebra, and topology provided by observer’s math-
ematics (seewww.mathrelativity.com).Certain results and communications pertaining
to solutions of these problems are provided. In particular, we show that the standard
expressions for Lagrangian take place with probabilities <1.
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1 Introduction

It is well known that Bohr’s position and the Copenhagen interpretation of quantum
mechanics (QM) results in an observer-based viewpoint to physics. Another major
aspect of QM is the stipulation of discretization of space-time instead of its classical
continuity interpretation, which is explicitly related to the Heisenberg uncertainty
principle. Heisenberg’s unique contribution was not to point out that measurement
affects the system being measured, but rather, it was to recognize the new fundamental
limits tomeasurement set by the “quantum of actions”. There are two such limits. First,
according to classical physics we can make the disturbance as small as we wish, while
according to QM, we cannot. The action of light, for instance, is quantized, so that a
photon cannot avoid disturbing a particle it strikes. The second limit imposed by QM
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is that this disturbance is uncontrollable and unpredictable. This latter feature reflects
the deeply statistical nature of QM. The two new features appearing in Heisenberg’s
analysis, therefore, are:

• The disturbance cannot be reduced in magnitude below a fundamental limit, and
• Correction for the disturbance is impossible.

There are several number-theoretic approaches to quantum physics, e.g., based on
p−adic theoretical physics, see, for example, [1–3]. In this paper we consider another
methodology - Observer’s Mathematics approach, which is based on an observer’s
view point and discreteness of space-time. Randomness appeared in Observer’s Math-
ematicswhenwe considered derivatives, see [4–7]. In particular, the following theorem
was proven: “From the point of view of a Wm−observer, a derivative calculated by a
Wn−observer with m > n is not uniquely defined, i.e., f ′(x0) is a random variable
for any real function f (x) on a set of real numbers.” In this paper we continue to
consider the probability questions that appear automatically, without any additional
assumptions in quantum physics, from observer’s mathematics point of view.

We will also see that randomness appears here not only when we consider deriva-
tives, but also in elementary arithmetic calculations.

2 The Lagrangian for a Free Particle in Classical Mechanics

The following discussion is based on [8]. Consider the simplest case, that of the
free motion of a particle relative to an inertial frame of reference. The Lagrangian
in this case can depend only on the square of the velocity. To discover the form of
this dependence, we make use of Galileo’s relativity principle. If an inertial frame K
is moving with an infinitesimal velocity ε relative to another inertial frame K ′, then
v′ = v + ε. Since the equations of motion must have the same form in every frame,
the Lagrangian L(υ2) must be converted by this transformation into a function L ′
which differs from L(υ2), if at all, only by the total time derivative of a function of
coordinates and time.

Wehave L ′ = L(υ ′2) = L
(
υ2 + 2v · ε + ε2

)
. Expanding this expression in powers

of ε and neglecting terms above the first order, we obtain

L(υ ′2) = L(υ2) + ∂L

∂v2
2v · ε

The second term on the right of this equation is a total time derivative only if it a
linear function of the velocity v. Hence ∂L

∂υ2 is independent of the velocity, i.e., the
Lagrangian is in this case proportional to the square of the velocity, and we write it as

L = 1

2
mυ2

From the fact that a Lagrangian of this form satisfies Galileo’s relativity principle
for an infinitesimal relative velocity, it follows at once that the Lagrangian is invariant
for a finite relative velocity V of the frames K and K ′. For
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L ′ = 1

2
mυ ′2 = 1

2
m (v + V)2 = 1

2
mυ2 + mv · V + 1

2
mV2

or

L ′ = L + d
(
mv · V + 1

2V
2t

)

dt

The second term is a total time derivative and may be omitted.

3 The Lagrangian for a Free Particle in Special Relativity

The following discussion is based on [9]. The principle of least action states that
a mechanical system should have a quantity called the action S. Such quantity is
minimized (in other words, δS = 0) for the actual motion of the system. The action
of a relativistic system should be

(i) a scalar, that means Lorentz transformations will not affect this quantity,
(ii) an integral of which the integrand is a first-order differential.

The only quantity that satisfies the two criteria above is the space-time interval ds,
or a scalar multiple thereof. In short, we can conclude that the action must have the
following form: S = κ

∫
ds. We have

ds =
√
c2dt − dx2 − dy2 − dz2

After pulling out cdt from the square root and noting that dx2+dy2+dz2

dt2
= υ2, we have

c2dt2 − dx2 − dy2 − dz2 = c2dt2 − υ2dt2 = (
c2 − υ2

)
dt and thus

ds = cdt

√

1 − υ2

c2

Hence

S = cκ
∫ √

1 − υ2

c2
dt

Now, the action integral can be expressed as a time integral of the Lagrangian between
two fixed times:

S =
∫

Ldt

Then we can just read off the Lagrangian:

L = cκ

√

1 − υ2

c2
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What is remaining now is determining the expression for κ . At this pointwe should note
that for low velocity υ, this relativistic expression for the Lagrangian should resemble
that of the classical free Lagrangian L = 1

2mυ2. To compare the two Lagrangians, we
perform a Taylor expansion on the square root:

L = cκ

(
1 − υ2

2c2
+ O(υ4)

)

The firs term, cκ , is a constant. That will not affect the equations of motion (for
example, Euler–Lagrange Equation). The second term, after expanding out, is equal
to −κ υ2

2c . To reduce to the classical limit, we can put κ = −mc. Therefore, the
relativistic Lagrangian is:

L = −mc2

√

1 − υ2

c2

4 Lagrangian in Observer’s Mathematics

Let us consider the observer’s mathematics point of view. Note, that in the calculations
above, we used two fundamental arithmetic formulas that use distributive property of
real numbers: (a + b)2 = a2 + 2ab + b2 and c(a + b) = ca + cb. In observer’s
mathematics, we need to re-write the first formula as follows:

(a +n b) ×n (a +n b) = (a ×n a +n 2 ×n (a ×n b)) +n b ×n b

We now have the following

Theorem 1 P ((a +n b) ×n (a +n b) = (a ×n a +n 2 ×n (a ×n b)) +n b ×n b) <

1, where P is the probability.

The proof of this theorem follows from the following. Let n = 2. Then

(i) The left hand side is (1.32+2 2.43) ×2 (1.32+2 2.43) = 3.75×2 3.75 = 13.99,
while the right hand side is calculated in parts. First, 1.32×21.32 = 1.73; second,
2 ×2 (1.32 ×2 2.43) = 6.38, and third 2.43 ×2 2.43 = 5.88. This means that
(1.73 +2 6.38) +2 5.88 = 13.99. i.e., the left hand side is indeed equal to the
right hand side. However, observe the calculations in step 2.

(ii) The left hand side is (1.32+2 2.79) ×2 (1.32+2 2.79) = 4.11×2 4.12 = 16.89,
while the right hand side is calculated in part as well. First, 1.32×2 1.32 = 1.73;
second, 2×2 (1.32×2 2.79) = 7.28, and third 2.79×2 2.79 = 7.65. This means
that (1.73 +2 7.28) +2 7.65 = 16.66. i.e., the left hand side is not equal to the
right hand side.

In particular, for W2, direct calculation shows that P = 0.34. Now, consider a
random variable

δ1 = (a +n b) ×n (a +n b) − ((a ×n a +n 2 ×n (a ×n b)) +n (b ×n b))
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Fig. 1 Graph of F1

where a, b ≥ 0, and δ1 and all expressions on the right hand side are in Wn . Now, put
n = 2. Then using direct calculations, we can build F1(x) - distribution function of δ1,
according to the following expression F1(x) = P(δ1 < x), where P is the probability.
The graph of F1(x) is given by Fig. 1.

General proof for Wn follows from the information below. If a, b are positive
integers in Wn and (a +n b) ×n (a +n b) ∈ Wn , then we have δ1 = 0. Consider now
a = 0. 9 . . . 9︸ ︷︷ ︸

n

and b = 0. 0 . . . 08︸ ︷︷ ︸
n

. Then a +n b = 1. 0 . . . 07︸ ︷︷ ︸
n

and (a +n b) ×n (a +n

b) = 1. 0 . . . 07︸ ︷︷ ︸
n

×n1. 0 . . . 07︸ ︷︷ ︸
n

= 1. 0 . . . 014︸ ︷︷ ︸
n

, however, a ×n a < 1, b ×n b = 0, and

2 ×n (a ×n b) = 0. Thus, δ1 �= 0.
We now have another theorem.

Theorem 2 P(c ×n (a +n b) = c ×n a +n c ×n b) < 1, where P is the probability.

The proof of this theorem follows from the following. Let n = 2. Then

(i) The left hand side is 2 ×2 (3 +2 6) = 2 ×2 9 = 18, and the right hand side is
calculated in parts. First, 2 ×2 3 = 6, then 2 ×2 6 = 12 and 6 +2 12 = 18 i.e.,
the left hand side is indeed equal to the right hand side. However, observe the
calculations in step 2.

(ii) The left hand side is 2.41×2 (3.14+2 0.58) = 2.41×2 3.72 = 8.95, and the right
hand side is calculated in parts. First, 2.41×2 3.14 = 7.55, then 2.41×2 0.58 =
1.36 and 7.55+2 1.36 = 8.91 i.e., the left hand side is not equal to the right hand
side.

In particular, for W2, direct calculation shows that P = 0.34. Now, consider a
random variable

δ2 = c ×n (a +n b) −n (c ×n a +n c ×n b)
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Fig. 2 Graph of F2

where a, b, c ≥ 0, and δ2 and all expressions on the right hand side are in Wn . Now,
put n = 2. Then using direct calculations, we can build F2(x) - distribution function
of δ2, according to the following expression F2(x) = P(δ2 < x), where P is the
probability. The graph of F2(x) is given by Fig. 2.

General proof for Wn follows from the information below. If a, b, c are positive
integers in Wn and a ×n (b ×n c) ∈ Wn , then we have δ2 = 0. Consider now a = 2,
b = 0. 9 . . . 9︸ ︷︷ ︸

n

and c = 0. 0 . . . 01︸ ︷︷ ︸
n

. Then b ×n c = 0, a ×n (b ×n c) = 0, a ×n b =
1. 9 . . . 98︸ ︷︷ ︸

n

, and (a ×n b) ×n c = 0. 0 . . . 01︸ ︷︷ ︸
n

. Thus, δ2 �= 0.

Therefore, we have proved the following theorems.

Theorem 3 In classical mechanics, P
(
L = mυ2

2

)
< 1, where P is the probability.

Theorem 4 In special relativity, P

(
L = −mc2

√
1 − υ2

c2

)
< 1, where P is the prob-

ability.

Acknowledgments The authors thank Andrei Khrennikov for his invitation to participate at “Quantum
Theory: From Problems to Advances - QTPA” Conference at Linnaeus University, Vaxjo, Sweden, 2014.

References

1. Khrennikov, A.: The uncertainty relation for coordinate and momentum operators in the p-adic Hilbert
space. Dokl. Akad. Nauk 353(4), 449–452 (1997)

2. Khrennikov, A.: p-adic quantum-classical analogue of the Heisenberg uncertainty relations. Il Nuovo
Cimento B 112(4), 555–560 (1996)

3. Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics P-Adic
Numbers. Ultrametr. Anal. Appl. 1(1), 1–17 (2009)

123



826 Found Phys (2015) 45:820–826

4. Khots, B., Khots, D.: Mathematics of Relativity, Web Book, www.mathrelativity.com, (2004)
5. Khots, B., Khots, D.: An introduction to mathematics of relativity. In: Aminova, A.V. (ed.) Lecture

Notes in Theoretical and Mathematical Physics, vol. 7, pp. 269–306. Kazan State University, Kazan
(2006)

6. Khots, D., Khots, B.: Observer’s mathematics - mathematics of relativity. Appl. Math. Comput. 187(1),
228–238 (2007)

7. Khots, B., Khots, D.: Probability in Quantum Theory from Observer’s Mathematics Point of View,
Foundations of Probability and Physics - 6 Proceedings, vol. 1424, pp 154–159, (2012)

8. Landau, L.D., Lifshitz, E.M.: Mechanics: Course of Theoretical Physics, 1st edn. Pergamon Press,
Oxford (1969)

9. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields: Course of Theoretical Physics, 2nd edn.
Pergamon Press, Oxford (1972)

123

www.mathrelativity.com


Copyright of Foundations of Physics is the property of Springer Science & Business Media
B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


	Lagrangian in Classical Mechanics and in Special Relativity from Observer's Mathematics Point of View
	Abstract
	1 Introduction
	2 The Lagrangian for a Free Particle in Classical Mechanics
	3 The Lagrangian for a Free Particle in Special Relativity
	4 Lagrangian in Observer's Mathematics
	Acknowledgments
	References


