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To Pertti Lounesto



Preface

This book was written with the intention that it be used as a text for an undergraduate
course. The end result is not only suitable for an undergraduate course but also ideal
for a masters level course directed toward future high school math teachers. It is also
appropriate for anyone who wants to acquaint himself or herself with the usefulness
of Clifford algebra. In that context, instructors teaching Ph.D. students may want to
use it as a source book.

Most introductory books on differential geometry are restricted to three dimen-
sions. I use the notation used by geometers in n-dimensions. Admittedly, most of
my examples are in three dimensions. However in Chap. 3, I present some aspects of
the four-dimensional theory of special relativity. One can present some fun aspects
of special relativity without mention of such concepts as “force”, “momentum”, and
“energy.” For example, adding speeds possibly near the speed of light results in a
sum that is always less than the speed of light.

The capstone topic for this book is Einstein’s general theory of relativity. Here
again, knowledge of Newtonian physics is not a prerequisite. Because of the
geometric nature of Einstein’s theory, some interesting aspects can be presented
without knowledge of Newtonian physics. In particular, I discuss the possibility of
twins aging at different rates, the precession of Mercury, and the bending of light
rays passing near the Sun or some other massive body.

The only topic that does require some knowledge of Newtonian physics is
Huygen’s isochronous pendulum clock, and the relevant section should be consid-
ered optional.

My strategy for writing this book had three steps:

Step 1: Steal as many good pedagogical ideas from as many authors as possible.
Step 2: Improve on them if I could.
Step 3: Choose topics that are fun for me and fit together in a coherent manner.

Frequently I was able to improve on the presentation of others using Clifford
algebra.

The selection of this book may introduce a hurdle for some instructors. It is
likely they will have to learn something new – Clifford algebra. Paradoxically,
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viii Preface

the use of Clifford algebra will make differential geometry more accessible to
students who have completed a course in linear algebra. That is because in this
book, Clifford algebra replaces the more complicated and less powerful formalism
of differential forms. Anyone who is familiar with the concept of non-commutative
matrix multiplication will find it easy to master the Clifford algebra presented in this
text. Using Clifford algebra, it becomes unnecessary to discuss mappings back and
forth between the space of tangent vectors and the space of differential forms. With
Clifford algebra, everything takes place in one space.

The fact that Clifford algebra (otherwise known as “geometric algebra”) is not
deeply embedded in our current curriculum is an accident of history. William
Kingdon Clifford wrote two papers on the topic shortly before his early death
in 1879 at the age of 33. Although Clifford was recognized worldwide as one
of England’s most distinguished mathematicians, he chose to have the first paper
published in what must have been a very obscure journal at the time. Quite possibly
it was a gesture of support for the efforts of James Joseph Sylvester to establish the
first American graduate program in mathematics at Johns Hopkins University. As
part of his endeavors, Sylvester founded the American Journal of Mathematics and
Clifford’s first paper on what is now known as Clifford algebra appeared in the very
first volume of that journal.

The second paper was published after his death in unfinished form as part of his
collected papers. Both of these papers were ignored and soon forgotten. As late
as 1923, math historian David Eugene Smith discussed Clifford’s achievements
without mentioning “geometric algebra” (Smith, David Eugene 1923). In 1928,
P.A.M. Dirac reinvented Clifford algebra to formulate his equation for the electron.
This equation enabled him to predict the discovery of the positron in 1931.

In 1946 and 1958, Marcel Riesz published some results on Clifford algebra
that stimulated David Hestenes to investigate the subject. In 1966, David Hestenes
published a thin volume entitled Space-time Algebra (Hestenes 1966). And 18 years
later, with his student Garret Sobezyk, he wrote a more extensive book entitled
Clifford Algebra to Geometric Calculus – A Unified Language for Mathematics
and Physics (Hestenes and Sobczyk 1984). Since then, extensive research has been
carried out in Clifford algebra with a multitude of applications.

Had Clifford lived longer, “geometric algebra” would probably have become
mainstream mathematics near the beginning of the twentieth century. In the decades
following Clifford’s death, a battle broke out between those who wanted to use
quaternions to do physics and geometry and those who wanted to use vectors.
Quaternions were superior for dealing with rotations, but they are useless in
dimensions higher than three or four without grafting on some extra structure.
Eventually vectors won out.

Since the structure of both quaternions and vectors are contained in the formalism
of Clifford algebra, the debate would have taken a different direction had Clifford
lived longer. While alive, Clifford was an articulate spokesman and his writing
for popular consumption still gets published from time to time. Had Clifford
participated in the quaternion–vector debate, “geometric algebra” would have
received more serious consideration.
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The advantage that quaternions have for dealing with rotations in three
dimensions can be generalized to higher dimensions using Clifford algebra. This
is important for dealing with the most important feature of a surface in any
dimension – namely its curvature.

Suppose you were able to walk from the North Pole along a curve of constant
longitude to the equator, then walk east along the equator for 37ı and finally return
to the North Pole along another curve of constant longitude. In addition, suppose at
the start of your trek, you picked up a spear, pointed it in the south direction and
then avoided any rotation of the spear with respect to the surface of the earth during
your long journey. If you were careful, the spear would remain pointed south during
the entire trip. However, on your return to the North Pole, you would discover that
your spear had undergone a 37ı rotation from its initial position. This rotation is a
measure of the curvature of the Earth’s surface.

The components of the Riemann tensor, used to measure curvature, are somewhat
abstract in the usual formalism. Using Clifford algebra, the components of the
Riemann tensor can be interpreted as components of an infinitesimal rotation
operator that indicates what happens when a vector is “parallel transported” around
an infinitesimal loop in a curved space.

In many courses on differential geometry, the Gauss–Bonnet Formula is the cap-
stone result. Exploiting the power of Clifford algebra, a proof appears slightly less
than halfway through this book. If optional intervening historical digressions were
eliminated, the proof of the Gauss–Bonnet Formula would appear on approximately
p. 115.

This should leave time to cover other topics that interest the instructor or the
instructor’s students. I hope that instructors endeavor to cover enough of the theory
of general relativity to discuss the precession of Mercury. The general theory of
relativity is essentially geometric in nature.

Whatever topics are chosen, I hope people have fun.
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8.2 *The Poincaré Model and Reflections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
8.3 *Direct Non-Euclidean Transformations .. . . . . . . . . . . . . . . . . . . . . . . . . . . 310
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Chapter 1
Introduction

This text is intended for a one-semester course in differential geometry, although
there is enough material for two quarters. The only prerequisite is completion of the
calculus – linear algebra sequence. Solutions of differential equations are discussed
in the text but do not appear in the problem sets. Thus, completion of a course in
differential equations would be useful but not necessary.

Generally, chapters or sections designated with a star in the table of contents are
not required for successive sections lacking a star. As a consequence, the starred
sections may be considered to be optional.

I have included some historical material which is interesting to me and hopefully
both interesting and informative to my readers. Many if not most of the mathe-
maticians and physicists who made differential geometry what it is today did not
achieve the total ivory-tower existence that they presumably craved. These historical
sections have evoked mixed responses from reviewers. One reviewer wrote, “I think
that John Snygg has developed a fascinating historical storyline that is uncommon
in undergraduate textbooks. I enjoyed reading the majority of his lengthy historical
diversions.” Others expressed the opinion that the historical sections are distractions,
which have no relevance to the mathematics. Specific suggestions were generally to
make omissions which would make the narrative more upbeat and rosy.

It should be observed that for the most part, the historical material is placed in
isolated starred sections. That means they are completely optional.

The material contained in the unstarred sections of the first six chapters is
sufficient preparation for the material contained in any of the subsequent starred
sections with two exceptions. First: Before diving into non-Euclidean geometry
in Chap. 8, one should do Problems 58 and 59 in Chap. 4. One should also read
Sect. 6.8 in Chap. 6 and do Problem 136a at the end of that section. Problems 58 and
59 in Sect. 4.6 of Chap. 4 are intended to introduce students to a taste of spherical
trigonometry. Section 6.8 provides some historical background for the development
of non-Euclidean geometry and Problem 136a is an introduction to the metric used
for the Poincaré model. Second: The material in Sect. 10.2 requires familiarity with
the notion of “lines of stricture”, which is covered in Sect. 9.1.

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 1, © Springer Science+Business Media, LLC 2012
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2 1 Introduction

For a one-quarter course, the unstarred sections in the first seven chapters are
probably sufficient. For a basic one-semester course, I hope that readers can go
beyond that material and cover the first four sections in Chap. 12 – the chapter on
general relativity. If not, there are clearly other options. For example, in Chap. 11
on minimal surfaces, students are invited to invent their own minimal surfaces and
then plot them using MAPLE, MATHEMATICA, or other computer programs. (See
Problem 278.) Another option is Chap. 8, which is devoted to the Poincaré model
for a 2-dimensional surface of constant negative curvature.

Whatever options you choose, I hope you have fun.



Chapter 2
Clifford Algebra in Euclidean 3-Space

2.1 Reflections, Rotations, and Quaternions in E3

2.1.1 Using Square Matrices to Represent Vectors

One frequently represents a vector x in the 3-dimensional Euclidean space E3 by
x D xi C yj C zk or .x; y; z/. However, neither of these notations easily generalize
to higher dimensions. Alternate notations which do easily generalizes to higher
dimensions are x D x1i1 C x2i2 C x3i3 and

x D �
x1; x2; x3

� D x1 .1; 0; 0/C x2 .0; 1; 0/C x3 .0; 0; 1/ : (2.1)

These alternate notations have their own problem. In most areas of mathematics,
we expect a superscript to designate an exponent. You might think that we
could reserve superscripts for exponents and use subscripts to designate different
coordinates or other labels. This approach is sometimes used for so-called flat
spaces. However, if we accept Einstein’s Theory of General Relativity, we live in
a space that is curved. To reserve superscripts for exponents in the study of curved
spaces is simply too restrictive and inconvenient.

So how can you distinguish a superscript representing an exponent from a
superscript representing some kind of label? If you see a superscript outside of some
bracket (usually round), you can be confident that it represents an exponent. For
example,

.a/2 D aa:

On the other hand, if the meaning is clear from the context, the brackets may be
omitted. For example, in the next chapter, I will write c to represent the speed of
light and c2 to represent the square of the speed of light.

I now turn to another issue. Usually, one represents a vector as a linear
combinations of unit row vectors as in (2.1), or a linear combination of unit column

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 2, © Springer Science+Business Media, LLC 2012
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4 2 Clifford Algebra in Euclidean 3-Space

vectors. However, as we shall soon see, it is sometimes useful to represent a vector
as a linear combination of square matrices. For example, we could write

x D x1e1 C x2e2 C x3e3; (2.2)

where

e1 D

2

6
6
4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3

7
7
5 ; e2 D

2

6
6
4

0 0 1 0

0 0 0 �1
1 0 0 0

0 �1 0 0

3

7
7
5 ; and

e3 D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1:

3

7
7
5 (2.3)

At first sight, this may seem to be a pointless variation. However, representing
a vector in terms of these square matrices enables us to multiply vectors in a way
that would not otherwise be possible. We should first note that these matrices have
some special algebraic properties. In particular,

.e1/2 D .e2/2 D .e3/2 D I: (2.4)

where I is the identity matrix. Furthermore,

e2e3 C e3e2 D e3e1 C e1e3 D e1e2 C e2e1 D 0: (2.5)

A set of matrices that satisfy (2.4) and (2.5) is said to form the basis for the
Clifford algebra associated with Euclidean 3-space. There are matrices other than
those presented in (2.3) that satisfy (2.4) and (2.5). (See Prob. 2.) In the formalism
of Clifford algebra, one never deals with the components of any specific matrix
representation. We have introduced the matrices of (2.3) only to demonstrate that
there exist entities that satisfy (2.4) and (2.5).

Now let us consider the product of two vectors. Suppose y D y1e1Cy2e2Cy3e3;
then

xy D .x1y1 C x2y2 C x3y3/I C x2y3e2e3 C x3y2e3e2

C x3y1e3e1 C x1y3e1e3 C x1y2e1e2 C x2y1e2e1:

Using the relations of (2.5), we have

xy D .x1y1 C x2y2 C x3y3/I C .x2y3 � x3y2/e2e3

C .x3y1 � x1y3/e3e1 C .x1y2 � x2y1/e1e2: (2.6)

(Note xy ¤ yx.)
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From (2.6), we can construct formulas for the familiar scalar product hx; yi and
the less familiar wedge product x ^ y. In particular,

hx; yi I D 1

2
.xy C yx/ D �

x1y1 C x2y2 C x3y3
�

I, and (2.7)

x ^ y D 1

2
.xy � yx/ D .x2y3 � x3y2/e2e3

C .x3y1 � x1y3/e3e1 C .x1y2 � x2y1/e1e2. (2.8)

With a slight abuse of notation, we frequently omit the I that appears in (2.7).
We note that the coefficients of e2e3, e3e1, and e1e2 that appear in the wedge

product x ^ y are the three components of the cross product x � y.

2.1.2 1-Vectors, 2-Vectors, 3-Vectors, and Clifford Numbers

By considering all possible products of e1, e2 , and e3, one obtains an 8-dimensional
space spanned by fI; e1; e2; e3; e2e3; e3e1; e1e2; e1e2e3g, where

e2e3 D

2

6
6
4

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

3

7
7
5 ; e3e1 D

2

6
6
4

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

3

7
7
5 ;

e1e2 D

2

6
6
4

0 �1 0 0

1 0 0 0

0 0 0 �1
0 0 1 0

3

7
7
5 , and e1e2e3 D

2

6
6
4

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

3

7
7
5 :

One might think that one could obtain higher order products. However, any such
higher order product will collapse to a scalar multiple of one of the eight matrices
already listed. For example:

e1e2e3e2 D e1e2.e3e2/ D �e1e2.e2e3/ D �e1.e2e2/e3 D �e1e3 D e3e1.

In this fashion, we have obtained an 8-dimensional vector space that is closed
under multiplication. A vector space closed under multiplication is called an
algebra. An algebra that arises from a vector space with a scalar product in the
same manner as this example does from E3 is called a Clifford algebra. (We will
give a more formal definition of a Clifford algebra in Chap. 4.)
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Fig. 2.1 The vector x’ is the
result of reflecting x with
respect to the plane
perpendicular to the unit
vector a

a x,a

a

x'

x

I label the matrices e1, e2, and e3 to be Dirac vectors. Any linear combination of
Dirac vectors is a 1-vector. A linear combination of e2e3, e3e1, and e1e2 is a 2-vector.
In the same vein, a scalar multiple of I is a 0-vector and any scalar multiple of e1e2e3
is a 3-vector. A general linear combination of vectors of possibly differing type is a
Clifford number.

It will be helpful to use an abbreviated notation for products of Dirac vectors. In
particular, let

e2e3 D e23, e3e1 D e31, e1e2 D e12, and e1e2e3 D e123.

2.1.3 Reflection and Rotation Operators

The algebraic properties of Clifford numbers provide us with a convenient way
of representing reflections and rotations. Suppose a is a vector of unit length
perpendicular to a plane passing through the origin and x is an arbitrary vector inE3:

(See Fig. 2.1.) In addition, suppose Kx is the vector obtained from x by reflection of
x with respect to the plane corresponding to a. Then

Kx D x � 2 ha; xi a: (2.9)

From (2.7), it is clear that

2 ha; xi a D .ax C xa/ a D axa C x.a/2 D axa C x.

So (2.9) becomes
Kx D �axa (2.10)

A rotation is the result of two successive reflections (See Fig. 2.2). From Fig. 2.2,
it is clear that x̋ is the vector that results from rotating vector x through the angle
2 about an axis with the direction of the axial vector a � b. We can rewrite this
relation in the form:

x̋ D �bKxb D baxab, or

x̋ D R�1xR where R D ab. (2.11)
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ψ−θ ψ−θ
θ

θ

ψ

2ψ

a

b

x''

x'

x

Fig. 2.2 When x is subjected
to two successive reflections
first with respect to a plane
perpendicular to a and then
with respect to a plane
perpendicular to b, the result
is a rotation of x about an axis
in the direction of a � b. The
angle of rotation is twice the
angle between a and b

It is useful to explicitly compute the product ab and interpret the separate
components. If

a D a1e1 C a2e2 C a3e3,

and

b D b1e1 C b2e2 C b3e3,

then from (2.7) and (2.8):

R D ab D 1

2
.ab C ba/C 1

2
.ab � ba/

D I ha;bi C a ^ b.

Since both a and b are vectors of unit length, ha;bi D cos . Furthermore, the
magnitude of a � b is sin . Although a ^ b unlike a � b is a 2-vector, a ^ b has the
same three components as a � b. For this reason, we can write

a ^ b D �
n1e23 C n2e31 C n3e12

�
sin ,

where n1; n2; and n3 are the direction cosines of the axial vector a � b. With this
thought in mind, we have

R D I cos C .n1e23 C n2e31 C n3e12/ sin .
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Note! These ideas can be generalized to higher dimensions. For higher dimen-
sions the entity a ^ b remains well defined, while a � b becomes meaningless. In
higher dimensions, you no longer have an axis of rotation; so you must think of the
rotation as occurring in the 2-dimensional plane spanned by a and b.

We should note that  represents 1
2

the angle of rotation. If � is the actual angle
of rotation, we then have

R D I cos
�

2
C .n1e23 C n2e31 C n3e12/ sin

�

2
. (2.12)

To obtain R�1 from R, one can replace � by �� or reverse the order of the Dirac
vectors. In either case,

R�1 D I cos
�

2
� .n1e23 C n2e31 C n3e12/ sin

�

2
. (2.13)

Returning to (2.11), we see that there appears to be two representations for the
same rotation. In the context of (2.11), R is equivalent to �R. From (2.12), we
see that changing the sign of R is equivalent to replacing � by � C 2� . Indeed,
the operator R does not have the expected periodicity of 2� , but it does have a
periodicity of 4� . One’s first reaction is to think that Clifford algebra has introduced
an undesirable complication. In the context of (2.11), this may be the case. However,
there are circumstance for which this “complication” corresponds to physical reality.
We will discuss this point in the next section.

Meanwhile, we note that for k reflections:

Kx D .�1/kakak�1 : : : a1xa1a2 : : : ak D .�1/kT�1xT. (2.14)

2.1.4 Quaternions

Using quaternions, you can represent a rotation operator in a form essentially
identical to that which appears in (2.12). What are quaternions? They were invented
(discovered?) by William Rowan Hamilton (1805–1865) in 1843. Before that
time, it had been observed that the multiplication of complex numbers could be
interpreted as the multiplication of points in a 2-dimensional plane. This was first
done by Casper Wessel (1745–1818) in 1797 and then again independently by
Jean Robert Argand (1768–1822) in 1806 (Kramer 1981, pp. 72–73). In particular,
instead of writing:

.aC ib/.c C id / D .ac � bd/C i.ad C bc/, one can write,

.a; b/.c; d / D .ac � bc; ad C bc/.

The question that Hamilton asked himself was, “Could there be a 3-dimensional
version of this multiplication that would be useful for the study of physics?” Since
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his idea was to generalize the notion of complex numbers, he was investigating
triples of the form: a C ib C jc. You can invent all kinds of multiplication rules,
but he was looking for a rule that would be meaningful and useful for the study of
physics. Starting in 1828, he spent 15 years on this project without success. Finally
on October 16, 1843 (a Monday), he had an eureka experience. He was walking
along side of the Royal Canal in Dublin with his wife to preside at a Council meeting
of the Royal Irish Academy. Then it dawned on him that he should introduce a fourth
dimension. In this joyful moment, he carved the formulas for multiplying numbers
of the form: aC ibCjcCkd on a stone of the Broome Bridge (or Brougham Bridge
as he called it). ((O’Connor and Robertson: Hamilton) and (Boyer 1968, p. 625)).

Time has obliterated the original carving but in 1958, the Royal Irish Academy
erected a plaque commemorating the event:

Here as he walked by
on the 16th of October1843

Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for

quaternion multiplication
i2 D j2 D k2 D ijk D � 1

and cut it in a stone on this bridge.

From the formula that Hamilton carved in stone, it can be shown that

jk D �kj D i, ki D �ik D j, and ij D �ji D k.

(See Prob. 3.)
Due to this achievement, William Hamilton is known as the founder of modern

“abstract algebra.”
In the theory of quaternions, a rotation operator corresponding to that which

appears in (2.12) is written in the form:

R D I cos
�

2
� .n1i C n2j C n3k/ sin

�

2
. (2.15)

Comparison with (2.12) suggests that we can identify identify i, j, and k,
respectively, with �e23, �e31, and �e12. As mentioned above, the binary relations
for quaternion multiplication are:

.i/2 D .j/2 D .k/2 D �1, (2.16)

jk D �kj D i, (2.17)

ki D �ik D j, and (2.18)

ij D �ji D k. (2.19)
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You should check that the same equations hold for the corresponding 2-vectors
associated with E3. Namely:

.�e23/2 D .�e31/2 D .�e12/2 D �I; (2.20)

.�e31/.�e12/ D �.�e12/.�e31/ D .�e23/; (2.21)

.�e12/.�e23/ D �.�e23/.�e12/ D .�e31/; (2.22)

and .�e23/.�e31/ D �.�e31/.�e23/ D .�e12/: (2.23)

In Hamilton’s formulation, a vector x is represented as x1iCx2j C x3k and the
rotated vector Kx is computed by the quaternion version of (2.12).

Neither the usual vector formulation nor the Hamilton approach makes a good
distinction between an ordinary vector and an axial or pseudo-vector.

As we have seen, in the formalism of Clifford algebra, an ordinary vector appears
as a l-vector and a plane of rotation appears as a 2-vector. In three dimensions, a 1-
vector and a 2-vector both have three components. In the usual vector formalism,
they both appear as 1-vectors. In the quaternion formulation, they both appear as
2-vectors.

The distinction between the two entities arises if we consider a reflection. If, for
example, we consider a reflection with respect to the y-z plane, we have

Kx D �e1xe1.

If

x Dx1e1Cx2e2Cx3e3, then

x0 D �x1e1Cx2e2Cx3e3.
On the other hand, under the same reflection the 2-vector

X D x1e23Cx2e31Cx3e12 D x1e2e3Cx2e3e1Cx3e1e2
becomes

KX D x1.�e1e2e1/.�e1e3e1/C x2.�e1e3e1/.�e1e1e1/C x3.�e1e1e1/.�e1e2e1/ or

KX D x1e23�x2e31�x3e12.
This same distinction is carried out in the usual vector formulation but in a

somewhat awkward fashion. Let us consider the cross product x � y. Suppose

x Dx1e1Cx2e2Cx3e3, and

y Dy1e1Cy2e2Cy3e3, then

x � y D.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.
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How should the cross product transform under a reflection with respect to the y-z
plane? If we treat x � y as an ordinary vector, then

.x � y/0D �.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.

On the other hand, if we carry out the same reflection on x and y before computing
the cross product, we have

Kx D �x1e1Cx2e2Cx3e3,

Ky D �y1e1Cy2e2Cy3e3, and

Kx � Ky D.x2y3 � x3y2/e1 � .x3y1 � x1y3/e2 � .x1y2 � x2y1/e3.
When this second interpretation of the impact of a reflection on x � y is applied,

x � y is said to be an axial or pseudo-vector. In the context of Clifford algebra a
pseudo-vector is a 2-vector and this awkwardness disappears. Similarly, the entity
hx � y, zi ; which is referred to as a pseudo-scalar in the usual vector formulation,
becomes a 3-vector in Clifford algebra.

In three dimensions, it is still useful to use the usual cross product, when one
seeks a vector that is perpendicular to a plane spanned by two vectors such as x
and y. Thus, we will still use the usual definition:

x � y D.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.

However, we will also need the notion of a wedge product that we defined in (2.8).
Namely:

x ^ y D1

2
.xy � yx/ D .x2y3 � x3y2/e23 C .x3y1 � x1y3/e31 C .x1y2 � x2y1/e12.

In closing this section, we wish to bring to your attention the notion of orthogonal
transformations. An orthogonal transformation is simply a product of reflections.
This terminology is chosen when one wishes to focus on the fact that the standard
scalar product inEn is preserved. In this chapter, we have restricted ourselves toE3.
In this context, it is appropriate that you verify the fact that products of reflections
do indeed preserve the scalar product (at least in E3). (See Probs. 6 and 7.)

The product of an even number of reflections (a rotation) is called a proper
orthogonal transformation, while the product of and odd number of reflections is
called an improper orthogonal transformation.

Problem 1. From the form of (2.11), it is clear that if the rotation operators R and
KR represent two successive rotations, then the combined rotation is represented by
the product R KR. Use this fact and (2.12) to show that a 900 rotation about the y-axis
followed by a 900 rotation about the x-axis is equivalent to a 1200 rotation about the
axis, which has the direction of the vector .1; 1; 1/.
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Problem 2. There are many representations that can be used for e1, e2, and e3. One
convenient representation is that using Pauli matrices � 1, � 2, and � 3. That is, we
can let

e1 D �1 D
�
0 1

1 0

�
, e2 D �2 D

�
0 �i
i 0

�
, and e3 D �3 D

�
1 0

0 �1
�

.

Show that in this representation, (2.4) and (2.5) are satisfied.

Problem 3. If you assume associativity for the multiplication of quaternions, then
using the equations that appears on Hamilton’s plaque, we have

ijk D � 1 ) .i/2jk D �i ) �jk D �i ) jk D i:

(a) In a similar fashion, show

ki D j and ij D k.

(b) Also show that
kj D �i, ik D �j, and ji D �k.

Problem 4. In the representation introduced in Prob. 2, the quaternions i, j, and k
are represented by complex 2 � 2 matrices. In particular,

i D �e23 D �i� 1 D
�
0 �i

�i 0

�
, j D �e31 D �i� 2 D

�
0 �1
1 0

�
,

and k D �e12 D �i� 3 D
��i 0
0 i

�
.

In this representation, the rotation operator

R D I cos
�

2
C .e23n1 C e31n2 C e12n3/ sin

�

2

D
"

cos �
2

C in3 sin �
2
.n2 C in1/ sin �

2

�.n2 � in1/ sin �
2

cos �
2

� in3 sin �
2

#

:

Show that in this representation, the matrix representing R is unitary and has
determinant equal to 1. (From this result, it is clear that the algebraic properties
of the double-valued rotation operators for three dimensions can be ascertained by
studying the algebraic properties of 2 � 2 unitary matrices whose determinant is 1.
For this reason, the group of double-valued rotation operators is labeled SU.2/: The
letter U indicates “unitary”. The letter S indicates “special”, which in the context of
group representation theory means the determinant is 1.)
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Problem 5. Suppose

R D I cos
�

2
C On sin

�

2
, where

On Dn1e23 C n2e31 C n3e12.

(a) Using the fact that

.n1/2 C .n2/2 C .n3/2 D 1, show that

. On/2 D �1:
(b) Show that exp

�On. �
2
/
� D R: Hint: represent exp

� On. �
2
/
�

by a Taylor’s series and
then separate the odd and even odd and even powers On.

Problem 6. Suppose Kx D �axa and Ky D �aya, where a is a unit vector. Show
hKx; Kyi D hx; yi. (Remember from (2.7), hx; yi I D 1

2
.xy C yx/:)

Problem 7. Suppose Kx D .�1/kakak�1 : : : a1xa1a2 : : : ak and y0 D .�1/kakak�1
: : : a1ya1a2 : : : ak . Show hKx; Kyi D hx; yi.

2.2 The 4� Periodicity of the Rotation Operator

From the consequences of the last section, we see that if the vector x.�/ represents
the result of rotating vector x.0/ through an angle � , then we can represent the
rotation in the form:

x.�/ D R�1.�/x.0/R.�/, where

R.�/ D I cos
�

2
C On sin

�

2
,

On Dn1e23Cn2e31Cn3e12, and

n1, n2, along with n3 are the direction cosines for the axis of rotation.
Although x.�/ has a period of 2� , R.�/ has a period of 4�! With the

development of quantum mechanics in the 1920s, it became recognized that a 4�
periodicity sometimes occurs in nature. To explain the observed structure of the
hydrogen energy spectrum, it was necessary to attribute to the electron a spin of 1

2

and a periodicity of 4� . Later, it became recognized that some objects larger than
electrons also have a 4� periodicity (Bolker 1973). A demonstration of this fact has
been put forward by Edgar Riefin (1979).

For an object to display a 4� periodicity, it is necessary that it be in some sense
attached to its surroundings.
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Fig. 2.3 A book with a 4� periodicity

To illustrate this, you may wish to carry out a demonstration. First, hold a glass of
water in the palm of your hand. The hand holding the glass may be left or right but
it is important that your hand be under the glass with palm up. Then maintain a firm
grip on the glass and rotate it 3600 without moving your feet or spilling any water.
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When you have completed this maneuver, you will find yourself in an awkward
position with the glass slightly above your head and your elbow pointed upward.
Clearly, the relationship of the glass to you is quite different from what it was in its
initial position. However, if you continue the rotation, you may be surprised to find
that your arm will unwind itself and the glass will return to its initial position with
its initial relationship to you. Thus, the glass attached to your arm does not have a
2� periodicity but it does have a 4� periodicity.

This demonstration is shown in Fig. 2.3 where a book is used in place of a glass
of water.

2.3 *The Point Groups for the Regular Polyhedrons

One aspect of geometry, which attracts a lot of attention in physics, is symmetry
groups. The symmetry of a body can be characterized by the set of transformations
that maintain distances between points and bring the body into its original space
of occupation. Quite reasonably, these are called symmetry transformations. For
infinite bodies (for example an infinite crystal lattice), the set of symmetry transfor-
mations may contain translations.

But for finite bodies, symmetry transformations are restricted to rotations and
products of rotations and reflections. For this reason, Clifford algebra is a good tool
to attack the mathematics of symmetry for finite bodies.

Before getting very deep into this topic, it is useful to prove a theorem by
Élie Cartan (1938, pp. 13–17; 1966, pp. 10–12). His theorem states that in an
n-dimensional space (real or complex), a transformation consisting of any finite
number of reflections can also be obtained by a number of reflections that does not
exceed n.

In this text, we only need the real 3-dimensional version and that is the only
version we will prove.

Theorem 8. Suppose Kx D .�1/kak ak�1 : : : a1xa1a2 : : : ak . That is we have a
transformation consisting of k reflections. Then this same transformation (in E3)
can be achieved by three or fewer reflections.

Proof. Case 1. The number of reflections k is even. If we multiply an even number
of 1-vectors, we get a linear combination of the 0-vector I and the three 2-vectors
e23, e31, and e21. That is

a1a2 : : : ak D I˛ C e23ˇ1 C e31ˇ2 C e12ˇ3.

(This already looks like a rotation operator!) The operator akak�1 : : : a1 is essen-
tially the same as a1a2 : : : ak except for the fact that the underlying Dirac vectors
are in reverse order. Thus,

akak�1 : : : a1 D I˛ C e32ˇ1 C e13ˇ2 C e21ˇ3 D I˛ � e23ˇ1 � e31ˇ2 � e12ˇ3.
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Since .a1/2 D .a2/2 D : : : D .ak/2 D I; .akak�1 : : : a1/ .a1a2 : : : ak/ D I, and

I D �
I˛ � e23ˇ1 � e31ˇ2 � e12ˇ3

� �
I˛ C e23ˇ1 C e31ˇ2 C e12ˇ3

�

D I
�
.˛/2 C .ˇ1/2 C .ˇ2/2 C .ˇ3/2

�
:

Since .˛/2 C .ˇ1/2 C .ˇ2/2 C .ˇ3/2 D 1, there exists an angle  such that

cos D ˛ and sin D
p
.ˇ1/2 C .ˇ2/2 C .ˇ3/2.

Furthermore, if at least one of the ˇk’s is not zero, we can define the direction
cosines for the axis of rotation by

nk D ˇk=
p
.ˇ1/2 C .ˇ2/2 C .ˇ3/2 D ˇk= sin for k D 1; 2; and 3.

(Note! this definition guarantees that .n1/2 C .n2/2 C .n3/2 D 1.) We now have
shown:

a1a2 : : : ak D I cos C .n1e23 C n2e31 C n3e12/ sin .

If the sin D 0; a1a2 : : : ak D ˙I: Otherwise, we have a nontrivial rotation
operator. From Fig. 2.2, it is clear that this rotation operator can be replaced by
a product of two reflections.

Case 2. The number of reflections k is odd.
In this case, we can multiply out the first k-1 reflections to get a rotation operator

and we then have:

a1a2 : : : ak D �
I cos C .n1e23 C n2e31 C n3e12/ sin 

�
ak

D �
I cos C .n1e23 C n2e31 C n3e12/ sin 

�
.k1e1 C k2e2 C k3e3/:

If sin D 0 or k1n1 C k2n2 C k3n3 D 0, our product a1a2 : : : ak reduces to
a 1-vector. Otherwise after factoring the rotation into two reflections, we have the
product of three reflections. ut
Now we are in a position to have a reasonably intelligent discussion of symmetry
groups. Generally, the set of multiple reflections that bring a particular finite body
into its original position in space is called a point group for two reasons. One is due
to the fact that at least one point remains fixed under all symmetry transformations
associated with a particular body. The second is due to the fact that the set of the
symmetry transformations identified with a particular body forms a mathematical
structure known as a group.

Definition 9. A group is a set of elements with a binary operation ı having the
following properties:

(1) Closure: g1 2 G, g2 2 G ) g1 ı g2 2 G:
(2) Associativity: .g1 ı g2/ ı g3 D g1 ı .g2 ı g3/:
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Tetrahedron Cube Octahedron

IcosahedronDodecahedron

Fig. 2.4 The five regular polyhedrons

(3) Identity element: 9 an element e 2 G such that 8 g 2 G; e ı g D g ı e D g.
(4) Inverse: 8 g 2 G, 9 g�1 2 G such that g ı g�1 D g�1 ı g D e.

Examples of groups include the integers under addition, the positive rational
numbers under multiplication, and nonsingular n�n matrices under matrix multi-
plication.

We will only give a short description of a few point groups – in particular the five
point groups associated with the five regular polyhedrons. (See Fig. 2.4.) For each
of the polyhedrons, we have a finite symmetry group. One way to verify we have a
group is to run through the check list in the definition above.

The elements of a symmetry group for a finite solid are finite products of
reflections. It is clear that the multiplication of two finite products results in a finite
product, which preserves the original position of the relevant solid. Thus, the set of
symmetry transformations satisfy the property of closure.

The identity element corresponds to the transformation that does nothing or
rotates the solid some integral multiple of 3600:

To obtain the inverse of a product of reflections, one simply constructs the
product of the same reflections in the reverse order.

To show that the symmetry groups for the regular polyhedrons have only a
finite number of members, let us consider the example of the cube. (See Fig. 2.5.)
Applying Cartan’s theorem, we know that an even number of reflections (a proper
orthogonal transformation) can be reduced to either the identity element or a
rotation. The possible symmetry rotations are not difficult to count.
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A

B

CFig. 2.5 Some symmetry
axes of rotation for the cube

Perhaps, the most obvious symmetry rotations are those that correspond to the
fourfold axes that pass through the centers of opposite faces. Not counting the 3600

identity rotation, we have symmetry rotations of 900, 1800, and 2700. Since there
are three such axes, this gives us 3 � 3 D 9 elements.

We also have some twofold axes that pass through the midpoints of opposite
edges. Since there are 12 edges, there are six such axes and corresponding to each
of these axes is a symmetry rotation of 1800. This accounts for six more elements
in the group. Then there are four threefold axes that pass through opposite vertices.
This adds another eight members to the group.

Finally, there is the identity transformation. Thus, the total number of proper
orthogonal members for the point group associated with the cube is 9 C 6 C 8 C
1 D 24. (Because any product of reflections has two representations in the Clifford
formalism (˙/; there are 48 Clifford numbers in the Clifford version of the proper
orthogonal group for the cube.)

To obtain the number of improper orthogonal transformations by simply counting
them is difficult because some members of this set are not simple reflections but
products of three reflections. To complete our counting problem, we wish to apply
the following theorem:

Theorem 10. For a finite point group, the number of improper orthogonal trans-
formations (products of an odd number of reflections) is equal to the number of
proper transformations (products of an even number of reflections). Note! For
those familiar with group theory, what is proven below is that the set of improper
orthogonal transformations is a coset of the subgroup of proper orthogonal
transformations.

Proof. To establish the truth of this theorem, we choose a unit vector a correspond-
ing to a simple reflection in the group and then show that any improper orthogonal
transformation can be represented uniquely (aside from the sign ambiguity) in the
form Ra where R is a rotation or ˙ the identity element I:
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Consider a product of an odd number of reflections a1a2 : : : ak . If k is odd,
we can multiply out the first k-1 reflections to get a rotation operator R. So we
have

a1a2 : : : ak D Rak.

If ak D a, we are incredibly lucky. Otherwise,

Rak D Rak.a/2 D R.aka/a D R KRa D R̋a, where

R̋ D R KR. Thus, we have

a1a2 : : : ak D R̋a.

To show that this representation is unique aside from the sign ambiguity, suppose

Ra D ˙ KRa. Multiply both sides by a to get

R.a/2 D ˙ KR.a/2 or R D ˙ KR: ut

Applying this theorem to the cube, we see that the point group for the cube has
48 members (96 for the double valued Clifford version).

Using the terminology of group theory, we say the order of the point group for
the cube is 48.

To get the orders for the point groups of the other polyhedrons, the chief problem
is counting the edges and vertices. For example, the dodecahedron is constructed by
assembling 12 regular pentagons. Before assembly, the 12 pentagons have a total of
12 � 5 D 60 edges. When assembled, one edge from one pentagon and one edge
from a second pentagon align to become a single edge of the dodecahedron. Thus,
the dodecahedron has 60=2 D 30 edges, which correspond to 30=2 D 15 twofold
axes. Similarly, the 60 vertices of the 12 pentagons become 60=3 D 20 vertices for
the dodecahedron. In turn, this corresponds to ten threefold axes.

For four of the five regular polyhedrons, the axes of symmetry pass through pairs
of faces, pairs of edges, or pairs of vertices. The one exception is the tetrahedron. For
the tetrahedron, the twofold axes do indeed correspond to pairs of edges. However
for the threefold axes, the situation is different. For the tetrahedron, each threefold
axis passes through one vertex and one face.

When you determine the orders of the point groups (See Prob. 12.), you will
see that the order of the point group for the cube is identical to the order of the
point group for the octahedron. This raises the possibility that the two groups are
isomorphic. Two groups are said to be isomorphic if one can set up a one-to-one
correspondence between the groups is such a way that if x in one group corresponds
to Kx in the second group and y corresponds to Ky then x ı y corresponds to Kx ı Ky.
For the cube and the octahedron, this is plausible because the numbers of fourfold,
threefold, and twofold axes match up in the two groups. Nonetheless, it would
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a b

Fig. 2.6 (a) A cube aligned with a skeleton frame of an octahedron. (b) An icosahedron aligned
with a skeleton frame of a dodecahedron

be very difficult to determine an isomorphic correspondence without resorting to
geometry. However using geometry, it becomes a trivial exercise to establish the
isomorphism. One merely matches the vertices of one with the face centers of the
other. In Fig. 2.6a, we have aligned a cube with the skeleton frame of an octahedron
is such a way that the symmetry axes of rotation for the two polyhedrons coincide.
Thus we see that a proper symmetry transformation for one of the polyhedrons is
a proper symmetry transformation for the other. The two point groups also contain
the same improper symmetry transformations. (See Prob. 15.) Thus, the two point
groups are isomorphic.

In Fig. 2.6b, we have aligned an icosahedron with the skeleton frame of a
dodecahedron with similar consequences.

One can also demonstrate geometrically that the point group for the tetrahedron
is a subgroup of the point groups for the other polyhedrons so that any symmetry
transformation of the tetrahedron is also a symmetry transformation of the other
polyhedrons.

One can imbed a tetrahedron inside a cube so that the threefold axes for the
two polyhedrons coincide. (See Fig. 2.7a.) The twofold axes of the tetrahedron do
not coincide with the twofold axes of the cube. However, the twofold axes of the
tetrahedron do coincide with the fourfold axes of the cube. Thus, it becomes clear
that any proper orthogonal transformation in the point group for the tetrahedron
belongs to the point group for the cube. It can also be said that any improper
transformation belonging to the point group for the tetrahedron is also an improper
transformation belonging to the point group for the cube. (See Prob. 16.) Thus, it is
clear that the point group for the tetrahedron is a subgroup of the point group for the
cube.

It is more difficult to visualize but the point group for the tetrahedron is also a
subgroup of the dodecahedron (or icosahedron). (See Fig. 2.7b.)
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x

y

z
a b

Fig. 2.7 (a) A tetrahedron aligned with the skeleton frame of a cube. (b) A tetrahedron aligned
with the skeleton frame of a dodecahedron

A

B

C

D

E

Fig. 2.8 A cube aligned with
the skeleton frame of a
dodecahedron.

It is also enlightening to examine Fig. 2.8. You may not be convinced that
connecting some of the vertices of the dodecahedron as shown in Fig. 2.8 results in
the edges of a cube. However, it should be clear that the direction of line segment AB
is perpendicular to the direction of line segment DE. Furthermore, line segment DE
is parallel to line segment BC. Thus, the edges of our suspect cube do indeed meet
at right angles at each vertex. By studying the alignment of the various symmetry
axes of rotation in Fig. 2.8, we reach the conclusion that the intersection of the point
group for the cube (or octahedron) and the point group for the dodecahedron (or
icosahedron) is the point group for the tetrahedron.
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Problem 11. Prove that there are no more than five regular polyhedrons. Hint:
What is the maximum number of equilateral triangles that can share a single vertex?

Problem 12. Determine the orders of the point groups for the tetrahedron, octahe-
dron, dodecahedron, and icosahedron. Are your results consistent with Figs. 2.6a
and 2.6b?

Problem 13. How does the result of Prob. 1 relate to the point group for the cube?
What is the consequence of two successive 900 rotations about two non-aligned
fourfold axes?

Problem 14. In view of Fig. 2.7a, the three twofold axes of the tetrahedron can
be aligned with the x, y, and z axes. Suppose we designate a 1800 rotation about
the x-axis by Rx D ˙e23. Suppose we also define Ry and Rz in a similar manner.
Complete the following table:

ı I Rx Ry Rz

I
Rx Rx

Ry

Rz

You will find that the 1800 rotations commute, although the Clifford representa-
tions do not.

Problem 15. Consider Fig. 2.6a.

(a) Draw the figure with the cube and octahedron aligned with the x, y, and z axes.
(b) Describe a plane of reflection that is common to both the cube and octahedron.
(c) It has already been pointed out that if the cube and the octahedron are aligned

as in Fig. 2.6a, the proper orthogonal symmetry transformations for the two
point groups are identical. Use your result in part b) to show that the improper
symmetry transformations for the two point groups are identical.

(d) Explain why the improper symmetry transformations for the icosahedron are
the same as the improper symmetry transformations for the dodecahedron.

Problem 16. (a) Prove that any improper orthogonal symmetry transformation for
the tetrahedron is also an improper orthogonal symmetry transformation for the
cube. (If you get stuck, review the approach used in the proof of Theorem 10.)

(b) Explain why any improper orthogonal symmetry for the tetrahedron is also
an improper orthogonal symmetry transformation for the dodecahedron (or
icosahedron).

Problem 17. If a tetrahedron is aligned with the x, y, and z axes as shown in
Fig. 2.7a, then the rotations about the threefold axis shown are

˙
�

I cos 600 C sin 600
�
1p
3

e23 C 1p
3

e31 � 1p
3

e12

	�
D ˙1

2
ŒI C e23 C e31 � e12/�
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and

˙
�

I cos 1200 C sin 1200
�
1p
3

e23 C 1p
3

e31 � 1p
3

e12

	�
D �1

2
ŒI � e23 � e31 C e12/�

D ˙1

2
ŒI � e23 � e31 C e12/� :

(a) List all of the rotations for both the twofold and threefold axes. (Don’t compute
them all – after computing a few, you should see patterns.)

(b) Write down the Clifford representation of a reflection and use this to construct
a list of the improper orthogonal symmetry for the tetrahedron.

(c) In the list constructed in part b), which are simple reflections and which cannot
be achieved by fewer than three reflections?

Problem 18. Euler’s Formula
In 1750, Leonard Euler made the conjecture that for any convex polyhedron,

F � E C V D 2, where F equals the number of faces, E equals the number of
edges, and V equals the number of vertices (James 2002, p. 5). Determine whether
this formula is valid for the five regular polyhedrons. Suppose you slice off a corner
of a cube. Does the resulting solid satisfy Euler’s formula?

2.4 *Élie Cartan 1869–1951

The way mathematicians deal with differential geometry was significantly altered
by the work of Élie Cartan. In 1993, the American Mathematical Society published
a 301-page translation from Russian of a summary of his work. This short biography
is extracted from that source.

The authors of that summary are two Russian mathematicians: M.A. Akivis and
B.A. Rosenfeld (1993). Élie Cartan’s contributions to mathematics are so deep and
broad that these two accomplished geometers felt compelled to include a virtual
apology in their preface: “Of course the authors are only able to describe in detail
Cartan’s results connected with those branches of geometry in which the authors are
experts.” (Akivis and Rosenfeld 1993, p. xi).

Élie Joseph Cartan was born on April 9, 1869 in Dolomieu, a small village in
southeastern France of less than 2,000 people. At the time of his birth, no one would
have predicted that Élie Cartan would become a world renowned mathematician.
His father was a blacksmith. His older sister, Jeanne-Marie, became a dressmaker,
and his younger brother, Leon, would eventually join the family business as another
blacksmith.

Élie seemed destined for a similar career in rural France until a fateful visit to
Élie’s elementary school by the up and coming politician, Antonin Dubost (1844–
1921). This event would change Élie’s direction in life.
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When Élie’s teachers described their very remarkable student to Dubost, Dubost
encouraged the young Cartan to compete for a scholarship at a more competitive
lycée. Antonin Dubost eventually became the Minister of Justice under one adminis-
tration and later became President of the French Senate for what was essentially the
last 14 years of his life. Throughout his life, Antonin Dubost maintained a fatherly
interest in Cartan’s career.

To help Élie obtain the desired scholarship, one of his teachers, M. Dupuis,
supervised his preparation for the required exam. Cartan scored well on the exam,
received the scholarship, and left home at the age of 10.

At the age of 17, Cartan decided to become a mathematician and enrolled at
l’École Normale Supérieure in Paris. During the next three years, Cartan not only
attended lectures at l’École Normale Supérieure but also at the Sorbonne. In this
way, he became exposed to many outstanding mathematicians including Henri
Poincaré. After graduation, he was drafted into the French army for one year. He
then returned to Paris and received his doctorate at the Sorbonne two years later in
1894 while attracting the attention of prominent mathematicians including Sophus
Lie at Leipzig University in Germany.

Early in his career, Cartan developed aspects of Lie groups and Lie algebras
that could be applied to differential geometry. Later, his work on differential forms
led him to develop methods that are now commonly used to deal with differential
equations. In 1910, Cartan began to perfect the method of moving frames to deal
with problems in differential geometry (Cartan 1910a, 1910b). (You will encounter
this method in later chapters of this book.)

In 1915, when Cartan was 46, he was again drafted into the French army soon
after World War I broke out. However, he was not sent to the front. Instead, he was
assigned to a hospital set up in the building of l’École Normale Supérieure. This
situation allowed him to continue his mathematical research during the war years.

During these same war years, Einstein living in Berlin, discovered that a slight
variation of Riemannian geometry was necessary to express his general theory of
relativity. After the war, Einstein and others sought out mathematical structures that
could be used to construct a unified field theory. With this motivation, Cartan turned
his attention to extracting properties of more general geometric spaces that might
be useful. (His correspondence with Einstein was edited by Robert Debever and
published by Princeton University Press in 1979 under the title Élie Cartan and
Albert Einstein: Letters on Absolute Parallelism, 1929–1932.)

To summarize, Cartan was prolific. Akivis and Rosenfeld attribute over 200
publications to Cartan, and this includes several books that have been republished
in recent years.

Cartan was also successful as a family person. In 1903, he married Marie-
Louise Bianconi (1880–1950) and soon became the father of three sons: Henri
(1904–2008), Jean (1906–1932), and Louis (1909–1943). Later Élie and Marie-
Louise had a daughter Hélene (1917–1952). His first son, Henri, became a world
renowned mathematician in his own right. (Henri Cartan died on August 13, 2008
at the age of 104!) His second son, Jean, seemed headed for a promising career
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as a music composer but he died of tuberculosis at the age of 25. The third son,
Louis, was a talented physicist, but during World War II, he was arrested by Vichy
government police for his activities in the French resistance. He was then turned
over to the Germans who held him in captivity for 15 months before executing
him by decapitation. The daughter Hélene taught mathematics at several lycées and
authored several math papers before she died at the age of 34.

During most of his adult life, Élie Cartan made his home in Paris or within
commuting distance of Paris. He had spent much of his boyhood away from his
hometown but he always maintained his ties there. He encouraged his younger sister
Anna to pursue a career in math education. She taught at several secondary schools
for girls and authored two textbooks, which were reprinted many times.

In 1909, Cartan built a vacation home in Dolomieu and sometimes he could
be seen at the family blacksmith shop helping his father and brother to blow the
blacksmith bellows.

Cartan’s sister Anna and daughter Hélene were not the only women to receive
Cartan’s encouragement to study mathematics. After he retired from his professorial
position at the Sorbonne in 1940, he devoted the last years of his life in his 70s to
teaching mathematics at the École Normale Supérieure for girls.

After a long illness, he died in Paris on May 6, 1951.

2.5 *Suggested Reading
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Wesley Publishing Company, Inc. Also reprint edition 1990. New York. Dover
Publications, Inc.

The second chapter is devoted to the point groups.
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D.M.Y. Sommerville 1958. An Introduction to the Geometry of N Dimensions.
New York: Dover Publications, Inc.

This book includes a discussion of regular polyhedrons in higher dimensions.



Chapter 3
Clifford Algebra in Minkowski 4-Space

3.1 A Small Dose of Special Relativity

When the speed of sound is measured, it is found that the speed is independent of
direction only if it is measured with respect to the air. If the air is moving at a rate
of 20 km per hour, an observer on the ground will discover that sound moving in the
direction of the wind will move 20 km per hour faster than it would when the air is
still. Similarly, sound moving against the wind will be slowed down.

During the nineteenth century, it was generally believed that light traveled
through some kind of “ether” in much the same way as sound travels through air.
In 1881, in an effort to measure the velocity of this ether with respect to earth,
Albert Michelson designed an experiment that would compare the speed of light in
different directions (1881). The result of the experiment was that the speed of light
was the same in all directions. The experiment was refined and repeated 6 years later
by Albert Michelson and Edward Morley, but the result was the same (1887).

It might be argued that at the time the measurements were taken, the earth was
moving downstream in the same direction and with the same speed as the ether.
However, in the course of a year as the earth moves around the sun, the earth hurtling
through space in different directions and Michelson and Morley got the same null
result at different times of the year.

To this day, there are some holdouts who argue that the ether is dragged along
by the earth. However, the overwhelming majority of physicists have abandoned the
ether concept.

Aside from the result of Michelson and Morley, there were also some anomalies
that appeared in the study of Maxwell’s equations for electromagnetic fields.
According to Maxwell’s equations, a magnetic field is generated by a moving
charge. But what about an observer who moves with the same velocity as the charge?
For such an observer, the charge is stationary. However, if the magnetic field exists,
such an observer should be able to measure it.

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 3, © Springer Science+Business Media, LLC 2012
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To resolve this kind of paradox, some mathematically inclined physicists inves-
tigated the mathematical symmetries of Maxwell’s equations. Hendrik A. Lorentz
(1904), Henri Poincaré (1905), and Albert Einstein (1905) published separate papers
that presented a set of equations, which have since become known as the Lorentz
transformation.

It was Einstein who saw that these equations made sense without the concept of
ether. For this reason, he is generally credited with the introduction of the special
theory of relativity.

The derivation shown below was lifted from Modern University Physics by
Richards et al. (1960).

The Lorentz transformation can be derived from the assumption that the speed
of light in a vacuum is a constant independent of direction for any observer who is
moving at constant speed with respect to the source. Suppose we station a team of
physicists on top of a speeding freight train and another team of physicists on the
ground alongside the railroad track. Both teams adjust their watches so that when
the exact middle of the train passes a designated point next to the track, all watches
will agree that the time is zero. At the moment, the middle of the train is aligned
with the designated point, a flash is set off either on board the train at the exact
middle or at the designated point. (It does not matter.)

If the team on board monitors the position of the front edge of the expanding light
wave, they will find that they are dealing with an expanding sphere whose radius is
increasing with the constant speed of light c. Thus, if .Nt ; Nx1; Nx2; Nx3/ represents the
coordinates of a point on the expanding sphere in a 4-dimensional space-time frame
observed by the physicists on board, then

. Nx1/2 C . Nx2/2 C . Nx3/2 D .c Nt /2: (3.1)

The team of physicists on board would discover that the wave front would arrive
at the front end of the train and the rear end simultaneously.

For the team on the ground the result would be quite similar. That is, they also
would observe that the wave front is an expanding sphere. Thus if .t; x1; x2; x3/
represents the coordinates of a point on the wavefront observed by the team on the
ground, then

.x1/2 C .x2/2 C .x3/2 D .ct/2: (3.2)

However in this frame, the wavefront would arrive at the rear end of the train
before it arrived at the front end. What are simultaneous events in one frame are
not necessarily simultaneous in an alternate frame. This is a little baffling but it is a
consequence of what is meant by the speed of light being constant.

If the train is speeding in the x1 direction, then according to Newtonian
mechanics, the relationship between the two coordinate systems is known as the
Galilean transformation

t D Nt ; (3.3)

x1 D Nx1 C vNt ; (3.4)
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Nx1 D x1 � vt; (3.5)

x2 D Nx2; and (3.6)

x3 D Nx3: (3.7)

However, this system of equations is inconsistent with (3.1) and (3.2). (For one
thing, (3.3) implies that events that are simultaneous in one frame are simultaneous
in all other frames.) To adjust the Galilean transformation to make it consistent
with the constant speed of light, one can make the following modification to (3.4)
and (3.5):

x1 D Nk � Nx1 C vNt� and (3.8)

Nx1 D k
�
x1 � vt

�
: (3.9)

If neither coordinate system is preferred, then we must require that

Nk D k:

These equations imply that (3.3) must be adjusted. If we substitute the formula
for Nx1 from (3.9) into (3.8), we have

x1 D k
�
k
�
x1 � vt

�C vNt� D .k/2x1 � .k/2vt C kvNt :

Solving this for Nt ; we get

Nt D kt � .k/2 � 1

kv
x1 D k

�
t � .k/2 � 1

.k/2 v
x1
	
: (3.10)

Substituting the values of Nt from (3.10), Nx1 from (3.9), Nx2 from (3.6), and Nx3 from
(3.7) into (3.1), we get

.k/2.x1 � vt/2 C .x2/2 C .x3/2 D .k/2c2
�
t � .k/2 � 1

.k/2 v
x1
	2
: (3.11)

This should match with (3.2). To determine the formula for k, we will consider the
special case for which x1 D 0: In that case,

.k/2.vt/2 C .x2/2 C .x3/2 D .k/2c2.t/2 or

.x2/2 C .x3/2 D .k/2c2.t/2 � .k/2.vt/2 should match with

.x2/2 C .x3/2 D c2.t/2:



30 3 Clifford Algebra in Minkowski 4-Space

This implies that

k2c2 � k2v2 D c2 or

k2 D c2

c2 � v2
D 1

1 � .v2=c2/
or

k D 1
p
1 � .v2=c2/

When this value of k is substituted back into (3.11), it will indeed become (3.2).
(See Problem 19.) Summarizing, we now have

c Nt D k


ct � v

c
x1
�

ct D k


c Nt C v

c
Nx2
�

(3.12)

Nx1 D k


x1 � v

c
ct
�

x1 D k



Nx1 C v

c
c Nt
�

(3.13)

Nx2 D x2 x2 D Nx2 (3.14)

Nx3 D x3 x3 D Nx3; (3.15)

where

k D 1
p
1 � .v2=c2/

: (3.16)

You should note that if v � c, then k � 1 and Einstein’s equations are nearly
identical to the Galilean transformation that we use for the physics of Newton.

The equations above are said to represent a boost in the x1 direction. These
equations can be reformulated to take on an appearance similar to that of a rotation
in the x1 � t plane.

If we define

cosh� D k D 1
p
1 � .v2=c2/

; (3.17)

then

sinh2 � D cosh2 � � 1 D 1

1� .v2=c2/
� 1 � .v2=c2/
1 � .v2=c2/ D .v2=c2/

1 � .v2=c2/
:

Thus, we can define

sinh � D v=c
p
1 � .v2=c2/ D k

v

c
: (3.18)
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Now Einstein’s equations for a boost in the x1direction become

c Nt D ct cosh� � x1 sinh� ct D c Nt cosh� C Nx1 sinh� (3.19)

Nx1 D x1 cosh� � ct sinh� x1 D Nx1 cosh� C c Nt sinh� (3.20)

Nx2 D x2 x2 D Nx2 (3.21)

Nx3 D x3 x3 D Nx3: (3.22)

To accommodate these equations to the formalism of Clifford algebra, we
represent a four-dimensional vector in space–time in the form:

s D e0ct C e1x1 C e2x2 C e3x3: (3.23)

However for special relativity, we must use a non-Euclidean metric! In particular

.e0/2 D �.e1/2 D �.e2/2 D �.e3/2 D I and (3.24)

eij D eiej D �ej ei D �ej i for i ¤ j: (3.25)

With these definitions, a boost in the x1 direction can be written as

NsD B�1sB, where (3.26)

Ns D e0c Nt C e1 Nx1 C e2 Nx2 C e3 Nx3, (3.27)

BD I cosh
�

2
C e10 sinh

�

2
D exp

�
e10
�

2

	
, and (3.28)

B�1DI cosh
�

2
� e10 sinh

�

2
D exp

�
�e10

�

2

	
: (3.29)

Note!

Ns D B�1sB

D
�

I cosh
�

2
� e10 sinh

�

2

	�
e0ctCe1x1 C e2x2 C e3x3

��
I cosh

�

2
Ce10 sinh

�

2

	

D
�

I cosh
�

2
� e10 sinh

�

2

	�
e0ct C e1x1

� �
I cosh

�

2
C e10 sinh

�

2

	

C
�

I cosh
�

2
� e10 sinh

�

2

	 �
e2x2 C e3x3

� �
I cosh

�

2
C e10 sinh

�

2

	
:
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Since e10 commutes with e2 and e3 and anticommutes with e0 and e1, we have

Ns D e0c Nt C e1 Nx1 C e2 Nx2 C e3 Nx3

D �
e0ct C e1x1

�
�

I cosh
�

2
C e10 sinh

�

2

	�
I cosh

�

2
C e10 sinh

�

2

	

C �
e2x2 C e3x3

�
�

I cosh
�

2
� e10 sinh

�

2

	�
I cosh

�

2
C e10 sinh

�

2

	
:

Since
�

I cosh
�

2
C e10 sinh

�

2

	�
I cosh

�

2
C e10 sinh

�

2

	

D I
�

cosh2
�

2
C sinh2

�

2

	
C e102 sinh

�

2
cosh

�

2

D I cosh� C e10 sinh�,

and
�

I cosh
�

2
� e10 sinh

�

2

	�
I cosh

�

2
C e10 sinh

�

2

	

D I
�

cosh2
�

2
� sinh2

�

2

	
D I,

we get

Ns D e0c Nt C e1 Nx1 C e2 Nx2 C e3 Nx3

D �
e0ct C e1x1

�
.I cosh� C e10 sinh�/C �

e2x2 C e3x3
�

D e0.ct cosh� � x1 sinh�/C e1.x1 cosh� � ct sinh�/C e2x2 C e3x3:

We see that this system is an alternate form of Einstein’s equations.
Note! It would have been more expeditious but less obvious to the beginner to

write:

Ns D B�1sB

D exp

�
�e10

�

2

	 �
e0ct C e1x1 C e2x2 C e3x3

�
exp

�
e10
�

2

	

D �
e0ct C e1x1

�
exp

�
e10
�

2

	
exp

�
e10
�

2

	
C �

e2x2 C e3x3
�

I

D �
e0ct C e1x1

�
exp.e10�/C e2x2 C e3x3

D �
e0ct C e1x1

�
.I cosh� C e10 sinh�/C e2x2 C e3x3/

D e0.ct cosh� � x1 sinh�/C e1.x1 cosh� � ct sinh�/C e2x2 C e3x3:
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For two successive boosts in Newtonian physics, we would have

Kx D x � v1t

x̋ D Kx � v2t D .x � v1t/ � v2t or

x̋ D x � vt , where

v D v1 C v2.

By contrast, for two successive boosts in special relativity, we have

B D B1B2 or

exp

�
e10
�

2

	
D exp

�
e10
�1

2

	
exp

�
e10
�2

2

	
, so

� D �1 C �2.

From (3.17) and (3.18),

v

c
D sinh �

cosh�
D sinh.�1 C �2/

cosh.�1 C �2/

D sinh�1 cosh�2 C cosh�1 sinh�2
cosh�1 cosh �2 C sinh�1 sinh�2

: (3.30)

Dividing both the numerator and denominator by cosh�1 cosh�2, (3.30) becomes

v

c
D

sinh�1
cosh�1

C sinh�2
cosh�2

1C sinh�1
cosh�1

sinh�2
cosh�2

D .v1=c/C .v2=c/

1C .v1v2=c2/
.

or

v D v1 C v2
1C .v1v2=c2/

(3.31)

As you might expect, for low velocities v1v2=c2 � 0 so v � v1 C v2: You may
have heard that a physical object cannot go faster than the speed of light. Suppose we
return to the speeding train with the team of physicists on board. Suppose the train
is moving at two thirds the speed of light and an exceptionally strong physicist hurls
a spear in the forward direction also at two thirds the speed of light with respect to
the train. According to Newtonian physics, the observers on the ground should see
the spear moving at four thirds the speed of light. However according to the theory
of special relativity, we must use (3.31). If v1 D 2

3
c and v2 D 2

3
c , then

v D
2
3
c C 2

3
c

1C 4
9

D
4
3
c
13
9

D 12

13
c:

In general if v1 < c and v2 < c, then v < c: (See Problem 22.)
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You may have heard of shrinking rods at high velocities. This is known as Lorentz
contraction. Why does this occur? Suppose you consider a rod that has length L0,
when it is observed in a frame in which it is stationary. For such a frame, we can
place one end at Nx1A D 0 and the other end at Nx1B D L0: In this frame, you do
not care at what times you locate the two ends when you set about determining the
length of the rod. Thus, we may represent one end in space–time by the vector

e0c NtA;
and the other end by the vector

e0c NtB C e1L0:

From (3.19) and (3.20), we can see that for the frame in which the rod is moving
with speed v in the x1 direction, these two points would become, respectively:

e0ctA C e1x1A D e0c NtA cosh� C e1c NtA sinh�

and

e0ctB C e1x1B D e0.c NtB cosh� C L0 sinh�/C e1.L0 cosh� C c NtB sinh�/:

We see that in this frame, the difference of the spatial coordinates for the two
points is

L D x1B � x1A D L0 cosh� C c.NtB � NtA/ sinh�: (3.32)

However in this frame, the rod is moving so the notion of length is meaningful only
if we locate the two ends simultaneously. Thus, we require that

ctA D ctB . That is

c NtA cosh� D c NtB cosh � C L0 sinh�, or

c.NtB � NtA/ D �L0 sinh�

cosh�
:

Thus, (3.32) becomes

L D L0 cosh� �L0 sinh2 �

cosh�
D L0

cosh2 � � sinh2 �

cosh�
D L0

cosh�
,

or

L D L0
p
1 � .v2=c2/: (3.33)

Equation (3.33) is the formula for Lorentz contraction.
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Fig. 3.1 (a) When the rod and the wall are both at rest, the rod is longer than the slot. (b) When
the rod is given a sufficiently high velocity in a direction parallel to the wall with a slight sideways
drift, the rod shrinks and passes through the slot in the stationary wall. What happens in the rest
frame of the rod in which the length of the rod remains the same but the length of the slot shrinks?

One aspect of special relativity, which makes it fun, is the many “paradoxes” that
seem to arise. One paradox that arises from this Lorentz contraction is as follows:
Suppose we consider a rod that is somewhat longer than a vertical slot in a wall.
According to the special theory of relativity, we should be able to give the rod
sufficient speed in the vertical direction so as to shorten the rod down to that of
the slot. If we then also added a small horizontal component to the velocity, the rod
would pass through the slot. (See Fig. 3.1a, b.)

So far so good. But what happens in the rest frame of the rod? In the rest frame
of the rod, the rod has its full rest frame length and the length of the slot is shorter.
How would it then be possible for the rod to pass through the slot?

To understand the situation in the rest frame of the rod, compare Fig. 3.2a, b.
For purposes of illustration, I have constructed the picture for the case for which
the relative velocity of the rod and the wall is such that the Lorentz contraction
factor is 1/2. I have identified the direction of motion with the x1-axis. In this
case, the distance from any point on the wall to the x2-axis in Fig. 3.2b is half
the corresponding distance in Fig. 3.2a. Furthermore, the distance of any point on
the rod to the x2-axis in Fig. 3.2b is twice the corresponding distance in Fig. 3.2a.
What becomes clear when the two figures are compared is that what is parallel in
one frame may not be parallel in another frame and events that are simultaneous in
one frame may not be simultaneous in another frame. In the rest frame of the wall,
the event of the top end of the rod passing the top end of the slot is simultaneous
with event of the bottom end of the rod passing the bottom end of the slot. These
two events are not simultaneous in the rest frame of the rod.
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x2 x2

x1

x1

Rest Frame Rest Frame
of Wall

a b

of Rod

Fig. 3.2 (a) The change of lengths occurs in the direction of motion, that is in the direction of the
x1-axis. In the rest frame of the wall, the event of the top tip of the rod passing through the plane of
the wall is simultaneous with the event of the bottom tip of the rod passing through the same plane.
(b) Events which are simultaneous in the rest frame of the wall are not simultaneous in the rest
frame of the rod

Problem 19. Show that if 1=
p
1 � .v2=c2/ is substituted for k in (3.11), the result

is (3.2).

Problem 20. Use a Taylor’s series expansion to show that exp.e10u/ D I cosh u C
e10 sinh u:

Problem 21. Use the result of Problem 20 to show that cosh.�1 C �2/ D
cosh�1 cosh�2 C sinh�1 sinh �2 and sinh.�1 C �2/ D sinh�1 cosh�2 C
cosh�1 sinh�2:

Problem 22. Suppose 0 < v1 < c and 0 < v2 < c, show .v1 C v2/=.1 C
.v1v2=c2// < c: Hint: .c � v1/.c � v2/ > 0:

Problem 23. Suppose we revisit the speeding train with the team of physicists on
board. Suppose the velocity of the train is v and a physicist on board sets off a flash
of light. What does (3.31) tell us about the velocity of the flash observed by the
observers on the ground?

Problem 24. a. In this chapter, a boost in the direction of x1 was represented by
the operator exp.e10�=2/: How would you represent a boost if the direction
cosines for the space direction were .k1; k2; k3/?

b. Show that in general the product of two boosts is not a boost. (To show this,
choose two boosts with different directions.) Note! It can be shown that the
product of any number of boosts and rotations can be represented as a product of
a single boost and a single rotation.
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Problem 25. Revisiting the speeding train once again, suppose the speed of the
train is 100 km hr�1 and the speed of the spear as observed by those on the train is
also 100 km hr�1. The speed of the spear observed by those on the ground is less
than 200 km hr�1. How much less? (The speed of light is 1.08 � 109 km hr�1.)

Problem 26. Suppose the team on the train and the team on the ground each have
their own clocks. The moment that the two clocks are along side one another both
clocks are set to zero. Suppose some time later the reading of the clock on the train
is t̄. What is the corresponding time and position for the observers on the ground?
Note! If the corresponding time for the ground observers is t, then the corresponding
position for the ground observers should be vt. Does this check out?

3.2 *Albert Einstein 1879–1955

Albert Einstein was born in Ulm, Germany on March 14, 1879. Shortly thereafter,
the Einstein family decided to relocate to Munich, where Albert spent most of his
youth.

From an early start, the task of formally educating Albert proved to be difficult.
Inordinately bright, the young Einstein routinely questioned authority, possessed
a fiercely independent streak, and rebelled at many turns. To complicate matters,
financial setbacks for Einstein’s father became an additional challenge to educating
Albert. At the time the Einstein family arrived in Munich, parents were expected to
send their children to schools operated by their respective religions. Although the
Einsteins were born to the Jewish faith, they were not rigorous in their beliefs, and
felt it made much more sense to send young Albert to a Catholic elementary school
within walking distance, rather than a distant and more expensive Yeshiva.

German law did require religious training, so a relative provided a Judaic
education during Albert’s elementary school years. At age 11, Albert rebelled
against his parents by scolding them for eating pork and not observing the Sabbath
(Parker 2003, p. 26). Two years later, rabbis became the receiving end of Albert’s
rebellious spirit when he accused them of teaching falsehoods as their teachings
could be disproved by scientific observation (Clark 1972, p. 36).

In the summer of 1894, the Einstein family decided to move to Italy. Albert’s
father Hermann had a kind nature but was not a natural business man. The move
from Ulm to Munich had been prompted by Hermann’s failed electrical and engi-
neering workshop. In Munich, Hermann Einstein established an electric equipment
business with Albert’s uncle Jakob. However in time, this second business failed too.
Extended family offered financial assistance if the Einstein family moved to Italy,
but Albert’s parents did not want to disrupt his education. Therefore, arrangements
were made to leave Albert with a relative in Munich, while his parents departed for
Italy, confident that he would continue his education at the Luitpold Gymnasium.

For its time, the Luitpold Gymnasium was considered a forward looking
institution of the highest caliber. However, Albert found it to be repressive. Within
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months of his parents departure, Albert had left the gymnasium. It is unclear from
the records whether Albert Einstein was allowed to quit of his own volition or
if he was thrown out for disciplinary reasons. In either case, the departure was
orchestrated by Einstein. Always resentful of authority, Albert Einstein formally
renounced his German citizenship a year later at the age of 16 to avoid being
drafted into the German army (Parker 2003, p. 38). He was willing to serve in
the more democratic Swiss army and eventually became a Swiss citizen – a status
he treasured throughout his adult life. Although he changed nationality two more
times, he always maintained his Swiss citizenship. When he became a Swiss citizen
in 1901, he happily presented himself for military duty but was disappointed when
he was turned down because of flat feet and varicose veins (Clark 1972, p. 64).

Much of Einstein’s disrespect for authority stemmed from his strong skepticism.
This even applied to his own contributions to the advancement of physics. Three
years after Einstein’s General Theory of Relativity had received some observational
confirmation and world acclaim, Cornelius Lanczos, a young physicist at the time,
approached Einstein between two lectures. With great pride, Lanczos told him
he had developed a method of successive approximations to deal with Einstein’s
gravitational equations. Einstein responded, “But why, should anybody be interested
in getting precise solutions of such an ephemeral set of equations?” Lanczos would
remember the word “ephemeral” many years later (Whitrow 1967, p. 49).

Without a diploma from a gymnasium, there were no universities that would
consider Einstein for admission. The Swiss Federal Polytechnic School in Zurich
provided Einstein an alternative solution. After some self-study and a year in the
Swiss school system, Einstein was accepted for admission. Hermann Einstein was
pleased with this turn of events as the Polytechnic school could well prepare his
son for a career in electrical engineering. Albert, however, had different ideas and
registered himself as a student of physics.

When Einstein graduated from the Swiss Federal Polytechnic School, he had
extreme difficulty getting a job because he could not get a positive recommendation
from any of his professors. This should not have surprised Einstein. He had alienated
most of his professors and even antagonized some. Jean Pernet, his instructor in
a laboratory course, was disturbed by the fact that more than once after giving
Einstein written instructions for an experiment he would see Einstein wad up the
instruction sheet, toss it in the wastebasket and then carry out the experiment in his
own way (Parker 2003, p. 69). Einstein had a higher regard for the chairman of the
department, Heinrich Weber, but Albert was prone to address him as “Herr Weber”
instead of the more respectful and expected “Herr Professor.”

During his 4 years at Polytechnic, Einstein became disappointed by the fact that
none of his professors was inclined to discuss consequences of Maxwell’s equations
that Einstein thought were being overlooked by most of the physics community.
In his disappointment, Einstein turned to self-study. In particular, he examined the
works of Hermann Helmholtz, Ernst Mach, Rudolf Kirchoff, Heinrich Hertz, James
Clerk Maxwell, and Paul Drude. Several of these authors expressed scepticism of
various aspects of Newton’s theories (Parker 2003, pp. 72–73).
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A consequence of this self-study was a high rate of absenteeism in class. This
could not have gone unnoticed. Polytechnic had a large number of engineering
students but in Einstein’s class there were only two physics majors and three math
majors.

To graduate, Einstein had to pass two sets of exams – the intermediate exams
normally taken at the end of 2 years and the final exams taken at the end of 4 years.
Due to his poor attendance, in normal circumstances it would have been impossible
for him to pass either set. Fortunately for Einstein, one of the math majors, Marcel
Grossmann, came to his rescue. Marcel Grossmann had taken careful notes and
helped Einstein cram for the exams. On the intermediate exams, Einstein got the
highest score – even out scoring his friend Marcel Grossmann (Parker 2003, p. 68).
On the final exams, he did not do so well. All three math majors out-scored him.
The other physics major failed but Einstein passed (Parker 2003, p. 86).

Unfortunately for Einstein, without a good recommendation from any of his pro-
fessors, he could not get the kind of academic position he had hoped for. For 2 years,
he scraped by with a sequence of poorly paid part-time or temporary positions. Once
again, Marcel Grossmann came to his rescue. Einstein’s predicament was explained
to Marcel’s father, who in turn spoke to Friedrich Haller, the Director of the Patent
Office in Bern. When the next job opened up in the patent office, the job description
would fit Einstein’s resume. As a result, Einstein eventually got a job in the patent
office and he started work on June 23, 1902 at the age of 23.

Approximately 6 months later, Einstein married the other physics major in his
class at Polytechnic. She was Mileva Marić. Six years earlier, in the fall of 1896,
when Albert and Mileva began their studies at Polytechnic, Mileva was one of
only twenty women in all of the Prussian and Swiss universities to study a natural
science or mathematics (Zackheim 1991, pp. 14–15). However, Mileva failed her
final exams twice so she never got her degree. (She was pregnant the second time
she took the exams and may have been suffering from morning sickness.) Although
her grades on the physics components of the exam were almost as high as Einstein’s,
her grades on the math components were far lower.

Albert and Mileva had become intimate in defiance of both sets of their parents.
About a year before their marriage, on January 27, 1902, Mileva had given birth
to a girl. The birth of Einstein’s daughter, Lieserl, took place in Mileva’s home
in Serbia but Einstein never saw her. The existence of Einstein’s daughter was
generally unknown until some love letters from Albert to Mileva were discovered
about 30 years after Einstein’s death. What became of Lieserl is not certain. Michele
Zackheim who has investigated this matter concludes that Lieserl was a victim of
Down’s Syndrome who died of scarlet fever at the age of 21 months on September
15, 1903. Some of the Zackheim’s conclusions are speculative, but the most crucial
ones are based on the contents of a letter Einstein wrote to console his wife on
September 19, 1903 (Zackheim, p. 47 and p. 252).

Einstein’s 7 years at the patent office in Bern proved to be fortuitous and
productive. Not only did the job pay well, but there was also sufficient flexibility
to allow him to pursue his passion for physics and obtain a Ph.D.
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During this phase of Einstein’s life, in 1905 to be precise, Einstein had his
annus mirabilis (miracle year). He was only 26 at the time and yet in one
volume of the prestigious journal Annalen der Physik he published three papers of
historical importance on three diverse topics. The first paper demonstrated that the
photoelectric effect could be nicely explained if one hypothesized the existence of
quanta (photons). The second described how Brownian motion could be ascribed to
molecular motion and also could be used to determine Avogadro’s number. The third
was the Theory of Special Relativity. Each of these papers received nominations for
the Nobel Prize for physics at one time or another between 1910 and 1922 (Pais
1982, pp. 502–511). In the subsequent volume of Annalen der Physik, he published
his famous equation, E D mc2. In between all this, in the same year, Einstein also
obtained his Ph.D. from the University of Zurich. (The Ph.D. thesis was dedicated
to Marcel Grossman.)

Before this time, Einstein had published only a handful of papers. However, he
had been thinking, reading, and discussing these topics for a long time. Ten years
earlier at the age of 16, before he started his formal studies at Polytechnic, he wrote
to his Uncle Cäsar a long letter outlining his plans to tackle the relationship between
electricity, magnetism, and the hypothesized ether (Clark 1972, p. 41) and (Pyenson
1985, pp. 8–9). While cutting classes at Polytechnic he had been devouring all
relevant material he could lay his hands on.

Many would have thought that Einstein was disadvantaged during his years
working at the patent office as it did not allow him to exchange ideas with other
academics at a university. Einstein took a different view. On his seventieth birthday,
he wrote, “It gave me the opportunity to think about physics.” Without pressure to
publish he could delve into questions more deeply. He wrote, “– an academic career
compels a young man to scientific production, and only strong characters can resist
the temptation of superficial analysis.” (Clark 1972, p. 75)

Author Peter Galison suggests that Einstein’s job at the patent office may have
given him an edge for another reason. During his employment, patent applications
were being submitted to deal with the problem of synchronizing clocks. It was
difficult to publish meaningful train schedules without synchronizing clocks of
towns that were miles apart (Galison 2003). Galison’s speculation is supported by
the fact that when Einstein set out to explain the Special Theory of Relativity to a
lay readership, he described the problem of synchronizing two clocks at opposite
ends of a moving train (Einstein 2005, p. 13–55).

It should also be noted that Einstein was not intellectually isolated in Bern. Soon
after moving to Bern, Einstein was meeting on a fairly regular basis with two friends.
The three labeled themselves the “Olympia Academy.” (Clark 1972, pp. 78–81) In
1903, this group would break up when the two friends Solovine and Habicht moved
away. However with Einstein’s encouragement, Michelangelo Besso, a friend from
his days in Zurich, applied for and was accepted for a job in the Bern patent office
(Parker 2003, p. 138). In his paper on Special Relativity, Einstein would later thank
Besso for “a number of valuable suggestions.” (Clark 1972, p. 101).

Despite the fact that his 1905 papers would revolutionize physics, it took a while
before Einstein could move out from the patent office into the academic world.
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A year after his “annus mirabilis”, Einstein was turned down for a low paying
part-time position at the University of Bern (Parker 2003, p. 155). In 1909 after
being in the patent office for 7 years, he was finally given serious consideration
by the University of Zurich. There was some reluctance at the University to hire
a Jew and Einstein’s teaching abilities were unknown. His thesis advisor, Alfred
Kleiner, argued with his colleagues and overcame these reservations. Einstein was
offered the position of associate professor but initially Einstein turned down the
offer because he would have to take a substantial pay cut. Eventually, the University
of Zurich agreed to match his salary at the patent office on July 6, 1909 (Parker 2003,
pp. 164–165).

Years prior to his move to the University of Zurich, Einstein had been in steady
communication with Nobel Prize winners and future Nobel Prize winners. These
associations served Einstein well. His academic career would soon rise at a meteoric
pace. After only one academic year in Zurich, Einstein accepted a position as full
professor at the German University in Prague, Czechoslovakia. In August 1912
(Clark 1972, p. 194), he was back in Zurich – this time, ironically, at the Swiss
Federal Polytechnic School. On April 6, 1914 not long before the outbreak of World
War I, which would begin on August 1, Einstein moved again. This time he moved
to Berlin to accept a post, which had no teaching obligations.

By now Einstein had two sons, but his relationship with Mileva had deteriorated.
Judging from the love letters that Mileva had received from Albert before they were
married, Mileva had reason to believe that her relation with Albert would be one
of sharing. Instead Albert decided he could not use her as a sounding board for his
ideas in physics and aside from his interest in music he did not have much else to
share. During their married years in Bern and Zurich, Mileva was relegated to the
task of doing cooking and laundry for student boarders living in the Einstein home
to supplement his income. Shortly before their marriage, Einstein’s father died in
debt and presumably Mileva’s efforts were devoted to helping Albert support his
mother. Even though Einstein’s mother never lived in the same household as Mileva,
this burden imposed on her must have been particularly onerous. Einstein’s mother,
Pauline, believed that Mileva was never good enough for her Albert and she was
outspoken about it. Nevertheless, it was Albert not Mileva who wanted to end the
marriage. Einstein enjoyed being amused and Mileva had become joyless and less
attractive to Albert (Zackheim 1999, p. 66).

In 1913, Albert wrote to Elsa Lowenthal, who would eventually become his
second wife, “I treat my wife as an employee I cannot fire.” (Levenson 2003, p. 28).

Mileva and Albert moved to Berlin together but within 3 months Mileva was on
her way back to Zurich with Albert’s two sons. She would live in Zurich for the rest
of her life. Einstein would develop his General Theory of Relativity during the war
years in Berlin without family distractions.

For several years, Einstein had recognized that the theory of Special Relativity
dealt nicely with coordinate frames that moved at constant speed with respect to
one another – but not with frames involving acceleration. To attack this question,
he realized that he must also construct a new theory of gravity. (A passenger in a
windowless spaceship with a quiet nonvibrating rocket engine would have difficulty
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knowing whether he or she was feeling the effect of gravity while the spaceship
was parked on some planet or was feeling the effect of acceleration out in open
space.)

To construct a successful theory, he would need to know more mathematics than
he had previously thought necessary to do physics. Again his Polytechnic classmate,
Marcel Grossmann, came to his rescue. Marcel Grossmann directed his attention to
Riemannian geometry, which was then a fairly obscure topic in mathematics. After
many failed efforts, it was late in 1915 that Einstein published his General Theory
of Relativity in its completed form.

One virtue of the General Theory of Relativity was the fact that Einstein could
use it to explain the deviation of the orbit of Mercury from the laws of Newton.
This was a surprise. Although it was recognized that the orbit of Mercury had an
odd behavior, it was thought that eventually the anomaly could be explained in
Newtonian terms.

Earlier in the nineteenth century, astronomers had encountered a similar pecu-
liarity related to the orbit of Uranus. What at first appeared to be a counter example
of the laws of Newton became a dramatic confirmation. According to the laws
of Newton, if there was only one planet in the solar system, its path would be
that of an ellipse. The presence of other planets would alter this path. Generally,
Newton’s laws could consistently describe the actual orbit of any given planet when
the influence of the other known planets were taken into account. Unfortunately
for the disciples of Newton, the orbit of Uranus seemed to be an exception. The
Newtonian calculations could not explain the orbit of Uranus.

However, two astronomers conjectured that Uranus’ orbit could be explained
by the existence of an undiscovered planet. Lengthy calculations were carried
out independently by the British astronomer John Couch Adams and the French
astronomer Urbain Jean Joseph Le Verrier to predict the position of the then
unknown planet. Le Verrier sent his results to the German astronomer Johann
Gottfried Galle of the Berlin Observatory. With this information, Galle was able
to locate the planet, that is now known as Neptune on September 23, 1846.

This was a dramatic success for Newton’s theory. Almost a decade later in 1855,
Le Verrier discovered a discrepancy in the orbit of Mercury. He attributed this
to another unknown planet, which he called “Vulcan.” His calculations indicated
that it had to be so close to the sun that it would be very difficult to observe.
Nevertheless, over the next 60 years, many astronomers, professional and amateur
alike, announced that they had observed this hypothetical planet. However, none
of these observations could be confirmed with confidence. This search finally
ended when Einstein’s General Theory of Relativity provided an explanation for
the behavior of Mercury’s orbit without necessitating the presence of an additional
planet.

It is nice to construct a theory that explains things previously observed and
measured. However to really impress physicists, the proposer of a theory should
successfully predict something previously unobserved. Einstein predicted that a
light ray from a distant star passing near the sun would be deflected slightly by
the local curvature of space–time created by the gravitational field of the sun. This
would be observable only during a solar eclipse.
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The opportunity to test Einstein’s prediction came on May 29, 1919 – less than
6 months after the end of World War I. A team of British scientists under the
leadership of Arthur Eddington organized two expeditions: one to Sobral in northern
Brazil and the other to Principe Island off the coast of Africa. Fortunately, it was not
too cloudy on the appointed day and enough data was collected to confirm Einstein’s
prediction.

The results were made public on November 6, 1919 in London at a joint meeting
of the Royal Society and the Royal Astronomical Society. Members of the press
were invited to attend and were present when Einstein’s theory was described as
“one of the greatest achievements in the history of human thought –.” (Clark 1971,
pp. 289–290) Neither the reporters nor most of their readers would ever be able
to understand all the details of Einstein’s theory but they could understand the
significance of the fact that Einstein had shown that we do not live in a world ruled
by the laws of Newton nor the axioms of Euclid.

In the following days as the reports of this meeting spread around the world,
Einstein attained an international celebrity status that he retained to the end of his
life.

For many he symbolized a hope for mankind. The effects of the “war to end all
wars” had been horrific. For 4 years, the most technologically advanced nations
of the world had exhausted their economic resources to achieve the senseless
slaughter of young men in muddy trenches. Einstein’s achievement showed that
an enlightened civilization was capable of something better. The fact that a British
team had verified a prediction of a German meant to some that nations could work
together in peace.

However, many people in Germany took a quite different view. The German army
had lost the war without losing a battle on German soil. In this circumstance, ultra
nationalists were able to promote the idea that Germany had been “stabbed in the
back” by disloyal people on the home front who were not true Germans (i.e., Jews).

Einstein could be hated for simply being Jewish, but there were other reasons
why he drew negative attention. For most of his life, Einstein was strongly anti-
German. While in Switzerland, Einstein had renounced his German citizenship and
had become a citizen of Switzerland long before the war started. As a pacifist, and
one not to shy from expressing his opinion, Einstein believed Germany was guilty
of war crimes in Belgium and France (Clark 1971, p. 277). Moreover, Einstein had
avoided making any contribution to Germany’s war effort. (Most of Germany’s
scientists, Jews and non-Jews alike, had enthusiastically worked on such projects
as the development of better aircraft and the perfection of gas warfare.) That said,
when the war ended, Einstein went through the most pro-German phase in his life.
He had hopes that the victorious allies would establish conditions that would allow
the new democratic Weimar Republic to thrive. In December 1918, Einstein was
one of the 100 intellectuals in Europe and the United States who signed a petition
addressed to the heads of states about to meet in Versailles. The petition asked those
heads of state to avoid creating conditions for a future war (Clark 1971, p. 274).
In 1920, Einstein even reestablished his German citizenship (Clark 1971, p. 315).
Nonetheless, when Germans began to suffer from the severe terms of the Versailles
Treaty, Einstein became a special target for German nationalists.
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For those who wished to equate Jews with vermin, it was particularly distressful
to see the name Einstein become synonymous with “genius.” As a result, the
Nazis organized public meetings to belittle Einstein’s theories of special and
general relativity. Einstein found himself being portrayed as a member of some
international Jewish effort to contaminate German science with false theories. For
the unsophisticated, these criticisms had some credibility because a leader of those
attempting to discredit Einstein was Philipp Lenard who had won the Nobel Prize
for physics in 1905 for his revealing investigations of the photoelectric effect.

Ironically, Einstein was awarded the 1921 Nobel Prize in physics for developing a
theoretical explanation of Lenard’s experimental results. (Einstein never personally
enjoyed the financial rewards of this prize, as he had agreed to give the money to
Mileva as part of their divorce settlement in 1919.)

At the end of 1932, Hitler came to power and Einstein left Germany, never to
return. In October of 1933, Einstein arrived in Princeton, New Jersey with his second
wife Elsa, where they lived for the rest of their lives. Albert and Elsa had developed
a relationship in Berlin, and were married in 1919, shortly after his divorce to Mileva
was finalized.

During the 1930s, Einstein became convinced that pacifism would not thwart the
aims of Hitler. Extreme force would be necessary. In 1939, he joined other scientists
in urging President Roosevelt to establish an organized effort to develop the atomic
bomb.

Due to his bitter experiences in Germany, Einstein felt that it was important to
stand up against those who would suppress freedom to advance their own concept
of an ideal society. He participated in fund-raising efforts to aid the refugees
of Franco’s Spain. He supported anti-lynching legislation and helped organize a
chapter of the NAACP in Princeton. Princeton University was all white when
Einstein first came to the Institute for Advanced Study and the public schools were
segregated until 1948.

In 1937, Einstein became the focus of a notorious incident. On April 16,
1937, Marian Anderson gave a concert to a standing-room audience at Princeton’s
McCarter Theatre. The concert received rave reviews but Princeton’s Nassau Inn
refused to provide a room for the black contralto. In response, Einstein invited her to
stay with him and his stepdaughter Margot. Marian Anderson accepted the invitation
and she stayed with them thereafter whenever she came to Princeton (Jerome 2002,
pp. 77–78). In earlier years, Einstein had urged the youth of the world to resist
military service. Each of these political activities incurred the wrath of the director
of the F.B.I., J. Edgar Hoover.

J. Edgar Hoover persuaded the U.S. Army to deny Einstein security clearance, so
Einstein never participated in the Manhattan Project (the development of the atomic
bomb). However, the U.S. Navy ignored Hoover and hired Einstein as a consultant
to carry out various computations on the propagation of shock waves.

Shortly after World War II ended, the cold war with Russia began when Russia
installed puppet governments in Eastern Europe. Passions were inflamed in 1949
when Mao Tse Tung took power in China and Russia exploded its first atomic bomb.
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Under Truman, J. Edgar Hoover was directed to set up a loyalty-security program
of all government employees. As a result, several thousand people lost their jobs.
It did not matter that in normal times, very few of those jobs would have required
any kind of security clearance. Others were called upon to testify at congressional
hearings on their political affiliations and those of their acquaintances.

Einstein recognized that Russia had an undesirable government but he viewed
these congressional committees along with J. Edgar Hoover to be much greater
threats to freedom in America than the American Communist Party.

In 1953, Einstein urged intellectuals to insist on their First Amendment right
of free speech and risk imprisonment and financial ruin rather than rely on the Fifth
Amendment. Using the Fifth Amendment to avoid testifying was usually interpreted
as admission of some kind of disloyalty. On June 12, The New York Times published
a letter from Einstein expressing this view but denounced him in an editorial on the
following day for urging civil-disobedience (Jerome 2002, p. 239).

Always the maverick, Einstein was never the blind adherent of any one group.
In January 1953, he wrote a letter to Truman urging the commutation of the death
sentence given to the Rosenbergs for soviet espionage (Jerome 2002, p. 140). Less
than 2 weeks later, the Newark Star Ledger carried a United Press story stating:
“Scientist Albert Einstein yesterday condemned the wave of anti-Semite purges
behind the iron curtain” (Jerome 2002, p. 147). Einstein was an avid Zionist and in
1952, the Israeli government offered him the presidency. However, he often clashed
with Zionist leaders for not pursuing better relations with the Arabs.

Despite his political activism, Einstein’s life in Princeton was sheltered as much
as possible but his world status could have consequences even for his neighbors.

My father knew a member of Princeton’s psychology department who had a
recurring nightmare involving Einstein. Einstein never learned to drive a car and
each morning he walked from his home to his office at the Institute for Advanced
Study on a route that took him past the home of the psychology professor. Often
Einstein seemed to be engrossed in thought, totally oblivious to things around him.
The psychology professor feared that on some morning when he was late for class
and a little inattentive himself, he would suddenly become world famous for being
the person that backed his car out of his driveway and ran over Einstein.

Fortunately for both Einstein and the psychology professor, this never happened.
Because of an aneurysm on his aorta, Einstein died a peaceful death on April 18,
1955 at the age of 76.

3.3 *Suggested Reading

James A. Richards; Francis Weston Sears; M. Russell Wehr; Mark W. Zemansky
1960. Modern University Physics. Reading, Massachusetts: Addison-Wesley Pub-
lishing Company, Inc.

A nice elementary derivation of Einstein’s E D mc2 appears on pages 773-779.
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M. Russell Wehr, James A. Richards, Jr., and Thomas W. Adair III, 1984.
Physics of the Atom, 4th Ed. Reading, Massachusetts: Addison-Wesley Publishing
Company, Inc.

The same derivation of E D mc2, mentioned in the book above, appears in this
book on pages 180–184. It also appears in the 3rd Ed. on pages 161–165.
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York: Oxford University Press.

If you cannot get your hands on any of the books mentioned above, buy my book
and read an outline of the same derivation of E D mc2 on pages 38-40.

A. Shadowitz 1968. Special Relativity. Philadelphia: W. B. Saunders Company.
This book has a lot of very enlightening diagrams using the space-time geometry

of Loedel. The book also contains an excellent discussion of the twin paradox.
In 1953, Albert Shadowitz attracted the attention of Senator Joseph McCarthy

for his activity as a union organizer against a defense contractor. Having received
a subpoena to appear before McCarthy’s Senate committee, Shadowitz figured he
was headed for jail for contempt of Congress. This was because he was determined
not to name others who would then be subjected to vituperation and possible loss of
employment. When Shadowitz sought out guidance from Einstein, Einstein’s long
time secretary, Helen Dukas, gave him access (Jerome 2002, p. 245). Shadowitz has
been ever grateful for the resultant public support he received from Einstein and
presumably for this reason, Special Relativity is dedicated to Helen Dukas.

Albert Einstein, Robert W. Lawson (translator) 2001, Relativity: The Special and
General Theory. Dover Publications, Inc.

This book, originally published in 1920, is directed to the reader with no
knowledge of physics or mathematics beyond the high school level.

Ronald W. Clark 1971. Einstein: The Life and Times. New York: Avon Books.
This is an outstanding biography of Einstein for a general audience.
Michele Zackheim 1999. Einstein’s Daughter – The Search for Lieserl. New

York: Riverhead Books a member of Penguin Putnam Inc.
In 1902 approximately 1 year before their marriage, Mileva gave birth to Albert’s

daughter Lieserl. This book describes an odyssey resulting in a partially successful
effort to determine the fate of that daughter.



Chapter 4
Clifford Algebra in Flat n-Space

4.1 Clifford Algebra

The word “geometry” is derived from a greek word meaning “to measure land.” The
starting point for differential geometry is the definition of an infinitesimal distance.
Generally, such an infinitesimal distance ds is defined in terms of a coordinate
system. For the Cartesian coordinate system applied to an n-dimensional Euclidean
space, we have

.ds/2 D
nX

jD1
.dxj /2: (4.1)

For some purposes, Euclidean spaces are not sufficiently general as we saw in
the last chapter. For an n-dimensional pseudo-Euclidean space, we have

.ds/2 D
pX

jD1
.dxj /2 �

nX

jDpC1
.dxj /2. (4.2)

For such a space .p; q/ is said to be the signature of the metric, where q D n�p.
Frequently, alternate coordinate systems are useful. For example, in three

dimensions, it is often useful to use the spherical coordinate system. (See Fig. 4.1.)
In that case

.ds/2 D .dr/2 C r2.d�/2 C r2 sin2 �.d�/2: (4.3)

To study the two-dimensional saddle surface for which z D xy, we may wish to
use a coordinate system that results in the equation

.ds/2 D .1C .u2/2/.du1/2 C 2u1u2du1du2 C .1C .u1/2.du2/: (4.4)

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 4, © Springer Science+Business Media, LLC 2012
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Fig. 4.1 The directions
associated with dr , r d� , and
r sin � d� at the point s for
spherical coordinates are
mutually perpendicular
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In general, we have

.ds/2 D
nX

iD1

nX

jD1
gij .u

1; u2; : : : ; un/dui duj : (4.5)

(It is understood that gij D gj i .)
Equation (4.5) can be abbreviated by using the Einstein summation convention.

In particular,

.ds/2 D gij dui duj : (4.6)

The “Einstein summation convention” is the convention that an index repeated as
both a superscript and a subscript is a dummy index that is summed over even
though no summation sign is written down. This saves a lot of writing. The range
of the summation depends on the context and if the range is not obvious, the
convention should not be used. In general, a dummy index appearing with or without
a summation sign can be replaced in a mathematical expression without changing
the meaning of that expression. For example, the i and the j that appear in (4.6) can
be replaced by p and q. That is

.ds/2 D gij dui duj D gpq dup duq:

For so-called “flat” Euclidean or pseudo-Euclidean spaces, we can start with a
position vector

s D ej xj :
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We then have

ds D ej dxj :

If we then write

.ds/2 D .ds/2 D eiej dxi dxj D 1

2
.eiej C ej ei / dxi dxj ;

it becomes natural to define

eiej C ej ei D 2nij I, (4.7)

where I is the identity matrix, nkk D 1 if 1 � k � p, nkk D �1 if p C 1 � k �
p C q D n, and nij D 0, i ¤ j .

If we use some alternate coordinate system, we have

s D ej xj .u1; u2; : : : ; un/ (4.8)

and

ds D ej dxj D ej
@xj

@uk
duk D ”k duk, (4.9)

where it is obvious that

”k D ej
@xj

@uk
. (4.10)

In this situation

.ds/2 D 1

2
.”j”k C ”k”j /dujduk. (4.11)

Thus, we have

”j”k C ”k”j D 2gjkI. (4.12)

(We will use e1; e2; : : : ; en to indicate a Cartesian frame for a Euclidean or pseudo-
Euclidean space; ”1;”2; : : : ;”n to indicate some alternative coordinate frame which
we call Dirac vectors; and E1;E2; : : : ;En to indicate an orthonormal noncoordinate
frame.)

With these thoughts in mind, we can present some appropriate definitions. To
begin with:

Definition 27. We designate a set of n vectors fe1; e2; : : : ; eng as an n-dimensional
Cartesian frame for a Euclidean or pseudo-Euclidean space if the vectors have the
following properties.

(1)
ej ek C ekej D 2njkI; (4.13)
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where I is the identity matrix if we use a matrix representation, nkk D 1 if
1 � k � p, nkk D �1 if p C 1 � k � p C q D n, and nij D 0 if i ¤ j . (As
we note below, a matrix representation is unnecessary. Nonetheless, I should be
manipulated as if it were an identity matrix.)

(2) By taking all possible products of the members of the frame, one can form a set
of 2n linearly independent vectors. (These products may be written in the form
M1M2 : : :Mn, where Mk D ek or I.)

It should be noted that various mathematicians and physicists have different
agendas. As a result, many authors use a different sign convention for condition 1.
Namely, they require that ej ek C ekej D �2njkI, where njk is defined in the same
manner I have.

A distinguishing feature of pseudo-Euclidean spaces is the signature matrix njk .
From the discussion following (4.13), it is clear that njk is a diagonal matrix whose
diagonal elements are ˙1:

From a theorem proved by Sylvester (Cartan 1966, pp. 5–6), it is known that
regardless of what orthonormal basis is used to span a given pseudo-Euclidean
space, the number of positive entries and the number of negative entries on the
diagonal of the signature matrix remain invariant. For example, regardless of the
orthonormal basis chosen to span Minkowski 4-space, one diagonal element of the
signature matrix will be C1 and the other three will be �1. (This signature matrix
is frequently designated by the notation (C;�;�;�) or (1; 3).)

It is not difficult to show that one cannot obtain more than 2n linearly independent
products by using the same ek more than once in a single product of Dirac vectors.
Since ej ekD �ekej for j ¤ k, it is clear that any finite product of members of a
Cartesian frame can be rewritten in the form:

˙.e1/k1.e2/k2 : : : .en/kn .

Furthermore, since .em/2j D ˙I, we can replace .em/km by ˙I, if km is even or by
˙em if km is odd.

One might ask, “Is it always possible to construct a set of matrices with properties
1 and 2 in Def. 27?” As you might suspect, it is indeed always possible. (This is done
in Appendix A.)

In a set of lecture notes published in 1958 and since republished in 1993, Marcel
Riesz (Riesz 1993, pp. 10–12), “proved” that condition 2 follows from condition 1.
This is true most of the time but Marcel Riesz overlooked some exceptional cases.
Approximately ten years later, Ian Porteus introduced the necessary correction to
the Riesz proof. The corrected proof appears in Appendix A of this book.

As we shall see shortly, Def. 27 in its generalized form is essentially a definition
of a Clifford algebra. What is an algebra? What is a Clifford algebra? Before
answering these questions, I will burden you with some additional terminology.

A 0-vector is a scalar multiple of I.
If a D Aj ej , where the Aj ’s are real numbers, a is said to be a 1-vector.
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If

A D
X

i1<i2<���<ip
Ai1i2:::ipei1ei2 : : : eip ,

A is said to be a p-vector.
Any linear combination of a 0-vector, a 1-vector, a 2-vector, etc. is said to be

a Clifford number. Sometimes the terms scalar, vector, bivector, and trivector are
used in place of the terms 0-vector, 1-vector, 2-vector, and 3-vector.

In Chap. 3, I used Clifford numbers to discuss special relativity without reference
to any matrix representations. This raises the question: Can we define Clifford
numbers without reference to matrix representations? The answer is yes. However,
the mathematical machinery required to do that is beyond the stated prerequisites
for this text. My reliance on matrix representations allow us to be certain we are not
defining entities with inconsistent properties.

If you think of Clifford numbers as matrices, you will avoid making illegal ma-
nipulations. However, for actual computations, the use of any matrix representation
would be a mechanical impediment. Furthermore, it would be an obstacle to any
geometric insight. Therefore, you will not see any matrix representations after this
section except in Appendices A and B. Rather than mention the matrix product for
a matrix representation of two Clifford numbers, I will denote the corresponding
product for the two Clifford numbers as the Clifford product. In view of these
comments, you should feel free to eliminate I from (4.7), (4.12), and (4.13). (Most
authors designate the identity element of a Clifford algebra by 1.)

Perhaps, I should add a cautionary note. The theory of matrices is well developed
so those who wish to investigate the algebraic aspects of Clifford algebras may wish
to use matrix representations.

Any Clifford number A can be decomposed into the sum of p-vectors. If we
follow the lead of David Hestenes and Garret Sobczyk (1984, p. 3), we designate
the p-vector component of A by hAip . We can then write

A D
nX

pD0
hAip : (4.14)

Definition 28. An algebra consists of a vector space V over a field F (usually
the set of real numbers R or the complex numbers C) with a binary operation of
multiplication such that 8˛ 2 F and 8A;B;C 2 VW
(1) .˛A/B D A .˛B/ D ˛ .AB/ I
(2) .A C B/C D AC C BCI and
(3) C .A C B/D CA C CB:

If in addition, we have
(4) .AB/C D A .BC/, the algebra is said to be an associative algebra.

Clearly, the set of Clifford numbers, identified with an n-dimensional Euclidean
space or an n-dimensional pseudo-Euclidean space, forms a vector space of
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dimension 2n that is closed under matrix multiplication. Thus, the set of Clifford
numbers forms an associative algebra. If you are genuinely surprised to learn that
this algebra is called a Clifford algebra, your ability to anticipate the obvious must
be suspect.

If the field F is the set of real numbers, the corresponding Clifford algebra is said
to be a real Clifford algebra. In this text, we will restrict ourselves to real Clifford
algebras. The real Clifford algebra associated with the n-dimensional Euclidean
space Rn is designated by Rn or Rn;0. For a pseudo-Euclidean space with p .C1/’s
and q .�1/’s in the signature matrix, the vector space is denoted by Rp;q and the
corresponding real Clifford algebra is denoted by Rp;q . (Here, again conventions
vary among authors.)

It should be noted that requiring the field of scalars F to be the field of real
numbers R does not imply that the components of a matrix representation for the
ej ’s have to be real.

Problem 29. Show that we can use the Pauli matrices � 1, � 2, and � 3 to generate
the Clifford algebra R3. That is show that if

e1 D � 1 D
�
0 1

1 0

�
; e2 D � 2 D

�
0 �i
i 0

�
; and e3 D � 3 D

�
1 0

0 �1
�
;

then
(a) ej ekCekejD2njkI and
(b) I, e1, e2, e3, e2e3, e3e1, e1e2, and e1e2e3 are linearly independent. (Observe that

e1 and e2e3 would not be linearly independent if we were using the field of
complex numbers for our scalars instead of the field of real numbers.)

Problem 30. (a) Using (4.8)–(4.10), show that for spherical coordinates .r; �; �/,
where x1 D r cos� sin � , x2 D r sin � sin � , and x3 D r cos � , we have

”1 D ”r D e1 cos� sin � C e2 sin � sin � C e3 cos � ,

”2 D ”� D e1r cos� cos � C e2r sin � cos � � e3r sin � , and

”3 D ”� D �e1r sin� sin � C e2r cos� sin �:

(b) Use (4.6) and (4.12) to compute gjk for spherical coordinates. (Your result
should be consistent with (4.3) and (4.5).

Problem 31. Repeat the computations of Prob. (30) for cylindrical coordinates
.�; �; z/, where x1 D � cos�, x2 D � sin �, and x3 D z:

Problem 32. (You will be referred to the results of this problem later in the text.)
Consider the saddle surface defined by z D xy or x3 D x1x2. If we let x1 D u1,
x2 D u2, and x3 D u1u2, then the position vector corresponding to a point on the
surface may be written in the form

s D u1e1 C u2e2 C u1u2e3:
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(a) Determine ”u1 and ”u2 . (Later in the text, I will relabel these Dirac vectors by
”1 and ”2:)

(b) Use your result from part a) to determine g11, g12, g21, and g22. Then compare
your result with (4.4).

Problem 33. Suppose a D aj ej and b Dbkek: Show that

ab C ba D.2njkaj bk/I:

(In a Euclidean space, this becomes

ab C ba D 2

0

@
nX

jD1
aj bj

1

A I:)

4.2 The Scalar Product and Metric Tensor

An arbitrary vector a can be written in the form a Daj ej . The result of Prob. 33
makes it possible to define a scalar product ha;bi of two vectors a and b. Since
ab C ba is a 0-vector, we can define ha;bi as the coefficient of I that occurs in the
following equation:

1

2
.ab C ba/ D ha;bi I D hb; ai I: (4.15)

This definition of a scalar product generates a symmetric matrix known as the
metric tensor gij: The components of the metric tensor are related to whatever
coordinate system is being used. In particular,

gij D ˝
”i ;”j

˛
. (4.16)

When the functional relationship between the Cartesian coordinates and the
alternate coordinate system under consideration is known, we can determine the
components of the metric tensor. In particular, since

”˛ D @xj

@u˛
ej ;

(4.16) can be rewritten as

g˛ˇ D @xj

@u˛
@xk

@uˇ
˝
ej ; ek

˛ D @xj

@u˛
@xk

@uˇ
njk: (4.17)

The inverse of the matrix g˛ˇ is designated by g˛ˇ . Since g˛ˇ is symmetric with
respect to its two lower indices, the inverse matrix is also symmetric with respect to
its two upper indices. That is g˛ˇ D gˇ˛:
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x2

x3

x1

gr

gφ

g
θ

θ

φ

Fig. 4.2 For spherical
coordinates or any other
coordinate system, the lower
index coordinate Dirac
vectors are tangent to
coordinate curves. What
coordinate curve is left out in
this diagram?

Assuming the inverse matrix exists, we can use it to construct an alternate basis
for the n-dimensional vector space, which is said to be biorthogonal w.r.t. (with
respect to) the coordinate basis f”1,”2, : : : ,”ng. This alternate biorthogonal basis is
designated by indices in the upper position and is defined by the relation:

”˛ D g˛ˇ”ˇ for ˛ D 1; 2; : : : ; n: (4.18)

We note that
˝
”˛;”ˇ

˛ D g˛	
˝
”	;”ˇ

˛ D g˛	g	ˇ D ı˛ˇ:

That is
˝
”˛;”ˇ

˛ D ı˛ˇ; (4.19)

where ı˛ˇ is the Kronecker delta symbol defined by the relation:

ı˛ˇ D
�
1 if ˛ D ˇ

0 if ˛ ¤ ˇ
(4.20)

Equation (4.18) may be reversed. That is

gn˛”
˛ D g	˛g

˛ˇ”ˇ D ıˇ	 ”ˇ D ”	;

and thus

”	 D gn˛”˛: (4.21)

It should be observed that the ”˛’s are tangent to coordinate curves. (See Fig. 4.2
for the example of spherical coordinates.) That is, if we consider the functions
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x1

x2
x3

g1

g2

Fig. 4.3 For the
two-dimensional saddle
surface, the space spanned by
�1 and �2 at one point is not
the same as that spanned by
�1 and �2 at another point. In
this example, the coordinate
curves are straight lines

xk.u1; u2; : : : ; un/ and set each of uj ’s except u˛ equal to its individual constant
cj , then we have

xk.u˛/ D xk.c1; : : : ; c˛�1; u˛; c˛C1; : : : ; cn/ for k D 1; 2; : : : ; n: (4.22)

This equation defines a coordinate curve:

x.u˛/ D xj .c1; : : : ; c˛�1; u˛; c˛C1; : : : ; cn/ej :

Since ”˛ D @
@u˛ x.u˛/, we may interpret ”˛ to be a vector tangent to the given curve.

We should also note that each ”˛ is a function of its location and thus both its
magnitude and direction may vary from point to point. Thus each ”˛ and the space
spanned by the ”˛’s should be identified with a particular point. If the ”˛’s span
an n-dimensional space, then the spaces spanned by the ”˛’s at each point will be
essentially the same except for the choice of origin.

However, in the example of the saddle surface described in Prob. 32, the situation
is a little different. (See Fig. 4.3.) We have a two-dimensional curved surface
imbedded in a flat three-dimensional space. The two-dimensional plane spanned
by ”1 and ”2 is tangent to the saddle surface, where the point of tangency is the
origin for the vectors ”1 and ”2.

Clearly, the plane tangent to the saddle surface at one point will have a different
orientation and location than a plane tangent to the surface at another point. In this
context, it makes sense to speak of any linear combination of the ”˛’s as a tangent
vector and the space spanned by the ”˛’s at a given point as the tangent space for
that given point. When we carry out any of the usual vector operations (for example,
addition or scalar multiplication), the result is identified at that same given point.
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x1

x2
x3

g1
g2

Fig. 4.4 On a
two-dimensional curved
surface, the upper index
coordinate Dirac vectors ”1

and ”2 at a given point are
each perpendicular to a
coordinate curve at that point.
However, ”1 and ”2 lie in the
same plane as that spanned by
”1 and ”2. How does this
notion generalize to higher
dimensions?

If you have encountered or will encounter the formalism of tangent vectors and
differential forms, you should note that the analog of ”˛ is the tangent vector @=@u˛

and the analog of ”˛ is du˛: Linear combinations of the @=@u˛’s are said to be
tangent vectors and linear combinations of the du˛’s are said to be 1-forms.

The 1-forms form a vector space that is considered distinct from that spanned by
the tangent vectors. Each 1-form is defined to be a linear function that maps tangent
vectors onto the set of real numbers. In particular,

du˛
�
@

@uˇ

	
D ˝

”˛;”ˇ
˛ D ı˛ˇ:

The formalism of differential forms is both natural and necessary for the study
of spaces without a metric tensor. However when a metric is added to the structure,
the formalism of differential forms becomes both conceptually and computationally
unwieldy when compared with the formalism of Clifford algebra.

Although it is appropriate to refer to the ”˛’s as tangent vectors, this is not a
good way to distinguish them from the ”˛’s. It is true that the ”˛’s are tangent
to coordinate curves while the ”˛’s may not be. (See Fig. 4.4.) However, the ”˛’s
span the same vector space as the ”˛’s. Thus, the ”˛’s could also be referred to as
“tangent vectors.”

With these thoughts in mind, we will refer to the ”˛’s as lower index coordinate
Dirac vectors and the ”˛’s as upper index coordinate Dirac vectors.

Using these upper and lower index coordinate Dirac vectors gives us two ways
of representing the same tangent vector:

a D Aj”j D Ak”
k: (4.23)
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From (4.21)

a D Aj”j D Ajgjk”
k: (4.24)

Thus, it is clear that

Ak D Ajgjk: (4.25)

Similarly, it is easy to show that a reciprocal relation holds. Namely

Ai D gijAj : (4.26)

TheAi ’s are referred to as the contravariant components of the vector a while the
Aj ’s are referred to as the covariant components of the vector a. (Some authors in
other formalisms speak of “contravariant and covariant vectors.” This terminology
makes sense if one applies “contravariant vector” to the n-tuple

�
A1;A2; : : : ; An

�
as

Penrose and Rindler do in their Spinors & Space-Time (Penrose and Rindler 1984,
p. 72). But it makes less sense when it is applied to a D Aj”j since it is also true
that the same vector a D Aj”j :

The terms contravariant and covariant refer to the way the entities behave under
a coordinate transformation. Consider two systems of coordinates

˚
u1; u2; : : : ; un



and
˚Nu1; Nu2; : : : ; Nun. The corresponding lower index coordinate Dirac vectors are

defined by the equations:

”k D @xj

@uk
ej (4.27)

and

N”p D @xq

@Nup eq . (4.28)

From (4.27)

@uk

@xr
”k D @uk

@xr
@xj

@uk
ej D @xj

@xr
ej D ıjr ej D er . (4.29)

Thus, we have from (4.28) and (4.29)

N”p D @xq

@Nup eq D @xq

@Nup
@uk

@xq
”k D @uk

@Nup ”k:

That is to say

N”p D @uk

@Nup ”k: (4.30)

Furthermore, since

a D NAp N”p D NAp @uk

@Nup ”k D Ak”k ,
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it follows that:

Ak D NAp @uk

@Nup : (4.31)

Similarly, it follows that

NAr D Ak
@Nur
@uk

: (4.32)

To figure out how the upper index coordinate Dirac vectors transform under a
coordinate transformation, we observe that since the N”j ’s and the ”j ’s span the
same space:

N”j D ˛jp”p; (4.33)

where the ˛jp’s are yet to be determined. Also from (4.30), we have

ı
j

k D ˝ N”j ; N”k
˛ D

�
˛jp”p;

@um

@Nuk ”m

�
D ˛jp

@um

@Nuk ı
p
m D ˛jp

@up

@Nuk

or restated

ı
j

k D ˛jp
@up

@Nuk :

Multiplying this last equation by @Nuk=@ui and summing over k, gives us

ı
j

k

@Nuk
@ui

D ˛jp
@up

@Nuk
@Nuk
@ui

D ˛jp
@up

@ui
D ˛jpı

p
i :

That is

˛
j
i D @Nuj

@ui
:

Combining this equation with (4.33), we finally have

N”j D @Nuj
@ui

”i : (4.34)

From this result, we can use essentially the same trick we used to prove (4.31)
and (4.32) to get

Ak D NAp @Nup
@uk

(4.35)

and

NAp D Aj
@uj

@Nup : (4.36)
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You should compare (4.32) and (4.34) to see that the upper index Dirac
coordinate vectors transform in the same way that the contravariant components of
a vector do. A similar observation follows from a comparison of (4.30) and (4.36).

The notion of covariant and contravariant components of a vector can be
generalized. A real valued array of functions of space points

˚
Aj1j2:::jq


with q lower

indices is said to be a covariant tensor of rank q if

NAj1j2:::jq D Ak1k2:::kq
@uk1

@Nuj1
@uk2

@Nuj2 : : :
@ukq

@Nujq : (4.37)

Similarly, a real valued array of functions of space points
˚
Ak1k2:::kp


is said to

be a contravariant tensor of rank p if

NAj1j2:::jp D Ak1k2:::kp
@Nuj1
@uk1

@Nuj2
@uk2

: : :
@Nujp
@ukp

: (4.38)

It should not be too surprising to be told that one can have mixed tensors of rank
p C q: Frequently, the position of the indices can be significant. For example, it is
quite possible that

Aij
k ¤ Ai

k
j :

At this point, the nature of coordinate transformations on a mixed tensor should be
obvious. For example

NAk ij D Arpq
@up

@Nui
@uq

@Nuj
@Nuk
@ur

:

Sometimes it is useful to refer to the valence of a tensor. A tensor with p upper

indices and q lower indices is said to have valence

�
p

q

�
:

It should be noted that just because an entity appears in this book with some
indices does not mean that it is a tensor. The entities gjk , gjk , and ıkj are tensors but
njk is not. (See Prob. 45.)

Problem 34. Use the results of Prob. 32 to compute the components of g˛ˇ for the
saddle surface. Then use (4.18) to compute ”1 and ”2:

Problem 35. Demonstrate that the Kronecker delta symbol ıkj that was defined by
(4.20) is a tensor.

Problem 36. Using the relation

gjk D 1

2
.”j”k C ”k”j /;

show gjk is a covariant tensor of rank 2.

Problem 37. Show h”p;”qi D gpq:

Hint: ”p D gp˛”˛ and ”q D gqˇ”ˇ:
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(Using this result along with (4.34), it becomes a trivial task to show that gpq is
a contravariant tensor of rank 2.)

Problem 38. Using the fact that ”˛ D g˛ˇ”ˇ and gjkgkm D ı
j
m, demonstrate the

fact that ”j D gjk”
k:

Problem 39. Suppose a DA˛”˛ D Aˇ”ˇ: Use the relation ”ˇ D g˛ˇ”˛ to show
that A˛ D g˛ˇAˇ: Also show Aˇ D g˛ˇA

˛:

Problem 40. Suppose A
i1i2:::ip
j1j2:::jq

is a tensor with valence

�
p

q

�
: Furthermore, sup-

pose A
i1i2:::ip�1

j1j2:::jqC1
D A

i1i2:::ip�1˛

j1j2:::jq
g˛ jqC1

. Show A
i1i2:::ip�1

j1j2:::jqC1
is a tensor of valence

�
p � 1

q C 1

�
:

(It should also be noted that if A
i1i2:::ip
j1j2:::jq

is a tensor with valence

�
p

q

�
, then

A
i1i2:::ipC1

j1j2:::jq�1
is a tensor with valence

�
p C 1

q � 1
�

if A
i1i2���ipC1

j1j2:::jq�1
D A

i1i2:::ip
j1j2:::jq�1˛

g˛ ipC1 :)

Problem 41. Suppose A
i1i2:::ip�1

j1j2:::jq�1
D A

i1i2:::ip�1˛

j1j2:::jq�1˛
and A

i1i2:::ip
j1j2���jq is a tensor of valence

�
p

q

�
: Show A

i1i2:::ip�1

j1j2:::jq�1
is a tensor of valence

�
p � 1
q � 1

�
:

Problem 42. Return to the saddle surface mentioned in Prob. 32.

(a) Determine the components of gjk:
(b) Show

”1 D
�
1C .u1/2

�
e1 � u1u2e2 C u2e3

1C .u1/2 C .u2/2
and

”2 D �u1u2e1 C �
1C .u2/2

�
e2 C u1e3

1C .u1/2 C .u2/2
:

Problem 43. An index-free Clifford number A is a Clifford number that contains
no unsummed indices. An example of such a Clifford number is the 3-vector A D
A
˛ˇ

”˛”ˇ”
 where the A˛ˇ
’s are the components of a tensor. Demonstrate that an

index-free Clifford number transforms under a change of coordinates as a scalar.
That is NA D NA˛ˇ
 N”˛ N”ˇ N”
 D A

˛ˇ

”˛”ˇ”
 D A:

Problem 44. Consider the two-dimensional surface of a sphere of radiusR defined
by the equation:

s D e1R cos� sin � C e2R sin � sin � C e3R cos �:

Compute ”� , ”� , g�� , g�� , and g��: Then compute g�� , g�� , and g��: Finally,
compute ”� , and ”�:
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Problem 45. Suppose nij is the entity defined by (4.7). Also suppose that

Nnrs D nij
@ui

@Nur
@uj

@Nus :

Show that in general it cannot be said that Nnkk D 1 if 1 � k � p, Nnkk D �1
if p C 1 � k � n, and Nnrs D 0 if r ¤ s. (It is for this reason that nij is not a
tensor.)

4.3 The Exterior Product for p-Vectors

As already indicated in Sect. 4.1, the Clifford product ofp distinct ej ’s is necessarily
a p-vector. However, this does not mean that the Clifford product of p distinct
1-vectors is necessarily a p-vector. For example, suppose

a D a1e1 C a2e2 C a3e3 and

b D b1e1 C b2e2 C b3e3:

Then

ab D �
a1b1 C a2b2 C a3b3

�
I C �

a2b3 � a3b2
�

e2e3

C �
a3b1 � a1b3

�
e3e1 C �

a1b2 � a2b1
�

e1e2:

Thus, it is not difficult to see that in general the Clifford product of two 1-vectors
is a linear combination of a 0-vector and a 2-vector. However, a 2-vector can be
constructed by taking a linear combination of ab and ba. In particular,

1

2
.ab � ba/ D �

a2b3 � a3b2
�

e2e3 C �
a3b1 � a1b3

�
e3e1

C �
a1b2 � a2b1� e1e2.

More generally, suppose we consider p distinct Dirac vectors each one of which
is expanded in terms of a Euclidean basis. That is ”
 D .@xj =@u
/ej for � D
1; 2; : : : ; p: Then

”1”2 : : : ”p D @xj1

@u1
@xj2

@u2
: : :

@xjp

@up
ej1ej2 : : : ejp : (4.39)

The terms on the R.H.S. (right-hand side) of (4.39) are of several types. If ej1 ,
ej2 ,: : : ; ejp are all distinct, then their product is a p-vector. On the other hand,
if some of the ejk ’s in a given product are identical, then they may be grouped
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a

b

c

Fig. 4.5 a ^ b ^ c D ja � .b � c/j e1e2e3. Volume of parallelepiped = ja � .b � c/j

together and multiplied out until the only remaining ejk ’s are distinct. Thus we see
that the R.H.S. of (4.39) consists of a linear combination of p-vectors, .p � 2/-
vectors, .p � 4/-vectors, and so forth on down to 1-vectors or 0-vectors.

One can project out the p-vector in the R.H.S. (right-hand side) of (4.39) by
antisymmetrizing the L.H.S. To do this explicitly, it is useful to introduce the
generalized Kronecker delta symbol ı

i1i2:::ip
j1j2:::jp

:

ı
i1i2:::ip
j1j2:::jp

D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

1 if the jk’s are distinct and the sequence of ik’s is
an even permutation of the jk’s

�1 if the jk’s are distinct and the sequence of ik’s is
an odd permutation of the jk’s

0 in all other cases

With this generalized Kronecker delta function, we can define ”
1
2:::
p as the
antisymmetric product of ”
1 , ”
2 , : : :, ”
p . That is

”
1
2:::
p D 1

pŠ
ı
	1	2:::	p

1
2:::
p ”	1”	2 : : : ”	p

D 1

pŠ
ı
	1	2:::	p

1
2:::
p

@xj1

@u	1
@xj2

@u	2
: : :

@xjp

@u	p
ej1ej2 : : : ejp

D 1

pŠ
det

2

6
6
66
6
6
6
66
6
6
4

@xj1

@u
1
@xj2

@u
1
� � � @xjp

@u
1
@xj1

@u
2
@xj2

@u
2
� � � @xjp

@u
2
� � � � � �
� � � � � �
� � � � � �

@xj1

@u
p
@xj2

@u
p
� � � @xjp

@u
p

3

7
7
77
7
7
7
77
7
7
5

ej1ej2 : : : ejp : (4.40)
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It should be noted that if the ”
’s are linearly dependent, then each determinant
on the R.H.S. of (4.40) will be zero and thus the antisymmetric product ”
1
2:::
p
will be zero.

For the special case for which p D n, the determinants that appear on the R.H.S.
of (4.40) are all identical so we can write

”12���n D det

2

6
6
6
66
6
6
6
66
6
6
6
4

@x1

@u1
@x2

@u1
� � � @xn

@u1

@x1

@u2
@x2

@u2
� � � @xn

@u2
� � � � � �
� � � � � �
� � � � � �
@x1

@un
@x2

@un
� � � @xn

@un

3

7
7
7
77
7
7
7
77
7
7
7
5

e12���n; where e12���n D e1e2 : : : en:

(4.41)

The determinant on the R.H.S. of (4.41) may be considered the volume of the
n-dimensional parallelepiped spanned by the vectors ”1, ”2, : : :, ”n.

The Clifford product of a p-vector and a q-vector results in a linear combination
of vectors of the orders p C q, p C q � 2, p C q � 4, : : :, on down to jp � qj :
However, for many purposes, it is useful to drop the lower order forms. With this in
mind, one defines the exterior product of a p-vector and a q-vector as the projection
of the Clifford product onto the space of vectors of order p C q. In particular,

”
1
2:::
p ^ ”	1	2:::	q D 1

.p C q/Š
ı
ˇ1ˇ2ˇ3:::ˇpCq

1v2:::
p	1	2:::	q”ˇ1”ˇ2 : : : ”ˇpCq

(4.42)

D ”
1
2:::
p	1	2:::	q ,

where it is understood that ”
1
2:::
r D 0, if any two of the indices are identical.
This can be generalized further. Suppose

F D 1

pŠ
F i1i2:::ip”i1i2:::ip and

G D 1

qŠ
Gj1j2:::jq”j1j2:::jq .

Then

F ^ G D 1

pŠqŠ
F i1i2:::ipGj1j2:::jq”i1i2:::ipj1j2:::jq : (4.43)

It should be obvious to you that (4.41)–(4.43) can be adjusted for upper index
coordinate Dirac vectors or for orthonormal noncoordinate Dirac vectors.

To summarize and review some of the consequences of our notation, we recall
that any Clifford number can be written as a sum of p-vectors:
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A D
nX

pD0
hAip D

nX

pD0

1

pŠ
Ai1i2:::ip”i1i2:::ip : (4.44)

For the example of spherical coordinates:

A D AICAr”rCA�”� CA�”�CA��”��CA�r”�rCAr�”r�CAr��”r�� . (4.45)

(It is understood that A��D � A�� and Ar��DA��rDA�r�D � Ar��D � A��r D
�A�r� .)

The set of pure p-vectors forms a vector subspace of Clifford numbers of
dimension

�
n
p

�
: The dimension is

�
n
p

�
since that is the number of ways you can choose

a set of p ek’s from a set of n. For example, for a three-dimensional Euclidean space,
the number of 2-vectors is

�
3
2

� D 3 and is spanned by ”�� , ”�r , and ”r� . The same
space is spanned by e23, e31, and e12 or ”�� , ”�r , and ”r� :

By taking the direct sum of the different p-vector spaces, we arrive at the vector
space of all Clifford numbers. As previously indicated, the dimension of this larger
space is 2n. This follows from the binomial theorem:

nX

pD0

 
n

p

!

D
nX

pD0

 
n

p

!

1p1n�p D .1C 1/n D 2n.

In Sect. 4.2, we defined the scalar product for a pair of 1-vectors. We now turn to
the problem of defining the scalar product for any two Clifford numbers.

To deal with this problem, we need to introduce the concept of the reverse of
a Clifford number. Following the notation of Hestenes and Sobczyk (1984, p. 3)
and the terminology of Marcel Riesz (1958, p.13), we define the reverse A� of a
Clifford number A to be that Clifford number obtained by reversing the order of
all products of Dirac vectors in the linear expansion of A. For example, if A is the
Clifford number that appears in (4.45), then

A� D AI C Ar”r C A�”� C A�”� C A��”�� C A�r”r� C Ar�”� r CAr��”��r

D AI C Ar”r C A�”� C A�”� � A��”�� �A�r”�r � Ar�”r� � Ar��”r�� .
(4.46)

We can now define the scalar product of two real Clifford numbers to be

hA;Bi D ˝
A�B

˛
0
: (4.47)

Problem 46. Harley Flanders (Flanders (1963), p.14) defined the scalar product for
differential forms in a somewhat different manner. The Clifford algebra analogue
would be
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˝
”i1i2:::ip ;”j1j2:::jp

˛ D det

2

6
66
6
6
6
6
4

˝
”i1 ;”j1

˛ ˝
”i1 ;”j2

˛ � � � ˝
”i1 ;”jp

˛
˝
”i2 ;”j1

˛ ˝
”i2 ;”j2

˛ � � � ˝
”i2 ;”jp

˛

� � � � � �
� � � � � �
� � � � � �˝

”ip ;”j1
˛ ˝

”ip ;”j2
˛ � � � ˝

”ip ;”jp
˛

3

7
77
7
7
7
7
5

: (4.48)

For a slightly more general case, suppose

A D 1

pŠ
Ai1i2:::ip”i1i2:::ip and B D 1

pŠ
Bj1j2:::jp”j1j2:::jp :

Then

hA;Bi D
�
1

pŠ

	2
Ai1i2:::ipBj1j2:::jp

˝
”i1i2:::ip ;”j1j2:::jp

˛
: (4.49)

Show that for p-vectors, (4.48) and (4.49) agree with (4.47).
Suggestion: Try using some orthonormal basis.

Problem 47. Show that
˝
A�B

˛
0

D ˝
B�A

˛
0

where A and B are arbitrary Clifford
numbers that are not necessarily index free. (This shows that hA;Bi D hB;Ai.)

Problem 48. Show that hABi0 D hBAi0, where A and B are arbitrary Clifford
numbers that are not necessarily index free.

Problem 49. Generalize the result of Prob. 48 to show that the scalar component of
a product of several Clifford numbers is invariant under cyclic permutations. That is

hA1A2 : : :Ani0 D hA2A3 : : :AnA1i0
D : : : D hAkCŠAkC2 : : :AnA1A2 : : :Aki0 : (4.50)

Problem 50. Suppose in three dimensions a Dakek, b Dbek, and c Dckek .
Show that

a ^ b ^ c Ddet

2

4
a1 a2 a3

b1 b2 b3

c1 c2 c3

3

5 e1e2e3.

4.4 Some Useful Formulas

In this section, I will present some useful formulas for products of Dirac vectors.
You should first note that
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ej ek D 1

2

�
ej ek � ekej

�C 1

2

�
ej ek C ekej

�

D ejk C njkI.

For the product eiej ek , there are five cases:

Case 1: All three indices are distinct. For this situation

eiej ekD eijk .

Case 2: i D j ¤ k. Then

eiej ekDnij ek .

Case 3: i D k ¤ j . Then
eiej ekD �ej eiekD �nikej .

Case 4: i ¤ j D k. Then

eiej ekDnjkei .

Case 5: i D j D k. Then

eiej ek D nij ek D nikej D njkei .

Because of the fact that the expressions for most of the cases are zero in any
given situation, we can summarize all five cases with a single equation. Namely

eiej ekD eijk C nij ek�nikej C njkei .

Using similar arguments, we can show that

eiej ekem D eijkm C nij ekm � nikejm C nimejk C njkeim � njmeik C nkmeij

C nij nkmI � niknjmI C nimnjk I.

One can easily use these formulas to obtain others. For example if we replace
eiej by eij and ekem by ekm in the left hand side of the previous equation then the
terms on the right hand side involving nij or nkm become zero and we get

eij ekm D eijkm � nikejm C nimejk C njkeim � njmeik � niknjmI C nimnjk I.
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Summarizing, we have

ej ek D ejk C njkI. (4.51)

eiej ek D eijk C nij ek�nikej C njkei . (4.52)

eiej ekem D eijkm C nij ekm � nikejm C nimejk C njkeim � njmeik C nkmeij

C nij nkmI � niknjmI C nimnjk I. (4.53)

eij ekm D eijkm � nikejm C nimejk C njkeim � njmeik � niknjmI C nimnjk I.
(4.54)

These formulas can easily be modified for coordinate vectors. For example, if

”i D @x˛

@ui
e˛;

then

”˛”ˇ” D @xi

@u˛
@xj

@uˇ
@xk

@u
eiej ek

D @xi

@u˛
@xj

@uˇ
@xk

@u
�
eijk C nij ek�nikej C njkei

�

D ”˛ˇ C g˛ˇ” � g˛”ˇ C gˇ”˛:

Organizing this along with several other equations, we have

”˛”ˇ D ”˛ˇ C g˛ˇI. (4.55)

”˛”ˇ” D ”˛ˇ C g˛ˇ” � g˛”ˇ C gˇ”˛: (4.56)

”˛”ˇ””
 D ”˛ˇ
 C g˛ˇ”
 � g˛”ˇ
 C g˛
”ˇ C gˇ”˛
 � gˇ
”˛ C g
”˛ˇ

C g˛ˇg
I � g˛gˇ
I C g˛
gˇI. (4.57)

”˛ˇ”
 D ”˛ˇ
�g˛”ˇ
 C g˛
”ˇ C gˇ”˛
�gˇ
”˛ � g˛gˇ
I C g˛
gˇI.
(4.58)

Problem 51. Obtain an appropriate formula for ”˛”ˇ.

Problem 52. Obtain an appropriate formula for ”˛”ˇ”.

Problem 53. (a) Use (4.47) and (4.58) to obtain a formula for
˝
”˛ˇ;”


˛
.

(b)
˝
”˛ˇ;”˛ˇ

˛ D‹
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4.5 Gram–Schmidt Formulas

Sometimes it is useful to construct an orthonormal frame other than the Euclidean
system. This is particularly true in the study of n-dimensional surfaces imbedded in
an .nC 1/-dimensional Euclidean space. (Such surfaces are called hypersurfaces.)

In this case, you may have a coordinate system of Dirac vectors f”1, ”2, : : : , ”ng
that are all tangent to the surface at a given point. You would like to have a system
of orthonormal vectors fE1,E2, : : : ,Eng that span the same space as f”1,”2, : : : ,”ng
plus one additional unit vector N that is perpendicular to the surface at the given
point.

Using the usual vector techniques, this can be a formidable computation.
However, Hestenes and Sobczyk (1984, pp. 27–28) have worked out a variant of
the Gram–Schmidt process that seems somewhat easier. For Euclidean spaces, you
begin as usual by letting

E1 D ”1= j”1j : (4.59)

To compute Ek for higher values of k, you take advantage of the fact that

Ek D .Ek�1Ek�2 � � � E2E1/ .E1E2 � � � Ek�1Ek/ : (4.60)

On first impression, this formula may seem useless or even less than useless.
However, the 1-vectors f”1, ”2, : : : ,”rg span the same space as fE1, E2, : : : ,Erg.
As a consequence

E1E2 : : :Er D ”12���r= j”12���r j
and (4.60) can be converted to a more useful form:

Ek D ”k�1���21
j”k�1���21j

”12���k
j”12���kj

for k D 2; 3; : : : ; n: (4.61)

Finally to obtain a normalized version of a vector perpendicular to the surface,
we take advantage of the fact that

E1E2 � � � EnN D e1e2 � � � enC1 D e12���nC1:

Using this relation and the idea used in the derivation of (4.61) from (4.60), we have

N D ”n���21
j”n���21j

e12���nC1: (4.62)

It should be emphasized that the equations in this section apply only to Euclidean
spaces. It is not clear to me whether or not these formulas can be generalized to
pseudo-Euclidean spaces. In pseudo-Euclidean spaces or in spaces embedded in
pseudo-Euclidean spaces, there are vectors with length zero. If any such vectors
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occur in the original basis, then the method outlined above will not work. However,
using a completely different approach, one can obtain an orthonormal frame from a
coordinate frame whenever the metric tensor is known. (See Appendix B.)

For some computations on hypersurfaces, it may be useful to retain the coordi-
nate system of Dirac vectors. However, it is still useful to construct N. In that case,
you only need to use (4.62) without having to deal with (4.61).

You may also wish to deal with an n-dimensional curved surface embedded in
an m-dimensional Euclidean space where m � n > 1. For this situation, it is not
clear how useful it is to know that the n-dimensional surface is embedded in a flat
m-dimensional Euclidean space. A lot of information can be obtained simply by
taking measurements restricted to the n-dimensional surface. If the eigenvalues of
the metric tensor are all positive, this approach is known as Riemannian geometry.
If some of the eigenvalues of the metric tensor are negative, this approach is known
as non-Riemannian geometry. The whole theory of general relativity is based on
this intrinsic approach. The next chapter is also devoted to this angle of attack and
you will see some significant results for two-dimensional surfaces. Later you will
get an idea of what additional information can be obtained about two-dimensional
surfaces by a three-dimensional observer. (For two-dimensional surfaces that can be
embedded in a flat three-dimensional Euclidean space, a three-dimensional observer
does have some advantages over the two-dimensional observer.) We will not attempt
to reveal what advantage a 4 or five-dimensional observer might have over a two-
dimensional observer for two-dimensional surfaces that cannot be embedded in a
flat three-dimensional space. That is beyond the scope of this author and therefore
beyond the scope of this book. On the other hand, we will devote some optional
sections to n-dimensional surfaces viewed by an .nC 1/-dimensional observer.

Problem 54. In Prob. 32, you hopefully showed that for the saddle surface ”1 D
e1 C u2e3 and ”2 D e2 C u1e3.

(a) Show ”12 D �u2e23 � u1e31 C e12.
(b) Use the result from part a and whatever formulas you find necessary from this

last section to compute N, E1, and E2.

4.6 *The Qibla (Kibla) Problem

The Gram–Schmidt process can be used to dispose of a problem encountered
and solved by the Islamic mathematicians. Muslims are expected to pray five
times a day facing Mecca. However, even if you know your location and that of
Mecca, the determination of qibla (the direction to Mecca) is not a trivial prob-
lem. Al-Khwarizmi (790–850AD) was one of the several Islamic mathematicians
who developed an approximate method for dealing with this problem. Al-Biruni
(973–1055AD) was one of the several mathematicians who achieved an exact
solution using the knowledge of spherical trigonometry developed by Islamic
mathematicians.
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Mecca

P

C

φφ
PM

q

EN

vq
vP

vM

Fig. 4.6 The point P
represents the location
of the observant Moslem
who wishes to face Mecca
at time of prayer

The qibla problem can be solved using either vector algebra or Clifford algebra
without a sophisticated knowledge of spherical trigonometry. In this section, I will
show how the problem can be solved using Clifford algebra.

Using the center of the earth as our origin, we designate the position of our
Moslem by vP and the position of Mecca by vM : (See Fig. 4.6.) We designate the
direction to Mecca by vq . If we treat the radius of the earth as our unit length, then

vqD .vP vP / vq D vP vP vq . (4.63)

Since vP and vq are perpendicular, it follows that the product vP vq D vP ^ vq .
Furthermore, since vq lies in the plane spanned by vP and vM , the exterior product
vP ^ vq is equal to some scalar multiple of vP ^ vM . If we do not normalize vq , we
can write

vq D vP .vP ^ vM/. (4.64)

Now if � is used to designate the latitude (the angle above the equator) and
� is used the designate the longitude (the number of degrees east of Greenwich,
England), then

vP D e1 cos �P cos�P C e2 cos �P sin�P C e3 sin �P :

When our computation is complete, we want the qibla expressed in terms of
cardinal directions (north, south, east, west) at the point P . To obtain a vector
pointing east from point P , we compute

@vP
@�P

D �e1 cos �P sin �P C e2 cos �P cos�P :
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Factoring out cos�P , we get a unit vector pointing east. Namely

EE D �e1 sin �P C e2 cos�P :

The unit vector pointing north is

EN D @vP
@�P

D �e1 sin �P cos�P � e2 sin �P sin �P C e3 cos �P :

Summarizing, we have

2

4
vP
EE
EN

3

5 D
2

4
cos �P cos�P cos �P sin�P sin �P

� sin �P cos�P 0

� sin �P cos�P � sin �P sin �P cos �P

3

5

2

4
e1
e2
e3

3

5 : (4.65)

The 3 � 3 matrix in (4.65) is orthogonal, so the inverse is simply the transpose.
Thus,

2

4
e1
e2
e3

3

5 D
2

4
cos �P cos�P � sin �P � sin �P cos�P
cos �P sin �P cos�P � sin �P sin �P

sin �P 0 cos �P

3

5

2

4
vP
EE
EN

3

5 : (4.66)

Now

vM D �
cos �M cos�M ; cos �M sin �M ; sin �M

�
2

4
e1
e2
e3

3

5 : (4.67)

Combining (4.67) and (4.66), we get

vM D Œcos �M cos �P .cos�M cos�P C sin �M sin �P /C sin �M sin �P � vP

C Œcos �M .sin �M cos�P � cos�M sin �P /�EE

C Œ� cos �M sin �P .cos�M cos�P C sin �M sin �P /C sin �M cos �P �EN

or

vM D Œcos �M cos �P cos.�M � �P /C sin �M sin �P � vP

C Œcos �M sin.�M � �P /�EE

C Œ� cos �M sin �P cos.�M � �P /C sin �M cos �P �EN :

It then follows that

vP ^ vM D Œcos �M sin.�M � �P /� vPEE

C Œ� cos �M sin �P cos.�M � �P /C sin �M cos �P � vPEN :
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And from (4.64),

vq D vP .vP ^ vM/

D Œcos �M sin.�M � �P /�EE C Œ� cos �M sin �P cos.�M � �P /
C sin �M cos �P �EN :

If we change the magnitude of vq by dividing by cos �M , we have

vq D sin.�M � �P /EE C Œtan �M cos �P � sin �P cos.�M � �P /�EN : (4.68)

Using this last equation and referring to Fig. 4.6, we see that for ��
2
< q < �

2
:

tan q D sin.�M � �P /

tan �M cos �P � sin �P cos.�M � �P /
:

So finally

q D arctan

�
sin.�M � �P /

tan �M cos �P � sin �P cos.�M � �P /

	
: (4.69)

For q > �
2

or q < ��
2

, these last two formulas have to be adjusted but (4.68)
remains valid providing that you are intelligent about the sign conventions for �P
and �P :

Problem 55. Kamal Abdali (Abdali 1997, p. 10) notes that in the classical Muslim
scientific works on qibla determination, the prime meridian was usually taken to
be located at the western coast of Africa or the Canary Islands because that was
considered to be the edge of civilization. How would the choice of the prime
meridian affect the formula of (4.68)?

Problem 56. According to Abdali (Abdali 1997, p. 2), the Mosque on Mas-
sachusetts Avenue in Washington D.C. is aligned so as to be consistent with qD56ı,
33 min, and 15 s. This means that the qibla is roughly in the northeast direction.
However, Washington D.C. is further north than Mecca so some observers have
suggested that the qibla for that Mosque should be in a southeasterly direction. Make
some intelligent comment.

Problem 57. The longitude of Washington D.C. is approximately 77ı west of
Greenwich. For Washington D.C., what value should be assigned to �P in (4.68)?
The latitude for Capetown, Africa is approximately 34ı south of the equator. For
Capetown, what value should be assigned to �P in (4.68).

If you wish to learn some spherical trigonometry, consider the following two
problems.

Problem 58. Suppose the sphere in Fig. 4.7 has unit radius. Also suppose the
spherical triangle is oriented so that vA is located at the northpole .0; 0; 1/ and
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α

β

γ
a

b
c

C

vA

vB

vC
x2

x3

x1

Fig. 4.7 Spherical triangle
with angles ˛, ˇ, and � along
with great circle arcs of
lengths a, b, and c

vB is in the x1–x3 plane. This implies that vB D .sin c; 0; cos c/ and vC D
.cos˛ sin b; sin˛ sin b; cos b/.

(a) Compute hvB; vC i to obtain a formula for cosa in terms of cos˛, sin b, cos b,
sin c, and cos c. Using symmetry without further computation, write down
similar formulas for cosˇ and cos � .

(b) Suppose the sphere has radius R: Then the formulas in Part a) remain valid if
a is replaced by a=R, b is replaced by b=R, and c is replaced by c=R. Show
that if you then consider the limit when R ! 1, you obtain the usual Law of
Cosines.

Problem 59. Consider Figs. 4.5 and 4.7.

(a) Using the assumptions of Part a of Prob. 58, compute vA ^ vB ^ vC to obtain
a formula for the volume of the parallelepiped determined by vA, vB , and vC .
Use symmetry to obtain two more formulas for the same volume.

(b) Equate the three formulas and obtain the equation,

sin˛

sin a
D sinˇ

sin b
D sin �

sin c
.

(c) Use the same approach used in Part (b) of Prob. 58 to obtain the usual Law of
Sines.
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Problem 60. Use the spherical trigonometry developed in Probs. 58 and 59 to
obtain (4.69) without resorting to Clifford algebra. (According to Victor Katz,
Al-Bı̄rūnı̄ solved the qibla problem without using the results of Prob. 58. See (Katz
1998, pp. 277–281)).

4.7 *Mathematics of Arab Speaking Muslims

4.7.1 *Greek Science and Mathematics in Alexandria

In 332BC, shortly after he conquered Egypt, Alexander the Great founded the city
of Alexandria at the mouth of the Nile. When Alexander died nine years later in
323BC, his empire was divided into three parts by warring factions of Macedonians
who had served as his top-ranking officers. Ptolemy, son of Lagus, emerged as self-
proclaimed king of Egypt. As Ptolemy I, he established a dynasty of Ptolemies that
would last almost 300 years until the death of the famous Cleopatra in 30BC.

At least some of the Macedonians had a high regard for learning. Alexander the
Great’s father, Philip of Macedonia, had employed Aristotle to tutor the future world
conquerer. Ptolemy I shared this high regard for learning. As an historian, he was the
author of an authoritative account of Alexander’s campaigns. However, it is possible
he did not have a gift for mathematics. According to a popular story, he once asked
Euclid if he could learn geometry without struggling through Euclid’s Elements.
Noting that there might be limits to the powers of a seemingly omnipotent king,
Euclid was said to respond, “There is no royal road to geometry” (Casson 2001,
pp. 32–33).

Like Philip of Macedonia, Ptolemy I wanted his offspring to get a good
education. Demetrius of Phalerum, a disciple of Aristotle and exiled governor of
Athens, was recruited to tutor Ptolemy’s family. Demetrius would soon become
the first librarian in Alexandria. Associated with the library was the “Museum” so
named because it was considered to be a “house of Muses.” It was this institution
that was designed to attract the top intellects of the Mediterranean world.

The library may have lasted for more than 500 years, but the impact of the
Museum as a dominant center of cutting edge research was relatively short. At
the web site of John J. O’Connor and Edmund F. Robertson at the University of
St. Andrews, Scotland (http:www-history.mcs.st-andrews.ac.uk/), there is a list of
outstanding mathematicians (broadly defined). On the list I was able to identify 15
who were associated with the Museum or at least the city of Alexandria. For one of
them (Hypsicles), there seems to be a disagreement about whether he lived during
the second century BC or the second century AD. (O’Connor and Roberson list his
life span as 190–120BC.) Of the remaining 14, seven lived during a time span of
two or three generations. The difference in time between the death of the first of the
seven (Euclid) and the last of the seven (Apollonius of Perga) was only 75 years!
The next mathematician on the list of 14 was Heron of Alexandria who was born
about 200 years after the death of Apollonius. What was the cause of this time gap?
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Historians point to the events of 144BC. Other things may have contributed to
the decline of mathematics at the Museum. The date of 144BC was roughly 46 years
after the death of Apollonius but what happened around 144BC explains a lot. For
several years prior to 144BC, two brother Ptolemys were co-rulers of Egypt. They
ruled as mutual enemies with Rome acting as a reluctant referee.

When the older brother died in battle in 145BC, his 16-year-old son was in
line to become the sole ruler of Egypt. To prevent his loss of power, the younger
brother, Physcon, known as (Potbelly), took preemptive action. He persuaded his
brother’s widow to marry him and then had his nephew assassinated on the day of
the wedding. As you might imagine, this put a strain on the marriage. Physcon’s
bride became enraged further, when Physcon took her daughter as a second wife.
Physcon now had two wives, who both had the name “Cleopatra.” You might think
that this would lead to confusion in conversations. However, Physcon’s first wife
was also his sister. In this situation, the first wife became known as “Cleopatra the
Sister” while the second wife became known as “Cleopatra the Wife” (Green 1990,
pp. 537–538).

Physcon’s controversial political power plays caused a split in public opinion and
it was not long before civil war broke out. The residents of Alexandria – particularly
the intellectuals and the Jewish community rallied behind the banner of Cleopatra
the Sister while the outlying towns rallied behind the banner of Physcon. When
Physcon prevailed, he carried out mass purges and expulsions of those who had
opposed him in Alexandria.

Some historians suggest that this dispersal of intellectuals was a benefit to
the rest of the Hellenic world. However, if there existed mathematicians with the
ability of Euclid, Aristarchus, Archimedes, Eratosthenes, or Apollonius, they died
as relative unknowns and their contributions to the advancement of mathematics did
not survive.

The role of the Alexandrian Museum as a truly dominant center of cutting edge
science ended in 144BC. But what of the fabled library? The library continued
during the reign of Physcon, but the job of head librarian became a patronage
position – assigned to mediocre toadies.

Under earlier Ptolemys, vast resources were allocated to establish the library.
Michael Harris writes, “Thousands upon thousands of rolls were bought, copied,
stolen, and compiled for its shelves until it contained, according to some estimates
600,000 rolls”% (Harris 1995, p. 45).

There was a competition between libraries of the ancient world for prominence
and even dominance. According to one version of history, Ptolemy V tried to
restrict the growth of rival libraries by banning the export of papyrus. The chief
rival library to the one in Alexandria was that in Pergamum located in modern day
Turkey. In response to the export ban, an alternative writing material, parchment,
was developed in Pergamum. This was a fortunate event since ancient works that
would not have survived written on papyrus have survived on the more durable
parchment. Parchment is the result of processing animal skin so that it can be written
on both sides.
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Writing on leather had occurred earlier and it is not clear how much innovation
can be attributed to the residents of Pergamum. However, it is clear that Pergamum
became a manufacturing center for parchment and the label “parchment” is a
corruption of the name “Pergamum.”

The ultimate fate of the library in Alexandria has been the subject of much
speculation. A thoughtful evaluation of ancient historical accounts is contained in
an essay by Robert Barnes (MacLeod 2000, pp. 61–77). An early account attributed
the destruction of the library to Julius Caesar in 48BC. According to this version,
Caesar set fire to the ships in the harbor of Alexandria to prevent the enemies of
Cleopatra (the Cleopatra of ’Anthony and Cleopatra’ fame) from taking the city by
sea. Using current military terminology, the library suffered substantial “collateral
damage” when the fire spread to the wharves. However, the main library was located
a substantial distance from the harbor inside the palace grounds where Caesar
was residing. No mention of fire encroaching palace grounds appears in Caesar’s
chronicles. In a continuation of the Caesar destruction narrative, Marc Anthony was
said to have offered Cleopatra 200,000 books looted from the library in Pergamum
as compensation. This would have been the entire contents of the Pergamum library
but the account does not indicate whether or not the promised gift was delivered.

Confusion existed amongst the few ancient historians who discussed the fate of
the Alexandrian library because as a general rule, they were unaware of the fact
that there were two significant libraries in Alexandria. The main library was located
on the palace grounds and a smaller satellite library was located in a pagan temple
dedicated to the Egyptian god Serapis.

At the time of Caesar’s visit to Alexandria, there may have been some scrolls
destroyed in a warehouse and there was possibly some looting by Romans eager to
establish personal libraries. (The first significant Roman library was formed from
the spoils of war obtained by Paulus Aemilius, a Roman general, after his victory
over King Perseus of Macedonia in 165BC. Later Roman generals would become a
little competitive in the formation of personal libraries “collected” from the fringes
of the Empire. Shortly before his death, Julius Caesar set up plans to create a public
library that would equal or surpass that of Alexandria. His assassination preempted
these plans and Caesar’s library never came to fruition (Harris 1995, pp. 56–57).)

There are few contemporary references or even near contemporary references to
the libraries of Alexandria. One such reference presented in Barnes’ essay relates to
Domitian who was emperor of Rome from 81AD to 96AD. Referring to Domitian,
Sustonius, and early second century biographer wrote, “At the beginning of his
reign he neglected liberal studies, although he had arranged for the libraries [in
the Porticus Octaviae in Rome], which were destroyed by fire, to be replaced at
great expense, seeking everywhere for copies of books, and sending scholars to
Alexandria to transcribe and correct them.” Thus, we can infer that there was a
significant library in Alexandria at that time (MacLeod 2000, pp. 72–73).

If the main library continued to exist, it was certainly destroyed in 272AD when
the area of Alexandria that included the palace was obliterated as the result of
civil strife (MacLeod 2000, p. 73). At some time, the actual site disappeared.
This may have occurred in 365AD. On July 21, 365AD, an earthquake, centered
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in Crete, created a tsunami that had devastating effects at Alexandria. In later
years, significant earthquakes also had impacts on Alexandria. Whatever caused the
ultimate disappearance of the library, underwater archaeologists are now convinced
that they have discovered the site of the royal palace and thus the site of the ancient
library on the floor of the Alexandrian harbor (Goddio 1998, 2008).

The arrival of Christianity put an end to the satellite library. When Christianity
was on the rise, Romans burned whatever Christian literature they could seize. When
the Christians gained ascendancy, they behaved in a similar manner. In 391AD,
the Temple of Serapis was destroyed on order of Bishop Theophilus (Harris 1995,
p. 47). (The Bishop may have been more interested in destroying a pagan temple
than a pagan library.)

4.7.2 *Hypatia

One cannot end a discussion of mathematics in Alexandria without mention of
Hypatia. Hypatia has been labeled the first woman to make a substantial contribution
to the development of mathematics. Her father, Theon of Alexandria who died about
405AD, is believed to be one of the last and perhaps the last member of the Museum.
For many centuries, the only Greek versions of Euclid’s Elements were attributed
to Theon. It was only in the late nineteenth century that an earlier version was
discovered in the Vatican (Heath 1921, vol. I, p. 360).

By some accounts, Hypatia outshone her father as a mathematician. It is believed
that she was responsible for publishing the results of Diophantus and Apollonius
in a form that would be accessible to beginning students (Heath 1921, vol. II, p.
528). The Almagest, the 13 volume work by Claudius Ptolemy (ca. 90–ca. 168AD),
was the mathematical foundation for the geocentric theory of the solar system
using deferents and epicycles which was to be accepted for roughly 1,400 years.
Some scholars now believe that at least some Greek versions of this work that have
survived antiquity were edited by Hypatia (Dzielska 1995, pp. 71–72).

However, Hypatia is best known as a Neoplatonic philosopher who suffered a
dramatic death at the hands of a vicious mob. In March 415AD, she was dragged
from her chariot into a church where she was stripped naked, dismembered and
later burned. Since her death was the result of machinations of Cyril, the church
patriarch in Alexandria, many authors of plays, novels, and histories have treated
this event as a defeat for Greek pagan reason, logic, and science and a victory for
mindless superstition that ushered in the dark ages. Historian Maria Dzielska has
studied the events surrounding Hypatia’s death along with the correspondence of
one of her students, Synesius of Cyrene. She reaches the conclusion that Hypatia’s
death was the result of a conflict between Christians. I am not convinced that this
fact makes the historic implications of Hypatia’s death any less horrific.

On October 15, 412AD, Theophilus died. Theophilus was the church patriarch
who had been responsible for the destruction of the Temple of Serapis. Some of the
ruling class had tried to defend the pagans (Dzielska 1995, pp. 79–80). However,
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the members of the political elite were predominately Christians and they did not
feel directly threatened by the campaigns of Theophilus against pagans. However,
when Cyril was named to succeed Theophilus, it was recognized that he would
not only try to suppress the pagan community in Alexandria but he would also
be heavy handed toward many of his fellow Christians. As a result, three days of
fighting broke out in Alexandria. After attaining victory, Cyril, as expected, set out
to suppress Jews, Nestorian Christians, and other heretics. He also set out to gain
power at the expense of civil authority represented by Orestes, prefect of Alexandria.
Orestes had been sent by Rome to Alexandria only a short time before and probably
seemed vulnerable.

Cyril recruited 500 monks from outside Alexandria who confronted Orestes
and accused him of paganism. Despite his denials, one of the monks, Ammonius,
severely injured the prefect by hitting him on the head with a stone (Dzielska 1995,
pp. 86–87). Fortunately for Orestes, a crowd of Alexandrians came to his rescue.
When Ammonius was eventually captured, Orestes ordered him to be tortured.
When the torture resulted in the death of Ammonius, Cyril tried to gain advantage by
portraying Ammonius as a martyr. This ploy did not influence moderate Christians
who were well aware of what Ammonius had done.

Both Orestes and Cyril appealed to Rome for support without much response.
Cyril then turned to another tactic which would prove much more effective. He
suggested that Orestes and he would be like-minded if it were not for the fact that
Orestes was a gullible dimwit under the control of a satanic witch – Hypatia. Early in
his term in office, Orestes had turned to Hypatia for advice and Hypatia had devoted
herself to bolstering Orestes’ efforts to maintain secular authority. Paganism was
not a primary issue. Hypatia may have been a Christian herself. Certainly, many of
her students were Christians who saw no conflict with her teachings and their faith.
Two of her students became bishops (Dzielska 1995, p. 105).

Hypatia is believed to be a virgin at the time of her death. Usually “virgin”
is associated with youth and many accounts of Hypatia describe her as a young
Aphrodite at the time of her death. However, Dzielska has concluded that she was
probably about sixty years old at the time of her death. She had many years to
attain respect and esteem amongst the elite of Alexandria. From the correspondence
of Synesius of Cyrene (one of her students), we can infer that indeed, Hypatia
had many devoted followers amongst the social elite of Alexandria. Hypatia and
her students were inclined to use their influence to benefit one another but not for
members of lower classes (Dzielska 1995, p. 41 and p. 61). Thus, it is plausible that
her esteem did not extend to the lower classes. It is also possible that her influence in
the upper class may have given credence to Cyril’s charge that she could cast spells
on individuals to attain her evil ends.

Another fact that gave credibility to Cyril’s accusations was that Hypatia and
her students formed what was essentially a secret society. They believed that there
were some aspects of higher learning that would be dangerous to share with naive
members of the lower classes. In one of his letters, Synesius quoted Lysis, a
Pythagorean, “To explain philosophy to the mob is only to awaken among men a
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great contempt for things divine” (Dzielska 1995, p. 60). This left outsiders free
to speculate on all sorts of possible satanic rituals carried out by her followers.
Hypatia was an accomplished astronomer but Greek astronomy was synonymous
with astrology. It is also known that her students were engaged in the interpretation
of dreams (Dzielska 1995, p. 63 and p. 79). All these facts made Hypatia vulnerable
to Cyril’s charges.

It is surmised that the murder of Hypatia was carried out by a society of men
known as parbolans. They were assigned the task of rounding up sick, disabled and
homeless people and transporting them to hospitals or church houses for the poor.
They also served as a militia at the disposal of the Alexandrian patriarch. They had
been employed by the previous patriarch to attack paganism and they were used to
spread the charge that Hypatia was an evil witch.

Cyril’s machinations were quite successful. No one was prosecuted for Hypatia’s
murder and Orestes disappeared from Alexandria. Presumably, he either resigned
his post or was recalled by Rome. Some efforts were made to reduce Cyril’s control
of the parabolans but the effect of these efforts was short lived (Dzielska 1995,
p. 96). Cyril’s dogged pursuit of his goals was deeply appreciated by some. After
his death in 444AD, the mother church conferred sainthood on him.

Maria Dzielska points out that the works of Plato and Aristotle continued to
be taught in the Roman Empire after the death of Hypatia (Dzielska 1995, p. 105).
However, it is clear that Alexandria was no longer the city that could attract scholars
dedicated to open inquiry from the four corners of the world.

4.7.3 *The Rise of Islam and the House of Wisdom

The Romans never did establish a library of the same scale as that of Alexandria or
Pergamum. Generally, the libraries that were established disappeared during the 5th
and 6th centuries when the Roman Empire crumbled (Harris 1995, pp. 66–67).

If it had been left up to the Romans, many of the Greek accomplishments would
have been lost and forgotten. The Roman impact on the progress of mathematics was
not positive. In 212BC, after a three-year siege, the Romans conquered the city of
Syracuse on the island of Sicily. During the subsequent pillaging, a Roman soldier
ignoring a standing order, killed Archimedes. (The siege would not have been so
long had it not been for the effective war machines designed by Archimedes to
defend his home city.) Some Romans were great engineers but no evidence survives
that demonstrates they had any interest in pure mathematics or science.

What saved many mathematical and other works of the Greeks from eventual
destruction was the rise of Islam. Because of his religious convictions, Mohammad
had to flee Mecca in fear of his life in 622AD, but he was able to return in triumph
eight years later. Within 100 years, Islam was spread by force of arms from Spain
to Persia. This expansion ushered in a golden age of science in the Arabic world.
According to Islamic historian C.A. Qadir,
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“In the eyes of the Prophet, knowledge ranked higher than worship, for he said, ‘Man’s
glance at knowledge for an hour is better for him than prayer for sixty years.’ He therefore
commanded all believers to seek knowledge and to go to China in search of knowledge, if
required.” (Qadir 1988, pp. 15–16)

In this spirit, Muslims would eventually establish pre-eminent learning centers in
many places including Damascus and Baghdad in the East and Toledo and Cordova
in the West. Some of the problems that became the focus of investigation arose from
Islam. I have already discussed the Qibla problem. It was also considered important
to calculate the exact times of prayer and the dates for religious ceremonies along
with the month of Ramadan (Ifrah 2000, p. 514). The inheritance laws in the Mideast
had been complicated before the rise of Islam and Muslims did nothing to simplify
them.

It is interesting to note that Islamic inheritance problems had a prominent place
in the earliest text books on algebra. This suggests to some that algebra was invented
by the Arabs to deal with their inheritance law.

George Saliba, author of Islamic Science and the Making of the European
Renaissance, suggests that at least some of the surge of scientific progress that
occurred under Arab rule can be attributed to baser motivations. Abd al-Malik
(646–705AD) ruled the Arab empire as caliph (685–705AD). During his reign, he
mandated that Arabic become the official language of government throughout the
empire. This action threatened the livelihood of several communities of non-Arabs –
in particular Zoroastrians in Persia along with Jews and Nestorian Christians who
had found refuge in Syria and Persia from the Church of Rome.

For generations, many bureaucratic positions had been reserved for members
of families in these communities. These non-Arab families had protected their
status by maintaining a monopoly on the knowledge necessary for administration
tasks such as taxation, inheritance law, and surveying. (Before the introduction of
arabic numerals, these tasks required computations that were quite difficult even
with the use of an abacus.) Abd al-Malik demanded more than having government
employees talk to one another in Arabic. He demanded that whatever learning
materials necessary for the education of an effective bureaucrat be translated into
Arabic.

It is the contention of George Saliba (2007, pp. 60–72) that this edict set off
a competition between members of several ethnic groups who wished to obtain
or maintain positions of influence in the court of the caliph. This competition
resulted in a rapid expanse of scientific knowledge. Soon Muslim scholars would
be familiarizing themselves with the mathematical achievements of India. In India,
progress had been made in trigonometry (Katz 1998, pp. 212–218) and algebra
(Stillwell 2001, p. 82). Although it is now recognized that the Babylonians invented
zero as a place keeper, it is also believed that the concept was reinvented in India
(Ifrah 2000, p. 146 and pp. 399–421). The Persian astronomer and mathematician,
al-Khwarizmi ca. (780–850AD, is credited with popularizing the Indian place-value
system for Arab speakers (Ifrah 2000, p. 521). Using zero along with the decimal
system enabled scientists in the Islamic world to carry out lengthy computations that
were heretofore nearly impossible.
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Later, scientists philosophers and mathematicians, in the courts of the caliphs,
would turn to Greek texts for further learning (Saliba 2007, p. 75). Assimilating the
achievements of Greece and India, the Arabs not only introduced decimal fractions
but made significant advances in algebra, trigonometry, spherical trigonometry, and
number theory. In 830AD, al-Khwarizmi published a book on the solution of equa-
tions entitled Hasib a-jabr w’al mûqabala (Science of Restoring and Opposition).
The words “al-jabr” and “al-mûqabala” refer to steps used in the solution of an
algebraic equation. The word “al-jabr” evolved into the word “algebra.” From the
author’s name, al-Khwarizmi, we get the word “algorithm.” The Arabs also made
significant advances in chemistry, medicine, and observational astronomy. Other
scientific words derived from Arabic are azimuth (al-sumūt), nadir (na zı̄r), and
zenith (al-samt).

For 350–400 years,1 mathematics flourished in the Islamic world while virtually
nothing of mathematical importance was happening in Europe. As the boundaries
of the Islamic world expanded, Nestorian Christians in Syria, Zorastrians in Persia,
along with Jews and pagans from all over were absorbed into an empire. According
to some western historians, pagans and unbelievers were given a stark choice:
convert to Islam or die. George Saliba tells me that reality was much more
nuanced. First of all the Quran states that religion should not be a matter of
compulsion. Second, the treatment of pagans depended on the whims of widely
varying governmental authorities. In practice, most pagans converted after several
generations, often for personal advancement. On the other hand, Christians, Jews,
and even Zoroastrians were regarded as “peoples of the book.” They were not
allowed to become full citizens but were allowed to pursue their religions as long as
they paid a special tax.

For its time, this was an extremely liberal approach. In the ninth century, the
Muslim governor of Antioch had to appoint a guard to keep Christian sects from
massacring one another at church (Durant 1950, p. 218). A caliph of particular note,
who promoted science, was al-Mamun who ruled from 813 to 833. In his state
council, he included Christians, Jews, Sabians, and Zoroastrians. He gave strong
support to arts, sciences, letters, and philosophy. Members of his court went to
Constantinople, Alexandria, Antioch, and elsewhere for the writings of the Greek
masters, which were then translated into Arabic. He established an academy of

1For a number of years, John J. O’Connor and Edmund F. Robertson have posted profiles at their
web site (www-history.mcs.st-and.ac.uk) or google “MacTutor History of Mathematics” on people
who have made significant contributions to mathematics. In November 2011, the list of those born
between 700 and 1050AD was dominated by members of the Islamic world. Out of a total of 44,
31 or 70% were Arab speaking Muslims. The remaining 13, consists of nine Indians, two Chinese,
one Englishman, and one German. Neither the Englishman nor the German is included for making
original contributions. The Englishman, Alcuin, is included for preserving the contents of some
ancient Greek documents. The German, Hermann of Reichenau, is included for describing some
Arabic science in the Latin language.

During the following 50 years (1050–1100), six more people were listed. The six consisted of
two Indians, two Spanish Jews, and one English Christian, and only one Arab speaking Muslim.
However, it should be noted that the two Spaniards and the Englishman were on the list for their
roles in transferring Arab mathematics to the European community.
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science at Baghdad that became known as “The House of Wisdom.” He funded
salaries for physicists, jurists, musicians, poets, mathematicians, and astronomers.
The greatest of the mathematicians in the court of al-Mamun was al-Khwarizmi but
there were others, including al-Kindi, better known as a philosopher.

Al-Mamun set an example that set the stage for an Islamic “golden age.” During
this period many rulers of various realms in the Arab world provided patronage for
various intellectual pursuits. However, eventually this patronage would disappear.
Why?

Much of the early Arab success in science stemmed from the willingness of
important rulers to tolerate non-Muslims. However, Muslims like Christians of the
same period found it difficult to settle differences without resorting to arms. Centers
of scholarly research did not remain islands of serenity.

One of many divisions that would be settled by force was focused on the
methodology used to interpret the Quran. In the early days of Islam, religious
scholars would argue over interpretation of the Quran but eventually something like
a body of legal precedents was established. In this circumstance, a rigid orthodox
theology emerged for some which was immune from new knowledge gained from
the sciences.

By contrast, others had a more flexible and allegorical interpretation of scripture.
These people felt that the study of the universe created by God would lead to a
better understanding of God’s nature and thereby a better understanding of God’s
intentions as described in the Quran.

If the proponents of these opposing views had agreed to disagree, the golden age
of science might have continued much longer. However, the inclination to rely on
violence to settle disputes was deeply embedded in Arab society at the time. Much
of this stemmed from clan rivalries that existed before the rise of Islam.

At the moment of Mohammad’s death in 632, there was division over who
would inherit the role of Mohammad as leader of what soon became an Islamic
empire. Some thought Mohammad’s son-in-law, Ali, should become caliph while
others thought that Mohammad’s closest advisor, Abu Bakr, should be awarded the
position. This split was essentially a split between rival clans. Since the caliph would
be both spiritual and civil ruler, this division was worth a war in the seventh century.
This division continues to have lethal consequences in the twenty-first century.
Those who think Ali was the rightful heir are known as Shiites and those who think
Abu Bakr was deserving are known as Sunnis.

The Umayyad clan supporting Abu Bakr initially took control. However, after
24 years in 656, there was a revolt and Ali became caliph. Then in 661, Ali was
killed by a member of a group that had seceded from Ali’s army. Soon after, the
Umayyad clan regained control and Mu’awiya became caliph. Things did not end
there. Ali’s son, Hasan, became leader of the Shiites but he was forced to submit to
the Umayyad clan and in 669 he died. Shiites believe that he died because Mu’awiya
persuaded one of Hasan’s wives to poison him.

When Mu’awiya died in 680, another war of succession broke out and Husayn
(another son of Ali) was killed in battle with many members of his immediate
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family. In Karbala, where Husayn was killed, the Shiites built a shrine. This shrine
was destroyed by a Sunni caliph in 850 (Durant 1950, p. 252). Nevertheless the
Shiites enact an annual passion play at the site.

The Umayyads ruled from Damascus until 750, when they were overturned by
the rival Abbasid clan. The Abbasid clan was a Sunni clan that was able to exploit
the grievances of Persian Shiites to obtain supremacy.

The Abbasids were not kind to the defeated Umayyads. The head of the previous
caliph was delivered to Abu al-Abbas – the new caliph. Even then, the Abbasids
were not satisfied. An uncle of the new caliph announced an amnesty to the
Umayyads and eighty of their leaders were lured to a dinner. When seated, the
eighty were put to the sword by soldiers who had been hidden for the occasion
(Durant 1950, p. 196). A few members of the Umayyad clan were able to escape
and a rival caliphate was established on the Iberian peninsula.

Politics could be rough even between members of the same family. Al-Mamun,
an Abbasid caliph, was discussed earlier in this section as the enlightened patron of
arts and science in his court in Baghdad. However, he had to compete with a brother
to become caliph. He became informed that he would become caliph in 813 when
the severed head of his older brother was delivered to him.

The liberal attitudes that al-Mamun had toward Christians, Jews, Sabians, and
Zoroastrians did not extend to many of his fellow Muslims. This was particularly
true near the end of his reign. A version of Islam, influenced by Greek philosophy
was imposed on the general public. According to Durant (1950, pp. 250–251):

– al-Mamun in 832 issued a decree requiring all Moslems to admit that the Koran had been
created in time; a later decree ruled that no one could be a witness in law, or a judge, unless
he declared his acceptance of the new dogma; further decrees extended this obligatory
acceptance to the doctrines of free will, and the impossibility of the soul ever seeing
God with a physical eye; at last, refusal to take these tests and oaths was made a capital
crime. Al-Mamun died in 833, but his successors al-Mutassim and al-Wathiq continued his
campaign. The theologian Ibn Hanbal denounced this inquisition; summoned to take the
tests, he answered all questions by quoting the Koran in favor of the orthodox view. He was
scourged (flogged) to unconsciousness and cast into jail; but his sufferings made him, in
the eyes of the people, a martyr and a saint, and prepared for the reaction that overwhelmed
Moslem philosophy.

Al-Mamun’s efforts to impose his views on the populace were counterpro-
ductive. To enforce their will on the general population, al-Mamun, along with
his successors, al-Mutassim and al-Wathiq became more and more dependent on
an army of Turkish mercenaries who became more and more powerful. When
al-Wathiq died, it was these Turkish mercenaries who chose the following caliph.
The Turks observed a very orthodox version of Islam and when their choice for
caliph, al-Mutawakkil assumed the reins of power in 847, he immediately released
Iman Ahmad ibn Hanbal from prison and reversed the policies of the previous
caliphs. The version of Islam that al-Mamun had tried to eradicate now became
the official religion. When ibn Hanbal died in 855, virtually the entire population of
Baghdad turned out for his funeral.

During the Medieval Age, a Muslim mathematician or scientist was usually
involved in such a broad range of investigations that he could not avoid religious
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controversy. An extreme example was al-Kindi (801–873). For what its worth,
according to Wikipedia (wikipedia.org/wiki/Al-kindi),“He wrote at least 250 books,
contributing heavily to geometry (32 books), medicine and philosophy (22 each),
logic (nine books), and physics (12 books).” In geometry, he gave a lemma that
considered the possibility of having lines in the plane that are simultaneously
nonparallel and nonintersecting (Bulgakov and Ahmedov 1977, pp. 30–36). (Such a
lemma would have made al-Kindi a focus of controversy in Europe during the first
half of the nineteenth century.)

Al-Kindi flourished in the court of al-Mamun. He also thrived in the court of
his successors, al-Mutassim and then al-Wathig. However, the situation for al-Kindi
changed dramatically when al-Mutawakkil became caliph in 847.

During his reign, al-Mutawakkil confiscated al-Kindi’s library and then had
him subjected to 50 strokes of a whip (Hayes 1992, p. 99). It appears that this
flogging stemmed from the machinations of Jafar Muhammad Banu Musa, another
court mathematician. Indeed, in this incident, Jafar Muhammad was able to gain
possession of al-Kindi’s library. However, these machinations would not have been
possible without the bitter religious divisions of the time. (The flogging of al-Kindi
occurred about six years after the funeral of Iman Amad ibn Hanbal that I mentioned
above. Ibn Hanbal had opposed the kind of allegorical interpretation of the Quran
advocated by al-Kindi and had won the adulation of the populace when he refused
to recant his views in the face of harsh retribution, which had also included a public
flogging.)

Later, a friend of al-Kindi, skilled in court intrigue, was able to get the library
returned to al-Kindi. Al-Kindi died in 873 at the age of 72. In some sense, the fate
of al-Kindi was symptomatic of the state of affairs in the court of al-Mutawakkil.

As I mentioned above, al-Mutawakkil was quite dogmatic. It was al-Mutawakkil
that ordered the destruction of the Shiite shrine dedicated to Husayn ibn Ali. (This
shrine has been damaged or destroyed many times over the centuries. Each time, it
has been reconstructed with greater grandeur. Under Saddam Hussein, pilgrimages
were forbidden. Thousands were arrested and hundreds were killed to enforce his
edict. Today, Shiites protect the site with extreme vigilance.)

Under al-Mutawakkil, Jews and Christians were ousted from government posts
and required to wear a distinctive color of dress, put colored patches on the garments
of their slaves, ride only on mules and asses, and attach wooden devils to their doors
(Durant 1950, p. 252). It should be noted that al-Mutawakkil may have been as
capricious as he was dogmatic. We know with certainty that at least one member
of his court, Hunayn ibn Ishaq (808–873), was a Nestorian Christian. Hunayn was
not only the most prolific translator in the court of al-Mutawakkil but also one of
the most prolific translators of Greek science in the history of the Islamic empire.
Hunayn also held the title of chief physician in the caliph’s court.

According to at least one report, Hunayn was one of the 57 physicians, most
of whom were also Christians, who were sustained in the caliph’s court (Saliba
2000, p. 92). For Hunayn, this support may have come at a high price. According
to the report just mentioned, Hunayn life in the court was so miserable that he
considered suicide at times because of the intrigues of his fellow Christians. When
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they falsely accused him of being an atheist, Hunayn was flogged, imprisoned, and
nearly executed (Saliba 2000, pp. 95–96). George Saliba interprets this episode
as evidence that al-Mutawakkil was willing to permit the Christian authorities to
police their own heretics. Indeed, according to the story, the caliph did consult with
a Christian cleric before deciding on the appropriate punishment.

In this same story, Hunayn was saved from execution when the caliph had a
vision in which Christ appeared before him to intercede on behalf of Hunayn.
Hunayn was then released after six months in prison to treat an illness that had
painfully incapacitated the caliph for almost two months. The ministrations of the
other court physicians had been ineffective so the caliph was very grateful to Hunayn
when he regained his health soon after consuming the potion prescribed by Hunayn
(Saliba 2000, pp. 95–98).

Due to the oppressive and divisive policies of the Abbasid caliphs, their authority
soon deteriorated after al-Mutawakkil and independent centers of power cropped up
all over the Islamic world. Mathematicians and scientists could find patronage at
some of these centers but frequently when one ruler died there would be a profound
shift in policy. Philosophers in particular often had to flee to avoid imprisonment or
death when a new ruler assumed the reins of power.

This was the fate of al-Biruni (973–1048) who was mentioned in the last section
for his contribution to the qibla problem. In 973, he was born in present day
Uzbekistan. As he matured, he became closely identified with the Banu Iraq family.
When he reached the age of 22, in 995, the Banu Iraq were overthrown in a coup
and al-Biruni fled. During the next few years, he was able to collaborate with the
astronomer al-Khufandi at Rayy near the present city of Tehran, Iran. However,
without a patron he was living in poverty. Sometime before the middle of 1004,
he returned to his homeland where he now had a patron. In 1017, his patron was
killed and the region fell under the control of Mahmud. Al-Biruni now became a
virtual prisoner of Mahmud and was taken to Ghazna in present day Afghanistan.
To please his new patron, he determined the latitude and longitude of Ghazna and
then computed the qibla.

Around 1022, Mahmud invaded India and al-Biruni accompanied him as a
member of his entourage. During his time in India, al-Biruni not only learned
Sanskrit but he was able to familiarize himself with many aspects on Indian
culture. In his voluminous work, India, he not only described the Indian system of
writing and numbers, but he also discussed Indian religion, philosophy, medicine,
geography, astronomy, astrology, and the calender.

More is known about al-Biruni than most Islamic mathematicians because he
included bits of autobiographical writings in some of his academic publications.
In one of these, Shadows, he relates an encounter with a hard-line orthodox cleric.
The cleric admonished al-Biruni because he had used an astronomical instrument
with Byzantine months engraved on it to determine the time of prayers. Al-Biruni
replied:

“The Byzantines also eat food. Then do not imitate them in this!”
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4.7.4 *The Impact of Al-Ghazālı̄

Like al-Kindi, most other mathematicians and scientists in the Arab world accepted
the Quran. On the other hand, as a rule, they felt that logic and knowledge gained
by scientific investigation would lead them to a deeper and more meaningful
understanding of the Quran than otherwise possible. This approach might require
an allegorical interpretation of some parts of the Quran but they were convinced
that the Quran was not in conflict with rational thought. Nonetheless, most if not
all of them thought that members of the general public should not be encouraged to
apply their logic to any serious question. Using his (or her) inferior skills of logic, a
member of the general public might persuade himself (or herself) that some heretical
idea might be valid.

The orthodox clerics had a different position. They were fearful that anyone who
studied the works of Aristotle, Plato, and others could be led astray. Furthermore, a
philosopher, who became skilled with the philosophical arguments of the Greeks
or the logic of mathematics could become very persuasive with the youth and
was therefore a threat to the community. Al-Ghazālı̄ (1058–1111) was a prominent
theologian who advanced this position. Al-Ghazālı̄ once wrote:

Even if geometry and arithmetic do not contain notions that are harmful to religious belief,
we nevertheless fear that one might be attracted through them to doctrines that are dangerous
(Swartz 1981, p. 195).

Al-Ghazālı̄ had more credibility than most Islamic jurists because of the fact
that he studied Greek philosophy and was able to use philosophical arguments to
make his points. In one of his best known works, entitled, The Incoherence of
Philosophers, he indicated that a heretical rationalist philosopher would contend
that fire burns cotton. Al-Ghazālı̄ then continued:

This we deny. The agent of the burning is God, through His creating the black in the cotton
and the disconnection of its parts, and it is God who made the cotton burn and made it ashes
through the intermediation of the angels or without mediation. For fire is a dead body which
has no action, and what is the proof that it is the agent? Indeed, the philosophers have no
other proof than the observation of the occurrence of the burning, when there is contact with
fire, but observation proves only a simultaneity, not a causation, and, in reality, there is no
cause but God (Hoodbhoy 1991, p. 105).

Al-Ghazālı̄ may have been instrumental in the decline of patronage for scientific
endeavors. It is plausible that some elements of the Islamic world were particularly
receptive to al-Ghazālı̄’s teachings because of Arab reversals on the battlefield
during his lifetime. One way to pursue an argument is to marginalize your opponents
by characterizing them as unpatriotic, heretical, or advocates of some foreign
ideology. This tactic is particularly effective when there is a foreign threat (real or
imagined). In 1085 Toledo, at the west end of the Islamic world, fell into Christian
hands. In 1099, the army of the First Crusade took possession of Jerusalem. In
this context, we can more easily understand the popularity of The Incoherence of
Philosophers, which was written sometime between 1095 and 1111.
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The teachings of al-Ghazālı̄ provided ammunition to those inclined to denounce
those who wished to build on the achievements of the Greeks. Much of the
luster of the golden age was lost during the lifetime of al-Ghazālı̄. The impact of
al-Ghazālı̄ and his adherents is illustrated by the fate of a contemporary, namely
Omar Khayyam (1048–1131). Omar Khayyam is best known in the West for his
poetry (“– A jug of wine, a loaf of bread, and thou –”). However, he was primarily
a mathematician – perhaps the foremost mathematician of his time. He was able to
show that the solutions of cubic equations were equivalent to determining the points
of intersections of conic sections (circles, ellipses, parabolas, and hyperbolas). He
was employed to set up an observatory in Esfahan, which lies in present day Iran.
He accomplished much at this observatory but his funding came to an end when the
ruler of the city died in 1092. Generally, Omar Khayyam was able to find patrons
for his endeavors throughout his life but like others I have mentioned above he
came under attack from orthodox Muslims who criticized his tendencies toward
free inquiry.

Al-Ghazālı̄ spent a substantial part of his life in Baghdad, but he had an impact
on the entire Islamic world that continues to this day. A futile counterattack to the
teachings of al-Ghazālı̄ was launched by Ibn Rushd (1126–1198) from the opposite
end of the Islamic world. Ibn Rushd was born about 15 years after the death of
al-Ghazālı̄ in Cordova, Spain.. Like al-Ghazālı̄, ibn Rushd would have a significant
impact as a philosopher. In Europe, he would become known as Averroës. And it
was in Europe that he would have his impact – not in the world of Islam.

Averroës wrote a rebuttal to al-Ghazālı̄ entitled, The Incoherence of the Incoher-
ence. In this work, he quoted al-Ghazālı̄’s discussion of burning cotton and then
wrote:

To deny the existence of efficient causes which are observed in sensible things is sophistry,
and he who defends this doctrine either denies with his tongue what is present in his mind
or is carried away by a sophistical doubt which occurs to him concerning this question.
– Denial of cause implies the denial of knowledge, and denial of knowledge implies that
nothing in this world can be really known, and that what is supposed to be known is nothing
but opinion, that neither proof nor definition exist, and that the essential attributes which
compose definitions are void (Averroës 1969, pp. 318–319).

During the prime of his life, Averroës received the patronage of Abu Yaqub
Yusuf, the caliph of Morocco. It was this caliph who urged Averroës to write the
commentaries on Aristotle that made Averroës famous. In 1184, the caliph was
fatally wounded in battle while trying to suppress some dissident Muslims in Spain.
Abu Yaqub Yusuf was then succeeded by his son, Abu Yusuf Yaqub. The new caliph
continued to support Averroës for several years. But soon, the caliphate became
threatened by an energized coalition of Christian powers in Spain (Hayes 1992,
p. 100). To unite the Muslim factions, Averroës became a sacrificial lamb. Due
to his commentaries on Aristotle and his refutation of al-Ghazālı̄, he had aroused
the anger of orthodox clerics. Around 1194, the caliph accused Averroës of heresy
or near heresy and ordered the burning of his books. In addition, Averroës was
ousted from the caliph’s court in Marrakesh, Morocco and banished to the present
day, Lucena, Spain, which is near Cordova. This was probably a political success.
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At any rate, the caliph obtained enough unity among the fractious Muslims so that
he won a decisive battle over the Christians at Alarcos in 1195. Thereafter, the caliph
was known as “al-Mansur” (The Invincible).

When things settled down and al-Mansur was able to return to Morocco, he lifted
the edicts on Averroës. And soon after, Averroës rejoined the caliph at his court in
Marrakesh. Averroës would die roughly one year later on December 10, 1198 at the
age of 72.

In any society, there is tension between those who have questions they wish to
be answered and those who have answers they wish not to be questioned. The kind
of anger and rage directed toward Averroës by dogmatic clerics made it difficult for
science to progress in the Arab world.

It is interesting to note that by this time, Christian scholars were translating the
works of Aristotle, Euclid and others from Arabic into Latin. In 1085, Toledo with
its great Muslim library had fallen into the hands of Christian Spaniards. Around
1135, the Archbishop of Toledo, Don Raimundo, established a translation center in
Toledo. The same Greek works that had ushered in a golden age of math and science
in the world of Islam along with the advances of the Muslims would now usher in
the Renaissance and the Age of Reason in Europe.

The works of Averroës that became marginalized in the Arab world would
become influential in Europe. His arguments that the works of Aristotle were
compatible with the Quran could also be used to persuade religious authorities in
Europe that the works of Aristotle were compatible with the Christian bible. In
Europe, the battle for and against the idea that people should or could be allowed to
think for themselves would be long and difficult.

Over 350 years after Archbishop Don Raimundo established his translation
center, another Archbishop of Toledo, Francisco Jiménez de Cisneros, (confessor for
Queen Isabella) organized a book burning. On January 2, 1492, King Ferdinand of
Spain had obtained the surrender of the last Muslim stronghold in Spain. The terms
of surrender stipulated that the resident Muslims would continue the freedom to
practice their faith. However, Cisneros was unhappy with this provision and he had
enough influence to overrule the local archbishop who was observing the stipulated
deference to the Moslem population. He initiated forceful conversions from Islam to
Christianity and in 1499 he presided over the burning of more than 5,000 Moslem
books with ornamental bindings, even of gold and silver with exceptional artistry
(Harvey 1992, pp. 328–333).

For reasons stated above, Western historians assumed for many years that the
“golden age” of Islamic science came to an end a few generations after the fall
of Jerusalem in the First Crusade. The medieval Arab world would never create
universities with the long-term permanence that were later created in Europe. It
was thought that if the golden age did not end before the 13th century, it certainly
ended with the destruction of Baghdad with its great library in 1258 by Hulagu
Khan, grandson of Genghis Khan. This point of view was radically changed by
an event that occurred in 1957. In that year, the science historian, Edward S.
Kennedy, discovered an Arab document written by Ibn al-Shātir circa (1304–
1375AD) in the Bodleian Library of Oxford University. He presented the document
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to Otto Neugebauer, an authority on the details of the work of Copernicus. It was
immediately recognized that a mathematical advance, that is central to the work
of Copernicus, appeared over 100 years earlier in this work by Ibn al-Shātir. See
(Roberts 1957; Kennedy and Victor 1959).

This discovery led to a serious reevaluation of Islamic science. Western historians
were well aware of the advances of Islamic science before the Toledo library fell into
Christian hands in 1085. This was simply because the contents of the Toledo library
were familiar to these scholars. However, as historian George Saliba has suggested,
you do not find what you do not look for.

When science historians investigated further, they discovered that Islamic sci-
entists had made significant scientific progress after the destruction of Baghdad.
Indeed, meaningful patronage of scientific endeavor had come to an end before
the fall of Baghdad. However, there remained some members of the Arab world
who were able to continue the advance of science. In particular, Islamic clerics,
like Copernicus (a Catholic cleric) at a later time, had enough leisure time to make
important scientific contributions – at least in astronomy.

An obvious case in point is Nası̄r al-Din al-Tūsı̄ (1201–1274AD) who was an
astronomer and Shiite scholar. As he approached Baghdad, Hulagu Khan recruited
segments of the local population who were either disenchanted with the Sunni
caliphate or eager to please the conquering Mongol. As a respected member of this
entourage, al-Tūsı̄ was able to rescue a large number of library manuscripts before
the sack of Baghdad. He is now best known for the “Tūsı̄ Couple” which was used
by other Islamic astronomers and eventually by Copernicus to deal with latitudinal
motion in modified versions of Ptolemy’s models.

Not long after the destruction of Baghdad, al-Tūsı̄ was able to persuade the son of
Hulagu Khan to finance the construction of an observatory in Marāgha. This would
soon become one of the most and perhaps the most significant observatory in the
Arab speaking world.

To understand the contributions of the post Baghdad Islamic astronomers, it is
useful to survey the achievements of Ptolemy and Copernicus.

4.7.5 *Claudius Ptolemy, Al-Tūsı̄, Al-’Urdı̄, Ibn al-Shātir,
Nicholas Copernicus, Tycho Brahe, Johannes Kepler,
and Isaac Newton

To understand the achievement of Nicholas Copernicus (1473–1543), it is important
to understand the achievements of Claudius Ptolemy and the Islamic astronomers.
The most casual observer will see that, in the course of a night, the stars appear to
move with a uniform circular motion from east to west as if they were attached to
some giant rotating sphere. Even in ancient times, more careful observers noted
that the five known planets along with the Sun and the Moon were exceptions.
Each planet in its own way would spend most of the time moving in an easterly
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direction with respect to the stars. But then from time to time a planet would assume
a retrograde motion. That is, it would reverse direction with respect to the stars for a
number of weeks before resuming its easterly motion. (The word “planet” is derived
from a Greek word for “wanderer.”)

From esthetical considerations and crude observations, Aristotle (384–322BC)
concluded that, for the heavenly realm, uniform rotation of spheres was essentially
the law of physics. It was not until Newton came along that it became understood
that the laws of physics in the heavenly realm were the same as the laws of physics
for the earthly realm. A heavenly body moving in a force free environment would
move not in a circle but in a straight line. Later Einstein showed that the apparent
gravitational forces that appear to deflect planets from straight line paths could be
better explained by the geometry of the world we live in. In Einstein’s version of
the cosmos, planets move along geodesics in a four-dimensional curved time-space
world.

Aristotle was confident that the Earth was stationary at the center of the universe
and the stars were attached to a celestial sphere. It would be left to others to fill in the
details. Around 280BC, Aristarchus would challenge this vision with a heliocentric
theory. He hypothesized that the Earth rotated about its own axis in a day and
revolved about the Sun in the course of a year. It was easy to dismiss such a theory.
First of all, one does not feel any motion. If the Earth rotated about an axis, a citizen
of Athens would be moving at a rate of 1330 km/h (820 mph)! A person moving that
fast would surely feel a strong wind.

A more critical defect of the heliocentric theory was a consequence of the
revolution of the Earth about a fixed Sun. In the course of a night, the stars appear
to rotate about a fixed point in the sky. (Currently, the “north star” is located near
this point. Because of a wobble in the earth’s axis that has a 26,000-year period, this
point changes over a period of centuries but this change was difficult to detect in the
lifetime of an ancient astronomer.) In Aristarchus’ heliocentric theory, this point in
the sky would lie along an extended version of the Earth’s axis of rotation. In the
course of the year as the Earth revolved about the Sun, the axis of rotation would
move with it and the “fixed point” in the sky would have to change. If the axis of
the Earth was aligned with the North star at one time of year, one should reasonably
expect it to be aligned with some other point in the sky six months later when the
Earth was on the opposite side of its orbit about the Sun.

An advocate of a heliocentric theory would be forced to conclude that the nearest
star was many times as far as the distance of the Earth to the Sun. To investigate the
consequence of this conclusion, Aristarchus devised a method for measuring the
distance of the Earth to the Sun. Unfortunately, his method relied on a measurement
that is theoretically possible but nearly impossible in practice – at least with any
useful precision. Some speculate that Aristarchus was satisfied with his method
but took a wild guess at the quantity that required measurement (Evans 1998,
pp. 68–72). The result was an estimate for the radius of the Earth’s orbit about the
Sun that was too small by a factor of 20. Even with this low estimate, the heliocentric
theory implied a distance to the stars that seemed inconceivable.
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(Astronomers failed to improve on this estimate until the seventeenth century,
sometime after the deaths of Nicholas Copernicus, Tycho Brahe, and Johannes
Kepler. (O’Connor and Robertson: The Size of the Universe and Giovanni Domenico
Cassini)).

Thus, it was easy to dismiss the heliocentric theory of Aristarchus. On the other
hand, it was very difficult to construct a model, which would match reality with
the constraints of Aristotle. It was probably Claudius Ptolemy circa (90–168AD)
building on the results of Hipparchus circa (190–120BC) who was the first to
construct a predictive model for each of the planets. To get a small idea of the task
faced by Ptolemy, let us consider an easier problem. Knowing the exact solution,
how could we construct an approximate solution which would conform to the
dictates of Aristotle? Johannes Kepler (1571–1630), using the data of Tycho Brahe
(1546–1601), was able to infer that the path of any planet is an ellipse with the Sun at
a focal point. This is known as Kepler’s first law. According to Newtonian physics,
these elliptical orbits would be exact in the limiting approximation that the ratio of
the mass of the planets to that of the Sun be zero. As any mathematician knows
there is nothing inherently wrong with a geocentric coordinate system. The relation
between the heliocentric and geocentric coordinate systems is neatly illustrated in
Fig. 4.8, which I have stolen from James Evans with a slight upgrade (Evans 1998,
p. 411). In the diagram, the orbits of Earth and Mars are not accurately scaled and
the eccentricities are greatly exaggerated. I have used Mars as an illustration but the
same diagram would apply to the two other “superior” planets known to the ancient
Greeks (Jupiter and Saturn). I will leave it to you to figure out the corresponding
diagram for the “inferior” planets (Venus and Mercury). (See Prob. 61.)

The geocentric model in Fig. 4.8 represents Ptolemy’s model as “it should
have been.” In reality, following the dictates of Aristotle, Ptolemy had to make
adjustments so all motions were restricted to combinations of circles.

In the geocentric coordinate system, the motion of Mars with respect to Earth
can be visualized as a point moving counter clockwise about an elliptical epicycle
one of whose focal points orbits an elliptical deferent. Over a period of centuries,
the axis of both the Earth orbit and the Mars orbit would rotate with respect to the
“fixed stars.” This is mainly due to the gravitational forces from the other planets.
However, for a short-term approximation, the angle between the major axis of the
epicycle and the major axis of the deferent would remain constant. It should also be
noted that the epicycle and the deferent do not lie in the same plane.

In the geocentric model, retrograde motion for a superior planet occurs when
such a planet is on a portion of the epicycle which is closest to Earth. In the
heliocentric model, retrograde motion is an illusion, which occurs when the Earth
with its faster angular velocity crosses an imaginary line joining the Sun with the
superior planet. In this circumstance, the superior planet appears to be moving
backward in a westerly direction with respect to the background stars. However,
most of the time, an outer planet appears to be moving easterly. (Actually because
the planes of the orbits are different, Earth will generally miss the imaginary line
but I hope you get the idea.)
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geocentric coordinate systems

An obvious advantage for the heliocentric point of view is that it can explain
retrograde motion without hypothesizing a weird motion to the outer planets.

Another triumph for the heliocentric point of view was a meaningful interpre-
tation of the relative sizes of the deferents and epicycles in the Ptolemaic model.
From the geocentric point of view, the epicycle for a superior planet has the same
size and shape as the orbit of the Sun around Earth. However, this was not realized
before Copernicus. The ancient astronomers recognized that there was a correlation
between the motion of the Sun about its orbit around Earth and the motion of Mars,
Jupiter, and Saturn around their respective epicycles, but they did not realize that
the size of the Sun’s orbit was identical to the size of the epicycles for the superior
planets. This was because they could not measure interplanetary distances. They
could measure the relative size of a deferent and an epicycle, but they had no way
of relating either to the size of the Sun’s orbit about the Earth. (There was a similar
but different problem for the inferior planets.)

Before Copernicus, astronomers assumed that with the Earth at the center of
the universe, all heavenly bodies could be ranked by their distance from Earth.
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Fig. 4.9 A circle with a radius equal to the length of the semimajor axis is superimposed on the
ellipse corresponding to the orbit of Mars in the heliocentric theory or the elliptical deferent in the
geocentric theory. Because of the thickness of the lines and the scale of the page, the perimeter of
the two curves is indistinguishable

They generally agreed that Saturn was the furthest of the planets because it was
the slowest moving with respect to the “fixed stars.” However, on average, Venus,
Mercury, and the Sun each take one Earth year to complete a circuit through the
zodiac. (Sometimes an inferior planet will be ahead of the Sun and other times it
will appear to lag behind the Sun.)

At times Venus or Mercury can be seen shortly before the Sun rises in the
morning or shortly after the Sun sets in the evening. Other times one or both of
the planets disappears. With naked eye observation, it is impossible to determine
whether they disappear behind the Sun or in front of the Sun. Thus, the ranking
of these bodies was subject to debate. Ptolemy chose the sequence in order of
increasing distance from Earth to be: Moon, Mercury, Venus, Sun, Mars, Jupiter, and
finally Saturn. Other astronomers had placed the Sun closer to Earth than Mercury
and Venus and still others had reversed the order of Mercury and Venus (Evans
1998, p. 348). According to Copernicus’ heliocentric model, these speculations were
answers to a wrong question.

Now let us examine some problems faced by Copernicus and Ptolemy.

For an ellipse with the major axis aligned with the x-axis, the equation is

x2

a2
C y2

b2
D 1, where

“a” is the length of the semimajor axis, “b” is the length of the semiminor axis. The distance
of either focal point from the center is c D ae, where c2 D a2 � b2 , and e is said to be the
eccentricity. The eccentricity e for the orbit of Mars is now known to be 0.0934.

For the Mars deferent (or orbit) drawn to scale see Fig. 4.9. The perimeter of
this ellipse is very close to that of a circle. Actually, a circle with radius equal to
the semimajor axis of the ellipse is superimposed on the ellipse in my drawing.
However, because of the thickness of the lines and the scale of the page, the circle
and the ellipse are indistinguishable. If my calculations are correct, the minor axis
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is less than 1=2 of one percent shorter than the major axis. Except for Mercury,
Mars has the greatest eccentricity of all the planets known to Ptolemy. Because of
the proximity of Mercury to the Sun, the determination of the orbit of Mercury was
difficult to obtain. Thus, the use of circles to represent the orbits of planets was
within the experimental error for the instruments available until the time of Tycho
Brahe (1546–1601).

On the other hand, for Mars, the separation between the center of the ellipse and a
focal point is over 9% of the semimajor axis. Thus the approximating circle centered
at the center of the ellipse is quite distinct from a circle of the same size centered at
the focal point where the Earth, is located. In this context Ptolemy’s approximating
circle became known as an eccentric. Since the center of the eccentric did not
coincide with the location of Earth it seemed at odds with the physics of Aristotle. In
his work, Almagest, Ptolemy noted that Apollonius of Perga (ca. 262BC–ca. 190BC)
had devised an alternate method for dealing with this problem over 300 years earlier.
Apollonius demonstrated that an eccentric circle could be replaced by combining a
deferent circle of equal size centered at the Earth and an epicycle with a radius equal
to the focal distance. (See Fig. 4.10.)

Guided by their personal philosophical outlook, some later astronomers would
use it and others would not. Copernicus used the eccentric in some of his writings
and the epicycle in other writings. Which representation of planetary motion was
more Aristotelian was subject to debate. Either of these two representations could
be accepted as satisfying Aristotle’s axioms.

However, Ptolemy encountered another feature of planetary motion that did not
seem to lend itself to an Aristotelian representation. The motion of a planet along
its elliptical orbit is not uniform. The closer the planet is to the Sun, the faster it
moves. According to Kepler’s second law, the radial vector from the Sun to the
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Fig. 4.11 According to
Kepler’s second law, the
radial line joining the Sun and
a planet sweeps out equal
areas for equal time intervals
as the planet moves along its
orbit

planet sweeps out an area at a constant rate. (It is said that the areal velocity is
constant.) (See Fig. 4.11.) In Newton’s theory of physics, this is a consequence of
the conservation of angular momentum. By contrast, according to the axioms of
Aristotle, a planet moves on the orbit of a circle with uniform angular velocity.
Ptolemy devised a method for dealing with this problem but it did not have an
Aristotelian flavor. If Ptolemy applied the method he devised for a geocentric model
to a heliocentric model, Mars would follow a circular path with a center at the center
of the ellipse but it would do so with a constant angular speed about what we now
recognize as the empty focal point. The empty focal point became known as the
equant. To make sure you understand this, refer to Fig. 4.9. For Copernicus, the Sun
would be located at point S, the approximating circle would be the orbit of Mars,
and point F would be the equant point. For Ptolemy, Earth would be located at point
S, the approximating circle would be the eccentric, which would carry an epicycle
for Mars, and point F would be again be the equant point.

The predictive value of Ptolemy’s model is illustrated in Fig. 4.12 for the planet
Mars. Dividing the year into 12 equal periods, using the laws of Kepler, the location
of Mars at the beginning of each period is determined by the intersection of the
ellipse with a solid line passing through the Sun. According to the approximation
of Ptolemy, the location of the same point is determined by the intersection of a
circle virtually indistinguishable from the ellipse (the eccentric) with a dotted line
passing through the empty focal point. As you see, the difference is essentially
indistinguishable for the human eye for the scale of the figure. The difference was
also within the experimental error from the time of Claudius Ptolemy circa (90–
168AD) to the time of Tycho Brahe (1546–1601).

The notion of the equant was never satisfactory to the esthetic outlook of
ancient and medieval astronomers. Even if you were not a slavish adherent of
Aristotle, it was clear that Ptolemy who accepted Aristotle’s axioms was being
logically inconsistent. For Aristotle, the planets were embedded in a nested set
of spherical shells of a transparent, weightless, and crystalline material known
as ether. Deferents and epicycles could be translated into models of spherical
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Fig. 4.12 For Mars, the
elliptical orbit is closely
approximated by a circle. The
points defined by the
intersection of the solid lines
passing through the left focal
point and the orbit correspond
to the location of Mars spaced
1/12 of a year apart according
to Kepler’s second law. The
points defined by the dotted
lines passing through the right
focal point (equant point) are
the corresponding points
defined by Ptolemy’s rule

shells rotating at uniform speeds. Equants could not. Equants seemed to imply
spherical shells rotating at uniform rates about points other than their centers. Since
this mathematical machinery of Ptolemy could not be translated into a plausible
physical model, ancient astronomers who used this machinery were dismissed by
the Greek intellectual elite for being, “less than truth seekers.” Eventually, some
Islamic astronomers found a way of dealing with the equant problem, which was
much closer to meeting the demands of Aristotle’s dictates.

The notion of the equant also disturbed Copernicus. A few decades before he
published his classic De revolutionibus orbium caelestium, Copernicus distributed a
hand written outline of his heliocentric theory that is known as The Commentariolus.
Starting with the third paragraph in that manuscript, Copernicus wrote:

Yet the planetary theories of Ptolemy and most other astronomers although consistent
with the numerical data, seemed likewise to present no small difficulty. For these theories
were not adequate unless certain equants were also conceived; it then appeared that a planet
moved with uniform velocity neither on its deferent nor about the center of its epicycle.
Hence a system of this sort seemed neither sufficiently absolute nor sufficiently pleasing to
the mind.

Having become aware of these defects, I often considered whether there could perhaps
be found a more reasonable arrangement of circles, from which every apparent inequality
would be derived and in which everything would move uniformly about its proper center,
as the role of absolute motion requires. After I had addressed myself to this very difficult
and almost insoluble problem, the suggestion at length came to me how it could be solved
with fewer and much simpler constructions than were formerly used, if some assumptions
(which are called axioms) were granted me. They follow in this order (Copernicus 1959,
pp. 57–58).

Copernicus then set forth seven axioms, the third being “All the spheres revolve
about the sun as their mid-point, and therefore the sun is the center of the universe.”
Later in the same document, he writes in reference to the superior planets,
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Each deferent has two epicycles, one of which carries the other, in much the same way
as was explained in the case of the moon, but with a different arrangement. For the first
epicycle revolves in the direction opposite to that of the deferent, the periods of both being
equal. The second epicycle, carrying the planet, revolves in the direction opposite to that of
the first with twice the velocity (Copernicus 1959, pp. 74–75).

After describing the relevant distances for each of the three superior planets, he
comments, “Thus the radius of the first epicycle is three times as great as that of the
second” (Copernicus 1959, p. 77).

This combination of a deferent and two epicycles appears to be quite compli-
cated. There is only one exact solution to a problem but there are many possible
approximations. Thus, when a manuscript by Ibn al-Shātir(d. 1375) was discovered
in 1957 in the Bodleian Library with the same complicated approximation to the
Kepler orbit, it seemed plausible that Copernicus had adopted a device developed
by Ibn al-Shātir for a geocentric theory and integrated it into his heliocentric theory
without acknowledgement of his source.

An aspect of this alternative to the equant, which may have added fuel to
suspicions, is the fact that it results in an approximate circle with a bulge, but
with a bulge in the wrong direction! Students who present the same bad answers
for an exam or homework assignment become much more suspect than students
who present the same good answers. It should be noted that Copernicus took the
trouble to show that this alternate orbit was close to that of a circle. In any case, it
has become conventional wisdom amongst historians that Copernicus adopted the
Islamic solution for the equant problem and adjusted it for his heliocentric theory
(Swerdlow and Neugebauer 1984).

I am inclined to take issue with this point of view. The quote from The
Commentariolus cited above represents Copernicus’ first known talking point for
his heliocentric theory. I find it difficult to believe that he would present a solution of
the equant problem as a talking point for a heliocentric theory if he had lifted it from
a geocentric theory. This approximation of the Kepler orbit is not as idiosyncratic
as it first appears. The larger epicycle is that of Apollonius. This epicycle can be
removed to get an equivalent version of the same approximation. In this equivalent
version, the approximation is achieved by an eccentric circle and a single epicycle.
This second version appears much easier to discover. Indeed, the flurry of activity
stimulated by the discovery of the Ibn al-Shātir manuscript turned up this second
version in the Arab literature. In particular, about 100 years before Ibn al-Shātir,
a colleague of al-Tūsı̄ by the name of Mu’ayyad al-Dı̄n al-’Urdı̄ (d. 1266AD) is
now credited with this alternate version. It is important to note that this “easier to
discover” version was also known to Copernicus.

To understand the level of difficulty faced by ’Urdı̄, consider Fig. 4.13. In a
geocentric theory there, was always the possibility that one could find a combination
of epicycles that did not involve the point P in Fig. 4.8. With his heliocentric
viewpoint, Copernicus could ignore this possibility. Thus, it would have been easier
for Copernicus to rediscover this solution of the equant problem than it was for ’Urdı̄
to discover the solution originally. For Copernicus, the possibilities of what can be
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Fig. 4.13 The position of point P on the epicycle is determined by the angles ˛ and ˇ

done with an eccentric circle and a single epicycle to approximate the Kepler orbit
are surprisingly limited:

(1) If ˛ and ˇ change at uniform rates, then ˛ D kˇ C ˇ0, where k and ˇ0 are
constants.

(2) If the path of P is a closed orbit, we must have ˇ D n˛ C ˇ0 , where n is an
integer. (More precisely, I am making a stronger condition. That is when the
center of the epicycle makes one complete circuit, point P returns to its initial
position.)

(3) In order for the orbit of P to be symmetric with respect to the x-axis, we must
have ˇ0 D 0 or � .

(4) In order for the orbit of P to be reasonably smooth, the value of n must be quite
small.

(5) If n is an even integer, the orbit and its associated velocities will be symmetric
with respect to a 180ı rotation. This results in equal speeds at both ends of the
x-axis. This is unacceptable since it is contrary to Kepler’s second law.

(6) The value of �1 cannot be accepted for n because it corresponds to the epicycle
of Apollonius, which results in a copy of the eccentric circle shifted either to
the right or left depending on the value chosen for ˇ0.

What’s left? n D 1! Except for the adjustment of some parameter, this is
the epicycle of al-’Urdı̄. Condition (5) is obvious to a modern mathematician
trained to look for symmetries but it might not have been obvious to Copernicus
(or al-’Urdı̄). Nonetheless, it would have been easy for Copernicus to eliminate the
cases for which n D �2, 0, or 2 and after that condition (4) would have become a
major consideration.
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Fig. 4.14 The ’Urdı̄ epicycle

What parameters are left to be determined? I will limit my discussion to Mars.
(Refer to Fig. 4.14.) In Fig. 4.14, point S represents the location of the Sun at the
left focal point .�c; 0/. The circle (or ellipse) centered at point C, with a solid line
perimeter represents the orbit of Mars. The circle centered at .2u; 0/ with the dotted
line perimeter is the eccentric circle, which carries the epicycle. To get the proposed
orbit to agree with the Ptolemaic orbit at perihelion and aphelion, the radius of the
epicycle must be u. (Perihelion is the point of the orbit at which the planet is closest
to the Sun and has its greatest speed. Aphelion is the point of the orbit at which the
planet is farthest from the Sun and has its least speed.) If I locate the center of the
eccentric circle at .u; 0/, then the radius of the epicycle must be u and the value of
ˇ0 must be � . The only thing left to consider is the value of u.

How can the radius of the epicycle be determined? ’Urdı̄ proved that the figure
that looks like a trapezoid is a trapezoid. This implies that point P moves at a uniform
angular velocity about the point at (2u; 0). Thus, to get the proposed orbit to be as
close as possible to the Ptolemaic model, the point (2u; 0) must correspond to the
equant point and thus .2u; 0/ D .c; 0/ D .ea; 0/. Thus the radius of the epicycle
would be 1

2
ae. Furthermore, if the epicycle of Apollonius was used to center the

deferent at the Sun, it would have a radius of 3
2
ae which is three times the radius of

the ’Urdı̄ epicycle. Copernicus did not indicate that he saw the relation between this
innovation and the Ptolemaic model and at least one historian has cited this situation
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as evidence that Copernicus copied the ’Urdı̄ epicycle without fully understanding
what he was copying:

Copernicus, however, did not apparently realize the full significance of the two components
of Ibn al-Shātı̄r’s model (the Apollonius and the ’Urdı̄ components), and simply used the
model as a whole, by transposing it to heliocentrism as we just said (Saliba 2007, p. 205).

I speculate that the reason that Copernicus did not see how he could adjust the
radius of the ’Urdı̄ epicycle to fit closely with Ptolemy’s model is that he never drew
the line connecting P with .2u; 0/ in Fig. 4.14. What Copernicus did do is to fit the
parameters of the model with data collected by Ptolemy and himself. The process
of dealing with this data was far more complex that the task of understanding Urdı̄’s
argument for adjusting his parameters the way he did.

What happened when Copernicus set out to adjust the parameters of Urdı̄’s model
to fit real data?

Referring to Fig. 4.15 to understand the parameters involved, it is possible to
determine the following relations for the Urdı̄–Copernicus model:

sin � D sin!t

�
1 � d C �

a
cos!t � .d C �/2

2a2
sin2 !t C d2 � �2

a2
cos2 !t

�
C

(4.70)

higher powers of d=a and �=a.
And

r D a

"

1C d � �

a
cos!t C .d C �/2 sin2 !t

2a2

#

C (4.71)

a Œhigher powers of d=a and �=a� :

(See Appendix C for the relevant computations.)
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From actual data computed from Kepler’s Laws:

sin � D sin!t

�
1 � 2e cos!t � 2e2 sin2 !t C 5

2
e2 cos2 !t

�
C

higher powers of e: (4.72)

And
r D a

�
1C e cos!t C e2 sin2 !t

�C higher powers of e: (4.73)

(See Appendix D for the relevant computations.)
For the Urdı̄–Copernicus model, a is the radius of the deferent, d is the distance

between the Sun and the center of the deferent, and � is the radius of the epicycle.
For the Kepler version, a is the semimajor axis of the elliptical orbit and e is the
eccentricity. In both cases, ! D 2�=T , where T is the time for the given planet to
complete a revolution.

For Mars, eD 0:0934 so e2 is less than 1/100. Thus, for the astronomical
instruments available to Ptolemy and Copernicus, we can ignore the second-order
terms in (4.72) and (4.73). If we equate the first-order terms in (4.70) with the
first-order terms in (4.72) and then equate the first-order terms in (4.71) with the
first-order terms in (4.73), we get

d C �

a
D 2e and

d � �

a
D e.

From this result, we get

d D 3

2
ae and� D ae

2
:

This is exactly what al-’Urdı̄ got by matching his model with that of Ptolemy. (It
should be noted that for Copernicus, e was not the eccentricity of an ellipse, but
2ae was the distance between the Sun and the equant point for whatever planet was
in question.)

For Copernicus, there were some problems which I have hidden from you. First
of all, he could not stand on the Sun to take his measurements. He could deal with
that problem by taking measurements when Mars and the Sun were in opposition –
that is lined up with Earth as shown in Fig. 4.16. (In Fig. 4.16, ˛ is the angle between
the reference star and aphelion. Copernicus was able to use methods described in
Ptolemy’s Almagest to compute this angle from data collected at three times when
the Sun and an outer planet were in opposition as shown in Fig. 4.16.) A more
serious problem was that there was no obvious way to measure r – at least directly.
Copernicus did take measurements that gave him the relative size of the orbit of
Earth with each of the planetary orbits. However, he did not take any measurement,
which would give him r or some alternate entity as a function of time. Clearly, some
measurement or measurements were necessary to conclude that .d � �/ =e D a:

Ptolemy did not reveal how he concluded that the center of his deferent
(Copernicus’ orbit) was half-way between his basic point of reference and the
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equant point. Roughly 60 years after the death of Copernicus, Kepler was able to
make this conclusion by studying the latitudinal motion of Mars. See Evans (1998),
p. 1019 for the relevant diagram and explanation. Kepler concluded that Ptolemy
must have reached this bisecting conclusion by making similar observations.
However, historian James Evans has concluded that Ptolemy arrived at an equivalent
result by studying the retrograde motion of Mars (Evans 1984, pp. 1080–1089)
When Ptolemy’s conclusion is translated into a heliocentric theory, the center
of the planetary orbit must lie half-way between the Sun and the equant point.
From Fig. 4.15, we see for the Urdı̄–Copernicus model, the aphelion occurs at
.d C a � �; 0/ and the perihelion occurs at .d � a � �; 0/. The center or average
of these two points is .d � �; 0/ and the midpoint for the Sun and the equant point
is .ae; 0/ : Thus, using Ptolemy’s conclusion for retrograde motion, Copernicus was
able to conclude that d � � D ae and therefore d D 3�:

The equant problem posed an inconsistency with the concept of rotating spherical
shells of ether. As we noted above, Copernicus testified that this was an important
motivation for him to seek out an alternative to Ptolemy’s geocentric theory.
Ironically, if he had been born 50 years later, this inconsistency would not have
confronted Copernicus. In 1577AD (34 years after the death of Copernicus), Tycho
Brahe carefully tracked the path of a comet in a way that clearly showed that it
moved freely between the planets – in space supposedly filled by solid shells of
ether. Those shells simply did not exist (Abers and Kennel 1977, pp. 109–110).

It is interesting to note that in view of this situation, Kepler seriously considered
reintroducing the concept of the equant point in planetary theory before he arrived
at his first two laws (Koyré 1973, pp. 176–177).

To repeat myself, I am inclined to believe that Copernicus rediscovered the
epicycle of al-’Urdı̄. Western science historians have now uncovered the names of
many other Islamic astronomers who made contributions to the progress of their
science. Nonetheless, no document has been uncovered that would show a transfer
of knowledge from al-’Urdı̄ (or Ibn al-Shātir) to Copernicus. It has been established
that some documents were translated from Arabic into Byzantine Greek and then
transferred to Europe where people like Copernicus could read Greek. It has also
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been established that there were Arab speakers in Italy, where Copernicus received
much of his education. On the other hand, if you assert that Copernicus copied the
efforts of Ibn al-Shātir and his predecessors and then claimed that he originated
these devices, you have another problem. To claim credit for the al-’Urdı̄–Ibn al
Shātir devices for dealing with the equant problem, Copernicus would have had
to be confident that any manuscript written by one of these Islamic astronomers
would never see the light of day in Europe. It is one thing to steal an idea from your
graduate student who has not had a chance to establish a reputation. You can always
claim that your graduate student only filled in few trivial details of your brilliant
idea. It is another thing to claim false credit for a result that has been published
many years before. This form of plagiarism is sometimes attempted but usually in
some work that is going to be read by very few people such as a term paper or
possibly a Ph.D. thesis.

Moving on to another topic, Copernicus was not the first to propose a heliocentric
theory. He was aware that Aristarchus had proposed such a theory many centuries
before.

By carrying out the mathematical details necessary to compete with the Ptole-
maic model, Copernicus was able to let scholars make a fair comparison. The
model of Copernicus was not much simpler than that of Ptolemy. However, the
Copernican model generated insights not possible with the Ptolemaic model. As
I mentioned above, astronomers contemporary to Copernicus had great difficulty
measuring distances but they could measure the ratio of the radius of an epicycle
to the radius of the deferent in the Ptolemaic theory. This ratio was meaningless in
the Ptolemaic theory but corresponds to the ratio of the radius of a planet’s orbit
to that of Earth’s orbit in the Copernican model. (This is true for Mars, Jupiter,
and Saturn, which lie outside the orbit of Earth. The ratio is reversed for Venus and
Mercury, which lie inside the Earth’s orbit. See Prob. 61.) This enabled Copernicus
to compute the relative sizes of all planetary orbits.

As I also mentioned above, another insight from the Copernican theory was
an explanation for retrograde motion. In the Ptolemaic theory, retrograde motion
seemed to be an idiosyncrasy of each planet. In the Copernican theory, it could be
seen that retrograde motion is an illusion that occurs when the Earth and a given
planet are in certain relative positions in their respective orbits.

Later developments occurring within a century of the death of Copernicus would
provide further evidence for his theory. With the invention of the telescope, Galileo
could see that the planet Venus went through a sequence of phases just as the Moon
does. This was consistent with the theory that Venus revolves around the Sun. In
addition, Galileo could observe that Jupiter had at least four Moons. This tended to
put Jupiter on an equal footing with Earth.

However, the most significant confirmation of a heliocentric theory arose from
Tycho Brahe’s efforts to prove it to be wrong. Tycho Brahe was convinced that
the Earth was stationary. He proposed that yes the five known planets revolved
around the Sun but the Sun revolved around the Earth. Tycho Brahe (1546–1601)
constructed instruments far more accurate than those used before. He used these
instruments to collect a wealth of data that he hoped would disprove the theory of
Copernicus.
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Copernicus had challenged the geocentrism of Aristotle. Johannes Kepler (1571–
1630) approached the data collected by Tycho Brahe with the thought that another
aspect of Aristotle’s vision should be questioned. Namely that the heavens were
ruled by uniform circular motion. His most important discovery was probably his
second law that the areal velocity of a planet is constant. However, the discovery of
his first law that the orbit of any planet is an ellipse with the Sun located at a focal
point would not come easily. He did this by examination of the data Tycho Brahe
had collected for the planet Mars. He had boasted to Tycho that he would determine
the orbit of Mars in eight days. It took him eight years.

The process that Kepler went through is nicely outlined by Alexandre Koyré
(Koyré 1973). Kepler could not determine the orbit of Mars without determining
the orbit of Earth and he could not determine the orbit of Earth without determining
the orbit of Mars. Furthermore, he could not determine the orbit of either without
making some shrewd guesses. An additional complicating factor of the analysis is
the fact that the planes of the two orbits do not coincide, although both planes pass
through the Sun. (In case you are curious, the third law of Kepler is that the square
of the period of revolution divided by the cube of the major axis is the same for each
planet.)

Later Isaac Newton was able to show all three laws were a consequence of his
law of gravity.

Problem 61. Consider Fig. 4.8.

(a) How could you construct a diagram to conform to the theory that the Earth is
stationary, the Sun moves in an orbit about the Earth, and Mars moves in an
orbit about the Sun.

(b) Suppose you are a Martian. Construct a diagram to represent the view that Mars
is stationary, the Sun moves in an orbit about Mars, and the Earth moves in an
orbit about the Sun.

(c) Figure 4.8 remains valid if Mars is replaced by Jupiter or Saturn which lie
outside the Earth’s orbit. Adjust the two diagrams so that they would be
appropriate for Venus or Mercury which lie inside the Earth’s orbit. (If you
assume that the deferent is larger than any epicycle, then the deferent in the
geocentric model will correspond to the orbit of the Earth about the Sun in the
heliocentric model.)

Problem 62. Refer to Fig. 4.17. According to Kepler’s second law, the areal
velocity about the point E is constant. That is

1

2
r2

d�

dt
D h; where h is a constant.

According to Ptolemy’s rule,

d�

dt
D !; where ! is a constant.
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Fig. 4.17 The value of x can be chosen so that Ptolemy’s model closely agrees with Kepler’s
second law at the ends of the diameter passing through the location of earth and the center of the
eccentric circle

Determine the value of x which is used to locate Ptolemy’s equant point, so that
Ptolemy’s rule agrees with Kepler’s second law at the ends of the diameter passing
through the location of Earth and the center of the eccentric circle. (You should get
x D c:) (In reality, Ptolemy used information from other orbital points to locate his
equant point. Nonetheless, he arrived at the value “c” for his equant point.)

Problem 63. TŪSĪ COUPLE I. Consider Fig. 4.13. Suppose ˇ D �2˛Cˇ0. Show
that for both ˇ0 D 0 and ˇ0 D � , you get an ellipse. Ellipses constructed in
this manner could not be used for planetary orbits without modification because
the rate of movement at each end of the major axis is the same. However, the
limiting case when the radius of the epicycle equals the radius of the deferent results
in an oscillatory straight line motion. It is believed that al-Tūsı̄ was the first to
discover this construction. Al-Tūsı̄, along with succeeding Islamic astronomers and
Copernicus, used this device to deal with latitudinal motion and the orbital motion
of Mercury. This device has become known as the “Tūsı̄ Couple.”

Clearly, Copernicus did not rediscover this device. He did not claim to do so. In
a passage deleted from Book III, Chap. 5 of De Revolutionibus, Copernicus wrote
that other persons before him knew and had used this theorem (Copernicus 1992,
pp. 126, 384, and 385). It is also understood that in 1501, Copernicus became
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acquainted with Girolamo Fracastoro, a professor of medicine at the University of
Padua. Copernicus was 28 at the time and seemed to have chosen “graduate student”
as his career. His teacher, Fracastoro, was more than five years younger than he
was having been appointed professor at the age of 19. Copernicus would eventually
obtain a diploma of Doctor of Canon Law two years later at the University of Ferrara
and then return to the University of Padua for several years (Armitage 1963, pp. 63–
67). Astrology was considered a necessary part of a physician’s education at the time
and Fracastoro not only published works in medicine but he was also considered to
be a scholar in mathematics, geography, and astronomy. It is known that Fracastoro
along with others in Italy were familiar with the Tūsı̄ device (Di Bono 1995,
pp. 133–154).

Nonetheless, Copernicus has been accused of lifting the Tūsı̄ couple directly
from al-Tūsı̄ himself. Fig. 4.18a appears in Nası̄r al-Din al-Tūsı̄’s Memoir on
Astronomy (Ragep 1993, vol. I, p. 198). In 1973, science historian, Willy Hartner,
noticed that the lettering of Fig. 4.18a was very similar to the corresponding diagram
in De revolutionibus, namely Fig. 4.18b (Hartner 1973). Of course, in the original
work Arabic letters were used in Fig. 4.18a. Those who see a strong resemblance
between the two diagrams transcribe the Arabic letter “haa” into an “H.” When F.
Jamil Ragep translated al-Tūsı̄’s Memoir on Astronomy, he transcribed the same
letter into an “E.” I contacted Prof. Ragep on this matter on the internet and he
informed me that there are indeed two conventions for transcribing the letter “haa.”

George Saliba, who feels that the two diagrams are essentially identical, has
pointed out that, someone unfamiliar with Arabic transcript traditions could easily
misread an Arabic “zain” in a medieval Arabic manuscript as a “fā.” The correct
zain would be transcribed into a “Z”, but if it were misread as a fā, it would be
translated into an “F”, in which case there would be total agreement in the lettering
(Saliba 2007, p. 200).

It should be noted that a modern mathematician would draw the diagram
and then sprinkle in the letters. In this context, the agreement of the lettering
is extraordinary. However, Copernicus lived in a time when Euclidean traditions
prevailed and discussion of the construction of the diagram was an important part
of the presentation. When Copernicus presented his diagram, he wrote,
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Fig. 4.19 Rotating spherical
shells of ether resulting in a
straight line oscillatory
motion

Let there be a straight line AB. Let it be divided into four equal parts at points C, D, and
E. Around D, draw the circles ADB and CDE, with the same center and in the same plane.
On the circumference of the inner circle, take any point F at random. With F as center, and
with radius FD, draw the circle GHD. Let this intersect the straight line AB at the Point H.
Draw the diameter DFG (Copernicus 1992, p. 125).

Notice that each letter is introduced in alphabetical order. In the Euclidean
tradition, it becomes almost a little difficult to see how Copernicus could have
lettered his diagram any other way.

For me any debate about the extent of agreement in the lettering is irrelevant
because from a mathematical point of view, the diagrams are completely different.
In the Copernicus version, no reference is made to the largest circle in Copernicus’s
proof that Copernicus used to prove the straight line oscillatory motion of point
H. The outer most circle is used only to prove a follow-up corollary. Copernicus
also mentions the fact that if the deferent and epicycle are unequal in size, one gets
an ellipse. This observation does not readily follow from al-Tūsı̄’s diagram. We
should note that the diagram of al-Tūsı̄ becomes meaningless if the outer circle is
eliminated.

Nası̄r al-Din al-Tūsı̄’s Memoir on Astronomy has been translated by F. Jamil
Ragep (Ragep 1993). As translated and interpreted by Ragep, the large circle rotates
counterclockwise while the circle with half its radius rotates clockwise with twice
the angular speed of the large circle. Although the two circles slide past one another,
the location of the point of contact is determined by the motion of the large circle.
Meanwhile, the straight line oscillatory motion is generated by point H (or E), which
is attached to the smaller circle. This seems somewhat bizarre but it is consistent
with the Greek concept that the system of deferent and epicycles associated with
each planet was constrained by a spherical shell composed of a solid transparent
substance known as “ether.” That is between each planet, there was a spherical shell
of ether. (See Fig. 4.19.)
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Problem 64. TŪSĪ COUPLE II. Show that a straight line can also be generated by
a point attached to a circle rolling without slipping inside a stationary circle with a
radius twice the size of the rolling circle.

Problem 65. According to Fred Hoyle, a critical step for Kepler’s derivation of his
first law was a remarkable observation (Hoyle 1962, p. 117). See Fig. 4.20. Kepler
discovered that for a planet located at point P with the Sun located at point S:

SP D a � ae cos�; where (4.74)

a D the radius of the circle, e is a constant, and †CAQ is a right angle.

(a) Show CS D ae:

(b) Show (4.74) implies that the orbit of the planet is and ellipse with eccentricity
e. Furthermore, demonstrate that the Sun is located at a focal point.

For the instruments available to Ptolemy and Copernicus, measurement of �
in Fig. 4.16 could be used to determine the sum d C � but neither d nor �
separately. However, Tycho Brahe was able to design and build instruments with
higher precision. Using data collected using these instruments, Kepler was able to
determine values for both d and � from measurements of � .

Problem 66. Comparing (4.70) and (4.72), determine the ratio d=� that Kepler
should have gotten. How does this ratio compare with that Kepler actually obtained:
(14948=3616)? (Koyré 1973, p. 176)

When Kepler later inferred the relevant distances from his latitudinal observa-
tions, he realized there was an inconsistency between reality and the model of
Copernicus. (In this circumstance, the comparison of (4.71) and (4.73) come into
play.) No matter how he adjusted the values of d and �, the discrepancy between
the theoretical position and observed position of Mars in some parts of the orbit was
at least 80 (8min or 8=60 of a degree). The precision of Tycho Brahe’s instruments
was too good to ignore this small discrepancy. The model of Copernicus had to be
abandoned for something better.



4.8 *Christopher Columbus and Some Bad Geography 109

4.8 *Christopher Columbus and Some Bad Geography

According to American mythology, Columbus had to argue with those that thought
the earth was flat. Indeed, at one time the prevailing view in Europe was that the
earth might not be entirely flat but it certainly was not a sphere where you would
have people living thousands of kilometers apart standing on earth with their heads
pointed in opposite directions. This was the view of Saint Augustine (354–450)
who is one of the most respected theologians in the history of the Christian church.
Saint Augustine was convinced that there was enough geographical information in
biblical scripture to refute those that thought the earth was spherical. He even labeled
those who dared suggest that the earth was spherical to be heretics (Boorstin 1983,
pp. 107–111).

Nonetheless, at the time that Columbus was presenting his proposal, the scientific
advisors in the courts of Spain and Portugal were much more sophisticated. They
not only recognized that the earth is spherical but they also knew that Eratosthenes
had measured the size of the earth and that Arab scientists had checked his
measurements. The American myth, that Columbus had to argue that the earth is
round, stems from a biography of Columbus written by Washington Irving. In a
later biography of Columbus, this point is discussed by the author, Samuel Eliot
Morison: He wrote,

What then, becomes of the celebrated sessions of the University of Salamanca, before
whose professors of mathematics, geography and astronomy Columbus argued his case,
and was turned down because he could not convince them that the world was round? That is
pure moonshine. Washington Irving, scenting his opportunity for a picturesque and moving
scene, took a fictitious account of this nonexistent university council published 130 years
after the event, elaborated on it, and let his imagination go completely (Morison 1942,
p. 89).

Scientific advisors in both Spain and Portugal advised against financing Colum-
bus’ proposed voyage to Asia because the ships available at that time were not
suitable for sailing the long distance from Europe to Asia. It was Columbus who had
it all wrong. Columbus did not realize that Arabic miles were longer than Roman
or Italian miles and concluded that the earth was 25% smaller than it actually is
(Morison 1942, p. 65). Furthermore, he concluded that Marco Polo had traveled
much further east than he actually did. Columbus estimated it would be about four
time zones to Japan going west from the Canary Islands. With his 25% “correction”,
this would be equivalent to three time zones. In reality, going west, it is 12 time
zones to Tokyo and 15 time zones to Shanghai. Fortunately for Columbus and his
crew, he encountered the “New World” after sailing slightly less than four time
zones.

Columbus was first turned down by Don João II of Portugal in 1484–1485.
In 1485, he went to Spain to present his proposal to King Ferdinand and Queen
Isabella. Between 1485 and 1492, Columbus was tentatively turned down at least
twice in Spain and once more in Portugal. However, in Spain he maintained his
hopes because Ferdinand and Isabella were focused on eliminating Islamic rule from
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its last foothold in Spain. After the Christians had gained control of Cordova in 1236,
Islamic rule had been restricted to the Kingdom of Granada – a mountainous strip of
territory along the southern coast of Spain roughly 100 km wide and 300 km long.

Christopher Columbus must have been elated to be present at the formal
surrender of Granada on January 2, 1492. Now Ferdinand and Isabella could turn
their attention to his proposal. However, a few days later Queen Isabella turned down
his proposal with a finality he had not encountered before. Christopher’s brother
Bartholomew had presented his proposal to King Henry VII of England and King
Charles VIII of France and both courts had turned Christopher down.

Always the optimist, Columbus almost immediately set out to France by mule to
make a personal appeal to King Charles VIII of France. Fortunately for Columbus,
his situation changed suddenly. The same day that Columbus set out for France, Luis
de Santangel, keeper of the privy purse for Ferdinand, obtained an audience with the
Queen. He argued that although it might be a long shot, Columbus might be right.
(Even the most knowledgeable scholar of Spain could not say with certainty where
the east coast of Japan was.) Furthermore, the payoff would be tremendous for a
small investment. Thus persuaded, the Queen sent out a messenger to Columbus
with a command for him to return to her court (Morison 1942, pp. 101–103).

Indeed, the royal investment in Columbus’ voyage of discovery was relatively
modest. Much more time and effort would be devoted to another pet project of
Queen Isabella – the expulsion of all Jews from Spain. The same summer that
Columbus set sail with 90 men and boys from the port of Palos, an estimated 8,000
Jewish families sailed out of the nearby port of Cadiz into exile (Morison 1942,
p. 109).

By contrast, the terms of the 1492 surrender allowed Muslims to continue the
privilege of being Muslims. However, in succeeding years, these terms would be
ignored and Muslims would be given the same stark choice as the Jews: convert to
Christianity or face expulsion.

Problem 67. Go to a library or search the internet to find out how Eratosthenes
(born around 284BC) was able to measure the size of the earth. Then write up an
explanation with a suitable diagram in a form that can be understood by your slowest
classmate.

4.9 *Clifford and Grassmann

4.9.1 *William Kingdon Clifford 1845–1879

William Clifford is currently recognized for two concise papers, published at the
end of his short life, that laid the foundations of what is now known as Clifford
algebra. The first was nine pages long with the title, “Applications of Grassmann’s
Extensive Algebra” (Clifford 1878). This was published in 1878 at a time when his
health was steadily declining. The second paper, five pages in length, was entitled,
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“On the Classification of Geometric Algebras.” This was published in unfinished
form in 1882 after his death (Clifford 1882).

The importance of these papers was not recognized for a long time. In a book
published in 1919, the mathematics historian, Florian Cajori, described William
Clifford as one of the four mathematicians (two English and two German) who
dominated the study of geometry in the late nineteenth century (Cajori 1919, p. 278).
Cajori listed several of Clifford’s papers he thought to be significant but made
no mention of Clifford’s geometric algebra (Cajori 1919, p. 307). In a book first
published in 1923, another historian of mathematics, David Eugene Smith like
Cajori pointed out Clifford’s contributions to Riemann surfaces, biquaternions, and
other fields but made no mention of what we now label as Clifford algebra (Smith
1958, pp. 467–468).

William Kingdon Clifford was born on May 4, 1845 in Starcross, England not
far from Exeter. His father (also William) made his living as owner of a bookstore.
Although he was frequently in poor health, the older William served his city
both as Alderman and Justice of the Peace. At age 15, the young William won a
Mathematical and Classical Scholarship to King’s College London. While at King’s
College, at age 18, he was able to get a paper published in The Quarterly Journal of
Pure and Applied Mathematics in March 1863 (Chisholm 2002, pp. 16–17). He then
won a Foundation Scholarship to Trinity College (part of Cambridge University).

The pathetic trajectory of Clifford algebra as an accepted framework for the
study of geometry appears to be linked to the respect that Clifford had for fellow
mathematician James Joseph Sylvester (1814–1897). J.J. Sylvester also attended
Cambridge University – a generation before Clifford. In 1837, Sylvester scored
second highest on the very challenging Mathematical Tripos exam. Because of this
achievement he was given the prestigious title of “second wrangler.” Nonetheless, he
was not awarded a degree. At that time, a student could not obtain a degree unless he
signed an oath swearing adherence to each of the Thirty-Nine Articles of the Church
of England. As a Jew, J.J. Sylvester refused to take the oath.

Almost 30 years later in 1866, William Clifford encountered the same require-
ment. He too finished second on the Mathematical Tripos. Perhaps, he would have
done better but he devoted some of his time studying the works of Sylvester and
others – material he knew would not be on the exam (Chisholm 2002, p. 22).
At the time he entered Cambridge, Clifford was a devout Christian. While at King’s
College he had even won a Divinity Prize (Chisholm 2002, p. 16). However, the
dogmatic position of the Anglican Church against Darwin’s theory of evolution
induced him to reexamine his beliefs. He soon evolved into an agnostic and then
an atheist. Clifford signed the required religious oath in 1863 and 1864 without
reservation. In 1865, he did so reluctantly and in 1866 he refused (Chisholm 2002,
pp. 21–22).

The religious requirement was still in place but authorities were more liberal then
they had been for Sylvester. The regulation was ignored and Clifford got his degree.
A few years later in 1871 while Gladstone was prime minister, the requirement was
abolished (Chisholm 2002, p. 29).
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In the Spring of 1871, Clifford became Professor of Applied Mathematics and
Mechanics at University College, London. Relations with J.J. Sylvester and other
mathematicians had been established during his years at Cambridge and now
became closer (Chisholm 2002, p. 29).

Four years after he was denied a degree at Cambridge University, Sylvester
was awarded a B.A. and M.A. by Trinity College, Dublin. He won recognition
for his many publications and in 1866 he was elected President of the London
Mathematical Society. Nonetheless, for most of his life, he was unable to find steady
employment at an academic position. To make living he studied law and worked as
an actuary.

Finally at age 63, he obtained a position that matched his abilities. He was
given the responsibility to organize the first American Ph.D. program at John
Hopkins University. One year later in 1878, he founded the American Journal of
Mathematics. Clifford’s paper on what he called “geometric algebra” appeared in
the very first volume of that journal. Today, the American Journal of Mathematics
is one of the most prestigious math journals in the world, but in 1878 it was less
than obscure. Why did Clifford submit his paper to Sylvester? Presumably because
of his political outlook, he wanted to endorse Sylvester’s efforts.

University College where Clifford was employed was considered either “forward
looking” or “godless” for admitting Dissenters, Jews, and Roman Catholics.
Although University College was at the cutting edge of social reform, women were
taught in separate classes. William Clifford was the first mathematician at University
College to admit both sexes to his lectures.

In 1873, William met and fell in love with Sophia Lucy Jane Lane (better
known as “Lucy”). They eventually got married on April 7, 1875 and their home
soon became an intellectual salon. Visitors included Thomas Huxley, the principal
exponent of Darwinism in England, and Robert Louis Stevenson. Lucy and William
particularly valued their friendship with George Eliot.

Clifford had a broad intellect. He not only mastered several modern languages but
he also studied Arabic, Greek, and Sanskrit. Due to his abilities in exposition, he was
frequently asked to give lectures on a wide range of topics in science, philosophy,
and even history. Despite the demands on his time, he was somehow able to publish
a fairy tale entitled, The Giant’s Shoes.

He would frequently work through a night after giving his lectures the previous
day. To complete an 18-page essay, The Unseen Universe, Clifford took up his pen
at nine forty-five one evening and worked straight through till nine the next morning
(Chisholm 2002, p. 50). Eventually, these work habits took their toll. At Cambridge,
William was known for his physical prowess. He could do one-armed chin ups on a
bar with either arm. However, he had developed respiratory problems and soon after
he arrived in London in 1876 he suffered a physical collapse.

It eventually became clear that he had tuberculosis. Typically, tuberculosis was
contracted in childhood but would remain dormant for many years, often for a
lifetime. However, once tuberculosis flared up a second time, the victim was in
serious trouble. Furthermore, nineteenth century London did not enjoy clean air.
During winter fogs, when people were burning coal to keep warm, the air quality
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was perhaps the worst in the world. In the opening paragraph of the first chapter of
Bleak House, Charles Dickens gave a vivid description of how bad it could be,

Implacable November weather. – Smoke lowering down from chimney-pots, making a soft
black drizzle, with flakes of soot in it as big as full-grown snow-flakes – gone into mourning,
one might imagine, for the death of the sun.

The air quality in London did not improve for many years. During the “Great
Smog”, which lasted for less than a week in early December of 1952, it is estimated
that there were “at least 1,600 (perhaps 4,000) excess deaths in London, mainly from
bronchitis, pneumonia and coronary disease among infants and the old” (Inwood
1998, p. 838).

At a time before antibiotics, Clifford’s only hope of recovery was to get rest
somewhere away from the filthy air of London. (In Germany, the medical profession
were discovering that, without antibiotics, the best treatment for tuberculosis was
bedrest in a hospital. In England, it was still thought that sea voyages were
beneficial, although it was also recognized that rest was essential.) A change of
climate did seem to have a beneficial effect on some victims.

In 1873, believing that he had only a few months to live, a young American
dentist moved west from Atlanta, Georgia, in the hopes of extending his life. This
action probably did extend his life, but it clearly shortened the lives of many others.
His violent coughing spells forced him to give up dentistry Subsequently, he became
a successful gambler. To survive in this second profession, he became very proficient
at killing people. “Doc” Holliday eventually died from tuberculosis in 1887, but that
was 14 years after he left Atlanta and six years after his participation in the famous
gunfight near the OK Corral in Tombstone, Arizona.

By contrast, Clifford was not inclined to take the advice of his doctors. Clifford’s
friends had more concern for his health than he did. Thomas Huxley and Frederick
Pollock raised funds so that he and Lucy could take a seven week cruise in the
Mediterranean. However, when they returned to London, Clifford ignored the advice
of friends and resumed his academic duties at University College.

Not only did he resume his lectures but he also poured himself into criticism of
contemporary religious thought and practice. His efforts included two essays, Ethics
of Belief and Ethics of Religion. (Ethics of Belief has recently been republished.)

His health continued to deteriorate. In February 1878, his father died at the age
of 58 during a visit to southern France and William was too ill to attend the funeral.
Nonetheless, he continued to ignore the consequences of his work habits. He worked
through a night to complete the treatise, Virchow on the Teaching of Science. Two
years before in 1876, he had presented an abstract on what is now known as
“Clifford algebras” to the London Mathematical Society. Now he developed his
preliminary results further and submitted it to the American Journal of Mathematics
under the title, “Applications of Grassmann’s extensive algebra.” The status of his
health became obvious when he collapsed while trying to finish a lecture (Chisholm
2002, p. 55).

His friends became alarmed and financed another cruise on the Mediterranean
Sea and a placement in a Swiss sanatorium. However, in Switzerland, William and
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Lucy encountered some brutal weather. Lucy wrote to a friend complaining that they
might freeze to death in the “coldest, most shivery, chatter-your teeth, sort of place
you could possibly imagine” (Chisholm 2002, p. 56).

The Cliffords now had two daughters who had been left behind in England. Since
William’s health was not improving, they returned to England. In a last desperate
effort to save his life, William and Lucy embarked on a five-day voyage from
England to Madeira. Madeira is a Portuguese island about 650 km (400 miles) west
of Morocco. Lucy and William were accompanied by a daughter and son-in-law of
Thomas Huxley. The climate in Madeira was more pleasant but William died less
than two months later on March 3, 1879.

Lucy had established a career as a writer before she met William. Despite the
burdens of being a mother of two daughters and a nurse to William, she had
continued her writing during her short four-year marriage. After William’s death,
she had a long and illustrious career as a writer. She always retained fond memories
of William and when she died in 1929, she was buried alongside him.

During his life, William Clifford became convinced that we live in a space that
is curved. In 1870, he presented a paper entitled, On the Space Theory of Matter to
the Cambridge Philosophical Society. In this paper, Clifford proposed the idea that
matter and field energy are simply manifestations of curvature of space (Chisholm
2002, p. 39). It is thus fun to speculate on whether or not Clifford could have been
a major contributor to the theory of relativity (either the special or general theory).
Clearly, Clifford died too soon. He died 11 days before Einstein was born. But was
he born too soon? Perhaps not. What were the key ideas and events that paved the
way for Einstein’s special theory of relativity? Most of the groundwork arose in the
decade following Clifford’s death.

First were the Michelson–Morley experiments showing that the speed of light
was the same in frames moving at constant speed with respect to one another.
The first experiment was carried out by Michelson alone in 1881 and the second
was carried out with Morley in 1887. Second was the influence of Ernst Mach.
Mach challenged Newton’s concepts of “absolute space” and “absolute time” (Clark
1971, p. 61). The work by Mach that Einstein admired so much was Die Mechanik
in ihrer Entwicklung, which was published in 1883. (Ten years later, an English
version would be published under the title The Science of Mechanics: A Critical
and Historical Account of Its Development.) The other important inputs came from
Henri Poincaré and Hendrick Lorentz who were, respectively, eight and nine years
younger than Clifford. They made their contributions somewhat later.

However, Clifford might have had an advantage that was not available to Lorentz,
Poincaré, or Einstein. All three of those men spent considerable time trying to
determine the nature of the world we live in by studying Maxwell’s equations.
However, even today virtually every text book on electro-magnetic fields presents
Maxwell’s equations in a form that is in some sense wrong. Certainly, they are
written in a form that is a severe hindrance for someone trying to invent the special
theory of relativity. In this standard formulation, the electric and magnetic fields
are each represented by what we can now interpret as two separate1-vectors and
the time variable does not appear to be on an equal footing with the space variables.
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However, in reality, the electric and magnetic fields are both part of a single 2-vector.
If you know the coordinates of the magnetic field in Cartesian coordinates and wish
to determine the coordinates in polar coordinates, you will get the wrong answer if
you think that the magnetic field is a 1-vector.2

Correct versions of Maxwell’s equations, using the formalism of tensors, gener-
ally appear in text books on relativity and only sometimes in a closing chapter of
a text on electro-magnetism. According to Wolfgang Pauli, Hermann Minkowski
was the first one to arrive at a proper four-dimensional space–time version of
Maxwell’s equations (Pauli 1958, p. 78). Minkowski presented this formulation
in a lecture entitled, “Das Relativitätsprinzip” to the Mathematische Gesellschaft
Göttingen on November 7, 1907 – two years after Einstein published his special
theory. Minkowski died about 14 months later on January 12, 1909 and the contents
of his lecture were not published until 1915 (Minkowski 1915a, 1915b).

It is plausible that Clifford could have arrived at an equivalent formulation much
sooner. Shortly after Clifford died, a battle developed between those who advocated
quaternions and those who advocated vectors for the formulation of the equations
of physics. On p. 154 of the book, A History of Vector Analysis, the author Michael
J. Crowe writes, “In 1879 Gibbs gave a course in vector analysis with applications
to electricity and magnetism, and in 1881 he arranged for the private printing of
the first half of his Elements of Vector Analysis; the second half appeared in 1884.
In an effort to make his system known, Gibbs sent out copies to more than 130
scientists and mathematicians.” On the same page, Crowe indicates that Willard
Gibbs cited Clifford in the introductory paragraph of his vector analysis book. Thus,
we can be confident that Clifford would have received a copy of Gibb’s work. In this
circumstance, Clifford would have been eager to enter the quaternion-vector battle
with his geometric algebra.

It is probably impossible to present a truly correct (covariant) version of
Maxwell’s equations using either quaternions or vectors. However, it is possible
using Clifford algebra. Done properly the time variable appears on an equal footing
with the space variables. Having translated Riemann’s ground breaking work on
geometry in 1873, Clifford would have been suitably equipped to deal with this
proper formulation problem. Had Clifford succeeded, the development of special
relativity could have been accelerated and math undergraduates would have been
studying Clifford algebra 100 years ago. It is even plausible that Clifford could have
spent the last thirty or forty years of his life fruitlessly seeking out the kind of unified
field theory that eluded Einstein.

2I have discussed this problem in my book Clifford Algebra (Snygg 1997, pp. 137–144 and
154–161). However, the reader should be forewarned of two errors that I made. One, I made
the claim that using Clifford algebra, one can write Maxwell’s equations as a single equation.
This is clearly not true in the presence of a dielectric. Second, Bernard Jancewicz has pointed out
that the approximate magnetic field that I use for Maglich’s Migma Chamber is not a solution of
Maxwell’s equation. Nonetheless, the discussion of the two-vector nature of the electro-magnetic
field is correct.
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4.9.2 *Hermann Günther Grassmann 1809–1877

I propose to communicate in a brief form some applications of Grassmann’s theory which it
seems unlikely that I shall find time to set forth at proper length, though I have waited long
for it. Until recently I was unacquainted with the Ausdehnungslehre, and knew only so much
of it as is contained in the author’s geometrical papers in Crelle’s Journal and in Hankel’s
Lectures on Complex Numbers. I may, perhaps, therefore be permitted to express my
profound admiration of that extraordinary work, and my conviction that its principles will
exercise a vast influence upon the future of mathematical science. (The opening paragraph
of Clifford’s Applications of Grassmann’s Extensisve Algebra (Clifford 1878, p. 350)).

The math historian Florian Cajori once attempted to summarize Grassmann’s life
with one sentence, “He started as a theologian, wrote on physics, composed texts
for the study of German, Latin, and mathematics, edited a political paper and a
missionary paper, investigated phonetic laws, wrote a dictionary to the Rig-Veda,
translated the Rig-Veda in verse, harmonized folk songs in three voices, carried
on successfully the regular work of a teacher and brought up nine of his eleven
children – all this in addition to the great mathematical creations which we are about
to describe” (Cajori 1919, pp. 335–336). Grassmann made substantial contributions
to mathematics but during his lifetime he probably received more acclaim for his
scholarship in Sanskrit.

Hermann Günther Grassmann was born on April 15, 1809 in Stettin, Prussia.
(After World War II, Stettin became part of Poland and the name was changed to
Szczecin.) He was the third of 12 children. Although his father, Justus Günther
Grassmann, was trained mainly in theology, he taught mathematics and physical
science at the Stettin Gymnasium. (Roughly equivalent to an elite American high
school.)

In 1827, Hermann entered the University of Berlin where he spent six semesters
studying philology and theology. Although he attended no mathematical lectures,
he did read some mathematical texts written by his father (Crowe 1985, p. 55).

After leaving Berlin, Grassmann returned to Stettin and prepared himself for
the state examinations required to become a teacher. In this process, he studied
mathematics, physics, natural history, theology, and philology. In 1834, he accepted
a position at a Berlin technical school but he returned to Stettin after a little over
a year. He would remain in Stettin the rest of his life teaching at various schools.
He frequently strove to obtain a position at a university but never succeeded (Crowe
1985, p. 55).

To prove his suitability for a university position, Grassmann wrote a paper on the
tides with a length of more than 200 pages. The paper entitled, Theorie der Ebbe und
Flut (Theory of Low and High Tides), was significant because it contained the first
presentation of a system of spatial analysis based on vectors. Grassmann was the
first to introduce the notion of vectors as directed line segments that could be added
in a geometrically meaningful way. Hermann’s father Justus had introduced the idea
of a geometric product in a couple of his books. However, Hermann generalized his
father’s idea and is thus credited with the invention the exterior product. (Grassmann
referred to what is now known as the “exterior product” as the “geometric product.”)
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In 1840, the “Ebb and Flow” paper was submitted as part of a job application but it
was ignored (Crowe 1985, pp. 55–57).

Undeterred, Grassmann generalized these concepts to n-dimensions and in 1844
he published his new ideas in a book entitled Die lineale Ausdehnungslehre,
ein neuer Zweig der Mathematik dargestellt and durch Anwendungen auf die
übrigen Zweige der Mathematik, wie auch auf der Statik, Mechanik, die Lehre von
Magnetismus und Krystallonomie erlaütert (Linear Extension Theory representing
a new Branch of Mathematics illustrated by Applications to other Branches of
Mathematics and also Statics, Mechanics, and the Theory of Magnetism and
Crystallography).

Generalizing a formalism to n-dimensions was a radical departure in an era in
which geometry was considered a study of the space we live in. Indeed, he had
opened up a new branch of mathematics with a new approach, which forced him to
deal with a lot of new questions. For example, if we assign a direction to a finite
line segment, should we or can we regard it as being equal to a parallel line segment
with the same length if it lies on the same infinite straight line? – if it lies in the
same plane? If we introduce a noncommutative multiplication, can we still have a
multiplicative unit? Dealing with these questions, Grassmann developed an insight
into the importance not only of the commutative law but also of the associative and
distribution laws.

Grassmann sent out copies of his book to several mathematicians but got very
little response – positive or negative. For example, Gauss sent him a letter of thanks
on December 14, 1844. In the letter, Gauss stated that he had worked on similar
ideas nearly half a century before and published his results in 1831. Michael Crowe
has concluded that Gauss was probably referring to some work he had done on the
graphical representation of complex numbers (Crowe 1985, p. 78). At any rate, it
appears that Gauss did not read deeply enough into Grassmann’s work to grasp the
significance of Grassmann’s achievement.

Why was Grassmann’s work ignored? Grassmann’s lack of credentials certainly
contributed to the situation. But the American Josiah Willard Gibbs at Yale faced
a similar problem 40 years later when he wanted to promote his Elements of
Vector Analysis. In 1884, a Yale professor of mathematical physics with a Ph.D. in
engineering did not have the prestige in Europe that he would have today. The only
significant graduate mathematics department in America at that time was at John
Hopkins University. John Hopkins University opened its doors in 1876 and James
Joseph Sylvester was imported from Great Britain to organize the math department.

At age 61, Sylvester was willing to take on this task because for most of his life,
being a Jew had made him ineligible for the most prestigious academic positions
in England. Although he had been a very productive mathematician, he had been
forced to turn to a career as a lawyer to make a living. Sylvester had satisfied the
academic requirements for a mathematics degree at Cambridge in 1834. However,
he did not actually obtain the degree until 1872 when the religious requirement was
dropped.

Gibbs is now recognized as one of the giants of the nineteenth century in
physics because of his contributions to thermodynamics. However, when Gibbs set
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out to promote his approach to vectors, his work in thermodynamics was largely
unrecognized because it had been published in an obscure journal (Transactions of
the Connecticut Academy). At Yale, Gibbs prestige was so low that for many years
Yale did not see fit to pay him. He lived on inherited wealth. It was only when he got
a job offer from John Hopkins that the authorities at Yale put Gibbs on the payroll.

Despite his lowly status, Gibbs was able to have a much greater impact on
how mathematics and physics would be done during the twentieth century than
Grassmann. Why? A clue appears in Gauss’s thank you note. In that note, Gauss
indicated he was very busy and to understand the real thrust of the work he would
have to familiarize himself with the peculiar terminology used in the text (Crowe
1985, p. 78). Grassmann was presenting radically new material and even today he is
difficult to read. At the time Grassmann was writing, the study of geometry was
considered the study of the space we live in. Grassmann was taking a different
approach. As a modern mathematician would do, Grassmann was defining his
own mathematical structures and then investigating their properties. However, when
Grassmann set out to explain his approach, his readers did not have an easy time.
(The following passage is a translated version but judging from the way people
responded to the Ausdehnungslehre, the exposition in the original German was not
any plainer.)

Thought exists only in reference to an existent that confronts it and is portrayed by the
thought: but in the real sciences this existent is independent, existing for itself outside of
thought, whereas in the formal it is established by thought itself, when a second thought
process is confronted as an existent. – Thus proof in the formal sciences does not extend
beyond the sphere of thought, but resides purely in the combination of different thought
processes. Consequently the formal sciences cannot begin with postulates, as do the real;
rather, definitions comprise their foundations (Grassmann 1995, p. 23).

When he got into the mathematics, the reading did not get easier:

– The concept of continuous becoming is more easily grasped if one first treats it by analogy
with the more familiar discrete mode of emergence. Thus since in continuous generation
what has already become is always retained in that correlative thought together with the
newly emerging at the moment of its emergence, so by analogy one discerns in the concept
of the continuous form a twofold act of placement and conjunction, but in this case the two
are unified in a single act, and thus proceed together as an indivisible unit. Thus, of the two
parts of the conjunction (temporarily retaining this expression for the sake of the analogy),
the one has already become, but the other – (Grassmann 1995, p. 25).

By contrast, when Gibbs set out to sell his vector formulation, he touched
base with what was familiar to his audience. He adopted the i, j, k notation for
unit vectors in the x, y, and z directions. This does not generalize to higher
dimensions but readers acquainted with quaternions could feel that they were on
familiar ground. Even among the few mathematicians that recognized the greatness
of Grassmann’s work, there were several who confessed in private correspondence
to others that they did not have the fortitude to master much of Grassmann’s
Ausdehnungslehre. In a letter dated January 5, 1846, Möbius wrote to Ernst
Friedrich Apelt: “You ask me whether, I have read Grassmann’s Ausdehnungslehre.
To this I answered that Grassmann himself presented me with a copy and that I
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have on numerous occasions attempted to study it but have never gone beyond
the first sheets, since, as you mentioned, intuitiveness, the essential character of
mathematical thought, is not to be found in the work. – ” (Crowe 1985, p. 79)

Grassmann published a second edition of his Ausdehnungslehre in 1862. But that
edition was not any easier to read. In 1888, the year that Grassmann died, Gibbs
wrote to Victor Schlegel:

– I procured the two Ed. of the Ausd. but I cannot say that I found them easy reading. In fact
I have never had the perseverance to get through with either of them, & have perhaps got
more ideas from his miscellaneous memoirs than from those works. – (Crowe 1985, p. 153)

Both Möbius and Gibbs recognized that results they had achieved in linear
algebra had been developed earlier by Grassmann in the context of a more
substantial work. However, neither Möbius nor Gibbs was able to absorb enough of
Grassmann’s work to carry his ideas forward. Indeed, very few mathematicians were
able to use Grassmann’s work to make new advancements. More frequently, they
independently reinvented his work piecemeal in bits and pieces. Two outstanding
exceptions were Clifford with his geometric algebra and Cartan with his differential
forms.

Mathematics was not the only thing that attracted the attention of Hermann
Grassman. The year 1848 was a year of upheaval in continental Europe. This was
the year Karl Marx and Friedrich Engels published the Communist Manifesto and
began publication of a newspaper in Cologne, Germany. In the midst of an economic
depression that had been preceded by a couple of years of bad harvests, many
laborers, out of work, faced starvation.

On February 22, mass demonstrations broke out in Paris and two days later King
Louis Phillipe abdicated. News of this event spread across Europe and soon there
were revolts in Italy and Austria. In Berlin, it appeared that the Prussian army was
successfully suppressing a violent revolt with much loss of life. However, King
Frederick William IV of Prussia, fearing massive bloodshed, ordered his troops back
to their barracks on March 19. The King also authorized a constitutional convention
and these gestures ended the violence.

Generally, members of the professional class were eager for the right to vote, a
free press, and a unified Germany. However, they were appalled by the possibility of
“mob rule” by those demanding such things as guaranteed work, a minimum wage,
and a ten hour day. Hermann Grassmann was no exception.

Responding to these events, Hermann and his brother Robert like Marx and
Engels started publishing a newspaper (Engel 1911, p. 140). The title of their paper
was Deutsche Wochenschrift für Staat, Kirche, und Volksleben (German Weekly for
State, Church, and Home). The first issue appeared on May 20. The first few editions
advocated a unified Germany headed by a hereditary king with a Reichstag (elected
parliament) in an advisory role.

In 1849, the members of the constitutional convention completed their work and
offered King Frederick William IV the role of constitutional monarch of what they
hoped would become a unified Germany. However by this time, the royal houses
of Europe had regrouped and successfully put down the revolts against them. Even
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in France, democracy was short-lived. In the summer of 1848, a constitution was
put in place that guaranteed universal suffrage (except for women). However, in
the first national election, people outside Paris, alarmed by the disorder in Paris,
overwhelmingly voted for Louis Napoleon Bonaparte, nephew of Napoleon I, to be
their president. This occurred in December 1848 and about three years later this
president became Emperor.

By 1849, the liberals in Germany, who had constructed their proposed consti-
tution, had lost what little leverage they might have had by completely ignoring
the aspirations of the workers and peasants who had initiated the demonstrations
against the King of Prussia the year before. The King was not prepared to surrender
the concept that he ruled by divine right so he turned down the role of constitutional
monarch and hopes for a more democratic government was delayed for many years.

If Hermann Grassmann were alive today, he would be glad to see that Germany
is now unified. He might be disappointed by the fact that Germany is not ruled by
a hereditary king. He would certainly be disappointed by the fact that after World
War II, the boundary between Germany and Poland was moved west and his home
city of Stettin became part of Poland and is now better known by its Polish name
Szczecin.

During his lifetime, Grassmann received little of the recognition he deserved for
his accomplishments in mathematics. In fact his greatest recognition was received
for his work in philology. In the early 1870s, he became discouraged by the lack
of response he received in mathematics and turned to the study of Sanskrit. His
study of Sanskrit begun in 1849 culminated with the publication of his Wörterbuch
zum Rig-Veda (Lexicon for the Rig-Veda) (1784 pp) and his translation of the Rig-
Veda. (The Rig-Veda contains over 1,000 hymns of praise to different Hindu gods.)
For these achievements, he received an honorary doctorate from the University of
Tübingen in 1876 (Crowe 1985, p. 93). He died the following year on September
26, 1877.



Chapter 5
Curved Spaces

5.1 Gaussian Curvature (Informal)

The simplest example of a curved surface is the ordinary 2-dimensional sphere
in Euclidean 3-space. Furthermore the geometry of the sphere serves a major
motivation for much of the mathematical work that has been done for more general
surfaces. For this reason it is useful to examine some basic results associated with
the geometry of a sphere.

Given two points on a 2-dimensional surface in ordinary 3-space , a geodesic is
a path of minimum length passing through the two points.1 For a sphere, a geodesic
is a segment of a great circle, that is a circle formed by the intersection of a sphere
with a plane passing through the center. A lune is the region bounded by two great
circles on the surface of a sphere. (See Fig. 5.1a.)

The area of a sphere is 4�r2, where r is the radius. The area of a lune is the
fraction �=2� of the sphere. Thus the area of a lune is .�=2�/.4�r2/ or 2r2� . From
this result, it is not too difficult to determine the area of a figure formed by three
great circles. Such a figure is known as a spherical triangle.

Theorem 68. (Refer to Fig. 5.1b) The area of the spherical triangle 4ABC D
Œ.AC B C C/� �� r2 where A, B , and C are the vertex angles measured in ra-
dians. (One of the three great circles bounding 4ABC is the silhouette CB KC KBC !)

Proof. (For shorthand purposes, we will designate the area of a figure simply by the
label for the figure.)

1Most mathematicians will cringe at this definition with good reason. When one travels by plane
from New York to London by a great circle route over the Atlantic Ocean, one is following a
geodesic. However if one continues over the same great circle, one is still following a geodesic
even though it is not the shortest route from London to New York. Nevertheless, I will rely on your
intuition and your common sense until I have developed enough mathematical machinery to give
a more sophisticated definition in Sect. 5.4 of this chapter.

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 5, © Springer Science+Business Media, LLC 2012
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Fig. 5.1 (a) A lune is the region bounded by two great circles. (b) The area of 4ABC D
Œ.AC B C C/� �� r2, where A, B , and C are the vertex angles measured in radians

4ABC C 4A0BC D 2r2A (This is the area of lune ACA0BA:)

4ABC C 4ABC 0 D 2r2C

4ABC C 4AB 0C D 2r2B

4A0B 0C � 4ABC 0 D 0 (By symmetry.)

Adding up the two sides of the equations above, we get

24ABC C .4ABC C 4A0BC C 4A0B 0C C 4AB 0C/ D 2r2.AC B C C/:

Observing that the four spherical triangles in the parentheses on the L.H.S. of the
equation above add up the area of the upper hemisphere in Fig. 5.1b, we now have

24ABC C 2�r2 D 2r2.AC B C C/ or

4ABC D Œ.AC B C C/� �� r2 (5.1)

ut
The theorem above is usually attributed to Adrien Marie Legendre (1752–1833).
However, according to historian J.A. Lohne, Albert Girard published a proof in his
Invention nouvelle en algèbre (1629). Furthermore a proof of the theorem dated
September 18, 1603 was found among the personal effects of Thomas Harriot
(Lohne 1979, pp. 300–301). In fact the proof that I have used above is identical
to that of Thomas Harriot. This theorem was later generalized to regions bounded
by geodesic curves on other surfaces by Karl Friedrich Gauss (1777–1855) and then
again for non-geodesic boundaries by Pierre Ossian Bonnet (1819–1892) (Bonnet
1848, pp. 1–146). The results of Gauss and Bonnet will be discussed in Chap. 6.
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Fig. 5.2 (a) The vector v2 is the result of the parallel transport of v1 along path AB . (b) The
vector v1 , moved along AB by parallel transport, becomes v2 at vertex B . Continuing the process,
the vector becomes v3 at C and v4 when it is returned to its original location. Careful computation
reveals that v1, relabeled as v4, has undergone a rotation of AC B C C � �

The quantity Œ.AC B C C/� �� is called the spherical excess of 4ABC . This
concept can be generalized to polygons whose edges may or may not be geodesics.
To do this, it is useful to obtain an alternate geometric interpretation of the spherical
excess of a spherical triangle.

Suppose we consider the problem of transporting a vector tangent to the spherical
surface around the perimeter of a spherical triangle without rotation. When I say
“without rotation”, I mean without rotation detectable to an intrinsic observer who
is required to make all measurements in the surface of the sphere.

In a flat 2-dimensional plane, we can move a vector from point A to point B by
sliding it along the straight line joining the two points while maintaining a constant
angle between the vector and the straight line. Such a displacement is called parallel
transport. (See Fig. 5.2a.)

On the surface of a sphere, the analog of a straight line is a geodesic or great
circle. With that in mind, we now try to move a vector around the perimeter of a
spherical triangle by parallel transport. (Refer to Fig. 5.2b.)

Suppose we consider the vector v1 tangent to geodesic AB at vertex A. Moving
the vector by parallel transport along AB , it becomes vector v2 at vertex B .
Continuing the process, the vector becomes v3 at vertex C and finally vector v4
when it is returned to its original location. This is perhaps most easily visualized for
the example in which A is at the North Pole and BC is a segment of the equator. In
that case, our parallel transported vector will be pointing South at all times during
the motion.

Although the vector is moved by parallel transport along all points of the
perimeter, we discover that when the vector is returned to its original location, it
has become rotated counterclockwise from its original orientation. Referring again
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Fig. 5.3 The total rotation corresponding to the parallel transport of a vector around the boundary
in figure B is equal to the sum of the rotations corresponding to each of the two geodesic triangles
in figure A

to Fig. 5.2b, it is not too difficult to convince oneself that the angle of this rotation is
Œ.AC B C C/� ��, which is exactly the spherical excess of the spherical triangle.

This last result can be generalized in several ways. First: One can patch spherical
triangles together to obtain any spherical polygon with geodesic edges. (We assume
that you do your patching in such a way that the resulting spherical polygon is
simply connected – it has no holes in it.) (See Fig. 5.3.) Secondly: One can consider
closed boundaries composed of connecting segments that are not necessarily
geodesics. If a path segment is reasonably well behaved, one can determine the
consequence of parallel transport along such a path segment by approximating the
path segment by a string of short geodesics and then taking the appropriate limit.
However, this approach is difficult and can be avoided. We will return to this later
in the chapter. (See Prob. 80.)

It should now be obvious how to generalize the concept of spherical excess
to 2-dimensional surfaces other than those of spheres. In general, the angle of
rotation that results from the parallel transport of a vector around a closed path
will depend on the shape of the surface. For a sphere or ellipsoid, the angle will
be counterclockwise (positive). For a flat surface, the angle will be zero. And for a
saddle surface, the angle will be clockwise (negative). (See Fig. 5.4b.)

This observation opens up the possibility of defining curvature in terms of the
angle of rotation resulting from the parallel transport of a vector around a closed
path. We would like to assign a number for the curvature at each point on the
given surface. For a sphere, this number should be the same at all points but for
an ellipsoid, the number should vary from point to point.

To assign a number for the curvature to a point, we would want to consider a
sequence of ever shorter loops passing through the given point. The problem with
this approach is that for small regions in the neighborhood of a point on a smooth
surface, the region will be nearly flat and the corresponding angle of rotation will be
close to zero. (Why else did many people in ancient cultures believe that the earth
is flat?)
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a b

Fig. 5.4 (a) On a surface of negative curvature, geodesics that appear parallel at one location
diverge elsewhere. (b) A triangle formed from geodesics on a surface of negative curvature has the
property that the sum of its angles is less than �

Theorem 68 gives us a way of dealing with this problem. For a spherical triangle,

Area of �ABC D r2� , (5.2)

where � is the angle of rotation for a vector that is parallel transported around the
perimeter of the spherical triangle. From the discussion relating to Fig. 5.3, we know
that this can be generalized. That is

Area of loop D r2� . (5.3)

By “loop”, I mean a closed path that does not cross itself. We now see that at least
for the surface of a sphere, the following limit makes sense:

lim
d!0

�=(Area of loop),

where d is the maximum distance between two points on each closed loop in some
appropriate sequence of loops. This suggests that we can define the curvatureK.x/
at a point x by the limit:

K.x/ D lim
d!0

�=.Area of loop/, (5.4)

where each loop in the sequence passes through the point x and has a non-zero area.
This limit is known as the Gaussian curvature. From (5.3), we see that the Gaussian
curvature for any point on a sphere is 1=r2.

There are certain deficiencies in this definition of the Gaussian curvature. For
one thing, it is not straight forward (at least to me) to show that the limit will
exist for all points on any smooth surface. In addition, the definition is useless for
computational purposes. This situation will be remedied later in this chapter. In
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Fig. 5.5 An equilateral
geodesic triangle on a
sinusoidal surface. Each
vertex angle is 60ı and the
Gaussian curvature of the
surface is zero

Sect. 5.5 of this chapter where I present the Riemann curvature tensor, I will present
an alternate definition that will be computationally useful. That definition will not be
obviously equivalent to the one just given. However later in Chapt. 6, I will prove the
Gauss–Bonnet formula that shows that the two definitions are equivalent. Still later
in Chapt. 7, I will give an extrinsic definition for 2-dimensional surfaces embedded
in a flat 3-dimensional Euclidean space.

For now we can apply our preliminary definition of Gaussian curvature to a few
examples. The most trivial example is a flat surface. Consider a flat sheet of paper.
On such a sheet of paper, geodesics are straight lines, which can be constructed with
a pencil and ruler. In this case a “geodesic triangle” is an ordinary triangle. When
we parallel transport a vector about such a triangle, the result is a zero rotation.
Thus by our definition, the Gaussian curvature is zero. This is indeed no great
surprise.

What is somewhat less obvious is the fact that if the paper is bent or even
folded without stretching, the resulting surface still has a zero value for its Gaussian
curvature at all points. If for example the paper is bent into a cylinder or a cone, the
edges of a penciled triangle are no longer straight lines to the extrinsic observer in
3-space. Nevertheless they are still geodesics in the surface of the paper. An intrinsic
observer confined to the 2-dimensional surface would not be able to distinguish the
surface of the flat sheet of paper from the surface of the cylinder.

Perhaps we should insert a condition or reservation in this last statement. If the
paper were infinite and it was bent into an infinite sine wave, then the statement
would indeed be true. (See Fig. 5.5.) On the other hand, if the paper were rolled into
a cylinder, there would be some geodesics along which the intrinsic observer could
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travel in one direction and eventually return to some point encountered previously
on the trip. In this situation the observer could safely conclude that he or she was
not dealing with a flat surface. However, if we require the observer to take all
measurements not only in the surface but also in some sufficiently small region
then it would indeed be impossible for the intrinsic observer to determine whether
or not the local region was flat or bent in 3-space.

This illustrates the limitation of the intrinsic observer. A point on a sphere and a
point on an ellipsoid may have the same Gaussian curvature but that does not mean
that the two surfaces have the same shape even in the respective neighborhoods of
the two points. Nonetheless, the sign and magnitude of the Gaussian curvature is
informative.

On the spherical surface of the earth, two meridians that appear parallel at the
equator converge and intersect at the North and South Poles. By contrast, on a
surface of negative curvature, geodesics that appear parallel at one location diverge
from one another. (See Fig. 5.4a.) As a result, triangles formed from geodesics on
a surface of negative curvature have the property that the sum of their angles is less
than � . (See Fig. 5.4b.) A vector that is parallel transported around the perimeter of
a triangle formed by geodesics on a surface of negative curvature will be rotated in
the negative or clockwise direction.

Problem 69. Consider Figs. 5.3a and 5.3b. Suppose �ABC and �DEF are
geodesic triangles. Convince yourself that the angle of rotation caused by the
parallel transport of a vector about the contour of Fig. 5.3b is the same as the
rotation caused by successive parallel transport of a vector around one triangle and
then the other in Fig. 5.3a. (In the case of a spherical surface, the total rotation
for both Fig. 5.3a and Fig. 5.3b is .1=r2/ � .area of figure bounded by the curve
ABCDEFCA.)

5.2 n-Dimensional Curved Surfaces (Spaces)

If n < m, we can characterize an n-dimensional surface embedded in a flat
m-dimensional Euclidean space Em or a pseudo-Euclidean space by express-
ing the m components of the position vector s as functions of n parameters.
That is

xj D xj .u1; u2; : : : ; un/ for j D 1; 2; : : : ; m and

s D xj ej .

To avoid topological pathologies, we also require that each parameter is restricted
to some interval that may be closed, open, or half open and either bounded or
unbounded. To legitimately describe our set of parameterized points in Em as being
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“n-dimensional”, we also need to require that the set of n coordinate Dirac vectors
f�1;�2; : : : ;�ng to be linearly independent where

�k D @s
@uk

D @xj

@uk
ej .

(This is of course equivalent to the requirement that �12:::n ¤ 0.)
For the study of extrinsic differential geometry, we usually require that s (and

therefore each of the xj ’s) has continuous partial derivatives at least up to third
order. For the study of the intrinsic Riemannian geometry in which the function s
is considered to be unknown, we require that the metric tensor gjk D ˝

�j ;�k
˛

has
continuous partial derivatives at least up to second order.

Generally one refers to the set of parameters as “coordinates.” Frequently, one
cannot cover an entire surface with a single coordinate system. For example,
consider the 2-dimensional surface of a sphere. For the usual spheroidal coordinate
system:

x1.�; �/ D R cos� sin �;

x2.�; �/ D R sin� sin �; and

x3.�; �/ D R cos �:

This implies that

�� D R cos� cos �e1 CR sin � cos �e2 �R sin �e3 and

�� D �R sin� sin �e1 CR cos� sin �e2.

We note that at the North and South Poles where sin � D 0, �� D 0. Furthermore
�� is undefined at those same two points. (What is � when � D 0 or �=2?) Thus
we see that the usual spherical coordinate system breaks down at those two points.
For this kind of situation, it sometimes becomes necessary to “patch” together
different overlapping coordinate systems. In the region of overlap, we require that
the functions

uk D uk.Nu1; Nu2; : : : ; Nun/
and their inverses not only exist but have continuous partial derivatives up to at least
second order.

Among other things this implies that the Jacobian

det

�
@uk

@Nuj
�

¤ 0:
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In turn, this means that we can not only write

N�k D @s
@Nuk D @s

@uj
@uj

@Nuk D �j
@uj

@Nuk but also the inverse equation; (5.5)

�j D N�k
@Nuk
@uj

: (5.6)

For example, in the case of the sphere, you could use an alternative coordinate
system that works on the northern hemisphere. Namely:

x1.�; �/ D R cos� sin �; and

x2.�; �/ D R sin� sin �: (5.7)

So we have

det

2

6
6
4

@x1

@�

@x1

@�

@x2

@�

@x2

@�

3

7
7
5 D det

�
R cos� cos � �R sin � sin �
R sin� cos � R cos� sin �

�

D R2 sin � cos �: (5.8)

We observe that the JacobianR2 sin � cos � ¤ 0 for 0 < � < �
2

, which is the region
of overlap where both coordinate systems are meaningful.

As we shall see in the next few sections of this book, a lot of information
can be obtained about an n-dimensional surface (or “space”) without knowing
what m-dimensional space it might be embedded in. For some purposes it might
be pointless to view a curved surface or space as being embedded in a higher
dimensional space. The general theory of relativity is based on the geometry of
a curved 4-dimensional surface or space. If we do not have any way of taking
measurements in any additional dimension it would seem that we would not be
able to observe any physically observable consequence of anything that occurred in
those extra dimensions. In the past, it has been suggested that some of the stochastic
behavior observed by elementary particles obeying the laws of quantum mechanics
could be explained by “hidden variables.” However those proposed hidden variables
do not explain what is observed.

This does not deter theoretical physicists from proposing higher dimensional
theories that might unify the theories of quantum mechanics and general relativity.
It is argued that measurements in these higher dimensions are surely difficult but not
necessarily impossible.

Another aspect of embedding has intrigued mathematicians for a long time.
For many years it was speculated that there might be curved spaces characterized
by a metric tensor that could not be embedded in a higher dimensional flat
space. As a result, entire chapters of books have been written on how one can
define and intelligently discuss an n-dimensional space (or “manifold”) without
embedding it in a flat space. (Perhaps that is part of the reason that a formalism
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was developed in which directional derivatives are labeled “tangent vectors.” Users
of directional derivatives as tangent vectors can avoid thinking of tangent vectors as
straight arrows sticking out into a conceivably non-existent higher dimensional flat
space.)

With the exception of applications to special and general relativity, this book is
devoted to the study of spaces (or surfaces) for which the metric tensor is positive
definite. For such surfaces, the length of any curve connecting two distinct points
is positive definite. Alternatively, we can define a positive definite metric tensor as
one for which the gjk matrix has only positive definite eigenvalues. John Nash was
able to show that any finite dimensional surface whose geometry is determined by
a positive definite metric can be embedded in a higher (but finite) dimensional flat
Euclidean space (Nash 1956, pp. 20–63).

This is the same John Nash that was the subject of book and movie both entitled A
Beautiful Mind. Part of the A Beautiful Mind was filmed a few blocks from my home
in East Orange, New Jersey. It was thought that parts of present day East Orange can
be considered a credible facsimile of what residential Princeton was like in the early
1960s. One of my claims to fame is that Jim Gerulski (the same man that keeps my
car working) supplied the filmmakers with a 1952 light gray Chevy Deluxe to give
authenticity to a street scene.

For many years it was thought that in his 1956 paper, Nash had also shown
that for sufficiently smooth surfaces, this embedding could be carried out without
introducing self-intersections. However after emerging from a long mental illness,
John Nash received an e-mail message in June 1998 from Professor R.M. Solovay
pointing out a flaw in Nash’s argument. Nash conceded the flaw (Kuhn and Nasar
2002, p. 209). Rather than repair the flaw, Nash states that his work has now been
superseded by stronger results developed by Mikhail Gromov (Gromov 1986). The
Nash embedding theorem has been generalized to spaces that do not have positive
definite metrics (Clarke 1970; Greene 1970).

The Nash result is not usually as useful as one might think. If only one extra
dimension is required to get a flat space then some mathematical machinery can
be applied to obtain lots of useful results. As far as I know, there is currently little
or no mathematical machinery available to take advantage of the situation when
two or more extra dimensions are required to get a flat space. It is worthwhile
to note that generally the 4-dimensional spaces of general relativity cannot be
embedded in a flat 5-dimensional space. Nonetheless, the Nash result does allow us
to think of tangent vectors as sticking out into empty space without being considered
naive.

Meanwhile, substantial information can be obtained about a surface intrinsically
from its metric tensor without knowing the dimension of whatever flat space
in which the curved surface could be embedded. The extraction of geometric
information from a surface using only the metric tensor is known as Riemannian
geometry if the metric is positive definite. For the study of special and general
relativity, we need to deal with metrics that are not positive definite. If the metric is
not positive definite, the extraction of geometric information from the metric tensor
is said to be non-Riemannian geometry.
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x3Fig. 5.6 A right circular
cone

Riemannian and non-Riemannian geometry will be the focus of the remainder of
this chapter and the next chapter.

Problem 70. Note that from (5.8), the Jacobian is zero when � D �=2. Since
the spherical coordinate system does not exhibit any pathology for those points,
(5.8) suggests that there is some pathology at the equator for the coordinate system
defined by (5.7). What is it?

Problem 71. The pathological points already discussed arise because of a failure in
the chosen coordinate system. Such points are described in Kreyszig’s text, Differ-
ential Geometry (1991, p.73) as singular points with respect to the representation.
Other pathological points are intrinsic to the geometric object. These he describes
more simply as singular points. Consider a right circular cone (See Fig. 5.6.) One
coordinate system is:

x1.u; �/ D u sin˛ cos�, x2.u; �/ D u sin˛ sin �, and

x3.u; �/ D u cos˛.

(Note! This is a slight variation of spherical coordinates where the cone is
determined by the value of the acute angle ˛ and u is allowed to assume negative
values.)

Compute �u and �� and show that there is a pathology at u D 0: Discuss why
this pathology is intrinsic – that is choosing an alternative coordinate system will
not eliminate the singularity.
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5.3 The Intrinsic Derivative rk

For the study of a curved n-dimensional space (or “surface”) embedded in some
higher m-dimensional Euclidean space, some things can be measured by observers
restricted to the n-dimensional space (or “surface”) and some cannot. In this section,
we will discuss a differential operator that would make sense to the n-dimensional
observer who does not have access to any higher dimension.

For the purpose of illustration, consider the 2-dimensional saddle surface
embedded in E3. That is u3 D u1u2, or

s D u1e1 C u2e2 C u1u2e3.

Thus

�1 D e1 C u2e3 and (5.9)

�2 D e2 C u1e3: (5.10)

From Prob. 54,

N D �u2e1 � u1e2 C e3p
1C .u1/2 C .u2/2

: (5.11)

From Prob. 42,

�1 D
�
1C .u1/2

�
e1 � u1u2e2 C u2e3

1C .u1/2 C .u2/2
and (5.12)

:�2 D �u1u2e1 C �
1C .u2/2

�
e2 C u1e3

1C .u1/2 C .u2/2
(5.13)

Now to investigate the nature of this surface, we would like to see how �1 and �2
change in magnitude and direction when one moves about the surface. Clearly
.@�k=@uj / must be a linear combination of �1, �2, and N. Thus we can write

@�k

@uj
D �ikj� i C hjkN. (5.14)

From (5.9) and (5.10),

@�1

@u1
D @�2

@u2
D 0, and (5.15)

@�2

@u1
D @�1

@u2
D e3. (5.16)

From (5.14),
@�2
@u1

D �121�1 C �221�2 C h12N. (5.17)
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This implies

�
�1;

@�2

@u1

�
D �121

˝
�1;�1

˛C �221
˝
�1;�2

˛C h12
˝
�1;N

˛
;

or using (5.12) and (5.16),

�121 D
�
�1;

@�2

@u1

�
D u2

1C .u1/2 C .u2/2
: (5.18)

Similarly

�221 D
�
�2;

@�2

@u1

�
D u1

1C .u1/2 C .u2/2
; (5.19)

and

h12 D 1
p
1C .u1/2 C .u2/2

: (5.20)

Combining (5.16), (5.17), (5.18), (5.19), and (5.20), we have

@�2

@u1
D @�1

@u2

D u2

1C .u1/2 C .u2/2
�1 C u1

1C .u1/2 C .u2/2
�2 C 1

p
1C .u1/2 C .u2/2

N:

(5.21)

Equations (5.15) and (5.21) indicate the change in �1 and �2 along the coordinate
curves in the saddle surface as seen by an observer who has access to all three
dimensions. However an intrinsic observer confined to the saddle surface would
not be able to measure the change in �1 and �2 in the N direction. Therefore
if we wish to compute the rate of change of �1 and �2 on the saddle surface
as seen by our 2-dimensional observer then we are compelled to suppress the N
component. Thus in place of @=u1 and @=u2, it becomes necessary to introduce
two new operators r 1 and r2. Suppressing the N component, (5.15) and (5.21)
become

r 1�1 D r 2�2 D 0; and (5.22)

r 1�2 D r 2�1 D u2

1C .u1/2 C .u2/2
�1 C u1

1C .u1/2 C .u2/2
�2 (5.23)

This situation is easy to generalize to other surfaces where possibly .m � n/ > 1

but I will use a more intrinsic approach to define the intrinsic derivative rk . (Also
known as the geodesic derivative.)

In passing, it is important to note that it was no accident that r 1�2 D r2�1. For
any embedded surface,
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@

@uj
�k D @2

@ujuk
s D @2

@ukuj
s D @

@uk
�j

and thus
r j�k D r k�j . (5.24)

Using (5.24) as a motivating factor, we can now construct a definition.

Definition 72. An intrinsic derivative (or geodesic derivative) r˛ is defined by the
following five properties:

1) r˛�ˇ is a linear combination of �
’s. (We can write r˛�ˇ D �
ˇ˛�
 where the
�
ˇ˛’s are known as Christoffel symbols.)

2) r˛�ˇ D rˇ�˛ (r˛ is said to be “torsion free” and �
ˇ˛ D �
˛ˇ .)
3) r˛ acting on a scalar or the tensor component of any p-vector coincides with
@=u˛.

4) If A and B are any Clifford numbers (not necessarily index free) and both r˛A
and r˛B are defined, then

r˛.A C B/ D r˛A C r˛B.

5) r˛ satisfies the Leibniz property. That is

r˛.AB/ D .r˛A/B C A.r˛B/,

where both r˛A and r˛B are defined and A and B are otherwise arbitrary
Clifford numbers that are not necessarily index free.

To see that these five conditions do indeed give a precise definition of r˛ ,
we need to only see how these five conditions determine a formula for the
Christoffel symbols in terms of the metric tensor. We first note that it is not
difficult to demonstrate that r˛I D 0: Essentially, if follows from the Leibniz
property:

r˛I D r˛.I � I/ D .r˛I/I C Ir˛I D 2r˛I . Thus

r˛I D 0. (5.25)

To get a formula for the Christoffel symbols in terms of the metric tensor, we first
note that

2g˛ˇI D �˛�ˇC�ˇ�˛, so

r 
.2g˛ˇI/ D r 
.�˛�ˇC�ˇ�˛/. (5.26)

Using condition 3 and (5.25) on the left hand side of (5.26) and conditions 4 and 5
on the right hand side, we get
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2
@g˛ˇ

@u

I D .r 
�˛/�ˇC�˛.r 
�ˇ/C .r 
�ˇ/�˛ C �

ˇ
.r 
�˛/. (5.27)

Now applying condition 1 to the right hand side of (5.27) and regrouping terms, we
have

2
@g˛ˇ

@u

I D �	˛
.�	�ˇC�ˇ�	/C �

	

ˇ
.�˛�	C�	�˛/
or

@g˛ˇ

@u

D �	˛
g	ˇ C �

	

ˇ
g˛	. (5.28)

By cyclic permutation of the unsummed indices, we obtain two other
equations:

@gˇ


@u˛
D �

	

ˇ˛g	
 C �	
˛gˇ	 and (5.29)

�@g
˛
@uˇ

D ��	
ˇg	˛ � �
	

˛ˇg
	. (5.30)

From the torsion free condition 2, �
	

� D �
	

�. Thus if we add the last three
equations, we get

2�	˛
g	ˇ D @g˛ˇ

@u

C @gˇ


@u˛
� @g
˛

@uˇ
.

Multiplying both sides of this last equation by .gˇ=2/ and noting that g	ˇgˇ D ı	 ,
one immediately obtains the equation:

�˛
 D gˇ

2

�
@g˛ˇ

@u

C @gˇ


@u˛
� @g
˛

@uˇ

	
. (5.31)

The operator r˛ may be applied to any Clifford number with differentiable
components including upper index Clifford numbers. It is not too difficult to show
that

r˛�ˇ D ��ˇ	˛�	. (5.32)

(See Prob. 73.)
It is important to note that Christoffel symbols do not transform as tensors. To

see that, we first observe that from (5.26)

r 
.2g˛ˇI/ D r
.�˛�ˇC�ˇ�˛/.

It was shown that this equation essentially defines r 
 . Therefore under a change of
coordinates, r 
 behaves in the same manner as @=@u
 . That is

Nr˛ D @u	

@Nu˛r 	. (5.33)
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Thus

Nr˛ N�ˇ D
�
@u	

@Nu˛ r	

	�
�

@Nuˇ
@u


	
.

Using (5.32), this becomes

� N�ˇ˛ N� D � @u	

@Nu˛
@Nuˇ
@u


�
�
�
� C @u	

@Nu˛
@2 Nuˇ
@u	@u


�
 .

It then follows that

N�ˇ˛ N� D @u	

@Nu˛
@Nuˇ
@u


�
�

@u�

@Nu N� � @u	

@Nu˛
@2 Nuˇ
@u	@u


@u


@Nu N�.

And finally

N�ˇ˛ D @u	

@Nu˛
@u�

@Nu
@Nuˇ
@u


�
�
 � @u	

@Nu˛
@u


@Nu
@2 Nuˇ
@u	@u


. (5.34)

It is because of the second term on the right hand side of (5.34) that it cannot
be said that Christoffel symbols are tensors. Equation (5.34) can be proven directly
from (5.31) but with much more difficulty.

Although Christoffel symbols do not transform as tensors, we see from (5.33)
that r˛A does transform as a tensor if A is index free. This enables us to introduce
an alternate differential operator, which unlike the intrinsic operator rk , always
maps tensors into tensors. Consider the example A DA	ˇ
�ˇ�
�	. Then

r˛AD
 
@A

	

ˇ


@u˛

!

�ˇ�
�	 �A	ˇ



�
ˇ

˛�
�

�
�	 �A	ˇ
�ˇ
�
�
˛ �

�
�	

C A
	

ˇ
�
ˇ�




�	˛�

�
:

Relabeling some of the dummy indices, this equation becomes

r˛A D
 
@A

	

ˇ


@u˛
� A

	


�

ˇ˛ �A	ˇ�
˛ C Aˇ
�

	

˛

!

�ˇ�
�	. (5.35)

This motivates the introduction of the semicolon notation for the covariant
derivative. In our example

A
	

ˇ
I˛ D @A
	

ˇ


@u˛
�A	
�ˇ˛ � A

	

ˇ�


˛ C Aˇ
�

	

˛ . (5.36)

With this notation, (5.35) becomes

r˛A DA	ˇ
I˛�ˇ�
�	. (5.37)
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Both the entities r˛A and �ˇ�
�	 transform as tensors and thereforeA	ˇ
I˛ also
transforms as a tensor. (See Prob. 76.) That is

NAı�I� D @Nuı
@u	

@uˇ

@Nu�
@u


@Nu
@u˛

@Nu� A
	

ˇ
I˛ . (5.38)

A
	

ˇ
I˛ is the covariant derivative of the tensor A	ˇ
 with respect to u˛. In general
when one computes the covariant derivative of a tensor, one gets a Christoffel
symbol with a negative sign for each lower index and a Christoffel symbol with
a positive sign for each upper index.

The reader should be forewarned that many authors now use r˛ to designate
the covariant derivative. Furthermore to add to possible confusion I referred to the
intrinsic derivative r˛ as “a covariant derivative” in my previous book, Clifford
Algebra – A Computational Tool for Physicists. That was a serious mistake.

I believe that it is easier to incorporate the formalism of differential forms into the
formalism of Clifford algebra using the intrinsic derivative rather than the covariant
derivative. Thus I only introduce the covariant derivative here so you will not be
confused, troubled, or disturbed when you read the works of other authors.

Before going on to the next section, I will pause long enough to determine the
covariant derivative of a lower index coordinate Dirac matrix �ˇI˛ . First, we require
that for any index free Clifford number A,

r˛A D AI˛ . (5.39)

Secondly, we require that the covariant derivative satisfies the Leibniz property. As
a consequence, A D Aˇ�ˇ implies

AI˛ D A
ˇI˛�ˇ C Aˇ�ˇI˛ D

�
@Aˇ

@u˛
C A	�ˇ	˛

	
�ˇ C Aˇ�ˇI˛ , but

r˛A D @Aˇ

@u˛
�ˇ C Aˇ�

	

ˇ˛�	 D
�
@Aˇ

@u˛
C A	�ˇ	˛

	
�ˇ.

From (5.39), it immediately follows that

�ˇI˛ D 0. (5.40)

Problem 73. Since �ˇ is a linear combination of ��’s, it is clear that r˛�ˇ is also
a linear combination of ��’s and therefore also a linear combination of �	’s. Thus

r˛�ˇ can be written in the form G
ˇ
	˛�	. Applying the operator r˛ to the equation

�ˇ�	 C �	�
ˇ D 2ı

ˇ
	 I, show G

ˇ
	˛ D ��ˇ	˛ .

Problem 74. For the surface of a sphere, use either (5.31) or the results of Prob. 44
to compute the Christoffel symbols ���� , ���� , . . . . Which way is easier?

Problem 75. Show �
ˇ
I˛ D 0.
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Problem 76. Suppose
r˛A D A

	

ˇ
I˛�ˇ�
�	

and both r˛A and �ˇ�
�	 are tensors. Show that A	ˇ
I˛ is a tensor.

Problem 77. Use (5.40) to show that g˛ˇI	 D 0.

Problem 78. Difficult!

a) Suppose g D det
�
g˛ˇ

�
, show @g=@u
 D gg˛ˇ

�
@g˛ˇ=@u


�
.

b) Use (5.31) to show �
	

	 D .g˛ˇ=2/.@g˛ˇ=@u
/.

c) Combine results from a and b to show �
	

	 D .1=

p
g/.@

p
g=@u
/: (This last

formula assumes g is positive. How can you adjust it if g is negative?)

5.4 Parallel Transport and Geodesics

Having defined the intrinsic operator r˛ , it is now possible to define the notion of
parallel transport of a Clifford number along a curve in an n-dimensional surface. If
we embedded our surface in a higher dimensional Euclidean space ofm dimensions,
we could write

x.t/ D
mX

iD1
xi .u1.t/; u2.t/; . . . ; un.t//ei . (5.41)

From this equation, we could compute a velocity vector v.t/ D dx.t/=dt. That is

v.t/ D @xi

@u

du


dt
ei D du


dt
�
 . (5.42)

For an arbitrary metric, hv.t/; v.t/i may be positive, zero, or negative. If
hv.t/; v.t/i is non-zero, it is useful (at least for theoretical discussions) to change the
parameter t so that hv; vi D ˙1. We can do this by introducing a strictly increasing
function t.s/. This enables us to reparameterize our curve so that we have

Nx.s/ D x.t.s//:

This implies that
d Nx.s/

ds
D dx.t/

dt

dt

ds
D v.t/

dt

ds
. (5.43)

Thus �
d Nx
ds
;
d Nx
ds

�
D hv.t/; v.t/i

�
dt

ds

	2
.

Therefore
˝
d Nx
ds ;

d Nx
ds

˛
has the same sign as hv.t/; v.t/i. Furthermore

�
d Nx
ds
;
d Nx
ds

�
D ˙1 if

ds

dt
D jv.t/j .
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This implies that

s.t/ D
Z t

a

jv.u/jdu.

It should now be clear that when hv.t/; v.t/i > 0, we can interpret s as the arc length
of the curve from some chosen point. In either the positive or the negative case, s.t/
is differentiable and strictly increasing. This implies that the inverse function t.s/
exists and is also differentiable and strictly increasing. For the remainder of the
book, I will try to remember to use the parameter s when I am discussing a curve Nx
that has been parameterized so that

�
d Nx
ds
;
d Nx
ds

�
D ˙1.

That will make it unnecessary to use a “bar” over the x. In this context, it is useful
to use a lower case bold face t to designate a normalized velocity or “unit tangent”
vector. Dropping the bar, we now have

t.s/ D dx.s/
ds

. (5.44)

Since

x.s/ D
mX

iD1
xi .u1.s/; u2.s/; . . . ; un.s//ei ;

it follows that

t.s/ D dx.s/
ds

D @xi

@u

du


ds
ei .

Or

t.s/ D du


ds
�
 . (5.45)

This last equation makes sense without reference to a higher dimensional flat
space. Since the curve lies in the possibly curved n-dimensional surface, the unit
tangent vector t.s/ is tangent to that surface.

t.s/ is not the only example of a function that assigns a Clifford number to each
point of a given curve. Suppose A.s/ represents a differentiable function that assigns
an index free Clifford number to each point on a given curve. An observer in the
large m-dimensional space who wished to compute the derivative of the Clifford
number A.s/ with respect to s would simply use the formula

dA.s/
ds

D @A
@u˛

du˛

ds
.

However an observer constrained to take all measurements on the n-dimensional
surface would detect only components of dA.s/=ds projected onto the space of
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Clifford numbers identified with the tangent plane. Thus such an observer would
compute

r sA.s/ D r˛A.s/.du˛=ds/. (5.46)

An index free Clifford number A.s/ that is parallel transported along a curve
(not necessarily a geodesic) is one for which

r sA.s/ D 0. (5.47)

I can now give a more sophisticated definition of a geodesic than the informal
one that I gave in Sect. 5.1. A geodesic is a curve such that the unit tangent vector
t.s/ is parallel transported along the curve. That is

r st.s/ D 0. (5.48)

In other words for the observer constrained to the n-dimensional surface, t.s/
appears to be constant.

From (5.45), (5.46), and (5.48);

r st.s/ D r s

�
du˛

ds
�˛

	
D d2u˛

ds2
�˛ C du˛

ds

duˇ

ds
rˇ�˛

D d2u	

ds2
�	 C du˛

ds

duˇ

ds
�
	

˛ˇ�	.

Therefore the equations for the coordinates of a geodesic may be written as

d2u	

ds2
C �

	

˛ˇ

du˛

ds

duˇ

ds
D 0. (5.49)

This last equation also serves as a definition of a geodesic when the tangent or
velocity vector has zero length.

Of course if the u˛’s are Euclidean coordinates in an Euclidean plane, then the
Christoffel symbols are zero and the equations are easily solved. You should not
be too surprised to observe that in this situation the general solution is an arbitrary
straight line in the n-dimensional Euclidean plane. That is

u˛ D c˛s C u˛0 for ˛ D 1; 2; . . . ,n,

where the c˛’s and the u˛0 ’s are arbitrary constants. (If you require that ht.s/; t.s/i D
1, then you have the constraint that

Pn
˛D1 .c˛/

2 D 1.)

Problem 79. From the theory of the calculus of variations, it is known that an
alternate form of the equations that determine a geodesic is

d

ds

�
@F

@Pu

	

� @F

@u

D 0, where (5.50)
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F.u1; u2; � � �; un; Pu1; Pu2; � � �; Pun/ D g˛ˇ.u
1; u2; � � �; un/Pu˛ Puˇ,

Pu
 D du
.s/

ds
, and


 D 1; 2; : : : ; n.

For an n-dimensional space there are .n3Cn2/=2 distinct Christoffel symbols. Using
(5.31) to compute them can be a lengthy process. On the other hand one can compute
(5.50) for each of the n values of 
 and then by comparing the results with the form
of (5.49), one can determine the formula for each Christoffel symbol. From these
remarks, it is also clear that (5.50) is also a quick way of determining the equations
that determine a geodesic.

a) Use (5.50) and (5.49) to determine the Christoffel symbols for the surface of a
sphere where

F.�; �; P�; P�/ D R2. P�/2 CR2 sin2 �. P�/2.

b) Use (5.31) to demonstrate that (5.50) is equivalent (although not identical) to
(5.49).

Problem 80. From Prob. 74 or Prob. 79, you have the Christoffel symbols for the
surface of a sphere. Use these formulas along with (5.46) and (5.47) to treat the
problem of parallel transporting a vector around a four-sided figure on a sphere
formed by two parallels and two meridians. That is, first parallel transport the vector
A��� C A��� “south” along the path . �; �/ D .s=R C �0; �0/ from s D 0 to
s D R.�1 � �0/. Then parallel transport the vector “east”along the path .�; �/ D
.�1; s= .R sin �1/C�0/ from s D 0 to s D R sin �1.�1��0/. Then parallel transport
the vector “north” along the path .�; �/ D .�s=R C �1; �1/ from s D 0 to s D
R.�1 � �0/. Finally, parallel transport the vector back to its original position by
moving it “west”along the path .�; �/ D .�0;�s= .R sin �0/ C �1/ from s D 0 to
s D R sin �0.�1 � �0/.

Several check points for the computation are as follows: For all path segments,
you should get

@A�

@�

d�

ds
C @A�

@�

d�

ds
� A� sin � cos �

d�

ds
D 0 and

@A�

@�

d�

ds
C @A�

@�

d�

ds
CA�

cos �

sin �

d�

ds
CA�

cos �

sin �

d�

ds
D 0.

Integrating these equations along the first leg of the rectangular loop, you should get
A� D A�0 and A� sin � D A

�
0 sin �0 where .A�0 ; A

�
0 / are the initial components of

the vector in the northwest corner of the loop.
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Integrating along the second segment, you should get

A� D A�1 cos Œ.� � �0/ cos �1�C


A
�
1 sin �1

�
sin Œ.� � �0/ cos �1� and

A� sin �1 D �A�1 sin Œ.� � �0/ cos �1�C


A
�
1 sin �1

�
cos Œ.� � �0/ cos �1� .

where .A�1 ; A
�
1 / are the components of the vector in the southwest corner of the loop.

Note! The parallel transport of the vector along the curve of constant latitude in the
east direction results in a clockwise rotation with respect to the curve of constant
latitude. This is the same direction of rotation that would result if you approximated
the parallel by a sequence of geodesics.

When you have completed the parallel transport about the rectangular loop, you
should be able to show that the resulting angle of rotation is .�1 � �0/.cos �0 �
cos �1/. Using calculus, you should be able to compute the area of the rectangular
loop and then see that the result of this problem is consistent with the discussion
immediately before and after (5.3).

5.5 The Riemann Tensor and the Curvature 2-form

The operator r˛ behaves very much like the operator @=@u˛. However there is one
major exception. Unless the n-dimensional surface is intrinsically indistinguishable
from a flat subspace, r˛rˇ ¤ rˇr˛ . In particular

�r˛rˇ � rˇr˛

�
�	 D R	˛ˇ�. (5.51)

where R	˛ˇ is known as the Riemann curvature tensor. (The definition of (5.51) is
pretty standard but it is different than the one I used in my text Clifford Algebra.)
As you might suspect from the name, this is a tensor. (See Prob. 83.) As you might
also guess from the name, the Riemann curvature tensor is also a measure of the
curvature of the given space. In particular, I can now give a formal definition of the
Gaussian curvature:

Definition 81. For 2-dimensional spaces, the Gaussian curvature

K D 1

2
R
˛ˇ

˛ˇ D R1212.

In the derivation of (6.52), I will show that this formal definition of the Gaussian
curvature is equivalent to the informal definition that I gave in (5.4).

It is useful to state and then prove some symmetries for the indices of Rkmij
where

Rkmij D gkR

mij :
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First Rijkm is antisymmetric with respect to its second two indices. That is

Rkmij D �Rkmj i . (5.52)

Secondly, the tensor is antisymmetric with respect to the first two indices:

Rkmij D �Rmkij . (5.53)

Furthermore, there is a cyclic symmetry in the last three indices. In particular

Rmkij CRmijk CRmjki D 0. (5.54)

(This is generalized in Prob. 87.)
Finally the curvature tensor is symmetric with respect to an exchange of the first

pair of indices with the second pair:

Rkmij D Rijkm. (5.55)

Equation (5.52) is an immediate consequence of (5.51), which was used to define
the Riemann tensor.

To verify (5.53) is more difficult. A first step is to show that

�r jr k � rkr j

�
.AB/ D ��r jrk � r kr j

�
A
�

B C A
�r jrk � r kr j

�
B
(5.56)

where A and B are any Clifford numbers, which are not necessarily index free. (See
Prob. 84.) Using (5.56) and then (5.51), we have

�r ir j � r jr i

�
�k�m D Rkij��mCRmij�k�:

Switching the k andm indices, we have

�r ir j � r jr i

�
�m�k D Rmij��kCRkij�m�:

Adding these last two equations gives us

�r ir j � r jr i

�
2gmkI D Rkij 2gmI CRmij 2gkI. (5.57)

Since r i and r j act on gmk like @=@ui and @=@uj , the left hand side of (5.57) is
zero. When we carry out the summations over the  index, (5.57) becomes

0 D Rmkij CRkmij

which verifies (5.53).
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To obtain the cyclic symmetry of (5.54), we make use of the torsion free
condition. That is r 	�� D r��	. This implies that

r ir j�k � r ir k�j D 0;

r jr k� i � r jr i�k D 0; and

r kr i�j � rkr j� i D 0.

Adding these three equations and then regrouping the terms gives us the equation

�r ir j � r jr i

�
�kC

�r jrk � r kr j

�
� iC .rkr i � r ir k/�jD0;

which is equivalent to saying,



Rkij CRijk CRjki

�
� D 0: (5.58)

Since the �’s are linearly independent, we now have

Rkij CRijk CRjki D 0.

Therefore 

Rkij CRijk CRjki

�
gm D 0

and thus
Rmkij CRmijk CRmjki D 0,

which is what we set out to prove.
Actually the Riemann curvature tensor has a similar cyclic symmetry with

respect to any three of the indices. (See Prob. 87.)
To get the last symmetry of pair exchange in (5.55), we add up four versions of

the cyclic symmetry equation that was just proven. That is

Rkmij CRkijm CRkjmi D 0;

Rmkj i CRmjik CRmikj D 0;

�Rijkm �Rikmj � Rimjk D 0; and

�Rjimk �Rjmki � Rjkim D 0.

When we add these last four equations together, we make use of the fact that
R˛ˇ	 D Rˇ˛	. As a result some terms add and some cancel and we arrive at
the equation

2Rkmij � 2Rijkm D 0

which verifies (5.55).
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For many computations, it is useful to use the curvature 2-form. The curvature
2-form Rij is defined by the equation:

Rij D 1

2
Rpqij�pq D 1

2
R
pq
ij�pq . (5.59)

Theorem 82.
�r ir j � r jr i

�
�k D 1

2
Rij�k � �k

1
2
Rij .

Proof. We first note that

�p�q�k � �k�
p�q D �p�q�k C .�p�k�

q � �p�k�
q/ � �k�

p�q

D �p .�q�k C �k�
q/� .�p�k C �k�

p/�q

D �p2ı
q

k � 2ı
p

k�q .

This implies that

1

2
Rij�k � �k

1

2
Rij D 1

4
Rpqij .�

p�q�k � �k�
p�q/

D 1

4
Rpqij

�
2�pı

q

k � 2ıpk �q
�

D 1

2
Rpkij�p � 1

2
Rkqij�q

D Rpkij�p D Rkij�.

Combining this last equation with (5.51), we have our desired result:

�r ir j � r jr i

�
�k D 1

2
Rij�k � �k

1

2
Rij . (5.60)

ut
It is not too difficult to generalize (5.60). To do that the first step is to extend

(5.56) by induction to any finite product of Clifford numbers. (See Prob. 85.) This
implies that

�r ir j � r jr i

�
�1�2 � � � �p D ��r ir j � r jr i

�
�1
�

�2�3 � � � �p

C �1
��r ir j � r jr i

�
�2
�

�3�4 : : :�p

C � � � C �1�2 � � � �p�1
�r ir j � r jr i

�
�p .



146 5 Curved Spaces

Combining this last equation with (5.60) and then using the telescopic property,
we get

�r ir j � r jr i

�
�1�2 � � � �p D

�
1

2
Rij�1 � �1

1

2
Rij

	
�2�3 � � � �p

C �1

�
1

2
Rij�2 � �2

1

2
Rij

	
�3�4 � � � �p

C � � � C �1�2 � � � �p�1
�
1

2
Rij�p � �p

1

2
Rij

	

D 1

2
Rij

�
�1�2 � � � �p

� � �
�1�2 � � � �p

� 1
2

Rij .

You should now be able to convince yourself that this last equality is valid for any
twice differentiable Clifford number. That is

�r ir j � r jr i

�
A D 1

2
RijA � A

1

2
Rij , (5.61)

where A is any twice differentiable Clifford number that is not necessarily index
free.

Problem 83. Note that

� Nr˛
Nrˇ� Nrˇ

Nr˛

� N�	D
��
@uı

@Nu˛r ı

	�
@u�

@Nuˇ r�

	
�
�
@u�

@Nuˇ r�

	�
@uı

@Nu˛ r ı

	��
@u�

@Nu	 ��

	
.

a) Use this relation to show that

� Nr˛
Nrˇ � Nrˇ

Nr˛

� N�	 D @uı

@Nu˛
@u�

@Nuˇ
@u�

@Nu	 .r ır� � r �r ı/��.

Hint!


@uı

@Nu˛ r ı

� 

@u�

@Nuˇ
�

D @
@Nu˛


@u�

@Nuˇ
�

D @2u�

@Nu˛@Nuˇ
b) Use the result of part a) to show thatR�ı� transforms as a tensor under a change

of coordinates.

Problem 84. Prove (5.56).

Problem 85. Use induction to extend (5.56) to products of p Clifford numbers.
That is show

�r ir j � r jr i

� �
A1A2 � � � Ap

� D ��r ir j � r jr i

�
A1

�
A2A3 : : :Ap

C A1

��r ir j � r jr i

�
A2

�
A3A4 � � � Ap

C � � � C A1A2 � � � Ap�1
�r ir j � r jr i

�
Ap,

where the Ak’s are twice differentiable not necessarily index free Clifford numbers.
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Problem 86. Formally prove (5.61). That is

�r ir j � r jr i

�
A D1

2
RijA � A

1

2
Rij .

Problem 87. Assuming (5.54) is true.

a) Use (5.52), (5.53), and (5.55) to show that

Rkmij CRmikj CRikmj D 0.

b) Pose another equation like (5.54) and then prove it using the same equations that
you used in part a.

Problem 88. Use (5.51) to show that

R	˛ˇ D @

@u˛
�	ˇ � @

@uˇ
�	˛ C �
	ˇ�



˛ � �
	˛�
ˇ.

Problem 89. Show that R 

˛ˇ D R
˛ˇ . (This shows that for 2-dimensions, the

Gaussian curvatureR1212 D R 12
12 .)

5.6 Fock–Ivanenko Coefficients

5.6.1 Moving Frames

For many computations, it is easier to use orthonormal non-coordinate frames
rather than coordinate Dirac vectors. Using orthonormal frames, one can exploit
a certain symmetry that one cannot do using coordinate frames. (To avoid some
possible confusion later on, I will place bars over the numeric indices that refer to
orthonormal bases. For example: R 12

12 �12 D R 12N1N2 EN1N2 so usually R 12
12 ¤ R 12N1N2 .)

Visually, this convention does not work well if it is extended to indices that are
members of the alphabet. For indices that are members of an alphabet that refer to
an orthonormal basis, I will use upper case letters.

To construct an orthonormal frame fEN1;EN2; . . . ;E Nng from a coordinate frame,
one can use the Gram–Schmidt method outlined in Sect. 4.5 at least for Euclidean
spaces or spaces embedded in Euclidean spaces. For intrinsic observers (observers
who are restricted to making all measurements in the embedded space), this task is
more difficult but still possible. For example, let us consider the saddle surface. The
intrinsic observer would begin with a 2-dimensional metric. One possible metric
that was encountered in Prob. 32 was

�
g11 g12
g21 g22

�
D
�
1C .u2/2 u1u2

u1u2 1C .u1/2

�
. (5.62)
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Using the Gram–Schmidt procedure, we get

EN1 D �1

j�1j
D �1ph�1;�1i

D �1p
1C .u2/2

, (5.63)

and using (4.56),

EN2 D �1

j�1j
�12

j�12j
D h�1;�1i �2 � h�1;�2i �1ph�1;�1ipg11g22 � g12g21

D �u1u2�1 C �
1C .u2/2

�
�2p

1C .u2/2
p
1C .u1/2 C .u2/2

. (5.64)

After a long calculation using (5.31), we get

�111 D �211 D 0; (5.65)

�112 D �121 D u2

1C .u1/2 C .u2/2
; (5.66)

�212 D �221 D u1

1C .u1/2 C .u2/2
, and (5.67)

�122 D �222 D 0. (5.68)

Now applying these equations to (5.63), we discover that

r1EN1 D 0, and (5.69)

r2EN1 D u1

.1C .u2/2/
p
1C .u1/2 C .u2/2

EN2: (5.70)

To compute r 1EN2 and r2EN2 directly would be a formidable task but because
of the symmetry which I will now discuss, we can determine these entities without
further computation.

In general, not just for saddle surfaces, r iE Nj must be some linear combination
of E Nk’s so

r iEJ D �cJK .� i /EK . (5.71)

(I did not make a mistake!) For a Euclidean space or for a space embedded in a
Euclidean space, hEK;EKi is always equal to C1 and EK D EK . However in
pseudo-Euclidean spaces or in spaces embedded in pseudo-Euclidean spaces, a
member of a moving frame EK may have the property that hEK;EKi D �1. In such
a case, one defines EK D �EK . This guarantees that for all cases,

˝
EK;EJ

˛ D ıKJ .
The � i that appears as an argument of cJK in (5.71) is used to indicate that the
intrinsic derivative is being computed along the coordinate curve corresponding to
ui . With this convention, it can be shown that cJK .� i / D �cKJ .� i /.
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Theorem 90. If r iEJ D �cJK.� i /EK then cJK.� i / D �cKJ .� i /.
Proof. Now hEJ ;EKi D nJK , where nJK D ˙1, if J D K and nJK D 0, if
J ¤ K , so

0 D �r i hEJ ;EKi D � hr iEJ ;EKi � hEJ ;r iEKi
D cJM .� i /

˝
EM ;EK

˛C cKM .� i /
˝
EJ ;EM

˛

D cJM .� i /ı
M
K C cKM.� i /ı

M
J

D cJK.� i /C cKJ .� i / ut

It should be noted that Theorem 90 implies that cKK.� i / D 0:

Returning to the saddle surface discussed above, we note that from (5.69) and
(5.70)

cN1N2.�1/ D 0 and

cN1N2.�2/ D �u1

.1C .u2/2/
p
1C .u1/2 C .u2/2

:

Thus

r 1EN2 D �cN2N1.�1/E
N1 D cN1N2.�1/E

N1 D 0 and

r 2EN2 D �cN2N1.�2/E
N1 D cN1N2.�2/E

N1 D �u1

.1C .u2/2/
p
1C .u1/2 C .u2/2

E1.

It is worth noting that if we had taken advantage of the information available
to an extrinsic observer, the computation of cN1N2.�1/ and cN1N2.�2/ would have been
simpler. In that situation, we could have written

EN1 D �1

j�1j
D e1 C e3u2p

.1C .u2/2/
so

@

@u1
EN1 D 0 D �cN1N2.�1/E

N2 C hN1.�1/N.

Thus cN1N2.�1/ D 0. Furthermore, since �1 D e1 C e3u2 and �2 D e2 C e3u1, it
follows that �12 D �e23u2 � e31u1 C e12. We then have:

EN2 D �1

j�1j
�12

j�12j
D e1 C e3u2p

.1C .u2/2/

�e23u2 � e31u1 C e12p
1C .u1/2 C .u2/2

D �e1u1u2 C e2.1C .u2/2/C e3u1p
.1C .u2/2/

p
1C .u1/2 C .u2/2
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Now

@

@u2
EN1 D @

@u2
e1 C e3u2p
.1C .u2/2/

D
 
@

@u2
1

p
.1C .u2/2/

!
�
e1 C e3u2

�C e3p
.1C .u2/2/

D �cN1N2.�2/E
N2 C hN1.�2/N (5.72)

From (5.72)

cN1N2.�2/ D �
�
EN2;

@

@u2
EN1
�

D �
*

EN2;
 
@

@u2
1

p
.1C .u2/2/

!
�
e1 C e3u2

�C e3p
.1C .u2/2/

+

D �
*

EN2;
e3p

.1C .u2/2/

+

D �
*

�e1u1u2 C e2.1C .u2/2/C e3u1p
.1C .u2/2/

p
1C .u1/2 C .u2/2

;
e3p

.1C .u2/2/

+

or

cN1N2.�2/ D �u1

.1C .u2/2/
p
1C .u1/2 C .u2/2

(5.73)

For two dimensions, there are only two relevant coefficients (cN1N2.�1/ and cN1N2.�2/).
But for higher dimensions, there are many more. As a result, people have found a
couple of ways to condense the information stored in these coefficients.

Users of differential forms have observed that

r vEJ D vir iEJ D �vi cJK.� i /E
K . Also

r vEJ D �cJK.v/EK . And thus

cJK.v/ D cJK.v
i� i / D vi cJK.� i /. (5.74)

This shows us that cJK is a real valued linear function on the n-dimensional vector
space spanned by �1;�2; . . . ,�n. This implies that there exists a vector wJK (or
1-form) such that

cJK.v/ D hwJK; vi . (5.75)
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An explicit formula for wJK is

wJK D cJK.� i /�
i D cJK.EI /EI . (5.76)

To check (5.76), note:

hwJK; vi D ˝
cJK.� i /�

i ; vm�m
˛ D cJK.� i /v

m
˝
� i ;�m

˛

D cJK.� i /v
mıim D cJK.� i /v

i D cJK.v
i� i /

D cJK.v/,

which agrees with (5.74) and (5.75). The wJK ’s are known as connection 1-forms.
An alternative method of condensing the information that I feel is even better –

particularly for higher dimensions is to use Fock–Ivanenko coefficients, which I will
discuss in the next subsection.

Problem 91. In the derivation of (5.73), I used the fact that

*

EN2;
 
@

@u2
1

p
1C .u2/2

!
�
e1 C e3u2

�
+

D 0.

Explain why this is true without doing any computations. Why did I know that it
would be unnecessary to compute

@

@u2
1

p
1C .u2/2

?

5.6.2 Gauss Curvature via Fock–Ivanenko Coefficients

Fock–Ivanenko coefficients were first introduced by Vladimir Fock and Dmitrii
Ivanenko to make Paul Dirac’s equation for the electron compatible with Albert
Einstein’s theory of general relativity (Fock and Ivanenko 1929a, 1929b; Fock
1929). A Fock–Ivanenko coefficient, �k , is defined by the equation

�k D 1

4
cPQ.�k/E

PEQ. (5.77)

Using Fock–Ivanenko coefficients, we can write

r kEI D �kEI � EI�k . (5.78)
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To verify (5.78), we note that from (5.77)

�kEI � EI�k D 1

4
cPQ.�k/

�
EPEQEI � EIEPEQ

�

D 1

4
cPQ.�k/

�
EP

�
EQEI C EIEQ

� � �
EPEI C EIEP

�
EQ
�

D 1

4
cPQ.�k/

h
EP 2ıQI � 2ıPI EQ

i

D 1

2
cPI .�k/E

P � 1

2
cIQ.�k/E

Q or

D �cIQ.�k/EQ

D rkEI .

Equation (5.78) can be generalized to products of EJ ’s. That is

r k

�
EI1EI2 � � � EIp

� D �k

�
EI1EI2 � � � EIp

� � �
EI1EI2 � � � EIp

�
�k: (5.79)

(See Prob. 93.)
More generally if

A D 1

pŠ
AI1I2:::IpEI1EI2 � � � EIp , then

r kA D 1

pŠ

�
@

@uk
AI1I2:::Ip

	
EI1EI2 � � � EIp

C 1

pŠ
AI1I2:::Ip�kEI1EI2 � � � EIp � 1

pŠ
AI1I2:::IpEI1EI2 � � � EIp�k .

To represent this last equation in a more concise manner it is useful to define
what might be called a moving frame derivative @k . Let us define @kEJ to be zero
and @k to be identical to @=@uk when it is applied to any real valued coefficient of a
product of EJ ’s. Thus in the example above where

@kA D 1

pŠ

�
@

@uk
AI1I2:::Ip

	
EI1EI2 � � � EIp ,

we can write

rkA D @kA C �kA � A�k . (5.80)
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Fock–Ivanenko coefficients can be used to rapidly compute the curvature 2-forms
and thereby all components of the Riemann tensor. To get the necessary relation, we
observe that

�r ir j � r jr i

�
EK D r i

�
�jEK � EK�j

� � r j .� iEK � EK� i /

D �r i�j

�
EK C �j .� iEK � EK� i / � .� iEK � EK� i / �j

� EKr i�j � �r j� i

�
EK � �i

�
�jEK � EK�j

�

C �
�jEK � EK�j

�
� i C EKr j� i

or restated:

�r ir j � r jr i

�
EK D �r i� j � r j� i � �i� j C � j� i

�
EK

� EK
�r i�j � r j� i � � i�j C �j� i

�
. (5.81)

From (5.61)
�r ir j � r jr i

�
EK D 1

2
RijEK � 1

2
EKRij .

From these last two equations, we would like to conclude that

1

2
Rij D r i�j � r j� i � � i�j C �j� i . (5.82)

However suppose

AEK � EKA D BEK � EKB for K D N1; N2; : : :; Nn. (5.83)

Does it then follow that A D B? Clearly if A D BC˛I, (5.83) would still be
satisfied. If Nn is an odd number, we could also add a scalar multiple of the pseudo-
scalar EN1EN2 � � � E Nn to B without disturbing the validity of (5.83). However if we
insist that both A and B be 2-vectors, then (5.83) does indeed imply that A D B.
(See Prob. 94.) Thus to verify (5.82), we are left with the task of showing that the
right hand side is a 2-vector. Clearly r i� j and r j� i are 2-vectors. I will leave it
to you to show that � i�j � �j� i must be a 2-vector. (See Prob. 95.)

Using (5.80), we can obtain a slightly more useful form of (5.82). From (5.80),
we have

r i� j D @i�j C � i�j � �j� i and

r j� i D @j� i C �j� i � � i�j .

Substituting these last two results into (5.82), we get

1

2
Rij D @i�j � @j� i C � i�j � �j� i . (5.84)
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As a formula for Rij , (5.84) is easier to compute than (5.82) since the moving frame
derivative @k does not act on the EK ’s. When using either formula, be careful to
note that the two formulas differ in the signs for the last two terms. It is also useful
to note that for two-dimensional surfaces, all 2-vectors are scalar multiples of the
pseudo-vector. Therefore for two-dimensional surfaces, all 2-vectors commute with
one another and the last two terms of (5.82) or (5.84) cancel one another out.

Returning to the saddle surface, we can compute the curvature 2-form with
relative ease and with it the Gaussian curvature R1212.

From (5.69) and (5.70), we know that

cN1N2.�1/ D 0 and

cN1N2.�2/ D �u1

.1C .u2//
p
1C .u1/2 C .u2/2

.

This means that

� 1 D 0 and

� 2 D 1

4
cPQ.�2/E

PEQ D 1

4
cN1N2.�2/E

N1EN2 C 1

4
cN2N1.�2/E

N2EN1

D 1

2
cN1N2.�2/E

N1EN2 D �u1

2 .1C .u2/2/
p
1C .u1/2 C .u2/2

EN1EN2.

In this circumstance, (5.84) becomes

1

2
R12 D @1�2 D �1

2
�
1C .u2/2

�
�
@

@u1

�
u1


1C .u1/2 C .u2/2

��1=2�	
EN1EN2

D �1
2
�
1C .u2/2

�
�

1C .u1/2 C .u2/2

��1=2 � 1

2
u1


1C .u1/2 C .u2/2

��3=2
2u1

�
EN1EN2

D � �1C .u1/2 C .u2/2
��3=2

2
�
1C .u2/2

�
h
1C .u1/2 C .u2/2 � .u1/2

i
EN1EN2.

Or

R12 D �1
.1C .u1/2 C .u2/2/3=2

EN1EN2. (5.85)

For this problem, EN1EN2 D EN1EN2 D �12= j�12j. For the saddle surface, s D u1e1 C
u2e2 C u1u2e3, �1 D e1 C u2e3, �2 D e2 C u1e3, and �12 D �u2e23 � u1e31 C e12.
Thus j�12j D p

1C .u1/2 C .u2/2. Combining these results, (5.85) becomes

R12 D �1
Œ1C .u1/2 C .u2/2�2

�12. (5.86)
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Also

R12 D 1

2
R
jk
12�jk D 1

2
R1212�12 C 1

2
R2112�21

D R1212�12. (5.87)

Comparing (5.86) and (5.87), it follows that the Gaussian curvature for the saddle
surface is

R1212 D �1
Œ1C .u1/2 C .u2/2�2

. (5.88)

From the informal discussion of Gaussian curvature presented in Sect. 5.1,
it should not be surprising that the Gaussian curvature for the saddle surface is
negative.

In closing this section, I will derive a formula for �˛ which is useful for intrinsic
computations – particularly if the metric gij is diagonal.

Theorem 92.

�˛ D 1

4
�	

@g˛

@u	
C 1

4
�	 ^ @˛�	. (5.89)

Proof. We need to keep in mind that

�˛ D 1

4
cJK.�˛/E

JEK (5.90)

where cJK.�˛/ is defined by the equation

r˛EJ D �cJK.�˛/EK . (5.91)

You should also note that several steps below, I will use the fact that if v is an
arbitrary vector then

v D ˝
v;�ˇ

˛
�ˇ D hv;EJ i EJ . (5.92)

(See Prob. 96:) Since

EJ D ˝
EJ ;�ˇ

˛
�ˇ ,

r˛EJ D ˝
EJ ;�ˇ

˛r˛�
ˇ C

�
@

@u˛
˝
EJ ;�ˇ

˛	
�ˇ . And therefore

EJr˛EJ D �EJ
˝
EJ ;�ˇ

˛
�ˇ	˛�	 C EJ

�
@˛
˝
EJ ;�ˇ

˛�
�ˇ .
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Using (5.91), (5.92), and (5.31), this last equation becomes

�cJK.�˛/EJEK D ��ˇ
gˇ

2

�
@g˛

@u	
C @g	

@u˛
� @g˛	

@u

�
�	

C �
@˛
�
EJ
˝
EJ ;�ˇ

˛��
�ˇ . That is:

cJK.�˛/E
JEK D 1

2
��	

�
@g˛

@u	
C @g	

@u˛
� @g˛	

@u

�
� �
@˛�ˇ

�
�ˇ: (5.93)

Since the left hand side of (5.93) is a 2-vector, we only need to retain the 2-vector
terms on the right hand side. Thus

cJK.�˛/E
JEK D 1

2
�	

�
@g˛

@u	
C @g	

@u˛
� @g˛	

@u

�
� �
@˛�ˇ

� ^ �ˇ: (5.94)

Since �	 D ��	 and @g	=@u˛ D @g	=@u˛, �	@g	=@u˛ D 0, (5.94) becomes

cJK.�˛/E
JEK D 1

2
�	

�
@g˛

@u	
� @g˛	

@u

�
C �ˇ ^ @˛�ˇ .

So finally, we have

�˛ D 1

4
�	

@g˛

@u	
C 1

4
�ˇ ^ @˛�ˇ . (5.95)

If you review (5.77) and (5.78), you might suspect that the Fock–Ivanenko coeffi-
cients might depend on the choice of the orthonormal non-coordinate basis. This is
indeed the case and it is reflected in the second term on the R.H.S. of (5.95). ut

When the metric gjk is diagonal, this formula for �˛ can be simplified further if
we choose an orthonormal non-coordinate basis aligned with the coordinate basis.
In particular, we can let

�ˇ D EB
ˇ̌
�ˇ
ˇ̌ D EB

ˇ̌
gˇˇ

ˇ̌1=2
.

where B D ˇ, ˇ D 1; 2;. . . , or n and no sum is intended. Since it is also true that

�ˇ D gˇˇ�ˇ

with no sum intended, we have

@˛�ˇ D EB@˛
ˇ
ˇgˇˇ

ˇ
ˇ1=2 D EB

1

2

ˇ
ˇgˇˇ

ˇ
ˇ�1=2 @

ˇ
ˇgˇˇ

ˇ
ˇ

@u˛

D 1

2
�ˇ

gˇˇˇ
ˇgˇˇ

ˇ
ˇ
@
ˇ
ˇgˇˇ

ˇ
ˇ

@u˛
D 1

2
�ˇ
@gˇˇ

@u˛
.
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It then follows that

�ˇ ^ @˛�ˇ D 1

2
�ˇ ^ �ˇ

@gˇˇ

@u˛
D 0.

The first term on the right hand side of (5.89) simplifies more or less automatically.
We merely note that in the summation over the  index, g˛ D 0 unless  D ˛.
Thus if gjk is diagonal, we may write

�˛ D 1

4
�˛	

@g˛˛

@u	
, (5.96)

where the 	 index is summed but the ˛ index is not.

Problem 93. Starting with (5.78) prove the following equation by induction:

r k

�
EI1EI2 � � � EIp

� D �k

�
EI1EI2 � � � EIp

� � �
EI1EI2 � � � EIp

�
�k:

Problem 94. Show that any p-vector other than a scalar or multiple of the pseudo
vector EN1N2 � � � Nn (when n is odd) will fail to commute with at least one EK .

Problem 95. Show that if �1 and �2 are both 2-vectors then �1�2 � � 2�1 is also
a 2-vector. (Suggestion: Use an orthonormal basis or (4.58).)

Problem 96. Show that v D hv;�ki �k .

Problem 97. Use the methods of this section to show that for the sphere R 12
12 D

1=r2.

Problem 98. TORUS Consider the torus. See Fig. 5.7. The surface is parameterized
by the equations

x1.�; �/ D r cos� D .RC a cos �/ cos�;

x2.�; �/ D r sin � D .RC a cos �/ sin�; and

x3.�; �/ D a sin � .

Where 0 � � < 2� and �� < � � � . Use the methods of this section to show that

R 12
12 D cos �

a.RC a cos �/
.

Note that the Gaussian curvature is positive on the outer portion of the surface
and negative on the inner portion.

Problem 99. TORUS continued. See Fig. 5.8.

a) Consider the problem of parallel transporting the vector around the perimeter
of a rectangular figure on the surface of a torus bounded by � D �0,
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θ
a

φ
R

s (φ,θ)

x1

x2

x3

Fig. 5.7 Coordinate system for a torus: s.�; �/ D e1.RCa cos �/ cos �Ce2.RCa cos �/ sin�C
e3a sin �

θ=θ0

φ=φ0 φ=φ1

θ=θ1

Fig. 5.8 Coordinate quadrilateral on surface of torus

� D �1, � D �0, and � D �1 where �1 > �0 and �1 > �0. Suppose
you start with an initial vector v0 D EN1 D ��=

ˇ
ˇ��

ˇ
ˇ at � D �1 and

� D �0. Parallel transport it along the path � D s=a C �0 and � D �1
until you arrive at � D �1 and � D �1. Then parallel transport it along
the path � D �s= .RC a cos �/ C �1 and � D �1 until you arrive at
� D �0 and � D �1. (At this point your parallel transported vector v2 should
equal EN1 cos.Œ�1 � �2� sin �1/CEN2 sin.Œ�1 � �2� sin �1/.) Continuing the parallel
transport along the remaining two edges, you should return to the original point
with v4 D EN1 cos.Œ�1 � �2� Œsin �1 � sin �0�/CEN2 sin.Œ�1 � �2� Œsin �1 � sin �0�/.
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This implies that the parallel transported vector has undergone an apparent
rotation through an angle equal to Œ�1 � �2� Œsin �1 � sin �0�.

If the angles �0 and �1 are chosen so the four sided figure lies entirely in the
region where the Gaussian curvature is positive, is the angle of rotation positive?
What if �0 and �1 are chosen so the figure lies entirely in the region where the
Gaussian curvature is negative? How can �0 and �1 be chosen with �1 ¤ �0 so
that the apparent rotation is zero? Does this make sense?

b) It is not hard to see that the area for the four sided figure described above is

Z �1

�0

Z �1

�0

.rd�/ad� D
Z �1

�0

Z �1

�0

a.R C a cos �/d�d� .

Compute this integral and then adjust the definition of (5.4) so that you can
compute the Gaussian curvature using this integral and the result of part a.
You should get the same result as you did for the computation for R 12

12 in
Prob. 98.

Problem 100. Suppose the cone is parameterized by the equations

x1.�; z/ D az cos�,

x2.�; z/ D az sin �, and

x3.�; z/ D az.

a) Compute the metric tensor.
b) Use (5.31) and the equation of Prob. 88 to compute the Gaussian curvatureR 12

12 .
c) Use the methods of this section to compute R 12

12 . (To use (5.31) you may need
to use the fact that �12 D EN1N2 ˇˇ�12

ˇ
ˇ.

Problem 101. ELLIPSOID (See Fig. 5.9. The problem of computing the Gaussian
curvature for the ellipsoid from an intrinsic point of view is very difficult (at least for
me). However the problem is manageable using an extrinsic approach. The standard
equation for the ellipsoid is

x2

a2
C y2

b2
C z2

c2
D 1. (5.97)

Using a slightly modified version of spherical coordinates, we can write:

s D e1a cos� sin � C e2b sin � sin � C e3c cos � .

a) Compute the Gaussian curvature. Suggestions: Let u1 D �, u2 D � , and EN1 D
�1= j�1j. (This expedites the computation of cN1N2.�2/.) Review the calculations
for the saddle surface following Theorem 90 and the content of Prob. 91. Also
review the calculations for the saddle surface following (5.84). The expression
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(a,0,0)

(0,b,0)

(0,0,c)

x3

x1

x2

Fig. 5.9 Ellipsoid defined by

the equation x2

a2
C y2

b2
C z2

c2
D1

.a2 sin2 � C b2 cos2 �/ makes a frequent appearance so you can save some
writing by replacing that expression by f .�/. Carrying out the computation, you
should get

R1212 D a2b2c2

�
a2b2 cos2 � C c2 sin2 �

�
a2 sin2 � C b2 cos2 �

��2 .

This formula is not very enlightening but using the fact that x D a cos� sin � ,
y D b sin� sin � , and z D c cos � , you will find that

R1212 D a2b2c2

h
b2c2

a2
x2 C a2c2

b2
y2 C a2b2

c2
z2
i2

D
�

1

a2b2c2

	
1

h
x2

a4
C y2

b4
C z2

c4

i2 .

Are these formulas consistent with the Gaussian curvature for a sphere?
b) Suppose a2 > b2 > c2. Determine the points on the ellipsoid where the Gaussian

curvature is a maximum and where the Gaussian curvature is a minimum. (It may
not be necessary but it is not cheating to use calculus.) Are your results consistent
with your intuition?

Problem 102. ONE SHEET HYPERBOLOID
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A one sheet hyperboloid can be represented by the equation

x2

a2
C y2

b2
� z2

c2
D 1.

One way to parameterize this surface is

x.u1; u2/ D e1a cosh u2 cos u1 C e2b cosh u2 sin u1 C e3c sinh u2.

Use Fock–Ivanenko coefficients to determine the Gaussian curvature. You
should get

� 1 D a2b2 sinh u2

2f .u1/
�
a2b2 sinh2 u2 C c2f .u1/ cosh2 u2

�1=2EN1EN2, where

f .u1/ D a2 sin2 u1 C b2 cos2 u1, �2 D 0, and

K D �a2b2c2
�
a2b2 sinh2 u2 C c2 cosh2 u2.a2 sin2 u1 C b2 cos2 u1/

�2 .

Or alternatively:

K D �1
a2b2c2

h
x2

a4
C y2

b4
C z2

c4

i2 .

Problem 103. ELLIPTIC PARABOLOID An elliptic paraboloid can be repre-
sented by the equation:

z D x2

a2
C y2

b2
.

Show that the Gaussian curvature for the elliptic paraboloid may be written in the
form

K D R 12
12 D 1

4a2b2
h
x2

a4
C y2

b4
C 1

4

i2

Problem 104. HYPERBOLIC PARABOLOID A hyperbolic paraboloid can be
represented by the equation:

z D x2

a2
� y2

b2
.

a) Show that the Gaussian curvature for the hyperbolic paraboloid may be written
in the form:

K D R 12
12 D �1

4a2b2
h
x2

a4
C y2

b4
C 1

4

i2 (5.98)

b) If a D b D p
2, (5.98) matches (5.88). Why should the Gaussian curvature for

this special case of the hyperbolic paraboloid match the Gaussian curvature of the
saddle surface?
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5.6.3 *The Riemann Tensor for Orthonormal Frames

If you wish to make extensive computations in orthonormal frames, you should be
aware of the fact that

RABPQEA ¤ .rPrQ � rQrP /EB .

Indeed
RABPQEA D .rPrQ � rQrP � f S

PQrS /EB , (5.99)

where f S
PQ is defined by the relation:

f S
PQ@Sg D .@P @Q � @Q@P /g; where (5.100)

the @A’s are the moving frame derivatives defined in the previous section.
To make sense of this, we need to back up and introduce some definitions.

The conversion of a coordinate basis to an orthonormal non-coordinate basis and the
reverse conversion can be carried out using a matrix W A

˛ and its inverse W ˛
A . The

W A
˛ ’s and the W ˛

A ’s can be defined by the equations

EA D W A
˛ �˛ , and (5.101)

EA D W ˛
A �˛ . (5.102)

I leave it to you to show that (5.101) and (5.102) imply that

W ˛
AW

B
˛ D ıBA , and (5.103)

W ˛
AW

A
ˇ D ı˛ˇ . (5.104)

(See Prob. 106.)
In addition, you should be able to show that

�˛ D W ˛
A EA, and (5.105)

�˛ D W A
˛ EA. (5.106)

(See Prob. 107.)
We are now in a position to state and prove a theorem:

Theorem 105. If

RABCD D W A
˛ W

ˇ
B W

�
CW

	
DR

˛
ˇ�	, and (5.107)

rA D W ˛
Ar˛ , then (5.108)

RABPQEA D .rPrQ � rQrP � f S
PQrS /EB , where (5.109)
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f S
PQ is defined by the equation:

f S
PQ@Sg D .@P @Q � @Q@P /g, (5.110)

where it is understood that g is an arbitrary scalar valued function of the
coordinates.

Proof. The first step of this proof is to show that

W
ˇ
B .r�r	 � r	r�/�ˇ D .r�r	 � r	r�/W

ˇ
B �ˇ. (5.111)

I leave this first step for you to do. (See Prob. 108.)
From this equation, we can infer that

W
ˇ
B R

˛
ˇ�	�˛ D .r�r	 � r	r�/EB . (5.112)

From (5.112), it follows that

W
ˇ
B R

˛
ˇ�	�˛ D

h
.W E

� rE/.W
F
	 rF /� .W F

	 rF /.W
E
� rE/

i
EB

D W E
� W

F
	 ŒrErF � rFrE�EB

CW E
�



rEW

F
	

�
rFEB �W F

	



rFW

E
�

�
rEEB .

Thus

W
ˇ
B R

˛
ˇ�	�˛ D W E

� W
F
	 ŒrErF � rFrE�EB

CW E
�



@EW

S
	

�
rSEB �W F

	



@FW

S
�

�
rSEB . (5.113)

We note that

@EW
S
	 D ı˛	

�
@EW

S
˛

� D W F
	 W

˛
F

�
@EW

S
˛

�
, and

@FW
S
� D ı˛�

�
@FW

S
˛

� D W E
� W

˛
E

�
@FW

S
˛

�
.

With these relations, (5.113) becomes

W
ˇ
B R

˛
ˇ�	�˛ D W E

� W
F
	 ŒrErF � rFrE�EB

CW E
� W

F
	

�
W ˛
F

�
@EW

S
˛

� �W ˛
E

�
@FW

S
˛

��rSEB ,

which means:

W
ˇ
B R

˛
ˇ�	�˛ D W E

� W
F
	

�rErF � rFrE � f S
EFrS

�
EB , where (5.114)

f S
EF D �W ˛

F

�
@EW

S
˛

�CW ˛
E

�
@FW

S
˛

�
(5.115)
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This last equation can be adjusted further. In particular

W ˛
F

�
@EW

S
˛

� D @E
�
W ˛
F W

S
˛

�� �
@EW

˛
F

�
W S
˛

D � �@EW ˛
F

�
W S
˛ .

Adjusting the second term on the R.H.S. of (5.115) in a similar manner, (5.115)
becomes

f S
EF D �

@EW
˛
F

�
W S
˛ � �

@FW
˛
E

�
W S
˛

D ��
@EW

˛
F

� � �
@FW

˛
E

��
W S
˛ . (5.116)

If we now prove that

.@E@F � @F @E/ g D ��
@EW

˛
F

� � �
@FW

˛
E

��
W S
˛ @Sg,

we will know that
f S
EF @Sg D .@E@F � @F @E/ g

as previously claimed. At that point we will be near the end of this proof. We start
by noting that

.@E@F � @F @E/ g D
h
@EW

˛
F @˛ � @FW

ˇ
E @ˇ

i
g

D
h�
@EW

˛
F

�
@˛ �



@FW

ˇ
E

�
@ˇ

i
g

C
h
W ˛
F @E@˛ �W

ˇ
E @F @ˇ

i
g.

That is:

.@E@F � @F @E/ g D �
.@EW

˛
F /@˛ � .@FW ˛

E /@˛
�
g

C
h
W ˛
F W

ˇ
E @ˇ@˛ �W

ˇ
EW

˛
F @˛@ˇ

i
g. (5.117)

Since �
@˛@ˇ � @ˇ@˛

�
g D 0,

the second term on the R.H.S. of (5.117) is zero. Thus we have

.@E@F � @F @E/ g D �
.@EW

˛
F / � .@FW ˛

E /
�
@˛g

D �
.@EW

˛
F / � .@FW ˛

E /
�
W S
˛ @Sg

which was our desired result.
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Multiplying both sides of (5.114) by W
�
CW

	
D and then carrying out some

summations, we have:

W
ˇ
B W

�
CW

	
DR

˛
ˇ�	�˛ D



W

�
CW

E
�

� 

W

	
DW

F
	

� �rErF � rFrE � f S
EFrS

�
EB

D ıEC ı
F
D

�rErF � rFrE � f S
EFrS

�
EB

D �rCrD � rDrC � f S
CDrS

�
EB , or restated:

R˛BCD�˛ D �rCrD � rDrC � f S
CDrS

�
EB . (5.118)

I will let you show that

R˛BCD�˛ D RABCDEA.

(See Prob. 109.) This result combined with (5.118), completes the proof of our
theorem. That is

RABCDEA D �rCrD � rDrC � f S
CDrS

�
EB , where

f S
CD@Sg D .@C @D � @D@C / g. ut

Problem 106. Use (5.101) and (5.102) to prove (5.103) and (5.104).

Problem 107. Use (5.101), (5.102), (5.103), and (5.104) to prove (5.105) and
(5.106).

Problem 108. Prove (5.111).

Problem 109. Show that

R˛BCD�˛ D RABCDEA.

Problem 110. Show that RABAB D R
˛ˇ

˛ˇ . Also show that for two dimensions,

R
N1N2 N1N2 D R1212.

5.7 *Doing Physics Under Stalin

The pervasive role of Communist ideology and the KGB (the secret police), in
Stalin’s Russia, had a huge impact on the lives of Fock and Ivanenko. (Note! I am
using the convention of applying the label “KGB” for the secret police regardless
of the time period. Properly “KGB” (Komitet Gosudarstvennoye Bezopasnosti) or
(Committee for State Security) was the title for the secret police only between 1954
and 1991. These are roughly the years between the death of Stalin and the collapse
of communist rule.)
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During Stalin’s rule, party ideologues would quote the writings of Marx, Engels,
and Lenin to denounce both relativity and quantum mechanics. Einstein was
attacked for using complex mathematics divorced from physical reality and turning
physics into a branch of geometry (Vucinich 2001, pp. 22–23). Quantum mechanics
was also attacked for its reliance on mathematical symbolism. Furthermore, Max
Born’s probabilistic interpretation of the wave function and Heisenberg’s uncer-
tainty principle seemed to be at odds with the deterministic outlook of Karl Marx.

In 1929, when Fock and Ivanenko introduced what later became known as
the “Fock–Ivanenko coefficients”, these party ideologues could be safely ignored.
However a few years later, it became quite dangerous to express a dissident opinion.
And when the Great Terror became most intense between 1936 and 1938, the
decision to select someone for execution or a long sentence in a labor camp could
depend on the whim of a KGB bureaucrat. In turn many of these KGB bureaucrats
eventually became victims of this same wave of terror. To understand the stress
imposed on Vladimir Fock and Dmitrii Ivanenko, it is useful to also examine the
fates of three other Soviet physicists: George Gamow, Lev Landau, and Matvei
Bronstein. Each of the five physicists dealt with Stalin’s totalitarianism in his own
way. The success of each approach was not entirely in the hands of the individual
and the results were mixed.

In the late 1920s, Vladimir Fock was a young professor at the University of
Leningrad and the other four were graduate students at the same university.

5.7.1 *George Gamow 1904–1968

George Gamow was born on March 4, 1904. In the summer of 1928, George
Gamow was sent abroad to the University of Göttingen in Germany. While there,
he discovered that he could use the newly developed theory of quantum mechanics
to explain the emission of alpha particles from radioactive elements. This won him
recognition both home and abroad. When he returned to Russia in the summer of
1929, he was hailed in Pravda, the official newspaper of the Communist Party.
After a second stay abroad at Cambridge, England and Copenhagen, Denmark,
he returned to Russia in the spring of 1931. He immediately discovered that the
political atmosphere had now become quite oppressive. In the previous September,
the Nazi party had achieved significant success in national elections. Russian fears
stemming from the unfolding events in Germany were well founded. While serving
his nine month prison sentence in 1924, Hitler authored his Mein Kampf (My
Struggle). In that manifesto, he stated that Germany would never be a first rate
power without obtaining control of more land. He went on to argue that Russia was
the most logical place for Germany to acquire the needed land.

In Russia, there were opportunists who were all too eager to exploit this situation
for their own ends. It now became easy to establish an official party line orthodoxy
and then denounce those who might disagree with it. At the time of Gamow’s
return to Russia, ideologues, with encouragement of the Communist Party, were
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attacking physicists for being receptive to Einstein’s etherless theory of relativity
and Heisenberg’s uncertainty principle. These theories were condemned for being
capitalistic heresies that were un-Russian and anti-Marxist.

One of the milder ideologues, Boris Hessen, was responsible for an entry on
ether in the 1931 edition of the Greater Soviet Encyclopedia. In response, Bronstein,
Gamow, Ivanenko, and Landau along with two other young physicists, sent a
sarcastic telegram to Hessen:

Having read your entry on ether started our enthusiastic studies of it. Looking forward to
reading about phlogiston. Bronstein, Gamow, Ivanenko, Iamailov, Landau, Chumbadze.

(At one time, ”phlogiston” was hypothesized to be a substance released during combustion.
This concept was discarded near the end of the eighteenth century when it was discovered
that an entity undergoing combustion combined with oxygen and actually gained weight.)

All six physicists soon received severe reprimands and both Bronstein and
Landau were temporarily barred from lecturing at Polytechnic in Leningrad (Gorelik
and Frenkel 1994, p. 51).

In this political atmosphere, obtaining a new passport was nearly impossible. In
the summer of 1932, George Gamow and his bride tried to escape Russia by rowing
a collapsible boat across the Black Sea to Turkey. On the second day of rowing, a
severe storm arose and the consequent winds drove their boat back to the Russian
shore.

Fortunately, with the assistance of Niels Bohr, Gamow and his wife were able to
obtain passports the following year. Officially Gamow was being permitted to attend
the 1933 Solvay Conference in Brussels. He did attend the conference but he never
returned to Russia and emigrated to the U.S.

Like Einstein, Gamow could not get the required security clearance to work on
the Manhattan project and became a consultant to the U.S. Navy during World War
II. Later he did contribute to the development of the hydrogen bomb. From his
own work, he became an early advocate of the Big Bang theory for the origin of
the universe. He also became famous as a popularizer of science, being the author
of many books including Mr. Tompkins in Wonderland (1937), One Two Three –
Infinity (1947), and Thirty Years that Shook Physics (1966).

In 1953, after reading the famous paper by Francis Crick and James Watson
describing the double helical structure of DNA, Gamow sent Crick a letter outlining
a plausible code connecting the structure of DNA with the existence of 20 amino
acids. This suggestion stimulated the research that did indeed reveal a code that was
not too far off from the kind of code proposed by Gamow. George Gamow died on
August 20, 1968.

5.7.2 *Lev Davidovich Landau 1908–1968

Lev Landau was born on January 22, 1908. He eventually became the most
prominent of the five physicists. For many years the multivolume series of books
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organized by L.D. Landau and E.M. Lifshitz was required reading for physics
students not only in Russia but also in the United States and other countries. Like
Gamow, Landau enjoyed the opportunity to study in Western Europe before Stalin
cut down on communication with other countries.

While in Cambridge on a Rockefeller grant, Landau was challenged by dis-
cussions he had with Pyotr Kapitza on an anomalous property of the electric
conductivity of bismuth in a strong magnetic field (the Kapitza effect). As a result,
Landau soon developed a theory of diamagnetism (Gorelik and Frenkel 1994,
p. 38).

Unlike Gamow, Landau was a political radical (at least in his younger days) who
enthusiastically supported the ideals of the communist revolution. (Most of what
follows was extracted from Gennady Gorelik’s article in Scientific American entitled
“The Top-Secret Life of Lev Landau.” (Gorelik 1997, pp. 72–77).

Despite his run-in with political authorities for being one of the signatories to the
“ether-phlogiston” telegram in 1931, Landau became head of the theoretical division
of the Ukrainian Institute of Physics and Technology at Kharkov in 1932. However,
a few short years later he was in hot water again. In 1934, the Kharkov institute
received a new director with orders to redirect research into applied areas directed
toward military and other national priorities. Landau was never the diplomat and he
alienated local authorities by trying to preserve a role for pure science.

In 1937, the KGB arrested several scientists working at Kharkov. Before being
shot, a couple of Landau’s friends “confessed” that Landau was head of some
counterrevolutionary organization. Landau felt that he would be safer away from
Kharkov and Pyotr Kapitza offered him a position in Moscow.

At the age of 27, Kapitza had emigrated to England in 1921 to work in the
Cavendish laboratory with Ernest Rutherford. Initially, Rutherford did not want to
employ Kapitza. He told Kapitza that with about 30 people around him, he had
no openings. However when Kapitza responded by pointing out that one additional
person would be within the usually accepted experimental error, Rutherford relented
(Hargittai 2002, pp. 114–115). Kapitza soon achieved an international reputation
for his investigations of strong magnetic fields. The Royal Society Mond Labo-
ratory was built in Cambridge specifically for him and was officially opened in
February 1933.

From time to time Kapitza returned to Russia to visit his family and maintain
professional contacts. However when he did this in 1934, his passport was seized
and he was denied permission to return to England by Stalin’s order. This was
despite the fact that by 1934, Kapitza had obtained dual citizenship in Great Britain
and Russia. Kapitza then founded the Institute for Physical Problems in Moscow
and the Soviet Government purchased the equipment of the Mond Laboratory with
the cooperation of Rutherford.

Within a year of arriving in Moscow, Landau and two friends were arrested
on April 28, 1938. According to KGB files made available to Gorelik, Landau
was forced to stand for seven hours a day and threatened with transfer to a more
oppressive prison. After two months, Landau broke down and wrote a six page
confession. Landau signed an oath of secrecy on leaving prison and he never talked
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about his ordeal. Thus one cannot be sure how much truth can be attributed to
this confession. Nonetheless the confession is not consistent with any of the usual
KGB scripts. Furthermore it is consistent with Landau’s political outlook. For
these reasons, Gorelik has concluded that the confession must be taken seriously.
According to the confession, Landau and one of the friends who was arrested with
him planned to distribute anti-Stalin pamphlets at the 1938 May Day parade. An
excerpt of the pamphlet reads as follows:

Comrades!

The great cause of the October revolution has been evilly betrayed . . . Millions of innocent
people are thrown in prison, and no one knows when his own turn will be . . .

Stalin, with his rabid hatred of socialism, has become like Hitler and Mussolini . . . .The
proletariat of our country that has overthrown the power of the tsar and the capitalists will
be able to overthrow a fascist dictator and his clique. . . .

It is amazing that Landau was not executed. Two factors saved him. One
factor was the replacement of Nikolai Ivanovich Yezhov by Lavrenti Pavlovich
Beria as head of the KGB late in 1938 bringing an end to the most extreme
aspects of the great terror. Beria may have been as ruthless but he was much
more rational and pragmatic. When Germany attacked Russia in 1941, Beria
released about 140 former intelligence and security officers from jail to fill
personnel slots in his organization (Sudoplatov 1995, p. 127). The second factor
was Kapitza. By now Kapitza had invented a new technique for the production
of oxygen – vital for metallurgy and therefore industry. For this reason, Kapitza
was valued by the government and he used his status to appeal to Molotov to
release Landau. Kapitza wrote that he had just made a discovery “in the most
puzzling field of modern physics” and that no theorist other than Landau could
explain it.

On the eve of May Day 1939, after one year of imprisonment, Landau was freed
on bail. Landau was clearly grateful to Kapitza for Kapitza’s display of courage on
his behalf (Vucinich 1984, p. 174). Presumably, Landau was strongly motivated to
give credibility to the claim that Kapitza had made to Molotov. At any rate, within
a few months he constructed an explanation for Kapitza’s superfluidity. For their
work on the phenomenon, both Landau and Kapitza won Nobel Prizes (Landau in
1962 and Kapitza in 1978).

Shortly after Hiroshima, Beria was put in charge of the Russian atomic bomb
project and Landau was recruited to participate. Despite his opposition to Stalin,
Landau made significant contributions to the development of the bomb and contin-
ued to work on the bomb project until Stalin died in 1953. After Stalin died, Landau
commented to a friend and pupil, Isaac M. Khalatnikov, “That’s it. He’s gone. I’m
no longer afraid of him, and I won’t work on (nuclear weapons) anymore.” And he
quit the bomb project.

In January 1962, the same year that Landau won the Nobel Prize, he was the
victim of a car accident. Although he survived, he suffered brain damage that made
it impossible for him to work effectively as a scientist. He died six years later on
April 1, 1968.
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5.7.3 *Matvei Petrovich Bronstein 1906–1938

Matvei Bronstein was born on December 2, 1906. In the short 31 years of his life,
Matvei Petrovich Bronstein accomplished much. We can only speculate what he
might have accomplished had he lived longer. According to his KGB file, Bronstein
was in detention and undergoing interrogation on his 31st birthday. He had been
arrested about four months earlier on August 6, 1937 and would be executed by a
firing squad three months later on February 18, 1938 (Gorelik and Frenkel 1994,
p. 145 and p. 153).

Matvei and his twin Isidor were only seven years old, when their father was
drafted into the Czar’s army in 1914 to participate in the war effort against the
Germans. Without the father’s income to pay for formal schooling, much of Matvei’s
and Isidor’s early schooling occurred at home. They were supplied with good
books and Matvei became a voracious reader. He eventually became conversant
in Ukrainian, Russian, Georgian, English, French, German, Latin, Greek, Spanish,
Hebrew, Turkish, and Japanese. Furthermore he could recite poetry in a good many
of these languages (Gorelik and Frenkel 1994, p. 124).

In 1925, he joined a physics club at the local university in Kiev. Although
Bronstein had no formal secondary education, the faculty advisor of the club,
Petr Tartakovsky, soon recognized him as an exceptionally promising student.
Presumably with Tartakovsky’s encouragement, Bronstein applied to Russia’s most
prestigious university – Leningrad University. He entered Leningrad University in
1926. However during the previous year while still only 18 years old, Bronstein had
three papers published. Two of these papers were published in Zeitschrift für Physik,
which at the time was one of the world’s most prestigious journals.

In 1929, he successfully attacked a problem in stellar atmospheres whose exact
solution had eluded such outstanding physicists as Jeans, Eddington, and Milne
(Gorelik and Frenkel 1994, p. 27). The result became known as the “Hopf–Bronstein
correlation” (Chandrasekhar 1953, pp. 85 and 95). (Not much later, Hopf obtained
the same result independently.)

During the early 1930s, Bronstein realized that a quantum gravity theory would
have to be developed to deal with several cosmological problems. Such a theory
has not yet been achieved but Bronstein was the first to obtain some useful results
(Gorelik and Frenkel 1994, pp. 83–121).

As Stalin’s Great Terror intensified, Matvei Bronstein found it increasingly
difficult to advocate sanity in a world of ideological lunatics. During his student days
at Leningrad University, he had begun writing popular science books to supplement
his income (Gorelik and Frenkel 1994, p. 32). He enjoyed the opportunity to
stimulate interest in science and continued writing for young and old. His last book
was addressed to teenagers with the title Inventors of Radiotelegraph. In the spring
of 1937, it had been accepted for publication, the editor had done his job, and the
printers had done their job. The only task remaining was the binding.

At this point a ideological fanatic was appointed as a new director of the
publishing house. The thrust of the book was that the invention of the radiotelegraph
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was the culmination of a long series of advances in both the theory and the
applications of electromagnetism. In this context, it was not surprising that two
men, Alexander Popov and Guglielmo Marconi, should independently succeed in
achieving the last step in 1895. (Popov did his work in an academic setting and
was not the entrepreneur and promoter that Marconi was. As a result, Popov did
not receive much attention outside of Russia. However for many Russians, Popov is
considered the “true inventor.”)

For the new director, the thought that Popov was not the sole inventor of
the radiotelegraph was unpatriotic. Presumably for the director, even the title
of Bronstein’s book was inflammatory. When Bronstein refused to make major
changes, the director ordered that tens of thousands of copies ready to be bound
should be destroyed. This occurred a few months before Bronstein’s arrest (Gorelik
and Frenkel 1994, pp. 192–193).

At about the same time Bronstein was waging a similar war on another front.
Bronstein and Ivanenko had collaborated on the translation of the first edition
of Dirac’s Quantum Mechanics into Russian. The translation appeared in 1932 –
two years after the publication date of the original English version. Presumably
Bronstein and Ivanenko were provided with early copies of Dirac’s second edition
so they could rush a Russian edition into print more quickly. The publication date
for the English edition is 1935 and in a letter dated April 21 of the same year,
Bronstein informed Dirac that the Russian translation “will appear very soon, in
two or three months.” (Gorelik and Frenkel 1994, p. 60) However, this publication
schedule was severely disrupted. In March of 1935 sometime before Bronstein’s
letter to Dirac, Ivanenko had been arrested by the KGB as the son of a noble landlord
who served as a high ranking official in the Czar’s government (Private e-mail
communications: Gennady Gorelik June 14, 2002; Alexei Kojevnikov September
8, 2002: and Sergiu Vacaru August 9, 2002). Ivanenko was originally sent to a labor
camp but in December he was exiled to Tomsk State University in Siberia.

Although Ivanenko had become a political pariah, Bronstein continued the
collaboration. This was despite the fact that their collaboration on the first edition
had not gone smoothly (Gorelik and Frenkel 1994, p. 40). On April 11, 1937, nearly
two years after his letter to Dirac, Bronstein wrote to Fock:

Today I signed Dirac’s book to be sent to press. Unfortunately, this time I lost the battle I
was waging for this book with the scoundrels in the publishing house. First, they insisted
that Dymus’ name be removed from the front page; to balance things I removed my name as
well, though preserved it as the name of the editor. I have the right to do this since I corrected
what Dymus had done. Second, they prefaced it with an indecent piece, explaining that
Dirac is a villain (Gorelik and Frenkel 1994, p. 60). (Note! “Dymus” was an affectionate
nickname for Dmitrii Ivanenko.)

On August 6, 1937, Matvei Bronstein was arrested. What was the reason for the
arrest and execution of Bronstein? Matvei’s widow, Lydia Korneevna Chukovskaya,
once wrote a letter to The New York Review that was published on April 12, 1990:

. . . The human mind, unwilling to reconcile itself to the senseless, looks for reasons to
explain every case. There was only one reason for the terror of 1937: quotas. The authorities
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set themselves the task of arresting a certain number of professors, teachers, dentists,
chauffeurs, deaf and dumb people, workers, factory mangers, officers, musicians, actors,
film directors, shoe shiners, and many others, and it didn’t matter whom they chose in each
category. Those who were arrested were tortured until they admitted they were members of
counterrevolutionary organizations and denounced others whose names were provided by
the investigator. Afterward they were either sent to a camp or shot. If they hadn’t confessed
they would have met the same fate. Why? To what end? Ask the executioners, I don’t know
what they’ll answer. . . .

In February 1938, Bronstein’s wife was told that the verdict was . . . ten years of
hard labor in a far-away concentration camp without the right to write and receive
letters and with all his belongings confiscated. She enlisted the aid of Fock. As soon
as Fock had learned of Bronstein’s arrest he showed up at his home to determine
what had happened. This took a great deal of courage since he had himself been
detained by the KGB twice . . . for one day in 1935 and again for a week only six
months earlier in February of 1937. The second time he was released only after
Kapitza used his influence on Fock’s behalf.

After Beria reined in the worst aspects of the Great Terror, Fock composed a letter
in March 1939 to the USSR prosecutor Andrei Vishinsky supporting the request of
Lydia Chukovskaya that Bronstein’s case be reconsidered. This letter was signed by
four other prominent physicists. Others also wrote letters on Bronstein’s behalf but
those efforts stopped in December of 1939 when Lydia learned that Matvei had died.

It was only 20 years later when Khruschev was ruler, that she learned that
her efforts had been pointless. Matvei had been executed on February 18, 1938
. . . roughly the same time she had been told that he was being sent off to a labor
camp (Gorelik and Frenkel 1994, pp. 141, 146).

5.7.4 *Vladimir Alexandrovich Fock 1898–1974

Vladimir Alexandrovich Fock was born on December 22, 1898. Among chemists,
Fock is best known for his contribution to the Hartree–Fock method for computing
approximate wave functions for multi-electron systems (Fock 1930, pp. 126–148).
Among physicists, Fock is known for much more. In 1929, Fock and Ivanenko
introduced what are now known as the Fock–Ivanenko coefficients (Fock and
Ivanenko 1929a, 1929a) also (Fock 1929). This was one of the earliest introduction
of a gauge term in a wave equation.

The application of the Fock–Ivanenko coefficients to Dirac’s wave equation for
the electron makes it invariant under a change of coordinates in curved space.
According to the theory of general relativity, this is what is needed to include the
effect of gravity. As far as I know the addition of these terms have no measurable
consequence because the force of gravity is extremely weak in this context.
Nonetheless this approach became important in the development of quantum field
theory. The use of gauge terms in wave equations for particles other than the electron
eventually became the most effective mathematical method to describe the physical
consequences of both the weak and the strong force.
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Actually, the 1929 papers were not the first introduction of a gauge term in
a quantum mechanical wave equation. The first example was also introduced by
Fock. He did that in 1926 to modify Schrödinger’s wave equation (Fock 1926,
pp. 242–250). Fock obtained this result about a week after he read Schrödinger’s first
paper. Fock’s name is also attached to Fock Space, the Fock representation, and Fock
symmetry of the hydrogen atom. Many feel that his name should also be attached
to the Klein–Gordon equation and Kaluza–Klein theories. Fock’s Foundations
of Quantum Mechanics was the first book on quantum mechanics written by a
Russian. And his book: The Theory of Space, Time, and Gravitation was also highly
regarded.

In the late 1940s and early 50s, many physicists working at research centers
administered by the Soviet Academy of Sciences were besieged by ideological
attacks from members of the physics department at Moscow State University. These
ideologues hoped to exploit the cold war atmosphere to gain control of Russia’s most
prestigious research centers. Their assaults were usually composed of roughly equal
parts of Marxist theology and an ignorance of modern physics. These assaults did
not achieve their intended purpose because many of their intended victims were the
same physicists who had developed Russia’s atomic bomb and were then working
on the hydrogen bomb.

Nonetheless, these ideologues had created an atmosphere in which it was difficult
to teach and discuss either quantum mechanics or general relativity in an intelligent
and coherent manner.

The mathematical structures introduced with both quantum mechanics and
general relativity required difficult interpretations. Fock was an independent thinker
who invested a great deal of time and thought on his own interpretations. It seems
somewhat idiosyncratic that he insisted that his insight into these interpretations
was aided by his study of Marxist theory. Actually his interpretation of the physics
embedded in the mathematics was not substantially different from that of Max Born,
Werner Heisenberg, and Niels Bohr. However his familiarity with Marxist theory
enabled him to be the most effective defender of the integrity of Soviet physics
against ideological attacks.

Surely Fock understood the risk of confronting these Marxist ideologues but it
appears that he concluded that it was just as risky to ignore them. He was quoted
to say, “Cowardice does not influence the probability of arrest.” (Aleksandrov 1988,
p. 489) During 1952, the last year of Stalin’s rule, Fock decided it was time to
launch a counter attack. In particular, he decided to make a direct response to
some positions that had been taken by A.A. Maksimov in the journal: Questions
of Philosophy.

Getting a response published in the same journal would not be easy since
Maksimov was one of the editors. Fock first wrote a letter to Malenkov complaining
that in the process of denying the validity of modern physical theories, Maksimov
was slandering Marxist–Leninist philosophy (Pollock 2000, p. 234). (Malenkov
would become Stalin’s successor as premier one year later.) When this letter
was ignored, Fock turned to Kurchatov who was the top science administrator of
Russia’s atomic bomb project under Beria. Kurchatov forwarded a copy of Fock’s
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article to Beria with a strong endorsement along with a letter of support from eleven
of the most important atomic physicists in Russia, including Landau and Andrei
Sakharov (Pollock 2000, pp. 234–238).

In their letter, according to Ethan Pollock,
. . . The authors recognized that philosophers played an important role in the

struggle between idealism and materialism, but complained that some philosophers
who were ignorant of the foundations of physics were now engaging in attacks on
quantum mechanics and relativity. These concepts, the authors emphasized, formed
the basis of modern physics and the theoretical foundation for electronic and atomic
technology.

They singled out Maksimov’s article “Against Reactionary Einsteinians in
Physics” as particularly dangerous and anti-scientific. Maksimov’s criticisms of
Einstein’s theory were troublesome because, they claimed, it would be impossible
to solve problems of elementary particle physics or atomic power without the use of
the theory of relativity. To make matters worse, Maksimov’s ignorance allowed him
to attack quantum theory by labeling all modern physicists “idealists” (un-Marxist).
Furthermore, the authors continued, articles by other philosophers in Questions of
Philosophy and The Literary Gazette indicated that this ignorance was pervasive.
. . . (Pollock 2000, pp. 235–236).

At the beginning of 1953, after the turning of some bureaucratic wheels,
Fock’s article was published in Questions of Philosophy under the title: “Against
Ignorant Criticisms of Modern Physical Theory.” Understandably, this was over the
objections of Maksimov.

Fock’s article marked a turning point in the ideological battle. Stalin died on
March 5, 1953 and after that the level of rancor subsided. Two years later, Fock was
able to get his book, The Theory of Space, Time, and Gravitation published without
fear of being subjected to ideological abuse.

Fock continued to be productive to the end of his life. In the final year of his life
at age of 76, he nearly completed the second edition of his Foundations of Quantum
Mechanics. He died on December 27, 1974 and the book was completed by others
and appeared in print two years later.

5.7.5 *Dmitrii Dmitrievich Ivanenko 1904–1994

Dmitrii Dmitrievich Ivanenko was born on July 9, 1904. The evaluation of Dmitrii
Ivanenko both as a physicist and as a person tends to go to extremes. At one extreme
is the high regard of the prominent historian of Soviet science, Alexander Vucinich.
Discussing some of the ideological divisions that were already occurring before the
Great Terror, Vucinich wrote,

The deep and irreconcilable differences between the two groups broke out in the open in
1928, when the young and fiery Ivanenko told the Sixth Congress of Soviet Physicists that
the time had come for theoretical physics to replace philosophy. To be sure, this was a
time of profound epistemological inquiries into the theories of quantum mechanics and
relativity. But behind Ivanenko’s statement was an open rebellion against the ambitious
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efforts of Marxist philosophers to hold the upper hand in validating new physical thought.
Ivanenko paid a heavy price for his critical comments: though one of the most cited Soviet
physicists in Western scientific literature, he never became a member of the USSR Academy
of Sciences (Vucinich 2001, p. 54).

Generally in the 1930s, Ivanenko was a respected physicist although Ivanenko’s
friendship with Landau ended in the early 30s for reasons that now seem to be
unknown (Gorelik and Frenkel 1994, p. 54). Whatever the cause of Landau’s dislike
for Ivanenko, the depth of Landau’s feelings were on public display for all to see.
In 1956, Freeman Dyson became witness to Landau’s bitterness. Under Krushchev,
that year, there was enough of a thaw in the cold war that it became possible for
American physicists to visit the Soviet Union. In the course of a visit to Moscow,
Freeman Dyson met Ivanenko. He and Ivanenko were walking along an institute
corridor and came across Landau. Ivanenko started to introduce Freeman but Landau
turned around and walked away. Freeman spoke to Landau on other occasions in
other settings and got along fine with him (Cherkis 2004, private communication).

As an aside, Sergei Cherkis took some math seminars under my supervision
when he was an undergraduate. (He had very little choice since I was the only
one teaching upper level math courses at Upsala College for several years before it
became bankrupt and went out of business in 1995.) Sergei Cherkis shared an earlier
version of “Doing Physics under Stalin” with Freeman Dyson and Freeman Dyson
responded with the anecdote of Ivanenko’s inability to introduce him to Landau.

Landau was not the only person that Ivanenko alienated. Many others would
come to despise Ivanenko. For example, at an international conference on gravi-
tation that occurred in Warsaw, Poland in July 1962, Fock displayed a very open
contempt for Ivanenko. During World War I, Fock had served in an artillery unit.
As a consequence, Fock suffered from a severe case of deafness. For this reason, he
wore a hearing aid that required a large battery that was attached to a belt around
his waist. When Ivanenko was about to begin a presentation at the 1962 conference,
Fock shut off his hearing aid in a very theatrical manner for all to see (Engelbert
Schücking 2002, 2003, Private Communications).

The suggestion of Vucinich that Ivanenko’s 1928 speech cost Ivanenko mem-
bership in the USSR Academy of Science does not withstand scrutiny. Gamow
was elected as a corresponding member in 1932 not long after the ether-phlogiston
telegram. Fock was also elected as a corresponding member in 1932 and then elected
as a full member in 1939 after he had been arrested twice. And in an unusual action,
Landau was elected as a full member to the Academy in 1946 skipping the usual
intermediate status as corresponding member.

To substantiate his claim that Ivanenko was “one of the most cited Soviet
physicists in Western scientific literature”, Vucinich refers his readers to the book,
Inward Bound, written by the physicist Abraham Pais.

Much of Ivanenko’s reputation stems from a paper he wrote in 1932 proposing
a new model for the atomic nucleus (Ivanenko 1932, pp. 439–441). Before 1932, it
was thought that nuclei were composed solely of protons and electrons. However
this model conflicted with the laws of quantum mechanics in several ways. Early
in 1932, James Chadwick discovered the neutron. This stimulated some new ideas.
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Because of his 1932 paper, Ivanenko is sometimes credited as the first to propose the
proton–neutron model of atomic nuclei. Actually the paper proposes that nuclei are
composed mostly of alpha particles plus whatever number of protons and neutrons
are necessary to give the correct atomic weight and atomic number. According to
Pais, others were proposing the same model at the same time (Perrin 1932) and
(Auger 1932).

Pais indicates that Ivanenko’s real accomplishment was to point out that if the
neutron was considered an elementary particle with spin 1/2 then his near proton–
neutron model would give the correct spin for the Nitrogen nucleus. This was at a
time when no one had proposed that the neutron was an elementary particle and the
spin of the neutron was unknown (Pais 1986, pp. 409–411).

At this time, Ivanenko was respected on the world stage although he never had
star status. During the late 1920s and early 30s, Ivanenko collaborated with the best
Soviet physicists of his time. He collaborated not only with V.A. Fock and M.P.
Bronstein but also with future Nobel prize winners L.D. Landau and I.Y.Tamm.
Historian Alexei Kojevnikov, who has read the correspondence between Fock and
Ivanenko, reports that Fock actively lined up academic positions for Ivanenko and
continued to be supportive to him while Ivanenko was in exile (Kojevnikov Sept. 6,
2002, Private Communication).

How did Ivanenko become the object of Fock’s contempt? At age 86, Vitaly
Ginzburg is one of the few people who can throw some light on this question at
this late date. In his book, The Physics of a Lifetime, Ginzburg discusses combative
encounters with Richard Feynman and Lev Landau with good humor (Ginzburg
2001, pp. 369–370 and pp. 446–447). However he is reluctant to discuss Ivanenko
who evokes bad memories.

In 1942, Ivanenko’s exile ended and he obtained a position at Moscow State
University. Ginzburg reports that it was the perception of many in the physics
community that the KGB had persuaded Ivanenko to spy on them (Ginzburg 2003,
Private Communication). This is plausible since the KGB frequently recruited
informers from their detainees. On the other hand, according to historian Gennady
Gorelik, there is no documentary support for this charge and Ivanenko’s KGB file
is only available to Ivanenko’s closest relatives. Defenders of Ivanenko could point
out that it was also the practice of the KGB to arrange things so that people who did
not know one another from distant regions would be brought together at possible
centers of dissent to create an atmosphere of mutual distrust.

At any rate, Ivanenko was no longer the rebel who had attacked the Marxist
philosophers in 1928. He did not join with his Moscow State University colleagues
in their bizarre attacks against relativity and quantum mechanics. However he did
advocate Bohm’s intellectually respectable but politically safer alternative to Bohr’s
interpretation of quantum mechanics (Vucinich 1984, p. 334). More importantly,
he enthusiastically joined his university colleagues in a campaign to emphasize the
accomplishments of Russian physicists, which would include himself.

The Marxist philosopher B.M. Kedrov published his Engels and Natural Science
in 1946 and Ivanenko attacked him for not giving broader treatment to Russian
contributions (Vucinich 1984, pp. 232–233).
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In the fall of 1947, Ginzburg was eagerly expecting to receive the title of
professor. At about this same time, Trofim Denisovich Lysenko was making his
final move to gain control of all of Russia’s agricultural research centers. Lysenko
was a charlatan who was able to persuade many party officials including Stalin and
later Krushchev that a man with the field experience of a Russian peasant could
outperform academically trained geneticists whose minds were polluted by western
ideas. His most prestigious opponent Nikolay Ivanovich Vavilov had died in a Soviet
prison from malnutrition in 1942.

On October 4, an article appeared in the Literaturnaya Gazeta (The Literary
Gazette) lambasting the foes of Lysenko. Although it was not completely obvious at
the time, it was a list of prominent geneticists who would soon be losing positions
for being “cosmopolitan” and advocates of Mendel’s gene theory. (The epithet
“cosmopolitan” was applied to those who were receptive to “bourgeois” ideas from
the west. If the object of the epithet was Jewish there was also the implication that
the person was more loyal to Israel than to Mother Russia. It should be noted that
Jews in Soviet Russia were officially treated as a separate nationality like Ukrainians
or Georgians.)

To Ginzburg’s horror, he discovered that his name was added to the list of
geneticists who should be condemned for their cosmopolitan behavior. For contrast,
the author mentioned Ivanenko as an exemplar to be admired . . . a true Russian. On
the same day, Ginzburg was notified that he would not be promoted to professor
because he was too “cosmopolitan.” Since Ivanenko was on the board that made
this decision and since the author of the article in The Literary Gazette would not
normally be aware of Ginzburg’s writings, Ginzburg had good reason to believe
that Ivanenko was instrumental in both events. Ginzburg remembers the date quite
well because it was his 31st birthday! (Ginzburg 2003, Private Communication).
(I obtained this story from Prof. Ginzburg through an exchange of e-mail messages
and a three way phone conversation for which Sasha Rozenberg acted as translator.
A few months later, in October 2003, Prof. Ginzburg was awarded a Nobel Prize in
physics.)

(If Ginzburg had been born about ten years earlier, things might have been worse.
If my arithmetic is correct, Bronstein, Ivanenko, and Landau all observed their 31st
birthdays either in a KGB prison or in a KGB labor camp.)

During the following year in 1948, G.S. Landsberg accused Ivanenko of making
citation of his work and that of his students the touchstone of a Soviet physicist’s
patriotism (Holloway 1994, p. 53).

Also in 1948, Fock was asked to write an official review of a manuscript
written by Ivanenko and Sokolov. The topic was quantum gravity. It had been
written the year before and was now being submitted for the Stalin Prize. Fock
wrote, “Whatever causes compelled the authors to avoid mentioning Bronstein’s
achievements, their word may not be considered as the construction of the quantum
theory of gravitation, for this theory was created by Bronstein 11 years earlier.”
(Gorelik 1993, p. 313).

Failing to cite Bronstein because he was still “an enemy of the people” would
not have excused Ivanenko in the eyes of Fock. Fock knew how Bronstein had
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battled with the publishers of the translation of Dirac’s second edition of Quantum
Mechanics to give Ivanenko due recognition when Ivanenko was in exile.

Ivanenko’s nationalistic attacks on his brother physicists alienated many and
he paid for it. During the 30’s, Ivanenko could take pride in the fact that he had
coauthored some significant papers. However his new enemies were eager to point
out that he had published very little without a coauthor. Questions were raised about
how much he had actually contributed to those coauthored papers. Furthermore
it was recognized that his grasp of mathematics was not as strong as one would
normally expect of a theoretical physicist. All this was reflected in a humiliating
encounter Ivanenko had with Richard Feynman at the same 1962 conference in
Warsaw where Fock shut off his hearing aid.

According to Engelbert Schücking, Ginzburg gave a talk, which was parallel
translated by one of Infeld’s students. Ginzburg became unhappy with the translation
and continued his talk in English to the chagrin of his fellow Russians. After the talk,
Ivanenko commented to Feynman that Ginzburg was “like a child.”

Feynman who had a high regard for Ginzburg lashed back,
“What have you ever done in physics, Ivanenko?
“I’ve written a book with Sokolov.”
“How do I know what you contributed to it? Ivanenko, what is the integral of e

to minus x squared from minus infinity to plus infinity?”
Silence
“Ivanenko, what is one and one?”
The following day, Schücking saw Ivanenko giving Feynman a paper of his

and Feynman was rather apologetic saying that he was unable to read Russian.
Nonetheless, it is clear that Feynman did not have a high regard for Ivanenko.
Actually, Feynman took a dim view of the whole conference. He told Schücking
over a drink, “These people are like worms in a bottle crawling over each other.”

Fock consistently battled for his students when they encountered difficulties with
the authorities. How would Ivanenko react in a similar situation? Ivanenko was
given the opportunity to intervene on behalf of one of his students in 1987.

Sergiu Vacaru was doing graduate work from 1984 to 1987 in Moscow under
the official supervision of Ivanenko. (Perhaps it should be noted that someone else
was overseeing the actual writing of Vacaru’s Ph.D. thesis.) For much of this period,
Yeltsin was leader of the Communist Party in Moscow and Vacaru along with other
students were encouraging him in his efforts to carry out various reforms. However
in 1987, the reformers suffered a setback. Yeltsin was ousted and Vacaru along with
many others was arrested.

After one month, Sergiu was released from prison but he had become politically
undesirable. He had published over 30 papers and had completed all academic
requirements for a doctorate. However he soon found that he could not get the
required endorsements from communist party functionaries to receive his degree.
As far as Sergiu knows, Ivanenko never lifted a finger on his behalf. At any rate,
Vacaru had to go elsewhere to get his Ph.D (Vacaru 2002, Private Conversation).

Perhaps it is easy for someone who has lived a painless existence to condemn
Ivanenko. However it appears that many who were living under the same oppressive
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government as Ivanenko felt that he could have been a better person. Dmitrii
Ivanenko died on December 30, 1994.

Problem 111. Compute

I D
Z C1

�1
exp.�x2/dx.

Hint

I 2 D
Z C1

�1

Z C1

�1
exp.� �x2 C y2

�
/dxdy:

This integral can be determined by using polar coordinates.



Chapter 6
The Gauss–Bonnet Formula

6.1 The Exterior Derivative and Stokes’ Theorem

We can define the exterior derivative d by the equation:

dA D ”k ^ rkA, (6.1)

where A is any differentiable Clifford number that is not necessarily index free. For
example,

duj D ”k
@uj

@uk
D ”kı

j

k D ”j . (6.2)

In the context of differential forms, we would write

du1 ^ du2 ^ : : : ^ dup D du1du2 : : : dup in place of

”1 ^ ”2 ^ : : : ”p D ”12:::p

and call the resulting product a p-form. In this book, I have adopted some of the
terminology from the formalism of differential forms because many of the results
of differential forms carry over into Clifford algebra in a virtual isomorphic form.
One significant difference is that in the formalism of differential forms, 1-forms and
tangent vectors span distinct spaces. The analogs in Clifford algebra (the upper and
lower index Dirac vectors) span the same space.

The formalism of differential forms is particularly appropriate when one wants to
investigate problems without introducing a metric tensor. The definition that I have
used to define the exterior derivative in (6.1) depends on the existence of a metric
tensor. However, had I restricted the definition of the exterior derivative to Clifford
numbers written in the form

A D Ak1k2:::kp”k1k2:::kp ,

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 6, © Springer Science+Business Media, LLC 2012
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I could have used a definition that does not depend on the metric. Namely:

dA D@Ak1k2:::kp

@uj
”jk1k2:::kp .

To see this, we note that

rj

�
”k1”k2 � � � ”kp

� D �rj”k1
�

”k2 � � � ”kp

C ”k1
�rj”k2

�
”k3 : : : ”kp

C ”k1”k2
�rj”k3

�
”k4 � � � ”kp

C � � � C ”k1”k2 � � � ”kp�1
�rj”kp

�
.

Then

”j ^ rj

�
”k1”k2 : : : ”kp

� D � �
k1

	j ”j ^ ”	”k2”k3 � � � ”kp

� �
k2

	j ”j ^ ”k1”	”k3 � � � ”kp

� �
k3

	j ”j ^ ”k1”k2”	”k4 : : : ”kp

C � � � � �
kp

	j ”j ^ ”k1”k2 : : : ”kp�1”	.

This of course implies that

”j ^ rj

�
”k1k2:::kp

� D �� k1
	j ”j	k2k3:::kp � �

k2
	j ”jk1	k3k4:::kp

� �
k3

	j ”jk1k2	k4:::kp C � � � � � kp
	j ”jk1k2:::kp�1	. (6.3)

It turns out that each term on the right-hand side of (6.3) is zero. For example,
consider the second term. The exchange of two numbers in a sequence is an odd
permutation, so

”jk1	k3k4:::kp D �”	k1jk3k4:::kp .

On the other hand, the Christoffel symbol is symmetric with respect to its two lower
indices, so

�
k2

	j ”jk1	k3k4:::kp D �� k2
j	 ”	k1jk3k4:::kp . (6.4)

However j and 	 are dummy indices that can be replaced, respectively, by 	 and j:
If we do this on the right-hand side of (6.4), we have

�
k2

	j ”jk1	k3k4:::kp D �� k2
	j ”jk1	k3k4:::kp . (6.5)

In general, x D �x implies that x D 0. Thus, (6.5), implies that

�
k2

	j ”jk1	k3k4:::kp D 0:
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Essentially, the same argument applies to any term on the right-hand side of (6.3),
so we have

”j ^ rj

�
”k1k2:::kp

� D d”k1k2:::kp D 0. (6.6)

Now suppose

F D 1

pŠ
Fk1k2:::kp”k1k2:::kp ,

then

dF D ”j ^ rjF

D 1

pŠ

�
@

@uj
Fk1k2:::kp

	
”jk1k2���kp C 1

pŠ
Fk1k2:::kp”j ^ rj

�
”k1k2:::kp

�
.

Since the last term is zero, we have

dF D ”j ^ rjF D 1

pŠ

�
@

@uj
Fk1k2:::kp

	
”jk1k2:::kp , where

F D 1

pŠ
Fk1k2:::kp”k1k2:::kp . (6.7)

From (6.7), we see that for a restricted class of Clifford numbers, the exterior
derivative operator d is meaningful in the absence of a metric. The intrinsic operator
definition, that I have used, will allow us to apply d to all differentiable Clifford
numbers, when the metric is assumed to exist.

A very important and useful result that flows from the formalism of differential
forms is a generalized version of Stokes’ Theorem:

Theorem 112. Stokes’ Theorem
Suppose

F D
nX

kD1
F
12::: Ok:::n”

12::: Ok:::n D
nX

kD1
F
12::: Ok:::ndu1du2 : : : dOuk : : : dun.

Then Z

V

dF D
Z

@V

F; or rewritten, we have (6.8)

Z

V

nX

kD1
.�1/k�1 @

@uk
F
12::: Ok:::ndu1du2 : : : duk : : : dun

D
Z

@V

nX

kD1
F
12::: Ok:::ndu1du2 : : :bduk � � � dun:
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It should be noted that the circumflex f is used to indicate an omitted index or other
entity. Furthermore,

dF D
nX

kD1

@

@uk
F
12��� Ok:::ndukdu1du2 : : :bduk : : : dun

D
nX

kD1
.�1/k�1 @

@uk
F
12::: Ok:::ndu1du2 : : : duk : : : dun.

The symbol V designates an n-dimensional bounded region while the symbol @V
designates the .n � 1/-dimensional boundary of that same region. The boundary
is assumed to have a finite .n � 1/-dimension volume. To compute the integrals,
we replace each duk by duk after ordering the duk’s in increasing order. It is
difficult to state the most general conditions for which the theorem is true. Clearly,
the two integrals in (6.8) have to exist. The theorem is relatively easy to prove
if we require that every coordinate curve passes through the region intersecting
the boundary twice, touches the region tangentially (possibly along a connected
interval), or misses the region altogether. (This is a slight generalization of an
alternate requirement that the region be compact and convex.) One can then
generalize the regions for which the theorem is true by fitting together regions
of the type just described. This can be done because the contributions of shared
boundaries will cancel out. I will prove the theorem below only for 2-dimensional
volumes because that is the only case we need in this text. For higher dimensions,
see (Flanders 1963) or (Snygg 1997).

Proof. (2-dimensions only)
What we wish to prove is

Z

V

�
@F2

@u1
� @F1

@u2

	
du1du2 D

Z

@V

�
F1du1 C F2du2

�
. (6.9)

To prove (6.9), we merely carry out the obvious integrations on the left-hand side.
(Refer to Fig. 6.1.)

Z

V

@F2.u1; u2/

@u1
du1du2 D

Z u2MAX

u2MIN

F2.u
1
MAX.u

2/; u2/du2

�
Z u2MAX

u2MIN

F2.u
1
MIN .u

2/; u2/du2

D
Z

ABC

F2du2 �
Z

EDC

F2du2

D
Z

ABC

F2du2 C
Z

CDE

F2du2

D
Z

ABCDE

F2du2: (6.10)
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A

B

C

D

E

u1

MIN
(u2)

u1

MAX
(u2)

u2

u1

u2

MAX

u2

MIN

Fig. 6.1 u1MAX.u
2/ D path ABC and u1MIN .u

2/ D path EDC

We note that
Z

EA

F2du2 D
Z u2MIN

u2MIN

F2.u
1.u2/; u2/du2: (6.11)

The integrand on the right-hand side of (6.11) is not well defined as a function
of u2 since u1 is not really a function of u2. Nevertheless, the interval of inte-
gration has length zero so the integral is zero. Combining this result with (6.10)
gives us

Z

V

@F2.u1; u2/

@u1
du1du2 D

Z

ABCDE

F2du2 C
Z

EA

F2du2

D
Z

ABCDEA

F2du2 D
Z

@V

F2du2. (6.12)

Similarly,

�
Z

V

@F1

@u2
du1du2 D �

Z u1MAX

u1MIN

F1.u
1; u2MAX.u

1//du1

C
Z u1MAX

u1MIN

F1.u
1; u2MIN .u

1//du1
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D �
Z

DCB

F1du1 C
Z

DEAB

F1du1

D
Z

BCD

F1du1 C
Z

DEAB

F1du1

D
Z

@V

F1du1.

Combining this result with (6.12), we get our desired result:

Z

V

�
@F2

@u1
� @F1

@u2

	
du1du2 D

Z

@V

�
F1du1 C F2du2

�
.

ut
Problem 113. Suppose F D 1

pŠ
Fi1i2:::ip ”

i1i2:::ip . Show ddF D 0. Does this generalize

to other Clifford numbers? For example, if E Nk is a member of a noncoordinate
orthonormal basis, is it true that ddE Nk D 0? These relations are known as the
Poincaré lemma by some authors and the converse of the Poincaré lemma by others.
(It is the converse of a less trivial lemma.)

Problem 114. Find an example where d”k ¤ 0.

Problem 115. The proof I gave for the 2-dimensional version of Stokes’ Theorem
applies only to very simply shaped regions described immediately preceding my
proof. However, Stokes’ Theorem can easily be extended to a wide variety of regions
by fitting such simple regions together. This is because the path integrals for the
shared boundaries will cancel out.

For the simple regions discussed in the proof, the boundary integral is carried out
in essentially a counter-clockwise direction with the interior of the region to the left
of the direction of path integration. What happens if several of these simple regions
are fitted together to form a region with one or more holes? That is for a boundary
associated with a hole, in what direction should one carry out the path integration to
maintain the validity of Stokes’ Theorem? (Draw pictures to justify your answer.)

6.2 *Curvature via Connection 1-Forms

You should at least skim over the material in Subsect. (5.6.3) before reading this
section.

The intent of this section is to give some indication of how computations are
carried out using the formalism of differential forms rather than the formalism of
Clifford algebra. This section is not a prerequisite for any other section in this text.
Thus, you may wish to skip this section on first reading and save it for your summer
vacation.
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A popular method of computing the components of the Riemann tensor is to
compute the curvature 2-forms via the connection 1-forms that were defined by
(5.71) and (5.76). In particular,

RAB D dwAB C w C
A ^ wCB . (6.13)

Now that I have defined the exterior derivative d, I can now derive this formula.
From (5.51),

RAB˛ˇEA D RB˛ˇ” D W
	
BR


	˛ˇ”

D W
	
B

�r˛rˇ � rˇr˛

�
”	.

You should confirm that it follows from (5.56) that we can rewrite this last equation
in the form:

RAB˛ˇEA D �r˛rˇ � rˇr˛

�
W

	
B”	, or restated:

RAB˛ˇEA D �r˛rˇ � rˇr˛

�
EB .

From (5.71), this becomes

RAB˛ˇEA D �r˛

�
cBD.”ˇ/E

D
�C rˇ

�
cBD.”˛/E

D
�

D � �r˛cBA.”ˇ/
�

EA C cBD.”ˇ/c
D
A.”˛/E

A

C �rˇcBA.”˛/
�

EA � cBD.”˛/cDA.”ˇ/EA.

This last equation implies

RAB˛ˇ D �r˛cBA.”ˇ/C rˇcBA.”˛/

C cBD.”ˇ/c
D
A.”˛/� cBD.”˛/c

D
A.”ˇ/.

Using the fact that cGH D �cHG and cGH D �c G
H (See Prob. 116), we have

RAB˛ˇ D r˛cAB.”ˇ/ � rˇcAB.”˛/

C c D
A .”˛/cDB.”ˇ/� c D

A .”ˇ/cDB.”˛/.

Now

RAB D 1

2
RAB˛ˇ”˛ˇ

1

2

h
”˛ ^ �r˛cAB.”ˇ/

�
”ˇ C ”ˇ ^ �rˇcBA.”˛/

�
”˛

C c D
A .”˛/”

˛ ^ cDB.”ˇ/”ˇ C c D
A .”ˇ/”

ˇ ^ cDB.”˛/”˛
i
. (6.14)
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We note that

”˛ ^ �r˛cAB.”ˇ/
�

”ˇ D ”˛ ^ r˛

�
cAB.”ˇ/”

ˇ
� � cAB.”ˇ/”

˛ ^ r˛”ˇ:

From (6.6),

”˛ ^ r˛”ˇ D d”ˇ D 0.

Also wAB D cAB.”ˇ/”
ˇ. With these results, (6.14) becomes

RAB D dwAB C w D
A ^ wDB . (6.15)

For two dimensions, w PN1 wP N2 D w N1N1 wN1N2 C w N2N1 wN2N2 D 0. This is true because

wN2N2 D 0 and w N1N1 D ˙wN1N1 D 0. Thus, in the two-dimensional case RN1N2 D dwN1N2.
Another useful formula is

dEA D �wA
M ^ EM . (6.16)

To obtain this equation, we note that

dEA D ”k ^ rkEA D �”k ^ cAM .”k/EM D �wA
M ^ EM .

Equation(6.16) can frequently used to obtain the connection 1-forms. If we write

EA D W A
 ”, then

dEA D ”k ^ rk

�
W A
 ”

� D
�
@W A



@uk

	
”k.

Knowing the left-hand side of (6.16) enables us to infer the connection 1-forms from
the right-hand side by a “guess-and-check” or “trial and error” method discussed
in Gravitation by Misner et al. (1973, pp. 355–356). I personally think the use of
Fock–Ivanenko coefficients is more straight forward and efficient.

Using either method to compute curvature 2�forms, you must be prepared
to go back and forth between some coordinate frame and some orthonormal
noncoordinate frame.

To compute dwAB , one generally represents wAB in the form cAB.”/”
 rather

than the form cAB.E/E. Thus the resulting curvature 2-form, RAB is represented
in the form

RAB D 1

2
RABij”ij .

Therefore to obtain the components of the Riemann tensor in a purely coordinate
form or a purely orthogonal noncoordinate form, one must go an extra step.
In particular,

R˛ˇij D W A
˛ W

B
ˇ RABij , or

RABPQ D W i
PW

j
QRABij .
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Of course, the problem of going back and forth between the two types of frames
also occurs when one uses Fock–Ivanenko coefficients to carry out the desired
computations.

Problem 116. Using the fact that c B
A D cAC n

CB demonstrates that c B
A D �cBA.

Problem 117. Show RABAB D R
˛ˇ

˛ˇ . Also show R
˛ˇ

˛ˇ D R
˛ˇ

˛ˇ (indices
unsummed).

Problem 118. Starting with (6.16),

(a) Show

ddEA D � �dwA
B C wA

C ^ wC
B

� ^ EB

D �RA
B ^ EB .

(b) Show the result of part a) is consistent with the result of Prob. 113. Hint! Refer
to (5.54).

6.3 Geodesic Curvature on a 2-dimensional Surface

(You may wish to review my comments on the arc length parameterization of a
curve in Sect 5.4.)

The curvature of a curve on the 2-dimensional Euclidean plane may be consid-
ered to be the rate at which its unit tangent vector t.s/ rotates away from (or toward)
a straight line. (See Fig. 6.2.) To discuss the nature of this curvature, it is useful to
introduce a second unit vector n.s/ perpendicular to t.s/. It is standard practice to
choose the direction of n.s/ so that ft.s/;n.s/g considered as a basis is right handed.
That is

t.s/n.s/ D e1e2 or

n.s/ D t.s/e1e2.

Thus, if

t.s/ D e1 cos �.s/C e2 sin �.s/, then

n.s/ D �e1 sin �.s/C e2 cos �.s/.

If curve A in Fig. 6.2 is parameterized in terms of s where s measures arc length,
then

d

ds
t.s/ D .�e1 sin � C e2 cos �/

d�

ds
D d�

ds
n.s/ D k.s/n.s/. (6.17)
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t(s)
n(s)

θ x

y

A

B

Fig. 6.2 Curve B is the
evolute of curve A

Similarly,
d

ds
n.s/ D .�e1 cos � � e2 sin �/

d�

ds
D �k.s/t.s/. (6.18)

In this context, d�=ds or k.s/ is said to be the curvature of curve A. If the curvature
k.s/ is positive, t.s/ is rotating counterclockwise and if k.s/ is negative, t.s/ is
rotating clockwise.

The lines normal to curve A have an envelope (curve B) that is said to be the
evolute of curve A. To determine a formula for curve B, we note that each point on
curve B lies somewhere on a line normal to curve A. Thus if x.s/ is a formula for
curve A where s is arc length, then a parameterization of curve B is

y.s/ D x.s/C ˛.s/n.s/, (6.19)

where ˛.s/ is yet to be determined. (In this computation, s is a measure of arc
length for x.s/ but not for y.s/.) To determine the function ˛.s/, we note that a
vector tangent to curve B at y.s/ is normal to curve A at the corresponding point
x.s/. Using (6.17) and (6.18), we have

d

ds
y.s/ D t.s/� ˛.s/k.s/t.s/C

�
d˛.s/

ds

	
n.s/. (6.20)

Thus,

Œ1 � ˛.s/k.s/� t.s/ D 0 and

˛.s/ D 1

k.s/
. (6.21)
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And therefore

y.s/ D x.s/C 1

k.s/
n.s/. (6.22)

From (6.20) and (6.21), it is clear that if k.s/ is constant then dy=ds D 0. In this
case, y.s/ becomes a single point, which we can label a. From (6.22), we see

jx.s/ � aj D 1

jk.s/j : (6.23)

Thus, when the curvature k is constant, then x.s/ is a circle with center y.s/ D a
and radius equal to 1= jkj.

Therefore in the more general case where x.s/ is not a circle, it is natural to refer
to 1= jk.s0/j as the radius of curvature for the point x.s0/. Similarly, it is natural to
refer to y.s0/ as the center of curvature for the point x.s0/.

Another approach, which justifies the same terminology, is to consider the circle
that makes the best approximation to the curve x.s/ in the neighborhood of x.s0/.
If u.s/ is an arc length formula for a circle of radius r and center a, then

hu.s/ � a;u.s/ � ai D r2: (6.24)

Our problem now is to determine both r and a so that the resulting circle is the
best approximation to our curve at x.s0/. To carry out this endeavor, we consider the
function

f .s/ D hx.s/� a; x.s/� ai � r2. (6.25)

If we wanted to obtain the unique circle that passed through the points x.s�1/, x.s0/,
and x.s1/, where s�1 < s0 < s1, we would determine r and a so that

f .s�1/ D f .s0/ D f .s1/ D 0.

See Fig. 6.3. According to Rolle’s Theorem, this implies that there are parameter
values t1 and t2 such that s�1 < t1 < s0 < t2 < s1 and

d

ds
f .s/

ˇ
ˇ
ˇ̌
sDt1

D Pf .t1/ D d

ds
f .s/

ˇ
ˇ
ˇ̌
sDt2

D Pf .t2/ D 0.

Applying Rolle’s Theorem once more, we know there is a parameter value u such
that t1 < u < t2 and

d2

ds2
f .s/

ˇ
ˇ
ˇ
ˇ
sDu

D Rf .u/ D 0.

Thus, necessary conditions for the limiting circle obtained when the three points
coalesce at x.s0/ is that

f .s0/ D Pf .s0/ D Rf .s0/ D 0.
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x(s0)

x(s-1)

x(s1)

x(s0)

a
a

a b

Fig. 6.3 (a) Circle passing through three points of parabola. (b) Osculating circle for point x.s0/

(When I carry out the computation below, it will become obvious that these
conditions are also sufficient to determine r and a.)

Applying the first condition, we have

f .s0/ D hx.s0/� a; x.s0/ � ai � r2 D 0.

This implies that
r D jx.s0/ � aj . (6.26)

Next
Pf .s/ D 2 ht.s/; x.s/� ai . (6.27)

Setting Pf .s0/ D 0, we infer that for some value of ,

x.s0/� a D n.s0/: (6.28)

From (6.27), we have

Rf .s/ D 2 hk.s/n.s/; x.s/ � ai C 2 ht.s/; t.s/i :

Setting Rf .s0/ D 0 and using (6.28), we have

2 hk.s0/n.s0/; x.s0/� ai C 2 ht.s0/; t.s0/i D 0, therefore

k.s0/ hn.s0/; n.s0/i C ht.s0/; t.s0/i D 0 and thus

k.s0/C 1 D 0, or restated:

 D �1
k.s0/

(6.29)
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Combining this result with (6.26) and (6.28), we have

r D jx.s0/� aj D jj D 1

jk.s0/j , and thus

r D 1

jk.s0/j . (6.30)

Combining (6.28) and (6.29), we have

a D x.s0/C 1

k.s0/
n.s0/. (6.31)

Comparing (6.30) and (6.31) with (6.23) and (6.22) now gives us another justifica-
tion for the terms “radius of curvature” and “center of curvature” that I introduced
in my discussion of the evolute.

The circle constructed above is referred to as the osculating (kissing) circle. This
is a term coined by Leibniz (1646–1716).

For the intrinsic observer on a 2-dimensional curved surface, it does not make
sense to define the curvature of a curve as the rate the unit tangent vector rotates
away from (or toward) a straight line. But it does make sense to speak of the rate
at which the unit tangent vector rotates away from (or toward) a geodesic. This is
called the geodesic curvature kg.s/. Instead of having

d

ds
t.s/ D k.s/n.s/, we have

rst.s/ D kg.s/n.s/, where (6.32)

as before, the direction of the unit vector n.s/ is chosen so that ft.s/;n.s/g is “right
handed.” If fV1.s/;V2.s/g is a pair of orthonormal right handed vectors that are
parallel transported along the curve x.s/, then we can write

t.s/ D V1.s/ cos �.s/C V2.s/ sin �.s/, and

n.s/ D �V1.s/ sin �.s/C V2.s/ cos �.s/.

Since rsV1.s/ D rsV2.s/ D 0, we have

rst.s/ D n.s/
d�

ds
, and (6.33)

rsn.s/ D �t.s/
d�

ds
. (6.34)

Problem 119. For theoretical discussions of curves, it is convenient to use an arc
length parameter. However in actual practice, solving the equation ds=dt D jv.t/j
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and then obtaining the inverse function t.s/ can complicate the computations.
However, the desired entities can be computed without using an explicit form of
t.s/: Show

d

dt
t.t/ D k.t/ jv.t/j n.t/, and (6.35)

d

dt
n.t/ D �k.t/ jv.t/j t.t/, where (6.36)

v.t/ D d
dt

x.t/, t.t/ D v.t/= jv.t/j, and n.t/ D t.t/e1e2.

Problem 120. Consider the parabola x.t/ D .t; t2/. Use the results of Prob. 119 to
obtain the curvature and the equation for the evolute. Also show that there is a cusp
in the evolute at .0; 1

2
/.

Problem 121. Reconsider (6.25). That is

f .s/ D hx.s/� a; x.s/� ai � r2:

It was shown that the necessary and sufficient conditions for a and r to be,
respectively, the center and radius of the osculating circle for s D s0 are

f .s0/ D Pf .s0/ D Rf .s0/ D 0:

(a) Show f .3/.s0/ D �2 Pk.s0/=k.s0/, where f .3/.s/ D d3f .s/

ds3
: This shows that if

neither Pk.s0/ nor k.s0/ is zero, then the osculating circle crosses the original
curve x.s/ at the point of tangency. Why? This is contrary to some informal
drawings that appear in some text books. It also suggests to me that the name
“osculating” (kissing) circle may be inappropriate.

(b) Is there some point on a parabola where the parabola is not crossed by
the companion osculating circle? Justify your answer by some computations.

Problem 122. CYCLOID
Consider a wheel in the x-y plane rolling along the x axis without slipping (See

Fig. 6.4). The path generated by a point P attached to the wheel is called a cycloid.
The equation for the cycloid pictured in Fig. 6.4 is

x.�/ D e1b.� � sin �/C e2b.1� cos �/. (6.37)

Show that the evolute of this cycloid is another cycloid. In particular, show

y.�/ D Œe1b� � e22b�C Œe1b.� � sin�/C e2b.1� cos�/� , where

� D � � � . (6.38)
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b

P

θ

(bπ,-2b)

cycloid

evolute

Fig. 6.4 The evolute of a cycloid is another cycloid

Comment:

v.�/ D dx
d�

D e1b.1 � cos �/C e2b sin �

D 2b

�
e1 sin2

�

2
C e2 sin

�

2
cos

�

2

�
.

Thus,

jv.�/j D 2b

ˇ
ˇ
ˇ
ˇsin

�

2

ˇ
ˇ
ˇ
ˇ and

t.�/ D sin �
2ˇ̌

sin �
2

ˇ̌
�

e1 sin
�

2
C e2 cos

�

2

�

except where � is an integral multiple of 2� .

Problem 123. Consider the circle of constant latitude on a sphere. Namely

x.�/ D e1R cos� sin �0 C e2R sin � sin �0 C e3R cos �0.

Show that 1=
ˇ
ˇkg
ˇ
ˇ is the distance from any point on the circle to the vertex of the

tangent cone shown in Fig. 6.5.

6.4 *Huygens’ Pendulum Clock and the Cycloid

Note! Some Newtonian physics is used in this section.
Although Galileo Galilei (1564–1642) designed a pendulum clock, he never built

one. Due to friction, one must transfer energy to the pendulum to keep it swinging
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x3

x2

rg

x1

Fig. 6.5 If rg D 1=
ˇ̌
kg
ˇ̌
,

where kg is the geodesic
curvature, then for a circle of
constant latitude on a sphere,
rg is the distance from any
point on the circle to to the
vertex of the tangent cone

back and forth. That was one problem. A second problem faced by clock designers
is that the period of a simple pendulum depends on the maximum angle of deflection
from a vertical line (the amplitude).

In the winter of 1656–1657, Christiaan Huygens (1629–1695) solved the first
problem by designing a clock that transferred the energy of a slowly falling weight
to the pendulum by a ratchet mechanism involving a system of gears.

Huygens used two methods to deal with the second problem. It had already
been noted by Galileo that for small amplitudes, the period of a pendulum is
nearly isochronous (independent of amplitude). Huygens also discovered that if
he used a bob hung on a “weightless” cord for his pendulum, he could make the
period nearly isochronous by having the cord wind around bent pieces of wood or
metal plates. (See Fig. 6.6a). This had the effect of shortening the period for large
amplitudes. However initially, Huygens did not know what curve he should use for
his constraining plates.

Even with his limited knowledge, Huygens and others were able to design
fairly accurate clocks. In 1658, one year after Huygens’ first clock, Samuel Coster
guaranteed church officials in Utrecht that a clock he was building for them would
not deviate more than eight minutes in a week. (Bos 1986, p. xi). However, Huygens
had much broader interests than building accurate clocks. For example, he is
currently best known for his wave theory of light.

Late in 1659, Huygens attacked the problem of measuring the gravitational
constant g. This problem was not trivial. Without stop watches, it was impossible to
get even an approximate value directly. Galileo may never have dropped anything
from the tower of Pisa. Doing so would not have given him very much information.
Using inclined planes, Galileo was able to slow down the rate of descent. Doing this,
he was able to conclude that for a rolling ball released with zero initial velocity, the
formula for the distance traveled down the plane would be s D 1

2
ct2, where s is
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cycloid

a b

θ=0

θ=π
θ=θ0

θ=2π

y

x

Fig. 6.6 (a) Bent plates shorten period of pendulum for large amplitudes. (b) A cycloid defined
by the equation x.�/ D e1b.� � sin �/� e2b.1� cos �/. The period is independent of the position
of maximum deflection where � D �0

the distance, t is the time, and c is a constant, which is determined by the angle
of inclination. From this information, it was reasonable to infer that the formula
for an object in free fall should be s D 1

2
gt2. However, his measurements using

rolling balls could not be directly translated into the situation of a truly free fall.
Using simple trigonometry, Galileo could have inferred the value of g by sliding
objects down frictionless planes. Without a sophisticated knowledge of Newtonian
mechanics, rolling balls cannot be used to determine the value of g. When a ball
rolls down an inclined plane, part of the potential energy is converted into the kinetic
energy of the spinning motion. Thus, a rolling ball will not arrive at the bottom of an
inclined plane as fast as an object sliding down a frictionless plane. Unfortunately
for Galileo, frictionless planes were unavailable.

In the hopes of determining an accurate value for g, Huygens started to
investigate the mathematical nature of the period of the pendulum at the end of
1659. He had access to some results on centrifugal force that he had derived himself
but he did not have the tools of calculus. Newton was not quite 17 and had not yet
invented calculus. Using the coordinate free methods of Archimedes with a small
amount of algebra, Huygens was unable to solve the problem for a circular arc with
an arbitrary amplitude. However, he was able to show that for small amplitudes the
period T is approximately 2�

p
L=g, where L is the length of the “weightless” cord

and g is the constant of gravity.
Furthermore, his accomplishments did not stop there. Applying the methods

that he was using he developed considerable insight into the problem. He already
knew more about the geometry of cycloids than I will discuss in this book. With
this knowledge, he was soon able to show that the same formula that was only
approximate for the period of a pendulum with a circular arc would be exact if the
bob was somehow constrained to follow the path of a cycloid. A discussion of these
computations appears in Joella G. Yoder’s Unrolling Time (1988).
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To reconstruct his isochronous result for the cycloid using calculus, consider
Fig. 6.6b. We assume that at the point where � D �0, the bob of the pendulum is at its
maximum distance from the point of lowest elevation where � D � . To demonstrate
that the path is isochronous, we must show that the period is independent of �0. The
period T is the time required for the bob to complete an entire cycle. Thus, .1=4/T
is the time required for the bob to descend from the point, where � D �0 to the point
where � D � . From the conservation of energy

1

2
mv2 Cmgy D mgy0,

where y0 is the value for y at the point where � D �0. It therefore follows that the
speed

v D ds

dt
D
p
2g.y0 � y/.

For the cycloid presented in Prob. 122, pictured in Fig. 6.4 and adjusted for Fig. 6.6b,
we have

x.�/ D e1b.� � sin �/� e2b.1� cos �/.

Thus,

ds

dt
D
p
2g.y0 � y/

D p
2g Œ�b.1 � cos �0/C b.1� cos �/�

D p
2gb.cos �0 � cos �/. (6.39)

Furthermore,

ds

d�
D
s�

dx

d�

	2
C
�
dy

d�

	2
D b

p
.1 � cos �/2 C .� sin �/2 D b

p
2.1� cos �/

D b

r

4 sin2
�

2
.

That is:
ds

d�
D 2b sin

�

2
: (6.40)

From (6.39) and (6.40),

dt

d�
D ds

d�
=
ds

dt
D
s
2b

g

sin �
2p

cos �0 � cos �
.
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Since

cos �0 � cos � D
�
2 cos2

�0

2
� 1

	
�
�
2 cos2

�

2
� 1

	

D 2

�
cos2

�0

2
� cos2

�

2

	
,

it follows that

dt D
s
b

g

sin �
2
d�

q
cos2 �0

2
� cos2 �

2

.

Therefore,

1

4
T D

s
b

g

Z �

�0

sin �
2
d�

q
cos2 �0

2
� cos2 �

2

.

Substituting u D .cos �
2
/=.cos �0

2
/, we have du D � 1

2
.sin �

2
/d�=.cos �0

2
/ and

1

4
T D �2

s
b

g

Z 0

1

dup
1 � u2

D 2

s
b

g

Z 1

0

dup
1� u2

D 2

s
b

g
arcsin 1 D �

s
b

g
. (6.41)

Noting that b is the radius of the rolling circle that generates the cycloid, it is clear
from Figs. 6.6b and 6.4 that the length L of the cord equals 4b, so (6.41) becomes

T D 2�

s
L

g
. (6.42)

When Huygens demonstrated that the cycloid is an isochronous path, he was
then faced with the problem of how to constrain the bob of a pendulum to stay on
the path of a cycloid. It so happens that he had already designed a clock with bent
plates, which solved this problem – at least approximately. (See Fig. 6.6a again.)

If he could figure out the correct shape for the bent plates, he would have a
solution for his problem. In this context, he invented the concept of evolute, and
soon discovered that the evolute of a cycloid was another cycloid. (See Prob. 122.)

Soon thereafter he determined the evolutes of other curves such as the parabola.
(See Prob. 120.) He was not concerned with the notions of curvature or center of
curvature so those concepts are credited to Newton and Leibniz.

Huygens eventually published his results in 1673 in a book entitled Horologium
Oscillatorium (The Pendulum Clock). This work has been translated from Latin into
English by Robert J. Blackwell (Huygens 1986).
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(u, u2)

(-4u3, 3u2+0.5)

(0, 0.5)

y

x

(xE, yE)

(x0, y0)

Fig. 6.7 A parabola with its evolute

θ

L

Fig. 6.8 A simple pendulum

An unexpected consequence of these results was that Huygens now had a method
for determining the arc length of a segment of any curve that is the evolute of another
curve. For example, consider the evolute of a parabola (See Fig. 6.7). The curved
distance from .xE; yE/ to the cusp at .0; 1

2
/ is the same as the straight line distance

from .xE; yE/ to .x0; y0/ minus 1=2.

Problem 124. Consider the simple pendulum (See Fig. 6.8). From the conservation
of energy,

1

2
mv2 �mgL cos � D �mgL cos �0;
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where �0 is the angle of amplitude (or angle of maximum deflection). Also, ds D
˙Ld� .

(a) Show that

1

4
T D

s
L

2g

Z �0

0

d�p
cos � � cos �0

:

Equating

cos � � cos �0 D
�
1 � 2 sin2

�

2

	
�
�
1 � 2 sin2

�0

2

	

D 2 sin2
�0

2
� 2 sin2

�

2
,

it is not difficult to show that T is an elliptic integral of the first kind. See
(Magnus et al. 1966, p. 358). Such integrals cannot be expressed in terms of
elementary functions. However for small amplitudes,

cos � � cos �0 Ð 1 � �2

2
�
�
1 � �20

2

	
D 1

2

�
�20 � �2

�
.

(b) Use this approximation to show that for small amplitudes

T Ð 2�

s
L

g
:

(c) Can you improve this last approximation with elementary functions?

Problem 125. Consider the equation for the parabola;

x.u/ D e1u C e2u2.

(a) Do Prob. 120 if you have not done it before to obtain the equation for the
evolute,

y.t/ D �4u3e1 C
�
3u2 C 1

2

	
e2.

Use Huygen’s method to obtain the length of the curve of the evolute from the
cusp to the point �4u3e1 C .3u2 C 1

2
/e2 in terms of u (See Fig. 6.7).

(b) Use the fact that

ds D
s�

dx

du

	2
C
�
dy

du

	2
du,

to replicate the result of part a).
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Problem 126. (a) Use Huygen’s method to obtain the length of the arc of a cycloid
from one cusp to the next in terms of the parameter b, where b is the radius of
the rolling circle that generates the cycloid. What is the straight line distance
between two cusps in terms of b (See Figs. 6.4 and 6.6b).

(b) Use the fact that

ds D
s�

dx

d�

	2
C
�
dy

d�

	2
d� ,

to reproduce the result of part a).

6.5 The Gauss–Bonnet Formula

I begin this section by showing that the informal definition for the Gaussian
curvature that I gave in (5.4) is equivalent to the formal definition that I gave in
Def. 81. You may recall that the formal definition was

K D 1

2
R

˛ˇ

˛ˇ D 1

2
R
˛ˇ

˛ˇ D R 12
12 D R1212: (6.43)

To demonstrate this equivalence, I begin by letting

F D ”k hEN1;rkEN2i , (6.44)

where the pair fEN1;EN2g forms a right handed orthonormal frame on the region of
the surface under consideration. Applying the operator d, we get

dF D ”jk
˝rjEN1;rkEN2

˛C ”jk
˝
EN1;rjrkEN2

˛
. (6.45)

Since rjEN1 D �cN1N2.”j /E
N2 and rkEN2 D �cN2N1.”k/E

N1, it follows that

˝rjEN1;rkEN2
˛ D cN1N2.”j /cN2N1.”k/

D
EN2;EN1

E
D 0.

Thus, (6.45) becomes

dF D ”jk
˝
EN1;rjrkEN2

˛ D ”12 hEN1;r1r2EN2i C ”21 hEN1;r2r1EN2i .

That is:

dF D ”12 hEN1; .r1r2 � r2r1/EN2i

D ”12RAN212 hEN1;EAi D ”12RB N212
˝
EN1;EB

˛ D ”12RB N212ıBN1 D RN1N212”12. (6.46)
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g1du1

g2du2

dA

Fig. 6.9 dA D ˇ
ˇ”12

ˇ
ˇ du1du2

Now

RN1N212 D RN1N212
ˇ̌
ˇEN1EN2

ˇ̌
ˇ D R1212 j”12j .

Therefore,

dF DR1212 j”12j ”12.

From Stokes’ Theorem: Z

A

dF D
Z

@A

F, (6.47)

which for our case becomes

Z

A

R1212 j”12j du1du2 D
Z

@A

hEN1;r1EN2i
du1

ds
ds C

Z

@A

hEN1;r2EN2i
du2

ds
ds.

or restated, Z

A

K j”12j du1du2 D
Z

@A

hEN1;rSEN2i ds, (6.48)

The term j”12j du1du2 that appears on the left-hand side of (6.48) may be
interpreted as an infinitesimal area. To see this, we note that the area of a
parallelogram is equal to the product of two adjacent sides multiplied by the sine
of the angle between them. Thus, the area of the parallelogram in Fig. 6.9 is
j”1j j”2j sin �du1du2. But

j”12j2 D h”12;”12i D ”12”21 D h”1;”1i h”2;”2i � h”1;”2i h”1;”2i
D j”1j2 j”2j2 .1 � cos2 �/ D j”1j2 j”2j2 sin2 � , which implies

j”12j D j”1j j”2j sin � .

Thus, (6.48) becomes

Z

A

KdA D
Z

@A

hEN1;rSEN2ids. (6.49)
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θv

E2

E1

V1
V2

Fig. 6.10 For one who uses
E1 and E2 to construct a
coordinate system for a map
of a curved surface, a frame
fV1;V2g which is parallel
transported around a closed
curve will appear to rotate
with respect to the map

Note! A review of the calculations above shows that to say dA D j”12j du1du2 is
equivalent to saying that dA D p

gdu1du2. This latter form is more suitable for
generalization to higher dimensions.

The significance of the right-hand side of (6.49) is less obvious but it has an even
simpler interpretation – at least for a region that is simply connected (no holes).
Suppose we consider an orthonormal frame fV1;V2g that is parallel transported
around the closed curve. From Fig. 6.10,

EN1 D V1 cos �V � V2 sin �V and (6.50)

EN2 D V1 sin �V C V2 cos �V . (6.51)

(To write down these equations quickly without resorting to a lengthy derivation, it
is useful to note that since E2 is “between” V1 and V2 , both of its components in
thefV1;V2g system must be positive. Also, E1 must be perpendicular to E2.)

Since V1 and V2 are parallel transported around the curve,

rSV1 D rSV2 D 0.

Thus,

rSEN2 D .V1 cos �V � V2 sin �V /
d�V

ds
D EN1

d�V

ds
.

With this result, (6.49) becomes

Z

A

KdA D
Z

@A

d�V

ds
ds D � , (6.52)

where � is the total angle of rotation that appears to occur to a vector when it is
parallel transported around a complete circuit and returned to its original location.
(It is assumed that region V is simply connected.) From (6.52), we see that the
informal definition for the Gaussian curvature that I gave in (5.9) is consistent with
the formal definition of (6.43).

If the boundary of the closed curve is composed of geodesic curves pieced
together like the three edges of a geodesic triangle, then the extreme right-hand
side of (6.52) can be decomposed into quantities that are easily measured. To obtain
this alternative interpretation, consider the unit tangent vector t and the unit normal
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θV

θt

E2

E1

V1

V2
t

n

geodesic

Fig. 6.11 Along a geodesic
the angle �t remains constant

βk
αk

t(s)

t+(sk)

t-(sk)

Fig. 6.12 At the kth vertex
the unit tangent vector t
rotates through angle ˇk
where ˇk is the exterior angle
for that vertex

vector n. See Fig. 6.11. Along a geodesic where the geodesic curvature kg is zero,
the angle �t remains constant. However at each vertex, the value of �t makes a
sudden change. See Fig. 6.12. At the kth vertex �t increases by ˇk that is the exterior
angle of the vertex. (Note! It is possible for ˇk to be negative in which case the
change in �t is not really an increase.) At any rate, when a complete circuit is made,

the final value of �t minus the initial value of �t D
X

k

ˇk . (6.53)

Also, when a complete circuit is made,

the final value of .�t C �V / minus the initial value of .�t C �V / D 2� . (6.54)

Furthermore,

the final value of �V minus the initial value of �V D � , (6.55)

where � is the entity that appears on the right-hand side of (6.52). Subtracting (6.55)
from (6.54) gives us

the final value of �t minus the initial value of �t D 2� � � , or

� D 2� � .the final value of �t minus the initial value of �t / . (6.56)
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Combining this result with (6.53) and (6.52), we have for simply connected regions
bounded by piecewise connected geodesics,

Z

A

KdA D 2� �
X

k

ˇk . (6.57)

where ˇk designates the exterior angle at the kth vertex.
Comment! Equation (6.54) is not as trivial as it might first appear. If the boundary

curve was allowed to cross itself, then the unit tangent vector might rotate some
alternate multiple of 2� with respect to a fixed frame. In his book Geometry from
a Differentiable Viewpoint, John McCleary (McCleary 1994, p. 173) cites Heinz
Hopf’s Umlaufsatz (a theorem that says that the tangent along a closed piecewise
differentiable curve enclosing a simply connected region turns through 2� (Hopf
1935, pp. 50–62.)). He then goes on to say,

“The proof of this innocent-sounding result is lengthy and involves ideas that really belong
in a course on topology. In order to avoid such a long detour we postpone a sketch of the
proof to the end of the chapter.”

McCleary presents what he describes as a sketch of the proof on pp. 181–184 of
his book. In this book, I will simply omit the proof altogether.

For the case of a geodesic triangle,

X

k

ˇk D
3X

kD1
ˇk D

3X

kD1
.� � ˛k/ D 3� � .˛1 C ˛2 C ˛3/;

where ˛k designates the interior angle of the kth vertex. Substituting this result into
(6.57) gives us a result for geodesic triangles that was published by Gauss in 1828
(Gauss 1828). That is

Z

A

KdA D ˛1 C ˛2 C ˛3 � � . (6.58)

This is of course a generalization of the result of Thomas Harriot that was discussed
at the beginning of Chap. 5. Presumably, Gauss was pleased with the result because
he referred to it as “Theorema Elegantissimum.” (Klingenberg 1978, p. 141).

In 1848, Pierre Ossian Bonnet was able to generalize the result of Gauss to
regions that have closed boundaries that are pieced together by finite number of
smooth curves, which are not necessarily geodesics (Bonnet 1848). Bonnet was the
first to publish this generalized version, but it is plausible that Gauss was aware of
the result somewhat earlier (Struik 1988, p. 153). We are now in a position to prove
this result, which is now known as the Gauss–Bonnet formula.

Theorem 127. For a 2-dimensional simply connected region bounded by a finite
number of twice differentiable paths,

Z

A

KdAC
Z

@A

kgds C
X

k

ˇk D 2� , (6.59)

where ˇk is the exterior angle of the kth vertex.
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Proof. From (6.56),

� D 2� � .the final value of �t minus the initial value of �t /:

Combining this result with (6.52), we get

Z

A

KdAC .the final value of �t minus the initial value of �t / D 2� , or

Z

A

KdAC
Z

@A

d�t

ds
ds D 2� . (6.60)

If the unit tangent vector is continuously turning along the entire boundary, then
d�t=ds is the geodesic curvature kg discussed in the last section. In that case, the
equation in question becomes

Z

A

KdAC
Z

@A

kgds D 2�:

However if the boundary has vertices, d�t=ds cannot be treated as an ordinary
function at those points. Nonetheless, we can still deal with the situation in a rational
manner by treating d�t=ds as a distribution function. In particular at the kth vertex,
we have

Z s
C

k

s�k

d�t

ds
ds D �t .s

C
k /� �t .s

�
k / D ˇk .

(See Fig. 6.12.) Equation(6.60) then becomes

Z

A

KdAC
Z

@A

kgds C
X

k

ˇk D 2� ,

where it understood that the vertices are omitted in the calculation ofR
@A kgds. ut

Problem 128. How should the Gauss–Bonnet formula be adjusted for regions that
are not simply connected? (A simply connected region is one with no holes.) Hint!
A region with one hole can be considered the difference of two simply connected
regions. For Stokes’ Theorem, the path integrals along the shared boundary in
diagram A of Fig. 6.13 cancel out and the form of Stokes’ Theorem remains
unchanged for regions that are not simply connected. What makes the Gauss–
Bonnet formula different? What is the correct Gauss–Bonnet formula for a region
with p holes?
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a b

Fig. 6.13 For Stokes’ Theorem, you can simply replace the path of integration shown in figure a
by that shown in figure b. For the Gauss–Bonnet Theorem, a further adjustment must be made.
What is it?

x2

x1

x3

Fig. 6.14 The pseudosphere

Problem 129. Show ”k hEN1:rkEN2i D w12, so (6.47) becomes

Z

A

dw12 D
Z

@A

w12.

Problem 130. Some authors use the expressionR1212=g for the Gaussian curvature
where g D g11g22 � g12g21. Show R1212=g D R1212.

Problem 131. PSEUDOSPHERE (See Fig. 6.14.)
Consider the surface

x.�; �/ D e1
R cos�

cosh �
C e2

R sin�

cosh �
C e3R.� � tanh �/:

Show that the Gaussian curvatureK D R1212 D �1=R2.
Problem 132. Use the Gauss–Bonnet formula to show that on a 2-dimensional
surface with negative curvature, you cannot construct a closed figure bounded by
only two geodesics.
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Problem 133. Use (6.58) to show that on a surface of constant negative Gaussian
curvature, there is a least upper bound for the areas of geodesic triangles. Can this
least upper bound be realized by an actual geodesic triangle?

6.6 The Interpretation of Curvature 2-Forms as Infinitesimal
Rotation Operators

Equation (6.52) can be generalized when R 12
12 is not constant – at least for

infinitesimal loops. In that case,

KdA D R 12
12 j”12j du1du2 D d�: (6.61)

On the other hand, the rotation operator for such an infinitesimal rotation is

R D I cos
d�

2
C ”12

j”12j
sin

d�

2
D IC1

2

”12

j”12j
d�:

Using (6.61), this becomes

R D IC1

2
R 12
12 ”12du1du2 D IC1

4
R

˛ˇ
12 ”˛ˇdu1du2:

That is

R D I C 1

2
R12du1du2, where

R12 is a curvature 2-form. This last equation can also be written in the form:

R D I C 1

4
Rjkduj duk:

It turns out that this last equation is valid in spaces of arbitrary dimension. See
(Snygg 1997, pp. 104–110). You should note that the orientation of the rotation
depends on the orientation of the infinitesimal loop. If we consider only the lowest
order terms, this rotation operator may be factored into rotations each one of which
corresponds to an infinitesimal loop in a 2-dimensional coordinate plane. That is

R D
�

IC1

2
R12du1du2

	�
IC1

2
R13du1du3

	
� � �
�

IC1

2
Rn n�1dun�1dun

	
.

Each of these rotation will be quite different. Obviously, the “axis” of rotation for

IC1

2
R12du1du2 D IC1

4
R

˛ˇ
12 ”˛ˇdu1du2
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will be quite different than the “axis” for

IC1

2
R37du3du7 D IC1

4
R

˛ˇ
37 ”˛ˇdu3du7.

In general, we see thatR ˛ˇ

jk is a measure of the motion of a vector in the ˛-ˇ plane
when it is parallel transported around an infinitesimal loop in the j -k plane.

6.7 *Euler’s Theorem for Convex Polyhedrons

The Gauss–Bonnet formula has some significant consequences for closed surfaces
(finite surfaces with no boundaries such as the sphere or torus). In Prob. 18, I
mentioned that Euler proposed that for any convex polyhedron F � E C V D 2,
where F is the number of faces, E is the number of edges, and V is the number of
vertices. The Gauss–Bonnet formula can not only be used to prove Euler’s formula
but also a generalized version.

(What follows is an informal version of a proof that appears in Wolfgang
Kühnel’s Differential Geometry (Kühnel 2000, p. 171).)

First suppose the edges of a convex polyhedron are deformed to fit on the surface
of a sphere or some topologically equivalent surface such as an ellipsoid. (Clearly,
this can be done without changing the number of faces, edges, or vertices.) Then
we rewrite (6.59) in terms of interior angles for the jth “polygon” or “face”. Since
the kth exterior angle of the jth face ˇjk is the supplement of the corresponding
interior angle ˛jk , we have ˇjk D � � ˛jk and (6.59) becomes

Z

Aj

KdAC
Z

@Aj

kgds D
X

k

.˛jk � �/C 2� or

Z

Aj

KdAC
Z

@Aj

kgds D
X

k

˛jk � E.j /� C 2� , (6.62)

where E.j / designates the number of edges associated with the jth face. Now
suppose we sum (6.62) over all faces on the sphere (Fig. 6.15). This gives us

X

j

Z

Aj

KdAC
X

j

Z

@Aj

kgds D
X

j;k

˛jk �
X

j

E.j /� C 2�F . (6.63)

The first thing to observe is that the the total contribution of the geodesic curvature
is zero. This is because the contributions of the shared edges of adjacent “polygons”
cancel out. (Draw your own picture.) Second, any number of faces may share a
common vertex but the sum of the interior angles at any given vertex must add up
to 2�: Thus, the total sum of interior angles

P
j;k ˛jk must be 2�V , where V is the
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A

b

Fig. 6.15 For purposes of this section, area A represents a “pentagon” with five edges and five
vertices even though it only has two corners. Note that if corner b was smoothed out, both the
number of edges and vertices would be reduced by one and the Euler characteristic F � E C V

would remain the same

number of vertices. Furthermore,
P

j E.j / D 2E because every edge in the sum is
counted twice. Thus, (6.63) becomes

Z

A

KdA D 2�.F �E C V /. (6.64)

The integral on the left-hand side of (6.64) is known as the total Gaussian
curvature for the closed surface.

For the sphere,

Z

A

KdA D 1

R2

Z

A

dA D 1

R2

�
4�R2

� D 4�: (6.65)

Combining this with (6.64) gives us

F �E C V D 2. (6.66)

Equation (6.66) is known as Euler’s Theorem (or formula) for Convex Polyhe-
drons. This formula is quite profound, but the consequences of (6.64) are even more
profound.

First, a review of the proof shows that the result is not restricted to spheres or
ellipsoids. Clearly, it is valid for any smooth closed surface that can be continuously
deformed into a sphere. Second, I started the proof by deforming the edges of a
convex polyhedron onto a sphere. But I could have started with some lattice already
on the sphere. Similarly, I could have started by dividing up a torus into “polygons”,
and we would still have arrived at (6.64). In the case of the torus, the total Gaussian
curvature would have been different so the sum F�ECV would have been different
also. In general for any smooth closed surfaces, we can write

Z

A

KdA D 2��.A/, where (6.67)

�.A/ D F � E C V . (6.68)
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Fig. 6.16 A surface of genus 3 sliced like a bagel

In this context, �.A/ is known as the Euler or Euler–Poincaré characteristic of
the surface. Surfaces that can be continuously deformed into one another have
the same Euler characteristic. For this reason, �.A/ is regarded as a “topological
invariant.” The Euler characteristic for a doughnut is the same as that of a teacup
with one handle. (Geometers tend to extol themselves for having the insight to see
that doughnuts and teacups have a similarity while others dismiss them for “not
being able to tell the difference.”)

To conclude this chapter, I will mention the notion of genus. The genus of a
closed surface is equal to the number of holes in the solid covered by the closed
surface. Thus, a sphere has genus zero; a torus has genus one; a teacup with two
handles has genus two: and a sphere with p-handles has genus p. I leave it to you
to show that using the Gauss–Bonnet Theorem,

Z

A

KdA D 4�.1� p/ or (6.69)

F � E C V D 2.1� p/, where p is the genus of A. (6.70)

Problem 134. (a) Use the result of Prob. 98 to show that the total Gaussian
curvature for a torus is zero.

(b) Figure out some way of dividing the surface of a torus into “polygons” so that
you can use (6.64) to check the result of part (a).

Problem 135. Prove (6.69).
Suggestion: Slice up a version of a multihole torus into two surfaces (See

Fig. 6.16). Then use the result of Prob. 128. Alternatively, figure out some way
of dividing up the surface of a multihole torus into “polygons” so that you can
apply (6.64).

6.8 *Carl Friedrich Gauss and Bernard Riemann

6.8.1 *Carl Friedrich Gauss 1777–1855

Since his contributions to mathematics and physics are both deep and wide, Gauss
is frequently honored by the use of his name. Most of statistics is based on the
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Gaussian distribution. In electrostatics, he is honored by Gauss’ Theorem (a special
case of the Generalized Stokes’ Theorem). In this book, we have encountered
Gaussian curvature and the Gauss–Bonnet formula. My math dictionary mentions
Gauss’ formulas (some spherical trigometric formulas). For his contributions to
number theory, one encounters Gaussian integers. Carl Gauss collaborated with
Wilhelm Weber in the study of magnetic fields and both are honored by physicists
who use their names for units of magnetic field strengths. There is even a Gauss
crater on the moon.

Gauss and Weber attained public acclaim in Europe for their invention of the
first electromagnetic telegraph in 1833 – two years before Samuel Morse had his
telegraph working.

To measure the shape of the earth, Gauss invented the heliotrope and before
the introduction of satellite technology his theoretical work was the foundation of
modern geodesy (Hall 1970, pp. 89–90). Gauss also had a gift for languages. Along
with his native German, he was considered literate in Greek, Latin, English, and
French. At the age of 60, he also became literate in Russian. On the other hand, his
knowledge of Italian, Spanish, and Swedish was considered to be superficial (Hall
1970, p. 159).

Although Gauss is mainly recognized for his contributions to mathematics, for
virtually his entire working life, Gauss made his living as an astronomer.

Gauss did not begin life in promising circumstances. He was born on April 30,
1777 in the city of Braunschweig (also known as Brunswick). Braunschweig was the
capital of a duchy that had the same name. Gauss’ father was a strict disciplinarian
and if his father had had his way, Carl would have joined his father doing odd jobs
such as stone mason, canal worker, and gardener.

However, his teachers recognized his extraordinary talent in mathematics and
Duke Carl Wilhelm Ferdinand of Braunschweig was persuaded to become his patron
when Gauss was 14 years old. He attended the Collegium Carolinum for three years
before entering the University of Göttingen in the fall of 1795. During the spring of
his first year, at the age of 18, Gauss proved that a regular polygon with 17 sides
could be constructed by compass and ruler. To achieve this result, he showed that
the largest real part of any of the roots of

x16 C x15 C x14 C � � � C x2 C x C 1 D 0

is

� 1

16
C 1

16

p
17C 1

16

q
34� 2

p
17

C 1

8

r

17C 3
p
17�

q
34� 2

p
17 � 2

q
34C 2

p
17:

(Hall 1970, pp. 21–34) One should note that a thousand place decimal expansion
would not have demonstrated that construction of the 17-gon is possible by compass
and ruler.
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Carl Frederich Gauss made few friends while a student but he did make friends
with Wolfgang Bolyai (otherwise known as Bolyai Farkas). Wolfgang was a
Hungarian who would become a lifetime correspondent with Gauss. After three
years at Göttingen, Gauss returned home in Braunschweig hoping the Duke would
continue to be his patron in the fall of 1798. It was at least two months before
he obtained an audience with the Duke. When he finally saw the Duke, the Duke
agreed to continue his financial support of Gauss’ studies. Gauss was eager to get
some of his mathematical results published but the Duke urged him to get a Ph.D
(Dunnington 1955, pp. 34–35). It was agreed that Gauss would obtain a Ph.D. at
Helmstedt where Germany’s most prominent mathematician Johann Friedrich Pfaff
was on the faculty.

Gauss attended no courses at Helmstedt, made substantial use of the library, had
some conversations with Prof. Pfaff, and was awarded a Ph.D. on July 16, 1799.
This was roughly nine months after he made his first visit to Helmstedt. The degree
was awarded in absentia without the usual oral examination (Bühler 1981, p. 17).

Unlike most Ph.D’s, that of Gauss was a significant piece of work – a proof of the
Fundamental Theorem of Algebra. The theorem states that any polynomial with real
coefficients can be factored into terms that are either linear or quadratic. For many,
this was considered to be proven previously but Gauss demonstrated that previous
proofs were inadequate and he introduced a new rigor into the problem.

At about the same time, Gauss was assembling a book on number theory entitled
Disquisitiones arithmeticae (Arithmetical Investigations), which is considered by
some his most significant work. Among other things, it discusses number theory
using substantial amounts of modular arithmetic. The printing took longer than
Gauss expected but the Duke paid the cost of publication and the book appeared
in print in 1801.

Lagrange wrote to the young Gauss, “Your Disquisitiones have with one stroke
elevated you to the rank of the foremost mathematicians, and the contents of the last
section (theory of the equations of circle division) I look on as the most beautiful
analytic discovery which has been made for a long time.” (Dunnington 1955, p. 44)

Even after Gauss obtained his Ph.D., the Duke continued to support him
financially. During these years in Braunschweig, Gauss had no particular duties yet
he was extremely productive. Long after Gauss’ death, Felix Klein (1849–1925)
described Gauss’ years in Braunschweig as his Heldenzeit (heroic period) (James
2002, p. 62). However, biographer W.K. Bühler states that when Gauss terminated
his student days at Göttingen in the fall of 1798, “: : :he had already developed the
basic ideas of nearly all his important mathematical papers, which he was to publish
over the next twenty-five years.” (Bühler 1981, p. 17)

On January 1, 1801, the Italian astronomer Joseph Piazzi (1746–1826) in
Palermo was first to discover an asteroid (Ceres). However after tracking it for only
41 days and 9 degrees of arc, it disappeared behind the sun (Hall 1970, p. 69). It then
became a challenge to the best astronomers of Europe to predict where it would
reappear. Gauss developed a new approach to the problem and his prediction was
quite different from any of the others. Thus when Gauss’ prediction proved correct,
he achieved fame among the community of astronomers and in September of 1802
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he was soon offered the position of director of the observatory in St. Petersburg,
Russia (Hall 1970, p. 67). In response, the Duke raised Gauss’ stipend and Gauss
was soon planning an up-to-date observatory to be built in Braunschweig with the
Duke’s financial support.

On January 30, 1806, the Duke was sent on a diplomatic mission to St. Petersburg
in hopes that the Russians would join Germany as an ally against Napoleon. The
mission was a diplomatic failure but the Russians urged the Duke to allow the
young astronomer Gauss to accept a second job offer. When the Duke returned to
Braunschweig in the spring of 1806, he raised Gauss’ stipend again (Dunnington
1955, pp. 78–79). Meanwhile, Gauss had fallen madly in love with Johanna Osthoff,
the daughter of a tannery owner in Braunschweig and married her on October 9,
1805.

This was an idyllic time for Gauss but it was about to have an abrupt end. At the
age of 71, Duke Carl Wilhelm Ferdinand accepted command of a woefully deficient
army to defend against the invasion by Napoleon. The decisive battle of Jena–
Auerstädt took place on October 14, 1806. In the course of battle the Duke was
mortally wounded by a musket ball that entered above his right eye and carried
away his left eye. The Duke was taken back to his palace in Braunschweig and a
delegation was sent to Napoleon asking him to allow the Duke to die in peace among
family and friends. Napoleon denied the request and on the morning of October 25,
Gauss saw a long carriage drawn by two horses leave the castle yard with the Duke.
The Duke was taken away out of Napoleon’s reach, north to Altoona where the Duke
died on November 10 (Dunnington 1955, p. 82).

Gauss now had a wife and an infant son (Joseph). He was 29 and the Duke had
been his sole means of support since the age of 14. The following summer, Gauss
was offered the position of director of the observatory at the University of Göttingen.
Gauss accepted the offer and he held that position for the rest of his life.

During his lifetime, he published approximately 150 papers. However, the
majority of his work was not published until after his death. He was writing for
posterity and was reluctant to publish material that had loose ends or could plausibly
be polished and made more elegant. It is also conceivable that he sometimes
withheld preliminary results in hopes that he would achieve priority for more
significant results.

Many times young mathematicians would send Gauss some of their results
with the hope of getting his endorsement. Often Gauss would respond that their
accomplishment was significant, although he had achieved the same result 20 or
30 years earlier. This happened so often that some began to suspect that Gauss
was not being honest about his claims. Although priority is generally given to the
one who publishes first, Gauss’ behavior tended to undercut the accomplishments
of others and Lagrange was particularly outraged by this. Only after his death
did it become clear that most of the time Gauss was at least being truthful. (His
treatment of Grassmann was an exception.) Gauss’ reluctance to publish had another
consequence that angered mathematicians other than Lagrange. It was disappointing
for anyone to discover that he had spent months or years repeating what Gauss had
done earlier when they could have been advancing the cutting edge of mathematics.
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Soon after Gauss died, the Royal Scientific Society of Göttingen set out to
organize his papers and publish them with annotations. This project took seven
decades between 1863 and 1933 and was carried out by ten German scientists, each
an expert in his own field. The result was a twelve volume set of books known as
Gauss’ Collected Works (Hall 1970, p. 164).

Gauss never published any of his extensive work on non-Euclidean geometry.
The circumstances surrounding this fact tells us a lot about Gauss’ personality.

Non-Euclidean geometry evolved from a 2000-year long struggle to deal with the
concept of parallel lines in a logical manner. When Euclid (Ï300 BC) laid down his
axioms and postulates, it was clear that he was uncomfortable with his last postulate
that is sometimes known as the axiom of parallelism. In an equivalent form, this
postulate stated by Proclus about 700 years later is “In the plane, given a straight
line and a point not on this line, there exists one and only one straight line passing
through the given point that does not intersect the original given line.”

Euclid tried to prove as much as he could without using this postulate. Further-
more without using this postulate, he was able to show that the remaining axioms
and postulates implied there would be at least one nonintersecting line passing
through the given point (Kárteszi 1987, pp. 14–15). Proclus also tried unsuccessfully
to prove that the axiom of parallelism was unnecessary.

It was only during Gauss’ lifetime that Johann Bolyai, Nikolai Lobachevsky,
and Gauss himself made the critical breakthrough. Indeed, they discovered that one
could replace the axiom of parallelism by an axiom (or postulate) that stated, “In
a plane, given a straight line passing and a given point not on this line, there exist
more than one straight line that does not intersect the original given line.” If one
makes this replacement, one gets a geometry in which the sum of the interior angles
of a triangle is less than 1800 and similar triangles are also congruent. About 13
years after Gauss died, Eugenio Beltrami made the observation that if one identified
the geodesics of a surface of constant negative curvature with “straight lines”, one is
dealing with non-Euclidean geometry (Beltrami 1868). Later, it was observed that if
one not only adjusted the axiom of parallelism but also another postulate of Euclid,
one would get another form of non-Euclidean geometry in which “straight lines”
would correspond to the geodesics on the surface of a sphere.

During the eighteenth century, interest in the axiom of parallelism had been stim-
ulated by a controversial assertion by the philosopher Immanuel Kant (1724–1804)
(Kárteszi 1987, p. 15). As a result, many tried to derive the axiom from the
remaining axioms and postulates. Of course, these efforts all ended in failure. Others
tried to prove the postulate by contradiction. That is assume that the more than one
line passing through the given point is nonintersecting and arrive at some totally
absurd result.

Some of these mathematicians got some interesting results. They derived some
consequences that were seemingly peculiar but not entirely illogical. These people
included Giovanni Girolamo Saccheri (1667–1733) and Johann Heinrich Lambert
(1728–1777) – both before the Gauss era. Along the same lines, two lawyers:
Ferdinand Karl Schweikart (1780–1859) and his nephew Franz Adolf Taurinus
(1794–1874) achieved some results that they shared in personal correspondence
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with Gauss. From the responding letters to Schweikart in 1819 and to Taurinus
in 1824, it is clear that Gauss had made a great deal of progress in developing a
full-blown non-Euclidean geometry (Dunnington 1955, pp. 180–182).

Nonetheless, Gauss was reluctant to publish his results. His friend Friedrich
Wilhelm Bessel urged him to publish this material and in a famous letter of reply
written on January 27, 1829, Gauss wrote, “Perhaps it will not happen during my
lifetime, since I fear the Boeotian’s cries if I were to express my opinion clearly”
(Bonola 1955, p. 67) and (Hall 1970, pp. 112–113). (The Boeotians were a Greek
tribal group who were reputed by their enemies to be dimwits.) In the 1824 letter
to Taurinus, Gauss expressing similar fears had urged Taurinus to keep the letter
private.

Many historians take the position that Gauss’ fears of a negative outcry were
unjustified. However in Gauss’ time, the study of geometry was considered to be
the study of God’s creation. Even Gauss posed the question, “What is the true
geometry?” In 1816, Gauss had used tough language when he reviewed two articles
on the parallel postulate in a scientific journal. In return, he was subjected to vulgar
attack (Hall 1970, p. 113).

Those who think that Gauss’ prestige would have made him immune from the
kind of abuse suffered by Einstein in pre-Nazi Germany or by Fock in Stalin’s
Russia should consider a diatribe cited by Gauss biographer Waldo Dunnington
(1955, p. 274). The following was written roughly 20 years after Gauss’ death when
his private math papers had become public. Referring to Gauss, Eugen Karl Dühring
(1833–1921) wrote:

His megalomania rendered it impossible for him to take exception to any tricks that the
deficient parts of his own brain played on him, particularly in the realm of geometry.
Thus he arrived at a pretentiously mystical denial of Euclid’s axioms and theorems, and
proceeded to set up the foundations of an apocalyptic geometry not only of nonsense but of
absolute stupidity . . . They are abortive products of the deranged mind of a mathematical
professor, whose mania for greatness proclaims them as new and superhuman truths! The
mathematical delusions and deranged ideas in question are the fruits of a veritable paranoia
geometrica.

It would appear from this passage that Dühring was a raving lunatic. Dühring
was a contentious anti-Semite. Nevertheless, his contemporaries took his writings
seriously. His following as a political philosopher was so substantial that Frederick
Engels felt compelled to write an entire book to refute some of his writings
(Anti-Dühring (1878)). According to Michael Monastyrsky, one of the Riemann’s
biographers, Dühring’s name (but not his work) became wellknown in the Soviet
Union since Engel’s work was required reading (Monastyrsky 1998, p. 78).

More relevant for the history of mathematics is the fact that in 1872 Eugen
Karl Dühring was awarded the Benecke Prize by the philosophical faculty of the
University of Göttingen. This prestigious prize was awarded for a 513-page history
of mechanics.

Most of this work of Dühring is a scholarly treatment of the contributions
of such figures as Archimedes, Leonardo da Vinci, Galileo, Descartes, Newton,
Fermat, the Bernoullis, Leibnitz, L’Hopital, d’Alembert, Lagrange, Carnot, Euler,
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Hamilton, and Joule. However, when he gets to Gauss and Riemann, he expresses
utter contempt for the notion of non-Euclidean geometry. To support his ridicule, he
cites a letter that Gauss wrote to Schumacher on July 12, 1831. Dühring indicates
that Gauss wrote that in a non-Euclidean geometry, one would have equilateral
triangles with unequal angles whose sum would be less than 1800 (Dühring 1873,
pp. 488–489). In a later edition (Dühring 1877, p. 459), Dühring published the
relevant passage. It is clear that what Gauss actually wrote was that for an equilateral
triangle, each angle would be unequal to 600 (not unequal to one another). This
distinction may have been too subtle for Dühring but that did not prevent Dühring
from increasing the harshness of his invective toward Gauss as the years went by.

Why would the philosophy faculty of the University of Göttingen endorse the
views of someone attacking Gauss who was probably the most prestigious member
that the faculty at their university ever had? It so happens that when non-Euclidean
geometry was becoming mainstream mathematics, the leading figure resisting this
development was a philosopher by the name of Rudolf Hermann Lotze (1817–1881)
(Szenassy 1987, p.234). Presumably, it was not a coincidence that Lotze was a
member of the philosophy department at the University of Göttingen at the time
the Benecke prize was awarded to Dühring. Furthermore, he had been a member
of the same faculty since 1844, roughly 10 years before Gauss died. So much for
faculty collegiality.

How did non-Euclidean geometry eventually gain acceptance? It did not occur
overnight. In January 1832, Gauss received a letter from his old friend Wolfgang
Bolyai. One has good reason to believe that Wolfgang would have been quite
worried about what kind of response he would get. Wolfgang had written a letter
to Gauss 16 years earlier without getting a reply.

In that earlier letter, Wolfgang had asked Gauss to take Johann (then 13) into his
home as an apprentice mathematician. In the same letter, Wolfgang also mentioned
that he had suffered a financial set back in 1811 because of a currency devaluation.
Gauss was not the nurturing type. Two of his own sons emigrated to America to
escape his control – one at the age of 19 and the other at the age of 24. Thus, Gauss
would probably not have been eager to accept the young Johann into his home in the
best of circumstances. When he sent his request to Gauss, Wolfgang did not know
what the situation was in Gauss’ home. At the time of their previous correspondence
in 1808, Gauss had two children. Meanwhile, Gauss had remarried after his first wife
had died and his second wife was now expecting her third child. Furthermore, Gauss
was then in the process of making arrangements for his mother to move in.

Having not heard from Gauss in 1816, Wolfgang Bolyai was writing to Gauss
in 1832 seeking an evaluation of a paper written by his son Johann (also known
as Bolyai János). The paper was a fairly complete discussion of the foundations of
hyperbolic non-Euclidean geometry. The paper was not easy reading and it arrived
at another bad time for Gauss. Gauss’ second wife Frederica (Minna) had died on
September 12, 1831 after a 14-year battle with tuberculosis. This was only a few
months before receiving the Bolyai paper.

Gauss eventually responded to the January letter on March 6, 1832. The
responding letter contains lines that have become infamous,
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Now something about the work of your son. If I begin by saying that I must not praise
him, surely, you will be startled for a moment; but I cannot do otherwise; praising him
would mean praising myself; because all the contents of the work, the way followed by your
son, and the results he obtained agree almost from beginning to end with the meditations I
have been engaged in partly for 30–35 years already. This extremely surprised me indeed
(Kárteszi 1987, p. 34).

At first glance, these appear to be self-serving comments by an insensitive
egomaniac. As noted above, this was the kind of remark received by other young
mathematicians seeking Gauss’ approval. Certainly, it was not what Johann Bolyai
wanted to hear. However, one must keep in mind that this letter was addressed to
Johann’s father and that puts it in a somewhat different context. Actually, Wolfgang
was elated by the response. He wrote to his son, “Gauss’ answer respecting your
work is very fine and redounds to the honor of our fatherland and nation. A good
friend says it would be a great satisfaction.”

Why did Wolfgang accept Gauss’ response so favorably? The educational
background of Wolfgang and his son Johann differed enough to give them divergent
outlooks. Wolfgang and therefore his son came from a noble family but Wolfgang
suffered financial reversals that made it impossible to give his son the same
education that he had received. Wolfgang had attended the University of Göttingen,
which had a fine library and where mathematicians were doing cutting edge
research. Wolfgang’s job as professor of mathematics, physics, and chemistry at the
Reformed College of Marosvásárhely did not pay well and Wolfgang did not have
the financial resources to send his son to Göttingen. As a result, Johann obtained
most of his mathematical education from his father and then chose a career as an
officer in the Hungarian army.

Wolfgang had spent hours on end over a period of many years trying to derive
the parallel axiom from the other Euclidean axioms. Once or twice he thought he
had been successful but Gauss was able to detect flaws in his “proofs.” When his
son wrote to his father in 1820 that he was taking up the problem, Wolfgang tried to
discourage him.

Do not waste even one hour’s time or that problem. It does not lead to any result; instead it
will come to poison all of your life. For hundreds of years hundreds of the world’s foremost
geometers have cogitated without having succeeded in proving the parallel axiom, as long as
they refrained from taking some new axiom as help. I believe that I myself have investigated
all conceivable ideas in this connection (Hall 1970, p. 113).

His father’s advice was ignored and in November of 1823 Johann informed his
father, “From nothing I have created a new world.” (Hall 1970, p. 113) In February
1825, Johann visited his father but was unable to convince his father that his non-
Euclidean structure was not flawed (Kárteszi 1987, p. 33). Nonetheless, Wolfgang
recognized that if his son was correct he had achieved an historically important
accomplishment. On the other hand, from letters he had received from Gauss in 1799
and 1804, Wolfgang had good reason to believe that his son’s work was probably
not quite as original as his son thought it was. He therefore urged his son to get his
results written up and published as soon as possible. Johann, referring to his father,
commented,
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He advised me that, if I was really successful, I should speedily make a public announcement
and that for two reasons. One reason is that the idea might easily pass to someone else who
would then publish it. Another reason - and one that seems valid enough - is that when the
time is ripe for certain things, these things appear in different places in the manner of violets
coming to light in early spring. And since scientific striving is like a war of which one does
not know when it will be replaced by peace one must, if possible, win; for here preeminence
comes to him who is first (Meschkowski 1964, pp. 33–34).

Fortunately, Wolfgang was completing a two-volume mathematical work in Latin
for his college (Szenassy 1987, p. 221). In 1829, the printing was authorized and
Johann’s results were added as an appendix. Wolfgang saw to it that the appendix
was printed before the rest of the work.

When he mailed the “Appendix” to Gauss, he was presumably worried about two
things: Had Gauss already published some of the same material and was his son’s
work logically correct? On both counts Gauss’ response told Wolfgang what he
wanted to hear. The lines of Gauss’ response following those already quoted were:

It had been my intention to publish nothing of my own work during my life; by the way, I
have noted down only a small portion so far. Most people do not even have a right sense of
what this matter depends on, and I have met only few to accept with particular interest what
I told them. One needs a strong feeling of what in fact is missing and, as to this point, the
majority of people lack it. On the other hand, I had planned to write down everything in the
course of time so that at least it would not vanish with me some day.
Thus I was greatly surprised that now I can save myself this trouble, and I am very glad that
it is just my good old friend’s son who so wonderfully outmatched me. . . . (Kárteszi 1987,
pp. 34–35).

Wolfgang was probably also elated to see himself referred to as “old friend.”
Since Gauss never responded to Wolfgang’s move-in proposal for his son, he had
not heard from Gauss since 1808, which was more than 20 years before (Schmidt
and Stäckel 1899).

Wolfgang’s concerns about getting Johann’s priority established turned out to
be well founded. At approximately the same time that Wolfgang was urging his
son to get his work published, Nikolai Ivanovich Lobachevsky published a lengthy
dissertation that covered roughly the same material. Since Lobachevsky’s paper
was written in Russian, it received essentially no attention in western Europe. In
1837, Lobachevsky published a paper in French. (Lobachevsky 1837). In 1840,
Lobachevsky did receive some limited attention when he had a 61-page book
published in Berlin under the title Geometrische Untersuchungen zur Theorie der
Parallelinien (Geometrical Investigations on the Theory of Parallels).

However, neither Johann Bolyai nor Nikolai Lobachevsky received the kind of
attention that they deserved during their lifetimes. Most of those who were aware of
their work were inclined to treat their expositions as mathematical curiosities, which
were probably logically flawed.

Gauss is frequently criticized for not publicly drawing attention to their work
and thereby giving them the prominence that they deserved. However without being
willing to face the cries of the “dimwit Boeotians”, there may have been little
that Gauss could do. In 1842, Gauss was able to get Lobachevsky elected as a
corresponding member of the Royal Society of Sciences in Göttingen. The official
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letter of notification sent to Lobachevsky makes no mention of non-Euclidean
geometry. It is plausible that Gauss was avoiding a confrontation with fellow
members of the Göttingen faculty. (This is my personal speculation that may be
on thin ice since it was about two years before Rudolf Hermann Lotze joined the
Göttingen faculty. But it is unlikely the Benecke prize was awarded to Dühring
by a one person committee.) Lobachevsky would have known the reason for the
honor even if some members of the Göttingen faculty might not have. After all
there was only one reason for Lobachevsky to receive such an honor. According
to Dunnington, Gauss wrote Lobachevsky a personal letter of congratulations
(Dunnington 1955, p. 187). The Russian historian, G. E. Izotov is convinced that no
such letter was sent (Izotov 1993, p. 9). However, Dunnington describes the contents
of a return letter dated June 1843 that Lobachevsky sent to Gauss (Dunnington 1955,
p. 187).

In either case, the honor had little practical effect. Four years later, Lobachevsky
was forced into early retirement from his position as Rector at the University of
Kazan (Dunnington 1955, p. 187).

Some years before, Johann Bolyai encountered a circumstance that was not
completely dissimilar. A few months after Johann Bolyai received a copy of
Gauss’ response to his father, Johann applied for a furlough from the Hungarian
army so that he could develop a more elaborate version of his “Appendix.” The
mathematicians who evaluated his application were not able to understand it.
And when their attention was drawn to Gauss’ letter, the favorable remarks were
attributed to the early friendship between Gauss and Johann’s father (Szenassy 1987,
p. 225).

Had Gauss been willing to do battle with the “Boeotians” would things have gone
better for Johann Bolyai and Nicholas Lobachevsky? Several historians have pointed
out that it was only after Gauss’ death in 1855 when his private correspondence
was published, that the mathematical world began to take non-Euclidean geometry
seriously. However, besides the posthumous publication of Gauss’ papers, there was
another factor that set the stage for acceptance of non-Euclidean geometry in the
mathematical community.

Geometer Michael Spivak once wrote, “The single most important work in the
history of differential geometry is Gauss’ paper of 1827 Disquisitiones generales
circa superficies curvas (in Latin).” (Spivak 1970, p.3A-1). (In the succeeding pages
of his book, Spivak gives tips on how to read an English translation of the work
(Gauss 1965).) The short book cited by Spivak includes an early version of the
Gauss–Bonnet theorem that stimulated substantial research into curved surfaces.
For example, Ferdinand Minding (1806–1885), inventor of the pseudosphere, was
able to show that if one took some of the formulas one encounters in spherical
trigonometry and formally replaced R (the radius of the sphere) by iR, one would
obtain formulas valid on a surface with constant negative curvature -R2 (Minding
1840, pp. 323–327).

Lobachevsky and Bolyai had obtained the same results in their non-Euclidean
geometry. As a matter of fact, in his early papers, Lobachevsky called this geometry
“imaginary.”
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Eventually, it was observed that at least for two dimensions, one can logically
identify the geodesics on a surface of constant negative curvature with the “straight
lines” in the non-Euclidean geometry of Bolyai and Lobachevsky. Thus, the
mathematical community was much more receptive to non-Euclidean geometry by
the time Gauss’ papers were published. Presumably, the community of philosophers
were less familiar with surfaces of negative curvature and were thus less receptive
to any drastic alternative to the axiom of parallelism.

Unfortunately, the acceptance of non-Euclidean geometry in the mathematical
community came too late to benefit either Bolyai or Lobachevsky. Both died only a
few years after Gauss. Nicholai Lobachevsky died in 1856 and Johann Bolyai died
in 1860.

In April 1831, a few months before Gauss’ second wife died, Wilhelm Eduard
Weber (1804–1891) arrived in Göttingen to assume the position of professor of
physics. Gauss had recommended Weber for the position, and although Gauss was
almost 27 years older, they soon became close friends and collaborators.

They worked jointly in the study of magnetism and, as a result, they are both
honored by having units of magnetism named after them. Together, they stimulated
an international project to measure the daily fluctuation of the earth’s magnetic field.
However, political events would soon interfere with their relationship.

From 1714 to 1837, Hanover and Great Britain shared the same king. As a
matter of fact between 1714 and 1760, Great Britain had a succession of two kings
(George I and George II) who did not speak English. Neither one of them had a deep
interest in the affairs of Great Britain. By default, the power of prime ministers and
parliament grew under their reigns.

George III (grandson of George II) became king in 1760. George III had a
reputation for being intellectually slow but he was much more actively engaged
in governing than his two predecessors. His approach was sufficiently tyrannical to
provoke 13 American colonies to revolt.

George III was succeeded by two of his sons (George IV and then William IV).
It is possible that William IV learned something from the mistake of his father. At
any rate when faced with political turmoil in Hanover, he granted the people of
Hanover a more democratic constitution in 1833.

When William IV died in 1837, Victoria became Queen of Great Britain.
However, the law of succession in Hanover did not permit a female ruler. At this
point, Hanover separated from Great Britain and Ernest Augustus who was the fifth
son of George III now became King of Hanover at the age of 66. Although he
did not speak German, Ernest Augustus was determined to make an impact. That
he did. The faculty at Göttingen soon got an indication of what was to come. In
September of 1837, the university was celebrating its 100th anniversary. The new
king showed up for the festivities but when a monument to William IV was unveiled,
Ernest Augustus showed his displeasure by turning away (Dunnington 1955,
p. 196).

Before the end of the year, Ernest Augustus revoked the constitution that his
brother had agreed to four years earlier. Seven prominent members of the Göttingen
faculty signed a petition in protest. In the eyes of the new king, this act was a
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serious affront. The fact that the University of Göttingen had been founded by his
great grandfather 100 years before may have made the protest more reprehensible.
At any rate, the seven professors were summarily fired. Two of the professors were
particularly close to Gauss. One was his son-in-law Georg Heinrich August Ewald
(1803–1875) who was a professor of oriental languages. Another was Wilhelm
Weber.

Although Gauss did not try to defend his son-in-law, he tried to use his contacts
to reverse the king’s decision to fire Weber. In particular, he wrote to his friend
Alexander von Humboldt indicating that the continuance of his whole scientific
activity depended on Weber’s staying in Göttingen. Humboldt was not able to gain
direct access to the king but two members of the court informed Humboldt that
the king would not reconsider his decision (Dunnington 1955, p. 200). Later at a
banquet the king told Humboldt, “With my money I can buy as many ballet dancers,
whores, and professors as I wish.” (Hall 1970, p. 158)

Without employment, Weber stayed in Göttingen until 1843 when he accepted a
position as professor of physics at Leipzig. Meanwhile, Ewald obtained a position
in Tübingen. In 1848, when disorders forced the royalty of Europe into temporary
retreat, Weber and Ewald were able to return to Göttingen. But by then Gauss was
71 and too old to pick up where he had left off with Weber.

In 1854, Gauss was diagnosed as having an enlarged heart and he died the
following year on February 23, 1855 at the age of 77.

6.8.2 *Georg Friedrich Bernhard Riemann 1826–1866

Bernhard Riemann like William Clifford died from tuberculosis at a relatively young
age. Nonetheless, he had a tremendous impact on the development of mathematics.

Today, his name is attached to many concepts that he developed. These include
the Riemann curvature tensor, the Riemann integral, Riemann surfaces, Riemann
curvature, and Riemannian geometry. In the year 2000, Clay Mathematics Institute
(www.claymath.org) announced that the Institute would award a $1 million prize to
anyone who proved the Riemann hypothesis.

Generally, his contributions were characterized by a great deal of originality
– going beyond problems that were being attacked by his contemporaries. It is
believed that some of the originality in his approach to mathematics stemmed from
his study of physics. Indeed, during his career he wrote about the theory of gasses,
fluid dynamics, heat, light, magnetism, and acoustics. He himself stated that the
laws of physics were his greatest interest (James 2002, pp. 188–189).

Bernhard Riemann was born on September 17, 1826 in the rural village of
Breselenz, near the city of Dannenberg in the kingdom of Hanover. His father was a
well-educated Lutheran pastor who had served as a lieutenant in the Napoleonic
Wars of 1812–1814. Bernhard was the second child in a family with two boys
and four girls. The local countryside was poverty stricken and Bernhard’s family
suffered from malnutrition (Motz and Weaver 1993, p. 235). Bernhard’s own health
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was never very good and he died about two months before his 40th birthday.
Nonetheless, he not only outlived both of his parents but he also outlived all his
siblings except for one sister.

Until he was ten years old, Bernhard’s only teacher was his father. At that time,
a teacher from a local school was recruited to supplement Bernhard’s education
in mathematics. In 1840 at the age of 14, Bernhard was sent to the Lyceum in
Hanover (the city) where he could live with his grandmother. Apparently, he was
unhappy there so when his grandmother died after Bernhard had been in Hanover
for two years, he transferred to Johaneum Gymnasium in Lüneburg. He excelled in
mathematics but he struggled in most of his other subjects. Schmalfus, the director
of the gymnasium recognized Bernhard’s mathematical talents and on one occasion
he lent him Legendre’s book on the theory of numbers. Bernhard read the 900-page
cutting edge book in six days. On the other hand, his teachers became concerned
because his written assignments were not being completed when due. As a result
in 1844, Schmalfus requested G.H. Seffer, the Hebrew teacher, to take Bernhard
into his house as a boarder at a reduced rate so that Bernhard would get closer
supervision (Laugwitz 1999, pp. 7–8).

In the spring of 1846 at the age of 19, Riemann entered Göttingen University. Due
to the dismissal of the “Göttingen Seven” in 1837 by Ernest Augustus, Göttingen
University had lost a great deal of prestige and was not the best place to pursue
a degree in mathematics. Although Gauss was on the faculty, he was now 69
and generally taught only low level courses addressed to his astronomy students.
However, following the wishes of his father, Bernhard was pursuing a financially
secure career in the ministry and Göttingen University was the only university in
the sphere of the Hanover church (Laugwitz 1999, p. 18). On the other hand, it was
not long before Bernhard was able to persuade his father to allow him to change into
mathematics.

After one year at Göttingen, Bernhard transferred to Berlin University, which
was staffed by the most prominent mathematicians of Germany. In Berlin, Bernhard
was able to learn from such outstanding mathematicians as Carl Gustav Jacob
Jacobi (1804–1851), Jakob Steiner (1796–1863), Peter Gustav Legeune-Dirichlet
(1805–1859), and Ferdinand Gotthold Max Eisenstein (1823–1852). It is be-
lieved that Dirichlet had a particularly strong impact on Riemann’s approach to
mathematics.

Little is known of Riemann’s political outlook but the uprisings of 1848 occured
while he was in Berlin. When King Frederick William’s personal safety appeared
to be threatened by a mob, Riemann joined a corps of fellow students to protect the
royal palace. He remained on guard duty from 9AM on March 24 until 1PM the
following day (Laugwitz 1999, p. 3).

In 1849, Riemann returned to Göttingen where Gauss became his Ph.D. supervi-
sor. Also, Wilhelm Weber had returned to Göttingen from Leipzig during Riemann’s
time in Berlin and Riemann became his assistant for 18 months.

At the end of November 1851, Riemann submitted his doctoral thesis: “Grund-
lagen für eine allgemeine theorie der funktionen einer veränderlichen complexe
grösse” (Foundations for a general theory of functions of one complex variable)



6.8 *Carl Friedrich Gauss and Bernard Riemann 225

(James 2002, p. 184). Gauss’ official report to the Philosophical Faculty of the
University of Göttingen stated, “The dissertation submitted by Herr Riemann offers
convincing evidence of the author’s through and penetrating investigations in those
parts of the subject treated in the dissertation of a creative, active truly mathematical
mind, and of a gloriously fertile originality.” (Spivak 1970, Vol. 2 pp. 4A-1, 4A-2)

In his dissertation, Riemann introduced what is now known as “Riemann
surfaces.” These surfaces enable mathematicians to comprehend and deal with
functions of complex variables having branch points with much greater insight than
would otherwise be possible.

To obtain the position of lecturer at a university in Germany at that time, Riemann
faced two more hurdles: a Habilitationschrift and a Habilitationsvortrag. For the
first requirement, Riemann presented a series of lectures in which he introduced
what is now known as the Riemann integral and used that concept to advance
the theory of Fourier series. For the second requirement, Riemann proposed three
possible topics – two on electricity and one on geometry. According to legend,
Riemann was surprised when Gauss persuaded the decision making council to
choose the topic on geometry.

After Riemann had prepared his talk in the spring of 1854 he had trouble getting
a date set for its delivery because of Gauss’ fragile health. (Gauss’ heart condition
was getting worse and he would die early the following year.) At one point, Gauss
asked Riemann to delay his talk until August in the hopes that his health would
improve (James 2002, p. 185). Then Gauss changed his mind and Riemann gave his
talk to the Göttingen faculty on June 10, 1854.

In his lecture, Riemann introduced the notion of a metric in the context of an
n-dimensional space. He thus laid down the foundation of what is now known as
Riemannian geometry. In 1970, Michael Spivak wrote, “Although the lecture was
not published until 1866, the ideas within it proved to be the most influential in
the entire history of differential geometry.” (Spivak 1970, Vol. II, p. 4A-1) (It is
worth noting that Spivak included an English translation of Riemann’s lecture in
his comprehensive work on differential geometry (Spivak 1970, Vol. II, pp. 4A-4 to
4A-20).)

Dedekind, a colleague of Riemann, who became his first biographer, wrote that
for Gauss the lecture “surpassed all his expectations with great astonishment, and
on the way back from the faculty meeting he spoke to Wilhelm Weber, with the
greatest appreciation, and with an excitement rare for him, about the depth of the
ideas presented by Riemann.” (Spivak 1970, Vol. II, pp. 4A-3)

This lecture won little or no recognition for Riemann during his lifetime for the
simple reason that the contents were not published until two years after his death
(Riemann 1868). Nonetheless, Riemann gained rapid recognition during the next
few years.

When Gauss died, his position was given to Dirichlet who held it for four years
until 1859 when he died. In 1859, the chair that had been occupied by Gauss was
awarded to Riemann who then became a full professor at the age of 32. That
same year Riemann was elected a corresponding member of the Berlin Academy
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of Sciences. The recommendation for the honor signed by Kummer, Borchardt, and
Weirstrass includes the passage:

We considered it our duty to turn the attention of the Academy to our colleague whom
we recommend not as a young talent who shows promise, but rather as a fully mature
and independent investigator in our area of science, whose progress he has promoted in
significant measure (Monastyrsky 1999, p. 63).

In 1862, Bernhard Riemann married Elise Koch. However that fall, he had a
severe cold followed by the onset of tuberculosis. Riemann and his wife spent most
of his last four years in Italy where the warmer climate seemed better for his health.
During the periods of remission, he had a significant influence on the mathematical
community in Italy.

Riemann spent the last month of his life in the village of Selasca on Lake
Maggiore with his wife and three-year-old daughter Ida. He died on July 20, 1866.
His last words to his wife were, “Kiss our child.” (Monastyrsky 1999, p. 76)

Problem 136. In his habilitationsvortrag, Riemann presented only one formula.
That formula was for the infintesimal arclength for a particular metric that he
introduced. Namely:

ds D 1

1C ˛
4

P
.xj /2

rX
.dxj /2: (6.71)

(a) Show that in the 2-dimensional case, the Gaussian curvature for this metric is

K D R1212 D ˛:

(b) Show that in the n-dimensional case, the Riemann tensor for this metric is

Rjkmn D ˛ıjkmn:



Chapter 7
Some Extrinsic Geometry in En

7.1 The Frenet Frame

A curve in En is a one parameter mapping x.t/ from some open interval in E1 to En.
Generally, a “curve”is considered a function so that a change in parameterization
results in a “different curve”even though the path (or trace) remains the same.

I do not promise to be consistent with this terminology but the reader should
be sensitive to the fact that some concepts such as “speed”, “velocity”, and “ac-
celeration” depend on the choice of parameter. Other concepts such as “curvature”
and “torsion”are independent of the choice of function to describe a given path.
The entity dx=dt may be considered the velocity of a point following a path. One
could consider a point moving along a path at different speeds, speeding up on
some segments and slowing down on other segments. One could even consider
a point moving along a smooth path in some bizarre fashion – coming to a stop
and then resuming its motion in the original direction or even reversing direction
from time to time. Such a parameterization can be regarded as a stupid choice for a
mathematician who wishes to study the shape of the path.

It is generally preferable to have a parameterization for which dx=dt ¤ 0 along
the entire path. This is frequently possible. (See Problem 139.) However this is not
always possible. If the path has a sharp corner or cusp, then it will not have a nonzero
tangent vector at that point so one cannot have a well-defined dx=dt that is not a zero
vector. Any point for which dx=dt ¤ 0 is said to be regular. Most of the theory of
curves, presented in this text and others is devoted to line segments containing only
regular points. On the other hand, Ian R. Porteous points out in the introduction
to his Geometric Differentiation for the Intelligence of Curves and Surfaces that
cusps and other singularities are sometimes the most interesting aspects of a curve
or surface (Porteous 1994, pp. ix–xii).

Nevertheless, it must be said that cusps and other singularities are generally
isolated so not much differential geometry of curves can be learned without studying
regular points. To study the shape of a path, it is useful (at least for theoretical
discussions) to have the point move at a constant unit speed. If s represents the arc
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length of the path from some arbitrarily chosen point, then

ˇ
ˇ
ˇ̌dx
ds

ˇ
ˇ
ˇ̌ D 1.

If one already has in place a parameter t for which jdx=dt j > 0; then (at least
in theory) one can determine an alternate parameter s for which jdx=dsj D 1: One
simply determines a function s.t/ for which

ds

dt
D
ˇ
ˇ
ˇ
ˇ
dx
dt

ˇ
ˇ
ˇ
ˇ .

Then

dx
ds

D dx
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.

So
ˇ
ˇ
ˇ
ˇ
dx
ds

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
dx
dt

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
dt
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ˇ
ˇ
ˇ
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ˇ
ˇ
ˇ
ˇ
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ds

ˇ
ˇ
ˇ
ˇ D 1:

Note! One can also reverse the direction of motion and still have an arc length or
unit speed parameterization. That is you can have ds=dt D � jdx=dt j. I will ignore
that possibility below so I do not have to consider different cases. If you wish to
deal with that possibility, just let t D �Nt C c and then all formulas below will be
valid if you replace t by Nt .
Example 137. Consider the circular helix (spiral) (See Fig. 7.1):

x.t/ D e1a cos t C e2a sin t C e3bt

dx
dt

D �e1a sin t C e2a cos t C e3b, so

ˇ
ˇ
ˇ
ˇ
dx
dt

ˇ
ˇ
ˇ
ˇ D

p
a2 sin2 t C a2 cos2 t C b2 D

p
a2 C b2 D ds

dt
: (7.1)

Thus,

s D

p

a2 C b2
�
t C c,

where c is an arbitrary constant. If we choose c to be zero, then (7.1) becomes

x.s/ D e1a cos
sp

a2 C b2
C e2a sin

sp
a2 C b2

C e3
bsp
a2 C b2

. (7.2)
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Fig. 7.1 Circular helix

To continue our discussion, it is useful to assume that except at isolated points, a
unit speed curve x.s/ in an n-dimensional Euclidean space En can be differentiated
n times. In addition, the curve is truly n-dimensional only if the set

�
dx
ds
;

d2x
ds2

; . . . ,
dnx
dsn

�

spans an n-dimensional space. This is equivalent to saying

dx
ds

^ d2x
ds2

^ � � � ^ dnx
dsn

¤ 0.

To study 2-dimensional surfaces, it was useful to introduce the concept of a
moving frame as we did in Sect. 5.6.1 of Chap. 5. For a given surface, many
alternative moving frames can be used. With the possible exception of surfaces of
revolution, there is no particular moving frame that can be considered intrinsic.

However for a curve, there is an intrinsic moving frame known as the Frenet
frame. For a surface, there is an arbitrariness in the choice of coordinates, and
then there is another arbitrariness in the order of the resulting tangent vectors. By
contrast, for a curve, there is a natural basis. Namely

�
dx
ds
;

d2x
ds2

; . . . ,
dnx
dsn

�
.

Furthermore, there is a natural sequence for the members of this basis so there is a
natural or intrinsic frame resulting from the Gram–Schmidt process. Namely let

E1 D dx
ds

, (7.3)
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EkEk�1 � � � E1 D
dkx
dsk

^ dk�1x
dsk�1 ^ � � � ^ dx

dsˇ
ˇ
ˇ dkx

dsk
^ dk�1x

dsk�1 ^ � � � ^ dx
ds

ˇ
ˇ
ˇ
, for k D 2; 3; : : : ; n � 1, (7.4)

or

Ek D
dkx
dsk

^ dk�1x
dsk�1 ^ � � � ^ dx

dsˇ
ˇ
ˇ dkx

dsk
^ dk�1x

dsk�1 ^ � � � ^ dx
ds

ˇ
ˇ
ˇ
E1E2 � � � Ek�1,

for k D 2; 3; : : : ; n � 1. (7.5)

We should note that an equivalent approach is to have

EkEk�1 � � � E1 D
dkx
dsk

^ Ek�1 ^ � � � ^ E2 ^ E1
ˇ
ˇ
ˇ d

kx
dsk

^ Ek�1 ^ � � � ^ E2 ^ E1
ˇ
ˇ
ˇ
,

for k D 2; 3; : : : ; n � 1, (7.6)

and

Ek D
dkx
dsk

^ Ek�1 ^ � � � ^ E2 ^ E1ˇ
ˇ
ˇ dkx

dsk
^ Ek�1 ^ � � � ^ E2 ^ E1

ˇ
ˇ
ˇ
E1E2 � � � Ek�1,

for k D 2; 3; : : : ; n � 1. (7.7)

We could use (7.5) or (7.7) for k D n. However if we did that, the resulting
frame could change from right handed to left handed or vice versa on opposite sides
of some high order inflection point, where one of the derivatives djx=dsj D 0. It is
preferable to require that the frame be right handed at all points, where

dnx
dsn

^ dn�1x
dsn�1 ^ � � � ^ dx

ds
¤ 0.

That is

EnEn�1 � � � E1 D enen�1 � � � e1, or

En D en���21E1E2 � � � En�1. (7.8)

Using the same reasoning used in the proof of Theorem 90 in Sect. 5.6.1 of
Chap. 5, we know that

dEj
ds

D !jkEk , where !jk D �!kj . (7.9)

Furthermore, since our vectors lie in a Euclidean space:

Ek D Ek for k D 1; 2; : : : ; n . (7.10)
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We will now show that

!jk D 0 if k > j C 1. (7.11)

We first note that

fE1;E2; : : : ;Ekg and

�
dx
ds
;

d2x
ds2

; –,
dkx
dsk

�

span the same space. This implies that dEj =ds is in the space spanned by

�
dx
ds
;

d2x
ds2

; – ,
djx
dsj

;
djC1x
dsjC1

�
, which is equivalent to the space spanned by

˚
E1;E2; : : : ;Ej ;EjC1


or

˚
E1;E2; : : : ;Ej ;EjC1 .

Therefore,

dEj
ds

D !j1E1 C !j2E2 C � � � C !jjC1EjC1 for j D 1; 2; : : : ; n � 1 (7.12)

and
dEn
ds

D !n1E1 C !n2E2 C � � � C !nnEn. (7.13)

Thus, !jk D 0 for k > j C 1.
However since !jk D �!kj, knowing that !jk D 0 for k > j C 1 implies that

!jk D 0 if k < j � 1. Furthermore since !jk D �!kj, we know that !jj D 0. Now
dropping the zero terms in (7.12) and (7.13), we have

dE1
ds

D !12E2 , (7.14)

dEj
ds

D !jj�1Ej�1 C !jjC1EjC1 for j D 2; 3; : : : ; n � 1 (j not summed), and

(7.15)
dEn
ds

D !nn�1En�1. (7.16)

If we define
kj D !jjC1 , we then have

dE1
ds

D k1E2 , (7.17)

dEj
ds

D �kj�1Ej�1 C kjEjC1 for j D 2; 3; : : : ; n � 1, and (7.18)

dEn
ds

D �kn�1En�1: (7.19)
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These equations are usually summarized in matrix form:

d

ds

2

6
6
6
66
6
6
6
6
4

E1
E2
E3
�
�
�
En

3

7
7
7
77
7
7
7
7
5

D

2

6
6
6
66
6
6
6
6
4

0 k1 0 � � � 0

�k1 0 k2 � � � 0

0 �k2 0 � � � 0

� � � � � � �
� � � � � � �
� � � � � 0 kn�1
0 0 0 � � �kn�1 0

3

7
7
7
77
7
7
7
7
5

2

6
6
6
66
6
6
6
6
4

E1
E2
E3
�
�
�
En

3

7
7
7
77
7
7
7
7
5

: (7.20)

The Frenet frame is defined so that all the kj ’s with the possible exception of
kn�1 are positive. In the next section, I will demonstrate that this is a consequence
of (7.4) and (7.5) or (7.6) and (7.7). This is a matter of convenience and has no
geometric significance. If you chose different signs for the Ej ’s, the kj ’s would
have different signs. Other authors point out that if the kj ’s for j < n � 1 were not
all positive, it would be a simple matter to correct the situation as you compute the
frame inductively. That is, adjust the sign of E2 to make k1 positive. Then adjust the
sign of E3 to make k2 positive, and then continue until you have adjusted the sign
of En�1 to make kn�2 positive. At the last step, you adjust the sign of En to make
the Frenet frame right-handed so kn�1 may be positive or negative. (This makes it
possible to distinguish a right handed curve from a left handed one.)

The entity k1 is generally known as the curvature of the path. The rest of the kj ’s
are generally known as higher order curvatures. Johan Gerretsen (Gerretsen 1962,
p. 75) refers to the higher order curvatures as torsions. On the other hand, Wolfgang
Kühnel (Kühnel 2002, p. 26) reserves the word torsion for kn�1. Most authors of
elementary texts on differential geometry restrict themselves to three dimensions.
In that context, k1 is usually designated by the Greek letter kappa (�) and k2 is
designated by the Greek letter tau (�). The numerical value of kappa is referred to
as “the curvature”and the numerical value of tau is referred to as “the torsion.”

Additionally for three-dimensional curves, E1 is designated by t and referred to
as the tangent vector. E2 is designated by n and referred to as the normal vector.
Finally, E3 is designated by b and referred to as the binormal vector.

The matrix (7.20) summarizes a set of equations that are usually referred to as the
Frenet equations or the Serret–Frenet equations. However Ian R. Porteus (Porteus
1994, p. 116) notes;

“Space curves were originally known as curves of double curvature, first studied by Alexis-
Claude Clairaut (1731) when in his teens. The date of the papers of Serret (1851) and
Frenet (1852) is surprisingly late. It seems, however, that they were the last to discover
the equations attributed to them, for these are to be found in a book by Carl Eduard Senff
(1831) of the University of Dorpat (now Tartu in Estonia), who attributed them to his teacher
Martin Bartels. Indeed the concept of torsion is already explicit in a paper by Michel-Ange
Lancret (1806), a pupil of Monge, –.”

Author’s Note! Although Martin Bartels (1769–1833) never won recognition
as a first rank mathematician, he had a significant impact on the history of non-
Euclidean geometry as a teacher. In 1786, in Braunschweig, Germany, a 17-year-old
Bartels was assigned the task of exposing the young Gauss to mathematics far more
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advanced than that usually presented to a 9 year old. It is believed that Bartels
influenced the decision of the Duke of Braunschweig to subsidize Gauss’ education.

A little over 20 years later, in Russia, at Kazan State University, Bartels’ had a
student who originally planned to pursue a career in medicine. That student was
Lobachevsky who was soon persuaded to change his career plans.

Martin Bartels corresponded with Gauss and at one time it was speculated that
Bartels may have transmitted some of Gauss’ results on non-Euclidean geometry
to Lobachevsky. However, scholars who have studied the correspondence between
Gauss and Bartels are convinced that Gauss never revealed those results to Bartels
(O’Connor and Robertson: Lobachevsky).

What appears likely is that Bartels directed the attention of both Gauss and
Lobachevsky to the problem of the parallel postulate. This is consistent with the
early interest that Gauss had in the problem. It is also consistent with the content of
a history of mathematics course that Lobachevsky took from Bartels (Laptev 1992).

The matrix (7.20) can be rewritten in terms of Clifford algebra. Namely

dEk.s/
ds

D �M.s/Ek.s/C Ek.s/M.s/, where

M.s/ D 1

2

n�1X

jD1
kj .s/Ej .s/EjC1.s/ . (7.21)

(See Problem 145.)
I will refer to M as the Frenet 2-vector. It turns out that the Frenet 2-vector is

related to a rotation operator R.s/. Since Ej .s/ does not change its length, each
Ej .s/ undergoes a rotation as s changes. Thus, we can write

Ej .s/ D R�1.s/Ej .0/R.s/. (7.22)

From this equation;

dEj .s/
ds

D dR�1.s/
ds

Ej .0/R.s/C R�1.s/Ej .0/
dR.s/

ds
. (7.23)

From (7.22),

Ej .0/ D R.s/Ej .s/R�1.s/.

So (7.23) becomes

dEj .s/
ds

D dR�1.s/
ds

R.s/Ej .s/C Ej .s/R�1.s/
dR.s/

ds
. (7.24)

Now since

R�1R D I, it follows that

dR�1

ds
R C R�1 dR

ds
D 0 or

dR�1

ds
R D �R�1 dR

ds
, so
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Equation (7.24) becomes

dEj .s/
ds

D �R�1 dR
ds

Ej .s/C Ej .s/R�1 dR
ds

.

Comparing this with (7.21) gives us

M.s/ D R�1.s/
dR.s/

ds
or

dR.s/
ds

D R.s/M.s/. (7.25)

From the theory of differential equations, it is known that (7.20) is always
solvable although not necessarily in terms of elementary functions. A solver has
the freedom to choose the initial Frenet frame:

Ej .0/ for j D 1; 2; : : : ; n and x.0/.

As a consequence, any information about the shape of a curve is stored in the Frenet
equations.

Example 138.

As an example let us consider the 3-dimensional case for which both the
curvature and torsion are constant. We will use a Clifford algebra approach. For
the scalar version of (7.25), the solution is essentially trivial. If

dR.s/

ds
D R.s/M.s/, then

dR

R
D M ds, and lnR D

Z
M ds. (7.26)

Thus, R.s/ D R.0/ exp
Z s

0

M.u/du . (7.27)

However if we are dealing with matrices or Clifford numbers, the situation is more
complicated. To see this, suppose

A.s/ D
Z s

0

M.u/du and
d

ds
A.s/ D M.s/. (7.28)

Then

exp
Z s

0

M.u/du D exp A.s/ D
1X

kD0

1

kŠ
.A.s//k , and

d

ds
exp A.s/ D M C 1

2Š
ŒMA C AM�C 1

3Š

h
M .A/2 C AMAC .A/2 M

i
C � � � .
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If M commutes with A, then

d

ds
exp A.s/ D

�
I C A C 1

2Š
.A/2 C � � �

	
M

D Œexp A.s/�M.s/ . (7.29)

However if M does not commute with A, then

d

ds
exp A.s/ ¤ Œexp A.s/�M .

On the other hand, if M is a constant matrix or Clifford number, then A.s/D Ms
and so A and M commute. If the curvatures are constant, then the Frenet 2-vector

M.s/ D 1

2

n�1X

jD1
kjEj .s/EjC1.s/ D 1

2

n�1X

jD1
kjEj .0/EjC1.0/ D M.0/ .

(See Problem 146.)
For the 3-dimensional case, the Frenet 2-vector

M.s/ D 1

2
Œ�t.s/n.s/C�n.s/b.s/� D 1

2
Œ�t.0/��b.0/�n.0/ .

Because of the form of the Frenet 2-vector M, it is useful to introduce an alternate
orthonormal frame. Namely:

NE1 D �t.0/� �b.0/p
�2 C �2

, (7.30)

NE2 D n.0/, and (7.31)

NE3 D �t.0/C �b.0/p
�2 C �2

. (7.32)

In this circumstance

M.s/ D M.0/ D
p
�2 C �2

2
NE1 NE2

and the solution of (7.25) becomes

R.s/ D R.0/ exp

"p
�2 C �2

2
NE1 NE2s

#

. (7.33)

From (7.22), it is clear that R.0/ D I. Since . NE1 NE2/2 D �I, NE1 NE2 behaves
algebraically like

p�1. Therefore, (7.33) becomes
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R.s/ D exp

"p
�2 C �2

2
NE1 NE2s

#

D I cos

p
�2 C �2

2
s C NE1 NE2 sin

p
�2 C �2

2
s . (7.34)

(See Problem 147.)
To compute t(s), we note that from (7.22):

t.s/ D R�1.s/t.0/R.s/ . (7.35)

From (7.30) and (7.32),

t.0/ D �p
�2 C �2

NE1 C �p
�2 C �2

NE2 . (7.36)

Combining (7.34) and (7.36), we have

R�1.s/t.0/

D exp

"

�
p
�2 C �2

2
NE1 NE2s

#�
�p

�2 C �2
NE1 C �p

�2 C �2
NE3
	

D
 

I cos

p
�2 C �2

2
s � NE1 NE2 sin

p
�2 C �2

2
s

!�
�p

�2 C �2
NE1 C �p

�2 C �2
NE3
	

.

(7.37)

We note that

NE1 NE2 NE1 D � NE1
� NE1 NE2

�
and NE1 NE2 NE3 D NE3

� NE1 NE2
�

.

Thus, (7.37) becomes

R�1.s/t.0/ D �p
�2 C �2

NE1
 

I cos

p
�2 C �2

2
s C NE1 NE2 sin

p
�2 C �2

2
s

!

C �p
�2 C �2

NE3
 

I cos

p
�2 C �2

2
s � NE1 NE2 sin

p
�2 C �2

2
s

!

D �p
�2 C �2

NE1 exp

"p
�2 C �2

2
NE1 NE2s

#

C �p
�2 C �2

NE3 exp

"

�
p
�2 C �2

2
NE1 NE2s

#

. (7.38)
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Using (7.34) and (7.38), (7.35) becomes

t.s/D 1p
�2 C �2

"

� NE1 exp

 p
�2 C �2

2
NE1 NE2s

!

C � NE3 exp

 

�
p
�2 C �2

2
NE1 NE2s

!#

� exp

 p
�2 C �2

2
NE1 NE2s

!

and therefore,

t.s/ D � NE1p
�2 C �2

exp

p

�2 C �2 NE1 NE2s
�

C � NE3p
�2 C �2

D � NE1p
�2 C �2

h
cos


p
�2 C �2s

�
C NE1 NE2 sin


p
�2 C �2s

�i
C � NE3p

�2 C �2
.

Thus,

t.s/ D �p
�2 C �2

h NE1 cos

p

�2 C �2s
�

C NE2 sin

p

�2 C �2s
�i

C � NE3p
�2 C �2

.

(7.39)

To get x.s/, we observe that

x.s/ D
Z s

0

t.u/du C x.0/

D � NE1
.�2 C �2/

sin

p

�2 C �2s
�

� � NE2
.�2 C �2/

h
cos


p
�2 C �2s

�
� 1

i
C � NE3sp

�2 C �2
C x.0/ . (7.40)

If we let NE1 D e2, NE2 D �e1, NE3 D e3, and x.0/ D �� NE2=
�
�2 C �2

� D
�e1=

�
�2 C �2

�
, we get

x.s/ D �e1
.�2 C �2/

cos

p

�2 C �2s
�

C �e2
.�2 C �2/

sin

p

�2 C �2s
�

C �e3sp
�2 C �2

. (7.41)

This is identical to (7.2) for the circular helix. (See Problem 148.)
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Problem 139. Suppose x.t/ D e1t3 C e2t6. Clearly

dx.t/
dt

ˇ
ˇ
ˇ
ˇ
tD0

D 0.

Find an alternate parameterization for the same path such that all its points are
regular. (What curve is this?)

Problem 140. Suppose x.s/ D e1 cosh t C e2 sinh t C e3t . Determine ds=dt and an
arc length parameterization for x.

Problem 141. Using the arc length parameterization for the helix

x.s/ D e1a cos
sp

a2 C b2
C e2a sin

sp
a2 C b2

C e3
bsp
a2 C b2

,

determine the Frenet apparatus t.s/, n.s/, b.s/, �, and � . That is E1, E2, E3, k1, and
k2. What happens when � D 0?

Problem 142. Suppose x.s/ is a curve in E3 that is not a straight line. From your
knowledge of geometry, it should be clear that

x.s/ lies in a plane

, 9 a constant vector N s.t. hN; x.s/� x.0/i D 0.

a. Taking derivatives of the equation above and using whatever arguments you find
suitable show that a necessary and sufficient condition for x.s/ to lie in a plane is
that �.s/ D 0.

b. What is the relationship between N and the Frenet frame?

Problem 143. Consider the curve x.t/ D e14 cos tC e2.5�5 sin t/C e3.�3 cos t/.

a. Find an arc length parameterization for x:
b. Compute the Frenet apparatus and show that this curve is a circle.
c. Find the center and radius.
d. Rewrite the equation for the curve in terms of the basis fNe1; Ne2; Ne3g, where Ne1 D

t.0/, Ne2 D n.0/; and Ne3 D b.0/:
e. Sketch the curve in this new basis.

Problem 144. Consider the curve x.s/ D e1
h
.1Cs/3=2

3

i
C e2

h
.1�s/3=2

3

i
C e3 sp

2

defined for �1 < s < 1. Show that x.s/ is an arc length parameterization and
compute the Frenet apparatus.

Problem 145. Verify (7.21).

Problem 146. Suppose M.s/ D 1
2

Pn�1
jD1 kjEj .s/EjC1.s/ , where the kj ’s are con-

stant. Use the Frenet equations to show that dM.s/=ds D 0 and thus M.s/ D M.0/.
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Helix

Cross-sectional

φ

curve

E

Fig. 7.2 A non-circular helix

Problem 147. Using the fact that

exp A D
1X

kD0

1

kŠ
.A/k;

verify (7.34).

Problem 148. Use the formulas you derived in Problem 141 for � and � to show
that (7.41) is identical to (7.2).

Problem 149. Helices are odd dimensional curves with certain constraints on the
curvatures. In particular, suppose k1; k2, . . . , k2r are the curvatures of a .2r C 1/-
dimensional curve. Then the curve is said to be a generalized helix if each ratio
k2j�1=k2j is constant for j D 1; 2, . . . , r .

a. Show that for a helix, the vector

E D
0

@
rX

jD0
˛2jC1E2jC1.s/

1

A
,vu
u
t

rX

kD0
.˛2kC1/2 (7.42)

is a constant unit vector, if

˛1 D 1 and ˛2jC1 D k1

k2

k3

k4
� � � k2j�1

k2j
for j D 1; : : : ; r .

b. The vector E of (7.42) may be referred to as the axis of the helix. How does the
axis E relate to the vector NE3 of (7.32) and (7.40)?

Problem 150. Suppose that x.s/ is an arc length curve in the e1e2 plane with
tangent vector t.s/; normal vector n.s/, and curvature �.s/. Suppose that � is a
constant angle. (See Fig. 7.2.) In addition, suppose that the curve Nx.Ns/ is an arc
length curve, where

Nx.Ns.s// D x.s/C e3s tan�:
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a. Determine the function Ns.s/ assuming that it is increasing.
b. Assuming �.s/ > 0 and � is in the first quadrant, compute the Frenet apparatus

Nt, Nn, Nb, N�, and N� for Nx.Ns/ in terms of t, n, e3, �, and �. (To calculate Nb, note that
the direction of n is chosen so that tn D e1e2 and therefore Nb NnNt D e321 D e3nt.)

c. Is Nx.Ns/ an example of a helix as defined in Problem 149? Use the formulas that
you derived in part b) to get a formula for the vector E of (7.42) in terms of t, n,
and e3. Does this answer surprise you? It should not.

The curve x.s/ is designated as the cross-sectional curve of the helix Nx.Ns/. For
3-dimensions, we can use essentially any 2-dimensional curve for a cross-sectional
curve. For higher dimensions, the situation is considerably more complicated.
Helices in 3-dimensions are sometimes referred to as curves of constant slope. Why?

Note! We did not have to require that �.s/ > 0 or require that � be in the
first quadrant. I did not want to burden you with the problem of sorting out different
cases. However, you may wish to do that. The case discussed above may be regarded
as a right-handed helix. How could you get a left-handed helix without drastically
changing the approach above?

Problem 151. Consider the curve in Problem 140.

a. Show that the curve in Problem 140 is a helix as defined in Problem 149. Is it
right handed or left handed?

b. Determine the axis E.
c. Sketch the cross-sectional curve.

Problem 152. Consider the curve in Problem 144.

a. Show that the curve in Problem 144 is a helix as defined in Problem 149. Is it
right handed or left handed?

b. Determine the axis E:
c. Sketch the cross-sectional curve.

Problem 153. Suppose the circle in Problem 143 is the cross-sectional curve of a
circular helix.

a. What would be the axis E?
b. Construct a general formula for a right-handed helix for which the circle in

Problem 143 is a cross-sectional curve.
c. Adjust your formula in part (b) to get a general formula for a left handed helix

with the same cross-sectional curve.

Problem 154. Suppose

M.s/ D 1

2

n�1X

jD1
kj .s/Ej .s/EjC1.s/ and A.s/ D

Z s

0

M.u/du:
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a. Is it true that
d

ds
exp A.s/ D Œexp A.s/�M.s/ (7.43)

for a 3-dimensional helix? Is it true for higher dimensional helices?
b. Formulate a sufficient condition for (7.43) to be valid in any dimension.

Problem 155. If you reverse the direction of the parameterization do you change
the right or left handedness of a curve? (Your answer may depend on the dimension
of the curve.)

Problem 156. Suppose that dks=dtk is well defined for kD 1; 2; : : : ; n and ds=dt ¤
0: Show that the set of vectors

�
dx
dt
;

d2x
dt2

; : : : ;
dkx
dtk

�

spans the same space as
�

dx
ds
;

d2x
ds2

; : : : ;
dkx
dsk

�

for k D 1; 2; : : : ; n . (As a consequence, applying the Gram–Schmidt process
to either basis in the normal order will result in the same frame. Thus, it is not
necessary to use an arc length parameterization to obtain the Frenet frame.)

7.2 *Arbitrary Speed Curves with Formulas

Virtually, the entire theory of curves is based on unit speed parameterizations. In
theory, it is always possible to introduce a unit speed parameterization for a curve
x.t/ on any interval of the domain for which dx=dt ¤ 0. However for many (if
not most) cases, it is a computational nightmare to actually carry out a unit speed
parameterization. The good news is that you do not have to.

In this section, I will introduce generalized versions of (7.3), (7.5), (7.7), and
(7.8). I will demonstrate that these formulas result in the conventional signs for the
curvatures as I claimed for the unit speed versions in the last section. In addition, I
will derive a formula for the curvatures.

Before proceeding further, you should do Problem 156 if you have not already
done so.

In this section, I will assume that ds=dt is both well defined and positive on
whatever interval is under consideration.

Theorem 157. Given a curve x.t/, the following formulas are valid for the Frenet
apparatus:

Ek D
dkx
dtk

^ Ek�1 ^ � � � ^ E2 ^ E1
ˇ
ˇ
ˇ dkx

dtk
^ Ek�1 ^ � � � ^ E2 ^ E1

ˇ
ˇ
ˇ
E1E2 � � � Ek�1, (7.44)

for k D 1; 2; : : : ; n � 1,
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where it is understood that

E1 D
dx
dtˇ
ˇ dx

dt

ˇ
ˇ . (7.45)

Also,
En D en���21E1E2 � � � En�1. (7.46)

We can define the coefficient Ak by the equation:

dkx
dtk

D AkEk C
k�1X

jD1
˛kjEj , or equivalently (7.47)

Aj D
ˇ
ˇ
ˇ
ˇ
djx
dt j

^ Ej�1 ^ � � � ^ E2 ^ E1

ˇ
ˇ
ˇ
ˇ (7.48)

for j D 1; 2; : : : ; n � 1, where it is understood that

A1 D
ˇ
ˇ̌
ˇ
dx
dt

ˇ
ˇ̌
ˇ D ds

dt
. (7.49)

For j D n,

An D
�

dnx
dtn

^ En�1 ^ � � � ^ E2 ^ E1

	
e12���n. (7.50)

The curvatures can be written in terms of these coefficients. Namely

kj D AjC1
AjA1

. (7.51)

Proof. From the result of Problem 156, we know that the sets

�
dx
dt
;

d2x
dt2

; : : : ;
dkx
dtk

�
and

�
dx
ds
;

d2x
ds2

; : : : ;
dkx
dsk

�

span the same space for k D 1; 2; : : : ; n. This implies that

dkx
dtk

^ dk�1x
dtk�1 ^ � � � ^ dx

dtˇ
ˇ
ˇ dkx

dtk
^ dk�1x

dtk�1 ^ � � � ^ dx
dt

ˇ
ˇ
ˇ

D ˙
dkx
dsk

^ dk�1x
dsk�1 ^ � � � ^ dx

dsˇ
ˇ
ˇ dkx

dsk
^ dk�1x

dsk�1 ^ � � � ^ dx
ds

ˇ
ˇ
ˇ
. (7.52)

A review of your computations in Problem 156 should reveal that we must choose
the positive sign in (7.52) if ds=dt is positive. This means that in the Gram–Schmidt
computation,

E1 D
dx
dtˇ
ˇ dx

dt

ˇ
ˇ , and (7.53)



7.2 *Arbitrary Speed Curves with Formulas 243

EkEk�1 � � � E1 D
dkx
dtk

^ dk�1x
dtk�1 ^ � � � ^ dx

dtˇ
ˇ
ˇ dkx

dtk
^ dk�1x

dtk�1 ^ � � � ^ dx
dt

ˇ
ˇ
ˇ
, and thus (7.54)

Ek D
dkx
dtk

^ dk�1x
dtk�1 ^ � � � ^ dx

dtˇ̌
ˇ dkx

dtk
^ dk�1x

dtk�1 ^ � � � ^ dx
dt

ˇ̌
ˇ
E1E2 � � � Ek�1 (7.55)

for k D 2; : : : ; n � 1.

Equivalently, we can write

EkEk�1 � � � E1 D
dkx
dtk

^ Ek�1 ^ � � � ^ E2 ^ E1
ˇ
ˇ
ˇ dkx

dtk
^ Ek�1 ^ � � � ^ E2 ^ E1

ˇ
ˇ
ˇ
, so (7.56)

Ek D
dkx
dtk

^ Ek�1 ^ � � � ^ E2 ^ E1
ˇ̌
ˇ dkx

dtk
^ Ek�1 ^ � � � ^ E2 ^ E1

ˇ̌
ˇ
E1E2 � � � Ek�1 (7.57)

for k D 1; 2; : : : ; n � 1:

And, as before

EnEn�1 � � � E1 D en���21 so

En D en���21E1E2 � � � En�1. (7.58)

Since the sets

�
dx
dt
;

d2x
dt2

; : : : ;
dkx
dtk

�
and fE1;E2; : : : ;Ekg

span the same space for k D 1; 2; : : : ; n, (7.47) makes sense and therefore it can be
used to define Ak .

If we replaced dkx=dtk in the numerator on the right hand side of (7.56) by the
formula of (7.47), we get

Ak D
ˇ
ˇ̌
ˇ
dkx
dtk

^ Ek�1 ^ � � � ^ E2 ^ E1

ˇ
ˇ̌
ˇ , for k D 2; 3; : : : ; n � 1.

From (7.47) and (7.53), it is clear that

A1 D
ˇ̌
ˇ
ˇ
dx
dt

ˇ̌
ˇ
ˇ D ds

dt
.
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For k D n, we note that

Anen���21 D .AnEn/ ^ En�1 ^ � � � ^ E1 D dnx
dtn

^ En�1 ^ � � � ^ E2 ^ E1, and thus

An D
�

dnx
dtn

^ En�1 ^ � � � ^ E2 ^ E1

	
e12���n. (7.59)

To get the formula for the curvatures, we note that since

djx
dt j

D AjEj C
j�1X

pD1
˛jpEp , it follows that (7.60)

djC1x
dt jC1 D AjkjEjC1

ds

dt
C

jX

pD1
ˇjpEp (7.61)

On the other hand, we observe that from (7.60),

djC1x
dt jC1 D AjC1EjC1 C

jX

pD1
˛jC1pEp , for j D 1; 2; : : : ; n � 1. (7.62)

Using the fact that

ds

dt
D A1;

it follows from (7.61), and (7.62) that

kj D AjC1
AjA1

for j D 1; 2; : : : ; n � 1. (7.63)

I have now verified all the equations listed in this theorem.

From (7.48), and (7.50), we see that all of the kj ’s are positive with the possible
exception of kn�1.

Example 158. Consider the curve,

x.t/ D 6te1 C 3
p
2t2e2 C 2t3e3. (7.64)

It follows that

dx
dt

D 6e1 C 6
p
2te2 C 6t2e3, (7.65)

and therefore

A1 D
ˇ
ˇ
ˇ
ˇ
dx
dt

ˇ
ˇ
ˇ
ˇ D ds

dt
D 6

p
1C 2t2 C t4 D 6.t2 C 1/. (7.66)
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Thus,

E1 D dx
dt

.ˇˇ̌
ˇ
dx
dt

ˇ
ˇ̌
ˇ D e1 C p

2te2 C t2e3
t2 C 1

. (7.67)

From (7.65),

d2x
dt2

D 6
p
2e2 C 12te3. (7.68)

And

d2x
dt2

^ E1 D 6

p

2e2 C 2te3
�

^
 

e1 C p
2te2 C t2e3
t2 C 1

!

D 6
e23.

p
2t2 � 2

p
2t2/C e31 .2t/C e12.�

p
2/

t2 C 1
, or

d2x
dt2

^ E1 D 6
�p

2t2e23 C 2te31 � p
2e12

t2 C 1
. (7.69)

It then follows that

A2 D
ˇ
ˇ
ˇ̌d
2x

dt2
^ E1

ˇ
ˇ
ˇ̌ D 6

t2 C 1

p
2t4 C 4t2 C 2 D 6

p
2. (7.70)

Furthermore,

E2E1 D
d2x
dt 2

^ E1ˇ
ˇ
ˇ d2x

dt 2 ^ E1
ˇ
ˇ
ˇ

D �t2e23 C p
2te31 � e12

t2 C 1
, so (7.71)

E2 D
d2x
dt 2

^ E1ˇ
ˇ
ˇ d2x

dt 2 ^ E1
ˇ
ˇ
ˇ
E1

D
 

�t2e23 C p
2te31 � e12

t2 C 1

! 
e1 C p

2te2 C t2e3
t2 C 1

!

D e1.�
p
2t3 � p

2t/C e2.�t4 C 1/C e3.
p
2t3 C p

2t/

.t2 C 1/2

Or simplified,

E2 D �p
2te1 C .�t2 C 1/e2 C p

2te3
t2 C 1

. (7.72)

To get E3, we note that

E3 D e321E1E2.
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So using (7.71), we have

E3 D e321

 
t2e23 � p

2te31 C e12
t2 C 1

!

or

E3 D t2e1 � p
2te2 C e3

t2 C 1
. (7.73)

To compute A3, we need to compute d3x=dt3. From (7.68)

d3x
dt3

D 12e3.

Using (7.50) and (7.71), we have

A3 D
�

d3x
dt3

^ E2 ^ E1

	
e123

D
 

12e3 ^ �t2e23 C p
2te31 � e12

t2 C 1

!

e123

D �12e123

t2C1
e123 and thus

A3 D 12

t2 C 1
. (7.74)

Using (7.63), (7.66), (7.70), and (7.74), we have

k1 D A2

A1A1
D 6

p
2

36.t2 C 1/2
D

p
2

6.t2 C 1/2
and (7.75)

k2 D A3

A2A1
D 12

.t2 C 1/6
p
26.t2 C 1/

D
p
2

6.t2 C 1/2
. (7.76)

We now see that since k1=k2 is a constant, we are dealing with a generalized helix.
If x.t/ is a helix, we can project out the cross-sectional curve y.t/ passing through
x.t0/. In particular, if E is the unit axis vector, then

y.t/ D x.t/ � hx.t/ � x.t0/;Ei E (7.77)

However if the cross-sectional curve y.t/ does not lie in a coordinate plane or a
plane parallel to a coordinate plane, simply projecting out the cross-sectional curve
is not very enlightening if you wish to know what the cross-sectional curve looks
like. For the curve in this example,

E D k2E1 C k1E2p
.k1/2 C .k2/2

D e1 C e2p
2

.
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Thus, it should be clear that the cross-sectional curve for this example does not lie
in a coordinate plane. If we rotate our curve so that axis of the helix E aligns with
e3 (or introduce a new basis so that E D Ne3), then the cross-sectional curve will lie
in some plane parallel to the e1e2 plane (or Ne1Ne2 plane). One way to do this is to
jump ahead, do Problem 160, and then take advantage of the result. In particular,
introduce a new basis:

Ne1 D k1E1.0/� k2E3.0/p
.k1/2 C .k2/2

, (7.78)

Ne2 D E2.0/, and (7.79)

Ne3 D k2E1.0/C k1E3.0/p
.k1/2 C .k2/2

D E. (7.80)

For our example, E1.0/ D e1, E2.0/ D e2, E3.0/ D e3, and k1 D k2. Therefore,

Ne1 D e1 � e3p
2

,

Ne2 D e2, and

Ne3 D e1 C e3p
2

.

With a little algebra, it is not difficult to show that these equations imply that

e1 D Ne1 C Ne3p
2

,

e2 D Ne2, and

e3 D �Ne1 C Ne3p
2

.

Using these formulas, (7.64) becomes

x.t/ D p
2
�
.�t3 C 3t/Ne1 C 3t2 Ne2 C .t3 C 3t/Ne3

�
: (7.81)

In this form, we know that the cross-sectional curve lies in the Ne1 Ne2 so it is easy
to plot. (See Problem 161.) Because of the choice of parameterization, (7.81)
does not look like the equation of a helix. Let us try to introduce a unit speed
parameterization.

dx
dt

D p
2
�
.�3t2 C 3/Ne1 C 6t Ne2 C .3t2 C 3/Ne3

�
. So

dx
dt

D 3
p
2
�
.�t2 C 1/Ne1 C 2t Ne2 C .t2 C 1/Ne3

�
.
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This implies that

ds

dt
D
ˇ
ˇ
ˇ̌dx

dt

ˇ
ˇ
ˇ̌ D 3

p
2
p
.�t2 C 1/2 C 4t2 C .t2 C 1/2

D 3
p
2
p
2.t4 C 2t2 C 1/ D 6.t2 C 1/:

Finally, this means that

s D 6

�
t3

3
C t

	
D 2.t3 C 3t/C a possible constant.

If we let the constant be zero, then the coefficient of Ne3 on the right-hand side of
(7.81) would be .

p
2=2/s, which is the kind of simple answer you would expect for

a helix. However, writing the coefficients of Ne1 and Ne2 in terms of s and then trying
to compute the Frenet apparatus from the resulting functions would not be an easy
task (at least for me).

For the sake of completeness, I will now write down the Frenet equations adjusted
for an arbitrary speed parameterization. Since

dEj
dt

D dEj
ds

ds

dt
, we have

d

ds

2

6
66
6
6
6
66
6
4

E1
E2
E3
�
�
�
En

3

7
77
7
7
7
77
7
5

D

2

6
66
6
6
6
66
6
4

0 k1v 0 � � � 0

�k1v 0 k2v � � � 0

0 �k2v 0 � � � 0

� � � � � � �
� � � � � � �
� � � � � 0 kn�1v
0 0 0 � � �kn�1v 0

3

7
77
7
7
7
77
7
5

2

6
66
6
6
6
66
6
4

E1
E2
E3
�
�
�
En

3

7
77
7
7
7
77
7
5

; (7.82)

where

v D ds

dt
.

How should one modify (7.21) and/or (7.22) for the equation using the Frenet
2-vector?

Problem 159. Show that

AkAk�1 � � � A1 D
ˇ
ˇ̌
ˇ
dkx
dtk

^ dk�1x
dtk�1 ^ � � � ^ dx

dt

ˇ
ˇ̌
ˇ , for k D 1; 2; : : : ; n � 1, and

AnAn�1 � � � A1 D
�

dnx
dtn

^ dn�1x
dtn�1 ^ � � � ^ dx

dt

	
e12���n .
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Problem 160.

a. Construct an argument that verifies (7.77)
b. Suppose x.t/ has the Frenet frame E1, E2, and E3 and y.t/ is the cross-sectional

curve passing through x.t0/ with the Frenet NE1, NE2, and NE3. Using (7.77) and the
fact that

E D k2E1 C k1E3p
.k1/2 C .k2/2

, show that

NE1 D k1E1 � k2E3p
.k1/2 C .k2/2

, (7.83)

NE2 D E2, and (7.84)

NE3 D k2E1 C k1E3p
.k1/2 C .k2/2

D E. (7.85)

c. Suppose Nk1 is the curvature and Nk2 is the torsion for y.t/. Show that

Nk1 D
p
.k1/2 C .k2/2 and Nk2 D 0. (7.86)

(Showing that Nk2 D 0, verifies the fact that y.t/ lies in a plane.)

Problem 161. Plot the cross-sectional curve for the helix of (7.81). Is the curve
symmetric with respect to either axis? Does it cross itself?

Problem 162. Consider the curve x.t/ D e1 cosh t C e2 sinh t C e3t . Compute the
Frenet apparatus and verify the fact that it is a helix. Describe or plot the cross-
sectional curve. Can you construct formulas for the curvature and the torsion in
terms of the arc length distance from the point where t D 0.

Problem 163. Consider the curve x.t/ D 2te1 C t2e2 C .t3=3/e3. Compute the
Frenet apparatus and verify the fact that it is a helix. Find the limiting values of E1,
E2, and E3 as t ! �1 and t ! C1. Plot the cross-sectional curve.

7.3 Ruled Surfaces and Developable Surfaces

A 2-dimensional surface embedded in the (n C 1/-dimensional Euclidean space
EnC1 is said to be a ruled surface if it contains a one-parameter family of straight
lines, which can be chosen as coordinate curves on the surfaces. The straight lines
are said to be generators of the ruled surface.
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a b

Fig. 7.3 Two ruled surfaces. (a) Cylinder. (b) Cone

A ruled surface may be thought of as a surface swept out by a continuously
moving straight line. Immediate examples that should spring up in your mind are
cylinders (not necessarily circular) and cones (not necessarily symmetrical). (See
Fig. 7.3a, b.)

Suppose the straight line glides along the curve x.s/ and at each point of the
curve, the direction of the straight line is indicated by the unit vector v.s/. In that
circumstance, the equation for the surface can be written in the form:

y.u; t/ D x.u/Ctv.u/. (7.87)

The curve x.u/ is known as the directrix of the ruled surface. It should be clear
that the coordinate t measures the distance along a straight line generator away
from the point x.u/ on the directrix. For y.u; t/ to truly represent a 2-dimensional
surface, it is generally required that the coordinate Dirac matrices (�u D @y=@u
and � t D @y=@t D v.u/) be linearly independent. However, an important class of
ruled surfaces, known as tangential developables are swept out by the tangent lines
to some smooth directrix. For this class of surfaces, the directrices become edges
(edges of regression). On such an edge, the condition that �u ^ � t ¤ 0 is violated.
(Actually unless the torsion of the edge of regression is zero, two surfaces are swept
out – one by the forward ray of the tangent line and the other by the trailing ray. The
two surfaces meet and form a cusp at the edge or regression. An example of this is
illustrated in Fig. 7.6.)

Another anomaly occurs at the vertex of a cone, where �u ^ � t is undefined. For
cones, the most transparent form of the equation results from using the vertex in
place of a directrix curve. In that case, x.u/ becomes a fixed point p (the vertex) and
the equation becomes

y.u; t/ D pCtv.u/. (7.88)
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x

-y

z

a b

Fig. 7.4 (a) Helicoid. (b) Saddle surface

At the vertex where t D 0, y is independent of u so neither �u nor � t is well defined.
When (7.88) is used to represent a cone, you may wish to choose u so that it is an
arc length parameter for v.

Cones and cylinders are obvious examples of ruled surfaces. However, there are
many other classic examples. For example, suppose you imagine a straight line L
attached orthogonally to an axis. If the line L moves along the axis at a constant
speed while rotating about the axis at a constant rate, the resulting surface swept out
by the line L is said to be a helicoid. (See Fig. 7.4a.)

Some ruled surfaces have two sets of generators. Such surfaces are said to be
doubly ruled. An example of a doubly ruled surface is the saddle surface z D xy

(or x3 D x1x2), which we have encountered before. (See Fig. 7.4b.) One set of
generators cut across the x-axis. For that set of generators, we can parameterize the
surface by the equation:

y.u; t/ D x.u/C tv.u/, where (7.89)

x.u/ D e1u and v.u/ D e2 C e3up
1C u2

. (7.90)

Alternatively, one can use another set of generators that cross the y-axis. (Look at
Fig. 7.4b again and Prob. 164.) For me, a less obvious example of a doubly ruled
surface is the one sheet hyperboloid. (See Fig. 7.5.) The one sheet hyperboloid can
be defined by the equation

x2

a2
C y2

b2
� z2

c2
D 1. (7.91)
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Fig. 7.5 One sheet
hyperboloid

a b

Fig. 7.6 (a) Developable helicoid. (b) Strake

For the one sheet hyperboloid, one can write:

y.u; t/ D x.u/C tv.u/, where (7.92)

x.u/ D e1a cos u C e2b sin u, and (7.93)

v.u/ D �e1a sin u C e2b cos u C e3c. (7.94)
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(In this case, u is not an arc length parameter for x and v has not been normalized.)
By symmetry, it is not too difficult to show that a one sheet hyperboloid has a second
set of generators.

Because of the double set of generators, one sheet hyperboloids are used for
nuclear plant cooling towers. Straight steel beams can be used for primary structural
members.

In closing this section, I should comment on what is a developable surface. In
a general context, a developable surface is the envelope of a one parameter family
of planes. This approach is outlined in Gerretsen’s text (1962, pp. 87-88) for m-
dimensional surfaces in (n C 1)-dimensional Euclidean spaces. For 2-dimensional
surfaces, a developable surface may be characterized as a ruled surface with zero
Gaussian curvature. In the next chapter (Theorem 233 and Corollary 234), it is
shown that at least locally these surfaces are either cylinders, cones, or tangential
developables.

Problem 164.

(a) Demonstrate that the formulas of (7.89) and (7.90) are consistent with the
equation z D xy (or x3 D x1x2).

(b) Write down another equation for the surface z D xy, using a second set of
generators.

(a) Verify the fact that (7.92), (7.93), and (7.94) are consistent with (7.91).
(b) Construct an alternate version of (7.94) to demonstrate that the one sheet

hyperboloid is doubly ruled.

Problem 165. Consider an arbitrary cone represented by the equation:

y.u1; u2/ D pCu1v.u2/,

where p is a constant vector and v.u2/ is a unit vector. (See Fig. 7.3b.)
Compute the Gaussian curvature using Fock–Ivanenko coefficients and show that

it is zero.

Note! hv; Pvi D 0, where Pv D dv=du2. Why?

Problem 166. Consider an arbitrary cylinder represented by the equation:

y.u1; u2/ D x.u2/C u1v;

where u2 is an arc length parameter for the curve x and v is a constant vector of
unit length. See Fig. 7.3a. (You can assume that �2 ^ v ¤ 0, where �2 D Px.u2/ D
dx=du2.) Compute the Gaussian curvature using Fock–Ivanenko coefficients and
show that it is zero. Note! When constructing an orthonormal frame for this surface,
you may find it useful to use the equality:

.b ^ a/ aD1

2
Œba � ab� a D

�
ba � 1

2
.ba C ab/

�
a or

.b ^ a/ a D b ha; ai � ha;bi a. (7.95)
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Problem 167 (Developable Helicoid and STRAKE). Consider the developable
helicoid. This is the surface generated by the tangents to a circular helix. Actually,
a developable helicoid consists of two surfaces – one swept out by the tangent
ray in the forward direction and the other swept out by the tangent ray in the
trailing direction. The two surfaces meet at the circular helix forming a sharp cusp
known as the edge of regression. (See Fig. 7.6a.) For a circular helix, a unit speed
parameterization is

x.s/ D e1a cos
sp

a2 C b2
C e2a sin

sp
a2 C b2

C e3
bsp
a2 C b2

. (7.96)

a) Determine the unit tangent vector E1 D t so that you can explicitly write

y.u1; u2/ D x.u2/C u1t.u2/

in terms of u1, u2, e1, e2, and e3.
b) Use Fock–Ivanenko coefficients to show that the Gaussian curvature is zero.
c) Because a developable helicoid has zero Gaussian curvature, it can be made out

of flat material. (The material has to be bent but not stretched.) Suppose the
helix of (7.96) is drawn (perhaps with chalk) on a circular cylinder of radius
a. Determine the radius of curvature that you would use to cut a developable
helicoid from flat material so that it could be attached to the cylinder along
the chalk line without stretching. In the context of industrial applications, the
developable helicoid is known as a strake. (See Fig. 7.6b.)

A circular cylinder is not rigid since it can be bent without stretching so that
the cross-sectional curve becomes something other than a circle. Suppose a circular
cylinder was distorted so the cross-sectional curve was no longer a circle. How
would this change the design of a strake to be attached to the same chalk line
mentioned above? (You may wish to consult Prob. 160. Why does adding a properly
designed strake to a circular cylinder make it rigid?

Problem 168 (Tangential Developable). Some features of the developable heli-
coid of Prob. 167 are also true for the more general tangential developable surfaces.
If u2 is an arc length parameter for a curve x.u2/ with nonzero curvature, then the
corresponding tangential developable surface can be represented in the form:

y.u1; u2/ D x.u2/C u1E1.u2/, where

E1.u2/ D dx
du2

D Px.

If k2 is nonzero, as in the developable helicoid, x.u2/ is an edge of regression, where
the surface swept out by the tangent ray in the forward direction meets with the
surface swept out by the tangent ray in the trailing direction in a sharp cusp. Now
suppose the tangential developable is embedded in E3. Then our equations become
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y.u1; u2/ D x.u2/C u1t.u2/, where

t.u2/ D dx
du2

D Px.

a) Suppose EN1 and EN2 form a moving frame for the a tangential developable surface.
Show that if we let EN1 D t.u2/ we can use (7.95) to show that EN2 D n.u2/: This
of course implies that N D b.u2/, where N is normal to the surface.

b) Use Fock–Ivanenko coefficients to show that the Gaussian curvature is zero.

7.4 *Archimedes’ Screw

The helicoid is the basis for the Archimedes Screw. If a helicoid is encased in a
circular cylinder and tilted, it can be used as a pump. In some versions, the helicoid
turns while the cylindrical casing remains stationary during operation. In other
versions, the casing is attached to the helicoid and the cylinder is rotated to get
the desired pumping action.

If one takes a copy of a helicoid and rotates it 1800, one ends up with two
helicoids equally spaced along a common axis. This “two bladed” design is the
one most commonly used for Archimedes Screws but, according to Chris Rorres
(Professor Emeritus of Mathematics at Drexel University), Archimedes Screws with
as many as eight blades have been constructed.

In ancient times, the Archimedes Screw was used to irrigate lands in Egypt,
Greece, and Rome. It was also used to pump water from mines. When the
Netherlands wished to expand its boundaries, it would build dikes to enclose an
area covered by shallow sea water. Wind powered Archimedes Screws would then
be used to drain the enclosed area.

In modern times, manually operated Archimedes Screws continue to be used
for irrigation in third world countries. This should not be surprising What may
be more surprising is that for some applications, modern engineers have not been
able to devise a superior design for a pump. Because of its clog free properties, the
Archimedes Screw is the preferred pump for the most advanced water treatment
plants.

Traditionally, the invention of the Archimedes Screw has been attributed to
Archimedes (287–212BC). However, this has now become a matter of dispute
among present-day historians. To paraphrase a section of the relevant Wikipedia
web site: The Assyriologist Stephanie Dalley contends it was invented in the
sixth century BC during the time of King Sennachrib (Dalley and Oleson 2003).
However, John Peter Oleson states that there is a “total lack of any literary and
archaeological evidence for the existence of the water-screw before ca. 250BC.”
(Oleson 1984, p.292)
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7.5 Principal Curvatures

7.5.1 The Normal and Geodesic Curvature Vectors

In this section, we will deal with n-dimensional surfaces embedded in an .n C 1/-
dimensional Euclidean space. Such a surface is said to be a hypersurface. A metric
tensor gij is said to be positive definite if vigij vj is positive unless vi D 0 for
i D 1; 2;� � �; n. I will restrict the discussion in this section and most of the book
to metrics that are positive definite.

In this section, we will also deal with curves that lie in hypersurfaces from an
extrinsic point of view. That is we will not restrict ourselves to using measurements
taken in the n-dimensional surface. We will use measurements taken in all .nC 1/-
dimensions.

A point on the hypersurface x is determined by n parameters, so

x.u1; u2;� � �; un/ D ej xj .u1; u2;� � �:un/, where (7.97)

j is summed from 1 to nC 1. If s is an arc length parameter for some curve on the
surface, then

x.s/ D ej xj .u1.s/; u2.s/;� � �; un.s//, and (7.98)

E1 D d

ds
x.s/ D ej

@xj

@uk
duk

ds
D �k

duk

ds
, where (7.99)

the �k’s are coordinate Dirac matrices that span the n-dimensional plane that is
tangent to the surface at the given point. If we now took the intrinsic derivative of
E1 with respect to s, we would get some vector in the same tangent plane. This
would be appropriate for an intrinsic observer restricted to taking all measurements
in the n-dimensional hypersurface.

However, an extrinsic observer would most likely see the tangent vector E1
moving in the extra dimension. For example, consider the 2-dimensional sphere
of radiusR embedded in E3. That is

x.�; �/ D e1R cos� sin � C e2R sin� sin � C e3R cos � . (7.100)

The plane tangent to the sphere is spanned by �� and �� , where

�� D @x
@�

D e1R cos� cos � C e2R sin � cos � � e3R sin � , and

�� D @x
@�

D �e1R sin� sin � C e2R cos� sin � .

A third vector N is normal to the surface. In particular,

N D e1 cos� sin � C e2 sin� sin � C e3 cos � .
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If we considered the great circle passing through the two poles with � D �0, we
would have

x.s/ D e1R cos�0 sin
s

R
C e2R sin �0 sin

s

R
C e3R cos

s

R
.

Now

E1.s/ D dx.s/
ds

D e1 cos�0 cos
s

R
C e2 sin �0 cos

s

R
� e3 sin

s

R
D ��

R
.

This vector clearly lies in the tangent plane spanned by �� and �� . However,

dE1
ds

D �e1
1

R
cos� sin

s

R
� e2

1

R
sin � sin

s

R
� e3

1

R
cos

s

R
D � 1

R
N.

An intrinsic observer would not observe anything in the direction N. An intrinsic
observer would see that

rsE1 D 0 and

then conclude that the path in question is a geodesic – the closest thing to a straight
line in his or her world. On the other hand, for an extrinsic observer

dE1
ds

D k1E2 D � 1

R
N.

Thus, the extrinsic observer would conclude that our curve in question was curved
with constant curvature k1 D 1=R. That observer would also determine that E2 has
the direction of a vector pointing from a given point on the curve toward the center
of the sphere.

With this motivation, let us see how we can attack the more general problem on
an n-dimensional hypersurface. As before, a point on the hypersurface is determined
by n parameters, so we have

x.u1; u2;� � �; un/ D ej xj .u1; u2;� � �; un/.

The tangent plane is spanned by the n Dirac coordinate matrices

�k D @x
@uk

D ej
@xj

@uk
.

To get a normal vector N, we can demand that

N�n���21
j�n���21j

D enC1en � � � e1, or restated,

ND enC1en � � � e1
�12���n

j�12���nj
. (7.101)
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Fig. 7.7 Möbius strip

Given a coordinate system, N is well defined by (7.101). However, a change in
the coordinate system may reverse the direction of N. For example, if we relabel the
parameter u1 by u2 and the parameter u2 by u1, the direction of N will be reversed.
There is no intrinsic way of selecting what is “up” and what is “down.”

Because of this sign ambiguity, we have to be a little careful in the interpretation
of some entities. Regardless of which direction we choose for N, we have one
reasonable expectation. If we take some round trip journey, we expect N to be
pointing in the same direction when we return to the point of origin as it was when
we began our journey. However, there exist nonorientable surfaces for which this
is not true. The most familiar example is the Möbius strip. (See Fig. 7.7.) If we
restrict ourselves to local as opposed to global results, we can ignore the possibility
of nonorientable surfaces. That is what I will do in this book.

Now let us return to our curve that lies in the n-dimensional hypersurface.
Namely

x.s/ D ej xj .u1.s/; u2.s/;� � �; un.s//. (7.102)

If s is an arc length parameter, then

E1.s/ D dx
ds

D ej
@xj

@uk
duk

ds
D �k

duk

ds
. (7.103)

The unit tangent vector E1.s/ lies in the plane spanned by the �k’s that is the plane
tangent to the hypersurface at the given point.

However, when we compute

dE1.s/
ds

D k1E2.s/,

we cannot expect E2.s/ to lie in the same plane. This is because, when we compute
@�k=@uj , we have two components. First, we have the component that lies in the
tangent plane “visible” to the intrinsic observer. That is

rj�k D �mjk �m.
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Second, we now have an additional component in the normal direction N. Thus,

@

@uj
�k D �mjk �m C hjkN. (7.104)

When I first introduced the intrinsic derivative rj�k , I noted that �mjk D �mkj . It
is also true that

hjk D hkj (7.105)

for much the same reason. That is

@

@uj
�k D @2

@uj @uk
x.u1; u2;� � �; un/ D @2

@uk@uj
x.u1; u2;� � �; un/ D @

@uk
�j .

The hjk’s are known as members of the second fundamental form. (The gjk’s are
known as members of the first fundamental form.)

Like the members of the metric tensor, the members of the second fundamental
form transform under a coordinate transformation as members of a tensor. (See Prob.
176.) It is not difficult to show that

@N
@uj

D �hjk�
k . (7.106)

To verify (7.106), we first note that since hN;Ni D 1,

@

@uj
hN;Ni D 2

�
N;

@N
@uj

�
D 0.

This implies that @N=@uj lies in the tangent plane and is thus a linear combination
of the �k’s or �k’s. Remember that the �k’s and the �k’s span the same plane since

�k D gkj�
j and �k D gkj�j .

With this thought in mind, we can write

@N
@uj

D ˛jk�
k , where (7.107)

the ˛jk’s have not yet been determined. Now since hN;�ki D 0, we have

0 D @

@uj
hN;�ki D

�
@N
@uj

;�k

�
C
�
N;
@�k

@uj

�

D ˛jm h�m;�ki C ˝
N; �mjk �m

˛C hjk hN;Ni
D ˛jmı

m
k C hjk, and thus

˛jk D �hjk.
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Furthermore, from (7.107)

@N
@uj

D �hjk�
k . (7.108)

Now we can reexamine the nature of @E1=@s. We note that

E1.s/ D �j
duj

ds
, so

dE1
ds

D d�j

ds

duj

ds
C �j

d2uj

ds2

D @�j

@uk
duk

ds

duj

ds
C �j

d2uj

ds2
.

From this last equation and (7.104), it follows that

dE1
ds

D �m

�
�mkj

duk

ds

duj

ds
C d2um

ds2

	
C hkj

duk

ds

duj

ds
N, and thus (7.109)

dE1
ds

D kG C kN , where (7.110)

kG D �m

�
�mkj

duk

ds

duj

ds
C d2um

ds2

	
, and (7.111)

kN D hkj
duk

ds

duj

ds
N D kNN. (7.112)

The vector kN is the normal curvature vector. It does not depend on which direction
we choose to be “up.” From (7.108), we see that switching the direction of N
results in a change in the signs of the hjk’s, and thus there is no change in the
direction of kN .

It should be mentioned in passing that the scalar kN that appears in (7.112)
is known as the normal curvature and its sign does depend on the direction
chosen for N:

The vector kG is known as the geodesic curvature vector or tangential curvature
vector. In the context of a 2-dimensional surface, we encountered the magnitude of
this vector in the Gauss-Bonnet formula.

I will now focus on the normal curvature vector. Essentially, all information that
is available to the extrinsic observer but denied to the intrinsic observer is stored
in the members of the second fundamental form. From (7.108), we see that once a
coordinate system is chosen for the hypersurface and the direction of N is chosen,
the hjk’s are determined. The vector E1.s/ is a unit vector and from (7.103), its
direction determines the duk=ds’s. From (7.112), we see that this information is
sufficient to determine the normal curvature vector. Thus, we see (or should see)
that the normal curvature vector kN for a curve x.s/ is entirely determined by the
direction of its tangent vector E1 and not by any other detail of the curve.
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7.5.2 The Weingarten Map or Shape Operator

Since kN depends only on the direction of E1, it is useful to investigate the
possibility that some tangent directions are more interesting than others. In fact that
is the case. To pursue this investigation, it is useful to introduce the Weingarten map
or shape operator. We note that dN=ds gives us the change in the direction of N
when we move in the direction of E1. From (7.108), we see that when we move in
any direction in the tangent plane, there is a corresponding change in the direction
of N, which is also in the tangent plane. The Weingarten map or shape operator S.v/
is simply the explicit expression of this correspondence. Namely

S.E1/ D �dN
ds

. (7.113)

Looking at the components, we have

S.E1/ D S

�
duk

ds
�k

	
D �dN

ds
D �duk

ds

dN
duk

D duk

ds
hkj�

j . (7.114)

Thus, if we require the shape operator to be a linear operator, then

S

�
duk

ds
�k

	
D duk

ds
S.�k/ D duk

ds
hkj�

j , and

S.�k/ D hkj�
j . (7.115)

The hjk’s may be described as the tensor components of the shape operator. From
(7.115), it is easy to see how to generalize (7.113) for vectors that are not necessarily
of unit length. If v is any vector in the tangent plane, then

S.v/ D S.vj�j / D vkhkj�
j D vkh m

k �m: (7.116)

From (7.110)) and (7.112),

dE1
ds

D kNN C kG .

Since hN;kGi D 0,

kN D
�
N;

dE1
ds

�
D d

ds
hN;E1i �

�
dN
ds
;E1

�
D �

�
dN
ds
;E1

�
.

From (7.113) and this last equation,

kN D hS.E1/;E1i: (7.117)
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7.5.3 Principal Directions and Curvatures

Equation (7.117) suggests to some that E1 would have an “interesting” direction if

S.E1/ D E1, where (7.118)

 is some real scalar. In that case,  D kN . In such a situation, the direction of E1 is
said to be a principal direction and kN is said to be a principal curvature. In general
if A is a linear operator and

A.v/ D v,

v is said to be an eigenvector and  is said to be an eigenvalue.
Why are principal directions and principal curvatures particularly interesting?

Most of the “niceness” of principal directions follows from the fact that the shape
operator is symmetric. What do we mean by symmetric?

Definition 169. A linear operator A is said to be symmetric if hw; A.v/i D
hA.w/; vi for all vectors v and w:

Given a coordinate system, a linear operator can be represented by a tensor. In
particular,

A.v/ D A.vj�j / D vjA k
j �k D vj Ajm�m D viA

i
m�m D viA

ij�j : (7.119)

Corresponding to any linear operator A is the transpose operator AT defined by
the equation: ˝

AT .w/; v
˛ D hw; A.v/i (7.120)

for arbitrary w and v.
In general, it can be said that

AT .v/ D AT .vj�j / D vj Akj�k D vj Akj�
k D viA

i
k �k D viA

j i�j : (7.121)

(See Prob. 177.)
From Definition 169 and (7.120), we see that

A is symmetric , A D AT . (7.122)

Reviewing (7.119) and (7.121), we see that

A D AT , A k
j D Akj . (7.123)

Thus for a symmetric operator, it makes sense to designate either A k
j orAkj byAkj .

It should also be noted that from (7.119) and (7.121),

A D AT , Ajk D Akj or Ajk D Akj .
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The following two theorems indicate two important properties of real symmetric
linear operators.

Theorem 170. For a positive definite metric, the eigenvalues of a real symmetric
linear operator A are real.

Proof. Suppose

A.v/ D v. (7.124)

Since A is real,

A.v�/ D �v�, where (7.125)

v� is the complex conjugate of v and � is the complex conjugate of . From (7.124)
and (7.125),

hv�; A.v/i D  hv�; vi , and (7.126)

hA.v�/; v/i D � hv�; vi: (7.127)

Since A is symmetric,

hv�; A.v/i D hA.v�/; v/i . So

 hv�; vi D � hv�; vi: (7.128)

If v D p C iq where p and q are real, then

hv�; vi D .pj � iqj /gjk.p
k C iqk/ D pj gjkp

k C qj gjkq
k

D hp;pi C hq;qi > 0.

Using this result along with (7.128), we have

 D �.

Thus,  is real ut
Theorem 171. Suppose A is a real, linear, and symmetric operator. Also, suppose
A.v/ D v, A.u/ D �u, and  ¤ �. Then hu; vi D 0.

Proof.
� hu; vi D hA.u/; vi D hu; A.v/i D  hu; vi:

Thus,

.� � / hu; vi D 0.

And therefore,

hu; vi D 0.

ut
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Now let us return to the problem of determining the eigenvalues and
eigenvectors of the shape operator. From (7.105), we know that the shape operator
is symmetric. Furthermore, from (7.116),

S.v/ D S.vj�j / D vkhmk �m:

In addition,

v D vj�j .

Thus,

S.v/ D v , h
j

kvk D vj . (7.129)

This can be written in matrix form:
2

6
6
6
6
66
6
4

h11 h12 � � � h1n
h21 h22 � � � h2n
� � � � � �
� � � � � �
� � � � � �
hn1 hn2 � � � hnn

3

7
7
7
7
77
7
5

2

6
6
6
6
66
6
4

v1

v2

�
�
�

vn

3

7
7
7
7
77
7
5

D 

2

6
6
6
6
66
6
4

v1

v2

�
�
�

vn

3

7
7
7
7
77
7
5

. (7.130)

That is

2

6
66
6
6
6
6
4

h11 �  h12 � � � h1n
h21 h22 �  � � � h2n
� � � � � �
� � � � � �
� � � � � �
hn1 hn2 � � � hnn � 

3

7
77
7
7
7
7
5

2

6
66
6
6
6
6
4

v1

v2

�
�
�

vn

3

7
77
7
7
7
7
5

D

2

6
66
6
6
6
6
4

0

0

�
�
�
0

3

7
77
7
7
7
7
5

.

Thus to determine the principal curvatures, we need to solve the characteristic
equation:

det

2

66
6
6
6
6
6
4

h11 �  h12 � � � h1n
h21 h22 �  � � � h2n
� � � � � �
� � � � � �
� � � � � �
hn1 hn2 � � � hnn � 

3

77
7
7
7
7
7
5

D 0: (7.131)

Example 172. The saddle surface.

One example worth discussing is the saddle surface z D xy, or

x.u1; u2/ D e1u1 C e2u2 C e3u1u2. (7.132)
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For this surface,

�1 D @x
@u1

D e1 C e3u2, (7.133)

�2 D @x
@u2

D e2 C e3u1, and (7.134)

�12 D �e23u2 � e31u1 C e12. (7.135)

If

N
�21

j�21j
D e321, then

N D e321
�12

j�12j
D �e1u2 � e2u1 C e3

Œ1C .u1/2 C .u2/2�1=2
.

To get the covariant components of the shape operator, we note that

@N
@u1

D �e2

Œ1C .u1/2 C .u2/2�1=2
C ��e1u2 � e2u1 C e3

� @

@u1
1

Œ1C .u1/2 C .u2/2�1=2

D �h11�1 � h12�2.

Thus,

h11 D �
�
�1;

@N
@u1

�
D 0, and (7.136)

h12 D �
�
�2;

@N
@u1

�
D 1

Œ1C .u1/2 C .u2/2�1=2
. (7.137)

Similarly,

h21 D �
�
�1;

@N
@u2

�
D 1

Œ1C .u1/2 C .u2/2�1=2
, and

h22 D �
�
�2;

@N
@u2

�
D 0.

To get the mixed tensor components of the shape operator, we need to compute
the contravariant components of the metric tensor.

�
g11 g12
g21 g22

�
D
� h�1;�1i h�1;�2i

h�2;�1i h�2;�2i
�

D
�
1C .u2/2 u1u2

u1u2 1C .u1/2

�
.
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Therefore,

�
g11 g12

g21 g22

�
D 1

Œ1C .u1/2 C .u2/2�

�
1C .u1/2 �u1u2

�u1u2 1C .u2/2

�
.

Thus,

h11 D h11g
11 C h12g

21 D �u1u2

Œ1C .u1/2 C .u2/2�3=2
,

h12 D h21g
11 C h22g

21 D 1C .u1/2

Œ1C .u1/2 C .u2/2�3=2
,

h21 D h11g
12 C h12g

22 D 1C .u2/2

Œ1C .u1/2 C .u2/2�3=2
, and

h22 D h21g
12 C h22g

22 D �u1u2

Œ1C .u1/2 C .u2/2�3=2
.

To get the principal curvatures, we have to solve the characteristic equation:

det

�
h11 �  h12
h21 h22 � 

�

D
 

�u1u2

Œ1C .u1/2 C .u2/2�3=2
� 

!2
�
�
1C .u1

�2
/
�
1C .u2/2

�

Œ1C .u1/2 C .u2/2�3
D 0.

It then follows that

 D �u1u2 ˙p
.1C .u1/2/ .1C .u2/2/

Œ1C .u1/2 C .u2/2�3=2
. (7.138)

You should note that one of the principal curvatures is positive and the other is
negative.

Another example worthy of discussion is an n-dimensional surface of revolution.

Example 173. The n-dimensional surface of revolution.
An n-dimensional surface of revolution can be defined by the equation

x.u1; u2;� � �; un/ D r.un/w.u1; u2;� � �; un�1/C enC1un, where

w.u1; u2;� � �; un�1/ D e1 cos u1 cos u2 cos u3 � � � cos un�1C
e2 sin u1 cos u2 cos u3 � � � cos un�1C
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e3 sin u2 cos u3 � � � cos un�1 C � � �C
en�1 sin un�2 cos un�1C
en sin un�1: (7.139)

From these equations, we have

�k D @x
@uk

D r
@w
@uk

, for k D 1; 2;� � �; n � 1,

�n D @x
@un

D Prw C enC1, and

N D w � PrenC1
Œ1C .Pr/2�1=2 , where

Pr D dr

dun
.

(You should convince yourself that hw;wi D 1 and
˝
�j ;N

˛ D 0.) We note that for
k D 1; 2;� � �; n � 1:

@N
@uk

D 1

Œ1C .Pr/2�1=2
@w
@uk

D 1

r Œ1C .Pr/2�1=2�k D �hjk�j . Also

@N
@un

D � Rr Œ Prw C enC1�
Œ1C .Pr/2�3=2 D �Rr

Œ1C .Pr/2�3=2 �n D �hjn�j .

From these past two equations, it is clear that the matrix representing the shape
operator is diagonal so we can obtain the principal curvatures by reading off the
diagonal elements. In particular,

k D hkk D �1
r.un/ Œ1C .Pr.un//2�1=2 for k D 1; 2;� � �; n � 1 and (7.140)

n D hnn D Rr
Œ1C .Pr/2�3=2 . (7.141)

Definition 174.

A curve x.t/ is said to be a line of curvature if

dx.t/
dt

D v.t/; where

v.t/ has a principal direction.
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Fig. 7.8 Catenoid

(v.t/ does not have to be normalized unless you insist that t be an arc length
parameter.) Since

S.�k/ D � @N
@uk

D h
j

k�j , we see

that �k has a principal direction if the matrix
h
h
j

k

i
is diagonal. That is the case for

this example. Furthermore,
@x
@uk

D �k:

Therefore for a surface of revolution with the parameterization used above, the lines
of curvature coincide with the coordinate curves. For a 2-dimensional hypersurface
of revolution, (7.139) becomes

x.u1; u2/ D r.u2/.e1 cos u1 C e2 sin u1/C e3u2.

In this context, the circle coordinate curves for u1 are said to be parallels and the
coordinate curves for u2 are said to be meridians. (See Fig. 7.8.)

In closing this section, I will prove another one of Euler’s many theorems.

Theorem 175. Euler’s Theorem for Normal Curvature. (Version I)
Suppose fv.1/; v.2/;� � �; v.n/g is an orthonormal basis at a given point on a

hypersurface such that each member is a unit vector having a principal direction.
Suppose v is an arbitrary unit vector. Then the normal curvature kN associated
with v is

kN D
nX

kD1
.k/ cos2 �.k/, where (7.142)

cos �.k/ D hv; v.k/i . (7.143)

Proof. In Sect. 10.1.2, I will show that the set of eigenvectors for the shape operator
spans the n-dimensional plane tangent to the hypersurface at the given point.
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We have already shown that a principal direction corresponding to one principal
curvature is orthogonal to a principal direction corresponding to a different principal
curvature. If the dimension of principal directions corresponding to a given principal
curvature is more than one, then one can use the Gram–Schmidt process to find an
orthonormal basis that spans such a space. Thus, the orthonormal basis described
above can always be constructed.

Now suppose

v D
nX

kD1
˛kv.k/: (7.144)

(You should demonstrate that ˛k D hv; v.k/i.) We then have

S.v/ D
nX

kD1
˛kS.v.k// D

nX

kD1
hv; v.k/iS.v.k// D

nX

kD1
hv; v.k/i.k/v.k/.

From (7.117),

kN D hv; S.v/i D
nX

kD1
k hv; v.k/i2 D

nX

kD1
.k/ cos2 �.k/. (7.145)

ut
It should be remarked if there are n distinct principal curvatures, then the

orthonormal basis used in Euler’s Theorem is unique and then the terms on the
right-hand side of (7.145) are also unique. However if the dimension for the space
of principal directions belonging to any of the principal curvatures is more than one,
then at least some of the v.k/’s are not unique and therefore some of the terms on
the right-hand side of (7.145) are not unique either.

In Sect. 10.1, I will elaborate on the ideas introduced in this section.

Problem 176. From (7.108),

@N
@uj

D �hjm�m, and thus

hjk D �
�
@N
@uj

;�k

�
.

Use this fact to show that the hjk’s transform under a change of coordinates as
members of a tensor.

Problem 177. Prove that either (7.121) is correct or I made a mistake.

Problem 178. Tangential Developables
In Prob. 168, I indicated that a tangential developable could be written in the

form:
y.u1; u2/ D x.u2/C u1E1.u2/:
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If we reparameterize the surface, we can represent the same surface in the form:

y.u1; u2/ D x.u2/C �
u1 � u2

�
E1.u2/, where (7.146)

u2 is the arc length parameter for the curve x.u2/.

(a) Consider a tangential developable that lies in E3. Suppose the curvature of
x.u2/ is k1.u2/ and the torsion is k2.u2/. Using the coordinate system of (7.146),
compute h11, h

2
1, h

1
2, and h22 in terms of u1, u2, k1, and k2.

(b) Compute the principal curvatures for tangential developables in terms of u1, u2,
k1, and k2. What happens when the torsion k2 is zero?

(c) Show that the coordinate curves for a tangential developable as parameterized
in (7.146) are also lines of curvature.

Problem 179. Helicoid
The helicoid was described in Sect. 8.3. Repeating myself, we note that if a line

L moves along the axis at a constant speed while rotating about the axis at a constant
rate, the resulting surface swept out by the line L is said to be a helicoid. (See Fig.
7.4a.) From this description, it should be clear that if we choose e3 for our axis, then
one representation of the surface is

y.t; �/ D e3a� C t .e1 cos � C e2 sin �/ . (7.147)

For our current purpose, it is useful to change these coordinates. In particular, let

� D u, and

t D a sinh.v/.

Equation (7.147) then becomes

x.u; v/ D a sinh.v/ Œe1 cos.u/C e2 sin.u/�C e3au. (7.148)

(a) Compute hu
u, hv

u, hu
v , and hv

v and then determine the principal curvatures. For the
principal curvatures, I got

 D ˙ 1

a cosh2.v/
.

(b) Is this consistent with where you think the surface would be relatively flat?

Problem 180. Catenoid
A catenoid is a surface of revolution generated by rotating a catenary about an

appropriate axis. (See Fig. 7.8.) In particular, one representation of a catenoid is:
x2 C y2 D a2 cosh2.z=a/. Another representation is:

x.u; v/ D �e1a sin.u/ cosh.v/C e2a cos.u/ cosh.v/C e3av. (7.149)
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Determine the principal curvatures in terms of this coordinate system. Compare
your answers with those in Prob. 179. What distinguishes a catenoid from a
helicoid?

Problem 181. Pseudosphere
Consider the pseudosphere defined by

x.u1; u2/ D e1
R cos u2

cosh u1
C e2

R sin u2

cosh u1
C e3.u1 � tanh u1/.

Compute h11, h
1
2, h

2
1, and h22. Then show that the product of the principal

curvatures at any given point is �R2.
Problem 182. n-Dimensional Sphere

A special case of the n-dimensional surface of revolution of Example 173 is the
n-dimensional sphere. For the sphere

r.un/ D �
R2 � .un/2

�1=2
.

Use this equation and (7.140) and (7.141) to compute the principal curvatures for the
n-dimensional sphere. Is your answer something that you could reasonably expect?
What would happen if the sign of N was changed?

Problem 183. Reviewing (7.143) and (7.144), you will note that

v D
nX

kD1
v.k/ cos �.k/.

The cosines that appear in this formula are known as direction cosines.

(a) Show that
nX

kD1
cos2 �.k/ D 1.

(b) In view of (7.145), knowing the values of the principal curvatures tells you what
about the minimum and maximum values of the normal curvature? Does this
change if we reverse the direction of N?

Problem 184. In the line designated by (7.129), it was stated that

S.v/ D v , h
j

kvk D vj .

Show that

S.v/ D v , vj h
j

k D vk:

Can (7.130) be modified so that one has a row eigenvector instead of a column
eigenvector? How can you interpret the entries of the row eigenvector?
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7.6 *Leonhard Euler 1707–1783

Leonhard Euler was probably the most prolific mathematician of all time. Time and
again his name has cropped up again and again in this book. Euler was probably
more pre-eminent in his time than Gauss was in his time. Since 1911, a publishing
project has been underway to amass all his work. The 74th volume was published
in 2004 and the project is not yet complete. A substantial amount of his work was
achieved after he became totally blind at the age of 61.

He was such a dominating force during his lifetime that we still use much of his
notation today. He is responsible for the following notations:

f .x/ for functional notation,

e for the base of the natural logarithm,

a; b; c for the sides of triangle ABC ,

s for the semiperimeter of a triangle,
X

for the summation sign, and

i for the imaginary unit
p�1.

(Eves 1953, p. 359) Although he did not originate the use of the symbol � , Euler is
responsible for its acceptance (Boyer 1968, p.484).

Leonhard Euler was born in Basel, Switzerland on April 15, 1707. His father
Paul Euler had attended lectures by Jacob Bernoulli at the University of Basel.
Furthermore, Paul Euler and Jacob’s younger brother Johann had both lived in Jacob
Bernoulli’s house while undergraduates at Basel (J J O’Connor and E F Robertson,
Leonhard Euler).

Nonetheless, Paul became a Lutheran minister and he wanted his son Leonard to
follow in his footsteps. At the age of 13, Leonhard entered the University of Basel in
the fall of 1720 and by 1723 he received a master’s degree in philosophy. In the fall
of the same year, he joined the Department of Theology with the intent of fulfilling
his father’s wish. Although Leonhard remained a devout Calvinist throughout his
life, he did not have his heart in theology as a profession.

Meanwhile, Leonhard had been studying mathematics on his own and meeting
with Johann Bernoulli on Saturday afternoons. Johann had replaced his older brother
Jacob on the Basel faculty when Jacob died in 1705. Leonhard, with Johann’s
support, was able to obtain the consent of Leonhard’s father for him to pursue a
career in mathematics. When Euler completed his studies at the University of Basel
in 1726, the prospects of a job for a mathematician in Switzerland were grim.

In the fall of the previous year, 1725, two sons of Jacob Bernoulli – Nikolaus
and Daniel went to Russia to take positions at the newly organized St. Petersburg
Academy of Sciences. These two Bernoullis persuaded the authorities at the
Academy to offer Euler a position in physiology. Euler delayed accepting the
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position because he had to familiarize himself with the topic and he hoped to
obtain a position in physics that had opened up at the University of Basel. When
it became clear that he would not get the physics position at Basel, Euler moved to
St. Petersburg. Once he arrived, Daniel Bernoulli and Jacob Hermann (a distant
relative of Euler) persuaded the administration to give him an adjunct position
in mathematics. (A position in mathematics had become open because Nikolas
Bernoulli had died of hectic fever (Dictionary of Scientific Biography, Vol. II 1970,
p. 57) shortly before the Academy offered Euler the position in physiology.) Getting
the position in mathematics was good for Euler. However on the day Euler arrived
in Russia, Catherine I died (Muir 1961, p. 164). That was bad for Euler.

Political and religious winds in Russia could change direction at any time and
the consequences could be severe. The St. Petersburg Academy was established by
Peter the Great in 1725 – a few months before he died. For much of Russia’s history,
times have been turbulent and this period was no exception. In 1682 when Peter
was nearing his tenth birthday, the Kremlin where Peter resided was invaded by
members of a mutinous militia. Government advisors and household members were
tossed out into the street where they were dismembered. This mutiny was the result
of machinations by the maternal family of Peter’s 25-year-old half sister Sophia who
was in the process of seizing power from Peter’s mother. At the end of the mutiny,
there would be two underage czars (Peter and his half brother Ivan) while Sophia
became the ruler of Russia acting as the regent for the two boys (De Jonge 1938,
pp. 36-55).

Sophia tried to become Czarina, but at the age of 17, Peter was able to
outmaneuver her and become essentially the sole ruler of Russia. (Peter’s older
half-brother Ivan was feeble minded and nearly blind and therefore played only
a ceremonial role.) Sofia was imprisoned in a convent. The convent was palatial
but others were punished more severely. Her foreign minister was sent into exile to
the north. A close adviser, who had offended the Patriarch of the Russian Orthodox
Church by showing western sympathies, was executed. (Authorities in the Russian
Orthodox Church would later regret their support of Peter.)

During his reign, Peter devoted much of his efforts to introducing Western
European technology into what was essentially a medieval society. That was not
an easy task. Anything foreign was suspect in Russia. Before Peter became Czar,
foreign visitors to Moscow were required to live in a specified neighborhood. An
attempt by a Russian citizen to leave Russia was an offence punishable by death
(De Jonge 1938, p. 33).

In 1675 Peter’s father, Czar Aleksey Mikhailovich, decreed:

That no man should adopt the habits of Germans and other foreigners, that they should not
cut their hair short, nor trim their clothes, nor wear foreign coats or hats, nor should they
allow their followers to do so. And should anyone in their following cut their hair short and
wear dress after the foreign fashion, they would incur the wrath of the czar and lose their
rank. (De Jonge 1938, p. 24).

Edicts would become quite different while Peter was Czar. In 1698, Peter
returned from a tour of Europe shortly after a revolt in support of Sophia had
been suppressed in his absence. The day after his return, many nobles and others
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assembled in the Kremlin to welcome Peter home and demonstrate their loyalty.
After some social preliminaries, Peter went about the room with a pair of scissors
cutting off the noble’s beards one by one. This was Peter’s way of introducing
Western manners and modes of dress into Russia (De Jonge 1938, p. 128).

This act did not endear Peter to many who treasured the old ways. Many
traditional Russians took the view that cutting their beards jeopardized their chances
of getting to heaven. In 1700, under instructions from Peter, the citizens of
Kamyshin, a town in southern Russia shaved off their beards. Neighboring cossacks
responded by running down those who had shaved and cutting off their heads
(De Jonge 1938, p. 139).

For Peter, the introduction of Western ways was a consuming passion. His eldest
son, Aleksey, was in line to succeed Peter as Czar. When it became clear that
Aleksey would reverse much of Peter’s reforms if given the chance, Peter had him
killed in 1718. (It is not clear whether the son died under torture or from a more
formal beheading.) (De Jonge 1938, p. 214).

Peter founded St. Petersburg on the Gulf of Finland at the mouth of the Neva river
in 1703. The site chosen by Peter the Great for this new city was inauspicious. It was
swampland subject to frequent flooding. Nonetheless, after nine years of building,
St. Petersburg became the new capital of Russia. It was Peter’s intent to connect
Russia’s future to that of the rest of Europe. The establishment of the St. Petersburg
Academy was a break from the past. Until the regency of Sophia, Moscow did
not have a single university (Lindsey 1990, p. 15). Peter’s own education was
rudimentary. His prose style, spelling, and handwriting showed a lack of discipline
(Lindsey 1998, p. 3).

Peter died before the Academy got off the ground but his German born widow,
Catherine I, continued his policies. Thus, the Academy got off to a good start before
she died two years later. Given the chance, her lover and confidant Alexander
Menshikov would have continued strong support for the Academy. Relying on a
forged will that he attributed to Catherine I, he was able to get himself declared
regent so that he could rule in behalf of the 12-year-old czar, Peter II. This situation
lasted for a few weeks but Menshikov was unpopular because of his corruption and
pro-German policies. Menshikov tried to isolate the young Czar and get him married
off to his daughter. However, Peter II was able to get out the word that he neither
approved of Menshikov nor his policies. As a result, Menshikov was soon arrested
and sent off to Siberia where he died two years later.

The authority to rule was turned over to Peter II who cut back the funds for
the Academy. Euler now found himself in a very bad financial situation. To make
ends meet, he became a part-time medical officer in the Russian navy and seriously
considered joining full time (Kramer 1981, pp. 214-215).

Fortunately for Euler and the mathematical community, this situation lasted for
only about two or three years. Peter II died of small pox in 1730 before reaching his
15th birthday. Anna Ivanova became Czarina by promising to move the capital back
to Moscow and to accede to the authority of a self-appointed council, which was
anti-Western. However, she soon renounced her promise and became an absolute
autocrat. Under her rule, funding was restored to the Academy and Euler was able
to give up his part-time job with the navy.
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When Daniel Bernoulli returned to Switzerland in 1733, Euler was awarded the
Chair of Mathematics. That same year Euler married the daughter of a Swiss painter
living in Russia. During their long married life, they had 13 children although
only five survived to young adulthood. He remained in St. Petersburg for 14 years
until the Czarina Anna died in 1740. During this period, Euler became recognized
as the most outstanding mathematician in Europe. He prepared 80–90 papers for
publication and actually published 55 works including the 2-volume Mechanics.
One achievement that attracted admiration was his solution of the “Basel Problem.”
It had been posed more than 90 years earlier and remained unsolved until Euler did
so in 1738. The problem was to sum the series:

1X

nD1

1

n2
.

(Dunham 1999, p. xxii) Euler’s answer was �2=6. During the same year, Euler
became blind in his right eye – probably the result of an eye infection.

When Czarina Anna Ivanovna died in 1740, the political climate in Russia
became ominous for the Western Europeans at the St. Petersburg Academy. Czarina
Anna Ivanovna had been good to the Academy but she had ruled with an iron hand.
Many dissidents had been exiled to Siberia or remote villages. Many others had
been executed.

In October, right after Anna’s death, a Count Biron got himself named regent
for the infant Czar Ivan VI. Less than a month later in November 1740, he was
arrested and sent to Siberia. Then Anna Leopoldovna, the mother of the Czar, was
named regent. However about one year later in November 1741, she was ousted by
Elizabeth who was a daughter of Peter the Great. Anna Leopoldovna and her son
would spend the rest of their lives in prison.

As these events were unfolding in Russia, other events were unfolding in Prussia
and Austria. Frederick William died on May 31, 1740 and his eldest son, Frederick
II, became King of Prussia. This new king would become known as Frederick
the Great. Frederick the Great would never introduce democracy but as soon as
he became king he admonished provincial administrators who were deemed to be
overly repressive and replaced at least one. He also abolished the use of torture in
criminal investigations (Asprey 1986, p. 145). One of his first acts was to revive a
science academy that had been originated by his grandfather and become moribund
under his father.

Euler was invited to become one of the first members of what would soon be
named the Académie Royale des Sciences et des Belles Lettres de Berlin. (Frederick
the Great preferred the use of French.) Euler eagerly accepted and on June 19, 1741,
he and his family were on their way out of St. Petersburg.

Frederick the Great had established a reputation as a man of letters before
he became King. Nonetheless, Euler should have had reason to believe that life
in Berlin might not be idyllic. Less than five months after Frederick the Great
succeeded his father, Emperor Charles VI of the Holy Roman Empire died on
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October 20, 1740. His daughter Maria Theresa became ruler of Austria but since
she was a woman, many Electors of outlying territories would not accept her as the
legitimate ruler of the Empire. Since Maria Theresa was only 23, and not properly
prepared for her role, the rulers of Europe saw this situation as an opportunity to
expand the boundaries of their countries at the expense of Austria.

Prussia had the largest standing army and was first to strike. Frederick II invaded
Upper and Lower Silesia on December 16, 1740 – less than a month after the
death of Emperor Charles VI. The weather soon became too severe to continue so
Frederick returned to Berlin leaving his troops in control of the invaded territory.

Meanwhile, Frederick persuaded Maupertuis to come to Berlin and tried to
get him to assume the presidency of the newly revived academy. Maupertuis was
reluctant to assume the office but he did agree to accompany Frederick as an
intellectual dinner companion to the war front when hostilities resumed in the spring
of 1741. The idea of going to the war front with King Frederick II was ill considered.
On April 10 at Mollwitz, Frederick’s army became engaged in a fierce battle with the
Austrians. It soon became evident that the Prussians faced what looked like certain
defeat. The Prussian general Schwerin persuaded Frederick to leave the battlefield.
Frederick was reluctant to do so but it would be bad enough to lose a battle, it would
have been worse to lose a kingdom.

Frederick left the battlefield with a small escort that included Maupertuis. After a
ride of about 33 miles (53 kilometers), Frederick discovered that his route of escape
was cut off by the Austrians. Forced to return to the battlefield, Frederick joyfully
learned that his army had turned the tide and had won a decisive battle. This battle
would win Prussia new respect and enable Frederick to bargain with his neighbors
with far more clout than heretofore possible.

However, when Frederick’s party was returning to the battlefield, Maupertuis was
captured by the Austrians (Asprey 1986, pp. 201-203). He was well treated, taken
to Vienna and soon released and returned to Berlin. Presumably, this experience
suggested to Maupertuis that the intellectual life in the cafés and salons of Paris was
preferable to the intellectual life at Frederick’s dinner table. By June, he was back in
Paris (O’Connor: Maupertuis, p. 3). Frederick was unable to persuade Maupertuis
to become President of his academy until five years later when the war was about
to end.

The capture of Maupertuis occurred about two months before Euler left St.
Petersburg. But Euler was clearly more fearful of the situation in Russia.

When Euler was presented to Frederick’s mother, she tried to engage him in
conversation but Euler was essentially closemouthed. One day she asked him the
reason for this and Euler replied, “Madam, it is because I have just come from a
country where every person who speaks is hanged.” (Turnbull 1993, p. 110).

We can assume that Euler knew that people could get executed in Prussia also.
King Frederick II had nearly been executed by his own father. Frederick the Great’s
grandfather, Frederick I, had tried to emulate Louis XIV and had nearly driven
Prussia into bankruptcy. His son Frederick William over reacted, lived a frugal
existence, enjoyed life in the army barracks, and scorned all art, all books, all
paintings, and all science (Asprey 1986, p. 13).
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At age five, the future Frederick the Great was given a uniform and required to
learn a Prussian parade drill that required 54 movements (Asprey 1986, p. 15). His
tutors were instructed to teach him the Lutheran catechism without the Calvin heresy
of predestination. He was to be taught French and German but no Latin. Frederick
William also instructed his son’s tutors to instill a disgust for plays and operas.

Many of these instructions were ignored and Frederick was taught Greek, Italian
and even some Latin. He enjoyed the Roman classics and got satisfaction in playing
the flute (Asprey 1986, pp.18-19). He would eventually acquire a library of nearly
4,000 books that had to be kept hidden from his father. The library included works
by Descarte, Boyle, Locke, and Voltaire (Asprey 1986, p. 35).

Frederick William became disturbed by the direction of his son’s development.
Thus when Frederick became a young teenager, his father supervised his son’s
education more closely and saw to it that it would have a narrow focus on military
science and religion (Asprey 1986, p. 23).

In 1730, at age 18, Frederick rebelled and tried to escape to England where he
hoped to get protection from King George II who was his mother’s brother. Since
his suspicious father saw to it that his son was closely watched, this attempt failed.

Having been caught, Frederick may have reflected on the fate of his maternal
grandmother, Sophia Dorothea. She had died four years earlier while imprisoned in
a castle. Sophia was the mother of both young Frederick’s mother and George II
of England. (It was George II who would establish the University of Göttingen in
1737.) Like Frederick she also tried to escape from a painful situation. As a pawn
of international diplomacy, she had been chosen to be the wife of George Louis, the
second Elector of Hanover, and she resented the infidelities of her husband. When
her plot to escape with Count Philip von Königsmark was discovered, Philipp was
presumably executed. She would spend the remaining 32 years of her life in prison.
Her husband would become King George I of England.

Her son vehemently protested the treatment of his mother but as a mere prince
he could do nothing about it. When he ascended to the throne of England as George
II in 1727, it was too late. His mother had died seven months earlier (Durant 1965,
pp. 89-94).

How would Frederick William deal with the rebellious Frederick? In a similar
situation, Peter the Great had convened a court that condemned his son to death.
Frederick William also convened a military court with the expectation of a similar
result.

The court sentenced Lieutenant von Katte, a confidant of Frederick, to life in
prison and ruled that they did not have the authority to judge Frederick. That would
be left to Frederick William (Asprey 1986, p. 69). When the court refused to change
its decisions, Frederick William intervened and ruled that his son would be forced
to watch his friend Katte beheaded.

This choreography may have been inspired by Peter the Great. In 1698, when
Peter returned from his trip to Western Europe, more than 1,000 participants of the
mutiny against him were executed. To drive home a point, three of the ring leaders
were hung outside his step sister’s convent window. The corpses were left there for
five months (Hughes 1990, p. 255).
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To further satisfy his vengeance against his son, Frederick William had his son’s
library auctioned off and his flute confiscated.

Before he was beheaded, Katte wrote a letter to Frederick pleading him to
reconcile his differences with his father. During the following ten years leading up
to the death of Frederick William, a reconciliation did take place after a fashion.
Frederick eventually reached the conclusion that for Prussia to survive, he would
have to become a knowledgeable military commander. His father eventually gave
Frederick his own residency where he could advance his education in his own way
and communicate with leaders of the Enlightenment, which included Voltaire.

As rulers, Frederick the Great of Prussia and later Catherine the Great of Russia
became known as “enlightened despots.” They were enlightened because they
enjoyed reading and discussing the works of Voltaire and his friends. They were
despots because they never implemented the ideas that would later inspire some
revolutionaries to write the American Constitution and Bill of Rights.

Diplomacy in the age of Frederick the Great was the art of deceit. Kings would
not try to directly persuade their neighboring kings to pursue some policy change.
Instead, they would bribe the advisors of their fellow kings to do the persuading
for them. A king at war would wait for a timely moment to double-cross his
current allies to cut a favorable deal with his current enemies. (During the American
Revolution, France supplied critically needed money and arms to the cause. At the
pivotal battle of Yorktown, the decisive factors for American success were French
troops and naval support. The French navy prevented the British from delivering
badly needed supplies to their ground troops. However, when given the chance in
1783, American diplomats ignored French interests and negotiated separately with
Great Britain to gain American independence on more favorable terms than would
have been possible otherwise.)

Somehow in this context of ever-changing political alignments, Euler was a
successful survivor. During most of his twenty five years in Berlin, Euler was able to
collect stipends from both Prussia and Russia. Before moving to Prussia, Euler had
made himself useful to Russia. According to the entry on Euler in the Dictionary of
Scientific Biography written by A. P. Youschkevitch:

“From 1733 on, he successfully worked with Delisle on maps in the department of
geography. From the middle of the 1730s he studied problems of shipbuilding and
navigation, which were especially important to the rise of Russia as a great sea power. He
joined various technological committees and engaged in testing scales, fire pumps, saws,
and so forth.” (Youschkevitch 1971, p. 469).

After moving to Prussia, Euler did not devote his talents completely to ivory
tower mathematics. In the same biographical entry cited above, A. P. Youschkevitch
wrote,

“The king also charged Euler with practical problems, such as the project in 1749 of
correcting the level of the Finow Canal, which was built in 1744 to join the Havel and
Oder. At that time he also supervised the work on pumps and pipes of the hydraulic system
at Sans Souci, the royal summer residence.
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In 1749 and again in 1763 he advised on the organization of state lotteries and was a
consultant to the government on problems of insurance, annuities, and widows’ pensions.”
(Ibid., p. 470).

In 1742, Benjamin Robins advanced the theory of ballistics in a very substantial
way with his publication of New Principles of Gunnery. Three years later Euler
translated this work into German adding a lengthly commentary.

As an aside, Larry D’Antonio, Frederick Rickey, and Sandro Caparrinni (all
experts on Euler) have informed me that the collected papers of Napoleon contain
notes that Napoleon took on a French translation of the Robins-Euler treatise. These
were taken when Napoleon was a 16-year-old student at the École Militaire in
1784-1785. Napoleon was a good student. He crammed the contents of a two-year
program into a single year and then passed a comprehensive exam administered by
the French mathematician, Pierre-Simon Laplace. Of course, later Napoleon would
become the most preeminent artillery officer of all time in the western world.

While Euler was living in Prussia, about half of his output was published in Latin
by the St. Petersburg Academy while the other half was published in French by the
Berlin Academy (Ibid., pp. 470-471).

He was able to benefit from his good relations with Russia even when Russia
and Prussia were fighting one another during the Seven Years War (1756-1763). In
1760, when the Russian army invaded Berlin two Russian soldiers were assigned
to protect Euler and his household. Despite this measure, Euler’s country home
was looted (Kramer 1981, pp. 216-217). When the Russian general was informed,
he immediately arranged for Euler to be properly compensated for his losses. An
additional four thousand florins was delivered to Euler, when Empress Elizabeth
learned what had happened (Turnbull 1993, p. 111).

Euler was not as well treated by Frederick II. Frederick wanted an intellectual
dinner companion as much or more than a scientist who would advance the welfare
of Prussia. Euler was also too religious for Frederick’s taste. Rather than dining
with Frederick, Euler ate at home. Rather than discussing philosophy or listening to
poetry with Frederick at the King’s residence, Euler would assemble his family at
home each night and read a chapter of the Bible (Dunham 1999, p. xxv).

During the Seven Years War, the position of President of the Academy became
open when Maupertuis died in 1759. Euler became acting president, but he was
never given the full title of President. Furthermore, Euler’s management decisions
were frequently overruled by Frederick. It became clear to Euler that he was
appreciated more in Russia. During Euler’s 25-year stay in Prussia, events at the top
political ranks in Russia continued to unfold in their usual violent ways. Empress
Elizabeth died on Christmas day in 1761 near the end of the Seven Years War. She
was succeeded by Czar Peter III. At this time, Frederick the Great was in desperate
straits. The King had regained control of Berlin but the boundaries of Prussia had
shrunk under the combined onslaught of Austria, France, and Russia. Frederick
continued to fight on but it appeared he had no chance of restoring the boundaries
of Prussia that had existed at the beginning of the war.

Fortunately for Prussia, Czar Peter III was an incompetent who wished to display
his admiration for King Frederick. One of Peter III’s first official acts was to order a
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halt to the hostilities with Prussia. Furthermore, he ordered the return of all territorial
gains that Russia had attained during the war. Since thousands of soldiers had died
to achieve these territorial gains, many Russians were appalled by their new czar.
Czar Peter III ruled for about six months before he was overthrown and killed with
the tacit approval of his wife Catherine.

As Empress, Peter’s widow became known as Catherine the Great. She did not
go back to war with Prussia, but she set out to enhance the prestige of Russia in
other ways. In 1766, Catherine the Great persuaded Euler to return to St. Petersburg.
Although only five of Euler’s children had survived to adulthood, his household now
consisted of 18 persons. When this group arrived in St. Petersburg, the Empress
presented Euler with a furnished house supplied with a royal cook (Kramer 1981,
p. 217).

Furthermore, Euler’s sons were well treated. In particular, Johann Albrecht
became the Chair of Physics in 1766 and permanent secretary of the St. Petersburg
Academy in 1769. Euler’s youngest son Christoph had become an officer in the
Prussian army, and he now became an officer in the Russian army eventually
attaining the rank of major-general in artillery (Youschkevitch 1971, p. 472).

During his first stay in Russia, Euler had become blind in his right eye. Within a
year after his return, he also became blind in his left eye at the age of 60. This did
not slow him down. Several books and 400 research papers were written during the
last 17 years of his life after he became totally blind (Kline 1981, p. 429). He was
still doing mathematics on September 18, 1783 when he died of a brain hemorrhage
at the age of 76.

7.7 *Involutes

Involutes played a prominent role in the early development of differential geometry.
However, this section is not a prerequisite for anything else in this text. Thus, you
may wish to skip this section.

In Sect. 6.3, we discussed the concept of evolute (at least for the 2-dimensional
Euclidean plane). A concept that is complementary is that of the involute. Intuitively,
an involute is the path of the end point of a string that is unwrapped from a curve
while being kept taut. See Fig. 7.9. If x.s/ is the arc length representation of a
curve in the 2-dimensional Euclidean plane, then the involute y.s/ is defined by the
equation:

y.s/ D x.s/� .s � s0/t.s/; (7.150)

where s is the arc length parameter for x but not necessarily for y. In Fig. 7.9, y.s/
is an involute of x.s/ and x.s/ is the evolute of y.s/. The definition of an involute
remains essentially unchanged for any finite dimension. In particular,

y.s/ D x.s/ � .s � s0/E1.s/, (7.151)
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x(s)

y(s0)=x(s0)

y(s)

s-s0

Fig. 7.9 Involute

2

1

Fig. 7.10 Involutes of circles
are used to manufacture gears

where s is again the arc length parameter for x.s/ and E1.s/ is the first member of the
basis for the Frenet apparatus. By contrast, for higher dimensions the definition of
an evolute becomes more complex than that used in Sect. 6.3 and I will not discuss
it. If you wish to read more on this topic, I recommend Struik (1988) for three
dimensions and Gerretsen (1962) for n-dimensions.

(Comment: Comparing (7.151) with (7.146) in Prob. 178, we see that for a
tangential developable surface, involutes of the edge of regression are lines of
curvature.)

Since one may unwind our imaginary string starting from any point on a given
curve, the involute of a given curve is not unique. We can choose any value of s0 in
(7.150) that corresponds to a point on the curve.

An interesting application of the concept of involute is in mechanical engineering
(Faires 1960, pp.179-224). See Fig. 7.10 and Prob. 186.
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A

B

C

D x

y
Fig. 7.11 The involute of a
catenary is a tractrix

Problem 185. In Fig. 7.9, the path of the involute corresponding to a given value
of s0 is shown for s > s0: Draw the involute for the same value of s0 for s < s0.

Problem 186. (a) Show that if wheel 1 in Fig. 7.10 rotates clockwise at a constant
angular velocity, then wheel 2will rotate counterclockwise at a constant angular
velocity as long as the involutes of the two circles retain mutual contact.

(b) If we had a nonslip surfaces, we could replace gears by circular cylinders with
no teeth. What would be the radii of the two nonslip cylinders that would
achieve the same effect as the two “gears” shown in Fig. 7.10. (Your formulas
should use the variables R1, R2, and D, where R1 is the radius of circle 1 shown
in Fig. 7.10, R2 is the radius of circle 2, and D is the distance between the
centers of the two circles.

(c) What is the ratio of the angular velocities in terms of R1 and R2? Can this ratio
necessarily be duplicated with actual gears?

Problem 187. Show that one of the involutes of a catenary is a tractrix. The
catenary is defined by the equation:

x.�/ D e1R� C e2R cosh�,

while the tractrix is defined by the equation:

y.�/ D e1R.� � tanh�/C e2.1= cosh�/:

(See Fig. 7.11.) This result was obtained by Johann Bernoulli in 1691 (Stillwell
2002, p.321). The tractrix is the curve used to generate the surface of revolution that
gives us the pseudosphere. See Fig. 6.14 and Prob. 131.
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Problem 188. In polar coordinates, a logarithmic spiral may be written in the form
r D a exp.b�/, where �1 < � < C1, and both a and b are positive constants.
We can also add in the origin where r D 0 to the path.

(a) Show that if we unwrap our imaginary string from the origin, the resulting
involute is another logarithmic spiral. This result was obtained by Jakob
Bernoulli in 1692 (Stillwell 2002, p. 321).

(b) Show that if we adjust the value of b in the equation for the logarithmic spiral,
the involute described in part a is a curve congruent to the original logarithmic
spiral that has undergone a rotation.

7.8 Theorema Egregium

At this point, it should be clear that the concept of principal curvature is pretty basic.
On the other hand, determination of the principal curvatures at a point would be
impossible for an intrinsic observer living on a 2-dimensional surface and deprived
of access to any higher dimension. A geometer constrained to take measurements on
a 2-dimensional surface would not be able to distinguish a truly flat surface from a
cylinder, cone, or tangential developable. On the other hand, the intrinsic geometer
could determine the Gaussian curvature on her (or his) surface.

Suppose we consider a geometer who had been studying principal curvatures
on 2-dimensional surfaces in a 3-dimensional world. We might imagine a phone
conversation between this geometer with another geometer living in a 2-dimensional
world without access to the third dimension.

After some opening formalities, the conversation might go something like this:

Dr. 3-D I am curious about how things are in your world. What are your curvatures?
Dr. 2-D We live in a simple world. We do not have to worry about some vector in a crazy
third dimension rocking forward, backward, and even sidewise in some drunken state. We
have only one curvature. I am confident that our curvature is better than either one of your
curvatures.
Dr. 3-D How can you say that your world is simple? From what you say, your derivatives
do not commute. We keep things simple by telling our first year calculus students that
derivatives commute.
Dr. 2-D It sounds to me that you live in a complicated world populated by simple minded
mathematicians.

What is the source of this lack of meaningful communication? Having access
to the third dimension should be an advantage but how can the extrinsic observer
interpret the Gaussian curvature of the intrinsic observer in terms of the principal
curvatures? The answer lies in one aspect of the phone conversation above. In one
world �rirj � rjri

�
�k ¤ 0. (7.152)

In the other �
@2

@ui @uj
� @2

@uj @ui

	
�k D 0. (7.153)
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In the first (intrinsic world),

�rirj � rjri

�
�k D R˛kij�˛ . (7.154)

In the extrinsic world,

�
@2

@ui @uj
� @2

@uj @ui

	
�k D @

@ui
�
�˛jk�˛ C hjkN

� � @

@uj
�
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@

@ui
�˛jk
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ˇ
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@ui
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˛
i �˛ �
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�˛

C
�
@

@ui
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�
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And therefore,

0 D
�

@2

@ui @uj
� @2

@uj @ui

	
�k D R˛kij�˛ �

h
h˛i hjk � h˛j hik

i
�˛

C
�
@

@ui
hjk � @

@uj
hik C �˛jkhi˛ � �˛ikhj˛

�
N. (7.155)

Since the coefficient of �˛ must be zero, we have

R˛kij D h˛i hjk � h˛j hik , or

R˛kij D h˛i h
k
j � h˛j h

k
i . (7.156)

For a 2-dimensional surface embedded in E3, the Gaussian curvature

K D R1212 D h11h
2
2 � h12h

2
1. (7.157)

To compute the principal curvatures, we need to solve a characteristic equation.
Namely,
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det

�
h11 �  h12
h21 h22 � 

�
D 0, which implies that

./2 � .h11 C h22/C h11h
2
2 � h12h

2
1 D 0. (7.158)

As a consequence,

 D h11 C h22 ˙
q�
h11 C h22

�2 � 4
�
h11h

2
2 � h12h21

�

2
. (7.159)

If we let

A D
q�
h11 C h22

�2 � 4
�
h11h

2
2 � h12h21

�
,

then the product of the two roots is

C� D 1

4

�
h11 C h22 C A

� �
h11 C h22 � A

�

D 1

4

h�
h11 C h22

�2 � .A/2
i

D h11h
2
2 � h12h21. (7.160)

And thus from (7.157),
C� D R1212 D K . (7.161)

Historically, the product C� was the definition of Gaussian curvature. What
was historically significant was the discovery by Gauss that the product of the two
principal curvatures is an intrinsic entity. Gauss was quite proud of his discovery that
for a 2-dimensional surface embedded in the 3-dimensional Euclidean spaceE3, this
product is an intrinsic entity. He named this result the “Theorema Egregium,” which
has been variously translated from the Latin as the “Remarkable Theorem,”the
“Outstanding Theorem,”or the “Excellent Theorem.”

Gauss published this result as part of a substantial work on curved surfaces
entitled, Disquisitiones generales circas superficies curvas (General investigations
of curved surfaces) (Gauss 1828). The special case of geodesic triangles for the
Gauss–Bonnet formula is also included in this work. This treatise appeared about
26 years before Riemann presented his habilitationsvortrag. So Gauss did not prove
that C� D R1212. But he derived an equivalent formula showing that C�
could be computed from members of the metric tensor and their first and second
derivatives.

Now that we have seen the relation between Gaussian curvature and the principal
curvatures, it may be useful to give a quick overview. We should remind ourselves
that the signs of the principal curvatures depend on the chosen direction of N but
the geometry does not.
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If the Gaussian curvature at a point P is positive, the two principal curvatures
have the same sign and the neighborhood of P resembles the surface of an ellipsoid
or the portion of a torus facing away from the center. If the Gaussian curvature at
a point P is negative, the two principal curvatures have the opposite signs and the
neighborhood of P resembles a saddle surface or the portion of the torus facing
toward the center. If the Gaussian curvature is zero, at least one of the principal
curvatures is zero.

7.9 *The Gauss Map

Another way of understanding the nature of Gaussian curvature arises from the
Gaussian spherical mapping. At each point on a smooth surface, we have a normal
vector N. If we relocate N without changing its direction to the origin, the nose (the
pointed end) will determine a point on the surface of a unit sphere. If we allow N to
roam over the surface, an image will form on the unit sphere. This is the Gaussian
spherical mapping.

The image of a circular cylinder will be a great circle. The image of a plane will
be a point. The image of an ellipsoid will be the whole sphere. And the image points
of a torus will cover the unit sphere twice.

The area of the image will be

Z ˇ
ˇ
ˇ
ˇ
@N
@u1

^ @N
@u2

ˇ
ˇ
ˇ
ˇ du1du2 D

Z ˇ
ˇ
ˇ�h˛1�˛ ^ �hˇ2�ˇ

ˇ
ˇ
ˇ du1du2. (7.162)

We note that

�h˛1�˛ ^ �hˇ2�ˇ D h˛1h
ˇ
2�˛ˇ D h11h

1
2�11 C h11h

2
2�12 C h21h

1
2�21 C h21h

2
2�22

D .h11h
2
2 � h21h

1
2/�12 D K�12:

Also
j�12j2 D �12�21 D g11g22 � g12g21 D g.

So (7.162) becomes

Z ˇ̌
ˇ
ˇ
@N
@u1

^ @N
@u2

ˇ̌
ˇ
ˇ du1du2 D

Z
jKj p

gdu1du2.

Actually, it is more useful to compute an oriented area:

AG D
Z �

@N
@u1

^ @N
@u2

	
du1du2 D

Z
�12

j�12j
K

p
gdu1du2.
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Fig. 7.12 The gauss map from a torus

And thus

AG D �12

j�12j
Z
K

p
gdu1du2. (7.163)

(To factor out the �12 may not make sense to the extrinsic observer but it does to the
intrinsic observer.)

We encountered this same integral (without the �12= j�12j factor) when the
Gauss–Bonnet theorem was discussed. Now it has a geometric interpretation. We
first note that the oriented area of the pre-image area is

A D �12

j�12j
Z p

gdu1du2. (7.164)

Thus for small regions, the Gaussian curvature is the ratio of the two areas.
One may ask, if K is negative, the corresponding area on the image sphere must

be interpreted as being negative. How is that possible? The answer is where K
is positive, counterclockwise loops are mapped into counterclockwise loops. And
whereK is negative, counterclockwise loops are mapped into clockwise loops. (See
Fig. 7.12.)

For the torus, the image sphere is covered twice, once in a positive sense (by
the portion of the torus facing away from the center) and once in a negative sense
(by the portion of the torus facing toward the center). The integral curvature for the
entire torus is zero – a result we got in the form of (6.69) by other means.

To bring this section to a close, I would like to mention the third fundamental
form. On the surface of the unit image sphere for the Gaussian map, the directed
distance corresponding to the coordinate u1 is

h˛1�˛du1 D N�1du1

and the directed distance for u2 is

h
ˇ
2�ˇdu2 D N�2du2.
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Thus, the metric for the “Gauss area” is

cij D ˝ N� i ; N�j
˛ D h˛i h

ˇ
j

˝
�˛;�ˇ

˛ D h˛i h
ˇ
j g˛ˇ . (7.165)

With this definition, we can now prove the following theorem:

Theorem 189. If gij is the first fundamental form, hij is the second fundamental
form, and cij is the third fundamental form, then

cij � 2Hhij CKgij D 0, where (7.166)

K is the Gaussian curvature andH is the mean curvature. That is

H D C C �
2

:

Proof. Equation (7.166) follows almost immediately from the Cayley–Hamilton

theorem that implies that the matrix
h
hij

i
satisfies its characteristic equation. From

(7.158), the characteristic equation is

./2 � .h11 C h22/C .h11h
2
2 � h21h

1
2/ D 0.

From (7.159),
h11 C h22 D 2H .

From (7.160) and (7.161),
h11h

2
2 � h21h

1
2 D K .

Using these relations, the characteristic equation for
h
hij

i
is

./2 � 2HCK D 0.

From the Cayley–Hamilton theorem

hˇ˛h
˛
j � 2Hh

ˇ
j CKı

ˇ
j D 0:

If we now multiply this equation by giˇ and then sum over ˇ, we have our desired
result:

cij � 2Hhij CKgij D 0:

ut
Problem 190. One equation for a right circular cone is

x.t; �/ D p C tv.�/, where

v.�/ D e1 sin ˛ cos� C e2 sin ˛ sin � C e3 cos˛.
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Determine the image of this surface under the Gauss spherical map. Is your result
consistent with the comment following (7.164)?

Problem 191. Consider a closed surface with two holes. How many times would
the sphere be covered by the Gaussian spherical map? What would be the integral
curvature for the surface?

7.10 *Isometries

7.10.1 *Isometry of Surfaces with Constant Gaussian Curvature

In Chap. 5, I pointed out that if a sheet of paper was bent without stretching,
the Gaussian curvature would remain zero. It should have been clear from that
discussion that an intrinsic observer restricted to taking local measurements on the
surface of the paper would not be able to determine the fact that the paper had been
bent (or unbent). In the same section, I presented (5.4):

K.x/ D lim
d!0

�=.Area of loop/.

I presented this equation as an informal definition of Gaussian curvature. Since this
definition uses a limit, it can be used to determine the Gaussian curvature at a point
whether or not the Gaussian curvature is constant. In Chap. 5, I commented that (5.4)
may not be well defined. I presented that definition because it served as a useful lead
in to the Gauss–Bonnet theorem. However, better alternatives exist for the intrinsic
observer who is not told what the metric for his or her surface is. (See Prob. 194.)
For an astute mathematician, the question arises, “Is there information beyond the
Gaussian curvature that can be determined by an intrinsic observer that can be used
to distinguish one surface from another?” As you might guess, the answer is no
for surfaces of zero Gaussian curvature. What is less intuitive (for me) is that the
answer is also no for any surface of constant curvature. On the other hand if you are
very astute, you might realize that the intrinsic observer could also determine how
quickly or slowly the Gaussian curvature varies from point to point.

These questions are closely related to another question. “Given two metric
tensors, do they represent different surfaces or do they correspond to different
coordinate systems of what are essentially identical surfaces?” If a change
in coordinates maps one metric tensor onto another metric tensor, the surfaces
represented by the two metric tensors are said to be isometric. To determine whether
or not two surfaces are isometric is not trivial. Certainly, an informal comparison of
the helicoid and the cycloid does not reveal the fact that they are isometric. (See Fig.
7.14 where surface B is a helicoid and surface C is a cycloid.) Are there tests that can
be used to determine whether two metrics represent isometric surfaces? Could these
tests be used by communicating intrinsic observers confined to two 2-dimensional
surfaces to determine whether or not they live on identical surfaces?
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polar circle

radial geodesic

p

t(θ0)

x(ρ,θ0)

Fig. 7.13 Geodesic polar
coordinates

To pursue these questions further, I will first introduce you to the idea of a
geodesic polar parametrization. In general, this parametrization can be carried out
in a neighborhood of any given point p. Given a point p on a 2-dimensional surface,
one can consider the set of all possible unit length tangent vectors located at that
point. For each unit vector, there exists a unique geodesic originating at point p. If
we use an arc length parametrization, then the tangent vector of the geodesic at the
point p will coincide with the unit tangent vector associated with the geodesic.

We can identify each of the unit tangent vectors by the angle � , where � is
the angle measured from some arbitrarily selected unit tangent vector. Since the
geodesics originating from point p are uniquely identified with their initial tangent
vectors, the angle � can also be used to label each geodesic. In this way, we get our
geodesic polar parametrization for our surface. That is

x D x.�; �/, where

x.�; �0/ is the geodesic identified with the initial tangent vector t.�0/ and � is the
arc length distance measured from the point p along the geodesic. (See Fig. 7.13.)
As we shall see below, using the arguments of Barrett O’Neill, this is an orthogonal
coordinate system (O’Neill 1997, pp. 378-379).

Since � is an arc length parameter, �� has unit length where

�� D @x
@�

.

Thus,

g�� D ˝
��;��

˛ D
�
@x
@�
;
@x
@�

�
D 1. (7.167)

Since x.�; �/ is a geodesic for a constant value of � , it follows that

r��� D 0 and therefore
@��

@�
is orthogonal to the surface.
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Now

g�� D g�� D ˝
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�
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@x
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@�@�

�
. (7.168)

Since @2x=@2� is orthogonal to the tangent plane, the first term on the right-hand
side of (7.168) is zero. Therefore,

@g��

@�
D
�
@x
@�
;
@2x
@�@�

�
D 1

2

@

@�

�
@x
@�
;
@x
@�

�
D 1

2

@

@�
.1/ D 0.

This implies that g�� is independent of �, and thus

g�� .�; �/ D g�� .0; �/.

For small values of �, our surface resemblesE2 and thus our metric approximates
ordinary polar coordinates. That is

.ds/2 D g��.d�/2 C 2g��d�d� C g�� .d�/2

� .d�/2 C �2.d�/2. (7.169)

Thus,
lim
�!0

g�� .�; �/ D g�� .0; �/ D 0.

Since

g�� .�; �/ D g�� .0; �/, it follows that

g�� .�; �/ D 0.

Summarizing, we have

�
g�� g��

g�� g��

�
D
�
1 0

0 G.�; �/

�
. (7.170)

(This metric is not valid for a neighborhood of point p that includes points where
some of the geodesics originating from point p intersect one another. Thus for a
given point p, this metric may be valid for values of � less than some positive
number.

It is not difficult to obtain a simple formula for the Gaussian curvature in terms
of the function G.�; �/. Since the metric is diagonal, we can use (5.96) for the
Fock–Ivanenko coefficients. Namely
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D 0 and (7.171)

� � D 1

4
���

@g��

@�
D �1
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@G.�; �/

@�
. (7.172)

For this metric, it is clear that

�� D �� D E1 and (7.173)

�� D 1

G
�� D 1p

G
E2. (7.174)

To get the curvature 2-form, we can use (5.84). Namely

1

2
R�� D @� �� D �1

4
E1E2

@

@�

1p
G

@G

@�
. (7.175)

However,

1p
G

@G

@�
D 2

@

@�

p
G, so (7.175) becomes

1

2
R�� D �1

2
E1E2

@2
p
G

@�2
. (7.176)

We note that

R�� D 1

2
R
ij

��� ij D R
��

����� , where

the � and � indices in the last term are unsummed. Using (7.173) and (7.174), we
have

K D R
��

�� D � 1p
G

@2

@�2

p
G. (7.177)

We are now in a position to ask the question, “If the Gaussian curvature is known,
can we determine the geodesic polar parametrization?” It certainly can be done
if the Gaussian curvature is constant. The following theorem is due to Ferdinand
Minding (1806-1885) (Minding 1839).

Theorem 192. Minding’s Theorem: All 2-dimensional surfaces with the same
constant Gaussian curvatures are isometric. (They share the same metric tensor
or equivalent metrics that can be converted into one another by a change of
coordinates.)
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Proof. KD0. From (7.177),

@2
p
G

@2�
D 0 and thus

p
G D A.�/�C B.�/.

From (7.169), it is clear that if G.�; �/ can be expanded as a Taylor’s series in �,
then

G.�; �/ D g�� D �2 C higher powers of �.

Thus for our case
p
G.�; �/ D � and g�� D �2.

This means that

.ds/2 D .d�/2 C �2.d�/2, which (7.178)

is the metric corresponding to the use of polar coordinates for the flat Euclidean
plane E2. If you choose to change the coordinates so that

x D � cos � and y D � sin � ,

you would have the more usual metric. Namely

.ds/2 D .dx/2 C .dy/2.

Case 2) K>0. In this case, (7.177) becomes

@2
p
G

@2�
D �Kp

G.

The general solution for this equation is

p
G D A.�/ sin.

p
K�/C B.�/ cos.

p
K�/.

(I have relabeled the angle variable for a reason that will become apparent.) As
before

G.�; �/ D g�� D �2 C higher powers of �.

Since

sin.
p
K�/ D p

K�C higher powers of � and

cos.
p
K�/ D 1C higher powers of �, it follows
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that

B.�/ D 0 and A.�/ D 1p
K

, so

g�� D G.�; �/ D 1

K
sin2.

p
K�/:

This implies that

.ds/2 D .d�/2 C 1

K
sin2.

p
K�/.d�/2. (7.179)

We should note that for spherical coordinates on the surface of a sphere of radius
R, we have

.ds/2 D R2.d�/2 CR2 sin2.�/.d�/2. (7.180)

We see that these metrics are equivalent if we note that for a sphere,K D 1=R2 and
replace the distance from point p by R� , which is the distance from the North pole!
Thus, we see that all surfaces with constant Gaussian curvature are isometric to the
surface of a sphere. Finally, we have

Case 3) K < 0: In this case,

@2
p
G

@�2
D jKj p

G and

p
G D A.�/ sinh.

p
jKj�/C B.�/ cosh.

p
jKj�/.

Using the same kind of arguments we used for Case 2) we have

g�� D G.�; �/ D 1

jKj sinh2.
p

jKj�/. (7.181)

ut

7.10.2 *Isometries for Surfaces with Nonconstant Gaussian
Curvature

To what extent can the result derived for surfaces of constant curvature be
generalized to surfaces of nonconstant curvature? Suppose you could determine
the geodesic polar coordinates for two points on their respective surfaces. It would
then be an easy matter to determine whether the two surfaces are isometric in the
neighborhoods of the two given points. You would simply see whether the metric
tensors matched. (You would have to allow for the fact that the reference angles
in the two coordinate systems might have to be adjusted to get a match.) However
generally, it is difficult or impossible to get the explicit formulas for the geodesics
that would be necessary for this procedure. Let us consider another approach, which
will at least give us some insight into the problem.
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Suppose we consider two geometers on the opposite end of a phone line. Each
lives in a 2-dimensional world and they wish to determine whether they live in
worlds that are isometric to one another.

At the beginning of the conversation they agree to measure their Gaussian
curvatures. (Previously, some third party has given each of them a measuring stick
of the same length.) If their Gaussian curvatures agree, then they know it is possible
they live in isometric worlds. If their Gaussian curvatures differ, they may decide
to seek out a pair of points where their Gaussian curvatures agree. One of the
geometers could move in a direction such that the Gaussian curvature is increasing
and the other could move in a direction of decreasing Gaussian curvatures. If the
lower bound of the Gaussian curvature of one world is not greater than the upper
bound of the Gaussian curvature of the other, then eventually each could find a point
in their respective worlds where their Gaussian curvatures agree.

Can it now be said that at least in their respective neighborhoods that they live
in isometric worlds? The answer is no! It is not even sufficient that they each have
a coordinate system that gives the same formula for the Gaussian curvature in their
respective neighborhoods. Consider one of the geometers. What further information
could he or she elicit besides the Gaussian curvature at his or her location. If the
Gaussian curvature is not a local maximum or minimum, then there would be some
direction the geometer could move so that the Gaussian curvature did not change.
Suppose the surface was defined by the formula

x D x.u1; u2/ and

the curve passing through values of equalK was

x.t/ D x.u1.t/; u2.t//, then

dK

dt
D @K

@u˛
du˛

dt
D r˛K

du˛

dt
D 0.

The vector �˛r˛K D rK is known as the gradient of K . Clearly, this vector
is orthogonal to �ˇ

duˇ

dt that has the direction of a path with constant K . For the
two surfaces to be isometric, it does not matter whether the components of the
gradient of the two surfaces agree at a given pair of points. In different coordinates,
the coordinates of a vector have different meanings. What is necessary for the two
surfaces to be isometric is that the magnitudes of the two gradients agree. Thus, a
necessary condition for the two worlds to be locally isometric is

jrKj2 D g˛ˇ
@K

@u˛
@K

@uˇ
D Kg˛ˇ @K

@Ku˛
@K

@Kuˇ D
ˇ
ˇ
ˇ KrK

ˇ
ˇ
ˇ
2

, where (7.182)

g˛ˇ is the metric tensor for the .u1; u2/ coordinate system in one world and Kg˛ˇ is
the metric tensor for the .Ku1; Ku2/ coordinate system in the other world.



296 7 Some Extrinsic Geometry in En

If (7.182) is satisfied, then the two geometers will discover that if they each
move in the direction of increasing Gaussian curvature orthogonal to the direction
of constant Gaussian curvature, the rate of change will be the same for both of them.
The agreement of the Gaussian curvatures and their gradients in the neighborhoods
of two respective points are clearly necessary conditions for an isometry. Also, they
are almost but not quite sufficient conditions. Conditions that are both necessary
and sufficient are presented by Eisenhart in his book An Introduction to Differential
Geometry (Eisenhart 1947, pp. 155-169).

In closing this section, I would like to point out that the notion of a gradient is
an important concept in mathematics. With that thought in mind, I will prove the
following theorem:

Theorem 193. The direction of the gradient rf of the scalar function f .u1; u2;
� � �; un/ is the direction of maximum increase or maximum decrease of f .

Proof. Suppose x.u1.s/; u2.s/;� � �; un.s// is the arc length parameterized path
through some given point p, that is the path of maximum increase or decrease for
the function f . Then the maximum rate of change for f would be

df

ds
D @f

@uj
duj

ds
: (7.183)

Thus, we are seeking, the vector

�k
duk

ds
, that

maximizes the magnitude of df=ds. If we set

duk

ds
D ˛k , then

our task is to find the maximum or minimum of

@f

@uk
˛k subject to the constraint that

gik˛
i˛k D 1.

Using the method of Lagrange multipliers, we let

G.; ˛1; ˛2;� � �; ˛n/ D @f

@uk
˛k � .gik˛i˛k � 1/.

We then require

@G

@˛j
D @f

@uk
ıkj � .gikıij ˛k C gik˛

i ıkj / D @f

@uj
� 2˛j D 0.
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a b c

Fig. 7.14 Surfaces b and c are isometric. With an appropriate coordinate system, surface a has the
same Gaussian curvature but is not isometric to the other two surfaces

This implies that

�k
duk

ds
D �k˛

k D �j ˛j D 1

2
�j

@f

@uj
D 1

2
rf .

This is what we set out to prove. ut
Problem 194. For a flat surface, the equation for the circumference of a circle is
2��.

(a) Use (7.179) and (7.181) to obtain formulas for the circumference of a circle
when the Gaussian curvature is constant and K > 0 and whenK < 0.

(b) Use the results of part a) to construct a limit that can be used to determine the
Gaussian curvature at a point (whether constant or not).

(c) Determine the appropriate formulas for the areas of circles on surfaces of
constant Gaussian curvature. Then use that result to construct a limit that could
be used to determine the Gaussian curvature at a point. Which limit, the one
from part b) or c), would be more useful?

Problem 195. Consider the three surfaces in Fig. 7.14. Coordinate systems that can
be used for the three surfaces are

a: x.u; �/ D e1au cos� C e2au sin� C e3a ln u.

b: x.u; �/ D e1au cos� C e2au sin� C e3a�.

c: x.u; �/ D e1a cosh u cos� C e2a cosh u sin� C e3au.

(Surface b is a helicoid and surface c is a catenoid.)

(a) For surfaces a and b, determine �u and �� . Then use the results to determine
the metric tensors for the two surfaces. (You should get different answers.)

(b) Use Fock–Ivanenko coefficients to determine formulas for the Gaussian curva-
tures of surfaces a and b. (You should get the same answer.)
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(c) Demonstrate the fact that surfaces a and b are not isometric.
(d) Replace the “u” in the equation for surface b by “sinh u” and then obtain the

metric tensor for the helicoid in the new coordinate system. Obtain the metric
tensor for the catenoid and thereby show that the helicoid and catenoid are
isometric. (Surfaces that are not only isometric but can also be bent into one
another without stretching are said to be applicable. The helicoid and catenoid
are applicable. (See Figs. 11.2 and 11.3.).



Chapter 8
*Non-Euclidean (Hyperbolic) Geometry

8.1 *Early Developments

You should be forewarned that a prerequisite for this chapter is a strong familiarity
with the basic manipulations of complex numbers – multiplication, the polar
representation, and the notion of complex conjugate. The non-Euclidean geometry
of Bolyai and Lobachevsky eventually became known as hyperbolic geometry
because the ordinary trigonometric functions sine and cosine that appear in formulas
for the surface of a sphere are replaced by the hyperbolic functions sinh� and cosh�
for surfaces of constant negative Gaussian curvature.

To get a taste of hyperbolic geometry, consider Fig. 8.1a. This is a slight modifi-
cation of a diagram that appears in Dr. George Bruce Halsted’s English translation
of Lobachevsky’s Geometrische Untersuchungen zur Theorie der Parallellinien
(Geometric Investigations on the Theory of Parallels). The original work was a
61-page book published in Berlin in 1840. The 1891 translation is included as an
35-page appendix in H. S. Carslaw’s translation of Roberto Bonola’s Non-Euclidean
Geometry (Bonola 1955). Nicholai Lobachevsky observed that if more than one
straight line passing through point A failed to intersect line BC , then there would
be two lines HH ’ and KK’ that would approach BC asymptotically in opposite
directions. Furthermore if line AD was perpendicular to BC , then the angle �
(†HAD) would be less than �=2 and would have a functional dependence on the
length of AD, which I designate by q. He then demonstrated that by choosing a
suitable unit of length, one has

tan
�.q/

2
D e�q: (8.1)

(In the English version, this demonstration required 28 pages of nontrivial argu-
ments.) Three pages later at the end of his treatise, Lobachevsky arrived at what can

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 8, © Springer Science+Business Media, LLC 2012
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A

B
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F

CHGEK'

K
E'G'H'

q

φ B

C

a b

a

b

c

D'

A

Fig. 8.1 (a) A diagram adapted from a work by Lobachevsky. (b) A triangle bounded by straight
lines in the non-Euclidean geometry of Bolyai and Lobachevsky

now be identified as hyperbolic trigonometric formulas. Referring to Fig. 8.1b, two
of these equations were

sinA tan�.a/ D sinB tan�.b/, and (8.2)

cosA cos�.b/ cos�.c/C sin �.b/ sin�.c/

sin �.a/
D 1: (8.3)

In the same year that Lobachevsky published his German treatise, Ferdinand
Minding (Minding 1840, p. 324) investigating the nature of geodesic triangles
on two-dimensional surfaces of constant negative curvature K , arrived at the
formula:

cos


a
p
K
�

D cos


b
p
K
�

cos


c
p
K
�

C sin


b
p
K
�

sin


c
p
K
�

cosA: (8.4)

This is identical to the law of cosines for the surface of a sphere that you hopefully
derived in Prob. 58, when R is replaced by 1=

p
K: Minding’s achievement was to
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show that this equation remains valid for the case that K is negative and
p
K D

i
pjKj . In that case,

cos


q
p
K
�

D cosh


q
p

jKj
�

, and (8.5)

sin


q
p
K
�

D i sinh


q
p

jKj
�
: (8.6)

(See Prob. 196.)
With these substitutions, (8.4) becomes

cosh


a
p

jKj
�

D cosh


b
p

jKj
�

cosh


c
p

jKj
�

� sinh


b
p

jKj
�

sinh


c
p

jKj
�

cosA: (8.7)

It turns out that (8.7) is equivalent to (8.3) – the one derived by Lobachevsky.
From (8.1), it can be shown that

ei�.q/ D tanh q C i

cosh q
; (8.8)

sin �.q/ D 1

cosh q
; (8.9)

cos�.q/ D tanh q; and (8.10)

tan�.q/ D 1

sinh q
: (8.11)

(See Prob. 197.) With these substitutions, (8.2) and (8.3) become

sinA

sinh a
D sinB

sinh b
and (8.12)

cosh a D cosh b cosh c � sinh b sinh c cosA: (8.13)

Equations (8.12) and (8.13) are, respectively, the Law of Sines and Law of
Cosines for a surface of constant negative Gaussian curvature with K D �1: The
fact that the constant

pjKj or some comparable constant does not appear in (8.12)
and (8.13) stems from the fact that Lobachevsky’s choice of unit length corresponds
to selecting a system of measurement for which K D �1:

We see from a comparison of the work of Lobachevsky and Minding that
the “straight lines” in the non-Euclidean geometry of Lobachevsky and Bolyai
correspond to the geodesics on the surface of constant negative Gaussian curvature.
However, this was not recognized for another 28 years. Robert Osserman has
suggested that if Lobachevsky and Minding had read one another’s papers, they
might have recognized that they were writing about equivalent structures (Osserman
1995, p. 67 and pp. 186–187).
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Why did not someone else see the coincidence and its consequence? It is true that
Lobachevsky did not express his results in the form of (8.12) and (8.13). However,
he did point out that if you replaced a, b, and c, respectively, by ia, ib, and ic then
(8.2) and (8.3) would become

sinA

sin a
D sinB

sin b
, and (8.14)

cos a D cos b cos c C sin b sin c cosA: (8.15)

Presumably for this reason, Lobachevsky used the term “Imaginary Geometry”
to describe his work. He not only made this point in his short book in 1840 in
German, but he also made the same point in Russian several years earlier. As a
matter of fact in 1837, he had made the same point in a paper written in French
entitled Géométrie imaginaire (Lobachevsky 1837, pp. 295–320). The 1837 paper
by Lobachevsky and the 1840 paper of Minding were three years apart and written in
two different languages (French and German) but they appeared in different volumes
of the same journal!

The chief reason that this coincidence and its significance was not observed
earlier was probably due to the fact that Bolyai and Lobachevsky had carried out
their presentations in three dimensions and the nature of their arguments were totally
unlike those of differential geometry. Few familiarized themselves with the work
of Bolyai and Lobachevsky and those who did viewed their work as curiosities
that were probably logically flawed. After Gauss died in 1855, mathematicians
examined his correspondence and unpublished papers. It then became evident that
Gauss had taken hyperbolic geometry seriously. As a result, the work of Bolyai and
Lobachevsky was reexamined but even then the relation between their work and that
of differential geometry was not self-evident to the mathematical community.

It was only when Eugenio Beltrami (1835–1900) attacked the problem of
mapping geodesics from a curved 2-dimensional surface to straight lines in a
plane, that the critical insight was made (Beltrami 1868, pp. 284–312). Even
Beltrami did not recognize the full logical consequences of the identification of
the “straight lines” of Bolyai and Lobachevsky with the geodesics on a surface
of constant negative Gaussian curvature. From Beltrami’s point of view, Bolyai
and Lobachevsky had not introduced anything revolutionary. They had simply
described the theory of geodesics on surfaces of negative curvatures using the
term “straight line” for an entity that was not really “straight.” Two years later in
1870, Guillaume Jules Hoüel (1823–1886) translated both Beltrami’s paper and
some work by Lobachevsky into French. In that publication, Hoüel pointed out
that indeed Beltrami’s observation demonstrated the independence of the parallel
postulate (O’Connor and Robertson 2000).

Problem 196.

sinhx D exp.x/ � exp.�x/
2

and coshx D exp.x/C exp.�x/
2

.
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(a) Use the definitions above to show that

sin ix D i sinhx and cos ix D coshx.

(b) Determine the appropriate formulas for sinh.x ˙ y/, cosh.x ˙ y/, and then
tanh.x ˙ y/. Note!

tanhx D sinh x

coshx
:

Problem 197. (a) Use (8.1) to derive (8.8). Suggestion: Let z D ei�=2 in (8.1) and
then solve for z.

(b) Use the result of Part (a) to derive (8.9), (8.10), and (8.11).

8.2 *The Poincaré Model and Reflections

For many purposes, it is easier to use the formulation of Riemann to study
hyperbolic geometry rather than the formulations of Bolyai, Lobachevsky, or
Minding. Henri Poincaré (1854–1912) worked out the details of this approach. As
a result, this approach is known as the Poincaré model. It is this approach that we
will present in this chapter.

For 2-dimensions, the metric introduced by Riemann in his 1854 habilita-
tionsvortrag address was

ds D
p
.dx/2 C .dy/2

1C ˛
4
r2

(8.16)

If you did Prob. 136, you know that the Gaussian curvature for this metric is

K D R1212 D ˛: (8.17)

If K is negative, the domain of this space is limited to the region

x2 C y2 D r2 < 4= jKj :
The equations are somewhat simpler if we use the “unit disk”. That is the region
for which r < 1: If we choose ˛ to be �4, then we will get our desired unit disk.
However, the results we would then obtain from this space would be limited to
those for which the Gaussian curvature K D �4. We can remedy this situation by
multiplying the right-hand side of (8.16) by some suitable constant ˇ: This has the
effect of multiplying the gij ’s by ˇ2 and the gij ’s by 1=ˇ2. We note that

R	˛ˇ D @

@u˛
�	ˇ � @

@uˇ
�	˛ C �
	ˇ�



˛ � �
	˛�



ˇ , where

�˛ˇ D g


2

�
@g˛

@uˇ
C @gˇ

@u˛
� @g˛ˇ

@u


�
:



304 8 *Non-Euclidean (Hyperbolic) Geometry
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Fig. 8.2 Geodesics for the
Poincaré model

Thus, R	˛ˇ is independent of ˇ. However,

K D R1212 D g2˛R1˛12:

Thus, multiplying the right-hand side of (8.16) by ˇ results in a Gaussian curvature
of �4=ˇ2: If we wish this to be K , then we must choose ˇ to be 2=

pjKj: Thus are
desired metric will be

ds D 2
pjKj

p
.dx/2 C .dy/2

1 � r2 , where

r2 D x2 C y2: (8.18)

With some difficulty, it can be shown that the geodesics for this space are either
diameters or circles that intersect the boundary (x2 C y2 D 1/ at a right angle. (See
Prob. 199.) It should be noted that the angle at which two curves intersect is defined
to be the angle between the tangents at the point of intersection.

The nature of “parallel lines” in this context is quite different than what we
encounter in Euclidean geometry. (See Fig. 8.2.) The “line” AC and “line” EB are
each said to be parallel to “line” AB but in different directions. Lines AC and EB
intersect AB but only at infinity. Line DF does not intersect AB even at infinity.
With this thought in mind,DF is said to be ultra parallel to AB:

On a surface of constant Gaussian curvature, one can slide a polygon around
without stretching. The same is true for an observer using a Riemannian ruler on
the Poincaré disk. Quite clearly such translations and rotations in the Poincaré disk
would look quite differently to an observer looking at the disk from a Euclidean
point of view. The Euclidean observer would agree that the angles at each vertex
would not change. However, the Euclidean observer would see the lengths of
the geodesics connecting adjacent vertices change while the Riemannian observer
would see that the lengths of the “straight lines” joining adjacent vertices remain the
same. How would these motions be described by a Euclidean observer?
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φ

θ−φ

θ−φ

θ

2θ−φ
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z

Fig. 8.3 z0 is the reflection of
z with respect to a diameter

In Euclidean geometry, distance preserving motions are composed of reflections,
translations, and rotations. These motions all have their analogs in the Poincaré
model. With that thought in mind, we will start with a discussion of reflections. In
two-dimensional Euclidean geometry, one reflects a point with respect to a straight
line. In the Poincaré model, one reflects a point with respect to a geodesic.

First consider the easy case where the geodesic is a diameter. (See Fig. 8.3.)
Suppose the point z D rei� and we wish to reflect it with respect to the diameter
y D x tan �: The angle between the diameter and the vector associated with z is
� � �: To get the reflected version z0 of z, we need to increase the argument of z by
2.� � �/. Thus, the new argument will be � C 2.� � �/ D 2� � �. Therefore

z0 D re2i��i� D re2i� e�i� :

However, re�i� is the complex conjugate of rei� , so this last equation becomes

z0 D e2i�z�, where z� is the complex conjugate of z. (8.19)

Now suppose the geodesic is a circle. In the context of circles, the analog of
a reflection is not so obvious. In the context of circles, the analog of a reflection
is known as an inversion(See Fig. 8.4.). To determine the inverse of a point z with
respect to a circle centered at c, consider the straight line passing through c and z.
The inverse z0 of z lies on this straight line with the requirement that z and z0 lie
on the same side of c and jz � cj jz0 � cj D r2, where r is the radius of the circle.
Observe that if z is inside the circle, then jz � cj < r and jz0 � cj > r , so z0 is outside
the circle. Similarly, if z is outside the circle, then its inverse z0 lies inside the circle.
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Fig. 8.4 In both figures, z’ is the inverse of z

If z lies inside the circle, a compass and ruler construction for z0 is illustrated
in Fig. 8.4b. Point d is located by constructing a line perpendicular to the line cz
passing through point z: Once line cd is drawn, c0 is located by constructing a line
perpendicular to cd passing through d: Since every triangle in sight is similar to
one another,

jz � cj
r

D r

jc0 � cj and thus

jz � cj ˇˇc0 � cˇˇ D r2:

Therefore, c0 is the inverse of z with respect to the circle centered at point c: By a
similar argument, one sees that point c is the inverse of point z with respect to the
circle centered at point c0: One can also determine the inverse of z by compass and
ruler construction if z lies outside its reference circle. (See Prob. 200.)

As one would expect with a “reflection”, when the operation of inversion is
applied a second time, a point is returned to its initial location.

In addition, if the center of the circle is at .0; 0/, then

z0 D r2z=
ˇ̌
z2
ˇ̌ D r2z=zz� D r2=z�: (8.20)

An important feature of inverse points is described in the following theorem:

Theorem 198. If A and A0 are inverse points with respect to some reference circle,
then any circle passing through bothA andA0 intersects the reference circle at right
angles. Furthermore if a circle passing through A intersects the reference circle at
right angles, then that circle must also pass through A0.

Proof. Consider Fig. 8.5. To prove the first statement, suppose A and A0 are inverse
points and some circle passing through these two points intersects the reference
circle at point B . Since A and A0 are inverse points:
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Fig. 8.5 †ABC D
†BA0C . Why?

AC � A0C D .BC /2 and thus

AC

BC
D BC

A0C
(8.21)

This implies that 4ACB is similar to 4BCA0 since they both share †C and the
sides adjacent to †C are in proportion. Thus, †CA0B D †CBA: Since †CA0B D
.1=2/arcAB; it follows that †CBA is also equal to .1=2/arcAB: But that implies
that BC must be tangent to the circle passing through A and A0. This, in turn,
implies the two circles intersect at right angles.

To prove the second part, consider the case where A lies inside the reference
circle. Then suppose the circle passing through A intersects the reference circle
at right angles at point B: We wish to show that A0 lies on this same circle. The
same two triangles are similar for the reasons stated above. †CBA D .1=2/arcAB
because BC is tangent to the circle passing through A. Therefore, †CA0B must
also equal .1=2/arcAB which implies A0 lies on the circle.

Finally, suppose A lies outside the reference circle. To avoid drawing another
figure, call this point A0 and its inverse A. Consider a circle passing through A0
that intersects the reference circle at right angles. Let D designate the point inside
the reference circle where the circle passing through A0 intersects A0C . We wish
to show that D, not shown in the diagram, coincides with A. The same triangles
mentioned above are again similar so †CBA D †CA0B . †CBD and †CA0B are
both equal to .1=2/arcAB . Thus †CBD D †CBA. Since bothA andD lie on line
A0C , these two angles cannot be equal unlessD coincides with A. ut

How can a reflection with respect to a geodesic circle be carried out alge-
braically? Consider Fig. 8.6. Suppose arcAB is a geodesic in the unit Poincaré disk
centered at .0; 0/. Let us see how the reflection process works out. Suppose the
complex number a is located at the center of the geodesic circle. The translation
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Fig. 8.6 Reflection with respect to a geodesic

z ! z � a will translate the center of the geodesic circle to the origin. If we now
carry out the inversion with respect to the geodesic circle, we have

z ! z � a ! r2

z� � a� :

From Theorem 198, this step maps point C onto C 0 and C 0 onto C: More
generally, arcACB is mapped onto AC 0B and vice versa. Furthermore, it is clear
that the coarsely cross hatched region is mapped onto the finely cross hatched region
and vice versa.

If we now translate this last configuration by adding a, we will return the center
of the Poincaré disk to .0; 0/. Summarizing, we now have

z ! z � a ! r2

z� � a� ! r2

z� � a� C a D az� � aa� C r2

z� � a�
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From Fig. 8.6, it is clear from the Pythagorean Theorem that

aa� � r2 D jaj2 � r2 D 1:

Thus, the reflection with respect to the geodesic arc centered at a is

˛.z/ D az� � 1
z� � a� . (8.22)

This formula is not unique. If you multiply both the denominator and the numerator
by the same complex number, the image points will remain the same. However for
the form shown with the coefficient of z� in the denominator equal to 1, one can
read off the coordinates of the center of the geodesic circle. We should note that the
choice of a is not completely arbitrary. Since the center of a geodesic circle must lie
outside the unit disk, we require that jaj > 1.

Problem 199. (Arduous)

(a) Show that the geodesics on Poincaré’s disk are the arcs of circles that intersect
the boundary at right angles as shown in Fig. 8.2. Suggestion: From (8.18),

d s D 2
pjKj.1 � r2/ .e1dx C e2dy/ and thus

t.s/ D d s
ds

D 2
pjKj.1 � r2/

.e1 Px C e2 Py/ D �1 Px C �2 Py and

n.s/ D t.s/e12 D 2
pjKj.1 � r2/ .�e1 Py C e2 Px/, where

Px D dx

ds
, and Py D dy

ds
. (8.23)

Here, s represents arc length for someone using a Riemannian measuring stick
corresponding to Riemann’s metric tensor for the disk. For someone using a
Euclidean metric stick and using u to represent arc length:

t.s/ D e1
dx

du
C e2

dy

du
and

n.s/ D �e1
dy

du
C e2

dx

du
. (8.24)

Comparing (8.23) and (8.24), it is clear that

ds

du
D 2
pjKj.1 � r2/ .
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Now since
d t.u/
du

D k.u/n.u/,

we can compute the curvature for an arbitrary curve. Using (5.50) in Prob. 79,
you can determine the differential equations for the geodesics and use them to
eliminate Rx and Ry in the formula you obtained for k.u/. You should then have

k D 4.y Px � xy/
pjKj.1� r2/2

. (8.25)

To show k is constant, show dk=du D 0 or dk=ds D 0. To do this, you will
need to use the differential equations for geodesics again.

(b) From (8.25), you should be able to show that for an observer looking at the disk
from an Euclidean point of view, the geodesic circular arcs strike the rim of the
disk at right angles. Note! A tangent to the disk at the point of intersection has
direction .y;�x/. (For an observer looking at the disk from a Riemannian point
of view, the rim of the disk is at infinity.)

Problem 200. Suppose point z lies outside a circle centered at point c: Show how
the inverse of z may be located by a compass and ruler construction. Hint: If one
side of a triangle inscribed in a circle is a diameter, the angle opposite the diameter
is a right angle. Why?

Problem 201. Suppose

˛.z/ D az� � 1
z� � a� and ˇ.z/ D bz� � 1

z� � b� :

Express ˛ ı ˇ.z/ D a.ˇ.z// as a simple fraction.

8.3 *Direct Non-Euclidean Transformations

In 2-dimensional Euclidean geometry, the composition of two reflections is a
rotation. What happens when we take the composition of two reflections in the
Poincaré model? Suppose

˛.z/ D az� � 1

z� � a� and ˇ.z/ D bz� � 1

z� � b� :

If we compute

w.z/ D ˛.ˇ.z//, we get

w.z/ D .ab� � 1/z C .b � a/
.b� � a�/z C .a�b � 1/ (8.26)

(If you have not done Prob. 201, you should do so now.)
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Equation (8.26) is not the most general composition of two reflections. It does not
include the rotation about the origin resulting from two reflections about diameters.
It turns out that one needs to adjust the form of (8.26) only slightly to get the most
general composition of two reflections. Namely

w.z/ D cz C d

d�z C c� ; (8.27)

where c and d are arbitrary complex constants with one condition. The format of
(8.27) is restrictive enough to guarantee that the boundary of the unit disk is mapped
onto itself. (See Prob. 205.) However, it is not restrictive enough to guarantee that
the interior of the unit disk is not mapped into the exterior and vice versa. The added
restriction is that the image of .0; 0/ must lie inside the unit disk. We note that

w.0/ D d

c� , so we require that

jd j < jcj : (8.28)

To demonstrate that (8.27) always represents the composition of two reflections,
we will prove the following theorem:

Theorem 202. If

w.z/ D cz C d

d�z C c� , where

jd j < jcj ;
then w.z/ is the composition of two reflections, at least one of which can be chosen
to be a reflection with respect to a diameter.

Proof. Case 1: d D 0: In this case,

w.z/ D c

c� z.

If c D rei� ; then our equation becomes

w.z/ D e2i� z.

This is a rotation of angle 2� about the origin. It results from two reflections with
respect to diameters, which intersect with an angle of � between them. (You may
wish to review Fig. 2.2 in Sect. 1 of Chap. 2.)

Case 2: d ¤ 0: For this case, we will demonstrate that w.z/ can be written as the
composition of two successive reflections ˇ and then ˛ such that ˇ is a reflection
with respect to a diameter. If

w.z/ D ˛.ˇ.z//, then

ˇ.z/ D ˛�1.w.z//. (8.29)
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If ˛ is a reflection, then ˛�1 D ˛: If ˛ is a reflection, it can be written in the
form;

˛.z/ D az� � 1
z� � a� :

With these observations, (8.29) becomes

ˇ.z/ D aw� � 1

w� � a� D a c
�z�Cd�

d z�Cc � 1

c�z�Cd�

d z�Cc � a� D ac�z� C ad� � d z� � c

c�z� C d� � a�d z� � a�c

D .ac� � d/z� C .ad� � c/

.c� � a�d/z� C .d� � a�c/
. (8.30)

Since d ¤ 0, we can set
a D c=d�:

(It is required that jaj > 1. Why is that condition satisfied?) With this value for a;
(8.30) becomes

ˇ.z/ D


cc�

d�

� d
�

z�
�
d� � cc�

d

� D
1
d�

.cc� � dd�/ z�
1
d
.dd� � cc�/

D � d

d� z�: (8.31)

Note! .cc� � dd�/ ¤ 0. Why?)
If d D rei� , (8.31) becomes

ˇ.z/ D ei.2�C�/z�.

A review of the discussion preceding (8.19) reveals that this is a reflection with
respect to the diagonal defined by the equation

y D x tan


� C �

2

�
:

To summarize: If

w.z/ D cz C d

d�z C c� , with d ¤ 0, then

w.z/ D ˛.ˇ.z//, where

˛.z/ D .c=d�/z� � 1

z� � .c�=d/
, and

ˇ.z/ D � d

d� z�. ut
The composition of an even number of reflections is defined to be a direct non-

Euclidean transformation, while the composition of an odd number of reflections is
defined to be an indirect non-Euclidean transformation.



8.3 *Direct Non-Euclidean Transformations 313

Theorem 203. For a 2-dimensional Poincaré disk, a direct non-Euclidean trans-
formation can be decomposed into the product of two reflections.

Proof. We only need to show that the composition of four reflections can be
reformulated as the composition of two reflections. That is if

w.z/ D az C b

b�z C a� and g.z/ D cz C d

d�z C c� , where

jbj< jaj and jd j< jcj ,

then

g.w.z// D pz C q

q�z C p� , where jqj < jpj :

Carrying out the obvious calculations, we get

g.w.z// D .ac C b�d/z C .a�d C bc/

.ad� C b�c�/z C .a�c� C bd�/
:

We note that this has the required form where p D ac C b�d and q D a�d C bc.
To show that jpj > jqj, we note that

jpj2 � jqj2 Dpp� � qq�D.acC b�d/.a�c� C bd�/� .a�d C bc/.ad� C b�c�/

D aa�cc� C abcd� C a�b�c�d C bb�dd� � aa�dd� � a�b�c�d

� abcd� � bb�cc�

D aa�cc� C bb�dd� � aa�dd� � bb�cc�

D .aa� � bb�/.cc� � dd�/> 0.
ut

Corollary 204. For the 2-dimensional Poincaré disk, an indirect non-Euclidean
transformation is either a single reflection or the composition of three reflections.

Problem 205. Suppose

w.z/ D az C b

b�z C a� , where

aa� � bb� ¤ 0: Show that ww� D 1 implies zz� D 1

Problem 206. The proof of Theorem 202 demonstrates that if

w.z/ D cz C d

d�z C c� , where 0 < jd j < jcj

then

w.z/ D ˛.ˇ.z//, where ˇ.z/ D � d

d� z�.
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Determine the reflection operator N̨ .z/ that has the property that

w.z/ D ˇ. N̨ .z//, where again ˇ.z/ D � d

d� z�.

Problem 207. A direct non-Euclidean transformation results from the composition
of two reflections. What is the nature of the fixed points when the reflections are
done with respect to two geodesics which are

(a) Ultra parallel?
(b) Parallel?
(c) Intersecting?

In each case, given the two geodesics, describe how you can locate the fixed point
or fixed points. Do this when both of the geodesics are arcs of circles and also when
one of the geodesics is a diameter.

8.4 *Möbius Transformations

The group of direct non-Euclidean transformations is a subgroup of a wider class of
mappings known as Möbius transformations. A Möbius transformation is a mapping
w.z/ such that

w.z/ D az C b

cz C d
, where (8.32)

a, b, c, and d are arbitrary complex constants with the condition that ad � bc ¤ 0.
From Prob. 210, the group of Möbius transformations corresponds to the group
of 2 � 2 matrices with nonzero determinant. In this context, the group of Möbius
transformations is usually identified as the group known as the general linear
transformations for 2 dimensions – the group of 2x2 nonsingular matrices acting on
the two-dimensional vector space for the field of complex numbers. (Technically,
this is not quite true. If we multiply the numerator and denominator of the right-
hand side of (8.32) by some nonzero complex constant, we do not change the
image points of the function w.z/. This means that we could adjust a, b, c, and d
so that

det

�
a b

c d

�
D 1.

Therefore, the group of Möbius transformations is actually isomorphic to the
group of special linear transformations – the general linear transformations whose
determinant is 1:)

An important property of Möbius transformations is that they are conformal. That
is, they preserve angles. This is a consequence of the following theorem:
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z1(0)

z2(0)

z2(t)

z1(t)

z2(t)

z1(t)

z0

θ

Fig. 8.7 The angle � is
preserved under a general
linear transformation

Theorem 208. Suppose the function w.z/ is such that dw=d z is well defined in the
neighborhood of z0 and

dw

d z

ˇ̌
ˇ
ˇ
zDz0

¤ 0, then

any angle with vertex at z D z0 is preserved by the mapping w.z/.

Proof. Consider two curves z1.t/ and z2.t/ that are both parameterized so that
z1.0/ D z2.0/ D z0. (See Fig. 8.7.) If Pzk.t/ D d zk=dt , then Pzk.0/ is tangent to
zk.t/ at t D 0 for k D 1 or 2. To obtain the angle � between the two curves, we note
that

Pzk.t/ D jPzk.t/j exp.i˛k.t//, where

˛k is said to be the argument or amplitude of Pzk.t/. Clearly, � D ˛1.0/ � ˛2.0/,
so that

� D arg

� Pz1.0/
Pz2.0/

	
.

The corresponding angle in the w plane is

arg

� Pw.z1.0//
Pw.z2.0//

	
.

But

Pw.zk.t// D dw

d zk

d zk
dt

, so

arg . Pw.zk.0/// D arg

 
dw

d z

ˇ
ˇ
ˇ
ˇ
zDz0

!

C arg .Pzk.0//

D arg

 
dw

d z

ˇ
ˇ
ˇ
ˇ
zDz0

!

C ˛k.0/.



316 8 *Non-Euclidean (Hyperbolic) Geometry

Thus,

arg

� Pw.z1.0//
Pw.z2.0//

	
D
"

arg

 
dw

d z

ˇ̌
ˇ
ˇ
zDz0

!

C ˛1.0/

#

�
"

arg

 
dw

d z

ˇ̌
ˇ
ˇ
zDz0

!

C ˛2.0/

#

D ˛1.0/� ˛2.0/ D � .

This is what we set out to prove. ut
You should note that the proof of the theorem breaks down if

dw

d z

ˇ
ˇ
ˇ
ˇ
zDz0

D 0, since

in that circumstance

arg

 
dw

d z

ˇ
ˇ
ˇ
ˇ
zDz0

!

becomes meaningless.

To show that the theorem applies to general linear transformations, you should check
that dw=d z ¤ 0, when

w.z/ D az C b

cz C d
.

(See Prob. 211.)
An obvious corollary is that direct non-Euclidean transformations are

conformal.
If ˛.z/ is an indirect non-Euclidean transformation, then d˛=d z is not well

defined. However, an indirect non-Euclidean transformation is the composition of a
Möbius transformation for which the derivative with respect to z is well defined
followed by the operation of complex conjugation. The operation of complex
conjugation changes the signs of the arguments of all complex numbers and thereby
reverses the orientation for the angles between curves at their point of intersection.
Thus, an indirect non-Euclidean transformation preserves the magnitude of angles
but reverses their orientation.

Problem 209. In the opening lines of this section, we defined a Möbius transfor-
mation as a mapping of the form:

w.z/ D az C b

cz C d
, with

the restriction that ad � bc ¤ 0. Why the restriction?

Problem 210. Suppose

�.z/ D ew.z/C f

gw.z/C h
, and w.z/ D az C b

cz C d
.
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(a) Show that

�.w.z// D ˛z C ˇ

�z C ı
, where

�
˛ ˇ

� ı

�
D
�
e f

g h

� �
a b

c d

�

(b) If

w.z/ D az C b

cz C d
, where ad � bc D 1, what is z.w/?

Problem 211. Suppose

w.z/ D az C b

bz C d
.

Compute dw=d z to demonstrate that dw=d z ¤ 0.

8.4.1 *The Cross Ratio

It will be useful to note that a general linear transformation has the property that
circles or straight lines are mapped onto circles or straight lines. To demonstrate
this property, it is useful to use the concept of cross ratio. According to Howard
Ewes, this is a concept that was investigated by the ancient Greeks. In the nineteenth
century interest in this topic was reinvigorated and August Ferdinand Möbius
(1790–1868) worked out many details in the context of projective geometry. It is
interesting to note that for a short time in 1813, Möbius studied some astronomy
under Gauss at Göttingen. Like Gauss, Möbius spent his entire professional life in
academia as an astronomer and is better known for his contributions to mathematics.
In mainland Europe, various labels were used but it was William Kingdon Clifford
who coined the English term “cross ratio” in 1878 (Ewes 1963, pp. 86–87).

The cross ratio is constructed from four points. Given four points z1, z2, z3, and
z4 in the complex Argand plane then the cross ratio is

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
:

It can be shown that the cross ratio is preserved under a general linear transforma-
tion. That is if

wk D azk C b

czk C d
for k D 1; 2; 3; and 4, then

.w3 � w1/.w4 � w2/

.w3 � w2/.w4 � w1/
D .z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
. (8.33)

(See Prob. 215.)
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z2
z2

z3
z3

z4

z4

z1

a b

z1

α
αβ

β

Fig. 8.8 (a) z4 lies on circle
” ˛ D ˇ. (b) z4 lies on
circle ” ˛ C ˇ D � .

A useful theorem for our purposes is as follows:

Theorem 212. The cross ratio is real if and only if the four points on the Argand
plane lie on a circle or on a straight line.

Proof. Case (1) The points z1, z2; and z3 are not colinear. In this case, there is a
unique circle that passes through the three points. Referring to Fig. 8.8a,

z3 � z1
z3 � z2

D
ˇ
ˇ
ˇ̌ z3 � z1
z3 � z2

ˇ
ˇ
ˇ̌ exp.�i˛/, and

z4 � z2
z4 � z1

D
ˇ
ˇ
ˇ̌ z4 � z2
z4 � z1

ˇ
ˇ
ˇ̌ exp.iˇ/.

Thus,

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
D
ˇ
ˇ
ˇ̌ .z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/

ˇ
ˇ
ˇ̌ exp.iˇ � i˛/, so

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
is real

if and only if ˛ D ˇ and z4 lies on the circle.
For Fig. 8.8b,

z3 � z1
z3 � z2

D
ˇ
ˇ
ˇ
ˇ
z3 � z1
z3 � z2

ˇ
ˇ
ˇ
ˇ exp.�i˛/, and

z4 � z2
z4 � z1

D
ˇ
ˇ
ˇ
ˇ
z4 � z2
z4 � z1

ˇ
ˇ
ˇ
ˇ exp.�iˇ/.

Thus,

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
D
ˇ
ˇ̌
ˇ
.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/

ˇ
ˇ̌
ˇ exp.�i˛ � iˇ/, so

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
is real

if and only if ˛ C ˇ D � and z4 lies on the circle.
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Starting with z1 and moving clockwise around the circle determined by z1, z2,
and z3, it is easy to see that there are six possible sequences to consider. However,
you may be able to demonstrate that taking the mirror image of a given sequence
results in taking the complex conjugate of the cross ratio. In that sense, there is only
one more case to deal with. (See Prob. 216.)

Case (2) The points z1, z2, and z3 lie on a straight line. I will let you deal with
that case. You should note that if z4 does not lie on the same line, you can construct
a circle through z2, z3, and z4. ut
Corollary 213. General linear transformations map circles or straight lines into
circles or straight lines.

Proof. z lies on the circle or straight line passing through z1, z2, and z3 if and only if

.z3 � z1/.z � z2/

.z3 � z2/.z � z1/
D some real number ˛.

From Prob. 215, if w.z/ is a general linear transformation, then

.w.z3/� w.z1//.w.z/ � w.z2//

.w.z3/� w.z2//.w.z/ � w.z1//
D ˛.

Thus, any point on the circle or straight line passing through z1, z2, and z3 is mapped
onto the circle or straight line passing through w.z1/, w.z2/, and w.z3/. Furthermore,
it is clear that any point on the circle or straight line passing through w.z1/, w.z2/,
and w.z3/ has a preimage on the circle or straight line passing through z1, z2,
and z3. ut
Corollary 214. Direct non-Euclidean transformations map geodesics onto
geodesics.

Proof. From Corollary 213, a direct non-Euclidean transformation maps geodesics
onto straight lines or circles. Since direct non-Euclidean transformations are
conformal, the image of a geodesic must meet the boundary of the unit disk at a
right angle. Thus, the image of a geodesic must be a geodesic. ut

8.4.2 *Fixed Points

The nature of a particular direct non-Euclidean transformation depends substantially
on its fixed points. If

w.z/ D az C b

b�z C a� , then

z is a fixed point if

z D az C b

b�z C a� .



320 8 *Non-Euclidean (Hyperbolic) Geometry

This equation is equivalent to the quadratic equation;

b�z2 C .a� � a/z � b D 0.

If the discriminant is not zero, we get two roots:

zC D .a � a�/Cp
.a � a�/2 C 4bb�
2b� and z� D .a � a�/�p.a�a�/2 C 4bb�

2b� .

If we take the product of the two roots, we get

zCz� D .a � a�/2 � �
.a � a�/2 C 4bb��

4.b�/2
D �b
b� :

Thus,

jzCj jz�j D jzCz�j D
ˇ̌
ˇ
ˇ
�b
b�

ˇ̌
ˇ
ˇ D 1:

It then follows that either both of the fixed points lie on the boundary of the unit
disk or one fixed point lies inside the boundary and the other lies outside.

If the discriminant .a�a�/2C4bb� is zero, we get a single fixed point. We should
note that a � a� is pure imaginary so .a � a�/2 is a negative real number, whereas
4bb� is a positive real number. Thus, if the discriminant is zero, ja � a�j D j2bj.
Thus, for a single fixed point

jzj D
ˇ
ˇ
ˇ
ˇ
a � a�

2b�

ˇ
ˇ
ˇ
ˇ D 1.

Therefore, when one has a single fixed point, it lies on the boundary of the Poincaré
disk.

The nature of the mapping corresponding to each type of fixed point configura-
tion is shown in Fig. 8.9.

In all three diagrams, a geodesic represented by an unbroken arc of a circle or a
straight line is mapped onto the neighbor labeled with the next higher integer. For
example in each diagram, the geodesic labeled with -1 is mapped onto the geodesic
labeled 0; the geodesic 0 is mapped onto the geodesic 1 and so forth. (The inverse
mappings would move the indicated geodesics in the opposite direction.)

Using a Riemannian ruler, all geodesic segments bounded by adjacent grid points
are equal in all three diagrams. (A boundary point should not be counted as a
“grid point.” If one end of a geodesic lies on the boundary, it has infinite length
for someone using a Riemannian ruler.)

The mapping in diagram A is called a translation. The mapping in diagram B is
called a limit rotation. And the mapping in diagram C is called a rotation.

Problem 215. Verify (8.33). That is, verify the fact that the cross ratio is preserved
under a general linear transformation.
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Fig. 8.9 (a) Translation. (b) Limit Rotation. (c) Rotation

Problem 216. Determine the missing sequence or sequences for case 1) in
Theorem 212 and complete the proof for that case. Also prove the theorem for
case 2).

Problem 217. Suppose we designate the cross ratio

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
by .z1z2z3z4/:

It is not difficult to show that

.z3 � z1/.z4 � z2/

.z3 � z2/.z4 � z1/
D .z1 � z3/.z2 � z4/

.z1 � z4/.z2 � z3/
.

Thus, we could define

.z1z2z3z4/ D .z1 � z3/.z2 � z4/

.z1 � z4/.z2 � z3/
.

I think this alternate definition will make the problems below slightly easier.

(a) .z1z2z3z4/ is invariant under several permutations of z1, z2, z3, and z4. Determine
those permutations of z1, z2, z3, and z4 that leave .z1z2z3z4/ invariant. You can
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determine those permutations by filling in the appropriate values of x, y, and z
in each case listed below:

.z2 � y/.x � z/

.z2 � z/.x � y/
D .z2xyz/ D .z1z2z3z4/;

.z3 � y/.x � z/

.z3 � z/.x � y/
D .z3xyz/ D .z1z2z3z4/; and

.z4 � y/.x � z/

.z4 � z/.x � y/
D .z4xyz/ D .z1z2z3z4/.

(b) Show

1� .z1z2z3z4/ D .z4z2z3z1/ D .z1z3z2z4/.

Note! Switching the first and last entries has the same result as switching the
middle two entries.

(c) Show .z2z1z3z4/ D .z1z2z4z3/ D 1=.z1z2z3z4/.
Note! Switching the first two entries has the same result as switching the last
two entries.
Knowing the value for .z1z2z3z4/, one can use the results of parts b) and c) to
compute the value of any other permutation. For example, suppose .z1z2z3z4/ D
k and we wish to compute .z2z3z4z1/. We observe that

.z2z3z4z1/ D 1

.z3z2z4z1/
D 1

1 � .z1z2z4z3/
D 1

1 � 1
.z1z2z3z4/

D 1

1 � 1
k

D k

k � 1
.

(d) Suppose .z1z2z3z4/ D k. Determine the values for .z1z2z4z3/, .z1z3z2z4/,
.z1z3z4z2/, .z1z4z2z3/, and .z1z4z3z2/. (You should get 1 � k, 1=k, k=.k � 1/,
.k � 1=k, and 1=.1� k/ – not necessarily in that order.)

(e) There are a total of 24 permutations for .z1z2z3z4/. Without computing the
values for all 24, demonstrate that given .z1z2z3z4/ D k, show that the possible
values for permutations is exhausted by the list in part d).

8.5 *The Distance Function

As you might suspect, the Riemann metric for the Poincaré disk is invariant under
direct non-Euclidean transformations. (See Prob. 218.) From Th. 198, it is clear that
a geodesic through a point z in the Poincaré disk may be described either as the
arc of a circle that passes through z and its inverse 1=z� or the diameter that is a
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segment of the straight line that passes through the same two points. This means
that the geodesic that connects z1 and z2 is the arc of the circle or a segment of the
straight line that passes through z1, z2, 1=z�

1 , and 1=z�
2 :

Furthermore when the Poincaré disk is subjected to a direct non-Euclidean
transformation, the image of the inverse of a point z is the inverse of the image
of z: To see this, we note that if

w.z/ D az C b

b�z C a� , then

w.1=z�/ D a.1=z�/C b

b�.1=z�/C a� D a C bz�

b� C a�z� D 1

w� .

From what we know about cross ratios, it is now obvious that if w.z/ is a direct
non-Euclidean transformation and

wk D w.zk/ for k D 1, 2, 3, and 4, then

.w2 � w1/


1

w�

1
� 1

w�

2

�



w2 � 1

w�

2

� 

1

w�

1
� w1

� D
.z2 � z1/



1

z�

1
� 1

z�

2

�



z2 � 1

z�

2

� 

1

z�

1
� z1

� or restated

jw2 � w1j2

1� jw2j2

� 

1 � jw1j2

� D jz2 � z1j2

1 � jz2j2

� 

1 � jz1j2

� : (8.34)

We know that the Riemann metric for the Poincaré disk and therefore the Riemann
distance between two points is also invariant under direct non-Euclidean mappings.
It is too much to expect that our distance function is identical to the invariant
indicated by (8.34). But it is plausible that some function of that invariant is the
Riemann distance. Ifm.z1; z2/ is the Riemann distance between the points z1 and z2,
then we may be able to find a function f such that

m.z1; z2/ D f

0

B
@

jz2 � z1jq
.1 � jz2j2/.1 � jz1j2/

1

C
A . (8.35)

Because of the invariance of the argument of f , we only need to investigate a
convenient geodesic. To seek out our desired function, we will look at the x axis.
From (8.18)

ds D 2
pjKj

dx

1 � x2
D dm.0; x/ D df

�
xp
1 � x2

	
dx

D f 0
�

xp
1 � x2

	�
d

dx

xp
1 � x2

	
dx D f 0

�
xp
1 � x2

	
dx

.1� x2/
3=2

.
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From this last equation, we have

f 0
�

xp
1 � x2

	
D 2
pjKj

1p
1 � x2

: (8.36)

Substituting

u D xp
1 � x2

,

Equation (8.36) becomes

f 0.u/ D 2
pjKjp1C u2

.

(You should fill in the steps.) Substituting u D sinh �, we get

f 0.u/du D 2d sinh�
pjKj

q
1C sinh2 �

D 2 cosh�d�
pjKj cosh�

D 2
pjKjd�.

Integrating, we have

f .u/ D 2
pjKj� C c D 2

pjKj sinh�1 u C c, where

c is a constant that is to be determined. From (8.35), it is clear that f .0/ D 0,
so c D 0. Referring to (8.35) again, we now have our desired distance function.
Namely;

m.z1; z2/ D 2
pjKj sinh�1

0

B
@

jz2 � z1jq
.1 � jz2j2/.1� jz1j2/

1

C
A . (8.37)

Problem 218. Suppose that

w.z/ D az C b

b�z C a� .

Show that
dwdw�

.1 � ww�/2
D d zd z�

.1 � zz�/2
.

Also show that this equation is equivalent to the equation:
p
.du/2 C .dv/2

1 � u2 � v2
D
p
.dx/2 C .dy/2

1 � x2 � y2
, where

z D x C iy and w D u C iv.
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z1

z2

z2

z1

w1

a b

w1

w2
w2

Fig. 8.10 The cross ratio
. Nw1 � w2/. Nw2 � w1/

. Nw1 � w1/. Nw2 � w2/
in figure a equals the cross ratio

.Nz1 � z2/.Nz2 � z1/

.Nz1 � z1/.Nz2 � z2/
in figure b

Problem 219. Refer to Fig. 8.10. From (8.18),

m.w1;w2/ D 2

jKj
Z w2

w1

dx

1 � x2
.

Use the method of partial fractions to compute this integral and show that

m.w1;w2/D 1
pjKj ln

�
.w2 � Nw1/. Nw2 � w1/

.w1 � Nw1/. Nw2 � w2/

	
D 1
pjKj ln

�
. Nw1 � w2/. Nw2 � w1/

. Nw1 � w1/. Nw2 � w2/

	
:

Using the fact that
. Nw1 � w2/. Nw2 � w1/

. Nw1 � w1/. Nw2 � w2/
is a cross ratio,

and referring to Fig. 8.10b, we see that in general:

m.z1; z2/ D 1
pjKj ln

�
.Nz1 � z2/.Nz2 � z1/

.Nz1 � z1/.Nz2 � z2/

	
: (8.38)

This was the distance formula derived by Poincaré. A difficulty with this formula is
that given z1 and z2, it is very difficult to compute Nz1 and Nz2: (At least for me.)

Problem 220. By permuting the four points z1, z2, 1=z�
1 , and 1=z�

2 , we can construct
six cross ratios. However, besides the one I have used in this section, there is only
one other with .z2 � z1/ in the numerator. Namely:

.z2 � z1/


1

z�

2
� 1

z�

1

�



z2 � 1

z�

1

� 

1

z�

2
� z1

� D .z2 � z1/.z�
1 � z�

2 /

.z2z�
1 � 1/.1� z1z�

2 /

D .z2 � z1/.z�
2 � z�

1 /

.1 � z2z�
1 /.1 � z1z�

2 /
.
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Show that using this cross ratio, one can obtain the distance formula:

m.z1; z2/ D 2
pjKj tanh�1

 
jz2 � z1jˇ
ˇ1 � z1z�

2

ˇ
ˇ

!

. (8.39)

This is the version of the distance formula that appears in Geometry written by
David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray (Brannan et al. 1999,
p.285).

Problem 221. If

y D sinh�1 x, then x D sinhy D 1

2
.ey � e�y/ :

Use this equation to show that

ey D
p
x2 C 1C x.

Use this result to show that

sinh�1 x D tanh�1
�

xp
x2 C 1

	
D ln


p
x2 C 1C x

�
.

Finally, use this last result to obtain a formula for the cross ratio used by Poincaré
in (8.38) in terms of z1, z2, z�

1 , and z�
2 . (Do not ignore the fact that the coefficient

that appears in front of the sinh�1 term in (8.37) and in front of the tanh�1 term in
(8.39) differs from the coefficient that appears in front of the log term in (8.38) by a
factor of 2.

8.6 *The Law of Cosines and the Law of Sines

As noted in (8.7), Minding was able to show that for surfaces of constant negative
Gaussian curvature, the Law of Cosines is

cosh


c
p

jKj
�

D cosh


a
p

jKj
�

cosh


b
p

jKj
�

� sinh


a
p

jKj
�

sinh


b
p

jKj
�

cosC ,

where this time angle C is opposite the edge of the triangle with length c.
For the remainder of this section, I will use a, b, c, etc. for Euclidean lengths

and Oa, Ob, Oc etc. for Riemannian lengths. With this convention, we can now prove the
Law of Cosines for surfaces of constant negative curvatureK .
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C

A

B
(0,0)

(a,0)

(bcosC, bsinC)

a

cb

^

^
^

Fig. 8.11 A triangle bounded
by three geodesics

Theorem 222. (Law of Cosines for the surfaces of constant negative Gaussian
curvatureK .)

cosh

p

jKj Oc
�

D cosh

p

jKj Oa
�

cosh

p

jKj Ob
�

� sinh

p

jKj Oa
�

sinh

p

jKj Ob
�

cosC ,

where C is the angle opposite edge Oc:
Proof. Referring to Fig. 8.11 and using (8.37), we have

sinh

 pjKj
2

Oc
!

D
q
.b cosC � a/2 C b2 sin2 Cp

1 � a2
p
1 � b2

D
p
a2 C b2 � 2ab cosCp
1 � a2

p
1 � b2

.

Thus,

cosh

p

jKj Oc
�

D cosh2
 pjKj

2
Oc
!

C sinh2
 pjKj

2
Oc
!

D 1C 2 sinh2
 pjKj

2
Oc
!

D
�
1 � a2� �1 � b2

�C 2
�
a2 C b2 � 2ab cosC

�

.1 � a2/ .1 � b2/

D
�
1C a2

� �
1C b2

� � 4ab cosC

.1 � a2/ .1 � b2/
. (8.40)

Using (8.37) again, we have

sinh

 pjKj
2

Ob
!

D bp
1 � b2

.

Since

cosh2
 pjKj

2
Ob
!

D 1C sinh2
 pjKj

2
Ob
!

D 1 � b2 C b2

1 � b2
D 1

1 � b2 ,
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it follows that

cosh

 pjKj
2

Ob
!

D 1p
1 � b2

.

(The hyperbolic cosine is always positive, so we do not need to consider the negative
square root!)

We now have

cosh

p

jKj Ob
�

D cosh2
 pjKj

2
Ob
!

C sinh2
 pjKj

2
Ob
!

D 1C b2

1� b2
, and (8.41)

sinh

p

jKj Ob
�

D 2 sinh

 pjKj
2

Ob
!

cosh

 pjKj
2

Ob
!

D 2b

1 � b2
. (8.42)

A similar computation gives us

cosh

p

jKj Oa
�

D cosh2
 pjKj

2
Oa
!

C sinh2
 pjKj

2
Oa
!

D 1C a2

1 � a2
, and (8.43)

sinh

p

jKj Oa
�

D 2 sinh

 pjKj
2

Oa
!

cosh

 pjKj
2

Oa
!

D 2a

1 � a2 . (8.44)

Using these last four equations, (8.40) becomes

cosh

p

jKj Oc
�

D cosh

p

jKj Oa
�

cosh

p

jKj Ob
�

� sinh

p

jKj Oa
�

sinh

p

jKj Ob
�

cosC . (8.45)

This is the Law of Cosines for surfaces of constant negative Gaussian curvature K
that we set out to prove. ut

We are now in a position to prove the following theorem:

Theorem 223. (The Law of Sines for the surfaces of constant negative Gaussian
curvature K.)

sinA

sinh

pjKj Oa

� D sinB

sinh

pjKj Ob

� D sinC

sinh

pjKj Oc

� .

Proof.

sinh2

p

jKj Oa
�

sinh2

p

jKj Ob
�

sin2 C D X � Y; where (8.46)

X D sinh2

p

jKj Oa
�

sinh2

p

jKj Ob
�
; and

Y D sinh2

p

jKj Oa
�

sinh2

p

jKj Ob
�

cos2 C:
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It is clear that

X D



cosh2

p

jKj Oa
�

� 1
� 


cosh2

p

jKj Ob
�

� 1
�
:

From the Law of Cosines,

Y D
h
cosh


p
jKj Oa

�
cosh


p
jKj Ob

�
� cosh


p
jKj Oc

�i2
:

Carrying out the multiplications and organizing the resulting terms, we get

X � Y D 1C 2 cosh

p

jKj Oa
�

cosh

p

jKj Ob
�

cosh

p

jKj Oc
�

� cosh2

p

jKj Oa
�

� cosh2

p

jKj Ob
�

� cosh2

p

jKj Oc
�
: (8.47)

From 8.47, X � Y is invariant under any permutations of the sides of the triangle
ABC . For this reason, the left-hand side of 8.46 is invariant under the same
permutations. Therefore

sinh

p

jKj Oa
�

sinh

p

jKj Ob
�

sinC D sinh

p

jKj Oc
�

sinh

p

jKj Oa
�

sinB

D sinh

p

jKj Ob
�

sinh

p

jKj Oc
�

sinA:

Dividing this last equation by sinh.
pjKj Oa/ sinh.

pjKj Ob/ sinh.
pjKj Oc/, we get

sinA

sinh

pjKj Oa

� D sinB

sinh

pjKj Ob

� D sinC

sinh

pjKj Oc

� :

Problem 224. Consider (8.45). Compute the first few terms of Maclaurin’s series
for the variable

pjKj and then demonstrate that when one takes the limit
pjKj !

0, one obtains the usual Law of Cosines for the Euclidean plane.

8.7 *Tessellations

In closing this section, it is fun to discuss tessellations. A method of covering
a surface with congruent polygons is called a tessellation. On a surface of con-
stant negative curvature, the interior angles of an equilateral triangle are each
less than 600. This means that you cannot cover a surface of constant negative
curvature with equilateral triangles if you insist on having six triangles share
a common vertex. However by increasing the size of an equilateral triangle,
you reduce each interior angle. Thus by adjusting the size of an equilateral
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a b

Fig. 8.12 The Gauss tessellation

triangle, you can have each interior angle D 3600=n for any integer n 	 7.
Figure 8.12 shows how the Riemann disk can be covered with equilateral triangles
for n D 8. Figure 8.12a was found among Gauss’ unpublished papers after he died
(Gauss 1900, p.104). One might be inclined to conclude that it was inspired
by Riemann’s habilitationsvortrag address, but the diagram and the associated
computations are undated. In private correspondence (April 4, 2004), John Stillwell
indicated to me that, “– it is believed to date from well before Riemann’s time.
Probably in the early 1800s, when he (Gauss) also thought about tessellations related
to the modular function.”

Although the triangles in Fig. 8.12b appear to have an infinite number of sizes and
shapes to an observer using a Euclidean metric, they are all congruent equilateral
triangles for an observer using Riemann’s metric.

Problem 225. Does it make sense either from the perspective of a Riemannian
observer or a Euclidean observer to label a point of the Riemann disk as being a
“center”?

Problem 226. Suppose that Or designates the Riemann radius of a circle on a

Poincaré disk. Show that the area A of the circle is 4
jKj� sinh2

pjKjOr
2

and the

circumference C is 2�pjKj sinh
pjKj Or . What are the corresponding formulas for

circles on a sphere?

Problem 227. For the Poincaré disk, one can cover the surface with equilateral
triangles where n triangles share a vertex if n 	 7. What are the possibilities
for covering a sphere with equilateral triangles. In each case, describe how many
triangles would be required to cover the sphere? From the Gauss–Bonnet theorem,
you can determine the area of each triangle and check this against the total area of
the sphere. Is this question related to some of the regular solids?

In some limiting sense, is it possible to cover a sphere with two equilateral
triangles? with one equilateral triangle?
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Problem 228. Suppose Oa, Ob, and Oc are the magnitudes of the three geodesic sides
of a triangle on a 2-dimensional surface of constant negative curvature. Use the Law
of Cosines to show that ˇ

ˇ̌ Oa � Ob
ˇ
ˇ̌
< Oc < Oa C Ob.

Problem 229. In view of (6.58), is there an upper bound for the area of a triangle
(a geometric figure whose edges consist of three geodesics.) for the Poincaré disk?
Make some intelligent comments about the lengths of the edges.



Chapter 9
*Ruled Surfaces Continued

9.1 *Lines of Stricture

Although a multitude of directrices can be used for a given ruled surface, there are
particular directrices that are worth discussing.

For a cylinder in the n-dimensional Euclidean space En, it is natural to choose
a directrix that lies in a .n � 1/-dimensional plane orthogonal to the generators.
Suppose x.u/ is a directrix for the cylinder

y.u; t/ D x.u/C tv; where (9.1)

v is a constant unit vector. If you wish to construct an alternate representation of the
same surface using a directrix that lies in the plane passing through the point p0 that
is perpendicular to v, you can write

Ny.u; Nt/ D Nx.u/C Ntv; where (9.2)

Nx.u/ D x.u/� hx.u/� p0; vi v; and (9.3)

Nt D t C hx.u/� p0; vi: (9.4)

We note that hNx.u/� p0; vi D 0 and this means that Nx.u/ lies in the plane passing
through p0 that is perpendicular to v. Furthermore,

Ny.u; Nt/ D x.u/� hx.u/� p0; vi vC .tC hx.u/� p0; vi/ v D y.u; t/,

so Ny.u; Nt/ represents the same surface as y.u; t/.
For cones, we have already observed that it is most natural to use the vertex in

place of any directrix curve.
For the remaining ruled surfaces, we can pick out a special directrix (known as

the line of stricture). A line of stricture is the curve that passes through the central
point of each generator. What is a central point? Consider a given generator and

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 9, © Springer Science+Business Media, LLC 2012

333
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Fig. 9.1 One of the lines of
stricture for the hyperboloid
x2

a2
C y2

b2
� z2

c2
D 1 when

a ¤ b

a second “nearby” generator. If the surface is not a cylinder, we know that if the
two generators are sufficiently close, they will not be parallel. This means either
they will be skew or they will intersect. In either case, each generator will have
a point that is closest to the other generator. In the case of skew generators, these
two points can be connected by a straight line segment, which is perpendicular to
both generators. (See Fig. 9.2a.) If we now consider a sequence of generators that
approach the given generator, then the corresponding closest points on the given
generator will approach a limit point. It is that limit point that is the central point on
the given generator. As indicated above, the curve passing through the central point
on each generator is the line of stricture.

In general, a doubly ruled surface has two lines of stricture – one for each set
of generators. An exception to this rule is a special class of one sheet hyperboloids.
If a D b in (7.91), the same curve is a line of stricture for both sets of generators.

Now let us consider the computation of a central point. Suppose v.u/ is a unit
vector indicating the direction of a generator. Then we can specify a point on that
generator by the formula,

y.u; t/ D x.u/C tv.u/, (9.5)

where x.u/ is the directrix. Similarly, we can specify a point on a nearby generator
by the formula,

y.u0; t 0/ D x.u0/C t 0v.u0/:

Our first task is to determine the values of t and t 0 that will minimize the length
of the vector

y.u0; t 0/� y.u; t/ D x.u0/ � x.u/C t 0v.u0/� tv.u/: (9.6)
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v

a b

(u)

v (u')

v(u')- v (u)

v(u')+v (u)

Fig. 9.2 (a) Two skew lines joined by a mutually orthogonal line segment. (b) Rhombus with
diagonals that are mutually orthogonal

It will be slightly advantageous to make use of the fact that .v.u0/ C v.u// is
orthogonal to .v.u0/�v.u//. This fact follows from the fact that since v.u0/ and v.u/
both have unit length, they can be used to form two adjacent edges of a rhombus. In
that situation, the vectors .v.u0/C v.u// and .v.u0/� v.u// can be interpreted as the
mutually orthogonal diagonals of the rhombus. (See Fig. 9.2b.)

With this thought in mind, we will rewrite (9.6) in the form

y.u0; t 0/ � y.u; t/ D x.u0/� x.u/C t 0
�

v.u0/C v.u/
2

C v.u0/ � v.u/
2

�

� t

�
v.u0/C v.u/

2
� v.u0/ � v.u/

2

�
:

Or

y.u0; t 0/� y.u; t/ D �x C .t 0 � t/
�

v.u0/C v.u/
2

�
C .t 0 C t/

2
Œ�v� ; (9.7)

where
�x D x.u0/ � x.u/ and �v D v.u0/ � v.u/. (9.8)

Now we wish to minimize

f .t; t 0/ D ˝
y.u0; t 0/ � y.u; t/; y.u0; t 0/ � y.u; t/

˛

D h�x;�xi C .t 0 � t/ ˝�x; v.u0/C v.u/
˛C .t 0 C t/ h�x;�vi

C .t 0 � t/
2

4

˝
v.u0/C v.u/; v.u0/C v.u/

˛C .t 0 C t/
2

4
h�v;�vi:

At the minimum, we have
@f

@t
D @f

@t 0
D 0.
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Therefore,

@f

@t
D 0 D � ˝�x; v.u0/C v.u/

˛C h�x;�vi

� .t 0 � t/

2

˝
v.u0/C v.u/; v.u0/C v.u/

˛C .t 0 C t/

2
h�v;�vi: (9.9)

And

@f

@t 0
D 0 D ˝

�x; v.u0/C v.u/
˛C h�x;�vi

C .t 0 � t/

2

˝
v.u0/C v.u/; v.u0/C v.u/

˛C .t 0 C t/

2
h�v;�vi: (9.10)

The straightforward method is to eliminate t 0 from (9.9) and (9.10) and obtain
a formula for t D t.u; u0/. At that point, we can obtain the value of t (call it �)
corresponding to the central point by computing the limit

� D lim
u0!u

t.u; u0/. (9.11)

On the other hand, the computation is not so messy if we are slightly devious.
It should be clear that not only is (9.11) true, but it can also be said that

� D lim
u0!u

t 0.u; u0/. (9.12)

As a consequence, we can add (9.9) and (9.10) to get

2 h�x; �vi C .t 0 C t/ h�v; �vi D 0

or
t 0 C t

2
D �h�x; �vi

h�v; �vi D �h�x=�u; �v=�ui
h�v=�u; �v=�ui; (9.13)

where
�u D u0 � u.

Thus,

� D lim
Ku!u

t 0 C t

2
D �hPx.u/; Pv.u/i

hPv.u/; Pv.u/i , (9.14)

where Px.u/ D dx.u/=du and Pv.u/ D dv.u/=du:
Combining (9.14) and (9.5), we see that the formula for the central point z.u/ for

the generator passing through x.u/ is

z.u/ D x.u/� hPv.u/; Px.u/i
hPv.u/; Pv.u/iv.u/. (9.15)

Note! It should be noted that in (9.15), u is not necessarily an arc length parameter
for x, z or any other curve.

It should also be noted that it is possible for the right-hand side of (9.15) to be a
constant. In that case, we have the vertex of a cone instead of a line of stricture.
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Having computed the central points, it is now possible to characterize them in a
second way. We note that

Pz.u/ D Px.u/� hPv.u/; Px.u/i
hPv.u/; Pv.u/i Pv.u/� d

du

� hPv.u/; Px.u/i
hPv.u/; Pv.u/i

	
v.u/. (9.16)

Since hv; vi D 1, we know that hv; Pvi D 0. Using that fact, it is not too difficult
to see that from (9.16),

hPz.u/; Pv.u/i D 0. (9.17)

What is worth observing is that z.u/ is the only directrix that satisfies (9.17).
That is, we could use (9.17) to define a central point or a line of stricture, although I
would have difficulty understanding the geometric significance of such a definition.
To justify this claim, we note that given a directrix passing through the point x.u/,
any alternative directrix w.u/ must cross the generator passing through x.u/. This
means that

w.u/ D x.u/C f .u/v.u/.

If we require that h Pw.u/; Pv.u/i D 0, then

D
Px.u/C f .u/Pv.u/C Pf .u/v.u/; Pv.u/

E
D 0, or simplified,

hPx.u/C f .u/Pv.u/; Pv.u/i D 0.

But this implies that

f .u/ D �hPv.u/; Px.u/i
hPv.u/; Pv.u/i ,

which agrees with (9.15). Thus (9.17) is a necessary and sufficient condition for
z.u/ to be a line of stricture.

It is interesting to examine the nature of the moving frame for a ruled surface
when we let EN1 D v.u/. If

y.t; u/ D z.u/C tv.u/,

then

”1 D @y.t; u/
@t

D v.u/ and ”2 D @y.t; u/
@u

D Pz.u/C t Pv.u/. (9.18)

If we are not dealing with a cylinder, Pv.u/ ¤ 0. Since both hPz.u/; Pv.u/i and
hv.u/; Pv.u/i equal zero, Pz and v lie in the plane orthogonal to Pv. Thus, there are
two cases:

Case 1: Pz.u/ is a scalar multiple of v.u/.
Case 2: Pz.u/, Pv.u/, and v.u/ are linearly independent.
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For Case 1, ”1 and ”2 span the same space as v and Pv. Thus, we can let our “moving
frame” be

EN1.t; u/ D v.u/ and EN2.t; u/ D Pv.u/= jPv.u/j .

Thus for Case 1, not only does EN1 remain constant along any given generator but EN2
also remains constant along any given generator.

One might think that by constructing different surfaces for Case 2, one could
have EN2 move in almost any way as long as it remained orthogonal to EN1. But that
is not the case. For Case 2, we again let EN1 D v.u/. But this time

EN2EN1 D EN2v D ”2 ^ v
j”2 ^ vj ; and thus

EN2 D ”2 ^ v
j”2 ^ vjv. (9.19)

Note that since .”2 � h”2; vi v/ and v are orthogonal to one another,

”2 ^ v D .”2 � h”2; vi v/ ^ v D .”2 � h”2; vi v/ v: (9.20)

Furthermore,

j”2 ^ vj D j”2 � h”2; vi vj jvj D j”2 � h”2; vi vj . (9.21)

Now from (9.18),

”2 � h”2; vi v D Pz C t Pv� hPz C t Pv; vi v

Since hPv; vi D 0, we see that

”2 � h”2; vi v D Pz C t Pv� hPz; vi v. (9.22)

From (9.17), hPz; Pvi D 0. Using that fact along with (9.21) and (9.22), we get

j”2 ^ vj D
h
hPz; Pzi � hPz; vi2 C .t/2 hPv; Pvi

i1=2
. (9.23)

Combining (9.20), (9.22), and (9.23), we have

EN2.t; u/ D .Pz C t Pv� hPz; vi v/ v
h
hPz; Pzi � hPz; vi2 C .t/2 hPv; Pvi

i1=2 v D Pz C t Pv� hPz; vi v
h
hPz; Pzi � hPz; vi2 C .t/2 hPv; Pvi

i1=2 .

(9.24)
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We are now in a position to see how EN2 behaves when it is moved along a generator
for Case 2. From (9.24),

lim
t!�1 EN2.t; u/ D � Pv

jPvj , EN2.0; u/ D Pz� hPz; vi v
q

hPz,Pzi � hPz,vi2
; and

lim
t!C1 EN2.t; u/ D Pv

jPvj .

Since EN2.0; u/ is orthogonal to Pv, we can say that for Case 2, as EN2 moves along
a generator, it rotates 90ı as t goes from �1 to 0, which corresponds to the central
point on the generator. Then EN2 rotates another 90ı as t goes from 0 to C1.

If this 2-dimensional ruled surface is embedded in the 3-dimensional Euclidean
space E3, then a vector normal to the surface undergoes a similar rotation.
According to Struik (1988, p. 194), the nature of this rotation is the motivation for
the label “central point.”

Returning to Case 1, if Pz.u/ is a scalar multiple of v.u/, then the ruled surface
is swept out by the tangent vector of the line of stricture. In this situation, the line
of stricture is said to be an edge of regression. An example of such a surface is the
developable helicoid of Prob. 167 and Fig. 7.6a.

The surfaces that are generated by tangent lines of a given curve are very special.
Along with cylinders and cones, they are the only 2-dimensional ruled surfaces that
have zero Gaussian curvature. That will be demonstrated in the next section.

Problem 230. (a) Determine the line of stricture for the one sheet hyperboloid:

x2

a2
C y2

b2
� z2

c2
D 1, (9.25)

when a D b.
(b) (More difficult!) Determine the line of stricture for one set of generators when

a ¤ b. Then show that the line of stricture lies in the surface:

y2z2

b2c2

�
1

b2
C 1

c2

	2
C z2x2

c2a2

�
1

c2
C 1

a2

	2
� x2y2

a2b2

�
1

a2
� 1

b2

	2
D 0.

From the symmetry of this equation, one can see that if it is valid for one set of
generators, it is valid for the other set of generators. Nonetheless, this equation
is consistent with the claim that there are two lines of stricture for the one sheet
hyperboloid when a ¤ b. Why?

(c) Describe the surface of (9.25) when a D b. When a ¤ b, do the two lines of
strictures cross? If so, where do they cross?

Problem 231. Determine both lines of stricture for the saddle surface:

z D xy (or x3 D x1x2).
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Problem 232. Determine the line of stricture for the helicoid:

y.s; t/ D x.s/C tv.s/; where

x.s/ D e1b cos
sp

a2 C b2
C e2b sin

sp
a2 C b2

C e3
asp
a2 C b2

; and

v.s/ D EN2.s/. (not EN1/.

(The helicoid should not be confused with the developable helicoid!)

9.2 *Gaussian Curvature of Ruled Surfaces

In this section, I will derive a formula for the Gaussian curvature of ruled surfaces.
As a consequence, it will be shown that the Gaussian curvature of a developable
surface is zero. What is a developable surface? A developable surface is a special
kind of ruled surface. In particular, it is either a tangential developable, a cone, or a
cylinder. Here is the theorem.

Theorem 233. For the ruled surface:

y.u1; u2/ D z.u2/C u1v.u2/, (9.26)

we can consider two cases.

Case (1) Pv D dv=du2 D 0. For this case, we have a cylindrical surface for which
the Gaussian curvature is zero. (See Prob. 166.)

Case (2) hPv; Pvi ¤ 0. For this case, we can assume z.u2/ is a line of stricture and
v.u2/ is a vector of unit length. Using the notation that Pz Ddz=du2 and
Pv Ddv=du2, the Gaussian curvature is

K D R 12
12 D �f .u2/

Œf .u2/C .u1/2�2
; where (9.27)

f .u2/ D jPz� hPz; vi vj2
hPv; Pvi D hPz; Pzi � hPz; vi2

hPv; Pvi . (9.28)

Proof. From (9.24), we have

EN2.u1; u2/ D .Pz� hPz; vi v/C u1 Pv
q

hPz; Pzi � hPz; vi2 C .u1/2 hPv; Pvi

D .Pz� hPz; vi v/C u1 Pv
hPv; Pvi1=2

h
f .u2/C .u1/2

i1=2 : (9.29)
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Hopefully, from Sect. 5.6, you recall that

rjE Nk D �c Nk Nm.”j /E
Nm; where

rjE Nk is the projection of @E Nk=@uj on the space spanned by EN1 and EN2 (or EN1 and
EN2).

Since

@EN1
@u1

D @v.u2/
@u1

D 0, it follows that

r1EN1 D 0 D �cN1N2.”1/E
N2. Thus

cN1N2.”1/ D 0. (9.30)

On the other hand,

@EN1
@u2

D Pv D � cN1N2.”2/E
N2 C terms orthogonal to EN1 and EN2. (9.31)

Thus, using (9.31) and (9.29), we have

cN1N2.”2/ D � ˝Pv; NEN2
˛ D �u1 hPv; Pvi

hPv; Pvi1=2 Œf .u2/C .u1/2�1=2

D �u1 hPv; Pvi1=2
Œ.u1/2 C f .u2/�1=2

:

Now since

�˛ D 1

4
c Nj Nk.”˛/E

NjE
Nk D 1

2
cN1N2.”˛/E

N1EN2, we have

�1 D 0 and �2 D �1
2

u1 hPv; Pvi1=2
Œ.u1/2 C f .u2/�1=2

EN1EN2. (9.32)

For 2-dimensional surfaces,

1

2
R12 D @1�2 � @2�1 D �1

2

hPv; Pvi1=2 f .u2/
Œf .u2/C .u1/2�3=2

NEN1 NEN2, or

R12 D � hPv; Pvi1=2 f .u2/
Œ.u1/2 C f .u2/�3=2

”12

j”1 ^ ”2j
(9.33)

From (9.23),

j”1 ^ ”2j D j”2 ^ vj D
h
hPz; Pzi � hPz; vi2 C .u1/2 hPv; Pvi

i1=2

D hPv; Pvi1=2 �f .u2/C .u1/2
�1=2

:
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Thus

R12 D 1

2
R
jk
12 ”jk D R1212”12 D �f .u2/

Œ.u1/2 C f .u2/�2
”12.

So finally

K D R1212 D �f .u2/
Œ.u1/2 C f .u2/�2

; where

f .u2/ D jPz� hPz; vi vj2
hPv; Pvi D hPz; Pzi � hPz; vi2

hPv; Pvi .
ut

Corollary 234. For a tangential developable, where

y.u1; u2/ D z.u2/C u1v.u2/ and v D E1 D Pz= jPzj or

for a cone, where

y.u1; u2/ D z C u1v.u2/ and Pz D 0,

the Gaussian curvature K D 0:

Corollary 235. For ruled surfaces that are not developable (not cylinders, not
cones, and not tangential developables), the Gaussian curvature is negative.

Corollary 236. For ruled surfaces that are not developable, the maximum mag-
nitude for the Gaussian curvature along any generator occurs at the central point.
Furthermore, the magnitude of the Gaussian curvature decreases as you move along
any given generator away from the central point in either direction. In addition, the
Gaussian curvature at any point on a generator is equal to the Gaussian curvature
at the point on the generator that is on the opposite side of the central point at the
same distance from the central point.

9.3 *The Cusp at the Edge of Regression

From Fig. 7.6a, we see that the tangential developable for a circular helix has a cusp
at the edge of regression. This kind of behavior is characteristic of all tangential
developables. Unless the edge of regression lies in a 2-dimensional plane, the
tangential ray in the forward direction will sweep out a different surface than that
swept out by the tangential ray in the trailing direction. The two surfaces then form
a sharp edge at the edge of regression. This sharp edge is sometimes referred to as
the cuspidal edge (Struik 1988, p. 68). What happens when the edge of regression
lies in a 2-dimensional plane? (You should be able to figure that out.)
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In this section, I will examine the nature of this cusp. I will do this by considering
the curve that lies in the intersection of the tangential developable and the plane
that is orthogonal to the edge of regression at the point x.s0/. (If the edge of
regression lies in the n-dimensional Euclidean space En, then the plane would be
.n � 1/-dimensional.) Suppose the equation for the tangential developable is

y.t; s/ D x.s/C tEN1.s/ and

dx.s/
ds

D EN1.s/.

(That is to say, s is an arc length parameter for the edge of regression x.s/.)
Since our curve lies in the tangential developable, it will have the form:

u.s/ D x.s/C t.s/EN1.s/; where (9.34)

t.s/ is to be determined. Actually, I just lied. I will not determine t.s/. What I will
do is determine

dkt.s/

dsk

ˇ
ˇ̌
ˇ
sDs0

for k D 0; 1; 2; and 3;

so that the approximating curve

Nu.s/ D
3X

kD0

.s � s0/k
kŠ

dku.s/
dsk

ˇ
ˇ
ˇ
ˇ
sDs0

(9.35)

lies in the plane perpendicular to E1.s/ at s D s0.
Our strategy is to begin with (9.34) and show that

du.s/
ds

ˇ
ˇ
ˇ
ˇ
sDs0

D a1E1.s0/C b1E2.s0/,

d2u.s/
ds2

ˇ
ˇ
ˇ
ˇ
sDs0

D a2E1.s0/C b2E2.s0/C c2E3.s0/; and

d3u.s/
ds3

ˇ
ˇ
ˇ
ˇ
sDs0

Da3E1.s0/C b3E2.s0/C c3E3.s0/C d3E4.s0/.

Since u.s/ lies in a plane orthogonal to E1.s0/, we know that a1 D a2 D a3 D 0.
Using this requirement along with the condition that u.s0/ D x.s0/, we can
determine

dkt.s/

dsk

ˇ
ˇ
ˇ
ˇ
sDs0

for k D 0; 1; 2; and 3.

In turn, these results determine the values of the b’s, c’s, and d3.
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From (9.34), we have

u.s/ D x.s/C t.s/E1.s/, (9.36)

du
ds

D
�
1C dt

ds

	
E1 C k1tE2, (9.37)

d2u
ds2

D
�

d

ds

�
1C dt

ds

		
E1C

�
1C dt

ds

	
d

ds
E1C

�
d

ds
.k1t/

	
E2Ck1t d

ds
E2, and

(9.38)

d3u
ds3

D
�
d2

ds2

�
1C dt

ds

		
E1 C 2

�
d

ds

�
1C dt

ds

		
d

ds
E1 C

�
1C dt

ds

	
d2

ds2
E1

C
�
d2

ds2
.k1t/

	
E2 C 2

�
d

ds
.k1t/

	
d

ds
E2 C k1t

d 2

ds2
E2. (9.39)

Since u.s0/ D x.s0/, (9.36) implies t.s0/ D 0. Equation (9.37) implies that

�
1C dt

ds

	ˇˇ
ˇ
ˇ
sDs0

D 0; so
dt

ds

ˇ
ˇ
ˇ
ˇ
sDs0

D �1; and
du
ds

ˇ
ˇ
ˇ
ˇ
sDs0

D 0.

From (9.38), we get

�
d

ds

�
1C dt

ds

		ˇˇ
ˇ
ˇ
sDs0

D 0 or
d2t

ds2

ˇ
ˇ
ˇ
ˇ
sDs0

D 0.

Furthermore, since

d

ds
.k1t/ D t

d

ds
k1 C dt

ds
k1; and thus,

d

ds
.k1t/

ˇ
ˇ̌
ˇ
sDs0

D �k1.

It then follows that
d2u
ds2

ˇ
ˇ
ˇ̌
sDs0

D �k1.s0/E2.s0/.

Similar considerations give us

d3u
ds3

ˇ̌
ˇ
ˇ
sDs0

D �2
 

dk1
ds

ˇ̌
ˇ
ˇ
sDs0

!

E2.s0/� 2k1.s0/k2.s0/E3.s0/

D �2 Pk1.s0/E2.s0/� 2k1.s0/k2.s0/E3.s0/. (9.40)

(See Prob. 237.)
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E3(s0)

E2(s0)

x3

x2

Fig. 9.3 Cusp at the edge of regression

Summarizing, we now have

Nu.s/ D x.s0/� .s � s0/
2

2
k1.s0/E2.s0/

� .s � s0/3
3


 Pk1.s0/E2.s0/C k1.s0/k2.s0/E3.s0/
�

. (9.41)

If we let x2 be the coefficient of E2 and x3 be the coefficient of E3, then

x2 D �.s � s0/
2

2
k1.s0/C higher powers of .s � s0/ and

x3 D �.s � s0/
3

3
k1.s0/k2.s0/C higher powers of .s � s0/;

or

.x3/2 � �8.k2.s0//2
9k1.s0/

.x2/3. (9.42)

(See Fig. 9.3.)

Problem 237. Verify (9.40).

Problem 238. From (9.39), show that

d3t

ds3

ˇ
ˇ
ˇ̌
sDs0

D �2.k1/2.



Chapter 10
*Lines of Curvature

10.1 *Computing Lines of Curvature

10.1.1 *Intrinsic Projection Operators for Real Symmetric
Linear Operators

In this section, I will discuss lines of curvature. A curve x.t/ is said to be a line of
curvature if

dx.t/
dt

D v.t/, where (10.1)

v.t/ is a vector having a principal direction. (It is not necessary that v.t/ be
normalized unless you insist that t be an arc length parameter.)

In Sect. 7.5.3, I discussed how to compute the principal curvatures but the matter
of computing the principal directions or eigenvectors of the shape operator was left
as unfinished business.

Given a square matrixA, there is some positive integer p such that the set of ma-
trices

˚
I; A;A2; : : : ; Ap�1 are linearly independent while the set

˚
I; A;A2; : : : ; Ap



are linearly dependent. This implies 9 a polynomial P./ s.t.

P.A/ D
pY

jD1
.A� j I / D 0. (10.2)

This polynomial is known as the minimal polynomial for the matrix A.
Given a coordinate system, there is an isomorphism between A and its matrix

representation. Therefore, (10.2) is valid for any linear operator A that maps En

into En. In this context,

A2.v/ D A.A.v//, A3.v/ D A.A.A.v///, and

higher powers of A are defined in a similar manner. Furthermore to say some
polynomial P.A/ D 0 is equivalent to saying that P.A.v// D 0 for any v in En.

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 10, © Springer Science+Business Media, LLC 2012
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For real symmetric linear operators in a space with a positive definite metric, a
stronger version of (10.2) holds. Namely

Theorem 239. If A is a real symmetric linear operator in a space with a positive
definite metric, each root of the minimal polynomial occurs only once in the
factorization. That is

P.A/ D
pY

jD1
.A� j I / D 0, where (10.3)

j ¤ k if j ¤ k.

Proof. The proof is by contradiction. Suppose

P.A/ D
qY

jD1
.A� j I /

kj , where (10.4)

at least one of the kj ’s is greater than one. Without loss of generality, assume
k1 > 1. Since P./ is the minimal polynomial

pY

jD1
.A � j I /kj D .A� 1I /

k1

pY

jD2
.A � j I /kj D 0, and (10.5)

B D .A� 1I /
k1�1

pY

jD2
.A� j I /

kj ¤ 0. (10.6)

Since B ¤ 0, 9v such that

u D B.v/ ¤ 0.

To get our contradiction, I will show that u D 0. Since A is symmetric, you can
show that A � 1I is symmetric. This means that

hu;ui D hB.v/; B.v/i D hC.v/; Œ.A � 1I /B� .v/i D hC.v/; P.A/.v/i D 0, where

C D .A� 1I /
k1�2

pY

jD2
.A� j I /

kj .

From (10.3), we can construct some useful projection operators. Namely

Pk D
pY

j¤k

�
A � j I
k � j

	
for k D 1; 2; : : : ; p. (10.7)
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Remark 240. Equation (10.7) is not meaningful if the roots of the minimal polyno-
mial are not distinct. If the linear operator A is not real and symmetric and acts on
a space with a positive definite metric, things may be more complex. It is possible
that the some of the roots of the minimal polynomial may be repeated. In this case,
the theory is more complicated. See (Sobczyk 1997, 2001) or (Snygg 2002).

We note that from (10.7)

Pk.A� kI / D 0 or PkA D kPk . (10.8)

This means

.Pk/
2 D Pk

pY

j¤k

�
A � j I
k � j

	
D Pk

pY

j¤k

�
k � j
k � j

	
I .

And therefore,

.Pk/
2 D Pk: (10.9)

Furthermore if j ¤ k, one of the factors of Pj is .A� kI /. This means

PkPj D 0 if j ¤ k. (10.10)

In general any set of operators that satisfy (10.9) and (10.10) are said to be
projection operators. It is easy to show that projection operators are linearly
independent. In particular, suppose

pX

jD1
˛j Pj D 0.

If we multiply this equation by Pk , then we have

˛kPk D 0 and thus

˛k D 0 for k D 1; 2; : : : ; p.

Thus, the projection operators are linearly independent.
We will use these projection operators to project out our desired eigenvectors.

However, before doing that we need to establish a few more simple relations.

Theorem 241. The projection operators defined by (10.7) have the properties

(a)
pX

jD1
Pj D I , and (10.11)

(b)

A D
pX

jD1
jPj . (10.12)
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(Rememeber! These relations apply only if the minimal polynomial has no repeated
roots. However, shape operators are real and symmetric. So all of the roots for the
minimal polynomial of a shape operator are distinct.)

Proof. To prove (a), we note that before I constructed the projection operators, we
assumed that the set

˚
I; A;A2; : : : ; Ap�1 were linearly independent and thus span

a space of p dimensions. On the other hand, the projection operators are formed
from linear combinations of members of the same set and they span a space of p
dimensions. Thus, the space spanned by

˚
I; A;A2; : : : ; Ap�1 is the same space

spanned by the projection operators. As a result, it can be said that any member
of
˚
I; A;A2; : : : ; Ap�1 can be written as a linear combination of the projection

operators. Thus,

I D
pX

jD1
˛j Pj . (10.13)

To determine the ˛j ’s, we multiply both sides of (10.13) by Pk and get

Pk D
pX

jD1
˛j PkPj D ˛kPk .

Thus, ˛k D 1 for k D 1; 2; : : : ; p. And (10.13) becomes

I D
pX

jD1
Pj . (10.14)

To get (b), multiply both sides of (10.14) by A and then use (10.8) to get

A D
pX

jD1
PjA D

pX

jD1
jPj . (10.15)

ut

You may note that these projection operators can be computed in a straight
forward manner if you know the roots of the minimal polynomial. However how do
we determine the minimal polynomial? Playing around with linear combinations of
powers of some operatorA does not seem to be a promising approach. In the general
theory of linear operators, it is known that the minimal polynomial is a divisor of
the characteristic polynomial for a matrix representation. This is helpful but for real
symmetric linear operators, there is a stronger and more useful result. Namely

Theorem 242. If A is a real symmetric linear operator, then the minimal polyno-
mial for A is

P.A/ D
pY

jD1
.A � j I /, where (10.16)

the j ’s are eigenvalues ofA. Furthermore, each eigenvalue appears once and only
once in the product on the right-hand side of (10.16)
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Proof. Repeating (10.8), we have

PkA D kPk .

This means that each row of the projection operator Pk is a row eigenvector of A
with eigenvalue k . Thus, it is clear that every root of the minimal polynomial for
A is an eigenvalue of A. From Theorem 239, we know that each root of the minimal
polynomial appears only once in it s factorization. What is left to show is that every
eigenvalue is a root of the minimal polynomial. We can show this by contradiction.

Suppose  is an eigenvalue that is not a root of the minimal polynomial. Then
there is a nonzero eigenvector v of A such that

Av Dv.

Thus,

P.A/v D .A� 1/ � � � .A � p�1/.A � p/v
D .A� 1/ � � � .A � p�1/. � p/v

D .A� 1/ � � � .A � p�2/. � p�1/. � p/v

D
pY

jD1
. � j /v ¤ 0.

However, P.A/ D 0, so that P.A/v D 0. Thus, we have our contradiction. ut
The next theorem is essentially a useful observation.

Theorem 243. The eigenvectors of a real symmetric linear operator A span the
domain of A.

Proof. From (10.14), we have

I D
pX

jD1
Pj .

From this equation, we can infer that the columns(rows) of the projection operators
span the space of column(row) vectors. (See Problem 250.) Since every col-
umn(row) is a column(row) eigenvector ofA, we can conclude that the column(row)
eigenvectors span the space of column(row) vectors under consideration. ut
Remark 244. The eigenvectors of a real symmetric linear operator can be orthog-
onalized. If every column(row) of some chosen projection operator is a scalar
multiple of a single selected column(row) in that particular projection operator then
there is essentially only one eigenvector associated with that particular projection
operator. Since the eigenvectors associated with distinct eigenvalues are orthogonal,
this particular eigenvector will be orthogonal to any other eigenvector.
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If the columns(rows) of a projection operator span a space of more than one
dimension, you can apply the Gram–Schmidt process to obtain on orthogonal set of
eigenvectors associated with the eigenvalue identified with its projection operator.
These eigenvectors will not only be orthogonal to one another but will also be
orthogonal to any eigenvector associated with a different eigenvalue.

I am now in a position to prove a version II of Euler’s Theorem for Normal
Curvature. In version I, we decomposed our space into eigenvectors and then used
them to compute the normal curvature for any given vector. In that version, there was
a certain arbitrariness in the choice of some of the eigenvectors. In this version, we
decompose our space into a direct sum eigenspaces each of which can be identified
with a distinct eigenvalue or projection operator.

Theorem 245. Euler’s Theorem for Normal Curvature. (Version II) Suppose

Pk D
pY

j¤k

�
S � j I
k � j

	
for k D 1; 2; : : : ; p, where

S is the shape operator. Suppose v is a unit vector and v.k/ D Pk.v/= jPk.v/j if
Pk.v/ ¤ 0 and v.k/ D 0 if Pk.v/ D 0. Then the normal curvature for the unit
vector v is

kN D
pX

kD1
k cos2 �.k/, where

cos �.k/ D hv; v.k/i .

Proof. We first note that

hv; v.k/i D hv; Pk.v/i = jPk.v/j D
pX

jD1

˝
Pj .v/; Pk.v/

˛
= jPk.v/j (10.17)

From Problem 249,
˝
Pj .v/; Pk.v/

˛ D 0, unless j D k. Thus (10.17) becomes

cos �.k/ D hv; v.k/i D hPk.v/; Pk.v/i= jPk.v/j D jPk.v/j .

Furthermore,

v D
pX

kD1
Pk.v/, so from Prob. 249,

S.v/ D
pX

kD1
S.Pk.v// D

pX

kD1
kPk.v/.
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Therefore,

kN D hv;S.v/i D
pX

kD1
k hv; Pk.v/i

D
pX

kD1
k

pX

jD1

˝
Pj .v/; Pk.v/

˛
.

Since
˝
Pj .v/; Pk.w/

˛ D 0, whenever j ¤ k, we now have

kN D
pX

kD1
k hPk.v/; Pk.v/i , or

kN D
pX

kD1
k cos2 �.k/.

We will now consider the computation of lines of curvature. ut

10.1.2 *The Computation of Principal Directions from Intrinsic
Projection Operators

Example 246. The saddle surface continued.
From Example 172, for the saddle surface, we have

A D
"
h11 h12

h21 h22

#

D

2

6
4

�u1u2

w3=2
1C.u1/2

w3=2

1C .u2/2

w3=2
�u1u2

w3=2

3

7
5 , where

w D 1C .u1/2 C .u2/2.

From the same example, we also have

 D �u1u2 ˙p
.1C .u1/2/.1C .u2/2

w3=2
.

From (10.7)

PC D A � �I
C � �

, and P� D A � CI
� � C

.
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Carrying out the calculations, you should get

PCD 1

2
p
.1C.u1/2/.1C.u2/2/

2

4

p
.1C.u1/2/.1C.u2/2 1C.u1/2

1C.u2/2 p
.1C.u1/2/.1C.u2/2

3

5

and

P�D 1

2
p
.1C.u1/2/.1C.u2/2/

2

4

p
.1C.u1/2/.1C.u2/2 �1�.u1/2

�1�.u2/2 p
.1C.u1/2/.1C.u2/2

3

5 .

To get the eigenvector or eigenvectors associated with C, the usual method is to
solve the equation

S.v/ D Cv for v, or
"
h11 h12

h21 h22

#�
v1C
v2C

�
D C

�
v1C
v2C

�
.

For our example, this means solving the equation,
2

4
�u1u2

w3=2
1C.u1/2

w3=2

1C.u2/2
w3=2

�u1u2

w3=2

3

5
�
x

y

�
D �u1u2 Cp

.1C .u1/2/.1C .u2/2

w3=2

�
x

y

�
,

for x and y. However, since SPC D CPC, the columns of PC are column
eigenvvectors of S . (If we use the convention that the contravariant indices are row
indices, the column eigenvectors will give us the contravariant components of the
eigenvectors.) Examining these columns, we note that the first column is

1

2
p
1C .u1/2

2

4

p
1C .u1/2

p
1C .u2/2

3

5 ,

and the second column is

1

2
p
1C .u2/2

2

4

p
1C .u1/2

p
1C .u2/2

3

5 .

Thus all column eigenvectors associated with C are scalar multiples of one vector.
Thus the pair of contravariant components of the eigenvector associated with C,

�
v1C
v2C

�
; is a scalar multiple of

2

4

p
1C .u1/2

p
1C .u2/2

3

5 . (10.18)
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To get the covariant components of the same vector v, we read off the rows ofPC
�
x y

�
PC.

But this would result in a linear combination of the rows of PC and then note that
any pair of covariant components of the eigenvector associated with C

�
vC
1 ; v

C
2

�
has to be a scalar multiple of


p
1C .u2/2;

p
1C .u1/2

�
.

For the eigenvectors associated with �, the pair of contravariant components

�
v1�
v2�

�
is a scalar multiple of

2

4

p
1C .u1/2

�p1C .u2/2

3

5 (10.19)

We have now determined the principal directions for the lines of curvature on the
saddle surface. This sets the stage for us to determine the lines of curvature.

10.1.3 *The Computation of Lines of Curvature

Example 247. The saddle surface continued some more.
If x.tC/ represents a line of curvature associated with C for the saddle surface,

we can write,

x.tC/ D e1u1.tC/C e2u2.tC/C e3u1.tC/u2.tC/. (10.20)

And thus

dx.tC/
dtC

D v.tC/ D ”1v
1C.tC/C ”2v

2C.tC/

D @x
@u1

du1

dtC
C @x
@u2

du2

dtC
D ”1

du1

dtC
C ”2

du2

dtC
. (10.21)

Combining (10.21) with (10.18), we have

du1

dtC
D
p
1C .u1/2, and

du2

dtC
D
p
1C .u2/2.

Therefore,
du1

p
1C .u1/2

D dtC. (10.22)

Substituting

u1 D sinh.� C �0/,



356 10 *Lines of Curvature

Equation (10.22) becomes

d� D dtC, which implies that

� C �0 D tC C aC, and thus

u1.tC/ D sinh.tC C aC/, where

aC is an arbitrary constant. Similarly

u2.tC/ D sinh.tC C bC/.

Thus for one family of lines of curvature, we have

x.tC/ D e1 sinh.tC C aC/C e2 sinh.tC C bC/C e3 sinh.tC C aC/ sinh.tC C bC/.

(10.23)

Starting with (10.19), we get an equation for the other family of lines of curvature.
In particular,

x.t�/ D e1 sinh.t� C a�/� e2 sinh.t� C b�/� e3 sinh.t� C a�/ sinh.t� C b�/

D e1 sinh.a�Ct�/C e2 sinh.�b� � t�/C e3 sinh.t� C a�/ sinh.�b� � t�/

(10.24)

Equations (10.23) and (10.24) can be combined to get a parameterization of the
saddle surface for which the coordinate curves are lines of curvature. Namely

x.tC; t�/ D e1 sinh.tC C t�/C e2 sinh.tC � t�/C e3 sinh.tC C t�/ sinh.tC � t�/.
(10.25)

(Clearly, the coordinate curves for the above parameterization are lines of curvature.
You should check the parameterization to see that any point on the saddle surface is
defined uniquely by some pair .tC; t�/.)

Remark 248. When I set about plotting the points for Fig. 10.1, I discovered that
my elderly version of Maple did not deal with the hyperbolic functions in a stable
manner. Thus, I let

u D sinh
�
tC
�

and v D sinh .t�/ . (10.26)

Since

sinh.tC C t�/ D sinh
�
tC
�

cosh .t�/C sinh .t�/ cosh
�
tC
�

D sinh
�
tC
�q

1C sinh2 .t�/C sinh .t�/
q
1C sinh2 .tC/.

It follows that

sinh.tC C t�/ D u
p
1C .v/2 C v

p
1C .u/2.
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Fig. 10.1 Lines of curvature
for the saddle surface

Carrying out similar computations, I got

x.u; v/ D e1



u
p
1C .v/2 C v

p
1C .u/2

�

C e2



u
p
1C .v/2 � v

p
1C .u/2

�
C e3

�
u2 � v2

�
. (10.27)

Seeing the difficulties of getting an explicit representation for the lines of
curvature on the saddle surface, it should be clear that for many surfaces, it is
impossible to get explicit formulas for lines of curvature.

In the next section, I will discuss a pair of theorems that can enable one to identify
lines of curvature for a substantial set of surfaces.

Problem 249. (a) Suppose Pj is a projection operator associated with the real
symmetric linear operator A and v is a vector such that Pj .v/ ¤ 0. Show that
Pj .v/ is an eigenvector of A.

(b) Using the fact that Pj and Pk are the projection operators of a real symmetric
linear operator A, show that

˝
Pj .v/; Pk.w/

˛ D 0 if j ¤ k. (Note! The
projection operators are real, symmetric, and linear. Why?)

Problem 250. Using the fact that

I D
pX

jD1
Pj show that

the columns(rows) of the Pk’s span the space of column(row) vectors.



358 10 *Lines of Curvature

Problem 251. From (10.14) and (10.15),

I D
pX

jD1
Pj , and

A D
pX

jD1
jPj .

Generalize these equations, first for An and then for more general functions of a
real symmetric matrix A.

Problem 252. Consider the matrix

A D
��1 3

3 �1
�

.

(a) Determine the characteristic and minimal polynomials for A.
(b) Determine the projection operators.
(c) Determine a formula for each of the four components of A100.

Problem 253. Consider the matrix

A D
2

4
�1 0 2

0 1 0

2 0 �1

3

5 .

(a) Determine the characteristic and minimal polynomials.
(b) Determine the projection operators.
(c) What is the dimension of the eigenspace associated with each projection

operator? How is this reflected in the columns or rows of each projection
operator?

(d) Determine a formula for each component of A100.

Problem 254. HELICOID cont.
In Problem 179, we saw that one formula for the helicoid is:

y.u; v/ D e3au C a sinh.v/ Œe1 cos.u/C e2 sin.u/� .

Changing the variables again with,

u D s � t and v D s C t , we have

x.s; t/ D e3.s � t/C a sinh.s C t/ Œe1 cos.s � t/C e2 sin.s � t/� .

Show that for this parameterization, the lines of curvature are the same as the
coordinate curves.
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Problem 255. One parameterization for the saddle surface is

x.u1; u2/ D e1u1 C e2u2 C e3u1u2.

However, the coordinate curves are not lines of curvature. Why are the coordinate
curves for the parameterization of (10.27) also lines of curvature?

10.2 *Two Useful Theorems for Lines of Curvature

In this section, I will present two theorems that can be used to identify lines
of curvature for a wide variety of surfaces. Our first theorem relates lines of
curvature to the 2-dimensional ruled surface swept out by a line orthogonal with
the hypersurface as it moves along a line of curvature.

Theorem 256. x.s/ is a line of curvature on a given surface. , The ruled surface
y.s; t/ is a developable, where y.s; t/ D x.s/ C tN.s/. (N.s/ is the unit vector
orthogonal to the given surface at x.s/.)

Proof. If N.s/ is constant, x.s/ is a line of curvature and y.s; t/ is a cylinder and
thus a developable.

If PN.s/D dN=ds¤ 0, then we can replace the directrix x.s/ by z.s/ representing
either the vertex of a cone or a line of striction. In particular, from (9.15), we can
write

y.s; Nt/ D z.s/C NtN.s/, where (10.28)

z.s/ D x.s/�
˝ PN; Px˛
˝ PN; PN˛N.s/ and (10.29)

Nt D t C
˝ PN; Px˛
˝ PN; PN˛ .

If s is an arc length parameter for x.s/ and x.s/ is a line of curvature, then applying
the shape operator, we have

S.E1.s// D � PN.s/ D E1.s/ D Px.s/ .

Since
˝ PN; Px˛
˝ PN; PN˛ D h�Px; Pxi

h�Px;� Pxi D �1


,
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Equation (10.29) becomes

z.s/ D x.s/C 1


N.s/ and

Pz.s/ D E1.s/ � E1.s/C
�

d

ds

�
1



	�
N.s/. Or

Pz.s/ D
�

d

ds

�
1



	�
N.s/.

If d=ds D 0, Pz.s/ D 0 and z.s/ in (10.28) is the vertex of a cone. If d=ds ¤ 0,
N.s/ is tangent to z.s/ and z.s/ is the edge of regression for a tangential developable.
In either case, y.s; Nt / or y.s; t/ is a developable. We have now demonstrated that if
x.s/ is a line of curvature, y.s; t/ is a developable.

To prove the converse, we assume that z.s/ is either a vertex of a cone or the edge
of regression for a tangential developable. We note that

z.s/ D x.s/�
˝ PN; Px˛
˝ PN; PN˛N.s/, so

Pz.s/ D
"

E1.s/�
˝ PN; Px˛
˝ PN; PN˛

PN.s/
#

�
 

d

ds

˝ PN; Px˛
˝ PN; PN˛

!

N.s/.

If z.s/ is the vertex of a cone, then Pz.s/ D 0. If z.s/ is an edge of regression for a
tangential developable, then Pz.s/ is the scalar multiple of N.s/. In either case

S.E1.s// D � PN.s/ D �
˝ PN; PN˛
˝ PN; Px˛ E1.s/ and

x.s/ is a line of curvature. ut
Corollary 257. Any curve on an n-dimensional hypersphere is a line of curvature
since the corresponding ruled surface is a cone with its vertex at the center of the
hypersphere.

Corollary 258. For an n-dimensional hypersurface of revolution that is parameter-
ized in the manner of Example 173, the coordinate curves are all lines of curvature.
Note! I previously proved this result, when I first defined line of curvature (Definition
174). Nonetheless, I feel the following discussion is enlightening. From Example
173, we had

x.u1; u2; : : : ; un/ D r.un/w.u1; u2; : : : ; un�1/C enC1un, where

w.u1; u2; : : : ; un�1/ D e1 cos u1 cos u2 cos u3 � � � cos un�1
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C e2 sin u1 cos u2 cos u3 � � � cos un�1

C e3 sin u2 cos u3 � � � cos un�1

C � � � C en�1 sin un�2 cos un�1

C en sin un�1, and

N D w � PrenC1p
1C .Pr/2 .

The coordinate curve for un is

x.un/ D r.un/w C enC1un, where

w is a constant vector. For the 2-dimensional surface of revolution, this curve would
be a meridian. The corresponding ruled surface of Theorem 256 would be

y.un; t/ D r.un/w C enC1un C t
w � PrenC1p
1C .Pr/2 . (10.30)

Clearly, this surface is a 2-dimensional plane spanned by the constant vectors w
and enC1. Note! An anomaly may occur when Rr.un/ D 0. (See Problem 261.)
Nonetheless, except at isolated points, the condition for Theorem 256 is satisfied
and x.un/ is a line of curvature.

For the 2-dimensional surface of revolution, the other coordinate curves would be
parallels. For the n-dimensional surface of revolution, the situation is quite similar
to what you would expect for the 2-dimensional case. For the coordinate curves
other than those for un, the ruled surface of Theorem 256 has the form

y.uk; t/ D r.un/w.u1; u2; : : : ; uk; : : : ; un�1/C enC1un C tN, where (10.31)

all parameters are held constant except uk and t . If you reformulate this surface in
terms of the line of stricture, you get

y.uk; t/ D enC1 Œun C r.un/Pr.un/�C tN. (10.32)

Thus, the line of stricture reduces to a single point on the enC1 axis. Therefore,
y.uk; t/ is a cone and Theorem 256 implies that the corresponding coordinate curve
is a line of curvature.

Actually in Example 173, all the principal curvatures except the one associated
with un were identical. As a consequence for higher dimensions, any curve on the
hypersurface for a surface of revolution whose tangent remains orthogonal to enC1
is a line of curvature.
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Corollary 259. TORUS
In Problem 98, we parameterized the surface of a torus by

x.�; �/ D e1.RC a cos �/ cos� C e2.RC a cos �/ sin � C e3a sin � .

I will leave it to you to describe the developables.

The second theorem in this section arises from orthogonal coordinate systems.
For many coordinate systems that are nice to use, points are located by the inter-
section of n orthogonal coordinate surfaces. For example in spherical coordinates,
points are located by the intersection of a sphere, cone, and a plane, where the three
surfaces are mutually orthogonal. Also coordinate curves can be identified with lines
of curvature. In particular for spherical coordinates,

x.r; �; �/ D e1r sin � cos� C e2r sin � sin� C e3r cos � .

If we set � D �0 and � D �0, we have the coordinate curve

x.r/ D e1r sin �0 cos�0 C e2r sin �0 sin�0 C e3r cos �0.

This coordinate curve is a line of curvature on the cone defined by � D �0 and on the
plane defined by � D �0. Similarly, if we hold r and � constant, we get a coordinate
curve that is a line of curvature on a sphere and on a cone.

This situation generalizes to other orthogonal coordinate systems both in three
and higher dimensions. Suppose one has an orthogonal coordinate system in the
Euclidean space EnC1. That is

x.u1; u2; : : : ; unC1/ D ej xj .u1; u2; : : : ; unC1/ and
˝
”j ;”k

˛ D 0 if j ¤ k, where

”j D @x
@uj

.

In this circumstance, you can obtain a family of n-dimensional surfaces for each
value of j by allowing uj to assume any value in a family of constants. It can then
be said that the family of surfaces corresponding to one value of j is orthogonal
to the family of surfaces corresponding to another value of j in the sense that any
member of one family is orthogonal to any member of the other family.

In this situation, it can be proven that a coordinate curve on any of these
n-dimensional surfaces is a line of curvature.

Stated in the form of a theorem, we have

Theorem 260. Suppose we have an orthogonal coordinate system in the Euclidean
space EnC1. That is

x.u1; u2; : : : ; unC1/ D ej xj .u1; u2; : : : ; unC1/ and
˝
”j ;”k

˛ D 0 if j ¤ k, where

”j D @x
@uj

.
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Then the coordinate curve

x.uk/ D x.c1; c2; : : : ; ck�1; uk; ckC1; : : : ; cnC1/

is a line of curvature on any surface on which points are located by the function

x.u1; u2; : : : ; uj�1; cj ; ujC1; : : : ; unC1/ where j ¤ k.

(It is understood that the cm’s are constants.)

Proof. Without loss of generality, consider the n-dimensional surface

x.u1; u2; : : : ; un; cnC1/ D ej xj .u1; u2; : : : ; un; cnC1/:

The normal to this surface is

N D ”nC1ˇ̌
”nC1

ˇ̌ .

We wish to show that

@N
@uk

D �k ”k

j”kj
for any k ¤ nC 1, where

k is some scalar. With that goal in mind, I will first prove that
�
@”nC1
@uk

;”j

�
D 0 where j ¤ k and

neither j nor k is equal to nC 1. Observe
�
@”nC1
@uk

;”j

�
D @

@uk
˝
”nC1;”j

˛ �
�
”nC1;

@”j

@uk

�

D �
�
”nC1;

@”k

@uj

�
D
�
@”nC1
@uj

;”k

�

D
�
@”j

@unC1 ;”k
�

D �
�
”j ;

@”k

@unC1

�

D �
�
”j ;

@”nC1
@uk

�
D �

�
@”nC1
@uk

;”j

�
.

Since, we have shown that

�
@”nC1
@uk

;”j

�
D �

�
@”nC1
@uk

;”j

�
, it follows that

2

�
@”nC1
@uk

;”j

�
D 0 and thus

�
@”nC1
@uk

;”j

�
D 0, for j ¤ k.
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From this last equation, it follows that

@”nC1
@uk

D ˛”k C ˇ”nC1.

for some pair of scalars ˛ and ˇ. It now follows that

@N
@uk

D @

@uk
”nC1ˇ
ˇ”nC1

ˇ
ˇ

D
 
@

@uk
1

ˇ
ˇ”nC1

ˇ
ˇ

!

”nC1 C 1
ˇ
ˇ”nC1

ˇ
ˇ
�
˛”k C ˇ”nC1

�
: (10.33)

But hN;Ni D 1, so
˝
N; @N=@uk

˛ D 0 and thus
˝
”nC1; @N=@uk

˛ D 0. Combining this
result with (10.33), we have

@N
@uk

D ˛
ˇ
ˇ”nC1

ˇ
ˇ”k D ˛ j”kjˇ

ˇ”nC1
ˇ
ˇ

”k

j”kj
D �k ”k

j”kj
:

In the next section, I will show how this theorem can be applied to a non-trivial
situation. ut
Problem 261. (a) Determine the line of stricture for the ruled surface defined by

(10.30). You should see that an anomaly occurs when Rr.un/ D 0. Discuss the
nature of this anomaly when this occurs on an interval and when this occurs at
an isolated point.

(b) Use (10.31) to compute the line of stricture and thereby confirm (10.32).

Problem 262. After Theorem 256, I mentioned three corollaries. Can Theorem
260 be used to prove any of those corollaries or related results? If so, which
ones?

10.3 *Confocal Coordinates in n-Dimensions

When coordinate systems are orthogonal, it is usually fairly obvious that they are
orthogonal. One coordinate system that is orthogonal but not obviously orthogonal
is the system obtained by the intersection of n families of n-dimensional confocal
surfaces. In particular,

.x1/2

.a1/2 � u1
C .x2/2

.a2/2 � u1
C .x3/2

.a3/2 � u1
C � � � C .xnC1/2

.anC1/2 � u1
D 1,

�.x1/2
u2 � .a1/2

C .x2/2

.a2/2 � u2
C .x3/2

.a3/2 � u2
C � � � C .xnC1/2

.anC1/2 � u2
D 1,
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(a,0,0)

(0,b,0)

(0,0,c)

x3

x2

x1

umbilic point

Fig. 10.2 Lines of curvature
for an asymmetric ellipsoid

�.x1/2
u3 � .a1/2

C �.x2/2
u3 � .a2/2 C .x3/2

.a3/2 � u3
C � � � C .xnC1/2

.anC1/2 � u3
D 1,

� � � D 1, and

�.x1/2
unC1 � .a1/2

C �.x2/2
unC1 � .a2/2

C � � � C �.xn/2
unC1 � .a3/2

C .xnC1/2

.anC1/2 � unC1 D 1.

(It is understood here that �1 < u1 < .a1/2 < u2 < .a2/2 < � � � < unC1 <
.anC1/2.)

When n D 1, the first equation represents a family of confocal ellipses and
the second equation represents a family of confocal hyperbolas. (Hence, the name
“confocal.”) For n > 1, there are no focal points to be shared, but the resulting
coordinate system is still said to be “confocal.” For n D 2, the first equation
represents a family of asymmetric ellipsoids. The second equation represents a
family of one-sheeted hyperboloids and the third equation represents a family of
two-sheeted hyperboloids. The fourth equation represents nothing since it does not
exist.

What we wish to do is to solve the system of equations for each xk as a
function of u1; u2; : : : ; unC1 and then show that the resulting coordinate system is
orthogonal. We will then not only have a plausibly useful coordinate system but
also a parameterization for the lines of curvature on each of the surfaces. It was this
parameterization that enabled me to construct Fig. 10.2.

Solving the system of equations for xk in a straightforward way is a formidable
task even for n D 2. However, a brilliant trick appears in Margenau and Murphy’s
The Mathematics of Physics and Chemistry (1956, p. 179).
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Each equation in the system is of the form

.x1/2

.a1/2 � q
C .x2/2

.a2/2 � q
C .x3/2

.a3/2 � q
C � � � C .xnC1/2

.anC1/2 � q D 1.

Getting rid of the denominators, we have

nC1X

kD1

2

4.xk/2
Y

j¤k

�
.aj /2 � q�

3

5�
nC1Y

jD1

�
.aj /2 � q� D 0. (10.34)

The left-hand side of (10.34) is a polynomial in q of order nC 1. We know that the
roots of the polynomial are u1; u2; u3; : : : ; unC1. From the last term on the left-hand
side of (10.34), we also know that the highest order term is

�
nC1Y

jD1
.�q/ D .�1/nqnC1.

With this knowledge, we can infer that

nC1X

kD1

2

4.xk/2
Y

j¤k

�
.aj /2 � q�

3

5 �
nC1Y

jD1

�
.aj /2 � q

� D �
nC1Y

jD1

�
uj � q

�
. (10.35)

Since (10.35) is an identity, it remains valid for any number that we assign to q. If
we let q D .am/2, most terms on the left-hand side of (10.35) are zero. What we
then have is

.xm/2
Y

j¤m

�
.aj /2 � .am/2

� D �
nC1Y

jD1

�
uj � .am/2� . (10.36)

That is, .xm/2 D �QnC1
jD1

�
uj � .am/2�

Q
j¤m Œ.aj /2 � .am/2�

. (10.37)

(You should confirm for yourself that the right-hand side of (10.36) is positive.)
When I wrote down the original system of equations, uj was not allowed to

assume the value of .aj /2, because one of the denominators in the j th equation
would then be zero. None of the surfaces in the original system pass through the
origin except in some limiting sense. However in (10.36), we can allow

uj D .aj /2 for j D 1; 2; : : : ; nC 1.

Thus, (10.36) can be used to include the origin, where x1 D x2 D � � � D xnC1 D 0.
Another feature of (10.36) is that xm is squared. This means that corresponding to
one set of values for

˚
u1; u2; : : : ; unC1, one has 2nC1 points inEnC1. (One for each
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quadrant in E2, one for each octant in E3, and one for each whatever for EnC1.)
This complication creates no difficulty for local computations and few difficulties
for global computations.

Our next step is to compute ”k D ”uk and then show that
˝
”j ;”k

˛ D 0 if j ¤ k.

Since

x.u1; u2; : : : ; unC1/ D ej xj .u1; u2; : : : ; unC1/,

”k D @x
@uk

D em
@xm

@uk
. (10.38)

From (10.36),

2 lnxm D ln
�˙.uk � .am/2

�C terms not involving uk.

For either sign,
2

xm
@xm

@uk
D 1

uk � .am/2 : (10.39)

Combining this result with (10.38), we have

”k D
nC1X

mD1
em

xm

2
�
uk � .am/2� . (10.40)

And

˝
”j ;”k

˛ D
nC1X

mD1

.xm/2

4 ..am/2 � uj / .am/2 � uk/
. (10.41)

Using the method of partial fractions,

1

.w � uj /
�
w � uk

� D 1
�
uj � uk

�
�

1

w � uj
� 1

w � uk

�
. (10.42)

Using this result, (10.41) becomes

˝
”j ;”k

˛ D 1

4
�
uj � uk

�
nC1X

mD1

"
.xm/2

..am/2 � uj /
� .xm/2
�
.am/2 � uk

�

#

. (10.43)

If we reexamine the system of equations at the beginning of this section, we see that

nC1X

mD1

.xm/2

..am/2 � ur /
D 1 for any value of r between 1 and nC 1.
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Thus,
˝
”j ;”k

˛ D 0 if j ¤ k. (10.44)

We now know that we have an orthogonal system of coordinates. From Theorem
260, this implies that every coordinate curve is a line of curvature in each of the n
distinct surfaces in which it lies.

To obtain the principal curvatures for the kth surface on the list, we need to
compute

S

 
”jˇ
ˇ”j

ˇ
ˇ

!

D � @

@uj
Nk D j

”jˇ
ˇ”j

ˇ
ˇ , where

Nk is the normal of unit length to the kth surface on the list of surfaces at the
beginning of this section.

What is an appropriate formula for Nk? In the new coordinate system, the kth
surface

nC1X

jD1

.xj /2

.aj /2 � ck
D 1, may

be represented in the form

x D emxm.u1; u2; : : : ; uk�1; ck; ukC1; : : : ; unC1/.

This implies that
@x
@uj

D em
@xm

@uj
D ”j is

tangent to the kth surface along as j ¤ k. Since

˝
”j ;”k

˛ D 0, if j ¤ k, it follows

that ”k is orthogonal to the kth surface. Therefore,

Nk D ˙ ”k

j”kj
. (10.45)

From (10.40),

”k D
nC1X

mD1
em

xm

2
�
uk � .am/2

� . (10.46)

Using (10.39), choosing the plus sign in (10.45), and noting that j ¤ k, we have

@”k

@uj
D

nC1X

mD1
em

1

2
�
uk � .am/2

�
@xm

@uj
D

nC1X

mD1
em

1

2
�
uk � .am/2�

�
xm

2.uj � .am/2/

	
.
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Using (10.42) and (10.46), we have

@”k

@uj
D �1
2.uk � uj /

�
”k � ”j

�
.

Now, using this result

S

 
”jˇ
ˇ”j

ˇ
ˇ

!

D � @

@uj
Nk D @

@uj
”k

j”kj
D �1

j”kj
@

@uj
”k �

�
@

@uj
1

j”kj
	

”k

D 1

2.uk � uj / j”kj
�
”k � ”j

� �
�
@

@uj
1

j”kj
	

”k . (10.47)

Since hNk;Nki D 1,

1

j”kj
�
”k;

@Nk

@uj

�
D
�
Nk;

@Nk

@uj

�
D 0.

This means that the terms involving ”k on the right-hand side of (10.47) must cancel
out. What remains is

S

 
”jˇ̌
”j
ˇ̌

!

D �1
2.uk � uj / j”kj

”j D � ˇ̌”j
ˇ̌

2.uk � uj / j”kj
”jˇ̌
”j
ˇ̌ D j

”jˇ̌
”j
ˇ̌ . (10.48)

Thus the principal curvature for the line of curvature associated with uj on the kth
surface is

j D � ˇˇ”j
ˇ
ˇ

2.uk � uj / j”kj
. (10.49)

To finish our task, we need to obtain a formula for j”˛j or h”˛;”˛i.

Theorem 263. For the confocal coordinate system defined by (10.36),

h”˛;”˛i D 1

4

Q
j¤˛

�
uj � u˛

�

Q
j Œ.a

j /2 � u˛�
. (10.50)

Proof. From (10.46)

”˛ D
nC1X

mD1
em

xm

2 .u˛ � .am/2/
, so

h”˛;”˛i D 1

4

nC1X

mD1

.xm/2

.u˛ � .am/2/
2

. (10.51)

From (10.36),

.xm/2 D �QnC1
jD1

�
uj � .am/2�

Q
j¤m Œ.aj /2 � .am/2�

.



370 10 *Lines of Curvature

x

yya b

x

rB
rB

rA

rA
(0,c)

(0,-c)
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Fig. 10.3 Confocal ellipses and hyperbolas

So

h”˛;”˛i D 1

4

nC1X

mD1

Q
j¤˛

�
uj � .am/2

�

Q
j¤m ..aj /2 � .am/2/

2

1

.am/2 � u˛
. (10.52)

For n D 2, the terms in the sum of the right-hand side of (10.52) can be combined
by brute force to obtain (10.50). Margenau and Murphy (1956, pp. 178–180) point
out that even in that case, it is easier to prove the equality by taking the right-
hand side of (10.50) and expanding it in partial fractions. From the 3-dimensional
case worked out by Margenau and Murphy, it is easy to guess at (10.50) for higher
dimensions. I will leave it to you to expand the right hand side of (10.50) in partial
fractions to show that (10.50) is equivalent to (10.52). See Problem 265. ut

Margenau and Murphy (1956, p. 180) state that for the case n D 2, “The confocal
ellipsoidal coordinate system has proved useful in problems of mechanics, potential
theory, electrodynamics and hydrodynamics.” They also cite several sources.

Problem 264. For n D 1, there are two equations in the list at the beginning of the
section. Namely

.x1/2

.a1/2 � u1
C .x2/2

.a2/2 � u1
D 1, and

�.x1/2
u2 � .a1/2

C .x2/2

.a2/2 � u2
D 1, where

�1 < u1 < .a1/2 < u2 < .a2/2.

Demonstrate that these equations represents families of confocal ellipses and
hyperbolas. In particular, determine the location of the focal points common to both
families. You may wish to refer to Fig. 10.3.
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Problem 265. Suppose

f .u˛/ D
Q
j¤˛.uj � u˛/

4
Q
j ..a

j /2 � u˛/
.

Expand this function in partial fractions to show

f .u˛/ D 1

4

nC1X

mD1

Am

.am/2 � u˛
, where

Am D
Q
j¤˛

�
uj � .am/2

�

Q
j¤m Œ.aj /2 � .am/2� .

10.4 *The Nondeformability of a Hypersurface

For a 2-dimensional surface embedded in E3, the intrinsic observer cannot deter-
mine the principal curvatures. The intrinsic observer can determine the product of
the principal curvatures at any point but not the two separate curvatures. Usually,
this means that the surface can be distorted without stretching. (Stretching would
cause a change in the metric tensor for the 2-dimensional surface that would be
detectable to the intrinsic observer.) There are exceptions. For example, a complete
sphere is rigid. However, if some portion of the sphere is cut away, it is no longer
rigid.

In higher dimensions, the situation is different. For higher dimensions, we have
the following theorem:

Theorem 266. If three or more of the principal curvatures for an n-dimensional
hypersurface are nonzero, the hypersurface cannot be distorted without stretching
or contracting. (Stretching or contracting would change the distance between points
on the surface and modify the metric tensor.)

Proof. To prove this theorem, we show that both the principal curvatures and the
principal directions can be determined from the Riemann tensor. Since the Riemann
tensor is computed from the metric tensor, this result demonstrates that both the
principal curvatures and the principal directions are determined by the metric tensor.

From (7.157), we have

R˛kij D h˛i h
k
j � h˛j h

k
i . (10.53)

If we define

Hk D h˛k”˛ , then (10.54)
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Rij D 1

2
R˛kij”˛”k D 1

2



h˛i h

k
j � h˛j h

k
i

�
”˛”k

D 1

2

�
HiHj � HjHi

�

or restated,
Rij D Hi ^ Hj . (10.55)

From (10.54), knowing Hj is equivalent to knowing the components of the j th
column of the matrix h

hij

i
.

(Remember, I used the convention that the upper index is the row index and the
lower index is the column index.)

The curvature 2-form is an intrinsic entity that can be determined from the
metric tensor for the n-dimensional surface. Therefore if we can solve the system
of equations represented by (10.55) for the Hk’s, we know all the columns of Œhij �.
If we know all the components of Œhij �, we can determine all the principal curvatures
and the lines of curvature. Therefore to prove this theorem, it is sufficient to show
that the system of equations represented by (10.55) can be solved for the Hk’s.

If three of the principal curvatures are nonzero, the rank of the matrix Œhij � must
be at least three so at least three of the Hk’s must be linearly independent. Without
loss of generality, we can assume that H1, H2, and H3 are linearly independent. (If
they are not, pick out three columns that are linearly independent and relabel the
coordinates.) We are now faced with solving the system

H2 ^ H3 D R23, (10.56)

H3 ^ H1 D R31, and (10.57)

H1 ^ H2 D R12. (10.58)

From (10.58), we know that R12 is the exterior product of two independent
vectors in the 2-dimensional plane spanned by H1 and H2. You may be able to
factor R12 into the exterior product of two such vectors but this may be difficult in
practice.

Another technique to get two vectors that span the same space spanned by H1

and H2 is to return to (10.53). From this equation,

R˛k12”˛ D hk2H1 � hk1H2. (10.59)

If we allow k to run through the values from 1 to n in (10.59), we will get a list of
n vectors. At least two of them must be independent. (Otherwise, hk2 D ˛hk1 for all
values of k and the second column of Œhij � would be a scalar multiple of the first
column.)

Suppose two values of k that result in independent vectors are p and q. This
implies that the 2 dimensional space spanned by R˛p12”˛ and R˛q12”˛ is the same
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as that spanned by H1 and H2. That is in general

AR
˛p
12”˛ C BR

˛q
12”˛ D H1 C �H2.

To determine a linear combination of R˛p12”˛ and R˛q12”˛ that results in a scalar
multiple of H1, we note that

R31 D H3 ^ H1.

So

R31 ^ �AR˛p12”˛ C BR
˛q
12”˛

� D �H3 ^ H1 ^ H2.

Therefore,

R31 ^ �AR˛p12”˛ C BR
˛q
12”˛

� D 0 ,
AR

˛p
12”˛ C BR

˛q
12”˛ D H1. (10.60)

Thus, finding nonzero values of A and B that satisfy (10.60) is equivalent to
determining a scalar multiple of H1. In a similar fashion, we can determine scalar
multiples of H2 and H3.

Having determined the directions of H1, H2, and H3; we can determine normal-
ized versions of each. That is

OHk D Hk

jHkj , for k D 1, 2, and 3.

What remains is the task of computing the magnitudes of H1, H2, and H3.
Suppose H1 D 1 OH1, H2 D 2 OH2, and H3 D 3 OH3. Then

23 OH2 ^ OH3 D R23,

31 OH3 ^ OH1 D R31, and

12 OH1 ^ OH2 D R12.

From these three equations, we can determine the products 23, 31, and
12. To get 1, we note that

.1/
2 D .31/.12/

.23/
. (10.61)

Solving (10.61), we encounter a sign ambiguity for 1. This is the same sign
ambiguity, we ran into when we had to choose a direction for the normal vector
N. Once the sign is chosen for 1, the signs for 2 and 3 are determined since

2 D .12/

1
and 3 D .31/

1
.

Having determined H1, H2, and H3, I will leave it to you to figure out how to
compute any of the other Hk’s. ut



Chapter 11
*Minimal Surfaces

11.1 *Why are Minimal Surfaces Said to be Minimal?

The term minimal surface is applied to any 2-dimensional surface embedded in E3

with zero mean curvature. It is understood that mean curvature is the average of the
two principal curvatures.

Surprisingly (at least to me), this concept can be generalized in a very elegant
manner to 2-dimensional surfaces embedded in higher dimensional Euclidean
spaces (Osserman 2002). However, I will limit the presentation in this book to
2-dimensional surfaces embedded in E3.

What makes this field of differential geometry attractive to some is that it
connects pictures of soap films stretched across various frames with the theory of
complex variables. Both the theory of complex variables and pictures of soap films
are aesthetically pleasing.

If a surface bounded by some closed loop has the least possible area, then that
surface has zero mean curvature at each of its interior points. It is for this reason that
any surface with mean zero curvature is said to be “minimal.” However, it should be
noted that “surface with least area” is not synonymous with “minimal surface.” This
point is illustrated by Enneper’s surface defined by the equation:

x.u; v/ D
�

u � u3

3
C uv2;�v C v3

3
� u2v; u2 � v2

	
. (11.1)

(See Fig. 11.1a where the portion of Enneper’s surface bounded by the loop u2 C
v2 D .1:5/2 is shown.)

If we consider the portion of Enneper’s surface bounded by the loop u2 C v2 D
.1:5/2, we have a surface that is “minimal” in the sense that its mean curvature is
zero. However, Enneper’s surface for the given loop does not have the least area. By
numerical integration, it can be shown that the cylindrical surface bounded by the
same loop shown in Fig. 11.1b has less area.

J. Snygg, A New Approach to Differential Geometry using Clifford’s Geometric Algebra,
DOI 10.1007/978-0-8176-8283-5 11, © Springer Science+Business Media, LLC 2012
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x

y

za b

Fig. 11.1 (a) Portion of Enneper’s surface bounded by a loop. (b) Cylindrical surface bounded by
the same loop

The theory is developed well enough so that it is known that the surface with least
area has zero mean curvature but an explicit formula for this particular problem is
unknown. The most important theorems on this topic are discussed in John Oprea’s
text Differential Geometry And Its Applications (Oprea 1997, pp. 219–253).

Perhaps, the most important theorem is as follows:

Theorem 267. A necessary condition for a surface bounded by a regular closed
curve to have the least possible area is that the mean curvature of the surface at all
interior points be zero.

Proof. We first note that

dA D �1du1 ^ �2du2 so

A D
Z Z

R

j�12j du1du2, where (11.2)

R is the portion of the given surface bounded by the given regular closed curve.
Since

j�12j2 D �12�21 D g11g22 � g12g21 D g, we have

A D
Z Z

R

p
gdu1du2. (11.3)

(The following argument was lifted from Manfredo do Carmo’s Differential Geom-
etry of Curves and Surfaces (do Carmo 1976, pp. 197–199).)
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If x.u1; u2/ is the surface that has the least area for the given boundary, then an
alternate surface corresponding to a normal variation would have a greater area.
A family of alternate surfaces for a normal variation can be represented in the form:

Nx.u1; u2/ D x.u1; u2/C tw.u1; u2/N.u1; u2/, where (11.4)

w.u1; u2/ is any differentiable function that is zero on the boundary and N.u1; u2/ is
the unit normal for the surface x.u1; u2/. (It is understood that each member of the
family corresponds to a particular value of t .)

From (11.4), it can be said that for each member of the family,

N�j D @Nx
@uj

D @x
@uj

C tw
@N
@uj

C t
@w

@uj
N

D �j � twh˛j�˛ C t
@w

@uj
N.

Therefore using the fact that h�k;Ni D 0,

Ngjk D ˝ N�j ; N�k
˛ D ˝

�j ;�k
˛ � 2twh˛j h�˛;�ki C t2Ajk .;

or
Ngjk D gjk � 2twhjk C t2Ajk . (11.5)

(We do not need to compute Ajk .)
Using (11.5) and ignoring powers of t higher than one, we have

Ng D Ng11 Ng22 � Ng12 Ng21
D .g11 � 2twh11/.g22 � 2twh22/� .g12 � 2twh12/.g21 � 2twh21/
D g11g22 � g12g21 � 2tw.g11h22 C g22h11 � g12h21 � g21h12/

D g � 2tw.g11g2˛h
˛
2 C g22g1˛h

˛
1 � g12g2˛h

˛
1 � g21g1˛h

˛
2 /. (11.6)

Summing over ˛ on the R.H.S. of (11.6), we find some terms cancel out and we get

Ng D g � 2tw.g11g22 � g12g21/.h
1
1 C h22/

D g
�
1 � 2tw.h11 C h22/

�
,

or more precisely:

Ng D g
�
1 � 2tw.h11 C h22/C t2P.t/

�
, where

P.t/ is a quadratic polynomial in the variable “t .”



378 11 *Minimal Surfaces

If we designate the mean curvature by H , then

H D h11 C h22
2

. (11.7)

(See Problem 268.)
It is now clear that

Ng D g
�
1 � 4twH C t2P.t/

�
, so

NA.t/ D
Z Z

R

p Ngdu1du2

D
Z Z

R

p
g
p
1 � 4twH C t2P.t/du1du2

If x.u1; u2/ is the surface with least area, then

d NA.t/
dt

ˇ̌
ˇ
ˇ
tD0

D 0 D �2
Z Z

R

w.u1; u2/H
p
gdu1du2. (11.8)

This condition must hold for an arbitrary differentiable function w.u1; u2/ that is
zero on the boundary. For reasons that you should fill in, this implies that H D 0.
(See Problem 269.) ut
Problem 268. Consider the quadratic equation for the curvatures of a 2-dimensional
surface embedded in E3. Namely:

det

�
h11 �  h12
h21 h22 � 

�
D 0.

Use this equation to confirm (11.7).

Problem 269. Demonstrate that (11.8) implies that H D 0. Suggestion: It may be
useful to consider the function

w.u1; u2/ D

8
<̂

:̂

exp

�
1

.u1 � a/2 C .u2 � b/2 � r2
	

for .u1 � a/2 C .u2 � b/2 < r2

0 for .u1 � a/2 C .u2 � b/2 	 r2.

(Is this function differentiable?)

Problem 270. a. Use (11.1) to show that for Enneper’s surface:

�uv D .1C u2 C v2/
�
e232u C e312v C e12.�1C u2 C v2/

�
and

j�uvj D .1C u2 C v2/2.
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b. Let u D r cos � and v D r sin � to compute the area of Enneper’s surface
bounded by the loop u2 C v2 D .1:5/2.

c. Use MAPLE or MATHEMATICA to obtain a numerical approximation for the
area of the cylindrical surface shown in Fig. 11.1b. Compare your answer for this
part with your answer for part (b).

Problem 271. a. Using (11.1), determine the symmetries of Enneper’s surface.
b. If Enneper’s surface is extended beyond the portion shown in Fig. 11.1a, it

intersects itself in the y-z plane for z > 0. Where else does it intersect itself?
Determine equations for the two curves of intersection.

Problem 272. a. Determine the principal curvatures for Enneper’s surface.
b. Show that the coordinate curves arising from (11.1) for Enneper’s surface are

also lines of curvature.

11.2 *Minimal Surfaces and Harmonic Functions

If the metric tensor is a scalar multiple of the identity matrix, the corresponding
coordinates are said to be isothermic. (I find this terminology rather strange but it
has been used for a long time. Dirk Struik traced it back to a paper written by Gabriel
Lamé (1795–1870) in 1833 (Struik 1988, p. 175).)

In theory, any 2-dimensional surface can be parameterized by isothermal coor-
dinates. A proof by Robert Osserman for minimal surfaces appears in Oprea’s text
(Oprea 1997, p. 222). In addition, if one uses isothermal coordinates for a minimal
surface, then each component of the surface is harmonic. That is if the surface is
represented by the equation:

x.u1; u2/ D ekxk.u1; u2/, then

�x.u1; u2/ D ek�xk.u1; u2/ D ek

�
@2xk

.@u1/2
C @2xk

.@u2/2

	
D 0. (11.9)

The easiest way to study harmonic functions is in the context of the theory of
complex variables. If z D x C iy where x and y are real then z� designates the
complex conjugate of z, where

z� D x � iy. (11.10)

Suppose

z D x C iy and w D u C iv, then
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it is not too difficult to show that

.z C w/� D z� C w�; (11.11)

.zw/� D z�w�, and (11.12)

.zn/� D .z�/n, where (11.13)

n is an integer. (See Problem 273.) It then follows that if

f .z/ D
1X

kD0
ak.z � z0/

k , then .f .z//� D
1X

kD0
a�
k .z

� � z�
0 /
k D f �.z�/.

As you might expect, the derivative of f .z/ at z D z0 is defined by the limit

f 0.z/ D lim
�z!0

f .z C�z/� f .z/

�z
. (11.14)

The consequence of this definition is quite different than it is for real variables.
The limit in (11.14) is meaningful only if it is independent of the direction that
�z approaches zero in the x-y plane. As a result, it can be shown that if the first
derivative exists in some open neighborhood of z0, then the derivative of any order
exists in that same neighborhood. Furthermore if f 0.z/ exists when

jz � z0j D
p
.x � x0/2 C .y � y0/2 < R, then

f .z/ D
1X

kD0

f .k/.z0/

kŠ
.z � z0/

k for jz � z0j < R. (11.15)

Due to this situation, if f 0.z/ exists, f .z/ is not described as being merely
differentiable – it is said to be analytic.

It turns out that a function f .z/ that is analytic in a region jz � z0j < R can
be characterized by the fact that there exists an infinite (or possibly finite) seriesP1

kD0 ak.z � z0/k such that

f .z/ D
1X

kD0
ak.z � z0/

k for jz � z0j < R where the ak’s are possibly complex.

(We will use this definition of an analytic function in the next section.)
What does all this have to do with harmonic functions? Suppose

f .z/ D p.x; y/C iq.x; y/, where

z D x C iy, and
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both p and q are real. Since the limit in (11.14) is independent of the direction that
�z approaches zero,

lim
�x!0

lim
�y!0

f .z C�z/� f .z/

�z
D lim

�y!0
lim
�x!0

f .z C�z/� f .z/

�z
.

That is

lim
�x!0

p.x C�x; y/C iq.x C�x; y/� p.x; y/ � iq.x; y/

�x

D lim
�y!0

p.x; y C�y/C iq.x; y C�y/ � p.x; y/ � iq.x; y/

i�y
.

This implies that
@p

@x
C i

@q

@x
D �i @p

@y
C @q

@y
. (11.16)

Equating the real and imaginary parts of (11.16), we have

@p

@x
D @q

@y
and

@p

@y
D �@q

@x
. (11.17)

This pair of equations is known as the Cauchy–Riemann equations. An immediate
consequence is

@2p

.@x/2
D @2q

@x@y
D � @2p

.@y/2
and thus

p.x; y/ is harmonic. That is

@2p

.@x/2
C @2p

.@y/2
D 0.

(I leave it to you to demonstrate that q.x; y/ is also harmonic.)
If

f k.z/ D pk.x; y/C iqk.x; y/, and

f k�.z�/ D pk.x; y/ � iqk.x; y/, then

it is clear that f k.z/C f k�.z�/ is a real harmonic function. Assuming that I have
not lied to you at the beginning of this section, we can represent a minimal surface
x.u1; u2/ in the form:

x.u1; u2/ D F.z/C F�.z�/ D ek
�
f k.z/C f k�.z�/

�
, where (11.18)

this time z D u1 C iu2.



382 11 *Minimal Surfaces

As we shall see below, this representation does not guarantee that the coordinates
are isothermal unless we also require that

�
@F
@z
;
@F
@z

�
D 0: (11.19)

You should note that this also implies that

�
@F�

@z� ;
@F�

@z�

�
D 0.

It will be shown below that (11.18) and (11.19) are sufficient for the surface to
be minimal. To show that a minimal surface can be parameterized by isothermal
coordinates with harmonic components is considerably more difficult. If you wish
to pursue this further, I recommend (Osserman 2002) or (Oprea 1997). In this short
presentation, I am limiting my discussion to 2-dimensional surfaces embedded in
E3. Osserman discusses the generalization to 2-dimensional surfaces embedded in
Ek , where k 	 3.

Now from (11.18),

�1 D @x
@u1

D @F
@z

@z

@u1
C @F�

@z�
@z�

@u1
D @F
@z

C @F�

@z� , and (11.20)

�2 D @x
@u2

D @F
@z

@z

@u2
C @F�

@z�
@z�

@u2
D i

@F
@z

� i
@F�

@z� . (11.21)

This implies:

g11 D h�1;�1i D
�
@F
@z

C @F�

@z� ;
@F
@z

C @F�

@z�

�

D
�
@F
@z
;
@F
@z

�
C
�
@F�

@z� ;
@F�

@z�

�
C 2

�
@F
@z
;
@F�

@z�

�
.

Similarly,

g22 D �
�
@F
@z
;
@F
@z

�
�
�
@F�

@z� ;
@F�

@z�

�
C 2

�
@F
@z
;
@F�

@z�

�
, and

g12 D g21 D i

�
@F
@z
;
@F
@z

�
� i

�
@F�

@z� ;
@F�

@z�

�
.
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For isothermal coordinates, g11 D g22. This implies that

�
@F
@z
;
@F
@z

�
C
�
@F�

@z� ;
@F�

@z�

�
D 0.

For isothermal coordinates, we also require that g12 D g21 D 0. Therefore,

�
@F
@z
;
@F
@z

�
�
�
@F�

@z� ;
@F�

@z�

�
D 0.

From these last two equations, we see that for isothermal coordinates:

�
@F
@z
;
@F
@z

�
D
�
@F�

@z� ;
@F�

@z�

�
D 0. (11.22)

It should now be obvious that

�
g11 g12
g21 g22

�
D

2

6
6
4

2

�
@F
@z
;
@F�

@z�

�
0

0 2

�
@F
@z
;
@F�

@z�

�

3

7
7
5 (11.23)

and

�
g11 g12

g21 g22

�
D

2

6
6
66
6
6
4

1

2

�
@F
@z
;
@F�

@z�

� 0

0
1

2

�
@F
@z
;
@F�

@z�

�

3

7
7
77
7
7
5

. (11.24)

To compute the normal vector N, we note that

�12N
j�12j

D e123 and thus

N D �21

j�12j
e123, where (11.25)

�12 D @x
@u1

^ @x
@u2

D
�
@F
@z

C @F�

@z�

	
^ i

�
@F
@z

� @F�

@z�

	
. (11.26)

Since
@F
@z

^ @F
@z

D @F�

@z� ^ @F�

@z� D 0,

Equation (11.26) becomes

�12 D �2i @F
@z

^ @F�

@z� , and thus
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Equation (11.25) becomes

N D i @F
@z ^ @F�

@z�

ˇ
ˇi @F
@z ^ @F�

@z�

ˇ
ˇe123. (11.27)

To get the components of the second fundamental form, we note that

@N
@uj

D �h˛j
@x
@u˛

or

�
@N
@uj

;
@x
@uˇ

�
D �h˛j

�
@x
@u˛

;
@x
@uˇ

�
D �h˛j g˛ˇ D �hjˇ. (11.28)

However,
�
@N
@uj

;
@x
@uˇ

�
D @

@uj

�
N;

@x
@uˇ

�
�
�
N;

@2x
@uj @uˇ

�
or

hjˇ D
�
N;

@2x
@uj @uˇ

�
. (11.29)

Since

@x
@u1

D @F
@z

C @F�

@z� ,

@2x
.@u1/2

D @2F

.@z/2
@z

@u1
C @2F�

.@z�/2
@z�

@u1
D @2F

.@z/2
C @2F

.@z�/2
.

Similarly,

@2x
@u2@u1

D i
@2F

.@z/2
� i @

2F�

.@z�/2
, and

@2x
.@u2/2

D � @2F

.@z/2
� @2F�

.@z�/2
.

Combining these results with (11.29), we have

�
h11 h12
h21 h22

�
D

2

6
6
6
4

�
N;
@2F

.@z/2
C @2F�

.@z�/2

� �
N;i

@2F

.@z/2
� i @

2F�

.@z�/2

�

�
N;i @

2F
.@z/2

� i
@2F�

.@z�/2

�
�
�
N;
@2F

.@z/2
C @2F�

.@z�/2

�

3

7
7
7
5
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Since hji D hi˛g
j̨ , it is not too difficult to discover that

"
h11 h

1
2

h21 h
2
2

#

D 1

2

�
@F
@z
;
@F�

@z�

�

2

66
6
4

�
N;
@2F

.@z/2
C @2F�

.@z�/2

� �
N;i

@2F

.@z/2
� i @

2F�

.@z�/2

�

�
N;i

@2F

.@z/2
� i

@2F�

.@z�/2

�
�
�
N;
@2F

.@z/2
C @2F�

.@z�/2

�

3

77
7
5

.

(11.30)

To obtain the principal curvatures, we must solve the equation:

det

"
h11 �  h12

h21 h22 � 

#

D 0.

Doing this, we get

 D
˙
s�

N;
@2F

.@z/2
C @2F�

.@z�/2

�2
C
�
N;i

@2F

.@z/2
� i

@2F�

.@z�/2

�2

2

�
@F
@z
;
@F�

@z�

� , where (11.31)

N D
i
@F
@z

^ @F�

@z�
ˇ
ˇ
ˇ̌i
@F
@z

^ @F�

@z�

ˇ
ˇ
ˇ̌
e123. (11.32)

From (11.31), it is clear that the mean curvature is zero as was predicted.
Repeating ourselves, we note that to construct a minimal surface, we require that

�
@F
@z
;
@F
@z

�
D 0.

An example of a vector function F that satisfies this condition is

@F
@z

D a

2
.� cos z;� sin z;�i/.

In this case,

F D a

2
.� sin z; cos z;�iz/ plus (11.33)

a possible constant. This corresponds to a catenoid. (See Problem 274.)
Once one has a vector function F.z/ to represent a minimal surface, one can

construct an entire family of minimal surfaces that can be deformed into one another
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without stretching. (This can be said to be a family of isometric surfaces.) To do this,
simply replace F.z/ by F.z/eiˇ, where ˇ is a constant. Each member of the family
has the same metric tensor since

g11 D g22 D 2

*
@
�
Feiˇ

�

@z
;
@
�
F�e�iˇ�

@z�

+

D 2

�
@F
@z
;
@F�

@z�

�
.

Also
g12 D g21 D 0. Why?

Using essentially the same argument and (11.32), it becomes clear that for any
two members of the family, points with the same coordinates have the same normal
vector.

Surprisingly (at least to me), even the curvatures at points with the same
coordinates are identical. To see this, first consider the case for which ˇ D 0. If
we let

�
N;
@2F

.@z/2
C @2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� D A cos � , and

�
N;i

@2F

.@z/2
� i

@2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� D A sin � , where

A D

s�
N;

@2F

.@z/2
C @2 NF
.@Nz/2

�2
C
�
N;i

@2F

.@z/2
� i

@2F�

.@z�/2

�2

2

�
@F
@z
;
@F�

@z�

� , then

Equation (11.30) becomes

"
h11 h

1
2

h21 h
2
2

#

D
�
A cos � A sin �
A sin � �A cos �

�
, and

Equation (11.31) becomes

 D ˙
p
A2 cos2 � C A2 sin2 � D ˙A.
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If ˇ ¤ 0, then

h11 D �h22 D

*

N;
@2
�
Feiˇ

�

.@z/2
C @2

�
F�e�iˇ�

.@z�/2

+

2

*
@
�
Feiˇ

�

@z
;
@
�
F�e�iˇ�

@z�

+

D

�
N;

@2F

.@z/2
C @2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� cosˇ C

�
N; i

@2F

.@z/2
� i @

2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� sinˇ

D A cos � cosˇ CA sin � sinˇ D A cos.� � ˇ/.

Furthermore

h12 D h21 D

*

N; i
@2
�
Feiˇ

�

.@z/2
� i

@2
�
F�e�iˇ�

.@z�/2

+

2

*
@
�
Feiˇ

�

@z
;
@
�
F�e�iˇ�

@z�

+

D

�
N; i

@2F

.@z/2
� i

@2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� cosˇ �

�
N;

@2F

.@z/2
C @2F�

.@z�/2

�

2

�
@F
@z
;
@F�

@z�

� sinˇ

D A sin � cosˇ � A cos � sinˇ D A sin.� � ˇ/.

To get the principal curvatures, we solve the equation:

det

�
h11 �  h12
h21 h22 � 

�
D
�
A cos.� � ˇ/ �  A sin.� � ˇ/
A sin.� � ˇ/ �A cos.� � ˇ/ � 

�
D 0.

This gives us

 D
q
A2 cos2.� � ˇ/C A2 sin2.� � ˇ/ D ˙A.

Thus when we consider two members of the family, we can say that when we pair
the points with the same coordinates, the metric tensor, the normal vector N, and the
principal curvatures are the same. Yet, there is a very distinct difference between
different members of the same family.
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As ˇ increases, the principal directions rotate with respect to the coordinate lines.
To see this, we note that the equation for the direction of the principal curvature
corresponding to the principal curvature  is

"
h11 h

1
2

h21 h
2
2

#�
v1

v2

�
D 

�
v1

v2

�
.

For our problem, this becomes

"
A cos.� � ˇ/ A sin.� � ˇ/

A sin.� � ˇ/ �A cos.� � ˇ/

#"
v1

v2

#

D 

"
v1

v2

#

.

For  D A, we find

�
v1

v2

�
D
2

4
cos



��ˇ
2

�

sin


��ˇ
2

�

3

5 . (11.34)

For  D �A, we find

�
v1

v2

�
D
2

4
� sin



��ˇ
2

�

cos


��ˇ
2

�

3

5 . (11.35)

For the family of the catenoid, we have

x.u; v/ D e1x1.u; v/C e2x2.u; v/C e3x3.u; v/, where (11.36)

x1.u; v/ D a.� cosˇ sin u cosh v C sinˇ cos u sinh v/, (11.37)

x2.u; v/ D a.cosˇ cos u cosh v C sinˇ sin u sinh v/, and (11.38)

x3.u; v/ D a.v cosˇ C u sinˇ/. (11.39)

For ˇ D 0, we get a catenoid and for ˇ D �=2, we get a helicoid. (See Figs. 11.2
and 11.3.)

Problem 273. Verify (11.11)–(11.13).

Problem 274. Suppose

F.z/ D a

2
exp.iˇ/.� sin z; cos z;�iz/, where (11.40)

z D u C iv.
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N
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Fig. 11.2 A family of surfaces with zero mean curvature
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N N
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N
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N

Fig. 11.3 As ˇ increases, the directions of principal curvature rotate with respect to the coordinate
lines
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(a) Use (11.18) to show that this is equivalent to (11.37), (11.38), and (11.39).
Note! The formulas for trigonometric functions and hyperbolic functions with
complex arguments are pretty much what you should expect. For example:

sin z D sin.u C iv/ D sin u cos.iv/C cos u sin.iv/.

cos.iv/ D exp.i.iv/C exp.�i.iv/
2

D exp.�v/C exp.v/

2
D cosh v, and

sin.iv/ D exp.i.iv//� exp.�i.iv//
2i

D i
exp.v/� exp.�v/

2
D i sinh v.

(b) Convince yourself that (11.40) corresponds to a catenoid when ˇ D 0 and a
helicoid when ˇ D �=2. (You may wish to refer to (7.148) and (7.149).)

(c) Do the results of this section imply that a segment of the catenoid surface can
be deformed into a segment of the helicoid surface without stretching?

Problem 275. Verify (11.34) and (11.35).

11.3 *The Enneper–Weierstrass Representations

The theory of how to construct minimal surfaces that can be extended indefinitely
was worked out by Albert Enneper (1830–1885) and Karl Weierstrass (1815–1897).
Enneper published his results first and his work is applicable to general coordinate
systems (Enneper 1864). Weierstrass’ results are restricted to isothermal coordinates
and harmonic functions (Weierstrass 1866). However, Weierstrass also showed that
it is hard to conceive of a circumstance in which you would not want to use
isothermal coordinates.

From the material covered in the last section, you should have reason to believe
that it is easy to construct formulas representing minimal surfaces. Indeed, this is
true but there are difficulties that you need to be aware of. If you have

@F
@z

D .f .z/; g.z/; i
p
.f .z/2 C .g.z/2//, where

z D u C iv, then
�
@F
@z
;
@F
@z

�
D 0, but

you may have a problem in the neighborhood of any point, where .f .z/2Cg.z/2/ D
0. You are faced with the problem of choosing a plus or minus sign for the square
root. If the point in question is an interior point of some region you wish to consider,
there is no way to consistently choose a sign.
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For example if we let z D z0 C r exp.i�/, then

p
z � z0 D ˙r 12 exp

�
i
�

2

	
D ˙r 12

�
cos

�

2
C i sin

�

2

�
.

Assuming r > 0, and r
1
2 > 0, we have two choices for the sign that we associate

with
p

z � z0. In either case, if � increases by 2� , the quantity
�
cos �

2
C i sin �

2

�

will change sign. Thus, you cannot avoid the problem of dealing with both signs forp
z � z0. You should note that the same problem will occur if

p
.f .z/2 C .g.z/2/ D .z � z0/

2nC1
2

1X

kD0
ak.z � z0/

k where n is a positive integer.

Such troublesome points are said to be branch points. Riemann introduced the
notion of what are now described as Riemann surfaces to deal with branch points
in the context of complex variables. However, a Riemann surface is not what we
usually think of when we study surfaces in the context of differential geometry.

In certain circumstances, the square root problem disappears if you restrict
yourself to certain regions. For example, if you restrict yourself to a bounded region
that is simply connected (no holes), then you can choose either square root if none of
the interior points are branch points. However if you wish to study minimal surfaces
that can be indefinitely extended than you need to avoid branch points altogether.

One way of avoiding branch points suggested by Weierstrass is to require that

@F
@z

D 1

2

�
.G.z//2 � .H.z//2; i.G.z//2 C i.H.z//2; 2G.z/H.z/

�
. (11.41)

(You should check that this requirement implies that

�
@F
@z
;
@F
@z

�
D 0.) If both G.z/

andH.z/ are analytic functions, then F will represent a minimal surface that can be
extended indefinitely. However, this does not exhaust the possibilities. If

G.z/ D .z � z0/
2mC1
2

1X

jD0
aj .z � z0/

j and

H.z/ D .z � z0/
2nC1
2

1X

kD1
bk.z � z0/

k , where

both m and n are positive integers and both series converge for all values of z, then
all three components of @F=@z are analytic even though neitherG norH is analytic.
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A somewhat superior formulation also introduced by Enneper and Weierstrass is
to require that

@F
@z

D 1

2

�
.G.z//2

�
1 � .H.z//2

.G.z//2

	
; i.G.z//2

�
1C .H.z//2

.G.z//2

	
; 2.G.z//2

H.z/

G.z/

	

or restated,

@F
@z

D 1

2

�
f .z/.1 � .g.z//2/; if .z/.1C .g.z//2/; 2f .z/g.z/

�
, where

f .z/ D .G.z//2 and g.z/ D H.z/

G.z/
. (11.42)

This formulation eliminates the branch point problem. (Why?) However, it
introduces another problem. If G.z0/ D 0, then unless H.z0/ is also zero with at
least the same multiplicity, g.z/ will have a representation of the form

g.z/ D b�n
.z � z0/n

C b�nC1
.z � z0/n�1 C � � � C

1X

kD0
bk.z � z0/

k D
1X

kD�n
bk.z � z0/

k .

Such a function is said to have a pole of order n. Since we need all three
components of @F=@z to be analytic, this imposes a restriction on f .z/. In particular
since the first and second components of @F=@z have to be analytic, f .z/ must have
a representation of the form

f .z/ D
1X

jD2n
aj .z � z0/

j , where

n is the order of the pole possessed by g.z/ at z D z0. To compute curvatures and
any other features of a surface, it is generally easier to deal with poles than branch
points. Therefore to derive general formulas, it is usually more useful to use (11.42)
rather than (11.41).

In this context, Enneper’s surface is perhaps the most simple minimal surface
beyond a plane. In that case

f .z/ D 1 and g.z/ D z.

(See Problem 277.)

Problem 276. Even to the casual observer, it is obvious that (11.42) is a sufficient
condition for F.z/ to represent a minimal surface that can be extended indefinitely.
However, it is also a necessary condition. Suppose

@F
@z

D 1

2
.�1; �2; �3/ , where
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�1, �2, and �3 are each analytic and

�
@F
@z
;
@F
@z

�
D 1

4

�
.�1/

2 C .�2/
2 C .�3/

2
� D 0.

Show that given �1, �2, and �3 satisfying the above conditions, there exist functions
f .z/ and g.z/ such that

f .z/
�
1 � .g.z//2� D �1.z/,

if .z/
�
1C .g.z//2

� D �2.z/, and

2f .z/g.z/ D �3.z/.

(Actually, there appears to be an exception. The exception occurs when �3.z/ D
0, and �1.z/ D i�2.z/ ¤ 0. In this case, F.z/ represents a plane parallel to the x-y
plane.) You should show that you can still choose a pair of functions f .z/ and g.z/
so that the corresponding F.z/ represents a plane parallel to the x-y plane.

Problem 277. Verify that if f .z/ D 1 and g.z/ D z, then (11.42) is a representation
of Enneper’s surface.

Problem 278. Use (11.42) to invent your own minimal surface. Then use MAPLE,
MATHEMATICA, or some other computer program to plot it.

Problem 279. Show that the normal vector N for a minimal surface is independent
of the choice of of f .z/ in the formulation of (11.42).



Chapter 12
Some General Relativity

12.1 Einstein’s Theory

It was in 1905 that Einstein wrote his Ph.D. thesis and three papers each of which
would individually receive nominations for the Nobel Prize. He would soon be
working on his General Theory of Relativity. The Special Theory of Relativity
clearly predicts how measurements for the same phenomena will differ when the
observers and objects move at constant speeds relative to one another. But what
happens when these relative speeds are not constant?

In 1922, in an address delivered in Kyoto, Japan, Einstein recalled the moment
in 1907 that would give direction to his efforts to answer this question.

I was sitting in a chair in the patent office at Bern when all of a sudden a thought occurred
to me, ‘If a person falls freely he will not feel his own weight.’ I was startled. This simple
thought made a deep impression on me. It impelled me toward a theory of gravitation.

At another time, he described this as the “happiest thought of my life.” (Pais
1983, pp. 178–179) The year 1907 was also the same year, Einstein was initially
denied a part-time position at the University of Berne. However, it may have been
fortuitous that Einstein was still working in the patent office. The general relativity
theorist, Engelbert Schücking, has pointed out that about this time the application
for the Otis elevator patent would have arrived at the Berne patent office. The Otis
elevator made it feasible to construct buildings above five stories. It was designed so
that no matter what fails, passengers do not go into free fall (unless they step into an
open shaft). Prof. Schücking suggests that the Otis patent may have been “Einstein’s
apple.”

The relevant records in the Berne patent office have been destroyed, so it cannot
be determined whether Einstein was assigned to review the Otis application. One
piece of evidence that supports Schücking’s theory is that in popular presentations,
Einstein would describe the limitations of an observer in a room-sized box pulled
by a rope attached to its lid (Einstein 1961, pp. 66–70).
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Whether this room-sized box was the cage of an Otis elevator , the idea that came
to Einstein became known as the equivalence principle. What was his equivalence
principle? In this day and age, it seems more appropriate to discuss its consequences
for an observer inside a space ship rather than for an observer in a large box pulled
by a rope.

Suppose one is shut up in a windowless space ship with a noiseless, vibrationless
engine. If the space ship was accelerating, one would feel an apparent force. But
could one determine whether the force experienced was due to an acceleration of
the space ship in outer space or due to the force of gravity from some planet on
which the space ship happened to be parked?

If the planet was small, an occupant might be able to observe that while parked
on that planet, two objects dropped would converge slightly since each object
would move toward the center of the planet. The idea that the occupant of the
space ship could not determine the difference of the two situations is known as
the equivalence principle. Clearly, it is flawed but it was a good starting point for
Einstein. Furthermore, if he could figure out how to deal with accelerations, he
would have a theory of gravity.

None of Einstein’s groundbreaking papers in 1905 required mathematics beyond
the high school level. It was probably for this reason that Einstein underestimated the
amount of mathematics he would need to deal with his new problem. In 1911, while
in Prague, he thought he was making some progress. But by the time he returned
to Switzerland in the summer of 1912, he realized that he was encountering some
geometric questions that he was not equipped to deal with (Pais 1983, p. 22).

Seeking help from his longtime friend Marcel Grossman, he was pointed in the
direction of Riemannian geometry. I do not pretend to know what thoughts ran
thorough Einstein’s mind. Generally, when theoretical physicists seek out a law,
they are happiest when they can find some entity that when maximized or minimized
results in the things that actual happen. For example, consider Fig. 12.1.

Given points A and B , there are many conceivable paths from A to the mirror
and then to B . However, the shortest of these paths is that for which the angle of
incidence is equal to the angle of reflection. (Note! The length of the path AC1B is
the same as the length of the path AC1B1, where B1 is the mirror image of B . The
shortest path from A to B1 is a straight line. Thus it is clear that the point C , which
corresponds to the shortest path, is also the point where the angle of incidence �i is
equal to the angle of reflection �r .)

As you see, this light ray problem can be dealt with using very simple math.
However, when the problem is finding a function that will minimize or maximize an
entity even calculus is insufficient to deal with the situation. To deal with this kind
of problem, one needs to use the calculus of variations. The first problem solved by
the calculus of variations was the brachistochrone problem.

In 1696, Johann Bernoulli (1667–1748) challenged the mathematical community
with this problem (Bernoulli, Johann 1696). Given points A and B , what curve
should join the two points so that a point mass sliding down such a curve would
get from A to B in the shortest time? (Assuming no friction.) Johann Bernoulli
already knew the answer and during the following year, the problem was solved
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Fig. 12.1 (a) Possible paths from pointA to the mirror and then from the mirror to pointB: (b) For
the shortest path, the angle of incidence �i is equal to the angle of reflection �r

independently by l’Hôpital, Leibniz, and Newton. However, Johann’s older brother
Jacob came up with a solution that became the first major step in the development
of the calculus of variations (Bernoulli, Jacob 1697).

Leonard Euler was able to show that the approach used by Jacob Bernoulli for
the brachistochrone problem could be generalized to solve virtually any problem
in mechanics that does not include friction. It appeared that essentially all of
Newtonian physics could be derived from a rule that Maupertius called the Principle
of Least Action.

For many in the Age of Enlightenment, the Principle of Least Action had
religious implications. Maupertuis, Voltaire, Euler, and others viewed the Principle
of Least Action as evidence for the existence of God. Some viewed the principle as
evidence of a God who after creating the universe would not interfere in the daily
affairs of men (or women). Thus, all events were predetermined. Voltaire went so far
as to conclude that man had no free will. He argued that if all things – planets, stars,
falling objects, everything in nature – act according to certain laws, why, he asked
should “a little animal five feet high – act as he pleased.” (Muir 1961, pp. 171–172)

As an observant Calvinist, Euler could not accept Voltaire’s conclusion on free
will. However, in the context of the available evidence of the times, he was hard
pressed to construct a convincing counter argument. Things have changed since
that time. The calculus of variations no longer has the religious impact that it once
did. General relativity and various areas of quantum mechanics each requires its
own variational principle. Because there does not seem to be any single overriding
variational principle, the discovery of these principles seems to reveal more about
the cleverness of physicists than they do about the nature of a Creator. Furthermore,
quantum mechanics does not have the determinism of Newton’s laws. This fact
undermines the thought that all events were determined at the moment of a creation.
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Going back to the seventeenth and the eighteenth centuries, the success of
Newton’s theory, with or without the Principle of Least Action, undercut the
authority of the European monarchy. European monarchs claimed that they had the
Divine Right to Rule, that they were acting as God’s agents. Defiance of a king was
defiance of God. This approach worked well for King Louis XIV of France at the
beginning of the eighteenth century and he was able to rule as an absolute monarch.
The fact that, for eternity, the motion of the planets seemed to be ruled by the laws
of Newton suggested that God did not monitor the motion of the planets and would
not interfere in the daily lives of men (or women). The doctrine of the Divine Right
to Rule became more difficult to sell at the end of the eighteenth century. The idea
that kings had a special pipeline to God had lost credibility. In 1793, King Louis
XVI was executed by people who had no fear that they might offend God by killing
someone who might be acting under God’s instructions.

With this historical background, Einstein was presumably looking for a law that
could be stated in terms of the calculus of variations. One such law (or problem?)
that arises in differential geometry is that of determining the shortest path between
two given points in a space with some given metric. (In General Relativity, it is the
problem of determining the path of maximum length.) If somehow, Einstein could
find the right metric, the paths of the planets would be geodesics. Actually, he was
looking for a more general law – that would not be restricted to the solar system.

Many times, Einstein arrived at a theory that he would later reject. At last in
November of 1915 during World War I, he achieved his goal. As he was putting
the final touches on his theory, Einstein presented a series of four lectures on each
Thursday of that month at the Prussian Academy of Sciences. On the last Thursday
(November 25), he presented his final form. This final form is

R˛ˇ � 1

2
g˛ˇR D kT˛ˇ , where (12.1)

R˛ˇ D R˛ˇ is the Ricci tensor; (12.2)

R D g˛ˇR˛ˇ is the scalar curvature, and (12.3)

T˛ˇ is the energy-momentum tensor:

(Sign conventions for both the Riemann curvature tensor and the Ricci tensor vary!)
For mass free regions, T˛ˇ D 0. In that case,

g˛ˇ
�
R˛ˇ � 1

2
g˛ˇR

	
D R � 1

2
ı˛˛R D R � 2R D �R D 0.

Note! Einstein was dealing with a 4-dimensional space so ı˛˛ D 1C 1C 1C 1 D 4:

Thus for mass free regions, R D 0 and (12.1) becomes

R˛ˇ D 0. (12.4)
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By the time, Einstein made his presentation to the Prussian Academy of Science,
he had already derived an approximate solution to (12.4) that would be valid for
the solar system outside the radius of the sun. Less than 2 months after Einstein’s
presentation, Einstein read a paper on behalf of Karl Schwarzschild, a German
astronomer who was serving in the army at that time on the Alsatian front (not the
Russian front as is usually stated) (Schwarzschild 1916, pp. 189–196). In that paper,
Schwarzschild presented an exact solution, which is valid for a small test particle
(a planet) in the presence of a massive sphere (the sun).

12.2 *Karl Schwarzschild 1873–1916

The figure of a WWI German soldier conjures up an image of a young draftee.
Actually, Karl Schwarzschild had had a long distinguished career as an astronomer
before he mailed his famous solution to Einstein. After his death in 1916, his
friend Otto Blumenthal constructed a list of 112 publications he could attribute to
Schwarzschild (Blumenthal 1917, pp. 70–75).

Because of his age, he would not have been drafted – at least during the early
stages of the war. At the age of 42, 6 years older than Einstein, Schwarzschild
volunteered when war broke out. His wife, Else, later revealed that as a prominent
Jew, Karl thought that his display of patriotism would neutralize some of the
antisemitism that would later become virulent under the Nazis (Schwarzschild 1992,
Vol. I, p. 23).

Karl Schwarzschild was born on October 9, 1873. He demonstrated a talent
for astronomy and mathematics at an early age and he published his first paper
in Astronomische Nachrichten in 1890 while he was only 16. He published a second
paper in the same journal in the same year (Schwarzschild 1890a, 1890b).

In 1901, he became director of the Göttingen Observatory. Like Gauss, 100 years
earlier at the same institution, he was an astronomer who also taught advanced
courses in mathematics. According to Hans-Heinrich Voigt;

Schwarzschild liked experimenting and was often brilliant at it. Whenever he needed
some accessory, it was immediately taken from another temporarily unused instrument; if a
diaphragm was needed immediately, a hole was soon made in a lens cap. The Observatory’s
inventory list contains numerous entries made by his successor in red ink, where such
occurrences were deplored in the strongest terms (Schwarzschild 1992, Vol. I, p. 16).

In 1909, Schwarzschild left the Göttingen Observatory to become director of
the Astrophysical Observatory in Potsdam, the most prestigious observatory in
Germany. Schwarzschild was very receptive to Einstein’s efforts to devise a general
theory of relativity. In 1913, he tried without success to measure a shift in wave
length of light emitted by the Sun – a shift predicted by both Einstein’s preliminary
and final theories of general relativity (Schwarzschild 1992, Vol. I, p. 23).

In August 1914, at the outbreak of World War I, Schwarzschild volunteered
to join the Army. During his short 19 months of active duty, Karl Schwarzschild
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was awarded the iron cross (second class) and was promoted from the rank of a
noncommissioned officer to the rank of Lieutenant. He served at various locations
in Belgium, France, and Russia.

On March 6, 1916, his active service ended when he sent a telegram to his wife
from Brussels announcing he had a 14-day pass to return home (Schwarzschild
1975, Sect. 7, Reel 13). Sometime in March, he presented his last paper, “Zur
Quantenhypothese” to the Academy in Berlin. He had completed this paper in
eight short days after he received some results from Sommerfeld (Blumenthal 1917,
p. 69). However, he was soon hospitalized in nearby Potsdam with pemphigus, a rare
and painful autoimmune skin disease. In 1916, doctors had no way of dealing with
this disease and for Schwarzschild, pemphigus would prove to be fatal. It started
with a few blisters near his mouth and slowly spread until the blisters covered his
entire body (Blumenthal 1917, p. 70). A few days before his death, he read the
proofs of his last paper, which appeared in print on the last day of his life, May 11,
1916.

At the time of his death, several obituaries indicated that he had acquired the
disease on some battlefront. A few years ago, I asked my personal physician, George
Lombardi, about the nature of pemphigus. He informed me that it was likely that
Schwarzschild’s pemphigus was set off by exposure to poison gas. It is indeed
plausible that because of Schwarzschild’s efforts to make himself useful to his
fatherland, he became exposed to poison gas.

Many of Germany’s most outstanding scientists were engaged in developing ever
more effective poison gas concoctions and ever more effective delivery methods.
The leading figure was Fritz Haber, who would won the Nobel Prize in chemistry for
1918. He won the prize for the synthesis of ammonia using atmospheric nitrogen.
His method of synthesis is known as the Haber–Bosch process. Ammonia is the
basis for fertilizers which revolutionized agriculture in the twentieth century. Daniel
Charles, a biographer of Fritz Haber, has written;

According to one careful estimate, about one third of all the people on earth, about two
billion souls, could not survive in the absence of the Haber-Bosch process. Left to its
own devices, Earth simply could not grow enough food to feed all six billion of us our
accustomed diet (Charles 2005, p. 103).

Because of his activities during World War I, Fritz Haber is also known as the
father of chemical warfare. He made a point of being present with his team of fellow
scientists on the occasion of the first significant use of poison gas on the Western
Front. Chlorine gas was released from canisters at the Second Battle of Ypres in
Belgium against Algerian, French, and Canadian troops on April 22, 1915. Casualty
figures for this event are unreliable. The Germans did not want to be portrayed as
war criminals so they downplayed the numbers. For the same reason, the Allies
tended to inflate the figures. The Germans claimed that on April 22 their hospitals
dealt with a mere 200 gas victims, of whom twelve died later. The Allies, on the
other hand, reported 15,000 and 5,000 killed (Haber 1986, p. 39). Author Simon
Jones suggests that between 800 and 1400 were killed and another 2000–3000 were
injured (Jones 2007, p. 6).
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To the disappointment of Fritz Haber, German troops did not fully exploit
gaps opened up in the Allied lines. Nonetheless, the results seemed to show that
poison gas used against troops unprotected by gas masks could break the stalemate
associated with trench warfare.

Fritz Haber recruited a number of future Nobel Prize winners for his team. In
particular, his team included James Franck (Physics 1925), Gustav Hertz (Physics
1925), and Otto Hahn (Chemistry 1944). In addition, Walther Nernst (Chemistry
1920) led the development of munitions that enabled the German Army to propel
gas into Allied lines via mortars (Haber 1986, p. 30). Richard Willstater (Chemistry
1915) and Heinrich Wieland (Chemistry 1927) also endeavored to advance the
effectiveness of chemical warfare (Hahn 1970, p. 124).

For the first 10 months of his service in the Army, Karl Schwarzschild served
as director of a field weather station in Namur, Belgium. At his request, he was
assigned to an artillery regiment attached to the Fifth Army, which put him on
the front lines in the Argonne forest. On June 20, 1915, the day of his arrival in
Grandpré, the Fifth Army was engaged in an attack, which involved one of the
earliest use of poison gas delivered by howitzer shells. On that day up to 25,000 of
those shells rained down on French troops. Ten days later, in a similar attack, the
Germans captured 3,000 prisoners and forced the French to abandon their positions
(Jones 2007, p. 12 and Mosier 2001, p. 159).

While still at Namur, Schwarzschild had begun work on a paper entitled, Über
den Einfluss von Wind und Luftdichte auf die Geschussbahn (The Effect of Wind
Velocity and Air Density on the Trajectory of Artillery shells) (Schwarzschild 1992,
p. 23). The usual artillery tactic was to fire a first shot and then use observers to
adjust successive shots to close in on the target. It was Schwarzschild’s hope that
his computations would enable his countrymen to benefit from a lethal surprise on
the first salvo before enemy troops could take cover.

The introduction of poison gas would have opened up many more opportunities
for Schwarzschild to contribute to his adopted cause. Even at this early date, it had
become clear that using poison gas was good for disabling enemy troops but did
not necessarily result in territorial gains. There were many questions that could be
posed to a mathematician. How many shells should be fired into what size area to
have the desired effect? What time of day should the poison be delivered so that
rising air would not mitigate the intended effect? From battlefield observation, Fritz
Haber had already determined that if the product of the concentration and time of
exposure was sufficiently high, one would get the desired lethal effect.

In August of 1915, Karl Schwarzschild along with his artillery brigade was
assigned to the Tenth Army on the Russian Front at Kovoso in present day Lithuania.
The Russian troops provided a tempting target for chemical warfare because their
troops had no gas masks until close to the end of the war. Some historians estimate
that Russia was the country that suffered the greatest number of chemically induced
casualties, but others say that the figures are so unreliable that it is impossible to
make any estimate with confidence.
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The earliest German gas attacks were not on the Western Front but against the
Russians. However, the results for the Germans were not completely satisfactory. On
January 31, 1914, the Germans attempted to inflict a compound of bromine on the
Russian troops at Bolimov. Because of cold weather, the liquid failed to vaporize
and the Russians failed to notice they were the intended victims of a gas attack
(Jones 2007, p. 3).

A later attack, on May 31, 1915, caught the Russians during a time of troop
replacement when trenches were crowded and somewhat disorganized. Without gas
masks, the Russians may have suffered as many as 5,000 casualties but a shift in
the wind resulted in 56 German gas casualties (Jones 2007, pp. 11–12). When Otto
Hahn was present at a subsequent attack on June 12, the wind reversed direction
again causing 350 German casualties. The last of this series of attacks occurred on
July 6. This time things were much worse for the Germans. At least 1,450 Germans
were gassed of whom 130 were killed (Jones 2007, p. 12). One of the victims was
Gustav Hertz who took several months to recover (Hahn 1970, pp. 120–121).

During this time, Erich Ludendorff was the German General responsible for the
Russian Front. Later he wrote in his memoirs:

In accordance with the instructions of General Headquarters the Ninth Army was now to
attack at Skierniewice. We had received a supply of gas and anticipated great tactical result
from its use, as the Russians were not yet fully protected against gas. We also had reason to
expect local successes from an attack by the Tenth Army, east of Suwalki, and instructions
were issued accordingly.

The gas attacks by the Ninth Army, which took place on May 2, were not a success. The
wind was favorable, but the troops had not been properly instructed. The gas was emitted
as intended, but the troops imagined that the enemy ought not to be able to move at all.
As the latter were still firing in places and our own artillery did not cooperate as it should
have done, the infantry did not attack. It assumed that the gas had no effect. The Ninth
Army was unlucky with gas. When it repeated the gas attack at the same place later, but
not in connection with these operations, the wind veered round. We suffered severe losses
by gassing. The troops were not fond of gas: the installation took too long and both officers
and men disliked waiting with full gas-containers in the trenches for the wind (Ludendorff
1919, p. 167).

We do not know the detailed activities of Schwarzschild while on the scene a few
months later but we do know that during his short stay on the Russian Front he was
provided a report on a weather instrument, which was designed to give short-term
forecasts of wind velocity and wind direction with the explicit intent of making the
use of gas-filled howitzer shells a more viable tactic (Schwarzschild 1975, Reel 8,
Sect. 4). It was during his time at the Russian Front that Schwarzschild received his
promotion to the rank of Lieutenant.

According to most biographies of Einstein, Schwarzschild sent his famous
solution to Einstein from the Russian Front in a letter dated December 22, 1915.
However, correspondence with his wife shows that by the end of September he had
been relocated to Mulhouse in Alsace. He was then relocated again to someplace
else but by December 1, he was back in Mulhouse. Historian Tillman Sauer has
drawn my attention to a letter Schwarzschild wrote to Arnold Sommerfeld on
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the same date that Schwarzschild mailed his solution to Einstein (Schwarzschild
1915). In the letter to Sommerfeld, Schwarzschild describes hearing cannon fire
from Hartmannweilerkopf, which is about 10 km from Mulhouse. (Because of its
commanding elevation, control of Hartmannweilerkopf was considered to be a
necessary condition for control of the surrounding region. In 1915 alone, the hilltop
changed hands four times, each time at great cost of life. Today, tourists can observe
a landscape still scarred by the conflict and a crypt containing the bones of 12,000
unknown soldiers.)

Was Schwarzschild exposed to poison gas? With his “hands on” approach,
it seems likely. Anyone who dedicated himself to the advancement of chemical
warfare was vulnerable. We have already mentioned the incident with Gustav Hertz
on the Russian Front. On April 3, 1915, about 3 weeks before the Germans inflicted
chlorine on Allied troops at Ypres, Fritz Haber, and an army officer were riding
horseback behind a cloud of chlorine gas during a field test. They got too close
and nearly suffocated. Haber became sick but recovered after a few days (Charles
2005, p. 161). Otto Hahn described splashing some phosgene into one of his eyes,
an incident that required medical attention to avoid loss of vision (Hahn 1970,
pp. 123–124). Otto Hahn was also exposed to low concentrations of phosgene
several times and at one point it took him a month of rest to recover. He wrote,
“I came to no harm but Dr. Günther, a chemist from Luverkusen, was fatally
poisoned, and Professor Freundlich, from Haber’s laboratory, exposed himself to
such an extent that for some time he was in danger of losing his life (Hahn 1970,
pp. 126–128).

In June of 2009, I attended a college reunion where I encountered Jerry Ostriker.
Professor Ostriker served in the Astrophysics Department of Princeton University
for many years with Martin Scharzschild. Martin Schwarzschild was a son of Karl
Schwarzschild who also became a world renowned astronomer. I mentioned the
speculation of my physician that Karl Schwarzschild’s pemphigus was induced by
poison gas. Jerry responded by saying that he was under the impression that Karl
Schwarzschild had died from exposure to poison gas. He told me that he did not
remember how he got that impression but that the only logical explanation was that
Martin had told him.

Regardless of the circumstance of Schwarzschild’s death, his premature death
was a loss to the scientific community. On June 29, 1916, Einstein delivered a eulogy
to the Berlin Academy:

– What is specially astonishing about Schwarzschild’s theoretical work was his easy
command of mathematical methods and the almost casual way in which he could penetrate
to the essence of astronomical or physical questions. Rarely has so much mathematical
erudition been adapted to reasoning about physical reality. And so it was, that he grappled
with many problems from which others shrank on account of mathematical difficulties. The
mainsprings of Schwarzschild’s motivations in his restless theoretical quests seem less from
a curiosity to learn to deeper inner relationships among the different aspects of Nature than
from an artist’s delight in discerning delicate mathematical patterns. – And in the very last
month of his life, much weakened by a skin disease, he yet succeeded in making some
profound contributions to quantum theory. – (Schwarzschild 1992, pp. 34–35).
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12.3 The Schwarzschild Metric

I will now present a derivation of Schwarzschild’s solution. Using various symmetry
arguments, Schwarzschild hypothesized that the line element corresponding to a
spherically symmetric solution of the equation R˛ˇ D 0 would have the form

.ds/2 D f .r/c2.dt/2 � h.r/.dr/2 � r2.d�/2 � r2 sin2 �.d�/2. (12.5)

(Here, it is understood that c represents the speed of light.)
In this curved space–time, you cannot use the same coordinate to designate the

distance from the center and the circumference of a great circle about the origin
divided by 2� . For the Schwarzschild metric, we note that on the surface of a sphere
centered at the origin, dr D 0, so

.ds/2 D �r2 �.d�/2 C sin2 �.d�/2
�

.

On the circumference of the equatorial circle, � D �=2 and .ds/2 D �r2.d�/2 .
Thus, the circumference is

Z 2�

0

rd� D 2�r . (12.6)

On the other hand, the radial distance between two points would be
Z r2

r1

.h.r//1=2dr ¤ r2 � r1. (12.7)

Now let us consider the problem of deriving the Schwarzschild metric. From (12.5),

�
g˛ˇ

� D

2

66
4

c2f .r/ 0 0 0

0 �h.r/ 0 0

0 0 �r2 0

0 0 0 �r2 sin2 �

3

77
5 (12.8)

and

�
g˛ˇ

� D

2

6
6
4

1=.c2f .r// 0 0 0

0 �1=h.r/ 0 0

0 0 �1=r2 0

0 0 0 �1=.r2 sin2 �/

3

7
7
5 : (12.9)

From these two equations, it is clear how to construct a moving orthonormal
frame

”t D 1

cf
1
2

E0 D 1

cf
1
2

E0 D 1

c2f
”t , (12.10)

”r D 1

h
1
2

E1 D �1
h
1
2

E1 D �1
h

”r , (12.11)
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”� D 1

r
E2 D �1

r
E2 D � 1

r2
”� , and (12.12)

”� D 1

r sin �
E3 D �1

r sin �
E3 D �1

r2 sin2 �
�� . (12.13)

Since the metric is diagonal, we can use (5.96). That is

�˛ D 1

4
”˛	

@g˛˛

@u	
, where (12.14)

the 	 index is summed but the ˛ index is not. Thus,

� t D c2

4

df

dr
� t r D c

4.f h/
1
2

df

dr
E01, (12.15)

� r D 0, (12.16)

�� D �r
2

�� r D 1

2h
1
2

E12, and (12.17)

�� D �r sin2 �

2
”�r � r2 sin � cos �

2
”�� D � sin �

2h
1
2

E31 C cos �

2
E23. (12.18)

To obtain the curvature 2-forms, we use (5.84). Namely,

1

2
R˛ˇ D @˛�ˇ � @ˇ�˛ C �˛�ˇ � �ˇ�˛ . (12.19)

From this formula, we get

Rt r D
"

�c
2.f h/

1
2

d2f

dr2
C c

4.f h/
3
2

df

dr

d.f h/

dr

#

E01

D
��c2
2

d2f

dr2
C c2

4.f h/

df

dr

d.f h/

dr

�
”t r , (12.20)

Rt� D �c
2f

1
2 h

df

dr
E02 D �c

2r

2h

df

dr
”t� , (12.21)

Rt� D �c sin �

2f
1
2 h

df

dr
E03 D �c

2r sin2 �

2h

df

dr
”t� , (12.22)

R�� D � sin �.h� 1/
h

E23 D �r
2 sin2 �.h� 1/

h
”�� , (12.23)

R�r D � sin �

2h
3
2

dh

dr
E31 D �r sin2 �

2h

dh

dr
”�r , and (12.24)

Rr� D �1
2h

3
2

dh

dr
E12 D �r

2h

dh

dr
”r� . (12.25)
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To extract the components of the Ricci tensor, it is useful to use the formula

R˛ˇ”ˇ D 1

2
R˛ˇ	
”

	”
”ˇ D �R˛ˇ”ˇ . (12.26)

(See Problem 284.)
Using this last formula, we have

Rt”
 D Rt r”

r C Rt�”
� C Rt�”�

D
�
c2

2h

d2f

dr2
� c2

4f .h/2
df

dr

d.f h/

dr
C c2

rh

df

dr

�
”t .

That is,

Rt”
 D �

�
c2

2h

d2f

dr2
� c2

4f .h/2
df

dr

d.f h/

dr
C c2

rh

df

dr

�
”t . (12.27)

Similarly,

Rr”
 D �

��1
2f

d2f

dr2
C 1

4.f /2h

df

dr

d.f h/

dr
C 1

rh

dh

dr

�
”r , (12.28)

R�”
 D �

� �r
2.f h/

df

dr
C r

2.h/2
dh

dr
C h� 1

h

�
”� , and (12.29)

R�”
 D � sin2 �

� �r
2.f h/

df

dr
C r

2.h/2
dh

dr
C h� 1

h

�
”� . (12.30)

Thus, we see that most of the components of the Ricci tensor are already zero
because of Schwarzschild’s hypothesized form of the line element. Einstein’s field
equations now become

Rtt D c2f

h

��1
2f

d2f

dr2
C 1

4.f /2h

df

dr

d.f h/

dr
� 1

rf

df

dr

�
D 0, (12.31)

Rrr D 1

2f

d2f

dr2
� 1

4.f /2h

df

dr

d.f h/

dr
� 1

rh

dh

dr
D 0, and (12.32)

R�� D sin2 �R�� D sin2 �

�
r

2.f h/

df

dr
� r

2.h/2
dh

dr
� h� 1

h

�
D 0. (12.33)

Taking an obvious linear combination of (12.31) and (12.32), we have

1

f

df

dr
C 1

h

dh

dr
D 0. (12.34)
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Integrating, we have

lnf C lnh D ln.f h/ D ln k, or

f h D k, where k is some constant.

At long distances from the sun, the metric should approach the flat space–time
Lorentz metric used for special relativity, so

lim
r!1f .r/ D lim

r!1h.r/ D 1.

Thus, we can conclude that our constant k is 1 and we then have

f .r/h.r/ D 1. (12.35)

Using (12.34), (12.33) becomes

r

.h/2
dh

dr
C h � 1

h
D 0 or equivalently,

1

h.h � 1/

dh

dr
C 1

r
D 0.

From a partial fraction expansion, this becomes

�dh

h
C dh

h � 1 C dr

r
D 0.

Integrating this equation gives us

� lnhC ln.h � 1/C ln r D lnC or
r.h� 1/

h
D C , where

C is some constant. Solving for h, we get

h.r/ D
�
1 � C

r

	�1
.

From (12.35),

f .r/ D
�
1 � C

r

	
.

Traditionally, the constant C is designated by 2m, so the line element becomes

.ds/2 D
�
1 � 2m

r

	
c2.dt/2 �

�
1 � 2m

r

	�1
.dr/2 � r2.d�/2 � r2 sin2 �.d�/2.

(12.36)
From the form of the Schwarzschild metric, we see that there is a singularity

at r D 2m. This is known as the Schwarzschild radius. Mathematically, this
singularity can be removed by another choice of coordinates like the singularities
that occur at the North and South poles for spherical coordinates. To emphasize this
point, current astronomers refer to the horizon. This is a term advanced by Wolfgang
Rindler, a physicist at Cornell University in the 1950s.
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Nonetheless, it is this peculiar aspect of the Schwarzschild metric that stimulated
speculation that black holes might exist. The theory opened up the possibility of
black holes but did not predict there existence. The Schwarzschild solution is only
valid for mass free space. For the sun, the Schwarzschild radius is about 3 km,
which is well within the surface of the sun, which is the boundary of the mass free
region. (In view of (12.6) and (12.7), it makes more sense to say that the critical
circumference for a body with the mass of the sun is 18.5 km.)

It took a stretch of imagination to suggest that their might be objects in outer
space that were so dense that their boundaries might be inside their horizons. For a
long time, astronomers were unable to construct a plausible scenario for the creation
of a black hole. Furthermore, they were not highly motivated to do so. The existence
of black holes seemed highly speculative and the two most prominent proponents of
the general theory of relativity, Einstein and Eddington were convinced that black
holes could not exist.

However as observational instruments became more sophisticated, it was discov-
ered that two families of stars were extremely dense – white dwarfs and neutron
stars. Faced with the task of developing theories for these objects, the existence of
black holes became more plausible.

The term black hole was introduced late in the game. The Russians used the term
frozen star and in the West, the favored term was collapsed star. John Wheeler is
responsible for much of the theoretical groundwork on these super dense objects.
Late in 1967, after much careful thought, Wheeler introduced the term black hole in
a couple of lectures. Within months, this term became almost universally excepted.
The exception being the French who resisted the term for several years because the
literal translation trou noir has obscene connotations (Thorne 1994, p. 257).

The gravitational field of a black hole is so strong that nothing (including light)
can escape from inside the horizon. The first black hole to be identified was Cygnus
X-1, which was discovered in 1972. Its existence was inferred by X-rays emitted by
gas particles that are pulled toward the black hole from all directions at tremendous
rates of acceleration (Thorne 1994, pp. 24–25).

To obtain some insight into the long road required to achieve a comprehension
of the nature of black holes, I recommend Kip Thorne’s Black Holes & Time Warps
– Einstein’s Outrageous Legacy.

Problem 280. Snell’s Law: Consider Fig. 12.2. The velocity of light in glass is
slower than the velocity of light in air. Because of this the quickest path from A to
B (or from B to A) is not a straight line. Use calculus or whatever method you can
to show the quickest path occurs when

sin �a

va
D sin �g

vg
, where

va is the velocity of light in air and vg is the velocity of light in glass. This is known
as Snell’s Law. Snell’s Law is frequently stated in terms of the index of refraction.
For glass, the index of refraction is ng D va=vg.
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C

A

B

θg

θa

air

glass

Fig. 12.2 The quickest path from A to B is not a straight line

Problem 281. Sometime before I graduated from high school, I obtained a job
as a swmming instructor for a summer Y.M.C.A. “learn to swim” program. The
swimming pool had a uniform depth of 4 ft (120 cm). Most of the students had a
height of approximately 4 ft. I was supposed to tell the members of each incoming
class to climb down a ladder and then grasp a rail that was attached to one of the
walls of the pool. However, sometimes I would forget and a child would jump in and
suddenly discover that the water was over his or her head. (If my memory is correct
it was always a “his head” rather than a “her head.”) I would then have to jump into
the pool to rescue the child from my negligence. Fortunately, no more than one child
ever did this at the same time. Because of refraction, the depth of the pool appeared
to be more shallow than it actually was. (See Fig. 12.3.) The index of refraction
for water varies slightly with temperature but it is essentially 4=3. Determine the
apparent depth of a 4 ft deep swimming pool looking straight down. Is this illusion
sufficient to explain the behavior of my swimming students or should they have
looked a little better before they jumped in?

Problem 282. (a) Consider Fig. 12.4. A parabola may be defined as the locus (set)
of points that are equidistant from a straight line called a directrix and a point
known as the focal point. Using that definition and an argument similar to the
one I used in this section for the flat mirror show that the shortest path from the
focal point at F to the parabola and then to point A is the one that is parallel to
the axis of symmetry after hitting the parabola. (This shows that any light ray
emitted from the focal point of a parabolic mirror is reflected into a path parallel
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water

air

apparent

depth actual
depth

Fig. 12.3 Because of refraction, the apparent depth of a swimming pool is less than the actual
depth. Diverging light rays originating from a point on the floor of the pool appear to originate
from a point above the floor

Fig. 12.4 Possible light rays
originating at the focal point
F of a parabolic mirror and
passing through the point A

y

x
directrix

F

A

C

C2

C1

to the axis of symmetry.) Conversely, light ray directed toward the concave side
of a parabolic mirror parallel to the axis of symmetry will be reflected toward
the focal point. In this manner, a parabolic mirror directed toward the sun will
have a very high temperature at the focal point.

(b) Show that at the point of reflection determined in part (a), the angle of incidence
equals the angle of reflection.
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Problem 283. Using the definition for the Ricci tensor,

R˛ˇ D R˛ˇ show that

R˛ˇ D Rˇ˛ .

(You may wish to review (5.52)–(5.55).

Problem 284. Using the fact that

”	”
”ˇ D ”	
ˇ C g	
”ˇ � g	ˇ”
 C g
ˇ”	, show

R˛ˇ”ˇ D 1

2
R˛ˇ	
”

	”
”ˇ D �R˛ˇ”ˇ.

(You may wish to review the same equations suggested in Problem 283.)

Problem 285. The Schwarzschild radius has an interpretation even in Newtonian
physics. According to Newtonian physics, an object in the gravitational field of a
planet satisfies the equation,

1

2
mv2 � mMG

r
D E , where

m is the mass of the object, v is the velocity of the object, M is the mass of the
planet,G is the universal gravitational constant, r is the distance between the object
and the center of the planet, and E is a constant known as the total energy of the
system.

Consider the problem of throwing an object from the surface of the planet into
space. The constant E will be determined by the radius r0 of the planet and the
initial velocity v0. As r increased, v decreases. If the object is not given sufficient
velocity at the surface of the planet, the constant E will be negative and eventually
r will attain a magnitude such that,

mMG

r
CE D mMG

r
� jEj D 0.

At that point, the velocity of the object will be zero and the object will begin
a descent back to the surface of the planet. However if the initial velocity v0 is
sufficiently great, the object will continue to move into outer space. There exists a
minimum value of v0 that is sufficiently great so that the object will continue to move
into outer space. This minimum value for v0 is known as the escape velocity.

(a) Determine a formula for the escape velocity in terms of M , G, and the radius
of the planet r0.

(b) Suppose the speed of light is c. Determine a formula for the maximum radius
of the planet with the property that an object given an initial velocity of c would
not escape. On the basis of a similar calculation, John Mitchell predicted the
existence of “dark stars” in 1783 (Thorne 1994, p. 122).
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(c) To what extent would you have to shrink the earth without changing its mass so
that the escape velocity would be equal to the speed of light. (The mass of earth
M D 6 � 1024 kg, G D 6:67 � 10�11 m3 (s�2 kg), and c D 3:00 � 108 m s�1).

Problem 286. In the discussion of Gauss’s Theorema Egregium, it was shown that
a necessary condition for a curved space to be a hypersurface is that there exists a
tensor h˛ˇ such that

R˛ˇ
	 D h˛
h
ˇ
	 � h˛	hˇ
 , which can be rewritten in the form,

R
	 D 1

2
R˛ˇ
	”˛”ˇ D H
 ^ H	, where

H˛ D hˇ˛”ˇ .

In view of this, is it plausible that the four-dimensional Schwarzschild space–time
could be embedded in some flat five dimensional space?

12.4 The Precession of Mercury

From Problem 79, we know that the equations for geodesics can be written in the
form,

d

ds

@F

@Ku˛ � @F

@u˛
D 0, where ˛ D 1; 2; : : : ; n and (12.37)

F D g˛ˇ Ku˛ Kuˇ. (12.38)

This equation looks unnatural in the context of differential geometry. However, it
arises naturally in the context of the calculus of variations. To determine geodesics,
F is defined by (12.38). For other problems, F is defined differently. Equation
(12.37) was introduced by Euler to generalize the approach that Jacob Bernoulli
used to solve the brachistochrone problem to solve a wide variety of problems
in physics. Later, Joseph Louis Lagrange (1736–1813) investigated some analytic
aspects of the equation. For these reasons, (12.37) became known as the Euler–
Lagrange equation.

For the Schwarzschild metric, we have

.ds/2 D
�
1 � 2m

r

	
.cdt/2�

�
1 � 2m

r

	�1
.dr/2� .rd�/2� .r sin �d�/2. (12.39)

so

F D
�
1 � 2m

r

	
.c Kt /2 �

�
1 � 2m

r

	�1
.Kr/2 � .r K�/2 � .r sin � K�/2, where (12.40)
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Kt D dt

ds
, Kr D dr

ds
, K� D d�

ds
, and K� D d�

ds
. (12.41)

The Euler–Lagrange equations are

d

ds

@F

@Kt � @F

@t
D 0, (12.42)

d

ds

@F

@Kr � @F

@r
D 0, (12.43)

d

ds

@F

@ K� � @F

@�
D 0, and (12.44)

d

ds

@F

@ K� � @F

@�
D 0. (12.45)

Equation (12.42) becomes

d

ds

�
2

�
1 � 2m

r

	
c2 Kt
�

D 0:

This implies that �
1 � 2m

r

	
Kt D a constant. (12.46)

Equations (12.44) and (12.45) become

d

ds
.�2r2 K�/C 2r2 sin � cos �. K�/2 D 0, and

d

ds

h
�2.r sin �/2 K�

i
D 0.

If we seek out a solution in the x–y plane, then � D �=2 and K� D 0. This takes
care of the first equation and the second equation then becomes

r2 K� D 2˛

c
, where (12.47)

˛ is a constant that I will discuss later.
If we write out (12.43), we will have a second-order differential equation for r .

However, we can avoid some work if we use (12.39). From that equation, we have

1 D
�
1 � 2m

r

	
c2.Kt /2 C

�
1 � 2m

r

	�1
.Kr/2 � r2. K�/2 � r2 sin2 �. K�/2.

Substituting � D �=2, K� D 0, and K� D 2˛=cr2 and reorganizing terms, this last
equation becomes

.Kr/2 D
"

1 � c2
�
1 � 2m

r

	2
.Kt/2

#

� 2m

r
� 4˛2

c2r2
C 8m˛2

c2r3
.
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Since .1 � 2m
r
/.Kt / is a constant, this last equation can be written as

.Kr/2 D �C
c2

� 2m

r
� 4˛2

c2r2
C 8m˛2

c2r3
.

The corresponding equation in Newtonian physics is

�
dr

dt

	2
D �C � 2MG

r
� 4˛2

r2
, where (12.48)

M is the mass of the sun, G is the universal gravitational constant, and C is a
constant proportional to the energy of the system.

To make the two equations easier to compare, I am going to substitute

s D c� and m D MG=c2. (12.49)

Then Kr D dr=cd� and Einstein’s equation for the geodesic path of Mercury
becomes

�
dr

d�

	2
D �C � 2MG

r
� 4˛2

r2
C 8MG˛2

c2r3
. (12.50)

In some sense, the Newtonian theory of gravitation may be considered the
approximation of the Einstein theory made when the speed of light is treated
as being infinite. We see that (12.48) and (12.50) do indeed become identical
if we replace the speed of light by infinity. Furthermore, we should note that
the additional Einstein term becomes most significant when r is small. Thus, the
Einstein correction will have a greater impact on the orbit of Mercury than it will
for any of the other planets.

We must make a distinction between the “�” in (12.50) and the “t” that appears
in the other Einstein relativity equations in this section. The variable “s” is the arc
length parameter for a path through a 4-dimensional space. The variable “�” is a
scalar multiple of s. If two travelers separate and then come together again, they will
agree that they began their trips at a common point in their 4-dimensional space and
they ended their separate excursions at another common point in their 4-dimensional
space. What may differ for the two travelers is the arc lengths of their trips. Each
traveler can measure his (or her) arc length by carrying along a personal clock When
they meet a second time, these clocks may disagree. This has been demonstrated
for very accurate atomic clocks and in theory it should be true for less accurate
biological clocks.

From (12.39), we have

c2 D
�
1 � 2m

r

	�
c

dt

d�

	2
�
�
1 � 2m

r

	�1 �dr

d�

	2
�
�
r

d�

d�

	2
�
�
r sin �

d�

d�

	2
.
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dφ

r

Fig. 12.5 Infinitesimal area
swept out by a planet
revolving around the sun

If the velocity is nonrelativistic (dr=d� � c, r .d�=d�/ � c, and r sin � .d�=d�/
� c) and the gravitational field is weak (m=r � 0), then dt=d� � 1. In this
circumstance, the change in the path parameter will approximate the change in the
time parameter. That is

�t D
Z

dt � �� D
Z

d�:

However if a traveler moves around at relativistic speed during the traveler’s
excursion, then it is possible that �t 
 �� . Thus, it is theoretically possible that a
high speed traveler could return home to discover that a twin brother (or sister) had
aged more than he (or she) had. (For both twins, the �t would be the same but for
the stay at home twin �t � �� .)

In the Newtonian model, “t” is a path parameter in a 3-dimensional space. It is
neither an arc length parameter nor a constant multiple of an arc length parameter.

Before attacking the problem of solving (12.50), I wish to tell you the signifi-
cance of the constant “˛” that appeared in (12.47). The constant ˛ was chosen so
that it can be interpreted as the areal velocity. From (12.47) and (12.49), we have

˛ D 1

2
r2

d�

d�
.

We note that (1=2/r2d� represent an infinitesimal area swept out by the radial vector
from the sun to an orbiting planet. (See Fig. 12.5.) Thus, ˛ D .1=2/r2.d�=d�/ is
the areal velocity – that is the rate at which the area is swept out. The fact that the
areal velocity is constant is known as Kepler’s second law.
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I will now return to the problem of solving (12.50). Namely

�
dr

d�

	2
D �C � 2MG

r
� 4˛2

r2
C 8MG˛2

c2r3
. (12.51)

This equation is easier to solve if we substitute

r D 1

u
and

then solve for u as a function of � rather than as a function of � . Since

dr

d�
D �1

u2
du

d�
D �1

u2
du

d�

d�

d�
D �r2 d�

d�

du

d�
D �2˛ du

d�
, (12.51) becomes (12.52)

4 .˛/2
�

du

d�

	2
D �C � 2MGu � 4˛2u2 C 8MG˛2u3

c2
or

�
du

d�

	2
D �C
4˛2

� MGu

2˛2
� u2 C 2MGu3

c2
: (12.53)

The Newtonian version of this equation can be solved exactly and the relativistic
term can be considered a small perturbation. With that thought in mind, I will present
the solution of the Newtonian version first. That is, I will discuss the solution of the
equation:

�
du

d�

	2
D �u2 � MGu

2 .˛N /
2

� C

4 .˛N /
2

(12.54)

(I have chosen to designate the areal velocity by ˛N so that I can pair off a
Newtonian orbit with an Einstein orbit later in this section.)

The point in the orbit that is closest to the sun is said to be the perihelion. At
this position, r is a minimum so u is a maximum. If we use “R” to designate the
minimum distance, then:

du

d�
D 0 when u D �P D 1

R
.

(See Fig. 12.6a.) From this observation and (12.54), we have

0 D � .�P /2 C MG

2.˛N /2
�P � C

4.˛N /2
.

Subtracting this equation from (12.54) gives us
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Fig. 12.6 (a) R is the minimum distance between a planet and the sun. (b) Possible orbits of
objects passing near the sun

�
du

d�

	2
D .�P /

2 � u2 � MG

2.˛N /2
.�P � u/ D .�P � u/

�
�P C u � MG

2.˛N /2

	
, or

�
du

d�

	2
D .�P � u/.u � �A/, where (12.55)

�A D MG

2.˛N /2
� �P . (12.56)

If �A > 0, then
1

�P
< r D 1

u
<

1

�A
.

In this case, the orbit is bounded and the position where u D �A is said to be the
aphelion. This is the position of the planet when it is farthest from the sun.

Expanding the right-hand side of (12.55) and completing the square gives us

�
du

d�

	2
D
h�P � �A

2

i2 �
�

u � �P C �A

2

�2
, or

du
r
�
�P��A
2

�2 �
h
u � �PC�A

2

i2
D ˙d�, which implies

arccos
u � �PC�A

2
�P��A
2

D �� C �0. (12.57)
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r
r

2f

a b

φ a

f
b

Fig. 12.7 (a) An ellipse is defined by the fact that Or C r D the length of the major axis 2a. 2f is
the distance between the focal points. (b) a2 D b2 C f 2, where 2b is the length of the minor axis

If we use perihelion for our initial position, then u D �P when � D 0. Thus,

arccos
�P � �PC�A

2
�P��A
2

D arccos 1 D �0.

Therefore, �0 D 0. Taking the cosine of each side of (12.57), now gives us

u D 1

r
D �P C �A

2
C �P � �A

2
cos�. (12.58)

This is

a circle if �A D �P , or


r2

d�
d�

�2 D MGR;

an ellipse if 0 < �A < �P , or MGR <


r2

d�
d�

�2
< 2MGR;

a parabola if �A D 0, or


r2

d�
d�

�2 D 2MGR;

(Since a parabola is not closed, �A does not indicate an aphelion position.),

a hyperbola if ��P < �A < 0, or 2MGR <


r2

d�
d�

�2
; and

a straight line if �A D ��P , or M D 0.
(If �A < ��P , then M would have to be negative.)
(See Fig. 12.6b.)
To examine the case of the ellipse more deeply, you should note that a point on

an ellipse has the property that the sum of its distances from the focal points are
constant. (See Fig. 12.7a.) From the law of cosines,

.Or/2 D .r/2 C .2f /2 C 4rf cos�. Also,

Or C r D 2a.
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Therefore,

.2a � r/2 D .r/2 C .2f /2 C 4rf cos�,

4a2 � 4ar D 4f 2 C 4rf cos�,

a2 � f 2 D r.a C f cos�/, or

1

r
D a

b2
C f

b2
cos�, where (12.59)

b2 D a2 � f 2. (12.60)

As you might expect from Fig. 12.7b, in Cartesian coordinates, this equation
becomes

.x C f /2

a2
C y2

b2
D 1. (12.61)

(See Problem 287.) Thus, we see (or should see) that the semi major axis (half the
long axis) is “a” and the semi minor axis is “b.”

In passing, it is worthwhile to note that Kepler’s first law is that the orbits of the
planets are ellipses, where the sun is located at one of the focal points.

Now let us return to Einstein’s equation for the orbit of Mercury. That is

�
du

d�

	2
D �C
4˛2

� MGu

2˛2
� u2 C 2MGu3

c2
. (12.62)

For a Newtonian orbit, the choice of the perihelion distance R D 1=�P and
the magnitude of the areal velocity ˛ determines the aphelion distance 1=�A. To
compare an Einstein orbit with a Newton orbit, we wish to make the orbits as close
as possible. With that thought in mind, I will choose the same perihelion distance
and adjust ˛ so that the aphelion distance is the same. The right-hand side of (12.62)
can then be factored accordingly. Thus,

�
du

d�

	2
D .�P � u/ .u � �A/ .A� Bu/, where (12.63)

A and B are to be determined. Multiplying out the right-hand side of (12.63), we
have

�
du

d�

	2
D Bu3 � ŒAC B.�P C �A/� u

2 C ŒA .�P C �2A/C B.�P �A/� u �A�P�A.

(12.64)

Matching the coefficients of u3 and u2 in this equation with those in (12.62), we
have

B D 2MG

c2
and A D 1 � 2MG

c2
.�P C �A/. (12.65)
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Thus, (12.64) becomes

�
du

d�

	2
D2MG

c2
u3� u2C.�P C�A/

�
1�2MG

c2

�
�PC�A� �P �A

�P C �A

	�
u�A�P�A.

From (12.56),

�P C �A D MG

2 .˛N /
2

, so

we now have

�
du

d�

	2
D2MG

c2
u3 � u2 C MG

2 .˛N /
2

�
1�2MG

c2

�
�PC�A� �P �A

�P C �A

	�
u�A�P �A.

(12.66)

Comparing the coefficient of u in this equation with the coefficient of u in (12.62),
we see that they match if we equate

˛2 D .˛N /
2

�
1 � 2MG

c2

�
�P C �A � �P �A

�P C �A

	��1
.

It should be observed that if rM is the “radius” of the orbit of Mercury, then

�P � �A � 1

rM
and

2MG

c2

�
�P C �A � �P �A

�P C �A

	
D 2m

�
�P C �A � �P �A

�P C �A

	
� 3m

rM
.

Sincem is half the Schwarzschild radius for the sun and rM is the radius of the orbit
of Mercury, it is clear that the difference between ˛ and ˛N is infinitesimal.

As for the constant term �C
4˛2

that

occurs in the polynomial on the right-hand side of (12.62), the C must be adjusted
so that �P is a root of that polynomial. Doing that makes the constant terms on the
right-hand sides of (12.66) and (12.62) agree.

Now from (12.65) and (12.65), we have

�
du

d�

	2
D .�P � u/ .u � �A/

�
1 � 2MG

c2
.u C �P C �A/

�

D .�P � u/ .u � �A/ Œ1 � 2m .u C �P C �A/� .
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Thus,

du
p
.�P � u/ .u � �A/ Œ1 � 2m .u C �P C �A/�

D ˙d� (12.67)

Using the first two terms in a Taylor series expansion in powersm, we have

Œ1� 2m .u C �P C �A/�
� 1
2 � 1Cm.u C �P C �A/ .

From the Newtonian calculation, we know that

.�P � u/ .u � �A/ D
h�P � �A

2

i2 �
�

u � �P C �A

2

�2
. (12.68)

Thus, (12.67) becomes

Œ1Cm.u C �P C �A/� du
r
�
�P��A
2

�2 �
h
u � �PC�A

2

i2
D ˙d�.

Regrouping terms, so that things become integrable, we get

h
1C 3m.�PC�A/

2

i
du

r
�
�P��A
2

�2 �
h
u � �PC�A

2

i2
C

m
h
u � �PC�A

2

i
du

r
�
�P��A
2

�2 �
h
u � �PC�A

2

i2
D ˙d�.

Integrating, we get

�
�
1C 3m .�P C �A/

2

�
arccos

u � �PC�A
2

�P��A
2

�m

s
h�P � �A

2

i2 �
�

u � �P C �A

2

�2

D ˙� C �0. (12.69)

Comparing (12.58) and (12.59), we find that

�P C �A

2
D a

b2
.

Using this result and (12.69), we have

�
�
1C 3ma

b2

	
arccos

u � �PC�A
2

�P��A
2

�m
p
.�P � u/ .u � �A/ D ˙� C �0.

Using perihelion as our initial position as we did for our Newtonian solution, �0 D
0. Near perihelion, � should be an increasing function of r or a decreasing function
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of u. This forces us to choose the minus sign on the right-hand side of this last
equation, so we finally have

� D
�
1C 3ma

b2

	
arccos

u � �PC�A
2

�P��A
2

Cm
p
.�P � u/ .u � �A/. (12.70)

Initially, when u D �P ,

� D
�
1C 3ma

b2

	
arccos 1 D 0.

After one revolution, when the planet returns to perihelion, we again have

� D
�
1C 3ma

b2

	
arccos 1.

But this time with a slight abuse of notation, we must interpret arccos 1 D 2� . So,
the new angle is

2�

�
1C 3ma

b2

	
.

Thus, after each revolution, the position of the perihelion advances by the amount

�� D 6�ma

b2
. (12.71)

This rotation of the major axis of what is essentially an ellipse is known as
precession. For the case of Mercury, (12.71) translates into 43:03 s of arc per
century! Remember, a minute is 1/60 of a degree and a second is 1/60 of a minute.
When Einstein discovered that this minuscule precession could be derived from his
theory, he was elated. His biographer, Abraham Pais, who personally knew Einstein
during his years in Princeton, wrote, “This discovery was, I believe, by far the
strongest emotional experience in Einstein’s scientific life, perhaps in all his life”
(Pais 1983, p. 253).

Why was this result so significant to Einstein? In 1915, there were few known
discrepancies in Newton’s theory that could be explained by Einstein’s General
Theory of Relativity. In the past, any plausible discrepancy was eventually explained
in terms of Newton’s theory. For example, as already noted in Sect. 2 of Chap. 3,
during the nineteenth century an anomalous behavior in the orbit of Uranus was
observed. The British astronomer John Couch Adams and the French astronomer
Urbain Jean Joseph Leverrier independently made very lengthy computations to
predict the position of the then undiscovered planet Neptune. Leverrier sent his
results to Johann Gottfried Galle of the Berlin Observatory. With this information,
Galle was able to locate Neptune on September 23, 1846. This was a triumph for
Newton’s theory.

It is worth noting that Adams had completed his calculations 2 years earlier while
still a student at Cambridge. However, being young and unknown, he was unable
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Fig. 12.8 A hyperbola can
be defined by the relation
Or � r D 2a, where 2a is the
distances between the vertices
of the two branches and 2f is
the distance between the focal
points

to persuade the authorities in charge of the Cambridge Observatory to initiate a
systematic search for the planet in a timely manner.

When Leverrier turned his attention to the advance of the perihelion of Mercury,
he found that he could account for most of the advance by the perturbations due to
other planets. However, there was an unexplained residual advance. To account for
this discrepancy, Leverrier hypothesized the existence of a planet between Mercury
and the sun. This theoretical planet became known as “Vulcan” and many attempts
were made to find it but all ended in failure. In 1898, the American Simon Newcomb
published a paper in which he calculated the residual advance unaccounted by the
known planets to be 41:2400 ˙ 2:0900 per century (Newcomb 1898). Einstein was
convinced that there was no “Vulcan” and part of the reason he was dissatisfied
with one of his earlier theories was that it failed to predict the correct precession for
Mercury’s orbit (Levenson 2004, p. 111).

More accurate estimates of this residual advance have been made in recent years,
but they remain consistent with the value of 43:0300 predicted by Einstein’s theory.

Problem 287. Derive (12.61) from (12.59).

Problem 288. A hyperbola may be defined by the relation: Or � r D 2a, where 2a
is the distance between the vertices of the two branches. (See Fig. 12.8.)

(a) Determine the equation for the branch pictured on the left in Fig. 12.8, in polar
coordinates. Your equation should be expressed in terms of r , �, a, f , and b,
where b2 D f 2 � a2.

(b) Obtain an equation for both branches of the same hyperbola, in Cartesian
coordinates.

Problem 289. Use the fact that ˛ is the areal velocity and the fact that the area
of an ellipse is �ab to obtain a formula for the period T , where it is understood
that the period is the time required for the planet to complete one revolution. Your
final formula should involve only T , M , G, a, and b. Actually, the variable b
will disappear when you eliminate ˛. Your formula should give you a Newtonian
explanation for Kepler’s third law. Namely, the ratio of the square of the period to
the cube of the semi-major axis is the same for all planets in the solar system.



424 12 Some General Relativity

12.5 The Bending of Light

In 1905, Einstein had created a theory that was invariant under changes in coordinate
systems that were related to one another by constant speeds. Now (in 1915), he had
created a theory that was covariant – that is it was invariant under any change of
coordinate systems.

By doing this, he not only removed some logical inconsistencies in Newton’s
theory but he was able to give a precise explanation for the precession of Mercury.
For Einstein, the theory was too good not to be true.

However, the reasons that convinced Einstein that his theory was valid would not
be enough to convince most of his fellow physicists. As a rule, physicists at that time
were unaware of the fact that there were logical inconsistencies in Newton’s theory.
The fact that the hypothetical “Vulcan” had not been found was a point against
Newton’s theory. However, it was understood that it would be difficult to observe.
Furthermore, for anyone who was not as sophisticated a student of differential
geometry as a reader of this book, the mathematics looked hopelessly complicated.
Perhaps, Einstein had somehow adjusted his theory so that it would fit the known
precession of Mercury.

What would impress scientists and non-scientists alike would be a prediction of
something that had never been measured before. A measurement that had not been
made was the bending of light.

In 1913, Einstein had constructed a theory that also enabled him to predict
the amount of bending for a light ray passing through a spherically symmetric
gravitational field. This bending would be perceptible for a light ray from a distant
star passing near the surface of the sun. Of course, usually one cannot see many
stars during the daytime – particularly stars that would have any position in the sky
near that of the sun. However, such stars are visible during a total solar eclipse.

A young German astronomer, Erwin Freundlich, was eager to test Einstein’s
prediction. A total eclipse would soon occur on August 21, 1914. Einstein and others
raised funds to enable Freundlich and two other Germans to mount an expedition
to Crimea in southern Russia, where the eclipse would occur. Freundlich and some
others left Berlin on July 19, 1914 and arrived at their destination the following
week (Levenson 2003, p. 45). Unfortunately for Freundlich, political events now
unfolding in Europe made it impossible for him to fully execute his carefully laid
plans.

Earlier that summer on June 28, Archduke Franz Ferdinand was murdered in
Sarajevo. Visiting Sarajevo on June 28 was not a wise decision for the Archduke.
Five hundred and twenty five years earlier, the Serbs had been disgraced in a battle
they lost to the Turks at Kosovo. Although the Archduke of Austria was not a
Turk, Austria had recently dictated the boundaries of Serbia in a way that the Serbs
thought to be high-handed. Furthermore, Austria seemed poised to annex Serbia as
a province of Austria.
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June 28 was observed as a national anniversary of an old humiliation and the
Archduke was viewed as a present-day humiliator. Thus, Ferdinand’s decision to
visit Sarajevo that day with the expectation that he be received with reverence was
extremely naive and truly insensitive.

Soon after the assassination, Austria took the view that the Serbs should be
punished. The Czar of Russia took the position that the Serbs should be respected.
Kaiser Wilhelm II of Germany came to the support of Austria and demanded France
remain neutral. France refused so Germany declared war on Russia on August 1,
declared war on France on August 3, and sent troops into neutral Belgium 1 day later
on August 4. (Going through Belgium to get to France instead of moving across the
border Germany shared with France was considered good military strategy by the
German high command.)

All of a sudden, Erwin Freundlich and his crew were in an enemy country
with some of the world’s most sophisticated camera equipment – equipment quite
suitable for espionage. Naturally, the Russians were not inclined to behave as
gracious hosts. They seized the camera equipment and arrested Freundlich and two
of his friends. According to Abraham Pais, as war broke out, the crew was warned
in time to avoid arrest and some did so (Pais 1982, p. 303). Freundlich’s crew had
made contact with a group of astronomers from Argentina who hoped to get a photo
of the never to be discovered Vulcan. The fact that the Argentines planned on using
the German equipment was not enough to inspire the Russian authorities to allow
the international science project to proceed. To underline the futility of the venture,
on the day of the eclipse, it was too cloudy to take any useful pictures.

Fortunately for Einstein’s friends, they became subjects of one of the first
prisoner exchanges of the war. They were swapped with some Russian officers and
returned to Berlin sometime in September.

For Einstein, the failure of Freundlich’s efforts turned out to be a lucky break.
His 1913 prediction for the magnitude of the bending of light was wrong! It was 1/2
the correct value. Had the 1914 expedition to Crimea been successful, Einstein’s
1915 prediction would not have been a prediction. It would have been merely a
plausible explanation for something that was already known. This would have made
it relatively easy to dismiss his theory. Few would have appreciated the fact that
Einstein’s 1915 theory removed some logical inconsistencies in Newton’s theory –
something that his 1913 theory did not.

Let us turn to the geometry of Einstein’s 1915 prediction for the bending of light.
As in the previous calculation,

.ds/2 D
�
1 � 2m

r

	
.cdt/2�

�
1 � 2m

r

	�1
.dr/2� .rd�/2� .r sin �d�/2. (12.72)

However for photons, ds D 0. This implies that s cannot be used as a parameter.
After introducing w as a parameter in place of s, most of the equations for the path
of a light ray passing near the sun have the same form as those for a planetary orbit.
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In particular,

d

dw

@F

@Pt � @F

@t
D 0, (12.73)

d

dw

@F

@ P� � @F

@�
D 0, and (12.74)

d

dw

@F

@ P� � @F

@�
D 0, where (12.75)

F D
�
1 � 2m

r

	 �
c Pt�2 �

�
1 � 2m

r

	�1
.Pr/2 � .r P�/2 � .r sin � P�/2, and

Pt D dt

dw
, Pr D dr

dw
, P� D d�

dw
, and P� D d�

dw
.

Thus, we have as before

� D �

2
, r2 P� D 2˛

c
, and

�
1 � 2m

r

	
Pt D k.

The big difference is that from (12.72),

�
ds

dw

	2
D 0 D

�
1 � 2m

r

	 �
c Pt�2 �

�
1 � 2m

r

	�1
.Pr/2 � .r P�/2 � .r sin � P�/2, or

. Pr/2 D .ck/2 � 4˛2

c2r2
C 8m˛2

c2r3
.

As before, let

r D 1

u
and Pr D dr

dw
D � 1

u2
du

dw
D � 1

u2
du

d�
P� D �2˛

c

du

d�
.

With this substitution, we have

�
du

d�

	2
D c4k2

4˛2
� u2 C 2mu3. (12.76)

If R is the minimum distance of the light ray from the center of the sun, then
du=d� D 0, when u D � D 1=R. (Actually, R is the Schwarzschild version of
the distance.) From (12.76),

0 D c4k2

4˛2
� �2 C 2m�3.
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Subtracting this result from (12.76) gives us

�
du

d�

	2
D �2 � u2 � 2m

�
�3 � u3

�

D .� � u/
�
�C u � 2m.�2 C �u C u2

�

D .� � u/
��2mu2 C .1 � 2m�/u C � .1 � 2m�/� . (12.77)

To factor the quadratic term, we note that if

�2mu2 C .1 � 2m�/u C � .1 � 2m�/ D 0, then

u D
� .1 � 2m�/˙

q�
.1 � 2m�/2 C 8m� .1 � 2m�/ �

�4m

D � .1 � 2m�/˙p
1C 4m� � 12.m�/2

�4m .

Using the first three terms for a Taylor’s series expansion in powers of m�,
p
1C 4m� � 12.m�/2 � 1C 2m� � 8.m�/2.

Using this result,

u D � .1 � 2m�/˙ �
1C 2m� � 8.m�/2�

�4m , or

u D

8
ˆ̂
<

ˆ̂
:

4m� � 8 .m�/2

�4m D �� C 2m�2, or

�2C 8.m�/2

�4m D 1
2m

� 2m�2.

Equation (12.77) now becomes

�
du

d�

	2
D .� � u/

�
� C u � 2m�2

� �
u � 1

2m
C 2m�2

	
.�2m/

D ��
� �m�2� � �

u �m�2�� ��� �m�2�C �
u �m�2

�� �
1 � 2mu � 4.m�/2

�
:

Thus,

du
q
Œ� �m�2�

2 � Œu �m�2�2p1 � 2mu � 4.m�/2
D ˙d�. (12.78)

Using a Taylor’s series expansion again

�
1� 2mu � 4.m�/2

��1=2 � 1Cmu.
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With this approximation, (12.78) becomes

.1Cmu/ du
q
Œ� �m�2�

2 � Œu �m�2�
2

D ˙d�.

Reorganizing terms, so that we can integrate everything, we have



1C .m�/2

�
du

q
Œ� �m�2�

2 � Œu �m�2�
2

C m
�
u �m�2

�
du

q
Œ� �m�2�

2 � Œu �m�2�
2

D ˙d�.

Carrying out the integration, we get

�


1C .m�/2

�
arccos

u �m�2
� �m�2 �m


�
� �m�2�2 � �

u �m�2�2
�1=2 D ˙� C �0.

Using previous arguments, �0 D 0 and after the light ray has passed the sun, we
should choose the minus sign for �. We then have

� D


1C .m�/2

�
arccos

u �m�2

� �m�2 Cm

�
� �m�2

�2 � �
u �m�2

�2�1=2
.

Taking the limit when r ! 1 or u ! 0, we have

� D


1C .m�/2

�
arccos

�m�
1 �m�

Cm�


Œ1 �m��2 � Œm��2

�1=2
. (12.79)

Taking the first two terms in yet another Taylor series expansion,

arccos.�x/ D �

2
C x.

Using this fact and retaining only first-order terms, (12.79) becomes

� D �

2
C 2m�.

This means that the total deflection is

�� D 4m� D 4m

R
, where

R is the closest distance between the light ray and the center of the sun. If R is the
radius of the sun, and m is half the Schwarzschild radius for the sun, then

�� D 1:75 s of arc.

(See Fig. 12.9.)
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Fig. 12.9 The bending of
light due to the curvature of
space-time

This is twice the deflection predicted by Einstein’s 1913 theory. When this
prediction was confirmed by a group of English astronomers organized by Arthur
Eddington during the eclipse of May 29, 1919, Einstein became an international
celebrity – a status he never lost.

In recent years, it has been discovered that this bending of light can be used to
extract information from the cosmos. It turns out that a massive entity such as a
galaxy or black hole can act as a lens (a “gravitational lens”) for light rays from
a strong light source located at an exceptional distance. In 1979, a pair of quasars
were spotted in the sky very close to one another. Because the spectrum of a quasar
tends to be unique, it was soon decided that the “pair” of quasars were two images
of one quasar. (See Fig. 12.10.)
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Fig. 12.10 A galaxy acting as a gravitational lens

Since 1979, using the Hubble telescope, many more examples of multiple images
of quasars have been discovered and astronomers are now using them to extract
information about the mass content of certain galaxies.

Problem 290. In 1801, Thomas Young showed that he could make light interfere
with itself. This demonstrated that light had a wave behavior. For this reason, during
the nineteenth century, no prominent physicist suggested that gravity would have
any effect on a light path. During Newton’s time, the situation had been different.
On the one hand, Christian Huygens was able to show that one could construct a
very plausible explanation for the refraction of light from a wave theory. On the
other hand, it was clear that light did not bend around corners of buildings like
sound does. Thus, Newton was inclined to believe that light rays were composed
of streams of particles. In his book, Einstein – The Passions of a Scientist (2003, p.
206), Barry Parker writes,

“– as it turned out, Newton had also made a prediction that a light beam would
be deflected by a gravitational field, in an appendix of his book Opticks. He had not
made a numerical prediction, but Eddington showed that it would have been about –.
Because of this, many people in England thought of the controversy as one between
the Englishman, Newton, and the German, Einstein (Einstein was, of course, not a
German citizen).”

It is interesting to note, that Einstein got the Nobel Prize not for his special or
general relativity theories but for demonstrating that the result of an experiment by
Philipp Lenard could best be explained if light not only has a wave behavior but also
a particle behavior.

After all this chit chat, the problem I present to you is to determine the magnitude
of the deflection of light that would have been predicted by Newton. Actually,
photons do not behave quite like a Newtonian particle. A Newtonian particle passing
near the sun would speed up as it got near the sun and then slow down as it moved
away from the sun. To get a Newtonian prediction, ignore this fact and assume
2˛N D r.r P�/ D Rc D c=�P . Also, use the fact that m D MG=c2. (You may wish
to review the solution of the Newtonian equations for the orbit of Mercury.) How
does the Newtonian prediction compare with Einstein’s, 1913 prediction?



Appendix A
A Matrix Representation of a Clifford Algebra

To construct a matrix representation for a Clifford algebra corresponding to
a Euclidean or pseudo-Euclidean space, it is not sufficient to construct a set
fe1; e2; : : : ; eng such that

ej ek C ekej D 2njkI, where (A.1)

nkk D hek; eki D 1 for k D 1; 2; : : : ; p,

nkk D hek; eki D �1 for k D p C 1; p C 2; : : : ; p C q D n, and

njk D ˝
ej ; ek

˛ D 0 for j ¤ k.

We must also consider all possible products of the form M1M2: : :Mn where
Mk D ek or I. These products form a set of 2n matrices that should be linearly
independent. For our purposes, this set should be linearly independent. One’s first
thought is that to check that these products are linearly independent would be a
formidable task. However due to a theorem proven by Ian Porteus, there is a simple
test to check for this required linear independence (Porteus 1981, pp. 243–245).

Theorem 291. A set fe1; e2; : : : ; eng consisting of n matrices representing or-
thonormal 1-vectors generates a vector space (and therefore an algebra) of
dimension 2n unless the product e1e2 : : : en D e12:::n is a scalar multiple of I.

Proof. With one exception, a product of one or more distinct orthonormal 1-vectors
will anticommute with at least one of the 1-vectors. To see this, we note that a
product of an even number of the 1-vectors will anticommute with any 1-vector
appearing in the product. We also see that the product of an odd number of Dirac
matrices will anticommute with any Dirac matrix that does not appear in the product.
The one product that commutes with all the 1-vectors in the set is the product e12:::n
where n is odd. The proof now proceeds by self-contradiction. Suppose the products
are not linearly independent. In that case, there exists a set of coefficients Aj1j2:::jk

(not all zero) such that
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nX

kD0

X

j1<j2<���<jk
Aj1j2:::jkej1j2:::jk D 0. (A.2)

If the coefficient of I in (A.2) is not zero, divide (A.2) by that coefficient and
obtain the equation

I C
X

j1<j2<���<jk
Bj1j2:::jkej1j2:::jk D 0, where (A.3)

the sum does not include the identity matrix. If the coefficient of I in (A.2) is
zero, pick out a term in the equation with a nonzero coefficient (say em1m2:::mk ) and
multiply by (.1=Am1m2:::mk / .em1m2:::mk /

�1) where .em1m2:::mk /
�1 D ˙em1m2:::mk . In

this fashion, one can always obtain an equation with the form of (A.3) from (A.2).
If the Bj1j2:::jk ’s are all zero, we already have the desired contradiction. If

the sum in (A.3) contains a product (say em1m2:::mk ) that anti-commutes with em,
then one can multiply (A.3) on the left by em and on the right by .em/�1 and obtain

I C
X

j1<j2<���<jk
Bj1j2:::jkemej1j2:::jk .em/

�1 D 0. (A.4)

We note that
emem1m2:::mk .em/

�1 D �em1m2:::mk .

Therefore, we can add (A.3) and (A.4) and thereby obtain a new equation that except
for a factor of 2 is identical to (A.3) except at least one less term (em1m2:::mk ) will
now appear in the sum.

If n is even, this process can be continued until the sum reduces to zero and
thus obtain the contradiction I D 0. If n is odd, the process can be continued until
we have

I C ˛e12:::n D 0. (A.5)

Thus, we see that our desired contradiction occurs unless e12:::n is a scalar multiple
of I and so the theorem is proved. ut

Before continuing, I should make a few remarks. Suppose a set of 1-vectors
fe1; e2; : : : ; eng satisfies (A.1). If this set also generates an algebra of dimension 2n,
I have defined the resulting algebra to be a Clifford algebra. However, it is possible
to have a set of 1-vectors fe1; e2; : : : ; eng that satisfies (A.1) but generates an algebra
with dimension less than 2n. What is to be said of such an algebra? From a purely
algebraic point of view, such an algebra is also a Clifford algebra. Indeed, it can
be shown that such an algebra is isomorphic to a Clifford algebra associated with a
Euclidean or pseudo-Euclidean space of dimension n � 1.

For the study of geometry (at least the geometry presented in this book), such
a Clifford algebra would be unsuitable to study an n-dimensional space. If the
Dirac matrices satisfy (A.1) and generate an algebra of dimension 2n, Ian Porteus
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describes the resulting algebra as an universal Clifford algebra. Universal Clifford
algebras are the only kind of Clifford algebras used in this book. Other authors use
more abstract definitions to avoid nonuniversal Clifford algebras.

Some physicists have written papers describing five-dimensional theories using
a nonuniversal Clifford algebra. Since these papers do not mention the fact that they
are using a nonuniversal Clifford algebra, it suggests that they have inadvertently
made a mistake. This is understandable since in 1958, Marcel Riesz thought he had
proven that nonuniversal Clifford algebras do not exist (1993, pp. 10–12).

Having proven Theorem 291, we are now in a much better position to construct
a matrix representation for a Clifford algebra. Perhaps, the best way to construct
explicit representations is by using the Kronecker product of matrices. Suppose A
is an n � n matrix and B is an m � m matrix. In particular if A D �

aij
�
, then the

Kronecker product is defined by the partitioned matrix:

A ı B D

2

6
6
6
6
6
66
4

a11B a12B � � � a1nB

a21B a22B � � � a2nB

� � � � � �
� � � � � �
� � � � � �
an1B an1B � � � annB

3

7
7
7
7
7
77
5

(A.6)

For example if

A D
�
a11 a12
a21 a22

�
and B D

�
b11 b12
b21 b22

�
, then

A ı B D

2

6
6
4

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

3

7
7
5 .

The properties of the Kronecker product are thoroughly discussed in a book
entitled Kronecker Products and Matrix Calculus with Applications by Alexander
Graham (1981). Using a blackboard or large sheet of paper, it is not too difficult to
convince oneself that

.A ı B/.C ıD/ D AC ı BD, where (A.7)

.A ı B/.C ı D/ represents the ordinary matrix product of .A ı B/ with .C ı D/.
Similarly, AC and BD are, respectively, the ordinary matrix products of A with C
and B with D.

Furthermore, it can be shown that

A ı .B ı C/ D .A ıB/ ı C . (A.8)
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From this result, it is not difficult to show that

.A1 ı A2 ı : : : Ap/.B1 ı B2 ı : : : ı Bp/
D .A1B1/ ı .A2 ı B2/ ı : : : ı .An ı Bp/:

To see that our proposed matrix representations satisfy (A.1), it will be useful to
note that

.A1 ıA2 ı : : :ıAp/.B1 ıB2 ı : : :ıBp/ D �.B1 ıB2 ı : : :ıBp/.A1 ıA2 ı : : :ıAp/ if

AjBj D �BjAj for an odd number of j ’s between 1 and p and

AjBj D BjAj for the remainder of the j ’s between 1 and p:

To carry out our construction, I will use the Pauli spin matrices:

� 1 D
�
0 1

1 0

�
, � 2 D

�
0 �i
i 0

�
, and � 3 D

�
1 0

0 �1
�

. (A.9)

For R2;0 (the Clifford algebra that corresponds to the Euclidean space E2 (or R2;0),
we use e1 D � 1 and e2 D � 2. Note! e1e2 D � 1� 2 D i� 3 ¤ ˙I. For R4;0, we can
let e1 D � 1 ı � 1, e2 D � 1 ı � 2, e3 D � 1 ı � 3, and e4 D � 2 ı I. (e1e2e3e4 D‹).

This process can be continued by induction. Suppose it is possible to construct a
matrix representation of size 2m � 2m for R2m;0. Suppose also that we designate the
matrix representation of the Dirac matrices for this space by

ek.2m/ for k D 1; 2; : : : ; 2m.

We can then obtain a matrix representation for the Dirac matrices of R2mC2;0 as
follows:

ek.2mC 2/ D � 1 ı ek.2m/ for k D 1; 2; : : : ; 2m. (A.10)

e2mC1.2mC 2/ D im� 1 ı e12:::2m.2m/, and (A.11)

e2mC2.2mC 2/ D � 2 ı I . (A.12)

(The factor im that appears in (A.11) has been chosen to guarantee that .e2mC1.2mC
2//2 D I.)

It is not difficult to show that the system of matrices just constructed is indeed an
orthonormal system of 1-vectors, where

.ek/
2 D I and

ej ek C ekej D 0 for j ¤ k.
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From Theorem 291, this is all that is required to generate the universal Clifford
algebra R2mC2;0 since 2mC 2 is an even integer.

To construct the Dirac matrices for universal Clifford algebras of the type Rp;q

where p C q D 2m is now a simple matter. One can take the Dirac matrices
constructed for R2m;0 and simply leave the first p matrices unchanged and then
multiply each of the remaining q Dirac matrices by i .

To obtain a matrix representation for the Clifford algebras associated with odd
dimensional vector spaces is now also an easy matter. Starting with the matrix
representation constructed above for R2m;0, we can write

ek.2mC 1/ D � 3 ı ek.2m/ for k D 1; 2; : : : ; 2m, and (A.13)

e2mC1.2mC 1/ D im� 3 ı e12:::2m.2m/. (A.14)

(We could use � 1 in place of � 3 in these last two equations but � 3 gives a more
desirable form. In particular if we use � 3, then any Dirac matrix is of the form

�
A 0

0 �A
�
;

where A is a matrix of size 2m � 2m.
Using (A.13) and (A.14), it is not difficult to show that (A.1) is satisfied. What is

left to show is that

e1.2mC 1/e2.2mC 1/ : : : e2mC1.2mC 1/ is not a multiple of I.

But from (A.13) and (A.14), we have

e1.2mC 1/e2.2mC 1/ : : : e2mC1.2mC 1/ D .�i/m� 3 ı I.

To construct matrix representations for universal Clifford algebras associated
with odd dimensional vector spaces but with non-Euclidean signatures, we can use
the same trick that was used for even dimensional vector spaces. That is leave the
first p 1-vectors unchanged and multiply the remaining q 1-vectors by i .



Appendix B
Construction of Matrix Representations
for Dirac Vectors

If we know how a space is embedded in a higher dimensional flat space, it may be
a trivial matter to construct a set of coordinate Dirac vectors. However, one may
simply be given the metric tensor. In that case, construction of a system of Dirac
matrices is slightly more complicated. Nonetheless, we can make use of the fact
that we already know how to construct a matrix representation for an orthonormal
basis. In particular,

ej ek C ekej D 2njkI, where

nkk D 1 for 1 � k � p,

nkk D �1 for p C 1 � k � p C q D n, and

njk D 0 for j ¤ k.

Suppose we denote the matrix corresponding to the matrix tensor g˛ˇ by G. That is

G D

2

6
6
6
6
66
6
4

g11 g12 � � � g1n
g21 g22 � � � g2n

� � � � � �
� � � � � �
� � � � � �
gn1 gn2 � � � gnn

3

7
7
7
7
77
7
5

.

An arbitrary metric tensor is real and symmetric, that is g˛ˇ D gˇ˛ . From matrix
theory, it is well known that a real symmetric matrix can be diagonalized by a real
orthogonal matrix. Thus, we have

G D ODOT , where (B.1)

O is an orthogonal matrix;OT is the transpose ofO , which is identical toO�1; and
D is a real diagonal matrix. Furthermore, the columns of O can be ordered so that
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all the positive components of D are identified with the first p indices. That is

D D

2

6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
4

.˛1/
2 0

0 .˛2/
2

�
�

�
.˛p/

2 0

0 �.˛pC1/2
�

�
�

�.˛pCq/2

3

7
7
7
77
7
7
7
77
7
7
7
7
77
7
7
5

,

where pC q D n. Clearly,D can be decomposed further into a product of the form

D D AnA, where (B.2)

n D �
nij
�

, and

A D

2

6
66
6
6
6
6
4

˛1 0 � � � 0

0 ˛2 � � � 0

� � � � � �
� � � � � �
� � � � � �
0 0 � � � ˛n

3

7
77
7
7
7
7
5

.

From (B.1) and (B.2), we have

G D OAnATOT D W nW T where W D OA.

For 2-dimensions, this equation takes the form

�
g11 g12
g21 g22

�
D
�

w11 w21
w12 w22

� �
n11 n12
n21 n22

� �
w11 w12
w21 w22

�
.

For arbitrary dimension, we can write

g˛ˇ D wj˛wkˇnjk . (B.3)

If we now define
�˛ D wj˛ej , then (B.4)
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�˛�ˇ C �ˇ�˛ D wj˛wkˇ.ej ek C ekej / D 2wj˛wkˇnjkI.

From (B.3), we now have our desired result:

�˛�ˇ C �ˇ�˛ D 2g˛ˇI:



Appendix C
A Few Terms of the Taylor’s Series for the
Urdı̄-Copernican Model for the Outer Planets

In Fig. C.1, (d; 0) is the center of the eccentric deferent (not drawn), a is the radius
of the deferent, � is the radius of the epicycle, and ! D 2�=T , where T is the time
required for the complete orbit of the planet in question. It is not too hard to see that
if (x; y) are the coordinates of the planet, then

x D d C a cos!t C � cos.� � 2!t/; and

y D a sin!t � � sin.� � 2!t/;

or slightly simplified:

x D a cos!t C d � � cos 2!t; and

y D a sin!t � � sin 2!t: (C.1)

It now follows that

r2 D x2 C y2

D a2 cos2 !t C 2ad cos!t � 2a� cos!t cos 2!t C d2 � 2d� cos 2!t

C �2 cos2 2!t C a2 sin!t � 2a� sin!t sin 2!t C �2 sin2 2!t

D a2 C 2ad cos!t � 2a� cos!t C d2 � 2d� cos 2!t C �2

D a2
�
1C 2.d � �/

a
cos!t C d2 � 2d� cos 2!t C �2

a2

�
: (C.2)

From our knowledge of Taylor’s series,

.1C x/1=2 D 1C 1

2
x � 1

8
x2 C higher powers of x: (C.3)
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ωt

θ ωt

ρ

a

r

dSun

Planet

aphelion
perihelion

π−2ωt

ωt

Fig. C.1 The Urdı̄-Copernican model for the outer planets

Combining (C.2) and (C.3) and retaining powers of d=a and �=a, which are less
than three, we get:

r D a

�
1C .d � �/

a
cos!t C d2 � 2d� cos 2!t C �2

2a2
� .d � �/2

2a2
cos2 !t

�

D a

"

1C .d � �/

a
cos!t C

�
d2 C �2

�
.1� cos2 !t/ � 2d�.cos 2!t � cos2 !t/

2a2

#

D a

"

1C .d � �/
a

cos!t C .d C �/2 sin2 !t

2a2
C higher powers of

d

a
and

�

a
.

#

(C.4)

From (C.1) and (C.4), we have

sin � D y

r
D a sin!t � � sin 2!t

r
D
a sin!t

h
1 � 2�

a
cos!t

i

r
: (C.5)

Since
.1C x/�1 D 1 � x C x2 + higher powers of x;

it follows from (C.4) that
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1

r
D 1

a

"

1 � d � �

a
cos!t � .d C �/2 sin2 !t

2a2
C .d � �/2

a2
cos2 !t

#

So from (C.5), it follows that

sin � D sin!t

�
1 � 2�

a
cos!t

� "

1 � d � �
a

cos!t � .d C �/2 sin2 !t

2a2

C .d � �/2
a2

cos2 !t

�

D sin!t

�
1 �

�
d � �
a

C 2�

a

	
cos!t � .d C �/2

2a2
sin2 !t

C
�
.d � �/2
a2

C 2�.d � �/
a2

	
cos2 !t

�
:

That is

sin � D sin!t

�
1 � d C �

a
cos!t � .d C �/2

2a2
sin2 !t C d2 � �2

a2
cos2 !t

�

C higher powers of
d

a
and

�

a
: (C.6)



Appendix D
A Few Terms of the Taylor’s Series
for Kepler’s Orbits

The coordinates for a Kepler orbit cannot be expressed in terms of elementary
functions of time. However, they can be considered to be analytic functions of the
eccentricity e, which means they can be expressed as an infinite power series of e.
In this section, I will derive the first few terms. Namely up to e2. It will be useful
to use the notation O.e3/ to indicate powers of three or higher for e to indicate the
terms not computed.

We first note that the equation for an ellipse in polar coordinates with a horizontal
major axis and origin at the left focal point is

r D b2

a.1 � e cos �/
, where (D.1)

a is the semimajor axis,

b is the semiminor axis, and

c D ae is the focal distance.

Since
b2 D a2 � c2 D a2.1 � e2/,

Equation (D.1) can be rewritten in the form

r D a.1 � e2/
.1 � e cos �/

(D.2)

There are several Taylor series, which will be helpful. In particular:

.1C x/1=2 D 1C x

2
� x2

8
CO.x3/, (D.3)

1

1 � x
D 1C x C x2 CO.x3/, (D.4)
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r

θ

rdθ

Fig. D.1 According to Kepler’s second law, the area swept out by the radial vector from the Sun
to a given planet increases at a constant rate

sin.u C x/ D sin u C x cos u � x2

2
sin u CO.x3/, and (D.5)

cos.u C x/ D cos u � x sin u � x2

2
cos u CO.x3/. (D.6)

According to Kepler’s second law, the area swept out by the radial vector r from the
Sun to a given planet increases at a constant rate. (See Fig. D.1.) Thus

1

2
r2

d�

dt
D h, where h is a constant. (D.7)

To obtain an interpretation for h, we note that

Z 2�

0

1

2
r2d� D h

Z T

0

dt , where T is the time required for a complete orbit. (D.8)

The integral on the left-hand side of (D.8) is the total area swept out by the radial
vector for one revolution which is that of the ellipse. Thus,

�ab D hT , and therefore h D �ab

T
. (D.9)
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From (D.2) and (D.4):

r D a.1 � e2/.1C e cos � C e2 cos2 �/CO.e3/

D a.1C e cos � C e2 cos2 � � e2/CO.e3/. (D.10)

From this result, we have

r2 D a2.1C 2e cos � C 3e2 cos2 � � 2e2/CO.e3/

D a2
�
1C 2e cos � C 3

2
e2.1C cos 2�/� 2e2

�
CO.e3/.

D a2
�
1C 2e cos � � 1

2
e2 C 3

2
e2 cos 2�

�
CO.e3/:

Using this result along with (D.9), (D.7) becomes

1

2
a2
�
1C 2e cos � � 1

2
e2 C 3

2
e2 cos 2�

�
d�

dt
D �ab

T
D �a2.1 � e2/1=2

T
CO.e3/.

Multiplying both sides of this equation by 2.1C e2/1=2=a2, we have

.1C e2/1=2
�
1C 2e cos � � 1

2
e2 C 3

2
e2 cos 2�

�
d�

dt
D 2�.1� e4/1=2

T
CO.e3/.

From (D.3), this becomes

�
1C 1

2
e2
	�
1C 2e cos � � 1

2
e2 C 3

2
e2 cos 2�

�
d�

dt
D 2�

T
CO.e3/, which implies

�
1C 2e cos � C 3

2
e2 cos 2�

�
d� D 2�

T
dt CO.e3/, and therefore

� C 2e sin � C 3

4
e2 sin 2� D 2�t

T
CO.e3/: (D.11)

It is useful for our purposes the define ! D 2�=T . With this convention, we note
that, � D !t if e D 0. Thus,

� D !t C ef .t/C e2g.t/CO.e3/. (D.12)

To determine f .t/ and g.t/, we substitute this formula for � into (D.11) and get

!t C ef .t/C e2g.t/C 2e sin .!t C ef .t//C 3

4
e2 sin 2!t D !t CO.e3/:
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Using (D.5), this becomes

ef .t/C e2g.t/C 2e .sin!t C ef .t/ cos!t/C 3

2
e2 sin!t cos!t D 0:

Regrouping terms, this becomes

e Œf .t/C 2 sin!t�C e2
�
g.t/C 2f .t/ cos!t C 3

2
sin!t cos!t

�
D 0:

Setting the coefficients of e and e2 separately equal to zero, we get

f .t/ D �2 sin!t and

g.t/ D 5

2
sin!t cos!t:

With these results, (D.12) becomes

� D !t � 2e sin!t C 5

2
e2 sin!t cos!t CO.e3/: (D.13)

Using (D.5) and (D.13), we get

sin � D sin

�
!t � 2e sin!t C 5

2
e2 sin!t cos!t

	
CO.e3/:

D sin!t

�
1 � 2e cos!t � 2e2 sin2 !t C 5

2
e2 cos2 !t

�
CO.e3/: (D.14)

A similar computation using (D.6) and (D.13), we get

cos � D cos .!t � 2e sin!t/CO.e2/

cos!t C 2e sin2 !t CO.e2/: (D.15)

We will use this last equation to get a formula for r.t/: From (D.10), we have

r D a
�
1C e cos � C e2 cos2 � � e2

�CO.e3/

D a
�
1C e cos � � e2 sin2 �

�CO.e3/

D a
�
1C e

�
cos!t C 2e sin2 !t

� � e2 sin2 !t
�CO.e3/

D a
�
1C e cos!t C e2 sin2 !t

�CO.e3/: (D.16)
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