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EDO UNIVERSITY, IYAMHO               
EDO STATE, NIGERIA 
DEPARTMENT OF ECONOMICS 

 
ECO 412: APPLIED ECONOMETRICS 

 
 
 
 
INSTRUCTOR:  David Umoru, Email: david.umoru@edouniversity.edu.ng 
                              Alternative email: david.umoru@yahoo.com  
LECTURES:        Tuesday, 10am – 12pm, Lecture Classroom 5 (LC5),  

                               Mobile Line: (+234)8033888414  

OFFICE HOURS:     Wednesdays, 1pm to 3.30pm, Office: 1st Floor, MH Administrative  

Block  
 
 

GENERAL OVERVIEW OF LECTURE: This course is designed primarily for students at the 
postgraduate level. The aim of the course is to build upon the students’ existing knowledge of 
econometrics and essentially, to help the students develop a practical knowledge of econometrics 
and its applications to real-world economic data. 
 
PREREQUISITES: Students should be familiar with the concepts of introductory econometrics 
(ECO 313 & ECO 323) with specific knowledge of econometrics methods, Ordinary Least 
Squares(OLS) method, single equation modelling, hypothesis testing, random variables and their 
distributions, limit theorems, finding moment functions, and working with characteristic 
functions and also be able to solve matric algebra, etc. 

 
LEARNING OUTCOMES:  
The students at the end of this course should be able to:  

i. Demonstrate a sound understanding of the econometric modeling and estimation as 
well as exhibit evidence-based policy making 

ii. Prove the Gauss Markov theorem and detect, and find solutions to econometric 
problems in the context of estimated regression models 

iii. Enter policy dialogues at the national and international levels, and engage in related 
policy research to provide new solutions to existing problems in a changing 
environment 

iv. Obtain data that are relevant to the stated economic problem and present a model that 
is suited to deal with the phenomena under study  

v. Demonstrate competence in the use of econometric packages (like E-VIEWS) as may 
be needed to perform the analysis.  

vi. Use the econometric model for analysis and prediction. This involves exploring the 
economic implications of the empirical results.  

vii. Carry out good quality applied economic research with confidence 
 

http://creativecommons.org/licenses/by-nc-sa/4.0/
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ASSIGNMENTS: Classroom test and an Econometrics term paper will also be given to facilitate 
learning of the more challenging areas of the course. This will make up the continuous 
assessment of 30% of the final grade of every student. 
 
GRADING: We will assign 10% of this class grade to homeworks, 10% for the programming 
projects, 10% for the mid-term test and 70% for the final exam. The Final exam is comprehensive. 
The grading for this course is a combination of continuous assessment and final examinations. A 
final examination will be written at the end of the course and this will cover 70%. 
 
REFERENCE TEXTS  
The recommended textbooks for this class are as stated: 
Title: Applied Econometrics. 
Authors: Asteriou, D. and Hall, S.G. 
Publisher: Palgrave Macmillan, New York, 2nd Edition 
Year: 2007 
 
Title: Econometric Methods 
Author(s): Johnston, J. and J. DiNardo 
Publisher: McGraw Hill International Editions, 4th Edition 
Year: 2008 
 
Title: Applied Time Series Modelling and Forecasting 
Author: Harris, R.I.D and Sollis, R. 
Publisher: John Wiley & Sons, Inc., 2nd Edition,  
Year: 2003 
 
 
MAIN LECTURE 
 

LECTURE 1: AUTO-CORRELATION 

  

CONTENTS 
 Introduction 

 Objectives 

 Definition of Autocorrelation 

 Forms of Autocorrelation 

 Causes of autocorrelation 

 Consequences of autocorrelation 

 Statistical Test of autocorrelation 

 Solutions to Autocorrelation   

 Conclusion 

 Assignment 
 
INTRODUCTION  
Violation of the basic assumptions of OLS estimator leads to econometrics problems such as 
autocorrelation, heteroscedasticity and multicollinearity. 
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OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning of autocorrelation, types, 

causes, consequences of autocorrelation and correction of the problem of autocorrelation. 
 
AUTO-CORRELATION 
Autocorrelation is the serial dependence of the successive values of the stochastic error term. In 
other words, the stochastic disturbance in the current period depends on its immediate past 
values. It is indeed, a violation of the assumption of the “absence of autocorrelation” or “serial 
independence” of the OLS technique for estimating the classical linear regression model. In effect, 
the value taken on by the stochastic disturbance in one period depends on the value it takes on 
in the previous period such that: 

      1( , ) 0 1,2,...,t tCov u u t n     

Thus, 1( )t t tu f u e   

 
Autocorrelation has significant occurrence in time-series economic data and hence in time series 
econometrics.  
 
Forms of Autocorrelation 
There are different forms of autocorrelation. These include: 

(a) First order autocorrelation 
(b) Second-order autocorrelation 
(c) Third-order autocorrelation 
(d) Kth-order autorrelation 

The first-order autoregressive scheme is specified as: 

1 1t t tU U e     

Where   is the coefficient of first-order autocorrelation, te is the stochastic error term which 

satisfies the usual OLS assumptions, that is, 
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The second-order autoregressive scheme is specified as: 

1 1 2 2t t t tU U U e      

The third-order autoregressive scheme is specified as: 

1 1 2 2 3 3t t t t tU U U U e         

The kth-order autoregressive scheme is specified as: 
 

1 1 2 2 ...t t t k t k tU U U U e          

Causes of Auto-correlation  
Incidence of Inertia  

Inertia is the fluctuations in time series variables such as employment. So, in regressions 
involving time series data, successive observations are likely to be interdependent.  

Non-Stationarity 
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A time series is stationary if its mean, covariance and variance do not vary with time. This means 
that a non-stationary time series is a series that changes with time. Non-stationarity causes 
autocorrelation because the mean, variance and covariance of a non-stationary series are time 
variant, that is, they change over time 

Difference-Transformation 
Autocorrelation is easily induced by first-difference transformation of the time series variables. 
In short, serial correlation most often characterized models regressed on the successive 
differences of the values of variables. Consider the following level and difference models: 
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Note that the error term in the level equation is not autocorrelated but it can be shown that the 
error term in the first difference form is autocorrelated.  

Specification Bias  
Specification bias is in two folds, the  

(a) Omitted variable bias and  
(b) Incorrect functional or mathematical form bias.  

Omitted Variable Bias 
Autocorrelation will occur when there is an omission of an important explanatory variable from 
the regression model. In other words, the omission bias takes place when variables that are 
germane to the phenomenon being studied are excluded from the model.  

 Functional Bias 
Wrong functional form of a model induces autocorrelation. For example, when a linear 
mathematical form of a model is specified instead of a quadratic form as in the following 
equations, autocorrelation is induced.  

 

0 1 1
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t t t

t t t
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C Q
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  

  
 

Thus, when a researcher fits an empirical model with a wrong functional form to the available 
data, such as, fitting a linear model when a non-linear model is actually the most appropriate, 
autocorrelation is provoked automatically.  

Lag Structures in Economics 
The use of lags in economics is a major cause of autocorrelation. Thus, autoregressive models 
are mostly auto correlated because the error term is a reflection of the systematic pattern due to 
the influence of the lagged term in the model. Consider the usual autoregressive consumption 
function:  

     

Is this not a reflection of 1( )t t tu f u e  .The underlying assumption is that consumers’ 

expenditures in the current period depend for most times on their previous level of expenditures. 
As it were, economic agents most often do not significantly change their consumption habits. 

Thus, due to the presence of 1tC  , that is, the effect of 1tC  on tC  , autocorrelation is provoked. In 

0 1 2 1

d

t t tC Y C      
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this very instance, the error term will reflect the pattern of serial dependence given the similar 
pattern of consumption. 
 Data Mining 
Data mining is the interpolation and extrapolation of data. It is a smoothening process of data 
manipulation which dampens the fluctuation in the original data set. Such data manipulation is 
known as data massaging which leads to systematic pattern in the disturbances thereby initiating 
serial correlation. A good example of data mining is averaging of quarterly data.  

 
Consequences of Autocorrelation on the OLS Estimator  

(a) The unbiasedness property of the OLS estimator is not affected even in the presence of 

auto correlated errors. Thus, the OLS estimator, β, is still unbiased and highly consistent.  
(b) The efficiency property of the OLS estimator is destroyed. The variances and the standard 

errors of the OLS estimator are upwardly biased.  
(c) Consequently, the t-values of the coefficient estimates are distorted and rendered 

unreliable.  
(d) Erroneous statistical decisions are made. This is because the use of the conventional t and 

F statistical tests to evaluate the statistical significance of the estimated coefficients of a 
model are no longer valid. 

(e) Confidence intervals of the OLS estimates are flawed and at best outsized.  

(f) Also, the residual variance  will under estimate the true parameter . As a result, 

the coefficient of determination, R2 will be overestimated.  
(g) Autocorrelation can be subjugated for predictions. The reason is that an autocorrelated 

time series is probabilistically predictable because future values depend on current and 
past values.  

 
Statistical Tests for Autocorrelation 

Graphic Method 
The graphical method entails plotting the values of the error terms against time. Three 
graphical tools for assessing the autocorrelation of a time series are the time series plot, 
the lagged scatter plot, and the autocorrelation function.  
 
Durbin-Watson d Test Statistic    

Due to Durbin and Watson (1970),in their article titled, “Testing for Serial Correlation in Least 
Squares Regression”, the d test for autocorrelation is defined as the ratio of the sum of squared 
differences in successive residuals to the sum of squared residuals.  
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Given that 1 1   , the values of the D-W statistic lies between 0 and 4, that is, 0 4d  . 

Thus,  
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Graphical Representation of Durbin-Watson d Test Statistic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Durbin-Watson empirical value  must be compared with the critical values denoted by

, the upper limit for the significance level of and , the lower limit for the significance 

level of . Given these conditions; the test is applied on the basis of the following hypothesis:  
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The application of the statistic depends on the following conditions 

(a) An intercept term must be included in the regression model. This is because if the 
model is fitted without an intercept, residual sum of squares [RSS] even if computed 
might not sum to zero thereby surmounting the notion  of zero sum of squares. 
Consequently,R2 might be negative [see Johnston and Dinardo (1997)]  

(b) The regressors of the model must be truly exogenous i.e. non stochastic, 
(c) The error process must be generated by the fist-order autoregressive scheme and not 

by higher orders. As it were, the  is only applicable for testing the presence or 

otherwise of first-order autoregressive scheme, 
(d) The error term must be normally distributed with zero mean and constant variance, 
(e) No missing data point in the entire time series or series of observations 
(f) The regression model must not include lagged endogenous variable as explanatory 

variable. Thus, if the model to be fitted is of the money demand type.  

 

The statistic becomes inappropriate and often erroneously settling for the absence of auto-

correlation even if there is. The only way out of this empirical problem is to utilize the Durbin-h 
statistic.  
 

 
Durbin h Test Statistic  

The inapplicability of the d statistic in models with lagged endogenous variables as regressors 
necessitated the Durbin h-statistic [see Durbin (1974)]. The h-statistic is defined as: 

 

Where  is the sample size,  is the variance of the estimated coefficient of the lagged 

endogenous regressor, that is, the variance of the coefficient of in the money demand 

function and  is the estimated first-order autocorrelated. 
 
Corrective Measures of Autocorrelation  
The remedial measures of the autocorrelation problem exist for both when the autocorrelation 
coefficient is known and when it is unknown. 

 
Generalized Least Squares [GLS] Estimator 

The generalized least squares estimator is basically the application of OLS to the transformed 
model that fulfilled the classical OLS assumptions. However, its application is facilitated when 
the first-order autocorrelation coefficient is known. Given the underlying model whose error 

term follows the  scheme:  
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To correct the model for autocorrelation, we lag (5.1) by one-period so that we have:  

 

Multiply the resulting equation by the autocorrelation coefficient to obtain 

                              (5.10)  

Subtract equation (5.10) from equation (5.9) above to obtain: 

           

 
Cochrane-Orcutt Iterative Method 

 The Cochrane-Orcutt iterative method of transformation entails a process of convergence 
to the autocorrelation coefficient. Accordingly, the applicability of the Cochrane-Orcutt 
transformation requires the model to be estimated. Thus haven applied the OLS 
technique; the estimated model can be given as:  

 

To correct the model for autocorrelation, compute the OLS residual series as follows:  

 

 

Using the residual series, run the following auxiliary regression or simply compute the 
autocorrelation coefficient from the variance-covariance ratio as follows: 

 

Using the estimated , estimate the generalized first-difference model. In other words, use to 
transformed model and use OLS to further estimate the model.  

 

Compute the second round OLS residual series,  
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Compute the second-round autocorrelation coefficient from the variance-covariance ratio as 
follows: 

 

Use to transform the original model and apply OLS estimator to the model: 

       

Compute the third-round OLS residual series,  

 

 

Compute the third-round autocorrelation coefficient as follows: 

 

Use to transform the original model and apply OLS estimator to the model: 

       

The iterative process continues until the autocorrelation effect is eliminated from the estimated 
set of regression results. 
 
Numerical Examples 
 
Example  
These are regression results using OLS for 21 observations with standard errors in parentheses: 

 

Test for the presence of autocorrelation in the disturbances [Greene (2003): 281, (Exercise 3)] 
 
Solution  
Given that the D-W statistic cannot be used to test for autocorrelation in dynamic models, we 
resolve to using the Durbin h-statistic whose test statistic is given as: 
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The autocorrelation coefficient can be estimated from D-W the statistic 

 

 

Applying the Durbib h-statistic, we have as follows: 

 

  
 ASSIGNMENT  
 Consider that in a regression analysis that relates the consumption level of electrical appliance to 

the income level of consumers, the econometric results that follow below were obtained for the 
sample period, 1980-2010.  

 

 ,  

 

(a) Test for autocorrelation  
(b) Comment succinctly on the presence or otherwise of autocorrelation  
(c) Estimate , the autocorrelation coefficient 

 
 
CONCLUSION  
Autocorrelation is an econometric problem that is mostly found in time series data 
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LECTURE 2: MULTICOLLINEARITY   

 

CONTENTS 
 Introduction 

 Objectives 

 Definition of Multicollinearity 

 Forms of Multicollinearity 

 Causes of Multicollinearity 

 Consequences of Multicollinearity 

 Statistical Test of Multicollinearity 

 Corrective Measures for Multicollinearity 

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
Violation of the full rank assumption of OLS estimator leads to multicollinearity problem. 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning, types, causes, and 

consequences of Multicollinearity as well as the corrective measures of the problem of 

Multicollinearity. 
 
MULTICOLLINEARITY 

 Multicollinearity refers to the linear relationship between the explanatory variables of a 
multiple regression model (MRM). In other words, multicollinearity occurs when the 
regressors of an MRM X1, X2,...,Xk are highly correlated with each other.  

 By econometric intuition, linear relationship ought not to exist between the explanatory 
variables in a MRM. This is actually a desecration of the full rank assumption of the 
classical linear regression model.  

 
Extreme Cases of Multicollinearity  
There are two extreme scenarios of multicollinearity. These include perfect multicollinearity and 
orthogonal multicollinearity. 

Perfect Multicollinearity  

 Perfect multicollienarity means that the relationship between the explanatory variables 
is exact in the sense that the correlation coefficient between the explanatory variables is 

unity, that is, . Consider the log-linear regression of on and . 

 
 

 is suppose to give the rate of charge in the mean value of as changes by a percentage 

point holding  fixed. Unfortunately enough, the perfect collinearity between the regressors

and means that cannot be kept constant while changes and vice-versa.  

Orthogonal Multicollinearity 
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 An orthogonality means that explanatory variables have no relationship. In effect, the 

correlation coefficient between the explanatory variables is zero. Thus, . In 

particular, the explanatory variables in the multiple regression models are not correlated 
in any form. Thus, orthogonal variables are the variables whose covariance is zero.  

 
 

Imperfect Multicollinearity 
In the practice of applied econometrics, neither of the two extremes of orthogonality and perfect 
multicollinearity exist. The multicollinearity problem that exists in practice lies in between the 
two extremes and it is called “imperfect multicollinearity” which means high but less than perfect 
multicollinearity. In this case, the correlation coefficient lies between zero and unity, that is, 

. 

 
 

Causes of Multicollinearity 
Distributed Lag Models 

Multicollinearity can be caused by the use of lagged variables in a multiple regression model. 
This is because it is innate for successive values of a particular variable to be highly 
intercorrellated. Consider the following system of equations:  

 

The inclusion of past and present levels of income in the money demand, consumption and 
investment equations respectively can induce the problem of multicollinearity as these variables 
are certainly going to be highly correlated.   

 
Over-determined Models 

An over-determined regression model is the model whose explanatory variables are more than 
the number of observations. In this type of regression, multicollinearity problem is severe.  
 
Consequences of Perfect Multicollinearity  

 Indeterminacy of the OLS Estimator:  
Coefficient estimates of the OLS estimator are indeterminate 

Empirically, with perfect multicollinearity such that , it implies that the true 

relationship between the explanatory variables 1 2x and x  is exact and as such 1 2x x .The 

indeterminacy of the OLS estimator arises because the data matrix of the explanatory variables 

in the OLS estimator cannot be inverted. Consequently, OLS estimator 

breaks down.  
 
This shows that in the presence of perfect multicollinearity, the variances and hence the standard 
errors of the OLS estimators are infinite and consequently indeterminate.  

0
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Consequences of Imperfect Multicollinearity 

 Accordingly, as collinearity increases between any two regressors, the variances and 
hence standard errors of the OLS estimators evenly increases. Thus, the VIF measures 
the extent by which the variance of OLS estimator is inflated due to the presence of 
multcollinearity.  

 

Empirically, with imperfect multicollinearity , the following consequences are on 

the OLS estimator: 
(a) Large Variances and standard errors: The variances and standard errors of the OLS 

estimator are unduly large, and so the t-ratios are rendered statistically insignificant 
which leads to a type II error of accepting an incorrect null hypothesis null hypothesis 
instead of rejecting it.  

(b) Erroneous Statistical Inferences: Misleading statistical inferences are drawn from the 
test of hypothesis  

(c) Wide confidence intervals: Confidence intervals are unduly outsized 
(d) Unstable coefficients: The OLS parameter estimates become highly unstable. Such 

instability of coefficients could cause a dramatic change in the coefficient sign as the 
degree of multicollinearity increases.  

 
Statistical Tests for Multicollinearity  
There are several tests for detecting the problem of multicollinearity. As it is, we have the formal 
and informal tests for multicollinearity. 
The informal tests for multicollinearity include: 

(a) High R2: Even in the presence of insignificant t-values, the overall measure of 
goodness-of-fit, R2 could very high. 

(b) Low t-ratios 
(c) Wrong coefficient sign 
(d) R2 delete  

 
The formal statistical tests include the: 

(a)  Variance Inflation Factor [VIF] 
(b)  Farrar-Glauber test 

 
Variance Inflation Factor [VIF] 

 The variance inflation factor (VIF) quantifies the proportion by which the variance of the 
OLS estimator is inflated. In other words, the VIF quantifies the variance of the OLS 
estimator due to multicollinearity. 

 

 Computationally, it is defined as the reciprocal of the tolerance index. Applied 
econometricians most often desire lower values of VIF, as higher values of VIF are known 
to adversely affect the regression results. For example, a VIF of 8 implies that the 
standard errors of the OLS estimator are larger by a factor of 8 than would otherwise be 
the case, if there were no multicollinearity between the regressors in the multiple 
regression analysis.  

 

[0 1]
i jx xr 
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Where is the simple correlation coefficient between any pairs of regressors say, 

defined by the Karl Pearson’s product moment equation below:  

1 2

2 2

1 2

x x
r

x x

or




   

 

 

Thus, as the correlation coefficient, measures the degree of collinearity between the 

regressors, the VIF quantifies the speed at which variances and covariances increases. For this 
reason, as the collinearity between the regressors increases and tends to unity i.e the case of 

perfect multicollinearity, the VIF approaches infinity . Also, if the collinearity between the 

regressors, is zero, the variance- inflating factor will be equal to unity. 

 

 
Corrective Measures for Multicollinearity 

The remedial measures to be adopted if multicollinearity exists in a model depends on the 
following factors, severity of the multicollinearity problem, availability of data, the  importance 
of the collinear regressors, the purpose of estimation etc. In any case, the remodel measures are 
discussed as follows:  
   Christ’s Correction  
Christ (1966:389) suggested that multicollinearity can be corrected by increasing the sample size. 
This entails bringing into the sample, more data points. However, the remedial measures are 
only valid if error of measurement in the explanatory variables is the cause of multicollinearity.  

 Dropping Variables  
Another measure of resolving severe multicollinearity problem is to drop the variable that is 
highly collinear with the others.  However, dropping one of the collinear variables from a model 
may put the econometrician at the verge of committing a specification error. This is because in 
line with economic theory, if interest rate and income are the key determinants of money demand 
and as such must be included in the money demand function, dropping either of interest rate or 
income would mean committing a specification error.  Under this scenario, the cure could be 
worse than the disease.  

Transformation  
Transformation of variables to is generally regularly useful as a way out of the multicollinearity 
problem. Thus, instead of running the regression in the original variables themselves, what 
becomes desire is to run multiple regression model on the transformed data matrix on the 
variables under specification.  
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 Pooling Data  
A combination of both cross section and time series data can help to resolve the problem of 
multicollinearity. Pooling has the following limitations: 

(a) Pooled observations do suffer from the serial correlation problem,  
(b) Pooling observations in different time periods do erroneously assume stability in the 

casual relationship across time rather than variation across sub-periods 
(c) Pooling cannot distinguish between variations across time and across sectionals. For 

example, an inclusion of a dummy variable takes into care the different slopes or baseline 
values rather than the different slopes with various periods.  
 

ASSIGNMENT  
Test for Multicollinearity I the following data 

Y 20.6 12.3 19.8 15.7 16.2 
X 2.6 8.2 2.9 6.4 3.8 

 
 
CONCLUSION   
It has been asserted that the problem of multicollinearity is harmless if the objective for estimating 
a model is to forecast the values of the endogenous variable only [Christ (1966): 390, Greene 
(2003)]. In this case, the values of the collinear variables can be included in the model while 
ignoring the consequence. This can only be successful provided the econometrician is certain that 
the correlation pattern that exists between the explanatory variables will remain the same 
throughout the prediction period.  
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LECTURE 3: HETEROSKEDATSICITY   

 

CONTENTS 
 Introduction 

 Objectives 

 Definition of Heteroskedasticity 

 Forms of Heteroskedasticity 

 Causes of Heteroskedasticity 

 Consequences of Heteroskedasticity  

 Statistical Test of Heteroskedasticity 

 Corrective Measures for Heteroskedasticity  

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
Violation of the homoscedasticity assumption of OLS estimator leads to heteroscedasticity 
problem. 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning, types, causes, and 

consequences of Heteroskedasticity as well as the corrective measures of the problem of 

Heteroskedasticity. 
 
HETEROSKEDASTICITY 

 Heteroskedasticity means that the variance of the stochastic disturbance term (ui) is not 
constant (the same) for all values of the explanatory variables. This is because the variance 
of the stochastic disturbance is no longer given by a finite constant and thus would tend to 
change with an increasing range of values of the explanatory variables thereby making it 
impossible to be taken out of summation.   

 
Thus, :the homoskedasticvariance covariance matrix is given by     

2

' 2

2

2

2
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However, given the presence of heteroskedasticity,  
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In effect, the heteroskedastic variance-covariance matrix is given by:  
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The subscript i denote the fact that the variances of each stochastic disturbance are all different.  
 
The occurrence of heteroskedasticity is found in both time series and cross section data but more 
often encountered and severe with cross section data. This is because the assumption of constant 
variance over the heterogeneous units may be rather unrealistic. 
 
Causes of Heteroskedasticity 

(a) Outliers Problem  
Outlying observations are the root cause of heteroskedasticity. An outlier is an 
observation that is either excessively small or excessively large in relation to other 
observations in the sample. The table below illustrates a scenario of an outlier 
 

Y X 
328 820 
22.6 680 
1.2 18200 

 
In other words, the outlying observation exhibits huge difference from others in the 
sample. In effect, the population of the outlying observation is different from the 
population of the other sample observations 

 
(b) Omitted Variable Bias 

The omission of key explanatory variables from a regression model causes 
heteroskedasticity. For example, consider the following model of consumption 
expenditure: 

0 1 2 3 4 1 5 6 7

exp , ,

, ,

d

t t t t t t t t t

d

C r I T C F W Y u

where C is consumption enditutes r is interest rate I is inflation rate

T is tasteof the consumer F is fashion W is weather condition

Y is disposable income

               

 

In line with economic theory, income is the most crucial determinant of consumption 
expenditures. Thus, if income is omitted from the model, the omitted variable bias would 
have been induced. This in turn attracts heteroscedasticity. 
 

(c) Error Learning Factors/Models 



18 | P a g e  
 

As people learn everyday from their past mistakes, their errors of behavior become 
smaller and smaller over time and as such cannot be relatively constant. 

(d) Wrong Functional Form 
Specification error or incorrect functional form of a regression model causes 
heteroskedasticity. This occurs when a model is being regressed with a pool of “level” and 
“log” variables at the same time 

0 1 2

exp , ,

d

t t t t

d

LnC r LnY u

where C is consumption enditutes r is interest rate Y is disposable income

     
 

(e) Erroneous data transformation 
Incorrect data transformation is another cause of heteroskedasticity. It occurs when a 
regression model is being regressed with a pool of ratio and first-difference set f data at 
the same time 

(f) Skewness  
Skewness in the distribution of the explanatory variables causes heteroskedasticity. For 
example, the distribution of income and wealth is most often unequal but skewed in such 
a way that the bulk of income and wealth is owed by a few individuals at the top. Thus, 
while the spending behavior or the expenditure profile of a cross-section of families with 
low income may exhibit similar pattern in addition to being relatively stable, such 
expenditure profile of the cross-section of the rich families with high income could be 
different and highly volatile  
 

Consequences of Heteroskedasticity 
To investigate the effects of heteroskedasticity on the OLS estimator, its variance and standard 
errors, it becomes desirous that we revert to matrix specification of the classical linear regression 
model [CLRM].   

 

Given that 2( )iVar u I , the general form of the heteroskedastic variance-covariance matrix can 

then be described as: 

     

Where  is a positive definite matrix such that . Thus, the 

variance-covariance [V-C] matrix of the OLS estimator  will be given by:  
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This portrays the fact that with heteroskedasticity, 
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(a) The variances and standard errors of the OLS estimator are no longer efficient, not even 
asymptotically. In other words, not even in large samples. Thus, the minimum variance 
property of the OLS estimator is lost.  

(b) The variances and standard errors are overestimated by the OLS estimator thereby 
getting the standard errors of the estimated coefficients distorted by being over boosted. 

(c) Statistical test of significance are rendered invalid. As it were, the validity of the 
conventional formulae for t and f test statistics becomes impaired 

(d) Statistical inferences are erroneous. Consequently, with heteroskedasticity, there is a 
higher risk of committing type 1 error which entails rejecting a correct null hypothesis 
instead of accepting it and also there is the likelihood of committing a type II error which 
has to do with the acceptance of an incorrect null hypothesis rather than rejecting it.  

(e) Confidence interval of the estimated coefficients becomes inordinately wide. In other 
words, confidence intervals are overly outsized 

(f) In general, the hypothesis-testing procedures on the basis of the OLS estimates are 
contaminated and spurious.  

(g) Heteroskedasticity does not destroy the unbiasedness property of the OLS estimator. As 

a matter of empirical fact, still holds. Consequently, the OLS estimator

remains unbiased.  
 
Statistical Tests for Heteroskedasticity  
There are numerous tests for detecting the presence or otherwise of the problem of 
heteroskedasticity. These include the informal and formal techniques.  
 
The formal methods for detecting the presence or otherwise of heteroskedatsticity are methods 
that suggest that the econometrician has some aprori information set about the true pattern of 
heteroskedasticity. In effect, the econometrician’s task is to conduct the regression analysis on 
the assumed pattern of heteroskedasticity.  

 
   Glejser Test  
Due to Glejser (1969), the Glejser test is a formal test for heteroskedasticity that regresses the 

absolute values of the estimated residuals  on various powers of the explanatory variable of the 
model. The test is based on the following hypothesis. 

    
 

Spearman’s Rank Correlation Test [SRCT]  
The SRCT statistic is a detective measure of heterokedasticity that ranks the values of the 
explanatory variable and the estimated regression residuals either in ascending or in descending 
order of magnitude without regard for the signs of the residuals. Given the following regression 
model to be estimated: 

0 1Y X u     

What follows next is to:  

(a) Fit the regression to the data on  and and  

(b) Generate the residualsu .  
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(c) Disregarding the sign of the estimated residual, that is taking only the absolute value of 

the estimated residual, we rank u  and either in a descending or in an ascending order.  

(d) Next, is the computation of the Spearman rank correlation coefficient (SRCC). The test 
statistic is given as: 

    

Where  is the difference between the values of corresponding pairs of and ,  is the 
number of observations in the sample, that is, the number of individual units being ranked. The 
test is based on the following hypothesis. 

    
 

Decision rule:  

If  is low, accept , the error valances is homoskedastic  

  If is high, accept , the error variance is heteroskdastic  

Alternatively,  

If , accept  and reject   

If , accept  and reject   

   If , accept  and reject   

   If , accept  and reject   

Where  is the computed SRCT statistic, is the standard normal critical value. 

Here, the standard error of the SRCT statistic is assumed to obey the standard normal 

distribution in this regard. The critical t-value can be obtained as  and  is the level of 

significance and is the degree of freedom. 
 
   Goldfeld-Quandt Test 
This is a formal test for heteroskedasticity due to Goldfeld and Quandt (1972). By definition, the 
G-Q test is a fundamental F-test statistic that entails the ordering of the set of observation in 
accordance to the magnitude of the values of the explanatory variable and thereafter divides the 
set of observations into three parts such that the first and third halves are equal. The middle half 

which is made up of one-quarter of the total number of observations in the sample is 

excluded from the test.  
 

Thus, if , it implies that the  middle observations in the ordered set must be omitted or 
deleted and the balance 12 observations divided into two equal halves of 6 observations each. 
Having ascertained this division, separate error variances or residual variances are estimated 
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from the OLS regression of the two equal halves of 6 observations each.  Worthy of note is the 
fact that the ordering of the data set is determined on the basis of an ascending order of the values 
of the explanatory variable.  
 
In sum, the G-Q method requires the following steps:  

Step 1: Ranking the data points on the regressor,  starting  

  with the least observation  
Step 2: Divide the ordered set of observations into equal  

 groups each of  observations  

 haven omitted the central group of observations . The central group of 

observations to be excluded from the heteroskedasticity test should be about one 

quarter of the total number of observations . For example, if , about 

32/4 = 8 data points must be excluded and the remaining 22 divided into two 

equal halves of  observations, where . 

Step 3: Fitting the OLS regression on separate basis to the two groups of 11 

observations each, and obtain the residual sums of squares RSS1, and RSS2 

 with the degree of freedom given by respectively, and  

is the number of parameters to be estimated.  
 Step 4: Compute the F- ratio as follows:  
    The test statistic is given as: 
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Where is the error variance, otherwise known as the residual variance, is the sum of 

squared residuals, is the number of observations in the sample [sample size] and is the 
number of estimated regression coefficients. 

 
 The test is based on the hypothesis:  

     

Decision Rule:   

 If , accept , the error variance is homoskedastic  

 If , accept , the error variance is heteroskedastic 

 

The G-Q test ratio therefore obeys the F-distribution with degress of freedom. 

Significant F indicates presence of heteroscedasticity and vice versa.  
 

   If , accept  and reject  

   If , reject  and accept   

 

The associated critical F-value is obtained as  . The decision rule is to accept the 

homoskedasticity assumption if  and reject it if  . In which case, if the both 

the numerator and the denominator are equal we accept .  

 
Corrective Measures for Heteroskedasticity    

Transformation based on the Pattern of Heteroskedasticity  
In econometric literature, different assumptions about the error term have been made and this 
warrants the type of data transformation in order to eliminate heteroskedasticity from an 
empirical model. 

Logarithmic Transformation [LT] 
Given the unknown nature of heteroskedatsicity, a logarithmic transformation [estimating the 
original model in log] is also applicable in resolving the problem of heteroskedatsicity. In this 
case, the transformation of the original model becomes: 
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Merits of Logarithmic Transformation  
In general, logarithmic transformation helps to reduce if not total elimination of the problem of 
heteroskedatsicity. This is evident in the following facts. Logarithmic transformation: 
  Compresses the scales in which the variables are measured, thereby reducing a 

tenfold difference between two values a two-fold difference. For example, the number 
120 is ten times larger than 12, but  gives 4.787 which is just about twice as 

large as  which is equal to 2.485 

 Yields direct elasticities. For example, the slope coefficient of a logarithmic 
transformed model measure the elasticity of the dependent variable with respect to 
the regressor in question. In particular, it measures the percentage change in the 
dependent variable due to a percentage change in the explanatory variable.  
 

Logarithmic Transformation Problems 
 Log transformation is not applicable if some of the observations [data points]  for 

both the  dependent and the explanatory variables are zero or negative 
 The problem of spurious correlation will be encountered between the ratios of the 

transformed variables even when the original variables are uncorrelated or random.  
 The conventional F and t tests for model robustness are only valid in large 

samples given that the variances are unknown and are estimated from any of the 
transformation procedures.  

  In the multiple regression model [MRM], model with more than one regressors, 
it is difficult to ascertain on apriori basic which of the regressors to be chosen for data 
transformation 
 

Example 

Consider the data below: 
 Test for the presence or otherwise of heteroskedasticity using the spearman rank 
coefficient test statistics. 

Y 2 4 6 3 6 
X 20 12 16 14 18 

Solution  
First: We state the hypothesis: 

    

 
Secondly: We would estimate an SRM which is of the following specification 

 

Y X X2 YX ỳ y-ỳ 
2 10 100 20 2.2 -0.2 
4 12 144 48 3.2 0.8 
6 16 256 96 5.2 0.8 
3 14 196 42 4.2 -1.2 
6 18 324 108 6.2 -0.2 

21 70 1,020 314 21 0 
 

(120)Ln

(12)Ln

0

1

:

:

i

i

are

are

H e homoskedatsic

H e heteroskedatsic

0 1Y X e  
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Estimated Regression line:

 

 

     

 

 
  

     

2 2.2 -0.2      1 10 1 1.5 -0.5 0.25 
4 3.2 0.8       3 12 2 3.5 -1.5 2.25 
6 5.2 0.8      4 16 4 3.5 0.5 0.25 
3 4.2 -1.2     5 14 3 5 -2 4 
6 6.2 -0.2     2 18 5 1.5 3.5 12.25 

 19.0 
 
 
Now, we can apply the spearman rank coefficient test statistic 

 

 

2
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0
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16, 2.8 0.5(16) 5.2

14, 2.8 0.5(14) 4.2

18, 2.8 0.5(18) 6.2

i

i

i

i
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when X Y

when X Y

when X Y

when X Y

when X Y

    

    
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where  is the difference between the values of corresponding pairs of observations,  

is the number of observations in the sample. Solving ties:  1+2=1.5 
                               2 

3+4 = 3.5 
         2 

Decision Rule: We can evaluate the z and t critical values as follows: 

    

 

   

   

Given that Since  is on the low side, we conclude that the error variances are homoskedastic. 

So we would accept  and reject  

 
 
Example 4.5 

Given: 
 
 
 
 
 

 
Test for heteroskedasticity using the Goldfeld-Quandt test statistic at both the 5% and 15 
significance levels. 

d X and e n

,

1.96

5 2

1.96

4

1.96

2

0.98

0.05 0.98

X er

z
 

 


 
 

 
 
 

 
 

 



.
2

0.05 5 2

1 (0.05)

0.05

x er t
 
  
  



.x er

0H 1H

Y X 
10 20 
12 22 
14 26 
16 28 
18 28 
10 30 
12 42 
18 26 
10 30 
16 20 
22 26 
18 22 
16 28 
28 28 
26 62 
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Solution 4.5                                   Date Ordering 
      Y X 
      10 20 
      16 20 
      12 22  
      18 22 16 - 4 = 12 = 6 
      14 26   2 
      18 26 
       

22 26 
      16 28  

 18 28 Delete 1 x 16 = 4 
      18 28             4  
 
      16 28 
      28 28 
      10 30 
      10 30 16 -4 = 12 = 6 
      12 42     2 
      26 62 
Hypothesis: 

    

 

 

Solving first half   

 

 
 
 

 
 

 
 

The underlying model can be specifies thus:  

0

1

:

:

H residual variance ishomoskedatsic

H residual variance is heteroskedatsic

2
2
2
1

e

e

F statistic



 

2^

2

1

1

2
^

1

2

2

where
n

Y Y

n




 



 
  






11 01 11 11 11Y b b X   

Y X X2 YX ỳ (y -ỳ)2 
10 20 400 200 13.34 11.16 
16 20 400 320 13.34 7.08 
12 22 484 264 14.26 5.11 
18 22 484 396 14.26 13.99 
14 26 676 364 16.1 4.41 
18 26 676 468 16.1 3.61 
88 136 3120 2,012  45.36 
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Estimated Regression line:

   

     

 

Solving third half  

 

 
 

2
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01 22
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^

01

88(3120) 136(2012)

6(3120) (136)

4.14

Y X X YX
where b

N X X

b


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26, 4.14 0.46[26] 16.10

i

i

i

i

i

i

when X Y

when X Y

when X Y

when X Y

when X Y

when X Y
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The underlying model can be 

specifies thus:  

 

           

 

Estimated Regression line:

   

     

 

 

22 02 22 22 22Y b b X   
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102 220 8976 3948  0 278.43 
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Decision Rule: At

 

 . Since we accept the null hypothesis and 

reject the alternative. Alternatively, , we accept and 

conclude that the error variance are homoskedastic.  
 
ASSIGNMENT 
Consider the data below: 
 Test for the presence or otherwise of heteroskedasticity using the spearman rank 
coefficient test statistics. 

Y 228 478 625 398 625 
X 120 112 116 114 118 

 
CONCLUSION 
In the multiple regression model [MRM], model with more than one regressors, it is difficult to 
ascertain on apriori basic which of the regressors to be chosen for data transformation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LECTURE 4: IDENTIFICATION PROBLEM   

 

CONTENTS 
 Introduction 

 Objectives 

 Definition of Identification Problem  

2
2
2
1

69.61

11.34
6.14

e

e
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2 2

1 2  

(6.14) (6.39)F computed F critical   0H
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 Types of Identification  

 Identification Restrictions 

 Formal Rules for Identification 

 Implications for Identification 

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
Identification in econometrics has to do with being able to solve for unique values of the 
parameters of the structural model from the coefficients of the reduced-form of the model. 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning and types of 

identification, identifying restrictions, formal rules and implications for identification. 
 
 
IDENTIFICATION PROBLEM  
  

 Identification is concerned with the possibility of obtaining meaningful estimates of the 
structural parameters from the reduced form coefficients such that there must be no other 
equation in the model that can be formed by algebraic manipulation of some other 
equations within the model which contains the same variables as the function in question. 
 

 The identification problem thus occurs because different sets of structural coefficients are 
computed from the same sample data. In other words, a given reduced form equation is 
found to be compatible with different structural equations thereby making it difficult to 
disentangle the particular hypothesis that is being tested empirically.  
 

 As it were, the identification problem is a mathematical problem associated with 
simultaneous equation systems. It is therefore a problem of model specification and not 
of model estimation. 

 
Types of Identification 
In econometric modeling, two types of identification are discernible. These are:  

(a) Under-identified equation 
(b) Identified equation 

(b.1) Exactly (just) identified equation 
(b.2) Over identified equation  

 

 Under-identification 
An under-identified equation is an equation whose coefficients cannot be estimated. Indeed, an 
equation is under-identified if its statistical form is not unique.   

 Identified Equation 
A system is identified if all of its equations are identified. An identified equation could either be 
exactly identified or over-identified.  

 Exactly (Just) Identification 
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An equation is exactly or just identified if only one set of structural coefficient estimates can be 
computed from the reduced-form coefficients. 

 Over Identification 
An equation is over identified if more than one set of structural coefficient can be computed from 
the coefficients of the reduced form equation. In sum, a model (system of equations) is identified 
if all the equations in the model are identified.  
 
Identification Restrictions 
The identifying restriction entails the placement of restrictions on the variables of a simultaneous 
equations model using economic theory and extraneous information to solve the identification 
problem of the simultaneous equations. These restrictions can take a variety of forms such as:  

(a) Use of extraneous estimates of parameters,  
(b) Knowledge  of exact relationship among parameters,  
(c) Knowledge of the relative variances of disturbances,  
(d) Knowledge of zero correlation between disturbances in different equations,  
(e) Zero restrictions, taking the form of specification that certain structural 

parameters are zero, i.e., that certain endogenous variables 
and exogenous variables do not appear in certain equations.  

 
Formal Rules for Identification 

(a) Order condition for identification 
(b) Rank condition for identification 

 
Order Condition 
The order condition states that for an equation to be identified, the total number of variables 
excluded from it but included in other equation of the model must be at least as great (must be 
equal to or greater than) as the number of equation of the model less one. Mathematically, the 
order condition is given by: 

Q – Q* > E – 1 
Where Q is the total number of variables in the model  
   Q* is the total number of variables in the particular equation  

       that is being identified  
   E is the total number of endogenous variables (number of  
                equations) in the model 
 
Illustration 1:  
Consider the following simple version of the Keynesian income determination model: 

    

 0 1 1

0 1 1 2 2

0 1 3

t t t t

t t t t

t t t

t t t t

C Y T

I I r

T Y

Y C I G

  

   

  



   

   

  

  

 

In commenting on the identification status of the above system of equations, we note the 
following:  

(a) There are four (4) endogenous variables, namely ttt TIC ,, and tY  
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(b) There are three (3) predictive variables namely, 1,t tr I  and Gt. Applying the order 

condition to the first and second equations (the consumption and investment 
equations), we have;  

Q = 6,  
Q* = 3  
E = 4 
6 -3 = 4-1   

3 = 3      
We therefore conclude that the consumption and investment equations are exactly identification 
(just identified). Applying the same order condition to the third equation (the tax equation), we 
have:  

Q* = 2,  
Q=6  
E = 4, 
6 -2 > 4 -1      

3 = 3   
The tax equation is over identified. Therefore, it is possible to fruitfully estimate the structural 
parameters of the model from the reduced-form equation. In short, the structural parameters can 
be retrieved from the reduced from coefficients. 

 
Illustration:  
Consider the model: 

           

0 1 1

0 1 2 1 2

t t t

t t t t

t t t t

C Y

I Y I

Y C I G

  

   

  

   

  

 

Using the order condition: 
Equation (1)  

 Q = 5, Q* = 2, E = 3, 5 – 2 > 3 – 1→3 > 2 over identified  
    Q = 5 
    Q = 2 
    E = 3 

Therefore, 5 – 2 > 3 – 1 
    3 > 2 

The consumption function is over identified 
Equation (2)  

    Q = 5 
    Q = 3 
    E = 3 

Therefore, 5 – 3 = 3 – 1 
 
The investment function is exactly (just) identified. 
Equation  Degrees of over identification 

1 1 
2 0 

L = 1 
Given that L L6, use ILS estimator to estimate model. 
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Rank Condition 

 The rank condition states that in a system of K equations, a particular equation is 
identified if and only if it is possible to construct at least one non-zero determinant of 
order ( 1)K   from the coefficients of the variables excluded from that particular equation 

but contained in the other equations of the model.  
 

 This condition is called the rank condition because it refers to the rank of the matrix of 
parameters of excluded variables and the rank of a matrix is the order of the largest non-
zero determinant which can be formed from the matrix. 

 

 In econometric analysis, the relevant matrix is the sub matrix of the coefficient of the 
excluded variables. It is a “SUFFICIENT” criterion for the identification. When an 
equation is sufficiently identified, it is necessarily identified but the converse is not the 
case.  
 

 In effect, the common use of the “order” condition for identification is not justified because 
it is only a necessary condition for identification. Thus an equation might be necessarily 
identified but not sufficiently identified. That is, even if the “order” condition is satisfied 
for a particular equation, it may happen that very equation is not identified.  

 
Illustration:  
Considers the structural Keynesian model given below: 

0 1 1

0 1 2 1 2

t t t

t t t t

t t t t

C l l Y

I m mY m

Y C I G



 

  

   

  

 

This model could be re-written in the form 

1 1

1 2 1 2

0

0

0

t o t t

t o t t t

t t t t

Y l l Y

I m mY m I

Y C I G





    

     

    

 

Ignoring the random disturbance the table of Ps of the model becomes variables. 
 

Equations tC     It   tY   1tI    Gt    

Equation C  -1    0   1l    0      0 

Equation I    0    -1  1m   2m   0 

Equation Y    1     1   -1    0    1 
 
Since we are identifying equation (1), the consumption function, we strike out the first row in the 
table of structural parameters as follows. 
 
 Table of structural parameters 
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Equations  tC   It  tY   1tI     Gt    

Equation C  -1    0 1l    0        0 

Equation I  0    -1 1m   2m     0 

Equation Y  1     1 -1    0    1 
 
Tables of parameters of Excluded Variables 
  

       It       1t      Gt    

      -1       
2       o 

         1          o        1   
 
Forming the determinant(s) of order (M – 1) x (M – 1) that is (3 – 1) by (3 – 1) = 2 x 2, we have 
that: 

2

1

2 2

1

1 0

0 0

m

m m


 

   

 

    

2

1 0

1 1

1 0 1 0


 

    

 

 

2

3

2 2

0

0 1

0 0

m

m m

 

  

 

 
We are able to form 3 non zero determinants of order 2, the consumption function of the model 
is identified. 
 
Implications of Identification  

(a) If an equation (model) is under-identified it is impossible to estimate its parameters with 
any econometric technique. 

(b) If an equation (model), its coefficients can be estimated.  The suitable estimation 
technique is ascertained by identification status, i.e. exactly identified or over-identified. 

(c) If an equation is exactly identified, the appropriate econometric technique to be used for 
its estimation is the ILS 

(d) If an equation is over identified, the appropriate econometric technique to be used for 
estimating it is the 2SLS, 3SLS, ML etc. 

 
ASSIGNMENT 
Consider the following simple version of the Keynesian income determination model: 
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0 1 1

0 1 1 2

t t

t t t

t t t t

C Y

I d d I

Y C I G

  



  

  

  

 

Determine the identification status of the model and suggest an estimator for the model.  
 
 
 
CONLUSION 
The order condition is which is a “NECESSARY” condition for identification is indeed based on 
the counting rule of the variables included and excluded from the particular equation that is being 
identified 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LECTURE 5: GAUSS-MARKOV THEOREM   

  

CONTENTS 
 Introduction 

 Objectives 

 Gauss-Markov Theorem  

 Proof of Gauss-Markov Theorem 
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 Numerical Application  

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
The Gauss Markov Theorem [GMT] has to do with unbiasedness and efficiency properties of 
the OLS estimator. 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning and know how to give 

the mathematical proof of Gauss-Markov theorem. 
 
GAUSS-MARKOV THEOREM 
The Gauss Markov Theorem [GMT] states that the OLS estimator provides the best, linear 
and unbiased [BLU] estimator. In other words, in the class of linear and unbiased estimators, 
the OLS estimator is the most efficient estimator. 
 
PROOF OF GAUSS-MARKOV THEOREM   
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where Y is an n column vector of endogeneous variables

X is an n k matrix of exogeneous variables

is a k column vector of population parameter

is an n column vector of stochastic disturbances
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Combining the twin assumptions of homoskedasticity and absence of autocorrelation that is

Var E n

Cov E n

We now derive thevariance covariance matrix as follows
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Proof of Unbiasedness

a X X X Y

Recall that Y Xa

Substituing equation into

a X X X Xa

X X X Xa X X X

X X
a X X X

X X

X X X









  





 







 

 

 

 

 
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( ) [ ( ' ) ' ] (7)

( ' ) ' ( ) (8)

( ) (9)

E a E a X X X

a X X X E

E a a









 

 

  
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1 1

1 1
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1 2 1
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( ) ( ' ) (15)

Variance Covariance

Var Cov a E a a a a

E X X X X X X

X X X X X X

X X X E X X X

X X X X I X X

Var Cov a X X
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 







 

 

 

 




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Consider another linear estimatora

a a DY

Substituting for a and Y

a a X X X DXa D

a DXa X X X D

a a DXa X X X D

 

 









 

   

   
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[( ' ) ' ] ( ) (21)

( ) (22)

0

( ) (23)

Taking the ected valueof equation

E a E a DXa X X X D

a DXa X X X D E

E a a DXa

For a tobeunbiased DX

E a a








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Thus the OLS estimator a is best linear and unbiased BLU

In sum the OLS estimator formulae in matrix are given by
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Numerical Example  
  Years      Life-Expectancy Heath-care Spending  National Income 

    ( )Y    1( )Z             2( )Z  

    “000   “000             “000 
  2000  45   10   14 
  2001  46   12   22 
  2002  49   13   20 
  2003  50   15   36 
  2004  52   18   48 
  2005  53   22   56 
  2006  58   25   87 
Formulate the basic model in matrix format. Estimate the determinants of life expectancy in 
Nigeria. Interpret the results of the model. 
 
Solution 
Basic Model [Matrix formulation]:   Y Z    

OLS Estimator:      
1 1'Z Z Z Y


  
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
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   ' 17919Y Y   

    
 '

1
'

'

Adj Z Z
Z Z

Z Z



  

   776,2431 ZZ  

      ' '
T

Adj Z Z cofactor matrix of Z Z 
   

 

    11

2,071 5,475
1,886,710

5,475 15,385
c     

 

    12

115 5,475
219,850

283 15,385
c      

 

    13

115 2,071
43,532

283 5,475
c     

  

     850,219
385,15475,5

283115
21 c  

 

     606,27
385,15283

2837
22 c  

 

     780,5
475,5283

1157
23 c  

 

     532,43
475,5071,2

283115
31 c  

 

     780,5
475,5115

2837
32 c  
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     272,1
071,2115

1157
33 c  

 

 Cofactor Matrix,  '

1,886,710 219,850 43,532

219,850 27,606 5,780

43,532 5,780 1,272
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 
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7.739 0.902 0.179

0.902 0.113 0.024

0.179 0.024 0.005

 
 

  
 
  

 

                             

7.739 0.902 0.179 353 46.09

0.902 0.113 0.024 5,941 5.44

0.179 0.024 0.005 14,932 285.26



     
     

    
     
          

 

 

Estimated Model:   
^

1 246.09 5.44 285.26Y Z Z    

 
ASSIGNMENT 
Consider the following data 

Y 141 121 101 151 121 81 
X1 21 30 34 51 52 64 
X2 12 10 10 12 10 14 

(a) Estimate the model Y X    

(b) Estimate the unadjusted coefficient of determination 
(c) Determine the statistical significance of the coefficients 
(d) Determine the statistical significance of the regression model 

 
CONCLUSION 
The BLU property of the OLS estimator can be explained under the following: Unbiasedness, 
Efficiency, Consistency, Linearity and Sufficiency. 
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LECTURE 6: SIMULTANEOUS EQUATIONS MODELLING   

  

CONTENTS 
 Introduction 

 Objectives 

 Simultaneous-Equation Bias: Endogeneity 

 Cause of Simultaneity Bias/Endogeneity 

 Proof of Omitted Variable Bias 

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
Simultaneous equations model (SEM) is a system of equations representing a set of relationships 
among variables and thereby relating the joint dependence of variables 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning of Simultaneous-

Equation Bias: Endogeneity, explain cause of Simultaneity Bias/Endogeneity and give a proof of  

Omitted Variable Bias. 
 
 

SIMULTANEOUS EQUATIONS MODELLING 

 A simultaneous equations model (SEM) is a system of equations in which the dependent variables 
in some equations are explanatory variables in other equations and thereby feeding-off shocks 
to each other. Thus, a SEM is a system of equations representing a set of relationships among 
variables and thereby relating the joint dependence of variables. The feedback effect of the SEM 
can be demonstrated using the structural model: 

  

1 0 1 2 2 1 1

2 0 1 1 2 2 2

(1)

(2)

t t t t

t t t t

Y d d Y d X u

Y Y X u  

   

   
 

where 1 2t tY and Y are mutually dependent variables, 1 2t tX and X  are the exogenous variable 

1tu 2tand u are the stochastic disturbance terms. If 1u increases by a given proportion, it will 

automatically increase 1Y .  

 The increase in 1Y will in turn cause 2Y to increase. This feedback effect between the two 

structural equations is contemporaneous and indeed continuous, an indication that the 

endogenous variables 1 2t tY and Y are jointly dependent. The  

correlation is that an increase in  1u
 
increases 1Y   which in turn increases 2Y  . So 1tu 2tand Y   are 

positively correlated.  
 

Single Equation Model Simultaneous Equation Model 
The SEM represents only one relationship 
among variables 

The SEM represents more than one 
relationship among variables 

The SEM has only one equation.  The SEM has more than one equation.  
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The estimation method is mainly OLS The OLS estimation technique cannot be 
applied to estimate the SEM 

In the SEM, only the parameters of the single 
equation can be estimated 

In the SEM , more than one parameters can be 
estimated simultaneously 

In the SEM, there is a single dependent 
variable and one or more explanatory 
variables 

In the SEM,  there are more than one 
dependent variables and more than one 
explanatory variables 

 
Specification:  
A SEM has these specifications:  

(a) Reduced form specification 
(b) Structural form specification 

The structural model is a complete system of equation, which describes the structure of the 
relationship between economic variables such that the endogenous variables are expressed as 
function of other endogenous variables, predetermined variables and stochastic disturbances. The 
regressors of structural equations correlated with stochastic disturnaces. The structural 
specification of a simultaneous equations model can be given as: 

                                       
1 0 1 2 2 1

2 0 1 1 2 2

t t t t

t t t t

Y d d Y d X u

Y Y X u  

   

   
 

Where 1 2t tY and Y are the mutually dependent variables, tX is an exogenous variable and 1tu and 

2tand u are the stochastic disturbance terms 

 
The reduced-form model (RFM) is that model in which the endogenous   variables are 
expressed as an explicit function of   only the exogenous and predetermined variables. In other 
words, the RFM expresses an endogenous variable solely in terms of the predetermined variable 
and the stochastic disturbances.  The RFM that corresponds to the above structural model is 
given by: 

2 20 22 2t tY X e     

1 10 12 1t tY X e     

Simultaneous-Equation Bias: Endogeneity 

 Simultaneous-equation bias is an endogeneity problem which entails reverse causation 
between the explanatory and the dependent variables of a model. Thus, simultaneity bias 
is a loop of causality between the dependent variables and the regressors of a model. It 
occurs when a variable on the right-hand side of the causal inferential model and the 
variable on the left-hand side of the same model influence each other at the same time.  

 In effect, both the endogenous and the explanatory variables are related to each other.  
Accordingly, by sequencing the causality between the dependent and independent 
variables of a model, endogeneity is induced. Endogeneity refers to the correlation 
between the endogenous explanatory variable, that is, the endogenous regressor and the 
random error term.  

 
Cause of Simultaneity Bias/Endogeneity 
Endogeneity can arise as a result of: 

(a) Measurement error  
(b) Omitted variable bias 
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Measurement Error:  

Measurement error in the endogenous explanatory variable causes simultaneous equation bias.  
 
Omitted Variable Bias 

The omission of key explanatory variables from a regression model causes simultaneous 
equation bias. 
 

 If the “correct” model that explains the variation in Y , that is, the model to be estimated 
in mean deviation was: 

1 1 2 2 3 3y a x a x a x u     

 If the model is correctly specified, the unbiasedness property would be 
satisfied in that the regression coefficients would be unbiased estimators of 
the population parameters and as such

^ ^ ^

1 2 31 2 3( ) , ( ) ( )E a a E a a and E a a     

 If by ignorance or carelessness, the econometrician mistakenly omitted 2 3x and x from the 

model with the mis-specified equation given as:  

1 1y b x    

Then 
^

1 1( )E b   

Proof: Applying OLS to the mis-specified equation, the slope coefficient of the SRM will be given 
as: 

1

1 2

1

yx
b

x




 

The normal equations for the correctly specified model are given as: 
2

1 1 1 2 1 2 3 1 3

2

2 1 1 2 2 2 3 2 3

2

1

1 1 2 1 3

1 2 32 2 2

1 1 1

1

12

1

2

(4)

(5)

(4) ,

(6)

,

yx a x a x x a x x

yx a x x a x a x x

Dividing eqn by x

yx x x x x
a a a

x x x

yx
where b the slope coefficient of the SRM of Y on X

x

in which X is omitted

  

  

  



   

   



  
  




         



46 | P a g e  
 

1 2

2

1

2 1 2 2 2 1 1

1 3

2

1

3 1 3 3 3 1 2

, . .

, . .

t

t

x x
is the slope coefficient of the SRM of the omitted variable

x

x on x and is denoted by b i e x b x e

x x
is the slope coefficient of the SRM of the omitted variable

x

x on x and is denoted by b i e x b x e

Substitu

 

 







(6),ing these facts into eqn

1 1 2 2 3 3

1

2 1

1 1 2

(7)

,

,

(7),

( )

b a a b a b

Obviouly the coefficient of the included variable x in the mis specified equation has

picked up theceofficient of the omitted variable x that was correlated with x

Taking expectations of eqn

E b a a b

  



  2 3 3

1 1

1 1

2 2 3 3

, ( )

var [ ( ) ]

a b

Thus E b a

Omitted iable bias E b a

a b a b





 

 

 

In effect, the regression coefficient 1b  in the incorrect model specification differ from the regression 

coefficient 1  of the correct model specification. Thus, 1b  is a biased estimator of 1 and the “bias” 

is equal to 2 2 3 3b b  . Overall, the omission of a key variable from the regression model leads to 

biased estimates of the parameters of the included variables. 
 
Consequences of Omitted Variable Bias 

(a) Estimated coefficients are positively biased 
(b) Estimated variances are biased 
(c) Estimated standard errors are biased 
(d) Hypothesis testing about the significance of parameters is misleading 
(e) Confidence intervals are wrongfully estimated 
(f) Forecasting is invalid   
(g) Estimated coefficients are inconsistent. This is because the “bias” will not disappear even 

as the sample size gets larger 
(h) Residual variance is incorrectly estimated 

 

There are two conditions under which 1 1( )E b a : 

(a) 2 0a   

There will be no “bias” if the omitted variable 2X has no effect on the dependent 

variable,Y . Of course, if that be the case, it thus means that the model in the first place 
was not mis-specified 

(b) 2 0b   

That is, there will be no “bias” if 2X  and 1X  are not correlated. Thus, if the two 
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explanatory variables in the correctly specified model are uncorrelated such that

2 1( , ) 0Cov X X  , then omitting 2X   does not in any way result in biased estimate of 

the effect of  1X  

 
 
ASSIGNMENT 
Explain omitted variable bias with mathematical proof 
 
 
CONCLUSION 
In SEM, both the endogenous and the explanatory variables are related to each other 
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LECTURE 7: TIME SERIES PROPERTIES OF VARIABLES   

  

CONTENTS 
 Introduction 

 Objectives 

 Stationary versus Non-stationary Series 

 Properties of Integrated Processes 

 Stationarity Tests 

 Co-integration 

 Error Correction Modelling and Estimation 

 Conclusion  
 Assignment 

 
 
INTRODUCTION  
As a lay down to any estimation process and in view of standard econometrics application, 
empirical methodology in time series econometrics does proceed in the following steps:  

 Testing for stationarity of variables in a model,  

 Testing for co-integration and  

 Estimating error correction models. 
 

OBJECTIVES 

At the end of this lecture, students will be able to understand the meaning of Stationary and Non-

stationary Series, Properties of Integrated Processes, Stationarity Tests, Co-integration and Error 

Correction Modelling. 
 
 
TIME SERIES PROPERTIES OF VARIABLES   

 
Stationary versus Non-stationary Series 
            Stationary Series 

A time series is stationary if it has no trend whether deterministic or stochastic trend. In 

other words, there is no systematic change in its mean, variance and other periodic variation. 
Accordingly, it is a time series with only regular variation. For stationary time series, any shock, 
that is, perturbation to the series will die-off over- time thereby making it possible for the long-
run mean value of the series to be established. This then guarantees the convergence of long-
term forecasts based on such series to the constant long-run mean of the series [see Enders 
(1998)].  
 
Figure 8.1 illustrates the stationary process as it portrays a cumulative convergence towards the 
initial equilibrium state after an initial shock to equilibrium.  
 
 
                Figure: Stationary Series 
                   

tX
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  Mean of Series 
 
 
 
          
         
 

             
             Non-stationary Series and the  
                       Order of Integration 
A non-stationary series is a time series with trend. The trend could be deterministic or stochastic. 
Only the stochastic trend can be removed by differencing and not the deterministic trend. Thus, 
a non-stationary series is a series with irregular variation such that its mean, variance and 
covariance are not relatively constant. Consequently, a non-stationary series is an integrated 
series which can only be made stationary by differencing.  
 

A series is said to be integrated of order if it has a stationary representation after differencing 

the series  time. In other words, the order of integration refers to the number of times a variable 

has to be differenced to gain stationarity.  
 
Econometrically speaking, if a series becomes stationary after first differencing, it is said to be 

integrated of order one and it is represented as . If the series becomes stationary after 

differencing twice, it is adjudged integrated of order two and it is represented as , 

while if originally without differencing the series, the time series variable is found to be 

stationary, then it is said to be integrated of order zero and this is represented as . In 

sum,

 

 means that  is integrated of order six (non-stationary) and must be 

differenced six times to make it stationary.  
 
           Properties of Integrated Processes 
The properties of an integrated process can be itemized thus: An integrated process has a  
             (a)   Finite unconditional mean,  
             (b)   Time dependent variance and  
             (c)   Time dependent covariance  
Consider a random walk model with drift, a non- stationary model which most often is specified 
as:  

        

The first difference of the random walk process 
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 is stationary. By intuition,   has a stochastic trend. If a time series is generated from the 

random walk process with a drift and , it means that the series is trending upward and if

, the series is trending downward as shown in the figures below:  

    
 
 Figure 7.2: Upward Trend Series 
                           
                    Xt 
                                                   
 
                                Upward sloping                                                                                       
                                                          
 
 
 
 
                         0                                 Time 
                          
 
 
 
 
                             Figure 7.3: Downward Trend Series  
 
                      Xt                                                     
                                                                             
                                 Downward sloping  
 
 
 
 
                          0                                   Time 
 
A variable that trends upwards or downwards is never stationary. Hence, the presence of trend 
leads to non-stationarity. In the non-stationary process, there is always a disturbance to the 
equilibrium that is already established. This results in cumulative divergence from the 
equilibrium mean value so that it is practically impossible to re-institute equilibrium.  
 
             Problems of Non-Stationary Series 
There are basically two problems of non-stationary series. These include spurious regression 
results, and inconsistent regression results.  
   Inconsistent Regressions  
 Inconsistent regression estimates are obtained when a stationary series is regressed on a non-
stationary series. Given that the non-stationary series will have a time-dependent mean, the value 
of the coefficients of the regression will not themselves be constant. In such a case, the coefficient 
estimates are highly sensitive and unstable over different sub-samples. Thus, if we were to draw 

tZ

0 

0  tZ
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valid inference that is not time dependent; then all the variables in the model should be integrated 
of the same order. 
                       Spurious Regressions  
Spurious regression arises when timely unrelated  variables are regressed using the OLS and the 
results are indicative of the fact that the series are correlated even when on aproiri basis the 
relationship between the variables is not genuine.  
 
In a Monte Carlo experiment, Granger and Newbold (1974) found that when a regression 
involves non-stationary variables, the OLS estimates become spurious in view of a very high R2 
and low Durbin-Watson (DW) statistic, which tend to cause the OLS estimator to underestimate 
standard errors and hence overestimate t-values of the regression coefficients. So, one possible 
way of detecting a spurious regression is the use of autocorrelation statistic, in particular the 
DW-statistic.  
 
 Stationarity Tests 
Since most time series variables are often suspected to be strongly trended, that is, to have time-
variant mean (a mean that changes over time), central to the stationary test is the determination 
of the order of integration (the number of times a variable has to be differenced to achieve 
stationarity) given the pre-notion of unit root that characterized the variables.  
 
The Augmented Dickey-Fuller (ADF) test and the Phillips-Peron (PP) test are mostly employed 
to experiment for the existence of unit root. The econometric rationale for both tests is that while 
the PP test makes no distributional assumption about the residuals, the ADF test hypothesized 
that the residuals from the auxiliary regression are white noise.  
 
In view of the problems that characterized non-stationary series, econometricians often deem it 
essential to analyze the time-series properties of the variables due to their unknown data 
generating process (DGP) by performing the unit root test.  
 
 Sample Autocorrelations: Correlogram  

A correlogram is a plot of the relationship between the sample autocorrelation coefficients, 

and the time periods. As the time period increases, the autocorrelation coefficients gradually 

decay to zero. Therefore, for a series to be stationary, the rate of decay of the autocorrelation 
coefficients as time period increases needs to be rapid.  For a non- stationary series, the rate of 
decay of the autocorrelation coefficient is very slow.  

 The sample autocorrelation test statistic is given by: 
 

    

    
     
 Time Path: Graphical Method of Test 
This is a graphical test for stationarity. Accordingly, it basically entails testing for stationarity 
with the aid of a graph. A consideration can thus be given to the following graphs:  
 
     Figure: Time Paths and the Graphical Test for  
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      Autocorrelation 
 
     Time-Path Panel [7a] 
 
                                                       Series 
 
 
 
 
 
                                              0                                             Time  
 
                                                    Time-Path Panel [7b] 
 
                                                   Series 
 
 
 
 
                                             0                                            Time    
 
 
      Time-Path Panel [7c] 
 
                                                    Series 
 
 
 
 
                                            0                                                Time                                           
      
 
    Time-Path Panel [7d] 
                                                    Series 
 

                                                                                                                 Mean of 
Series 

 
 
 
 
An informal inspection of four panels reveals that only time-path of panel [10d] is stationary 
since it can be visualized that the initial disturbance as portrayed by the wave-like trend gradually 
reconverge to the equilibrium mean value. Hence, the mean and the variance of the series in 
question are relatively constant.  
 
     Unit Root Test 
The unit root test is a formal statistical test for stationarity. Given the test equation:  
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                       (8.1)

 

Where is the variable (series) tested for stationarity, is the stochastic error term which 

should satisfy the zero mean and unit variance conditions. Thus, the test equation is often 
estimated by the Ordinary Least Squares [OLS] technique under the null hypothesis of a unit 

root. If , the series  is non-stationary i.e. unit root exists because if , the series is 

also non-stationary and if If , the series is stationary. If , the test equation 

degenerates to: 

                                  

which is random walk model with drift and  is non stationary. Therefore, the condition for 

stationarity is that . To test for stationarity, the t-statistic is utilized to test whether or 

not since the series is not stationary when . The relevant hypothesis for the test 

becomes:  

      

The test statistic is:  

       

Where is the estimated value of  and  is the standard error of . Decision to accept  is 

made if . Thus,  is rejected if  with the conclusion that the series 

  is stationary. The limitations of the preceding unit root test procedure include the fact that: 

(a)  The OLS estimator of  has a downward bias  

in small sample because of the presence of lagged dependent variable acting as an 
explanatory  variable,  

(b)  The distribution of the test-statistic is not normal [non-standard] even in large 
samples. As it were, the test ratio does not obey the standard  distribution neither is it  

 asymptotically distributed with . This is because stationarity was required in 

the derivation of the standard distribution.   
 

Dickey and Fuller (1979) were the first to tackle these problems. They re-worked equation (8.1) 

by subtracting from both sides of equation (8.1) yields: 

                    

Accordingly, testing for in equation (8.1) is equivalent to testing for in equation (8.3). 

In what follows, the new hypothesis to be tested becomes: 
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The test statistic is:  

        

In the final analysis, Dickey and Fuller (1979) generated a limiting distribution based on Monte-
Carlo experiments with empirical approximation. The term “unit root” is often the name for the 
test because it involves testing whether or not . The preceding empirical implementation of 

the Dickey-Fuller unit root test for stationarity incorporates an   process.   

 
DF test equations are augmented with p-lagged values of the endogenous variable for the drifted 
and the deterministic trend auxiliary regression as an augmented Dickey Fuller [ADF] test 
equation given by: 

        

1 1 3
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t t t i t t
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Where  is the difference operator, t is the time trend,  is the white noise error term which is 
independently and identically distributed with zero mean and constant variance. Depending on 
the number of lags the econometrician add to the test equation, utilizing 1 lag order, the one-lag 

 model will be obtained, utilizing 2 lag order, the two-lag  model is obtained etc. 

The lags are continuously added until serial correlation in the residuals of the test equations is 
eliminated. 
              
 Sarghan-Bhargava Method of Test  
The Sarghan-Bhargava test is a test for stationarity based on the residual series from a 
regression. The following steps are involved in the Sarghan-Bhargava test for stationarity. 

 Estimate the model: 

      

 Save the residuals from the regression of  on   

 Regress the residuals series on its past values as in the auxiliary model: 

     

Given that  is acting as a lag regressor in the model, we difference the model 

for estimation as in the case below: 

      

 Obtain the DW-statistic from the estimated model.  

 Take statistical decision: If the computed DW is close to zero, there is no stationarity and 

if , the series is not stationary co-integration as the model 

collapses to a random walk.  
 
Co-integration  
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The need to test for the existence of a long-run relationship between the endogenous variable 
and its regressors informed the theory of co-integration as propounded by Granger (1981), 
Granger (1986) and Hendry (1986).  

“Theorem” [see Engle and Granger (1987)] 
Co-integration theorem holds in general that two variables are co-integrated of order if 

they are both integrated of order  and there exist some linear combinations of them that are 

integrated of order where . To illustrate ideas, we consider variables  for 

co-integration such that: 

       

Suppose  and their linear combination is , then: 

       

Given that , the series are co-integrated and the order of co-integration is . 

The implication is that two non-stationary series could be co-integrated if their linear 
combination is stationary. Co-integratiion is therefore a special case within the analysis of the 
order of integration. Thus the linear combination of an with another series will give 

an series.  

 
Also the combination of two series with yield an series. However a combination of an 

series with an series will give an series meaning that a higher order series will 

dominate.  In terms of regression analysis the regression of an series on an series will 

be non-stationary and the results will be spurious and statistically inconsistent.  
 
Co-integration refers to long-run relationship between variables. It is therefore a method of 
avoiding both the spurious and inconsistent regression problems which otherwise occur with the 
regression of non-stationary series.           
 
Statistical Tests for Co-integration                                                                                                                    
 Two Variable Case of Co-integration Test: 
                                           Engle-Granger Two-Step [EGTS] Modus Operandi  
The Engle-Granger co-integration methodology is based on testing the OLS residual series for 
stationarity. According to Engle and Granger (1987), if the long-run relationship between two 
variables exists, the disequilibrium error should not drift far apart from the zero line. Let us 
consider the following bivriate co-integrating regression model: 

 

 

It is expected that the mean of should be zero i.e. .  This is illustrated graphically 

below: 
        
  Figure: Engle-Granger Theorem     
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                                                                                                                    Time  

 
 
 
 
 

Since the disequilibrium error, fluctuates very much around the mean, the variables in the 

static equation  are stationary and as such, they are co-integrated. The linear 

combination of the two variables under the Engle-Granger methodology ought to be unique. As 
a result, when the coefficient of one of the variables is normalized to unity, a unique stationary 
linear combination is obtained.  
 

 The following steps are involved in Engle-Granger test procedure:   
 Estimate the bivariate model using the OLS estimator 

                                                     

 Save residual series, that is obtain  

     
 

 Test residual series  for stationarity using the Dickey-Fuller [AD],  
 
Augmented Dickey-Fuller [ADF], Phillips-Peron test statistics. If the residual series are 
stationary, there is co-integration. Given that OLS residuals have zero mean and we do not 
expect them to have deterministic trend. Therefore, both the intercept term and time trend are 
excluded in testing the residual series for stationarity.  
 
Multivariate Case of Co-integration Test: 
             Johansen’s Maximum Likelihood [JML] Approach  

 The Johansen’s Maximum Likelihood technique is a multivariate test for co-integration. 
This entails testing for co-integration between two or more variables. In essence, there 
could be more than one linear combinations that is stationary and hence, more than one 
co-integrating vector.  

 

 In the Johansen’s procedure, a test for the optimal leg length of the related vector auto-
regression [VAR] has to be conducted. This is often necessitated because the JML is 
preceded by an estimation of a VAR model which in all respect should acquire the 
appropriate lag length. Indeed, the Johannes’s co-integration test is highly sensitive to 
the appropriate lag length. In this regard, the AIC, FPE, LR, SIC, and HQ are often 
utilized in selecting the appropriate lag length. In most cases, the lag order supported by 
more of the five criteria for each equation is chosen as the appropriate lag length.  

 
To save degrees of freedom, the highest lag in the testing down process of the lag length test is 
in most cases taken.  
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Error Correction Modelling and Estimation 

 According to the Engle-Granger (1987) theorem, the short-run adjustment dynamics can 
be usefully described by the error correction model. This requires using the one-period 
lagged residual to correct for deviations of actual values from the long-run equilibrium 
values. The procedure is to use the residual series generated in the OLS regression that 
was used to test for stationarity to further reparametrize the dynamic short-run 
specification.  

 
Over-parameterized ECM 
An over-parameterized ECM model in log is often of the form:  

    
 

The  is one period lagged value of the error term,  is the adjustment coefficient which 

gives the percentage of disequilibrium between the long-run and the short-run values that is 
corrected for in a period, say in a year, a month etc.  
 
Usefulness of the Error Correction Coefficient  

 The error correction coefficient integrates both the short-run and the long-run dynamics 
thereby taking into cognizance the information lost during the time of differencing the 
variables. This is the Box-Jekins’ methodology.  

 The error correction coefficient has the advantage of a linear feed-back between the 
conditional mean and the conditional variance of changes in policy variables. Accordingly, 
it allows for the possibility of dynamic adjustment transmitted through the one-period 
lagged error term to the next period. 

 

ASSIGNMENT 

Explain Johansen’s Maximum Likelihood [JML] Approach for testing for co-integration 

 

CONCLUSION 

The Engle-Granger (1987) representation theorem formally established the theoretical basis for 

error correction modelling. 
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