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A virtual metrology technique based on plasma harmonics is developed for predicting
semiconductor processes. From a plasma process performed by 300 mm photoresist
stripper equipment, a strong correlation is found between optical plasma harmonics
intensities and the process results, such as the photoresist strip rate and strip non-
uniformity. Based on this finding, a general process prediction model is developed.
The developed virtual metrology model shows that the R-squared (R2) values between
the measured and predicted process results are 95% and 64% for the photoresist strip
rate and photoresist strip non-uniformity, respectively. This is the first research on
process prediction based on optical plasma harmonics analysis, and the results can
be applied to semiconductor processes such as dry etching and plasma enhanced
chemical vapor deposition. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4993282]

I. INTRODUCTION

Semiconductor process inspection has become an increasingly important issue with the devel-
opment of 10 nm semiconductor manufacturing process technology. For critical dimension (CD)
inspection, the scanning electron microscope (SEM) and transmission electron microscope (TEM)
have been mainly used. For the past few decades, these types of inspection techniques have been
successfully applied to semiconductor processes, becoming essential tools for measuring the critical
dimensions of semiconductor devices. Process metrology is actively applied in the manufacturing of
dynamic random access memory (DRAM) and 3-dimensional NAND flash memory with an increas-
ing importance. As recent developments call for semiconductor devices with sizes less than 10 nm,
new technologies are being developed to complement inspection tools such as SEM and TEM, and
process virtual metrology is emerging as one of the most promising techniques. Process virtual
metrology1–4 is a means for predicting process results and device yield using the sensor data from
the process equipment and is appropriate for maintaining mass production lines. In order to apply
process virtual metrology, an algorithm is needed to select effective physical factors of the semi-
conductor equipment and to convert complex data into measured process results. Until now, mass
production process has been maintained using equipment sensor values, and wafer process results
were not directly calculated by the process monitoring data from the plasma reactor. In comparison,
the purpose of virtual metrology is to directly predict process results and device yield trends accord-
ing to the variations in plasma reactor conditions. To achieve this, various advanced mathematical
regression methods have been used in the virtual metrology of semiconductor processes,5–8 and a
metrology noise reduction algorithm has been recently developed for detecting and classifying process
faults.9 In more advanced approaches, wafer-to-wafer process controls based on virtual metrology
is tested for chemical and mechanical planarization processes.10 In addition, a study was conducted
to enhance virtual metrology using the electron energy distribution function in the dry etch plasma
reactor.11
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In this paper, a virtual metrology technique based on plasma harmonics12,13 is developed for
predicting semiconductor processes. By analyzing the R-squared (R2) value14 between measured
wafer process results and plasma’s optical harmonics data, it is found that final wafer process results
have strong correlations with the intensity signals of measured optical plasma harmonics. Using this
correlation, a mathematical model capable of predicting measured wafer process results is developed.
The analytical results of the model show that the R-squared values of the virtual inspection results are
95% for the photoresist strip rate, and 64% for photoresist strip non-uniformity. This study is the first
experimental research that converts measured optical plasma harmonics data into measured wafer
process results, and a mathematical model for analyzing processes is quantitatively developed.

II. DIAGNOSTICS PRINCIPLE AND MATHEMATICAL MODEL

Plasma harmonics signals are generated by the nonlinear motion rf sheath15,16 and can be mea-
sured using electrical and optical sensors. These harmonics signals are physically related to plasma
parameters, including electron temperature, electron density, ion energy distribution, and chem-
ical reaction. According to previous research on plasma harmonics, the local plasma frequency
ωpe=(nee2/meε0)1/2 interacts with the plasma harmonics of the driving frequency ωrf at ωpe=l×ωrf

(l=1, 2, 3. . . ).17 This plasma parallel resonance generates highly energetic electron beams in bulk
plasmas and affects the conduction and displacement currents of bulk plasma.18,19 Therefore, plasma
harmonics contribute toward varying bulk plasma’s electrochemical condition. In the case of induc-
tively coupled plasma (ICP), nonlinear harmonics are generated by capacitive coupling due to the
ICP antenna voltage.20 Because of the high asymmetry ratio effect between ICP’s antenna area and
the chamber ground area, there exists a high-voltage rf sheath near ICP antenna. Although the sheath
nonlinearity of ICP is not stronger than conventional capacitively coupled plasma (CCP), nonlinear
signals of up to third or fourth harmonics are regularly found in ICP. For this reason, the plasma
harmonics frequency can be an optimal indicator for describing plasma’s physical characteristics and
used to predict plasma processes. To achieve this end, it is necessary to define a new vector space
consisting of plasma harmonics intensities:

Hij (τ)=
(
H0j (τ) , H1j (τ) , H2j (τ) , · · · , Hnj (τ)

)
, (1)

where indices i and j are the plasma harmonics order and the process inspection order, respectively,
and n represents the maximum plasma harmonics order among the plasma harmonics order i. H ij(τ)
represents the harmonics signal intensities in optical plasma emission. H0j(τ) is defined as the static
intensity of the optical plasma emission, H1j(τ) is the fundamental plasma harmonics intensity,
and H ij(τ) denotes conventional plasma harmonics intensities for higher orders. In general, because
plasma harmonics signal intensity is a time-dependent parameter, H ij(τ) in Eq. (1) can be averaged
over the unit wafer process time period δτ and is written as

H̄ij =
1
δτ

∫
Hij (τ)dτ =

(
H̄0j, H̄1j, H̄2j, · · · , H̄nj

)
. (2)

In a similar manner, arbitrary plasma process results measured by inspection tools such as SEM,
TEM, and ellipsometer can be defined as a vector space:

CDM,j =
(
CDM,1, CDM,2, CDM,3, · · · , CDM,k

)
, (3)

where CDM,j is the arbitrary process results measured at inspection order j, and k indicates the sample
size of the measured order j. Similarly, virtual CDV,j predicted by the mathematical model can be
written as

CDV ,j =
(
CDV ,1, CDV ,2, CDV ,3, · · · , CDV ,k

)
. (4)

Virtual CDV,j in Eq. (4) can be expressed with a linear combination of average plasma harmonics
H ij(τ):

CDV , j ≡ ᾱ

i=n∑
i=0

���R
2
i
��� H̄ij = ᾱ

(���R2
0
��� H̄0j + ���R

2
1
��� H̄1j + ���R

2
2
��� H̄2j + · · · + ���R

2
n
��� H̄nj

)
, (5)
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where R2
i is the statistical R-squared (R2) value of data pair

(
H̄ij, CDM, j

)
in Eq. (2) and Eq. (3), written

as R2
i

(
H̄ij, CDM, j

)
in this paper. Mathematically, Eq. (5) refers to the distributed function in the basis

H̄ij according to the magnitude of R2
i . Because R2

i

(
H̄ij, CDM, j

)
is calculated based on the statistical

correlation of the inspection range 1≤j≤k, the accuracy of the time series in virtual metrology cannot
be smaller than the CD sample size k. R2

i in Eq. (5) can now be written as

R2
i = 1 −

SSres,i

SStot
= 1 −

j=k∑
j=1

(
CDM, j − CDf ,ij

)2

j=k∑
j=1

(
CDM, j − CDM,av

)2

where CDf ,ij = aiH̄ij + bi, CDM,av =
1
k

j=k∑
j=1

CDM, j

(6)

SSres,i and SStot denote regression and residual sums of squares, respectively. CDf,ij and CDM,av

indicate linearly fitted CD and the average CD in the inspection range 1≤j≤k, respectively. Constants
ai and bi are the slope and the intercept of the linear regression parameters for determining the fitted
CDf,ij. ᾱ in Eq. (5) represents a constant determined by measured CDM,j, R2

i and H̄ij:

ᾱ =
1
k

j=k∑
j=0

αj , where αj =
CDM, j

i=n∑
i=0

���R
2
i
��� H̄ij

. (7)

Because αj is the proportional factor between measured CDM,j and
∑i=n

i=0
���R

2
i
��� H̄ij, αj is generated

for each inspection j. To obtain a statistically stable αj for a wide inspection range, it is nec-
essary to average αj over a specific inspection sample range 0≤j≤k. The average value of αj

(i.e. ᾱ) provides a statistically stable proportional factor for predicting CDV,j in Eq. (5). From
an empirical point of view, ᾱ has to be updated periodically according to the variations in the
plasma reactor condition, and the frequency of updating can be determined from the amount of
plasma reactor’s internal part etch or the thickness of the process byproduct on the surfaces of the
plasma reactor.

III. EXPERIMENTAL SETUP AND OPTICAL SENSING SYSTEM

Figure 1 represents the 300 mm photoresist stripper system used in plasma virtual metrology.
In the photoresist strip process, a driving frequency of ωrf =400 kHz with 5.5 kW is supplied to
the ferrite inductively coupled plasma. The quartz reactor is surrounded by the ferrite block with a
relative magnetic permeability of µ/µ0=1300 for magnetic field confinement. The plasma formed by
the induced electric field of the external coil is first diffused to the exhaust holes linked to the quartz
reactor shown in Fig. 1. The secondary diffusion of the plasma reaches the wafer region through
the lower quartz gas baffle. Process conditions, including gas pressure of 0.8 Torr, mixed gas flow
rate O2 of 12.0 LPM, and N2=1.2 LPM, are applied for the photoresist strip. During the photoresist
strip process, the temperature of the dot-chuck station is set at 240°C and an I-line (wavelength
365 nm) photoresist with a 3.5 um thickness21 is used. The total plasma process time is limited
to 10 seconds. The plasma diagnostics system for measuring plasma optical emission is directly
connected to the chamber view port, which is located 12 mm above the surface of the dot-chuck
station.

Figure 2 shows the sensor system used for measuring plasma optical emission. The plasma optical
emission spectrum from the plasma reactor is gathered by a high-speed photodiode, which has an
absorption wavelength range of 320-1200 nm and a response time resolution of 1 GHz. The electric
signals measured at the photodiode is transferred through an operational amplifier, analog-digital
converter (125 MHz sampling rate), and field programmable gate array (FPGA). After processing
the signals, the analysis computer indicated a time resolution of 8 nanoseconds. For measuring the
photoresist strip rate and strip non-uniformity, Woollam M2000V ellipsometer22 is used with 49-point
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FIG. 1. Experimental setup of the photoresist stripper system for the 300 mm wafer process.

FIG. 2. Schematic diagram of the optical diagnostics system for measuring plasma harmonics signals.

inspection. For CDV,j prediction, results from eight wafer processes and optical plasma harmonics
measurements are applied.

IV. EXPERIMENTAL RESULTS AND DATA ANALYSIS

Figures 3(a) and 3(b) show the measured plasma optical emission signal in time domain and its
fast Fourier transformation (FFT ) results, respectively. Because the time domain signal in Fig. 3(a)
is the optical intensity (i.e. amplitude), which measures the bulk plasma zone, there are two optical
peak intensities within a single sinusoidal wave of 400 kHz (2.5 µs). Therefore, all optical harmonics
intensity peaks in frequency domain appeared at twice the rf driving frequency of 400 kHz. The
measured plasma harmonics intensity peaks H0 (0 MHz), H1 (0.8 MHz), H2 (1.6 MHz), and H3

(2.4 MHz) in Fig. 3(b) support this interpretation. In addition, the plasma harmonics signal over H3

(2.4 MHz) is not detected in the FFT spectrum data. Table I presents average harmonics intensities
H̄ij, average strip rate (ASR), and strip non-uniformity (SNU) measured by the photodiode sensor and
the ellipsometer. Table II shows the R-squared values calculated using Table I and Eq. (6). With the
results, ᾱ can be determined from Eq. (7).

Figures 4(a) and 4(b) show predicted photoresist strip rates and photoresist strip non-uniformities,
respectively. A wafer inspection range of 1≤j≤4 is used to calculate ᾱ, and the determined ᾱ is applied
to Eq. (5) to predict CDV,j for 1≤j≤8. The calculation results show that R2(CDM,j,CDV,j)≈95%
for the average photoresist strip rate in Fig. 4(a), and R2(CDM,j,CDV,j)≈64% for photoresist strip
non-uniformity in Fig. 4(b). Comparing the virtual metrology results of Fig. 4(a) and Fig. 4(b),
R2(CDM,j,CDV,j) of the average photoresist strip rate is higher than R2(CDM,j,CDV,j) of photoresist
strip non-uniformity by about 31%. The reason can be analyzed as follows. According to the R-squared
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FIG. 3. (a) Optical plasma intensity variation in time domain, (b) Fast Fourier transformation data.

value analysis results in Table II, correlations R2
0

(
H̄0j, ASR

)
≈83.15% and R2

0

(
H̄0j, SNU

)
≈61.20%

are most effective for calculating CDV,j. Because CDV,j in Eq. (5) is proportional to the product of
R2

i and H̄ij, the high values of R2
i and H̄ij increase the accuracy of CDV,j. Physically, the average

photoresist strip rate is the result of a chemical reaction between the energetic gas etchants and

TABLE I. Measured harmonics intensities and wafer process results.

Inspection j H̄0j H̄1j H̄2j H̄3j ASRa SNUb

1 1177.713 80.803 25.886 3.192 110606 0.064
2 1325.500 91.311 28.163 2.865 115084 0.066
3 1281.138 87.616 28.491 2.795 110919 0.067
4 1413.000 83.806 25.686 2.899 117507 0.170
5 1823.625 86.749 27.853 2.793 148972 0.196
6 1351.875 88.865 26.041 2.757 115505 0.142
7 1357.250 93.474 27.220 2.730 114737 0.097
8 1370.625 92.638 25.351 2.806 116079 0.141

a ASR: Average strip rate in Å.
b SNU: Strip non-uniformity on wafer, (maximum strip rate�minimum strip rate)/ASR.
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TABLE II. R2 values between average harmonics intensity and wafer process results. The inspection range is 1≤j≤4 in R2
i

calculations.

Averaged harmonics intensity R2
i

(
H̄ij , ASR

)
R2

i

(
H̄ij , SNU

)
H̄0j 83.15% 61.20%
H̄1j 5.25% 8.51%
H̄2j 7.94% 36.67%
H̄3j 13.21% 2.75%

the carbon composition on wafer. And this chemical reaction is directly proportional to the plasma
electron density. As is well known in plasma physics, the rf power (∝ H̄0j) balance in reactor deter-
mines bulk plasma’s electron density. However, in the case of photoresist strip non-uniformity, the
lateral inhomogeneities of the plasma are more effective than the rf power balance in the reactor.
Therefore, correlation R2

0

(
H̄0j, ASR

)
is higher than correlation R2

0

(
H̄0j, SNU

)
, and R2

0

(
H̄0j, ASR

)

FIG. 4. Comparison of measured process results and virtual metrology results for (a) the photoresist strip rate, and (b)
photoresist strip non-uniformity.
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forms a higher R2(CDM,j,CDV,j) in the average photoresist strip rate. In addition to harmonics order
i=0, R2

3

(
H̄3j, ASR

)
≈13.21% and R2

2

(
H̄2j, SNU

)
≈36.67% also show somewhat high levels of corre-

lation compared to R2
i

(
H̄ij, SNU

)
and R2

i

(
H̄ij, ASR

)
. Although measured correlations R2

i

(
H̄ij, SNU

)
and R2

i

(
H̄ij, ASR

)
are statistically unstable due to the small size of process inspection sample j in

this experiment, we observed that correlation R2
2

(
H̄2j, SNU

)
≈36.67% is not negligible. In the current

status, it can be predicted that harmonics order i=2 has coupled to lateral inhomogeneities in plasma.
The most important finding in this research is the experimental verification that plasma optical

harmonics signals directly correspond with measured wafer process results. This high level of corre-
lation can be interpreted in two ways. The first plausible reason is plasma ionization change, which
is one of the key factors that determine electron density and electron temperature in plasma. It is con-
jectured that the variation in static optical intensity H̄0j is proportional to the variation in bulk plasma
ionization, which is directly associated with the photoresist strip rate. The fact that H̄0j showed the
highest level of correlation with the process results in our experiment supports this interpretation. The
second possible reason is bulk plasma fluctuation caused by sheath modulation. Plasma harmonics
signals based on the nonlinearity of the sheath are closely related to the rf phase fluctuation in electron
density and electron temperature. These time-dependent changes in plasma parameters can be ana-
lyzed by the FFT results of the measured plasma optical intensities. Because the FFT results include
time-dependent electrochemical reactions on the wafer surface, it is conjectured that the variation in
FFT spectrum is proportional to the time-dependent characteristics of plasma parameters.

In addition, there are some important points to consider on the accuracy of virtual metrology.
When ᾱ is calculated for a relatively small size of wafer sample, such as 1≤j≤4, the short period of CD
prediction becomes very efficient. However, because the statistical representation of R2

i

(
H̄ij, CDM,j

)
in the range of 1≤j≤k decreases, a long-term prediction of CD becomes inaccurate. To avoid this
problem, it is necessary to update ᾱ frequently. Empirically, highest CD predictability can be obtained
when the size of the inspection group in 1≤j≤k is balanced with the size of the predicted inspection
group.

V. SUMMARY

In this research, a virtual metrology technique based on plasma harmonics is developed to
predict the photoresist strip process. Measured processes, such as the photoresist strip rate and strip
uniformity, are statistically predicted by analyzing plasma harmonics intensities. The analytical results
confirm that there is a strong correlation between the measured photoresist strip rate and optical
harmonics intensities. Based on this finding, a mathematical model for predicting process results
prediction is developed. The newly developed virtual metrology technique shows a 95% R-squared
value in the photoresist strip rate, and a 64% R-squared value in photoresist strip non-uniformity.

Previous plasma process inspection research has been based on the analyses of plasma parameters,
such as electron temperature, electron density, and electron energy probability function (EEPF).
However, these approaches lack direct associations with the measured process critical dimension
results and are not appropriate for maintaining the processes in mass production lines. Although the
virtual metrology technique introduced in this study cannot show the detailed underlying physics of
the plasma process, it is capable of providing numerically accurate predictions of plasma process
results. Moreover, the results of our study can be applied to other semiconductor processes that use
plasma. In the case of plasma dry etching, the capacitive coupled plasma process based on multiple
radio frequencies is an optimum process that can measure various combinations of high-order plasma
harmonics signals. As the number of measurable high-order plasma harmonics signals increases, the
amount of data from plasma analysis quickly expands. These plasma harmonics signals are directly
linked not only to the spatial variation in rf sheath amplitude but also to the DC self-bias voltage
dependence of plasma parameters,23 such as the ion energy distribution function (IEDF). Therefore,
there will be an undiscovered physical relationship between the high-order plasma harmonics signals
and the results of the dry etch process. To investigate this in the current semiconductor process, further
research is necessary on the virtual metrology algorithm and the high-speed plasma optical emission
sensor.
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