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Preface

Inverse limits with set-valued functions were introduced in 2004 by Bill Mahavier
as inverse limits with closed subsets of the unit square. In the short time since
then, the subject has rapidly developed into a rich topic of research, particularly
among continuum theorists. This new form of inverse limit can also show up in
applications to economics and in dynamical systems. For instance, certain models
in economics, notably in backward economics, can involve two mappings, and the
flexibility to study the effects of using either function at each stage in the model
is a valuable feature of inverse limits with set-valued functions. Recent work of
Benjamin Marlin on the Lorenz attractor has provided evidence of the value of using
set-valued functions in studying attractors in dynamical systems. This short book is
not specifically concerned with these applications of set-valued functions. Instead,
it is intended to provide a quick introduction to the subject of inverse limits with
set-valued functions. The recently published Springer book Inverse Limits: From
Continua to Chaos contains most of the background a researcher might need to
make use of these inverse limits in his or her work. However, a shorter volume such
as this one dedicated to inverse limits with set-valued functions could be helpful to
someone wanting a quick introduction to this specific subject. This short book is
intended to provide just such an introduction. The emphasis here is on inverse limits
on the interval Œ0; 1� much as the first chapter of Inverse Limits: From Continua to
Chaos serves as an introduction to inverse limits on Œ0; 1�with mappings. We believe
that a deeper understanding of inverse limits can be obtained by studying examples.
A major feature of this book is the inclusion of numerous examples and, in many
instances, models of the inverse limits. Several of the examples in this volume have
not appeared elsewhere in print.

Major differences between the theory of inverse limits with mappings and the
theory with set-valued functions arise early in this study. These differences are
featured prominently in this book. However, instead of viewing these differences
as a negative development, we consider them as an opportunity for further study
and research. Indeed, much of the research in the subject is devoted to resolving
questions arising for these very reasons. We have included an extensive, but by no
means exhaustive, list of currently unsolved problems in the final chapter of the
book.
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viii Preface

A senior-level course in analysis and, perhaps, an additional one in topology
should provide a sufficient introduction to the topology of metric spaces and the
topology of product spaces to make the material in this book accessible to advanced
undergraduates and, certainly, to graduate students in mathematics. An alternate
source of background material is the appendix in the Springer book Inverse Limits:
From Continua to Chaos. In some of the examples, we assume some familiarity with
inverse limits with mappings, but no deep understanding of ordinary inverse limits
is necessary to read this book.

This book is based on a series of lectures given by the author at a workshop in the
summer of 2011 at the Instituto de Matemáticas, Universidad Nacional Autónoma
de México, in Mexico City. Many thanks go to all who participated in that short
course. We are particularly indebted to Verónica Martı́nez de la Vega and Alejandro
Illanes who organized the workshop and helped make our stay in Mexico City such
a pleasant experience.

Spring Branch, Texas Tom Ingram
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Chapter 1
Basics

Abstract The study of inverse limits with set-valued functions was introduced in
2004 and has developed into a rich topic for research in topology. One path into this
subject can be found by working through examples of such inverse limits. A natural
starting point for such an undertaking is consideration of examples with a single
bonding function on Œ0; 1� having closed set values. In this chapter we include the
basic definitions and theorems needed to read the remainder of the book much of
which is driven by examples. We state and prove our theorems on Œ0; 1�; with minor
modifications the proofs generally are valid in a much more general setting such as
compact metric spaces or even compact Hausdorff spaces.

1.1 Introduction

In this chapter we introduce inverse limits with set-valued functions. Our aim is to
provide a basis for the remainder of the book. Most of the material in this short book
is devoted to inverse limits on the interval Œ0; 1� with set-valued bonding functions.
Such inverse limits are defined as subsets of the Hilbert cube, Q D Œ0; 1�1. We
assume that the reader has a working knowledge of compactness, connectedness,
and continuity in metric spaces and some familiarity with the topology of product
spaces. Such topics are likely to be covered in sufficient depth in an undergraduate
course in topology or a senior-level course in analysis. The essentials of the
background material may be found in most topology textbooks or in the appendix
of the book Inverse Limits: From Continua to Chaos [2]. Most of the theorems are
stated for inverse limits with upper semicontinuous bonding functions on closed
subsets of Œ0; 1� although, generally speaking, they hold in the setting of compact
Hausdorff spaces and often the proofs given for Œ0; 1� can easily be adapted to
compact metric spaces or even compact Hausdorff spaces.

A metric space X is compact provided that if G is a collection of open sets
coveringX , then some finite subcollection of G coversX . A collection A of subsets
of X is said to have the finite intersection property provided that if B is a finite

W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-4487-9 1,
© W.T. Ingram 2012
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2 1 Basics

subcollection of A, then there is a point common to all the elements of B. Our first
theorem is a basic property of compact spaces that is likely to be well known to the
reader, but we include its proof for the sake of completeness.

Theorem 1.1. A metric space X is compact if and only if for each collection A of
nonempty closed subsets of X having the finite intersection property there is a point
common to all the elements of A.

Proof. Suppose X is compact and there is a collection A of nonempty closed
subsets of X with the finite intersection property, but there is not a point common
to all the elements of A. Then, the collection G D fX � A jA 2 Ag is a
collection of open sets covering X . Some finite subcollection H of G covers X .
Then, fX � h j h 2 Hg is a finite subcollection of A with no point in common, a
contradiction.

On the other hand, suppose X is a metric space with the property that if A is
a collection of closed subsets of X and A has the finite intersection property, then
there is a point common to all the elements of A. Suppose moreover that G is a
collection of open sets covering X such that no finite subcollection of G covers X .
Let A D fX � g j g 2 Gg; A is a collection of closed subsets of X . If B is a finite
subcollection of A, then there is point of X common to all the elements of B, or
else fX � B jB 2 Bg is a finite subcollection of G that covers X . Because A has
the finite intersection property, by hypothesis there is an element of X common to
all the elements of A. Such a point belongs to no element of G, a contradiction. ut

Two subsets of a metric space are mutually exclusive provided they have no point
in common; they are mutually separated provided they are mutually exclusive and
neither contains a limit point of the other. A set is connected provided it is not
the union of two mutually separated sets. By a continuum, we mean a compact-
connected metric space; a compact set is a continuum if and only if it is not the
union of two mutually exclusive compact sets.

1.2 Upper Semicontinuous Functions

If X is a metric space, 2X denotes the collection of closed subsets of X , and
C.X/ denotes the connected elements of 2X . If each of X and Y is a metric
space, a function f from X into 2Y , denoted f W X ! 2Y , is said to be upper
semicontinuous at the point x 2 X provided that if V is an open set in Y containing
f .x/, then there is an open set U in X containing x such that if t 2 U , then
f .t/ � V ; f is called upper semicontinuous if it is upper semicontinuous at each
point of X . If f W X ! 2Y is a function, let G.f / D f.x; y/ 2 X � Y j y 2 f .x/g;
G.f / is called the graph of f . If f W X ! 2Y is a function and A � X ,
f .A/ denotes fy 2 Y j ; there is a point x 2 A such that y 2 f .x/g; f is said
to have a surjective graph or, simply, to be surjective, provided f .X/ D Y . If f
is an upper semicontinuous function having all of its values degenerate sets and
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f .x/ D fyg, we normally write f .x/ D y; such upper semicontinuous functions
are continuous, and we refer to continuous functions as mappings. We use IdX to
denote the identity on X , i.e., IdX.x/ D x for each x 2 X . When the domain
should be clear from context, we normally shorten IdX to Id . Our first theorem can
be found in [1, Theorem 2.1, p. 120] as well as in [2, Theorem 105, p. 78] in a more
general setting. We include it in the setting of compact metric spaces.

Theorem 1.2. Suppose each of X and Y is a compact metric space and M is a
subset ofX�Y such that if x 2 X , then there is a point y 2 Y such that .x; y/ 2 M .
Then, M is closed if and only if there is an upper semicontinuous function
f W X ! 2Y such that M D G.f /.
Proof. We first show that if f W X ! 2Y is an upper semicontinuous function,
then G.f / is closed. Let p D .p1; p2/ be a point of X � Y that is not in G.f /.
Then, p2 … f .p1/; so, because compact metric spaces are regular [2, Lemma 268,
p. 179], there are mutually exclusive open sets V andW in Y such that p2 2 V and
f .p1/ � W . Because f is upper semicontinuous, there is an open subset U of X
containing p1 such that if t 2 U , then f .t/ � W . Thus, U � V is an open subset of
X � Y containing p that does not intersect G.f /. It follows that G.f / is closed.

Assume that M is closed and, for each x in X , define f .x/ to be fy 2
Y j .x; y/ 2 M g. Because f .x/ is the intersection ofM with the closed set fxg�Y ,
f .x/ is closed for each x in X . To see that f is upper semicontinuous, suppose x is
in X and V is an open set in Y containing f .x/. If f is not upper semicontinuous
at x, then for each open set U containing x, there exist points z of U and .z; y/ of
M such that y is not in V . For each open set U containing x, denote by MU the
nonempty set of all points .p; q/ of M such that p is in U and q is not in V ; MU

is closed. Observe that if U and U 0 are open sets containing x and U � U 0, then
MU � MU 0 . From this, it follows that the collection M D fMU jU is open in Xg
has the finite intersection property. Because X � Y is compact, by Theorem 1.1
there is a point .a; b/ common to all the sets in M. Because each element of M
is a subset of M , .a; b/ belongs to M so b 2 f .a/. Because x is the only point
common to all the sets U , a D x. However, b is not in V , contradicting the fact that
b belongs to f .x/. ut

There are a couple of additional properties of upper semicontinuous functions
that we use in this book. We include them here to help familiarize the reader with
such functions. We leave the proof of Theorem 1.3 to the reader.

Theorem 1.3. If each of X and Y is a compact metric space and f W X ! 2Y

is upper semicontinuous, then ' W X ! 2X�Y given by '.x/ D fxg � f .x/ and
 W X ! 2Y�X given by  .x/ D f .x/ � fxg are upper semicontinuous.

Suppose X; Y; and Z are metric spaces and f W X ! 2Y and g W Y ! 2Z are
set-valued functions. By the composition of g with f , denoted g ı f , we mean that
the function from X into 2Z given by g ı f .x/ D fz 2 Z j there is a point y 2 Y
such that y 2 f .x/ and z 2 g.y/g. Sometimes, we shorten g ı f to gf .



4 1 Basics

Theorem 1.4. Suppose X; Y; and Z are metric spaces. If f W X ! 2Y and g W
Y ! 2Z are upper semicontinuous, then g ı f is upper semicontinuous.

Proof. Let x be a point of X and suppose V is an open set in Z that contains
g ı f .x/. Using that g is upper semicontinuous, for each y 2 f .x/, choose an
open subset Wy of Y containing y such that if s 2 Wy , then g.s/ 2 V . Let
W D S

y2f .x/ Wy . Then W is an open set and f .x/ � W . Because f is upper
semicontinuous, there is an open set U containing x such that if t 2 U , then
f .t/ � W . Suppose t 2 U and p is a point of f .t/. Then, there is a point y 2 f .x/
such that p 2 Wy , so g.p/ 2 V . Therefore, g.f .t// � V . ut

1.3 Inverse Limits

A sequence is a function defined on a set of nonnegative integers, normally the
set of all positive integers. We generally denote sequences in boldface type and
the terms of sequences in italics. To simplify our notation, we adopt the following
convention. If a is a sequence, we denote a.i/ by ai . If a is a sequence, we
sometimes denote a by listing its terms a1; a2; a3; : : : . If X is a sequence such
that Xi D Œ0; 1� for each positive integer i , we sometimes denote

Qn
iD1 Xi by

Œ0; 1�n; the product,
Q
i>0 Xi , of the sequence is the Hilbert cube, Q. The points

of Q are sequences of numbers from Œ0; 1�; a metric d for Q that is consistent with
the product topology on Q is given by d.x;y/ D P

i>0 jxi � yi j=2i . Additional
information on Q may be found in the appendix of [2]. In the case that X is a
sequence of closed subsets of Œ0; 1�, the points of

Q
i>0 Xi are sequences x such that

xi 2 Xi for each positive integer i , i.e.,
Q
i>0 Xi is a subset of Q, and, as such, it

inherits a topology from Q. Although a point x of Q is a sequence, we normally
enclose its terms in parenthesis to indicate that it is a point of a product space, i.e.,
x D .x1; x2; x3; : : : /. If X is a sequence of closed subsets of Œ0; 1� and f is a
sequence of functions such that fi W XiC1! 2Xi for each positive integer i , the pair
of sequences fX ;f g is called an inverse limit sequence; the setsX1;X2;X3; : : : are
called factor spaces; the functions f1; f2; f3; : : : are called bonding functions. In
the case that the factor spaces are understood (e.g., all the factor spaces are Œ0; 1�
as is the case throughout most of this book), we may refer to f as an inverse
limit sequence. By the inverse limit of the inverse limit sequence fX ;f g, we mean
fx 2 Q j xj 2 fj .xjC1/ for each positive integer j g. If fX ;f g is an inverse limit
sequence, we denote its inverse limit by lim �fX ;f g, although normally we shorten
this to lim �f . In the case that the sequences X and f are constant sequences, i.e.,

there are a closed subset X of Œ0; 1� and a function f W X ! 2X such that Xi D X
and fi D f for each positive integer i , we still denote the inverse limit by lim �f .
These are called inverse limits with only one bonding function. Most of the inverse
limits we discuss in this book, particularly the examples, are inverse limits with only
one bonding function.
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Throughout, we use N to denote the set of positive integers. If X is a sequence
of closed subsets of Œ0; 1� and A � N, denote by pA W Q

i>0 Xi !
Q
i2A Xi the

function given by pA.x/ D y where yi D xi for each i 2 A. For any A � N, pA is
a mapping called a projection. In the case that A D fng, we normally denote pA by
pn. For inverse limits, we adopt the convention of using �A to denote the restriction
of pA to the inverse limit.

1.4 Some Basic Examples

In this section we provide some elementary examples to illustrate the definition of
an inverse limit as well as to indicate some of the inverse limits that may be obtained
using only one simple bonding function on the interval Œ0; 1�. Most of the functions
in our examples have graphs that are easy to draw; however, for easy reference, we
provide a picture showing the graph in many of our examples. Later in the book, as
the inverse limits become more complicated, we sometimes provide a model for the
inverse limit. Each of the examples in this section is nonempty. This follows from
Theorem 1.6 from Sect. 1.5; however, even without that theorem, it can be seen that
each inverse limit in this section contains the point .0; 0; 0; : : : / because in each
case, 0 2 f .0/.
Example 1.1 (The Hilbert cubeQ). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D Œ0; 1�
for each t; 0 � t � 1. Then lim �f D Q.

The Cantor set is another familiar compactum that is obtainable as an inverse
limit on Œ0; 1� using a single set-valued bonding function.

Example 1.2 (The Cantor set). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D f0; 1g for
0 � t � 1. Then lim �f is a Cantor set. (See Fig. 1.1 for the graph of f .)

(0,0) (1,0)

(0,1) (1,1)

Fig. 1.1 The graph of the
bonding function in
Example 1.2. The inverse
limit is a Cantor set
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(0,0)

(1,1/2)

Fig. 1.2 The bonding
mapping in Example 1.4. The
inverse limit is degenerate

Proof. M D lim �f cannot contain a point with first coordinate strictly between 0
and 1; thus, M DQ

i>0 Xi where Xi D f0; 1g for each positive integer i . ut
The reader should note that we obtain the same inverse limit if we restrict the

bonding function in Example 1.2 to f0; 1g.
Example 1.3. Let X D f0; 1g and f W X ! 2X be given by f .x/ D X for each
x 2 X . Then, lim �f is a Cantor set.

Even using a mapping as a bonding function, the inverse limit may be degenerate,
i.e., a single point, as the next example shows.

Example 1.4 (A degenerate inverse limit). Let f W Œ0; 1� ! Œ0; 1� be given by
f .t/ D t=2. Then, lim �f D f.0; 0; 0; : : : /g. (See Fig. 1.2 for the graph of f .)

Proof. Observe that if 0 < t � 1=2, then there is a positive integer n such that
f �n.t/ > 1=2. If z > 1=2 and t 2 Œ0; 1�, then f .t/ ¤ z. It follows that no point of
the inverse limit can have a positive coordinate. ut

Example 1.5 (A two-point inverse limit). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D
t=2 for t < 1=2, f .1=2/ D f1=4; 3=4g and f .t/ D 1=2C t=2 for t > 1=2. Then,
lim �f D f.0; 0; 0; : : : /; .1; 1; 1; : : : /g. (See Fig. 1.3 for the graph of f .)

Proof. Let M D lim �f . Let f1 W Œ0; 1=2� ! Œ0; 1=2� be given by f1.t/ D t=2 and
f2 W Œ1=2; 1� ! Œ1=2; 1� be given by f2.t/ D 1=2 C t=2. Let M1 D lim �f1 and
M2 D lim �f2. It is easy to see that M1 [M2 � M . If x 2 M and x … M1, then
there is a positive integer i such that xi … Œ0; 1=2�. It follows that xj 2 Œ1=2; 1� for
each positive integer j and consequently x 2 M2. Thus, M D M1 [M2. Clearly,
no point ofM has first coordinate between 1=4 and 3=4. The remainder of the proof
that M1 and M2 are degenerate follows in much the same way as Example 1.4 was
shown to be degenerate. ut
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(0,0)

(1/2,1/4)

(1/2,3/4)

(1,1)
Fig. 1.3 The graph of the
bonding function in
Example 1.5. The inverse
limit consists of two points

(0,0)
(1/3,1/9)

(1/3,4/9)

(2/3,5/9)

(1,1)
(2/3,8/9)

Fig. 1.4 The graph of the
bonding function in
Example 1.6. The inverse
limit is a set containing only
three points

In the case that f is a sequence of surjective mappings, the inverse limit is never
degenerate. In fact, it is uncountable. This follows from Theorem 1.7 in the next
section.

The function in our next example has an inverse limit that is a point set containing
only three points. We provide it without proof because the proof is similar to that
of Example 1.5. It should be clear to the reader how to obtain any finite set as an
inverse limit on Œ0; 1� with a single set-valued function.

Example 1.6 (A three-point inverse limit). Let f W Œ0; 1� ! 2Œ0;1� be given by
f .t/ D t=3 for 0 � t < 1=3; f .1=3/ D f1=9; 4=9g; f .t/ D t=3 C 1=3 for
1=3 < t < 2=3, f .2=3/ D f5=9; 8=9g, and f .t/ D t=3 C 2=3 for 2=3 < t � 1.
Then lim �f D f.0; 0; 0; : : : /, .1=2, 1=2; 1=2; : : : /, .1; 1; 1; : : : /g. (See Fig. 1.4 for
the graph of f .)

In our next example, the inverse limit is a convergent sequence.
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(0,0)

(1,1)

(1,0)

Fig. 1.5 The graph of the
bonding function in
Example 1.7. The inverse
limit is a simple convergent
sequence

(0,0)

(1,1/2)

(1,0)

Fig. 1.6 The graph of the
bonding function in
Example 1.8. The inverse
limit is connected even
though the graph of the
bonding function is not
connected

Example 1.7 (A convergent sequence). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D 0
for 0 � t < 1 and f .1/ D f0; 1g. Then lim �f D f.0; 0; 0; : : : /; .1; 1; 1, : : : /,

.0; 1; 1; 1; : : : /, .0; 0; 1; 1; : : : /; : : : g. Note that if g W f0; 1g ! 2f0;1g is given by
g.0/ D 0 and g.1/ D f0; 1g, lim �f D lim �g. (See Fig. 1.5 for the graph of f .)

In Example 1.7, the fact that 1 is a fixed point for f , i.e., 1 2 f .1/, plays a
crucial role as we see from the following example where the bonding function is
similar but the inverse limit is nowhere near as rich. Note that the inverse limit
from Example 1.8 is connected even though the graph of the bonding function is not
connected. In Theorem 2.2 we show that this cannot happen if the bonding functions
are surjective.

Example 1.8 (A connected inverse limit from bonding function with a nonconnected
graph). Let f W Œ0; 1� ! 2Œ0;1� be given by f .t/ D 0 for 0 � t < 1 and f .1/ D
f0; 1=2g. Then lim �f D f.0; 0; 0; : : : /g. (See Fig. 1.6 for the graph of f .)
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Proof. Suppose x 2 Q and x1 > 0. If x1 ¤ 1=2, then, because x1 … f .t/ for any
t 2 Œ0; 1�, x … lim �f . If x1 D 1=2, then x1 2 f .t/ only for t D 1. But 1 … f .s/
for any s 2 Œ0; 1�, so once again, x … lim �f . It follows that .0; 0; 0; : : : / is the only
point of lim �f . ut

1.5 A Fundamental Existence Theorem

Because our emphasis in this book is on inverse limits on Œ0; 1� with upper
semicontinuous bonding functions, we state and prove our theorems for inverse limit
sequences on closed subsets of Œ0; 1�. Most of these theorems carry over to inverse
limits with upper semicontinuous functions on compact Hausdorff spaces, and for
the most part, their proofs require only minor modification. The corresponding
theorems in more generality may be found in [2]. Suppose fX ;f g is an inverse
limit sequence such that Xi is a closed subset of Œ0; 1� for each positive integer i .
We adopt the following notation and use it extensively in this book. If n is a positive
integer, let Gn D fx 2 Q j xi 2 fi .xiC1/ for 1 � i � ng.
Theorem 1.5. If X is a sequence of closed subsets of Œ0; 1� and f is a sequence of
upper semicontinuous functions such that fi W XiC1 ! 2Xi , then Gn is a nonempty
compact subset of

Q
i>0 Xi .

Proof. If p 2 XnC1, there is a point xn 2 Xn such that xn 2 fn.p/. Continuing
inductively, there is a finite set x1; x2; : : : ; xn such that xi 2 Xi and xi 2 fi .xiC1/
for 1 � i < n. Choose y 2 Q

i>0 Xi . The point .x1; x2; : : : ; xn; p; ynC2; ynC3; : : : /
is a point of Gn, so Gn is nonempty.

To show that Gn is compact, we only need to show that Gn is a closed subset of
the compact metric space Q. Suppose x 2 Q�Gn. Then, there is a positive integer
k � n such that xk … fk.xkC1/. There exist mutually exclusive open sets O and U
such that xk 2 O and fk.xkC1/ � U . Because fk is upper semicontinuous, there is
an open set V containing xkC1 such that if t 2 V , then f .t/ � U . Then, because the
projection pi is continuous for each i , p�1k .O/\p�1kC1.V / is an open set containing
x that contains no point of Gn. It follows that Gn is closed. ut

An alternate proof of Theorem 1.5 can be constructed employing Theorem 1.2
and the observation made by Gerardo Acosta that Gn D p�1f1;2g.G.f

�1
1 // \

p�1f2;3g.G.f
�1
2 // \ � � � \ p�1fn;nC1g.G.f �1n //.

Theorem 1.6. If X is a sequence of closed subsets of Œ0; 1� and f is a sequence
of upper semicontinuous functions such that fi W XiC1 ! 2Xi , then lim �f is a
nonempty compact metric space.

Proof. For each positive integer n,GnC1 � Gn and, by Theorem 1.5,Gn is compact.
Thus, G1;G2;G3; : : : is a nested sequence of nonempty compact subsets of Q.
By Theorem 1.1, there is a point of Q belonging to

T
i>0 Gi , a compact set. But

lim �f DT
i>0 Gi . ut
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In the case that the bonding functions are surjective, we do not need Theorem 1.6
to see that the inverse limit is nonempty. It is a consequence of the following theorem
that does not require upper semicontinuity of the bonding functions.

Theorem 1.7. Suppose X is a sequence of closed subsets of Œ0; 1� and f is a
sequence of surjective functions such that fi W XiC1 ! 2Xi for each i . If n is a
positive integer and p 2 Xn, then there is a point x 2 lim �f such that xn D p.

Proof. We construct a point x as follows. Let xn D p. There is a point xn�1 of
Xn�1 such that xn�1 2 fn.p/. Similarly, it follows that there is a finite sequence
x1; x2; x3; : : : ; xn�1 such that xi 2 fi .xiC1/ for 1 � i < n � 1. Because fn is
surjective, there is a point xnC1 2 XnC1 such that p 2 fn.xnC1/. Continuing by
induction and employing the surjectivity of the bonding functions, we construct a
sequence xnC1; xnC2; xnC3; : : : such that xj 2 fj .xjC1/ for j > n. Thus, we obtain
a point x of lim �f such that xn D p. ut

A stronger theorem holds as we see in Theorem 1.8. We leave its proof to the
reader. Before stating the theorem, we introduce some notation. If fX ;f g is an
inverse limit sequence and m and n are positive integers with m < n, by fmn, we
mean fm ı fmC1 ı � � � ı fn�1. Note that fmn W Xn ! 2Xm . This notation is normally
extended to fmn for m � n by letting fnn denote the identity on Xn.

Theorem 1.8. Suppose X is a sequence of closed subsets of Œ0; 1� and f is a
sequence of surjective upper semicontinuous functions such that fi W XiC1 ! 2Xi

for each i . If m; n 2 N with m < n and q 2 Xm and p 2 Xn with q 2 fmn.p/,
there is a point x 2 lim �f such that xm D q and xn D p.

1.6 Some Elementary Basic Theorems

The following theorem is easy to prove, and it will be used often throughout without
a specific reference to it. In fact, we made use of it in Example 1.5.

Theorem 1.9. Suppose C is a closed subset of Œ0; 1�. If f W Œ0; 1� ! 2Œ0;1� and
g W C ! 2C are upper semicontinuous functions such that G.g/ � G.f /, then
lim �g � lim �f .

A function f W X ! Y is said to be 1–1 provided f .x/ ¤ f .y/ whenever
x ¤ y. A homeomorphism is mapping that is 1–1 with a continuous inverse. A 1–1
mapping of a compact subset of Q is a homeomorphism [2, Theorem 259, p. 178].
By an arc we mean a continuum that is homeomorphic to the interval Œ0; 1�.

Example 1.9 (Union of an arc and a convergent sequence). Let f W Œ0; 1� ! 2Œ0;1�

be given by f .t/ D t for 0 � t < 1 and f .1/ D f0; 1g and g W f0; 1g ! 2f0;1g be
given by g.0/ D 0 and g.1/ D f0; 1g, as in Example 1.7. Then lim �f D lim � Id [
lim �g and thus is the union of an arc and a convergent sequence. (See Fig. 1.7 for
the graph of f .)
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(1,0)

(1,1)

(0,0)

Fig. 1.7 The graph of the
bonding function in
Example 1.9. The inverse
limit is the union of an arc
and a simple convergent
sequence

Proof. It is easy to see that A D lim � Id is an arc; in fact, h W Œ0; 1� ! A given by
h.t/ D .t; t; t; : : : / is a homeomorphism. For B D lim �g, B D f.0; 0; 0; : : : /,
.1; 1; 1; : : : /, .0; 1; 1; 1; : : : /; .0; 0; 1; 1; 1; : : : /; : : : g. Because G.Id/ [ G.g/ �
G.f /, lim � Id [ lim �g � lim �f . On the other hand, if x 2 lim �f and x … lim � Id ,
then xi … .0; 1/ for any positive integer i . Thus, if x ¤ .0; 0; 0; : : : /, then there is
a positive integer j such that xi D 0 for 1 � i � j and xi D 1 for i > j . Such a
point is in B . ut
Theorem 1.10. Suppose X is a sequence of closed subsets of Œ0; 1� and f is a
sequence of upper semicontinuous functions such that fi W XiC1 ! 2Xi for each
positive integer i . If x 2 lim �f andm and n are positive integers with m < n, then
xm 2 fmn.xn/ (or, stated in terms of projections, �m.x/ 2 fmn.�n.x//).

We revisit the interaction between the projections and set-valued bonding
functions in Sect. 3.3.
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Chapter 2
Connectedness

Abstract A fundamental question about inverse limits with set-valued bonding
functions relates to the connectedness of the inverse limit. For inverse limits on
compact, connected factor spaces with bonding functions that are mappings, the
inverse limit is always connected. However, for inverse limits with set-valued
functions as bonding functions, the inverse limit is rarely connected. One might
suspect that this is due to the fact that the graph of an upper semicontinuous function
on a compact, connected space can fail to be connected, but the reasons go much
deeper. In this chapter we study connectedness of inverse limits on Œ0; 1� with set-
valued functions.

2.1 Introduction

All but one of the examples from Chap. 1 were not connected, and after examining
those examples, one might conjecture that if the graphs of the bonding functions
are connected, then the inverse limit is connected. This is not the case, and in
Example 2.1 of Sect. 2.2, we provide the first of several examples of functions
having connected graphs and a nonconnected inverse limit. In fact, there are
examples of inverse limit sequences with only one bonding function such that the
inverse limit is totally disconnected even though the graph of the bonding function
is connected. Although their example is beyond the scope of this book, it has been
shown by Sina Greenwood and Judy Kennedy that there exists an inverse limit
on Œ0; 1� with a single surjective set-valued bonding function having a connected
graph such that the inverse limit is a Cantor set. They go on to show that in some
sense most inverse limits with upper semicontinuous bonding functions are not
connected. In this chapter we discuss connectedness of the inverse limit with upper
semicontinuous bonding functions. Much of our discussion relates, in one way or
another, the unsolved problem of characterizing connectedness of inverse limits with
upper semicontinuous bonding functions in terms of the bonding functions.

W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-4487-9 2,
© W.T. Ingram 2012
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One of the major problems in the theory of inverse limits with set-valued
functions is the question of under what conditions is the inverse limit connected (see
Problem 6.1 in Chap. 6). A word about a solution to the problem of characterizing
connectedness is in order. In the next section, we actually present a solution to
the problem. However, the solution is not very satisfying because it is not given
specifically in terms of the nature of the bonding functions. Ideally, a solution would
allow us to determine the connectedness of the inverse limit by an examination of
the bonding functions. From this perspective, the problem remains unsolved even in
the case that each factor space is the interval Œ0; 1�.

2.2 A Characterization of Connectedness

We begin our discussion of connectedness with a theorem that characterizes this
property for inverse limits. Unfortunately, when the bonding functions are set-
valued, it is rarely easy to verify that the hypothesis of Theorem 2.1 is satisfied,
so the theorem is not very useful except under special circumstances. As with
many theorems in this book, the following theorem holds in a much more general
setting than we state. For a more general theorem, see [6, Theorem 116, p. 85]
where it is shown that the connectedness of the inverse limit follows from the
connectedness of the terms of the sequence G . Recall from Chap. 1 that, for a
sequence X of closed subsets of Œ0; 1� and a sequence f of upper semicontinuous
functions such that fi W XiC1 ! 2Xi for each positive integer i , Gn is defined to be
fx 2 Q j xi 2 fi .xiC1/ for 1 � i � ng.
Theorem 2.1. Suppose X is a sequence of closed subsets of Œ0; 1� and f is a
sequence of upper semicontinuous functions such that fi W XiC1 ! 2Xi for each
positive integer i . Then, lim �f is a continuum if and only ifGn is connected for each
positive integer n.

Proof. Let M D lim �f . We showed in Theorem 1.5 that Gn is compact for each
positive integer n and M D T

n>0 Gn. Thus, if Gn is connected for each n 2 N,
then M is a continuum, being the intersection of a nested sequence of subcontinua
of Q.

On the other hand, if M is connected, then �f1;2;:::;nC1g.M/ is connected
for each positive integer n because �f1;2;:::;nC1g is a mapping. However, Gn D
�f1;2;:::;nC1g.M/ � Q

i>nC1 Xi , a connected set because it is a product of two
connected sets. ut

The proof of Theorem 2.1 makes use of the continuity of �A where A � N

to conclude that the image of a connected set under �A is connected. This leads
to our next theorem that was first observed by Van Nall in [10]. One can often
obtain information about inverse limits with mappings by examining composites
of the bonding maps, especially if the inverse limit in question is produced by a
single bonding map. As we shall see later, this is rarely the case when the bonding
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(1/4,1/4)

(0,0)

(3/4,1/4)

(1,1)

(1,0)

.(1/4,1/4)

(0,0)

(3/4,1/4)

(11/12,1/4)

(1,0)

(1,1)

Fig. 2.1 Graph of the bonding function f (left) in Example 2.1 and f 2 (right)

functions are set-valued. However, Theorem 2.2 provides one of the few cases in
the theory of inverse limits where composites provide some insight into the nature
of the inverse limit when the bonding functions are set-valued.

Theorem 2.2 (Nall). Suppose X is a sequence of closed subsets of Œ0; 1� and f is
a sequence of surjective set-valued functions such that fi W XiC1 ! 2Xi is upper
semicontinuous for each positive integer i . Ifm and n are positive integers such that
m < n and G.fmn/ is not connected, then lim �f is not connected.

Proof. If lim �f is connected and m; n 2 N with m < n, then �fm;ng.lim �f /

is connected. However, by using Theorem 1.8, we see that �fm;ng.lim �f / D
.G.fmn//

�1, so G.fmn/ is connected, a contradiction. ut
One consequence of Theorem 2.2 is that if an inverse limit with surjective

bonding functions is connected, then each of the bonding functions (including
compositions) has a connected graph. In Example 1.8, we saw that an inverse limit
using nonsurjective bonding functions with graphs that are not connected can be
connected. Our first example of this chapter is a surjective upper semicontinuous
function having a connected graph and an inverse limit that is not connected. It was
first published in [5] but with a different proof that it is not connected.

Example 2.1. Let f W Œ0; 1� ! 2Œ0;1� be given by f .t/ D f0; tg for 0 � t � 1=4,
f .t/ D 0 for 1=4 < t < 3=4, f .t/ D f3t�2; 0g for 3=4 � t < 1, and f .1/ D Œ0; 1�.
Then, G.f / is connected, but lim �f is not connected. (See the graph on the left in
Fig. 2.1 for G.f /.)

Proof. It is not difficult to show that f 2.t/ D ft; 0g for 0 � t � 1=4, f 2.t/ D 0

for 1=4 < t < 3=4, f 2.3=4/ D f1=4; 0g, f 2.t/ D 0 for 3=4 < t < 11=12, and
f 2.t/ D f9t�8; 0g for 11=12 � t � 1 (G.f 2/ are pictured on the right in Fig. 2.1).
Because .3=4; 1=4/ is an isolated point of G.f 2/, it follows from Theorem 2.2 that
lim �f is not connected. ut
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To conclude this section, we present a second simple theorem, this one
characterizing connectedness of an inverse limit on intervals with a single bonding
function. Nall included this theorem for inverse limits on Hausdorff continua in
[10, Theorem 3.3, p. 171]. The proof given here is based on his proof.

Theorem 2.3. Suppose f W Œ0; 1�! 2Œ0;1� is an upper semicontinuous function that
is surjective. Then, lim �f is connected if and only if lim �f �1 is connected.

Proof. Suppose n 2 N. Observe that h W Q! Q given by h.x/D .xnC1; xn; : : : ; x1;
xnC2; xnC3; : : : / is a homeomorphism. Let g D f �1. If Gn D fx 2 Q j xi 2
fi .xiC1/ for 1 � i � ng and Hn D fx 2 Q j xi 2 g.xiC1/ for 1 � i � ng, then
h.Gn/ D Hn, and thusHn is connected if and only if Gn is connected. The theorem
now follows from Theorem 2.1. ut

In Theorem 2.10 below, we show that a theorem similar to Theorem 2.3 holds
if the constant sequence f is replaced by a sequence of mappings. It would be
interesting to know if the constant sequence in Theorem 2.3 can be replaced by a
sequence of surjective upper semicontinuous functions (see Problem 6.7).

2.3 A Basic Connectedness Theorem

Theorem 2.7 as stated below for sequences of upper semicontinuous functions on
subintervals of Œ0; 1� appeared in Mahavier’s original paper [7] on inverse limits with
subsets of Œ0; 1� � Œ0; 1�. It was generalized in [5] to inverse limits of sequences of
compact, connected Hausdorff spaces with upper semicontinuous bonding functions
and in [6] to consistent inverse limit systems on compact, connected Hausdorff
spaces with upper semicontinuous bonding functions over directed sets. Although
we state and prove it for inverse limits on subintervals of Œ0; 1�, we give a different
proof of the theorem based on the following theorems not found in those references.

Suppose that each of X and Y is a continuum. A mapping f W X ! Y is said
to be monotone provided f �1.y/ is connected for each y 2 f .X/. In the case that
f �1 is a surjective mapping, Theorem 2.4 follows from the well-known theorem
that a surjective map of continua is monotone if and only if the preimage of each
subcontinuum of the range is a subcontinuum of the domain [9, Exercise 8.46, p.
137]. We present a proof of a slightly different theorem based on a direct use of
upper semicontinuity. Recall our notation that if f W X ! 2Y and A � X , by f .A/
we mean fy 2 Y j ; there is a point x 2 A such that y 2 f .x/g.
Theorem 2.4. Suppose X is a continuum, Y is a compact metric space, and f W
X ! C.Y / is an upper semicontinuous function. Then, f .X/ is a continuum.

Proof. Because G.f / is compact and f .X/ D p.G.f // where p is the projection
of X � Y onto Y , f .X/ is compact. If f .X/ is not connected, then there are
two mutually exclusive compact sets H and K such that f .X/ D H [ K . The
normality of metric spaces provides two mutually exclusive open sets U and V
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such that H � U and K � V . If x 2 X , f .x/ is connected so f .x/ � H or
f .x/ � K . Let XH D fx 2 X j f .x/ � H g and XK D fx 2 X j f .x/ � Kg.
Then, X D XH [ XK , and no point of X belongs to both XH and XK . If t 2 XH ,
then f .t/ � U . Because f is upper semicontinuous at t , there is an open set W
containing t such that if s 2 W , then f .s/ � U . Then, W � XH , and it follows
that XH is open. Therefore, XK is closed. A similar argument yields that XH is
closed. This involves a contradiction because the continuum X is not the union of
two mutually exclusive closed sets. ut
Theorem 2.5. Suppose X is a continuum and Y is a compact metric space. If f W
X ! C.Y / is upper semicontinuous, then G.f / is a continuum.

Proof. Let ' W X ! X � Y be function given by '.x/ D fxg � f .x/; ' is upper
semicontinuous by Theorem 1.3. Then G.f / D '.X/ and '.X/ is a continuum by
Theorem 2.4. ut

Next we extend our notion of the graph of an upper semicontinuous function
in the following way. Suppose fX1;X2; : : : ; XnC1g is a finite collection of metric
spaces and ff1; f2; : : : ; fng is a finite collection of functions such that fi W XiC1!
2Xi for 1 � i � n. Define G0.f1; f2; : : : ; fn/ D fx 2 QnC1

iD1 Xi j xi 2
fi .xiC1/ for 1 � i � ng. Note that if f W X ! 2Y is a function, G0.f / D
.G.f //�1 D G.f �1/.
Lemma 2.1. Suppose fX1;X2; : : : ; XnC1g is a finite collection of closed subsets of
Œ0; 1� and ff1; f2; : : : ; fng is a finite collection of upper semicontinuous functions
such that fi W XiC1! 2Xi for 1 � i � n. Then, G0.f1; f2; : : : ; fn/ is compact.

Proof. For i > n C 1, let Xi D XnC1 and fi D IdXnC1
. By Theorem 1.5, Gn D

fx 2 Q
i>0 Xi j xi 2 fi .xiC1/g is nonempty and compact. Because G0.f1; f2; : : : ,

fn/ D �f1;2;:::;nC1g.Gn/, the conclusion follows. ut
Lemma 2.2. Suppose fX1;X2; : : : ; XnC1g is a finite collection of continua,
ff1; f2; : : : ; fng is a finite collection of upper semicontinuous functions such that
fi W XiC1 ! 2Xi for 2 � i � n, and f1 W X2 ! C.X1/. If G0.f2; f3; : : : ; fn/ is
connected, then G0.f1; f2; : : : ; fn/ is a continuum.

Proof. In light of Lemma 2.1, we only need to show that G0.f1; f2; : : : ; fn/ is
connected. Let p denote the projection of

QnC1
iD2 Xi to its first factor space X2.

Because p is a mapping, f1 ı p is upper semicontinuous. The function  W
G0.f2; f3; : : : ; fn/! G0.f1; f2; : : : ; fn/ given by .x/ D f1.p.x//�fxg is upper
semicontinuous. It follows that G0.f1; f2; : : : ; fn/ is connected by Theorem 2.4
being the image of G0.f2; f3; : : : ; fn/ under the upper semicontinuous function  .

ut
Theorem 2.6. Suppose fX1;X2; : : : ; XnC1g is a finite collection of continua and
ff1; f2; : : : ; fng is a finite collection of upper semicontinuous functions such that
fi W XiC1 ! C.Xi / for 1 � i � n. Then, G0.f1,f2,: : : ; fn/ is a continuum.
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Proof. If the finite collection of continua contains only one function f1, then
G0.f1/ D .G.f1//�1 is a continuum by Theorem 2.5.

Inductively, suppose k � 2 is an integer such that if fX1;X2; : : : ; Xkg is a
collection of k continua and fg1; g2; : : : ; gk�1g is a collection of k � 1 upper
semicontinuous functions such that gi W XiC1 ! C.Xi/ for 1 � i � k � 1,
then G0.g1; g2; : : : ; gk�1/ is a continuum. Let fX1;X2; : : : ; XkC1g be a collection
of k C 1 continua and let ff1; f2; : : : fkg be a collection of k upper semicontinuous
functions such that fi W XiC1 ! C.Xi/ for 1 � i � k. By the inductive
hypothesis, G0.f2; f3; : : : ; fk/ is a continuum. It follows from Lemma 2.2 that
G0.f1; f2; : : : ; fk/ is a continuum. ut

We now prove the main theorem of this section.

Theorem 2.7. Suppose X is a sequence of subintervals of Œ0; 1� and f is a
sequence of upper semicontinuous functions such that fi W XiC1 ! C.Xi/. Then,
lim �f is a continuum.

Proof. Suppose n 2 N and note that Gn D G0.f1; f2; : : : ; fn/ � Q
i>nC1 Xi . By

Theorem 2.6, G0.f1; f2; : : : ; fn/ is a continuum, so Gn is a continuum being the
product of two continua. That lim �f is a continuum now follows from Theorem 2.1.

ut
A stronger statement than that of Theorem 2.7 is true. We leave its proof to the

interested reader. A proof in a very general setting may be found in [6, Theorem
125, p. 89].

Theorem 2.8. Suppose X is a sequence of subintervals of Œ0; 1� and f is a
sequence of upper semicontinuous functions such that fi W XiC1 ! 2Xi . Suppose
further that for each positive integer i such that fi does not have connected values,
fi .XiC1/ is connected and f �1i .x/ is an interval for each x 2 fi .XiC1/. Then,
lim �f is a continuum.

By way of contrast to Theorem 2.7, in Example 2.7 below we see that an inverse
limit can be connected even if most of the values of the bonding function are totally
disconnected. This is only one of many such examples to be found in this book.

2.4 Examples

We consider some examples having connected inverse limits in which the connect-
edness is a consequence of Theorem 2.7. However, in these examples, we show more
than that continua are produced in the inverse limit. We are able to say something
about the nature of the inverse limit; in fact, in some cases, we identify what the
inverse limit is and provide a model for it. Such is the case in our next example.

Example 2.2 (An arc). Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D 0 for 0 �
t < 1 and f .1/ D Œ0; 1�. Then lim �f is an arc (see the graph on the left side of
Fig. 2.2 for G.f / and Fig. 2.3 for a model of the inverse limit).
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Fig. 2.2 Graphs of the bonding functions in Examples 2.2 (left) and 2.3 (right)

A1A2

q p0p1p2

A0Fig. 2.3 A model of the arc
that is the inverse limit in
Example 2.2

Proof. LetM D lim �f . The connectedness ofM follows from Theorem 2.7, but we
wish to conclude that the inverse limit is an arc. To that end, let q D .0; 0; 0; : : : /,
p0 D .1; 1; 1; : : : /, and A0 D fx 2M j xi D 1 for i > 1g. For each positive integer
n, let pn be the point whose first n coordinates are 0 and all remaining coordinates
are 1 and let An D fx 2 M j xi D 0 for i � n and xi D 1 for i > n C 1g. Then,
for each n � 0, An is an arc and An \ AnC1 D fpnC1g. It is not difficult to see that
M D .

S
n�0 An/ [ f.0; 0; 0; : : : /g, and if xi 2 Ai for each positive integer i , then

x1;x2;x3; : : : converges to q. It follows that M is an arc. ut
If we move the vertical line to the left side of Œ0; 1�2 in Example 2.2, we get an

entirely different inverse limit.

Example 2.3 (An infinite-dimensional continuum). Let f W Œ0; 1� ! C.Œ0; 1�/ be
given by f .0/ D Œ0; 1� and f .t/ D 0 for 0 < t � 1. Then lim �f is an infinite-
dimensional continuum (see the graph on the right side of Fig. 2.2 for G.f /).

Proof. The inverse limit is a continuum by Theorem 2.7, and it contains a continuum
homeomorphic to Q, namely, .Œ0; 1� � f0g/1. ut

Placing the vertical line at 1=2 yields yet a third continuum as we see in
Example 2.4.

Example 2.4 (A “comb”). Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D 0 for
t ¤ 1=2 and f .1=2/ D Œ0; 1�. Then lim �f is the union of a sequence of arcs
A1;A2; A3; : : : and the point .0; 0; 0; : : : / such that, for each positive integer i ,
AiC1 \ Ai is a single point that is an endpoint of Ai and an interior point of AiC1
(see Fig. 2.4 for the graph of the bonding function and a model of the inverse limit).
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Fig. 2.4 The graph of the bonding function and a model of the inverse limit in Example 2.4

Proof. Let M D lim �f and, for each i 2 N, let Ai D fx 2 M j xi 2 Œ0; 1�; xj D
1=2 for j > i , and if i > 1, then xj D 0 for j < ig. For each i 2 N, let pi be the
point of Ai such that �i .pi / D 0 and qi be the point of Ai such that �i .qi / D 1.
Then Ai is an arc with endpoints pi and qi . Letting z D .0; 0; 0; : : : /, we have
lim �f D fzg [ .S

n�1 An/. If i 2 N, then Ai \ AiC1 D fpi g. Let p0 denote the
point of M having every coordinate 1=2. Note that pi is an interior point of AiC1
for each nonnegative integer i . ut

2.5 Topological Conjugacy

Placing the vertical line in Example 2.4 above any number other than 0 and 1 yields
a continuum homeomorphic to the continuum of Example 2.4. To show this, we
introduce the notion of topological conjugacy. Functions f W Œ0; 1� ! 2Œ0;1� and
g W Œ0; 1�! 2Œ0;1� are said to be topologically conjugate provided there is a surjective
homeomorphism h W Œ0; 1� � Œ0; 1� such that f h D hg.

The following theorem may be found in [5, Theorem 5.3, p. 126] in a more
general setting.

Theorem 2.9. If f W Œ0; 1�! 2Œ0;1� and g W Œ0; 1�! 2Œ0;1� are topologically conju-
gate upper semicontinuous functions, then lim �f and lim �g are homeomorphic.

Proof. Let M D lim �f and N D lim �g. If h W Œ0; 1� � Œ0; 1� is a surjective
homeomorphism such that f h D hg, then H W N � M given by H.x/ D
.h.x1/; h.x2/; h.x3/; : : : / is a homeomorphism from N onto M . To see this, note
that the function H is continuous because it is coordinatewise continuous and it
is 1–1 because h is 1–1. That H.x/ 2 M for each x 2 N is a consequence of
f h D hg for h.xi / 2 h.g.xiC1// D f .h.xiC1//.
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Fig. 2.5 The graph of the
bonding function in
Example 2.6

If y 2 M , then x D .h�1.y1/; h�1.y2/; h�1.y3/; : : : / is a point of Q such that
H.x/ D y. That x 2 N may be seen as follows. Because f D hgh�1 and y 2 M ,
for each positive integer i , yi 2 hgh�1.yiC1/. Therefore, h�1.yi / 2 g.h�1.yiC1//,
i.e., xi 2 g.xiC1/. ut
Example 2.5. If 0 < c < 1 and f W Œ0; 1� ! C.Œ0; 1�/ is the function given by
f .t/ D 0 for t ¤ c and f .c/ D Œ0; 1�, then lim �f is homeomorphic to the inverse
limit from Example 2.4.

Proof. Denote by g the function from Example 2.4. Using Theorem 2.9, it
can be seen that lim �f is homeomorphic to lim �g. Indeed, the piecewise linear
homeomorphism h whose graph is the union of two straight line intervals, one
from .0; 0/ to .1=2; c/ and the other from .1=2; c/ to .1; 1/, is a conjugacy because
f h D hg. ut

For c 2 Œ0; 1�, let gc W Œ0; 1�! C.Œ0; 1�/ denote the function given by gc.t/ D 1
for t ¤ c and gc.c/ D Œ0; 1�. Because the function f from Example 2.5 is conjugate
to the function g1�c under the homeomorphism 1 � Id, lim �f is homeomorphic to
lim �g1�c . For c D 0, the functiongc is conjugate under 1�Id to the bonding function
in Example 2.2 so lim �gc is an arc; for c D 1, the function gc is conjugate under
1 � Id to the bonding function in Example 2.3, so lim �gc is infinite dimensional.

We end this section with an additional application of Theorem 2.9. Our proof
also uses Theorem 1.9.

Example 2.6 (An arc). Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .0/ D Œ0; 1=2�,
f .t/ D 1=2 for 0 < t < 1, and f .1/ D Œ1=2; 1� (see Fig. 2.5 for the graph of f ).
Then, lim �f is an arc.

Proof. Let f1 D f jŒ0; 1=2� and f2 D f jŒ1=2; 1�. Because G.fi / � G.f /,
lim �fi � lim �f for i D 1; 2. Suppose x 2 lim �f and x ¤ .1=2; 1=2; 1=2; : : : /.
Let k be the least integer j such that xj ¤ 1=2. If xk < 1=2, then xj D 0 for
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j � k, and, in case k > 1, xj D 1=2 for j < k. If xk > 1=2, then xk D 1

for j � k, and, in case k > 1, xj D 1=2 for j < k. Thus, x 2 lim �f1 when
xk < 1=2 and x 2 lim �f2 when xk > 1=2. Therefore, lim �f D lim �f1 [ lim �f2.
Let g W Œ0; 1� ! C.Œ0; 1�/ be the function given by g.t/ D 0 for 0 � t < 1

and g.1/ D Œ0; 1� (i.e., g is the function from Example 2.2 having an arc as its
inverse limit). Then f1 and g are conjugate under the homeomorphism h1 given
by h1.t/ D 1=2 � t=2 for 0 � t � 1, while f2 and g are conjugate under the
homeomorphism h2 given by h2.t/ D 1=2C t=2 for 0 � t � 1. Thus, lim �f is the
union of two arcs intersecting only at f.1=2; 1=2; 1=2; : : : /g and is therefore an arc.

ut

2.6 Connectedness from Bonding Functions
Without Connected Values

An inverse limit with a single surjective bonding function can be connected even
if the function does not have all of its values connected. We shall see many such
examples in this book. Example 2.7 below is an interesting one. The inverse limit
is the cone over the Cantor set, often called the Cantor fan. There are a Cantor set
C lying in the inverse limit and a point v of the inverse limit such that the inverse
limit is the union of a collection of arcs each having v as one of its endpoints with its
other endpoint in C and such that the only point common to any two of the arcs is v.

Example 2.7 (The Cantor fan). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D ft; 1� tg
for 0 � t � 1 (i.e., G.f / is the union of Id and 1 � Id). Then lim �f is the Cantor
fan with vertex v D .1=2; 1=2; 1=2; : : : /. (See Fig. 2.6.)
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(0,0)

(0,1)

(1,0)
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Fig. 2.6 The graph of the bonding function and a model of the inverse limit in Example 2.7
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Fig. 2.7 The graph of the bonding function and a model of the inverse limit in Example 2.8

Proof. There are four homeomorphisms whose union is f . They are g1 W Œ0; 1=2�!
Œ0; 1=2� given by g1.t/ D t , g2 W Œ0; 1=2� ! Œ1=2; 1� given by g2.t/ D 1 � t , g3 W
Œ1=2; 1� ! Œ0; 1=2� given by g3.t/ D 1 � t , and g4 W Œ1=2; 1� ! Œ1=2; 1� given by
g4.t/ D t . A point x is in lim �f if and only if there is a sequence h1; h2; h3; : : : such
that hi 2 fg1; g2; g3; g4g for each i and xi D hi .xiC1/ for each positive integer i .
Each such inverse limit is an arc having v D .1=2; 1=2; 1=2; : : : / as one endpoint
and the other endpoint in the Cantor set f0; 1g1. Moreover, if p 2 f0; 1g1, there is
a sequence h such hi 2 fg1; g2; g3; g4g for each i and p 2 lim �h. ut

The connectedness of Example 2.7 is demonstrated here in an ad hoc manner,
although it is a consequence of a theorem that we prove later (see Theorem 2.11).
We now include some additional examples of inverse limits that are continua
even though in each case, the bonding function does not have all of its values
connected. The connectedness of each of the next two examples is also demonstrated
in an ad hoc manner. Unlike the previous example, however, we do not have
a subsequent theorem from which the connectedness follows (see Problem 6.5).
We make additional use of these examples later.

Example 2.8. Let f W Œ0; 1� ! 2Œ0;1� be the function given by f .t/ D 0 for 0 �
t < 3=4, f .t/ D f0; 3t � 2g for 3=4 � t < 1, and f .1/ D Œ0; 1�. Then lim �f is a
continuum. (See Fig. 2.7 for the graph of f and a model of its inverse limit.)

Proof. Let M D lim �f . Let g be the bonding function from Example 2.2, i.e.,
g W Œ0; 1� ! C.Œ0; 1�/ is given by g.t/ D 0 for 0 � t < 1 and g.1/ D Œ0; 1�, and
let A D lim �g. Then A is an arc and A � M because G.g/ � G.f /. Let p0 be the
point .1; 1; 1; : : : / and, for each positive integer j , let pj be the point of M whose
first j coordinates are 0 and all other coordinates are 1. Each point of the sequence
p0; p1; p2; : : : is a point of A. For j � 0, let Dj D fx 2 M j 1=4 � xjC1 �
1; xkC1 D .xk C 2/=3 for k > j; and, if j > 0; xk D 0 for 1 � k � j g. For each
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Fig. 2.8 The graph of the bonding function and a model of the inverse limit in Example 2.9

integer j � 0 and each integer i such that i � j C 2, let Ei j D fx 2 M j 1=4 �
xjC1 � 1; xkC1 D .xk C 2/=3 for j C 1 � k < i; xk D 1 for k > i and, if j >
0; xk D 0 for 1 � k � j g. For each n � 0, Fn D Dn [ .Sk>nC1 Ek n/ is a fan with
vertex pn. Note that M D A[ .Sn�0 Fn/, so M is connected. ut

Example 2.9. Let f W Œ0; 1� ! 2Œ0;1� be the function given by f .t/ D f0; tg for
0 � t � 1=4, f .t/ D 0 for 1=4 < t < 1, and f .1/ D Œ0; 1�. Then, lim �f is a
continuum. (See Fig. 2.8 for the graph of f and a model of its inverse limit.)

Proof. Let M D lim �f . As in the previous example, let g be the bonding function
from Example 2.2, i.e., g W Œ0; 1� ! C.Œ0; 1�/ is given by g.t/ D 0 for 0 � t < 1

and g.1/ D Œ0; 1�, and let A D lim �g. Then A is an arc and A � M because
G.g/ � G.f /. Let i and j be integers with i � 2 and 0 � j < i � 1. Let
Ci j D fx 2 M j xi 2 Œ0; 1=4�; xk D xi for j < k � i; xk D 1 for k > i ,
and if j > 0; xk D 0 for 1 � k � j g. Let B0 D fx 2 M j xk 2 Œ0; 1=4� and
xkC1 D xk for each positive integer kg and, for each positive integer i , let Bi D
fx 2M j xiC1 2 Œ0; 1=4� and xk D xiC1 for k � iC1 and xk D 0 for k � ig. Note
that F DS

i�0 Bi is a fan with vertex .0; 0; 0; : : : /, its point of intersection with A.
Let p0 D .1; 1; 1; : : : / and, for each positive integer i , let pi be the point such that
the first i coordinates of pi are 0 and the remaining coordinates are 1. If i and j are
integers with i � 2 and 0 � j < i � 1, then Ci j intersects A at the point pi . To see
that M is connected, one only need observe that if x 2 M � .A [ F /, then x is in
Ci j for some i; j . ut

We close this section with a simple theorem that is easy to prove. Except for
the case that some of the terms of the sequence of mappings in the hypothesis of
Theorem 2.10 are homeomorphisms, the bonding functions do not have all of their
values connected.

Theorem 2.10. If g is a sequence of surjective mappings of Œ0; 1� onto Œ0; 1� and
fi D g�1i for each i 2 N, then lim �f is an arc.
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Proof. Because gi is surjective, fi W Œ0; 1� ! 2Œ0;1� is an upper semicontinuous
function for each i 2 N. Then, h W Œ0; 1� ! lim �f given by h.t/ D
.t; g1.t/; g2.g1.t//; g3.g2.g1.t///; : : : / is a homeomorphism of Œ0; 1� onto lim �f .

ut

2.7 Union Theorems

One method of obtaining connected inverse limits with set-valued functions is to
use upper semicontinuous bonding functions having graphs that are set-theoretic
unions of the graphs of upper semicontinuous functions with connected values as
shown below in Theorem 2.11. Because mappings (continuous functions) on Œ0; 1�
have connected values, set-valued functions that are unions of mappings often (but
not always) produce connected inverse limits. That some restrictions along the lines
of those in Theorem 2.11 must be imposed can be seen from Example 1.2 where
the bonding function is the union of two constant maps and the inverse limit is a
Cantor set.

Our first theorem in this section is due to Nall [Theorem 3.1, 10], although we
have cast it in slightly different language from his original statement. Theorem 2.11
generalizes a theorem on unions of upper semicontinuous continuum-valued func-
tions published earlier [3, Theorem 2.12, p. 363] (at least in the metric setting), and
its hypothesis is perhaps somewhat easier to verify. After proving this theorem,
we provide examples that can be shown to be connected using it. Although Nall
proves this theorem for compact metric spaces, we state and prove it on Œ0; 1�.
Recall that if fX1;X2; : : : ; XnC1g is a finite collection of closed subsets of Œ0; 1�
and ff1; f2; : : : ; fng is a finite collection of functions such that fi W XiC1 ! 2Xi for
1 � i � n and G0.f1; f2; : : : ; fn/ D fx 2QnC1

iD1 Xi j xi 2 fi .xiC1/ for 1 � i � ng.
Theorem 2.11 (Nall). Suppose F is a collection of upper semi-continuous func-
tions such that if g 2 F , then g W Œ0; 1� ! C.Œ0; 1�/, and f is the function whose
graph is the set-theoretic union of all of the graphs of the functions in F . If f is
surjective and G.f / is a continuum, then lim �f is a continuum.

Proof. Because G.f / is a continuum, f is upper semicontinuous. By Theorem 2.1,
showing that Gn D fx 2 Q j xi 2 f .xiC1/ for 1 � i � ng is connected for each
n 2 N is sufficient to prove the theorem. To that end, we proceed by induction.

Note that G1 D G.f �1/ � Q is connected, being the product of two connected
sets, so G1 is connected.

Suppose k is a positive integer such thatGk is connected. We adopt the following
notation. If j is a positive integer, let G0j D G0.f1; f2; : : : ; fj / where fi D f for
1 � i � j . Then, G0k D pf1;2;:::;kC1g.Gk/ is connected. Suppose G0kC1 is the union
of two closed sets H and K . Then, G.f �1/ D p.G0kC1/ D p.H/ [ p.K/ where
p W Œ0; 1�kC2 ! Œ0; 1�2 is the mapping given by p.x/ D .x1; x2/. Because G.f /
is connected, G.f �1/ is connected, so there is a point .c; d / 2 p.H/ \ p.K/.



26 2 Connectedness

(0,1)

(1/4,1/4)

(0,0) (1,0)

(3/4,1/4)

(7/8,1/2)

Fig. 2.9 The graph of
bonding the function in
Example 2.10

There are points x 2 H and y 2 K such that p.x/ D .c; d / D p.y/. There is
a function g 2 F such that .d; c/ 2 g. By Lemma 2.2, G0.g1; g2; : : : ; gkC1/ is a
connected subset of G0kC1 where g1 D g and gi D f for 2 � i � k C 1 and
contains both x and y . Thus, H \ K ¤ ;, and it follows that G0kC1 is connected.
Because GkC1 D G0kC1 �Q, GkC1 is connected. ut

A major reason for at least some of the initial interest in inverse limits with upper
semicontinuous functions of the type satisfying the hypothesis of Theorem 2.11 is a
potential application to economics. Models in backward economics can involve two
mappings, and it is important to understand the potential outcomes of the models
no matter which of the mappings is used at each stage. Thus, we are led to consider
inverse limits with set-valued functions having graphs that are the union of two
mappings. However, this topic is of interest in its own right because of theorems
like Theorem 2.11. Indeed, most of the research on set-valued functions that are
unions of mappings has been concentrated on determining when the inverse limit
is a continuum, and this is the case for two maps with a coincidence point and
a surjective union. It would be of interest to conduct a study of inverse limits of
upper semicontinuous functions that are the union of two maps of Œ0; 1� that do not
have a coincidence point (see Problem 6.6) even though such inverse limits are not
connected.

Our next example demonstrates that we cannot weaken the hypothesis in
Theorem 2.11 that the elements of F have connected values to require simply that
the elements of F have connected inverse limits.

Example 2.10. Let f1 W Œ0; 1�! 2Œ0;1� be given by f1.t/ D f0; tg for 0 � t � 1=4,
f1.t/ D 0 for 1=4 < t < 1, and f1.1/ D Œ0; 1�. Let g W Œ0; 1� � Œ0; 1� be the
mapping given by g.t/ D 1�t for 0 � t � 3=4, g.t/ D 2t�5=4 for 3=4 < t � 7=8,
and g.t/ D 4 � 4t for 7=8 < t � 1. Let f be the upper semicontinuous function
whose graph is G.f1/ [ g. Then lim �f1 and lim �g are connected, but lim �f is not
connected. (See Fig. 2.9 for a graph of f .)
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Fig. 2.10 The graph of the bonding function and a model of the inverse limit in Example 2.11

Proof. Let M D lim �f . Because f1 is the bonding function from Example 2.9, its
inverse limit is connected. Because g is a mapping, its inverse limit is connected.
Let N D fx 2 M j x1 D x2 D 1=4 and x3 D 3=4g and note that N is closed.
However, becauseN D M \ ..1=8; 3=8/� .1=8; 3=8/� .5=8; 7=8/�Q/, N is also
open in M . Thus, M is not connected. ut

Example 2.11. Let g1 W Œ0; 1� ! Œ0; 1� be the mapping given by g1.t/ D t C 1=2
for 0 � t � 1=2 and g1.t/ D 3=2 � t for 1=2 � t � 1. Let g2 W Œ0; 1� ! Œ0; 1�

be the mapping given by g2.t/ D 1=2 � t for 0 � t � 1=2 and g2.t/ D t �
1=2 for 1=2 � t � 1. Let F D fg1; g2g and f W Œ0; 1� ! 2Œ0;1� be the upper
semicontinuous function whose graph is the set-theoretic union of g1 and g2. Then,
lim �f is a nonplanar continuum. (See Fig. 2.10 for the graph of f and a model of
the inverse limit.)

Proof. Let M D lim �f . Because g1 and g2 are mappings, G.f / D g1 [ g2
is connected, and f is surjective; the proof that M is a continuum is a simple
application of Theorem 2.11.

To obtain a model for the inverse limit, we view it in a slightly different way.
There are two intervals J1 D Œ0; 1=2� and J2 D Œ1=2; 1� and four mappings f1 W
J1 � J1, f2 W J2 � J1, f3 W J2 � J2, and f4 W J1 � J2 such that G.f / D
f1 [ f2 [ f3 [ f4. The continuum M contains two Cantor sets: C1 containing all
the points p of M with all odd coordinates 1=2 and all even coordinates in f0; 1g
and C2 containing all the points p of M with all even coordinates 1=2 and all odd
coordinates in f0; 1g. The continuumM consists of all arcs of the form lim �g where,
for each i 2 N, gi 2 ff1; f2; f3; f4g and the domain of gi is the range of giC1. Each
such arc joins a point of C1 with a point of C2, and furthermore, if p is point of C1
and q is a point ofC2, there is such an arc having endpoints p and q. Moreover, each
two such arcs that intersect do so at only one point belonging to C1[C2. The reader
should note that M contains numerous simple closed curves. Because each point
of C1 is a vertex of a Cantor fan over C2 and each two such Cantor fans contain
mutually exclusive fans, M contains uncountably many mutually exclusive triods
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Example 2.12

and so is nonplanar [8, Theorem 84, p. 222] (a triod is a continuum that contains a
subcontinuum having a complement with at least three components).

The continuum can also be seen to be nonplanar because it contains a Kuratowski
complete bipartite graph K3;3 that consists of six vertices, three from C1 and three
from C2, and edges joining each vertex of the three in C1 with each vertex of the
three in C2.

To depict our model, choose two skew lines in three-dimensional Euclidean space
and embed C1 in one of these lines and C2 in the other. By joining each point of C1
with each point of C2 by a straight line interval, we obtain a model of M . ut

The inverse limit M in Example 2.11 is the well-known Hurewicz continuum
having the property that if C is a continuum, then there exist a subcontinuumH of
M and a monotone mapping of H onto C [2].

We end this section with one more example of an inverse limit that we show is
a continuum using Theorem 2.11. The function in this example does not satisfy the
hypothesis of Theorem 2.12 of [3].

Example 2.12. Let T denote the full tent map, T .t/ D 2t for 0 � t � 1=2 and
T .t/ D 2� 2t for 1=2 � t � 1. Let f W Œ0; 1�! 2Œ0;1� be the upper semicontinuous
function whose graph G.f / D T �1 [ .f0g � Œ0; 1=2�/. Then lim �f is a continuum.
(See Fig. 2.11 for the graph of f and Fig. 2.12 for an indication of a model for the
inverse limit.)

Proof. Let g1 W Œ0; 1� ! Œ0; 1� be given by g1.t/ D 1 � t=2 for 0 � t � 1 and
g2 W Œ0; 1�! C.Œ0; 1�/ be given by g2.0/ D Œ0; 1=2� and g2.t/ D t=2 for 0 < t � 1.
Because G.f / D G.g1/ [ G.g2/ is connected, the proof that M D lim �f is a
continuum is a simple application of Theorem 2.11.

We now construct a model for this inverse limit. Let ' W Œ0; 1� ! Œ0; 1� be the
homeomorphism given by '.t/ D t=2 and denote by O' the mapping of M given by
'.x/ D .'.x1/; x1; x2; : : : /. Because ' is a homeomorphism and ' � G.f /, O' is
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Fig. 2.12 A model of the inverse limit in Example 2.12

a homeomorphism of M into M . Let  W Œ0; 1� ! Œ0; 1� be the homeomorphism
given by  .t/ D 1� t=2 and denote by O the homeomorphism ofM intoM given
by  .x/ D . .x1/; x1; x2; : : : /.

Let A D lim �T �1. By Theorem 1.9, A is a subset of M because G.T �1/ �
G.f /. By Theorem 2.10,A is an arc. The endpoints ofA are p0 D .0; 0; 0; : : : / and
p1 D .1; 0; 0; : : : /.

Suppose x 2M and x … A. There is a positive integer n such that xn 2 .0; 1=2�
and xj D 0 for j > n. Let Mn D fx 2M j xn 2 Œ0; 1=2� and xj D 0 for j > ng. It
follows that M D A[ .S

i>0 Mi/.
As we proceed, we identify arcs and points that are shown in our model of M

depicted in Fig. 2.12. With that in mind, note thatM1 is an arc with endpoints p0 and
q0 D .1=2; 0; 0; 0; : : : /. Letting A1;1 D M1, we see that M2 D O'.A1;1/ [ O .A1;1/.
Let A2;1 D O'.A1;1/ and A2;2 D O .A1;1/. So, A2;1 is an arc with endpoints p0 D
.0; 0; 0; : : : / and q1 D .1=4; 1=2; 0; 0; : : : /, while A2;2 is an arc with endpoints
p1 D .1; 0; 0; 0; : : : / and q2 D .3=4; 1=2; 0; 0; 0; : : : /. Further, M3 is the union of
four arcs A3;1 D O'.A2;1/, A3;2 D O'.A2;2/, A3;3 D O .A2;1/, and A3;4 D O .A2;2/.
Note that the endpoints of A3;1 are p0 and q3 D .1=8; 1=4; 1=2; 0; 0; : : : /; the
endpoints of A3;2 are p2 D .1=2; 1; 0; 0; 0; : : : / and q4 D .3=8; 3=4; 1=2; 0; 0; : : : /;
A3;3 has endpoints p1 and q5 D .7=8; 1=4; 1=2; 0; 0; : : : /; and A3;4 has endpoints
p2 and q6 D .5=8; 3=4; 1=2; 0; 0; : : : /. Continuing inductively, we observe that,
for each positive integer n, MnC1 is the union of 2n arcs that are, respectively, the
images under O' of the arcs that comprise the components of Mn together with the
arcs that are the images under O of the arcs comprising the components ofMn. ut

We revisit Example 2.12 in Chap. 4 (Example 4.3).
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2.8 Examples from Eight Similar Functions

In this section we consider inverse limits produced by eight similar graphs of upper
semicontinuous functions that one obtains by the following process: choose one
of the corners of Œ0; 1� � Œ0; 1� and take the union of the diagonal of the square
emanating from that point and either the horizontal or the vertical side of the
square that emanates from that point. Use that union as the graph of an upper
semicontinuous set-valued function. Let E denote the collection of these eight
inverse limits. Due to the fact that these eight graphs consist of the graphs of four
topologically conjugate pairs of upper semicontinuous functions, we may examine
four such graphs and through Theorem 2.9 know all the elements of E . Interestingly
enough, E contains four quite different continua even though the graphs that produce
them are very similar. We begin with perhaps the simplest of these examples by
choosing the graph that is the union of the diagonal and the horizontal side of the
square lying on the bottom of the square.

Example 2.13 (A simple fan). Let f W Œ0; 1�! C.Œ0; 1�/ be given by f .t/ D f0; tg
for 0 � t � 1. Then, lim �f is a fan with vertex v D .0; 0; 0; : : : /. (See Fig. 2.13 for
the graph of f and a model of its inverse limit.)

Proof. Let M D lim �f . That M is a continuum is a consequence of Theorem 2.8
(or of Theorem 2.11 by observing thatG.f / is a union of two mappings). Let A0 D
fx 2M j xj D x1 for each positive integer j g. If i 2 N, let Ai D fx 2M j xj D 0
for j � i and xj D xiC1 for j > i C 1g. Note that Ai is an arc containing
v D .0; 0; 0; : : : / for each nonnegative integer i . Moreover, lim �f DS

k�0 Ak . ut
The function in Example 2.13 is conjugate to the function g W Œ0; 1�! 2Œ0;1� given by
g.t/ D ft; 1g for 0 � t � 1 under the homeomorphism h D 1 � Id . Consequently,
lim �g is homeomorphic to the inverse limit from Example 2.13.

Example 2.14. Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D t for 0 � t < 1

and f .1/ D Œ0; 1�. Then the inverse limit is a fan with vertex v D .1; 1; 1; : : : /.
(See Fig. 2.14 for the graph of f and a model of its inverse limit.)

(0,0)

(1,1)

(1,0)

...
v

A0

A1

A2

Fig. 2.13 The graph of the bonding function and a model of the inverse limit in Example 2.13
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Fig. 2.14 The graph of the bonding function and a model of the inverse limit in Example 2.14

Proof. Let M D lim �f and let A0 D fx 2 M j xj D x1 for each j g. That M is a
continuum is a consequence of Theorem 2.7. Let i be a positive integer and letAi D
fx 2M j xj D 1 for j > ig. Note that Ak is an arc containing v D .1; 1; 1; : : : / for
each positive integer k. Moreover, lim �f DS

k>0 Ak . ut
The function in Example 2.14 is conjugate to the function g W Œ0; 1�! C.Œ0; 1�/

given by g.0/ D Œ0; 1� and g.t/ D t for 0 < t � 1 under the homeomorphism
h D 1 � Id . Consequently, lim �g is homeomorphic to the inverse limit from
Example 2.14.

It is known that if 0 < c < 1 and fc W Œ0; 1� � Œ0; 1� is the mapping whose graph
is the union of two straight line intervals one from .0; 0/ to .c; 1/ and the other from
.c; 1/ to .1; 0/, then lim �fc is homeomorphic to the BJK horseshoe, lim �f c for c D
1=2 (i.e., fc is the full tent map). In Example 2.14, we examined the corresponding
set-valued function for c D 1. Although we do not get a fan as an inverse limit
of the upper semicontinuous set-valued function for c D 0, we next look at the
surprisingly complicated inverse limit for this function.

Example 2.15. Let f W Œ0; 1�! C.Œ0; 1�/ be given by f .0/ D Œ0; 1� and f .t/ D 1�t
for 0 < t � 1. The complicated inverse limit lim �f is a nonplanar continuum
that contains numerous sin.1=x/-curves, two copies of the inverse limit from
Example 2.14 attached along the limit arc, and many mutually exclusive n-ods for
each positive integer n. (See Fig. 2.15 for the graph of f and Fig. 2.16 for a model
of the inverse limit.)

Proof. Let M D lim �f ; M is a continuum by Theorem 2.7. This continuum is
reasonably simple to describe, although it is rather complicated in its nature. Let
A D fx 2M j xjC1 D 1�xj for each positive integer j g. For each positive integer
n, let Bn D fx 2 M j xnC1 D 0g. Then, A is an arc, and each Bn is a product of an
arc with a Cantor set. Note that M D A [ .S

i>0 Bi /. Denote by Bn the collection
of arcs that are the components of Bn.
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Fig. 2.16 A model of the inverse limit in Example 2.15

To obtain a model for M , we provide the following description of M that also
allows us to indicate the properties listed for it. There is a Cantor set C lying in
M that results from lim �g where g.0/ D f0; 1g and g.1/ D 0. Let C0 D fx 2
C j x1 D 0g, C1 D fx 2 C j x1 D 1g. Then, C D C0 [ C1. We partition C0 and
C1 in the following way. For each positive integer n, let pn be the point of f0; 1gn
such that �1.pn/ D 0 and �iC1.pn/ D 1 � �i .pn/ for 1 � i < n and qn be the
point of f0; 1gn such that �1.qn/ D 1 and �iC1.qn/ D 1 � �i .qn/ for 1 � i < n.
For each positive integer n, let Dn D fpng � C0 and En D fqng � C0. Observe that
C0 D D1[D2 andC1 D E1. For each positive integer j ,D2j D D2jC1[D2jC2 and
E2j�1 D E2j [E2jC1. Thus, if we let p D .0; 1; 0; 1; : : : / and q D .1; 0; 1; 0; : : : /,
then C0 D D1 [ D3 [ D5 [ � � � [ fpg where Di \ Dj D ; if i and j are odd,



2.8 Examples from Eight Similar Functions 33

i ¤ j . Also, C1 D E2 [ E4 [ E6 [ � � � [ fqg where Ei \ Ej D ; if i and j are
even, i ¤ j . Furthermore, D2 � D4 � D6 � � � � , while E1 � E3 � E5 � � � � . If
n is an odd positive integer, each element of Bn is an arc having one endpoint in Dn

and the other endpoint in En D EnC1 [EnC2, while if n is even, then each element
of Bn is an arc having one endpoint in En and the other in Dn D DnC1 [ DnC2.
Moreover, if n 2 N and x 2 Dn [ En, then x is an endpoint of some arc in Bn.

Choose two skew lines in three-dimensional Euclidean space and embed C0 in
one of these lines and C1 in the other; see Fig. 2.16 where we have also shown the
partitions ofC0 D D1[D3[D5[� � �[fpg andC1 D E2[E4[E6[� � �[fqg. From
each point of D1, draw a straight line interval representing an arc in B1 that joins it
to a point of E1, from each point of E2, draw a straight line interval representing an
arc in B2 that joins it to a point of D2, and continue this process. Finally, connect
the points representing p and q with a straight line interval.

A double fan. The points p and q are the endpoints of the arc A. For each n,
let An denote the element of Bn having p or q as one of its endpoints. One fan
is F D A [ .S

i>0 A2i / with vertex q and the other is A [ .S
i>0 A2i�1/ having

vertex p.

Triods and nonplanarity. Let v be a point of E5 and let ˛ be an arc in B5 from
v to a point of D5. Because E5 � E3 � E1, there are arcs ˇ and � in B3 and B1,
respectively, having v as an endpoint. Let Tv D ˛ [ ˇ [ � . Because D1, D3, and
D5 are pairwise mutually exclusive, Tv is a triod. If v and w are two different points
of E5, Tv \ Tw D ;. Because E5 is uncountable, M contains uncountably many
mutually exclusive triods, so M is a nonplanar continuum [8, Theorem 84, p. 222].

n-ods. To obtain a 4-od lying in M , start with a point x of E13. Choose four arcs
containing x, one from each of B13, B11, B9, and B7, respectively. The union of these
four arcs is a 4-od. In a similar manner, we can see that for each positive integer n,
there are n-ods in M for each n 2 N.

A sin.1=x/-curve. There is an arc in B1 from the point .0; 0; 0; : : : / of D1 to
the point .1; 0; 0; : : : / of E1. In B2, there is an arc from the point .1; 0; 0; : : : / of
E1 to the point .0; 1; 0; 0; : : : / of D3. In B3, there is an arc from .0; 1; 0; 0; : : : /

to .1; 0; 1; 0; 0; : : : / of E3, and in B4, there is an arc from .1; 0; 1; 0; 0; : : : / to
.0; 1; 0; 1; 0; 0; : : : / of D5. Continuing in this way, we obtain a sin.1=x/-curve
having limit bar the arc A from p to q. There are other sin.1=x/-curves in M .
For example, instead of starting from the point with all coordinates 0, start from the
point of D1 whose coordinates are 0 except for the 4j � 1 coordinates for j 2 N

where the coordinates are 1 and use a procedure similar to the one above. Here, the
first arc would be chosen in B1 to a point of E4, the second arc would be chosen
from B4 to a point of D5, the third arc would be chosen from B5 to a point of E8,
and so on. This yields a sin.1=x/-curve whose intersection with the one above is the
limit bar, A. ut

The function in Example 2.15 is conjugate to the function g W Œ0; 1�! C.Œ0; 1�/

given by g.t/ D 1 � t for 0 � t < 1 and g.1/ D Œ0; 1�. Consequently, lim �g is
homeomorphic to the inverse limit from Example 2.15.
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Fig. 2.18 A model of the inverse limit in Example 2.16

Example 2.16. Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D f0; 1 � tg for 0 � t � 1.
The inverse limit is an arcwise connected continuum that contains an arc A D lim �g

where g D 1� Id and a Cantor set C D fx 2 f0; 1g1 j if xi D 1; then xiC1 D 0g.
Each point of C lies in an arc that intersects A. (See Fig. 2.17 for the graph of f and
Fig. 2.18 for a model of lim �f .)

Proof. Because f �1 W Œ0; 1�! C.Œ0; 1�/, lim �f �1 is a continuum. By Theorem 2.3,
M D lim �f is a continuum.

Next, we show that if p 2 C, then there is an arc containing p that intersects
A. Let p be a point of C. For each positive integer i , let ˛i be an arc determined
in the following way: if pi D 0, then ˛i D fx 2 M j xj D pj for 1 � j �
i and xiC1 2 Œ0; 1�; xiC2 D 1 � xiC1; xiC3 D xiC2; : : : g, while if pi D 1, then
˛i D fx 2 M j xj D pj for 1 � j � i and xiC1 D 0; xiC2 2 Œ0; 1�; xiC3 D
1� xiC2; xiC4 D xiC2; : : : g. Note that in the case that pi D 0, ˛i \ ˛iC1 is a single
point, while if pi D 1, ˛i D ˛iC1. Because ˛1 intersects A at either .0; 1; 0; : : : / or
.1; 0; 1; : : : /, it follows that Cl.

S
i>0 ˛i / is an arc containing p and intersecting A.

That the continuumM is arcwise connected now follows.
To describe a model for the inverse limit, we proceed somewhat informally.

Because any point of the inverse limit having a 1 as a coordinate must have a 0 in
its next coordinate, let S D fs j s is a finite sequence of 0s and 1s such that the final
term of s is 0 and if a term of s is 1, then the next term of s is 0g. Then S is countable.
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By using the two symbols 0 and 10 and writing the terms of S as strings, we may
indicate an enumeration of S by f0; 10; 00; 010; 100; 1010; 000; 0010; 0100; 01010;
1000; 10010; 10100; 101010; : : :g. Employing this enumeration of S, define a
sequence of arcs in the following way. Let

A1 D A D fx 2 M j x1 2 Œ0; 1� and xiC1 D 1 � xi for each positive integer ig.
Using the first term of S to determine the first coordinate of all the points of an

arc, let

A2 D fx 2M j x1 D 0; x2 2 Œ0; 1� and xiC1 D 1�xi for each positive integer i �
2g.

Using the second term of S to determine the first two coordinates of all the points
of an arc, let

A3 D fx 2 M j x1 D 1; x2 D 0; x3 2 Œ0; 1� and xiC1 D 1 � xi for each positive
integer i � 3g.

If n � 1 and sn D s1; s2; : : : ; skn is the nth term of S, let

AnC1 D fx 2 M j xi D si for 1 � i � kn; xknC1 2 Œ0; 1�; and xiC1 D 1 �
xi for each positive integer i � kn C 1g.

Thus,

A4 D fx 2 M j x1 D 0; x2 D 0; x3 2 Œ0; 1� and xiC1D1 � xi for each positive
integer i � 3g.
A5 D fx 2 M j x1 D 0; x2 D 1; x3 D 0; x4 2 Œ0; 1� and xiC1D
1 � xi for each positive integer i � 4g.
A6 D fx 2 M j x1 D 1; x2 D 0; x3 D 0; x4 2 Œ0; 1� and xiC1 D 1 � xi
for each positive integer i � 4g.
A7 D fx 2 M j x1 D 1; x2 D 0; x3 D 1; x4 D 0; x5 2 Œ0; 1� and xiC1 D 1 �
xi for each positive integer i � 5g
�
�
�
For this sequence of arcs,M D Cl.

S
i>0 Ai /. Let F denote the fan of Example 2.13,

i.e., a fan with a sequence of arms of lengths decreasing to 0 emanating from its
vertex. At each end of the arc A1, there is a copy of the fan F attached at its
vertex. At each endpoint of each copy of F , we see a copy of F again attached at its
vertex, and this continues on those copies of F , et cetera. The arc A1 has endpoints
.0; 1; 0; 1; : : : / and .1; 0; 1; 0; : : : /. The arcs A3;A7; A15; : : : comprise the arms of a
copy of F attached to A1 at .1; 0; 1; 0; : : : /, and the arcs A2;A5; A11; : : : comprise
the arms of a copy of F attached to A1 at .0; 1; 0; 1; : : : /. The endpoints of A2
are .0; 1; 0; 1; : : : / and .0; 0; 1; 0; 1; : : : /, and the arcs A4;A9; A17; : : : comprise the
arms of a copy of F attached to A2 at the point .0; 0; 1; 0; 1; : : : /. The endpoints of
A3 are .1; 0; 1; 0; : : : / and .1; 0; 0; 1; 0; : : : /, and the arcsA6;A13; A27; : : : comprise
the arms of a copy of F attached to A3 at .1; 0; 0; 1; 0; 1; : : : /. See Fig. 2.18 for
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Fig. 2.19 The graph of the bonding function and a model of the inverse limit in Example 2.17

an indication of a model for M based on this informal partial description of M .
In the figure, the points shown are p0 D .1; 0; 0; 0; : : : /, p1 D .1; 0; 1; 0; : : : /,
p2 D .1; 0; 0; 1; 0; : : : /, q0 D .0; 0; 0; : : : /, q1 D .0; 1; 0; 1; : : : /, and q2 D
.0; 0; 1; 0; 1; : : : /. ut

The function from Example 2.16 is conjugate to the function g W Œ0; 1� ! 2Œ0;1�

given by g.t/ D f1; 1� tg for 0 � t � 1. Consequently, lim �g is homeomorphic to
the inverse limit from Example 2.16. This completes our look at the collection E .

2.8.1 Four More Similar Graphs

We now consider what happens if we use only part of the horizontal or vertical
line in the construction of the eight functions. Here we only consider the four main
graphs and omit reference to the four conjugate graphs. We begin with the function
having a portion of the x-axis attached to the diagonal.

Example 2.17. Let b be a number such that 0 < b < 1 and let f W Œ0; 1�! 2Œ0;1� be
given by f .t/ D f0; tg for 0 � t � b and f .t/ D t for b < t � 1. Then, lim �f is a
fan. (See Fig. 2.19 for the graph of f and a model of its inverse limit.)

Proof. Let M D lim �f . Because f �1 W Œ0; 1� ! C.Œ0; 1�/, M is a continuum. Let
A D fx 2 M j x1 2 Œ0; 1� and xj D x1 for j > 1g. For each positive integer i , let
Ai D fx 2M j xj D 0 for 1 � j � i; xiC1 2 Œ0; b�, and xj D xiC1 for j > iC1g.
Then M D A [ .S

i>0 Ai /. For the purpose of identification in the model, let
p D .0; 0; 0; : : : /, q D .1; 1; 1; : : : /, p1 D .0; b; b; b; : : : /, p2 D .0; 0; b; b; : : : /,
and p3 D .0; 0; 0; b; b; : : : /. ut
Example 2.18. Let b be a number such that 0 < b < 1 and let f W Œ0; 1�! C.Œ0; 1�/

be given by f .t/ D t for 0 � t < 1 and f .1/ D Œb; 1�. Then, lim �f is a fan. (See
Fig. 2.20 for the graph of f and a model of its inverse limit.)
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Fig. 2.20 The graph of the bonding function and a model of the inverse limit in Example 2.18
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Fig. 2.21 The graph of the bonding function and a model of the inverse limit in Example 2.19

Proof. Let M D lim �f . Because f W Œ0; 1� ! C.Œ0; 1�/, M is a continuum. Let
A D fx 2 M j x1 2 Œ0; 1� and xj D x1 for j > 1g. For each positive integer i ,
let Ai D fx 2 M j x1 2 Œb; 1�, xj D x1 for 1 � j � i , and xj D 1 for j > ig.
Then M D A [ .S

i>0 Ai /. For the purpose of identification in the model, let
p D .0; 0; 0; : : : /, q D .1; 1; 1; : : : /, p1 D .b; 1; 1; 1; : : : /, p2 D .b; b; 1; 1; : : : /,
and p3 D .b; b; b; 1; 1; : : : /. ut
Example 2.19. Let b be a number such that 0 < b < 1 and let f W Œ0; 1�! C.Œ0; 1�/

be given by f .0/ D Œb; 1� and f .t/ D 1 � t for 0 < t � 1. Then lim �f is the union
of two fans that intersect in an arc. (See Fig. 2.21 for the graph of f and a model of
its inverse limit.)

Proof. Let M D lim �f . Because f W Œ0; 1� ! C.Œ0; 1�/, M is a continuum. Let
A D fx 2 M j x1 2 Œ0; 1� and xjC1 D 1 � xj for j � 1g. If i is a positive integer,
let A2i�1 D fx 2 M j x1 2 Œb; 1�; x2i D 0, and xjC1 D 1 � xj for j ¤ 2i � 1 and
j � 1g and A2i D fx 2 M j x1 2 Œb; 1�; x2iC1 D 0 and xjC1 D 1 � xj for j ¤ 2i
and j � 1g. ThenM D A[.S

i>0 Ai /. In the model, the point p D .0; 1; 0; 1; : : : /,
and the point q D .1; 0; 1; 0; : : : /. This inverse limit is homeomorphic to the union
of two copies of the inverse limit from Example 2.18 having the arc A in common.
In the model, the point p is .0; 1; 0; 1; : : : / and q D .1; 0; 1; 0; : : : /. ut
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Fig. 2.22 The graph of the bonding function and a model of the inverse limit in Example 2.20

Example 2.20. Let b be a number such that 0 < b < 1 and let f W Œ0; 1�! 2Œ0;1� be
given by f .t/ D 1 � t for 0 � t < b and f .t/ D f0; 1 � tg for b � t � 1. Then
lim �f is the union of two fans. (See Fig. 2.22 for the graph of f and a model of its
inverse limit.)

Proof. Let M D lim �f . Because f �1 W Œ0; 1� ! C.Œ0; 1�/, M is a continuum. Let
A D fx 2 M j x1 2 Œ0; 1� and xjC1 D 1 � xj for j � 1g. For each positive integer
i , let A2i D fx 2 M j x1 D 0; x2i 2 Œ0; b�, and if i ¤ 2i , then xjC1 D 1 � xj
for j � 1g and A2iC1 D fx 2 M j x1 D 1; x2iC1 2 Œ0; b�, and if i ¤ 2i C 1, then
xjC1 D 1 � xj for j � 1g. This inverse limit is homeomorphic to the union of two
copies of the inverse limit from Example 2.17 having the arc A in common. In the
model, the point p is .0; 1; 0; 1; : : : /, and q D .1; 0; 1; 0; : : : / (Fig. 2.22). ut

2.9 Additional Examples

We examine some additional examples in this section. Our first function yields a fan
as its inverse limit. In fact, the inverse limit in Example 2.21 is homeomorphic to
the inverse limit in Example 2.14.

Example 2.21. Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D t for 0 � t < 1=2,
f .1=2/ D Œ1=2; 1�, and f .t/ D 1 � t for 1=2 < t � 1. Then, lim �f is a fan with
vertex v D .1=2; 1=2; 1=2; : : : /. (See Fig. 2.23 for the graph of f and a model of
its inverse limit.)

Proof. Let M D lim �f and let B0 D fx 2 M j x1 2 Œ0; 1=2� and xj D x1 for
j > 1g. Let i be a positive integer and let Bi D fx 2 M j xi 2 Œ1=2; 1�g. Note
that if x 2 Bi , then xj D 1=2 for j > i , and if i > 1, then xj 2 Œ0; 1=2� for
j < i . Further, if i > 2 and x 2 Bi , then xi D 1 � xi�1 and xj D x1 for
j � i � 1. There is a natural homeomorphism from Œ1=2; 1� onto Bi , so Bi is an arc
and v D .1=2; 1=2; 1=2; : : : / 2 Bi for each i � 0. Moreover,M D S

i�0 Bi .
We now show that M is homeomorphic to the inverse limit from Example 2.14.

Denote byN that inverse limit. ThenNDS
i�0 Ai whereA0 D fx 2 N j x1 2 Œ0; 1�
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Fig. 2.23 The graph of the bonding function and a model of the inverse limit in Example 2.21
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and xi D x1 for i � 1g, while Ai D fx 2 N j x1 2 Œ0; 1�; xj D x1 for 1 � j � i;
and xj D 1 for j > ig for i � 1. If x 2 B0, let h.x/ D .2x1; 2x1; 2x1; : : : /, and
for i � 1 and x 2 Bi , let h.x/ be the element of Ai having i th coordinate 2xi � 1.
Then, h is a homeomorphism from

S
i�0 Bi onto

S
i�0 Ai , and we have that M is

homeomorphic to the inverse limit from Example 2.14. ut
We describe two additional examples. These examples were worked out by

students in Mexico during the two-week short course on which much of the material
in this book is based. Both examples grew out of an assignment in which they were
to choose an embedding of a letter of the alphabet into Œ0; 1�2 so that it forms the
graph of an upper semicontinuous function and then determine its inverse limit (see
Problem 6.61). The inverse limit in Example 2.22 is a familiar dendroid.

Example 2.22 (A dendroid with a Cantor set of endpoints). Let f W Œ0; 1� ! 2Œ0;1�

be given by f .t/ D f0; 1g for t ¤ 1=2 and f .1=2/ D Œ0; 1�. Then, lim �f is a
dendroid having a Cantor set of endpoints. (See Fig. 2.24 for the graph of f and
Fig. 2.25 for a model of the inverse limit.)
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Fig. 2.25 A model of the inverse limit in Example 2.22

Proof. Let M D lim �f , a continuum because f �1 W Œ0; 1� ! C.Œ0; 1�/. Let A1 D
fx 2 M j xi D 1=2 for i > 1g, A2 D fx 2 M j xi D 1=2 for i > 2 and x1 D 0g,
and A3 D fx 2 M j xi D 1=2 for i > 2 and x1 D 1g. In general, suppose n 2 N.
There is a positive integer k such that the base 2 representation of n is akak�1 � � �a0
with ak D 1. For n � 2, let An D fx 2 M j xkC1 2 Œ0; 1�; xi D 1=2 for i >
kC1 and xi D ak�i for 1 � i � kg. Note that A1\A2 D f.0; 1=2; 1=2; 1=2; : : : /g
and A1 \A3 D f.1; 1=2; 1=2; 1=2; : : : /g. In fact, letting p1 D .1=2; 1=2; 1=2; : : : /
and, for n > 1, pn D .ak�1; ak�2; : : : ; a0; 1=2; 1=2; : : : /, then A1 \ A2 D fp2g,
A1 \ A3 D fp3g, A2 \ A4 D fp4g, etc. We see that p2 is an endpoint of A1 and
an interior point of A2. In general, An is an arc with endpoints p2n and p2nC1; the
point pn is an interior point of An. Note that M D Cl.

S
i>0 Ai / (where Cl denotes

the closure). ut
Example 2.23. Let f W Œ0; 1� ! C Œ0; 1�/ be given by f .0/ D f .1/ D Œ0; 1� and
f .t/ D f1=2g for t … f0; 1g. The inverse limit is a continuum that is the union of a
sequence B0;B1; B2; : : : of compacta such that BiC1 \ Bi is a Cantor set, B0 is a
single point, and, for each positive integer i , Bi is homeomorphic to a product of a
Cantor set and an arc (Figs. 2.26 and 2.27).

Proof. Let M D lim �f , a continuum by Theorem 2.7. Let B0 D f.1=2; 1=2,1=2,
: : : /g, let B1 D fx 2 M j x1 2 Œ0; 1� and xj 2 f0; 1g for j > 1g, and, for each
integer i > 1, let Bi D fx 2 M j xj D 1=2 for j < i; xi 2 Œ0; 1�; and xj 2
f0; 1g for j > ig. Note that Bi \ BiC1 D fx 2 M j xj D 1=2 for j � i and xj 2
f0; 1g for j > ig. Note that M D S

i�0 Bi . Because each arc component of
BiC1 intersects two arc components of Bi and both points of intersection are
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Fig. 2.27 A model of
B1 [ B2 in Example 2.23, a
set homeomorphic to
Bi [ BiC1 for each positive
integer i

interior to its respective arc component of Bi ,M contains uncountably many triods.
Consequently,M is a nonplanar continuum, and a model for M is not so simple to
depict. In Fig. 2.27, we indicate a typical set Bi [ BiC1 for i � 1. ut

There is a connection between Examples 2.23 and 2.22. The components ofB1[
B2 from Example 2.23 are homeomorphic to A1 [ A2 [ A3 from Example 2.22
(there are uncountably many of these components in Example 2.23), whereas the
components of B1[B2[B3 are homeomorphic to A1[A2[ � � �A7 (see Fig. 2.25).

2.10 Nonconnected Inverse Limits

In [10, Example 3.4], Nall provides a simple example of a function with a
connected graph whose inverse limit is not connected. His proof involves the use
of Theorem 2.2. This is our next example.

Example 2.24 (Nall; An inverse that is not connected). Let f W Œ0; 1� ! 2Œ0;1� be
given by f .t/ D t=2 for 0 � t < 1=2 and f .t/ D ft=2; 2t � 1g for 1=2 � t � 1.
Then, G.f / is connected, but lim �f is not connected. (See Fig. 2.28 for the graphs

of f and f 2.)
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Fig. 2.28 Graphs of the functions f and f 2 in Example 2.24

Proof. The graph of f is easily seen to be connected. The graph of f 2 contains the
point .1; 0/ as an isolated point. ut

There exist functions for which it is quite difficult to use Theorem 2.2 to
determine that the inverse limit is not connected. Our next example provides a
sequence of such functions. In this sequence, as n increases, so does the difficulty
of making use of Theorem 2.2. Our proof is the same as the one provided in [4]. We
begin with a lemma.

Lemma 2.3. Suppose f W Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function. If
k is a positive integer, then G.f kC1/ D f.x; y/ 2 Œ0; 1�2 j there exists a point
t 2 Œ0; 1� such that x 2 f �1.t/ and y 2 f k.t/g.
Proof. y 2 f kC1.x/ if and only if there is a point t 2 Œ0; 1� such that t 2 f .x/
and y 2 f k.t/ therefore, we have that y 2 f kC1.x/ if and only if there is a point
t 2 Œ0; 1� such that x 2 f �1.t/ and y 2 f k.t/. ut
Example 2.25. Let n be an integer greater than 1. Let fn W Œ0; 1�! 2Œ0;1� be given by
fn.t/ D t for 0 � t < 1=n, fn.t/ D ft; 2t � 2=n; t � 1=ng for 1=n � t � 2=n, and
fn.t/ D ft; t � 1=ng for 2=n < t � 1. Then, for 1 � k < n, G.f k

n / is connected,
but G.f n

n / is not connected (Fig. 2.29).

Proof. Choose a positive integer n � 2. Observe that fn is the union of three
homeomorphisms:

g1 D IdŒ0;1�;
g2 W Œ1=n; 1�! Œ0; 1–1=n� where g2.x/ D x � 1=n;
g3 W Œ1=n; 2=n�! Œ0; 2=n� where g3.x/ D 2x � 2=n:

It is clear that G.fn/ is connected because G.g3/ intersects both G.g1/ and
G.g2/. Note that the points .0; 0/ and .1=n; 0/ belong to G.fn/, and the entire
graph of G.fn/ lies in Œ0; 1–1=n�2 except for two nonseparating half-open intervals
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5 in Example 2.25

lying in the strip .1–1=n; 1� � Œ0; 1�. Thus, G.fnjŒ0; 1–1=n�/ is connected. Clearly,
G.fnjŒ0; 2=n�/ is connected, whereas fn.Œ0; 2=n�/ D Œ0; 2=n� and fn.Œ0; 1–1=n�/ D
Œ0; 1–1=n�.

Let '1 W Œ0; 1�2 ! Œ0; 1�2 be given by '1.x; y/ D .x; y/, let '2 W Œ0; 1–1=n�2 !
Œ1=n; 1�� Œ0; 1–1=n� be given by '2.x; y/ D .xC1=n; y/, and let '3 W Œ0; 2=n�2 !
Œ1=n; 2=n�� Œ0; 2=n� be given by '3.x; y/ D .x=2C1=n; y/. Note that '1.x; y/ D
.g�11 .x/; y/ for .x; y/ 2 Œ0; 1�2; '2.x; y/ D .g�12 .x/; y/ for .x; y/ 2 Œ0; 1–1=n�2

and '3.x; y/ D .g�13 .x/; y/ for .x; y/ 2 Œ0; 2=n�2.
We now show that if 1 � k � n � 1, then G.f kC1

n / D '1.G.f
k
n // [

'2.G.f
k
n jŒ0; 1–1=n�/['3.G.f k

n jŒ0; 2=n�/�f.2=n; 0/g/. To see this first, let .x; y/
be a point of G.f kC1

n /. By Lemma 2.3, there is a point t 2 Œ0; 1� such that
x 2 f �1n .t/ and y 2 f k

n .t/. There is an integer i , 1 � i � 3, such that
x D g�1i .t/, and, for such an i , .x; y/ D 'i.t; y/ with .t; y/ 2 G.f k

n /. If
i D 1, .x; y/ 2 '1.G.f

k
n //. If i D 2, then 0 � t � 1–1=n, so .x; y/ 2

'2.G.f
k
n jŒ0; 1–1=n�//. If i D 3 and .x; y/ ¤ .2=n; 0/, then t 2 Œ0; 2=n� and

.x; y/ 2 '3.G.f k
n jŒ0; 2=n�/ � f.2=n; 0/g/. In case .x; y/ D .2=n; 0/, .x; y/ D

'2.1=n; 0/, so .x; y/ 2 '2.G.f
k
n jŒ0; 1–1=n�//. On the other hand, if .x; y/ 2

'1.G.f
k
n //['2.G.f k

n jŒ0; 1–1=n�/['3.G.f kn jŒ0; 2=n�/�f.2=n; 0/g/, then for some
i , 1 � i � 3 and some point t 2 Œ0; 1�, x 2 g�1i .t/, and y 2 f k

n .t/. It follows from
Lemma 2.3 that .x; y/ 2 G.f kC1

n /.
Next, we proceed inductively to show that G.f k

n / is a connected set containing
.0; 0/ and .m=n; 0/ for 1 � k � n � 1 and 1 � m � k. We have observed
this to be true for k D 1 because G.fn/ is connected as are G.fnjŒ0; 1–1=n�/ and
G.fnjŒ0; 2=n�/ and .0; 0/ and .1=n; 0/ are points of G.fn/.

Suppose j is an integer, 1 � j < n � 1, such that G.f j
n / is a connected set as

areG.f j
n jŒ0; 1–1=n�/ andG.f j

n jŒ0; 2=n��f.2=n; 0/g/ (we only need to remove the
point .2=n; 0/ when j > 1 because, of course, this point is not in G.fn/). Suppose
also that .0; 0/ and .m=n; 0/ are in G.f j

n / for 1 � m � j . Then, '1.G.f
j
n //

is connected as are '2.G.f
j
n jŒ0; 1–1=n�// and '3.G.f

j
n jŒ0; 2=n� � f.2=n; 0/g/.
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The point .1=n; 0/ belongs to all three of these sets because '1.1=n; 0/ D .1=n; 0/
and .1=n; 0/ 2 G.f jn /, whereas '2.0; 0/ D '3.0; 0/ D .1=n; 0/ and .0; 0/ belongs
to both G.f j

n jŒ0; 1–1=n�/ and G.f j
n jŒ0; 2=n�/. Thus, G.f jC1

n / is connected and
contains .0; 0/ because '1.0; 0/ D .0; 0/. Further, the entire graph of f jC1

n

lies in Œ0; 1–1=n�2 except for j C 2 nonseparating half-open intervals lying in
the strip .1–1=n; 1� � Œ0; 1� (the extra one that is not part of the graph of f j

n

comes from '2.G.f
j
n jŒ0; 1–1=n�//), so G.f jC1

n jŒ0; 1–1=n�/ is connected. Finally,
G.f

jC1
n jŒ0; 2=n�/ � f.2=n; 0/g is connected. To see this, observe that the portion

of G.f j
n / mapped into Œ0; 2=n�2 by '2 is the union of the straight line interval from

.0; 0/ to .1=n; 1=n/ and the single point .1=n; 0/. Thus, '2.G.f
j
n jŒ0; 1–1=n�// \

Œ0; 2=n�2 is the union of the straight line interval from .1=n; 0/ to .2=n; 1=n/

and the point .2=n; 0/. It follows that G.f jC1
n jŒ0; 2=n�/ � f.2=n; 0/g is connected

being the union of three connected sets '1.G.f
j
n jŒ0; 2=n�/�f.2=n; 0/g, the straight

line interval from .1=n; 0/ to .2=n; 1=n/, and '3.G.f
j
n jŒ0; 2=n� � f.2=n; 0/g/,

all containing .1=n; 0/. Because .m=n; 0/ is in G.f
j
n / for 1 � m � j and

'2.i=n; 0/ D ..i C 1/=n; 0/ for each i , 1 � i � j , .m=n; 0/ 2 G.f jC1
n / for

1 � m � j C 1.
Therefore, we have thatG.f k

n / is connected for 1 � k � n�1 and .1–1=n; 0/ 2
G.f n�1

n /. It now follows that '2.1–1=n; 0/ D .1; 0/ is in G.f n
n /. However, .1; 0/

is an isolated point of G.f n
n /. To see this, observe that f n

n .1/ is a discrete set with
minimum 0 and f �nn .0/ is a discrete set with maximum 1. Because G.f n

n / has an
isolated point, it is not connected. ut

One cannot always rely on Theorem 2.2 to detect that an inverse limit is not
connected. The following example due to Jonathan Meddaugh demonstrates this.
Example 2.26 is a modification of [5, Example 1, p. 266].

Example 2.26 (Meddaugh). Let f W Œ0; 1� ! 2Œ0;1� be given by f .0/ D Œ0; 1�,
f .t/ D ft; 0g for 0 < t � 1=4, f .t/ D 0 for 1=4 < t < 3=4, f .t/ D f3t � 2; 0g for
3=4 � t < 1, and f .1/ D Œ0; 1�. Then G.f / is connected and G.f n/ D Œ0; 1�2 for
n > 1, but lim �f is not connected. (See Fig. 2.30 for the graph of f .)
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Fig. 2.31 The graph of the
bonding function in
Example 2.27

Proof. It is clear that G.f / is connected and G.f n/ D Œ0; 1�2 for n > 1. Let
M D lim �f . The set N D fx 2 M j x1 D x2 D 1=4; and x3 D 3=4g is both
open and closed in M because N is closed and N D ..1=8; 3=8/ � .1=8; 3=8/ �
.5=8; 7=8/�Q/\M . Thus,M is not connected. ut

A second example of an inverse limit that is not connected but the graphs of
all composites of the bonding functions are connected is an example in a recent
paper by Greenwood and Kennedy in which they showed that the inverse limit is
not connected [1, Example 1.4, p. 58].

Example 2.27. Let f W Œ0; 1� ! 2Œ0;1� be given by f .t/ D f0; tg for 0 � t � 1=4,
f .t/ D 0 for 1=4 < t < 1=2, f .t/ D ft � 1=2; 0g for 1=2 < t < 3=4, f .t/ D
ft; t � 1=2; 0g for 3=4 � t < 1, and f .1/ D Œ0; 1�. Then, G.f / is connected and
f n D f for each n 2 N, but lim �f is not connected. (See Fig. 2.31 for the graph
of f .)

Proof. It is clear thatG.f / is connected. It is not difficult to show that f 2 D f , and
therefore, f n D f for each n 2 N. Let M D lim �f and let N D fx 2 M j x1 D
x2 D 1=4 and x3 D x4 D 3=4g; N is a closed subset of M . Let U be the basic
open set .1=8; 3=8/ � .1=8; 3=8/ � .5=8; 7=8/ � .5=8; 7=8/ � Q. Note that N �
U \M . To see that N D U \M , suppose x 2 U \M . Because x1 2 .1=8; 3=8/
and x2 2 .1=8; 3=8/, we observe that x2 2 .1=8; 1=4�. From x2 2 .1=8; 1=4� and
x3 2 .5=8; 7=8/, it follows that x3 2 .5=8; 3=4�. However, with x3 2 .5=8; 3=4� and
x4 2 .5=8; 7=8/, it follows that x4 D 3=4. Because x4 D 3=4 and x3 2 .5=8; 7=8/,
x3 D 3=4; x3 D 3=4 and x2 2 .1=8; 3=8/ yields x2 D 1=4. Because x2 D 1=4 and
x1 2 .1=8; 3=8/, x1 D 1=4. Thus, x 2 N \M . BecauseM contains a closed set N
that is open in M ,M is not connected. ut
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Chapter 3
Mappings versus Set-Valued Functions

Abstract Inverse limits with upper semicontinuous bonding functions exhibit
fundamental differences from inverse limits with mappings in the sense that the
theorems that hold when the bonding functions in an inverse limit sequence are
mappings almost always fail if the bonding functions are set-valued. This chapter
is devoted to examining some of those differences. Of course, these differences
provide a source for research questions.

3.1 Introduction

Most of the tools available when the bonding functions in an inverse limit sequence
are mappings fail when the bonding functions are set-valued. In this chapter, we
examine a number of these tools. However, rather than viewing these failures as
being negative, instead we see it as an opportunity for additional research into
inverse limits with set-valued functions.

There are some theorems that we have seen that do carry over from the setting
of inverse limits with mappings to inverse limits with set-valued functions. These
include the fundamental existence theorem, Theorem 1.6, and the topological
conjugacy theorem, Theorem 2.9. Beyond these results, one can normally expect
to need additional hypotheses or special circumstances in order for theorems on
inverse limits with mappings hold for inverse limits with set-valued functions.

3.2 The Subsequence Theorem

One valuable tool in inverse limits with mappings is the subsequence theorem.
For sequences of mappings of Œ0; 1�, its statement is found below. Its proof is not
difficult. A proof in a general setting can be found in [4, Sect. 2.10.5, p. 119].
In the statement of the theorem, we employ the convention that fi j denotes
fi ı fiC1 ı � � � ı fj�1.
W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-4487-9 3,
© W.T. Ingram 2012
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Fig. 3.1 The graph of the bonding function and a model of the inverse limit in Example 3.1

Theorem 3.1 (The subsequence theorem). If f is a sequence of mappings of
Œ0; 1� into Œ0; 1� and n is an increasing sequence of positive integers, then lim �f

is homeomorphic to lim �g, where, for each positive integer i , gi D fni niC1
.

This theorem fails for inverse limits with set-valued functions. We provide a
couple of examples from [3].

Example 3.1 (lim �f and lim �f 2 may not be homeomorphic). Let f W Œ0; 1�! 2Œ0;1�

be the upper semicontinuous function given by f .t/ D f1�t; 1=2g for 0 � t � 1=2,
f .t/ D 1=2 for 1=2 < t < 1, and f .1/ D Œ0; 1=2�. Then, lim �f contains a triod, but

f 2 is the function from Example 2.6 (f 2.0/ D Œ0; 1=2�; f 2.t/ D 1=2 for 0 < t < 1,
and f .1/ D Œ1=2; 1�) so lim �f 2 is an arc (see Fig. 3.1 for the graph of f and its

inverse limit; see Fig. 2.5 for the graph of f 2).

Proof. Let M D lim �f . Let ˛ D fx 2 M j x1 2 Œ1=2; 1�; x2 D 1 � x1; and
x2j�1 D 1, while x2j D 0 for each integer j > 1g. Let ˇ D fx 2 M j x1 D x2 D
1=2; x3 2 Œ1=2; 1�; x4 D 1 � x3 and x2j�1 D 1, while x2j D 0 for each integer
j > 2g. Let � D fx 2 M j x1 D 1=2; x2 2 Œ0; 1=2�; and x2j�1 D 1, while x2j D 0
for each integer j > 1g. Then, .1=2; 1=2; 1; 0; 1; 0; : : : / is the only point common
to any two of the arcs ˛; ˇ, and � , so ˛ [ ˇ [ � is a triod. It is not difficult to see
that f 2 is the bonding function from Example 2.6, so lim �f 2 is an arc. (In Fig. 3.1,
A0 D ˛, A2 D ˇ, and B1 D � .)

We conclude the discussion of Example 3.1 with a description of our model of
M D lim �f as shown in Fig. 3.1. Let A0 D fx 2 M j x1 2 Œ1=2; 1�; x2 D 1 � x1,
and x2j�1 D 1, while x2j D 0 for each integer j > 1g (i.e., A0 is the arc ˛
described in the previous paragraph). For each positive integer i , let Ai D fx 2
M j xj D 1=2 for 1 � j � i; xiC1 2 Œ1=2; 1�, xiC2 D 1 � xi ; xiCj D 1, for
each odd integer j � 3, while xiCj D 0, for each even integer j � 4g. Let B0 D
fx 2 M j x1 2 Œ0; 1=2�; x2j D 1, while x2jC1 D 0 for j � 1g and, for each
positive integer i , let Bi D fx 2 M j xj D 1=2 for 1 � j � i , xiC1 2 Œ0; 1=2�
and xiCj D 1 for each even positive integer j , while xiCj D 0 for each odd
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positive integer j � 3g. (Here, A2 is ˇ and B1 is � as described above.) Then,
M D .

S
i�0 Ai / [ .

S
i�0 Bi / [ f.1=2; 1=2; 1=2; : : : /g. Let p0 D .1; 0; 1; 0; : : : /

and, for each positive integer i , let pi be the point ofM such that �j .pi / D 1=2 for
1 � i � j and �iCj .pi / D 1 for each odd positive integer j and �iCj .pi / D 0 for
each even positive integer j . Note that Ai \ AiC2 D fpiC2g for i � 0, B0 \ A1 D
fp1g and Bi \ Ai�1 \ AiC1 D fpiC1g for each positive integer i .

The inverse limit in Example 3.1 is homeomorphic to the union of two copies of
the inverse limit from Example 2.4 that intersect at a single point. ut

Our next example is one we have already discussed, the Hurewicz continuum
of Example 2.11. There, we were interested in the fact that the inverse limit is a
continuum even though the bonding function does not have connected values. Here
we show that the subsequence theorem fails for this inverse limit sequence.

Example 3.2. Let g1 W Œ0; 1�! Œ0; 1� be the mapping given by g1.t/ D t C 1=2 for
0 � t � 1=2 and g1.t/ D 3=2 � t for 1=2 � t � 1. Let g2 W Œ0; 1� ! Œ0; 1� be
the mapping given by g2.t/ D 1=2 � t for 0 � t � 1=2 and g2.t/ D t � 1=2 for
1=2 � t � 1. Let F D fg1; g2g and f W Œ0; 1� ! 2Œ0;1� be the set-theoretic union
of g1 and g2. Then, G.f 2/ D Id [ .1 � Id/ and lim �f 2 is not homeomorphic to

lim �f . (The graph of f is shown in Fig. 2.10; the graph of f 2 is shown in Fig. 2.6.)

Proof. In our discussion of a model for M D lim �f in Example 2.11, we observed
that simple closed curves abound in this inverse limit. However, for completeness,
we provide a specific simple closed curve lying in M . Let h be the sequence
g2; g1; g2; g1; : : : and A1 D lim �h. Let A2 D lim �g1. Let k be the sequence
g1; g2; g1; g2; : : : and A3 D lim �k. Finally, let A4 D lim �g2. It is not difficult to
see that Ai is an arc for 1 � i � 4. For instance, that A1 is an arc follows from
the fact that A1 is homeomorphic to lim �g2 ı g1 which in turn is homeomorphic
to lim �h where h D IdŒ0;1=2�. Furthermore, A1 \ A2 D f.1=2; 1; 1=2; 1; : : : /g,
A2 \ A3 D f.1; 1=2; 1; 1=2; : : : /g, A3 \ A4 D f1=2; 0; 1=2; 0; : : : /g, A4 \ A1 D
f.0; 1=2; 0; 1=2; : : : /g, A2 \ A4 D ;, and A1 \A3 D ;. Thus, A1 [ A2 [ A3 [A4
is a simple closed curve lying in M .

A calculation of f 2 shows that this is the bonding function in Example 2.7, i.e.,
G.f 2/ is the union of the two maps Id and 1� Id . That inverse limit is a the cone
over the Cantor set, a continuum containing no simple closed curve. ut

It is not difficult to see that, for the bonding function f from Example 3.2, lim �f 2

is homeomorphic to a plane continuum, while we observed in Example 2.11 that
lim �f cannot be embedded in the plane. This provides an alternate proof that lim �f

and lim �f 2 cannot be homeomorphic.
We close this section with a simple observation related to Problem 6.10. If f W

Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function, f is said to be idempotent
provided f D f 2. The function f that is the union of Id and 1�Id is idempotent,
while the function from Example 3.2 is not idempotent. It is not difficult to show
that if f W Œ0; 1� ! 2Œ0;1� is idempotent, then f n D f for each positive integer n.
Thus, we have the following theorem.
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Theorem 3.2. If f W Œ0; 1� ! 2Œ0;1� is upper semicontinuous and f is idempotent,
then lim �f is homeomorphic to lim �f n for each n 2 N.

To end this section, we mention that the function in Example 2.27 is idempotent,
its graph is connected, and its inverse limit is not connected.

3.3 Bonding Functions Vis-À-Vis Projections

In inverse limits with mappings, the bonding functions and the projections interact
in the following way.

Theorem 3.3. Suppose f is a sequence of mappings of Œ0; 1� into Œ0; 1� and M D
lim �f . If H �M , then �i .H/ D fi .�iC1.H// for each positive integer i .

This fails for inverse limits with set-valued functions as may be seen by the
following example, although it is true that �i .H/ � fi .�iC1.H// for each positive
integer i (see Theorem 3.4 below).

Example 3.3. Let f W Œ0; 1� ! 2Œ0;1� be given by f .t/ D Œ0; 1� for each t 2 Œ0; 1�.
Then, for H D Œ0; 1=2�1, we have H � lim �f and, if i 2 N, �i .H/ D Œ0; 1=2�,
but fi .�iC1.H// D Œ0; 1�.

The following theorem follows directly from Theorem 1.10.

Theorem 3.4. Suppose f is a sequence of upper semicontinuous functions from
Œ0; 1� into 2Œ0;1� and M D lim �f . If m; n 2 N with m � n and H � M , then
�m.H/ � fmn.�n.H//.

In case f is a sequence of upper semicontinuous functions if H � lim �f and
i is a positive integer such that fi j�iC1.H/ is a mapping, it is true that �i .H/ D
fi .�iC1.H//.

3.4 The Closed Subset Theorem

Another quite valuable tool in the theory of inverse limits with mappings is the
closed subset theorem. For sequences of mappings on Œ0; 1�, its statement is found
below. In the statement of Theorem 3.5 as well as in Example 3.4, we employ the
following notation. If H is a closed subset of Q, we denote �i .H/ by Hi . A proof
of Theorem 3.5 can be found in [4, Theorem 159, p. 116].

Theorem 3.5. If f is a sequence of mappings of Œ0; 1� into Œ0; 1� andH is a closed
subset of lim �f , thenH D lim �g where gi D fi jHiC1 for each positive integer i .

Numerous examples show that this theorem fails to hold in general for inverse
limits on Œ0; 1� with set-valued functions. One such example is Example 2.13 which
we revisit in our next example.
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Example 3.4. Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D f0; tg for 0 � t � 1.
Then, H D fx 2 lim �f j xi D x1 for each positive integer ig is a closed proper
subset of lim �f such that Hn D Œ0; 1� for each positive integer n.

Our next section is devoted to addressing the failure of Theorem 3.5 for inverse
limits with set-valued functions in the case that closed subset of the inverse limit is
a continuum that projects onto each of infinitely many factor spaces. A deeper study
of compact subsets of the inverse limit that are the inverse limit of their projections
was conducted by Alexander Cornelius in his dissertation at Baylor University [1]
as well as in a subsequent study of Brian Williams in his Baylor dissertation [6].

3.5 The Full Projection Property

One of the principal uses of Theorem 3.5 in inverse limits with mappings is to
conclude that a subcontinuum of an inverse limit that projects onto each factor space
is the entire inverse limit. Although examples, including Example 3.4, exist showing
that this does not always hold for set-valued functions, for some inverse limits with
set-valued functions, subcontinua that project onto the full factor space for infinitely
many integers nmust be the entire inverse limit. Those for which this is true are said
to satisfy the full projection property. Specifically, suppose f is a sequence of upper
semicontinuous functions from Œ0; 1� into 2Œ0;1� and M D lim �f . Then, M has the
full projection property provided it is true that if H is a subcontinuum of M such
that �n.H/ D Œ0; 1� for infinitely many positive integers n then H DM .

Our next example has the full projection property. This was first shown by Scott
Varagona [5]. Our proof is based on the same principles as his, but it is different. It
may be worth noting that the proof does not make use of the connectedness of H .

Example 3.5 (Varagona). Let f W Œ0; 1� ! C.Œ0; 1�/ be the function whose graph
is the union of straight line intervals joining .1=2n; 0/ and .1=2n�1; 1/ for all odd
positive integers, straight line intervals joining .1=2n�1; 0/ and .1=2n; 1/ for all even
positive integers, and the straight line interval joining .0; 0/ and .0; 1/ (a graph
homeomorphic to a sin.1=x/-curve; see Fig. 3.2). Then, M D lim �f has the full
projection property.

Proof. Suppose H is a subcontinuum of M such that �i .H/ D Œ0; 1� for infinitely
many integers i . One key to proving that H D M is an observation made by
Varagona in his proof.

(1) If p 2 M and pi > 0 for each positive integer i , then p 2 H .

To see this, let n be a positive integer. There is an integerm > n such that �m.H/ D
Œ0; 1�. Therefore, there is a point x 2 M such that xm D pm. Because pm > 0,
f .pm/ D pm�1, so xm�1 D pm�1 > 0. Continuing inductively, we see that xi D pi
for 1 � i � m. Thus, d.x;p/ < 1=2m � 1=2n. It follows that p is a limit point
of H . Because H is closed, p 2 H .
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The remainder of the proof is devoted to showing that if x 2 M and " > 0,
there is a point p 2 H such that d.p;x/ < ". Toward this end and employing the
notation that f 0 denotes the identity, we first observe the following.

(2) Suppose z > 0, w 2 Œ0; 1�, and k is a positive integer such that f k.z/ D 0,
but f i .z/ > 0 for 1 � i < k. If " > 0, there is a number t > 0 such that
jf i .t/ � f i .z/j < "; f i .t/ > 0 for 0 � i � k, and f kC1.t/ D w.

To see this, note that f i is continuous at z for 1 � i � k. So, if 1 � i � k, there
is a positive number ıi such that if jt � zj < ıi , then jf i .t/ � f i .z/j < ". The
fact that f i .z/ > 0 along with the continuity of f i at z yields that for 1 � i < k,
there is a positive number ı0i such that if jt � zj < ı0i then f i .t/ > 0. Furthermore,
because f k�1.z/ > 0, z is an isolated zero for f k . Thus, because f k is continuous
at z, there is a positive number ı0k such that if 0 < jt � zj < ı0k , then f k.t/ > 0. Let
ı D minfı1; ı2; : : : ; ık; ı01; ı02; : : : ; ı0k; "g and let J be the open interval .z� ı; zCı/.
Because f k.J / is a connected set containing 0, there is a positive integer m such
that Œ1=2m; 1=2m�1� � f k.J /. Thus there is a point s 2 Œ1=2m; 1=2m�1� such that
f .s/ D w. There is a point t 2 J such that f k.t/ D s. Then f kC1.t/ D w. Because
s > 0, t ¤ z, thus jf i.t/ � f i .z/j < " and f i .t/ > 0 for 1 � i � k.

Before we undertake the last part of the proof, we include one additional item
that is used in the proof.

(3) If j 2 N and x1; x2; : : : ; xj are points of Œ0; 1� such that f .xiC1/ D xi for
1 � i < j , then there is a point y of M such that yi D xi for 1 � i � j and
yi > 0 for i > j .

Construct y 2 M as follows. Let yi D xi for 1 � i � j . There is a point t > 0

such that f .t/ D xj . Let yjC1 be such a point t . There is a point s > 0 such that
f .s/ D yjC1. Let yjC2 be such a point s. Continuing in this manner, we inductively
construct y.

To complete the proof we show the following which, in light of (1), shows that
every point of M is a limit point of the closed set H and, hence, is in H .
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(4) If x 2 M and " > 0, there is a point p 2 M such that every coordinate of p is
positive and d.p;x/ < ".

To prove this, suppose " > 0 and x 2 M . There is a positive integer n such thatP
i�n 1=2i < "=4. We proceed by induction on the number of times 0 appears

among the first n coordinates of x. If that number is zero, let p be the point of M
produced by (3) using j D n and the points x1; x2; : : : ; xn. Then, every coordinate
of p is positive. Because pi D xi for 1 � i � n, d.p;x/ < "=4.

Inductively, suppose k � 0 is an integer such that if y is a point of M having k
of its first n coordinates 0, then there is a point ofM having all positive coordinates
and distance less than "=2 from y . Let x be a point of M having k C 1 of its first n
coordinates 0. We consider two cases: (a) xn D 0 and (b) xn > 0. If xn D 0, there
is a positive integer m such that Œ1=2m; 1=2m�1� � Œ0; "=2/. Thus, there is a point
t 2 Œ1=2m; 1=2m�1� such that f .t/ D xn�1. Using the points x1; x2; : : : ; xn�1; t in
(3), there is a point z ofM such that zi D xi for 1 � i � n�1, zn D t , and zi > 0 for
i > n. Observe that d.z;x/ < "=4C "=4 < "=2. Because z has only k coordinates
that are 0 among its first n coordinates, by the inductive hypothesis, there is a point
p ofM having all coordinates positive such that d.p; z/ < "=2. Thus, d.p;x/ < ".
Suppose (b) holds. Then there is a positive integer j < n such that xj D 0, but xi >
0 for j < i � n. Using "=4 in (2) with z D xn and k D n � j , we obtain a number
t > 0 such that f i .t/ > 0 and jf i .t/ � f i.xn/j < "=4 for 0 � i � n � j , whereas
f n�jC1.t/ D xj�1. Using the points x1; x2; : : : ; xj�1; f n�j .t/; : : : ; t in (3), we
obtain a point z 2 M such that z has k coordinates 0 among its first n coordinates.
Because f l.xn/ D xn�l for 0 � l � j and, thus, jf i .t/ � xn�i j < "=4 for 0 � i �
n� j , it is not difficult to see that d.z;x/ < "=4. By the inductive hypothesis, there
is a point p of M having all coordinates positive such that d.p; z/ < "=2. Thus,
d.p;x/ < ". ut

A simpler function that also has an inverse limit having the full projection
property is the function in our next example. This example is also found in the
literature, [2, Example 3.4, p. 365]. We revisit Examples 3.5 and 3.6 in Sect. 3.6
where both inverse limits are shown to be indecomposable.

As with Example 3.5, we provide a proof that the inverse limit in Example 3.6 has
the full projection property that differs from the one in the literature. Recall that if
f is a sequence of set-valued functions such that fi W Œ0; 1�! 2Œ0;1� for each i 2 N,
then G0.f1; f2; : : : ; fn/ D fx 2 Œ0; 1�nC1 j xi 2 fi .xiC1/ for 1 � i � ng. For
convenience of notation, we let G0n D G.f1; f2; : : : ; fn/. We begin with a lemma.
We leave its proof to the reader.

Lemma 3.1. Suppose f is a sequence of set-valued functions such that fi W
Œ0; 1� ! 2Œ0;1� for each positive integer i . If n 2 N, then G0nC1Dfx 2 Œ0; 1�nC2 j
.x1; x2; : : : ; xnC1/ 2 G0n and xnC2 2 f �1nC1.xnC1/g.
Example 3.6. Let f W Œ0; 1� ! 2Œ0;1� be given by f .t/ D 2t for 0 � t < 1=2,
f .1=2/ D Œ0; 1�, and f .t/ D 2t � 1 for 1=2 < t � 1. Then, lim �f has the full
projection property (see Fig. 3.3 for the graph of f ).
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Fig. 3.3 The graph of the
bonding function in
Example 3.6

Proof. We first show that if n 2 N, then G0n is an arc in Œ0; 1�nC1 from .0; 0; : : : ; 0/

to .1; 1; : : : ; 1/. We proceed by induction.
Because G01 D G.f /�1 and G.f / is an arc, G01 is an arc having endpoints .0; 0/

and .1; 1/. Suppose k 2 N such that G0k is an arc from .0; 0; : : : ; 0/ to .1; 1; : : : ; 1/.
By Lemma 3.1, G0kC1 D fx 2 Œ0; 1�kC2 j .x1; x2; : : : ; xkC1/ 2 G0k and xkC2 2
f �1.xkC1/g. Observe that f �1 is the union of three mappings f1; f2, and f3 given
by f1.t/ D t=2, f2.t/ D 1=2 and f3.t/ D .t C 1/=2 for 0 � t � 1. Thus, if
hi W G0k ! G0kC1 is the homeomorphism given by hi .x/ D .x1; x2; : : : ; xk; fi .xk//
for i D 1; 2; 3,G0kC1 D h1.G0k/[h2.G0k/[h3.G0k/. Note that ˛1 D h1.G0k/ is an arc
in Œ0; 1�nC2 with endpoints .0; 0; : : : ; 0/ and .1; 1; : : : ; 1; 1=2/, ˛2 D h2.G

0
k/ is an

arc in Œ0; 1�nC1 with endpoints .0; 0; : : : ; 0; 1=2/ and .1; 1; : : : ; 1; 1=2/, and ˛3 D
h3.G

0
k/ is an arc in Œ0; 1�nC1 with endpoints .0; 0; : : : ; 0; 1=2/ and .1; 1; : : : ; 1/.

Furthermore, ˛1 \ ˛2 D f.1; 1; : : : ; 1; 1=2/g, ˛2 \ ˛3 D f.0; 0; : : : ; 0; 1=2/g, and
˛1 \ ˛3 D ;. It follows that G0kC1 is an arc with endpoints .0; 0; : : : ; 0/ and
.1; 1; : : : ; 1/.

Suppose H is a subcontinuum of M D lim �f such that �i .H/ D Œ0; 1� for
infinitely many positive integers i . Suppose p is a point of M and n 2 N. We show
that there is a point q of H such that qj D pj for 1 � j � n. To see this we
consider three cases: p D .0; 0; 0, : : : /, p D .1; 1; 1, : : : /, and p 2 M � f.0; 0; 0,
: : : /, .1; 1; 1, : : : /g. Suppose p D .0; 0; 0, : : : /. There is an integerm � n such that
�m.H/ D Œ0; 1�, so there is a point q 2 H such that qm D 0. Because f .0/ D 0,
qj D 0 for 1 � j � m. The case that p D .1; 1; 1, : : : / is similar. Suppose p

is a point of M � f.0; 0; 0, : : : /, .1; 1; 1, : : : /g. There is a positive integer m � n

such that pmC1 … f0; 1g and �mC1.H/ D Œ0; 1�. Then, .p1; : : : ; pmC1/ is in the arc
G0m and G0m � f.p1; : : : ; pmC1/g D Am;0 [Am;1, where Am;0 and Am;1 are mutually
separated with .0; 0; : : : ; 0/ 2 Am;0 and .1; 1; : : : ; 1/ 2 Am;1. Thus, H intersects
the two mutually separated sets Am;0 � Œ0; 1�1 and Am;1 � Œ0; 1�1 so H , contains a
point in the boundary of each of them. Consequently,H contains a point q such that
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qj D pj for 1 � j � m. In each case, there is a point q 2 H such that qj D pj for
1 � j � n. Thus, there is a point q of H such that d.q;p/ < 2�n. It follows that
p 2 H , so H D lim �f . ut

A characterization of the full projection property is included in Brian Williams’
dissertation [6], although it is not in terms of properties of the bonding functions.
One research problem related to this section is Problem 6.18. The reader will
notice that our proofs that Examples 3.5 and 3.6 have the full projection property
are quite different. This leads to Problem 6.26 which may be more tractable than
Problem 6.18.

3.6 Indecomposability and the Two-Pass Condition

A continuum is decomposable provided it is the union of two proper subcontinua
and is indecomposable otherwise. Although many examples of indecomposable
continua are known to continuum theorists, it is not obvious that there are nonde-
generate indecomposable continua. However, we shall soon see that such continua
exist.

In the presence of the full projection property the two-pass condition (defined
below) is a sufficient condition for indecomposability of an inverse limit when the
factor spaces belong to the collection of all arcs and simple n-ods. We show this for
the interval Œ0; 1� in Theorem 3.6. Without the full projection property, an inverse
limit with a single bonding function may be decomposable even if the bonding
function satisfies the two-pass condition, e.g., for f W Œ0; 1� ! 2Œ0;1� given by
f .t/ D Œ0; 1� for 0 � t � 1 as in Example 1.1 where the inverse limit is the
Hilbert cube, a decomposable continuum.

If f W Œ0; 1� ! 2Œ0;1�, f is said to satisfy the two-pass condition provided there
exist two mutually exclusive connected open subsets U and V of Œ0; 1� such that
f jU and f jV are mappings and f .U / D f .V / D Œ0; 1�. The following theorem
appears in [2, Theorem 4.3, p. 370] in a more general form.

Theorem 3.6. If f is a sequence of upper semicontinuous functions from Œ0; 1� into
2Œ0;1�, fi satisfies the two-pass condition for each positive integer i , and lim �f has
the full projection property, then lim �f is indecomposable.

Proof. Let M D lim �f and suppose M is the union of two proper subcontinua
H and K . Because M has the full projection property, there is a positive integer
n such that if j � n, then �j .H/ ¤ Œ0; 1� and �j .K/ ¤ Œ0; 1�. There exist two
mutually exclusive connected open subsets U and V of Œ0; 1� such that fnjU and
fnjV are mappings and fn.U / D fn.V / D Œ0; 1�. However, because �nC1.H/ and
�nC1.K/ are intervals whose union is Œ0; 1� and U and V are mutually exclusive
open intervals, one ofU and V is a subset of one of�nC1.H/ and�nC1.K/. Suppose
U � �nC1.H/. Because fnjU is a mapping, if t 2 fn.U /, then there is a point
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s 2 U such that t D fn.s/. But, s 2 �nC1.H/ so there is a point p 2 H such
that pnC1 D s. Then, pn D t so t 2 �n.H/, so fn.U / � �n.H/. Consequently,
�n.H/ D Œ0; 1�. ut

In the previous proof, we went to some lengths to show that, if U � �nC1.H/,
then fn.U / � �n.H/ by using the hypothesis that fnjU is a mapping. We saw in
Example 3.3 that this does not always hold for set-valued functions even if U D
�nC1.H/.

Example 3.7 (An indecomposable continuum). The inverse limitM in Example 3.5
is an indecomposable continuum. (The graph of the bonding function is homeomor-
phic to a sin.1=x/-curve; see Fig. 3.2.)

Proof. It follows from Theorem 2.7 thatM is a continuum. The function f is easily
seen to satisfy the two-pass condition. We showed in Example 3.5 that M has the
full projection property, so it follows from Theorem 3.6 that M is indecomposable.

ut
Of course, the indecomposability of the inverse limit in Example 3.7 depends on

the embedding of the sin.1=x/-curve in Œ0; 1�2.

Example 3.8. If f is the function from Example 3.5 and g W Œ0; 1�! 2Œ0;1� is given
by g.t/ D t for 0 � t � 1=2 and g.t/ D .2 � f .2 � 2t//=2 for 1=2 < t � 1, then
G.g/ is homeomorphic to a sin.1=x/-curve but lim �g is decomposable.

In a similar manner to Example 3.7, but in this case relying on Example 3.6, we
obtain the following example.

Example 3.9 (An indecomposable continuum). The inverse limitM in Example 3.6
is an indecomposable continuum. (The bonding function f W Œ0; 1�! 2Œ0;1� is given
by f .t/ D 2t for 0 � t < 1=2, f .1=2/ D Œ0; 1�, and f .t/ D 2t�1 for 1=2 < t � 1;
see Fig. 3.3.)

Finally, we provide an example due to Varagona of a function satisfying the
two-pass condition, but its inverse limit does not have the full projection property.
Varagona’s example is constructed by tacking a vertical line at 0 onto the full tent
map as seen in our next example.

Example 3.10 (A function satisfying the two-pass condition having an inverse limit
without the full projection property). Let f W Œ0; 1� ! 2Œ0;1� be the function given
by f .0/ D Œ0; 1�, f .t/ D 2t for 0 < t < 1=2, and f .t/ D 2 � 2t for 1=2 < t � 1.
Then f satisfies the two-pass condition but lim �f does not have the full projection
property. (See Fig. 3.4 for the graph of f .)

Proof. Let M D lim �f . By choosing U D .0; 1=2/ and V D .1=2; 1/, we see
that f satisfies the two-pass condition. If g W Œ0; 1� ! Œ0; 1� is the map given by
g.t/ D 2t for 0 � t � 1=2 and g.t/ D 2 � 2t for 1=2 < t � 1, we see H D lim �g

is a proper subcontinuum of M that projects onto Œ0; 1� for each positive integer n.
ut
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3.7 Bennett’s Theorem

In [2, Example 3.5], we introduced the following example to show that a graph could
be irreducible from f0g� Œ0; 1� to f1g� Œ0; 1�while failing to have the full projection
property. The example is somewhat interesting for other reasons because the inverse
limit is not the closure of a topological ray (i.e., the image of the nonnegative
real numbers under a homeomorphism) with remainder (the complement of the
ray in its closure) homeomorphic to the inverse limit on Œ1=2; 1�. In its simplest
form, Bennett’s Theorem yields that if g W Œ1=2; 1� ! Œ1=2; 1� is a mapping with
g.1=2/ D 1 and f W Œ0; 1� ! Œ0; 1� is a mapping such that f jŒ1=2; 1� D g,
f .t/ D 2t for 0 � t � 1=2, then lim �f is the closure of a ray with remainder
homeomorphic to lim �g. See [4, Theorem 19, p. 12] for a stronger version of this
theorem. Example 3.11 thus shows that, in general, we cannot expect a version of
Bennett’s Theorem to hold for inverse limits with set-valued functions.

Example 3.11 (Bennett’s Theorem fails). Let f W Œ0; 1�! 2Œ0;1� be given by f .t/ D
2t for 0 � t < 1=2, f .1=2/ D Œ1=2; 1�, and f .t/ D t for 1=2 < t � 1. Then the
inverse limit is not the closure of a ray with remainder lim �g where g D f jŒ1=2; 1�
(Fig. 3.5).

Proof. Let M D lim �f . It follows from Theorem 2.7 that M is a continuum, but
we wish to construct a model for the continuum from which one can see that M is
not the closure of a ray with remainder lim �g where g D f jŒ1=2; 1�. LetA0 D fx 2
M j x1 2 Œ1=2; 1� and xj D x1 for each positive integer j g. For each positive integer
n, let An D fx 2M j x1 2 Œ1=2; 1�, xj D x1 for 1 � j � n, and xj D 1=2 for j >
ng. Then F DS

i>0 Ai is a fan lying inM having vertex p D .1=2; 1=2; 1=2; : : : /.
(This fan is lim �g and is homeomorphic to the inverse limit in Example 2.14.)

Let A.0; 0/ D fx 2 M j x1 2 Œ0; 1=2� and xjC1 D xj =2 for j � 1g. Suppose n
is a positive integer. Let A.n; 0/ D fx 2 M j x1 2 Œ1=2; 1�, xj D x1 for 1 � j � n,
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Fig. 3.5 The graph of the bonding function and a model of the inverse limit in Example 3.11

and xjC1 D xj =2 for j � ng. If m is a positive integer, let A.n;m/ D fx 2
M j x1 2 Œ1=2; 1�, xj D x1 for 1 � j � n, xj D 1=2 for n < j � n C m, and
xjC1 D xj =2 for j � nCmg. Note that if x 2 M � F , then there exist an integer
n � 0 and an integerm � 0 such that x 2 A.n;m/.

For n � 3, let Tn D A.n; 0/ [ A.n � 1; 1/ [ A.n � 2; 2/ [ � � � [ A.1; n � 1/.
Then, Tn is an n-od lying in M having vertex pn where pn is the point of M such
that �j .pn/ D 1=2 for 1 � j � n and �jC1.pn/ D �j .pn/=2 for j � n. Let qn be
the point of M such that �j .qn/ D 1 for 1 � j � n and �jC1.qn/ D �j .qn/=2 for
j � n. Observe that, for n � 3, Tn \ TnC1 D fqng because qn 2 A.n; 0/\ A.n; 1/
and A.n; 0/ � Tn, while A.n; 1/ � TnC1.

BecauseA.0; 0/\A.1; 0/ D fp1g,A.1; 0/\A.1; 1/ D fq1g,A.1; 1/\A.2; 0/ D
fp2g, and A.2; 0/\A.2; 1/ D fq2g, we see that S D A.0; 0/[A.1; 0/[A.1; 1/[
A.2; 0/ [ .S

i�3 Ti / is connected. Further, S � S D F and M D S . However,
no topological ray lying in M can have M as its closure. A maximal ray having
a closure that is not locally connected is A.0; 0/ [ A.1; 0/ [ A.1; 1/ [ A.2; 0/ [
A.2; 1/[A.3; 0/[ � � � . ut
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Chapter 4
Mapping Theorems

Abstract In this chapter, we include some theorems on mappings of inverse limit
spaces. Although the subsequence theorem for inverse limits with mappings does
not hold in general for inverse limits with set-valued functions, there is a version
for upper semicontinuous functions that gives a mapping between inverse limits
including, specifically, a mapping of lim �f onto lim �f 2 for inverse limits with a
single bonding function. The shift homeomorphisms between inverse limits with
mappings also do not carry over as homeomorphisms to the set-valued case. Instead,
one shift is a mapping and the other is a set-valued function. A generalized
conjugacy theorem rounds out this chapter.

4.1 Introduction

In Chap. 2 we discussed the effect on the inverse limit of topological conjugacy
between the bonding functions in an inverse limit sequence. This is a form of a
mapping theorem in that the conjugacy produces a homeomorphism between inverse
limits. In this chapter we explore other mapping theorems between inverse limit
sequences. Most of our discussion centers around theorems that hold because the
projections from product spaces to their factor spaces (or products of their factor
spaces) are continuous. Theorems 4.1 and 4.5 are from [2] but may also be found
in [3].

4.2 A Subsequence Mapping Theorem

In this section we present a theorem on mappings induced by projections.
Theorem 4.1 is the set-valued counterpart to the subsequence theorem for inverse
limits with mappings. Unlike the situation with bonding mappings, in the case that
the bonding functions are set-valued, the induced mapping is not a homeomorphism.

W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-4487-9 4,
© W.T. Ingram 2012
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Recall our notation that if f is an inverse limit sequence of set-valued functions and
i; j 2 N with i < j , then fi j D fi ı fiC1 ı � � � ı fj�1, a set-valued function from
the j th factor space into the closed subsets of the i th factor space.

Theorem 4.1. Suppose X is a sequence of closed subsets of Œ0; 1�, and, for each
positive integer i , fi W XiC1 ! 2Xi is a surjective upper semicontinuous function.
Suppose further that n1; n2; n3; : : : is an increasing sequence of positive integers
and g is a sequence of upper semicontinuous functions such that gi W XniC1

! 2Xni ,
where gi D fni niC1

. Then F W lim �f � lim �g given by F.x/ D �fn1;n2;n3;::: g.x/ is
a surjective mapping.

Proof. Let M D lim �f and N D lim �g. The continuity of F is a consequence of
its definition. Because F.x/ D .xn1 ; xn2 ; xn3 ; : : : /, it is not difficult to verify that
xni 2 gi .xniC1

/, so F WM ! N .
To see that F is surjective, suppose y 2 N . By Theorem 1.7, there is a point

x1 2 M such that �n1.x
1/ D y1. By Theorem 1.8 there is a point z 2 M such that

�n1.z/ D y1 and �n2.z/ D y2. Let x2 be a point of M such that �j .x2/ D �j .x
1/

for j � n1 and �j .x2/ D �j .z/ for j > n1. Thus, �ni .x
2/ D yi for i � 2. Again,

by Theorem 1.8 there is a point w 2 M such that �n2.w/ D y2 and �n3.w/ D y3.
Let x3 be a point ofM such that �j .x3/ D �j .x2/ for j � n2 and �j .x3/ D �j .w/
for j > n2. Observe that �ni .x

3/ D yi for i � 3. Proceeding inductively, we obtain
a sequence x1;x2;x3; : : : of points of M such that, if k is a positive integer, then
�j .x

kC1/ D �j .x
k/ for j � nk , and �ni .x

k/ D yi for i � k. The sequence
x1;x2;x3; : : : converges to a point x 2 M such that �ni .x/ D yi for each positive
integer i , i.e., F.x/ D y. ut

In the case that the bonding functions are mappings in Theorem 4.1, it is known
that the induced mapping F is 1–1. Even with a single set-valued bonding function,
F need not be 1–1; for, otherwise, F would be a homeomorphism, but we saw in
Example 3.2 that lim �f is not necessarily homeomorphic to lim �f 2. Next, we revisit
that example.

Example 4.1. Let f W Œ0; 1� ! 2Œ0;1� be the function given by f .t/ D f1=2 C
t; 1=2 � tg for 0 � t � 1=2, and f .t/ D f3=2 � t; t � 1=2g for 1=2 < t � 1 (i.e.,
f is the function from Example 2.11). Then, G.f 2/ D Id [ .1 � Id/ (i.e., f 2 is
the function from Example 2.7). There is a mapping from the Hurewicz continuum,
lim �f , onto the Cantor fan, lim �f 2 (see Fig. 4.1 for graphs of f and f 2).

Proof. Let n1; n2; n3; : : : be the sequence of odd integers and use Theorem 4.1. ut
Another example making use of Theorem 4.1 is Example 4.2 below. As in the

previous example, there is a map from lim �f onto lim �f 2. In this example the
induced map is actually a homeomorphism, and lim �f is homeomorphic to lim �f n

for each n 2 N. (See Problem 6.10.)

Example 4.2. Let f W Œ0; 1� ! C.Œ0; 1�/ be given by f .t/ D t for 0 � t < 1=2,
f .1=2/ D Œ1=2; 1�, and f .t/ D 1 � t for 1=2 < t � 1 (f is the function from
Example 2.21). Then f 2 W Œ0; 1�! C.Œ0; 1�/ is given by f 2.t/ D t for 0 � t < 1=2,
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Fig. 4.1 Graphs of the functions f and f 2 in Example 4.1
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Fig. 4.2 Graphs of the functions f and f 2 in Example 4.2

f 2.1=2/ D Œ0; 1�, and f 2.t/ D 1 � t for 1=2 < t � 1; lim �f and lim �f 2 are both

fans, and there is a mapping from lim �f onto lim �f 2 (see Fig. 4.2 for the graphs of

f and f 2 and Fig. 4.3 for models of the inverse limits with lim �f pictured on the

left). In fact, lim �f and lim �f 2 are homeomorphic under the map from Theorem 4.1

induced by the sequence of odd positive integers. In addition, f 3 D f 2, and as a
consequence, lim �f is homeomorphic to lim �f n for each n 2 N.

Proof. Let M D lim �f and, as in the notation from Example 2.21, let B0 D fx 2
M j x1 2 Œ0; 1=2� and xj D x1 for j > 1g. For n 2 N, let Bn D fx 2 M j xn 2
Œ1=2; 1�g. Note that if x 2 Bn, then xj D 1=2 for j > n, and if n > 1, then
xj 2 Œ0; 1=2� for j < n. Further, if n > 2 and x 2 Bn, then xn D 1 � xn�1 and
xj D x1 for j � n � 1.

Let N D lim �f 2. Because G.f / � G.f 2/, M � N , so the fan described in the
previous paragraph is a subset of N . There are additional arcs lying in N that have
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Fig. 4.3 Models of the inverse limits in Example 4.2 with the inverse limit of f 2 shown on the
right

not yet been identified. For n 2 N, let An D fx 2 N j x1 2 Œ0; 1=2� and xj D x1 for
1 � j � n and xj D 1=2 for j > ng. If x 2 N �M , there is an integer n such that
x 2 An.

Let F W M � N be the map from Theorem 4.1 induced by the sequence of
odd positive integers. Note that F j.B0 [ B1/ is the identity, and for n 2 N, F jB2n
is a homeomorphism from B2n onto An, while F jB2nC1 is a homeomorphism from
B2nC1 onto BnC1. Thus, F is a homeomorphism of M onto N .

It is not difficult to verify that f 3 D f 2 from which it follows that f n D f 2,
and thus, lim �f is homeomorphic to lim �f n for each positive integer n. ut

4.3 Shift Mappings

If f W Œ0; 1� ! Œ0; 1� is a mapping and M is the inverse limit with this single
bonding map, there are homeomorphisms of M into M induced by f called shift

homeomorphisms. One of these homeomorphisms is a shift
 �
f given by

 �
f .x/ D

.f .x1/; x1; x2; : : : /; the other is its inverse
�!
f given by

�!
f .x/ D .x2; x3; x4; : : : /.

For a set-valued function f , the function
�!
f is no longer a homeomorphism, but it

is a mapping of M ontoM . This is our next theorem.

Theorem 4.2. Suppose f W Œ0; 1�! 2Œ0;1� is an upper semicontinuous function and

M D lim �f . Then the function
�!
f given by

�!
f .x/ D .x2; x3; x4; : : : / is a mapping

of M ontoM .
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Proof.
�!
f is the mapping that results by using A D N � f1g in Theorem 4.1. To

see that
�!
f is surjective, let y be a point of M . Choose t 2 f .y1/ and let x D

.t; y1; y2; : : : /. Then x 2M , and
�!
f .x/ D y . ut

The function
 �
f on the other hand is not a mapping but is a set-valued function;

even so, there is a nonsurjective induced shift homeomorphism of this general type
for set-valued functions in some cases. This is the setting for our next theorem. We
actually used a homeomorphism such as the one in this theorem in Example 2.12.

Theorem 4.3. Suppose f W Œ0; 1�! 2Œ0;1� is an upper semicontinuous function and
' W Œ0; 1� ! Œ0; 1� is a mapping of Œ0; 1� into Œ0; 1� such that ' � G.f /. If M D
lim �f , then the function �' W M ! M given by �' .x/ D .'.x1/; x1; x2; x3; : : : / is
a homeomorphism of M intoM .

Proof. If x 2 M , then �' .x/ 2 M because '.x1/ 2 f .x1/. The continuity of �'
is a consequence of the continuity of '. If x;y 2 M with x ¤ y, it is clear that �' .x/ ¤  �' .y/. Thus, �' is continuous and 1–1 on the compact set M , so it is a
homeomorphism [3, Theorem 259, p. 178]. ut

We refer to the map �' W M ! M in Theorem 4.3 as the shift homeomorphism
induced by '. We revisit Example 2.12, here making use of Theorem 4.3.

Example 4.3. Let f W Œ0; 1�! 2Œ0;1� be given by f .0/ D Œ0; 1=2�[ f1g and f .t/ D
ft=2; 1 � t=2g for 0 < t � 1. Then lim �f is the union of an arc and a sequence of
fans (see Figs. 2.11 and 2.12 for the graph of f and a model of the inverse limit).

Proof. Let M D lim �f and A D lim �T �1 be the arc lying in M where T is the full
tent map, T .t/ D 2t for 0 � t � 1=2, and T .t/ D 2 � 2t for 1=2 < t � 1. Let
' W Œ0; 1� ! Œ0; 1� be the map given by '.t/ D t=2 and  W Œ0; 1� ! Œ0; 1� be the
map given by  .t/ D 1 � t=2. Let �' be the shift homeomorphism induced by '

and
 �
 be the shift homeomorphism induced by  .

Let A1 D fx 2 M j x1 2 Œ0; 1=2� and xj D 0 for j > 1g and, for
n 2 N, let AnC1 D  �' .An/. In the model of M in Fig. 2.12, the arc Ai D Ai;1.
Let �0 D S

i>0 Ai and note that �0 is a fan with vertex p0 D .0; 0; 0; : : : /

(vertices such as this one are named in reference to our model of the inverse

limit). Then, �1 D  � .�0/ is a fan with vertex p1 D .1; 0; 0; : : : /, and �2 D �' .�1/ [  � .�1/ is a fan with vertex p2 D .1=2; 1; 0; 0; : : : /; �3 D  �' .�2/ is

a fan with vertex p3 D .1=4; 1=2; 1; 0; 0; : : : /, and �4 D  � .�2/ is a fan with

vertex p4 D .3=4; 1=2; 1; 0; 0; : : : /. Let �5 D  �' .�3/, �6 D  �' .�4/, �7 D  � .�3/,
and �8 D  �

 .�4/. The vertices of these fans are .1=8; 1=4; 1=2; 1; 0; 0; : : : /,
.3=8; 1=4; 1=2; 1; 0; 0; : : : /, .7=8; 3=4; 1=2; 1; 0, 0, : : : /, and .5=8; 3=4; 1=2; 1; 0;0,
: : : /, respectively. Continuing in this manner, we obtain a sequence � of fans such
that M D A[ .Si�0 �i /. ut
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For an upper semicontinuous function on Œ0; 1�, even though the map
�!
f W

lim �f ! lim �f given by
�!
f .x/ D .x2; x3; x4; : : : / is normally not a home-

omorphism, there are cases where its restriction to certain compact subsets is
a homeomorphism. This is the subject of our next theorem which is a direct
consequence of the theorem that a 1–1 map between compact metric spaces is a
homeomorphism [3, Theorem 259, p. 178].

Theorem 4.4. Suppose f W Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function,

M D lim �f , and
�!
f WM !M is the shift map given by

�!
f .x/ D .x2; x3; x4; : : : /.

If K is a compact subset of M and
�!
f jK is 1–1, then

�!
f jK is a homeomorphism.

4.4 Other Maps Between Inverse Limits

We now turn to another theorem about mappings between inverse limits. Here we
assume a sequence of maps between factor spaces in inverse limit sequences that
satisfy a commutativity condition. In the case of two inverse limits with a single
bonding function and a single surjective homeomorphism between corresponding
factor spaces, Theorem 4.5 yields the conjugacy theorem, Theorem 2.9, as a
corollary.

Theorem 4.5. Suppose X and Y are sequences of subintervals of Œ0; 1�, and, for
each positive integer i , fi W XiC1 ! 2Xi and gi W YiC1 ! 2Yi are upper
semicontinuous. Suppose further, for each i , 'i W Xi ! Yi is a mapping such
that 'i ı fi D gi ı 'iC1. Then, the function ' W lim �f ! lim �g given by
'.x/ D .'1.x1/; '2.x2/; '3.x3/; : : : / is continuous. Further, ' is a surjective
homeomorphism if each 'i is a surjective homeomorphism.

Proof. The function ˚ W Q
i>0 Xi !

Q
i>0 Yi given by ˚.x/ D .'1.x1/, '2.x2/,

'3.x3/; : : : / is continuous and is 1–1 if each 'i is 1–1. Because ' D ˚ jQi>0 Xi , '
inherits continuity from ˚ , and it is 1–1 if each 'i is 1–1. Thus, there are only two
things to show: (1) for x 2 lim �f , '.x/ 2 lim �g, and (2) if each 'i is a surjective
homeomorphism and y 2 lim �g, then there is a point x 2 lim �f such that '.x/Dy .

To show (1), we need to know 'i.xi / 2 gi .'iC1.xiC1// for each posi-
tive integer i . Suppose i is a positive integer. Because 'i ı fi D gi ı 'iC1,
'i.fi .xiC1// D gi .'iC1.xiC1//. Because x 2 lim �f , xi 2 fi .xiC1/ and, thus,
'i.xi / 2 'i.fi .xiC1// D gi .'iC1.xiC1//. It follows that '.x/ 2 lim �g.

To see (2), suppose y 2 lim �g. Because each 'i is 1–1, x D .'�11 .y1/, '�12 .y2/,

'�13 .y3/; : : : / is a point of Q such that '.x/ D y . We now observe that x 2 lim �f .
Let i 2 N. Because gi ı 'iC1 D 'i ı fi and 'iC1.xiC1/ D yiC1, gi .yiC1/ D
'i.fi .xiC1//. Because yi 2 gi .yiC1/, there is a point t of fi .xiC1/ such that yi D
'i.t/. But, 'i .xi / D yi and 'i is 1–1, so xi D t . Thus, xi 2 fi .xiC1/ and we have
x 2 lim �f . ut
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The following example of Charatonik and Roe [1, Example 3.3, p. 234] shows
that the condition 'i ıfi D gi ı'iC1 is necessary in the hypothesis of Theorem 4.5.
In Example 4.4, 'i .fi .t// � gi .'iC1.t// for each positive integer i and each
t2Œ0; 1�.
Example 4.4. For each positive integer i , let fi W Œ0; 1�! Œ0; 1�, gi W Œ0; 1�! 2Œ0;1�,
and 'i W Œ0; 1� ! Œ0; 1� be given by fi .t/ D 'i.t/ D t for each t 2 Œ0; 1�, while
gi .t/ D Œ0; 1� for each t 2 Œ0; 1�. Then, the map ' of Theorem 4.5 is not a surjective
homeomorphism from lim �f onto lim �g because lim �f is an arc, while lim �g is the
Hilbert cube.
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Chapter 5
Dimension

Abstract Inverse limits on Œ0; 1� with mappings cannot raise dimension. By using
set-valued functions, however, such an inverse limit can be infinite dimensional.
In this chapter, we examine aspects of dimension in inverse limits on Œ0; 1� with
set-valued functions. We give an example of an inverse limit on Œ0; 1� with set-
valued functions that has dimension 2 and another having dimension 3. We conclude
this chapter with a proof that an inverse limit on Œ0; 1� with upper semicontinuous
functions cannot be a 2-cell.

5.1 Introduction

In this chapter we discuss dimension of inverse limits on Œ0; 1� with set-valued
functions. In the case that the bonding functions are mappings, the dimension can
never exceed 1. However, as we saw in Example 1.1, with set-valued functions the
dimension of the inverse limit can be infinite.

If G is a finite collection of sets and n is a positive integer, we say that the order
ofG is n provided n is the largest of the integers i such that there are iC1members
of G with a common element. If G is a finite collection of mutually exclusive sets,
we say that the order ofG is 0. By the mesh of a finite collectionG of sets, we mean
the largest of the diameters of the elements of G. IfG andH are collections of sets,
we say that H refines G provided for each element h of H there is an element g
of G such that h � g. If n is a nonnegative integer, the nonempty compact metric
spaceX is said to have dimension not greater than n, written dim.X/ � n, provided,
for each positive number ", there is a finite collection of open sets covering X that
has mesh less than " and order not greater than n. A nonempty metric space X is
said to have dimension 0, written dim.X/ D 0, provided dim.X/ � 0. If n is a
positive integer and X is a nonempty metric space, we say the dimension of X is
n, written dim.X/ D n, provided dim.X/ � n and dim.X/ 6� n � 1. A nonempty
compact metric space X is said to be infinite dimensional provided dim.X/ 6� n for
any nonnegative integer n.

W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-4487-9 5,
© W.T. Ingram 2012
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It is convenient to use the definition of dimension given here (sometimes called
covering dimension) in the study of inverse limits. For compact metric spaces, the
property of having dimension n (respectively, not greater than n) is equivalent to
the usual definition of having small inductive dimension n (respectively, not greater
than n) [1, Theorem V 8, p. 67] [5, Theorem 15.2, p. 81].

5.2 Dimension 1

We begin our look at dimension in inverse limits with a well-known theorem on
inverse limits on intervals with bonding functions that are surjective mappings.
A proof of this theorem may be found in [4, Theorem 184, p. 127]. A similar result
holds for inverse limits on Œ0; 1� with upper semicontinuous set-valued functions
whenever the bonding functions have zero-dimensional values, see Theorem 5.4
below from which Theorem 5.1 follows as a corollary.

Theorem 5.1. If f is a sequence of surjective mappings of Œ0; 1� onto Œ0; 1�,
dim.lim �f / D 1.

We now present Nall’s proof of Theorem 5.3 below. First, we introduce some
notation and include a couple of lemmas. Suppose f1; f2; : : : ; fn is a finite collec-
tion of upper semicontinuous functions such that fi W Œ0; 1�! 2Œ0;1� for 1 � i � n.
Recall our notation from Chap. 2 that G0.f1; f2; : : : ; fn/ D f.x1; x2; : : : ; xnC1/ 2
Œ0; 1�nC1 j xi 2 fi .xiC1/ for 1 � i � ng and that G0.f1; f2; : : : fn/ is compact by
Lemma 2.1. For n � 2, let Y D G0.f1; : : : ; fn�1/ and denote by Fn W Œ0; 1� ! 2Y

the set-valued function given by Fn.t/ D f.x1; x2; : : : ; xn/ 2 Y j xn 2 fn.t/g.
This function is used extensively in this section. In [6], Nall makes the following
observation.

Theorem 5.2. Suppose fi W Œ0; 1�! 2Œ0;1� is an upper semicontinuous function for
1 � i � n. Then, Fn is upper semicontinuous.

Proof. The graph of Fn is homeomorphic to the compact set G0.f1; : : : ; fn/. By
Theorem 1.2, Fn is upper semicontinuous. ut
Lemma 5.1. Suppose fi W Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function for
1 � i � n. If t is a point of Œ0; 1� such that dim.Fn.t// > 0, then there exist an
integer j; 1 � j � n, and a point z of Œ0; 1� such that dim.fj .z// D 1.

Proof. Because Fn.t/ is compact, if dim.Fn.t// > 0, it contains a nondegenerate
continuum K , [1, Theorem D, p.22] or [5, Theorem 4.7, p.22]. Some projection of
K � Œ0; 1�n into Œ0; 1� is nondegenerate. Let j be the largest integer i so that �i .K/
is nondegenerate. If j D n, let z D t and denote by J an interval lying in �n.K/.
Then, J � fj .z/ so dim.fj .z// D 1. If j < n, then the projection of K into the
.j C 1/st factor space is a single point z and, as before, dim.fj .z// D 1. ut
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Lemma 5.2. Suppose fi W Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function for
1 � i � n and dim.fi .t// D 0 for each t 2 Œ0; 1� and each i , 1 � i � n. Then,
dim.G0.f1; f2; : : : ; fn// � 1.

Proof. Suppose " > 0 and t is a point of Œ0; 1�. It follows from Lemma 5.1 that
dim.Fn.t// D 0, so there exists a finite collection Vt of mutually exclusive open
sets covering Fn.t/ such that the mesh of Vt is less than "=2. Because Fn is upper
semicontinuous, there is an open set ut containing t of diameter less than "=2 such
that Fn.ut / � Vt� where Vt� denotes the union of all the sets in Vt . The collection
of open sets U D fut j t 2 Œ0; 1�g covers Œ0; 1�, so there is a finite subcollection U 0 of
U that covers Œ0; 1�. The dimension of Œ0; 1� is 1 so there is a finite collection W of
open sets covering Œ0; 1� such that the order of W is not greater than 1 and W refines
U 0. Because W refines U 0, the mesh of W is less than "=2. Suppose w 2 W . There
is a point x 2 Œ0; 1� such that w � ux so Fn.w/ � V�x . Thus, X D fv � w jw 2 W
and v 2 Vx where x is a point in Œ0; 1� such that Fn.w/ � V�x g is a collection of open
sets covering G0.f1; f2; : : : ; fn/. To see that X is a covering, let p denote a point
of G0.f1; f2; : : : ; fn/. There is a point t 2 Œ0; 1� such that pnC1 D t . There exist
an element w 2 W such that t 2 w and a point x 2 Œ0; 1� such that Fn.w/ � V�x .
Because .p1; p2; : : : ; pn/ 2 Fn.t/, .p1; p2; : : : ; pn/ 2 v for some v 2 Vx , therefore,
p 2 v � w. If v � w 2 X , the diameter of v � w is less than " because the diameter
of v is less than "=2 as is the diameter of w. To see that the order of X is not
greater than 1, suppose that there is a point p that belongs to three elements of X ,
v1 � w1; v2 � w2, and v3 � w3. Then pnC1 2 w1 \ w2 \ w3, so some two of these
are the same. Assume w1 D w2. Then, .p1; : : : ; pn/ 2 v1 \ v2. However, there is a
point x 2 Œ0; 1� such that v1 and v2 belong to Vx, so v1 D v2, a contradiction. Thus,
dim.G0.f1; f2; : : : ; fn// � 1. ut

Theorem 5.3 (Nall [6]). Suppose f is a sequence of upper semicontinuous func-
tions such that dim.fi .t// D 0 for each t 2 Œ0; 1� and each integer i 2 N. Then,
dim.lim �f / � 1.

Proof. Recall that lim �f D T
n�1 Gn where Gn D fx 2 Q j xi 2 fi .xiC1/ for

1 � i � ng. Observe that Gn D G0.f1; f2; : : : ; fn/ � Q. Let " > 0. There is a
positive integer N such that

P
k�N 2�k < "=2. Let i be an integer such that i > N .

By Lemma 5.2, dim.G0.f1; f2; : : : ; fi // � 1. Let U be a collection of open sets
of order not greater than 1 and mesh less than "=2 that covers G0.f1; f2; : : : ; fi /.
Then, f��1.u/ j u 2 Ug is a collection of open sets of mesh less than " and order not
greater than 1 that covers lim �f . ut

If f W Œ0; 1� ! 2Œ0;1� is a set-valued function that is the union of finitely many
mappings, then f is upper semicontinuous and dim.f .t// D 0 for each t 2 Œ0; 1�.
Thus, our next theorem is a corollary of Theorem 5.3.

Theorem 5.4. Suppose f is a sequence of upper semicontinuous functions such
that fi W Œ0; 1� ! 2Œ0;1� for each positive integer i . If the graph of fi is the
union of finitely many mappings f i

1 ; f
i
2 ; : : : ; f

i
ki

of Œ0; 1� into Œ0; 1� for each i , then
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dim.lim �f / � 1. Moreover, if there is a sequence g such that gi 2 ff i
1 ,f i

2 ,: : : ,f i
ki
g

for each positive integer i and lim �g is nondegenerate, then dim.lim �f / D 1.

Proof. Inasmuch as fi is the union of finitely many mappings, dim.fi .t// D 0 for
each t 2 Œ0; 1�. By Theorem 5.3, dim.lim �f / � 1. If there is a sequence g such that

gi 2 ff i1 ,f i
2 ,: : : ,f i

ki
g for each positive integer i and lim �g is nondegenerate, then

lim �f contains a nondegenerate continuum, so its dimension is 1. ut
Of course, one consequence of Theorem 5.4 is that inverse limits with mappings

on Œ0; 1� do not raise dimension. On the other hand, dimension may be lowered by
an inverse limit on compact metric spaces even if the bonding maps are surjective
as may be seen from the following example. We briefly step outside inverse limits
on intervals for this example.

Example 5.1. Let ' denote the projection of the unit square C D Œ0; 1� � Œ0; 1�
onto the interval I D Œ0; 1�. Let  denote a map of I onto C . Let Xi D C and
fi D  ı ' for each i . Then, dim.lim �f / D 1 even though each factor space is
two-dimensional and each bonding map is surjective.

Proof. Let Yi D I and gi D ' ı  for each i . Let Zi D C for odd integers i
and Zi D I for even integers i . Let ki D  for odd i and ki D ' for
even i . Using n1 D 1; n2 D 3; n3 D 5; : : : in Theorem 3.1, we see that lim �k

is homeomorphic to lim �f . Using n1 D 2; n2 D 4; n3 D 6; : : : in Theorem 3.1,
we see that lim �k is homeomorphic to lim �g, an inverse limit on Œ0; 1�. Therefore,
lim �f is homeomorphic to lim �g, so dim.lim �f / � 1. Because f is surjective, by
Theorem 5.1, we have dim.lim �f / D 1. ut

By substituting an n-cell or the Hilbert cube for C in Example 5.1, we see that
an inverse limit of n-dimensional or even infinite-dimensional continua can have
dimension one. Inverse limits with surjective mappings on Œ0; 1� are always one-
dimensional.

5.3 Examples with Finite Dimension Greater Than 1

Our first example in this section is an inverse limit with a sequence of upper
semicontinuous bonding functions on Œ0; 1�. It provides a trivial way to obtain a
2-cell as an inverse limit on Œ0; 1�.

Example 5.2. Let f be the sequence of set-valued functions such that fi W Œ0; 1�!
2Œ0;1� for each i 2 N where f1.t/ D Œ0; 1� for each t 2 Œ0; 1�, and, for i > 1,
fi .t/ D t for each t 2 Œ0; 1�. Then, lim �f is homeomorphic to Œ0; 1�2.

By replacing f1 in Example 5.2 with the function whose graph is a given closed
subset M of Œ0; 1�2 such that the projection of M into the first factor space is
surjective, it can be seen that any nondegenerate plane continuum and, indeed,
virtually any compact subset of the plane is homeomorphic to an inverse limit on
Œ0; 1� using a sequence of set-valued bonding functions.
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(1,1,1, . . . )

(1/2,1,1, . . . )

(1/2,1/2,1, . . . )

(1/2,1/2,1/2,1, . . . )

(1/2,1/2,1/2, . . . )
(0,1/2,1/2, . . . )(0,0,1/2, . . . )(0,0,0, . . . )

first coord in [1/2,1]

second coord in [1/2,1]

third coord in [1/2,1]

fourth coord in [1/2,1]

fifth coord in [1/2,1]

first 
coord
in [0,1/2]

second 
coord
in [0,1/2]

third
coord
in [0,1/2]

(0,1/2,1, . . . )

(0,0,1/2, . . . )

(0,0,0,1/2, . . . )

(0, 1/2,1/2, . . . )

3,5D D2,5 D1,5

D2,4 D1,4

D1,3

Fig. 5.1 A model of the inverse limit in Example 5.3

For inverse limits with a single surjective bonding function, the picture is quite
different. We shall see in Theorem 5.5 that it is no longer possible to get even
Œ0; 1�2 as such an inverse limit. In Example 1.1, we saw that an inverse limit with a
single set-valued function on Œ0; 1� can be infinite dimensional. Such examples can
also be zero-dimensional as seen in Example 1.2, and several examples we have
already presented are one-dimensional even though they are obtained using only
one bonding function. We now present an example from [3] of a two-dimensional
continuum that is an inverse limit on Œ0; 1� with a single bonding function and
observe how to modify it to obtain examples of each finite dimension.

Example 5.3 (A 2-cell with a sticker). Let f W Œ0; 1� ! C.Œ0; 1�/ be given by
f .t/ D 0 for 0 � t < 1=2, f .1=2/ D Œ0; 1=2�, f .t/ D 1=2 for 1=2 < t < 1,
and f .1/ D Œ1=2; 1�. Then, the inverse limit is the union of a 2-cell and an arc
intersecting the 2-cell in only one point.

Proof. LetM D lim �f . HereM is the union of a 2-cellD and an arc A. To identify
D, let i and j be positive integers with j > i C 1 and let Di;j be the 2-cell,
fp 2 M jpi 2 Œ0; 1=2�; pj 2 Œ1=2; 1�; if i > 1; then pk D 0 for k < i; pk D
1=2 if i < k < j; pk D 1 if k > j g. In Fig. 5.1, we provide a model to assist the
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(1/2,1/2)

(0,0) (1/2,0)

(1,1/2)

(1,1)

(0,0) (1/3,0)

(1/3,1/3)
(2/3,1/3)

(2/3,2/3)

(1,1)

Fig. 5.2 Graphs of the bonding functions in Examples 5.3 (left) and 5.4 (right) with two-
dimensional and three-dimensional inverse limits, respectively

reader. In this picture, we have labeled a few of the disks Di;j . In the model, the
disks Di;j and Di;jC1 share a common horizontal border, while the disks Di;j and
DiC1;j share a common vertical border as long as i C 1 < j � 1. Let D be the
closure of the union of all the disks Di;j where i � 1 and j > i C 1.

Suppose k is a positive integer. Let ˛k D fp 2 M jpk 2 Œ1=2; 1�; if k >

1; then pm D 1=2 for m < k; and pm D 1 for m > kg and ˇk D fp 2 M jpk 2
Œ0; 1=2�; if k > 1; then pm D 0 for m < k; and pm D 1=2 form > kg. Then, ˛k
and ˇk are arcs such that ˛k forms the right-hand vertical edge of the disk D1;k for
k D 3; 4; 5; : : : in the figure, while for k 2 N, the arc ˇk lies directly below all
of the disks Dk;kCn for n D 2; 3; 4; : : : . The closure of ˇ1 [ ˇ2 [ ˇ3 [ � � � is an
arc from .0; 0; 0; : : : / to .1=2; 1=2; 1=2; : : : / forming the bottom edge of the disk
D, while the closure of ˛3 [ ˛4 [ ˛5 [ � � � is an arc from .1=2; 1=2; 1=2; : : : / to
.1=2; 1=2; 1; 1; : : : / forming the right-hand edge of D.

Let A D ˛1 [ ˛2. Then, A is an arc, D is a 2-cell, M D D [ A, and D \ A D
f.1=2; 1=2; 1; 1; : : :/g. ut

It is interesting to note that the inverse limit in Example 5.3 is a 2-cell with an
arc attached. Theorem 5.5 below yields that it cannot be just the 2-cell. Historically,
Example 5.3 preceded Theorem 5.5. We now consider the following example.
We note without proof that, with obvious modifications, examples of any finite
dimension may similarly be obtained.

Example 5.4 (A 3-cell with a fin). Let f W Œ0; 1�! C.Œ0; 1�/ be given by f .t/ D 0
for 0 � t < 1=3, f .1=3/ D Œ0; 1=3�, f .t/ D 1=3 for 0 < t < 2=3, f .2=3/ D
Œ1=3; 2=3�, f .t/ D 2=3 for 2=3 < t < 1, and f .1/ D Œ2=3; 1�. Then the inverse
limit is the union of a 3-cell and a fin intersecting the 3-cell in an arc. The fin is a
2-cell with a sticker where the sticker is an arc that intersects the 2-cell at only one
point and the sticker misses the 3-cell entirely. (See the graph on the right of Fig. 5.2
for a picture of the graph of f .)
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Proof. Let M D lim �f , g1 D f jŒ0; 2=3�, and g2 D f jŒ2=3; 1�. Let D1 D lim �g1

and D2 D lim �g2. Suppose i; j , and k are positive integers with j > i C 1 and
k > j C 1. Let B.i; j; k/ D fx 2 M j xi 2 Œ0; 1=3�; xj 2 Œ1=3; 2=3�; xk 2
Œ2=3; 1�; and if m 2 N; then xm D 2=3 if j < m < k; xm D 1=3 if i < m <

j; and xm D 0 if m < i in case i > 1g. Each such B.i; j; k/ is a 3-cell lying in M .
Then,

M D D1 [D2 [

0

B
B
@

[

i>0;j>iC1
k>jC1

B.i; j; k/

1

C
C
A :

To describe a model for this inverse limit, we first observe that D1 and D2

are copies of the 2-cell with a sticker from Example 5.3. To assist in identifying
parts of the model, let D1.i; j / D fx 2 D1 j xi 2 Œ0; 1=3� and xj 2 Œ1=3; 2=3�g
where i and j are integers such that j > i C 1. Let D2.j; k/ D fx 2 D2 j xj 2
Œ1=3; 2=3� and xk 2 Œ2=3; 1�gwhere j and k are integers such that k > jC1. We use
D2 to assist in a description of a model for M ; a model of D2 is shown in Fig. 5.3.
In our scheme to depict M , the set D1 is a bit more difficult to show, but it lies at
the bottom of the model. Its sticker is the arc from .1=3; 1=3; 2=3; 2=3; 2=3; : : : / to
.2=3; 2=3; 2=3; : : : / at the bottom of the right-hand side of Fig. 5.3. The fin F on
the 3-cell in M is the subset of D2 that consists of the two rightmost columns of
disks and the arc comprising the far right boundary of Fig. 5.3. To obtain the model
for M , we build off of Fig. 5.3. In the model, we refer to “levels” in the model by
the coordinate that lies in the interval Œ2=3; 1�. Under this method of viewing the
model, the first 3-cell, B.1; 3; 5/, shows up at the fifth level down. The back face
of B.1; 3; 5/ as shown in Fig. 5.4 is the disk D2.3; 5/ shown in Fig. 5.3. The first
two levels are arcs along the vertical right boundary, the third level is a disk, and
the fourth level is the union of two abutting disks. In Figs. 5.4 and 5.5, we depict
levels five and six. From this, we believe the reader can deduce the remaining levels
without further explanation. ut

5.4 Incommensurate Continua

We now show that a 2-cell is not an inverse limit with a single upper semicontinuous
bonding function from Œ0; 1� into 2Œ0;1�. Recall that, unless otherwise noted, if f W
Œ0; 1� ! 2Œ0;1� is an upper semicontinuous function, we consider the domain of the

projection �i to be the inverse limit space, lim �f ;
�!
f denotes the shift map on lim �f

given by
�!
f .x/ D .x2; x3; x4; : : : /. In general, this shift map on an inverse limit with

upper semicontinuous bonding functions is not a homeomorphism. However, when
it is restricted to a compact set on which it is 1–1, by Theorem 4.4, its restriction
is a homeomorphism. The following proof is based on a proof Nall presents in
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(1,1,1, . . . )

(2/3,1,1, . . . )

(2/3,2/3,1, . . . )

(2/3,2/3,2/3,1, . . . )

(2/3,2/3,2/3, . . . )
(1/3,2/3,2/3, . . . )(1/3,1/3,2/3, . . . )(1/3,1/3,1/3, . . . )

first coord in [2/3,1]

second coord in [2/3,1]

third coord in [2/3,1]

fourth coord in [2/3,1]

fifth coord in [2/3,1]

first 
coord
in [1/3,2/3]

second 
coord
in [1/3,2/3]

third
coord
in [1/3,2/3]

(1/3,2/3,1, . . . )

(1/3,1/3,2/3, . . . ) (1/3, 2/3,2/3, . . . )

(1/3,1/3,1/3,2/3, . . . )
D2 (2,4)

D2 (3,5) D2 (2,5) D2 (1,5)

D2  (1,4)

Fig. 5.3 The subset D2 of a model of the inverse limit in Example 5.4

fifth coord in [2/3,1]

first 
coord
in [1/3,2/3]

second 
coord
in [1/3,2/3]

third
coord
in [1/3,2/3]

first coord in [0,1/3]
B(1,3,5)

D2 (2,5) D2 (1,5)

Fig. 5.4 The level five subset of a model of the inverse limit in Example 5.4
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first 
coord
in [1/3,2/3]

second 
coord
in [1/3,2/3]

third 
coord
in [1/3,2/3]

fourth 
coord
in [1/3,2/3]

sixth 
coord
in [2/3,1]

first coord in [0,1/3]

second coord in [0,1/3]
B(2,4,6)

B(1,3,6)

D2(2,6) D2(1,6)

Fig. 5.5 The level six subset of a model of the inverse limit in Example 5.4

[6, Theorem 3.2, p. 1325]. In that article, he also shows, among other things, that
an inverse limit with a single upper semicontinuous bonding function cannot be an
n-cell for any integer n > 1.

Theorem 5.5 (Nall). Suppose f W Œ0; 1� ! 2Œ0;1� is a surjective upper semicontin-
uous function. Then lim �f is not a 2-cell.

Proof. Suppose M D lim �f is a 2-cell. If 0 < t < 1, then ��11 .t/ separates M .

Because M is a 2-cell, ��11 .t/ is not zero-dimensional [1, Corollary 2, p. 48], so it
contains a nondegenerate continuumH . There is a positive integerm � 2 such that
�m.H/ is nondegenerate, but �i .H/ is a single point for 1 � i < m. Suppose J
is an interval such that �m.H/ D J and if 1 � i < m, let �i .H/ D ftig where
t1 D t . Let K D fx 2 M j xi D ti for 1 � i < m and xm 2 J g. Note that
H � K � ��11 .t/.

We make use of J to show that ��11 .t/ contains an open set. By [1, Theorem
IV 3, p. 44], ��11 .J / is two-dimensional being a closed set with interior lying in
a 2-cell. Let z be a point of ��11 .J /. Because z1 2 J and J D �m.H/, there is a
point w of H such that wm D z1. Let y be the point of Q such that yi D ti for
1 � i < m and ymCi D ziC1 for i D 0; 1; 2; : : : . Because w 2 H � M and

z 2 M , it follows that y 2 K . Moreover,
�!
f m�1.y/ D z. Thus, z 2 �!f m�1.K/,

and we have established that ��11 .J / � �!f m�1.K/. Because �1.K/ is degenerate,�!
f jK is 1–1, so

�!
f jK is a homeomorphism by Theorem 4.4. Similarly,

�!
f m�1jK

is a homeomorphism. Because
�!
f m�1.K/ contains a two-dimensional subset, K

contains a two-dimensional subset. But K is a subset of ��11 .t/, so it follows that
��11 .t/ contains an open set.

Thus, we have for each t in .0; 1/, ��11 .t/ contains an open set. But, if 0 < s <

t < 1, then ��11 .s/ and ��11 .t/ have no point in common, so the 2-cell M contains
uncountably many mutually exclusive open sets, a contradiction. ut
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In Theorem 5.5 we saw that the 2-cell is not homeomorphic to an inverse limit
on Œ0; 1� using a single upper semicontinuous bonding function on Œ0; 1�. It has been
shown by Illanes [2] that a simple closed curve is not an inverse limit on Œ0; 1�
with a single upper semicontinuous bonding function. Recently, Nall has extended
this to show that the arc is the only finite graph that is an inverse limit with a single
upper semicontinuous bonding function on Œ0; 1� [7]. It would be interesting to know
which continua can be obtained as an inverse limit on Œ0; 1� with a single upper
semicontinuous bonding function (see Problem 6.57).
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Chapter 6
Problems

Abstract This chapter contains statements of some unsolved problems in the
theory of inverse limits with set-valued functions. The chapter ends with a references
(current at the time of publication of this book) listing all of the books and papers
on this subject that are known to the author.

6.1 Introduction

Although the main topic of this book is inverse limits on Œ0; 1� with upper
semicontinuous bonding functions, the problems listed below unless otherwise
stated should be considered in compact Hausdorff spaces or perhaps compact metric
spaces. Nonetheless, with each general problem, we also include a version for Œ0; 1�
because a solution in that special case is of interest.

6.2 Connectedness

Problem 6.1. Characterize connectedness of inverse limits on continua with upper
semicontinuous bonding functions.

Problem 6.2. Characterize connectedness of inverse limits on continua with upper
semicontinuous bonding functions on Œ0; 1�.

Problem 6.3. Find sufficient conditions that an inverse limit on continua with upper
semicontinuous bonding functions be a continuum.

Problem 6.4. Solve Problem 6.3 on Œ0; 1�.

W.T. Ingram, An Introduction to Inverse Limits with Set-valued Functions,
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Problem 6.5. Solve Problem 6.4 for upper semicontinuous functions whose graphs
are unions of finitely many straight line intervals.

Problem 6.6. What can be said about compacta that are inverse limits with a single
upper semicontinuous function whose graph is the union of two maps without a
coincidence point?

Problem 6.7. Suppose f is a sequence of surjective upper semicontinuous func-
tions on Œ0; 1� and lim �f is connected. Let g be the sequence such that gi D f �1i

for each i 2 N. Is lim �g connected?

6.3 The Subsequence Theorem

Problem 6.8. Find sufficient conditions on the bonding functions in the sequence
f so that if n1; n2; n3; : : : is an increasing sequence of positive integers, then lim �f

is homeomorphic to lim �g where gi D fni ı fniC1 ı � � �fniC1�1.

Problem 6.9. Solve Problem 6.8 on Œ0; 1�.

Problem 6.10. Find sufficient conditions on a single bonding function so that, if n
is a positive integer, then lim �f is homeomorphic to lim �f n.

Theorem 3.2 and Example 4.2 both demonstrate that for certain set-valued func-
tions that are not mappings, it is possible for lim �f and lim �f n to be homeomorphic.

Problem 6.11. Solve Problem 6.10 for n D 2.

Problem 6.12. Solve Problem 6.10 on Œ0; 1�.

Problem 6.13. Solve Problem 6.11 on Œ0; 1�.

6.4 The Closed Subset Theorem

Problem 6.14. Find sufficient conditions on the bonding functions so that closed
subsets of the inverse limit are the inverse limit of their projections.

Problem 6.15. Solve Problem 6.14 on Œ0; 1�.

Problem 6.16. Solve Problem 6.14 for closed subsets of the inverse limit that are
connected.

Problem 6.17. Solve Problem 6.16 on Œ0; 1�.
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6.5 The Full Projection Property

Problem 6.18. Characterize the full projection property in terms of the bonding
functions.

Problem 6.19. Solve Problem 6.18 on Œ0; 1�.

Problem 6.20. Solve Problem 6.18 in the case that there is only one bonding
function.

Problem 6.21. Solve Problem 6.20 on Œ0; 1�.

Problem 6.22. Find sufficient conditions on the bonding functions for the inverse
limit to have the full projection property.

Problem 6.23. Solve Problem 6.22 on Œ0; 1�.

Problem 6.24. Solve Problem 6.22 for inverse limits with only one bonding
function.

Problem 6.25. Solve Problem 6.24 on Œ0; 1�.

Problem 6.26. Is there a general theorem about sequences of set-valued functions
with the property that one of its consequences is that both Examples 3.5 and 3.6
have the full projection property?

6.6 Indecomposability

Problem 6.27. Find necessary and sufficient conditions on the bonding functions
so that the inverse limit is an indecomposable continuum.

Problem 6.28. Solve Problem 6.27 on Œ0; 1�.

Problem 6.29. Solve Problem 6.27 in the case that there is only one bonding
function.

Problem 6.30. Solve Problem 6.29 on Œ0; 1�.

Problem 6.31. Find necessary and sufficient conditions on the bonding functions
so that the inverse limit contains an indecomposable continuum.

Problem 6.32. Solve Problem 6.31 on Œ0; 1�.

Problem 6.33. Solve Problem 6.31 in the case that there is only one bonding
function.

Problem 6.34. Solve Problem 6.33 on Œ0; 1�.

Problem 6.35. Find sufficient conditions on the bonding functions so that the
inverse limit is an indecomposable continuum.
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Problem 6.36. Solve Problem 6.35 on Œ0; 1�.

Problem 6.37. Solve Problem 6.35 in the case that there is only one bonding
function.

Problem 6.38. Solve Problem 6.37 on Œ0; 1�.

Problem 6.39. Find sufficient conditions on the bonding functions so that the
inverse limit contains an indecomposable continuum.

Problem 6.40. Solve Problem 6.39 on Œ0; 1�.

Problem 6.41. Solve Problem 6.39 in the case that there is only one bonding
function.

Problem 6.42. Solve Problem 6.41 on Œ0; 1�.

6.7 Ray with Remainder

Problem 6.43. What are sufficient conditions on a single bonding function on Œ0; 1�
so that the inverse limit is the closure of a topological ray?

6.8 Bonding Functions Vis-À-Vis Projections

Problem 6.44. Are there conditions under which �i .H/ D fi .�iC1.H// for
subsetsH of inverse limits with set-valued functions that are not mappings?

6.9 Mapping Theorems

Problem 6.45. Find sufficient conditions that a map between inverse limits with
set-valued bonding functions that is induced by monotone maps be monotone.

Problem 6.46. Replace “monotone” in Problem 6.45 by a map of your favorite type
(e.g., open, confluent, weakly confluent, semiconfluent).

6.10 Hyperspaces

Segal showed that for ordinary inverse limits, the hyperspace of subcontinua of the
inverse limit is homeomorphic to the inverse limit on the hyperspaces of subcontinua
of the factor spaces with the induced mappings as bonding maps.
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Problem 6.47. If f is a sequence of upper semicontinuous functions, does a
Segal-type theorem hold?

Problem 6.48. Solve Problem 6.47 on Œ0; 1�.

6.11 Miscellaneous Problems

Problem 6.49. Find sufficient conditions on bonding functions on Œ0; 1� so that the
inverse limit is treelike.

Problem 6.50. Solve Problem 6.49 in the case of a single bonding function.

Problem 6.51. Is there a function f W Œ0; 1� ! 2Œ0;1� such that if i; j 2 N and
i ¤ j , then lim �f i and lim �f j are not homeomorphic?

Problem 6.52. If f is a sequence of upper semicontinuous functions, what can be
said about the span of lim �f ?

Problem 6.53. If f is a sequence of upper semicontinuous functions from Œ0; 1�

into 2Œ0;1�, what can be said about the fixed point property for lim �f ?

Problem 6.54. If f is a sequence of upper semicontinuous functions from Œ0; 1�

into C.Œ0; 1�/, what can be said about the fixed point property for lim �f ?

Problem 6.55. If f is a sequence of upper semicontinuous functions from Œ0; 1�

into 2Œ0;1�, what can be said about the fixed point property for set-valued (continuum-
valued) functions on lim �f ?

Problem 6.56. If f is a sequence of upper semicontinuous functions, what can be
said about the Property of Kelley in lim �f ?

Nall has shown that Œ0; 1� � Œ0; 1� cannot be obtained as an inverse limit on Œ0; 1�
with a single upper semicontinuous bonding function (although it can be obtained
using a sequence of upper semicontinuous functions). Illanes showed that a simple
closed curve cannot be so obtained. More recently, Nall has also shown that no finite
graph other than an arc can be obtained as an inverse limit on Œ0; 1� using a single
upper semicontinuous bonding function. The examples in this book indicate that
many very interesting continua can be obtained. These results suggest the following
problem.

Problem 6.57. Choose a particular continuum of interest. Can it be obtained as an
inverse limit with a single upper semicontinuous bonding function (on Œ0; 1�)?

Problem 6.58 (Nall). Choose the continuum in Problem 6.57 to be the dyadic
solenoid (any nonchainable circle-like continuum).

Any nondegenerate plane continuumM can be obtained as an inverse limit with a
sequence of upper semicontinuous bonding functions. Simply embed the continuum
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in Œ0; 1�2 so that it projects onto Œ0; 1� in the first coordinate. Because this is a closed
subset of Œ0; 1�2, it is the graph of and upper semicontinuous set-valued function.
Let this function be the first term of a sequence f of functions and let all of the
other terms of f be the identity on Œ0; 1�. Then lim �f is homeomorphic to M .
(This observation has been made by almost everyone who has spent any time at all
thinking about inverse limits with set-valued functions.) This observation suggests
the following problem.

Problem 6.59 (Nall). Choose a nonplanar continuum of interest. Can it be obtained
as an inverse limit with a sequence of upper semicontinuous bonding functions on
Œ0; 1�?

Problem 6.60 (Nall). Choose the continuum in Problem 6.59 to be the two-sphere.

Some open-ended problems could be worth considering.

Problem 6.61. Choose a graph of a (simple) upper semicontinuous function on
Œ0; 1� and determine the inverse limit and a model for it with that function as a
single bonding function (e.g., embed a letter of the alphabet into Œ0; 1� � Œ0; 1� so
that it is the graph of an upper semicontinuous function and model its inverse limit).

Problem 6.62. In the problems listed for Œ0; 1�, replace the interval Œ0; 1� by a
simple triod (or the Cantor set, S1, a finite tree, Œ0; 1�� Œ0; 1�, or your favorite factor
space).

Everything we have discussed in this book has involved inverse limit systems
over the set of positive integers. In the second chapter of Inverse Limits: From
Continua to Chaos, inverse limits with set-valued functions are discussed in a setting
where the underlying directed set does not have to be the set of positive integers. For
instance, it makes sense to talk about an inverse limit with set-valued functions over
the set of all integers or the set of real numbers. Varagona has considered these
to some extent, but the problems are generally wide open and unstated. A good
starting point for the following problem would be to study inverse limits with set-
valued functions on Œ0; 1� in the case that the underlying directed set is the set of all
integers or the set of all real numbers.

Problem 6.63. What can be said about inverse limits with set-valued functions if
the underlying directed set is not a sequence of integers?

The following bibliography includes all of the articles on inverse limits with set-
valued functions that were known to the author in April, 2012.
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Symbols
2X , 2
G.f /, 2
G0.f1; f2; : : : ; fn/, 17
Gn, 9
IdX , the identity function on X , 3
N: the set of positive integers, 4
Q: the Hilbert cube, 1 �
f , 62�!
f , 62
�A, 4
sin.1=x/-curve

inverse limit has full projection property, 51
inverse limit is indecomposable, 56

lim �f connected

if and only if lim �f �1 connected, 15

if and only if Gn connected 8 n, 14
lim �f not connected

if G.fmn/ not connected, 15
f (set), 2
f W X ! 2X , 2
fmn, 10
pA and �A, 4
1-1, 10
2-cell

not an inverse limit on Œ0; 1�, 75

A
Arc, 10

B
Bennett’s theorem, 57
BJK horseshoe, 31
Bonding function, 4

C
Cantor fan, 22
Closed subset theorem, 50
Compact, 2

inverse limit is, 9
Composition, 3
Cone over the Cantor set, 22
Conjugate, 20
Connected, 2
Continuum, 2

D
Decomposable, 55
Dimension, 67

F
Factor space, 4
Finite intersection property, 2
Fixed point property, 81
Full projection property, 51

G
Graph of a set-valued function, 2

H
Homeomorphism, 10
Hurewicz continuum, 28
Hyperspace, 80

I
Idempotent function, 49
Identity, 3
Indecomposble, 55
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Induced shift homeomorphism, 63
Inverse limit, 4

dimension, 69
induced map, 64
induced shift map, 62
is 1-dimensional, 69
is a continuum, 18, 25
is compact, 9
is connected, 14
is indecomposable, 55
is nonempty, 9

Inverse limit sequence, 4
Inverse limit with only one bonding

function, 4

M
Mapping, 3
Maps between inverse limits, 64
Monotone mapping, 16, 80
Mutually exclusive, 2
Mutually separated, 2

P
Projection, 4
Property of Kelley, 81

R
Ray, 57
Refine, 67
Remainder of a ray, 57

S
Sequence, 4
Shift mapping, 62
Simple closed curve

not an inverse limit on Œ0; 1�, 75
Simple triod

not an inverse limit on Œ0; 1�, 75
Span, 81
Subsequence mapping theorem, 59
Subsequence theorem, 47
Surjective, 2

T
Tree-like, 81
Triod, 28
Two-pass condition, 55

U
Upper semi-continuous, 3

f is if and only if G.f / is closed, 3
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