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To the memory of my father.



Preface

Analytic inequalities are widely acknowledged as one of the major driving forces behind the
development of various branches of mathematics and many applied sciences. The study of
inequalities has increased enormously over recent decades as it has been demonstrated that
they have applications in many diverse fields of mathematics. There exists, for example,
a very rich literature related to the Ceby§ev, Griiss, Trapezoid, Ostrowski, Hadamard and
Jensen inequalities. This monograph is an attempt to organize recent progress related to
these in the hope that it will further broaden developments and the scope of applications. It
does not intend to be comprehensive, but rather it is meant to be a representative overview

of the recent research related to the fundamental inequalities noted above.

A large part of the material included in the book can only be found in the research literature
although it should be understandable to any reader with a reasonable background in real
analysis and its related areas. It will be a valuable source of reference in the field for a long
time to come. All results are presented in an elementary way and it could also serve as a

textbook for an advanced graduate course.

The author is grateful to Professor Jan van Mill and Arjen Sevenster for the opportunity to
publish this book and their invaluable professional cooperation for the work reported here.
I am also indebted to the editorial and production staff of the publisher for the care they
have taken with this book. I would like to thank my family members for providing their

strong support and constant encouragement during the writing of this monograph.

B.G. Pachpatte
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Publisher’s Note

Unfortunately the author passed away during the last phase of the manuscript preparation

and was therefore unable to see the final realization of this topical and interesting work.
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Introduction

Mathematical inequalities have played an important role since the time of A.L. Cauchy, P.L.
Cebysev, C.F. Gauss and many others in establishing the foundations for methods of ap-
proximation. Around the end of the nineteenth and the beginning of the twentieth century,
numerous inequalities were investigated and used in almost all branches of mathematics
as well in other areas of science and engineering. The pioneering work Inequalities by
Hardy, Littlewood and Polya [68] appeared in 1934, transformed the field of inequalities
from a collection of isolated formulas into a systematic discipline. This work presents fun-
damental ideas, results and techniques and it has had much influence on research in various
branches of analysis. Since 1934, a considerable variety of inequalities have been proposed
and studied in the literature. Excellent surveys of the work done up to the years of their
publications, together with many references can be found in the books by Beckenbach and
Bellman [10] and Mitrinovi¢ [78]. These three major books serve as mere stepping-stones

to the recent vast literature in the subject.

The study of various types of inequalities has been the focus of great attention for well
over a century by many researchers, interested both in theory and applications. Various
approaches are developed by different researchers for handling a variety of analytic in-
equalities. There are several classical and notable books that introduce new researchers to
the basic results, methods and applications and at the same time, serve the dual purpose of

textbooks for graduate students in many different fields of mathematics.

Over the past two decades or so, the field of inequalities has undergone explosive growth.
Concerning numerous analytic inequalities, in particular a great many research papers have
been written related to the inequalities associated to the names of CebySev, Griiss, Trape-
zoid, Ostrowski, Hadamard and Jensen. A number of surveys and monographs published

during the past few years described much of the progress. However, these expositions are
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still far from being a complete picture of this fast developing field. The literature related to
the above mentioned inequalities is now very extensive, it is scattered in various journals
encompassing different subject areas. There is thus an urgent need for a book that brings
readers to the forefront of current research in this prosperous field. The rapid development
of this area and the variety of applications drawn from various fields motivated and inspired

us to write the present monograph.

The subject of inequalities being so vast, most recent books on this subject cover only a
certain class of inequalities and either try to be encyclopedic within that class or bring the
rapidly expanding field of inequalities up-to-date in some area. The present monograph
is an attempt to provide its readers with a representative overview related to the above
noted inequalities and it is not the intention to attempt to survey this voluminous literature.
We mostly focus on certain advances, particularly not covered in the recent surveys and
monographs. Below, we briefly summarize some fundamental inequalities, which grately
stimulated the present work. By doing this, we hope to help the reader to prepare for more

recent results that will be considered in subsequent chapters.

One of the many fundamental mathematical discoveries of P.L. Cebysev [13] is the follow-
ing classical integral inequality:
1
T(£:8) < 5 b=/ =]l M
where f, g: [a,b] — R are absolutely continuous functions, with first derivatives of which,

f', g’ are bounded and

1) = s [ 10— (5 [ rwar) (51 [Newar). @

provided the involved integrals in (2) exist. The representation (2) is known in the literature

as the Cebysev functional. The inequality (1) which first appeared in 1882 is now known
in the literature as Ceby3ev’s inequality. Over the years, this inequality has evoked the
interest of numerous researchers and a large number of results related to the inequality (1)

have been published, see [79,144] and the references given therein.

In 1935, G. Griiss [61] proved an interesting integral inequality that gives an estimate of
the difference between the integral of the product of two functions and the product of their
integrals, as follows:
1
T(f,8) < (@ 9)(T ), ®

where f, g [a,b] — R are integrable on [a,b] and satisfy the condition

¢<flx) <P, y<gl)<T,
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for each x € [a,b], where ¢, @, v, T are given real constants and 7'(f,g) is given by (2). For
a simple proof of (3) as well as some other integral and discrete inequalities of the Griiss

type, see the book [79] by Mitrinovi¢, Pecari¢ and Fink.

The following inequality is well known in the literature as the Trapezoid inequality:
b b—a 1

[ 1@dx= 2221 @ + £ B))| < 150 -@Pl1f o )
a

where the mapping f : [a,b] — R is assumed to be twice differentiable on the interval (a,b),

with the second derivative bounded on (a,b), that is,
£l = sup |f"(x)] <oo.
x€(a,b)
The inequality (4) has received a considerable attention and many results related to this
inequality have appeared in the literature. A detailed discussion related to the inequality

(4) can be found in a recent paper [17] by Cerone and Dragomir, see also [3,58,140].

Now if we assume that [, : a =xp < x; < -++ < x,—1 < X, = b is a partition of the interval
[a,b] and the function f is as above, then we can approximate the integral | f f(x)dx by the

trapezoidal quadrature formula A7 (f,1,), having an error given by Rr(f,1,), where

Ar(f.1n) = ;:t;[f(xi)+f(xi+1)]hi7 Q)

and the remainder satisfies the estimation )
Ry (f,1)] < lelf”lm}:i;h?, ©)
with h; = x;41 —x; fori=0,1,...,n— 1. Expression (5; is known as the trapezoidal rule, if

n =1, and as the composite trapezoidal rule for n > 1. The trapezoidal rule is widely used
in practice since it is easy to implement in an efficient fashion, especially if the partitioning

is done in a uniform manner.
In 1938, A.M. Ostrowski [81] proved the following useful inequality (see also [80]).
Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) with derivative f’ :

(a,b) — R being bounded on (a,b), that is, || f"||e = Sup,c (4 | f'(x)| < oo. Then

_ ath)?
< l1+(2)} (b=a)|lf' [l O

‘f(X)— o [rwa < |5 =

for all x € [a,b].

The inequality (7) gives an upper bound for the approximation of the integral average

1 b
bfa/a f(o)dt
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by the value f(x) at the point x € [a,b]. In the last decade a great number of important
results on this topic have been appeared in the literature. An excellent survey of the work
on Ostrowski type inequalities together with many references are contained in the recent

book [50] edited by Dragomir and Rassias.

Among numerous inequalities involving convex functions, the following inequality (see
[45,108]):

b
f(a;rb> < ﬁ/a flx)dx < 7f(a)—;f(b)7 ®

which holds for all convex functions f : [a,b] — R is known in the literature as Hadamard’s
inequality. The inequality (8) is remarkable in terms of its simplicity, the large number of
results to which it leads, and the variety of applications which can be related to it. Due to
its importance in various applications, this result has attracted a great deal of attention over

the years and a number of papers related to it have appeared in the literature.

The following inequality is well known in the literature as Jensen’s inequality (see
[78,108,144]):

1 & 1 &
I <&;Pixi> < E;Pif(xi)v 9

where f: X — R be a convex mapping defined on the linear space X and x; € X, p; > 0
(i=1,...,n)withP, =Y"  p;i>0.

There are many well known inequalities which are particular cases of inequality (9), such
as the weighted Arithmetic mean-Geometric mean-Harmonic mean inequality, the Ky-Fan
inequality, the Holder inequality etc. For a comprehensive list of recent results on Jensen’s

inequality, see the book [108] where further references are also given.

A large number of results related to the above inequalities have recently appeared in the
literature. Indeed, a particular feature that makes these inequalities so fascinating arises
from the numerous fields of applications. The literature related to the above inequalities is
vast and rapidly growing vaster. The part of this growth is due to the fact that the subject is
genuinely rich and lends itself to many different approaches and applications. Some of the
results, recently discovered in the literature provide simple and elegant extensions, general-

izations and variants of the above inequalities and thus have a wider scope of applicability.

Taking into account the great variety of results related to the above inequalities, the choice
of material for a book is a difficult task. The selection of the material is largely influenced

with a view to provide basic tools for researchers working in mathematical analysis and
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applications. The material it presents is new and never appeared in the book form before,

and will be a valuable source to both experts and non-experts in the field.
A brief description of the organization of the book is as follows.

The work is arranged in five chapters and references. Chapters 1 and 2 presents a large
number of new basic results related to Griiss, Cebysev, Trapezoid type inequalities involv-
ing functions of one and many independent variables investigated by various researchers.
These results offers a representative overview of the major recent advances in the field as
well as the diversity of the subject. Chapters 3 and 4 are devoted to present most recent
results on Ostrowski type inequalities involving functions of one and several independent
variables. These results reflect some of the major recent advances in the field. Chapter 5
contains some basic inequalities involving convex functions investigated by various re-
searchers during the past few years. We hope that these results will provide new directions
of thinking besides extremely important inequalities due to Hadamard and Jensen. Each
chapter contains sections on applications and miscellaneous inequalities for further study
and notes on bibliographies. A list of references does not include titles related to the top-
ics, which we have not covered in this book. Without any intention of being complete, here

only those references used in the text are given.

Throughout, we let R, C, Z and N denote the set of real, complex, integers and natural
numbers respectively. Let Ry = [0,), [a,b] C R (a < b), Ng = {0,1,2,...}, Ny g =
{o,o0+1,...,a+n=B}forneN, o, B € Ny. The derivatives of a function u(t), t € R
are denoted by u!) (r) for i = 1,... n. The function u : [a,b] — R is said to be bounded on
[a,b], if ||u|l = sup |u(x)| < ce. The notation, definitions and symbols used in the text are
standard or othe;\f&/[fé? explained.

The book is largely self-contained. It thus should be useful for those who are interested in
learning or applying inequalities in their studies regardless of their specific subject focus.
It will be an invaluable reading for mathematicians, physicists and engineers and also for
graduate students, scientists and scholars wishing to keep abreast of this important area
of research. Most of the inequalities included in the book are recent innovations and it is

hoped that they will provide motivation for future research work.



Chapter 1

Griiss-and (v?ebyéev-type inequalities

1.1 Introduction

In 1882, P.L. Cebysev [13] proved the remarkable inequality given in (1). In a celebrated
paper of 1935, G. Griiss [61] proved the well-known inequality given in (3). Applications
of these inequalities have been found in statistics, coding theory, numerical analysis and
various other branches of mathematics. Over the years, a multitude of papers related to the
classical inequalities (1) and (3) have been published, see the books by Mitrinovié, Pecaric¢
and Fink [79] and Pecari¢, Pochan and Tong [144], where further references are also given.
In the past few years, an enormous amount of attention has been given to these inequalities
and numerous generalizations, extensions and variants have appeared in the literature. The
main goal of this chapter is to present a number of new and basic inequalities related to (1)
and (3) involving functions of one independent variables, recently investigated by various

researchers. Applications of some of the inequalities are also given.

1.2 Griiss-type inequalities

In this section we present some Griiss-type inequalities established by different investiga-
tors in [34,72,96,105]. In what follows we shall make use of the notation set to define
Cebysev functional T'(f,g) in (2).

We start with the following Griiss-type inequality proved by Matié, Pecari¢ and Ujevic in
[72].

Theorem 1.2.1. Let f, g: [a,b] — R be two integrable functions and y < g(x) < T, for
all x € [a,b], where ¥, T" € R are constants. Then

T(.8) < 5O~ VT 7). (12.1)
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Proof. By direct computation it is easy to observe that the following Korkine’s identity
holds (see [79, p. 242]):

b b
10) = 5mar | ) 0= F6)e(0) = 0. (122)
From (1.2.2) we observe that
2
T(f.f)= / f dx—(/ f(x)dx) . (1.2.3)

Furthermore, by using the Cauchy-Schwarz integral inequality, it is easy to observe that
T(f,f) = 0. Similarly, T(g,g) > 0. From (1.2.2) and using Cauchy-Schwarz integral in-

equality for double integrals, we have

e = WAC OO g(s))drds}z

Asgian [ [0 -soyaash{ 5ot [ [0 - gt aras)}

=T(f,f)T(g:g)- (1.2.4)

It is easy to observe that the following identity also holds:

T(ee) = (1= 50 [ swar) (52 [ etar—)

b
5 | =g (st~ Pa. (123)

Using the fact that (I'— g(x))(g(x) —7) = 0 in (1.2.5) and then the elementary inequality

J\2
cdé(Cer ) ;o ¢, deR,

we observe that

T(g,8) < (F— bia/ubg(x)dx) <bia/abg(x)dx—y> < <1“2—y)2 (12.6)

The required inequality in (1.2.1) follows from (1.2.4) and (1.2.6). The proof is complete.

Remark 1.2.1. We note that the inequality (1.2.1) is called a premature Griiss inequality
(see [72]). The term premature is used to denote the fact that the result is obtained from
not completing the proof of the Griiss inequality if one of the functions is known explicitly.
In [72], it is observed that (1.2.1) provides a sharper bound than the Griiss inequality (3).
The following Theorem deals with a Griiss-type inequality proved by Dragomir and McAn-

drew in [34], which can be used in certain applications.
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Theorem 1.2.2. Let f, g: [a,b] — R be two integrable functions. Then

el < [ (1051 [ ro)

X (g(X) - bia/abg(y)dy>

The inequality (1.2.7) is sharp.

dx. (1.2.7)

Proof. First we observe that

bia /ab (f(x) - bla/abf(y)dy> (g(x) — bla/abg(y)dy) dx

a

10y [ sas Mo [ ety as

= [ rwswar g [ stoar - [

— ot [ resan (1 [ ras) (55 [ stwar)
~T(f.g). (1.2.8)

From (1.2.8) and using the properties of modulus, we have

Tl [ (0= 52 [ o) x (s 5 [ eiay)

and the inequality in (1.2.7) is proved.

Choosing f(x) = g(x) = sgn (x— "—erb) , the equality is satisfied in (1.2.7).

dx,

In [96], Pachpatte proved the following Griiss-type inequality, which bounds T'(f,g) in

terms of integral involving inherent functions and their derivatives.

Theorem 1.2.3. Let f, g: [a,b] — R be continuous on [a,b] and differentiable on (a,b)
with derivatives f’, g’ : (a,b) — R being bounded on (a,b). Then

1 b y /
IT(f,8)| < m/a 8@ lloe + [£ )18 llo] E (x)dlx, (1.2.9)
where
2
E(x)—l(ba)2+<xa;rb> 7 (1.2.10)

for x € [a,b].
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Proof. Define the mapping

(0,1) = t—a ifr € [a,x] 1211
PREU=0 2 if 7 € (x,b] -

Integrating by parts, we have

/abp(x,t)f'(t)dt /(t— dt+/ (t—b)
o —/ 1)dt+(1—b } —/hf(t)dt

b
= (= a)f W)+ (=00~ [

=0y - [ s

From this, we obtain

fx) -

1 b 1 b
b—a./a fle)dr = m/a p(x,1)f(r)dr, (1.2.12)

for (x,t) € [a,b]*. The representation (1.2.12) is known as Montgomery’s identity (see
[50,80]). Similarly, we obtain

1P 1
8= 5— [ s(ar = s— ["plx.og @), (12.13)

for (x,t) € [a,b]*. Multiplying both sides of (1.2.12) and (1.2.13) by g(x) and f(x) respec-

tively, adding and then integrating the resulting identity with respect to x from a to b, we

2 [ ssoar= 2 ([ rwa) ([ st )
1

A /a.h [g(x) /abp(x,t)f/(t)dt—i-f(x) /a,bp(x,t)g’(t)dt} dx. (1.2.14)

From (1.2.14) and using the properties of modulus, we observe that

s | [l [ ol ol 1701 [ ol 0l as

have

IT(f,8)] <

1 b
<), (1=l + 11l FoN ECe)a,

and the inequality (1.2.9) is proved.
Next, we give the following Griiss-type inequality established by Pachpatte in [105].
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Theorem 1.2.4. Let f, g, h: [a,b] — R be continuous functions on [a,b] and differen-
tiable on (a,b) with derivatives f’, g’, i’ : (a,b) — R being bounded on (a,b). Then

’b a/f g(x)h(x dx[(bia/abg(x)h(x)dx>

« (bia‘/abf(x)dx> + (b_lafabh(x)f(x)dx> (bia/abg(x)dx>
4 (bla/abf(x)g(x)dx) <bla/abh(x)dx)”

1 b / ,
<5507, T - + LAl -

H g 17]|e-] Ax)dx, (1.2.15)
where
2
L (o)
Ax) = {44— b—a) (b—a). (1.2.16)
Proof. From the hypotheses, for any x, y € [a,b], we have the following identities:
—fy) = / [ (t)dt, (1.2.17)
y
X
g(x) —g(y) = / g (t)dt, (1.2.18)
¥
h(x) = h(y) = / W (t)dt. (1.2.19)
y

Multiplying both sides of (1.2.17), (1.2.18) and (1.2.19) by g(x)A(x), h(x) f(x) and f(x)g(x)

respectively and adding the resulting identities, we have

3 (3)8)A() — [ () +h(a)F (05(0) + S (gAY
o) [ 70+ [

y

¢ (1) + F(x)g(x) /y W ()t (1.2.20)

Integrating both sides of (1.2.20) with respect to y over [, b] and rewriting, we have
1 b
P890~ 55 (6000 [ 1O)y-+ )0 [ sy + w)eta) [ ey

1

~ i [ [ [ Finar)
+h(x)f(x) /a ’ ( [ (t)dt> dy +f(x)g / ( / H( t)dt) dy} (1.2.21)
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Integrating both sides of (1.2.21) with respect to x from a to b and rewriting, we have

ﬁ /jf(X)g(x)h(X)dx—;Kbia / o) xW) < / o dy)
(b a/h )( 1 /g(y)dy>
N (bla/abf(x)g(x)dx> <bl_a/abh(y)dyﬂ
3(17(1/{ x)/ </f(tdt>dy
s /ab ( /yxg/(t)dt) dy 42 / ( / W (1) dt) dy} (12.22)

From (1.2.22) and using the properties of modulus, we have

ot o[ o) (52100
(s o) (5 L)
# (55 [ 1) (2 [ i) |

! /
<m/a {[Ig(th [ Nl + 1A £ )18 |

b
@ e@1IA] [ |xy|dy} dx. (1223)

It is easy to observe that

b _\2 )2
/Ix—yldy=(x ) er(b x), (1.2.24)

and

(x—a)2+(b—x)2_ 1 (x—‘”'b)
2—a) |3 —ap

Using (1.2.24) and (1.2.25) in (1.2.23), we get the required inequality in (1.2.15) and the

proof is complete.

} (b—a) = A(x). (1.2.25)
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Remark 1.2.2. 1In the special case, when A(x) = 1 and hence /'(x) = 0, it is easy to
observe that the inequality (1.2.15) reduces to

b
T80 < 5557 (8IS ot LA ] A, (1226)

We note that the bound obtained in (1.2.26) is the same as the bound in (1.2.9).
Another Griiss-type inequality established by Pachpatte in [96] is embodied in the follow-

ing theorem.

Theorem 1.2.5. Let f, g: [a,b] — R be continuous on [a,b] and twice differentiable on
(a,b), with second derivatives f”, ¢" : (a,b) — R being bounded on (a,b). Then

100 g [ (=57 ) e as

1 b
<sip=ar ). LIS It F@E"] Be)ax (1.227)

where

b
B0 = [ k(o)

for x € [a,b], in which

(t—ay if ¢ €a,x]
k(x,1) = (t_Zb)z (1.2.28)
— if te(x,b)
2
Proof. Integrating by parts, we have successively
b "X ( _
/ k(e 1) £ (1)di = / F(0)di+ / E=B onyar
_a)? X x
P | [earwa G0l - /xb(t—b)f'(t)dt
(=), (-2, b |
=S W |-l —/f(t | =5 p )= =)0~ [rwar

X b
(=0 = (b=0?) ')~ (=) f W+ [ O+ =b)s )+ [ ey

— -0 (= 22) - 6-as+ [ o
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from which, we get the integral identity

b
fo =5 a/f ‘”*( ;b>f )*ﬁ/ﬂ k(x,0) " (t)de,  (1.2.29)

for x € [a,b]. Similarly

gx) = bi / 2(t)dt + (x— ;b> 2() —ﬁ / Ckng(Odr, (1.230)

for x € [a,b]. Multiplying both sides of (1.2.29) and (1.2.30) by g(x) and f(x) respectively,

adding and then integrating the resulting identity with respect to x from a to b and rewriting,

ﬁ/abf(x)g(x)dx: % Kbia/jf(t)dt) (bia/abg(x)dx>
# (5 [ (5 [ 1) |+ s [ (- 452 s s
s [ e [ ks Oarer [ kg war]

1) -3 || (=427 ) (e s

_ﬁ / ' [g(X) / bk(x’t)f”(t)dﬂrf(x) / bk(x,t)g”(t)dt} dx. (1.2.31)

From (1.2.31) and using the properties of modulus, we have
1 b a+b ,
T - — d
’ (f:8) 2(bfa)/a (x > )(fg) (x)dx
1

b b b
<sgmar |, L[ Wl @i+ 10 [ ol 0l ax

we have

i.e.,

1 b
< st | DI e+ 1] B

and the inequality (1.2.27) is proved.
13 éeby§ev-type inequalities

In this section we offer some Ceby3ev-type inequalities established in [42,72,112,113]. We
shall make use of the notation set to define Ceby3ev functional T(f,g)in (2).

In [72], Mati¢, Pecari¢ and Ujevi¢ proved the following Ceby3ev-type inequality.
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Theorem 1.3.1. Let f, g:[a,b] — R be two absolutely continuous functions on [a,b].
Let f': [a,b] — R belong to Le|a,b]. Then

(9l < 21 v TGa), (ER

Proof. For the functions f, g the Korkine’s identity (1.2.2) holds. Following the proof of
Theorem 1.2.1, we get (1.2.4). For any s, ¢ € [a,b], we have

£6)— £(s) /f

Using this fact in (1.2.2), we observe that
/ / f(s))*drds

T = 55 a)z
i (/ f’(é)dé)zdtds

<somm | [ (f f’(é)ld§>2dtds
< sl [ [ s

b a
_ e, (132
Using (1.3.2) in (1.2.4), we deduce the desired inequality in (1.3.1).

- 2(b —a)?

Remark 1.3.1. From the identity (1.2.2), it is easy to observe that

o) = s [ 20 (5 s

and using this, (1.3.1) can be written as

\[”f M [ /bgz(t)dt— <bla/ahg(t)dt>2]2. (1.3.3)

As noted in [72], the inequality (1.3.1) (or (1.3.3)) is called the pre—éehy§ev inequality.

T(f,8)l <

A natural generalization of the Cebyéev inequality (1) established by Dragomir in [42] is

given in the following theorem.

Theorem 1.3.2. Let f, g: [a,b] — R be two Lipschitzian functions with constants L; > 0
and L, >0, i.e.

If(x) = fO) < Lilx—y|, |gx)—g()| < Lalx—yl, (1.3.4)

forall x, y € [a,b]. Then
L1L2

T(f.8)l <

The constant 1—12 is the best possible.

7 (b—a). (13.5)
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Proof. From (1.3.4), we have

(%) = F()(g(x) = )] < LiLa(x = y)?, (13.6)

for all x, y € [a,b]. For the functions f, g the following Korkine’s identity holds:
1) = s [ [ 0= 10D et~ gty .3
From (1.3.7) and (1.3.6), we have
TG < stars [ 106070 60) — o)l
1
< W/a /a LlLZ(X*)’)ZdXdy
~820p-ap,

and the inequality (1.3.5) is proved. Now, if we choose f(x) = Lx, g(x) = Lyx, then f
is Lj-Lipschitzian, g is Lp-Lipschitzian and the equality in (1.3.5) holds. The proof is

complete.

Remark 1.3.2. We note that, if f, g: [a,b] — R are two differentiable functions with
derivatives of which are bounded on (a,b), then we get the Ceby3ev inequality (1). For an
interesting discussion to show that sometimes the estimation on 7'(f,g) given by the Griiss
inequality (3) is better than the estimation on T(f,g) given by the Cebysev inequality
obtained in (1) and sometimes the other way around, see [42].

In [113], Pachpatte has established the following inequality similar to that of Cebygev in
(.

Theorem 1.3.3. Let f, g: [a,h] — R be absolutely continuous functions with derivatives
1, & € Lyla,b], g > 1, then

TG0 < sl kel | (B P (138)

(b—

where

B(x) = [(x—a)* + (b—x)"t"], (1.3.9)

for x € [a,b] and 5-1—%: 1.



Griiss-and Ceby§ev—type inequalities 17

Proof. As in the proof of Theorem 1.2.3, we have the following identities:

1 b 1 b )
Flx) - b—a/u f{)dr = ﬂ/u plx,t)f(t)dt, (1.3.10)
1 b 1 b /
gb) - b—a/a gr)dr = m/ﬂ pla.n)g (t)dr, (13.11)

for x € [a,b], where p(x,t) is given by (1.2.11). Multiplying the left hand sides and right
hand sides of (1.3.10) and (1.3.11), we have

10960~ 1) (52 [ stoar) —st0) (5 [ )
+ (blafabf(t)dt) (bla/abg(t)dt>

_ ﬁ (/abp(x,t)f/(t)dt) (/abp(x,t)g’@)d;) . (1.3.12)

Integrating both sides of (1.3.12) with respect to x from a to b and dividing both sides of
the resulting identity by (b — a), we get

T(f.q) = (b_la)gfb (/(lbp(x,t)f/(t)dt) (/ﬂbp(x,t)g/(t)dt) de.  (13.13)

From (1.3.13) and using the properties of modulus and Hdolder’s integral inequality, we

Tl g [ ([ eoiiroi) ([ ol ol as
<o/ ({/a"]|p<x7r>’dr}1 {/f|f’<t>|th};)
x ({ / b|p<x,t)|’dr}l { b|g'<r>"dr}}’> dx

2

1
1 ! / b b r ’
= G Ll | ({ [ wteorar ) d. (13,149

A simple calculation shows that
b X b
/ |p(,)|dt = / " —a\’dt—i—/ i —bl'dt
a a X

- /x(t—a)’dt—i-/b(b—t)’dt
(x—a) ' 4+ (b—x)*!

- — = B(x). (13.15)

Using (1.3.15) in (1.3.14), we get (1.3.8). The proof is complete.
In the proofs of the following Theorems we need the trapezoidal like representation formu-

las proved in [36] and [9].

have
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Lemma 1.3.1 (see [36]). Let f: [a,b] — R be an absolutely continuous function on [a, b],
then we have the identity

f(a)‘;f(b)_bia/abf(x) b e // )] (x — y)dxdy.

Proof. We have successively

/ / V)] (x = y)dxdy = / / bef' (x) 3 (v) = xf'(v) = yf' (x)]dxdy

-2 ' / " lef () = xf' () dxdy = 2 / ' / " of ()dxdy 2 / ' / "o (0)dxdy

—2(ba){ (b) —af(a) /f dx] b* —a®) [f(b) - f(a)]

b
= (b=aPlf(@) + /()] =20 =a) | f(x)dx

Dividing both sides by 2(b — a)? yields the required result.

Lemma 1.3.2 (see [9]). Let f : [a,b] — R be a differentiable function so that f” is abso-

lutely continuous on [a,b], then we have the identity

[ a2ty s+ L
. %/ab(x—a)(b—x){[f’;a,b]—f”(x)}dx, (13.16)
where
f'(b) = f'(a)

[flLﬂvb]:Wa

is the divided difference.

Proof. By applying the integration by parts formula twice, we have (see [9])

b b—a I
/af(x)dxf 5 [f(a)+f(b)]:f§ ; (x—a)(b—x)f"(x)dx. (1.3.17)

On the other hand, by the simple identity:

bia /abh(x)g(x)dx—bia /abh(x)dxbia /abg(x)dx

— o [ [e - 5 [ etray] (13.18)

we may state that

/ab(x—a)(b—x)f"(x)dx—/b( a)(b—x)dx

a

/ 1 (x)dx
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= [ a0 [1"0) - 0]

which is clearly equivalent to

[ a0 wa =" [0) - )

b
+ / (x—a)(b—x) [f"(x) - [f:a,b]] dx. (1.3.19)
Combining (1.3.17) with (1.3.19), we deduce (1.3.16).

We use the following notation to simplify the details of presentation. For suitable functions
f, g:a,b] — R, we set

L(f;a,b) = bﬁ // £(5))(t — s)deds,
! /1, l /!
N(f',f";a,b) = 2(b%l)/a (t—a)(b—1){[f"sa,b) = f" (1) } dt,
1 / ‘ 1 1o
PUf.g) =FG— F/g(t)dt+G/f(t)dt 4 b_a/f(t)dt — [star |,
| b b | b | b
S(/,8) =FG———{F /g(z)dr+6 /f(t)dt | — /f(t)dt — [swar |,
in which
fla)+f(b) g(a)+5(b)
=800, ¢ 8478,
=_fla+fb) (B-a)?
F= 2 - 12 [f’a7b]7
~_gla)+gb) (b—a) .,
G="" T [ghehl
and define

= ([ 170P) <o

1fllee = sup [f(2)] <o

t€la,b)

The following two Theorems established by Pachpatte in [112] deal with CebySev-type

integral inequalities involving functions and their derivatives.
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Theorem 1.3.4. Let f, g: [a,b] — R be absolutely continuous functions on [a,b] with
flv gl € LZ[avb]7 then

1 1
proi< (it x| ;1118 - (giad)?] - 0320
Proof. From the hypotheses, by Lemma 1.3.1 we have the following identities:
_bia/abf(t)dtzL(f;a,b), (13.21)
1 b
G- bf/ g(t)dt = L(g:a,b). (13.22)
Multiplying the left hand sides and right hand sides of (1.3.21) and (1.3.22), we get
P(f,8) = L(f:a,b)L(g:a,b). (1323)
From (1.3.23), we have
\P(f,8)| = |L(f:a,b)||L(g;a,b)]. (1.3.24)

Using Schwarz inequality for double integrals, we have

L)l < 55— G)Z/ /; )t —s)|dids

Nl—

b b
< ﬁ//(f’(t)—f’(s)ydtds X W//(I—S)thds (1325

By simple computation, we have

2
2(b— a)Z// — f/(s))?dtds = —/(f (1))%dr — bia/bf/(,)dt 7

(1.3.26)
and
N2
b 7 / / s)2dtds = (b 12“). (13.27)
Using (1.3.26), (1.3.27) in (1.3.25), we have
1
b a . 2 2
Lrab) < 2f [ B (sl (1328
Similarly, we obtain
b )12
Lga)] < 2 | - (wadl?] (1329

Using (1.3.28) and (1.3.29) in (1.3.24), we get the desired inequality in (1.3.20).
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Theorem 1.3.5. Let f, g: [a,b] — R be differentiable functions so that f’, g’ are abso-

lutely continuous on [a, b], then

IS(f,8)| < (bay 14 ||f” fha,b)|.||" = [¢':a.b] .. (1.3.30)
Proof. From the hypotheses, by Lemma 1.3.2, we have the following identities:
1 b —
— [ f0dt-F=N('.f"a.b), (13.31)
—al,
1 b al ./
—/ g(t)dt—G=N(g',g";a,b). (1.3.32)
b —da Ja
Multiplying the left sides and right sides of (1.3.31) and (1.3.32), we get
S(f.8) =N(f",f"a.b)N(g'.8":a,b). (1.3.33)
From (1.3.33) we have
IS(f,g)| = IN(f',f";a,b)||N(g',&";a,b)|. (1.3.34)

By simple calculation, we have

N 5a0)] < ﬁ [ a0l - 70

X

" —1f awa/ t—a)(b—t)dt

:( Hf” fha,bl|.- (1.335)

Similarly, we obtain

(b

IN(g',g";a,b)| <

Using (1.3.35) and (1.3.36) in (1.3.34), we get the required inequality in (1.3.30).

Hg —[¢"sa,b]||... (1.3.36)

1.4 Inequalities of the Griiss- and éebyéev-type

In this section we present some recent inequalities of the Griiss-and Ceby3ev-type estab-
lished by Pachpatte [106,111,117,127].

For suitable functions z, f, g:[a,b] — R and w: [a,b] — [0, ) an integrable function such
that | Lf’ w(x)dx > 0, we use the following notation to simplify the details of presentation:

z(a)+z(b)
2

4.9 = [ lepir]+ rplseallar—2 ( [ ra ) ([ stoa ).

D[z(x)] = {z(x)(l —A)+ /1] (b—a), Ae€l0,1],
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b
B(f.8) = | DUIDIg()dx

g (EOIEERORVEEDIVE R
o (/ rioir) (] so).
6t~ [ rstwrtr— s [ ([ star) ([ setoran)
([ )(/ )]

(s = [ 1o ([Csrwa) ([ setoar ).

10ns.0) = [ wsetae- ([ wesoar) ([Mwmetma).

St .0 = [ bW(X)f(X)g(X)dx—W (/ bW(X)f(X)dX) (/ bw(x)g(x)dx) ,

and define [|z[|eo = sup; ¢ ) [2(t)[ < oo.
The following Theorem deals with the inequalities established in [117].

Theorem 1.4.1. Let f, g: [a,b] — R be continuous functions on [a, b], differentiable on
(a,b) and with derivatives f, ¢’ : (a,b) — R bounded on (a,b), then

b
A< [ 8@+ 17 @I -] e, (140
and
b 2
BU Il | o), (142
where
b b\
a(x)_%[ LA ( "; ) , (14.3)

fora+A%54 <x<b—-2A%% A €[0,1].
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Proof. Define the mapping
b—
t—la+ A 2a , 1€ a,x]
px,t) = b—u (1.4.4)
r—|b—2 5| 1€ (x,b]

for A € [0, 1]. Integrating by parts, we have

/{;bﬁ(x7t)f/(,)d¢:/ax <t— {a+kb2abf'(t)dt+/xb (z— [b—?tbzan/(f)d’

- [ -2+ L o) [

i.e.,

b b
DU~ [ 0 = ["plxos war (145)
Similarly, we have
b b
Dlg(x)] - / glt)di = / Bx,0)g (1)dr. (1.4.6)

Multiplying both sides of (1.4.5) and (1.4.6) by g(x) and f(x) respectively and adding the

resulting identities, we have

b b
gWDLA(W)]+F(WDlgo)] ~ ) [ 01— 1) [ glo)a

Ja

b b
= o) [ Pl O+ 709 [ g (. (147
Integrating both sides of (1.4.7) with respect to x from a to b, we have
b b , b .
a9 = [ s [ penroaese [ peogoala ass)

Using the properties of modulus, from (1.4.8), we have

el < [ lel [ peolr ol 70 [ ol ol) i

b , , b
< [t +rlig ] [ peoatbas s
On the other hand,
b—a b b—a
t—<a+/12> dt+/x t—(b—)t 3 )

[ ptniac= [
/pr\t—q|dt:/pq(q—t)dt-i-/qr(t—q)dt

dr.  (1.4.10)

Now, we observe that
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Z;[(q—p)er(r—CI)z}Zi(P_’)2+("_r?!))2’ (4t

for all r, p, g such that p < ¢ < r. Using (1.4.11), we have that

/: r— <a+lb2a> dt:l(x—a)z-i- [(a+)tb

4 2
b b—a
/x t—(b—k 5 )

a f—
2
1 2 b—a x+b
dt—Z(b—x) —i—Kb—k 5 )— 7
2

2

2
) “H], (14.12)
] . (1.4.13)

Using (1.4.12), (1.4.13) in (1.4.10) we get
b 2 )2 _ _ _ .\ 2
/\ﬁ(x,t)ldt:%(x @) +(b=x) +</lb - a) +<b X b a)

2 2 2

—a)? a :
_(”4)[/12+(/11)2}+<x ;b> = a(x). (14.14)

Using (1.4.14) in (1.4.9), we get the required inequality in (1.4.1).
Multiplying the left hand sides and right hand sides of (1.4.5) and (1.4.6), we get

DI IDlso)] - Dleto)] | sl [ star ([ roar) ([ etoar)

= ([ ponrroar) ([ g ar). (1.4.15)

Integrating both sides of (1.4.15) from a to b, we have

B(f.g) = / ’ ( / ) f’(t)dt) ( / bp(x,t)g'(t)dt) dx. (1.4.16)

Using the properties of modulus, from (1.4.16), we get

b [ b 2
Bl <1l [ ([ pteolar) ax (1417)
a a
Using (1.4.14) in (1.4.17), we get the required inequality in (1.4.2). The proof is complete.

Remark 1.4.1. If we take A = 0 in Theorem 1.4.1, then by simple calculations,

b
7.1 < [ sl I+ 1ACONE ] 0n (0, (1418)
and
/ ! 1 b 2
T < Il gy [ 0B (e (14.19)
where )
111 x— &b
=3 4+((b2)2) ’
2
) = (6-af + (x- 52
for x € [a,b].

In proving the inequalities in the next theorem, established in [106], we make use of the
following variant of the well-known Lagrange’s mean value theorem given by Pompeiu in
[145].
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Lemma 1.4.1 (see [145]). For every real valued function f differentiable on an interval
[a,b] not containing 0 and for all pairs x| 7 x; in [a, b] there exists a point ¢ in (x,x2) such
that

x1f () —xaf(x1)

X1 —X2

= fle) —cf'(c).
For the proof of Pompeiu’s mean value theorem, we refer the interested readers to [57,147].

Theorem 1.4.2. Let f, g: [a,b] — R be continuous functions on [a,b] and differentiable

on (a,b) with [a,b] not containing 0, then

b b
1 X 1 X
< o / - - o / oo/ -
G < =171 [ Il |5 = g s+ el 176015 - g
(1.4.20)
and
H(f ) < IIf = 1f llllg — 1 Il M, (1.4.21)
where /(1) =t,t € [a,b] and
3 (a+b)?
M= (b—- l———-—"—]|. 1.4.22
(b—a) 4 a> +ab+ b? ( )

Proof. From the hypotheses, for x, ¢ € [a,b], t # x there exist points ¢ and d between x
and ¢ such that

tf(x) =xf(1) = [f(c) = cf (¢)](t —x), (1.4.23)
and
tg(x) —xg(r) = [g(d) — dg'(d)](t —x). (1.4.24)

Multiplying both sides of (1.4.23) and (1.4.24) by g(x) and f(x) respectively and adding

the resulting identities, we have

2t f(x)g(x) —xg(x) f (1) —xf (x)g(t)

— [£(c) — e (Ot —x)g() + [g(d) — dg' (@) —x)f(x).  (1425)

Integrating both sides of (1.4.25) with respect to # over [a,b], we have
b b
(8~ ) f(9gx) ~x9(x) | f(dt—xf () [ glopan

[

=10 —er @ 5 e x|
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2 2

g Fx) —xf(x)(b— a)} . (1.4.26)

g(d)—dg/(d)] {"

Now, integrating both sides of (1.4.26) with respect to x over [a,b], we have

=) [ st [ roar) ([ rewax) - ([ star) ([ srax)

br—d?

~ e {55 [ stas—6-a) [ xetoa

+lg(d) —dg'(d)] { ¥ 5 @ /abf(x)dx —(b—a) '/bxf(x)dx} . (1.4.27)

a

Rewriting (1.4.27), we have

G(f.8) = [f(c) — f'(c)] /abgoc){; x }dx

a+b
, b 1 X

o) —ag @] [ 1 {3 - 2 b (1428)

Using the properties of modulus, from (1.4.28), we have
, b 1 x , b 1 x
DI =1f - [ 1o |3 = =5 |dx+ g =18/l [ 10 |5 = | ax
and the inequality (1.4.20) is proved.
Multiplying the left hand sides and right hand sides of (1.4.23) and (1.4.24), we get
12 f(x)g(x) = (xf (x)) (18 (1)) — (xg () (1 (1)) + 27 f(1)g(r)
= [f(e) = cf(0)][g(d) — dg ()]t —x)?. (1.4.29)

Integrating both sides of (1.4.29) with respect to 7 over [a,b], we have
b —a
3

1080 27 [ 1501t —xgtw) [ 1y +2 [ et

3_ .3
—x(b* —a®) +x*(b —a)} . (1430

= [f(c) —cf'(c)][g(d) — dg'(d)] x {b

Now, integrating both sides of (1.4.30) with respect to x over [a,b], we have

2 [ swstan— ([ wrwa) ([ st
- (/dbxg(X)dx> (/ab tf(t)dt> e gaS /abf(t)g(t)df

=[f(e) —cf'(c)llg(d) —dg'(d)]
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x{b3_“ (b—a) — (b az)b2; @ +(b— a) i } (1.4.31)
Rewriting (1.4.31), we have
H(f,8)=1[f(c)—cf'(c)l[g(d) —dg'(d)M. (1.4.32)

Using the properties of modulus, from (1.4.32), we have

H(f ) < IIf = 1f llllg — 1 Il M,

which is the required inequality in (1.4.21). The proof is complete.

Let & : [a,b] — R be a differentiable function on [a,b] and /' : [a,b] — R be integrable on
[a,b]. Let w: [a,b] — [0,0) be some probability density function, that is, an integrable
function satisfying [”w(t)dr = 1 with W (t) = [ w(x)dx for 1 € [a,b], W(1) =0 fort < a
and W(t) = 1 for r > b. In the proof of the following Theorem given in [111] we use the

Pecari¢’s extension (see [142]) of Montgomery’s identity:

b b
h(x) = / w(t)h(1)di + / Pu(r, ) ()dt, (1.4.33)
a a
where P, (x,7) is the weighted Peano kernel defined by
W(t), t € la,
Py(x,1) = @) @, (1.4.34)
W(t)—1, 1€ (x,b

Identity (1.4.33) can be proved easily by considering | f P, (x,t)H (t)dr and integrating by
parts.

Theorem 1.4.3. Let f, g: [a,b] — R be differentiable functions on [a,b] with f/, ¢’ :
[a,b] — R integrable on [a,b]. Let w : [a,b] — [0,0) be an integrable function satisfying
j: w(t)dt =1 and W () be as defined above, then

IT(w,f,8)| < 2/ ) [ llew 4 1f ()11 l| =] E (), (1.4.35)
700,80 < 17l [ WO E (0, (1436)
where
b
E(x) = / Py (x, )|, (1.437)

for x € [a,b] and P, (x,?) is given by (1.4.34).
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Proof. From the hypotheses, the following identities hold:

b b
10 = [ worswars [ R, (1438)

and ab ‘
2(x) = / w(t)g(t)dt + / Py (x,0)g (t)dr. (1.4.39)
Multiplying both sides of (1.4.38) and (1.4.39) by w(x)g(x) and w(x)f(x), adding the re-

sulting identities and rewriting, we have

W Wg(x) = 5 e [ w0+ w0 [ vl

a

+% { / Py (x,t)f (t)dt +w(x / P, (x,1)g'( )dt} (1.4.40)

Integrating both 51des of (1.4. 40) with respect to x over [a, b] and rewriting, we have

T(w,f.8) / g(X)/P (x,0)f'(t)dt +w(x)f(x) /P (x,0)g (t)dr | dx. (1.4.41)

From (1.4.41) and usmg the properties of modulus, we have

700 1.)] < 2/ 0lglx |/|P<xr||f(>\dr+w \fX)I/IthIIg()\dt dx

<3 [ ) [ e+ 700 ] o,
and the inequality (1.4.35) is proved.

From (1.4.38) and (1.4.39), we observe that

(100 - [ wiorstar) (s~ [ wietrar)
| — (/jpw(x,z)f’(z)dt) (/b Pu(x,0)g (1 )d;)

7090~ 1) [ wioyan o [ wsoars ( [Nwrswar) ([ woeoa)

= </abPW(x,t)f'(t)dt> </abPW(x,t)g/(t)dt> . (1.4.42)

Multiplying both sides of (1.4.42) by w(x), integrating the resulting identity with respect to

x over [a,b] and usmg [P w(x)dx = 1,, we have

T(w, f,g) = / e < / Pu(xt)f’ (t)dt> x ( / bPW(x,t)g’(t)dt> dx.  (1443)

From (1.4.43) and using the properties of modulus, we have

g0l < [ v ([ IBeollr o)< ([ 1ol o) a

b
<l [ Wl B @),
which is the required inequality in (1.4.36). The proof is complete.
We end this section with the following Theorem which deals with the inequalities proved
in [127].



Griiss-and Ceby§ev—type inequalities 29

Theorem 1.4.4. Let f, g, h: [a,b] — R be continuous functions on [a,b] and differen-
tiable on (a,b) and w : [a,b] — [0, ) be an integrable function such that | f w(x)dx > 0. If
h'(t) # 0 for each t € (a,b), then

1 / /
sons.0) < 3 1Sl [ 4] +isonrm|S) [ aasn
b 2
/ ¢ b ) (fa w(x)h(x)dx)

Proof. Letx, y € [a,b] with y # x. Applying Cauchy’s mean value theorem, there exist
points ¢ and d between y and x such that (see [146])

709~ 10) = J5 h(x) ) (1446
)~ ) = S0 ). (1447

Multiplying both sides of (1.4.46) and (1.4.47) by g(x) and f(x) respectively and adding

the resulting identities, we get

21096009~ £0)10) ~ S 08) = T (609h) — la)h0)
S (h)  FIAO)). (1.449)

Multiplying both sides of (1.4.48) by w(y) and integrating the resulting identity with respect

to y over [a, b], we have

2 ([ w2y} 10160~ 660) [ wOL Iy~ 1) [ w00

= LD vty ) it 0 [ wirpitnay)

D ([ w01 ) rmte) -1 [ wmonas). (1.449)

Next, multiplying both sides of (1.4.49) by w(x) and integrating the resulting identity with

respect to x over [a,b], we have

2(([ vy ) [ v roeeoas— ([T ( [Mworroin)
- ([ woorear) ([ wisoiay)
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— 2 ([ woar) [ wesmeas - ( [ weewax) ([ womoay)

S ([ [ wsremas - ([ wesewar) (| bw(y)h(y)dy21 .

From (1.4.50), it is easy to observe that

S(w, f.g) = % [Q/SS(W, a.h)+ msw, f,h)} . (1.4.51)

Using the properties of modulus, from (1.4.51),we have
Multiplying both sides of (1.4.46) and (1.4.47) by w(y) and integrating the resulting iden-

1 /
5001 < 5 15680 | £

g/
10 1 | £

and the inequality (1.4.44) is proved.

tities with respect to y over [a,b], we get

(/ bw(y)dy) 16 [ wisay

_ ;::8 K / bw(y)dy) h(x) — / hw(y)h(y)dy], (1.4.52)

and

< /a bW(y)dy> g(x) — /a bW(y)g(y)dy

S ([ oy bt~ [T wmeas). (1453)

Multiplying the left hand sides and right hand sides of (1.4.52) and (1.4.53), we get

([ wivias) i ([ wtonas) s ([ wiorstorar)
= ([ woras) st ([Tworronar) + ([ winsoia ) ([ worsta)
= (2:8) (m) [(/abW(y)dy>2h2(X)+ (/ahvV(y)h(y)dy)2
-2 ( / bw(y)dy) W) ( / bw(y)h(y)dy)] . (14.54)
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Multiplying both sides of (1.4.54) by w(x) and integrating the resulting identity with respect

to x over [a, b], we get

- () (51) [ ([ woras) ([ o)
([ wiwae) ([ wimoas)
2 [Nwoar) ([Mweoncas) ([Twomoiar) | aass

From (1.4.55), it is easy to observe that

by (x)h(x)dx ?
S(Waf»g):<£,((z))> (i,g;l;)X /ahw(x)hz(x)dx—w. (1.4.56)

Using the properties of modulus, from (1.4.56), we get the desired inequality in (1.4.45).

The proof is complete.

Remark 1.4.2. We note that in [42], Dragomir has given a number of inequalities similar
to (1) and (3) by using different hypotheses on the functions and their derivatives. For

earlier discussion on such inequalities, see [79,144].

1.5 More inequalities of the Griiss-and éeby§ev-type

This section deals with some more inequalities of the Griiss- and CebySev-types involving

functions and their higher order derivatives, established by Pachpatte in [118,120,121].
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First, we introduce some notation to simplify the details of presentation. For some suitable
functions f, g, h and their derivatives £, g A" (n > 1is an integer) defined on [a, b]

and a harmonic sequence of polynomials {P,(¢)}, t € [a,b], we set

MIh(x)] :h(x)—l—w— (x—a;rb) H(x), (1.5.1)

NIh(x)] = h(x) - h(bl)):z(a) (x— “;b), (1.5.2)

Alh(x)] = h(x) + blag {(b_x)kﬂ ?}f:;,k(x_a)kﬂ} WY (x), (1.5.3)
Blh(x)] = % h(x) +ZZ‘; (=1)*P(x)n™ (x) +:Z;Hk} , (1.5.4)

H = H)k# [Pk(a)h(k’l)(a) —Pk(b)h(k’l)(b)] , (15.5)

. Fi(x) = n,;kf(k_l)(a)(x_a);:£<k_l>(b)(x_b)k, (15.6)
Gi(x) = ",;kg(kfl)(a)(xia);:i(kﬂ)(b)(x*b)k, (15.7)

Hi(x) = n,;kh(k_l)(a)(x_a);:Z(k_l)(b)(x_b)k, (15.8)

=g [ 90 )y, Ty = / " fo)d. (1.59)

Ji= %/ﬂbg(") (V) (x—=y)*dy, Jo = /;bg(y)dy, (1.5.10)

L= %/ WO )y, Lo = / "hy)dy. (15.11)

for 1 < k< n—1. We use the usual convention that an empty sum is taken to be zero and
define ||| = SUP;e[a,b) |A(2)] < eo.

We begin with proving some auxiliary results.

Lemma 1.5.1 (see [35]). Let 4 : [a,b] — R be a function with first derivative absolutely

continuous on [a,b] and assume that the second derivative i” € Lo[a,b], then

MIh(x)] — bfa '/abh(t)dt _ —bia /abp(x,t) <t - “;b) W(d, (1512

x € [a,b], where M[h(x)] and p(x,t) are given by (1.5.1) and (1.2.11) respectively.
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Proof. The following identity holds (see, the proof of Theorem 1.2.3):

Flx) = ﬁ [/a.bf(t)dt—}—/abp(x,t)f/(t)dt} , (1.5.13)

for x € [a,b], provided f is absolutely continuous on [a,b]. Choose in (1.5.13) f(x) =
(x—<2) 1 (x), to get

(xa;b) H(x) = - 1 - Uab (ta;b> W (t)dt
+/ (x.t [h’ < a+b>h/’(t)} dz] (1.5.14)

Integrating by parts, we have

/b <t - a+b) i (eyde = WA FTRB) (b=a) /bh(t)dt. (1.5.15)

2 2
Also, upon using (1.5.13), we have

/:’p(x,t) {h’(t) + (z - “;b> h”(t)} dt
:/‘;bp(x7t)h’(t)dt—|—/abp(x,t) <t—“;b) W (¢)dr
/ h(t dt+/ xt)( >h”( )dt. (1.5.16)

Using (1.5.15) and (1.5.16) in (1.5.14), we deduce that
a+b\ ,,, . (h(a)+h(b))(b—a) b
(b—a)(x - )h() —/a h(r)dr

2

b b
+(b—a)h(x) —/ h(t)dt+/ p(x.1) <t— ";”) 1! (1)dr. (1.5.17)
Rewriting (1.5.17) we get (1.5.12).

Lemma 1.5.2 (see [28]). Let & : [a,b] — R be a continuous function on [a,b] and twice

differentiable on (a, b) with second derivative h" : (a,b) — R being bounded on (a, b), then
1 b 1 b rb

NI~ 5 — / Wi = o / | / (1) p(t, )K" (s)ds, (1.5.18)

for x € [a,b], where N[h(x)] and p(x,r) are given by (1.5.2) and (1.2.11) respectively.
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Proof. From the hypotheses, the identity

1 b 1 b
h(x)=—— [ h(t)dt+— 1) (t)dt 1.5.1
() = 5= [ o+ — [ plea @ar, (15.19)
holds for x € [a,b]. Applying the identity (1.5.19) for /'(z), we can state

K (1) = bia/b H (s)ds +b%/h (1,5)1" (s)ds

— a b
_ h(b;_Z( )+bia/a p(t,5)" (s)ds.

Using this in the right hand side of (1.5.19), we get

h(x) = bla/abh( )dwb%/bp(x,t) {h(b;:’;(“) +b1a/abp(t7s)h”(s)ds} dt

a b
=32 /h( h(b h)(z)/a p(x,1)dt

1 b b
tman [ peoptn s (1.5.20)

It is easy to observe that

pr(x,t)dt:/a t—a dt+/ (t—b)dt = (b— )< —a;rb

Using (1.5.21) in (1.5.20) and rewriting, we get (1.5.18).

) . (1.5.21)

Lemma 1.5.3 (see [16]). Let & : [a,b] — R be a function such that A1) g absolutely

continuous on [a b], then

[ noyar = [“’ ’“V‘“&(;ll))f(’““)k“}h<k><x>+(1)" [ Bt ey

(1.5.22)

for x € [a,b], where

if 1 € a,x]

En(x,1) = ( n! (1.5.23)

if t € (x,b]

for x € [a,b] and n > 1 is a natural number.
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Proof. The proof is by mathematical induction. For n = 1, we have to prove the identity

/h — (b—a)h(x)— /Elxt )(t)d.

(1.5.24)

The equality (1.5.24) can be proved by following the proof of identity (1.2.12) given in

Theorem 1.2.3. Assume that (1.5.22) holds for n and let us prove it for n+ 1. That is, we

have to prove the equality

b n b_karl _lkx_ak+l
['oa= g L2

k=0

} 10 (x)

b
=1y / Enir (6, )R (1)t

It is easy to observe that

n+1 (t n+1 n+l /b (t_b)rH—] (
/E”““ £)dt = / n+1)' ()dﬂr.x CES

_ =amt xfl/* _ ()

TSI h (t)a o), (t—a)"n\" (1)dt

(l‘ _ b)nJrl ()

T

b
- [ =y wyar
n:Jx

(=) (1) 0!

(1.5.25)

”-H)(t)dl‘

- 1) (x) — / (e H) (1)

(n+1)!
That is

/b E,(x,0)h"™ (1)dr

B (x—a)”“ 4 (_1)n+2(b_x)n+l (
B (n+1)!
Now by using induction hypotheses and (1.5.26), we get

/bh(t)dt _ nil [(b—x)k+l + (_l)k(X—a)k+l ] h(k) ()C)
a k=0

(k+1)!

(b—x)”“ + (—1)"(x—a)”+1
+ (n+ 1)1

|:(b 7x)k+1 + (71)k(x7 a)k+l
(

which is the identity (1.5.25) and the proof is complete.

k=0

b
A (x) — / Ener (6, 0)R" ) (1)dt.

(1.5.26)

K0 — (1) [ B 0D )

k—i—l)} () + (- ”“/ Epi1 (6,0 )RV (1),



36 Analytic Inequalities: Recent Advances

Lemma 1.5.4 (see [22]). Let {P,(¢)}, t € [a,b] be a harmonic sequence of polynomials,
that is P.(t) = P,_1(t), n € N, Py(t) = 1. Further, let & : [a,b] — R be such that 2"~V is
absolutely continuous for some n € N, then
1
h(t)dt =
[

for x € [a,b], where B[h(x)] and p(x,t) are given by (1.5.4) and (1.2.11) respectively.

n 1

Bh(x)] - / o1 (1) plx, VA (1), (1.5.27)

Proof. Integrating by parts, we have (see also [21])

=0 1/ w1 (R (0)de = (=1)" By (0" (1)

y

X

2 s Ve

= (1 B D) = P 0] + (<1772 [P 0r Y @),

¥
for x, y € [a,b]. By applying the same procedure to the last integral, we successively get

the relation
0 [ Paon ) = 2(1 [PL0AO () = PR (3)| +h(x) — h),

i.e.,

W) =)+ ¥ (~DF [B@AO )~ RO )] + (1 [ By n wyar
| (1.5.28)
for x, y € [a,b]. If we set x =a and y = b, n=m+ 1 and replace A(t) by [ h(u)du in
(1.5.28), we get

/.bh(t)dt _ i (—1)f {Pk(a)h(kfl)(a) —Pk(b)h(kfl)(b)
“ k=1

b
+H=1)" /a P (t)h"™ (1)dt. (1.5.29)

Integrating both sides of (1.5.28) with respect to y over [a, b], we have

[ 1ras = a1

—Z( D / P()h® (y)dy+(~1)" /’b " Bt (0K (1)drdy. (1.5.30)
a Jy

Using (1.5.29), we have

b
[ 10y = (b=a)

n—1
hx)+ Y (= 1) Pe(x)h® (X)}

k=1
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'y [zk"(_W' {Pj(b)h(-/*l)(b)—Pj(a)h(/*”(a)} +/bh(t)dt}

+(=1)" ,/ab /yxpn_l (1)h") (1)drdy,

n/ab (y)dy = (b— X)+Z( D*P(x) ”(X)}
¥ c1fm-n (PO (b) = Pa)h ()|
k=1
+(—1)”/h /xPn,l(t)h(”)(t)dtdy. (1.5.31)

By making use of (1.5.4) and (1.5.5) and (1.2.11) in (1.5.31) and rewriting, we get (1.5.27).

Remark 1.5.1. 'We note that, for the harmonic sequence of polynomials

t— k
Pk(t):( k')C)7 k>07

the relation (1.5.27) reduces to the identity given by Fink in [59].
We are now ready to state and prove the following Theorems which deal with the inequali-

ties proved in [118].

Theorem 1.5.1. Let f, g: [a,b] — R be functions with first derivatives absolutely con-
tinuous on [a, b] and assume that the second derivatives f”, g” : (a,b) — R are bounded on

(a,b). Then the inequalities

et + romteas — ([ s ([ etwar)

< s [ DI o+ - e (1532
and
’bia / bM[f(x)]M[g(x)] dxfﬁ K / bM[g(x)]dx) ( / ’ f(x)dx)
+ ( / bM[f(x)]dx> ( / bg(x)dxﬂ +ﬁ < / bf(x)dx) ( / bg(x)dx)
< G el e [ Pl 1539
hold, where
/ |p(x,1)] t—ib dr, (1.5.34)

in which p(x,) is given by (1.2.11).
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Theorem 1.5.2. Let f, g: [a,b] — R be twice differentiable functions on (a,b) and
/", ¢ : (a,b) — R be bounded, then the inequalities

1 b ) b b
5 | N N s (o) ([ st
b—a a (b - a) a a

< s [ @l o+ ) o (1539)
and
o [ Mt as— ot ([ ista) ([ soas)
+ (/abN[f(x)]dx) (/abg(x)dx)} +ﬁ </abf(x)dx) </abg(x)dx)
< G I el 1 [ H0a (1536)
hold, where
H(x) = /ah/ah p(x,1)] (2, 5)| dsdt, (1.5.37)

in which p(x,7) is given by (1.2.11).

Proofs of Theorems 1.5.1 and 1.5.2. From the hypotheses of Theorem 1.5.1, we have

the following identities (see, Lemma 1.5.1):

MIf()] — —— /bf(t)dt U bp(x,t) (t - a;”) £"(t)dt, (1.5.38)

b_a.a b—a a

b b
Mig(x)]— bia/a g(r)dt = 7b1a /a p(x,t) <t — a—;b) g’ (t)dt, (1.5.39)

for x € [a,b]. Multiplying both sides of (1.5.38) and (1.5.39) by g(x) and f(x) respectively
and adding the resulting identities, we have

_bia {g(x) /uhf(t)dt-l-f(X)/abg(t)dt}

_ _bi [g(x) /abp(x,t) (t - a;b> (0t

a

gOM[f ()] + f(x)M]g(x)]

b b
+f(x) / p(x,1) <t— a—;) g"(t)dt} . (1.5.40)
Dividing both sides of (1.5.40) by (b — a) and integrating with respect to x over [a,b], we
get

bia / LML ()] + FCOMIg )] dx— ﬁ < / ’ f(x)dx> < /a'b o) dx)
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_ *(b—liay /ab |:g(x) /abp(x,t) (r - a;b> '(0)d

+£(x) /jp(x,t) <t - a+2b> g”(t)dt} dx. (1.5.41)

From (1.5. 41) and using the properties of modulus, we have

[ e+ reomiscoar — 2 ([ s ([ stwar)
< et [ 101 [ ot

) [ e

b
< e [ el e 4N 1] (ot

= (;,_la)z/b g e +1F GNIE" [l] I (x)dx,

and the inequality (1.5.32) is proved.
Multiplying the left hand sides and right hand sides of (1.5.38) and (1.5.39), we have

MM - 52 et | s0ar+ Mo [ et

+m </a f(t)dt) </a g(t)dt)
= ﬁ (/a.bp(x,t) <t— a;b) f"(t)dt)
X (/abp(x,t) <t— a;b> g"(t)dt) : (1.5.42)

Dividing both sides of (1.5.42) by (b — a) and then integrating with respect to x over [a, b],

it o2 | ([ wteiax) ([ roar)
(/ i) ([0 df)] e ([ 100) ([ s04)
ot [ (frenl-232) o)

a+b
r—\ £ (0) e

t—’| |dt}dx

Z‘fi

)

we get




40 Analytic Inequalities: Recent Advances

X (/abp(x,t) <t — a;b> g”(t)dt) dx. (1.5.43)

From (1.5. 43) and using the properties of modulus we have

’ ()M [g(x)]dx — [(/ Mg > (/ (t)dt)
+(/ M[f(x)}dx) ( / bg(t)dt)} = < / f(z)dt) ( / ’ (t)dt)‘
A /”|p<x,t>| =22 irwlar) ([ neolf- ;b\ #'0)]ar)

/! " b
< a1 ([ e 52 )

f———
- (b—a)3 ”f//”m”g//Hoo/ 1P (x)dx
a
which is the required inequality in (1.5.33).

From the hypotheses of Theorem 1.5.2 we have the following identities (see, Lemma 1.5.2):

x)] — ﬁ /abf(t)dt = ﬁ /a.b /abp(x,t)p(t,s)f//(s)dsdt, (1.5.44)

and

1 b 1 b b u
_ R 154
M~ | i = o [ [ penpe9g (dsar, 1545)
for x € [a, b]. Multiplying both sides of (1.5.44) and (1.5.45) by g(x) and f(x) respectively

and adding the resulting identities, we have

SN+ SN [()1—;[ @ [ sar ) [ swar

= [ / / (x,t)p(t,s)f" (s)dsdt

+f(x)/ / p(x,t)p(t,s)g”(s)dsdz] . (1.5.46)
Multiplying the left hand sides and right hand sides of (1.5.44) and (1.5.45), we have

NFWIVg] — 5 [Metw [ s0ar+n17] [ o]

+(b—17a)2 </abf(t)dt) </abg(t)dt>

- (b_%)“ < / ) / ’ pet)p(t.s) f”(s)dsdt)
X </ab /ahp(x,t)p(t,s)g”(s)dsdt) . (1.5.47)

From (1.5.46) and (1.5.47) and following similar arguments as in the proof of Theo-
rem 1.5.1, below (1.5.40) and (1.5.42) with suitable changes we get the desired inequalities
in (1.5.35) and (1.5.36).

Next, we give the inequalities established in [120].
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Theorem 1.5.3. Let f, g: [a, b] — R be functions such that £~V ¢(*=1) are absolutely

continuous on [a,b] and £, gt e Lo [a b] for some n € N, then

] JALF)] + F)ALR(0)] dx

U a) ( /ab f(x)dx> ( /ahg(x)dx>

N < e [, [+ ]tas a4
A as
- b—la)z K / bA[g(x)]dx) ( / ' f(x)dx) + ( / bA[f(x)]dx) ( / bg(x)dx)]
+ﬁ ( / ' f(x)dx) ( / ' g(x)dx)
’
. < Gl [ B (1.5.49)
) = | By (oot (1.5.50)

in which E, (x,t) is given by (1.5.23).

Theorem 1.5.4. Let {P,(¢)},t € [a,b] be a harmonic sequence of polynomials and f, g
[a,b] — R be functions such that "~ ¢("=1) are absolutely continuous on [a,b] and

0 ¢ e L. [a,b] for some n € N, then

1 b
o [ lsCoBIF 0+ F0Bls(o)

ﬁ ( / ’ f(x)dx) ( / bg(x)dx)

b—a
1 b
<G / [+ 1768 a0y, (1551)

and

b—a g

*(b_]a)z [(/abB[g(x)}dx) (/abf(x)dx> + (/abB[f(x)]dx> (/abg(x)dxﬂ
+ﬁ (/abf(x)dx) </abg(x)dx)

1 b
< Gap Ll [ i (1.5.52)

’ : /bB[f(x)]B[g(x)] dx

where
b

D) =1 [ 1B ()p(n)ar (15.53)
n
in which p(x,7) is given by (1.2.11).
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Proofs of Theorems 1.5.3 and 1.5.4. From the hypotheses of Theorem 1.5.3, we have

the following identities (see, Lemma 1.5.3):

_1\n+1
AL - bla [ rar = % [ B 0ar (1559

st) e [ e0ar = GV [rngoa 055

for x € [a,b]. Multiplying both sides of (1.5.54) and (1.5.55) by g(x) and f(x) respectively

and adding the resulting identities, we have

eWAL0]+ FAle(] — 5 [0 [ s+ 10 [ oy
_1\nt+1
= % {8()6) /a B0 0t + £ /a ’ B (x,1)g® (t)dt] . (1.5.56)

Multiplying the left hand sides and right hand sides of (1.5.54) and (1.5.55), we get

AYAe()] - 5 (] | 10 +alro) [ o]

Yoap (/;hf ) </;bg<’>‘”>
,( D (/ En(r.0)f d:) </ E,(x.1)g dt) (1.5.57)

Dividing both sides of (1.5.56) and (1.5.57) by (b —a) and then integrating both sides
with respect to x over [a,b] and following closely the proof of Theorem 1.5.1 with suitable
changes, we get (1.5.48) and (1.5.49).

From the hypotheses of Theorem 1.5.4, the following identities hold (see, Lemma 1.5.4):

g _1\n—1 ,
B bia/abf(’)df = ;(bl)_a) /aanfl(t)p(xyt)f(”)(t)dt, (1.5.58)

and

n—1
. / g(1)di = ) / Poo1(1)p(x, )™ (1), (1.5.59)
for x € [a,b]. The proofs of the mequalltles (1.5.51) and (1.5.52) can be completed by

following the proofs of Theorems 1.5.1-1.5.3, we leave the details to the reader.

Remark 1.5.2.  'We note that, one can very easily obtain bounds on the right hand sides in
(1.5. 32) (1 5.33), (1.5.35), (1.5.36) and (1.5. 48) (1.5.49), (1.5.51), (1.5.52) when f”, g"
and £, g belong to L,[a,b] forg > 1, 1 + ~ =1orL;[a,b]. The precise formulation of
such results are very close to those given in Theorems 1.5.1-1.5.4 with suitable changes.
We omit the details.

To complete this section we present the Griiss-type inequality established in [121].
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Theorem 1.5.5. Let f, g, h: [a,b] — R be continuous functions on [a,b] and n-times
differentiable on (a,b) and with derivatives £, g h(") : (a,b) — R being bounded on
(a,b) for some n € N, then

n—1
o [ s ot [ {gmh(x) {10 X Ik}

n—1 n—1
+ h(x)f(x) {JO + Z Jk} + f(x)g(x) {L()"’ Z Lk} dx
k=1 k=1

1 b i
<sp=ar ). (@RI @I @I,

7@ 1] M), (1.5.60)
where
(x—a)"t 4 (b—x)t!
My(x) = e : (1.5.61)
for x € [a,b].

Proof. Letx € [a,b],y € (a,b). From the hypotheses on f, g, h and Taylor’s formula with

the Lagrange form of reminder (see [77]) we have

nl

1) = Gt G, (156
n—1 (k)

8(x) =g(y) L : k!(y) (x—y)*+ %g(")(n)(x—y)", (1.5.63)
n—1 (k)

W) = () + ¥ k,(y) (r=y) 4+ h J(o)(x—y)", (1.5.64)
k=1 :

where § =y+a(x—y) O<a<l),n=y+Bx-y) 0<B<1),c=y+y(x—y)
(0 <y < 1). From the definitions of Iy, Ji, L ,Io,Jo, Lo and integration by parts (see, [77]),

we have the relations

n—1 n—1

L+ Y Ik=nly—(b—a) ) F(x), (1.5.65)
k=1 k=1
n—1

JO+ZJk—nJO— (b—a ZGk (1.5.66)

n—1 n—1
Lo+ Y Li=nLo—(b—a) ) Hi(x). (1.5.67)
k=1 k=1
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Multiplying both sides of (1.5.62), (1.5.63) and (1.5.64) by g(x)A(x), h(x) f(x) and f(x)g(x)

respectively and adding the resulting identities, we get

3(x)g(x)hx) = <h<x{ 2 gt (é)(x—w"}

Hh(x f(x{ L +,j!g<"><n><xy>"}
" A0 (y) ) 0
Hf(08) 4 h0) + Y = (=) + (o) (x—y)" (1.5.68)
=k !

Integrating both sides of (1.5.68) with respect to y over (a,b) and rewriting, we obtain

n—1
J(x)g(x)h(x) = ﬁ [g(x)h(x) {Io +) Ik}

k=1

n—1 n—1
A0 (2 {Jo Ly Jk} £ F(W8) {Lo Ly Lk}]
k=1 k=1

1

e [ (E)+ ) 08 )

b

(g™ (o—)} / (x—y)"dy. (1.5.69)

a

Integrating both sides of (1.5.69) with respect to x over [a,b] and rewriting, we get

n—1
bla/abf(x)g(x)h(x)dx—3(bla)z /ab [g(x)h(x) {10+kzllk}

n—1 n—1
+h(x) f(x) {JO +) Jk} + f(x)g(x) {Lo +), LkH dx
k=1 k=1

B m /ab [+ h)f (x)g™) ()
H (o) </b (x= y)”dy) dx. (1.5.70)

From (1.5.70) and using the properties of modulus, we get the desired inequality in (1.5.60).

The proof is complete.
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Remark 1.5.3. Taking /(x) = 1 and hence 2¥)(x) =0, k=1,...,n, in Theorem 1.5.5 and

by simple computations, it is easy to see that the inequality (1.5.60), reduces to

| b 1 b n—1 n—1
b—a/a f(x)g(x)dx—m/a [g(X){IO+/;Ik} +/f(x) {Jo—i-];Jk}] dx

gﬁ/ (@17 417 lg®L.] Ma(x)a. (1.5.71)

We note that, here we have used Taylor’s formula with Lagrange form of remainder to
establish (1.5.60). Instead of this, one can use Taylor’s formula with integral remainder, to

obtain a result in the framework of Theorem 1.5.5.

1.6 Discrete Inequalities of the Griiss-and CebySev-type

A number of Griiss-and CebySev-type discrete inequalities

have been investigated by different researchers, see [79,144], where further references are
also given. In this section we deal with the recent results established by Pachpatte in
[128,133,138].

We begin with a discrete version of the premature Griiss-type inequality proved in [128].

Theorem 1.6.1. Let f = (fi,...,/n), §=(81,---,8n) be two n-tuples of real numbers and
y<gi<I'fori=1,...,n, where 7,I" € R are constants, then

1

where
71 - Lo 1 - L 1 - . 162
g)—;i;ﬁgﬁ ;[;ﬁ ;i;gz : (1.6.2)

Proof. By direct computation it is easy to observe that the following discrete Korkine’s

type identity holds:

1 n n
=53 Y)Y —gj)- (1.6.3)

i=1j=1

It is easy to observe that

2
Co(f.f) = %Zf?— <1ﬁﬁ> . (1.6.4)
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Furthermore, by using the Cauchy-Schwarz inequality for sums, we observe that C,(f, f) >
0. Similarly, C,(g,g) = 0. From (1.6.3) and using the Cauchy-Schwarz inequality for dou-

ble sums, we have

The following identity also holds:

aen=(r-1fe) (Lher) -t rmw-n  aoo
i=1

Using the fact that (I'— g;)(g; — 7) = 0 in (1.6.6) and then the elementary inequality cd <
(%)2, ¢, d € R, we have

1y r—v\’
Ca(8,8) < F—fZgl “Ye—v|<|(— ) - (1.6.7)
i=1
Using (1.6.7) in (1.6.5), we get (1.6.1). The proof is complete.

Remark 1.6.1. In Theorem 1.6.1, if we assume that ¢ < f; < ® fori=1,...,n, where

¢, ® € R are constants, then by following the same arguments used to obtain (1.6.7), we

2
Culfof) < (@;qj) . (168)

get

Using (1.6.8) in (1.6.1), we get
1
Calfr8)l < 7 (@=9) (T =), (1.6.9)

which in turn can be considered a discrete version of the well-known Griiss inequality.

The discrete Griiss-type inequality given in [138] is embodied in the following theorem.

Theorem 1.6.2. Let f = (fi,...,/n),&=(g1,---,8n) be two n-tuples of real numbers and
p=(p1,...,pn) be an n-tuple of nonnegative real numbers such that B, =3 | p; > 0, then

1 & 1 &
(fi_&jz,lpjfj) (gi_Pan,IPjgj> ,

1 & 1 &
Cu(p, f:8) szfzgz (P ZPifi) (P Zpigi) . (1.6.11)
ni=1 ni=1

1Ca(p, f28) Xp, (1.6.10)

where
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Proof. First we observe that
1 & 1 & 1 &
Pn;pl (fl P, .;pjfj> (gz P, .;]p]gj>

1 n 1 n 1 n 1 n n
:szi figi_fiF Y pig;i —8ip ijfj‘f'ﬁ Y pifi Y pig;
n =1 nj=1 nj=1 nj=1 j=1

1 n l n 1 n 1 n 1 n
_E;Pifigi_ Fni;piﬁ Flejgj - Fn;pigi E;pjfj

nj=

n l n 1 n
=5 ) pifigi < Zmﬁ) ( Zm&)
n =1 ni=1 n =1
=Cu(p, [, 8)- (1.6.12)

From (1.6.12) and using the properties of modulus, we have

1 & 1 &
(fi—Pnj_Zlefj> (gi—Pnj_Zlegj>

which is the required inequality in (1.6.10) and the proof is complete.

)

12
|Cn(p7f7g)| < Fn;pl

Remark 1.6.2. By taking p; = 1fori=1,...,nand hence P, =n, C,(p, f,g) = Cu(f,8)

in (1.6.10), we get
(-157) (157
! n = J ! n = J

We note that the inequality (1.6.13) can be considered as the discrete version of the Griiss-

. (1.6.13)

S|

ICa(f,8)] <

n

i=1

type integral inequality given by Dragomir and McAndrew in [34].
The discrete CebySev-type inequality established in [128] is given in the following theorem.

Theorem 1.6.3. Let f = (f1,...,/n), 8 = (g1,---,8n) be two n-tuples of real numbers,
then

Vn?—1 —
‘Cn(f;g)| < 2\/§ 1<r£<a’)l(71|Afk| Cn(g,g)7 (16]4)

where C,(f,g) is given by (1.6.2) and Af = fir1 — fr-
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Proof. First we recall that the discrete Korkine-type identity (1.6.3) holds. Following the
proof of Theorem 1.6.1 we get (1.6.5). It is easy to observe that the following identity
holds:

i1 i1
—fi=Y (fix1—fi) = ). Afr. (1.6.15)
k=j k=j

We also observe that

1 n n 1 n n
Clf N =57 LY il | <525 % Z|Afk|
2n” |5 j=1 2n” j=1
1 2 n n 5
< — A — 1.6.1
s o 1a) DN (16.16)
By simple computation, we get
n n ] I’l2 (l’l2 _ 1)
Y Y (i-j)y=—0— (1.6.17)
i=1j=1 6
Using (1.6.17) in (1.6.16) and the fact that C,(f, ) = 0, we get
n*—1 2
< A 1.6.1
Gir <t (max 181 (1618

Using (1.6.18) in (1.6.5), we get (1.6.14) and the proof is complete.

Remark 1.6.3. 'We note that the inequality (1.6.14) can be considered as a discrete version
of the inequality given in Theorem 1.3.1. By following a similar arguments as in the proof
of (1.6.18), we obtain

n?—1 2
n(8,8) < A 1.6.1
Cu(g,8) 12(&@Jg® (1.6.19)
Using (1.6.19) in (1.6.14), we get
2
w2
< .6.
Gi(f,8) < nlg@\MmgyIMH (1.6.20)

The inequality (1.6.20) can be considered a discrete version of the Ceby3ev inequality
given in (1).
The following Theorem deals with the discrete weighted CebySev-type inequality proved
n [138].
Theorem 1.6.4. Let f, g, p, B, be as in Theorem 1.6.2, then

1<k< n

2
ICu(p, fr8)| < max \Afk| _max. Agk|><[ Zpl ( ’llp’) }, (1.6.21)

where C,(p, f,g) is given by (1.6.11).
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Proof. By direct computation, it is easy to observe that the following discrete Korkine

identity holds:

Cu(p, f,8) P2 Z Z pip;(fi —gj)- (1.6.22)
n =1 j=
We observe that the following identities also hold:

i—1

fi=fi=Y (firi = fi) = ZAfk, (1.6.23)
k=j k=
i-1

8i—8j= Z 8k+1— ZAgk (1.6.24)
k=j

Using (1.6.23) and (1.6.24) in (1.6.22), we get

1 n n i—1
Culp.f8) = 557 L. X Pipj <Z Afk) (ZAgk)- (1.6.25)
k=j

n j=1 j=1

From (1.6.25) and using the properties of modulus, we have

1 n o n i—1
Calp. £,8) < 557 X X Pipj (Z Afk|> (Z Agk|>
n i=1j=1 k=j

X |Afi| max IAgkIZZp,pJ J)?

2P2 1<k<n 1 1<k<n—
i=1j=1

i=1

2
1 o
2P2 l<l<<n l|Afk| max |Agk|2 P, Zp,z - (Zzp,-)

1<k<n—1 1<k<n—

= max |Afy] max |Agk><[ Zpl < i= 1le> }
and the inequality (1.6.21) is proved.

Remark 1.6.4. We note that A. Lupas [79, Chapter X] proved some results similar to
that of the inequality (1.6.21) when f = (fi,...,fu), ¢ = (g1,...,8n) are two monotonic
n-tuples in the same sense and p = (pi,...,p,) is a positive n-tuple. In the special case,
when p; =1 fori=1,...,nand hence P, =n, C,(p, f,g) = C,(f,g), the inequality (1.6.21)
reduces to

2
(Calf,8) < | max [Afi] max Agk|><[ Zl < '11) } (1.6.26)

1<k<n— 1<k<n—

In the proof of the next theorem, we need the following representation formula given in [1].
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Lemma 1.6.1. Let {x,...,x,} be a finite sequence of real numbers and {wy,...,w,} be
a finite sequence of positive real numbers, then
1 & n—1
xe=—Y wixi+ Y Dy(k,i)Ax;, (1.6.27)
Wa i 5 i=1
where Ax; = x;11 —x; and
Dy (ki) = — _ (1.6.28)
Wa | (-Wi), k<i<n,
is the discrete weighted Peano kernel, in which
k n
W= Yow, W= ¥ w=w,—
i=1 i=k+1

Proof. By direct computation it is easy to observe that the following discrete identity
holds (see [1]):

n k—1 n—1
Y wixi = xWo+ Y Wilxi —xip1) + Y. Wilxin —xi), (1.6.29)
i=1 i=1 i=k
for 1 < k < n. Rewriting (1.6.29) by using (1.6.28) we get the desired identity in (1.6.27).
Remark 1.6.5. If we take w; =1fori=1,...,n,then W; =i and W; =n —i and (1.6.27)

reduces to the discrete Montgomery identity,

1 & n—1
= Y xi+ Y Dy(k,i)Ax;, (1.6.30)
i=1 i=1
where ]
L oI<i<k—1,
Dy(k,iy=3 ;" (1.6.31)
——1, k<i<n.

n
Finally, we present the Griiss-type discrete inequalities given in [133].

Theorem 1.6.5. Let {u;}, {vi} for k=1,...,n be two finite sequences of real numbers
such that max;<i<,—1{|Aug|} = A, maxj<x<,—1{|Avk|} = B, where A, B are nonnegative

constants, then the following inequalities hold:

1 n
| (g, vi) | < 5 Y [[vk|A + |uy| B H, (k), (1.6.32)
k=1
and
AB
o (g, vi) | < — Y (Ha(k))?, (1.6.33)
k=1
where
1 n 1 n 1 n
Jn(uk,vk) = - Z U — | — Z 1273 — Vi |, (1634)
= = =
n—1
Hy(k) =Y, [Du(k, i), (1.6.35)

in which Dy, (k,i) is defined by (1.6.31).
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Proof. From the hypotheses, we have the following identities (see, Remark 1.6.5):

n—1
ukfqu,f ZD (k,i)Au;, (1.6.36)
=1
12 n—1
ve— =Y vi= Y Dy(k,i)Av;, (1.6.37)
i3 i=1

for k =1,...,n. Multiplying both sides of (1.6.36) and (1.6.37) by v, and u; respectively,

adding the resulting identities and rewriting, we get
n—1 n—1

1 n n 1 7
UV — ﬂ |:Vk Z Ui+ uy Z V,':| = 5 |:vk Z D,,(kﬂ')Au,' + uy Z Dn(k,l')AV,“| . (1.6.38)
i=1 i=1 i=1 i=1

Summing both sides of (1.6.38) over k from 1 to n and rewriting, we get

=1
From (1.6.39) and using the properties of modulus, we get the required inequality in

(1.6.32).
Multiplying the left hand sides and right hand sides of (1.6.36) and (1.6.37), we get

1 n n 1 n n
ukvk—; kaui—l—ukai +7 ZM,‘ ZV,’
i=1 i=1 i=1 i=1

Z Dy (k,i Av,] . (1.6.40)

Jn (U, vi) = — Z [vk ZD (ki) Au; + uy, ZD (k,i Av,‘| . (1.6.39)

i=1

n—1
ZD szu,}

Summing both sides of (1.6.40) over k from 1 to n and rewriting, we have
1
Jn(ukavk) = E Z

Z Dy (k,i Au,]
k=1

From (1.6.41) and using the properties of modulus, we get the desired inequality in (1.6.33).

n

n—1
):D (k,i Av,] . (1.6.41)

The proof is complete.

1.7 Applications

In this section we present applications of a few of the inequalities given in earlier sections

which have been investigated during the past few years.

1.7.1 Estimation of the remainder in the Trapezoid formula

As an application of Theorem 1.2.2, in this section, we present a version of the Trapezoid-
type inequality and it’s application given in [34].
We start with the following Trapezoid-type inequality.
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Theorem 1.7.1. Let f : [a,b] — R be a differentiable mapping on (a,b) having first
derivative f” : (a,b) — R bounded on (a,b), then

flag+f(b) 1 P b—a ooy SB)—f(a)
3, T < it N UG A vl RS
Proof. A simple integration by parts, gives
+ +b\ ,
f(a) 2f / f(x) dx—/ (x— a > )f (x)dx. (1.7.2)

Applying the inequality (1.2.7) given in Theorem 1.2.2, we get

‘bia/ab <x— +b>f’(x)dx— (lgl_a/b< —a—;b>dx> (ljia/abf'(x)dx>

1 /b a+b 1 /b a+b 1 /b
< _ars - d / —7/ '(y)dy )| d
bia/a (x 5 bia/a (y 2>y>X<f(X) baaf(y)y> x
As
b
/a (x—a—;b>dx:0,
we get

/ab (x a;b>f’(x)dx

(-2 (- 20=119)

2 b—a
/ f(b) f(a) atb
<xr€rzgfl(7> fx)— — /a xX— ‘dx
(b—a)’ ’ f(b) fla)|
= ) x]gzg,)l()) f (x) — (1.7.3)

Now using (1.7.2) in (1.7.3), we obtain (1.7.1).
In the following Theorem we assume that f: 7/ C R — R is a differentiable mapping with

derivative satisfying the following condition:

[f(b) = fla) = (b—a)f'(x)| < Q(b—a)’, Q>0, (1.7.4)
foralla, b1 and x € (a,b).
If f" is M-lipschitzian, i.e.,

[ () = f' )| < Mlu—v|, M>0,
then
() = f(a) = (b—a)f' ()| = |/ (c) = f (x)||b—a| < Mlc—x||b—a| <M(b—a)’,

where ¢ € (a,b). Consequently, the mappings having the first derivative lipschitzian satisfy

the condition (1.7.4).

The following trapezoid formula holds.
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Theorem 1.7.2. Let f: [a,b] — R be a differentiable mapping on (a,b) with derivative
S (a,b) — R satisfying the above condition (1.7.4) on (a,b). If I, :a=x9 < x; < -++ <

Xn—1 < X, = b is a division of [a,b] and h; = x;41 —x;, i =0,1,...,n— 1, then we have:
b
[ @ = Ars (1) +Rea (), (1.1.5)
a
where
n—1
Xi)+ f(xi
Arg, () =Y, f6) + floit) 2f( +l)hi7 (1.7.6)
i=0
and the remainder Rr , (f) satisfies the estimation:
anl 3
Rz, ()] < 7 Y n. (1.7.7)
i=0
Proof. Applying Theorem 1.7.1 on the interval [x;,x;11], we can write
Xit1 . — . — .
(Xit1 —Xi )M / ' FOde| <L max |f () — S@ir) = flx)
2 Sy xe(xiis1) Xig1 =X
< Qx4 1 —Xi)37
4
i.e.,
; ; Xit1 on
‘Wki— / " pn)ar] < 22 (1.7.8)

foralli=0,1,...,n—1.

Summing both sides of (1.7.8) over i from i = 0 to n — 1 and using the generalized trian-
gle inequality, we get the approximation (1.7.5) and the remainder satisfies the estimation
(1.7.7).

Remark 1.7.1. 'We note that the trapezoid formula given above works for a class larger
than the class C?[a, b] for which the usual trapezoid formula works with the remainder term

satisfying the estimation

//
R, ()] < Hf Ioo Zh
where [ /|| = supye(q,p) |/ ()] < oo

1.7.2 Bounds for a perturbed generalized Taylor’s formula

In [31], Dragomir was the first to introduce the perturbed Taylor formula, with the idea to
estimate the remainder using Griiss and Ceby3ev-type inequalities. We state the following

result given in [31].
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Theorem 1.7.3. Let f: 7 — R (I C R is a closed interval, a € I) be such that £ is

absolutely continuous. Then we have the Taylor’s perturbed formula:

. (xfa)nJrl n). .
fx) =Tu(fsa,x) + CE [f< ),a,x} +Gyu(fa,x), (1.7.9)
where
N N Gt L
Talfiax) = Y = @), (17.10)
and
() () — £n)
{f(”);a,x} = L) = ) (1.7.11)
X—a
The remainder G, (f;a,x) satisfies the estimation:
_ \n+l
Gr( 0] < S )~ o) (17,12
where
C(x):= sup f7(),  y(x):= inf FOHD(0), (1.7.13)
t€la.x] 1€fax]

forallx >a,x€l.
In this section we present some generalizations and improvements of Theorem 1.7.3, as
well as some other results from [72].

In [72], Mati¢, Pecari¢ and Ujevi¢ proved the following generalized Taylor formula.

Theorem 1.7.4. Let {P,(x)} be a harmonic sequence of polynomials, that is
Pi(x)=P,1(x), neN; Pyx)=1.
Further, let I C R be a closed interval and a € I. If f: I — R is any function such that, for

some n € N, £ is absolutely continuous, then for any x € I,
f@) = fla)+ Z DM B @) = Pla)f P (@)] + Ro(frax). (1714
where

R,(f:a,x) 1)”/ Py(0) V) () dr (1.7.15)

Proof. Integrating by parts, we have

0 [ R  wdr= 0RO+ 0 [ R0 0
= (=1)" [B @7 (x) = Pul@)f ") (@) | + (~1)"! /L,XPna(t)fW (t)dr.

Clearly, we can apply the same procedure to the term (—1)"~' [*B,_(t) f") (t)dt. So, by

successive integration by parts, we obtain
n

1 [ PO 0d = Y (D[R0SO @ - Rla) P @] + 0 - £,
Ja k=]
and this is equivalent to (1.7.14).
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Remark 1.7.2. The formula (1.7.14) can be called a generalized Taylor’s formula. Since,

if we set P,(1) = (t " in (1.7.14), then we get the classical Taylor’s formula:

n o k
1) = fta) + 3, E 0 0) 4 R (fra,0), (1.7.16)
k=1 :
where

1 X
Rl (f:a,x) = 7'/ (x—2)" F" D (1)dr. (1.7.17)
n. Ja
The following theorem, proved in [72], deals with the generalization of the result stated in

Theorem 1.7.3 which also improves the estimation (1.7.12).

Theorem 1.7.5. Let {P,(x)} be a harmonic sequence of polynomials. Let / C R be a
closed interval and a € I. Suppose f : I — R, is such that, for some n € N, ") is absolutely

continuous, then for any x € / we have the generalized Taylor’s perturbed formula:

Fx) =Tu(f30,%) + (=1)" [Pos1 () = Pas1 ()] [f(”);a7x}+6,,(f;a,x)7 (1.7.18)

where

Tu(fra:x) = Zn: D! R0 () = Pla) f9(a), (1.7.19)

and {f(’”;a?x} is defined by (1.7.11). For x > a the remainder G,(f;a,x) satisfies the
estimation

—da

|6n(f;a7x)| <
where I'(x) and y(x) are defined by (1.7.13).

T (Pu, ) [T(x) = 7(x)], (1.7.20)

Proof. Taylor’s generalized formula (1.7.14) can be rewritten as
F@) = Ta(f:0,0) + (=1)" [Pos1 () = Paga ()] [£":0.2] +G(f1a,3),
where
Gulfr,5) = Ro(f30,%) = (=1)" [Pasa (v) = Prsr (@) [ £,
and this is just the representation (1.7.18). By (1.7.15), we have
Gulfia,x) = (=1)" { / RS @)t~ [P ()~ B (@) [£50,1] } . 72D

On the other hand, setting f = B, and g = f (n+1) in Theorem 1.2.1, we get

l X n 1 X X n
x—a/a P,,(t)f( +1)(t)dt_m/a P,,(t)dt/a 1 +l>(t)dt
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< %[F(x) —YOINVT (P Py). (1.7.22)
Note that
[ Bwdr = [P0 = P (9~ P @)
and

[0 @ =0 6) = £ (@) = (x - a) [£3a,4]
so that, after multiplying (1.7.22) by (x —a), we have

[ B0 0d = Brir (9~ P @] [1750,4] | < 54 00 = v0) VT o).

Combining this with (1.7.21), we get the estimation (1.7.20).

The above result gives the following improvement of the estimation (1.7.12).

Corollary 1.7.1. Let the assumptions of Theorem 1.7.3 be satisfied, then the remainder
Gy (f;a,x) defined by (1.7.9) satisfies the estimation

Gulfia0l < =D ny ) (1723)
T 04+ 1) V2n+ 1 7oL o
Proof. If P,(t) = (’;f)n, then it is easy to see that T,(f;a,x) = T,(f;a,x) and

(xfa)'”rl

(=D)"[Pys1(x) = Pir1(a)] = G SO that (1.7.18) becomes (1.7.9), that is G,(f;a,x) =
G,(f;a,x). Also, we have

TEnh) = xia /ax (t(;!););ndt_ (x-la)2 </ax (I;!x)nd)z

~ar | () - (5

2n

x>2‘|
_ n*(x—a)
[(n+1)22n+1)’

ST PP = — " =a” (17.24)

(n+1)\2n+1
Now, we apply the inequality (1.7.20) to obtain the desired result.

that is,

Remark 1.7.3. Denote by A, and A, the right hand sides of (1.7.12) and (1.7.23) respec-

tively, then, we have

— 2n
A—— " A <A,
"+ 1)v2n+1
since obviously wlfﬁ < 1 for all n € N. Moreover, Wﬁ tends to zero when, n

tends to o. So the estimation in (1.7.23) is much better than the estimation in (1.7.12).
We next give another estimation obtained in [72] for the remainder term in the representa-

tion formula (1.7.18).
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Theorem 1.7.6. Suppose that the assumptions of Theorem 1.7.5 are satisfied. Addition-
ally, suppose f("1) is differentiable and such that

for x > a. The remainder G, (f;a,x) satisfies the estimation

M\/T(P P,) (1.7.25)

|Gu(f3a,x)| < NG

forallx >a,x€l.

Proof. From the proof of Theorem 1.7.5, it is easy to see that
Gl fra.3) = (=1)"(x=a)T (£*1,p,). (1.7.26)

From (1.7.26) and making use of the inequality given in Theorem 1.3.1 when f = f("+1)
and g = P,, we observe that
_ (x _ a)ZM(n+2) (x)

< v VT (P, Py),

Go(f30,%)| = (x—a) ‘T (f(nJrl)’Pn)

and the proof is complete.

Corollary 1.7.2. Let the assumptions of Theorem 1.7.6 be satisfied, then we have the

representation (1.7.9) and the remainder G, (f;a,x) satisfies the estimation:

i n(x_a)n+2M(n+2) (x)
n\J:3a, <A = . 1.7.27
[Ga( 3 2)] < Aln) VI2(n+ 1)\ 2n+1 ( )

(t—2)"
n!

Proof. SetP,(r) =

result.

and apply Theorem 1.7.6, then use (1.7.24) to obtain the desired

Remark 1.7.4. In [31, Theorem 2.4] the following estimation can be obtained

(x _ a)n+2M(n+2) (x)

Gn(fra,x)| < An:=

12[(n+1)!]
‘We have
—_ V12
An = 7An>
(n+1)v2n+1
and ﬁénﬁ < 1, for n > 1. So, the estimation established in Corollary 1.7.2 is better

than the one given in [31, p.187]. For some other estimations by using Taylor’s perturbed

formula, see [72].
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1.7.3 Some inequalities for expectation and the cumulative distribution functions

In the present section we apply Theorem 1.3.1 to obtain some inequalities recently given
in [5] for the expectation and cumulative distribution function of a random variable having
probability density function defined on a finite interval.

Let f : [a,b] — R be the probability density function (p.d.f) of the random variable X, that
is, an integrable function satisfying | ab f()dr =1,

E(x):= /abtf(t)dt

its expectation and the cumulative distribution function F : [a,b] — [0, 1], i.e

Flx) = /axf(t)dt, x€ [a,b].

We start with the following result for expectation.

Theorem 1.7.7. Let X be a random variable having the probability density function f :
[a,b] — R. Assume that f is absolutely continuous on [a,b] and f’ € L.|a, b], then

E()_aer 112(

where E(X) is the expectation of the random variable X.

N VA (1.7.28)

Proof. If we put g(¢) =1 in the inequality (1.3.3), then we have

o (5 [ soar) (55 [ )

1

F —a)| f'l|- [/bﬂdz (bia/(;btdt>2}2.

1, 1 2 \* (b—a)?
t_ R =
bfa/a rd (ba/u tdt) 2
and so (1.7.28) is true.

The following Theorems provide inequalities that connect the expectation E(X) and the

However,

cumulative distribution function F(x) of a random variable X having p.d.f, f,

Theorem 1.7.8. Let X be a random variable with p.d.f., f : [a,b] — R absolutely contin-
uous on [a,b] and f’ € Le[a,b], then
b—a 1

| <5 B=a1F (1.7.29)

E(x)+(b—a)F(x)—x—

for all x € [a, D).
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Proof. We use the following identity established by Barnett and Dragomir in [4]:

b b
(b—a)F(x) +E(x) —b= / P 0)dF (1) = / plet) f(0)dr, (1.7.30)
for all x € [a,b], where
(x.1) t—a, a<t<x<b,
x,1) =
u t—b, a<x<t<b.

Indeed, the Riemann-Stieltjes integral | f p(x,t)dF (¢) exists for any x € [a,b] and the for-

mula of integration by parts for Riemann-Stieltjes integral gives

/abp(x,t)dF(t):/:(tf a)dF (1 +/ (t — b)dF (1)
= (- a)F ()| /F(t Yt + (1 —b ‘ f/ F(r

= (b*a)F(X)*/abf(t)dt. (1.7.31)

On the other hand, the integration by parts formula for Riemann-Stieltjes integral also gives

E(x) ;:/u 1dF (i z)‘ f/ 1)

b b
— bF(b) — aF () — / Fl)dt =b— / F(t)dr. (1.732)
a a
Now, using (1.7.31) and (1.7.32), we get (1.7.30).
Now, if we apply the inequality (1.3.3) given in Theorem 1.3.1 for g(z) = p(x,7), we obtain

oz [ wosan (1 [ pwnan) (51 [ oar)|

2f(b Dlf [/ahpz(x,t)dt— (bl/ p(x, z)dt)zr. (1.7.33)

Observe that

b
bla/ plx.1)dt x—a;b, (1.7.34)
and
1 L (- (- +b\?
—X X—a a
S e N
Lo—ap (1.7.35)

12
Using (1.7.30), (1.7.34), (1.7.35) in (1.7.33), we get the required inequality in (1.7.29).
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Theorem 1.7.9. Let X, F and f be as in Theorem 1.7.8, then

b—a x+b| 1 a+b\? 1 2
E F(x)— —(b— o —(b— , (1.7.36
5w+ 252w - < fe-alr [( ) a>] (1736
for all x € [a, D).

Proof. Applying the inequality given in Theorem 1.3.1 in the form (1.3.3), we get

xia/ (t—a)f(t dt—< /(t— dt) <x_la/:f(t)dt)’

1

< T\lﬁ(x—a)l\f/ﬂw Lia /:(t_a)zdt_ (xia./ax(t_a)dt> 2] |

R
= = aPf = (1.7.37)

and similarly,

‘bix/xb(t—b)f(t)dt— (bix/j(t—b)dt) (bix/xbf(t)dtﬂ

1
< 5560 I, (17.38)
for all x € [a,b]. From (1.7.37) and (1.7.38), we can write
X xX—a 1
| t=asoa="S2F )| < =07l (1.7.39)
and
b b—x 1 311 o
| =)0+ "= (1= F@)| < 569717 - (1.7.40)

forall x € [a,b]. Summing (1.7.39) and (1.7.40) and using the triangle inequality, we deduce

/ax (t—a)f(t)dt+ /xb (t—b)f(t)dt — b%aF(x) + bz_x‘

Ly
S (6= + (b —x)]

1 / a+b 2
- L e-alr {3( ) +4(b—a)2}

1 , a+b\* 1 >
—4(b—a)|f||m[<x— 5 ) +12(b—a)]. (1.7.41)

Using the identity (1.7.30) in (1.7.41), we deduce (1.7.36).
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Remark 1.7.5. 1If we take x = a or x = b in (1.7.29) and (1.7.36), then we recapture the

inequality given in (1.7.28) and if we take x = “—;h in (1.7.29) and (1.7.36), then we get

inequalities that are of independent interest

1.8 Miscellaneous inequalities

1.8.1 Dragomir [42]

Let f and g be two functions defined and integrable on [a,b]. If ¢ < f(x) < D, y < g(x) <
I for all x € [a,b], where ¢, @, y, T are given real constants, and £ : [a,b] — [0,0) is

integrable and [ h(x)dx > 0, then
b b b b
‘ / h(x)dx / F(0)2(x)h(x)dx— / h(x) f (x)dx / h(x)g(x)dx

2

< @0 ( [ nar)

and the constant i is the best possible.

1.8.2 Dragomir [42]

Let f, g [a,b] — R be two differentiable mappings on (a,b) and p : [a,b] — [0,00) is
integrable on [a,b]. If f/, g’ € Lu[a,b], then

[ pgas [ pw s [ pise [ pogtos

<5 [ [ reone| [ 17 0rar| [ 1 ota

<11l {/ ot [ piyeae (| bp(x)xdxﬂ ,

and the inequality is sharp.

dxdy

1.8.3 Pachpatte [113]

Let f, g : [a,b] — R be absolutely continuous functions whose derivatives /', g’ € L,[a,b],

p > 1, then
b i
TG0 < 55, L8O o+ Ilg'1) (B

where
1
B(x) = o) (k=) + (b —x)""1],
for x € [a,b], % + é = 1and T(f,g) is the notation set in (2).
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1.8.4 Pachpatte [137]

Let f, g, h: [a,b] — R be continuous functions on [a,b] and differentiable on (a,b). If
I (1) # 0 for each t € (a,b) and f & :(a,b) — R are bounded on (a,b), then

i
1 e
IT(f,8)| < b—ap |7

i
M= (bfa)/abhz(x)dxf </abh(x)dx>2,

and T'(f,g) is the notation set in (2).

IMI,

where

1.8.5 Cerone and Dragomir [18]

Let f, g : I C R — R be measurable functions on / and the intervals [a,b], [c,d] C I. Define

the functional

I(f.gabe d>=ﬁ/f g (x)m%/d Ole0)d
,7/ fx)dx~ /dg(y)dy*blfa/

and assume that the mtegrals 1nvolved in (1.8.1) exist, then
IT(f,8:0,b,¢,d)| < [T(f3a,b) +T(f3c,d) + (M(fsa,b) = M(f;c,d))’]?

1
x [T(g:a,b) +T(gic,d) + (M(g;a,b) — M(g;c,d))*]?, (1.8.2)
where for a measurable function 4 : I — R on [a,b] C I we set the notations

T(hsa,b) = blfa/abhz(x)dxf (bl/bh(x)dx>2

M(h:a,b) = — / h(x)dx,

and the integrals involved in the right membershlp of (1.8.2) exist.

(1.8.1)

1.8.6 Pachpatte [137]

Let f, g: [a,b] — R be continuous functions on [a,b] and differentiable on (a,b), with

derivatives f’, g": (a,b) — R being bounded on (a, b) then

P8 < 1g(b—a)?
where . )
P(f7g):FGfblfa {F/a g(x)dx+G/a f(x)dx}
+(b1a/abf(x)dx) <bia/abg(X)dx), (1.8.3)
in which
o f@TS®) g talh)

2 ’ 2



Griiss-and Ceby§ev—type inequalities 63

1.8.7 Pachpatte [113]

Let f, g: [a,b] — R be absolutely continuous functions with derivatives f’, ¢’ € L,[a,b],

p > 1, then we have the inequalities

2
1S(f,8)| < M|l g N1

1
(b—a)?
1 1 b / /
H(f.8)l < qu/a (g GO 1y + LF GOl Nl o] dx
where %—0—% =1,

(2971 1) (b —a)t™!
g+1)6e

and

H(f,g)= /Fg )+Gf(x)] dx— 2<b a/f )(bla/abg(x)dx>,

in which

1.8.8 Pachpatte [137]

Let f, g: [a,b] — R be continuous functions on [a,b] and twice differentiable on (a,b),

with second derivatives f”; g” : (a,b) — R being bounded on (a,b), then

PU )| < (0= @17l

where P(f,g) is the notation set in (1.8.3).
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1.8.9 Pachpatte [137]

Let f, g: [a,b] — R be continuous functions on [a,b] and twice differentiable on (a,b),

whose second derivatives ", ¢": (a, b) — R are bounded on (a,b). Then

0(£:8)| < 2z (b= a) 1" llg" =

576
where , )
1 S
o(f.g) :ABfm [A/a g(x)dx+B/a f(x)dx}
1 P 1 b
(o [ rwan) (1 [ o) (184
in which

Ao f<a—;—b> B—g<a;—b).

1.8.10 Pachpatte [112]

Let f, g: [a,b] — R be absolutely continuous functions on [a,b] with [, ¢’ € Ly[a,b], then

_a)p? 3 3
ol < UL [ 1= tredl] [ I - san?)

where Q(f,g) is the notation set in (1.8.4) and

(fra b= TN

1.8.11 Pachpatte [124]

Let f, g, h: [a,b] — R be twice differentiable functions on (a,b) and f”, g", " : (a,b) — R

are bounded, then

‘/ P8 — 5z DIf 1
e |, (=5 U
< e | B HOE s

where

D[f,g.] = ( / bg(x)h(x)dx) ( / bf(X)dX> + ( / bh(x)f(x)dx) < / bg(x)dx)
(/fx)g )(/ h(x ) (1.8.5)

B[f,g,h)(x) = [g()[[RC][[f"lleo + [RE | F ()& oo + £ () g (A" oo, (1.8.6)
E(x) = / () d,
in which k(x,t) is given by (1.2.28). ‘
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1.8.12  Pachpatte [124]

Let f, g, h: [a,b] — R be functions with first derivatives absolutely continuous on [a,b]

and assume that the second derivatives ", g”, h" : (a,b) — R are bounded on (a,b), then

‘ba /a F(x)g(x)h(x)dx — D[f,g,h]

1
3(b—a)?

2 b a+b , 1 b
_3(bfa)/a (x—2> (f(x)g(x)h(x)) dx-i-m/a L[f, g h](x)dx

b
< sa | Bl e @I

where D[f,g,h], B[f,g,h](x) are the notations set in (1.8.5), (1.8.6) and

LIf . H(x) = Mm)hm + 880D g 4 MO g,

/\pxt

in which p(x,) is given by (1.2.11).

a+b

t—i dt,

1.8.13 Pachpatte [124]

Let f, g, h: [a,b] — R be continuous on [a, b] and twice differentiable on (a,b) with second
derivatives f”, g”, h" : (a,b) — R bounded on (a,b), then

[ W 3Dl

3(b

3(b— a)/( a+b>M[f,g, h)(x)dx

b
< Sy /| B e HH (o

where D[f,g,h],B[f,g,h](x) are the notations set in (1.8.5), (1.8.6) and

mif g ) = YOI g0y 4 8028, ) MO g,

9= [ [ intnllpte.slasar

in which p(x,r) is given by (1.2.11).
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1.8.14 Pachpatte [132]

Let f, g: [a,b] — R be continuous functions on [a,b] and twice differential on (a,b), with

first and second derivatives f', f”,¢',¢" : (a,b) — R bounded on (a,b), then

1 b
(1.9 < 5 [ AW,

where T'(f,g) is the notation set in (2) and

a+b
A = (x5 ) 17l
"lloo + 118" lloo 1 f" lleo } L(x) + 1" Il | 8" [l L? (x),
for x € [a,b],
1 b (b—a)*> 1 a+b\?
L(x) = - L
0= 5 [ Wi =2 2 (- 222
in which k(x,?) : [a,b]> — R is given by
N2
(t za) , 1€[a,x],
k(x,t) = (t= b)z
T, Z‘E(x,b}

1.8.15 Pachpatte [132]

Let f, g: [a,b] — R be continuous functions on [a,b] and twice differentiable on (a,b),

with second derivatives ", g" : (a,b) — R bounded on (a,b), then

IT(f.2) /B

where T'(f,g) is the notation set in (2) and

B = FG( “;b)z

b
e S22 1P+ 1L MG3) 172,
for x € [a, b],
J)=fla) . _sb)—gla)
F= b—a G_ﬁ’
L e’ 1]
M(x):m/a /a |p(x’t)|‘p(t’s)|dsdt=§ [W+4 +E (b_a)Z,

in which p(x,t) : [a,b]> — R is given by

t—a, tE€la,x],
plx,t) =
t—b, t€(x,bl.
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1.8.16 Pachpatte [90]

Let f, g: [a b] — R be functions such that f (n=1), g<"’1) are absolutely continuous on
[a,b] and £, g € L [a b for some n € N, then

’ (0)g(x)dx — (1)_161/ ’ f(x)dx) <b1 / bg(x)dx>
_Z(biia)z/ (ZZ:F,((XO (): Gk(x)> x)] dx

b
e+ s .] An (o),
)

1
g -
2(b—a)? /

where ( k+1 ( )k( )k+l

— b—x +(—=1)*(x—a

T — (k)

= e | 60,
o (b—x)k+l—|—(—1)k(x—a)k+l ®
Guto) = | e £ )
b
0= [ IKa(xlar,
in which K, (x,7) : [a,b]> — R is given by
(t—a)"
( ) T, IS [a,x],
Ky (x,t) = :
n\A, t—p)"
UZDF e )

for x € [a,b].
1.8.17 Pachpatte [119]
Let the functions f , g |a,b] — R be such that f (n=1) o(n=1) are absolutely continuous on
[a,b] and ), ¢ € L.[a,b] for some n € N, then

b
|A[f,g;a,b;n]| < m”ﬂmnwnﬂn)nw[l [En(x)])dx,

where

1 b
A[fvgvavb’n}:b (l/
- a

n—1
f@+ Y F(x)
k=1

x)—l—ZZ;Gk(x) dx
x)—i—:Z;Fk(x) dx) (bla/abg(x)dx>
(x)—i—:Z;Gk(x) dx) <bia/abf(x)dx>]

nza(bia/;f(x)dx> <bla/abg(x)dx>,

b
En(x) :/ |Ge— 1) p(a,t) |, (1.8.7)
in which Fy(x), Gy (x) are given by (1.%.6), (1.5.7) and p(x,t) is given by (1.2.11).
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1.8.18 Pachpatte [119]

Let the functions f, g : [a,b] — R be such that f° (n=1) o(n=1) gre absolutely continuous on
[a,b] and ), g € L. [a,b] for some n € N, then

1 b = n
|B[f;g§ayb;”]|<m/a g(x)+k§,1Gk(X) Hf( )Hm
n—1
+ @)+ Y F@)| |8 | En(x)dx,
k=1
where
1 b n—1 n—1
Blf.giabin] = o— [ |f0)+ L AW [g00)+ ¥ Guw) | dx
a k=1 k=1

(e o) (555 [ o)
4 (bia/b dx) (bia/abf(x)dxﬂ,

and E, (x) is given by (1.8.7), and Fi(x), Gi(x) are given by (1.5.6), (1.5.7).

n—1
@)+ Filx)
k=1

n—1
g(x) +I;] Gr(x)

1.8.19 Dragomir and Khan [51]

Leta = (ay,...,a,) and b = (by,...,b,) be two sequences of positive real numbers with

O<a<ai<A<oo, 0<b<b<B<o, (1.8.8)

foreachi € {1,...,n} and let C,(@,b) is given by (1.6.2) replacing f, g by @, b, then

- 1 (A—a)(B=b) [ 1 _ l" '
|Cn(a,b)| < ZW <nlz{al> (”iz;bl> )

and the constant i is best possible.

1.8.20 Dragomir and Khan [51]

Leta = (ay,...,a,) andb = (by,...,b,) be two sequences of positive real numbers satisfy-

ing (1.8.8) and let C,(a,b) is given by (1.6.2) by replacing f, g by @, b, then

G(@ )l < (VA-va) (VB ) (zla i“’) <i;b>

i=1

and the inequality is sharp.
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1.8.21 Pachpatte [99]

Let f(n), g(n) be real-valued functions defined on N, , = {a,a+1,...,.a+m=>b},a € R,
m € N, and equal to 0 if n ¢ N, 5, for which Af(n),
Deltag(n) exist and |Af(n)| < A,

real constants. Then

1 b—1 1 b—1 b—1
pa L )~ = [(n;,g(”)) (;f<n+ 1>>

b1 b1 | b1 b1
+<Zf(”)> (Zg(”+1)> +m (Zf(”+1)) (Zg(n-i-l))‘

Ag(n)| < B, for n € N, where A, B are nonnegative

n=a
AB bl 5
<7 H )
L n;l( (n))
where
b—1
H(n) =) |r(ns)|,
in which
s—a, s€lan—1],
r(n,s) =
s—b, s&n,b]
forn, s € Nyy.

1.8.22 Pachpatte [105]

Let f(n), g(n), h(n) be real-valued functions defined on Ny, = {a,a+1,...,a+m = b},
a € R, meN, and equal to 0 if n ¢ N,;, for which Af(n), Ag(n), Ah(n) exist and
|Af(n)| < My, |Ag(n)| < My, |Ah(n)| < M3, for n € Ny, where My, M>, M3 are non-

negative constants. Then

1 b—1 1 1 b—1 1 b—1
—— ¥ f(n)g(mh(n) — 5 [(b )3 g<n>h<n>> (ba 2f<n>>

1 & 1 b=l | bl | bl
b—1
< 3(,,1 5 X [l M-+ o)) M 1 ) ) 1] B,
where
1 a+b
50 =[5 +[- 32
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1.9 Notes

The inequality in Theorem 1.2.1 is taken from Mati¢,Pecari¢ and Ujevi¢ [72]. In [72] it
is shown that, if a factor is known, say g(r), ¢ € [a,b], then instead of using the Griiss
inequality (3) to estimate the difference given by T'(f,g), it is better to use the inequality
(1.2.1). They demonstrated this by improving some results given by Dragomir in [31]
related to Taylor’s formula with integral remainder. Theorem 1.2.2 deals with a Griiss-type
inequality proved by Dragomir and McAndrew [34]. The inequalities in Theorems 1.2.3—
1.2.5 deal with Griiss-type integral inequalities involving functions and their derivatives
and taken from Pachpatte [96,105].

The Cebysev-type inequality in Theorem 1.3.1 is taken from Mati¢, Petari¢ and Ujevi¢
[72]. Theorem 1.3.2 is a generalization of the Ceby3ev inequality and taken from Dragomir
[42]. Theorems 1.3.3-1.3.5 deal with Cebysev-type inequalities established by Pachpatte
in [112,113). Section 1.4 contains inequalities of the Griiss-and Ceby3ev-type investigated
by Pachpatte in [106,111,117,127]. Section 1.5 deals with some more inequalities of the
Griiss-and Ceby3ev-type involving functions and their higher order derivatives and taken
from Pachpatte [118,120,121]. The discrete Griiss-and Cebygev-type inequalities in The-
orems 1.6.1-1.6.5 are due to Pachpatte [128,133,138]. The results in Theorems 1.7.1 and
1.7.2 are due to Dragomir and McAndrew [34]. Theorem 1.7.3 is taken from Dragomir
[31]. Theorems 1.7.4—1.7.6 are due to Mati¢, Pecari¢ and Ujevi¢ [72] and the results in
Theorems 1.7.7-1.7.9 are taken from Barnett and Dragomir [5]. Section 1.9 contains some

useful miscellaneous inequalities.



Chapter 2

Multidimensional Griiss-Cebysev
and-Trapezoid-type inequalities

2.1 Introduction

During the last two decades many researchers have given considerable attention to the fa-
mous inequalities (1), (3) and (4) associated to the names of Ceby3ev, Griiss and Trapezoid.
In view of the usefulness of these inequalities and their applications, many authors have in-
vestigated a large number of new multidimensional, Griiss, CebySev and Trapezoid type
inequalities. Some of these results provide simple and elegant extensions of the inequali-
ties (1), (3) and (4) and have a wider scope of applicability. These results did not just add
new objects of study, but also brought new insights and techniques to handle such inequal-
ities. This chapter deals with a number of new multidimensional inequalities discovered
by various investigators, which claim their origin to the well-known inequalities in (1), (3)

and (4). Some applications are given to illustrate the usefulness of certain inequalities.

2.2 Some Griiss-type inequalities in inner product spaces

In this section we offer some fundamental Griiss-type inequalities established by Dragomir
[32,43,53] and Dragomir, Pecari¢ and Tepe$ [56] in inner product spaces.

We start with the following Griiss-type inequality investigated in [32].

Theorem 2.2.1. Let (H,(-,-)) be an inner product space over K (K=R, C) and ¢ € H,

le]| = 1. If ¢, v, ®, I are real or complex numbers and x, y are vectors in H such that the

condition
Re(®e —x,x—¢e) >0, Re(le—y,y—7ye) >0, (2.2.1)
holds, then we have the inequality
(63) ~ (we)(e)] < 71@ = IIT 71 222)

The constant % is the best possible.

71
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Proof. It is obvious that (see [156])

(xvy) - (xve)(evy) = (X— (x7e)€7y - (yve)e)' (223)
Using Schwarz’s inequality in inner product spaces, we have

|(63) = () (ey)]* = (x— (v, e)e,y = (. 0)e)

< Jlx= (x,)ellPlly = (s e)el
= (W=l eP) (WP = l0e)P). @24
On the other hand, a simple computation shows that
(@~ (x.0)) ((re) = 8) — (@e—xx—ge) = x| ~|(xe) 2, (225)
and
(T-.0) (0:)-7) — Te—yy—r) = WP - o) 2. @26)

Taking the real part in both the above equalities, we can write

Re {(be (x,€)) (W*@)] —Re(®Pe —x,x — ¢e) = ||x]|> — |(x,e)|?, (2.2.7)

and
Re [(T—(1e)) ((5e) =) | ~Re(Te—yy—7ye) = Iyl ~(me) . (228)
From the condition (2.2.1), we deduce
> ~|(x.e) < Re [ (@~ (x.0)) (0] =6 | (229)
and
Iy 1P~ I < Re | (= (1)) () - 7) | 22.10)

Using the elementary inequality 4Re (ab) < |a-+b|* holding for real or complex numbers

a,b, fora:=®— (x,e) and b := (x,e) — ¢, we get
Re (@ (v.0)) ((v.e) ~5)] < 710 o2 @211)

and, similarly

Re (0= () (Tre) - 7)] < gIr— 7. 2.12)

Consequently, using (2.2.3)—(2.2.12), we have successively
|(63) = (@) (e )2 < (IlelP = 1 e)P) (Iv117 = 10 e) )

<Re|(@— (x,0)) ((ce) =) | Re (T = (.e) (0ne) -7)
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1
b — 62T — v
I 0T,
from which we get the desired inequality (2.2.2).

To prove that the constant }1 is sharp, we can restrict ourselves to the real case. Let e,m € H

with ||e]| = ||m|| = 1, e L m and assume that ¢,y, P, are real numbers. Define the vectors
_®+9 -9  y+l I'-— v
y ‘fTy YT
Then
b o6\2
(Pe —x,x— pe) = <2¢) (e—m,e+m)=0

and similarly (I'e — y,y — ve) = 0, i.e., the condition (2.2.1) holds. Now, observe that
_ D+ ¢ y+TI D—9¢ I'—y
(P49 y+T
waen=(252) (557)-

()~ () )| = 1@ 9lIC 7],

which shows that the constant % is sharp.

and

Consequently,

In [53], the author gave an alternative proof of (2.2.2) by using the following lemmas.

Lemma 2.2.1. Let a,x,A be vectors in the inner product space (H,(-,-)) over K (K =
R,C) with a # A. Then

Re(A —x,x—a) >0,

if and only if

o2

1
<:lA—al.
| <31a-a
Proof. Define

a+A 2
2

1
I, ' =Re(A—x,x—a), L:= Z||A—a|\2— Hx—

A simple calculation shows that
Iy = L = Re[(x,a) + (A, x)] ~Re(A,a) — |lx]*,

and thus obviously, /; > 0 if and only if I, > 0, showing the required equivalence.

The following corollary is obvious.
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Corollary 2.2.1. Letx, e € H with |le| = 1 and J,
Delta € K with § # A. Then

Re(Ae —x,x— 8e) >0,

if and only if

1
< - |lA-46].
fl| < 5 1A=l

S+A
o
2

Lemma 2.2.2. Letx,e € H with ||e|| = 1. Then one has the following representation
0 < ||x||> = |(x,e)* = inf ||x— Ae|?, (2.2.13)
AeK
where K is as in Lemma 2.2.1.
Proof. For any A € K observe that
(x—Ae,x—(x,¢)) = [lx]* — |(x,€) > = A [(e,x) = (e,x)le]|*] = 1> — |(x, ).
Using Schwarz inequality, we have

[P = ()] = |(x— e, x = (x,e)e)

<= 2el? x = (x,e)el = x — Ael* [|lx]]* = |(x.e)]
giving the bound
el = 1Cxs ) < [l = Ael . (2.2.14)
Taking the infimum in (2.2.14) over A € K, we deduce
lx[l> = (e e) < liggﬂx—lel\z-
Since, for Ag = (x,e), we get ||x — Agpe||> = ||x||> — |(x,e)|?, then the representation (2.2.13)

is proved.

The following result is proved in [53].

Theorem 2.2.2. Let (H,(-,-)) be an inner product space over K (K=R, C) and ¢ € H,
le]| = 1. If @, 7y, ®, I' are real or complex numbers and x, y are vectors in H such that the

conditions (2.2.1) hold, or, equivalently, the following assumptions

o+ 1 y+T 1
— el <z — I e <=zl — 2.
‘x 5¢ \2\(13 o, |y 7 \2|F Y, (2.2.15)
are valid, then one has the inequality
1
|(x,y) = (v e)(ey)] < 7|P— [T = . (2.2.16)

The constant % is the best possible.
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Proof. As in the proof of Theorem 2.2.1, we have (2.2.3) and (2.2.4). Using Lemma 2.2.2

and conditions (2.2.15), we obviously have

1 ()] 1
2 212 _ < ,b < —|P—
[l = 1Cxe)]* = inf Jlx—Ael| < Hx 5 H <5le-9l, 22.17)
and
1 r 1
[y =1 e) ] llrel]{(lly Ae| < |ly— || < 3 IT=7l. (2.2.18)

Using (2.2.17), (2.2.18) in (2.2.4), the desired inequality in (2.2.16) follows. The fact that
% is the best possible constant, has been shown in the proof of Theorem 2.2.1 and hence
we omit the details.

The refinement of the inequality (2.2.2) proved in [53] is embodied in the following theo-

rem.

Theorem 2.2.3. Let (H,(-,-)) be an inner product space over K (K=R, C) and ¢ € H,
le]| = 1. If @, 7y, ®, I" are real or complex numbers and x, y are vectors in H such that the

condition (2.2.1) or equivalently, (2.2.15) hold, then we have the inequality
|(x,y) = (x,€) (e, y)]
1
< 710 = 9|~ 7] — [Re(@e —x.x— ge)]* [Re(Te — y.y—ye))? (22.19)

Proof. Following the proof of Theorem 2.2.1, we have (2.2.3), (2.2.7), (2.2.8), (2.2.11),

(2.2.12) and consequently, we observe that

() = (e < [ 310 0 - (Rele —x.x- ge))) |

X HF—YZ— ([Re(Fe—y,y—ye)]é)z]. (2.2.20)
By a suitable application of the elementary inequality
(mz—nz) (p2 —qz) < (mp—nq)z, (2.2.21)
for m,n, p,q € R, to the right hand side of (2.2.20), we have
|(x.) = (x.€) (e,

1 ! 1217
< Z|CI>— olIT—7]— ([Re(dJe—x,x— de)]? [Re(Fe—y,y—ye)]2> } ,
from which the desired inequality in (2.2.19) follows.
The following Theorem given in [56] deals with the inequalities of the pre-Griiss-type in

inner product spaces.
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Theorem 2.2.4. Let (H,(-,-)) be an inner product space over K (K =R, C) and ¢ € H,
|le]| = 1. If ¢, ® are real or complex numbers and x,y are vectors in H such that either the

condition
Re(®Pe —x,x—¢e) >0

or equivalently,

Hx o+ H f@ 9|, (2.2.22)
holds true, then we have the inequalitles
[(6,y) = (xe)(ey)| < *I‘P O (IlylI* = 1(e)l )% (2.2.23)
and
[(6y) = (x,e)(ey)] < *\‘P BllIyll — (Re(@e —x,x— 9e))? |(y.e)]. (2.2.24)

Proof. As in the proof of Theorem 2.2.1, we have (2.2.3) and (2.2.4). Now, the inequality
(2.2.23) is a simple consequence of (2.2.2) for x =y or of Lemma 2.2.2 and (2.2.22).
Furthermore, from the proof of Theorem 2.2.1, we have (2.2.7) and (2.2.11). Using (2.2.7)
and (2.2.11), we have

1 2 1\2
Il — | (x,0) < <2c1>— ¢) ~ ((Re(®e—x,x—ge))?) . (2225)
From (2.2.4) and (2.2.25), we get
[(x— (x,e)e,y— (v,e)e)|?

: 1
< <<;|<I>—¢|> - ((Re(CIJe—x,x—q)g))Q)z) (||y||2—|(y,e)|2). (2.2.26)

Now, by a suitable application of the elementary inequality (2.2.21) to the right hand side
of (2.2.26) and rewriting, we get the desired inequality in (2.2.24). The proof is complete.
Before closing this section, we present a Griiss-type inequality for sequences of vectors in
inner product spaces given in [43].

The following lemma given in [43] is of interest in itself.

Lemma 2.2.3. Let (H,(-,-)) be an inner product space over the real or complex number
field K,x; e Hand p; >0(i=1,...,n)suchthat}} , p; =1 (n >2). If x, X € H are such
that

Re(X —x;,x;—x) =0, (2.2.27)

foralli € {l1,...,n}, then we have the inequality

n
sz ‘xl” - szxz

2
1
<glx — x| (2.2.28)

1 .
The constant  is sharp.
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Proof. Define

n n
I = (X— Zpixi,ZPixi—x> )
i=1 i=1

and
n
L= Zp,-(X — Xj, X —X).
i=1
Then
2
n n n
Li=Y pi(X,x)—(X,x)— | Y pixil| + Y pi(xi,x),
i=1 i=1 i=1
and
n n n
L=Y pi(X,x)—(X,x)= Y pillxil>+ Y pi (xi,x).
i=1 i=1 i=1
Consequently,
2
n n
L—=hL=Y pillxl®— |} pix (2.2.29)
i=1 i=1
Taking the real value in (2.2.29), we can state
2
n 2 n n n
Zpi||xi|| - Zpixi =Re| X — Zpixi7 Zpixi —X
i=1 i=1 i=1 i=1
n
—Y piRe(X —xi,xi—x), (2.2.30)

i=1
which is an identity of interest in itself.

Using the assumption (2.2.27), we can conclude by (2.2.30), that

2
n n n n
ZP:’”XI‘Hz* Zpixi <Re <X2pixi72p,~xix> . (2.2.31)
i=1 i=1 i=1 i=1

It is known that if y, z € H, then

4Re(z,y) < |2+, (2.2.32)

with equality if and only if z =y. Now, by (2.2.32), we can state that

n n ‘l n n
Re (X =Y pixi, ) pixi —x> <zIE- Y pixi+) pixi—x
=1 = i=1 i=1

Using (2.2.31), we can easily deduce (2.2.28).

’ 1
= 71X —xP.
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To prove the sharpness of the constant }T, let us assume that the inequality (2.2.28) holds

with a constant ¢ > 0, i.e.,
2

n
0< Y pillxil* - <ol X —x|?, (2.2.33)

i=1

iXi

for all p;, x; and x, X as in the hypotheses. Assume that n =2, p; = py = % x; = x and
xo =X with x, X € H and x # X. Then, obviously,

(X —x1,x1 —x) = (X —x2,x0 —x) =0,

which shows that the condition (2.2.27) holds. If we replace n, p1, p2,x1,Xx2 in (2.2.33) as

above, we obtain

sz ‘-xl” - szxz

from where we deduce ¢ > Wthh proves the sharpness of the constant factor 1 i

x+X 2
2

1
= ( [l + 11112 ~ ) = 2 IIX = <cllx =,

The following Griiss-type mequallty holds (see [43]).

Theorem 2.2.5. Let (H, (-

,+)) be an inner product space over K (K =R, C) and x;, y; €
H,pi=0,(i=1,....n) (n>22)with Y , p;=1.1fx, X, y, Y € H are such that

Re(X —xj,xi—x) =20, Re(Y —y,yi—y) =0,

foralli € {l1,...,n}, then we have the inequality

n

Y pilxiyi) (Z pixi, me>

1
< g IX =¥ -y (2.234)
i=1

1 .
The constant 7 is sharp.

Proof. A simple calculation shows that

n

Z (X1, i) (ZP:MaZP:}’:) = Z pipj(Xi—Xj,yi —Yj)- (2.2.35)

i=1 z J=1
Taking modulus in both parts of (2.2.35), and using the generalized triangle inequality, we

obtain

ZPsz X —xj,yi— ;)| (2.2.36)

i=1 1] 1

Y pilxi,yi) (Z pixi, Zm:)

By using Schwarz’s inequality in inner product spaces we have

[ =531 7)] < =il =311 (22.37)
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fori, j€{l,...,n}, and therefore

n

Z (%1, 1) <Z pixi, pryi>

1 n
<3 Y pipjllxi—xjl[|yi = ;- (2.2.38)
ij=1
Using the Cauchy-Schwarz inequality for double sums, we can state that
l n
3 2 pivjlxi=xlllyi =yl
ij=1

1 1
1 & 2 2
< (2 )y Pipj||xi—xj||2> ( Z pipillyi— il ) : (2.2.39)
ij=1

i,j=1
and a simple calculation shows that

2
n n n
5 Z pipjllxi— x> =Y pillxl* = || Y pixi||
=1 i=1 i=1
and
1 n 2 n 2 n 2
5 L pipilyi=yillP = Y pelyill” = || X povi
ij=1 i=1 i=1
We obtain
n
Z pi(xi,yi) szx,,Zp,y,
i=1
1 1
2\ 2 2\ 2
n 2 n n 2
< | Y pillxil> = | Y pixi Y pillyill* - (2.2.40)
i=1 i=1 = i=1
Using Lemma 2.2.3, we know that
2
n 2 n 1
Y pillill* - X < 51X —a, (2.2.41)
i=1 i=1
and
2\ 2
n 2 n 1
Y pillyill® = || X pivi <Y =yl (2.2.42)
i=1 i=1

Using (2.2.41) and (2.2.42) in (2.2.40), we get the desired inequality in (2.2.34)

To prove the sharpness of the constant }1, let us assume that (2.2.34) holds with a constant
c>0,1ie

sz x”)’z <ZP;XHZP1)’1>

<X =Y =y, (2.2.43)
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under the above assumptions p;, x;, yi, X, X, ¥, Y and n > 2. If we choose n =2, x| =

x,xn=X,y1=y, yzzY(x;éX,y;éY)andpl:pzz%,then

2 2
Zpl(xuy, (Z ,Zpiyi)— szp,(xl X, Yi—Yj)
=1 i=1

tjl

= Y pipjlxi—xjyi— )—*(x X,y—Y),
1<i<j<2

and then

1
= =X y-7).

(i, i) (Z pixi, Z pzy,>

Choose X —x =1z, Y —y =1z, z# 0. Then using (2.2.43), we derive

*HZII2 cllzl|*,z #0,

which implies that ¢ > %, and the Theorem is proved.

2.3 Griiss-and Cebyéev-type inequalities in two and three variables

This section deals with some Griiss and CebySev-type inequalities established by Pachpatte
in [89,91,122,129], involving functions of two and three independent variables.

LetA=[a,b] X [c,d],a, b, ¢, d E R. The partial derivatives of a function A(x,y) defined on
A are denoted by Dh(x,y) = aX h(x,y), Dah(x,y) = ay h(x,y), DaD1h(x,y) = %{;xh(x,y).
We denote by C(A) the class of continuous functions & : A — R for which Dh(x,y),
D>h(x,y), DaDih(x,y) exist and are continuous on A and belong to L..(A). For any function
h(x,y) € Leo(A), we define ||h[| = sup(, y)ea [2(x,y)| < . For convenience, we introduce

the following notation to simplify the details of presentation:

k=(b—a)(d—c),

H(x) = [i(b_a)2+ (x_a;rb>2

Hy(y) = [l(dc)2+ <y C;d>2

P =@ [ e+ ¢-a) [ sixsas).

)

)

Gley) = [(d—e) [ steyaso-a dg(x,sms],
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aoe) =) [ [ stespasars sy [ [ stesyasar,
mte) =gt [ [ ptenpistesasas ) [ [ ptnpistsasar
aae) =80) [ [ atvsipastestasai ey [ [t s)pag s)asar,
aste) =g(e) [ [ per)atrs)DaDy 0,5)dsa

+f(x.y) /a ' /c dp(x,t)él(y,s)Dleg(t»S)dsdt,
M, (x,y) = [g(Ce ) I1D1flleo + | (2, 9) [ D18]| oo,
Ma(x,y) = g ) ID2f [l + | £ (x, 7)1 D28 ]|,
M;(x,y) = [g(x,y)|1D2D1flloo + | £ (x,9) [ D2D1g] |
A(x,y) = [ID1 flleo(d = €)H1 (x) + | D2f || oo(b = @) Ha(y) + [ D2D\ f || ooHi (x) Ha(y),

B(x,y) = [D1gll-(d — ¢)Hy (x) + [ D2gle= (b — @) Ha(y) + || D2D1 8| H1 (x) Ha (),

for some suitable functions f, g defined on A, and p : [a,b]> — R, ¢ : [c,d]? — R are given
by

) t—a, t€]a]
p(x’t)_{t& t € (x,b]

(.5) = s—c, SE€E][ey]
7 s—d, se€(yd

and set

Lih(x,y)] = / ’ / C o(eO)DIA(E,5)dsdr
b rd b rd
+/ / q(y,s)Dzh(t,s)dsdt+/ / p(x,1)q(y,s)DaDyh(t,s)dsdt,

b pd
MIh(x,y)] = / / p(x,1)q(y,5)DaD1h(t,s)dsd,
a c
for some suitable function % defined on A.

We begin with proving some auxiliary results.
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Lemma 2.3.1 (see [37]). Let & : A — R be such that the partial derivatives D;h(x,y),
D>h(x,y), DaDih(x,y) exist and are continuous on A. Then for all (x,y) € A, we have the

representation

kh(x,y) — /ab /C.dh(t,s)dsdt = L[h(x,y)]. (2.3.1)

Proof. We use the following identity, which can be easily proved by integration by parts,

B B
g(u) = 5o a/ g(z)dz—l—ﬁ%oc/oC e(u,z)g (2)dz, (2.3.2)

where e : [a, B]* — R is given by
z—a, z€|[o,u]
e(u,z) =
=B, z€ (up]
and g is absolutely continuous on [, B]. Now, write the identity (2.3.2) for the partial map
h(-,y),y € [c,d], to obtain

1 b 1 b
=— o D 2.3.
hy) = 5= [ ey)dr+ — [ plenDineya, (233)
for all (x,y) € A. Also, if we write (2.3.2) for the map A(r, -), we get
d
/ h(t,s ds+—/ q(y,5)Dh(t,s)ds, (2.3.4)
—c

for all (,y) € A. The same formula (2.3.2) applied for the partial derivative Dh(-,y) will

produce

d 1 d
Dih(t,y) = 7 / Dlh(t,s)ds—l—ﬂ/ q(y,8)D2D1h(t,s)ds, (2.3.5)
o - c

—c /.
for all (¢,y) € A. Substituting (2.3.4) and (2.3.5) in (2.3.3), and using the Fubini’s theorem,

we have

h(x,y) = bi / ’ [dic / dh(;,@dwﬁ / dq(y7s)D2h(t,s)ds} dt

aJa

1 b 1 d 1 d
+m/a p(x,1) {d—c[ D]h(t7s)ds+ﬁ/c q(y,s)Dleh(t,s)ds]dt

= m [./ab /th(t,S)dsdt +'/ab /qu(y,s)Dzh(z,s)dsdt

b rd b d
+/a /C p(x,t)Dlh(Ls)dsdt—l—./a /C p(x,t)q(y,s)Dleh(t,s)dsdt}. (2.3.6)

Rewriting (2.3.6), we get the required identity in (2.3.1).
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Lemma 2.3.2 (see [8]). Letz: A — R be a continuous mapping on A and D,Dih(x,y)

exists on (a,b) X (c,d). Then, we have the identity
kh(x,y)—H(x,y) :M[h(x7y)]7 (2.3.7)

where
b d b rd
H(x7y):(dfc)/u h(t7y)dt+(bfa)/c h(x,s)dsf'/a /C h(t,s)dsdr.
Proof. Integrating by parts twice, we can state:
/a ' / "t —a)(s — )DaDyh(t, s)dsdt = (x—a)(y— c)h(x, )
—(y—c) /axh(t,y)dt—(x—a) /Cyh(x,s)ds—I—/:/Cyh(t,s)dsdt, (2.3.8)
/ax/yd (t—a) (s —d)DaDh(t,s)dsdt = (x—a)(d — y)h(x,y)
X d X rd
f(dfy)/a h(t,y)dtf(xfa)/y h(x,s)ds+/a /y h(t,s)dsdt, (2.3.9)
/x ’ /y (0= b) (s—d) DaDyh(t,5)dsdt = (b—)(d — y)h(x.y)
b d b rd
—(d—y) / h(t,y)dt — (b—x) /} h(x,s)ds—f—/x /) h(t,s)dsdt, (2.3.10)
/ ’ / "t = b)(s — ) DaDy h(t, 5)dsdt = (b—x)(y— c)h(x,y)

b y b ry
—(y—c)/ h(t,y)dt — (b—x)/ h(x,s)ds+/ / h(t,s)dsdr. (2.3.11)
Adding (2.3.8)—(2.3.11) and rewriting, we easily deduce (2.3.7).

In the following theorems, we present the inequalities investigated in [89,122].
Theorem 2.3.1. Let f, g € C(A). Then
1 b pd
EG)< 35 [ [ PGy (d - () + Mal.y) (b - Ha)
a c

+M;(x,y)Hi (x)Ha (y)] dydx, (2.3.12)

and

1 b pd
EGol<g | [ By (23.13)

where

b pd
E(f&)z% /a /C f(x,y)8(x,y)dydx

_ <11{ / ’ / ‘ f(x,y)dydx) <]1{ / ’ / ’ g(x,y)dydx). (23.14)
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Proof. From the hypotheses, we have the following identities (see, Lemma 2.3.1):
b

kf(x,y) = / / ! fle,s)dsde + / ’ / (e f (1, 5)dsdr

b rd b rd
+ / / 4(y.5)Daf (¢, 5)dsd1 + / / p(x.0)q(ys)DaD f(t,5)dsdi,  (2.3.15)

and

b rd b rd
kete) = [ [ eteodsar+ [ [ plxnpigte,s)dsar
a C a c

b rd b prd
+ [ [ aopastesiasar+ [ [ plxnglusDaDiglesdsar,  @3.16)
a c a C

for (x,y) € A. Multiplying (2.3.15) by g(x,y), (2.3.16) by f(x,y), and adding the resulting

identities, we get
Zkf(xay)g(xay) :A()(X,y) +A1 (X,y) +A2(X,y) +A3(X,y). (2317)

Integrating (2.3.17) over A and rewriting, we get

1 b rd
E(f,g) = ﬁ/a /L [A1(x,y) +A2(x,y) +As(x,y)] dydx. (2.3.18)

It is easy to observe that

A1 (x,y)| < My (x,)(d — c)Hi (x), (2.3.19)
|A2(x,y)| < Ma(x,y) (b —a)Ha(y), (2.3.20)
A3 (x,y)| < M3(x,y)Hi (x)Ha(y), (2.3.21)

for (x,y) € A. From (2.3.18)—(2.3.21), we get

b rd
ECI< 55 [ [ 141G+ x| + ) dyd

1 b d
< 27{2/61 /C M (x,y)(d — c)H (x) +Ma(x,y)(b—a)Hy(y) + M3 (x,y)H) (x)Ha (y)] dydx.

This is the required inequality in (2.3.12).
The identities (2.3.15) and (2.3.16) can be rewritten as

Kf (o)~ / ’ | / ! s)dsdt = LLF(ry)]. (23.22)

and

b rd
kg(x,y)f/a /C g(t,s)dsdt = L[g(x,y)], (2.3.23)
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for (x,y) € A. Multiplying the left hand sides and right hand sides of (2.3.22) and (2.3.23),

we have

d b
€ p(engtn) ko) [ [ st stasai ki) [ [ rte.spasar

+ </ab'/cdf(t’s)dsdt> (/ab./cdg(t,s)dsdt) = L[f(x,y)]L[g(x,y)] (2.3.24)

Integrating (2.3.24) over A and rewriting, we get

8= / / 1 (x,y)]L g (x,y)|dydx. (2.3.25)

From (2.3.25) and using the properties of modulus, we get

B0 <5 [ [ st y)avas 0326)

It is easy to observe that

IL[f(x,y)] / / P (e, )||DLF (2,5 |dsd

bord b rd
+/H/L_|6I(y7S)|\sz(t,s)|dsdt+/a /L 1p(x,0)||g(v,5)||D2D1 f(t,5)|dsdt

b rd
<Ioiflle [ [ Iptenlasar

b rd b rd
102l [ [ lats)dsdi+ 10201 f e [ [ b)) dsa
b
= 1D flletd =) [ p(e.r)

od b pd
ADaf b= [ laGs)lds+[DaDisf e [ [ Iptenllaty.lasar
= D1l = By () + D2 (b= a) o (3) + D21 ()
= A(x,y). (2.3.27)

Similarly, we have

IL[g(x,y)]| < B(x,y). (2.3.28)

Using (2.3.27) and (2.3.28) in (2.3.26), we get the desired inequality in (2.3.13). The proof

is complete.
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Remark 2.3.1. From (2.3.17), (2.3.19)—(2.3.21), it is easy to obtain the inequality
|2k f(x,y)8(x,y) —Ao(x,y)| < M) (x,y)(d — c)H) (x)

+Ma(x,y)(b—a)Ha(y) + M3 (x,y)H1 (x)Ha(y), (2.3.29)

for (x,y) € A and from (2.3.24), (2.3.27), (2.3.28), it is easy to see that the following in-
equality

et~ g [ [ [ stesasar +aten) [ [ stesyasa

(L [ ) (][]

1
holds for (x,y) € A.

Theorem 2.3.2. Let f, g € C(A). Then
Lbord 1 (b pd 1 b pd
’k/g /C f(x,y)g(x,y)dydx + (k/a /C f(x,y)dydx) (k/a /C g(x,y)dydx)

b pd
i [ T nF ) 069G v

1 b pd
S / / M3 (x,y)Hi (x)H2 (y)dydx, (2.3.31)
and
1 b pd
L[ s
1 b pd o . 1_ .
) /a /c [f(x,y)G(x,y)+g(x,y)F(x,y)—kF(x,y)G(x,y)} dydx
1 b pd
<k7||D2D1f||mI\D2D1gllm/ / [Hi (x)Ha ()] dydx, (2.3.32)
where

F(x,y) =F(x,y) — /ub /cdf(t,s)dsdt,é(x,y) =G(x,y) — /ab /cdg(t,s)dsdt.



Multidimensional Grijss»éebyéev and-Trapezoid-type inequalities 87

Proof. From the hypotheses, we have the following identities (see, Lemma 2.3.2):

kf(x,y) = F(x,y) / / flt,s dsdt—|—/ / (x,6)q(y,s)D2D; f(t,s)dsdt, (2.3.33)

and

b pd b rd
kex.y) = Gley) = [ [“glto)dsdr+ [ [ p(en)gs)DaDig(e,s)dsdr, - 2334)

for (x,y) € A. Multiplying (2.3.33) by g(x,y), (2.3.34) by f(x,y), and adding the resulting

identities, we get

2kf(x,y)g(x,y) = g(x,y)F (x,y) + f(x,9)G(x,y) — Ao (x,y) +A3(x,y). (2.3.35)

Integrating (2.3.35) over A and rewriting, we have

b pd 1 b pd
| [ ressendss= 52 [* [Men)F ) +£(x) Gy dyds

([ ) ([ [ etwntras) + 3 [ [“astupiasas. @330

We note that, here (2.3.21) holds for (x,y) € A. From (2.3.36) and (2.3.21), we observe that
1 b rd 1 b rd 1 b rd
[ reosteoasas+ (¢ [ [ e (¢ [ [ steiava )

_27]1{2/:7 /C.d [g(x,y)F(x,y) + f(x,9)G(x,y)] dydx

< 2k2/ / |A3(x,y)|dydx

< T / / M (x,y)H; (x)Hz(y)dydx.
This is the required inequality in (2.3.31).
The identities (2.3.33) and (2.3.34) can be rewritten as

kf()C?y) 7f(x7y) = M[f(x7y)]> (2.3.37)
and
kg(x,y) 76()6’))) = M[g(xay)L (2.3.38)

for (x,y) € A. Multiplying the left hand sides and right hand sides of (2.3.37) and (2.3.38),

we have
sz(x,y)g(x,y) _kf(xvy)a(xvy) - kg(xvy)F(xvy)

+F (x,5)G(x,y) = M[f (x,y)|M[g(x,y)]. (2.3.39)
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Rewriting (2.3.39) and integrating over A and using the properties of modulus, we have

| b
L[ [ penistesyasas

2 / / [ Fx,y)G(x,y) + g(x,9)F (x,y) — }{F(x,y)G(x,y)} dydx

1 b rd
<5 [ [ MMt y)idyds. (2340
It is easy to observe that
b pd
MU < DD flle [ [ 190l a5)ldsde = DD f by ()Ha0). 2341
Similarly, we get
MI8(5.0)]| < D21 ey (O H ) 2342)

Using (2.3.41) and (2.3.42) in (2.3.40), we get the desired inequality in (2.3.32). The proof

is complete.

Remark 2.3.2. From (2.3.35) and (2.3.21), it is easy to observe that the following in-
equality holds,

12k f (x,y)g(x,y) +Ao(x,y) — [8(x,y)F (x,) + £ (x,5) G (x,y)]]

< M3 (x,y)H; (x)Ha (), (2.3.43)

for (x,y) € A and from (2.3.39), (2.3.41), (2.3.42), one can very easily obtain the following

inequality

f(x,y)g(x,y) — % F(6,y)G(x,y) +8(x,y)F (x,y) — %F (x, y)G(x,y)} ’
<z HDzD1f|| |D2D) gl [Hy (x)Ha ()], (2.3.44)
for (x,y) € A.

In our further discussion, the following notation will also be used to simplify the details of
presentation.

Let Q = [a,k] x [b,m] X [c,n],a,b,c,k,m,n € R. The partial derivative azgi;axe(x,y,z) of
a function e defined on Q is denoted by D3D;Dje(x,y,z) and the function e is said to
be bounded if [|e[|e = sup, ,,cq [€ (%,¥,2)| < co. For some suitable functions /2 : A — R,

e:Q — R, we set

A(Dleh(X,y)) =A[a,c;x,y;b,d;Dleh(s,t)]
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Xy X pd
= / / Dleh(I,S)detf/ / Dleh(l‘,S)dsdl‘
a Jc a Jy

b ry b rd
- / / DDyt s)dsdi+ / / DDy h(t,s)dsdt,
x Jc X JYy
E(h(x,y)) = Ela,c;x,y;b,d; h]

[h(a,c)+h(a,d)+h(b,c)+h(b,d)],

= %[h(x,c) +h(x,d)+h(a,y)+h(b,y)] — %

B(D3DyDye(r,s,t)) = Bla,b,c;r,s,t;k,m,n;D3DyDye(u, v,w)]
r S t r S n
:///D3D2Dle(u7v,w)dwdvduf///D3D2D1e(u,v,w)dwdvdu
a Jb Jc a Jb Jt

rorm pt k ps ot
—/ / /D3D2Dle(u,v,w)dwdvdu—/ / /D3D2D1e(u,v,w)dwdvdu
a Js c r Jb Jc
roopmopn k rmo ot
+/ / / D3D2Dle(u,v,w)dwdvdu+/ / /D3Dlee(u,v,w)dwdvdu
a N t r s c

k ps rn k rm rn
+/ //D3D2D1e(u7v,w)dwdvdu7// /D3D2Dle(u,v7w)dwdvdu,
r Jb Jt r Js t
L(E(r,s,t)):L[a7b,c;r,s,t;k,m,n;e]
1
= g[e(a,b,c) +e(k,m,n)]
1
—Z[e(r,b,c)+e(r,m,n)+e(r,m,c)+e(r,b,n)]
1
—Z[e(a,s,c)+e(k7s,n)+e(a,s,n)+e(k,s,c)]
1
—Z[e(a,b,t)+e(k,m,t)—ﬁ—e(l@b,t)—i—e(a,mﬁ)}
1 1
+§[e(a,5,t)+e(k,s,t)]+§[e(r7b,t)+e(r,m,t)]

1
—|—§ le(r,s,¢c)+e(r,s,n)].
The Griiss- and Cebysev-type inequalities established in [91,129] are given in the following

theorems.
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Theorem 2.3.3. Let f, g: A — R be continuous functions on A and D,D; f(x,y),

DD, g(x, y ) exist, continuous and bounded on A. Then

[ 70et00) = G )etc) + Elelr) 5] v

1 b rd
< glb-a)d—0) / / (g IDaD1 fle +|f(ey)|[DaD1gllc] dydx,  (23.45)

and

[f(x,9)8(x,y) — [E(f(x,3))g(x,y) + E(g(x,¥)) f(x,¥)

—E(f(x,))E(g(x,y))]] dydx

16 (b—a)(d—c)}||D2D1 o] D2D1 g co- (2.3.46)

Proof. From the hypotheses, it is easy to observe that the following identities hold for
(x,y) € A (see [86,91]).

Fry) = —fla,e) + f(x,¢) + flay) + / / DaDy f(t,5)dsd,
fx,y)=—f(a,d)+ f(x,d)+ f(a,y) / / DyD f(t,s)dsdr,
Fx5y) = —f(bye) + f(x,€) + f(byy) — / / DDy f(1,5)dsdt,

153 = =)+ 1)+ 70.3)+ [ [ DaDus(s)asar
Adding the above identities and rewriting, we have
f6y) —E(f(x,y)) = 7A(D2D1 f(x,7)), (2.3.47)
for (x,y) € A. Similarly, we have
8(09) ~ E(glx.3)) = A (DaD1g(x.)), (2.3.48)

for (x,y) € A. Multiplying (2.3.47) by g(x,y) and (2.3.48) by f(x,y) and adding the result-

ing identities, rewriting and then integrating over A, we have

[ [ ot - JpComet + Betmmsoavas

1
4

1 b d
:é/a / [A(D2D1 f(x,y))g(x,y) +A(D2D1g(x,y)) £ (x,y)]dydx. (2.3.49)
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From the properties of modulus and integrals, it is easy to see that

b rd
A(D2D1 £ (x,y))] < / / D>y £(1,5)|dsdt < | D2Dy fllw(b—a)(d—c),  (2.3.50)

b
A(DaD1g(x,y))| < / / ID>Dyg(t,5)|dsdt < |DsDigll(b—a)(d—c).  (2.3.51)
From (2.3. 49) (2 3.51), we observe that

[f e )ale) — 2 [E(Fx g +E<g<x,y>>f<x,y)]} dydsx

<3 / [ e A2 )] 170 14 (DaDigls ) v

< é/ / [|g x7y)|/ / |D2D, f(2,5)|dsdt +|f(x,y)|/a /L D2D1g(t,s)|dsdt} dydx

b rd
$0=a)@=0) [ [ gxy)lID2D1 sl +1f(5.3)|D2Drg-] v
which is the required inequality in (2.3.45).
Multiplying the left hand sides and right hand sides of (2.3.47) and (2.3.48), we get

flxy)g(x,y) = [f(x,y )f(g(x )+ 8 YE(f(x,y)) —E(f(x,)E(g(x,y))]
= TgA DD (x 1) A(DD1g(x,))- (2:3.52)
Integrating (2.3.52) over A and using the properties of modulus, we have

[ [renetes) = () E(gxn)) + s B (x.3)) = E(F ) E(gx.y)) | dvd

b d
1
< g'/ / [A(D2D) £ (x,3))|A(D2D1g(x, ) |dydx. (2.3.53)

a ¢
Now, using (2.3.50) and (2.3.51) in (2.3.53), we get (2.3.46). The proof is complete.

Theorem 2.3.4. Let f, g: Q — R be continuous functions on Q and D3D,D f(r,s,t),

D3DyDg(r,s,t), exist, continuous and bounded on Q. Then
k m n

///[ f(rs,t)g(rs,t)— [ (f(r,s,1))g(r,s,t) +L(g(r,s,1))f(r,s,1)]| dtdsdr

k m n
1
—6(k a)(m—>b)(n—c) /// lg(r,s,0)|||D3D2D1 f || oo
+|f (s, t)|HD3D2D1gH |dtdsdr, (2.3.54)

and
f(r,s,t)g(r,s,t) - [L(f(rasvt))g(rasvt)

+L(g(r,s,2))f(r,s,t) — L(f(r,5,t))L(g(r,s,t))]] dtdsdr

1
<6*4{(k*a)(m b)(n—c)}*|DsD2D | | D3D2D1 gl - (2.3.55)



92 Analytic Inequalities: Recent Advances

Proof. From the hypotheses, it is easy to observe that the following identities hold (see

[83,90]):

—fabit) — flars,c) — F(rb.c) + / ' /b ' / " D3DaDy £ (u,v, w)dwdvd,
F5,0) = F(5,m) + Fl@y5,8) & Frb,t) + (@ by)
—lasbut) = fla,s,m) = (rbym) / ' /b ) /t " DsDaDy £ (v, w)dwdvdu,
f(rs,t) = f(r.m,t)+ f(r;s,c) + f(a,m,c) + f(a,s,1)

— Flrm,¢) = flaymit) — f(ass,c) — / ' / ! / " D3DaDy £ (u,v, w)dwdvd,
f(rys,t) = f(k,s,t)+ f (k,b,c)+ f(r,s,¢) + f(rb,1)
—f(ky5,¢) = f(k,bot) — f(r,byc) — / ‘ /b ' / " DsDaDy £ (1, v, w)dwdvd,
f(r,s,t) = f(r,m,t)+ f(r,s,n) + f (a,m,n) + f(a,s,1)
—f(rmn) — flasm,1) — fa,s,m) + / ' / ! /t " D3DaDy f(u, v, w)dwdvdu,
f(rs,t) = f(r.m,t)+ f(r,;s,c) + f(k,s,1) + f (k,m,c)
k) = fks5,0) = Frme) + / ‘ | / " / " DsDaDy f (1, v, w)dwdvd,
f(r.s,t) = f(k,s,1) + f(k,b,n) + f(r,s,n) + f(r,b.1)
—Fk,s,n) — £l bt) — F(rbn)+ / ' /b ' /t " DsDaDy £ (1, v, w)dwdvdu,
f(rs,t) = f(k,m,n) + f(k,s,t) + f(rm,t) + f(r,s,n)

—f(k,m,t) — f(k,s,n) — f(r,m,n) — /k /m /tnD3D2D1f(u,v, w)dwdvdu.
Adding the above identities and rewriting, we have
f(rs,t) = L(f(r,s,1)) = %B(D3D2D1f(r,s,t)), (2.3.56)
for (r,s,1) € Q. Similarly, we have

g(rs,t) —L(g(r,s,t)) = éB(D3D2D1g(r,s,t)), (2.3.57)
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for (r,s,1) € Q. Multiplying (2.3.56) by g(r,s,7) and (2.3.57) by f(r,s,t) and adding the

resulting identities, then integrating over Q and rewriting, we have

/ k‘/b m/ ! [f(ns,t)g(r,s,t)—;[f(r,s,t)L(g(r,s,t)) +a(r s, VL(f(r,5,1))] | dedsdr

1 k rm rn
= / /b / (g(r,5,1)B(D3D2D1 f(r,5,1)) +f(r,5,0)B(D3D2D1g(r.s,1))] drdsdr.

(2.3.58)
From the properties of modulus and integrals, we observe that
IB(DsD>Dy f(1,5.1))| < / ‘ /b ! / " \DsDaD f(r,5,1)|dwelvdu
< ||D3D2Dy o (k — @) (m —b) (n—c). (2.3.59)
Similarly, we get
|B(D3D;D1g(r,s,t))| < ||D3D2D1g||.. (k—a)(m—Db)(n—c). (2.3.60)

Now, from (2.3.58)-(2.3.60) and following the same arguments as in the proof of inequality
(2.3.45) with suitable changes, we get the required inequality in (2.5.54).
Multiplying the left hand sides and right hand sides of (2.3.56) and (2.3.57) and integrating

over Q, we get
k m n
/a /h /C [f(r,s,0)g(r,s,t) = [f(r,s,0)L(g(r,s,1))

+g(r,s,t)L(f(r,s,1)) — L(f(r,s,1))L(g(r,s,1))]] dtdsdr

k rm prn
:6714 L[ [ B0sD2D(15,0) B(D3D2Dg r5.0)) s (2.3.61)
a Jb Jc

From (2.3.61), using the properties of modulus and (2.3.59) and (2.3.60), we get the desired
inequality in (2.3.55). The proof is complete.

2.4 Trapezoid-type inequalities in two variables

In this section we present some Trapezoid-type inequalities involving functions of two
independent variables, recently established by Dragomir, Barnett and Pearce [39], Barnett
and Dragomir [6] and Pachpatte [86]. In our subsequent discussion, we make use of some
of the notations and definitions given in Section 2.3 without further mention.

We start with the Trapezoid-type inequality established in [86].
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Theorem 2.4.1. Let f: A — R be a continuous function on A, D,D; f(x,y) exists and

continuous on A. Then

[ [ sesasae-3[@-o [ 1.0+ s +o-a [ @)+ fb5)as

+50-0d=(@0)+1ad) + (6.0) 1 0.0)])

1 b pd
< (b-a)(d—0) / / D21 (1,5)|dsdr. 24.1)
a c
Proof. By following the proof of Theorem 2.3.3, we have the following identity

F6.3) = 3160+ )+ £lay) + £(b.3)) + 51 @e) + flad) + £(bi) + (b))

1
= 7AD2D1f(x.y)), (2.4.2)

for (x,y) € A. Integrating both sides of (2.4.2) over A, we get

/ / (t,5)dsdt — ~ [(d—c)/ [f(t,¢)+ f(t,d)|dr +(b—a)/cd[f(a,s)+f(b,s)]ds
+%(b—a)(d—6)[f(a,6)+f(a7d)+f(b70)+f(b’d)]

b prd
:% / / A(DaDy f(t,5))dsdt. (2.43)

Using the properties of modulus and integrals, we observe that
b rd
MDD < [ [ 1DaD1f(5) dsar (2.4.4)
From (2.4.3) and (2.4.4), we have

Cd (1,5)dsdi — % {(d 0) / "F(.0) + Fe.d)d + (b—a) / ‘Uas) + f(b,s)]ds]

+5 -0 0.0 + @)+ 0.0+ 0]
1 b rd
<3| [ A@Disa.ldsar

1 b rd
< b-a)d—0) / / DDy f(1.5)dsdr,

which is the required inequality in (2.4.1) and the proof is complete.
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Remark 2.4.1. From (2.4.2) it is easy to observe that the following inequality holds

F03) = 3L (00) + 70 d) + £(@n) + F(b)] +51F(@) + f(ad) + F(b,0)+ £ (b, )]

1 b pd
<3 [ [ 1Dirtesasar, 245
4 a c
for (x,y) € A.
The next Theorem deals with the Trapezoid-type inequality investigated in [39].

Theorem 2.4.2. Let f: A — R be a continuous mapping on A, D,D; f(x,y) exists on
(a,b) x (c,d) and is bounded, then

/{;b/cdf(t,s)dsdtf% [(dc) /ab[f(t,c)Jrf(;,d)]dt

+(b—a) / “[Flas)+ f(b,s)]ds}
+40-0d=l(@0)+ad) + (b.0) 1 (0.0)

1
< 1 (b—a)(d—c)}* | D2D1 f|o- (2.4.6)

Proof. From the hypotheses, the following identity holds (see, Lemma 2.3.2):
b rd
/ / p(x,1)q(y,s)Da2D) f (t,s)dsdt
b
— (d=o)(b-a)f(xy) = (d=0) [ flt.v)d
d b pd
—(b—a) / Flx,5)ds+ / / Ft,s)dsdr, 2.4.7)
c a c

for all (x,y) € A, where p(x,t), q(,s) are as given in Section 2.3. In (2.4.7) choose (i) x =

a,y=c; (i) x=>b, y=c; (iii) x =a, y =d; and (iv) x = b, y = d to obtain the following

identities:

b rd
/a /C p(a,t)q(c,s)DaD1 f(t,s)dsdt
b
= (=) b-a) (@)~ d=0) [ flt.c)i

—(b—a) / ! ays)ds+ / ’ / ! b s)dsdr, (2.4.8)
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b rd
/a /c p(b,1)q(c,s)DaDyf(t,s)dsdt
b
:(d—c)(b—a)f(b,c)_(d_c)/a Ft,c)de
d b ed
~(b-a) [ £+ [ [ sles)asar, 2.49)
b pd
/a /C pla,1)q(d;s)DaD1 f(t,5)dsd1
b
= (@=a)b-a)fad) - (d—c) [ fidd

—(b—a) /Cdf(a,s)ds+/ab /Cdf(t,s)dsdt, (2.4.10)

and

b rd
/a /C p(b,t)q(d,s)D2D1 f(t,s)dsdt
b
:(d—C)(b—a)f(b,d)—(d_c)/a Ft.d)di

d b pd
—(b—a) / F(b,s)ds + / / Ft,s)dsdr, 2.4.11)
c a c
Adding (2.4.8)—(2.4.11) and dividing by 4, we have

% /ab /Cd (p(a,t) + p(b,1)) (g(c,s) +q(d,5)) DaDy £(t,5)dsdt

= /ab /Cdf(t,s)dsdt + i(b —a)(d—c)[f(a,c)+ f(a,d) + f(b,c) + f(b,d)]

1 d

3|0 [veosseanaso-a [t +ros1a)

and as
pla,t)+p(b,t) =2t —(a+b),q(c,s)+q(d,s) =2s— (c+d),

then we get the identity:

/ab /cdf(t,s)dsdt - % [(d L Lb[f(t,c) +f(t,d)dt+(b—a) [d[f(“’s) +f(b’s)]ds}

+%(b—a)(d—6)[f(a,0)+f(a7d)+f(b70)+f(b,d)}
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—//< “+b> <sc—'2_d>D2D1f(t,s)dsdt. (2.4.12)

Now, using the identity (2.4.12) and the properties of the integral, we get

’ c'd f(t,s)dsdt—% {(d—c) / "0 + £l d)]de + (b—a) / ‘) + f(b,s)]ds]

+iw—uxd—cmﬂmcraﬂaﬂ>+fwmrfﬂhdﬂ

b d
_at H et ‘|D2D1f(t §)\dsdt

(b—a)(d—c)}* |D2D1 f]|--

16
Since a simple calculation gives,
b _ )2 d )2
/ t_a—l—b dt:(b a) ’/ _c+d dtz(d c) 7
a 2 4 ¢ 2 4

the inequality (2.4.6) is thus obtained. The prof is complete.
In order to prove the next two Theorems we need the following integral identity proved in

[6].

Lemma2.4.1. Let f:A— R be acontinuous mapping on A such that D, f (a,-) , D2 f (b,-)
are continuous on [c,d], Dy f (-,¢),D1f(-,d) are continuous on [a,b] and DD f(+,-) is

continuous on A. Then we have the identity:

Lb[{ﬂLywﬂu+«b—®[7<y_c;d>ﬁ°m”+”d_”17<x EDLLG

(b a)(d—c)|[f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)]
+/ / ( a+b> <yc;d>DzD1f(x,y)dydx, (2.4.13)

fi3) = 311 () + D1 (), (24.14)

~ \

where

for x € [a,b] and

f20) = 3 [Daf (@) + Daf (b)), @4.15)

fory € [c,d].
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Proof. A simple integration by parts gives

/aﬁh(x)dx: w(ﬁ—a)—/j (x—a—;ﬂ> W (x)dx, (2.4.16)

provided that % : [or, ] — R is absolutely continuous on [a, B]. Using (2.4.15), we can

write:
/bf(x,y)dx:(bfa)w /b<xa;b)le(x,y)dx7 (2.4.17)

for all y € [c,d]. Integrating (2.4.17) over the interval [c,d], we obtain

/Cd (/abf(x,y)dx) dy= %(b—a) [/Cdf(a,y)dy—f—/cdf(b’y)dy]
_/cd </ah (x_ anrb> le(x,y)dX> dy.

Using x’s theorem, we can state:

/ab /Cdf(xyy)dydx: %(b—a) {/cdf(a,y)der /cdf(b,y)dy}
_(/ab (x a+b> </ Dif(x, y)dy) dx. (2.4.18)

By the identity (2.4. 16) we can also state:

[ Hanay= i@+ sadn@-a- [ (=) pasanas. - @a19)

c+d

[ 7009005 = 5150+ soaia—o - [ <y

and

[ Purte = 2piste) 40y ) -

d d
- / (y— C; >Dlef(x7y)dy. (2.4.21)

Now, using (2.4.18) and (2.4.19)—(2.4.21), we have successively

Lb /cdf(x,y)dydx: %(bfa) [;[f(a,c) + f(a,d)](d —c) 7/:1 (y

c+d

—i—%[f(b,c)—i—f(b,d)](d—c)—/Cd (y— 5 )sz(by)dy}

d
c; ) Dy f(a,y)dy

[ (+-52) [+ pisaia—e
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d
*/C (y C;d>DzD1f(x7y)dy} dx

[f(a,¢) + f(a,d) + f(b,c) + f(b,d)|(b—a)(d —c)

1
4
,l( ,a)/cd <y C+d>D2f(a,y)dy;(ba)/cd <yc—;d>D2f(b»Y)dy

2 2
b b
_%(d—c)/a (x—a_;b>D1f(x,c)dx—;(d—c)/a (x—a_;b>D1f(x,d)dx
+ / / ( a+b) (y—cgd>D2D1f(x,y)dydx. (2.4.22)

Rewriting (2.4.22), we get the desired identity in (2.4.13).

The Trapezoid-type inequalities given in [6] are embodied in the following theorems.

Theorem 2.4.3. Let f, f1, f> be as in Lemma 2.4.1 and assume that DD f(x,y) is

bounded. Then
d b b
CJ; )fz(y)der(d—C)/a (x at >f1( )dx

df(x,y)dydx+ (b—a) /d (
5 (@, + fad) + £(b,0) + 16, )b~ a)(b—0)

1
16 {(b=a)(d=)}?|D:D1 f], (2.4.23)
where fi(x) and f>(y) are given by (2.4.14) and (2.4.15).

Proof. Using the identity (2.4.13) and the properties of integral, we have

Ut -0 [ (- ) poay a0 [ (x-S ) s

—% [f(a,e)+ fla,d) + f(b,c) + f(b,d)](b—a)(b—c)

a+b c+d
22| S 1D ) avs
b d
< ||DaD f||eo / xfa—'_ ‘dx/ _or ‘dy
¢ 2
(b—a)* (d—c)?
== DD oo 9
D20y .7

and the inequality (2.4.23) is proved.
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Theorem 2.4.4. Let f, f1, f> be as in Theorem 2.4.3 and assume that
[fille = sup [fi(x)| <oeo, [|falle = sup |f2(y)] < oo

x€la,b) y€(ed]
Then

‘/a-b /Cdf(x,y)dydxf %[f(a,c) + f(a,d)+ f(b,c)+ f(b,d)](b—a)(b—c)

1 1
< Z(b—a)(d—c) [(b—a)|| fille + (d—=0) |l f2]]eo +Z(b —a)(d—c) |D2D1f|w} . (2.4.24)
Proof. As in the proof of Theorem 2.4.3, we have, by the identity (2.4.13) that

" e y)dyds — L [F(a) + flad) +£(b.)+ F0.)](b—a)(b— )

a C
d
<(b—a)/ y—

a+b

b
Oy + @) [ |v= 32170
+// x_a+bH C+d‘|D2D1f(XY)|dydx
2 b a) (d—c)?
<t-alnl- S+ @-anal- LS )+||szlf||w( )

:Z(b*a)(d*C)[(b*a)Hfll\m d—c)|fall~ + b a)(d C)IDlefoo]

Hence the proof is completed.

Remark 2.4.2. We note that, one can very easily obtain bounds on the right hand sides in
(2.4.23) and (2.4.24) for || - || , norm, p € [1,00). Here, we do not discuss the details.

2.5 Some multivariate Griiss-type integral inequalities

Our main goal in this section is to present some multivariate Griiss-type integral inequalities
recently investigated by Pachpatte in [94,130].

Let B = []",[ai,bi] be a bounded domain in R”, the n-dimensional Euclidean space.
For x; € R, x = (x,...,x,) is a variable point in B and dx = dx;---dx,. For
any integrable function u(x) : B — R we denote by [pu(x)dx the n-fold integral
ff: . -~ff1‘ u(xy,...,x,)dx; - - -dx,. For integrable functions f, g: B— RonBand p: B —

R an integrable function on B such that P = [ p(x)dx > 0, we set

TEp.f.B) =5 [P | 5 [pesear | 5 [p@s@ax |,
B B B
(2.5.1)

and assume that the integrals involved in (2.5.1) exist.

In the following theorems, we present the integral inequalities investigated in [130].
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Theorem 2.5.1. Let f, g: B — R be integrable functions on B and p : B — R an inte-
grable function on B such that P = [ p(x)dx > 0. Then

\T(P,p,f.8:B)| < VT (P.p.f,f:B)\/T(P.p,g.8:B), 2.5.2)

and in addition if ¢ < f(x) < P, y < g(x) < I for each x € B, where ¢, ®, 7, I are given

real constants, then

1
IT(P,p,f.&:B)| < 1(‘1’—¢)(F—Y)- (2.5.3)

Proof. By direct computation, it is easy to observe that the following version of the Ko-
rkine’s identity [79, p. 242] holds:

T(Pp,f,&B) = # /B /B p)p(y)(f(x) — f(»)(g(x) — g(y))dydx. (2.5.4)
From (2.5.4), it is easy to observe that
1 5 1 2
10t fiB) = 3 [P0 (5 [pfea) . s

Furthermore, by using the multivariate version of the Schwarz integral inequality, it is easy

to observe that T'(P, p, f, /3 B) = 0. Similarly, we have

T(P.p.gg:B) = 5 [ p)g - (‘ / p(x)g(x)dx)z, (25.6)

P P Jp
and T(P,p,g,g:B) = 0. From (2.5.4) and using the multivariate version of the Schwarz

integral inequality, we have

T(P.p.f.5:B) {ZPZ . [ pap )0~ 79 50 o]
{2 [ [0 - s avas{ s [ ] pwpo)eto) - st}
:{ /p f2(x dx—< /p x)dx) }

x {,ﬂ Jpgwas— (5 [ p(x>g(x)dx>2}

=T(Pp.f.f:B)T(P.p,8,8:B). (2.5.7)
The desired inequality in (2.5.2) follows from (2.5.7).

It is easy to observe that the following identity also holds:

1(epg.si8) = (0~ 5 [ prwia) (5 [ psiiax—o)
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5 [P0 @ = ) ()~ 0) . .58

Using the fact that (® — f(x)) (f(x) — @) = 0in (2.5.8), we have
1 s
1ep g s < (0 [ prwa) (5 [ petoar—e). 59
Similarly, we have

ﬂRm&gﬂ)é(F—;APQM@%k)( /p dX’O (2.5.10)

Using (2.5.9) and (2.5.10) in (2.5.7), we get

e p sl < (- [ psas) (},/B P ()9 )
« (r—; /B p(x)g(x)dx) ( / ()2 (X)dx — y> 2.5.11)

By using the elementary inequality cd < (%) ; ¢, d € R, we observe that

(05 [ pmswa) (5 [ osac—e) < (‘I’z“”)z @5.12)
OL/} )( /p )g(x)dx — i) C;y). (2.5.13)

The required inequality in (2.5.3) follows from (2.5.11)—(2.5.13).

Remark 2.5.1. We note that the inequality established in (2.5.3) can be considered as
a weighted multivariate generalization of the Griiss inequality. In the special case when
n=1, from (2.5.3), we get the generalization of the Griiss inequality (3) given by Dragomir
in [42].

Theorem 2.5.2. Let f, g: B — R be integrable functions on B and p : B— R an inte-
grable function on B such that P = [, p(x)dx > 0. Then

|T(P,p, f,&:B)]

<3 [ (100- 3 [ p01s01as ) (560~ 5 [ p02e1ay)

and in addition if ¢ < f(x) < ® for each x € B, where ¢, P are real constants, then

IT(P,p,f,g:B) ¢¢4FF§57 (2.5.15)

dx,  (2.5.14)
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Proof. In order to establish the inequality (2.5.14), we observe that

%/Bp(x) (f(x)_;)/gp(y)f(y)dy> <g(x)—;/9p(y)g(y)dy> dx

- %/Bp@> {f(x)g(x) - %f(x)/BP(y)g(y)dy

~ ) [ o010y 5 ([ 00 01ay ) ([ p0e00as ) bas
~ 5 [pt0 ﬂxw—<;LM@ﬂﬂm><;Ammgmﬂ>
- (113 /B p(X)f(X)dX> ( / p(x)g(x dx) sz ( / p()F(x ) ( / plx g(x)dx)
P/p (x)g(x) dx—< /p X)dX> (IIJ/BP(X)g(X)dX)

=T(P,p,f,g:B). (2.5.16)
From (2.5.16) and using the properties of modulus, we get the desired inequality in (2.5.14).
Following the proof of Theorem 2.5.1, we have T(P, p, f, f;B) > 0, T(P,p,g,g;B) > 0 and
(2.5.7), (2.5.9), (2.5.12) hold. From (2.5.9) and (2.5.12), we get
T(Pp.f.f:B) < 3(®—9)" @517)
The required inequality in (2.5.15) follows from (2.5.7) and (2.5.17). The proof is com-
plete.

Remark 2.5.2. By taking p(x) = | and hence P =[] (b; — ;) in (2.5.14), we get

1
T(P1fgiB) < 5 [

A (f(X)—;,/Bf(y)dy> (g(X)— ;/Bg(y)dy>

The inequality (2.5.18) can be considered as the multivariate version of the integral in-

dx. (2.5.18)

equality of the Griiss-type given by Dragomir and McAndrew in [34]. We note that the

inequality (2.5.15) can be considered as a multivariate version of the Pre-Griiss inequality

given by Matié, Pecari¢ and Ujevi¢ in [72].

Before giving the next result, we introduce the following notation used to simplify the

details of presentation.

Let Dia;,bi] = {x;: a; < x; < b;} fori=1,...,n; a;, b; € R, D =T, Di|ai, b;] and D be

the closure of D. For any function u : D — R, differentiable on D, we denote the first order

( ) and by Jpu(x)dx the n-fold integral. If

‘ du 8u(x)
ox; ox;

w  XxED
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ag)(;_c) are bounded. For continuous functions p, g
1

defined on D and differentiable on D and w(x) a real-valued, nonnegative and integrable

function for x € D and [, w(x)dx > 0 and x;, y; € Dj[a;, b;], we set

Awp.g:D) = [ wx)p(agods

—W </Dw(x)p(x)dx> (/Dw(x)q(x)dx) , (2.5.19)
H(p,xi,yi)zii g—i mlxi—yil, (2.5.20)

and assume that the integrals involved in (2.5.19) exist.

The Griiss-type integral inequalities established in [94] are given in the following theorem.

Theorem 2.5.3. Let f(x), g(x) be real-valued continuous functions on D and differen-
tiable on D, with partial derivatives oflx (,), ag)([ ) being bounded. Let w(x) be a real-valued,
nonnegative and integrable function for x € D and [, w(x)dx > 0. Then

W /D w(x) [|g(x)| /D H(f,xi,yi)w(y)dy

+[f(x)] /DH(g,xnyf)W(y)dy} dx, (2.521)

A £D)| < i [t (G

<(f Hemminar) . 2522)
D

[A(w, f,g:D)| <

Proof. Letx= (x,...,%,) €D,y= (y1,-..,yn) € D. From the n-dimensional version of

the mean value theorem, we have (see [146, p.174])

7= £0) = Y 22 5, (.52

and

()Ci 7y,')7 (2524)

8
where ¢; = (y1 + (X1 —¥1)y- -, Y0+ 0i(xn —yn)) (0 < oy < 1) for i = 1,2. Multiplying
both sides of (2.5.23) and (2.5.24) by g(x) and f(x

2f(x)g(x) —g(x)f(y) — f(x)g(¥)

) respectively and adding, we get
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~ 0 3 L )+ 1) 3 25 (). (2.5.25)

Multiplying both sides of (2.5.25) by w(y) and integrating the resulting identity with respect

to y over D, we have

() w(y)dy) 19809~ 8) [ wO)70)ay— 12) [ wig()ay

/ Z ax, X ywly)dy+flx / Zag(cZ) (xi—yw(y)dy.  (2.5.26)

Next, multiplying both sides of (2.5.26) by w(x) and integrating the resulting identity with

respect to x over D, we get

2( [ oy ) [ wio)r0as
- ([ wesas) ([ worsoar) - () w<x>f<x>dx) (/ wora)
= [t g<x</z i <>dy>dx

+ / W) f(x ( / Z agaxclz Xi— )dy) dx. (2.5.27)

Rewriting (2.5.27), using the notation given in (2.5.19) and the properties of modulus, we

have

A 01 < 57 [ [ wle) ( 8>
+/ )| £(x) (/ Zl
< s [ [0 [

+f(x I/Z‘i

df(c)
ox;

|x;i — y,~|w(y)dy> dx

dg(c2)

|xl Yi | W(y)dy> dx:|

Xi

—yilw(y)dy

inW(y)dy} dx

- 2/()d/DW(X) |:|g(x)|/DH(fvxiJi)W(y)dy-f—|f(X)/DH(g7xi7)’i)W(y)dy dx.
Jp
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This is the required inequality in (2.5.21).
Multiplying both sides of (2.5.23) and (2.5.24) by w(y) and integrating the resulting iden-

tities with respect to y over D, we get

w0y ) £@) — [ wofoay= [ ¥ 2D o way,  @528)
(/D ) /D /Di:1 dx;

([ w0iar) = [ wiorstay = [ 3 HD s —ypuiias. @529

Multiplying the left hand sides and right hand 51des of (2.5 .28) and (2.5.29), we get

( /D W(y)dy>2 f(x)g(x) — ( /D W(y)dy) f(x) /D W
_ ( /D w(y)dy) g() /D W) f()dy+ < /D w(y) f(y)dy> ( /D W(y)g(y)dy>

(/ Z (xz yz)w(y)dy> (/ Z 8g ) ‘y,')w(y)dy>. (2.5.30)

Multiplying both sides of (2.5.30) by w(x) and integrating the resulting identity with respect

and

to x over D and rewriting, we obtain

A(w,f,g:D) = %/DW(X) </Di afa(xil) (x; —y,)w(y)dy)
< /D W(y)dy>
x ( /Dg a%(;z) (i —yi)W(y)dy> dx. (25.31)

From (2.5.31) and following the proof of inequality (2.5.21) with suitable modifications,
we get the required inequality in (2.5.22). The proof is complete.

Remark 2.5.3. Ifwetaken=1and D=1= {x:a <x<b}in(2.5.21), then we get
1 b b
. < / w(r) f(t)dt) ( / w(t)g(t)dt)
/ w(t)dr N ¢
1 b b ,
< [ w0l [ 17 el =5

b
0] / [P s|w(s)ds} d. (2.5.32)

Similarly, one can obtain the special version of (2.5.22). It is easy to see that the bound

[ w0

obtained on the right hand side in (2.5.32) (when w(¢) = 1) is different from those given by
Griiss in [61].
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2.6 Multivariate Griiss-and (vieby§ev-type discrete inequalities

In this section, we deal with certain multivariate Griiss- and Ceby3ev-type discrete inequal-
ities established by Pachpatte in [95,103,129].

Let Ny ={1,2,....,k+ 1}, Mo ={1,2,...,m+ 1}, N3 ={1,2,...,n+ 1} fork,m,n € N and
denote by G = N| X N, H = N; x N, x N3. For functions /(x,y) and e(x,y,z) defined re-
spectively on G and H we define the operators Aji(x,y) = h(x+ 1,y) — h(x,y), Ash(x,y) =
h(x,y+1) — h(x,y), MAjh(x,y) = Ay (Arh(x,y)) and Aje(x,y,z) = e(x+1,y,2) —
e(x,5,2), Ave(x,y,2) = e(x,y+1,2) —e(x,3,2), Ase(x,y,2) = e(x,y,z+ 1) — e(x,,2),
AzAle(x,y,z) =M (Are(x,,2)), A3ArAje(x, V.2 z) = A3 (AvAje(x,y,2)). Let N;[0,a;] =

{0,1,2,...,a;}, a; € N, i=1,...,n and Q = HN [0,a;]. For a function u(x) : Q — R
we define the first order difference operators as Alu( ) =u(xi+1,x2,...,x,) —u(x),...,
Apu(x) = u(xq,...,xXp—1,%, + 1) — u(x) and denote the n-fold sum over Q with respect to

the variable y = (y1,...,yn) € Q by

all a,,l

Yup)=Y - Y ulyi,... o).

=0 yn=0
Clearly Y, u(y) = Y., u(x) for x, y € Q. The notation

)C,'—l
Z Aiu(yh vy Vie U lisXig 1, - - 7xn)
Li=yi
for x;, yi € N;[0,a;]; i: 1,...,n, we mean fori =1, itis Zt]_yl Ayu(ty,x2,...,x,) and so on

and for i = n, itis Y;'=) "A u(yl, .yYn—1,tn). The functions h(x,y), e(x,y,z) and u(x) de-
fined on G, H and Q respectively are said to be bounded if ||| = sup(, y)c [2(x,y)| < oo,
llelleo = Sup .y ;) cm l€(x, ¥, 2)| < oo and [|uleo = sup,cq |[u(x)| < oo. We use the usual conven-
tion that the empty sum is taken to be zero. We give the following notation used to simplify

the details of presentation:

A(MA1h(x,y)) =A[1, L;x,y; k,m; AgArh(s,t)]

—1y—1 1 k y—1
:XZ AzAlh(S t XZ iAzAlh S l‘ Z ZAZAlh(S t -|—Z ZAZAlh S, t
s=1t=1 =1t=y S=X{= s=xt=y

E(h(x,y)) =E[1,1;x,y;k+ 1,m+ 1;h]

= I )G m 1)+ R (1Y) Ak +1,y)

1
—Z[h(171)+h(17m+1)+h(k+1,1)+h(k+1,m+1)],
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B(AsAxAje(r,s,t)) =BI1, 1, 1;ns,t5k,m,n; AsAoAre(u, v, w)]

- —1s—1
= Z Z Z AsApAje(u,v,w) o iA3A2Ale(u,v,w)
=lv=1w=1 u=1v=1w=t
r—1 m t—1 k s—1t—1
— Z Z A3 Mo Are(u,v,w) Z Z Z AsApAje(u,v,w)
u=1v=sw=1 u=ry=1w=1
r—l m n k m t—1
+ Z Z ZA3A2A1€ u,v,w)+ Z Z Z AsApAje(u,v,w)
u=1v=sw=t u=rv=sw=1
k s—1 n k m n
+ Z Z AsApAje(u,v,w) — Z Z Z AsMpAje(u,v,w),
u=ry=1w=t u=rv=sw=t

L(e(r,s,t))=L[1,1,L;n,s,t;k+ 1,m+1,n+ 1;¢]

1
= g[e(l,Ll)—l—e(k—i—1,m+17n+1)]
1
—Z[e(nl,l)—i—e(r,l,n—l—l)+e(r,m+1,l)+e(r,m+1,n—|—1)]

—Z[e(k+l,s,n+1)+e(k—|—1,s,1)+e(1,s,n+1)—|—e(1,s,1)}
1
—Z[e(k+ Lm+1,0)+e(k+1,1,6)+e(l,m+ 1,1)+e(1,1,7)]

[ (Ls,t)+e(k+1,s,1)]+ 1[ (r,1,t)+e(r,m+1,t)]

1
+§[e(r,s, 1)+e(rs,n+1)],

and for x € Q,

S(/.6.M50) = 5 X0~ (7 £ ) (3 B,

for some suitable functions f, g and a constant M.
In the following Theorems we present the inequalities of the Griiss-and Ceby3ev-type es-

tablished in [103,129].
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Theorem 2.6.1. Let f, g: G — R be functions such that AyA; f(x,y), AxA;g(x,y) exist
and bounded on G. Then

zz{ (5. y)gx.y) — {<x,y)E<f<x,y>>+f<x,y>E<g<x,y>>}]‘

x=ly=
k m
< Y Y sl 182l + £ )l [AoArgll), 260
x=ly=1
k m
21 ; [f (x,9)8(x,y)— {g(x, ) E(f(x,y)) + f(x,y)E(g(x,y)) —E(f(x7y))E(g(x,y))}]’
< 1 (km)? [As £ |21 2:62)

Proof. For (x,y) € G it is easy to observe that the following identities hold (see [86]):

—1y—1

fy) =)+ f(1y) = f(1,1)+ Z ZAZAlf 5,1),

s=11=

X—

floy)=f,m+1)+f(1L,y)—f(l,m+1)— ZZAzAlf(st

s=1t=y
k y—1

f(xvy) :f(x’ 1)+f(k+ lvy) _f(k+ 1, 1) - Z ZAZAIf(svt)v

s=xt=1

k m
Fy)=fle,m+1)+fk+1,y) = flk+1,m+1)+ Y Y AoA f(s,1).

s=xi=y
Adding the above identities and rewriting, we have

F0) = E(f(63)) = 34 (88 £ (x3)), (263
for (x,y) € G. Similarly, we have

89) ~ E(glx.3)) = JA(R2A1g(x,). (264)

for (x,y) € G. Multiplying (2.6.3) by g(x,y) and (2.6.4) by f(x,y), adding the resulting

identities, rewriting and then summing over G, we have

g i 8(69) — 3 18060 E(F () + £ () E(e())

Ms

SN

x=1)

A (A2A1f(x,)) + f(x,9)A(A2A18(x,y))]. (2.6.5)

oo\—k

l

:

-
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From the properties of modulus and sums, it is easy to see that

A (A f(x,3)))| ZZIAzAlfst)l 14241 f1.. (km), (2.6.6)

s=1t=

|[A(A2A1g(x,y)) Z Z |A2A1g(s,1)] < ||A2A gl (k). (2.6.7)

s=lt=

From (2.6.5)—(2.6.7), we observe that

k
; 1{ )8(%.y) = { (x,y)E<f(x,y>>+f<x7y>E<g<x,y>)}]‘

¥
k m
% Y Y [8Cen)lIA (A2ALf(x, )] + 1 f(x,9)| |A(A2A18(x,7)) ]
x=1y=1
k m
< %km Y ) UG 182A: fll +1f (e )| A2A18]ls],

x=1y=1
which is the required inequality in (2.6.1).

Multiplying the left hand sides and right hand sides of (2.6.3) and (2.6.4), we get
fx,)8(x,y) = {8, )E(f (x,y)) + f (x, ) E(8(x,y)) — E(f(x,y))E(8(x,y)) }
1
=164 (M0A1f(x,y))A(A2A18(x,y)). (2.6.8)

Summing both sides of (2.6.8) over G and using the properties of modulus, we have

Z Z [f(x,3)g(x,y) = {g(x, ) E(f(x,)) + f(x,¥)E(g(x,)) — E(f(x,y))E(g(x,y))}] ’

x=ly=

k m
zz (Ao £ ()| A (A28 x,3) . 269)
x=1y=1

in (2

Now, using (2.6.6) and (2. .6.9), we get (2.6.2). The proof is complete.

Theorem 2.6.2. Let f, g: H — R be functions such that A3AA| f(1,5,1), AsAaA g(r,s,1)
exist and bounded on H. Then

g;;[ S 08(rs.1) - ;{f(r,s,nL(g(r,sm+g<r,s,r>L<f<ns,z>>}]‘

k

kmn Z

r=ls

Y lls(rs.0)[1A382A: flloo +1 £ (r,5,0) | As A2 Ar g (2.6.10)

=

iMs

™=
ngE
=

[f(r,s,t)g(r,s,t) —{f(r,s,1)L(g(r;s,1))

ls

,
Il

t

—|—g(r,s,t)L(f(r,s,t)) —L(f(r,s,t))L(g(r,s,t))}] ‘

1

mn)”[| Az A A1 f | [[A3A2A1 8., - 6.
Sl ) [1838241 f|-- | A3 A2 8| (2.6.11)

O\
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Proof. For (r,s,7) € H, it is easy to observe that the following identities hold (see [83]):

r—1s—11t—1

*f(l,hl‘)*f(l,&l)*f(i’}l,l)ﬁ“ Z Z ZA3A2A1f(M,V7W),
u=lv=1w=1
f(rst)=f(LLn+ 1)+ f(rs,n+ 1)+ f(1,5,1) + f(r,1,1)
r—=1ls—1 n

—f(,s,n+1)— f(rLn+1)— f(1,1,¢) — ZZZA3A2A1fuvw)
u=lv=1w=
f(r,Svf):f(r7m+1,t)+f(1ys,t)+f(1ym4-1,1)+f(rys,1)
r—1 m t—1

—f(Lm+1,0) = frrm+1,1) = f(1,s,1) = Y Y Y AsfoAy f(u,v,w),

u=1v=sw=I

f(r,s,t):f(k+1,s,t)+f(r,1,t)+f( s, )+ fk+1,1,1)
—11—1

7f(k+ 1, 17t) 7f(k+ 17S7t) r71ﬂ 1) - Z Z Z A3A2A1f(u v, W)

u=ry=1lw=
f(rs,1) :f(r,m+1,t)+f(r,s7n+1)+f(r,m+1,n+l)+f(l,s,t)

r—1l m n

7f(r:m+ 17n+ 1)7f(17m+ 17t) 7f(17s7n+ 1)+ Z Z ZA3A2A1f(M,V,W)7

u=1v=sw=t

f(rvsvt) :f(r7m+ 1,t)+f(r,s,1)+f(k+ 1>S7t)+f(k+ L,m, 1)
k m t—1

—flk+1m+1,0)— fk+1,5,1) = frm+1,1)+ ¥ Y Y AsdoA; f(u,v,w),
u=rv=sw=1
f(rst) = flk+1,s,0)+ flk+1,L,n+ 1)+ f(r,s,n+ 1)+ f(r,1,1)
k s—1 n

—flk+ 1L Ln+ 1) = flk+1,1,0) = f(rLn+ D)+ Y Y Y At f(u,v,w),

u=ry=1w=t

frns,t)=flk+1,m+1,n+1)+ fk+ 1,s,6)+ f(r,m—+1,6)+ f(r,s,n+ 1)

7f(k+ 1vm+ lvt) 7f(k+17s7n+ 1) 7f(rvm+ lvn+ 1) - Z i iA3A2A1f(M,V,W)~

u=rv=s w=t
Adding the above identities and rewriting, we have

1
f(l",s,t) —L(f(r,s,t)) = gB(A3A2A1f(r7S’t))3 (2612)
for (r,s,¢) € H. Similarly, we have
g(rs,t) —L(g(r,s,t)) = %B (A3ApA 1 g(1y8,1)), (2.6.13)

for (r,s,t) € H. From the properties of modulus and sums, we observe that

IB(A3MaA f(1,5,1)) Z Z Z |A380A] f (1, v, w)| < [|A3A2A f||oo(kmn),  (2.6.14)
=lv=1lw=1
n

Z |A3A0A g (u, v, w)| < [|[A3A2A 8|, (kmn) . (2.6.15)

Msw

“
|B(A3A2A1g(r,s,1)) Z

u=lv
The rest of the proofs of (2.6. 0) and (2.6.11) can be completed by closely looking at the

proofs of (2.6.1) and (2.6.2) given in Theorem 2.6.1 with suitable modifications. We omit
the further details.

The inequalities in the following Theorem are proved in [95].
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Theorem 2.6.3. Let f, g: O — R be functions such that A;f(x), Aig(x) fori=1,...,n

exist and bounded on Q. Then

—_

i=

S(f,8:M: Q)| Z [i Oll1Aif [l + 1 (x )||Aigw]Hi(X)} ; (2.6.16)

I(f,g,MQ\\ZM2 [ [Z 145 fll] i = HZ laig]|- |xl-—yi|H, (2.6.17)

= i=1

—

where M = []'_; a; and H;(x) = ¥, [x; — yil-

Proof. Forx = (x1,...,x,),y= (V1,-..,ys) in Q, it is easy to observe that the following
identities hold:

n xifl
Y { ) A'f(yu---,yz‘1,fi,xi+17---7xn)}, (2.6.18)

i=1 \ti=yi

n X,‘*l
Z{ Z A,-g(yl,...,y,-1,t,~,xi+1,...,x,,)}. (2.6.19)

i=1 \ti=yi
Multiplying both sides of (2.6.18) and (2.6.19) by g(x) and f(x) respectively and adding,

we get

2f(x)g(x) —g(x)f(y) — f(x)g(y)

n i
Z{ Y AfO,- 7yi17ti7xi+1»~--axn)}

i=1 ti=yi

n xi—1
+£(x) Z{ Z Aig(yi, - 7yil,ti»xi+la~--axn)}- (2.6.20)

i=1
Summing both sides of (2.6.20) with respect to y over Q, using the fact that M > 0 and

rewriting, we have

09800 3380 £I0)~ 537/ L)

i=1 =i

n xi—1
= ﬁ [g(x)z [Z{ Z Aif(yis-- 7yi1,ti,xl'+1,...,xn)}:|

i=1 \ti=yi

n xl'*l
Z [Z{ Z Aig(yla"'vyi17ti7xi+17"'axn)}:|] . (2621)
y
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Summing both sides of (2.6.21) with respect to x over Q, rewriting and using the properties

of modulus, we have

xi—1
IS(f,8:M;0)| 2M2 Z [|8(x)|z [Z { Y |Aif(y17---7yilatiyxi+1,---7xn)|}‘:|

1 i=yi
anoglg
y |i=1

xi—1

xi—1
{Z |Aig(yl7"'7yi—luti7xi+17"'7xn)|}H‘| .
li=Yi

1 n xi—1
<pL [T LIk 1] +r0ir Y Il | X 1
X Li=Yi

Y1
_;WZ{B(XNZ”‘,HAflexz vil +f(x |Z||A,g||m2|xl y;]

—

ti=yi
i=1

n

=L [2 DA o +1F(x >||A,»g||m1H,-<x>} ,

i=1
which proves the inequality (2.6.16).

Multiplying the left hand sides and right hand sides of (2.6.18) and (2.6.19), we get
F(x)g(x) = g(x)f(y) = f(x)g(y) + f(¥)g(¥)

n X,'fl
= [Z{ Z Aif(yla---m1,t,~,x,-+1,...,x,,)H

Li=yi

n xi—1
X |:Z{ Z Aig()’1>~- Vi1l Xig 1, 7xn)}‘| . (2622)
1i=y;

i=1
Summing both sides of (2. 6 22) with respect to y over Q and rewriting, we have

989~ s OLI )~ 33/ Le0)+y Zf ()
n xi—1
IZ[Z{ZA'f(yl,...,yi1,tj,Xi+1,...,)Cn)}:|
T \ti=yi
q)

xi—1
{ Y Ay, ,yil,ti,xiﬂ,---,xn)H . (2.6.23)
L=y;

Summing both sides of (2.6.23) with respect to x over Q, rewriting and using the properties

of modulus, we have

)Cifl
IS(f,8,M;0)| WZ [Z [Z {Z Aif()mu-,yi—l,fi,xm,--~7xn)|}H
X =1 1i=y;
4b

xi—1
{Z |Aig(y1,-- 7)’1‘I»tiyxi+1w-~axn)}‘:|:|
ti=y;

MZZ{Z[ZI 14 1le] 1xi = y,HZmA,g J i - mH,

which is the required inequality in (2.6.17). The proof is complete.
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2.7 Applications

One of the main motivations for investigating different types of inequalities given in earlier
sections was to apply them as tools in various applications. In this section we give applica-
tions of some of the inequalities and it is hoped that these inequalities will provide a fruitful

source for future research.

2.7.1 Some integral inequalities via Griiss inequality in inner product spaces

In this subsection, we present some integral versions of Theorem 2.2.1 given by Dragomir
and Gomm [54], that have potential for applications.

Let (Q,X,1t) be a measure space consisting of a set Q, a c-algebra ¥ of subsets of Q
and a countably additive and positive measure f on X with values in R U {eo}. Denote
L2 5(Q,K) (K=R, C) the Hilbert space of all measurable functions f: Q — K that are
2 — p-integrable on Q, i.e., [ p(s)|f(s)[>di(s) < oo, where p : Q — [0,0) is a given mea-
surable function on Q. The inner product (-,-) : ’23(52, K) x Lf, (Q,K) — K that generates
the norm of Lf,(Q,K) is

(1.9 = | 16)8GIP(5)dn(s) @7.1)

The following proposition holds.

Proposition 2.7.1. Let¢, y, @, TcKandh, f, g€ Lf, (Q,K) be such that

Re |(@h(x) ~ £(x)) (70~ 8h(9) | > 0, (2.7.2(a))
Re | (Th(x) — g(x)) (800~ 7(x) ) | >0, 2.7.2(b))

fora.e. x € Q and
[P (o) = 1. 273)

Then one has the inequality

oG~ ([ ot ) [ peontotiauco )|

1
< gle-olr-v, (2.7.4)

and the constant i in (2.7.4) is sharp.
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Proof. Follows from Theorem 2.2.1 applied for the inner product (2.7.1), on taking into

account that

Re(®h—f.f ~9h)y = [ p()Re [(@h(x) ~ £(x)) (FG) - FHD) | da() > 0
and
Re(Th—g.5 = 7h), = | p(x)Re[(Th(x) — g(0) (200 ~7h() ) | au() > 0

The details are omitted.

The following result may be stated as well:

Corollary 2.7.1. Ifz, Z, 1, T € K, p € L(Q,R) with [,p(x)du(x) >0 and f, g €
leJ (Q,K) are such that

Re [(z — ) (ﬁ - ?)} >0, (2.7.5(a))
Re [(T—g(x)) (@—fﬂ >0, (2.7.5(b))
fora.e. x € Q, then
W / p(x)f(x)g(x)du(x)

1 1
[P @) | | ——— [ p()edn )
/Q p(x)du (x) /ﬂ /Q p(¥)du (x) /ﬂ

1
< Z|Zfz\|T7t|. (2.7.6)
The constant % in (2.7.6) is sharp.

Proof. Follows by Proposition 2.7.1 on choosing
1

, [N

[Jap(x)du(x)]?

@zz[/gp(xw(x)]é, ¢=z[/ﬂp<x>du<x>}é
ol - [

‘We omit the details.

h=
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As mentioned in [32], if p : Q@ C R — [0,00) is a probability density function, i.e.,
Jop(t)dt =1, then p% € L*(Q,R) and obviously Hp%
that f, g € L?(Q,R) and

,= 1. Consequently, if we assume

apt < f<Ap?.bpt <g<Bp?,
a.e. on Q, where a, A, b, B are given real numbers, then by Proposition 2.7.1, one has the

Griiss-type inequality

[ rorgorar - (/Q f(r)p%mdr) (/Q g(r)piwz)\ <la-am-p. @1

The following particular inequalities are of interest.
1. If f, g € L*(R,R) are such that

@ A=) Ay
\/Eme gf('x) \/Eme 9
b MY <) < B e A0,
Vov2rn Vov2n

for a.e. x € R, where a, A, b, B€ R, m € R, 6 > 0, then one has the following Normal-

Griiss inequality

‘ L Z Sl — 127: ( L Z f(x)ei(xs’")zdx) < [ ig(x)ei(*a”"fdx)’

(A—a)(B—D). (2.7.8)

<

B —

2.1f f, g € L*(R,R) are such that

for a.e. x € R, where a, A, b, BER, o € R, B > 0, then one has the following Laplace-

Griiss inequality

/_:f(x)g(x)d - % (/:of(x)e XZﬁadx> </_D;g(x)e Xzﬁadx>

1
<;@-a)B-0). (2.7.9)
3.If f, g € L*([0,00),R) are such that
¢ x'res <flx) < A xp%le*%,
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B p-l
7

) N NN

for a.e. x € [0,0), where a, A, b, B € R, p > 0, then one has the following Gamma-Griiss

inequality

/Omf(x)g(x)dx— rl(p) < Omf(x)x”z‘e‘idx) (/Omg(x)x”zleidx)

< ~(A—a)(B—b). (2.7.10)
4.1f f, g € L*(x € [0, 1],R) are such that

(10T <f) <

A
VB(p:q) VB(p;q)
B

~

Nl

(10T <) < (-0
—x 2 (1=x)7 <gx) L —/—=x7 (1—x) 7,
B(pg) B(p,q)
fora.e. x€[0,1] where a, A, b, BER, p, g € [1,), then one has the following Beta-Griiss
inequality
1 1 1 p1 g1 ! p=t a1
| fwgdr - —— ([ e (10" ax ) ( [ e (120" dx
0 B(p,q) \Jo 0

1 .
gZ(A—a)(B—b). (2.7.11)
Finally, we note that Theorem 2.2.1 allows us to state some discrete versions of the Griiss-

type inequalities for real and complex sequences, see [54]. Here we omit the details.

2.7.2 Application to numerical integration

In this section, we consider an application of Theorem 2.4.2 to numerical integration in
connection with a general cubature formula given by Dragomir, Barnett and Pearce in [39].
First, by employing the identity (2.4.12), we present the perturbed version of Griiss in-

equality proved in [39], which may be useful in certain applications.

Theorem 2.7.1. Let f, g: [a,b] — R be continuous on [a,b] and differentiable on (a,b)

with derivatives being bounded. Then

[ et (1 [ ran) (5 [ stwar)

- HU6) 1@ s(6) 50|

1
<

[l = f(@)ll=llg = &(@) | + [ (D) = Fllll& (D) = g]|c]

N |

1
+1 0= 1f =18l (27.12)
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Proof. Define the mapping 4 : [a,b]> — R given by
h(x,y) = (f(x) = f(7)(g(x) — &),

and write the identity (2.4.12) for A, to get
b b 1
[ [ ne)asd+ 3 (6= Plh(a.)+hla.b) +hib.) + (b, b)]

:%(b—a)/ lh(s,a) +h(s, b)|ds+ ~ (b a)/b[ h(a,s)+ h(b,s)]ds

b b
+//< at >< “er )Dleh(sJ)dtds. (2.7.13)

‘We observe that

%[h(a,a) + h(a,b) +h(b,a) + h(b,b)]

= SU0)~ F(@)(&(6) ~ 8(@)

% /  Uh(s,a) + h(s, b)]ds = % / " lh(as) + (b, 5))ds

s [ 106~ @) s5)~ 8(a) + (76) ~ 75 600)  gls)] s,

DyDih(x,y) = —f (x)¢'(y) — f' ()¢ (x),

L (552 ) (=552 ooty
[ ( “§b> (t - “;”) ()8 (6) + £ (0)g!(5)drds
—2 [ [ (5= 50) (- 52 ror aras
o] 52 e 52

Consequently, by (2.7.13), we get
1
[ [0 100609 g0t 1 o—a(510)

and

—f(a))(g(b) — g(a))

=(b—a) /a [(f(s) = f(a))(g(s) —g(a)) + (f(b) = £ (5))(g(b) — g(s))]ds

—2/ab <s— ) s)d/ <t—> '( (2.7.14)
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Now, dividing by 2 and taking into account the fact that

3 [ 000~ stair=-a) [ sgtas— [ oo [ gtwran

the identity (2.7.14) becomes

-a) [ $scode— [ s [ s+ 3o a2 () ) s) - g(@)

;(b a)/ [(f(s) = f(a))(g(s) —g(a)) + (F(b) = £ (5))(&(b) — 8(s5))lds

b b
—/a (s— a—;b)f’(s)ds/a (r—“?’) ¢ (). (2.7.15)

Rewriting (2.7.15) and using the properties of modulus, we get

’b a/f Wx—( /f(x )(/ g(x)dx>

+7(70) — F(@)(20) —g(a))\

S 3—a) [(b—a)|lf = f(a)ll»llg —&(a) | + (b= a) [ f(B) = fllllg (D) — &ll]
b
+1£ | / ‘ ‘ S ‘ (2.7.16)
A simple calculation gives
2
/b s—“;b ds— & 4“) . 2.7.17)

Using (2.7.17) in (2.7.16), we deduce the desired inequality in (2.7.12). The proof is com-
plete.

Consider the arbitrary division I, =a =xop <xj < ++- <x,_1 <X, =bof [a,b] and J,, = ¢ =
Yo <1 <+ <Ymei <ym=dof [c,d], puthi :==xip1 —x;, lj:=yj+1—y;,i=0,1,....n—1;
j=0,1,...,m— 1. Define the sum given by

lm 1 1
Cr(fotnsdn)i= X, X i [ 1/0) + f i 1)
i=l 0 Jj= O Yj

n—1m—1
+ZZI / [f(s,9)+ f(s,yj41)] ds

i=0 j= 0
n—1lm— 1
_Z Z hl xnyj +f(xl7y/+1)+f(xl+17y/)+f(xl+17y/+l)} (2.7.18)
i=0 j=0

As an application of Theorem 2.4.2, in [39], the authors proved the following theorem.
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Theorem 2.7.2. Let f: [a,b] X [c,d] be as in Theorem 2.4.2 and I,, J,, as above. Then

we have the cubature formula
b rd
/ / f(s,t)dtds = Cr(f dn,Jm) +Re (fdn, Tn), (2.7.19)
a c
where the remainder term Ry (f,1,,J,) satisfies the estimation
IRE (f ds )| < IIDlefIIm th Z i (2.7.20)
=0

Proof. Apply Theorem 2.4.2 on [x;xi41] X [yj,yj41] for i =0,1,....n—1; j =
0,1,...,m—1, to get

Xitl  [Yj+1

Sf(s,t)dtds

1 Vj+1 1 Xit1
- [zhi/y_i [f(xi,f)+f(xz‘+17f)]df+§lj/x’_ [f(s,y) + f(s,yj41)] ds

—Zhilj [f (i, y) + f iy ja1) + f(xig1,¥5) +f(xi+la))j+l)]:| ’
—h2lz|\D2D1f||m (2.7.21)

Summing both sides of (2.7.21) over i from O to n — 1 and over j from 0 to m — 1 and using

the generalized triangle inequality, we deduce the desired inequality in (2.7.20).

2.7.3 Approximation for the finite Fourier transform of two independent
variables

The Fourier transform has applications in a wide variety of fields in science and engineer-
ing. In this section, we present the inequality established by Hanna, Dragomir and Roume-
liotis [66] for the error, in approximating the finite Fourier transform in two independent
variables.

Let A = [a,b] X [c,d] and f : A — R be a continuous mapping defined on A and F(f) its

finite Fourier transform. That is
F(f)(u,via,b,c,d) = / ’ / ‘ F(x,y)e” ) gy, (2.7.22)
a c
(u,v) € A. For a function of one variable we use the notation
Fg)(wab) = [ (e ax
a

The following inequality in approximating the finite Fourier transform (2.7.22) in terms of

the exponential means was obtained in [66].
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Theorem 2.7.3. Let f: A — R be an absolutely continuous mapping on A and assume

that DDy f (x,y) exists on (a,b) X (c,d), then we have the inequality
Ji;
|F(f)(u,v;a,b,c,d)711712+I3| <9 s (2.7.23)
J3;
for all (u,v) € A, where
b
= h(uvia,b.e.d) = Ew) [ F(f(5,)(v5c.d)ds
d
L :=Dh(u,v;a,b,c,d) = E(v)/ F(f(-,0))(u;a,b)dt

L= L(u,v;a,b,c,d) = // Sf(s,t)deds,
with
E(u) = E(—2miub, —2miua),
E(v) = E(—2mivd, —2mivc),
given that E is the exponential mean of complex numbers, that is

& — eV

E(z,w):=¢ z—w
eW

if z#w,
if z=w
for z, w € C, and

b—a)*(d—c)?
Ji:=J(a,b,c,d,||D2D\ f|l-) = %HDleﬂlwv

if DyD)f(x,y) € Leo(A);

[}

2[(b—a)(d C)]qT
(g+1)(g+2)

. 1 1
if DD f(x,y) € Ly(A), ;—0—;:1, p>1

Jr:=J(a,b,c,d,|DaDiflp) = 1D2D1 £]]p,

J3:=J3(a,b,c,d,||D2D1 f|1) = (b—a)(d —c)||D2D1 f |1,
if D2D1f(x,y) el (A),

where

[D2D1fle = sup |[DaDif(s,t)| < oo,

(s,t)eA

1
b rd 3
20usl = ([ [ 1p2D1 s atas) <o 15 p <o

are the usual Lebesgue norms.



122 Analytic Inequalities: Recent Advances

Proof. Using the identity obtained by Barnett and Dragomir in [8] (see, Lemma 2.3.2),

we have
1 b
f(x»y):m/a f(svy)ds+ /fxt dt — = a(d_c//fstdtds

1 b rd
T E=a / / P(x,5)Q(y.)DaD1 f(s,1)drds, (2.7.24)

provided that f is continuous on A and

s—a,a<s<X
P(x’s):{ b AN AN b)

s—b, x<s<b.

t—c, c<t<y,
O(nt) =
t—d, y<t<d.

If we replace f(x,y) in (2.7.22) by its representation from (2.7.24), we get
F(f)(u,v;a,b,c,d)

,/ / ( ) /a f(s,y ds) dydx+/ / ( ey / f(x,t)d >dydx
) f(s,0)dtds | dydx+R(f,u,v;a,b,c,d), (2.7.25)
A ==

where
R(f,u,va,b,c,d) = m /a b /c d (6727ri(ux+vy))
X ( / ' / dP(x7S)Q(yvt)Dlef(s,t)dtds> dydbx. (2.7.26)
Let o
n=[[ ( ——— — bf(w)ds) dyd,
then

b e—277:iux d . b
I :/ - dx (/ e~y (/ f(s,y)ds) dy)

—2miub __ ,—2Tmiua b d . b
— i | ([ ey )as= £ [ P60

In a similar fashion we obtain

sz// <2mx+” /cdf( )d)dydx—E(v/F 1)) (w0, b)dt
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and

/ / < ‘ 27:)ux+iyc) / fls,1) dtds> dydx
T —a)(d—o) a)(d—c / / fls,t)dtds / / 2R =2 Gyl

E(v) / ’ / * (s, )deds.

From (2.7.25) and using the properties of modulus, we have

|F(f) (u,v;a7b,c,d) _Il _12 +I3‘

6—27171 ux—+vy)
(/ /d (b—a)(d (X>S)Q(Y7I)D2D1f(s,t)dtds) dydx

—27i(ux+vy)
) |p(x,9)[|Q(y,2)||D2D1 £ (s,1) |dtdsdydz
d
_/ / / / |p = ”Q ;'ID D1 f(s,1)|dtdsdydx. (2.7.27)

Now, we observe that

L [ 16 91100:011D01 5.0 v
<t | ([ 1ntestas)ax [ [“loueotar)ar]
R
St [([ 5 [ 05 ) ([ 05 e [0

N3 _\3
=||Dlef||m{(b @)’ (d—c) } (2.7.28)

(b—s)?

y 2
d—t
+( )

2

2

= [|D2D1 £l

c

3 3
Substituting (2.7.28) in (2.7.27), we obtain the first inequality in (2.7.28).
Applying Holder’s integral inequality for double integrals, we get

b ord b pd
/a/c/a/c |p(x,5)[|Q(v:t)|D2D1 £ (s,1)|dtdsdydx
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(L[] d{|p<x,s>||Q<y,s>|}qdrdsdydx)‘II
x </ab/cd/ab/cdD2D1f(s,t)|”dtdsdydx)[1)

= [D2D1fllp{(b—a)(d —c)}

(L (Frseirs)o) (] sors)o)

= [D2D1f|lp{(b—a)(d <)}

() (e o) ([ (g e )

2(21(ba)1+2(dc)1+4}

2
{(a+1)(g+2)}
Using (2.7.29) in (2.7.27), we get the second inequality in (2.7.23)
Finally, we obtain that

b rd b pd
L[] [ sy 100l D21 5.0 ldrdsdyas

==

==

= |D2D1 1], [ (2.7.29)

b prd b pd
< s ples)l swp (o)l [ [0 [ [ 102Dy f(sin)ardsavax

(x,x)e[mb]z ()’J)E[Cvd]z

:(bfa)(dfc)/ab/cd/ab/cd|D2D1f(s,t)|dtdsdydx

=||D2D1 |1 (b—a)*(d —c)*. (2.7.30)

Using (2.7.30) in (2.7.27), gives the final inequality in (2.7.23), where we have used the
fact that

max{X,Y} = - +

xX+y y—x
2

The proof is complete.



Multidimensional Grijss»éebyéev and-Trapezoid-type inequalities 125

2.8 Miscellaneous inequalities

2.8.1 Dragomir [53]

Let (H,(+,-)) be an inner product space over K (K=R, C)ande € H, |le]| = 1. If y, T € K
and x, y € H are such that

x+yx+y
Re(Te— _— =
( S y)

or, equivalently,

x+y y+r H

then, we have the inequality
1
Re[(x,y) — (x,¢)(e,y)] < 5[0 =72
The constant % is the best possible in the sense that it cannot be replaced by a smaller
constant.
2.8.2 Ujevié [153]
Let (X, (-,-)) be a real inner product space and {e;}] C X, (e;,e;) = §;;, where
l1if i=j,
8j=93 e,
0if i#j.
If ¢;, 7, i, Iy, i = 1,2,...,n, are real numbers and x, y € X such that the conditions
n n
x—Y yei, ) Tiei—x | >0
i=1 i=1

and
n n
y—Y ¢iei, Y Piei—y | 20
=1 izl

hold, then we have the inequality

(x,y) — Z(xe (e)

i=1

i\/&b 07 Y (T2

i=1 i=1

The constant % is the best possible.
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2.8.3 Dragomir [55]

Let (H,(+,-)) be an inner product space over K (K =R, C). Let {e;}ic; be a family of
orthonormal vectors in H, F' a finite part of I, ¢;, ®;, 7;, [ € K,i€ Fandx, ye H. If

n n
Re (Z Die; —x,x — Z (Piei) >0,
=1 i=1

n n
Re (Z Tiei—y,y— ), Yiei> 20,
i=1 i=1

or, equivalently,

1
D+ ¢ 1 ’
HX—Zzel‘ < 5 <Z(bl._¢i2> ,
icF icF
3
i+ 1
Y*Z%ei <2<Zri%‘|2> )
iclF icF

hold, then we have the inequalities
1 1

1 2 2
<3 <Z|¢’i—¢i|2> (Zrz‘—%2>
icF icF

1

Re (Z CIDieifx,xf Z ¢iei>‘| X

icl ieF

1 1
1 2 2
<z (Z ¢'i¢i|2> <Z|Fi%’|2> :
ieF icF

The constant % is the best possible.

(x,y) = ) (x,ei) (ery)

icF

B—

Re (gr,.e,.y,y y)]

iceF icF

2.8.4 Dragomir [55]

Let (H,(-,-)) be an inner product space over K (K =R, C). Let {e;}ic; be a family of
orthonormal vectors in H, F a finite part of [ and ¢;, ®; € K,i€ F,x, ye Hand A € (0,1),
such that either

Re <Z<I>i6i (Ax+(1=2A)y),Ax+(1=A)y— Z(Piei) >0,

iceF icF

or, equivalently,

D+ ¢
Jir 9,

Ax+(1-A)y—Y 5 ¢
icF icF

1 2 :
<5 <Z|q)i¢i| > ;
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holds. Then we have the inequality

1 1 2
Re | (x,y) — x,e;) (e, <~ D; — ¢
(09) = T e y>] EIn LI
1 CD—I—(P, . ) ? i 1 1?2

The constant 1—16 is the best possible.

2.8.5 Dragomir, Pecaric¢ and Tepes [56]

Let (H,(-,-)) be an inner product space over K (K =R, C). Let {¢;};c; be a family of
orthonormal vectors in H, F' a finite part of / and ¢;, ®; € K, i € F, x, y € H such that either

the condition

Re (Z <I>,~e,- — X, X — Z (Z)iei) > 0,

iceF icF

(E‘I’ w) ,

D;+ ¢
LY (e

or, equivalently,

\S) \

ieF

gt

holds. Then we have

(x,y) — Z(X ei)(ei,y)| <

icF

(Zlq’ ¢l|2> Iyl =X (v ei)l-

ieF ieF

2.8.6 Hanna, Dragomir and Roumeliotis [67]

Let (Q,X, 1) be a measure space consisting of a set Q, ¥ a ¢-algebra of subsets of Q and
U a countable additive and positive measure with values in RU {eo} and p : Q — [0,0) be
a u-measurable function on Q with [, p(s)du(s) = 1. Denote by L’% (Q,K) (K=R, C)
the Hilbert space of all measurable functions f : Q — K that are 2-p-integrable on €, i.e.
JaP ()| f(s)Pdu(s) <. If £, g € L,z, (Q,K) and there exist constants ¥, I' € K such that

either the condition

Re |(T— /() (F&)-7)] >0,

for p-a.e., s € Q or equivalently

‘f(S) SpAR)

1
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for p-a.e., s € Q holds, then

[P ) ~ [ p(6)6)di(s) [ pIIan(s)

1
2}2

Let (H, (-,-)) be areal or complex Hilbert space, Q C R” be a Lebesgue measurable set and

<%IF77| [ /Q p(s)lg(s)Izdu(s)’ /Q p(s)g(s)du(s)

2.8.7 Buge, Cerone, Dragomir and Roumeliotis [12]

p : Q — [0,00) a Lebesgue measurable function with [, p(s)ds = 1. Denote by L, ,(Q,H)
the set of all Bochner measurable functions f on Q such that ||f||%’p = Jop(s)|If(s)]ds <
co. Assume that f, g € L, ,(Q,H) and there exist vectors x, X, y, ¥ € H such that

| PORe(X — £(0).£0) = x)dr >0,

/Q p()Re(Y — g(1),g(t) — y)di >0,

|p®)
/Qp(t)

Then we have the inequality

Jop0ro.aenar—( [ posoya. [ p@rsnar)| <3 sl -]

or equivalently,

X+x 2

2

1
dr < 71X =,

'f(t) -

2
Y4y 1 2
t)— —=|| dt<-||Y— .
o)~ 52 ar< G

1

| [ PORx — 1(0).70) - [ )Rty (0 0) )| < FIX x5

The constant % in both inequalities is sharp.

2.8.8 Hanna, Dragomir and Cerone [62]
Let f, g [a,b] X [¢,d] — R be two mappings such that

‘f(xvy) _f(M,V)| <M, |x_u‘al +M2|y_v|a27

18(x,y) — g1, v)| < NiJx—ulPt +NyJy —v[P2,
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where M1, M, Ny, N, are positive constants and o, 0, 1, 2 are constants lying in (0, 1].

Then we have the inequality:

b rd
Wl(d,c) /a / f(x,)8(x,y)dydx

B (Ml(fld/ab/cdf(x’y)dydx) (mlb/cdg(x,y)dydx>

—g)uth 2Ub —a)¥ (d — )P
<4[M1N (b—a) MY, (b—a)* (d—c)

aa + B+ (o + pr +2) (a1 +1) (o +2)(B2+1)(B2+2)

2(b—a)Pr(d—c)® (d — c)%+h

N e D@ B B 12 N D@ Rt )

2.8.9 Pachpatte [94]

Let the assumptions of Theorem 2.5.3 hold. Then
1 .
A ’D < A LN H s Ay iH s A Vi d d )
40w 85D < 5 | W) (U7 ) Hig 3w () ) d

where A and H are as in Theorem 2.5.3.

2.8.10 Pachpatte [94]

Assume that the hypotheses of Theorem 2.6.3 hold. Let w(x) be a real-valued nonnegative
function defined on Q and ¥, w(x) > 0. Then

[P(w, f,8:Q)] < ZW(X) [Ig IZE f o yi)w(y) +1f (Ol YE (8,1, yi)w (y)} ;

y

[P(w, f,8:0) < (Zwl(x))ZZW(X) <ZE(faxi7)’i)W(y)> (ZE(g’xi,yi)W(y)> ;

| (W f’g Q | X 2y W(X Z (ZE(f,Xiy)’i)E(g,xiy)’i)W(y)) ;
X X y
where we have set the notations

POp. ) = Ew()p(a)a(s) fov(x)(;w(x)p(x)) (;woc)q(x)),

n
E(p,xi,yi) = Y [|Aiplles|xi — yil,
i=1

for some functions p, ¢ : Q — R.
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2.8.11 Pachpatte [130]

Under the notations and definitions given in section 2.6, let f, g : Q — R be summable
functions on Q and p : Q — R, a summable function on Q such that p =Y, p(x) > 0.
Then

[F(P,p.f,8:Q)l < \/F(F,p,ﬁf;Q)\/F(an,g;Q),
and in addition if ¢ < f(x) < P, y < g(x) < T for each x € Q, where ¢, ®, y, I are given

real constants, then

|F(P,p,f,8:0)| < (<I>—¢)(F—7),

4> \

where

_ 1
F(P,p,f,80)=

el
~ll —

L)~ (5 Er0s0) (FEre0) . ©)

2.8.12 Pachpatte [130]

Under the notations and definitions given in Section 2.6, let f, g : O — R be summable

functions on Q and p : O — R a summable function on Q such that P =}, p(x) > 0. Then

(f(x) - Il,Zp(y)f(y)> <g<x> - }sz@)g(y))

and in addition if ¢ < f(x) < ® for each x € Q, where ¢, P are given real constants, then

|F(F7p7f7g7Q)‘ g %(P

where F (P, p, f,g: Q) is defined by (0).

- 1

F(P,p,8,8:0),

2.9 Notes

The Griiss inequality has been generalized and extended over the last years in a number
of ways. In [32], Dragomir investigated the Griiss type inequality in Theorem 2.2.1 in
real or Complex inner product spaces. Lemmas 2.2.1 and 2.2.2 are due to Dragomir [53].
Theorem 2.2.2 provides a new proof of Theorem 2.2.1 by replacing the condition (2.2.5)
by an equivalent but simpler assumption and is due to Dragomir [53]. Theorem 2.2.3 deals
with the refinement of the inequality in Theorem 2.2.1 and is taken from Dragomir [53].
Theorem 2.2.4 is due to Dragomir, Pecari¢ and Tepes [56], while Theorem 2.2.5 is due to
Dragomir [43].
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Lemmas 2.3.1 and 2.3.2 are respectively taken from Dragomir, Corone, Barnett and Roule-
liotis [37] and Barnett and Dragomir [8] and the results presented in Theorems 2.3.1—
2.3.4 are taken from Pachpatte [89,122,91,129]. Theorems 2.4.1 and 2.4.2 deal with the
Trapezoid type inequalities and are taken respectively from Pachpatte [86], Dragomir, Bar-
nett and Pearce [39], while Theorems 2.4.3 and 2.4.4 are due to Barnett and Dragomir
[6]. The results presented in Sections 2.5 and 2.6 are due to Pachpatte and taken from
[130,94,103,129,95]. The material included in Section 2.7 is devoted to the applications
and adapted from Dragomir and Gomm [54], Dragomir, Barnett and Pearce [39] and
Hanna, Dragomir and Roumeliotis [66]. Section 2.8 contains a few miscellanous inequali-

ties investigated by various investigators.



Chapter 3

Ostrowski-type inequalities

3.1 Introduction

In [81], A.M. Ostrowski proved the inequality (7), which is now known in the literature as
Ostrowski’s inequality. Since its apperance in 1938, a good deal of research activity has
been concentrated on the investigation of the inequalities of the type (7) and their applica-
tions. The books [50,80] contain a considerable amount of results related to Ostrowski’s
inequality. In the last two decades, the inequalities which claim their origin to the Os-
trowski’s inequality (7) have renewed interests and several studies dedicated to obtain var-
ious generalizations, extensions, variants and applications have appeared in the literature.
In this chapter, we present some of the more recent developments related to the Ostrowski’s
inequality (7), not covered in [50,80]. Applications are discussed to illustrate the usefulness

of certain inequalities.

3.2 Inequalities of the Ostrowski-type

In this section, we present some inequalities of the Ostrowski’s type recently established
by various investigators.
We start with the following generalization of the Ostrowski’s inequality for Lipschitzian

mappings established by Dragomir in [52].

Theorem 3.2.1. Let f: [a,b] — R be an L-lipschitzian mapping on [a, D], i.e.,
[f(x) = fF ) < Llx—yl,

for all x, y € [a,b] and the constant L > 0. Then we have the inequality
b2
’ O Gt )
/ FO)dt— f)b—a)| <Lp—a)? |+ o2 | 3.2.1)

4 (b—a)?
for all x € [a,b]. The constant 1 is the best possible.

133
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Proof. Using the integration by parts formula for Riemann-Stieltjes integral, we have
X X
| t-adf@) = fx)c-a) - [ eyar
and
b b
[ =g =@ o=~ [ fwar

If we add the above two equalities, we get

) (b—a) - / ? fydr = | / t—a)df () + / (= b)), (322)

n _ () (n) (n)

Now, assume that A, :a =x;,’ <x;’ <--- < x(nil) < xp ' = b is a sequence of di-

5( ") € [, A )] If p: [a,b] — R is Riemann integrable on [a,b] and v : [a,b] —Ris

i (57 b (42) v ()]

L-Lispschitzian on [a, b], then
<t ) ) [

v(A,)—0
) H—] xi

\/pudwm

o B ()] ()

V(A,)—0

b
L / 1p(x)|dx. (323)
Applying the inequality (3.2.3) on [a,x]| and [x, b] successively, we get
X

X b b
[e=adro+ [e=narw)|<| [ c=aaro|+| [ c=paso)

X b
<LU |t—a\dt+/ |t—b|dt}

= % [(x— a)2 +(b —x)z]
l + (x—_a'ibf] . (3.2.4)

and then by (3.2.4), via the identity (3.2.2), we deduce the desired inequality (3.2.1).

=L(b—a)’

Now, assume that the inequality (3.2.1) holds with a constant C > 0, i.e.,

_ aiby?
Lib—a)|C+ (x"‘)] (3.2.5)

(b—a)?

[ - swe-a) <
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for all x € [a,b]. Consider the mapping f : [a,b] — R, f(x) = xin (3.2.5). Then

a+b a+b)2‘| (b a)

RIvD
for all x € [a,b], and then for x = a, we get

b—a 1
< —
5 S {C—i— }(b a),

which implies that C > %, and the proof is complete.

(x—
C+7(b— )

Remark 3.2.1. If the mapping f is differentiable on (a,b) and with derivative f’ being
bounded on (a,b), i.e

put [ f7|ee-
In [26], Dragomir and Wang proved the following Ostrowski-type inequality.

oo = SUPye(ap) [ ()] < oo, then instead of L in (3.1.1) we can

Theorem 3.2.2. Let f: [a,b] — R be a differentiable mapping on (a,b) (a < b). Suppose
that /" is integrable on [a,b] and y < f'(x) < T for all x € [a,b] and ¥, T € R. Then

‘f(X) /f(t)d fb) - ﬁ(a) (x—“b)’gi(b—a)(r—y), (3.2.6)

2
forall x € [a,b].

Proof. Define the function

(1) = t—a if t €Ja,x], 327
U= if € (x,b). -

Integrating by parts (see the proof of Theorem 1.2.3), we have

1 b 1 b
[ plens@ar= 1) - [ s (328

for all x € [a,b]. It is clear that for all x € [a,b] and ¢ € [a, b] from (3.2.7), we have
x—=b< p(xt)<x—a.

Applying Griiss inequality (3), to the mappings p(x,-) and f’(c), we obtain

‘ (o) f()dr — (bia'pr(xJ)dt) (l)ia/abf'(t)dtﬂ

1 1
<Z(xfaforb)(l"fy):Z(bfa)(l"fy). (329

By simple calculation, we get

b X b

L s L)

The required inequality (3.2.6) follows from (3.2.9), (3.2.8) and the above two equalities.

and

The proof is complete.
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Remark 3.2.2. If we choose in (3.2.6), x = # and x = b respectively, then we get

and
‘f(a);f(b) - (bia) /a"’f(t)dt <%(b_a)([‘_'y), (3.2.11)

An inequality similar to (3.2.6) obtained by Ujevi¢ [154], is embodied in the following

theorem.

Theorem 3.2.3. Let f : [a,b] — R be an absolutely continous function with derivative
f' € Ly[a,b]. Then

-0~ (x- 52 o) - sl - [ | <

for all x € [a,b], where

G(f’)=(b—a)[ (/13- (/f dt)}

The constant 7 is the best possible.

[

(b— ) ;
NG o(f), (3.2.12)

Proof. Let p(x,t) be the mapping defined by (3.2.7). Integrating by parts, we obtain

[ s 0 = - ars)~ [ s (3213)
We also have
/abp(x,t)dt: (b—a) <x“;b>, (3.2.14)
and
/ (0t = £(5) -~ Fla). (32.15)

From (3.2.13)—(3.5.15), it follows

[ oot ron]o

—-ar- (x-S o) - s@l - [0 621

On the other hand, we have

[ [pten =52 [ pesas] -1 [ roias]a
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1 b 1 b
< ) — ,s)d L—/ "(s)ds|| . 3.2.17
o= 52 [ psas| 752 [ ras] G217
We also have
1 b 2 (b—a)?
Hp(x7')b_a/a p(X,S)dS 2* 12 (3.2.18)
and
Lo ’ (f(b) — f(@)?
'~ '(s)ds|| = |f|)} - 1 3.2.19
=5t [ o] =1rg- L= 6219
From (3.2.16)—(3.2.19), we easily get (3.2.12), since
1
5 oz (FB) = f(a)*]?
Vo = |1y - HE L]
We must show that (3.2.12) is sharp. For that purpose,
We define the function
lt2, t €10,x],
fl)= 2 (3.2.20)

1
§t27t+x, t € (x,1],

where x € [0, 1]. The function given in (3.2.20) is absolutely continuous since it is a con-
tinuous piecewise polynomial function.

We now suppose that (3.2.12) holds with a constant C > 0, i.e.,

a+b b
6070~ (x=52) 1) - ) - [ oy
1
3 b) — f(a))?]?
<C(b—a)? [Ilf'i—(f()b_f;())] : (3.2.21)
Choosing a =0, b =1 and f defined by (3.2.20), we get
1 1 X2 1 x?
= _—_— — = 1 = —_ = = —
| o =x—2-% =0, f)=x-3, fx)=7,
and the left hand side of (3.2.21) becomes 1—12 We also find that the right hand side of

(3.2.21) becomes % and hence, we find that C > ﬁ proving that the constant ﬁ is
the best possible in (3.2.12). The proof is complete.
The following Ostrowski type inequalities established by Ujevic in [151] and [150], enlarge

their applicability to obtain better error bounds.
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Theorem 3.2.4. Let f:] — R(where I C R is an interval), be a mapping differentiable
in ; (the interior of 1), and let a, b € ; , a < b. If there exist constants ¥, I' € R such that
y< f(r) <T,forall 7 € [a,b] and f is integrable on [a,b], then we have

_ b
‘f(x)— (x—“;b> f(b;fﬁ(a)_bia/u fd < Z=2s—y), (3222
and
a+b\ f(b)—f(a) 1 b b—a
'f(x)(x . > ] —b_a/(lf(t)dt <P lr_y,  G2m)
where § = L) —/(@)

Proof. Let p(x,t) be the mapping defined by (3.2.7). Integrating by parts, we have

ﬁ/a plen)f'(6)dt = f(x) = 37— / f(t)dr. (3.2.24)
We also have
blfa /abp(x,t)dt —x— “erb, (3.2.25)
and
/ f(0)dt = f(b) - f(a). (3.2.26)

From (3.2.24)—(3.2.26), it follows that
b b)— 1 b
7o (x- 52 LD [ g

2 b—a
1 b , 1 b , b
- — / PO (Ot~ s / F)dr / plx,1)dr. (3.2.27)
‘We denote
1 b , 1 b , b
Ri() = -— / PO (0t~ =y / F)dr / plx,1)dr. (3.2.28)
If C € R is an arbitrary constant, then we have
1 b, 1 b
Ra) = 5 [ 0= |- 5 [ plsas|ar G229)
since
b 1 b
/ {p()@t) - m/ p(x,s)ds] dr=0. (3.2.30)

First, we choose C = v in (3.2.29). Then we have

R = 5 [0 -0 o) - 5 [ plasgas)
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and
1 a+b b,
< —(x—— —yldt. 2.
R < 5 max o) = (v= 22| 170~ i 6231
Since
a+b b—a
1132,)2] px,t) — (x— > > ‘ = (3.2.32)
and
b
[ 170 =viat = 1)~ @)~ Yo =) = (= 7)(b~a),
from (3.2.31), we get
IR (x)] < -7). (3.2.33)
From (3.2.27), (3.2.28), and (3.2.33), we eaisly get (3.2.22).
Second, we choose C =T"in (3.2.29). Then we have
1 b, 1 b
R = 5 [0 -0 [ptn) - 5 [ plasas)
and
IRn(x)] < —— max | p(x,1) — <x ““’) /b \f(£) = T\dt (3.2.34)
" b —ai€a,b] ’ 2 a ' -
Since
/ f'(6) = T|dt = T(b —a) — f(b) + f(a) = (T — S)(b—a). (3.2.35)
From (3.2.34), (3.2.32), and (3.2.35), we get
|Ra(x)] < -5). (3.2.36)

From (3.2.27), (3.2.28), and (3.2.36), we eaisly get (3.2.23). The proof is complete.

Theorem 3.2.5. Let/ C R be an open interval and a, bel,a<b. If f:I - Risa

differentiable function such that y < f’(¢t) < T, forall ¢ € [a, b] and some constants ¥, I' € R,

then

60|50+ se)+1-2070 30 (- 52) |- [ soa

b—a b—a b—a
< — - —a—N—- —X— —
< (S 'y)max{l 5 X4 A 7 > }(b a),

(o B(f(a>+f<b>>+<1 A T 2) (x— =) - [ sa

<(r5)max{/1b;“ }(ba),

whereS:W anda+lb%“ gxébflb%‘ﬂforl €10,1].

(3.2.37)

(3.2.38)
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Proof. Define the mapping

b—
t—la+A 2a , 1€ a,x],

k(x,t) = b—u (3.2.39)
t— b—)LT , 1€ (x,b].

Integrating by parts, we have

/abk(x,t)f’(t)dt:/ax [t— (aubz_“)}f’(t)dﬁ/xb {"( b;aﬂf/(t)dt

— -0 | Ju@+ oy +a-nrw]| - [rwa. ez
We also have

b * b—a b —a
/ak(x>f)df=/a [t—<a+12)}dt+/x [r—( A )}dt
1 b—a 2 1 b—a 2
—2[(x—a)—l 3 ] —2[(x—b) 3 ]
—1-2e-a) (x-457). G241
Let C € R be a constant. From (3.2.40) and (3.2.41) it follows that

/ k) [f () — Cldr = / k) f (0t —C / ’ k)t

— (b-a) [FU@+16)+ (=270 ~c1-2) (-2 | - [ s

(3.2.42)
If we choose C = yin (3.2.42), then we get
-0 | FU@+ o)+ -2 -1 -2) (- 52) |- [0
_ / k) (1) — dr. (3.2.43)
On the other hand, we have }
/ k(x,0)] V| < max k(1) / \f(£) = Td, (3.2.44)
since
ma Ik, t)|—max{lb;a,x—a—lb;a, - bg“}, (3.2.45)

and

/|f —Tdt = f(b)— f(a)—y(b—a) = (S—7y)(b—a). (3.2.46)
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From (3.2.43)—(3.2.46) it follows that (3.2.37) holds.
If we choose C =T in (3.2.42), then we get

-0 | 50@+ o)+ -2 -1 (x- 52| - ["s0a

_ / ’ ko) f () — Y, (3.2.47)

and

l/ab |f'(t) =Tldt =T(b—a) — (f(b) — f(a)) = (C=S)(b—a). (3.248)

From (3.2.47), (3.2.45) and (3.2.48), we easily get (3.2.38). The proof is complete.

Corollary 3.2.1. Under the assumption of Theorem 3.2.5, we have

100-a 160 (- 5) - [ rar

2
<(S—7) [b;a+’xa;bu (b—a), (3.2.49)
a+b b
e b-a)-Tb-a) (=7 ) = [ pera
a
<(r-5) {b;a+’x“;bH (b—a). (3.2.50)
Proof. We set A =0 in (3.2.37) and (3.2.38). Then we have
1 _
max{x—a,b—x} = 5 b—a+|2x—a—b|| = b 5 75 ’x a;—b ‘ . (3.2.51)
In the above proof, we used
1
max{A,B} = E[A +B+[A—-B|], a, beR.
Now, in view of (3.2.51), it is easy to see that (3.2.49) and (3.2.50) are valid.
Corollary 3.2.2. Under the assumptions of Theorem 3.2.5, we have
b—a b b—a)?
2@+ o) [ roar) < s-n P52 (252
b—a b b—a)?
23 o) [ rar) < 0-5 50 (253
a
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Proof. We set A = 1in (3.2.37) and (3.2.38). Then we have x = # and
b— b— b— b—
max{lza,x—a—lza,b—x—l a}: 2a.

The proof of (3.2.52) and (3.2.53) is now obvious.

Corollary 3.2.3. Under the assumptions of Theorem 3.2.5, we have

60 |[LE O Lp - L (o= 20 |- [ ra

a+b
2

’(b—a) [Wﬂf@)—r <x— ““’ﬂ - abf(t)dt

b—a

< (S—y)[ + ’x H (b—a), (3.2.54)

b—a
4

g(rs)[ +’xa+bH (b—a). (3.2.55)

Proof. Weset A = % in (3.2.37) and (3.2.38). Then we have

{ba 3a+b a+3b }
max X — , —Xx

4 4 4
1 a+b 1 a+b
= (x-arfe 5 g (o157
1 b
:[b—a+2 x—a+ ‘+|2x—(a+b)|}
4 2
b—a+ a+b
— X — .
4 2

The proof of (3.2.54) and (3.2.55) is now obvious.

Corollary 3.2.4. Under the assumptions of Theorem 3.2.5, we have

st s+ o= (s 52 ) - [ o

<(S—7) [b_“ ’ —“;bH (b—a), (3.2.56)
25t s o) - 5 (x-50) - [ oy

<(C-9) {b;“+’x“;bu (b—a). (3.2.57)
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Proof. Weset A = 3 in (3.2.37) and (3.2.38). Then we have

b— b
max{lza,x—a—l 20 }
b—a Sa+b a+5b
= max — —
a G X R x

1 n 2a+b 1 b n a+2b
= max< — — — — — _
a 5 x—a+|x 3 5 x4+ [x 3

{b—a b—a ‘ a+b‘}
= max + [x—

6 ' 3 2
71 b—a+ _a—b—b+b—a+ _a+b
2072 "2 6 )
b—a+ a+b
e X — .
3 2

The proof of (3.2.56) and (3.2.57) is now obvious.

Remark 3.2.3. If we set x = # in (3.2.49) and (3.2.50); (3.2.54) and (3.2.55); (3.2.56)

and (3.2.57), then we get corresponding inequalities which do not depend on x.

3.3 Ostrowski-type inequalities involving the product of two functions

In this section, we shall deal with some Ostrowski-type inequalities recently established by
Pachpatte in [93,109,114,139], involving product of two functions.

We start with the following Theorem which contains the Ostrowski-type integral inequali-
ties established in [114].

Theorem 3.3.1. Let f, g € C'([a,b],R), [a,b] €R, a < b. Then
1 1 b b
1098~ 31e0F +1l| < ¢ [l [ 17 @lar+ ool [ olar] @

and

et ~lewr -+l +r6l < ¢ ([ o) ([eor). 6
for all x € [a,b], where
fla)+f) . _ gla)+s(b)

2 T 2
The constant % in (3.3.1) and (3.3.2) is sharp.

F =
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Proof. From the hypotheses, we have the following identities (see [88], [108, p. 267]):

F- % [/axf’(t)dt _ /xbf’(t)dt} , (3.3.3)

1 "X b
ﬂ@—G—zi/Q@m—/gﬁﬂﬁ. (3.3.4)

a X
Multiplying both sides of (3.3.3) and (3.3.4) by g(x) and f(x) respectively, adding the

resulting identities and rewriting, we have

F(0)2x) ~ S[8WF + FR)G]

1 X b X b
= [g(x) [ / F()di - / f(t)dt] FW) [ / ¢ (1)di — / g’(t)dt” . (335
From (3.3.5) and using the properties of modulus and integrals, we have
1 1 b b
70960~ 31eF+70961| < 1 [le] [ 17 @lar-+ o] [l ]
This is the required inequality in (3.3.1).
Multiplying the left hand sides and right hand sides of (3.3.3) and (3.3.4), we get

f(x)g(x) = [g()F + f(x)G] + FG

[/ fl(t)dt — /f t)dt} [/axg/(t)dt/xbg/(t)dt} (3.3.6)

From (3.3.6) and using the properties of modulus and integrals, we have

FWete) -~ lewF + 16+ r6 < g | [ wlar | [1¢0ia).
This is the desired inequality in (3.3.2).

and

To prove the sharpness of the constant % in (3.3.1) and (3.3.2), assume that the inequalities
(3.3.1) and (3.3.2) hold with constants ¢ > 0 and k > 0. That is,

700~ 5 [8IF +170016] <l [ 17 O+ 5] [l ] 63
and

F0)s00) ~ [elF -+ 1161+ PG| <k [ ar) [1g6 i), 63w

for x € [a,b]. In (3.3.7) and (3.3.8), choose f(x) = g(x) = x and hence f'(x) = ¢'(x) =1,

F=G= “zib. Then by simple computation, we get

x—é(a—i—b)‘ < 2c¢(b—a), (3.3.9)

x(x_(a+b))+<“;b>2

By taking x = b, from (3.3.9) we observe that ¢ > % and from (3.3.10) it is easy to observe

and

<k(b—a)* (3.3.10)

that k > 7, which proves the sharpness of the constants in (3.3.1) and (3.3.2). The proof is

complete.
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Remark3.3.1. Dividing both sides of (3.3.5) and (3.3.6) by b — a, then integrating both

sides with respect to x over [a,b] and closely looking at the proof of Theorem 3.3.1, we get
1 b 1 b b

[ 1= s [F [ et [ rtoan]

< gy | ([ teonas) ([ 1 wia) + ([ ([ olax) |

(3.3.11)

and

L ’ )g(x) - ﬁ {F / ’ e(x)dx+G / ’ f(x)dx—m} ‘

< % </ab|f’(x)|dx> (/ab|g/(x)dx> . (33.12)

We note that the inequalities (3.3.11) and (3.3.12) are similar to those of the well-known

‘ba

inequalities due to Griiss-and Cebygev, see [61,13].

The next Theorem deals with the Ostrowski-type inequalities proved in [109].

Theorem 3.3.2. Let f, g: [a,b] — R be continuous functions on [a,b] and differentiable

on (a,b), with derivatives [, g’ : (a,b) — R being bounded on (a,b). Then

b b
10960~ g5 o) [ 1010 [ siar
< e+ g1 [ E 2 ooy (33.13)
S5 SO e + 1L )] &[]0 1 b—a) a), 3.
and
b b b
1098t e [ 1) [ eias] + 51 [ s
X—a 3 — X 3
e e 6314
for all x € [a, D).
Proof. For any x, y € [a,b] we have the following identities:
10 -10) = [ 7@y, (3.3.15)
|

and

gx)—g(y) = /xg'(t)dt- (3.3.16)

y
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Multiplying both sides of (3.3.15) and (3.3.16) by g(x) and f(x) respectively and adding,

we get
2£(0)2(x) — [g(X)f() + F(0)2()] = g(x) / " e+ f() / Yd.  (33.17)

Integrating both sides of (3.3.17) with respect to y over [a,b] and rewriting, we have

10960) = 575 ) [ 100y +562) " e

= Z(bl_a)/ab {g(x) ./yxf/(t)dt—kf(x) /yxg’(t)dt}dy. (3.3.18)

From (3.3.18) and using the properties of modulus, we have
10960) ~ 575 [ [ 100563 [ e

1 b
< 5=y | (I Iels=31+ 170 ol

x—a)? )2
~ st (@I + 7| = =2
— 1 / ’ (x_ﬂzb)z .
= LI -+ g1} 1+ S =)

This is required inequality in (3.3.13).
Multiplying the left hand and right hand sides of (3.3.15) and (3.3.16), we get

7060~ g1 0) + £+ 100e0) ={ [0 b [ . e

Integrating both sides of (3.3.19) with respect to y over [, b] and rewriting, we have

) [ 10y 1) [ ] + 5 [ r0)s0iar

L rwa{ [ ewala 3320

From (3.3.20) and using the properties of modulus, we obtain

: p {g(x) /abf(y)dy+f(x) /abg(y)dy} +bia/abf(y)g(y)dy’

FR)8) — 37—

f(x)g(x)

1 b 1 (x—a)’+ (b—x)?
<—’w’m/ —yPdy = ——[|£'lllg I .
sl =llg'll | =ydy = —Ilf =]l 3

This is the desired inequality in (3.3.14). The proof is complete.
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Remark 3.3.2. Dividing both sides of (3.3.18) and (3.3.20) by b —a, then integrating both
sides with respect to x over [a,b] and using the properties of modulus and by elementry

calculations, we get

5 [ st (5 [ stonr) (7 [ o)

<o | [/ eI+ LI L b slav|ax. G32m
and
o [ roeas— (5 [ rwax) (51 [ swax)
N S (3322)

Here, it is to be noted that the inequality (3.3.21) is similar to the well-known Griiss in-
equality in (3) and the inequality (3.3.22) is the well-known Cebysev inequality in (1).
We also note that, by taking g(x) = 1 and hence g’(x) = 0 in (3.3.13), we recapture the
celebrated Ostrowski’s inequality (7).

In the following Theorem we present the results given in [139] where the derivatives of the

functions belong to L,, spaces.

Theorem 3.3.3. Let f, g: [a,b] — R be absolutely continous functions with derivatives
f', & €Lyla,b], p> 1. Then

‘f(x)g( ) — 2(19:4{ / f@)de + f(x) / gt dt}
< gy L@+ LAy (B (3323)
and
709s0) -~ 5 (s [ F@r o) [ o]
+ (bla/abf(t)dt> (bla/ubg(t)dt)‘
< o I Il (B, (3.3.24)
for all x € [a,b], where
B = — (=)™ + (=], (3329

1 1 _
and ;—‘-;—1
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Proof. From the hypothesis, we have the following identities (see, Theorem 1.2.3):

1 b 1 b
)= b—a/a fle)dr = m/g plat)f'(t)dt, (3.3.26)
and
1 b b
g(")‘m/a g(r)dr = fia/a plx,0)g(t)dt, (3.3.27)

for x € [a,b], where p(x,t) is defined by (1.2.11). Multiplying both sides of (3.3.26) and
(3.3.27) by g(x) and f(x) respectively, adding the resulting identities and rewriting, we

have
10960) ~ 55 [e) [ far 10 [ sty

- ﬁ {g(x) /;P(x»f)f’<f)df+f(X) /abp(x,t)g’(t)dt} : (3.3.28)

From (3.3.28), using the properties of modulus and Holder’s integral inequality, we obtain

f(x)g(x) — 2(ba{ / f() dt+f(x)/ (t)dt}

1)l [ Ipten L @lar +171 [ el 0]

2(b—a)

<o [|g<x>| ([ o))" ([ orar)
c1s00n ([ twnar)’ ([ o) ’l’]
1

~ s e+ i) |pxr>|qdz) . (33.29)

By a simple calculation, we have

b X b
/ \p(x,t)\thz/ |t—a|‘1dt+/ It — b|9di
—/ (t—a) qu—/ (b—1)1dt

[(x—a)™ + (b—x)7""] = B(x). (3.3.30)

q+ g+1
Using (3.3.30) in (3.3.29), we get (3.3.23).

Multiplying the left hand sides and right hand sides of (3.3.26) and (3.3.27), we have

100~ 52 o0 [ o+ 160 [ ey
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+<b1a/abf(t)dt) <bl_a/abg(t)dt>

_ (]?_‘7 </abp(x,t)f/(t)dt) (/fp(x,t)g/(t)dt) . (3331)

From (3.3.31), using the properties of modulus, Holder’s integral inequality and (3.3.30),

we have

1 b

‘f(x)g(x) - [g(x)/abf(t)dt+f(x)/;

+ (171_61 /jf(t)dt) <bl_a/abg(t)dt)‘

< e ([t @iar) ([t o)

<o ([ p<x,t>th)‘]’ (f If’(t)”dt>; (/ |p<x,t>|th)‘l’ ([ gfwdt);

1

= a1 Dol (8L

This is the required inequality in (3.3.24). The proof is complete.

g(t)dt}

Remark 3.3.3. By taking g(x) = 1 and hence g’(x) = 0 in (3.3.23) and by simple calcu-
lation, we get
1

105 [ 1
1

x—a\4! (b—x)’”l] 1
i + (b—a)i | f'llp. (3.3.32)
(q+1)§ (b—a) b—[l P

for all x € [a,b]. We note that the inequality (3.3.32) is established by Dragomir and Wang
in [27].

At the end of this section, we give the following Theorem which contains the inequalities

<

proved in [93].

For continous function z : [a,b] — R and A € [0, 1], we use the notation

Liz(x)] = (b—a) %(z(a) +z(b))+ (1= 2A)z(x)| -
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Theorem 3.3.4. Let f, g: [a,b] — R be continous functions on [a,b], differentiable on
(a,b) with derivatives f’, g’ : [a,b] — R being bounded on (a,b). Then

SOLU W]+ L] 809 [ a5 [ gt)an
< g oo+ 1 Gl o] M 0), (3.3.33)
and
Lirleleto] - 2letw)] [ -] [ stoar ([ roan) ([ eoar)
< Nl e (M ()%, (3334)

fora+7LbT< <b-— /le, € [0,1], where
1

2
M@) = ~(b—a)? A2+ (A - 1)}+<x‘”2rb>. (3.3.35)

~ \

Proof. From the hypotheses, we have the following identities (see, Theorem 1.4.1 and
Theorem 3.2.5):

b b
- / Flo)dt = / K(x,0)f (1), (3.3.36)

and

b b
Lig)) - [ sl = [ k(x.0pg' 0t (3337)
where k(x,7) is defined by (3.2.39). Multiplying (3.3.36) and (3.3.37) by g(x) and f(x)

respectively and adding the resulting identities, we have

SCOLLF 0]+ £ () [ F0r—13) [ strar

b b
_ g(x)(/a k(e ) f (1) di + f(x)l/a k(x,0)g! (1)di. (33.38)

From (3.2.38) and using the properties of modulus, we have

b b
SWLL () +F (L)~ 80 [ F0d1= () [ gle)ar

< [let [ el @+ el [ ol wla]

b
< [lg(X)IIIf'HerIf(X)ng'HN}/a |k(x,1)|dt

= (18 llee + 1 £ @)1 l1€ 1]
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% {/ax t<a+7Lb;a> df+/xb t( - b—a)

Now, by evaluating the integrals on the right side of (3.2.39) as in the proof of Theo-

dt] : (3.3.39)

rem 1.4.1, we get the required inequality in (3.2.33).
Multiplying the left hand sides and right hand sides of (3.2.36) and (3.2.37), we get

LNl ~2lgw] [ =i [ ear ([ oar) ([ etoar)
:<AM“V%0(A“”MWO' (3.3.40)

From (3.2.40) and following the proof of inequality (3.2.33) with suitable changes, we get
the desired inequality in (3.2.34). The proof is complete.

Remark 3.3.4. By taking g(x) = 1 and hence g’(x) = 0 in (3.3.29), we get the following

inequality established by Dragomir, Cerone and Roumeliotics in [47]
b
- [ far| < M)
for all A € [0,1] and a + ﬂtb%“ <x<b-— lb%“ and in addition if we choose (i) A = 0,

we get the Ostrowski’s inequality (7) and (i) A = 1,x = # we get the Trapezoid-type

inequality.

3.4 Inequalities of the Ostrowski-and Griiss-type

In this section, we offer some inequalities of the Ostrowski-and Griiss-type, that have re-
cently given by Pachpatte [100,131] and Cerone, Dragomir and Roumeliotis [15].
In the following Theorems we present the inequalities proved by Pachpatte in [131].

For suitable functions f, g : [a,b] — R, we use the following notation to simplify the details

of presentation:
S(f.8) = Fx)glx) — [g m+ﬂ)L2mm}
( “*b)fgu-+cfun
st - 1) )
b@/< ﬁ@u+wum
in which

J®)—fla) . _sb)—sla)

F = =
b—a '’ b—a
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Theorem 3.4.1. Let f, g: [a,b] — R be absolutely continuous functions with derivatives
f',& € Ly[a,b]. Then we have

sl <t s [ <>|(bla||f'%—F2) el (51618 - )]d
(3.4.1)

for all x € [a,b] and

1

1 b 1 3 1 !
ol < o | [Ig(X)<b_a|f’||§—F2> #1001 (5118 -6 ]dx.
(3.4.2)

Theorem 3.4.2. Let the assumptions of Theorem 3.4.1 hold. If y < f/(x) < T, ¢ < g'(x) <

@ for x € [a,b]; where y, T', ¢, ® are real constants. Then we have

5(7.8)] € 3= 8] (T =)+ (@ =), (343
for all x € [a,b] and
1 b
H(.0)1 < 575 | 1@ =)+ /@]~ 0)]dx. (344

Remark 3.4.1. If we take g(x) = 1 and hence g¢’(x) = 0 in (3.4.1) and (3.4.3), then by

simple computation, we get the inequality established by Barnett, Dragomir and Sofo in [7,

a+h

Theorem 2.1] and if we set x = in (3.4.1) and (3.4.3), then we get the corresponding

midpoint inequalities.

Proofs of Theorems 3.4.1 and 3.4.2. Define the function

t—a if t €Ja,x],
plxt) = .
t—b if t € (x,b].

By using the well-known Korkine’s identity (see [79]) for mappings f, g : [a,b] — R, which

can be easily proved by direct computation:

1) = sags | 0= 76) 6(0) (6D

where T'(f,g) is defined by (2), we obtain
1 b , 1 gt
— p(x,t>f<r>dr—<H [ rnar) (5 [ roa)

s | s = pla) (70— ). (345)
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By simple calculation, we obtain

e [ penrwan= 1 - [,

1 b a+b
— t)dt =x—
[ ptenar=x- 2,

and
T

Using these facts in (3.4.5), we get the following identity (see [7]):
1 b a+b
- _Fx—
F) b—a./a f(oydr (x 2 )

s | s = Pl (70~ s ) (3.46)

for all x € [a,b]. Similarly, we get

g(x)bia/abgwt(;(x“;b)

s | ) = pla) ¢ 0~ () nds, 347

Multiplying (3.4.6) and (3.4.7) by g(x) and f(x) respectively, adding the resulting identities

and rewriting, we get

b b
s<f,g>:;[g<x>2(bla)2 [ [ ) = plas))((6) ~ £ ())deas
W [ [ ) - plr €O~ ¢ as| . Gas)
From (3.4.8) and using the propertles of modulus, we get
IS(f,g)l\[lg( s [ 1= ple) )~ 7 0
Wy [ [ o0 - el @) - ¢ @lanas]| . @)

By using the Cauchy-Schwarz inequality for double integrals, we observe that

s | = ol @) - s s laras

( o //p(xt xs))zdtds>l
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l

( 2(b—a)? // Wfds) : (3.4.10)

It is easy to observe that

Z(bl_“)2~/ab./ab(p(x’t) — p(x,s))*dtds = biia/ablﬂ(x,t) - <bia,/abp(x,t)dl>2
- bia [/:(f—a)2dt+/xb(b_t)zdt} B (x_a_;b)z

@B (b—x) 2
:bia [(x a) ;r(b x) }_(x_a;rb) :le(b_a)z’ 34.11)
and
1 y b) — 2 1 ,
s | Co-roraa= - (PO=L9) —Lygp
(3.4.12)
Using (3.4.11) and (3.4.12) in (3.4.10), we get
1 b b / /
s L 1P = plas)l6) — (o) s
b 2 2 ]
SO (||f I2 F> : (34.13)
Similarly, we get
1 b b / /
W/a /a Ip(x.1) = p(x,s5)[|g'(t) — &' (s) |dtds
b— 2
SOV <|| 13- > : (3.4.14)

Using (3.4.13) and (3.4.14) in (3.4.9), we get the desired inequality in (3.4.1).
Integrating both sides of (3.4.8) with respect to x over [a,b] and dividing throughout by
(b —a) we get

H(f.0) = z(bl_a) [ [52 [ [ wten—ptas 570~ ) s

sl [ s = plx ¢ 0~ )anas| (3415)

From (3.4.15) and using the properties of modulus, we have

1001 < 35 | |siees [ [ 1o = plal @) - 5 0aras
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+% / ’ / " 1p(et) — plx,5)|[€' () g/(s)|dtds] dx. (3.4.16)

Using (3.4.13) and (3.4.14) in (3.4.16), we get the required inequality in (3.4.2). The proof
of Theorem 3.4.1 is complete.

By using the Griiss inequality (3), it is easy to observe that

0< 1 /h(f'(t))2dt— b /hf'(t)dt 2<l(r— )2
Sh—al, b—al, Szumrn
i.e.,
1 1
<—|fIP-F*< -(C—7)>% 4.
0S o= IFl=F < ;(T=7) (3.4.17)
Similarly, we have
1 1
0< —|lg'Ih-G*< —(®—¢)> 3.4.18
gl [ P 7(@—9) ( )

Using (3.4.17), (3.4.18) in (3.4.1) and (3.4.2), we get the required inequalities in (3.4.3)
and (3.4.4) and the proof of Theorem 3.4.2 is complete.
In [15], Cerone, Dragomir and Roumeliotis have obtained the following Ostrowski-Griiss-

type inequality for twice differentiable mappings.

Theorem 3.4.3. Let f: [a,b] — R be continous on [a,b] and twice differentiable on (a,b),
and assume that the second derivative f : (a,b) — R satisfies the condition ¢ < f”(x) < ®

for all x € (a,b). Then we have the inequality

f(x)(xa;rb>f’(x)+ (b—ay’ 1<xa+b>2 )= F'(a)

b—a

YRR 2

a+b
2

2
< L@o—9¢) B(b—a)—i—‘x— } , (34.19)

1
8

1 b
—— / F(t)de
for all x € [a, D).

Proof. From the hypotheses, we have the following identity (see Theorem 1.2.5):

1 b 1 1 b atby
e / K f" (1)t = -— / F(o)dt + <x2> P —f&),  (3.4.20)
where the kernel & : [a,b]* — R is defined by
2
(t=af if 1 € [a,x],
k(xvt) = (I _2b)2
if 1€ (x,b].

2
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It is easy to observe that the kernel & satisfies the estimation

O elstt),

2

(3.4.21)
c {a—i—b 74 ’

2
for all ¢ € [a,b]. Applying Griiss integral inequality for the mappings f”(-) and k(x,), we
get

1

b b b
/a k(x,t)f”(t)—blfa / (e / F0)de

1
b—a

(b—x)? . a+b>’

1 T )
<Z(‘I’—¢)X (x—a)? xe[aer b} (3.4.22)
2 2
We observe that
b X (¢ )2 b (+ _ 12
/ak(x,t)dt:/g %dth/X %dl‘:é[(xfa)3+(bfx)3].
Also, a simple computation shows that
(x—a)’ 4+ (b—x)>=(b—a) [(x—a)2+(b—x)2—(x—a)(b—x)]
=(b—a) [(bfa)273(xfa)(bfx)]
=(b—a)[(b—a)®+3[x*— (a+b)x+ab]]
2 —a\2
= (b—a) [(b—a)2+3 (x—“;b) —<b2 )H
B (b—a)? a+b\?
—(b—a)[4+3<x—2> .
Consequently,
b —a)? a 2
/ak(xﬁ)dt—(b—a)[(bm) —l—;<x— ;b> .
Using (3.4.22), we can state
b —a)? a 2l F(b) = f'la
. k<x,t)f”(t>dr_[(b24) +y (vt | L2
(b—x)* . a+b
<l@o—px{ 2 lfxe[% 2 ) (34.23)
4 (x—a)? b o
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From (3.4.20) and (3.4.23), we get

'bia/ffa)dr—ﬂxw( )

(b—a)? 1( a+b\’| f(b)-f(a)
{ 24 +2<x 2 >

b—a
2
1 (b 2x) if xe [cga;_b),
< (b —
\4((1) (p)X (x_a)Z P ﬂ b
2 2
Now, let us observe that
(b—x)? " a+b
(b_x)z (x_a)z B 72 i xe |a, 3 s
R G A N xe |4l
2 2
On the other hand,
(b—x)* (x—a)’ _1[e- X 4 (x— a)z 1 2 2
max{ ) =3 > 2’( —x)> = (x—a)’|
1 (b a)? a+b
I ( 2 romal-ty
171
—E_i(b_a :|

and the inequality (3.4.19) is proved.

The following corollaries hold.

Corollary 3.4.1.

inequality:

Let f be as in Theorem 3.4.3. Then we have the perturbed midpoint

a+b 1 1 b 1
—(b—a)(f'(b)— f'(a)) — / Ndt| < —=(®—9)(b—a)>.
7(57) + g - e - @) - 5 [ 10| < p@-00-a
(3.4.24)
By setting x = # in (3.4.19), we get (3.4.24).
Remark 3.4.2. The classical midpoint inequality states that
a+b 1 b 1 21 oot
- < —=(b- oo 4.2
£(552) - 52 [ roar] < 5506-aR1) (3.4.25)

where || f”[leo = sup;e (g p) |/ ()| < eo. We note that if & — ¢ «, then the estimation

<3177
provided by (3.4.24) is better than the estimation given in (3.4.25). A sufficient condition
31"l to be trueis 0 < ¢ < P

for the assumption ® — ¢ <
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Corollary 3.4.2. Let f be as in Theorem 3.4.3. Then we have the following perturbed
trapezoid inequality:

‘f(a)Jrf(b)

1
2 _E(

b))~ @)~ [ s

<< (@—9)(b—a). (3.4.26)

| =

Proof. Putin (3.4.19) x =a and x = b, to get

1@+ 254 - ®) - @) - [ s

1

< (@—9)(b—a)’, (3.4.27)

oo |

and

L)+ g ) @)~ [ s

|f<b> ¥

< %(cp —¢)(b—a)?, (3.4.28)

respectively. Summing (3.4.27) and (3.4.28), using the triangle inequality and dividing by
2, we get the desired inequality in (3.4.26).

Remark 3.4.3. The classical trapezoid inequality states that

a b
HAATO L [ ptoa

Now, if we assume that (¥ — ¢) < 3| f”|

the infimum and supremum of the second derivative f” are close enough, then the estima-

1
< b= a)llf" |l (3.4.29)

-, and this condition holds if we assume that

tion provided by (3.4.26) is better than the estimation in the classical trapezoid inequality
(3.4.29).
Next, we present the inequalities established by Pachpatte in [100], involving twice differ-

entiable mappings.

Theorem 3.4.4. Let f, g: [a,b] — R be twice differentiable mappings on (a,b) and
f", & : (a,b) — R are bounded. Then

2 (55 [rwa) (51 [ e0ar) = [ - (=52 ) 7o)
(A [awar) - e (x-S0 g (2 [ e
=1 /
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<80 171 (55 [ lewlar) 41 (2 [ i) | G4z
and

<b1a dt) g(x)+ ( g(t)dt> fx)+ (x— a;b) (f8)'(x) —2f(x)g(x)

E(x) [Ilf" lllg )| + 18" lool £ CO)I] , (3.4.31)
for x € [a, D], where
1 , 1 a+b\’
E(x)fﬂ(b—a) —|—2(x— > > . (3.4.32)

Theorem 3.4.5. Let f, g be as in Theorem 3.4.4. Then

10 (525 [ ) e (1 [ roar) -2 (1 [ roar)
(o ) [ 22) 2 o)
+g“2:§@)(x“;b>(bialéﬂnm>ﬂ
<0 17" (525 [ e + 10 (52 [ o). cas

Pf@k@j—{[bialffhwr+f02:fW)(x_a;b>]gu)

#oms [etan EOZED (0] g

<L) [l lg )]+ 118" oo £ ()] (3.4.34)

and

for x € [a,b], where

1 x—mz 12
Mﬂzz{Vw;3+4

Remark 3.4.4. It is easy to observe that, by taking g(x) = 1 and hence g’(x) =0, g’ (x) =

1 2
+5 } (b—a)?. (3.4.35)

0 in Theorems 3.4.4 and 3.4.5, we recapture respectively the main inequalities established
by Cerone, Dragomir and Roumeliotis in [14, Theorem 2.1] and Dragomir and Barnett in
[28, Theorem 2.1].
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Proofs of Theorems 3.4.4 and 3.4.5. From the hypotheses, we have the following iden-
tities (See, Theorem 1.2.5):

bia /abf(t)dt = [f(x) - (x— “;b> f’(x)] +b7ia/abk(x,t)f"(t)dt, (3.4.36)

bia /abg(t)dt = [g(x) - (x a;b> g’(x)] + bla/abk(x,t)g”(t)dt, (3.4.37)

for x € [a,b], where k(x,t) is given by (1.2.28). Multiplying both sides of (3.4.36) and
(3.4.37) by 7 . ;’ g(t)dt and 5— j f(t)dt respectively and adding the resulting identities,

2(171_61/abf(t)dt> <bla/abg(t)dt>

- 1= (e 452 10 (525 [ s
- [g(x) - (x— “;b> ( f(t)dt)
+ (bia / ’ kx,0) f”(t)dt) ( d:)

+ (bia /gbk(xJ)g"(t)dt) (bia/abf(t)dt)7 (3.4.38)

for x € [a,b]. From (3.4.38) and using the properties of modulus, we have

25 o) (2 )
25 o)
22w s )

<11 (5 [ telan) 10 (52 [ rwlar)]
(5 [ esolar). (3.439)

By using the elementary calculations (see, the proof of Theorem 3.4.3), we obtain

(b— a) 1 a+b\?
— /|k $|dt = —|—2<x— ! )

and

we get

ICE

)
g’(X)]
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E(x), (3.4.40)

for x € [a,b]. Using (3.4.40) in (3.4.39), we get the required inequality in (3.4.30).
Rewriting (3.4.36) and (3.4.37) as

1) =5 [ s+ (-57) -5 “kenf dn (3436)

1 b b 1 b
g(x) = 7— / g(t)dt + (x—“;) g -p— / k(x,0)g"(t)dt,  (3.4.37)

for x € [a,b).
Multiplying both sides of (3.4.36') and (3.4.37) by g(x) and f(x) respectively and adding

the resulting identities, we get

210600 = (5 [ 70 ) e+ (52 [ et0ar) 0
(x-S0 0 00 (52 [ Ko Oar) o)

1 b
- ( : / k(x,t)g"(t)dt) 7). (3.4.41)
—al,
Rewriting (3.4.41) and using the properties of modulus and (3.4.40), we get the desired

inequality in (3.4.31). The proof of Theorem 3.4.4 is complete.
From the hypotheses, we have the following identities (See, Lemma 1.5.2):

gt o L2 25

b b
T—ap /a /a plx,0)p(t,s)f" (s)dsdt, (3.4.42)

and

I AV CECY S

1 b b
+m /a / p(x1)p(t,s)g" (s)dsdt, (3.4.43)

for x € [a,b], where p(x,1) is given by (1.2.11).
Multiplying both sides of (3.4.42) and (3.4.43) by 7= [? g(t)dr and 31 [? f(1)dt respec-

tively and adding the resulting identities, we get

100 (5 [ e0ar) a0 (1 [ )
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(b— /f(“”>( /b ()dr)

O (Y (L s

48 (b)—g(a) (x a+b> / e d;)
<b a)? // p(x,1) (tSf"(s)dsdt) <a/bg(t)dt)

((b a)? / / (r.0)p(1,5)8"(s) d“”)( / ft)dt> (3.4.44)

for x € [a,b]. From (3.4.44) and using the properties of modulus, we have

10 (52 [ et o) (5 [ s
2k [(roa) (1 [ ear)
g2 (o

(b; i( )( a;—b) (bla/abf(t)dt)‘
<11 (52 [ 1siar) #1671 (2 [ 1rwlar )]
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1 b b
X ((ba)z/a / |p(x,1)] p(m)Idsdt) . (3.4.45)
By using (1.2.11) and simple algebraic manipulations (see [28 ]), we obtain
1 b b
YTyl 1 t,s)|dsdt = L 3.4.46
e | [ ptenlpts)idsar = 1o, (3.4.46)

for x € [a,b], where L(x) is given by (3.4.35). Using (3.4.46) in (3.4.45), we get the in-

equality (3.4.33).
To prove the inequality (3.4.34), we multiply both sides of (3.4.42) and (3.4.43) by g(x)

and f(x) respectively and adding the resulting identities, we get

210060 = [ [ s+ L= (- 0
+ L)_la./abg(t)dwrg(bgii(a) (x—a;bﬂf(x)
gan [ ponptes) s asar) oo

+< ﬁ | /ab'/a” p(x7;)p(t,s)g'/(s)dsdt> fx). (3.4.47)

Rewriting (3.4.47) and using the properties of modulus and (3.4.46), we get the required

inequality in (3.4.34). The proof of Theorem 3.4.5 is complete.
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3.5 Further inequalities of the Ostrowski-type

In this section, we will give some Ostrowski-type inequalities recently established by vari-
ous investigators in [16,73,101,116] involving n-time differentiable mappings.

In [16], Cerone, Dragomir and Roumeliotis proved the following inequality.

Theorem 3.5.1. Let f: [a,b] — R be a mapping such that f° (»=1) is absolutely continuous
on [a,b] and f") € L.[a,b]. Then for all x € [a,b], we have the inequality

(b— ) + (= 1)k (x —a)fH!
‘/ fr)de - g{ " }fuo(x)
(n)
< !n... 1”)07 [ n+l (b*x)n+1] < ’(’}{4_ 1”)0;: (bfa)rH»I (3.5.1)

where Hf(”) HN = SUP;c[q,p) ’f(”) (t)’ < oo,

Proof. From the hypotheses, we have the following identity (see Lemma 1.5.3):

b _nfl (b—x)kH +(—l)k(x—a)k+1 ®
/af<r>dr—k§0[ = | 6
+(—1)" / bE,,(x,t) £ (1)dr, (3.5.2)

for all x € [a,b], where E,(x,?) is given by (1.5.23). From (3.5.2) and (1.5.23), we have

(b x)k+1 ( l)k(X7a)k+l
/f(t)dt_z;){ k+ 1)l

} B )

=| [ e Oarl < . [ 1o

X —a n b _4\n
= ||f(")HDO |:/a %dt+/x (bn‘t) d] |(|n+1||)o<; [x a)n+1+(b7x)n+l]’

and the inequality (3.5.1) is proved. To prove the second inequality in (3.5.1), we observe

that
(xia)nJrl +(b7x)n+l < (bfa)”Jrl,

for x € [a,b].
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Remark 3.5.1 By takingx = % in (3.5.1), we have the inequality

’ VLD o=y at b\ 1A
/af(t)‘”_,;o{ (k+1)!] 2 f(k)( p ) S 20(nt 1)

(b—a)""'. (3.5.3)

If we choose n =1 in the inequality (3.5.1), then by simple calculation, we get the well-
known Ostrowski’s inequality in (7).
Another result analogous to Theorem 3.5.1 obtained by Mati¢, Pecari¢ and Ujevi¢ [73], is

embodied in the following theorem.

Theorem 3.5.2. Let f:I — R, where I C R is an interval. Suppose that f is n-time
differentiable in the ; (the interior of I), and let a, b € ; ,a<b. Let f () ig integrable on
[a,b] and suppose that y < ") < T for all x € [a,b], where y and T are real constants. For
x € [a,b], define

n—1 (b _x)k-H + (—l)k(x— a)k-H
= (k+1)!

Rax) = F(3) + 5 O
(bix)nJrl + (71)n(xia)n+l
(n+1)!(b—a)?
Then for all x € [a,b],

Py [ b ((emap™ b\
'R”<x>|<2(nz)[ (b—a)2n+1) < b=a)n+1) ” - B39

[f““”(b) _ fwn(a)} - i y /abf(t)dt.

Proof. From the hypotheses, the identity (3.5.2) holds (see, Lemma 1.5.3). We can
rewrite (3.5.2) as

b B (b —x) (1) (x — a)< !
/a f(t)dt—(b—a)f(x)"‘kg,l (k+1)!

SO )

or
-1 n+1 b
( bja / En (1)) (t)dr
B 1 " l(b x)k+l+(71)k(x a)k+1 ) 1 b
A=) a0 (x)—bia/a fnd. (355
Also,

b X (t —a)* b (+ _ K\ x_an+1_x_ n+1
/a En(X,t)dtz./a (tn ) dt—i—/x U n!b) dr = ¢ )(n—i—l()! b)
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(b2 4 (1))

= (= (n+1)! ’

and

[ £ = 50 0) (e,

So, we have

(b :;/E xtdt/f (¢)dr

)l 1) (x —a)rt!

Using (3.5.5) and (3.5.6), we see that

it [ [ B0 - ot B [ o).

is equal to R,,(x). We now apply Theorem 1.2.1 with E,(x,-) and f)(-) in place of f and

g, respectively, to obtain

%(F—7/)\/T(En(x,~),En(x,-)) , (3.5.7)

where T'(-,-) is given by (2). We have already calculated

b x_anJrl_ x— n+1
/HE,,(x,t)dt:( )(n—i-l()! b) .

R (x)] <

Similar calculation gives

b
/ E2(x,1)dt =

(x_a)2n+1 _ (x_b)2n+l
(n)2(2n+1) ’

so that

T(Ey(x,), En(x,-)) = ﬁ/ﬂbE,%(x,t)dt— ﬁ (/ubE,,(x,t)dt)z

. 1 (x—a)2n+1 _ (x—b)2n+1 (x_a)n+1 _ (x—b)”“ 2
~ (n!)? [ (b—a)(2n+1) B ( b—a)(n+1) > } . (3.5.8)

Combining (3.5.7) and (3.5.8), we get (3.5.4). The proof is complete.
In arecent paper [101], Pachpatte has established the following new generalization of Milo-

vanovi¢, Pecari¢ inequality [77], involving a pair of n-time differentiable mappings.
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Theorem 3.5.3. Let f, g: [a,b] — R be continous functions on [a,b] and n-times differ-
entiable on (a,b), and with derivatives ), g : (a,b) — R being bounded on (a,b), i.e

9] =502 [ 70| < 5 ] = 00 |5 < . T

‘f(x)g(x) - ﬁ[g(x)lo—i—f(xﬂo] - 2(% [ Z L+ f(x Z Jk]

<ﬁ[ I+ @1l H<xa>”

for all x € [a,b], where Iy, Iy and Ji, Jo are respectively given by (1.5.9) and (1.5.10) in

+1 +<b7x)"+l
b—a

] . (35.9)

Section 1.5.

Proof. Letx € [a,b],y € (a,b). From the hypotheses, by using Taylor’s formula with the

Lagrange form of the remainder (see[77]), we have

k
Zf 0l +%f<”)(€)(x—y)”, (3.5.10)
and
n—1 k(y) 1 ) .
8(x) =g+ (=) + " (a)(x—)", (3.5.11)
k=1 :

where E =y+o(x—y)(0<a<1l)ando=y+P(x—y) (0 < B <1). Let Fi(x) and Gi(x)
be respectively given by (1.5.6) and (1.5.7) in Section 1.5. From the definitions of I, Jj

and integration by parts (see [77]), we have the relations

n—1 n—1
I+ Zlk:nlo—(b—a)ZFk(x), (3.5.12)

n—1

J0+Zlk—nlo— (b—a ZGk (3.5.13)

Multiplying (3.5.10) and (3.5.11) by g(x) and f(x) respectively, adding the resulting iden-

tities and rewriting, we have

Fg0) = %g(X)f(y) + %f(X)g(y)

n—1 r(k) —
e T L ey ;

58 (E) ey + %%f(X)g(")(c)(x—y)". (3.5.14)
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Integrating (3.5.14) with respect to y over (a,b) and rewriting,we obtain

f(X)g(X)—z(bl_a)[g(X)IoJrf(X)Jon(;[ 21k+f sz]

b
n (n) Y} 1
e |4 ) [ 1@ yray 1) [ 6(@) o). 6519
From (3.5.15) and using the properties of modulus, we have

= [ Zlk+f zjk]

1
2(b—a)

[8(x)lo + f(x)Jo] —

s | JATELE x—y|"dy+|f(X)|(/ab’g“)(c)‘IX—yl”dy}

1 1 b
< spayar BN+ 1l .] [ esiray

:%(n—&l)![ O+ 1™ H(x—a)nit‘(zb—x)nﬂy

which is the required inequality in (3.5.9). The proof is complete.
The following Corollary holds.

Corollary 3.5.1. Let f, g: [a,b] — R be continuous functions on [a,b] and differentiable
on (a,b) and with derivatives f’, ¢’ : [a,b] — R being bounded on (a,b), i.e
suPre(ap) [ ()] < oo, (18 llo = SUPsc (4 ) &' (£)] < oo. Then

[l =

F)8(5) = 575 8o+ £ ()]
! / o [hy ==, 35.16
3 [ I+ 7@ ] |5+ | (b=a). (35.16)

for all x € [a,b], where Iy and Jy are as in Theorem 3.5.3.

Remark 3.5.2. We note that in the special cases, if we take (i) g(x) = 1 and hence
¢"(x) = 0 in (3.5.9) and (ii) g(x) = 1 and hence ¢'(x) = 0 in (3.5.16), then by simple
calculations we get the inequalities given by Milovanovi¢ and Pecari¢ [77] and Ostrowski
[81] respectively.

The following Theorem contains the Ostrowski type inequalities, recently established by
Pachpatte in [116], involving a harmonic sequence of polynomials and a pair of n-time

differentiable functions.
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Theorem 3.5.4. Let (P,) be a harmonic sequence of polynomials, that is P,’l =P,_1,n=>1,
Py=1.Let f, g: [a,b] — R be such that F=1 ¢(=1) are absolutely continuous for n > 1
and £, ¢ e Lyla,b], 1 < p < eo. Then

B+ 7Bl - 5 [e00) [0+ 10 [ o]

a

<D(n,p,x) {\g(x)|Hf(”)Hp+ |f(x)|||g<">|]p} : (3.5.17)

and

b—a

+ (bla/abf(t)dt) <bla/abg(t)dt)

for all x € [a,b], where B[] is given by (1.5.4),

BBl - 5 [BleCo] [ o+ 5170 st

<D, p, )R F 7N, (3.5.18)

D(n,p,x) = [Pa-re(-,x) |, » (3.5.19)

o
n(b—a)

t—a if t €la,x|,

e(t,x) = a1

t—b if t € (x,b],
andasusual%—i—ﬁ:lwithp’:lforp:oo,p’:ooforp:1and || - 1| is the norm in

Lyla,b].

Proof. From the hypotheses, we have the following identities (see. Lemma 1.5.4):

b _1\n—1 /b
sl 5 [ ra= 0 [ h e oa, Gsao)
and
b _1\n—1 b
Bls] - = [ st =L [ etrng ar G2

for x € [a,b]. Multiplying (3.5.20) and (3.5.21) by g(x) and f(x) respectively and adding

the resulting identities, we have

B+ 100800 5 [eto) [0+ 10 [ o]

—1)yt b b
_ G [g(x) / Poi(t)e(t,x) £ (1)dt + £ (x) / Pyi(t)e(t,x)g™ (r)dr} . (35.22)
n(b—a) a a
From (3.5.22) and using the properties of modulus and Holder’s integral inequality, we

have

B+ 7Bl - 5 [e00) [0+ 10 [ ston]




T—— "
< o [0l [ P (lt.06" 0 |

o [|g<x>| {/ "|Pn_1<t>e<r,x>|1’/dz}’b {[

Hfw) {/ Pus (et ) dz}‘l'{/ab g“%t)]”dt}ii

= D(n,p,) [\g<x>|||f<">up+ @Ilg”,]
This is the required inequality in (3.5.17).
Multiplying the left hand sides and right hand sides of (3.5.20) and (3.5.21), we get

BU()JBle()] — —— [BleCo)] [ ftyar +BlF) [ a(tyar
b a Ja Ja

+<bia/abf(t)dt> (l:a/abg(t)dt>

= ,fz_(;)_zna; { /a anfl (1)e(t,x)f1") (t)dt} { / ani(t)e(t,x)g<”)(t)dt}. (3.5.23)

From (3.5.23) and following the proof of inequality (3.5.17) given above with suitable

P 1(0ela, )10 a7 [

modifications, we get the required inequality in (3.5.18). The proof is complete.

Remark 3.5.3. If we take g(r) = 1 and hence g"~")(¢) = 0 for n > 2 in (3.5.17), then we
get a variant of the Ostrowski-type inequality given by Dedi¢, Pecari¢ and Ujevi¢ in [22].

For many additional interesting results see [21].

3.6 Discrete Ostrowski-type inequalities

This section is devoted to the discrete Ostrowski-type inequalities that have recently inves-
tigated by Pachpatte in [88,105,114,133].

The first Theorem considers the Ostrowski-type inequalities proved in [88].

Theorem 3.6.1. Let {x;} fori=0,1,...,n (n € N) be a sequence of real numbers. Then

the following inequalities hold

X0 +Xp 1l
Zx, ( > <§ni§)|Axi|7 (3.6.1)

and

n—1 2 2 n—1
X5+ X
inz_n<0n) <n ¥ |1 +x0)Ax] (3.6.2)

i=0

where Ax; = xj11 —x;
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Proof. 1t is easy to observe that the following identities hold (see [88]):

i—1

xi=xo+ Y Axj, (3.6.3)
j=0
.
=x.— Y Axj, (3.6.4)
i—1
X =g+ ) (1 ) (Ax;), (3.6.5)
=0
n—1
xi2 :x%l, Z(Xj+1+Xj)(AxJ'). (3.6.6)

j=i
From (3.6.3), (3.6.4) and (3.6.5), (3.6.6), we have

x0+xn 111 lnl

X = — ZAx ZAx,, (3.6.7)
and
B4z 1 nl
xl.2: 0 5 + = Z Xjr1+x;j (Ax) Z(xj+1+xj Ax) (3.6.8)

Summing both sides of (3.6.7) and (3.6.8) from i = 0 to n — 1 and by making elementary
calculations, we get the required inequalities in (3.6.1) and (3.6.2). The proof is complete.
The next Theorem contains the discrete Ostrowski-type inequalities given in [114], involv-

ing two sequences.

Theorem 3.6.2. Let {u;}, {vi} fori=0,1,...,n (n € N) be sequences of real numbers.
Then the following inequalities hold

1 1 n—1
Ui — 2[V,U+MV‘ <2 [|v,| Z | Auj| + [ui] Z |Av,y] (3.6.9)
and
n—1
luvi — [viU +w;V]+UV| < Z Z |Auj| j;)|Avj| , (3.6.10)
fori=0,1,...,n, where
oty VitV (3.6.11)

2

and A is the forward difference operator.

2
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Proof. From the hypotheses, we have the following identities (see [108, p. 352]):

1 [i—1 n—
ui—U = 5 ;OAuj — ZAMJ} , (3.6.12)
L/= J=t
and
1 [i— n—1
vi—V:E Y Avi—) Avj|. (3.6.13)
Lj=0 J=i

Multiplying both sides of (3.6.12) and (3.6.13) by v; and &; (i = 0,1,...,n) respectively,

adding the resulting identities and rewriting, we get

—1 i—1 n—1
ff[vU+ul = |: |:ZAMJ ZA”f ZAijAVjH. (3.6.14)
=i =0 =i

Multiplying the left hand sides and right hand sides of (3.6.12) and (3.6.13), we have

1 i—1 n—1
uvi — iU +uV]+UV = — |:ZAMJ ZAuj] |:ZAVJ‘—ZAVJ‘:|. (3.6.15)
i =0 =i

From (3.6.14), (3.6.15), using the properties of modulus and sums, we get the desired

+ u;

inequalities in (3.6.9) and (3.6.10). The proof is complete.
In the following theorem, we present the inequalities established in [133], similar to those

of given in the above theorem, by using somewhat different representation.

Theorem 3.6.3. Let {u}, {vi} for k =1,...,n be two finite sequences of real numbers
such that max;<x<,—1{|Aug|} = A, max;<<,—1{|Avk|} = B, where A, B are nonnegative

constants. Then the following inequalities hold

UV — — [kau, +uk2v,}

1 n n 1 n n
uka_; VkZMi+Mkai +— Zui Zvi
i=1 i=1 i=1 i=1

fork=1,...,n, where H, (k) is given by (1.6.35).

= [[vi|A + |ug |B] H, (K), (3.6.16)

and

<AB{H,(k)}*,  (3.6.17)

Proof. Following the proof of Theorem 1.6.5, we have (1.6.38) and (1.6.40). From
(1.6.38) and (1.6.40) and using the properties of modulus, we get the desired inequalities
in (3.6.16) and (3.6.17).
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Remark 3.6.1. By taking v; = 1 and hence Avy =0 for k = 1,...,n in (3.6.16) and by

simple computation, we get

ln
”k‘;Zui

i=1

< .0.
S Hy (k)| max {|Au}, (3.6.18)

for k=1,...,n. By simple computation (see [49] ), we have

n?—1 n+1 2
H,(k) = Z|Dn(kz [ 2 +(k— 2)

In fact, the inequality (3.6.18) is established by Dragomir [49, Theorem 3.1] in a normed

(3.6.19)

linear space.
In concluding this section we give the discrete Ostrowski-type inequality recently proved
n [105].

Theorem 3.6.4. LetN,, ={a,a+1,...,a+n=>}forac R,ne N. Let f(1), g(t), h(t)
be real-valued functions defined on N, ;, and are zero when 1 ¢ N, and |Af(r)| < Mi,
|Ag(t)| < Ma, |Ah(t)| < M3, on N, ,, where My, M>, M5 are nonnegative constants. Then

b—1 b—1 bh—1
f(0)g(t)h(r) — ﬁ lg(t)h(t) ; f(s)+h()f(1) ; 8(s)+ f(1)g(t) ; h(s)}

1
< 3 IR My + RO (1) M2+ f(1)l|(1)|M5] B(1), (3.6.20)
for all 1 € N, ;,, where
1 a+b
B(t) = [2—0— ’t— > H . (3.6.21)

Proof. Forany ¢, s € N, it is easy to observe that the following identities hold:

f(t) = f(s) ZAf (3.6.22)
g(r) —g(s ZAg (3.6.23)
h(t) — h(s ZAh (3.6.24)

Multiplying both sides of (3.6.22), (3.6.23) and (3.6.24) by g(1)h(t), h(t) f(r) and f(1)g(t)

respectively and adding the resulting identities, we get

3f(0)g(0)h(t) — [g(0)h(1) f(s) + (1) £ (1)8(s) + £ (1)g(£)h(s)]

t—1 t—1
g(t)h(t) Z Af(m)+h(t)f(t) ZﬁvAg(m) +f(t)g(t) Z Ah(m). (3.6.25)
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Summing both sides of (3.6.25) over s from a to b — 1 and rewriting, we have

b—1 b—1 b—1
108080 - 357 [g@h(r) Y. £(5) +h(0)f(6) X, g5) + £(0)g(e) ¥ h(s)
=
=35 a) Z[ h(t)ZAf(m +h(t)f ZAg
+/(1)g(r) Z Ah(m ] (3.6.26)
From (3.6.26) and using the properties of modulus, we have
b—1 b—1 b—1
’f(t)g(t)h(t) e [g(r)h(t) Y £(5)+h(0)1(0) X 8(s)+ S (0g(0) ¥ h(s)] ’
< gy IO s+ 1O L1 2+ £0) () 1) 2 —5)|. G627)
By using the summation formula for Arithmetic Progression, it is easy to observe that
[E(I—s) =|t(b—a)— _a[2a+b—a— 1]‘
= [;Jr t—“;bH (b—a)=B(t)(b—a). (3.6.28)

Using (3.6.28) in (3.6.27), we get (3.6.20). The proof is complete.

Remark 3.6.2. By taking /(7) = 1 and hence Ah(t) = 0 in Theorem 3.6.4 and by simple
computations, it is easy to see that the inequality (3.6.20) reduces to

b

f(t)g(t) - (b] ) [ng )+ f(t) Zg(S)H

a

1
< 5 lg@)IMy+1f(0)[M2] B(2), (3.6.29)
forallt € N, ;. Further by taking g(r) = 1 and hence Ag(r) = 0 in (3.6.29), we get by simple

computation

b—1
’f(f) - Y )| < MiBG), (3.6.30)

for all # € Ny .
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3.7 Applications

The literature on the applications of inequalities related to the celebrated Ostrowski’s in-
equality is vast and rapidly growing vaster. In this section, we present applications of
certain inequalities given in earlier sections, which have been investigated during the past

few years.

3.7.1 Applications for some special means

We present below, applications of Theorem 3.2.2 given by Dragomir and Wang in [26], to
the estimation of error bounds for some special means. In [26], some important relation-
ships between the following means are given.

(a) The arithmetic mean:

b
A=Aa,b) = “er . a4, b>0.

(b) The geometric mean:
G =G(a,b)=Vab, a,b>0.

(c) The harmonic mean:

H:H((l,b):ﬁ, a,b>0.
a’ b
(d) The logarithmic mean:
b—
S AL T a#b,
L=L(a,b) =< logb—loga a, b>0.
a if a=b,
(e) The identric mean:
1
VA
I=1I(a,b) = e<aa> ifazb, 0.
a if a=0b,
(f) The p-logarithmic mean:
pp+l _gpt1 b . b
L,=Ly(a,b) = [(p—l—l)(b—a)} it a7 b, peR—{—1,0}; a, b>0.
a if a=b,

The following simple relationships between the means are well known in the literature:

H<G<L<ILA,
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and L, is monotonically increasing in p € R with Lo =Iand L_| = L.
1. Applying the inequality (3.2.6) to the mapping f(x) =x” (p > 1), x € [a,b] C (0,0), we
get
1 1 -2
‘xp Y —pLZfl(x—a)‘ < g(b—aP(p-nLp7. 3.7.1)
If we choose x = A and x =1 in (3.7.1), then we get, respectively,
1 )
A7~ | < 26— (p— 1)),
and
12— 1= A) < L b —a)2(p— 112
—Lp—p pfl( —A)| < Z( —a)*(p—1) p—2°

2. Choosing f(x) =1, x € [a,b] C (0,%) in (3.2.6) we obtain

1 1 x—A| _ A(b—a)
- < , 3.7.2
x L G2 2G* ( )
for all x € [a,b]. Replacing x in (3.7.2) by A and L, we get
A’L(b—a)?
0<A-L< 2224 373
2G4 073
and
A(b—a)?
0<A-L< 22" 374
2G2 ©.74)

respectively. Note that % > %, since AL > G2. Then the last term in (3.7.4) is a sharper

bound for A — L than that in (3.7.3).
3. We now apply (3.2.6), to the mapping f(x) = —logx, x € [a,b] C (0,), to get

x—A b—a
I1(2 (b—a) =
log % < log <Z> , (3.7.5)

for all x € [a,b]. Putting x = A and x =1 in (3.7.5), we obtain respectively, the following

inequalities

and

0<A—I< ~(b—a)’

N

We remark that one can also choose x = L, x = G, and x = H in inequalities (3.7.1), (3.7.2)
and (3.7.5). The resulting inequalities in L, G and H will be similar to those obtained

above. We omit the details.



176 Analytic Inequalities: Recent Advances

3.7.2 Applications in numerical integration

In [150], Ujevi¢ used the various special versions of Ostrowski-type inequality in Theo-
rem 3.2.5 to study the numerical integration. We present below the results given in [150],

which deals with the approximations of the integral | f f(r)de

Theorem 3.7.1. Let all assumptions of Theorem 3.2.5 hold. If I, = {a=xp <x; < --- <

x, = b} is a given subdivision of the interval [a,b] and h; = x;y1 —x;, i =0,1,...,n— 1,
then
b
[ £t = Al E. 1)+ Ry 1. ) (3.7.6)
a
where
n—1
X; +x
A8 )= Y [f(é) («; - )} hi, (3.7.7)
i=0
forx; <& <xi41,i=0,1,...,n— 1. The remainder term satisfies
n—1
Xi +x,
!RY(I}ﬂévf)‘ < Z(Sl_’}/ |: él +1 :|hi7 (378)
where S; = L (f(xi11) — f(x;)),i=0,1,...,n— L. Also,
b
[ Pt = A0 E 1)+ Re(1, 8. 1), (379)
where
- h; Xi+xi1 |]
Rr (I, r=S)|= i — hi. 7.1
[Rr (1, &, F)] < ; S)[2+é 5 (3.7.10)

Proof. We apply inequality (3.2.49) in Corollary 3.2.1 to the interval [x;,x;+1], then
Xi +x Ykl
e (&- "5 - [ poa

J X

Xi+Xit1
2

<(Si—7v) B*‘ &i—

fori=0,1,...,n— 1. We also have

f(&i)hi— 7(& 'M+M“> / f(t)dr = / lﬂéJﬂfo)—ﬂdn (3.7.12)

where

]m, (3.7.11)

Héﬁ)—{i_x“ e b, (3.7.13)

—Xip1, 1€ (&xi],
fori=0,1,...,n— 1. If we now sum (3.7.12) over i from 0 to n — 1 and apply the triangle
inequality and (3.7.11), then we get (3.7.6), (3.7.7) and (3.7.8). In a similar way, we can
prove that (3.7.9) and (3.7.10) hold.
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Remark 3.7.1. If we set §; = % in Theorem 3.7.1, then we get the composite mid-

point rule.

Theorem 3.7.2. Let all assumptions of Theorem 3.2.5 hold. If I, = {a=xp <x; < --- <

x, = b} is a given subdivision of the interval [a,b] and h; = xjv1 —x;, i =0,1,...,n—1,
then
b
[ @) = Ax (1. 1)+ Rey 1), (3.7.14)
where
n—1
1
At (I, f) = Y 5 [ G) + f (i) iy (37.15)
i=0
1 n—1 )
[Rey(ln, ) < 5 1 (Si =1, (3.7.16)
i=0
and S; is as given in Theorem 3.7.1. Also,
b
[ 10dt = x4+ Rax s £), (37.17)
where
1 n—1
[Rar (. )] < 5 Y (D= Si)hi. (37.18)
i=0

Proof. We apply inequality (3.2.52) in Corollary 3.2.2 to the interval [x;,x;+1], then

‘]Wh— [ ftoan| < 55~ (3.7.19)
fori=0,1,...,n— 1. We also have |
ot el [ o= [ ko)l 0~ an, (3720
where
R(t) =1 — % (3.7.21)

fori=0,1,...,n—1. If we now sum (3.7.20) over i from O to n — 1 and apply the triangle
inequality and (3.7.19), then we get (3.7.14), (3.7.15) and (3.7.16). In a similar way, we
can prove that (3.7.17) and (3.7.18) hold.
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Theorem 3.7.3. Let the assumptions of Theorem 3.7.1 hold. Then

b
[ 0t = Acll. &)+ Reylln,6.1). (3.7.22)
where
Acl &) = 3 ¥ LI mn),
1:0
Xi +xl+l
Z f(&hi—C Z ( )h (3.7.23)
and
= h; i+ x;
|Rey(In, &, 1) < Y. (Si—7) [4 +|&— H% } hi, (3.7.24)
i=0
forC = %, where §; is as given in Theorem 3.7.1. Also,
b
/ f(t)dt :AC(Iméaf) +RCF(In7§7f)7 (3.7.25)
where
- hi i x;
|Rer(In, &, )| < Z (T—5:) { +\&— % ] hi, (3.7.26)
i=0
for C = g

Proof. We apply inequality (3.2.54) in Corollary 3.2.3 to the interval [x;,x;+1], then

S ) + f(xig1) 1 X; +x,+1 il
i S (G)hi <§1 ) hi — /x l_ flt)ar

Xi+Xit1

&2t

h;

<Si-7 |7

( 7){4+
fori=0,1,...,n— 1. We also have

HR e e (625 e [ o

] hi, (3.7.27)

4
Xit1
/ k(&i,t)[f' (1) = Y)dt, (3.7.28)
where
7%#7 te[xhéi}y
k(&i,t) = o (3.7.29)
t_?7 t€(§i7xi+1]7

fori=0,1,...,n— 1. If we now sum (3.7.28) over i from 0 to n — 1 and apply the triangle
inequality and (3.7.27), then we get (3.7.22),(3.7.23) and (3.7.24). In a similar way we can
prove that (3.7.25) and (3.7.26) hold.
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Remark 3.7.2. If we set § = = H’“ in Theorem 3.7.3, then we get corresponding com-

posite rules which do not depend on &.

Theorem 3.7.4. Let the assumptions of Theorem 3.7.1 hold. Then

b
[ 0 = As(1,.8 )+ Ryl B 1), (3730
where
v i+ Xi
Invé f 6 ; X1 +4f éz +f(XH»l) h SZ <§1 xzx-H> hi, (3731)
and
|Rsy (I, €. f)] < Z(S 7) [ ple="1 +2x’“ ] hi, (3.7.32)
for S = %” where §; is as given in Theorem 3.7.1. Also,
b
[ 0 = As(t, 8. £)+ Rer (1., (3733
where
= Xi +xl+l
Rsr (1, &, )] Z { + &= } hi, (3.7.34)
and S = &

Proof. We apply inequality (3.2.56) in Corollary 3.2.4 to the interval [x;,x;11], then
2y Xi +x 1
£ +47@) + s~ (&= Y u [ oy

ol

fori=0,1,...,n— 1. We also have
S +47(E) 4 0= 3 (&= e [ i

= [ kgl o) -, (3.7.36)

where [
Sx; 4+ Xiq1
Ken={ +gx_+ e besl, (3.7.37)
r— ITIH’ t € (& xiv1],

fori=0,1,...,n— 1. If we now sum (3.7.36) over i from 0 to n — 1 and apply the triangle
inequality and (3.7.35), then we get (3.7.30), (3.7.31) and (3.7.32). In a similar way we can
prove that (3.7.33) and (3.7.34) hold.
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Remark 3.7.3. If weset & = % in Theorem 3.7.4, then we get the composite Simp-

son’s rule.

3.7.3 More applications in numerical integration

Consider the partition I, : @ = xo < x| < --- < x,, = b of the interval [a,b] and the inter-
mediate points & = (&,...,&n—1) where &; € [xj,xj11], j=0,1,...,m—1. Define the

formula

m— lnl X+ jk+] 1)k =X k+1
mk flmvé Z Z i é) +( 1) (é ) }f(k)(él)y

fee (k+1)!

which can be regarded as a perturbation of Riemann’s sum

flmyé Zf(&] Js

where hj =xji 1 —xj, j=0,1,....m—1.
The following Theorem holds (see [16]).

Theorem 3.7.5. Let f: [a,b] — R be a mapping such that f’ (=1) js absolutely continuous

on [a,b] and I, a partitioning of [a,b] as above. Then we have the quadrature formula

b
| $@dx = Foa (£ )+ R F 1 ), (3.7.38)
a
where F, 1 is as defined above and the remainder R,, ; satisfies the estimation
‘ (fI é)’ ||f” ||oamil I:(éA—x‘)”+1+(x' _éA)nJrl]
m,k m (n+]), = J J Jj+1 J
_
=y it 3.7.39
(n+ Nt = Z ( )

for all & as above.

Proof. Apply Theorem 3.5.1 on the interval [x;,xj1], to get

Xjgl m—1 Xt | k+1 1 ]k+1
[ g L8 )

=

(&)

A1l
(n+1)!
forall j=0,1,...,m—1.

Summing over j from 0 to m — 1 and using the generalized triangle inequality, we deduce

o\t . gn+l Hf(n)Hoo n+1
[(&/ X)) 4 (xj1 = &) ]< h,

<
= (n+1)17

the desired estimation (3.7.39).
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As an interesting particular case, we can consider the following perturbed midpoint formula

e (—1)k] HH! xj+Xx;
mkfa ZZ[ k—|—1 :|2k+]f (j 2'/+1)7

which in effect involves only even k.

We state the following result concerning the estimation of the remainder term.

Corollary 3.7.1. Let f and [, be as in Theorem 3.7.5. Then we have

b
/ f(x)dx = Mm,k(me) +Rm7k(f71m)7 (3.7.40)
a
where M, ;. is as defined above and the remainder term R,,  satisfies the estimation
Hf Hoo +1
| R (f )| < T h’} . (3.7.41)

3.8 Miscellaneous inequalities

3.8.1 Dragomir, Barnett and Wang [33]

Let X be a random variable with the probability density function f : [a,b] — R, and with
cumulative distribution function F(x) = Pr(X < x).If f € Ly[a,b], p > 1, then we have the
inequality

HT‘I Lig

" b—x\ ¢
b—a

E(x)

S i e-at | (2

| fllp(b—a)

Pr(X <x)

-

for all x € [a,b], where %—f— é =1.

3.8.2 Cheng [19]

Let f:1 C R — R be a mapping differentiable in ; (interior of 7), and let a, b € ;, a<hb.
If f is integrable and y < f/(r) < T for all t € [a,b] and some constants ¥, I" € R, then we

have

- (v G2 HOL - [ <

forallz € [a,b].
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3.8.3 Dragomir, Cerone and Roumeliotis [47]

Let f : [a,b] — R be continuous on [a, b], differentiable on (a,b) with derivative f”: (a,b) —
R being bounded on (a,b). Then

[ 1= [swa -2+

1 a+b 2
< l4(b—a)2(/12+(1_/1)2)+< - )

forall A € [0,1] anda—i—?t”%“ gxgb—/l’%“.

3.8.4 Ujevi¢ [155]

Let I C R be an open interval and a, b € I, a < b. If f : I — R is a differentiable function
such that y < f(¢t) < T, for all 7 € [a,b] and some constants ¥, " € R, then we have

-0 | S0@+ o)+ 1-270 - -0 (- 52 |- [ soa

r—vy|1 a+b\?
2[4(b—a)2(l2+(1—7t)2)+<x— 5 >

wherea—i—le <x \b—lb;za and A €[0,1].

N

I

3.8.5 Pachpatte [123]

Let f, g, h: [a,b] — R be continuous on [a,b], a < b and differentiable on (a,b) and
w: [a,b] — [0,00) be integrable function such that ffw(y)dy > 0. If /'(r) # 0 for each
€ (a,b). Then

f(x)g(x) [ fx) /a bW(y)g(y)ng(x) /a bW(y)f (y)dy}

2/

g ! b
o)+ &

/bw(y)dy/” w(y)h(y)dy|,

f

h/

ECICE

<|

for all x € [a,b], where

’ f

/!

8

h/

!

40)
H(t)

f'1)
H (1)

< oo,

= sup
o te(ab)

'<°°7 ’

= sup
o te(ab)
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3.8.6 Pachpatte [105]

Let f, g, h: [a,b] — R be continuous functions on [a,b], a < b and differentiable on (a,b)
with derivatives f',g’, ' : (a,b) — R being bounded on (a,b). Then

0 - 35 [0 [ 7Oy

+)70) [y + et [ holas)

a

@)A1 oo + B £ )18 lleo + £ ) |8 (1] o] A ),

], where

@ b)\»—t

forall x € [a,

x— ey’
Ax) = [4114_((19—521)2)] (b—a).

3.8.7 Cerone,Dragomir and Roumeliotis [14]

Let f : [a,b] — R be a twice differentiable mapping on (a,b) and f” : (a,b) — R is bounded

)

on (a,b). Then we have the inequality

‘ x) = 7= a/f 1)dt — < +b)f(x)’<[214(ba)2+;<x“+b

b—a)?
<Ly,

17”1l

for all x € [a,b].

3.8.8 Dragomir and Barnett [28]

Let f : [a,b] — R be a continuous function on [a,b] and twice differentiable on (a,b), with

second derivative f” : (a,b) — R being bounded on (a,b). Then we have the inequality
—fla) ([ a+b
‘ S a/ U b a 2

2 2
1 [(x“#’) 1

w2t p—apyp. < 20

/!
= 1" e

< —
2\ | o=a? T3

for all x € [a,b].
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3.8.9 Ujevic [151]
Let f: 1 C R — R be a twice continuously differentiable mapping in ; (the interior of 1)

with f” € Ly(a,b) and leta, b € ;, a < b. Then we have

0 (- “52) OO L ] < g,

for x € [a,b].

3.8.10 Pachpatte [100]

Let f, g: [a,b] — R be mappings with first derivatives being absolutely continuous on [a, b]

and assume that the second derivatives [, g’ € Lo|a,b]. Then

(e [ row) (555 f 0]
o322y s o
{3 s+ HEO) (-2 o} (5 [ roar )
<atto 11 (52 [ sar) 191 (2 [ o).

(52 [ ra) e+ (5 [ etoar) 160 - et

_% [f(a)Jrf(b)g(x)Jr8(a)+8(b)f(x)} _ (x a+b> (o) (x)

| —

2 2

M) [[L£" e l8 ()] + 18" [l £ (O]

/\pxt

for x € [a, D], where

a+b

t—i dt,

in which p(x,t) is given by (3.2.7).
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3.8.11 Pachpatte [118]

Let f, g: [a,b] — R be twice differentiable functions on (a,b) and ", g" : (a,b) — R are
bounded on (a,b). Then

[CLLF() + FOL [(xm—[gm [ sy s /bgmdt]

a

— (gl + 1 ()18 ] E )

and

’L[f(X)] [g(x)]—l[ sl [ s+ 1if) [ <>dr]

+m </a f(t)dt) (/ﬂbg(t)dt>

1
< WI\f”llml\g”\lm(E(x))27

for x € [a,b], where

9= [, (381)
in which k(x,7) is defined as in the proof of Theorem 3.4.3 and for a suitable function

h: [a,b] — R, the notation

Lh(x)] = h(x) - (x— ath

).

is set to simplify the presentation.

3.8.12 Pachpatte [124]

Let f, g, h: [a,b] — R be twice differentiable functions on (a,b) and f”, g", " : (a,b) — R
are bounded on (a,b). Then

PR - AL (0) - 5 (7= T2 ) (Fe(a)hG)

for all x € [a,b], where

AlF 10 = 800n(o) [ 1t

() [ g0+ 0800 / (o)
BIf.g,H(0) = lg() 1)1

HR@)f 118" e + LF )8 IR o,
and E(x) is given by (3.8.1).
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3.8.13 Fink [59]

Let f"~1)(¢) be absolutely continuous on [a,b] with f") € L, [a,b]. Then the inequality

1 n—1 1 b
— X x) | ——— d
- (f( )+ LA )) — [ o)y

<K(n,p0)| ™, (3.82)

holds for all x € [a,b], with Fi.(x) is given by (1.5.6),

1
(x_a)np’-H + (b_x)np’-&-l} 7

1
_ _ / / o
K(n,p,x) = " —a) B((n—1)p' +1,p/+1)7,
where 1 < p < oo, B is the beta function, and
-1 n—1
Kinx) = P20 o fe—a), (b— )"}

n"n!(b—a)
Moreover, for p > 1 the inequality (3.8.2) is the best possible in the strong sense that for
any x € (a,b) there is an f for which equality holds at x.

3.8.14 Pachpatte [102]

Let £, g [a,b] — R be mappings such that "), ¢("=1) are absolutely continuous on [a, b]
and 0, ¢ e L, [a,b],n > 1 is a natural number. Then

‘2 </abf(t)dt) (/abg(t)dt> - [F(x) /abg(t)dthG(x) /abf(t)dt]

b b
<[\|f(")||w/a \g(t)ldt+||g<”>\|w_/a |f(r)dz}

1
(n+1)!

% [(x_a)n-&-l + (b_x)n-H] ,

for all x € [a,b], where

_ n—1 |:(b—x)k+l + (—l)k(x—a)kJrl

(k+1)! }f(k)(x)’

n—1 (b—x)kﬂ—i-(—l)k(x—a)]“rl
- [ (k+1)! }g )
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3.8.15 Pachpatte [135]

Let f, g € C"*!([a,b],R), n € N and x € [a, b] be fixed, such that f*) (x) =0, g (x) =0,

k=1,...,n. Then
Z/Qbf(y)g(y)dy— {f(x) /abg(y)derg(x) ./abf(Y)dY} ‘

1
(n+1)!

T+ ron g+ T —ra,

S

and

by {160 [ ey +e60) [ 10)5] + - a)sorets)

<{m) e L] (=),

3.8.16 Pachpatte [121]

Let f, g, h: [a,b] — R be continuous functions on [a,b] and n-times differentiable on (a, b)
with derivatives £, g h(") : (a,h) — R being bounded on (a,b). Then

n—1
IR~ 35— [g(x)h(x) {10 ) zk}

k=1

n—1 n—1
+h(x)f(x) {Jo +Y Jk} + f(x)g(x) {Lo +Y LkH ‘
k=1 k=1

< 3= [le IR

R3] + LA (o) [[1]. | Ma (),

for all x € [a,b], where Iy, I, Jo,Ji, Lo, Ly and M,,(x) are as given in Theorem 1.5.5.

3.8.17 Pachpatte [120]

Let f, g : [a,b] — R be functions such that f*~1), ¢(*=1) are absolutely continuous on [a, b]

and f<”), g(”) € Lo[a,b],n > 1 is a natural number. Then

AL+ 700l 1 [eto) [0+ 10 [ o]

—a

< o= [Is@IA |+ Ll B,
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and

Al A~ 5 [aletol [ s alr] [ o]

+ﬁ < / ’ f(t)dt) ( / ’ g(t)dt)'

1 " .
<Gl alle Lo

for all x € [a,b], where

b
Ho(x) = / \Ey(x,1)|dr,
a
in which E, (x,7) is defined by (1.5.23) and for a suitable function / : [a,b] — R, the notation
Alh(x)] is given by (1.5.3).

3.8.18 Pachpatte [120]

Let (P,) be a harmonic sequence of polynomials and f, g : [a,b] — R, be functions such
that f"=1 g(*=1) are respectively L-Lipschitz and M-Lipschitz functions (for some n > 1

is a natural number), i.e.,

D) = D) < ey,

[ — ") | < My,

for all x, y € [a,b], where L, M are nonnegative constants. Then

\g(x)B[()] ()8 Hx)—[oc) [ s s /ahg(f)dz]

< o (LI + MU D),
and
BBl - 5 [BleCo] [+ 517 st
ot () ()

1
< mLM(Dn()‘))za

for all x € [a,b], where
1 b
0= [ B i@p(nlar,
nJa

in which p(x,r) is defined by (1.2.11) and for a suitable function /4 : [a,b] — R, the notation
BIh(x)] is given by (1.5.4).
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3.8.19 Dragomir [49]

Let (X,|| - ||) be a normed linear space and x; (i = 1,...,n) be vectors in X. Then we have

1 n+1 2 o2
0 (i= Ax
n [(l 2 ) + 4 } k:{?i};—l| e,

foralli € {l,...,n}. The constant le in the right hand side is the best possible.

the inequality

N

3.8.20 Aglic Aljinovic¢ and Pecaric [1]

Let (X,]|-||) be a normed linear space, {xi,...,x,} a finite sequence of vectors in X,
{w1,...,wy,} a finite sequence of positive real numbers. Let (p,q) be a pair of conjugate
exponents, that is 1 < p, g < oo, %—I—% =1,me{2,3,....n—1} k€ {l,...,n}. Then the
following inequality holds

1 & m—1 1 n—r
Xp — —Zwix,-— Z ZA’x,-
W” i=1 =

n—1 n—-2 n—r
x (_z Y Y Dl >Dn1<i1,i2>---nm<ir1,,-,>) H

i1=1ir=1 ir=1

n—1 n—-2 n—m+1

Y - Y Dulkin)Dui(ir,i2) Dyt (im-1,-)

i=lir=1  ipy_q=1

< 1A x|,

q
where

1
(X A7) 7 if 1< p <o,

A" x|, = m .
max|<i<n—m HA xi” if p=oo,

and W,, D,,(k,i), Dy(k,i) are as given in Lemma 1.6.1.

3.9 Notes

A number of authors have written about extensions, generalizations and variants of the
Ostrowski’s inequality. Theorem 3.2.1 deals with the generalization of the Ostrowski’s
inequality for Lipschitzian mappings and is taken from Dragomir [52]. Theorem 3.2.2
contains the Ostrowski-type inequality and is due to Dragomir and Wang [26] and The-
orem 3.2.3 is taken from Ujevi¢ [154]. The inequalities in Theorems 3.2.4 and 3.2.5 are
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adapted from Ujevic¢ [151] and [150]. Section 3.3 contains some Ostrowski-type inequal-
ities involving two functions and their derivatives established by Pachpatte in [93,109,
114,139].

Section 3.4 is devoted to the inequalities of Ostrowski- and Griiss-type involving functions
and their derivatives. The results in Theorems 3.4.1 and 3.4.2 and Theorems 3.4.4 and 3.4.5
are due to Pachpatte and taken from [131] and [100]. Theorem 3.4.3 is adapted from
Cerone, Dragomir and Roumeliotis [15]. Section 3.5 contains further inequalities of the
Ostrowski-type involving functions and their higher order derivatives. Theorem 3.5.1 is
taken from Cerone, Dragomir and Roumeliotis [16] and Theorem 3.5.2 is adapted from
Mati¢, Pecari¢ and Ujevi¢ [73]. The results in Theorems 3.5.3 and 3.5.4 are taken from
Pachpatte [101,116]. The discrete Ostrowski-type inequalities in Theorems 3.6.1-3.6.4 are
due to Pachpatte and taken from [88,105,114,133]. Section 3.7 contains applications of
some of the inequalities given in earlier sections and taken from Dragomir and Wang [26],
Ujevi¢ [150] and Cerone, Dragomir and Roumeliotis [16]. Section 3.8 deals with some

useful miscellaneous inequalities established by various investigators.



Chapter 4

Multidimensional Ostrowski-type inequalities

4.1 Introduction

The Ostrowski inequality (7) has been generalized over the last years in a number of
ways. The first multidimensional version of the Ostrowski’s inequality was given by G.V.
Milovanovic¢ in [76] (see also [80, p. 468]). Recently a number of authors have written
about multidimensional generalizations, extensions and variants of the Ostrowski’s inequal-
ity, see [8,29,37,44,64,65,83,86,87,91,94,115]. In this way, some new multidimensional
Ostrowski-type inequalities have been found in the literature. Inspired and motivated by
the recent work going on in this direction, in this chapter, we present some new multi-
dimensional Ostrowski-type inequalities, recently investigated in order to achieve various
goals. We also present some immediate applications of certain inequalities. In our subse-
quent discussion, we make use of some of the notation and definitions given in Chapter 2

without further mention.

4.2 Ostrowski-type inequalities in two variables

In this section we shall give some fundamental Ostrowski-type inequalities involving func-
tions of two independent variables recently investigated in [8,37,64,115,125].
We start with the Ostrowski-type inequality established by Barnett and Dragomir [8] for

mappings of two variables.

Theorem 4.2.1. Let A = [a,b] X [c,d] and f : A — R be continuous on A, D>D; f(x,y)

exists on (a,b) x (c¢,d) and is bounded, then we have the inequality

/ub '[lf(s,t)dtds - [(b —a) '[lf(x,t)dt +(d—c) '/abf(s,y)ds —(d—c)b- a)f(x,y)} ‘

191
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-5

[D2D1fll,  (42.1)

for all (x,y) € A.

Proof. From the hypotheses, we have the following identity (see Lemma 2.3.2):

(d—c)(b—a)f(x,y)— (b—a) /Cdf(x,z)dt— (d—c)./abf(s,y)ds—k/ab(/cdf(s,t)dtds

b rd
— [ [ ptxs)a0)DaD1 f(s.t)duds, 42.2)

for all (x,y) € A. From (4.2.2) we get

/ab ff(s,t)dzds - [(b —a) '[lf(x,t)dt +(d—c) '/abf(s,y)ds —d—o)b- a)f(x,y)} ‘

< [ [ e liownIpspy s, aras

b prd
<IPDfl [ [ Iptes)1Q0n)ldrds. #23)

Now, observe that

"ps)las= [ (s—ayds+ [ (b—s)ds
/ / /

C(—a)?+(b-x)? 1 5 a+b\?
_ ' o0 +<x— : ) , (42.4)

and, similarly,

(4.2.5)

/Cd|Q(y,t)|dtl(dC)2+< c_gd>2‘

Using (4.2.4), (4.2.5) in (4.2.3), we get the required inequality in (4.2.1).

Remark 4.2.1. The constants % from the first and the second bracket on the right hand
side in (4.2.1) are optimal in the sense that not both of them can be less than }1.

Indeed, if we had assumed that there exists c1,¢; € (0, ) so that

‘/ab./cdf(s,t)dtds— [(b—a)./Cdf(x,t)dt—k(d—c)/abf(s,y)ds—(d—c)(b—a)f(x,y)}‘

< {cl(b—a)hr (x—a;by
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X [@(d—c)“— (y— C;d>2

for all f as in Theorem 4.2.1 and (x,y) € A, then we would have had for f(s,#) = st and

[D2D1 [, (4.2.6)

x=a,y=c that

/b /df(s’t)dtds - W’ /df(x,l)dt = a@

4 2 2

2 )
b B2
[ r6mas =2 =1,
and by (4.2.6), the inequality
2 N2 2 22 22
‘(b“)(dc) _ (b_a)au _ (d_c)cu+(d_c)(b_a)ac

<(b—a)2<c1+ )(d—c) <C2+411>’
Wg(b—a)2<c1+ )(d—C) <02+i>7

1 1 1
e (m 4) (CZ+4>. 427)

Now, as we have assumed that ¢, ¢; € (0 ! ) we get

i.e.,

i.e.,

1 1 1
“atisy etity
and then (c1 + %) (C2 + %) < % which contradicts the inequality (4.2.7), and the statement
in Remark 4.2.1 is proved.

A particular case which is of interest is embodied in the following corollary.

Corollary 4.2.1. Assume that the hypotheses of Theorem 4.2.1 hold. Then we have the

stdtds—{(b a)/f(er >dt
_C)/ ( C+d)dS—(d—C)(b—a)f(a;b,c—;d)}‘

1
< 10— @*(d =) |D2D1 f]|c (42.8)

inequality
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Remark 4.2.2. If we assume that f(s,7) = h(s)h(z), h : [a,b] — R, h is continuous and
suppose that ||//]| < oo, then from (4.2.1) we get (for x = y)

/f;hh(s)dS/‘;hh(s)ds—h(x)(b—a) /(;bh(s)dS—h(x)(b—a) /{;hh(s)ds+(b—a)2h2(x)
)
{LbM”ds_h@Xb—aﬂzé[iar—@2+(x_a;b>2

which is clearly equivalent to Ostrowski’s inequality. Consequently (4.2.1) can be also

2
2
111,

ie.,

2
2
1],

regarded as a generalization for double integrals of the classical result due to Ostrowski
given in (7).
The following inequality of the Ostrowski-type which holds for mappings of two indepen-

dent variables is given by Dragomir, Cerone, Barnett and Roumeliotis in [37].

Theorem 4.2.2. Let f: A — R be such that the partial derivatives D, f(x,y) D2f(x,y),

D,D; f(x,y) exist and are continuous on A. Then we have the inequality

flxy)— W//f(tsdsdt

SMi(x)+Mo(y) +Ms(x,y),  (4.2.9)

where
: [(b a)+ (x “;b)z IDfller i Dif(xy) € La(A):
(=)0 (x a)wl]}1
M) = T ID1f ifl lefx,y)eLpl(A»
E+Z:1’ p1>1
T 30+ - S I if i) e La)
i [i(d—cm () ot i Dastoy < Loy
[qzirl [(d—y)‘”“Jr(y—C)‘”“}]q12 .
Malo) — — D5l f1 szfx,y)amm),
5+£=Lm>h
s 3=+ - SGE || Iasln it Daste) e @)
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and
M3(x,y):
2 2
(,,_a)](_c){ (b—a)*+ (x“;b> E(dc)%(yc;d) [ D2D1 f| o,
if Dlef(x y) S LLX,(A);
[[(b )B4 (x—a) 3+1]] [[(d Y)B+ 4 (y _c)q3+1]1
q3+1 q3+1
[1D2D1 ] 5

(b—a)(d—c)
if DyD;f(x,y) € Ly, (A), i+i =1, p3>1;

b d
e | | [

if Dlef(x,y) el (A),

o
(b—a)(d—c) |2

X

500+

for all (x,y) € A, where || - ||, (1 < p < o) are the usual p-norms on A.

Proof. From the hypotheses we have the following identity (see, Lemma 2.3.1):

Slx,y) — b=a@d=o a(d //f(tsdsdt b—ad—0 [// (x,1)Dy f(t,5)dsdt

b rd b pd
+/ / q(y,s)Daf (t,s)dsdt +/ / p(x,t)q(y,s)Dlef(t,s)dsdt} , (4.2.10)
for all (x,y) € A. From (4.2.10),we have

’f(x,y)—(b_a)l(d_c)/ab/cdf(t,s)dsdt

1 b pd
<(b_a)(d_c)u / |p(x,0)||D1 f(t,s)|dsdt

w [ [ lavsvaststasa+ [ [ 1pnllatnoIDprs e lasar] .- @210

‘We have that

b d
[ [ ot it ) s <

b rd
IDisle [ [ pCea)idsar, it Difny) € Lafo):

1
b rd ar
11l ([ Iptriasar) it D) € Ly @),
1 1
—+—= 17 p1> la
Pt qi
D1 fl sup Ip(s0) it D1 (ey) € L0

t€la,b]

(4.2.12)
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and as

/ab/c_d|l7(x,t)|dsdt = /cd (/ab|p(x,t)|dt) ds

—@=0 | [[pteniars ["ptcniar

=(d—c) /ax(ta)dtJr/xb(bt)dt]
:(xa)er(bx)Z}

2

—(d—c) lwaf+<x“;b>2

)

1

[/ab/cd |P(x,t)|qldet] g _ U”’ (/ablp(x,tﬂqldt) ds} L

1
. . B
=(d—c)n /Ip(xyt)lq‘dwr/ |p(x,t)‘“dt} "
L/a X
1

=(d=o)n -/ax(f—a)q‘dwr/xb(b—;)qldt}‘“

L '(b—x)ql“+(x—a)qn+lr'1

L qi+1
and
b— b
sup [p(r.)| = maxfr—a,b—x} = =L 4 - ’
1€la,b] 2 2
then, by (4.2.12), we obtain
b pd
| [ 1ptenlipa pie.s)lasar <
1 ) a+b\? .
(@-e)|30-aP+ (x= ) | IDifler iF DifCey) € Lala);
1 [(b—x)1T 4 (x—ag)n 1] @ )
(d—c)ir | L= q1+(1 ) ] IDifllpys if Dif(x,y) €Ly (A), 5-+5- =1, p1>1;
b—a a+b .
| [ it Dif(x.) € Li(4).

(4.2.13)

In a similar fashion, we state that the following inequality holds

b pd
[ [ latvs)ipasa,s)iasa <
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(h—a) [i(d—cm (- 4)

1 _ vt _ o\t
(b__a)”[(d NPT+ =c)
@ +1

[1D2f <o if Dy f(x,y) € Leo(A);

} ’ [D2fllpys if Daf(x,y) € Ly, (A), (4.2.14)

11
—+—=1, pp>1
, p P2 92
—c c+ i
{ . +‘ - H D2 ]I, ift D2f(x,y) € Li(A).

In addition, we have

b pd
[ [ 1) lg) D21 1) s

b d
1D2D1f e [ Ipee)ie [ q:s)lds
if DyD1f(x,y) € Loo(A);

b €L d €
93 a3
2011y ([ peoea) ™ ([ lans)peas) "

if DoDif(x,y) €Ly (A); —+—=1, p3>1;
’ P33 43
[D2D1 |y sup |p(x;1)| sup [g(y;s)],

r€la,b] s€le,d)

if D2D1f(x,y) e L (A)

_i(b_a)2+< _a+b>2 Ll‘(d—c)z—i— (y_Cerd)z

N

DoD f||e,
: 1020111

if DyD1f(x,y) € Lo(A);
1

1
[(b—x)B" + (x—a)BH )5 [(d—y)BH 4 (y—)BH 5
[D2D1 £l ps s

=19 L g3 +1 g3+1
if DoDif(x,y) €Ly (A); —+—=1, p3>1;
1 +b 1 +dp3 B
a C
0=+ =52 [Ga=ar -5 | 120l

if DaD1f(x,y) € Li(A).
(4.2.15)
The required inequality in (4.2.9) follows from (4.2.11), (4.2.13)-(4.2.15).

The following integral identity proved in [64] is useful in the proof of the next theorem.
Lemma 4.2.1. Let f: A — R be a continuous mapping such that the partial derivatives

k() . .
FREN ,k=0,1,....n—1;1=0,1,...,m— 1 exist and are continuous on A = [a, ] X [c,d]
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and K,, : [a,b]*> = R, S, : [c,d])* — R are given by

(t;i'a)”’ t € [a,x],

Ka(x,t) = (1 Zpyn (4.2.16)
T, 1 e (X,b],
B seleal

Sn(.5) =13 (s Lgym (4.2.17)
m‘ b § e (y7d]

Then for all (x,y) € A, we have the identity

—1m—1
//f(deSdf ZZXk Y/()’)ﬁy)

k=0 (=0
mnfl d akerf( ) ) b 8"+’f(t,y)
+(_1) ](;()Xk(x)z Sm(yvs)W 1) Z Y / n x I)Tayldt
n+m
m—+n f(tvs)
-1) / / Sin(y,8) 5 S dsdt, (4.2.18)
where
B (b—x)kﬂ —i—(—l)k(x—a)kﬂ
Xi(x) = ) : (4.2.19)
_@=)" (=) y=ot!
Yi(y) = I . (4.2.20)
Proof. Applying the identity (see, Lemma 1.5.3)
b n—1 (b—x)kﬂ—i-(—l)k(x—a)kﬁ ®
[soa=T | - £)
b
H0 [ R e, @221)
where
) (z‘;‘a) , 1€ a,x],
P,(x,t) = AR
I e

for the partial mapping f(-,s), s € [c,d], we can write

n—1 |:(bx)k+l+(l)k(xa)k+l 3kf(x,s)

b
/a flt5)de =}, (k+1)! Ik

k=0

e [ Epn L ar 4222)
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for every x € [a,b] and s € [c,d].
Integrating (4.2.22) over s on [c¢,d], we deduce

[ tsyasai = ZO[U? L ] 2 ),

H(=1) /abKn(x,t) (/d anggi’s)ds) dr, (4.2.23)

Applying the identity (4.2.21) again for the partial mapplng ( ) on [c,d], we obtain

1t f(xs) R [d=)T (=) = o) I f(x,y)
/C 2 { }ay < >

dxk = (I+1)! dxk

81(

_mfl |:(d—y)l+l —|—(—1)l(y—c)l+1:| al+kf(x7y)
A ((+1)! dxkay!

for all x € [a,b].

ak+m
/ Sn(3,9) axkg(;ms) 5. (4.2.24)

In addition, the identity (4.2.22) applied for the partial derivative g l(,, ) also gives

4" f(t,s) S A=)+ (=D =) " f(e,y)
/c o1 ds_):[ (+1)! } FITEN

=0
/ Sn(5,5) a”t:g(s;s) ds. (42.25)

Substituting (4.2.24) and (4.2.25) in (4.2.23) and rewriting will produce the desired identity

in (4.2.18).

The inequality of the Ostrowski-type given by Hanna, Dragomir and Cerone [64] is em-

bodied in the following theorem.

. n+m g .
Theorem 4.2.3. Let f: A — R be continuous on A and assume that 2 at,,gs(,’,;s) exist on

(a,b) x (c,d). Then we have the inequality

n—1m—1 ()

//fts)dsdt—ZZXk Yl(y) 5Dy

X,s n+l
l)mZka)/ S(y,5) &k];(m) ZY[(y/Kn(xt J f&( ’ly)d
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1
(n+ 1)1(m—+1)!
% [(y )m+l+(d )m+l}
an+mf(t S)
dt"ds ml
1 (x—a)"qH +(b—x)"q+l
ng+1
1
(y_c.)lnq+l+(d_y)mq+l q an+mf
X
mqg+1 dtds™ »
a"erf(l,S) 1 1 _ )
| f At osm GLP(A)7 ;+;*17 P>1,
[(x=a)"+ (b —x)"+|(x—a)" = (b—x)"]

4n!m!
X[(y=c)"+(d=y)"+[(y—c)" = (d—y)"]]

anerf(t’ S)
ot"ds™

[<X7 a)n+l + (b 7x)n+l]
an+mf
atas™ ||,
€ Lo(A);

)

nlm!

/N

(4.2.26)

an+tnf
atnds™ ||,

)

if eLi(A);

for all (x,y) € A, where
anerf
aradsm||

" (t,s)
ot"ds™m

= sup
(r.5)eA

ST

Proof. From the hypotheses, the identity (4.2.18) holds. From (4.2.18), we get

1m—1
//ftsdsdt—ZZXk )Y(y) ak(()y)

k=0 [=

an+mf(t S
C ormosm

an+mf
ot"ds™

b
d dt> < oo,

akerf(x S) m—1 an+lf(t y)

1)mZXkX)/ Y; W ZYI()’)/ n(x,1) 219yl — ot

</ab/czl|Kn(x,t)||Sm(y’s)| "ML (1,5)

ar"ds™m
[ [ s st
an+mf

b prd
a7 K(,1)]|Sm (3, ,
dr"ds™ m/a /L | K (x,0)[|Sim (y, 5) |dsdt

o f /b/du(( £)[9[Sm( )|qddt$ Ll ps w22
DS e n{X, m\)s S S , » q* y P > L

14
an+mf
sup |K, (x,8)||Sm(y,s)|-
S | 212, K (20 l1Sn(0.5)

dsdt. 4.2.27)

We observe that
(9"+mf(l S)

dsd
at118 m sat

N
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Now, using (4.2.16), (4.2.17), we have

b rd b d
/ / 1K (t,1)Sm(y, ) dids = / 1Ky (x,1) |t / 1Sm(y,5)|ds
a C a C

[ O] [ [

_ \n+l b— n+l1 _ \m+1 d— m+1
I G i (O K G Vi 42.29)
(n+1D)!(m+1)!
Using (4.2.29) in the first inequality in (4.2.28), we get the first inequality in (4.2.26).

Further, using (4.2.16), (4.2.17) we have

(/ / | K (x,2) S (, s Idtds> (/ |Ku( xtth);</cdSm(y,s)qu>
:nlin! Ul( a)nqu-/ nqd;} [/L (s—c)qus+/y'd(d_s)qusr

1 1
1 (x_a)nq+l + (b_x)nq+l q (y_ C)mq+1 + (d_y)mq+1 q
nlm! ng+ 1 mq+1

(4.2.30)

Using (4.2.30) in the second inequality in (4.2.28), we get the second inequality in (4.2.26).
Finally, using (4.2.16), (4.2.17), we have

sup [Ku(x,1)Sm(y,s)| = sup |Ky(x,2)| sup [Su(y,s)]
(t.5)€A t€lab] s€le,d)

R e

I [—a)"+(b—x)"  |(x—a) —(b—x)"
| * |

] > 2
y [(y—c)’“r(d—y)’” ‘(y—c)'"—(d—y)m } 4231)

2 + 2

where, we have used the fact that

X+Y |X

max{X,Y} = %—i— ’

Using (4.2.31) in the third inequality in (4.2.28), we get the third inequality in (4.2.26).
The proof is complete.

In a recent paper [115], Pachpatte investigated the following Ostrowski-type inequality for

double integrals.
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Theorem 4.2.4. Let f, g: A — R be continuous mappings such that D,D; f(x,y),

DD, g(x,y) exist and are continuous on A. Then

fxy)gx,y) — fsyds+7 fx,t)d
=7 A

b a) _C// stdtds]
T /abg<s s+ dl_c [ st~ [* [ st

Sb—ad—o) // [|8XY)|’//D2D1f(Grdrda‘

/ DyD,g(o, r)drdGH dydx, (4.2.32)
N t

+1f ()l

for all (x,y) € A.

Proof. From the hypotheses, it is easy to observe that, the following identities hold:

FOey) = f(s,9) = flx,1) + f(s,1) //Dlef(c t)dtdo, (4.2.33)

and

X [y
8(wy) ~g(s.y) ~ glen) +g(5.0) = [ [ DaDiglo,1)dndo, 4234

N 1
for (x,y), (s,) € A. Multiplying both sides of (4.2.33) and (4.2.34) by g(x,y) and f(x,y)

respectively and adding the resulting identities, we have
21 (6, y)g(x,y) = g (e y)[f (s,3) + f (1) = f(5,0)] = £ (3, y) [8(s,y) +&(x,1) — g(s,1)]

= g(x,y) / / DD, f(o,t)dtdo + f(x y)/ / DyD,g(o,t)dtdo. (4.2.35)

Integrating both sides of (4.2. 35) with respect to (s,7) over A and rewriting, we have

Flry)gey) - Sl y>[ o [ rast 7 [ gt

b ) _C//fstdtds]

3t [ [etsoast o [etwnrar— i [ [ st aras]
= 2(bal)(dc)/ab/cd {g(x,y)/Sx/tyDngf(G,T)deO'
+f () /S /t'yDleg(o,r)drdc} dydsx. (4.2.36)

From (4.2.36) and using the properties of modulus, it is easy to observe that the required

inequality in (4.2.32) holds. The proof is complete.
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Remark 4.2.3. By taking g(x,y) = | and hence D;D;g(x,y) = 0 in Theorem 4.2.4, we

flx,y) — { /f(syds—l— ic/cdf(x,t) (b—) //f(stdtds}
d| px oy

‘ dydx, 4.2.37)

get

b (b—a)(d—c) a
for all (x,y) € A. Further, if we assume that D,D; f(x,y) is bounded on (a,b) x (c,d), i.e.,

[D2D1flle = sup  [D2Dif(x,y)| <o,
(x.y)€(ab)x(c.d)
then after rewriting (4.2.37) and by elementary calculations, we get the inequality (4.2.1)

given in Theorem 4.2.1.
In another paper [125], Pachpatte has given the following generalization of Theorem 4.2.4,

involving three functions.

Theorem 4.2.5. Let f, g, h: A — R be continuous functions such that D,D; f(x,y),
DD g(x,y), DaDih(x,y) exist and are continuous on A. Then

1
|A(f,&,h: F,G,H;1)(x,y)| < *B(
for all (x,y) € A, where
A(f,8:h F.G,H;l)(x,y) = f(x,y)g(x,y)h(x,y)

311[ (x,y)h(x,y { (x,y) / / 5,1) dtds}
+h(x7y)f(x,y){G(x,y)— / / g(s,t)dtds}
+f(x,)g(x,y { x,y) — / / 5,1 dtdsH

B, 1)) = gCente) [ [ lslaras

xy)fxy)// gldrds+ f(x,y)g xy// h)dtds,

in which = (b—a)(d —c¢),
d
Flen = (e-a) [ fiss+ o-a) [ rtxar

) (x,¥), (4.2.38)

G(x,y)=(c—d) /bg(s,y)ds+ (b—a) '/dg(x,t)dt

-ab Cd
H(x,y) = (c—d) / h(s,y)der(b—a)./C h(x,1)di

and for a suitable function p : A — R, the notation

Xy
1[p] =/ / DyDip(o,7)dtdo,
s t

is set to simplify the presentation.



204 Analytic Inequalities: Recent Advances

Proof. From the hypotheses, it is easy to observe that the following identities hold:

FOey) = f(s,3) = flxt) + f(s,1) = I[f], (4.2.39)
g(x,y) —g(s,y) —g(x,1) +8(s,1) = 1I[g], (4.2.40)
h(x,y) — h(s,y) —h(x,t) +h(s,t) = I[h], (4.2.41)

for (x,y), (s,¢) € A. Multiplying both sides of (4.2.39), (4.2.40) and (4.2.41) by
g(x,y)h(x,y), h(x,y)f(x,y) and f(x,y)g(x,y) respectively and adding the resulting iden-

tities, we get

3f(x,y)g(x,y)h(x,y) — g(x,y)h(x,y)[f (s,y) + f(x,2) — f(s,)]
—h(x,y)f(x,y)[g(s,y) +g(x,1) — g(s,1)] — f(x,y)g(x,) [A(s,y) + h(x,t) — h(s,1)]

= g(x, )R, VIf]+h(x,) f(x, ) [g] + f(x,y)g (x, y)I[h]. (4.2.42)
Integrating both sides of (4.2.42) with respect to (s,7) over A and rewriting, we have
1
A(f 8l F,GH:1)(x,y) = 7:B(f,8, D) (x.y). (4.2.43)

From (4.2.43) and using the properties of modulus, we get the desired inequality in (4.2.38).

The proof is complete.

Remark 4.2.4. If we take A(x,y) = 1 and hence D,D;h(x,y) = 0 in Theorem 4.2.5, then

by elementary calculations, we get

‘f(x7Y)g(X7y)—2ll {g(X,y) {F(x,y)—/[lb/;df(s,t)dtds}
+F () {G(x,y) - / ’ / ‘ g(s,t)dtdsH ‘

< zlz {Ig(x,y)l / ' / dII[f]|dtds+|f(x,y)| / ' / d|I[g]|dtds} , (4.2.44)

which in turn is the inequality given in Theorem 4.2.4.

Remark 4.2.5. Integrating both sides of (4.2.43) with respect to (x,y) over A and rewrit-

ing, we get

T(f,g,h;F,G,H;l) / / B(f,g,h;I)(x,y)dydx, (4.2.45)

3 32
where

T(f,g,hF,G,H;l)= // (x,y)g(x,y)h(x,y)dydx— 312// g(x,y)h(x,y)F (x,y)
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+h(x,9) f(x,9)G(x,y) + f(x,y)g(x,y)H (x,y)] dydx

K // ”)h”dydx>< //fxydydx>
<//h” ”dde>< //g(xydydx)
(1 [ rtensmyasa) ([ [ nsarar)]

From (4.2.45) and using the properties of modulus and integrals, we get

TGamEGHDI < 5 [ [ BUSL gl 1 1) 5 vy 4.2.46)

We note that the inequality obtained in (4.2.46) is similar to the Griiss-type inequalities
given in [89].

4.3 Ostrowski-type inequalities in three variables

This section is devoted to some basic Ostrowski-type inequalities involving functions of
three independent variables, recently investigated in [83,126,148].
The following Ostrowski-type inequality is proved by Pachpatte in [83].

Theorem 4.3.1. Let Q = [a,k] x [b,m] X [c,n]; a, b, ¢, k, m, n€Rand f: Q —Rbea

3
continuous function on Q, D3D, D f(r,s,t) = 2 3{ éfgrt) exists and is continuous on Q. Then

k rm rn 1
L[ [ rsndidsdr = k= a)m=b)n =)l (a.b.) + £ (k.m.n)
a Jb Je

L
4

+%(k—a)(n—c) /bm[f(a,s,c)+f(k,s,n)+f(a,s,n)+f(k,s,c)]ds

(m—b)(n—c)/ak[f(r,lxc)—I—f(r,m,n)—i—f(r,mm)+f(r,b,n)]dr

=) m=) [ [ (@br) + S (kom ) + 5k b,0)+ flamn)ld
_%(k—a)'/hm/cn [F(a,s,6) + F(ks,1)] drds
—%(m—b)/ak/cn [F(rb,1) + £ (r.m,1)] drdr

_%(,,_C)/ak/b'm[f(r,s,c)+f(r,s,n)]dsdr

1 k rmo pn
< glk—a)m=b)(n—c) / /b / \DsDD f(r,s,1)|drdsdr. @3.1)
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Proof. As in the proof of Theorem 2.3.4, we have the following identity:
1
f(r7sat) - L(f(rwgat)) = §B (D3D2D1f(ras7t)) ) (4’32)

for (r,s,1) € Q, where L(f(r,s,t)) and B(D3D,D; f(r,s,t)) are as given in Section 2.3.
Integrating both sides of (4.3.2) over  and by elementary calculations, we get

k prm rn 1
[ ][ #rsndrdsar— g (k= a)m—b)(n—)Lf(@,b.)+ (k. mm)
Ja Jb Je

1

k
+Z(m—b)(n—c)/a [f(r,b,c)+ f(r,m,n)+ f(r,m,c)+ f(r,b,n)]dr

47— a)n=0) [ [F(@5.0)+ Flkosim) + f(as.n) + £ 5.0l ds
k= a)m=b) [ @bty Flkomt)+ fhb) + flam s
k a)/ / 5.0)+ f(k,s,0)] drds
—3m=b) | ' [ 1:b.0)+ om0 drdr
=) [ [ s+ s masar

1 fk pm pn
=2 / / / B(D3DsD, f(r,s.1)) dedsdr. 4.33)
a Jb Je
Using the properties of modulus and integrals, we observe that
k prm prn
IB(D3DaD f(r,5,1))| < / / / D3DLDy (v, w)|dwdvdu.  (43.4)
a Jb Je

Now, from (4.3.3) and (4.3.4), we easily get the required inequality in (4.3.1) and the proof

is complete.

Remark 4.3.1. From (4.3.2) and using (4.3.4), it is easy to observe that the following

inequality also holds

|f(r,s,8) = L(f(r,s,t)) 8/ / / |D3D2Dy f(u,v,w)|dwdvdu. (4.3.5)
for (r,s,1) € Q.

We give below an integral identity proved in [148], which is essential for our proof of the

next theorem.
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Lemma 4.3.1. Let H = [a,b1] X [a2,b2] X [a3,b3] (a; < b;, i=1,2,3) and f: H - R

be a continuous mapping such that the partial derivatives %, =0,1,...,n—1;
j=0,1,....m—1;k=0,1,..., p—1; exist and are continuous on H. Also, let
_ n
Pu(x,r) %; relana, 4.3.6)
(X, r) = (r=by) 3.
T, re (X,bl],
s—ap)"
#; s e [(l2,y],
Qm()’v S) = (S _mb'z)m (4.3.7)
m!
t— P
%; e [aSaZ]v
Sp(z,t) = Lhayp (4.3.8)
u; re (vaﬂa
p’
then for all (x,y,z) € H, we have the identity:
by by —lm—1p—1 3i+j+kf(xy2)
V(x,y,z —/ / / Sf(r,s,t)dtdsdr — Xi(x Z(D) A
) IZ;‘) JZ;) kZ“ (2) Ixidyldzk
n—1m—1 at+1+pf(x y l)
1)? X;i(x / Sy(z,1) ———— 2
+= ZO JZ S rp
n—1p—1 ai+m+kf(x s Z)
+(=1)" X;(x)Z / m(y,8) == g
(0" Y L X% () | On0n9) =555 ds
m—1p—1 by 8n+j+kf(ryz)
" Y(y / P (x,7) —=—=—=—""2dr
B JZOkZ a () drdyidzk
by b3 ai+ln+pf(x s t)
m+p ; L)
1 zx,(x> L[ 095y e =g s
by 8n+j+17 7y,
1) *r Z Yi( y)/ / 0 (X,7)S) (2, t)i”%f/l(&t);’ )dtdr
- — 1 by a”+’”+"f(r,s7z)
1) Z Zk(Z)/ Pn(x,r)Qm(y,s)stdr
by bq alz+1n+pf(r s t)
= (1) / / / B ‘ dedsdr, (439
( ) a X r Q ya ) P(Z ) arnasmatp S }", ( )
where 1 |
b — i+ -1 iy i+
Xi(x) = (b1 =0 + (=) (x—a)) , (4.3.10)
(i+ 1)
_ (b —y)*! + (1) (y —a)/™!
Y; 4.3.11
ba— N L (1K (7 — ga e
Ziu(z) = (b= + (=) zza)™" (4.3.12)

k+1)!
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Proof. As in the proof of Lemma 4.2.1, we have an identity

b n—1 b
/ lg(r)dr: ZXi(x)g<I)(x)+(71)"/ IP,,(xJ)g(") (r)dr. (4.3.13)
ay i=0 Jaj
Now, for the partial mapping f(-,s,t) we have
n—1 a f by anf
/ f(r,s,t)dr = Zx +( 1) / P,,(x,r)ﬁdr, (4.3.14)

aj
for every r € [a1,b1], s € [az,b2] and 1 € [az, b3]. Now, integrate (4.3.14) over s € [az, b2,
to get

o "9y ") ([ 5has)
t)dsdr="Y X; -ds+(—1 P (x, ds | dr,
/a1 /a2 rs,t)dsdr = Z (x/ R (- )/al (x,7) /a2 5 ds ) dr

(4.3.15)

for all x € [a;,by].

we have

>

m—1 J d
/ 37 f(x,s,0)ds = ZY a7 <8)§)+( I)M/a Om(y,s )ﬁsm (a)i:)ds

- ot by oitm
fZ N0 Jag U [ 0n) S s @310

From (4.3.13) for the partial mapping 2s

Also, from (4.3.13), we have

an
Om(y, ) 357 <8r{> ds. (4.3.17)

From (4.3.16), (4.3.17) and (4.3.15), we get

by — it f by ai+mf
/u1 / f(rs,t dsdr_ZX(x ZY ERER ST /az Qm(y,s)axl.asmds}

o s [Er 2 s (3)a]

m—1 z+]f ai+m

— n—1 by f
; )L i) gyt 1)mi§)Xi(x)L2 On325) 5 ggm s

m—1 aj+n

f
Z Yi(y / (1) ayfar”dr

by by an-‘rmf
_1\ntm
+(—1) /al /az P(x,r)Om(y,s) S0 dsdr. (4.3.18)
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Now, integrate (4.3.18) over ¢ € [a3,b3] to get
'b] bz 'b3 —1m—1
/ / / f(rs,t)dtdsdr = Z ZX (x)Y; (y)/ -
ay Jay Jas i=0 j= 8)6
b3 al+mf
T [0t ([ ) as
b3 aj+nf
Z Y(y / Py (x,r) < a 8y/8r”dt> dr
by by b3 an+mf
_1\ntm
+(=1) /al /a2 Po(%, 1) O (y,5) (/{h Bsmar"dt> dsdr. (4.3.19)
Also, from (4.3.13) we have
b3 3i+jf p—1 ok aH»jf
@ axiay/dt B ,;)Zk(z)ﬁ <8xi8yj>
(9 az+jf
p
=y / &5 (8x’8y1>dt’ (43:20)
b3 aierf B p—1 l+mf
a3 0xIds™ di = sz(z dzk <9x’8sm>
b3 al+mf
_1)?
b /a3 )aﬂ’ (8xlas’")dt’ @3.21)
b3 aj+nf p—1 ok aj+nf
w ayiar ZZ"(Z P <8yjar”>
b3 P aj+nf
_1)?
+(=1) ./a} Sp(@t) 55 <8yf8r”> dt, (4.3.22)
b3 an-‘rmf - p—1 ak an+mf
Jay s = sz(z Jzk <9r”8sm>
b3 or [ ortmf
_1)P
+(—1) /a; Sp(z, )8t1’ (ar"asm>dt' (4.3.23)

Using (4.3.20)—(4.3.23) in (4.3.19), we get the required identity in (4.3.9).

The following result deals with the Ostrowski-type inequality investigated by Sofo in [148].
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Theorem 4.3.2. Assume that the hypotheses of Lemma 4.3.1 hold. Then we have the

inequality

[V (x,5,2)| <

an+m+pf(r7 s, t)

an+m+pf "
argsiam | N i
grimoyg ()

f — 2227
NZ(xvyaz)a 1 Jras"OtP

ards"orr ||, 1

9P f(rs,t)

an+m+pf .
N3(x,y,2), if “ordsior

drids"otr ||,

for all (x,y,z) € H, where

9" f (1, 8,1)

nmp f
Hm e | T amasar | T
H gmimip </b1 /b2 /b3 I f(1,5,1)

drdstdtP © 9rds"or

and

(y—a)"' +(by—y

Ni(x,y,2) = {(XGI)”“Hbe)nH]

(n+1)!

1
—+==1, a>1;
o

dtdsdr>

)m+1:| |:(z—a3)p+] 4 (b3 _Z)p+]

€ L.(H);

S Loc(H)§

ELl(H);

1
o

< oo,

|

(4.3.24)

1
B
)

X[ (m+1)! (p+1)!
1 ()C*a )nﬁ+l+(b 7x)n[3+l %
N (X 2z ) n‘m,p' [ . I’lﬁ—f—ll :|
[@—@w“tum—ww“ érrwgﬂ“+wyavw'
X
mP+1 pB+1
N3(x,y,2) = SW[(X—M)”(M—X)”+|(x—a1)”—(b1—X)”I]

x[(y—a2)" + (ba = y)" +|(y —a2)" — (b2 —y)"]

x[(z=a3)? + (b3 —2)" +[(z—a3)”

— (b3 —2)"|].
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Proof. From the hypotheses, the identity (4.3.9) holds. From (4.3.9), we have

by by b3 an+m+p
|V (x,y,2) / / / Po(x,7)Om(y,5)S,(z, t)|’ f(r,s,1)

FEEICEID dtdsdr
s

=U(x,yz) (say). (4.3.25)
Now, using Holder’s inequality and property of the modulus and integral, we have

U(x,y,z) <

an+m+pf by by
Faavai|_ L., | / |Pu(x,7) Qo (3. 5)S, (2,1) | dedisdr
aj a az

=

an+m+l7f by by b3 B
FEFICrIT ., (/a1 -/az /a3 |Pn(x»r)Qm()’aS)Sp(th)‘ dtd5d7> )
1 1

=1, a>1;

™=

(4.3.26)
a B
Sllp ‘Pn(x7 V)Qm(y,S)Sp(Z,l)|.

dr"dsmaotP | (rs.t)eH

an+m+pf

Using (4.3.6), (4.3.7) and (4.3.8), we have

/a j” / jz / T 1P, (6, 7) O (v,5)Sp (2.1)| drdsdr
= [ [ 0utoas [ sytzla
([
[ [

=N (x,y,2). 4.3.27)

Further, by using (4.3.6), (4.3.7) and (4.3.8), we have

by by b3 %
(/ / / ’Pn(X,”)Qm(y,S)S,,(z,t)’ﬁdtdsdr)
ap ap Jaz
by % b2 1 by 1
= ([ imwntar) ([Fioavoras)” ([" i)’

nynivﬂ{/ (r—al)nﬁdr+/ (b — )”ﬁdr]]
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1 1
y by B 4 b3 B
x [/ (s—az)mﬁds+/ (b2 —s)mﬁds} U (t —a3)1’ﬁdt+/ (b3 —t)pﬁdt}
a y as z
=Ny (x,y,2). (4.3.28)
Finally, using (4.3.6), (4.3.7) and (4.3.8), we have

sup |P(x,7)Om(y,5)Sp(2,0)[ = sup |Py(x,r)| sup [Qn(y,s)| sup [Sy(z,1)]

(rs,t)eH refay,bi) s€lag,by] 1€az,bs)

_ n A\ o m _y\m _ P _S\P
_max{(x ai) 7(171 x) }max{(y az) 7(b2 y) }max{(z as) 7(1?3 2) }

n! n! m! m! p! p!

= N3(x,y,2), (4.3.29)
here we have used the fact that
a+b b—a
AB} = .
max(4, B} = +\ .

The required inequality in (4.3.24) follows from (4.3.25)—(4.3.29) and the proof is com-
plete.

In our further discussion, we make use of the following notation to simplify the details
of presentation. The partial derivatives of a function e = e(x,y,z) : H — R are denoted
by Die = 3¢, Dye = £, Dse = ¢, DiDye = £5. DaDse = $.5. DsDie = 5 and
D3Dy;De = az%%;%x. We denote by F(H) the class of continuous functions e : H — R for
which Dye, Dse, Die, D1Dse, DyDse, D3Die, D3D;Dje exist and are continuous on H.
For (x,y,z), (r,s,t) € H and some suitable functions p, f, g, h: H — R, we set

[= (b1 —a1)(by — a2)(b3 — a3),
— X y Z
1[1’]2/ / /t D3Dy Dy p(u,v,w)dwdvdu,

Tl = (ba—a)br—as) [ plry.2)dr

Jag

+(b1—a1)(bs—a3) /b2 p(x,s,2)ds+ (b —ay)(by —ap) /ab3 p(x,y,t)dr,

az

by by
Lip] = (b3 —613)/ / p(r,s,z2)dsdr
ay Jap

by b3 by b3
+(by—a2) / / p(r,y,t)dtdr+ (b —al)/ / p(x,s,t)deds,
Jay Jaz ay Jaz

A(f,8,h:J,L:1)(x,y,2) = f(x,y,2)8(x,y,2)h(x,y,2)
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f% [g(x,y,z)h(x,y,z) {J[f} —L[f] +/:1 /(:2 :3 f(r,s,t)dtdsdr}

+h(x,y,2) f(x,3,2) {J [e] —L[g]+ /a Tl /a jz /a ? g(r,s,t)dtdsdr}
+£(%,5,2)8(x,,2) {J[h] —L[n] —I—/:l /azbz /:3 h(r,s,t)dtdsdr}] ,

— - by by b3 _
B(f.g.hT)(x32) = gl 2heys) [ [ [ iflduasar
ay ay as

by by by by b3
+h(x,y,2) f(x,y,2 / / / gldtdsdr+ f(x,y,z)g(x,y,z / / / h)dtdsdr.

In [126], Pachpatte has established the following Ostrowski-type inequality for triple inte-

grals.

Theorem 4.3.3. Let f € F(H). Then
by

f(x,s,2)ds

1
f(x7Y»Z) - l:bl —a

1
2)dr+ by —

2(12

! 1 b by
T s —as Juy f(x »1)d ] [wl—al)(bz—az)/al /az f(rs,2)dsdr

e [ [ ey " saias
n,y,t)dt r+—/ Xx,s,t)dtds
1 az y (b2 —dap (b3 - 613

+—
(b —a1)(bs —a3) Ja
by by rbs by ba b3
/ / f(rs t)dtdsdr| < / / / ‘dtdsdr, (4.3.30)

for all (x,y,z) € H.

Proof. First, we prove the following identity

I[f] = f(x,3,2) = [f(rny,2) + f(x,5,2) + £ (x,,1)]

1 (rs,2) +f(ry,0) + f(x,8,0)] = f(r5,0), (4.331)
for (x,y,2), (r,s,t) € H, where
I[f] = /x /y /ZD3D2D1f(u7v, w)dwdvdu. (4.3.32)
roJs Jt

From (4.3.32), it is easy to observe that

1] = / /Syszl F(u,v,2)dvdu — / /SyDle Fluyvt)dvdu = L[f] —blf]. (43.33)
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By simple computation, we have
hif] = / ' / " DaDy fu,v,2)dvdu
- / "D f(u,y, 2)du— / "D flu,s,2)du
— D) — Fr2) — F05,0) + £(r5,2). 4334
Similarly, we have
B[] :/rx/syDlef(u,v,t)dvdu
= Frmt) — f(rnt) — f(rs,t) + £ (rs,1). (4.3.35)

Using (4.3.34) and (4.3.35) in (4.3.33), we get (4.3.31).
Integrating both sides of (4.3.31) with respect to (r,s,?) over H and rewriting, we get

1 by by
),2) — 2y, 2)dr + / X,8,2)ds
1)~ |5 [ firs o [ )
L st + | [ [ s asa
+ X, Y, ———— r,8,z)dsdr
by —a3 az > (bl —al)(bz _a2) ay Jay
1 1 »2

/ f(ry,t)dedr+ " f(x,s,t)dtds]

1 by by b3 1 by by by
- / / / f(r.s,t)drdsdr = - / / / {1111} drdsar, (4.3.36)
l ayp Jay Jaz [ a; Jay Jay

for (x,y,z) € H. From (4.3.36) and using the properties of modulus and integrals, we get
the required inequality in (4.3.30). The proof is complete.
The following corollary holds.

Corollary 4.3.1. Let f be as in Theorem 4.3.3, then

¥ 611+b1 a2+b2 az + b3 1 /b‘f raz-i-bz a3+ b3 dr
2 ’ 2 bl—al.al ’ 2 ’ 2

1 by (ai+by  a3+bs 1 bs (ai+by ax+by
d t)dt
bz—az/a2 f< 2 = 2 S+b3—a3 ./a3 f 2 ’ 2 ’
b b2 as+ 3)
dsdr
[(bl—al (by —a) /al / (

b by
/ < a2+ by >dtdr
(bl—al) 3—az) Ja, Jas

+
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1 by b3 (ay+b > }
+—/ / ( ,8,t | dtds
(by—a2)(b3—a3) Jay Jus / 2

1

1 b1 b2 b3
. / F(r,s.0)dtdsdr| < —||D3DaDy f|wns 4.3.37)
l ay Jap as 64
where
|D3D2D 1 fllee = sup  [D3D2D) f(u,v,w)| < oo
(u,v,w)eH
By taking x = ”"gb‘ ,y= “2’2%2 ,Z= 03J2rb3 in (4.3.30) and simple computation, we get the

desired inequality in (4.3.37).
Before concluding this section, we shall give the following generalization of Theorem 4.3.3

recently investigated by Pachpatte in [134].

Theorem 4.3.4. Let f, g, h € F(H). Then

_ _ 1 _
\A(f, 8,15, L) (x,v,2)| < =B (|f],1g].|]: [T]) (x,3,2), (4.3.38)

o8]

for all (x,y,z) € H.

Proof. From the hypotheses, we have the following identities (see, the proof of Theo-
rem 4.3.3):

I[f] = f(x,3,2) = [f(r.y,2) + f(x,8,2) + f(x,3.,1)]

+Hf(rs,2) + f(ry,0) + f(x,8,0)] = f(r.s,1), (4.3.39)
1[g] = g(x,y,2) — [g(r,y,2) +8(x,5,2) +8(x,,1)]

+[8(rs,2) +g(ry 1) +8(x,s5,0)] —g(r8,1), (4.3.40)
1[n) = h(x,y,2) = [h(r,y,2) + h(x,s5,2) + h(x,3,1)]

+[h(r,5,2) +h(ry 1) +hix,s,0)] = h(r,5,1), (4.3.41)

for all (x,y,z),(r,s,t) € H.

Multiplying both sides of (4.3.39), (4.3.40) and (4.3.41) by g(x,y,2)h(x,y,2),
h(x,y,2)f(x,y,z) and f(x,y,2)g(x,y,z) respectively and adding the resulting identities, we
get

3f(x3,2)8(x,y,2)h(x,y,2) — g(x,y, 2)h(x,3,2) {[f (ny,2) + f(x,8,2) + f(x,3,1)]

_[f(rvsvz)_"f(rvyvt)+f(xvsvt)]+f(rvsvt)}
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—h(x,y,2) f(x,5,2) {[g(r,,2) + g(x,5,2) + g(x,,1)]
—[8(rys,2) +g(r,y,t) +8(x,s,1)] +g(r,5,1)}
—f(x,2,2)8(x,y,2) {[h(r,y,2) + h(x,5,2) + h(x,y,1)]

—[h(r,s,2) + h(r,y,t) + h(x,s,0)] +h(r,s,2)}

= 8(x,y.2)h(x, 3, )I[f] +h(x,y,2) f(x,y,2)I[g] + f (x, 3, 2)g (x,y,2)[h]. (4.3.42)
Integrating both sides of (4.3.42) with respect to (r,s,#) over H and rewriting, we have
1
A(f,8. 10, Li1) (x,3,2) = =B(f,8. D) (x,7.2). (4.3.43)

From (4.3.43) and using the properties of modulus, we get the desired inequality in (4.3.38).

The proof is complete.

Remark 4.3.2 If we take /2(x,y,z) = 1 and hence I[h] = 0 in Theorem 4.3.4, then by

elementary calculation, we get

fx,y,2)8(x,y,2) — l, [g(x,y7z) {J[f] —L[f] +/a]bl /{:2 :3 f(r,sJ)dtdsdr}

21

- ) {J[g]L[g]jL/: /;:2 /aj3g(r73,t)dtdsdr}]‘
21{ oo |/”1/"2/ [f]| dedsdr

by by by
Hrwwal [ ll[g]\dtdsdr] , (43.44)
ap ar as

for all (x,y,z) € H. Further, by taking g(x,y,z) = 1 and hence I[g] = 0 in (4.3.44) and by
simple computation, we get (4.3.30).

Remark 4.3.3. Integrating both sides of (4.3.43) with respect to (x,y,z) over H and

rewriting, we have

_ _ 1 by by by _ _
T(fvgvhv‘lal"l):j/ / / B(f,g,h;l)(x,y,z)dzdydx, (4345)
3" Jar Jay Jas
where

by by rbs
T(f,8h:J,L;1) / / f(x,y,2)8(x,y,2)h(x,y,z)dzdydx

by by by
*i / / / (86,7, 2)h(x,3,2) (1] — LIf])
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+h(x,y,2) f(x,,2)(J[g] — Llg]) +£(x,,2)g(x,y,2) (J[h] — L[h])] dzdydx

1 by by b3 1 b1 b2 rbs
|G L stemamtsyazaar) (7 [ [7 peoydzasas
Jay Jay Jaz
1 by by b3 1 by by b3
+ ( / / h(x,y,Z)f(x,y,Z)dzdde> ( / / g(x,y,Z)dzdde)
[ Jay Jay Jas L Jay Jay Jas
by by bg by by b”i
( / / / fy,2)g(x,y,z dzdydx) ( / / / h(x,y,z dzdydx)}
a; Jay a Ja

From (4.3.45) and using the properties of modulus and integrals, we get the following

Griiss-type inequality

T(f,g,h:J,L:])| <

;1)) (x, v, 2)dzdydx. (4.3.46)

For similar results see [89].

4.4 Ostrowski-type inequalities in several variables

In this section, we offer some multivariate inequalities related to the Ostrowski’s inequality,
investigated in [44,76,87].
In 1975, Milovanovié [76] first proved the following multivariate version of the Ostrowski’s

inequality given in (7).

Theorem 4.4.1. LetD={(x1,...,x,):a; <x; <b; (i=1,...,n)} and let D be the closure
of D. Let f : R" — R be a differentiable function defined on D and let ‘g—xf’ < M; (M; > 0;
i=1,...,n)in D. Then, for every x = (x1,...,%,) € D,

(x._az+b>
fx) - /fy)dy Y LA 2/ (bi—a))M;,  (44.1)

i—1 4 (bi —ai)z

ﬁ(
i=1

1

where, [, fF(V)dy = [V [ F (1, yn)dyn - -dy)

Proof. Letx= (x1,...,x,) and y = (y1,...,yn) (x € D,y € D). From the n-dimensional
version of the mean value Theorem (see [146, p. 174], [76, p. 121]), we have

Z &gic) (xi — 1), (4.4.2)

where, ¢ = (yl +a(xl _yl)v--~7yn+a(xn_yn)) (0 <a< 1)'
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Integrating both sides of (4.4.2) with respect to y over D, we obtain

1 d
F(x)mesD — /D FO)dy =Y /D ;‘i?) (x1 = yi)dy, 4.43)
' =1 i

where mesD =[]\, (b; — a;). From (4.4.3), it follows that

d 0
‘f(x)mesD/Df(y ‘ Z/D g)(cc (xi —yi)dy
—1 1

‘xl yl‘dy<ZM/|xl yildy. 4.4.4)

i=1

bi 1 a,‘-i-b,‘ 2
/_ xi_yidyi:4(bi_ai)2+<xi_ 5 > ;

mesD
[ bty = [y
JD b_a' a;

1 Jdaj

Since

we have

1 ( . aitb )
i 2
Using (4.4.5) in (4.4.4) and the fact that mes D > 0, we get the required inequality in (4.4.1).
The proof is complete.
In [44], Dragomir, Barnett and Cerone established the following Ostrowski-type inequality

for multivariate mappings of the r-Holder type.

Theorem 4.4.2. Let B =[]/, [ai,bi] C R". Assume that the mapping f : B — R satisfies
the following r-Holder type condition

n

|f(x) = f()] < Zlel yil" (Li=0,i=1,...,n), (4.4.6)

for all x = (xi,...,%,), ¥y = (¥1,...,yn) in B, where r; € (0,1], i = 1,...,n. Then we have
the inequality

n Lz a; ri+1 bi —x ri+1
f(x)_ﬁ( /f(y)dy Z:Z]rﬁl (b a,> +<M) }(b —a;)
<y, rI:i—l(b —a)", 4.4.7)

i=1

for all x € B, where [y f()dy = [21 -+ [22 F(31....y)dys---dy,
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Proof. Using the properties of modulus and (4.4.6), we observe that

10 f[av= [ 70 < [ 170 =100l

n by by
< ZLi/ / |xi — yil idyn - - - dyy . (4.4.8)
i=1 Ja Jan
As
. by bn n
[av=[" [" vy =TTt ),
B aj an i=1
and

bl bn . n bi .
/ / lxi = yil""dyn - -dyr = H(bj—a,-)/. xi — il "dyi

aj an =1 a;
J#
= / J ri+1
J#i

“ 1 X —a; ritl bi —x; ri17] 4
= b + —_ O Yi— M b' _ ' r'
II;[( / aj)ri+1 (biai> + bifai ] ( i al) s
then dividing (4.4.8) by [T_, (b; —a;), we get the first part of (4.4.7).

Using the elementary inequality

=)+ By < (B o)t

forall o <y < B and p > 0, we get

rit+1 ri+l
Xi—ai\' bi—xi\" .
<1, :17'“7 )
(bl»—a,»> +<b,-—a,-> l !

and the last part of (4.4.7) is also proved.

The following Corollaries hold.

Corollary 4.4.1. Under the assumptions of Theorem 4.4.2, we have the mid-point in-

equality

b n+by 1 " Li(bi—a;)"i
f(mzlwwag )— Fody| < Y HUZOT g4

which is the best inequality we can get from (4.4.7).
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Proof. Note that the mapping h,(y) : [&,B] — R, h,(y) = (y — a)?™! + (B — y)P*!

(p > 0) has its infimum at yp = ‘Hﬁ and
_q)Pt!
inf h,(y)= M
yela,p] 2r

Consequently, the best inequality we can get from (4.4.7) is the one for which x; = %”’

giving the desired inequality (4.4.9).

Corollary 4.4.2. Under the assumptions of Theorem 4.4.2, we have the trapezoid-type

inequality

flar,...;an) + f(b1,...,by) 1 nI (b — )i
% fdy| <Y 22— (4.4.10)
2 g(bi —aj) '/B Z i+l

Proof. Put in (4.4.7), x = (x1,...,x,) = (a1,...,a,) and then x = (x1,...,x,) =
(b1,...,by), add the obtained inequalities and use the triangle inequality, to get (4.4.10).

An important particular case is one for which the mapping f is Lipschitzian, i.e.,

n

|f(x) = fO) < Y Lilxi — yil, (4.4.11)
i=1

forallx,yeBandL; > 0,i=1,...,n
The following Corollary holds.

Corollary 4.4.3. Let f be a Lipschitzian mapping with constants L;. Then we have

ai+b;\ >
n 1 X—T
F) = / | < Y5 | 2| |tima). @ar

=1

H (bi —aj)
for all x € B. The constant i, in all the brackets, is the best possible.

Proof. Chooser;=1(i=1,...,n)in (4.4.7), to get

/f(y)dy < %iL, [( a,>2+ (ZZ)Z] (bi—a).

I:I ( i=1

fx) -

A simple computation shows that

2
1 Xi —da; 2+ b,-fx,- 2 _l+ x—%}”'
2 bifa,- b,’*d,’ _4 b,’*d,’ ’

fori=1,...,n, giving the desired inequality (4.4.12).
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To prove the sharpness of the constants %, assume that the inequality (4.4.12) holds for

some constants ¢; > 0, i.e.,

1 n x— ai+b; 2
flx)— ni/f(y)dy < ZLi ci+ (}?2) (bi—a;), (4.4.13)
—a;) B sy i —ai

forall x € B.
Choose f(x) =x;(i=1,...,n). Then by (4.4.13), we get

x_a,'er,' 2
< |6+ ﬁ (bi —a;),
1 1

for all x; € [a;,b;]. Put x; = a;, to get

2a (Ci+4> (bi —aj),

from which we deduce ¢; > %, and the sharpness of i is proved.

ai+bi
Xi— )

N

The multivariate Ostrowski-type inequality investigated by Pachpatte in [87], is embodied

in the following theorem.

Theorem 4.4.3. Let the set B and the n-fold integral be as defined in Theorem 4.4.2. Let
f: B — R be a differentiable function and

V,‘(Xh... s Xi—1,Xi+1,- "7xn) :f<x)|x,-:a,- +f(x)|xi:h,"

fori=1,...,n. Then

n
/Bf<x> Z/Vl X1, - xi*laxi+17"'7xn)dx
=1

zl (Z /B ) : (4.4.14)

Proof. Forx € B itis easy to observe that the following identities hold (see [108, p. 392]):

I,
ox;

nf(x) = flar, X2, %0)+ -+ (X1, s Xn—1,an)

X1 Xn a
B S ¥ A / i3 t)dt,  (44.15)
aj (91 an ot

n

and

nf(x) = f(br,x2, %) + A F(X15 o X1, D)

bl 8 by a
—/ a—f(tl,xg,...,x,,)dtl—---— — [ (X1, X0, -+ X1, B )dEy. (4.4.16)
X1 1 8

Xn



222 Analytic Inequalities: Recent Advances

From (4.4.15) and (4.4.16), we get

1 n
= 5 Zvi(xlv"'7xi717xi+17"'7xn)
=1

X1 a by
+ f(l‘],Xz, xn dtl / f 11,Xx2,.. xn)dtl
a Ot oty

59 b 9
+ a f(xh xnflytn)dtn_ a f(xlv xnflvtn)dtn . (4417)

an Xn
Integrating both sides of (4.4.17) over B and by making elementary calculations, we get the

desired inequality in (4.4.14) and the proof is complete.

4.5 More Ostrowski-type inequalities in several variables

The main goal of this section is to present certain Ostrowski-type inequalities involving
two functions of several independent variables.
Let D= {(x1,...,%) :a; <x; <b; (i=1,...,n)} and D be the closure of D. Forx; € R, x =

(x1,...,x,) is a variable point in D and dx = dx1 -dxy,. The first order partial derivatives
d 8
u u(x) -

‘ TX, 8x,-
For any integrable function u(x) : D — R we denote by [,u(x)dx the n-fold integral

f:ll fabn" u(xy, ..., x,)dxy - -dxy.

of a function u(x) :

..,n) and said to be bounded if

w  XED

The first Theorem deals with the Ostrowski-type inequality involving two functions of

several variables established by Pachpatte in [92].

Theorem 4.5.1. Let f, g: R" — R be continuous functions on D and differentiable on D,

with derivatives af ( ) ag ( ) being bounded. Then for all x € D,

‘f(X)g(X) - 3 £ [ 10110 [ e

£ s[5

n
where, M = mesD = [] (b; —a;) and E;(x) = [, |x; — yildy.
i=1

d
#0052

}Ei(x), 4.5.1)
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Proof. Letx= (x1,...,%,), Yy = (V1,---,Vn) (x eD,yc D) . From the n-dimensional ver-
sion of the mean value Theorem (see [146, p. 174] or [76, p. 121]), we have

af(
Z J;xcl Xi— Y1), (4.52)

N

g(x) —gly —yi), (4.5.3)

where, ¢; = (y1 + 0(x1 — Y1)y -0+ Oti(xn fy,,)) (0 < a; < 1),i=1,2. Multiplying both
sides of (4.5.2) and (4.5.3) by g(x) and f(x) respectively and adding, we get

2f(x)g(x) — g(x)f(y) — f(x)g(y)

Z ax —yi)+ flx Z ax (xXi = i)- (4.5.4)

Integrating both sides of (4.5.4) with respect to y over D, using the fact that mesD > 0 and

rewriting, we have

f(x)g(x) f*g /f dy*ﬁf(x)/[)g(y)dy

[ / y af (1) (xi —yi)dy +f(x)/Di a%(f)(xi—yi)dy} 3.5
i=1

L

From (4.5.5) and using the properties of modulus, we have

10960~ 3 [0 [ r0Iv500) [ et

. @g(xn / 21

df(c1)

g 5 (209 | o3

Remark 4.5.1. If we take g(x) = 1 and hence 35( %) — () in Theorem 4.5.1, then the in-
equality (4.5.1) reduces to the inequality established by Milovanovi¢ in [76, Theorem 2],

v+ 171 [ 3 [ 242

i=1 i

—i Idy]

} Ei(x).

The proof is complete.

which in turn is a generalization of the well-known Ostrowski’s inequality given in (7).

The inequalities in the following Theorem are also established by Pachpatte in [92].
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Theorem 4.5.2. Let f(x),g(x), ag@ , a‘g()_c) be as in Theorem 4.5.1. Then for all x € D,

09800) - 37 [ 100 [ e0ras 00 [ 100 ]+5; [ r01s010
< 1\1/1/0(12 °0|Xiyi|> (;
and
0960 57 [0 [ e0ras 00 [ 1035 + 5 ([ 1005 ) ([ etrar)
< <,~n1 wE,(x)) (Zl

where M and E;(x) are as defined in Theorem 4.5.1.

dg

ox; Ix;

(24

i — yi> dy, (4.5.6)

dg

Bxi

of
ax,‘

E,»(x)) , (4.5.7)

Proof. From the hypotheses, the identities (4.5.2) and (4.5.3) hold. Multiplying the left
hand and right hand sides of (4.5.2) and (4.5.3), we get

Fx)g(x) = f(x)g(y) —g(x)f () +f(»)g(»)
_<Zaf;(x“) . )(Zai(xcz ey ) (45.8)

i=1

Integrating both sides of (4.5.8) with respect to y over D and rewriting, we have

FWe) — 3,76 [ ey e [ 0dy+ 5 [ rgay

y 20 o) (328
M / ( = ’y’)> (Zl oy yﬂ)fl% (4.5.9)

From (4.5.9) and using the properties of the modulus, we have

70980) = 57 | 10 [ sOh+st0) [ r0ray] + 5 [ s
<A1/1/1)<,=i1 o) |Xi—yz> (é‘, \Xz yt) dy

Lo
CLL(E1E ) Bl e

which is the required inequality in (4.5.6).
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Integrating both sides of (4.5.2) and (4.5.3) with respect to y over D and rewriting, we get

1 (9f 61
7M/Df(y) M/ Z ox (xi = yi)dy, (4.5.10)
and
8(¥) 57 Dg(y)dy—M/Di; o, %Yy 4.5.11)

respectively. Multiplying the left hand and right hand sides of (4.5.10) and (4.5.11), we get

flx)g(x —[ X)/ y)dy+g(x /f dy} e (/f dy) (/Dg(y)dy>
= # (/D i ag(:) (xi)’i)d)’> ( /D fi a‘z(x?) (xiyi)dy> : (4.5.12)

From (4.5.12) and using the properties of modulus, we have

’f(X)g(X)—AL {f(X)/Dg(y)dyﬂLg(X)/l;f(y)dy} +# (/l;f(y)dy> </Dg(y)dy>‘

1 &9 f(e / " | dg(ca)
<— —yild i —yild
e < b yil y) ( D;:l x; — yildy

1 n n
< W (i_l mE[(X)) (i_l mE,'(X)) .

This is the desired inequality in (4.5.7) and the proof is complete.

o
ax,'

98
8x,~

Remark 4.5.2. In [2,74], the authors have established a number of Ostrowski-type in-
equalities for functions of several variables by using different techniques. We note that the
inequalities given in Theorems 4.5.1 and 4.5.2 are different from those established in [2,74],
and the proofs are extremely simple. We also note that, by closely looking at the results
obtained in [105,125,134], one can very easily extend the inequalities in Theorems 4.5.1
and 4.5.2 involving three functions of several independent variables. We omit the details.

Another Ostrowski-type inequality for mappings of the Holder type involving two functions

of several independent variables is given in the following theorem.
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Theorem 4.5.3. Let the set B be as defined in Theorem 4.4.2. Suppose that f: B— R is
of r-Holder type, g : B— R is of s-Holder type, i.e.,

lfx) = fO) < Y Hi | xi—yil" (Hi>0,i=1,...,n),
i=1
lg(x) =g < Y Lilxi—yil  (Li=0,i=1,....n),

for all x, y € B, where r;, s; € (0,1], i =1,...,n. Then we have the inequality

70980) 55 | 10) [ g0y 500 [ 70|+ [ s

1 n
< — <2Hi|xi —wl”) (ZL xi — il ) dy, (4.5.13)
M /s \ ;=
for all x € B, where M = mes B =[]\, (b; — a;).

Proof. From the assumptions, we have

()~ £ 8(0) ~ (me, o ) (ZL ) @514
Integrating both sides of (4.5.14) with respect to y over B, \;e get
/\ Y)(g(x) —g)ldy < /(ZHlxz il ><2sz yz")dy (4.5.15)
On the other hand, from the properties of integrals, we have
S0~ £0)) )~ ey > | [ (0) £ e~ )
- ]f(x)g(x) 1) [ o)y —g9) [ royav+ [ f(y)g(y)dy‘- @516)

Using (4.5.16) in (4.5.15) and the fact that M = mes B > 0, we get the required inequality
in (4.5.13). The proof is complete.

Remark 4.5.3. If we take g = f and hence L; = H;, s =r;, i =1,...,nin Theorem 4.5.3,

then we get
2
1) [ rorav+ 37 [ Posas] < /(mel y,|"> dy.

for all x € B.
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4.6 Discrete inequalities of the Ostrowski-type in several variables

In this section, we offer some discrete inequalities of Ostrowski-type involving functions
of many independent variables, recently investigated by Pachpatte in [95,125,134].

In what follows, we use the following notation for simplicity of presentation.
LetU={1,....k+1}, V={1,...,r+ 1} (k,r € N) and W = U x V. For some suitable
functions p, f, g, h: W — R, we set

e = kr,

m—1n—

=Y ZAZAIP c,1),

o=s T=t

k r
F(m,n) = rZ’f(s,n)—i—kzif(m,t)7

s=1

k r
G(m,n) =r ;g(s,n) +k;g(m,t),

k r
H(m,n) = r;h(s,n) +k;h(m,t),

P(f,g,h;F,G,H;e)(m,n) = f(m,n)g(m,n)h(m,n)

—3% {g(m,n)h(m,n){ m,n) — ZZf(st }

s=1t=

“
Il
<
Il

k r kK r
—l—h(m,n)f(mﬂl)ZZS[g + f(m,n)g(m, H)ZZS[h],

s=1t=1 s=1t=1

~

LetA={l,...,a+1},B={1,....b+1},C={1,....c+1} (a, b, cE N) and E = A x

B x C. For some suitable functions p, f, g, h: E — R, we set

e = abc,
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k—1m—1n—1

Z Z ZA3A2A1p(u W),

U=F V=8 W=

J[pl= chp r,m,n +ca2p(ksn +ab2pkmt)

r=1 s=1 =1

b
Llp] = C;Zi p(r,s,n +bZZp(rmt +aZZp(kst

r=1t= s=1t=

P(f,8,h:J,L;e)(k,m,n) = f(k,m,n)g(k,m,n)h(k,m,n)

b ¢
f% [g(k,m,n)h(/gmm) {J[f} —L[f]+ Z Z Zf(r,s,t)}

b ¢
+h(k,m,n)f(k,m,n) {J[ 1—Lig]+ Z Z Zg(r,s,t)}

a b ¢ a b ¢
+h(k,m,n)f(k,m,n) ZZZE[ + f(k,m,n)g(k,m,n) ZZZ
r=1s=1t=1 r=1s=1t=1

4]

The discrete versions of Theorems 4.2.5 and 4.3.4 proved in [125] and [134] are embodied

in the following theorems.

Theorem 4.6.1. Let the functions f, g, h: W — R be such that AyA|f(m,n),
AsAig(m,n), ApArh(m,n), exist on W. Then

- = = 1
|P(f.8.0:F,G.He)(m,n)| < = Qo(If1[s]. Al |S[) (m. ), (4.6.1)

for all (m,n) € W.
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Proof. By simple computation we have the following identities:

f(m,n)—f(s,n)—f(m,t)+f(s,t)=S[f], (4.6.2)
g(m,n) —g(s,n) —g(m,1) +g(s,1) = Slg], (4.6.3)
h(m,n) —h(s,n) — h(m,t) + h(s,t) = S[h], (4.6.4)

for (m,n), (s,t) € W. Multiplying both sides of (4.6.2), (4.6.3) and (4.6.4) by
g(m,n)h(m,n), h(m,n)f(m,n) and f(m,n)g(m,n) respectively and adding the resulting

identities, we have

3f(m,n)g(m,n)h(m,n) _g(m’n)h(mvn)[f(svn) —|—f(m,t) —f(S,I)]
—h(m,n)f(m,n)[g(s,n) +g(m,t) —g(s,t)] —f(m,n)g(m,n)[h(s,n) +h(mv[) —h(S,t)]

— g(m,n)h(m,m)S[f] + h(m,n) £ (m,n)S[g) + £ (m,n)g(m,m)S[h]. 4.65)

Summing both sides of (4.6.5) first with respect to ¢ from 1 to r and then with respect to s

from 1 to k and rewriting, we have
— 1
P(f>g7h;F:GuH;e)(m7n) = &QO(]%gvh;S)(mJl)' (466)

From (4.6.6) and using the properties of modulus, we get the required inequality in (4.6.1).

The proof is complete.

Remark 4.6.1. Taking i(m,n) = 1 and hence ApAh(m,n) = 0 in Theorem 4.6.1 and by

simple computation, it is easy to see that the inequality (4.6.1) reduces to

k r
<mn>g<mn>—zlelg<mn>{ m,n) ;;fm}

+f(m,n) {G(m,n) — ; iig(s,t)}] ‘

[|gmn;;|5 \+|fmn\22|s 1 (4.6.7)

s=1t=
for all (m,n) € W. Further, by taking g(m,n) = 1 and hence ApA;g(m,n) = 0in (4.6.7) and

by simple computation, we get the following Ostrowski-type discrete inequality

r k r
F(m,n) — ZZ (st} Y Y Isifll, (4.6.8)

(\\»—t

f(m,n) _é

=1 s=11=1

for all (m,n) € W.
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Remark 4.6.2. Summing both sides of (4.6.6) first with respect to n from 1 to r and then

with respect to m from 1 to k and rewriting, we have

o 1 k r
M(f,8,i:F,G, H;e) = 55 3 ) Qo(f,8h:8)(m,n), (4.6.9)
m=1n=1
where
k r
M(, & FGHie) =~ Y Y flmn)g(m,m)hm,n)
m=1n=1
1 k r .
—5z X Y [glmmh(m,n)Fm,n)
m=1n=1

1 k r 1 k r
+ (e Z Zf(m,n)g(mm)) <e Z Zh(m,n))} .
m=1n=1 m=1n=1
From (4.6.9) and using the properties of modulus, we get the following Griiss-type discrete
inequality
o 1 k r
\M(f,8,h:F,G,H;e)| < —;Z{: )(m,n). (4.6.10)

Theorem 4.6.2. Let the functions f, g, h: E — R be such that A3AxA;f(k,m,n),
AsAoA 1 g(k,m,n), AsAyAjh(k,m,n) exist on E. Then

!P(f,g,h]Le)(kmn)’ (

S|) (k,m,n), 4.6.11)

for all (k,m,n) € E.
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Proof. We first prove the following identity:

S[f} :f(k,m,n) - [f(ram’n)+f(kasvn)+f(k’m7t)}

+[f(r,s,n)+ f(rym,t) + f(k,s,t)] — f(r,s,1), (4.6.12)
for (k,m,n), (r,s,t) € E, where
—1m—1n—
Slf]= Z Z ZA3A2A1f(u v,w). (4.6.13)

From (4.6.13), by simple calculation, we have

—1m—1

Z Y Z{AzAlf u,v,w+1) = Ao Ay f(u, v, w)}

u=r v=s |w=t

—lm— —1m—1
Z ZAzAlf(u v,n) Z ZAzAlf(u V1)
=S1[f] = S2[f] (say). (4.6.14)
By simple computation, we have
k=Im—1
Silf ZZAzAlfuvn)

k—1 |m—1
= Z Z {A1f(u,v+1,n) — Ay f(u,v,n)}

k=1 k=1
= Z Alf(u,m,n) - Z Alf(u,s,n)

u=r

k—1 k—1
= Z{f(u+ Lm,n) — f(u,m,n)} — Z{f(u+ L,s,n) — f(u,5,n)}

= f(k,m,n) — f(r,m,n) — f(k,s,n) + f(r,s,n). (4.6.15)
Similarly, we have
k—1m—1

52 f] = Z Z AzAlf(M,V,[) :f(kamat) _f(ramvt) _f(kvsvt)+f(r7svt) (4616)

Using (4.6.15) and (4.6.16) in (4.6.14), we get (4.6.12). Similarly, we have the following

identities

g[g] :g(k,mm) - [g(nm,n)+g(k7s,n)+g(k,m,t)]

+[g(r,s,n) +g(rym,t) +g(k,s,1)] — g(r,s,1), (4.6.17)
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S[h] = h(k,m,n) — [h(r,m,n) + h(k,s,n) + h(k,m,1)]
+[h(r,s,n) +h(r,m,t)+h(k,s,t)] — h(r,s,t), (4.6.18)
for (k,m,n), (r,s,t) EE.
Multiplying both sides of (4.6.12), (4.6.17) and (4.6.18) by g(k,m,n)h(k,m,n),
h(k,m,n)f(k,m,n) and f(k,m,n)g(k,m,n) respectively and adding the resulting identities,
we have
3f(k,m,n)g(k,m,n)h(k,m,n)
—g(k,m,n)h(k,m,n) {[f (r,m,n) + f (k,s,n) + f (k;m, )]
—[f(rs,n) + f(rm,0) + fk,s,0)] + f(r,5,0)}
—h(k,m,n)f(k,m,n){[g(r,m,n) +g(k,s,n) + g(k,m,1)]
—[g(rs,n) +g(rm.1) +g(k;s,0)] +8(r,5,1)}
—f(k,m,n)g(k,m,n){[h(r,m,n) + h(k,s,n) + h(k,m,1)]
—[h(r,s,n) +h(r,m,t) +h(k,s,t)] +h(r,s,t)}
= g(k,m,n)h(k,m,n)S[f] + h(k,m,n) f(k,m,n)S[g] + f(k,m,n)g(k,m,n)S[h]. (4.6.19)
Summing both sides of (4.6.19), first with respect to ¢ from 1 to ¢, then with respect to s

from 1 to b and finally with respect to r from 1 to a and rewriting, we have
— — 1 — _
P(f.g.h:J,Lie) (km,n) = 32 (f,8h:S) (k,m,n). (4.6.20)
e
From (4.6.20) and using the properties of modulus, we get the required inequality in

(4.6.11). The proof is complete.

Remark 4.6.3. Taking h(k,m,n) = 1 and hence S[h] = 0 in Theorem 4.6.2 and by simple

computation, it is easy to see that the inequality (4.6.11) reduces to

Sfk,m,n)g(k,m,n) — Zlel(kmn){J[f +i2i rst}

r=1s=1t=1

a b ¢
ko) {J[g] T} 3 et H ]

r=1ls=1t=1

1 a b a b c

< |tmm £ EE S pemn EE Ei]. o2
r=1s=1t=1 r=1s=1t=1
for all (k,m,n) € E. Further, by taking g(k,m,n) = 1 and hence S[g] = 0 in (4.6.21) and by
simple computation, we get

f(kmn)l[.l[f +Za:

r=ls

<! Y Y Y S, @622

r=1s=1t=1

frst:|

1

Mw
it

for all (k,m,n) € E.
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Remark 4.6.4. Summing both sides of (4.6.20) first with respect to n from 1 to ¢, then

with respect to m from 1 to b and finally with respect to k from 1 to a and rewriting, we

have
a b ¢
M(fehT L0 =5 Y Y ¥ 0 hsS)(kmn) (4.623)
k=1m=1n=1
where
a b ¢
M(f.g,h:J,Le) = % Y Y Y rlk,mn)g(k,m,n)h(k,m,n)
k=1m=1n=1
a b ¢
—321;1 Z,l ;[g(k,mm)h(k,m,n)(ﬂ F1=L[f]) +h(k,m,n) f (k,m,n)(J[g] - L[g])

a b ¢ a b ¢
+ <i Z Z Zf(lgm,n)g(k,m,n)) (l Z Z Z h(k,m n))

From (4.6.23) and using the properties of modulus, we get the following Griiss-type dis-

crete inequality

a b c
\M(f,g,h;J,Lie)| < ZZZQWMM&WMM. (4.6.24)
k=1m=1n=1

The discrete Ostrowski-type inequalities in the following theorems, involving functions of

many independent variables are investigated in [95].

Theorem 4.6.3. Let f, g: Q — R be functions such that A; f(x), Aig(x) fori=1,....n
are bounded on Q, where Q is as defined in section 2.6. Then for all x, y € Q,

Fg0) - 2;4[ LS00+ 0 Lt H

1 n

S 57 )14 f oo+ 1 () 1| Aig oo Hi (), (4.6.25)

l:1

where, M = [T_, a; and H;(x) = ¥, [x; — yil-
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Proof. For x = (x1,...,%,), y = (1,...,yn) in O, it is easy to observe that the following
identities hold:

n xi—1
f(x) _f(y) = Z { Z Aif(yla" Vi1l Xig 1, - - 7xn)} ) (4626)

=1 \ti=y;

g(x) Z { Z Alg ViyeoosYi—1yLiy Xit1,-- '7xn)} . (4627)

Li=yi
Multiplying both sides of (4.6.26) and (4.6.27) by g(x) and f(x) respectively and adding,

we get

n xi—1
2f(x)g(x) —g(x) f(y) — f(x)gy) =g(x) ), { Y ASOr Yt X ,xn)}

i=1 ti=yi

n X,'fl
+f(x) Z{ ) A,-g(yl,...,y,-1,t,~,x,-+1,...,xn)}. (4.6.28)

i=1 =i
Summing both sides of (4.6.28) with respect to y over O, using the fact that M > 0 and

rewriting, we have

09800) 300 L0~ 557/ (0 L)

n xi—1
- ﬁ |:g(x)2y: |:Z{ Z A'f(yla'">yi—l:ti,xi+1,...,xn)}]

Li=yi

n xi—1
+0)Y, [Z{ Y Aig(m,u-,yi1,ti,xi+1,...,xn)}H ) (4.6.29)

y Li=1 L=y
From (4.6.29) and using the properties of modulus, we have

F0e) [ L0 Ee <y>H

L [|g<x>l§ [E { |
HIEIE {Xn; b

Z Aig(V1s- s Vi 1o tis Xit 153 Xn)
i=1

I }

= 337 2 8 ENIAf [l + ()| Avg] ] (lez y,)

Xl'f

Z Aif(yla' --7))i717ti7xi+17-- .,Xn)

L=

|
il

n xi—1
I [;{mignm Y

1i=yi

xifl

Y1

1i=yi

il

=

1 n
<le 9L [Z 8171

i=1

1 n
77 2 814 oo+ [ ()| Avg e Hi (x)-
i=1
The proof of the inequality (4.6.25) is complete.
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Remark 4.6.5. By taking g(x) = I and hence A;g(x) = 0 in Theorem 4.6.3 and by simple

calculation, it is easy to see that the inequality (4.6.25) reduces to

7= 37 L10)

for all x, y € Q. The inequality (4.6.30) can be considered as the discrete version of the

1 n
< i Y 1A f|l-Hi(x), (4.6.30)
=1

inequality established by Milovanovi¢ [76, Theorem 2].

Theorem 4.6.4. Let f, g, A;f, Aig be as in Theorem 4.6.3. Then for every x, y € Q,

F0sl x)—[ L0+ 10 L) + 57 LS00
y y
MZ[ZlAfll i — yz] [flAigHmmyil], (4.6.31)
i=1 i=1
and
‘ (x)g(x) — — [ Zf (X)Zg(y) — (Zf(y)) (Zg(y))‘
[ZIIAJ‘II H;(x ] [ZHA,g Hi( x)] (4.6.32)

where M and H;(x) are as defined in Theorem 4.6.3.

Proof. From the hypotheses, the identities (4.6.26) and (4.6.27) hold. Multiplying the left
hand sides and right hand sides of (4.6.26) and (4.6.27), we get

Fx)gx) —g(x)f(y) = f(x)eg(y) +f(v)g(y)

n Xi—

=Y ZAf()’h Vi1t Xig 15+ Xn)

i=1 1i=yi

n xi—1

Z Y Aigyis it X x) | - (4.6.33)
i=1 ti=yi

Summing both sides of (4.6.33) with respect to y over Q and rewriting, we have

fx)s( X)—[ Zf )+ f(x) Y 8(v)
0

#3700

1 n xi—1
= MZ |:Z{ Z Aif(y17~~':yilyti;xi+l7~~~7xn)}:|
y

i=1 \ti=yi
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n xi—1
X [Z{ Z A,-g(yl,...,yil,t,-,xi+1,...,xn)}:| . (4634)

i=1 ti=yi
From (4.6.34) and using the properties of modulus, we have

‘f(X)g(X) - % [g(X) Zf(y) +fx) el | + %Zf(y)g(y)
xi—1
{ Z Aif(y],...,yi1,zi,x,-+1,...,xn)|}H
X [i {XIZ |Aig(y1,- aYi—l7ti7xi+l7-~~;xn)|}H

Z [DA Flleki— y,] [iz";|Aig||w|xi—yi|] 7

which is the required 1nequallty in (4.6.31).

Sy

i

Summing both sides of (4.6.26) and (4.6.27) with respect to y over Q and rewriting, we get

x) - Az;f(y) =¥ [Z{ 5 A ,y,-_l,r,»,x,-+1,...,xn)H 4635

y =1 Ui=yi
and
1 1 n o xil
g)—=Y ==Y Z Y Ag(yis oyt Xia, o X) p | (4636)
M y M y ti=yi

respectively. Multiplying the left hand sides and right hand sides of (4.6.35) and (4.6.36),

fx)g(x) — [ Zf(y)+f Zg 2<;f(y)> <;g(y)>

_2< [Z{ZAfyla Vi1 s Xig 15+ Xn }])
i= 1i=yi
xi—1
< |: { Z Alg V1o s Yie 15l Xig 1y -5 X }]) (4637)
y |i=1

From (4.6.37) and usmg he p pertles of modulus, we have

we get

-1 [0 B0 0 Ee)] 5 (100 ) (£
(; [é {n’h A (1, 7yi1,ti7xi+1,~--7xn)}H)

n xi—1
< [ {Z |Aig(Y17~--7yz'1,ti,xi+17-~-7xn)|}H>

i=1| (ti=yi
(Z|Af| H(x)> <Z|Azg|| Hi( ))

This is the desired 1nequahty in (4.6.32) and the proof is complete.

=

—_
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4.7 Applications

In this section, we present applications of some of the inequalities given in earlier sections

and hope that they will encourage to open up new vistas for future research.

4.7.1 Applications for cubature formulae

In [8], Barnett and Dragomir used the inequality given in Theorem 4.2.1 to obtain a general
cubature formula. In the following Theorem we present a result given in [8].

Consider the arbitrary divisions [, =a =xp < x; < -+ < Xx,_1 <X, =b and J,, =c =
Yo<y1 < <ymo1 <Yym=dand § € [x;,x;11] (i=0,....n—1), n; € [y, yj+1] (j =
0,...,m—1) (n,m € N) be intermediate points. Consider the sum

—1m—1 Vit
C(flydmEm) = ¥ Zh (& 1)t
i=0 j=0
n—Im—1 —1m—1
* ZO Y / f(s,mj)ds — ZO Y hilif (&), 4.7.1)
r J= i Jj=

for which we assume that the involved integrals can more easily be computed than the

D= /ab /Cdf(s,t)altds7

andh,»:x,-H — X (i:O,...,n—l), lj :yj+1 —yj (j:O,...,m—l), é = (éo,...,énfl),
n= (n07' .- 7nm—1)-
With this assumption, we state the following cubature formula given in [8].

original double integral

Theorem 4.7.1. Let f: A — R be as in Theorem 4.2.1 and 1,, J,,, &, nj, &, 1 be as

above. Then we have the cubature formula

b rd
[ #Gut)dtds = by &) 4 RO Dy o), (4.72)
a c
where C(f, L, Jin, &, M) is given by (4.7.1) and the remainder term R(f, I, J,,, €, 1) satisfies

the estimation

IR(f LI €. 1)|

Xt Xip 2
2

1, Yjit i+ ’
le + (T’f Ty
n—1 m—1

fIIDlewa Z h; Z ;. (4.7.3)

—1m—1

< [|D2D) f | Z Z

i=0 j=0
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Proof. Apply Theorem 4.2.1 on [x;,xi1] X [yj,yj+1] (i=0,....n—1; j=0,...,m—1),
to get

Xitl  [Vj+l

f(s,t)dtds — [1,»/):’“ f(s,m;)ds+h; / f(&,t)dt h,-ljf(éi,m)”

2 2
Xi +X; 1 ityicl
gl (Q 41>] 4g+(nf—”;”')

foralli=0,....n—1; j=0,....m—1.

Summing both sides of (4.7.4) over i from O to n — 1 and over j from O to m — 1 and using

|D2D1 f 1|0, 4.7.4)

the generalized triangle inequality we deduce the first inequality in (4.7.3).

For the second part, we observe that

Gi—

xl+xl+1 ittt

2

1
< Ehi: rlji

for all i, j as above.

Now, define the sum

n—1m—1 Vil . .
Culfidndn) =Y Y hi/ i+ f(x, +2xz+1 ,t> it

i=0 j=0 Yj
n—1lm—1 Xit1 Vi _|_y n—1lm—1 X+ x 4
J j+1 i i+1 YjTYj+1
+2})Z / ( )d X:,)Zhl,f( L ) (4.7.5)
=0 j =V

The following corollary contains the best cubature formula, we can get from (4.7.1).
Corollary 4.7.1. Let f, I,, J,, be as in Theorem 4.7.1, then we have

b rd
/ / F(s,0)dtds = Coa(f s TnsJ) +R(f oI Jon), (4.7.6)

where Cy(f,I,,Jm) is the midpoint formula given by (4.7.5) and the remainder R(f,1,,Jm)

satisfies the estimation

1 n—1 m—1
IR(f A I)| < 1 IDD1flle Y 1 Y 15 (47.7)
i=0  j=0

4.7.2 More applications for cubature formulae

Below, we shall present an application of one case of Theorem 4.2.2, namely, when all the
derivatives Dy f, Dy f, D>D; f of a function f : A — R are bounded. That is,

1 b rd
f(xay)—m/a/cf(t,s)dsdt




Multidimensional Ostrowski-type inequalities 239

< ﬁ [i(b_a)u <x_“;b>2
e e (- 5)
ot s (- 55)

1 2 c+d\?
x[4(d—c) +<y— 5 )
for all (x,y) € A.

Using (4.7.8) we have the following Theorem given by Dragomir, Cerone, Barnett and

D11l

D21l

|D2D f1|o, (4.7.8)

Roumeliotis in [37].

Theorem 4.7.2. Let I,,,J,,, &, M, hi,1j, &, 1 be as given in subsection 4.7.1 and f: A — R

be as in Theorem 4.2.2. Then we have

b rd
//f(r,s)dsdt:R(f,ln,Jm,g,n)+W(f,1n,1m,g,n), 4.7.9)

where R(f,1,,Jm,&, M) is the Riemann sum defined by

n—1Ilm—1

R(f Ly, 6 m) =) Z hil;f(&.m;), (4.7.10)

i=0 j=0

and the remainder through the approximation W (f,1,,,J,;, &€, 1) satisfies the estimation

41 (& x,+xl+1>2}

112 Yty g
rURE U b

n—1

(WS T In; &, M) < (d =€) [ D1 f | Z

m—1

+(b—a)[[Daf || Z

J=0

n—1 2 m—1 2
X +x 1 1 Yjityit
+|\D2D1f||m2 (5: SREais > } Y |-G+ <n,~ ! 2]+ ) ]
i=0 j=0
1 n—1 m—
Syld—c |D1f||o<»Zh2 b a)[|D2f |- Z [+ *HDlemeth Z 7

< 5= =a) VDI o+ v 1D+ ;lngleINV(h)V(l)] SNCEATY

where v(h) = max{h;, i=0,...,n—1} and V() = max{l;, j= -1}
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Proof. Apply (4.7.8) on [x;,xiy1] x [yj,y4+1] to obtain

Xit1 YVj+1

f(t,s)dsdt —hil; f(&i,mj)
vty \

2 R LS
7 5 5+ <711 ) >

2 2
x+x+1 I, YitYi+1
<€z i i > :| 4lj+<nj]21)

foralli=0,...,n—1; j=0,....m—1.

Summing both sides of (4.7.12) over i from 0 to n — 1 and over j from 0 to m — 1, we get

Xi

1 a1\ 2
< 7hi2+ (gixl'i‘xﬂr])

~

LD flloe + hi|| D2 f]|e

|D2D) f ][0 (4.7.12)

the desired estimation (4.7.11).

4.7.3 Application to numerical integration

In [64], Hanna, Dragomir and Cerone employed the inequality given in Theorem 4.2.3 to
approximate two dimensional integrals for n-time differentiable mappings via the appli-
cation of function evaluations of one dimensional integrals at the boundary and interior
points.

The following application in numerical integration is found in [64].

Theorem 4.7.3. Let f: A — R be as in Theorem 4.2.3. In addition, let /, and J, be

arbitrary divisions of [a,b] and [c,d] respectively, that is,
Iyra=Gy <G < <G =bh,
with x; € (&,&41) fori=0,...,v—1, and
Juie=1m<1 < <1y =d,

with y; € (7j,7j1) for j=0,...,u — 1, then we have the cubature formula

b rd n—lm—1v—1p1—1 . it Y
[ [ resaa =5 Y ¥y fkm%y}f)

=0 [=0 i=0 j=0
n—lv—1pu—1 Tigl . ak+mf(x- S)
—1)m x! -/’ (1) (y. g2 S\XirS)
HEDTE T BN | S 009 =g s

—lv—1u—1 & ot 1y
1)"2 ZZY '(v)) / " 1)(x,,t)%y2y])dt+R(f71v7Ju7x,y), (4.7.13)

=0 i=0 j=0



Multidimensional Ostrowski-type inequalities

where the remainder term satisfies the estimation

|R(f71V7‘I[Jvcx7y)|

H anerf
t"a m 1
1 ,(;H). (3= &)™+ (G =)™

x ,Z (=)™ =+ (g —y)" ]

arH»mf
F Smasm € L=(8):

an+mf
Hamasm 1T (= £ (G — )] i
nlm! ):’0{ ng+ 1 ] 1
< u—1 (yj—Tj)qu-i-(TjH—yj)qu q
on{ . mq+1 } ’
gt”&s{’ € Ly(A); 1-l—lzl, p>1;
anerf
Hc% ngsm

4(n!m,) ':0 [( =&)"+ (&1 —x)" + (i — &)

i
-1

X ): [(yj—‘l:j) +(Tjt1 — +| = T)" = (T4
n+m
if Sgem eLi(A);
whereX (k 0,. 1 i=0,. l)Y (l_
(z— vfl)S (J— - .,,ufl)aredeﬁnedby

oy Gt —x) 4 (1) — &)
Xk (xt)* (k+1)! y
Y()( ) (TJ+1 yj)l+l+(_l)l()’j_7j)l+l
Vi (I+1)! ’
and
t=&)"
(1) ( | ) . €&l
K int) = (f*%ﬁl)"
— > 1€ Gl,
n.
(S—Tj)m
j N 0 S € (Tj,Yl
S'(”/) (yj7S) = (Si’j?j!Jrl)m [ / ]]
a0 s € (v, Tjs1)-

The proof is obvious by Theorem 4.2.3 applied on [&;, &1 1]
j=0,...,u—1, and we omit the details.

= (&iv1 —x)"]

—y)"

X [Tj,Tj.;,.]], i=0,...
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I

.om—1;j=0,...,u—1)and
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4.8 Miscellaneous inequalities

4.8.1 Dragomir, Barnett and Cerone [29]

Let f : [a,b] x [c,d] — R be a continuous mapping on [a,b] x [c,d] and f{',
on (a,b) x (¢,d) and is in L,((a,b) x (c,d)), i.e

H < afxy

then we have the inequality

ab / ! fs.0)dsdi — {(b—a) / ! eyt

+d=0) [ Fss—(@-0b- ) ]

a

1
P
dxdy) <oo,p>1,

(—a)”™ + (b)) [y =) +(d—y) 7,
< q+1 q+1 ||fst||P:
for all (x,y) € [a,b] x [c,d], where %+é =1.

4.8.2 Hanna and Roumeliotis [63]

Let f : [a1,b1] X [a2,b2] — R be such that all its partial derivatives upto order 2 ex-

ist and be continuous, i.e., Btjtz;k <oo i=1,2; j=0,...,i; k =i— j. Furthermore, let
1 2

w: (ar,by) x (az,by) — (0,0) be integrable i.e., ffl' fabzz w(ty,t)dtadt; < oo. Then for all
(x1,x2) € [a1,b1] X [az,bs] the following integral inequality holds

I by by
/ / w(t],tz)f(fl,IZ)dIZdtl_f(xl’XZ)/ / w(t1,t)dndn
Jay Sy Jay Jay
P by b
+M/ 1/ ZW(tl,IZ)(xl_tl)dtzdtl
atl ay ap

by b
+M/ 1/ 2W(t1,f2)(xz—t2)dt2d[1
t2 aj ap

1|92 by b
Ha{ / / W(l‘l,l‘z)(xl—tl)zdtgdtl
tl w7 a] ay
1192 bi by
- H T{ / / W(tl,tz)(xZ — tz)zdtzdl‘l
t2 o0 /a1 az
A
w(ty,h)|x1 —t1||x2 — 12 |dtrdt, .
H8t18t2 - (t1,12)[x1 — t1||x2 — t2]dtadty
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4.8.3 Hanna and Dragomir [65]

Let f : [a,b] X [¢,d] — R be a function so that the partial derivatives D f(x,y), Daf(x,y)
and DD, f(x,y) exist and are continuous on [a,b] x [c,d]. If |D;f(x,y)| is convex over

first direction,

D, f(x,y)] is convex over the second direction and |D D, f(x,y)| is convex

in both directions, then we have the inequality

’(b_a)l(ci_c)/ab/cdf(t,s)dsdtf(xo,yo)

[ID1f (x0,)[eo +[[D1.fleo] |1 a+b\*
< ! 02(b—a) ! [4(ba)2+(xo 5 )
[ID2£ (-, 0) oo + [[D2f|eo] | 1 c+d\*
2 Z(Edfc) 2 l4(d—c)2+<yo— 5 >

1D1D2f (x0, )|l + [D1D2.f (x0,50) | + |D1D2f (+,30) [l + D1 D2 |..]
4(b—a)(d—c)

8 Ll;(ba)% (xo a;b>2 [i(dc)2+ <y0 C—zkd>2

for all (xo,y0) € [a,b] X [c,d], where

N

1D1f(x0,°)[|e = sup |D1f(x0,5)| < oo,
s€[e.d]
1D2f(+,30) ||« = sup [Daf(t,y0)] < oo,
t€la,b]
[Diflle= " sup  [Dif(t,s)] <eo,

(t.5)€la,b]xc,d)

|D1Ds f (30, ) = sup [D1D2f(x0,5)] < =,

s€e,d)
[D1D2f(+,30) ||« = sup [D1D2f(t,y0)] < oo,
t€la,b
and
ID1D2f || = sup |D1Dyf(2,5)] < oo.

(t,5)€[a,b]x[c.d]
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4.8.4 Hanna, Dragomir and Cerone [62]

Let I, J be two closed intervals and f : I x J/ — R be a mapping so that the partial derivatives
ai+m+lf(a7,) (l —0.. . ) a;+n+1f( ) (J _ 0 m) and an+m+2f(,,,)

axiaym+l axn+layj axn+laym+l
J,I and I x J respectively, where a € I and b € J are given. Let x € ] and y € J and assume

3i+m+1f(a.-) 3-i+"+1f(~,b)

(j=0,...,m) and is continuous on [a,x] x [b,y]. Then we have the inequality

exist on the intervals

are continuous on [b,y] (i =0,...,n),

an+m+ f( )

are continuous on [a, x|

an i (x—a)’ (y—b)! 9" f(a,b)

‘f()@y) _i:Oj:O i j! oxidyl
(x— a> 8’*"’+‘f(a 5) 1 aw“f(r b)
, / - dxidyn+1 T axgyntT 45 7.j_0 / (x— X1y “Sarigy 9
1 an+m+2f
Ny SV /& 2 WO AV S B | B
(l’l+1) (m+1) (.X (1) (y b) axn+18ym+l oo;[ax]x[b‘yf
. an+m+2f ’ ’
if gyt € Lellad x [b]]
1 n+1 m+L 8"+m+2f
T (X —a)"i(y = )" | e ,
< { nl(ng+1)am!(mg+1)4 y pila]x[by]
) an+m+2f 1 1
i Serggt € ollad x byl p>1, 4o =1,
1 " . an+m+2f
n!m!<x*a) (=) JxnTgymil 1-[ax]><[b.y]7
o gntm2 R
if gyt € Ll x (b))

where || || y:[a.x]x[p.y] 1S the usual p norm (p € [1,0]) on the region [a,x] x [b,y].

4.8.5 Milovanovié [76]

Let f : R™ — R be a differentiable function defined on D = {(x1,...,x») : a; < x; < b;} for
(i=1,...,m) and let | | <M; (M; >0,i=1,...,m) in D. Furthermore, let the function
x — p(x) be integrable and p(x) > 0 for every x € D. Then for every x € D, we have the

inequality

Jyposoas| B A g

1o '/Dp(y)dy b /Dp(y)dy
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4.8.6 Dragomir, Barnett and Cerone [44]

Let the function f and the set B be as in Theorem 4.4.2. Let w: B — R be a nonnegative
and integrable function and [ w(y)dy > 0. Then we have the inequality

A I A

o= /B w(y)dy b /B w(y)dy

)

for all x € B.

4.8.7 Anastassiou [2]

Let f € C! ( i l[al,b,]) ,where a; < b;; a;, by e R, i=1,...,k, and let Xy = (xOl,...,ka) S
[T, [a;,b;] be fixed. Then

by
/ fZI, Szr)dzy - dzi — f(Xo)
H(b —aj)

=

af
dz;

i x0i — ai)? + (bi — x0;)?
et 2(b; —aj)

The inequality is sharp, namely the optimal function is

=)

k
fO(Z17"'7Zk):Z|Zi_x0i|ai7 al>1
i=1

4.8.8 Anastassiou [2]

Let Q be a compact and convex subset of R¥, k > 1. Let f € C"*'(Q), n € N and
Xo = (xo1,-..,%0k) € Q be fixed such that all partial derivatives f, = %, where o =
(ye0p), 0 €25, i=1,.. .k |a| =Y i =j. j=1,...,n fulfill f(¥)=0. Then

! 2)dz? X D, l(f) I u .
W/Qf(z)dz—f(xo) gMW/Q(HZ_XOHI) gz

where
Dyi1(f) = max || fallw,
o:lo|=n+1
and
k

IZ—%oll: = Y |z — xil-

i=l
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4.8.9 Pachpatte [92]

Let D, D f, g, af 92 be as in Theorem 4.5.1. Let w:D — R be a nonnegative and

x’ax

integrable function and [, w(y)dy > 0. Then we have the inequality

8) [ WO 0+ 1) [ wir)g)ay
Sl - [—2 :
2 / w(y)dy
D

w0 E st |[SE| 11| | Jis—siar
Z/DW(y)dy |

<

for all x € D.

4.8.10 Pachpatte [86]

LetA={l,...;k4+1},B={l,....om+1} (k,meN)and E=AxB.Let f:E —Rbea
function such that A; f(x,y), Ao f(x,y), AoA; f(x,y) exist on E. Then

ii (s,1) — 1{ i[f(sl)—i—fsm—i—l Z (lt+fk+1t)]}

E

s=1 t=1

k m

+%km[f(171)+f(1,m+1)+f(k+l,l)+f(k+1,m+1 kaZ|A2A]f 5,1)]
s=1t=1

4.8.11 Pachpatte[83]

LetA={l,...k+1} B={l,....m+1}, C={1,....n+1} (k, m, n € N) and G =
A X BxC.Let f:G— R be afunction such that A; f(x,y,2), Ao f(x,¥,2), AsAxAL f(x,¥,2)

exist on G. Then

Y flurvw) — é FOL 1) + et Lm0+ 1)

+%mn Y 1)+ flu n4 1) + flu,m+1,1) + f(u,m+1,n+1)]

u=1

ok Y LA L+ 1) 4 s L)+ F(Lwnt 1) 4 £(1L,1)]
=1

ghom XLt L 1)+ 701 L) 4 7L 1) 71,1



Multidimensional Ostrowski-type inequalities 247

k

_7k2i[f(lvw)+f(k+lvw)—%mzz (u, 1, w) + f(u,m~+1,w)]

v=Ilw=lI u=1w=1

1
—kmn

u

n
Y A3 80A L f(u, v, )]

1w=1

—=n Y Y [fuv, 1)+ fluvn+1)]| <

MW‘
M=

1v

4.8.12 Pachpatte [87]

Let A :{1,...7a1+1},...,An:{1,...7an+1} (a17...,an€N) and H=A| X --- X A,.
Let u : H — R be a function such that Aju(x) (i =1,...,n) exist on H. Then

Z { Z Z (L,x2,..x0) Fular +1,x0,. .., %)) +---+

H xp=1 xp=1

Aap—1

an Z Z X[, xn,l,l)Jru(xh < Xn— lvan+1) }

X]l xnll

where for a suitable function w(x) defined on H the notation

[

;W( Z Z w(xy,.

xp=1 xp=1

is used to simplify the presentation.

4.8.13 Pachpatte [95]

Let f(x), Aif(x) and Q be as in Theorem 4.6.3. Let w(y) be a real-valued nonnegative
function defined on Q and ¥, w(y) > 0. Then for x, y € Q,

IwO)S0)| Ew0) X 14—

1) = e < L) 7

where for a suitable function u defined on Q, the notation Y. u(y) is defined earlier in

Section 2.6.

4.8.14 Pachpatte [95]

Let f(x),g(x), Aif(x), Aig(x) and Q be as in Theorem 4.6.3. Let w(y) be a real-valued
nonnegative function defined on Q and }, w(y) > 0. Then for x, y € Q,

g(x) §W(y)f )+ f(x) §W(y)g(y)

FR)gx) - T
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=

Ew(y) LlglllAif e+ £ @)l Aig]le] i = yi

<I— ,
2Xw(y)
¥
where for a suitable function u defined on Q, the notation Y., u(y) is defined earlier in
Section 2.6.
4.9 Notes

A number of authors have written about multidimensional generalizations, extensions and
variants of the Ostrowsk’s inequality given in (7). The inequality in Theorem 4.2.1 is
due to Barnett and Dragomir [8], which may be regarded as a generalization of the clas-
sical result due to Ostrowski given in (7) for double integrals. The inequalities in Theo-
rems 4.2.2 and 4.2.3 are taken from Dragomir, Cerone, Barnett and Roumeliotis [37] and
Hanna, Dragomir and Cerone [64] respectively. Theorems 4.2.4 and 4.2.5 contains the Os-
trowski type inequalities for double integrals established by Pachpatte in [115] and [125]
respectively. Theorem 4.3.1 deals with the Ostrowski type inequality involving functions
of three independent variables and is taken from Pachpatte [83]. Lemma 4.3.1 and Theo-
rem 4.3.2 are due to Sofo [148], while Theorems 4.3.3 and 4.3.4 are due to Pachpatte [125]
and [134] respectively.

Theorem 4.4.1 contains the multivariate version of the Ostrowski’s inequality (7), first
proved by Milovanovi€ in [76]. The results in Theorem 4.4.2 and Corollaries 4.4.1-4.4.3
deal with the Ostrowski type inequalities for multivariate mappings of the r-Holder type
and are taken from Dragomir, Barnett and Cerone [44] and Theorem 4.4.3 is taken from
Pachpatte [87]. Theorems 4.5.1 and 4.5.2 are taken from Pachpatte [92], while Theo-
rem 4.5.3 is new. Section 4.6 deals with the discrete inequalities of Ostrowski type involv-
ing functions of many independent variables and are taken from Pachpatte [95,125,134].
Section 4.7 is devoted to the applications of some of the inequalities given by Barnett and
Dragomir [8], Dragomir, Cerone, Barnett and Roumeliotis [37] and Hanna, Dragomir and
Cerone [64]. Section 4.8 deals with some miscellaneous multivariate inequalities related to

the Ostrowski’s inequality in (7).



Chapter 5

Inequalities via convex functions

5.1 Introduction

The lasting influence of the fundamental inequalities in (8) and (9) due to Hadamard and
Jensen in the development of various branches of mathematics is enormous. In view of the
usefulness of these inequalities in analysis and their applications, the study of the inequali-
ties of the type (8) and (9) has been focus of great attention by many researchers, interested
both in theory and applications. In the last two decades, a large number of papers related to
these inequalities have appeared, which deal with various generalizations, numerous vari-
ants and applications. This chapter deals with some fundamental results related to these
inequalities, recently investigated in the literature by various investigators. For earlier re-
sults, as well as additional references, see [45,108]. Some applications are also given to

illustrate the usefulness of certain inequalities.

5.2 Integral inequalities involving convex functions

In this section, we offer some new integral inequalities analogues to that of Hadamard’s
inequalities (8), involving the product of two convex functions, investigated by Pachpatte
in [85,97].

The following Lemma proved in [143], see also [108, pp. 61-62], which deals with simple

chaterizations of convex functions is crucial in our discussion.

Lemma5.2.1. Let[a,b] CR (a<b),r€]0,1] and afunction f : [a,b] — R. The following
statements are equivalent:

(i) f is convex on [a,b] and

(i) for all x, y € [a, D], the function p : [0,1] — R defined by p(r) = f(tx+ (1 —1)y) is

convex on [0, 1].

249
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The following Theorem deals with the Hadamard type inequalities proved in [97].

Theorem 5.2.1. Let f and g be real-valued, nonnegative and convex functions on [a,b] C
R (a < b). Then

— a/f(x ¥)dx < M(a b)—l—éN(a b), 52.1)

3
where M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f()g(a).

b b b 1 1
2f<“; >g(“+ ) b - | FRs)dxt gMa,b)+ 3N @), (522)

Proof. Since f and g are convex on [a,b], then for t € [0, 1], we have
fta+ (1=1)b) <tf(a)+(1-1)f(b), (523)

glta+ (1 —1)b) <tg(a)+ (1 —1)g(b). (5.2.4)
From (5.2.3) and (5.2.4), we obtain

flta+ (1 —1)b)g(ta+ (1—1)b)

2fa)g(a)+ (1 —1)*f(b)g(b) +t(1—1)[f(a)g(b) + f(b)g(a)]. (5.2.5)

By Lemma 5.2.1, f(ta+ (1 —1)b) and g(tra+ (1 —¢)b) are convex on [0, 1], they are inte-
grable on [0, 1] and consequently f(ra+ (1 —1)b)g(ta+ (1 —1t)b) is also integrable on [0, 1].
Similarly, since f and g are convex on [a,b], they are integrable on [a,b] and hence fg is

also integrable on [a,b]. Integrating both sides of (5.2.5) over [0, 1], we get

/O ] Flta+(1—1)b)glta+ (1 —1)b)dt < ~M(a,b)+ ~N(a,b). (5.2.6)

3 6

By substituting ra+ (1 — )b = x, it is easy to observe that
b
/ f(x)g(x)dx. (5.2.7)

/lf(ta+(1 —0)b)gltat (1—1)b)dr =
0 b—a g

Using (5.2.7) in (5.2.6), we get the the desired inequality in (5.2.1).

Since f and g are convex on [a,b], then for ¢ € [0, 1], we observe that

A2
f<ta+(;—t)b+ (1 —t)2a+l‘b>g(ta+(;—t)b+ (1 —t)2a+lb>

< %[f(m—i— (1=1)b)+ f((1—=1)a+1tb)][g(ta+ (1 —1)b) + g((1 —t)a+1D)]
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< = [fta+ (1 —=1)b)g(ta+ (1 —1)b) + f((1 —t)a+1b)g((1 —1)a+1b))

Bl—

1

+5 [@f(@)+ (1 =) f(b))((1 —1)g(a) +18(h))

Ny

+((1=1)f(a) +1£(b))(1g(a) + (1 =1)g(b))]

[f(ta+(1—=0)b)g(ta+ (1 —1)b)+ f(1 —t)a+1tb)g((1 —t)a+1b)]

EN

+% 20(1=1)(f(a)g(a) + f(b)g(b)) + (1 + (1 ~1)%) (f(a)g(b) + f(b)g(a))]. (5.2.8)

Again as explained in the proof of the inequality (5.2.1) given above we integrate both sides

of (5.2.8) over [0, 1] and obtain
a+b a+b
(7)e(7)

< %/01 [f(ta+(1—1)b)g(ta+ (1 —1)b)+ f((1 —t)a+1tb)g((1 —t)a+1b)|dt

1 1
—M — . 2.
+12 (a,b)+ 6N(a,b) (5.2.9)

From (5.2.9), it is easy to observe that

¥ <“+b> ¢ <“+b> < %/(;lf(ta+(1 —1)b)g(ta+(1—1)b)de

2 2

1 1
—M - . 2.1
+ B (a,b)+ 6N(a,b) (5.2.10)

Now, multiplying both sides of (5.2.10) by 2 and using (5.2.7), we get the required inequal-
ity in (5.2.2). The proof is complete.

Remark 5.2.1. If we choose ¢ =0 and b = | and the convex function f(x) = cx and
g(x) =d(1 —x), where ¢, d are positive constants, then it is easy to observe that the in-
equalities obtained in (5.2.1) and (5.2.2) are sharp in the sense that the equalities in (5.2.1)
and (5.2.2) hold.

In the following theorem, we give a slight variant of the corresponding Theorem 2 proved
in [97].
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Theorem 5.2.2. Let f and g be real-valued, nonnegative and convex functions on [a,b] C
R (a < b). Then

s [ e 0= omtor - dras
<y [ 1Weas + HM(a )+ N ), o
Y e N
< 5 [ g0 a0+ M@ D), (5212

where ¢t € [0, 1] and M(a,b),N(a,b) are as in Theorem 5.2.1.

Proof. Since f and g are convex on [a, b], then for x, y € [a,b] and 7 € [0, 1], we have

flex+(1=1)y) <tf(x)+(1-1)f(y), (5.2.13)
gltx+(1—1)y) <tg(x) + (1 —1)g(y). (5.2.14)
From (5.2.13) and (5.2.14), we obtain

flix+(1=1)y)g(tx+ (1-1)y)

SEf(x)gx) + (1=1)2f(y)g(y) +1(1 = 1) [f(x)8(y) + f(»)g(x)] - (5.2.15)

Integrating (5.2.15) over [0, 1], we obtain

/01 Fltx+ (1= 1)y)g(tx+ (1 —1)y)dr

< 38+ OISO+ g7 (g0) +F)go)] (52.16)
Integrating (5.2.16) over [a,b] X [a, D], we obtain

/ab/ab/olf(tx—i- (1—1)y)g(tx+ (1 —1)y)dtdydx

<

W |

o-a) | [ et [ reoin]

s | ([ ) ([ ear)+ ([ o) ([(swar)]. 5207

By using the right half of the Hadamard’s inequality given in (8) on the right hand side of
(5.2.17), we have

/a'b/ab/o-lf(tx-l-(l—l‘)y)g(tx—l—(l—t)y)dtdydx
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2 b 1
<5(b-a) / F)gx)dx-+ = (b—aPM(a,b) +N(a,b)]. (5.2.18)
a
Now, dividing both sides of (5.2.18) by %(b —a)?, we get the desired inequality in (5.2.11).

Since f and g are convex on [a, b], we have

f(tx—i—(l—t) (";l’» gtf(x)+(1—t)f<“;rb), (5.2.19)

g(tx—i—(l—t) (“;1’)) <ig)+(1-1)g <“;b>, (5.2.20)
for x € [a,b] and t € [0,1]. From (5.2.19) and (5.2.20), we have

(im0 (52) )0 (222))

<A f()g(x) + (1 _t)2f<“;b>g(a;b)
+1(1—1) [f(x)g <a;b) +f (a;b> g(x)} . (5.2.21)

Integrating (5.2.21) over [0, 1], we obtain

P T (oo o (2
<3 lrmew (50 e(57)]

we e (50) 4 (452 0] (5222)

Now, integrating (5.2.22) over [a,b] and using the right half of the Hadamard’s inequality

given in (8) and the convexity of the functions f, g; we observe that

// <tx—|— (1-1) (a;b>>g<tx+(l—t)(a;rb>>dtdx
<3 [ st s0-ar(5)e(*5")
+% [g (a;b>/ f(X)dx+f<aJ2rb> /abg(X)dX}

- %/abf( Ja(x)dx+ 2 (b a)(f(a) + f(b)) (g(a) + (b))

+é[(g(a);rg(b) (b_a)(f(a);f( )) +< (a);f(b)>(b_a)<g(a)42rg(b)>]
-3 / F)g(d+ ( a)[M(a,b) + N(a,b)]
112(b a)[M(a b) +N(a,b)]. (5.2.23)

Now, multiplying both sides of (5.2.23) by m, we get the required inequality in (5.2.12).

The proof is complete.
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Remark 5.2.2. It should be noted that, in [70], Klari¢i¢ Bakula and Pecari¢ have noticed
some errors while calculating the bounds on inequalities in Theorem 2 given in [97]. In
fact, in [97, Theorem 2], § [W} stands in place of the term 3 [M(a b)+N(a,b)]in
(5.2.11) and § (4254) [M(a,b) +N(a,b)] stands in place of the term 1[M(a,b) +N(a,b)]
in (5.2.12), see also [20].

In [24], Dragomir, Pecari¢ and Persson have proved certain Hadamard-type inequalities for
the following classes of functions.

Let / be an interval of R and a, b € I with a < b. In [60], Godunova and Levin introduced
the following class of functions.

A map f:1— Ris said to belongs to the class Q(I), if it is nonnegative and for all x, y € [
and A € (0, 1), satisfies the inequality

fAx+(1-24)y) < #—#% (5.2.24)

In [60] it is noted that all nonnegative monotone and nonnegative convex functions belong
to this class. In [24], Dragomir, Pecari¢ and Persson restricted the above class of functions
and introduced the following class of functions.
A map f: I — Ris said to belongs to the class P(I) if it is nonnegative and for all x, y € [
and A € (0, 1), satisfies the following inequality

FAx+(1=A)y) < f(x)+ f(y)- (5.2.25)

Obviously, Q(I) D P(I) and as noted in [60], P(I) also contain all monotone, convex and
quasi-convex functions.
The following two Theorems contains the Hadamard-type inequalities recently established

in [85], involving the product of two functions belonging to the above classes of functions.

Theorem 5.2.3. Let f,g € Q(I) and f,g € Li[a,b]. Then

f<a§b>g<a;b> 240 / L(x) f(x)g(x)dx + 40 [M(a,b) + 2N(a,b)], (5.2.26)
bia / L(x) f(x)g(x)dx M(a b) + N(a b), (5.2.27)

where
L(x) = [W}j xel, (5.2.28)

and M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a).



Inequalities via convex functions 255

Proof. Since f, g € O(I), we have forx, y € I (with A = % in (5.2.24))

7(557) <2050 (5229

o557 <2leto) 60 (5230

Substituting x = ra + (1 —1)b, y = (1 — f)a-+tb; 1 € (0,1) in (5.2.9) and (5.2.30), we have
7 (“;b> <2lf(ta+ (1 —0)b) + f((1 —1)a+1b)], (5.2.31)

g (a;rb) < 2[g(ta+ (1—1)b) +g((1 —t)a+1b)]. (5.2.32)

From (5.2.31) and (5.2.32), we observe that

f (“;b) g (“;b> <A[f(ta+ (1 —1)b) + f((1 —t)a+1b)]

x[g(ta+ (1 —1)b)+g((1 —t)a+1b)]
=4[f(ta+ (1 —=1)b)g(ta+ (1 —t)b) + f((1 —=t)a+1tb)g((1 —t)a+1D)]
+4[f(ta+ (1 —1)b)g((1 —t)a+1b) + f((1 —t)a+1th)g(ta+ (1 —1)b)]

A () 4+ 4Kf(a) +f<b>> (g<a> +g<b>>

t 1—1¢ 1—t t
fla)  f(b)\ (8la)  &(b)
+(1—t+t)( 1 +1—t>]’ 6239
where
H\(t) = f(ta+ (1 —t)b)g(ta+ (1 —1)b), (5.2.34)
Hy(t) = f((1—1)a+1tb)g((1—1)a+1b). (5.2.35)

From (5.2.33), it is easy to observe that

tz(l—t)2f<a;b>g<a;b>

<A (1—1)? [Hy(t) + Ha(1)) +4 [2t(1 = 1)M(a,b) + (£ + (1 —1)*) N(a,b)] . (5.2.36)

Integrating both sides of (5.2.36) with respect to ¢ from O to 1, we have
l a + b a + b 1 2 2
— <4 [ t°(1—1)"H (t)dt
o (57)(50) <4 [ 2a-om

-1
+4 / 2(1—1)?Hy (t)dt + iM(a,b) - §N(a,b). (5.2.37)
0 3 3
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It is easy to observe that
1
/ 2(1—1)%H (1) / L(x)f(x) (5.2.38)
0

! 2 2 1
| Ea—nPrd = — / L(x) f(x)g(x)dx (52.39)

Using (5.2.38) and (5.2.39) in (5.2.37) and rewriting, we get the desired inequality in
(5.2.26).
Since f, g € Q(I), we have fora, b € I andt € (0,1),

t(1—=1)f(ta+(1—1)b) < (1—1)f(a)+1f(b), (5.2.40)
t(1—1)g(ta+(1—1)b) < (1—1t)g(a)+1g(b). (5.2.41)
From (5.2.40) and (5.2.41), we observe that

P(1=1)f(ta+(1=0)b)g(ta+ (1 —1)b) < [(1—1)f(a) +1f(B)][(1 —1)g(a) +18(b)]

= (1-1)*f(a)g(a) +12f(b)g(b) +1(1 —1)[f(a)g(b) + f(b)g(a)]- (5.242)
Using (5.2.34) in (5.2.42) and integrating with respect to ¢ from O to 1, we have
1
/ 2(1—1)*H, (t)dr < %M(a,b) + éN(a,b). (5.2.43)
0

Using (5.2.38) in (5.2.43), we get the required inequality in (5.2.27). The proof is complete.

Theorem 5.2.4. Let f, g€ P(I) and f,g € L;[a,b]. Then

a a b
f( ;b>g( ;b> S bia/a [(X)g(x)dx+2[M(a,b)+N(a,b)],  (52.44)
ﬁ / " F(x)g()dx < M(a,b) + N(a,b), (5.2.45)

where M(a,b) and N(a,b) are as defined in Theorem 5.2.3.

Proof. Since f, g € P(I), from (5.2.25) withx =ta+ (1 —1)b,y= (1 —t)a+tb;t € (0,1)

and A = %, we have

f<a;b> < Slea+(1=0)b)+f((1 —t)a+1b), (5.2.46)
8 <az+b> <gta+(1—1)b)+g((1—t)a+1b). (5.2.47)
From (5.2.46) and (5.2.47), we have

7(457)(557) < rteas (1-00)-+ 701 - a4 5]
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X [g(ta+ (1 —1)b)+g((1 —t)a+1D)]
=H(t)+Hy(t)+ f(ta+ (1 —1)b)g((1 —t)a+1tb) + f((1 —t)a+1tb)g(ta+ (1 —1)b)

S H (1) +Ha(1) +2[f(a) + £ (D)][g(a) + (b)), (5.2.48)

where Hj(r) and H,(r) are defined by (5.2.34) and (5.2.35). Integrating both sides of
(5.2.48) with respect to ¢t from O to 1, we obtain

f(a;b>g<a+b> /H1 dH—/ Ho(1)dt +2[M(a,b) + N(a,b)].  (5.2.49)

It is easy to observe that

1 1 1 b
/ Hy(1)di = / Hy(£)dt = —— / F(0)g(x)dx. (5.2.50)
Jo Jo b—ala
Using (5.2.50) in (5.2.49), we get the required inequality in (5.2.44).
Since f,g € P(I), we have

Flia+(1-0)b) < f(a) + f(b), (5.2.51)
gltat (1-1)b) < gla) + g(b). (5.2.52)
From (5.2.51) and (5.2.52), we observe that
fta+(1—=t)b)g(ta+ (1 —1)b) < [f(a)+ f(b)][g(a) +&(D)]. (5.2.53)
Using (5.2.34) in (5.2.53) and integrating with respect to 7 from 0 to 1 we get
/0' B (1)t < M(a,b) + N(a,b). (5.2.54)

Using (5.2.50) in (5.2.54), we get the desired inequality in (5.2.45). The proof is complete.

5.3 Further integral inequalities involving convex functions

The present section is devoted to some integral inequalities involving convex functions
investigated by Pachpatte in [84].

Let f, g: [a,b] C R — R (a < ) be convex mappings. For x, y € [a,b], we shall define the
mappings F (x,y)(t), G(x,y)(z) : [0,1] — R given by (see [23])

Foy) () = 5 [f (x4 (1= 0)y) + f(1 = 0)x+1y)], (5.3.1)
Glxy)(1) =

In [23], Dragomir and Ionescu established some interesting properties of such mappings.

In particular in [23], it is shown that F(x,y)(r), G(x,y)(r) are convex on [0,1]. In [143],

[g(tx+ (1 —1)y) +g((1 —1)x+1y)]. (5.3.2)

R — 1] =
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Pecari¢ and Dragomir proved that the following statements are equivalent for mappings
fyg:[a,b] = R:

(i) f, g are convex on [a,b];

(i) for all x, y € [a,b] the mappings fy, go : [0,1] — R defined by fo(1) = f(tx+ (1 —1)y)
or f((1—1)x+1y), go(t) = g(tx+ (1 —1)y) or g((1 —r)x+ty) are convex on [0, 1].

From these properties, it is easy to observe that if f and go are convex on [0, 1], then they
are integrable on [0, 1] and hence fygo is also integrable on [0,1]. Similarly, if f and g
are convex on [a, b], they are integrable on [a,b] and hence fg is also integrable on [a,b].
Consequently, it is easy to see that if f and g are convex on [a,b], then F = F(x,y) and
G = G(x,y) are convex and hence Fg, Gf, F f, Gg are also integrable on [a,b]. We shall
use these facts in our discussion without further mention.

The following Theorem deals with the integral inequalities involving product of two func-

tions, recently established in [84].

Theorem 5.3.1. Let f and g be real-valued, nonnegative and convex functions on [a,b]
and the mappings F(x,y)(¢) and G(x,y)() be defined by (5.3.1) and (5.3.2). Then for all
1 €10,1] we have

s [ -0

<

2 | ([0 + 6 as+ o s@eta), 653

s [ - st

a

b [/ rb 1
[ ([ 00+ G 0501ax ) ay 55 0e0). 534

N
(1 )
—

S
| —
Q
SN~—

[ %)
S

1

o [ 10)say

b b 1
e ). [ P08t + Gl Wdsdy + g (@)sta) + F5)a(0)

10
(5.3.5)
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Proof. The assumptions that f and g are nonnegative and convex imply that, we may

assume that f, g € C! and that we have the following estimates

flex+(1=1)y) = f(x) +(1—1)(y—x)f'(x), (5.3.6)
S =0)x+1y) = f(x) +1(y = x) f'(x), (5.3.7)
gltx+(1—1)y) = g(x) +(1—1)(y —x)g' (x), (5.3.8)
g((1—1)x+1y) > g(x) +1(y—x)g'(x), (5.3.9)

forx, y € [a,b] and ¢ € [0,1]. From (5.3.6), (5.3.7), (5.3.1) and (5.3.8), (5.3.9), (5.3.2), it is

easy to observe that

Fey)(0) > () + 5007 (), (5.3.10)

1
Gxy)(1) > g(x) + 5 (v — )¢ (%), (5.3.11)
for x, y € [a,b] and 7 € [0, 1]. Multiplying (5.3.10) by g(x) and (5.3.11) by f(x) and then

adding, we obtain

F) 080+ Glxy) ()10 > 27 (1)8(x) + 5 (5 —x) o

Integrating the inequality (5.3.12) over x from a to y, we have

[P 089+ 600> [ fstote— Lo f@sta). 5313

Further, integrating both sides of (5.3.13) with respect to y from a to b, we get

/ab(/ij,ym (0) 4 Gley) ()f ]dx)dy

(f(x)g(x))- (5.3.12)

>3 / (b= NFO)80)y — 3 (b~ a)f(a)e(a) (5.3.14)

Multiplying both sides of (5.3.14) by 2 57
in (5.3.3).
Similarly, by first integrating (5.3.12) over x from y to b and then integrating the resulting

)2 and rewriting, we get the required inequality

inequality over y from a to b, and rewriting we get the required inequality in (5.3.4). The
inequality (5.3.5) is obtained by adding the inequalities (5.3.3) and (5.3.4). The proof is
complete.

The slight variants of the inequalities given in Theorem 5.3.1, also established in [84], are

embodied in the following theorem.
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Theorem 5.3.2. Let f and g be real-valued, nonnegative and convex functions on [a,b]
and the mappings F(x,y)(¢) and G(x,y)(¢) be defined by (5.3.1) and (5.3.2). Then for all

t € [0,1], we have

1 b
W./a (b—y) [f*(y) +&* ()] dy

< %(b_la)z /ab (/ay [F (x,y) () f(x) +G(x>y)(t)g(x)]dx> dy
+% [f*(a)+&*(a)], (5.3.15)
(b_]a)z/ab (y—a) [ () +& ()] dy
<ot [ ([ Fren0se+ e 0slar) a
+% [F2(b)+&*(b)], (5.3.16)
bia /ab [£20)+8* 0] dy < %ﬁ /'b / "I (6,9) (O£ () + Glx.) (1) ()] dxdy
P [ (0) + 8(0) + £26) + £0)]. (5317

10
Proof. As in the proof of Theorem 5.3.1, from the assumptions we have the estimates
(5.3.10) and (5.3.11). Multiplying (5.3.10) by f(x) and (5.3.11) by g(x) and then adding,
we obtain
F(x,y)(1)f(x)+G(x,y)(1)8(x)
>f2(X)+g2(X)+%( =) [f(0)f (x) +8(x)g' (x)] - (5.3.18)
Integrating (5.3.18) over x from a to y, we have

/a [P (63) (0700 + G lx3) (1))
4/ ]dxfl(y a) [f*(a) +¢*(a)] . (5.3.19)

Further, integrating both sides of (5 3. 19) with respect to y from a to b, we have

/ b ( / [F(x,y)(0)f (%) +G(x,y)(t)g(x)]dx) dy

4/ (b—y) +8%(y)] dy—é(b—a)z [2(a)+g*(a)]. (5.3.20)
Multiplying both sides of (5 3.20) by 2 37
in (5.3.15).

The proofs of the inequalities (5.3.16) and (5.3.17) follows by the same arguments as in the

)2 and rewriting, we get the required inequality

proof of Theorem 5.3.1 with suitable modifications. We omit the details.
Below, we shall give the inequalities proved in [84], similar to those of given in Theo-

rem 5.3.1, involving only one convex function.
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Theorem 5.3.3. Let f be a real-valued, nonnegative and convex function on [a,b]. Then

for all 7 € [0, 1] we have

ﬁ /ab(b*)’)f(y)dy

< % (b—la)z /ab (/‘ (/01 Flx+(1 —t)y)dt) dx> dy+ éf(a), (5.321)

e | oo

< % G _1a)2 /ab ([b (/01 Flx+(1 —t)y)dt) dx) dy+ éf(b)7 (5.3.22)

1 b
b_a/a J(y)dy

< % (bja)Z /a” </ab </01f(tx+(1 —t)y)dt) dx) dy+ é[f(a)+f(b)]. (5.3.23)

Proof. To prove the inequality (5.3.21), as in the proof of Theorem 5.3.1, from the as-

sumptions we have the estimate (5.3.6). Integrating both sides of (5.3.6) over t from O to 1,

we have

/Olf(ter(lft)y)dt2f(x)+%(yfx)f'(x). (5.3.24)

Now, first integrating both sides of (5.3.24) over x from a to y and after that integrating the
resulting inequality over y from a to b, we get the required inequality in (5.3.21).
Similarly, by first integrating both sides of (5.3.24) over x from y to b and then integrating
the resulting inequality over y from a to b, we get the inequality in (5.3.22). By adding the
inequalities (5.3.21) and (5.3.22) we get the inequality (5.3.23). The proof is complete.

5.4 Integral inequalities involving log-convex functions

In this section we present some new integral inequalities involving log-convex functions,
recently investigated by Pachpatte in [104,110,136].

Let [ be an interval of R and a, b € I with a < b. A function f : I — (0,0) is said to be
log-convex function, if for all x, y € I and ¢ € [0, 1] one has the inequality (see [45,46,108])

flox+(1=0)y) <F@I O]
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In [30], Dragomir and Mond proved that the following inequalities hold for log-convex

functions

£(457) <o |y [ roetrtola| < 5 [ G0, sla+ -

b b
< b—a/a fx)dx < L(f(a),f(b)) < M
where, G(p,q) = \/pq is the Geometric mean and
L(PM]):& (P#q%

log p—logg
is the Logarithmic mean of the positive real numbers p,q (for p = ¢, we put L(p, p) = p).
For the further refinements of Hadamard’s inequalities in (8) for log-convex functions, see
[45,46].
The first two Theorems deals with the Hadamard-type integral inequalities established in

[104], involving two log-convex functions.

Theorem 5.4.1. Let f, g:1— (0,0) be log-convex functions on / and a, b € I with
a < b. Then the following inequality holds
4 b
b_a/ f(x)g(x)dx < [f(a)+ f(B)L(f(a), f (b)) + [g(a) + 8(b)|L(g(a),g(b)), (5.4.1)
a
where L(-,-) is a Logarithmic mean of positive real numbers.

Proof. Since f, g are log-convex functions, we have
flta+(1=0)b) < [f(@) [f (b)), (54.2)
glta+(1-1)b) < [g(a)]'[g(b)]' ", (54.3)

forall + € [0, 1]. It is easy to observe that
/ F)g®)dx = (b—a) / flta+(1=0)b)gltat (1—D)b)dr.  (5.44)

Using the elementary inequality cd < [c +d?*] ¢, d > Oreals, (5.4.2), (5.4.3) on the right
side of (5.4.4) and by making the change of variable, we have

/abf(x)g(x)dx < %(b—a)/ol [{f(ta+ (1—0)b)Y* +{g(ta+ (1 —1)b)}?] dt
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Lol o] e [12] )

|:f(a):|o' 2 |:g(a):|0' 2
-0 ro) [LOL ] e | 0L
log —+= log =——=
£b) 1o <) 1o
1, (1) A ) )] [sa) + e)sta)  g(b)]
=3 ){ logf(a) —logf(6) ' logs(a) - logs(h) }

1

= 3 (b—a){[f(a) +f(B)IL(f(a), f(b)) + [g(a) +5(b)IL(g(a), (b))} - (5.4.5)

Rewriting (5.4.5), we get the required inequality in (5.4.1). The proof is complete.

Theorem 5.4.2. Let f, g: 1 — (0,00) be differentiable log-convex functions on the in-
terval I of real numbers, ? the interior of [ and a, b € ; with a < b. Then the following

inequality holds

(a+b
2 [ s> o (40 [Ceten (5 >(x—“”’) dx

b—a b—a 2 f<a;b> 2
g <a+b>
+1g<a+b>/hf@km> 2 <x—a+b> dx. (5.4.6)

b—a®\ 2 atbh 2
£\

Proof. Since f, g are differentiable and log-convex functions on ; , we have that

log f(x) —log f(7) > diy(logﬂy)) (x—). (54.7)
logg(x) — logg(y) > diyaogg@)) (=), (5.4.8)

forall x, y € ; , gives that

(x—y), (5.4.9)

(x—y), (5.4.10)
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forallx, y € ; That is

J(x) = f(y)exp {J;((yy)) (x—y)} : (5.4.11)
g(x) > g(y)exp L,/((yy)) (x— y)] (5.4.12)

Multiplying both sides of (5.4.11) and (5.4.12) by g(x) and f(x) respectively and adding

the resulting inequalities, we have
21960 > ) 0)exp | T 6 3)] + wetens | &

Now, if we choose y = “Zﬂ, from (5.4.13), we obtain

(atb
zf<x>g<x)>g<x)f(“;b>exp ]; éfl’)) (x_a;b>
()| i) (2]
g

Integrating both sides of (5.4.14) with respect to x from a to b and dividing both sides of

(x— y)} . (54.13)

the resulting inequality by b —a, we get the desired inequality in (5.4.6). The proof is
complete.
In the next Theorem we present Hadamard-type integral inequalities recently proved in

[136], involving three log-convex functions.

Theorem 5.4.3. Let f, g, h: 1 — (0,00) be log-convex functions on I with a < b. Then

we have

bia / ' [ (x)g(x) + g(x)h(x) + h(x) f(x)] dx

< (@) + L@, (1) +lgla) + 8(B)L(s(@), 5(6)
+lh(a) + h(B)IL(h(a). (b)) (5415)
o [ W) + 80+ hwn
<@ +f0) [ )+f2(b)] L(f(a), S ()
+lgla) + ()] [*(@)+ £(0)] L(5(a),3(6))

+[h(a) + h(b)] [A*(a) + h*(b)] L(h(a),h(b)), (5.4.16)

where L(-,-) is a Logarithmic mean of positive real numbers.
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Proof. Since f, g, h are log-convex functions, we have
flia+(1=0)b) < [f(@)]'[f(B)]" (5.4.17)
glta+(1-1)b) < [g(a)]'[g(b)]" (5.4.18)
h(ta+ (1—1)b) < [h(a)]' [h(b)]" (5.4.19)

forz € [0,1]. It is easy to observe that

[ 1)8(0) + 809m0x) + W) x = (0 a) |

1

tg(tat (1—1)b)h(ta+ (1 —1)b) +h(ta+ (1 —1)b) f(ta+ (1 —1)b)]dr.

Using the elementary inequality (see [78]) cic2 +c2c3+c3¢1 <

(5.

[f(ta+ (1 —1)b)g(ta+ (1 —1)b)

4.20)

C%+C%+C% (forcy, c2, 3

reals) and (5.4.17), (5.4.18), (5.4.19) on the right hand side of (5.4.20) and making the

change of variables, we have

a

[ 1080+ 86980 + 103 70

< (b—a)/ol [{f(ta+(1—1)b)}* + {g(ta+ (1 —1)b)}* + {h(ta+ (1—1)b)}*] dt

(B)' Y+ {ls(@)] [g(®)]' "} + {In(

Za)’

d6+%g2(b) /02 EEZ;]

0
fla)—

%7 (b)

Sy {[f(a) + 1) o

{f(a)r ? F(a)}" ?
f(b) 2 g(b) 2
0

log f(a)

8(a) —g(b)

+[g(a) +g(b)]m

+[h(a) +h(b)]

:%@ a)[[f(a) + F(D)IL(f (a). £ (b)) +

—log f(b)

h(a)
logh(a)

0

|

—h(b)
—logh(b)

[g(a) +g(b)|L(g(a), 8

b)]’}}

K

h(a)

h(b)

h(a)

h(b)
h(

ng

(b))

c 1 2T h(a)]
d0+§h2(b)/ [h(b)

} (e}
a)
b)

|

o

2

0

ao|



266 Analytic Inequalities: Recent Advances

+[h(a) +h(b)L(h(a),h(b))]. (5.4.21)
The desired inequality in (5.4.15) follows by rewriting (5.4.21).

It is easy to observe that

/;f(X)g(X)h(X) [f(x) +8(x) + h(x))dx

= (b—a)./olf(tajt(l —1)b)g(ta+ (1 —1)b)h(ta+ (1 —1)b)
X [f(ta+ (1 —1)b)+g(ta+ (1 —1)b) +h(ta+ (1 —1)b)|dr. (5.4.22)
for t € [0,1]. Using the elementary inequalities (see [78]),
creacsfer +er+e3] < %(6162 +eacs+eser)?,
cico+crez+c3c < c%—i—c%—i—c%,
and
(e1+e2+¢3)” <3(ef + 65 +3)

(for ¢y, ¢», c3 reals), from (5.4.22), we observe that

[ PR + g00) +

<o-a) [ (U@ o) Y + {is@) )] Y + (@) o)y
The rest of the proof of (5.4.16) can be completed by following the proof of inequality
(5.4.15) with suitable modifications. Here we omit the further details.

The following Theorems contains the Hadamard-type integral inequalities established in

[110], involving several log-convex functions.

Theorem 5.4.4. Let f;: 1 — (0,00) (i = 1,...,n) be differentiable log-convex functions
on the interval I of real numbers and a, b € ; with a < b (; the interior of 7). Then the

following inequalities hold

1o
b—a./a gfi(x)dx

1 a+b
iI—Tlfi( 2 >

f,(a+b> f,<a+b>
n Ji 2 b—a n Ji 2
=L | exp Z (a+b)< ) > , EXp _;ﬁ<a;b>

i=1 fz 5
> 1, (5.4.23)

where L(+,-) is a Logarithmic mean of positive real numbers.
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Proof. Since f; (i =1,...,n) are differentiable and log-convex functions on ; , we have

that

log fi(x) — log fi(y) > diyaogﬁ(y»(x—y),

fiy)

forallx, y e ; Writing (5.4.24) for i = 1,...,n; adding the resulting inequalities and using

log fi(x) —log fi(y) > (x—y), (5.4.24)

the properties of log, it is easy to observe that

R I (1

log | =
M50)| 550

(x—y), (5.4.25)

forallx, y € ; From (5.4.25), we have

f1 7,0 ,
i=1 " fl(y) . o
f56) xp[leff@)( ”}’ (5.4.26)

forallx, y € I. By taking y = %2 in (5.4.26), we get
n a+b
11509 (50
—=L >exp Z
n a+b - a+b

Integrating (5.4.27) over x on [a,b] and using Jensen’s integral inequality for exp(-) func-

(x _at b> . (5.4.27)
2
tions, we have

i(x)dx

7 <a+b>
] 1 b n Ji b
= exp | Y 2 < at ) dx

a+b >b—/ a+b 2
e e e

a+b
RO
> exp b_a/ Y (x— )dx =1. (5.4.28)

a ;lf (a+b) 2

Now, as for o # 0, we have that

1 b
m/ﬂ exp(ox)dx =

exp(ab) —exp(Qaa)

ao—a) Hexploblexplad]),
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where L(+,-) is the usual Logarithmic mean, then

oo (e Jor- 2 =

ol (o)

Using the above equality for o0 =

inequality in (5.4.23).

Remark 5.4.1. By taking n =1 and f; = f in Theorem 5.4.4, we get

! /bf(x)dx f’(a—;b) b f/<a42-b) b
%2[4 exp ( a) ,exp | — < a)
a-+b a+b 2 a+b 2

> 1, (5.4.29)
which is the inequality given by Dragomir in [46, Theorem 2.1].

Theorem 5.4.5. Let f; be as in Theorem 5.4.4. Then the following inequalities hold

[ (ﬁﬁ(ﬁ) [Zlfg)) (“;b—y)] &
/b (ﬁfi(ﬁ) dy
Jo \ L4

[ (1o )exp BA () e

(Hﬁ dy

< log

1L a-+b
(5

b_g/;(ﬁfiy) y

1

< log (5.4.30)
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Proof. By following the proof of Theorem 5.4.4, the inequality (5.4.26) holds. Taking

x = %2 in the inequality (5.4.26), we have

Hﬁ <“+b) > (Hﬁ-(y)) exp [lfg)) <“;b y)} , (5.4.31)

for all y € [a, b]. Integrating (5.4.31) over y and using Jensen’s integral inequality for exp(-)

functions, we have

ool (430) = [ (fl)ew |5 555 (45

(5.4.32)

b
. ./ab (lfllfi(Y)) dy x exp /“ (i—l

From (5.4.32), we have

/ab (ﬁﬁ(ﬁ) exp [)n:l ]}/((;)) (a;b —yﬂ dy < (b—a) <,I—]1
'/ab (ﬁﬁ(ﬁ) dy '/ab (I_HT (y)>

)£ (42 -)
[ (Fyo)

/uh (ﬂfi()’)) exp Lém(a;b—y)}dy ll'Ilfz (a;b>

b n glog 1 b n
/a (Hﬁ(y)) dy bfa/a <Hf,-(y)> dy

This is the desired inequality in (5.4.30) and the proof is complete.

<

which is equivalent to

(Hﬁ(y

<log
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Remark 5.4.2. By taking n =1 and f; = f in Theorem 5.4.5, from (5.4.32), we obtain
atb\ _ (" f') (a+b
b—af< )>/fyeX[ ~y)|dy
b-ar (%57 ) = [ e |07 (%

Lol (=)
Lfyy
(Lbf%y)<azly—y)dy

[ roay

b
2lf®@xap

(5.4.33)

—/ y)dy X exp

A simple integration by parts gives

b
/f (““’y) ay= | fy - LOLEIO ) (5.4.34)
Using (5.4.34) in (5.4.33), it is easy to observe that

exp B R g,/ff@)em{f]‘j((yy)) (452 )]

[ roay [ sy

) (ba)f(a;b)
)dy

which is equivalent to

fla)+ £(b) [/ P“”(“*b_)]d
| reay _ " r)ay
r +b
()
Slog | — 3
— [ 10y
from which we get ]
B b
f(a) ‘;f(b) . f(x)dx
—b 2 + Og 5 tll
— [ 10y [ e[ £ (412 ) ax
1 b
r—a ), S
> 1+log ;_H) > 1. (5.4.35)
()

We note that, the inequality (5.4.35) is given by Dragomir in [46, Theorem 2.3].
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5.5 Discrete inequalities involving log-convex functions

In this section, we give some results on refinements and converse for discrete Jensen’s
inequality established by Dragomir and Mond in [40], involving log-convex functions.
The following refinement of discrete Jensen’s inequality for log-convex functions is given
in [40].

Theorem 5.5.1. Let f:1 — (0,) be a log-convex function on the interval I of real
numbers and x; € ;, the interior of I, p; > 0 (i = 1,...,n) with P, > 0, where P, = Zi-;l Dis
(k=1,...,n). Then the following inequalities hold

_ lezf( z) 1 & f+ ( 21 P;M)
7>E;pjexp 1’l< ” szxt> 217 (551)
f\ 5 X pixi f\ 5 X pixi !

n i=1 n i=1

where f!_ is the right derivative of f on ; .

Proof. As f is log-convex on I, it follows that f is convex on I and thus [144] the right
derivative f} of f exists on ; . Since logf is convex on I, we have

d* (log f)

2L ) -y,

log f(x) —log f(y) >

forallx, y € ; , which gives

f (X)} L)
1 N 2 - )
oo | 73] = G e
forallx, y € ;, i.e.,
CEVEELEE y)} , (552)
forall x, y € ; Now, choose x=x; (j=1,...,n) and y = 7 ):l 1 pixiin (5.5.2). We obtain

1 & f/+ <P lelxl> 1 o
fa) =l 5 Y pixi |exp | —"—(xi— 5 Y pixi | | (5.5.3)
L 1z P, =
- f(5 L po =
ni=1
forall j=1,...,n. If we multiply the inequality (5.5.3) by p; and sum over j=1,...,n,

we derive

12 n f/+ (Pl Ailpixi>
F Zpif(xi) > f ( ZP:M) ZPJEXP lnz—n— ( ZP:%) 5
n i j

s f <Pn l_g pm)
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and the first inequality in (5.5.1) is proved.
To prove the second inequality in (5.5.1), we use the following Jensen’s discrete inequality

for exp(+) functions, i.e.,

n

1
B Z jexp(y;) = exp < Z pjy]> (5.5.4)

where,y; €R (j=1,...,n are as above. If we choose

) dpj
f+ < Z szz) 1 &
nj=1

1
f (Pn El Pm)
then we deduce

1 /! 7 f 0 Z[ lpl-xl
Fn Z’l jYj = ij+(Pn) ( me) =0, (5.5.6)
j=

S ( Y szz) ni

nll

and the second inequality in (5.5.1) follows by using (5.5.5) and (5.5.6) in (5.5.4).
The following corollary holds.

Corollary 5.5.1. Let f: I — R be a convex mapping on the interval / of real numbers and
x; € ; pi =0 (i=1,...,n) with P, > 0, where P, :):f?:lpi (k=1,...,n). Then we have
the 1nequahty

lep,exp[f( )] 1 n 1 n 1 n
m= ] = Fnj;pjexp {ﬂr (P’”Zipixi> (xj_ljnzzipm)] =1

1
w1 (L5 )

Proof. Define the mapping g : I — (0,00) by g(x) = exp|[f(x)]. It is clear that, the mapping

(5.5.7)

g islog-convex on /. Now, applying Theorem 5.5.1 for the log-convex mapping g, we easily
deduce the inequality (5.5.7).
The next Theorem deals with the converse of Jensen’s discrete inequality established in

[40], for log-convex mappings.

Theorem 5.5.2. Let f: 1 — (0,%) be a log-convex function on the interval I of real
numbers and x; € ; pi>0(i=1,...,n) with B, > 0, where P, =Y~ p; (k=1,...,n).
Then the following inequalities hold

f (P Y Pm) F Z szz Z ptf+(xl) P Z plxlf+(xl)
12#26)@ izt i) ni=l >0, (5.5.8)

*szf(z) *szf(z)

ntl nzl

where f!_ is the right derivative of f on ; .
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Proof. By following the proof of Theorem 5.5.1, we have

£(6) = f(y)exp [J;f((yy)) (x —y)} : (5.5.9)

for all x, y € ; . Now, if we choose in the inequality (5.5.9), x = P Yo pixiand y =x;

(j=1,...,n), we get that

( Zp,x,>/ x,)exp[f+ J)< Zp,x, x,)] (5.5.10)
L

”il

for all j =1,...,n. If we multiply the inequality (5.5.10) by p; > 0 and sum over j =

( Zp,x, x,ﬂ (5.5.11)

Since the mapping exp(-) is convex, we can use Jensen s dlscrete inequality

1
Zq]exp yj) = exp [ quy]} , (5.5.12)
}’l '_

where g; > 0 with 0, =Y_,q; >0and y; € R (j=1,...,n). If we choose in (5.5.12),

qgj=pjf(xj) =0 andyj J;j(ii’)) (Pln f‘:lpix,-—xj) for j=1,...,n, then we get

i pif(x;) exp[f+ ( Zp,x, xj>]
ijf(xj) J=l '

1,...,n, we derive that

(5 0e) 3 e 2

nl

l n
Z exp niz pif(x)) ( Zlhxz xj)

)y ij(xj)j
j=1
- Z PiXi Z Plf+(x1) i pixif-ltr(xi)
=exp n i=1 i=1
Z Pif(xi)
1 n
P Z Dix Z Plf+(xz) Z Ptxtf+(x1)
—exp | 221 B i b iz . (5.5.13)

. Z Ptf(xt)

zj:pjf(x] exp|: < Zptxz xj>‘|

F Z szz Z pzf+(xt) Z szzf+(xz)
pif(x)exp | Loiml i b iz : (5.5.14)
=1 > Z Plf( 1)

I‘ll_

Using (5.5.11) and (5.5.14), we derive the desired result (5.5.8) and the Theorem is proved.

From (5.5.13), we get

1 n
>7
P!

The following corollary also holds.
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Corollary 5.5.2. Let f:1— R be a convex mapping on the interval / of real numbers and
X; € ; pi=0(i=1,...,n) with B, > 0, where P, = Y*_, p; (k=1,...,n). Then we have
the inequality

expf<P )y szz>

ni=1

1>
5 £ prexp (x)
Z ptxl Z Ptf+( i)exp f(x;) — Z plxzf+ (x;) exp f(x;)
> exp n i=1 n i=1 — n i=1
F E piexp f(xi)
> 0. (5.5.15)

Proof. Define the mapping g: 7 — (0,00) by g(x) = exp[f(x)]. It is clear that the mapping
g islog-convex on /. Now applying Theorem 5.5.2 for the log-convex mapping g, we easily
deduce inequality (5.5.15).

If f: I — (0,e0) is a log-convex function on /, an interval of real numbers, then the following

refinement of the discrete Jensen’s inequality (9) holds:

f(;ipm) < [ﬁ[f(xi)]"i}
n izl i1

where,x; €1, p; >0 (i=1,...,n)and B, =Y | p; > 0.
Indeed the first inequality in (5.5.16) follows by Jensen’s discrete inequality applied to the

1
17

n 1 &
So Y pif(xi), (5.5.16)
n izl

convex map log(f(x)) and the second is the classical arithmetic-geometric mean inequality.
In the following theorem, we present an inequality proved in [40], related to the first in-

equality in (5.5.16).

Theorem 5.5.3. Let f:1 — (0,00) be a log-convex mapping on the interval I of real
numbers and x; € ; pi>0(i=1,...,n) with B, >0, where P, =Y~ p; (k=1,...,n).

Then one has the inequality

n ! n /

V <>]"T” Lo £ TE 1 fl)
= Y pi== Y pixi— Y pi—= (5.5.17)

\eXp Di X — — PiXi i ’
( )y sz;> [P” S5 )T RETTRET )
nz 1
where fjr is the right derivative of f on ;
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Proof. By the convexity of log f we can write that

log f(x) —log f(y) > ’;*(( ))

forall x, y € ; If we choose in the inequality (5.5.18), x = ,%n):?:l pixiand y=x; (j =

(x—y), (5.5.18)

1,...,n), then we get

logf< me) log f(x;) > f+x1)< Zp,x, x]> (5.5.19)

for all j =1,...,n. If we multiply the inequality (5.5.19) by p; > 0 and sum over j =

1,...,n, we obtain

1

Ly oLy, 1> Ly L
log f <Pni_21p1xl> Pnj;pjlogf(xj)> 'lj—z‘l ij) ( szxz x])

1 & & filg) TG fily)
S 4 - , y 5.5.20
B B ) B B ) o2

From (5.5.20), we get

from which we get inequality (5.5.17).
The following corollary holds.

Corollary 5.5.3. Let f: I — R be a convex mapping on the interval / of real numbers and
X €L pi=0(i=1,..n) withP, >0, where b, =Y p; (k=1,....n). Then

1 n
P' (xi) = f (P ZPm)
ni=1

Z f+ xl i Zpl-xl szf+(xz (5.5.21)

1

0<—
P

HM:

Proof. Define the mapping g : I — (0,0) by g(x) = exp f(x). Then g is log-convex on I.
If we apply inequality (5.5.17) for the mapping g we obtain

exp | - £ pirto|

ni=

1< < exp |:P szf+ xz)xz szxz szf+ -xl )
exXp [f( Z pif(x t))}

l’ll_

from which we get inequality (5.5.21).
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5.6 Discrete inequalities for differentiable convex functions

This section deals with some converses of the discrete Jensen’s inequality for differentiable
convex mappings, recently investigated in [11,25,38,41].
First we shall present the following version of the discrete Jensen’s inequality given by

Dragomir in [41].

Theorem 5.6.1. Let f:1 C R — R be a convex function on the interval I, x € ; (the
interior of I), p; > 0 (i=1,...,n) and ¥}, p; = 1. Then we have the inequality

pif(xi)—f (Z pixi) <Y piil(xi) =Y pixi Y pil (xi), (5.6.1)
i=1 i= =i

where [(x;) € [f_(xi), f1(x;)] (i=1,...,n) and f", f are the left and right derivatives of
f respectively.

0<

-

i=1

Proof. By the convexity of f on I, we have that

fx)=f) =1y)(x—y), (5.6.2)

for all x, y € I and I(y) € [f2(¥), f1-(y)]. Choosing in (5.6.2), x = Y| pjx; and y = x;
(i=1,...,n), we get

f<ZPij> flxi) > (Zp,x, x,), (5.6.3)
=

forall i =1,...,n. If we multiply the inequality (5.6.3) with p; > 0 and sum over i from 1
to n, we can easily deduce (5.6.1).
The next result also proved by Dragomir in [41], deals with useful upper bounds for the

right membership in inequality (5.6.1).

Theorem 5.6.2. Let f be a differentiable convex mapping on ; .Ifm, M e ; and m <
xi <M (i=1,...,n), then we have the inequality

n n 1

0< Y pif(xi)—f (Z p,-x,-) < Z(M_m)(f/(m) — '(m)). (5.6.4)
i i=1

Proof. We shall use the following discrete inequality of Griiss-type

Zt,a,b Zt,a, - Zt,,

llt‘l llll i=11i ;=

provided thata < a; <A, b<b;<Band; >0 (i=1,...,n) with Y1, 1, > 0.

Z A—a)(B—b), (5.6.5)
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Now, if we choose in (5.6.5), 1; = p;,a; = x; and b; = f’(x;), and taking into account that
]
f'(+) is monotonic nondecreasing on , we can state that a = m,A =M, b = f'(m),B =

f'(m) and we have the inequality

Y pixif (i) = Y pixi Y pif' (xi) <
i=1 i=1 i=1
Now, using (5.6.1), we deduce (5.6.4).

In the following theorem, we give the inequality obtained by Dragomir and Goh in [25]
(see also [38]).

(M —m)(f'(m) = f'(m)).

N

Theorem 5.6.3. Let f: R” — R be a differentiable convex mapping and

1) = (St 580,

the vector of the partial derivatives of x = (x!,...,x") € R". If x; €R" (i=1,...,m), p; >0,

i=1,...,mwith P, =YY" p; >0, then

1

_ . X
Pml- 1plf ( mlz‘,Pz 1)

1
Zpl Vf(xi),xi) < szvf Xi), szxz>v (5.6.6)

m,

M=

0<

where (-, -) is the usual inner product on R”.

Proof. The first inequality in (5.6.6) is just the usual discrete Jensen’s inequality. As

f:R" — R is differentiable convex function, we have the inequality

f)=f) = (Vi),x—y), (5.6.7)

for all x, y € R"™. Choose in (5.6.7), x = P%,, YL pixi and y = x; to obtain

( zp,x,> flxj) > <fo, Zp,x, xj> (5.6.8)
forall j={1,...,n}.

If we multiply (5.6.8) by p; > 0 and sum over j from 1 to m, then we obtain

( o Zp,xz) - ilpjf(xj-)

1 m m m
> 5 <Z piVf(x)), me> =Y (Vf(x)).x)). (5.6.9)
m \ j=1 =1

j=1
Dividing (5.6.9) by P,, > 0, we obtain (5.6.6).
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In [38], Dragomir provided an upper bound for Jensen’s difference

pif ( Y p,x,> : (5.6.10)

m,

ngE

1
Py !

Il
—_

which, even though it is not as sharp as (5.6.6), provides a simpler way, and for applications,
a better way, of estimating the Jensen’s differences. His result is embodied in the following

theorem.

Theorem 5.6.4. Let f: R" — R be a differentiable convex mapping and x; € R", i =
1,...,m. Suppose that there exists the vectors ¢, ® € R”" such that

O <x; <P, (5.6.11)
(the order is considered on the co-ordinates) and k, K € R" are such that
k< Vf(x) <K, (5.6.12)

forallie {1,...,m}. Thenforall p; >0 (i=1,...,m) with P, = Y7 | p; > 0, we have the

inequality

agE

0< o
B

pif ( Zl’zxz>\ [P —o[[[[K =, (5.6.13)

i=1 mz

where || - || is the usual Euclidean norm on R".

Proof. A simple calculation shows that

1 & m
B, it V() < Zplxl, ZPin(xi)>
mi=1 ‘ m =1
1
2P2 Z pipj(xi —x;, Vf(xi) = Vf(x))) (5.6.14)
m i, j=1

Taking the modulus in (5.6.14), and in view of the inequality (5.6.6), we obtain, by
(a,b)| < |la ,a, b e R", that

sz xi, Vf( xl < Zpl-xh Zpivf(xi)>
i i mi=1

Schwarz’s inequality in inner product spaces, i.e.,

<3 ”lelp, ),V (3) = V£ ()

2P2 Zplp} i —x; IV f (i) = V£ (xe)l- (5.6.15)
m i j=1
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Using the Cauchy-Buniakowsky-Schwarz inequality for double sums, we can state that

2

m i, j=1

1

1 2
S (ZP2 Y pipilli =] ) <2p2 Z pip; |V (xi) = V()

m i j=1 m i j=1

As a simple calculation shows that

1
ZR%UZ]pzp]Hxl x| = fzplux,u -
and
1 m
pipi |VFx) = V)| = = Y pil V)|
yﬁ;ﬁfn<l (x)|I° 7y LIV =

we can state, by (5.6.15) and (5.6.16), that

721’1 xzvvf xl < Zplxlv Zpivf(xi)>
mj=1

1 & 2
< ?Zpi||xi“ -
mj=1

l m )
NV £(x:) 17 —
5 LAV

Now, by simple calculation, we observe that

Z PiXi

I’Vll

pillxil* —

agE

1
Py

Il
=

1

m

1 m 2
a l:Zl PiXi

1 m
a;f(xi)

1
P2 szpj\lxz xiIVF (i) = Vi)

1
2

[\
D=

)

1 & ?
Pimi;pixi

)

Zf(xl

1 & I & 1
=(@—5 Y pixis5- Y. pixi—9 ) — 5 Y pi(®—xi,5—9).
L= N P |

i=1

Asd <x; <P (ie{l,...,m}), then (d—x;,x; —¢@) >0forallie {I,...

m

Y pi(® —xi,xi— ) >0,
i=1

and, by (5.6.18), we obtain

o ZP: |le2

m,

Z PiXi

m,

< < Zp,xn Zp,xz
Py i— P i—

> |

1

. (5.6.16)

I

(5.6.17)

(5.6.18)

,n} and then

(5.6.19)
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It is known that if y, z € R", then
4(z,y) < llz+yI7%, (5.6.20)

with equality if and only if z = y. Now, if we apply (5.6.20) for the vectors z = ® —
% Yl pixisy = é Y pixi — ¢, we deduce

m
1
<<I>szxu prxi¢> < gle-ol,
mi=1

ml

and then, by (5.6.18), (5.6.19), we deduce that

1 m 2 1 m 2 1 2
a;PinxiH - E;Pixi < gle—el” (5.6.21)
Similarly, we can state that
1 & 2 I & 1 2
5 2 Pill V)P = || 5= L fla) || < K =K% (5.6.22)
P i = P i 4

Finally, by (5.6.17) and (5.6.21), (5.6.22), we deduce
m 1
72]71 leVf xl szxu Zpivf(xi) < ZHCI)f(PHHK*kH? (5.6.23)
m i= m =1
which in view of (5.6.6) gives the desired inequality in (5.6.13). The proof is complete.

Another result which provides an upper bound for Jensen’s difference, established by

Budimir, Dragomir and Pecari¢ [11] is embodied in the following theorem.

Theorem 5.6.5. Let f: R" — R be a differentiable convex mapping and x; € R", p; > 0
(i=1,...,m) with B, =Y | p; > 0. Suppose that the V-operator satisfies a condition of
r — H-Holder-type, i.e.,

IVF(x) = VIO < Hllx=yII",

forallx, y € R", where H > 0, r € (0, 1] and || - || is the Euclidean norm. Then we have the
inequality

1
Bn

™=

0<

H
pif(xi < Zp, ) 3p7 Z pip;llxi—x;| (5.6.24)

i=1 ’"1 m i, j=1
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Proof. Using Korkine’s identity, that is, we recall it:

[ o 1o
p-(y,-,x,-)—<P szyuP me> P2 Zplp,@z Vi Xi—Xj),

mj— m = m i j=1

lMS

1
P

for x, y € R". We may simply write that

1 Lo
FZPZ <Vf(xl) .xz < Zp,Vf x, Pszl>
mi—| ~
1
=3p Z pipj (VI (i) = Vf(x))xi —xj) . (5.6.25)
m i j=1

Using (5.6.6) and the properties of modulus, from (5.6.25) we have

1 m 1 m
0< 5 Y pif(a)—f (Pm ZP:‘%’)

m =1

2}1)2 Z plpj}<vf xl) Vf(xj) Xi— x}>|

mj j=1

2P2 Z PzPJHVf x)—=Vf XJ)HHXI_XJH
m i j=1

H 1

2P2 Z p,p]Hx,—x]H” )
m i, j=1

and the inequality (5.6.24) is proved.

5.7 Applications

In this section we point out applications of some of the inequalities given in earlier sections.
The inequalities given above are recently developed and we hope that they will be a source

for future research work.

5.7.1 Applications for special means

In this section, first we present applications of inequalities (5.4.29) and (5.4.35) given by
Dragomir in [46].
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The function f(x) = 1, x € (0,) is log-convex on (0,). Then we have

1 b dx _
b—a a YZL 1(a7b)’

a+b _1
F(457) =4 @),

,(a+b
()

a+b\ A’
()

Now, applying the inequality (5.4.29) for the function f(x) = +, we get the inequality

Ala,Db) b—a b—a
>L — , > 1, 5.7.1
L(a,b) P\Ta )P\ 7.1
which is a refinement of the well-known inequality
A(a,b) = L(a,b), (5.7.2)

where A(a,b) is the Arithmetic mean and L(a,b) is the Logarithmic mean of a, b, that is
A(a,b) = £ and L(a,b) = a# b (fora=b, L(a,a) = a).
For f(x) = 1,

loga ]ogb’
we also get

fla)+f(b) -
— =H 1(a,b),

where H(a,b) = ‘i r is the Harmonic mean of a, b. Now, using the inequality (5.4.35) we
ath

obtain another interesting inequality

L(a,b) Ala,b)
>1+1 >1, 5.7.3
Hp) ~ %8 {L(a,b) (57.3)
which is a refinement of the following well known inequality
L(a,b) > H(a,b). (5.7.4)

Similar inequalities may be stated for the log-convex functions f(x) =x*, x > 0 or f(x) =
e +1, x € R etc. We omit the details.
The following inequality is well known in the literature as the Arithmetic mean-Geometric
mean-Harmonic mean inequality

Ap(p:x) Z Gu(p,x) = Hu(p,x),
where

n
x) = Z pixi,  the weighted Arithmetic mean,

n
- fo ‘ the weighted Geometric mean,
1 . .
H,(p,x) = ——, the weighted Harmonic mean,
b

1
and Y pi=1(pi=0,i=1,...,n).
The following results are obtained by Dragomir in [41], by applying Theorem 5.6.2.
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Theorem 5.7.1. Let0<m<x; <M <oo.Thenforall p; >0 (i=1,...,n), with Yipi=

1, we have the inequality

< Aulpx) _ p{(M—m)z] (5.1.5)

= Gulp,x) x 4mM
The proof follows by applying the inequality (5.6.4) in Theorem 5.6.2, choosing f(x) =
—logx, x > 0.

Theorem 5.7.2. Let 0 < m <y; <M < oo. Then for p; > 0 with "7 | p; = 1, we have the

inequality

(5.7.6)

Gn(pvy) (M_m)2
gmmw<“{4MI}

The proof follows by Theorem 5.7.1, choosing x; = ‘i (i=1,...,n).
For similar results obtained by applying Theorem 5.6.2 for the mappings f(x) =x", p > 1,
x> 0and f(x) =xlogx, x > 0, we refer the interested reader to [41].

5.7.2 Applications for some inequalities related to Ky Fan’s inequality

In 1961, Beckenbach and Bellman published the following unpublished result due to Ky
Fan in their book, Inequalities [10].
Ifx; € (O, %), i=1,...,n, then one has the inequality

ﬁ Xi ’ i Xi
=1 <= (5.7.7)
[1(1—x;) L (1—x)

with equality only if x| = --- = xj,.

In this section, we present some inequalities related to Ky Fan’s inequality given by
Dragomir and Mond in [40].

Consider the mapping f: (0,1) — R, f(x) =log (%)r, r > 0. Then we have

f(x) = T x€(0,1),

and
11 o r(l —2)6)
f (X) - [X(l _x)}27

which shows that the map f is convex on (0, %} , i.e., the mapping g : (0,1) — R, g(x) =

x€(0,1),

(1=*)" is log-convex on (0, 1].
In [40], applying the inequalities (5.5.1), (5.5.8) Dragomir and Mond proved the following
Ky Fan-type inequalities.
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Theorem 5.7.3. Letx; € (0, %] and p; > 0 with B, =Y | p; > 0. Then one has

n —x\7 r
P}Zpi(lx)q> 1 *sz(xl )
izl Pij exp | n’“l >1, (5.7.8)
7Zpl(1_xl) "= P szxzp sz(l _xl)
nz 1 n i=1 ni=1
1 n
Py E]szz
where r > 0.

Proof. We shall apply the inequality (5.5.1) for the log-convex map g(x) = (%)r, x €

(07 %} . We now have that 5’; &‘)) = x(;:x) and from the inequality (5.5.1), we have
1 n T—x\"
(57
Pn lflpl Xi
1 n r
I—— Y pixi
ni=l1
1 n
Fnlglpi)q
LY
> DiXi )
> LY prexpd |r b a
F=1 Ly <11>": ) Ly (lli)
= — X - — X — X - — X
ni=1pl ' Pn i=]pl ' Pn l=1pl ' Pni—lpl '
1 » r
L & X pisi—)
o ni=
_7;17] exp 1i e 1£: N )
P, ; lpzxt P, l__]szz

and the inequality (5.7.8) is established.

Theorem 5.7.4. Letx; € (0, %] and p; > 0 with P, =Y/, p; > 0. Then one has the in-
equality

>0, (5.7.9)

where r > 0.
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Proof. The result is obvious by applying the inequality (5.5.8) in Theorem 5.5.2 to the
log-convex mapping g : (0,1] — R, g(x) = (:=*)". We omit the details.

For further inequalities related to Ky Fan’s inequality, see [40] and also the papers appeared
in RGMIA Research Report Collections.

5.7.3 Applications for Shannon’s entropy

In this section, we present applications of the inequality (5.6.4) given by Dragomir in [38],
for Shannon’s entropy mappings.
Following [38], let X be a random variable with range R = {xi,...,x,} and probability
distribution py,...,p, (pi > 0,i=1,...,n). Define the Shannon entropy mapping
n
H(x)=—Y pilogpi. (5.7.10)
i=1

L
The following result is well known in the literature and concerns the maximum possible

value of H(x) in terms of the size of R (see [75]).

Lemma 5.7.1 (see [41]). Let X be defined as above. Then
0 < H(x) < logn. (5.7.11)
Furthermore, H(X) = 0 if and only if p; = 1 for some i and H(X) = logn if and only if
pi=1forallie{l,...,n}.
The following useful analytic inequality is proved in [38].
Lemma5.7.2. LetO<m <& <M <oo, (p;>0,i=1,....n) with Y}, p;=1. Then
n n 2
(M —m)

0<log (lgpifi) —;Pilogéi ST (5.7.12)
The proof follows by Theorem 5.6.2, choosing f(x) = —logxand x; =&, i=1,...,n.
The Lemma 5.7.2 provides the following converse inequality for the Shannon entropy map-

ping (see [38]).

Theorem 5.7.5. Let X be as above and put p = min{p;, i = 1,...,n} and P = max{p;,

i=1,...,n}. Then we have

P— 2
0<logn—H(x) < % (5.7.13)

Proof. Choose in Lemma 5.7.2, § = pi € [%, H and m = %, M= % to get the desired
inequality in (5.7.13).
Another analytic inequality proved in [38], which can be applied for the entropy mapping

is embodied in the following lemma.
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Lemma5.73. LetO<m <& <M <oo, (p;>0,i=1,....n) with Y}, p;=1. Then
n n n
0< Y piilogéi— Y pigilog (Z piéi)
i=1 i=1 i=1

< = (M —m)(logM —logm)
(M —m)?
vmM

Proof. The first inequality in (5.7.14) follows by Theorem 5.6.2, choosing f(x) = xlogx,

(5.7.14)

Bl b=

which is a convex mapping on (0,), and x; = &;,i=1,...,n.
The second inequality in (5.7.14) follows by the celebrated inequality between the Geo-
metric mean G(a,b) = v/ab and the Logarithmic mean

a if b=a,
L(a,b) = b—a i bota a, b>0,
logh —loga ’

which states that
G(a,b) < L(a,b), a,b>0,
i.e.,
logh —loga < 1
b—a = Vab'
Choosing b = M, a = m, we obtain

1 1
Z(Mfm)(long logm) <

4/ Mm

(M —m)>.
The proof is complete.

The Lemma 5.7.3 provides the following converse inequality for the entropy mapping, see
[38].

Theorem 5.7.6. Let X, p, P be as in Theorem 5.7.5. Then we have
n(P—p)?

0<logn—H(x) < %(pr)(longlogp) <3 p (5.7.15)
Proof. Firstly, choose p; = % in (5.7.14) to get
1 & 1 ¢ 1 ¢
0< =Y &logé—-Y &log| =) &

i3 iz i3
1

< Z(M—m)(logM—logm)

1 2

< M —m)~. 5.7.16

4v/mM ( ) ( )

Now, if in (5.7.16) we assume that & = p; € [p, P], then we obtain
1 1 1
0< ~logn——H(x) < 7(P—p)(logP —logp) <
n n
from which we get (5.7.15).

1
W(P*P)Z,
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5.8 Miscellaneous inequalities

5.8.1 Klarici¢ Bakula and Pecaric [70]

Let f be a nonnegative convex function on [m,M;], g a nonnegative convex function on
[ma, M), u: [a,b] — [m1,M;] and v : [a,b] — [m2, M,] continuous functions, and p : [a,b] —
R be a positive integrable function. Then

1

b
5 || Pl () (v()d

b b
< s gima, M, [ p (o) + Ly M gms, Me) [ ot

b
+[7;m1,M1][g;m2,M2]%/ p(x)v(x)dx+ [fym1,Mi][g;ma, M),

P Yo () < L[ [ snstoonas

b
[ s i a0+ ma v(x))dx}

4L {z[f;ml,Ml][g;msz] /  puev(x)ds

4P
b
(2, Mo) = (g2, M) f5m1 M) [ ploJur)

. _ b
L] o M) s ][ pla)v(o)s]

+% ([fsmy, M\][g:ma, M) + [fimy, My][g:ma, M) ,

where P = [ f p(x)dx and for a suitable function & : [a, B] C R — R the notations

[hx,y] = M x#y, (5.8.1)
y—x

h(t) =th(a+ B —1), (5.8.2)

h(t) =th(r), (5.8.3)

forx, y, t € [a, B] are used to simplify the presentation.
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5.8.2 Klari¢i¢ Bakula and Pecarié¢ [70]

Let f be a nonnegative convex function on [m,M;], g a nonnegative convex function on
[m2,Ms), u: [a,b] — [mi,M;] and v : [a,b] — [ma,M>] continuous functions, and p, ¢

[a,b] — R positive integrable functions. Then

5o || P ua) + (1= 0u)av(a) + (1 — )z
< ﬁ [Q / f(u(x))g(v(x))p(x)dx+P / bf(u(y))g(V(y))q(y)dy
bapg |, Fp [ 00 a0y
/ / () F(tu(x) + (1 — D)@ g(tv(x) + (1 — 1)7)dedx
< s || PO ax + L)

o [0 [ prtutass 1@ [ peotoiaas].

where P = [” p(x)dx,Q = [? q(x)dx, 7 = %fabp(x)u(x)dx, V= éfabq(x)v(x)dx.

5.8.3 Pachpatte [98]

Let f : [a,b] — R be a differentiable convex function and F (x,y)(¢) be as defined in (5.3.1).

Then
/abF (x, a—;b) (t)dx < /abf(x)dx

%bl /bf<x)dx< bl/abF(x,a—;b> (t)dx+w7

forallz € [0,1].

5.8.4 Pachpatte [98]

Let f : [a,b] — R be a differentiable convex function and F (x,y)(¢) be as defined in (5.3.1).
Then
1 b osb b
; / [ Py @y < [ fax
—a

3.1 P ()+f()
Eﬁ/u fx)d )2// (x,y)(t)dxdy + ————=
forall s € [0, 1].
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5.8.5 Pachpatte [98]

Let f: [a,b] — R be a convex function, F(x,y)(¢) be as defined in (5.3.1) and define for
re€0,1]
1P a+b
1) = —— F — | (0)d
6(0) =5 [ F (x 557 ) thax,

H(r) = ﬁ /ab /abF(x,y)(t)dxdy.

(i) G and H are convex on [0, 1],
(i) G(r) < H(r) forall 7 € [0,1].

Then

5.8.6 Pachpatte [136]

Let f and g be real-valued, nonnegative and convex functions on [a,b] C R and F(x,y)()
and G(x,y)(z) be as defined in (5.3.1) and (5.3.2). Then for all 7 € [0, 1] we have

o [ (52) 06 (252) (as

1 b
<m / F0)gx )dx+16[ (a,b) +N(a,b)],

b—ap // (x,)( )(¢)dxdy

L[ ros(as + (e ) +NGa )

b—a g,

where M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a).

<

5.8.7 Pachpatte [82]

Let f and g be real-valued, nonnegative and convex functions on [0, 1]. Then

[0 -nseean< 3 ([ rwa) ([ etar) + £70100),
[ s 3 ([ rwas) ([ star) + g re.
[ s <2 ([ s0ar) ([ etoiar) + 517000 +70(0)]
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5.8.8 Pachpatte [82]

Let f and g be real-valued, nonnegative and convex functions on [0, 1]. Then

/01(1—x)[f()+g dx < [(/f ) </lg(x)dx>2
[ 3P+ g w)ars g [(/Olf(x)dx>2+ (/O‘g(x)dx>2

[ 1P+ 0] ax

<3 K / 1f(x)dx)2+ (/0 1g(x)dx)z

5.8.9 Teng, Yang and Dragomir [149]

L2 [P0 +£0)),

+e [P +2)]

+é [£2(0)+8*(0) + /(1) +g*(1)] -

Let s : [a,b] — R be nonnegative, integrable and symmetric to 442 and f € Q(I) NLi[a,b].

Then
f <“J2rb> / bs(x)dx <4 /a ’ F)s(x)dx, (5.8.4)

P (b—x)(x—a) fla)+f(b) [*
/awf(x)s(x)dng/a s(x)dx,

where Q(I) is defined as in section 5.2. The constant 4 in (5.8.4) is the best possible.
5.8.10 Tseng, Yang and Dragomir [149]

Let s : [a,b] — R be nonnegative, integrable and symmetric to 5 and f € P(I) N L;a,b).
Then

f(“”’) / X)dx <2 / <2[f(a)+ f(b)] / sy, (585

where P(I) is defined as in Section 5.2. Both inequalities in (5.8.5) are sharp.

5.8.11 Pachpatte [107]

Let f, g: [a,b] — R be absolutely continuous functions on [a, b]. Let

S(7.8) = 100800~ 555 [ #6045 [ gty
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_ror gl (5.8.6)

S g ()]

(a)) If | /'], |¢| are convex on [a,b], then

x— &b g
S0l < £ [jﬁ << 5 )> ] b-a

x {Ig@)! {1 @I+ o] + LF G 18" o) + 118 ll] } -

for x € [a,b].
(a2) If | /7], |¢'| are log-convex on [a, ], then

S0 < sy {0l [ it (g )
el [l (T )}

5.8.12 Pachpatte [107]

for x € [a,b].

Let f, g : [a,b] — R be absolutely continuous functions on [a,b]. Let

18 =5z a/f dx—<b a/hf(x)dx> <b1a/;g(x)dx>,

(x—a) 4 (b—)?
2

E(x)= X E [a,b].

(by) If |f'], |¢'| are convex on [a, D], then

1 b / / / ! E2 d
T < grpas [, WP+ 1£1] [ 01+ ] E (o,

(bp) If ||, |&’| are log-convex on [a, b], then

o< g [ | bl (g ) ar}
A [l (g ) arf]

where A, B are defined by (5.8.6).
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5.9 Notes

An enormous amount has been written about inequalities involvibg convex functions and
their applications. The results in Theorems 5.2.1-5.2.4 deals with integral inequalities sim-
ilar to that of the Hadamard’s inequalities involving the product of two convex functions
and are taken from Pachpatte [97] and [85]. The integral inequalities in Theorems 5.3.1—
5.3.3 contains Hadamard-type inequalities involving convex functions and are established
by Pachpatte in [84]. Theorems 5.4.1 and 5.4.2 contains the integral inequalities involving
the product of two log-convex functions and are taken from Pachpatte [104], while The-
orem 5.4.3 contains Hadamard-type integral inequalities involving three log-convex func-
tions and taken from Pachpatte [136]. The results in Theorems 5.4.4 and 5.4.5 contains the
Hadamard-type integral inequalities investigated by Pachpatte in [110].

Theorem 5.5.1 deals with a refinement of discrete Jensen’s inequality for log-convex func-
tion and is taken from Dragomir and Mond [40] and Theorem 5.5.2 is the converse of
Jensen’s discrete inequality for log-convex functions and is also taken from Dragomir and
Mond [40]. Theorem 5.5.3 contains another refinement of Jensen’s discrete inequality and
is taken from Dragomir and Mond [40]. Theorem 5.6.1 contains a version of the discrete
Jensen’s inequality and is taken from Dragomir [41] and Theorem 5.6.2 contains a use-
ful version of Theorem 5.6.1 and is taken from Dragomir [41]. Theorems 5.6.3 and 5.6.4
are taken from Dragomir and Goh [25] and Dragomir [38], while Theorem 5.6.5 is due to
Budimir, Dragomir and Pecari¢ [11]. Section 5.7.1 is devoted to the applications of certain
inequalities for special means and taken from Dragomir [41,46]. Section 5.7.2 contains
applications to obtain Ky Fan-type inequalities and are taken from Dragomir and Mond
[40]. Section 5.7.3 deals with the applications for Shannon’s entropy and are taken from
Dragomir [38]. In Section 5.8 some useful miscellaneous inequalities investigated by vari-

ous investigators are given.
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