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To the memory of my father

I will never believe that God plays dice with the universe.

Albert Einstein

Then they gave lots to them, and the lot fell upon Matthias,
and he was counted with the eleven apostles.

Acts 1: 26



Preface

The main intended audience for this book is undergraduate students in pure and
applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability
theory they generally need in their training. Although the treatment of the subject is
surely sufficient for non-mathematicians, I intentionally avoided getting too much into
detail. For instance, topics such as mixed type random variables and the Dirac delta
function are only briefly mentioned.

Courses on probability theory are often considered difficult. However, after having
taught this subject for many years, I have come to the conclusion that one of the biggest
problems that the students face when they try to learn probability theory, particularly
nowadays, is their deficiencies in basic differential and integral calculus. Integration by
parts, for example, is often already forgotten by the students when they take a course
on probability. For this reason, I have decided to write a chapter reviewing the basic
elements of differential calculus. Even though this chapter might not be covered in class,
the students can refer to it when needed. In this chapter, an effort was made to give the
readers a good idea of the use in probability theory of the concepts they should already
know.

Chapter 2 presents the main results of what is known as elementary probability,
including Bayes’ rule and elements of combinatorial analysis. Although these notions
are not mathematically complicated, it is often a chapter that the students find hard
to master. There is no trick other than doing a lot of exercises to become comfortable
with this material.

Chapter 3 is devoted to the more technical subject of random variables. All the
important models for the applications, such as the binomial and normal distributions,
are introduced. In general, the students do better when examined on this subject and
feel that their work is more rewarded than in the case of combinatorial analysis, in
particular.

Random vectors, including the all-important central limit theorem, constitute the
subject of Chapter 4. I have endeavored to present the material as simply as possible.
Nevertheless, it is obvious that double integrals cannot be simpler than single integrals.

Applications of Chapters 2 to 4 are presented in Chapters 5 to 7. First, Chapter 5 is
devoted to the important subject of reliability theory, which is used in most engineering
disciplines, in particular in mechanical engineering. Next, the basic queueing models are
studied in Chapter 6. Queueing theory is needed for many computer science engineering
students, as well as for those in industrial engineering. Finally, the last application
considered, in Chapter 7, is the concept of time series. Civil engineers, notably those
specialized in hydrology, make use of stochastic processes of this type when they want
to model various phenomena and forecast the future values of a given variable, such as
the flow of a river. Time series are also widely used in economy and finance to represent
the variations of certain indices.



VII

No matter the level and the background of the students taking a course on probability
theory, one thing is always true: as mentioned above, they must try to solve many
exercises before they can feel that they have mastered the theory. To this end, the book
contains more than 400 exercises, many of which are multiple part questions. At the
end of each chapter, the reader will find some solved exercises, whose solutions can be
found in Appendix C, followed by a large number of unsolved exercises. Answers to the
even-numbered questions are provided in Appendix D at the end of the book. There are
also many multiple choice questions, whose answers are given in Appendix E.

It is my pleasure to thank all the people I worked with over the years at the École
Polytechnique de Montréal and who provided me with interesting exercises that were
included in this work.

Finally, I wish to express my gratitude to Vaishali Damle, and the entire publishing
team at Springer, for their excellent support throughout this book project.

Mario Lefebvre
Montréal, July 2008
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1

Review of differential calculus

This chapter presents the main elements of differential calculus needed in probabil-
ity theory. Often, students taking a course on probability theory have problems with
concepts such as integrals and infinite series. In particular, the integration by parts
technique is recalled.

1.1 Limits and continuity

The first concept that we recall is that of the limit of a function, which is defined formally
as follows.

Definition 1.1.1. Let f be a real-valued function. We say that f(x) tends to f0 (∈ R)
as x tends to x0 if for any positive number ε there exists a positive number δ such that

0 < |x− x0| < δ =⇒ |f(x)− f0| < ε.

We write that limx→x0 f(x) = f0. That is, f0 is the limit of the function f(x) as x
tends to x0.

Remarks. (i) The function f(x) need not be defined at the point x0 for the limit to exist.
(ii) It is possible that f(x0) exists, but f(x0) 6= f0.
(iii) We write that limx→x0 f(x) = ∞ if, for any M > 0 (as large as we want), there
exists a δ > 0 such that

0 < |x− x0| < δ =⇒ f(x) > M.

Similarly for limx→x0

(iv) In the definition, x0

0 = ±∞.actually be extended to the case when x
is assumed to be a real number. However, the definition can

f(x) = −∞.
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2 1 Review of differential calculus

Sometimes, we are interested in the limit of the function f(x) as x decreases or
increases to a given real number x0. The right-hand limit (resp., left-hand limit) of the
function f(x) as x decreases (resp., increases) to x0 is denoted by limx↓x0 f(x) [resp.,
limx↑x0 f(x)]. Some authors write limx→x+

0
f(x) [resp., limx→x−0

f(x)]. If the limit of
f(x) as x tends to x0 exists, then

lim
x↓x0

f(x) = lim
x↑x0

f(x) = lim
x→x0

f(x).

Definition 1.1.2. The real-valued function f(x) is said to be continuous at the point
x0 ∈ R if (i) it is defined at this point, (ii) the limit as x tends to x0 exists, and (iii)
limx→x0 f(x) = f(x0). If f is continuous at every point x0 ∈ [a, b] [or (a, b), etc.], then
f is said to be continuous on this interval.

Remarks. (i) In this textbook, a closed interval is denoted by [a, b], whereas (a, b) is an
open interval. We also have, of course, the intervals [a, b) and (a, b].
(ii) If we rather write, in the definition, that the limit limx↓x0 f(x) [resp., limx↑x0 f(x)]
exists and is equal to f(x0), then the function is said to be right-continuous (resp., left-
continuous) at x0. A function that is continuous at a given point x0 such that a < x0 < b
is both right-continuous and left-continuous at that point.
(iii) A function f is said to be piecewise continuous on an interval [a, b] if this interval
can be divided into a finite number of subintervals on which f is continuous and has
right- and left-hand limits.
(iv) Let f(x) and g(x) be two real-valued functions. The composition of the two functions
is denoted by g ◦ f and is defined by

(g ◦ f)(x) = g[f(x)].

A result used in Chapter 3 states that the composition of two continuous functions is
itself a continuous function.

Example 1.1.1. Consider the function

u(x) =
{

0 if x < 0,
1 if x ≥ 0, (1.1)

which is known as the Heaviside or unit step function. In probability, this function
corresponds to the distribution function of the constant 1. It is also used to indicate
that the possible values of a certain random variable are the set of nonnegative real
numbers. For example, writing that

fX(x) = e−xu(x) for all x ∈ R

is tantamount to writing that
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fX(x) =
{

0 if x < 0,
e−x if x ≥ 0,

where fX(x) is called the density function of the random variable X.
The function u(x) is defined for all x ∈ R. In other contexts, u(0) is chosen differently

as above. For instance, in some applications u(0) = 1/2. At any rate, the unit step
function is continuous everywhere, except at the origin, because (for us)

lim
x↓0

u(x) = 1 and lim
x↑0

u(x) = 0.

However, with the choice u(0) = 1, we may assert that u(x) is right-hand continuous at
x = 0.

The previous definitions can be extended to the case of real-valued functions of two
(or more) variables. In particular, the function f(x, y) is continuous at the point (x0, y0)
if

lim
x → x0

y → y0

f(x, y) = f( lim
x→x0

x, lim
y→y0

y).

This formula implies that the function f(x, y) is defined at (x0, y0) and that the limit
of f(x, y) as (x, y) tends to (x0, y0) exists and is equal to f(x0, y0).

1.2 Derivatives

Definition 1.2.1. Suppose that the function f(x) is defined at x0 ∈ (a, b). If

f ′(x0) := lim
x→x0

f(x)− f(x0)
x− x0

≡ lim
∆x→0

f(x0 + ∆x)− f(x0)
∆x

exists, we say that the function f(x) is differentiable at the point x0 and that f ′(x0)
is the derivative of f(x) (with respect to x) at x0.

Remarks. (i) For the function f(x) to be differentiable at x0, it must at least be con-
tinuous at that point. However, this condition is not sufficient, as can be seen in the
example below.
(ii) If the limit is taken as x ↓ x0 (resp., x ↑ x0) in the previous definition, then the
result (if the limit exists) is called the right-hand (resp., left-hand) derivative of f(x) at
x0 and is sometimes denoted by f ′(x+

0 ) [resp., f ′(x−0 )]. If f ′(x0) exists, then f ′(x+
0 ) =

f ′(x−0 ).
(iii) The derivative of f at an arbitrary point x is also denoted by d

dxf(x), or by Df(x).
If we set y = f(x), then

f ′(x0) ≡
dy

dx

∣∣∣∣
x=x0

.
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(iv) If we differentiate f ′(x), we obtain the second-order derivative of the function f ,
denoted by f ′′(x) or d2

dx2 f(x). Similarly, f ′′′(x) [or f (3)(x), or d3

dx3 f(x)] is the third-order
derivative of f , and so on.
(v) One way to find the values of x that maximize or minimize the function f(x) is
to calculate the first-order derivative f ′(x) and to solve the equation f ′(x) = 0. If
f ′(x0) = 0 and f ′′(x0) < 0 [resp., f ′′(x0) > 0], then f has a relative maximum (resp.,
minimum) at x = x0. If f ′(x) 6= 0 for all x ∈ R, we can check whether the function f(x)
is always increasing or decreasing in the interval of interest.

Example 1.2.1. The function f(x) = |x| is continuous everywhere, but is not differen-
tiable at the origin, because we find that

f ′(x+
0 ) = 1 and f ′(x−0 ) = −1.

Example 1.2.2. The function u(x) defined in Example 1.1.1 is obviously not differen-
tiable at x = 0, because it is not continuous at that point.

Example 1.2.3. The function

FX(x) =

 0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1

is defined and continuous everywhere. It is also differentiable everywhere, except at
x = 0 and x = 1. We obtain that the derivative F ′

X(x) of FX(x), which is denoted by
fX(x) in probability theory, is given by

fX(x) =
{

1 if 0 ≤ x ≤ 1,
0 elsewhere.

Note that fX(x) is discontinuous at x = 0 and x = 1. The function FX(x) is an example
of what is known in probability as a distribution function.
Remark. Using the theory of distributions, we may write that the derivative of the
Heaviside function u(x) is the Dirac delta function δ(x) defined by

δ(x) =
{

0 if x 6= 0,
∞ if x = 0. (1.2)

The Dirac delta function is actually a generalized function. It is, by definition, such that∫ ∞

−∞
δ(x) dx = 1.

We also have, if f(x) is continuous at x = x0, that
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−∞
f(x)δ(x− x0) dx = f(x0).

We do not recall the basic differentiation rules, except that for the derivative of a
quotient:

d

dx

f(x)
g(x)

=
g(x)f ′(x)− f(x)g′(x)

g2(x)
if g(x) 6= 0.

Remark. Note that this formula can also be obtained by differentiating the product
f(x)h(x), where h(x) := 1/g(x).

Likewise, the formulas for calculating the derivatives of elementary functions are
assumed to be known. However, a formula that is worth recalling is the so-called chain
rule for derivatives.

Proposition 1.2.1. (Chain rule) Let the real-valued function h(x) be the composite
function (g ◦ f)(x). If f is differentiable at x and g is differentiable at the point f(x),
then h is also differentiable at x and

h′(x) = g′[f(x)]f ′(x).

Remark. If we set y = f(x), then the chain rule may be written as

d

dx
g(y) =

d

dy
g(y) · dy

dx
= g′(y)f ′(x).

Example 1.2.4. Consider the function h(x) =
√

x2 + 1. We may write that h(x) =
(g ◦ f)(x), with f(x) = x2 + 1 and g(x) =

√
x. We have:

g′(x) =
1

2
√

x
=⇒ g′[f(x)] =

1
2
√

f(x)
=

1
2
√

x2 + 1
.

Then,

f ′(x) = 2x =⇒ h′(x) =
1

2
√

x2 + 1
· (2x) =

x√
x2 + 1

.

Finally, another useful result is known as l’Hospital’s rule.

Proposition 1.2.2. (L’Hospital’s rule) Suppose that

lim
x→x0

f(x) = lim
x→x0

g(x) = 0

or that
lim

x→x0
f(x) = lim

x→x0
g(x) = ±∞.
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If (i) f(x) and g(x) are differentiable in an interval (a, b) containing the point x0, except
perhaps at x0, and (ii) the function g(x) is such that g′(x) 6= 0 for all x 6= x0 in the
interval (a, b), then

lim
x→x0

f(x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

holds. If the functions f ′(x) and g′(x) satisfy the same conditions as f(x) and g(x), we
can repeat the process. Moreover, the constant x0 may be equal to ±∞.

Remark. If x0 = a or b, we can replace the limit as x → x0 by lim x ↓ a or lim x ↑ b,
respectively.

Example 1.2.5. In probability theory, one way of defining the density function fX(x) of
a continuous random variable X is by calculating the limit of the ratio of the probability
that X takes on a value in a small interval about x to the length of this interval:

fX(x) := lim
ε↓0

Probability that X ∈ [x− (ε/2), x + (ε/2)]
ε

.

The probability in question is actually equal to zero (in the limit as ε decreases to
0). For example, we might have that {Probability that X ∈ [x − (ε/2), x + (ε/2)]} =
exp{−x + (ε/2)} − exp{−x− (ε/2)}, for x > 0 and ε small enough.

By making use of l’Hospital’s rule (with ε as variable), we find that

fX(x) := lim
ε↓0

exp{−x + (ε/2)} − exp{−x− (ε/2)}
ε

= lim
ε↓0

exp{−x + (ε/2)}(1/2)− exp{−x− (ε/2)}(−1/2)
1

= exp{−x} for x > 0.

In two dimensions, we define the partial derivative of the function f(x, y) with respect
to x by

∂

∂x
f(x, y) ≡ fx(x, y) = lim

∆x→0

f(x + ∆x, y)− f(x, y)
∆x

,

when the limit exists. The partial derivative of f(x, y) with respect to y is defined
similarly. Note that even if the partial derivatives fx(x0, y0) and fy(x0, y0) exist, the
function f(x, y) is not necessarily continuous at the point (x0, y0). Indeed, the limit of
the function f(x, y) must not depend on the way (x, y) tends to (x0, y0). For instance,
let

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(1.3)

Suppose that (x, y) tends to (0, 0) along the line y = kx, where k 6= 0. We then have:
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lim
x → 0
y → 0

f(x, y) = lim
x→0

x(kx)
x2 + (kx)2

=
k

1 + k2
(6= 0).

Therefore, we must conclude that the function f(x, y) is discontinuous at (0, 0). However,
we can show that fx(0, 0) and fy(0, 0) both exist (and are equal to 0).

1.3 Integrals

Definition 1.3.1. Let f(x) be a continuous (or piecewise continuous) function on the
interval [a, b] and let

I =
n∑

k=1

f(ξk)(xk − xk−1),

where ξk ∈ [xk−1, xk] for all k and a = x0 < x1 < · · · < xn−1 < xn = b is a partition of
the interval [a, b]. The limit of I as n tends to ∞, and xk − xk−1 decreases to 0 for all
k, exists and is called the (definite) integral of f(x) over the interval [a, b]. We write:

lim
n →∞

(xk − xk−1) ↓ 0 ∀k

I =
∫ b

a

f(x) dx.

Remarks. (i) The limit must not depend on the choice of the partition of the interval
[a, b].
(ii) The function f(x) is called the integrand.
(iii) If f(x) ≥ 0 in the interval [a, b], then the integral of f(x) over [a, b] gives the area
between the curve y = f(x) and the x-axis from a to b.
(iv) If the interval [a, b] is replaced by an infinite interval, or if the function f(x) is not
defined or not bounded at at least one point in [a, b], then the integral is called improper.
For example, we define the integral of f(x) over the interval [a,∞) as follows:∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

If the limit exists, the improper integral is said to be convergent; otherwise, it is diver-
gent. When [a, b] is the entire real line, we should write that

I1 :=
∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ 0

a

f(x) dx + lim
b→∞

∫ b

0

f(x) dx

and not
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I1 = lim
b→∞

∫ b

−b

f(x) dx.

This last integral is actually the Cauchy principal value of the integral I1. The Cauchy
principal value may exist even if I1 does not.

Definition 1.3.2. Let f(x) be a real-valued function. Any function F (x) such that
F ′(x) = f(x) is called a primitive (or indefinite integral or antiderivative) of
f(x).

Theorem 1.3.1. (Fundamental Theorem of Calculus) Let f(x) be a continuous
function on the interval [a, b] and let F (x) be a primitive of f(x). Then,∫ b

a

f(x) dx = F (b)− F (a).

Example 1.3.1. The function

fX(x) =
1

π(1 + x2)
for x ∈ R

is the density function of a particular Cauchy distribution. To obtain the average value
of the random variable X, we can calculate the improper integral∫ ∞

−∞
xfX(x) dx =

∫ ∞

−∞

x

π(1 + x2)
dx.

A primitive of the integrand g(x) := xfX(x) is

G(x) =
1
2π

ln(1 + x2).

We find that the improper integral diverges, because

lim
a→−∞

∫ 0

a

g(x) dx = lim
a→−∞

[G(0)−G(a)] = −∞

and

lim
b→∞

∫ b

0

g(x) dx = lim
b→∞

[G(b)−G(0)] = ∞.

Because ∞ −∞ is indeterminate, the integral indeed diverges. However, the Cauchy
principal value of the integral is

lim
b→∞

∫ b

−b

g(x) dx = lim
b→∞

[G(b)−G(−b)] = lim
b→∞

0 = 0.

There are many results on integrals that could be recalled. We limit ourselves to
mentioning a couple of techniques that are helpful to find indefinite integrals or evaluate
definite integrals.
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1.3.1 Particular integration techniques

(1) First, we remind the reader of the technique known as integration by substitution.
Let x = g(y). We can write that∫

f(x) dx =
∫

f [g(y)]g′(y) dy.

This result actually follows from the chain rule. In the case of a definite integral, as-
suming that
(i) f(x) is continuous on the interval [a, b],
(ii) the inverse function g−1(x) exists and
(iii) g′(y) is continuous on [g−1(a), g−1(b)] (resp., [g−1(b), g−1(a)]) if g(y) is an increasing
(resp., decreasing) function,
we have: ∫ b

a

f(x) dx =
∫ d

c

f [g(y)]g′(y) dy,

where a = g(c) ⇔ c = g−1(a) and b = g(d) ⇔ d = g−1(b).

Example 1.3.2. Suppose that we want to evaluate the definite integral

I2 :=
∫ 4

0

x−1/2ex1/2
dx.

Making the substitution x = g(y) = y2, so that y = g−1(x) = x1/2 (for x ∈ [0, 4]), we
can write that∫ 4

0

x−1/2ex1/2
dx

y=x1/2

=
∫ 2

0

y−1ey 2y dy = 2ey

∣∣∣∣2
0

= 2(e2 − 1).

Remark. If we are only looking for a primitive of the function f(x), then after having
found a primitive of f [g(y)]g′(y) we must replace y by g−1(x) (assuming it exists) in
the function obtained. Thus, in the above example, we have:∫

x−1/2ex1/2
dx =

∫
y−1ey 2y dy = 2ey = 2ex1/2

.

(2) Next, a very useful integration technique is based on the formula for the derivative
of a product:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x).

Integrating both sides of the previous equation, we obtain:
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f(x)g(x) =
∫

f ′(x)g(x)dx +
∫

f(x)g′(x)dx

⇐⇒
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x)dx.

Setting u = f(x) and v = g(x), we can write that∫
udv = uv −

∫
v du.

This technique is known as integration by parts. It is often used in probability to
calculate the moments of a random variable.

Example 1.3.3. To obtain the expected value of the square of a standard normal random
variable, we can try to evaluate the integral

I3 :=
∫ ∞

−∞
cx2e−x2/2dx,

where c is a positive constant. When applying the integration by parts technique, one
must decide which part of the integrand to assign to u. Of course, u should be chosen
so that the new (indefinite) integral is easier to find. In the case of I3, we set

u = cx and dv = xe−x2/2dx.

Because
v =

∫
dv =

∫
xe−x2/2dx = −e−x2/2,

it follows that

I3 = cx(−e−x2/2)
∣∣∣∣∞
−∞

+
∫ ∞

−∞
ce−x2/2dx.

The constant c is such that the above improper integral is equal to 1 (see Chapter 3).
Furthermore, making use of l’Hospital’s rule, we find that

lim
x→∞

xe−x2/2 = lim
x→∞

x

ex2/2
= lim

x→∞

1
ex2/2 · x

= 0.

Similarly,
lim

x→−∞
xe−x2/2 = 0.

Hence, we may write that I3 = 0 + 1 = 1.
Remarks. (i) Note that there is no elementary function that is a primitive of the func-
tion e−x2/2. Therefore, we could not have obtained a primitive (in terms of elementary
functions) of x2e−x2/2 by proceeding as above.
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(ii) If we set u = ce−x2/2 (and dv = x2dx) instead, then the resulting integral will be
more complicated. Indeed, we would have:

I3 = ce−x2/2 x3

3

∣∣∣∣∞
−∞

+
∫ ∞

−∞
c
x4

3
e−x2/2dx =

∫ ∞

−∞
c
x4

3
e−x2/2dx.

A particular improper integral that is important in probability theory is defined by

F (ω) =
∫ ∞

−∞
ejωxf(x)dx,

where j :=
√
−1 and ω is a real parameter, and where we assume that the real-valued

function f(x) is absolutely integrable; that is,∫ ∞

−∞
|f(x)|dx < ∞.

The function F (ω) is called the Fourier transform (up to a constant factor) of the
function f(x). It can be shown that

f(x) =
1
2π

∫ ∞

−∞
e−jωxF (ω)dω.

We say that f(x) is the inverse Fourier transform of F (ω).
In probability theory, a density function fX(x) is, by definition, nonnegative and

such that ∫ ∞

−∞
fX(x)dx = 1.

Hence, the function F (ω) is well defined. In this context, it is known as the characteristic
function of the random variable X and is often denoted by CX(ω). By differentiating
it, we can obtain the moments of X (generally more easily than by performing the
appropriate integrals).

Example 1.3.4. The characteristic function of a standard normal random variable is

CX(ω) = e−ω2/2.

We can show that the expected value of the square of X is given by

− d2

dω2
e−ω2/2

∣∣∣∣
ω=0

= −e−ω2/2(ω2 − 1)
∣∣∣∣
ω=0

= 1,

which agrees with the result found in the previous example.
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Finally, to obtain the moments of a random variable X, we can also use its moment-
generating function, which, in the continuous case, is defined (if the integral exists)
by

MX(t) =
∫ ∞

−∞
etxfX(x)dx,

where we may assume that t is a real parameter. When X is nonnegative, the moment-
generating function is actually the Laplace transform of the function fX(x).

1.3.2 Double integrals

In Chapter 4, on random vectors, we have to deal with double integrals to obtain various
quantities of interest. A joint density function is a nonnegative function fX,Y (x, y) such
that ∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1.

Double integrals are needed, in general, to calculate the probability P [A] that the
continuous random vector (X, Y ) takes on a value in a given subset A of R2. We have:

P [A] =
∫
A

∫
fX,Y (x, y) dxdy.

One has to describe the region A with the help of functions of x or of y (whichever is
easier or more appropriate in the problem considered). That is,

P [A] =
∫ b

a

∫ g2(x)

g1(x)

fX,Y (x, y)dydx =
∫ b

a

{∫ g2(x)

g1(x)

fX,Y (x, y)dy

}
dx (1.4)

or

P [A] =
∫ d

c

∫ h2(y)

h1(y)

fX,Y (x, y)dxdy =
∫ d

c

{∫ h2(y)

h1(y)

fX,Y (x, y)dx

}
dy. (1.5)

Remarks. (i) If the functions g1(x) and g2(x) [or h1(y) and h2(y)] are constants, and if
the function fX,Y (x, y) can be written as

fX,Y (x, y) = fX(x)fY (y),

then the double integral giving P [A] can be expressed as a product of single integrals:

P [A] =
∫ b

a

fX(x)dx

∫ β

α

fY (y)dy,

where α = g1(x) ∀x and β = g2(x) ∀x.
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(ii) Conversely, we can write the product of two single integrals as a double integral:∫ b

a

f(x)dx

∫ d

c

g(y)dy =
∫ b

a

∫ d

c

f(x)g(y)dydx.

Example 1.3.5. Consider the function

fX,Y (x, y) =
{

e−x−y if x ≥ 0 and y ≥ 0,
0 elsewhere

(see Figure 1.1). To obtain the probability that (X, Y ) takes on a value in the region

Fig. 1.1. Joint density function in Example 1.3.5.

A := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 0 ≤ 2x + y ≤ 1}

(see Figure 1.2), we calculate the double integral

P [A] =
∫ 1/2

0

∫ 1−2x

0

e−x−y dydx =
∫ 1/2

0

{
−e−x−y

∣∣∣∣y=1−2x

y=0

}
dx

=
∫ 1/2

0

{
e−x − ex−1

}
dx = −e−x − ex−1

∣∣∣∣1/2

0

= −e−1/2 − e−1/2 + 1 + e−1 ' 0.1548.

We may also write that

P [A] =
∫ 1

0

∫ (1−y)/2

0

e−x−y dxdy =
∫ 1

0

{
−e−x−y

∣∣∣∣x=(1−y)/2

x=0

}
dy

=
∫ 1

0

{
e−y − e−(1+y)/2

}
dy = −e−y + 2e−(1+y)/2

∣∣∣∣1
0

= −e−1 + 2e−1 + 1− 2e−1/2 ' 0.1548.
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Remark. In this example, the functions gi(x) and hi(y), i = 1, 2, that appear in (1.4)
and (1.5) are given by

g1(x) ≡ 0, g2(x) = 1− 2x, h1(y) ≡ 0 and h2(y) = (1− y)/2.

If B is the rectangle defined by

B = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2},

then we have:

P [B] =
∫ 2

0

∫ 1

0

e−x−y dxdy =
∫ 1

0

e−x dx

∫ 2

0

e−y dy

= −e−x

∣∣∣∣1
0

− e−y

∣∣∣∣2
0

= (1− e−1)(1− e−2) ' 0.5466.

1.4 Infinite series

Let a1, a2, . . . , an, . . . be an infinite sequence of real numbers, where an is given by a
certain formula or rule, for example,

an =
1

n + 1
for n = 1, 2, . . . .

We denote the infinite sequence by {an}∞n=1 or simply by {an}. An infinite sequence is
said to be convergent if limn→∞ an exists; otherwise, it is divergent.

Next, from the sequence {an}∞n=1 we define a new infinite sequence by

S1 = a1, S2 = a1 + a2, . . . , Sn = a1 + a2 + · · ·+ an, . . . .

Fig. 1.2. Integration region in Example 1.3.5.

2x+y = 1

2x+y < 1

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5
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Definition 1.4.1. The infinite sequence S1, S2, . . . , Sn, . . . is represented by
∑∞

n=1 an

and is called an infinite series. Moreover, Sn :=
∑n

k=1 ak is called the nth partial
sum of the series. Finally, if the limit limn→∞ Sn exists (resp., does not exist), we say
that the series is convergent (resp., divergent).

In probability, the set of possible values of a discrete random variable X may be
finite or countably infinite (see p. 27). In the latter case, the probability function pX of
X is such that

∞∑
k=1

pX(xk) = 1,

where x1, x2, . . . are the possible values of X. In the most important cases, the possible
values of X are actually the integers 0, 1, . . . .

1.4.1 Geometric series

A particular type of infinite series encountered in Chapter 3 is known as a geometric
series. These series are of the form

∞∑
n=1

arn−1 or
∞∑

n=0

arn, (1.6)

where a and r are real constants.

Proposition 1.4.1. If |r| < 1, the geometric series S(a, r) :=
∑∞

n=0 arn converges to
a/(1− r). If |r| ≥ 1 (and a 6= 0), then the series is divergent.

To prove the above results, we simply have to consider the nth partial sum of the
series:

Sn =
n∑

k=1

ark−1 = a + ar + ar2 + · · ·+ arn−1.

We have:
rSn = ar + ar2 + ar3 + · · ·+ arn−1 + arn,

so that

Sn − rSn = a− arn r 6=1
=⇒ Sn =

a(1− rn)
1− r

.

Hence, we deduce that

S := lim
n→∞

Sn =

{ a

1− r
if |r| < 1,

does not exist if |r| > 1.

If r = 1, we have that Sn = na, so that the series diverges (if a 6= 0). Finally, we can
show that the series is also divergent if r = −1.
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Other useful formulas connected with geometric series are the following: if |r| < 1,
then

∞∑
k=1

ark =
ar

1− r

and
∞∑

k=0

ak rk =
ar

(1− r)2
. (1.7)

In probability, we also use power series, that is, series of the form

S(x) := a0 + a1x + a2x2 + · · ·+ anxn + · · · ,

where ak is a constant, for k = 0, 1 . . . . In particular, we use the fact that it is possible
to express functions, for instance, the exponential function ecx, as a power series:

ecx = 1 + cx +
c2

2!
x2 + · · ·+ cn

n!
xn + · · · for all x ∈ R. (1.8)

This power series is called the series expansion of ecx.
Remark. Note that a geometric series S(a, r) is a power series S(r) for which all the
constants ak are equal to a.

In general, a power series converges for all values of x in an interval around 0. If
a given series expansion is valid for |x| < R (> 0), we say that R is the radius of
convergence of the series. For |x| < R, the series can be differentiated and integrated
term by term:

S′(x) = a1 + 2a2x + · · ·+ nanxn−1 + · · · (1.9)

and ∫ x

0

S(t) dt = a0x + a1
x2

2
+ · · ·+ an

xn+1

n + 1
+ · · · .

The interval of convergence of a power series having a radius of convergence R > 0 is
at least (−R,R). The series may or may not converge for x = −R and x = R. Because

S(0) = a0 ∈ R,

any power series converges for x = 0. If the series does not converge for any x 6= 0, we
write that R = 0. Conversely, if the series converges for all x ∈ R, then R = ∞.

To calculate the radius of convergence of a power series, we can make use of
d’Alembert’s ratio test: suppose that the limit

L := lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ (1.10)

exists. Then, the series
∑∞

n=0 un
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(a) converges absolutely if L < 1;
(b) diverges if L > 1.

Remarks. (i) If the limit L in (1.10) does not exist, or if L = 1, then the test is incon-
clusive. There exist other criteria that can be used, for instance, Raabe’s test.
(ii) An infinite series

∑∞
n=0 un converges absolutely if

∑∞
n=0 |un| converges. A series that

converges absolutely is also convergent.
(iii) In the case of a power series, we calculate

lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x|.
For example, the series expansion of the exponential function ecx given in (1.8) is valid
for all x ∈ R. Indeed, an = cn/n!, so that

lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ c

n + 1

∣∣∣∣ |x| = 0 < 1 ∀x ∈ R.

Example 1.4.1. To obtain the mean of a geometric random variable, we can compute
the infinite sum

∞∑
k=1

k(1− p)k−1p =
p

1− p

∞∑
k=0

k(1− p)k (1.7)
=

p

1− p

1− p

p2
=

1
p
,

where 0 < p < 1. To prove Formula (1.7), we can use (1.9).

Example 1.4.2. A Poisson random variable is such that its probability function is given
by

pX(x) = e−λ λx

x!
for x = 0, 1, . . . ,

where λ is a positive constant. We have:

∞∑
x=0

pX(x) =
∞∑

x=0

e−λ λx

x!
= e−λ

∞∑
x=0

λx

x!
(1.8)
= e−λeλ = 1,

as required.

Example 1.4.3. The power series

Sk(x) := 1 + kx +
k(k − 1)

2!
x2 + · · ·+ k(k − 1)(k − 2) · · · (k − n + 1)

n!
xn + · · ·

is the series expansion of the function (1 + x)k, and is called the binomial series. In
probability, k will be a natural integer. It follows that the series has actually a finite
number of terms and thus converges for all x ∈ R. Moreover, we can then write that
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k(k − 1)(k − 2) · · · (k − n + 1)
n!

=
k!

(k − n)!n!

for n = 1, . . . , k.

To conclude this review of calculus, we give the main logarithmic formulas:

ln ab = ln a + ln b; ln a/b = ln a− ln b; ln ab = b ln a.

We also have:
ln ecx = eln(cx) = cx

and
ef(x) ln x = xf(x).

1.5 Exercises for Chapter 1

Solved exercises1

Question no. 1
Calculate limx↓0 x sin(1/x).

Question no. 2
For what values of x is the function

f(x) =


sinx

x
if x 6= 0,

1 if x = 0

continuous?

Question no. 3
Differentiate the function f(x) =

√
3x + 1(2x2 + 1)2.

Question no. 4
Find the limit limx↓0 x lnx.

Question no. 5
Evaluate the definite integral

I5 :=
∫ e

1

lnx

x
dx.

1 The solutions can be found in Appendix C.
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Question no. 6
Find the value of the definite integral

I6 :=
∫ ∞

−∞
x3e−x2/2dx.

Question no. 7
Find the Fourier transform of the function

f(x) = ce−cx for x ≥ 0,

where c is a positive constant.

Question no. 8
Let

f(x, y) =
{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 elsewhere.

Calculate
I8 :=

∫
A

∫
f(x, y) dxdy,

where A := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x2 < y} (see Figure 1.3).

Fig. 1.3. Region A in solved exercise no. 8.

Question no. 9
Find the value of the infinite series

S9 :=
1
8

+
1
16

+
1
32

+ · · · .

A

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
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Question no. 10
Calculate

S10 :=
∞∑

k=1

k2(1− p)k−1p,

where 0 < p < 1.

Exercises

Question no. 1
Let

F (x) =

 0 if x < 0,
1/2 if x = 0,

1− (1/2)e−x if x > 0.

Calculate (a) limx↑0 F (x), (b) limx↓0 F (x), and (c) limx→0 F (x).

Question no. 2
Consider the function

F (x) =


0 if x < 0,

1/3 if 0 ≤ x < 1,
2/3 if 1 ≤ x < 2,
1 if x ≥ 2.

For what values of x is F (x) left-continuous? right-continuous? continuous?

Question no. 3
Find the limit as x tends to 0 of the function

f(x) =
x2 sin(1/x)

sinx
for x ∈ R.

Question no. 4
Is the function

f(x) =
{

e1/x if x 6= 0,
0 if x = 0

continuous or discontinuous at x = 0? Justify.

Question no. 5
Find the fourth-order derivative of the function F (ω) = e−ω2/2, for any ω ∈ R, and

evaluate the derivative at ω = 0.
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Question no. 6
Find the following limit:

lim
ε↓0

(
1 + x− ε

2

)
e−x+(ε/2) −

(
1 + x + ε

2

)
e−x−(ε/2)

ε
.

Question no. 7
Determine the second-order derivative of f(x) = 3

√
2x2.

Question no. 8
Calculate the derivative of

f(x) = 1 + 3
√

x2 for x ∈ R

and find the value of x that minimizes this function.

Question no. 9
Use the fact that ∫ ∞

0

xn−1e−xdx = (n− 1)! for n = 1, 2, . . .

to evaluate the integral ∫ ∞

0

xn−1e−cxdx,

where c is a positive constant.

Question no. 10
Use the following formula: ∫ ∞

−∞
e−(x−m)2/2dx =

√
2π,

where m is a real constant, to calculate the definite integral∫ ∞

−∞
x2e−x2/2dx.

Question no. 11
Evaluate the improper integral ∫ ∞

0

e−x

x
dx.
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Question no. 12
Find a primitive of the function

f(x) = e−x sinx for x ∈ R.

Question no. 13
Find the Fourier transform of the function

f(x) =
c

2
e−c|x| for x ∈ R,

where c is a positive constant.

Question no. 14
Let

f(x, y) =
{

3
2x if 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, x ≤ y,
0 elsewhere.

Calculate the double definite integral∫
A

∫
f(x, y) dxdy,

where
A := {(x, y) ∈ R2 : 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, x2 < y}.

Question no. 15
The convolution of two functions, f and g, is denoted by f ∗ g and is defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y) dy.

Let

f(x) =
{

ce−cx if x ≥ 0,
0 if x < 0,

where c is a positive constant, and assume that g(x) ≡ f(x) (i.e., g is identical to f).
Find (f ∗ g)(x).
Remark. In probability theory, the convolution of fX and fY is the probability density
function of the sum Z := X+Y of the independent random variables X and Y . The result
of the above exercise implies that the sum of two independent exponentially distributed
random variables with the same parameter c has a gamma distribution with parameters
α = 2 and λ = c.
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Question no. 16
Prove that

I :=
∫ ∞

−∞

1√
2π

e−z2/2dz = 1

by first writing that

I2 =
1
2π

∫ ∞

−∞
e−z2/2dz

∫ ∞

−∞
e−w2/2dw =

1
2π

∫ ∞

−∞

∫ ∞

−∞
e−(z2+w2)/2dzdw

and then using polar coordinates. That is, set z = r cos θ and w = r sin θ (with r ≥ 0),
so that

r =
√

z2 + w2 and θ = tan−1(w/z).

Remark. We find that I2 = 1. Justify why this implies that I = 1 (and not I = −1).

Question no. 17
Determine the value of the infinite series

1
2!

x2 − 1
3!

x3 + · · ·+ (−1)n

n!
xn + · · · .

Question no. 18
Let

S(q) =
∞∑

n=1

qn−1,

where 0 < q < 1. Calculate ∫ 1/2

0

S(q)dq.

Question no. 19
(a) Calculate the infinite series

M(t) :=
∞∑

k=0

etke−α αk

k!
,

where α > 0.
(b) Evaluate the second-order derivative M ′′(t) at t = 0.
Remark. The function M(t) is the moment-generating function of a random variable X
having a Poisson distribution with parameter α. Moreover, M ′′(0) gives us the expected
value of X2.
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Question no. 20
(a) Determine the value of the power series

G(z) :=
∞∑

k=0

zk (1− p)kp,

where z ∈ R and p ∈ (0, 1) are such that |z| < (1− p)−1.
(b) Calculate

dk

dzk
G(z) for k = 0, 1, . . .

at z = 0.
Remark. The function GX(z) :=

∑∞
k=0 zkpX(k) is called the generating function of the

discrete random variable X taking its values in the set {0, 1, . . .} and having probability
mass function pX(k). Furthermore,

1
k!

dk

dzk
GX(z)

∣∣∣∣
z=0

yields pX(k).

Multiple choice questions

Question no. 1
Calculate the limit

lim
x→1

√
x− 1

1− x
.

(a) −1 (b) −1/2 (c) 1/2 (d) 1 (e) does not exist

Question no. 2
Let u(x) be the Heaviside function (see p. 2) and define h(x) = eu(x)/2, for x ∈ R.

Calculate the limit of the function h(x) as x tends to 0.
(a) 1/2 (b) 1 (c) (1 + e1/2)/2 (d) e1/2 (e) does not exist

Question no. 3
Evaluate the second-order derivative of the function

F (ω) =
2(2 + jω)
(4 + ω2)

for ω ∈ R

at ω = 0.
a) −1/4 (b) −1/2 (c) 0 (d) 1/4 (e) 1/2
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Question no. 4
Find the following limit:

lim
x→∞

(
1 +

1
x

)x

.

Indication. Take the natural logarithm of the expression first and then use the fact that
lnx is a continuous function.
(a) 0 (b) 1 (c) e (d) ∞ (e) does not exist

Question no. 5
Use the formula ∫ ∞

−∞

1√
2πb

exp
{
− (x− a)2

2b2

}
dx = 1,

where a and b (> 0) are constants, to evaluate the definite integral∫ ∞

0

1√
2π

e−2x2
dx.

(a) 1/4 (b) 1/2 (c) 1 (d) 2 (e) 4

Question no. 6
Calculate the definite integral ∫ 1

0

x lnxdx.

(a) −∞ (b) −1 (c) −1/2 (d) −1/4 (e) 0

Question no. 7
Suppose that

f(x) =
{

1 if 0 ≤ x ≤ 1,
0 elsewhere

and that g(x) = f(x) for all x ∈ R. Find (f ∗ g)(3/2), where ∗ denotes the convolution
of f and g (see no. 15, p. 22).
(a) 0 (b) 1/2 (c) 1 (d) 3/2 (e) 2

Question no. 8
Let

f(x, y) =
{

2− x− y if 0 < x < 1, 0 < y < 1,
0 elsewhere.

Calculate the following double integral:∫
A

∫
f(x, y) dxdy,
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where
A := {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1, x + y > 1}.

(a) 1/6 (b) 1/4 (c) 1/3 (d) 1/2 (e) 5/6

Question no. 9
Find the value of the natural logarithm of the infinite product

∞∏
n=1

e1/2n

= e1/2 × e1/4 × e1/8 × · · · .

(a) −1 (b) −1/2 (c) 0 (d) 1/2 (e) 1

Question no. 10
We define a0 = 0 and

ak = e−c c|k|

2|k|!
for k = . . . ,−2,−1, 1, 2, . . . ,

where c > 0 is a constant. Find the value of the infinite series
∑∞

k=−∞ ak.
(a) 1− e−c (b) 0 (c) 1 (d) (1/2)e−c (e) 1 + e−c
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Elementary probability

This first chapter devoted to probability theory contains the basic definitions and con-
cepts in this field, without the formalism of measure theory. However, the range of
problems that can be solved by using the formulas of elementary probability is very
broad, particularly in combinatorial analysis. Therefore, it is necessary to do numerous
exercises in order to master these basic concepts.

2.1 Random experiments

A random experiment is an experiment that, at least theoretically, may be repeated as
often as we want and whose outcome cannot be predicted, for example, the roll of a
die. Each time the experiment is repeated, an elementary outcome is obtained. The set
of all elementary outcomes of a random experiment is called the sample space, which is
denoted by Ω.

Sample spaces may be discrete or continuous.
(a) Discrete sample spaces. (i) Firstly, if the number of possible outcomes is finite.
For example, if a die is rolled and the number that shows up is noted, then Ω =
{1, 2, . . . , 6}.

ii) Secondly, if the number of possible outcomes is countably infinite, which means
that there is an infinite number of possible outcomes, but these outcomes can be put
in a one-to-one correspondence with the positive integers. For example, if a die is rolled
until a “6” is obtained, and the number of rolls made before getting this first “6” is
counted, then we have that Ω = {0, 1, 2, . . .}. This set is equivalent to the set of all
natural integers {1, 2, . . .}, because we can associate the natural number k+1 with each
element k = 0, 1, . . . of Ω.
(b) Continuous sample spaces. If the sample space contains one or many intervals,
the sample space is then uncountably infinite. For example, a die is rolled until a “6”
is obtained and the time needed to get this first “6” is recorded. In this case, we have
that Ω = {t ∈ R : t > 0} [or Ω = (0,∞)].

©  Springer Science + Business Media, LLC 2009
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2.2 Events

Definition 2.2.1. An event is a set of elementary outcomes. That is, it is a subset of
the sample space Ω. In particular, every elementary outcome is an event, and so is the
sample space itself.

Remarks. (i) An elementary outcome is sometimes called a simple event, whereas a
compound event is made up of at least two elementary outcomes.
(ii) To be precise, we should distinguish between the elementary outcome ω, which is
an element of Ω, and the elementary event {ω} ⊂ Ω.
(iii) The events are denoted by A, B, C, and so on.

Definition 2.2.2. Two events, A and B, are said to be incompatible (or mutually
exclusive) if their intersection is empty. We then write that A ∩ B = ∅.

Example 2.2.1. Consider the experiment that consists in rolling a die and recording
the number that shows up. We have that Ω = {1, 2, 3, 4, 5, 6}. We define the events

A = {1, 2, 4}, B = {2, 4, 6} and C = {3, 5}.

We have:
A ∪B = {1, 2, 4, 6}, A ∩B = {2, 4} and A ∩ C = ∅.

Therefore, A and C are incompatible events. Moreover, we may write that A′ = {3, 5, 6},
where the symbol ′ denotes the complement of the event.

To represent a sample space and some events, we often use a Venn diagram as in
Figure 2.1. In general, for three events we have the diagram in Figure 2.2.

A B C

1 2
4

6 3 5

Ω

Fig. 2.1. Venn diagram for Example 2.2.1.
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A B

C

ω

1

2

3 4

5 6
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ω  = A'   B   C

ω  = A   B'   C'

ω  = A'   B   C'

ω  = A'   B'   C
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2

3

4

5

6

7

8

U U

U U

U U

U U

UU

UU

UU

UU

Ω

ω

ω ω

ω ω
ω

ω

Fig. 2.2. Venn diagram for three arbitrary events.

2.3 Probability

Definition 2.3.1. The probability of an event A ⊂ Ω, denoted by P [A], is a real
number obtained by applying to A the function P that possesses the following properties:

(i) 0 ≤ P [A] ≤ 1;
(ii) if A = Ω, then P [A] = 1;
(iii) if A = A1 ∪A2 ∪ · · · ∪An, where A1, . . . , An are incompatible events, then we may
write that

P [A] =
n∑

i=1

P [Ai] for n = 2, 3, . . . ,∞.

Remarks. (i) Actually, we only have to write that P [A] ≥ 0 in the definition, because
we can show that

P [A] + P [A′] = 1,

which implies that P [A] = 1− P [A′] ≤ 1.
(ii) We also have the following results:

P [∅] = 0 and P [A] ≤ P [B] if A ⊂ B.

(iii) The definition of the probability of an event is motivated by the notion of relative
frequency. For example, suppose that the random experiment that consists in rolling a
die is repeated a very large number of times, and that we wish to obtain the probability
of any of the possible outcomes of this experiment, namely, the integers 1, 2, . . . , 6. The
relative frequency of the elementary event {k} is the quantity f{k}(n) defined by

f{k}(n) =
N{k}(n)

n
,
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where N{k}(n) is the number of times that the possible outcome k occurred among the
n rolls of the die. We can write that

0 ≤ f{k}(n) ≤ 1 for k = 1, 2, . . . , 6

and that
6∑

k=1

f{k}(n) = 1.

Indeed, we obviously have that N{k}(n) ∈ {0, 1, . . . , n}, so that f{k}(n) belongs to [0, 1],
and

6∑
k=1

f{k}(n) =
N{1}(n) + · · ·+ N{6}(n)

n
=

n

n
= 1.

Furthermore, if A is an event containing two possible outcomes, for instance “1” and
“2,” then

fA(n) = f{1}(n) + f{2}(n),

because the outcomes 1 and 2 cannot occur on the same roll of the die.
Finally, the probability of the elementary event {k} can theoretically be obtained

by taking the limit of f{k}(n) as the number n of rolls tends to infinity:

P [{k}] = lim
n→∞

f{k}(n).

The probability of an arbitrary event can be expressed in terms of the relative frequency
of this event, thus it is logical that the properties of probabilities more or less mimic
those of relative frequencies.

Sometimes, the probability of an elementary outcome is simply equal to 1 divided
by the total number of elementary outcomes. In this case, the elementary outcomes are
said to be equiprobable (or equally likely). For example, if a fair (or unbiased) die is
rolled, then we have that P [{1}] = P [{2}] = · · · = P [{6}] = 1/6.

If the elementary outcomes ri are not equiprobable, we can (try to) make use of the
following formula:

P [A] =
∑
ri∈A

P [{ri}].

However, this formula is only useful if we know the probability of all the elementary
outcomes ri that constitute the event A.

Now, if A and B are incompatible events, then we deduce from the third property
of P [ · ] that P [A ∪ B] = P [A] + P [B]. If A and B are not incompatible, we can show
(see Figure 2.3) that

P [A ∪B] = P [A] + P [B]− P [A ∩B].
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A B
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P[A U B] = P[A] + P[B] - P[A    B]

U

Fig. 2.3. Probability of the union of two arbitrary events.

Similarly, in the case of three arbitrary events, we have:

P [A∪B ∪C]=P [A] + P [B] + P [C]−P [A∩B]−P [A∩C]−P [B ∩C] + P [A∩B ∩C].

Example 2.3.1. The three most popular options for a certain model of new car are A:
automatic transmission, B: V6 engine, and C: air conditioning. Based on the previous
sales data, we may suppose that P [A] = 0.70, P [B] = 0.75, P [C] = 0.80, P [A ∪ B]
= 0.80, P [A ∪ C] = 0.85, P [B ∪ C] = 0.90, and P [A ∪ B ∪ C] = 0.95, where P [A]
denotes the probability that an arbitrary buyer chooses option A, and so on. Calculate
the probability of each of the following events:
(a) the buyer chooses at least one of the three options;
(b) the buyer does not choose any of the three options;
(c) the buyer chooses only air conditioning;
(d) the buyer chooses exactly one of the three options.

Solution. (a) We seek P [A ∪B ∪ C] = 0.95 (by assumption).
(b) We now seek P [A′ ∩B′ ∩ C ′] = 1− P [A ∪B ∪ C] = 1− 0.95 = 0.05.
(c) The event whose probability is requested is A′ ∩B′ ∩ C. We can write that

P [A′ ∩B′ ∩ C] = P [A ∪B ∪ C]− P [A ∪B] = 0.95− 0.8 = 0.15.

(d) Finally, we want to calculate

P [(A ∩B′ ∩ C ′) ∪ (A′ ∩B ∩ C ′) ∪ (A′ ∩B′ ∩ C)]
inc.= P [A ∩B′ ∩ C ′] + P [A′ ∩B ∩ C ′] + P [A′ ∩B′ ∩ C]
= 3P [A ∪B ∪ C]− P [A ∪B]− P [A ∪ C]− P [B ∪ C]
= 3(0.95)− 0.8− 0.85− 0.9 = 0.3.

Remarks. (i) The indication “inc.” above the “=” sign means that the equality is true
because of the incompatibility of the events. We use this type of notation often in this
book to justify the passage from an expression to another.
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(ii) The probability of each of the eight elementary outcomes is indicated in the diagram
of Figure 2.4. First, we calculate

P [A ∩B] = P [A] + P [B]− P [A ∪B] = 0.7 + 0.75− 0.8 = 0.65.

Likewise, we have:

P [A ∩ C] = 0.7 + 0.8− 0.85 = 0.65,

P [B ∩ C] = 0.75 + 0.8− 0.9 = 0.65,

P [A ∩B ∩ C] = P [A ∪B ∪ C]− P [A]− P [B]− P [C]
+P [A ∩B] + P [A ∩ C] + P [B ∩ C]

= 0.95− 0.7− 0.75− 0.8 + 3(0.65) = 0.65.

A B

C

Ω

0.05 0

0.15

00

0.10

0.65

0.05

Fig. 2.4. Venn diagram for Example 2.3.1.

2.4 Conditional probability

Definition 2.4.1. The conditional probability of event A, given that event B oc-
curred, is defined (and denoted) by (see Figure 2.5)

P [A | B] =
P [A ∩B]

P [B]
if P [B] > 0. (2.1)

From the above definition, we obtain the multiplication rule:

P [A ∩B] = P [A | B]P [B] if P [B] > 0 (2.2)

and
P [A ∩B] = P [B | A]P [A] if P [A] > 0.
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Fig. 2.5. Notion of conditional probability.

Definition 2.4.2. Let A and B be two events such that P [A]P [B] > 0. We say that A
and B are independent events if

P [A | B] = P [A] or P [B | A] = P [B]. (2.3)

We deduce from the multiplication rule that A and B are independent if and only
if (iff)

P [A ∩B] = P [A]P [B]. (2.4)

Actually, this equation is the definition of independence of events A and B in the
general case when we can have that P [A]P [B] = 0. However, Definition 2.4.2 is more
intuitive, whereas the general definition of independence given by Formula (2.4) is purely
mathematical.

In general, the events A1, A2, . . . , An are independent iff

P [Ai1 ∩ · · · ∩Aik
] =

k∏
j=1

P [Aij
]

for k = 2, 3, . . . , n, where Ail
6= Aim if l 6= m.

Remark. If A and B are two incompatible events, then they cannot be independent,
unless P [A]P [B] = 0. Indeed, in the case when P [A]P [B] > 0, we have:

P [A | B] =
P [A ∩B]

P [B]
=

P [∅]
P [B]

=
0

P [B]
= 0 6= P [A].

Example 2.4.1. A device is constituted of two components, A and B, subject to failures.
The components are connected in parallel (see Figure 2.6) and are not independent. We
estimate the probability of a failure of component A to be 0.2 and that of a failure of
component B to be 0.8 if component A is down, and to 0.4 if component A is not down.

(a) Calculate the probability of a failure (i) of component B and (ii) of the device.
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A

B

Fig. 2.6. System for part (a) of Example 2.4.1.

Solution. Let A (resp., B) be the event “component A (resp., B) is down.” By assump-
tion, we have that P [A] = 0.2, P [B | A] = 0.8, and P [B | A′] = 0.4.

(i) We may write (see Figure 2.7) that

A B

A

U

B

Ω

U

A' B

Fig. 2.7. Venn diagram for part (a) of Example 2.4.1.

P [B] = P [A ∩B] + P [A′ ∩B] = P [B | A]P [A] + P [B | A′]P [A′]
= (0.8)(0.2) + (0.4)(0.8) = 0.48.

(ii) We seek P [Device failure] = P [A ∩B] = P [B | A]P [A] = 0.16.

(b) In order to increase the reliability of the device, a third component, C, is added
to the system in such a way that components A, B, and C are connected in parallel
(see Figure 2.8). The probability that component C fails is equal to 0.2, independently
from the state (up or down) of components A and B. Calculate the probability that the
device made up of components A, B, and C breaks down.

Solution. By assumption, P [C] = 0.2 and C is independent of A and B. Let F be the
event “the subsystem made up of components A and B fails.” We can write that

P [F ∩ C] ind.= P [A ∩B]P [C]
(a) (ii)

= (0.16)(0.2) = 0.032.
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A

B

C

Fig. 2.8. System for part (b) of Example 2.4.1.

2.5 Total probability

Let B1, B2, . . . , Bn be incompatible and exhaustive events; that is, we have:

Bi ∩Bj = ∅ if i 6= j and
n⋃

i=1

Bi = Ω.

We say that the events Bi constitute a partition of the sample space Ω. It follows that

P

[
n⋃

i=1

Bi

]
=

n∑
i=1

P [Bi] = P [Ω] = 1.

Now, let A be an arbitrary event. We can write that (see Figure 2.9)

P [A] =
n∑

i=1

P [A ∩Bi] =
n∑

i=1

P [A | Bi]P [Bi] (2.5)

(the second equality above being valid when P [Bi] > 0, for i = 1, 2, . . . , n).
Remark. This formula is sometimes called the law of total probability.

Finally, suppose that we wish to calculate P [Bi | A], for i = 1, . . . , n. We have:

P [Bi | A] =
P [Bi ∩A]

P [A]
=

P [A | Bi]P [Bi]∑n
j=1 P [A ∩Bj ]

=
P [A | Bi]P [Bi]∑n

j=1 P [A | Bj ]P [Bj ]
. (2.6)

This formula is called Bayes’ formula.

Remark. We also have (Bayes’ rule):

P [B | A] =
P [A | B]P [B]

P [A]
if P [A]P [B] > 0. (2.7)
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Fig. 2.9. Example of the law of total probability with n = 3.

Example 2.5.1. Suppose that machines M1, M2, and M3 produce, respectively, 500,
1000, and 1500 parts per day, of which 5%, 6%, and 7% are defective. A part produced
by one of these machines is taken at random, at the end of a given workday, and it is
found to be defective. What is the probability that it was produced by machine M3?

Solution. Let Ai be the event “the part taken at random was produced by machine
Mi,” for i = 1, 2, 3, and let D be “the part taken at random is defective.” We seek

P [A3 | D] =
P [D | A3]P [A3]∑3
i=1 P [D | Ai]P [Ai]

=
(0.07)

(
1500
3000

)
(0.05)

(
1
6

)
+ (0.06)

(
1
3

)
+ (0.07)

(
1
2

)
=

105
190

' 0.5526.

2.6 Combinatorial analysis

Suppose that we perform a random experiment that can be divided into two steps. On
the first step, outcome A1 or outcome A2 may occur. On the second step, either of
outcomes B1, B2, or B3 may occur. We can use a tree diagram to describe the sample
space of this random experiment, as in Figure 2.10.

Example 2.6.1. Tests conducted with a new breath alcohol analyzer enabled us to
establish that (i) 5 times out of 100 the test proved positive even though the person
subjected to the test was not intoxicated; (ii) 90 times out of 100 the test proved
positive and the person tested was really intoxicated. Moreover, we estimate that 1% of
the persons subjected to the test are really intoxicated. Calculate the probability that
(a) the test will be positive for the next person subjected to it;
(b) a given person is intoxicated, given that the test is positive.
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Fig. 2.10. Example of a tree diagram.

Solution. Let A be the event “the test is positive” and let E be “the person subjected to
the test is intoxicated.” From the above assumptions, we can construct the tree diagram
in Figure 2.11, where the marginal probabilities of events E and E′ are written above
the branches, as well as the conditional probabilities of events A and A′, given that E
or E′ occurred. Furthermore, we know by the multiplication rule that the product of
these probabilities is equal to the probability of the intersections E ∩A, E ∩A′, and so
on.

E

E'
A

A'

A

A'
0.95

0.01

0.05

0.10

0.90

0.99

P[E    A] = 0.009

P[E    A'] = 0.001

P[E'    A] = 0.0495

P[E'    A'] = 0.9405

U

U

U

U

Fig. 2.11. Tree diagram in Example 2.6.1.

(a) We have:
P [A] = P [E ∩A] + P [E′ ∩A] = 0.0585.

(b) We calculate

P [E | A] =
P [E ∩A]

P [A]
(a)
=

0.009
0.0585

' 0.1538.

Note that this probability is very low. If we assume that 60% of the individuals sub-
jected to the test are intoxicated (rather than 1%), then we find that P [A] becomes
0.56 and P [E | A] ' 0.9643, which is much more reasonable. Therefore, this breath
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alcohol analyzer is only efficient if we use it for individuals who are suspected of being
intoxicated.

Remark. In general, if a random experiment comprises k steps and if there are nj possible
outcomes on the jth step, for j = 1, . . . , k, then there are n1 × · · · × nk elementary
outcomes in the sample space. This is known as the multiplication principle.

Suppose now that we have n distinct objects and that we take, at random and
without replacement, r objects among them, where r ∈ {(0, )1, . . . , n}. The number of
possible arrangements is given by

n× (n− 1)× · · · × [n− (r − 1)] =
n!

(n− r)!
:= Pn

r . (2.8)

The symbol Pn
r designates the number of permutations of n distinct objects taken r at

a time. The order of the objects is important.

Remarks. (i) Reminder. We have that n! = 1×2×· · ·×n, for n = 1, 2, 3, . . . , and 0! = 1,
by definition.
(ii) Taking r objects without replacement means that the objects are taken one at a
time and that a given object cannot be chosen more than once. This is equivalent to
taking the r objects all at once. In the case of sampling with replacement, any object
can be chosen up to r times.

Example 2.6.2. If we have four different letters (for instance, a, b, c, and d), then we
can form

P 4
3 =

4!
(4− 3)!

=
4!
1!

= 24

different three-letter “words” if each letter is used at most once. We can use a tree
diagram to draw the list of words.

Finally, if the order of the objects is not important, then the number of ways to take,
at random and without replacement, r objects among n distinct objects is given by

n× (n− 1)× · · · × [n− (r − 1)]
r!

=
n!

r!(n− r)!
:= Cn

r ≡
(

n

r

)
(2.9)

for r ∈ {(0, )1, . . . , n}. The symbol Cn
r , or

(
n
r

)
, designates the number of combinations

of n distinct objects taken r at a time.

Remarks. (i) Each combination of r objects enables us to form r! different permutations,
because

P r
r =

r!
(r − r)!

=
r!
0!

= r!.

(ii) Moreover, it is easy to check that Cn
r = Cn

n−r.
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Example 2.6.3. Three parts are taken, at random and without replacement, among 10
parts, of which 2 are defective. What is the probability that at least 1 defective part is
obtained?

Solution. Let F be the event “at least one part is defective among the three parts
taken at random.” We can write that

P [F ] = 1− P [F ′] = 1− C2
0 · C8

3

C10
3

= 1−
1 · 8!

3!5!
10!
3!7!

= 1− 6× 7
9× 10

=
8
15

= 0.53̄.

2.7 Exercises for Chapter 2

Solved exercises

Question no. 1
We consider the following random experiment: a fair die is rolled; if (and only if)

a “6” is obtained, the die is rolled a second time. How many elementary outcomes are
there in the sample space Ω?

Question no. 2
Let Ω = {e1, e2, e3}, where P [{ei}] > 0, for i = 1, 2, 3. How many different partitions

of Ω, excluding the partition ∅, Ω can be formed?

Question no. 3
A fair die is rolled twice, independently. Knowing that an even number was obtained

on the first roll, what is the probability that the sum of the two numbers obtained is
equal to 4?

Question no. 4
Suppose that P [A] = P [B] = 1/4 and that P [A | B] = P [B]. Calculate P[A ∩B′].

Question no. 5
A system is made up of three independent components. It operates if at least two

of the three components operate. If the reliability of each component is equal to 0.95,
what is the reliability of the system?

Question no. 6
Suppose that P [A ∩B] = 1/4, P [A | B′] = 1/8, and P [B] = 1/2. Calculate P [A].

Question no. 7
Knowing that we obtained at least once the outcome “heads” in three independent

tosses of a fair coin, what is the probability that we obtained “heads” three times?
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Question no. 8
Suppose that P [B | A1] = 1/2 and that P [B | A2] = 1/4, where A1 and A2 are two

equiprobable events forming a partition of Ω. Calculate P [A1 | B].

Question no. 9
Three horses, a, b, and c, enter in a race. If the outcome bac means that b finished

first, a second, and c third, then the set of all possible outcomes is

Ω = {abc, acb, bac, bca, cab, cba} .

We suppose that P [{abc}] = P [{acb}] = 1/18 and that each of the other four elementary
outcomes has a 2/9 probability of occurring. Moreover, we define the events

A = “a finishes before b” and B = “a finishes before c.”

(a) Do the events A and B form a partition of Ω?
(b) Are A and B independent events?

Question no. 10
Let ε be a random experiment for which there are three elementary outcomes: A, B,

and C. Suppose that we repeat ε indefinitely and independently. Calculate, in terms of
P [A] and P [B], the probability that A occurs before B.
Hints. (i) You can make use of the law of total probability.
(ii) Let D be the event “A occurs before B.” Then, we may write that

P [D | C occurs on the first repetition] = P [D] .

Question no. 11
Transistors are drawn at random and with replacement from a box containing a

very large number of transistors, some of which are defectless and others are defective,
and are tested one at a time. We continue until either a defective transistor has been
obtained or three transistors in all have been tested. Describe the sample space Ω for
this random experiment.

Question no. 12
Let A and B be events such that P [A] = 1/3 and P [B′ | A] = 5/7. Calculate P [B]

if B is a subset of A.

Question no. 13
In a certain university, the proportion of full, associate, and assistant professors,

and of lecturers is 30%, 40%, 20%, and 10% respectively, of which 60%, 70%, 90%, and
40% hold a PhD. What is the probability that a person taken at random among those
teaching at this university holds a PhD?

Question no. 14
All the items in stock in a certain store bear a code made up of five letters. If the

same letter is never used more than once in a given code, how many different codes can
there be?
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Question no. 15
A fair die is rolled twice, independently. Consider the events
A = “the first number that shows up is a 6;”
B = “the sum of the two numbers obtained is equal to 7;”
C = “the sum of the two numbers obtained is equal to 7 or 11.”

(a) Calculate P [B | C].
(b) Calculate P [A | B].
(c) Are A and B independent events?

Question no. 16
A commuter has two vehicles, one being a compact car and the other one a minivan.

Three times out of four, he uses the compact car to go to work and the remainder of
the time he uses the minivan. When he uses the compact car (resp., the minivan), he
gets home before 5:30 p.m. 75% (resp., 60%) of the time. However, the minivan has air
conditioning. Calculate the probability that
(a) he gets home before 5:30 p.m. on a given day;
(b) he used the compact car if he did not get home before 5:30 p.m.;
(c) he uses the minivan and he gets home after 5:30 p.m.;
(d) he gets home before 5:30 p.m. on two (independent) consecutive days and he does
not use the same vehicle on these two days.

Question no. 17
Rain is forecast half the time in a certain region during a given time period. We

estimate that the weather forecasts are accurate two times out of three. Mr. X goes out
every day and he really fears being caught in the rain without an umbrella. Consequently,
he always carries his umbrella if rain is forecast. Moreover, he even carries his umbrella
one time out of three if rain is not forecast. Calculate the probability that it is raining
and Mr. X does not have his umbrella.

Question no. 18
A fair die is rolled three times, independently. Let F be the event “the first number

obtained is smaller than the second one, which is itself smaller than the third one.”
Calculate P [F ].

Question no. 19
We consider the set of all families having exactly two children. We suppose that each

child has a 50–50 chance of being a boy. Let the events be
A1 = “both sexes are represented among the children;”
A2 = “at most one child is a girl.”

(a) Are A1 and A′
2 incompatible events?

(b) Are A1 and A′
2 independent events?

(c) We also suppose that the probability that the third child of an arbitrary family is a
boy is equal to 11/20 if the first two children are boys, to 2/5 if the first two children



42 2 Elementary probability

are girls, and to 1/2 in the other cases. Knowing that the third child of a given family
is a boy, what is the probability that the first two are also boys?

Exercises

Question no. 1
We study the traffic (in one direction) on two roads, 1 and 2, which merge to form

road 3 (see Figure 2.12). Roads 1 and 2 have the same capacity (number of lanes) and
road 3 has a greater capacity than road 1 and road 2. During rush hours, the probability
that the traffic is congested on road 1 (resp., road 2) is equal to 0.1 (resp., 0.3). Moreover,
given that traffic is congested on road 2, it is also congested on road 1 one time out of
three. We define the events

A,B, C = “traffic is congested on roads 1, 2, 3, respectively.”

1

2
3

Fig. 2.12. Figure for Exercise no. 1.

(a) Calculate the probability that traffic is congested
(i) on roads 1 and 2;
(ii) on road 2, given that it is congested on road 1;
(iii) on road 1 only;
(iv) on road 2 only;
(v) on road 1 or on road 2;
(vi) neither on road 1 nor on road 2.

(b) On road 3, traffic is congested with probability

1 if it is congested on roads 1 and 2;
0.15 if it is congested on road 2 only;
0.1 if it is neither congested on road 1 nor on road 2.

Calculate the probability that traffic is congested
(i) on road 3;
(ii) on road 1, given that it is congested on road 3.
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Question no. 2
We roll a die and then we toss a coin. If we obtain “tails,” then we roll the die a

second time. Suppose that the die and the coin are fair. What is the probability of
(a) obtaining “heads” or a 6 on the first roll of the die;
(b) obtaining no 6s;
(c) obtaining exactly one 6;
(d) having obtained “heads,” given that we obtained exactly one 6.

Question no. 3 (see Example 2.4.1)
A device is composed of two components, A and B, subject to random failures. The

components are connected in parallel and, consequently, the device is down only if both
components are down. The two components are not independent. We estimate that the
probability of

a failure of component A is equal to 0.2;
a failure of component B is equal to 0.8 if component A is down;
a failure of component B is equal to 0.4 if component A is active.

(a) Calculate the probability of a failure
(i) of component A if component B is down;
(ii) of exactly one component.

(b) In order to increase the reliability of the device, a third component, C, is added in
such a way that components A, B, and C are connected in parallel. The probability
that component C breaks down is equal to 0.2, independently of the state (up or down)
of components A and B. Given that the device is active, what is the probability that
component C is down?

Question no. 4
In a factory producing electronic parts, the quality control is ensured through three

tests as follows:

• each component is subjected to test no. 1;
• if a component passes test no. 1, then it is subjected to test no. 2;
• if a component passes test no. 2, then it is subjected to test no. 3;
• as soon as a component fails a test, it is returned for repair.

We define the events

Ai = “the component fails test no. i, for i = 1, 2, 3.”

From past experience, we estimate that

P [A1] = 0.1, P [A2 | A′
1] = 0.05 and P [A3 | A′

1 ∩A′
2] = 0.02.

The elementary outcomes of the sample space Ω are: ω1 = A1, ω2 = A′
1 ∩ A2, ω3 =

A′
1 ∩A′

2 ∩A3, and ω4 = A′
1 ∩A′

2 ∩A′
3.
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(a) Calculate the probability of each elementary outcome.
(b) Let R be the event “the component must be repaired.”

(i) Express R in terms of A1, A2, A3.
(ii) Calculate the probability of R.
(iii) Calculate P [A′

1 ∩A2 | R].

(c) We test three components and we define the events

Rk = “the kth component must be repaired, for k = 1, 2, 3” and

B = “at least one of the three components passes all three tests.”

We assume that the events Rk are independent.
(i) Express B in terms of R1, R2, R3.
(ii) Calculate P [B].

Question no. 5
Let A, B, and C be events such that P [A] = 1/2, P [B] = 1/3, P [C] = 1/4, and

P [A ∩ C] = 1/12. Furthermore, A and B are incompatible. Calculate P [A | B ∪ C].

Question no. 6
In a group of 20,000 men and 10,000 women, 6% of men and 3% of women suffer

from a certain disease. What is the probability that a member of this group suffering
from the disease in question is a man?

Question no. 7
Two tokens are taken at random and without replacement from an urn containing

10 tokens, numbered from 1 to 10. What is the probability that the larger of the two
numbers obtained is 3?

Question no. 8
We consider the system in Figure 2.13. All components fail independently of each

other. During a certain time period, the type A components fail with probability 0.3 and
component B (resp., C) fails with probability 0.01 (resp., 0.1). Calculate the probability
that the system is not down at the end of this period.

Question no. 9
A sample of size 20 is drawn (without replacement) from a lot of infinite size con-

taining 2% defective items. Calculate the probability of obtaining at least one defective
item in the sample.

Question no. 10
A lot contains 10 items, of which one is defective. The items are examined one

by one, without replacement, until the defective item has been found. What is the
probability that this defective item will be (a) the second item examined? (b) the ninth
item examined?
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A

BA

A

C

Fig. 2.13. Figure for Exercise no. 8.

Question no. 11
A bag holds two coins: a fair one and one with which we always get “heads.” A coin

is drawn at random and is tossed. Knowing that “heads” was obtained, calculate
(a) the probability that the fair coin was drawn;
(b) the probability of obtaining “heads” on a second toss of the same coin.

Question no. 12
The diagnosis of a physician in regard to one of her patients is unsure. She hesitates

between three possible diseases. From past experience, we were able to construct the
following tables:

Si S1 S2 S3 S4

P [D1 | Si] 0.2 0.1 0.6 0.4

Si S1 S2 S3 S4

P [D2 | Si] 0.2 0.5 0.5 0.3

Si S1 S2 S3 S4

P [D3 | Si] 0.6 0.3 0.1 0.2

where the Dis represent the diseases and the Sis are the symptoms. In addition, we
assume that the four symptoms are incompatible, exhaustive, and equiprobable.
(a) Independently of the symptom present in the patient, what is the probability that
he or she suffers from the first disease?
(b) What is the probability that the patient suffers from the second disease and presents
symptom S1?
(c) Given that the patient suffers from the third disease, what is the probability that
he or she presents symptom S2?
(d) We consider two independent patients. What is the probability that they do not
suffer from the same disease, if we assume that the three diseases are incompatible?
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Question no. 13
We consider a system comprising four components operating independently of each

other and connected as in Figure 2.14.

4

21

3

Fig. 2.14. Figure for Exercise no. 13.

The reliability of each component is supposed constant, over a certain time period,
and is given by the following table:

Component 1 2 3 4
Reliability 0.9 0.95 0.95 0.99

(a) What is the probability that the system operates at the end of this time period?
(b) What is the probability that component no. 3 is down and the system still operates?
(c) What is the probability that at least one of the four components is down?
(d) Given that the system is down, what is the probability that it will resume operating
if we replace component no. 1 by an identical (nondefective) component?

Question no. 14
A box contains 8 brand A and 12 brand B transistors. Two transistors are drawn

at random and without replacement. What is the probability that they are both of the
same brand?

Question no. 15
What is the reliability of the system shown in Figure 2.15 if the four components

operate independently of each other and all have a reliability equal to 0.9 at a given
time instant?
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4

2

1

3

Fig. 2.15. Figure for Exercise no. 15.

Question no. 16
Let A1 and A2 be two events such that P [A1] = 1/4, P [A1 ∩A2] = 3/16, and

P [A2 | A′
1] = 1/8. Calculate P [A′

2].

Question no. 17
A fair coin is tossed until either “heads” is obtained or the total number of tosses

is equal to 3. Given that the random experiment ended with “heads,” what is the
probability that the coin was tossed only once?

Question no. 18
In a room, there are four 18-year-old male students, six 18-year-old female students,

six 19-year-old male students, and x 19-year-old female students. What must be the
value of x, if we want age and sex to be independent when a student is taken at random
in the room?

Question no. 19
Stores S1, S2, and S3 of the same company have, respectively, 50, 70, and 100

employees, of which 50%, 60%, and 75% are women. A person working for this company
is taken at random. If the employee selected is a woman, what is the probability that
she works in store S3?

Question no. 20
Harmful nitrogen oxides constitute 20%, in terms of weight, of all pollutants present

in the air in a certain metropolitan area. Emissions from car exhausts are responsible
for 70% of these nitrogen oxides, but for only 10% of all the other air pollutants. What
percentage of the total pollution for which emissions from car exhausts are responsible
are harmful nitrogen oxides?

Question no. 21
Three machines, M1, M2, and M3, produce, respectively, 1%, 3%, and 5% defective

items. Moreover, machine M1 produces twice as many items on an arbitrary day as
machine M2, which itself produces three times as many items as machine M3. An item
is taken at random among those manufactured on a given day, then a second item is
taken at random among those manufactured by the machine that produced the first
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selected item. Knowing that the first selected item is defective, what is the probability
that the second one is also defective?

Question no. 22
A machine is made up of five components connected as in the diagram of Figure 2.16.

Each component operates with probability 0.9, independently of the other components.

4

2

1

3

5

Fig. 2.16. Figure for Exercise no. 22.

(a) Knowing that component no. 1 is down, what is the probability that the machine
operates?
(b) Knowing that component no. 1 is down and that the machine still operates, what
is the probability that component no. 3 is active?

Question no. 23
Before being declared to conform to the technical norms, devices must pass two

quality control tests. According to the data gathered so far, 75% of the devices tested
in the course of a given week passed the first test. The devices are subjected to the
second test, whether they pass the first test or not. We found that 80% of the devices
that passed the second test had also passed the first one. Furthermore, 20% of those
that failed the second test had passed the first one.
(a) What is the probability that a given device passed the second test?
(b) Find the probability that, for a given device, the second test contradicts the first
one.
(c) Calculate the probability that a given device failed the second test, knowing that it
passed the first one.

Question no. 24
In a certain workshop, the probability that a part manufactured by an arbitrary

machine is nondefective, that is, conforms to the technical norms, is equal to 0.9. The
quality control engineer proposes to adopt a procedure that classifies as nondefective
with probability 0.95 the parts indeed conforming to the norms, and with only prob-
ability 0.15 those not conforming to these norms. It is decided that every part will be
subjected to this quality control procedure twice, independently.
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(a) What is the probability that a part having passed the procedure twice does indeed
conform to the norms?
(b) Suppose that if a part fails the first control test, then it is withdrawn immediately.
Let Bj be the event “a given part passed (if the case may be) the jth control test,” for
j = 1, 2. Calculate (i) P [B2] and (ii) P [B′

1 ∩B′
2].

Question no. 25
We have 20 type I components, of which 5 are defective, and 30 type II components,

of which 15 are defective.

(a) We wish to construct a system comprising 10 type I components and 5 type II
components connected in series. What is the probability that the system will operate if
the components are taken at random?
(b) How many different systems comprising four components connected in series, of
which at least two are of type I, can be constructed, if the order of the components is
taken into account?
Remarks. (i) We suppose that we can differentiate two components of the same type.
(ii) When a system is made up of components connected in series, then it operates if
and only if every component operates.

Question no. 26
A system is made up of n components, including components A and B.

(a) Show that if the components are connected in series, then the probability that there
are exactly r components between A and B is given by

2(n− r − 1)
(n− 1)n

for r ∈ {0, 1, . . . , n− 2}.

(b) Calculate the probability that there are exactly r components between A and B if
the components are connected in circle.
(c) Suppose that n = 5 and that the components are connected in series. Calculate
the probability of operation of the subsystem constituted of components A, B and the
r components placed between them if the components operate independently of each
other and all have a reliability of 0.95.

Question no. 27
A man owns a car and a motorcycle. Half the time, he uses his motorcycle to go to

work. One-third of the time, he drives his car to work and, the remainder of the time,
he uses public transportation. He gets home before 5:30 p.m. 75% of the time when he
uses his motorcycle. This percentage is equal to 60% when he drives his car and to 2%
when he uses public transportation. Calculate the probability that
(a) he used public transportation if he got home after 5:30 p.m. on a given day;
(b) he got home before 5:30 p.m. on two consecutive (independent) days and he used
public transportation on exactly one of these two days.
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Question no. 28
In a certain airport, a shuttle coming from the city center stops at each of the four

terminals to let passengers get off. Suppose that the probability that a given passenger
gets off at a particular terminal is equal to 1/4. If there are 20 passengers using the
shuttle and if they occupy seats numbered from 1 to 20, what is the probability that
the passengers sitting in seats nos. 1 to 4 all get off
(a) at the same stop?
(b) at different stops?

Question no. 29
A square grid consists of 289 points. A particle is at the center of the grid. Every

second, it moves at random to one of the four nearest points from the one it occupies.
When the particle arrives at the boundary of the grid, it is absorbed.
(a) What is the probability that the particle is absorbed after eight seconds?
(b) Let Ai be the event “the particle is at the center of the grid after i seconds.”
Calculate P [A4] (knowing that A0 is certain, by assumption).

Question no. 30
Five married couples bought 10 tickets for a concert. In how many ways can they

sit (in the same row) if
(a) the five men want to sit together?
(b) the two spouses in each couple want to sit together?

Multiple choice questions

Question no. 1
Two weeks prior to the most recent general election, a poll conducted among 1000

voters revealed that 48% of them intended to vote for the party in power. A survey made
after the election, among the same sample of voters, showed that 90% of the persons
who indeed voted for the party in power intended to vote for this party, and 10% of
those who voted for another party intended (two weeks prior to the election) to vote for
the party in power. Let the events be

A = “a voter, taken at random in the sample, intended to vote for the party in
power;”

B = “a voter, taken at random in the sample, voted for the party in power.”
(A) From the statement of the problem, we can write that P [A] = 0.48 and that
(a) P [A ∩B] = 0.9; P [A ∩B′] = 0.1
(b) P [B | A] = 0.9; P [B′ | A] = 0.1
(c) P [A | B] = 0.9; P [A | B′] = 0.1
(d) P [A′ ∩B] = 0.9; P [A ∩B′] = 0.1
(e) P [A | B] = 0.9; P [B′ | A] = 0.1
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(B) The probability of event B is given by
(a) 0.45 (b) 0.475 (c) 0.48 (d) 0.485 (e) 0.50 (f) 0.515
(C) Are events A and B′ incompatible?
(a) yes (b) no (c) we cannot conclude from the information provided
(D) Are events A and B′ independent?
(a) yes (b) no (c) we cannot conclude from the information provided
(E) Do events A and B′ form a partition of the sample space Ω?
(a) yes (b) no (c) we cannot conclude from the information provided
(F) Let E be “a voter, taken at random among the 1000 voters polled, did not vote as
he intended to two weeks prior to the election (in regard to the party in power).” We
can write that
(a) P [E] = P [A | B′] + P [A′ | B]
(b) P [E] = P [A ∩B] + P [A′ ∩B′]
(c) P [E] = P [B′ | A] + P [B | A′]
(d) P [E] = P [A ∩B′] + P [A′ ∩B′]
(e) P [E] = P [A ∩B′] + P [A′ ∩B]

Question no. 2
Let A and B be two events such that

P [A ∩B] = P [A′ ∩B] = P [A ∩B′] = p.

Calculate P [A ∪B].
(a) p (b) 2p (c) 3p (d) 3p2 (e) p3

Question no. 3
We have nine electronic components, of which one is defective. Five components are

taken at random to construct a system in series. What is the probability that the system
does not operate?
(a) 1/3 (b) 4/9 (c) 1/2 (d) 5/9 (e) 2/3

Question no. 4
Two dice are rolled simultaneously. If a sum of 7 or 11 is obtained, then a coin is

tossed. How many elementary outcomes [of the form (die1, die2) or (die1, die2, coin)]
are there in the sample space Ω?
(a) 28 (b) 30 (c) 36 (d) 44 (e) 72

Question no. 5
Let A and B be two independent events such that P [A] < P [B], P [A ∩B] = 6/25,

and P [A | B] + P [B | A] = 1. Calculate P [A].
(a) 1/25 (b) 1/5 (c) 6/25 (d) 2/5 (e) 3/5
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Question no. 6
In a certain lottery, 4 balls are drawn at random and without replacement among

25 balls numbered from 1 to 25. The player wins the grand prize if the 4 balls that
she selected are drawn in the order indicated on her ticket. What is the probability of
winning the grand prize?

(a)
1

12, 650
(b)

24
390, 625

(c)
1

303, 600
(d)

1
390, 625

(e)
1

6, 375, 600

Question no. 7
New license plates are made up of three letters followed by three digits. If we suppose

that the letters I and O are not used and that no plates bear the digits 000, how many
different plates can there be?
(a) 243 × 93 (b) (26× 25× 24) (10× 9× 8) (c) 243 × (10× 9× 8)
(d) 243 × 999 (e) 253 × 93

Question no. 8
Let P [A | B] = 1/2, P [B′] = 1/3, and P [A ∩B′] = 1/4. Calculate P [A].

(a) 1/4 (b) 1/3 (c) 5/12 (d) 1/2 (e) 7/12

Question no. 9
In the lottery known as 6/49, first 6 balls are drawn at random and without replace-

ment among 49 balls numbered from 1 to 49. Next, a seventh ball (the bonus number)
is drawn at random among the 43 remaining balls. A woman selected what she thinks
would be the six winning numbers for the next draw. What is the probability that this
woman actually did not select any of the seven balls that will be drawn (including the
bonus number)?

(a)

(
42
6

)(
49
6

) (b)

(
42
7

)(
49
6

) (c)

(
42
6

)(
49
7

) (d)

(
43
6

)(
49
7

) (e)

(
42
7

)(
49
7

)
Question no. 10

In a quality control procedure, every electronic component manufactured is subjected
to (at most) three tests. After the first test, an arbitrary component is classified as either
“good,” “average,” or “defective,” and likewise after the second test. Finally, after the
last test, the components are classified as either “good” or “defective.” As soon as a
component is classified as defective after a test, it is returned to the factory for repair.
The following random experiment is performed: a component is taken at random and
the result of each test it is subjected to is recorded. How many elementary outcomes
are there in the sample space Ω?
(a) 3 (b) 8 (c) 11 (d) 18 (e) 21

Question no. 11
Let P [A] = 1/3, P [B] = 1/2, P [C] = 1/4, P [A | B] = 1/2, P [B | A] = 3/4,

P [A | C] = 1/3, P [C | A] = 1/4, and P [B ∩ C] = 0. Calculate the probability
P [A | B ∪ C].
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(a) 0 (b) 1/3 (c) 4/9 (d) 5/6 (e) 1

Question no. 12
A fair die is rolled twice (independently). Consider the events
A = “the two numbers obtained are different;”
B = “the first number obtained is a 6;”
C = “the two numbers obtained are even.”

Which pairs of events are the only ones comprised of independent events?
(a) no pairs (b) (A,B) (c) (A,B) and (B,C) (d) (A,B) and (A,C)
(e) the three pairs

Question no. 13
A man plays a series of games for which the probability of winning a given game,

from the second one, is equal to 3/4 if he won the previous game and to 1/4 otherwise.
Calculate the probability that he wins games nos. 2 and 3 consecutively if the probability
that he wins the first game is equal to 1/2.
(a) 3/16 (b) 1/4 (c) 3/8 (d) 9/16 (e) 5/8

Question no. 14
A box contains two coins, one of them being fair but the other one having two

“heads.” A coin is taken at random and is tossed twice, independently. Calculate the
probability that the fair coin was selected if “heads” was obtained twice.
(a) 1/5 (b) 1/4 (c) 1/3 (d) 1/2 (e) 3/5
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Random variables

The elements of a sample space may take diverse forms: real numbers, but also brands of
components, colors, “good,” or “defective,” and so on. Because it is easier to work with
real numbers, in this chapter we transform all the elementary outcomes into numerical
values, by means of random variables. We consider the most important particular cases
and define the main functions that characterize random variables.

3.1 Introduction

Definition 3.1.1. A random variable is a real-valued function defined on a sample
space.

Example 3.1.1. (i) Suppose that a coin is tossed. The function X that associates the
number 1 with the outcome “heads” and the number 0 with the outcome “tails” is a
random variable.
(ii) Suppose now that a die is rolled. The function X that associates with each elemen-
tary outcome the number obtained (so that X is the identity function in this case) is
also a random variable.

Example 3.1.2. Consider the random experiment that consists in observing the time
T that a person must wait in line to use an automatic teller machine. The function T
is a random variable.

3.1.1 Discrete case

Definition 3.1.2. A random variable is said to be of discrete type if the number of
different values it can take is finite or countably infinite.
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Definition 3.1.3. The function pX that associates with each possible value of the (dis-
crete) random variable X the probability of this value is called the probability (mass)
function of X.

Let {x1, x2, . . .} be the set of possible values of the discrete random variable X. The
function pX has the following properties:
(i) pX(xk) ≥ 0 for all xk;
(ii)

∑∞
k=1 pX(xk) = 1.

Example 3.1.1 (continued). (i) If the coin is fair (or unbiased, or well-balanced), we
may write that

x 0 1
pX(x) 1/2 1/2

(ii) Similarly, if the die is fair, then we have the following table:

x 1 2 3 4 5 6
pX(x) 1/6 1/6 1/6 1/6 1/6 1/6

Definition 3.1.4. The function FX that associates with each real number x the proba-
bility P [X ≤ x] that the random variable X takes on a value smaller than or equal to
this number is called the distribution function of X. We have:

FX(x) =
∑

xk≤x

pX(xk).

Remark. The function FX is nondecreasing and right-continuous.

Example 3.1.1 (continued). (i) In the case of the coin, we easily find that (if
P [{heads}] = 1/2)

x 0 1
FX(x) 1/2 1

Remark. More completely, we may write that

FX(x) =

 0 if x < 0,
1/2 if 0 ≤ x < 1,
1 if x ≥ 1,

where x is an arbitrary real number.
(ii) If the die is well-balanced, then we deduce from the function pX(x) the following
table:

x 1 2 3 4 5 6
FX(x) 1/6 1/3 1/2 2/3 5/6 1

(see Figure 3.1).
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Fig. 3.1. Distribution function of the random variable in Example 3.1.1 (ii).

3.1.2 Continuous case

Definition 3.1.5. A random variable that may take an uncountably infinite number of
values is said to be of continuous type.

Example 3.1.2 (continued). Because the set of possible values of the random variable
T in Example 3.1.2 is the interval (0,∞), T is a continuous random variable.
Remark. We assume in Example 3.1.2 that the person cannot arrive and use the ATM
immediately, otherwise T would be a random variable of mixed type, that is, a variable
that is discrete and continuous at the same time. We do not insist on this type of random
variable in this textbook.

Definition 3.1.6. The (probability) density function of a continuous random vari-
able X is a function fX defined for all x ∈ R and having the following properties:
(i) fX(x) ≥ 0 for any real number x;
(ii) if A is any subset of R, then

P [X ∈ A] =
∫

A

fX(x) dx.

Remarks. (i) Because X is a real-valued function, so that it must assume some value in
the interval (−∞,∞), we can write that

1 = P [X ∈ (−∞,∞)] =
∫ ∞

−∞
fX(x) dx.

(ii) The density function is different from the probability function pX of a discrete
random variable. Indeed, fX(x) does not give the probability that the random variable

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7
x
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X takes on the value x. Moreover, we may have that fX(x) > 1. Actually, we may write
that

fX(x)ε ' P
[
x− ε

2
≤ X ≤ x +

ε

2

]
,

where ε > 0 is small. Thus, fX(x) ε is approximately equal to the probability that X
takes on a value in an interval of length ε about x.

Definition 3.1.7. The distribution function FX of a continuous random variable X
is defined by

FX(x) = P [X ≤ x] =
∫ x

−∞
fX(u) du.

We deduce from this definition that

P [X = x] = P [x ≤ X ≤ x] = P [X ≤ x]− P [X < x]

=
∫ x

−∞
fX(u) du−

∫ x−

−∞
fX(u) du = 0

for any real number x, where x− means that the range of the integral is the open interval
(−∞, x). That is, before performing the random experiment, the probability of obtaining
a particular value of a continuous random variable is equal to zero. Therefore, if we take
a point at random in the interval [0, 1], we may assert that the point that we will obtain
did not have, a priori, any chance of being selected!

We also deduce from the previous definition that

d

dx
FX(x) = fX(x) (3.1)

for any x where FX(x) is differentiable.

Remarks. (i) If X is a continuous random variable, then its distribution function FX is
also continuous. However, a continuous function is not necessarily differentiable at all
points. Furthermore, the density function of X may be discontinuous, as in the next
example. Actually, fX is a piecewise continuous function, that is, a function having at
most a finite number of jump discontinuities (see p. 2). We say that fX has a jump
discontinuity at x0 if both limx↓x0 fX(x) and limx↑x0 fX(x) exist, but are different.

(ii) Every random variable X has a distribution function FX . To simplify the presen-
tation, we could theoretically define the density function fX as the derivative of FX ,
whether X is a discrete, continuous, or mixed type random variable. We mentioned in
the previous remark that when FX is a continuous function, its derivative is a piecewise
continuous function. However, in the case of a discrete random variable, the distribution
function FX is a step or staircase function, as in Figure 3.1. The derivative of a step
function is equal to zero everywhere, except at the jump points xk, k = 1, 2, . . . . We
can write that
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d

dx
FX(x) =

∞∑
k=1

P [X = xk]δ(x− xk),

where P [X = xk] = limx↓xk
FX(x)− limx↑xx FX(x), and δ(·) is the Dirac delta function

(see p. 4). Similarly, the density function of a mixed type random variable involves
the Dirac delta function. To avoid using this generalized function, the vast majority of
authors prefer to consider the discrete and continuous random variables (and vectors)
separately. In the discrete case, we define the probability mass function pX(xk) = P [X =
xk], as we did above, rather than the density function.

Example 3.1.3. Suppose that the waiting time (in minutes) to be served at a counter
in a bank is a continuous random variable X having the density function (see Figure 3.2)

Fig. 3.2. Density function of the random variable in Example 3.1.3.

fX(x) =

 0 if x < 0,
1/2 if 0 ≤ x < 1,

3/(2x4) if x ≥ 1.

Note that the function fX is a valid density function, because fX(x) ≥ 0 for all x and∫ ∞

0

fX(x) dx =
∫ 1

0

1
2

dx +
∫ ∞

1

3
2x4

dx =
1
2
− 1

2x3

∣∣∣∣∞
1

=
1
2

+
1
2

= 1.

Calculate (a) the distribution function of X and (b) the conditional probability
P [X > 2 | X > 1].
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Solution. (a) By definition,

FX(x) =



∫ x

−∞
0 du = 0 if x < 0,

∫ 0

−∞
0 du +

∫ x

0

1
2

du =
x

2
if 0 ≤ x < 1,

∫ 0

−∞
0 du +

∫ 1

0

1
2

du +
∫ x

1

3
2u4

du = 1− 1
2x3

if x ≥ 1

(see Figure 3.3).

Fig. 3.3. Distribution function of the random variable in Example 3.1.3.

(b) We seek

P [X > 2 | X > 1] =
P [{X > 2} ∩ {X > 1}]

P [X > 1]
=

P [X > 2]
P [X > 1]

=
1− P [X ≤ 2]
1− P [X ≤ 1]

=
1− FX(2)
1− FX(1)

=
1− 15

16

1− 1
2

=
1
8
.

Remark. Because X is a continuous random variable, P [X < x] = P [X ≤ x] = FX(x)
for any real number x. It follows that P [X ≥ 2 | X ≥ 1] = 1/8 as well. In general, we
have:

P [a ≤ X ≤ b] = P [a < X ≤ b] = P [a ≤ X < b] = P [a < X < b]

if X is a continuous random variable.
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3.2 Important discrete random variables

3.2.1 Binomial distribution

Suppose that we perform repetitions of a certain random experiment and that we divide
the set of possible outcomes into two mutually exclusive and exhaustive subsets: B1 ∩
B2 = ∅ and B1∪B2 = Ω. That is, B1 and B2 constitute a partition of the sample space
Ω (see p. 35). If the elementary outcome that occurs belongs to B1, then we say that
the experiment resulted in a success; in the opposite case, it resulted in a failure.

Definition 3.2.1. Let X be the (discrete) random variable that counts the number of
successes obtained in n repetitions of a random experiment, where n is fixed. If
(i) the probability p of success is constant for the n trials and
(ii) the trials are independent,
then we say that X has (or follows) a binomial distribution with parameters n and
p. We write that X ∼ B(n, p).

Remark. A parameter is a symbol that appears in the definition of a random variable
and that can take different values. For example, in the case of the binomial distribution,
n can take on the values 1, 2, . . . , and p all the values in the interval (0, 1). In practice,
the parameter p is generally unknown.

Now, suppose that, when we performed the n trials, we first obtained x consecutive
successes S and then n−x consecutive failures F . By independence, we may write that
the probability of this elementary outcome is

P [SS . . . S︸ ︷︷ ︸
x times

FF . . . F︸ ︷︷ ︸
(n−x) times

] = {P [S]}x{P [F ]}n−x = px(1− p)n−x.

Hence, given that we can place the x successes among the n trials in
(
n
x

)
different ways,

we deduce that the probability function of the random variable X ∼ B(n, p) is given by

pX(x) =
(

n

x

)
pxqn−x for x = 0, 1, . . . , n,

where q := 1− p.

Remarks. (i) We have that pX(x) ≥ 0 for all x and, by Newton’s binomial formula,

n∑
x=0

pX(x) =
n∑

x=0

(
n

x

)
pxqn−x = (p + q)n = 1,

as should be.
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(ii) The distribution function of X is

FX(k) =
k∑

x=0

(
n

x

)
pxqn−x for k = 0, 1, . . . , n.

There is no simple formula (without a summation symbol) for FX . To evaluate this
function, we can use a pocket calculator or a statistical software package. Some values
of the distribution function FX are given in Table B.1, page 276.

(iii) The shape and the position of the probability function pX depend on the parameters
n and p (see Figure 3.4).

Fig. 3.4. Probability functions of binomial random variables.

(iv) If X has a binomial distribution with parameters n = 1 and p, we also say that X
follows a Bernoulli distribution with parameter p. We thus have:

pX(x) = px(1− p)1−x if x = 0, 1,

=
{

1− p if x = 0,
p if x = 1.

Moreover, we can show that if the random variables X1, . . . , Xn are independent (see
Section 4.1) and if they all have a Bernoulli distribution with parameter p, then

X :=
n∑

i=1

Xi ∼ B(n, p).

Finally, we say that a binomial random variable counts the number of successes in n
Bernoulli trials, that is, in n independent trials for which the probability p of success is
the same from trial to trial.

x

px(x) px(x)

1/16
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Example 3.2.1. In an airport, five radars are in operation and each radar has a 0.9
probability of detecting an arriving airplane. The radars operate independently of each
other.
(a) Calculate the probability that an arriving airplane will be detected by at least four
radars.
(b) Knowing that at least three radars detected a given airplane, what is the probability
that the five radars detected this airplane?
(c) What is the smallest number n of radars that must be installed if we want an arriving
airplane to be detected by at least one radar with probability 0.9999?

Solution. Let X be the number of radars that detect the airplane.
(a) We have that X ∼ B(n = 5, p = 0.9). We seek

P [X ≥ 4] =
(

5
4

)
(0.9)4(0.1) + (0.9)5 = (0.9)4[5× (0.1) + 0.9] ' 0.9185.

Remark. Let Y be the number of radars that do not detect the arriving airplane. We
find in Table B.1, page 276, that

P [X ≥ 4] = P [Y ≤ 1] ' 0.9185.

(b) We want

P [X = 5 | X ≥ 3] =
P [{X = 5} ∩ {X ≥ 3}]

P [X ≥ 3]
=

P [X = 5]
P [X ≥ 3]

(a)
=

P [Y = 0]
P [Y ≤ 2]

Tab. B.1' 0.5905
0.9914

' 0.596.

(c) We now have that X ∼ B(n, p = 0.9) and we seek (the smallest) n such that P [X ≥ 1]
= 0.9999. We have:

P [X ≥ 1] = 1− P [X = 0] = 1−
(

n

0

)
(0.9)0(0.1)n−0 = 1− (0.1)n

= 0.9999 ⇐⇒ (0.1)n = 0.0001 = (0.1)4.

Thus, we may write that nmin = 4.
Remark. Note that, n being a positive integer, we cannot, in general, find a value of
n for which the probability requested is exactly equal to a given number p. We must
rather find the smallest n for which the probability of the event in question is greater
than or equal to p. For instance, here if we had required the probability of detecting the
airplane to be (at least) 0.9995, then the answer would have been the same: nmin = 4.
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3.2.2 Geometric and negative binomial distributions

Definition 3.2.2. Let X be the random variable that counts the number of Bernoulli
trials needed to obtain a first success. We say that X has a geometric distribution
with parameter p, where p is the probability of success on any trial. We write that X ∼
Geo(p) [or Geom(p)].

We have:
pX(x) = P [ FF . . . F︸ ︷︷ ︸

(x−1) times

S] ind.= {P [F ]}x−1P [S] = qx−1p

for x = 1, 2, . . . . We observe that the function pX is strictly decreasing (see Figure 3.5).

Fig. 3.5. Probability function of a geometric random variable.

Remarks. (i) We have that pX(x) ≥ 0 for all x and

∞∑
x=1

pX(x) = p
∞∑

x=1

qx−1 = p
1

1− q
= 1,

so that the function pX is a valid probability function.
(ii) The distribution function of X is given by

FX(x) =
x∑

k=1

pX(k) = p
x∑

k=1

qk−1 = p
1− qx

1− q
= 1− qx

for x = 1, 2, . . . . Note that we then deduce that P [X > x] = qx.
(iii) Making use of the formula P [X > x] = qx, we can show that

P [X > x + y | X > x] = P [X > y] for any x, y ∈ {0, 1, 2, . . .}.

x1 2 3 4 5 6 7

0.05

p = 0.25

0.25

p
X
(x)



3.2 Important discrete random variables 65

This property is known as the memoryless property of the geometric distribution.

Remark. The geometric distribution is sometimes defined as the number of Bernoulli
trials performed before the first success occurs.

Definition 3.2.3. Let X be the random variable that counts the number of Bernoulli
trials performed until the rth success occurs, where r = 1, 2, . . . . We say that X has
a negative binomial distribution with parameters r and p. We write that X ∼
NB(r, p).

Note that the geometric distribution is the particular case of the negative binomial
distribution obtained with r = 1. We get the probability function of X as follows:

pX(x) = P [ F . . . F︸ ︷︷ ︸
(x−r) times

S . . . S︸ ︷︷ ︸
r times

] + P [ F . . . F︸ ︷︷ ︸
(x−r−1) times

SF S . . . S︸ ︷︷ ︸
(r−1) times

]

+ · · ·+ P [ S . . . S︸ ︷︷ ︸
(r−1) times

F . . . F︸ ︷︷ ︸
(x−r) times

S]

=
(

x− 1
r − 1

)
pr(1− p)x−r for x = r, r + 1, . . . . (3.2)

by independence and incompatibility, because there are
(
x−1
r−1

)
different ways of placing

the r−1 successes among the first x−1 trials (the xth trial being necessarily a success).

Remarks. (i) The negative binomial distribution is also known as the Pascal distribution.

(ii) As in the case of the binomial distribution, the shape and the position of the function
pX vary according to the values taken by the parameters r and p.
(iii) Notice the difference between the binomial and the negative binomial distributions:
a binomial random variable counts the number of successes in a fixed number (n) of
trials, whereas in the case of the negative binomial distribution, the random variable
denotes the number of trials required to obtain a fixed number (r) of successes. If X ∼
NB(r, p), then we can write that

P [X = x] = P [B(x− 1, p) = r − 1] p.

Moreover, we can show the following relation between the two distributions:

P [NB(r, p) ≤ x] = P [B(r + x, p) ≥ r].

Example 3.2.2. A man shoots at a target until he has hit it twice. Suppose that the
probability that a given shot hits the target is equal to 0.8. What is the probability that
the man must shoot exactly four times?
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Solution. Let X be the number of shots needed to end the random experiment. Then, if
we assume that the shots are independent, we may write that X ∼ NB(r = 2, p = 0.8).
We seek

P [X = 4] ≡ pX(4) =
(

3
1

)
(0.8)2(1− 0.8)2 = 3× (0.64)(0.04) = 0.0768.

Remark. If the man stops shooting as soon as he hits the target, then X ∼ Geo(p =
0.8) and

P [X = 4] = (1− 0.8)3(0.8) = 0.0064.

3.2.3 Hypergeometric distribution

Suppose that we perform n repetitions of a random experiment, but that the proba-
bility of success varies from one repetition to another. For example, we take without
replacement n objects in a lot of finite size N , and we count the number of defective
objects obtained. In this case, we cannot use the binomial distribution. Suppose that d
objects, among the N , are defective (or possess a certain characteristic). Let X be the
number of defective objects obtained among the n drawn. We have:

pX(x) =

(
d

x

)
·
(

N − d

n− x

)
(

N

n

) for x = 0, 1, . . . , n. (3.3)

Indeed, there are
(
N
n

)
different (equiprobable) samples of size n and, among them, there

are
(

d
x

)
·
(
N−d
n−x

)
with exactly x defective and n− x nondefective objects.

Remark. We have that
(
n
k

)
= 0 if k < 0 or k > n.

Definition 3.2.4. We say that the random variable X whose probability function is
given by Formula (3.3) follows a hypergeometric distribution with parameters N ,
n, and d. We write that X ∼ Hyp(N,n, d).

We must have that N ∈ {1, 2, . . .}, n ∈ {(0), 1, 2, . . . , N}, and d ∈ {(0), 1, . . . , N}.
Moreover, if the size N of the lot is large in comparison to the size n of the sample, then
the fact of taking the objects without replacement will not influence much the probability
of getting a defective object from draw to draw. That is, it is almost as if the objects
were taken with replacement. Now, in that case, we may write that X ∼ B(n, p =
d/N). Hence, we deduce that the binomial distribution can be used to approximate
the hypergeometric distribution. To be more precise, we can show that if d and N
tend to infinity in such a way that d/N converges to p, but n is kept constant, then the
distribution of X ∼ Hyp(N,n, d) tends to that of a B(n, p) random variable. In practice,
the approximation obtained should be good when n/N < 0.1.
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Remark. The quantity n/N is called the sampling fraction.

Example 3.2.3. Lots containing 25 devices each are subjected to the following sampling
plan: a sample of 5 devices is taken at random and without replacement, and the lot
is accepted if and only if the sample contains less than 3 defective devices. Calculate,
supposing that there are exactly 4 defective devices in a particular lot,
(a) the probability that this lot is accepted;
(b) an approximation of the probability calculated in (a) with the help of a binomial
distribution.

Solution. Let X be the number of defective devices in the sample. We have that X ∼
Hyp(N = 25, n = 5, d = 4).
(a) Let F be the event “the lot is accepted.” We seek

P [F ] = P [X ≤ 2] =
2∑

x=0

(
4
x

)
·
(

21
5−x

)(
25
5

)
' 0.3830 + 0.4506 + 0.1502 ' 0.984.

(b) We can write that

P [X ≤ 2] ' P [Y ≤ 2], where Y ∼ B(n = 5, p = 4/25)

=
2∑

y=0

(
5
y

)
(4/25)y(21/25)5−y ' 0.4182 + 0.3983 + 0.1517 ' 0.968.

Note that here we have that n/N = 5/25 = 0.2, which is greater than 0.1. Therefore, we
did not expect the approximation to be very good. If we replace N = 25 by N = 100,
so that n/N = 0.05, we obtain that

P [Hyp(N = 100, n = 5, d = 4) ≤ 2] ' 0.9998

and
P [B(n = 5, p = 4/100) ≤ 2] ' 0.9994,

which is a better approximation. Finally, if we keep the same ratio d/N = 4/25 = 0.16,
but if we assume that N = 100 and d = 16, then we calculate

P [Hyp(N = 100, n = 5, d = 16) ≤ 2] ' 0.9720,

and with N = 200 and d = 32, we find that

P [Hyp(N = 200, n = 5, d = 32) ≤ 2] ' 0.9700.

Notice that the quality of the approximation P [X ≤ 2] ' 0.968 obtained with a binomial
distribution increases with increasing N , even though d/N is always equal to 0.16.
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3.2.4 Poisson distribution and process

Let X be a random variable having a binomial distribution with parameters n and p. We
can show that if n tends to infinity and p decreases to 0, in such a way that the product
np remains equal to the constant λ, then the probability function of X converges to the
function pX(x) given by

pX(x) =
e−λλx

x!
for x = 0, 1, . . . . (3.4)

Definition 3.2.5. We say that the discrete random variable X whose probability func-
tion is given by Formula (3.4) has a Poisson distribution with parameter λ > 0. We
write that X ∼ Poi(λ).

Remarks. (i) Making use of the formula

ex = 1 + x +
x2

2!
+ · · · ,

we easily show that the function defined in (3.4) is a valid probability function.
(ii) The Greek letter α is also often used for the parameter of the Poisson distribution.
In statistics, we write θ to designate an arbitrary parameter of a random variable.
(iii) The shape of the probability function pX depends on the value of the parameter λ.
(iv) To evaluate the distribution function of a Poisson random variable, we can use
a pocket calculator or a statistical software package. Table B.2, page 278, gives many
values of this function.
(v) We deduce from what precedes that we can use a Poisson distribution with parameter
λ = np to approximate the binomial distribution with parameters n and p. In general,
the Poisson approximation should be good if n > 20 and p < 0.05. If the value of p
is greater than 1/2, then we must consider the number of failures (with probability
1− p < 1/2) rather than the number of successes before performing the approximation
by the Poisson distribution.

Example 3.2.4. A new type of brakes is being studied. The company manufacturing
these brakes claims that they could last at least 100,000 km for 90% of the vehicles that
will use them. A laboratory simulated the driving of 100 cars using these brakes. Let X
be the number of cars whose brakes will not last 100,000 km.
(a) What distribution does X follow?
(b) We will doubt the claimed percentage if the brakes must be changed on 17 cars or
more before 100,000 km. What is, approximately, the probability of observing this event
if, in fact, the claimed percentage is exact?
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Solution. (a) By definition, if we assume that the cars are independent, we may write
that X ∼ B(n = 100, p = 0.1).
(b) We want P [X ≥ 17]. We have that P [X ≥ 17] ' P [Y ≥ 17], where Y ∼ Poi(λ =
100(0.1) = 10). We then find in Table B.2, page 278, that

P [Y ≥ 17] = 1− P [Y ≤ 16] ' 1− 0.9730 = 0.0270.

Remark. Here, we have that n = 100 and p = 0.1. The value of n is very large, which is
preferable, but that of p is slightly too large to expect a good approximation. Actually,
we find that P [X ≥ 17] ' 0.021.

Poisson process

Suppose that the random variable N(t) denotes the number of events that will occur
in the interval [0, t]. For instance, we can be interested in the number of failures of a
machine, or in the number of customers, or in the number of telephone calls in the
interval [0, t]. If we make the following assumptions:
(i) N(0) = 0;
(ii) the value of N(t4) − N(t3) is independent of the value taken by N(t2) − N(t1) if
0 ≤ t1 < t2 ≤ t3 < t4;
(iii) N(t + s)−N(t) ∼ Poi(λs), for s, t ≥ 0,
then the set {N(t), t ≥ 0} of random variables is called a Poisson process with rate
λ > 0.
Remarks. (i) Condition (ii) above means that what happens in two disjoint intervals is
independent. Furthermore, condition (iii) implies that the distribution of the number of
events in an arbitrary interval depends only on the length of this interval. We say that
the Poisson process has independent and stationary increments, respectively.
(ii) Conditions (i) and (iii) imply that N(t) ≡ N(t + 0)−N(0) ∼ Poi(λt).
(iii) The Poisson process is a very important particular case of what is known as a
stochastic or random process. A stochastic process is a set {X(t), t ∈ T} of random
variables X(t) (see Chapter 6). The set T is a subset of R. In the case of the Poisson
process, we take T = [0,∞). For every particular value t0 of t, we get a random variable
N(t0) having a Poisson distribution with parameter λt0. It is important to distinguish
between the random variable N(t) and the random process {N(t), t ≥ 0}.
(iv) The Poisson process is a particular continuous-time Markov chain, and is used
abundantly in communication theory and in queueing theory, which is the subject of
Chapter 6.

Example 3.2.5. Telephone calls arrive at an exchange according to a Poisson process
with rate λ = 2 per minute (i.e., calls arrive at the average rate of 2 per minute,
according to a Poisson distribution). Calculate the probability that exactly 2 calls will
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be received during each of the first 5 minutes of a given hour. What is the probability
that exactly 10 calls will be received during the first 5 minutes of the hour in question?

Solution. Let N(1) be the number of calls received during a 1-minute period. We can
write that N(1) ∼ Poi(2 · 1). We first calculate

P [N(1) = 2] = P [Poi(2) = 2] =
e−222

2!
= 2e−2.

Next, let M be the number of minutes, among the 5 minutes considered, during
which exactly 2 calls will be received. By independence, we may write that M follows a
binomial distribution with parameters n = 5 and p = 2e−2. We seek

P [M = 5] =
(

5
5

)
(2e−2)5(1− 2e−2)5−5 = 32e−10 ' 0.00145.

To obtain the probability that exactly 10 calls will be received during the first 5
minutes of the hour considered, we calculate

P [N(5) = 10] = P [Poi(2 · 5) = 10] =
e−101010

10!
' 0.1251.

3.3 Important continuous random variables

3.3.1 Normal distribution

Definition 3.3.1. Let X be a continuous random variable that can take any real value.
If its density function is given by

fX(x) =
1√
2πσ

exp
{
− (x− µ)2

2σ2

}
for −∞ < x < ∞,

then we say that X has a normal (or Gaussian) distribution with parameters µ and
σ2, where µ ∈ R and σ > 0. We write that X ∼ N(µ, σ2).

Remark. The parameter µ is actually equal to the mean of X, and σ is the standard
deviation of X (see Section 3.5). Furthermore, the standard deviation of a random
variable is the square root of the variance of this variable. Therefore, in the case of the
normal distribution, σ2 is its variance.

The normal distribution is the most important continuous distribution, largely be-
cause of the central limit theorem, which is stated in Chapter 4. Moreover, all normal
distributions have the same general shape, namely that of a bell (see Figure 3.6).
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f   (x)
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σ   = 12μ  = 0

Fig. 3.6. Density function of a normal random variable.

The functions fX(x) are symmetrical with respect to the parameter µ. That is,

fX(µ− x) = fX(µ + x) for all x ∈ R.

The points µ − σ and µ + σ are those where the function fX changes its direction of
concavity. Finally, the larger σ is, the more flattened the curve is. Conversely, if σ is
small, then the curve is concentrated around the mean µ.

Now, let X ∼ N(µ, σ2). We can show (see Section 3.4) that if we define the random
variable Z = (X − µ)/σ, then Z ∼ N(0, 1). The notation Z is used, in general, for the
N(0, 1) distribution. Its density function is often denoted by φ(z).
Remark. The N(0, 1) distribution is called the standard or unit normal distribution.

The main values of the distribution function of the N(0, 1) distribution, denoted by
Φ(z), are presented in Table B.3, page 279. With the help of this table, we can calculate
the probability P [a ≤ X ≤ b] for any normal distribution. The table gives the value of
Φ(z) for positive z. By symmetry, we may write that Φ(−z) = 1− Φ(z).

If we look for the number a for which P [X ≤ a] = p ≥ 1/2, we first find the number
z in Table B.3 that corresponds to this probability p (sometimes we must interpolate in
the table), and then we set

a = µ + z · σ.

If p < 1/2, the formula becomes (by symmetry)

a = µ− z · σ.

Finally, the numbers b that correspond to the main values of the probability p :=
P [X > b], for instance, p = 0.05, p = 0.01, and so on, are given in Table B.4, page 280.
Note that these numbers can be written as follows:

b = Φ−1(1− p) ≡ Q−1(p),
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where Q(z) := 1− Φ(z) and Q−1 is the inverse function of Q.

Example 3.3.1. Suppose that the compressive strength X (in pounds per square inch)
of a certain type of concrete has a normal distribution with parameters µ = 4200 and
σ2 = (400)2.
(a) Calculate the probability P [3000 ≤ X ≤ 4500].
(b) Solve the following equations: (i) P [X ≤ a] = 0.95; (ii) P [X ≥ b] = 0.9.
Remark. In fact, the model proposed for the compressive strength of the concrete cannot
be the exact model, because a normal distribution can take on any real value, whereas
the compressive strength cannot be negative. Nevertheless, the model in question may
be a good approximation to the true (unknown) model. Furthermore, we find that the
probability that a random variable having a N(µ, σ2) distribution will take on a value
in the interval [µ− 3σ, µ + 3σ] is greater than 99.7%.

Solution. (a) We have:

P [3000 ≤ X ≤ 4500] = P

[
3000− 4200

400
≤ X − 4200

400
≤ 4500− 4200

400

]
= P [−3 ≤ Z ≤ 0.75] = Φ(0.75)− Φ(−3)

Tab. B.3' 0.7734− 0.0013 = 0.7721.

(b) (i) We find in Table B.3, page 279, that P [Z ≤ 1.645] ' 0.95 (see also Table B.4,
page 280). Hence, we may write that

a ' 4200 + (1.645)(400) = 4858.

ii) We have that P [X ≥ b] = 0.9 ⇔ P [X < b] = 0.1. Next, we may write that

P [X < b] = 0.1 ⇐⇒ P

[
Z <

b− 4200
400

]
= 0.1 ⇐⇒ Φ

(
b− 4200

400

)
= 0.1

⇐⇒ Q

(
b− 4200

400

)
= 0.9.

Finally, we find in Table B.4 that the value that corresponds to Q−1(0.1) is approxi-
mately equal to 1.282. Because, by symmetry, Q−1(0.9) = −Q−1(0.1), it follows that

b ' 4200 + (−1.282)(400) = 3687.2.

Making use of the central limit theorem (see Chapter 4), we can show that, if n is
large enough, we can use a normal distribution to approximate the binomial distribution
with parameters n and p. Let X ∼ B(n, p). The de Moivre–Laplace approximation is
the following:
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P [X = x] ' fY (x) for x = 0, 1, . . . , n,

where Y ∼ N(np, npq).
Remarks. (i) Thus, we replace a probability at a point by the value of a density function
evaluated at this point. Recall that fY (x) is not the probability that Y takes on the
value x. Indeed, because Y is a continuous random variable, we know that P [Y = x] = 0
for all x ∈ R.
(ii) The mean of the binomial distribution is given by np, and its variance by np(1− p)
(see Section 3.5). It is therefore logical to choose µY = np and σ2

Y = npq.
When we want to evaluate (approximately) a probability of the form P [a ≤ X ≤ b]

with the help of a normal distribution, we use the following formula:

P [a ≤ X ≤ b] ' P

[
Z ≤ b + 0.5− np

√
npq

]
− P

[
Z ≤ a− 0.5− np

√
npq

]
, (3.5)

where a and b are integers.
Remarks. (i) To approximate the probability P [a < X < b], we must write that

P [a < X < b] = P [a + 1 ≤ X ≤ b− 1] (3.6)

' P

[
Z ≤ b− 0.5− np

√
npq

]
− P

[
Z ≤ a + 0.5− np

√
npq

]
.

(ii) The term 0.5 in Formula (3.5) [and (3.6)] is a continuity correction factor that most
authors recommend using, because we replace a discrete distribution by a continuous
distribution.
(iii) The approximation obtained should be good if np ≥ 5 when p ≤ 0.5, or if n(1−p) ≥ 5
when p ≥ 0.5. The normal distribution being symmetrical, it is easier to approximate
the distribution of X ∼ B(n, p) with p ' 1/2 than to approximate the distribution of
a binomial random variable having a very small or very large parameter p. Actually,
in that case, we should use the Poisson approximation that we saw in the preceding
section.

Example 3.3.2. A manufacturing process produces 10% defective items. A sample of
200 items is drawn at random. Let X be the number of defective items in the sample.
Use a normal distribution to calculate (approximately) the probability P [X = 20].

Solution. We may assume (see the first remark below) that the random variable X has
a B(n = 200, p = 0.1) distribution. So, we have that np = 20 > 5. We set

P [X = 20] ' fY (20), where Y ∼ N(20, 18)

=
1√

2π
√

18
exp

{
− (20− 20)2

2 · 18

}
' 0.0904.
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We can also proceed as follows:

P [X = 20] = P [20 ≤ X ≤ 20]

' P

[
Z ≤ 20 + 0.5− 20√

18

]
− P

[
Z ≤ 20− 0.5− 20√

18

]
' Φ(0.12)− Φ(−0.12)

Tab. B.3' 2(0.5478)− 1 = 0.0956.

Remarks. (i) In the statement of the problem, it is not specified whether the sample
is taken with or without replacement. At any rate, in order to use the hypergeometric
distribution, we need the value of the size N of the lot, which is not specified either.
Therefore, we must assume that all the items in the sample have a 0.1 probability of
being defective, independently from one item to the other.
(ii) The exact value, obtained by using the binomial distribution, is

P [X = 20] =
(

200
20

)
(0.1)20(0.9)180 ' 0.0936.

(iii) The Poisson approximation should work well in this example, because n is very
large and p is relatively small. We find that

P [X = 20] ' P [Poi(λ = 20) = 20] = e−20 2020

20!
' 0.0888.

Thus, the normal approximation is actually better in this particular example.

3.3.2 Gamma distribution

Definition 3.3.2. The gamma function, denoted by Γ , is defined by

Γ (u) =
∫ ∞

0

xu−1e−x dx for u > 0. (3.7)

We can show that Γ (u) = (u − 1)Γ (u − 1) if u > 1. Because we find directly that
Γ (1) = 1, we may write that

Γ (u) = (u− 1)! if u ∈ {1, 2, . . .}.

Moreover, we have that Γ (1/2) =
√

π.

Definition 3.3.3. Let X be a continuous random variable whose density function is
given by

fX(x) =
λ

Γ (α)
(λx)α−1e−λx for x > 0.

We say that X has a gamma distribution with parameters α > 0 and λ > 0. We
write that X ∼ G(α, λ).
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Remark. The parameter λ is a scale parameter, whereas α is a shape parameter. The
shape of the density function fX changes a lot with α, when α is relatively small (see
Figure 3.7). When α becomes large, fX(x) tends to a normal density, which is a conse-
quence of the central limit theorem because, when α is an integer, the random variable
X can be represented as a sum of α random variables (see the next remark). When
0 < α < 1, the function fX(x) tends to infinity as x decreases to 0.

Fig. 3.7. Density functions of various random variables having a gamma distribution with
λ = 1.

In general, we cannot give a simple formula, that is, without an integration sign
in it, for the distribution function of a random variable having a gamma distribution.
However, if the parameter α is a (positive) integer n, we can show that

P [G(n, λ) ≤ x] = P [Poi(λx) ≥ n] = 1− P [Poi(λx) ≤ n− 1].

Note that this formula enables us to express the distribution function of a continuous
random variable X ∼G(n, λ) in terms of that of a discrete random variable Y ∼ Poi(λx):

FX(x) = 1− FY (n− 1).

Particular cases
(i) If α is a natural number, then we also say that X follows an Erlang distribution,
which is important in queueing theory.
(ii) If α = n/2, where n ∈ {1, 2, . . .}, and λ = 1/2, then the gamma distribution is also
known as the chi-square distribution with n degrees of freedom. We write that X ∼ χ2

n.
This distribution is very useful in statistics.
(iii) If α = 1, then the density function fX becomes
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fX(x) = λe−λx for x > 0.

We say that X has an exponential distribution with parameter λ > 0. We write that
X ∼ Exp(λ).
Remark. If X1, . . . , Xn are independent random variables and if Xi ∼ Exp(λ), for i =
1, . . . , n, then Y :=

∑n
i=1 Xi follows a gamma distribution with parameters n and λ

(see Chapter 4).
Suppose now that {N(t), t ≥ 0} is a Poisson process with rate λ. Let T be the arrival

time of the first event of the process. We may write that

P [T > t] = P [N(t) = 0] = P [Poi(λt) = 0] = e−λt.

It follows that
fT (t) = − d

dt
P [T > t] = λe−λt for t > 0.

Thus, we may assert that the random variable T has an exponential distribution with
parameter λ. Using the above remark and the properties of the Poisson process, we may
also assert, more generally, that the time needed to obtain n events (from any time
instant) has a G(n, λ) distribution. This result enables us to justify Formula (3.3.2).
Remark. We can show that the exponential distribution, just as the geometric distribu-
tion, possesses the memoryless property. That is, if X ∼ Exp(λ), then

P [X > t + s | X > t] = P [X > s] for s, t ≥ 0.

Actually, only the geometric and exponential distributions possess this memoryless prop-
erty. Furthermore, in the case of the geometric distribution, the property is only valid
for s and t ∈ {0, 1, 2, . . .}.

Example 3.3.3. The lifetime (in years) of a radio has an exponential distribution with
parameter λ = 1/10. If we buy a five-year-old radio, what is the probability that it will
work for less than 10 additional years?

Solution. Let X be the total lifetime of the radio. We have that X ∼ Exp(λ = 1/10).
We seek

P [X < 15 | X > 5]=1− P [X ≥ 15 | X > 5] = 1− P [X > 10] = P [X ≤ 10]

=
∫ 10

0

1
10

e−x/10 dx = −e−x/10
∣∣∣10
0

= 1− e−1 ' 0.6321.

Because of its memoryless property, the exponential distribution is widely used in re-
liability. This property implies that the failure rate of a device is constant over time. The
exponential distribution appears in the theory of stochastic processes and in queueing
theory as well.
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An extension of the exponential distribution to the entire real line is obtained by
defining

fX(x) =
λ

2
e−λ|x| for −∞ < x < ∞,

where λ is a positive constant. We say that the random variable X has a double expo-
nential distribution, or a Laplace distribution, with parameter λ.

3.3.3 Weibull distribution

Definition 3.3.4. Let X be a continuous random variable whose density function is of
the form

fX(x) = λβxβ−1 exp
{
−λxβ

}
for x > 0.

We say that X follows a Weibull distribution with parameters λ > 0 and β > 0. We
write that X ∼ W(λ, β).

The Weibull distribution generalizes the exponential distribution, which is obtained
by taking β = 1. It is important in reliability. Like the gamma distribution, it can be
used in numerous applications because of the various shapes taken by its density function
depending on the values given to the parameter β. It is also one of the distributions
known as extreme value distributions. These distributions are used to model phenomena
that occur very rarely, such as extremely cold or hot temperatures, exceptional floods
of rivers, and so on.

Example 3.3.4. Let T denote the temperature (in degrees Celsius) in a certain city
during the month of July. Suppose that

X := T − 30 | {T > 30} ∼ W (0.8, 0.5).

That is, given that the temperature is above 30 degrees, it has a Weibull distribution
with parameters λ = 0.8 and β = 0.5. Thus,

fX(x) = 0.4x−1/2 exp
{
−0.8x1/2

}
for x > 0

(see Figure 3.8). Notice that the function fX(x) diverges when x decreases to 0.
Using the results in Section 3.5, we find that the average temperature in this city

(in July), when it exceeds 30oC, is equal to 33.125oC. We obtain the same value if we
suppose that X is exponentially distributed with parameter λ = 1/3.125 = 0.32 instead.
However, as can be seen in Figure 3.9, the Weibull distribution W(0.8, 0.5) goes to zero
more slowly than the Exp(0.32) distribution does. Therefore, extreme temperatures
(above approximately 42oC in this particular example) are more likely.
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Fig. 3.8. Probability density function of a W(0.8, 0.5) random variable.

We have:

P [T > 35 | T > 30] = P [X > 5] =
∫ ∞

5

0.4x−1/2 exp
{
−0.8x1/2

}
dx ' 0.1672.

3.3.4 Beta distribution

Definition 3.3.5. Let X be a continuous random variable whose density function is
given by

fX(x) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1− x)β−1 for 0 < x < 1,

Fig. 3.9. Probability density functions of a W(0.8, 0.5) (continuous line) and an Exp(0.32)
(broken line) random variables in the interval [5, 20].
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where α > 0 and β > 0. We say that X has a beta distribution with parameters α
and β. We write that X ∼ Be(α, β).

If X ∼ Be(α, β) and Y := a + (b− a)X, where a < b, Y is said to have a generalized
beta distribution.

Particular case

Let X ∼ Be(α, β). If α = β = 1, then we have:

fX(x) = 1 for 0 < x < 1.

We say that the continuous random variable X follows a uniform distribution on the
interval (0, 1). We write that X ∼ U(0, 1). In general, we have that X ∼ U(a, b) if (see
Figure 3.10)

fX(x) =
1

b− a
for a < x < b.

a

X

b x

f   (x)

(0, 1/(b-a))

Fig. 3.10. Probability density function of a uniform random variable on the interval (a, b).

Remarks. (i) This density function is obtained, for example, when a point is taken at
random in the interval (a, b). Because the probability that the selected point is close
to x, where a < x < b, is the same for all x, the function fX(x) must be constant in
the interval (a, b). Note that a random variable having a uniform distribution on the
interval (a, b) also has a generalized beta distribution with parameters α = β = 1.
(ii) We can show that if exactly one event of a Poisson process took place in the interval
(0, t], then the time instant T1 at which this event occurred has a uniform distribution
on (0, t]. That is,

T1 | {N(t) = 1} ∼ U(0, t].
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Example 3.3.5. A point is taken at random on a line segment of length L. What is the
probability that the length of the shorter segment divided by the length of the longer
one is smaller than 1/4?

Solution. Suppose, without loss of generality, that the segment starts at 0. Let X be
the point selected. Then, X ∼ U[0, L].
(i) If X ∈ [0, L/2], then we must have:

X

L−X
<

1
4

⇐⇒ 4X < L−X ⇐⇒ X <
L

5
.

(ii) If X ∈ (L/2, L], then

L−X

X
<

1
4

⇐⇒ 4L− 4X < X ⇐⇒ X >
4L

5
.

We have:

P [X < L/5] =
∫ L/5

0

1
L− 0

dx =
L/5
L

=
1
5
.

Likewise,

P [X > 4L/5] =
∫ L

4L/5

1
L

dx =
L− (4L/5)

L
=

1
5
.

Thus, the probability requested is equal to 1
5 + 1

5 = 2
5 .

Remarks. (i) By symmetry, we could have considered either of the two cases and mul-
tiplied the probability obtained by 2.
(ii) As can be observed in this example, the probability that the uniform random variable
X takes on a value in a given subinterval depends only on the length of this subinterval.

3.3.5 Lognormal distribution

Definition 3.3.6. Let X be a continuous random variable taking only positive values.
If Y := lnX follows a N(µ, σ2) distribution, then we say that X has a lognormal
distribution with parameters µ and σ2. We write that X ∼ LN(µ, σ2). The density
function of X is given by

fX(x) =
1√

2πσx
exp

{
− (lnx− µ)2

2σ2

}
for x > 0,

where µ ∈ R and σ > 0.

Remark. In many situations, the lognormal distribution may be a more realistic model
than the normal distribution, because it is always positive. For instance, the weight of
manufactured items could have a lognormal distribution.
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Example 3.3.6. Let X ∼ LN(5, 4). Calculate P [X ≤ 100].

Solution. We have:

P [X ≤ 100] = P [lnX ≤ ln 100] = P [Y ≤ ln 100], where Y ∼ N(5, 4)

= P

[
Z ≤ ln 100− 5

2

]
' Φ(−0.2)

Tab. B.3' 0.4207.

3.4 Functions of random variables

Because a random variable is a real-valued function and the composition of two functions
is another function, we can assert that if X is a random variable, then Y := g(X), where
g is a real-valued function defined on the real line, is a random variable as well. In this
section, we show how to obtain the probability function or the density function of Y .

3.4.1 Discrete case

Because a function g associates a single real number with each possible value of the
random variable X, we can assert that if X is a variable of discrete type, then Y = g(X)
will also be a discrete random variable, whatever the function g is. Indeed, Y cannot
take on more different values than X. To obtain the probability function of Y , we apply
the transformation g to each possible value of X and we add the probabilities of all
values x of the random variable X that correspond to the same y.

Example 3.4.1. Let X be a discrete random variable whose probability function is
given by

x −1 0 1
pX(x) 1/4 1/4 1/2

We define Y = 2X. Because the function g : x → 2x is bijective [i.e., to a given
y = g(x) = 2x, there corresponds one and only one x and vice versa], the number of
possible values of the random variable Y will be the same as the number of possible
values of X. We find that

y −2 0 2 Σ
pY (y) 1/4 1/4 1/2 1

Now, let W = X2. Because to two values of X, namely −1 and 1, there corresponds
the same value w = 1, we must add pX(−1) and pX(1) to obtain pW (1). We thus have:

w 0 1 Σ
pW (w) 1/4 3/4 1
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In the case when the random variable X can take a (countably) infinite number of
values, we apply the transformation to an arbitrary value of X, and we try to find a
general formula for the function pY (y).

Example 3.4.2. Let X ∼ Geo(p) and Y = X2. Because X ∈ {1, 2, . . .}, the quadratic
function is (here) a bijective transformation and we easily calculate

pY (y) = pX(
√

y) = q
√

y−1p for y = 1, 4, 9, . . . .

3.4.2 Continuous case

The composition of two continuous functions is another continuous function. Conse-
quently, if X is a continuous random variable and if g is a continuous function, then
Y := g(X) is a continuous random variable as well. In this book, we consider only the
case when the function g is bijective. In that case, the inverse function g−1(y) exists and
we can use the following proposition to obtain the density function of the new random
variable Y .

Proposition 3.4.1. Suppose that the equation y = g(x) has a unique solution: x =
g−1(y). Then, the density function of Y is given by the formula

fY (y) = fX [g−1(y)]
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ .
Example 3.4.3. We can use the above proposition to prove the result stated in Section
3.3: if X has a N(µ, σ2) distribution, then Z := (X − µ)/σ follows a standard normal
distribution. Indeed, we have:

z = g(x) = (x− µ)/σ ⇐⇒ g−1(z) = µ + σz.

It follows that

fZ(z) = fX(µ + σz)
∣∣∣∣ d

dz
(µ + σz)

∣∣∣∣ = 1√
2πσ

exp(−z2/2)|σ| = φ(z)

for −∞ < z < ∞, because σ > 0. Similarly, we can prove that if Y := aX + b, then Y
has a normal distribution with parameters aµ + b and a2σ2.

Example 3.4.4. Let X ∼ U(0, 1) and Y = −θ lnX, where θ > 0. First, note that the
possible values of the random variable Y are those located in the interval (0,∞). Next,
we have that g−1(y) = e−y/θ, so that

fY (y) = fX

(
e−y/θ

) ∣∣∣∣ d

dy
e−y/θ

∣∣∣∣ = 1 ·
∣∣∣∣−1

θ
e−y/θ

∣∣∣∣ = 1
θ
e−y/θ
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for 0 < y < ∞. Thus, we can assert that Y has an exponential distribution with
parameter 1/θ. We make use of this result in simulation. Indeed, if we wish to generate an
observation of a random variable following an exponential distribution with parameter
λ = 2 (for instance), it suffices to generate an observation x of a U(0, 1) distribution,
and then to apply the transformation y = −(1/2) lnx. Therefore, it is not necessary to
write a special computer program to generate observations of exponential distributions.
Computer languages in general, and even many pocket calculators, allow us to generate
pseudo-random observations of uniform distributions.

3.5 Characteristics of random variables

In this section, we present some numerical quantities that enable us to characterize
a random variable X. All the quantities are obtained by computing the mathematical
expectation of various functions of X.

Definition 3.5.1. We define the mathematical expectation of a function g(X) of
a random variable X by

E[g(X)] =



∞∑
i=1

g(xi)pX(xi) if X is discrete,

∫ ∞

−∞
g(x)fX(x) dx if X is continuous.

(3.8)

Properties. (i) E[c] = c, for any constant c.
(ii) E[c1g(X) + c0] = c1E[g(X)] + c0, for all constants c1 and c0.

Remarks. (i) E is therefore a linear operator.
(ii) The mathematical expectation may be infinite and it may even not exist.
(iii) If X is a random variable of mixed type, that is, a random variable that is discrete
and continuous at the same time, then E[g(X)] can be computed by decomposing the
problem into two parts. For example, suppose that we toss a coin for which the proba-
bility of getting “tails” is 3/8. If we get “tails,” then the random variable X takes on
the value 1; otherwise, X is a number taken at random in the interval [2, 4]. We can
obtain E[g(X)] as follows:

E[g(X)] = 1× 3
8

+
(∫ 4

2

g(x) · 1
2

dx

)
× 5

8
.
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Definition 3.5.2. The mean (or the expected value) of a random variable X is given
by

µX ≡ E[X] =



∞∑
i=1

xipX(xi) if X is discrete,

∫ ∞

−∞
xfX(x) dx if X is continuous.

(3.9)

Example 3.5.1. Let X ∼ Poi(λ). We have:

µX =
∞∑

x=0

xe−λ λx

x!
= e−λ

∞∑
x=1

λx

(x− 1)!
= e−λλ

∞∑
x=1

λx−1

(x− 1)!

= e−λλ

{
1 +

λ

1!
+

λ2

2!
+ . . .

}
= e−λλeλ = λ.

Example 3.5.2. Let X ∼ Exp(λ). We calculate

µX =
∫ ∞

0

xλe−λx dx = λ · 1
λ2

=
1
λ

because, in general, if a > 0, then we have:∫ ∞

0

xne−ax dx
y=ax
=

∫ ∞

0

(y

a

)n

e−y dy

a
(3.10)

=
1

an+1

∫ ∞

0

yne−y dy =
Γ (n + 1)

an+1
=

n!
an+1

.

Remark. We could also have integrated the function xλe−λx by parts.

Definition 3.5.3. A median of a random variable X is a value xm (≡ x̃) for which

P [X ≤ xm] ≥ 1
2

and P [X ≥ xm] ≥ 1
2
.

Remarks. (i) When X is a discrete random variable, the median is not necessarily
unique. It is not unique if there exists a real number a such that FX(a) = 1/2. For
example, let X ∼ B(n = 2, p = 1/2). We have that FX(1) = P [X = 0] + P [X = 1] =
1/4+1/2 = 3/4. In this case, the number xm = 1 satisfies the above definition, because
P [X ≤ 1] = 3/4 ≥ 1/2 and P [X ≥ 1] = 3/4 ≥ 1/2 as well. Furthermore, xm = 1 is the
only number for which both inequalities are satisfied at the same time. On the other
hand, let
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x 1 2 3
pX(x) 1/4 1/4 1/2

The real number 2 satisfies the definition of the median, but so does the number 2.5
(for instance). In fact, every number in the interval [2, 3] is a median of X. Remark
that if we change the probabilities as follows: P [X = 1] = 1/4, P [X = 2] = 1/8, and
P [X = 3] = 5/8, then the median xm = 3 is unique. Likewise, if P [X = 1] = 1/4,
P [X = 2] = 3/8, and P [X = 3] = 3/8, then xm = 2 is the unique median of X.
(ii) When X is a continuous random variable taking all its values in a single (finite or
infinite) interval, the median is unique and can be defined as follows:

P [X ≤ xm] = 1/2 (=⇒ P [X ≥ xm] = 1/2).

Example 3.5.1 (continued). Suppose that X ∼ Poi(2). We find in Table B.2,
page 278, that P [X ≤ 1] ' 0.4060 and P [X ≤ 2] ' 0.6767. There is no number
xm such that P [X ≤ xm] = P [X ≥ xm] = 1/2. However, we have:

P [X ≤ 2] ' 0.6767 ≥ 1/2 and P [X ≥ 2] ' 1− 0.4060 ≥ 1/2.

Moreover, 2 is the only number for which both inequalities are satisfied. Hence, xm = 2
is the median of X.

Example 3.5.2 (continued). If X ∼ Exp(λ), then we have:

P [X ≤ xm] =
∫ xm

0

λe−λx dx = −e−λx

∣∣∣∣xm

0

= 1− e−λxm .

It follows that

P [X ≤ xm] = 1/2 ⇐⇒ 1− e−λxm = 1/2 ⇐⇒ xm =
ln 2
λ

.

We can check that we indeed have:

P

[
X ≥ ln 2

λ

]
=
∫ ∞

ln 2
λ

λe−λx dx = −e−λx

∣∣∣∣∞
ln 2
λ

= exp
{
−λ

ln 2
λ

}
= 1/2.

Thus, the median is given by xm = (ln 2)/λ.
The median is useful when the random variable X may take on very large values

(in absolute value) as compared to the others. Indeed, the median is less influenced by
these extreme values than the mean µX is.

The median, in the continuous case, is a particular case of the notion of quantile.
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Definition 3.5.4. Let X be a continuous random variable whose set of possible values
is an arbitrary interval (a, b). The number xp is called the 100(1− p)th quantile of X
if

P [X ≤ xp] = 1− p,

where 0 < p < 1.

If 100p is an integer, then xp is also called the 100(1 − p)th percentile of X. The
median of a continuous random variable is therefore the 50th percentile of X. The 25th
percentile is also known as the first quartile, the 50th percentile is the second quartile,
and the 75th percentile is the third quartile. Finally, the difference between the third
and the first quartile is called the interquartile range.

Definition 3.5.5. A mode of a random variable X is any value x that corresponds to
a local maximum for pX(x) or fX(x).

Remark. The mode is thus not necessarily unique. A distribution having a single mode
is said to be unimodal.

Example 3.5.1 (continued). Let X ∼ Poi(2). From Table B.2, page 278, we obtain
that P [X = 0] ' 0.135, P [X = 1] ' 0.271, P [X = 2] ' 0.271, P [X = 3] ' 0.180, and
so on. Hence, X has two modes: at x = 1 and at x = 2.
Remark. We indeed have:

P [X = 1] = e−2 21

1!
= e−2 22

2!
= P [X = 2] (' 0.271).

That is, the two probabilities are exactly equal.

Example 3.5.2 (continued). Let X ∼ Exp(λ). Then, X being a continuous random
variable, we can use differential calculus to find its mode(s). We have:

d

dx
fX(x) =

d

dx
λe−λx = −λ2e−λx 6= 0

for all x ∈ (0,∞). However, because fX(x) is a strictly decreasing function, we can
assert that the mode of X is at x = 0+ [fX(x) tends to a minimum as x →∞].

The various quantities defined above are measures of central position. We continue
by defining measures of dispersion.

Definition 3.5.6. The range of a random variable is the difference between the largest
and the smallest value that this variable can take.

For example, the range of a random variable X ∼ B(n, p) is equal to n − 0 = n.
Likewise, if X ∼ Exp(λ), then its range is ∞− 0 = ∞.
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Definition 3.5.7. The variance of a random variable X is defined by

σ2
X ≡ VAR[X] =



∞∑
i=1

(xi − µX)2pX(xi) if X is discrete,

∫ ∞

−∞
(x− µX)2fX(x) dx if X is continuous.

Remarks. (i) We deduce at once from the definition that the variance of X is always
nonnegative (it can be infinite). Actually, it is strictly positive, except if the random
variable X is a constant, which is a degenerate random variable. Finally, the larger the
variance is, the more spread out is the distribution of the random variable around its
mean.

(ii) We also define the standard deviation of a random variable X by

STD[X] =
√

VAR[X] ≡ σX .

We often prefer to work with the standard deviation rather than with the variance of
a random variable, because it is easier to interpret. Indeed, the standard deviation is
expressed in the same units of measure as X, whereas the units of the variance are the
squared units of X.

Now, we may write that

VAR[X] ≡ E[(X − E[X])2],

and we can show that
VAR[X] = E[X2]− (E[X])2. (3.11)

Example 3.5.1 (continued). When X ∼ Poi(λ), we calculate

E[X2] =
∞∑

x=0

x2e−λ λx

x!
= e−λλ

∞∑
x=1

x
λx−1

(x− 1)!
= e−λλ

∞∑
x=1

d

dλ

λx

(x− 1)!

= e−λλ
d

dλ

∞∑
x=1

λx

(x− 1)!
= e−λλ

d

dλ

(
λeλ

)
= e−λλ(eλ + λeλ) = λ + λ2.

Then, using Formula (3.11) with E[X] = λ, we find that

VAR[X] = (λ + λ2)− (λ)2 = λ.

Thus, in the case of the Poisson distribution, its parameter λ is both its mean and its
variance.
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Example 3.5.2 (continued). We already found that if X ∼ Exp(λ), then E[X] = 1/λ.
We now calculate [see (3.10)]

E[X2] =
∫ ∞

0

x2λe−λx dx = λ
2!

λ2+1
=

2
λ2

.

It follows that

VAR[X] =
2
λ2
−
(

1
λ

)2

=
1
λ2

.

Note that, in the case of the exponential distribution, its mean and its standard deviation
are equal.

Table 3.1, page 89, gives the mean and the variance of the various probability dis-
tributions found in Sections 3.2 and 3.3.

The main properties of the mathematical operator VAR are the following:
(i) VAR[c] = 0, for any constant c.
(ii) VAR[c1g(X) + c0] = c2

1 VAR[g(X)], for any constants c1 and c0. Thus, the operator
VAR is not linear.

The mean and the variance of a random variable are particular cases of the quantities
known as the moments of this variable.

Definition 3.5.8. The moment of order k or kth-order (or simply kth) moment
of a random variable X about a point a is defined by

E[(X − a)k] =



∞∑
i=1

(xi − a)kpX(xi) if X is discrete,

∫ ∞

−∞
(x− a)kfX(x) dx if X is continuous.

Particular cases
(i) The kth-order moment about the origin, or noncentral moment, of X is

E[Xk] ≡ µ′k =
∞∑

i=1

xk
i pX(xi) or

∫ ∞

−∞
xkfX(x) dx

for k = 0, 1, . . . . We have that µ′0 = 1 and µ′1 = µX = E[X].
(ii) The kth-order moment about the mean, or central moment, of X is

E[(X − µX)k] ≡ µk =
∞∑

i=1

(xi − µX)kpX(xi) or
∫ ∞

−∞
(x− µX)kfX(x) dx

for k = 0, 1, . . . . We have that µ0 = 1, µ1 = 0, and µ2 = σ2
X .
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Table 3.1. Means and variances of the probability distributions of Sections 3.2 and 3.3

Distribution Parameters Mean Variance

Bernoulli p p pq

Binomial n and p np npq

Hypergeometric N , n, and d n · d

N
n · d

N
·
(

1− d

N

)
·
(

N − n

N − 1

)

Geometric p
1
p

q

p2

Pascal r and p
r

p

rq

p2

Poisson λ λ λ

Uniform [a, b]
a + b

2
(b− a)2

12

Exponential λ
1
λ

1
λ2

Laplace λ 0
2
λ2

Gamma α and λ
α

λ

α

λ2

Weibull λ and β
Γ (1 + β−1)

λ1/β

Γ (1 + 2β−1)− Γ 2(1 + β−1)
λ2/β

Normal µ and σ2 µ σ2

Beta α and β
α

α + β

αβ

(α + β + 1)(α + β)2

Lognormal µ and σ2 eµ+ 1
2 σ2

e2µ+σ2
(eσ2 − 1)
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Example 3.5.2 (continued). In the case when X ∼ Exp(λ), we calculate [see (3.10)]

E[Xk] =
∫ ∞

0

xkλe−λx dx = λ
k!

λk+1
=

k!
λk

.

Remark. We can show, making use of Newton’s binomial formula, that

µk ≡ E[(X − µX)k] =
k∑

i=0

(−1)i

(
k

i

)
µ′k−iµ

i
X .

This formula enables us to check that VAR[X] = E[X2] − (E[X])2, which may be
rewritten as follows:

µ2 = µ′2 − µ2
X = µ′2 − (µ′1)

2.

Two other quantities that are used to characterize the distribution of a random
variable X are the skewness and kurtosis coefficients. These two coefficients are defined
in terms of the moments of X.

First, the quantity µ3 ≡ E[(X − µX)3] is used to measure the degree of asymmetry
of probability distributions. If the distribution of X is symmetrical with respect to its
mean µX , then µ3 = 0 (if we assume that µ3 exists). If µ3 > 0 (resp., < 0), then the
distribution is said to be right-skewed (resp., left-skewed).
Remark. Actually, if the distribution is symmetrical with respect to its mean and if all
its central moments exist, then we may write that µ2k+1 = 0, for k = 0, 1, . . . .

Definition 3.5.9. The skewness (coefficient) of a random variable X is defined by

β1 =
µ2

3

σ6
.

Remarks. (i) The coefficient β1 is a unitless quantity.
(ii) Some authors prefer to work with the coefficient γ1 :=

√
β1.

Example 3.5.2 (continued). We can write that

µ3 ≡ E[(X − µX)3] = E[X3 − 3µXX2 + 3µ2
XX − µ3

X ].

As shown in Chapter 4, the mathematical expectation of a linear combination of random
variables can be obtained by replacing each variable by its mean (by linearity of the
expectation operator). It follows that

µ3 = E[X3]− 3µXE[X2] + 3µ2
XE[X]− µ3

X .

Making use of the formula E[Xk] = k!/λk, we obtain:
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µ3 =
3!
λ3
− 3

λ

2!
λ2

+
3
λ2

1!
λ
− 1

λ3
=

2
λ3

.

So, we find that

β1 =
(2/λ3)2

(1/λ2)3
= 4.

Thus, all the exponential distributions have the same skewness β1, whatever the value
of the parameter λ is, which reflects the fact that they all have the same shape (see
Figure 3.11).

Fig. 3.11. Skewness coefficient of exponential distributions.

Example 3.5.3. Let X ∼ U(a, b). The density function fX(x) is constant, therefore
it is symmetrical with respect to µX = (a + b)/2. Given that all the moments of the
random variable X exist (because X is bounded by a and b), it follows that β1 = 0 (see
Figure 3.12).

Definition 3.5.10. The kurtosis (coefficient) of a random variable X is the unitless
quantity

β2 =
µ4

σ4
.

Remarks. (i) When the distribution of X is symmetrical, β2 measures the relative thick-
ness of the tails of the distribution with respect to its central part.
(ii) As in the case of the coefficient β1, some authors use a different coefficient: γ2 :=
β2 − 3. Because β2 = 3 if X ∼ N(µ, σ2), the quantity γ2 is chosen so that the kurtosis
of all normal distributions is equal to zero.

Example 3.5.2 (continued). Making use once again of the formula E[Xk] = k!/λk,
we may write that

β  = 4
1

λ = 1

λ = 1/2

0

0.2

0.4

0.6

0.8

1

54321
x
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a

X

b x

f   (x)

1/(b-a)

(a+b)/2

β = 0
1

Fig. 3.12. Skewness coefficient of the uniform distribution.

µ4 ≡ E[(X − µX)4] = E[X4 − 4µXX3 + 6µ2
XX2 − 4µ3

XX + µ4
X ]

= E[X4]− 4µXE[X3] + 6µ2
XE[X2]− 4µ3

XE[X] + µ4
X

=
4!
λ4
− 4

λ

3!
λ3

+
6
λ2

2!
λ2
− 4

λ3

1
λ

+
1
λ4

=
9
λ4

.

Therefore, we have:

β2 =
9/λ4

(1/λ2)2
= 9,

which is independent of the parameter λ.

Example 3.5.4. As we mentioned above, we can show that if X ∼ N(µ, σ2), then
β2 = 3. A random variable whose density function looks a lot like that of a normal
distribution is the Student distribution with n degrees of freedom, which is important
in statistics. Its kurtosis is given by

β2 =
6

n− 4
+ 3 if n > 4.

Note that the coefficient β2 is larger than that of normal distributions, reflecting the
fact that the density function fX(x) tends less rapidly to 0 as x tends to ±∞ than it
does in the case of normal distributions. However, note also that β2 decreases to 3 as n
tends to infinity.

Example 3.5.5. Let X ∼ B(1, p). That is, X has a Bernoulli distribution with param-
eter p. We have:

µ′k ≡ E[Xk] =
1∑

x=0

xkpX(x) = 0kq + 1kp = p

for k = 1, 2, . . . . In particular, E[X] = µ′1 = p, so that
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µk = E[(X − p)k] =
1∑

x=0

(x− p)kpX(x) = (−p)kq + (1− p)kp.

It follows that VAR[X] = µ2 = p2q + q2p = pq(p + q) = pq. We also have:

µ3 = −p3q + q3p = pq(−p2 + q2)

and
µ4 = p4q + q4p = pq(p3 + q3).

Then, we calculate

β1 ≡
µ2

3

σ6
=

p2q2(−p2 + q2)2

(pq)3
=

p3

q
+

q3

p
− 2pq

and

β2 ≡
µ4

σ4
=

pq(p3 + q3)
(pq)2

=
p2

q
+

q2

p
.

Remark. The coefficients β1 and β2 are often used to compare an arbitrary distribution
with a normal distribution, for which β1 = 0 (by symmetry) and β2 = 3. For exam-
ple, if X follows a chi-square distribution with n degrees of freedom (see the gamma
distribution above), then β1 = 8/n and

β2 = 3
(

4
n

+ 1
)

.

Note that β1 decreases to 0 and β2 decreases to 3 as n tends to infinity. Actually, the
density function of X tends to that of a normal distribution, which is a consequence of
the central limit theorem (see Chapter 4).

We end this section by giving a proposition that enables us to obtain a bound for
a certain probability, when the mean and the variance of the random variable involved
are (known and) finite.

Proposition 3.5.1. (Bienaymé–Chebyshev inequality) For an arbitrary constant
a > 0, we have:

P [µX − aσX ≤ X ≤ µX + aσX ] > 1− 1
a2

for any random variable X whose variance VAR[X] ≡ σ2
X is finite.

Remarks. (i) For the variance of X to be finite, its mean E[X] must also be finite.
(ii) Generally, we say that the mean (resp., the variance) of a random variable X does
not exist if E[X] = ±∞ (resp., VAR[X] = ∞). This is the reason why in many books
the validity condition for the Bienaymé–Chebyshev inequality is that the variance of
X must exist. We can, however, distinguish between the case when the mean (or the
variance) of X is infinite and that when it does not exist. For instance, the mean of
a Cauchy distribution (see p. 8) does not exist, because we find that E[X] = ∞−∞,
which is not defined. Then, its variance does not exist either.
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Example 3.5.6. If X is a random variable for which E[X] = 0 and VAR[X] = 1, then
we may write that

P [−3 ≤ X ≤ 3] > 1− 1
9

= 0.8̄.

In the case of a N(0, 1) distribution, this probability is actually greater than 99.7% (as
mentioned above). If X follows a uniform distribution on the interval [−

√
3,
√

3], so that
its mean is zero and its variance is equal to 1, then the probability in question is equal
to 1 (because [−

√
3,
√

3] ⊂ [−3, 3]).

3.6 Exercises for Chapter 3

Solved exercises

Question no. 1
Let

pX (x) =

a/8 if x = −1,
a/4 if x = 0,
a/8 if x = 1,

where a > 0. Find the constant a.

Question no. 2
Let

fX (x) =
3
4
(
1− x2

)
if −1 < x < 1.

Calculate FX (0).

Question no. 3
Calculate the standard deviation of X if

pX (x) =
1
3

for x = 1, 2 or 3.

Question no. 4
Suppose that

fX(x) = 2x if 0 < x < 1.

Calculate E[X1/2].

Question no. 5
Calculate the 25th percentile of the random variable X for which
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FX (x) =
x2

4
if 0 < x < 2.

Question no. 6
Let

fX (x) =
1
2

if 0 < x < 2.

We define Y = X + 1. Calculate fY (y).

Question no. 7
Two items are taken at random and without replacement from a box containing 5

brand A and 10 brand B items. Let X be the number of brand A items among the two
selected. What is the probability distribution of X and its parameters?

Question no. 8
Suppose that X ∼ B(n = 5, p = 0.25). What is the mode of X, that is, the most

probable value of X?

Question no. 9
Ten percent of the articles produced by a certain machine are defective. If 10 (inde-

pendent) articles fabricated by this machine are taken at random, what is the probability
that exactly two of them are defective?

Question no. 10
Calculate P [X ≥ 1 | X ≤ 1] if X ∼ Poi(λ = 5).

Question no. 11
Failures occur according to a Poisson process with rate λ = 2 per day. Calculate the

probability that, in the course of two consecutive days, exactly one failure (in all) will
occur.

Question no. 12
In a certain lake, there are 200 type I and 50 type II fish. We draw, without replace-

ment, five fish from the lake. Use a binomial distribution to calculate approximately the
probability that we get no type II fish.

Question no. 13
Let X ∼ B(n = 50, p = 0.01). Use a Poisson distribution to calculate approximately

P [X ≥ 4].

Question no. 14
A fair coin is tossed until “heads” is obtained. What is the probability that the

random experiment will end on the fifth toss?

Question no. 15
The lifetime X of a radio has an exponential distribution with mean equal to ten

years. What is the probability that a ten-year-old radio will still work after ten additional
years?
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Question no. 16
Suppose that X ∼ Exp(λ). Find the value of λ such that P [X > 1] = 2P [X > 2].

Question no. 17
Let X ∼ G(α = 2, λ = 1). What other probability distribution can be used to

calculate exactly P [X < 4]? Give also the parameter(s) of this distribution.

Question no. 18
The customers of a salesman arrive according to a Poisson process, at the (average)

rate of two customers per hour. What is the distribution of the time X needed until ten
customers have arrived? Give also the parameter(s) of this distribution.

Question no. 19
Calculate P [|X| < 1/2] if X ∼ N(0, 1).

Question no. 20
Calculate the 10th percentile of X ∼ N(1, 2).

Question no. 21
Devices are made up of five independent components. A given device operates if at

least four of its five components are active. Each component operates with probability
0.95. We receive a very large batch of these devices. We inspect the devices, taken at
random and with replacement, one at a time until a first device that does not operate
has been obtained.
(a) What is the probability that a device taken at random operates?
(b) What is the expected value of the number of devices that will have to be inspected?

Question no. 22
City buses pass by a certain street corner, between 7:00 a.m. and 7:30 p.m., according

to a Poisson process at the (average) rate of four per hour.
(a) What is the probability that at least 30 minutes elapse between the first and the
third bus?
(b) What is the variance of the waiting time between the first and the third bus?
(c) Given that a woman has been waiting for 5 minutes, what is the probability that
she will have to wait 15 more minutes?

Question no. 23
Suppose that the length X (in meters) of an arbitrary parking place follows a

N(µ, 0.01µ2) distribution.
(a) A man owns a luxury car whose length is 15% greater than the average length of a
parking place. What proportion of free parking places can he use?
(b) Suppose that µ = 4. What should be the length of a car if we want its owner to be
able to use 90% of the free parking places?
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Question no. 24
A student gets the correct answers, on average, to half of the probability problems

she attempts to solve. In an exam, there are ten independent questions. What is the
probability that she can solve more than half?

Question no. 25
Let X be a random variable having a binomial distribution with parameters n = 100

and p = 0.1. Use a Poisson distribution to calculate approximately P [X = 15].

Question no. 26
Let

fX(x) =

√
2
π
− x2 for −

√
2
π ≤ x ≤

√
2
π .

Calculate P [X < 0].

Question no. 27
The results of an intelligence quotient (IQ) test for the pupils of a certain elementary

school showed that the IQ of these pupils follows (approximately) a normal distribution
with parameters µ = 100 and σ2 = 225. What total percentage of pupils have an IQ
smaller than 91 or greater than 130?

Question no. 28
A certain assembly requires 59 nondefective transistors. We have at our disposal

60 transistors taken at random from those fabricated by a machine that is known to
produce 5% defective transistors.
(a) Calculate the probability that the assembly can be made.
(b) Obtain an approximate value of the probability in (a) with the help of a Poisson
distribution.
(c) Suppose that, in fact, we have a very large number of transistors at our disposal,
of which 5% are defective. What is the probability that we will have to take exactly 60
transistors at random to get 59 nondefective ones?

Question no. 29
Let X be the delivery time (in days) for a certain product. We know that X is a

continuous random variable whose mean is 7 and whose standard deviation is equal to
1. Determine a time interval for which, whatever the distribution of X is, we can assert
that the delivery times will be in this interval with a probability of at least 0.9.

Question no. 30
The entropy H of a continuous random variable X is defined by H = E[− ln fX(X)],

where fX is the density function of X and ln denotes the natural logarithm. Calculate
the entropy of a Gaussian random variable with zero mean and variance σ2 = 2.
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Question no. 31
The number N of devices that a technician must try to repair during the course of an

arbitrary workday is a random variable having a geometric distribution with parameter
p = 1/8. We estimate the probability that he manages to repair a given device to be
equal to 0.95, independently from one device to another.
(a) What is the probability that the technician manages to repair exactly five devices,
before his second failure, during a given workday, if we assume that he will receive at
least seven out-of-order devices in the course of this particular workday?
(b) If, in the course of a given workday, the technician received exactly ten devices for
repair, what is the probability that he managed to repair exactly eight of those?
(c) Use a Poisson distribution to calculate approximately the probability in part (b).
(d) Suppose that exactly eight of the ten devices in part (b) have indeed been repaired.
If we take three devices at random and without replacement among the ten that the
technician had to repair, what is the probability that the two devices he could not repair
are among those?

Question no. 32
The number X of raisins in an arbitrary cookie has a Poisson distribution with

parameter λ. What value of λ must be chosen if we want the probability that at most
2 cookies, in a bag of 20, contain no raisins to be 0.925?

Question no. 33
The storage tank of a gas station is filled once a week. Suppose that the weekly

demand X (in thousands of liters) is a random variable following an exponential distri-
bution with parameter λ = 1/10. What must the capacity of the storage tank be if we
want the probability of exhausting the weekly supply to be 0.01?

Question no. 34
We are interested in the lifetime X (in years) of a machine. From past experience,

we estimate the probability that a machine of this type lasts for more than nine years
to be 0.1.
(a) We propose the following model for the density function of X:

fX(x) =
a

(x + 1)b
for x ≥ 0,

where a > 0 and b > 1. Find the constants a and b.
(b) If we propose a normal distribution with mean µ = 7 for X, what must the value of
the parameter σ be?
(c) We consider ten machines of this type, which are assumed to be independent. Cal-
culate the probability that eight or nine of these machines last for less than nine years.
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Exercises

Question no. 1
A continuous random variable has the following density function:

fX(x) =
{

cxe−x/2 if x ≥ 0,
0 if x < 0.

(a) Calculate the constant c.
(b) Obtain (integrating by parts) the distribution function FX(x).
(c) Find the mean of X.
(d) Calculate the standard deviation of X.
(e) Show that the median of X is located between 3 and 4.
Indication. See (3.10).

Question no. 2
A merchant receives a batch of 100 electrical devices. To save time, she decides to use

the following sampling plan: she takes two devices, at random and without replacement,
and she decides to accept the whole batch if the two devices selected are nondefective.
Let X be the random variable denoting the number of defective devices in the sample.
(a) Give the probability distribution of X as well as the parameters of this distribution.
(b) If the batch contains exactly two defective devices, calculate the probability that it
is accepted.
(c) Approximate the probability computed in part (b) with the help of a binomial
distribution.
(d) Approximate the probability calculated in part (c) by using a Poisson distribution.
Remark. Give your answers with four decimals.

Question no. 3
In a dart game, the player aims at a circular target having a radius of 25 centimeters.

Let X be the distance (in centimeters) between the dart’s impact point and the center
of the target. Suppose that

P [X ≤ x] =
{

cπx2 if 0 ≤ x ≤ 25,
1 if x > 25,

where c is a constant.
(a) Calculate

(i) the constant c;
(ii) the density function, fX(x), of X;
(iii) the mean of X;



100 3 Random variables

(iv) the probability P [X ≤ 10 | X ≥ 5].

(b) It costs $1 to throw a dart and the player wins $10 if X ≤ r,
$1 if r < X ≤ 2r,
$0 if 2r < X ≤ 25.

For what value of r is the average gain of the player equal to $0.25?

Question no. 4
Telephone calls arrive at an exchange according to a Poisson process with rate λ per

minute. We know, from past experience, that the probability of receiving exactly one
call during a one-minute period is three times that of receiving no calls during the same
time period. For each of the following questions, give the probability distribution of the
random variable and calculate, if the case may be, the requested probability.
(a) Let X be the number of calls received over a one-minute period. What is the prob-
ability P [2 ≤ X ≤ 4]?
(b) Let Y be the number of calls received over a three-minute period. Calculate the
probability P [Y ≥ 4].
(c) Let W1 be the waiting time (in minutes) until the first call, from time t = 0. Calculate
P [W1 ≤ 1].
(d) Let W2 be the waiting time (in minutes) between the first and the second call.
Calculate P [W2 > 1].
(e) Let W be the waiting time until the second call, from time t = 0. Give the probability
distribution of W as well as its parameters.
(f) We consider 100 consecutive one-minute periods and we denote by U the number of
periods during which no calls were received. Calculate P [U ≤ 1].

Question no. 5
We have ten (independent) machines at our disposal, each producing 2% defective

items.
(a) How many items will be fabricated by the first machine, on average, before it pro-
duces a first defective item?
(b) We take at random one item fabricated by each machine. What is the probability
that at most two items among the ten selected are defective?
(c) Redo part (b), using a Poisson approximation.
(d) How many items fabricated by the first machine must be taken, at a minimum, in
order that the probability of obtaining at least one defective item be greater than 1/2
(assuming that the items are independent of one another)?
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Question no. 6
We are interested in the proportion θ of defectives in a batch of manufactured articles.

We decide to draw, at random and with replacement, a sample of 20 articles from the
batch.
(a) We denote by X the number of defective articles in the sample.

(i) Give the probability function pX(x).
(ii) Give the probability function pX(x) if the draws are made without replacement

and if there are 1000 articles in the batch.
(b) If the draws are made with replacement and if θ = 0.25, calculate

(i) P [X = 10];
(ii) P [X ≥ 10], by using a Poisson approximation.

Question no. 7
Let X be a random variable having the density function

fX(x) =
{

c(1− x2) if −1 ≤ x ≤ 1,
0 if |x| > 1,

where c is a positive constant. Calculate (a) the constant c; (b) the mean of X; (c) the
variance of X; (d) the distribution function FX(x).

Question no. 8
The average number of faulty articles produced by a certain manufacturing process

is equal to six per 25-minute period, according to a Poisson process. We consider a given
production hour divided into 12 five-minute periods. Let

X be the number of faulty articles produced over a five-minute period;
Y be the number of five-minute periods needed to obtain a first period during which

no faulty articles are produced;
Z be the number of periods, among the 12, during which no faulty articles are

produced.
(a) Give the distribution of X, Y , and Z as well as their parameter(s).
(b) During which period, on average, will no faulty articles be produced for the first
time?
(c) What is the probability that, during exactly 2 of the 12 periods, will no faulty articles
be produced?
(d) What is the probability that exactly two faulty articles have been produced during
a given five-minute period, given that at most four faulty articles have been produced
during this time period?
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Question no. 9
Calculate the variance of

√
X if

pX(x) =

1/4 if x = 0,
1/2 if x = 1,
1/4 if x = 2.

Question no. 10
Calculate the 30th percentile of the continuous random variable X whose density

function is

fX (x) =
{

x if 0 ≤ x ≤
√

2,
0 elsewhere.

Question no. 11
A 300-page book contains 200 typos. Calculate, using a Poisson distribution, the

probability that a particular page contains at least two typos.

Question no. 12
Based on past data, we estimate that 85% of the articles produced by a certain ma-

chine are defective. If the machine produces 20 articles per hour, what is the probability
that 8 or 9 articles fabricated over a 30-minute period are defective?

Question no. 13
Calculate P [X ≥ 8] if

fX(x) =
{

1
96x3e−x/2 if x ≥ 0,

0 elsewhere.

Question no. 14
The lifetime of a certain electronic component follows an exponential distribution

with mean equal to five years. Knowing that a given component is one year old, what
is the probability that it will fail during its fourth year of operation?

Question no. 15
A security system is composed of ten components operating independently of one

another. For the system to be operational, at least five components must be active. To
check whether the system is operational, we periodically inspect four of its components
taken at random (and without replacement). The system is deemed operational if at
least three of the four components inspected are active. If, actually, only four of the ten
components are active, what is the probability that the system is deemed operational?

Question no. 16
Calculate the 25th percentile of a continuous random variable X whose density

function is

fX (x) =
{

xe−x2/2 if x ≥ 0,
0 if x < 0.
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Question no. 17
Calculate the probability of obtaining exactly three “tails” in 15 (independent) tosses

of a coin for which the probability of getting “tails” is 0.4.

Question no. 18
A sample of four parts is drawn without replacement from a lot of ten parts, of

which one is defective. Calculate the probability that the defective part is included in
the sample.

Question no. 19
Customers arrive at a counter, according to a Poisson process, at the average rate of

five per minute. What is the probability that the number of customers is greater than
or equal to ten in a given three-minute period?

Question no. 20
The arrivals of customers at a counter constitute a Poisson process with rate λ = 1

per two-minute time period. Calculate the probability that the waiting time until the
next customer (from any time instant) is smaller than ten minutes.

Question no. 21
Let X be a random variable having a N(10, 2) distribution. Find its 90th percentile.

Question no. 22
Let

FX(x) =


0 if x < 0,

x/2 if 0 ≤ x ≤ 1,
x/6 + 1/3 if 1 < x < 4,

1 if x ≥ 4

be the distribution function of the continuous random variable X.
(a) Calculate the density function of X.
(b) What is the 75th percentile of X?
(c) Calculate the expected value of X.
(d) Calculate E[1/X].
(e) We define

Y =
{
−1 if X ≤ 1,
1 if X > 1.

(i) Find FY (0).
(ii) Calculate the variance of Y .

Question no. 23
A box contains 100 brand A and 50 brand B transistors.
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(a) Transistors are drawn one by one, at random and with replacement, until a first brand
B transistor has been obtained. What is the probability that nine or ten transistors will
have to be drawn?
(b) What is the minimum number of transistors that must be drawn, at random and
with replacement, if we want the probability of obtaining only brand A transistors to
be smaller than 1/3?

Question no. 24
Parts are fabricated in series. To perform a quality control check, every hour we

draw, at random and without replacement, 10 parts from a box containing 25. The
fabrication process is deemed under (statistical) control if at most one of the inspected
parts is defective.
(a) If all the inspected boxes contain exactly two defective parts, what is the probability
that the fabrication process is deemed under control at least seven times during the
course of an eight-hour workday?
(b) Use a Poisson distribution to evaluate approximately the probability calculated in
part (a).
(c) Knowing that, on the last quality control check performed in part (a), the fabrication
process was deemed under control, what is the probability that the corresponding sample
of 10 parts contained no defectives?

Question no. 25
Let X be a random variable whose probability function is given by

x −1 0 3
pX(x) 0.5 0.2 0.3

(a) Calculate the standard deviation of X.
(b) Calculate the mathematical expectation of X3.
(c) Find the distribution function of X.
(d) We define Y = X2 + X + 1. Find pY (y).

Question no. 26
In a particular factory, there were 25 industrial accidents in 2005. Every year, the

factory closes for summer holidays for two weeks in July. Answer the following questions,
assuming that the industrial accidents occur according to a Poisson process.
(a) What is the probability that exactly one of the 25 accidents occurred during the
first two weeks of 2005?
(b) If the average rate of industrial accidents remains the same in 2006, what is the
probability that there will be exactly one accident during the first two weeks of that
year?
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Question no. 27
In a certain lottery, four balls are drawn at random and without replacement among

20 balls numbered from 1 to 20. The player wins a prize if the combination that he has
chosen comprises at least two winning numbers. A man decides to buy one ticket per
week until he has won a prize. What is the probability that he will have to buy less
than ten tickets?

Question no. 28
The density function of the random variable X is given by

fX(x) =
{

6x (1− x) if 0 ≤ x ≤ 1,
0 elsewhere.

(a) Calculate the mathematical expectation of 1/X.
(b) Obtain the distribution function of X.
(c) We define

Y =
{

2 if X ≥ 1/4,
0 if X < 1/4.

Calculate E[Y k], where k is a natural number.
(d) Let Z = X2. Find the density function of Z.

Question no. 29
The concentration X of reactant in a chemical reaction is a random variable whose

density function is

fX(x) =
{

2 (1− x) if 0 < x < 1,
0 elsewhere.

The amount Y (in grams) of final product is given by Y = 3X.
(a) What is the probability that the concentration of reactant is equal to 1/2? Justify.
(b) Calculate the variance of Y .
(c) Obtain the density function of Y .
(d) What is the minimum amount of final product that, in 95% of the cases, will not
be exceeded?

Question no. 30
An insurance company employs 20 salespersons. Each salesperson works at the office

or on the road. We estimate that a given salesperson is at the office at 2:30 p.m., on any
workday, with probability 0.2, independently of the other workdays and of the other
salespersons.
(a) The company wants to install a minimum number of desks, so that an arbitrary
salesperson finds a free desk in at least 90% of the cases. Find this minimum number of
desks.
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(b) Calculate the minimum number of desks in part (a) by using a Poisson approxima-
tion.
(c) A woman telephoned the office at 2:30 p.m. on the last two workdays in order to talk
to a particular salesperson. Given that she did not manage to talk to the salesperson in
question, what is the probability that she will have to phone at least two more times,
assuming that she always phones at 2:30 p.m.?

Question no. 31
Calculate VAR[eX ] if X is a random variable whose probability function is given by

pX(x) =


1/4 if x = 0,
1/4 if x = 1,
1/2 if x = 4,
0 otherwise.

Question no. 32
The density function of the random variable X is

fX(x) =

−x if −1 ≤ x ≤ 0,
x if 0 < x ≤ 1,
0 elsewhere.

Calculate FX(1/2).

Question no. 33
Let

fX(x) =
{

1/e if 0 < x < e,
0 elsewhere.

Calculate fY (y), where Y := −2 lnX.

Question no. 34
A lot contains 20 items, of which two are defective. Three items are drawn at random

and with replacement. Given that at least one defective item was obtained, what is the
probability that three defectives were obtained?

Question no. 35
Calls arrive at an exchange according to a Poisson process, at the average rate of two

per minute. What is the probability that, during at least one of the first five minutes of
a given hour, no calls arrive?

Question no. 36
A box contains 20 granite-type and 5 basalt-type rocks. Ten rocks are taken at ran-

dom and without replacement. Use a binomial distribution to calculate approximately
the probability of obtaining the 5 basalt-type rocks in the sample.
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Question no. 37
A fair coin is tossed until “heads” has been obtained ten times. What is the variance

of the number of tosses needed to end the random experiment?

Question no. 38
Let X be a random variable having an exponential distribution with parameter λ.

We define Y = int(X)+1, where int(X) designates the integer part of X. Calculate
FY (y).

Question no. 39
Let

fX(x) =
{

4x2e−2x if x ≥ 0,
0 if x < 0.

Calculate the variance of X.

Question no. 40
Suppose that X ∼ N(1, σ2). Find σ if P [−1 < X < 3] = 1/2.

Question no. 41
The distribution function of the discrete random variable X is given by

FX(x) =

 0 if x < 0,
1/2 if 0 ≤ x < 1,
1 if x ≥ 1.

Calculate (a) pX(x); (b) E[cos(πX)].

Question no. 42
At least half of the engines of an airplane must operate to enable it to fly. If each

engine operates, independently of the others, with probability 0.6, is an airplane having
four engines more reliable than a two-engine airplane? Justify.

Question no. 43
We define Y = |X|, where X is a continuous random variable whose density function

is

fX(x) =

3/4 if −1 ≤ x ≤ 0,
1/4 if 1 ≤ x ≤ 2,
0 elsewhere.

What is the 95th percentile of Y ?

Question no. 44
The probability that a part produced by a certain machine conforms to the technical

specifications is equal to 0.95, independently from one part to the other. We collect parts
produced by this machine until we have obtained one part that conforms to the technical
specifications. This random experiment is repeated on 15 consecutive (independent)
days. Let X be the number of days, among the 15 days considered, during which we
had to collect at least two parts to get one part conforming to the technical specifications.
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(a) What is the mean value of X?
(b) Use a Poisson distribution to calculate approximately the conditional probability
P [X = 2 | X ≥ 1].

Question no. 45
Ten samples of size 10 are drawn at random and without replacement from identical

lots containing 100 articles, of which two are defective. A given lot is accepted if at most
one defective article is found in the corresponding sample. What is the probability that
less than nine of the ten lots are accepted?

Question no. 46
The number X of particles emitted by a certain radioactive source during a one-hour

period is a random variable following a Poisson distribution with parameter λ = ln 5.
Furthermore, we assume that the emissions of particles are independent from hour to
hour.
(a) (i) Calculate the probability that during at least 30 hours, among the 168 hours of
a given week, no particles are emitted.

(ii) Use a Poisson distribution to calculate approximately the probability in part (i).
(b) Calculate the probability that the fourth hour, during which no particles are emitted,
takes place over the course of the first day of the week considered in part (a).

Question no. 47
The duration X (in hours) of major power failures, in a given region, follows ap-

proximately a normal distribution with mean µ = 2 and standard deviation σ = 0.75.
Find the duration x0 for which the probability that an arbitrary major power failure
lasts at least 30 minutes more than x0 is equal to 0.06.

Question no. 48
A continuous random variable X has the following density function:

fX(x) =

{ x

k
e−x2/2k if x > 0,

0 elsewhere,

where k > 0 is a constant.
(a) Calculate the mean and the variance of X.
(b) What is the effect of the constant k on the shape of the function fX?
Remark. You can calculate (using a mathematical software package, if possible) the
coefficients β1 and β2 to answer this question.

Question no. 49
In a particular region, the daily temperature X (in degrees Celsius) during the month

of September has a normal distribution with parameters µ = 15 and σ2 = 25.
(a) Let Y be the random variable designating the temperature, given that it is above
17 degrees Celsius. That is, Y := X | {X > 17}. Calculate the density function of Y .
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(b) Calculate the (exact) probability that during the month of September the temper-
ature exceeds 17 degrees Celsius on exactly ten days.

Question no. 50
The amount X of rain (in millimeters) that falls over a 24-hour period, in a given

region, is a random variable such that

FX(x) =


0 if x < 0,

3/4 if x = 0,
1− 1

4e−x2
if x > 0.

Calculate (a) the expected value of X; (b) the mathematical expectation and the vari-
ance of the random variable Y := eX2/2.
Reminder. The variable X is an example of what is known as a random variable of
mixed type, because it can take on the value 0 with a positive probability, but all the
positive real numbers have a zero probability of occurring (as in the case of a continuous
random variable). To answer the previous questions, one must make use of the formulas
for discrete and continuous random variables at the same time (see p. 83).

Question no. 51
The number of typos in a 500-page book has a Poisson distribution with parameter

λ = 2 per page, independently from one page to the other.
(a) What is the probability that more than ten pages will have to be taken, at random
and with replacement, to obtain three pages containing at least two typos each?
(b) Suppose that there are actually 20 pages, among the 500, that contain exactly five
typos each.

(i) If 100 pages are taken, at random and without replacement, what is the proba-
bility that less than five pages contain exactly five typos each?

(ii) We consider 50 identical copies of this book. If the random experiment in part
(i) is repeated for each of these books, what is the probability that, for exactly 30 of
the 50 copies, less than five pages with exactly five typos each are obtained?

Question no. 52
A manufacturer sells an article at a fixed price s. He reimburses the purchase price

to every customer who discovers that the weight of the article is smaller than a given
weight w0 and he recuperates the article, whose value of the reusable raw material is
r (< s). The weight W follows approximately a normal distribution with mean µ and
variance σ2. An appropriate setting enables one to fix µ to any desirable value, but it
is not possible to fix the value of σ. The cost price C is a function of the weight of the
article: C = α + βW , where α and β are positive constants.
(a) Give an expression for the profit Z in terms of W .
(b) We can show that the average profit, z(µ), is given by
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z(µ) = s− α− βµ− (s− r)P [W < w0].

Find the value µ0 of µ that maximizes z(µ).

Question no. 53
In a collection of 20 rocks, 10 are of basalt type and 10 are of granite type. Five

rocks are taken at random and without replacement to perform chemical analyses. Let
X be the number of basalt-type rocks in the sample.
(a) Give the probability distribution of X as well as its parameters.
(b) Calculate the probability that the sample contains only rocks of the same type.

Multiple choice questions

Question no. 1
Let

fX(x) =
{

1/2 if 0 < x < 1,
1/ (2x) if 1 ≤ x < e.

Calculate P [X < 2 | X > 1].

(a)
ln 2
4

(b)
ln 2
2

(c)
2 ln 2

3
(d) ln 2 (e) 1

Question no. 2
Suppose that X ∼ U(0,1). Find E[(X − E[X])3].

(a) 0 (b) 1/4 (c) 1/3 (d) 1/2 (e) 2/3

Question no. 3
Let X ∼ B(n = 2, p = 0.5). Calculate P [X ≥ 1 | X ≤ 1].

(a) 0 (b) 1/4 (c) 1/2 (d) 2/3 (e) 1

Question no. 4
Find E[X2] if pX(0) = e−λ and

pX(x) =
e−λ

2
λ|x|

|x|!
for x = . . . ,−2,−1, 1, 2, . . . ,

where λ > 0.
(a) λ (b) λ2 + λ (c) λ2 − λ (d) λ2 (e) 2λ2
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Question no. 5
Let

fX(x) =
{

ex/2 if x < 0,
e−x/2 if x ≥ 0.

Calculate the variance of X.
(a) 1 (b) 3/2 (c) 2 (d) 3 (e) 4

Question no. 6
Suppose that

FX(x) =


0 if x < −1,

1/4 if −1 ≤ x < 0,
3/4 if 0 ≤ x < 2,
1 if x ≥ 2.

Calculate pX(0) + pX(1).
(a) 0 (b) 1/4 (c) 1/2 (d) 3/4 (e) 1

Question no. 7
Let fX(x) = 2xe−x2

, for x > 0. We set Y = ln X. Find fY (y), for any y ∈ R.

(a) 2e2ye−e2y

(b) 2e2ye−y2
(c) 2eye−e2y

(d) 2e−2y (e) e−y

Question no. 8
Calculate P [X < 5] if X ∼ G(α = 5, λ = 1/2).

(a) 0.109 (b) 0.243 (c) 0.5 (d) 0.757 (e) 0.891

Question no. 9
Suppose that X is a discrete random variable whose set of possible values is

{0, 1, 2, . . .}. Calculate P [X = 0] if E[tX ] = eλ(t−1), where t is a real constant.
(a) 0 (b) 1/4 (c) 1/2 (d) e−2λ (e) e−λ

Question no. 10
Calculate P [X2 < 4] if X ∼ Exp(λ = 2).

(a) 1− e−4 (b) 2(1− e−4) (c) 1
2e−4 (d) e−4 (e) 2e−4

Question no. 11
Calculate P [0 < X < 2] if

FX(x) =

 0 if x < 0,
1/2 if x = 0,

1− 1
2e−x if x > 0.

(a)
e−1 − e−3

2
(b)

1
2
− e−2

2
(c)

1
2

(d) 1− e−2

2
(e) 1− e−3

2
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Remark. The random variable X is of mixed type (see p. 83 and Exercise no. 50, p. 109).
Note that the function FX(x) is discontinuous at the point x = 0.

Question no. 12
We define Y = |X|, where X is a continuous random variable whose density function

is

fX(x) =
{

1/2 if −1 ≤ x ≤ 1,
0 elsewhere.

Find fY (y).

(a)
1
2

if −1 ≤ y ≤ 1 (b)
y + 1

2
if −1 ≤ y ≤ 1 (c) y if 0 ≤ y ≤ 1

(d) 2y if 0 ≤ y ≤ 1 (e) 1 if 0 ≤ y ≤ 1

Question no. 13
Let

x 1 4 9
pX (x) 1/4 1/4 1/2

We have that E[
√

X] = 9/4 and E[X] = 23/4. Calculate the standard deviation of√
X + 4.

(a)
√

11
4

(b)
√

11
4

+ 2 (c)
√

11
4

+ 4 (d)
11
6

(e)
11
6

+ 2

Question no. 14
Suppose that

fX(x) =
{

1/e if 0 < x < e,
0 elsewhere.

Find a function g(x) such that if Y := g(X), then fY (y) = e−y−1, for y > 1.
(a) e−x (b) ex−1 (c) ex (d) − lnx (e) lnx

Question no. 15
Calculate the third-order central moment of the discrete random variable X whose

probability function is
x −1 0 1

pX (x) 1/8 1/2 3/8

(a) −3/32 (b) 0 (c) 1/64 (d) 3/32 (e) 1/4

Question no. 16
Let X be a continuous random variable defined on the interval (a, b). What is the

density function of the random variable Y := FX(X)?
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(a) It is not defined (b) 0 (c) 1 if 0 ≤ y ≤ 1 (d) fX(y)
(e) 2y if 0 ≤ y ≤ 1

Question no. 17
The rate of suicides in a certain city is equal to four per month, according to a Poisson

distribution, independently from one month to the other. Calculate the probability that
during at least one month over the course of a given year there will be at least eight
suicides.
(a) 0.0520 (b) 0.1263 (c) 0.4731 (d) 0.5269 (e) 0.8737

Question no. 18
A telephone survey has been conducted to determine public opinion on the con-

struction of a new nuclear plant. There are 150,000 subscribers whose phone numbers
are published in the telephone directory of a certain city and we assume that 90,000
among them would express a negative opinion if asked. Let X be the number of nega-
tive opinions obtained in 15 calls made at random (among the 150,000 listed numbers).
Calculate approximately P [X = 9] if we also assume that nobody was contacted more
than once.
(a) 0.1666 (b) 0.1766 (c) 0.1866 (d) 0.1966 (e) 0.2066

Question no. 19
A multiple choice examination comprises 30 questions. For each question, five an-

swers are proposed. Every correct answer is worth two points and for every wrong answer
1/2 point is deducted. Suppose that a student has already answered 20 questions. Then,
she decides to select the letter a for each of the remaining 10 questions, without even
reading these questions. If the correct answers are distributed at random among the
letters a, b, c, d and e, what is her expected total mark (on 60), assuming that she has
four chances out of five of having the correct answer to any of the first 20 (independent)
questions she has already done?
(a) 26 (b) 28 (c) 30 (d) 32 (e) 36

Question no. 20
Let pX(x) = (3/4)x−1(1/4), for x = 1, 2, . . . . Calculate the expected value of the

discrete random variable X, given that X is greater than 2.
(a) 4 (b) 5 (c) 6 (d) 7 (e) 8
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Random vectors

The notion of random variables can be generalized to the case of two (or more) di-
mensions. In this textbook, we consider in detail only two-dimensional random vectors.
However, the extension of the various definitions to the multidimensional case is imme-
diate. In this chapter, we also state the most important theorem in probability theory,
namely the central limit theorem.

4.1 Discrete random vectors

The joint probability function

pX,Y (xj , yk) := P [{X = xj} ∩ {Y = yk}] ≡ P [X = xj , Y = yk]

of the pair of discrete random variables (X, Y ), whose possible values are a (finite or
countably infinite) set of points (xj , yk) in the plane, has the following properties:
(i) pX,Y (xj , yk) ≥ 0 ∀(xj , yk);
(ii)

∑∞
j=1

∑∞
k=1 pX,Y (xj , yk) = 1.

The joint distribution function FX,Y is defined by

FX,Y (x, y) = P [{X ≤ x} ∩ {Y ≤ y}] =
∑
xj≤x

∑
yk≤y

pX,Y (xj , yk).

X,Y given by the following
table:

©  Springer Science + Business Media, LLC 2009

115
and Technology, DOI: 10.1007/978-0-387-74995-2_4,
M. Lefebvre, Basic Probability Theory with Applications, Springer Undergraduate Texts in Mathematics  

Example 4.1.1. Consider the joint probability function p
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y\ x −1 0 1
0 1/16 1/16 1/16
1 1/16 1/16 2/16
2 2/16 1/16 6/16

We can check that the function pX,Y possesses the two properties of joint probability
functions stated above. Furthermore, given that only the points (−1, 0) and (0, 0) are
such that xj ≤ 0 and yk ≤ 1/2, we may write that

FX,Y (0, 1/2) = pX,Y (−1, 0) + pX,Y (0, 0) =
1
8
.

When the function pX,Y is summed over all possible values of Y (resp., X), the
resulting function is called the marginal probability function of X (resp., Y ). That is,

pX(xj) =
∞∑

k=1

pX,Y (xj , yk) and pY (yk) =
∞∑

j=1

pX,Y (xj , yk).

Example 4.1.1 (continued). We find that

x −1 0 1 Σ
pX(x) 1/4 3/16 9/16 1

and
y 0 1 2 Σ

pY (y) 3/16 1/4 9/16 1

Definition 4.1.1. Two discrete random variables, X and Y , are said to be indepen-
dent if and only if

pX,Y (xj , yk) = pX(xj)pY (yk) for any point (xj , yk). (4.1)

Example 4.1.1 (continued). We have that pX,Y (−1, 0) = 1/16, pX(−1) = 1/4 and
pY (0) = 3/16. Because 1/16 6= (1/4)(3/16), X and Y are not independent random
variables.

Finally, let AX be an event defined in terms of the random variable X. For instance,
AX = {X ≥ 0}. We define the conditional probability function of Y , given the event
AX , by

pY (y | AX) ≡ P [Y = y | AX ] =
P [{Y = y} ∩AX ]

P [AX ]
if P [AX ] > 0.
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Likewise, we define

pX(x | AY ) ≡ P [X = x | AY ] =
P [{X = x} ∩AY ]

P [AY ]
if P [AY ] > 0.

Remark. If X and Y are independent discrete random variables, then we may write that

pY (y | AX) ≡ pY (y) and pX(x | AY ) ≡ pX(x).

Example 4.1.1 (continued). Let AX = {X = 1}. We have:

pY (y | X = 1) =
P [{Y = y} ∩ {X = 1}]

P [X = 1]
=

pX,Y (1, y)
pX(1)

=
16
9

pX,Y (1, y) =

1/9 if y = 0,
2/9 if y = 1,
2/3 if y = 2.

Example 4.1.2. A box contains one brand A, two brand B, and three brand C transis-
tors. Two transistors are drawn at random and with replacement. Let X (resp., Y ) be
the number of brand A (resp., brand B) transistors among the two selected at random.
(a) Calculate the joint probability function pX,Y (x, y).
(b) Find the marginal probability functions.
(c) Are the random variables X and Y independent? Justify.
(d) Calculate the probability P [X = Y ].

Solution. (a) The possible values of the pair (X, Y ) are: (0, 0), (0, 1), (1, 0), (1, 1),
(0, 2), and (2, 0). Because the transistors are taken with replacement, so that the draws
are independent, we obtain the following table:

y\ x 0 1 2
0 1/4 1/6 1/36
1 1/3 1/9 0
2 1/9 0 0

For instance, we have:
pX,Y (0, 0) = (1/2)(1/2) = 1/4

(by independence of the draws) and

pX,Y (1, 0) inc.= P [A1 ∩ C2] + P [C1 ∩A2]
ind.,sym.

= 2(1/6)(1/2) = 1/6,

where Ak is the event “a brand A transistor is obtained on the kth draw,” and so on.
We can check that the sum of all the fractions in the table is equal to 1.
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Remark. In fact, the random variables X and Y follow binomial distributions with
parameters n = 2 and p = 1/6, and with parameters n = 2 and p = 1/3, respectively.

(b) From the table in part (a), we find that

x 0 1 2 Σ
pX(x) 25/36 5/18 1/36 1

and
y 0 1 2 Σ

pY (y) 4/9 4/9 1/9 1

(c) The random variables X and Y are not independent, because, for instance,

pX,Y (2, 2) = 0 6= pX(2)pY (2) = (1/36)(1/9).

Remark. The random variables X and Y could not be independent, because the relation
0 ≤ X + Y ≤ 2 must be satisfied.

(d) We calculate

P [X = Y ] = pX,Y (0, 0) + pX,Y (1, 1) + pX,Y (2, 2) =
1
4

+
1
9

+ 0 =
13
36

.

4.2 Continuous random vectors

Let X and Y be two continuous random variables. The generalization of the notion of
density function to the two-dimensional case is the joint density function fX,Y of the
pair (X, Y ). This function is such that

P [x < X ≤ x + ε, y < Y ≤ y + δ] =
∫ y+δ

y

∫ x+ε

x

fX,Y (u, v)dudv

and has the following properties:
(i) fX,Y (x, y) ≥ 0 for any point (x, y);
(ii)

∫∞
−∞

∫∞
−∞ fX,Y (x, y) dxdy = 1.

Remark. In n dimensions, a continuous random vector possesses a joint density function
defined on Rn (or on an uncountably infinite subset of Rn). This function is nonnegative
and its integral on Rn is equal to 1.

The joint distribution function is defined by

FX,Y (x, y) = P [X ≤ x, Y ≤ y] =
∫ y

−∞

∫ x

−∞
fX,Y (u, v) dudv.
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Example 4.2.1. Consider the function fX,Y defined by

fX,Y (x, y) = cxye−x2−y2
for x ≥ 0, y ≥ 0,

where c > 0 is a constant. We have that (i) fX,Y (x, y) ≥ 0 for any point (x, y) with
x ≥ 0 and y ≥ 0 [fX,Y (x, y) = 0 elsewhere] and (ii)∫ ∞

0

∫ ∞

0

cxye−x2−y2
dxdy = c

∫ ∞

0

xe−x2
dx

∫ ∞

0

ye−y2
dy

= c

[
−e−x2

2

∣∣∣∣∣
∞

0

][
−e−y2

2

∣∣∣∣∣
∞

0

]
= c(1/2)(1/2) = c/4.

So, this function is a valid joint density function if and only if the constant c is equal
to 4.

The joint distribution function of the pair (X, Y ) is given by

FX,Y (x, y) =
∫ y

0

∫ x

0

4uve−u2−v2
dudv

=
∫ x

0

2ue−u2
du

∫ y

0

2ve−v2
dv

=
[
−e−u2

∣∣∣x
0

] [
−e−v2

∣∣∣y
0

]
= (1− e−x2

)(1− e−y2
)

for x ≥ 0 and y ≥ 0.
Remark. We have that FX,Y (x, y) = 0 if x < 0 or y < 0.

The marginal density functions of X and Y are defined by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx.

Remark. We can easily generalize the previous definitions to the case of three or more
random variables. For instance, the joint density function of the random vector (X, Y, Z)
is a nonnegative function fX,Y,Z(x, y, z) such that∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX,Y,Z(x, y, z) dxdydz = 1.

Moreover, the joint density function of the random vector (X, Y ) is obtained as follows:

fX,Y (x, y) =
∫ ∞

−∞
fX,Y,Z(x, y, z) dz.

Finally, the marginal density function of the random variable X is given by
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fX(x) =
∫ ∞

−∞

∫ ∞

−∞
fX,Y,Z(x, y, z) dydz.

Definition 4.2.1. The continuous random variables X and Y are said to be indepen-
dent if and only if

fX,Y (x, y) = fX(x)fY (y) for any point (x, y). (4.2)

Example 4.2.1 (continued). We have:

fX(x) =
∫ ∞

0

4xye−x2−y2
dy = 2xe−x2

∫ ∞

0

2ye−y2
dy

= 2xe−x2
[
−e−y2

∣∣∣∞
0

]
= 2xe−x2

for x ≥ 0.

Then, by symmetry, we may write that

fY (y) = 2ye−y2
for y ≥ 0.

Furthermore, because

fX(x)fY (y) = 4xye−x2−y2
= fX,Y (x, y)

for any point (x, y) (with x ≥ 0 and y ≥ 0), the random variables X and Y are
independent.

Finally, let AY be an event depending only on Y . For example, AY = {0 ≤ Y ≤ 1}.
The conditional density function of X, given that AY occurred, is given by

fX(x | AY ) =

∫
AY

fX,Y (x, y)dy

P [AY ]
if P [AY ] > 0.

If AY is an event of the form {Y = y}, we can show that

fX(x | Y = y) =
fX,Y (x, y)

fY (y)
if fY (y) > 0.

That is, the conditional density function fX(x | Y = y) is obtained by dividing the
joint density function of (X, Y ), evaluated at the point (x, y), by the marginal density
function of Y evaluated at the point y.

Remarks. (i) If X and Y are two independent continuous random variables, then we
have:
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fX(x | AY ) ≡ fX(x) and fY (y | AX) ≡ fY (y).

(ii) In general, if X is a continuous random variable, then we can write that

P [Y ∈ AY ] =
∫ ∞

−∞
P [Y ∈ AY | X = x]fX(x)dx, (4.3)

where AY is an event that involves only the random variable Y . In the case when X is
discrete, we have:

P [Y ∈ AY ] =
∞∑

k=1

P [Y ∈ AY | X = xk]pX(xk). (4.4)

These formulas are extensions of the law of total probability from Chapter 2. We also
have, for instance:

P [Y > X] =
∫ ∞

−∞
P [Y > X | X = x]fX(x)dx

=
∫ ∞

−∞
P [Y > x | X = x]fX(x)dx, (4.5)

and so on.

Definition 4.2.2. The conditional expectation of the random variable Y , given that
X = x, is defined by

E[Y | X = x] =


∑∞

j=1 yjpY (yj | X = x) if (X, Y ) is discrete,∫∞
−∞ yfY (y | X = x)dy if (X, Y ) is continuous.

Remarks. (i) We can show that

E[Y ] = E[E[Y | X]] :=


∑∞

k=1 E[Y | X = xk]pX(xk) if X is discrete,∫∞
−∞ E[Y | X = x]fX(x)dx if X is continuous.

(ii) In general,
E[g(Y )] = E[E[g(Y ) | X]]

for any function g(·). It follows that

VAR[Y ] = E[E[Y 2 | X]]− {E[E[Y | X]]}2 .
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Example 4.2.2. Let

fX,Y (x, y) =
{

k(x2 + y2) for 0 ≤ x ≤ a, 0 ≤ y ≤ b,
0 elsewhere.

(a) Calculate the constant k.
(b) Find the marginal density functions of X and Y . Are X and Y independent?
(c) Obtain the conditional density functions fX(x | Y = y), fY (y | X = x), and
fY (y | X < a/2).
(d) Find the distribution function FX,Y (x, y).

Solution. (a) We have:

1 =
∫ b

0

∫ a

0

k(x2 + y2)dxdy = k

∫ b

0

(
x3

3
+ xy2

)∣∣∣∣a
0

dy

= k

∫ b

0

(
a3

3
+ ay2

)
dy = k

[
a3y

3
+

ay3

3

]∣∣∣∣b
0

.

Thus, k must be given by

k =
[
a3b

3
+

ab3

3

]−1

=
3

(ab)(a2 + b2)
.

(b) We can write that

fX(x) =
∫ b

0

k(x2 + y2)dy = k

{
yx2 +

y3

3

∣∣∣∣b
0

}

= k

(
bx2 +

b3

3

)
for 0 ≤ x ≤ a,

where k has been calculated in part (a). Similarly, we find that

fY (y) = k

(
ay2 +

a3

3

)
for 0 ≤ y ≤ b.

Now, we have:

fX(0)fY (0) = k

(
b3

3

)
k

(
a3

3

)
= k2 a3b3

9
6= 0 = fX,Y (0, 0).

Therefore, X and Y are not independent random variables.
Remark. When the joint density function, fX,Y (x, y), is a constant c multiplied by a
sum or a difference, like x+y, x2−y2, and so on, the random variables X and Y cannot
be independent. Indeed, it is impossible to write, in particular, that
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c(x + y) = f(x)g(y),

where f(x) depends only on x and g(y) depends only on y.

(c) We calculate

fX(x | Y = y) =
fX,Y (x, y)

fY (y)
(b)
=

k(x2 + y2)
k
(

a3

3 + ay2
) =

3(x2 + y2)
a(a2 + 3y2)

for 0 ≤ x ≤ a and 0 ≤ y ≤ b. Similarly, we find that

fY (y | X = x) =
3(x2 + y2)
b(3x2 + b2)

for 0 ≤ x ≤ a and 0 ≤ y ≤ b. Finally, we have:

fY (y | X < a/2) =

∫ a/2

0
k(x2 + y2)dx∫ a/2

0
k
(
bx2 + b3

3

)
dx

=
k

{
x3

3 + xy2
∣∣∣a/2

0

}
k
{

bx3

3 + x b3

3

∣∣a/2

0

}
=

a3

24 + ay2

2
ba3

24 + ab3

6

=
a2 + 12y2

ba2 + 4b3
for 0 ≤ y ≤ b.

(d) By definition,

FX,Y (x, y) =
∫ y

0

∫ x

0

k(u2 + v2)dudv =
∫ y

0

k

(
u3

3
+ uv2

)∣∣∣∣x
0

dv

= k

∫ y

0

(
x3

3
+ xv2

)
dv = k

{
x3y

3
+

xy3

3

}
=

xy(x2 + y2)
ab(a2 + b2)

for 0 ≤ x ≤ a and 0 ≤ y ≤ b. Hence, we deduce that (see Figure 4.1)

FX,Y (x, y) =



0 if x < 0 or y < 0,
xy(x2 + y2)
ab(a2 + b2)

if 0 ≤ x ≤ a and 0 ≤ y ≤ b,

xb(x2 + b2)
ab(a2 + b2)

if 0 ≤ x ≤ a and y > b,

ay(a2 + y2)
ab(a2 + b2)

if x > a and 0 ≤ y ≤ b,

1 if x > a and y > b.
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b

a

y

x
F = 0

F = 0

F = 1

F = 0

F

F

Fig. 4.1. Joint distribution function in Example 4.2.2.

Remark. Corresponding to Formula (3.1) in the one-dimensional case, we have:

∂2

∂x∂y
FX,Y (x, y) = fX,Y (x, y)

for any point (x, y) at which the function FX,Y (x, y) is differentiable.

Example 4.2.3. Suppose that X ∼ Exp(λ1) and Y ∼ Exp(λ2) are independent random
variables. Making use of (4.5), we can write that

P [Y > X] =
∫ ∞

0

P [Y > X | X = x]fX(x) dx

ind.=
∫ ∞

0

P [Y > x]λ1e−λ1x dx =
∫ ∞

0

e−λ2xλ1e−λ1x dx

=
∫ ∞

0

λ1e−(λ1+λ2)x dx =
λ1

λ1 + λ2
. (4.6)

Remark. Note that if λ1 = λ2, then P [X < Y ] = 1/2, which actually follows directly by
symmetry (and by continuity of the exponential distribution).

4.3 Functions of random vectors

In Chapter 3, we saw that any real-valued function of a random variable is itself a random
variable. Similarly, any real-valued function of a random vector is a random variable.
More generally, n real-valued functions of a random variable or of a random vector
constitute a new random vector of dimension n. The most interesting transformations
are the sum, the difference, the product, and the ratio of random variables.

In general, we must be able to calculate the probability function or the density func-
tion of the new random variable or vector. In this textbook, we treat the case of a single
function g of a two-dimensional random vector (X, Y ). We also give important results
obtained when the function g is the sum (or a linear combination) of n independent
random variables.
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Sometimes, we only need the mean, for instance, of the new random variable. In
that case, it is not necessary to first calculate the probability function or the density
function of g(X, Y ).

4.3.1 Discrete case

In the particular case when the number of possible values of the pair (X, Y ) of random
variables is finite, we only have to apply the transformation g to each possible value of
this pair and to add the probabilities of the points (x, y) that are transformed into the
same value of g(x, y).

Example 4.3.1. Consider again the joint probability function in Example 4.1.1:

y\ x −1 0 1
0 1/16 1/16 1/16
1 1/16 1/16 2/16
2 2/16 1/16 6/16

Let Z = XY . The random variable Z can take on five different values: −2, −1, 0, 1,
and 2. The point (−1, 2) corresponds to z = −2, (−1, 1) corresponds to z = −1, (1, 1)
is transformed into z = 1, (1, 2) becomes z = 2, and all the other points are such that
z = 0. From the previous table, we obtain that

z −2 −1 0 1 2 Σ
pZ(z) 2/16 1/16 5/16 2/16 6/16 1

It follows that the mean of Z is given by

E[Z] = (−2)
2
16

+ (−1)
1
16

+ 0 + (1)
2
16

+ (2)
6
16

=
9
16

.

As we mentioned above, if we are only interested in obtaining the expected value of
the new random variable Z, then it is not necessary to calculate the function pZ(z). It
suffices to use Formula (4.11) of Section 4.4:

E[g(X, Y )] =
∞∑

k=1

∞∑
j=1

g(xk, yj)pX,Y (xk, yj).

Here, we obtain that E[XY ] = 9/16 (see Example 4.4.1), which agrees with the result
obtained above for Z = XY .

Example 4.3.2. Suppose that we toss two distinct and well-balanced tetrahedrons,
whose faces are numbered 1, 2, 3, and 4. Let X1 (resp., X2) be the number of the face
on which the first (resp., second) tetrahedron lands, and let Y be the maximum between
X1 and X2. What is the probability function of the random variable Y ?
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Solution. The possible values of Y are 1, 2, 3, and 4. Let Ak (resp., Bk) be the event “the
random variable X1 (resp., X2) takes on the value k,” for k = 1, . . . , 4. By independence
of the events Aj and Bk for all j and k, we have:

pY (1) = P [A1 ∩B1] = P [A1]P [B1] =
1
4
× 1

4
=

1
16

.

Similarly, by independence and incompatibility, we may write that

pY (2) = P [(A1 ∩B2) ∪ (A2 ∩B1) ∪ (A2 ∩B2)]
= P [A1]P [B2] + P [A2]P [B1] + P [A2]P [B2]

=
1
4
× 1

4
+

1
4
× 1

4
+

1
4
× 1

4
=

3
16

.

Next, using the equiprobability of the events (and of the intersections), we obtain that

pY (3) = P [(A1 ∩B3) ∪ (A2 ∩B3) ∪ (A3 ∩B3) ∪ (A3 ∩B2) ∪ (A3 ∩B1)]

= 5× 1
4
× 1

4
=

5
16

.

Finally, because we must have that
∑4

y=1 pY (y) = 1, we obtain the following table:

y 1 2 3 4
pY (y) 1/16 3/16 5/16 7/16

It follows that
y 1 2 3 4

FY (y) 1/16 1/4 9/16 1

When the number of possible values of the pair (X, Y ) is countably infinite, it is
generally much more difficult to obtain the probability function of the random variable
Z := g(X, Y ). Indeed, there can be an infinite number of points (x, y) that correspond
to the same z = g(x, y), and there can also be an infinite number of different values
of Z. However, in the case when the number of possible values of Z is finite, we can
sometimes calculate pZ(z) relatively easily.

Example 4.3.3. Suppose that the joint probability function of the random vector
(X, Y ) is given by the formula

pX,Y (x, y) =
e−2

x!y!
for x = 0, 1, . . . ; y = 0, 1, . . . .

Note that X and Y are actually two independent random variables that both follow a
Poisson distribution with parameter λ = 1. Let
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Z = g(X, Y ) :=
{

1 if X = Y ,
0 if X 6= Y .

In this case, Z has a Bernoulli distribution with parameter p, where

p := P [X = Y ] =
∞∑

x=0

e−2

(x!)2
.

We find, using a mathematical software package for instance, that the above infinite
series converges to e−2 · I0(2) ' 0.3085, where I0(·) is a Bessel function. We could
actually obtain a very good approximation to the exact result by adding the first five
terms of the series, because

4∑
x=0

e−2

(x!)2
' 0.3085

as well.

4.3.2 Continuous case

Suppose that we wish to obtain the density function of the transformation Z := g1(X, Y )
of the continuous random vector (X, Y ). We consider only the case when it is possible
to define an auxiliary variable W = g2(x, y) such that the system

z = g1(x, y),
w = g2(x, y)

possesses a unique solution: x = h1(z, w) and y = h2(z, w). The following proposition
can then be proved.

Proposition 4.3.1. Let (X, Y ) be a continuous random vector and let Z = g1(X, Y )
and W = g2(X, Y ). Suppose that the functions x = h1(z, w) and y = h2(z, w) have con-
tinuous partial derivatives (with respect to z and w) for all (z, w) and that the Jacobian
of the transformation:

J(z, w) :=
∣∣∣∣∂h1/∂z ∂h1/∂w
∂h2/∂z ∂h2/∂w

∣∣∣∣
is not identical to zero. Then, we can write that

fZ,W (z, w) = fX,Y (h1(z, w), h2(z, w))|J(z, w)|.

It follows that

fZ(z) =
∫ ∞

−∞
fX,Y (h1(z, w), h2(z, w))|J(z, w)| dw.
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Remarks. (i) We generally choose a very simple auxiliary variable W , for example,
W = X.
(ii) In the particular case when g1(x, y) is a linear transformation of x and y, it suffices
to choose another linear transformation of x and y for the partial derivatives of the func-
tions h1 and h2 to be continuous. Indeed, these partial derivatives are then constants.
Therefore, they are continuous at any point (z, w).

Example 4.3.4. Let X ∼ U(0, 1) and Y ∼ U(0, 1) be two independent random variables
and let Z = X +Y . To obtain the density function of Z, we define the auxiliary variable
W = X. Then, the system

z = x + y,
w = x

has the unique solution x = w, y = z − w. Moreover, the partial derivatives of the
functions h1(z, w) = w and h2(z, w) = z − w are continuous ∀(z, w) and the Jacobian

J(z, w) =
∣∣∣∣ 0 1
1 −1

∣∣∣∣ = −1

is different from zero for all (z, w). Consequently, we can write that

fZ,W (z, w) = fX,Y (w, z − w)| − 1| ind.= fX(w)fY (z − w)

=⇒ fZ,W (z, w) = 1 · 1 if 0 < w < 1 and 0 < z − w < 1.

Because 0 < z < 2, the set of possible values of w is the interval (0, z), if 0 < z < 1, and
the interval (z − 1, 1), if 1 ≤ z < 2.

Finally, we have (see Figure 4.2):

fZ(z) =



∫ z

0

1 dw = z if 0 < z < 1,

∫ 1

z−1

1 dw = 2− z if 1 ≤ z < 2.

4.3.3 Convolutions

Let X be a discrete random variable whose possible values are x1, x2, . . . . The convolu-
tion of X with itself is obtained by applying the transformation of interest, for instance,
the sum, the difference, the product, and so on, to the points (x1, x1), (x1, x2), . . . ,
(x2, x1), (x2, x2), . . . . Therefore, if X can take on n different values, then the transfor-
mation must be applied to n×n = n2 points. We write X⊗X to denote the convolution
product of X with itself, X ⊕X for the convolution sum, and so on. Observe that ob-
taining the distribution of X⊗X, for example, is tantamount to finding the distribution
of the product X1X2, where X1 and X2 are two independent random variables having
the same distribution as X.
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z

f  (z)
Z

1

1

Fig. 4.2. Density function in Example 4.3.4.

Example 4.3.5. Consider the probability function of the random variable X in Example
3.4.1:

x −1 0 1
pX(x) 1/4 1/4 1/2

Suppose that we want to obtain the distribution of the convolution product of X with
itself. We find that the possible results of this convolution are −1, 0, and 1. The points
(−1, 1) and (1,−1) correspond to −1, the points (−1,−1) and (1, 1) to 1, and the five
other points to 0. Then, if we define Y = X ⊗X, we deduce from the above table that

y −1 0 1
pY (y) 1/4 7/16 5/16

because

P [Y = −1] = P [X = −1]P [X = 1] + P [X = 1]P [X = −1]
= 2× (1/4)(1/2) = 1/4,

and so on.
Remarks. (i) Note that the result obtained is completely different from the probability
function of Z := X2 calculated in Example 3.4.1:

z 0 1
pZ(z) 1/4 3/4

(ii) If we calculate the convolution difference of X with itself, we find that the probability
function of D := X 	X is given by

d −2 −1 0 1 2
pD(d) 1/8 3/16 3/8 3/16 1/8
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In general, it is difficult to calculate the distribution of the convolution of a discrete
random variable X with itself k times, where k is arbitrary, especially if the number
of values that X can take is (countably) infinite. However, in a few particular cases we
can obtain a general formula, valid for any integer k. In fact, we can prove some results
for the sum of independent random variables following the same distribution, but not
necessarily having the same parameters. The most important results of this type are
the following, where X1, . . . , Xn are n independent random variables.
(1) If Xi has a Bernoulli distribution with parameter p, for all i, then we have:

n∑
i=1

Xi ∼ B(n, p) for n = 1, 2, . . . .

More generally, if Xi ∼ B(mi, p), for i = 1, . . . , n, then we find that

n∑
i=1

Xi ∼ B

(
n∑

i=1

mi, p

)
.

(2) If Xi ∼ Poi(λi), for i = 1, . . . , n, then we may write that

n∑
i=1

Xi ∼ Poi

(
n∑

i=1

λi

)
. (4.7)

(3) If Xi ∼ Geo(p), for i = 1, . . . , n, then we have:

n∑
i=1

Xi ∼ NB(n, p).

Suppose now that X and Y are two independent continuous random variables. Let
Z = X + Y . We can show that the density function of Z is obtained by computing the
convolution product of the density function of X with that of Y . That is, we have:

fZ(z) = fX(x) ∗ fY (y) =
∫ ∞

−∞
fX(u)fY (z − u) du. (4.8)

We could use this formula to obtain the density function of Z in Example 4.3.4.
As in the discrete case, we can prove some results for the sum (and sometimes for

linear combinations) of independent random variables Xi. We find, in particular, that
(1) if Xi ∼ Exp(λ), for i = 1, . . . , n, then

n∑
i=1

Xi ∼ G(n, λ); (4.9)

(2) if Xi ∼ G(αi, λ), for i = 1, . . . , n, then
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n∑
i=1

Xi ∼ G

(
n∑

i=1

αi, λ

)
;

(3) if Xi ∼ N(µi, σ
2
i ), for i = 1, . . . , n, then

n∑
i=1

aiXi ∼ N

(
n∑

i=1

aiµi,
n∑

i=1

a2
i σ

2
i

)
, (4.10)

where ai is a real constant, for all i.

Remarks. (i) The best way to prove these results is to make use of the characteristic
function, or of the moment-generating function, which are actually particular mathe-
matical expectations. The characteristic function of the random variable X is defined
by E[ejωX ], where j :=

√
−1.

(ii) A result of the same type, but for the product of independent random variables
X1, . . . , Xn, is the following: if Xi ∼ LN(µi, σ

2
i ), then

n∏
i=1

Xai
i ∼ LN

(
n∑

i=1

aiµi,

n∑
i=1

a2
i σ

2
i

)
.

4.4 Covariance and correlation coefficient

Definition 4.4.1. Let (X, Y ) be a pair of random variables. We define the mathemat-
ical expectation of the function g(X, Y ) by

E[g(X, Y )] =



∞∑
k=1

∞∑
j=1

g(xk, yj)pX,Y (xk, yj) (discrete case),

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dxdy (continuous case).

(4.11)

Particular cases. (i) If g(X, Y ) = X, then we have that E[g(X, Y )] = E[X] ≡ µX .
(ii) If g(X, Y ) = XY , we then obtain the formula that enables us to calculate the
mathematical expectation of a product, which is used in the calculation of the covariance
and of the correlation coefficient.
(iii) If the function g is a linear combination of the random variables X and Y , that is,
if we have:

g(X, Y ) = aX + bY + c,

where a, b, and c are real constants, then we easily prove that
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E[g(X, Y )] = aE[X] + bE[Y ] + c

(if the expected values exist). This formula may be generalized to the case of linear
combinations of n random variables X1, . . . , Xn. Moreover, if Y = h(X), for example,
Y = X2, then the above formula enables us to write that

E[aX + bX2] = aE[X] + bE[X2],

as we did in Chapter 3.

Definition 4.4.2. The covariance of X and Y is defined by

COV[X, Y ] ≡ σX,Y = E[(X − µX)(Y − µY )].

Remarks. (i) We can show that

COV[X, Y ] = E[XY ]− E[X]E[Y ].

(ii) If X and Y are two independent random variables and if we can write that g(X, Y ) =
g1(X)g2(Y ), then we have that E[g(X, Y )] = E[g1(X)]E[g2(Y )]. It follows that if X and
Y are independent, then

COV[X, Y ] ind.= E[X]E[Y ]− E[X]E[Y ] = 0.

If the covariance of the random variables X and Y is equal to zero, they are not
necessarily independent. Nevertheless, we can show that, if X and Y are two random
variables having a normal distribution, then X and Y are independent if and only if
COV[X, Y ] = 0.
(iii) We have that COV[X, X] = E[X2] − (E[X])2 = VAR[X]. Thus, the variance is a
particular case of the covariance. However, contrary to the variance, the covariance may
be negative.
(iv) If g(X, Y ) is a linear combination of X and Y , then we find that

VAR[g(X, Y )] ≡ VAR[aX + bY + c] = a2VAR[X]+ b2VAR[Y ]+2abCOV[X, Y ]. (4.12)

Note that the constant c does not influence the variance of g(X, Y ). Furthermore, if X
and Y are independent random variables, then we have:

VAR[aX + bY + c] ind.= a2VAR[X] + b2VAR[Y ].

Finally, Formula (4.12) can be generalized to the case of a linear combination of n
(independent or dependent) random variables.
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Definition 4.4.3. The correlation coefficient of X and Y is given by

CORR[X, Y ] ≡ ρX,Y =
COV[X, Y ]√

VAR[X]VAR[Y ]
.

We can show that −1 ≤ ρX,Y ≤ 1. Moreover, ρX,Y = ±1 if and only if we can write
that Y = aX + b, where a 6= 0. More precisely, ρX,Y = 1 (resp., −1) if a > 0 (resp.,
a < 0). In fact, ρX,Y is a measure of the linear relationship between X and Y . Finally,
if X and Y are independent random variables, then we have that ρX,Y = 0.

In the case when X and Y are random variables having a normal distribution,
we have that ρX,Y = 0 ⇔ X and Y are independent. This result is very important
in practice, because if we showed (by means of a statistical test) that the two random
variables follow (approximately) a normal distribution and if we found that their sample
correlation coefficient is close to zero, then, in the context of statistical procedures, we
can accept that they are independent.

Example 4.4.1. Consider the function pX,Y given by the following table (see Exam-
ple 4.1.1):

y\ x −1 0 1 pY (y)
0 1/16 1/16 1/16 3/16
1 1/16 1/16 2/16 4/16
2 2/16 1/16 6/16 9/16
pX(x) 4/16 3/16 9/16 1

With the help of this table and the marginal probability functions pX and pY , we
calculate

E[X] = −1× (4/16) + 0× (3/16) + 1× (9/16) = 5/16,

E[Y ] = 0× (3/16) + 1× (4/16) + 2× (9/16) = 22/16,

E[X2] = (−1)2 × (4/16) + 02 × (3/16) + 12 × (9/16) = 13/16,

E[Y 2] = 02 × (3/16) + 12 × (4/16) + 22 × (9/16) = 40/16,

E[XY ] =
1∑

x=−1

2∑
y=0

xy pX,Y (x, y)

= 0 + (−1)(1)(1/16) + (−1)(2)(2/16) + 0 + 0 + 0 + 0
+ (1)(1)(2/16) + (1)(2)(6/16)

= −1/16− 4/16 + 2/16 + 12/16 = 9/16.

It follows that

VAR[X] = E[X2]− (E[X])2 =
13
16
−
(

5
16

)2

=
183

(16)2
,
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VAR[Y ] = E[Y 2]− (E[Y ])2 =
40
16
−
(

22
16

)2

=
156

(16)2

and

COV[X, Y ] = E[XY ]− E[X]E[Y ] =
9
16
−
(

5
16

)(
22
16

)
=

34
(16)2

.

Finally, we calculate

ρX,Y ≡ CORR[X, Y ] =
34/(16)2(

183
(16)2 ·

156
(16)2

)1/2
=

34√
183 · 156

' 0.2012.

Remark. In general, it is advisable to calculate the means E[X], E[Y ], and E[XY ] before
the expected values of the squared variables. Indeed, if E[XY ] − E[X]E[Y ] = 0, then
CORR[X, Y ] = 0 (if X and Y are not constants, so that their variances are strictly
positive).

Example 4.4.2. The joint density function of the continuous random vector (X, Y ) is

fX,Y (x, y) =
{

e−2y if 0 < x < 2, y > 0,
0 elsewhere.

What is the correlation coefficient of X and Y ?

Solution. We can show that, when the joint density function of (X, Y ) can be de-
composed into a product of a function of x only and a function of y only, the random
variables X and Y are independent, provided that there is no relationship between x
and y in the set DX,Y of possible values of the pair (X, Y ). That is, this set DX,Y is of
the form

DX,Y = {(x, y) ∈ R2 : c1 < x < c2, k1 < y < k2},

where the cis and the kis are constants, for i = 1, 2.
Here, the possible values of X and Y are not related and we can write that

e−2y = g(x)h(y),

where g(x) ≡ 1 and h(y) = e−2y. Therefore, we can conclude that X and Y are inde-
pendent. It follows that CORR[X, Y ] = 0.

We can check that X and Y are indeed independent. We have:

fX(x) =
∫ ∞

0

e−2y dy = −1
2
e−2y

∣∣∣∣∞
0

=
1
2

if 0 < x < 2
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and

fY (y) =
∫ 2

0

e−2y dx = 2e−2y if y > 0.

Thus, we have that fX,Y (x, y) = fX(x)fY (y) for every point (x, y), as required. Note
that X ∼ U(0, 2) and Y ∼ Exp(2) in this example.

4.5 Limit theorems

In this section, we present two limit theorems. The first one is useful in statistics, in
particular, and the second one is in fact the most important theorem in probability
theory.

Theorem 4.5.1. (Law of large numbers) Suppose that X1, X2, . . . are independent
random variables having the same distribution function as the variable X, whose mean
µX exists. Then, for any constant ε > 0, we have:

lim
n→∞

P

[∣∣∣∣X1 + · · ·+ Xn

n
− µX

∣∣∣∣ > ε

]
= 0.

Remarks. (i) This theorem is known, more precisely, as the weak law of large numbers.
There is also the strong law of large numbers, for which the expected value of |X| must
exist.
(ii) In practice, the mean µX of the random variable X is unknown. To estimate it,
we gather many (independent) observations Xi of X. The above result enables us to
assert that the arithmetic mean of these observations converges (in probability) to the
unknown mean of X.
(iii) We write that the random variables X1, X2, . . . are i.i.d. (independent and identi-
cally distributed).

Theorem 4.5.2. (Central limit theorem) Suppose that X1, . . . , Xn are independent
random variables having the same distribution function as the variable X, whose mean
µX and variance σ2

X exist (σX > 0). Then, the distribution of Sn :=
∑n

i=1 Xi tends to
that of a normal distribution, with mean nµX and variance nσ2

X , as n tends to infinity.

Remarks. (i) Let us define

X̄ =
n∑

i=1

Xi

n
.

Then, we can assert that the distribution of X̄ tends to that of a N(µX , σ2
X/n) distri-

bution.
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(ii) In general, if we add up 30 or more independent random variables Xi, then the
normal distribution should be a good approximation to the exact (often unknown)
distribution of this sum. However, the number of variables that must be added, to obtain
a good approximation, actually depends on the degree of asymmetry of the distribution
of X.
(iii) We can, under certain conditions, generalize the central limit theorem (CLT) to the
case when the random variables X1, . . . , Xn are not necessarily identically distributed.
Indeed, if the mean µXi

and the variance σ2
Xi

of Xi exist for all i, then, when n is large
enough, we have:

n∑
i=1

Xi ≈ N

(
n∑

i=1

µXi
,

n∑
i=1

σ2
Xi

)
and

X̄ ≈ N

(
1
n

n∑
i=1

µXi
,

1
n2

n∑
i=1

σ2
Xi

)
.

Example 4.5.1. An American town comprises 10,000 houses and two factories. The
demand for drinking water (in gallons) from a given house over an arbitrary day is
a random variable D such that E[D] = 50 and VAR[D] = 400. In the case of the
factories, the demand for drinking water follows (approximately) a N(10, 000, (2000)2)
distribution for factory 1 and a N(25, 000, (5000)2) distribution for factory 2. Let Di,
for i = 1, . . . , 10, 000, be the demand for drinking water from the ith house and Fi, for
i = 1, 2, be the demand from factory i. We assume that the random variables Di and
Fi are independent and we set

Xd =
10,000∑

i=1

Di (the domestic demand)

and
Xt = Xd + F1 + F2 (the total demand).

(a) Find the number a such that P [Xd ≥ a] ' 0.01.
(b) What should the production capacity of the drinking water treatment plant be if
we want to be able to satisfy the total demand with probability 0.98?

Solution. (a) By the central limit theorem, we may write that

Xd ≈ N(10, 000(50), 10, 000(202)).

Remark. We assume that the random variables Di are independent among themselves.
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Then, we have:

P [Xd ≥ a] = 1− P [Xd < a] ' 1− P

[
Z <

a− 500, 000√
10, 000(20)

]
,

where Z ∼ N(0, 1). It follows that

P [Xd ≥ a] ' 0.01 ⇐⇒ P

[
Z <

a− 500, 000
2000

]
' 0.99.

Now, we find in Table B.3, page 279, that P [Z ≤ 2.33] ' 0.99. Thus, we have:

a ' 500, 000 + 2000(2.33) = 504, 660.

(b) By independence, we may write that Xt ≈ N(µ, σ2), where [see (4.10)]

µ = 500, 000 + 10, 000 + 25, 000 = 535, 000

and
σ2 = (2000)2 + (2000)2 + (5000)2 = 33, 000, 000.

Let c be the capacity of the drinking water treatment plant. We seek the value of c

such that P [Xt ≤ c] = 0.98. Because P [Z ≤ 2.055]
Tab. B.3' 0.98, proceeding as in part

(a) we find that

c ' 535, 000 +
√

33, 000, 000(2.055) ' 546, 805.

Remark. We see in this example that it is not necessary to know the exact form of the
function pX or fX to be able to apply the central limit theorem. It is sufficient to know
the mean and the variance of X.

4.6 Exercises for Chapter 4

Solved exercises

Question no. 1
Let

pX,Y (x, y) =
1
6

if x = 0 or 1, and y = 0, 1 or 2.

Calculate pX(x).

Question no. 2
Calculate fX(x | Y = y) if
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fX,Y (x, y) = x + y for 0 < x < 1, 0 < y < 1.

Question no. 3
Suppose that X and Y are two random variables such that E[X] = E[Y ] = 0,

E[X2] = E[Y 2] = 1, and ρXY = 1. Calculate COV[X, Y ].

Question no. 4
Calculate P [X + Y > 1] if

fX,Y (x, y) = 1 for 0 < x < 1, 0 < y < 1.

Question no. 5
Suppose that

pX,Y (x, y) =
8
9

(
1
2

)x+y

if x = 0 or 1, and y = 1 or 2.

Calculate E[XY ].

Question no. 6
Suppose that X and Y are two random variables such that VAR[X] = VAR[Y ] = 1

and COV[X, Y ] = 1. Calculate VAR[X − 2Y ].

Question no. 7
Let X ∼ N(0, 1), Y ∼ N(1, 2) and Z ∼ N(3, 4) be independent random variables.

What distribution does W := X − Y + 2Z follow? Also give the parameter(s) of this
distribution.

Question no. 8
Suppose that X ∼ Poi(λ = 100). What other probability distribution can be used

to calculate (approximately) p := P [X ≤ 100]? Also give the parameter(s) of this
distribution, as well as the approximate value of p.

Question no. 9
Suppose that X follows a B(n = 100, p = 0.4) distribution. Use a N(40, 24) distri-

bution to calculate approximately P [X = 40].

Question no. 10
We define Y =

∑50
i=1 Xi, where E[Xi] = 0, for i = 1, . . . , 50, and the Xis are

independent continuous random variables. Calculate approximately P [Y ≥ 0].

Question no. 11
The joint probability function, pX,Y , of the pair (X, Y ) is given by the following

table:
y\x −1 0 1
0 1/9 1/9 1/9
2 2/9 2/9 2/9

(a) Are the random variables X and Y independent? Justify.
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(b) Evaluate FX,Y (0, 1/2).
(c) Let Z = X4. Calculate pZ(z).
d) Calculate E[X2Y 2].

Question no. 12
Let

fX,Y (x, y) =
{

2 if 0 < x < y, 0 < y < 1,
0 elsewhere.

Calculate P [X ≥ Y 2].

Question no. 13
City buses pass by a certain street corner, between 7:00 a.m. and 7:30 p.m., according

to a Poisson process at the (average) rate of four per hour. Let Y =
∑50

k=1 Xk, where
Xk is the total number of buses that pass during the kth 15-minute time period, from
7:00 a.m.
(a) What is the exact distribution of Y and its parameter(s)?
(b) What other probability distribution can approximate the distribution of Y ? Justify
and give the parameter(s) of this distribution as well.

Question no. 14
We consider the discrete random variable X whose probability function is given by

x 0 1 2
pX(x) 1/2 1/4 1/4

Suppose that X1 and X2 are two independent random variables having the same distri-
bution as X. Calculate P [X1 = X2].

Question no. 15
The table below gives the function pX,Y (x, y) of the pair (X, Y ) of discrete random

variables:
y\x 0 1 3 4
1 0.1 0.1 0 0.2
2 0.3 0 0.2 0.1

Calculate P [{X < 5} ∩ {Y < 2}].

Question no. 16
Calculate the covariance of X1 and X2 if

fX1,X2(x1, x2) =
{

2− x1 − x2 for 0 < x1 < 1, 0 < x2 < 1,
0 elsewhere.
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Question no. 17
Suppose that Y = 1/X, where X is a discrete random variable such that

x 1 2
pX(x) 1/3 2/3

We define W = Y1 − Y2, where Y1 and Y2 are two independent random variables iden-
tically distributed as Y . Calculate pW (w).

Question no. 18
Let X1, . . . , Xn be independent random variables, where Xi has an exponential dis-

tribution with parameter λ = 2, for i = 1, . . . , n. Use the central limit theorem to find
the value of n for which

P

[
n∑

i=1

Xi >
n

2
+ 1

]
' 0.4602.

Question no. 19
A bus passes by a certain street corner every morning around 9:00 a.m. Let X be the

difference (in minutes) between the time instant at which the bus passes and 9:00 a.m.
We suppose that X has approximately a N(µ = 0, σ2 = 25) distribution. We consider
two independent days. Let Xk be the value of the random variable X on the kth day,
for k = 1, 2.
(a) Calculate the probability P [X1 −X2 > 15].
(b) Find the joint density function fX1,X2(x1, x2).
(c) Calculate (i) P [X1 = 2 | X1 > 1] and (ii) P [X1 < 2 | X1 = 1].

Question no. 20
An assembly comprises 100 sections. The length of each section (in centimeters)

is a random variable with mean 10 and variance 0.9. Furthermore, the sections are
independent. The technical specification for the total length of the assembly is 1000 cm
± 30 cm. What is approximately the probability that the assembly fails to meet the
specification in question?

Question no. 21
Let

fX,Y (x, y) =
{

3x2e−xy (1− y) if x > 0, 0 < y < 1,
0 elsewhere.

(a) Calculate the functions fX(x) and fY (y). What is the distribution of X and that of
Y ?
(b) Are X and Y independent random variables? Justify.
(c) Calculate the kurtosis of X.
(d) Calculate the skewness of Y .
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Question no. 22
The following table gives the joint probability function pX,Y (x, y) of the pair (X, Y ):

y\x 0 1 2
−1 1/9 0 1/9

0 2/9 0 2/9
1 0 1/3 0

(a) Find pX(x) and pY (y).
(b) Are X and Y independent random variables? Justify.
(c) Calculate (i) pY (y | X = 1) and (ii) pY (y | X ≤ 1).
(d) Calculate the correlation coefficient of X and Y .
(e) Let W = max{X, Y }. Find pW (w).

Question no. 23
We consider the pair (X, Y ) of discrete random variables whose joint probability

function pX,Y (x, y) is given by

y\x 1 2 3
2 1/12 1/6 1/12
3 1/6 0 1/6
4 0 1/3 0

Calculate P [X + Y ≤ 4 | X ≤ 2].

Question no. 24
Use a normal distribution to calculate approximately the probability that, among

10,000 (independent) random digits, the digit “7” appears more than 968 times.

Question no. 25
A number X is taken at random in the interval (0, 1), and next a number Y is taken

at random in the interval (0, X], so that

fX,Y (x, y) =
{

1/x if 0 < x < 1, 0 < y ≤ x,
0 elsewhere.

(a) Show that

E[XrY s] =
1

(s + 1) (r + s + 1)

for r, s = 0, 1, 2, . . . .
(b) Check the formula in part (a) for r = 2 and s = 0 by directly calculating E[X2].
(c) Use part (a) to calculate the correlation coefficient of X and Y .
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Question no. 26
The following table gives part of the function pX,Y (x, y) of the pair (X, Y ) of discrete

random variables:
y \ x 0 1 2 pY (y)

−1 1/16 1/16 1/4
0 1/2
1 0 1/4

pX(x) 1/4 1

We also have:
y −1 0 1

pY (y | X = 2) 1/8 3/8 1/2

(a) Find P [X = 2].
(b) Complete the table of the function pX,Y (x, y).
(c) We set W = Y + 1. The distribution of W is then a particular case of one of the
discrete distributions seen in Chapter 3. Find this distribution and give its parameter(s).

Question no. 27
The joint density function of the pair (X, Y ) of continuous random variables is given

by

fX,Y (x, y) =
{

1
2xy if 0 < y < x < 2,
0 elsewhere.

(a) Calculate E[1/XY ].
(b) Calculate E[X2].
(c) What is the median, xm, of the random variable X?

Question no. 28
A device is constituted of two independent components connected in parallel. The

lifetime X (in years) of component no. 1 follows an exponential distribution with pa-
rameter λ = 1/2, whereas the lifetime Y (in years) of component no. 2 has a Weibull
distribution with parameters λ = 2 and β = 2. That is,

fY (y) = 4ye−2y2
for y > 0.

Calculate the probability that the device lasts less than one year.

Question no. 29
We take 100 numbers at random in the interval [0, 1]. Let S be the sum of these

100 numbers. Use the central limit theorem to calculate approximately the probability
P [45 ≤ S < 55].
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Question no. 30
The number of floods that occur in a certain region over a given year is a random

variable having a Poisson distribution with parameter α = 2, independently from
one year to the other. Moreover, the time period (in days) during which the ground
is flooded, at the time of an arbitrary flood, is an exponential random variable with
parameter λ = 1/5. We assume that the durations of the floods are independent. Use
the central limit theorem to calculate (approximately) the probability that
(a) over the course of the next 50 years, there will be at least 80 floods in this region
(without making a continuity correction);
(b) the total time during which the ground will be flooded over the course of the next
50 floods will be smaller than 200 days.

Exercises

Question no. 1
Telephone calls arrive at an exchange according to a Poisson process with rate λ per

minute. We know, from past experience, that the probability of receiving exactly one
call during a one-minute period is three times that of receiving no calls during the same
time period. We consider 100 consecutive one-minute time periods and we designate by
U the number of periods during which no calls were received.
(a) Use a normal approximation to calculate P [U = 5].
(b) Use the central limit theorem to calculate approximately

P

[
1

100

100∑
i=1

Xi ≥ 3.1

]
,

where Xi is the number of calls received during the ith one-minute period, for i =
1, . . . , 100.

Question no. 2
Let

fX,Y (x, y) =
{

kx if 0 < x < 1, 0 < y < x,
0 elsewhere

be the joint density function of the random vector (X, Y ).
(a) Find the constant k.
(b) Obtain the marginal density functions of X and Y .
(c) Calculate VAR[X] and VAR[Y ].
(d) Calculate the correlation coefficient of X and Y .
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Question no. 3
In a bank, an automatic teller machine (ATM) enables the customers to withdraw

$50 or $100 banknotes. It may also happen that a given customer cannot withdraw any
money if her account is without funds or if the customer in question made an error when
using the ATM. The number X of customers using the ATM in a five-minute interval
is a random variable whose probability function pX(x) is

x 0 1 2
pX(x) 0.3 0.5 0.2

Furthermore, we observed that the total amount Y of money withdrawn in a five-minute
interval is a random variable whose conditional probability function pY (y | X = x) is
given by

y 0 50 100 150 200
pY (y | X = 0) 1 0 0 0 0
pY (y | X = 1) 0.1 0.7 0.2 0 0
pY (y | X = 2) 0.01 0.14 0.53 0.28 0.04

(a) Are the random variables X and Y independent? Justify.
(b) Calculate the probability P [X = 1, Y = 100].
(c) Calculate the probability P [Y = 0].
(d) Find the average number of customers using the ATM in a one-hour period.

Question no. 4
A private club decides to organize a charity casino night. The organizers decide to

• ask their members to cover the overhead costs;
• to admit only 1000 players, each of them with the same initial stake θ (in thousands

of dollars);
• to choose games such that the gross winnings Xi (in thousands of dollars) of the ith

player are uniformly distributed on the interval (0, 3θ/2).

Indication. We have that the mean of a U(0, 3θ/2) distribution is 3θ/4 and its variance
is equal to 3θ2/16.
(a) Let Y be the total gross winnings of the 1000 players. Give the approximate distri-
bution of Y , as well as its parameters.
(b) Determine the amount θ that each player must pay in order that the net profit (in
thousands of dollars) of the casino be greater than 50 with probability 0.95.

Question no. 5
A certain freeway has three access roads: A, B, and C (see Figure 4.3). The number

of cars accessing the freeway over a one-hour period, via the three access roads, is
defined by random variables denoted by XA, XB , and XC and having the following
characteristics:
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A

B

C

Fig. 4.3. Figure for Exercise no. 5.

XA XB XC

Mean 800 1000 600
Standard deviation 40 50 30

Let us designate by X the total number of cars accessing the freeway over a one-hour
period.
(a) Calculate

(i) the mean of X and
(ii) the standard deviation of X, assuming that the random variables XA, XB , and

XC are pairwise independent;
(iii) the probability that the random variable X takes on a value between 2300 and

2500 if we suppose that the variables XA, XB , and XC are independent and (approxi-
mately) normally distributed;

(iv) the probability that X is greater than 2500, under the same assumptions as
above.

(b) Let Y be the number of times that X is greater than or equal to 2500 (under the
same assumptions as above) over 100 (independent) one-hour periods.

(i) Give the distribution of Y and its parameters.
(ii) Calculate, using an approximation based on a normal distribution, the probabil-

ity that the random variable Y is greater than or equal to 10.

(c) Calculate
(i) the mean of X and
(ii) the standard deviation of X if we suppose that the random variables XA, XB ,

and XC are normally distributed and that the correlation coefficients of the three
pairs of random variables are CORR[XA, XB ] = 1/2, CORR[XA, XC ] = 4/5, and
CORR[XB , XC ] = −1/2.

Question no. 6
The joint density function of the pair (X, Y ) of random variables is defined by (see

Figure 4.4):

fX,Y (x, y) =
{

3/4 if −1 ≤ x ≤ 1, x2 ≤ y < 1,
0 elsewhere.
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x

y

1

1
y = x2

-1

Fig. 4.4. Figure for Exercise no. 6.

(a) Calculate
(i) the marginal density functions of X and Y ;
(ii) the correlation coefficient of X and Y .

(b) Are the random variables X and Y independent? Justify.

Question no. 7
Suppose that

fX,Y (x, y) =
{

4/π if 0 < x ≤ 1, 0 < y ≤
√

2x− x2,
0 elsewhere.

Find the conditional density function of Y , given that X = x.

Question no. 8
Calculate the mathematical expectation of (X + Y )2 if

fX,Y (x, y) =
{

1
8 (x + y) for 0 ≤ x ≤ 2, 0 ≤ y ≤ 2,

0 elsewhere.

Question no. 9
Suppose that X and Y are two random variables such that VAR[X] = VAR[Y ] = 1.

We set Z = X− 3
4Y . Calculate the correlation coefficient of X and Z if COV[X, Z] = 1/2.

Question no. 10
A fair coin is tossed until “heads” is obtained, then until “tails” is obtained. If we

assume that the successive tosses are independent, what is the probability that the coin
has to be tossed exactly nine times?

Question no. 11
Suppose that X1 ∼ N(2, 4), X2 ∼ N(4, 2), and X3 ∼ N(4, 4) are independent random

variables. Calculate the 75th percentile of the random variable Y := X1 − 2X2 + 4X3.
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Question no. 12
The lifetime of a certain type of tire follows (approximately) a normal distribution

with mean 25,000 km and standard deviation 5000 km. Two (independent) tires are
taken at random. What is the probability that one of the two tires lasts at least 10,000
km more than the other?

Question no. 13
A factory produces articles whose average weight is equal to 1.62 kg, with a standard

deviation of 0.05 kg. What is (approximately) the probability that the total weight of
a batch of 100 articles is between 161.5 kg and 162.5 kg?

Question no. 14
The joint density function of the pair (X, Y ) of random variables is

fX,Y (x, y) =
{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 elsewhere.

We find that E[X] = 7/12 and VAR[X] = 11/144. Calculate the correlation coefficient
of X and Y .

Question no. 15
Let X ∼ N(2, 1) and Y ∼ N(4, 4) be two independent random variables. Calculate

P [|2X − Y | <
√

8].

Question no. 16
Let Xi, for i = 1, 2, . . . , 100, be independent random variables having a gamma

distribution with parameters α = 9 and λ = 1/3. Calculate approximately P [X̄ ≥ 26],
where X̄ := 1

100

∑100
i=1 Xi.

Question no. 17
Let X be the number of “do” loops in a FORTRAN program and let Y be the

number of attempts needed by a beginner to get a working program. Suppose that the
joint probability function of (X, Y ) is given by the following table:

x\y 1 2 3
0 0.05 0.15 0.10
1 0.10 0.20 0.10
2 0.15 0.10 0.05

(a) Calculate E[XY ].
(b) Evaluate the probability P [Y ≥ 2 | X = 1].
(c) Are the random variables X and Y independent? Justify.
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Question no. 18
Let

fX,Y (x, y) =
{

6x if 0 < x < 1, x < y < 1,
0 elsewhere

be the joint density function of (X, Y ).
(a) Calculate the marginal density functions of X and Y .
(b) Evaluate the probability P [XY < 1/4].

Question no. 19
A device is made up of two independent components. One of the components is placed

on standby and begins to operate when the other one fails. The lifetime (in hours) of
each component follows an exponential distribution with parameter λ = 1/2000. Let X
be the lifetime of the device.
(a) Give the distribution of X and its parameters.
(b) What is the mean of X?

Question no. 20
The weight (in kilograms) of manufactured items follows approximately a normal

distribution with parameters µ = 1 and σ2 = 0.02. We take 100 items at random. Let
Xj be the weight of the jth item, for j = 1, 2, . . . , 100. We suppose that the Xjs are
independent random variables.
(a) Calculate P [X1 −X2 < 0.05].
(b) Find the number b such that P [X1 + X2 < b] = 0.025.
(c) Calculate approximately, using a normal distribution, the probability that exactly
70 of the 100 items considered have a weight smaller than 1.072 kg.

Question no. 21
Let

fX,Y (x, y) =
{

e−2x if x > 0, 0 < y < 2,
0 elsewhere

be the joint density function of the random vector (X, Y ).
(a) Find fX(x) and fY (y).
(b) What is the correlation coefficient of X and Y ? Justify.
(c) What is the 50th percentile of Y ?
(d) Calculate P [Y < eX ].

Question no. 22
The time T (in years) elapsed between two major power failures in a particular region

has an exponential distribution with mean 1.5. The duration X (in hours) of these major
power failures follows approximately a normal distribution with mean 4 and standard
deviation 2. We assume that the failures occur independently of one another.
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(a) Given that there were no major power failures during the last year, what is the
probability that there will be no major power failures over the next nine months?
(b) How long, at most, do 95% of the major power failures last?
(c) Calculate the probability that the duration of the next major power failure and that
of the following one differ by at most 30 minutes.
(d) Calculate the probability that the longest major power failure, among the next three,
lasts less than five hours.
(e) Use the central limit theorem to calculate (approximately) the probability that the
30th major power failure from now occurs within the next 50 years.

Question no. 23
Suppose that

fX,Y (x, y) =
{

2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ x,
0 elsewhere

is the joint density function of the random vector (X, Y ).
(a) Find the marginal density functions of X and Y .
(b) Calculate P [X − Y < 1/2].
(c) Are X and Y independent? Justify.
(d) Calculate E[XY ].

Question no. 24
Let X be the number of customers of a car salesman over a one-day period. Suppose

that X has a Poisson distribution with parameter λ = 3. Furthermore, suppose that one
customer in five, on average, buys a car (on a given visit), independently of the other
customers. Let Y be the number of cars sold by the salesman in one day.
(a) Given that the salesman had five customers during a given day, what is the proba-
bility that he sold exactly two cars?
(b) What is the average number of cars sold by the salesman in a one-day period?
Justify.
Indication. We have that E[Y ] =

∑∞
x=0 E[Y | X = x]P [X = x]. Moreover, knowing

that X = x, Y is a binomial random variable.
(c) What is the probability that the salesman sells no cars during a given day?
Indication. We have that

∑∞
x=0

kx

x! = ek.
(d) Knowing that the salesman sold no cars during a given day, what is the probability
that he had no customers?

Question no. 25
Let X1, X2, . . . , X50 be independent random variables having an exponential distri-

bution with parameter λ = 2.
(a) Calculate P [X2

1 > 4 | X1 > 1].
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(b) Let S =
∑50

i=1 Xi.
(i) Give the exact probability distribution of S, as well as its parameter(s).
(ii) Calculate approximately, using the central limit theorem, P [S < 24].

Question no. 26
Let X1 ∼ N(0, 1) and X2 ∼ N(1, 3) be two independent random variables.

(a) Calculate P [|X1 −X2| > 1].
(b) What is the 90th percentile of Y := X1 + X2?

Question no. 27
The joint density function of the random vector (X, Y, Z) is given by

fX,Y,Z(x, y, z) =
{

k[(x/y) + z] if 0 < x < 1, 1 < y < e, −1 < z < 1,
0 elsewhere.

(a) Find the constant k.
(b) Show that

fX,Y (x, y) =
{

2x/y if 0 < x < 1, 1 < y < e,
0 elsewhere.

(c) Are X and Y independent random variables? Justify.
(d) Calculate the mathematical expectation of Y/X.

Question no. 28
Let X be a random variable following a gamma distribution with parameters α = 25

and λ = 1/2.
(a) Calculate the probability P [X < 40] by making use of a Poisson distribution.
(b) Use the central limit theorem to calculate (approximately) P [40 ≤ X ≤ 50]. Justify
the use of the central limit theorem.

Question no. 29
Let X be a random variable having a binomial distribution with parameters n = 100

and p = 1/2, and let Y be a random variable following a normal distribution with
parameters µ = 50 and σ2 = 25.
(a) Calculate approximately P [X < 40].
(b) Calculate the probability P [X = Y ].
(c) What is the 33rd percentile of Y ?

Question no. 30
The table below presents the joint probability distribution of the random vector

(X, Y ):



4.6 Exercises for Chapter 4 151

x \ y 1 2 3
0 1/9 2/9 1/9
1 1/18 1/9 1/18
2 1/6 1/18 1/9

Calculate E[2XY ].

Question no. 31
Let

fX,Y (x, y) =
{

4xy if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 elsewhere

be the joint density function of the random vector (X, Y ). Calculate the probability
P [X2 + Y 2 < 1/4].

Question no. 32
Let X1, X2, and X3 be random variables such that (i) X1 and X2 are independent,

(ii) VAR[Xi] = 2, for i = 1, 2, 3, (iii) COV[X1, X3] = 1/2, and (iv) COV[X2, X3] = 1.
Calculate VAR[X1 + X2 + 2X3].

Question no. 33
The lifetime (in years) of a certain machine follows approximately a N(5, 4) distri-

bution. Use the central limit theorem to calculate (approximately) the probability that
at most 10, among 30 (independent) machines of this type, last at least six years.

Question no. 34
The joint density function of the random vector (X, Y ) is given by

fX,Y (x, y) =
{

1/π if x2 + y2 ≤ 1,
0 elsewhere.

(a) Check that fX,Y (x, y) is a valid joint density function.
(b) Calculate the marginal density functions fX(x) and fY (y).
(c) Are X and Y independent? Justify.
(d) Calculate P [X2 + Y 2 ≥ 1/4].

Question no. 35
A fair die is rolled 30 times, independently. Let X be the number of 6s obtained and

Y be the sum of all the numbers obtained.
(a) Use a Poisson distribution to calculate (approximately) P [X > 5] (even if the
probability of success is relatively large).
(b) Use the central limit theorem to calculate (approximately) P [100 ≤ Y < 111].
Indication. If W is the number obtained on an arbitrary roll of a fair die, then we have
that E[W ] = 7/2 and VAR[W ] = 35/12.
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Question no. 36
Let

fX(x) =
{

1/10 if 0 ≤ x ≤ 10,
0 elsewhere

and

pY (y) =
{

1/10 if y = 1, 2, . . . , 10,
0 otherwise.

Suppose that X and Y are independent random variables. Calculate (a) the probability
P [X > Y ] and (b) VAR[XY ].

Question no. 37
Suppose that X and Y are two random variables such that VAR[X] = VAR[Y ] =

1 and COV[X, Y ] = 2/3. For what value of k is the correlation coefficient of X and
Z := X + kY equal to 2/3?

Question no. 38
An electronic device is made up of ten components whose lifetime (in months) fol-

lows an exponential distribution with mean 50. Suppose that the components operate
independently of one another. Let T be the lifetime of the device. Obtain the density
function of T if
(a) the components are connected in series;
(b) the components are connected in parallel;
(c) the components are placed in standby redundancy. That is, only one component
operates at a time and, when it fails, it is immediately replaced by another component
(if there remains at least one working component).

Question no. 39
Electric light bulbs bought to illuminate an outside rink have an average lifetime of

3000 hours, with a standard deviation of 339 hours, independently from one light bulb
to the other. Suppose that the lifetime of the light bulbs follows approximately a normal
distribution.
(a) If it is more economical to replace all the light bulbs when 20% among them are
burnt out, rather than to change the light bulbs when needed, after how many hours
should we replace them?
(b) Suppose that only the burnt-out light bulbs have been replaced after t1 hours, where
t1 is the time when 20% of the light bulbs should be burnt out. Find the percentage of
light bulbs that will be burnt out after 1

2 t1 additional hours.

Question no. 40
The continuous random vector (X, Y ) has the following joint density function:

fX,Y (x, y) =
{

6(1− x− y) if x > 0, 0 < y < 1− x,
0 elsewhere.

(a) Calculate the marginal density function of Y .
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(b) Find the 40th percentile of Y .
(c) Let Z = Y 3. Obtain the density function of Z.
(d) Calculate the probability P [X < Y ].

Question no. 41
A fair die is tossed twice, independently. Let X be the number of 5s and Y be the

number of 6s obtained. Calculate
(a) the joint probability function pX,Y (x, y), for 0 ≤ x + y ≤ 2;
(b) the function FX,Y (1/2, 3/2);
(c) the standard deviation of 2X ;
(d) the correlation coefficient of X and Y .

Question no. 42
Let

x1 −2 −1 1 2
pX1(x1) 1/3 1/6 1/3 1/6

and
x2 0 1

pX2(x2 | X1 = −2) 1/2 1/2
pX2(x2 | X1 = −1) 1/2 1/2
pX2(x2 | X1 = 1) 1 0
pX2(x2 | X1 = 2) 0 1

(a) Calculate
(i) the marginal probability function of X2;
(ii) the probability pX2(x2 | {X1 = −2} ∪ {X1 = 2}), for x2 = 0 and 1.

(b) Let Y = 2X1 + X2
1 . Find the distribution function of Y .

Question no. 43
The duration X (in hours) of the major breakdowns of a given subway system

follows approximately a normal distribution with mean µ = 2 and standard deviation
σ = 0.75. We assume that the durations of the various breakdowns are independent
random variables.
(a) Calculate (exactly) the probability that the duration of each of more than 40 of the
next 50 major breakdowns is smaller than three hours.
Remark. This question requires the use of a pocket calculator or a software package.
(b) Use a normal distribution to calculate approximately the probability in part (a).

Question no. 44
Suppose that X1, . . . , X9 are independent random variables having an exponential

distribution with parameter λ = 1/2.
(a) Calculate the probability
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P

[
X1 + X2 + X3

X4 + · · ·+ X9
< 1.5

]
.

(b) Let Y = X1 + X2.
(i) Calculate P [Y ≤ y | X1 = x1], where x1 > 0 and y > 0.
(ii) Obtain the conditional density function fY (y | X1 = x1).

Question no. 45
We consider a discrete random variable X having a hypergeometric distribution with

parameters N = 10, n = 5, and d = 2.
(a) We define Y = X2. Calculate the correlation coefficient of X and Y .
(b) Let X1, X2, . . . , X8 be independent random variables following the same distribution
as X. We define Z = X1 + · · ·+ X8. Calculate the probability P [8 ≤ Z ≤ 12].
Remark. This question requires the use of a software package.

Question no. 46
Suppose that the joint probability function of the random vector (X, Y ) is given by

pX,Y (x, y) =


(

x

y

)
e−1(1/2)x

x!
if x = 0, 1, 2, . . .; y = 0, 1, . . . , x,

0 otherwise.

(a) Obtain the functions pX(x), pY (y), and pY (y | X = 35).
(b) Calculate the probability P [12 < Y ≤ 18 | X = 35]

(i) exactly (with the help of a software package, if possible);
(ii) using an approximation based on a normal distribution.

(c) Calculate the probability P [X ≤ 2 | X ≥ 2].

Question no. 47
A system is made up of three components, C1, C2, and C3, connected in parallel. The

lifetime T1 (in years) of component C1 follows (approximately) a normal distribution
with parameters µ = 4 and σ2 = 2.25. In the case of component C2, its lifetime T2 has an
exponential distribution with parameter λ = 1/4. Finally, the lifetime T3 of component
C3 has a gamma distribution with parameters α = 2 and λ = 1/2. Furthermore, we
assume that the random variables T1, T2, and T3 are independent.
(a) Calculate the probability that the system operates for more than one year.
(b) We consider 500 systems similar to the one described above. Calculate, assuming
that these 500 systems are independent, the probability that 2, 3, 4, or 5 among them
are down after one year

(i) exactly (with the help of a software package or a pocket calculator);
(ii) using an approximation based on a Poisson distribution.
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(c) Suppose that at first only components C1 and C2 are active. Component C3 is on
standby and begins to operate as soon as C1 and C2 are both down, or after one year if
C1 or C2 still operates at that time. Suppose also that if C1 or C2 still operates after one
year, then T3 ∼ G(2, 1/2); otherwise T3 has an exponential distribution with parameter
λ = 1. Calculate the probability that component C3 operates for at least two years.

Question no. 48
Suppose that

fX,Y (x, y) =
{

1/8 if x ≥ 0, y ≥ 0, 0 ≤ x + y ≤ 4,
0 elsewhere

is the joint density function of the random vector (X, Y ).
(a) Obtain the marginal density function fX(x).
(b) Calculate (i) the expected value of X, (ii) its variance, (iii) its skewness β1, and (iv)
its kurtosis β2.
(c) Calculate the correlation coefficient of X and Y . Are the random variables X and
Y independent? Justify.

Question no. 49
In a particular region, the daily temperature X (in degrees Celsius) during the

month of September has a normal distribution with parameters µ = 15 and σ2 =
25. Calculate, using an approximation based on a normal distribution, the probability
that the temperature exceeds 17 degrees Celsius on exactly 10 days over the course of
September.

Question no. 50
Consider the joint density function

fX,Y (x, y) =
{

90x2y(1− y) if 0 < y < 1, 0 < x < y,
0 elsewhere.

(a) Calculate the marginal density functions fX(x) and fY (y).
(b) Are X and Y independent random variables? Justify.
(c) Calculate the covariance of X and Y .

Question no. 51
Let X1 and X2 be two discrete random variables whose joint probability function is

given by

pX1,X2(x1, x2) =
2

x1!x2!(2− x1 − x2)!

(
1
4

)x1
(

1
3

)x2
(

5
12

)2−x1−x2

if x1 ∈ {0, 1, 2}, x2 ∈ {0, 1, 2}, and x1 + x2 ≤ 2 [and pX1,X2(x1, x2) = 0, otherwise].
(a) Let Y1 = X1 + X2 and Y2 = X1 −X2. Find the probability functions of Y1 and Y2.



156 4 Random vectors

(b) Calculate the function pY2(y2 | Y1 = 2).

Question no. 52
A number X is taken at random in the interval [−1, 1], and then a number Y is

taken at random in the interval [−1, X].
(a) Find fX,Y (x, y) and fY (y).
(b) Calculate (i) E[(X + 1)Y ] and (ii) E[Y ].
(c) Use part (b) to calculate COV[X, Y ].

Question no. 53
The storage tank of a gas station is usually filled every Monday. The capacity of the

storage tank is equal to 20,000 liters. The gas station owner is told, on a given Monday,
that there will be no gasoline delivery the next Monday. What is the probability that
the gas station will not be able to satisfy the demand for a two-week period (with the
20,000 liters) if the weekly demand (in thousands of liters) follows
(a) an exponential distribution with parameter λ = 1/10?
(b) a gamma distribution with parameters α = 5 and λ = 1/2?

Question no. 54
A random variable X has the following probability function:

x −1 0 1
pX(x) 1/8 3/4 1/8

Let X1 and X2 be two independent random variables distributed as X. We set Y =
X2 −X1.
(a) Obtain the joint probability function of the pair (X1, X2).
(b) Calculate the correlation coefficient of X1 and Y .
(c) Are the random variables X1 and Y independent? Justify.

Question no. 55
Let X1, . . . , X10 be independent random variables having an exponential distribution

with parameter λ = 1. We define Y =
∑10

i=1 Xi.
(a) Evaluate, without making use of the central limit theorem, the probability P [Y < 5].
(b) Use the central limit theorem to evaluate P [Y ≥ 10].

Multiple choice questions

Question no. 1
Let X ∼ N(0, 1) and Y ∼ N(1, 4) be two random variables such that COV[X, Y ] = 1.

Calculate P [X + Y < 12].
(a) 0 (b) 0.6915 (c) 0.8413 (d) 0.9773 (e) 1



4.6 Exercises for Chapter 4 157

Question no. 2
Calculate P [3 ≤ X + Y < 6] if X ∼ Poi(1) and Y ∼ Poi(2) are independent random

variables.
(a) 0.269 (b) 0.493 (c) 0.543 (d) 0.726 (e) 0.916

Question no. 3
Use the approximation of the binomial distribution by a normal distribution to

calculate P [X ≤ 12], where X ∼ B(n = 25, p = 1/2).
(a) 0.4207 (b) 0.4681 (c) 0.5 (d) 0.5319 (e) 0.5793

Question no. 4
Let

fX,Y (x, y) =
{

1
4π if x2 + y2 ≤ 4,
0 elsewhere.

Find fX(x).
(a) 1

2π

√
4− x2 if −2 ≤ x ≤ 2 (b) 1

2π

√
4− x2 if 0 ≤ x ≤ 2

(c) 1
4π

√
4− x2 if −2 ≤ x ≤ 2 (d) 1

4π

√
4− x2 if 0 ≤ x ≤ 2

(e) 1
4π

√
4− x2 if −2 ≤ x ≤ y

Question no. 5
Suppose that pX(x | Y = y) = 1/3, for x = 0, 1, 2 and y = 1, 2, and that pY (y) = 1/2,

for y = 1, 2. Calculate pX,Y (1, 2).
(a) 1/6 (b) 1/3 (c) 1/2 (d) 2/3 (e) 1

Question no. 6
Let X be a random variable such that E[Xn] = 1/2, for n = 1, 2, . . . . We set

Y = X2. Calculate ρX,Y .
(a) 0 (b) 1/4 (c) 1/2 (d) 3/4 (e) 1

Question no. 7
Suppose that the random variable X is such that E[X] = VAR[X] = 1. Calculate

(approximately) the probability P
[∑49

i=1 Xi < 56
]
, where X1, X2, . . . , X49 are indepen-

dent random variables distributed as X.
(a) 0.5 (b) 0.6554 (c) 0.8413 (d) 0.8643 (e) 1

Question no. 8
We define W = 3X +2Y −Z, where X, Y , and Z are independent random variables

such that σ2
X = 1, σ2

Y = 4, and σ2
Z = 9. Calculate σW .

(a)
√

2 (b) 4 (c)
√

20 (d)
√

34 (e) 10
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Question no. 9
We consider the joint density function

fX,Y (x, y) =
{

1/4 if 0 < x < 2, 0 < y < 2,
0 elsewhere.

Calculate P [X > 2Y ].
(a) 1/8 (b) 1/4 (c) 1/2 (d) 3/4 (e) 7/8

Question no. 10
Calculate P [2X < Y ] if

fX,Y (x, y) =
{

2 for 0 ≤ x ≤ y ≤ 1,
0 elsewhere.

(a) 0 (b) 1/4 (c) 1/2 (d) 3/4 (e) 1

Question no. 11
We define X= max{X1, X2}, where X1 and X2 are the numbers obtained by simul-

taneously rolling two fair dice. That is, X is the greater of the two numbers observed.
Calculate E[X].
(a) 91/36 (b) 3.5 (c) 4 (d) 161/36 (e) 4.5

Question no. 12
Suppose that

fX(x | Y = y) =
{ 1

2y if 0 < x < 2y,
0 elsewhere

and

fY (y) =
{

1
2 if 0 < y < 2,
0 elsewhere.

Find fX,Y (x, y).
(a) 1

8 if 0 < x < 4 and 0 < y < 2 (b) 1
4y if 0 < x < 4 and 0 < y < 2

(c) 1
4y if 0 < x < 2y and 0 < y < 2 (d) 1

2y if 0 < x < 2y and 0 < y < 2
(e) 1

y if 0 < x < 4 and 0 < y < 2

Question no. 13
Let

x −2 0 2
pX(x) 1/8 3/4 1/8

be the probability function of the random variable X. We define Y = −X2. Calculate
the correlation coefficient of X and Y .
(a) −1 (b) −1/2 (c) 0 (d) 1/2 (e) 1
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Question no. 14
Suppose that X and Y are two independent random variables. We define two other

random variables by R = aX + b and S = cY + d. For what values of a, b, c, and d are
the variables R and S uncorrelated (i.e., ρR,S = 0)?
(a) none (b) a = b = 1 (c) b = d = 0 (d) a = c = 1, b = d = 0 (e) all

Question no. 15
Suppose that X1 and X2 are two independent random variables uniformly distributed

on the interval [0, 1]. Let X be the smaller of the two random variables. Calculate
P [X > 1/4].
(a) 1/16 (b) 1/8 (c) 1/4 (d) 9/16 (e) 3/4

Question no. 16
Calculate P [X1+X2 < 2] if X1 and X2 are two independent random variables having

an exponential distribution with parameter λ = 1.
(a) 0.324 (b) 0.405 (c) 0.594 (d) 0.676 (e) 0.865

Question no. 17
Let X1, . . . , X36 be independent random variables, where Xi follows a gamma dis-

tribution with parameters α = 2 and λ = 3, for all i. Calculate (approximately)
P [2/3 < X̄ < 3/4], where X̄ := 1

36

∑36
i=1 Xi.

(a) 0.218 (b) 0.355 (c) 0.360 (d) 0.497 (e) 0.855

Question no. 18
Suppose that X1, . . . , Xn are independent N(0, 1) random variables. What is the

smallest value of n for which P [−0.1n <
∑n

i=1 Xi < 0.1n] ≥ 0.95?
(a) 19 (b) 20 (c) 271 (d) 384 (e) 385

Question no. 19
Let X1 ∼ N(0, 1), X2 ∼ N(−1, 1), and X3 ∼ N(1, 1) be independent random vari-

ables. Calculate P [|X1 + 2X2 − 3X3| > 5].
(a) 0.004 (b) 0.496 (c) 0.5 (d) 0.504 (e) 0.996

Question no. 20
Calculate approximately, by means of a normal distribution, P

[∑100
i=1 Xi ≤ 251

]
,

where X1, . . . , X100 are independent random variables such that Xi has a binomial
distribution with parameters n = 10 and p = 1/4, for i = 1, . . . , 100.
(a) 0.50 (b) 0.51 (c) 0.53 (d) 0.56 (e) 0.59



5

Reliability

In many applied fields, particularly in most engineering disciplines, it is important to
be able to calculate the probability that a certain device or system will be active at a
given time instant, or over a fixed period of time. We already considered many exercises
on reliability theory in Chapters 2 to 4. In Chapter 2, it was understood that we were
calculating the reliability of a system at a given time instant t0, knowing the reliability
of each of its components at t0. In order to calculate the probability that a machine will
operate without failure for a given amount of time, we need to know the distribution
of its lifetime or of the lifetime of its components. It becomes a problem on random
variables or vectors. In this chapter, we present in detail the main concepts of reliability
theory.

5.1 Basic notions

There are many possible interpretations of the word reliability. In this textbook, it
always corresponds to the probability of functioning correctly at a given time instant or
over a given period of time. Moreover, in the current chapter, we are mainly interested
in the reliability over a certain time interval [0, t].

Definition 5.1.1. Let X be a nonnegative random variable representing the lifetime (or
time to failure) of a system or a device. The probability

R(x) = P [X > x] [= 1− FX(x)] for x ≥ 0

is called the reliability function or survival function of the system.

¯
X(x) =

1− FX(x) is used as well.
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Remarks. (i) The function R(x) can also be denoted by S(x). The notation F
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(ii) Most often, it is assumed that the random variable X is continuous. However, in
some applications, the lifetime is measured in number of cycles. Therefore, X is then a
discrete (integer-valued, to be precise) random variable. Furthermore, if we accept the
possibility that a device may be defective, then X could take on the value 0 and be a
mixed type random variable.
(iii) All discrete distributions considered in Section 3.2 could serve as reliability models.
In the case of the continuous distributions, we must limit ourselves to the ones that are
always nonnegative. Therefore, the normal distribution cannot be an exact reliability
model. Nonetheless, depending on the values of the parameters µ and σ, it can be a good
approximate model for the survival time of a machine. Furthermore, we can consider
the truncated normal distribution, defined for x ≥ 0.

A useful measure of the dependability of a system is its mean lifetime E[X]. In the
context of reliability theory, E[X] is called the mean time to failure of the system.

Definition 5.1.2. The symbol MTTF (which stands for Mean Time To Failure)
denotes the expected value of the lifetime X of a system. If the system can be repaired,
we also define the symbols MTBF (Mean Time Between Failures) and MTTR
(Mean Time To Repair). We have that MTBF = MTTF + MTTR.

Remarks. (i) Suppose that we are interested in the lifetime X of a car. It is obvious that,
except in case of a very major failure, the car will be repaired when it breaks down.
When we calculate the quantity MTBF , we assume that, after having been “repaired,”
a system is as good as new. Of course, in the case of a car, this is not exactly true,
because cars age and wear.
(ii) To distinguish between critical and noncritical failures, we can use the more precise
term Mean Time Between Critical Failures (MTBCF ). Then, MTBF could be inter-
preted as the mean time between failures of any type, that is, critical or noncritical. In
the context of a computer or data transmission system, we also have the Mean Time
Between System Aborts (MTBSA).

To calculate the mean lifetime of a system, we can, of course, use the definition of
the expected value of a random variable. However, it is sometimes simpler to proceed
as in the following proposition.

Proposition 5.1.1. Let X be a nonnegative random variable. Then, we have:

E[X] =


∑∞

k=0 P [X > k] =
∑∞

k=0 R(k) if X ∈ {0, 1, . . .},∫∞
0

P [X > x]dx =
∫∞
0

R(x)dx if X ∈ [0,∞).
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Proof. Consider first the case when X is an integer-valued random variable. We have:

E[X] :=
∞∑

j=0

jP [X = j] =
∞∑

j=1

jP [X = j] =
∞∑

j=1

j∑
k=1

P [X = j]

=
∞∑

k=1

∞∑
j=k

P [X = j] =
∞∑

k=1

P [X ≥ k] =
∞∑

k=0

P [X > k].

Similarly, if X (is continuous and) belongs to the interval [0,∞), we can write that

E[X] :=
∫ ∞

0

tfX(t)dt =
∫ ∞

0

∫ t

0

fX(t)dxdt

=
∫ ∞

0

∫ ∞

x

fX(t)dtdx =
∫ ∞

0

P [X > x]dx.

Remarks. (i) It is not necessary that the discrete random variable X can take on all
nonnegative integers. It is sufficient that the set of possible values of X be included in
{0, 1, . . .}. Likewise, in the continuous case, X must take its values in the interval [0,∞).
(ii) Often, the formulas in the proposition do not simplify the calculation of the expected
value of X. For example, it is more complicated to calculate the mean of a Poisson
random variable from the first formula than from the definition.

Example 5.1.1. Let X be a geometric random variable with parameter p in the interval
(0, 1). Its possible values are the integers 1, 2 . . . and its mean is equal to 1/p. We saw
(on p. 64) that

P [X > k] = (1− p)k for k = 0, 1, . . . .

It follows that (indeed)

E[X] =
∞∑

k=0

(1− p)k =
1

1− (1− p)
=

1
p
.

Example 5.1.2. If X ∼ Exp(λ), we find (see Example 3.5.2) that

P [X > x] =
∫ ∞

x

λe−λtdt = e−λx for x ≥ 0.

Hence,

E[X] =
∫ ∞

0

e−λxdx = −e−λx

λ

∣∣∣∣∞
0

=
1
λ

.

In Chapter 4, we defined various conditional functions, for example, the function
fX(x | Y = y), where (X, Y ) is a continuous random vector. We can also define functions
of the type fX(x | AX), where AX is an event that involves only the random variable
X. One such particular conditional density function is important in reliability theory.
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Definition 5.1.3. Suppose that the lifetime T of a system is a continuous nonnegative
random variable. The failure rate function (or hazard rate function) r(t) of the
system is defined by

r(t) = fT (t | T > t) := lim
s↓t

d

ds
FT (s | T > t) for t ≥ 0.

Remarks. (i) The function r(t), multiplied by dt, can be interpreted as the probability
that a machine, which is t time units old and still operating, will break down in the
interval (t, t + dt]. Indeed, we have:

fT (t | T > t) = lim
dt↓0

P [t < T ≤ t + dt | T > t]
dt

.

(ii) We assume that the conditional distribution function FT (s | T > t) is differentiable
at s ∈ (t, t + dt].
(iii) We must take the limit as s decreases to t in the definition, because we have that
FT (t | T > t) ≡ P [T ≤ t | T > t) = 0. However, we don’t have to take any limit to
calculate fT (s | T > t) from FT (s | T > t), for s > t.

Proposition 5.1.2. We have:

r(t) =
fT (t)

1− FT (t)
= −R′(t)

R(t)
for t ≥ 0.

Proof. By definition,

FT (s | T > t) = P [T ≤ s | T > t] =
P [{T ≤ s} ∩ {T > t}]

P [T > t]

=

 0 if s ≤ t,
FT (s)− FT (t)

1− FT (t)
if s > t.

Hence,

fT (s | T > t) :=
d

ds
FT (s | T > t) =

fT (s)
1− FT (t)

if s > t.

Taking the limit as s decreases to t, we obtain that

r(t) := fT (t | T > t) =
fT (t)

1− FT (t)
.
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Finally, because

R′(t) =
d

dt
[1− FT (t)] = −fT (t),

we also have:

r(t) = −R′(t)
R(t)

for t ≥ 0.

Remark. In the discrete case, the failure rate function is given by

r(k) =
pX(k)∑∞

j=k pX(j)
for k = 0, 1, . . . .

Note that 0 ≤ r(k) ≤ 1 for any k, whereas r(t) ≥ 0 in the continuous case.

Example 5.1.3. One of the most commonly used models in reliability theory is the
exponential distribution, mainly because of its memoryless property (see p. 76). This
property implies that for a system whose lifetime is exponentially distributed, the failure
rate function is constant. Indeed, if X ∼ Exp(λ), we have (see the previous example):

r(t) =
λe−λt

e−λt
= λ for t ≥ 0.

In practice, this is generally not realistic. There are some applications though for which
this is acceptable. For example, it seems that the lifetime of an electric fuse that cannot
melt only partially is approximately exponentially distributed. The time between the
failures of a system made up of a very large number of independent components con-
nected in series can also follow approximately an exponential distribution, if we assume,
in particular, that every time a component fails it is immediately replaced by a new
one. However, in most cases, the exponential distribution should only be used for t in a
finite interval [t1, t2].

Example 5.1.4. The geometric distribution is the equivalent of the exponential distri-
bution in discrete time. It also possesses the memoryless property. Because P [X ≥ k] =
P [X > k − 1], we calculate (see Example 5.1.1)

r(k) =
(1− p)k−1p

(1− p)k−1
= p for k = 1, 2, . . . .

Therefore, the failure rate function r(k) is a constant in this case too, as expected.

The failure rate function of a given distribution is a good indicator of the value of
this distribution as a model in reliability theory. In most applications, r(t) should be a
strictly increasing function of t, at least when t is large enough.
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Definition 5.1.4. If the random variable X is such that its failure rate function rX(t)
or rX(k) is increasing (resp., decreasing) in t or k, then X is said to have an increasing
failure rate (resp., decreasing failure rate) distribution.

Notation. We use the acronym IFR (resp., DFR) for Increasing Failure Rate (resp.,
Decreasing Failure Rate).

Now, making use of Proposition 5.1.2, we obtain that∫ t

0

r(s)ds = −
∫ t

0

R′(s)
R(s)

ds = − lnR(t) + lnR(0).

Moreover, the random variable T [with failure rate function r(t)] being continuous and
nonnegative, we may write that R(0) := P [T > 0] = 1. Hence, we may state the
following proposition.

Proposition 5.1.3. There is a one-to-one relationship between the functions R(t) and
r(t):

R(t) = exp
{
−
∫ t

0

r(s)ds

}
.

Remark. The proposition implies that the exponential distribution is the only continuous
distribution having a constant failure rate function.

Example 5.1.5. We can show that the failure rate function r(t) of a lognormal distri-
bution starts at zero [because limt↓0 fT (t) = 0], next it increases to a maximum, and
then

lim
t→∞

r(t) = 0.

So, we must conclude that the lognormal distribution is not a good model for the lifetime
of a device that is subject to wear, at least not for t large. Indeed, the failure rate should
generally increase with t, as mentioned above.

Example 5.1.6. The normal distribution N(µ, σ2) should not be used to model the
lifetime of a system, unless µ and σ are such that the probability that the random
variable takes on a negative value is negligible. For any values of µ and σ, we can define
the truncated normal distribution as follows:

fX(x) =
1√

2πσ c
exp

{
− (x− µ)2

2σ2

}
for x ≥ 0,

where c is a constant such that
∫∞
0

fX(x)dx = 1. That is,

c =
[∫ ∞

0

fY (y)dy

]−1

=
1

1− Φ(−µ/σ)
,

where Y ∼ N(µ, σ2). We can write that X ≡ Y | {Y ≥ 0}. Note that if µ = 0, then
c = 2.
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We find that the failure rate function of a truncated normal distribution is strictly
increasing, which makes it an interesting model for many applications.

Example 5.1.7. The Weibull distribution (see p. 77) is a really important model in
reliability theory and fatigue analysis. We have:

R(t) =
∫ ∞

t

λβxβ−1 exp
(
−λxβ

)
dx = exp

(
−λtβ

)
.

It follows that

r(t) =
λβtβ−1 exp

(
−λtβ

)
exp (−λtβ)

= λβtβ−1 for t ≥ 0.

Therefore, the Weibull distribution is DFR if β < 1 and IFR if β > 1. When β = 1, we
retrieve the exponential distribution.

Although it is true that the failure rate function r(t) should increase as t increases,
for large enough values of t, in many situations it is first a decreasing function of t. For
example, the mortality rate of children does indeed decrease at first. There is a greater
risk that a baby will die at birth or shortly thereafter than when it is six months old, in
particular. When the child grows older, the death rate is more or less constant for some
time, whereas it increases for adults. Therefore, the function r(t) looks like a bathtub
(see Figure 5.1). As mentioned above, the exponential distribution should only be used

t

r(t)

Random failure period Wearout failure period

Early
Failure
Period

0

Fig. 5.1. Failure rate function having the shape of a bathtub.

for t such that t1 ≤ t ≤ t2 < ∞. It is valid for the flat portion of the bathtub.
Suppose that the lifetime X is defined as follows:

X = c1X1 + c2X2 + c3X3,

where Xi has a Weibull distribution and ci > 0, for i = 1, 2, 3. We assume that c1 +
c2 + c3 = 1. Then, the linear combination of Weibull random variables is called a mixed
Weibull distribution. The bathtub shape can be obtained by choosing the parameter β
of X1 smaller than 1, that of X2 equal to 1, and that of X3 greater than 1. Note that
X2 is actually an exponential random variable.
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Next, sometimes we are interested in the probability that a system will fail during
a particular time interval.

Definition 5.1.5. The interval failure rate of a system in the interval (t1, t2] is
denoted by FR(t1, t2) and is defined by

FR(t1, t2) =
P [t1 < T ≤ t2 | T > t1]

t2 − t1
=

R(t1)−R(t2)
R(t1)

1
(t2 − t1)

for 0 ≤ t1 < t2 < ∞, where T is a continuous random variable.

Remark. We have:
r(t1) = lim

t2↓t1
FR(t1, t2).

Example 5.1.8. Suppose that T ∼ Exp(λ). First, we calculate the conditional density
function fT (t | T > t1). We find that

fT (t | T > t1) =
fT (t)

P [T > t1]
=

λe−λt

e−λt1
= λe−λ(t−t1) for t > t1

[and fT (t | T > t1) = 0 for t ≤ t1]. It follows that

P [t1 < T ≤ t2 | T > t1] =
∫ t2

t1

λe−λ(t−t1)dt = −e−λ(t−t1)

∣∣∣∣t2
t1

= 1− e−λ(t2−t1).

Hence, we have:

FR(t1, t2) =
1− e−λ(t2−t1)

t2 − t1
.

Actually, we could have obtained this result at once from the reliability function R(t) =
e−λt. However, we wanted to give the formula for the density function of the shifted
exponential distribution. A shifted distribution can be used as a model in reliability
theory in the following situation: suppose that a man buys a device for which there is
a guarantee period of length t1 > 0. Then, the buyer is sure that the device in question
will last at least t1 time units (it may be repaired or replaced if it fails before the end
of the guarantee period).

Notice that the function FR(t1, t2) actually depends only on the difference t2 − t1.
Therefore, the probability that the system will fail in a given interval depends only on
the length of this interval, which is a consequence of the memoryless property of the
exponential distribution. Finally, making use of l’Hospital’s rule, we obtain that

lim
t2↓t1

FR(t1, t2) = lim
t2↓t1

1− e−λ(t2−t1)

t2 − t1
= lim

ε↓0

1− e−λε

ε
= lim

ε↓0

e−λελ

1
= λ,

as should be.
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Example 5.1.9. Let
fT (t) = te−t for t > 0.

The random variable T has a gamma distribution with parameters α = 2 and λ = 1.
We calculate

R(t) =
∫ ∞

t

se−sds = −se−s

∣∣∣∣∞
t

+
∫ ∞

t

e−sds = (t + 1)e−t for t > 0,

where we used l’Hospital’s rule to evaluate the limit lims→∞ se−s. We have:

r(t) =
te−t

(t + 1)e−t
=

t

t + 1
= 1− 1

t + 1
,

which is an increasing function for all values of t. Actually, the gamma distribution is
IFR for any α > 1 (and DFR if 0 < α < 1).

From the function R(t), we deduce that

FR(t1, t2) =
[
1− (t2 + 1)

(t1 + 1)
e−(t2−t1)

]
1

t2 − t1
.

Finally, we define another quantity of interest in reliability theory.

Definition 5.1.6. The average failure rate of a system over an interval [t1, t2] is
given by

AFR(t1, t2) =

∫ t2
t1

r(t)dt

t2 − t1
=

ln[R(t1)]− ln[R(t2)]
t2 − t1

.

Remark. This quantity is an example of a temporal average.

Example 5.1.10. If T has a Weibull distribution, we have (see Example 5.1.7):∫ t2

t1

r(t)dt =
∫ t2

t1

λβtβ−1dt = λ(tβ2 − tβ1 ),

so that

AFR(t1, t2) =
λ(tβ2 − tβ1 )

t2 − t1
.

If β = 1, we have that AFR(t1, t2) ≡ λ, whereas β = 2 implies that AFR(t1, t2) is equal
to λ(t1 + t2). Note that, when β = 2, the average failure rate is three times as large in
the interval (t, 2t) than from 0 to t.
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5.2 Reliability of systems

In this section, we consider systems constituted of at least two subsystems or compo-
nents that may be connected in series or in parallel. When components are connected in
parallel, we must distinguish between active redundancy and standby (or passive) redun-
dancy. We assume that the components making up the systems considered cannot be
repaired. When a system fails, it will remain down indefinitely. In fact, it would resume
operating if the failed components were replaced by new ones. However, here we are
only interested in the time elapsed until the first failure of the system.

5.2.1 Systems in series

Consider n subsystems operating independently of one another. Let Rk(t) be the re-
liability function of subsystem k, for k = 1, . . . , n. If the subsystems are connected in
series, then each subsystem must be active for the system to operate. Therefore, the
lifetime T of the system is such that

T > t ⇐⇒ Tk > t for all k,

where Tk is the lifetime of subsystem k. It follows that the reliability function of the
system is given by (see Proposition 5.1.3)

R(t) =
n∏

k=1

Rk(t) = exp
{
−
∫ t

0

[r1(s) + · · ·+ rn(s)] ds

}
.

Remarks. (i) In Chapter 2, we could have asked for the probability that a system made
up of n independent components connected in series operates at a given time instant
t0, given the reliability of each component at t0. Define the events S = “the system
operates at time t0” and Bk = “component k operates at time t0.” We have:

P [S] = P

[ n⋂
k=1

Bk

]
ind.=

n∏
k=1

P [Bk].

We assumed that the components cannot be repaired, thus this is actually a particular
case of the previous formula. Indeed, we may write that P [S] = R(t0) and P [Bk] =
Rk(t0). We must also assume that no components were replaced in the interval (0, t0).
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(ii) When the components making up a system are connected in series, we must assume
that they operate independently of one another, because the system fails as soon as
one of its components fails. For example, suppose that there are only two components,
denoted by A and B. We cannot imagine that there is a certain probability p1(t) [resp.,
p2(t)] that component B will be active at time t if A is active (resp., down) at time t.
If component A is down at time t, then the system stopped operating when A failed
and remained down henceforth. Furthermore, in continuous time, the probability that
components A and B will fail exactly at the same time instant is equal to zero. Therefore,
assuming that a component cannot fail while the system is down, if A is down, then B
must be active. Unless the lifetime of component B follows an exponential distribution
(or a geometric distribution, in discrete time), when component A is replaced by a new
one, component B should be replaced as well, if we want the system to be as good as
new. Similarly, we cannot suppose that the lifetime of component A has a distribution
that depends on the lifetime of B.
(iii) We can write that

T = min{T1, T2, . . . , Tn}.
The minimum of a sequence of random variables is a special case of what is known as
order statistics.

Proposition 5.2.1. Suppose that T1 and T2 are independent exponential random vari-
ables with parameters λ1 and λ2, respectively. We have:

T := min{T1, T2} ∼ Exp(λ1 + λ2).

Proof. We calculate

P [T > t] ind.= P [T1 > t]P [T2 > t] = e−λ1te−λ2t = e−(λ1+λ2)t for t ≥ 0.

It follows that

fT (t) =
d

dt
{1− P [T > t]} =

d

dt
{1− e−(λ1+λ2)t} = (λ1 + λ2)e−(λ1+λ2)t

for t ≥ 0.

Remark. The proposition can be generalized as follows: if Tk ∼ Exp(λk), for k = 1, . . . , n,
and if the Tks are independent random variables, then T := min{T1, T2, . . . , Tn} ∼
Exp(λ1 + λ2 + · · ·+ λn). Therefore, if n independent components having exponentially
distributed lifetimes are placed in series, it is equivalent to having a single component
whose lifetime follows an exponential distribution with parameter λ equal to the sum
of the λks. Note that because rk(t) ≡ λk, for k = 1, . . . , n, we have:

R(t) = exp
{
−
∫ t

0

(λ1 + · · ·+ λn) ds

}
= exp[−(λ1 + · · ·+ λn)t] = e−λt,

where λ := λ1 + · · ·+ λn.
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Example 5.2.1. If Tk is uniformly distributed on the interval [0, 1], for k = 1, . . . , n,
then

Rk(t) =
∫ 1

t

1ds = 1− t for 0 ≤ t ≤ 1.

It follows that

R(t) =
n∏

k=1

Rk(t) =
n∏

k=1

(1− t) = (1− t)n for 0 ≤ t ≤ 1.

Because Tk ≤ 1 for all k, we can write that R(t) = 0 if t > 1.

5.2.2 Systems in parallel

Active redundancy

We now consider systems constituted of at least two subsystems connected in parallel.
Assume first that all subsystems, which may contain one or many components, operate
from the initial time t = 0. This is called active redundancy. Then, the whole system
will operate as long as there is at least one active subsystem remaining. We can write
that the lifetime T of the system is the maximum of the random variables T1, . . . , Tn,
where n is the number of subsystems placed in parallel. It follows that

T ≤ t ⇐⇒ Tk ≤ t for k = 1, . . . , n.

Hence, if the subsystems operate independently of one another, we have:

R(t) = 1−
n∏

k=1

[1−Rk(t)].

Remark. When the subsystems are connected in parallel, we may consider the case where
they do not operate independently. This case was already considered in Chapter 2, for
instance, in Example 2.4.1.

Example 5.2.2. A device comprises two components connected in parallel and oper-
ating independently of each other. The lifetime Tk of component k has an exponential
distribution with parameter λk, for k = 1, 2. It follows that

P [T ≤ t] = P [{T1 ≤ t} ∩ {T2 ≤ t}] ind.= P [T1 ≤ t]P [T2 ≤ t]
= (1− e−λ1 t)(1− e−λ2 t) for t ≥ 0,

where T is the total lifetime of the system. Hence, the reliability function of the system
is
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R(t) = e−λ1 t + e−λ2 t − e−(λ1+λ2)t.

Note that the maximum of independent exponential random variables does not follow
an exponential distribution (not even if λ1 = λ2), because

fT (t) =
d

dt
P [T ≤ t] = λ1e−λ1 t + λ2e−λ2 t − (λ1 + λ2)e−(λ1+λ2)t for t ≥ 0.

We have:
E[T ] =

∫ ∞

0

R(t)dt =
1
λ1

+
1
λ2
− 1

λ1 + λ2
.

In the special case when λ1 = λ2 = λ, we obtain that E[T ] = 1.5/λ. That is, the fact
of installing two identical components in parallel, in this example, increases the mean
time to failure of the device by 50%.

Example 5.2.3. Suppose, in the preceding example, that the probability that compo-
nent no. 2 is active at a fixed time instant t0 > 0 is equal to e−λ21 t0 if component no. 1
too is active at time t0, and to e−λ22 t0 if component no. 1 is down at time t0. Then, we
can write (because the exponential distribution is continuous, so that P [T1 = t0] = 0)
that

P [T ≤ t0] = P [{T1 ≤ t0} ∩ {T2 ≤ t0}] = P [T2 ≤ t0 | T1 ≤ t0]P [T1 ≤ t0]
= (1− e−λ22 t0)(1− e−λ1 t0).

Moreover, we have:

P [T2 ≤ t0] = P [T2 ≤ t0 | T1 ≤ t0]P [T1 ≤ t0] + P [T2 ≤ t0 | T1 > t0]P [T1 > t0]
= (1− e−λ22 t0)(1− e−λ1 t0) + (1− e−λ21 t0)e−λ1 t0 .

In general, the constant λ22 should actually be a function of the exact time at which
component no. 1 failed. In Example 2.4.1, we provided the numerical probabilities that
component B operates at an unspecified time instant, given that component A does or
does not operate at that time instant. Note that the sum e−λ21 t0 + e−λ22 t0 can take on
any value in the interval [0, 2].
Remark. By conditioning on the failure time of component no. 1, we can show that

P [T2 > t] =
∫ ∞

0

P [T2 > t | T1 = τ ]fT1(τ)dτ

=
∫ t

0

P [T2 > t | T1 = τ ]fT1(τ)dτ +
∫ ∞

t

P [T2 > t | T1 = τ ]fT1(τ)dτ.

Suppose that T2 has an exponential distribution with parameter λ2 as long as component
no. 1 operates, and an exponential distribution with parameter λ3 (which should be
greater than λ2) from the moment when component no. 1 fails. Then, by the memoryless
property of the exponential distribution, we can write that
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P [T2 > t | T1 = τ ] =
{

e−λ2τe−λ3(t−τ) if 0 < τ ≤ t,
e−λ2 t if τ > t.

If the lifetime of component no. 2 is actually independent of that of component no. 1,
so that λ3 = λ2, we obtain:

P [T2 > t | T1 = τ ] =
{

e−λ2τe−λ2(t−τ) = e−λ2 t if 0 < τ ≤ t,
e−λ2 t if τ > t.

That is,
P [T2 > t | T1 = τ ] = e−λ2 t for t ≥ 0 and any τ > 0.

We have:

P [T2 > t] =
∫ ∞

0

e−λ2 tfT1(τ)dτ = e−λ2 t

∫ ∞

0

fT1(τ)dτ = e−λ2 t,

as should be.

Passive redundancy

Suppose now that a system comprises n subsystems (numbered from 1 to n) connected
in parallel, but that only one subsystem operates at a time. At first, only subsystem
no. 1 is active. When it fails, subsystem no. 2 relieves it, and so forth. This type of
redundancy is called passive (or standby) redundancy.
Remarks. (i) It is understood that there is a device that sends signals to the system
instructing it to activate subsystem no. 2 when the first one fails, and so on. In practice,
this device itself can fail. However, we assume in this book that the signaling device
remains 100% reliable over an indefinite time period. We also assume that the subsys-
tems placed in standby mode cannot fail before they are activated, although we could
actually have two failure time distributions: a dormant failure distribution and an active
failure distribution.
(ii) Because the subsystems operate one after the other, it is natural to assume (unless
otherwise stated) that their lifetimes are independent random variables.

The total lifetime T of the system is obviously given by

T = T1 + T2 + · · ·+ Tn,

so that its mean time to failure is

E[T ] =
n∑

k=1

E[Tk].
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Moreover, because the subsystems operate independently of one another, we have:

VAR[T ] ind.=
n∑

k=1

VAR[Tk].

In general, it is not easy to find an explicit expression for the reliability function of
the system, because the density function of T is the convolution of the density functions
of the random variables T1, . . . , Tn. In the particular case when Tk ∼ Exp(λ), for all k,
we know (see Subsection 4.3.3) that T has a gamma distribution with parameters n and
λ. Furthermore, making use of Formula (3.3.2), we can write that

R(t) := P [T > t] = P [Poi(λt) ≤ n− 1] =
n−1∑
k=0

e−λt (λt)k

k!
for t ≥ 0.

Example 5.2.4. A system is made up of two identical (and independent) components
arranged in standby redundancy. If the lifetime Tk of each component follows a uniform
distribution on the interval (0, 1), then (see Example 4.3.4) we can write that

FT (t) =



∫ t

0

s ds =
t2

2
if 0 < t < 1,

1
2

+
∫ t

1

(2− s) ds = 2t− t2

2
− 1 if 1 ≤ t < 2.

It follows that

R(t) = 1− FT (t) =


1− t2

2
if 0 < t < 1,

2 +
t2

2
− 2t if 1 ≤ t < 2

[and R(t) = 0 if t ≥ 2].

Example 5.2.5. Suppose that, in the previous example, T1 ∼ Exp(λ1) and T2 ∼
Exp(λ2), where λ1 6= λ2. Then, using (4.8), we can write that

fT (t) = fT1(t1) ∗ fT2(t2) =
∫ ∞

−∞
fT1(u)fT2(t− u)du

=
∫ t

0

λ1e−λ1uλ2e−λ2(t−u)du = e−λ2 t

∫ t

0

λ1λ2e−(λ1−λ2)udu

λ1 6=λ2=
λ1λ2

λ1 − λ2

(
e−λ2 t − e−λ1 t

)
for t ≥ 0.
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It follows that

R(t) =
∫ ∞

t

fT (s)ds =
λ1λ2

λ1 − λ2

(
e−λ2 t

λ2
− e−λ1 t

λ1

)
=

λ1e−λ2 t − λ2e−λ1 t

λ1 − λ2
for t ≥ 0.

Note that, making use of l’Hospital’s rule, we obtain:

lim
λ2→λ1

fT (t) = λ2
1 lim

λ2→λ1

e−λ2 t(−t)− 0
0− 1

= λ2
1te−λ1 t for t ≥ 0.

That is, T ∼ G(α = 2, λ1), as should be. We also have:

lim
λ2→λ1

R(t) L′Hos.= lim
λ2→λ1

λ1e−λ2 t(−t)− e−λ1 t

0− 1
= e−λ1 t(λ1t + 1) for t ≥ 0.

5.2.3 Other cases

Suppose that a system is made up of n subsystems and that at least k working sub-
systems are needed for the system to operate, where 0 < k ≤ n. This is called a
k-out-of-n system. Note that a series system is the particular case when k = n, whereas
a parallel system (with active redundancy) corresponds to the case when k = 1.

In general, we cannot give a simple formula for the reliability function R(t) of the
system. However, if all the subsystems are independent and have the same reliability
function R1(t), then the function R(t) is given by

R(t) = P [N ≥ k], where N ∼ B(n, p = R1(t)).

That is,

R(t) =
n∑

i=k

(
n

i

)
[R1(t)]i[1−R1(t)]n−i = 1−

k−1∑
i=0

(
n

i

)
[R1(t)]i[1−R1(t)]n−i.

Remark. We assume that the subsystems operate independently of one another. In
practice, the lifetimes of the working components often depend on the total number of
active components. For example, suppose that an airplane has four engines, but that it
can fly and land with only two of them. If two engines fail while the airplane is flying,
more load will be put on the two remaining engines, so that their lifetimes are likely to
be shorter.

Example 5.2.6. Consider a 2-out-of-3 system for which the lifetime of subsystem i
follows an exponential distribution with parameter λi = i, for i = 1, 2, 3. To obtain the
reliability function of the system, we use the following formula: if A1, A2, and A3 are
independent events, then
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P [(A1 ∩A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3)]

= P [A1 ∩A2] + P [A1 ∩A3] + P [A2 ∩A3]− 3P [A1 ∩A2 ∩A3]
+P [A1 ∩A2 ∩A3]

ind.= P [A1]P [A2] + P [A1]P [A3] + P [A2]P [A3]− 2P [A1]P [A2]P [A3].

Let Ai = {Ti > t}, so that

P [Ai] = P [Ti > t] = e−it for i = 1, 2, 3.

Then, we may write that

R(t) = e−3t + e−4t + e−5t − 2e−6t for t ≥ 0.

Remark. We can also write that

R(t) = P [A1 ∩A2 ∩A′
3] + P [A1 ∩A′

2 ∩A3] + P [A′
1 ∩A2 ∩A3]

+P [A1 ∩A2 ∩A3]
ind.= P [A1]P [A2](1− P [A3]) + P [A1](1− P [A2])P [A3]

+ (1− P [A1])P [A2]P [A3] + P [A1]P [A2]P [A3]
= P [A1]P [A2] + P [A1]P [A3] + P [A2]P [A3]− 2P [A1]P [A2]P [A3],

as above. That is, we decompose the event {T > t} into four incompatible cases: exactly
two subsystems operate at time t, or the three subsystems operate.

Next, the system shown in Figure 5.2 is called a bridge system. It operates at time
t if and only if at least one of the following events occurs:

• A1 = “components nos. 1 and 4 are active at time t;”
• A2 = “components nos. 2 and 5 are active at time t;”
• A3 = “components nos. 1, 3, and 5 are active at time t;”
• A4 = “components nos. 2, 3, and 4 are active at time t.”

Because the events A1, . . . , A4 are neither independent nor incompatible, we need the
formula for the probability of the union of four arbitrary events:

P [A1 ∪A2 ∪A3 ∪A4] = P [A1] + P [A2] + P [A3] + P [A4]− P [A1 ∩A2]
−P [A1 ∩A3]− P [A1 ∩A4]− P [A2 ∩A3]− P [A2 ∩A4]− P [A3 ∩A4]
+P [A1 ∩A2 ∩A3] + P [A1 ∩A2 ∩A4] + P [A1 ∩A3 ∩A4]
+P [A2 ∩A3 ∩A4]− P [A1 ∩A2 ∩A3 ∩A4]. (5.1)

In the special case when the five components in the bridge system operate independently
and all have the same reliability function R1(t), we can easily calculate the reliability
function of the system.
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Fig. 5.2. A bridge system.

Finally, as we did in Chapter 2, we can consider systems made up of a number of
subsystems connected in series and others connected in parallel.

Example 5.2.7. A system is constituted of two subsystems placed in series. The first
subsystem comprises two components connected in parallel, and the second subsystem
contains a single component. Suppose that the three components operate independently.
Let Ri(t) be the reliability function of component i, for i = 1, 2, 3. Then, the reliability
function of the system is given by

R(t) = {1− [1−R1(t)][1−R2(t)]}R3(t) = [R1(t) + R2(t)−R1(t)R2(t)]R3(t).

That is, we make use of the formulas for both series and parallel systems at the same
time.

5.3 Paths and cuts

When a system consists of a large (enough) number of components, a first task in
reliability theory is to find the various sets of active components that will enable the
system to operate. These sets are called paths. Conversely, we can try to determine
the sets of components, called cuts, which, when the components they comprise all are
down, entail the failure of the whole system.

Let Xi be the Bernoulli random variable that represents the state of component i
at a fixed time instant t0 ≥ 0. More precisely, Xi = 1 (resp., Xi = 0) if component i
is active (resp., down) at time t0, for i = 1, . . . , n. The random variable Xi is actually
the indicator variable of the event “component i is active at time t0.” To calculate
the reliability of the system at time t0, we need the value of the probability pi :=
P [Xi], for i = 1, . . . , n. However, to determine the paths and cuts of a system, we only
have to consider the particular values xi taken by the corresponding random variables.
Furthermore, we assume that the fact that the system operates or not at time t0 depends
only on the state of its components at that time instant.
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Definition 5.3.1. The function

H(x1, . . . , xn) =
{

1 if the system operates,
0 if the system is down

is called the structure function of the system. The vector x := (x1, . . . , xn) is the
state vector of the system.

Remarks. (i) The function H(X) = H(X1, . . . , Xn) is itself a Bernoulli random variable.
(ii) Let 0 = (0, . . . , 0) and 1 = (1, . . . , 1). We assume that H(0) = 0 and H(1) = 1.
That is, if all the components of the system have failed, then the system is down and,
conversely, if all the components are active, then the system is operating.

Notation. Consider two n-dimensional vectors: x = (x1, . . . , xn) and y = (y1, . . . , yn).
We write:

x ≥ y if xi ≥ yi for i = 1, . . . , n

and
x > y if xi ≥ yi for i = 1, . . . , n and xi > yi for at least one i.

Definition 5.3.2. A structure function H(x) such that H(0) = 0, H(1) = 1, and

H(x) ≥ H(y) if x ≥ y (5.2)

is said to be monotonic.

In this book, we assume that the structure functions H(x) of the systems considered
are monotonic.

Example 5.3.1. In the case of a series system (made up of n components), we have:

H(x) = 1 ⇐⇒ xi = 1 ∀i

(
⇐⇒

n∑
i=1

xi = n

)
,

whereas if the n components are connected in parallel, then

H(x) = 1 ⇐⇒
n∑

i=1

xi ≥ 1.

In general, for a k-out-of-n system, we can write that

H(x1, . . . , xn) =
{

1 if
∑n

i=1 xi ≥ k,
0 if

∑n
i=1 xi < k.
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Remarks. (i) We can also express the structure function H(x) as follows:

H(x1, . . . , xn) =
{

min{x1, . . . , xn} for a series system,
max{x1, . . . , xn} for a parallel system.

(ii) In the present section, when we write that the components are connected in par-
allel, we assume that they all operate from the initial time. That is, they are in active
redundancy.

To calculate the value of the structure function of an arbitrary system, the following
formulas are useful:

min{x1, . . . , xn} =
n∏

i=1

xi

and

max{x1, . . . , xn} = 1−
n∏

i=1

(1− xi),

which are valid when xi = 0 or 1, for i = 1, . . . , n.

Definition 5.3.3. A path vector is any vector x for which H(x) = 1. If, besides,
H(y) = 0 for all vectors y such that y < x, then x is called a minimal path vector.
Moreover, with every minimal path vector x = (x1, . . . , xn) we associate a set MP :=
{k ∈ {1, . . . , n} : xk = 1} called a minimal path set.

Definition 5.3.4. If H(x) = 0, the state vector x is said to be a cut vector. If, in
addition, H(y) = 1 when y > x, then x is a minimal cut vector. Furthermore, the
set MC := {k ∈ {1, . . . , n} : xk = 0}, where x = (x1, . . . , xn) is a minimal cut vector, is
called a minimal cut set.

Remarks. (i) In some books, the definition of a path (resp., cut) (set) corresponds to
that of a minimal path set (resp., minimal cut set) here.
(ii) A minimal path set is a group of components such that when they are all active the
system operates, but if at least one of this group of components fails, then the system
too fails. Conversely, if all the components in a minimal cut set are down, the system
is down as well, but if at least one component of the minimal cut set is replaced by an
active component, then the system will operate.

Example 5.3.2. A series system made up of n components has a single minimal path
set, namely the set MP = {1, 2, . . . , n} (because all components must operate for the
system to function). It has n minimal cut sets, which are all the sets containing exactly
one component: {1}, . . . , {n}. Note that when we write that MC = {1}, it implies
that components 2, . . . , n are active. Moreover, the state vector (0, 0, 1, 1, . . . , 1) is a cut
vector, but not a minimal cut vector, because if we replace only component no. 1 by an
active component, the system will remain down.
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Conversely, in the case of a parallel system comprising n components, the minimal
path sets are {1}, . . . , {n}, whereas there is only one minimal cut set: {1, 2, . . . , n}.

Example 5.3.3. We can generalize the results of the previous example as follows: in a
k-out-of-n system, there are

(
n
k

)
minimal path sets. That is, we can choose any set of k

components among the n. The number of minimal cut sets is given by
(

n
n−k+1

)
. Indeed,

if exactly n− k + 1 components are down, then the system will resume operating if one
of them is replaced by an active component.

Example 5.3.4. The bridge system in Figure 5.2 has four minimal path sets, as indi-
rectly mentioned above: {1, 4}, {2, 5}, {1, 3, 5}, and {2, 3, 4}. It also has four minimal
cut sets: {1, 2}, {4, 5}, {1, 3, 5}, and {2, 3, 4}. Notice that {1, 3, 5} and {2, 3, 4} are both
minimal path and minimal cut sets.

Now, suppose that an arbitrary system has r minimal path sets. Let

πj(x1, . . . , xn) =
∏

i∈MPj

xi for j = 1, . . . , r.

That is, πj(x1, . . . , xn) = 1 if all the components in the minimal path set MPj function,
and πj(x1, . . . , xn) = 0 otherwise. Because a system operates if and only if all the
components in at least one of its minimal path sets are active, we can represent the
structure function of the system in question as follows:

H(x) = 1−
r∏

j=1

[1− πj(x)].

This formula implies that a given system can be considered as being equivalent to the
one obtained by connecting its minimal path sets in parallel.

Likewise, if an arbitrary system has s minimal cut sets, we can write that

H(x1, . . . , xn) = 1−
s∏

m=1

γm(x1, . . . , xn),

where
γm(x1, . . . , xn) := 1−

∏
i∈MCm

(1− xi) for m = 1, . . . , s.

We have that γm(x1, . . . , xn) is equal to 0 if all the components in the minimal cut set
MCm are down, and to 1 otherwise. This time, we can say that a given system and the
one made up of its minimal cut sets connected in series are equivalent.

Example 5.3.5. From the preceding example, we deduce that the bridge system in
Figure 5.2 is equivalent to either the system depicted in Figure 5.3 or that in Figure 5.4.

Because H(X), where X := (X1, . . . , Xn), is a Bernoulli random variable, the relia-
bility of the system, at the fixed time instant t0, is given by
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Fig. 5.3. A bridge system represented as a parallel system made up of its minimal path sets.
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Fig. 5.4. A bridge system represented as a series system made up of its minimal cut sets.

R(t0) = P [H(X) = 1] = E[H(X)].

If we let
pi = P [Xi = 1] (at time t0) for i = 1, . . . , n

and if we assume that the components operate independently of one another, then we
can write that

R(t0) =


∏n

i=1 pi for a series system,

1−
∏n

i=1(1− pi) for a parallel system.

Moreover, if pi = p for all i, then

R(t0) =
n∑

i=k

(
n

i

)
pi(1− p)n−i

in the case of a k-out-of-n system. These formulas are simply particular cases of the
corresponding ones in Section 5.2.

When a system comprises many components, we can at least try to obtain bounds
for its reliability R(t0) at time t0. It can be shown that

s∏
m=1

P [γm(X) = 1] ≤ R(t0) ≤ 1−
r∏

j=1

{1− P [πj(X) = 1]} ,
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where
P [γm(X) = 1] = 1−

∏
i∈MCm

(1− pi)

and
P [πj(X) = 1] =

∏
i∈MPj

pi.

Example 5.3.6. Suppose that pi ≡ 0.9 for the bridge system in Figure 5.2. Making use
of Equation (5.1), we find (assuming that the components are independent) that

R(t0) = 2(0.9)2 + 2(0.9)3 − 5(0.9)4 + 2(0.9)5 = 0.97848.

Indeed, we have that P [Ai] = (0.9)2, for i = 1, 2, and P [Ai] = (0.9)3, for i = 3, 4.
Moreover, the probability of any intersection in (5.1) is equal to (0.9)k, where k is the
number of distinct components involved in the intersection in question. For example,
A1 ∩A2 occurs if and only if components 1, 2, 4, and 5 are active, so that P [A1 ∩A2] =
(0.9)4.

Now, we deduce from Example 5.3.4 that the lower bound for the probability R(t0)
is given by [

1− (0.1)2
]2 [

1− (0.1)3
]2 ' 0.97814

and the upper bound is

1−
{[

1− (0.9)2
]2 [

1− (0.9)3
]2} ' 0.99735.

Notice that in this example the lower bound, in particular, is very precise.

5.4 Exercises for Chapter 5

Solved exercises

Question no. 1
Suppose that the lifetime X of a certain system can be expressed as X = Y 2, where

Y is a random variable uniformly distributed on the interval (0, 1). Find the reliability
function of the system.

Question no. 2
The time to failure (in years) for a given device is a random variable X having an

exponential distribution with parameter λ = 1/2. When the device fails, it is repaired.
The repair time Y (in days) is a random variable such that
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P [Y > y] =
{

e−y if X < 2 and y ≥ 0,
e−y/2 if X ≥ 2 and y ≥ 0.

Calculate the quantity MTBF for this device.

Question no. 3
Let T be a continuous random variable having the following probability density

function:

fT (t) =
1
λ

exp
{
−et − 1

λ
+ t

}
if t ≥ 0

[and fT (t) = 0 if t < 0], where λ is a positive parameter. We say that T has a (particular)
extreme value distribution. Calculate the failure rate function of a device whose lifetime
is distributed as T .

Question no. 4
Suppose that the lifetime (in cycles) of a system is a Poisson random variable with

parameter λ > 0. Is the failure rate function r(k) increasing or decreasing at k = 0?

Question no. 5
If a system has a lifetime X that is uniformly distributed on the interval [0, 1], what

is its average failure rate over the interval [0, 1/2]?

Question no. 6
A system comprises two (independent) components connected in series. The lifetime

Xk of component k has an exponential distribution with parameter λk, for k = 1, 2. Use
the formula [see (4.5)]

P [X2 < X1] =
∫ ∞

−∞
P [X2 < x1 | X1 = x1]fX1(x1)dx1,

which is valid for arbitrary continuous random variables X1 and X2, to calculate the
probability that the first breakdown of the system will be caused by a failure of com-
ponent no. 2.

Question no. 7
We consider a system made up of two components connected in parallel and oper-

ating independently of each other. Let T be the total lifetime of the system, and let Tk

be the lifetime of component k, for k = 1, 2. Suppose that Tk ∼ Exp(λk). What is the
probability that both components are still active at time t0 > 0, given that the system
operates at that time instant?

Question no. 8
We have two identical brand A components and two identical brand B components

at our disposal. To build a certain device, we must connect a brand A and a brand B
component in series. Suppose that the reliability of each component is equal to 0.9 (at
the initial time) and that they all operate independently of one another. Is it better
to build two distinct devices and hope that at least one of them will work, or to build
a device made up of two subsystems connected in series, with the first (resp., second)
subsystem comprising the two brand A (resp., B) components placed in parallel?
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Question no. 9
Calculate the structure function of the system represented in Figure 2.14, p. 46, in

terms of the indicator variables xk, for k = 1, . . . , 4.

Question no. 10
Find the minimal path sets of the system represented in Figure 2.14, p. 46, and ex-

press the structure function H(x1, x2, x3, x4) in terms of the functions πj(x1, x2, x3, x4).

Exercises

Question no. 1
We want to build a system made up of two components connected in parallel, followed

by a component connected in series. Suppose that we have three components at our
disposal and that any arrangement of the components inside the system is admissible.
If the reliability of component no. k, at a fixed time instant t0 > 0, is equal to pk, for
k = 1, 2, 3, and if 0 < p1 < p2 < p3 < 1, what arrangement of the three components
gives the largest probability that the system is active at time t0?

Question no. 2
The lifetime X of a certain machine has the following probability density function:

fX(x) =
{

1/x if 1 ≤ x ≤ e,
0 elsewhere.

Calculate the failure rate function r(x), for 1 ≤ x ≤ e. Is the distribution of X an IFR
or DFR distribution? Justify.

Question no. 3
Suppose that the failure rate function r(t) of a given system is r(t) = 1 ∀t ≥ 0.

Find the probability that the system will fail in the interval [2, 3], given that it still
operates at time t = 1.

Question no. 4
A device has a lifetime T that follows an exponential distribution with parameter

Λ, where Λ is a random variable uniformly distributed over the interval [1, 3]. Calculate
the reliability function of the device.

Question no. 5
Let

fT (t) =
{

1
2 t2e−t if t > 0,

0 elsewhere,

where T denotes the lifetime of a certain system. Calculate the interval failure rate of
this system in the interval (0, 1].
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Question no. 6
Suppose that the lifetime T of a system has a G(4, 1) distribution. That is,

fT (t) =
1
6
t3e−t for t ≥ 0.

Calculate the reliability function of the system in question at time t = 4, given that it
is still active at time t = 2.

Question no. 7
Calculate the failure rate function at time t = 1 of a system whose lifetime T is

distributed as |Z|, where Z ∼ N(0, 1).

Question no. 8
Let

pX(k) =
1
N

for k = 1, 2, . . . , N

be the probability mass function of the lifetime X (in cycles) of a particular system.
Calculate rX(k), for k = 1, . . . , N . Does X have an IFR or a DFR distribution? Justify.

Question no. 9
Consider the interval failure rate of a given system in the interval (n, n + 1], for

n = 0, 1, . . . , 9. Calculate the average interval failure rate of this system if T ∼ U[0, 10].

Question no. 10
Assume that T has a Weibull distribution with parameters λ > 0 and β > 0. What

is the average failure rate in the interval [0, τ ] if τ is a random variable distributed as
the square root of a U(0, 1) distribution and (a) β = 2? (b) β = 3?

Question no. 11
Three independent components are connected in parallel. Suppose that the lifetime

of component no. k has an exponential distribution with parameter λk, for k = 1, 2, 3.
What is the probability that component no. 3 will not be the first one to fail?

Question no. 12
A system comprises two components that operate independently of each other, both

from the initial time. Suppose that the lifetime Xk (in cycles) of component no. k has a
geometric distribution with parameter pk = 1/2, for k = 1, 2. Find the probability that
both components will fail during the same cycle.

Question no. 13
Three independent components are connected in series. Suppose that the lifetime

Tk of the kth component has a uniform distribution on the interval (0, k + 1), for
k = 1, 2, 3. What is the value of the reliability function of the system (made up of these
three components) at time t = 1, given that at least one of the three components is not
down at time t = 1?
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Question no. 14
Consider the system represented in Figure 2.13, p. 45. Suppose that the components

A have a lifetime that follows an exponential distribution with parameter λA, and the
lifetime of component B (resp., C) is exponentially distributed with parameter λB (resp.,
λC). Calculate the reliability function of the system, assuming that the components
operate independently of one another.

Question no. 15
A system consists of two components operating independently of each other and

connected in parallel. Assume that the lifetime Tk of the kth component is exponentially
distributed with parameter k, for k = 1, 2. What is the probability that the system is
still operating at time t = 2, given that exactly one of its components is down at time
t = 1?

Question no. 16
We have four independent components having an exponentially distributed life-

time at our disposal. The expected lifetime of the kth component is equal to 1/k, for
k = 1, 2, 3, 4. The components are used to build a system made up of two subsystems
connected in series. Each subsystem comprises two components connected in parallel.
What is the expected lifetime of the system if the first subsystem comprises the first
and the second component (see Figure 5.5)?

1

2

3

4

Fig. 5.5. Figure for Exercise no. 16.

Question no. 17
Let the components of the system in Figure 2.13, p. 45, be numbered as follows:

component C = 1, components A = 2, 3, and 4, and component B = 5. Find the
minimal path sets and minimal cut sets of this system.

Question no. 18
Suppose that the reliability of the (independent) components in the preceding ques-

tion is as in (unsolved) Exercise no. 8 of Chapter 2 (at a fixed time instant t0 > 0). Use
the minimal path sets and minimal cut sets found in the previous question to calculate
the lower and upper bounds for the reliability of the system. Compare with the exact
answer.
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Question no. 19
A certain system made up of four independent components operates if and only if

component no. 1 is active and at least two of the other three components operate. What
are the minimal path sets and the minimal cut sets of this system?

Question no. 20
In the preceding question, (a) what is the probability that the system operates at

time t0 if the reliability of each component is equal to p at t0? (b) What is the reliability
function of the system at time t if the lifetime of each component is an Exp(θ) random
variable?

Multiple choice questions

Question no. 1
Suppose that X ∼ Exp(1) and Y ∼ U(0, 1) are independent random variables. We

define Z = min{X, Y }. Find the failure rate function rZ(t) of Z for 0 < t < 1.

(a) 1 (b) 2 (c)
1

1− t
(d)

2− t

1− t
(e)

2
1− t

Question no. 2
The lifetime T of a device has a lognormal distribution with parameters µ = 10 and

σ2 = 4. That is, lnT ∼ N(10, 4). Find the reliability of the device at time t = 200.
(a) 0.01 (b) 0.05 (c) 0.5 (d) 0.95 (e) 0.99

Question no. 3
For what values of the parameter α is a beta distribution with parameters α (> 0)

and β = 1 an IFR distribution everywhere in the interval (0, 1)?
(a) any α > 0 (b) none (c) α ≥ 1 (d) α < 1 (e) α ≥ 2

Question no. 4
Suppose that the lifetime T of a system is uniformly distributed on the interval

(0, B), where B is a random variable having an exponential distribution with parameter
λ > 0. Find the reliability function of the system.

(a)
1
λ
− t (b) λ− t (c) 1− t

λ
(d) 1− λt (e) λ(1− t)

Question no. 5
Calculate the average failure rate over the interval [0, 2] of a system whose lifetime

T has the following probability density function:

fT (t) =
{

λe−λ(t−1) if t ≥ 1,
0 if t < 1,

where λ is a positive parameter.
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(a)
λ− 1

2
(b)

λ

2
(c) λ− 1 (d) λ (e) 2λ

Question no. 6
Two independent components are connected in series. The lifetime Tk of component

no. k has an exponential distribution with parameter λk, for k = 1, 2. When a component
fails, it is repaired. Suppose that the lifetime T ∗k of a repaired component is twice shorter,
on average, than that of a new component, so that T ∗k ∼ Exp(2λk), for k = 1, 2. Find the
probability that component no. 1 will cause the first two failures of the series system.

(a)
λ2

1

(λ1 + λ2)2
(b)

λ2
1

(λ1 + 2λ2)2
(c)

λ2
1

(λ1 + 2λ2)(λ1 + λ2)

(d)
λ2

1

(2λ1 + λ2)(λ1 + λ2)
(e)

λ2
1

(2λ1 + λ2)2

Question no. 7
We consider a system made up of two independent components placed in standby

redundancy. The lifetime T1 of component no. 1 has a uniform distribution on the
interval (0, 2), whereas the lifetime T2 of component no. 2 is exponentially distributed
with parameter λ = 2. Moreover, suppose that component no. 2 relieves the first one as
soon as it fails if T1 < 1, or at time t = 1 if component no. 1 is still active at that time
instant. What is the average lifetime of the system?
(a) 9/4 (b) 5/2 (c) 11/4 (d) 3 (e) 13/4

Question no. 8
A certain 15-out-of-20 system is such that all the (independent) components have a

probability equal to 3/4 of being active at time t0 > 0.
(i) Calculate the probability p that the system operates at t = t0.
(ii) Use a Poisson approximation to calculate the probability p in (i).

(a) (i) 0.4148; (ii) 0.4405 (b) (i) 0.6172; (ii) 0.5343
(c) (i) 0.6172; (ii) 0.6160 (d) (i) 0.7858; (ii) 0.6380
(e) (i) 0.7858; (ii) 0.7622

Question no. 9
Consider the system in Figure 5.6. How many (i) minimal path sets and (ii) minimal

cut sets are there?
(a) (i) 4; (ii) 4 (b) (i) 5; (ii) 4 (c) (i) 5; (ii) 5 (d) (i) 6; (ii) 4
(e) (i) 6; (ii) 5

Question no. 10
Suppose that, in the preceding question, the components operate independently of

one another and all have a 3/4 probability of being active at time t0 > 0. Give a lower
bound for the reliability of the system at time t0.
(a) 0.1279 (b) 0.3164 (c) 0.6836 (d) 0.8721 (e) 0.8789



190 5 Reliability

1

2

3 4

5

6

Fig. 5.6. Figure for multiple choice question no. 9.
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Queueing

An important application of probability theory is the field known as queueing theory.
This field studies the behavior of waiting lines or queues. Telecommunication engineers
and computer scientists are particularly interested in queueing theory to solve problems
concerned with the efficient allocation and use of resources in wireless and computer
networks, for instance. In general, the models considered in this chapter are such that
the arrivals in the queueing system and the departures from this system both constitute
Poisson processes, which were defined in Chapter 3 (p. 69). Poisson processes are actually
particular continuous-time Markov chains, which are the subject of the first section of
the present chapter. Next, the case when there is a single server in the queueing system
and that when the number of servers is greater than or equal to two is studied separately.

6.1 Continuous-time Markov chains

Definition 6.1.1. A stochastic process (or random process) is a set {X(t), t ∈ T}
of random variables X(t), where T is a subset of R.

Remarks. (i) The deterministic variable t is often interpreted as time in the problems
considered. In this chapter, we are interested in continuous-time stochastic processes,
so that the set T is generally the interval [0,∞).
(ii) The set of all possible values of the random variables X(t) is called the state space
of the stochastic process.

A very important class of stochastic processes for the applications is the class of
those known as Markov processes.
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Definition 6.1.2. If we can write that

P [X(tn) ≤ xn | X(t),∀t ≤ tn−1] = P [X(tn) ≤ xn | X(tn−1)], (6.1)

where tn−1 < tn, we say that the stochastic process {X(t), t ∈ T} is a Markov process
(or Markovian process).

Remark. The preceding equation, known as the Markov property, means that the future
of the process depends only on its present state. That is, assuming that the set T is
the interval [0,∞), the history of the process in the interval [0, tn−1) is not needed to
calculate the distribution of the random variable X(tn), where tn > tn−1, if the value
of X(tn−1) is known.

Definition 6.1.3. If the possible values taken by the various random variables X(t) are
assumed to be at most countably infinite, so that X(t) is a discrete random variable for
any fixed value of the variable t, then we say that {X(t), t ∈ T} is a discrete-state
stochastic process.

Now, let τi be the time that the continuous-time and discrete-state Markovian pro-
cess {X(t), t ≥ 0} spends in a given state i before making a transition to any other
state. We deduce from the Markov property that

P [τi > s + t | τi > s] = P [τi > t] ∀s, t ≥ 0 (6.2)

(otherwise the future would depend on the past). This equation implies that the con-
tinuous random variable τi is exponentially distributed. Indeed, only the exponential
distribution possesses this memoryless property (see p. 76) in continuous time.
Remarks. (i) We denote the parameter of the random variable τi by νi, for any i. In
the general case, νi depends on the corresponding state i. However, in the case of the
Poisson process with rate λ, we have that νi = λ for all i.
(ii) We also deduce from the Markov property that the state that will be visited when
the process leaves its current state i must be independent of the total time τi that the
process spent in i before making a transition.

Definition 6.1.4. The continuous-time and discrete-state stochastic process {X(t), t ≥
0} is called a continuous-time Markov chain if

P [X(t) = j | X(s) = i, X(r) = xr, 0 ≤ r < s] = P [X(t) = j | X(s) = i]

for all t ≥ s and for all states i, j, xr.

Remarks. (i) We assume that the Markov chains considered have time-homogeneous
transition probabilities. That is, if t ≥ s ≥ 0 and τ ≥ 0, we may write that
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P [X(t) = j | X(s) = i] := pi,j(t− s) ⇔ P [X(τ + t) = j | X(τ) = i] = pi,j(t).

That is, the probability that the process moves from state i to state j in a given time
interval depends only on the length of this time interval. This assumption is made in
most textbooks and is realistic in many applications. The function pi,j(t) is known as
the transition function of the continuous-time Markov chain.

(ii) If pi,j(t) > 0 for some t ≥ 0 and pj,i(t∗) > 0 for some t∗ ≥ 0, we say that states i
and j communicate. If all states communicate, the chain is said to be irreducible.
(iii) In the context of queueing theory, the X(t)s are nonnegative integer-valued random
variables. That is, the state space of the stochastic process {X(t), t ≥ 0} is the set
{0, 1, . . .}. Under this assumption, we can write that

∞∑
j=0

pi,j(t) = 1 ∀i ∈ {0, 1, . . .}.

Indeed, whatever the state of the process at a fixed time τ ≥ 0 is, it must be in some
state at time τ + t, where t ≥ 0. Note that we have:

pi,j(0) = δi,j :=
{

1 if i = j,
0 if i 6= j

for all states i, j ∈ {0, 1, . . .}.

Notation. We denote by ρi,j the probability that the continuous-time Markov chain
{X(t), t ≥ 0}, when it leaves its current state i, goes to state j, for i, j ∈ {0, 1, . . .}.

We have, by definition, ρi,i = 0 for all states i and

∞∑
j=0

ρi,j = 1 ∀i ∈ {0, 1, . . .}.

Definition 6.1.5. Let {X(t), t ≥ 0} be a continuous-time Markov chain with state space
{0, 1, 2, . . .}. If

ρi,j = 0 when |j − i| > 1 (6.3)

the process is called a birth and death process. Moreover, if

ρi,i+1 = 1 for all i,

then {X(t), t ≥ 0} is a pure birth process, whereas in the case when

ρi,i−1 = 1 for all i ∈ {1, 2, . . .},

we say that {X(t), t ≥ 0} is a pure death process.
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We deduce from the definition that a birth and death process is such that

ρ0,1 = 1 and ρi,i+1 + ρi,i−1 = 1 for i ∈ {1, 2, . . .}.

That is, when the process is in state i ≥ 1, the next state visited will necessarily be i+1
or i− 1.
Remark. The state space of the birth and death process can be a finite set {0, 1, 2, . . . , c}.
Then, we have that ρc,c−1 = 1.

In queueing theory, the state of the process at a fixed time instant will generally be
the number of individuals in the queueing system at that time. When {X(t), t ≥ 0} goes
from state i to i + 1, we say that an arrival occurred, and if it moves from i to i − 1,
then a departure took place. We assume that, when the chain is in state i, the time Ai

needed for a new arrival to occur is a random variable having an Exp(λi) distribution,
for i ∈ {0, 1, . . .}. Furthermore, Ai is assumed to be independent of the random time
Di ∼ Exp(µi) until the next departure, for i ∈ {1, 2, . . .}.

Proposition 6.1.1. The total time τi that the birth and death process {X(t), t ≥ 0}
spends in state i, on a given visit to that state, is an exponentially distributed random
variable with parameter

νi =
{

λ0 if i = 0,
λi + µi if i = 1, 2, . . . .

Proof. When i = 0, we simply have that τ0 ≡ A0, so that τ0 ∼ Exp(λ0). For i = 1, 2, . . . ,
we can write that τi = min{Ai, Di}. The result then follows from Proposition 5.2.1.

Remark. We also have [see (4.6)] that

ρi,i+1 = P [Ai < Di] =
λi

λi + µi
if i > 0

and
ρi,i−1 = P [Di < Ai] =

µi

λi + µi
if i > 0.

Definition 6.1.6. The parameters λi, for i = 0, 1, . . . , are called the birth (or arrival)
rates of the birth and death process {X(t), t ≥ 0}, whereas the parameters µi, for
i = 1, 2, . . . , are the death (or departure) rates of the process.

Example 6.1.1. In addition to being a continuous-time Markov chain, the Poisson
process {N(t), t ≥ 0} is a particular counting process. That is, N(t) denotes the total
number of events in the interval [0, t]. Because only the number of events is recorded,
and not whether these events were arrivals or departures, {N(t), t ≥ 0} is an example
of a pure birth process. It follows that pi,j(t) = 0 if j < i. Furthermore, using the fact
that the increments of the Poisson process are stationary, we can write that
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pi,j(t) ≡ P [N(τ + t) = j | N(τ) = i] = P [N(t) = j − i]

= P [Poi(λt) = j − i] = e−λt (λt)j−i

(j − i)!
for j ≥ i ≥ 0.

The time τi that {N(t), t ≥ 0} spends in any state i ∈ {0, 1, . . .} follows an expo-
nential distribution with parameter λ. Indeed, we have:

P [τ0 > t] = P [N(t) = 0] = e−λt for t ≥ 0,

which implies that τ0 ∼ Exp(λ). Next, because the Poisson process has independent and
stationary increments, we can then assert that τi ∼ Exp(λ), for i = 1, 2, . . . , as well.

In general, it is very difficult to calculate explicitly the transition function pi,j(t).
Therefore, we have to express the quantities of interest, such as the average number
of customers in a given queueing system, in terms of the limiting probabilities of the
stochastic process {X(t), t ≥ 0}.

Definition 6.1.7. Let {X(t), t ≥ 0} be an irreducible continuous-time Markov chain.
The quantity

πj := lim
t→∞

pi,j(t) for all j ∈ {0, 1, . . .}

is called the limiting probability that the process will be in state j when it is in
equilibrium.

Remarks. (i) We assume that the limiting probabilities πj exist and are independent of
the initial state i.
(ii) The πjs also represent the proportion of time that the continuous-time Markov chain
spends in state j, over a long period of time.

It can be shown that the limiting probabilities πj satisfy the following system of
linear equations:

πjνj =
∑
i 6=j

πi νiρi,j ∀j ∈ {0, 1, . . .}. (6.4)

To obtain the πjs, we can solve the preceding system, under the condition

∞∑
j=0

πj = 1. (6.5)

Remarks. (i) The various equations in (6.4) are known as the balance equations of the
stochastic process {X(t), t ≥ 0}, because we can interpret them as follows: the departure
rate from state j must be equal to the arrival rate to j, for all j.
(ii) If {X(t), t ≥ 0} is a birth and death process with state space {0, 1, . . .}, the balance
equations are:
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state j departure rate from j = arrival rate to j

0 λ0π0 = µ1π1

1 (λ1 + µ1)π1 = µ2π2 + λ0π0

...
...

...
...

k (≥ 1) (λk + µk)πk = µk+1πk+1 + λk−1πk−1

The basic models in queueing theory are particular birth and death processes. For
this class of processes, we can give the general solution of the balance equations.

Theorem 6.1.1. If {X(t), t ≥ 0} is an irreducible birth and death process with state
space {0, 1, . . .}, then the limiting probabilities are given by

πj =


1

1 +
∑∞

k=1 Πk
for j = 0,

Πjπ0 for j = 1, 2, . . . ,

(6.6)

where
Πk :=

λ0λ1 · · ·λk−1

µ1µ2 · · ·µk
for k ≥ 1.

Remark. The limiting probabilities exist if and only if the sum
∑∞

k=1 Πk converges. In
the case when the state space of {X(t), t ≥ 0} is finite, the sum in question always
converges, so that the existence of the limiting probabilities is guaranteed.

Example 6.1.2. Suppose that the birth and death rates of the birth and death process
{X(t), t ≥ 0} with state space {0, 1, 2} are given by

λ0 = λ1 = λ and µ1 = µ, µ2 = 2µ.

Write the balance equations of the system and solve them to obtain the limiting prob-
abilities.

Solution. We have:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

1 (λ + µ)π1 = 2µπ2 + λπ0

2 2µπ2 = λπ1

Because this system of equations is simple, we can solve it easily. We deduce from
the equation for state 0 that



6.2 Queueing systems with a single server 197

π1 =
λ

µ
π0.

Similarly, the equation for state 2 implies that

π2 =
λ

2µ
π1 =

(
λ

2µ

)(
λ

µ

)
π0.

It follows that

π0 +
λ

µ
π0 +

(
λ

2µ

)(
λ

µ

)
π0 = 1.

That is,

π0 =
[
1 +

λ

µ
+
(

λ

2µ

)(
λ

µ

)]−1

,

so that

π1 =
(

λ

µ

)[
1 +

λ

µ
+
(

λ

2µ

)(
λ

µ

)]−1

and

π2 =
(

λ

2µ

)(
λ

µ

)[
1 +

λ

µ
+
(

λ

2µ

)(
λ

µ

)]−1

.

Remarks. (i) We can check that the equation for state 1, which we did not need to solve
the system of linear equations, is also satisfied by the solution obtained above.
(ii) Because {X(t), t ≥ 0} is a particular birth and death process, we can also appeal to
Theorem 6.1.1 to find the limiting probabilities. We have:

Π1 :=
λ

µ
and Π2 :=

λ× λ

µ× 2µ
,

from which we retrieve the formulas for π0, π1, and π2.

6.2 Queueing systems with a single server

Let X(t) designate the number of customers in a queueing system at time t. If we
assume that the times An between the arrivals of successive customers and the service
times Sn of customers are independent exponential random variables, then the process
{X(t), t ≥ 0} is a continuous-time Markov chain. Moreover, in most cases, we also
assume that the customers arrive one at a time and are served one at a time. It follows
that {X(t), t ≥ 0} is a birth and death process. The arrivals of customers in the system
constitute a Poisson process. It can be shown that the departures from the system in
equilibrium constitute a Poisson process as well. Such a queueing system is denoted by
M/M/s, where s is the number of servers in the system. In the present section, s is
equal to 1.
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Remarks. (i) We used the word customers above. However, customers in a queueing sys-
tem may actually be machines in a repair shop, jobs in a computer system, or airplanes
arriving or departing from an airport, among others.
(ii) To be precise, we should specify that the random variables Sn are independent of
the Ans. Furthermore, the Sns are identically distributed random variables, and so are
the Ans.
(iii) The notation M for the arrival process (and the departure process) is used because
the Poisson process is Markovian.

We are interested in the average number of customers and the average time that
an arbitrary customer spends in the queueing system, when it is in equilibrium or in
stationary regime.
Notations. We denote, respectively, by N̄ , N̄Q, and N̄S the (total) average number
of customers in the system in equilibrium, the average number of customers who are
waiting in line, and the average number of customers being served. Moreover, T̄ is the
(total) average time that an arbitrary customer spends in the system, Q̄ is the average
waiting time of an arbitrary customer, and S̄ is the average service time of an arbitrary
customer.

We have that N̄ = N̄Q + N̄S and T̄ = Q̄ + S̄. As mentioned in the previous section,
we express the various quantities of interest in terms of the limiting probabilities πn of
the stochastic process {X(t), t ≥ 0}.

Definition 6.2.1. Let N(t), for t ≥ 0, be the number of arrivals in the system in the
interval [0, t]. The quantity

λa := lim
t→∞

N(t)
t

(6.7)

is called the average arrival rate of customers in the system.

Remarks. (i) It can be shown that

lim
t→∞

N(t)
t

=
1

E[An]
.

In our case, we assume that An ∼ Exp(λ), for n = 0, 1, . . . , so that the stochastic process
{N(t), t ≥ 0} is a Poisson process with rate λ > 0. It follows that λa = λ.
(ii) When the system capacity is infinite, all the arriving customers can enter the system.
However, in practice, the capacity of any system is finite. Therefore, we also consider the
average entering rate of customers into the system, which is denoted by λe. In the case
when the system capacity is equal to a constant c (< ∞), we have that λe = λ(1− πc),
because (1− πc) is the (limiting) probability that an arriving customer will be allowed
to enter the system. Note that, in fact, even if the system capacity is assumed to be
infinite, some arriving customers may decide not to enter the system if they find that
the queue length is too long, for instance. So, in general, λe is smaller than or equal
to λ.
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(iii) Let D(t) denote the number of departures from the queueing system in the interval
[0, t]. We assume that

λd := lim
t→∞

D(t)
t

= λe.

To analyze a given queueing system, we often start by computing its limiting prob-
abilities πn. Next, we try to obtain the quantities N̄ , N̄Q, and so on, in terms of the
πns. Furthermore, we can use a cost equation to establish a relation between N̄ and T̄ .
Indeed, if we assume that an arbitrary customer pays $1 per time unit that she spends
in the system (either waiting to be served or being served), then it can be shown that

N̄ = λe · T̄ . (6.8)

This equation is known as Little’s formula (or Little’s law). It is valid if we assume that
both λe and T̄ exist and are finite. Moreover, we have:

N̄ = lim
t→∞

1
t

∫ t

0

X(s)ds

and, if Tk denotes the time spent in the system by the kth customer,

T̄ = lim
t→∞

∑N(t)
k=1 Tk

N(t)
.

Remarks. (i) Little’s formula holds for very general systems, in particular, for the
M/M/s systems, with finite or infinite capacity, that are studied in this book.
(ii) When t is large enough for the process to be in stationary regime, we may write
that

N̄ = E[X(t)].

Similarly, we have:
N̄S = λe · S̄. (6.9)

It follows, using the fact that N̄ = N̄Q + N̄S and T̄ = Q̄ + S̄, that

N̄Q = λe · Q̄.

In the case of the M/M/s model, λe = λ and the service times Sn are assumed to be
i.i.d. exponentially distributed random variables with parameter µ. Hence, we deduce
that S̄ = E[Sn] = 1/µ. Equation (6.9) then implies that N̄S = λ/µ.

6.2.1 The M/M/1 model

The most basic queueing system is the M/M/1 model. In this model, we assume that
the successive arrivals of customers constitute a Poisson process with rate λ and that
the service times Sn are independent Exp(µ) random variables. Furthermore, the Sns
are independent of the interarrival times of customers. Finally, the system capacity is
infinite and we take for granted that all arriving customers decide to enter the system,
whatever the state of the system upon their arrival is.
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The stochastic process {X(t), t ≥ 0}, where X(t) denotes the number of customers
in the system at time t ≥ 0, is an irreducible birth and death process. Indeed, because
the birth rates λn ≡ λ and the death rates µn ≡ µ are positive for any value of n, all
states communicate. We find that the balance equations for the M/M/1 queue are (see
p. 196):

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

n (≥ 1) (λ + µ)πn = λπn−1 + µπn+1

We can solve the previous system of linear equations, under the condition
∑∞

n=0 πn = 1,
to obtain the limiting probabilities. However, Theorem 6.1.1 gives us the solution almost
at once. We calculate

Πk =
λλ · · ·λ
µµ · · ·µ︸ ︷︷ ︸
k times

=
(

λ

µ

)k

for k = 1, 2, . . . . (6.10)

It follows that

S∗ :=
∞∑

k=1

Πk =
λ/µ

1− (λ/µ)
< ∞ if and only if ρ :=

λ

µ
< 1.

Remarks. (i) The quantity ρ is called the traffic intensity or the utilization rate of the
system. Because 1/µ is the average service time of an arbitrary customer and λ is the
average arrival rate of customers, the condition ρ < 1 means that the customers must
not arrive more rapidly than the rate at which they are served or, equivalently, more
rapidly than the average time it takes to serve one customer, if we want the system to
reach a stationary (or steady-state) regime. When ρ ≥ 1, we can assert that the queue
length will increase indefinitely.
(ii) In Chapter 2, we used Venn diagrams to represent sample spaces and events. In
queueing theory, we draw a state transition diagram to describe a given system. The
possible states of the system are depicted by circles. To indicate that a transition from
state i to state j is possible, we draw an arrow from the circle corresponding to state
i to the one representing j. We also write above (or under) each arrow the rate of the
transition in question (see Figure 6.1). Once the appropriate state transition diagram
has been drawn, it is a simple matter to write the balance equations of the system.

Next, we deduce from Theorem 6.1.1 that, if ρ < 1,

π0 =
1

1 + S∗
=
(

1
1− (λ/µ)

)−1

= 1− λ

µ
= 1− ρ
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Fig. 6.1. State transition diagram for the M/M/1 model.

and

πj = Πjπ0 =
(

λ

µ

)j (
1− λ

µ

)
for j = 1, 2, . . . .

That is,
πk = ρk (1− ρ) ∀k ≥ 0. (6.11)

Making use of the limiting probabilities and Formula (1.7) with a = 1−ρ and r = ρ,
we can write that

N̄ :=
∞∑

k=0

kπk =
∞∑

k=0

kρk (1− ρ) =
(1− ρ)ρ
(1− ρ)2

=
ρ

1− ρ
. (6.12)

Remarks. (i) Note that limρ↑1 N̄ = ∞, which reflects the fact that the queue length
grows indefinitely if ρ = 1 (and, a fortiori, if ρ > 1).
(ii) If we let N denote the (random) number of customers in the system in equilibrium,
so that N̄ = E[N ], we can write that N1 := N + 1 has a geometric distribution with
parameter p := 1− ρ.

Now, we deduce from Little’s formula (6.8) that

T̄ =
N̄

λ
=

ρ

λ(1− ρ)
=

1
µ− λ

. (6.13)

Because S̄ = 1/µ and N̄S = λ/µ = ρ, as already mentioned above, it follows that

Q̄ = T̄ − S̄ =
1

µ− λ
− 1

µ
=

λ

µ(µ− λ)
(6.14)

and

N̄Q = N̄ − N̄S =
ρ

1− ρ
− ρ =

ρ2

1− ρ
. (6.15)

Remark. Let NS be the random variable that denotes the number of customers being
served, when the system is in stationary regime. Because there is only one server, NS

has a Bernoulli distribution with parameter p0 := 1− π0, which yields

N̄S = E[NS ] = p0 = 1− π0 = 1− (1− ρ) = ρ,

as stated above.
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We have given above the exact distributions of the random variables S, N , and
NS . We can also find the distributions of the variables T , Q, and NQ, where T is the
total time that an arbitrary customer will spend in the system (in equilibrium), Q is
his waiting time, and NQ is the number of customers waiting to be served. We already
found that E[T ] = T̄ = 1/(µ − λ). Actually, T is exponentially distributed and the
quantity µ− λ is its parameter.

Proposition 6.2.1. The total time T spent by an arbitrary customer in an M/M/1
queue in equilibrium is an exponentially distributed random variable with parameter
µ− λ.

Proof. To prove the result, we condition on the number K of customers already in the
system upon the arrival of the customer of interest. We can write that

P [T ≤ t] =
∞∑

k=0

P [T ≤ t | K = k]P [K = k].

Now, by the memoryless property of the exponential distribution, if K = k, then
the random variable T is the sum of k + 1 independent random variables, all having
an Exp(µ) distribution. Indeed, the service time of the customer being served (if k >
0), from the moment when the customer of interest enters the system, also has an
exponential distribution with parameter µ. Using (4.9), we can write that

T | {K = k} ∼ G(k + 1, µ).

Next, we can show that when the arrival process is a Poisson process, the probability
P [K = k] that an arbitrary customer finds k customers in the system in equilibrium
upon his arrival is equal to the limiting probability πk that there are k customers in the
system (in equilibrium). It follows that

P [K = k] = πk = ρk (1− ρ) for k = 0, 1, . . . .

Hence, we have:

P [T ≤ t] =
∞∑

k=0

[∫ t

0

µe−µτ (µτ)k

k!
dτ

]
ρk (1− ρ)

ρ=λ/µ
= (µ− λ)

∞∑
k=0

∫ t

0

e−µτ (λτ)k

k!
dτ = (µ− λ)

∫ t

0

e−µτ
∞∑

k=0

(λτ)k

k!
dτ

= (µ− λ)
∫ t

0

e−µτeλτ dτ = 1− e−(µ−λ)t,

which implies that

fT (t) =
d

dt
P [T ≤ t] = (µ− λ)e−(µ−λ)t for t ≥ 0.
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The waiting time, Q, of an arbitrary customer entering the system is a random
variable of mixed type. Using the fact that P [K = k] = πk, where K is defined above,
we have:

P [Q = 0] = P [K = 0] = π0 = 1− ρ.

In the case when K = k > 0, we can write that Q ∼ G(k, µ). Then, conditioning on
all possible values of the random variable K, we obtain that

P [Q ≤ t] = 1−
(

λ

µ

)
e−(µ−λ)t for t ≥ 0.

Remark. We find that Q | {Q > 0} ∼ Exp(µ − λ). That is, R := Q | {Q > 0} and the
total time T spent by an arbitrary customer in the system are identically distributed
random variables. Note that an exponential random variable being continuous, we may
define it in the interval [0,∞) or (0,∞) indifferently.

Finally, the number NQ of customers waiting in line when the system is in stationary
regime can be expressed as follows:

NQ =
{

0 if N = 0,
N − 1 if N = 1, 2, . . . .

Hence, we may write that

P [NQ = 0] = P [N = 0] + P [N = 1] = π0 + π1 = (1 + ρ)(1− ρ)

and
P [NQ = k] = P [N = k + 1] = πk+1 = ρk+1(1− ρ) if k = 1, 2, . . . .

Remarks. (i) Because we obtained the distributions of all the random variables of inter-
est, we could calculate their respective variances.
(ii) The random variables Q and S are independent. However, NQ and NS are not
independent. Indeed, we may write that

NS = 0 =⇒ NQ = 0

(because if nobody is being served, then nobody is waiting in line either).

Example 6.2.1. Suppose that at a fixed time instant t0 > 0, the number X(t0) of
customers in an M/M/1 queue in stationary regime is smaller than or equal to 3.
Calculate the expected value of the random variable X(t0), as well as its variance, if
λ = µ/2.
Solution. Because ρ = 1/2, the limiting probabilities of the system are:

πk = ρk (1− ρ) = (1/2)k+1 for k = 0, 1, 2, . . . .
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It follows that

P [X(t0) ≤ 3] =
3∑

k=0

(1/2)k+1 =
1
2

+
1
4

+
1
8

+
1
16

=
15
16

.

Therefore, under the condition X(t0) ≤ 3, we have:

π0 =
1/2

15/16
=

8
15

, π1 =
4
15

, π2 =
2
15

and π3 =
1
15

.

It is then easy to obtain the mean and the variance of X(t0). We calculate

E[X(t0)] = 0 + 1× 4
15

+ 2× 2
15

+ 3× 1
15

=
11
15

and
E[X2(t0)] = 0 + 12 × 4

15
+ 22 × 2

15
+ 32 × 1

15
=

21
15

,

so that

VAR[X(t0)] =
21
15
−
(

11
15

)2

=
194
225

.

Remark. The fact that X(t0) ≤ 3 does not mean that the system capacity is c = 3.
When c = 3, the random variable X(t) must necessarily be smaller than or equal to
3 for all values of t, whereas in the previous example the number of customers in the
system at a fixed time instant was smaller than 4. The case when the system capacity
is finite is the subject of the next subsection.

Example 6.2.2. Often a particular queueing model is a more or less simple transforma-
tion of the basic M/M/1 queue. For example, suppose that the server in an otherwise
M/M/1 queue always waits until there are (at least) two customers in the system be-
fore beginning to serve them, exactly two at a time, at an exponential rate µ. Then,
the stochastic process {X(t), t ≥ 0}, where X(t) denotes the number of customers in
the system at time t ≥ 0, is still a continuous-time Markov chain. However, it is no
longer a birth and death process. To obtain the limiting probabilities of the process, we
must solve the appropriate balance equations, under the condition

∑∞
k=0 πk = 1. These

balance equations are (see Figure 6.2):
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Fig. 6.2. State transition diagram for the queueing model in Example 6.2.2.

state j departure rate from j = arrival rate to j

0 λπ0
(0)
= µπ2

1 λπ1
(1)
= λπ0 + µπ3

2 (λ + µ)π2
(2)
= λπ1 + µπ4

k (≥ 3) (λ + µ)πk = λπk−1 + µπk+2

A solution of the equation for k ≥ 3 can be obtained by assuming that πk = ak−2π2,
for k = (2), 3, 4, . . . , where a is a constant such that 0 < a < 1. The equation in question
becomes:

(λ + µ)ak−2π2 = λak−3π2 + µakπ2.

Given that π2 cannot be equal to zero, we can write that

(λ + µ)a = λ + µa3.

That is, we must solve a third-degree polynomial equation. We find that a = 1 is an
obvious root. It follows that

(λ + µ)a = λ + µa3 ⇐⇒ (a− 1)(µa2 + µa− λ) = 0.

Hence, the other two roots are:

a = −1
2
±
√

µ2 + 4µλ

2µ
.

Because a > 0, we deduce that

a = −1
2

+

√
µ2 + 4µλ

2µ
=

1
2

(√
1 + 4ρ− 1

)
.

Remarks. (i) The solution a = 1 must be discarded, because it would imply that πk = π2,
for k = 2, 3, . . . , so that the condition

∑∞
k=0 πk = 1 could not be fulfilled.
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(ii) We must also have:

1
2

(√
1 + 4ρ− 1

)
< 1 ⇐⇒

√
1 + 4ρ < 3.

Hence, we deduce that the limiting probabilities exist (if and) only if ρ < 2 or, equiva-
lently, if λ < 2µ. That is, the arrival rate of the customers must not exceed their service
rate. This is the same condition for the existence of the limiting probabilities as the one
in the case of the M/M/2 model, as shown in the next section.

To complete this example, we use the equations for states 0 and 1 above to express
π0 and π1 in terms of π2. The equation (0) yields at once that π0 = (µ/λ)π2, whereas
(0) and (1) together imply that

λπ1 = µπ2 + µπ3 = µπ2 + µaπ2 =⇒ π1 =
µ

λ
(a + 1)π2.

Then, the condition
∑∞

k=0 πk = 1 enables us to obtain an explicit expression for π2

(from which we deduce the value of πk, for k = 0, 1, 3, 4, . . .). We have:

1 =
∞∑

k=0

πk =
µ

λ
π2 +

µ

λ
(a + 1)π2 +

∞∑
k=2

ak−2π2

= π2

[
µ

λ
(a + 2) +

∞∑
k=0

ak

]
= π2

[
µ

λ
(a + 2) +

1
1− a

]
.

Thus, we can write that

π2 =
[
µ

λ
(a + 2) +

1
1− a

]−1

.

Observe that we did not make use of the equation for state 2 to determine the limiting
probabilities πk. Actually, there is always one redundant equation in the system of linear
equations. We can now check that the solution obtained also satisfies the equation (2)
above. We have:

(λ + µ)π2 = λπ1 + µπ4 ⇐⇒ (λ + µ)π2 = λ
µ

λ
(a + 1)π2 + µa2π2.

That is, we must have:
µa2 + µa− λ = 0.

But this is exactly the quadratic equation satisfied by the constant a (see above).
Remarks. (i) We have obtained a solution of the balance equations, subject to the
normalizing condition (6.5). Actually, it can be shown that there is a unique solution
of this system of linear equations that satisfies (6.5). Therefore, we can assert that we
have the solution to our problem.



6.2 Queueing systems with a single server 207

(ii) If the server is able to serve two customers at the same time (also at rate µ), but
begins to work as soon as there is one customer in the system, then the solution is
slightly different (see [20]).
(iii) If we suppose instead that the customers always arrive two at a time, but are served
only one at a time, then the balance equations become:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

1 (λ + µ)π1 = µπ2

k (≥ 2) (λ + µ)πk = λπk−2 + µπk+1

In such a case, we could determine at random the respective positions in the queue of
the two customers who arrived together.
(iv) Finally, if the customers always arrive two at a time and are also always served
two at a time, then the limiting probabilities π∗n of the corresponding continuous-time
Markov chain can be expressed in terms of the limiting probabilities πn of the M/M/1
queue as follows:

π∗n = πn/2 = ρn/2(1− ρ) for n = 0, 2, 4, . . . .

6.2.2 The M/M/1 model with finite capacity

As mentioned previously, in practice the capacity of any queueing system is limited. Let
c be the finite integer denoting this capacity. Suppose that we computed the limiting
probabilities of a given queueing system having finite capacity and that we found that
πc is very small. Then, assuming that c is actually infinite is a valid simplifying ap-
proximation. However, if the probability that the system is saturated is far from being
negligible, then we should use a finite state space.

Suppose that a certain queueing system may be adequately described by an M/M/1
queue having c+1 possible states: 0, 1, . . . , c. This model is often denoted by M/M/1/c.
The balance equations of the system are then the following:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

k = 1, . . . , c− 1 (λ + µ)πk = λπk−1 + µπk+1

c µπc = λπc−1

Notice that the balance equations for states j = 0, 1, . . . , c − 1 are identical to the
corresponding ones in the M/M/1/∞model. When the system has reached its maximum
capacity, namely c customers, the next state visited will necessarily be c − 1, at an
exponential rate µ. Moreover, the only way the system may enter state c is from state
c− 1, when a new customer arrives.
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Let once again X(t) be the number of customers in the system at time t ≥ 0.
The stochastic process {X(t), t ≥ 0} is an irreducible birth and death process, as be-
fore. Therefore, instead of solving the previous system of linear equations, subject to∑c

j=0 πj = 1 [see (6.5)], we can appeal to Theorem 6.1.1. We still have:

Πk =
(

λ

µ

)k

= ρk for k = 1, 2, . . . , c,

so that
π0 =

1
1 +

∑c
k=1 Πk

=
1

1 +
∑c

k=1 ρk

and

πj = Πjπ0 =
ρj

1 +
∑c

k=1 ρk
=

ρj∑c
k=0 ρk

for j = 1, 2, . . . , c.

Because the state space is finite, the limiting probabilities exist for any (positive)
values of the parameters λ and µ. In the particular case when ρ = 1, the solution is
simply

πj =
1

c + 1
for j = 0, 1, . . . , c. (6.16)

That is, when the system is in equilibrium, the c+1 possible states of the Markov chain
are equally likely.

When ρ 6= 1, we calculate
c∑

k=0

ρk =
1− ρc+1

1− ρ
.

Hence, we can write that

πj
ρ 6=1
=

ρj (1− ρ)
1− ρc+1

for j = 0, 1, . . . , c. (6.17)

Remark. The probability that the system is saturated is given by

πc =
ρc(1− ρ)
1− ρc+1

.

Taking the limit as ρ tends to infinity, we obtain that

lim
ρ→∞

πc = lim
ρ→∞

ρc(1− ρ)
1− ρc+1

= lim
ρ→∞

ρ−1 − 1
ρ−(c+1) − 1

= 1,

so that πj = 0, for j = 0, 1, . . . , c−1, as could have been expected. Conversely, we have:

lim
ρ↓0

π0 = lim
ρ↓0

1− ρ

1− ρc+1
= 1

and πj = 0, for j = 1, 2, . . . , c. Finally, if ρ < 1 and c tends to infinity, we retrieve the
formula
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πj = lim
c→∞

ρj (1− ρ)
1− ρc+1

= ρj (1− ρ) for j = 0, 1, . . .

obtained in the case of the M/M/1/∞ model.

Making use of (6.16), we easily find that

N̄ =
c

2
if ρ = 1.

In the general case when ρ 6= 1, we can show that

N̄ =
ρ

1− ρ
− (c + 1)ρc+1

1− ρc+1
.

Actually, when the system capacity c is small, it is a simple matter to calculate the
value of N̄ from the formula

N̄ ≡ E[N ] :=
c∑

k=0

kπk.

Likewise, after having calculated the πks, it is not difficult to obtain the variance of the
random variable N .

Next, because NS is equal to 1 if the system in equilibrium is in any state k ∈
{1, 2, . . . , c} (and to 0 if the system is empty), the expression for the value of N̄S is the
same as before, namely:

N̄S = 1− π0,

which implies that
N̄Q = N̄ − 1 + π0.

However, the limiting probability π0 is different from the corresponding one in the
M/M/1/∞ model.

Finally, if we consider only the customers who actually enter the system (in equilib-
rium), we may write that their average entering rate is

λe = λ(1− πc).

We then deduce from Little’s formula (6.8) that

T̄ =
N̄

λ(1− πc)
,

so that

Q̄ =
N̄

λ(1− πc)
− 1

µ

because S̄ ≡ E[S] = 1/µ, as previously.
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Example 6.2.3. Consider the M/M/1/2 queueing system. That is, the system capacity
is c = 2. Suppose that λ = µ.
(a) What is the variance of the number of customers in the system in stationary regime?
(b) What is the average number of arrivals into the system (in stationary regime) during
the service time of a given customer?

Solution. (a) We deduce from (6.16) that π0 = π1 = π2 = 1/3. It follows that

E[N ] =
1
3
(0 + 1 + 2) = 1 and E[N2] =

1
3
(0 + 1 + 4) =

5
3
,

so that
VAR[N ] =

5
3
− 12 =

2
3
.

(b) Let t0 > 0 be the time instant at which the customer in question begins to be served.
Then, X(t0) is equal to 1 or 2. Because πk ≡ 1/3, we can assert that

P [X(t0) = 1 | X(t0) ∈ {1, 2}] = P [X(t0) = 2 | X(t0) ∈ {1, 2}] =
1
2
.

Next, let K be the number of customers who enter the system while the customer
of interest is being served. Because c = 2, the possible values of the random variable K
are 0 and 1. That is, K is a Bernoulli random variable. We have, under the condition
that X(t0) ∈ {1, 2}:

P [K = 0] =
1
2
{P [K = 0 | X(t0) = 1] + P [K = 0 | X(t0) = 2]}

=
1
2
{P [K = 0 | X(t0) = 1] + 1} .

Moreover, we can write that

P [K = 0 | X(t0) = 1] = P [N(t0 + S)−N(t0) = 0] = P [N(S) = 0],

where N(t) is the number of arrivals in the interval [0, t] and S is the service time of an
arbitrary customer. Conditioning on the possible values of S, we obtain:

P [N(S) = 0] =
∫ ∞

0

P [N(S) = 0 | S = s]fS(s)ds.

Because the arrivals of customers and the service times are, by assumption, independent
random variables, we have:

P [N(S) = 0] =
∫ ∞

0

P [N(s) = 0]µe−µsds =
∫ ∞

0

e−λsµe−µsds

=
µ

µ + λ

λ=µ
=

1
2
.
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It follows that

P [K = 0] =
1
2

(
1
2

+ 1
)

=
3
4
,

which implies that P [K = 1] = 1/4 and

E[K] = 0 + 1× 1
4

=
1
4
.

Example 6.2.4. Write the balance equations for the M/M/1/3 queueing system if we
suppose that when the server finishes serving a customer and there are two customers
waiting in line, then he serves them both at the same time, at rate µ.
Solution. Here, the state X(t) of the process cannot simply be the number of cus-
tomers in the system at time t. Indeed, suppose that there are three customers in the
system. The next state visited will not be the same if two customers are being served
simultaneously or if two customers are waiting in line. In the former case, the system
will go from state 3 to state 1, whereas it will move from state 3 to state 2 in the latter
case. Therefore, we have to be more precise. Let (m,n) be the state of the system if
there are m customers being served and n waiting to be served. The possible states are
then: (m, 0), for m = 0, 1, 2, and (1, 1), (1, 2), and (2, 1). The balance equations of the
system are the following (see Figure 6.3):

state (m,n) departure rate from (m,n) = arrival rate to (m,n)

(0, 0) λπ(0,0) = µ(π(1,0) + π(2,0))
(1, 0) (λ + µ)π(1,0) = λπ(0,0) + µ(π(1,1) + π(2,1))
(1, 1) (λ + µ)π(1,1) = λπ(1,0)

(1, 2) µπ(1,2) = λπ(1,1)

(2, 0) (λ + µ)π(2,0) = µπ(1,2)

(2, 1) µπ(2,1) = λπ(2,0)

To obtain the limiting probabilities, we can solve the previous system of linear
equations, under the condition

∑
(m,n) π(m,n) = 1. We express the π(m,n)s in terms

of π(2,1). For simplicity, we assume that λ = µ. Then, the last equation above yields
that π(2,0) = π(2,1). Next, the equation for state (2, 0) implies that π(1,2) = 2π(2,1). It
follows, using the equation for state (1, 2), that we can write that π(1,1) = 2π(2,1) as
well. The equation for state (1, 1) enables us to write that π(1,0) = 4π(2,1). Finally, the
first equation gives us π(0,0) = 5π(2,1). Thus, we have:

(5 + 4 + 2 + 2 + 1 + 1)π(2,1) = 1 =⇒ π(2,1) =
1
15

,
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so that

π(0,0) =
1
3
, π(1,0) =

4
15

, π(1,1) = π(1,2) =
2
15

and π(2,0) =
1
15

.

Note that this solution also satisfies the equation for state (1, 0), which we did not use
to find the limiting probabilities.

(1,0) 

λ

μμ

λ

λ

λ

(1,2)  (2,0) (2,1) 

(1,1)

 

(0,0)

 

μ

μ μ

Fig. 6.3. State transition diagram for the queueing model in Example 6.2.4.

The average number of customers in the system in stationary regime is given by∑
(m,n)

(m + n)π(m,n) = 1× π(1,0) + 2× (π(1,1) + π(2,0)) + 3× (π(1,2) + π(2,1))

=
4 + 2× 3 + 3× 3

15
=

19
15

and the average entering rate of customers into the system is

λe = λ(1− π(1,2) − π(2,1)) = λ

(
1− 3

15

)
=

4λ

5
.

6.3 Queueing systems with two or more servers

6.3.1 The M/M/s model

Suppose that all the assumptions that were made in the formulation of the M/M/1
queueing model hold, but that there are actually s servers in the system, where s ∈
{2, 3, . . .}. We assume that the service times of the s servers are independent Exp(µ)
random variables. This model is denoted by M/M/s. The particular case when the
number of servers tends to infinity is considered. Moreover, if the system capacity is
finite, we obtain the M/M/s/c model, which is treated in the next subsection.
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As is generally the case in practice, we suppose that the customers wait in a single
line for an idle server (or that they take a number when they enter the system and
wait until their number is called). This means that if there are at most s customers
in the system, then they are all being served, which is not necessarily the case if we
assume that a queue is formed in front of each server. Furthermore, as was implicit in
the previous section, the service policy is that of first come, first served (denoted by
FIFO, for First In, First Out).
Remark. In the examples and the exercises, we often modify the basic M/M/s model.
For instance, we may assume that the servers do not necessarily serve at the same rate
µ, or that the service policy is different from the one by default (i.e., FIFO), and so
on.

Let X(t) represent the number of customers in the system at time t ≥ 0. The
stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain. The arrival process
is a Poisson process with rate λ > 0. Furthermore, even though there are at least
two servers, because the customers are served one at a time and the service times are
exponential (thus, continuous) random variables, two (or more) customers cannot leave
the system exactly at the same time instant. It follows that {X(t), t ≥ 0} is a birth and
death process. The birth rates λk are all equal to λ, and the death rates µk are given
by

µk =
{

kµ if k = 1, . . . , s− 1,
sµ if k = s, s + 1, . . . .

Indeed, when there are k customers being served simultaneously, the time needed for a
departure to take place is the minimum between k independent Exp(µ) random vari-
ables. We know that this minimum has an exponential distribution with parameter
µ + · · ·+ µ = kµ (see the remark after Proposition 5.2.1).

We deduce from what precedes that the balance equations for the M/M/s queueing
system are (see Figure 6.4 for the case when s = 2):

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

k ∈ {1, . . . , s− 1} (λ + kµ)πk = (k + 1)µπk+1 + λπk−1

k ∈ {s, s + 1, . . .} (λ + sµ)πk = sµπk+1 + λπk−1

To solve this system of linear equations, under the condition
∑∞

k=0 πk = 1, we make
use of Theorem 6.1.1. First, we calculate

Πk =
λ× λ× · · · × λ

µ× 2µ× · · · × kµ
=

1
k!

(
λ

µ

)k

=
1
k!

ρk for k = 1, 2, . . . , s.

In the case when k = s + 1, s + 2, . . . , we find that
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μ μμ

λ
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Fig. 6.4. State transition diagram for the M/M/2 model.

Πk =
ρk

s!sk−s
.

Next, the sum
∑∞

k=1 Πk converges if and only if

∞∑
k=s+1

Πk < ∞ ⇐⇒
∞∑

k=s+1

ρk

s!sk−s
< ∞

⇐⇒ ss

s!

∞∑
k=s+1

(ρ

s

)k

< ∞ ⇐⇒ ρ < s,

which, again, is tantamount to saying that the arrival rate of the customers must be
smaller than their (maximal) service rate.

Now, because its birth and death rates are strictly positive, the birth and death
process {X(t), t ≥ 0} is irreducible and the limiting probabilities can indeed be obtained
from Theorem 6.1.1. We find (after some work) that

π0 =

[
s−1∑
k=0

ρk

k!
+

ρs

s!
s

(s− ρ)

]−1

if ρ < s. (6.18)

We may then write that

πk =
ρk

k!
π0 if k = 1, . . . , s (6.19)

and

πk =
ρk

s!sk−s
π0 if k = s + 1, s + 2, . . . . (6.20)

Obtaining the quantities N̄ and T̄ requires some effort. First, because the service
rates are, by assumption, all equal to µ, we can write that S̄ = 1/µ. It follows, from
Little’s formula (with λe = λ) that

N̄S = λS̄ = ρ.

Next, we can show that

N̄Q =
ρs+1

s!
s

(s− ρ)2
π0,

from which we deduce that



6.3 Queueing systems with two or more servers 215

N̄ =
ρs+1

s!
s

(s− ρ)2
π0 + ρ.

Finally, we have:

Q̄ =
N̄Q

λ
=

ρs+1

λs!
s

(s− ρ)2
π0 and T̄ = Q̄ +

1
µ

.

Remark. In some applications, the number of servers is infinite. For example, suppose
that the customers are people visiting a public park and that their service time is the
random time that they spend in the park. Because people do not have to wait to be
served, this situation corresponds to the case when s is infinite. We can write [see (6.18)]
that

lim
s→∞

π0 =

( ∞∑
k=0

ρk

k!

)−1

= e−ρ,

so that

lim
s→∞

πk =
ρk

k!
e−ρ for k = 1, 2, . . . . (6.21)

Hence, if K ∼ Poi(ρ), we may state that the limiting probabilities for the M/M/∞
model are given by

πk = P [K = k] for k = 0, 1, . . . . (6.22)

It follows that N̄ = ρ. Finally, because the customers never wait to be served, we have
that N̄Q = Q̄ = 0, so that N̄S = N̄ = ρ and T̄ = S̄ = 1/µ.

Now, another quantity of interest is the probability that all servers are busy, when
the system is in stationary regime. We denote this probability by πb. We can show that

πb ≡
∑
k≥s

πk =
sρs

s!(s− ρ)
π0 if ρ < s.

It is possible to express in terms of πb the distribution function of the time Q that an
arbitrary customer waits to be served. The random variable Q is of mixed type. We
have that P [Q = 0] = 1 − πb, because 1 − πb is the probability that the customer in
question arrives while there are fewer than s customers already present in the system.
In general, we can show that, if ρ < s,

P [Q ≤ t] = 1− πbe
(ρ−s)t for t ≥ 0.

Example 6.3.1. Consider the M/M/2 queueing model. Suppose that the two servers
are busy. Calculate the probability that the service times of the two customers being
served differ by at most one time unit.

Solution. Let Si be the service time of the customer being served by server no. i, for
i = 1, 2. The variables Si are independent Exp(µ) random variables. By symmetry, we
can write that
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P [|S1 − S2| ≤ 1] = 2P [S1 ≤ S2 ≤ S1 + 1]

= 2
∫ ∞

0

∫ s1+1

s1

µe−µs1 µe−µs2 ds2ds1

= 2
∫ ∞

0

µe−µs1

{∫ s1+1

s1

µe−µs2 ds2

}
ds1

= 2
∫ ∞

0

µe−µs1

{
− e−µs2

∣∣∣∣s1+1

s1

}
ds1

= 2
(
1− e−µ

) ∫ ∞

0

µe−2µs1 ds1 = 2
(
1− e−µ

) 1
2
.

Thus, the required probability is equal to 1− e−µ.
Remark. If we do not use symmetry, we must compute two double integrals (see Fig-
ure 6.5):

P [|S1 − S2| ≤ 1] =
∫ 1

0

∫ s1+1

0

µe−µs1 µe−µs2 ds2ds1

+
∫ ∞

1

∫ s1+1

s1−1

µe−µs1 µe−µs2 ds2ds1.

s

s

s  - s  =1

2  1

2

1

2

1

s  - s  =11

1

2

2

Fig. 6.5. Figure for Example 6.3.1.

Example 6.3.2. Suppose that λ = 2µ in an M/M/3 queueing system.
(a) What is the variance of the number of customers in the system at a time t0 large
enough for the system to be in stationary regime, given that nobody is waiting in line
at time t0?
(b) Knowing that the three servers are busy at time t0, what is the probability that
nobody is waiting in line?
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Solution. (a) First, t0 being large enough, we can write [see (6.19)] that

π∗k := P [X(t0) = k | X(t0) ≤ 3] =
πk

π0 + π1 + π2 + π3
=

ρk/k!∑3
j=0 ρj/j!

ρ=2
=
(

3
19

)(
2k

k!

)
for k = 0, 1, 2, 3.

That is, π∗0 = 3/19, π∗1 = π∗2 = 6/19 and π∗3 = 4/19.
Remark. Note that because the limiting probabilities πk are expressed in terms of π0,
we did not need to calculate the value of π0 to obtain πk. Actually, we have:

π0 =

[
2∑

k=0

2k

k!
+

23

3!
3

(3− 2)

]−1

=
1
9
.

Next, we calculate

E[X(t0) | X(t0) ≤ 3] =
1
19

(6 + 2× 6 + 3× 4) =
30
19

and
E[X2(t0) | X(t0) ≤ 3] =

1
19
(
6 + 22 × 6 + 32 × 4

)
=

66
19

,

so that

VAR[X(t0) | X(t0) ≤ 3] =
66
19
−
(

30
19

)2

=
354
361

.

(b) We look for

p := P [X(t0) = 3 | X(t0) ≥ 3] =
P [X(t0) = 3]
P [X(t0) ≥ 3]

=
P [X(t0) = 3]

1− P [X(t0) ≤ 2]
(6.19)
=

(4/3)π0

1− (π0 + 2π0 + 2π0)
.

So, here we need the explicit value of π0. Using the previous remark, we can write that
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p =
4/3

π−1
0 − (1 + 2 + 2)

=
4/3

9− (1 + 2 + 2)
=

1
3
.

6.3.2 The M/M/s/c model

Even if the capacity, c, of an M/M/s system is finite, the stochastic process {X(t), t ≥ 0}
remains a birth and death process. Therefore, we can appeal to Theorem 6.1.1 to obtain
the limiting probabilities of the process. One case is of special importance, namely the
one for which c = s. The M/M/s/s model is a particular case of what is known as a loss
system, because when all the servers are busy, the arriving customers cannot (or do not
want to) enter the system. Consequently, they are lost. An example of such a system is
a parking lot. In this case, the empty parking places are the servers, and when the lot
is full, arriving drivers must go somewhere else to park their cars.

Next, we obtain the limiting probabilities for the M/M/s/s model. The balance
equations of this system are the following:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

k ∈ {1, . . . , s− 1} (λ + kµ)πk = (k + 1)µπk+1 + λπk−1

s sµπs = λπs−1

The birth and death process {X(t), t ≥ 0}, where X(t) represents the number of
customers in the system at time t, is irreducible. Moreover, in as much as the sys-
tem capacity is finite, the limiting probabilities exist for all admissible values of the
parameters λ and µ. We calculate

Πk =
λ× λ× · · · × λ

µ× 2µ× · · · × kµ
=

ρk

k!
for k = 1, 2, . . . , s.

It follows that

π0 =
1

1 +
∑s

k=1 ρk/k!
=

(
s∑

k=0

ρk

k!

)−1

(6.23)

and

πj =
ρj

j!
π0 for j = 1, . . . , s. (6.24)

Remarks. (i) If s tends to infinity, we should retrieve the results obtained for the
M/M/∞ queue in the previous subsection [see (6.21)]. Indeed, we have:

lim
s→∞

π0 =

( ∞∑
k=0

ρk

k!

)−1

= (eρ)−1 = e−ρ,
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so that

lim
s→∞

πj =
ρj

j!
e−ρ for j = 1, 2, . . . .

(ii) The probability πb that all servers are busy is given by

πb = πs =
ρs

s!
π0 =

ρs/s!∑s
j=0 ρj/j!

, (6.25)

which is known as Erlang’s formula.
(iii) Because ρ := λ/µ = λE[S], the formulas for the limiting probabilities may be
rewritten as follows:

π0 =

(
s∑

k=0

(λE[S])k

k!

)−1

and πj =
(λE[S])j

j!
π0 for j = 1, . . . , s. (6.26)

A very interesting result states that the previous formulas are valid even if the random
variable S is not exponentially distributed, as long as it is nonnegative. For instance, S
could have a uniform distribution on the interval (0, 1), or a gamma distribution, and so
on. That is, (6.26) holds for the M/G/s/s model (called the Erlang loss system), where
G stands for general.

To complete this subsection, we calculate the various quantities of interest, which
turns out to be easy, because Q ≡ 0. It follows at once that Q̄ = N̄Q = 0. Because
S̄ = 1/µ, as previously, we can write that

T̄ = S̄ =
1
µ

and
N̄ = N̄S = λe S̄ = λ(1− πs)

1
µ

= (1− πs)ρ.

Example 6.3.3. The balance equations for the M/M/2/3 queueing system with λ = 2µ
are:

state j departure rate from j = arrival rate to j

0 2µπ0 = µπ1

1 (2µ + µ)π1 = 2µπ0 + (2× µ)π2

2 (2µ + 2× µ)π2 = 2µπ1 + (2× µ)π3

3 (2× µ)π3 = 2µπ2
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That is,

2π0
(0)
= π1

3π1
(1)
= 2π0 + 2π2

2π2
(2)
= π1 + π3

π3
(3)
= π2

It is a simple matter to solve this system of linear equations. The equations for states
2 and 3 yield that π1 = π2 = π3. Then, making use of the equation for state 0, we can
write that

π0 + 2π0 + 2π0 + 2π0 = 1 =⇒ π0 =
1
7

and π1 = π2 = π3 =
2
7
.

Finally, we find at once that this solution satisfies the equation for state 1 as well.
In the case of the M/M/2/2 queueing system (with λ = 2µ), we deduce from (6.23)

and (6.24) that

π0 =

(
2∑

k=0

2k

k!

)−1

= (1 + 2 + 2)−1 =
1
5

and π1 = π2 =
2
5
.

6.4 Exercises for Chapter 6

Solved exercises

Question no. 1
A system is made up of n components that operate independently of one another and

all have an exponential lifetime, with parameter µk, for k = 1, . . . , n. When the system
breaks down, the failed components are replaced by new ones. Let N(t) be the number
of system breakdowns in the interval [0, t]. Is the stochastic process {N(t), t ≥ 0} a
continuous-time Markov chain if the components are connected (a) in series? (b) in
parallel? (c) in standby redundancy?

Question no. 2
The particular pure birth process known as the Yule process is such that λn = nλ,

for n = 0, 1, . . . . It can be shown that

pi,j(t) =
(

j − 1
i− 1

)
e−iλt(1− e−λt)j−i for j ≥ i ≥ 1.

What is the expected value of X(t), given that X(0) = i > 0?
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Question no. 3
Let {X(t), t ≥ 0} be a birth and death process with state space {0, 1, 2} and birth

and death rates given by

λ0 = λ, λ1 = 2λ and µ1 = µ, µ2 = 2µ.

Find the limiting probabilities of the process from its balance equations.

Question no. 4
Find the limiting probabilities of an M/M/1 queue at a (large enough) time instant

t0, given that there are either two, three, or four customers in the system at t0. Under
the same condition, what is the expected time that the first customer who enters the
system after t0 will spend waiting in line if we assume that the customer who was being
served at time t0 is still present when the new one arrives?

Question no. 5
Suppose that the server in an M/M/1 queueing system works twice as fast when

there are at least three customers in the system, so that µ[X(t)] = µ if X(t) = 1 or 2,
and µ[X(t)] = 2µ if X(t) ≥ 3. Write the balance equations for this system. What is the
condition for the existence of the limiting probabilities?

Question no. 6
Consider the M/M/1/2 queueing system in stationary regime. Suppose that a depar-

ture took place at time t0 and that the next two arrivals, from t0, occurred at t = t0 +1
and t = t0 + 2. What is the probability that the customer who arrived at time t0 + 2
was able to enter the system?

Question no. 7
Suppose that the server in an M/M/1/3 queueing system decides to work twice as

fast, in order to increase the profits of the system. However, after a while, the arrival
rate of customers goes from λ to λ/2, because of poor service. Assume that λ = µ. If
every customer who actually enters the system pays $x, what is the average amount of
money that the system earns per unit of time when the service rate is µ? Is the server
better off to serve at rate µ or at rate 2µ?

Question no. 8
Let X(t) be the number of customers at time t in an M/M/2 queueing model.

Suppose that X(t0) ≥ 2, and let τi be the departure time of the customer being served
by server no. i, for i = 1, 2. Calculate the probability P [τ2 ≤ τ1 + 1].

Question no. 9
Write the balance equations for the M/M/2/3 queueing system if we suppose that

the service time of server no. i has an exponential distribution with parameter µi, for
i = 1, 2. That is, the two servers do not necessarily work at the same speed. Assume that,
when the system is empty, an arriving customer heads for server no. 1 with probability
1. In terms of the limiting probabilities of the process, what is the average time that an
entering customer spends in the system (in stationary regime)?
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Question no. 10
Drivers arrive according to a Poisson process with rate λ at a service station having

two gas pumps, but no waiting space for the cars. Suppose that the service time is a
uniformly distributed random variable on the interval (2, 4) for either pump, indepen-
dently from one driver to the other (and that the various service times are independent
of the interarrival times of the drivers). What are the limiting probabilities of the sys-
tem? What is the variance of the number of cars in the service station in equilibrium if
λ = 1/3?

Exercises

Question no. 1
Let {Ni(t), t ≥ 0} be a Poisson process with rate λi, for i = 1, 2. Assume that the

two Poisson processes are independent. We define

X(t) = N1(t)−N2(t) for t ≥ 0.

Is the stochastic process {X(t), t ≥ 0} a continuous-time Markov chain? Is it a birth
and death process (with state space Z := {. . . ,−2, 1, 0, 1, 2, . . .})? Justify your answers.

Question no. 2
Let {N(t), t ≥ 0} be a counting process (see Example 6.1.1) for which the time T

until the first event and between two successive events has a uniform distribution on
the interval (0, 1). Show that the stochastic process {N∗(t), t ≥ 0}, where N∗(0) := 0
and

N∗(t) := N(− ln t) for t > 0

is a pure birth process.
Hint. See Example 3.4.4.

Question no. 3
Consider the birth and death process {X(t), t ≥ 0} having birth and death rates λn =

λ and µn = nµ, for n = 0, 1, 2, . . . . Calculate, if they exist, the limiting probabilities of
the process.

Question no. 4
Let {N(t), t ≥ 0} be a Poisson process with rate λ = ln 2. We define Wi = int(τi +1),

for i = 0, 1, . . . , where τi is the time that the process spends in state i, and “int”
designates the integer part. It can be shown that Wi has a geometric distribution with
parameter p = 1 − e−λ. Calculate the probabilities (a) P [W0 = W1]; (b) P [W0 > W1];
(c) P [W0 > W1 | W1 > 1].

Question no. 5
Suppose that {X(t), t ≥ 0} is a Yule process with λ = 2 (see solved exercise no. 2).

Calculate (a) E[τ4
1 + τ4

2 + τ4
3 ]; (b) E[τ1 + τ2

2 + τ3
3 ]; (c) the correlation coefficient of τ2

1

and τ3
1 .
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Hint. We have (see Example 3.5.2) that∫ ∞

0

xnλe−λxdx =
n!
λn

for n = 0, 1, . . . .

Question no. 6
Customers arrive at a certain store according to a Poisson process with rate λ = 1/2

per minute. Suppose that each customer stays exactly five minutes in the store.
(a) What is the expected number of customers in the store at time t = 60?
(b) What is the expected number of customers in (a), given that the store is not empty
at time t = 60?
(c) What is the expected number of customers in (a), given that the number of customers
in the store at time t = 60 is not equal to 1?

Question no. 7
What is the average number of customers in an M/M/1 queueing system in equilib-

rium, given that the number of customers is an odd number?

Question no. 8
Consider an M/M/1 queue in equilibrium, with λ = µ/2. What is the probability

that there are more than five customers in the system, given that there are at least two?

Question no. 9
Suppose that the service policy for an M/M/1 queue is the following: when the server

finishes serving a customer, the next one to enter service is picked at random among
those waiting in line. What is the expected total time that a customer who arrived while
the system (in equilibrium) was in state 3 spent in the system, given that no customers
who (possibly) arrived after the customer in question were served before him?

Question no. 10
Calculate the variance of the total time T that an arbitrary customer spends in an

M/M/1 queueing system in equilibrium, given that 1 < T < 2, if λ = 1 and µ = 2.

Question no. 11
Suppose that after having been served, every customer in an M/M/1/2 queueing

system immediately returns (exactly once) in front of the server (if there was a customer
waiting to be served, then the returning customer will have to wait until the server is
free). Define an appropriate state space and write the balance equations of the system.

Question no. 12
A customer who was unable to enter an M/M/1/c queueing system (in equilibrium)

at time t0 decides to come back at time t0+2. What is the probability that the customer
in question is then able to enter the system, given that exactly one customer arrived in
the interval (t0, t0 + 2) and was unable to enter the system as well?
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Question no. 13
Suppose that for an otherwise M/M/1/2 queue, a customer who enters the system,

but has to wait for service, decides to leave if she is still waiting after a random time
having an exponential distribution with parameter θ. Moreover, this random time is
independent of the service times and the interarrival times. Let X(t) be the number of
customers in the system at time t. The stochastic process {X(t), t ≥ 0} is a continuous-
time Markov chain (it is a birth and death process, to be precise). (a) Write the balance
equations of the process. (b) Calculate the limiting probabilities in the case when λ =
µ = θ = 1.

Question no. 14
Assume that the probability that the server, in an M/M/1/3 queueing system, is

unable to provide the service requested by an arbitrary customer is equal to p ∈ (0, 1),
independently from one customer to the other. Assume also that the time needed by
the server to decide whether he will be able or unable to service a given customer is
an exponentially distributed random variable with parameter µ0. Define an appropriate
state space and write the balance equations of the system.

Question no. 15
Consider an M/M/2 queueing system. Suppose that any customer who accepts to

pay twice as much as an ordinary customer for her service will get served at rate 2µ. If
one such customer arrives while there are exactly two customers already present in the
system, what is the probability that this new customer will spend less than 1/µ time
units (i.e., the average service time of an ordinary customer) in the system?

Question no. 16
Assume that when an M/M/2 queueing system is empty, an arriving customer heads

for server no. 1 with probability 1/2. What is the probability that the first two customers,
from the initial time, will be served (a) by server no. 1? (b) by different servers?

Question no. 17
Let X(t) be the number of customers in an M/M/2/4 queueing system. Suppose that

t0 is large enough for the system to be in stationary regime. Calculate the conditional
expectation E[X(t0) | X(t0) > 0] if λ = µ/2.

Question no. 18
For an M/M/4/4 queue in equilibrium, with λ = µ, what is the variance of the

number of customers in the system, given that it is not empty?

Question no. 19
Assume that in a certain M/M/2/3 queueing system, the service time of an arbitrary

customer is an exponentially distributed random variable with parameter µ. However, if
the server has not completed his service after a random time (independent of the actual
service time) having an exponential distribution with parameter µ0, then the customer
must leave the system. (a) Write the balance equations of the system. (b) What is the
proportion of customers who must leave the system before having been fully serviced?
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Question no. 20
For an M/M/5/5 queue with λ = µ, what is the expected value of 1/N , where N is

the number of customers in the system in stationary regime, given that the system is
neither empty nor full?

Multiple choice questions

Question no. 1
Let {X(t), t ≥ 0} be a birth and death process with rates λn ≡ 1 and µn ≡ 2.

Suppose that X(0) = 0. What is the probability that the process returns exactly twice
to state 0 before visiting state 2?
(a) 1/27 (b) 4/27 (c) 2/9 (d) 1/3 (e) 4/9

Question no. 2
Consider the pure death process {X(t), t ≥ 0} with rates µn ≡ 1. Calculate the

probability P [X(5) = 0 | X(0) = 5].
(a) 0.1755 (b) 0.3840 (c) 0.4405 (d) 0.5595 (e) 0.6160

Question no. 3
The continuous-time Markov chain {X(t), t ≥ 0}, having state space {0, 1, 2}, is such

that νi ≡ ν, ρ0,1 = 1/2, ρ1,0 = 1/4, and ρ2,0 = 1/4. Calculate the limiting probability
that the process is not in state 0.
(a) 1/5 (b) 2/5 (c) 1/2 (d) 3/5 (e) 4/5

Question no. 4
Let T be the total time spent by an arbitrary customer in an M/M/1 queue with

λ = 1 and µ = 3. Calculate E[T 2 | T > t0], where t0 > 0.
(a) 1

4 + t0 + t20 (b) 1
2 + t0 + t20 (c) 1 + t0 + t20 (d) 1/4 (e) 1/2

Question no. 5
What is the probability that a customer, who left an M/M/1 queue with λ = 1

and µ = 2 before the arrival of the next customer, spent less than one time unit in the
system?
(a) 1

2

(
1− e−1

)
(b) 1

2

(
1− e−2

)
(c) 1− e−1 (d) 1− e−2 (e) 1− 1

2e−2

Question no. 6
For an M/M/1/2 queueing system, what is the probability that the system was full

before the first departure took place, given that the second customer arrived at time
t = 2?
(a) 1

2µ

(
1− e−2µ

)
(b) 1

µ

(
1− e−2µ

)
(c) 1

2µ (1− e−µ) (d) 1
µ (1− e−µ)

(e) 1
µ

(
1− e−µ − e−2µ

)
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Question no. 7
Suppose that the M/M/1/2 queueing system is modified as follows: whenever the

server finishes serving a customer, he is unavailable for a random time τ (which is
independent of the service times and the interarrival times) having an exponential dis-
tribution with parameter θ. Calculate the limiting probability that the server is busy
serving a customer if λ = µ = 1 and θ = 1/2.
Hint. Define the following states:

0: system is empty; server is available;
0∗: system is empty; server is unavailable;
1: one customer is being served; nobody is waiting;
1∗: one customer is waiting to be served; server is unavailable;
2: one customer is being served and another one is waiting;
2∗: two customers are waiting to be served; server is unavailable.

(a) 3/49 (b) 13/49 (c) 16/49 (d) 19/49 (e) 20/49

Question no. 8
Suppose that there are five customers in an M/M/2 queueing system at a given time

instant. Find the probability that the three customers waiting in line will not be served
by the same server.
(a) 3/8 (b) 1/2 (c) 5/8 (d) 3/4 (e) 7/8

Question no. 9
What is the average number of customers in an M/M/2/4 queueing system in equi-

librium, with λ = µ, given that it is neither full nor empty?
(a) 9/7 (b) 11/7 (c) 2 (d) 15/7 (e) 17/7

Question no. 10
Suppose that the service time for an M/G/3/3 queueing system, with λ = 1, is a

random variable S defined by S = Z4, where Z ∼ N(0, 1). What is the average number
of customers in the system in stationary regime?
Hint. The square of a N(0, 1) random variable has a gamma distribution with parameters
α = λ = 1/2.
(a) 18/13 (b) 41/26 (c) 51/26 (d) 2 (e) 2.5
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Time series

In many applications, in particular in economics and in hydrology, people are interested
in the sequence of values of a certain variable over time. To model the variations of the
variable of interest, a time series is often used. For example, the flow of a river on a given
day may be expressed as a function of the flow on the previous days, to which a term
called noise is added. In the first section, general properties of time series are presented.
Next, various time series models are studied. Finally, the problem of modeling and using
time series to forecast future values of the state variable is considered.

7.1 Introduction

Let {Xn, n = 0, 1, . . .} be a discrete-time stochastic process. If the index n represents
time, it is known as a (discrete-time) time series. The random variable Xn is called the
state variable. In this chapter, we are interested in stationary time series.
Remark. The state variable could actually be a random vector of dimension k. The time
series would then be a multivariate time series. Likewise, if the index n is a vector, then
we have a multidimensional or spatial time series. In this book, we only consider the
case when the state variable is a random variable and the index n is a scalar.

Definition 7.1.1. The stochastic process {Xn, n = 0, 1, . . .} is said to be (strictly)
stationary if the distribution of the random vector (Xn1+m, Xn2+m, . . . , Xnk+m) is
the same for all m ∈ {0, 1, . . .} and for all k = 1, 2, . . . , where nj ∈ {0, 1, . . .} for
j = 1, . . . , k.

Remarks. (i) In words, the process {Xn

the random vector (Xn1 , Xn2 , . . . , Xnk

right.
(ii) If we consider the process {Xn, n = . . . ,−1, 0, 1, . . .}, then m can be any positive
or negative integer in the definition, which is tantamount to saying that the time origin
can be placed anywhere.

©  Springer Science + Business Media, LLC 2009
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, n = 0, 1, . . .} is stationary if the distribution of
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Because it is generally difficult to prove that a given stochastic process is stationary,
we often content ourselves with a weaker version of the definition. Note first that if
{Xn, n = 0, 1, . . .} is stationary, then we may write that

P [Xn ≤ x] = P [X0 ≤ x] for any n ∈ {1, 2, . . .},

which follows from the above definition with k = 1. Hence, we deduce that the expected
value of Xn must not depend on n:

E[Xn] := µ for all n ∈ {0, 1, 2, . . .}.

Next, if we set k = 2 in the definition, we obtain that

P [Xn1 ≤ x1, Xn2 ≤ x2] = P [Xn1+m ≤ x1, Xn2+m ≤ x2]

for any n1, n2 ∈ {0, 1, . . .} and for m ∈ {0, 1, . . .}. This time, we deduce that the
distribution of the random vector (Xn1 , Xn2) depends only on the difference n2−n1 (or
n1 − n2), which implies that

COV[Xn1 , Xn2 ] := γ(n2 − n1) = γ(n1 − n2)

for all n1, n2 ∈ {0, 1, 2, . . .}. If we choose n1 = i and n2 = i + j, then we may write that

COV[Xi, Xi+j ] = γ(j) = γ(−j), (7.1)

which also follows from the equation

COV[Xi, Xi+j ] = COV[Xi+j , Xi].

Hence, COV[Xi, Xi+j ] = COV[Xi, Xi−j ] if j ≤ i.

Definition 7.1.2. The function γ(·) is called the (auto) covariance function of the
stationary stochastic process {Xn, n = 0, 1, . . .}.

Remark. If we assume that µ = 0, or if we consider the centered process {Yn, n = 0, 1, . . .}
defined by

Yn = Xn − µ for n = 0, 1, . . . ,

then γ(·) is also the autocorrelation function of the process. However, in the context of
time series, this term is generally used for another function (that is defined below).

Definition 7.1.3. If the stochastic process {Xn, n = 0, 1, . . .} is such that its mean
E[Xn] is equal to a constant µ ∈ R for all n and Equation (7.1) is satisfied for all
i ∈ {0, 1, . . .} and j ∈ {−i,−i + 1, . . .}, then it is said to be weakly or second-order
stationary.
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Remarks. (i) Notice that

VAR[Xn] = COV[Xn, Xn] = γ(0),

which is independent of n. We denote the variance of Xn by σ2 (or by σ2
X where necessary

to avoid possible confusion).
(ii) Equation (7.1) implies that the function γ(·) is an even function. Moreover, it can
be shown that

|COV[Xn, Xm]| ≤ STD[Xn]STD[Xm]

(because the correlation coefficient of Xn and Xm belongs to the interval [−1, 1]). It
follows that

|COV[Xn, Xn+i]|
i≥0= |γ(i)| ≤ STD[Xn]STD[Xn+i] = γ(0) ≡ σ2.

Therefore, the function γ(·) is bounded above by the positive constant σ2.
(iii) In the case of a continuous-time stochastic process {X(t), t ≥ 0}, the condition (7.1)
becomes

COV[X(t), X(t + s)] = γ(s) = γ(−s) for all t ≥ 0 and s ≥ −t.

Furthermore, we may then assume that γ(·) is a continuous function.

Definition 7.1.4. Let {Xn, n = 0, 1, . . .} be a weakly stationary stochastic process. The
function

ρ(k) =
γ(k)
γ(0)

=
γ(k)
σ2

is called the autocorrelation function of the process.

Remarks. (i) The function ρ(·) is sometimes denoted by ACF. Likewise, some authors
write ACVF for the autocovariance function.
(ii) The autocorrelation function is such that

−1 ≤ ρ(k) ≤ 1 and ρ(0) = 1.

Moreover, because γ(k) = γ(−k), we also have that ρ(k) = ρ(−k). Therefore, it is not
necessary to calculate the autocorrelation function for negative values of k.

Example 7.1.1. Suppose that the random variables X0, X1, . . . are independent and
identically distributed. In addition, assume that E[Xn] ≡ 0 and VAR[Xn] ≡ σ2 < ∞.
Then, we have that (for i, i + j ∈ {0, 1, . . .})

COV[Xi, Xi+j ] = E[XiXi+j ]− 02 ind.= E[Xi]E[Xi+j ] = 0 if j 6= 0.

In the case when j = 0, we can write that
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COV[Xi, Xi+j ]
j=0
= COV[Xi, Xi] = VAR[Xi] = σ2.

That is,

COV[Xn1 , Xn2 ] = γ(n2 − n1) =
{

0 if n2 − n1 6= 0,
σ2 if n2 − n1 = 0.

Because the mean E[Xn] of the random variables is a constant and the covariance
COV[Xn1 , Xn2 ] depends only on the difference n2−n1, the stochastic process {Xn, n =
0, 1, . . .} is an example of a weakly stationary process. It is called an i.i.d. noise (with
zero mean) and is denoted by IID(0, σ2).

Example 7.1.2. If the stochastic process {Xn, n = 0, 1, . . .} having as state space the
set {0, 1, 2, . . .} is such that

P [Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0] = P [Xn+1 = j | Xn = i]

for all states i0, . . . , in−1, i, j ∈ {0, 1, . . .} and for n = 0, 1, . . . , then {Xn, n = 0, 1, . . .}
is called a (discrete-time) Markov chain. Assume, in addition, that we can write that

P [Xn+1 = j | Xn = i] := pi,j .

That is, the conditional probability does not depend on n. Then, the Markov chain is
said to be time-homogeneous. In general, the probability that the Markov chain will
move from state i to state j in r steps is given by

P [Xn+r = j | Xn = i] := p
(r)
i,j

for any n.
Suppose that the limit

πj := lim
n→∞

P [Xn = j | X0 = i]

exists and does not depend on the initial state i. If we also suppose that

P [X0 = i] = πi for all i ∈ {0, 1, . . .},

then we can show that

P [Xn = i] = πi for n = 0, 1, . . . and for all i ∈ {0, 1, . . .}.

Hence, Definition 7.1.1 is satisfied for k = 1. Actually, we can show that the Markov
chain {Xn, n = 0, 1, . . .} is (strictly) stationary. In particular, if n2 ≥ n1, we have that

P [Xn1+m = i, Xn2+m = j] = P [Xn2+m = j | Xn1+m = i]P [Xn1+m = i]

= p
(n2−n1)
i,j πi.

Note that the joint probability P [Xn1+m = i, Xn2+m = j] does not depend on m ∈
{0, 1, . . .}.
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The process in Example 7.1.1 can be generalized as follows.

Definition 7.1.5. Suppose that the random variables X0, X1, . . . are such that E[Xn] ≡
0 and VAR[Xn] ≡ σ2 < ∞. If the Xns are uncorrelated and identically distributed, then
the stochastic process {Xn, n = 0, 1, . . .} is called a white noise (process) and is denoted
by WN(0, σ2).

Remarks. (i) An i.i.d. noise is a white noise process, because if two random variables
are independent, then they are also uncorrelated. However, the converse is not always
true.
(ii) A very important particular case is the one when the Xns all have a Gaussian
distribution. We have seen that, in such a case, the random variables are independent if
and only if their (covariance or) correlation coefficient is equal to 0. Hence, a Gaussian
white noise is an i.i.d. noise. We denote this process by GWN(0, σ2).

In Chapter 3, we defined the Gaussian or normal distribution (see p. 70). We now
generalize this definition.

Definition 7.1.6. Let Z1, . . . , Zm be independent N(0, 1) random variables, and let µk

be a real constant, for k = 1, . . . , n. If the random variable Xk is defined by

Xk = µk +
m∑

j=1

ckjZj for k = 1, . . . , n,

where the ckjs are real constants, then the random vector (X1, X2, . . . , Xn) has a multi-
normal or multivariate normal distribution.

Remarks. (i) We say that Xk is a linear combination of the random variables Z1, . . . , Zm.
(ii) Equivalently, (X1, X2, . . . , Xn) has a multinormal distribution if and only if

a1X1 + · · ·+ anXn

has a normal distribution for all real constants a1, . . . , an (with at least one ai 6= 0,
although we can actually take ai ≡ 0 because the constant 0 can be considered as a
degenerate normal random variable).

It can be shown that the joint density function of the random vector X :=
(X1, . . . , Xn) is given by

fX(x) =
1√

(2π)ndetC
exp

{
− 1

2
(x−m)C−1(xT −mT )

}
(7.2)

for x := (x1, . . . , xn) ∈ Rn, where

m := (E[X1], . . . , E[Xn]) = (µ1, . . . , µn),
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C := (COV[Xi, Xj ])i,j=1,...,n

and T denotes the transpose of the vector.
Remarks. (i) The matrix C is called the covariance matrix of the random vector X.
Actually, it must be nonsingular for the above expression to be valid. That is, the
determinant of C must be different from zero.
(ii) Note that the distribution of X depends only on the vector of means m and the
covariance matrix C.
(iii) We use the following notation: X ∼ N(m,C).

Properties. (i) If the random vector (X1, X2, . . . , Xn) has a multinormal distribution,
then any linear combination of the Xks also has a multinormal distribution.
(ii) If, in addition, COV[Xi, Xj ] = 0, then Xi and Xj are independent random variables.

Definition 7.1.7. A stochastic process {Xn, n = 0, 1, . . .} is said to be Gaussian if
the random vector (Xn1 , . . . , Xnk

) has a multinormal distribution for all n1, . . . , nk ∈
{0, 1, . . .} and for any k ∈ {1, 2, . . .}.

Remarks. (i) The definition can be extended to the case when {X(t), t ∈ T}, where
T ⊂ R, is a continuous-time stochastic process.
(ii) Any affine transformation {Yn, n = 0, 1, . . .} of a Gaussian process {Xn, n = 0, 1, . . .}
is also a Gaussian process. That is, Yn is defined by

Yn = αXn + β for n = 0, 1, . . . ,

where α (6= 0) and β are constants. The process {Zn, n = 0, 1, . . .} defined by

Zn = αX2n + β for n = 0, 1, . . . ,

for instance, is a Gaussian process as well. However, if we set

Zn = X2
n for n = 0, 1, . . . ,

then {Zn, n = 0, 1, . . .} is clearly not a Gaussian process because Zn ≥ 0, which implies
that Zn does not have a Gaussian distribution.

A reason why Gaussian processes are so useful is given in the next proposition.

Proposition 7.1.1. If a Gaussian process {Xn, n = 0, 1, . . .} is weakly stationary, then
it is also (strictly) stationary.

Proof. The proof is based on the fact that a multivariate normal distribution is com-
pletely determined by its vector of means and its covariance matrix, as mentioned above.
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Example 7.1.3. If (X1, X2) is a random vector having a multinormal distribution (i.e.,
a bivariate normal or binormal distribution, to be precise), then its joint probability
density function can be written as follows:
fX1,X2(x1, x2) =

c exp
{
− 1

2(1− ρ2
X1,X2

)

[ 2∑
i=1

(
xi − µXi

σXi

)2

− 2ρX1,X2

(x1 − µX1)(x2 − µX2)
σX1σX2

]}
for any (x1, x2) ∈ R2, where µXi ∈ R and σXi > 0, for i = 1, 2, and −1 < ρX1,X2 < 1.
Moreover, c is a positive constant defined by

c =
[
2πσX1σX2 (1− ρ2

X1,X2
)1/2

]−1

(see Figure 7.1).

Fig. 7.1. Joint probability density functions of a random vector having a bivariate normal
distribution with µX1 = 0, µX2 = 1, σX1 = 1, σX2 = 4, ρX1,X2 = 1/2 (left), and ρX1,X2 = 5/6
(right).

Because every linear combination of the random variables X1 and X2 has a Gaussian
distribution, we can state that X1 and X2 themselves are Gaussian random variables.
We find that E[Xi] = µXi and VAR[Xi] = σ2

Xi
, for i = 1, 2, which can be checked

by integrating the joint density function fX1,X2(x1, x2) with respect to the appropriate
variable. It follows that

fX2(x2 | X1 = x1) =
fX1,X2(x1, x2)

fX1(x1)

= c∗ exp
{
− 1

2(1− ρ2
X1,X2

)

[(
x2 − µX2

σX2

)
− ρX1,X2

(
x1 − µX1

σX1

)]2}
,

where
c∗ =

[√
2πσX2 (1− ρ2

X1,X2
)1/2

]−1

.

That is, we can write that
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X2 | {X1 = x1} ∼ N
(

µX2 + ρX1,X2

σX2

σX1

(x1 − µX1), σ
2
X2

(1− ρ2
X1,X2

)
)

. (7.3)

Remark. Note that if ρX1,X2 = 0, then fX2(x2 | X1 = x1) ≡ fX2(x2), which confirms
the fact that if the correlation coefficient of two Gaussian random variables is equal to
zero, then they are independent random variables (see p. 133).

Example 7.1.4. Let {X(t), t ≥ 0} be a Gaussian process with stationary and indepen-
dent increments such that X(0) = 0 and X(t) ∼ N(0, t), for t > 0. Define

Yn =
{

1 if X(n) ≥ 0,
−1 if X(n) < 0

for n = 1, 2, . . . . Is the stochastic process {Yn, n = 1, 2, . . .} weakly stationary?
Solution. We have that

E[Yn] = 1 · P [Xn ≥ 0] + (−1) · P [Xn < 0] = 1 · 1
2

+ (−1) · 1
2

= 0 ∀n ∈ {1, 2, . . .}.

Then,
COV[Yn, Yn+m] = E[YnYn+m].

Next, by symmetry and continuity, we can write (for m ∈ {0, 1, . . .}) that

E[YnYn+m]

= 2P [X(n) ≥ 0, X(n + m) ≥ 0]− 2P [X(n) ≥ 0, X(n + m) < 0]
= 2 {P [X(n + m) ≥ 0 | X(n) ≥ 0]− P [X(n + m) < 0 | X(n) ≥ 0]}
×P [X(n) ≥ 0]︸ ︷︷ ︸

1/2

= 2P [X(n + m) ≥ 0 | X(n) ≥ 0]− 1

= 2
∫ ∞

0

P [X(n + m) ≥ 0 | X(n) ≥ 0, X(n) = u]fX(n)(u | X(n) ≥ 0)du− 1,

where

fX(n)(u | X(n) ≥ 0) =
fX(n)(u)

P [X(n) ≥ 0]
= 2fX(n)(u) =

2√
2πn

exp
{
−u2

2n

}
for u ≥ 0. It follows, using the fact that {X(t), t ≥ 0} has stationary and independent
increments, that

E[YnYn+m] = 4
∫ ∞

0

P [N(0,m) ≥ −u]
1√
2πn

exp
{
−u2

2n

}
du− 1.
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Now,

P [N(0,m) ≥ −u] = 1− Φ(−u/
√

m) = Φ(u/
√

m) =
∫ u/

√
m

−∞

1√
2π

e−z2/2dz

=
1
2

+
∫ u/

√
m

0

1√
2π

e−z2/2dz
y=z/

√
2

=
1
2

+
∫ u/

√
2m

0

1√
π

e−y2
dy

=
1
2

+
1
2

erf(u/
√

2m),

where erf is called the error function. Hence,

E[YnYn+m] = 4
∫ ∞

0

1
2

[
1 + erf(u/

√
2m)

] 1√
2πn

exp
{
−u2

2n

}
du− 1

= 2
{

1
2

+
∫ ∞

0

erf(u/
√

2m)
1√
2πn

exp
{
−u2

2n

}
du

}
− 1

=
2√
2πn

∫ ∞

0

erf(u/
√

2m) exp
{
−u2

2n

}
du.

Finally, making use of a mathematical software package, such as Maple, we find that
the above integral is given by∫ ∞

0

erf(u/
√

2m) exp
{
−u2

2n

}
du =

√
2n√
π

arctan(
√

n/
√

m),

so that
COV[Yn, Yn+m] = E[YnYn+m] =

2
π

arctan(
√

n/
√

m).

COV[Yn, Yn+m] depends on n, therefore the stochastic process {Yn, n = 1, 2, . . .} is not
weakly stationary.
Remark. The stochastic process {X(t), t ≥ 0} is known as a standard Brownian motion
and is very important for the applications.

7.2 Particular time series models

7.2.1 Autoregressive processes

Let {Yn, n = 0, 1, . . .} be a time series such that E[Yn] ≡ µ. We define

Xn = Yn − µ for n = 0, 1, . . . ,

so that E[Xn] ≡ 0. A simple model is the one for which the state variable Xn is defined
by
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Xn = α1Xn−1 + εn for n = 1, 2, . . . , (7.4)

where α1 (6= 0) is a constant and {εn, n = 1, 2, . . .} is a white noise WN(0, σ2) process.
Furthermore, εn is independent of (or is at least uncorrelated with) Xn−1, Xn−2, . . . ,
X0. The stochastic process {Xn, n = 0, 1, . . .} is called an autoregressive process. We
have that

Xn = α1Xn−1 + εn = α1(α1Xn−2 + εn−1) + εn = α2
1Xn−2 + α1εn−1 + εn

= · · · = αn
1 X0 +

n∑
i=1

αn−i
1 εi. (7.5)

Now, if we define ε0 = X0, then we can write that

Xn =
n∑

i=0

αn−i
1 εi for n = 0, 1, 2, . . . .

It follows (with k ∈ {0, 1, . . .}) that

COV[Xn, Xn+k] = COV

[
n∑

i=0

αn−i
1 εi,

n+k∑
i=0

αn+k−i
1 εi

]

= COV

[
n∑

i=0

αn−i
1 εi,

n∑
i=0

αn+k−i
1 εi +

n+k∑
i=n+1

αn+k−i
1 εi

]

= COV

[
n∑

i=0

αn−i
1 εi,

n∑
i=0

αn+k−i
1 εi

]
+ COV

[
n∑

i=0

αn−i
1 εi,

n+k∑
i=n+1

αn+k−i
1 εi

]
.

The random variables εi being uncorrelated, the second term above is equal to 0, so
that

COV[Xn, Xn+k] = COV

[
n∑

i=0

αn−i
1 εi,

n∑
i=0

αn+k−i
1 εi

]

= E

[{
n∑

i=0

αn−i
1 εi

}{
n∑

i=0

αn+k−i
1 εi

}]
=

n∑
i=0

αn−i
1 αn+k−i

1 E[ε2i ]

because
E[εiεj ] = E[εi]E[εj ] = 0 if i 6= j.

Assume that −1 < α1 < 1 and that

E[ε20] = VAR[ε0] =
σ2

1− α2
1

.
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Then,

COV[Xn, Xn+k] = α2n+k
1

(
σ2

1− α2
1

+
n∑

i=1

α−2i
1 σ2

)
=

αk
1

1− α2
1

σ2. (7.6)

Indeed, we have that

Sn :=
n∑

i=1

α−2i
1 = α−2

1 + α−4
1 + · · ·+ α−2n

1

=⇒ α−2
1 Sn = α−4

1 + · · ·+ α−2n
1 + α−2n−2

1

=⇒
(
1− α−2

1

)
Sn = α−2

1 − α−2n−2
1

=⇒ Sn =
α−2

1 − α−2n−2
1

1− α−2
1

=
α−2n

1 − 1
1− α2

1

, (7.7)

from which Equation (7.6) follows at once.
Similarly,

COV[Xn, Xn−k] = COV

[
n∑

i=0

αn−i
1 εi,

n−k∑
i=0

αn−k−i
1 εi

]
unc.= COV

[
n−k∑
i=0

αn−i
1 εi,

n−k∑
i=0

αn−k−i
1 εi

]
unc.=

n−k∑
i=0

αn−i
1 αn−k−i

1 E[ε2i ]

= α2n−k
1

n−k∑
i=0

α−2i
1 E[ε2i ]

α2
1<1
= α2n−k

1 σ2

{
1

1− α2
1

+
α
−2(n−k)
1 − 1

1− α2
1

}

=
σ2

1− α2
1

αk
1 for k = 0, 1, . . . , n.

Given that COV[Xn, Xn±k] can be written as γ(k) (and E[Xn] ≡ 0), we may as-
sert that the stochastic process {Xn, n = 0, 1, . . .} is a weakly stationary time series.
Furthermore, we have that

σ2
X ≡ VAR[Xn] = COV[Xn, Xn] =

σ2

1− α2
1

for n = 0, 1, . . . ,

which implies that
ρXn,Xn+k

= αk
1 for n, k ∈ {0, 1, . . .}. (7.8)

Remarks. (i) Let Z = {. . . ,−1, 0, 1, . . .}. If we consider the stochastic processes {Xn, n ∈
Z} and {εn, n ∈ Z}, where VAR[εn] ≡ σ2, then we can write that

Xn =
∞∑

i=0

αi
1εn−i for n ∈ Z (7.9)

and we retrieve the formula for COV[Xn, Xn+k] if we assume that |α1| < 1, as above.
Indeed, first we have that
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E[Xn] = E

[ ∞∑
i=0

αi
1εn−i

]
= 0 for all n ∈ Z.

Then, using the fact that {εn, n ∈ Z} is a WN(0, σ2) process, we can write that

VAR[Xn] = E[X2
n] = E

( ∞∑
i=0

αi
1εn−i

)2
 =

∞∑
i=0

α2i
1 E[ε2n−i]

=
∞∑

i=0

α2i
1 σ2 α2

1<1
=

(
1

1− α2
1

)
σ2 for all n ∈ Z. (7.10)

Finally,

COV[Xn, Xn+k] = E[XnXn+k] = E

( ∞∑
i=0

αi
1εn−i

) ∞∑
j=0

αj
1εn+k−j


=

∞∑
i=0

α
i+(k+i)
1 E[ε2n−i] =

∞∑
i=0

α2i+k
1 σ2 =

(
αk

1

1− α2
1

)
σ2

if k ∈ {0, 1, . . .}. When k = −1,−2, . . . , we have that

COV[Xn, Xn+k] = E

( ∞∑
i=0

αi
1εn−i

) ∞∑
j=0

αj
1εn+k−j


= E

( ∞∑
i=k

αi−k
1 εn+k−i

) ∞∑
j=0

αj
1εn+k−j


=

∞∑
j=0

α2j−k
1 E[ε2n+k−j ] = σ2

(
α−k

1

1− α2
1

)
.

Hence, we can write that

COV[Xn, Xn+k] =

(
α
|k|
1

1− α2
1

)
σ2 for all n, k ∈ Z. (7.11)

(ii) Suppose that the independent random variables εn are such that

P [εn = 1] = p0 = 1− P [εn = −1] for all n ∈ {1, 2 . . .},

where p0 ∈ (0, 1). Then, the stochastic process {Xn, n = 0, 1, . . .} defined by
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Xn = Xn−1 + εn for n = 1, 2, . . .

(with εn independent of Xn−1, . . . , X0, for n = 1, 2, . . .) is called a random walk. The
initial state X0 is often chosen to be 0. Note that if p0 = 1/2, so that E[εn] ≡ 0,
{Xn, n = 0, 1, . . .} is an autoregressive process with α1 = 1. However, it is not stationary,
which can be seen as follows:

Xn = Xn−1 + εn = Xn−2 + εn−1 + εn = · · · = X0 +
n∑

i=1

εi,

so that

E[Xn] = E[X0] +
n∑

i=1

E[εi] = E[X0]

a constant, but

VAR[Xn] ind.= VAR[X0] +
n∑

i=1

VAR[εi] = VAR[X0] + nσ2,

where σ2 = 1− 02 = 1. Because the variance of Xn depends on n, the process {Xn, n =
0, 1, . . .} is not stationary (not even weakly).

The time series defined by Equation (7.4) is known as an autoregressive process of
order 1, because it assumes that Xn depends only on one value of the process into the
past. It can be generalized, as follows.

Definition 7.2.1. The stochastic process {Xn, n ∈ Z} defined by

Xn =
p∑

i=1

αiXn−i + εn for all n ∈ Z = {. . . ,−1, 0, 1, . . .}, (7.12)

where the αis are constants, {εn, n ∈ Z} is a white noise WN(0, σ2) process, and εn is
independent of Xn−1, Xn−2, . . . , is called an autoregressive process of order p and
is denoted by AR(p).

Remarks. (i) If we consider the time series from n = 0 only, Equation (7.12) is then
valid for n = p, p + 1, . . . . Alternatively, we can set Xn−i = 0 if n− i < 0.
(ii) We could add a constant term α0 in (7.12).

To obtain the variance of an autoregressive process of order 1, given in Equa-
tion (7.10), we can also proceed as follows: because (by assumption) E[Xn] ≡ 0, we
have that
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VAR[Xn] = E[X2
n] = E

[
(α1Xn−1 + εn)2

]
= α2

1E[X2
n−1] + 2α1E[Xn−1εn] + E[ε2n]

ind.= α2
1E[X2

n−1] + 2α1E[Xn−1]E[εn] + σ2

= α2
1E[X2

n−1] + σ2.

Next, if we assume that the time series is weakly stationary, then we can write that
E[X2

n] ≡ E[X2
0 ], which implies that

E[X2
n] = α2

1E[X2
n] + σ2 =⇒ VAR[Xn] =

σ2

1− α2
1

for all n ∈ Z.

Remark. We see that the condition |α1| < 1 must be fulfilled, otherwise the variance of
Xn would be negative (if |α1| > 1).

Likewise,

COV[Xn, Xn−k] = E[XnXn−k] = E [(α1Xn−1 + εn)Xn−k]
= α1E[Xn−1Xn−k] + E[εnXn−k]

ind.= α1COV[Xn−1, Xn−k] for k = 1, 2, . . . .

Hence, assuming again that the time series is weakly stationary, we obtain that

γ(k) = α1γ(k − 1) = α2
1γ(k − 2) = · · · = αk

1γ(0)

=⇒ γ(k) = αk
1

σ2

1− α2
1

for all k ∈ N,

which agrees with Equation (7.11) [because γ(−k) = γ(k)].
Now, for a weakly stationary AR(p) process (with E[Xn] ≡ 0), we have that

COV[Xn, Xn−k] = E[XnXn−k] = E

[(
p∑

i=1

αiXn−i + εn

)
Xn−k

]

=
p∑

i=1

αiE[Xn−iXn−k] + E[εnXn−k]

ind.=
p∑

i=1

αiCOV[Xn−i, Xn−k] for k = 1, 2, . . . .
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The previous equation can be rewritten as follows:

γ(k) =
p∑

i=1

αiγ(k − i) (7.13)

=⇒ ρ(k) =
p∑

i=1

αiρ(k − i) for k = 1, 2, . . . . (7.14)

It can be shown that the general solution of Equation (7.14), together with ρ(0) = 1, is
given by

ρ(k) =
p∑

i=1

ciλ
k
i for k = 0, 1, 2, . . . , (7.15)

where the cis are constants and the λis are the roots of the equation

λp −
p∑

i=1

αiλ
p−i = 0. (7.16)

Remark. We assume that the p roots of the above equation are distinct.

To determine the constants ci, for i = 1, . . . , p, we can use the fact that ρ(0) = 1
and the various equations obtained by setting, recursively, k equal to 1, 2, . . . , p − 1 in
(7.14) [assuming that the p roots of Equation (7.16) have been found].
Remarks. (i) It can be shown that the condition |λi| < 1 must be fulfilled for i = 1, . . . , p
for the AR(p) process to be weakly stationary. We then find that

lim
k→∞

γ(k) = lim
k→∞

ρ(k) = 0.

(ii) The equations (7.14) are known as the Yule–Walker equations.
(iii) If we define z = 1/λ (assuming that λ 6= 0), then Equation (7.16) becomes

z−p −
p∑

i=1

αiz
i−p = 0 ⇐⇒ 1−

p∑
i=1

αiz
i = 0. (7.17)

The condition for the time series to be weakly stationary is now that |z| must be strictly
greater than 1 for all roots of the equation.

Example 7.2.1. In the case of a weakly stationary AR(1) process, Equation (7.16)
becomes

λ = α1,

which implies that Equation (7.15) is

ρ(k) = c1αk
1 for k = 0, 1, 2, . . . .

The condition ρ(0) = 1 yields at once that c1 = 1. Hence, we can write that
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ρ(k) = αk
1 for k = 0, 1, 2, . . .

[see Equation (7.8)].
Remarks. (i) Notice that, because |α1|must be strictly smaller than 1, we deduce that the
autocorrelation function of a weakly stationary AR(1) process decreases geometrically
(in absolute value). Furthermore, if 0 < α1 < 1, then ρ(k) is always positive, whereas
in the case when −1 < α1 < 0, the function ρ(k) alternates between geometrically
decreasing positive and negative values.
(ii) Substituting ρ(k) = αk

1 into Equation (7.14) with p = 1, we obtain that

αk
1 = α1α

k−1
1 = αk

1 ,

so that the equation is indeed satisfied.

Example 7.2.2. To obtain the autocorrelation function of a weakly stationary AR(2)
process, we must first find the two roots of the equation [see (7.16)]

λ2 − α1λ− α2 = 0.

We have that

λ =
1
2

(
α1 ±

√
α2

1 + 4α2

)
.

Let

λ1 =
1
2

(
α1 −

√
α2

1 + 4α2

)
and λ2 =

1
2

(
α1 +

√
α2

1 + 4α2

)
.

We can write that
ρ(k) = c1λk

1 + c2λk
2 for k = 0, 1, 2, . . . .

Again, ρ(0) = 1 yields that c1 + c2 = 1, so that

ρ(k) = λk
2 + c1(λk

1 − λk
2) for k = 0, 1, 2, . . . .

Next, making use of Equation (7.14) with p = 2 and k = 1, we get that

ρ(1) = α1ρ(0) + α2ρ(−1) = α1 + α2ρ(1),

which implies that
ρ(1) =

α1

1− α2
.

Hence (see above),

ρ(1) = λ2 + c1(λ1 − λ2) and ρ(1) =
α1

1− α2
,
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which yields

c1 =
[α1/(1− α2)]− λ2

λ1 − λ2
and c2 =

λ1 − [α1/(1− α2)]
λ1 − λ2

.

Now, the variance of a weakly stationary AR(p) process having zero mean can be
obtained as follows:

VAR[Xn] = E[X2
n] = E

[(
p∑

i=1

αiXn−i + εn

)
Xn

]

=
p∑

i=1

αiE[Xn−iXn] + E[εnXn]

ind.=
p∑

i=1

αiCOV[Xn−i, Xn] + E[ε2n]

=
p∑

i=1

αiγ(i) + σ2. (7.18)

We can use this equation, together with (7.13), to find an explicit expression for
VAR[Xn].

Example 7.2.3. Consider again a weakly stationary AR(2) process. From Equa-
tion (7.18),

VAR[Xn] = γ(0) = α1γ(1) + α2γ(2) + σ2. (7.19)

Moreover, Equation (7.13), with p = 2 and k = 1, and the fact that γ(−j) = γ(j) imply
that

γ(1) = α1γ(0) + α2γ(−1) =⇒ γ(1) =
α1

1− α2
γ(0),

whereas the same equation with p = 2 and k = 2 gives

γ(2) = α1γ(1) + α2γ(0) =⇒ γ(2) =
(

α2
1

1− α2
+ α2

)
γ(0).

Finally, substituting into (7.19), we find that

γ(0) =
(

α2
1

1− α2
+

α2
1α2

1− α2
+ α2

2

)
γ(0) + σ2,

so that

γ(0) =
(

1− α2
1

(1 + α2)
1− α2

− α2
2

)−1

σ2.

Remark. If we add the constant α0 in Equation (7.12), then the mean of a weakly
stationary AR(p) process is given by
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E[Xn] = α0 +
p∑

i=1

αiE[Xn−i] + E[εn] = α0 +
p∑

i=1

αiE[Xn].

That is,
E[Xn] =

α0

1−
∑p

i=1 αi
.

7.2.2 Moving average processes

Definition 7.2.2. Let {εn, n ∈ Z} be a white noise WN(0, σ2) process. The time series
{Xn, n ∈ Z} defined by

Xn = εn +
q∑

i=1

θiεn−i for all n ∈ Z, (7.20)

where the θis are constants, is called a moving average process of order q and is
denoted by MA(q).

Remarks. (i) We could add the constant µ in the model. However, we prefer to work
with the centered process {Xn, n ∈ Z}.
(ii) Setting θ0 = 1, Equation (7.20) can be rewritten as follows:

Xn =
q∑

i=0

θiεn−i for all n ∈ Z.

(iii) We deduce from Equation (7.9) that an AR(1) process can be written as an MA(q)
time series with q tending to infinity and with coefficients θi equal to αi

1, for i = 0, 1, . . . .

The mean and the variance of an MA(q) time series are easy to calculate. First, we
(indeed) have that

E[Xn] =
q∑

i=0

θiE[εn−i] = 0 for all n ∈ Z.

Next,

VAR[Xn] = E[X2
n] = E

( q∑
i=0

θiεn−i

)2
 .

Because {εn, n ∈ Z} is a white noise process, we can write that

VAR[Xn] =
q∑

i=0

E[θ2
i ε2n−i] =

q∑
i=0

θ2
i σ2. (7.21)



7.2 Particular time series models 245

Now, the covariance of the random variables Xn and Xn+k is given by

COV[Xn, Xn+k] = E

[(
q∑

i=0

θiεn−i

)(
q∑

i=0

θiεn+k−i

)]
.

Again, the fact that {εn, n ∈ Z} is a white noise process implies that

COV[Xn, Xn+k] = 0 if k = q + 1, q + 2, . . . .

When k = 1, . . . , q, we obtain that

COV[Xn, Xn+k] = E

( q∑
i=0

θiεn−i

) q−k∑
j=−k

θj+kεn−j


=

q−k∑
i=0

E
[
θiθi+kε2n−i

]
=

q−k∑
i=0

θiθi+kσ2.

In general, we find that

COV[Xn, Xn+k] =
{

σ2
∑q−|k|

i=0 θiθi+|k| if |k| = 0, 1, . . . , q,
0 if |k| = q + 1, q + 2, . . . .

(7.22)

Hence, we can state that the time series {Xn, n ∈ Z} is weakly stationary. The autocor-
relation function of a moving average process of order q is therefore

ρ(k) =


∑q−|k|

i=0 θiθi+|k|∑q
i=0 θ2

i

if |k| = 0, 1, . . . , q,

0 if |k| = q + 1, q + 2, . . . .

(7.23)

Particular cases. (i) The autocorrelation function of an MA(1) process is given by

ρ(k) =


1 if k = 0,
θ1

1 + θ2
1

if |k| = 1,

0 if |k| = 2, 3, . . . .

(7.24)

(ii) If q = 2, we obtain that

ρ(k) =



1 if k = 0,

θ1(1 + θ2)
1 + θ2

1 + θ2
2

if |k| = 1,

θ2

1 + θ2
1 + θ2

2

if |k| = 2,

0 if |k| = 3, 4, . . . .

(7.25)

Remarks. (i) If we replace θ1 (6= 0) by 1/θ1 in ρ(1) for an MA(1) time series, we obtain
the same formula:
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ρ(1) =
θ−1
1

1 + θ−2
1

=
θ1

θ2
1 + 1

. (7.26)

Furthermore, let
g(x) =

x

x2 + 1
.

We have that

g′(x) =
1− x2

(x2 + 1)2
= 0 if and only if x = ±1.

Because

g′′(x) =
2x(x2 − 3)
(x2 + 1)3

,

we deduce that x = −1 (resp., x = 1) corresponds to a minimum (resp., maximum) of
the function g(x). Hence, we may conclude that

−1
2
≤ ρ(1) ≤ 1

2
.

Conversely, solving for θ1 in Equation (7.26), we find that

θ1 =
1

2ρ(1)
±
[

1
4ρ2(1)

− 1
]1/2

.

If we denote the two roots by θ1+ and θ1− , then we have that

θ1+ =
1

θ1−
.

(ii) In the case of an MA(∞) process, it can be shown that

γ(k) = σ2
∞∑

i=0

θiθi+|k|,

provided that the coefficients θi are absolutely summable. That is, if

∞∑
i=0

|θi| < ∞.

The reason why time series can be used to model various processes is given in the
following proposition. It is based on a result, known as Wold’s decomposition theorem,
which asserts that every weakly stationary (discrete-time) stochastic process can be
written as the sum of a deterministic process and a moving average process (of infinite
order).
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Proposition 7.2.1. Any weakly stationary stochastic process {Xn, n ∈ Z} can be rep-
resented as follows:

Xn = εn +
∞∑

i=1

θiεn−i + νn,

where {εn, n ∈ Z} is a white noise WN(0, σ2) process, {νn, n ∈ Z} is a linearly deter-
ministic process, and

∞∑
i=1

θ2
i < ∞.

Remarks. (i) If νn ≡ 0, then the stochastic process {Xn, n ∈ Z} is said to be purely
nondeterministic, which means that all linear deterministic components have been sub-
tracted from the process. Notice that any purely nondeterministic process can be ex-
pressed as a moving average process of infinite order.
(ii) A process is linearly deterministic if it is perfectly predictable from its own past.
(iii) The proposition implies that any weakly stationary process has a linear structure.
That is, it is a linear combination of uncorrelated random variables.

Definition 7.2.3. The lag or backshift operator is denoted by L and is defined by

LXn = Xn−1 for all n.

In general, we have that

LkXn = Xn−k for all n and for k = 0, 1, . . . .

Furthermore, the (first) difference operator, ∆, is given by

∆ = 1− L,

so that
∆Xn = Xn −Xn−1 for all n.

Remarks. (i) The operators L and ∆ can be manipulated as if they were algebraic
quantities. Hence,

∆2Xn = (1− L)2Xn = (1− 2L + L2)Xn = Xn − 2Xn−1 + Xn−2.

(ii) If we apply the operators L and ∆ to a constant µ, we obtain that

Lµ = µ and ∆µ = 0.
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Now, using the lag operator, we can express an AR(p) process as follows:(
1−

p∑
i=1

αiL
i

)
Xn = εn for all n ∈ Z.

The time series is weakly stationary if [see Equation (7.17)] all the roots of the polyno-
mial equation

1−
p∑

i=1

αiL
i = 0 (7.27)

lie outside the unit circle.
Next, an MA(q) time series can also be expressed by means of the lag operator:

Xn =

(
1 +

q∑
i=1

θiL
i

)
εn for all n ∈ Z.

Definition 7.2.4. We say that an MA(q) process is invertible if all the roots of the
polynomial equation

1 +
q∑

i=1

θiL
i = 0 (7.28)

lie outside the unit circle.

Particular cases. (i) If q = 1, we simply have that

1 + θ1L = 0 =⇒ L = − 1
θ1

.

The root L must be such that |L| > 1. That is,

|θ1| < 1.

(ii) In the case of an MA(2) process, the two roots of

1 + θ1L + θ2L2 = 0

are

L+ =
1

2θ2

[
−θ1 +

(
θ2
1 − 4θ2

)1/2
]

and L− =
1

2θ2

[
−θ1 −

(
θ2
1 − 4θ2

)1/2
]
.

We know that a complex number z = x + iy lies outside the unit circle if x2 + y2 > 1.
Here, we find that L+ and L− both lie outside the unit circle if and only if
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θ1 + θ2 > −1, θ1 − θ2 > −1 and − 1 < θ2 < 1.

7.2.3 Autoregressive moving average processes

To conclude this section, we define autoregressive moving average processes which, as
their name indicates, generalize both autoregressive and moving average processes.

Definition 7.2.5. The (zero mean) stochastic process {Xn, n ∈ Z} defined by

Xn =
p∑

i=1

αiXn−i + εn +
q∑

j=1

θj εn−j for all n ∈ Z,

where {εn, n ∈ Z} is a white noise WN(0, σ2) process (with εn independent of Xn−1,
Xn−2, . . .), is called an autoregressive moving average process of order (p,q) and
is denoted by ARMA(p, q).

Remarks. (i) An ARMA(p, q) process may be weakly stationary and invertible. It is
weakly stationary if all the roots of Equation (7.27) lie outside the unit circle. That
is, if the autoregressive part of the process is weakly stationary. Likewise, if the MA(q)
part of the time series is invertible, then so is the ARMA(p, q) process.
(ii) A weakly stationary and invertible ARMA(p, q) time series can be expressed as an
infinite autoregressive process or, equivalently, as a moving average process of infinite
order.
(iii) For an ARMA process to have a minimal number of terms, Equations (7.27) and
(7.28) should have no common roots.

Example 7.2.4. Suppose that {Xn, n ∈ Z} can be modeled as follows:

Xn = α1Xn−1 for all n ∈ Z,

but cannot be observed directly. Rather, we can observe the random variable Yn defined
by

Yn = Xn + εn for n ∈ Z,

where {εn, n ∈ Z} is a WN(0, σ2) process (and εn is independent of Yn−1, Yn−2, . . .).
Let us define

Zn = Yn − α1Yn−1 for n ∈ Z. (7.29)

We have that
Zn = Xn + εn − α1(Xn−1 + εn−1).
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That is,

Zn = Xn − α1Xn−1 + εn − α1εn−1

= εn − α1εn−1 for n ∈ Z.

We may assert that {Zn, n ∈ Z} is an MA(1) process with θ1 = −α1. Therefore, we
deduce from (7.29) that {Yn, n ∈ Z} is actually a particular ARMA(1,1) time series.

We now calculate the autocovariance function of a weakly stationary ARMA(1,1)
process, which is defined by

Xn = α1Xn−1 + εn + θ1εn−1 for all n ∈ Z.

We have that [see (7.18)]

γ(0) ≡ VAR[Xn] = E [(α1Xn−1 + εn + θ1εn−1) Xn]
= α1E[Xn−1Xn] + E[εnXn] + θ1E[εn−1Xn]

ind.= α1γ(1) + E[ε2n] + θ1

(
E[εn−1α1Xn−1] + E[θ1ε2n−1]

)
= α1γ(1) + σ2 + θ1

(
α1E[ε2n−1] + θ1σ2

)
= α1γ(1) + σ2

(
1 + θ1α1 + θ2

1

)
. (7.30)

Likewise,

γ(1) = COV[Xn, Xn−1] = E [(α1Xn−1 + εn + θ1εn−1) Xn−1]
= α1E[X2

n−1] + E[εnXn−1] + θ1E[εn−1Xn−1]
ind.= α1γ(0) + θ1E[ε2n−1]
= α1γ(0) + θ1σ2 (7.31)

and

γ(k) = COV[Xn, Xn−k] = E [(α1Xn−1 + εn + θ1εn−1) Xn−k]
= α1E[Xn−1Xn−k] + E[εnXn−k] + θ1E[εn−1Xn−k]

ind.= α1γ(k − 1) for k = 2, 3, . . . . (7.32)

Notice that Equations (7.30) and (7.31) enable us to write that

γ(0) =
σ2
(
1 + 2θ1α1 + θ2

1

)
1− α2

1

and γ(1) =
σ2
[
θ1 + α1(1 + θ1α1 + θ2

1)
]

1− α2
1

.

Finally, remember that we are interested in (weakly) stationary time series. If the
time series {Xn, n ∈ Z} is not weakly stationary, we can consider the differenced process
{Yn, n ∈ Z} defined by
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Yn = ∆Xn = Xn −Xn−1 for all n ∈ Z.

If the resulting process is weakly stationary, then we can try to model it as an
ARMA(p, q) process. If it is not, we can difference the {Yn, n ∈ Z} process, and so
on.

In general, we have the following definition.

Definition 7.2.6. Suppose that the stochastic process {Yn, n ∈ Z} defined by

Yn = ∆dXn = Xn +
d∑

j=1

(−1)j

(
d

j

)
Xn−j for all n ∈ Z,

where d = 1, 2, . . . , is an ARMA(p, q) process. Then, {Xn, n ∈ Z} is called an autore-
gressive integrated moving average process and is denoted by ARIMA(p, d, q).

7.3 Modeling and forecasting

Let Xn be the (random) closing value of a certain stock market index, for example,
the Dow Jones index, at time n. Suppose that we gathered observations x1, x2, . . . ,
xN of this closing value over a given period of time and that we would like to model
the random process {Xn, n = 0, 1, 2, . . .} as a particular time series. The first step is
to check that the data collected constitute a weakly stationary time series. If it is not
the case, we can difference the data until the assumption of stationarity is reasonable.
In practice, one way to determine that a particular time series must be differenced is
to look at the graph of the successive Xns in time. There should be no obvious trend
pattern. That is, the data should move randomly around a constant mean over time.
We assume, in the sequel, that the time series considered is indeed weakly stationary.

To try to identify the orders p and q of an autoregressive moving average process
that we would like to use as a model for a given dataset, we can look at the sample
autocorrelation function. We have seen in the preceding section, p. 242, that the (the-
oretical) autocorrelation function ρ(k) of a weakly stationary AR(p) process decreases
geometrically (in absolute value) with |k|, and ρ(k) is equal to 0 for |k| > q in the case
of an MA(q) time series [see Equation (7.23)].

To help us determine (approximately) the values of p and q, we define the partial
autocorrelation function.

Definition 7.3.1. Let ρ(k) be the autocorrelation function of a weakly stationary time
series {Xn, n ∈ Z}. Define the determinants

Dk,1 =

∣∣∣∣∣∣∣∣∣∣
1 ρ(1) ρ(2) . . . ρ(k − 2) ρ(1)

ρ(1) 1 ρ(1) . . . ρ(k − 3) ρ(2)
ρ(2) ρ(1) 1 . . . ρ(k − 4) ρ(3)
. . . . . . . . . . . . . . . . . .

ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣
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and

Dk,2 =

∣∣∣∣∣∣∣∣∣∣
1 ρ(1) ρ(2) . . . ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(1) . . . ρ(k − 3) ρ(k − 2)
ρ(2) ρ(1) 1 . . . ρ(k − 4) ρ(k − 3)
. . . . . . . . . . . . . . . . . .

ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . ρ(1) 1

∣∣∣∣∣∣∣∣∣∣
.

The partial autocorrelation function, denoted by φ(k), of the process is given by

φ(k) =
Dk,1

Dk,2
for k = 1, 2, . . . .

Remarks. (i) The determinants in the above definition are given by (for k = 1)

D1,1 = |ρ(1)| = ρ(1) and D1,2 = |1| = 1

and (for k = 2)

D2,1 =
∣∣∣∣ 1 ρ(1)
ρ(1) ρ(2)

∣∣∣∣ = ρ(2)− ρ2(1) and D2,2 =
∣∣∣∣ 1 ρ(1)
ρ(1) 1

∣∣∣∣ = 1− ρ2(1).

That is, first we write the last column of the matrix and then we add the other k − 1
columns, starting from the first one on the left and moving right (see solved exercise
no. 8 for D3,1 and D3,2).
(ii) The φ(k)s are actually obtained by solving the system of linear equations

ρ(j) = φ(1)ρ(1− j) + φ(2)ρ(2− j) + φ(3)ρ(3− j) + · · ·+ φ(k)ρ(k − j)

for j = 1, . . . , k [and using the fact that ρ(−k) = ρ(k)]. These equations follow from the
Yule–Walker equations (7.14).
(iii) In the case of a weakly stationary AR(p) time series, φ(k) is the autocorrelation at
lag k, after having removed the autocorrelation with an AR(k − 1) process. That is, it
measures the correlation that is not explained by an AR(k − 1) process.
(iv) If the time series is a weakly stationary AR(p) model, we find that φ(k) = 0 for
k = p + 1, p + 2, . . . , whereas φ(k) decreases (approximately) geometrically, in absolute
value, in the case of an MA(q) [and an ARMA(p, q)] model (see Exercise no. 18, p. 265).
Notice that the φ(k) function behaves in the exact opposite way as ρ(k) does for AR(p)
and MA(q) processes.
(v) We deduce from the preceding remark that if we want to use an AR(p) model for a
given dataset, then the sample partial autocorrelations should be approximately equal
to 0 from k = p + 1. In practice, the autocorrelations ρ(k) must first be estimated from
the data before we can compute the sample φ(k)s.

Particular cases. (i) If {Xn, n ∈ Z} is a weakly stationary AR(1) stochastic process,
then we only have to calculate
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φ(1) =
ρ(1)
1

= ρ(1) (7.33)

and we can set φ(k) = 0 for |k| = 2, 3, . . . .
Remark. Notice that φ(1) will always be equal to ρ(1).
(ii) When the time series considered is a weakly stationary AR(2) process, we have that

φ(1) =
ρ(1)
1

= ρ(1) and φ(2) =
ρ(2)− ρ2(1)
1− ρ2(1)

(7.34)

[and φ(k) = 0 for |k| = 3, 4, . . .].
(iii) In the case of an invertible MA(1) time series, it can be shown that

φ(k) = − (−θ1)k

1 + θ2
1 + · · ·+ θ2k

1

= − (−θ1)k (1− θ2
1)

1− θ
2(k+1)
1

for k = 1, 2, . . . . (7.35)

Once a particular ARMA(p, q) process has been identified as being reasonable for
the data collected, we must estimate the parameters α1, . . . , αp and θ1, . . . , θq in the
model. Finally, there exist many statistical tests that enable us to assess the quality of
the fit of the model to the data. We do not get into these statistical questions in this
book. However, we give the formula used to estimate the autocorrelation function ρ(k).

The original time series {Yn, n ∈ Z} is assumed to have a constant mean µ. To
estimate µ, we collect some data, y1, y2, . . . , yN , and we calculate their arithmetic
mean. That is, we set

µ̂ =
1
N

N∑
n=1

yn.

Remark. The observed data y1, y2, . . . , yN are particular values taken by random
variables that constitute a random sample of the variable of interest, say Y . The quantity
µ̂ defined above is a point estimate of E[Yn] ≡ µ.

Next, we set
xn = yn − µ̂ for n = 1, 2, . . . , N .

The corresponding process {Xn, n ∈ Z} is supposed to have zero mean and be weakly
stationary. The point estimate of the (constant) variance of the Xns is

σ̂2
X =

1
N

N∑
n=1

x2
n.

Remark. Remember that the variance σ2
X of the Xns is not the same as the variance σ2

of the white noise process.
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More generally, to estimate the covariance of Xn and Xn−k, we use

γ̂(k) =
1
N

N∑
n=k+1

xnxn−k.

Then, the point estimate of ρ(k) is given by

ρ̂(k) =
γ̂(k)
γ̂(0)

for k = 1, 2, . . . .

Example 7.3.1. Suppose that X0 = 0 and that

Xn = 0.5Xn−1 + εn for n = 1, 2, . . . ,

where the εns are i.i.d. random variables having a U(−1, 1) distribution (and εn is
independent of Xn−1, . . . , X1). Therefore, {εn, n = 1, 2, . . .} is an IID(0, 1/3) noise and
{Xn, n = 0, 1, . . .} is an AR(1) process.

Using a statistical software package, we generated 40 (independent) observations of
a U(−1, 1) random variable and we calculated the value xn of Xn, for n = 1, . . . , 40.
The results are the following:

n 1 2 3 4 5 6 7 8 9 10
xn −0.41 0.70 0.76 0.38 0.60 −0.20 0.22 −0.15 −0.39 −0.76

n 11 12 13 14 15 16 17 18 19 20
xn 0.59 −0.40 −0.05 0.39 0.42 0.38 0.47 −0.04 −0.23 −0.11

n 21 22 23 24 25 26 27 28 29 30
xn −0.84 −0.49 −1.23 −0.80 −0.92 −0.61 0.47 0.76 −0.44 −0.90

n 31 32 33 34 35 36 37 38 39 40
xn 0.54 −0.12 −0.76 0.32 −0.36 0.60 0.75 1.00 0.01 −0.73

Although the number of data points is not very large, we now show whether we
are able to determine that the xns are observations of an AR(1) process by proceeding
as suggested above. First, if we look at the scatter diagram of the xns against n, we
notice no obvious trend in the data (see Figure 7.2). Therefore, we may assume that
the underlying stochastic process is weakly stationary.

Next, the mean of the data points is equal to −0.0395. Moreover, the point estimate
of the variance σ2

X is approximately 0.337.
Remark. The number of observations is not large enough to obtain very accurate point
estimates of the mean (which is actually equal to 0) and the variance of the Xns, which
is [see (7.10)]
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Fig. 7.2. Scatter diagram of the data in Example 7.3.1.

VAR[Xn] ≡ σ2

1− (0.5)2
= 0.4̄.

Finally, we calculate the point estimate of φ(k), for k = 1, 2, 3. We find that

φ̂(1) ' 0.328, φ̂(2) ' 0.010 and φ̂(3) ' 0.057.

We notice that the partial autocorrelations are close to 0 for k = 2, 3, from which we
deduce that an AR(1) model could indeed be reasonable for the data. In fact, some
values of φ̂(k) are larger (in absolute value) as k increases. However, the larger k is, the
fewer data points are available to estimate the corresponding partial autocorrelation, so
that the point estimates are less and less reliable, especially when n is small.

We now turn to the problem of using the data to forecast future values of the time
series.

Let {Xn, n ∈ Z} be a time series. Suppose that we would like to forecast the value of
Xn+j , where j ∈ {1, 2, . . .}, based on the observed random variables Xn, Xn−1, . . . . Let
Hn denote the set {Xn, Xn−1, . . .}. That is, Hn is the history of the stochastic process
up to time n.

Next, denote by g(Xn+j | Hn) the predictor of Xn+j , given Hn. To determine the
best predictor, we need a criterion. One which is widely used is the following: we look
for the function g that minimizes the mean-square error

MSE(g) := E[{Xn+j − g(Xn+j | Hn)}2].

It can be shown that (if the mathematical expectation exists) the optimal predictor is
actually the conditional expectation of Xn+j , given Hn:

g∗(Xn+j | Hn) = E [Xn+j | Hn] .

In practice, we cannot use an infinite number of random variables to forecast Xn+j .
Therefore, the set Hn could, for example, be {Xn, Xn−1, . . . , X1}. Moreover, sometimes
we look for a function g(Xn+j | Hn) of the form
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g(Xn+j | Hn) = ξ0 +
n∑

i=1

ξiXn−i+1. (7.36)

The function g(Xn+j | Hn) having coefficients ξi, for i = 0, . . . , n, which yield the
smallest mean-square error is called the best linear predictor of Xn+j .

Now, we consider the case when we want to forecast Xn+j based on Xn alone.
When the stochastic process {Xn, n ∈ Z} is Markovian, and Xn is known, the values of
Xn−1, Xn−2, . . . are actually unnecessary to predict Xn+j .

Proposition 7.3.1. Let {Xn, n ∈ Z} be a Markovian process. The optimal predictor of
Xn+j, based on the history of the process up to time n, is a function of Xn alone.

Furthermore, if {Xn, n ∈ Z} is a stationary Gaussian process, then the optimal
predictor and the best linear predictor of Xn+j , based on Xn, coincide, which follows
from the next proposition.

Proposition 7.3.2. Let {Xn, n ∈ Z} be a stationary Gaussian process. The expected
value of Xn+j, given that Xn = xn, is of the form

E[Xn+j | Xn = xn] = axn + b, (7.37)

where the constants a and b are given by

a = ρ(j) and b = µ[1− ρ(j)]. (7.38)

Remarks. (i) In general, if the random vector (X1, X2) has a bivariate normal distribu-
tion, then E[X2 | X1 = x1] is given in (7.3).
(ii) The above result can be generalized to the case when we calculate the conditional
expectation E[Xn+j | Xn, Xn−1, . . . , X1].
(iii) Remember (see Proposition 7.1.1) that, in the case of a Gaussian process, if it is
weakly stationary, then it is also strictly stationary.
(iv) We deduce from (7.3) that the conditional variance VAR[Xn+j | Xn = xn] is

VAR[Xn+j | Xn = xn] = σ2
X [1− ρ2(j)], (7.39)

where σ2
X = VAR[Xn] for all n. Hence, the closer to one (in absolute value) the correla-

tion coefficient ρ(j) is, the more accurate is the forecast of Xn+j (based on Xn), which
is logical.

Next, suppose that we want to forecast the value, Xn+1, of a weakly stationary and
invertible ARMA(p, q) process at time n + 1, given Xn, Xn−1, . . . . We have that

Xn+1 =
p∑

i=1

αiXn+1−i + εn+1 +
q∑

j=1

θj εn+1−j .
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Hence, we can write that

E[Xn+1 | Hn] =
p∑

i=1

αiXn+1−i +
q∑

j=1

θj εn+1−j .

Indeed, given the history of the process up to time n, the random variables Xn+1−i and
εn+1−j are known quantities for i, j ∈ {1, 2, . . .}. Moreover, by independence,

E[εn+1 | Hn] = E[εn+1] = 0.

More generally, to forecast Xn+m, where m ∈ {1, 2, . . .}, we must calculate the
conditional expectation

E[Xn+m | Hn] =
p∑

i=1

αiE[Xn+m−i | Hn] +
q∑

j=1

θjE[εn+m−j | Hn],

in which
E[Xn+m−i | Hn] = Xn+m−i if m ≤ i

and

E[εn+m−j | Hn] =
{

0 if m > j,
εn+m−j if m ≤ j.

Particular case. Let p = q = 1, so that

Xn+m = α1Xn+m−1 + εn+m + θ1εn+m−1.

Then,
E[Xn+1 | Hn] = α1Xn + θ1εn

and
E[Xn+m | Hn] = α1E[Xn+m−1 | Hn] for m = 2, 3, . . . .

It follows that

E[Xn+2 | Hn] = α1E[Xn+1 | Hn] = α1 {α1Xn + θ1εn}
= α2

1Xn + α1θ1εn

and

E[Xn+3 | Hn] = α1E[Xn+2 | Hn] = α1

{
α2

1Xn + α1θ1εn

}
= α3

1Xn + α2
1θ1εn,

and so on. That is, we have that
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E[Xn+m | Hn] = αm
1 Xn + αm−1

1 θ1εn for m = 2, 3, . . . .

Example 7.3.2. Suppose that {Xn, n ∈ Z} is a weakly stationary AR(1) time series.
Therefore,

Xn+m = α1Xn+m−1 + εn+m,

where 0 < |α1| < 1. Proceeding as above, we find that

E[Xn+m | Hn] = αm
1 Xn for m = 1, 2, 3, . . . .

This result can actually be deduced directly from the formula

Xn+m = α1Xn+m−1 + εn+m = α1(α1Xn+m−2 + εn+m−1) + εn+m

= · · · = αm
1 Xn +

m−1∑
i=0

αi
1εn+m−i

(because E[εn+m−i | Hn] = 0 if m > i).
We also deduce from the previous formula that the forecasting error is given by

Xn+m − E[Xn+m | Hn] = αm
1 Xn +

m−1∑
i=0

αi
1εn+m−i − αm

1 Xn =
m−1∑
i=0

αi
1εn+m−i.

It follows that

VAR [Xn+m − E[Xn+m | Hn]] unc.=
m−1∑
i=0

α2i
1 VAR[εn+m−i] =

m−1∑
i=0

α2i
1 σ2.

Example 7.3.3. In the case of an MA(q) process, we can write that

Xn+m = εn+m +
q∑

i=1

θiεn+m−i for all n ∈ Z and for m = 1, 2, . . . .

Hence, we deduce that

E[Xn+m | Hn] =
{∑q

i=m θiεn+m−i if m = 1, . . . , q,
0 if m = q + 1, q + 2, . . . .

When q = 1, we simply have that

E[Xn+m | Hn] =
{

θ1εn if m = 1,
0 if m = 2, 3, . . . ,

so that the variance of the forecasting error is
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VAR [Xn+m − E[Xn+m | Hn]] = VAR[εn+m + θ1εn+m−1 − θ1εn+m−1]
= VAR[εn+m] = σ2 if m = 1

and

VAR [Xn+m − E[Xn+m | Hn]] = VAR[εn+m + θ1εn+m−1]
unc.= (1 + θ2

1)σ
2 if m = 2, 3, . . . .

Observe that the variance of the forecasting error is the same for any m ∈ {2, 3, . . .},
whereas in the case of an AR(1) process this variance increases with m (see the previous
example).

To conclude, we consider the case when we want to forecast the value of a zero mean
weakly stationary time series at time n+m, for m = 1, 2, . . . , based on a linear function
of Xn, Xn−1, . . . , X1. That is, we look for the function [see (7.36)]

g(Xn+m | Hn) =
n∑

i=1

ξiXn−i+1

that minimizes the mean-square error

MSE(ξ1, . . . , ξn) := E

{Xn+m −
n∑

i=1

ξiXn−i+1

}2
 .

Remark. The fact that E[Xn] ≡ 0 implies that ξ0 in (7.36) is equal to 0.

To obtain the values of the parameters ξi that minimize the function MSE, we
differentiate this function with respect to ξi and we set the derivative equal to 0, for
i = 1, . . . , n. We find that the ξis must satisfy the system of linear equations

n∑
i=1

ξiγ(i− r) = γ(m− 1 + r) for r = 1, . . . , n.

We can easily obtain an explicit solution when m = 1, that is, when the aim is to
forecast the next value of the time series. We then have that

n∑
i=1

ξiγ(i− r) = γ(r) for r = 1, . . . , n,

which can be rewritten as follows:

(ξ1, . . . , ξn)


γ(1− 1) γ(1− 2) . . . γ(1− n)
γ(2− 1) γ(2− 2) . . . γ(2− n)

. . . . . . . . . . . .
γ(n− 1) γ(n− 2) . . . γ(n− n)

 = (γ(1), . . . , γ(n))
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⇐⇒
ΞnΓn = Gn,

where Ξn := (ξ1, . . . , ξn), Gn := (γ(1), . . . , γ(n)) and

Γn :=


γ(0) γ(1) . . . γ(n− 1)
γ(1) γ(0) . . . γ(n− 2)
. . . . . . . . . . . .

γ(n− 1) γ(n− 2) . . . γ(0)

 .

Assuming that the matrix Γn is invertible (or nonsingular), we can write that

Ξn = GnΓ−1
n

and
g(Xn+1 | Hn) = Ξn(Xn, . . . , X1)T .

Remark. It can be shown that the (last) coefficient ξn is in fact equal to the partial
autocorrelation φ(n).

Finally, we find that the mean-square forecasting error is given by

E
[
{Xn+1 − g(Xn+1 | Hn)}2

]
= γ(0)−GnΓ−1

n GT
n .

Example 7.3.4. To forecast the value of Xn+1 for a (zero mean) weakly stationary
AR(1) process, based on a single observation, Xn, of the process, we calculate

g(Xn+1 | Xn) = ξ1Xn = γ(1)Γ−1
1 Xn =

γ(1)
γ(0)

Xn.

Making use of (7.11), we can write that

g(Xn+1 | Xn) = α1Xn,

which is the same predictor as E[Xn+1 | Hn] obtained in Example 7.3.2.

Example 7.3.5. For a weakly stationary AR(2) time series (having zero mean), the
best linear predictor of Xn+1, based on Xn, is also

g(Xn+1 | Xn) =
γ(1)
γ(0)

Xn = ρ(1)Xn.

To forecast the value of Xn+1, based on the random variables Xn and Xn−1, we can
show that g(Xn+1 | Xn, Xn−1) is given by

g(Xn+1 | Xn, Xn−1) = α1Xn + α2Xn−1.
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Actually, we find that

g(Xn+1 | Xn, Xn−1, . . . , Xn−l) = α1Xn + α2Xn−1

for any l ∈ {1, . . . , n− 1}.
Remark. In general, if {Xn, n ∈ Z} is a weakly stationary AR(p) time series with
E[Xn] ≡ 0, then

g(Xn+1 | Xn, Xn−1, . . . , X1) = α1Xn + α2Xn−1 + · · ·+ αpXn−p+1

for any n ∈ {p, p + 1, . . .}.

7.4 Exercises for Chapter 7

Solved exercises

Question no. 1
Let {Xn, n = 0, 1, . . .} be an IID(0, σ2) noise. We define

Yn =
Xn + Xn−1

2
for n = 1, 2, . . . .

Is the stochastic process {Yn, n = 1, 2, . . .} weakly stationary?

Question no. 2
Suppose that the random vector (X1, X2) has a bivariate normal distribution and

that X1 ∼ N(0, 1) and X2 ∼ N(0, 1) are independent random variables. Use Proposi-
tion 4.3.1 to find the joint probability density function of the transformation

Y1 = a1X1 + b1,

Y2 = a2X2 + b2,

where ai 6= 0 and bi ∈ R, for i = 1, 2.

Question no. 3
Calculate the variance of a weakly stationary AR(3) process {Xn, n ∈ Z} (with

E[Xn] ≡ 0).

Question no. 4
Suppose that X0 = 0 and let

Xn = α1Xn−1 + εn for n = 1, 2, . . . ,

where {εn, n = 1, 2, . . .} is a GWN(0, σ2) process. We define
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Yn = eXn for n = 1, 2, . . . .

Calculate the expected value of Yn.
Indications. (i) It can be shown that if X and Y are independent random variables,
then so are g(X) and h(Y ) for any functions g and h.
(ii) The moment-generating function of a random variable X ∼ N(µ, σ2) is given by

MX(t) := E[etX ] = exp
{

µt +
σ2

2
t2
}

.

Question no. 5
Calculate the autocorrelation function ρ(k), for k = 1, 2, 3, of an MA(3) time series.

Question no. 6
What are the possible values of the function ρ(2) for an MA(2) process if (a) θ1 = 1?

(b) θ1 ∈ R?

Question no. 7
Calculate, in terms of γ(1), the variance of a (zero mean) weakly stationary

ARMA(1,2) process.

Question no. 8
Check the formula (7.35) for an invertible MA(1) time series, for k = 1, 2, 3.

Question no. 9
Consider the following data, denoted by y1, y2, . . . , y40:

n 1 2 3 4 5 6 7 8 9 10
yn −0.41 0.70 0.86 0.21 0.41 −0.30 0.07 −0.10 −0.44 −0.72

n 11 12 13 14 15 16 17 18 19 20
yn 0.69 −0.22 −0.20 0.50 0.43 0.28 0.37 −0.13 −0.35 −0.11

n 21 22 23 24 25 26 27 28 29 30
yn −0.78 −0.46 −1.03 −0.68 −0.61 −0.41 0.70 0.92 −0.56 −1.09

n 31 32 33 34 35 36 37 38 39 40
yn 0.65 0.11 −0.90 0.35 −0.17 0.52 0.84 0.85 −0.18 −0.98

Define
xn = yn − ȳ for n = 1, . . . , 40,

where ȳ is the arithmetic mean of the data points. Calculate σ̂2
X and the sample partial

autocorrelation φ̂(k) of the centered data, for k = 1, 2, 3. Could an MA(1) time series
with θ1 = 1/2 serve as a model for x1, x2, . . . , x40 if ε0 = 0 and εn ∼ U(−1, 1), for
n = 1, 2, . . . , 40? Justify.
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Question no. 10
(a) Use Equation (7.3) to prove Proposition 7.3.2. (b) Calculate the mathematical ex-
pectation E[X2

n+j | Xn = xn].

Exercises

Question no. 1
The discrete-time stochastic process {Xn, n = 0, 1, . . .} is an IID(0, σ2) noise. Is the

process {Yn, n = 1, 2, . . .} defined by

Yn = XnXn−1 for n = 1, 2, . . .

weakly stationary? Justify.

Question no. 2
Suppose that X0 ∼ N(0, 1) and that

Xn = X0 + Yn for n = 1, 2, . . . ,

where Yn = ±1 with probability 1/2 and is independent of X0. Is the stochastic process
{Xn, n = 0, 1, . . .} a Gaussian process? Justify.

Question no. 3
Let {N(t), t ≥ 0} be a Poisson process with rate λ > 0 and define

Xn = (−1)N(n) ·M for n = 0, 1, . . . ,

where M is a random variable that is equal to 1 or −1 with probability 1/2. Moreover,
M is independent of N(n). Calculate E[Xn] and COV[Xn, Xn+m], for n, m ∈ {0, 1, . . .}.
Is the stochastic process {Xn, n = 0, 1, . . .} weakly stationary?
Indication. We can show that E

[
(−1)N(n)

]
= e−2λn, for n = 0, 1, . . . .

Question no. 4
A standard Brownian motion (see p. 235) is a continuous-time Gaussian stochastic

process {W (t), t ≥ 0} such that W (0) = 0, E[W (t)] ≡ 0, and COV[W (s),W (t)] =
min{s, t} for all s, t ≥ 0. We consider the stochastic process {X(t), t ≥ 0} for which

W (t) = t1/2X(ln t) for t ≥ 1.

Is {X(t), t ≥ 0} a Gaussian process? Is it (strictly) stationary? Justify.
Remark. The stochastic process {X(t), t ≥ 0} is actually a particular Ornstein–
Uhlenbeck process.

Question no. 5
Let {Xn, n ∈ Z} and {Yn, n ∈ Z} be two (zero mean) weakly stationary AR(1)

processes defined by
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Xn = α1Xn−1 + εn and Yn = β1Yn−1 + ηn ∀n ∈ Z,

where {εn, n ∈ Z} and {ηn, n ∈ Z} are independent WN(0, σ2) processes. We define

Zn = Xn + Yn ∀n ∈ Z.

Calculate E[Zn] and COV[Zn, Zn+m], for n, m ∈ Z. Is the stochastic process {Zn, n ∈ Z}
weakly stationary?

Question no. 6
Consider the AR(2) process {Xn, n = 0, 1, . . .} given by X0 = 0, X1 = 0, and

Xn = Xn−1 + Xn−2 + εn for n = 2, 3, . . . .

Suppose that P [εn = 1] = P [εn = −1] = 1/2, for all n. Calculate the probability mass
function of X4.

Question no. 7
Let {Xn, n = 0, 1, . . .} and {Yn, n = 0, 1, . . .} be independent random walks (see

p. 239) with p0 = 1/2, and define

Zn =
Xn + Yn

2
for n = 0, 1, . . . .

Calculate COV[Zn, Zn+m], for n, m ∈ {0, 1, . . .}. Is the stochastic process {Zn, n =
0, 1, . . .} a random walk? Justify.

Question no. 8
Suppose that X0 = 0 and

Xn = α1Xn−1 + εn for n = 1, 2, . . . ,

where the independent random variables εn are also independent of Xn−1, . . . , X0 and
are such that P [εn = 1] = P [εn = −1] = 1/2, for n = 1, 2, . . . . Let Yn = X2

n, for all n.
Calculate (a) VAR[Y2] and (b) E[Y k

2 ], for k ∈ {1, 2, . . .}.

Question no. 9
Let {Xn, n ∈ Z} be an MA(1) time series with θ1 = 1/2. Suppose that P [εn = 1] =

P [εn = −1] = 1/2, for all n ∈ Z. Calculate E[Xn | Xn > 0], for n ∈ Z.

Question no. 10
Consider the time series {Xn, n ∈ Z} and {Yn, n ∈ Z} defined by

Xn = εn + θ1εn−1

and
Yn = εn + θ1εn−1 + θ2εn−2

for all n ∈ Z. What is the correlation coefficient ρXn,Yn , for n ∈ Z?
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Question no. 11
Find, in terms of γ(k), the variance of a (zero mean) weakly stationary ARMA(2,1)

process.

Question no. 12
Is the MA(3) time series {Xn, n ∈ Z} defined by

Xn = εn + θ1εn−1 +
1
2

εn−2 +
1
4

εn−3 for all n ∈ Z

invertible if (a) θ1 = 1
2? (b) θ1 = 5

4? Justify.

Question no. 13
Let

Xn = εn − εn−1 for all n ∈ Z,

where {εn, n ∈ Z} is a WN(0, σ2) process, so that {Xn, n ∈ Z} is an MA(1) time series
for which θ1 = −1. Calculate VAR[Xn | Xn 6= 0] if we assume that P [εn = 1] = P [εn =
−1] = 1/2, for all n ∈ Z.

Question no. 14
Let {Xn, n ∈ Z} be an MA(1) process and define

Yn = X2
n for all n ∈ Z.

Calculate the mean and the variance of the stochastic process {Yn, n ∈ Z} if εn ∼
N(0, σ2), for all n.

Indication. The characteristic function of Z ∼ N(0, 1) is CZ(ω) = e−ω2/2.

Question no. 15
Calculate VAR[Xn+m | Hn] for m = 1, 2, . . . if {Xn, n ∈ Z} is an MA(1) process and

Hn = {Xn, Xn−1, . . .}. Assume that the εns are independent random variables.

Question no. 16
Let {Xn, n ∈ Z} be an MA(1) time series. (a) What is the best linear predictor of

Xn+1, based on Xn. (b) Is this predictor similar to E[Xn+1 | Hn] (see Example 7.3.3)?

Question no. 17
Suppose that {Xn, n ∈ Z} is a weakly stationary ARMA(1,1) process. Calculate its

partial autocorrelation function φ(k), for k = 1, 2, if α1 = θ1 = 1/2.

Question no. 18
Consider an invertible MA(1) time series with θ1 > 0. (a) Show that its partial au-

tocorrelation function φ(k) decreases (approximately) geometrically, in absolute value.
That is, show that ∣∣∣∣φ(k + 1)

φ(k)

∣∣∣∣ ' c for k large enough,

where c ∈ (0, 1) is a constant. (b) Show that
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|φ(k)| < θk
1 for k = 1, 2, . . . .

Hint. See Equation (7.35).

Question no. 19
Let {εn, n ∈ Z} be a GWN(0, 1) process and define

Xn =
εn + εn−1

2
∀n ∈ Z.

Calculate the mathematical expectation E[Xn+j | Xn = xn], for j = 1, 2, . . . , and show
that it is of the form given in Equations (7.37) and (7.38).

Question no. 20
Suppose that we want to forecast the value of Xn+1, based on a linear function

of Xn and Xn−1, for a (zero mean) weakly stationary AR(2) time series. What is the
corresponding mean-square forecasting error [in terms of γ(0)] if α1 = 1/2 and α2 = 1/4?
Hint. See Example 7.3.5 and Equation (7.13).

Multiple choice questions

Question no. 1
A Bernoulli process is a discrete-time (and discrete-state) stochastic process {Xn, n =

0, 1, . . .}, where the Xns are i.i.d. Bernoulli random variables with parameter p ∈ (0, 1).
Calculate COV[Xn, Xn+m], for n, m ∈ {0, 1, 2, . . .}.
(a) 0 ∀n, m (b) 0 if m = 0; p(1− p) if m 6= 0
(c) 0 if m 6= 0; p(1− p) if m = 0 (d) p(1− p) ∀n, m
(e) p2 if m 6= 0; p if m = 0

Question no. 2
Let (X1, X2, X3) have a trivariate normal distribution with m = (0, 1,−1) and

C =

 1 0 −2
0 2 0
−2 0 4

 .

Calculate E[X1 + X2 | X3 = 0].
(a) 0 (b) 1/2 (c) 1 (d) 3/2 (e) 2

Question no. 3
A weakly stationary AR(1) process {Xn, n = 0, 1, . . .} is defined by X0 = 0 and

Xn =
1
2

Xn−1 + εn for n = 1, 2, . . . ,

where {εn, n = 1, 2, . . .} is a GWN(0, 1) process. Calculate E[X2 | X2 > 0].
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(a) 1
2

√
5 (b)

√
5 (c) 1

2

√
5
π (d)

√
5
2π (e)

√
5
π

Question no. 4
Suppose that X0 = 0 and define the random walk (see p. 239)

Xn = Xn−1 + εn for n = 1, 2, . . . ,

where {εn, n = 1, 2, . . .} is an i.i.d. noise process such that εn takes on the value 1 or −1
with probability 1/2, for n = 1, 2, . . . . Calculate the correlation coefficient of Xn and
Xn+m, for n, m ∈ {1, 2, . . .}.

(a)
(

n
n+m

)1/2

(b)
(

m
n+m

)1/2

(c) n
(n+m)1/2 (d) n

n+m (e) m
n+m

Question no. 5
Suppose that

Xn =
1
2

Xn−1 + εn +
1
2

εn−1 ∀n ∈ Z.

That is, {Xn, n ∈ Z} is an ARMA(1,1) process with α1 = θ1 = 1/2. Calculate the
correlation coefficient ρXn,Xn−2 .
(a) 2/7 (b) 5/14 (c) 1/2 (d) 9/14 (e) 5/7

Question no. 6
Calculate E[Xn | Xn−1 = 2] for an MA(1) time series with θ1 = 1 and for which

P [εn = 1] = P [εn = −1] ≡ 1/2, where the εns are independent random variables.
(a) 0 (b) 1 (c) 3/2 (d) 2 (e) 3

Question no. 7
What are the possible values of the autocorrelation ρ(1) for an ARMA(1,1) time

series with α1 = 1/2?
(a) [−1, 1] (b) [−3/4, 3/4] (c) [−1/2, 1/2] (d) [−1/4, 1/4]
(e) [−1/4, 3/4]

Question no. 8
Let {Xn, n ∈ Z} be a stationary Gaussian process with µ = 3 and ρ(1) = 1/2.

Calculate the mathematical expectation E[Xn+1Xn | Xn = −2].
(a) −3 (b) −1 (c) 0 (d) 1 (e) 3

Question no. 9
Suppose that the time series {Xn, n ∈ Z} is an MA(1) process with θ1 = 1 and that

the independent random variables εn are such that P [εn = 1] = P [εn = −1] = 1/2, for
all n ∈ Z. Calculate E[Xn+1 | X2

n = 4].
(a) −1 (b) −1/2 (c) 0 (d) 1/2 (e) 1

Question no. 10
We want to calculate the best linear predictor g(Xn+1 | Xn, Xn−1) for an MA(1)

time series with θ1 = −1/2. What is the value of the coefficient ξ2?
(a) −2/5 (b) −4/21 (c) 0 (d) 4/21 (e) 2/5
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List of symbols and abbreviations

Chapter 1

limx→x0 f(x) limit of the function f(x) as x tends to x0

limx↓x0 f(x) right-hand limit of f(x) as x decreases to x0

limx↑x0 f(x) left-hand limit of f(x) as x increases to x0

g ◦ f composition of the functions g and f
f ′(x0) derivative of f(x) at x0

f ′(x+
0 ) right-hand derivative of f(x) at x0

f ′(x−0 ) left-hand derivative of f(x) at x0

CX(ω) characteristic function of X
F (ω) Fourier transform
MX(t) moment-generating function of X
{an}∞n=1 infinite sequence∑∞

n=1 an infinite series∑n
k=1 ak nth partial sum of the series

R radius of convergence of the series
f ∗ g convolution of the functions f and g
GX(z) generating function of X

Chapter 2

Ω sample space
A,B,C events
A ∩ B = ∅ incompatible or mutually exclusive events
A′ complement of event A
P [A] probability of event A
P [A | B] conditional probability of event A, given that B occurred
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Chapter 3

pX probability (mass) function of X
FX distribution function of X
fX (probability) density function of X
B(n, p) binomial distribution with parameters n and p
Geo(p) geometric distribution with parameter p
NB(r, p) negative binomial distribution

with parameters r and p
Hyp(N,n, d) hypergeometric distribution

with parameters N , n, and d
Poi(λ) Poisson distribution with parameter λ
N(µ, σ2) normal or Gaussian distribution

with parameters µ and σ2

Z random variable having a N(0, 1) distribution
φ(z) density function of the N(0, 1) distribution
N(0, 1) standard or unit normal distribution
Φ(z) distribution function of the N(0, 1) distribution
Q(z) 1− Φ(z)
Γ gamma function
G(α, λ) gamma distribution with parameters α and λ
W(λ, β) Weibull distribution with parameters λ and β
Be(α, β) beta distribution with parameters α and β
LN(µ, σ2) lognormal distribution with parameters µ and σ2

E[g(X)] mathematical expectation of a function g of X
µX or E[X] mean or expected value of X
xm or x̃ median of X
xp 100(1− p)th quantile of X
xp 100(1− p)th percentile (if 100p is an integer)
σ2

X variance of X
µ′k kth-order moment about the origin or noncentral moment
µk kth-order moment about the mean or central moment
β1 skewness (coefficient)
β2 kurtosis (coefficient)
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Chapter 4

pX,Y joint probability function of (X, Y )
FX,Y joint distribution function of (X, Y )
fX,Y joint density function of (X, Y )
fX(x | AY ) conditional density function of X, given AY

E[Y | X = x] conditional expectation of Y , given that X = x
X ⊗X convolution product of X with itself
X ⊕X convolution sum of X with itself
COV[X, Y ] covariance of X and Y
CORR[X, Y ] or ρX,Y correlation coefficient of X and Y
i.i.d. independent and identically distributed
CLT central limit theorem

Chapter 5

R(x) reliability or survival function
MTTF Mean Time To Failure
MTBF Mean Time Between Failures
MTTR Mean Time To Repair
r(t) failure or hazard rate function
IFR Increasing Failure Rate
DFR Decreasing Failure Rate
FR(t1, t2) interval failure rate of a system in the interval (t1, t2]
AFR(t1, t2) average failure rate of a system over an interval [t1, t2]
H(x1, . . . , xn) structure function of the system
x := (x1, . . . , xn) state vector of the system
x ≥ y xi ≥ yi, i = 1, . . . , n,

for the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)
x > y xi ≥ yi, i = 1, . . . , n, and xi > yi for at least one i

for the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)
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Chapter 6

{X(t), t ∈ T} stochastic or random process
ρi,j probability that the continuous-time Markov chain

{X(t), t ≥ 0}, when it leaves state i, goes to state j
λi, i = 0, 1, . . . birth or arrival rates of a birth and death process
µi, i = 1, 2, . . . death or departure rates of a birth and death process
πj limiting probability that the process will be in state j
M/M/s queueing system with s servers
X(t) number of customers in the system at time t
N̄ average number of customers in the system in equilibrium
N̄Q average number of customers who are waiting in line
N̄S average number of customers being served
T̄ average time that a customer spends in the system
Q̄ average waiting time of an arbitrary customer
S̄ average service time of an arbitrary customer
λa average arrival rate
λe average entering rate of customers into the system
D(t) number of departures from the queueing system in [0, t]
N number of customers in the system in equilibrium
NS number of customers being served
ρ traffic intensity or utilization rate
M/M/1/c queueing system with one server and finite capacity c
FIFO First In, First Out
πb probability that all servers are busy
M/G/s/s Erlang loss system
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Chapter 7

γ(·) (auto) covariance function of a stationary process
ρ(·) autocorrelation function of a stationary process
ACF autocorrelation function
ACVF autocovariance function
IID(0, σ2) i.i.d. noise with zero mean
WN(0, σ2) white noise process
GWN(0, σ2) Gaussian white noise
C covariance matrix
T transpose of a vector or a matrix
N(m,C) multinormal distribution
erf error function
AR(p) autoregressive process of order p
MA(q) moving average process of order q
L lag or backshift operator
∆ difference operator
ARMA(p, q) autoregressive moving average process of order (p, q)
ARIMA(p, d, q) autoregressive integrated moving average process
φ(·) partial autocorrelation function
θ̂ point estimate of a parameter θ
Hn history of the stochastic process up to time n
g(Xn+j | Hn) predictor of Xn+j , given Hn

MSE mean-square error
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Table B.1. Distribution function of the binomial distribution

p
0.05 0.10 0.20 0.25 0.40 0.50

n x
2 0 0.9025 0.8100 0.6400 0.5625 0.3600 0.2500

1 0.9975 0.9900 0.9600 0.9375 0.8400 0.7500

3 0 0.8574 0.7290 0.5120 0.4219 0.2160 0.1250
1 0.9927 0.9720 0.8960 0.8438 0.6480 0.5000
2 0.9999 0.9990 0.9920 0.9844 0.9360 0.8750

4 0 0.8145 0.6561 0.4096 0.3164 0.1296 0.0625
1 0.9860 0.9477 0.8192 0.7383 0.4752 0.3125
2 0.9995 0.9963 0.9728 0.9493 0.8208 0.6875
3 1.0000 0.9999 0.9984 0.9961 0.9744 0.9375

5 0 0.7738 0.5905 0.3277 0.2373 0.0778 0.0313
1 0.9774 0.9185 0.7373 0.6328 0.3370 0.1875
2 0.9988 0.9914 0.9421 0.8965 0.6826 0.5000
3 1.0000 0.9995 0.9933 0.9844 0.9130 0.8125
4 1.0000 1.0000 0.9997 0.9990 0.9898 0.9688

10 0 0.5987 0.3487 0.1074 0.0563 0.0060 0.0010
1 0.9139 0.7361 0.3758 0.2440 0.0464 0.0107
2 0.9885 0.9298 0.6778 0.5256 0.1673 0.0547
3 0.9990 0.9872 0.8791 0.7759 0.3823 0.1719
4 0.9999 0.9984 0.9672 0.9219 0.6331 0.3770
5 1.0000 0.9999 0.9936 0.9803 0.8338 0.6230
6 1.0000 0.9991 0.9965 0.9452 0.8281
7 0.9999 0.9996 0.9877 0.9453
8 1.0000 1.0000 0.9983 0.9893
9 0.9999 0.9990
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Table B.1. Continued

p
0.05 0.10 0.20 0.25 0.40 0.50

n x
15 0 0.4633 0.2059 0.0352 0.0134 0.0005 0.0000

1 0.8290 0.5490 0.1671 0.0802 0.0052 0.0005
2 0.9638 0.8159 0.3980 0.2361 0.0271 0.0037
3 0.9945 0.9444 0.6482 0.4613 0.0905 0.0176
4 0.9994 0.9873 0.8358 0.6865 0.2173 0.0592
5 0.9999 0.9977 0.9389 0.8516 0.4032 0.1509
6 1.0000 0.9997 0.9819 0.9434 0.6098 0.3036
7 1.0000 0.9958 0.9827 0.7869 0.5000
8 0.9992 0.9958 0.9050 0.6964
9 0.9999 0.9992 0.9662 0.8491
10 1.0000 0.9999 0.9907 0.9408
11 1.0000 0.9981 0.9824
12 0.9997 0.9963
13 1.0000 0.9995
14 1.0000

20 0 0.3585 0.1216 0.0115 0.0032 0.0000
1 0.7358 0.3917 0.0692 0.0243 0.0005 0.0000
2 0.9245 0.6769 0.2061 0.0913 0.0036 0.0002
3 0.9841 0.8670 0.4114 0.2252 0.0160 0.0013
4 0.9974 0.9568 0.6296 0.4148 0.0510 0.0059
5 0.9997 0.9887 0.8042 0.6172 0.1256 0.0207
6 1.0000 0.9976 0.9133 0.7858 0.2500 0.0577
7 0.9996 0.9679 0.8982 0.4159 0.1316
8 0.9999 0.9900 0.9591 0.5956 0.2517
9 1.0000 0.9974 0.9861 0.7553 0.4119
10 0.9994 0.9961 0.8725 0.5881
11 0.9999 0.9991 0.9435 0.7483
12 1.0000 0.9998 0.9790 0.8684
13 1.0000 0.9935 0.9423
14 0.9984 0.9793
15 0.9997 0.9941
16 1.0000 0.9987
17 0.9998
18 1.0000
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Table B.2. Distribution function of the Poisson distribution

α
0.5 1 1.5 2 5 10 15 20

x
0 0.6065 0.3679 0.2231 0.1353 0.0067 0.0000
1 0.9098 0.7358 0.5578 0.4060 0.0404 0.0005
2 0.9856 0.9197 0.8088 0.6767 0.1247 0.0028 0.0000
3 0.9982 0.9810 0.9344 0.8571 0.2650 0.0103 0.0002
4 0.9998 0.9963 0.9814 0.9473 0.4405 0.0293 0.0009 0.0000
5 1.0000 0.9994 0.9955 0.9834 0.6160 0.0671 0.0028 0.0001
6 0.9999 0.9991 0.9955 0.7622 0.1301 0.0076 0.0003
7 1.0000 0.9998 0.9989 0.8666 0.2202 0.0180 0.0008
8 1.0000 0.9998 0.9319 0.3328 0.0374 0.0021
9 1.0000 0.9682 0.4579 0.0699 0.0050
10 0.9863 0.5830 0.1185 0.0108
11 0.9945 0.6968 0.1848 0.0214
12 0.9980 0.7916 0.2676 0.0390
13 0.9993 0.8645 0.3632 0.0661
14 0.9998 0.9165 0.4657 0.1049
15 0.9999 0.9513 0.5681 0.1565
16 1.0000 0.9730 0.6641 0.2211
17 0.9857 0.7489 0.2970
18 0.9928 0.8195 0.3814
19 0.9965 0.8752 0.4703
20 0.9984 0.9170 0.5591
21 0.9993 0.9469 0.6437
22 0.9997 0.9673 0.7206
23 0.9999 0.9805 0.7875
24 1.0000 0.9888 0.8432
25 0.9938 0.8878
26 0.9967 0.9221
27 0.9983 0.9475
28 0.9991 0.9657
29 0.9996 0.9782
30 0.9998 0.9865
31 0.9999 0.9919
32 1.0000 0.9953
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Table B.3. Values of the function Φ(z)

z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
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z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.4. Values of the function Q−1(p) for some values of p

p 0.10 0.05 0.01 0.005 0.001 0.0001 0.00001
Q−1(p) 1.282 1.645 2.326 2.576 3.090 3.719 4.265
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Solutions to “Solved exercises”

Chapter 1

Question no. 1

When x decreases to 0, 1/x increases to ∞. The function sinx does not converge
as x tends to ∞. However, because −1 ≤ sinx ≤ 1, for any real x, we may conclude
that limx↓0 x sin(1/x) = 0. This result can be proved from the definition of the limit of
a function. We have:

0 < |x| < ε =⇒ |x sin(1/x)| ≤ |x| < ε.

Hence, we can take δ = ε in Definition 1.1.1 and we can actually write that

lim
x→0

x sin(1/x) = 0.

Note that the function f(x) := x sin(1/x) is not defined at x = 0.

Question no. 2

The functions f1(x) := sinx and f2(x) := x are continuous, for any real x. Moreover,
it can be shown that if f1(x) and f2(x) are continuous, then g(x) := f1(x)/f2(x) is also
a continuous function, for any x such that f2(x) 6= 0. Therefore, we can assert that f(x)
is continuous at any x 6= 0.

Next, using the series expansion of the function sin x:

sinx = x− 1
3!

x3 +
1
5!

x5 − 1
7!

x7 + · · · ,

we may write that
sinx

x
= 1− 1

3!
x2 +

1
5!

x4 − 1
7!

x6 + · · · .
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Hence, we deduce that

lim
x→0

sinx

x
= 1.

Remark. To obtain the previous result, we can also use l’Hospital’s rule:

lim
x→0

sinx

x
= lim

x→0

cos x

1
= 1.

Because, by definition

f(0) = 1 = lim
x→0

sinx

x
,

we conclude that the function f(x) is continuous at any x ∈ R.

Question no. 3

Let g(x) =
√

3x + 1 and h(x) = (2x2 + 1)2. We have, using the chain rule:

g′(x) =
1

2
√

3x + 1
(3) and h′(x) = 2(2x2 + 1)(4x).

Thus,

f ′(x) = g′(x)h(x) + g(x)h′(x) =
3

2
√

3x + 1
(2x2 + 1)2 +

√
3x + 1(8x)(2x2 + 1)

⇐⇒ f ′(x) = (2x2 + 1)
{

3(2x2 + 1)
2
√

3x + 1
+ 8x

√
3x + 1

}
.

Question no. 4

We have:
lim
x↓0

x lnx = lim
x↓0

x lim
x↓0

lnx = 0× (−∞),

which is indeterminate. Writing that

x lnx =
lnx

1/x
,

we obtain that
lim
x↓0

x lnx = lim
x↓0

lnx

1/x
=
−∞
∞

.

We can then use l’Hospital’s rule:

lim
x↓0

lnx

1/x
= lim

x↓0

1/x

−1/x2
= lim

x↓0
−x = 0.
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Question no. 5
In as much as the derivative of lnx is 1/x, we can write that

I5 =
∫ e

1

lnx

x
dx =

(lnx)2

2

∣∣∣∣e
1

=
(ln e)2 − (ln 1)2

2
=

1
2
.

This result can be checked by using the integration by substitution method: setting
y = ln x ⇔ x = ey, we deduce that∫

lnx

x
dx =

∫
y

ey
(ey)′dy =

∫
ydy =

1
2
y2.

It follows that

I5 =
∫ 1

0

ydy =
1
2
y2

∣∣∣∣1
0

=
1
2
.

Question no. 6
We use the integration by parts technique. We set

u = x2 and dv = xe−x2/2dx.

Because v = −e−x2/2, it follows that

I6 = −x2e−x2/2

∣∣∣∣∞
−∞

+
∫ ∞

−∞
2xe−x2/2dx.

By l’Hospital’s rule, the above constant term is equal to 0, and the integral is given by∫ ∞

−∞
2xe−x2/2dx = −2e−x2/2

∣∣∣∣∞
−∞

= 0.

Hence, we have that I6 = 0.
Remark. In probability, we deduce from this result that the mathematical expectation
or expected value of the cube of a standard normal random variable is equal to zero.

Question no. 7
We have:

F (ω) =
∫ ∞

0

ejωxce−cxdx = c

∫ ∞

0

e(jω−c)xdx =
c

jω − c
e(jω−c)x

∣∣∣∣∞
0

=
c

c− jω
.

Remarks. (i) The fact that j is a (pure) imaginary number does not cause any problem,
because it is a constant.
(ii) In probability, the function F (ω) obtained above is the characteristic function of a
random variable having an exponential distribution with parameter c.
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Question no. 8
We can write that

I8 =
∫ 1

0

∫ √
y

0

(x + y)dxdy =
∫ 1

0

{
x2

2

∣∣∣∣
√

y

0

+ y
√

y

}
dy

=
∫ 1

0

y

2
+ y3/2dy =

y2

4
+

y5/2

5/2

∣∣∣∣1
0

=
1
4

+
2
5

=
13
20

.

Or:

I8 =
∫ 1

0

∫ 1

x2
(x + y)dydx =

∫ 1

0

{
x(1− x2) +

y2

2

∣∣∣∣1
x2

}
dx

=
∫ 1

0

{
x(1− x2) +

1
2
− x4

2

}
dx =

x2

2
− x4

4
+

x

2
− x5

10

∣∣∣∣1
0

=
1
2
− 1

4
+

1
2
− 1

10
=

13
20

.

Remark. We easily find that ∫ 1

0

∫ 1

0

(x + y)dxdy = 1.

Hence, if B := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x < y}, then we can write (by
symmetry) that ∫

B

∫
(x + y) dxdy =

1
2
.

Question no. 9
Consider the geometric series

S(1/2, 1/2) :=
1
2

+
1
4

+
1
8

+ · · · =
∞∑

n=1

(1/2)n.

This series converges to 1. Hence, we can write that

S9 = 1− 1
2
− 1

4
=

1
4
.

Or:
S9 =

1
4
S(1/2, 1/2) =

1
4
.

Remark. The sum S9 represents the probability that the number of tosses needed to
obtain “heads” with a fair coin will be greater than two.
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Question no. 10

We have:
∞∑

k=1

(1− p)k−1 =
1

1− (1− p)
=

1
p
.

We can differentiate this series term by term (twice). We obtain that

2
p3

=
d2

dp2

∞∑
k=1

(1− p)k−1 =
∞∑

k=1

(k − 1)(k − 2)(1− p)k−3.

Because
∞∑

k=1

(k − 1)(k − 2)(1− p)k−3 =
∞∑

k=3

(k − 1)(k − 2)(1− p)k−3

=
∞∑

n=1

(n + 1)(n)(1− p)n−1 =
∞∑

n=1

n2(1− p)n−1 +
∞∑

n=1

n(1− p)n−1,

we deduce (see Example 1.4.1) that

S10 = p

(
2
p3
− 1

p2

)
=

2− p

p2
.

Remark. The sum calculated above is the average value of the square of a geometric
random variable.

Chapter 2

Question no. 1

We have that Ω = {1, 2, 3, 4, 5, (6, 1), . . . , (6, 6)}. Thus, there are 5 + 6 = 11 elemen-
tary outcomes.

Question no. 2

Four different partitions of Ω can be formed: {e1}, {e2, e3}, or {e2}, {e1, e3}, or
{e3}, {e1, e2}, or {e1}, {e2}, {e3}.

Question no. 3

Let Si be the event “the sum of the two numbers obtained is equal to i” and let Dj,k

be “the number obtained on the jth roll is k.” We seek

P [S4 | D1,2 ∪D1,4 ∪D1,6] =
P [D1,2 ∩D2,2]

P [D1,2 ∪D1,4 ∪D1,6]
ind.=

(1/6)2

1/2
= 1/18.
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Question no. 4
We have that P [A | B] = P [B] = P [A] = 1/4 ⇒ A and B are independent events.

It follows that
P [A ∩B′] = P [A]P [B′] = (1/4)(3/4) = 3/16.

Question no. 5
Let Fi be the event “component i operates” and let FS be “the system operates.”

By symmetry and incompatibility, we can write that

P [FS ] = 3× P [F1 ∩ F2 ∩ F ′
3] + P [F1 ∩ F2 ∩ F3]

ind.= 3× (0.95)(0.95)(0.05) + (0.95)3 = 0.99275.

Question no. 6
We have:

P [A] = P [A ∩B] + P [A ∩B′] =
1
4

+ P [A | B′]P [B′]

=
1
4

+
(

1
8

)(
1− 1

2

)
=

5
16

.

Question no. 7
Let Ai be the event “i ‘heads’ were obtained.” We seek

P [A3 | A1 ∪A2 ∪A3] =
P [A3]

P [A1 ∪A2 ∪A3]
ind.=

(1/2)3

1− (1/2)3
=

1
7
.

Question no. 8
We have:

P [A1 | B] =
P [B | A1]P [A1]

P [B | A1]P [A1] + P [B | A2]P [A2]
P [A1]=P [A2]=

1/2
1/2 + 1/4

=
2
3
.

Question no. 9
We have:

A = {abc, acb, cab} and B = {abc, acb, bac}.
(a) Because A∩B = {abc, acb} 6= ∅, A and B do not form a partition of Ω. (In addition,
A ∪B 6= Ω.)
(b) P [A] = 1

18 + 1
18 + 2

9 = P [B] and P [A ∩B] = P [{abc, acb}] = 1
9 . Because

P [A]P [B] =
1
3
· 1
3

=
1
9

= P [A ∩B],

we can assert that A and B are independent events.
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Question no. 10

Let A1 be the event “A occurs on the first repetition.” Likewise for B1 and C1. Then,
we may write that

P [D] = P [D | A1]P [A1] + P [D | B1]P [B1] + P [D | C1]P [C1]
⇐⇒ P [D] = 1 · P [A] + 0 + P [D]P [C]

⇐⇒ P [D] =
P [A]

1− P [C]
=

P [A]
P [A] + P [B]

.

Question no. 11

Let A be the event “the transistor tested is defectless” and let D be “the transistor
tested is defective.” Then, we have that Ω = {D,AD,AAD,AAA}.
Remark. We could also write that Ω = {A′, AA′, AAA′, AAA}.

Question no. 12

We have that P [B | A] = 1− P [B′ | A] = 2/7 and

P [B | A] =
P [B ∩A]

P [A]
=

P [B]
P [A]

because B ⊂ A.

It follows that
P [B] = P [B | A]P [A] =

2
21

' 0.0952.

Question no. 13

Let D be the event “the teacher holds a PhD,” let F (resp., A, B) be “the teacher
is a full (resp., associate, assistant) professor,” and let L be “the teacher is a lecturer.”
We can write that

P [D] = P [D | F ]P [F ] + P [D | A]P [A] + P [D | B]P [B] + P [D | L]P [L]
= (0.6)(0.3) + (0.7)(0.4) + (0.9)(0.2) + (0.4)(0.1) = 0.68.

Question no. 14

The number of different codes is given by

26× 25× 24× 23× 22 = 7, 893, 600 (= P 26
5 ).

Question no. 15

We have that Ω = {(1, 1), (1, 2), . . . , (6, 6)}. There are 36 equiprobable elementary
outcomes.
(a) B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} and C = B ∪ {(5, 6), (6, 5)}. Therefore,
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P [B | C] =
P [B ∩ C]

P [C]
=

P [B]
P [C]

=
6/36
8/36

= 3/4.

(b) We have:

P [A | B] =
P [A ∩B]

P [B]
(a)
=

P [{(6, 1)}]
6/36

=
1/36
6/36

= 1/6.

(c) Because the die is fair, we may write that P [A] = 1/6
(b)
= P [A | B]. Hence, A and B

are independent events.

Question no. 16

(a) Let the events be
A = “the commuter gets home before 5:30 p.m.;”
B = “the commuter uses the compact car.”

We seek

P [A] = P [A | B]P [B] + P [A | B′]P [B′]
= (0.75)(0.75) + (0.60)(0.25) = 0.7125.

(b) We calculate

P [B | A′] = P [A′ | B]
P [B]
P [A′]

(a)
= (1− 0.75)

0.75
1− 0.7125

' 0.6522.

(c) We have that P [A′ ∩B′] = P [A′ | B′]P [B′] = (1− 0.60)(0.25) = 0.1.
(d) By independence, we seek

P [A ∩B] · P [A ∩B′] + P [A ∩B′] · P [A ∩B]

= 2P [A | B]P [B] · P [A | B′]P [B′] = 2(0.75)2 · (0.60)(0.25)
= 0.16875.

Question no. 17

We define the events A = “it is raining,” B = “rain was forecast,” and C = “Mr. X
has his umbrella.” We seek

P [A ∩ C ′] = P [A ∩B ∩ C ′︸ ︷︷ ︸
∅

] + P [A ∩B′ ∩ C ′] = P [A ∩B′ ∩ C ′]

= P [A | B′ ∩ C ′]P [B′ ∩ C ′] =
1
3
P [C ′ | B′]P [B′]

=
1
3
× 2

3
× 1

2
=

1
9
.
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Question no. 18

We have that Ω = {(1, 1, 1), . . . , (1, 1, 6), . . . , (6, 6, 6)}. There are 63 = 216 elemen-
tary outcomes, which are all equiprobable. By enumeration, we find that there are 20
triples for which event F occurs:

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), . . . .

Consequently, the probability asked for is 20
216 ' 0.0926.

Question no. 19
We have that Ω = {(G, G), (G, B), (B,G), (B,B)}. Moreover,

A1 = {(G, B), (B,G)} and A2 = {(G, B), (B,G), (B,B)}.

(a) Because A′
2 = {(G, G)}, we have that A1 ∩ A′

2 = ∅. Therefore, A1 and A′
2 are

incompatible.
(b) We may write that P [A1] = 2/4 and P [A2] = 3/4. Given that

P [A1 ∩A2] = P [A1] = 2/4 6= P [A1]P [A2],

A1 and A2 are not independent.
(c) Let Bi (resp., Gi) be the event “the ith child is a boy (resp., a girl).” We first
calculate

P [B3] = P [B3 | B1 ∩B2]P [B1 ∩B2] + P [B3 | G1 ∩G2]P [G1 ∩G2]
+P [B3 | (B1 ∩G2) ∪ (G1 ∩B2)]P [(B1 ∩G2) ∪ (G1 ∩B2)]

=
(

11
20

)(
1
4

)
+
(

2
5

)(
1
4

)
+
(

1
2

)(
1
2

)
=

39
80

.

Hence, we may write that

P [B1 ∩B2 | B3] =
P [B3 | B1 ∩B2]P [B1 ∩B2]

P [B3]
=

11
20 ·

1
4

39
80

' 0.2821.

Chapter 3

Question no. 1

We must have that 1 = a
8 + a

4 + a
8 = a

2 . Therefore, a must be equal to 2.
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Question no. 2
We calculate

FX(0) =
∫ 0

−1

3
4
(1− x2) dx =

3
4

(
x− x3

3

)∣∣∣∣0
−1

=
1
2
.

Remark. This result could have been deduced from the symmetry of the function fX(x)
about x = 0.

Question no. 3
First, we calculate E[X] = 1

3 (1 + 2 + 3) = 2. Next, we have:

E[X2] =
1
3
(12 + 22 + 32) =

14
3

=⇒ VAR[X] =
14
3
− 22 =

2
3
.

Thus, we may write that STD[X] =
√

2/3.

Question no. 4
We have:

E[X1/2] =
∫ 1

0

x1/2 · 2x dx = 2
x5/2

5/2

∣∣∣∣1
0

=
4
5
.

Question no. 5
We can write that x2

0.75/4 = 0.25 and x0.75 > 0. It follows that x0.75 = 1.

Question no. 6
We have:

fY (y) = fX(y − 1)
∣∣∣∣ d

dy
(y − 1)

∣∣∣∣ = 1
2

if 1 < y < 3.

Question no. 7
By definition, X ∼ Hyp(N = 15, n = 2, d = 5).

Question no. 8
According to Table B.1, page 276, x = 1 is the most probable value, with pX(1) '

0.6328− 0.2373 = 0.3955.

Question no. 9

We seek P [B(10, 0.1) = 2]
Tab. B.1' 0.9298− 0.7361 = 0.1937.

Question no. 10
We have:

P [X ≥ 1 | X ≤ 1] =
P [X = 1]
P [X ≤ 1]

=
e−5 · 5

e−5 + e−5 · 5
=

5
6
.
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Question no. 11

We want P [Poi(2 · 2) = 1] = e−4 · 4 ' 0.0733.

Question no. 12

We can write that

P [Hyp(N = 250, n = 5, d = 50) = 0] ' P [B (n = 5, p = 50/250) = 0]

=
(

4
5

)5

' 0.3277.

Question no. 13

We have:

P [B(50, 0.01) ≥ 4] ' P [Poi(1/2) ≥ 4] = 1− P [Poi(1/2) ≤ 3]
Tab. B.2' 1− 0.9982 = 0.0018.

Question no. 14

We seek

P [Geo(p = 1/2) = 5] =
(

1
2

)5−1(1
2

)
=

1
32

= 0.03125.

Question no. 15

By the memoryless property of the exponential distribution, we may write that

P [X > 20 | X > 10] = P [X > 10] = P [Exp(λ = 1/10) > 10] = e−1 ' 0.3679.

Question no. 16

We have:

P [X > 1] = 2 P [X > 2] ⇐⇒ e−λ = 2 e−2λ ⇐⇒ eλ = 2 ⇐⇒ λ = ln 2.

Question no. 17

We can write that

P [G(α = 2, λ = 1) < 4] = P [Poi(1 · 4) ≥ 2].

So, we can use a Poisson distribution with parameter 4.

Question no. 18

We can write that X ∼ G(α = 10, λ = 2).
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Question no. 19
We have:

P [|N(0, 1)| < 1/2]
sym.
= 2 Φ(1/2)− 1

Tab. B.3' 2 (0.6915)− 1 = 0.3830.

Question no. 20
We have:

x0.90 = µX + z0.90 · σX
Tab. B.4' 1 + (−1.282)

√
2 ' −0.813.

Question no. 21
(a) Let X be the number of down components. Then, we have that X ∼ B(n = 5, p =

0.05). We seek P [X ≤ 1]
Tab. B.2' 0.977.

(b) Let Y be the number of devices needed to obtain a first device that does not operate.

We have that Y ∼ Geo(p = P [X > 1]
(a)
' 1 − 0.977). Therefore, E[Y ] = 1/p ' 43.5

devices.

Question no. 22
(a) Let N(t) be the total number of buses passing in a time period of t hours. Then,
N(t) ∼ Poi(4t). We seek

P [N(1/2) ≤ 1] = P [Poi(2) ≤ 1] = e−2 + 2e−2 ' 0.4060.

(b) Let T be the waiting time between the first and the third bus. Then, T ∼ G(α =
2, λ = 4), so that VAR[T ] = α/λ2 = 1/8 (hour)2.
(c) Let W be the total waiting time (in minutes). Then, W ∼ Exp(1/15). We want

P [W > 20 | W > 5] = P [W > 15] = e−15/15 ' 0.3679.

Question no. 23
(a) We calculate

P [N(µ, (0.1µ)2) ≥ 1.15µ] = 1− Φ

(
1.15µ− µ

0.1µ

)
= 1− Φ(1.5)

Tab. B.3' 1− 0.9332 = 0.0668.

(b) We seek x0.10 = µ + z0.10 · σ
Tab. B.4' 4 + (−1.282)(0.1)(4) ' 3.49.

Question no. 24
Let X be the number of correct answers that the student gets. Then, X follows a

B(n = 10, p = 0.5) distribution. We want
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P [X > 5] = 1− P [X ≤ 5]
Tab. B.1' 1− 0.6230 = 0.3770.

Question no. 25

We have:

P [B(100, 0.1) = 15] ' P [Poi(10) = 15] = e−10 1015

15!
' 0.0347.

Question no. 26

We can carry out the required integral to obtain the desired probability. However,
we notice that the function fX(x) is symmetrical about the origin. That is, fX(−x) =
fX(x). Then, given that X is a continuous random variable that is defined in a bounded
interval, we may write that P [X < 0] = 1/2.

Question no. 27

Let X be the IQ of the pupils. Then, X ∼ N(100, (15)2). We look for

P [{X < 91} ∪ {X > 130}]=1− P

[
91− 100

15
≤ N(0, 1) ≤ 130− 100

15

]
= 1− [Φ(2)− Φ(−0.6)]

Tab. B.3' 1− [0.9772− (1− 0.7257)] = 0.2971.

Question no. 28

(a) Let X be the number of defective transistors. Then, X has a B(n = 60, p = 0.05)
distribution. We seek

P [X ≤ 1] = (0.95)60 +
(

60
1

)
(0.05)(0.95)59 = (0.95)59(0.95 + 3) ' 0.1916.

(b) We can write that

P [X ≤ 1] ' P [Poi(60× 0.05 = 3) ≤ 1] = e−3(1 + 3) ' 0.1991.

(c) Let W be the number of transistors that we must take to get 59 nondefective ones.
Then, W ∼ NB(r = 59, p = 0.95). We want

P [W = 60] =
(

59
58

)
(0.95)59(0.05) = 2.95 (0.95)59 ' 0.1431.
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Question no. 29
By the Bienaymé–Chebyshev inequality, we may write that

P [7− k · 1 ≤ X ≤ 7 + k · 1] ≥ 1− 1
k2

.

We want that 1 − 1
k2 = 0.9, from which we deduce that k =

√
10. Hence, the interval

asked for is [7−
√

10, 7 +
√

10] ' [3.84, 10.16].

Question no. 30
We have:

fX(x) =
1√

2π
√

2
exp

{
− x2

2(2)

}
=⇒ ln[fX(X)] = ln

(
1

2
√

π

)
− X2

4
.

Because E[X2] = VAR[X] + (E[X])2 = 2 + 02 = 2, we can then write that

H = E

[
− ln

(
1

2
√

π

)
+

X2

4

]
= ln(2

√
π) +

1
4
E[X2]

= ln(2
√

π) +
2
4
' 1.766.

Question no. 31
(a) Let X be the total number of devices that the technician will have tried to repair
at the moment of his second failure. Then, we have that X ∼ NB(r = 2, p = 0.05). We
seek

P [X = 7] =
(

6
1

)
(0.05)2(0.95)5 ' 0.0116.

Remark. If the fact that the technician will receive at least seven out-of-order devices
during this particular workday had not been mentioned in the statement of the problem,
then we would have had to multiply the above probability by that of receiving at least
seven out-of-order devices during an arbitrary workday, namely

P [N ≥ 7] = P [N > 6] = (7/8)6 ' 0.4488.

(b) We want

P [B(n = 10, p = 0.95) = 8] =
(

10
8

)
(0.95)8(0.05)2 ' 0.0746.

Remark. We can also write that

P [B(n = 10, p = 0.95) = 8] = P [B(n = 10, p = 0.05) = 2]
Tab. B.1' 0.9885− 0.9139 = 0.0746.
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(c) We have:

P [B(n = 10, p = 0.95) = 8] = P [B(n = 10, p = 0.05) = 2]

' P [Poi(λ = 10× 0.05) = 2] = e−0.5 (0.5)2

2
' 0.0758.

Remark. We could also have used Table B.2, page 278, to get P [Poi(λ = 0.5) = 2].

(d) Let M be the number of devices that the technician could not repair, among the
three taken at random. Then, M ∼ Hyp(N = 10, n = 3, d = 2). We seek

P [M = 2] =

(
2
2

)(
8
1

)(
10
3

) =
1× 8

10!
3!7!

=
1
15

' 0.0667.

Question no. 32

Let Y be the number of cookies, among the 20, containing no raisins. If we assume
that the number of raisins in a given cookie is independent of the number of raisins in
the other cookies, then we may write that Y ∼ B(n = 20, p = P [X = 0]). We have that
P [X = 0] = e−λ. Moreover, we find in Table B.2, page 278, that

P [Y ≤ 2] ' 0.9245 if p = 0.05.

It follows that we must take λ ' −ln 0.05 ' 3.
Remark. We can check that with λ = 3, we have:

P [Y ≤ 2] ' (0.9502)20 + 20(0.9502)19(0.0498)
+
(
20
2

)︸︷︷︸
190

(0.9502)18(0.0498)2 ' 0.925.

However, λ did not have to be an integer, because it is the average number of raisins
per cookie.

Question no. 33

Let c be the capacity of the storage tank. We want P [X ≥ c] to be 0.01. We have:

P [X ≥ c] =
∫ ∞

c

1
10

e−x/10 dx = e−c/10.

Thus, the capacity must be

c = −10 (ln 0.01) ' 46 (thousands of liters).
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Question no. 34
We are interested in the lifetime X (in years) of a machine. From past experience,

we estimate the probability that a machine of this type lasts for more than nine years
to be 0.1.
(a) We have:

1 =
∫ ∞

0

a

(x + 1)b
dx =⇒ a

b− 1
= 1.

Then,

0.1 =
∫ ∞

9

b− 1
(x + 1)b

dx =⇒ 1
10b−1

= 0.1.

We find that b = 2, which implies that a = 1.
(b) We want

P [N(7, σ2) > 9] = 0.1 ⇐⇒ Q

(
2
σ

)
= 0.1 ⇐⇒ 2

σ

Tab. B.4' 1.282.

Therefore, σ must be approximately equal to 1.56.
(c) Let Y be the number of machines, among the ten, that will last for less than nine
years. Then, Y ∼ B(n = 10, p = 0.9). We seek

P [Y ∈ {8, 9}] = P [B(n = 10, p = 0.1) ∈ {1, 2}]
Tab. B.1' 0.9298− 0.3487 = 0.5811.

Chapter 4

Question no. 1
We have:

pX(x) =
2∑

y=0

pX,Y (x, y) =
2∑

y=0

1
6

=
1
2

if x = 0 or 1.

Question no. 2
We find that

fY (y) =
∫ 1

0

(x + y) dx =
1
2

+ y if 0 < y < 1.

Then, we may write that

fX(x | Y = y) =
x + y
1
2 + y

if 0 < x < 1 and 0 < y < 1.
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Question no. 3
We first find that VAR[X] = VAR[Y ] = 1− 02 = 1. Then,

COV[X, Y ] = ρX,Y σXσY = 1 · 1 · 1 = 1.

Question no. 4
We can write that P [X + Y > 1] = 1/2, by symmetry. This result can be checked

as follows:

P [X + Y > 1] =
∫ 1

0

∫ 1

1−x

1 dydx =
∫ 1

0

[1− (1− x)] dx =
1
2
.

Question no. 5
We have:

E[XY ] = (1)(1)
(

8
9

)(
1
2

)1+1

+ (1)(2)
(

8
9

)(
1
2

)1+2

=
(

8
9

)(
1
4

+
1
4

)
=

4
9
.

Question no. 6
We have:

VAR[X − 2Y ] = VAR[X] + 4 VAR[Y ]− 4 COV[X, Y ] = 1 + 4− 4(1) = 1.

Question no. 7
We can write that W ∼ N(0− 1 + 2(3), 1 + 2 + 4(4)) ≡ N(5, 19).

Question no. 8
By the central limit theorem, we may write that

P [Poi(100) ≤ 100] ' P

[
N(100, 100) ≤ 100 +

1
2

]
= Φ(0.05)

Tab. B.3' 0.5199

because if X ∼ Poi(100), then X has the same distribution as (for instance)
∑100

i=1 Xi,
where the Xis are independent random variables having a Poisson distribution with
parameter 1. Thus, we can use a N(100, 100) distribution.
Remark. Note that not all authors make a continuity correction in this case (as in the
case of the binomial distribution). If we do not make this continuity correction, then we
obtain directly that

P [Poi(100) ≤ 100] ' P [N(100, 100) ≤ 100] = Φ(0) =
1
2
.

Actually, we find, with the help of a mathematical software package, that P [Poi(100) ≤
100] ' 0.5266. Thus, here the fact of making a continuity correction does improve the
approximation.



298 C Solutions to “Solved exercises”

Question no. 9
We have:

P [X = 40] = P [39.5 ≤ X ≤ 40.5] ' P [39.5 ≤ N(40, 24) ≤ 40.5]

= 2Φ

(
40.5− 40√

24

)
− 1 ' 2 Φ(0.10)− 1

Tab. B.3' 0.0796.

Or:

P [X = 40] ' fY (40), where Y ∼ N(40, 24),

=
1√

2π
√

24
exp

{
−1

2
(40− 40)2

24

}
=

1√
2π
√

24
' 0.0814.

Remark. The answer obtained by using the binomial distribution and a software package
is P [X = 40] ' 0.0812, which is also the value of the probability that we find by
calculating (with more accuracy than above) Φ((40.5−40)/

√
24) ' Φ(0.102) rather than

Φ(0.10).

Question no. 10
By the central limit theorem, we may write that

Y :=
50∑

i=1

Xi ≈ N(50(0), σ2
Y ),

so that P [Y ≥ 0] ' P [N(0, σ2
Y ) ≥ 0] = 1/2.

Question no. 11
(a) We first calculate pX(x) ≡ 1/3, pY (0) = 1/3, and pY (2) = 2/3. We can check that
pX(x)pY (y) = pX,Y (x, y) ∀(x, y). So, X and Y are independent.
(b) FX,Y (0, 1/2) ≡ P [X ≤ 0, Y ≤ 1/2] = pX,Y (−1, 0) + pX,Y (0, 0) = 2/9.
(c) From part (a), we have that pX(x) = 1/3, for x = −1, 0, 1. Then,

z 0 1
pZ(z) 1/3 2/3

(d) We have that E[X2Y 2] = (−1)2(2)2 2
9 + (1)2(2)2 2

9 + 0 = 16
9 .

Question no. 12
We have (see Figure C.1):

P [X ≥ Y 2] =
∫ 1

0

∫ √
x

x

2 dydx =
∫ 1

0

2(
√

x− x)dx = 2
(

x3/2

3/2
− x2

2

)∣∣∣∣1
0

=
1
3
.
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x

y

1

1

x = y
x = y2

x > y
2

Fig. C.1. Figure for solved exercise no. 12.

Question no. 13
(a) Let N(t) be the number of buses in the interval [0, t], where t is in hours. We can
write that Y ≡ N(t = 12.5) ∼ Poi(50).
(b) We have that Xk ∼ Poi(1), so that E[Xk] = VAR[Xk] = 1, for all k. Then, given that
the Xks are independent random variables, we deduce from the central limit theorem
that Y ≈ N(50, 50).

Question no. 14
We have:

P [X1 = X2] =
2∑

i=0

P [{X1 = i} ∩ {X2 = i}] ind.=
2∑

i=0

P [X1 = i]P [X2 = i]

= (1/2)2 + (1/4)2 + (1/4)2 = 3/8 = 0.375.

Question no. 15
We have:

P [{X < 5} ∩ {Y < 2}] = P [{X ≤ 4} ∩ {Y ≤ 1}] = P [Y = 1]
= 0.1 + 0.1 + 0.2 = 0.4.

Question no. 16
We first calculate

fX1(x1) =
∫ 1

0

(2− x1 − x2) dx2 =
3
2
− x1 if 0 < x1 < 1.

By symmetry, we can then write that

fX2(x2) =
3
2
− x2 if 0 < x2 < 1.
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Next, we calculate

E[Xi] =
∫ 1

0

xi

(
3
2
− xi

)
dxi =

5
12

for i = 1, 2

and

E[X1X2] =
∫ 1

0

∫ 1

0

x1x2 (2− x1 − x2) dx1dx2 =
1
6
.

It follows that COV[X1, X2] = E[X1X2]− E[X1]E[X2] = − 1
144 ' −0.0069.

Question no. 17

We first find that
y 1/2 1

pY (y) 2/3 1/3

which implies that
w −1/2 0 1/2

pW (w) 2/9 5/9 2/9

because P [W = −1/2] = P [Y1 = 1/2, Y2 = 1] ind.= (2/3)(1/3) = 2/9, and so on.

Question no. 18

We can write that
∑n

i=1 Xi ≈ N(n(1/2), n(1/4)), because µXi = 1/2 and σ2
Xi

= 1/4,
for all i. Then,

P

[
n∑

i=1

Xi >
n

2
+ 1

]
' P

[
N(0, 1) >

n
2 + 1− n

2√
n/2

]
' 0.4602

⇐⇒ Φ

(
2√
n

)
' 0.5398 Tab. B.3⇐⇒ 2√

n
' 0.1 ⇐⇒ n ' 400.

Question no. 19

(a) We have that X1 −X2 ∼ N(0− 0, 25 + 25) ≡ N(0, 50). We then calculate

P [X1 −X2 > 15] = P

[
N(0, 1) >

15− 0√
50

]
' 1− Φ(2.12)

Tab. B.3' 1− 0.9830 = 0.0170.

(b) By independence, we may write that

fX1,X2(x1, x2) = fX1(x1)fX2(x2) =
1

(2π)(25)
exp

{
− (x2

1 + x2
2)

50

}
for (x1, x2) ∈ R2.
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(c) (i) We have that P [X1 = 2 | X1 > 1] = 0, because X1 is a continuous random
variable.

(ii) Because {X1 = 1} ⊂ {X1 < 2}, we can write that P [X1 < 2 | X1 = 1] is equal
to 1.

Question no. 20

Let Xi be the length of the ith section, for i = 1, . . . , 100. By the central limit
theorem, we may write that

P

[
970 ≤

100∑
i=1

Xi ≤ 1030

]
' P

[
970 ≤ N(µ, σ2) ≤ 1030

]
,

where µ = 100× 10 = 1000 and σ2 = 100× 0.9 = 90. Thus, we seek approximately

1− [Φ(3.16)− Φ(−3.16)]
Tab. B.3' 1− 2× (0.9992− 1) = 0.0016.

Question no. 21

(a) We have:

fX(x) =
∫ 1

0

3x2e−xy(1− y) dy = 3x2e−x

∫ 1

0

y(1− y) dy

= 3x2e−x

(
y2

2
− y3

3

)∣∣∣∣1
0

=
x2e−x

2
if x > 0.

We find that X ∼ G(α = 3, λ = 1).
Next, we calculate

fY (y) =
∫ ∞

0

3x2e−xy(1− y) dx = 3y(1− y)
∫ ∞

0

x2e−x dx

= 3y(1− y)Γ (3) = 6y(1− y) if 0 < y < 1.

In this case, we find that Y ∼ Be(α = 2, β = 2).
(b) We can check that fX,Y (x, y) ≡ fX(x)fY (y). Therefore, by definition, X and Y are
independent random variables.

(c) We have that VAR[X]
(a)
= 3/(1)2 = 3. Next, we calculate

E[Xk] =
∫ ∞

0

1
2
xk+2e−x dx =

1
2
Γ (k + 3)

for k = 1, 2, . . . . Then, we have:
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β2 =
E[X4]− 4E[X3]E[X] + 6E[X2](E[X])2 − 4E[X](E[X])3 + (E[X])4

(VAR[X])2

=
6!
2 − 4

(
5!
2

) (
3!
2

)
+ 6

(
4!
2

) (
3!
2

)2 − 3
(

3!
2

)4
(3)2

=
360− 720 + 648− 324 + 81

9
=

45
9

= 5.

(d) First, we calculate

E[Y ] =
∫ 1

0

y · 6y(1− y) dy =
∫ 1

0

6y2(1− y) dy = 6
(

1
3
− 1

4

)
=

1
2
.

Note that
fY

(
1
2 − y

)
= fY

(
1
2 + y

)
for all y ∈ (0, 1/2). That is, the function fY (y) is symmetrical about the mean of Y .
Because all possible values of the random variable Y are located in a bounded interval,
we can then assert that β1 = 0.

Question no. 22

(a) Summing the elements of the columns and the rows of the table, respectively, we
find that

x 0 1 2
pX(x) 1/3 1/3 1/3

and
y −1 0 1

pY (y) 2/9 4/9 1/3

(b) We have, in particular, that pX(0)pY (−1) = 1
3 ×

2
9 6=

1
9 = pX,Y (0,−1). Therefore,

X and Y are not independent random variables.
Remark. Because there are some 0s in the two-dimensional table, X and Y could not be
independent. Indeed, a “0” in the table will never be equal to the product of the sum
of the elements of the corresponding row and column.
(c) (i) By definition, we have:

pY (y | X = 1) =
pX,Y (1, y)

pX(1)
(a)
= 3 pX,Y (1, y) =

0 if y = −1,
0 if y = 0,
1 if y = 1.

That is, Y | {X = 1} is the constant 1.

ii) We first find that P [X ≤ 1]
(a)
= 1

3 + 1
3 = 2

3 . It follows that

pY (−1 | X ≤ 1) =
3
2
P [{Y = −1} ∩ {X ≤ 1}] =

3
2

(
1
9

+ 0
)

=
1
6
.

Likewise, we calculate pY (0 | X ≤ 1) = 3
2

(
2
9 + 0

)
= 1

3 . Thus, we have:
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y −1 0 1 Σ
pY (y | X ≤ 1) 1/6 1/3 1/2 1

(d) We first calculate

E[X]
(a)
= 1× 1

3
+ 2× 1

3
= 1, E[Y ]

(a)
= −1× 2

9
+ 1× 1

3
=

1
9

and
E[XY ] = 1× 1× 1

3
+ 2× (−1)× 1

9
=

1
9
.

It follows that

COV[X, Y ] = E[XY ]− E[X]E[Y ] =
1
9
− 1× 1

9
= 0

and, consequently, CORR[X, Y ] = 0 (because STD[X] and STD[Y ] are strictly positive).
(e) We have:

W =

0 if (X, Y ) = (0,−1) or (0, 0),
1 if (X, Y ) = (0, 1) or (1,−1) or (1, 0) or (1, 1),
2 if (X, Y ) = (2,−1) or (2, 0) or (2, 1).

Making use of the function pX,Y (x, y), we find, by incompatibility, that the function
pW (w) is given by

w 0 1 2 Σ
pW (w) 1/3 1/3 1/3 1

Question no. 23
We have:

P [X + Y ≤ 4 | X ≤ 2] =
P [{X + Y ≤ 4} ∩ {X ≤ 2}]

P [X ≤ 2]

=
P [(X, Y ) ∈ {(1, 2), (1, 3), (2, 2)}]

1−
(

1
12 + 1

6 + 0
) =

1
12 + 1

6 + 1
6

3
4

=
5
9

= 0.5̄.

Question no. 24
Let X be the number of times that the digit “7” appears among the 10,000 random

digits. Then, X ∼ B(n = 10, 000, p = 0.1). We seek

P [X > 968] = P [X ≥ 969] ' P

[
N(0, 1) ≥ 969− 0.5− 1000√

900

]
= Q(−1.05) = Φ(1.05)

Tab. B.3' 0.8531.
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Question no. 25
(a) We have:

E[XrY s] =
∫ 1

0

∫ x

0

xrys 1
x

dydx =
∫ 1

0

xr−1 ys+1

s + 1

∣∣∣∣x
0

dx

=
∫ 1

0

xr+s

s + 1
dx =

1
(s + 1)(r + s + 1)

for r, s = 0, 1, 2, . . . .

(b) We calculate

E[X2] =
∫ 1

0

x2 · 1 dx =
1
3

and
E[X2Y 0] =

1
(0 + 1)(2 + 0 + 1)

=
1
3
.

(c) We deduce from part (a) that E[X] = E[X1Y 0] = 1
2 , E[X2] = E[X2Y 0] = 1

3 ,
E[Y ] = 1

4 , E[Y 2] = 1
9 , and E[XY ] = 1

6 . Then, we have:

VAR[X] =
1
3
−
(

1
2

)2

=
1
12

, VAR[Y ] =
1
9
−
(

1
4

)2

=
7

144

and

ρX,Y =
1
6 −

1
2 ·

1
4√

1
12 ·

7
144

=

√
3
7
' 0.6547.

Question no. 26
(a) We have:

1
8

= pY (−1 | X = 2) =
pX,Y (2,−1)

pX(2)
=

1/16
P [X = 2]

=⇒ P [X = 2] =
1
2
.

(b) We first find that

pX,Y (2, 0) = pY (0 | X = 2)pX(2)
(a)
= (3/8)(1/2) = 3/16.

Likewise, we have that pX,Y (2, 1) = (1/2)(1/2) = 1/4. We then obtain the following
table:

y \ x 0 1 2 pY (y)
−1 1/16 1/8 1/16 1/4

0 3/16 1/8 3/16 1/2
1 0 0 1/4 1/4

pX(x) 1/4 1/4 1/2 1

(c) We can check that W follows a binomial distribution with parameters n = 2 and
p = 1/2, because [see pY (y) in the above table]
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pW (w) =
(

2
w

)
(1/2)2 for w = 0, 1, 2.

Question no. 27

(a) We have:

E

[
1

XY

]
=
∫ 2

0

∫ x

0

1
xy

xy

2
dydx =

∫ 2

0

x

2
dx = 1.

(b) We first calculate (see Figure C.2)

fX(x) =
∫ x

0

xy

2
dy =

x3

4
for 0 < x < 2.

Then,

E[X2] =
∫ 2

0

x2 x3

4
dx =

x6

24

∣∣∣∣2
0

=
8
3
' 2.67.

x

y

2

1

y = x

1

Fig. C.2. Figure for solved exercise no. 27.

(c) Making use of part (b), we may write that we seek the number xm for which∫ xm

0

x3

4
dx =

1
2

⇐⇒ x4
m

16
=

1
2

=⇒ xm ' 1.68

because the median xm must be positive, in as much as X ∈ (0, 2).

Question no. 28

We seek

P [{X < 1} ∩ {Y < 1}] ind.= P [X < 1]P [Y < 1] ' 0.3402
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because

P [X < 1] =
∫ 1

0

1
2
e−x/2 dx = 1− e−1/2

and

P [Y < 1] =
∫ 1

0

4ye−2y2
dy = 1− e−2.

Question no. 29
Let Xk be the kth number taken at random. We have that E[Xk] = 1/2 and

VAR[Xk] = 1/12, for all k. Then, by the central limit theorem, we may write that

P [45 ≤ S < 55] ' P [45 ≤ N(100(1/2), 100(1/12)) < 55]
' P [−1.73 ≤ N(0, 1) < 1.73] = Φ(1.73)− Φ(−1.73)

= 2Φ(1.73)− 1
Tab. B.3' 2(0.958)− 1 = 0.916.

Question no. 30
(a) Let Xi be the number of floods during the ith year. Then, Xi ∼ Poi(α = 2) ∀i and
the Xis are independent. We seek

P

[
50∑

i=1

Xi ≥ 80

]
CLT' P [N(50(2), 50(2)) ≥ 80] = P

[
N(0, 1) ≥ 80− 100

10

]
= 1− Φ(−2) = Φ(2)

Tab. B.3' 0.9772.

(b) Let Yi be the duration of the ith flood. Then, Yi ∼ Exp(λ = 1/5) ∀i and the Yis are
independent random variables. Because E[Yi] = 1/λ = 5 and VAR[Yi] = 1/λ2 = 25, we
calculate

P

[
50∑

i=1

Yi < 200

]
CLT' P [N(50(5), 50(25)) < 200] ' P [N(0, 1) < −1.41]

Tab. B.3' 1− 0.9207 ' 0.079.

Chapter 5

Question no. 1
We have:

R(x) := P [X > x] = P [Y 2 > x] =
{

P [Y >
√

x] = 1−
√

x if 0 ≤ x < 1,
0 if x ≥ 1.
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Question no. 2
We can write that Y | {X < 2} ∼ Exp(1) and Y | {X ≥ 2} ∼ Exp(1/2). It follows

that

E[Y ] = E[Y | X < 2]P [X < 2] + E[Y | X ≥ 2]P [X ≥ 2]

= 1×
[
1− e−(1/2)2

]
+ 2× e−(1/2)2 = 1 + e−1.

Because E[X] = 2 years, we have that MTBF = 731 + e−1 ' 731.37 days.

Question no. 3
First, we calculate

FT (t) =
∫ t

0

fT (s)ds =
∫ t

0

1
λ

exp
{
−es − 1

λ
+ s

}
ds

=
∫ t

0

1
λ

es exp
{
−es − 1

λ

}
ds = − exp

{
−es − 1

λ

} ∣∣∣∣t
0

= 1− exp
{
−et − 1

λ

}
for t ≥ 0.

It follows that

r(t) =
fT (t)

1− FT (t)
=

et

λ
for t ≥ 0.

Question no. 4
We calculate

r(0) =
e−λ∑∞

j=0 e−λλj/j!
=

e−λ

1
= e−λ

and

r(1) =
e−λλ∑∞

j=1 e−λλj/j!
=

e−λλ

e−λ(eλ − 1)
=

λ

eλ − 1
.

We have:

r(0) < r(1) ⇐⇒ e−λ <
λ

eλ − 1
⇐⇒ 1− e−λ < λ.

Let
g(λ) = λ + e−λ − 1.

Because g(0) = 0 and

g′(λ) = 1− e−λ > 0 for all λ > 0,

we may assert that g(λ) > 0, for λ > 0. Hence, we conclude that r(0) < r(1), so that
the failure rate function is increasing at k = 0.
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Remark. Actually, it can be shown that the function r(k) is increasing at any k ∈
{0, 1, . . .}.

Question no. 5
We have:

R(x) := P [X > x] =
∫ 1

x

1dt = 1− x if 0 ≤ x ≤ 1.

Therefore,

AFR(0, 1/2) =
ln[R(0)]− ln[R(1/2)]

1− (1/2)
= 2[ln 1− ln(1/2)] = 2 ln 2.

Question no. 6
The components are connected in series, therefore we indeed seek the probability

P [X2 < X1]. Making use of the above formula, we can write that

P [X2 < X1] =
∫ ∞

0

P [X2 < x1 | X1 = x1]λ1e
−λ1x1 dx1.

By independence, we obtain that

P [X2 < X1] =
∫ ∞

0

[1− e−λ2x1 ]λ1e
−λ1x1 dx1 = 1− λ1

∫ ∞

0

e−(λ1+λ2)x1 dx1

= 1− λ1

(
1

λ1 + λ2

)
=

λ2

λ1 + λ2
.

Remark. Note that P [X2 < X1] = 1/2 if λ1 = λ2, which is logical, by symmetry (because
P [X2 = X1] = 0, by continuity).

Question no. 7
We have that P [T > t0] = P [{T1 > t0} ∪ {T2 > t0}]. Let Ak = {Tk > t0}, for

k = 1, 2. We seek

p := P [A1 ∩A2 | A1 ∪A2] =
P [A1 ∩A2]
P [A1 ∪A2]

because {A1 ∩A2} ⊂ {A1 ∪A2}.
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Next, we have:
P [A1 ∩A2]

ind.= P [A1]P [A2] = e−(λ1+λ2)t0

and

P [A1 ∪A2] = P [A1] + P [A2]− P [A1 ∩A2] = e−λ1 t0 + e−λ2 t0 − e−(λ1+λ2)t0 ,

so that

p =
e−(λ1+λ2)t0

e−λ1 t0 + e−λ2 t0 − e−(λ1+λ2)t0
.

Question no. 8
Let F = “the device operates at the initial time.” In the case of a series device

constituted of one brand A and one brand B component, we have that P [F ] = (0.9)2 =
0.81. Therefore, the probability that at least one of the two devices works is given by
1− (1− 0.81)2 = 0.9639.

If we build a single device as described above, we have:

P [F ] = (1− (0.1)2)(1− (0.1)2) = 0.9801.

Thus, it is better to duplicate the components rather than to duplicate the devices.
Remark. The conclusion of this exercise can be generalized as follows: it is always better
to duplicate the components in a series system than to build two distinct systems.

Question no. 9
We have:

H(x1, x2, x3, x4) = max{x1x2, x3}x4 = [1− (1− x1x2)(1− x3)]x4

= (x1x2 + x3 − x1x2x3)x4.

Question no. 10
The minimal path sets of the system are the following: MP1 = {1, 2, 4} and MP2 =

{3, 4}. Hence,

π1(x1, x2, x3, x4) = x1x2x4 and π2(x1, x2, x3, x4) = x3x4,

so that
H(x1, x2, x3, x4) = 1− (1− x1x2x4)(1− x3x4).

Remark. Because xk = 0 or 1 ∀k, we may write that x2
k = xk. It follows that

H(x1, . . . , x4) = x1x2x4 + x3x4 − x1x2x3x
2
4 = x1x2x4 + x3x4 − x1x2x3x4

= (x1x2 + x3 − x1x2x3)x4,

which agrees with the result in the previous exercise.
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Chapter 6

Question no. 1
(a) Let Tk, for k = 1, . . . , n, be the lifetime of component no. k. If the components
are connected in series, then, by the memoryless property of the exponential distri-
bution, we may express the time T between two system breakdowns as follows: T
= min{T1, . . . , Tn}. From the remark after Proposition 5.2.1, we deduce that T ∼
Exp(µ1 + · · · + µn). Hence, we may assert that {N(t), t ≥ 0} is a continuous-time
Markov chain. Actually, it is a Poisson process with rate λ = µ1 + · · ·+ µn.

(b) When the components are connected in parallel, we have that T = max{T1, . . . , Tn}.
Now, the maximum T1,2 of two independent exponential random variables does not have
an exponential distribution. Indeed, we can write (see Example 5.2.2) that

P [T1,2 ≤ t] =
(
1− e−µ1 t

) (
1− e−µ2 t

)
for t ≥ 0,

so that

fT1,2(t) =
d

dt
P [T1,2 ≤ t] = µ1e−µ1 t + µ2e−µ2 t − (µ1 + µ2)e−(µ1+µ2)t for t ≥ 0.

Because we cannot write fT1,2(t) in the form

fT1,2(t) = λe−λt for t ≥ 0

for some λ > 0, we must conclude that T1,2 is not exponentially distributed. By ex-
tension, T is not an exponential random variable either, so that {N(t), t ≥ 0} is not a
continuous-time Markov chain.

(c) Finally, in the case when the components are placed in standby redundancy, the
random variable T is not exponentially distributed either (for n ≥ 2). Indeed, if µk ≡ µ,
then [see (4.9)] T ∼ G(n, µ). Because T does not have an exponential distribution
in this particular case, it cannot be exponentially distributed for arbitrary µks. Thus,
{N(t), t ≥ 0} is not a continuous-time Markov chain.

Question no. 2
We can write that X(t), given that X(0) = i, has a negative binomial distribution

with parameters r = i and p = e−λt [see (3.2)]. From Table 3.1, p. 89, we deduce that
the expected value of X(t) is given by

E[X(t) | X(0) = i] =
r

p
= ieλt.

To justify this result, notice that

p1,j(t) = e−λt(1− e−λt)j−1 for j ≥ 1.
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That is,

P [X(t) = j | X(0) = 1] = P [Geo(p := e−λt) = j] for j = 1, 2, . . . .

Now, when X(0) = i ≥ 1, we can represent X(t) as the sum of i (independent)
geometric random variables with common parameter p. Then, by linearity of the math-
ematical expectation, we deduce that

E[X(t) | X(0) = i] = i× E[Geo(p := e−λt)] = i

(
1

e−λt

)
= ieλt.

Question no. 3
The balance equations of the system are the following:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

1 (2λ + µ)π1 = λπ0 + 2µπ2

2 2µπ2 = 2λπ1

We deduce from the first and the third equation that

π1 =
λ

µ
π0 and π2 =

λ

µ
π1 =

(
λ

µ

)2

π0.

Hence, we can write that

π0 +
λ

µ
π0 +

(
λ

µ

)2

π0 = 1 =⇒ π0 =

[
1 +

λ

µ
+
(

λ

µ

)2
]−1

,

from which we obtain the values of π1 and π2.

Question no. 4
Let π∗k = P [X(t0) = k | X(t0) ∈ {2, 3, 4}]. We can write that

π∗k =
πk

π2 + π3 + π4
=

ρk

ρ2 + ρ3 + ρ4
=

ρk−2

1 + ρ + ρ2
for k = 2, 3, 4.

Next, let Q∗ be the waiting time of the new customer. By the memoryless property
of the exponential distribution, we can write that

E[Q∗ | X(t0) ∈ {2, 3, 4}] =
4∑

k=2

E[Q∗ | {X(t0) = k} ∩ {X(t0) ∈ {2, 3, 4}}]

×P [X(t0) = k | X(t0) ∈ {2, 3, 4}]

=
4∑

k=2

(
k

µ

)
π∗k =

1
µ

(
2 + 3ρ + 4ρ2

1 + ρ + ρ2

)
.
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Question no. 5

The balance equations are:

state j departure rate from j = arrival rate to j

0 λπ0 = µπ1

1 (λ + µ)π1 = λπ0 + µπ2

2 (λ + µ)π2 = λπ1 + 2µπ3

n ∈ {3, 4, . . .} (λ + 2µ)πn = λπn−1 + 2µπn+1

Next, we calculate

Πk =
λλλ · · ·λ

µµ(2µ) · · · (2µ)
=
(

λ

µ

)2 (
λ

2µ

)k−2

for k = 2, 3, . . . .

Hence, we deduce that the sum
∑∞

k=1 Πk converges if and only if

∞∑
k=2

Πk < ∞ ⇐⇒
∞∑

k=2

(
λ

µ

)2 (
λ

2µ

)k−2

< ∞

⇐⇒
(

λ

µ

)2 ∞∑
k=2

(
λ

2µ

)k−2

< ∞ ⇐⇒ λ

2µ
< 1,

as we could have guessed.

Question no. 6
The limiting probabilities of the system are given by [see (6.17)]

πj =
ρj (1− ρ)
1− ρ3

for j = 0, 1, 2.

Let F be the event “the customer who arrived at time t0 + 2 was able to enter the
system.” We can write that

P [F ] = P [F | X(t−0 ) = 1]P [X(t−0 ) = 1 | X(t−0 ) ∈ {1, 2}]
+P [F | X(t−0 ) = 2]P [X(t−0 ) = 2 | X(t−0 ) ∈ {1, 2}]

= 1× π1

π1 + π2
+ P [F | X(t−0 ) = 2]

π2

π1 + π2
.

Now, given that the system was full when a departure took place at time t0, the
customer who arrived at t0 + 2 was able to enter the system if and only if the one who
started being served at t0 left the system before time t0 + 2. That is, if S ∼ Exp(µ),

P [F | X(t−0 ) = 2] = P [S < 2] = 1− e−2µ.
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Hence, the required probability is

P [F ] =
ρ

ρ + ρ2
+
(
1− e−2µ

) ρ2

ρ + ρ2
=

1
1 + ρ

[
1 + ρ

(
1− e−2µ

)]
.

Question no. 7
When λa = λ and the service rate is µ = λ, the limiting probabilities of the system

are [see (6.16)]

πj =
1
4

for j = 0, 1, 2, 3.

The average entering rate of customers into the system is λe = λ(1 − π3) = 3λ/4, so
that the average amount of money that the system earns per unit of time is equal to
$x× 3λ/4.

Next, if λ∗ = λ/2 and µ∗ = 2µ, then ρ∗ = ρ/4 = 1/4 and [see (6.17)]

π∗j =
(1/4)j [1− (1/4)]

1− (1/4)4
for j = 0, 1, 2, 3.

It follows that

λ∗e = λ∗(1− π∗3) =
λ

2

(
1− 3

255

)
=

126λ

255

and, because the entering customers pay the same amount as before, we conclude that
the server is better off to serve at rate µ. Indeed, we have:

$x× 3λ

4
> $x× 126λ

255
.

Question no. 8
By the memoryless property of the exponential distribution, we can write that Wi :=

τi − t0 is an exponentially distributed random variable with parameter µ. Indeed, we
have:

P [Wi > t] = P [Si − (t0 − ti) > t | Si > t0 − ti] for i = 1, 2,

where Si is the service time of the customer being served by server no. i and ti > 0 is
its (known) arrival time. Because Si is an Exp(µ) random variable, we can write that

P [Si − (t0 − ti) > t | Si > t0 − ti] = P [Si > t + (t0 − ti) | Si > t0 − ti]
= P [Si > t] = e−µt.
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Hence, by independence, the required probability is given by

P [τ2 − t0 ≤ τ1 − t0 + 1] = P [W2 ≤ W1 + 1]

= P [S2 ≤ S1 + 1] =
∫ ∞

0

∫ s1+1

0

µe−µs1 µe−µs2 ds2ds1

=
∫ ∞

0

(−1)µe−µ(s1+s2)

∣∣∣∣s2=s1+1

s2=0

ds1 =
∫ ∞

0

µ
[
e−µs1 − e−µ(2s1+1)

]
ds1

= 1− 1
2

e−µ.

Remark. Because, by symmetry and continuity, P [S1 < S2] = 1/2, we deduce that

P [S1 ≤ S2 ≤ S1 + 1] = 1− 1
2

e−µ − 1
2

=
1
2
(
1− e−µ

)
,

from which we retrieve the result in Example 6.3.1.

Question no. 9
Because the service rates are not necessarily equal, X(t) cannot simply be the number

of customers in the system at time t. We define the states:

0 : the system is empty;
11 : only server no. 1 is busy;
12 : only server no. 2 is busy;
2 : the two servers are busy and nobody is waiting;
3 : the two servers are busy and somebody is waiting.

We have:

state j departure rate from j = arrival rate to j

0 λπ0 = µ1π11 + µ2π12

11 (λ + µ1)π11 = λπ0 + µ2π2

12 (λ + µ2)π12 = µ1π2

2 (λ + µ1 + µ2)π2 = λ(π11 + π12) + (µ1 + µ2)π3

3 (µ1 + µ2)π3 = λπ2

The value of N̄ is given by

N̄ = π11 + π12 + 2π2 + 3π3.

Moreover, the average entering rate of customers is λe = λ(1 − π3). It follows, from
Little’s formula, that

T̄ =
N̄

λe
=

π11 + π12 + 2π2 + 3π3

λ(1− π3)
.



C Solutions to “Solved exercises” 315

Question no. 10
We have an M/G/2/2 queueing system for which S ∼ U(2, 4), so that E[S] = 3.

Making use of (6.26), we can write that

π0 =

(
2∑

k=0

(3λ)k

k!

)−1

=

(
1 + 3λ +

(3λ)2

2

)−1

and

π1 = 3λπ0 and π2 =
(3λ)2

2
π0.

If λ = 1/3, we have:

π0 =
(

1 + 1 +
1
2

)−1

=
2
5
, π1 = π0 =

2
5

and π2 =
1
2

π0 =
1
5
.

It follows that

E[N ] = 1× π1 + 2× π2 =
4
5

and E[N2] = 1× π1 + 4× π2 =
6
5
,

so that

VAR[N ] =
6
5
−
(

4
5

)2

=
14
25

.

Chapter 7

Question no. 1
We have that

E[Yn] =
1
2
{E[Xn] + E[Xn−1]} ≡ 0.

Moreover, for m ∈ {−n + 1,−n + 2, . . .},

E[YnYn+m] = E

[(
Xn + Xn−1

2

)(
Xn+m + Xn+m−1

2

)]
=

1
4
{E[XnXn+m] + E[XnXn+m−1]

+E[Xn−1Xn+m] + E[Xn−1Xn+m−1]} .

In the case when m = 0, we obtain that

E[YnYn+m] = E[Y 2
n ] =

1
4
{
E[X2

n] + 0 + 0 + E[X2
n−1]

}
=

σ2

2
.
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Remark. Or, because E[Yn] ≡ 0:

E[Y 2
n ] = VAR[Yn] ind.=

1
4
{VAR[Xn] + VAR[Xn−1]} =

σ2

2
.

Next, if m > 0, we calculate

E[YnYn+m] =
1
4
{0 + E[XnXn+m−1] + 0 + 0} =

1
4
E[XnXn+m−1]

=
{

0 if m 6= 1,
1
4σ2 if m = 1.

Similarly, when m < 0, we find that

E[YnYn+m] =
{

0 if m 6= −1,
1
4σ2 if m = −1.

Hence, we can write that

COV[Yn, Yn+m] =


1
2σ2 if m = 0,

1
4σ2 if m = ±1,

0 if m 6= 0,±1,

so that COV[Yn, Yn+m] = γ(m) = γ(−m) (and E[Yn] ≡ 0). Thus, the process {Yn, n =
1, 2, . . .} is weakly stationary.

Question no. 2
Let

Xi =
1
ai

(Yi − bi) := hi(Y1, Y2) for i = 1, 2.

We have that ∣∣∣∣∣ ∂h1(y1,y2)
∂y1

∂h1(y1,y2)
∂y2

∂h2(y1,y2)
∂y1

∂h2(y1,y2)
∂y2

∣∣∣∣∣ =
∣∣∣∣ 1

a1
0

0 1
a2

∣∣∣∣ = 1
a1a2

6= 0 ∀(y1, y2).

Because the partial derivatives ∂hi(y1, y2)/∂yj , for i, j = 1, 2, are all continuous
∀(yi, y2), we can write that

fY1,Y2(y1, y2) = fX1,X2

(
1
a1

(y1 − b1),
1
a2

(y2 − b2)
) ∣∣∣∣ 1

a1a2

∣∣∣∣ .
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By independence,

fX1,X2(x1, x2) =
1

(
√

2π)2
e−(x2

1+x2
2)/2 =

1
2π

exp
{
−1

2
(x2

1 + x2
2)
}

∀(x1, x2) ∈ R2. It follows that

fY1,Y2(y1, y2) =
∣∣∣∣ 1
a1a2

∣∣∣∣ 1
2π

exp
{
−1

2

(
1
a2
1

(y1 − b1)2 +
1
a2
2

(y2 − b2)2
)}

∀(y1, y2) ∈ R2.
Remarks. (i) From Definition 7.1.6, we can assert that the random vector (Y1, Y2) has
a bivariate normal distribution. Moreover, we have that

E[Yi] = bi, VAR[Yi] = a2
i

and
COV[Y1, Y2]

ind.= a1a2 COV[X1, X2]︸ ︷︷ ︸
0

+0 = 0.

Hence, we can write that m = (b1, b2) and

C =
[

a2
1 0
0 a2

2

]
.

Finally, Equation (7.2) yields that

fY1,Y2(y1, y2)=
{
(2π)2a2

1a
2
2

}−1/2
exp

{
−1

2
(y1 − b1, y2 − b2)C−1

(
y1 − b1

y2 − b2

)}
,

where

C−1 =
1

a2
1a

2
2

[
a2
2 0
0 a2

1

]
=

[
1
a2
1

0
0 1

a2
2

]
.

It is a simple matter to check that the function fY1,Y2(y1, y2) above is the same as the
one obtained from Proposition 4.3.1.
(ii) We can also use the fact that Y1 ∼ N(b1, a

2
1) and Y2 ∼ N(b2, a

2
2) are independent

random variables to get fY1,Y2(y1, y2). Indeed, their covariance being equal to 0 (see the
preceding remark), we can assert that they are independent (because they are Gaussian
random variables).
(iii) If a1 = 0, then Y1 = b1 is a degenerate Gaussian random variable. Its probability
density function is given by

fY1(y1) = δ(y1 − b1) ∀y1 ∈ R,

where δ(·) is the Dirac delta function defined by (see p. 4)
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δ(x) =
{

0 if x 6= 0,
∞ if x = 0 and

∫ ∞

−∞
δ(x)dx = 1.

Question no. 3
Equation (7.18) yields

VAR[Xn] ≡ γ(0) = α1γ(1) + α2γ(2) + α3γ(3) + σ2 (∗)

and we deduce from (7.13) that

γ(1)
(1)
= α1γ(0) + α2γ(1) + α3γ(2),

γ(2)
(2)
= α1γ(1) + α2γ(0) + α3γ(1),

γ(3)
(3)
= α1γ(2) + α2γ(1) + α3γ(0).

Substituting (3) into (*), we obtain that

γ(0) = α1γ(1) + α2γ(2) + α3 [α1γ(2) + α2γ(1) + α3γ(0)] + σ2

=⇒ γ(0) =
1

1− α2
3

[
(α1 + α2α3)γ(1) + (α2 + α1α3)γ(2) + σ2

]
.

Next, (1) and (2) imply that

γ(1) = α1γ(0) + α2γ(1) + α3 [(α1 + α3)γ(1) + α2γ(0)]

=⇒ γ(1) = γ(0)
{

α1 + α2α3

1− α2 − (α1 + α3)α3

}
.

Then, making use again of (2), we find that

γ(2) = γ(0)
{

α2(1− α2) + α1(α1 + α3)
1− α2 − (α1 + α3)α3

}
.

Hence, we can write that

(1− α2
3)γ(0) = σ2 +

(α1 + α2α3)2

1− α2 − (α1 + α3)α3
γ(0)

+
(α2 + α1α3)

1− α2 − (α1 + α3)α3
[α2(1− α2) + α1(α1 + α3)] γ(0).

Thus, we have:

γ(0) = σ2

{
1− α2

3

− (α1 + α2α3)2 + (α2 + α1α3) [α2(1− α2) + α1(α1 + α3)]
1− α2 − (α1 + α3)α3

}−1

.
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Remark. In the case when α1 = α2 = α3 := α, we find that

γ(0) = σ2

{
1− α− 2α2

1− α− α2 + 5α3 + 4α4

}
.

Question no. 4
We deduce from Equation (7.5) that Xn =

∑n
i=1 αn−i

1 εi, which implies that

E[Yn] = E

[
exp

{
n∑

i=1

αn−i
1 εi

}]
= E

[
n∏

i=1

exp
{
αn−i

1 εi

}]
ind.=

n∏
i=1

E
[
eαn−i

1 εi

]
=

n∏
i=1

exp
{

σ2

2
α

2(n−i)
1

}

= exp

{
σ2

2

n∑
i=1

α
2(n−i)
1

}
= exp

{
σ2

2
α2n

1

n∑
i=1

α−2i
1

}
.

Now, define

Sn =
n∑

i=1

α−2i
1 = α−2

1 + α−4
1 + · · ·+ α−2n

1 .

We have [see Equation (7.7)] that

Sn =
1− α−2n

1

α2
1 − 1

.

Therefore, we can write that

E[Yn] = exp
{

σ2

2

(
α2n

1 − 1
α2

1 − 1

)}
for n = 1, 2, . . . .

Remark. If {Xn, n ∈ Z} is a zero mean weakly stationary AR(1) process and Yn = eXn

for all n ∈ Z, then [see Equation (7.9)]

E[Yn] = E

[
exp

{ ∞∑
i=0

αi
1εn−i

}]
= E

[ ∞∏
i=0

exp
{
αi

1εn−i

}] ind.=
∞∏

i=0

E
[
eαi

1εn−i

]
=

∞∏
i=0

exp
{

σ2

2
α2i

1

}
= exp

{
σ2

2

∞∑
i=0

α2i
1

}
= exp

{
σ2

2
1

(1− α2
1)

}
,

where we assumed that we can interchange the mathematical expectation and the infi-
nite product.
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Question no. 5
Equation (7.23) (with θ0 = 1) yields that

ρ(1) =
∑3−1

i=0 θiθi+1

1 + θ2
1 + θ2

2 + θ2
3

=
θ1 + θ1θ2 + θ2θ3

1 + θ2
1 + θ2

2 + θ2
3

,

ρ(2) =
∑3−2

i=0 θiθi+2

1 + θ2
1 + θ2

2 + θ2
3

=
θ2 + θ1θ3

1 + θ2
1 + θ2

2 + θ2
3

and

ρ(3) =
∑3−3

i=0 θiθi+3

1 + θ2
1 + θ2

2 + θ2
3

=
θ3

1 + θ2
1 + θ2

2 + θ2
3

.

Question no. 6
The function ρ(2) is given by [see (7.25)]

ρ(2) =
θ2

1 + θ2
1 + θ2

2

.

(a) When θ1 = 1, we set
g(x) =

x

2 + x2

and we calculate

g′(x) =
2− x2

(2 + x2)2
= 0 ⇐⇒ x = ±

√
2.

It follows that

−
√

2
4
≤ ρ(2) ≤

√
2

4
.

(b) In the general case, let
g(x, y) =

y

1 + x2 + y2
.

We have that
∂g

∂x
=

−2xy

(1 + x2 + y2)2
= 0 ⇐⇒ x = 0 or y = 0

and
∂g

∂y
=

1 + x2 − y2

(1 + x2 + y2)2
= 0 ⇐⇒ y2 = x2 + 1.

When y = 0, ρ(2) is equal to 0, which is neither a maximum nor a minimum. Hence,
the extrema of the function g(x, y) are attained at (x, y) = (0,−1) and (0, 1). Because

g(0,−1) = −1
2

and g(0, 1) =
1
2
,
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we conclude that
−1

2
≤ ρ(2) ≤ 1

2
,

as the function ρ(1) in the case of an MA(1) process.

Question no. 7
We can write that

Xn = α1Xn−1 + εn + θ1εn−1 + θ2εn−2 ∀n ∈ Z.

First, we calculate

γ(0) = E[X2
n] = E[(α1Xn−1 + εn + θ1εn−1 + θ2εn−2)Xn]

= α1γ(1) + E[ε2n]︸ ︷︷ ︸
σ2

+ θ1E[εn−1Xn] + θ2E[εn−2Xn].

Next, we have that

E[εn−1Xn] = α1E[εn−1Xn−1] + E[εn−1εn]︸ ︷︷ ︸
0

+ θ1 E[ε2n−1]︸ ︷︷ ︸
σ2

+ θ2 E[εn−1εn−2]︸ ︷︷ ︸
0

= α1E[εn−1(α1Xn−2 + εn−1 + θ1εn−2 + θ2εn−3)] + θ1σ2

= α1E[ε2n−1] + θ1σ2 = σ2(α1 + θ1).

Similarly, we calculate

E[εn−2Xn] = α1E[εn−2Xn−1] + E[εn−2εn]︸ ︷︷ ︸
0

+ θ1 E[εn−2εn−1]︸ ︷︷ ︸
0

+ θ2 E[ε2n−2]︸ ︷︷ ︸
σ2

= α1E[εn−2(α1Xn−2 + εn−1 + θ1εn−2 + θ2εn−3)] + θ2σ2

= α1

{
E[εn−2α1Xn−2] + θ1σ2

}
+ θ2σ2

= α1

{
α1E[ε2n−2] + θ1σ2

}
+ θ2σ2 = σ2(α2

1 + α1θ1 + θ2).

Hence, we obtain that

γ(0) = α1γ(1) + σ2 + θ1(α1 + θ1)σ2 + θ2(α2
1 + α1θ1 + θ2)σ2.

Remark. We see that to obtain an explicit expression for γ(0), we must also calculate
(at least) γ(1).

Question no. 8
For k = 1, we have [see (7.33)] that

φ(1) = ρ(1)
(7.24)
=

θ1

1 + θ2
1

,

which agrees with the formula (7.35) in the case when k = 1.
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When k = 2, we can write [see (7.34)] that

φ(2) =
ρ(2)− ρ2(1)
1− ρ2(1)

(7.24)
=

0−
(
θ1/(1 + θ2

1)
)2

1− (θ1/(1 + θ2
1))

2 ,

and the formula (7.35) with k = 2 becomes

φ(2) = − (−θ1)2

1 + θ2
1 + θ4

1

= − θ2
1

1 + θ2
1 + θ4

1

.

We indeed have that

−
(
θ1/(1 + θ2

1)
)2

1− (θ1/(1 + θ2
1))

2 =
−θ2

1

(1 + θ2
1)2 − θ2

1

= − θ2
1

1 + θ2
1 + θ4

1

.

Finally, in the case when k = 3, we first calculate

D3,1 =

∣∣∣∣∣∣
1 ρ(1) ρ(1)

ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
= ρ(3)− ρ(1)ρ(2)− ρ(1)[ρ(1)ρ(3)− ρ2(2)] + ρ(1)[ρ2(1)− ρ(2)]
= ρ3(1)− ρ2(1)ρ(3)− 2ρ(1)ρ(2) + ρ(1)ρ2(2) + ρ(3)

and

D3,2 =

∣∣∣∣∣∣
1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣
= 1− ρ2(1)− ρ(1)[ρ(1)− ρ(1)ρ(2)] + ρ(2)[ρ2(1)− ρ(2)]
= 1− 2ρ2(1) + 2ρ2(1)ρ(2)− ρ2(2).

Because, from (7.24), ρ(k) = 0 for |k| = 2, 3, . . . , we obtain that

D3,1 = ρ3(1) and D3,2 = 1− 2ρ2(1).

It follows that

φ(3) =
ρ3(1)

1− 2ρ2(1)
(7.24)
=

(
θ1/(1 + θ2

1)
)3

1− 2 (θ1/(1 + θ2
1))

2

=
θ3
1

(1 + θ2
1)3 − 2θ2

1(1 + θ2
1)

=
θ3
1

1 + θ2
1 + θ4

1 + θ6
1

,

which is the same formula as (7.35) with k = 3.
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Question no. 9
We find that ȳ = −0.034. Next, we calculate

k 0 1 2 3
γ̂(k) 0.3364 0.0810 −0.0347 0.0202

Hence, σ̂2
X = γ̂(0) ' 0.3364. It follows that

k 1 2 3
ρ̂(k) 0.2408 −0.1032 0.0600

Then, we calculate (see the previous question)

φ̂(1) = ρ̂(1) ' 0.2408,

φ̂(2) ' −0.1032− (0.2408)2

1− (0.2408)2
' −0.171

and

φ̂(3) ' (.2408)3 − (.2408)2(.06)− 2(.2408)(−.1032) + (.2408)(−.1032)2 + .06
1− 2(.2408)2 + 2(.2408)2(−.1032)− (−.1032)2

' 0.143.

Now, for an MA(1) time series with θ1 = 1/2 and εn ∼ U(−1, 1), we have [see (7.21)]
that

σ2
X = VAR[Xn] = (1 + θ2

1)σ
2 =

(
1 +

1
4

)
1
3

=
5
12

and [see (7.35) and the previous question]

φ(1) = − (−1/2)
1 + (1/2)2

=
2
3
,

φ(2) = − (−1/2)2

1 + (1/2)2 + (1/2)4
= − 4

21
' −0.190

and

φ(3) = − (−1/2)3

1 + (1/2)2 + (1/2)4 + (1/2)6
=

8
85

' 0.094.

Actually, the data are indeed observations of an MA(1) time series with θ1 = 1/2 and
the εns as above. However, we see that, as in Example 7.3.1, the number of observations
is too small to obtain good point estimates of σ2

X and the φ(k)s.

Question no. 10
(a) Because, by assumption, the stochastic process {Xn, n ∈ Z} is stationary, we can
write that
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E[Xn] ≡ µ and VAR[Xn] ≡ σ2
X .

Therefore, Equation (7.3) implies that

E[Xn+j | Xn = xn] = µ + ρXn,Xn+j

σX

σX
(xn − µ) = µ + ρ(j)(xn − µ)

= ρ(j)xn + µ[1− ρ(j)].

(b) We have that

E[X2
n+j | Xn = xn] = VAR[Xn+j | Xn = xn] + (E[Xn+j | Xn = xn])2

(7.39)
= σ2

X [1− ρ2(j)] + {ρ(j)xn + µ[1− ρ(j)]}2 .

Remark. We see that if µ = 0 and σ2
X = 1, then E[Xn+j | Xn = 0] = 0 ∀j and

VAR[Xn+j | Xn = 0] = E[X2
n+j | Xn = 0] = 1− ρ2(j) for j = 1, 2, . . . .
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Answers to even-numbered exercises

Chapter 1

2. F (x) is continuous at any x ∈ R, except at x = {0, 1, 2}. At these points, it is only
right-continuous.
4. Discontinuous.
6. xe−x.
8. f ′(x) = 2

3 x−1/3; x = 0.
10.

√
2π.

12. − 1
2 e−x(cos x + sinx).

14. 3/8.
16. −
18. ln 2.
20. (a) p

1−(1−p)z ; (b) k!(1− p)kp.

Chapter 2

2. (a) 7/12; (b) 55/72; (c) 2/9; (d) 3/8.
4. (a) P [{ω1}] = 0.1; P [{ω2}] = 0.45; P [{ω3}] = 0.0171; P [{ω4}] = 0.8379;

(b) (i) R = A1 ∪ (Ac
1 ∩A2) ∪ (Ac

1 ∩Ac
2 ∩A3); (ii) 0.1621; (iii) 0.2776;

(c) (i) B = Rc
1 ∪Rc

2 ∪Rc
3; (ii) 0.9957.

6. 4/5.
8. 0.9963.
10. (a) 1/10; (b) 1/10.
12. (a) 0.325; (b) 0.05; (c) 0.25; (d) 0.66375.
14. 48/95.
16. 23/32.
18. 9.
20. 63.64%.
22. (a) 0.8829; (b) 0.9083.
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24. (a) 0.9972; (b) (i) 0.8145; (ii) 0.13.
26. (a) −; (b) 1

n−1 ; (c) 0.8585.
28. (a) 1/64; (b) 3/32.
30. (a) 86,400; (b) 3840.

Chapter 3

2. (a) Hyp(N = 100, n = 2, d = number of defective devices in the batch); (b) 0.9602;
(c) 0.9604; (d) 0.9608.
4. (a) Poi(3); 0.616; (b) Poi(9); 0.979; (c) Exp(3); 1− e−3; (d) Exp(3); e−3; (e) G(α =
2, λ = 3); (f) B(n = 100, p = 0.05); 0.037.
6. (a) (i) B(20, θ); (ii) Hyp(1000, 20, 1000θ); (b) (i) 0.010; (ii) 0.032.
8. (a) X ∼ Poi(1.2); Y ∼ Geo(0.301); Z ∼ B(12, 0.301); (b) 4th; (c) 0.166; (d) 0.218.
10. 0.7746.
12. 0.6233.
14. 0.1215.
16. 0.759.
18. 0.4.
20. 1− e−5.
22. (a)

fX(x) =

1/2 if 0 ≤ x ≤ 1,
1/6 if 1 < x < 4,
0 elsewhere;

(b) 2.5; (c) 1.5; (d) ∞; (e) (i) 1/2; (ii) 1.
24. (a) 0.657; (b) 0.663; (c) 7/17.
26. (a) 0.3754; (b) 0.3679.
28. (a) 3; (b)

FX(x) =

 0 if x < 0,
3x2 − 2x3 if 0 ≤ x ≤ 1,

1 if x > 1;

(c)
(

27
32

)
2k, for k = 1, 2, . . .; (d)

fZ(z) =
{

3(1−
√

z) if 0 ≤ z ≤ 1,
0 elsewhere.

30. (a) 6; (b) 7; (c) 0.8.
32. 5/8.
34. 0.00369.
36. 0.027.
38. 1− e−λy if y = 1, 2, . . . .
40. 2.963.
42. Two engines: reliability ' 0.84; four engines: reliability ' 0.821. So, here greater
reliability with two engines.
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44. (a) 0.75; (b) 0.2519.
46. (a) (i) 0.7833; (ii) 0.7558; (b) 0.7361.
48. (a) E[X] = (πk/2)1/2; VAR[X] = 2k

(
1− π

4

)
; (b) k is a scale parameter.

50. (a)
√

π/8; (b) E[eX2/2] = 1.25; VAR[eX2/2] = ∞.
52. (a)

Z(W ) =
{

s− α− βW if W ≥ w0,
r − α− βW if W < w0;

(b) w0 +

[
−2σ2 ln

(
βσ
√

2π

s− r

)]1/2

.

Chapter 4

2. (a) 3; (b)

fX(x) =
{

3x2 if 0 < x < 1,
0 elsewhere; fY (y) =

{
3
2 (1− y2) if 0 < y < 1,

0 elsewhere;

(c) VAR[X] = 3/80; VAR[Y ] = 19/320; (d) 0.3974.
4. (a) N(750θ, 187.5θ2); (b) $220.
6. (a) (i)

fX(x) =
{

3
4 (1− x2) if −1 ≤ x ≤ 1,

0 elsewhere; fY (y) =
{

3
2

√
y if 0 ≤ y < 1,

0 elsewhere;

(ii) 0; (b) no, because fX(x)fY (y) is not identical to 3/4 [≡ fX,Y (x, y)].
8. 1.5.
10. 1/64.
12. 0.1586.
14. −1/11.
16. 0.8665.
18. (a)

fX(x) =
{

6x(1− x) if 0 < x < 1,
0 elsewhere; fY (y) =

{
3y2 if 0 < y < 1,
0 elsewhere;

(b) 5/16.
20. (a) 0.5987; (b) 1.608; (c) 0.0871.
22. (a) 0.6065; (b) 7.29; (c) 0.1428; (d) 0.3307; (e) 0.7291.
24. (a) 0.2048; (b) 3/5; (c) e−3/5; (d) 0.0907.
26. (a) 0.6587; (b) 3.564.
28. (a) 0.157; (b) 0.3413; X =

∑25
i=1 Xi, where Xi ∼ Exp(1/2), for all i, and the Xis

are independent random variables.
30. 10/3.
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32. 18.
34. (a) −; (b)

fX(x) =
{

2
π

√
1− x2 if −1 ≤ x ≤ 1,
0 elsewhere

and fY (y) = fX(y), by symmetry; (c) no, because fX(x)fY (y) is not identical to 1/π
[≡ fX,Y (x, y)]; (d) 3/4.
36. (a) 0.045; (b) 527.08.
38. (a) T ∼ Exp(1/5); (b)

fT (t) =
{

1
5 (1− e−t/50)9e−t/50 if t ≥ 0,

0 elsewhere;

(c) T ∼ G(α = 10, λ = 1/50); that is,

fT (t) =


1

5010Γ (10)
t9e−t/50 if t ≥ 0,

0 elsewhere.

40. (a)

fY (y) =
{

3(y − 1)2 if 0 < y < 1,
0 elsewhere;

(b) 0.1566; (c)

fZ(z) =
{

(1− z−1/3)2 if 0 < z < 1,
0 elsewhere;

(d) 1/2.
42. (a) (i)

x2 0 1
pX2(x2) 7/12 5/12

(ii) 1/3 if x2 = 0, and 2/3 if x2 = 1; (b)

y −1 0 3 8
FY (y) 1/6 1/2 5/6 1

44. (a) 0.95; (b) (i)

P [Y ≤ y | X1 = x1] =
{

0 if y ≤ x1,
1− e−(y−x1)/2 if y > x1;

(ii)

fY (y | X1 = x1) =
{

1
2e−(y−x1)/2 if y > x1,

0 elsewhere.

46. (a) X ∼ Poi(1); Y ∼ Poi(1/2); Y | {X = 35} ∼ B(n = 35, p = 1/2); (b) (i) 0.5873;
(ii) 0.5876; (c) 0.6970.
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48. (a)

fX(x) =
{

1
8 (4− x) if 0 ≤ x ≤ 4,

0 elsewhere;

(b) (i) 4/3; (ii) 8/9; (iii) 0.32; (iv) 2.4; (c) −1/2; X and Y are not independent, because
ρX,Y 6= 0.
50. (a)

fX(x) =
{

15x2 − 45x4 + 30x5 if 0 < x < 1,
0 elsewhere;

fY (y) =
{

30y4(1− y) if 0 < y < 1,
0 elsewhere;

(b) no, because, for instance, fX,Y (1, 1/2) = 22.5 6= fX(1)fY (1/2) = 0; (c) 0.0191.
52. (a)

fX,Y (x, y) =


1

2(x + 1)
if −1 ≤ x ≤ 1,−1 ≤ y ≤ x,

0 elsewhere;

fY (y) =
{

1
2 [ln 2− ln(y + 1)] if −1 ≤ y ≤ 1,

0 elsewhere;

(b) (i) −1/3; (ii) −1/2; (c) 1/6.
54. (a)

x2\x1 −1 0 1
−1 1/64 6/64 1/64

0 6/64 36/64 6/64
1 1/64 6/64 1/64

(b) −
√

2/2; (c) no, because ρX,Y 6= 0.

Chapter 5

2. r(x) = [x(1 − lnx)]−1, for 1 ≤ x ≤ e. We find that r′(x) > 0 in the interval [1, e].
Hence, the distribution is IFR.
4. R(t) = (e−t − e−2t)/(2t), for t ≥ 0.
6. 71

19 e−2.
8. rX(k) = 1

N−k+1 . The distribution is IFR.
10. (a) 2λ/3; (b) λ/2.
12. 1/3.
14. R(t) = 1− (1− e−λCt)

{
1−

[
1− (1− e−λAt)3

]
e−λBt

}
.

16. ' 0.3710.
18. 0.996303 ≤ R(t0) ≤ 0.997107 (approximately). The exact answer is 0.996327.
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20. (a) p3(3− 2p); (b) e−3θt(3− 2e−θt), for t ≥ 0.

Chapter 6

2. {N∗(t), t ≥ 0} is a Poisson process with rate λ = 1. Thus, it is indeed a pure birth
process.
4. (a) 1/3; (b) 1/3; (c) 2/3.
6. (a) 2.5; (b) 2.72; (c) 2.89.
8. 1/16.
10. 0.079.
12.

(
1− e−2µ

)
/(2µ).

14. We define the states:

0 : the system is empty;
n0 : there are n customers in the system and one is waiting

to know whether the server can serve him or her;
n : there are n customers in the system and one is being served.

for n = 1, 2, 3. The balance equations are:

state j departure rate from j = arrival rate to j

0 λπ0 = µ0pπ10 + µπ1

10 (λ + µ0)π10 = λπ0 + µ0pπ20 + µπ2

20 (λ + µ0)π20 = λπ10 + µ0pπ30 + µπ3

30 µ0π30 = λπ20

1 (λ + µ)π1 = µ0(1− p)π10

2 (λ + µ)π2 = µ0(1− p)π20

3 µπ3 = µ0(1− p)π30

16. (a) µ/[4(µ + λ)]; (b) 1− {µ/[2(µ + λ)]}.
18. 207/256.
20. 0.77.

Chapter 7

2. Not a Gaussian process.
4. Gaussian and weakly stationary. Hence, strictly stationary.
6.

x −4 −2 0 2 4 Σ
pXn

(x) 1/8 1/4 1/4 1/4 1/8 1

8. (a) 4α2
1; (b)

∑k
j=0

(
2k
2j

)
α2j

1 .

10.
(

1+θ2
1

1+θ2
1+θ2

2

)1/2

.
12. (a) Invertible; (b) not invertible.
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14. E[Yn] ≡ σ2(1 + θ2
1); VAR[Yn] ≡ 2σ4(1 + 2θ2

1 + θ4
1).

16. (a)
(

θ1
1+θ2

1

)
Xn; (b) not similar.

18. −
20. ' 0.52γ(0).
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Answers to multiple choice questions

Chapter 1

1 b; 2 e; 3 b; 4 c; 5 a; 6 d; 7 b; 8 c; 9 e; 10 a.

Chapter 2

1 c,b,b,b,b,e; 2 c; 3 d; 4 d; 5 d; 6 c; 7 d; 8 e; 9 a; 10 c; 11 c; 12 b; 13 c; 14 a.

Chapter 3

1 d; 2 a; 3 d; 4 b; 5 c; 6 c; 7 a; 8 a; 9 e; 10 a; 11 b; 12 e; 13 a; 14 d; 15 a; 16 c; 17 c; 18
e; 19 c; 20 c.

Chapter 4

1 e; 2 b; 3 c; 4 a; 5 a; 6 e; 7 c; 8 d; 9 b; 10 c; 11 d; 12 c; 13 c; 14 e; 15 d; 16 c; 17 b; 18
e; 19 d; 20 c.

Chapter 5

1 d; 2 e; 3 c; 4 a; 5 b; 6 c; 7 c; 8 c; 9 d; 10 d.

Chapter 6

1 b; 2 d; 3 e; 4 b; 5 d; 6 a; 7 c; 8 d; 9 b; 10 c.

Chapter 7

1 c; 2 d; 3 d; 4 a; 5 b; 6 b; 7 e; 8 b; 9 c; 10 b.
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Paris, 1969.
12. Lapin, Lawrence L., Probability and Statistics for Modern Engineering, 2nd edition, PWS-

KENT, Boston, 1990.
13. Leon-Garcia, Alberto, Probability and Random Processes for Electrical Engineering, 2nd

edition, Addison-Wesley, Reading, MA, 1994.
14. Lindgren, Bernard W., Statistical Theory, 3rd edition, Macmillan, New York, 1976.
15. Maksoudian, Y. Leon, Probability and Statistics with Applications, International, Scranton,

PA, 1969.
16. Miller, Irwin, Freund, John E., and Johnson, Richard A., Probability and Statistics for

Engineers, 4th edition, Prentice-Hall, Englewood Cliffs, NJ, 1990.
17. Papoulis, Athanasios, Probability, Random Variables, and Stochastic Processes, 3rd edition,

McGraw-Hill, New York, 1991.



336 References

18. Roberts, Richard A., An Introduction to Applied Probability, Addison-Wesley, Reading,
MA, 1992.

19. Ross, Sheldon M., Introduction to Probability and Statistics for Engineers and Scientists,
Wiley, New York, 1987.

20. Ross, Sheldon M., Introduction to Probability Models, 7th edition, Academic Press, San
Diego, 2000.

21. Spiegel, Murray R., Theory and Problems of Advanced Calculus, Schaum’s Outline Series,
McGraw-Hill, New York, 1973.

22. Walpole, Ronald E., Myers, Raymond H., Myers, Sharon L., and Ye, Keying, Probability
and Statistics for Engineers and Scientists, 7th edition, Prentice Hall, Upper Saddle River,
NJ, 2002.



Index

Absolute convergence, 17

Absolutely integrable, 11

Arrival rates, 194

Asymmetric distribution, 90

Autocorrelation function, 228, 229

Autocovariance function, 228

ARIMA (Autoregressive integrated moving

average) process, 251

ARMA (Autoregressive moving average)

process, 249

autocovariance function, 250

Autoregressive process

of order 1, 236, 237

autocorrelation function, 237

autocovariance function, 238

variance, 238

of order p, 239

autocorrelation function, 241

autocovariance function, 239

variance, 243

weakly stationary, 248

Auxiliary variable, 127

Average

arrival rate, 198

entering rate, 198

failure rate, 169

Backshift operator, 247

Balance equations, 195, 195

of a birth and death process, 196

Bayes’

formula, 35

rule, 35

Bernoulli

process, 266

trials, 62

Bienaymé–Chebyshev inequality, 93

Binomial approximation to the hypergeomet-

ric distribution, 66

Binomial series, 17

Birth and death process, 193

limiting probabilities, 196

Birth rates, 194

Bridge system, 177

Cauchy principal value, 8

Central limit theorem, 135

Central moments, 88

Chain rule, 5

Characteristic function, 11, 131

Combination, 38

Communicating states, 193

Conditioning, 121

Continuity correction, 73

Continuous function, 2

Continuous-time Markov chain, 192

Convolution, 22, 128, 130
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Correlation coefficient, 133

Countably infinite, 27

Covariance, 132

function, 228

matrix, 232

Cut vector, 180

minimal, 180

D’Alembert’s ratio test, 16

De Moivre–Laplace approximation, 72

Death rates, 194

Decreasing failure rate (DFR), 165

Density function, 57

conditional, 120

joint, 118

marginal, 119

Departure rates, 194

Derivative, 3

Difference operator, 247

Differentiable function, 3

Dirac delta function, 4

Discrete-time Markov chain, 230

Distribution

Bernoulli, 62

beta, 79

generalized, 79

binomial, 61

binormal, 233

bivariate normal, 233

Cauchy, 8

Erlang, 75

exponential, 76

double, 77

shifted, 168

gamma, 74

Gaussian, 70

geometric, 64

hypergeometric, 66

Laplace, 77

lognormal, 80

multinormal, 231

negative binomial, 65

normal, 70

standard, 71

truncated, 166

Pascal, 65

Poisson, 68

uniform, 79

Weibull, 77

Distribution function, 56

joint, 115, 118

Elementary outcome, 27

Erlang loss system, 219

Erlang’s formula, 219

Error function, 235

Event(s), 28

compound, 28

equally likely, 30

equiprobable, 30

incompatible, 28

independent, 33, 33

mutually exclusive, 28

simple, 28

Expected value, 84

of a function of a random variable, 83

of a function of a random vector, 131

Extreme value distribution, 77, 184

Failure rate function, 163

Fourier transform, 11

Function of a random variable, 81

Fundamental theorem of calculus, 8

Gamma function, 74

Gaussian

stochastic process, 232

white noise (GWN), 231

Generating function, 24

Geometric series, 15, 16

Hazard rate function, 163

Heaviside function, 2

IID noise, 230

Improper integral, 7

Increasing failure rate (IFR), 165
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Independence, 33

of normal random variables, 133

Independent increments, 69

Infinite product, 26

Integral, 7

Integrand, 7

Integration

by parts, 10

by substitution, 9

Interval failure rate, 168

Interval of convergence, 16

Inverse Fourier transform, 11

Irreducible Markov chain, 193

Jump discontinuity, 58

k-out-of-n system, 176

Kurtosis coefficient, 91

Lag operator, 247

Laplace transform, 12

Law of large numbers, 135

Left-skewed distribution, 90

L’Hospital’s rule, 5

Limit, 1

Limiting probabilities, 195

Linear combination, 131, 231

of normal random variables, 131

Linearly deterministic process, 247

Little’s formula, 199

Loss system, 218

Markov(ian) process, 192

Mathematical expectation, 84

conditional, 121

Mean time

between failures (MTBF), 162

to failure (MTTF), 162

to repair (MTTR), 162

Median, 84

Memoryless property, 65, 76

Minimal

cut set, 180

path set, 180

M/M/1 queueing model, 199

limiting probabilities, 201

M/M/1 queueing model with finite capacity,

207

limiting probabilities, 208

M/M/s queueing model, 212

limiting probabilities, 214

M/M/s/c queueing model, 218

M/M/s/s queueing model, 218

limiting probabilities, 218

M/M/∞ queueing model, 215

limiting probabilities, 215

Mode, 86

Moment-generating function, 12

Moments about

the mean, 88

the origin, 88

the point a, 88

Moving average process of order q, 244

autocorrelation function, 245

covariance, 245

invertible, 248

Multiplication

principle, 38

rule, 32

Noncentral moments, 88

Normal approximation to the binomial

distribution, 73

Ornstein–Uhlenbeck process, 263

Partial

autocorrelation function, 251

derivative, 6

sum of a series, 15

Partition, 7, 35

Path vector, 180

minimal, 180

Percentile, 86

Permutation, 38

Piecewise continuous, 2

Poisson approximation to the binomial

distribution, 68
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Poisson process, 69

Power series, 16

Predictor, 255

best linear, 256

optimal, 255

Probability, 29

conditional, 32

Probability (mass) function, 56

conditional, 116

joint, 115

marginal, 116

Pure

birth process, 193

death process, 193

Purely nondeterministic process, 247

Quantile, 86

Radius of convergence, 16

Random

experiment, 27

process, 191

variable(s), 55

continuous type, 57

discrete type, 55

i.i.d., 135

independent, 116, 120

mixed type, 83

vector, 115

continuous, 118

discrete, 115

Range, 86

Relation between the gamma and

Poisson distributions, 75

Relative frequency, 29

Reliability function, 161

Right-skewed distribution, 90

Sample space, 27

continuous, 27

discrete, 27

Sampling fraction, 67

Sequence, 14

Series, 15

Shifted exponential distribution, 168

Skewness coefficient, 90

Standard

Brownian motion, 235, 263

deviation, 87

State

space, 191

transition diagram, 200

variable, 227

Stationary

increments, 69

stochastic process, 227

Stochastic process, 191

continuous-time, 191

discrete-time, 192

second-order stationary, 228

weakly stationary, 228

Structure function, 178

monotonic, 179

Sum of

exponential random variables, 130

Poisson random variables, 130

Survival function, 161

Time series, 227

Time-homogeneous

Markov chain, 230

transition probabilities, 192

Total probability rule, 35

Traffic intensity, 200

Transition function of a Markov chain, 193

Tree diagram, 36

Truncated normal distribution, 166

Utilization rate, 200

Variance, 87

of a linear combination, 132

Venn diagram, 28

Wold’s decomposition theorem, 246

Yule process, 220

Yule–Walker equations, 241
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