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To the memory of my father

I will never believe that God plays dice with the universe.

Albert Einstein

Then they gave lots to them, and the lot fell upon Matthias,
and he was counted with the eleven apostles.

Acts 1: 26



Preface

The main intended audience for this book is undergraduate students in pure and
applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability
theory they generally need in their training. Although the treatment of the subject is
surely sufficient for non-mathematicians, I intentionally avoided getting too much into
detail. For instance, topics such as mixed type random variables and the Dirac delta
function are only briefly mentioned.

Courses on probability theory are often considered difficult. However, after having
taught this subject for many years, I have come to the conclusion that one of the biggest
problems that the students face when they try to learn probability theory, particularly
nowadays, is their deficiencies in basic differential and integral calculus. Integration by
parts, for example, is often already forgotten by the students when they take a course
on probability. For this reason, I have decided to write a chapter reviewing the basic
elements of differential calculus. Even though this chapter might not be covered in class,
the students can refer to it when needed. In this chapter, an effort was made to give the
readers a good idea of the use in probability theory of the concepts they should already
know.

Chapter 2 presents the main results of what is known as elementary probability,
including Bayes’ rule and elements of combinatorial analysis. Although these notions
are not mathematically complicated, it is often a chapter that the students find hard
to master. There is no trick other than doing a lot of exercises to become comfortable
with this material.

Chapter 3 is devoted to the more technical subject of random variables. All the
important models for the applications, such as the binomial and normal distributions,
are introduced. In general, the students do better when examined on this subject and
feel that their work is more rewarded than in the case of combinatorial analysis, in
particular.

Random vectors, including the all-important central limit theorem, constitute the
subject of Chapter 4. I have endeavored to present the material as simply as possible.
Nevertheless, it is obvious that double integrals cannot be simpler than single integrals.

Applications of Chapters 2 to 4 are presented in Chapters 5 to 7. First, Chapter 5 is
devoted to the important subject of reliability theory, which is used in most engineering
disciplines, in particular in mechanical engineering. Next, the basic queueing models are
studied in Chapter 6. Queueing theory is needed for many computer science engineering
students, as well as for those in industrial engineering. Finally, the last application
considered, in Chapter 7, is the concept of time series. Civil engineers, notably those
specialized in hydrology, make use of stochastic processes of this type when they want
to model various phenomena and forecast the future values of a given variable, such as
the flow of a river. Time series are also widely used in economy and finance to represent
the variations of certain indices.



Preface VII

No matter the level and the background of the students taking a course on probability
theory, one thing is always true: as mentioned above, they must try to solve many
exercises before they can feel that they have mastered the theory. To this end, the book
contains more than 400 exercises, many of which are multiple part questions. At the
end of each chapter, the reader will find some solved exercises, whose solutions can be
found in Appendix C, followed by a large number of unsolved exercises. Answers to the
even-numbered questions are provided in Appendix D at the end of the book. There are
also many multiple choice questions, whose answers are given in Appendix E.

It is my pleasure to thank all the people I worked with over the years at the Ecole
Polytechnique de Montréal and who provided me with interesting exercises that were
included in this work.

Finally, I wish to express my gratitude to Vaishali Damle, and the entire publishing
team at Springer, for their excellent support throughout this book project.

Mario Lefebvre
Montréal, July 2008
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1

Review of differential calculus

This chapter presents the main elements of differential calculus needed in probabil-
ity theory. Often, students taking a course on probability theory have problems with
concepts such as integrals and infinite series. In particular, the integration by parts
technique is recalled.

1.1 Limits and continuity

The first concept that we recall is that of the limit of a function, which is defined formally
as follows.

Definition 1.1.1. Let f be a real-valued function. We say that f(x) tends to fo (€ R)
as x tends to xg if for any positive number € there exists a positive number § such that

O<|z—xz0|<d = |f(x)— fol <e

We write that lim,_., f(z) = fo. That is, fo is the limit of the function f(x) as x
tends to xq.

Remarks. (1) The function f(x) need not be defined at the point xq for the limit to exist.
(ii) Tt is possible that f(zq) exists, but f(zo) # fo.

(iii) We write that lim,_,, f(x) = oo if, for any M > 0 (as large as we want), there
exists a § > 0 such that

O<|z—mo|<d == f(x)>M.

Similarly for lim, ., f(z) = —o0.

(iv) In the definition, x( is assumed to be a real number. However, the definition can
actually be extended to the case when xy = +o0.

M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics 1
and Technology, DOI: 10.1007/978-0-387-74995-2 1,
© Springer Science + Business Media, LLC 2009



2 1 Review of differential calculus

Sometimes, we are interested in the limit of the function f(x) as = decreases or
increases to a given real number xg. The right-hand limit (vesp., left-hand limit) of the
function f(z) as x decreases (resp., increases) to zg is denoted by lim,|,, f(x) [resp.,
limgq,, f(x)]. Some authors write lim,, o+ f(z) [resp., lim,_ f(z)]. If the limit of
f(z) as x tends to z( exists, then

lim f(z) = lim f(z) = lim f(x).

x|xo xzTxo T—xo
Definition 1.1.2. The real-valued function f(x) is said to be continuous at the point
xg € R if (i) it is defined at this point, (ii) the limit as x tends to xo exists, and (iii)
limg s, f(x) = f(x0). If f is continuous at every point xqg € [a,b] [or (a,b), etc.], then
f is said to be continuous on this interval.

Remarks. (i) In this textbook, a closed interval is denoted by [a,b], whereas (a, b) is an
open interval. We also have, of course, the intervals [a,b) and (a, D].

(ii) If we rather write, in the definition, that the limit lim, |, f(z) [resp., limg1y, f(2)]
exists and is equal to f(x¢), then the function is said to be right-continuous (resp., left-
continuous) at xg. A function that is continuous at a given point g such that a < z¢ < b
is both right-continuous and left-continuous at that point.

(iii) A function f is said to be piecewise continuous on an interval [a,b] if this interval
can be divided into a finite number of subintervals on which f is continuous and has
right- and left-hand limits.

(iv) Let f(x) and g(z) be two real-valued functions. The composition of the two functions
is denoted by g o f and is defined by

(g0 f)(x) = glf (2)].

A result used in Chapter 3 states that the composition of two continuous functions is
itself a continuous function.

Example 1.1.1. Consider the function

0if z <0,
u(w) = { 1if 2 >0, (1.1)

which is known as the Heaviside or unit step function. In probability, this function
corresponds to the distribution function of the constant 1. It is also used to indicate
that the possible values of a certain random variable are the set of nonnegative real
numbers. For example, writing that

fx(x)=e "u(x) forallz € R

is tantamount to writing that
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0 ifz <0,
fX(x):{ewlfl'ZO,

where fx(x) is called the density function of the random variable X.

The function u(z) is defined for all z € R. In other contexts, u(0) is chosen differently
as above. For instance, in some applications u(0) = 1/2. At any rate, the unit step
function is continuous everywhere, except at the origin, because (for us)

limu(z) =1 and limu(z) =0.

z|0 zT0
However, with the choice u(0) = 1, we may assert that u(z) is right-hand continuous at
z = 0.

The previous definitions can be extended to the case of real-valued functions of two
(or more) variables. In particular, the function f(z,y) is continuous at the point (zo, yo)
if

lim f(z,y) = f( lim 2, lim y).
T — To r—x0 Y—Yo
Y— Yo
This formula implies that the function f(z,y) is defined at (zg,yo) and that the limit
of f(x,y) as (x,y) tends to (xg,yo) exists and is equal to f(zo,yo)-

1.2 Derivatives

Definition 1.2.1. Suppose that the function f(x) is defined at xo € (a,b). If

Flag) = tim LB =S@) oy f@ot A) = fzo)

T—x0 xr — Io Ax—0 Ax

exists, we say that the function f(x) is differentiable at the point x¢ and that f'(x)
is the derivative of f(x) (with respect to x) at x.

Remarks. (i) For the function f(z) to be differentiable at x, it must at least be con-
tinuous at that point. However, this condition is not sufficient, as can be seen in the
example below.

(ii) If the limit is taken as x | x¢ (resp., | xo) in the previous definition, then the
result (if the limit exists) is called the right-hand (resp., left-hand) derivative of f(z) at
zo and is sometimes denoted by f’(z) [resp., f'(zg)]. If f'(z0) exists, then f'(zf) =
f'ag)

(iii) The derivative of f at an arbitrary point z is also denoted by %f(x), or by Df(x).
If we set y = f(z), then

_dy
T dx

f'(20)

T=T0
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(iv) If we differentiate f’(z), we obtain the second-order derivative of the function f,
denoted by f”(z) or j—;f(x). Similarly, f"”(x) [or f®(z), or % (2)] is the third-order
derivative of f, and so on.

(v) One way to find the values of = that maximize or minimize the function f(z) is
to calculate the first-order derivative f’(x) and to solve the equation f’(x) = 0. If
f'(zo) = 0 and f"(zo) < O [resp., f"(xo) > 0], then f has a relative maximum (resp.,
minimum) at x = xo. If f’(x) # 0 for all # € R, we can check whether the function f(z)
is always increasing or decreasing in the interval of interest.

Example 1.2.1. The function f(z) = |z| is continuous everywhere, but is not differen-
tiable at the origin, because we find that

fllaf)=1 and f'(zy)=—1.

Example 1.2.2. The function u(z) defined in Example 1.1.1 is obviously not differen-
tiable at = 0, because it is not continuous at that point.

Example 1.2.3. The function
0if x <0,

Fx(x)=R zif0<a <1,
lifz>1

is defined and continuous everywhere. It is also differentiable everywhere, except at
x =0 and z = 1. We obtain that the derivative F'{ (z) of Fx(z), which is denoted by
fx () in probability theory, is given by

lif0<a <1,
0 elsewhere.

fx (@) {

Note that fx(x) is discontinuous at = 0 and = = 1. The function Fx (x) is an example
of what is known in probability as a distribution function.

Remark. Using the theory of distributions, we may write that the derivative of the
Heaviside function w(z) is the Dirac delta function 6(x) defined by

5(z) = { 0 if x#0, (1.2)

oo if z = 0.

The Dirac delta function is actually a generalized function. It is, by definition, such that

/_Z(S(x)dx: 1.

We also have, if f(z) is continuous at x = ¢, that



1.2 Derivatives 5
/ f@)d(x — o) dx = f(xg).

We do not recall the basic differentiation rules, except that for the derivative of a

quotient:
d f(x) _g(@)f'(z) — f(x)g'(2)

dz g(x) 9% (z)

Remark. Note that this formula can also be obtained by differentiating the product
f(@)h(z), where h(zx) :=1/g(x).

Likewise, the formulas for calculating the derivatives of elementary functions are
assumed to be known. However, a formula that is worth recalling is the so-called chain
rule for derivatives.

if g(x) # 0.

Proposition 1.2.1. (Chain rule) Let the real-valued function h(z) be the composite
function (g o f)(x). If f is differentiable at x and g is differentiable at the point f(x),
then h is also differentiable at x and

Remark. If we set y = f(x), then the chain rule may be written as

d d dy

9 = @g(y) =9 (y) f ().

Example 1.2.4. Consider the function h(z) = V22 + 1. We may write that h(z) =
(go f)(x), with f(z) = 22+ 1 and g(x) = /z. We have:

@ =t = JE) = e =
AN SN =y i) e o

Then,
, rooN 1 . _ T
flxz)y=2z = hK'(z)= WS (2x) Nk

Finally, another useful result is known as [’Hospital’s rule.

Proposition 1.2.2. (L’Hospital’s rule) Suppose that

lim f(z) = lim g(x)=0
T—xo T—xo
or that
lim f(z) = lim g(z) = +o0.

r—xq T—xq
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If (i) f(x) and g(x) are differentiable in an interval (a,b) containing the point x, except
perhaps at xg, and (ii) the function g(x) is such that ¢'(x) # 0 for all x # xo in the
interval (a,b), then
/

lim M = lim f/(:c)

A gl@) ~ A ¢(a)
holds. If the functions f'(xz) and ¢'(x) satisfy the same conditions as f(z) and g(z), we
can repeat the process. Moreover, the constant xo may be equal to +oo.

Remark. If g = a or b, we can replace the limit as * — x¢ by limz | a or limz T b,
respectively.

Example 1.2.5. In probability theory, one way of defining the density function fx(x) of
a continuous random variable X is by calculating the limit of the ratio of the probability
that X takes on a value in a small interval about x to the length of this interval:

(@) = hfg Probability that X € [z — (¢/2),x + (¢/2)] .
€ €

The probability in question is actually equal to zero (in the limit as e decreases to
0). For example, we might have that {Probability that X € [x — (¢/2),2 + (¢/2)]} =
exp{—x + (¢/2)} — exp{—x — (¢/2)}, for z > 0 and € small enough.

By making use of 'Hospital’s rule (with e as variable), we find that

exp{—z + (¢/2)} — exp{—z — (¢/2)}

Ix(z) = lellrgl -
_ i SR+ (€/2)}(1/2) — expi—z — (¢/2)}(~1/2)
€l 1

= exp{—a} forz > 0.

In two dimensions, we define the partial derivative of the function f(x,y) with respect

to = by
_ g [t ATy) - fzy)
Ax—0 Az ’

2 fa) = Fulaw)

when the limit exists. The partial derivative of f(x,y) with respect to y is defined
similarly. Note that even if the partial derivatives f,(zo,yo) and f,(xo,y0) exist, the
function f(x,y) is not necessarily continuous at the point (zo,yo). Indeed, the limit of
the function f(z,y) must not depend on the way (x,y) tends to (zg, o). For instance,

let
Ty

PR if (x,y) # (0,0),

fla,y) = (1.3)
0 if (z,y) = (0,0).

Suppose that (z,y) tends to (0,0) along the line y = kx, where k # 0. We then have:
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1 =1 =
z in() f(@y) 700 22 + (kz)?  1+k2

y—0

(+0).

Therefore, we must conclude that the function f(z,y) is discontinuous at (0, 0). However,
we can show that f,(0,0) and f,(0,0) both exist (and are equal to 0).

1.3 Integrals

Definition 1.3.1. Let f(x) be a continuous (or piecewise continuous) function on the
interval [a,b] and let

I=> f(&)(zk — zro1),

n
=1

where & € [xp_1, k] for allk anda=xz¢g <21 < -+ < xp_1 < x, = b is a partition of
the interval [a,b]. The limit of I as n tends to oo, and x — x_1 decreases to 0 for all

k, exists and is called the (definite) integral of f(x) over the interval [a,b]. We write:

b
lim I = / f(x)dx.

n — o0

(:ck — {Ekfl) l 0VEk

Remarks. (i) The limit must not depend on the choice of the partition of the interval
[a, b].
(ii) The function f(x) is called the integrand.

(iii) If f(x) > 0 in the interval [a, b], then the integral of f(z) over [a,b] gives the area
between the curve y = f(x) and the z-axis from a to b.

(iv) If the interval [a, b] is replaced by an infinite interval, or if the function f(x) is not
defined or not bounded at at least one point in [a, b], then the integral is called improper.
For example, we define the integral of f(z) over the interval [a,c0) as follows:

00 b
/ f(z)dz = lim f(x)dx.
a b—oo J,
If the limit exists, the improper integral is said to be convergent; otherwise, it is diver-
gent. When [a, b] is the entire real line, we should write that
b

I == /OO f@)de = lim Of(x) d:r—i—blim f(x)dx
—o0 —Jo

a——00
a

and not
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b
I, = lim / f(z)dx.
b—oo b
This last integral is actually the Cauchy principal value of the integral I;. The Cauchy

principal value may exist even if I; does not.

Definition 1.3.2. Let f(x) be a real-valued function. Any function F(x) such that
F'(z) = f(x) is called a primitive (or indefinite integral or antiderivative) of

f(@).

Theorem 1.3.1. (Fundamental Theorem of Calculus) Let f(x) be a continuous
function on the interval [a,b] and let F(x) be a primitive of f(x). Then,

b
/ f(x)dz = F(b) — F(a).

Example 1.3.1. The function

1

=  f R
7r(1+x2) or xr €

fx(x)

is the density function of a particular Cauchy distribution. To obtain the average value
of the random wvariable X, we can calculate the improper integral

/_O;:Cfx(m)dasz/j;de.

A primitive of the integrand g(z) := z fx (z) is
1
2n
We find that the improper integral diverges, because

G(x) In(1 4+ 2?).

0
lim g(x)de = lim [G(0) — G(a)] = —c0

a——00 a a——00

and
b

lim g(x)dz = lim [G(b) — G(0)] = cc.
b—oo 0 b—oo

Because oo — oo is indeterminate, the integral indeed diverges. However, the Cauchy

principal value of the integral is

b
lim g(x)de = blim [G(b) — G(=b)] = blim 0=0.

b—oo b —00

There are many results on integrals that could be recalled. We limit ourselves to
mentioning a couple of techniques that are helpful to find indefinite integrals or evaluate
definite integrals.
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1.3.1 Particular integration techniques

(1) First, we remind the reader of the technique known as integration by substitution.
Let = = g(y). We can write that

[ t@yde= [ slow)g W d.

This result actually follows from the chain rule. In the case of a definite integral, as-
suming that

(i) f(x) is continuous on the interval [a, ],
(ii) the inverse function g=1(x) exists and

(iii) ¢’ (y) is continuous on [g~*(a), g=1(b)] (resp., [g7(b), g1 (a)]) if g(y) is an increasing
(resp., decreasing) function,

we have:

b d
/f(x)dx:/ fla)lg' (y) dy,

where a = g(c) & ¢ =g (a) and b = g(d) & d = g~1(b).

Example 1.3.2. Suppose that we want to evaluate the definite integral
4 1/2
IDRES / V2" g,
0

Making the substitution 2 = g(y) = y?, so that y = g~ '(x) = 2/? (for x € [0,4]), we
can write that

2

L e e, y=a? [P 2
/ a2 de VTE / y e¥2ydy =2eY| =2(e” —1).
0 0 0

Remark. If we are only looking for a primitive of the function f(z), then after having
found a primitive of f[g(y)]¢’(y) we must replace y by ¢~'(x) (assuming it exists) in
the function obtained. Thus, in the above example, we have:

/afl/ze“"l/2 dr = /yiley 2ydy = 2eY = 27",

(2) Next, a very useful integration technique is based on the formula for the derivative
of a product:

L @)gl) = §'@)g(a) + f()g' @)

Integrating both sides of the previous equation, we obtain:
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f(@)g() = / f()g(@)de + / f(@)g (x)dz

= [1@g@ds = f@)g(@) - [ £@)go)iz,

Setting u = f(x) and v = g(z), we can write that

/udv:uv—/vdu.

This technique is known as integration by parts. It is often used in probability to
calculate the moments of a random variable.

Example 1.3.3. To obtain the expected value of the square of a standard normal random
variable, we can try to evaluate the integral

o0 2
I3 ::/ cx?e ™ 2 da,
— 00

where ¢ is a positive constant. When applying the integration by parts technique, one
must decide which part of the integrand to assign to u. Of course, u should be chosen
so that the new (indefinite) integral is easier to find. In the case of I3, we set

_ 2
u=cz and dv=mxe */?dz.

v= /dv = /xe_’”2/2dx =—e /2,

%) %) )
—|—/ ce 24y,
—00 —00

The constant ¢ is such that the above improper integral is equal to 1 (see Chapter 3).
Furthermore, making use of I’'Hospital’s rule, we find that

Because

it follows that
I3 = cx(—e*xQ/Q)

. _a? . x . 1
lim ze @ /? = lim —— = lim ——— = 0.
r—00 r—o0 et /2 r—oo et /2 - X

Similarly, y
. —x°/2 __
xEIEloo Te =0.

Hence, we may write that Is =0+ 1= 1.

Remarks. (1) Note that there is no elementary function that is a primitive of the func-

—;L'2/2

tion e . Therefore, we could not have obtained a primitive (in terms of elementary

functions) of 22e~*"/2 by proceeding as above.
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(ii) If we set u = ce=a"/2 (and dv = x?dx) instead, then the resulting integral will be
more complicated. Indeed, we would have:

B 23] o g4 o g4
I3 =ce ’32/2? _Oo+/ c?e ””2/2dx:/ c?e **/2 .

— 00 — 00

A particular improper integral that is important in probability theory is defined by

)= [ e,

— 00

where 7 := v/—1 and w is a real parameter, and where we assume that the real-valued
function f(x) is absolutely integrable; that is,

| i@l <oc.

— 00

The function F(w) is called the Fourier transform (up to a constant factor) of the
function f(x). It can be shown that

f@) =g [ P

:% .

We say that f(x) is the inverse Fourier transform of F(w).
In probability theory, a density function fx(x) is, by definition, nonnegative and
such that

/Z Fx(@)dz = 1.

Hence, the function F'(w) is well defined. In this context, it is known as the characteristic
function of the random variable X and is often denoted by Cx(w). By differentiating
it, we can obtain the moments of X (generally more easily than by performing the
appropriate integrals).

Example 1.3.4. The characteristic function of a standard normal random variable is
Cx(w) = e/,
We can show that the expected value of the square of X is given by

&

2
ot = —e /2w -1) =1,

w=0 w=0

which agrees with the result found in the previous example.
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Finally, to obtain the moments of a random variable X, we can also use its moment-
generating function, which, in the continuous case, is defined (if the integral exists)
by

M (t) = / e e (2)da,

—0o0
where we may assume that ¢ is a real parameter. When X is nonnegative, the moment-
generating function is actually the Laplace transform of the function fx (x).

1.3.2 Double integrals

In Chapter 4, on random vectors, we have to deal with double integrals to obtain various
quantities of interest. A joint density function is a nonnegative function fx y (z,y) such

that
oo [ee]
/ / fxy (@, y)dedy = 1.
Y

Double integrals are needed, in general, to calculate the probability P[A] that the
continuous random vector (X,Y) takes on a value in a given subset A of R%. We have:

PlA] = / / Py (@, y) dady.

A

One has to describe the region A with the help of functions of x or of y (whichever is
easier or more appropriate in the problem considered). That is,

b rg2(x) b g2(x)
P[A] :/a /gl(m) fX,Y(l‘,y)dydl“:/a {/gl(z) fX,Y($7y)dy} dx (1.4)

ha(y) d ha(y)
/ / fxy(x y)dwdy—/ / fxy(z,y)de ¢ dy. (1.5)
hi(y) c hi(y)

Remarks. (i) If the functions g1 (z) and go(x) [or hy(y) and ha(y)] are constants, and if
the function fx y(z,y) can be written as

fX,Y(xay) = fX(x)fY(y)v

then the double integral giving P[A] can be expressed as a product of single integrals:

— /ab fx(z)dx /j fy(y)dy,

where a = gy (z) Vo and 8 = go(z) V.

or
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(ii) Conversely, we can write the product of two single integrals as a double integral:

/ab f(x)dx/cdg(y)dy — /ab /Cd F(2)g(y) dydz.

Example 1.3.5. Consider the function

_Je ™ Vifx>0andy >0,
Py (@ y) = { 0 elsewhere
(see Figure 1.1). To obtain the probability that (X,Y") takes on a value in the region

1

0.8

0.6

74
7/

7
777
7

=
777
1’4’
/’I
7

7

77
77
77
7
7
///,
7

77

7
7
7
7

7
7
7

0.4

=
7
77
7
7
i
)
i

0.2

7
7
7
7

N
NN

7/
777
7

0

Fig. 1.1. Joint density function in Example 1.3.5.

A={(z,y) eR*: 2 >0,y 20,0 <22 +y <1}
(see Figure 1.2), we calculate the double integral
y=1-2z
dx
y=0

/2 pl-2z 1/2
P[A] = / / e Y dydx :/ —e 7Y
o Jo 0

1/2

We may also write that

1 p(1—y)/2 1 z=(1-y)/2
P[A] :/ / ef‘”fydxdy:/ —e 7Y dy
o Jo 0 =0
1

1
_ / {e,y _ 67<1+y>/2} dy = —e~Y 4 2¢~(1+v)/2
0

= e 1421 +1-2eY2~0.1548.

0
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Remark. In this example, the functions g;(x) and h;(y), ¢ = 1,2, that appear in (1.4)
and (1.5) are given by

q1(z) =0, go(x)=1-2z, hi(y)=0 and hao(y) =(1—y)/2.

If B is the rectangle defined by

B={(z,y) eR?*:0<x<1,0<y<2},

2 1 1 2
P[B]:/O /0 e*I*yd:cdy:/O e " dz/o e Ydy
1 2

= 7671

then we have:

ey
0

=(1—e 1)1 —e?) ~0.5466.
0

1.4 Infinite series

Let ay,a9,...,ay,... be an infinite sequence of real numbers, where a,, is given by a
certain formula or rule, for example,

an = forn=1,2,....

n+1
We denote the infinite sequence by {a,}52; or simply by {a,}. An infinite sequence is
said to be convergent if lim,, ., a,, exists; otherwise, it is divergent.
Next, from the sequence {a,}5° ; we define a new infinite sequence by

S1 =az, SQZG1+QQ, e Sn:a1+a2+~~~+am
1,
0.8 1 2x+y =1
0.6 -
0.4 4
2x+y < 1
0.2 4
0 01 02 03 04 05

Fig. 1.2. Integration region in Example 1.3.5.
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Definition 1.4.1. The infinite sequence Sy, Sa,...,Sn,... is represented by > >~ an
and is called an infinite series. Moreover, S, := Y ,_, aj is called the nth partial
sum of the series. Finally, if the limit lim, o S, exists (resp., does not exist), we say
that the series is convergent (resp., divergent ).

In probability, the set of possible values of a discrete random variable X may be
finite or countably infinite (see p. 27). In the latter case, the probability function px of

X is such that -
ZpX(xk) = 15
k=1

where 1, T, ... are the possible values of X. In the most important cases, the possible
values of X are actually the integers 0,1,....
1.4.1 Geometric series

A particular type of infinite series encountered in Chapter 3 is known as a geometric
series. These series are of the form

o0 o0
Z ar" ' or Z ar™, (1.6)
n=1 n=0

where a and r are real constants.

Proposition 1.4.1. If |r| < 1, the geometric series S(a,r) := >~ ar™ converges to
a/(L—=r). If |r] > 1 (and a # 0), then the series is divergent.

To prove the above results, we simply have to consider the nth partial sum of the
series:

n
Sy = E ar*'=a+ar+ar?+-- +ar" L.
k=1

We have:
rSy =ar+ar*+ar® +---+ar"t 4 ar”,
so that a -
£1 a(l —r
S, —rS,=a—ar" = Sn:ﬁ.

Hence, we deduce that

a
—_— if 1
S = limSn:{ 1—7r if frf <1,

n—eo does not exist if |r| > 1.

If » = 1, we have that S,, = na, so that the series diverges (if a # 0). Finally, we can
show that the series is also divergent if r = —1.
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Other useful formulas connected with geometric series are the following: if |r| < 1,

then
> ar
k
ar”® =
> —
k=1

and -
ar
k=0

In probability, we also use power series, that is, series of the form
S(I) = a0+a1$+a2$2—|—-~-—|—an3;n+...7

where ay, is a constant, for K =0,1... . In particular, we use the fact that it is possible
to express functions, for instance, the exponential function e“*, as a power series:

2 n

ecz:1+cx+%xz+~~+c—'x”+~~ for all z € R. (1.8)
! n!

This power series is called the series expansion of e*.

Remark. Note that a geometric series S(a,r) is a power series S(r) for which all the
constants a are equal to a.

In general, a power series converges for all values of x in an interval around 0. If
a given series expansion is valid for || < R (> 0), we say that R is the radius of
convergence of the series. For |x| < R, the series can be differentiated and integrated
term by term:

S'(x) = ay 4+ 2a9x + -+ +nayz" Tt 4 (1.9)
and
x $2 xn+1
S(t) dt — 4. ta,
/o (1) ao® + a1+ ta n+1+

The interval of convergence of a power series having a radius of convergence R > 0 is
at least (—R, R). The series may or may not converge for x = —R and x = R. Because

S(O) =ag € R,

any power series converges for x = 0. If the series does not converge for any = # 0, we
write that R = 0. Conversely, if the series converges for all x € R, then R = oc.

To calculate the radius of convergence of a power series, we can make use of
d’Alembert’s ratio test: suppose that the limit

UnJrl
Un

L:= lim

n—oo

(1.10)

exists. Then, the series Y~ u,,
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(a) converges absolutely if L < 1;

(b) diverges if L > 1.

Remarks. (i) If the limit L in (1.10) does not exist, or if L = 1, then the test is incon-
clusive. There exist other criteria that can be used, for instance, Raabe’s test.

(ii) An infinite series Y u, converges absolutely if Y |u,| converges. A series that
converges absolutely is also convergent.

(iii) In the case of a power series, we calculate

1
Apy1 ™" Ant1

Qn

lim

n—oo

= lim
n—oo

.

Apx™

For example, the series expansion of the exponential function e“* given in (1.8) is valid
for all € R. Indeed, a,, = ¢"/n!, so that

Uit 1;”"'1

Ay "

c
n+1

lim = lim lzg]=0<1 VzeR

n—oo

Example 1.4.1. To obtain the mean of a geometric random variable, we can compute
the infinite sum

= = . 1—p 1
E(l—p)i—1p—= P E(l—pk &0 _P _ 1
; (1-p)""'p 1*%2:0 (1-p) > 17 p

)

where 0 < p < 1. To prove Formula (1.7), we can use (1.9).

Example 1.4.2. A Poisson random variable is such that its probability function is given

by
)\x
px(x) = e_)‘—' forx=0,1,...,
x!

where ) is a positive constant. We have:

> px(@) =
=0

oo

AT AT (1.8)
AN L.8) X X _
E e —x'—e Eo—x! ="e "e" =1,
=

z=0 ’
as required.

Example 1.4.3. The power series

k(k—1 k(k—1D(k—-2)---(k— 1
Sk(:ﬂ):zl+kx+¥x2+...+ ( )( g' ( n+ )anr

is the series expansion of the function (1 + z)*, and is called the binomial series. In
probability, £ will be a natural integer. It follows that the series has actually a finite
number of terms and thus converges for all x € R. Moreover, we can then write that
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k(k—1)(k—2)-(k—n+1) k!

n! ~ (k—n)n!

form=1,...,k.

To conclude this review of calculus, we give the main logarithmic formulas:
Inab=Ina+1Inb; Ina/b=1Ina—Inb; Ina® =blna.

We also have:

In e® = eln(cgc) _

and
ef(a:)lnac _ mf(x).

1.5 Exercises for Chapter 1

Solved exercises’

Question no. 1
Calculate lim, oz sin(1/z).

Question no. 2
For what values of z is the function

sinx

if x #£ 0,
f(x) =
1 ifx=0
continuous?

Question no. 3
Differentiate the function f(x) = /32 + 1(222 + 1)2.

Question no. 4
Find the limit lim, oz Inz.

Question no. 5
Evaluate the definite integral

‘1
I ::/ ﬂdz.
1 X

! The solutions can be found in Appendix C.
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Question no. 6
Find the value of the definite integral

I := / 23e= 24,

Question no. 7
Find the Fourier transform of the function

f(z) =ce " forz >0,

where c is a positive constant.

Question no. 8
Let

0 elsewhere.

foim [ [ o) dady,
A

where A = {(z,y) e R2: 0 <2 < 1,0 <y < 1,22 <y} (see Figure 1.3).

r4+yif0<z<1,0<y<l,
f(fmy)—{ Y Y

Calculate

0.8

0.6

0.4+

0.2

0 02 04 06 08 1

Fig. 1.3. Region A in solved exercise no. 8.

Question no. 9
Find the value of the infinite series
1 1 1

Spim = 4 — 4 — -
R T

19
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Question no. 10
Calculate

Si0 =Y k(1 —p)*p,
k=1

where 0 < p < 1.

Exercises
Question no. 1
Let
0 if r <0,
F(x) = 1/2 if £ =0,

1—(1/2)e*if x> 0.
Calculate (a) limgqo F'(2), (b) limy o F(z), and (¢) lim,_.o F(x).

Question no. 2
Consider the function

0 ifx <0,
1/3if0 <z <1,
2/3if 1<z <2,
1 if x> 2.

Fr) =

For what values of z is F'(x) left-continuous? right-continuous? continuous?

Question no. 3
Find the limit as x tends to 0 of the function

22 sin(1/x)

- for x € R.
sin x

fz) =

Question no. 4
Is the function

~ [elmifa #£0,
f(””){ 0 ifz=0

continuous or discontinuous at x = 07 Justify.

Question no. 5 ,
Find the fourth-order derivative of the function F(w) = e~ /2, for any w € R, and
evaluate the derivative at w = 0.
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Question no. 6
Find the following limit:

g (12— 5) e/ — (14 z+ §) e = (/2 |
el0 €

Question no. 7
Determine the second-order derivative of f(z) = v/2z2.

Question no. 8
Calculate the derivative of

fl@)=1+ Va2 forzeR

and find the value of x that minimizes this function.

Question no. 9
Use the fact that

/ " e %dr = (n—1)! forn=1,2,...
0

o0
/ " lem % g,
0

to evaluate the integral

where c is a positive constant.

Question no. 10
Use the following formula:

/ e~(@=m?*/2 gy — V2,

— 00

where m is a real constant, to calculate the definite integral

o0 2
/ 22e 24y,
— 00

Question no. 11
Evaluate the improper integral

21
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Question no. 12
Find a primitive of the function

f(z) =e “sinz forz eR.

Question no. 13
Find the Fourier transform of the function

fz) = gefcm for z € R,

where c is a positive constant.

Question no. 14

Let
3rif 1< <2,1<y<2,z<y,

f(x’y)={2

0 elsewhere.

Calculate the double definite integral

[ [ favdsay
A

A={(z,y) eR?:1<x<2,1<y<2,22 <yl

where

Question no. 15
The convolution of two functions, f and g, is denoted by f * g and is defined by

U*muw:[%f@mu—yMy

Let

ce”if x >0,
f(‘”)_{ 0 ifz <0,

where ¢ is a positive constant, and assume that g(z) = f(z) (i.e., g is identical to f).
Find (f * g)(x).

Remark. In probability theory, the convolution of fx and fy is the probability density
function of the sum Z := X+Y of the independent random variables X and Y. The result
of the above exercise implies that the sum of two independent exponentially distributed
random variables with the same parameter ¢ has a gamma distribution with parameters
a=2and A =c
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Question no. 16
Prove that

< 1 2
I:= ——e* P4z =1
/_oo ous

by first writing that

12:% 006722/2d2/00 —w /2 / / — (2% +w? /Zdzdw
T J - )

and then using polar coordinates. That is, set z = r cosf and w = rsinf (with r > 0),

so that
r=+vz22+w? and 6 =tan"'(w/z2).
Remark. We find that I? = 1. Justify why this implies that I = 1 (and not I = —1).

Question no. 17
Determine the value of the infinite series
1, 1 (—1)"

DT R

Question no. 18

Let -
Sg) =Y ¢,
n=1
where 0 < ¢ < 1. Calculate
1/2
S(q)dq

Question no. 19
(a) Calculate the infinite series

i etke—a
k=0
where a > 0.
(b) Evaluate the second-order derivative M (t) at ¢t = 0.

Remark. The function M (t) is the moment-generating function of a random variable X
having a Poisson distribution with parameter a.. Moreover, M" (0) gives us the expected
value of X2.
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Question no. 20
(a) Determine the value of the power series

G(z):=) "(1-p)*p,

k=0

where z € R and p € (0, 1) are such that |z| < (1 —p)~!.

(b) Calculate

dk

@G(z) for k=0,1,...
at z =0.
Remark. The function Gx (z) := Y, 2"px (k) is called the generating function of the
discrete random variable X taking its values in the set {0, 1, ...} and having probability
mass function px (k). Furthermore,

1 dF

o g ex)

2=0

yields px (k).

Multiple choice questions

Question no. 1
Calculate the limit

-1
lim v

z—1 1 —=x '

(a) =1 (b) =1/2 (¢)1/2 (d) 1 (e) does not exist

Question no. 2
Let u(z) be the Heaviside function (see p. 2) and define h(z) = e*(*)/2 for x € R.
Calculate the limit of the function h(z) as 2 tends to 0.

(a)1/2 (b)) 1 (c) (1+eY?)/2 (d) e/? (e) does not exist

Question no. 3
Evaluate the second-order derivative of the function

22+ jw)

Flo) =309

forwelR

at w = 0.
a) —1/4 (b) —=1/2 (c)0 (d)1/4 (e)1/2
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1\
lim (1 + ) .
xr— 00 €T

Indication. Take the natural logarithm of the expression first and then use the fact that
Inz is a continuous function.

(a)0 (b)1 (c)e (d) oo (e) does not exist

Question no. 4
Find the following limit:

Question no. 5
Use the formula

00 N2
A R e
o V2T

where a and b (> 0) are constants, to evaluate the definite integral

(a) 1/4  (b)1/2 (c)1 ()2 (e)4

Question no. 6
Calculate the definite integral

1
/ zInxde.
0

(a) —oo (b) =1 (c) =1/2 (d) =1/4 (e) 0

Question no. 7
Suppose that

lifo<x <1,
flz) = {O elsewhere

and that g(x) = f(z) for all z € R. Find (f * ¢)(3/2), where % denotes the convolution
of f and g (see no. 15, p. 22).

)0 (M)1/2 ()1 (d)3/2 (e)2

Question no. 8

Let ;
_J2-z—-yif0<ax<],0<y <1,
flz,y) = { 0 elsewhere.

Calculate the following double integral:

[ [t dsay,
A
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where
A={(z,y) eER*:0<z<1,0<y<lz+y>1}

(a) 1/6  (b) 1/4 () 1/3  (d)1/2  (e) 5/6

Question no. 9
Find the value of the natural logarithm of the infinite product

oo
H el/2" — o1/2 ¢ o4 ¢ 1/8 o ...

n=1

(@) =1 (b) =1/2 ()0 (d) 1/2 (e)1

Question no. 10
We define ag = 0 and

. clFl
a =€ m fork=...,-2,—-1,1,2,...,

where ¢ > 0 is a constant. Find the value of the infinite series Zk“;_oo a.
(a)l—e® (1)0o ()1 (d)(1/2)e ¢ (e)l+e
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Elementary probability

This first chapter devoted to probability theory contains the basic definitions and con-
cepts in this field, without the formalism of measure theory. However, the range of
problems that can be solved by using the formulas of elementary probability is very
broad, particularly in combinatorial analysis. Therefore, it is necessary to do numerous
exercises in order to master these basic concepts.

2.1 Random experiments

A random experiment is an experiment that, at least theoretically, may be repeated as
often as we want and whose outcome cannot be predicted, for example, the roll of a
die. Each time the experiment is repeated, an elementary outcome is obtained. The set
of all elementary outcomes of a random experiment is called the sample space, which is
denoted by 2.

Sample spaces may be discrete or continuous.

(a) Discrete sample spaces. (i) Firstly, if the number of possible outcomes is finite.
For example, if a die is rolled and the number that shows up is noted, then 2 =
{1,2,...,6}.

ii) Secondly, if the number of possible outcomes is countably infinite, which means
that there is an infinite number of possible outcomes, but these outcomes can be put
in a one-to-one correspondence with the positive integers. For example, if a die is rolled
until a “6” is obtained, and the number of rolls made before getting this first “6” is
counted, then we have that 2 = {0,1,2,...}. This set is equivalent to the set of all
natural integers {1,2, ...}, because we can associate the natural number k+ 1 with each
element £ =0,1,... of 2.

(b) Continuous sample spaces. If the sample space contains one or many intervals,
the sample space is then uncountably infinite. For example, a die is rolled until a “6”
is obtained and the time needed to get this first “6” is recorded. In this case, we have
that 2 ={t € R: ¢t > 0} [or £2 = (0, 00)].

M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics 27
and Technology, DOI: 10.1007/978-0-387-74995-2 2,
© Springer Science + Business Media, LLC 2009
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2.2 Events

Definition 2.2.1. An event is a set of elementary outcomes. That is, it is a subset of
the sample space (2. In particular, every elementary outcome is an event, and so is the
sample space itself.

Remarks. (i) An elementary outcome is sometimes called a simple event, whereas a
compound event is made up of at least two elementary outcomes.

(ii) To be precise, we should distinguish between the elementary outcome w, which is
an element of 2, and the elementary event {w} C 2.

(iii) The events are denoted by A, B, C, and so on.

Definition 2.2.2. Two events, A and B, are said to be incompatible (or mutually
exclusive) if their intersection is empty. We then write that A N B = 0.

Example 2.2.1. Consider the experiment that consists in rolling a die and recording
the number that shows up. We have that 2 = {1,2,3,4,5,6}. We define the events

A={1,2,4}, B={246} and C={35).

We have:
AUB={1,2,4,6}, ANB={2,4} and ANC=0.

Therefore, A and C' are incompatible events. Moreover, we may write that A" = {3, 5,6},
where the symbol ’ denotes the complement of the event.

To represent a sample space and some events, we often use a Venn diagram as in

Figure 2.1.[In general, for three events we have the diagram in Figure

Q

Fig. 2.1. Venn diagram for Example 2.2.1.
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, = ANBNC A B | o=AnBNC
o,= ANBNC' Q 0, = ANBNC'
o,= ANBNC & o = ANBNC

0,=ANBNC | w 0, = ANBNC’
C

Fig. 2.2. Venn diagram for three arbitrary events.

2.3 Probability

Definition 2.3.1. The probability of an event A C (2, denoted by P[A], is a real
number obtained by applying to A the function P that possesses the following properties:

(i) 0 < P[A] < 1;
(i1) if A=, then P[A] =1;
(iii) if A= A1 UAs U---UA,, where Ay, ..., A, are incompatible events, then we may

write that
n

P[A] :ZP[Ai] forn=2,3,... 00.

i=1

Remarks. (i) Actually, we only have to write that P[A] > 0 in the definition, because

we can show that
P[A] + P[A'] =1,

which implies that P[A] =1 — P[A’] < 1.
(ii) We also have the following results:

Pl0)=0 and P[A] < P[B] if AC B.

(iii) The definition of the probability of an event is motivated by the notion of relative
frequency. For example, suppose that the random experiment that consists in rolling a
die is repeated a very large number of times, and that we wish to obtain the probability
of any of the possible outcomes of this experiment, namely, the integers 1,2,...,6. The
relative frequency of the elementary event {k} is the quantity f{;}(n) defined by

firy(n) = L{k}(n),

n
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where Ny (n) is the number of times that the possible outcome k occurred among the
n rolls of the die. We can write that

0< fip(n) <1 fork=1,2,...,6

and that .
Y f(n
k=1

Indeed, we obviously have that Ny (n) € {0,1,...,n}, so that frzy(n) belongs to [0, 1],
and

N -+ N
Zf{k} (y(n) + . 6y (n) _ % 1

Furthermore, if A is an event containing two possible outcomes, for instance “1” and
“2,” then

fa(n) = fruy(n) + fzy(n),

because the outcomes 1 and 2 cannot occur on the same roll of the die.
Finally, the probability of the elementary event {k} can theoretically be obtained
by taking the limit of f;y(n) as the number n of rolls tends to infinity:

PI{k)] = lim feuy(n).

The probability of an arbitrary event can be expressed in terms of the relative frequency
of this event, thus it is logical that the properties of probabilities more or less mimic
those of relative frequencies.

Sometimes, the probability of an elementary outcome is simply equal to 1 divided
by the total number of elementary outcomes. In this case, the elementary outcomes are
said to be equiprobable (or equally likely). For example, if a fair (or unbiased) die is
rolled, then we have that P[{1}] = P[{2}] = --- = P[{6}] = 1/6.

If the elementary outcomes r; are not equiprobable, we can (try to) make use of the

following formula:
Al =Y Pl{r}]
r,€A

However, this formula is only useful if we know the probability of all the elementary
outcomes r; that constitute the event A.

Now, if A and B are incompatible events, then we deduce from the third property
of P[-] that P[AU B] = P[A] + P[B]. If A and B are not incompatible, we can show
(see Figure 4.3 that

P[AUB] = P[A]+ P[B] — P[AN B].
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ANB

P[A U B] = P[A] + P[B] - P[AN B]

Fig. 2.3. Probability of the union of two arbitrary events.

Similarly, in the case of three arbitrary events, we have:

P[AUBUC]=P[A]+ P[B]+ P[C]— P[ANnB] - P[ANC]—P[BNC]+ P[ANBNC].

Example 2.3.1. The three most popular options for a certain model of new car are A:
automatic transmission, B: V6 engine, and C" air conditioning. Based on the previous
sales data, we may suppose that P[A] = 0.70, P[B] = 0.75, P[C] = 0.80, P[A U B]
= 0.80, P[AU C] = 0.85, P[BU C] = 0.90, and P[AU B U C] = 0.95, where P[A4]
denotes the probability that an arbitrary buyer chooses option A, and so on. Calculate
the probability of each of the following events:

(a) the buyer chooses at least one of the three options;

(b) the buyer does not choose any of the three options;

(c) the buyer chooses only air conditioning;

(d) the buyer chooses exactly one of the three options.

Solution. (a) We seek P[AU B U C| = 0.95 (by assumption).

(b) We now seek P[A'NB'NC'|=1—-P[AUBUC] =1-10.95=0.05.

(¢) The event whose probability is requested is A’ N B’ N C. We can write that

P[A'NB'NC]=P[AUBUC]— P[AUB] =0.95— 0.8 = 0.15.
(d) Finally, we want to calculate
P[(AnB'nCHYU(ANnBNC)YU(A NB' NO))
" P[ANB' NC']+ P[A'NBNC'|+ P[A'nB' NC|
= 3P[AUBUC] - P[AUB] - P[AUC] - P[BUC]
= 3(0.95) — 0.8 —0.85 - 0.9 =0.3.

_
118

“_»

Remarks. (i) The indication “inc.” above the sign means that the equality is true
because of the incompatibility of the events. We use this type of notation often in this
book to justify the passage from an expression to another.
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(ii) The probability of each of the eight elementary outcomes is indicated in the diagram
of Figure 4.4.]First, we calculate

P[AN B] = P[A] + P[B] — P[AUB] = 0.7+ 0.75 — 0.8 = 0.65.
Likewise, we have:

P[ANC] = 0.7+ 0.8 — 0.85 = 0.65,
P[BNC] =0.754 0.8 — 0.9 = 0.65,
P[ANBNC] = P[AUuBUC] - P[A] — P[B] — P[C]
+P[ANB]+ P[ANC]+ P[BNC]
=0.95-0.7—-0.75 — 0.8 + 3(0.65) = 0.65.

A A%A B

Fig. 2.4. Venn diagram for Example 2.3.1.

2.4 Conditional probability
Definition 2.4.1. The conditional probability of event A, given that event B oc-
curred, is defined (and denoted) by (see Figure

[AN B]

PlA| B] = PP[B] if PlB] > 0. (2.1)

From the above definition, we obtain the multiplication rule:
P[AnB]=P[A| BJP[B] it P[B]>0 (2.2)

and
P[ANB] = P[B | A]P[4] if P[A] > 0.
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ANB ANB

Fig. 2.5. Notion of conditional probability.

Definition 2.4.2. Let A and B be two events such that P[A|P[B] > 0. We say that A
and B are independent events if

P[A| B]=P[A] or P|B|A]=P[B]. (2.3)

We deduce from the multiplication rule that A and B are independent if and only

if (iff)
P[AN B] = P[A]P]B]. (2.4)

Actually, this equation is the definition of independence of events A and B in the
general case when we can have that P[A|P[B] = 0. However, Definition 2.4.2 is more
intuitive, whereas the general definition of independence given by Formula (2.4) is purely
mathematical.

In general, the events Aq, Ao, ..., A, are independent iff

k
PlA;, - A, ] =[] PlA;,]
j=1
for k=2,3,...,n, where A;, # A, if Il #m.

Remark. If A and B are two incompatible events, then they cannot be independent,
unless P[A]P[B] = 0. Indeed, in the case when P[A]P[B] > 0, we have:

Tm

Pla| 5= Z5 i = DO — o =02 Pl

Example 2.4.1. A device is constituted of two components, A and B, subject to failures.
The components are connected in parallel (see Figure and are not independent. We
estimate the probability of a failure of component A to be 0.2 and that of a failure of
component B to be 0.8 if component A is down, and to 0.4 if component A is not down.

(a) Calculate the probability of a failure (i) of component B and (ii) of the device.
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— B

Fig. 2.6. System for part (a) of Example 2.4.1.

Solution. Let A (resp., B) be the event “component A (resp., B) is down.” By assump-
tion, we have that P[A] = 0.2, P[B | A] = 0.8, and P[B| A'] = 0.4.
(i) We may write (see Figure that

Q

9

ANB

Fig. 2.7. Venn diagram for part (a) of Example 2.4.1.

P[B] = P|AN B] + P|A' N B] = P|B | A|P[A] + P|B | A'|P[A]
= (0.8)(0.2) + (0.4)(0.8) = 0.48.

(ii) We seek P[Device failure] = P[AN B] = P[B | A]JP[A] = 0.16.

(b) In order to increase the reliability of the device, a third component, C, is added
to the system in such a way that components A, B, and C are connected in parallel
(see Figure The probability that component C' fails is equal to 0.2, independently
from the state (up or down) of components A and B. Calculate the probability that the
device made up of components A, B, and C breaks down.

Solution. By assumption, P[C] = 0.2 and C' is independent of A and B. Let F' be the
event “the subsystem made up of components A and B fails.” We can write that

pPlFnc) ™ planBPc] "2 (0.16)(0.2) = 0.032.
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Fig. 2.8. System for part (b) of Example 2.4.1.

2.5 Total probability

Let Bi, Bs, ..., B, be incompatible and exhaustive events; that is, we have:
BinB;=0 ifi#j and | JBi =
i=1

We say that the events B; constitute a partition of the sample space (2. It follows that

Now, let A be an arbitrary event. We can write that (see Figure
P4 =S PlANB] =Y PlA| BP[B] (2.5)
i=1 i=1
(the second equality above being valid when P[B;] > 0, for i = 1,2,...,n).
Remark. This formula is sometimes called the law of total probability.
Finally, suppose that we wish to calculate P[B; | 4], for i = 1,...,n. We have:
BinA] _ P[A| Bi|P[Bi] P[A | Bi|P[B;]

Pl
PBAA= =50 =S plAnB] - S PA| BB 2

This formula is called Bayes’ formula.

Remark. We also have (Bayes’ rule):

PJA | B|P|B]

P[B| Al = LW if P[A|P[B] > 0. (2.7)
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Q
B, B
A

@ ANB,
ﬁ

PIAI=P[ANB,[+P[ANB,+P[ANB]

B

3

Fig. 2.9. Example of the law of total probability with n = 3.

Example 2.5.1. Suppose that machines M;, Ms, and M3 produce, respectively, 500,
1000, and 1500 parts per day, of which 5%, 6%, and 7% are defective. A part produced
by one of these machines is taken at random, at the end of a given workday, and it is
found to be defective. What is the probability that it was produced by machine M3?

Solution. Let A; be the event “the part taken at random was produced by machine
M;,” for e =1,2,3, and let D be “the part taken at random is defective.” We seek

_ P[D|A3]P[As] (0.07) (5560)
P L0 = S5 o | apia]  ©08) (3) + (0.06) (5) + 007 (3)
_ 105
= 190 = ~ 0.5526.

2.6 Combinatorial analysis

Suppose that we perform a random experiment that can be divided into two steps. On
the first step, outcome A; or outcome A, may occur. On the second step, either of
outcomes Bi, By, or B3 may occur. We can use a tree diagram to describe the sample
space of this random experiment, as in Figure

Example 2.6.1. Tests conducted with a new breath alcohol analyzer enabled us to
establish that (i) 5 times out of 100 the test proved positive even though the person
subjected to the test was not intoxicated; (ii) 90 times out of 100 the test proved
positive and the person tested was really intoxicated. Moreover, we estimate that 1% of
the persons subjected to the test are really intoxicated. Calculate the probability that
(a) the test will be positive for the next person subjected to it;

(b) a given person is intoxicated, given that the test is positive.
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1st step 2nd step

Fig. 2.10. Example of a tree diagram.

Solution. Let A be the event “the test is positive” and let E be “the person subjected to
the test is intoxicated.” From the above assumptions, we can construct the tree diagram
in Figure where the marginal probabilities of events E and E’ are written above
the branches, as well as the conditional probabilities of events A and A’, given that E
or B’ occurred. Furthermore, we know by the multiplication rule that the product of
these probabilities is equal to the probability of the intersections EN A, EN A’, and so
on.

P[E N A] = 0.009
P[E N AT = 0.001

P[E'N A] = 0.0495

A 095 piErnA)=0.9405

Fig. 2.11. Tree diagram in Example 2.6.1.

(a) We have:
P[A] = P[E N A] + P[E' N A] = 0.0585.

(b) We calculate
P[ENA] (a) 0.009
PE| Al = = ~ 0.1538.
E] 4] P[4] 0.0585
Note that this probability is very low. If we assume that 60% of the individuals sub-
jected to the test are intoxicated (rather than 1%), then we find that P[A] becomes
0.56 and P[E | A] ~ 0.9643, which is much more reasonable. Therefore, this breath
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alcohol analyzer is only efficient if we use it for individuals who are suspected of being
intoxicated.

Remark. In general, if a random experiment comprises k steps and if there are n; possible
outcomes on the jth step, for j = 1,... k, then there are n; x --- X n; elementary
outcomes in the sample space. This is known as the multiplication principle.

Suppose now that we have n distinct objects and that we take, at random and
without replacement, r objects among them, where r € {(0,)1,...,n}. The number of
possible arrangements is given by

X (1) % x o (= 1)) = e P (2.9
n n — e n—(r— = = . .
(n—r)! "
The symbol P designates the number of permutations of n distinct objects taken r at
a time. The order of the objects is important.

Remarks. (i) Reminder. We have that n! = 1x2x---xn,forn=1,2,3,...,and 0l =1,
by definition.

(ii) Taking r objects without replacement means that the objects are taken one at a
time and that a given object cannot be chosen more than once. This is equivalent to
taking the r objects all at once. In the case of sampling with replacement, any object
can be chosen up to r times.

Example 2.6.2. If we have four different letters (for instance, a, b, ¢, and d), then we
can form Al "
Pl=—_=—_=2
3T -3 1
different three-letter “words” if each letter is used at most once. We can use a tree
diagram to draw the list of words.

Finally, if the order of the objects is not important, then the number of ways to take,
at random and without replacement, r objects among n distinct objects is given by

nx(n—1)x-x[n—(r—1) n! ::Cn—(”> (2.9)

r

r! B rl(n —r)! r
for r € {(0,)1,...,n}. The symbol C, or (:f), designates the number of combinations
of n distinct objects taken r at a time.

Remarks. (1) Each combination of 7 objects enables us to form r! different permutations,

because | |
pr=_"__T_.
T
(r—mr)t 0l

(ii) Moreover, it is easy to check that C" = C_ .
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Example 2.6.3. Three parts are taken, at random and without replacement, among 10
parts, of which 2 are defective. What is the probability that at least 1 defective part is
obtained?

Solution. Let F' be the event “at least one part is defective among the three parts
taken at random.” We can write that

2 18
Pl =1-pp) =1~ S0
3
1.8 6x7 -
=1-—38 =1- =— =0.53.
3}% 9x10 15

2.7 Exercises for Chapter 2

Solved exercises

Question no. 1

We consider the following random experiment: a fair die is rolled; if (and only if)
a “6” is obtained, the die is rolled a second time. How many elementary outcomes are
there in the sample space 27

Question no. 2
Let 2 = {ey, €9, €3}, where P [{e;}] > 0, for i = 1,2, 3. How many different partitions
of 2, excluding the partition (), £2 can be formed?

Question no. 3

A fair die is rolled twice, independently. Knowing that an even number was obtained
on the first roll, what is the probability that the sum of the two numbers obtained is
equal to 47

Question no. 4
Suppose that P [A] = P[B] = 1/4 and that P [A | B] = P [B]. Calculate P[AN B’].

Question no. 5

A system is made up of three independent components. It operates if at least two
of the three components operate. If the reliability of each component is equal to 0.95,
what is the reliability of the system?

Question no. 6
Suppose that P[ANB]=1/4, P[A| B']| =1/8, and P [B] = 1/2. Calculate P [A].

Question no. 7
Knowing that we obtained at least once the outcome “heads” in three independent
tosses of a fair coin, what is the probability that we obtained “heads” three times?
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Question no. 8
Suppose that P [B | A1] = 1/2 and that P[B | A3] = 1/4, where A; and Ay are two
equiprobable events forming a partition of (2. Calculate P [A; | B].

Question no. 9
Three horses, a, b, and ¢, enter in a race. If the outcome bac means that b finished
first, a second, and ¢ third, then the set of all possible outcomes is

2 = {abc, ach, bac, bea, cab, cba} .

We suppose that P [{abc}] = P [{acb}] = 1/18 and that each of the other four elementary
outcomes has a 2/9 probability of occurring. Moreover, we define the events

A = “qg finishes before b” and B = “a finishes before c.”

(a) Do the events A and B form a partition of 27
(b) Are A and B independent events?

Question no. 10

Let € be a random experiment for which there are three elementary outcomes: A, B,
and C. Suppose that we repeat ¢ indefinitely and independently. Calculate, in terms of
P [A] and P [B], the probability that A occurs before B.

Hints. (i) You can make use of the law of total probability.
(ii) Let D be the event “A occurs before B.” Then, we may write that

P[D | C occurs on the first repetition] = P [D].

Question no. 11

Transistors are drawn at random and with replacement from a box containing a
very large number of transistors, some of which are defectless and others are defective,
and are tested one at a time. We continue until either a defective transistor has been
obtained or three transistors in all have been tested. Describe the sample space {2 for
this random experiment.

Question no. 12
Let A and B be events such that P [A] =1/3 and P [B’ | A] = 5/7. Calculate P [B]
if B is a subset of A.

Question no. 13

In a certain university, the proportion of full, associate, and assistant professors,
and of lecturers is 30%, 40%, 20%, and 10% respectively, of which 60%, 70%, 90%, and
40% hold a PhD. What is the probability that a person taken at random among those
teaching at this university holds a PhD?

Question no. 14

All the items in stock in a certain store bear a code made up of five letters. If the
same letter is never used more than once in a given code, how many different codes can
there be?
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Question no. 15
A fair die is rolled twice, independently. Consider the events
A = “the first number that shows up is a 6;”
B = “the sum of the two numbers obtained is equal to 7;”
C' = “the sum of the two numbers obtained is equal to 7 or 11.”

(a) Calculate P [B | C].
(b) Calculate P [A | B].
(¢) Are A and B independent events?

Question no. 16

A commuter has two vehicles, one being a compact car and the other one a minivan.
Three times out of four, he uses the compact car to go to work and the remainder of
the time he uses the minivan. When he uses the compact car (resp., the minivan), he
gets home before 5:30 p.m. 75% (resp., 60%) of the time. However, the minivan has air
conditioning. Calculate the probability that

(a) he gets home before 5:30 p.m. on a given day;
(b) he used the compact car if he did not get home before 5:30 p.m.;
(c) he uses the minivan and he gets home after 5:30 p.m.;

(d) he gets home before 5:30 p.m. on two (independent) consecutive days and he does
not use the same vehicle on these two days.

Question no. 17

Rain is forecast half the time in a certain region during a given time period. We
estimate that the weather forecasts are accurate two times out of three. Mr. X goes out
every day and he really fears being caught in the rain without an umbrella. Consequently,
he always carries his umbrella if rain is forecast. Moreover, he even carries his umbrella
one time out of three if rain is not forecast. Calculate the probability that it is raining
and Mr. X does not have his umbrella.

Question no. 18

A fair die is rolled three times, independently. Let F' be the event “the first number
obtained is smaller than the second one, which is itself smaller than the third one.”
Calculate P[F].

Question no. 19

We consider the set of all families having exactly two children. We suppose that each
child has a 50-50 chance of being a boy. Let the events be

Ay = “both sexes are represented among the children;”

Ag = “at most one child is a girl.”
a) Are A; and A/, incompatible events?
(b) Are A; and A} independent events?
)

(¢) We also suppose that the probability that the third child of an arbitrary family is a
boy is equal to 11/20 if the first two children are boys, to 2/5 if the first two children
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are girls, and to 1/2 in the other cases. Knowing that the third child of a given family
is a boy, what is the probability that the first two are also boys?

Exercises

Question no. 1

We study the traffic (in one direction) on two roads, 1 and 2, which merge to form
road 3 (see Figure £.12)] Roads 1 and 2 have the same capacity (number of lanes) and
road 3 has a greater capacity than road 1 and road 2. During rush hours, the probability
that the traffic is congested on road 1 (resp., road 2) is equal to 0.1 (resp., 0.3). Moreover,
given that traffic is congested on road 2, it is also congested on road 1 one time out of
three. We define the events

A, B,C = “traffic is congested on roads 1, 2, 3, respectively.”

2

Fig. 2.12. Figure for Exercise no. 1.

(a) Calculate the probability that traffic is congested
(i) on roads 1 and 2;

(ii) on road 2, given that it is congested on road 1;
(iii) on road 1 only;

(iv) on road 2 only;

(v) on road 1 or on road 2;

(vi) neither on road 1 nor on road 2.

(b) On road 3, traffic is congested with probability

1 if it is congested on roads 1 and 2;
0.15 if it is congested on road 2 only;
0.1 if it is neither congested on road 1 nor on road 2.

Calculate the probability that traffic is congested
(i) on road 3;

(i) on road 1, given that it is congested on road 3.
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Question no. 2
We roll a die and then we toss a coin. If we obtain “tails,” then we roll the die a
second time. Suppose that the die and the coin are fair. What is the probability of

(a) obtaining “heads” or a 6 on the first roll of the die;
(b) obtaining no 6s;
(c) obtaining exactly one 6;

(d) having obtained “heads,” given that we obtained exactly one 6.

Question no. 3 (see Example 2.4.1)

A device is composed of two components, A and B, subject to random failures. The
components are connected in parallel and, consequently, the device is down only if both
components are down. The two components are not independent. We estimate that the
probability of

a failure of component A is equal to 0.2;
a failure of component B is equal to 0.8 if component A is down;
a failure of component B is equal to 0.4 if component A is active.

(a) Calculate the probability of a failure
(i) of component A if component B is down;
(ii) of exactly one component.

(b) In order to increase the reliability of the device, a third component, C, is added in
such a way that components A, B, and C are connected in parallel. The probability
that component C breaks down is equal to 0.2, independently of the state (up or down)
of components A and B. Given that the device is active, what is the probability that
component C' is down?

Question no. 4
In a factory producing electronic parts, the quality control is ensured through three
tests as follows:

each component is subjected to test no. 1;

if a component passes test no. 1, then it is subjected to test no. 2;
if a component passes test no. 2, then it is subjected to test no. 3;
as soon as a component fails a test, it is returned for repair.

We define the events
A; = “the component fails test no. i, for i = 1,2,3.”
From past experience, we estimate that
P[A]] =01, P[Ay|A]]=0.05 and P[A3| A} N A5 =0.02.

The elementary outcomes of the sample space (2 are: wq = Ay, wo = A N Ay, w3 =
AL N AL N As, and wy = A} N AL N AL
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(a) Calculate the probability of each elementary outcome.
(b) Let R be the event “the component must be repaired.”
(i) Express R in terms of Ay, As, As.
(ii) Calculate the probability of R.
(iii) Calculate P [A] N A2 | R].

(c) We test three components and we define the events
Ry = “the kth component must be repaired, for k = 1,2,3” and

B = “at least one of the three components passes all three tests.”

We assume that the events Ry are independent.
(i) Express B in terms of Ry, Ro, Rs.

(ii) Calculate P[B].

Question no. 5
Let A, B, and C be events such that P[A] = 1/2, P[B] = 1/3, P[C] = 1/4, and
P[ANC] =1/12. Furthermore, A and B are incompatible. Calculate P[A | B U C].

Question no. 6

In a group of 20,000 men and 10,000 women, 6% of men and 3% of women suffer
from a certain disease. What is the probability that a member of this group suffering
from the disease in question is a man?

Question no. 7

Two tokens are taken at random and without replacement from an urn containing
10 tokens, numbered from 1 to 10. What is the probability that the larger of the two
numbers obtained is 37

Question no. 8

We consider the system in Figure 11 components fail independently of each
other. During a certain time period, the type A components fail with probability 0.3 and
component B (resp., C') fails with probability 0.01 (resp., 0.1). Calculate the probability
that the system is not down at the end of this period.

Question no. 9

A sample of size 20 is drawn (without replacement) from a lot of infinite size con-
taining 2% defective items. Calculate the probability of obtaining at least one defective
item in the sample.

Question no. 10

A lot contains 10 items, of which one is defective. The items are examined one
by one, without replacement, until the defective item has been found. What is the
probability that this defective item will be (a) the second item examined? (b) the ninth
item examined?
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Fig. 2.13. Figure for Exercise no. 8.

Question no. 11
A bag holds two coins: a fair one and one with which we always get “heads.” A coin
is drawn at random and is tossed. Knowing that “heads” was obtained, calculate

(a) the probability that the fair coin was drawn;
(b) the probability of obtaining “heads” on a second toss of the same coin.
Question no. 12
The diagnosis of a physician in regard to one of her patients is unsure. She hesitates

between three possible diseases. From past experience, we were able to construct the
following tables:

Si Sl 82 SS S4
P[D; [5:]]02 0.1 0.6 0.4

Si Sl SQ 53 54
P[D,]Si][02 0.5 0.5 0.3

Si S1 Sy S5 Sy
P[Ds5,][0.6 0.3 0.1 0.2

where the D;s represent the diseases and the S;s are the symptoms. In addition, we
assume that the four symptoms are incompatible, exhaustive, and equiprobable.

(a) Independently of the symptom present in the patient, what is the probability that
he or she suffers from the first disease?

(b) What is the probability that the patient suffers from the second disease and presents
symptom S;7

(c) Given that the patient suffers from the third disease, what is the probability that
he or she presents symptom S5?

(d) We consider two independent patients. What is the probability that they do not
suffer from the same disease, if we assume that the three diseases are incompatible?
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Question no. 13
We consider a system comprising four components operating independently of each
other and connected as in Figure

1—2]

|

3]

Fig. 2.14. Figure for Exercise no. 13.

The reliability of each component is supposed constant, over a certain time period,
and is given by the following table:

Component| 1 2 3 4
Reliability (0.9 0.95 0.95 0.99

(a) What is the probability that the system operates at the end of this time period?
(b) What is the probability that component no. 3 is down and the system still operates?
(¢c) What is the probability that at least one of the four components is down?

(

d) Given that the system is down, what is the probability that it will resume operating
if we replace component no. 1 by an identical (nondefective) component?

Question no. 14

A box contains 8 brand A and 12 brand B transistors. Two transistors are drawn
at random and without replacement. What is the probability that they are both of the
same brand?

Question no. 15

What is the reliability of the system shown in Figure f the four components
operate independently of each other and all have a reliability equal to 0.9 at a given
time instant?
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Fig. 2.15. Figure for Exercise no. 15.

Question no. 16
Let A; and As be two events such that P[A;] = 1/4, P[A; N As] = 3/16, and
P Ay | A}] =1/8. Calculate P [A}].

Question no. 17

A fair coin is tossed until either “heads” is obtained or the total number of tosses
is equal to 3. Given that the random experiment ended with “heads,” what is the
probability that the coin was tossed only once?

Question no. 18

In a room, there are four 18-year-old male students, six 18-year-old female students,
six 19-year-old male students, and x 19-year-old female students. What must be the
value of x, if we want age and sex to be independent when a student is taken at random
in the room?

Question no. 19

Stores S7, S9, and S3 of the same company have, respectively, 50, 70, and 100
employees, of which 50%, 60%, and 75% are women. A person working for this company
is taken at random. If the employee selected is a woman, what is the probability that
she works in store S3?

Question no. 20

Harmful nitrogen oxides constitute 20%, in terms of weight, of all pollutants present
in the air in a certain metropolitan area. Emissions from car exhausts are responsible
for 70% of these nitrogen oxides, but for only 10% of all the other air pollutants. What
percentage of the total pollution for which emissions from car exhausts are responsible
are harmful nitrogen oxides?

Question no. 21

Three machines, My, My, and M3, produce, respectively, 1%, 3%, and 5% defective
items. Moreover, machine M; produces twice as many items on an arbitrary day as
machine My, which itself produces three times as many items as machine M3. An item
is taken at random among those manufactured on a given day, then a second item is
taken at random among those manufactured by the machine that produced the first
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selected item. Knowing that the first selected item is defective, what is the probability
that the second one is also defective?

Question no. 22
A machine is made up of five components connected as in the diagram of Figure
Each component operates with probability 0.9, independently of the other components.

~]
+]

Fig. 2.16. Figure for Exercise no. 22.

(a) Knowing that component no. 1 is down, what is the probability that the machine
operates?

(b) Knowing that component no. 1 is down and that the machine still operates, what
is the probability that component no. 3 is active?

Question no. 23

Before being declared to conform to the technical norms, devices must pass two
quality control tests. According to the data gathered so far, 75% of the devices tested
in the course of a given week passed the first test. The devices are subjected to the
second test, whether they pass the first test or not. We found that 80% of the devices
that passed the second test had also passed the first one. Furthermore, 20% of those
that failed the second test had passed the first one.

(a) What is the probability that a given device passed the second test?

(b) Find the probability that, for a given device, the second test contradicts the first
one.

(c) Calculate the probability that a given device failed the second test, knowing that it
passed the first one.

Question no. 24

In a certain workshop, the probability that a part manufactured by an arbitrary
machine is nondefective, that is, conforms to the technical norms, is equal to 0.9. The
quality control engineer proposes to adopt a procedure that classifies as nondefective
with probability 0.95 the parts indeed conforming to the norms, and with only prob-
ability 0.15 those not conforming to these norms. It is decided that every part will be
subjected to this quality control procedure twice, independently.
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(a) What is the probability that a part having passed the procedure twice does indeed
conform to the norms?

(b) Suppose that if a part fails the first control test, then it is withdrawn immediately.
Let B; be the event “a given part passed (if the case may be) the jth control test,” for
j = 1,2. Calculate (i) P[Bs] and (ii) P[B} N BY].

Question no. 25
We have 20 type I components, of which 5 are defective, and 30 type II components,
of which 15 are defective.

(a) We wish to construct a system comprising 10 type I components and 5 type II
components connected in series. What is the probability that the system will operate if
the components are taken at random?

(b) How many different systems comprising four components connected in series, of
which at least two are of type I, can be constructed, if the order of the components is
taken into account?

Remarks. (i) We suppose that we can differentiate two components of the same type.

(ii) When a system is made up of components connected in series, then it operates if
and only if every component operates.

Question no. 26
A system is made up of n components, including components A and B.

(a) Show that if the components are connected in series, then the probability that there
are exactly r components between A and B is given by

2(n—r—1)
——= i 0,1,...,n—2}.

e orre{0,1,...,n—2}
(b) Calculate the probability that there are exactly r components between A and B if
the components are connected in circle.

(¢) Suppose that n = 5 and that the components are connected in series. Calculate
the probability of operation of the subsystem constituted of components A, B and the
r components placed between them if the components operate independently of each
other and all have a reliability of 0.95.

Question no. 27

A man owns a car and a motorcycle. Half the time, he uses his motorcycle to go to
work. One-third of the time, he drives his car to work and, the remainder of the time,
he uses public transportation. He gets home before 5:30 p.m. 75% of the time when he
uses his motorcycle. This percentage is equal to 60% when he drives his car and to 2%
when he uses public transportation. Calculate the probability that

(a) he used public transportation if he got home after 5:30 p.m. on a given day;

(b) he got home before 5:30 p.m. on two consecutive (independent) days and he used
public transportation on exactly one of these two days.
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Question no. 28

In a certain airport, a shuttle coming from the city center stops at each of the four
terminals to let passengers get off. Suppose that the probability that a given passenger
gets off at a particular terminal is equal to 1/4. If there are 20 passengers using the
shuttle and if they occupy seats numbered from 1 to 20, what is the probability that
the passengers sitting in seats nos. 1 to 4 all get off

(a) at the same stop?
(b) at different stops?

Question no. 29

A square grid consists of 289 points. A particle is at the center of the grid. Every
second, it moves at random to one of the four nearest points from the one it occupies.
When the particle arrives at the boundary of the grid, it is absorbed.

(a) What is the probability that the particle is absorbed after eight seconds?

(b) Let A; be the event “the particle is at the center of the grid after ¢ seconds.”
Calculate P[A4] (knowing that Ay is certain, by assumption).

Question no. 30
Five married couples bought 10 tickets for a concert. In how many ways can they
sit (in the same row) if

(a) the five men want to sit together?

(b) the two spouses in each couple want to sit together?

Multiple choice questions

Question no. 1

Two weeks prior to the most recent general election, a poll conducted among 1000
voters revealed that 48% of them intended to vote for the party in power. A survey made
after the election, among the same sample of voters, showed that 90% of the persons
who indeed voted for the party in power intended to vote for this party, and 10% of
those who voted for another party intended (two weeks prior to the election) to vote for
the party in power. Let the events be

A = “a voter, taken at random in the sample, intended to vote for the party in
power;”
B = “a voter, taken at random in the sample, voted for the party in power.”

A) From the statement of the problem, we can write that P[A] = 0.48 and that
P[ANB] =09 P[ANnB] =0.1

P[B|A] =09, P[B'| A = 0.1

P[A|B] =09, P[A|B]=0.1

P[ANB]=09; P[ANnB']=0.1

P[A|B]=09; P[B'| Al =0.1
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(B) The probability of event B is given by

(a) 0.45 (b) 0475 (c) 0.48 (d) 0.485 (e) 0.50 () 0.515

(C) Are events A and B’ incompatible?

(a) yes (b)no (c¢) we cannot conclude from the information provided
(D) Are events A and B’ independent?

(a) yes (b)no (c¢) we cannot conclude from the information provided
(E) Do events A and B’ form a partition of the sample space 27

(a) yes (b)no (c¢) we cannot conclude from the information provided
(

F) Let E be “a voter, taken at random among the 1000 voters polled, did not vote as
he intended to two weeks prior to the election (in regard to the party in power).” We
can write that

(a) PE] = P[A| B'| 4+ P[A"| B]
(b) P[E] = P[ANB]+ P[A'n B/
(c) P[El=P[B"| A+ P[B | A]
(d) P[E]=P[ANB]+ P[A'NB
(e) P[E]=P[ANB']+ P[A' N B

Question no. 2
Let A and B be two events such that

P[ANB|=P[A'NB]=P[ANB] =

Calculate P [AU B].
@p (b)2p (c)3p (d)3p* (e)p’

Question no. 3

We have nine electronic components, of which one is defective. Five components are
taken at random to construct a system in series. What is the probability that the system
does not operate?

(a) /3 (b)4/9 () 1/2 (d) 5/9 () 2/3

Question no. 4

Two dice are rolled simultaneously. If a sum of 7 or 11 is obtained, then a coin is
tossed. How many elementary outcomes [of the form (diel, die2) or (diel, die2, coin)]
are there in the sample space (27

(a) 28 (b)30 (c)36 (d)44 (e) 72
Question no. 5

Let A and B be two independent events such that P [A] < P[B], P[AN B] = 6/25,
and P[A| B] + P[B | A] = 1. Calculate P [A].

(a) 1/25 (b)1/5 (c)6/25 (d)2/5 (e)3/5
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Question no. 6
In a certain lottery, 4 balls are drawn at random and without replacement among
25 balls numbered from 1 to 25. The player wins the grand prize if the 4 balls that
she selected are drawn in the order indicated on her ticket. What is the probability of
winning the grand prize?
1 24 1 1 1
@ o0 3063 “3me0 Y30em © 537000

Question no. 7

New license plates are made up of three letters followed by three digits. If we suppose
that the letters I and O are not used and that no plates bear the digits 000, how many
different plates can there be?

(a) 243 x 93 (D) (26 x 25 x 24) (10 x 9 x 8)  (c) 243 x (10 x 9 x 8)
(d) 243 x 999 (e) 25° x 93

Question no. 8
Let P[A| B]=1/2, P[B'] =1/3, and P[AN B’] = 1/4. Calculate P [A].
(a) 1/4 (b)) 1/3 (c¢)5/12 (d)1/2 (e) 7/12

Question no. 9

In the lottery known as 6/49, first 6 balls are drawn at random and without replace-
ment among 49 balls numbered from 1 to 49. Next, a seventh ball (the bonus number)
is drawn at random among the 43 remaining balls. A woman selected what she thinks
would be the six winning numbers for the next draw. What is the probability that this
woman actually did not select any of the seven balls that will be drawn (including the
bonus number)?

wil nE ol 9l o0&
(5) (5) (7) (7) (7)
Question no. 10
In a quality control procedure, every electronic component manufactured is subjected
to (at most) three tests. After the first test, an arbitrary component is classified as either
“good,” “average,” or “defective,” and likewise after the second test. Finally, after the
last test, the components are classified as either “good” or “defective.” As soon as a
component is classified as defective after a test, it is returned to the factory for repair.
The following random experiment is performed: a component is taken at random and
the result of each test it is subjected to is recorded. How many elementary outcomes
are there in the sample space {27

(a)3 ()8 (c)11 (d)18 (e)21

Question no. 11

Let P[A] = 1/3, P[B] = 1/2, P[C] = 1/4, P[A| B] = 1/2, P[B| A] = 3/4,
P[A|C] = 1/3, P[C|A] = 1/4, and P[BNC] = 0. Calculate the probability
P[A|BUC(].
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()0 (b)1/3 (c)4/9 (d)5/6 (o)1

Question no. 12
A fair die is rolled twice (independently). Consider the events

A = “the two numbers obtained are different;”
B = “the first number obtained is a 6;”
C = “the two numbers obtained are even.”

Which pairs of events are the only ones comprised of independent events?

(a) no pairs  (b) (A,B) (¢) (A,B) and (B,C) (d) (A,B) and (4,C)
(e) the three pairs

Question no. 13

A man plays a series of games for which the probability of winning a given game,
from the second one, is equal to 3/4 if he won the previous game and to 1/4 otherwise.
Calculate the probability that he wins games nos. 2 and 3 consecutively if the probability
that he wins the first game is equal to 1/2.

(a) 3/16  (b)1/4 (c)3/8 (d)9/16 () 5/8

Question no. 14

A box contains two coins, one of them being fair but the other one having two
“heads.” A coin is taken at random and is tossed twice, independently. Calculate the
probability that the fair coin was selected if “heads” was obtained twice.

(a) 1/5 (b)1/4 (c) 1/3 (d)1/2 () 3/5



3

Random variables

The elements of a sample space may take diverse forms: real numbers, but also brands of
components, colors, “good,” or “defective,” and so on. Because it is easier to work with
real numbers, in this chapter we transform all the elementary outcomes into numerical
values, by means of random variables. We consider the most important particular cases
and define the main functions that characterize random variables.

3.1 Introduction

Definition 3.1.1. A random variable is a real-valued function defined on a sample
space.

Example 3.1.1. (i) Suppose that a coin is tossed. The function X that associates the
number 1 with the outcome “heads” and the number 0 with the outcome “tails” is a
random variable.

(i) Suppose now that a die is rolled. The function X that associates with each elemen-
tary outcome the number obtained (so that X is the identity function in this case) is
also a random variable.

Example 3.1.2. Consider the random experiment that consists in observing the time
T that a person must wait in line to use an automatic teller machine. The function T
is a random variable.

3.1.1 Discrete case

Definition 3.1.2. A random variable is said to be of discrete type if the number of
different values it can take is finite or countably infinite.

M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics 55
and Technology, DOI: 10.1007/978-0-387-74995-2 3,
© Springer Science + Business Media, LLC 2009
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Definition 3.1.3. The function px that associates with each possible value of the (dis-
crete) random variable X the probability of this value is called the probability (mass)
function of X.

Let {1, x2,...} be the set of possible values of the discrete random variable X. The
function px has the following properties:

(i) px (zx) > 0 for all xy;
(i) Yopsy px (k) = 1.

Example 3.1.1 (continued). (i) If the coin is fair (or unbiased, or well-balanced), we
may write that

T 0 1
px(z)[1/21/2

(ii) Similarly, if the die is fair, then we have the following table:

z |1 2 3 4 5 6
px (x)[1/6 1/6 1/6 1/6 1/6 1/6

Definition 3.1.4. The function F'x that associates with each real number x the proba-
bility P[X < z] that the random variable X takes on a value smaller than or equal to
this number is called the distribution function of X. We have:

Fx(l‘) = Z px(xk).

<z

Remark. The function Fx is nondecreasing and right-continuous.

Example 3.1.1 (continued). (i) In the case of the coin, we easily find that (if
P[{heads}] = 1/2)

T 01
Fx(z)|1/2 1

Remark. More completely, we may write that
0 ifx <0,
Fx(z)=<} 1/2if0<z <1,
1 ifax>1,
where x is an arbitrary real number.

(ii) If the die is well-balanced, then we deduce from the function px(z) the following
table:

z |1 2 3 4 5 6
Fx(2)|1/61/31/22/35/6 1

(see Figure
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14
0.8% -
0.6% 7
0.4% _O_O
0-25 -
0 A—O

1 2 3 4 5 6 7
X

Fig. 3.1. Distribution function of the random variable in Example 3.1.1 (ii).

3.1.2 Continuous case

Definition 3.1.5. A random variable that may take an uncountably infinite number of
values is said to be of continuous type.

Example 3.1.2 (continued). Because the set of possible values of the random variable
T in Example 3.1.2 is the interval (0,00), T is a continuous random variable.

Remark. We assume in Example 3.1.2 that the person cannot arrive and use the ATM
immediately, otherwise T" would be a random variable of mized type, that is, a variable
that is discrete and continuous at the same time. We do not insist on this type of random
variable in this textbook.

Definition 3.1.6. The (probability) density function of a continuous random vari-
able X is a function fx defined for all x € R and having the following properties:

(i) fx(x) >0 for any real number x;
(i) if A is any subset of R, then

PXeAl= /AfX(z) dzx.

Remarks. (i) Because X is a real-valued function, so that it must assume some value in
the interval (—oo, 00), we can write that

1=P[X € (—00,0)] = /_Oo fx(x)d.

(ii) The density function is different from the probability function px of a discrete
random variable. Indeed, fx(x) does not give the probability that the random variable



58 3 Random variables

X takes on the value x. Moreover, we may have that fx(z) > 1. Actually, we may write
that . .

where € > 0 is small. Thus, fx(z)e is approximately equal to the probability that X
takes on a value in an interval of length € about .

Definition 3.1.7. The distribution function F'x of a continuous random variable X
1s defined by

Fx(z) = P[X <z :/ fx(u)du
We deduce from this definition that

PX=z]=Px<X<z|= [X<9c] PIX < x]

/ fx(u du—/ fx(u)du=0

for any real number =, where £~ means that the range of the integral is the open interval
(=00, x). That is, before performing the random experiment, the probability of obtaining
a particular value of a continuous random variable is equal to zero. Therefore, if we take
a point at random in the interval [0, 1], we may assert that the point that we will obtain
did not have, a priori, any chance of being selected!

We also deduce from the previous definition that

d

—Fx(@) = fx(@) (3.1)

for any x where Fx () is differentiable.

Remarks. (i) If X is a continuous random variable, then its distribution function Fx is
also continuous. However, a continuous function is not necessarily differentiable at all
points. Furthermore, the density function of X may be discontinuous, as in the next
example. Actually, fx is a piecewise continuous function, that is, a function having at
most a finite number of jump discontinuities (see p. 2). We say that fx has a jump
discontinuity at x¢ if both lim, )., fx (z) and limgq,, fx () exist, but are different.

(ii) Every random variable X has a distribution function Fx. To simplify the presen-
tation, we could theoretically define the density function fx as the derivative of F'x,
whether X is a discrete, continuous, or mixed type random variable. We mentioned in
the previous remark that when Fx is a continuous function, its derivative is a piecewise
continuous function. However, in the case of a discrete random variable, the distribution
function Fx is a step or staircase function, as in Figure 3.1. The derivative of a step
function is equal to zero everywhere, except at the jump points =, £ = 1,2,... . We
can write that
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_FX = ZP x—xk),
k=1

where P[X = zj] = limg),, Fx(x) —limg,, Fx(z), and 6(-) is the Dirac delta function
(see p. 4). Similarly, the density function of a mixed type random variable involves
the Dirac delta function. To avoid using this generalized function, the vast majority of
authors prefer to consider the discrete and continuous random variables (and vectors)
separately. In the discrete case, we define the probability mass function px (zx) = P[X =
xg], as we did above, rather than the density function.

Example 3.1.3. Suppose that the waiting time (in minutes) to be served at a counter
in a bank is a continuous random variable X having the density function (see Figure §.2]]

1.4
1.2

0.8 ]
0.6 ]
0.4
0.2

0+

0.5 1 1.5 2 2.5
X

Fig. 3.2. Density function of the random variable in Example 3.1.3.

0 ifx<0,
I[x(z) = 1/2 if0o<z<l,
3/(22%) if x > 1.

Note that the function fx is a valid density function, because fx(z) > 0 for all z and

o] 1 e} 0
1 3 11 11
de= [ >d S dr=c | =-4-=1
/0 Fx (@) da /02 x+/1 51T s, T2 2

Calculate (a) the distribution function of X and (b) the conditional probability
PX>2|X >1].
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Solution. (a) By definition,

x
/ 0Odu=0 if x <0,
—00
0 T
1
Fx(x) = / Odu—i—/o §du:g ifo<z <1,
—00

0 11 x 3 1 )

— 00

(see Figure

0.84
0.6
0.4+

0.2+

05 1 15 2 25
X

Fig. 3.3. Distribution function of the random variable in Example 3.1.3.

(b) We seek

CPHX>2In{X>1}] P[X>2
PIX>2|X>1] = PIX > 1] T P[X > 1]
1-P[X <2 1-Fx(2 i

1-PX<1 1-Fx(1

) _
)

Remark. Because X is a continuous random variable, P[X < z] = P[X < z| = Fx(x)
for any real number z. It follows that P[X > 2| X > 1] = 1/8 as well. In general, we

have:
Pla<X <b=Pla<X <b=Pla<X <b=Pla<X <D

if X is a continuous random variable.
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3.2 Important discrete random variables

3.2.1 Binomial distribution

Suppose that we perform repetitions of a certain random experiment and that we divide
the set of possible outcomes into two mutually exclusive and exhaustive subsets: By N
By = () and B; U By = 2. That is, By and B, constitute a partition of the sample space
2 (see p. 35). If the elementary outcome that occurs belongs to Bj, then we say that
the experiment resulted in a success; in the opposite case, it resulted in a failure.

Definition 3.2.1. Let X be the (discrete) random variable that counts the number of
successes obtained in n repetitions of a random experiment, where n is fived. If

(i) the probability p of success is constant for the n trials and

(i) the trials are independent,

then we say that X has (or follows) a binomial distribution with parameters n and
p. We write that X ~ B(n,p).

Remark. A parameter is a symbol that appears in the definition of a random variable
and that can take different values. For example, in the case of the binomial distribution,
n can take on the values 1,2, ..., and p all the values in the interval (0, 1). In practice,
the parameter p is generally unknown.

Now, suppose that, when we performed the n trials, we first obtained = consecutive
successes S and then n — z consecutive failures F'. By independence, we may write that
the probability of this elementary outcome is

P[SS...S FF...F]={P[S|}*{P[F]}" " =p°(1 —p)"°.

x times (n—x) times

Hence, given that we can place the x successes among the n trials in (2) different ways,
we deduce that the probability function of the random variable X ~ B(n,p) is given by

px(z) = < >pzq""” forx =0,1,...,n,
x

where ¢ := 1 — p.

Remarks. (i) We have that px (z) > 0 for all = and, by Newton’s binomial formula,

;px(x) = Xn: (Z)pman =(p+q" =1,

z=0

as should be.
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(ii) The distribution function of X is

k

Fx(k) = Z <Z)pzq"‘” for k=0,1,...,n.

=0

There is no simple formula (without a summation symbol) for Fx. To evaluate this
function, we can use a pocket calculator or a statistical software package. Some values
of the distribution function F'x are given in Table B.1, page 276.

(iii) The shape and the position of the probability function px depend on the parameters
n and p (see Figure $4)]

Py(X) Py (X)
0.3+
116 + I 0.054 T
— — 1 e o =
o 1 2 3 4 X 01 2 3 4 5 6 7 X
n=4,p=05 n=7,p=0.25

Fig. 3.4. Probability functions of binomial random variables.

(iv) If X has a binomial distribution with parameters n = 1 and p, we also say that X
follows a Bernoulli distribution with parameter p. We thus have:

px(x) = p*(1 —p)l_’” ifz=0,1,

_[1-pifx=0,
o p ifx=1.
Moreover, we can show that if the random variables X,..., X,, are independent (see

Section 4.1) and if they all have a Bernoulli distribution with parameter p, then

X = iXi ~ B(n,p).

i=1

Finally, we say that a binomial random variable counts the number of successes in n
Bernoulli trials, that is, in n independent trials for which the probability p of success is
the same from trial to trial.
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Example 3.2.1. In an airport, five radars are in operation and each radar has a 0.9
probability of detecting an arriving airplane. The radars operate independently of each
other.

(a) Calculate the probability that an arriving airplane will be detected by at least four
radars.

(b) Knowing that at least three radars detected a given airplane, what is the probability
that the five radars detected this airplane?

(c) What is the smallest number n of radars that must be installed if we want an arriving
airplane to be detected by at least one radar with probability 0.99997

Solution. Let X be the number of radars that detect the airplane.
(a) We have that X ~ B(n =5,p =0.9). We seek

P[X >4] = (Z) (0.9)%(0.1) + (0.9)° = (0.9)*[5 x (0.1) + 0.9] ~ 0.9185.

Remark. Let Y be the number of radars that do not detect the arriving airplane. We
find in Table B.1, page 276, that

P[X >4] = P[Y < 1] ~0.9185.

(b) We want

PIX=5|X >3] = P[{X?§2{§>3}]:§§

PlY = ab. B.1 0.
@) [Y=0]r b Bl 0.5905 ~ 0.506.
PlY < 2] 0.9914

5]
3]

VI

(¢) We now have that X ~ B(n,p = 0.9) and we seek (the smallest) n such that P[X > 1]
= 0.9999. We have:

PIX>1=1-PX=0=1- (g) (0.9)°(0.1)"° =1 — (0.1)"
=0.9999 <= (0.1)" =0.0001 = (0.1)*.

Thus, we may write that ny;, = 4.

Remark. Note that, n being a positive integer, we cannot, in general, find a value of
n for which the probability requested is exactly equal to a given number p. We must
rather find the smallest n for which the probability of the event in question is greater
than or equal to p. For instance, here if we had required the probability of detecting the
airplane to be (at least) 0.9995, then the answer would have been the same: nmyi, = 4.
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3.2.2 Geometric and negative binomial distributions

Definition 3.2.2. Let X be the random variable that counts the number of Bernoulli
trials needed to obtain a first success. We say that X has a geometric distribution
with parameter p, where p is the probability of success on any trial. We write that X ~

Geo(p) [or Geom(p)].

We have: -
px(x) =P[FF...F S| ind. {P[F]}*'P[S] = ¢*'p

(z—1) times

forx = 1,2,... . We observe that the function py is strictly decreasing (see Figure Z@

Py (X)
0251
[ L1
1 2 3 4 5 6 7---X
p=0.25

Fig. 3.5. Probability function of a geometric random variable.

Remarks. (i) We have that px (z) > 0 for all z and
ipx(x) = ;Df:q‘/""*1 —p— =1,
=1 r=1 1- q

so that the function px is a valid probability function.

(ii) The distribution function of X is given by

1—4q"

1—gq 9

Fx(x) = px(k)=p) ¢ " =p
k=1 k=1

for z =1,2,... . Note that we then deduce that P[X > z| = ¢".
(iii) Making use of the formula P[X > z] = ¢*, we can show that

PX>z+y| X >z]=PX >y] foranyz,yec{0,1,2,...}.
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This property is known as the memoryless property of the geometric distribution.

Remark. The geometric distribution is sometimes defined as the number of Bernoulli
trials performed before the first success occurs.

Definition 3.2.3. Let X be the random variable that counts the number of Bernoulli
trials performed until the rth success occurs, where r = 1,2,... . We say that X has
a negative binomial distribution with parameters r and p. We write that X ~
NB(r, p).

Note that the geometric distribution is the particular case of the negative binomial
distribution obtained with r = 1. We get the probability function of X as follows:

px(z) =P F...F §...S]+P[ F...F SF §...8 ]
(z—r) times 7 times (z—r—1) times (r—1) times
4 +P[S...S F..FE 8
—_— ==

(r—1) times (z—r) times

-1
= (i_ 1)pr(1 —p)*7" forxz=rr+1,.... (3.2)

by independence and incompatibility, because there are (fj) different ways of placing

the r — 1 successes among the first « — 1 trials (the ath trial being necessarily a success).

Remarks. (1) The negative binomial distribution is also known as the Pascal distribution.

(ii) As in the case of the binomial distribution, the shape and the position of the function
px vary according to the values taken by the parameters r and p.

(iii) Notice the difference between the binomial and the negative binomial distributions:
a binomial random variable counts the number of successes in a fized number (n) of
trials, whereas in the case of the negative binomial distribution, the random variable
denotes the number of trials required to obtain a fized number (r) of successes. If X ~
NB(r,p), then we can write that

P[X =x]=PB(x—1,p)=r—1] p.

Moreover, we can show the following relation between the two distributions:
PINB(r,p) < z] = P[B(r + x,p) > r].

Example 3.2.2. A man shoots at a target until he has hit it twice. Suppose that the

probability that a given shot hits the target is equal to 0.8. What is the probability that
the man must shoot exactly four times?
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Solution. Let X be the number of shots needed to end the random experiment. Then, if
we assume that the shots are independent, we may write that X ~ NB(r = 2,p = 0.8).
We seek

P[X =4] = px(4) = (i’) (0.8)2(1 — 0.8)% = 3 x (0.64)(0.04) = 0.0768.

Remark. If the man stops shooting as soon as he hits the target, then X ~ Geo(p =
0.8) and
P[X =4] = (1 - 0.8)%(0.8) = 0.0064.

3.2.3 Hypergeometric distribution

Suppose that we perform n repetitions of a random experiment, but that the proba-
bility of success varies from one repetition to another. For example, we take without
replacement n objects in a lot of finite size N, and we count the number of defective
objects obtained. In this case, we cannot use the binomial distribution. Suppose that d
objects, among the N, are defective (or possess a certain characteristic). Let X be the
number of defective objects obtained among the n drawn. We have:

()G
% for z =0,1,...,n. (3.3)
n
Indeed, there are (]T\Z ) different (equiprobable) samples of size n and, among them, there
d) ) (N—d

Remark. We have that (Z) =0ifk<O0ork>n.

px(x) =

are ( ) with exactly = defective and n — x nondefective objects.

Definition 3.2.4. We say that the random variable X whose probability function is
given by Formula (3.3) follows a hypergeometric distribution with parameters N,
n, and d. We write that X ~ Hyp(N,n,d).

We must have that N € {1,2,...}, n € {(0),1,2,...,N}, and d € {(0),1,...,N}.
Moreover, if the size N of the lot is large in comparison to the size n of the sample, then
the fact of taking the objects without replacement will not influence much the probability
of getting a defective object from draw to draw. That is, it is almost as if the objects
were taken with replacement. Now, in that case, we may write that X ~ B(n,p =
d/N). Hence, we deduce that the binomial distribution can be used to approximate
the hypergeometric distribution. To be more precise, we can show that if d and N
tend to infinity in such a way that d/N converges to p, but n is kept constant, then the
distribution of X ~ Hyp(N,n,d) tends to that of a B(n, p) random variable. In practice,
the approximation obtained should be good when n/N < 0.1.
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Remark. The quantity n/N is called the sampling fraction.

Example 3.2.3. Lots containing 25 devices each are subjected to the following sampling
plan: a sample of 5 devices is taken at random and without replacement, and the lot
is accepted if and only if the sample contains less than 3 defective devices. Calculate,
supposing that there are exactly 4 defective devices in a particular lot,

(a) the probability that this lot is accepted,;

(b) an approximation of the probability calculated in (a) with the help of a binomial
distribution.

Solution. Let X be the number of defective devices in the sample. We have that X ~
Hyp(N =25,n=5,d =4).
(a) Let F be the event “the lot is accepted.” We seek

= () ()
P[F]=P[X <2]=) 222
=0 (5)
~ 0.3830 + 0.4506 + 0.1502 ~ 0.984.
(b) We can write that
P[X <2~ P[Y <2], whereY ~ B(n=25,p=4/25)

2
5
= (y> (4/25)Y(21/25)°Y ~ 0.4182 + 0.3983 + 0.1517 ~ 0.968.
y=0
Note that here we have that n/N = 5/25 = 0.2, which is greater than 0.1. Therefore, we

did not expect the approximation to be very good. If we replace N = 25 by N = 100,
so that n/N = 0.05, we obtain that

P[Hyp(N = 100,n = 5,d = 4) < 2] ~ 0.9998

and
P[B(n =5,p=4/100) < 2] ~ 0.9994,

which is a better approximation. Finally, if we keep the same ratio d/N = 4/25 = 0.16,
but if we assume that N = 100 and d = 16, then we calculate

P[Hyp(N =100,n = 5,d = 16) < 2] ~ 0.9720,
and with N = 200 and d = 32, we find that
P[Hyp(N = 200,n = 5,d = 32) < 2] ~ 0.9700.

Notice that the quality of the approximation P[X < 2] ~ 0.968 obtained with a binomial
distribution increases with increasing N, even though d/N is always equal to 0.16.



68 3 Random variables
3.2.4 Poisson distribution and process

Let X be a random variable having a binomial distribution with parameters n and p. We
can show that if n tends to infinity and p decreases to 0, in such a way that the product
np remains equal to the constant A, then the probability function of X converges to the
function px (z) given by

e A\

px(z) = o forz=0,1,.... (3.4)

Definition 3.2.5. We say that the discrete random variable X whose probability func-
tion is given by Formula (3.4) has o Poisson distribution with parameter A > 0. We
write that X ~ Poi(X).

Remarks. (1) Making use of the formula

2

e :1+x—|—2!

_|_...’

we easily show that the function defined in (3.4) is a valid probability function.

(ii) The Greek letter « is also often used for the parameter of the Poisson distribution.
In statistics, we write 6 to designate an arbitrary parameter of a random variable.

(iii) The shape of the probability function px depends on the value of the parameter .

(iv) To evaluate the distribution function of a Poisson random variable, we can use
a pocket calculator or a statistical software package. Table page 278, gives many
values of this function.

(v) We deduce from what precedes that we can use a Poisson distribution with parameter
A = np to approximate the binomial distribution with parameters n and p. In general,
the Poisson approzimation should be good if n > 20 and p < 0.05. If the value of p
is greater than 1/2, then we must consider the number of failures (with probability
1 —p < 1/2) rather than the number of successes before performing the approximation
by the Poisson distribution.

Example 3.2.4. A new type of brakes is being studied. The company manufacturing
these brakes claims that they could last at least 100,000 km for 90% of the vehicles that
will use them. A laboratory simulated the driving of 100 cars using these brakes. Let X
be the number of cars whose brakes will not last 100,000 km.

(a) What distribution does X follow?
(b) We will doubt the claimed percentage if the brakes must be changed on 17 cars or

more before 100,000 km. What is, approximately, the probability of observing this event
if, in fact, the claimed percentage is exact?
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Solution. (a) By definition, if we assume that the cars are independent, we may write
that X ~ B(n = 100,p = 0.1).

(b) We want P[X > 17]. We have that P[X > 17] ~ P[Y > 17], where Y ~ Poi(A =
100(0.1) = 10). We then find in Table B.2, page 278, that

P[Y >17] = 1— P[Y < 16] ~ 1 — 0.9730 = 0.0270.

Remark. Here, we have that n = 100 and p = 0.1. The value of n is very large, which is
preferable, but that of p is slightly too large to expect a good approximation. Actually,
we find that P[X > 17] ~ 0.021.

Poisson process

Suppose that the random variable N(¢) denotes the number of events that will occur
in the interval [0,¢]. For instance, we can be interested in the number of failures of a
machine, or in the number of customers, or in the number of telephone calls in the
interval [0,¢]. If we make the following assumptions:

(i) N(0) = 0;

(ii) the value of N(t4) — N(t3) is independent of the value taken by N(t2) — N(t1) if
0 <t <ty <tz <ty

(iii) N(t+ s) — N(t) ~ Poi(As), for s,t > 0,

then the set {N(¢),t > 0} of random variables is called a Poisson process with rate
A>0.

Remarks. (1) Condition (ii) above means that what happens in two disjoint intervals is
independent. Furthermore, condition (iii) implies that the distribution of the number of
events in an arbitrary interval depends only on the length of this interval. We say that
the Poisson process has independent and stationary increments, respectively.

(ii) Conditions (i) and (iii) imply that N(t) = N(t 4+ 0) — N(0) ~ Poi(At).

(iii) The Poisson process is a very important particular case of what is known as a
stochastic or random process. A stochastic process is a set {X(t),t € T} of random
variables X (t) (see Chapter 6). The set T is a subset of R. In the case of the Poisson
process, we take T' = [0, 00). For every particular value ¢ of ¢, we get a random variable
N(tp) having a Poisson distribution with parameter Aty. It is important to distinguish
between the random wvariable N(t) and the random process {N(t),t > 0}.

(iv) The Poisson process is a particular continuous-time Markov chain, and is used
abundantly in communication theory and in queueing theory, which is the subject of
Chapter 6.

Example 3.2.5. Telephone calls arrive at an exchange according to a Poisson process
with rate A\ = 2 per minute (i.e., calls arrive at the average rate of 2 per minute,
according to a Poisson distribution). Calculate the probability that exactly 2 calls will
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be received during each of the first 5 minutes of a given hour. What is the probability
that exactly 10 calls will be received during the first 5 minutes of the hour in question?

Solution. Let N(1) be the number of calls received during a 1-minute period. We can
write that N (1) ~ Poi(2-1). We first calculate

67222
P[N(1) = 2] = P[Poi(2) = 2] = T 2¢72,

Next, let M be the number of minutes, among the 5 minutes considered, during
which exactly 2 calls will be received. By independence, we may write that M follows a
binomial distribution with parameters n = 5 and p = 2e~2. We seek

5

P[M =5] = (5

)(26—2)5(1 —2e72)57% = 32¢71% ~ 0.00145.

To obtain the probability that exactly 10 calls will be received during the first 5
minutes of the hour considered, we calculate

6_101010
P[N(5) = 10] = P[Poi(2-5) = 10] = —— 57— =~ 0.125L.

3.3 Important continuous random variables

3.3.1 Normal distribution

Definition 3.3.1. Let X be a continuous random variable that can take any real value.
If its density function is given by

1 _ 2
- e {@5)
V2o 20
then we say that X has a normal (or Gaussian) distribution with parameters jn and

o2, where p € R and o > 0. We write that X ~ N(u,0?).

fx(z) } for —oco < x < o0,

Remark. The parameter p is actually equal to the mean of X, and o is the standard
deviation of X (see Section 3.5). Furthermore, the standard deviation of a random
variable is the square root of the variance of this variable. Therefore, in the case of the
normal distribution, o2 is its variance.

The normal distribution is the most important continuous distribution, largely be-
cause of the central limit theorem, which is stated in Chapter 4. Moreover, all normal
distributions have the same general shape, namely that of a bell (see Figure
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0.1 +

Vv

1 1 X

u=0 o2=1

Fig. 3.6. Density function of a normal random variable.

The functions fx(z) are symmetrical with respect to the parameter p. That is,

fx(p—2)=fx(u+z) foralazeckR.

The points 4 — o and p + o are those where the function fyx changes its direction of
concavity. Finally, the larger o is, the more flattened the curve is. Conversely, if o is
small, then the curve is concentrated around the mean pu.

Now, let X ~ N(u,0?). We can show (see Section 3.4) that if we define the random
variable Z = (X — p)/o, then Z ~ N(0,1). The notation Z is used, in general, for the
N(0,1) distribution. Its density function is often denoted by ¢(z).

Remark. The N(0, 1) distribution is called the standard or unit normal distribution.

The main values of the distribution function of the N(0, 1) distribution, denoted by
&(2), are presented in Table B.3.page 279. With the help of this table, we can calculate
the probability Pla < X < b] for any normal distribution. The table gives the value of
&(z) for positive z. By symmetry, we may write that #(—z) =1 — &(z2).

If we look for the number a for which P[X < a] =p > 1/2, we first find the number
z in Table hat corresponds to this probability p (sometimes we must interpolate in
the table), and then we set

a=pu+z-0.
If p < 1/2, the formula becomes (by symmetry)
a=p—2z-0.

Finally, the numbers b that correspond to the main values of the probability p :=
P[X > b], for instance, p = 0.05, p = 0.01, and so on, are given in Table page 280.
Note that these numbers can be written as follows:

b=d""'(1-p) =Q (p),
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where Q(z) := 1 — &(2) and Q™! is the inverse function of Q.

Example 3.3.1. Suppose that the compressive strength X (in pounds per square inch)
of a certain type of concrete has a normal distribution with parameters p = 4200 and
o? = (400)2.

(a) Calculate the probability P[3000 < X < 4500].

(b) Solve the following equations: (i) P[X < a] = 0.95; (ii) P[X > b] = 0.9.

Remark. In fact, the model proposed for the compressive strength of the concrete cannot
be the exact model, because a normal distribution can take on any real value, whereas
the compressive strength cannot be negative. Nevertheless, the model in question may
be a good approximation to the true (unknown) model. Furthermore, we find that the
probability that a random variable having a N(u,0?) distribution will take on a value
in the interval [u — 30, u + 30] is greater than 99.7%.

Solution. (a) We have:

P[3000 < X < 4500] =

3000 — 4200 _ X — 4200 _ 4500 — 4200
400 T 400 400
=  P[-3<Z<0.75 = (0.75) — &(—3)

T B30 7734 — 0.0013 = 0.7721.

(b) (i) We find in Table B.3, page 279, that P[Z < 1.645] ~ 0.95 (see also Table
page 280). Hence, we may write that

a ~ 4200 + (1.645)(400) = 4858.

i) We have that P[X >b] = 0.9 & P[X < b] = 0.1. Next, we may write that

b — 4200 b — 4200
PX = 0l<=P|Z<—|=01l<=P| —— | =0.1
[X < b] 0 { <100 } 0 ( 100 ) 0

b — 4200
@ Q (4:()0) — 0-9.

Finally, we find in Table B.4 that the value that corresponds to @~1(0.1) is approxi-
mately equal to 1.282. Because, by symmetry, Q~1(0.9) = —Q~1(0.1), it follows that

b ~ 4200 + (—1.282)(400) = 3687.2.

Making use of the central limit theorem (see Chapter 4), we can show that, if n is
large enough, we can use a normal distribution to approximate the binomial distribution
with parameters n and p. Let X ~ B(n,p). The de Moivre-Laplace approzimation is
the following:
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PX =z] ~ fy(z) forz=0,1,...,n,
where Y ~ N(np, npq).

Remarks. (i) Thus, we replace a probability at a point by the value of a density function
evaluated at this point. Recall that fy(z) is not the probability that Y takes on the
value z. Indeed, because Y is a continuous random variable, we know that P[Y = 2] =0
for all z € R.

(ii) The mean of the binomial distribution is given by np, and its variance by np(1 — p)
(see Section 3.5). It is therefore logical to choose puy = np and 0% = npq.

When we want to evaluate (approximately) a probability of the form Pla < X < b]
with the help of a normal distribution, we use the following formula:

P[aSXSb}:P[ZﬁM}—P{ZSQ_O'S_np], (3.5)

v 1pPq VAL

where a and b are integers.

Remarks. (i) To approximate the probability Pla < X < b], we must write that
Pla<X <b=Pla+1<X <b—1] (3.6)

NP[Zg b0.5np} P{ZS a+0.5np].

Vv 1Pq v npq

(ii) The term 0.5 in Formula (3.5) [and (3.6)] is a continuity correction factor that most
authors recommend using, because we replace a discrete distribution by a continuous
distribution.

(iii) The approximation obtained should be good if np > 5 when p < 0.5, or if n(1—p) > 5
when p > 0.5. The normal distribution being symmetrical, it is easier to approximate
the distribution of X ~ B(n,p) with p ~ 1/2 than to approximate the distribution of
a binomial random variable having a very small or very large parameter p. Actually,
in that case, we should use the Poisson approximation that we saw in the preceding
section.

Example 3.3.2. A manufacturing process produces 10% defective items. A sample of
200 items is drawn at random. Let X be the number of defective items in the sample.
Use a normal distribution to calculate (approximately) the probability P[X = 20].

Solution. We may assume (see the first remark below) that the random variable X has
a B(n =200,p = 0.1) distribution. So, we have that np = 20 > 5. We set

P[X =20] ~ fy(20), where Y ~ N(20,18)
1 {_ (20 — 20)2

= ————¢x ~ 0.0904.
N NiT 2.18 }
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We can also proceed as follows:

P[X =20] = P[20 < X < 20

20 + 0.5 — 2 20 — 0.5 — 2
o ply < 20405 0]_P[Z§ 0—0.5—20
V18 V18
Tab. B.3
~ &(0.12) — B(—0.12) A~ 2(0.5478) — 1 = 0.0956.

Remarks. (i) In the statement of the problem, it is not specified whether the sample
is taken with or without replacement. At any rate, in order to use the hypergeometric
distribution, we need the value of the size N of the lot, which is not specified either.
Therefore, we must assume that all the items in the sample have a 0.1 probability of
being defective, independently from one item to the other.

(ii) The exact value, obtained by using the binomial distribution, is

200

P[X =20] = (20

)(0.1)20(0.9)180 ~ 0.0936.

(iii) The Poisson approximation should work well in this example, because n is very
large and p is relatively small. We find that

20
P[X = 20] ~ P[Poi(\ = 20) = 20] = 6*202207 ~ (.0888.

Thus, the normal approrimation is actually better in this particular example.

3.3.2 Gamma distribution

Definition 3.3.2. The gamma function, denoted by I', is defined by
I'(u) = / " re " dx  foru > 0. (3.7)
0

We can show that I'(u) = (u— 1)I"(u — 1) if u > 1. Because we find directly that
I'(1) = 1, we may write that

I'u)=(u-1! ifue{l,2,...}.
Moreover, we have that I'(1/2) = /.

Definition 3.3.3. Let X be a continuous random variable whose density function is
given by
A
fx(x) = m(/\:c)afle”‘w for z > 0.
We say that X has a gamma distribution with parameters o > 0 and X > 0. We
write that X ~ G(a, A).
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Remark. The parameter A is a scale parameter, whereas « is a shape parameter. The
shape of the density function fx changes a lot with «, when « is relatively small (see
Figure When « becomes large, fx(z) tends to a normal density, which is a conse-
quence of the central limit theorem because, when « is an integer, the random variable
X can be represented as a sum of a random variables (see the next remark). When
0 < a < 1, the function fx(x) tends to infinity as = decreases to 0.

1.6
1.4
1.2

11
0.84
0.6 1
0.4+
0.2

0- . : : .

Fig. 3.7. Density functions of various random variables having a gamma distribution with
A=1.

In general, we cannot give a simple formula, that is, without an integration sign
in it, for the distribution function of a random variable having a gamma distribution.
However, if the parameter « is a (positive) integer n, we can show that

P[G(n,\) < z] = P[Poi(Az) > n] = 1 — P[Poi(Az) <n —1].

Note that this formula enables us to express the distribution function of a continuous
random variable X ~ G(n, A) in terms of that of a discrete random variable Y ~ Poi(Ax):

Fx({L‘) =1- Fy(n— 1)

Particular cases

(i) If « is a natural number, then we also say that X follows an Erlang distribution,
which is important in queueing theory.

(ii) If @« = n/2, where n € {1,2,...}, and A = 1/2, then the gamma distribution is also
known as the chi-square distribution with n degrees of freedom. We write that X ~ x2.
This distribution is very useful in statistics.

(iii) If &« = 1, then the density function fx becomes
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fx(x)=Xe ™ for z > 0.

We say that X has an exponential distribution with parameter A > 0. We write that
X ~ Exp()\).

Remark. If X1,...,X,, are independent random variables and if X; ~ Exp()), for i =
1,...,n,then Y := Z?:l X; follows a gamma distribution with parameters n and A
(see Chapter 4).

Suppose now that {N(¢),t > 0} is a Poisson process with rate A. Let T be the arrival
time of the first event of the process. We may write that

P[T > t] = P[N(t) = 0] = P[Poi(\t) = 0] = e~ .

It follows that d
fr(t)=——P[T >t =X e fort>0.
dt

Thus, we may assert that the random variable T" has an exponential distribution with
parameter \. Using the above remark and the properties of the Poisson process, we may
also assert, more generally, that the time needed to obtain n events (from any time
instant) has a G(n, A) distribution. This result enables us to justify Formula (3.3.2).

Remark. We can show that the exponential distribution, just as the geometric distribu-
tion, possesses the memoryless property. That is, if X ~ Exp()), then

PX>t+s| X >t]=P[X >s| fors,t>0.

Actually, only the geometric and exponential distributions possess this memoryless prop-
erty. Furthermore, in the case of the geometric distribution, the property is only valid
for sand t € {0,1,2,...}.

Example 3.3.3. The lifetime (in years) of a radio has an exponential distribution with
parameter A = 1/10. If we buy a five-year-old radio, what is the probability that it will
work for less than 10 additional years?

Solution. Let X be the total lifetime of the radio. We have that X ~ Exp(A = 1/10).
We seek

P[X <15| X >5]=1-P[X >15|X > 5] =1— P[X > 10] = P[X < 10]

10

1 10

= / —e M0 gy = —e=®/10] " =1 _ ¢~ ~ (.6321.
o 10 0

Because of its memoryless property, the exponential distribution is widely used in re-
liability. This property implies that the failure rate of a device is constant over time. The
exponential distribution appears in the theory of stochastic processes and in queueing
theory as well.



3.3 Important continuous random variables 7

An extension of the exponential distribution to the entire real line is obtained by
defining

A
fx(z)= 56_/\|I| for —oo < < o0,

where A is a positive constant. We say that the random variable X has a double expo-
nential distribution, or a Laplace distribution, with parameter .

3.3.3 Weibull distribution

Definition 3.3.4. Let X be a continuous random variable whose density function is of
the form
fx(z) = ABzPLexp {—)\xﬁ} for z > 0.

We say that X follows a Weibull distribution with parameters A\ > 0 and 3 > 0. We
write that X ~ W(A, 3).

The Weibull distribution generalizes the exponential distribution, which is obtained
by taking 8 = 1. It is important in reliability. Like the gamma distribution, it can be
used in numerous applications because of the various shapes taken by its density function
depending on the values given to the parameter §. It is also one of the distributions
known as extreme value distributions. These distributions are used to model phenomena
that occur very rarely, such as extremely cold or hot temperatures, exceptional floods
of rivers, and so on.

Example 3.3.4. Let T denote the temperature (in degrees Celsius) in a certain city
during the month of July. Suppose that

X :=T—30|{T > 30} ~ W(0.8,0.5).

That is, given that the temperature is above 30 degrees, it has a Weibull distribution
with parameters A = 0.8 and § = 0.5. Thus,

fx(z) = 042" %exp {70.8x1/2} for z >0

(see Figure Z@ Notice that the function fx(z) diverges when = decreases to 0.

Using the results in Section 3.5, we find that the average temperature in this city
(in July), when it exceeds 30°C, is equal to 33.125°C. We obtain the same value if we
suppose that X is exponentially distributed with parameter A = 1/3.125 = 0.32 instead.
However, as can be seen in Figure $.9, fhe Weibull distribution W(0.8,0.5) goes to zero
more slowly than the Exp(0.32) distribution does. Therefore, extreme temperatures
(above approximately 42°C in this particular example) are more likely.
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14

0.8

0.6

0.4

0.2

0 T T T T 1

1 2 3 4 5 6 7 8
X

Fig. 3.8. Probability density function of a W(0.8,0.5) random variable.

We have:

P[T>35|T > 30 = P[X > 5] = / 042~ /2 exp {70.89:1/2} dz ~ 0.1672.
5

3.3.4 Beta distribution

Definition 3.3.5. Let X be a continuous random wvariable whose density function is
given by
_ F(Oé + ﬁ) xa—l

(1—2)’t foro<az<l,
0067
0057

0.04 |

0.02 |

0.01 |

Fig. 3.9. Probability density functions of a W(0.8,0.5) (continuous line) and an Exp(0.32)
(broken line) random variables in the interval [5, 20].
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where o« > 0 and B > 0. We say that X has a beta distribution with parameters o
and 3. We write that X ~ Be(a, 3).

If X ~ Be(a,f) and Y :=a+ (b—a)X, where a < b, Y is said to have a generalized
beta distribution.

Particular case
Let X ~ Be(a, ). If @ = 3 =1, then we have:

fx(x)=1 for0<x<1.

We say that the continuous random variable X follows a uniform distribution on the
interval (0, 1). We write that X ~ U(0, 1). In general, we have that X ~ U(a,b) if (see
ih

Figure
1
fX(I‘):m for a < x < b.

fy (x)

N

(0, 1/(b-a))

-
o <P
v

Fig. 3.10. Probability density function of a uniform random variable on the interval (a,b).

Remarks. (1) This density function is obtained, for example, when a point is taken at
random in the interval (a,b). Because the probability that the selected point is close
to x, where a < x < b, is the same for all z, the function fx(z) must be constant in
the interval (a,b). Note that a random variable having a uniform distribution on the
interval (a, b) also has a generalized beta distribution with parameters a« = 8 = 1.

(ii) We can show that if exactly one event of a Poisson process took place in the interval
(0,¢], then the time instant 7} at which this event occurred has a uniform distribution
n (0,t]. That is,
T, | {N(t) =1} ~ U(0,¢].
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Example 3.3.5. A point is taken at random on a line segment of length L. What is the
probability that the length of the shorter segment divided by the length of the longer
one is smaller than 1/47?

Solution. Suppose, without loss of generality, that the segment starts at 0. Let X be
the point selected. Then, X ~ UJ0, L].
(i) If X € [0, L/2], then we must have:

X
L-X

(i) If X € (L/2, L], then

1 L
<1 <— 44X <L-X <+— X<3'

L-X 1 4L
e <Z <— 4L -4X <X <= X>?.
We have: L
1 L/5 1
X < L/3] /O L0~ 75
Likewise,
L
1 L —(4L/5) 1
PX>4L5:/ —dr = —————= = —.
[ /5] i T T z

Thus, the probability requested is equal to % + % = %

Remarks. (i) By symmetry, we could have considered either of the two cases and mul-
tiplied the probability obtained by 2.

(ii) As can be observed in this example, the probability that the uniform random variable
X takes on a value in a given subinterval depends only on the length of this subinterval.

3.3.5 Lognormal distribution

Definition 3.3.6. Let X be a continuous random variable taking only positive values.
If Y := InX follows a N(u,o?) distribution, then we say that X has a lognormal
distribution with parameters p and o*. We write that X ~ LN(u,0?). The density
function of X is given by

fx(x) = eXp{—(lnx_u)Q} for x>0,

2rox 202

where p € R and o > 0.
Remark. In many situations, the lognormal distribution may be a more realistic model

than the normal distribution, because it is always positive. For instance, the weight of
manufactured items could have a lognormal distribution.
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Example 3.3.6. Let X ~ LN(5,4). Calculate P[X < 100].

Solution. We have:

P[X <100] = P[ln X <1In100] = P[Y <In100], whereY ~ N(5,4)

In100 — 5] Tab, B.3
2

=P {Z < ~B(—0.2) AT 0.4207.

3.4 Functions of random variables

Because a random variable is a real-valued function and the composition of two functions
is another function, we can assert that if X is a random variable, then Y := ¢g(X), where
g is a real-valued function defined on the real line, is a random variable as well. In this
section, we show how to obtain the probability function or the density function of Y.

3.4.1 Discrete case

Because a function g associates a single real number with each possible value of the
random variable X, we can assert that if X is a variable of discrete type, then Y = g(X)
will also be a discrete random variable, whatever the function g is. Indeed, Y cannot
take on more different values than X. To obtain the probability function of Y, we apply
the transformation g to each possible value of X and we add the probabilities of all
values x of the random variable X that correspond to the same y.

Example 3.4.1. Let X be a discrete random variable whose probability function is
given by

z |[—1 0 1
px(x)|1/41/41/2
We define Y = 2X. Because the function g :  — 2z is bijective [i.e., to a given

y = g(x) = 2z, there corresponds one and only one z and vice versa], the number of
possible values of the random variable Y will be the same as the number of possible
values of X. We find that

y -2 0 2%
py(y)|1/41/41/2]1

Now, let W = X2. Because to two values of X, namely —1 and 1, there corresponds
the same value w = 1, we must add px(—1) and px (1) to obtain py(1). We thus have:

w 0 1|X¥
pw (w)|1/4 3/4| 1
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In the case when the random variable X can take a (countably) infinite number of
values, we apply the transformation to an arbitrary value of X, and we try to find a
general formula for the function py (y).

Example 3.4.2. Let X ~ Geo(p) and Y = X2. Because X € {1,2,...}, the quadratic
function is (here) a bijective transformation and we easily calculate

py(W) =px(Vy) =qV7'p fory=1,4,9,....

3.4.2 Continuous case

The composition of two continuous functions is another continuous function. Conse-
quently, if X is a continuous random variable and if ¢ is a continuous function, then
Y := g(X) is a continuous random variable as well. In this book, we consider only the
case when the function g is bijective. In that case, the inverse function g=*(y) exists and
we can use the following proposition to obtain the density function of the new random
variable Y.

Proposition 3.4.1. Suppose that the equation y = g(x) has a unique solution: x =
g Y(y). Then, the density function of Y is given by the formula

fr() = fxlg~ ' ()] ddyg‘l(y)‘ :

Example 3.4.3. We can use the above proposition to prove the result stated in Section
3.3: if X has a N(u,0?) distribution, then Z := (X — u)/o follows a standard normal
distribution. Indeed, we have:

z=g(@)=(@—pjo = g '(z)=ptoz

It follows that

F2(2) = Fxu+02) | -+ 02)| = 2 exp(=22/2)lo] = 0(2

for —oco < z < 00, because o > 0. Similarly, we can prove that if Y := aX + b, then Y
has a normal distribution with parameters au + b and a?02.

Example 3.4.4. Let X ~ U(0,1) and Y = —01n X, where 6 > 0. First, note that the
possible values of the random variable Y are those located in the interval (0, c0). Next,
we have that g~'(y) = e7¥/?, so that

= le—y/é

e = x (%) | e

-1- ’_16—21/9
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for 0 < y < oo. Thus, we can assert that Y has an exponential distribution with
parameter 1/6. We make use of this result in simulation. Indeed, if we wish to generate an
observation of a random variable following an exponential distribution with parameter
A = 2 (for instance), it suffices to generate an observation x of a U(0,1) distribution,
and then to apply the transformation y = —(1/2) Ina. Therefore, it is not necessary to
write a special computer program to generate observations of exponential distributions.
Computer languages in general, and even many pocket calculators, allow us to generate
pseudo-random observations of uniform distributions.

3.5 Characteristics of random variables

In this section, we present some numerical quantities that enable us to characterize
a random variable X. All the quantities are obtained by computing the mathematical
expectation of various functions of X.

Definition 3.5.1. We define the mathematical expectation of a function g(X) of
a random variable X by

Zg(%)px(ﬂci) if X is discrete,
Blo(x)] = 59

/ g(2) fx () dx if X is continuous.

Properties. (i) E|c] = ¢, for any constant c.
(ii) Ele19(X) + ¢o) = c1E[g(X)] + co, for all constants ¢; and co.

Remarks. (i) E is therefore a linear operator.
(ii) The mathematical expectation may be infinite and it may even not exist.

(iii) If X is a random variable of mized type, that is, a random variable that is discrete
and continuous at the same time, then E[g(X)] can be computed by decomposing the
problem into two parts. For example, suppose that we toss a coin for which the proba-
bility of getting “tails” is 3/8. If we get “tails,” then the random variable X takes on
the value 1; otherwise, X is a number taken at random in the interval [2,4]. We can
obtain E[g(X)] as follows:

E[g(X)]=1x:+(/:g<x)-;dx) x%
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Definition 3.5.2. The mean (or the expected value) of a random variable X is given
by
inpx(a:i) if X is discrete,
i=1
nx = E[X] = (39)
/ x fx(x)dx if X is continuous.
Example 3.5.1. Let X ~ Poi(\). We have:

o0 0 Azl

AT A\
_ AT _ A
HX_Z;)IE ol € z_:l(x—l)!_e AX_;(:r—l)!

A N2
A S S
=e /\{1—|—1!—|—2!+...}—e et = A

Example 3.5.2. Let X ~ Exp(\). We calculate
—/oox)\e_”dx—)\ 1.1
me= | =X\ 33 =
because, in general, if a > 0, then we have:

o =azx ° " d
/0 2" e™ 9 dop y=4 /0 (%) e Y Zy (310)

1 Ooy”efy dy — I'(n+1) _ n!
an+1 0 an-‘,—l an+1'

—Az

Remark. We could also have integrated the function z\e by parts.

Definition 3.5.3. A median of a random variable X is a value x,, (= &) for which

1
P[X <uzp,] > and P[X >uz,] > 7

N | =

Remarks. (1) When X is a discrete random variable, the median is not necessarily
unique. It is not unique if there exists a real number a such that Fx(a) = 1/2. For
example, let X ~ B(n = 2,p = 1/2). We have that Fx(1) = P[X = 0]+ P[X =1] =
1/4+1/2 = 3/4. In this case, the number z,, = 1 satisfies the above definition, because
P[X <1]=3/4>1/2 and P[X > 1] = 3/4 > 1/2 as well. Furthermore, x,, = 1 is the
only number for which both inequalities are satisfied at the same time. On the other
hand, let
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x 1 2 3
px(z)|1/41/41/2

The real number 2 satisfies the definition of the median, but so does the number 2.5
(for instance). In fact, every number in the interval [2,3] is a median of X. Remark
that if we change the probabilities as follows: P[X = 1] = 1/4, P[X = 2] = 1/8, and
P[X = 3] = 5/8, then the median z,, = 3 is unique. Likewise, if P[X = 1] = 1/4,
P[X =2]=3/8, and P[X = 3] = 3/8, then x,, = 2 is the unique median of X.

(ii) When X is a continuous random variable taking all its values in a single (finite or
infinite) interval, the median s unique and can be defined as follows:

PIX < 2] =1/2 (= PIX > 2] = 1/2).

Example 3.5.1 (continued). Suppose that X ~ Poi(2). We find in Table B.2,
page 278, that P[X < 1] ~ 0.4060 and P[X < 2] ~ 0.6767. There is no number
Zm such that P[X < z,,] = P[X > x,,] = 1/2. However, we have:

P[X <2]~0.6767 >1/2 and P[X > 2] ~1—0.4060 > 1/2.

Moreover, 2 is the only number for which both inequalities are satisfied. Hence, x,, = 2
is the median of X.

Example 3.5.2 (continued). If X ~ Exp()), then we have:

Top Tm
PX <z, = / Ne My = —e A =1—e A,
0 0

It follows that
PX<ap)=1/2 = 1-e?"=1/2 <= x,=—.

We can check that we indeed have:

oo

A

In
A

In2 o
P [X > n] = Ae My = —e

= exp{—/\ln)\z} =1/2.

In2
A

Thus, the median is given by z,, = (In2)/\.

The median is useful when the random variable X may take on very large values
(in absolute value) as compared to the others. Indeed, the median is less influenced by
these extreme values than the mean pyx is.

The median, in the continuous case, is a particular case of the notion of quantile.
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Definition 3.5.4. Let X be a continuous random variable whose set of possible values
is an arbitrary interval (a,b). The number x, is called the 100(1 — p)th quantile of X
if

PX <z,]=1-p,
where 0 < p < 1.

If 100p is an integer, then z, is also called the 100(1 — p)th percentile of X. The
median of a continuous random variable is therefore the 50th percentile of X. The 25th
percentile is also known as the first quartile, the 50th percentile is the second quartile,
and the 75th percentile is the third quartile. Finally, the difference between the third
and the first quartile is called the interquartile range.

Definition 3.5.5. A mode of a random variable X is any value x that corresponds to
a local mazimum for px(x) or fx(x).

Remark. The mode is thus not necessarily unique. A distribution having a single mode
is said to be unimodal.

Example 3.5.1 (continued). Let X ~ Poi(2). From Table B.2, page 278, we obtain
that P[X = 0] ~ 0.135, P[X = 1] ~ 0.271, P[X = 2] ~ 0.271, P[X = 3] ~ 0.180, and
so on. Hence, X has two modes: at x =1 and at z = 2.

Remark. We indeed have:

That is, the two probabilities are exactly equal.

Example 3.5.2 (continued). Let X ~ Exp()). Then, X being a continuous random
variable, we can use differential calculus to find its mode(s). We have:
d d . ,
—fx(z) = —Xe M = _\Ze A £
dx

for all z € (0,00). However, because fx(z) is a strictly decreasing function, we can
assert that the mode of X is at z = 0% [fx(z) tends to a minimum as z — oo].

The various quantities defined above are measures of central position. We continue
by defining measures of dispersion.

Definition 3.5.6. The range of a random variable is the difference between the largest
and the smallest value that this variable can take.

For example, the range of a random variable X ~ B(n,p) is equal to n — 0 = n.
Likewise, if X ~ Exp(\), then its range is co — 0 = oc.
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Definition 3.5.7. The variance of a random variable X is defined by

Z x)2px(z;) if X is discrete,
0% =VAR[X]={
/ (x — pux)*fx(x)dx if X is continuous.

— 0o

Remarks. (i) We deduce at once from the definition that the variance of X is always
nonnegative (it can be infinite). Actually, it is strictly positive, except if the random
variable X is a constant, which is a degenerate random variable. Finally, the larger the
variance is, the more spread out is the distribution of the random variable around its
mean.

(ii) We also define the standard deviation of a random variable X by
STD[X] = VVAR[X]| =o0x.

We often prefer to work with the standard deviation rather than with the variance of
a random variable, because it is easier to interpret. Indeed, the standard deviation is
expressed in the same units of measure as X, whereas the units of the variance are the
squared units of X.

Now, we may write that
VAR[X] = E[(X - B[X])?],
and we can show that
VAR[X] = E[X?] — (E[X])*. (3.11)
Example 3.5.1 (continued). When X ~ Poi(\), we calculate

_ _ = d
sz = Zw Z;ﬁ

d <\ d
_,\ e —/\ i
)\dA w1 s ()

=e M\ —|—/\6 )= A+ A%

Then, using Formula (3.11) with E[X] = A, we find that
VAR[X] = (A+A?) — (A\)? =\

Thus, in the case of the Poisson distribution, its parameter A is both its mean and its
variance.
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Example 3.5.2 (continued). We already found that if X ~ Exp(\), then EF[X]| = 1/\.
We now calculate [see (3.10)]

> 2! 2
21 2 — Az _ _
E[X]—/O x“Xe da:—)\)\2+ =z

2 1\*> 1

Note that, in the case of the exponential distribution, its mean and its standard deviation
are equal.

It follows that

Table page 89, gives the mean and the variance of the various probability dis-
tributions found in Sections 3.2 and 3.3.

The main properties of the mathematical operator VAR are the following:
(i) VAR]c] = 0, for any constant c.

(ii) VAR[c19(X) + co] = ¢ VAR[g(X)], for any constants c¢; and ¢. Thus, the operator
VAR is not linear.

The mean and the variance of a random variable are particular cases of the quantities
known as the moments of this variable.

Definition 3.5.8. The moment of order k or kth-order (or simply kth) moment
of a random variable X about a point a is defined by

Z(xz —a)fpx () if X is discrete,
E(X-a}] =4
/°° (x— a)kfx (z)dz if X is conlinuous.

— 00

Particular cases

(i) The kth-order moment about the origin, or noncentral moment, of X is

BIX*) =y, = fopx(fﬂi) or / o fx (x) dz
i=1 >
for k=0,1,... . We have that uj, =1 and p} = px = E[X].
(ii) The kth-order moment about the mean, or central moment, of X is
BIX — )] = e = Y (o = ) px(n) or [ (o= ) fxlo)do
i=1 oo

for k=0,1,... . We have that yo =1, 3 =0, and ps = o%.



Table 3.1. Means and variances of the probability distributions of Sections 3.2 and 3.3

3.5 Characteristics of random variables

Distribution |Parameters| Mean Variance
Bernoulli P P pq
Binomial n and p np npq

d d d N —

Hypergeometric| N, n, and d n- N n N (1 — N) . <N _Tll

1
Geometric P - %
p p
Pascal r and p r 7;(2]
p p
Poisson A A A
: a+b (b—a)?
b a7
Uniform [a, b] ) 5
1 1
E tial — —
xponentia A 3 2
Laplace A 0 2
o o
G d A —
amma @ an 3 2
. A+ Y r1+267Y-1r?1+p"
Weibull A and 3 \i/8 VI
Normal u and o 1 o2
« af
Bet and
o pemdl S5 | @i BT DAy
Lognormal w and o2 ehtio? e2to’ (e” — 1)

89
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Example 3.5.2 (continued). In the case when X ~ Exp()), we calculate [see (3.10)]

k! k!

(o]
k1 _ k —A _ :

Remark. We can show, making use of Newton’s binomial formula, that

k
= B0 = 00" = S0 (e

. )
=0

This formula enables us to check that VAR[X] = E[X?] — (E[X])?, which may be
rewritten as follows:

pa = py — px = pih — ().

Two other quantities that are used to characterize the distribution of a random
variable X are the skewness and kurtosis coefficients. These two coefficients are defined
in terms of the moments of X.

First, the quantity pusz = E[(X — pux)3] is used to measure the degree of asymmetry
of probability distributions. If the distribution of X is symmetrical with respect to its
mean jix, then pg = 0 (if we assume that pg exists). If pg > 0 (resp., < 0), then the
distribution is said to be right-skewed (resp., left-skewed).

Remark. Actually, if the distribution is symmetrical with respect to its mean and if all
its central moments exist, then we may write that por+1 =0, for k=0,1,... .

Definition 3.5.9. The skewness (coefficient) of a random variable X is defined by

0
B =2,

Remarks. (i) The coeflicient (31 is a unitless quantity.
(ii) Some authors prefer to work with the coefficient v, := /1.

Example 3.5.2 (continued). We can write that
ps = B[(X — px)®] = E[X® = 3ux X + 3p5 X — p].

As shown in Chapter 4, the mathematical expectation of a linear combination of random
variables can be obtained by replacing each variable by its mean (by linearity of the
expectation operator). It follows that

ps = BIX°] = 3ux E[X?] + 3p% E[X] — p%.

Making use of the formula E[X*] = k!/\*, we obtain:
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So, we find that
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(1/X%)
Thus, all the exponential distributions have the same skewness (31, whatever the value
of the parameter A is, which reflects the fact that they all have the same shape (see

Figure .

Fig. 3.11. Skewness coefficient of exponential distributions.

Example 3.5.3. Let X ~ U(a,b). The density function fx(z) is constant, therefore
it is symmetrical with respect to ux = (a + b)/2. Given that all the moments of the
random variable X exist (because X is bounded by @ and b), it follows that 8; = 0 (see
Figure 3.12).

Definition 3.5.10. The kurtosis (coefficient) of a random variable X is the unitless
quantity

_
=1

Remarks. (1) When the distribution of X is symmetrical, 5, measures the relative thick-
ness of the tails of the distribution with respect to its central part.

(ii) As in the case of the coefficient [, some authors use a different coefficient: o :=
B2 — 3. Because 3 = 3 if X ~ N(u,o?), the quantity 7o is chosen so that the kurtosis
of all normal distributions is equal to zero.

Example 3.5.2 (continued). Making use once again of the formula E[X*] = k!/\*,
we may write that
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Fig. 3.12. Skewness coefficient of the uniform distribution.

pa = B[(X — px)"] = B[X" = dpx XP + 605 X2 — 45 X + pix ]
— BIX*) — 4x BIX?) + 613 BX?] — 4% B[X] +
4l 43 62 41 19

BBV S ERISvE VRSt S WS v v

Therefore, we have:
9/\*
62 - (1/A2)2 - 9a

which is independent of the parameter .

Example 3.5.4. As we mentioned above, we can show that if X ~ N(u,0?), then
B2 = 3. A random variable whose density function looks a lot like that of a normal
distribution is the Student distribution with n degrees of freedom, which is important
in statistics. Its kurtosis is given by

6
Br=—+3 ifn>4

Note that the coefficient (5 is larger than that of normal distributions, reflecting the
fact that the density function fx(x) tends less rapidly to 0 as z tends to oo than it
does in the case of normal distributions. However, note also that (35 decreases to 3 as n
tends to infinity.

Example 3.5.5. Let X ~ B(1,p). That is, X has a Bernoulli distribution with param-
eter p. We have:

1
w = EIXM =) aMpx(e) = 0%+ 1Fp =p
=0

for k=1,2,... . In particular, E[X] = p} = p, so that
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1

e = E[(X = p)*] = (z —p)'px(2) = (=p)*q+ (1 - p)*p.
=0

It follows that VAR[X] = pa = p*q + ¢*p = pa(p + q) = pq. We also have:
s = —p’q + ¢*p = pa(—p* + ¢*)
and
pa=p'¢+q'p = pa(p* + ¢*).
Then, we calculate

2 2 2 2 2\2 3 3

vy pe(-p*+¢*)°  pP g
b=t = =" =2

o (pq) q p

and
2

g, = b pa®+d¢*) _p* &
ot (pa)? a p
Remark. The coefficients 81 and (35 are often used to compare an arbitrary distribution
with a normal distribution, for which 8; = 0 (by symmetry) and [y = 3. For exam-
ple, if X follows a chi-square distribution with n degrees of freedom (see the gamma
distribution above), then £, = 8/n and

52:3<4+1>.
n

Note that 3; decreases to 0 and (5 decreases to 3 as n tends to infinity. Actually, the
density function of X tends to that of a normal distribution, which is a consequence of
the central limit theorem (see Chapter 4).

We end this section by giving a proposition that enables us to obtain a bound for
a certain probability, when the mean and the variance of the random variable involved
are (known and) finite.

Proposition 3.5.1. (Bienaymé—Chebyshev inequality) For an arbitrary constant
a > 0, we have:

1
Plux —aox <X <px taox]>1—-—
a

for any random variable X whose variance VAR[X ] = 0% is finite.

Remarks. (1) For the variance of X to be finite, its mean E[X] must also be finite.

(ii) Generally, we say that the mean (resp., the variance) of a random variable X does
not exist if E[X] = foo (resp., VAR[X] = o0). This is the reason why in many books
the validity condition for the Bienaymé-Chebyshev inequality is that the variance of
X must exist. We can, however, distinguish between the case when the mean (or the
variance) of X is infinite and that when it does not exist. For instance, the mean of
a Cauchy distribution (see p. 8) does not exist, because we find that E[X] = oo — oo,
which is not defined. Then, its variance does not exist either.
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Example 3.5.6. If X is a random variable for which E[X] = 0 and VAR[X]| = 1, then
we may write that

1 _

Pl-3<X <3 >1-5=08
In the case of a N(0, 1) distribution, this probability is actually greater than 99.7% (as
mentioned above). If X follows a uniform distribution on the interval [—+/3, /3], so that

its mean is zero and its variance is equal to 1, then the probability in question is equal
to 1 (because [—v/3,v/3] C [-3,3]).

3.6 Exercises for Chapter 3

Solved exercises

Question no. 1

Let
a/8if x = —1,
px (z) =< a/dif x =0,
a/8ifx =1,
where a > 0. Find the constant a.
Question no. 2
Let 5
fX(x):Z(kx?) if-l<az<l1

Calculate Fx (0).
Question no. 3

Calculate the standard deviation of X if

1
px(:c)=§ for x =1,2 or 3.

Question no. 4
Suppose that
fx(@x)=2z if0<ax<l.

Calculate E[X1/2].

Question no. 5
Calculate the 25th percentile of the random variable X for which
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FX(x):% if0<z<2

Question no. 6
Let

1
fX(m)=§ ifo<az<2.

We define Y = X + 1. Calculate fy (y).

Question no. 7

Two items are taken at random and without replacement from a box containing 5
brand A and 10 brand B items. Let X be the number of brand A items among the two
selected. What is the probability distribution of X and its parameters?

Question no. 8
Suppose that X ~ B(n = 5,p = 0.25). What is the mode of X, that is, the most
probable value of X7

Question no. 9

Ten percent of the articles produced by a certain machine are defective. If 10 (inde-
pendent) articles fabricated by this machine are taken at random, what is the probability
that exactly two of them are defective?

Question no. 10
Calculate P[X > 1| X <1]if X ~ Poi(A =5).

Question no. 11

Failures occur according to a Poisson process with rate A = 2 per day. Calculate the
probability that, in the course of two consecutive days, exactly one failure (in all) will
occur.

Question no. 12

In a certain lake, there are 200 type I and 50 type II fish. We draw, without replace-
ment, five fish from the lake. Use a binomial distribution to calculate approximately the
probability that we get no type II fish.

Question no. 13
Let X ~ B(n = 50,p = 0.01). Use a Poisson distribution to calculate approximately
P[X > 4].

Question no. 14
A fair coin is tossed until “heads” is obtained. What is the probability that the
random experiment will end on the fifth toss?

Question no. 15

The lifetime X of a radio has an exponential distribution with mean equal to ten
years. What is the probability that a ten-year-old radio will still work after ten additional
years?
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Question no. 16
Suppose that X ~ Exp(A). Find the value of A such that P[X > 1] = 2P[X > 2].

Question no. 17
Let X ~ G(a = 2,A = 1). What other probability distribution can be used to
calculate ezactly P[X < 4]? Give also the parameter(s) of this distribution.

Question no. 18

The customers of a salesman arrive according to a Poisson process, at the (average)
rate of two customers per hour. What is the distribution of the time X needed until ten
customers have arrived? Give also the parameter(s) of this distribution.

Question no. 19
Calculate P[|X| < 1/2] if X ~ N(0,1).

Question no. 20
Calculate the 10th percentile of X ~ N(1,2).

Question no. 21

Devices are made up of five independent components. A given device operates if at
least four of its five components are active. Each component operates with probability
0.95. We receive a very large batch of these devices. We inspect the devices, taken at
random and with replacement, one at a time until a first device that does not operate
has been obtained.

(a) What is the probability that a device taken at random operates?
(b) What is the expected value of the number of devices that will have to be inspected?
Question no. 22

City buses pass by a certain street corner, between 7:00 a.m. and 7:30 p.m., according
to a Poisson process at the (average) rate of four per hour.

(a) What is the probability that at least 30 minutes elapse between the first and the
third bus?
(b) What is the variance of the waiting time between the first and the third bus?

(c) Given that a woman has been waiting for 5 minutes, what is the probability that
she will have to wait 15 more minutes?

Question no. 23
Suppose that the length X (in meters) of an arbitrary parking place follows a
N(p,0.01p2) distribution.

(a) A man owns a luxury car whose length is 15% greater than the average length of a
parking place. What proportion of free parking places can he use?

(b) Suppose that p = 4. What should be the length of a car if we want its owner to be
able to use 90% of the free parking places?
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Question no. 24

A student gets the correct answers, on average, to half of the probability problems
she attempts to solve. In an exam, there are ten independent questions. What is the
probability that she can solve more than half?

Question no. 25
Let X be a random variable having a binomial distribution with parameters n = 100
and p = 0.1. Use a Poisson distribution to calculate approximately P[X = 15].

fX():\/E—x2 for—[<x<
Question no. 27

The results of an intelligence quotient (IQ) test for the pupils of a certain elementary
school showed that the IQ of these pupils follows (approximately) a normal distribution
with parameters p = 100 and o2 = 225. What total percentage of pupils have an 1Q
smaller than 91 or greater than 1307

Question no. 26
Let

Calculate P[X < 0].

Question no. 28

A certain assembly requires 59 nondefective transistors. We have at our disposal
60 transistors taken at random from those fabricated by a machine that is known to
produce 5% defective transistors.

(a) Calculate the probability that the assembly can be made.

(b) Obtain an approximate value of the probability in (a) with the help of a Poisson
distribution.

(c) Suppose that, in fact, we have a very large number of transistors at our disposal,
of which 5% are defective. What is the probability that we will have to take exactly 60
transistors at random to get 59 nondefective ones?

Question no. 29

Let X be the delivery time (in days) for a certain product. We know that X is a
continuous random variable whose mean is 7 and whose standard deviation is equal to
1. Determine a time interval for which, whatever the distribution of X is, we can assert
that the delivery times will be in this interval with a probability of at least 0.9.

Question no. 30

The entropy H of a continuous random variable X is defined by H = E[—In fx (X)],
where fx is the density function of X and In denotes the natural logarithm. Calculate
the entropy of a Gaussian random variable with zero mean and variance o2 = 2.



98 3 Random variables

Question no. 31

The number N of devices that a technician must try to repair during the course of an
arbitrary workday is a random variable having a geometric distribution with parameter
p = 1/8. We estimate the probability that he manages to repair a given device to be
equal to 0.95, independently from one device to another.

(a) What is the probability that the technician manages to repair exactly five devices,
before his second failure, during a given workday, if we assume that he will receive at
least seven out-of-order devices in the course of this particular workday?

(b) If, in the course of a given workday, the technician received exactly ten devices for
repair, what is the probability that he managed to repair exactly eight of those?

(¢) Use a Poisson distribution to calculate approximately the probability in part (b).

(d) Suppose that exactly eight of the ten devices in part (b) have indeed been repaired.
If we take three devices at random and without replacement among the ten that the
technician had to repair, what is the probability that the two devices he could not repair
are among those?

Question no. 32

The number X of raisins in an arbitrary cookie has a Poisson distribution with
parameter \. What value of A must be chosen if we want the probability that at most
2 cookies, in a bag of 20, contain no raisins to be 0.9257

Question no. 33

The storage tank of a gas station is filled once a week. Suppose that the weekly
demand X (in thousands of liters) is a random variable following an exponential distri-
bution with parameter A = 1/10. What must the capacity of the storage tank be if we
want the probability of exhausting the weekly supply to be 0.017

Question no. 34

We are interested in the lifetime X (in years) of a machine. From past experience,
we estimate the probability that a machine of this type lasts for more than nine years
to be 0.1.

(a) We propose the following model for the density function of X:

a
=——— for
fx<.'17) (x+1)b or x > 0,

where a > 0 and b > 1. Find the constants a and b.
(b) If we propose a normal distribution with mean p = 7 for X, what must the value of
the parameter o be?

(¢) We consider ten machines of this type, which are assumed to be independent. Cal-
culate the probability that eight or nine of these machines last for less than nine years.
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Exercises

Question no. 1
A continuous random variable has the following density function:

cre 2 if g >0,

f“”:{o if 2 < 0.

(a) Calculate the constant c.
(b) Obtain (integrating by parts) the distribution function Fx(x).
(c) Find the mean of X.
(d) Calculate the standard deviation of X.
(e) Show that the median of X is located between 3 and 4.
Indication. See (3.10).
Question no. 2
A merchant receives a batch of 100 electrical devices. To save time, she decides to use
the following sampling plan: she takes two devices, at random and without replacement,
and she decides to accept the whole batch if the two devices selected are nondefective.
Let X be the random variable denoting the number of defective devices in the sample.

(a) Give the probability distribution of X as well as the parameters of this distribution.

(b) If the batch contains exactly two defective devices, calculate the probability that it
is accepted.

(¢) Approximate the probability computed in part (b) with the help of a binomial
distribution.

(d) Approximate the probability calculated in part (c) by using a Poisson distribution.
Remark. Give your answers with four decimals.

Question no. 3

In a dart game, the player aims at a circular target having a radius of 25 centimeters.
Let X be the distance (in centimeters) between the dart’s impact point and the center
of the target. Suppose that

emx? if 0 <z < 25,
HXSM{ 1 if x> 25,

where c is a constant.

(a) Calculate
(i) the constant c;
(ii) the density function, fx(z), of X;
(iii) the mean of X;
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(iv) the probability P[X < 10| X > 5].
(b) Tt costs $1 to throw a dart and the player wins

$10if X <r,
$1 if r < X < 2r,
$0 if 2r < X < 25.

For what value of r is the average gain of the player equal to $0.257

Question no. 4

Telephone calls arrive at an exchange according to a Poisson process with rate A per
minute. We know, from past experience, that the probability of receiving exactly one
call during a one-minute period is three times that of receiving no calls during the same
time period. For each of the following questions, give the probability distribution of the
random variable and calculate, if the case may be, the requested probability.

(a) Let X be the number of calls received over a one-minute period. What is the prob-
ability P[2 < X < 4]?

(b) Let Y be the number of calls received over a three-minute period. Calculate the
probability P[Y > 4].

(c) Let W1 be the waiting time (in minutes) until the first call, from time ¢ = 0. Calculate
PWy <1].

(d) Let Wy be the waiting time (in minutes) between the first and the second call.
Calculate P[Wy > 1].

(e) Let W be the waiting time until the second call, from time ¢ = 0. Give the probability
distribution of W as well as its parameters.

(f) We consider 100 consecutive one-minute periods and we denote by U the number of
periods during which no calls were received. Calculate P[U < 1].

Question no. 5
We have ten (independent) machines at our disposal, each producing 2% defective
items.

(a) How many items will be fabricated by the first machine, on average, before it pro-
duces a first defective item?

(b) We take at random one item fabricated by each machine. What is the probability
that at most two items among the ten selected are defective?
(¢) Redo part (b), using a Poisson approximation.

(d) How many items fabricated by the first machine must be taken, at a minimum, in
order that the probability of obtaining at least one defective item be greater than 1/2
(assuming that the items are independent of one another)?
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Question no. 6

We are interested in the proportion 6 of defectives in a batch of manufactured articles.
We decide to draw, at random and with replacement, a sample of 20 articles from the
batch.

(a) We denote by X the number of defective articles in the sample.

(i) Give the probability function px (z).

(ii) Give the probability function px () if the draws are made without replacement
and if there are 1000 articles in the batch.

(b) If the draws are made with replacement and if 6§ = 0.25, calculate
(i) P[X = 10];
(ii) P[X > 10], by using a Poisson approximation.

Question no. 7
Let X be a random variable having the density function
fe(l-aYif-1<a <1,
Ix(@) = { 0 iffa]>1,

where ¢ is a positive constant. Calculate (a) the constant ¢; (b) the mean of X; (c) the
variance of X; (d) the distribution function Fx(x).

Question no. 8

The average number of faulty articles produced by a certain manufacturing process
is equal to six per 25-minute period, according to a Poisson process. We consider a given
production hour divided into 12 five-minute periods. Let

X be the number of faulty articles produced over a five-minute period;

Y be the number of five-minute periods needed to obtain a first period during which
no faulty articles are produced;

Z be the number of periods, among the 12, during which no faulty articles are
produced.

(a) Give the distribution of X, Y, and Z as well as their parameter(s).

(b) During which period, on average, will no faulty articles be produced for the first
time?

(c) What is the probability that, during exactly 2 of the 12 periods, will no faulty articles
be produced?

(d) What is the probability that exactly two faulty articles have been produced during
a given five-minute period, given that at most four faulty articles have been produced
during this time period?
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Question no. 9
Calculate the variance of VX if

1/4if 2 =0,
px(z) =4 1/2ifx =1,
1/4if o = 2.

Question no. 10

Calculate the 30th percentile of the continuous random variable X whose density
function is

_Jrifo<e < \/§7
Fx (z) = { 0 elsewhere.

Question no. 11

A 300-page book contains 200 typos. Calculate, using a Poisson distribution, the
probability that a particular page contains at least two typos.

Question no. 12

Based on past data, we estimate that 85% of the articles produced by a certain ma-
chine are defective. If the machine produces 20 articles per hour, what is the probability
that 8 or 9 articles fabricated over a 30-minute period are defective?

Question no. 13
Calculate P[X > 8] if

1,3 —x/2 ifr>0
_ ) ggz’e if x >0,
Fx () { 0 elsewhere.
Question no. 14
The lifetime of a certain electronic component follows an exponential distribution
with mean equal to five years. Knowing that a given component is one year old, what
is the probability that it will fail during its fourth year of operation?

Question no. 15

A security system is composed of ten components operating independently of one
another. For the system to be operational, at least five components must be active. To
check whether the system is operational, we periodically inspect four of its components
taken at random (and without replacement). The system is deemed operational if at
least three of the four components inspected are active. If, actually, only four of the ten
components are active, what is the probability that the system is deemed operational?

Question no. 16
Calculate the 25th percentile of a continuous random variable X whose density

function is )
_ Jxe ™ /2if 2 >0,
fX(x)_{ 0 ifz<o.
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Question no. 17
Calculate the probability of obtaining exactly three “tails” in 15 (independent) tosses
of a coin for which the probability of getting “tails” is 0.4.

Question no. 18

A sample of four parts is drawn without replacement from a lot of ten parts, of
which one is defective. Calculate the probability that the defective part is included in
the sample.

Question no. 19

Customers arrive at a counter, according to a Poisson process, at the average rate of
five per minute. What is the probability that the number of customers is greater than
or equal to ten in a given three-minute period?

Question no. 20

The arrivals of customers at a counter constitute a Poisson process with rate A = 1
per two-minute time period. Calculate the probability that the waiting time until the
next customer (from any time instant) is smaller than ten minutes.

Question no. 21
Let X be a random variable having a N(10, 2) distribution. Find its 90th percentile.

Question no. 22

Let
0 if x <0,

z/2 if0<x<]1,
x/6+1/3if1 < <4,
1 ifax>4

Fx(z) =

be the distribution function of the continuous random variable X.
(a) Calculate the density function of X.

(b) What is the 75th percentile of X7

(c) Calculate the expected value of X.

(d) Calculate E[1/X].

(e) We define

Y:{—angL

1 if X > 1.
(i) Find Fy (0).
(ii) Calculate the variance of Y.

Question no. 23
A box contains 100 brand A and 50 brand B transistors.
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(a) Transistors are drawn one by one, at random and with replacement, until a first brand
B transistor has been obtained. What is the probability that nine or ten transistors will
have to be drawn?

(b) What is the minimum number of transistors that must be drawn, at random and
with replacement, if we want the probability of obtaining only brand A transistors to
be smaller than 1/37

Question no. 24

Parts are fabricated in series. To perform a quality control check, every hour we
draw, at random and without replacement, 10 parts from a box containing 25. The
fabrication process is deemed under (statistical) control if at most one of the inspected
parts is defective.

(a) If all the inspected boxes contain exactly two defective parts, what is the probability
that the fabrication process is deemed under control at least seven times during the
course of an eight-hour workday?

(b) Use a Poisson distribution to evaluate approximately the probability calculated in
part (a).

(¢) Knowing that, on the last quality control check performed in part (a), the fabrication
process was deemed under control, what is the probability that the corresponding sample
of 10 parts contained no defectives?

Question no. 25
Let X be a random variable whose probability function is given by

z |-1 0 3
px (2)]0.50.2 0.3

a) Calculate the standard deviation of X.
)

¢) Find the distribution function of X.

(
(b) Calculate the mathematical expectation of X?3.
(
(d) We define Y = X2 + X + 1. Find py (y).

Question no. 26

In a particular factory, there were 25 industrial accidents in 2005. Every year, the
factory closes for summer holidays for two weeks in July. Answer the following questions,
assuming that the industrial accidents occur according to a Poisson process.
(a) What is the probability that exactly one of the 25 accidents occurred during the
first two weeks of 20057

(b) If the average rate of industrial accidents remains the same in 2006, what is the
probability that there will be exactly one accident during the first two weeks of that
year?
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Question no. 27

In a certain lottery, four balls are drawn at random and without replacement among
20 balls numbered from 1 to 20. The player wins a prize if the combination that he has
chosen comprises at least two winning numbers. A man decides to buy one ticket per
week until he has won a prize. What is the probability that he will have to buy less
than ten tickets?

Question no. 28
The density function of the random variable X is given by

_Jbz(l—-a)if0<z<1,
Ix(w) = { 0 elsewhere.

(a) Calculate the mathematical expectation of 1/X.
(b) Obtain the distribution function of X.
(c) We define

v [2iEX>1/4,
“0if X < 1/4.

Calculate E[Y*], where k is a natural number.
(d) Let Z = X2. Find the density function of Z.

Question no. 29
The concentration X of reactant in a chemical reaction is a random variable whose
density function is
(21 -x)if0<z <],
Ix(w) = { 0 elsewhere.

The amount Y (in grams) of final product is given by ¥ = 3X.

(a) What is the probability that the concentration of reactant is equal to 1/27 Justify.
(b)

(c) Obtain the density function of Y.
d)

(d) What is the minimum amount of final product that, in 95% of the cases, will not
be exceeded?

Calculate the variance of Y.

Question no. 30

An insurance company employs 20 salespersons. Each salesperson works at the office
or on the road. We estimate that a given salesperson is at the office at 2:30 p.m., on any
workday, with probability 0.2, independently of the other workdays and of the other
salespersons.
(a) The company wants to install a minimum number of desks, so that an arbitrary

salesperson finds a free desk in at least 90% of the cases. Find this minimum number of
desks.
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(b) Calculate the minimum number of desks in part (a) by using a Poisson approxima-
tion.

(c) A woman telephoned the office at 2:30 p.m. on the last two workdays in order to talk
to a particular salesperson. Given that she did not manage to talk to the salesperson in
question, what is the probability that she will have to phone at least two more times,
assuming that she always phones at 2:30 p.m.?

Question no. 31
Calculate VAR[e*] if X is a random variable whose probability function is given by

1/4if 2 =0,
_J1j4ite =1,
Px(®) =N 120 =4,
0 otherwise.

Question no. 32
The density function of the random variable X is

—zif -1 <2 <0,
fx(x) = rif 0 <o <1,
0 elsewhere.

Calculate Fx(1/2).
Question no. 33
Let

0 elsewhere.

fX(x):{l/eifO<x<e,

Calculate fy(y), where Y := —21n X.

Question no. 34

A lot contains 20 items, of which two are defective. Three items are drawn at random
and with replacement. Given that at least one defective item was obtained, what is the
probability that three defectives were obtained?

Question no. 35

Calls arrive at an exchange according to a Poisson process, at the average rate of two
per minute. What is the probability that, during at least one of the first five minutes of
a given hour, no calls arrive?

Question no. 36

A box contains 20 granite-type and 5 basalt-type rocks. Ten rocks are taken at ran-
dom and without replacement. Use a binomial distribution to calculate approximately
the probability of obtaining the 5 basalt-type rocks in the sample.
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Question no. 37
A fair coin is tossed until “heads” has been obtained ten times. What is the variance
of the number of tosses needed to end the random experiment?

Question no. 38
Let X be a random variable having an exponential distribution with parameter .
We define Y = int(X)+1, where int(X) designates the integer part of X. Calculate

Fy (y).

Question no. 39

Let
da2e 2% if £ > 0,

ﬁ“@:{ 0 ifz<o.

Calculate the variance of X.

Question no. 40
Suppose that X ~ N(1,0?). Find o if P[-1 < X < 3] = 1/2.

Question no. 41
The distribution function of the discrete random variable X is given by

0 ifz <0,
Fx(z)=< 1/2if0<z <1,
1 ifx>1.

Calculate (a) px(z); (b) E[cos(mX)].

Question no. 42

At least half of the engines of an airplane must operate to enable it to fly. If each
engine operates, independently of the others, with probability 0.6, is an airplane having
four engines more reliable than a two-engine airplane? Justify.

Question no. 43
We define Y = | X|, where X is a continuous random variable whose density function
is
3/4if —1 <z <0,
fx(z) =4 1/4if 1<z <2,
0 elsewhere.

What is the 95th percentile of Y7

Question no. 44

The probability that a part produced by a certain machine conforms to the technical
specifications is equal to 0.95, independently from one part to the other. We collect parts
produced by this machine until we have obtained one part that conforms to the technical
specifications. This random experiment is repeated on 15 consecutive (independent)
days. Let X be the number of days, among the 15 days considered, during which we
had to collect at least two parts to get one part conforming to the technical specifications.
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(a) What is the mean value of X?

(b) Use a Poisson distribution to calculate approximately the conditional probability
PX=2|X2>1].

Question no. 45

Ten samples of size 10 are drawn at random and without replacement from identical
lots containing 100 articles, of which two are defective. A given lot is accepted if at most
one defective article is found in the corresponding sample. What is the probability that
less than nine of the ten lots are accepted?

Question no. 46

The number X of particles emitted by a certain radioactive source during a one-hour
period is a random variable following a Poisson distribution with parameter A = In5.
Furthermore, we assume that the emissions of particles are independent from hour to
hour.

(a) (i) Calculate the probability that during at least 30 hours, among the 168 hours of
a given week, no particles are emitted.

(ii) Use a Poisson distribution to calculate approximately the probability in part (i).

(b) Calculate the probability that the fourth hour, during which no particles are emitted,
takes place over the course of the first day of the week considered in part (a).

Question no. 47

The duration X (in hours) of major power failures, in a given region, follows ap-
proximately a normal distribution with mean p = 2 and standard deviation o = 0.75.
Find the duration z( for which the probability that an arbitrary major power failure
lasts at least 30 minutes more than x is equal to 0.06.

Question no. 48
A continuous random variable X has the following density function:

{ Le=a®/2k if >0,

fX (LE) = k

0 elsewhere,
where k£ > 0 is a constant.
(a) Calculate the mean and the variance of X.
(b) What is the effect of the constant k on the shape of the function fx?
Remark. You can calculate (using a mathematical software package, if possible) the
coefficients 31 and f2 to answer this question.

Question no. 49
In a particular region, the daily temperature X (in degrees Celsius) during the month
of September has a normal distribution with parameters p = 15 and o2 = 25.

(a) Let Y be the random variable designating the temperature, given that it is above
17 degrees Celsius. That is, Y := X | {X > 17}. Calculate the density function of Y.
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(b) Calculate the (exact) probability that during the month of September the temper-
ature exceeds 17 degrees Celsius on exactly ten days.

Question no. 50
The amount X of rain (in millimeters) that falls over a 24-hour period, in a given
region, is a random variable such that

0 if z <0,
Fx(x) = 3/4 2ifx:O,
l—ie_“” if z > 0.

Calculate (a) the expected value of X; (b) the mathematical expectation and the vari-

ance of the random variable Y := X"/,

Reminder. The variable X is an example of what is known as a random variable of
maxed type, because it can take on the value 0 with a positive probability, but all the
positive real numbers have a zero probability of occurring (as in the case of a continuous
random variable). To answer the previous questions, one must make use of the formulas
for discrete and continuous random variables at the same time (see p. 83).

Question no. 51
The number of typos in a 500-page book has a Poisson distribution with parameter
A = 2 per page, independently from one page to the other.

(a) What is the probability that more than ten pages will have to be taken, at random
and with replacement, to obtain three pages containing at least two typos each?

(b) Suppose that there are actually 20 pages, among the 500, that contain exactly five
typos each.

(i) If 100 pages are taken, at random and without replacement, what is the proba-
bility that less than five pages contain exactly five typos each?

(ii) We consider 50 identical copies of this book. If the random experiment in part
(i) is repeated for each of these books, what is the probability that, for exactly 30 of
the 50 copies, less than five pages with exactly five typos each are obtained?

Question no. 52

A manufacturer sells an article at a fixed price s. He reimburses the purchase price
to every customer who discovers that the weight of the article is smaller than a given
weight wg and he recuperates the article, whose value of the reusable raw material is
r (< s). The weight W follows approximately a normal distribution with mean p and
variance o2. An appropriate setting enables one to fix i to any desirable value, but it
is not possible to fix the value of 0. The cost price C' is a function of the weight of the
article: C'= a4+ W, where a and (3 are positive constants.

(a) Give an expression for the profit Z in terms of .

(b) We can show that the average profit, z(p), is given by
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z2(p)=s—a—Pu—(s—r)P[W < w.

Find the value ug of p that maximizes z(u).

Question no. 53

In a collection of 20 rocks, 10 are of basalt type and 10 are of granite type. Five
rocks are taken at random and without replacement to perform chemical analyses. Let
X be the number of basalt-type rocks in the sample.

(a) Give the probability distribution of X as well as its parameters.

(b) Calculate the probability that the sample contains only rocks of the same type.

Multiple choice questions

Question no. 1

Let
1/2 if0<z<l,

fX(x):{l/@x) ifl<z<e.
Calculate P[X <2 | X > 1].

@22 mB @2 @2 (@1

Question no. 2
Suppose that X ~ U(0,1). Find E[(X — E[X])3].

(@) 0 (b)1/4 () 1/3 (d)1/2 (e)2/3
Question no. 3

Let X ~ B(n =2,p =0.5). Calculate P[X > 1| X <1J.
(@) 0 (b)1/4 (c)1/2 (d)2/3 (e)1

Question no. 4
Find E[X?] if px(0) = e~ and

e M Al
pX(m)ZTW fOI'.’L’:...,—27—1,1,2,...,
where \ > 0.

() A (b)) A24+A () A2—=X (d) A2 (e) 22
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Question no. 5

Let it
e’ /2 ifx <O,
Ix(@) = {e"‘/Q if 2 > 0.

Calculate the variance of X.
(@)1 (1b)3/2 ()2 (d)3 (e)4

Question no. 6
Suppose that
0 ifx < —1,
1/4if -1 <z <0,
3/4if 0 < < 2,
1 ifx>2.

Fx(x) =

Calculate px (0) + px(1).
(a)0 (b)1/4 (c)1/2 (d)3/4 (e)1
Question no. 7 ,
Let fx(x) =2xze ", for x > 0. We set Y =1In X. Find fy (y), for any y € R.
(a) 2ee<"  (b) 2e%e V" (c) 2e¥e~¢"  (d) 2e%  (e) eV

Question no. 8
Calculate P[X < 5] if X ~ G(a=5,A=1/2).
(a) 0.109 (b) 0.243 (¢) 0.5 (d) 0.757  (e) 0.891

Question no. 9

Suppose that X is a discrete random variable whose set of possible values is
{0,1,2,...}. Calculate P[X = 0] if E[tX] = e*!=1 where t is a real constant.
()0 (b)1/4 (c)1/2 (e (e)e?

Question no. 10
Calculate P[X? < 4] if X ~ Exp(\ = 2).
(a)1—e* (b)2(1—e?) (c)de* (d)e?* () 27

Question no. 11
Calculate P[0 < X < 2] if
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Remark. The random variable X is of mized type (see p. 83 and Exercise no. 50, p. 109).
Note that the function Fx(x) is discontinuous at the point 2 = 0.

Question no. 12
We define Y = | X |, where X is a continuous random variable whose density function
is
1/2if ~1 <z <1,
0 elsewhere.

et = {

Find fy (y).

1 1
(a) g if—1<y <1 agy; it l<y<l (0)yifo<y<l
(d)2yifo<y<1 (e)1if0<y<1

Question no. 13
Let

T 1 4 9
px (x)|1/41/41/2

We have that F[vX] = 9/4 and E[X] = 23/4. Calculate the standard deviation of
VX +4.

W w9 @l e

Question no. 14

Suppose that
l/eif0 <z <e,
0 elsewhere.

fx(x) :{

Find a function g(x) such that if Y := g(X), then fy (y) = e ¥~!, for y > 1.
(@)e® (e ! (¢)er (d) —Inz (e) Inx

Question no. 15
Calculate the third-order central moment of the discrete random variable X whose
probability function is

z |—-1 0 1
px (x)|1/81/2 3/8

(a) —3/32 ()0 (c)1/64 (d)3/32 () 1/4

Question no. 16
Let X be a continuous random variable defined on the interval (a,b). What is the
density function of the random variable Y := Fx (X)?
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(a) It is not defined (b) 0 (¢)1if0<y <1 (d) fx(vy)
(e)2yif0<y<1

Question no. 17

The rate of suicides in a certain city is equal to four per month, according to a Poisson
distribution, independently from one month to the other. Calculate the probability that
during at least one month over the course of a given year there will be at least eight
suicides.

(a) 0.0520 (b) 0.1263 (c) 0.4731  (d) 0.5269  (e) 0.8737

Question no. 18

A telephone survey has been conducted to determine public opinion on the con-
struction of a new nuclear plant. There are 150,000 subscribers whose phone numbers
are published in the telephone directory of a certain city and we assume that 90,000
among them would express a negative opinion if asked. Let X be the number of nega-
tive opinions obtained in 15 calls made at random (among the 150,000 listed numbers).
Calculate approximately P[X = 9] if we also assume that nobody was contacted more
than once.

(a) 0.1666 (b) 0.1766 (c) 0.1866 (d) 0.1966 () 0.2066

Question no. 19

A multiple choice examination comprises 30 questions. For each question, five an-
swers are proposed. Every correct answer is worth two points and for every wrong answer
1/2 point is deducted. Suppose that a student has already answered 20 questions. Then,
she decides to select the letter a for each of the remaining 10 questions, without even
reading these questions. If the correct answers are distributed at random among the
letters a,b,c,d and e, what is her expected total mark (on 60), assuming that she has
four chances out of five of having the correct answer to any of the first 20 (independent)
questions she has already done?

(a) 26 (b)28 ()30 (d)32 (e) 36

Question no. 20
Let px(z) = (3/4)*71(1/4), for x = 1,2,... . Calculate the expected value of the
discrete random variable X, given that X is greater than 2.

()4 ()5 (6 ()7 (¢)8
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Random vectors

The notion of random variables can be generalized to the case of two (or more) di-
mensions. In this textbook, we consider in detail only two-dimensional random vectors.
However, the extension of the various definitions to the multidimensional case is imme-
diate. In this chapter, we also state the most important theorem in probability theory,
namely the central limit theorem.

4.1 Discrete random vectors

The joint probability function
pxy (2 u) = P{X =2} 0{Y =y }] = P[X = 2,V = ]
of the pair of discrete random variables (X,Y"), whose possible values are a (finite or
countably infinite) set of points (z;,yx) in the plane, has the following properties:
(1) px,v (@, 98) = 0 V(2 yk);
(i) 2252, > pxy (25, u) = 1.

The joint distribution function Fx y is defined by

Fxy(z,y) = PUX <a}n{Y <y}l = > > pxy(a;um).

z; <z Yr<y

Example 4.1.1. Consider the joint probability function px y given by the following
table:

M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics 115
and Technology, DOI: 10.1007/978-0-387-74995-2 4,
© Springer Science + Business Media, LLC 2009
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y\z| -1 0 1

0 |1/16 1/16 1/16
1 [1/161/16 2/16
2 |2/16 1/16 6/16

We can check that the function px y possesses the two properties of joint probability
functions stated above. Furthermore, given that only the points (—1,0) and (0,0) are
such that z; <0 and yi < 1/2, we may write that

1
FX’y(O, 1/2) = pX_’y(—].,O) +pX7Y(0,0) = g

When the function py y is summed over all possible values of Y (resp., X), the
resulting function is called the marginal probability function of X (resp., Y). That is,

oo oo
px (@) =Y pxy(@ue) and py(ye) = > pxy (@), k)
k=1 =1

Example 4.1.1 (continued). We find that

z -1 0 1 |%
px (2)[1/4 3/16 9/16] 1

and

Y o 1 2 |X
py(y)|3/16 1/49/16

—

Definition 4.1.1. Two discrete random variables, X and Y, are said to be indepen-
dent if and only if

pxy (%5, yr) = px () py (yx)  for any point (xj,yi). (4.1)

Example 4.1.1 (continued). We have that px y(—1,0) = 1/16, px(—1) = 1/4 and
py(0) = 3/16. Because 1/16 # (1/4)(3/16), X and Y are not independent random
variables.

Finally, let Ax be an event defined in terms of the random variable X. For instance,
Ax = {X > 0}. We define the conditional probability function of Y, given the event
Ax, by

PHY =y} N Ax]
P[Ax]

py(y | Ax) = PlY =y | Ax] = if P[Ax] > 0.
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Likewise, we define

PUX =2} N Ay]
P[Ay]

px(CC|Ay)EP[X:$|Ay}: lfP[Ay}>O

Remark. If X and Y are independent discrete random variables, then we may write that

py(y | Ax) =py(y) and px(z|Ay)=px(z).

Example 4.1.1 (continued). Let Ax = {X = 1}. We have:

PY =y} n{X =1} _pxv(L,y)

X=1)=
privix=1 PIX=1] px()
16 1/9if y =0,
= jpxy(Ly) =1¢2/9ify=1,
2/3if y = 2.

Example 4.1.2. A box contains one brand A, two brand B, and three brand C' transis-
tors. Two transistors are drawn at random and with replacement. Let X (resp., Y) be
the number of brand A (resp., brand B) transistors among the two selected at random.

(a) Calculate the joint probability function px y (x,y).

(b) Find the marginal probability functions.

(c) Are the random variables X and Y independent? Justify.
(d) Calculate the probability P[X =Y.

Solution. (a) The possible values of the pair (X,Y) are: (0,0), (0,1), (1,0), (1,1),
(0,2), and (2,0). Because the transistors are taken with replacement, so that the draws
are independent, we obtain the following table:

vzl 0 1 2
0 [1/41/61/36
1 |1/31/9 0
2 |19 0 0

For instance, we have:
px,y(0,0) = (1/2)(1/2) = 1/4
(by independence of the draws) and
pxy(1,0) %5 P[A; N Cy] + P[Cy N Ag] ™2™ 2(1/6)(1/2) = 1/6,

where Ay is the event “a brand A transistor is obtained on the kth draw,” and so on.
We can check that the sum of all the fractions in the table is equal to 1.
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Remark. In fact, the random variables X and Y follow binomial distributions with
parameters n = 2 and p = 1/6, and with parameters n = 2 and p = 1/3, respectively.

(b) From the table in part (a), we find that

z | 0 1 2[%
px (2)|25/36 5/18 1/36] 1

and

Y 0o 1 2|X
py(y)|4/94/91/9

[y

(¢) The random variables X and Y are not independent, because, for instance,
px,v(2,2) =0 # px(2)py(2) = (1/36)(1/9).

Remark. The random variables X and Y could not be independent, because the relation

0 < X +Y <2 must be satisfied.

(d) We calculate

1 1 13
PIX =Y]=pxy(0,0) +pxy(L, 1) +pxy(2,2) = ; + 5 +0= 2.

4.2 Continuous random vectors

Let X and Y be two continuous random variables. The generalization of the notion of
density function to the two-dimensional case is the joint density function fx y of the
pair (X,Y). This function is such that

y+48 T+e€
P[m<X§x+6,y<Y§y+(5]=/ / fx.y (u,v)dudv
y T

and has the following properties:
(i) fx.v(x,y) > 0 for any point (z,y);

(i) [ [7 fxy (zy) dedy = 1.

Remark. In n dimensions, a continuous random vector possesses a joint density function
defined on R™ (or on an uncountably infinite subset of R™). This function is nonnegative
and its integral on R” is equal to 1.

The joint distribution function is defined by

Yy x
Fxy(z,y)=PX <zY <y|= / / fx.y(u,v) dudv.
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Example 4.2.1. Consider the function fx y defined by
fX,Y(xvy) = CIy€7127y2 fOI' T 2 07y Z Oa

where ¢ > 0 is a constant. We have that (i) fx y(z,y) > 0 for any point (z,y) with
x>0and y >0 [fxy(x,y) =0 elsewhere] and (ii)

o0 o0 2 2 o0 2 o0 2
/ / crye™ ¥ "V dxdy = c/ re ¥ dx/ ye Y dy
o Jo 0 0
2 |© 2 |50
e " e Y
:c[— 5 ] [_ 5 ] =c¢(1/2)(1/2) = ¢/4.
0

So, this function is a valid joint density function if and only if the constant ¢ is equal
to 4.

0

The joint distribution function of the pair (X,Y") is given by

vore 2 2
Fxy(z,y) :/ / duve™ 7V dudv

0o Jo

x 2

Y 2
:/ 2ue du/ 2ue” Y dv
0 0

= [—67“2 :} [—677}2 y] =(1- eiIZ)(l - e*yz)
forx >0 and y > 0.

Remark. We have that Fx y(z,y) =0if 2 <0 ory < 0.

0

The marginal density functions of X and Y are defined by
fx@ = [ Ixroydy ad fw)= [ fxreo)de

Remark. We can easily generalize the previous definitions to the case of three or more
random variables. For instance, the joint density function of the random vector (X, Y, Z)
is a nonnegative function fx y,z(z,y,z) such that

/ / / Ixy.z(,y,z)dedydz = 1.

Moreover, the joint density function of the random vector (X,Y") is obtained as follows:

fxy(zy) = /_OO fxvz(zy, 2)dz.

Finally, the marginal density function of the random variable X is given by
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fX(I):[ [ Ixv,z(x,y, 2)dydz.

Definition 4.2.1. The continuous random variables X and Y are said to be indepen-
dent if and only if

fxy(z,y) = fx(@) fy(y) for any point (x,y). (4.2)

Example 4.2.1 (continued). We have:

o 22— a2 o [ 2
fx(x) :/ daye™ "Vdy = 2xe™” / 2ye” Y dy
0 0

_ .2 a2
=2ze " [fey

} — 2z~ for > 0.
0

Then, by symmetry, we may write that

fy(y) = Zye_yz for y > 0.

Furthermore, because

Fx (@) fy(y) = daye ™ V" = fxy(z,y)

for any point (z,y) (with > 0 and y > 0), the random variables X and Y are
independent.

Finally, let Ay be an event depending only on Y. For example, Ay = {0 <Y < 1}.
The conditional density function of X, given that Ay occurred, is given by

~Jay fxy(@y)dy

fx(z| Ay) = Py ] if P[Ay] > 0.

If Ay is an event of the form {Y = y}, we can show that

_ o xy@y)
fx(@|Y =y)= o) f fy(y) > 0.

That is, the conditional density function fx(xz | Y = y) is obtained by dividing the
joint density function of (X,Y’), evaluated at the point (z,y), by the marginal density
function of Y evaluated at the point y.

Remarks. (i) If X and Y are two independent continuous random variables, then we
have:
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Ix(x|Ay) = fx(z) and fy(y|Ax) = fr(y).

(ii) In general, if X is a continuous random variable, then we can write that

PIY € Ay] = / PIY € Ay | X = o] fx (a)da, (4.3)
where Ay is an event that involves only the random variable Y. In the case when X is
discrete, we have:

P[Y S Ay] = P[Y € Ay | X = l‘k]px(l‘k). (44)

M8

b
Il

1
These formulas are extensions of the law of total probability from Chapter 2. We also
have, for instance:
PlY > X] :/OO PY > X | X =z]fx(z)dz
= /OO PlY >z | X = 2] fx(z)dz, (4.5)
and so on.

Definition 4.2.2. The conditional expectation of the random variable Y, given that
X =, is defined by

Y1 Yy (yj | X =) if (X,Y) is discrete,

ElY | X =a] =
[Z ufy(y| X =a)dy if (X,Y) is continuous.

Remarks. (i) We can show that
S ElY | X = ag]px (zg) if X is discrete,

ElY] = EEY [ X]:=4
Jo ElY | X =z]fx(x)dz if X is continuous.

(ii) In general,
Elg(Y)] = E[E[g(Y) | X]]

for any function g(-). It follows that

VAR[Y] = E[E[Y? | X]| - {E[E[Y | X]]}”.
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Example 4.2.2. Let

B k(x2+y2)for0§x§a,0§y§bv
fxy(z,y) _{ 0 elsewhere.

(a) Calculate the constant k.
(b) Find the marginal density functions of X and Y. Are X and Y independent?

(¢) Obtain the conditional density functions fx(z | Y = y), fy(y | X = ), and
rly| X <a/2).
(d) Find the distribution function Fx y (z,y).

Solution. (a) We have:

1—// )dwdy = k (
—Ic/o(?)-l—ay)dy:k{g 3

Thus, k£ must be given by

a3b  ab31 7t 3
k = —_— —|— —_— = TV 5 5 -
3 3 (ab)(a2 + b?)

dy

w‘&

\@

(b) We can write that

b 3
e = [k ey = {4 2

)

where k has been calculated in part (a). Similarly, we find that

bS
—k<b:c2+3> for0 <z <a,

3
fY(y):k;<ay2+C;> for 0 <y <b.

Now, we have:

P50 =k (5 )k () =55 # 0= fxx0.0)

Therefore, X and Y are not independent random variables.

Remark. When the joint density function, fx y(x,y), is a constant ¢ multiplied by a
sum or a difference, like x4+, 2 —y?, and so on, the random variables X and Y cannot
be independent. Indeed, it is impossible to write, in particular, that
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c(z+y) = f(x)g(y),

where f(z) depends only on 2 and ¢(y) depends only on y.
(¢) We calculate

2,2 5 o
fX(m|Y:y)_fx,y(x,y)() k(a®+12)  3(2% +4?)

fr(y) k(% +ay?)  aa®+3y?)

for 0 <z <aand 0 <y <b. Similarly, we find that

3(x? +y?)

fY(y|X:x):W

for 0 <z <aand 0 <y <b. Finally, we have:

2 k{w_3+z2a/2}
fry| X <a/2) = O“/ k(z? 4+ y?)de 3 v,

Jo T (o2 + ) dw k(o2 a0

a® | ay? 2 2
<At 2419y
21 2
_b:)‘f agS_baz e for 0 <y <b.

x

(d) By definition,
dv

Y z Y u3
FX,Y(x,y)Z/ / k(u2+v2)dudv:/ k<§+uv2)
0 0 0 0
v vy oz’ _ aye? +y°)
=k — 2y =k 2 L V=22 9 )
/0(3+M>” {3 * 3} ab(a® + b?)

for 0 <z <a and 0 <y < b. Hence, we deduce that (see Figure

0 ifx<0ory<O0,
2, 2
ngz_tgz)) if0<z<aand 0 <y <b,
ab(a
xb(2? +b?) |
Fxy(z,y) = ab(ai—&—bi) if0<z<aandy>b,
Z?)EZQiZQ; ifx>aand 0 <y <b,
1 if x >aand y > b.
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F=0 —F

F=0 F=0

Fig. 4.1. Joint distribution function in Example 4.2.2.

Remark. Corresponding to Formula (3.1) in the one-dimensional case, we have:

32
dzxdy

Fxy(z,y) = fxy(z,y)
for any point (z,y) at which the function Fx y (z,y) is differentiable.

Example 4.2.3. Suppose that X ~ Exp(A\1) and Y ~ Exp(\3) are independent random
variables. Making use of (4.5), we can write that

PlY > X] :/ PlY > X | X = 2| fx(z)dx
ind 000 [eS)
= / PIY > 2]\ e M dx = / e M2T N\ e M dy
0 0

> A
= Me Mtz gy — A1 4.6
/0 Le v A1+ Ao ( )

Remark. Note that if Ay = Ao, then P[X < Y] = 1/2, which actually follows directly by
symmetry (and by continuity of the exponential distribution).

4.3 Functions of random vectors

In Chapter 3, we saw that any real-valued function of a random variable is itself a random
variable. Similarly, any real-valued function of a random vector is a random variable.
More generally, n real-valued functions of a random variable or of a random vector
constitute a new random vector of dimension n. The most interesting transformations
are the sum, the difference, the product, and the ratio of random variables.

In general, we must be able to calculate the probability function or the density func-
tion of the new random variable or vector. In this textbook, we treat the case of a single
function g of a two-dimensional random vector (X,Y’). We also give important results
obtained when the function g is the sum (or a linear combination) of n independent
random variables.
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Sometimes, we only need the mean, for instance, of the new random variable. In
that case, it is not necessary to first calculate the probability function or the density
function of g(X,Y).

4.3.1 Discrete case

In the particular case when the number of possible values of the pair (X,Y") of random
variables is finite, we only have to apply the transformation ¢ to each possible value of
this pair and to add the probabilities of the points (z,y) that are transformed into the
same value of g(z,y).

Example 4.3.1. Consider again the joint probability function in Example 4.1.1:

y\z| -1 0 1

0 |1/16 1/16 1/16
1 [1/161/16 2/16
2 |2/16 1/16 6/16

Let Z = XY. The random variable Z can take on five different values: —2, —1, 0, 1,
and 2. The point (—1,2) corresponds to z = —2, (—1,1) corresponds to z = —1, (1,1)
is transformed into z = 1, (1,2) becomes z = 2, and all the other points are such that
z = 0. From the previous table, we obtain that

z -2 -1 0 1 2 ¥
pz(2)[2/16 1/16 5/16 2/16 6/16] 1

It follows that the mean of Z is given by

2 1 2 6 9
EZl =(-2)—=+(-1)— DN=4+2)—=—.
2= (2 F g F0H g+ (235 = 1
As we mentioned above, if we are only interested in obtaining the expected value of
the new random variable Z, then it is not necessary to calculate the function pz(z). It
suffices to use Formula (4.11) of Section 4.4:

Blg(X, ) =Y gz, y;)pxy (@, ;)-

k=1 j=1

Here, we obtain that E[XY] = 9/16 (see Example 4.4.1), which agrees with the result
obtained above for Z = XY

Example 4.3.2. Suppose that we toss two distinct and well-balanced tetrahedrons,
whose faces are numbered 1, 2, 3, and 4. Let X (resp., X5) be the number of the face
on which the first (resp., second) tetrahedron lands, and let Y be the mazimum between
X7 and X5. What is the probability function of the random variable Y7
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Solution. The possible values of Y are 1, 2, 3, and 4. Let Ay, (resp., By) be the event “the
random variable X (resp., X») takes on the value k,” for k =1, ...,4. By independence
of the events A; and By, for all j and k, we have:

Similarly, by independence and incompatibility, we may write that

py(2) = P[(A
= P[A,

1N BQ) U (A2 N Bl) U (A2 n Bz)]
|P[Ba] + P[A2]P[B1] + P[A2] P[Bo]
1 1 1 1 3

F o Xt X =

_1!
A R S R R T

Next, using the equiprobability of the events (and of the intersections), we obtain that

py(3) = P[(A1 N B3)U (A2 N B3) U (A3 N B3) U (A3 N By) U (A3 N By)]
=5Hx 1 X 1 = i
4 4 16

Finally, because we must have that 23:1 py (y) = 1, we obtain the following table:

Y 1 2 3 4
py (y)|1/16 3/16 5/16 7/16

It follows that

y |1 2 3 4
Fy (y)[1/16 1/49/16 1

When the number of possible values of the pair (X,Y) is countably infinite, it is
generally much more difficult to obtain the probability function of the random variable
7 = g(X,Y). Indeed, there can be an infinite number of points (x,y) that correspond
to the same z = g(z,y), and there can also be an infinite number of different values
of Z. However, in the case when the number of possible values of Z is finite, we can
sometimes calculate pz(z) relatively easily.

Example 4.3.3. Suppose that the joint probability function of the random vector
(X,Y) is given by the formula
-2

pX7y(x,y):% forx=0,1,...;y=0,1,... .
xly!

Note that X and Y are actually two independent random variables that both follow a
Poisson distribution with parameter A = 1. Let
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1lif X =Y,
Z=9(X.Y):= {OifX;éY.
In this case, Z has a Bernoulli distribution with parameter p, where

o -2

p=PX=Y]=>" e
=0

We find, using a mathematical software package for instance, that the above infinite
series converges to e~2 - I(2) =~ 0.3085, where Iy(-) is a Bessel function. We could
actually obtain a very good approximation to the exact result by adding the first five

terms of the series, because
-2

4
e
g ~ (0.3085
2
= (al)

as well.

4.3.2 Continuous case

Suppose that we wish to obtain the density function of the transformation 7 := g1 (X,Y)
of the continuous random vector (X,Y’). We consider only the case when it is possible
to define an auziliary variable W = go(x,y) such that the system

possesses a unique solution: x = hq(z,w) and y = ha(z,w). The following proposition
can then be proved.

Proposition 4.3.1. Let (X,Y) be a continuous random vector and let Z = g1(X,Y)
and W = g5(X,Y). Suppose that the functions x = hy(z,w) and y = hay(z,w) have con-
tinuous partial derivatives (with respect to z and w) for all (z,w) and that the Jacobian
of the transformation:

Ohy/0z Ohy /Ow

Ohy [0z Ohs /0w

1s not identical to zero. Then, we can write that

J(z,w) :=

fzw(z,w) = fxy(hi(z,w), ha(z,w))|J (2, w)|.
It follows that -
f2(2) = / Py (ha (2, 0), Bz, w)) | (2, )| duw
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Remarks. (i) We generally choose a very simple auxiliary variable W, for example,
W =X.

(ii) In the particular case when g;(x,y) is a linear transformation of = and y, it suffices
to choose another linear transformation of x and y for the partial derivatives of the func-
tions Ay and hy to be continuous. Indeed, these partial derivatives are then constants.
Therefore, they are continuous at any point (z,w).

Example 4.3.4. Let X ~U(0,1) and Y ~ U(0, 1) be two independent random variables
and let Z = X +Y. To obtain the density function of Z, we define the auxiliary variable
W = X. Then, the system

zZ =x+vy,

w=z
has the unique solution x = w, y = z — w. Moreover, the partial derivatives of the
functions hj(z,w) = w and he(z,w) = z — w are continuous V(z,w) and the Jacobian

0 1

J(z,w) = ’1 _1

--

is different from zero for all (z,w). Consequently, we can write that

faw(zw) = fxy(w,z—w)| — 1| "2 fx(w) fy (z — w)

=  fzw(zw)=1-1 f0<w<land0<z—w<1.

Because 0 < z < 2, the set of possible values of w is the interval (0, z), if 0 < z < 1, and
the interval (z —1,1),if 1 <z < 2.
Finally, we have (see Figure

/ ldw=2 if0<z<l,
0

fz(z) = )
/ ldw=2—-zif 1 <z <2.
z—1

4.3.3 Convolutions

Let X be a discrete random variable whose possible values are 1, x2, ... . The convolu-
tion of X with itself is obtained by applying the transformation of interest, for instance,
the sum, the difference, the product, and so on, to the points (x1,z1), (21, 22),...,
(z2,21), (x2,x2),... . Therefore, if X can take on n different values, then the transfor-
mation must be applied to n x n = n? points. We write X ® X to denote the convolution
product of X with itself, X @ X for the convolution sum, and so on. Observe that ob-
taining the distribution of X ® X, for example, is tantamount to finding the distribution
of the product X; X5, where X7 and X5 are two independent random variables having
the same distribution as X.
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[ 1 z

Fig. 4.2. Density function in Example 4.3.4.

Example 4.3.5. Consider the probability function of the random variable X in Example
3.4.1:

z |[—1 0 1
px(x)|1/41/41/2

Suppose that we want to obtain the distribution of the convolution product of X with
itself. We find that the possible results of this convolution are —1, 0, and 1. The points
(=1,1) and (1,—1) correspond to —1, the points (—1,—1) and (1,1) to 1, and the five
other points to 0. Then, if we define Y = X ® X, we deduce from the above table that

y -1 0 1
py (y)[1/4 7/16 5/16

because

PlY = —1] = P[X = —1]P[X = 1] + P[X = 1]P[X = —1]
— 2 (1/4)(1/2) = 1/4,

and so on.

Remarks. (1) Note that the result obtained is completely different from the probability
function of Z := X2 calculated in Example 3.4.1:

Z 0 1
pz(2)[1/43/4

(ii) If we calculate the convolution difference of X with itself, we find that the probability
function of D := X & X is given by

d [—2 -1 0 1 2
po(d)[1/3 3/16 3/8 3/16 1/8
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In general, it is difficult to calculate the distribution of the convolution of a discrete
random variable X with itself k times, where k is arbitrary, especially if the number
of values that X can take is (countably) infinite. However, in a few particular cases we
can obtain a general formula, valid for any integer k. In fact, we can prove some results
for the sum of independent random variables following the same distribution, but not
necessarily having the same parameters. The most important results of this type are
the following, where X1, ..., X,, are n independent random variables.

(1) If X; has a Bernoulli distribution with parameter p, for all ¢, then we have:
ZXi ~B(n,p) forn=1,2,....
i=1

More generally, if X; ~ B(my,p), for i = 1,...,n, then we find that
S oxn(Soms)
i=1 i=1
(2) If X; ~ Poi(\;), for i =1,...,n, then we may write that
n n
Z X; ~ Poi <Z A) . (4.7)
i=1 i=1
(3) If X; ~ Geo(p), for i =1,...,n, then we have:

i X; ~ NB(n,p).

i=1

Suppose now that X and Y are two independent continuous random variables. Let
Z = X +Y. We can show that the density function of Z is obtained by computing the
convolution product of the density function of X with that of Y. That is, we have:

f22) = 5@ s v = [ Ttz - u)du (18)
We could use this formula to obtain the density function of Z in Example 4.3.4.

As in the discrete case, we can prove some results for the sum (and sometimes for
linear combinations) of independent random variables X;. We find, in particular, that

(1) if X; ~ Exp(\), for i = 1,...,n, then
> Xi ~ G(n, \); (4.9)
i=1

(2) if X; ~ G(ay, \), for i =1,...,n, then
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ZXZ ~ G (Za“)\> 3
i=1 i=1
(3) if X; ~ N(py,02), fori =1,...,n, then

iaiXi ~N (i aiui,iafarf) , (4.10)
i=1 i=1 i=1

where a; is a real constant, for all 4.

Remarks. (i) The best way to prove these results is to make use of the characteristic
function, or of the moment-generating function, which are actually particular mathe-
matical expectations. The characteristic function of the random variable X is defined
by E[e/“X], where j := /—1.

(ii) A result of the same type, but for the product of independent random variables
X1,..., Xy, is the following: if X; ~ LN(u;,02), then

n

HX;“ ~ LN <i aiui,ia?0i2> .
i=1

=1 i=1

4.4 Covariance and correlation coefficient

Definition 4.4.1. Let (X,Y) be a pair of random variables. We define the mathemat-
ical expectation of the function g(X,Y") by

o0 o0
Z Zg(mk, y;)px,y (zr,y;)  (discrete case),
k=1 j=1

Blg(X.Y)] = (4.11)

/ / g(x,y) fx.v(z,y) dedy (continuous case).

Particular cases. (i) If ¢(X,Y) = X, then we have that E[g(X,Y)] = E[X] = px.

(ii) If ¢(X,Y) = XY, we then obtain the formula that enables us to calculate the
mathematical expectation of a product, which is used in the calculation of the covariance
and of the correlation coefficient.

(iii) If the function g is a linear combination of the random variables X and Y, that is,

if we have:
g(X,Y) =aX +bY +¢,

where a, b, and ¢ are real constants, then we easily prove that
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Elg(X,Y)] =aE[X]+bE[Y]+¢

(if the expected values exist). This formula may be generalized to the case of linear
combinations of n random variables X;,..., X,. Moreover, if Y = h(X), for example,
Y = X2, then the above formula enables us to write that

ElaX 4+ bX?] = aE[X] + bE[X?],
as we did in Chapter 3.
Definition 4.4.2. The covariance of X and Y is defined by
COVIX,Y]=oxy = E[(X — px)(Y — py)].
Remarks. (i) We can show that

COV[X,Y] = E[XY] — E[X]E[Y].

(ii) If X and Y are two independent random variables and if we can write that g(X,Y") =
91(X)g2(Y), then we have that E[g(X,Y)] = E[g1(X)]E[g2(Y)]. It follows that if X and
Y are independent, then

COV[X,Y]"™ E[X]E[Y] - E[X]E[Y] = 0.

If the covariance of the random variables X and Y is equal to zero, they are not
necessarily independent. Nevertheless, we can show that, if X and Y are two random
variables having a normal distribution, then X and Y are independent if and only if
COV[X,Y]=0.

(iii) We have that COV[X, X] = E[X?] — (E[X])? = VAR[X]. Thus, the variance is a
particular case of the covariance. However, contrary to the variance, the covariance may
be negative.

(iv) If g(X,Y) is a linear combination of X and Y, then we find that
VAR[g(X,Y)] = VAR[aX +bY + ] = a*VAR[X] +b*VAR[Y] 4 2abCOV[X,Y]. (4.12)

Note that the constant ¢ does not influence the variance of ¢(X,Y"). Furthermore, if X
and Y are independent random variables, then we have:

ind.

VAR[aX +bY + c] "= a?VAR[X] + b*VAR[Y].

Finally, Formula (4.12) can be generalized to the case of a linear combination of n
(independent or dependent) random variables.
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Definition 4.4.3. The correlation coefficient of X and Y is given by

COV[X,Y]
VAR[X|VAR[Y]

CORR[X, Y] = PX)Y =

We can show that —1 < px y < 1. Moreover, px y = %1 if and only if we can write
that Y = aX + b, where a # 0. More precisely, pxy = 1 (resp., —1) if a > 0 (resp.,
a < 0). In fact, px y is a measure of the linear relationship between X and Y. Finally,
if X and Y are independent random variables, then we have that pxy = 0.

In the case when X and Y are random variables having a normal distribution,
we have that pxy = 0 & X and Y are independent. This result is very important
in practice, because if we showed (by means of a statistical test) that the two random
variables follow (approximately) a normal distribution and if we found that their sample
correlation coefficient is close to zero, then, in the context of statistical procedures, we
can accept that they are independent.

Example 4.4.1. Consider the function px y given by the following table (see Exam-
ple 4.1.1):

YNz |[—-1 0 1 |py(y)
0 |1/16 1/16 1/16| 3/16
1 |1/16 1/16 2/16| 4/16
2 |2/16 1/16 6/16|9/16
px(2)|4/16 3/16 9/16] 1

With the help of this table and the marginal probability functions px and py, we
calculate

E[X] = —1x (4/16) +0 x (3/16) + 1 x (9/16) = 5/16,

E[Y] =0x (3/16) + 1 x (4/16) + 2 x (9/16) = 22/16,
E[X?] = ( 1)2 x (4/16) 4+ 02 x (3/16) 4 1% x (9/16) = 13/16,
E[Y?] = (3/16) + 1% x (4/16) + 2% x (9/16) = 40/16,

Y] = Z Zl‘ypx,Y(l“aZ/)

r=—1y=0

=0+ (=1)(1)(1/16) + (=1)(2)(2/16) + 0+ 0+0+0
+(1)(1)(2/16) + (1)(2)(6/16)

=—1/16 —4/16 +2/16 + 12/16 = 9/16.

It follows that
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40 [22\® 156
_ 21 2 _ = [E2) _
VAR[Y] = E[Y?] — (E[Y)) 16 <16> (16)2
and 9 5 22 34
X — — = — — _— —_— = .
COV[X,Y] = E[XY] - E[X|E[Y] 16 (16) (16) (16)2
Finally, we calculate
4/(16)? 4

( 183 156 )1/2 V183156

(16)% " (16)?

Remark. In general, it is advisable to calculate the means E[X], E[Y], and E[XY] before
the expected values of the squared variables. Indeed, if E[XY] — E[X|E[Y] = 0, then
CORR[X,Y] = 0 (if X and Y are not constants, so that their variances are strictly
positive).

Example 4.4.2. The joint density function of the continuous random vector (X,Y") is

eWif0<xz <2, y>0,
0 elsewhere.

fXA,Y ((E, y) = {
What is the correlation coefficient of X and Y?

Solution. We can show that, when the joint density function of (X,Y’) can be de-
composed into a product of a function of x only and a function of y only, the random
variables X and Y are independent, provided that there is no relationship between x
and y in the set Dx y of possible values of the pair (X,Y’). That is, this set Dy y is of
the form

Dxy ={(z,y) € R?:c; < <eo, by <y < kol

where the ¢;s and the k;s are constants, for i = 1, 2.
Here, the possible values of X and Y are not related and we can write that

e = g(x)h(y),

where g(z) = 1 and h(y) = e~2¥. Therefore, we can conclude that X and Y are inde-
pendent. It follows that CORR[X, Y] = 0.
We can check that X and Y are indeed independent. We have:

> 2 1 2 > 1
fx(w):/ e Wdy=—e % == if0<zr<?2
0 2° |, 2
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and )
fy(y) = / e Wdr =2 ify>0.
0

Thus, we have that fx y(x,y) = fx(z)fy(y) for every point (x,y), as required. Note
that X ~ U(0,2) and Y ~ Exp(2) in this example.

4.5 Limit theorems

In this section, we present two limit theorems. The first one is useful in statistics, in
particular, and the second one is in fact the most important theorem in probability
theory.

Theorem 4.5.1. (Law of large numbers) Suppose that X1, X, ... are independent
random variables having the same distribution function as the variable X, whose mean
ux exists. Then, for any constant € > 0, we have:

X+ + X,

lim P[
n

- ,uxl > €:| =0.
n—oo
Remarks. (i) This theorem is known, more precisely, as the weak law of large numbers.
There is also the strong law of large numbers, for which the expected value of | X| must
exist.

(ii) In practice, the mean py of the random variable X is unknown. To estimate it,
we gather many (independent) observations X; of X. The above result enables us to
assert that the arithmetic mean of these observations converges (in probability) to the
unknown mean of X.

(iii) We write that the random variables X1, X, ... are i.i.d. (independent and identi-
cally distributed).

Theorem 4.5.2. (Central limit theorem) Suppose that X1,..., X, are independent
random variables having the same distribution function as the variable X, whose mean
px and variance o% exist (o0x > 0). Then, the distribution of S, := Y i, X; tends to
that of a normal distribution, with mean nux and variance no% , as n tends to infinity.

Remarks. (i) Let us define

Then, we can assert that the distribution of X tends to that of a N(ux,0% /n) distri-
bution.
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(ii) In general, if we add up 30 or more independent random variables X;, then the
normal distribution should be a good approximation to the exact (often unknown)
distribution of this sum. However, the number of variables that must be added, to obtain
a good approximation, actually depends on the degree of asymmetry of the distribution
of X.

(iii) We can, under certain conditions, generalize the central limit theorem (CLT) to the
case when the random variables X1,..., X, are not necessarily identically distributed.
Indeed, if the mean px, and the variance ag(i of X; exist for all 7, then, when n is large

enough, we have:
n n n
> (L 3ok
i=1 i=1 i=1

and

B ~ 1 n 1 n )
X ~N (n ;wa 2 ;(Ixi) .
Example 4.5.1. An American town comprises 10,000 houses and two factories. The
demand for drinking water (in gallons) from a given house over an arbitrary day is
a random variable D such that E[D] = 50 and VAR[D] = 400. In the case of the
factories, the demand for drinking water follows (approximately) a N(10,000, (2000)?)
distribution for factory 1 and a N(25,000, (5000)?) distribution for factory 2. Let D;,
fori=1,...,10,000, be the demand for drinking water from the ith house and F;, for
i = 1,2, be the demand from factory . We assume that the random variables D; and
F; are independent and we set

10,000
Xg= Z D; (the domestic demand)
i=1

and
X, =Xg+F +F (the total demand).

(a) Find the number a such that P[X; > a] ~ 0.01.

(b) What should the production capacity of the drinking water treatment plant be if
we want to be able to satisfy the total demand with probability 0.987

Solution. (a) By the central limit theorem, we may write that
X4~ N(10,000(50), 10,000(20?)).

Remark. We assume that the random variables D; are independent among themselves.
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Then, we have:

a — 500,000
PXg>ad=1-PXg<a~1-P|z< 220701
[Xa 2 al [Xa <l [ 10,000(20)]
where Z ~ N(0,1). It follows that
a — 500,000
PlXg>a ~001 < P|z<272227110.99.
(X4 >a] ~0.0 [ < ] 0.99

Now, we find in Table age 279, that P[Z < 2.33] ~ 0.99. Thus, we have:
a ~ 500,000 + 2000(2.33) = 504, 660.
(b) By independence, we may write that X; ~ N(u,0?), where [see (4.10)]
1 = 500,000 + 10,000 + 25,000 = 535, 000

and
o? = (2000)% + (2000)? + (5000)* = 33,000, 000.

137

Let ¢ be the capacity of the drinking water treatment plant. We seek the value of ¢

Tab. B.3

such that P[X; < ¢] = 0.98. Because P[Z < 2.055] =~ " 0.98, proceeding as in part

(a) we find that

¢ ~ 535,000 + /33,000,000(2.055) ~ 546, 805.

Remark. We see in this example that it is not necessary to know the exact form of the
function px or fx to be able to apply the central limit theorem. It is sufficient to know

the mean and the variance of X.

4.6 Exercises for Chapter 4

Solved exercises

Question no. 1
Let

1
pxy(z,y) = 8 ifz=0o0r1,and y =0,1 or 2.
Calculate px (z).

Question no. 2
Calculate fx(z |Y =y) if
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fxy(@y)=ax+y for0<z<1l,0<y<l.

Question no. 3
Suppose that X and Y are two random variables such that E[X] = E[Y] = 0,
E[X?] = E[Y?] =1, and pxy = 1. Calculate COV[X,Y].

Question no. 4
Calculate P[X +Y > 1] if

fxy(zy)=1 for0<z<1l,0<y<Ll

Question no. 5
Suppose that

8 (1\""
pX,Y(I,y):§ <2) ifx=0o0r1,and y =1 or 2.

Calculate E[XY].

Question no. 6
Suppose that X and Y are two random variables such that VAR[X] = VAR[Y] =1
and COV[X,Y] = 1. Calculate VAR[X — 2Y].

Question no. 7

Let X ~ N(0,1), Y ~ N(1,2) and Z ~ N(3,4) be independent random variables.
What distribution does W := X — Y + 27 follow? Also give the parameter(s) of this
distribution.

Question no. 8

Suppose that X ~ Poi(A = 100). What other probability distribution can be used
to calculate (approximately) p := P[X < 100]? Also give the parameter(s) of this
distribution, as well as the approximate value of p.

Question no. 9
Suppose that X follows a B(n = 100,p = 0.4) distribution. Use a N(40, 24) distri-
bution to calculate approximately P[X = 40].

Question no. 10

We define Y = 2?21 X;, where E[X;] = 0, for ¢ = 1,...,50, and the X;s are
independent continuous random variables. Calculate approximately P[Y" > 0].
Question no. 11

The joint probability function, px y, of the pair (X,Y) is given by the following
table:

yY\z|—1 0 1
0 [1/91/91/9
2 12/92/92/9

(a) Are the random variables X and Y independent? Justify.
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(b) Evaluate Fx y(0,1/2).
(c) Let Z = X*. Calculate pz(z).
d) Calculate E[X?Y?].

Question no. 12

Let
2iff <z <y, 0<y <1,

0 elsewhere.

Ifxy(z,y) = {

Calculate P[X > Y?].

Question no. 13

City buses pass by a certain street corner, between 7:00 a.m. and 7:30 p.m., according
to a Poisson process at the (average) rate of four per hour. Let Y = 22021 X}, where
X, is the total number of buses that pass during the kth 15-minute time period, from
7:00 a.m.

(a) What is the ezact distribution of Y and its parameter(s)?
(b) What other probability distribution can approximate the distribution of Y'? Justify
and give the parameter(s) of this distribution as well.

Question no. 14
We consider the discrete random variable X whose probability function is given by

z [0 1 2
px(2)[1/2 1/41/4

Suppose that X; and X5 are two independent random variables having the same distri-
bution as X. Calculate P[X; = X3].

Question no. 15
The table below gives the function px y (x,y) of the pair (X,Y) of discrete random
variables:

y\z|0 1 3 4
1 10.10.1 0 0.2
2 103 0 0.20.1

Calculate P[{X <5} n{Y < 2}].

Question no. 16
Calculate the covariance of X7 and X5 if

2—x1—axfor0<z <1,0< 29 <1,
Fxi. x5 (w1, 22) = 0 elsewhere.
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Question no. 17
Suppose that Y = 1/X, where X is a discrete random variable such that

T 1 2
px(z)[1/32/3

We define W = Y; — Y5, where Y7 and Y5 are two independent random variables iden-
tically distributed as Y. Calculate py (w).

Question no. 18

Let Xq,..., X, be independent random variables, where X; has an exponential dis-
tribution with parameter A = 2, for i = 1,...,n. Use the central limit theorem to find
the value of n for which

n

in>g+1

=1

P ~ (0.4602.

Question no. 19

A bus passes by a certain street corner every morning around 9:00 a.m. Let X be the
difference (in minutes) between the time instant at which the bus passes and 9:00 a.m.
We suppose that X has approximately a N(u = 0, 02 = 25) distribution. We consider
two independent days. Let Xj be the value of the random variable X on the kth day,
for k=1,2.
(a) Calculate the probability P[X; — X > 15].
(b) Find the joint density function fx, x,(z1,z2).
(c) Calculate (i) P[X; =2 | X1 > 1] and (ii) P[X; <2 | X; =1].

Question no. 20

An assembly comprises 100 sections. The length of each section (in centimeters)
is a random variable with mean 10 and variance 0.9. Furthermore, the sections are
independent. The technical specification for the total length of the assembly is 1000 cm
+ 30 cm. What is approximately the probability that the assembly fails to meet the
specification in question?

Question no. 21
Let 2 ( )
B 3x efzy lfy ifx>0,0<y<17
fxy(z,y) = { 0 elsewhere.

(a) Calculate the functions fx(x) and fy (y). What is the distribution of X and that of
Y?

(b) Are X and Y independent random variables? Justify.
(c) Calculate the kurtosis of X.

(d)

Calculate the skewness of Y.
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Question no. 22
The following table gives the joint probability function px,y (x,y) of the pair (X,Y):

Y\ 0 1 2
-1 |1/9 0 1/9

0 12/9 0 2/9

1 |0 1/3 0

(a) Find px () and py (y).

(b) Are X and Y independent random variables? Justify.
(c) Calculate (i) py(y | X = 1) and (ii) py(y | X < 1).
(d) Calculate the correlation coefficient of X and Y.

(e) Let W = max{X,Y}. Find pw (w).

Question no. 23

We consider the pair (X,Y) of discrete random variables whose joint probability
function px y (z,y) is given by

Y\l 12 3
2 [1/121/6 1/12
3 [1/6 0 1/6
4 0 1/3 0

Calculate P[X +Y <4| X <2].

Question no. 24
Use a normal distribution to calculate approximately the probability that, among
10,000 (independent) random digits, the digit “7” appears more than 968 times.

Question no. 25
A number X is taken at random in the interval (0, 1), and next a number Y is taken
at random in the interval (0, X], so that

B 1/xif0<x<l,0<ygxa
fxy(@,y) = { 0 elsewhere.
(a) Show that
‘ 1
E[X"Y?] =

(s+1)(r+s+1)
forr,s =0,1,2,....
(b) Check the formula in part (a) for 7 = 2 and s = 0 by directly calculating E[X?].

(c) Use part (a) to calculate the correlation coefficient of X and Y.
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Question no. 26
The following table gives part of the function px vy (z, y) of the pair (X,Y) of discrete
random variables:

y\z| 0 1 2 |py(y)
1 |1/16 1/16] 1/4

0 1/2
1 0 1/4
px(z)[1/4 1
We also have:
Y -1 0 1

py(y| X =2)[1/83/81/2

(a) Find P[X = 2].
(b) Complete the table of the function px y (z,y).

(c) We set W =Y + 1. The distribution of W is then a particular case of one of the
discrete distributions seen in Chapter 3. Find this distribution and give its parameter(s).

Question no. 27
The joint density function of the pair (X,Y") of continuous random variables is given
by
lryif0<y<az<2,
0 elsewhere.

fxy (@,y) = {

(a) Calculate E[1/XY].
(b) Calculate E[X?].
(c) What is the median, x,,, of the random variable X?

Question no. 28

A device is constituted of two independent components connected in parallel. The
lifetime X (in years) of component no. 1 follows an exponential distribution with pa-
rameter A = 1/2, whereas the lifetime Y (in years) of component no. 2 has a Weibull
distribution with parameters A = 2 and § = 2. That is,

fr(y) = 4y67292 for y > 0.

Calculate the probability that the device lasts less than one year.

Question no. 29

We take 100 numbers at random in the interval [0, 1]. Let S be the sum of these
100 numbers. Use the central limit theorem to calculate approximately the probability
P45 < S < 55].
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Question no. 30

The number of floods that occur in a certain region over a given year is a random
variable having a Poisson distribution with parameter a = 2, independently from
one year to the other. Moreover, the time period (in days) during which the ground
is flooded, at the time of an arbitrary flood, is an exponential random variable with
parameter A = 1/5. We assume that the durations of the floods are independent. Use
the central limit theorem to calculate (approximately) the probability that

(a) over the course of the next 50 years, there will be at least 80 floods in this region
(without making a continuity correction);

(b) the total time during which the ground will be flooded over the course of the next
50 floods will be smaller than 200 days.

Exercises

Question no. 1

Telephone calls arrive at an exchange according to a Poisson process with rate A per
minute. We know, from past experience, that the probability of receiving exactly one
call during a one-minute period is three times that of receiving no calls during the same
time period. We consider 100 consecutive one-minute time periods and we designate by
U the number of periods during which no calls were received.

(a) Use a normal approximation to calculate P[U = 5.

(b) Use the central limit theorem to calculate approximately

1 100 ‘|
— N X >31],
100 &

where X; is the number of calls received during the ith one-minute period, for i =
1,...,100.

P

Question no. 2

Let
krxif0<z<1,0<y<ux,

Fxy(zy) = { 0 elsewhere

be the joint density function of the random vector (X,Y).
(a) Find the constant k.

(b) Obtain the marginal density functions of X and Y.
(c) Calculate VAR[X] and VAR[Y].
(

d) Calculate the correlation coefficient of X and Y.
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Question no. 3

In a bank, an automatic teller machine (ATM) enables the customers to withdraw
$50 or $100 banknotes. It may also happen that a given customer cannot withdraw any
money if her account is without funds or if the customer in question made an error when
using the ATM. The number X of customers using the ATM in a five-minute interval
is a random variable whose probability function px (z) is

T 0 1 2
px(2)[0.30.50.2

Furthermore, we observed that the total amount Y of money withdrawn in a five-minute
interval is a random variable whose conditional probability function py (y | X = x) is
given by

y 0 50 100 150 200
y[X=0[]1 0 0 0 0

py(y| X=1)01 07 02 0 0
y | X =2)[0.010.14 0.53 0.28 0.04

a) Are the random variables X and Y independent? Justify.
b) Calculate the probability P[X =1,Y = 100].
¢) Calculate the probability P[Y = 0].

d) Find the average number of customers using the ATM in a one-hour period.

~ o~ o~ o~

Question no. 4
A private club decides to organize a charity casino night. The organizers decide to

ask their members to cover the overhead costs;
to admit only 1000 players, each of them with the same initial stake 6 (in thousands
of dollars);

e to choose games such that the gross winnings X; (in thousands of dollars) of the ith
player are uniformly distributed on the interval (0,360/2).

Indication. We have that the mean of a U(0,36/2) distribution is 36/4 and its variance
is equal to 302/16.

(a) Let Y be the total gross winnings of the 1000 players. Give the approximate distri-
bution of Y, as well as its parameters.

(b) Determine the amount 6 that each player must pay in order that the net profit (in
thousands of dollars) of the casino be greater than 50 with probability 0.95.

Question no. 5

A certain freeway has three access roads: A, B, and C' (see Figure . The number
of cars accessing the freeway over a one-hour period, via the three access roads, is
defined by random variables denoted by X4, Xp, and X and having the following
characteristics:
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Fig. 4.3. Figure for Exercise no. 5.

X4 Xp Xco
Mean 800 1000 600
Standard deviation| 40 50 30

Let us designate by X the total number of cars accessing the freeway over a one-hour
period.

(a) Calculate

(i) the mean of X and

(ii) the standard deviation of X, assuming that the random variables X 4, X, and
X are pairwise independent;

(iii) the probability that the random variable X takes on a value between 2300 and
2500 if we suppose that the variables X 4, Xp, and X¢ are independent and (approxi-
mately) normally distributed;

(iv) the probability that X is greater than 2500, under the same assumptions as
above.

(b) Let Y be the number of times that X is greater than or equal to 2500 (under the
same assumptions as above) over 100 (independent) one-hour periods.

(i) Give the distribution of Y and its parameters.

(ii) Calculate, using an approximation based on a normal distribution, the probabil-
ity that the random variable Y is greater than or equal to 10.

(c) Calculate

(i) the mean of X and

(ii) the standard deviation of X if we suppose that the random variables X 4, X,
and X are normally distributed and that the correlation coefficients of the three
pairs of random variables are CORR[X 4, Xp| = 1/2, CORR[X 4, X¢] = 4/5, and
CORR[Xp, X¢] = —1/2.

Question no. 6
The joint density function of the pair (X,Y") of random variables is defined by (see
Figure 4471
3/4if 1<z <1,22<y<]1,
0 elsewhere.

fxy(@,y) = {
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/y=X2

1 )
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
| | -
-1 1

Fig. 4.4. Figure for Exercise no. 6.

(a) Calculate
(i) the marginal density functions of X and Y7

(ii) the correlation coefficient of X and Y.
(b) Are the random variables X and Y independent? Justify.

Question no. 7
Suppose that

Fxy(zy) = 4/mif 0 <2 <1,0 <y <2z — 2?2,
XYY =1 0 elsewhere.

Find the conditional density function of Y, given that X = x.

Question no. 8
Calculate the mathematical expectation of (X + Y)? if

Loty for0<zr<20<y<?2
= 8 - B ’ - - 7
fx v (z,y) { 0 elsewhere.

Question no. 9
Suppose that X and Y are two random variables such that VAR[X] = VAR[Y] = 1.
Weset Z = X —2Y. Calculate the correlation coefficient of X and Z if COV[X, Z] = 1/2.

Question no. 10

A fair coin is tossed until “heads” is obtained, then until “tails” is obtained. If we
assume that the successive tosses are independent, what is the probability that the coin
has to be tossed exactly nine times?

Question no. 11
Suppose that Xy ~ N(2,4), X3 ~ N(4,2), and X3 ~ N(4,4) are independent random
variables. Calculate the 75th percentile of the random variable Y := X7 — 2X5 + 4 X3.
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Question no. 12

The lifetime of a certain type of tire follows (approximately) a normal distribution
with mean 25,000 km and standard deviation 5000 km. Two (independent) tires are
taken at random. What is the probability that one of the two tires lasts at least 10,000
km more than the other?

Question no. 13

A factory produces articles whose average weight is equal to 1.62 kg, with a standard
deviation of 0.05 kg. What is (approximately) the probability that the total weight of
a batch of 100 articles is between 161.5 kg and 162.5 kg?

Question no. 14
The joint density function of the pair (X,Y") of random variables is

Jr+yif0<2<1,0<y <1,
fX’Y(m’y){ 0 elsewhere.

We find that E[X] = 7/12 and VAR[X] = 11/144. Calculate the correlation coefficient
of X and Y.

Question no. 15
Let X ~ N(2,1) and Y ~ N(4,4) be two independent random variables. Calculate
P[2X — Y| < V3]

Question no. 16

Let X;, for i = 1,2,...,100, be independent random variables having a gamma
distribution with parameters a = 9 and A = 1/3. Calculate approximately P[X > 26],
where X := 115 Zmol X;.

Question no. 17

Let X be the number of “do” loops in a FORTRAN program and let Y be the
number of attempts needed by a beginner to get a working program. Suppose that the
joint probability function of (X,Y") is given by the following table:

z\yl 1 2 3

0 0.050.150.10
1 1]0.10 0.20 0.10
2 0.150.10 0.05

(a) Calculate E[XY].
(b) Evaluate the probability P[Y > 2| X =1].
(¢) Are the random variables X and Y independent? Justify.
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Question no. 18

Let
brif0<zr<lz<y<l,

0 elsewhere

fxy(zy) = {

be the joint density function of (X,Y).
(a) Calculate the marginal density functions of X and Y.
(b) Evaluate the probability P[XY < 1/4].

Question no. 19

A device is made up of two independent components. One of the components is placed
on standby and begins to operate when the other one fails. The lifetime (in hours) of
each component follows an exponential distribution with parameter A = 1/2000. Let X
be the lifetime of the device.

(a) Give the distribution of X and its parameters.
(b) What is the mean of X?

Question no. 20

The weight (in kilograms) of manufactured items follows approximately a normal
distribution with parameters u = 1 and 02 = 0.02. We take 100 items at random. Let
X, be the weight of the jth item, for j = 1,2,...,100. We suppose that the X;s are
independent random variables.

(a) Calculate P[X; — X2 < 0.05].
(b) Find the number b such that P[X; + X2 < b] = 0.025.

(c) Calculate approximately, using a normal distribution, the probability that exactly
70 of the 100 items considered have a weight smaller than 1.072 kg.

Question no. 21

Let 2
e ifr>0,0<y <2,
fxy(z,y) = { 0 elsewhere

be the joint density function of the random vector (X,Y").
(a) Find fx(z) and fy (y).

(b) What is the correlation coefficient of X and Y'? Justify.
(c) What is the 50th percentile of Y7

(d) Calculate P[Y < eX].

Question no. 22

The time T (in years) elapsed between two major power failures in a particular region
has an exponential distribution with mean 1.5. The duration X (in hours) of these major
power failures follows approximately a normal distribution with mean 4 and standard
deviation 2. We assume that the failures occur independently of one another.
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(a) Given that there were no major power failures during the last year, what is the
probability that there will be no major power failures over the next nine months?

(b) How long, at most, do 95% of the major power failures last?

(c) Calculate the probability that the duration of the next major power failure and that
of the following one differ by at most 30 minutes.

(d) Calculate the probability that the longest major power failure, among the next three,
lasts less than five hours.

(e) Use the central limit theorem to calculate (approximately) the probability that the
30th major power failure from now occurs within the next 50 years.

Question no. 23

Suppose that
2if0<z<1,0<y<u,
0 elsewhere

fxy(z,y) = {

is the joint density function of the random vector (X,Y).
(a) Find the marginal density functions of X and Y.

(b) Calculate P[X —Y < 1/2].

(¢) Are X and Y independent? Justify.

(d) Calculate E[XY].

Question no. 24

Let X be the number of customers of a car salesman over a one-day period. Suppose
that X has a Poisson distribution with parameter A = 3. Furthermore, suppose that one
customer in five, on average, buys a car (on a given visit), independently of the other
customers. Let Y be the number of cars sold by the salesman in one day.

(a) Given that the salesman had five customers during a given day, what is the proba-
bility that he sold exactly two cars?

(b) What is the average number of cars sold by the salesman in a one-day period?
Justify.

Indication. We have that E[Y] = Y>> (E[Y | X = z]P[X = z]|. Moreover, knowing

x=0
that X = z, Y is a binomial random variable.

(¢c) What is the probability that the salesman sells no cars during a given day?
Indication. We have that 3.°° & = ¢k,

=0 z!
(d) Knowing that the salesman sold no cars during a given day, what is the probability
that he had no customers?

Question no. 25
Let X1, X5, ..., X350 be independent random variables having an exponential distri-
bution with parameter A = 2.

(a) Calculate P[X? > 4| X; > 1].
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(b) Let 5= 221 Xi.
(i) Give the exact probability distribution of S, as well as its parameter(s).
(ii) Calculate approximately, using the central limit theorem, P[S < 24].
Question no. 26
Let X7 ~ N(0,1) and X5 ~ N(1,3) be two independent random variables.
(a) Calculate P[|X; — Xo| > 1].
(b) What is the 90th percentile of Y := X + X537

Question no. 27
The joint density function of the random vector (X,Y, Z) is given by

JEx/y)+2if0<e<], l<y<e —1<z<1,
Fxy.z(@,9,2) _{ 0 elsewhere.

(a) Find the constant k.

(b) Show that

_J2zfyit0<az<l, l<y<e,
fX,Y(x7y)_{ 0 elsewhere.

(c¢) Are X and Y independent random variables? Justify.
(d) Calculate the mathematical expectation of Y/X.

Question no. 28

Let X be a random variable following a gamma distribution with parameters a = 25
and A =1/2.
(a) Calculate the probability P[X < 40] by making use of a Poisson distribution.

(b) Use the central limit theorem to calculate (approximately) P[40 < X < 50]. Justify
the use of the central limit theorem.

Question no. 29
Let X be a random variable having a binomial distribution with parameters n = 100
and p = 1/2, and let Y be a random variable following a normal distribution with
parameters p = 50 and o2 = 25.
(a) Calculate approximately P[X < 40].
(b) Calculate the probability P[X =Y.
(c) What is the 33rd percentile of Y7
Question no. 30

The table below presents the joint probability distribution of the random vector
(X,Y):
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z\yl 1 2 3

0 1/9 2/9 1/9
1 |1/18 1/9 1/18
2 |1/6 1/18 1/9

Calculate E[2XY].

Question no. 31

Let
deyif 0<x<1,0<y <1,
0 elsewhere

fxy(@,y) :{

be the joint density function of the random vector (X,Y’). Calculate the probability
P[X?+Y?% < 1/4].

Question no. 32

Let X7, X5, and X3 be random variables such that (i) X; and X5 are independent,
(ii) VAR[X;] = 2, for i = 1,2,3, (iii) COV[X1, X3] = 1/2, and (iv) COV[X2, X3] = 1.
Calculate VAR[X; + X3 + 2X3].
Question no. 33

The lifetime (in years) of a certain machine follows approximately a N(5,4) distri-

bution. Use the central limit theorem to calculate (approximately) the probability that
at most 10, among 30 (independent) machines of this type, last at least six years.

Question no. 34
The joint density function of the random vector (X,Y) is given by

1/mif 22 +92 < 1,
0 elsewhere.

fxy(@,y) = {

(a) Check that fx y(z,y) is a valid joint density function.

(b) Calculate the marginal density functions fx(z) and fy (y).
(¢) Are X and Y independent? Justify.

(d) Calculate P[X? +Y? > 1/4].

Question no. 35

A fair die is rolled 30 times, independently. Let X be the number of 6s obtained and
Y be the sum of all the numbers obtained.

(a) Use a Poisson distribution to calculate (approximately) P[X > 5] (even if the
probability of success is relatively large).

(b) Use the central limit theorem to calculate (approximately) P[100 <Y < 111].

Indication. If W is the number obtained on an arbitrary roll of a fair die, then we have
that E[W] = 7/2 and VAR[W] = 35/12.
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Question no. 36

Let
1/10if 0 < 2 < 10,

fx(2) _{ 0 elsewhere

and /
C[(1/10ify =1,2,...,10,
py(y) = { 0 otherwise.

Suppose that X and Y are independent random variables. Calculate (a) the probability
P[X > Y] and (b) VAR[XY].

Question no. 37

Suppose that X and Y are two random variables such that VAR[X] = VAR[Y] =
1 and COV[X,Y] = 2/3. For what value of k is the correlation coefficient of X and
Z = X + kY equal to 2/37

Question no. 38

An electronic device is made up of ten components whose lifetime (in months) fol-
lows an exponential distribution with mean 50. Suppose that the components operate
independently of one another. Let T" be the lifetime of the device. Obtain the density
function of T if

(a) the components are connected in series;
(b) the components are connected in parallel;

(c¢) the components are placed in standby redundancy. That is, only one component
operates at a time and, when it fails, it is immediately replaced by another component
(if there remains at least one working component).

Question no. 39

Electric light bulbs bought to illuminate an outside rink have an average lifetime of
3000 hours, with a standard deviation of 339 hours, independently from one light bulb
to the other. Suppose that the lifetime of the light bulbs follows approximately a normal
distribution.
(a) If it is more economical to replace all the light bulbs when 20% among them are
burnt out, rather than to change the light bulbs when needed, after how many hours
should we replace them?

(b) Suppose that only the burnt-out light bulbs have been replaced after ¢; hours, where
t1 is the time when 20% of the light bulbs should be burnt out. Find the percentage of
light bulbs that will be burnt out after %tl additional hours.

Question no. 40
The continuous random vector (X,Y") has the following joint density function:

_f6(l-—z—y)ifz>0,0<y<l-uz,
Ixy(z,y) = { 0 elsewhere.

(a) Calculate the marginal density function of Y.
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(b) Find the 40th percentile of Y.

(c) Let Z = Y3. Obtain the density function of Z.
(d) Calculate the probability P[X < Y.
Question no. 41

A fair die is tossed twice, independently. Let X be the number of 5s and Y be the
number of 6s obtained. Calculate

(a) the joint probability function px y (z,y), for 0 <z +y < 2;
(b) the function Fx y(1/2,3/2);

(c) the standard deviation of 2X;

(d) the correlation coefficient of X and Y.

Question no. 42
Let

T -2 -1 1 2
px,(1)|1/31/61/31/6

and

€To 0 1
Px, (2 | X1 = —2)[1/21/2
px2($2‘X1:—1 1/2 1/2
pXZ(fL'Q | X1 = 1) 1 0
sz(CL‘2|X1 :2> 0 1

~— —

(a) Calculate

(i) the marginal probability function of Xo;

(ii) the probability px,(x2 | {X1 = =2} U{X; = 2}), for 23 = 0 and 1.
(b) Let Y = 2X; + X?. Find the distribution function of Y.

Question no. 43

The duration X (in hours) of the major breakdowns of a given subway system
follows approximately a normal distribution with mean pu = 2 and standard deviation
o = 0.75. We assume that the durations of the various breakdowns are independent
random variables.

(a) Calculate (exactly) the probability that the duration of each of more than 40 of the
next 50 major breakdowns is smaller than three hours.

Remark. This question requires the use of a pocket calculator or a software package.
(b) Use a normal distribution to calculate approximately the probability in part (a).
Question no. 44

Suppose that Xi,..., Xg are independent random variables having an exponential
distribution with parameter A\ = 1/2.

(a) Calculate the probability
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X1 + Xo + X5
pl|olT 2T a8 )
Xy + -+ Xo

(b) Let Y = X + Xo.
(i) Calculate P[Y <y | X1 = 1], where 1 > 0 and y > 0.

(ii) Obtain the conditional density function fy (y | X1 = x1).
Question no. 45

We consider a discrete random variable X having a hypergeometric distribution with
parameters N = 10, n = 5, and d = 2.

(a) We define Y = X2. Calculate the correlation coefficient of X and Y.

(b) Let X1, X, ..., Xs be independent random variables following the same distribution
as X. We define Z = X; + --- + Xg. Calculate the probability P[8 < Z < 12].

Remark. This question requires the use of a software package.

Question no. 46
Suppose that the joint probability function of the random vector (X,Y) is given by

z\ e 1(1/2)*
pxy(z,y) = Yy x!
0 otherwise.

ifr=0,1,2,..;y=0,1,...,x,

(a) Obtain the functions px(z), py (y), and py (y | X = 35).
(b) Calculate the probability P[12 <Y < 18 | X = 35]

(i) exactly (with the help of a software package, if possible);

(ii) using an approximation based on a normal distribution.
(c) Calculate the probability P[X < 2| X > 2].
Question no. 47

A system is made up of three components, C1, Cy, and C3, connected in parallel. The
lifetime 7} (in years) of component C; follows (approximately) a normal distribution
with parameters 1 = 4 and 02 = 2.25. In the case of component Cy, its lifetime T, has an
exponential distribution with parameter A = 1/4. Finally, the lifetime T3 of component
C5 has a gamma distribution with parameters « = 2 and A = 1/2. Furthermore, we
assume that the random variables Ty, T, and T3 are independent.
(a) Calculate the probability that the system operates for more than one year.
(b) We consider 500 systems similar to the one described above. Calculate, assuming
that these 500 systems are independent, the probability that 2, 3, 4, or 5 among them
are down after one year

(i) exactly (with the help of a software package or a pocket calculator);

(ii) using an approximation based on a Poisson distribution.
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(c¢) Suppose that at first only components C; and Cs are active. Component C5 is on
standby and begins to operate as soon as C7 and C5 are both down, or after one year if
C4 or Cs still operates at that time. Suppose also that if Cy or Cy still operates after one
year, then T3 ~ G(2,1/2); otherwise T3 has an exponential distribution with parameter
A = 1. Calculate the probability that component C3 operates for at least two years.

Question no. 48
Suppose that

1/8ifx>0,y>0,0<z+y<4,
0 elsewhere

Ixy(@,y) = {

is the joint density function of the random vector (X,Y).
(a) Obtain the marginal density function fx(z).

(b) Calculate (i) the expected value of X, (ii) its variance, (iii) its skewness 1, and (iv)
its kurtosis (s.

(c) Calculate the correlation coefficient of X and Y. Are the random variables X and
Y independent? Justify.

Question no. 49

In a particular region, the daily temperature X (in degrees Celsius) during the
month of September has a normal distribution with parameters p = 15 and o? =
25. Calculate, using an approximation based on a normal distribution, the probability
that the temperature exceeds 17 degrees Celsius on exactly 10 days over the course of
September.

Question no. 50
Consider the joint density function

(902 y(1—y)if0<y<1,0<x <y,
Ixy(z,y) = { 0 elsewhere.

(a) Calculate the marginal density functions fx(x) and fy (y).
(b) Are X and Y independent random variables? Justify.

(¢) Calculate the covariance of X and Y.

Question no. 51
Let X7 and X5 be two discrete random variables whose joint probability function is

given by
2 1 ] 1 T2 5 27{1?17{132
Pxaxa (@1, 02) = S (4) <3> (12)

if 1 € {0,1,2}, 23 € {0,1,2}, and z1 + z2 < 2 [and px, x, (1, 22) = 0, otherwise].
(a) Let Y1 = X1 + X5 and Yo = X; — X». Find the probability functions of Y7 and Y5.
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(b) Calculate the function py, (y2 | Y1 = 2).

Question no. 52
A number X is taken at random in the interval [—1,1], and then a number Y is
taken at random in the interval [—1, X].

(a) Find fxy(z,y) and fy(y).
(b) Calculate (i) E[(X + 1)Y] and (ii) E[Y].
(c) Use part (b) to calculate COV[X,Y].
Question no. 53

The storage tank of a gas station is usually filled every Monday. The capacity of the
storage tank is equal to 20,000 liters. The gas station owner is told, on a given Monday,
that there will be no gasoline delivery the next Monday. What is the probability that

the gas station will not be able to satisfy the demand for a two-week period (with the
20,000 liters) if the weekly demand (in thousands of liters) follows

(a) an exponential distribution with parameter A = 1/107
(b) a gamma distribution with parameters « =5 and A = 1/27

Question no. 54
A random variable X has the following probability function:

z |—-1 0 1
px(z)|1/83/41/8
Let X; and X, be two independent random variables distributed as X. We set ¥ =
Xo — X
(a) Obtain the joint probability function of the pair (X, X5).

(b) Calculate the correlation coefficient of X; and Y.
(c) Are the random variables X; and Y independent? Justify.

Question no. 55
Let X1,..., X0 be independent random variables having an exponential distribution
with parameter A = 1. We define Y = Zgil X;.

(a) Evaluate, without making use of the central limit theorem, the probability P[Y < 5].
(b) Use the central limit theorem to evaluate P[Y > 10].

Multiple choice questions

Question no. 1
Let X ~ N(0,1) and Y ~ N(1,4) be two random variables such that COV[X,Y] = 1.
Calculate P[X +Y < 12].

(a) 0 (b) 0.6915 (c) 0.8413 (d) 0.9773 (e) 1
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Question no. 2
Calculate P[3 < X 4+Y < 6] if X ~ Poi(1) and Y ~ Poi(2) are independent random
variables.

(a) 0.269 (b) 0.493 () 0.543 (d) 0.726  (e) 0.916

Question no. 3
Use the approximation of the binomial distribution by a normal distribution to
calculate P[X < 12], where X ~ B(n =25,p =1/2).

(a) 0.4207 (b) 0.4681 (c) 0.5 (d) 0.5319 (e) 0.5793

Question no. 4

Let
Lifa? +y? <4,
0 elsewhere.

fxy(z,y) = {

Find fx(x).
(a) m=VA—22if 2<2<2 (b) xVi—22if0<2<2
() mVA—2?if 2<z<2 (d) 2V4—22if0<z<2
(e) 2VA—2a?if 2<z<y
Question no. 5
Suppose that px(z | Y =y) = 1/3,forz = 0,1,2and y = 1, 2, and that py (y) = 1/2,
for y = 1, 2. Calculate px,y(1,2).

(a) 1/6  (b)1/3 (c)1/2 (d)2/3 (e)1

Question no. 6
Let X be a random variable such that E[X"] = 1/2, for n = 1,2,... . We set
Y = X2. Calculate PXY-

(@) 0 (b)1/4 (c)1/2 (d)3/4 (e)1
Question no. 7

Suppose that the random variable X is such that E[X] = VAR[X] = 1. Calculate
(approximately) the probability P {Zil X; < 56|, where X1, Xs, ..., Xy are indepen-
dent random variables distributed as X.
(a) 0.5 (b) 0.6554 (c) 0.8413 (d) 0.8643 (e) 1
Question no. 8

We define W =3X +2Y — Z, where X, Y, and Z are independent random variables
such that 0% =1, 02 = 4, and 0% = 9. Calculate oy .

(@) v2 (b4 () V20 (d) V34 (e) 10
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Question no. 9
We consider the joint density function

1/4if0 <2 <2,0<y <2,
0 elsewhere.

fxy(@,y) :{

Calculate P[X > 2Y].
(a) 1/8 (b) 1/4 () 1/2 (d) 3/4 () 7/8

Question no. 10
Calculate P2X < Y] if

2for 0 <z <y<1,
0 elsewhere.

fxy(@,y) = {

(@) 0 (b)1/4 (c)1/2 (d)3/4 (e)1
Question no. 11

We define X= max{X;, X2}, where X; and X5 are the numbers obtained by simul-
taneously rolling two fair dice. That is, X is the greater of the two numbers observed.
Calculate E[X].
(a)91/36  (b) 3.5 (c)4 (d)161/36 (e) 4.5

Question no. 12
Suppose that

Lifo<z <2y
—y) =< 2y ’
Ix(@]Y =y) { 0 elsewhere
and |

_ sH0<y <2,

fr() {0 elsewhere.

Finde’y(ac,y).
(a) gif0<z<4and 0 <y <2 (b) 7 f0<z<4and0<y<2
(C)ﬁif0<:c<2yand0<y<2 (d)ziyif0<:c<2yand0<y<2

(e)%if0<a:<4and0<y<2

Question no. 13
Let

z |—2 0 2
px(x)[1/83/41/8

be the probability function of the random variable X. We define Y = —X?2. Calculate
the correlation coefficient of X and Y.

() =1 () —1/2 ()0 (d)1/2 (o)1
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Question no. 14

Suppose that X and Y are two independent random variables. We define two other
random variables by R = aX + b and S = c¢Y + d. For what values of a, b, ¢, and d are
the variables R and S uncorrelated (i.e., pr.g = 0)?
(a) none (b)a=b=1 (c)b=d=0 (d)a=c=1,b=d=0 (e)all

Question no. 15

Suppose that X; and X5 are two independent random variables uniformly distributed
on the interval [0,1]. Let X be the smaller of the two random variables. Calculate
P[X > 1/4].
(a) 1/16  (b) 1/8 (c¢) 1/4 (d) 9/16 (e) 3/4
Question no. 16

Calculate P[X;+ X5 < 2] if X; and X5 are two independent random variables having
an exponential distribution with parameter A = 1.

(a) 0.324 (b) 0.405 (c) 0.594 (d) 0.676 (e) 0.865
Question no. 17

Let X,..., X3 be independent random variables, where X; follows a gamma dis-
tribution with parameters « = 2 and A = 3, for all i. Calculate (approximately)
P[2/3 < X < 3/4], where X := & 370 X;.
(a) 0.218 (b) 0.355 (c) 0.360 (d) 0.497 (e) 0.855
Question no. 18

Suppose that Xi,...,X,, are independent N(0, 1) random variables. What is the
smallest value of n for which P[—0.1n < Y. | X; < 0.1n] > 0.957

(a) 19 (b)20 (c)271 (d) 384 (e) 385
Question no. 19

Let X; ~ N(0,1), Xo ~ N(-=1,1), and X5 ~ N(1,1) be independent random vari-
ables. Calculate P[| X7 4+ 2X5 — 3X3| > 5].

(a) 0.004 (b) 0.496 (c) 0.5 (d) 0.504 (e) 0.996

Question no. 20
Calculate approximately, by means of a normal distribution, P [legi X; < 251},

where Xi,..., X100 are independent random variables such that X; has a binomial
distribution with parameters n = 10 and p = 1/4, for i = 1,...,100.

(a) 050 (b) 0.51 (c) 0.53 (d) 0.56 (e) 0.59
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Reliability

In many applied fields, particularly in most engineering disciplines, it is important to
be able to calculate the probability that a certain device or system will be active at a
given time instant, or over a fixed period of time. We already considered many exercises
on reliability theory in Chapters 2 to 4. In Chapter 2, it was understood that we were
calculating the reliability of a system at a given time instant ¢y, knowing the reliability
of each of its components at ty. In order to calculate the probability that a machine will
operate without failure for a given amount of time, we need to know the distribution
of its lifetime or of the lifetime of its components. It becomes a problem on random
variables or vectors. In this chapter, we present in detail the main concepts of reliability
theory.

5.1 Basic notions

There are many possible interpretations of the word reliability. In this textbook, it
always corresponds to the probability of functioning correctly at a given time instant or
over a given period of time. Moreover, in the current chapter, we are mainly interested
in the reliability over a certain time interval [0, ¢].

Definition 5.1.1. Let X be a nonnegative random variable representing the lifetime (or
time to failure) of a system or a device. The probability

R(z) = P[X >x] [=1-Fx(x)] forz>0
is called the reliability function or survival function of the system.

Remarks. (i) The function R(z) can also be denoted by S(z). The notation Fx(x) =
1 — Fx(z) is used as well.

M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics 161
and Technology, DOI: 10.1007/978-0-387-74995-2 5,
© Springer Science + Business Media, LLC 2009



162 5 Reliability

(ii) Most often, it is assumed that the random variable X is continuous. However, in
some applications, the lifetime is measured in number of cycles. Therefore, X is then a
discrete (integer-valued, to be precise) random variable. Furthermore, if we accept the
possibility that a device may be defective, then X could take on the value 0 and be a
mized type random variable.

(iii) All discrete distributions considered in Section 3.2 could serve as reliability models.
In the case of the continuous distributions, we must limit ourselves to the ones that are
always nonnegative. Therefore, the normal distribution cannot be an exact reliability
model. Nonetheless, depending on the values of the parameters o and o, it can be a good
approzimate model for the survival time of a machine. Furthermore, we can consider
the truncated normal distribution, defined for x > 0.

A useful measure of the dependability of a system is its mean lifetime E[X]. In the
context of reliability theory, F[X] is called the mean time to failure of the system.

Definition 5.1.2. The symbol MTTF (which stands for Mean Time To Failure)
denotes the expected value of the lifetime X of a system. If the system can be repaired,
we also define the symbols MTBF (Mean Time Between Failures) and MTTR
(Mean Time To Repair). We have that MTBF = MTTF + MTTR.

Remarks. (1) Suppose that we are interested in the lifetime X of a car. It is obvious that,
except in case of a very major failure, the car will be repaired when it breaks down.
When we calculate the quantity MT BF, we assume that, after having been “repaired,”
a system is as good as new. Of course, in the case of a car, this is not exactly true,
because cars age and wear.

(ii) To distinguish between critical and noncritical failures, we can use the more precise
term Mean Time Between Critical Failures (MTBCF'). Then, MTBF could be inter-
preted as the mean time between failures of any type, that is, critical or noncritical. In
the context of a computer or data transmission system, we also have the Mean Time
Between System Aborts (MTBSA).

To calculate the mean lifetime of a system, we can, of course, use the definition of
the expected value of a random variable. However, it is sometimes simpler to proceed
as in the following proposition.

Proposition 5.1.1. Let X be a nonnegative random variable. Then, we have:

IS PIX > alde = [;° R(z)dx if X € [0,00).



5.1 Basic notions 163

Proof. Consider first the case when X is an integer-valued random variable. We have:

E[X]:=) jPX=j]=> jP[X=j]=> > P[X=j]
§=0 j=1 j=1k=1
=3 Y PIX=jl=> PIX>k=) P[X>Ek.
k=1 j=k k=1 k=0

Similarly, if X (is continuous and) belongs to the interval [0, 00), we can write that

BIX] = /Oooth(t)dt:/Ooo/Oth(t)dxdt

_ /Ooo/:ofx(t)dtdxz/o P[X > 1]da.

Remarks. (i) It is not necessary that the discrete random variable X can take on all
nonnegative integers. It is sufficient that the set of possible values of X be included in
{0,1,...}. Likewise, in the continuous case, X must take its values in the interval [0, c0).

(ii) Often, the formulas in the proposition do not simplify the calculation of the expected
value of X. For example, it is more complicated to calculate the mean of a Poisson
random variable from the first formula than from the definition.

Example 5.1.1. Let X be a geometric random variable with parameter p in the interval
(0,1). Its possible values are the integers 1,2... and its mean is equal to 1/p. We saw
(on p. 64) that

PIX >k =(1—-p* fork=0,1,....

It follows that (indeed)

Ny ok 1 _ 1

Example 5.1.2. If X ~ Exp(\), we find (see Example 3.5.2) that
PX >z] = / Xe Mdt = e for x> 0.

Hence,

0 —Ax |
E[X]Z/ ey = & :1.
0 Al A

In Chapter 4, we defined various conditional functions, for example, the function
fx(x|Y =y), where (X,Y) is a continuous random vector. We can also define functions
of the type fx(x | Ax), where Ax is an event that involves only the random variable
X. One such particular conditional density function is important in reliability theory.
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Definition 5.1.3. Suppose that the lifetime T of a system is a continuous nonnegative
random variable. The failure rate function (or hazard rate function) r(t) of the
system is defined by

d
r(t)=frt| T >1):= li?tl d—FT(s | T >1t) fort>0.
s S

Remarks. (i) The function r(t), multiplied by dt, can be interpreted as the probability
that a machine, which is ¢ time units old and still operating, will break down in the
interval (¢,t + dt]. Indeed, we have:

. Pit<T <t+dt|T >1]
T =1 — .
frit|T>1) =l at

(ii) We assume that the conditional distribution function Fp(s | T > t) is differentiable
at s € (t,t+dt].

(iii) We must take the limit as s decreases to ¢ in the definition, because we have that
Fr(t | T >t)=P[T <t|T>t)=0. However, we don’t have to take any limit to
calculate fr(s|T >t) from Fr(s|T >t), for s > t.

Proposition 5.1.2. We have:

Proof. By definition,

Fr(s|T>t) = PIT<s|T >4 = AL = 0{T > 1}]

P[T > ]
0 if s <t,
——if t.
1= Fr() s>
Hence,
d fr(s) .
T>t):=—F T>t)= ——— if t.
fr(s| T >t) I (s |T >t) = (D) if s >
Taking the limit as s decreases to t, we obtain that
fr(t)

r(0) = pr| T> 0 =
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Finally, because

R() = S0~ Fr(t)] = ~fr(0),

we also have: R
= —_— > .
r(t) 0] fort >0

Remark. In the discrete case, the failure rate function is given by

__px(®) or k=
r(k)_Z;ikpX(j) for k=0,1,....

Note that 0 < r(k) <1 for any k, whereas r(t) > 0 in the continuous case.

Example 5.1.3. One of the most commonly used models in reliability theory is the
exponential distribution, mainly because of its memoryless property (see p. 76). This
property implies that for a system whose lifetime is exponentially distributed, the failure
rate function is constant. Indeed, if X ~ Exp()), we have (see the previous example):

)\7)\1&
r(t):ei:)\ for t > 0.

Y

In practice, this is generally not realistic. There are some applications though for which
this is acceptable. For example, it seems that the lifetime of an electric fuse that cannot
melt only partially is approximately exponentially distributed. The time between the
failures of a system made up of a very large number of independent components con-
nected in series can also follow approximately an exponential distribution, if we assume,
in particular, that every time a component fails it is immediately replaced by a new
one. However, in most cases, the exponential distribution should only be used for ¢ in a
finite interval [t1, to].

Example 5.1.4. The geometric distribution is the equivalent of the exponential distri-
bution in discrete time. It also possesses the memoryless property. Because P[X > k] =
P[X >k — 1], we calculate (see Example 5.1.1)

(1—p)F'p

=T =P

fork=1,2,....

Therefore, the failure rate function r(k) is a constant in this case too, as expected.

The failure rate function of a given distribution is a good indicator of the value of
this distribution as a model in reliability theory. In most applications, r(¢) should be a
strictly increasing function of ¢, at least when ¢ is large enough.
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Definition 5.1.4. If the random variable X is such that its failure rate function rx(t)
orrx (k) is increasing (resp., decreasing) int or k, then X is said to have an increasing
failure rate (resp., decreasing failure rate) distribution.

Notation. We use the acronym IFR (resp., DFR) for Increasing Failure Rate (resp.,
Decreasing Failure Rate).

Now, making use of Proposition 5.1.2, we obtain that

t - tR/(s) e~ .
/Or(s)dS— /0 R(s)d = —InR(t) +1In R(0).

Moreover, the random variable T' [with failure rate function r(¢)] being continuous and
nonnegative, we may write that R(0) := P[T > 0] = 1. Hence, we may state the
following proposition.

Proposition 5.1.3. There is a one-to-one relationship between the functions R(t) and

r(t): t
R(t)—exp{/o r(s)ds}.

Remark. The proposition implies that the exponential distribution is the only continuous
distribution having a constant failure rate function.

Example 5.1.5. We can show that the failure rate function r(t) of a lognormal distri-
bution starts at zero [because limy o fr(t) = 0], next it increases to a maximum, and
then

lim r(t) = 0.

t—o0
So, we must conclude that the lognormal distribution is not a good model for the lifetime
of a device that is subject to wear, at least not for ¢ large. Indeed, the failure rate should
generally increase with ¢, as mentioned above.

Example 5.1.6. The normal distribution N(u,c?) should not be used to model the
lifetime of a system, unless 1 and o are such that the probability that the random
variable takes on a negative value is negligible. For any values of ;1 and o, we can define
the truncated normal distribution as follows:

fx(z) = ! eXp{—W} for z > 0,

2mo ¢ 202

where ¢ is a constant such that fooo fx(z)dx = 1. That is,

. [/Om fy<y)dyr =

where Y ~ N(p,0%). We can write that X =Y | {Y > 0}. Note that if 4 = 0, then
c=2.
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We find that the failure rate function of a truncated normal distribution is strictly
increasing, which makes it an interesting model for many applications.

Example 5.1.7. The Weibull distribution (see p. 77) is a really important model in
reliability theory and fatigue analysis. We have:

R(t) = / ABzP L exp (—)\mﬁ) dr = exp (—)\tg) .
t
It follows that 51 8
ABtP— —At
(t) = M exp (DA
exp (—Atf)

Therefore, the Weibull distribution is DFR if § < 1 and IFR if 3 > 1. When 8 =1, we
retrieve the exponential distribution.

= \3tP~t fort > 0.

Although it is true that the failure rate function r(¢) should increase as t increases,
for large enough values of ¢, in many situations it is first a decreasing function of ¢. For
