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Preface to the Second Edition

All misprints that were known to us have been corrected, and many argu-
ments have been made more transparent by additional comments.

Although it is modeled by an ODE, we discuss now in Section III.2.1 the
buckling of the Euler rod in detail, since it is an important historical paradigm
for bifurcation. This discussion requires some comments on one-dimensional
elliptic operators, so-called Sturm–Liouville operators, which play a special
role among elliptic operators in general dimensions.

In Remark III.2.4 we discuss the appearance of Taylor vortices in the
Couette–Taylor model. From a mathematical point of view it is one of the
best known examples of a symmetry-breaking bifurcation. Nonetheless, there
remain open mathematical problems, some of which are purely technical,
some of which are really deep. We comment also on other pattern formations
of this prominent model.

We include in Remark III.6.4 a detailed proof of the singular limit process
of the Cahn–Hilliard model when the interfacial energy tends to zero. In
Remark III.6.5 we explain how this method is used for more complicated
nonconvex variational problems.

Two sections are new: In Section I.19.1 we prove bifurcation with a two-
dimensional kernel, and in Section III.2.2 we apply this method to nonlinear
elliptic systems.

Section III.7.5 is completely revised.

January 2011 Hansjörg Kielhöfer



 



Chapter 0

Introduction

Bifurcation Theory attempts to explain various phenomena that have been
discovered and described in the natural sciences over the centuries. The buck-
ling of the Euler rod, the appearance of Taylor vortices, and the onset of
oscillations in an electric circuit, for instance, all have a common cause: A
specific physical parameter crosses a threshold, and that event forces the sys-
tem to the organization of a new state that differs considerably from that
observed before.

Mathematically speaking, the following occurs: The observed states of a
system correspond to solutions of nonlinear equations that model the physical
system. A state can be observed if it is stable, an intuitive notion that is made
precise for a mathematical solution. One expects that a slight change of a
parameter in a system should not have a big influence, but rather that stable
solutions change continuously in a unique way. That expectation is verified by
the Implicit Function Theorem. Consequently, as long as a continuous branch
of solutions preserves its stability, no dramatic change is observed when the
parameter is varied. However, if that “ground state” loses its stability when
the parameter reaches a critical value, then the state is no longer observed,
and the system itself organizes a new stable state that “bifurcates” from the
ground state.

Bifurcation is a paradigm for nonuniqueness in Nonlinear Analysis.
We sketch that scenario in Figure 1, which is referred to as a “pitchfork

bifurcation.” The solutions bifurcate in pairs that typically describe one state
in two possible representations. Also typically, the bifurcating state has less
symmetry than the ground state (also called a “trivial solution”), in which
case one calls it a “symmetry-breaking bifurcation.” In Figure 1 we show the
solution set of the odd “bifurcation equation” λx − x3 = 0, where x ∈ R

represents the state and λ ∈ R is the parameter.
In the case in which solutions correspond to critical points of a parameter-

dependent functional, Figure 2 shows how a slight change of the potential
turns a stable equilibrium into an unstable one and creates at the same

3, H. Kielhöfer Bifurcation Theory: An Introduction with Applications to Partial Differential 
Equations, Applied Mathematical Sciences 156, DOI 10.1007/978-1-4614-0502-3_1, 
© Springer Science+Business Media, LLC 2012



4 Chapter 0. Introduction

time two new stable equilibria. That exchange of stability, however, is not
restricted to variational problems, but is typical of all “generic” bifurcations.

stable

state

parameter

unstable ground state (trivial solution)

stable bifurcating state

Figure 1

subcritical supercritical potential

Figure 2

Bifurcation Theory provides the mathematical existence of bifurcation
scenarios observed in various systems and experiments. A necessary condition
is obviously the failure of the Implicit Function Theorem.

In this book we present some sufficient conditions for “one-parameter
bifurcation,” which means that the bifurcation parameter is a real scalar. We
do not treat “multiparameter bifurcation theory.”

We distinguish a local theory, which describes the bifurcation diagram in a
neighborhood of the bifurcation point, and a global theory, where the contin-
uation of local solution branches beyond that neighborhood is investigated.
In applications we also prove specific qualitative properties of solutions on
global branches, which, in turn, help to separate global branches, to decide
on their unboundedness, and, in special cases, to establish their smoothness
and asymptotic behavior.
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As mentioned before, bifurcation is often related to a breaking of symme-
try. We sometimes make use of symmetry in the applications in investigating
the qualitative properties of solutions on global branches. However, we typi-
cally exploit symmetry in an ad hoc manner. For a systematic treatment of
symmetry and bifurcation, we refer to the monographs [18], [58], [59], [164].
Symmetry ideas do not play a dominant role in this book.

We present the results of Chapter I and Chapter II in an abstract way, and
we apply these abstract results to concrete problems for partial differential
equations only in Chapter III. The theory is separated from applications
for the following reasons: It is our opinion that mathematical understanding
can be reached only via abstraction and not by examples or applications.
Moreover, only an abstract result is suitable to be adapted to a new problem.
Therefore, we resisted mixing the general theory with our personal selection
of applications.

The general theory of Chapters I and II is formulated for operators act-
ing in infinite-dimensional spaces. This lays the groundwork for Chapter III,
where detailed applications to concrete partial differential equations are pro-
vided. The abstract versions of the Hopf Bifurcation Theorem in Chapter
I are directly applicable to ODEs, RFDEs, and Hamiltonian or reversible
systems. For stability considerations we employ throughout the principle of
linearized stability, which means, in turn, that stability is determined by the
perturbation of the critical eigenvalue or Floquet exponent.

The motivation to write this book came from many questions of students
and colleagues about bifurcation theorems. Most of the results contained
herein are not new. But many are apparently known only to a few experts,
and a unified presentation was not available. Indeed, while there exist many
good books treating various aspects of bifurcation theory, e.g., [11], [18], [19],
[35], [58], [59], [60], [64], [81], [164], [171], there is precious little analysis
of problems governed by partial differential equations available in textbook
form. This work addresses that gap. We apologize to all who have obtained
similar or better results that are not mentioned here. During the last thirty
years a vast literature on bifurcation theory has been published, and we have
not been able to write a survey. A reason for this limitation is that we feel
competent only in fields where we have worked ourselves.

In many of the above-mentioned books we find the “basic” or “generic”
bifurcations in simple settings illustrating the geometric ideas behind them,
mostly from a dynamical viewpoint; cf.[64]. In view of that excellent heuristic
literature, we think that there is no need to repeat these ideas but that it is
necessary to give the calculations in a most general setting. This might be
hard for beginners, but we hope that it is useful to advanced students.

Apart from the Cahn–Hilliard model (serving as a paradigm), our appli-
cations to partial differential equations are motivated only by, but are not di-
rectly related to, mathematical physics. The formulation of a specific problem
of physics and the verification of all hypotheses are typically quite involved,
and such an expenditure might disguise the essence of Bifurcation Theory.
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For these reasons we believe that a detailed presentation of the cascade of
bifurcations appearing in the Taylor model, for instance, is not appropriate
here; rather, we refer to the literature, [17], for example. On the other hand,
we hope that our choice of mathematical applications offers a broad selection
of techniques illustrating the use of the abstract theory without getting lost
in too many technicalities. Finally, if necessary, the analysis can be completed
by numerical analysis as expounded in [4], [87], and [159].

I am indebted to Rita Moeller for having typed the entire text in LATEX.
And in particular, I thank my friend Tim Healey for his encouragement and
help in writing this book: Many of the results obtained in a fruitful collabo-
ration with him are presented here.



Chapter I

Local Theory

I.1 The Implicit Function Theorem

One of the most important analytic tools for the solution of a nonlinear
problem

F (x, y) = 0,(I.1.1)

where F is a mapping F : U × V → Z with open sets U ⊂ X,V ⊂ Y , and
where X,Y, Z are (real) Banach spaces, is the following Implicit Function
Theorem:

Theorem I.1.1 Let (I.1.1) have a solution (x0, y0) ∈ U × V such that the
Fréchet derivative of F with respect to x at (x0, y0) is bijective:

F (x0, y0) = 0,
DxF (x0, y0) : X → Z is bounded (continuous)
with a bounded inverse (Banach’s Theorem).

(I.1.2)

Assume also that F and DxF are continuous:

F ∈ C(U × V, Z),
DxF ∈ C(U × V, L(X,Z)), where L(X,Z)
denotes the Banach space of bounded linear operators
from X into Z endowed with the operator norm.

(I.1.3)

Then there exist a neighborhood U1 × V1 in U × V of (x0, y0) and a mapping
f : V1 → U1 ⊂ X such that

f(y0) = x0,
F (f(y), y) = 0 for all y ∈ V1.

(I.1.4)

Furthermore, f is continuous on V1:

7, H. Kielhöfer Bifurcation Theory: An Introduction with Applications to Partial Differential 
Equations, Applied Mathematical Sciences 156, DOI 10.1007/978-1-4614-0502-3_2, 
© Springer Science+Business Media, LLC 2012



8 Chapter I. Local Theory

f ∈ C(V1, X).(I.1.5)

Finally, every solution of (I.1.1) in U1 × V1 is of the form (f(y), y).

For a proof we refer to [38]. For the prerequisites to this book we recom-
mend also [19], [10], which present sections on analysis in Banach spaces.

Let us consider Y as a space of parameters and X as a space of confi-
gurations (a phase space, for example). Then the Implicit Function Theorem
allows the following interpretation: The configuration described by problem
(I.1.1) persists for perturbed parameters if it exists for some particular pa-
rameter, and it depends smoothly and in a unique way on the parameters.
In other words, this theorem describes what one expects: A small change
of parameters entails a unique small change of configuration (without any
“surprise”). Thus “dramatic” changes in configurations for specific param-
eters can happen only if the assumptions of Theorem I.1.1 are violated, in
particular, if

DxF (x0, y0) : X → Z is not bijective.(I.1.6)

Bifurcation Theory can be briefly described by the investigation of problem
(I.1.1) in a neighborhood of (x0, y0) where (I.1.6) holds.

For later use we need the following addition to Theorem I.1.1:

If the mapping F in (I.1.1) is k-times
continuously differentiable on U × V , i.e.,
F ∈ Ck(U × V, Z), then the mapping f
in (I.1.4) is also k-times continuously
differentiable on V1; i.e., f ∈ Ck(V1, X), k ≥ 1.
If the mapping F is analytic, then the
mapping f is also analytic.

(I.1.7)

For a proof we refer again to [38].

I.2 The Method of Lyapunov–Schmidt

The method of Lyapunov and Schmidt describes the reduction of problem
(I.1.1) (which is high- or infinite-dimensional) to a problem having only as
many dimensions as the defect (I.1.6). To be more precise, we need the fol-
lowing definition:

Definition I.2.1 A continuous mapping F : U → Z, where U ⊂ X is open
and where X,Z are Banach spaces, is a nonlinear Fredholm operator if it is
Fréchet differentiable on U and if DF (x) fulfills the following:
(i) dimN(DF (x)) < ∞ (N = null space or kernel),
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(ii) codimR(DF (x)) < ∞ (R = range),
(iii) R(DF (x)) is closed in Z.

The integer dimN(DF (x))−codimR(DF (x)) is called the Fredholm index
of DF (x).

Remark I.2.2 As remarked in [86], p.230, assumption (iii) is redundant. If
DF depends continuously on x and possibly on a parameter y, in the sense of
(I.1.3), and if U or U × V is connected in X or also in X × Y , respectively,
then it can be shown that the Fredholm index of DF (x) is independent of x;
cf.[86], IV. 5.

We consider now F : U × V → Z, U ⊂ X, V ⊂ Y , where

F (x0, y0) = 0 for some (x0, y0) ∈ U × V,
F ∈ C(U × V, Z),

DxF ∈ C(U × V, L(X,Z)) (see (I.1.3)).
(I.2.1)

We assume that for y = y0 the mapping F is a nonlinear Fredholm operator
with respect to x; i.e., F (·, y0) : U → Z satisfies Definition I.2.1. In particular,
observe that the spaces N and Z0 defined below are finite-dimensional.

Thus there exist closed complements in the Banach spaces X and Z such
that

X = N(DxF (x0, y0))⊕X0,
Z = R(DxF (x0, y0))⊕ Z0

(I.2.2)

(see [39], p.553). These decompositions, in turn, define projections

P : X → N along X0 (N = N(DxF (x0, y0)),
Q : Z → Z0 along R (R = R(DxF (x0, y0)),

(I.2.3)

in a natural way. By the Closed Graph Theorem (see [170]) these projections
are continuous.

Then the following Reduction Method of Lyapunov–Schmidt holds:

Theorem I.2.3 There is a neighborhood U2×V2 of (x0, y0) in U×V ⊂ X×Y
such that the problem

F (x, y) = 0 for (x, y) ∈ U2 × V2(I.2.4)

is equivalent to a finite-dimensional problem

Φ(v, y) = 0 for (v, y) ∈ Ũ2 × V2 ⊂ N × Y , where

Φ : Ũ2 × V2 → Z0 is continuous

and Φ(v0, y0) = 0, (v0, y0) ∈ Ũ2 × V2.

(I.2.5)

The function Φ, called a bifurcation function, is given in (I.2.9) below.
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(If the parameter space Y is finite-dimensional, then (I.2.5) is indeed a
purely finite-dimensional problem.)

Proof. Problem (I.2.4) is obviously equivalent to the system

QF (Px+ (I − P )x, y) = 0,
(I −Q)F (Px+ (I − P )x, y) = 0,

(I.2.6)

where we set Px = v ∈ N and (I − P )x = w ∈ X0. Next we define

G : Ũ2 ×W2 × V2 → R via
G(v, w, y) ≡ (I −Q)F (v + w, y), where

v0 = Px0 ∈ Ũ2 ⊂ N,
w0 = (I − P )x0 ∈ W2 ⊂ X0,

and Ũ2,W2 are neighborhoods such that Ũ2 +W2 ⊂ U ⊂ X.

(I.2.7)

We haveG(v0, w0, y0) = 0, and by our choice of the spaces,DwG(v0, w0, y0) =
(I−Q)DxF (x0, y0) : X0 → R is bijective. Application of the Implicit Function
Theorem then yields

G(v, w, y) = 0 for (v, w, y) ∈ Ũ2 ×W2 × V2 is equivalent to

w = ψ(v, y) for some ψ : Ũ2 × V2 → W2 ⊂ X0 such that
ψ(v0, y0) = w0.

(I.2.8)

Insertion of the function ψ into (I.2.6)1 yields

Φ(v, y) ≡ QF (v + ψ(v, y), y) = 0.(I.2.9)

The Implicit Function Theorem also gives the continuity of ψ. 
�
Corollary I.2.4 In the notation of Theorem I.2.3, if F ∈ C1(U × V, Z), we
also obtain ψ ∈ C1(Ũ2 × V2, X0), Φ ∈ C1(Ũ2 × V2, Z0), and

ψ(v0, y0) = w0, Dvψ(v0, y0) = 0 ∈ L(N,X0),
DvΦ(v0, y0) = 0 ∈ L(N,Z0).

(I.2.10)

Proof. The regularity of ψ and Φ follows from (I.1.7). Differentiating
(I −Q)F (v + ψ(v, y), y) = 0 for all (v, y) ∈ Ũ2 × V with respect to v yields

(I −Q)DxF (v + ψ(v, y), y)(IN +Dvψ(v, y)) = 0,(I.2.11)

where IN denotes the identity in N . Since N is the kernel of DxF (x0, y0), we
obtain at (v0, y0),

(I −Q)DxF (x0, y0)Dvψ(v0, y0) = 0.(I.2.12)

SinceDvψ(v0, y0) maps intoX0, which is complementary to N , we necessarily
have Dvψ(v0, y0) = 0. By virtue of (I.2.9) we then get
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DvΦ(v0, y0) = QDxF (x0, y0)IN = 0.(I.2.13)


�

I.3 The Lyapunov–Schmidt Reduction for Potential
Operators

In applications, the following situation often occurs: G : U → Z is a mapping,
where U is an open subset of a real Banach space X , and X is continuously
embedded into Z. Furthermore, a scalar product can be defined on the real
Banach space Z such that

( , ) : Z × Z → R is bilinear, symmetric, continuous, and
definite; i.e., (z, z) ≥ 0, and (z, z) = 0 if and only if z = 0.

(I.3.1)

Definition I.3.1 A continuous mapping G : U → Z, where U ⊂ X, X
is continuously embedded into Z, and Z is endowed with a scalar product
( , ) satisfying (I.3.1), is called a potential operator (with respect to that
scalar product) if there exists a continuously differentiable mapping g : U → R

such that
Dg(x)h = (G(x), h) for all x ∈ U, h ∈ X.(I.3.2)

The function g is called the potential of G. We use also the notation G = ∇g.

Proposition I.3.2 If G : U → Z is a potential operator and differentiable,
then the derivative DG(x) ∈ L(X,Z) is symmetric with respect to ( , );
i.e.,

(DG(x)h1, h2) = (h1, DG(x)h2) = (DG(x)h2, h1)
for all x ∈ U, h1, h2 ∈ X.

(I.3.3)

Proof. The potential g is twice differentiable, and its second derivative is a
continuous bilinear mapping from X ×X into R is given by

D2g(x)[h1, h2] = (DG(x)h1, h2).(I.3.4)

A well-known result is that this bilinear mapping D2g(x) is symmetric; i.e.,
D2g(x)[h1, h2] = D2g(x)[h2, h1] (see [38], [19], [10]). 
�
Proposition I.3.3 Let G : U → Z be continuously differentiable and assume
that the open set U ⊂ X is star-shaped with respect to the origin 0 ∈ X. If
DG(x) is symmetric with respect to ( , ) in the sense of (I.3.3) for all
x ∈ U , then G is a potential operator with respect to ( , ).
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Proof. We define

g(x) =

∫ 1

0

(G(tx), x)dt for x ∈ U.(I.3.5)

Then

d

ds
g(x+ sh)

∣∣
s=0

=

∫ 1

0

[(DG(tx)th, x) + (G(tx), h)]dt

=

∫ 1

0

d

dt
(G(tx), th)dt = (G(x), h) for all x ∈ U, h ∈ X.

(I.3.6)

This proves that the Gâteaux derivative of g at x in the direction h is lin-
ear and continuous in h for all x ∈ U , and furthermore, that the Gâteaux
derivative of g is continuous in x (with respect to the norm in L(X,R) = X ′,
the dual space). Accordingly, the Gâteaux derivative is actually the Fréchet
derivative (see [38], [19], [10]). 
�

If G : U → Z, U ⊂ X , is a differentiable potential operator (see Defi-
nition I.3.1) and a nonlinear Fredholm operator of index zero in the sense
of Definition I.2.1, then the kernel of DG(x) and its range have equal fi-
nite dimension and codimension, respectively. By the symmetry as stated in
Proposition I.3.2, the following assumption is reasonable:

Z = R(DG(x)) ⊕N(DG(x)),
where R and N are orthogonal with respect to
the scalar product ( , ) on Z.

(I.3.7)

We recall that N(DG(x)) ⊂ X ⊂ Z (with continuous embedding) in this
section.

Next we consider F : U × V → Z, U ⊂ X ⊂ Z, V ⊂ Y , where (I.2.1)
is satisfied. Furthermore, we assume that F is a potential operator and a
nonlinear Fredholm operator of index zero with respect to x; i.e., F (·, y)
satisfies Definitions I.2.1 and I.3.1 for all y ∈ V . Finally, we assume the
orthogonal decomposition

Z = R(DxF (x0, y0))⊕N(DxF (x0, y0)),(I.3.8)

cf. (I.2.2); i.e., Z0 = N . This decomposition defines an orthogonal projection

Q : Z → N along R (as in (I.2.3))(I.3.9)

that is continuous on Z. By the continuous embedding X ⊂ Z, its restriction

Q|X : X → N ⊂ X(I.3.10)

is continuous as well, and will be denoted by P . This projection, in turn,
defines the decomposition
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X = N ⊕ (R ∩X),(I.3.11)

where R ∩X is closed in X .
Using these projections, the Lyapunov–Schmidt reduction as stated in

Theorem I.2.3 has the following additional property:

Theorem I.3.4 If F is a potential operator with respect to x, then the finite-
dimensional mapping Φ obtained by the orthogonal Lyapunov–Schmidt reduc-
tion (cf.(I.2.9)) is also a potential operator with respect to v. (The scalar
product on Z induces a scalar product on N ⊂ X ⊂ Z, and this same scalar
product is employed in the definition of a potential operator in both cases.)

Proof. We use the same notation as in the proof of Theorem I.2.3. Let
f(x, y) be the potential for F (x, y); i.e.,

Dxf(x, y)h = (F (x, y), h)
for all (x, y) ∈ U × V ⊂ X × Y and for all h ∈ X .

(I.3.12)

Then we claim that f(v + ψ(v, y), y) (see (I.2.8)) is a potential for Φ(v, y) =
QF (v+ψ(v, y), y). For every (v, y) ∈ Ũ2 ×V2 ⊂ N × Y and h ∈ N we get by
differentiation of f with respect to v,

Dvf(v + ψ(v, y), y)h
= Dxf(v + ψ(v, y), y)(IN +Dvψ(v, y))h
= (F (v + ψ(v, y), y), h+Dvψ(v, y)h)
= (QF (v + ψ(v, y), y), h)
+((I −Q)F (v + ψ(v, y), y), Dvψ(v, y)h) (by orthogonality)

= (Φ(v, y), h),

(I.3.13)

where we have employed (I −Q)F (v + ψ(v, y), y) = 0; cf. (I.2.7), (I.2.8). 
�

Corollary I.3.5 DvΦ(v, y) = QDxF (v + ψ(v, y), y)(IN + Dvψ(v, y)) is a
symmetric operator in L(N,N) with respect to the scalar product ( , ).

Proof. The proof is the same as that for Proposition I.3.2. 
�

I.4 An Implicit Function Theorem for One-Dimensional
Kernels: Turning Points

In this section we consider mappings F : U × V → Z with open sets U ⊂
X,V ⊂ Y , where X and Z are Banach spaces, but where this time Y = R.
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Following a long tradition, we change the notation and denote parameters in
R by λ. We assume

F (x0, λ0) = 0 for some (x0, λ0) ∈ U × V ,
dimN(DxF (x0, λ0)) = 1.

(I.4.1)

Obviously, the Implicit Function Theorem, Theorem I.1.1, is not directly
applicable. We assume now the hypotheses of the Lyapunov−Schmidt reduc-
tion (Theorem I.2.3) for F with the additional assumption that

the Fredholm index of DxF (x0, λ0) is zero;
i.e., by (I.4.1), codimR(DxF (x0, λ0)) = 1.

(I.4.2)

Since Y = R, we can identify the Fréchet derivative DλF (x, λ) with an
element of Z, namely, by

DλF (x, λ)1 = DλF (x, λ) ∈ Z, 1 ∈ R.(I.4.3)

Theorem I.4.1 Assume that F : U × V → Z is continuously differentiable
on U × V ⊂ X × R, i.e.,

F ∈ C1(U × V, Z),(I.4.4)

and (I.4.1), (I.4.2), (I.4.3), and that

DλF (x0, λ0) �∈ R(DxF (x0, λ0)).(I.4.5)

Then there is a continuously differentiable curve through (x0, λ0); that is,
there exists

{(x(s), λ(s))|s ∈ (−δ, δ), (x(0), λ(0)) = (x0, λ0)}(I.4.6)

such that
F (x(s), λ(s)) = 0 for s ∈ (−δ, δ),(I.4.7)

and all solutions of F (x, λ) = 0 in a neighborhood of (x0, λ0) belong to the
curve (I.4.6).

Proof. We apply Theorem I.2.3, and we know that all solutions of F (x, λ) =
0 near (x0, λ0) can be found by solving Φ(v, λ) near (v0, λ0). Using the termi-
nology of the proof of that Theorem, assumption (I.4.4) together with (I.1.7)
for k = 1 gives the continuous differentiability of Φ with respect to λ, and in
particular,

DλΦ(v0, λ0) = QDλF (v0 + ψ(v0, λ0), λ0) = QDλF (x0, λ0) �= 0,(I.4.8)

by assumption (I.4.5). Now, by (I.4.1), (I.4.2) the spaces N and Z0 are one-
dimensional, and also Y = R is one-dimensional. Since
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Φ : Ũ2 × V2 → Z0, Ũ2 × V2 ⊂ N × R,
Φ(v0, λ0) = 0, DλΦ(v0, λ0) �= 0,

(I.4.9)

the Implicit Function Theorem implies the existence of a continuously differ-
entiable mapping

ϕ : Ũ2 → V2 ⊂ R such that ϕ(v0) = λ0,

Φ(v, ϕ(v)) = 0 for all v ∈ Ũ2 ⊂ N.
(I.4.10)

(In fact, it may be necessary to shrink the neighborhood Ũ2, but for simplicity
we use the same notation.)

Let

N(DxF (x0, λ0)) = span[v̂0], v̂0 ∈ X, ‖v̂0‖ = 1.(I.4.11)

Then v = v0 + sv̂0 ∈ Ũ2 for s ∈ (−δ, δ), and

x(s) = v0 + sv̂0 + ψ(v0 + sv̂0, ϕ(v0 + sv̂0)),
λ(s) = ϕ(v0 + sv̂0),

(I.4.12)

gives the curve (I.4.6), having all properties claimed in Theorem I.4.1. 
�

Corollary I.4.2 The tangent vector of the solution curve (I.4.6) at (x0, λ0)
is given by

(v̂0, 0) ∈ X × R;(I.4.13)

i.e., (I.4.6) is tangent at (x0, λ0) to the one-dimensional kernel of DxF (x0, λ0).

Proof. Since Φ(v, ϕ(v)) = 0 for all v ∈ Ũ2, and DvΦ(v0, λ0) = 0 by
Corollary I.2.4, we get

DλΦ(v0, λ0)Dvϕ(v0) = 0 (ϕ(v0) = λ0).(I.4.14)

By (I.4.9), DλΦ(v0, λ0) �= 0, and thus Dvϕ(v0) = 0.
Now, by (I.4.12),

d

ds
x(s)|s=0 = v̂0 +Dvψ(v0, λ0)v̂0 +Dλψ(v0, λ0)Dvϕ(v0)v̂0,

= v̂0 by Corollary I.2.4 and Dvϕ(v0) = 0,

d

ds
λ(s)|s=0 = Dvϕ(v0)v̂0 = 0. �

(I.4.15)

Let us assume more differentiability on F , namely, F ∈ C2(U × V, Z).
Then differentiation of (I.4.7) with respect to s gives, in view of (I.4.15),
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d

ds
F (x(s), λ(s))

∣∣
s=0

= DxF (x0, λ0)ẋ(0) +DλF (x0, λ0)λ̇(0)

(
· =

d

ds

)
= DxF (x0, λ0)v̂0 = 0,

d2

ds2
F (x(s), λ(s))

∣∣
s=0

= D2
xxF (x0, λ0)[v̂0, v̂0] +DxF (x0, λ0)ẍ(0) +DλF (x0, λ0)λ̈(0) = 0

(observe that λ̇(0) = 0).

(I.4.16)

Application of the projection Q (see (I.2.3)) yields

QD2
xxF (x0, λ0)[v̂0, v̂0] +QDλF (x0, λ0)λ̈(0) = 0.(I.4.17)

Since QDλF (x0, λ0) �= 0 by virtue of (I.4.5), the additional assumption

D2
xxF (x0, λ0)[v̂0, v̂0] �∈ R(DxF (x0, λ0))(I.4.18)

guarantees (according to (I.4.17), which is an equation in the one-dimensional
space Z0)

λ̈(0) > 0 or λ̈(0) < 0.(I.4.19)

This means that schematically, the curve (I.4.6) through (x0, λ0) ∈ X × R

has one of the shapes sketched in Figure I.4.1.
In the literature, this is commonly called a saddle-node bifurcation,

a nomenclature that makes sense only if the vector fields F (·, λ) : X → Z
generate a flow, which, in turn, requires X ⊂ Z. Since that is not always true
in our general setting, we prefer the terminology turning point or fold.

X

x0

solution curve

λ0

v̂0

Y = R

Figure I.4.1
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In order to replace the nonzero quantities in (I.4.17) by real numbers, we
introduce the following explicit representation of the projection Q in (I.2.3).
Recall that the complement Z0 of R(DxF (x0, λ0)) is one-dimensional:

Z0 = span[v̂∗0 ], v̂∗0 ∈ Z, ‖v̂∗0‖ = 1.(I.4.20)

By the Hahn–Banach Theorem (see [170]), there exists a vector

v̂′0 ∈ Z ′ (the dual space) such that
〈v̂∗0 , v̂′0〉 = 1 and
〈z, v̂′0〉 = 0 for all z ∈ R(DxF (x0, λ0)).

(I.4.21)

Here 〈 , 〉 denotes the duality between Z and Z ′.
Then the projection Q in (I.2.3) is given by

Qz = 〈z, v̂′0〉v̂∗0 for all z ∈ Z,(I.4.22)

and (I.4.17), (I.4.18) imply

λ̈(0) = −〈D2
xxF (x0, λ0)[v̂0, v̂0], v̂

′
0〉

〈DλF (x0, λ0), v̂′0〉
,(I.4.23)

and the sign of λ̈(0) determines the appropriate diagram in Figure I.4.1. If
λ̈(0) = 0, however, the shape of the curve (I.4.6) is determined by higher
derivatives of λ(s) at s = 0.

Remark I.4.3 There is also an Implicit Function Theorem for higher-
dimensional kernels if the parameter space Y is higher-dimensional, too. To
be more precise, if dimN(DxF (x0, λ0)) = n for some (x0, λ0) ∈ U × V ⊂
X ×Rn and if a complement of R(DxF (x0, λ0)) is spanned by DλiF (x0, λ0),
i = 1, . . . , n, then the analogous proof yields an n-dimensional manifold of the
form {(x(s), λ(s)))|s ∈ Ũ3 ⊂ Rn} ⊂ X × Rn through (x(0), λ(0)) = (x0, λ0)
such that F (x(s), λ(s)) = 0 for all s ∈ Ũ3 (which is a neighborhood of 0 ∈ Rn).
Moreover, the manifold is tangent to N(DxF (x0, λ0))× {0} in X × Rn.

I.5 Bifurcation with a One-Dimensional Kernel

We assume the existence of a solution curve of F (x, λ) = 0 through (x0, λ0)
and prove the intersection of a second solution curve at (x0, λ0), a situa-
tion that is rightly called bifurcation. A necessary condition for this is again
(I.1.6), which excludes the application of the Implicit Function Theorem near
(x0, λ0).
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As in Section I.4, we assume again that the parameter space Y is one-
dimensional, i.e., Y = R, and we normalize the first curve of solutions to
the so-called trivial solution line {(0, λ)|λ ∈ R}. This is done as follows: If
F (x(s), λ(s)) = 0, then we set F̂ (x, s) = F (x(s) + x, λ(s)), and obviously,
F̂ (0, s) = 0 for all parameters s. Returning to our original notation, this
leads to the following assumptions:

F (0, λ) = 0 for all λ ∈ R,
dimN(DxF (0, λ0)) = codimR(DxF (0, λ0)) = 1,
i.e., F (·, λ0) is a Fredholm operator of index zero
(cf. Definition I.2.1).

(I.5.1)

The assumed regularity of F is as follows:

F ∈ C2(U × V, Z),
where 0 ∈ U ⊂ X, λ0 ∈ V ⊂ R,
are open neighborhoods,

(I.5.2)

where we identify again the derivative D2
xλF (x, λ) with an element in

L(X,Z); cf.(I.4.3). By assumption (I.5.2) we have D2
xλ = D2

λx (see [38], [10]).

The Crandall−Rabinowitz Theorem then reads as follows:

Theorem I.5.1 Assume (I.5.1), (I.5.2), and that

N(DxF (0, λ0)) = span[v̂0], v̂0 ∈ X, ‖v̂0‖ = 1,

D2
xλF (0, λ0)v̂0 �∈ R(DxF (0, λ0)).

(I.5.3)

Then there is a nontrivial continuously differentiable curve through (0, λ0),

{(x(s), λ(s))∣∣s ∈ (−δ, δ), (x(0), λ(0)) = (0, λ0)},(I.5.4)

such that

F (x(s), λ(s)) = 0 for s ∈ (−δ, δ),(I.5.5)

and all solutions of F (x, λ) in a neighborhood of (0, λ0) are on the trivial
solution line or on the nontrivial curve (I.5.4). The intersection (0, λ0) is
called a bifurcation point.

Proof. The Lyapunov−Schmidt reduction (Theorem I.2.3) reduces F (x, λ) =
0 near (0, λ0) equivalently to a one-dimensional problem, the so-called Bi-
furcation Equation; that is,

Φ(v, λ) = 0 near (0, λ0) ∈ Ũ2 × V2 ⊂ N × R, where

Φ : Ũ2 × V2 → Z0 with dimZ0 = 1,
(I.5.6)

and Φ ∈ C2(Ũ2 × V2, Z0), by assumption (I.5.2) and (I.1.7). By F (0, λ) = 0
for all λ ∈ R (cf. (I.5.1)1) we get, when using the notation of Theorem I.2.3
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and Corollary I.2.4,

ψ(0, λ) = 0 for all λ ∈ V2, whence
Dλψ(0, λ) = 0 for all λ ∈ V2.

(I.5.7)

Inserting (0, λ) into the definition (I.2.9) of Φ yields

Φ(0, λ) = 0 for all λ ∈ V2,(I.5.8)

which gives the trivial solution line. By (I.5.8), Φ(v, λ) =
∫ 1

0
d
dtΦ(tv, λ)dt, or

Φ(v, λ) =

∫ 1

0

DvΦ(tv, λ)vdt for (v, λ) ∈ Ũ2 × V2.(I.5.9)

Setting v = sv̂0, s ∈ (−δ, δ), for v ∈ Ũ2 ⊂ N , we get nontrivial solutions
(s �= 0) of (I.5.6) by solving

Φ̃(s, λ) ≡
∫ 1

0

DvΦ(stv̂0, λ)v̂0dt = 0 for nontrivial s ∈ (−δ, δ).(I.5.10)

By assumption (I.5.2), Φ̃ ∈ C1((−δ, δ)× V2, Z0), and by Corollary I.2.4 (see
(I.2.10)2),

Φ̃(0, λ0) = 0.(I.5.11)

The following computation leads to DλΦ̃(0, λ0):

Dλ(DvΦ(v, λ)v̂0)

= Dλ(QDxF (v + ψ(v, λ), λ)(v̂0 +Dvψ(v, λ)v̂0)

= QD2
xxF (v + ψ(v, λ), λ)[v̂0 +Dvψ(v, λ)v̂0, Dλψ(v, λ)]

+ QDxF (v + ψ(v, λ), λ)D2
λvψ(v, λ)v̂0

+ QD2
xλF (v + ψ(v, λ), λ)(v̂0 +Dvψ(v, λ)v̂0).

(I.5.12)

Inserting (v, λ) = (0, λ0) into (I.5.12), we find that the first term vanishes
in view of (I.5.7), the second term vanishes by the definition (I.2.3) of the
projection Q, and Corollary I.2.4 together with assumption (I.5.3)2 finally
yields

DλΦ̃(0, λ0) = QD2
xλF (0, λ0)v̂0 �= 0 ∈ Z0.(I.5.13)

The Implicit Function Theorem for (I.5.10) gives a continuously differentiable
function

ϕ : (−δ, δ) → V2 such that ϕ(0) = λ0,

Φ̃(s, ϕ(s)) = 0 for all s ∈ (−δ, δ).
(I.5.14)

(Again, the interval (−δ, δ) is shrunk if necessary.)
Then
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Φ(sv̂0, ϕ(s)) = sΦ̃(s, ϕ(s)) = 0 for s ∈ (−δ, δ),(I.5.15)

and
x(s) = sv̂0 + ψ(sv̂0, ϕ(s)),
λ(s) = ϕ(s),

(I.5.16)

is the curve (I.5.4) having all desired properties. 
�

Corollary I.5.2 The tangent vector of the nontrivial solution curve (I.5.4)
at the bifurcation point (0, λ0) is given by

(v̂0, λ̇(0)) ∈ X × R.(I.5.17)

Proof. By (I.5.16),

d

ds
(x(s))

∣∣
s=0

= v̂0 +Dvψ(0, λ0)v̂0 +Dλψ(0, λ0)λ̇(0)

= v̂0 by Corollary I.2.4 and (I.5.7).
(I.5.18)

Figure I.5.1 depicts the schematic bifurcation diagram. 
�

Under the general assumptions of this section, it is not clear whether the
component λ̇(0) of the tangent vector (I.5.17) vanishes. Therefore, for now,
we cannot decide on sub-, super-, or transcritical bifurcation. These notions
will be made precise in the next section.

Remark I.5.3 The generalization of Theorem I.5.1 to higher-dimensional
kernels is given by Theorem I.19.2, provided that the parameter space is
higher-dimensional, too. To be more precise, we need as many parameters
as the codimension of the range amounts to.

trivial solution line

X

λ0

nontrivial solution curve

Y = R

Figure I.5.1
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I.6 Bifurcation Formulas (Stationary Case)

In this section we give formulas to compute λ̇(0) = ϕ̇(0) in the tangent
(I.5.17) or λ̈(0) if λ̇(0) = 0. For this purpose we assume that the mapping F
is in C3(U×V, Z). Using Φ̃(s, λ(s)) = 0 for all s ∈ (−δ, δ) (recall λ(s) = ϕ(s),
by (I.5.16)), we obtain

d

ds
Φ̃(s, λ(s))

∣∣
s=0

= DsΦ̃(0, λ0) +DλΦ̃(0, λ0)λ̇(0) = 0.(I.6.1)

By (I.5.13), DλΦ̃(0, λ0) �= 0, and thus λ̇(0) is determined by DsΦ̃(0, λ0). By
definition (I.5.10) and (I.2.13),

DsΦ̃(0, λ0) =

∫ 1

0

D2
vvΦ(0, λ0)[v̂0, tv̂0]dt

=
1

2
QD2

xxF (0, λ0)[v̂0, v̂0],

(I.6.2)

where again we have used the definition (I.2.3) of the projection Q, yielding
QDxF (0, λ0)x = 0 for all x ∈ X . If (I.6.2) is nonzero, we can easily derive
our first formula. Using the representation (I.4.22) of the projection Q, (I.6.1)
yields

λ̇(0) = −1

2

〈D2
xxF (0, λ0)[v̂0, v̂0], v̂

′
0〉

〈D2
xλF (0, λ0)v̂0, v̂′0〉

.(I.6.3)

If D2
xxF (0, λ0)[v̂0, v̂0] �∈ R(DxF (0, λ0)), the number λ̇(0) is nonzero. Since

this represents the component in R of the tangent vector of the curve (I.5.4),
the bifurcation is called transcritical in this case (see Figure I.6.1).

However, if D2
xxF (0, λ0)[v̂0, v̂0] ∈ R(DxF (0, λ0)), then λ̇(0) = 0, and

the local shape of the curve (I.5.4) is determined by λ̈(0). Differentiating
Φ̃(s, λ(s)) = 0 twice with respect to s gives

d2

ds2
Φ̃(s, λ(s))

∣∣
s=0

= D2
ssΦ̃(0, λ0) +DλΦ̃(0, λ0)λ̈(0) = 0

when λ̇(0) = 0.

(I.6.4)

We now compute D2
ssΦ̃(0, λ0). By definition (I.5.10), this amounts to compu-

ting D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0]. Using (I.2.13) we get
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D2
vvΦ(v, λ0)[v̂0, v̂0]

= QD2
xxF (v + ψ(v, λ), λ)[v̂0 +Dvψ(v, λ)v̂0, v̂0 +Dvψ(v, λ)v̂0]

+ QDxF (v + ψ(v, λ), λ)D2
vvψ(v, λ)[v̂0, v̂0],

D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0]

= QD3
xxxF (0, λ0)[v̂0, v̂0, v̂0]

+ 2QD2
xxF (0, λ0)[v̂0, D

2
vvψ(0, λ0)[v̂0, v̂0]]

+ QD2
xxF (0, λ0)[v̂0, D

2
vvψ(0, λ0)[v̂0, v̂0]],

(I.6.5)

where we have used QDxF (0, λ0)x = 0 for all x ∈ X , and also (I.2.10)1. To
compute D2

vvψ(0, λ0)[v̂0, v̂0] we use

(I −Q)F (v + ψ(v, λ), λ) = 0 for all (v, λ) ∈ Ũ2 × V2(I.6.6)

(cf. (I.2.7), (I.2.8)). This gives by differentiation

(I −Q)DxF (v + ψ(v, λ), λ)(v̂0 +Dvψ(v, λ)v̂0) = 0,

(I −Q)D2
xxF (0, λ0)[v̂0, v̂0]

+(I −Q)DxF (0, λ0)D
2
vvψ(0, λ0)[v̂0, v̂0] = 0.

(I.6.7)

Taking into account that DxF (0, λ0) : X0 → R = (I−Q)Z is an isomorphism
(see (I.2.3)), we get

D2
vvψ(0, λ0)[v̂0, v̂0]

= −(DxF (0, λ0))
−1(I −Q)D2

xxF (0, λ0)[v̂0, v̂0]

∈ X0 for v̂0 ∈ N.

(I.6.8)

In order to emphasize that the preimage (I.6.8) is in X0 = (I − P )X , we
insert the projection (I − P ), and combining (I.6.5) with (I.6.8) gives

D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0]

= QD3
xxxF (0, λ0)[v̂0, v̂0, v̂0]

−3QD2
xxF (0, λ0)[v̂0, (I−P )(DxF (0, λ0))

−1(I−Q)D2
xxF (0, λ0)[v̂0, v̂0]].

(I.6.9)

Definition (I.5.10) of Φ̃ implies

D2
ssΦ̃(0, λ0) =

1

3
D3

vvvΦ(0, λ0)[v̂0, v̂0, v̂0].(I.6.10)

Relation (I.6.4), the representation (I.4.22) of the projection Q, and (I.6.10)
give our second bifurcation formula for the case λ̇(0) = 0:
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λ̈(0) = −1

3

〈D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0], v̂

′
0〉

〈D2
xλF (0, λ0)v̂0, v̂′0〉

(cf. (I.6.9)).(I.6.11)

If λ̈(0) < 0, the bifurcation is subcritical, and if λ̈(0) > 0, it is supercrit-
ical. In both cases the diagram is referred to as a pitchfork bifurcation
(see Figure I.6.1).

subcritical

X

transcritical

λ0 R

supercritical

Figure I.6.1

I.7 The Principle of Exchange of Stability (Stationary
Case)

Stability is a property of solutions of evolution equations, in particular of
equilibria or stationary solutions. Here we consider formally

dx

dt
= F (x, λ),(I.7.1)

where F is a mapping as considered in Sections I.4–I.6. Such an evolution
equation, however, makes sense only if X ⊂ Z, and as in Section I.3 we
assume that the Banach space X is continuously embedded in the Banach
space Z.

Let F (x0, λ0) = 0; i.e., x0 ∈ X is an equilibrium of (I.7.1) for the pa-
rameter λ0 ∈ R. According to the Principle of Linearized Stability we
call

the equilibrium x0 stable (linearly stable)
if the spectrum of DxF (x0, λ0) is in the left complex half-plane.

(I.7.2)

Of course, (I.7.2) implies true nonlinear stability of x0 if one has rigorous
dynamics for (I.7.1), e.g., when (I.7.1) represents a system of ordinary differ-
ential equations (X = Z = Rn) or a parabolic partial differential equation;
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i.e., F (x, λ) is a semilinear elliptic partial differential operator over a bounded
domain; cf. Section III.4.

We cannot go into a detailed discussion about the general validity of this
principle, but we refer to [89] and [91].

The stability criterion (I.7.2) is also viable for (Lagrangian) evolution
equations of the form

d2x

dt2
= F (x, λ),(I.7.3)

where F (x, λ) is a potential operator with respect to x with potential
f(x, λ); cf. Definition I.3.1. Proposition I.3.2 then gives that the linear map
DxF (x0, λ0) = Dx∇xf(x0, λ0) is formally self-adjoint, in particular, its spec-
trum is real. Accordingly, (I.7.2) ensures that Dx∇xf(x0, λ0) is negative def-
inite. Now it is easy to show that the total energy

E =
1

2

(
dx

dt
,
dx

dt

)
− f(x, λ0)

is constant along all classical solutions of (I.7.3) at λ = λ0. Thus, E defines
a Lyapunov function, and again (I.7.2) implies nonlinear stability if one has
rigorous dynamics for (I.7.3).

Remark I.7.1 In view of various approaches to bifurcation theory via a
“Center Manifold Reduction,” we give the following warning: Do not mix
the problem of existence of equilibria with the problem of their stability.

Solutions of F (x, λ) = 0 are equilibria of (I.7.1) and of (I.7.3), for exam-
ple, but their dynamics are obviously different. The perturbation of an equi-
librium F (x0, λ0) = 0 depends only on the spectral properties of the number
zero for the linear operator DxF (x0, λ0). The stability properties of perturbed
equilibria, however, depend on the entire spectrum of DxF (x0, λ0).

In this section we study the perturbation of the critical eigenvalue zero
along the perturbed equilibria, and this eigenvalue perturbation determines
the stability of the perturbed equilibria if the rest of the spectrum is in the left
complex half-plane. This condition on the rest of the spectrum, however, is
required neither for the existence of perturbed equilibria nor for their critical
eigenvalue perturbation.

A center manifold for (I.7.1), provided that it exists, depends on the spec-
trum of DxF (x0, λ0) on the imaginary axis. One finds bifurcation theorems
for hyperbolic equilibria of (I.7.1) on perturbed one-dimensional center ma-
nifolds, where accordingly nonzero eigenvalues on the imaginary axis are ex-
cluded. If the existence is not separated from the stability analysis, one might
get the wrong impression that all purely imaginary eigenvalues have an influ-
ence on the bifurcation of equilibria.

Under the assumptions of the previous sections, the Principle of Linearized
Stability does not apply to the equilibrium x0 when DxF (x0, λ0) has a one-
dimensional kernel, i.e., if zero is an eigenvalue of DxF (x0, λ0). But we can
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apply the principle to solution curves through (x0, λ0) ∈ X × R (apart from
(x0, λ0)) under certain nondegeneracy conditions. In fact, the same calcula-
tions from Section I.6 leading to the shape of the solution curves help us to
study the perturbation of the so-called critical zero eigenvalue of DxF (x0, λ0)
to an eigenvalue ofDxF (x(s), λ(s)), where {(x(s), λ(s))|s ∈ (−δ, δ)} is a curve
through (x0, λ0) established in Sections I.4–I.6 .

First we need to be sure that such a perturbation of the zero eigenvalue
exists in a suitable way. Accordingly, we assume that

0 is a simple eigenvalue of DxF (x0, λ0); i.e.,
if N(DxF (x0, λ0)) = span[v̂0], then v̂0 �∈ R(DxF (x0, λ0)).

(I.7.4)

Recall that X ⊂ Z. This definition is the generalization of the algebraic sim-
plicity of an eigenvalue of a matrix. Note that a simple eigenvalue means
throughout an algebraically simple eigenvalue in the sense of (I.7.4). In par-
ticular, (I.7.4) implies that we have a decomposition

Z = R(DxF (x0, λ0))⊕N(DxF (x0, λ0)),(I.7.5)

which induces a decomposition

X = N ⊕ (R ∩X)(I.7.6)

for the continuously embedded space X ⊂ Z. Thus the projections are

Q : Z → N along R, and
P = Q|X : X → N along R ∩X.

(I.7.7)

We shall use these projections for the Lyapunov–Schmidt reduction as well
as the representation (I.4.22) for Q:

Qz = 〈z, v̂′0〉v̂0 for all z ∈ Z, where
〈v̂0, v̂′0〉 = 1, 〈z, v̂′0〉 = 0 for all z ∈ R,
and v̂′0 ∈ Z ′, the dual space.

(I.7.8)

We now consider a continuously differentiable curve of solutions through
(x0, λ0):

{(x(s), λ(s))|s ∈ (−δ, δ), (x(0), λ(0)) = (x0, λ0)} ⊂ X × R

such that F (x(s), λ(s)) = 0 for s ∈ (−δ, δ).
(I.7.9)

The assumed regularity of F is that F ∈ C2(U × V, Z), where (x0, λ0) ∈
U × V ⊂ X × R.

Proposition I.7.2 There is a continuously differentiable curve of perturbed
eigenvalues {μ(s)|s ∈ (−δ, δ), μ(0) = 0} in R such that

DxF (x(s), λ(s))(v̂0 + w(s)) = μ(s)(v̂0 + w(s)),(I.7.10)
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where {w(s)|s ∈ (−δ, δ), w(0) = 0} ⊂ R ∩ X is continuously differentiable.
(The interval (−δ, δ) is not necessarily the same as in (I.7.9) but possibly
shrunk.) In this sense, μ(s) is the perturbation of the critical zero eigenvalue
of DxF (x0, λ0).

Proof. Define a mapping

G : U × V × (R ∩X)× R → Z, x0 ∈ U ⊂ X, λ0 ∈ V ⊂ R by
G(x, λ, w, μ) = DxF (x, λ)(v̂0 + w)− μ(v̂0 + w).

(I.7.11)

Then G(x0, λ0, 0, 0) = 0 and

DwG(x0, λ0, 0, 0) = DxF (x0, λ0),
DμG(x0, λ0, 0, 0) = −v̂0,

(I.7.12)

so that assumption (I.7.4) implies that

D(w,μ)G(x0, λ0, 0, 0) : (R ∩X)× R → Z(I.7.13)

is an isomorphism. The Implicit Function Theorem then gives continuously
differentiable functions w : U1 × V1 → R ∩ X, μ : U1 × V1 → R such that
x0 ∈ U1 ⊂ U2 ⊂ X, λ0 ∈ V1 ⊂ V2 ⊂ R, w(x0, λ0) = 0, μ(x0, λ0) = 0,
and G(x, λ, w(x, λ), μ(x, λ)) = 0 for all (x, λ) ∈ U1 × V1. Inserting the curve
(I.7.9) into w and μ, we obtain

μ(s) = μ(x(s), λ(s)), w(s) = w(x(s), λ(s)), s ∈ (−δ, δ),(I.7.14)

having all required properties. 
�
Assuming that the spectrum of DxF (x0, λ0) is in the left complex half-

plane apart from the simple eigenvalue zero, the linearized stability of the
curve is then determined by the sign of the perturbed eigenvalue μ(s), at
least for small values of s ∈ (−δ, δ).

Recall that the solution curve (I.7.9) is found by the method of Lyapunov–
Schmidt:

{(v(s), λ(s))|s ∈ (−δ, δ), (v(0), λ(0)) = (v0, λ0)} satisfies
(see (I.2.9), y = λ)
Φ(v(s), λ(s)) = 0, where v(s) = Px(s) ∈ N .

(I.7.15)

In order to transform this reduced problem into a problem in R2 we set

v = v0 + yv̂0 ∈ N, y ∈ R,

Ψ(y, λ) ≡ 〈Φ(v0 + yv̂0, λ), v̂
′
0〉,

Ψ : Ũ2 × V2 → R, (0, λ0) ∈ Ũ2 × V2 ⊂ R2.

(I.7.16)

Setting 〈v(s) − v0, v̂
′
0〉 = y(s), we have a local solution curve of Ψ through

(0, λ0):
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Ψ(y(s), λ(s)) = 0, (y(0), λ(0)) = (0, λ0).(I.7.17)

For the subsequent analysis we require more differentiability of the solution
curve {(y(s), λ(s))}: We assume that F is in C3(U × V, Z) (cf. Section I.6).

Proposition I.7.3 Under all assumptions of this section,

d

ds
DyΨ(y(s), λ(s))

∣∣
s=0

=
d

ds
μ(s)

∣∣
s=0

,(I.7.18)

and if d
dsμ(s)

∣∣
s=0

= 0, then

d2

ds2
DyΨ(y(s), λ(s))

∣∣
s=0

=
d2

ds2
μ(s)

∣∣
s=0

.(I.7.19)

Proof. By definition (I.7.16),

DyΨ(y, λ) = 〈DvΦ(v0 + yv̂0, λ)v̂0, v̂
′
0〉.(I.7.20)

Then ( ˙= d
ds )

d

ds
〈DvΦ(v0 + y(s)v̂0, λ(s))v̂0, v̂

′
0〉
∣∣
s=0

= 〈D2
vvΦ(v0, λ0)[ẏ(0)v̂0, v̂0], v̂

′
0〉+ 〈D2

vλΦ(v0, λ0)v̂0, v̂
′
0〉λ̇(0).

(I.7.21)

Differentiating equation (I.7.10) with respect to s at s = 0 yields

D2
xxF (x0, λ0)[ẋ(0), v̂0] +D2

xλF (x0, λ0)v̂0λ̇(0)

+ DxF (x0, λ0)ẇ(0) = μ̇(0)v̂0, and by (I.7.8),

μ̇(0) = 〈D2
xxF (x0, λ0)[ẋ(0), v̂0], v̂

′
0〉+ 〈D2

xλF (x0, λ0)v̂0, v̂
′
0〉λ̇(0).

(I.7.22)

Using x(s) = Px(s)+ψ(v(s), λ(s)) = v(s)+ψ(v(s), λ(s)), we get by Corollary
I.2.4,

ẋ(0) = ẏ(0)v̂0 +Dλψ(x0, λ0)λ̇(0).(I.7.23)

On the other hand (see (I.6.5) and again (I.2.10)1),

〈D2
vvΦ(v0, λ0)[ẏ(0)v̂0, v̂0], v̂

′
0〉 = 〈D2

xxF (x0, λ0)[ẏ(0)v̂0, v̂0], v̂
′
0〉,

〈D2
vλΦ(v0, λ0)v̂0, v̂

′
0〉

= 〈D2
xxF (v0, λ0)[v̂0, Dλψ(x0, λ0)], v̂

′
0〉+ 〈D2

xλF (v0, λ0)v̂0, v̂
′
0〉.

(I.7.24)

Combining (I.7.21), (I.7.23), (I.7.24) with (I.7.22) gives (I.7.18).
We prove (I.7.19) for the special case in which we are mainly interested:

We assume x(s) = sv̂0 + ψ(sv̂0, λ(s)), i.e., x(0) = 0, ẋ(0) = v̂0, λ̇(0) = 0,
and also F (0, λ) = 0 for all λ ∈ V ⊂ R. A second differentiation of (I.7.10)
with respect to s (see (I.7.22)) gives
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D3
xxxF (0, λ0)[v̂0, v̂0, v̂0] + 2D2

xxF (0, λ0)[v̂0, ẇ(0)]

+ D2
xxF (0, λ0)[ẍ(0), v̂0] +D2

xλF (0, λ0)v̂0λ̈(0)

+ DxF (0, λ0)ẅ(0) = μ̈(0)v̂0,

where we also assumed that μ̇(0) = 0.

(I.7.25)

Next we compute ẍ(0) and ẇ(0). By our assumptions on x(s) and by λ̇(0) = 0
and from (I.5.7)2, we get

ẍ(0) = D2
vvψ(0, λ0)[v̂0, v̂0],(I.7.26)

which is given by (I.6.8). Equation (I.7.22)1 for μ̇(0) = 0 can be solved for
ẇ(0) ∈ R ∩X = (I − P )X ; that is,

ẇ(0) = −(I − P )(DxF (0, λ0))
−1(I −Q)D2

xxF (0, λ0)[v̂0, v̂0]

= ẍ(0), by (I.7.26) and (I.6.8).
(I.7.27)

Returning now to (I.7.25), observe that DxF (0, λ0)ẅ(0) ∈ R = (I −Q)Z.
Applying the functional v̂′0 ∈ Z ′ after inserting (I.7.26), (I.7.27) into

(I.7.25) gives us (see (I.7.8))

μ̈(0) = 〈D3
xxxF

0[v̂0, v̂0, v̂0], v̂
′
0〉

−3〈D2
xxF

0[v̂0, (I − P )(DxF
0)−1(I −Q)D2

xxF
0[v̂0, v̂0]], v̂

′
0〉

+〈D2
xλF

0v̂0, v̂
′
0〉λ̈(0),

(I.7.28)

where “0” denotes evaluation at (0, λ0). On the other hand, one more differ-
entiation of (I.7.21) with respect to s yields (using λ̇(0) = 0, y(s) = s)

d2

ds2
DyΨ(s, λ(s))

∣∣
s=0

= 〈D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0], v̂

′
0〉+ 〈D2

vλΦ(0, λ0)v̂0, v̂
′
0〉λ̈(0).

(I.7.29)

Formulas (I.6.9) (I.5.12), and (I.5.13) (replace v by v0 = 0) together with
(I.5.7)2 prove the equality of (I.7.28) and (I.7.29).

The general case is reduced to a special case as follows: Define F̂ (x, s) ≡
F (x(s) + x, λ(s)) for x in a neighborhood of 0 in X . Then F̂ (0, s) = 0 for
s ∈ (−δ, δ) and DxF̂ (0, s) = DxF (x(s), λ(s)), yielding for s = 0 the same
projections for the method of Lyapunov–Schmidt as before. The function Φ̂ of
(I.2.9) to solve F̂ (x, s) = 0 near (x, s) = (0, 0) is therefore given by Φ̂(v, s) =
Φ(v(s)+v, λ(s)), and the application of formula (I.7.19) for the trivial solution
line {(0, s)|s ∈ (−δ, δ)} of F̂ (x, s) = 0 proves (I.7.19) for the solution curve
{(x(s), λ(s))|s ∈ (−δ, δ)} of F (x, λ) = 0. (More details of this argument can
be found in the proof of Theorem I.16.6, which generalizes Proposition I.7.3
considerably; see, in particular, (I.16.35)–(I.16.39).) We remark that formula



I.7. The Principle of Exchange of Stability 29

(I.16.36) for m = 2 is valid also under the regularity condition of Proposition
I.7.3. We recommend proving (I.7.19) for the trivial solution line directly and
comparing it with the coefficients μ2 and c20 given in (I.16.9) and (I.16.23),
respectively. 
�

We now apply Proposition I.7.3 to determine the linearized stability of
the solution curve {(x(s), λ(s))|s ∈ (−δ, δ)}\{(x0, λ0)}; cf.(I.7.9). As stated
previously, if we assume that the critical zero eigenvalue of DxF (x0, λ0) has
the largest real part of all points of the spectrum of DxF (x0, λ0), then sta-
bility is determined by the sign of the perturbed eigenvalue μ(s) as given by
Proposition I.7.2. We now carry out this program for the cases studied in
Sections I.4–I.6.

1. Turning Point or Saddle-Node Bifurcation
This is described in Theorem I.4.1 and Corollary I.4.2: Under assumption
(I.4.5) there is a unique curve of solutions through (x0, λ0), and its tangent
vector at (x0, λ0) is (ẋ(0), λ̇(0)) = (v̂0, 0). If in addition, (I.4.18) is satisfied,
then λ̈(0) �= 0, so that the curve has one of the shapes sketched in Figure
I.4.1. Formula (I.7.22) gives

μ̇(0) = 〈D2
xxF (x0, λ0)[v̂0, v̂0], v̂

′
0〉 �= 0 (cf.(I.4.23)).(I.7.30)

Together with the bifurcation formula (I.4.23) we obtain

μ̇(0) = −〈DλF (x0, λ0), v̂
′
0〉λ̈(0),(I.7.31)

and assumption (I.4.5) is precisely that 〈DλF (x0, λ0), v̂
′
0〉 �= 0. Depending

on the signs of 〈DλF (x0, λ0), v̂
′
0〉 and 〈D2

xxF (x0, λ0)[v̂0, v̂0], v̂
′
0〉, the signs of

μ̇(0) and λ̈(0) are determined. In any case, in view of μ(0) = 0, μ̇(0) �= 0,
the sign of μ(s) changes at s = 0, which implies that the stability of the
curve {x(s), λ(s))} changes at the turning point (x0, λ0). The possibilities
are sketched in Figure I.7.1.

unstable

λ0

x0

stable

Figure I.7.1

That exchange of stability is also true at degenerate turning points, i.e.,
where λ̇(0) = · · · = λ(k−1)(0) = 0 but λ(k)(0) �= 0 for some even k ≥ 2 and
where the mapping F is analytic. For details we refer to Section III.7.5, where
formula (I.7.31) is generalized to (III.7.129).
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2. The Transcritical Bifurcation
Here we have two curves intersecting at (x0, λ0) = (0, λ0): the trivial solu-
tion line {(0, λ)} and the nontrivial solution curve {(x(s), λ(s))}. Although
formula (I.7.22) applies to the trivial solution line as well, we give a new
argument for the eigenvalue perturbation (I.7.10), which we parameterize by
λ (near λ0):

DxF (0, λ)(v̂0 + w(λ)) = μ(λ)(v̂0 + w(λ)).(I.7.32)

Differentiation of (I.7.32) with respect to λ yields by μ(λ0) = 0, w(λ0) = 0,

D2
xλF (0, λ0)v̂0 +DxF (0, λ0)w

′(λ0) = μ′(λ0)v̂0,(I.7.33)

where ′ = d
dλ . By the choice of v̂′0 (cf. (I.7.8) and in particular, 〈z, v̂′0〉 = 0 for

all z ∈ R), (I.7.33) implies

μ′(λ0) = 〈D2
xλF (0, λ0)v0, v̂

′
0〉.(I.7.34)

Here we recognize the nondegeneracy (I.5.3): Given (I.7.8), we now see that
the hypothesis

D2
xλF (0, λ0)v̂0 �∈ R(DxF (0, λ0))(I.7.35)

of the Crandall–Rabinowitz Theorem, Theorem I.5.1, is equivalent to the
assumption

μ′(λ0) �= 0,(I.7.36)

which can be stated as follows: The real eigenvalue μ(λ) of DxF (0, λ) crosses
the imaginary axis at μ(λ0) = 0 “with nonvanishing speed.” If the spectrum of
DxF (x0, λ0) is in the left complex half-plane apart from the simple eigenvalue
μ(λ0) = 0, then μ′(λ0) > 0 describes a loss of stability of the trivial solution:
(0, λ) (as a solution of F (x, λ) = 0) is stable for λ < λ0 and unstable for
λ > λ0 (locally).

For the bifurcating solution curve {(x(s), λ(s))} as described by Theorem
I.5.1, we assume λ̇(0) �= 0, which guarantees a transcritical bifurcation (see
Figure I.6.1). By the bifurcation formula (I.6.3), this is equivalent to

〈D2
xxF (x0, λ0)[v̂0, v̂0], v̂

′
0〉 �= 0,(I.7.37)

and we rewrite (I.6.3) as

〈D2
xxF (0, λ0)[v̂0, v̂0], v̂

′
0〉+ 2μ′(λ0)λ̇(0) = 0,(I.7.38)

where we have used (I.7.34). On the other hand, (I.7.22) and (I.7.34) give for
the eigenvalue perturbation μ̂(s) along the bifurcating curve (we change the
notation in order to distinguish it from μ(λ))

〈D2
xxF (0, λ0)[v̂0, v̂0], v̂

′
0〉+ μ′(λ0)λ̇(0) = ˙̂μ(0),(I.7.39)
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where we have used ẋ(0) = v̂0; cf.(I.5.18). Combining (I.7.38) with (I.7.39)
yields the crucial formula that locks the eigenvalue perturbations to the bi-
furcation direction, namely,

μ′(λ0)λ̇(0) = − ˙̂μ(0).(I.7.40)

Now assume μ′(λ0) > 0, which means a loss of stability of the trivial
solution x = 0 at λ = λ0. Then by λ(0) = λ0, μ̂(0) = 0, λ̇(0) �= 0, and
˙̂μ(0) �= 0 (cf.(I.7.37)),

sign(λ(s) − λ0) = signμ̂(s) for s ∈ (−δ, δ),(I.7.41)

which proves the stability of x(s) for λ(s) > λ0 as well as its instability for
λ(s) < λ0. If μ

′(λ0) < 0, the stability properties of all solution curves are
reversed, which is sketched in Figure I.7.2.

stable

unstable

unstablestable

λ0

Figure I.7.2

3. The Pitchfork Bifurcation
Again, we have the trivial solution line {(0, λ)}, and bifurcation is caused by
(I.7.36), which means a nondegenerate loss or gain of stability of x = 0 at
λ = λ0. For the bifurcating solution curve {(x(s), λ(s))} we have λ̇(0) = 0,
and we assume that λ̈(0) �= 0 (see Figure I.6.1). By the bifurcation formula
(I.6.11), this is equivalent to

〈D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0], v̂

′
0〉 �= 0,(I.7.42)

and we rewrite (I.6.11) as

〈D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0], v̂

′
0〉+ 3μ′(λ0)λ̈(0) = 0,(I.7.43)

where we have used (I.7.34). By (I.7.40) we see that assumption λ̇(0) = 0 is
equivalent to ˙̂μ(0) = 0, where again μ̂(s) denotes the eigenvalue perturbation
along the bifurcating curve. Formula (I.7.28) is then valid, which is rewritten,
using (I.6.9), as

〈D3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0], v̂

′
0〉+ μ′(λ0)λ̈(0) = ¨̂μ(0).(I.7.44)
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Together with (I.7.43), this implies the crucial formula

2μ′(λ0)λ̈(0) = −¨̂μ(0).(I.7.45)

Assume μ′(λ0) > 0. Then by λ(0) = λ0, λ̇(0) = 0, μ̂(0) = 0, ˙̂μ(0) = 0,
and λ̈(0) �= 0 (cf. (I.7.42)),

sign(λ(s)− λ0) = −signμ̂(s) for s ∈ (−δ, δ),(I.7.46)

which proves an exchange of stability as sketched in Figure I.7.3. In that
standard situation, in which the trivial solution x = 0 loses stability at λ =
λ0, a supercritical bifurcation is stable, whereas a subcritical bifurcation is
unstable. If μ′(λ0) < 0, the stability properties of all solution curves are
reversed.

λ
stable unstable

stable

stable

x

Figure I.7.3

That exchange of stability at transcritical or pitchfork bifurcations holds
true also in degenerate cases when λ̇(0) = · · · = λ(k−1)(0) = 0 but λ(k)(0) �= 0
for some k ≥ 2; cf. (I.16.30) and (I.16.51), generalizing formulas (I.7.40) and
(I.7.45).

Each of the cases 1 through 3 above illustrates what is typically referred
as the Principle of Exchange of Stability. In Figures I.7.1 through I.7.3
we fix a typical value of λ and consider adjacent solution curves. In each case,
note that the curves have alternating stability properties.

Before stating the principle as a theorem, we assume, in keeping with
cases 1 through 3, that for the eigenvalue perturbation μ(s) of any solution
curve of F (x, λ) = 0 through (x0, y0) in the sense of (I.7.10),

μ̇(0) �= 0 or
μ̇(0) = 0 and μ̈(0) �= 0.

(I.7.47)

Proposition I.7.3 then yields

signμ(s) = signDyΨ(y(s), λ(s) �= 0
for s ∈ (−δ, δ)\{0}.(I.7.48)
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A simple observation from one-dimensional calculus gives the following Prin-
ciple of Exchange of Stability.

Theorem I.7.4 Assume (I.7.47) for the eigenvalue perturbation μ(s) of all
solution curves of F (x, λ) = 0 through (x0, λ0). Assume that there are two
solution curves {(xi(s), λi(s))}, i = 1, 2, of F (x, λ) = 0 through (x0, λ0) that
are adjacent in the following sense: If Pxi(s) = v0 + yi(s)v̂0, i = 1, 2 (cf.
(I.7.16)), then there are parameters s1 and s2 such that y1(s1) and y2(s2) are
consecutive zeros of the function Ψ(·, λ) at λ = λ(s1) = λ(s2) on the y-axis.
Then x1(s1) and x2(s2) have opposite stability properties; i.e., μ1(s1)μ2(s2) <
0 for the perturbed eigenvalues μi(s) of DxF (xi(s), λi(x)), i = 1, 2, near zero.

Proof. Since a real differentiable function on the real line has derivatives of
opposite sign at consecutive zeros with nonzero derivatives, the claim follows
from (I.7.48). 
�

We sketch the situation of Theorem I.7.4 in Figure I.7.4. From (I.7.48) it
follows also that the lowest and uppermost curves in the N × R plane have
the same stability properties on both sides of the bifurcation point (v0, λ0),
respectively.

Later, in Section I.16, we generalize Theorem I.7.4 to degenerate cases in
which (I.7.47) does not hold; cf. Theorem I.16.8.

N = span[v̂0]

λ0 λ R

v0

Figure I.7.4

Remark I.7.5 Note that in all cases discussed in this section, zero is a sim-
ple eigenvalue of DxF (x0, λ0) in its algebraic sense, whereas the existence
results in Sections I.4 and I.5 are proved if dimN(DxF (x0, λ0)) = 1. If
X ⊂ Z (which is not necessary in Sections I.4–I.6), this means that zero is
a simple eigenvalue only in its geometric sense, and the eigenvalue perturba-
tion of the eigenvalue zero can be complicated if its algebraic multiplicity is
larger than one. We discuss this in Sections II.3, II.4. A general condition for
bifurcation at (0, λ0) in terms of the eigenvalue perturbation in the spirit of
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(I.7.36) is given in Theorem II.4.4. It is not at all obvious how the nondege-
neracy (I.5.3) is related to the eigenvalue perturbation, and we give the result
in Case 1 of Theorem II.4.4. That knowledge, however, is not needed in the
proof of Theorem I.5.1.

I.8 Hopf Bifurcation

Here as in Section I.5 we assume a trivial solution line {(0, λ)|λ ∈ R} ⊂ X×R

for the parameter-dependent evolution equation

dx

dt
= F (x, λ);(I.8.1)

i.e., F (0, λ) = 0 for all λ ∈ R. Recall that a bifurcation of nontrivial stationary
solutions of (I.8.1) (i.e., of F (x, λ) = 0) can be caused by a loss of stability
of the trivial solution at λ = λ0. To be more precise, that loss of stability is
described by a simple real eigenvalue of DxF (0, λ) leaving the “stable” left
complex half-plane through 0 at the critical value λ = λ0 “with nonvanishing
speed.” This was proven in the previous section, see (I.7.36), and this scenario
is resumed in Section I.16, where the loss of stability of the trivial solution is
“slow” or “degenerate.” (Observe, however, Remark I.7.5.)

In this section we describe the effect of a loss of stability of the trivial
solution of (I.8.1) via a pair of complex conjugate eigenvalues of DxF (0, λ)
leaving the left complex half-plane through complex conjugate points on the
imaginary axis at some critical value λ = λ0. If 0 is not an eigenvalue of
DxF (0, λ0), then by the Implicit Function Theorem, stationary solutions of
(I.8.1) cannot bifurcate from the trivial solution line at (0, λ0). The Hopf Bi-
furcation Theorem, however, states that (time-) periodic solutions of (I.8.1)
bifurcate at (0, λ0). This type of bifurcation is explained and proved in this
section, and in Section I.12 we generalize the Principle of Exchange of Sta-
bility to this setting.

As before,

F : U × V → Z, where
0 ∈ U ⊂ X and λ0 ∈ V ⊂ R are open neighborhoods.

(I.8.2)

The function F is sufficiently smooth (see our assumptions (I.8.13) below),
and in particular,

F (0, λ) = 0 and
DxF (0, λ) exists in L(X,Z) for all λ ∈ V .

(I.8.3)
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In order to define the evolution equation (I.8.1), we assume for the real Ba-
nach spaces X and Z that

X ⊂ Z is continuously embedded,(I.8.4)

and the derivative of x with respect to t is taken to be an element of Z.
Under assumption (I.8.4), a spectral theory for DxF (0, λ) is possible, and

introducing complex eigenvalues of the linear operator DxF (0, λ) requires a
natural complexification of the real Banach spaces X and Z: This can be
done by a formal sum Xc = X + iX (or by a pair X ×X), where we define
(α + iβ)(x + iy) = αx − βy + i(βx + αy) for every complex number α + iβ.
In particular, a real and imaginary part of any vector in Xc is well defined,
and a real linear operator A in L(X,Z) is extended in a natural way to a
complex linear operator Ac in L(Xc, Zc). If μ ∈ C is an eigenvalue of Ac

with eigenvector ϕ, then μ ∈ C is also an eigenvalue of Ac with eigenvector
ϕ. Here, the bar denotes complex conjugation. In the subsequent analysis
we omit, for simplicity, the subscript c, but we keep in mind that our given
operators are real and that we are interested in real solutions of (I.8.1).

In this section we assume

iκ0(�= 0) is a simple eigenvalue of DxF (0, λ0)
with eigenvector ϕ0 �∈ R(iκ0I −DxF (0, λ0)) (cf.(I.7.4)),
±iκ0I −DxF (0, λ0) are Fredholm operators
of index zero.

(I.8.5)

As mentioned before, −iκ0 is a simple eigenvalue of DxF (0, λ0) with eigen-
vector ϕ0.

We can apply Proposition I.7.2 in order to guarantee perturbed eigenval-
ues μ(λ) of DxF (0, λ):

DxF (0, λ)ϕ(λ) = μ(λ)ϕ(λ) such that
μ(λ0) = iκ0, ϕ(λ0) = ϕ0.

(I.8.6)

(Consider the mapping (I.7.11) with R = R(iκ0I − DxF (0, λ0)), v̂0 = ϕ0

at (0, λ0, 0, iκ0).) These eigenvalues μ(λ) are continuously differentiable with
respect to λ near λ0, and following E. Hopf, we assume that

Reμ′(λ0) �= 0, where ′ =
d

dλ
,(I.8.7)

and Re denotes “real part.” In this sense the eigenvalue μ(λ) crosses the
imaginary axis with “nonvanishing speed,” or the exchange of stability of the
trivial solution {(0, λ)} is “nondegenerate.” As we will show later, (I.8.7) can
be expressed via (I.8.43) below, and it is therefore similar to the nondegener-
acy (I.5.3), which is equivalent to (I.7.36) in the case of a simple eigenvalue
0.
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Apart from the spectral properties (I.8.5) and (I.8.7), we need more as-
sumptions in order to give the evolution equation (I.8.1) a meaning in the
(possibly) infinite-dimensional Banach space Z. The following condition on
the linearization serves this purpose:

A0 = DxF (0, λ0) as a mapping in Z, with dense domain
of definition D(A0) = X , generates an analytic (holomorphic)
semigroup eA0t, t ≥ 0, on Z that is compact for t > 0.

(I.8.8)

For a definition of analytic semigroups we refer, for example, to [86], [142],
or [170]. The compactness of eA0t for t > 0 is true if the embedding (I.8.4)
is compact. (Assumption (I.8.8) is used only in the proof of Proposition I.8.1
below. The Fredholm property of J0 is crucial, and if in applications this
property can be proved under a weaker assumption, condition (I.8.8) can be
weakened accordingly; cf. Remark I.9.2 and Remark III.4.2.)

We look for periodic solutions of (I.8.1) of small amplitude for λ near λ0

where the period is a priori unknown. A simple but crucial step in proving
the Hopf bifurcation theorem is based upon the following observation:

x = x(t) is a 2π-periodic solution of κ
dx

dt
= F (x, λ) if

and only if x̃(t) = x(κt) is a 2π/κ-periodic solution of (I.8.1).
(I.8.9)

In other words, we may rescale “time” = t and focus on 2π-periodic solutions
of

G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0.(I.8.10)

We can then give problem (I.8.10) a functional-analytic setting, in which
the method of Lyapunov–Schmidt is applicable. Accordingly, we introduce the
following Banach spaces of 2π-periodic Hölder continuous functions having
values in X or Z:

E ≡ Cα
2π(R, X) ≡

{
x : R → X |x(t+ 2π) = x(t), t ∈ R,

‖x‖E = ‖x‖X,α ≡ max
t∈R

‖x(t)‖X + sup
s�=t

‖x(t)− x(s)‖X
|t− s|α < ∞

}
,

W ≡ Cα
2π(R, Z) analogously,

Y ≡ C1+α
2π (R, Z) ≡

{
x : R → Z|x, dx

dt
(exists) ∈ Cα

2π(R, Z),

‖x‖Y = ‖x‖Z,1+α ≡ ‖x‖Z,α +

∥∥∥∥∥dxdt
∥∥∥∥∥
Z,α

}
.

(I.8.11)
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The Hölder exponent α is in the interval (0, 1]. Obviously, Y ∩E = C1+α
2π (R, Z)∩

Cα
2π(R, X) is a Banach space with norm ‖x‖X,α + ‖ dx

dt ‖Z,α (cf.(I.8.4)).
Next we define G, given in (I.8.10), via

G : Ũ × Ṽ → W, where

0 ∈ Ũ ⊂ E ∩ Y and

(κ0, λ0) ∈ Ṽ ⊂ R2,with Ũ and Ṽ open neighborhoods.

(I.8.12)

We leave the following statements as an exercise:

G ∈ C2(Ũ × Ṽ ,W ) if
F ∈ C3(U × V, Z).

(I.8.13)

(Note that the meaning of x is different in the contexts of DxF and DxG:
x is a vector in X in the first case, while x denotes a function in Y ∩ E =
C1+α

2π (R, Z) ∩ Cα
2π(R, X) in the second case.)

Returning to (I.8.10), we obviously have G(0, κ0, λ0) = 0. Observe that
DxG(0, κ0, λ0) = κ0

d
dt − DxF (0, λ0) and recall that A0 = DxF (0, λ0). In

order to apply the Lyapunov–Schmidt reduction described in Theorem I.2.3
to (I.8.10), the following proposition is crucial.

Proposition I.8.1 Assume (I.8.5), (I.8.8), and the following nonresonance
condition:

for all n ∈ Z\{1,−1}, inκ0 is not
an eigenvalue of A0 = DxF (0, λ0).

(I.8.14)

Then the linear operator

J0 ≡ κ0
d

dt
−A0 : Y ∩ E → W(I.8.15)

is continuous and is a Fredholm operator of index zero, with dimN(J0) = 2.

Proof. It is clear that J0 is continuous when the intersection Y ∩ E =
C1+α

2π (R, Z) ∩ Cα
2π(R, X) is given the norm ‖x‖X,α + ‖ dx

dt ‖Z,α. We compute
the kernel N(J0):

J0x = κ0
dx

dt
−A0x = 0, x(0) = x(2π) ⇔

x(t) = eA0t/κ0x(0), (I − eA02π/κ0)x(0) = 0 ⇔

x(0) ∈ N(I − eA02π/κ0).

(I.8.16)

(By the regularizing property of eA0t for t > 0, we haveN(I−eA02π/κ0) ⊂ X.)
On the other hand, a Fourier analysis of the real continuous 2π-periodic
function x = x(t) yields for any z′ ∈ Z ′,
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〈x(t), z′〉 = ∑
n∈Z

〈an, z′〉eint, a−n = an ∈ X,

an =
1

2π

∫ 2π

0

x(t)e−intdt, x(t) = eA0t/κ0x(0),

inan =
1

κ0
A0an (integration by parts),

an = 0 for n ∈ Z\{1,−1} (by (I.8.14)),
a1 = cϕ0, c ∈ C (by (I.8.5)), and

x(0) ∈ {cϕ0 + c ϕ0|c ∈ C} = N(I − eA02π/κ0),

x ∈ {cϕ0e
it + c ϕ0e

−it|c ∈ C} = N(J0).

(I.8.17)

(Note that eA0t/κ0ϕ0 = ϕ0e
it, which follows from A0ϕ0 = iκ0ϕ0.)

By assumption (I.8.8), A0 : Z → Z is densely defined, and thus its dual
operator A′

0 : Z ′ → Z ′ exists. The simplicity of the eigenvalue iκ0 (cf.(I.8.5))
implies that the eigenvector ϕ′

0 of A′
0 with eigenvalue iκ0 can be chosen so

that

〈ϕ0, ϕ
′
0〉 = 1

(where 〈 , 〉 denotes the bilinear pairing of Z and Z ′),

R(iκ0I −A0) = {z ∈ Z|〈z, ϕ′
0〉 = 0}, (Closed Range Theorem),

and the eigenprojection Q0 ∈ L(Z,Z) onto
N(iκ0I −A0)⊕N(−iκ0I −A0) is given by

Q0z = 〈z, ϕ′
0〉ϕ0 + 〈z, ϕ′

0〉ϕ0.

(By (A0 − iκ0I)ϕ0 = −2iκ0ϕ0 we have 〈ϕ0, ϕ
′
0〉 = 0, and

〈ϕ0, ϕ
′
0〉 = 0 follows in the same way.)

(I.8.18)

Note that A0Q0x = Q0A0x for all x ∈ X = D(A0). Hence, R(Q0) as well as
N(Q0) are invariant spaces under A0. As shown in (I.8.17),

N(I − eA02π/κ0) = R(Q0) ⊂ Z,(I.8.19)

when Q0 as given by (I.8.18) is restricted to the real space Z. The invariance
of R(Q0) and of N(Q0) under A0 implies their invariance under eA02π/κ0 ,
and the compactness of eA02π/κ0 (cf. (I.8.8)) finally proves that

I − eA02π/κ0 ∈ L(N(Q0), N(Q0)), N(Q0) ⊂ Z,
is an isomorphism.

(I.8.20)

(Injectivity in (I.8.20) is clear; surjectivity then follows from the Riesz–
Schauder Theory for compact operators; cf. [170], for example.) Next, we
introduce a projection Q ∈ L(W,W ) as follows:
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(Qz)(t) =
1

2π

∫ 2π

0

〈z(t), ψ′
0(t)〉dtψ0(t)

+
1

2π

∫ 2π

0

〈z(t), ψ′
0(t)〉dtψ0(t),

where ψ0(t) = ϕ0e
it, ψ′

0(t) = ϕ′
0e

−it.

(I.8.21)

(Although Q is defined by complex functions, the restriction to the real
space gives a real operator. Recall that the pairing 〈 , 〉 is bilinear also in
the complex case.) The result of (I.8.17) can be restated as

N(J0) = R(Q), or in other words,
Q projects onto N(J0); cf. (I.8.17).

(I.8.22)

The proof of Proposition I.8.1 will be complete when we have shown that
R(J0) = N(Q).

Let f ∈ W = Cα
2π(R, Z). As proved in [86], IX, 1.7, a solution of

J0x = κ0
dx

dt
−A0x = f is given by

x(t) = eA0t/κ0x(0) +
1

κ0

∫ t

0

eA0(t−s)/κ0f(s)ds
(I.8.23)

for any x(0) ∈ Z. Due to the regularity of x as proved in [86], the function x
is in Y ∩ E if it is 2π-periodic. That, in turn, is proved if

(I − eA02π/κ0)x(0) =
1

κ0

∫ 2π

0

eA0(2π−s)/κ0f(s)ds

has a solution x(0) ∈ X = D(A0).
(I.8.24)

For every f ∈ W , we have

〈∫ 2π

0

eA0(2π−s)/κ0f(s)ds, ϕ′
0

〉
=

∫ 2π

0

〈f(s), eA′
0(2π−s)/κ0ϕ′

0〉ds

=

∫ 2π

0

〈f(s), ei(2π−s)ϕ′
0〉ds.

(I.8.25)

(We use that (eA0t/κ0)′ϕ′
0 = eA

′
0t/κ0ϕ′

0 = eitϕ′
0, since A′

0ϕ
′
0 = iκ0ϕ

′
0; in

general (eA0t)′ = eA
′
0t on D(A′

0) ⊂ Z ′; cf. [170], IX, 13.) Since (I.8.25) is true
for ϕ′

0 as well, we have shown (cf. (I.8.18), (I.8.21)) that

f ∈ N(Q) ⇔
∫ 2π

0

eA0(2π−s)/κ0f(s)ds ∈ N(Q0).(I.8.26)

Thus, by (I.8.20), there is a solution x(0) ∈ N(Q0) ⊂ Z of (I.8.24) if and
only if f ∈ N(Q). Finally,
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x(0) = eA02π/κ0x(0) +
1

κ0

∫ 2π

0

eA0(2π−s)/κ0f(s)ds ∈ N(Q0)(I.8.27)

proves that x(0) ∈ D(A0) = X , since both terms on the right-hand side of
(I.8.27) are in D(A0) (cf. [86]).

We have proved that

R(J0) = N(Q), and, in view of (I.8.22),

W = Cα
2π(R, Z) = R(J0)⊕N(J0),

(I.8.28)

which completes the proof of Proposition I.8.1. 
�
For the problem

G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0

near (0, κ0, λ0) (cf. (I.8.12)),
(I.8.29)

the method of Lyapunov–Schmidt is now applicable, since all hypotheses are
satisfied. For that reduction as described in Section I.2 we use the decomposi-
tion (I.8.28) and the projection Q. Since Y ∩E = C1+α

2π (R, Z)∩Cα
2π(R, X) is

continuously embedded into W = Cα
2π(R, Z), the projection Q|Y ∩E projects

Y ∩ E onto N(J0) along R(J0) ∩ (Y ∩ E). We set Q|Y ∩E = P . Thus, by
Theorem I.2.3, (I.8.29) is equivalent to

QG(Px+ ψ(Px, κ, λ), κ, λ) = 0,

where P : Y ∩ E → N(J0) along R(J0) ∩ (Y ∩ E),
and Q : W → N(J0) along R(J0).

(I.8.30)

The efficient analysis of this two-dimensional system (I.8.30)1 makes use of
another crucial property of (I.8.29), namely, its equivariance. Equivariance
here means that every phase-shifted solution of (I.8.1) is again a solution,
and for 2π-periodic solutions of (I.8.10) or (I.8.29), this is expressed as S1-
equivariance: Let

(Sθx)(t) = x(t+ θ), θ ∈ R(mod 2π). Then
G(Sθx, κ, λ) = SθG(x, κ, λ)

for all x ∈ Ũ ⊂ R2.
(I.8.31)

Since the projection Q commutes with Sθ (i.e., QSθ = SθQ) the Lyapunov–
Schmidt reduction preserves the equivariance by the uniqueness of the solu-
tion given via the Implicit Function Theorem:

ψ(PSθx, κ, λ) = ψ(SθPx, κ, λ) = Sθψ(Px, κ, λ).(I.8.32)

A real function Px ∈ N(J0) is of the following form:
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(Px)(t) = cϕ0e
it + c ϕ0e

−it, c ∈ C, and

(PSθx)(t) = (SθPx)(t) = ceiθϕ0e
it + ce−iθϕ0e

−it.
(I.8.33)

By the definition of Q (cf. (I.8.21), for a real function Px, the bifurcation
equation (I.8.30)1 is equivalent to the following one-dimensional complex
equation:

1

2π

∫ 2π

0

〈G(Px+ ψ(Px, κ, λ), κ, λ), ψ′
0〉dt = 0.(I.8.34)

Indeed, the second complex equation in order to satisfy QG(./.) = 0 is com-
plex conjugate to (I.8.34). We insert (I.8.33) into (I.8.34) and write it as

Φ̂(c, κ, λ) = 0, where

Φ̂ : Ũ2 × Ṽ2 → C, 0 ∈ Ũ2 ⊂ C (κ0, λ0) ∈ Ṽ2 ⊂ R2.
(I.8.35)

The S1-equivariance for G (I.8.31) or for QG (I.8.30) is expressed for (I.8.35)
as follows:

Φ̂(eiθc, κ, λ) = eiθΦ̂(c, κ, λ), θ ∈ [0, 2π).(I.8.36)

That property has the following consequences:

Φ̂(c, κ, λ) = 0 ⇔ Φ̂(|c|, κ, λ) = 0,

Φ̂(−c, κ, λ) = −Φ̂(c, κ, λ); i.e., Φ̂ is odd in c ∈ C.
(I.8.37)

In particular, Φ̂(0, κ, λ) = 0 for all (κ, λ) ∈ Ṽ2, which reflects the trivial
solution. In view of (I.8.37)1, it suffices to solve Φ̂ for real c; i.e., we consider
henceforth

Φ̂(r, κ, λ) = 0, r ∈ (−δ, δ) ⊂ R, (κ, λ) ∈ Ṽ2 ⊂ R2,(I.8.38)

which is the Bifurcation Equation for Hopf Bifurcation. In order to
eliminate the trivial solution, we proceed in the same way as in Section I.5
when we proved Theorem I.5.1: For r �= 0 we set

Φ̃(r, κ, λ) = Φ̂(r, κ, λ)/r, which we rewrite as

Φ̃(r, κ, λ) =

∫ 1

0

DrΦ̂(τr, κ, λ)dτ = 0, r ∈ (−δ, δ).
(I.8.39)

By the definition of Φ̂, (Px)(t) = r(ϕ0e
it +ϕ0e

−it), and using Corollary I.2.4
we have

Φ̃(0, κ0, λ0) =
1

2π

∫ 2π

0

〈DxG(0, κ0, λ0)ψ0, ψ
′
0〉dt = 0,(I.8.40)

since ψ0 ∈ N(J0). The computations ofDκΦ̃(0, κ0, λ0) andDλΦ̃(0, κ0, λ0) fol-
low precisely the lines of the proof of Theorem I.5.1, in particular, of (I.5.12)
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((I.5.7) holds analogously). Therefore, we give only the result:

DκΦ̃(0, κ0, λ0) =
1

2π

∫ 2π

0

〈D2
xκG(0, κ0, λ0)ψ0, ψ

′
0〉dt

=
1

2π

∫ 2π

0

〈 d
dt

ψ0, ψ
′
0〉dt = i,

DλΦ̃(0, κ0, λ0) =
1

2π

∫ 2π

0

〈D2
xλG(0, κ0, λ0)ψ0, ψ

′
0〉dt

= −〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉.

(I.8.41)

Decomposing Φ̃ into real and imaginary parts, we finally get (without chang-
ing the notation)

Φ̃ : (−δ, δ)× Ṽ2 → R2 and

D(κ,λ)Φ̃(0, κ0, λ0) =

(
0 −Re〈D2

xλF (0, λ0)ϕ0, ϕ
′
0〉

1 −Im〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉

)
.

(I.8.42)

The last condition to solve Φ̃(r, κ, λ) = 0 for r ∈ (−δ, δ) (which is possibly
shrunk) by the Implicit Function Theorem is

Re〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 �= 0,(I.8.43)

and we obtain continuously differentiable functions (κ, λ) : (−δ, δ) → Ṽ2 ⊂
R2, (κ(0), λ(0)) = (κ0, λ0), such that Φ̃(r, κ(r), λ(r)) = 0 for all r ∈ (−δ, δ).
Obviously, Φ̂(r, κ(r), λ(r)) = rΦ̃(r, κ(r), λ(r)) = 0, and the bifurcation equa-
tion (I.8.38) or (I.8.35) is solved nontrivially.

(Instead of solving the system Φ̃(r, κ, λ) = 0 in one step, we could do it
in two steps: By (I.8.42) and the Implicit Function Theorem, the solution
of the imaginary part defines κ as a function of (r, λ), and when it is in-
serted into the real part, we obtain the Reduced Bifurcation Equation
Φ̃re(r, λ) = 0. By (I.8.42), (I.8.43), and the Implicit Function Theorem, that
scalar equation gives λ in terms of r. That reduction eliminates the period,
and the bifurcation is reduced to the (r, λ)-plane.)

At the end we identify (I.8.43) with assumption (I.8.7). Differentiation of
(I.8.6) with respect to λ at λ = λ0 yields

D2
xλF (0, λ0)ϕ0 +DxF (0, λ0)ϕ

′(λ0) = μ′(λ0)ϕ0 + μ(λ0)ϕ
′(λ0),

〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉+ 〈ϕ′(λ0), A

′
0ϕ

′
0〉

= μ′(λ0) + iκ0〈ϕ′(λ0), ϕ
′
0〉,

〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 = μ′(λ0),

since A′
0ϕ

′
0 = iκ0ϕ

′
0 and 〈 , 〉 is bilinear.

(I.8.44)
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We summarize, and we obtain the Hopf Bifurcation Theorem.

Theorem I.8.2 For the parameter-dependent evolution equation

dx

dt
= F (x, λ)

in a Banach space Z we make the regularity assumptions (I.8.2), (I.8.3),
(I.8.4), (I.8.13), on the mapping F . We make the spectral assumptions
(I.8.5), (I.8.6), (I.8.7) on the linearization DxF (0, λ) along the trivial so-
lutions:

DxF (0, λ)ϕ(λ) = μ(λ)ϕ(λ)with μ(λ0) = iκ0 �= 0,
μ(λ) are simple eigenvalues, and we assume the nondegeneracy
Reμ′(λ0) �= 0.

We impose the nonresonance condition (I.8.14):

For all n ∈ Z\{1,−1}, inκ0 is not an eigenvalue of A0 = DxF (0, λ0).

We assume that the operator A0 = DxF (0, λ0) generates a holomorphic semi-
group according to (I.8.8):

eA0t ∈ L(Z,Z) for t ≥ 0, which is compact for t > 0.

Then there exists a continuously differentiable curve {(x(r), λ(r))} of (real)
2π/κ(r)-periodic solutions of (I.8.1) through (x(0), λ(0)) = (0, λ0) with
2π/κ(0)
= 2π/κ0 in (C1+α

2π/κ(r)(R, Z)∩Cα
2π/κ(r)(R, X))×R. Every other periodic solu-

tion of (I.8.1) in a neighborhood of (0, λ0) (in that topology) is obtained from
(x(r), λ(r)) by a phase shift Sθx(r).
In particular, x(−r) = Sπ/κ(r)x(r), κ(−r) = κ(r), and λ(−r) = λ(r) for all
r ∈ (−δ, δ).

We give the arguments for the last statements: By the oddness of Φ̂ (cf.
(I.8.37)), Φ̂(−r, κ, λ) = 0 ⇔ Φ̂(r, κ, λ), whence κ(−r) = κ(r) and λ(−r) =
λ(r) by the uniqueness of the solutions (r, κ(r), λ(r)) of Φ̂ = 0 near (0, κ0, λ0).
By (I.8.33), SπPx = −Px, so that by (I.8.32), ψ(−Px, κ, λ) = Sπψ(Px, κ, λ).
Therefore, in the space of 2π-periodic functions, x(−r) = Sπx(r). After sub-
stituting κ(r)t for t (cf.(I.8.9)), we get x(−r) = Sπ/κ(r)x(r) for the 2π/κ(r)-
periodic solution (see also (I.8.47) below).

Corollary I.8.3 The tangent vector of the nontrivial solution curve
(x(r), λ(r)) at the bifurcation point (0, λ0) is given by

(2Re(ϕ0e
iκ0t), 0) ∈ (C1+α

2π/κ0
(R, Z) ∩ Cα

2π/κ0
(R, X))× R.(I.8.45)

Proof. By λ(−r) = λ(r) and κ(−r) = κ(r) we have clearly



44 Chapter I. Local Theory

d

dr
λ(r)

∣∣
r=0

=
d

dr
κ(r)

∣∣
r=0

= 0.(I.8.46)

After substituting κ(r)t for t (cf. (I.8.9)), the bifurcating 2π/κ(r)-periodic
solutions of (I.8.1) are by construction

x(r)(t) = r(ϕ0e
iκ(r)t + ϕ0e

−iκ(r)t)

+ ψ(r(ϕ0e
iκ(r)t + ϕ0e

−iκ(r)t), κ(r), λ(r)).
(I.8.47)

The same arguments as for (I.5.18) give (I.8.45). 
�
Remark I.8.4 If (I.8.1) is an ODE, i.e., if X = Z = Rn, then we can choose
E = W = C2π(R,R

n) = {x : R → Rn|x is continuous and 2π-periodic} and
Y = C1

2π(R,R
n) = {x : R → Rn|x, dx

dt ∈ C2π(R,R
n)} with norms ‖x‖E =

maxt∈R ‖x(t)‖ and ‖x‖Y = ‖x‖E + ‖ dx
dt ‖E. The crucial Proposition I.8.1

holds for these spaces, too. In particular, for the validity of (I.8.23) Hölder
continuity is not needed. For an ODE we can therefore save one order of
differentiability in (I.8.13): F ∈ C2(U × V,Rn) implies G ∈ C2(Ũ × Ṽ ,W ).

I.9 Bifurcation Formulas for Hopf Bifurcation

Since λ̇(0) = 0 (where ˙ = d
dr ), the sign of λ(r) = λ(−r) is not yet deter-

mined, and in order to sketch the bifurcation diagram in (C1+α
2π/κ(r)(R, Z) ∩

Cα
2π/κ(r)(R, X)) × R in lowest order, we give a formula for how to compute

λ̈(0) (and also κ̈(0)). We follow precisely the procedure of Section I.6, and
we make use of the formulas derived there, in particular, (I.6.9). In order
to have enough differentiability of G as given by (I.8.12), we assume that
F ∈ C4(U×V, Z). If (I.8.1) is an ODE, then it suffices that F ∈ C3(U×V, Z);
cf. Remark I.8.4. Our starting point is Φ̃(r, κ(r), λ(r)) = 0 for all r ∈ (−δ, δ),
whence

d2

dr2
Φ̃(r, κ(r), λ(r))|r=0

= D2
rrΦ̃(0, κ0, λ0) +DκΦ̃(0, κ0, λ0)κ̈(0) +DλΦ̃

0λ̈(0) = 0,

since κ̇(0) = λ̇(0) = 0 (cf. I.8.46).

(I.9.1)

Here “0” means evaluation at (0, κ0, λ0). Decomposing Φ̃ into real and imag-
inary parts as in (I.8.42), we solve (I.9.1) for (κ̈(0), λ̈(0)) using the inverse
matrix of (I.8.42) and (I.8.44):
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κ̈(0)

λ̈(0)

)
=

1

Reμ′(λ0)

(
Imμ′(λ0) −Reμ′(λ0)

1 0

)(
ReD2

rrΦ̃
0

ImD2
rrΦ̃

0

)
,

μ′(λ0) = 〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉.

(I.9.2)

By definitions (I.8.39) of Φ̃ and (I.8.34) of Φ̂,

D2
rrΦ̃(0, κ0, λ0) =

1

3
D3

rrrΦ̂(0, κ0, λ0), where

Φ̂(r, κ, λ)

=
1

2π

∫ 2π

0

〈G(r(ψ0 + ψ0) + ψ(r(ψ0 + ψ0), κ, λ), κ, λ), ψ
′
0〉dt.

(I.9.3)

In order to apply directly the computations of Section I.6, we make the
following definitions:

Φ(v, κ, λ) = QG(v + ψ(v, κ, λ), κ, λ),

v = r(ψ0 + ψ0), v̂0 = ψ0 + ψ0.
(I.9.4)

Observe that Φ coincides with definition (I.2.9) used in Section I.6. Then, in
view of the definition of Q (cf.(I.8.21)),

Φ̂(r, κ, λ) =
1

2π

∫ 2π

0

〈Φ(v, κ, λ), ψ′
0〉dt and

D3
rrrΦ̂(0, κ0, λ0) =

1

2π

∫ 2π

0

〈D3
vvvΦ(0, κ0, λ0)[v̂0, v̂0, v̂0], ψ

′
0〉dt.

(I.9.5)

From (I.6.9) we can read off

D3
vvvΦ(0, κ0, λ0)[v̂0, v̂0, v̂0]

= QD3
xxxG(0, κ0, λ0)[v̂0, v̂0, v̂0]− 3QD2

xxG(0, κ0, λ0)[./.],

where [./.] =
[v̂0, (I − P )(DxG(0, κ0, λ0))

−1(I −Q)D2
xxG(0, κ0, λ0)[v̂0, v̂0]].

(I.9.6)

We compute these terms using the definitions ofG (I.8.10), (I.9.4), and (I.9.5).
The first term is simple:

1

2π

∫ 2π

0

〈QD3
xxxG(0, κ0, λ0)[v̂0, v̂0, v̂0], ψ

′
0〉dt

= −3〈D3
xxxF (0, λ0)[ϕ0, ϕ0, ϕ0], ϕ

′
0〉.

(I.9.7)

For the second term, we compute
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D2
xx G(0, κ0, λ0)[v̂0, v̂0]

= −D2
xxF (0, λ0)[ϕ0, ϕ0]e

2it − 2D2
xxF (0, λ0)[ϕ0, ϕ0]

−D2
xxF (0, λ0)[ϕ0, ϕ0]e

−2it

= (I −Q)D2
xxG(0, κ0, λ0)[v̂0, v̂0].

(I.9.8)

The last equation follows from QD2
xxG(0, κ0, λ0)[v̂0, v̂0] = 0.

Recall that DxG(0, κ0, λ0) = κ0
d
dt − A0 = J0. Then the unique solutions

of J0x = z0e
±2it or J0x = z0 for z0 ∈ Z can be given explicitly. We consider

J0 as a mapping from (I−P )(E∩Y ) onto (I−Q)W = R(J0); i.e., we consider
J0 in the complement of its kernel N(J0) = R(Q); cf. (I.6.8).

Now,
x(t) = (±2iκ0 −A0)

−1z0e
±2it solves

J0x = z0e
±2it,

x(t) = (−A0)
−1z0 solves

J0x = z0,

(I.9.9)

and both solutions are in (I−P )(E∩Y ). Here we use again the nonresonance
condition (I.8.14). We insert these preimages J−1

0 (I−Q)D2
xxG(0, κ0, λ0)[v̂0, v̂0]

into (I.9.6), and we get

1

2π

∫ 2π

0

〈QD2
xxG(0, κ0, λ0)[ϕ0e

it + ϕ0e
−it,

− (2iκ0 −A0)
−1D2

xxF (0, λ0)[ϕ0, ϕ0]e
2it

+ 2A−1
0 D2

xxF (0, λ0)[ϕ0, ϕ0]

− (−2iκ0 −A0)
−1D2

xxF (0, λ0)[ϕ0, ϕ0]e
−2it], ϕ′

0e
−it〉dt

= 〈D2
xxF (0, λ0)[ϕ0, (2iκ0 −A0)

−1D2
xxF (0, λ0)[ϕ0, ϕ0]], ϕ

′
0〉

− 2〈D2
xxF (0, λ0)[ϕ0, A

−1
0 D2

xxF (0, λ0)[ϕ0, ϕ0]], ϕ
′
0〉.

(I.9.10)

This gives finally, using (I.9.3), (I.9.5), and (I.9.6),

D2
rrΦ̃(0, κ0, λ0) =

1

3
D3

rrrΦ̂(0, κ0, λ0)

= − 〈D3
xxxF (0, λ0)[ϕ0, ϕ0, ϕ0], ϕ

′
0〉

− 〈D2
xxF (0, λ0)[ϕ0, (2iκ0 −A0)

−1D2
xxF (0, λ0)[ϕ0, ϕ0]], ϕ

′
0〉

+ 2〈D2
xxF (0, λ0)[ϕ0, A

−1
0 D2

xxF (0, λ0)[ϕ0, ϕ0]], ϕ
′
0〉.

(I.9.11)

Inserting this complex number (I.9.11) into (I.9.2) provides the Bifurcation
Formulas for the Hopf bifurcation, where we make use also of Corollary
I.8.3:
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Theorem I.9.1 Let {(x(r), λ(r))} be the curve of 2π/κ(r)-periodic solutions
of (I.8.1) according to Theorem I.8.2. Then

d

dr
x(r)

∣∣
r=0

(t) = 2Re(ϕ0e
iκ0t),

d

dr
κ(r)

∣∣
r=0

=
d

dr
λ(r)

∣∣
r=0

= 0,

d2

dr2
κ(r)

∣∣
r=0

=
Imμ′(λ0)

Reμ′(λ0)
ReD2

rrΦ̃
0 − ImD2

rrΦ̃
0,

d2

dr2
λ(r)

∣∣
r=0

=
1

Reμ′(λ0)
ReD2

rrΦ̃
0,

(I.9.12)

where D2
rrΦ̃

0 is given by (I.9.11), and Reμ′(λ0) �= 0 is the nondegeneracy
condition for μ′(λ0) = 〈D2

xλF (0, λ0)ϕ0, ϕ
′
0〉 (cf. (I.8.44)). (We recall that

the pairing 〈 , 〉 is bilinear also in the complex case.)

If ReD2
rrΦ̃

0 �= 0, we have a sub- or supercritical “pitchfork” bifurcation of
periodic solutions sketched in Figure I.9.1.

amplitude of x

R

R

R

λ0 λ0R

Figure I.9.1

In contrast to Figure I.5.1, we sketch only one branch in Figure I.9.1, which
represents the amplitude maxt∈R ‖x(t)‖ (with norm in X) of the bifurcating
periodic solution. By (I.9.12)1 that amplitude is of order |r|. Recall that the
curve {(x(r), λ(r))} for negative r is obtained from that for positive r by a
phase shift of half the period (and all other periodic solutions are obtained
by phase shifts).

Remark I.9.2 One might ask why the linearization A0 = DxF (0, λ0) has to
generate a holomorphic semigroup eA0t that is compact for t > 0 (cf.(I.8.8)).
As a matter of fact, this strong assumption was used only for the proof of
Proposition I.8.1. (The compactness was used only for (I.8.20).)

The assumption (I.8.8) is obviously satisfied if:
(I.8.1) is an ODE; i.e., X = Z = Rn;
(I.8.1) is a parabolic PDE; i.e., if A0 is an elliptic partial differential
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operator over a bounded domain; cf. Section III.4.
There is a large class of evolution equations, however, for which assump-

tion (I.8.8) is not satisfied, namely, the RFDEs (retarded functional differ-
ential equations). We briefly comment on these.

For a function x : R → Rn we define xt : [−h, 0] → Rn by xt(θ) = x(t+θ)
for −h ≤ θ ≤ 0, and a parameter-dependent RFDE is of the form

dx

dt
(t) = F (xt, λ).(I.9.13)

Here
F : U × V → Z = Rn, where
0 ∈ U ⊂ X = C([−h, 0],Rn) and λ0 ∈ V ⊂ R.
U and V are open and F ∈ C2(U × V, Z).

(I.9.14)

Let F (0, λ) = 0 (such that there is the trivial solution line {(0, λ)} ⊂ X×R),
and let A(λ) = DxF (0, λ) as before. Then (I.9.13) is written as

dx

dt
(t) = A(λ)xt +R(xt, λ) with a remainder

R(xt, λ) = F (xt, λ)−A(λ)xt.
(I.9.15)

As expounded in [36], (I.9.15) can be considered as an abstract evolution
equation

du

dt
= A�∗(λ)u +R�∗(u, λ) in some

infinite-dimensional phase space X�∗
(I.9.16)

that is related to X. (We cannot go into the details here.) The linearization
A�∗

0 = A�∗(λ0), unfortunately, does not satisfy assumptions (I.8.8). It gene-
rates a strongly continuous semigroup that is eventually compact (for t ≥ h)
and that eventually regularizes (i.e., it maps into D(A�∗

0 ) for t ≥ h). To
summarize, the proof of Proposition I.8.1 cannot be modified for this situ-
ation. That is the reason why for a proof of the Hopf Bifurcation Theorem
for RFDEs the setting (I.9.16) is not useful. For the original formulation
(I.9.13) or (I.9.15), however, we can follow the lines of the proof of Section
I.8.

By a substitution κt for t we normalize the unknown period 2π/κ to 2π,
but in contrast to an ODE, the parameter κ appears also on the right-hand
side of (I.9.13); that is,

κ
dx

dt
(t) = F̃ (xt, κ, λ), where

F̃ (xt, κ, λ) = F (xt(κ·), λ);
(I.9.17)

i.e., the mapping F is evaluated at the function xt(κθ) = x(t+ κθ) for −h ≤
θ ≤ 0. Setting
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G̃(x, κ, λ)(t) ≡ κ
dx

dt
(t)− F̃ (xt, κ, λ),

G̃ : Ũ × Ṽ → C2π(R, Z), Z = Rn,

0 ∈ Ũ ⊂ C1
2π(R, Z), (κ0, λ0) ∈ Ṽ ⊂ R2,

(I.9.18)

we obtain

DxG̃(0, κ0, λ0) = κ0
d

dt
− Ã(κ0, λ0) ≡ J̃0, where

(Ã(κ0, λ0)x)(t) = DxF (0, λ0)xt(κ0·) = A0xt(κ0·).
(I.9.19)

As shown in [63], Chapter 9, or in [36], Section VI.4, the operator

J̃0 : C1
2π(R, Z) → C2π(R, Z)

is a Fredholm operator of index zero.
(I.9.20)

Therefore, the crucial property for the application of the method of Lyapunov–
Schmidt for G̃(x, κ, λ) = 0 near (0, κ0, λ0) is satisfied. Observe also that the
equivariance (I.8.31) holds as well for autonomous RFDEs.

Let iκ0 be a simple eigenvalue of A0 (in the sense that A0xt = iκ0x(t)
holds for some function x(t) = eiκ0tϕ0 with ϕ0 ∈ Cn). According to the
theory expounded in [36], Chapter IV, iκ0 is a simple zero of the determi-
nant of the characteristic matrix Δ(z, λ0) ∈ L(Cn,Cn) of A0 = A(λ0) ∈
L(X,Z) (see (I.9.21) below), and 0 is a simple eigenvalue of Δ(iκ0, λ0); i.e.,
Δ(iκ0, λ0)ϕ0 = 0 and ΔT (iκ0, λ0)ϕ

′
0 = 0 for some ϕ0, ϕ

′
0 ∈ Cn, where we

can normalize 〈ϕ0, ϕ
′
0〉 = 1. The pairing 〈 , 〉 between Z = Cn = Z ′ is the

bilinear complexification of the Euclidean scalar product in Rn. The nonres-
onance condition means that Δ(imκ0, λ0) is regular for all m ∈ Z\{1,−1}.

Setting ψ0(t) = eitϕ0, then N(J̃0) = span[ψ0, ψ0], and for the defini-
tion of the projection Q (cf. (I.8.21)) we take ψ′

0(t) = e−itϕ′
0. Observe that

ψ′
0(−t), ψ

′
0(−t) are 2π-periodic solutions of the so-called transposed RFDE;

that is, (κ0
d
dt − ÃT (κ0, λ0))z = 0, and property (I.9.20) is proved by showing

that R(J̃0) = N(Q).
The method of Lyapunov−Schmidt provides a one-dimensional complex

equation of the form (I.8.34) or, by equivariance, one complex equation
Φ̂(r, κ, λ) = 0 for the real variables (r, κ, λ) near (0, κ0, λ0); cf. (I.8.37). How-
ever, the computations (I.8.41) are different now. We use the representations

A(λ)xt =
∫ h

0 dζ(θ, λ)x(t − θ),

Δ(z, λ) = zE − ∫ h

0 dζ(θ, λ)e−zθ ; cf.[36], Chapter IV.
(I.9.21)

Then for Φ̃ as defined in (I.8.39) we obtain in view of (I.8.41), (I.9.19),
(I.9.21), and 〈ϕ0, ϕ

′
0〉 = 1,
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DκΦ̃(0, κ0, λ0)

= i(1 +
∫ h

0 〈dζ(θ, λ0)θe
−iκ0θϕ0, ϕ

′
0〉)

= i〈DzΔ(iκ0, λ0)ϕ0, ϕ
′
0〉,

DλΦ̃(0, κ0, λ0) = 〈DλΔ(iκ0, λ0)ϕ0, ϕ
′
0〉.

(I.9.22)

Let μ(λ) be the simple eigenvalue perturbation of A(λ) = DxF (0, λ)
through μ(λ0) = iκ0. Then μ(λ) satisfies the characteristic equation det
Δ(μ(λ), λ) = 0 or Δ(μ(λ), λ)ϕ(λ) = 0, where ϕ(λ0) = ϕ0. By differentiating
we obtain, in view of 〈Δ(iκ0, λ0)ϕ

′(λ0), ϕ
′
0〉 = 〈ϕ′(λ0), Δ

T (iκ0, λ0)ϕ
′
0〉 = 0,

〈DzΔ(iκ0, λ0)ϕ0, ϕ
′
0〉μ′(λ0) + 〈DλΔ(iκ0, λ0)ϕ0, ϕ

′
0〉 = 0.(I.9.23)

Decomposing Φ̃ into real and imaginary parts, we get as in (I.8.42),

D(κ,λ)Φ̃(0, κ0, λ0) =

(
ReDκΦ̃(0, κ0, λ0) ReDλΦ̃(0, κ0, λ0)

ImDκΦ̃(0, κ0, λ0) ImDλΦ̃(0, κ0, λ0)

)
,

and by (I.9.22), (I.9.23),

det D(κ,λ)Φ̃(0, κ0, λ0) = Reμ′(λ0)|〈DzΔ(iκ0, λ0)ϕ0, ϕ
′
0〉|2

�= 0 ⇔ Reμ′(λ0) �= 0,

(I.9.24)

since 〈DzΔ(iκ0, λ0)ϕ0, ϕ
′
0〉 �= 0 by the simplicity of the eigenvalue iκ0 and

the results of [36], Section IV.5. (Note that we normalize 〈ϕ0, ϕ
′
0〉 = 1 but

not 〈DzΔ(iκ0, λ0)ϕ0, ϕ
′
0〉.)

The conclusion from (I.9.24) is the same as that from (I.8.42)–(I.8.44),
namely, the Hopf Bifurcation Theorem for RFDEs:

Under formally the same assumptions as for Theorem I.8.2, summarized
and explained above in this remark, there exists a unique (up to phase shifts)
smooth curve {(x(r), λ(r))} of (real) 2π/κ(r)-periodic solutions of (I.9.13)
through (x(0), λ(0)) = (0, λ0) with 2π/κ(0) = 2π/κ0 in C1

2π/κ(r)(R, Z) × R.

Furthermore, x(−r) = Sπ/κ(r)x(r), κ(−r) = κ(r), λ(−r) = λ(r) for all r ∈
(−δ, δ), and d

drx(r)|r=0(t) = 2Re(ϕ0e
iκ0t).

The Bifurcation Formulas are derived as we did before in this section:
The inversion of the matrix (I.9.24)1 yields via (I.9.1) the formulas for κ̈(0)
and λ̈(0) (where clearly, we use (I.9.22), (I.9.23)). This yields, for instance,

λ̈(0) =
Re〈DzΔ(iκ0, λ0)ϕ0, ϕ

′
0〉ReD2

rrΦ̃
0 + Im〈./.〉ImD2

rrΦ̃
0

Reμ′(λ0)|〈DzΔ(iκ0, λ0)ϕ0, ϕ′
0〉|2

.(I.9.25)

The crucial quantity is D2
rrΦ̃

0 given in (I.9.3)–(I.9.6), where now G is re-
placed by G̃ from (I.9.18). This means that in (I.9.7), the vector ϕ0 has
to be replaced by the function eiκ0θϕ0. (Recall that F (·, λ0) acts on X =
C([−h, 0],Cn).) The same holds true in (I.9.8), and for the inversion of J̃0
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from (I.9.19) in (I −Q)W we make use of the following:

J̃0x = z0e
imt ⇔ x(t) = w0e

imt, where

Δ(imκ0, λ0)w0 = z0 for w0, z0 ∈ Cn

⇔ w0 = Δ−1(imκ0, λ0)z0 for m ∈ Z\{1,−1}.
(I.9.26)

(By the nonresonance condition, Δ(imκ0, λ0) is regular for all m ∈ Z\{1,−1}.)
This yields for DrrΦ̃

0 the expression (I.9.11), where now the resolvents
(2iκ0−A0)

−1 and A−1
0 are replaced by e2iκ0θΔ−1(2iκ0, λ0) and −Δ−1(0, λ0),

respectively, and where, as before, ϕ0 is replaced by eiκ0θϕ0. (Recall that
F (·, λ0) maps into Z = Cn.) We leave formula for κ̈(0) as a simple con-
sequence to the reader.

The preceding proof of the Hopf Bifurcation Theorem for RFDEs fol-
lows the proof for infinite-dimensional evolution equations (I.8.1). The al-
ternative suggested in [36] is the following: Reduce the RFDE to a finite-
dimensional center manifold and afterwards apply the Hopf Bifurcation The-
orem for ODEs, whose proof is the same as for infinite-dimensional evolution
equations. The proof in [63], however, is in the spirit of that presented here.

I.10 A Lyapunov Center Theorem

In this section we prove a bifurcation of periodic solutions of an evolution
equation that does not depend on a real parameter. We show the existence
of periodic solutions with small amplitude of a Hamiltonian system

dx

dt
= F (x)(I.10.1)

bifurcating from the stationary solution x = 0 (i.e., F (0) = 0). Although
there is no explicit parameter involved in (I.10.1), the notion of a bifurca-
tion is justified: We learned in Section I.8 that for autonomous systems the
period can be considered as a second hidden parameter, and we show that
the existence of small-amplitude periodic solutions of (I.10.1) is due to a one-
parameter bifurcation with the period as a parameter. Recall that the Hopf
bifurcation is a two-parameter bifurcation, and the release of one parame-
ter obviously requires more restrictions on (I.10.1), which is its Hamiltonian
structure.

In the following proof it will be nowhere used that the spaces X ⊂ Z are
finite-dimensional. But since we know reasonable applications only if X = Z
is finite-dimensional (see Remark I.10.1 below), we assume that
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F : U → Z = Rn, where
0 ∈ U ⊂ X = Rn, and U is an open neighborhood, and
F (0) = 0, F ∈ C2(U,Z).

(I.10.2)

We identify F with F (·, λ0) and impose the same hypotheses on F as we did
in Section I.8 on F (·, λ0). In particular, we assume (I.8.5) and (I.8.14), and
we realize that (I.8.8) is automatically satisfied for A0 = DF (0) ∈ L(Rn,Rn).
We will return to the assumption (I.8.5) (cf. (I.10.10)) when we explain the
Hamiltonian structure of (I.10.1).

The space X = Z = Rn is a Hilbert space with a scalar product ( , ).
Let

H : U → R be in C3(U,R), U ⊂ X = Rn;
we call such a mapping Hamiltonian.

(I.10.3)

This Hamiltonian H defines a potential operator ∇H in the sense of Defini-
tion I.3.1 as follows:

DH(x)h = (∇H(x), h) for all x ∈ U, h ∈ X = Rn,(I.10.4)

since all linear functionals DH(x) : X → R are represented as in (I.10.4) via
a scalar product. Obviously, ∇H : U → Z = Rn is in C2(U,Z).

Next we choose a particular element J in L(Rn,Rn):

Let J ∈ L(Rn,Rn) satisfy
J2 = −I, (Jx, x) = 0 for all x ∈ X = Rn.

(I.10.5)

Then (I.10.1) is called a Hamiltonian system if

dx

dt
= F (x) = J∇H(x).(I.10.6)

Typically, when X = Z = Rn is endowed with the canonical orthonormal
basis with respect to the Euclidean scalar product, such a mapping J as
required in (I.10.5) exists if n = 2m and J is represented by the matrix

J =

(
0 −E
E 0

)
, where E is the

m-dimensional identity matrix.
(I.10.7)

It is easily verified that for any solution x(t) of (I.10.6), the Hamiltonian
H gives a first conservation law in the following sense:

H(x(t)) = const.(I.10.8)

We define A0 = DF (0) and by (I.10.6),

A0 = JD∇H(0) ≡ JB0.(I.10.9)
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When expressed in coordinates, ∇H(x) is a column called the “gradient of
H at x,” and D∇H(x) is the “Hessian matrix of H at x,” which is obvi-
ously symmetric (cf. Proposition I.3.3). In particular, B0 is symmetric; i.e.,
(B0x1, x2) = (x1, B0x2) for all x1, x2 ∈ X = Rn.

Remark I.10.1 Infinite-dimensional Hamiltonian systems are typically hy-
perbolic PDEs, and the infinitely many (discrete) negative eigenvalues of B0

become infinitely many (discrete) eigenvalues of A0 on the imaginary axis
(cf. Remark III.3.1). In this case, however, A0 does not generate a holomor-
phic semigroup, and assumption (I.8.8) is not satisfied. On the other hand,
from an abstract point of view, one might consider (I.10.6) as an infinite-
dimensional system, where ∇H is the gradient of a potential H in the sense
of Section I.3 and the mapping J ∈ L(Z,Z) satisfies (I.10.5) with the scalar
product (I.3.1). But then the spectral property (I.11.32) is also an obstruc-
tion to the generation of a holomorphic semigroup unless A0 ∈ L(Z,Z) is
bounded. For that situation, however, we do not know an application.

We assume for A0 as given by (I.10.9) the special (but typical) situation
that

iκ0(�= 0) is an eigenvalue of A0 = JB0 with eigenvector
ϕ0 ∈ Cn (= complexification of Rn) such that Jϕ0 = iϕ0,
and dimN(±iκ0I −A0) = 1.

(I.10.10)

Clearly, Z = Rn is complexified to Z = Zc = Cn. In order to stay with
our notation of Section I.8, the pairing 〈 , 〉 between Z = Cn and
Z ′ = Cn is the bilinear complexification of the real scalar product ( , )
on Rn. Therefore, J ∈ L(Rn,Rn) is complexified to J ∈ L(Cn,Cn) sat-
isfying 〈Jz, z〉 = 0 or 〈Jz1, z2〉 = −〈z1, Jz2〉 for all z, z1, z2 ∈ Z = Cn.
Also, A′

0 = (JB0)
′ = B′

0J
′ = −B0J has the eigenvalue iκ0 with eigenvector

ϕ0, since JB0ϕ0 = B0Jϕ0 by assumption Jϕ0 = iϕ0. Thus ϕ′
0 = ϕ0 and

〈ϕ0, ϕ
′
0〉 = 〈ϕ0, ϕ0〉 �= 0 for ϕ0 �= 0. From (I.10.10) it follows that

dimN(±iκ0I −A′
0) = 1, whence

N(iκ0I −A′
0) = span[ϕ0].

(I.10.11)

Finally, by R(iκ0I−A0) = {z ∈ Z|〈z, ϕ0〉 = 0} and 〈ϕ0, ϕ0〉 �= 0, assumption
(I.10.10) implies that

iκ0 is a simple eigenvalue of A0

in the sense of (I.8.5).
(I.10.12)

The assumption (I.10.10) is satisfied if B0 has a double real eigenvalue κ0 (�=
0) with eigenvectors x1 and x2 = Jx1, and −κ0 is not an eigenvalue of
B0. Then (I.10.10) holds with ϕ0 = −x1 + ix2. Note that 〈ϕ0, ϕ0〉 = 0 =
〈B0ϕ0, ϕ0〉 in this case.
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In view of (I.10.12), we can proceed as in Section I.8 using also its notation.
Here we have in particular

ϕ′
0 = ϕ0, ψ

′
0 = ψ0,

and we normalize 〈ϕ0, ϕ0〉 = 1.
(I.10.13)

Since (I.8.8) is trivially satisfied, we can use Proposition I.8.1 for a
Lyapunov–Schmidt reduction of

G(x, κ) ≡ κ
dx

dt
− F (x) = 0, where

G : Ũ × Ṽ −→ C2π(R, Z), and

0 ∈ Ũ ⊂ C1
2π(R, Z), κ0 ∈ Ṽ ⊂ R are neighborhoods.

(I.10.14)

(Observe that in our finite-dimensional setting we can choose α = 0 in
(I.8.11), and Proposition I.8.1 holds. This saves us one order of differentiabil-
ity of F in (I.8.13): G ∈ Ck(Ũ × Ṽ , C2π(R, Z)), provided that F ∈ Ck(U,Z).)

By Theorem I.2.3, equation (I.10.14) is equivalent to the one-dimensional
complex equation (cf. (I.8.34))

1

2π

∫ 2π

0

〈G(Px + ψ(Px, κ), κ), ψ′
0〉dt = 0,

or, by definition, to

Φ̂(r, κ) = 0 if Px = r(ψ0 + ψ0) (cf. (I.8.34), (I.8.38)).

(I.10.15)

Proposition I.10.2 Under the assumptions of this section,

ReΦ̂(r, κ) = 0 for all r ∈ (−δ, δ), κ ∈ Ṽ2 ⊂ R;(I.10.16)

i.e., the bifurcation equation (I.10.15) is in fact a one-dimensional real equa-
tion.

Proof. By the definition of the function ψ (cf. the proof of Theorem I.2.3,
in particular (I.2.8)),

(I −Q)G(Px+ ψ(Px, κ), κ) = 0, or

(I −Q)
(
κ
d

dt
(Px+ ψ(Px, κ))− F (Px+ ψ(Px, κ))

)
= 0.

(I.10.17)

Since Q d
dt =

d
dtP and ψ(Px, κ) ∈ N(P ), this implies

κ
d

dt
ψ(Px, κ) = (I −Q)F (Px+ ψ(Px, κ)).(I.10.18)

Now,
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Φ̂(r, κ) =
1

2π

∫ 2π

0

κr
〈 d

dt
(ψ0 + ψ0), ψ

′
0

〉
dt

− 1

2π

∫ 2π

0

〈F (Px + ψ(Px, κ)), ψ′
0〉dt,

(I.10.19)

since d
dtψ(Px, κ) ∈ N(P ) and Px = r(ψ0 + ψ0). The first term in (I.10.19)

equals iκr, so that for real F (Px+ ψ(Px, κ)),

ReΦ̂(r, κ) = − 1

2π

∫ 2π

0

〈F (Px + ψ(Px, κ)),Reψ′
0〉dt.(I.10.20)

We show that (I.10.20) vanishes identically. By Jϕ0 = iϕ0 and ψ′
0 = ψ0, we

have for Px = r(ψ0 + ψ0),

d

dt
Px = rReJψ′

0.(I.10.21)

Using F = J∇H, J ′ = −J , and (I.10.21), we obtain for r �= 0,

ReΦ̂(r, κ) =
1

2π

∫ 2π

0

〈
∇H(Px+ ψ(Px, κ)),

1

r

d

dt
Px

〉
dt

=
1

2πr

∫ 2π

0

d

dt
H(Px+ ψ(Px, κ))dt

− 1

2πr

∫ 2π

0

〈
∇H(Px+ ψ(Px, κ)),

d

dt
ψ(Px, κ)

〉
dt

=
1

2πrκ

∫ 2π

0

〈∇H(Px+ ψ(Px, κ)), (I −Q)J∇H(./.)〉dt

(I.10.22)

by 2π-periodicity and (I.10.18). Next we use JQ = QJ and the following
symmetry of the project́ıon Q:

1
2π

∫ 2π

0 〈Qz1(t), z2(t)〉dt = 1
2π

∫ 2π

0 〈z1(t), Qz2(t)〉dt
for all z1, z2 ∈ C2π(R, Z).

(I.10.23)

This gives finally, in view of (I −Q)2 = I −Q,

ReΦ̂(r, κ)

=
1

2πrκ

∫ 2π

0

〈(I −Q)∇H(Px+ ψ(Px, κ)), J(I −Q)∇H(./.)〉dt

= 0 by 〈z, Jz〉 = 0 for all z ∈ Z.

(I.10.24)

Since Φ̂(0, κ) = 0, we have shown that ReΦ̂(r, κ) = 0 for all r ∈ (−δ, δ) and
for all κ(�= 0) ∈ Ṽ2. 
�
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Proposition I.10.2 clearly implies that ReΦ̃(r, κ) = ReΦ̂(r, κ)/r ≡ 0 and
nontrivial solutions (r �= 0) of (I.10.15) are given by

ImΦ̃(r, κ) = 0.(I.10.25)

The computation (I.8.41) gives Dκ(ImΦ̃(0, κ0)) = 1, and by the Implicit
Function Theorem, (I.10.25) is solved by a continuously differentiable func-
tion κ : (−δ, δ) → Ṽ2, κ(0) = κ0, such that ImΦ̃(r, κ(r)) = 0 for all
r ∈ (−δ, δ). Furthermore, by the oddness of Φ̂ with respect to r (cf. (I.8.37)),
we have κ(−r) = κ(r), and Corollary I.8.3 and Theorem I.9.1 hold as well in
a simplified form. We summarize:

Theorem I.10.3 For a Hamiltonian system

dx

dt
= J∇H(x)

in X = Rn we assume that H ∈ C3(U,R) in a neighborhood U of 0 and
∇H(0) = 0. We make the spectral assumption (I.10.10), which implies that

iκ0(�= 0) is a simple eigenvalue of A0 = JD∇H(0)
(D∇H = the Hessian of H) with eigenvector ϕ0 ∈ Cn

such that Jϕ0 = iϕ0.

We impose the nonresonance condition:

For all m ∈ Z\{1,−1}, imκ0 is not an eigenvalue of A0.

Then there exists a continuously differentiable curve {x(r)|r ∈ (−δ, δ)} of
(real) 2π/κ(r)-periodic solutions of (I.10.6) through x(0) = 0 and κ(0) = κ0

in C1
2π/κ(r)(R, X). Furthermore, κ(−r) = κ(r) and

x(r)(t) = 2rRe(ϕ0e
iκ(r)t) + ψ(2rRe(ϕ0e

iκ(r)t), κ(r))(I.10.26)

such that

d

dr
x(r)

∣∣
r=0

(t) = 2Re(ϕ0e
iκ0t),

d

dr
κ(r)

∣∣
r=0

= 0,
d2

dr2
κ(r)

∣∣
r=0

= −ImD2
rrΦ̃

0,

(I.10.27)

where D2
rrΦ̃

0 is given by (I.9.11) with F (0, λ0) = J∇H(0) and Dx = D. (For
the last formula we need H ∈ C4(U,R) and by Proposition I.10.2, the number
D2

rrΦ̃
0 is purely imaginary.)

In Section I.11 we generalize Theorem I.10.3 to the case that iκ0 is a
simple eigenvalue of A0 without the restriction Jϕ0 = iϕ0 for the eigenvector
ϕ0; cf. Theorem I.11.4. In that case, Proposition I.10.2 is not necessarily true
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but is replaced by (I.11.25). The parameter λ in Theorem I.11.4 can be frozen
such that the statement is precisely the same as that of Theorem I.10.3.

I.11 Constrained Hopf Bifurcation for Hamiltonian,
Reversible, and Conservative Systems

The Hopf Bifurcation Theorem, Theorem I.8.2, for a parameter-dependent
evolution equation

dx

dt
= F (x, λ)(I.11.1)

in a Banach space Z is proved under the following spectral hypotheses on the
Fréchet derivative DxF (0, λ) along the trivial solutions F (0, λ) = 0:

iκ0(�= 0) is a simple eigenvalue of DxF (0, λ0),
and for the simple eigenvalue perturbation
DxF (0, λ)ϕ(λ) = μ(λ)ϕ(λ) with μ(λ0) = iκ0,
the nondegeneracy Reμ′(λ0) �= 0 holds.

(I.11.2)

The algebraically simple eigenvalue μ(λ) crosses the imaginary axis in a
nondegenerate way such that by the Principle of Linearized Stability, the tri-
vial solution x = 0 loses stability when the parameter λ crosses the critical
value λ0; cf. Section I.7. For physical reasons one expects that a loss of sta-
bility “creates” new solutions, and by the absence of bifurcating stationary
solutions (zero is not an eigenvalue of DxF (0, λ0)), those are the periodic
solutions guaranteed by the Hopf Bifurcation Theorem. (In Section I.12 we
show that the periodic solutions actually gain stability.) This scenario, how-
ever, is not restricted to the situation described in (I.11.2): Any crossing of
eigenvalues of arbitrary multiplicity causes a loss of stability, and the physi-
cal expectation about the creation of new solutions is indeed satisfied under
quite general assumptions; see Remark I.11.13 below. In this section we do
not consider Hopf Bifurcation in its greatest generality, but we admit two
slight generalizations of (I.11.2):

(1) iκ0 is an algebraically simple eigenvalue of DxF (0, λ0), but we give up the
nondegeneracy Reμ′(λ0) �= 0,

(2) iκ0 is a geometrically simple eigenvalue of DxF (0, λ0), but its algebraic
multiplicity is arbitrary.

We comment on these generalizations:

(1) In Section I.17 we prove Hopf Bifurcation under the degenerate assumption
Reμ′(λ0) = · · · = Reμ(m−1)(λ0) = 0 but Reμ(m)(λ0) �= 0 for some odd m.
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That loss of stability of the trivial solution causes the bifurcation of at
least one and at most m curves of periodic solutions. We prove also a
general Principle of Exchange of Stability for the bunch of periodic orbits
including the line of trivial solutions; cf. Section I.17.
As we see below in this section, there are systems (I.11.1) with a structural
constraint such that Reμ(λ) ≡ 0 for all λ near λ0; in other words, the
perturbed eigenvalues μ(λ) in (I.11.2) stay necessarily on the imaginary
axis. A Constrained Hopf Bifurcation Theorem guarantees bifurcation of
periodic solutions in this case, too; see Theorem I.11.2 below. Since the
spectral properties are the same for all λ near λ0, the parameter λ plays
no role, and when λ is frozen, Theorem I.11.2 is a Center Theorem as in
Section I.10 with the period as a hidden parameter.

(2) The generalization from algebraic to geometric simplicity of the eigen-
value iκ0 seems to be quite natural in view of analogous results in sta-
tionary bifurcation theory: In Theorem I.5.1, if X ⊂ Z, the eigenvalue 0
of DxF (0, λ0) is only geometrically simple, and the assumed nondegener-
acy (I.5.3) is not related to the eigenvalue perturbation, which might be
complicated if the algebraic multiplicity of the eigenvalue zero is large. As
discussed in Case 1 of Theorem II.4.4, the nondegeneracy (I.5.3) implies
an “odd crossing number”; cf. Definition II.4.1.
If the eigenvalue iκ0 is only geometrically simple, we give an analogous
nondegeneracy that guarantees bifurcation of periodic solutions. However,
in contrast to the stationary case, only systems (I.11.1) with a structural
constraint are admitted; see Theorem I.11.2. It turns out that the period
can be frozen, and in this case, Theorem I.11.2 describes again a one-
parameter bifurcation.

The peculiarity of the Constrained Hopf Bifurcation Theorem proved in
this section consists on the one hand in extensions of the hypotheses of the
(classical) Hopf Bifurcation Theorem, and on the other hand in restrictions to
systems with structural constraints. These constraints are satisfied by Hamil-
tonian, reversible, and conservative systems.

Accordingly, we replace the assumptions (I.11.2) by

dimN(±iκ0I −DxF (0, λ0)) = 1,
±iκ0I −DxF (0, λ0) are Fredholm operators
of index zero.

(I.11.3)

Note that (I.11.3) replaces only assumption (I.8.5); all other assumptions
on F and the notation of Section I.8 are kept. (Assumptions (I.8.6), (I.8.7),
however, make no sense under (I.11.3).) In a first step we prove the possibility
of a Lyapunov–Schmidt reduction for
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G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0

for (x, κ, λ) ∈ Ũ × Ṽ ,

0 ∈ Ũ ⊂ E ∩ Y, (κ0, λ0) ∈ Ṽ ⊂ R2;

(I.11.4)

cf. (I.8.12). Note that the proof of Proposition I.8.1 uses the simplicity (I.8.5)
of the eigenvalue iκ0. As before, we set A0 = DxF (0, λ0), and the Fredholm
property (I.11.3) implies

X = N(iκ0I −A0)⊕X0,
Z = R(iκ0I −A0)⊕ Z0, cf. (I.2.2),

(I.11.5)

where dimZ0 = 1. We choose

N(−iκ0I −A0) ⊂ X0 and
Z0 ⊂ R(−iκ0I −A0).

(I.11.6)

While the possibility of the first choice is obvious, the second choice is justified
as follows. By the Closed Range Theorem,

dimN(±iκ0I −A′
0) = 1 and

R(iκ0I −A0) = {z ∈ Z|〈z, ϕ′
0〉 = 0}

if N(iκ0I −A′
0) = span[ϕ′

0].
(I.11.7)

Let x0 ∈ X\R(iκ0I −A0), which exists, since X ⊂ Z is dense.
Then, by (I.11.7)2, 〈(−iκ0I −A0)x0, ϕ

′
0〉 = −2iκ0〈x0, ϕ

′
0〉 �= 0 and

(−iκ0I −A0)x0 ∈ R(−iκ0I −A0)\R(iκ0I −A0). Let

N(iκ0I −A0) = span[ϕ0],
Z0 = span[ϕ1] , ϕ1 ∈ R(−iκ0I −A0).

(I.11.8)

According to the Hahn–Banach Theorem, there are

ϕ′
1 ∈ X ′ with 〈ϕ0, ϕ

′
1〉 = 1 and

〈x, ϕ′
1〉 = 0 for all x ∈ X0,

ϕ′
0 ∈ Z ′ with 〈ϕ1, ϕ

′
0〉 = 1 and

〈z, ϕ′
0〉 = 0 for all z ∈ R(iκ0I −A0).

(I.11.9)

Again by the Closed Range Theorem, span[ϕ′
0] = N(iκ0I − A′

0), and by the
choices of X0 and Z0 in (I.11.6),

〈ϕ0, ϕ
′
1〉 = 0, since span[ϕ0] = N(−iκ0I −A0),

〈ϕ1, ϕ
′
0〉 = 0, since span[ϕ′

0] = N(−iκ0I −A′
0).

(I.11.10)

The relations (I.11.9), (I.11.10) clearly imply

〈ϕ0, ϕ
′
1〉 = 0, 〈ϕ′

0, ϕ
′
1〉 = 1,

〈ϕ1, ϕ
′
0〉 = 0, 〈ϕ1, ϕ

′
0〉 = 1,

(I.11.11)
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so that
P0x = 〈x, ϕ′

1〉ϕ0 + 〈x, ϕ′
1〉ϕ0

is a projection P0 ∈ L(X,X)
onto N(iκ0I −A0)⊕N(−iκ0I −A0), and

Q0z = 〈z, ϕ′
0〉ϕ1 + 〈z, ϕ′

0〉ϕ1

is a projection Q0 ∈ L(Z,Z) onto Z0 ⊕ Z0.

(I.11.12)

Defining
ψ0(t) = ϕ0e

it, ψ′
1(t) = ϕ′

1e
−it,

ψ1(t) = ϕ1e
it, ψ′

0(t) = ϕ′
0e

−it,

(Px)(t) =
1

2π

∫ 2π

0

〈x(t), ψ′
1(t)〉dtψ0(t)

+
1

2π

∫ 2π

0

〈x(t), ψ′
1(t)〉dtψ0(t),

(Qz)(t) =
1

2π

∫ 2π

0

〈z(t), ψ′
0(t)〉dtψ1(t)

+
1

2π

∫ 2π

0

〈z(t), ψ′
0(t)〉dtψ1(t),

(I.11.13)

we end up with projections P ∈ L(Y ∩E, Y ∩E) and Q ∈ L(W,W ). A similar
proof to that of Proposition I.8.1 then yields the following result:

Proposition I.11.1 Assume (I.11.3), (I.8.8), and the nonresonance condi-
tion (I.8.14). Then

J0 ≡ κ0
d

dt
−A0 : Y ∩ E → W(I.11.14)

is a (continuous) Fredholm operator of index zero with dimN(J0) = 2.

Proof. As in (I.8.17) we obtain

N(J0) = R(P ); cf. (I.8.22).(I.11.15)

We show that R(J0) = N(Q). By compactness of eA02π/κ0 ∈ L(Z,Z) the
operator I − eA02π/κ0 is a Fredholm operator of index zero. As in (I.8.19),

N(I − eA02π/κ0) = R(P0) = span[ϕ0, ϕ0],

N(I − (eA02π/κ0)′) = span[ϕ′
0, ϕ

′
0],

(I.11.16)

cf. Section I.8, after (I.8.25), and by the Closed Range Theorem,

R(I − eA02π/κ0) = {z ∈ Z|〈z, ϕ′
0〉 = 〈z, ϕ′

0〉 = 0}
= N(Q0).

(I.11.17)

The proof that R(J0) = N(Q) is then the same as in (I.8.25)–(I.8.27). 
�
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Proposition I.11.1 gives a suitable Lyapunov–Schmidt decomposition

Y ∩E = N(J0)⊕N(P ),
W = R(J0)⊕R(Q),

(I.11.18)

with projections P : Y ∩E → N(J0) and Q : W → R(Q) as given in (I.11.13).
Thus, as in Section I.8, the problem

G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0 ∈ W near (0, κ0, λ0)(I.11.19)

in (Y ∩ E)× R× R is equivalent to

QG(Px+ ψ(Px, κ, λ), κ, λ) = 0.(I.11.20)

For a real function (I.8.33) the bifurcation equation (I.11.20), in turn, is
equivalent to the complex equation

1

2π

∫ 2π

0

〈G(Px + ψ(Px, κ, λ), κ, λ), ψ′
0〉dt = 0, or

Φ̂(c, κ, λ) = 0 if (Px)(t) = cϕ0e
it + c ϕ0e

−it, c ∈ C;

(I.11.21)

cf. (I.8.35). Since both projections P and Q commute with the phase shift
Sθ, the equivariance of G with respect to Sθ implies

Φ̂(eiθc, κ, λ) = eiθΦ̂(c, κ, λ) for θ ∈ [0, 2π);(I.11.22)

see (I.8.31)–(I.8.36). Therefore, the remaining calculations (I.8.37)–(I.8.41)
hold literally also in the general case of this section, except, however, that

DκΦ̃(0, κ0, λ0) = i〈ϕ0, ϕ
′
0〉(I.11.23)

might be zero (Φ̃(r, κ, λ) = Φ̂(r, κ, λ)/r; see (I.8.39)). As a matter of fact,

〈ϕ0, ϕ
′
0〉 �= 0 (= 1 w.l.o.g.) ⇔

iκ0 is a simple eigenvalue of A0; cf. (I.8.5).
(I.11.24)

Therefore, in case of an algebraically nonsimple eigenvalue iκ0 of A0, the
derivative D(κ,λ)Φ̃(0, κ0, λ0) (cf. (I.8.42)) is singular.

On the other hand, if iκ0 is an algebraically simple eigenvalue of A0 but
Reμ′(λ0) = 0 for the eigenvalue perturbation (I.11.2), then, in view of (I.8.44),
the derivative D(κ,λ)Φ̃(0, κ0, λ0) is singular, too (cf. (I.8.42)).

Therefore, assumptions (I.11.2) are indispensable in treating the Hopf Bi-
furcation in the spirit of Section I.8. (They are clearly dispensable for the
general Hopf Bifurcation as expounded in Remark I.11.13 below.) Nonethe-
less, we can follow our path and solve (I.11.21) nontrivially by the Implicit
Function Theorem under additional constraints on F .
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In Section I.10 we learn that a Hamiltonian structure reduces the complex
equation (I.11.21) to a real bifurcation equation. This allows us to release one
parameter, and the period is used as a hidden parameter. It turns out that
the special case considered in Section I.10 allows a fruitful generalization
to systems that play an important role in applications. Before we give the
special classes of systems to which our method applies, we give the general
Constrained Hopf Bifurcation Theorem:

Theorem I.11.2 For the system (I.11.1) we make the general assumptions
(I.8.2), (I.8.3), (I.8.4), (I.11.3), (I.8.8), (I.8.13), (I.8.14), so that the prob-
lem of finding real periodic solutions with small amplitude and periods near
2π/κ0 is reduced via (I.11.4) to the complex equation Φ̂(r, κ, λ) = 0 for
(r, κ, λ) near (0, κ0, λ0) in R3; cf. (I.11.21).

If iκ0 is an algebraically simple eigenvalue of A0 = DxF (0, λ0), assume
that a constraint on F implies

ImΦ̂(r, κ, λ) = 0 ⇒ ReΦ̂(r, κ, λ) = 0
for all (r, κ, λ) near (0, κ0, λ0).

(I.11.25)

Then without any further assumption there is a continuously differen-
tiable surface {(x(r, λ), λ)|r ∈ (−δ, δ), λ ∈ (λ0 − δ, λ0 + δ)} of nontrivial
(real) 2π/κ(r, λ)-periodic solutions of (I.11.1) through (x(0, λ), λ) = (0, λ)
and κ(0, λ0) = κ0 in (C1+α

2π/κ(r,λ)(R, Z) ∩Cα
2π/κ(r,λ)(R, X))×R. Furthermore,

κ(−r, λ) = κ(r, λ), and x(−r, λ) is obtained from x(r, λ) by a phase shift of
half the period π/κ(r, λ).

If iκ0 is a geometrically but not necessarily algebraically simple eigenvalue
of A0, assume that a constraint on F implies

ImΦ̂(r, κ, λ) = 0 ⇒ ReΦ̂(r, κ, λ) = 0, or

ReΦ̂(r, κ, λ) = 0 ⇒ ImΦ̂(r, κ, λ) = 0
for all (r, κ, λ) near (0, κ0, λ0).

(I.11.26)

According to the two cases (I.11.26), assume a nondegeneracy

Im〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 �= 0 or

Re〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 �= 0.

(I.11.27)

Then there exists a continuously differentiable surface {(x(r, κ), λ(r, κ))|r ∈
(−δ, δ), κ ∈ (κ0 − δ, κ0 + δ)} of nontrivial (real) 2π/κ-periodic solutions of
(I.11.1) through (x(0, κ), λ(0, κ)) = (0, λ(0, κ)) and λ(0, κ0) = λ0 in the
space (C1+α

2π/κ(R, Z)∩Cα
2π/κ(R, X))×R. Furthermore, λ(−r, κ) = λ(r, κ) and

x(−r, λ) is obtained from x(r, λ) by a phase shift of half the period π/κ.

Proof. As in Section I.8 we set Φ̃(r, κ, λ) = Φ̂(r, κ, λ)/r for r �= 0; cf. (I.8.39).
By assumptions (I.11.25), (I.11.26), the real bifurcation equation

ImΦ̃(r, κ, λ) = 0 or ReΦ̃(r, κ, λ) = 0(I.11.28)
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can be solved by the Implicit Function Theorem, since

Dκ(ImΦ̃(0, κ0, λ0)) = 1 in the first case and

DλΦ̃(0, κ0, λ0) = −〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉

(I.11.29)

in the second case; cf. (I.8.41). The oddness of Φ̂ with respect to r implies
the evenness of κ and λ with respect to r, and it is explained after Theorem
I.8.2 that the transition from r to −r corresponds to a phase shift of half the
period. 
�

More bifurcation formulas are given when Theorem I.11.2 is applied to
special classes below. Here we make two remarks on the respective surfaces
of periodic solutions:

In the first case, the parameter λ can be frozen in (λ0− δ, λ0+ δ), and the
vertical Hopf Bifurcation describes a Center Theorem for systems (I.11.1)
for each fixed λ near λ0.

In the second case, the parameter κ can be frozen in (κ0 − δ, κ0 + δ),
and each point on the “bifurcation curve” {(κ, λ(0, κ))} in the (κ, λ)-plane
gives rise to a bifurcation of 2π/κ-periodic solutions of system (I.11.1) with
λ = λ(r, κ).

I.11.1 Hamiltonian Systems: Lyapunov Center
Theorem and Hamiltonian Hopf Bifurcation

We return to the Hamiltonian systems introduced in Section I.10, but this
time the Hamiltonian depends on a real parameter λ. For the reason explained
in Remark I.10.1 we confine ourselves to X = Z = Rn, and we assume that

H : U × V → R is in C4(U × V,R) for
0 ∈ U ⊂ Rn, λ0 ∈ V ⊂ R,
F (x, λ) = J∇xH(x, λ) for (x, λ) ∈ U × V,
F (0, λ) = 0 for all λ ∈ V,

(I.11.30)

where the gradient “∇x” refers to the variable x ∈ U . (By the remark after
(I.10.14), F ∈ C3(U × V,Rn) is enough for our analysis.) We define

A(λ) = DxF (0, λ) = JDx∇xH(0, λ) = JB(λ),
A(λ0) = A0 = JB0,

(I.11.31)

where B(λ), B0 ∈ L(Rn,Rn) are the “Hessians” of H(0, λ), H(0, λ0), respec-
tively, and are symmetric with respect to the chosen scalar product ( , ).

Before proving (I.11.25), (I.11.26)1 we make an observation on the spec-
trum σ(A) of any A = JB of the form (I.11.31):
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μ = α+ iβ ∈ σ(A) ⇔
μ = α− iβ, −μ = −α− iβ ∈ σ(A),

(I.11.32)

so that all eigenvalues that are not real and not purely imaginary appear as
quadruplets.

For a proof, consider the dual A′ = −BJ , and clearly, μ ∈ σ(A′). Then
−BJϕ′ = μϕ′ and JBJϕ′ = −μJϕ′, so that −μ is an eigenvalue of A = JB
with eigenvector Jϕ′. By the reality of A, we clearly have Aϕ = μϕ and
Aϕ = μϕ.

Remark I.11.3 Property (I.11.32) has the consequence that an algebraically
simple eigenvalue μ(λ0) = iκ0 of A(λ0) is perturbed to a simple eigenvalue
μ(λ) of A(λ) according to (I.8.6) that stays necessarily on the imaginary
axis for all λ ∈ (λ0 − δ, λ0 + δ). Therefore, the transversality Reμ′(λ0) �= 0
required in (I.8.7) is excluded, which means that a Hopf Bifurcation in the
sense of Section I.8 (or in a degenerate sense of Section I.17) cannot occur
to a Hamiltonian system.

The bifurcation function (I.11.20) or in its reduced form (I.11.21) for real
Px depends on the projections P and Q, which, in turn, are defined by the
vectors ϕ, ϕ′

0, ϕ1, ϕ
′
1; cf. (I.11.13). Properties (I.11.25), (I.11.26)1 depend,

therefore, on a suitable choice of these vectors.
Choose ϕ0 according to (I.11.8). Then

A′
0Jϕ0 = −B0JJϕ0 = B0ϕ0 = iκ0Jϕ0 by

A0ϕ0 = JB0ϕ0 = −iκ0ϕ0.
(I.11.33)

Therefore, Jϕ0 is an eigenvector of A′
0 with eigenvalue iκ0.

Let iκ0 be an algebraically simple eigenvalue of A0.
In this case, we have to normalize 〈ϕ0, ϕ

′
0〉 = 1. By 〈ϕ0, Jϕ0〉 = −〈ϕ0, Jϕ0〉

this product is purely imaginary, and we choose

ϕ′
0 = iβJϕ0 with β = −i〈ϕ0, Jϕ0〉−1 ∈ R,

ϕ1 = ϕ0, ϕ
′
1 = ϕ′

0.
(I.11.34)

(Recall that 〈 , 〉 is the bilinear complexification of ( , ).)
Let iκ0 not be an algebraiclly simple eigenvalue of A0.
This means that 〈ϕ0, ϕ

′
0〉 = 0, and we can choose ϕ′

0 = cJϕ0 with any
c ∈ C\{0}. We take

ϕ′
0 = iJϕ0, ϕ1, ϕ

′
1 as in (I.11.8), (I.11.9).(I.11.35)

The infinite-dimensional equation of the Lyapunov–Schmidt decomposi-
tion (cf.(I.2.7), (I.2.8)),

(I −Q)G(Px+ ψ(Px, κ, λ), κ, λ) = 0,(I.11.36)

yields the identity
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κ
d

dt
(Px+ ψ(Px, κ, λ))

= κQ
d

dt
(Px+ ψ(Px, κ, λ)) + (I −Q)F (Px+ ψ(Px, κ, λ), λ).

(I.11.37)

By 2π-periodicity,∫ 2π

0

d

dt
H(Px+ ψ(Px, κ, λ), λ)dt = 0

=

∫ 2π

0

〈
∇xH(Px+ ψ(Px, κ, λ), λ),

d

dt
(Px+ ψ(Px, κ, λ))

〉
dt.

(I.11.38)

Inserting (I.11.37) into (I.11.38) gives by (I.11.31),∫ 2π

0

〈∇xH(Px+ ψ(Px, κ, λ), λ), QG(Px + ψ(Px, κ, λ), κ, λ)〉dt

+

∫ 2π

0

〈∇xH(Px+ ψ(Px, κ, λ), λ), J∇xH(./.)〉dt = 0.

(I.11.39)

In view of 〈z, Jz〉 = 0 for all z ∈ Z, the second term in (I.11.39) vanishes, and
the first term, involving the bifurcation function QG(Px+ψ(Px, κ, λ), κ, λ),
cf. (I.2.9), is of the following form when the projection Q is used explicitly,
cf. (I.11.13):

1

2π

∫ 2π

0

〈∇xH(Px+ ψ(Px, κ, λ), λ), ψ1〉dt

×
∫ 2π

0

〈G(Px+ ψ(Px, κ, λ), κ, λ), ψ′
0〉dt

+
1

2π

∫ 2π

0

〈∇xH(./.), ψ1〉dt
∫ 2π

0

〈G(./.), ψ
′
0〉dt = 0.

(I.11.40)

For real Px = r(ψ0 + ψ0) the terms ∇xH(Px+ ψ(Px, κ, λ), λ) and G(Px+
ψ(Px, κ, λ), κ, λ) are real, so that the second summand in (I.11.40) is the
complex conjugate to the first one. If we define

h(r, κ, λ) ≡ 1

2π

∫ 2π

0

〈∇xH(Px+ ψ(Px, κ, λ), λ), ψ1〉dt
for Px = r(ψ0 + ψ0), r ∈ (−δ, δ), (κ, λ) ∈ Ṽ2 ⊂ R2,

(I.11.41)

where Ṽ2 is a neighborhood of (κ0, λ0), the identity (I.11.40) implies, in view
of (I.11.21),

Re[h(r, κ, λ)Φ̂(r, κ, λ)] = 0 or

Reh(r, κ, λ)ReΦ̂(r, κ, λ) = Imh(r, κ, λ)ImΦ̂(r, κ, λ)

for all r ∈ (−δ, δ), (κ, λ) ∈ Ṽ2 ⊂ R2.

(I.11.42)
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By definition (I.11.41) we have h(0, κ, λ) = 0 and

Drh(0, κ0, λ0) =
1

2π

∫ 2π

0

〈B0(ψ0 + ψ0), ψ1〉dt
= 〈B0ϕ0, ϕ1〉 = iκ0〈Jϕ0, ϕ1〉 by (I.11.33)

= κ0β
−1〈ϕ1, ϕ

′
0〉 by (I.11.34) or (I.11.35) with β = 1

= κ0β
−1 �= 0 and real by 〈ϕ1, ϕ

′
0〉 = 1.

(I.11.43)

(For (I.11.43)1 observe that ψ(0, κ, λ) = 0, Dvψ(0, κ0, λ0) = 0 for v = Px;
cf. Corollary I.2.4, and B0 = Dx∇xH(0, λ0).) Therefore, Reh(r, κ, λ) �= 0 for
r ∈ (−δ, δ)\{0} and (κ, λ) ∈ Ṽ2, which proves (I.11.25), (I.11.26)1 in view of
(I.11.42).

For the nondegeneracy (I.11.27) we compute

〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉

= 〈JD2
xλ∇xH(0, λ0)ϕ0, ϕ

′
0〉 =

〈
J

d

dλ
B(λ0)ϕ0, ϕ

′
0

〉
= iβ

〈
J

d

dλ
B(λ0)ϕ0, Jϕ0

〉
by (I.11.34) or (I.11.35)

= iβ
〈 d

dλ
B(λ0)ϕ0, ϕ0

〉
, which is purely imaginary

(I.11.44)

by the symmetry of B(λ) and therefore of d
dλB(λ0).

The first case of Theorem I.11.2 then implies the Lyapunov Center
Theorem, generalizing Theorem I.10.3:

Theorem I.11.4 For a parameter-dependent Hamiltonian system

dx

dt
= J∇xH(x, λ) in Rn,(I.11.45)

we assume that ∇xH(0, λ) = 0, that iκ0(�= 0) is an algebraically simple
eigenvalue of A0 = JDx∇xH(0, λ0), and that for all m ∈ Z\{1,−1}, imκ0

is not an eigenvalue of A0. Then there exists a continuously differentiable
surface {(x(r, λ), λ)|r ∈ (−δ, δ), λ ∈ (λ0 − δ, λ0 + δ)} of nontrivial (real)
2π/κ(r, λ)-periodic solutions of (I.11.45) through (x(0, λ), λ) = (0, λ) and
κ(0, λ0) = κ0 in C1

2π/κ(r,λ)(R,R
n)× R with the properties stated in Theorem

I.11.2.

The surface is fibered into vertically bifurcating curves of 2π/κ(r, λ)-
periodic solutions for each fixed λ near λ0. As stated in Remark I.11.3, the
simple eigenvalue perturbation μ(λ) of A(λ) = JDx∇xH(0, λ) consists of
purely imaginary eigenvalues near iκ0 given by iκ(0, λ). Therefore, clearly,
d
dλκ(0, λ0) = Imμ′(λ0); cf. (I.11.53) below. For the parameter-dependent
Hamiltonian systems it is not necessary to distinguish between λ0 and
λ ∈ (λ0 − δ, λ0 + δ), since the spectral properties of A(λ) are identical for all
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λ ∈ (λ0 − δ, λ0 + δ). Therefore, Lyapunov’s Center Theorem is usually stated
without any parameter.

The second case of Theorem I.11.2 implies the Hamiltonian Hopf Bi-
furcation:

Theorem I.11.5 If under the same hypotheses as stated in Theorem I.11.4
the eigenvalue iκ0 of A0 is geometrically but not necessarily algebraically
simple, and if the nondegeneracy of the Hessian〈 d

dλ
Dx∇xH(0, λ0)ϕ0, ϕ0

〉
�= 0(I.11.46)

holds for the eigenvector ϕ0 of A0 with eigenvalue iκ0, then there exists a
continuously differentiable surface {(x(r, κ), λ(r, κ)) | r ∈ (−δ, δ), κ ∈ (κ0 −
δ, κ0 + δ)} of nontrivial (real) 2π/κ-periodic solutions of (I.11.45) through
(x(0, κ), λ(0, κ)) = (0, λ(0, κ)) with λ(0, κ0) = λ0 in C1

2π/κ(R,R
n) × R with

the properties stated in Theorem I.11.2. Note that the algebraic multiplicity
of the eigenvalue iκ0 is arbitrary.

As mentioned after Theorem I.11.2, for any fixed κ ∈ (κ0 − δ, κ0 + δ)
each point on the bifurcation curve {(κ, λ(0, κ))} in the (κ, λ)-plane gives
rise to a curve of 2π/κ-periodic solutions of (I.11.45) with λ = λ(r, κ), and
the surface stated in Theorem I.11.5 is fibered into these curves. The shape
of the bifurcation curve follows from Bifurcation Formulas.

Theorem I.11.6 For the surface of the Lyapunov Center Theorem, Theorem
I.11.4, the following formulas hold (if the Hamiltonian H is in C4(U ×V,R);
cf. (I.11.30)):

d

dr
x(r, λ)

∣∣
(r,λ)=(0,λ)

(t) = 2Re(ϕ0e
iκ(0,λ)t),

d

dr
κ(r, λ)

∣∣
(r,λ)=(0,λ)

= 0,
d2

dr2
κ(r, λ)

∣∣
(r,λ)=(0,λ0)

= −ImD2
rrΦ̃

0,

d

dλ
κ(r, λ)

∣∣
(r,λ)=(0,λ0)

= −〈 d
dλDx∇xH(0, λ0)ϕ0, ϕ0〉

Im〈ϕ0, Jϕ0〉
,

(I.11.47)

where the quantity D2
rrΦ̃

0 is given by (I.9.11) with ϕ′
0 as defined in (I.11.34).

Proof. Formula (I.11.47)1 follows from

x(r, λ)(t) = 2rRe(ϕ0e
iκ(r,λ)t) + ψ(2rRe(ϕ0e

iκ(r,λ)t), κ(r, λ), λ)(I.11.48)

by its construction (cf. (I.8.47)), where κ(r, λ) satisfies the bifurcation equa-
tion

ImΦ̃(r, κ(r, λ), λ) = 0 for all r ∈ (−δ, δ), λ ∈ (λ0 − δ, λ0 + δ).(I.11.49)
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Since κ(−r, λ) = κ(r, λ), we obtain as in (I.9.1),

d2

dr2
ImΦ̃(r, κ(r, λ), λ)

∣∣
(r,λ)=(0,λ0)

= ImD2
rrΦ̃

0 +Dκ(ImΦ̃(0, κ0, λ0))
d2

dr2
κ(0, λ0) = 0,

(I.11.50)

which implies (I.11.47)2 by (I.11.29)1. Differentiating (I.11.49) with respect
to λ gives

d

dλ
κ(0, λ0) +Dλ(ImΦ̃(0, κ0, λ0)) = 0,(I.11.51)

proving (I.11.47)3 by (I.11.29)2 and (I.11.44) with (I.11.34). 
�

Remark I.11.7 As stated in Remark I.11.3, the simple eigenvalue pertur-
bation μ(λ) of A(λ) = JDx∇xH(0, λ) with μ(λ0) = iκ0 is purely imaginary.
By (I.8.44) and (I.11.44),

μ′(λ0) = iβ
〈 d

dλ
Dx∇xH(0, λ0)ϕ0, ϕ0

〉
∈ iR,(I.11.52)

so that formula (I.11.47)3 can be restated as

d

dλ
κ(r, λ)

∣∣
(r,λ)=(0,λ0)

= Im
d

dλ
μ(λ)

∣∣
λ=λ0

.(I.11.53)

Theorem I.11.8 For the surface of the Hamiltonian Hopf Bifurcation Theo-
rem, Theorem I.11.5, the following formulas hold (in case H ∈ C4(U×V,R)):

d

dr
x(r, κ)

∣∣
(r,κ)=(0,κ)

(t) = 2Re(ϕ0e
iκt),

d

dr
λ(r, κ)

∣∣
(r,κ)=(0,κ)

= 0,

d2

dr2
λ(r, κ)

∣∣
(r,κ)=(0,κ0)

=
ImD2

rrΦ̃
0

〈 d
dλDx∇xH(0, λ0)ϕ0, ϕ0〉

,

d

dκ
λ(r, κ)

∣∣
(r,κ)=(0,κ0)

= 0,

d2

dκ2
λ(r, κ)

∣∣
(r,κ)=(0,κ0)

=
2〈ϕ1

0, Jϕ0〉
〈 d
dλDx∇xH(0, λ0)ϕ0, ϕ0〉

,

(I.11.54)

where (iκ0I − A0)ϕ
1
0 = ϕ0. If iκ0 is an algebraically double eigenvalue of

A0, then the last second derivative with respect to κ is nonzero. The quantity
D2

rrΦ̃
0 is given in (I.9.11) with ϕ′

0 as in (I.11.35).

Proof. By its construction,

ImΦ̃(r, κ, λ(r, κ)) = 0 for all r ∈ (−δ, δ), κ ∈ (κ0 − δ, κ0 + δ).(I.11.55)

Since λ(−r, κ) = λ(r, κ), we obtain as in (I.9.1),
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ImD2
rrΦ̃

0 + ImDλΦ̃
0 d2

dr2
λ(0, κ0) = 0,(I.11.56)

which proves (I.11.54)3 by (I.11.29)2, (I.11.44), (I.11.35).
If iκ0 is not an algebraically simple eigenvalue of A0, then ImDκΦ̃

0 = 0,
cf. (I.11.23), (I.11.24), which implies (I.11.54)4. Therefore,

ImD2
κκΦ̃

0 + ImDλΦ̃
0 d2

dκ2
λ(0, κ0) = 0.(I.11.57)

For the computation of D2
κκΦ̃

0 we proceed as in Sections I.6, I.9. By the def-
inition Φ̃(r, κ, λ) = Φ̂(r, κ, λ)/r we have D2

κκΦ̃
0 = D3

rκκΦ̂
0. Following (I.9.4),

Φ(v, κ, λ) = QG(v + ψ(v, κ, λ), κ, λ),

v = r(ψ0 + ψ0) , v̂0 = ψ0 + ψ0,
(I.11.58)

we get by definition (I.11.21),

Φ̂(r, κ, λ) =
1

2π

∫ 2π

0

〈Φ(v, κ, λ), ψ′
0〉dt, whence

D3
rκκΦ̂

0 =
1

2π

∫ 2π

0

〈DvκκΦ(0, κ0, λ0)v̂0, ψ
′
0〉dt.

(I.11.59)

By G(x, κ, λ) = κ d
dtx − F (x, λ) we have D3

xκκG(x, κ, λ) = 0, and therefore
(use (I.5.12) replacing λ by κ),

D3
vκκΦ(0, κ0, λ0)v̂0 = 2QD2

xκG(0, κ0, λ0)D
2
vκψ(0, κ0, λ0)v̂0.(I.11.60)

Since ψ(v, κ, λ) solves (I − Q)G(v + ψ(v, κ, λ), κ, λ) = 0, we obtain as in
(I.6.6)−(I.6.8),

D2
vκψ(0, κ0, λ0)v̂0

= −(I − P )(DxG(0, κ0, λ0))
−1(I −Q)D2

xκG(0, κ0, λ0)v̂0.
(I.11.61)

Inserting (I.11.61) into (I.11.60), we get

D3
vκκΦ(0, κ0, λ0)v̂0

= −2QD2
xκG

0(I − P )(DxG
0)−1(I −Q)D2

xκG
0v̂0,

(I.11.62)

where, as usual, “0” denotes evaluation at (0, κ0, λ0). In our particular case
we have D2

xκG
0 = d

dt and DxG
0 = κ0

d
dt −A0 = J0.

By assumption, iκ0 is not an algebraically simple eigenvalue of A0. This
means that 〈ϕ0, ϕ

′
0〉 = 〈ϕ0, ϕ

′
0〉 = 0, and as in (I.8.18) we have also

〈ϕ0, ϕ
′
0〉 = 〈ϕ0, ϕ

′
0〉 = 0, so that the projections (I.11.13) satisfy QP = 0

or R(P ) ⊂ N(Q). Since v̂0 = ψ0 + ψ0 ∈ R(P ), also d
dt v̂0 ∈ R(P ), so that

QD2
xκG

0v̂0 = 0 and (I−Q)D2
xκG

0v̂0 = iψ0− iψ0. Choose ϕ
1
0 as a generalized
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eigenvector solving (iκ0I −A0)ϕ
1
0 = ϕ0. Then

(I − P )J−1
0 (iψ0 − iψ0) = (I − P )(iϕ1

0e
it − iϕ1

0e
−it),(I.11.63)

and by d
dtP = P d

dt and QP = 0 we obtain for (I.11.62),

D3
vκκΦ

0v̂0 = 2Q(ϕ1
0e

it − ϕ1
0e

−it), whence

D3
rκκΦ̂

0 = 2〈ϕ1
0, ϕ

′
0〉 = D2

κκΦ̃
0.

(I.11.64)

Formula (I.11.54)5 then follows from (I.11.57), (I.11.44), (I.11.35), since
〈ϕ1

0, Jϕ0〉 is real. 
�
If the algebraic multiplicity of the eigenvalue iκ0 of A0 is larger than two,

then 〈ϕ1
0, ϕ

′
0〉 = 〈ϕ1

0, Jϕ0〉 = 0 and d2

dκ2λ(0, κ0) = 0. The computation of
higher derivatives follows the same lines but is tedious.

We discuss the case in which iκ0 is a geometrically simple and an al-
gebraically double eigenvalue of A0. By (I.11.54)5, the bifurcation curve
{(κ, λ(0, κ))} through (κ0, λ0) is of the form sketched in Figure I.11.1.

λ

κ0

λ0

κ

Figure I.11.1

r

λ

κ

Figure I.11.2
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By formula (I.11.54)3, each point (κ, λ(0, κ)) on that bifurcation curve
gives rise to a standard, when D2

rrΦ̃
0 �= 0, or degenerate pitchfork of 2π/κ-

periodic solutions x(r, κ) of (I.11.45) with λ = λ(r, κ). The direction of
the pitchfork is given by the sign of D2

rrΦ̃
0; cf. Figure I.9.1. The surface

{(r, κ, λ(r, κ))} in R3, or {(x(r, κ), κ, λ(r, κ))} in C1
2π/κ(R,R

n)×R2, is fibered
by all bifurcating pitchforks. A sketch of these surfaces is given in Figure
I.11.2.

A necessary condition for bifurcation of 2π/κ-periodic solutions of (I.11.1)
at (0, λ) is that A(λ) = DxF (0, λ) have the purely imaginary eigenvalue
iκ. This means that for λ < λ0 (or λ > λ0) the two values of κ on the
bifurcation curve, giving rise to 2π/κ-periodic solutions, correspond to two
simple eigenvalues iκ of A(λ) for λ = λ(0, κ). For λ > λ0 (or λ < λ0),
however, there is no bifurcation of 2π/κ-periodic solutions (for κ near κ0), so
that the eigenvalues of A(λ) are no longer on the imaginary axis. We sketch
the eigenvalue perturbation for the two cases of Figure I.11.1 in Figure I.11.3,
where the arrows point in the direction of increasing λ when λ passes through
λ0.

Two pairs of simple purely imaginary eigenvalues of A(λ) collide at ±iκ0

and form a quadruplet of complex eigenvalues when λ passes through λ0,
where we take account of (I.11.32). This spectral scenario is referred to as
Hamiltonian Hopf Bifurcation in the literature. Note that we give only
heuristic arguments for the eigenvalue perturbation sketched in Figure I.11.3.
In order to apply Theorem I.11.5, the eigenvalue perturbation does not have
to be verified. The only hypotheses are the geometric simplicity of the eigen-
values ±iκ0 and the nondegeneracy (I.11.46).

−iκ0

Ciκ0

Figure I.11.3

In the general case of Theorem I.11.5, however, when the algebraic mul-
tiplicity of iκ0 is arbitrary, the eigenvalue perturbation of A(λ) near ±iκ0

can be much more complicated. There are two restrictions: Depending on the
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shape of the bifurcation curve {(κ, λ(0, κ))}, at least one pair of eigenvalues
of A(λ) stays on the imaginary axis near ±iκ0 for λ < λ0 and/or λ > λ0, and
those eigenvalues that leave the imaginary axis do so in quadruplets to the
right and left half-planes; cf. (I.11.32). We do not know whether the nonde-
generacy (I.11.46) has more implications for the eigenvalue perturbation of
A(λ) = DxF (0, λ) = Dx∇xH(0, λ).

I.11.2 Reversible Systems

We consider (I.11.1) under a structural constraint called reversibility. The
mapping F : U×V → Z, where 0 ∈ U ⊂ X,λ0 ∈ V ⊂ R, is called reversible
if

F (Rx, λ) = −RF (x, λ) for all x ∈ U, λ ∈ V,
and for a reflection R ∈ L(X,X) ∩ L(Z,Z) such that
R2 = I.

(I.11.65)

For a function z : R → Z we define the time reversal

(Sz)(t) = z(−t).(I.11.66)

Then the evolution equation (I.11.1) for a reversible mapping F has the
following property:

For x ∈ C1(R, Z) ∩ C(R, X),

RS

(
dx

dt
− F (x, λ)

)
= −

(
d

dt
RSx− F (RSx, λ)

)
.

(I.11.67)

If F is differentiable, we obtain from (I.11.65) by the chain rule

A(λ)R = −RA(λ) for A(λ) = DxF (0, λ) ∈ L(X,Z).(I.11.68)

For any real A ∈ L(X,Z) satisfying (I.11.68) the point spectrum σp(A) has
the symmetry (I.11.32) in C. For this reason, there is a great similarity be-
tween Hamiltonian and reversible systems. This fact was discovered by many
people in KAM Theory (see [158] for a survey and references) and in Equiv-
ariant Bifurcation Theory (see [57] and the references therein).

Remark I.11.9 The spectral symmetry (I.11.32) of A0 is an obstruction
to the generation of a holomorphic semigroup if the (point) spectrum is un-
bounded in C. Therefore, reversibility requires X = Z and A0 ∈ L(X,X), and
the compactness of the semigroup might have reasonable applications only if
X = Z = Rn; cf. Remark I.10.1. Nonetheless, we stay with our infinite-
dimensional setting, and we keep the notation of the general Theorem I.11.2.
Remark I.11.3 holds accordingly also for reversible systems: a simple eigen-
value of A(λ) = DxF (0, λ) cannot cross the imaginary axis, so that a Hopf
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Bifurcation in the sense of Section I.8 (or even in its degenerate version of
Section I.17) is not possible for a reversible system.

In order to apply Theorem I.11.2, we make its general assumptions on the
reversible mapping F . Before proving (I.11.25), (I.11.26)1, we have to take
care of the choice of the vectors ϕ0, ϕ

′
0, ϕ1, ϕ

′
1 for the projections P and Q in

(I.11.13). Extend the reflection (I.11.65) to the complexified spaces in keeping
R2 = I. By (I.11.68), if ϕ0 is an eigenvector of A0 with eigenvalue iκ0, then
Rϕ0 is an eigenvector of A0 for −iκ0. Therefore, by (I.11.3), Rϕ0 = cϕ0 for
some c ∈ C with |c| = 1. Replacing ϕ0 by e−iθϕ0 if c = e2iθ, then Rϕ0 = ϕ0.
By A′

0R
′ = −R′A′

0 and (R′)2 = I for the dual operators, the same arguments
hold for an eigenvector ϕ′

0 of A′
0 for iκ0. We summarize:

Rϕ0 = ϕ0, R
′ϕ′

0 = ϕ′
0.(I.11.69)

For the choices of ϕ1 and ϕ′
1, note that the ranges R(±iκ0I − A0) are

invariant under the involution z �→ Rz. Therefore, if for some ϕ1 ∈ R(−iκ0I−
A0) spanning Z0 we have 〈ϕ1, ϕ

′
0〉 = 1, cf. (I.11.8), (I.11.9), then also Rϕ1 ∈

R(−iκ0I−A0) and 〈Rϕ1, ϕ
′
0〉 = 1 by (I.11.69). Replacing ϕ1 by 1

2 (ϕ1+Rϕ1),
we have a vector ϕ1 satisfying (I.11.8), (I.11.9), and Rϕ1 = ϕ1.

For the choice of ϕ′
1 we have to choose the complement X0 satisfying

(I.11.5) and (I.11.6). Let X = N(iκ0I − A0) ⊕ N(−iκ0I − A0) ⊕ X1 with
projection P1 : X → X1 along N(iκ0I − A0) ⊕ N(−iκ0I − A0). Since the
kernels N(±iκ0I −A0) are invariant under the involution z �→ Rz, the space
X̂1 = {P1x+RP1Rx|x ∈ X} is a complement of N(iκ0I −A0)⊕N(−iκ0I −
A0) in X , too: From x = (I − P1)x + P1x and Rx = (I − P1)Rx + P1Rx
we conclude that x = R(I − P1)Rx + RP1Rx, and the first summand is in
N(iκ0I − A0) ⊕ N(−iκ0I − A0). Choosing X0 = N(−iκ0I − A0) ⊕ X̂1, we
have a complement satisfying (I.11.5), (I.11.6), and X0 is invariant under the
involution z �→ Rz. If ϕ′

1 ∈ X ′ is chosen according to (I.11.9), then 1 =
〈ϕ0, ϕ

′
1〉 = 〈ϕ0, ϕ

′
1〉 = 〈Rϕ0, ϕ

′
1〉 = 〈ϕ0, R

′ϕ′
1〉, and 〈ϕ0, R

′ϕ′
1 − ϕ′

1〉 = 0. For
x ∈ X0 we have 〈x, ϕ′

1〉 = 0, and since Rx ∈ X0, it follows that 〈Rx,ϕ′
1〉 = 0.

Therefore, 〈x,R′ϕ′
1 − ϕ′

1〉 = 0 for all x ∈ X0, which implies R′ϕ′
1 − ϕ′

1 = 0.
We summarize:

Rϕ1 = ϕ1, R
′ϕ′

1 = ϕ′
1.(I.11.70)

Inserting the vectors ϕ0, ϕ
′
0, ϕ1, ϕ

′
1 satisfying (I.11.69), (I.11.70) into the

projections P and Q given in (I.11.13), we obtain the equivariance

PRS = RSP and QRS = RSQ(I.11.71)

for the time reversion S given in (I.11.66). For the function G defined in
(I.11.4), the property (I.11.67) implies the “skew-equivariance”

G(RSx, κ, λ) = −RSG(x, κ, λ)

for all (x, κ, λ) ∈ Ũ × Ṽ ⊂ (E ∩ Y )× R2.
(I.11.72)
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By the uniqueness of the function ψ solving (I−Q)G(Px+ψ(Px, κ, λ), κ, λ) =
0 (cf. (I.2.7), (I.2.8)), the equivariances (I.11.71), (I.11.72) imply

ψ(RSPx, κ, λ) = RSψ(Px, κ, λ)(I.11.73)

for all (Px, κ, λ) near (0, κ0, λ0).
A real function Px = r(ψ0 + ψ0) has the “isotropy”

RSPx = Px(I.11.74)

by (I.11.66), (I.11.69). This has the following consequences for the complex
bifurcation function given in (I.11.21):

ReΦ̂(r, κ, λ)

=
1

2π

∫ 2π

0

〈G(Px + ψ(Px, κ, λ), κ, λ),Reψ′
0〉dt

=
1

2π

∫ 2π

0

〈G(RS(Px + ψ(Px, κ, λ), κ, λ),Reψ′
0〉dt

= − 1

2π

∫ 2π

0

〈RSG(Px+ ψ(Px, κ, λ), κ, λ),Reψ′
0〉dt

= − 1

2π

∫ 2π

0

〈SG(Px+ ψ(Px, κ, λ), κ, λ), SReψ′
0〉dt

= −ReΦ̂(r, κ, λ)

(I.11.75)

by (I.11.74), (I.11.72), and R′ψ′
0 = Sψ

′
0; cf. (I.11.69). This proves that

ReΦ̂(r, κ, λ) = 0 for all r ∈ (−δ, δ), (κ, λ) ∈ Ṽ2 ⊂ R2,(I.11.76)

which clearly implies (I.11.25) and (I.11.26)1.

Therefore, the Constrained Hopf Bifurcation Theorem, Theorem
I.11.2, applies to reversible systems (I.11.1):

If iκ0 is an algebraically simple eigenvalue of A0 = DxF (0, λ0), then a
Center Theorem for Reversible Systems holds.

If iκ0 is not necessarily an algebraically simple eigenvalue of A0 and if the
nondegeneracy

〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 �= 0(I.11.77)

is valid, then aHamiltonian Hopf Bifurcation Theorem for Reversible
Systems in the sense of Theorem I.11.5 holds. Observe that we choose the
eigenvectors ϕ0, ϕ

′
0 according to (I.11.69), and by

〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉 = 〈RD2

xλF (0, λ0)ϕ0, R
′ϕ′

0〉
= −〈D2

xλF (0, λ0)Rϕ0, R
′ϕ′

0〉 = −〈D2
xλF (0, λ0)ϕ0, ϕ

′
0〉,

(I.11.78)
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the nondegeneracy (I.11.77) is purely imaginary.

The Bifurcation Formulas are the following:
For the surface of the Center Theorem the formulas (I.11.47) hold ac-

cordingly with the following modifications: By (I.11.76), the quantity D2
rrΦ̃

0

given in (I.9.11) is purely imaginary. Formula (I.11.47)3 reads in this case

d

dλ
κ(r, λ)|(r,λ)=(0,λ0) = Im〈D2

xλF (0, λ0)ϕ0, ϕ
′
0〉

= Im
d

dλ
μ(λ)|λ=λ0 ;

(I.11.79)

cf. Remark I.11.7. (Note the normalization 〈ϕ0, ϕ
′
0〉 = 1.)

For the surface of the Hamiltonian Hopf Bifurcation we have again the
formulas (I.11.54), which are modified as follows:

d2

dr2
λ(r, κ)|(r,κ)=(0,κ0) =

D2
rrΦ̃

0

〈D2
xλF (0, λ0)ϕ0, ϕ′

0〉
,

d2

dκ2
λ(r, κ)|(r,κ)=(0,κ0) =

2〈ϕ1
0, ϕ

′
0〉

〈D2
xλF (0, λ0)ϕ0, ϕ′

0〉
,

(I.11.80)

where both quotients are real, since numerator and denominator are purely
imaginary. The vector ϕ1

0 is a generalized eigenvector satisfying the equation
(iκ0I −A0)ϕ

1
0 = ϕ0.

If the eigenvalue iκ0 of A0 is algebraically double, then the last second
derivative with respect to κ is nonzero, yielding bifurcation curves as sketched
in Figure I.11.1. The eigenvalue perturbation μ(λ) of A(λ) near ±iκ0 is
sketched in Figure I.11.3.

Remark I.11.10 In case of the Hamiltonian Hopf Bifurcation the eigenvalue
iκ0 of A0 is not necessarily algebraically simple, which means that possibly
〈ϕ0, ϕ

′
0〉 = 0. These eigenvectors have to satisfy 〈ϕ0, ϕ

′
1〉 = 1 and 〈ϕ1, ϕ

′
0〉 =

1; cf. (I.11.9). In the Bifurcation Formulas (I.11.54) and (I.11.80), only the
vectors ϕ0, ϕ

′
0 (or ϕ0 via (I.11.35)) and the generalized eigenvector ϕ1

0 appear.
Whereas formula (I.11.54)5 (or (I.11.80)2) is invariant for any choice of
ϕ0, ϕ

′
0, formula (I.11.54)3 (or (I.11.80)1) does not have this invariance with

respect to the choice of ϕ0. Note, however, that x = Px + ψ(Px, κ, λ) is
represented in terms of ψ0(t) = ϕ0e

it, so that formula (I.11.54)1 also depends
explicitly on the vector ϕ0. Therefore, the second derivative of λ with respect
to r depends on the choice of ϕ0, too; cf. (I.11.54)3. The same holds also for
formulas (I.11.47)1 and (I.11.47)2 when 〈ϕ0, ϕ

′
0〉 = 1.
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I.11.3 Nonlinear Oscillations

We apply the results for reversible systems to nonlinear oscillations

ẍ = f(x, ẋ, λ),(I.11.81)

where

f : U × V → Rn, (0, 0) ∈ U ⊂ Rn × Rn, λ0 ∈ V ⊂ R

and f(0, 0, λ) = 0 for all λ ∈ V .
(I.11.82)

Clearly, f ∈ C3(U × V,Rn) is enough for the subsequent analysis; cf. the
remarks after (I.10.14). We write (I.11.81) as a first-order system

ẋ = y,
ẏ = f(x, y, λ),

or
d

dt

(
x

y

)
= F (x, y, λ),(I.11.83)

and if F is not reversible, then a Hopf Bifurcation (in a nondegenerate or
degenerate sense) is clearly possible for the system (I.11.83); cf. the example
(I.17.56). In particular, one-dimensional oscillations (I.11.81) with a linear
part ẍ = −x+ d(λ)ẋ such that d(λ) changes sign at λ = λ0 give rise to Hopf
Bifurcations: At λ = λ0 the damping d(λ) switches to a forcing, which creates
nontrivial oscillations, as for the example (I.17.56), where d(λ) = λ7. (This
is also true for higher-dimensional nonlinear oscillations; cf. Remark I.11.13.)
For reversible systems, however, Hopf Bifurcations are excluded; cf. Remark
I.11.3.

The system (I.11.83) is reversible under the following conditions:

For R =

(−E 0
0 E

)
if f(−x, y, λ) = −f(x, y, λ),

for R =

(
E 0
0 −E

)
if f(x,−y, λ) = f(x, y, λ),

(I.11.84)

where E denotes the n-dimensional identity matrix. In both cases in (I.11.84),
Dyf(0, 0, λ) = 0, and for A0 = D(x,y)F (0, 0, λ0) we obtain

A0 =

(
0 E

Dxf(0, 0, λ0) 0

)
∈ L(Rn × Rn,Rn × Rn).(I.11.85)

A simple calculation shows that

μ is an eigenvalue of Dxf(0, 0, λ0) ⇔
±√

μ are eigenvalues of A0,
(I.11.86)

and the spectral assumption (I.11.3) is satisfied if
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−κ2
0 < 0 is an eigenvalue of Dxf(0, 0, λ0) ∈ L(Rn,Rn)

and N(κ2
0I +Dxf(0, 0, λ0)) = span[x0].

(I.11.87)

Let ( , ) denote the Euclidean scalar product in Rn. Its complexifica-
tion 〈 , 〉 is the bilinear duality between Z = Cn and its dual Z ′ = Cn.
Then −κ2

0 is also an eigenvalue of the dual (Dxf(0, 0, λ0))
′ with eigenvector

x′
0, and

ϕ0 =

(−ix0

κ0x0

)
, ϕ′

0 =

(
iκ0x

′
0

x′
0

)
are eigenvectors of A0, A

′
0 ∈ L(Cn × Cn,Cn × Cn)

with eigenvalue iκ0, respectively.

(I.11.88)

For R as in (I.11.84)1 we have Rϕ0 = ϕ0, R
′ϕ′

0 = ϕ′
0; for R as in (I.11.84)2 we

replace ϕ0, ϕ
′
0 by iϕ0, iϕ

′
0, respectively; and we have again Rϕ0 = ϕ0, R

′ϕ′
0 =

ϕ′
0; cf. (I.11.69).

Therefore, the Constrained Hopf Bifurcation Theorem, Theorem
I.11.2, applies to nonlinear oscillations (I.11.81) satisfying (I.11.84). For con-
venience we give the two cases in separate Theorems: A Center Theorem
for Nonlinear Oscillations reads as follows:

Theorem I.11.11 For the nonlinear oscillation

ẍ = f(x, ẋ, λ) in Rn

assume (I.11.82), f ∈ C3(U × V,Rn), and that

f is odd in x or
f is even in ẋ.

If

−κ2
0 < 0 is an algebraically simple eigenvalue of Dxf(0, 0, λ0)

and if for all m ∈ Z\{1,−1},−m2κ2
0 is not an eigenvalue,

then there exists a continuously differentiable surface {(x(r, λ), λ) | r ∈ (−δ, δ),
λ ∈ (λ0 − δ, λ0 + δ)} of nontrivial (real) 2π/κ(r, λ)-periodic solutions of
(I.11.81) through (x(0, λ), λ) = (0, λ) and κ(0, λ0) = κ0 in C2

2π/κ(r,λ)(R,R
n)×

R. Furthermore, κ(−r, λ) = κ(r, λ), and x(−r, λ) is obtained from x(r, λ) by
a phase shift of half the period π/κ(r, λ). The bifurcation formulas are given
in (I.11.47) and (I.11.79), where

〈D2
(x,y)λF (0, 0, λ0)ϕ0, ϕ

′
0〉 = −i〈D2

xλf(0, 0, λ0)x0, x
′
0〉,

〈ϕ0, ϕ
′
0〉 = 1 ⇔ 〈x0, x

′
0〉 =

1

2κ0
.

(I.11.89)
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Note that the parameter λ can be frozen in (λ0−δ, λ0+δ), or in other words,
a parameter λ is not necessary for the Center Theorem.

The Hamiltonian Hopf Bifurcation for Nonlinear Oscillations:

Theorem I.11.12 If under the same hypotheses as stated in Theorem I.11.11
the eigenvalue −κ2

0 of Dxf(0, 0, λ0) is geometrically but not necessarily alge-
braically simple and if the nondegeneracy

〈D2
xλf(0, 0, λ0)x0, x

′
0〉 �= 0(I.11.90)

holds, then there exists a continuously differentiable surface {(x(r, κ), λ(r, κ))|
r ∈ (−δ, δ), κ ∈ (κ0 − δ, κ0 + δ)} of nontrivial (real) 2π/κ-periodic solu-
tions of (I.11.81) through (x(0, κ), λ(0, κ)) = (0, λ(0, κ)) and λ(0, κ0) = λ0 in
C2

2π/κ(R,R
n)×R. Furthermore, λ(−r, κ) = λ(r, κ), and x(−r, κ) is obtained

from x(r, κ) by a phase shift of half the period π/κ. The bifurcation formu-
las are given in (I.11.54) and (I.11.80), where we use (I.11.89)1. For D2

rrΦ̃
0

given in (I.9.11) use definition (I.11.83) for F , (I.11.85) for A0, (I.11.88)
for ϕ0, ϕ

′
0, and finally,

〈ϕ1
0, ϕ

′
0〉 = −1

2
i〈x1

0, x
′
0〉,

where (κ2
0I +Dxf(0, 0, λ0))x

1
0 = x0.

(I.11.91)

(The translation of (I.9.11) using only f, Dxf(0, 0, λ0), and x0, x
′
0 is left to

the reader.)

As discussed before, if −κ2
0 is an algebraically double eigenvalue of the op-

erator Dxf(0, 0, λ0), the second derivative of λ with respect to κ is nonzero,
and the bifurcation curves {(κ, λ(0, κ))} are sketched in Figure I.11.1. The
eigenvalue perturbations of A(λ) shown in Figure I.11.3 correspond to eigen-
value perturbations of Dxf(0, 0, λ0) sketched in Figure I.11.4.

Note that Theorem I.11.12 does not require that −κ2
0 be an algebraically

double eigenvalue of Dxf(0, 0, λ0).

−κ2
0

C

Figure I.11.4
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I.11.4 Conservative Systems

There is another class of systems (I.11.1) for which the crucial assumptions
(I.11.25) and (I.11.26) of the Constrained Hopf Bifurcation Theorem can be
verified. Assume that a scalar product ( , ) is defined on the Banach space
Z satisfying (I.3.1). For a function

H : U × V → R in C2(U × V,R), where
0 ∈ U ⊂ X, λ0 ∈ V ⊂ R,

(I.11.92)

the gradient ∇xH(x, λ) with respect to the scalar product ( , ) is defined
as in Definition I.3.1. Then (I.11.1) is called conservative if

(∇xH(x, λ), F (x, λ)) = 0
for all (x, λ) ∈ U × V.

(I.11.93)

Let x = x(t) be any solution of (I.11.1) such that (x, λ) ∈ U × V . Then

d

dt
H(x(t), λ) = DxH(x(t), λ)

dx

dt
(t)

= (∇xH(x(t), λ), F (x(t), λ)) = 0 or
H(x(t), λ) = const.

(I.11.94)

Therefore, the function H gives a first conservation law or a first integral
for solutions of (I.11.1). As seen in Section I.10, (I.10.8), Hamiltonian systems
are special cases of conservative systems.

The spaces X and Z are complexified as described in Section I.8, and
〈 , 〉 denotes the bilinear pairing of Z and Z ′. The real scalar product on Z
is also complexified to a bilinear product on Z×Z, and in order to distinguish
it from 〈 , 〉 we keep the notation ( , ) (in contrast to Section I.10 and
the paragraph about Hamiltonian Systems in this section).

For the Lyapunov–Schmidt reduction of (I.11.4) to (I.11.20) and (I.11.21)
we use the projections (I.11.13); i.e., we choose ϕ0, ϕ

′
0, ϕ1, ϕ

′
1 according to

(I.11.8), (I.11.9). In order to prove the assumptions (I.11.25) and (I.11.26),
we follow the lines of the proof for Hamiltonian systems. For the function H
defined in (I.11.92) we obtain (I.11.38), where 〈 , 〉 is replaced by ( , ).
In view of assumption (I.11.93), the second term in (I.11.39) vanishes, and
(I.11.40) holds accordingly: In the first integrals the pairing 〈 , 〉 is re-
placed by the scalar product ( , ). Defining h(r, κ, λ) as (I.11.41), i.e.,

h(r, κ, λ) ≡ 1

2π

∫ 2π

0

(∇xH(Px+ ψ(Px, κ, λ), λ), ψ1)dt

for Px = r(ψ0 + ψ0), r ∈ (−δ, δ), (κ, λ) ∈ Ṽ2 ⊂ R2,

(I.11.95)

then (I.11.42) holds, and we obtain as in (I.11.43),
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Drh(0, κ0, λ0) = (B0ϕ0, ϕ1), where
B0 = Dx∇xH(0, λ0) ∈ L(X,Z) is the Hessian of H .

(I.11.96)

If iκ0 is an algebraically simple eigenvalue of A0 = DxF (0, λ0), then
ϕ1 = ϕ0 and 〈ϕ0, ϕ

′
0〉 = 1; cf. (I.11.5)–(I.11.9). Since the Hessian B0 is

symmetric with respect to the scalar product ( , ) (see Proposition I.3.3),
the derivative (I.11.96) is real, and if it is nonzero, (I.11.42) implies (I.11.25).
Therefore, the first case of the Constrained Hopf Bifurcation Theorem,
Theorem I.11.2, is applicable to conservative systems if

(Dx∇xH(0, λ0)ϕ0, ϕ1) �= 0.(I.11.97)

It gives a Center Theorem for Conservative Systems, providing vertical
bifurcations of 2π/κ(r, λ)-periodic solutions of (I.11.1) for each λ near λ0.

If iκ0 is a geometrically but not necessarily an algebraically simple eigen-
value of A0, then (I.11.42) and (I.11.96) imply (I.11.26), provided that

Re(Dx∇xH(0, λ0)ϕ0, ϕ1) �= 0 and
Im〈D2

xλF (0, λ0)ϕ0, ϕ
′
0〉 �= 0, or

Im(Dx∇xH(0, λ0)ϕ0, ϕ1) �= 0 and
Re〈D2

xλF (0, λ0)ϕ0, ϕ
′
0〉 �= 0.

(I.11.98)

The second case of the Constrained Hopf Bifurcation Theorem then im-
plies aHamiltonian Hopf Bifurcation Theorem for Conservative Sys-
tems.

The Bifurcation Formulas (I.11.47), (I.11.79) in the first case and (I.11.54),
(I.11.80) in the second case hold accordingly. If iκ0 is an algebraically double
eigenvalue of A0 = DxF (0, λ0), then formula (I.11.80)2 proves a bifurcation
curve as sketched in Figure I.11.1 with the typical eigenvalue perturbation
shown in Figure I.11.3.

Remark I.11.13 Hopf Bifurcation for parameter-dependent evolution equa-
tions (I.11.1) takes place in a generalized sense under much more general
spectral assumptions than (I.11.3). We give a result of [102], and we refer to
the literature mentioned below.

Assume that for nj ∈ N, j = 1, . . . , k, n1 = 1 < n2 < · · · < nk,

±injκ0 are all the eigenvalues of A0 = DxF (0, λ0)
that are integer multiples of iκ0.

(I.11.99)

Let mj denote the algebraic multiplicity of injκ0. Then the eigenvalue injκ0

of A0 perturbs to an mj-fold family of eigenvalues of DxF (0, λ) = A(λ) near
injκ0 when the parameter λ varies near λ0 (the so-called injκ0-group).

Assume that for all λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ) there is no element of
the injκ0-group on the imaginary axis. Then define for those λ,
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n>
j (λ) = sum of the algebraic multiplicities

of all perturbed eigenvalues of A(λ) near
injκ0 with positive real parts,

(I.11.100)

which is constant for λ ∈ (λ0 − δ, λ0) and for λ ∈ (λ0, λ0 + δ), and define

n>
j (λ0 − ε)− n>

j (λ0 + ε) ≡ χj(A(λ), λ0),

the crossing number of the family A(λ)
at λ = λ0 through injκ0;

(I.11.101)

cf. Definition II.7.1. Assume that∑k
j=1χj(A(λ), λ0) �= 0.(I.11.102)

Then (0, λ0) is a bifurcation point of a continuum {(x, λ)} of nontrivial
(real) 2π/κ-periodic solutions x of (I.11.1) with periods 2π/κ emanating from
2π/κ0. (The periods are not necessarily minimal as in all cases treated in Sec-
tions I.8–I.11.)

This result is in the spirit of Theorems II.3.2, II.4.4, and II.7.3. In The-
orem I.17.3 we assume k = 1,m1 = 1, χ1(A(λ), 0) = ±1, but in contrast to
Theorem I.8.2, the crossing of the simple eigenvalue through iκ0 is degen-
erate; i.e., Reμ′(0) = · · · = Reμ(m−1)(0) = 0 and Reμ(m)(0) �= 0 for some
odd m. We obtain at least one and at most m bifurcating curves of 2π/κ-
periodic solutions with κ near κ0. The proof of the general result given in
[102] uses only analytical tools and is very involved. It admits also an inter-
action with stationary bifurcation, which means that 0 can be an eigenvalue
of A(λ0) = A0, too: If the crossing number of A(λ) through 0 is odd, then ac-
cording to Theorems II.3.2, II.4.4, stationary solutions of (I.11.1) bifurcate;
if the crossing number through 0 is even and (I.11.102) holds, then station-
ary or periodic solutions bifurcate from the trivial solution at λ = λ0. Simple
examples show that under the same spectral assumption the latter alternative
actually occurs; see [99].

In [124] Hopf Bifurcation from a nontrivial curve of stationary solutions
is proved. To be precise, the bifurcation point is a turning point of the curve
of stationary solutions. This means that 0 is necessarily an eigenvalue of the
linearization at the turning point.

In [105] a global version of the above general Hopf Bifurcation Theorem is
given. In contrast to Theorems II.3.3, II.5.8, the global alternatives are richer:
The continuum of nontrivial periodic solutions emanating at (0, κ0, λ0) is
unbounded in (x, λ)-space; it meets the trivial solution at (0, κ1, λ1) where
(κ1, λ1) �= (njκ0, λ0), j = 1, . . . , k, and iκ1 is an eigenvalue of A(λ1); it meets
some nontrivial stationary solution; or its “virtual period” is unbounded.

It is worthwhile to mention that the method of proving global Hopf Bifur-
cation is different from the method of proving global stationary bifurcation
(although the sources are the same, and global stationary bifurcation could be
proved in the same way). The idea is to perturb the operator G as defined in
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(I.11.4) on a space of periodic functions so that 0 becomes a regular value; cf.
Remark I.13.6. Then the solution set G−1{0} is a two-dimensional manifold
without boundary, and being locally proper (due to its nonlinear Fredholm
property according to Definition I.2.1), G−1{0} indeed exists globally. With-
out constraint this perturbation of G exists due to the Sard–Smale Theorem.
The main difficulty, however, arises in keeping the S1-equivariance (I.8.31)
of G under perturbations. In this case, G−1{0} consists of so-called snakes
fibered by group orbits, cf.(I.13.51), and it turns out that for S1-equivariant
mappings, Hopf bifurcations and period-doubling bifurcations are “generic”
in the sense that no perturbation can avoid them; see [102], [105], for exam-
ple, and our naive explanation in Remark I.14.5. Nonetheless, G−1{0} exists
globally, but the snakes might split at period-doubling bifurcations or end at
Hopf bifurcations in steady states.

We emphasize that the general local and global Hopf Bifurcation Theorems
are not exclusively proved in [102], [105]. In [3], [21], [134], [83], [48], [85],
for example, one finds equivalent results, all of which appeared before [102],
[105]. We quote from [102], [105], since the terminology and the language are
closest to those of this book.

Note finally that Hamiltonian Hopf Bifurcation is not included in the ge-
neral Hopf Bifurcation Theorems cited above, since the crossing number of
the family A(λ) at λ = λ0 through iκ0 is not defined: At least one eigenvalue
of the iκ0-group remains on the imaginary axis for all λ near λ0, and those
that leave the imaginary axis do so in pairs to the right and left half-planes;
cf. Figure I.11.3. Therefore, the Constrained Hopf Bifurcation is a special
track in bifurcation theory.

I.12 The Principle of Exchange of Stability for Hopf
Bifurcation

Let x = x(t) be a p-periodic solution of the evolution equation

dx

dt
= F (x, λ),(I.12.1)

where we assume the general setting of Section I.8. The Principle of Lin-
earized Stability for a periodic solution is usually proved within “Floquet
Theory” if (I.12.1) is an ODE, and it is generalized to semilinear parabolic
PDEs in [76], for example. It is briefly described as follows.

The (nonlinear) Poincaré map around a p-periodic solution yields by lin-
earization in its fixed point x(0) = x(p) the period map of the linear nonau-
tonomous evolution equation dy

dt −DxF (x(t), λ)y = 0, called the “variational
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equation.” In general, any solution of the variational equation is given by
y(t) = U(t)y0, where U(0) = I, and U(p) is, by definition, its linear period
map. Since (formally) y = dx

dt is a p-periodic solution of the variational equa-
tion, we have U(p)y(0) = y(p) = y(0), so that 1 is an eigenvalue of U(p). If
all other eigenvalues of U(p) are of modulus less than 1, then the fixed point
x(0) of the Poincaré map is (linearly) stable, which implies the orbital stabil-
ity of the p-periodic solution x = x(t) of the autonomous evolution equation
(I.12.1).

The eigenvalues of the period map U(p) are called the Floquet multipli-
ers of the p-periodic solution, and they are related to the so-called Floquet
exponents as follows.

The eigenvalues μ of the variational operator d
dt − DxF (x(t), λ) in the

space of p-periodic functions are, by definition, Floquet exponents, and they
give by e−pμ the Floquet multipliers of the p-periodic solution x = x(t) of
(I.12.1). The eigenvalue μ = 0 with eigenfunction y = dx

dt gives the multiplier
e0 = 1, and the Principle of Linearized Stability is equivalently stated as
follows:

The p-periodic solution x = x(t) of (I.12.1) is (linearly) stable
if the Floquet exponent μ = 0 is simple and if all its Floquet
exponents μ �= 0 have positive real parts.

(I.12.2)

We use (I.12.2) as a definition, since we do not know a proof for our
general setting that linear stability indeed implies nonlinear orbital stabil-
ity. We apply the Principle of Linearized Stability to the bifurcating curve
{(x(r), λ(r))} of 2π/κ(r)-periodic solutions of (I.12.1) given by the Hopf Bi-
furcation Theorem, Theorem I.8.2. Again, the substitution t/κ(r) for t fixes
the period to 2π, and the stability problem amounts to the study of the
eigenvalues μ of

(
κ(r)

d

dt
−DxF (x(r)(t), λ(r))

)
ψ = μψ or of

DxG(x(r), κ(r), λ(r))ψ = μψ, where

G is defined by (I.8.10), (I.8.12) and

DxG(./.) : C1+α
2π (R, Z) ∩ Cα

2π(R, X) → Cα
2π(R, Z).

(I.12.3)

We introduce again the notation W = Cα
2π(R, Z), E = Cα

2π(R, X), and
Y = C1+α

2π (R, Z).
For r = 0, the operator DxG(0, κ0, λ0) = κ0

d
dt − A0 = J0 has a geomet-

rically double eigenvalue 0 with eigenvectors ψ0, ψ0 (cf. (I.8.17), (I.8.22)).
Therefore, the Principle of Linearized Stability does not apply for r = 0,
but we show that it applies for r �= 0 under the nondegeneracy condition of
Section I.8 and the smoothness assumption of Section I.9: F ∈ C4(U ×V, Z).

Assume now that apart from the two algebraically simple eigenvalues
±iκ0 of A0 = DxF (0, λ0) (cf. (I.8.5)), the entire spectrum of A0 is in the
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stable left complex half-plane (cf. (I.7.2); our assumptions (I.8.8) imply that
the spectrum of A0 consists only of isolated eigenvalues). Then the same
arguments as in (I.8.17) prove that(

κ0
d

dt
−A0

)
ψ = μψ, ψ(0) = ψ(2π) ⇔

inκ0 − μ is an eigenvalue of A0 for some n ∈ Z.
(I.12.4)

This implies by our assumption that

Reμ > 0 for all Floquet exponents μ �= 0 of
DxG(0, κ0, λ0) = J0.

(I.12.5)

Therefore, the (linear) stability of the bifurcating curve {(x(r), λ(r))} of
2π/κ(r)-periodic solutions of (I.12.1) is determined by the sign of the real
part of the perturbed critical eigenvalues μ(r) of DxG(x(r), κ(r), λ(r)) near
μ(0) = 0, at least for small r ∈ (−δ, δ). The difference between this and the
situation of Section I.7 is that μ = 0 is not a simple but a double eigenvalue
of DxG(0, κ0, λ0) = J0.

Here “double” means geometrically and algebraically double, which, in
turn, is defined by a two-dimensional eigenspace with a two-dimensional
eigenprojection. In the case in question, the eigenprojection is given by Q
(cf. (I.8.21)), which commutes with J0 (by (I.8.22), (I.8.28)). Recall that
Q|Y ∩E = P . An alternative way of characterizing the doubleness of the eigen-
value μ = 0 of J0 is the fact that both geometric eigenvectors ψ0, ψ0 are not
in the range R(J0) (cf. also (I.7.4)). In this case, the eigenvalue μ = 0 is
also called double but semisimple. As shown in [86], the two-dimensionality
of the eigenspace is preserved under a perturbation: There are two perturbed
eigenvalues μ1(r), μ2(r) such that μ1(0) = μ2(0) = 0 (the so-called 0-group;
cf. [86]).

We start with the trivial Floquet exponent μ1(r) ≡ 0 of (I.12.3), which
is certainly among the perturbed eigenvalues near μ = 0. By construction,
x(r) = r(ψ0+ψ0)+ψ(r(ψ0+ψ0), κ(r), λ(r)) (cf. (I.8.47), where t is replaced by
t/κ(r)). Then d

dtx(r) = ir(ψ0−ψ0)+
d
dtψ(./.), and

d
drx(r)|r=0 = ψ0+ψ0 (cf.

(I.8.45)) in the topology of C1+α
2π (R, Z) ∩ Cα

2π(R, X) implies d
dr

d
dtx(r)|r=0 =

i(ψ0 − ψ0) in the topology of Cα
2π(R, Z), so that

ψ1(r) ≡ 1

r

d

dt
x(r) for r �= 0 and

ψ1(0) = i(ψ0 − ψ0) is in C((−δ, δ), Cα
2π(R, Z)).

(I.12.6)

Differentiating κdx
dt −F (λ, x) = 0 with respect to t is a (formal) proof that dx

dt
is an eigenfunction of (I.12.3) with trivial Floquet exponent. This proof is cor-
rect in finite dimensions, i.e., for an ODE, but it might cause problems in our
general setting. We have to assume that the periodic solution x(r) possesses
the trivial Floquet exponent μ1(r) ≡ 0 with a curve of eigenfunctions



I.12. The Principle of Exchange of Stability (periodic case) 85

{ψ1(r)|r ∈ (−δ, δ)} ⊂ E ∩ Y that is twice
continuously differentiable such that

Pψ1(r) = i(ψ0 − ψ0) and w1(r) ≡ (I − P )ψ1(r)
satisfies w1(0) = 0.

(I.12.7)

Here P = Q|E∩Y , and Q is defined in (I.8.21). Assumption (I.12.7) is proved
in Proposition I.18.3. In the context of parabolic differential equations the
eigenfunction ψ1(r) is indeed given by (I.12.6); i.e., it can be shown that the
periodic solution x(r) is regular enough that ψ1(r) as given by (I.12.6) is in
E ∩ Y ; cf. [76], Chapter 8. In any case,

DxG(x(r), κ(r), λ(r))ψ1 (r) = 0
for r ∈ (−δ, δ) and μ1(r) ≡ 0.

(I.12.8)

Next, we are interested in a linearly independent (possibly generalized)
eigenfunction ψ2(r) with eigenvalue μ2(r) such that μ2(0) = 0.

For reasons that will be clear in the sequel, we introduce the following
real vectors and projections:

v̂1 = i(ψ0 − ψ0), v̂2 = ψ0 + ψ0,

v̂′1 = − i

2
(ψ′

0 − ψ
′
0), v̂′2 =

1

2
(ψ′

0 + ψ
′
0),

Qjz =
1

2π

∫ 2π

0

〈z, v̂′j〉dtv̂j , j = 1, 2, z ∈ W,

Qj |Y ∩E = Pj .

(I.12.9)

Then Q = Q1 + Q2 (cf. (I.8.21)), Q1Q2 = Q2Q1 = 0, both Q1 and Q2 are
real for real z, and ψ1(0) = v̂1, Q2w1(r) = 0 for all r ∈ (−δ, δ).

Proposition I.12.1 There is a unique twice continuously differentiable curve
{μ2(r)|r ∈ (−δ, δ), μ2(0) = 0} in R such that

DxG(x(r), κ(r), λ(r))(v̂2+w2(r)) = μ2(r)(v̂2+w2(r))+ν(r)ψ1(r),(I.12.10)

where {w2(r)|r ∈ (−δ, δ), w2(0) = 0} ⊂ (I − P )(E ∩ Y ) and
{ν(r)|r ∈ (−δ, δ), ν(0) = 0} ⊂ R are twice continuously differentiable, too.

Before proving Proposition I.12.1, we show that μ2(r) is the second per-
turbed eigenvalue. If μ2(r) = 0 and ν(r) = 0, then ψ2(r) = v̂2 + w2(r) is a
second eigenvector with eigenvalue 0, which is geometrically double in this
case. If μ2(r) = 0 and ν(r) �= 0, then ψ2(r) = v̂2 + w2(r) is a generalized
eigenvector with eigenvalue 0, which is algebraically double in this case. Fi-

nally, if μ2(r) �= 0, then we set ψ2(r) = v̂2 +w2(r) +
ν(r)
μ2(r)

ψ1(r), and ψ2(r) is

by (I.12.8) an eigenvector with eigenvalue μ2(r).

Proof. We define a mapping



86 Chapter I. Local Theory

H : (I − P )(E ∩ Y ))× R× R× (−δ, δ) → W by
H(w2, μ, ν, r)
≡ DxG(x(r), κ(r), λ(r))(v̂2 + w2)− μ(v̂2 + w2)− νψ1(r).

(I.12.11)

Then H(0, 0, 0, 0) = 0 and

Dw2H(0, 0, 0, 0) = DxG(0, κ0, λ0) = J0,
DμH(0, 0, 0, 0) = −v̂2, DνH(0, 0, 0, 0) = −v̂1,

(I.12.12)

so that (I.8.28) implies that

D(w2,μ,ν)H(0, 0, 0, 0) : (I − P )(E ∩ Y )× R× R → W(I.12.13)

is an isomorphism. The statement of Proposition I.12.1 then follows by the
Implicit Function Theorem.

Under the regularity assumptions of Section I.9 we know that the curve
(x(r), κ(r), λ(r)) as well as μ2(r), w2(r), and ψ1(r) is twice continuously dif-
ferentiable with respect to r. 
�

Since P1(v̂2 + w2(r)) = 0 and ψ1(r) = v̂1 + w1(r) (cf. (I.12.7)), equation
(I.12.10) implies

(I −Q1)DxG(x(r), κ(r), λ(r))(v̂2 + w2(r))

= μ2(r)(v̂2 + w2(r)) + ν(r)w1(r).
(I.12.14)

Since N((I − Q1)DxG(0, κ0, λ0)) = N((I − Q1)J0) = span[v̂2], equation
(I.12.14) is similar to equation (I.7.10) of a simple eigenvalue perturbation:
It differs only in the additive term ν(r)w1(r). We show that this term is of
higher order, which does not have any influence on μ̇2(0) or on μ̈2(0)(̇ = d

dr ).
Therefore, we can apply Proposition I.7.3 in order to determine μ̈2(0), which
will give us the sign of μ2(r) for r near 0. First, we claim that

dμ2

dr
(r)

∣∣
r=0

= 0,
dν

dr
(r)

∣∣
r=0

= 0.(I.12.15)

To prove (I.12.15) we make use of the equivariance (I.8.31). By the chain
rule we obtain from (I.8.31),

DxG(Sθx, κ, λ)Sθ = SθDxG(x, κ, λ),(I.12.16)

which shows that (I.12.10) is equivalent to

DxG(Sθx(r), κ(r), λ(r))Sθ (v̂2 + w2(r))

= μ2(r)Sθ(v̂2 + w2(r)) + ν(r)Sθψ1(r).
(I.12.17)

We choose θ = π. Since Sπx(r) = x(−r), κ(−r) = κ(r), λ(−r) = λ(r)
(see Theorem I.8.2 and the arguments given after it) and also Sπψ1(r) =
−ψ1(−r), Sπ v̂2 = −v̂2, equation (I.12.17) shows the following:
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If μ2(r), ν(r) solve (I.12.10) with w2(r),

then μ2(r), ν(r) solve (I.12.10) also for −r

with w2(−r) = −Sπw2(r).

(I.12.18)

By uniqueness, we conclude that

μ2(−r) = μ2(r), ν(−r) = ν(r),(I.12.19)

which proves (I.12.15). Using also w1(0) = 0, we see that the additive term
ν(r)w1(r) in (I.12.14) has the properties

ν(r)w1(r)
∣∣
r=0

=
d

dr
(ν(r)w1(r))

∣∣
r=0

=
d2

dr2
(ν(r)w1(r))

∣∣
r=0

= 0.(I.12.20)

As mentioned before, the third order of ν(r)w1(r) in (I.12.14) allows us
to apply Proposition I.7.3, in particular formula (I.7.19). As a matter of fact,
the second derivative of μ2(r) at r = 0 is obtained in Proposition I.7.3 by
differentiating equation (I.12.14) twice with respect to r at r = 0, and in
view of (I.12.20), the additive term ν(r)w1(r) in (I.12.14) has no influence
on that procedure. Therefore, we can apply formula (I.7.19) when we define
the function Ψ in such a way that it is related to the “simple eigenvalue
perturbation (I.12.14)” (without the additive term ν(r)w1(r)) as definition
(I.7.16) is related to (I.7.10). To that purpose, we define

G̃(x, r) ≡ (I −Q1)G(x(r) + x, κ(r), λ(r)),

G̃ : Ũ1 × (−δ, δ) → (I −Q1)W,

0 ∈ Ũ1 ⊂ (I − P1)(E ∩ Y ), (−δ, δ) ⊂ R.

(I.12.21)

Obviously, G̃(0, 0) = 0, and through (0, 0) ∈ Ũ1× (−δ, δ) there is the solution
curve {(0, r)|r ∈ (−δ, δ)} of G̃(x, r) = 0. Equation (I.12.14) is then rewritten
as

DxG̃(0, r)(v̂2 + w2(r)) = μ2(r)(v̂2 + w2(r)) + ν(r)w1(r).(I.12.22)

The method of Lyapunov–Schmidt for G̃(x, r) = 0 near (x, r) = (0, 0) is
described as follows. By

DxG̃(0, 0) = (I −Q1)J0 we obtain

N(DxG̃(0, 0)) = R(P2) = span[v̂2].
(I.12.23)

Since Q1J0 = J0P1 = 0, we have also

R(DxG̃(0, 0)) = R(J0),(I.12.24)

which gives us the decomposition
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(I −Q1)W = R(J0)⊕N((I −Q1)J0)

= R(DxG̃(0, 0))⊕N(DxG̃(0, 0))

with projection Q2 onto N(DxG̃(0, 0)) along R(DxG̃(0, 0)).

(I.12.25)

The reduced equation (cf. (I.2.9)) is then

Φ(v, r) = Q2G̃(v + ψ̃(v, r), r) = 0,

where v = P2x ∈ N(DxG̃(0, 0)).
(I.12.26)

The function ψ̃ is defined by (cf. (I.2.8))

(I −Q2)G̃(v + ψ̃(v, r), r) = 0,

ψ̃(v, r) ∈ R(DxG̃(0, 0)) ∩ (E ∩ Y ) = (I − P2)(E ∩ Y ).
(I.12.27)

Inserting definition (I.12.21) into (I.12.27), we obtain by Q1 + Q2 = Q and
Q2Q1 = 0,

(I −Q)G(x(r) + v + ψ̃(v, r), κ(r), λ(r)) = 0.(I.12.28)

Now v = P2x = yv̂2 for y ∈ R, x(r) = rv̂2 + ψ(rv̂2, κ(r), λ(r)), which implies
by uniqueness (cf. (I.8.30)),

ψ̃(v, r) = ψ((r + y)v̂2, κ(r), λ(r)) − ψ(rv̂2, κ(r), λ(r)),(I.12.29)

and finally,

Φ(yv̂2, r)
= Q2G((r + y)v̂2 + ψ((r + y)v̂2, κ(r), λ(r)), κ(r), λ(r)),

Ψ(y, r) ≡ 1

2π

∫ 2π

0

〈Φ(yv̂2, r), v̂′2〉dt

=
1

2π

∫ 2π

0

〈Φ̂(r + y, κ(r), λ(r)), v̂′2〉dt
= ReΦ̂(r + y, κ(r), λ(r)),

(I.12.30)

where we use definition (I.8.35) of Φ̂ and v̂′2 = Reψ′
0. Since the function Ψ in

(I.12.30) is related to (I.12.22) in the same way as the function Ψ in (I.7.16) is
related to (I.7.10) (up to terms of order two), formula (I.7.19) of Proposition
I.7.3 for y = y(r) ≡ 0 now reads as follows:

Re
d2

dr2
DrΦ̂(r, κ(r), λ(r))

∣∣
r=0

=
d2

dr2
μ2(r)

∣∣
r=0

.(I.12.31)
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Here obviously DyΦ̂(r + y, κ(r), λ(r)) = DrΦ̂(r + y, κ(r), λ(r)). In Theorem
I.17.4, formula (I.12.31) is considerably generalized. The arguments of its
proof are accordingly refined; cf. (I.17.31)–(I.17.49).

For the evaluation of d2

dr2DrΦ̂(r, κ(r), λ(r)) at r = 0 we make use of the

computations in Sections I.8 and I.9. By rΦ̃(r, κ, λ) = Φ̂(r, κ, λ) (cf. (I.8.39))
we obtain

DrΦ̂(0, κ0, λ0) = Φ̃(0, κ0, λ0),

D3
rrrΦ̂(0, κ0, λ0) = 3D2

rrΦ̃(0, κ0, λ0) (cf. (I.9.3))

D2
rκΦ̂(0, κ0, λ0) = DκΦ̃(0, κ0, λ0),

D2
rλΦ̂(0, κ0, λ0) = DλΦ̃(0, κ0, λ0).

(I.12.32)

Next we use Φ̃(0, κ0, λ0) = 0 (cf. (I.8.40)), κ̇(0) = 0, λ̇(0) = 0
(
˙= d

dr , cf.
(I.8.46)), and also (I.8.41), (I.8.44). Thus (I.12.31) gives

μ̈2(0) = 3ReD2
rrΦ̃(0, κ0, λ0)− Reμ′(λ0)λ̈(0).(I.12.33)

Using the bifurcation formula (I.9.12)4 for λ̈(0) we end up with the crucial
formula

μ̈2(0) = 2Reμ′(λ0)λ̈(0)

(
′
=

d

dλ

)
.(I.12.34)

We summarize:

Theorem I.12.2 Let {(x(r), λ(r))|r ∈ (−δ, δ)} be the curve of 2π/κ(r)-
periodic solutions of (I.12.1) according to the Hopf Bifurcation Theorem,
Theorem I.8.2. Let μ2(r) be the nontrivial Floquet exponent of x(r) such
that μ2(0) = 0. Then μ̇2(0) = 0 (and also λ̇(0) = 0). The second derivatives
of μ2 and λ are linked together by formula (I.12.34). Here Reμ′(λ0) �= 0 is
the assumed nondegeneracy (I.8.7) for the eigenvalue perturbation μ(λ) of
DxF (0, λ) near iκ0, and λ̈(0) �= 0, provided that ReD2

rrΦ̃(0, κ0, λ0) �= 0 (cf.
(I.9.12)4).

By Theorem I.12.2 we easily obtain the followingPrinciple of Exchange
of Stability.

Corollary I.12.3 Assume that apart from the two simple eigenvalues ±iκ0

of A0 = DxF (0, λ0), the entire spectrum of A0 is in the stable left complex
half-plane and assume that Reμ′(λ0) > 0; i.e., the trivial solution {(0, λ)} of
(I.12.1) is stable for λ < λ0 and unstable for λ > λ0 (locally, cf. (I.7.2)).
Then

sign(λ(r) − λ0) = signμ2(r) for r ∈ (−δ, δ),(I.12.35)

which means that the bifurcating periodic solution {(x(r), λ(r))} of (I.12.1)
is stable, provided that the bifurcation is supercritical, and it is unstable if the
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bifurcation is subcritical (cf. (I.12.2), (I.12.5)). If Reμ′(λ0) < 0, the stability
properties of the trivial solution are reversed, and in view of

sign(λ(r) − λ0) = −signμ2(r) for r ∈ (−δ, δ),(I.12.36)

the stability of the bifurcating periodic solution is reversed, too. Thus, we have
the situations sketched in Figure I.12.1.

λ0
λ

amplitude of x(r)

stable unstable

unstable

Figure I.12.1

Remark I.12.4 Formula (I.12.34) is valid under the hypotheses of Sections
I.8 and I.9. In particular, we need only (I.8.5) and the nonresonance condi-
tion (I.8.14). However, without any knowledge of the entire spectrum of A0,
the stability property of neither the trivial nor the bifurcating periodic solution
can be determined. Formula (I.12.34) describes only the relation between the
critical eigenvalue μ(λ) near iκ0 and the critical Floquet exponent μ2(r) near
0 depending on the bifurcation direction λ(r) − λ0.

I.13 Continuation of Periodic Solutions and Their
Stability

It is a natural question whether the local curve {(x(r), λ(r))} of p(r) =
2π/κ(r)-periodic solutions of the evolution equation

dx

dt
= F (x, λ),(I.13.1)

given by the Hopf Bifurcation Theorem, has a (global) continuation. A first
step to answering that question is an Implicit Function Theorem for periodic
solutions of (I.13.1). We assume that x0 = x0(r) is a p0-periodic solution of
(I.13.1) for λ = λ0. In order to apply our setting of Section I.8, we make a
substitution t/κ0 for t, where p0 = 2π/κ0, and then (without changing the
notation for x)
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κ
dx

dt
− F (x, λ) ≡ G(x, κ, λ) = 0

has a solution (x0, κ0, λ0) in

(C1+α
2π (R, Z) ∩Cα

2π(R, X))× R+ × R

(I.13.2)

by assumption. A continuation of that solution for λ near λ0 involves also a
continuation of the period 2π/κ near 2π/κ0.

The derivative DxG(x0, κ0, λ0) = κ0
d
dt − DxF (x0, λ0) is not a bijection,

since the trivial Floquet exponent μ0 = 0 is an eigenvalue with eigenfunction
d
dtx0 ∈ N(DxG(x0, κ0, λ0)). Since Proposition I.18.3 is not applicable, in
general, we assume that

d

dt
x0 ≡ ψ̂0 ∈ C1+α

2π (R, Z) ∩Cα
2π(R, X)

is an eigenfunction of Ĵ0 ≡ κ0
d

dt
−DxF (x0, λ0)

with eigenvalue μ0 = 0 that is the trivial Floquet exponent of x0.

(I.13.3)

(We do not pursue the regularity of the periodic solution x0, but we remark
only that under reasonable assumptions, a formal differentiation of (I.13.2)
is allowed, which proves (I.13.3); cf. our comments in Section I.12. For this
reason, we change our notation from that of (I.12.8).)

The natural assumption for an Implicit Function Theorem for periodic
solutions is that

the trivial Floquet exponent μ0 = 0 of x0 is algebraically simple;

i.e., N(DxG(x0, κ0, λ0)) = N(Ĵ0) = span[ψ̂0] and

ψ̂0 /∈ R(DxG(x0, κ0, λ0)) = R(Ĵ0), where ψ̂0 is given by (I.13.3).

(I.13.4)

For our subsequent analysis we need the Fredholm property of the op-
erator Ĵ0. Recall that x0 = x0(t), and therefore the operator DxF (x0, λ0)
depends on t, which makes this operator different from the operator J0 con-
sidered in Section I.8, in particular in Proposition I.8.1. The assumption
(I.8.8) on the operator A0 = DxF (x0, λ0) has to be replaced by an assump-
tion on the

2π-periodic family of operators
A0(t) : X → Z defined by

A0(t) =
1

κ0
DxF (x0(t), λ0).

(I.13.5)

This assumption reads as follows:

A0(t) generates a holomorphic semigroup for each fixed
t ∈ [0, T ], and this family of semigroups, in turn, generates a
“fundamental solution” U0(t, τ) ∈ L(Z,Z) for 0 ≤ τ ≤ t ≤ T
such that U0(t, t) = I, U0(t, τ)U0(τ, s) = U0(t, s), and any

solution of
dx

dt
= A0(t)x is given by x(t) = U0(t, 0)x(0).

(I.13.6)



92 Chapter I. Local Theory

For a construction of U0(t, τ) (which is also called an “evolution operator”)
we refer to [162], [52], [7], for example. It requires some additional regularity
of the family A0(t) with respect to t, which is satisfied for ODEs or parabolic
PDEs under reasonable assumptions on DxF (x, λ). In analogy to (I.8.8) we
assume also that

U0(t, τ) ∈ L(Z,Z) is compact for 0 ≤ τ < t ≤ T.(I.13.7)

(The time T ≥ 2π is arbitrary but finite. The compactness of (I.13.7) is given
by a compact embedding X ⊂ Z (cf. (I.8.4).)

As mentioned before, we need the Fredholm property of Ĵ0 ≡ κ0(
d
dt −

A0(t)) as a mapping
Ĵ0 : E ∩ Y → W,(I.13.8)

where we again use the notation W = Cα
2π(R, Z), E = Cα

2π(R, X), and Y =
C1+α

2π (R, Z).
The mapping (I.13.8) makes sense only if A0(·)x ∈ W for all x ∈ E. This

is satisfied by a Hölder continuity of the family A0(t) in L(X,Z). (Observe an
inconsistency in the notation: Whereas we write x for a function x = x(t), we
note explicitly the time dependence of A0 = A0(t) in the differential equation
dx
dt = A0(t)x or in the operator Ĵ0 = κ0(

d
dt − A0(t)). This is in agreement

with a long tradition in differential equations.) For the Fredholm property of
Ĵ0 we need the following assumption:

For f ∈ Cα([0, T ], Z) and ϕ̂ ∈ Z the solution of
dx

dt
= A0(t)x+ f and x(0) = ϕ̂ is given by

x(t) = U0(t, 0)ϕ̂+

∫ t

0

U0(t, s)f(s)ds

and x ∈ Cα([ε, T ], X) for any ε > 0.

(I.13.9)

For a Hölder continuous family A0(t) (with respect to the topology of
L(X,Z)) that satisfies (I.13.6), the property (I.13.9) is proved in [7], Chapter
II. As mentioned before, all conditions on DxF (x0, λ0) can be satisfied for a
reasonably large class of parabolic PDEs.

By the assumption (I.13.9) we show that we can characterize the range of
Ĵ0 (cf. (I.13.8)) as follows:

f ∈ R(Ĵ0) ⊂ W ⇔ Ĵ0x = f ⇔
(I − U0(2π, 0))ϕ̂

=
1

κ0

∫ 2π

0

U0(2π, s)f(s)ds for some x(0) = ϕ̂ ∈ Z ⇔∫ 2π

0

U0(2π, s)f(s)ds ∈ R(I − U0(2π, 0)).

(I.13.10)
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Indeed, (I.13.10)2 implies that the solution given by (I.13.9) satisfies x(0) =
x(2π). By the 2π-periodicity of A0(t) as well as of f , and by the uniqueness
of the solution of the initial value problem (I.13.9), the equality x(0) = x(2π)
implies the 2π-periodicity of x, and the regularity assumption (I.13.9) finally
gives

x ∈ E,
dx

dt
= A0(t)x + f ∈ W, or x ∈ Y.(I.13.11)

Proposition I.13.1 Under the assumptions (I.13.6), (I.13.7), and (I.13.9)
the operator Ĵ0 as given in (I.13.8) is a Fredholm operator of index zero.

Proof. By (I.13.10), x ∈ N(Ĵ0) is equivalent to x(0) = ϕ̂ ∈ N(I−U0(2π, 0)).
The compactness of U0(2π, 0) (cf.(I.13.7)) implies that I − U0(2π, 0) is a
Fredholm operator of index zero in L(Z,Z) (Riesz–Schauder Theory). By
(I.13.3) dimN(I −U0(2π, 0)) ≥ 1, and assuming dim(I −U0(2π, 0)) = n+1,
the Fredholm property implies

N(I − U0(2π, 0)) = span[ϕ̂0, . . . , ϕ̂n],

R(I − U0(2π, 0))⊕ Z0 = Z, and

Z0 = span[ϕ̂∗
0, . . . , ϕ̂

∗
n].

(I.13.12)

By the Hahn–Banach Theorem we find vectors

ϕ̂′
0, . . . , ϕ̂

′
n ∈ Z ′ (the dual space) such that

〈ϕ̂∗
j , ϕ̂

′
k〉 = δjk (= 1 for j = k,= 0 for j �= k), and

〈z, ϕ̂′
k〉 = 0 for k = 0, . . . , n ⇔ z ∈ R(I − U0(2π, 0)).

(I.13.13)

We set
ψ̂j(t) = U0(t, 0)ϕ̂j and

ψ̂′
k(t) = U ′

0(2π, t)ϕ̂
′
k, j, k = 0, . . . , n, t ∈ [0, 2π],

where U ′
0(2π, t) ∈ L(Z ′, Z ′) is the dual operator.

(I.13.14)

Then (again by (I.13.10))

N(Ĵ0) = span[ψ̂0, . . . , ψ̂n](I.13.15)

and ∫ 2π

0

〈f(t), ψ̂′
k(t)〉dt = 0 for k = 0, . . . , n ⇔

〈∫ 2π

0

U0(2π, t)f(t)dt, ϕ̂
′
k

〉
= 0 by definition (I.13.14)

⇔
∫ 2π

0

U0(2π, t)f(t)dt ∈ R(I − U0(2π, 0)) by (I.13.13)

⇔ f ∈ R(Ĵ0) by (I.13.10).

(I.13.16)
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We show that (I.13.16) implies codimR(Ĵ0) = n+ 1. By the choice of ϕ̂′
k, in

particular by (I.13.13)3,

span[ϕ̂′
0, . . . , ϕ̂

′
n] ⊂ N(I − U ′

0(2π, 0)),(I.13.17)

which is the easy part of the Closed Range Theorem (cf. [170]). Therefore,

ψ̂′
k(0) = U ′

0(2π, 0)ϕ̂
′
k = ϕ̂′

k = ψ̂′
k(2π) and ψ̂′

0, . . . , ψ̂
′
n are n+ 1 linearly inde-

pendent functions in Cα
2π([0, 2π], Z

′) (which we can extend to Cα
2π(R, Z

′)).
We leave it as an exercise to prove the existence of

ψ̂∗
0 , . . . , ψ̂

∗
n ∈ Cα

2π(R, Z) such that

1

2π

∫ 2π

0

〈ψ̂∗
j (t), ψ̂

′
k(t)〉dt = δjk, j, k = 0, . . . , n.

(I.13.18)

(Hint: By 〈ϕ̂∗
j , ψ̂

′
k(2π)〉 = δjk, the real-valued function 〈ϕ̂∗

j , ψ̂
′
j(t)〉 is not in

span[{〈ϕ̂∗
j , ψ̂

′
k〉|k �= j}] ⊂ Cα

2π(R,R). Therefore, there is some fj ∈ Cα
2π(R,R)

such that 1
2π

∫ 2π

0
fj(t)〈ϕ̂∗

j , ψ̂
′
k(t)〉dt = δjk and ψ̂∗

j (t) ≡ fj(t)ϕ̂
∗
j satisfies

(I.13.18).)
Then the (n+ 1)-dimensional projection Q̂ ∈ L(W,W ) defined by

(Q̂z)(t) =
n∑

k=0

1

2π

∫ 2π

0

〈z(t), ψ̂′
k(t)〉dtψ̂∗

k(t)(I.13.19)

has the property that

R(Ĵ0) = N(Q̂) by (I.13.16) and

W = R(Ĵ0)⊕R(Q̂), whence codimR(Ĵ0) = n+ 1.(I.13.20)

This completes the proof of Proposition I.13.1. 
�

As usual, we set Q̂|E∩Y = P̂ ∈ L(E ∩ Y,E ∩ Y ).

Corollary I.13.2 Let N(Ĵ0) = span[ψ̂0, . . . , ψ̂n]. Then

ψ̂j /∈ R(Ĵ0) ⇔ ϕ̂j ≡ ψ̂j(0) /∈ R(I − U0(2π, 0)).(I.13.21)

If ψ̂j /∈ R(Ĵ0) for j = 0, . . . ,m ≤ n, then we can choose ψ̂∗
j = ψ̂j for

j = 0, . . . ,m in formula (I.13.18) and for the definition (I.13.19) of the
projection Q̂.

Proof. If ψ̂j ∈ N(Ĵ0), then by (I.13.10), ψ̂j(t) = U0(t, 0)ϕ̂j , so that
ϕ̂j ∈ N(I − U0(2π, 0)), which means that U0(2π, 0)ϕ̂j = ϕ̂j . Therefore,
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0

U0(2π, t)ψ̂j(t)dt =

∫ 2π

0

U0(2π, t)U0(t, 0)ϕ̂jdt

=

∫ 2π

0

U0(2π, 0)ϕ̂jdt = 2πϕ̂j /∈ R(I − U0(2π, 0)) ⇔
ψ̂j /∈ R(Ĵ0) by (I.13.16).

(I.13.22)

Thus the complement Z0 of R(I − U0(2π, 0)) can be spanned as

Z0 = span[ϕ̂0, . . . , ϕ̂m, ϕ̂∗
m+1, . . . , ϕ̂

∗
n],(I.13.23)

or ϕ̂∗
j = ϕ̂j for j = 0, . . . ,m. We choose again ϕ̂′

k according to (I.13.13),

and we define ψ̂′
k by (I.13.14) for k = 0, . . . , n. Then, for j = 0, . . . ,m and

k = 0, . . . , n,

1

2π

∫ 2π

0

〈ψ̂j(t), ψ̂
′
k(t)〉dt

=
1

2π

∫ 2π

0

〈U0(t, 0)ϕ̂j , U
′
0(2π, t)ϕ̂

′
k〉dt

=
1

2π

∫ 2π

0

〈U0(2π, t)U0(t, 0)ϕ̂j , ϕ̂
′
k〉dt

=
1

2π

∫ 2π

0

〈ϕ̂j , ϕ̂
′
k〉dt = δjk,

(I.13.24)

which proves that we can choose ψ̂∗
j (t) = ψ̂j(t) for j = 0, . . . ,m. (The choice

ψ̂∗
j (t) = U0(t, 0)ϕ̂

∗
j for m + 1 ≤ j ≤ n does not work, since ψ̂∗

j is not 2π-

periodic, or ψ̂∗
j /∈ W in this case: We tacitly assume that the number m

such that ϕ̂j = ψ̂j(0) /∈ R(I − U0(2π, 0)) for j = 0, . . . ,m ≤ n is maximal
or that dim(N(I − U0(2π, 0)) ∩ R(I − U0(2π, 0))) = n − m. Therefore, the
remaining n − m vectors ϕ̂∗

j for m + 1 ≤ j ≤ n spanning the complement
Z0 of R(I − U0(2π, 0)) cannot be in N(I − U0(2π, 0)), which means that
U0(2π, 0)ϕ̂

∗
j �= ϕ̂∗

j for m+ 1 ≤ j ≤ n. Nonetheless, there exist such functions

ψ̂∗
j ∈ W for m+ 1 ≤ j ≤ n such that (I.13.18) is satisfied.) 
�

Now we are ready to prove the Implicit Function Theorem for Peri-
odic Solutions of (I.13.1).

Theorem I.13.3 Assume that (I.13.1) has a p0-periodic solution x0 for
λ = λ0 with a simple trivial Floquet exponent μ0 = 0 in the sense of (I.13.4)
(after normalization of the period p0 to 2π). Under the assumptions (I.13.6),
(I.13.7), and (I.13.9), the periodic solution x0 has a continuation described
as follows: There are continuously differentiable mappings x(λ) and p(λ) de-
fined on (λ0 − δ, λ0 + δ) such that x(λ0) = x0, p(λ0) = p0, and x(λ) is
a p(λ)-periodic solution of (I.13.1). All periodic solutions of (I.13.1) in a
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neighborhood of (x0, λ0) (in the topology defined in the proof) having a period
near p0 are given by a phase shift of (x(λ), λ).

Proof. Substituting t/κ0 for t where p0 = 2π/κ0, we prove the unique
continuation of the solution (x0, κ0, λ0) of G(x, κ, λ) ≡ κdx

dt − F (x, λ) = 0 in
(E ∩ Y )× R+ × R; cf. (I.13.2). We define

Ĝ(x, κ, λ) =

(
G(x, κ, λ),

∫ 2π

0

〈x − x0, ψ̂
′
0〉dt

)
,(I.13.25)

where G is given by (I.8.10), (I.8.12), with x0 ∈ Ũ , and ψ̂′
0 is given by

(I.13.13), (I.13.14).

By assumption (I.13.4), we have N(Ĵ0) = span[ψ̂0], ψ̂0 = d
dtx0, and

ψ̂0 /∈ R(Ĵ0). Therefore, we can apply Corollary I.13.2, and the projection

(Q̂z)(t) =
1

2π

∫ 2π

0

〈z(t), ψ̂′
0(t)〉dtψ̂0(t) (cf. (I.13.19))(I.13.26)

projects W onto N(Ĵ0) along R(Ĵ0).
By G(x0, κ0, λ0) = 0, we clearly have Ĝ(x0, κ0, λ0) = (0, 0), and the

derivative

D(x,κ)Ĝ(x0, κ0, λ0) ∈ L((E ∩ Y )× R,W × R)
is given by the matrix

D(x,κ)Ĝ(x0, κ0, λ0) =

⎛
⎜⎝DxG(x0, κ0, λ0)

d

dt
x0∫ 2π

0

〈·, ψ̂′
0〉dt 0

⎞
⎟⎠ .

(I.13.27)

We claim that D(x,κ)Ĝ(x0, κ0, λ0) is bijective. Indeed,

D(x,κ)Ĝ(x0, κ0, λ0)(x, κ) = (0, 0) ⇔

Ĵ0x+ κψ̂0 = 0 and

∫ 2π

0

〈x, ψ̂′
0〉dt = 0.

(I.13.28)

Since ψ̂0 /∈ R(Ĵ0) by assumption (I.13.4), the first equation of (I.13.28)2
implies

x ∈ N(Ĵ0), κ = 0,(I.13.29)

and by the second equation of (I.13.28)2,

x = Q̂x = 0.(I.13.30)

Thus N(D(x,κ)Ĝ(x0, κ0, λ0)(x, κ)) = {(0, 0)}.
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Again by assumption (I.13.4) we have W = R(Ĵ0)⊕ span[ψ̂0], and by
1
2π

∫ 2π

0
〈ψ̂0, ψ̂

′
0〉dt = 1, we see that R(D(x,κ)Ĝ(x0, κ0, λ0)) = W × R, or that

D(x,κ)Ĝ(x0, κ0, λ0) is surjective.
To summarize, the assumptions of the Implicit Function Theorem are

satisfied for Ĝ at (x0, κ0, λ0). (If F ∈ C2(U × V, Z), then G, Ĝ ∈ C1(Ũ ×
Ṽ ,W ), where U is a neighborhood of {x0(t)|t ∈ [0, 2π]} ⊂ X,λ0 ∈ V ⊂
R, x0 ∈ Ũ ⊂ E ∩ Y , and (κ0, λ0) ∈ Ṽ ⊂ R2.)

Therefore, there exists a continuously differentiable curve {(x(λ), κ(λ), λ)|
λ ∈ (λ0 − δ, λ0 + δ)} in (E ∩ Y )×R+ ×R such that (x(λ0), κ(λ0)) = (x0, κ0)
and

Ĝ(x(λ), κ(λ), λ) = (0, 0), or, by (I.13.25),
G(x(λ), κ(λ), λ) = 0 and∫ 2π

0

〈x(λ) − x0, ψ̂
′
0〉dt = 0 for all λ ∈ (λ0 − δ, λ0 + δ).

(I.13.31)

Substituting finally κ(λ)t for t in x(λ)(t), we obtain a continuously differ-
entiable curve (x(λ), λ) of p(λ)-periodic solutions of (I.13.1) through (x0, λ0)
and the continuation of the period p(λ) = 2π/κ(λ) satisfies p(λ0) = 2π/κ0 =
p0.

The last equation in (I.13.31) links the phase of x(λ) to that of x0. Due to
the equivariance (I.8.41), any phase shift in x(λ) provides another solution
of G(x, κ, λ) = 0. 
�

In Section I.4 we pursue a curve of “stationary” solutions of F (x, λ) = 0
around a turning point (or a fold) by an Implicit Function Theorem with a
one-dimensional kernel. We extend this to periodic solutions of dx

dt = F (x, λ).
We stay in the setting of (I.13.2); i.e., we fix the period to 2π by introducing
a second parameter κ. We do not assume the simplicity of the trivial Floquet
exponent μ0 = 0 in the sense of (I.13.4). Therefore, we have to distinguish
two cases:

(1) ψ̂0 =
d

dt
x0 /∈ R(Ĵ0),

(2) ψ̂0 ∈ R(Ĵ0).

(I.13.32)

We begin with case (1); i.e., we are in the situation of the proof of Theorem
I.13.3. We define Ĝ as in (I.13.25), and if D(x,κ)Ĝ(x0, κ0, λ0) has a trivial
kernel {(0, 0)}, we are precisely back to Theorem I.13.3. Therefore, we assume
now

dimN(D(x,κ)Ĝ(x0, κ0, λ0)) = 1.(I.13.33)

By (I.13.27), (I.13.28), this is equivalent to

N(Ĵ0) = span[ψ̂0, ψ̂1], i.e., dimN(Ĵ0) = 2, and

N(D(x,κ)Ĝ(x0, κ0, λ0)) = span[(ψ̂1, 0)].
(I.13.34)
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Furthermore,

R(D(x,κ)Ĝ(x0, κ0, λ0)) = (R(Ĵ0)⊕ span[ψ̂0])× R,(I.13.35)

which proves by codimR(Ĵ0) = 2 (cf. Proposition I.13.1) that

codimR(D(x,κ)Ĝ(x0, κ0, λ0)) = 1.(I.13.36)

Therefore, D(x,κ)Ĝ(x0, κ0, λ0) is a Fredholm operator of index zero. Choosing

ψ̂∗
0 = ψ̂0 according to Corollary I.13.2 and ψ̂′

1 according to (I.13.13), (I.13.14),

we have
∫ 2π

0 〈ψ̂0, ψ̂
′
1〉dt = 0 and finally by (I.13.16),

(f, 0) /∈ R(D(x,κ)Ĝ(x0, κ0, λ0)) ⇔∫ 2π

0

〈f, ψ̂′
1〉dt �= 0.

(I.13.37)

Theorem I.4.1 is then applicable if

DλĜ(x0, κ0, λ0) = (−DλF (x0, λ0), 0) /∈ R(D(x,κ)Ĝ(x0, κ0, λ0))

⇔
∫ 2π

0

〈DλF (x0, λ0), ψ̂
′
1〉dt �= 0.

(I.13.38)

Next we consider case (2); i.e., ψ̂0 ∈ R(Ĵ0). Now we cannot apply Corollary

I.13.2, and in particular, ψ̂∗
0 �= ψ̂0,

∫ 2π

0 〈ψ̂0, ψ̂
′
0〉dt = 0 according to (I.13.16).

Nonetheless, we find a function ψ̃′
0 ∈ Cα

2π(R, Z
′) such that

1

2π

∫ 2π

0

〈ψ̂0, ψ̃
′
0〉dt = 1.(I.13.39)

(The proof is similar to that of (I.13.18): Consider the 2π-periodic real-valued

function 〈ψ̂0(t), z
′〉 for some z′ ∈ Z ′ such that 〈ψ̂0(t), z

′〉 �≡ 0.) We now

define Ĝ as in (I.13.25), but we replace ψ̂′
0 by ψ̃′

0 satisfying (I.13.39). By

the assumption ψ̂0 ∈ R(Ĵ0), the corresponding equations (I.13.28) imply
dimN(D(x,κ)Ĝ(x0, κ0, λ0)) ≥ 1. Again we assume (I.13.33), which is equi-
valent to

N(Ĵ0) = span[ψ̂0], i.e., dimN(Ĵ0) = 1, and

N(D(x,κ)Ĝ(x0, κ0, λ0)) = span[(ψ̂1, 1)], ψ̂1 �= 0.
(I.13.40)

Furthermore,
R(D(x,κ)Ĝ(x0, κ0, λ0)) = R(Ĵ0)× R,(I.13.41)

which proves, by codimR(Ĵ0) = 1, that

codimR(D(x,κ)Ĝ(x0, κ0, λ0)) = 1.(I.13.42)
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Therefore, D(x,κ)Ĝ(x0, κ0, λ0) is a Fredholm operator of index zero, and by
(I.13.16),

(f, 0) /∈ R(D(x,κ)Ĝ(x0, κ0, λ0)) ⇔∫ 2π

0

〈f, ψ̂′
0〉dt �= 0.

(I.13.43)

Thus Theorem I.4.1 is applicable, provided that∫ 2π

0

〈DλF (x0, λ0), ψ̂
′
0〉dt �= 0.(I.13.44)

Remark I.13.4 In both cases (I.13.32), the trivial Floquet exponent μ0 =
0 is at least algebraically double: In case (1) it is geometrically double by
(I.13.34); in case (2) it is algebraically double, possibly of higher multiplicity

if ψ̂1 in (I.13.40) is in R(Ĵ0), too.

We summarize our results as an Implicit Function Theorem for Peri-
odic Solutions with Two-Dimensional Kernels: Turning Points (and
we recall that our conditions are given when the period is normalized to 2π).

Theorem I.13.5 Assume that (I.13.1) has a p0-periodic solution x0 for
λ = λ0 with a double trivial Floquet exponent μ0 = 0 in the sense of
(I.13.34) or (I.13.40). Furthermore, we assume that the 2π-periodic function
DλF (x0, λ0) satisfies (I.13.38) or (I.13.44). Under the remaining assump-
tions (I.13.6), (I.13.7), and (I.13.9) of this section there are continuously
differentiable curves {(x(s), λ(s))|s ∈ (−δ, δ)} and {p(s)|s ∈ (−δ, δ)} through
(x(0), λ(0)) = (x0, λ0) and p(0) = p0, respectively, such that x(s) is a p(s)-
periodic solution of (I.13.1) for λ = λ(s), and any periodic solution of (I.13.1)
in a neighborhood of (x0, λ0) having a period near p0 is obtained by a phase
shift of (x(s), λ(s)).

We recall that we prove the existence of a curve of solutions ofG(x, κ, λ) ≡
κdx

dt −F (x, λ) = 0 through (x0, κ0, λ0) in (C1+α
2π (R, Z)∩Cα

2π(R, X))×R+×R.

This is achieved by applying Theorem I.4.1 to Ĝ(x, κ, λ) = 0, where the pair
(x, κ) is combined into one variable and λ is the only parameter. Corollary
I.4.2 then also gives the tangent vector of the solution curve at (x0, κ0, λ0),
namely, by (I.13.34) or (I.13.40),

dx

ds
(s)

∣∣
s=0

= ψ̂1,
dκ

ds
(s)

∣∣
s=0

= 0 or 1 , respectively,

dλ

ds
(s)

∣∣
s=0

= 0.

(I.13.45)

Assuming more differentiability of Ĝ (which means more differentiabil-
ity of F , namely, F ∈ C4(U × V, Z), where U ⊂ X is a neighborhood of
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{x0(t)} and λ0 ∈ V ⊂ R), the solution curve {(x(s), κ(s), λ(s))|s ∈ (−δ, δ)}
of Ĝ(x, κ, λ) = 0 through (x0, κ0, λ0) is twice continuously differentiable.

In order to determine λ̈(0) (and also κ̈(0) in the first case; ˙ = d
ds ), we

follow the lines of (I.4.16), and we obtain in case (1) (cf. (I.4.23)),

λ̈(0) = −
∫ 2π

0
〈D2

xxF (x0, λ0)[ψ̂1, ψ̂1], ψ̂
′
1〉dt∫ 2π

0 〈DλF (x0, λ0), ψ̂′
1〉dt

,

κ̈(0) =
1

2π

∫ 2π

0

〈D2
xxF (x0, λ0)[ψ̂1, ψ̂1] +DλF (x0, λ0)λ̈(0), ψ̂

′
0〉dt,

(I.13.46)

where we used 1
2π

∫ 2π

0 〈ψ̂0, ψ̂
′
0〉dt = 1,

∫ 2π

0 〈ψ̂0, ψ̂
′
1〉dt = 0.

In case (2) we obtain by
∫ 2π

0
〈ψ̂0, ψ̂

′
0〉dt = 0,

λ̈(0) = −
∫ 2π

0 〈D2
xxF (x0, λ0)[ψ̂1, ψ̂1]− 2 d

dt ψ̂1, ψ̂
′
0〉dt∫ 2π

0
〈DλF (x0, λ0), ψ̂′

0〉dt
.(I.13.47)

Observe that the denominators are nonzero by assumptions (I.13.38) and
(I.13.44), respectively. If the numerators are nonzero, too, then λ̈(0) �= 0,
and in this sense the curve {(x(s), λ(s))} of p(s)-periodic solutions has a
nondegenerate turning point (or fold) at (x(0), λ(0)) = (x0, λ0). (Here
it makes no sense to call it a “saddle-node bifurcation.”) For a different
expression of the numerator of (I.13.47), see (I.13.59).

A closer look reveals that the turning points are “generically” of two
different types: The turning point in case (1) has an extremal period at
(x0, κ0, λ0), since κ̇(0) = 0 and κ̈(0) �= 0. At the turning point of case (2),
the period p(s) = 2π/κ(s) is a monotonic function, since κ̇(0) = 1.

Remark I.13.6 We can unify all cases of a continuation described in Theo-
rems I.13.3 and I.13.5 in a single point of view. In any case, G(x(s), κ(s), λ(s))
= 0 for s ∈ (−δ, δ) (where s = λ in case of Theorem I.13.3). Differentiating
this equation with respect to s at s = 0 gives

DxG(x0, κ0, λ0)ẋ(0) +
d

dt
x0κ̇(0)−DλF (x0, λ0)λ̇(0) = 0, or

Ĵ0ẋ(0) + ψ̂0κ̇(0)−DλF (x0, λ0)λ̇(0) = 0.

(I.13.48)

The total derivative D(x,κ,λ)G(x0, κ0, λ0) as a mapping from (E∩Y )×R+×R

into W is given by the matrix

D(x,κ,λ)G(x0, κ0, λ0) = (Ĵ0 ψ̂0 −DλF (x0, λ0))(I.13.49)

having the kernel vectors



I.13. Continuation of Periodic Solutions 101

(ẋ(0), κ̇(0), λ̇(0))
= (ẋ(0), κ̇(0), 1) in case of Theorem I.13.3,

= (ψ̂1, 0, 0) in case (1) of Theorem I.13.5,

= (ψ̂1, 1, 0) in case (2) of Theorem I.13.5, ψ̂1 �= 0,

and in all cases it has the kernel vector (ψ̂0, 0, 0), ψ̂0 =
d

dt
x0.

(I.13.50)

Thus dimN(D(x,κ,λ)G(x0, κ0, λ0)) = 2 in all cases. On the other hand, by the

assumptions on ψ̂0 or on DλF (x0, λ0), the total derivative D(x,κ,λ)G(x0, κ0, λ0)
is surjective in all cases.

In this sense, 0 is a “regular value” of G at its zero (x0, κ0, λ0), and
since the kernel of its total derivative is two-dimensional, the solution set
of G(x, κ, λ) = 0 near (x0, κ0, λ0) is a two-dimensional manifold (=surface)
through (x0, κ0, λ0) described by

{(x(s)(·+ θ), κ(s), λ(s))|s ∈ (−δ, δ), θ ∈ [0, 2π]}.(I.13.51)

(For more details we refer to [102], [105].) We obtain a curve by fixing the
phase θ to θ = 0. For obvious reasons, the surface (I.13.51) is called a “snake”
in [134].

I.13.1 Exchange of Stability at a Turning Point

At the end of this section we investigate the stability of the curves of periodic
solutions of (I.13.1) given by Theorems I.13.3 and I.13.5. Clearly, “stability”
means as usual “linear stability,” which is determined by the Floquet expo-
nents of the p-periodic solution x. To be more precise, only the nontrivial
Floquet exponents play a role, provided that μ0 = 0 is a simple Floquet
exponent of x in the sense of (I.13.4) (cf. the comments at the beginning of
Section I.12).

In case of the Implicit Function Theorem for periodic solutions (Theorem
I.13.3), the stability of x(λ) is the same as that of x(λ0) = x0 for λ ∈ (λ0− δ,
λ0+ δ) (if δ is sufficiently small). Indeed, the simplicity of the trivial Floquet
exponent μ0(λ) ≡ 0 is preserved for λ near λ0 if we assume (I.13.3) not only

for x0 (i.e., for λ = λ0) but also for x(λ) for λ near λ0. Then ψ̂0(λ) ≡ d
dtx(λ)

is the eigenfunction of DxG(x(λ), κ(λ), λ) with eigenvalue μ0(λ) ≡ 0, and by
the closedness of R(DxG(x(λ), κ(λ), λ)) in Cα

2π(R, Z) = W (cf. Proposition
I.13.1), the simplicity of μ0(λ) = 0 is inherited from the simplicity of μ0(λ0) =

0, since R(DxG(x(λ), κ(λ), λ)) as well as ψ̂0(λ) depends continuously on λ in
the topology of W .

Next we investigate the linear stability near a turning point; i.e., we con-
sider the stability of the curve {(x(s), λ(s))|s ∈ (−δ, δ)} of p(s)-periodic solu-
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tions of (I.13.1) given by Theorem I.13.5. Again we focus only on the critical
Floquet exponents emanating from the double Floquet exponent μ0 = 0. To
do so we have to be sure that μ0 = 0 is an algebraically double eigenvalue
of Ĵ0 = DxG(x0, κ0, λ0) such that the so-called 0-group of the perturbed
Floquet exponents is twofold (cf. [86]). Therefore, assumptions (I.13.34) and
(I.13.40) have to be sharpened in the sense that

ψ̂1 /∈ R(Ĵ0)(I.13.52)

(cf. also Remark I.13.4). Assumption (I.13.52) implies by (I.13.34) or (I.13.40)
that

W × R = R(D(x,κ)Ĝ(x0, κ0, λ0))⊕N(D(x,κ)Ĝ(x0, κ0, λ0)),

or 0 is a simple eigenvalue of D(x,κ)Ĝ(x0, κ0, λ0) in the

sense of (I.7.4) with eigenvector (ψ̂1, 0) or (ψ̂1, 1), respectively.

(I.13.53)

Proposition I.7.2 gives the simple eigenvalue perturbation as follows
(for D(x,κ)Ĝ(x, κ, λ) see ((I.13.27)):

D(x,κ)Ĝ(x(s), κ(s), λ(s))

(
ψ̂1 + w(s)

ν(s)

)
= μ1(s)

(
ψ̂1 + w(s)

ν(s)

)
,

(w(s), ν(s)) ∈ R(D(x,κ)Ĝ(x0, κ0, λ0)) ∩ ((E ∩ Y )× R).

(I.13.54)

For s = 0 we have w(0) = 0, ν(0) = 0 or 1, and μ1(0) = 0.
The first equation of (I.13.54) is

DxG(x(s), κ(s), λ(s))(ψ̂1 + w(s)) = μ1(s)(ψ̂1 + w(s)) − ν(s)ψ̂0(s),

where ψ̂0(s) =
d

dt
x(s).

(I.13.55)

We assume (I.13.3) not only for x0 = x(0) but also for x(s) for s ∈ (−δ, δ).

Therefore, ψ̂0(s) is the eigenfunction with eigenvalue μ0(s) ≡ 0, which is the
trivial Floquet exponent. Equation (I.13.55) is then the analogue to equation
(I.12.10), and the arguments given after Proposition I.12.1 prove that μ1(s)
is the nontrivial perturbed Floquet exponent.

If Ĝ and therefore (x(s), κ(s), λ(s)) are smooth enough (which is guaran-
teed under the assumptions on F in Section I.9), we can differentiate equation
(I.13.55) with respect to s at s = 0, and using w(0) = 0, μ1(0) = 0, as well
as (I.13.45), we obtain

−D2
xxF (x0, λ0)[ψ̂1, ψ̂1] +DxG(x0, κ0, λ0)ẇ(0) +

d

dt
ψ̂1κ̇(0)

= μ̇1(0)ψ̂1 − ν̇(0)ψ̂0 − ν(0)
d

ds
ψ̂0(0).

(I.13.56)



I.13. Continuation of Periodic Solutions 103

First we treat case (1) when κ̇(0) = 0, ν(0) = 0, and where we can choose

ψ̂∗
0 = ψ̂0, ψ̂

∗
1 = ψ̂1 in view of Corollary I.13.2. For the choices of ψ̂′

0, ψ̂
′
1, for-

mula (I.13.18) is valid. Using also (I.13.16) for DxG(x0, κ0, λ0)ẇ(0) ∈ R(Ĵ0),
equation (I.13.56) yields

μ̇1(0) = − 1

2π

∫ 2π

0

〈D2
xxF (x0, λ0)[ψ̂1, ψ̂1], ψ̂

′
1〉dt

=
1

2π

∫ 2π

0

〈DλF (x0, λ0), ψ̂
′
1〉dtλ̈(0) by (I.13.46)

(
˙= d

ds

)
.

(I.13.57)

In case (2), κ̇(0) = 1, ν(0) = 1, and
∫ 2π

0 〈ψ̂0, ψ̂
′
0〉dt = 0. Furthermore,

d

ds
ψ̂0(0) =

d

ds

d

dt
x(0) =

d

dt

d

ds
x(0) =

d

dt
ψ̂1 by (I.13.45),(I.13.58)

and the relation Ĵ0ψ̂1+ ψ̂0 = κ0
d
dt ψ̂1−DxF (x0, λ0)ψ̂1+ ψ̂0 = 0 (cf. (I.13.40))

implies ∫ 2π

0

〈 d

dt
ψ̂1, ψ̂

′
0

〉
dt =

1

κ0

∫ 2π

0

〈DxF (x0, λ0)ψ̂1, ψ̂
′
0〉dt.(I.13.59)

Equation (I.13.56) finally yields

μ̇1(0) =
1

2π

∫ 2π

0

〈
2
d

dt
ψ̂1 −D2

xxF (x0, λ0)[ψ̂1, ψ̂1], ψ̂
′
0

〉
dt

=
1

2π

∫ 2π

0

〈DλF (x0, λ0), ψ̂
′
0〉dtλ̈(0) by (I.13.47).

(I.13.60)

Therefore, μ̇1 �= 0 at a nondegenerate turning point in case (1) and also in
case (2). Thus the critical (nontrivial) Floquet exponent μ1(s) changes sign at
s = 0, i.e., at the turning point (x0, λ0). If the remaining Floquet exponents
are in the stable right half-plane of C (cf. (I.12.2)), then the stability of the
p(s)-periodic solution x(s) of (I.13.1) for λ = λ(s) changes at the turning
point (x(0), λ(0)) = (x0, λ0). We summarize:

Theorem I.13.7 If a nontrivial periodic solution x0 of (I.13.1) for λ = λ0

is continued via the Implicit Function Theorem for periodic solutions (The-
orem I.13.3), then the stability does not change. If it is continued around a
nondegenerate turning point via the two cases described in Theorem I.13.5,
then its stability changes at the turning point.

The possibilities are sketched in Figure I.13.1, where each point on the
curves represents a periodic solution of (I.13.1).
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unstable

λ0

x0

stable

Figure I.13.1

Remark I.13.8 Usually, the continuation of periodic solutions is proved by
the continuation of fixed points of the Poincaré map associated with (I.13.1).
This fine geometric setting, however, requires the definition, existence, and
smoothness of the Poincaré map generated by the nonlinear flow in a neigh-
borhood of a periodic solution x0 (for the parameter λ0). Although that causes
no problems for ODEs, for parabolic PDEs the existence of a nonlinear flow
usually requires more assumptions on the mapping F (cf. (I.8.2)). We men-
tion that typically, the nonlinear remainder of F (i.e., F (x, λ)−DxF (0, λ)x)
is defined on a domain of a fractional power of A0 = DxF (0, λ0) that is an
intermediate (or interpolation) space between X and Z (see [88], [90], [76],
[142], for instance). In other words, (I.13.1) represents a semilinear parabolic
PDE. Then the derivative of the Poincaré map at the p0-periodic solution x0

is U0(p0, 0), which is the period map of the variational equation. The contin-
uation of a fixed point of the Poincaré map is then guaranteed if the trivial
Floquet multiplier 1 of U0(p0, 0) is simple. The occurrence of the two types of
turning points is proved in an analogous way.

We restrict our investigations a priori to periodic solutions, or in other
words, we do not need the entire nonlinear flow in a neighborhood of a periodic
solution. Therefore, our assumptions on F seem to be weaker. On the other
hand, we need the regularity assumptions (I.13.3) on the periodic solution
x0, and (I.13.6) on the periodic family of operators DxF (x0, λ0). We do not
know whether these assumptions require the same conditions on F as the
construction of the Poincaré map around the periodic solution x0. In any
case, that construction requires some additional steps, and it certainly uses
the linear fundamental solution (or evolution operator) U0(t, τ) generated by
DxF (x0, λ0) as well. In order to avoid these additional steps we do not prove
the continuation of periodic solutions in the common way using the Poincaré
map, but we stay in the setting of Fourier analysis.

The same comments refer also to the next section: Typically, the period-
doubling bifurcation is proved by a continuation of a fixed point of the iterated
Poincaré map (which is not a fixed point of the Poincaré map itself). For the
same reasons explained before, we stay in our setting and study (I.13.1) in a
space of periodic functions.
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I.14 Period-Doubling Bifurcation and Exchange of
Stability

We resume the situation of Section I.13, where we prove the existence of a
smooth curve of periodic solutions of

dx

dt
= F (x, λ)(I.14.1)

parameterized by λ or having a turning point and therefore parameterized as
{(x(s), λ(s))|s ∈ (−δ, δ)}. The continuation of the period p = p(s) is part of
the problem, and some remarks on that period are in order. Obviously, any
integer multiple of a period is again a period, and so far, we did not require
that the period be the minimal period. (In case of the Hopf Bifurcation,
the emanating path has the minimal period 2π/κ(r), where κ(0) = κ0 is
determined by the imaginary eigenvalue iκ0 of A0 = DxF (0, λ0) (cf. Theorem
I.8.2).) In the situation considered in Section I.13, however, the following
could happen: A p0-periodic solution x0 of (I.14.1) can be continued by the
methods of Section I.13, but the same solution x0 cannot be continued as a
kp0-periodic solution for some integer k > 1. Thus it could make a difference
whether we consider some period of x0 or the minimal period of x0. We make
this more precise now.

We define κ0 by p0 = 2π/kκ0 for some k ∈ N, and as usual, we
substitute t/κ0 for t in x0. Without changing the notation for x, the
equation G(x, κ, λ) = κdx

dt − F (x, λ) = 0 has a solution (x0, κ0, λ0) in

(C1+α
2π/k(R, Z) ∩ Cα

2π/k(R, X))× R+ × R by assumption.

That solution has a unique continuation if the assumptions of Section
I.13 are satisfied (when 2π is replaced by 2π/k). These assumptions are sum-
marized in Remark I.13.6: The total derivative D(x,κ,λ)G(x0, κ0, λ0) has a
two-dimensional kernel, and it is surjective.

Since x0 is also 2π-periodic, we can consider G(x, κ, λ) also as a mapping
in the corresponding space of 2π-periodic functions having a zero (x0, κ0, λ0)
in (C1+α

2π (R, Z) ∩ Cα
2π(R, X)) × R+ × R. The assumptions of Section I.13

are violated if the total derivative D(x,κ,λ)G(x0, κ0, λ0) (see (I.13.49)) is no
longer surjective in the space of 2π-periodic functions. By the Fredholm
property of Ĵ0 (cf. Proposition I.13.1), this is equivalent to the fact that
D(x,κ,λ)G(x0, κ0, λ0) has a kernel of dimension greater than 2. (It is easy to
show that the total derivative D(x,κ,λ)G(x0, κ0, λ0) as given by (I.13.49) is

a Fredholm operator of index 2, cf. Definition I.2.1, since Ĵ0 is a Fredholm
operator of index 0.)

If D(x,κ,λ)G(x0, κ0, λ0) has a kernel of dimension greater than 2 in the

space (C1+α
2π (R, Z) ∩ Cα

2π(R, X)) × R+ × R, we expect a bifurcation from
the curve of 2π/k-periodic solutions of (I.14.1) into the space of 2π-periodic
solutions, which means a multiplication of the period by k. A “simple” bi-
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furcation, however, occurs only if the dimension of the kernel is 3, i.e., if its
dimension is increased by 1.

Remark I.14.1 We give arguments for our assumption (I.14.17) below on a
simple period-doubling bifurcation; i.e., we explain why we restrict the factor
k of a period multiplication to 2. To that end we choose the setting of a Hilbert
space as in [94], [102], [105], where

G : D2π × R× R → H2π,

H2π = L2[(0, 2π), H ] with scalar product

( , )0 =
1

2π

∫ 2π

0

( , )Hdt, ( , )H = scalar product in H,

D ⊂ H (densely, continuously),

D2π =

{
x ∈ H2π |dx

dt
∈ H2π, x ∈ L2[(0, 2π), D], x(0) = x(2π)

}
with scalar product ( , )1 = (

d

dt
·, d
dt
·)0 + 1

2π

∫ 2π

0

( , )Ddt,

( , )D = scalar product in D.

(I.14.2)

Choosing a complete orthonormal system {fm}m∈N in H, we expand x ∈ H2π

into a Fourier series (after a natural complexification) as follows:

x(t) =
∑
m∈N

n∈Z

cmnfmeint, cmn = (x, fmeint)0,

cm,−n = cmn for real x.
(I.14.3)

(If x ∈ D2π, the expansion (I.14.3) holds as well with a stronger convergence
of the Fourier coefficients.) It is crucial in this Hilbert space setting that
the closed subspaces H2π/k and D2π/k of 2π/k-periodic functions have closed
orthogonal complements. We decompose

x(t) =
∑
m∈N

n=k�,�∈Z

cmnfmeint +
∑
m∈N

n �=k�

cmnfmeint,

which yields the decompositions

H2π = H2π/k ⊕ Ĥ2π/k, D2π = D2π/k ⊕ D̂2π/k

with projections Qk, Q̂k such that Qk + Q̂k = I,

Pk = Qk|D2π , P̂k = Q̂k|D2π .

(I.14.4)

The total derivative D(x,κ,λ)G(x0, κ0, λ0) given by the matrix (Ĵ0 ψ̂0

−DλF (x0, λ0)) (cf.(I.13.49)) has the following property: Since x0 ∈ D2π/k,

the functions ψ̂0 = d
dtx0, DλF (x0, λ0), and DxF (x0, λ0) are in H2π/k, and

since by definition, Ĵ0 ≡ κ0
d
dt −DxF (x0, λ0), the subspace of 2π/k-periodic

functions is invariant:
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D(x,κ,λ)G(x0, κ0, λ0) : D2π/k × R× R → H2π/k.(I.14.5)

Whereas this invariance is true in the Banach space formulation as well, i.e.,
D(x,κ,λ)G(x0, κ0, λ0) : (C

1+α
2π/k(R, Z) ∩ Cα

2π/k(R, X))× R × R → Cα
2π/k(R, Z),

the following invariance of the complement can hardly be stated in that set-
ting. We claim that

Ĵ0 : D̂2π/k → Ĥ2π/k, or equivalently,

QkĴ0P̂k = 0.
(I.14.6)

Let S2π/k be the shift operator (I.8.31). By the 2π/k-periodicity of x0, we see
easily that

S2π/kĴ0 = Ĵ0S2π/k.(I.14.7)

The action of S2π/k on Ĥ2π/k is described by

S2π/kx(t) =
∑
m∈N

n �=k�

ei2πn/kcmnfmeint such that

ei2πn/k �= 1 for all n �= k� and

I − S2π/k is an isomorphism in L(Ĥ2π/k, Ĥ2π/k).

(I.14.8)

(Obviously, I − S2π/k is also an isomorphism in L(D̂2π/k, D̂2π/k).) We now
prove (I.14.6). By definition of Qk, we have

S2π/kQkĴ0P̂k = QkĴ0P̂k, and by (I.14.7),

S2π/kQkĴ0P̂k = QkĴ0P̂kS2π/k.
(I.14.9)

(The projections commute with any shift operator.) Therefore,

QkĴ0P̂k(I − S2π/k) = 0 in L(D̂2π/k, H2π/k),(I.14.10)

which proves (I.14.6) by (I.14.8). Identifying “⊕” and “×” in an obvious
way, we see that the matrix of

D(x,κ,λ)G(x0, κ0, λ0) : D2π/k × D̂2π/k × R× R → H2π/k × Ĥ2π/k

is therefore given by

(
Ĵ0 0 ψ̂0 −DλF (x0, λ0)

0 Ĵ0 0 0

)
.

(I.14.11)

This proves, in turn, the following:

N(D(x,κ,λ)G(x0, κ0, λ0))

= N(D(x,κ,λ)G(x0, κ0, λ0))
∣∣
D2π/k×R×R

)×N(Ĵ0|D̂2π/k
).(I.14.12)

Returning to the theme of this section, if the first part of that kernel is
two-dimensional, we expect a “simple” period-multiplying bifurcation from
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the curve of 2π/k-periodic solutions of (I.14.1) into the complement of 2π-
periodic functions (that are not 2π/k-periodic), provided that the dimension
of N(Ĵ0|D̂2π/k

) is one.

Next we investigate when this one-dimensionality is possible, or when

N(Ĵ0|D̂2π/k
) = span[ψ̂2] for some ψ̂2 ∈ D̂2π/k.(I.14.13)

By (I.14.7),

ψ̂2 and S2π/kψ̂2 are both in N(Ĵ0|D̂2π/k
),

and (I.14.13) is true only if

ψ̂2 and S2π/kψ̂2 are linearly dependent over R.

(I.14.14)

By (I.14.8), this, in turn, is true only if

ei2πn/k = −1 for all n �= k�, � ∈ Z,
which requires that k be even and that

(ψ̂2, fmeint)0 �= 0 only for n = k
2 (2�+ 1).

(I.14.15)

Therefore, necessarily,

S2π/kψ̂2 = −ψ̂2 and

ψ̂2 is 4π/k-periodic.
(I.14.16)

This finishes the proof that in the Hilbert space setting the only sim-
ple period-multiplying bifurcation is the period-doubling bifurcation. For
ODEs the Hilbert space setting and the Hölder space setting (which we choose)
are equivalent. For parabolic PDEs, however, the Hilbert space formulation
(I.14.2) restricts the class of nonlinear operators (cf. [89], [94]), which is why
we prefer the Banach space formulation in Sections I.8–I.14.

We return to our usual definiton of G(x, κ, λ) = κdx
dt − F (x, λ) defined in

(C1+α
2π (R, Z) ∩Cα

2π(R, X))×R+ ×R and having values in Cα
2π(R, Z). Again,

we use the notation W = Cα
2π(R, Z), E = Cα

2π(R, X), and Y = C1+α
2π (R, Z).

We give the assumptions for a simple period-doubling bifurcation moti-
vated by Remark I.14.1.

Since the normalization of the period p0 of x0 to 2π/k (via p0 = 2π/kκ0

and substitution t/κ0 for t) is arbitrary, we now choose k = 2, so that the
period of x0 is normalized to π. We assume that
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G(x0, κ0, λ0) = 0 for some
(x0, κ0, λ0) ∈ (C1+α

π (R, Z) ∩Cα
π (R, X))× R+ × R,

N
(
D(x,κ,λ)G(x0, κ0, λ0)

∣∣
(C1+α

π (R,Z)∩Cα
π (R,X))×R×R

)
= span[(ψ̂0, 0, 0), (ψ̂1, κ1, λ1)] (cf. (I.13.50)),

N
(
D(x,κ,λ)G(x0, κ0, λ0)

∣∣
(C1+α

2π (R,Z)∩Cα
2π(R,X))×R×R

)
= span[(ψ̂0, 0, 0), (ψ̂1, κ1, λ1), (ψ̂2, 0, 0)],

and Sπψ̂2 = −ψ̂2.

(I.14.17)

The three possible cases of (ψ̂1, κ1, λ1) are summarized in (I.13.50), and the

vector (ψ̂1, κ1, λ1) = (ẋ(0), κ̇(0), λ̇(0)) is the tangent vector of the curve of
π-periodic solutions {(x(s), κ(s), λ(s))|s ∈ (−δ, δ)} of G(x, κ, λ) = 0 through
(x0, κ0, λ0) (and an arbitrary phase shift generates a surface with the second

tangent vector (ψ̂0, 0, 0)).
We draw some conclusions from assumption (I.14.17). As mentioned be-

fore, D(x,κ,λ)G(x0, κ0, λ0) is a Fredholm operator of index two when consid-
ered in the space of π- or 2π-periodic functions.

Therefore, D(x,κ,λ)G(x0, κ0, λ0) is surjective when restricted to the space
(C1+α

π (R, Z) ∩ Cα
π (R, X)) × R × R, and codimR(D(x,κ,λ)G(x0, κ0, λ0)) = 1

when π is replaced by 2π. Thus

R(D(x,κ,λ)G(x0, κ0, λ0))

=

{
z ∈ Cα

2π(R, Z)|
∫ 2π

0

〈z, ψ̂′
2〉dt = 0

}
for some ψ̂′

2 ∈ Cα
2π(R, Z

′) (cf. (I.13.16)), and in particular,∫ 2π

0

〈z, ψ̂′
2〉dt = 0 for all z ∈ Cα

π (R, Z).

(I.14.18)

The last relation can be restated as follows, where we use the π-periodicity
of z and the shift operator Sπ:∫ π

0

〈z, ψ̂′
2 + Sπψ̂

′
2〉dt = 0 for all z ∈ Cα

π (R, Z),

which implies Sπψ̂
′
2 = −ψ̂′

2.

(I.14.19)

Next we choose functions ψ̂′
0, ψ̂

′
1 ∈ Cα

π (R, Z
′) such that

1

π

∫ π

0

〈ψ̂0, ψ̂
′
0〉dt = 1,

1

π

∫ π

0

〈ψ̂1, ψ̂
′
1〉dt = 1,

whence in view of Sπψ̂2 = −ψ̂2,∫ 2π

0

〈ψ̂2, ψ̂
′
0〉dt =

∫ 2π

0

〈ψ̂2, ψ̂
′
1〉dt = 0.

(I.14.20)
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(The functions ψ̂′
0, ψ̂

′
1 exist by the argument following (I.13.39).)

We now prove a simple period-doubling bifurcation from the curve of π-
periodic solutions passing through (x0, κ0, λ0). That curve (whose existence
is proved in Section I.13) is locally parameterized as {(x(s), κ(s), λ(s))|s ∈
(−δ, δ)} ⊂ (C1+α

π (R, Z) ∩ Cα
π (R, X)) × R × R, where (x(0), κ(0), λ(0)) =

(x0, κ0, λ0). We define

G̃(u, s) = G(x(s) + x, κ(s) + κ, λ(s) + λ),
where u = (x, κ, λ) and

Ĝ(u, s) =

(
G̃(u, s),

∫ 2π

0

〈x, ψ̂′
0〉dt,

∫ 2π

0

〈x, ψ̂′
1〉dt

)
,

Ĝ : Û × (−δ, δ) → W × R× R,

0 ∈ Û ⊂ (E ∩ Y )× R× R.

(I.14.21)

The Fredholm property of Ĵ0 = DxG(x0, κ0, λ0) (cf. Proposition I.13.1) in-
duces the Fredholm property to

DuĜ(0, 0)(x, κ, λ)

=

(
D(x,κ,λ)G(x0, κ0, λ0)(x, κ, λ),

∫ 2π

0

〈x, ψ̂′
0〉dt,

∫ 2π

0

〈x, ψ̂′
1〉dt

)
,

where D(x,κ,λ)G(x0, κ0, λ0) is given by (I.13.49).

(I.14.22)

To be more precise, DuĜ(0, 0) is a Fredholm operator of index zero.
Obviously, Ĝ(0, s) = 0 for s ∈ (−δ, δ) (which is the “trivial” solution line),

and in view of (I.14.17) and (I.14.20),

N(DuĜ(0, 0)) = span[(ψ̂2, 0, 0)] and

R(DuĜ(0, 0)) = R(D(x,κ,λ)G(x0, κ0, λ0))× R× R.
(I.14.23)

We can apply Theorem I.5.1, provided that the nondegeneracy condition
(I.5.3) is satisfied:

D2
usĜ(0, 0)(ψ̂2, 0, 0) �∈ R(DuĜ(0, 0)).(I.14.24)

(If F ∈ C3(U × V, Z), then Ĝ ∈ C2(Û × (−δ, δ),W × R × R), where U is a
neighborhood of {x0(t)|t ∈ [0, π]} ⊂ X,λ0 ∈ V ⊂ R.) In view of (I.14.18) and
(I.14.23), this condition (I.14.24) reads as follows:
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D2
usG̃(0, 0)(ψ̂2, 0, 0)

= κ̇(0)
d

dt
ψ̂2 −D2

xxF (x0, λ0)[ẋ(0), ψ̂2]− λ̇(0)D2
xλF (x0, λ0)ψ̂2

= κ1
d

dt
ψ̂2 −D2

xxF (x0, λ0)[ψ̂1, ψ̂2]− λ1D
2
xλF (x0, λ0)ψ̂2

by (ẋ(0), κ̇(0), λ̇(0)) = (ψ̂1, κ1, λ1)

(
˙ =

d

ds

)
and

D2
usĜ(0, 0)(ψ̂2, 0, 0) �∈ R(DuĜ(0, 0)) ⇔∫ 2π

0

〈κ1
d

dt
ψ̂2 −D2

xxF (x0, λ0)[ψ̂1, ψ̂2]− λ1D
2
xλF (x0, λ0)ψ̂2, ψ̂

′
2〉 dt

�= 0.

(I.14.25)

Theorem I.5.1 then yields the following Period-Doubling Bifurcation
Theorem.

Theorem I.14.2 Assume the general hypotheses of Sections I.13 and I.14 on
G(x, κ, λ) ≡ κdx

dt −F (x, λ), and in particular, assume (I.14.17) and (I.14.25).
Then two continuously differentiable curves of solutions of G(x, κ, λ) = 0 pass
through (x0, κ0, λ0):

{(x(s), κ(s), λ(s))|s ∈ (−δ, δ)} is the curve of π-periodic solutions through
(x(0), κ(0), λ(0)) = (x0, κ0, λ0)

and {(x(s(τ))+x̃(τ), κ(s(τ))+κ̃(τ), λ(s(τ))+λ̃(τ))|τ ∈ (−δ̃, δ̃)} is the curve of
2π-periodic solutions through (x(s(0))+ x̃(0), κ(s(0))+ κ̃(0), λ(s(0))+ λ̃(0)) =
(x0, κ0, λ0).

All 2π-periodic solutions of G(x, κ, λ) = 0 near (x0, κ0, λ0) (in the topology
of (E ∩ Y )×R×R) are given by arbitrary phase shifts of solutions on these
two curves.

For a proof we solve by Theorem I.5.1 the equation Ĝ(u, s) = 0 near
(0, 0) by a nontrivial curve

{(u(τ), s(τ))|τ ∈ (−δ̃, δ̃), (u(0), s(0)) = (0, 0)},
where u(τ) = (x̃(τ), κ̃(τ), λ̃(τ)).

(I.14.26)

(We place a “∼” on (x̃(τ), κ̃(τ), λ̃(τ)) in order to distinguish this curve from
the curve (x(s), κ(s), λ(s)).) We insert {(u(τ), s(τ))} into Ĝ (cf. (I.14.21)),
and by G̃(u(τ), s(τ)) = 0 we obtain the curve {(x(s(τ)) + x̃(τ), κ(s(τ)) +
κ(τ), λ(s(τ)) + λ̃(τ))} of 2π-periodic solutions of G(x, κ, λ) = 0. �

Next we study the tangent vector of the curve of 2π-periodic solutions at
(x0, κ0, λ0). By Corollary I.5.2, we obtain

d

dτ
u(τ)|τ=0 =

(
d

dτ
x̃(0),

d

dτ
κ̃(0),

d

dτ
λ̃(0)

)
= (ψ̂2, 0, 0).(I.14.27)
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We have to evaluate d
dτ s(0) in order to give the tangent vector of the period-

doubling bifurcation curve.
The nontrivial solution of Ĝ(u, s) = 0 is found by Lyapunov–Schmidt

reduction (Theorem I.2.3). We decompose u = τ(ψ̂2, 0, 0) + ψ(τ(ψ̂2, 0, 0), s),
and the reduced equation is∫ 2π

0

〈G̃(τ(ψ̂2, 0, 0) + ψ(τ(ψ̂2, 0, 0), s), s), ψ̂
′
2〉dt = 0(I.14.28)

(cf. (I.2.9), (I.4.21), (I.4.22), (I.14.18), and (I.14.23)). By definition (I.14.21),
equation (I.14.28) is equivalent to

Ψ(τ, s) ≡∫ 2π

0

〈G(x(s) + τψ̂2 + ψ1, κ(s) + ψ2, λ(s) + ψ3), ψ̂
′
2〉dt = 0,

where ψ(τ(ψ̂2, 0, 0), s) = (ψ1, ψ2, ψ3)(τ(ψ̂2, 0, 0), s)
according to the three components of u (cf. (I.14.21)).

(I.14.29)

Next we make use of the equivariance (I.8.31) of G.
Since D(x,κ,λ)G(x0, κ0, λ0)(x, κ, λ) = SπD(x,κ,λ)G(x0, κ0, λ0)(x, κ, λ), the

range R(DuĜ(0, 0)) is invariant under Sπ (cf. (I.14.23)). Since N(DuĜ(0, 0))
is obviously invariant under Sπ, too, the Lyapunov–Schmidt complements of
N(DuĜ(0, 0)) and R(DuĜ(0, 0)) can be chosen invariant under Sπ as well.
(Choose the complement {x + Sπx̃|x, x̃ are in a complement}.) This means
that the Lyapunov–Schmidt projections commute with Sπ. Replacing x(s) +

τψ̂2 + ψ1 by Sπ(x(s) + τψ̂2 + ψ1) = x(s) − τψ̂2 + Sπψ1, we see by the
equivariance of G and the uniqueness of the function ψ = (ψ1, ψ2, ψ3) (cf.
(I.2.8)) that

Sπψ1(τ(ψ̂2, 0, 0), s) = ψ1(−τ(ψ̂2, 0, 0), s),

ψj(τ(ψ̂2, 0, 0), s) = ψj(−τ(ψ̂2, 0, 0), s), j = 2, 3.
(I.14.30)

Inserting this into (I.14.29), we obtain by Sπψ̂
′
2 = S−πψ̂

′
2 = −ψ̂′

2 (cf.
(I.14.19)),

Ψ(−τ, s) = −Ψ(τ, s) for s ∈ (−δ, δ), τ ∈ (−δ̃, δ̃).(I.14.31)

In other words, the bifurcation function Ψ is odd in τ , so that Ψ(τ, s) = 0
implies Ψ(−τ, s) = 0. By uniqueness of the nontrivial solution curve this
implies that

s(−τ) = s(τ) and
d

dτ
s(τ)|τ=0 = 0.(I.14.32)

Therefore, the tangent vector of the period-doubling bifurcation curve
at (x0, κ0, λ0) is given by (cf. (I.14.27))
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d

dτ
(x(s(τ)) + x̃(τ), κ(s(τ)) + κ̃(τ), λ(s(τ)) + λ̃(τ))|τ=0

= (ψ̂2, 0, 0).
(I.14.33)

Furthermore, by (I.14.30) and (I.14.32),

Sπx̃(τ) = Sπ(τψ̂2 + ψ1(τ(ψ̂2, 0, 0), s(τ)))

= −τψ̂2 + ψ1(−τ(ψ̂2, 0, 0), s(−τ)) = x̃(−τ),

κ̃(τ) = ψ2(τ(ψ̂2, 0, 0), s(τ)) = κ̃(−τ),

λ̃(τ) = ψ3(τ(ψ̂2, 0, 0), s(τ)) = λ̃(−τ),

(I.14.34)

so that we obtain for the period-doubling bifurcation curve

(Sπ(x(s(τ)) + x̃(τ)), κ(s(τ)) + κ̃(τ), λ(s(τ)) + λ̃(τ))

= (x(s(−τ)) + x̃(−τ), κ(s(−τ)) + κ̃(−τ), λ(s(−τ)) + λ̃(−τ))
(I.14.35)

by Sπx(s(τ)) = x(s(τ)).
Property (I.14.35) is restated as follows: The functions on the curve for

negative τ are obtained by a phase shift of half the period from those functions
for positive τ . Therefore, we sketch period-doubling bifurcations as in Figure
I.14.1. The second case shows a period-doubling bifurcation at a turning point
of the primary branch.

period 2π

amplitude of x

period 2π

period π

λ

period π

period π

Figure I.14.1

Needless to say, the substitution κ(s)t for t on the primary π-periodic
curve and the substitution (κ(s(τ)) + κ̃(τ))t for t on the bifurcating 2π-
periodic curve gives curves

{(x(s), λ(s))|s ∈ (−δ, δ)} of p1(s) = π/κ(s)-periodic
solutions of (I.14.1) through (x0, λ0) and

{(x(s(τ)) + x̃(τ), λ(s(τ)) + λ̃(τ))|τ ∈ (−δ̃, δ̃)} of
p2(τ) = 2π/(κ(s(τ)) + κ̃(τ))-periodic solutions
of (I.14.1) through (x0, λ0) such that
p2(0) = 2π/κ0 = 2p1(0).

(I.14.36)
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If p1(0) is the minimal period of x0, then 2p1(0) is the minimal period of

the bifurcating curve in the limit: By x̃(τ) = τψ̂2 + o(τ) and Sp2(τ)/2ψ̂2 =

−ψ̂2 (cf. (I.14.17) and the substitution (κ(s(τ)) + κ̃(τ))t for t), the solution
x(s(τ)) + x̃(τ) has indeed the minimal period p2(τ), and p2(0) = 2p1(0).
Therefore, the nomenclature Period-Doubling Bifurcation is justified.

I.14.1 The Principle of Exchange of Stability for a
Period-Doubling Bifurcation

Next we prove a Principle of Exchange of Stability at a “generic” period-
doubling bifurcation point. Here, genericity means that the primary curve
of π-periodic solutions of G(x, κ, λ) = 0 is given by the Implicit Function
Theorem for periodic solutions (Theorem I.13.3); i.e., we exclude a turning
point at (x0, κ0, λ0). This means for assumption (I.14.17) that

(ψ̂1, κ1, λ1) = (ψ̂1, κ1, 1), which implicitly
implies that DλF (x0, λ0) �= 0.

(I.14.37)

In this special case we can prove a period-doubling bifurcation in an abbre-
viated way that is more convenient for our stability analysis. Define instead
of (I.14.21), that

G̃(u, λ) = G(x(λ) + x, κ(λ) + κ, λ),
where u = (x, κ) and
{(x(λ), κ(λ), λ)|λ ∈ (λ0 − δ, λ0 + δ)} is the curve
of π-periodic solutions given by Theorem I.13.3,

Ĝ(u, λ) =

(
G̃(u, λ),

∫ 2π

0

〈x, ψ̂′
0〉dt

)
,

Ĝ : Û × (λ0 − δ, λ0 + δ) −→ W × R,

0 ∈ Û ⊂ (E ∩ Y )× R.

(I.14.38)

Obviously,N(DuĜ(0, λ0)) = span[(ψ̂2, 0)], and all arguments (I.14.22) through
(I.14.25) in their modified versions allow the application of Theorem I.5.1.
(In the nondegeneracy condition (I.14.25) we replace (u, s) = (0, 0) by
(u, λ) = (0, λ0), λ1 = 1, and · = d

dλ .) The nontrivial solution curve of

Ĝ(u, λ) = 0,

{(u(τ), λ(τ))|τ ∈ (−δ̃, δ̃), (u(0), λ(0)) = (0, λ0)}
where u(τ) = (x̃(τ), κ̃(τ)),

(I.14.39)

gives the period-doubling bifurcation curve by
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{(x(λ(τ)) + x̃(τ), κ(λ(τ)) + κ̃(τ), λ(τ))}.(I.14.40)

Its tangent vector at the bifurcation point (x0, κ0, λ0) is again given by
(I.14.33), and the symmetry with respect to τ is analogous to (I.14.35). In
particular,

dλ

dτ
(τ)|τ=0 = 0.(I.14.41)

As usual, stability means linear stability, and for the periodic solutions
this is determined by the real parts of the Floquet exponents that are the
eigenvalues of DxG(x, κ, λ) (see our comments in Section I.12). For the pri-
mary curve of π-periodic solutions we have to insert (x, κ, λ) = (x(λ), κ(λ), λ),
which corresponds to the trivial solution line (u, λ) = (0, λ) of Ĝ(u, λ) = 0.
Accordingly, (x, κ, λ) = (x(λ(τ)) + x̃(τ), κ(λ(τ)) + κ̃(τ), λ(τ)) represents the
bifurcating pitchfork (u, λ) = ((x̃(τ), (κ̃(τ)), λ(τ)) of Ĝ(u, λ) = 0.

In order to apply the results of Section I.7, we assume that

0 is a simple eigenvalue of DuĜ(0, λ0),

i.e., (ψ̂2, 0) �∈ R(DuĜ(0, λ0)) ⇔
ψ̂2 �∈ R(D(x,κ,λ)G(x0, κ0, λ0)), since

DλF (x0, λ0) ∈ Cα
π (R, Z) ⊂ R(DuG̃(0, λ0)) ⇔∫ 2π

0

〈ψ̂2, ψ̂
′
2〉dt �= 0 (cf. (I.14.18)) (= 1 w.l.o.g.).

(I.14.42)

We focus on the critical Floquet exponent 0, which is an eigenvalue of
Ĵ0 = DxG(x0, κ0, λ0) with eigenfunctions ψ̂0 and ψ̂2. A perturbation analysis,
however, requires that this Floquet exponent be not only geometrically but
also algebraically double, which means (by assumption) that

ψ̂0, ψ̂2 �∈ R(Ĵ0), where

Ĵ0 = DxG(x0, κ0, λ0) : E ∩ Y → W.
(I.14.43)

Whereas ψ̂2 �∈ R(Ĵ0) follows from (I.14.42), the assumption (I.13.4) for The-

orem I.13.3 means that ψ̂0 �∈ R(Ĵ0) when Ĵ0 : Cα
π (R, X) ∩ C1+α

π (R, Z) →
Cα

π (R, Z). However, in the Hilbert space setting as expounded in Remark
I.14.1, the subspace of π-periodic functions as well as its complement are
invariant for Ĵ0 (cf. (I.14.5), (I.14.6)), which means that ψ̂0 �∈ R(Ĵ0) in
(I.14.43) follows from our assumption (I.13.4) on the primary curve of π-
periodic solutions. Thus it is reasonable to assume (I.14.43) for our Banach
space formulation as well.

We relate the simple eigenvalue perturbations of DuĜ(u, λ) along the
pitchfork to the perturbations of the nontrivial Floquet exponent along the
period-doubling bifurcation. Equation (I.7.10) of Proposition I.7.2 now reads
as follows:
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DuĜ(u(τ), λ(τ))((ψ̂2 , 0) + (ŵ(τ), κ̂(τ)))

= μ(τ)((ψ̂2, 0) + (ŵ(τ), κ̂(τ))),
where μ(0) = 0, (ŵ(0), κ̂(0)) = (0, 0),

(I.14.44)

and (ŵ(τ), κ̂(τ)) is in the complement of N(DuĜ(0, λ0)). Under the assump-
tion (I.14.42), this complement can be chosen as R(DuĜ(0, λ0))∩ ((E ∩Y )×
R), which, by (I.14.18), allows us to rewrite (I.14.44) as follows:

DxG(τ)(ψ̂2 + ŵ(τ)) + κ̂(τ)ψ̂0(τ) = μ(τ)(ψ̂2 + ŵ(τ)),∫ 2π

0

〈ŵ(τ), ψ̂′
0〉dt = μ(τ)κ̂(τ) (cf. (I.14.20)),∫ 2π

0

〈ŵ(τ), ψ̂′
2〉dt = 0, where

DxG(τ) ≡ DxG(x(λ(τ)) + x̃(τ), κ(λ(τ)) + κ̃(τ), λ(τ)) and

ψ̂0(τ) =
d

dt
(x(λ(τ)) + x̃(τ)), ψ̂0(0) =

d

dt
x0 = ψ̂0.

(I.14.45)

The function ψ̂0(τ) is the eigenvector of DxG(τ) with trivial Floquet expo-
nent μ0(τ) ≡ 0, and according to Proposition I.12.1, the perturbation of the
nontrivial Floquet exponent μ1(τ) is given by

DxG(τ)(ψ̂2 + w(τ)) = μ1(τ)(ψ̂2 + w(τ)) + ν(τ)ψ̂0(τ),∫ 2π

0

〈w(τ), ψ̂′
0〉dt = 0,

∫ 2π

0

〈w(τ), ψ̂′
2〉dt = 0

(cf. (I.12.10)),
where μ1(0) = 0, w(0) = 0, ν(0) = 0.

(I.14.46)

Thus the perturbations (I.14.45) for μ(τ) and (I.14.46) for μ1(τ) are nearly
identical when we set ν(τ) = −κ̂(τ). The difference is only between (I.14.45)2
and (I.14.46)2. Nonetheless, we show that μ = μ1 up to order 2; i.e., μ(0) =
μ1(0) = 0, μ̇(0) = μ̇1(0) = 0, μ̈(0) = μ̈1(0),

· = d
dτ .

To this end, we use the equivariance (I.8.31) of G. Taking the derivative
of (I.8.31) with respect to u = (x, κ), we obtain

D(x,κ)G(Sθx, κ, λ)(Sθ x̂, κ̂) = SθD(x,κ)G(x, κ, λ)(x̂, κ̂).(I.14.47)

In view of (I.14.35) this implies, for θ = π,

D(x,κ)G(−τ)(Sπ x̂, κ̂) = SπD(x,κ)G(τ)(x̂, κ̂)
for every (x̂, κ̂) ∈ (E ∩ Y )× R.

(I.14.48)

In particular, ψ̂0(−τ) = Sπψ̂0(τ), which also follows directly from (I.14.35).

By S−πψ̂
′
0 = ψ̂′

0 and S−πψ̂
′
2 = −ψ̂′

2 we obtain
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0

〈Sπx̂, ψ̂
′
0〉dt =

∫ 2π

0

〈x̂, ψ̂′
0〉dt and∫ 2π

0

〈Sπx̂, ψ̂
′
2〉dt = −

∫ 2π

0

〈x̂, ψ̂′
2〉dt

for every x̂ ∈ W.

(I.14.49)

The observations (I.14.48), (I.14.49), together with the uniqueness of the
eigenvalue perturbations (I.14.45) and (I.14.46), yield the following symme-
tries:

ŵ(−τ) = −Sπŵ(τ), κ̂(−τ) = −κ̂(τ), μ(−τ) = μ(τ),
w(−τ) = −Sπw(τ), ν(−τ) = −ν(τ), μ1(−τ) = μ1(τ).

(I.14.50)

These properties of the eigenvalues μ(τ) and μ1(τ) are in natural accord with
the fact that a transition from positive to negative τ means a phase shift by π,
which does not change the stability. Properties (I.14.50) imply in particular,

dμ

dτ
(τ)|τ=0 = 0,

dμ1

dτ
(τ)|τ=0 = 0.(I.14.51)

We claim that
d2μ

dτ2
(τ)|τ=0 =

d2μ1

dτ2
(τ)|τ=0.(I.14.52)

Indeed, taking the derivatives of (I.14.45)2 with respect to τ at τ = 0 gives∫ 2π

0

〈 ˙̂w(0), ψ̂′
0〉dt =

∫ 2π

0

〈 ¨̂w(0), ψ̂′
0〉dt = 0

(
· =

d

dτ

)
,(I.14.53)

so that up to derivatives (with respect to τ) of order 2 at τ = 0 the eigenvalue
perturbations (I.14.45) and (I.14.46) are identical. This observation proves
(I.14.52).

We now do the same analysis along the primary curve of π-periodic solu-
tions {(x(λ), κ(λ), λ)} that corresponds to the trivial solution line {(0, λ)}
of Ĝ(u, λ) = 0. We obtain the same eigenvalue perturbations (I.14.45)
and (I.14.46) with the only differences that G(τ) is replaced by the fam-

ily G(λ) ≡ G(x(λ), κ(λ), λ), and ψ̂0(τ) is replaced by ψ̂0(λ) = d
dtx(λ) for λ

near λ0. Accordingly, we denote the corresponding eigenvalues by μ(λ) and
μ1(λ), and μ(λ0) = μ1(λ0) = 0.

However, there is obviously no symmetry, analogous to (I.14.50), of the
functions depending on λ. Nonetheless, d

dλ(μ(λ)κ̂(λ))|λ=λ0 = μ′(λ0)κ̂(λ0) +

μ(λ0)κ̂
′(λ0) = 0, since κ̂(λ0) = μ(λ0) = 0 (′= d

dλ), and we obtain from
(I.14.45)2, ∫ 2π

0

〈ŵ′(λ0), ψ̂
′
0〉dt = 0,(I.14.54)



118 Chapter I. Local Theory

so that up to the first derivative (with respect to λ) at λ = λ0 the two
eigenvalue perturbations (I.14.45) and (I.14.46) are identical. This proves
that

dμ

dλ
(λ)|λ=λ0 =

dμ1

dλ
(λ)|λ=λ0 .(I.14.55)

As shown in Section I.7, the nondegeneracy condition (I.14.24) or (I.14.25)
is equivalent to

dμ

dλ
(λ)|λ=λ0 �= 0(I.14.56)

(see (I.7.32)–(I.7.36)). For the pitchfork bifurcation of Ĝ(u, λ) = 0 at (u, λ) =
(0, λ0) given by {(u(τ), λ(τ))} with dλ

dτ (0) = 0 (cf. (I.14.41)), formula (I.7.45)
gives

2μ′(λ0)λ̈(0) = −μ̈(0), where ′ =
d

dλ
and · =

d

dτ
.(I.14.57)

The condition for λ̈(0) �= 0 (i.e., for a nondegenerate pitchfork) is given by
(I.6.11), and in (I.6.9) the mapping F has to be replaced by Ĝ, x by u = (x, κ),

and v̂0 by (ψ̂2, 0). We abstain from a translation of condition (I.6.11) to our
situation, but we simply assume that λ̈(0) �= 0.

By (I.14.52) and (I.14.55), relation (I.14.57) gives the crucial formula

2μ′
1(λ0)λ̈(0) = −μ̈1(0),(I.14.58)

which links the two nontrivial critical Floquet exponents μ1(λ) and μ1(τ)
along the primary and bifurcating curves, respectively, via the bifurcation
direction λ̈(0) (recall that λ̇(0) = 0).

Assume that μ′(λ0) = μ′
1(λ0) < 0, which means a loss of stability of the π-

periodic solutions at λ = λ0 in the space of 2π-periodic functions (cf. (I.12.2)).
(Here we tacitly assume that all noncritical nontrivial Floquet exponents are
in the stable right half-plane of C.) Then, by (I.14.58),

sign(λ(τ) − λ0) = signμ1(τ) for 0 < τ < δ̃,(I.14.59)

which proves an exchange of stability as sketched in Figure I.14.2. If μ′
1(λ0) >

0, the stability properties of all solution curves are reversed.

amplitude of x

stable
2π-periodic

λ

π-periodic
unstablestable

Figure I.14.2
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Theorem I.14.3 At a Generic Period-Doubling Bifurcation, the Principle of
Exchange of Stability is valid. Formula (I.14.58) links the critical nontrivial
Floquet exponents to the bifurcation direction.

Remark I.14.4 As pointed out in Remark I.13.8, the period-doubling bi-
furcation is commonly proved by studying the iterated Poincaré map near
a periodic solution of (I.14.1). Fixed points of the Poincaré map itself stay
fixed points of its iteration (but not vice versa), and in this setting a period-
doubling bifurcation is a pitchfork bifurcation for the iterated Poincaré map
combined with a continuation of fixed points of the Poincaré map itself.

That means for the derivative of the Poincaré map at the critical periodic
solution that 1 and −1 are simple eigenvalues. The existence of the Poincaré
map causes no problems for ODEs of type (I.14.1). However, since it requires
a careful analysis of the complete nonlinear flow, its existence is not so ob-
vious if (I.14.1) represents a parabolic PDE (cf. our comments in Remark
I.13.8). That is why we stay in the setting of a Fourier analysis that restricts
the nonlinear flow to a periodic one.

Remark I.14.5 In Remark I.14.1 we give the arguments why we confine
ourselves to a period-doubling bifurcation and why we do not study any other
period-multiplying bifurcation. In a Hilbert space setting we show that it is
the only simple period-multiplying bifurcation in the sense that it is created
by a one-dimensional kernel.

Usuallys one refers to period-doubling bifurcations and Hopf bifurcations
as “generic” bifurcations. What does that mean? We make some comments
on it that are without mathematical rigor but that explain our point of view.

There are two properties that make a bifurcation generic:

• an unavoidable spectral property of a family of linear operators along the
primary solution branch and

• a robustness of the primary solution branch.

Consider a path of algebraically simple eigenvalues of a one-parameter
family of real linear operators having endpoints in different half-planes of C.
Then that path necessarily crosses the imaginary axis at some iκ0 �= 0 (and
then there is also a complex conjugate path) or at 0. In the first case, the
eigenvalue 0 is avoided, whereas in the second case, the entire path is real,
and the (simple) eigenvalue 0 is unavoidable.

We know that both crossings of the imaginary axis “with nonvanishing
speed” (or in a nondegenerate or transversal way) entail a Hopf bifurcation
or a steady-state bifurcation from the primary solution branch, respectively
(see our comments at the beginning of Sections I.8, I.16, I.17). Are these
bifurcations under those “generic” linear assumptions unavoidable? In the
theory of “imperfections” or “unfoldings” the diagrams of Figure I.14.3 are
well known: They show that bifurcations are easily avoided by an arbitrarily
small perturbation of the operator even under generic spectral assumptions
on its linearization.
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Figure I.14.3

Looking at Figure I.14.3 reveals that an abolition of bifurcations by small
perturbations breaks up the primary (or trivial) solution line (and also breaks
the symmetry of the diagram). In this sense the primary branch is not ro-
bust. Note that due to the Lyapunov–Schmidt reduction, that scenario indeed
takes place in a plane. In the case of the Hopf bifurcation as well as of the
period-doubling bifurcation, however, the total derivative along the stationary
or π-periodic solutions is surjective in the space of stationary or π-periodic
functions, respectively. Therefore, the primary solutions form a robust curve
or surface that cannot be broken up by a small perturbation. (That robustness
is also reflected by the oddness of the respective bifurcation function, which
vanishes necessarily at zero for all parameters.) Accordingly the unfolding of
a pitchfork cannot be realized by a bifurcation function. If a primary branch is
robust, then a bifurcation can take place only in a larger space. The bifurcating
branch is of a different type from that of the primary branch.

These naive arguments for the genericity of the two bifurcations help us
to understand the following result: Generically, the global “net” of a contin-
uation of any periodic solution of an evolution equation (I.14.1) consists of
smooth surfaces (“snakes”) having turning points, splitting at period-doubling
bifurcations, ending at Hopf bifurcations in steady states, or being trapped in
loops with unbounded “virtual periods” (see [134], [48], [102], [105]). We refer
also to Remark I.11.13 about global Hopf Bifurcation.

I.15 The Newton Polygon

Bifurcation with a one-dimensional kernel is discovered via the method of
Lyapunov–Schmidt by studying a one-dimensional bifurcation equation de-
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pending on two variables. If we introduce coordinates by choosing suitable
basis vectors, the bifurcation equation can be written as

Φ(s, λ) = 0, where
Φ : U × V → R and
(0, λ0) ∈ U × V ⊂ R× R (cf. Section I.5).

(I.15.1)

In Section I.5, this bifurcation equation is nontrivially solved by the Implicit
Function Theorem, whose validity is guaranteed by the nondegeneracy (or
transversality) condition (I.5.3). In the next section we give up that condition,
and we study “degenerate bifurcation.” The Implicit Function Theorem has
to be replaced by a more general tool, which is called the Newton polygon
method.

Replacing λ by λ − λ0, we can assume w.l.o.g. that λ0 = 0, and we
study (I.15.1) in a neighborhood of (s, λ) = (0, 0). The main difference in
comparison to the Implicit Function Theorem is that we assume that

Φ : U × V → R is analytic near (0, 0); i.e.,
Φ(s, λ) =

∑∞
j,k=0 cjks

kλj , where cjk ∈ R,

and convergence holds in U × V .
(I.15.2)

We assume that Φ(0, 0) = 0 (i.e., c00 = 0), and we look for curves of solutions
of Φ(s, λ) = 0 passing through (0, 0).

To this end we mark the powers j of λ on the ordinate and the powers k
of s on the abscissa, and we mark a point (k, j) whenever cjk �= 0.

If cjk = 0 for all j ∈ N0, k = 0, . . . , k0 − 1, i.e., if the first nonvanishing
coefficients exist only for k = k0, then we can divide by sk0 , and for the new
equation we find a smallest point (0, j0) on the ordinate.

If k0 = 0, then j0 ≥ 1 by c00 = 0.
If k0 ≥ 1, we have the solution curve {(0, λ)}, and if j0 = 0, it is the only

solution curve through (0, 0).
Thus we assume in the following that j0 ≥ 1. Next, only coefficients cjk

with 0 ≤ j ≤ j0 − 1, k ≥ 1, are of interest. If all such coefficients vanish, we
can divide by λj0 , and {(s, 0)} is the only solution curve through (0, 0).

Otherwise, we find coefficients cjk �= 0 with 0 ≤ j ≤ j0 − 1, and we
may assume that c0kn �= 0 for some smallest kn ≥ 1. If cjk = 0 for all
0 ≤ j ≤ jn ≤ j0 − 1, k ≥ 1, we can divide by λjn , and for the new equation
there is some c0kn �= 0 for a smallest kn ≥ 1. Note that jn > 0 implies the
existence of the solution curve {(s, 0)}.

Now we are in the situation that there are a smallest point (0, j0), j0 ≥ 1,
on the ordinate and a smallest point (kn, 0), kn ≥ 1, on the abscissa. Then
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the polygon forming the convex hull of all points (k, j) such that
cjk �= 0 and jkn + j0k ≤ j0kn is called the Newton polygon.
It joins (kν , jν), ν = 0, . . . , n, j0 > j1 > · · · > jn = 0,
0 = k0 < k1 < · · · < kn, and cjk = 0 if (k, j) is
below all lines passing through two consecutive points (kν , jν).

(I.15.3)

We sketch a Newton Polygon in Figure I.15.1.

j5
j4

j3

k0 k2k1 k3 k4 k5 k

j2

j1

j λ

j0

s

Figure I.15.1

In the following, we confine ourselves to s ≥ 0. For s ≤ 0 set −s = s̃ ≥ 0
and repeat the procedure for the new equation Φ−(−s, λ) ≡ Φ(s, λ) = 0.
Furthermore, we set cjνkν = cν �= 0 for ν = 0, . . . , n.

Then (I.15.2) is rewritten as

Φ(s, λ) =
∑n

ν=0cνs
kνλjν +R(s, λ),

where R contains all remaining terms.
(I.15.4)

Let −1/γ ∈ Q be one of the negative slopes of the Newton polygon. Then
for all, say r + 1, points (k	, j	), . . . (k	+r, j	+r) on the line with slope −1/γ,
we have

γj	 + k	 = · · · = γj	+r + k	+r = σ,(I.15.5)

and the ansatz

λ = sγλ̃ in (I.15.4)(I.15.6)

yields for (s, λ̃) the equation

sσ
(∑r

ρ=0c	+ρλ̃
j�+ρ +R1(t, λ̃)

)
= 0.(I.15.7)
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Here t = s1/γ2 ≥ 0 when γ = γ1/γ2 with γ1/γ2 ∈ N, and R1 is analytic
in (t, λ̃) near (0, 0). By the substitution (I.15.6), the analyticity of R1 is
true in (−δ1, δ1) × (−L,L) for every L > 0, provided that δ1 > 0 is small
enough. Therefore, we need no restriction on λ̃ in the subsequent analysis.
Furthermore, by the definition (I.15.3), the exponents γj + k of s in R (cf.
(I.15.4)) are all positive, so that R1(0, λ̃) = 0 for all λ̃ where it is defined.

Let λ̃0 be a real zero of the polynomial

Pγ(λ̃) =
∑r

ρ=0c	+ρλ̃
j�+ρ ,(I.15.8)

and let q ≥ 1 denote its multiplicity.
If q = 1 the Implicit Function Theorem for (I.15.7) (after division by sσ)

gives a solution
{(t, λ̃(t))|0 ≤ t < δ1, λ̃(0) = λ̃0},
which is analytic in t.

(I.15.9)

After inserting λ̃(t) = λ̃(s1/γ2) into (I.15.6) we obtain a solution curve of
Φ(s, λ) = 0 through (0, 0) in the following form:

{(s, sγ(λ̃0 +
∑∞

k=1aks
k/γ2))|0 ≤ s < δ2}.(I.15.10)

Remark I.15.1 If λ̃0 = 0, there is a first nonvanishing coefficient in the
expansion (I.15.10) such that λ(s) = λ̃1s

γ̃ + o(sγ̃) with λ̃1 �= 0 and γ̃ > γ.
Recall that there is no solution curve {(s, 0)} if the Newton polygon ends
at (kn, 0). An easy proof shows that −1/γ̃ is then necessarily a slope in the
Newton polygon, and λ̃1 is a zero of the corresponding defining polynomial
Pγ̃ . Thus only nonzero roots λ̃0 of the polynomial (I.15.8) are of interest,
which give by (I.15.10) the lowest-order term of the solution.

Next let λ̃0 �= 0 be a real zero of (I.15.8) of multiplicity q > 1. Then

Pγ(λ̃) = (λ̃− λ̃0)
qP̃γ(λ̃), where P̃γ(λ̃0) �= 0.(I.15.11)

After division by sσ, equation (I.15.7) becomes

(λ̃− λ̃0)
q = −R1(t, λ̃)/P̃γ(λ̃)

for (t, λ̃) near (0, λ̃0).
(I.15.12)

If R1 ≡ 0, then {(t, λ̃0)|0 ≤ t < δ1} is the unique solution curve of (I.15.12)
through (0, λ̃0). Otherwise, by R1(0, λ̃) ≡ 0, we have R1(t, λ̃) = tk0(λ̃ −
λ̃0)

j0R̃1(t, λ̃) for some k0 > 0, j0 ≥ 0, so that R̃1(0, λ̃0) �= 0. If j0 > 0, we
have again the solutions {(t, λ̃0)}, and if j0 ≥ q, it is the only solution curve
of (I.15.12) through (0, λ̃0). Assuming 0 ≤ j0 < q, we can divide (I.15.12) by
(λ̃− λ̃0)

j0 , and we obtain



124 Chapter I. Local Theory

(λ̃− λ̃0)
p = tk0f(t, λ̃), where p = q − j0,

f(t, λ̃) ≡ −R̃1(t, λ̃)/P̃γ(λ̃), so that

f(0, λ̃0) �= 0.

(I.15.13)

If p > 0 is even, then for nontrivial solutions for t > 0, necessarily

f(0, λ̃0) > 0, and (I.15.13) becomes

(λ̃− λ̃0) = ±tk0/p(f(t, λ̃))1/p.
(I.15.14)

If p > 0 is odd, then in any case,

(λ̃− λ̃0) = tk0/p(f(t, λ̃))1/p.(I.15.15)

Since f(t, λ̃) is analytic by its definition (I.15.13)2 and f(0, λ̃0) �= 0, the
function (f(t, λ̃))1/p is analytic in (t, λ̃) near (0, λ̃0). Setting τ = t1/p, we see
that the right-hand sides of (I.15.14)2 and (I.15.15), respectively, are analytic
functions of the variables (τ, λ̃) near (0, λ̃0).

Finally, since Dλ̃(τ
k0 (f(τp, λ̃))1/p)|(τ,λ̃)=(0,λ̃0)

= 0, the Implicit Function

Theorem gives solution curves of (I.15.14)2 and (I.15.15),

{(t, λ̃(t))|0 ≤ t < δ1, λ̃(0) = λ̃0},
which are analytic in t1/p.

(I.15.16)

After inserting λ̃(t) = λ̃(s1/γ2) into (I.15.6), we obtain solution curves of
Φ(s, λ) = 0 through (0, 0) in the following form:

{(s, sγ(λ̃0 +
∑∞

k=1aks
k/pγ2))|0 ≤ s < δ2}, p ∈ N.(I.15.17)

The locally convergent series of λ(s) in terms of rational powers of s ≥ 0 with
a common denominator are called Puiseux series.

For every real root λ̃0 �= 0 of (I.15.18) of odd multiplicity q ≥ 1 we obtain
at least one solution of the form (I.15.17).

Finally, if the number j0 found for (I.15.3) is odd, at least one of the
polynomials (I.15.8) for all slopes in the Newton polygon has a nontrivial
real root λ̃0 of odd multiplicity.

Taking into account that all real solution curves of Φ(s, λ) = 0 through
(0, 0) can be found in this way (see [37]), we may also state that at most j0
such solution curves (I.15.17) can exist.

So far, we have done this for s ≥ 0. The same arguments hold also for
Φ−(−s, λ) ≡ Φ(s, λ) = 0 if s ≤ 0; in particular, the number j0 is the same for
Φ and Φ−. Thus an odd j0 yields at least one solution curve through (0, 0)
for positive and negative s. In the next section we apply these observations
to degenerate bifurcation at a simple eigenvalue.

Remark I.15.2 If the Newton polygon (I.15.3) is established, then it is not
necessary that the remainders R in (I.15.4) or R1 in (I.15.7) be analytic. If
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they vanish to the same order as in the analytic case, we obtain continuously
differentiable solution curves of the form

{(s, a0sγ + o(sγ))}(I.15.18)

that are not necessarily Puiseux series in that general case. However, if in-
finitely many coefficients cjk of (I.15.2) are used in order to establish solution
curves of the form {(0, λ)} or {(s, 0)}, then even in the C∞ case one has to
be careful. Nonetheless, a complete picture of all local solutions of (I.15.1)
(where λ0 = 0) can be obtained by the Newton polygon method in nonanalytic
cases, too (cf. [37]).

I.16 Degenerate Bifurcation at a Simple Eigenvalue and
Stability of Bifurcating Solutions

We resume the situation of Section I.5, where we prove bifurcation from the
trivial solution line {(0, λ)|λ ∈ R} for

F (x, λ) = 0.(I.16.1)

In addition to assumption (I.5.1), we assume a continuous embedding X ⊂ Z
and (I.7.4); i.e., 0 is an algebraically simple eigenvalue of DxF (0, λ0) for
some λ0 ∈ R. Replacing λ by λ−λ0, we can assume w.l.o.g. that λ0 = 0. The
regularity of F near (x, λ) = (0, 0), however, is much stronger than assumed
before:

F : U × V → Z, 0 ∈ U ⊂ X ⊂ Z, 0 ∈ V ⊂ R is analytic,

which means that F (x, λ) =
∑∞

j,k=0 λ
jFjk(x), where

Fjk : Xk → Z are k-linear, symmetric, and continuous,
and convergence holds in Z for x ∈ U = {x ∈ U |‖x‖ < d}
and λ ∈ V = {λ ∈ R| |λ| < d} for some d > 0.

(I.16.2)

Since F (0, λ) = 0, we assume that Fj0 = 0 for all j ∈ N0. Furthermore, the
linear family DxF (0, λ) is given by

DxF (0, λ) =
∑∞

j=0λ
jFj1 ≡ ∑∞

j=0λ
jAj ≡ A(λ),

where Aj ∈ L(X,Z) for all j ∈ N0.
(I.16.3)

The assumption of a simple eigenvalue of DxF (0, 0) = A0 is that



126 Chapter I. Local Theory

0 is an algebraically simple eigenvalue of A0;
i.e., dimN(A0) = 1 and Z = R(A0)⊕N(A0).

(I.16.4)

We recall the meaning of vectors v̂0 ∈ X and v̂′0 ∈ Z ′ from (I.7.8):

N(A0) = span[v̂0], 〈v̂0, v̂′0〉 = 1,

R(A0) = {z ∈ Z|〈z, v̂′0〉 = 0}.
(I.16.5)

The Lyapunov–Schmidt projections

P : X → N(A0) along R(A0) ∩X and
Q : Z → N(A0) along R(A0) are then
given by Qz = 〈z, v̂′0〉v̂0 for z ∈ Z
and Px = 〈x, v̂′0〉v̂0 for x ∈ X , i.e.,
P = Q|X .

(I.16.6)

The simple eigenvalue perturbation

DxF (0, λ)(v̂0 + w(λ)) = μ(λ)(v̂0 + w(λ)),

where {w(λ)|λ ∈ (−δ, δ), w(0) = 0} ⊂ R(A0) ∩X

and {μ(λ)|λ ∈ (−δ, δ), μ(0) = 0} ⊂ R,

(I.16.7)

given by Proposition I.7.2 will be crucial in this section. Since w(λ) and
μ(λ) are obtained by the Implicit Function Theorem, the property (I.1.7)
guarantees that both functions are analytic in λ:

w(λ) =
∑∞

j=1wjλ
j , wj ∈ R(A0) ∩X,

μ(λ) =
∑∞

j=1μjλ
j , μj ∈ R,

(I.16.8)

and convergence holds for |λ| < δ ≤ d (w.l.o.g.).
In Section I.7 we showed that under assumption (I.16.4), the nondegen-

eracy (I.5.3) is equivalent to μ′(0) �= 0 (here λ0 = 0 and ′ = d
dλ ; cf. (I.7.34)–

(I.7.36)). Thus a crossing of μ(λ) of the imaginary axis at μ(0) = 0 “with
nonvanishing speed” causes bifurcation of a unique nontrivial curve of solu-
tions of (I.16.1).

The crossing of μ(λ) of the imaginary axis implies a loss of stability of
the trivial solution at λ = 0, and by the Principle of Exchange of Stability
(cf. Section I.7), that stability is taken over by the bifurcating solution. What
happens to that plausible physical scenario if the loss of stability of the trivial
solution is “slow” or degenerate? Mathematically, this means that μ(0) =
μ′(0) = · · · = μ(m−1)(0) = 0, but μ(m)(0) �= 0 for some odd m. One expects
that there should be some bifurcating solution to take over the stability.
In this section we prove this expectation; i.e., we show that any possibly
degenerate loss of stability gives rise to a bifurcation of nontrivial curves
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of solutions, which, however, are not necessarily unique. A first step is the
computation of the coefficients μj in the perturbation series (I.16.8).

Proposition I.16.1 The coefficients of the eigenvalue perturbation (I.16.8)
are recursively given by

μ1 = 〈A1v̂0, v̂
′
0〉,

μ	 = 〈A	v̂0, v̂
′
0〉+

∑
j+k=�−1
j≥1,k≥0

〈AjAk0v̂0, v̂
′
0〉

+
	−3∑
n=0

	−2−n∑
m=1

∑
j+k=n+1
j≥1,k≥0

〈AjAkmv̂0, v̂
′
0〉

∑
ν1+···+νm=	−2−n

μν1 · · ·μνm

(I.16.9)

for � ≥ 2. The vectors Anmv̂0 for n,m ≥ 0 are defined by

A00v̂0 = −A−1
0 (I −Q)A1v̂0, A0mv̂0 = A−1

0 A0,m−1v̂0,

An0v̂0 = −A−1
0

∑
j+k=n+1
j≥1,k≥0

(I −Q)AjAk−1,0v̂0 where A−1,0v̂0 = v̂0,

Anmv̂0 = −A−1
0

∑
j+k=n

j≥1,k≥0

(I −Q)AjAkmv̂0 +A−1
0 An,m−1v̂0,

(I.16.10)

for n,m ≥ 1. Here we agree upon A−1
0 : R(A0) → R(A0)∩X; i.e., PAnm = 0

for all n,m ≥ 0.

Proof. Let the eigenvector expansion be v̂0 +w(λ), where w(λ) is given by
(I.16.8). Then, by (I.16.5),

μ	 =
∑

j+k=�
j≥1,k≥0

〈Ajwk, v̂
′
0〉, where w0 = v̂0,

A0w	 = (I −Q)A0w	 = − ∑
j+k=�

j≥1,k≥1

(I −Q)Ajwk +
∑

j+k=�
j≥1,k≥1

μjwk,

w	 = −A−1
0

⎛
⎝ ∑

j+k=�
j≥1,k≥0

(I −Q)Ajwk − ∑
j+k=�

j≥1,k≥1

μjwk

⎞
⎠ for � ≥ 1.

(I.16.11)

Using this recurrence formula for the vectors w	 and the defining formulas
for Anm, we can prove by induction that

w1 = A00v̂0,

w	 = A	−1,0v̂0 +
	−2∑
n=0

	−1−n∑
m=1

Anmv̂0
∑

ν1+···+νm=	−1−n

μν1 · · ·μνm ,
(I.16.12)

for � ≥ 2. We omit the lengthy but elementary proof. 
�
These expressions show that the perturbation series of μ(λ) in terms of

the operators Aj and the vectors v̂0, v̂
′
0 is rather complicated. For matrices,

for instance, evaluation of the characteristic equation det(A(λ) − μ(λ)I) =
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0 (A(λ) = DxF (0, λ)) might be simpler, especially in low dimensions. For
differential operators there might be a simpler method for computing μ(λ),
too (see our example (III.2.15)).

Next, we relate the perturbation series μ(λ) to the bifurcation equation
obtained by the method of Lyapunov–Schmidt. Using the projections (I.16.6),
we see that problem (I.16.1) is equivalent to

QF (v + w, λ) = 0, x = Px+ (I − P )x = v + w,
(I −Q)F (v + w, λ) = 0 (cf. (I.2.6)).

(I.16.13)

The second equation solved by the Implicit Function Theorem yields w =
ψ(v, λ), which is analytic in (v, λ) near (0, 0). We compute its expansion by
(I.16.13)2, which is, in view of (I.16.2) and (I.16.3),

A0w + (I −Q)
∞∑
j=1

λjAj(v + w) + (I −Q)
∞∑
j=0
k=2

λjFjk(v + w) = 0.(I.16.14)

With the ansatz

w =
∑∞

j,k=0 λ
jGjk(v), where

Gjk : N(A0)
k → R(A0) ∩X are k-linear,

symmetric, and continuous,

(I.16.15)

we obtain, by insertion into (I.16.14) and comparing like powers,

Gj0 = 0 for all j ∈ N0, G01 = 0,

G11v = −A−1
0 (I −Q)A1v,

Gn1v = −A−1
0 (I −Q)Anv −

∑
j+k=n

j≥1,k≥1

A−1
0 (I −Q)AjGk1v, n ≥ 2.

(I.16.16)

For later use we give also the recurrence formula for G0n:

G02(v) = −A−1
0 (I −Q)F02(v), and for n ≥ 2,

G0n(v) = −A−1
0 (I −Q)

n∑
k=2

k∑
m=0

∑
ν1+···+νm=n−k+m

(
k
m

)
F

(k)
0k [./.],

where [./.] = [G0ν1(v), . . . , G0νm(v), v, . . . , v]

and F
(k)
0k [v, . . . , v] = F0k(v) is symmetric.

(I.16.17)

For m = 0 we agree upon ν1 + · · · + νm = 0 (i.e., k = n) and that

G0ν1(v), . . . , G0νm(v) are not present in F
(k)
0k .

We leave the general recurrence formula for Gjn to the reader; in principle,
it is clear how to construct it, but it is tedious to write it down.

When w = ψ(v, λ) is inserted into (I.16.13)1, we obtain the bifurcation
equation (cf. (I.5.6)). Setting v = sv̂0 ∈ N(A0) and using the explicit rep-
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resentation (I.16.6) of the projection Q, we see that this equation reads as
follows:

〈F (sv̂0 +
∑∞

j,k=0λ
jskGjk(v̂0), λ), v̂

′
0〉 = 0.(I.16.18)

Using (I.16.2) and Fj0 = 0, Gj0 = 0 for all j ∈ N0, we write it as

Φ(s, λ)

=
∞∑
j=1

〈Aj v̂0, v̂
′
0〉λjs+

∞∑
n=2

∑
j+k=n

j≥1,k≥1

〈AjGk1v̂0, v̂
′
0〉λns

+
∞∑
j=0
k=2

Hjkλ
jsk = 0 with coefficients Hjk ∈ R.

(I.16.19)

(The mapping Φ is not identical to the bifurcation function Φ(v, λ) of Section
I.5. Here Φ(s, λ) is real-valued for real s, since we simply identify v and Φ with
their coordinates, s = 〈v, v̂′0〉 and 〈Φ, v̂′0〉, respectively. We call Φ in (I.16.19)
the “scalar bifurcation function.”)

In particular,

H02 = 〈F (2)
02 [v̂0, v̂0], v̂

′
0〉, and for n ≥ 2,

H0n =
n∑

k=2

k∑
m=0

∑
ν1+···+νm=n−k+m

(
k
m

)〈F (k)
0k [./.], v̂′0〉,

where [./.] = [G0ν1(v̂0), . . . , G0νm(v̂0), v̂0, . . . , v̂0],

(I.16.20)

with the same agreement as for (I.16.17).

Remark I.16.2 For n = 3, formula (I.16.20) gives in view of (I.16.17),

H03 = 〈F (3)
03 [v̂0, v̂0, v̂0], v̂

′
0〉+2〈F (2)

02 [G02(v̂0), v̂0], v̂
′
0〉

= 〈F (3)
03 [v̂0, v̂0, v̂0], v̂

′
0〉−2〈F (2)

02 [A−1
0 (I −Q)F

(2)
02 [v̂0, v̂0], v̂0], v̂

′
0〉.

(I.16.21)

Here A0 = DxF (0, 0) : (I − P )X → (I − Q)Z, cf. Proposition I.16.1, and
formula (I.16.21) seems to be different from (I.6.9) for λ0 = 0: The structure
of the formula is the same, but instead of a factor 2, formula (I.6.9) has a
factor 3. Since this has led to unnecessary confusion, we reveal the mystery:
Insert

H03 =
1

3!
D3

sssΦ(0, 0) =
1

3!
D3

vvvΦ(0, 0)[v̂0, v̂0, v̂0],

F
(2)
02 =

1

2!
D2

xxF (0, 0), F
(3)
03 =

1

3!
D3

xxxF (0, 0),

(I.16.22)

into (I.16.21), and we regain formula (I.6.9).

Equation (I.16.19) has the solution {(0, λ)} for all |λ| < d, which recovers
the trivial solution. After dividing (I.16.19) by s, we obtain
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Φ̃(s, λ) =
∞∑
j=1

cj0λ
j +

∞∑
j=0
k=1

cjkλ
jsk = 0 (cf. (I.5.10)), where

c10 = 〈A1v̂0, v̂
′
0〉,

cn0 =
〈
Anv̂0, v̂

′
0〉+

∑
j+k=n

j≥1,k≥1

〈AjGk1v̂0, v̂
′
0

〉
for n ≥ 2,

cjk = Hj,k+1 for j ≥ 0, k ≥ 1.

(I.16.23)

Comparing the recurrence formulas for An0 (I.16.10) and for Gn1 (I.16.16),
we see that

Gn1v̂0 = An−1,0v̂0 for all n ≥ 2.(I.16.24)

Finally, we can use the coefficients c	0 in (I.16.23) for the expansion of the
eigenvalue perturbations μ(λ); cf. (I.16.9):

μ1 = c10, and for � ≥ 2,

μ	 = c	0 +
	−3∑
n=0

	−2−n∑
m=1

∑
j+k=n+1
j≥1,k≥0

〈AjAkmv̂0, v̂
′
0〉

∑
ν1+···+νm=	−2−n

μν1 . . . μνm .

(I.16.25)
We summarize the result:

Theorem I.16.3 Let μ(λ) =
∑∞

j=1 μjλ
j be the perturbation series of the

critical eigenvalue μ = 0 of A(λ) =
∑∞

j=0 λ
jAj = DxF (0, λ), which is the

linearization of F (x, λ) along the trivial solution {(0, λ)}. Let Φ̃(s, λ) be the
bifurcation function Φ(s, λ) divided by s. Then Φ̃(0, λ) =

∑∞
j=1 cj0λ

j along the
trivial solution. If μ1 = · · · = μm−1 = 0, then μj = cj0 for j = 1, . . . ,m+ 1.
Conversely, if c10 = · · · = cm−1,0 = 0, then μj = cj0 for j = 1, . . . ,m+ 1. If
all μj are zero, then all cj0 are zero and vice versa. In other words, the first

two nonvanishing coefficients cm0 and cm+1,0 of Φ̃(0, λ) are precisely the two
first nonvanishing coefficients μm and μm+1 of μ(λ).

If m is odd, then μ(λ) changes sign at λ0 = 0, which means that the trivial
solution line loses or gains stability (provided that all other eigenvalues in
the spectrum of DxF (0, 0) are in the stable left complex half-plane). Now we
prove that any degenerate crossing of μ(λ) of the imaginary axis at μ(0) = 0
causes bifurcation. By Theorem I.16.3, the bifurcation equation to determine
nontrivial solutions is of the form

Φ̃(s, λ) =
∞∑

j=m

cj0λ
j +

∞∑
j=0
k=1

cjkλ
jsk = 0

for some odd m ≥ 1 and cm0 = μm.

(I.16.26)

We apply the Newton polygon method to solve (I.16.26) locally near (s, λ) =
(0, 0) (cf. Section I.15). We have a smallest point (0,m) on the ordinate
(which corresponds to (0, j0) of the previous section). After possibly dividing
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by λjn (if jn > 0, a solution curve {(s, 0)| |s| < d} exists), we also find a
smallest point (kn, 0) on the abscissa. The two points (0, j0) and (kn, 0) are
connected by a convex polygon, which is the so-called Newton polygon. As
expounded in the previous section, an odd m yields at least one and at most
m solution curves of the following form:

{(s, sγ ∑∞
k=0 aks

k/pγ2)|0 ≤ s < δ} and

{(s, (−s)γ̃
∑∞

k=0 ãk(−s)k/p̃γ̃2 | − δ < s ≤ 0}
for some γ, γ̃ ∈ Q, p, p̃ ∈ N, ak, ãk ∈ R.

The numbers γ = γ1/γ2, γ̃ = γ̃1/γ̃2 are given by slopes − 1/γ,

−1/γ̃ of the Newton polygon for Φ̃(s, λ), Φ̃−(−s, λ) ≡ Φ̃(s, λ),
respectively. The first coefficients a0 �= 0, ã0 �= 0 are zeros

of the defining polynomials Pγ , P̂γ̃ , respectively.

(I.16.27)

This proves the following theorem:

Theorem I.16.4 Let μ(λ) =
∑∞

j=m μjλ
j be the perturbation series of the

critical eigenvalue DxF (0, λ). If m is odd and μm �= 0, then at least one and
at most m nontrivial solution curves

{(x(s), λ(s))| − δ < s < δ} of F (x, λ) = 0
bifurcate at (x, λ) = (0, 0). In particular,

x(s) = sv̂0 + ψ(sv̂0, λ(s)) = sv̂0 + o(|s|),
λ(s) = sγ

∑∞
k=0 aks

k/pγ2 for 0 ≤ s < δ, and

λ(s) = (−s)γ̃
∑∞

k=0 ãk(−s)k/p̃γ̃2 for −δ < s ≤ 0.

(I.16.28)

The meaning of the parameters is explained in (I.16.27). The function ψ
is analytic near (0, 0). If m ≥ 1 is arbitrary, then at most m nontrivial
solution curves of the form (I.16.28) bifurcate. (We include here possible
vertical bifurcation; i.e., λ(s) ≡ 0.)

We give some special cases.
Case 1. m = 1.
Here we resume the nondegeneracy μ′(0) = μ1 = c10 �= 0 (cf. (I.7.36)).

If all c0k in (I.16.26) vanish, then we have vertical bifurcation λ(s) ≡ 0.
Otherwise, we find some first c0k1 �= 0, and the Newton polygon is the line
connecting (0, 1) and (k1, 0). Here γ = k1, and the defining polynomials
(I.15.8) are

Pγ(λ̃) =

⎧⎨
⎩

c10λ̃+ c0k1 for s ≥ 0,

c10λ̃+ c0k1 for s ≤ 0, if k1 is even,

c10λ̃− c0k1 for s ≤ 0, if k1 is odd.

(I.16.29)
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For the nontrivial solution curve (I.16.28) we obtain in all cases

λ(s) = −(sk1c0k1/c10) + o(|s|k1),
where c10 = μ1 = 〈A1v̂0, v̂

′
0〉, A1 = D2

xλF (0, 0) (cf. (I.16.3)),
and c0k1 = H0,k1+1 is given by (I.16.20).

(I.16.30)

For k1 = 1 we regain formula (I.6.3), and for k1 = 2 we recover formula
(I.6.11) (see Remark I.16.2). In general, we have a transcritical bifurcation
whenever k1 is odd and a pitchfork bifurcation whenever k1 is even.

Case 2. m > 1, (k1, j1) = (1, 0).
This case occurs for any degeneracy of the eigenvalue perturbation μ(λ) =∑∞

j=m μjλ
j and if c01 = H02 = 〈F (2)

02 [v̂0, v̂0], v̂
′
0〉 �= 0 (cf. (I.16.20), (I.16.23)).

The defining polynomial to be solved is

Pγ(λ̃) = μmλ̃m +H02 for s ≥ 0,

Pγ(λ̃) = μmλ̃m −H02 for s ≤ 0, and
γ = 1/m.

(I.16.31)

If m is odd, we obtain without any restriction

λ(s) = −(s1/m(H02/μm)1/m) + o(|s|1/m).(I.16.32)

If m is even, then

λ(s) = ±(s1/m(−H02/μm)1/m) + o(|s|1/m) for s ≥ 0
if −H02/μm > 0, and

λ(s) = ±((−s)1/m(H02/μm)1/m) + o(|s|1/m) for s ≤ 0
if H02/μm > 0.

(I.16.33)

The bifurcation diagrams in the (s, λ)-plane are depicted in Figure I.16.1. The
bifurcating curve and the trivial solution line are no longer “transversal.”

λ

s

Figure I.16.1

Remark I.16.5 We recall Remark I.15.2: For these two special cases, analy-
ticity of F (and thus of Φ) is certainly not needed. It suffices that Φ̃ be of
class C	, where � > k1 or m, respectively.
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I.16.1 The Principle of Exchange of Stability for
Degenerate Bifurcation

Next, we consider solutions of (I.16.1) as stationary solutions of

dx

dt
= F (x, λ),(I.16.34)

and we investigate their stability as we did in Section I.7. As a matter of fact,
only the perturbation of the critical eigenvalue μ = 0 of DxF (0, 0) is studied
for DxF (x(s), λ(s)), where {(x(s), λ(s))} is any curve of solutions of (I.16.1)
through (x, λ) = (0, 0).

For the trivial solution line {(0, λ)}, Theorem I.16.3 relates its stability
to the bifurcation function Φ(s, λ). Obviously,

Φ̃(0, λ) = DsΦ(0, λ),(I.16.35)

and Theorem I.16.3 can be restated as follows: If μ′(0) = · · · = μ(m−1)(0) = 0,
then DλΦ̃(0, 0) = · · · = Dm−1

λ Φ̃(0, 0) = 0, and vice versa. In this case,

dm

dλm
DsΦ(0, λ)|λ=0 =

dm

dλm
μ(λ)|λ=0.(I.16.36)

Formula (I.16.36) generalizes formulas (I.7.18) and (I.7.19) for the trivial
solution line. We show that the generalization is also valid for all bifurcating
solution curves given by Theorem I.16.4.

Introducing t = s1/pγ2 (for s ≥ 0), we see that the curve {(x(s), λ(s))} is

analytic in t (cf. (I.16.28)). Writing that curve as {(x̂(t), λ̂(t))}, we see that
the expansions in t converge not only for 0 ≤ t < δ̃ but also for |t| < δ̃.

By analyticity of F (x̂(t), λ̂(t)) in t, the equation F (x̂(t), λ̂(t)) = 0 holds for

|t| < δ̃. Therefore, {(x̂(t), λ̂(t))| |t| < δ̃} represents a solution curve through
(x, λ) = (0, 0) that is among all curves (I.16.28) given by Theorem I.16.4.
Later, we confine ourselves again to s ≥ 0. Next we define

F̂ (x, t) ≡ F (x̂(t) + x, λ̂(t)),
which is analytic in the sense of (I.16.2) in a neighborhood

x ∈ Û = {x̂ ∈ X | ‖x̂‖ < d̃} and t ∈ V̂ = {t ∈ R| |t| < δ̃}.
(I.16.37)

For the trivial solution {(x̂(t), λ̂(t))} = {(0, λ)} we regain for λ̂(t) ≡ λ and

t = λ the original function F . For any solution curve {(x̂(t), λ̂(t))}, we have
F̂ (0, t) = 0 for all |t| < δ̃, which is the trivial solution line for F̂ (x, t) = 0. We
obtain also DxF̂ (0, 0) = DxF (0, 0) = A0. Accordingly, we have the simple
eigenvalue perturbation

DxF̂ (0, t)(v̂0 + ŵ(t)) = μ̂(t)(v̂0 + ŵ(t)) (cf. (I.16.7))

for DxF̂ (0, t) = DxF (x̂(t), λ̂(t)).
(I.16.38)
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Thus μ̂(t) =
∑∞

j=1 μ̂jt
j is the perturbation of the critical eigenvalue μ = 0 of

DxF (0, 0) in which we are interested for the stability analysis of {(x̂(t), λ̂(t))}.
As before, we can relate the perturbation series μ̂(t) to the bifurcation func-
tion Φ̂ obtained by the method of Lyapunov–Schmidt. Since DxF̂ (0, 0) = A0,
the projections P and Q are the same as before, and an easy computation
shows that for

x = sv̂0 + ŵ, ŵ ∈ R(A0) ∩X,

Φ̂(s, t) = Φ(ŝ(t) + s, λ̂(t)) with ŝ(t) = 〈x̂(t), v̂′0〉
is the bifurcation function for F̂ (x, t) = 0 when
Φ(s, λ) is the bifurcation function for F (x, λ) = 0.

(I.16.39)

We apply Theorem I.16.3 to the trivial solution {(0, t)}, which relates μ̂(t)

to DsΦ̂(0, t) = DsΦ(ŝ(t), λ̂(t)), as follows (cf. (I.16.35), (I.16.36)):

Theorem I.16.6 Let {(x̂(t), λ̂(t))| |t| < δ̃} be any analytic solution curve of
F (x, λ) = 0 through (x, λ) = (0, 0), and let μ̂(t) =

∑∞
j=1 μ̂jt

j be the simple

eigenvalue perturbation of the critical eigenvalue μ = 0 of DxF (x̂(t), λ̂(t)).
Let Φ(s, λ) be the bifurcation function obtained by method of Lyapunov–
Schmidt (cf. (I.16.19)) and let ŝ(t) = 〈x̂(t), v̂′0〉 (cf. (I.16.5), (I.16.6)). Then
the following holds:

μ̂′(0) = · · · = μ̂(m̂−1)(0) = 0

(
′ =

d

dt
, m̂ ≥ 2

)
⇔

d

dt
DsΦ(ŝ(t), λ̂(t))

∣∣
t=0

= · · ·

=
dm̂−1

dtm̂−1
DsΦ(ŝ(t), λ̂(t))

∣∣
t=0

= 0, and in this case,

dm̂

dtm̂
DsΦ(ŝ(t), λ̂(t))

∣∣
t=0

=
dm̂

dtm̂
μ̂(t)

∣∣
t=0

.

(I.16.40)

(The last equation holds also for m̂+ 1.)

This is the generalization of Proposition I.7.3 announced in its proof. (For
a different proof see also Remark I.18.2.) Obviously, we can draw the same
conclusion as (I.7.48): Under the assumptions of Theorem I.16.6, we obtain

from dm̂

dtm̂
μ̂(t)

∣∣
t=0

/m̂! = μ̂m̂ �= 0,

signμ̂(t) = signDsΦ(ŝ(t), λ̂(t)) �= 0

for t ∈ (−δ̃, δ̃)\{0}.(I.16.41)

Then Theorem I.7.4 holds for our setting as well. Before stating the general
Principle of Exchange of Stability, we describe under what condition we have
μ̂m̂ �= 0 for some m̂ ≥ 1.

We recall that solutions (x(s), λ(s)) of F (x, λ) = 0 are obtained by sol-
ving Φ̃(s, λ) = 0 given in (I.16.26). When the Newton polygon for Φ̃(s, λ) is
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established, we write it as

Φ̃(s, λ) =
∑n

ν=0cνs
kνλjν +R(s, λ) (cf. (I.15.4)),(I.16.42)

where j0 = m, k0 = 0 (but possibly jn > 0 if there is vertical bifurcation). In
the following, we confine ourselves to s ≥ 0.

Let −1/γ be a slope in the Newton polygon with a defining polynomial
Pγ (cf. (I.15.5)–(I.15.8)). We assume that

λ̃0 �= 0 is a simple zero of Pγ .(I.16.43)

In the nomenclature of Section I.15, we assume that for λ̃0 we have a multi-
plicity q = 1, and that the solution curve {(x(s), λ(s))} is of the form

x(s) = sv̂0 + ψ(sv̂0, λ(s)),

λ(s) = sγ(λ̃0 +
∑∞

k=1aks
k/γ2) for 0 ≤ s < δ,

(I.16.44)

where γ = γ1/γ2 (cf. (I.15.10)). Introducing t = s1/γ2 , we obtain an analytic

solution curve {(x̂(t), λ̂(t))}.
Since Φ̃(s, λ(s)) = 0 for 0 ≤ s < δ and Φ(s, λ) = sΦ̃(s, λ), we have

DsΦ(s, λ(s)) = sDsΦ̃(s, λ(s)),(I.16.45)

and by λ(s) = sγ λ̃(s), we get, in view of (I.15.5)–(I.15.7),

sDsΦ̃(s, λ(s))

= sσ
(∑r

ρ=0c	+ρk	+ρλ̃(s)
j�+ρ +R1(t, λ̃(s)

)
,

where σ is defined by (I.15.5), t = s1/γ2 ,

and R1 is analytic in (t, λ̃) with R1(0, λ̃) = 0.

(I.16.46)

Switching to the variable t, we see that

DsΦ(ŝ(t), λ̂(t)) = tσγ2
∑r

ρ=0c	+ρk	+ρλ̃
j�+ρ

0 + higher-order terms.(I.16.47)

Now, by (I.15.5), (I.15.8), and assumption (I.16.43),∑r
ρ=0c	+ρk	+ρλ̃

j�+ρ

0

= σPγ(λ̃0)− γλ̃0P
′
γ(λ̃0) = −γλ̃0P

′
γ(λ̃0) �= 0

(
′ =

d

dλ̃

)
.

(I.16.48)

Thus we have proved the following theorem:

Theorem I.16.7 Let a solution curve {(x(s), λ(s))} of F (x, λ) = 0 through
(0, 0) be obtained by a simple zero λ̃0 �= 0 of a defining polynomial Pγ for

some slope −1/γ of the Newton polygon for Φ̃(s, λ) (cf. Theorem I.16.4). If

γ = γ1/γ2 and t = s1/γ2 , then {(x(s), λ(s))} = {(x̂(t), λ̂(t))} is an analytic
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solution curve of F (x, λ) = 0 (in t), and for the simple eigenvalue perturba-

tion μ̂(t) =
∑∞

j=1 μ̂jt
j of DxF (x̂(t), λ̂(t)), we obtain the following:

μ̂1 = · · · = μ̂m̂−1 = 0 for m̂ = γ1j	 + γ2k	,
where γj	 + k	 = · · · = γj	+r + j	+r = σ (cf (I.15.5)), and

μ̂m̂ = −γλ̃0P
′
γ(λ̃0) �= 0.

(I.16.49)

In particular, μ̂(t) �= 0 for t �= 0, so that (I.16.41) holds.

We apply Theorem I.16.6 to the special cases studied before.

Case 1. m = 1.
We exclude vertical bifurcation by assuming c0k1 = H0,k1+1 �= 0 for some

minimal k1 ≥ 1. Then γ = k1 and j0 = m = 1, k0 = 0, so that by (I.16.49),
m̂ = k1. In the first case of (I.16.29) we have t = s; in the two last cases of
(I.16.29) we set t = −s. Therefore, we can unify all cases to μ̂(t) = μ̂(s), and
formula (I.16.49) gives, for the first nonvanishing coefficient,

μ̂k1 = k1c0k1 .(I.16.50)

Since by Theorem I.16.3, μ1 = c10 �= 0, we obtain, in view of (I.16.30),

k1
dμ

dλ
(0)

dk1λ

dsk1
(0) = −dk1 μ̂

dsk1
(0) �= 0,(I.16.51)

which generalizes formulas (I.7.40) and (I.7.45). As shown in Section I.7,
the relation (I.16.51) proves an exchange of stability for a transcritical
bifurcation (when k1 is odd) as well as for a pitchfork bifurcation (when
k1 is even). The situation is sketched in Figure I.7.2 and Figure I.7.3.

Case 2. m > 1, (k1, j1) = (1, 0).
Here γ = 1/m, j0 = m, k0 = 0, so that m̂ = m. In the first case of (I.16.31)

we have t = s1/m, and in the second case of (I.16.31) we set t = (−s)1/m.
For odd m = m̂ we can unify both cases, and we obtain from (I.16.49), for
μ̂(t) = μ̂(s1/m),

μ̂m = H02, or
μ̂(s1/m) = sH02 + o(|s|).(I.16.52)

By (I.16.32), λ̂(t) = −t(H02/μm)1/m + o(|t|), which proves that

dmμ

dλm
(0)

(
dλ

dt
(0)

)m

= −dmμ̂

dtm
(0) �= 0.(I.16.53)

For the cases (I.16.33) for even m, we obtain

μ̂m = H02 for μ̂(t) = μ̂(s1/m) for s ≥ 0,

μ̂m = −H02 for μ̂(t) = μ̂((−s)1/m) for s ≤ 0.
(I.16.54)
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The bifurcation diagrams are sketched in Figure I.16.1. Possible stabilities
are marked in Figure I.16.2.

stable
unstable

s

λ

Figure I.16.2

If m is even, the stability of the trivial solution does not change at λ = 0.
In view of (I.16.33), (I.16.54), the stability of the bifurcating curve does not
change either. In all cases (I.16.32) and (I.16.33), the stability properties of
the trivial solution line and of the bifurcating curve for some fixed value of
λ �= 0 are opposite. This Principle of Exchange of Stability is formulated
in the next Theorem.

Theorem I.16.8 Consider all local solution curves of F (x, λ) = 0 through
(x, λ) = (0, 0) except a vertical curve {(x(s), 0)} but including the trivial
line {(0, λ)}. The nontrivial curves are given by Theorem I.16.4, and for
fixed λ �= 0 these curves can be ordered in the (s, λ)-plane. Then consecutive
curves have opposite stability properties in a weakened sense: Let μi(s) be the
perturbed eigenvalues of DxF (xi(s), λi(s)), i = 1, 2, for consecutive curves in
the above sense. Then μ1(s)μ2(s) ≤ 0, with equality only if DsΦ(s, λi(s)) ≡ 0
for i = 1 or 2 and for all 0 ≤ s < δ or −δ < s ≤ 0. Here Φ is the bifurcation
function (I.16.19).

Proof. We refer to the proof of Theorem I.7.4: If DsΦ(s, λi(s)) �≡ 0, then
by (I.16.40), μi(s) �≡ 0, and derivatives of Φ(·, λ) at consecutive zeros cannot
be both positive or both negative. The claim then follows from (I.16.41). 
�

Thus, if the total bifurcation diagram and the stability properties of the
trivial solution line are known, then the stability of each bifurcating curve
can be derived by Theorem I.16.8. On the other hand, if a single curve is
computed by the Newton polygon method, Theorem I.16.7 gives its stability
without any knowledge of other solution curves.

We give an example. Note that in view of (I.16.16), (I.16.17),
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if 〈Fj,k+1(v̂0), v̂
′
0〉 �= 0 and F	m = 0 for 0 ≤ � ≤ j,

1 ≤ m ≤ k + 1, (�,m) �= (j, k + 1),
then the lowest-order terms cjk of (I.16.23) for k ≥ 1 are
cjk = Hj,k+1 = 〈Fj,k+1(v̂0), v̂

′
0〉.

(I.16.55)

Assume (I.16.55) and that the coefficients cν , ν = 0, . . . , n, on the Newton
polygon are c0 = cm0 = μm, cν = 〈Fjν ,kν+1(v̂0), v̂0〉 for ν = 1, . . . , n (cf.
(I.15.3), (I.15.4)). Then the solution curves can be computed directly from
F , and their stability follows from Theorem I.16.8 or I.16.7. Let, for instance,

F (x, λ) = A(λ)x + λ4F42(x) + λ2F24(x) + F07(x) + h.o.t.,

A(λ)(v̂0 + w(λ)) = (μ7λ
7+ h.o.t.)(v̂0 + w(λ)), where μ7 > 0,

〈F42(v̂0), v̂
′
0〉 < 0, 〈F24(v̂0), v̂

′
0〉 > 0, 〈F07(v̂0), v̂

′
0〉 < 0.

(I.16.56)

(Here h.o.t. means higher-order terms.)
Then the Newton polygon for Φ̃(s, λ) = 0 (cf. ((I.16.23)) is given by the

points (0, 7), (1, 4), (3, 2), (6, 0) with coefficients c0 > 0, c1 < 0, c2 > 0, c3 < 0.
The values γ of the three slopes are γ = 1

3 , γ = 1, and γ = 3
2 . The defining

polynomials have simple nonzero roots, so that Theorem I.16.6 is applicable.
The bifurcation diagram is sketched in Figure I.16.3. A concrete example is
given in Section III.2 in (III.2.20).

λ

unstable

stable

s

Figure I.16.3
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I.17 Degenerate Hopf Bifurcation and Floquet
Exponents of Bifurcating Periodic Orbits

Here we assume the situation of Section I.8, where we proved Hopf bifurcation
for the evolution equation

dx

dt
= F (x, λ)(I.17.1)

from the trivial solution line {(0, λ)|λ ∈ R} at some (0, λ0). For simplicity,
we assume now that λ0 = 0 and that the mapping F satisfies the hypotheses
of Section I.8, in particular, (I.8.2)–(I.8.6), (I.8.8), and (I.8.14) with λ0 = 0.
Instead of the regularity (I.8.13), we assume now the analyticity (I.16.2) of
F .

Apart from these technical assumptions, the nondegeneracy (I.8.7) of the
simple eigenvalue perturbation μ(λ) (I.8.6) is crucial for the solution of the
bifurcation equation (I.8.34) or (I.8.35) (cf. (I.8.43), (I.8.44)). A crossing of
the imaginary axis of μ(λ) at λ = 0 occurs also if μ(0) = iκ0 and Reμ′(0) =
· · · = Reμ(m−1)(0) = 0 but Reμ(m)(0) �= 0 for some odd m. As proved in the
previous section, a possibly degenerate loss of stability of the trivial solution
line at λ = 0 through μ(0) = 0 causes bifurcation of stationary solutions of
(I.17.1). Therefore, one expects a bifurcation of periodic solutions of (I.17.1)
if the stability of the trivial solution is lost at λ = 0 through μ(0) = iκ0(�= 0)
also in a degenerate way. In order to prove this expectation, we have to study
the eigenvalue perturbation (I.8.6) near λ0 = 0. Choosing the vector ϕ′

0 as in
(I.8.18), we write (I.8.6) as

A(λ)(ϕ0 +
∑∞

j=1ϕjλ
j) = μ(λ)(ϕ0 +

∑∞
j=1ϕjλ

j) (cf. (I.16.3)),

μ(λ) = iκ0 +
∑∞

j=1μjλ
j , μj ∈ C,

〈ϕj , ϕ
′
0〉 = 0 for all j ≥ 1; i.e.,

ϕj ∈ R(iκ0I −A0) ∩X (complexified).

(I.17.2)

For the subsequent analysis we need the projections

Q01 : Z → N(iκ0I −A0) along R(iκ0I −A0)
given by Q01z = 〈z, ϕ′

0〉ϕ0 for z ∈ Z, cf. (I.8.18),
Q01|X = P01 : X → N(iκ0I −A0) along R(iκ0I −A0) ∩X .

(I.17.3)

Then in analogy to Proposition I.16.1, we have the following result:

Proposition I.17.1 The coefficients μ	 for � ≥ 1 of the eigenvalue pertur-
bation I.17.2 are recursively given by (I.16.9), where we replace v̂0 by ϕ0, and
v̂′0 by ϕ′

0, and where we substitute A0 by A0 − iκ0I in the definition of the
vectors Anmϕ0 for n,m ≥ 0.

Proof. Writing (I.17.2) as
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(A0 − iκ0I) +

∑∞
j=1 λ

jAj

)(
ϕ0 +

∑∞
j=1ϕjλ

j
)

=
(∑∞

j=1μjλ
j
)(

ϕ0 +
∑∞

j=1ϕjλ
j
)
,

(I.17.4)

then we are precisely in the same situation as (I.16.7), (I.16.8) when the
substitutions are made according to Proposition I.17.1. 
�

The Lyapunov–Schmidt reduction for

G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0(I.17.5)

near (0, κ0, 0) follows Section I.8 completely. Here we use the same notation,
in particular,

Q : W → N(J0) along R(J0),

where J0 ≡ κ0
d

dt
−A0 and Q is given by (I.8.21);

Q|Y ∩E = P : Y ∩ E → N(J0) along R(J0) ∩ (Y ∩ E).

(I.17.6)

Decomposing x ∈ E ∩ Y as x = Px + (I − P )x = v + w, we see then that
(I.17.5) is equivalent to

QG(v + w, κ, λ) = 0,
(I −Q)G(v + w, κ, λ) = 0,

(I.17.7)

and the second equation is solved for w = ψ(v, κ, λ) by the Implicit Function
Theorem. By the assumed analyticity of F (which induces analyticity for G),
the function w = ψ(v, κ, λ) is analytic, too, and we give some coefficients in
its expansion. Inserting

w =
∞∑

j,	,k=0

λj(κ− κ0)
	Gj	k(v), where

Gj	k : N(J0)
k → R(J0) ∩ (E ∩ Y )

are k-linear, symmetric, and continuous,

(I.17.8)

into (I.17.7)2, which is

J0w + (κ− κ0)
d

dt
w −(I −Q)

∑∞
j=1λ

jAj(v + w)

−(I −Q)
∞∑
j=0
k=2

λjFjk(v + w) = 0,
(I.17.9)

we obtain, by comparing like powers,
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Gj	0 = 0 for all j, � ∈ N0, G001 = 0,
G101v = J−1

0 (I −Q)A1v, G0	1 = 0 for � ≥ 1,

G111v = −J−1
0

d

dt
J−1
0 (I −Q)A1v,

G1	1v = −J−1
0

d

dt
G1,	−1,1 for � ≥ 1,

Gn01v = J−1
0 (I −Q)Anv +

∑
j+k=n

j≥1,k≥1

J−1
0 (I −Q)AjGk01v,

Gnm1v = −J−1
0

d

dt
Gn,m−1,1v +

∑
j+k=n

j≥1,k≥1

J−1
0 (I −Q)AjGkm1v,

(I.17.10)

for n ≥ 2,m ≥ 1. The recurrence formulas for G00n for n ≥ 2 are

G002(v) = J−1
0 (I −Q)F02(v),

G00n(v) = J−1
0 (I −Q)

n∑
k=2

k∑
m=0

∑
ν1+···+νm=n−k+m

(
k
m

)
F

(k)
0k [./.],

where [./.] = [G00ν1(v), . . . , G00νm(v), v, . . . , v]; cf.(I.16.17).

(I.17.11)

We insert w = ψ(v, κ, λ) into (I.17.7)1, and we obtain the bifurcation equa-
tion (cf. (I.8.30)). For real v, this two-dimensional system is equivalent to
the one-dimensional complex equation (I.8.34), which by Q d

dtw = d
dtPw =

0, QJ0w = 0 reduces to

1

2π

∫ 2π

0

〈
(κ− κ0)

d

dt
v −∑∞

j=1λ
jAj(v + w)

−
∞∑
j=0
k=2

λjFjk(v + w), ψ′
0

〉
dt = 0.

(I.17.12)

Clearly, by (I.17.8), the function (I.17.12) is analytic in its variables (v, κ−
κ0, λ), but before studying its coefficients we investigate its structure when
we insert v = cψ0+cψ0, c ∈ C. According to (I.8.35), we denote this complex-
valued funtion by Φ̂(c, κ, λ), and due to equivariance ofG, it has the properties
(I.8.36) and (I.8.37). In particular, it is odd in c ∈ C. We rediscover this
oddness as follows: LetG(k)[v, . . . , v] be a k-linear, symmetric, and continuous
mapping in the expansion of G(v + ψ(v, κ, λ), κ, λ). When we insert v =
cψ0 + cψ0, we obtain, for k = 2�+ 1,

1

2π

∫ 2π

0

〈G(k)[v, . . . , v], ψ′
0〉dt

= c|c|2	(2	+1
	

)〈G(k)[ϕ0, . . . , ϕ0︸ ︷︷ ︸
	+1

, ϕ0, . . . , ϕ0︸ ︷︷ ︸
	

], ϕ′
0〉,

(I.17.13)

and 0 for k = 2� (cf. (I.8.18), (I.8.21)). Therefore, theBifurcation Equation
for Hopf Bifurcation (I.17.12) is of the form
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Φ̂(c, κ, λ) = c
∞∑

j,	,k=0

Hj	kλ
j(κ− κ0)

	|c|2k

= cΦ̃(c, κ, λ) (cf. (I.8.39))
with coefficients Hj	k ∈ C.

(I.17.14)

(We know that there is convergence for |c|, |κ − κ0|, |λ| < δ̃.) From (I.17.12)
we deduct for the coefficients of the linear terms (in c):

H000 = 0, H010 = i, H0	0 = 0 for � ≥ 2,

H100 = −〈A1ϕ0, ϕ
′
0〉, H1	0 = 0 for � ≥ 1,

Hn00 = −〈Anϕ0, ϕ
′
0〉 −

∑
j+k=n

j≥1,k≥1

〈AjGk01ϕ0, ϕ
′
0〉,

Hnm0 = − ∑
j+k=n

j≥1,k≥1

〈AjGkm1ϕ0, ϕ
′
0〉, for n ≥ 2,m ≥ 1.

(I.17.15)

The operators Gnm1 are given by (I.17.10). In order to relate them to the
operators Anm of (I.16.10), we make use of the following observations:

For v = cψ0 + cψ0, c ∈ C,
1

2π

∫ 2π

0

〈SJ−1
0 (I −Q)Tv, ψ′

0〉dt
= c〈S(iκ0I −A0)

−1(I −Q01)Tϕ0, ϕ
′
0〉,

1

2π

∫ 2π

0

〈
SJ−1

0

d

dt
(I −Q)Tv, ψ′

0

〉
dt

= ic〈S(iκ0I −A0)
−1(I −Q01)Tϕ0, ϕ

′
0〉

for every S, T ∈ L(X,Z) and for Q01 given by (I.17.3).

(I.17.16)

Considering iκ0I−A0 : (I−P01)X → (I−Q01)Z, we see that the preimages
are in (I − P01)X = R(iκ0I −A0) ∩X . We claim that

1

2π

∫ 2π

0

〈AjGkm1v, ψ
′
0〉dt = 〈AjGkm1ϕ0, ϕ

′
0〉

= −im〈AjAk−1,mϕ0, ϕ
′
0〉 for j ≥ 1, k ≥ 1,m ≥ 0,

where Anm are given by (I.16.10) with the
substitutions listed in Proposition I.17.1.

(I.17.17)

The proof is by induction, using (I.17.16) and the recurrence formulas
(I.16.10) and (I.17.10).

Next, we choose c = r ∈ R and decompose Φ̃(r, κ, λ) = Φ̂(r, κ, λ)/r = 0
into real and imaginary parts:
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∞∑
j=1
�=0

ReHj	0λ
j(κ− κ0)

	 +
∞∑

j,�=0
k=1

ReHj	kλ
j(κ− κ0)

	r2k = 0,

κ− κ0+
∞∑
j=1
�=0

ImHj	0λ
j(κ− κ0)

	 +
∞∑

j,�=0
k=1

ImHj	kλ
j(κ− κ0)

	r2k = 0.
(I.17.18)

This is system (I.8.39), and it is solved in Section I.8 by the Implicit Func-
tion Theorem when ReH100 �= 0. By (I.8.44), this assumption is equivalent to
Reμ′(0) = Reμ1 �= 0 (cf. (I.17.2)). Here we allow a degeneracy of the eigen-
value perturbation, and we have to relate this to the bifurcation equations
(I.17.18).

The second equation (I.17.18) allows us to express κ − κ0 in terms of
(λ, r2) (by an application of the Implicit Function Theorem). By analyticity,

κ = κ0 +
∞∑

j,k=0

djkλ
jr2k ≡ κ̃(r, λ), where d00 = 0,

d10 = −ImH100, d20 = −ImH200,

d	0 = −ImH	00 −
	−1∑
n=2

	−n∑
m=1

ImHnm0

∑
ν1+···+νm=	−n

dν10 · · · dνm0,

for � ≥ 3 (in view of H1	0 = 0).

(I.17.19)

When we insert κ − κ0 as given by (I.17.19) into (I.17.18)1, we obtain the
Reduced Bifurcation Equation

Φ̃re(r, λ)

≡
∞∑

j,k=0

cjkλ
jr2k = 0 with c00 = 0,

c10 = ReH100, c20 = ReH200,

c	0 = ReH	00 +
	−1∑
n=2

	−n∑
m=1

ReHnm0

∑
ν1+···+νm=	−n

dν10 · · ·dνm0,

for � ≥ 3.

(I.17.20)

Finally, we express μ	 as given by (I.16.9) (with the substitutions of Propo-
sition I.17.1 by the coefficients Hnm0, where we use (I.17.15) and (I.17.17)):

μ1 = −H100, μ2 = −H200,

μ	 = −H	00 −
	−1∑
n=2

	−n∑
m=1

Hnm0

∑
ν1+···+νm=	−n

(−iμν1) · · · (−iμνn),

for � ≥ 3.

(I.17.21)

Assume that Reμ1 = · · · = Reμm−1 = 0. Then, in view of (I.17.19) and
(I.17.21),

Imμ	 = d	0 for � = 1, . . . ,m+ 1,(I.17.22)

and by (I.17.20) and (I.17.21),
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Reμ	 = −c	0 for � = 1, . . . ,m+ 1.(I.17.23)

We summarize the result:

Theorem I.17.2 Let μ(λ) = iκ0 +
∑∞

j=1 μjλ
j be the perturbation series of

the critical eigenvalue iκ0 of A(λ) =
∑∞

j=0 λ
jAj = DxF (0, λ), which is the

linearization of F (x, λ), along the trivial solution {(0, λ)}. Let Φ̃re(r, λ) be the
Reduced Bifurcation Function (I.17.20). Then Φ̃re(0, λ) =

∑∞
j=1 cj0λ

j along
the trivial solution. If Reμ1 = · · · = Reμm−1 = 0, then Reμj = −cj0 for
j = 1, . . . ,m + 1. Conversely, if c10 = · · · = cm−1,0 = 0, then Reμj = −cj0
for j = 1, . . . ,m+1. If all Reμj are zero, then all cj0 are zero and vice versa.
In other words, the first two nonvanishing coefficients cm0 and cm+1,0 of

Φ̃re(0, λ) are precisely the negatives of the two first nonvanishing coefficients
Reμm and Reμm+1 of Reμ(λ).

If m is odd, then Reμ(λ) changes sign at λ0 = 0, which means that the
trivial solution line loses or gains stability (provided that all other eigenvalues
in the spectrum of DxF (0, 0) are in the stable left complex half-plane). The
proof that a degenerate crossing of μ(λ) of the imaginary axis at μ(0) = iκ0

causes bifurcation of periodic solutions of (I.17.1) is the same as that in
Section I.16: Φ̃re(r, λ) corresponds, in view of Theorem I.17.2, precisely to
Φ̃(s, λ) given in (I.16.26) when s is replaced by r2, and the arguments for the
following theorem are the same as for Theorem I.16.4.

Theorem I.17.3 Let μ(λ) = iκ0 +
∑∞

j=1 μjλ
j be the perturbation series of

the critical eigenvalue iκ0 of DxF (0, λ), and let Reμ(λ) =
∑∞

j=m Reμjλ
j

with Reμm �= 0. If m is odd, then at least one and at most m non-
trivial curves {(x(r), λ(r))} of real 2π/κ(r)-periodic solutions of (I.17.1)
through (x(0), λ(0)) = (0, 0) and 2π/κ(0) = 2π/κ0 in (C1+α

2π/κ(r)(R, Z) ∩
Cα

2π/κ(r)(R, X))
× R bifurcate. In particular,

x(r) is given by (I.8.47), where ψ is analytic near (0, κ0, 0);

κ(r) = κ̃(r, λ(r)),where κ̃ is analytic near (0, 0),

λ(r) = r2γ
∑∞

k=0akr
2k/pγ2 for 0 ≤ r < δ

with exponents explained in (I.16.27) and
a0 �= 0 a zero of the defining polynomial Pγ .
Finally, x(−r) = Sπ/κ(r)x(r), κ(−r) = κ(r),
and λ(−r) = λ(r) (cf. Theorem I.8.2).

(I.17.24)

If m ≥ 1 is arbitrary, then at most m nontrivial periodic solution curves of
the form (I.17.23) bifurcate (we include here possible vertical bifurcation, i.e.,
λ(r) ≡ 0).
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We have the analogous special cases here as expounded in Section I.16
when the Newton polygon for Φ̃re(r, λ) = 0 consists of a single line con-
necting (0, 1) and (2k1, 0) or (0,m) and (2, 0). Whereas the coefficient of
the defining polynomial at (0, 1) or (0,m) is given by Theorem I.17.2 (it
is −Reμ1 or −Reμm, respectively), the coefficient at (2k1, 0) or (2, 0) is
ReH00k1 or ReH001. The computation of these coefficients is not trivial; it
follows the lines of (I.16.20), where the expressions for G00n correspond to
(I.16.17). Here A0 is replaced by J0. For v = r(ψ0 + ψ0), the computation of

J−1
0 (I − Q)F

(k)
0k [G00ν1(v), . . . , G00νm(v), v, . . . , v] is accomplished as in Sec-

tion I.9, in particular (I.9.9). We give the formula for H001, which follows
from (I.9.11) with the observations of Remark I.16.2:

H001 = −3〈F (3)
03 [ϕ0, ϕ0, ϕ0], ϕ

′
0〉

−2〈F (2)
02 [ϕ0, (2iκ0 −A0)

−1F
(2)
02 [ϕ0, ϕ0]], ϕ

′
0〉

+4〈F (2)
02 [ϕ0, A

−1
0 F

(2)
02 [ϕ0, ϕ0]], ϕ

′
0〉.

(I.17.25)

Case 1
For m = 1 and any k1 ≥ 1 we always have a pitchfork bifurcation by

formula (I.16.30), where sk1 is replaced by r2k1 . If k1 = 1, we have, in view
of (I.17.23) and (I.17.25),

λ(r) =
ReH001

Reμ1
r2 +O(r4),

κ(r) = κ0 + d10λ(r) + d01r
2 +O(r4)

= κ0 +

(
Imμ1

ReH001

Reμ1
− ImH001

)
r2 +O(r4)

(I.17.26)

by (I.17.19), (I.17.22), and d01 = −ImH001, which follows from (I.17.18)2.
Thus, in the nondegenerate case in which Reμ1 = Reμ′(0) �= 0, we regain the
bifurcation formulas (I.9.12). The general case is given by

λ(r) =
ReH00k1

Reμ1
r2k1 +O

(
r2k1+2

)
,(I.17.27)

and κ(r) is given by (I.17.19); the lowest-order term of κ(r) depends on
(I.17.27) and the first nonvanishing coefficient in the expansion (I.17.19); cf.
also (I.17.22).

Case 2
For the case m > 1, k1 = 1, we have c01 = ReH001, and in view of

s = r2 ≥ 0, the cases (I.16.31)–(I.16.33) reduce to
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λ(r) = r2/m
(
ReH001

Reμm

)1/m

+ o(r2/m)

if m is odd, and

λ(r) = ±r2/m
(
ReH001

Reμm

)1/m

+ o(r2/m)

if m is even and ReH001/Reμm > 0.

(I.17.28)

If ReH001/Reμm < 0, then for evenm, there is no bifurcation of real periodic
solutions of (I.17.1). Recall that in this case there is no exchange of stability of
the trivial solution line {(0, λ)}, since the critical eigenvalue μ(λ) ofDxF (0, λ)
does not cross the imaginary axis.

However, if m is odd, the stability of {(0, λ)} changes (provided that all
other eigenvalues of A0 = DxF (0, 0) are in the stable left complex half-plane
of C; in this case, the stability of the bifurcating periodic solutions of (I.17.1)
is determined by the perturbation of the critical Floquet exponents near 0;
cf. (I.12.4), (I.12.5)). Since

Φ̃re(0, λ) = Dr(rΦ̃re(r, λ))|r=0 and

rΦ̃re(r, λ) = ReΦ̂(r, κ̃(r, λ), λ) (cf. (I.17.14), (I.17.18)

where κ̃(r, λ) is given by (I.17.19) (cf. (I.17.20)),

(I.17.29)

Theorem I.17.2 can be restated as follows:

If Reμ′(0) = · · · = Reμ(m−1)(0) = 0, then DλDrReΦ̂(0, κ̃(0, 0), 0) = · · ·
= Dm−1

λ DrReΦ̂(0, κ̃(0, 0), 0) = 0, and vice versa. In this case,

dm

dλm
ReDrΦ̂(0, κ̃(0, λ), λ)|λ=0 = − dm

dλm
Reμ(λ)|λ=0.(I.17.30)

We show now how formula (I.17.30) generalizes to the bifurcating curves of
periodic solutions given by Theorem I.17.3 and their critical Floquet expo-
nents.

I.17.1 The Principle of Exchange of Stability for
Degenerate Hopf Bifurcation

If we substitute τ = r2/pγ2 into (I.17.24), the curve {(x(r), κ(r), λ(r))| |r| <
δ} is a solution curve of G(x, κ, λ) = 0 (cf. (I.17.5), where we normalized
the period again to 2π), which is analytic in τ . We write this curve as

{(x̂(τ), κ̂(τ), λ̂(τ))}, and its stability is determined by the critical Floquet
exponent μ2 that is the nontrivial perturbed eigenvalue of
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DxG(x̂(τ), κ̂(τ), λ̂(τ))ψ = μψ (cf. (I.12.3)).(I.17.31)

We adopt the terminology of Section I.12. The existence of the second crit-
ical Floquet exponent μ2 = μ̂2(τ) is given by Proposition I.12.1, and by its
construction via the Implicit Function Theorem, all functions that are in-
volved depend analytically on τ for |τ | < δ̃. For simplicity, we stay with
the curve {(x(r), κ(r), λ(r))} as long as possible, and we have in mind that
analyticity (or even differentiability) is given only when it is parameterized
by τ (i.e., r = r(τ) = τpγ2/2). In the sequel we use the following notation:
DxG(r) ≡ DxG(x(r), κ(r), λ(r)), ψ1(r) = v̂1+w1(r), and ψ2(r) = v̂2+w2(r),
where Pwi(r) = 0, i = 1, 2. Then, by (I.12.6), (I.12.9), and (I.12.10),

DxG(r)ψ2(r) = ν(r)ψ1(r) + μ2(r)ψ2(r), or, by (I.12.8),

DxG(r)[ν(r)ψ1(r) + μ2(r)ψ2(r)] = μ2(r)[ν(r)ψ1(r) + μ2(r)ψ2(r)].
(I.17.32)
By the equivariance (I.8.31) or (I.12.16), equation (I.17.32)2 is equivalent to

DxG(eiθr)[ν(r)Sθψ1(r) + μ2(r)Sθψ2(r)]
= μ2(r)[ν(r)Sθψ1(r) + μ2(r)Sθψ2(r)].

(I.17.33)

(Cf. (I.8.32), (I.8.33), and recall that κ(eiθr) = κ(r), λ(eiθr) = λ(r), which
is also seen from (I.17.14).)

By the definitions of ψ1(r), ψ2(r) and by (I.12.9), we obtain

ν(r)Sθψ1(r) + μ2(r)Sθψ2(r)
= (ν(r) cos θ + μ2(r) sin θ)v̂1 + (μ2(r) cos θ − ν(r) sin θ)v̂2
+ w(θ, r),

so that Pw(θ, r) = 0 for θ ∈ [0, 2π], |r| < δ.

(I.17.34)

In the sequel we distinguish the cases (ν(r), μ2(r)) ≡ (0, 0) and (ν(r), μ2(r)) �=
(0, 0) for 0 < |r| < δ. In the first case, we choose θ = θ(r) ≡ 0, and we have
equation (I.17.32)1 with zero right-hand side. In the second case, we choose
the phase θ = θ(r) by

ν(r) cos θ + μ2(r) sin θ = 0 for 0 < |r| < δ,(I.17.35)

and substituting r = r(τ) = τpγ2/2, we see that the phase

θ = θ(r) = θ̂(τ) ∈
[
−π

2
,
π

2

]
is analytic in τ for |τ | < δ̃.(I.17.36)

Since the eigenfunction (I.17.34) with the phase (I.17.35) has no v̂1-component,
equation (I.17.33) implies

(I −Q1)DxG(eiθr)ψ(r) = μ2(r)ψ(r), where
ψ(r) = (μ2(r) cos θ − ν(r) sin θ)v̂2 + w(θ, r)
is in (I − P1)(E ∩ Y ) for |r| < δ.

(I.17.37)
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The real coefficient μ2(r) cos θ − ν(r) sin θ ≡ β(r) satisfies the equation
|β(r)| = √

ν(r)2 + μ2(r)2 if θ = θ(r) is chosen according to (I.17.35). There-

fore, β(r) �= 0 for 0 < |r| < δ in the second case, and β̂(τ) = β(r(τ)) (with
r = r(τ) = τpγ2/2) is analytic and does not vanish for 0 < |τ | < δ̃.

By definition (I.17.34), the remainder w(θ̂(τ), r(τ)) is given by

w(θ̂(τ), r(τ)) = ν̂(τ)Sθ̂(τ)w1(r(τ)) + μ̂2(τ)Sθ̂(τ)w2(r(τ)),

where ν̂(τ) = ν(r(τ)), μ̂2(τ) = μ2(r(τ)).
(I.17.38)

Since
|ν(r)|/|β(r)| ≤ 1 and |μ2(r)|/|β(r)| ≤ 1
for 0 < |r| < δ,

(I.17.39)

we obtain

w(θ̂(τ), r(τ))/β̂(τ) → 0 as τ → 0(I.17.40)

by w1(0) = w2(0) = 0.

To summarize, when dividing equation (I.17.37) by the coefficient β̂(τ) �=
0, we obtain an analytic simple eigenvalue perturbation

(I −Q1)DxG(eiθ̂(τ)r(τ))ψ̂(τ) = μ̂2(τ)ψ̂(τ),

ψ̂(τ) = v̂2 + ŵ(τ), ŵ(0) = 0, μ̂2(0) = 0,
with some ŵ(τ) ∈ (I − P1)(E ∩ Y ).

(I.17.41)

Recall that in the case β̂(τ) ≡ 0 (i.e., when (ν(r), μ2(r)) ≡ (0, 0)), we obtain

(I.17.41) with θ̂(τ) ≡ 0 by (I.17.32)1 as well.

Thus for the analytic family A(τ) ≡ (I −Q1)DxG(eiθ̂(τ)r(τ)), the results
of Section I.16 are applicable, in particular Theorem I.16.3. The calculation
of the bifurcation function related to (I.17.41) is already accomplished in
Section I.12, (I.12.21)–(I.12.30). We repeat the main steps (where we stay for
simplicity with the dependence on r rather than on τ). We define

G(x, θ, r) ≡ (I −Q1)G(x(eiθr) + x, κ(r), λ(r)) and
G(0, θ, r) = 0, which is the trivial solution line.

(I.17.42)

Then
DxG(0, θ, r) = (I −Q1)DxG(eiθr) and
DxG(0, θ(0), 0) = (I −Q1)J0 (θ = θ(r))

(I.17.43)

and
N(DxG(0, θ(0), 0)) = R(P2) = span[v̂2],
R(DxG(0, θ(0), 0)) = R(J0), and
(I −Q1)W = R(DxG(0, θ(0), 0))⊕N(DxG(0, θ(0), 0))
with projection Q2 onto N along R.

(I.17.44)

The Lyapunov–Schmidt reduction yields the bifurcation function
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Φ(v, θ, r) = Q2G(v + ψ̃(v, θ, r), θ, r),
and for v = sv̂2 the computations (I.12.27)–(I.12.29) give
Φ(sv̂2, θ, r)

= Q2G((eiθr + s)ψ0 + (e−iθr + s)ψ0

+ψ((eiθr + s)ψ0 + (e−iθr + s)ψ0, κ(r), λ(r)), κ(r), λ(r)).

(I.17.45)

Using the definition (I.12.9) of the projection Q2, and using the definitions
(I.8.34), (I.8.35) of the bifurcation function Φ̂, we see that the definition
(I.16.18) of the bifurcation function for (I.17.42) and (I.17.43) finally gives

Ψ(s, τ) ≡ 1

2π

∫ 2π

0

〈Φ(sv̂2, θ̂(τ), r(τ)), v̂′2〉dt

= ReΦ̂(eiθ̂(τ)r(τ) + s, κ(r(τ)), λ(r(τ))).

(I.17.46)

Theorem I.16.3 then relates the first two nonvanishing coefficients in the
expansion of μ̂2(τ) to the first two nonvanishing coefficients of DsΨ(0, τ). In
order to compute DsΨ(0, τ), we make use of the equivariance (I.8.36) of Φ̂,
which implies

Φ̂(eiθr + s, κ, λ) = eiθΦ̂(r + e−iθs, κ, λ).(I.17.47)

Therefore, differentiation of (I.17.47) with respect to s at s = 0 and taking
the real part gives

DsΨ(0, τ) = ReDrΦ̂(r(τ), κ(r(τ)), λ(r(τ ))).(I.17.48)

By definition (I.17.19) of κ = κ̃(r, λ) (cf. (I.17.29)) and by κ̂(τ) = κ(r(τ)),

λ̂(τ) = λ(r(τ)), we can rewrite (I.17.48) as

DsΨ(0, τ) = ReDrΦ̂(r(τ), κ̂(τ), λ̂(τ))

= ReDrΦ̂(r(τ), κ̃(r(τ), λ̂(τ)), λ̂(τ))

= Dr(r(τ)Φ̃re(r(τ), λ̂(τ))) for |τ | < δ̃.

(I.17.49)

Now application of Theorem I.16.3 gives the following theorem, which
extends formula (I.17.30) for the trivial solution line to any bifurcating curve
of periodic solutions.

Theorem I.17.4 Let {(x̂(τ), κ̂(τ), λ̂(τ))} be any analytic solution curve of
G(x, κ, λ) = 0 through (0, κ0, 0) (cf. (I.17.5)) and let μ̂2(τ) =

∑∞
j=1 μ̂jτ

j

be the nontrivial critical Floquet exponent of DxG(x̂(τ), κ̂(τ), λ̂(τ)). Let
Φ̂(r, κ, λ) be the complex bifurcation function obtained by the method of
Lyapunov–Schmidt (cf. (I.17.14)) and let

r(τ) =
1

2π

∫ 2π

0

〈x̂(τ), v̂′2〉dt; cf. (I.12.9).

Then the following holds:
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μ̂′
2(0) = · · · = μ̂

(m̂−1)
2 (0) = 0

(
′ =

d

dτ
, m̂ ≥ 2

)
⇔

d

dτ
ReDrΦ̂(r(τ), κ̂(τ), λ̂(τ))|τ=0 = · · ·

=
dm̂−1

dτm̂−1
ReDrΦ̂(r(τ), κ̂(τ), λ̂(τ))|τ=0 = 0,

and in this case,

dm̂

dτm̂
ReDrΦ̂(r(τ), κ̂(τ), λ̂(τ))|τ=0 =

dm̂

dtm̂
μ̂2(τ))|τ=0.

(I.17.50)

(The last equation also holds for m̂+ 1.)

This generalizes formula (I.12.31) (here τ = r). (For a different proof see
also Remark I.18.5.)

If dm̂

dtm̂
μ̂2(τ)|τ=0/m̂! = μ̂m̂ �= 0, the sign of the nontrivial critical Floquet

exponent is given by

signμ̂2(τ) = signReDrΦ̂(r(τ), κ̂(τ), λ̂(τ)) �= 0

for τ ∈ (−δ̃, δ̃)\{0}.
(I.17.51)

As in Section I.16, we can give a criterion for when μ̂m̂ �= 0 for some m̂ ≥ 1.
The advantage of that criterion is that it is part of the construction of the
analytic curve {(x̂(τ), κ̂(τ), λ̂(τ))}. The proof is the same as in Section I.16,
(I.16.42)–(I.16.48), when we replace sΦ̃(s, λ) by rΦ̃re(r, λ). The peculiarity
here is that Φ̃re(r, λ) depends only on r2 (cf. (I.17.20)). Observe also that
rΦ̃re(r, λ) = ReΦ̂(r, κ̃(r, λ), λ) (cf. (I.17.29)). We give the result:

Theorem I.17.5 Let a solution curve {(x(r), κ(r), λ(r))} of G(x, κ, λ) = 0
(cf. (I.17.5)) be obtained by a simple zero λ̃0 �= 0 of a defining polynomial Pγ

for some slope −1/γ of the Newton polygon for Φ̃re(r, λ) (cf. Theorem I.17.3).

If γ = γ1/γ2 and τ = r2/γ2 , then {(x(r), κ(r), λ(r))} = {(x̂(τ), κ̂(τ), λ̂(τ))}
is an analytic solution curve through (0, κ0, 0) (in τ), and for the nontrivial

critical Floquet exponent μ̂2(τ) =
∑∞

j=1 μ̂jτ
j of DxG(x̂(τ), κ̂(τ), λ̂(τ)), we

obtain the following:

μ̂1 = · · · = μ̂m̂−1 = 0, for m̂ = γ1j	 + γ2k	 and where
γj	 + k	 = · · · = γj	+r + k	+r = σ (cf. (I.15.5)), and

μ̂m̂ = −2γλ̃0P
′
γ(λ̃0) �= 0.

(I.17.52)

In particular, μ̂2(τ) �= 0 for τ �= 0, so that (I.17.51) holds.

We apply Theorem I.17.5 to the special cases (I.17.26), (I.17.27), studied
before.
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Case 1
Let m = 1 and k1 = 1. Then (according to (I.17.20)) γ = 1, j0 = m =

1, k0 = 0, so that m̂ = 1. Furthermore, τ = r2, and from (I.17.52) we obtain,
by P1(λ̃) = c10λ̃+ReH100 = −Reμ1λ̃+ReH001,

μ2(r) = 2ReH001r
2 +O(r4).(I.17.53)

In view of (I.17.26)1 this gives, with (I.17.2),

d2μ2

dr2
(0) = 2Re

dμ

dλ
(0)

d2λ

dr2
(0),(I.17.54)

which recovers formula (I.12.34).
For k1 ≥ 1 we have γ = k1 and m̂ = k1. Again τ = r2, and formulas

(I.17.52) and (I.17.27) give in this case

μ2(r) = 2k1ReH00k1r
2k1 + O(r2k1+2),

d2k1μ2

dr2k1
(0) = 2k1Re

dμ

dλ
(0)

d2k1λ

dr2k1
(0).

(I.17.55)

Formula (I.17.55)2 links the nontrivial Floquet exponent μ2(r) along the bi-
furcating pitchfork (x(r), κ(r), λ(r)) to λ(r) via the nondegeneracy Reμ′(0) �=
0 (cf. (I.8.7)).

Finally, we have the analogue to Theorem I.16.8: There is a general Prin-
ciple of Exchange of Stability for degenerate Hopf bifurcation formulated
in the next theorem.

Theorem I.17.6 Consider all local periodic solution curves of (I.17.1) through
(x, λ) = (0, 0) except a vertical curve {(x(r), 0)} but including the trivial line
{(0, λ)}. The nontrivial curves are given by Theorem I.17.3, and for fixed
λ �= 0, these are ordered in the (r, λ)-plane for positive r. Then consecutive
curves have opposite stability properties in a possibly weakened sense (if the
Floquet exponent μ2(r) vanishes along that curve).

Thus the total diagram shows also the stability properties of the curves if
the stability of the trivial solution line is known. On the other hand, Theorem
I.17.5 gives the stability of a curve by its construction.

We give an example:

ẍ− λ7ẋ+ x = −λ3ẋ3 + λẋ5 − ẋ9,(I.17.56)

which is a “nonlinear oscillation” for the scalar function x = x(t). Trans-
formed to a first-order system in R2, it takes the form (I.17.1). Here κ0 = 1
and

A(λ) =

(
0 1

−1 λ7

)
, so that Reμ(λ) =

1

2
λ7.(I.17.57)
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Thus, in view of Theorem I.17.2, the Reduced Bifurcation Function satisfies
Φ̃re(0, λ) = − 1

2λ
7+ h.o.t.. As in (I.16.55), the lowest-order coefficients cjk of

Φ̃re(r, λ) for k ≥ 1 are of the form

ReHj0k = −(
2k+1

k

)
Re

〈
F

(2k+1)
j,2k+1 [ϕ0, . . . , ϕ0︸ ︷︷ ︸

k+1

, ϕ0, . . . , ϕ0︸ ︷︷ ︸
k

], ϕ′
0

〉

if F	m = 0 for 0 ≤ � ≤ j, 1 ≤ m ≤ 2k + 1, (�,m) �= (j, 2k + 1).

(I.17.58)

Here ϕ0 = 1√
2

(
i
1

)
, ϕ′

0 = 1√
2

(−i
1

)
, and 〈 , 〉 denotes the real bilinear scalar

product on R2 extended to C2.
For our example, the Newton polygon for Φ̃re(r, λ) consists of the points

(0, 7), (1, 3), (2, 1), (4, 0) with coefficients − 1
2 ,

3
4 , − 5

4 ,
63
16 . The values of the

three slopes are γ = 1
4 , γ = 1

2 , and γ = 2. The defining polynomials have
simple nonzero roots, so that Theorem I.17.5 is applicable. The bifurcation
diagram is sketched in Figure I.17.1.

r

λ

stable
unstable

Figure I.17.1

Remark I.17.7 For the planar system (I.17.56) the alternating stability of
consecutive periodic solutions (which are closed curves containing the origin
and each of which is contained in the next one) is not surprising: a simple
geometric intuition “proves” the Principle of Exchange of Stability, since
there is “apparently” only one possibility for how the trajectories spiral in
the rings between the closed orbits. For higher-dimensional systems (I.17.1),
however, there is obviously not such a geometric intuition for such a principle,
and our assumption of nonresonance (cf. (I.8.14)) does not exclude that the
(parameterized) center manifold for (I.17.1) is of high dimension (provided
that it exists).

Remark I.17.8 A degenerate bifurcation as discussed in the last two sec-
tions is not “generic.” A small perturbation of the linearization A(λ) reduces
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the problem to a generic bifurcation where the critical eigenvalue crosses the
imaginary axis transversally (“with nonvanishing speed”). For the concrete
example (I.17.56), a perturbed bifurcation diagram of Figure I.17.1 is sketched
in Figure I.17.2.

λ

r

Figure I.17.2

We observe a generic Hopf bifurcation (cf. Remark I.14.5) with “imper-
fections” that contain stable branches of periodic solutions, too. It seems to
be natural to consider a solution set as sketched in Figure I.17.2 as a pertur-
bation of a degenerate bifurcation; cf. also Remark III.2.2.

I.18 The Principle of Reduced Stability for Stationary
and Periodic Solutions

As in Section I.7 we consider formally

dx

dt
= F (x, λ),(I.18.1)

where F : U × V → Z with open sets U ⊂ X, V ⊂ R, and we assume that
the Banach space X is continuously embedded in the Banach space Z. Let
F (x0, λ0) = 0; i.e., x0 ∈ X is an equilibrium of (I.18.1) for the parameter
λ0 ∈ R. We normalize w.l.o.g. (x0, λ0) to (0, 0). According to the Principle of
Linearized Stability (cf. (I.7.2)), the stability of this equilibrium is determined
by the spectrum of DxF (0, 0).

In this section we assume a degeneration or bifurcation at (0, 0) in the
sense of Sections I.2, I.4, I.5, and I.8: There is an eigenvalue of DxF (0, 0)
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on the imaginary axis that might cause a loss of stability. (If there is no
eigenvalue ofDxF (0, 0) on the imaginary axis, the Implicit Function Theorem
provides a unique continuation of the solution F (0, 0) = 0 preserving its
stability.) Here we do not prove the existence of new stationary or periodic
solutions of (I.18.1), but we are only interested in their stability, provided
they exist near (0, 0). In the first part of this section an eigenvalue 0 might
generate stationary solutions, whereas in the second part a pair of complex
conjugate purely imaginary eigenvalues might create periodic solutions of
(I.18.1) near (0, 0).

We generalize the assumption of a one-dimensional kernel of DxF (0, 0) to
the following:

0 is a semisimple eigenvalue of DxF (0, 0)
of multiplicity n ≥ 1; i.e., dimN(DxF (0, 0)) = n
and N(DxF (0, 0)) ∩R(DxF (0, 0)) = {0}.

(I.18.2)

Assuming that F (·, 0) is a Fredholm operator of index zero (cf. Definition
I.2.1), this implies the decompositions

X = N(DxF (0, 0))⊕ (R(DxF (0, 0)) ∩X),
Z = R(DxF (0, 0))⊕ (N(DxF (0, 0)) (cf. (I.2.2)),

(I.18.3)

which, in turn, define projections

P : X → N, P = Q|X , where
Q : Z → N along R.

(I.18.4)

(Here N = N(DxF (0, 0)), R = R(DxF (0, 0)); cf. (I.2.3).)
The reduction method of Lyapunov–Schmidt described in Theorem I.2.3

yields that

all solutions of F (x, λ) = 0 near (0, 0) ∈ X × R are obtained
by solving Φ(v, λ) = 0 near (0, 0) ∈ N × R.
The bifurcation function Φ is derived from F
as in (I.2.9) and v = Px.

(I.18.5)

The Principle of Reduced Stability for Stationary Solutions is
now formulated as follows: Are the stability of x as an equilibrium of (I.18.1)
and the stability of v = Px as an equilibrium of the reduced system

dv

dt
= Φ(v, λ)(I.18.6)

for (x, λ) near (0, 0) the same?

We give an answer to this question by the Principle of Linearized Sta-
bility, cf. (I.7.2), provided that the solutions (x, λ) form a smooth curve
{(x(s), λ(s))|s ∈ (−δ, δ)} through (0, 0). For the regularity of F near (0, 0) we
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assume analyticity as described in (I.16.2). We also assume that the solution
curve

F (x(s), λ(s)) = 0 through (x(0), λ(0)) = (0, 0)(I.18.7)

depends analytically on s ∈ (−δ, δ).
Thus the problem amounts to the study of the eigenvalues of the analytic

families of operators

T (s) ≡ DxF (x(s), λ(s)) and
R(s) ≡ DvΦ(v(s), λ(s)).

(I.18.8)

To be more precise, as in Section I.7, we confine ourselves to the eigen-
value perturbation of the critical eigenvalue μ = 0 of T (0) = DxF (0, 0) and
of DvΦ(0, 0) = 0 (cf. (I.2.10)2), assuming that the rest of the spectrum of
DxF (0, 0) is in the left complex half-plane. In contrast to the investigations of
Sections I.7 and I.16, the multiplicity n of the eigenvalue μ = 0 (cf. (I.18.2))
makes the eigenvalue perturbations more involved. However, the assumed
analyticity of T (s) ∈ L(X,Z) and of R(s) ∈ L(N,N) allows us to make
use of Newton polygons in studying the characteristic equations for the per-
turbed eigenvalues. In order to simplify the comparison of the characteristic
equations we introduce the following notation:

T11(s) ≡ QT (s)|N ∈ L(N,N),
T12(s) ≡ QT (s)|R∩X ∈ L(R ∩X,N),
T21(s) ≡ (I −Q)T (s)|N ∈ L(N,R),
T22(s) ≡ (I −Q)T (s)|R∩X ∈ L(R ∩X,R).

(I.18.9)

Then, in view of (I.18.3), T (s) ∈ L(X,Z) is given by the matrix operator

T (s) =

(
T11(s) T12(s)
T21(s) T22(s)

)
,

where the entries have the properties
T11(0) = 0, T12(0) = 0, T21(0) = 0, and
T22(0) is an isomorphism.

(I.18.10)

That last property holds also for T22(s) when s is near zero.
The eigenvalue problem for T (s) leads to the study of

T (s)− μI =

(
T11(s)− μI1 T12(s)

T21(s) T22(s)− μI2

)
, μ ∈ C,

where I denotes the embedding X ⊂ Z,
I1 is the identity in N , and I2 = I|R∩X .

(I.18.11)

Multiplying (I.18.11) on the left by the isomorphism (for small |s| and |μ|)
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I1 −T12(s)(T22(s)− μI2)

−1

0 Ĩ2

)
∈ L(Z,Z),(I.18.12)

where Ĩ2 is the identity in R, we obtain the operator(
T11(s)− μI1 − T12(s)(T22(s)− μI2)

−1T21(s) 0
T21(s) T22(s)− μI2

)
,(I.18.13)

which is in L(X,Z). Thus the critical eigenvalues μ of T (s) near 0 satisfy the
equation

det(T11(s)− μI1 − T12(s)(T22(s)− μI2)
−1T21(s)) = 0.(I.18.14)

Observe that the operator in (I.18.14) is in L(N,N), and dimN = n. Finally,
since

(T22(s)− μI2)
−1 =

∑∞
ν=0μ

νT22(s)
−ν−1,(I.18.15)

equation (I.18.14) is transformed into

h(s, μ) ≡ det(T11(s)− μI1 − T12(s)
∑∞

ν=0 μ
νT22(s)

−ν−1T21(s))

= det(T11(s)− μI1 −
∑∞

ν=0 μ
νBν(s)) = 0,

where Bν(s) = T12(s)T22(s)
−ν−1T21(s) = O(s2).

(I.18.16)

The function h is analytic for (s, μ) near (0, 0) in the sense of (I.15.2), with
the difference, however, that s is real and μ is complex. The Newton polygon
method expounded in Section I.15 for the real case gives also all solution
curves of h(s, μ) = 0 emanating at (0, 0) if μ is complex: Simply take all
nonzero complex roots μ̃0 of the defining polynomials (I.15.8) and proceed in
the same way as in the real case.

We call h(s, μ) = 0 the characteristic equation for the eigenvalue pertur-
bation of the critical eigenvalue μ = 0 of T (0) = DxF (0, 0).

Next, we derive the characteristic equation for the eigenvalues of R(s).
From (I.2.9) we obtain

DvΦ(v, λ) = QDxF (v + ψ(v, λ), λ)(I1 +Dvψ(v, λ)),(I.18.17)

and since (I−Q)F (v+ψ(v, λ), λ) ≡ 0 (cf. (I.2.8)), differentiation with respect
to v yields

(I −Q)DxF (v + ψ(v, λ), λ)(I1 +Dvψ(v, λ)) ≡ 0.(I.18.18)

For the assumed solution curve {(x(s), λ(s))} we have v(s) = Px(s) and
v(s) + ψ(v(s), λ(s)) = x(s), so that (I.18.18) implies, in view of definitions
(I.18.9),
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Dvψ(v(s), λ(s)) = −T22(s)
−1T21(s) , whence from (I.18.17),

R(s) = T11(s)− T12(s)T22(s)
−1T21(s).

(I.18.19)

The characteristic equation for the eigenvalues of R(s) is therefore given by

g(s, μ) ≡ det(T11(s)− μI1 −B0(s)) = 0.(I.18.20)

We have to compare the solutions of the equations h(s, μ) = 0 and g(s, μ) = 0
emanating at (0, 0). We give our main result:

Theorem I.18.1 Let R(s) = sk0Rk0 +O(sk0+1) for some k0 ≥ 1. If 0 is an
eigenvalue of Rk0 ∈ L(N,N) of at most algebraic multiplicity one, then the
series expansions of all critical eigenvalues of T (s) = DxF (x(s), λ(s)) and of
all eigenvalues of R(s) = DvΦ(v(s), λ(s)) have the same first nonvanishing
terms. For all but possibly one, these first terms are given by

μρs
k0 , ρ = 1, . . . , r, r ≤ n,(I.18.21)

where μρ ∈ C are the nonvanishing eigenvalues of Rk0 . If detR(s) ≡ 0, then
μ ≡ 0 is an eigenvalue for R(s) and T (s). If detR(s) = r	s

	 + O(s	+1), � ≥
nk0, the last eigenvalue has the first term

μ0s
	−(n−1)k0 , where μ0 = r	μ

−m1
1 · · ·μ−mr

r .(I.18.22)

Here mρ denotes the algebraic multiplicity of μρ, ρ = 1, . . . , r ≤ n− 1.

Thus, if Reμρ �= 0 for ρ = 0, . . . , r, where μ1, . . . , μr are the nonvanishing
eigenvalues of Rk0 and where μ0 is given by (I.18.22), then the Principle of
Reduced Stability for stationary solutions is true.

Proof. We consider the case in which μ = 0 is an eigenvalue of Rk0 . The
modification in the other case is obvious. The Newton polygon for

det(sk0Rk0 − μI1) = −μ(μ1s
k0 − μ)m1 · · · (μrs

k0 − μ)mr(I.18.23)

contains the line connecting (0, n) and ((n− 1)k0, 1), since the coefficients at
these endpoints do not vanish: They are

at (0, n), (−1)n;
at ((n− 1)k0, 1), −μm1

1 · · ·μmr
r with m1 + · · ·+mr = n− 1.

(I.18.24)

For the polygon of g(s, μ) = det(R(s) − μI1) we have to distinguish the
two cases detR(s) ≡ 0 and detR(s) = r	s

	 + O(s	+1). In the first case,
μ = 0 is an eigenvalue for R(s), too, and the Newton polygons for g(s, μ) and
det(sk0Rk0 −μI1) are identical. In the second case, there is an additional line
connecting ((n − 1)k0, 1) and (�, 0) on the s-axis. Observe that � > nk0, so
that the polygon connecting (0, n), ((n − 1)k0, 1), and (�, 0) is convex. The
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only slopes are −1/k0 and possibly −1/(� − (n − 1)k0), and for the slope
−1/k0 the defining polynomial is

Pk0(μ̃) = −μ̃(μ1 − μ̃)m1 · · · (μr − μ̃)mr (cf. (I.15.8).(I.18.25)

According to Remark I.15.1, only the nonzero roots of Pk0(μ̃) are of interest,
and they give the nonzero eigenvalues of R(s) in lowest order by μρs

k0 , ρ =
1, . . . , r; cf. (I.15.17). Thus in the first case, the eigenvalues of R(s) are

μ ≡ 0 and μρs
k0 + h.o.t., ρ = 1, . . . , r.(I.18.26)

(Since the roots μρ of Pk0(μ̃) have multiplicity mρ, they give mρ complex
solution curves {(s, μ(s))} of g(s, μ) = 0. This follows from the procedure
described in Section I.15. Recall that all complex roots of defining polynomials
are of interest now. The mρ (complex) eigenvalues of R(s) with the same
lowest-order terms μρs

k0 are not necessarily identical.)
In the second case, the additional slope −1/(� − (n − 1)k0) gives the

defining polynomial

P	−(n−1)k0
(μ̃) = −μm1

1 · · ·μmr
r μ̃+ r	,(I.18.27)

since the coefficient at (�, 0) is r	. This proves that in this case, the eigenvalues
of R(s) are

μ0s
	−(n−1)k0 + h.o.t., μρs

k0 + h.o.t., ρ = 1, . . . , r,(I.18.28)

where μ0 is given by (I.18.22).
In order to determine the solutions of h(s, μ) = 0, we write it as

h(s, μ) = det(R(s)−μI1−
∑∞

ν=1 μ
νBν(s)), and we recall that Bν(s) = O(s2);

cf. (I.18.16). The additional term
∑∞

ν=1 μ
νBν(s) cannot influence the New-

ton polygon for det(R(s) − μI1): It leads only to terms of order O(skμj)
with k0j + k ≥ nk0 + 2 and j ≥ 1. The corresponding points (k, j) are all
above or to the right of the line connecting (0, n) and ((n − 1)k0, 1). Since
h(s, 0) = g(s, 0) = detR(s), the operators R(s) and T (s) both have the eigen-
value μ ≡ 0 if and only if detR(s) ≡ 0. If detR(s) = r	s

	 + O(s	) for some
� > nk0, then the Newton polygons for h(s, μ) and g(s, μ) end at (�, 0) on
the s-axis. 
�
Remark I.18.2 For n = 1 the eigenvalue 0 of DxF (0, 0) is algebraically sim-
ple, and Theorem I.18.1 gives the lowest term of the critical eigenvalue pertur-
bation μ(s) of DxF (x(s), λ(s)) by the eigenvalue of R(s) = DvΦ(v(s), λ(s)) ∈
L(N,N). Using N(DxF (0, 0)) = span[v̂0] and the projection Q as given by
(I.16.6), we see that the eigenvalue of R(s) is 〈DvΦ(v(s), λ(s))v̂0 , v̂

′
0〉 ∈ R. If

Px(s) = v(s) = sv̂0, then in the terminology of Section I.16, we can rewrite
〈DvΦ(v(s), λ(s))v̂0, v̂

′
0〉 = DsΦ(s, λ(s)). (Here we identify Φ(·, λ) : N → N

with its representation via the basis vector v̂0 : Φ(s, λ) = 〈Φ(sv̂0, λ), v̂′0〉.)
Let {(x(s), λ(s))} be a solution curve of F (x, λ) = 0 through (0, 0). If
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Px(s) = sv̂0, then Theorem I.16.4 tells that in general, λ(s) does not depend
analytically on s but on t = s1/pγ2 (for s ≥ 0; for s ≤ 0 see the modification
in (I.16.27)).

According to Section I.16, we write the solution curve as {(x̂(t), λ̂(t))},
and P x̂(t) = tpγ2 v̂0 = ŝ(t)v̂0 = sv̂0. By Theorem I.16.6, the first two nonva-
nishing coefficients of the analytic simple eigenvalue perturbation μ̂(t) of the

eigenvalue 0 of DxF (x̂(t), λ̂(t)) and of DsΦ(ŝ(t), λ̂(t)) are the same or both
vanish identically.
In view of h(s, μ) = g(s, μ)−b(s, μ), where b(s, μ) =

∑∞
ν=1 μ

ν〈Bν(s)v̂0, v̂
′
0〉 =

O(s2μ), we obtain h(t, μ) = DsΦ(ŝ(t), λ̂(t)) − μ(1 + b̂(t, μ)), where b̂(t, μ) =

O(t2) in any case. Thus μ̂(t) solving h(t, μ̂(t)) = 0 and DsΦ(ŝ(t), λ̂(t)) have
indeed the same first two nonvanishing terms. Therefore, Theorem I.18.1 pro-
vides a new proof of Theorem I.16.6.

Next, we consider n = 2 and the case that μ ≡ 0 is an eigenvalue for
both R(s) and T (s); i.e., detR(s) ≡ 0. Then the remaining (real) eigenvalue
of R(s) is trR(s), and the real perturbed eigenvalue μ(s) of DxF (x(s), λ(s))
near 0 is given by μ(s) = trR(s) +O(sk0+2). This means that they have the
same first two nonvanishing terms or both vanish identically. We shall make
use of this observation below in studying the Principle of Reduced Stability
for periodic solutions.

The following counterexample shows that Theorem I.18.1 cannot be
improved by allowing zero to be an eigenvalue of Rk0 of algebraic multiplicity
two. Let

F : R4 × R → R4 be given by

F (x, λ) =

⎛
⎜⎜⎝

λ3 −λ 0 0
1
5λ

5 1
5λ

5 0 0
λ 0 2 1

5
0 0 −1 0

⎞
⎟⎟⎠x−

⎛
⎜⎜⎝

x4
1 − x2

2
1
5x

6
1 +

1
5x

6
2 + x1x3

x2
1

0

⎞
⎟⎟⎠ .

(I.18.29)

Here assumption (I.18.2) is satisfied for n = 2. We consider the solution curve
{(x(s), λ(s))} = {((s, s, 0, 0), s)}. Then

T (s) = DxF (x(s), λ(s)) =

⎛
⎜⎜⎝

−3s3 s 0 0
−s5 −s5 −s 0
−s 0 2 1

5
0 0 −1 0

⎞
⎟⎟⎠ ,

and the four matrices Tij(s) of (I.18.10)
are precisely the four 2× 2 blocks of T (s).

Moreover , T22(s)
−1 =

(
0 −1
5 10

)
.

(I.18.30)

Therefore, B0(s) ≡ 0, and in view of (I.18.16) and (I.18.20),
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g(s, μ) = det

(−3s3 − μ s
−s5 −s5 − μ

)
,

h(s, μ) = det

((−3s3 − μ s
−s5 −s5 − μ

)
− μ

(
0 0

−5s2 0

)
+O(s2μ2)

)
.

(I.18.31)
The zeros of g(s, μ) = 0 are μ(s) =

(− 3
2 ± 1

2

√
5
)
s3+ h.o.t., whereas the zeros

of h(s, μ) = 0 are μ̃(s) = s3 + h.o.t. The difference in the lowest-order terms
is due to the degeneration of R1; namely, by (I.18.19) and B0(s) ≡ 0 we have

R(s) =

(
0 1
0 0

)
s+O(s3), and zero is an eigenvalue

of R1 of algebraic multiplicity two.
(I.18.32)

In the next section we show that the operator Rk0 is known when the
solution curve {(v(s), λ(s))} of Φ(v, λ) = 0 is constructed by the Implicit
Function Theorem.

I.18.1 The Principle of Reduced Stability for Periodic
Solutions

Next we consider again (I.18.1) with F (0, 0) = 0, and we assume that the
stability of a curve of equilibria through (0, 0) (whose existence we do not
prove) is possibly lost by the assumption that

±iκ0(�= 0) are semisimple eigenvalues of DxF (0, 0)
of multiplicity n ≥ 1; i.e., dimN(±iκ0I −DxF (0, 0)) = n
and N(±iκ0I −DxF (0, 0)) ∩R(±iκ0I −DxF (0, 0)) = {0}.
Furthermore,
±iκ0I −DxF (0, 0) are Fredholm operators of index zero.

(I.18.33)

As shown in Section I.8, assumption (I.18.33) for n = 1 can give rise to
periodic solutions of (I.18.1) with periods near 2π/κ0. As before in the sta-
tionary case, we do not prove the existence of such periodic solutions, but
we are merely interested in their stability. We assume in addition to (I.18.33)
that

A0 = DxF (0, 0) ∈ L(X,Z) generates an analytic (holomorphic)
semigroup eA0t, t ≥ 0, on Z that is compact for t > 0.

(I.18.34)

Clearly, a necessary condition for (I.18.34) is that X be densely embedded
into Z. We introduce again the spaces

E = Cα
2π(R, X), W = Cα

2π(R, Z), Y = C1+α
2π (R, Z),(I.18.35)
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with norms as in (I.8.11). The obvious generalization of the proof of Propo-
sition I.8.1 gives the following result:

If for all m ∈ Z\{1,−1}, imκ0 is not an eigenvalue
of A0 = DxF (0, 0), then the linear operator

J0 ≡ κ0
d

dt
−A0 : E ∩ Y → W is continuous and is a

Fredholm operator of index zero, with dimN(J0) = 2n.
Furthermore, W = N(J0)⊕R(J0).

(I.18.36)

This defines the projection Q : W → N (N = N(J0)) along R (R =
R(J0)) and also P = Q|E∩Y : E∩Y → N along R∩ (E∩Y ). We remark that
all real spaces have to be complexified in order to make a complex spectral
analysis possible and that the dimension of N(J0) is 2n as a complex space;
i.e., N(J0) ∼= C2n.

As in Section I.8, property (I.18.36) allows us to apply the method of
Lyapunov–Schmidt in order to obtain all periodic solutions of (I.18.1) of
small amplitude for λ near 0 and with period near 2π/κ0. Using the simple
substitution x̃(t) = x(κt) this is reduced to solving

G(x, κ, λ) ≡ κ
dx

dt
− F (x, λ) = 0, where

G : Ũ × Ṽ → W and

0 ∈ Ũ ⊂ E ∩ Y, (κ0, 0) ∈ Ṽ ⊂ R2;

(I.18.37)

cf. (I.18.9)–(I.18.13). The method of Lyapunov–Schmidt described in Theo-
rem I.2.3 yields that

all solutions of G(x, κ, λ) = 0 near (0, κ0, 0) in (E ∩ Y )× R2

are obtained by solving Φ(v, κ, λ) = 0 near (0, κ0, 0)
in N × R2. The function Φ is derived
from G as in (I.2.9) and v = Px.

(I.18.38)

The Principle of Reduced Stability for Periodic Solutions is now
the analogue of the principle for stationary solutions, namely, the determi-
nation of the stability of x by the stability of v as a solution of the reduced
system. To that end we make use of the Principle of Linearized Stability of
periodic solutions as explained in Section I.12, in particular, in (I.12.2).

As before, we assume the existence of an analytic curve {(x(r), κ(r), λ(r))|
r ∈ (−δ, δ)} ⊂ (E ∩ Y ) × R2 of solutions of G(x(r), κ(r), λ(r)) = 0 through
(0, κ0, 0). Then the stability of x(r) is determined by the Floquet exponents
that are the eigenvalues of

T (r) ≡ DxG(x(r), κ(r), λ(r)), where
T (0) = DxG(0, κ0, 0) = J0.

(I.18.39)
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As before, we confine ourselves to the eigenvalue perturbations of the critical
eigenvalue μ = 0 of T (0) = J0, assuming that the rest of the Floquet expo-
nents are in the stable right complex half-plane. We relate these eigenvalue
perturbations of T (r) to the eigenvalues of

R(r) ≡ DvΦ(v(r), κ(r), λ(r)) ∈ L(N,N),
where Px(r) = v(r).

(I.18.40)

Before we apply Theorem I.18.1 to this particular situation, we make the fol-
lowing observations: Due to the free phase of any solution of the autonomous
differential equation (I.18.1), the mapping G is S1-equivariant (cf. (I.8.31)).
This means that

G(Sθx, κ, λ) = SθG(x, κ, λ) for
(Sθx)(t) = x(t+ θ), θ ∈ R(mod 2π).

(I.18.41)

Choosing a basis {ϕ1, . . . , ϕn} in N(iκ0I − A0), we see that the complex
conjugates {ϕ1, . . . , ϕn} form a basis in N(−iκ0I − A0) (recall that A0 is a
real operator).

Then as shown in the proof of (I.18.36), the functions {ϕ1e
it, . . . , ϕne

it,
ϕ1e

−it, . . . , ϕne
−it} are a basis inN(J0). Next we identify Φ(·, κ, λ) : N(J0) →

N(J0) with its representation by that basis; i.e., we identify Φ(·, κ, λ) :
N(J0) → N(J0) with a mapping in C2n. (As shown in (I.8.33)–(I.8.34), a
real function x has a real projection Px = v, and for any real function
v the mapping Φ(·, κ, λ) decomposes into n complex components Φ̂(·, κ, λ)
together with their complex conjugates; cf. (I.8.35). Thus for real v, the
equation Φ(v, κ, λ) = 0 is equivalent to the n-dimensional complex system
Φ̂(v, κ, λ) = 0, which, in turn, is usually transformed into a 2n-dimensional
real system by decomposition into real and imaginary parts.)

The equivariance (I.18.41) of the mapping G is inherited by the reduced
function Φ as follows:

Φ(Mθv, κ, λ) = MθΦ(v, κ, λ), where
Mθ = diag(eiθ, . . . , eiθ, e−iθ, . . . , e−iθ) ∈ L(C2n,C2n).

(I.18.42)

Differentiation of (I.18.42) with respect to v gives

DvΦ(Mθv, κ, λ)Mθ = MθDvΦ(v, κ, λ),(I.18.43)

and for some solution of Φ(v, κ, λ) = 0, differentiation of (I.18.42) with respect
to θ at θ = 0 yields

DvΦ(v, κ, λ)Dv = DΦ(v, κ, λ) = 0, where

D =
d

dθ
Mθ|θ=0 = i(E,−E) ∈ L(C2n,C2n).

(I.18.44)
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The conclusion of (I.18.44) is that DvΦ(v, κ, λ) has an eigenvalue 0 for every
nontrivial solution v �= 0 of Φ(v, κ, λ) = 0. In view of the basis in N(J0) we
have the eigenfunction Dv = dv

dt .
The preceding analysis, in particular the proof of Theorem I.18.1, shows

that 0 is also an eigenvalue of DxG(x, κ, λ) if G(x, κ, λ) = 0. The argument
does not need any analytic dependence on some parameter r, and we repeat
it for convenience.

We set T = DxG(x, κ, λ), and we decompose it as in (I.18.9), (I.18.10),
using the projections defined by W = N(J0) ⊕ R(J0). Then, as in (I.18.19),
DvΦ(v, κ, λ) = T11 −T12T

−1
22 T21, and following (I.18.11)–(I.18.13), we obtain(

I1 −T12T
−1
22

0 Ĩ2

)
T =

(
T11 − T12T

−1
22 T21 0

T21 T22

)
.(I.18.45)

This proves that 0 is an eigenvalue of T with eigenfunction ψ = Dv −
T−1
22 T21Dv ∈ E ∩ Y . (Here we identify N × R with N ⊕ R = W and

N × (R ∩ (E ∩ Y )) with N ⊕R ∩ (E ∩ Y ) = E ∩ Y .)
Obviously, the eigenvalue 0 is the trivial Floquet exponent of DxG(x, κ, λ)

= κ d
dt −DxF (x, λ) if G(x, κ, λ) = κdx

dt −F (x, λ) = 0. However, it is not clear

that the eigenfunction ψ = (I1 − T−1
22 T21)

dv
dt is equal to dx

dt , which follows
from the formal proof for the trivial Floquet exponent. What is needed in
Sections I.12 and I.17 is Pψ = dv

dt if Px = v. For (I −P )ψ = −T−1
22 T21

dv
dt , we

have the following estimate:

‖(I − P )ψ‖E∩Y ≤ ‖T−1
22 ‖‖T21‖‖v‖, where

‖T−1
22 ‖ = ‖((I −Q)DxG(x, κ, λ))−1‖L(R,R∩(E∩Y )) ≤ C,

‖T21‖ = ‖(I −Q)DxG(x, κ, λ)‖L(N,R) → 0
as ‖v‖ → 0 and (κ, λ) → (κ0, 0)
(recall that DxG(0, κ0, 0) = J0).

(I.18.46)

Since N = N(J0) is finite-dimensional, all norms on N are equivalent. In
view of its construction by the method of Lyapunov–Schmidt, cf. (I.18.38),
‖v‖ → 0 is equivalent to ‖x‖E∩Y → 0. We summarize:

Proposition I.18.3 Assume for the mapping F in (I.18.1) that F (0, 0) = 0,
that it has the regularity (I.8.13), and that it satisfies (I.18.33) and (I.18.34).
Let x ∈ E ∩ Y be a 2π-periodic solution of κdx

dt −F (x, λ) = 0 obtained by the
method of Lyapunov–Schmidt; cf. (I.18.38). Then x has the trivial Floquet
exponent μ = 0 with an eigenfunction ψ in E ∩ Y such that Pψ = d

dtPx
and (I − P )ψ = o(‖Px‖) in E ∩ Y as (x, κ, λ) → (0, κ0, 0) in (E ∩ Y )× R2.
Finally, by its construction, ψ depends continuously (smoothly) on (x, κ, λ)
in the topology of E∩Y if DxG depends continuously (smoothly) on (x, κ, λ).

In the special case of Section I.12, when G(x(r), κ(r), λ(r)) = 0 is a
bifurcation curve through (0, κ0, λ0) given by the Hopf Bifurcation Theo-
rem, Theorem I.8.2, we have Dv = dv

dt = ir(ψ0 − ψ0) = rv̂1 (see (I.12.9)),
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and an eigenfunction ψ = r(v̂1 − T−1
22 T21v̂1), so that (I.12.7) is true with

ψ1(r) = v̂1 + w1(r), where w1(r) = −T−1
22 T21v̂1. The operators Tjk = Tjk(r)

are defined as in (I.18.9) for T (r) = DxG(x(r), κ(r), λ(r)); cf. (I.18.39). If
T (r) is twice continuously differentiable with respect to r ∈ (−δ, δ), then
w1(r) is twice continuously differentiable, too.

Now we come back to the general case of an analytic solution curve
{(x(r), κ(r), λ(r))} through (0, κ0, 0) defining the analytic families of opera-
tors T (r) (I.18.39) and R(r) (I.18.40), provided that F is analytic near (0, 0)
in the sense of (I.16.2). By (I.18.44) and Proposition I.18.3, μ ≡ 0 is an eigen-
value for R(r) and T (r) for all r ∈ (−δ, δ). This means that detR(r) ≡ 0 and
that Rk0 has an eigenvalue 0 if R(r) = rk0Rk0 + O(rk0+1). Application of
Theorem I.18.1 gives the following result:

Theorem I.18.4 Let R(r) = rk0Rk0 +O(rk0+1) for some k0 ≥ 1. If 0 is an
algebraically simple eigenvalue of Rk0 , then the series expanding the critical
nontrivial Floquet exponents of T (r) = DxG(x(r), κ(r), λ(r)) = κ(r) d

dt −
DxF (x(r), λ(r)) near 0 and of all nontrivial eigenvalues of R(r) have the
same first nonvanishing terms. They are given by

μρr
k0 , 2 ≤ ρ ≤ 2n,(I.18.47)

where μρ �= 0 are the nonvanishing eigenvalues of Rk0 .

Thus, if Reμρ �= 0 for all nonvanishing eigenvalues of Rk0 , then the Prin-
ciple of Reduced Stability for periodic solutions is true.

Remark I.18.5 If assumption (I.18.33) is satisfied with n = 1, then ac-
cording to (I.18.36), dimN(J0) = 2 (which means its dimension over the
complex field C). Since μ ≡ 0 is an eigenvalue both for R(r) and T (r),
the observation made in Remark I.18.2 is true here as well: The remain-
ing nontrivial eigenvalue μ2(r) of R(r) and of T (r) is given in lowest terms
by μ2(r) = rk0 trRk0 + rk0+1trRk0+1 + O(rk0+2). Here Φ(v, κ, λ) = 0 is the
2-dimensional reduced system QG(v + ψ(v, κ, λ), κ, λ) = 0; cf. (I.8.30). We
tacitly assume that x and v = Px are real functions, which means that the
two complex components of Φ are complex conjugates; cf. (I.8.34). Its first
component is denoted by Φ̂(c, κ, λ) if v = cϕ0e

it + c ϕ0e
−it; cf. (I.8.35). In

order to compute the four complex components of the matrix DvΦ, we have
to consider c and c as independent complex variables. By the computations in
Section I.17, in particular (I.17.7)–(I.17.18), we obtain as the first complex
component of Φ(v, κ, λ) for v = cϕ0e

it + c ϕ0e
−it,

Φ̂(c, c, κ, λ)

= i(κ− κ0)c+
∞∑

j,	,k=0

Hj	kλ
j(κ− κ0)

	ck+1ck; cf. (I.17.18).
(I.18.48)

If c = r ∈ R and if Φ̂(r, κ, λ) = rΦ̃(r, κ, λ) = 0, then
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DcΦ̂(r, κ, λ) = DcΦ̂(r, κ, λ)

=
∞∑

j,�=0
k=1

kHj	kλ
j(κ− κ0)

	r2k =
1

2
DrΦ̂(r, κ, λ).

(I.18.49)

Since the second complex component of Φ(v, κ, λ) is the complex conjugate of
the first component, we obtain

trDvΦ(v, κ, λ) = 2ReDcΦ̂(r, κ, λ)

= ReDrΦ̂(r, κ, λ)
if v = r(ϕ0e

it + ϕ0e
−it)

and if Φ̂(r, κ, λ) = 0.

(I.18.50)

Let {(x(r), κ(r), λ(r))} be a solution curve of G(x, κ, λ) = 0 through (0, κ0, 0).
If Px(r) = r(ϕ0e

it + ϕ0e
−it), then Theorem I.17.3 tells that in general,

κ(r) and λ(r) do not depend analytically on r but on t = r2/pγ2 . Ac-

cording to Section I.17 we write the solution curve as {(x̂(τ), κ̂(τ), λ̂(τ))}
and P x̂(τ) = τpγ2/2v̂0 = r(τ)v̂0 with v̂0 = ϕ0e

it + ϕ0e
−it. Thus the first

two nonvanishing coefficients of the nontrivial eigenvalue (= Floquet ex-

ponent) μ̂2(τ) of DxG(x̂(τ), κ̂(τ), λ(τ)) and of trDvΦ(P x̂(τ), κ̂(τ), λ̂(τ)) =

ReDrΦ̂(r(τ), κ̂(τ), λ̂(τ)) are the same or both vanish identically. This pro-
vides a new proof of Theorem I.17.4.

Remark I.18.6 The results of Proposition I.18.3 and Theorem I.18.4 are
extended to the more general case in which (I.18.33) is replaced by the fol-
lowing assumption:

±iκ0,±im2κ0, . . . ,±im	κ0 are semisimple eigenvalues of
DxF (0, 0) of multiplicities nj ≥ 1, j = 1, . . . , �, where
1 = m1 < m2 < · · · < m	 are integers and no other
eigenvalue of DxF (0, 0) has the form ±imκ0 with an integer m.

(I.18.51)

Then J0 = κ0
d
dt − A0, A0 = DxF (0, 0), is a Fredholm operator of index

zero, and dimN(J0) = 2n, where n = n1 + · · ·+ n	, which is the sum of the
multiplicities of imjκ0, j = 1, . . . , �. In particular,

N(J0) = N1 ⊕ · · · ⊕N	, where Nj =
span{ϕmj ,1e

imjt, . . . , ϕmj ,nje
imjt, ϕmj ,1e

−imjt, . . . , ϕmj ,nj
e−imjt},

(I.18.52)
and the equivariance of the reduced function Φ is now described by

Φ(Mθv, κ, λ) = MθΦ(v, κ, λ), with
Mθ = diag(Mm1θ, . . . ,Mm�θ), where
Mmjθ=diag(eimjθ, . . . , eimjθ, e−imjθ, . . . , e−imjθ) ∈ L(C2nj ,C2nj ).

(I.18.53)

The arguments for Proposition I.18.3 and Theorem I.18.4 hold clearly in this
more general situation as well. A way to construct curves of solutions of
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G(x, κ, λ) through (0, κ0, 0) by the method of Lyapunov–Schmidt is given in
[94], [102], for example.

I.19 Bifurcation with High-Dimensional Kernels,
Multiparameter Bifurcation, and Application of the
Principle of Reduced Stability

Analytical tools to solve high-dimensional bifurcation equations (obtained by
the method of Lyapunov–Schmidt) exist, but they are rarely applied, since the
verification of their assumptions is hard in high dimensions. For the existence
of bifurcating solutions, topological tools as expounded in the next chapter
are much more adequate.

High-dimensional kernels often occur if symmetries cause a degeneration.
In this case, a reduction of the problem to fixed-point spaces of symmetry
subgroups is appropriate, since it reduces the dimension of the kernel consi-
derably. The basic notions of these so-called equivariant problems are given
in the monographs [164], [58], [59], [18], and examples with symmetries can
be found in Chapter III.

Nonetheless, we present some analytical methods for treating high-dimen-
sional bifurcation equations since they are constructive compared to the topo-
logical methods. These equations are obtained by the method of Lyapunov–
Schmidt expounded in Section I.2. We confine ourselves to stationary solu-
tions of (I.18.1); the solution of high-dimensional bifurcation equations for
periodic solutions can be found in [94]. We consider F : U × V → Z, where
0 ∈ U ⊂ X and λ0 ∈ V ⊂ R and

F (0, λ) = 0 for all λ ∈ V,
dimN(DxF (0, λ0)) = codimR(DxF (0, λ0)) = n ≥ 1;
i.e., DxF (0, λ0) is a Fredholm operator of index zero.

(I.19.1)

The assumed regularity of F is

F ∈ Ck(U × V, Z), where k ≥ 1 is large enough.(I.19.2)

As a matter of fact, the method itself defines the value of k in (I.19.2). By
Theorem I.2.3, the problem

F (x, λ) = 0 near (0, λ0) ∈ X × R is reduced to
Φ(v, λ) = 0 near (0, λ0) ∈ N × R,

(I.19.3)

where as usual, N = N(DxF (0, λ0)). The function Φ maps a neighborhood
of (0, λ0) into Z0 ⊂ Z, which is a complement of R = R(DxF (0, λ0)) and
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dimN = dimZ0 = n. By (I.19.1)1 we have the trivial solution Φ(0, λ) = 0
for all λ near λ0.

Choosing a basis {v̂1, . . . , v̂n} in N , a basis {v̂∗1 , . . . , v̂∗n} in Z0, and vectors
{v̂′1, . . . , v̂′n} in Z ′ such that

〈v̂∗j , v̂′k〉 = δjk (Kronecker’s symbol),
〈z, v̂′k〉 = 0 for all z ∈ R, j, k = 1, . . . , n,

(I.19.4)

we see that the projection Q in (I.2.3) is given by Qz =
∑n

k=1〈z, v̂′k〉v̂∗k and
the Bifurcation Equation (I.2.9) is written in coordinates as

Φ(y, λ) = (Φ1(y, λ), . . . , Φn(y, λ)),

Φk(y, λ) ≡
〈
F (

∑n
j=1 yj v̂j + ψ(

∑n
j=1 yj v̂j , λ), λ), v̂

′
k

〉
= 0

for k = 1, . . . , n, y = (y1, . . . , yn),

(I.19.5)

where ψ is the function to solve (I−Q)F (v+ψ(v, λ), λ) ≡ 0; cf. (I.2.6)–(I.2.9).
We identify the function Φ in (I.19.3)2 with its representation in coordinates
(I.19.5), and we consider it as a mapping from a neighborhood of (0, λ0) in
Rn × R into Rn. We call Φ in (I.19.5) the “scalar bifurcation function.” In
order to simplify the notation, however, we stay with Φ(v, λ) rather than with
Φ(y, λ) for y = (y1, . . . , yn) ∈ Rn. Finally, we normalize λ0 to 0 and we write
the Bifurcation Equation in the following form:

Φ(v, λ) =
∑
k≥1
j≥0

λjΦjk(v) +R(v, λ) = 0, where

Φjk : Nk → Z0 are k-linear, symmetric, the sum is finite, and
R(v, λ) is a continuous remainder of higher order.

(I.19.6)

By Corollary I.2.4 we have DvΦ(0, 0) = Φ01 = 0.

The computation of the mappings Φjk in terms of the original function
F is complicated in general. We refer to Section I.16, where we do it for a
one-dimensional kernel N ; cf. (I.16.19). Fortunately we need to know only
special terms; see (I.19.9) and (I.19.26) below. As in Section I.15, we mark
points (j, k) in a lattice whenever Φjk(v) �≡ 0, with the difference, however,
that the powers j are on the abscissa and k is on the ordinate. The Newton
polygon method to solve Φ(v, λ) = 0 near (0, 0) nontrivially is more restricted
than in the case n = 1, since we cannot divide by v or vk0 if Φjk(v) ≡ 0
for all k < k0. On the other hand, we can divide by λj0 if Φjk(v) ≡ 0 for
all j < j0 and if the remainder R(v, λ) contains only terms of order |λ|j0 . If
j0 > 0, then we have solutions {(v, 0)}; i.e., vertical bifurcation occurs.

Next, we can assume that there is a first point (0, k0) on the ordinate such
that Φ0k0(v) �≡ 0.
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Case 1
Assume that the Bifurcation Equation is of the following form:

Φ(v, λ) = Φ0k0(v) + λΦ1k0 (v) +R(v, λ) = 0,(I.19.7)

where R(v, λ) contains only terms of order |λ|j‖v‖k with k0 < k for j = 0 or
1 and k0 ≤ k for j ≥ 2. A sufficient condition for (I.19.7) is

Dk
xD

j
λF (0, 0)(v) = 0 for all j ≥ 0, 1 ≤ k < k0, and v ∈ N,(I.19.8)

whence (with [DxF (0, 0)]−1 : (I −Q)Z → (I − P )X)

Φ0k0(v) =
1

k0!
QDk0

x F (0, 0)(v),

Φ1k0(v) =
1

k0!
QDk0

x DλF (0, 0)(v)

− 1

k0!
QD2

xλF (0, 0)[DxF (0, 0)]−1(I−Q)Dk0
x F (0, 0)(v).

(I.19.9)

Note that we have to insert only elements v ∈ N into (I.19.8) and (I.19.9).
In this case, we make the substitutions

‖v‖ = |s|, v = sṽ with ‖ṽ‖ = 1,(I.19.10)

yielding the equation

sk0(Φ0k0 (ṽ) + λΦ1k0 (ṽ) +R1(ṽ, λ, s)) = 0,(I.19.11)

with some remainder R1(ṽ, 0, 0) = 0.
Since we are interested only in nontrivial solutions, we divide by sk0 , and

we obtain the system

Φ̃(ṽ, λ, s) ≡
(
Φ0k0(ṽ) + λΦ1k0(ṽ) +R1(ṽ, λ, s)

‖ṽ‖2 − 1

)
=

(
0

0

)
= 0.(I.19.12)

Here we can take any norm ‖ ‖ in N , in particular, ‖v‖2 =
∑n

j=1 y
2
j ; cf.

(I.19.5).
Let Φ0k0 (ṽ0) = 0, where ‖ṽ0‖ = 1. (By the homogeneity of Φ0k0 , any

nontrivial zero can be normalized to ‖ṽ0‖ = 1.) Then Φ̃(ṽ0, 0, 0) = 0, and if

D(ṽ,λ)Φ̃(ṽ0, 0, 0) =

(
DṽΦ0k0 (ṽ0) Φ1k0(ṽ0)

2ṽ0 0

)

is regular in L(N × R, Z0 × R),

(I.19.13)

then the Implicit Function Theorem gives a solution curve Φ̃(ṽ(s), λ(s), s) = 0
through (ṽ0, 0, 0) for s near 0. (We note thatDṽΦ0k0(ṽ0) ∈ L(N,Z0), Φ1k0(ṽ0)
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∈ Z0, and the vector ṽ0 acts on h ∈ N via the scalar product
∑n

j=1 y
0
jhj if

v̂0 =
∑n

j=1 y
0
j v̂j and h =

∑n
j=1 hj v̂j ; cf. (I.19.5).)

This solution finally defines a nontrivial solution curve

{(sṽ(s), λ(s))} through (0, 0) of Φ(v, λ) = 0.(I.19.14)

We remark that due to the homogeneity of Φ0k0 , the derivative DṽΦ0k0 (ṽ0)
has at most rank n− 1, since 0 is necessarily an eigenvalue with eigenvector
ṽ0.

If F and Φ are analytic near (0, 0), then the solution curve (I.19.14) is
analytic, too, and the method of Lyapunov–Schmidt provides an analytic
(nontrivial) solution curve F (x(s), λ(s)) = 0 (cf. (I.19.3)). Thus it is natural
to ask whether the Principle of Reduced Stability is applicable. Accord-
ing to the hypotheses of Section I.18, we have to require that X ⊂ Z and
that 0 be a semisimple eigenvalue of DxF (0, 0) of multiplicity n (cf. (I.18.2);
this assumption is stronger than (I.19.1)). Since

DvΦ(v(s), λ(s)) = sk0−1DvΦ0k0(ṽ0) +O(sk0 ),(I.19.15)

the assumption of Theorem I.18.1 is that

Rk0−1 = DvΦ0k0(ṽ0) has an eigenvalue 0
of at most algebraic multiplicity one.

(I.19.16)

In view of the homogeneity of Φ0k0 , this means that 0 is an eigenvalue of
DvΦ0k0 (ṽ0) of algebraic multiplicity one with eigenvector ṽ0. In this case, the
Principle of Reduced Stability is valid for the solution curve (I.19.14).

Case 2
Next, we come back to the general situation that Φ0k0(v) �≡ 0 but that there
are points (j, k) in the Newton diagram for k < k0. As in (I.15.3) the Newton
polygon forms by definition the convex hull of all such points (but we do not
require that the polygon end on the abscissa; as a matter of fact, it can end at
most in some (j0, 1); cf. (I.19.6); horizontal lines do not belong to Newton’s
polygon by definition). The remainder contains only terms of higher order
than given by the points on the Newton polygon.

Let −1/γ ∈ Q be one of the slopes of the Newton polygon of Φ(v, λ).
Then, as in Section I.15, a substitution

v = λγ ṽ for λ ≥ 0(I.19.17)

leads to

Φ(v, λ) = λσ

( ∑
j+kγ=σ

Φjk(ṽ) +R1(ṽ, λ)

)
= 0(I.19.18)
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with some remainder R1(ṽ, 0) = 0. Let ṽ0 �= 0 be a root of the n-dimensional
polynomial

Pγ(ṽ) =
∑

j+kγ=σ Φjk(ṽ) such that

DṽPγ(ṽ0) is regular in L(N,Z0).
(I.19.19)

Then the Implicit Function Theorem for (I.19.18) (after division by λσ) gives
a solution

{(ṽ(λ), λ)|0 ≤ λ < δ1} such that ṽ(0) = ṽ0.(I.19.20)

Then
{(λγ ṽ(λ), λ)|0 ≤ λ < δ1} is a nontrivial

solution curve of Φ(v, λ) = 0 emanating at (0, 0).
(I.19.21)

Defining Φ−(v,−λ) ≡ Φ(v, λ), we carry out the same procedure for Φ−(v, λ̃) =
0 for λ̃ ≥ 0, and we obtain possibly a solution curve of Φ(v, λ) = 0 for λ ≤ 0
emanating at (0, 0).

If F and Φ are analytic near (0, 0), then ṽ(λ) is analytic in λ, and setting
s = λ1/γ2 if γ = γ1/γ2 for γi ∈ N, i = 1, 2, we see that

v(s) = sγ1 ṽ(sγ2) and λ(s) = sγ2(I.19.22)

provide an analytic solution curve Φ(v(s), λ(s)) = 0 (for s ≥ 0). By the
method of Lyapunov–Schmidt, this yields a solution curve F (x(s), λ(s)) = 0
(cf. (I.19.3)), and it is natural to ask whether the Principle of Reduced
Stability holds for the curves {(v(s), λ(s))} and {(x(s), λ(s))}.

Again, we assume that X ⊂ Z and that 0 is a semisimple eigenvalue of
DxF (0, 0) of multiplicity n (cf. (I.18.2)). In view of (I.19.18), (I.19.19), we
obtain

DvΦ(v(s), λ(s)) = sσγ2−γ1DṽPγ(ṽ0) +O(sσγ2−γ1+1),(I.19.23)

so that Rk0 = DṽPγ(ṽ0) with k0 = σγ2 − γ1 > 0. By assumption (I.19.19),
Rk0 is regular, and therefore, the Principle of Reduced Stability is valid for
all bifurcating solution curves constructed by the Newton polygon method
described earlier.

If (I.19.19) cannot be satisfied, there is another method for constructing
a bifurcating solution curve of Φ(v, λ) = 0 in special cases. Assume that one
line in the Newton polygon joins (0, k0), k0 ≥ 2, and (1, k1) with 1 ≤ k1 < k0.
In this case, we have to solve

Φ(v, λ) = Φ0k0(v) + λΦ1k1 (v) +R(v, λ) = 0,(I.19.24)

where R(v, λ) contains all remaining terms of higher order, i.e., R(v, λ) con-
tains only terms of order |λ|j‖v‖k with k0 + j(k1 − k0) < k for 0 ≤ j ≤
(k0 − 1)/(k0 − k1) and 1 ≤ k for j > (k0 − 1)/(k0 − k1).

A sufficient condition for (I.19.24) is
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Dk
xF (0, 0)(v) = 0 for k = 1, . . . , k0 − 1,

Dk
xDλF (0, 0)(v) = 0 for k = 1, . . . , k1 − 1, and all v ∈ N

(I.19.25)

(where (I.19.25)2 is redundant for k1 = 1), and in this case

Φ0k0 (v) =
1

k0!
QDk0

x F (0, 0)(v),

Φ1k1 (v) =
1

k1!
QDk1

x DλF (0, 0)(v).

(I.19.26)

Here the slope yields γ = 1/(k0 − k1) and Pγ(ṽ) = Φ0k0 (ṽ) + Φ1k1 (ṽ). As
mentioned before, if (I.19.19) does not hold for all roots ṽ0 �= 0 of Pγ(ṽ) = 0,
we proceed as follows: We set

‖v‖ = |s|, v = sṽ, and λ = sk0−k1 λ̃,(I.19.27)

and we obtain from (I.19.24),

sk0(Φ0k0(ṽ) + λ̃Φ1k1(ṽ) +R1(ṽ, λ̃, s)) = 0(I.19.28)

such that R1(ṽ, λ̃, 0) = 0. This leads to the system

Φ̃(ṽ, λ̃, s) ≡
(
Φ0k0(ṽ) + λ̃Φ1k1(ṽ) +R1(ṽ, λ̃, s)

‖ṽ‖2 − 1

)
=

(
0

0

)
= 0,(I.19.29)

which we solve in the same way as we do for (I.19.12). The corresponding con-
dition (I.19.13), namely, the existence of a regular zero (ṽ0, λ̃0) of Φ̃(ṽ, λ̃, 0) =
0, differs from the existence of a nontrivial regular zero of Pγ(ṽ) = 0. If it is
satisfied we obtain a nontrivial solution curve

{(sṽ(s), sk0−k1 λ̃(s))} through (0, 0) of Φ(v, λ) = 0(I.19.30)

(observe that ṽ(0) = ṽ0 �= 0). Along that solution curve {(v(s), λ(s))},

DvΦ(v(s), λ(s)) = sk0−1(DvΦ0k0 (ṽ0) + λ̃0DvΦ1k1(ṽ0)) +O(sk0 ),(I.19.31)

and according to Theorem I.18.1, the Principle of Reduced Stability is
valid, provided that 0 is an eigenvalue of Rk0−1 = DvΦ0k0 (ṽ0)+λ̃0DvΦ1k1 (ṽ0)
of algebraic multiplicity at most one.

Remark I.19.1 We demonstrate the two methods for a Generic Bifurca-
tion Equation for which the Newton polygon consists of the line joining
(0, 2) and (1, 1):

Φ(v, λ) = Φ
(2)
02 [v, v] + λΦ11v +R(v, λ)(I.19.32)

(recall that Φ01 = 0 by Corollary I.2.4). Our notation indicates that Φ
(2)
02 is

bilinear and that Φ11 is linear. Here the slope is −1 (i.e., γ = 1), and the
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method (I.19.17)–(I.19.19) requires the conditions

Φ
(2)
02 [ṽ0, ṽ0] + Φ11ṽ0 = 0 for some ṽ0 �= 0,

2Φ
(2)
02 [ṽ0, ·] + Φ11 is regular in L(N,Z0),

(I.19.33)

yielding a nontrivial solution curve (by ṽ(0) = ṽ0)

{(λṽ(λ), λ)|λ ∈ (−δ1, δ1)} of Φ(v, λ) = 0.(I.19.34)

The method (I.19.27)–(I.19.29) requires the conditions

Φ
(2)
02 [ṽ0, ṽ0] + λ̃0Φ11ṽ0 = 0, ‖ṽ0‖ = 1,

2Φ
(2)
02 [ṽ0, h] + λ̃0Φ11h+ μΦ11ṽ0 = 0, (ṽ0, h) = 0

⇔ h = 0, μ = 0 for h ∈ N, μ ∈ R.

(I.19.35)

(Here ( , ) denotes the scalar product in N introduced after (I.19.13).) If
(I.19.35) is satisfied, it yields a nontrivial solution curve (by ṽ(0) = ṽ0 �=
0, λ̃(0) = λ̃0)

{(sṽ(s), sλ̃(s))|s ∈ (−δ2, δ2)} of Φ(v, λ) = 0.(I.19.36)

Note that the second method for n = 1 recovers Theorem I.5.1 (whose as-
sumption is simply Φ11 �= 0).

According to (I.19.23) and the statement after it, the Principle of Reduced

Stability is valid for the solution curve (I.19.34). If 2Φ
(2)
02 [ṽ0, ·] + λ̃0Φ11 is

regular or has an algebraically simple eigenvalue 0, then that principle is
valid for the solution curve (I.19.36), too; cf. (I.19.31). (Observe that Z0 = N
under the assumption that 0 is a semisimple eigenvalue of DxF (0, 0).)

Finally, we remark that a necessary condition for bifurcation at (0, 0) is

the existence of some ṽ0 �= 0 in N such that Φ
(2)
02 [ṽ0, ṽ0] + λ̃0Φ11ṽ0 = 0 for

some λ̃0 ∈ R or Φ11ṽ0 = 0.
A last case (formally λ̃0 = ∞) is treated as follows: Setting ‖v‖ =

|sλ|, v = sλṽ, we see that (I.19.32) leads to a system yielding a solution
curve

{(s(λ)λṽ(λ), λ)|λ ∈ (−δ3, δ3)} of Φ(v, λ) = 0,(I.19.37)

where s(0) = 0 and v(0) = ṽ0, provided that

Φ11ṽ0 = 0, ‖ṽ0‖ = 1,

μΦ
(2)
02 [ṽ0, ṽ0] + Φ11h = 0, (ṽ0, h) = 0

⇔ h = 0, μ = 0 for h ∈ N, μ ∈ R.

(I.19.38)
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However, the curve (I.19.37) could be trivial. A sufficient condition for
s′(0) �= 0 (′= d

dλ) is that

Φ21ṽ0 �∈ R(Φ11) ⊂ Z0,(I.19.39)

where the range of Φ11 has codimension one in Z0. In this case, v(λ) ≡
s(λ)λṽ(λ) = s′(0)λ2ṽ0+ h.o.t., and DvΦ(v(λ), λ) = 2s′(0)λ2Φ

(2)
02 [ṽ0, ·]+O(λ3)

allows the application of the Principle of Reduced Stability, provided that

Φ
(2)
02 [ṽ0, ·] has an eigenvalue 0 of algebraic multiplicity at most one.

Our selection of methods making use of the Implicit Function Theorem
provides curves bifurcating from the trivial solution line. For equivariant
problems whose solution sets consist of connected group orbits, these methods
are not adequate without further reductions; cf. the Equivariant Bifurcation
Theory. For bifurcation problems with a discrete symmetry obtained by a
forced symmetry-breaking, for example, they are directly useful.

I.19.1 Bifurcation with a Two-Dimensional Kernel

For the special case of a two-dimensional kernel we can show the existence
of bifurcating branches under conditions that are easier to verify than the
regularity required by the Implicit Function Theorem. We assume that the
Bifurcation Equation Φ(v, λ) = 0 is of the following form, cf. (I.19.24) with
k1 = 1:

Φ(v, λ) = Φ0k0(v) + λΦ11v +R(v, λ), k0 ≥ 2,(I.19.40)

where Φ0k0 (v) is k0-linear and symmetric and Φ11v = QD2
xλF (0, 0)v is linear

in v ∈ N . A sufficient condition for (I.19.40) is given in (I.19.25)1 (where
(I.19.25)2 is redundant), whence Φ0k0 (v) is of the form (I.19.26)1. The re-
mainder R(v, λ) contains only terms of order |λ|j‖v‖k with k0− j(k0−1) < k
for j = 0 or 1 and 1 ≤ k for j > 1.

According to (I.19.27) we make the substitutions

v = sṽ with ‖ṽ‖ = 1, λ = sk0−1λ̃,(I.19.41)

and we obtain from (I.19.40)

Φ̃(ṽ, λ̃, s) ≡ sk0(Φ0k0 (ṽ) + λ̃Φ11ṽ +R1(ṽ, λ̃, s)),(I.19.42)

where R1(ṽ, λ̃, 0) = 0. Instead of requiring the regularity of a zero (ṽ0, λ̃0) of
Φ0k0(ṽ) + λ̃Φ11ṽ, ‖ṽ‖ = 1, and applying the Implicit Function Theorem as
for (I.19.29) or (I.19.35), we proceed as follows. Choosing a basis {v̂1, v̂2} in
N , a basis {v̂∗1 , v̂∗2} in Z0, and vectors {v̂′1, v̂′2} in Z ′ such that 〈v̂∗j , v̂′k〉 = δjk,
〈z, v̂′k〉 = 0 for all z ∈ R, j, k = 1, 2, we see that the projection Q is given by
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Qz = 〈z, v̂′1〉v̂∗1 + 〈z, v̂′2〉v̂∗2 . When v ∈ N and Φ(v, λ) ∈ Z0 are represented in
coordinates (with respect to the chosen bases), then Φ maps a neighborhood
of (0, 0) in R2 × R into R2; cf. (I.19.4), (I.19.5). Furthermore, the Euclidean
scalar product in R2 defines via coordinates a scalar product ( , ) and
an equivalent norm ‖ ‖ in N and Z0, respectively. Finally, the geometric
rotation by the angle π/2 in R2 defines the following rotation in Z0:

Rπ/2z = −z2v̂
∗
1 + z1v̂

∗
2 for

z = z1v̂
∗
1 + z2v̂

∗
2 .

(I.19.43)

Observe that (z,Rπ/2z) = 0 for all z ∈ Z0. Our main result is the following:

Theorem I.19.2 Assume that

Φ11 = QD2
xλF (0, 0) : N → Z0

is an isomorphism,
(I.19.44)

and that there exist two vectors ṽ1, ṽ2 ∈ N with ‖ṽ1‖ = ‖ṽ2‖ = 1 such that

(Φ0k0 (ṽ1), Rπ/2Φ11ṽ1) < 0,
(Φ0k0 (ṽ2), Rπ/2Φ11ṽ2) > 0.

(I.19.45)

Then there exists a local continuum C ⊂ X × R of nontrivial solutions of
F (x, λ) = 0 through (0, 0), and C\{(0, 0)} consists of at least two components.

Proof. We solve Φ(v, λ) = 0 near (0, 0) in N × R. With the substitutions
(I.19.41) we obtain (I.19.42) for s ∈ (−δ, δ). Defining

Ψ(ṽ, λ̃) = Φ0k0(ṽ) + λ̃Φ11ṽ, then

Φ̃(ṽ, λ̃, s) = 0 for s �= 0 ⇔
f1(ṽ, λ̃, s) ≡ (Ψ(ṽ, λ̃) +R1(ṽ, λ̃, s), Φ11ṽ) = 0,

f2(ṽ, λ̃, s) ≡ (Ψ(ṽ, λ̃) +R1(ṽ, λ̃, s), Rπ/2Φ11ṽ) = 0.

(I.19.46)

Here we use (I.19.44), i.e., the vectors Φ11ṽ and Rπ/2Φ11ṽ form a basis in Z0

for ṽ �= 0.
For every ṽ0 ∈ N with ‖ṽ0‖ = 1 and for

λ̃0 = − (Φ0k0(ṽ0), Φ11ṽ0)

‖Φ11ṽ0‖2(I.19.47)

we obtain
f1(ṽ0, λ̃0, 0) = (Ψ(ṽ0, λ̃0), Φ11ṽ0) = 0 and

Dλ̃f1(ṽ0, λ̃0, 0) = ‖Φ11ṽ0)‖2 �= 0.
(I.19.48)

The Implicit Function Theorem gives the existence of a continuous scalar
function
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λ̃(ṽ, s), where λ̃(ṽ0, 0) = λ̃0, such that

f1(ṽ, λ̃(ṽ, s), s) = 0 for ‖ṽ − ṽ0‖ < δ1, s ∈ (−δ1, δ1).
(I.19.49)

This can be done for all ṽ0 ∈ S1 = {ṽ ∈ N |‖ṽ‖ = 1} ⊂ N . Clearly δ1 > 0
depends on ṽ0, but by the compactness of S1 we can find a uniform δ2 > 0
such that

f1(ṽ, λ̃(ṽ, s), s) = 0 for all ṽ ∈ S1, s ∈ (−δ2, δ2).(I.19.50)

In order to solve

g(ṽ, s) ≡ f2(ṽ, λ̃(ṽ, s), s) = 0 for ṽ ∈ S1, s ∈ (−δ3, δ3),(I.19.51)

for some 0 < δ3 ≤ δ2, we observe that g is continuous and that

g(ṽ, 0) = (Φ0k0(ṽ), Rπ/2Φ11ṽ), and by (I.19.45),
g(ṽ1, 0) < 0 and g(ṽ2, 0) > 0.

(I.19.52)

By (I.19.52)1 the function g(·, 0) is a (k0 + 1)-linear mapping from N into
R, i.e., it is a homogeneous polynomial of two variables of order k0 + 1. By
(I.19.52)2 and the mean value theorem it has a zero on S1, but its nondege-
neracy for the application of the Implicit Function Theorem to solve (I.19.51)
is not easy to verify in general. It turns out that its nondegeneracy is not
necessary for the persistence of a zero for s ∈ (−δ3, δ3).

We denote by [ṽ1, ṽ2] the segment on S1 with a counterclockwise orienta-
tion. By continuity of g, there is some 0 < δ3 ≤ δ2 such that

g(ṽ1, s) ≤ d1 < 0 and g(ṽ2, s) ≥ d2 > 0
for all s ∈ [−δ3, δ3].

(I.19.53)

If we connect the sides {ṽ1}× [−δ3, δ3] and {ṽ2}× [−δ3, δ3] of the “rectangle”
[ṽ1, ṽ2]×[−δ3, δ3] by a continuous curve or any connected set in that rectangle,
then in view of the mean value theorem the function g has a zero on that
curve or in that set. It seems therefore “evident” not only that the set

S̃ = {(ṽ, s) ∈ [ṽ1, ṽ2]× [−δ3, δ3]|g(ṽ, s) = 0}(I.19.54)

is not empty but also that S̃ contains a continuum C̃ that connects the “bot-
tom” B = [ṽ1, ṽ2]×{−δ3} and the “top” T = [ṽ1, ṽ2]×{δ3} and that separates
domains where g is positive and negative, see Figure I.19.1. To see this, let
C̃− denote the component of B in S̃ ∪B. Assume that C̃− ∩ T = ∅.
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g(ṽ2, s) > 0 g(ṽ1, s) < 0

+

C̃

+
ṽ2

B

T

−

−
ṽ1 S1

[−δ3, δ3]

Figure I.19.1

Let W be an open neighborhood of C̃− in N × R such that W ∩ T = ∅.
Define K = W ∩(S̃ ∪B). Then K is compact, C̃− ⊂ K, and ∂W ∩C̃− = ∅. By
the so-called Whyburn Lemma [160] there exist compact subsets K1,K2 ⊂ K
satisfying

K1 ∩K2 = ∅, K1 ∪K2 = K,

C̃− ⊂ K1, ∂W ∩ S̃ ⊂ K2.
(I.19.55)

Choose an open neighborhood W1 of K1 such that

C̃− ⊂ K1 ⊂ W1 ⊂ W, W 1 ∩K2 = ∅,
W 1 ∩ T = ∅, and ∂W1 ∩ S̃ = ∅.(I.19.56)

The connected set L = ∂W1 ∩ ([ṽ1, ṽ2] × [−δ3, δ3]) (which can be taken to
be a continuous curve, w.l.o.g.) connects two points (ṽ1, s1) and (ṽ2, s2) with
s1, s2 ∈ (−δ3, δ3) and L is contained in the rectangle [ṽ1, ṽ2] × [−δ3, δ3]. As
mentioned before, in view of (I.19.53) and the mean value theorem, g has a
zero in L, or in other words, L∩S̃ �= ∅. But this contradicts L∩S̃ = ∅, which
follows from (I.19.56)2.

Therefore the assumption C̃−∩T = ∅ is false, which proves that S̃ contains
a continuum C̃ that connects the bottom B and the top T . By definition,
C̃ ⊂ S̃, i.e., g(ṽ, s) = 0 for all (ṽ, s) ∈ C̃.

The set

C = {(v, λ)|v = sṽ, λ = sk0−1λ̃(ṽ, s), (ṽ, s) ∈ C̃}(I.19.57)

is then a continuum of solutions of Φ(v, λ) = 0 that contains (0, 0). Further-
more, C\{(0, 0)} consists of nontrivial solutions and is not connected. Since
the Lyapunov–Schmidt reduction preserves connectedness of (local) solutions
sets, Theorem I.19.2 is proved. 
�

Corollary I.19.3 If k0 is odd, then under the hypotheses of Theorem I.19.2
there exist at least two local continua C ⊂ X × R of nontrivial solutions
of F (x, λ) = 0 through (0, 0) and each C\{(0, 0)} consists of at least two
components.
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If k0 is even, then assumption (I.19.45) can be reduced to
(Φ0k0 (ṽ1), Rπ/2Φ11ṽ1) �= 0 for some ṽ1 ∈ S1, or equivalently to the assumption
that Φ0k0(ṽ1) and Φ11ṽ1 are linearly independent in N , and the conclusion of
Theorem I.19.2 holds.

Proof. Assume that k0 is odd. Then the (k0 + 1)-linear form
(Φ0k0 (ṽ), Rπ/2Φ11ṽ) is even, so that assumption (I.19.45) is true also for an-
tipodal vectors −ṽ1,−ṽ2. Therefore the proof of Theorem I.19.2 applies to
the four segments [ṽ1, ṽ2], [ṽ2,−ṽ1], [−ṽ1,−ṽ2], and [−ṽ2, ṽ1] on S1, yielding
four continua of the form (I.19.57) arising in each of the four segments. How-
ever, two antipodal segments provide the same continuum by the following
symmetries: By (I.19.41), (I.19.42), (I.19.46)3 we obtain for odd k0

Φ̃(−ṽ, λ̃,−s) = Φ̃(ṽ, λ̃, s),

f1(−ṽ, λ̃,−s) = f1(ṽ, λ̃, s), whence

λ̃(−ṽ,−s) = λ̃(ṽ, s) by (I.19.50), and
g(−ṽ,−s) = g(ṽ, s); cf. (I.19.51).

(I.19.58)

(We remark that (I.19.58)3 follows from uniqueness, which is part of the
Implicit Function Theorem.) The zeros of g exist in antipodal pairs {(ṽ, s),
(−ṽ,−s)}, which, by (I.19.58)3, yield only one continuum C (I.19.57).

Assume now that k0 is even. Then the (k0 + 1)-linear form
(Φ0k0 (ṽ), Rπ/2Φ11ṽ) is odd, so that assumption (I.19.45) is satisfied by an
antipodal pair ṽ1 and ṽ2 = −ṽ1. The two antipodal segements [ṽ1,−ṽ1] and
[−ṽ1, ṽ1] on S1 provide the same continuum by the following symmetries: By
(I.19.41), (I.19.42). (I.19.46)3 we obtain for even k0,

Φ̃(−ṽ,−λ̃,−s) = Φ̃(ṽ, λ̃, s),

f1(−ṽ,−λ̃,−s) = −f1(ṽ, λ̃, s), whence

λ̃(−ṽ,−s) = −λ̃(ṽ, s) by (I.19.50), and
g(−ṽ,−s) = −g(ṽ, s); cf. (I.19.51).

(I.19.59)

The antipodal pairs {(ṽ, s), (−ṽ,−s)} of zeros of g give by (I.19.59)3 only one
continuum C of the form (I.19.57). 
�

The following corollary gives an alternative condition that is more conve-
nient for applications; cf. Section III.2.2.

Corollary I.19.4 Assume (I.19.44) and that there exists a ṽ1 ∈ S1 ⊂ N
such that

Φ0k0 (ṽ1) and Φ11ṽ1 are linearly independent.(I.19.60)

Let w(t) for t ∈ [0, 2π] be a continuous parameterization of S1 ⊂ N . If∫ 2π

0

(Φ0k0 (w(t)), Rπ/2Φ11w(t))dt = 0,(I.19.61)

then the statements of Theorem I.19.2 and of Corollary I.19.3 hold.
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Proof. It is clear that (I.19.60) and (I.19.61) imply (I.19.45): By (I.19.60)
the integrand of (I.19.61) does not vanish identically, whence it has to change
sign on S1. 
�

Next we show that a modification of Corollary I.19.4 is applicable to
a potential operator F (·, λ) : U → Z, where U ⊂ X , X is continuously
embedded into Z, and Z is endowed with a continuous scalar product ( , );
cf. Definition I.3.1. Then there exists a function f ∈ C1(U × V,R) such that

Dxf(x, λ)h = (F (x, λ), h) for all (x, λ) ∈ U × V, h ∈ X.(I.19.62)

The function f(·, λ) is the potential of F (·, λ) with respect to the scalar pro-
duct ( , ). If F ∈ C1(U ×V, Z) then DxF (x, λ) is symmetric with respect
to ( , ) for all (x, λ) ∈ U × V ; cf. Proposition I.3.2. Therefore we may
assume

Z = R(DxF (0, 0))⊕N(DxF (0, 0)), where
R and N are orthogonal with respect to ( , ),
Q : Z → N along R,
P : X → N along R ∩X , i.e., P = Q|X ;

(I.19.63)

cf. (I.3.8)–(I.3.11). By Theorem I.3.4 the bifurcation function Φ(·, λ) is also
a potential operator and

ϕ(v, λ) = f(v + ψ(v, λ), λ)
is the potential of Φ(·, λ)
with respect to the scalar product ( , ) on N , i.e.,
Dvϕ(v, λ)h = (Φ(v, λ), h) for all h ∈ N
and for all (v, λ) near (0, 0) ∈ N × R.

(I.19.64)

Here ψ is the function to solve (I − Q)F (v + ψ(v, λ), λ) = 0; cf. (I.2.6)–
(I.2.9). By the symmetry of DxF (x, λ) and of the projection Q with respect
to ( , ), the operator Φ11 = QD2

xλF (0, 0) : N → N is symmetric, too.

Theorem I.19.5 Assume that F (·, λ) is a potential operator in the sense of
(I.19.62) and that

Φ11 = QD2
xλF (0, 0) : N → N

is positive (or negative) definite.
(I.19.65)

If there exists a ṽ1 ∈ S1 ⊂ N such that

Φ0k0 (ṽ1) and Φ11ṽ1 are linearly independent,(I.19.66)

then the statements of Theorem I.19.2 and of Corollary I.19.3 hold.

Proof. We use the scalar product ( , ) of Z restricted to N = Z0. If the
chosen basis {v̂1, v̂2} is orthonormal with respect to ( , ), then ( , ) is
the same as the scalar product defined before Theorem I.19.2.
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Let E1 = {ṽ ∈ N |(ṽ, Φ11ṽ) = 1 (or −1)} and let w(t) for t ∈ [0, 2π] be a
smooth parameterization of the ellipse E1. Then, by the symmetry of Φ11,

d

dt
(w(t), Φ11w(t)) = 2(ẇ(t), Φ11w(t)) = 0 or

ẇ(t) = α(t)Rπ/2Φ11w(t) for t ∈ [0, 2π] and

for some 2π-periodic smooth function α(t) �= 0.

(I.19.67)

Then ∫ 2π

0

α(t)(Φ0k0 (w(t)), Rπ/2Φ11w(t))dt

=

∫ 2π

0

1

k0!
(Dk0

v Φ(0, 0)(w(t)), ẇ(t))dt

(
· =

d

dt

)

=

∫ 2π

0

1

k0!
Dk0+1

v ϕ(0, 0)[w(t), . . . , w(t), ẇ(t)]dt by (I.19.64)4

=

∫ 2π

0

1

(k0 + 1)!

d

dt
Dk0+1

v ϕ(0, 0)[w(t), . . . , w(t)]dt = 0

by periodicity of w(t).

(I.19.68)

Since α(t) �= 0 for all t ∈ [0, 2π], α(t) has one sign, and therefore the function
(Φ0k0 (w(t)), Rπ/2Φ11w(t)), which does not vanish identically by (I.19.66), has
to change sign on E1. This provides (I.19.45). 
�

At the end we remark that under assumption (I.19.25)1 we have

Dk0+1
v ϕ(0, 0)[v, . . . , v] = Dk0+1

x f(0, 0)[v, . . . , v] for v ∈ N.(I.19.69)

Here f is the potential of F satisfying (I.19.62).

I.19.2 A Multiparameter Bifurcation Theorem with a
High-Dimensional Kernel

A natural ingredient for overcoming the difficulties of a degeneration to a
high-dimensional kernel is the dependence of the mapping F on more than
one parameter, to be more precise, on as many parameters as the dimension
of the cokernel, which is the dimension of the kernel in our case.

Looking at the proof of the Crandall–Rabinowitz Theorem (Theorem
I.5.1) with a one-dimensional kernel, we see that a generalization is readily
found, and we obtain a Multiparameter Bifurcation Theorem with a High-
Dimensional Kernel.

We consider F : U × V → Z, where 0 ∈ U ⊂ X and λ0 ∈ V ⊂ Rn, and
we assume (I.19.1). For the subsequent analysis we need only the regularity
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(I.5.2), where now

D2
xλF ∈ C(U × V, L(Rn, L(X,Z)).(I.19.70)

Clearly, L(Rn, L(X,Z)) ∼= L(Rn×X,Z) in a natural way, andD2
xλF (0, λ0)x ∈

L(Rn, Z) is represented by the n vectors D2
xλi

F (0, λ0)x ∈ Z, i = 1, . . . , n,
for x ∈ X (cf. (I.4.3)).

The generalization of the assumption (I.5.3) is the following:

There is a v̂0 ∈ N(DxF (0, λ0)), ‖v̂0‖ = 1,
such that a complement Z0 of R(DxF (0, λ0)) (cf. (I.2.2))
is spanned by the vectors D2

xλi
F (0, λ0)v̂0, i = 1, . . . , n.

(I.19.71)

Let Z0 be a complement of R(DxF (0, λ0)) in Z. When the projection Q :
Z → Z0 along R(DxF (0, λ0)) is given by

Qz =
∑n

k=1〈z, v̂′k〉v̂∗k, cf. (I.19.4),(I.19.72)

then assumption (I.19.71) is equivalent to the following:

The matrix (〈D2
xλi

F (0, λ0)v̂0, v̂
′
k〉)i,k=1,...,n is regular.(I.19.73)

Next, we follow the lines of the proof of Theorem I.5.1. The Lyapunov–
Schmidt reduction yields the n-dimensional problem Φ(v, λ) = 0 near (0, λ0) ∈
N × Rn. Setting v = sv̂0, we get nontrivial solutions by solving

Φ̃(s, λ) =

∫ 1

0

DvΦ(stv̂0, λ)v̂0dt = 0

for nontrivial s ∈ (−δ, δ) (cf. (I.5.9), (I.5.10)).
(I.19.74)

(We suppress the dependence of Φ̃ on the choice of v̂0.) As in (I.5.11), we
have Φ̃(0, λ0) = 0, and by (I.5.13),

DλΦ̃(0, λ0) = QD2
xλF (0, λ0)v̂0

is regular in L(Rn, Z0) by assumption (I.19.71).
(I.19.75)

The Implicit Function Theorem for (I.19.74) gives a continuously differen-
tiable solution curve

Φ̃(s, λ(s)) = 0 for s ∈ (−δ, δ), λ(0) = λ0,

Φ(sv̂0, λ(s)) = sΦ̃(s, λ(s)) = 0.
(I.19.76)

Clearly, x(s) = sv̂0 + ψ(sv̂0, λ(s)) (cf. (I.5.16)) provides a nontrivial solution
curve F (x(s), λ(s)) = 0 through (x(0), λ(0)) = (0, λ0). We obtain an n-
Parameter Bifurcation Theorem with n-Dimensional Kernel:

Theorem I.19.6 Under the assumptions (I.5.2), (I.19.1), and (I.19.71), the
equation F (x, λ) = 0 possesses a continuously differentiable solution curve
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{(x(s), λ(s))|s ∈ (−δ, δ)} ⊂ X×Rn through (x(0), λ(0)) = (0, λ0) and ẋ(0) =
v̂0; cf. (I.5.18).

Remark I.19.7 If assumption (I.19.71) is satisfied for some v̂0 ∈ N, ‖v̂0‖ =
1, then it is also satisfied for all v̂ ∈ N in a neighborhood of v̂0 on the
unit sphere in N . Therefore we obtain an “n-dimensional” solution set
{(sv̂, λ(s, v̂)} for Φ(v, λ) = 0 that depends in a continuously differentiable
way on (s, v̂). The vector v̂ ∈ N for which (I.19.71) is valid is tangent to
x(s) = sv̂ + ψ(sv̂, λ(s, v̂)) at x(0) = 0; cf. Corollary I.5.2.

Restricting (I.19.1) to the assumption that 0 is a semisimple eigenvalue
of DxF (0, λ0) = 0 of multiplicity n (which requires a continuous embedding
X ⊂ Z) and assuming also analyticity of F near (0, λ0), we ask whether
the Principle of Reduced Stability is applicable to the analytic solution
curve F (x(s), λ(s)) = 0 through (x(0), λ(0)) = (0, λ0). A quick look at the
proof of Theorem I.18.1 assures us that the condition on the validity of that
principle given in Theorem I.18.1 does not depend on whether the parameter
λ(s) is a scalar or a vector. We simply have to check the condition on Rk0 ,
where DvΦ(v(s), λ(s)) = sk0Rk0 +O(sk0+1). Here v(s) = sv̂0.

We consider the case k0 = 1.
Following the computations of Section I.6 (in particular, (I.6.1), (I.6.2)),

we find that the tangent λ̇(0) to λ(s) at λ(0) = λ0 is the unique solution of

[QD2
xλF (0, λ0)v̂0]λ̇(0) +

1

2
QD2

xxF (0, λ0)[v̂0, v̂0] = 0.(I.19.77)

(Recall that upon our agreement, QD2
xλF (0, λ0)v̂0 ∈ L(Rn, Z0), and that it

is represented as [QD2
xλF (0, λ0)v̂0]λ =

∑n
i=1 QD2

xλi
F (0, λ0)v̂0λi. Equation

(I.19.77) is uniquely solvable for λ̇(0) by assumption (I.19.71).)
If QD2

xxF (0, λ0)[v̂0, v̂0] �= 0, then λ̇(0) �= 0 and

R1v = QD2
xxF (0, λ0)[v̂0, v] + [QD2

xλF (0, λ0)v]λ̇(0)

for v ∈ N and R1v̂0 =
1

2
QD2

xxF (0, λ0)[v̂0, v̂0].
(I.19.78)

Thus R1 �= 0 if λ̇(0) �= 0, and if 0 is an eigenvalue of R1 of algebraic multi-
plicity at most one, then the Principle of Reduced Stability is valid for the
solution (I.19.76).

We can use the computations of Section I.6 also for the case k0 = 2 when
λ̇(0) = 0 and R1 = 0. In this case, λ̈(0) is the unique solution of

[QD2
xλF (0, λ0)v̂0]λ̈(0) +

1

3
D3

vvvΦ(0, λ0)[v̂0, v̂0, v̂0] = 0(I.19.79)

(cf. (I.6.4) and (I.6.10)). The formula (I.6.9) gives D3
vvvΦ(0, λ0) in terms of

the mapping F . If the vectorD3
vvvΦ(0, λ0)[v̂0, v̂0, v̂0] is nonzero, then λ̈(0) �= 0

and
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R2v =
1

2
QD3

vvvΦ(0, λ0)[v̂0, v̂0, v] +
1

2
[QD2

xλF (0, λ0)v]λ̈(0)

for v ∈ N and R2v̂0 = −[QD2
xλF (0, λ0)v̂0]λ̈(0) �= 0.

(I.19.80)

If 0 is an eigenvalue of R2 of algebraic multiplicity at most one, then the
Principle of Reduced Stability is valid for the solution (I.19.76).

I.20 Bifurcation from Infinity

The notion of bifurcation from infinity is misleading, since we prove the exis-
tence of a solution curve of F (x, λ) = 0 tending to infinity, and the solution
set is actually not bifurcating. We follow the general terminology in calling
it bifurcation from infinity. We consider

F : X × V → Z, where
X,Z are Banach spaces and
V ⊂ R is an open neighborhood of λ0.

(I.20.1)

We assume that F ∈ C2(X × V, Z), and we decompose

F (x, λ) = A(λ)x +R(x, λ)
for (x, λ) ∈ X × V with a remainder R ∈ C2(X × V, Z).

(I.20.2)

We assume also that

A(λ0) ∈ L(X,Z) is a Fredholm operator
of index zero (cf. Definition I.2.1) and
N(A(λ0)) = span[v̂0], i.e., dimN(A(λ0)) = 1.

(I.20.3)

The mapping A(λ) ∈ L(X,Z) is assumed to be a derivative of F (x, λ) at
“(∞, λ)” in the following sense: Let U ⊂ X be an open neighborhood of v̂0.
Then, by assumption,

sR
(v
s
, λ

)
→ 0 in Z,

sDλR
(v
s
, λ

)
→ 0 in Z, and

DxR
(v
s
, λ

)
→ 0 in L(X,Z)

as s → 0 in R for all (v, λ) ∈ U × V .

(I.20.4)

The Theorem on Bifurcation from Infinity then reads as follows:

Theorem I.20.1 Assume in addition to (I.20.3) and (I.20.4) that
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d

dλ
A(λ0)v̂0 �∈ R(A(λ0)) (cf. (I.5.3)).(I.20.5)

Then there is a unique continuous curve

{(v(s), λ(s))|s ∈ (−δ, δ), (v(0), λ(0)) = (v̂0, λ0)} ⊂ X × R(I.20.6)

such that

F

(
v(s)

s
, λ(s)

)
= 0 for s ∈ (−δ, δ)\{0}.(I.20.7)

In other words, the solution curve {(x(s), λ(s))} = {( v(s)
s , λ(s)

)} satisfies

‖x(s)‖ → ∞, λ(s) → λ0 as s → 0.(I.20.8)

Proof. Let v̂′0 ∈ X ′ (= the dual space) such that 〈v̂0, v̂′0〉 = 1. We define for
s �= 0,

F̃ (v, λ, s) =
(
A(λ)v + sR

(v
s
, λ

)
, 〈v, v̂′0〉 − 1

)
,(I.20.9)

and in view of (I.20.4), we extend F̃ continuously to s = 0 for all v �= 0 in a
neighborhood U of v̂0 by

F̃ (v, λ, 0) = (A(λ)v, 〈v, v̂′0〉 − 1).(I.20.10)

Thus F̃ : U × V × R → Z × R is continuous. Next, we show that D(v,λ)F̃ ∈
C(U × V × R, L(X × R, Z × R)). Indeed, written as a matrix in an obvious
way, we obtain for s �= 0,

D(v,λ)F̃ (v, λ, s) =

⎛
⎝A(λ) +DxR

(v
s
, λ

)
〈·, v̂′0〉

d

dλ
A(λ)v + sDλR

(v
s
, λ

)
0

⎞
⎠ ,

(I.20.11)
which is extended continuously to s = 0 for all (v, λ) ∈ U × V by

D(v,λ)F̃ (v, λ, 0) =

⎛
⎝ A(λ)

d

dλ
A(λ)v

〈·, v̂′0〉 0

⎞
⎠ ; cf. (I.20.4).(I.20.12)

By (I.20.3) and the choice of v̂′0, we have

F̃ (v̂0, λ0, 0) = (0, 0) ∈ Z × R.(I.20.13)

We show that D(v,λ)F̃ (v̂0, λ0, 0) is bijective. Let

D(v,λ)F̃ (v̂0, λ0, 0)(v, λ) = (0, 0) for some (v, λ) ∈ X × R or

A(λ0)v + λ
d

dλ
A(λ0)v̂0 = 0 and 〈v, v̂′0〉 = 0.

(I.20.14)
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By assumption (I.20.5), λ = 0 and v ∈ N(A(λ0)), which by (I.20.3) and
〈v̂0, v̂′0〉 = 1 yields v = 0. On the other hand, the Fredholm property of A(λ0)
implies that assumption (I.20.5) guarantees a solution (v, λ) ∈ X × R of

A(λ0)v + λ
d

dλ
A(λ0)v̂0 = w and 〈v, v̂′0〉 = μ

for all (w, μ) ∈ Z × R.

(I.20.15)

The Implicit Function Theorem provides a continuous curve (I.20.6) such
that

F̃ (v(s), λ(s), s) = 0 for all s ∈ (−δ, δ).(I.20.16)

Definition (I.20.9) then gives

F

(
v(s)

s
, λ(s)

)
= A(λ(s))

v(s)

s
+R

(
v(s)

s
, λ(s)

)
= 0

for all s ∈ (−δ, δ)\{0}.
(I.20.17)

Property (I.20.8) is obvious. 
�
We remark that the existence of DsF̃ (v, λ, s) at s = 0 does not follow from

our assumptions on the remainder R. Therefore, the curve {(v(s), λ(s))} is
not necessarily differentiable at s = 0. In particular, the sign of λ̇(0) is not
determined as in Sections I.4 and I.6, for example. It is possible that the

curve
{( v(s)

s , λ(s)
)}

is oscillating around λ(0) = λ0 when tending to (∞, λ0)

and λ̇(0) does not exist.
Since assumptions (I.20.4) are unusual, we refer to applications in Section

III.7. A more general result on Bifurcation from Infinity using degree theory
is mentioned in Remark III.7.3.

I.21 Bifurcation with High-Dimensional Kernels for
Potential Operators: Variational Methods

In this section, we prove a new type of bifurcation at (0, λ0) for F (x, λ) ≡
F (x) − λx = 0 with F (0) = 0, namely, that (0, λ0) is a cluster point of non-
trivial solutions (x, λ) ∈ X×R, x �= 0. In other words, there is not necessarily
a curve of nontrivial solutions through (0, λ0), and examples show that this
sort of more general bifurcation actually occurs under the hypotheses of this
section, see [14].

The subsequent analysis is motivated by the following well-known facts:
Let Sr = ∂Br(0) be the boundary of the ball Br(0) = {x ∈ Rn|‖x‖ < r}
and let f : Rn → R be a smooth function. Since Sr is compact, there are
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minimizers and maximizers of f : Sr → R, and according to Lagrange’s
multiplier rule, for every such extremal xr ∈ Sr, there is a λr ∈ R such that

∇f(xr) = λrxr, ‖xr‖ = r.(I.21.1)

Here we use Definition I.3.1 of the gradient of f with respect to the scalar
product on Rn (which induces its norm). The right-hand side of (I.21.1) is λr

times the gradient of the constraint 1
2 (x, x) = 1

2r
2. If λr = (∇f(xr), xr)/r

2

converges to some λ0 as r ↘ 0 (provided that ∇f(0) = 0), then (0, λ0) is
a bifurcation point for F (x, λ) = ∇f(x) − λx = 0 in the above sense (and
λ0 is necessarily an eigenvalue of the Hessian D∇f(0)). However, since the
sphere Sr = ∂Br(0) is not compact in an infinite-dimensional Banach space,
this simple argument cannot be used for an infinite-dimensional problem.

We assume the situation of Section I.3: Let X ⊂ Z be real Banach spaces
and let X be continuously embedded into Z. A scalar product ( , ) is
defined on Z such that F : U → Z with 0 ∈ U ⊂ X is a potential operator
according to Definition I.3.1: There is an

f ∈ C2(U,R) such that
Df(x)h = (F (x), h) for all x ∈ U ⊂ X,h ∈ X,
and F ∈ C1(U,Z).

(I.21.2)

We assume, furthermore, that

F (0) = 0,
λ0 ∈ R is an isolated eigenvalue of A0 = DF (0),
A0 − λ0I ∈ L(X,Z) is a Fredholm operator of index zero, and
Z = R(A0 − λ0I)⊕N(A0 − λ0I).

(I.21.3)

By Proposition I.3.2 the operator A0 ∈ L(X,Z) is symmetric with respect
to the scalar product ( , ).

Remark I.21.1 Let Z be a Hilbert space with scalar product ( , ). Then
(I.21.3)3,4 is satisfied under the following assumptions:

A0 : Z → Z with domain of definition
D(A0) = X ⊂ Z is closed and
dimN(A0 − λ0I) < ∞.

(I.21.4)

We give briefly the arguments: By the results of [86], [170] for isolated eigen-
values, the following holds in this case:

Z = Eλ0 ⊕ Zλ0 ,
X = Eλ0 ⊕Xλ0 , Xλ0 = Zλ0 ∩X,

(I.21.5)

where Eλ0 is the generalized eigenspace of A0 with eigenvalue λ0, and Zλ0 is
a closed complement that is invariant for A0 : A0 ∈ L(Xλ0 , Zλ0) and λ0 is in
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the resolvent set of the restriction of A0 to Zλ0 . Since A0 ∈ L(Eλ0 , Eλ0) is
symmetric and therefore self-adjoint (see Proposition I.3.2), we obtain Eλ0 =
N(A0 − λ0I), and being finite-dimensional, λ0 is a pole of finite order of the
resolvent of A0. In this case, Zλ0 = R((A0 − λ0I)

m) for some m ∈ N and
N((A0−λ0I)

m) = N(A0−λ0I) for all m ∈ N implies also R((A0−λ0I)
m) =

R(A0 − λ0I) = Zλ0 . (For details see [86] or [170].)

In this section we prove the following Bifurcation Theorem for Po-
tential Operators:

Theorem I.21.2 Under the assumptions (I.21.2) and (I.21.3), for every suf-
ficiently small ε > 0 there exist at least two solutions (x(ε), λ(ε)) ∈ X × R

of
F (x) = λx,
(x(ε), x(ε)) = ε2, λ(ε) → λ0 as ε ↘ 0.

(I.21.6)

Proof. We start with a Lyapunov–Schmidt reduction. Setting
R = R(A0 − λ0I) and N = N(A0 − λ0I), we use the decompositions

X = N ⊕ (R ∩X),
Z = R⊕N,

(I.21.7)

with projections Q : Z → N along R and P = Q|X : X → N along R ∩X .
Both projections are continuous in X and Z, respectively, and orthogonal
with respect to the scalar product ( , ); cf. Section I.3.

As in Sections I.2, I.3 we set Px = v, (I − P )x = w, and according to
Theorem I.2.3,

F (x) = λx for (x, λ) near (0, λ0)
is equivalent to
QF (v + ψ(v, λ)) = λv for (v, λ) near (0, λ0).

(I.21.8)

We need some estimates for ψ : Ũ2 × (λ0 − δ, λ0 + δ) → R ∩X . To this end
we set F (x) = A0x + G(x) with DG(0) = 0. Then by its construction, the
function w = ψ(v, λ) satisfies

(A0 − λI)ψ(v, λ) + (I −Q)G(v + ψ(v, λ)) ≡ 0,
ψ(v, λ) = −(A0 − λI)−1(I −Q)G(v + ψ(v, λ)),
since A0 − λI ∈ L(R ∩X,R) is an isomorphism
for λ ∈ (λ0 − δ, λ0 + δ), and by differentiation,
Dvψ(v, λ)
= −(A0 − λI)−1(I −Q)DG(v + ψ(v, λ))(IN +Dvψ(v, λ)),

(I.21.9)

where IN denotes the identity in N , and Dvψ(v, λ) ∈ L(N,R ∩ X). By
uniqueness, ψ(0, λ) = 0 for λ ∈ (λ0− δ, λ0+ δ), and by DG(0) = 0, we obtain
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Dvψ(0, λ) = 0 for all λ ∈ (λ0 − δ, λ0 + δ), whence
‖ψ(v, λ)‖ ≤ ε‖v‖ for all ‖v‖ ≤ δ(ε), λ ∈ (λ0 − δ, λ0 + δ).

(I.21.10)

Differentiation of (I.21.9)1 with respect to λ yields, after some simple calcu-
lation,

Dλψ(v, λ) =
(A0 − λI)−1{ψ(v, λ)− (I −Q)DG(v + ψ(v, λ))Dλψ(v, λ)},
‖Dλψ(v, λ)‖≤C1{ε‖v‖+ εC2‖Dλψ(v, λ)‖},
‖Dλψ(v, λ)‖≤C3ε‖v‖ for all ‖v‖ ≤ δ(ε), λ ∈ (λ0 − δ, λ0 + δ).

(I.21.11)

Clearly, ε > 0 is sufficiently small, and Ci are constants for i = 1, 2, 3. The
Bifurcation Equation Φ(v, λ) = 0 (cf. (I.2.9) and (I.21.8)) in this case is

QG(v + ψ(v, λ)) = (λ− λ0)v.(I.21.12)

All norms in the finite-dimensional space N ⊂ X are equivalent. Accord-
ing to our convention, the norm for v ∈ N ⊂ X in the estimates of (I.21.10),
(I.21.11) is the norm of X , but in the sequel, we switch to ‖v‖2 = (v, v). In
view of (I.21.12), we define

g(v, λ) ≡ λ− λ0 − (G(v + ψ(v, λ)), v)/‖v‖2, v �= 0,
g(0, λ) ≡ λ− λ0, which is continuous near (0, λ0),
Dλg(v, λ) = 1− (DG(v + ψ(v, λ))Dλψ(v, λ), v)/‖v‖2, v �= 0,
Dλg(0, λ) = 1, which is continuous by (I.21.11)3 as well.

(I.21.13)

Clearly, g(0, λ0) = 0, and by the Implicit Function Theorem for g : Ũ2 ×
(λ0 − δ, λ0 + δ) → R there is a continuous solution λ : Ũ2 → (λ0 − δ, λ0 + δ)
(where 0 ∈ Ũ2 ⊂ N is shrunk, if necessary) such that

g(v, λ(v)) = 0 for all v ∈ Ũ2 ⊂ N, λ(0) = λ0.(I.21.14)

Since Dvg(v, λ) exists and is continuous for v ∈ Ũ2\{0}, we obtain also
that the function λ = λ(v) is continuously differentiable on Ũ2\{0}. Next, we
define

χ : Ũ2 → R ∩X by χ(v) = ψ(v, λ(v)).(I.21.15)

The function χ is continuous on Ũ2, χ(0) = 0, and by (I.21.10), Dχ(0) = 0.
The following estimates for Dχ(v) for v �= 0 prove that χ ∈ C1(Ũ2, R ∩X).
For z ∈ N , equation (I.21.9)1 gives for v �= 0,

(A0 − λ(v + tz)I)χ(v + tz) + (I −Q)G(v + tz + χ(v + tz)) = 0,
and after differentiation with respect to t at t = 0,
(A0 − λ(v)I)Dχ(v)z − (∇λ(v), z)χ(v)
+(I −Q)DG(v + χ(v))(z +Dχ(v)z) = 0.

(I.21.16)

Equation (I.21.14) gives, for v �= 0,
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λ(v + tz)− λ0 = (G(v + tz + χ(v + tz)), v + tz)/‖v + tz‖2,
and after differentiation with respect to t at t = 0,
(∇λ(v), z) = (DG(v + χ(v))(z +Dχ(v)z), v)/‖v‖2
+(G(v + χ(v)), z)/‖v‖2 − 2(G(v + χ(v)), v)(v, z)/‖v‖4.

(I.21.17)

Inserting this expression into (I.21.16)3 and using

‖(A0 − λ(v)I)−1‖L(R,R∩X) ≤ C4 for all v ∈ Ũ2,(I.21.18)

we obtain the estimate

‖Dχ(v)z‖ ≤ C5{ ‖DG(v + χ(v))‖ (‖z‖+ ‖Dχ(v)z‖)
+ ‖DG(v + χ(v))‖ (‖z‖+ ‖Dχ(v)z‖)‖χ(v)‖/‖v‖
+ 3(‖G(v + χ(v))‖/‖v‖)(‖χ(v)‖/‖v‖)‖z‖}.

(I.21.19)
Concerning the choice of norms in (I.21.19) we have to be careful: (I.21.18)
is true if R is endowed with the norm of Z and R ∩X is given the norm of
X . Consequently, the operator norm DG(v + χ(v)) is the norm of L(X,Z),
and the norm of G(v + χ(v)) is the norm of Z. Finally, the norms of χ(v)
and Dχ(v)z are the norms of X . In order to obtain (I.21.19), observe that
for y ∈ Z, v ∈ N , by continuity of the scalar product on Z, we can estimate
|(y, v)| ≤ C6‖y‖‖v‖ with both norms in Z. For x ∈ X the same argument
leads to |(x, v)| ≤ C7‖x‖‖v‖ with norm of x in X . For the elements v, z ∈ N
we can switch to the equivalent norm induced by ( , ).

By DG(0) = 0, χ(0) = 0, and Dχ(0) = 0, we have

‖DG(v + χ(v))‖ → 0, ‖G(v + χ(v))‖/‖v‖ → 0,
‖χ(v)‖/‖v‖ → 0 as v → 0,

(I.21.20)

so that (I.21.19) implies

‖Dχ(v)z‖/‖z‖ → 0 as v → 0,
for all z ∈ N\{0}, proving that

χ ∈ C1(Ũ2, R ∩X) with Dχ(0) = 0.
(I.21.21)

Choose δ1 > 0 such that {v ∈ N |(v, v) ≤ δ21} ⊂ Ũ2 and define

M = {v + χ(v)|v ∈ N, (v, v) ≤ δ21} ⊂ X ⊂ Z,
Sε = {y ∈ Z|(y, y) = ε2} ⊂ Z,
Mε = M ∩ Sε ⊂ X ⊂ Z.

(I.21.22)

Since dimN = n, say, property (I.21.21) implies that M and Mε are compact
inX . But both sets clearly have the structure of manifolds. Being the injective

image of an open set in N with injective derivative I +Dχ(v), the set
◦
M=

{v + χ(v)|(v, v) < δ21} is an n-dimensional manifold with tangent space
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Tx

◦
M= (I +Dχ(v))N at x = v + χ(v) ∈ ◦

M .(I.21.23)

The sphere Sε is a manifold in Z with codimension one and tangent space
TySε = {z ∈ Z|(z, y) = 0}. Now

(v +Dχ(v)v, x) = (v +Dχ(v)v, v + χ(v))
= ‖v‖2 + (Dχ(v)v, χ(v))
≥ ‖v‖2 − C8‖Dχ(v)‖ ‖χ(v)‖‖v‖ ≥ 1

2‖v‖2 > 0
by (I.21.20), (I.21.21) if δ1 > 0 is small enough.

(I.21.24)

This means that (I + Dχ(v))v ∈ Tx

◦
M \TxSε, that

◦
M and Sε intersect

transversally (provided that 0 < ε ≤ ε0 is small), and that

Mε ⊂ U ⊂ X is a compact (n− 1)-dimensional
C1-manifold with tangent space

TxMε = Tx

◦
M ∩TxSε = {z ∈ Tx

◦
M |(z, x) = 0}.

(I.21.25)

Finally, (I.19.28) shows also that

Tx

◦
M= span[(I +Dχ(v))v, TxMε] if x = v + χ(v) ∈ Mε.(I.21.26)

By compactness, the potential f : Mε → R (cf. (I.21.2)) has a minimizer
and a maximizer on Mε. Let x = x(ε) satisfying (x, x) = ε2 be one of the at
least two such extremals. Then a simple argument considering curves in Mε

through x proves that

(F (x), z) = 0 for all z ∈ TxMε,
since F (x) = ∇f(x) with respect to ( , ).

(I.21.27)

By orthogonality of TxMε to x, cf. (I.21.25)3,(
F (x) − 1

ε2
(F (x), x)x, z

)
= 0 for all z ∈ span[x, TxMε].(I.21.28)

Let x = v + χ(v), ‖v‖2 = (v, v) < δ21 . By definition (I.21.15) and (I.21.9)1,

(I −Q)F (x) = λχ(v) with λ = λ(v), whence
(F (x), χ(v)) = λ‖χ(v)‖2 , since Qχ(v) = 0.

(I.21.29)

By construction of λ = λ(v) via (I.21.13), (I.21.14),

(F (x), v) = (A0x+G(x), v)
= (x,A0v) + (G(v + ψ(v, λ)), v)
= (v,A0v) + (λ− λ0)‖v‖2
= λ0‖v‖2 + (λ− λ0)‖v‖2 = λ‖v‖2,

(I.21.30)
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which implies by (I.21.29),

(F (x), x) = (F (x), v + χ(v))
= λ(‖v‖2 + ‖χ(v)‖2) = λ‖x‖2 = λε2,

(I.21.31)

since v and χ(v) are orthogonal with respect to ( , ). (Observe that
we switched to the norm induced by the scalar product ( , ).) Inserting
(I.21.31) into (I.21.28) gives

(F (x) − λx, z) = 0 for all z ∈ span[x, TxMε].(I.21.32)

By (I −Q)(F (x) − λx) = 0 (cf. (I.21.9)1) we finally obtain

(F (x)− λx, z) = 0 for all z ∈ span[x, TxMε, R].(I.21.33)

We claim that span[x, TxMε, R] = Z. Let y ∈ Z. Then

y = (I +Dχ(v))Qy + (I −Q)y −Dχ(v)Qy.(I.21.34)

Since Qy ∈ N , the first summand belongs to Tx

◦
M , cf. (I.21.23), and the

second and third summands are in R. Therefore,

span[Tx

◦
M,R] = Z.(I.21.35)

Furthermore, for x = v + χ(v) the vector (I + Dχ(v))v ∈ span[v,R] =

span[x,R] so that in view of (I.21.26), Tx

◦
M⊂ span[x, TxMε, R]. By (I.21.35)

this proves that span[x, TxMε, R] = Z.
Since ( , ) is a scalar product (cf. (I.3.1)), relation (I.21.33) im-

plies (I.21.6) with λ(ε) = λ(v(ε)) such that v(ε) + χ(v(ε)) = x(ε) with
(x(ε), x(ε)) = ε2. By ‖v(ε)‖2 = (x(ε), v(ε)) ≤ ε‖v(ε)‖ we see that v(ε) → 0
and λ(ε) → λ0 as ε ↘ 0, cf. (I.21.14). 
�

Theorem I.21.2 is false, in general, if the operator F has no potential. This
is seen by the simple counterexample

F : R2 → R2 given by F (x) = F (x1, x2) =

(−x3
2

x3
1

)
.(I.21.36)

Then for every λ ∈ R the equation F (x) = λx has only the trivial solution
x = 0, although (I.21.3) is satisfied for A0 = DF (0) = 0 and λ0 = 0.

Equation (I.21.6)1 is special in the sense that the parameter λ appears
linearly. This is due to the fact that in this approach λ plays the role of a
Lagrange multiplier. The linear dependence on x on the right-hand side of
(I.21.6)1, however, can be generalized to a more general constraint; cf. [14].
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The existence of a curve or a connected set of nontrivial solutions through
(0, λ0) is discussed in [14], [9]. In view of the counterexample in [14], one needs
more assumptions on F .

In Section II.7 we alter the linear dependence on the parameter λ; i.e., we
consider general equations F (x, λ) = 0, where F (·, λ) is a potential operator
in the sense of Definition I.3.1 for all λ ∈ (λ0 − δ, λ0 − δ).

By Theorem I.21.2, equation (I.21.6) has at least two solutions (x, λ). This
is due to the fact that the potential f : Mε → R has at least two “critical
points,” namely, its two extremals, and not more, in general. A (relatively)
critical point of f is, by definition, an x ∈ Mε such that (∇f(x), z) = 0 for
all z ∈ TxMε; cf. (I.21.27).

If we assume more symmetry of the problem, however, the number of
critical points is considerably increased. It is known, in particular, that even
functionals on the (n− 1)-dimensional sphere S1 ⊂ Rn have at least n pairs
(x,−x) of critical points. Introducing the notion of “genus” permits a gen-
eralization to even functions on symmetric manifolds Mε = −Mε that are
diffeomorphic to S1 via an odd diffeomorphism; cf. [118], [150] for more de-
tails.

Assume that 0 ∈ U = −U ⊂ X and that

f and F in (I.21.2) satisfy
f(−x) = f(x), F (−x) = −F (x).

(I.21.37)

Then, by uniqueness, the function ψ in (I.21.8) is odd,

ψ(−v, λ) = −ψ(v, λ),(I.21.38)

and for the same reason, the function λ solving (I.21.14) is even,

λ(−v) = λ(v), so that
χ(−v) = ψ(−v, λ(−v)) = −ψ(v, λ(v)) = −χ(v).

(I.21.39)

Therefore, Mε as defined in (I.21.22) satisfies Mε = −Mε, and it is diffeo-
morphic to S1 ⊂ N via

h(x) = v/
√
ε2 − ‖χ(v)‖2 for

x = v + χ(v) ∈ Mε; i.e., ‖v‖2 + ‖χ(v)‖2 = ε2.
(I.21.40)

Consequently, if dimN = n, the even potential f : Mε → R has at least n
pairs (x,−x) of critical points in Mε for which (I.21.27) is valid. This proves
the following corollary:

Corollary I.21.3 If under the same assumptions as for Theorem I.21.2 the
mapping F is odd, i.e.,

F (−x) = −F (x) for all x ∈ U = −U ⊂ X,
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then for every sufficiently small ε > 0 there exist at least n pairs of solutions
(±x(ε), λ(ε)) ∈ X × R of

F (x) = λx,
(x(ε), x(ε)) = ε2, λ(ε) → λ0 as ε ↘ 0.

The number n is given by

n = dimN(DF (0)− λ0I).

I.22 Notes and Remarks to Chapter I

The method of Lyapunov–Schmidt goes back to the beginning of the last cen-
tury, when both authors used this reduction to study bifurcation for integral
equations.

It was known to most experts of that reduction principle that it preserves
the existence of a potential if the complementary spaces are chosen to be
orthogonal; see Section 4.11 of [19], [101], [146], for example.

The Implicit Function Theorem with a one-dimensional kernel is explicitly
stated in [28], and bifurcation with a one-dimensional kernel is proved in [27].

The Principle of Exchange of Stability in the nondegenerate case was
known in special cases [155] and stated in general in [28].

The Hopf Bifurcation, going back to E. Hopf [79], was generalized to infi-
nite dimensions in [29], whose proof, however, is different from that presented
here.

It was observed in [62], [157], [19] that the Lyapunov Center Theorem can
be proved by a Lyapunov–Schmidt reduction, yielding a “vertical” Hopf Bi-
furcation due to the Hamiltonian structure. A survey on Constrained Hopf Bi-
furcation for Hamiltonian, conservative, and reversible systems can be found
in [165], [57]. An application to nonlinear oscillations is explicitly stated in [94]
(Center Theorem) and in [132] (Hamiltonian Hopf Bifurcation). A different
approach to bifurcation of periodic solutions of reversible systems, including
a global version, is given in [117].

We give some references for the general local and global Hopf Bifurcation
Theorems described in Remark I.11.13: [3], [21], [134], [83], [48], [85].

The Principle of Exchange of Stability for nondegenerate Hopf Bifurcation
was first proved in [29].

As remarked in the text, the Continuation of Periodic Solutions as well
as Period-Doubling Bifurcation is commonly proved in the literature via a
continuation of fixed points of the Poincaré map and a bifurcation of fixed
points of its first iterate. The setting to consider zeros of a map in a loop
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space (where the perturbed period is a parameter) is taken from [94], [102],
[105]. The exchange of stability of periodic solutions at turning points and at
period-doubling bifurcations then follows as in the stationary case.

The Newton polygon method for the real case is described in [37], [144].
The results on Degenerate Bifurcation of stationary solutions and the ge-

neral Principle of Exchange of Stability are taken from [95]. A different proof
for that principle in a more general setting is given in [167].

Degenerate Hopf Bifurcation together with a general Principle of Ex-
change of Stability was proved in [93], [97]. Examples of degenerate stationary
as well as of periodic bifurcation are found in [96].

The Principle of Reduced Stability is taken from [111].
Bifurcation with a two-dimensional kernel is taken from [119]. Theorem

I.19.5 is essentially due to [9].
That one can overcome the degeneracy of a high-dimensional kernel by as

many parameters as the codimension of the range is well known. We refer to
[129], for example.

Bifurcation for potential operators using Lagrange’s multiplier rule was
first proved for completely continuous (compact) operators in [118], for non-
compact operators in [14], [135]. The proof here is adapted from [150]. The
refinement for odd operators goes back to Lyusternik; see [118], [150]. For
more information about the structure of bifurcating solutions as the param-
eter varies, we refer to [151]. The preservation of bifurcating solutions under
perturbations that have no potential is studied in [113].

We recommend the classical book on “branching” [163] and the actual
books on bifurcation [15], [131], [47] and [65].



Chapter II

Global Theory

II.1 The Brouwer Degree

Comparable to the importance of the Implicit Function Theorem for the local
analysis is the degree of a mapping for any global analysis. Although the the-
ory was originally invented and defined in topology we present an analytical
theory developed later. For finite-dimensional continuous mappings it is the
Brouwer degree; its extension to infinite dimensions is the Leray–Schauder
degree. Both degrees are special cases of a degree for proper Fredholm op-
erators if the mappings are of class C2. The proofs for this general class are
given in Section II.5, and they apply in a simplified form to the Brouwer and
the Leray–Schauder degree. Therefore we give in the next two sections only
the results and we refer to the literature; see [34],[6] for instance.

Step 1
We assume that

F : U → Rn is in C1(Ũ ,Rn), where

the closure U ⊂ Ũ ⊂ Rn and

U, Ũ are open and bounded sets in Rn.

(II.1.1)

The vector 0 ∈ Rn is assumed to be a regular value for F ; i.e.,

DF (x) ∈ L(Rn,Rn) is regular (bijective) for all

x ∈ U with F (x) = 0,
(II.1.2)

which could be possibly the empty set. Since U is compact, the solution set
of F (x) = 0 is finite, and the following definition is adequate:

Definition II.1.1 Assume (II.1.1), (II.1.2), and 0 �∈ F (∂U), where ∂U is
the boundary of U ⊂ Rn. Then

195, H. Kielhöfer Bifurcation Theory: An Introduction with Applications to Partial Differential 
Equations, Applied Mathematical Sciences 156, DOI 10.1007/978-1-4614-0502-3_3, 
© Springer Science+Business Media, LLC 2012



196 Chapter II. Global Theory

d(F,U, 0) =
∑
x∈U

F (x)=0

sign detDF (x),(II.1.3)

where
∑

∅ ./. = 0. The integer d(F,U, 0) is called the Brouwer degree of F with
respect to U and 0. The local degree around any (isolated) solution x0 ∈ U of
F (x) = 0, namely,

i(F, x0) = signdetDF (x0) when F (x0) = 0,(II.1.4)

is called the index of F at x0. Thus the degree of F with respect to U is the
sum of its indices.

The crucial property of the degree (II.1.3) is that it is continuous with
respect to its entries; i.e., it is locally constant in the following sense:

Let F̃ : U → Rn satisfy (II.1.1), (II.1.2), and 0 �∈ F̃ (∂U). Then there is a
δ > 0 such that

d(F̃ , U, 0) = d(F,U, 0), provided that

‖F̃ − F‖0,0 ≡ max
x∈U

‖F̃ (x)− F (x)‖ < δ(II.1.5)

(with some norm ‖ ‖ on Rn). This local constancy is also referred to as
homotopy invariance of the Brouwer degree. A main tool for its proof is
Sard’s Theorem, which also plays an essential role in the next step, when the
degree is extended to continuous mappings.

Step 2
Now we assume that

F : U → Rn is in C(U,Rn), where
U is a bounded and open set in Rn, and
0 �∈ F (∂U).

(II.1.6)

By the Stone–Weierstrass Approximation Theorem and by Sard’s Theo-
rem, there is a sequence of mappings (Fk)k∈N satisfying (II.1.1), (II.1.2), and
limk→∞ ‖Fk − F‖0,0 = 0.

By (II.1.5), the sequence (d(Fk, U, 0))k∈N is constant for k ≥ k0, so that
the following definition makes sense:

Definition II.1.2 Assume (II.1.6) and a sequence of mappings (Fk)k∈N sa-
tisfying (II.1.1), (II.1.2), and approximating the mapping F uniformly on
U :

lim
k→∞

‖Fk − F‖0,0 = 0.(II.1.7)

Then the Brouwer degree of F with respect to U and 0 is defined as

d(F,U, 0) = lim
k→∞

d(Fk, U, 0).(II.1.8)

Finally, for every y �∈ F (∂U), define
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d(F,U, y) = d(F − y, U, 0).(II.1.9)

Needless to say, due to (II.1.5), definition (II.1.8) is independent of the
choice of a sequence (Fk), and the degree (II.1.9) is continuous with re-
spect to F (using the maximum norm (II.1.5)), with respect to U (us-
ing the distance dist(Ũ , U) = supx̃∈Ũ dist(x̃, U) + supx∈U dist(x, Ũ ) where
dist(x̃, U) = infx∈U ‖x̃−x‖), and, finally, with respect to y in any component
of Rn\F (∂U) using any norm ‖ ‖ on Rn.

We summarize the essential properties of the Brouwer degree:

(1) Let I be the identity on Rn. Then for y �∈ ∂U ,

d(I, U, y) =

{
1 if y ∈ U,

0 if y �∈ U
(II.1.10)

(normalization).
(2) Let U1, U2 be open and bounded sets in Rn such that U1 ∩ U2 = ∅ and

F ∈ C(U1 ∪ U2,R
n) and y �∈ F (∂U1 ∪ ∂U2). Then

d(F,U1 ∪ U2, y) = d(F,U1, y) + d(F,U2, y)(II.1.11)

(additivity).
(3) The degree is homotopy invariant, which means that it is continuous (=

constant) with respect to its entries (F,U, y) in the sense described above.
A special case is the following homotopy invariance with respect to “non-
cylindrical domains”:
Let Rn+1 = {(τ, x)|τ ∈ R, x ∈ Rn}, U ⊂ Rn+1, be open and Uτ = {x ∈
Rn|(τ, x) ∈ U} be uniformly bounded (possibly empty) for τ in finite in-
tervals of R. Assume for F : U → Rn that F ∈ C(U,Rn) and that for a
continuous curve y : R → Rn,

y(τ) �= F (τ, x) for all (τ, x) ∈ ∂U.(II.1.12)

Then
d(F (τ, ·), Uτ , y(τ)) = const for all τ ∈ R,(II.1.13)

and d(F (τ, ·), Uτ , y(τ)) = 0 if Uτ0 = ∅ for some τ0 ∈ R.
We sketch the proof: For a < b let Ua,b = U ∩ ((a, b) × Rn), which is a
“noncylindrical” domain bounded in Rn+1. Solutions of F (τ, x) = y(τ) for
(τ, x) ∈ ∂Ua,b exist at most in Ua or Ub, and the proof of (II.1.13), using a
regular approximation via Sard’s Theorem, is then the same as for cylin-
drical domains (see also Section II.5 below, in particular Figure II.5.1).
Thus d(F (a, ·), Ua, y(a)) = d(F (b, ·), Ub, y(b)), and (II.1.13) is proved. (If
Ua = ∅ or Ub = ∅, this proof shows also that d(F (τ, ·), Uτ , y(τ)) = 0 for
τ ∈ [a, b].)

(4) The following property is crucial for the solution of nonlinear problems:
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If d(F,U, y) �= 0, then there is some
x ∈ U such that F (x) = y.

(II.1.14)

(5) Let F1, F2 ∈ C(U,Rn), U ⊂ Rn, such that F1(x) = F2(x) for all x ∈ ∂U .
Then for y �∈ F1(∂U) = F2(∂U),

d(F1, U, y) = d(F2, U, y),(II.1.15)

i.e., the degree depends only on the values of F on the boundary ∂U .
(6) If {x ∈ U |F (x) = y} ⊂ Ũ ⊂ U , then

d(F,U, y) = d(F, Ũ , y)(II.1.16)

(excision).

Finally, the notion of the index given in Definition II.1.1 is extended to
every isolated solution x0 ∈ U of F (x) = y. It is simply the local degree
around x0 ∈ U :

d(F,Br(x0), y) = i(F, x0),
where Br(x0) = {x ∈ Rn|‖x− x0‖ < r} for small r > 0

such that x0 is the only solution of F (x) = y in Br(x0).
(II.1.17)

(We omit the dependence on y.) Clearly, i(F, x0) ∈ Z but not necessarily in
{1,−1}.

A degree having the properties (1)–(6) is uniquely defined [8]. For U ⊂ R2

the number d(F,U, 0) coincides with the geometric notion of the winding
number of F along ∂U .

For a practical computation of the degree or the index, the following mul-
tiplicativity is useful. It follows immediately from the corresponding property
of the determinant in Step 1 and by approximation in Step 2. Let

Fi : U i → Rni be in C(U i,R
ni), where

Ui ⊂ Rni is bounded and open, i = 1, 2.
Define F = (F1, F2) : U = U1 × U2 → Rn1 × Rn2 by
F (x1, x2) = (F1(x1), F2(x2)).
If yi �∈ Fi(∂Ui), then y = (y1, y2) �∈ F (∂U), and
d(F,U, y) = d(F1, U1, y1)d(F2, U2, y2).

(II.1.18)
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II.2 The Leray–Schauder Degree

The extension of the Brouwer degree to infinite dimensions gives a powerful
tool for solving infinite-dimensional nonlinear problems. We summarize the
steps taken by Leray and Schauder in 1934 [125] (see also [34], e.g.).

There does not exist a degree for continuous vector fields on an infinite-
dimensional Banach space having all properties of the Brouwer degree. (There
are several topological reasons for this: There are no two components of the
group of regular endomorphisms corresponding to a negative and positive
determinant; there exists a continuous mapping from the closed unit ball
of an infinite-dimensional Banach space into itself having no fixed point,
although that mapping is homotopic to the identity in the sense of Section
II.1, and so on.)

A crucial part of the extension to infinite dimensions is the characteriza-
tion of the class of vector fields for which a degree can be defined. This class
should be large enough for reasonable applications, and the degree should be
as powerful as the Brouwer degree.

Definition II.2.1 Let f : U → X, where U ⊂ X is open and X is a (real)
Banach space. The mapping f is called completely continuous (compact) if
f is continuous and if f maps bounded subsets of U onto relatively compact
sets (whose closure is compact). If

F = I + f : U → X,(II.2.1)

where I is the identity on X and f is completely continuous, the mapping F
is called a compact perturbation of the identity.

For compact perturbations of the identity, Leray and Schauder succeeded
in defining a useful degree. A crucial observation is that a completely con-
tinuous mapping f : U → X on bounded domains U is uniformly ap-
proximated by finite-dimensional mappings fε : U → Xnε ⊂ X such that
dimXnε = nε < ∞ and ‖f − fε‖0,0 = supx∈U ‖f(x) − fε(x)‖ < ε, where
ε > 0 is arbitrarily small. (Here ‖ ‖ denotes the norm of the Banach space
X .) We define Fε = I + fε. If 0 �∈ F (∂U), then also (for small ε > 0)
0 �∈ Fε(∂Unε) for Unε = U ∩Xnε , which follows from the facts that due to the
complete continuity of f , F (∂U) is closed and that 0 has a positive distance
to F (∂U).

Therefore, if ε > 0 is small enough, the Brouwer degree d(Fε, Unε , 0) for
Fε restricted on Unε exists. Since this degree does not depend on the choice
of fε : U → Xnε , it is a good definition of a degree for F .

Definition II.2.2 Let U ⊂ X be open and bounded. Then for any compact
perturbation of the identity (II.2.1) with 0 �∈ F (∂U) the Leray–Schauder de-
gree

d(F,U, 0) ∈ Z(II.2.2)
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is defined as described above. For y �∈ F (∂U) we define

d(F,U, y) = d(F − y, U, 0).(II.2.3)

We summarize the essential properties of that degree.

(1) The normalization (II.1.10) holds as for the Brouwer degree.
(2) The additivity (II.1.11) holds as for the Brouwer degree.
(3) We state its homotopy invariance as follows (adequate for our applications

in bifurcation theory):
Let U ⊂ R×X = {(τ, x)|τ ∈ R, x ∈ X} be open and Uτ = {x ∈ X |(τ, x) ∈
U} be uniformly bounded (possibly empty) for τ in finite intervals of R.
We assume that

f : U → X is completely continuous;
y : R → X is a continuous curve such that
y(τ) �= x+ f(τ, x) for all (τ, x) ∈ ∂U .

(II.2.4)

Define f̃(τ, x) = f(τ, x)− y(τ). Then f̃ : U → X is completely continuous,
and therefore, for every ε > 0, there exists a finite-dimensional approxi-
mation f̃ε : Ua,b → Xnε on any bounded “noncylindrical” domain Ua,b =

U∩((a, b)×X) such that ‖f̃−f̃ε‖0,0 = sup(τ,x)∈Ua,b
‖f̃(τ, x)−f̃ε(τ, x)‖ < ε.

We define
F (τ, x) = x+ f(τ, x) for (τ, x) ∈ U(II.2.5)

and F̃ (τ, x) = x + f̃(τ, x), F̃ε(τ, x) = x + f̃ε(τ, x). By the closedness of
F (∂U) and by (II.2.4)3, the curve {y(τ)|τ ∈ [a, b]} has a positive distance
to F ((∂U)a,b), where (∂U)a,b = ∂U ∩ ([a, b] × X). Therefore, if ε > 0 is

small enough, the only solutions of F̃ε(τ, x) = 0 for (τ, x) ∈ Ua,b exist at
most in Uτ for τ ∈ [a, b] (and not in ∂Uτ ⊂ (∂U)τ ). By definition,

d(F (τ, ·), Uτ , y(τ)) = d(F̃ (τ, ·), Uτ , 0)

= d(F̃ε(τ, ·), Uτ ∩Xnε , 0) = const for τ ∈ [a, b],
(II.2.6)

by the homotopy invariance of the Brouwer degree described in Section
II.1. Therefore, under the assumption (II.2.4), we conclude for the Leray–
Schauder degree that

d(I + f(τ, ·), Uτ , y(τ)) = const for all τ ∈ R(II.2.7)

and d(I + f(τ, ·), Uτ , y(τ)) = 0 if Uτ0 = ∅ for some τ0 ∈ R.
(4) As for the Brouwer degree, we can easily conclude by approximation and

complete continuity that

if d(F,U, y) �= 0, then there is some
x ∈ U such that F (x) = y.

(II.2.8)

Finally, we state that
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(5) the Leray–Schauder degree depends only on the values of F on the boun-
dary ∂U , and

(6) the excision (II.1.16) holds as for the Brouwer degree.

As for the Brouwer degree, the local Leray–Schauder degree around an
isolated solution x0 ∈ U of F (x) = y is called the index of F at x0 (with
respect to y):

d(F,Br(x0), y) = i(F, x0),
where Br(x0) = {x ∈ X | ‖x− x0‖ < r} for small r > 0.

(II.2.9)

(We omit the dependence on y.) By the additivity and the excision property,
the Leray–Schauder degree is the sum of its indices if there are only finitely
many solutions of F (x) = y in U .

If F (x0) = y for some x0 ∈ U , F is Fréchet differentiable at x0, and
DF (x0) ∈ L(X,X) is an isomorphism (is regular), then the index i(F, x0) is
computed as follows:

Clearly, DF (x0) = I +Df(x0) for a compact perturbation of the identity
(II.2.1). If f is completely continuous, then Df(x0) ∈ L(X,X) is a compact
operator (see [125], [34]). The regularity ofDF (x0) = I+Df(x0) implies that
‖DF (x0)z‖ ≥ m‖z‖ for somem > 0, whence τ(F (x)−y)+(1−τ)DF (x0)(x−
x0) �= 0 for τ ∈ [0, 1] and ‖x− x0‖ = r for sufficiently small r > 0. Thus the
homotopy invariance implies that

i(F, x0) = d(F,Br(x0), y) = d(F − y,Br(x0), 0)
= d(DF (x0), Br(0), 0) = i(DF (x0), 0),

(II.2.10)

where we make the substitution x− x0 = z.

The computation of the index of DF (x0) = I +Df(x0) = I +K for some
compact K ∈ L(X,X) was already accomplished by Leray and Schauder
[125]. We define a homotopy I + τK for τ ∈ [0, 1] from the identity I to
I + K. If for some τk ∈ (0, 1) the operator I + τkK is not regular, then
μk = −1/τk ∈ (−∞,−1) is an eigenvalue of K. By the Riesz–Schauder
Theory, there are only finitely many such eigenvalues in (−∞,−1) all having
a finite algebraic multiplicity. Starting from 1 for the identity I, the index
changes at each τk = −1/μk by (−1)mk , wheremk is the algebraic multiplicity
of μk. This gives finally the Leray–Schauder formula

i(I +K, 0) = (−1)m1+···+m� , where
μ1, . . . , μ	 are all eigenvalues of K in (−∞,−1),
and mk is the algebraic multiplicity of μk, k = 1, . . . , �.

(II.2.11)

If there is no eigenvalue of K in (−∞,−1), then i(I +K, 0) = 1.
We give the proof of formula (II.2.11):
Let A(τ) = I + τK for τ near τk such that −1/τk is an eigenvalue of K of

algebraic multiplicity mk. Denote by Ek ⊂ X the generalized eigenspace of
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dimension mk. Then 1−(τ/τk) is an eigenvalue of A(τ) of algebraic multiplic-
ity mk with the same generalized eigenspace Ek for all τ near τk. Decompose
X = Ek ⊕Xk so that Xk is a complement that is invariant for A(τ) for all
τ near τk (choose Xk invariant for K). Identify Ek ⊕Xk with Ek ×Xk and
x = v + w according to this decomposition with x = (v, w). The operator
A(τ) ∈ L(X,X) then decomposes as

A(τ) = (A(τ)|Ek
, A(τ)|Xk

) ≡ (A1,k(τ), A2,k(τ)),
(A1,k(τ), A2,k(τ)) : Ek ×Xk → Ek ×Xk,
A1,k(τ) ∈ L(Ek, Ek), A2,k(τ) ∈ L(Xk, Xk),
which is an isomorphism for all τ near τk.

(II.2.12)

Therefore, the index i(A2,k(τ), 0) is defined, and by (II.2.10), it is given by

i(A2,k(τ), 0) = d((I + τK)|Xk
, U2,k, 0),(II.2.13)

where U2,k is a neighborhood of 0 in Xk. Clearly, i(A2,k(τ), 0) = const for τ
near τk by homotopy invariance. The degree (II.2.13) is defined by a finite-
dimensional approximation of K on U2,k,

Kε : U2,k → Xk,nε ⊂ Xk, dimXk,nε < ∞,(II.2.14)

which is not linear, in general:

d((I + τK)|Xk
, U2,k, 0) = d(I + τKε, U2,k ∩Xk,nε , 0).(II.2.15)

Set I+τKε = A2,ε(τ) and U2,k∩Xk,nε = U2,ε. Then, for a small neighborhood
U1,k of 0 in Ek, we obtain from (II.1.18) (recall that dimEk = mk)

i(I + τK, 0) = i(A(τ), 0)
= d(A(τ), U1,k × U2,k, 0)
= d((A1,k(τ), A2,k(τ)), U1,k × U2,k, (0, 0))
= d((A1,k(τ), A2,ε(τ)), U1,k × U2,ε, (0, 0))
= d(A1,k(τ), U1,k, 0)d(A2,ε(τ), U2,ε, 0)
= i((A1,k(τ), 0)i(A2,k(τ), 0).

(II.2.16)

By (II.1.4),

i(A1,k(τ), 0) = signdet((I + τK)|Ek
) = sign

(
1− τ

τk

)mk

,(II.2.17)

which changes by (−1)mk at τ = τk. Since i(A2,k(τ), 0) = const for τ near
τk, this proves (II.2.11).

The eigenvalues μ of K = Df(x0) in (−∞,−1) give eigenvalues 1 + μ in
(−∞, 0) of I + f(x0) = DF (x0) and vice versa. Formula (II.2.11) motivates
the definition of an index for a class of admissible Fredholm operators given
in Section II.5.
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II.3 Application of the Degree in Bifurcation Theory

As in Chapter I, we study nonlinear parameter-dependent problems

F (x, λ) = 0, where
F : U × V → X with open sets
U ⊂ X, V ⊂ R.

(II.3.1)

We assume the “trivial solution” {(0, λ)|λ ∈ V } and that U is a neighborhood
of 0, possibly U = X and w.l.o.g. V = R. Furthermore, we need F ∈ C(U ×
V,X) and that DxF (0, λ) exists such that DxF (0, ·) ∈ C(V, L(X,X)). If
X = Rn, then we use the Brouwer degree; if X is an infinite-dimensional
(real) Banach space, then we assume that F (x, λ) = x + f(x, λ) and that
f : U×V → X is completely continuous. Thus for F (·, λ) the Leray–Schauder
degree is applicable.

A necessary condition for bifurcation from the trivial solution line is
(I.1.6). In our case, the Riesz–Schauder Theory implies that

0 is an isolated eigenvalue of finite algebraic
multiplicity m of DxF (0, λ0) for some λ0 ∈ R.

(II.3.2)

(For a spectral theory, the real space X is complexified as in Section I.8.)
It is crucial for bifurcation at (0, λ0) how the eigenvalue 0 perturbs for

DxF (0, λ) when λ varies in a neighborhood of λ0. As shown in [86], Sections
II.5.1 and III.6.4, the number m is an invariant in the following sense: The ge-
neralized eigenspace Eλ0 of the eigenvalue 0 of DxF (0, λ0) having dimension
m is perturbed to an invariant space Eλ of DxF (0, λ) of dimension m, too,
and all perturbed eigenvalues near 0 (the so-called 0-group) are eigenvalues
of the finite-dimensional operator DxF (0, λ) restricted to the m-dimensional
invariant space Eλ. The eigenvalues in that 0-group depend continuously on
λ.

We shall prove that a necessary and sufficient condition for bifurcation is
that the sign of det(DxF (0, λ)|Eλ

) change at λ = λ0. (The necessity is seen
by the counterexample (II.7.18) below.) In terms of the eigenvalues in the
0-group, this condition is expressed by the notion of an odd crossing number:

Definition II.3.1 Define σ<(λ) = 1 if there are no negative real eigenval-
ues in the 0-group of DxF (0, λ) and σ<(λ) = (−1)m1+···+mk if μ1, . . . , μk

are all negative real eigenvalues in the 0-group having algebraic multiplicities
m1, . . . ,mk, respectively. If

DxF (0, λ) is regular for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ)
and if σ<(λ) changes at λ = λ0,

(II.3.3)

then DxF (0, λ) has an odd crossing number at λ = λ0.
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By (II.3.3)1, σ
<(λ) is constant on (λ0 − δ, λ0) and on (λ0, λ0 + δ). It can

change only if an odd number of negative real eigenvalues leave the half-axis
(−∞, 0) through 0. Since nonreal eigenvalues exist only in complex conjugate
pairs of equal multiplicity, an odd crossing number of a family DxF (0, λ) in
the sense of Definition II.3.1 means that an odd number of eigenvalues in
the 0-group (counting multiplicities) leave the left complex half-plane when
λ passes through λ0. (It does not mean that the total number of eigenvalues
in the 0-group of DxF (0, λ) in the negative complex half-plane is constant
on (λ0− δ, λ0) and changes only at λ = λ0. If this is the case, we say that the
local Morse index ofDxF (0, λ) changes at λ = λ0; cf. Definition II.7.1 below.)
If X = Rn, then DxF (0, λ) has an odd crossing number at λ = λ0 if and
only if detDxF (0, λ) �= 0 for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ) and detDxF (0, λ)
changes sign at λ = λ0.

By (II.3.3)1, the index i(DxF (0, λ), 0) exists locally for λ �= λ0, and for-
mula (II.2.11) (or (II.1.4)) shows that

an odd crossing number of DxF (0, λ)
= I +Dxf(0, λ) ≡ I +K(λ) at λ = λ0

means that the index i(DxF (0, λ), 0) jumps
at λ = λ0 from +1 to −1 or vice versa.

(II.3.4)

This change of the index is the key for the following Krasnosel’skii
Bifurcation Theorem:

Theorem II.3.2 If DxF (0, λ) has an odd crossing number at λ = λ0, then
(0, λ0) is a bifurcation point for F (x, λ) = 0 in the following sense: (0, λ0) is
a cluster point of nontrivial solutions (x, λ) ∈ X × R, x �= 0, of F (x, λ) = 0.

Proof. Assume that there is a neighborhood of (0, λ0) in X ×R containing
only the trivial solutions (0, λ). Then there exist an interval [λ0 − δ, λ0 + δ]
and a ball Br(0) such that there is no solution of F (x, λ) = 0 on ∂Br(0) for
all λ ∈ [λ0 − δ, λ0 + δ]. By the homotopy invariance of the Leray–Schauder
degree,

d(F (·, λ), Br(0), 0) = const for λ ∈ [λ0 − δ, λ0 + δ],(II.3.5)

contradicting the assumption that

i(DxF (0, λ), 0) = d(F (·, λ), Br(0), 0) (cf. (II.2.10))(II.3.6)

changes at λ = λ0 (see (II.3.4)). 
�
The classical special case of Theorem II.3.2 is the following: F (x, λ) =

x + λf(x), f : U → X , is completely continuous for some neighborhood
U of 0, and 0 is an eigenvalue of I + λ0Df(0) = DxF (0, λ0) of odd al-
gebraic multiplicity for some λ0 �= 0. (Equivalently, we find in the litera-
ture that −1/λ0 is an eigenvalue of Df(0) or that −λ0 is a characteristic
value of Df(0).) By the linear dependence on the parameter λ, the derivative
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DxF (0, λ) = I + λDf(0) = I + λK has an odd crossing number at λ = λ0

(see the Leray–Schauder formula (II.2.11)), which implies bifurcation.

A drawback of Theorem II.3.2 is that it gives no information on the struc-
ture of the set of nontrivial solutions near (0, λ0): Is there really a “branch”
of nontrivial solutions emanating at (0, λ0)? The notion “branch” implies
that the set is connected in X ×R. This property and more is proved in the
Global Rabinowitz Bifurcation Theorem:

Theorem II.3.3 Assume that F ∈ C(X × R, X), F (x, λ) = x + f(x, λ),
where f : X × R → X is completely continuous, and DxF (0, ·) = I +
Dxf(0, ·) ∈ C(R, L(X,X)). Let S denote the closure of the set of nontriv-
ial solutions of F (x, λ) = 0 in X × R. Assume that DxF (0, λ) has an odd
crossing number at λ = λ0. Then (0, λ0) ∈ S, and let C be the (connected)
component of S to which (0, λ0) belongs. Then
(i) C is unbounded, or
(ii) C contains some (0, λ1), where λ0 �= λ1.

Proof. Assume that the Rabinowitz alternative (i) or (ii) does not hold.
Then C is bounded, and C contains the only trivial solution (0, λ0). By the
complete continuity of f : X × R → X (we tacitly assume in Theorem II.3.3
that F is everywhere defined on X × R), the set C is compact: If (x, λ) ∈ C,
then x = −f(x, λ), so that the projection of C on X is compact. Its projection
on R is compact, too, since it is bounded.

Let N be an open neighborhood of C in X × R and let K = N ∩ S.
Then K is compact and ∂N ∩ C = ∅. By a lemma from point-set topology
(the so-called Whyburn Lemma [169]) there exist disjoint compact subsets
A,B ⊂ K such that C ⊂ A, ∂N ∩S ⊂ B, and K = A∪B. Let Ũ be an open
neighborhood of A such that Ũ ∩ B = ∅. Then Ũ has the properties that
C ⊂ Ũ and ∂Ũ ∩ S = ∅. By possibly removing some trivial solutions from Ũ ,
we finally obtain

a bounded open set U ⊂ X × R such that
C ⊂ U, ∂U ∩ S = ∅, and

U ∩ {(0, λ)|λ ∈ R} = {0} × (λ0 − δ̃, λ0 + δ̃)

for some arbitrarily small δ̃ > 0.

(II.3.7)

By assumption (II.3.3)1, the trivial solution 0 ∈ X of F (x, λ) = 0 is isolated
for all λ ∈ (λ0− δ, λ0)∪ (λ0, λ0+ δ). Thus there exist radii r(λ) > 0 such that

∂Br(λ)(0) ∩ C = ∅ and
i(DxF (0, λ), 0) = d(F (·, λ), Br(λ)(0), 0)
for all λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ).

(II.3.8)

Let V = {(x, λ)|x ∈ Br(λ)(0), λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ)}. If r depends
continuously on λ, then V ⊂ X × R is open. We assume that r(λ0) = 0
extends r(λ) continuously on (λ0− δ, λ0+ δ). Define W = U\V . If 0 < δ̃ < δ,
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then the only solution of F (x, λ) = 0 on ∂W is (0, λ0), and the homotopy
invariance (II.2.7) of the Leray–Schauder degree implies that

d(F (·, λ),Wλ, 0) = const on (−∞, λ0) and
also on (λ0,∞) and
d(F (·, λ),Wλ, 0) = 0 for all λ �= λ0, since
Wλ = ∅ if |λ| is large.

(II.3.9)

By construction of the open set U , the only solutions of F (x, λ) = 0 on ∂U
are (0, λ0 − δ̃) and (0, λ0 + δ̃), and therefore by homotopy invariance,

d(F (·, λ), Uλ, 0) = const for λ ∈ (λ0 − δ̃, λ0 + δ̃).(II.3.10)

The additivity of the Leray–Schauder degree finally implies that

d(F (·, λ), Uλ, 0)
= d(F (·, λ), Vλ, 0) + d(F (·, λ),Wλ, 0)
= d(F (·, λ), Br(λ)(0), 0) = i(DxF (0, λ), 0)

for all λ ∈ (λ0 − δ̃, λ0) ∪ (λ0, λ0 + δ̃).

(II.3.11)

By (II.3.10), the index of the trivial solution is constant for λ ∈ (λ0− δ̃, λ0)∪
(λ0, λ0 + δ̃), contradicting an odd crossing number of DxF (0, λ) at λ = λ0;
cf. (II.3.4). 
�

Both alternatives of Theorem II.3.3 are possible. The simplest example of
(i) is the linear case F (x, λ) = DxF (λ, 0)x. Examples of alternative (ii) are
given in Section III.6. A refinement of Theorem II.3.3 is given in Theorem
II.5.9 below.

The main assumption of Theorems II.3.2 and II.3.3, namely, the odd cross-
ing number of DxF (0, λ) at some λ = λ0, is difficult to verify, in general,
when f(x, λ) does not depend linearly on λ. A possibility for a verification is
expounded in the next section.

II.4 Odd Crossing Numbers for Fredholm Operators
and Local Bifurcation

Let X and Z be real Banach spaces and assume that X ⊂ Z is continuously
embedded. The notion of an odd crossing number defined in Definition II.3.1
is readily extended to families of linear operators A(λ) ∈ L(X,Z) depending
continuously on λ ∈ R such that

A(λ) : Z → Z with domain of definition D(A(λ)) = X
is closed for each λ ∈ (λ0 − δ, λ0 + δ).

(II.4.1)
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An equivalent characterization of (II.4.1) is that the norm in X is equiva-
lent to the graph norm ‖x‖Z + ‖A(λ)x‖Z . This assumption is reasonable for
applications; cf. Section III.1.

Another suitable assumption is that

A(λ) ∈ L(X,Z) is a Fredholm operator of index zero
for each λ ∈ (λ0 − δ, λ0 + δ); cf. Definition I.2.1.

(II.4.2)

The case considered in Section II.3 in which A(λ) = I+Dxf(0, λ) ∈ L(X,X)
with compact Dxf(0, λ) is clearly a special case: By the Riesz–Schauder The-
ory, every linear compact perturbation of the identity is a Fredholm operator
of index zero.

In this section we assume that

0 is an isolated eigenvalue of A(λ0),(II.4.3)

which, by the Fredholm property, is an eigenvalue of finite geometric multi-
plicity: dimN(A(λ0)) < ∞. (As usual, for a spectral theory the real spaces X
and Z are complexified as in Section I.8.) The isolatedness of the eigenvalue
0 gives a stronger result (cf. [86], Section IV.5.4): The generalized eigenspace
Eλ0 of the eigenvalue 0 is finite-dimensional, so that the algebraic multipli-
city is finite, too. Furthermore, there is a decomposition into invariant closed
subspaces

Z = Eλ0 ⊕ Zλ0 , Eλ0 ⊂ X ⊂ Z,
X = Eλ0 ⊕Xλ0 , Xλ0 = Zλ0 ∩X,

(II.4.4)

such that the spectrum of A(λ0) ∈ L(Eλ0 , Eλ0) consists only of the eigenvalue
0, and 0 is in the resolvent set of A(λ0) ∈ L(Xλ0 , Zλ0); i.e., A(λ0) is an
isomorphism from Xλ0 onto Zλ0 . The eigenprojection P (λ0) onto Eλ0 is in
L(X,X) as well as in L(Z,Z). As already mentioned in Section II.3, the ge-
neralized eigenspace Eλ0 perturbs to Eλ of the same finite dimension, and the
eigenprojection P (λ) depends continuously on λ in L(X,X) and L(Z,Z) for
λ near λ0. The eigenvalue 0 of A(λ0) perturbs to eigenvalues of A(λ) near 0
(the so-called 0-group), which are the eigenvalues of A(λ) ∈ L(Eλ, Eλ) (which
is a finite-dimensional operator). Thus Definition II.3.1 is literally generalized
to a family of Fredholm operators satisfying (II.4.1)–(II.4.3):

Definition II.4.1 Define σ<(λ) = 1 if there are no negative real eigenvalues
in the 0-group of A(λ) and σ<(λ) = (−1)m1+···+mk if μ1, . . . , μk are all nega-
tive real eigenvalues in the 0-group having algebraic multiplicities m1, . . . ,mk,
respectively. If

A(λ) ∈ L(X,Z) is regular (is an isomorphism)
for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ) and if
σ<(λ) changes at λ = λ0,

(II.4.5)

then the family A(λ) has an odd crossing number at λ = λ0.
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The remarks given after Definition II.3.1 are literally valid also in this
generalized case: An odd crossing number means that an odd number of
real eigenvalues (counting multiplicities) in the 0-group of A(λ) leave the left
complex half-plane when λ passes through λ0.

In this section we show that an odd crossing number of A(λ) is detected
by the method of Lyapunov–Schmidt and that it implies local bifurcation for
Fredholm operators.

We decompose (cf. (I.2.2))

X = N ⊕X0, N = N(A(λ0)) ⊂ Eλ0 ,
Z = R⊕ Z0, R = R(A(λ0)),

(II.4.6)

and dimN = dimZ0 < ∞. Since P (λ0)|N = IN and P (λ) ∈ L(X,X) is
continuous, the projection P (λ) is injective on N for all λ near λ0. We show
that P (λ0) ∈ L(Z,Z) is also injective on Z0. Decompose z = r+z0 according
to (II.4.6)2, where r = A(λ0)x. Then P (λ0)z = A(λ0)P (λ0)x + P (λ0)z0 =
z − (I − P (λ0))z, whence z = (I − P (λ0))z +A(λ0)P (λ0)x+ P (λ0)z0. Since
(I−P (λ0))z ∈ R, the assumption P (λ0)z0 = 0 leads to z ∈ R, and by unique-
ness of the decomposition, this implies z0 = 0. By the continuous dependence
of P (λ) ∈ L(Z,Z) on λ, the injectivity is preserved for P (λ)|Z0 . Furthermore,
the assumption P (λ0)z0 ∈ R leads to z ∈ R as well, and therefore, z0 = 0.
Thus R ∩ P (λ0)Z0 = {0}, and the decompositions (II.4.6) yield the decom-
positions X = P (λ0)N ⊕X0, Z = R⊕ P (λ0)Z0, which are perturbed to

X = P (τ)N ⊕X0,
Z = R⊕ P (τ)Z0 for τ ∈ (λ0 − δ, λ0 + δ).

(II.4.7)

By P (λ0)N = N , the space P (τ)N is a continuous perturbation of N . Next,
we construct a continuous transition from the complement Z0 to P (λ0)Z0

(which is continuously extended to P (τ)Z0). We define the homotopyH(t)z =
(1 − t)z + tP (λ0)z, which connects IZ and P (λ0) smoothly in L(Z,Z) for
t ∈ [0, 1]. If z = r+z0 = A(λ0)x+z0 according to Z = R⊕Z0, then we showed
above that z = (I−P (λ0))z+A(λ0)P (λ0)x+P (λ0)z0. Since (I−P (λ0))z ∈ R,
this gives the decomposition z = r̃ + z̃0 according to Z = R⊕ P (λ0)Z0 with
z̃0 = P (λ0)z0. Therefore, z = (1 − t)r + tr̃ + (1 − t)z0 + tz̃0 = r̂ + H(t)z0
with r̂ ∈ R and z0 ∈ Z0. If H(t)z0 = 0, then z ∈ R and z0 = 0. This proves
that H(t)Z0 is a complement of R in Z for all t ∈ [0, 1] and H(0)Z0 = Z0,
H(1) = P (λ0)Z0.

To summarize, the complement P (τ)Z0 in (II.4.7)2 is a continuous per-
turbation of Z0 (by inserting the homotopy H between Z0 and P (λ0)Z0)
in the class of complements of R in Z. The decompositions (II.4.7) define
projections

Pτ : X → P (τ)N along X0,
Qτ : Z → P (τ)Z0 along R,

(II.4.8)
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so that Pλ0 = P : X → N along X0 is the Lyapunov–Schmidt projection
according to (II.4.6)1, and Qλ0 : Z → P (λ0)Z0 along R is homotopic to
Q : Z → Z0 along R, which is the Lyapunov–Schmidt projection according
to (II.4.6)2. This homotopy is given by Qt : Z → H(t)Z0 along R for t ∈ [0, 1].

Next, we decompose the invariant generalized eigenspaceEτ of A(τ). Since
P (τ)N ⊂ Eτ and P (τ)Z0 ⊂ Eτ , the decompositions (II.4.7) yield

Eτ = P (τ)N ⊕ (X0 ∩ Eτ ),
Eτ = (R ∩ Eτ )⊕ P (τ)Z0 for τ ∈ (λ0 − δ, λ0 + δ).

(II.4.9)

Therefore, Pτ |Eτ
and Qτ |Eτ

project according to the decompositions (II.4.9).
Finally, Pτ ∈ L(X,X) and Qτ ∈ L(Z,Z) depend continuously on τ near λ0.

We represent A(λ) : X → Z according to any decomposition (II.4.7)1 and
any decomposition Z = R⊕ P (τ)Z0 or Z = R⊕H(τ)Z0 as a matrix

A(λ) =

(
(I − Q̂)A(λ) (I − Q̂)A(λ)

Q̂A(λ) Q̂A(λ)

)
(II.4.10)

identifying X = P (τ)N ⊕X0 with P (τ)N ×X0 (whose elements are written
as columns) and Z = R⊕P (τ)Z0 or Z = R⊕H(t)Z0 with the corresponding
Cartesian product (whose elements are written as columns as well). The
projection Q̂ denotes Qτ or Qt depending on the choice of the complement
Q̂Z of R.

For all λ near λ0,

(I − Q̂)A(λ)|X0 ∈ L(X0, R) is an isomorphism,(II.4.11)

since this is true for λ = λ0. We define (with [(I − Q̂)A(λ)]−1 ∈ L(R,X0))

C(Q̂, λ) ≡
(
−Q̂A(λ)[(I − Q̂)A(λ)]−1 IQ̂Z

[(I − Q̂)A(λ)]
−1

0

)
,

C(Q̂, λ) : Z = R× Q̂Z → Q̂Z ×X0,

D(τ, Q̂, λ)

≡
(
Q̂A(λ){IP (τ)N − [(I − Q̂)A(λ)]−1(I − Q̂)A(λ)} 0

[(I − Q̂)A(λ)]
−1

(I − Q̂)A(λ) IX0

)
,

D(τ, Q̂, λ) : X = P (τ)N ×X0 → Q̂Z ×X0.

(II.4.12)

Then an easy computation yields

C(Q̂, λ)A(λ) = D(τ, Q̂, λ)

for all λ near λ0, τ near λ0, and for all Q̂.
(II.4.13)

Since
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C(Q̂, λ0) =

(
0 IQ̂Z

A(λ0)
−1 0

)
with A(λ0)

−1 ∈ L(R,X0)(II.4.14)

is an isomorphism, the same holds for all λ near λ0. This proves by (II.4.13)
and by the definition (II.4.12) of D(τ, Q̂, λ) for any λ near λ0 that

A(λ) ∈ L(X,Z) is an isomorphism ⇔
Q̂A(λ){IP (τ)N − [(I − Q̂)A(λ)]−1(I − Q̂)A(λ)} ≡ B(τ, Q̂, λ)

∈ L(P (τ)N, Q̂Z) is regular for all τ near λ0

and for all Q̂.

(II.4.15)

Next we consider A(λ) ∈ L(Eλ, Eλ).
By the definitions of Pλ and Qλ in (II.4.8) and by the fact that Pλ|Eλ

and Qλ|Eλ
project according to the decompositions (II.4.9) (for τ = λ), we

see that
C(Qλ, λ), D(λ,Qλ, λ) ∈ L(Eλ, Eλ) and
C(Qλ, λ)A(λ) = D(λ,Qλ, λ) in L(Eλ, Eλ).

(II.4.16)

Definition II.4.1 of an odd crossing number is equivalent to the following:

det(A(λ)|Eλ
) �= 0 for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ)

and det(A(λ)|Eλ
) changes sign at λ = λ0.

(II.4.17)

Since C(Qλ, λ)|Eλ
is regular for all λ ∈ (λ0−δ, λ0+δ), the equality (II.4.16)2

implies that A(λ) has an odd crossing number at λ = λ0 if and only if

det(D(λ,Qλ, λ)|Eλ
) �= 0 for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ)

and det(D(λ,Qλ, λ)|Eλ
) changes sign at λ = λ0.

(II.4.18)

According to Definition II.4.1 (or (II.4.17)1) and (II.4.15),

B(τ, Q̂, λ) ∈ L(P (τ)N, Q̂Z) is regular for every
λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ), for all τ ∈ (λ0 − δ, λ0 + δ),

and for all Q̂ = Qτ with τ ∈ (λ0 − δ, λ0 + δ)

or for all Q̂ = Qt with t ∈ [0, 1].

(II.4.19)

Fix λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ). Then B(τ, Q̂, λ) ∈ L(P (τ)N, Q̂Z) is
homotopic in the class of regular linear mappings to

B(λ0, Q, λ) = QA(λ)
{
IN − [(I −Q)A(λ)]−1(I −Q)A(λ)

}
∈ L(N,Z0), where Q : Z → Z0 along R; cf. (II.4.6).

(II.4.20)

(Note that [(I −Q)A(λ)]−1 ∈ L(R,X0).)
In particular, B(λ,Qλ, λ) ∈ L(P (λ)N,P (λ)Z0) is homotopic toB(λ0, Q, λ)

∈ L(N,Z0), and by definition (II.4.12) of D(λ,Qλ, λ), a change of sign of
det(D(λ,Qλ, λ)|Eλ) implies a change of sign of detB(λ,Qλ, λ) at λ = λ0.
Here we endow P (λ)N and P (λ)Z0 with bases such that B(λ,Qλ, λ) is re-
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presented by a quadratic matrix and detB(λ,Qλ, λ) is the determinant of
that matrix. By the homotopy we finally obtain the following theorem:

Theorem II.4.2 Let A(λ) ∈ L(X,Z) be a family of Fredholm operators sa-
tisfying (II.4.1), (II.4.2), and let 0 be an isolated eigenvalue of A(λ0). Choose
a Lyapunov–Schmidt decomposition (II.4.6) and fix bases in N and Z0 such
that we can consider the family B(λ0, Q, λ) in L(Rn,Rn) (see (II.4.20)) for
n = dimN = dimZ0. Then

A(λ) ∈ L(X,Z) has an odd crossing number
at λ = λ0 ⇔
B(λ0, Q, λ) ∈ L(Rn,Rn) has an odd crossing number
at λ = λ0 ⇔
detB(λ0, Q, λ) �= 0 for λ ∈ (λ0 − δ, λ0) ∪ λ0, λ0 + δ)
and detB(λ0, Q, λ) changes sign at λ = λ0.

(II.4.21)

II.4.1 Local Bifurcation via Odd Crossing Numbers

The structure of the family (II.4.20) is perfect for a Lyapunov–Schmidt re-
duction of a local bifurcation problem. We recall the essential steps.

Let F : U × V → Z be a mapping such that 0 ∈ U ⊂ X and λ0 ∈
V ⊂ R are open. We assume that F (0, λ) = 0 for all λ ∈ V and that F is a
nonlinear Fredholm operator with respect to x ∈ U and for all λ ∈ V : F ∈
C(U × V, Z) and DxF ∈ C(U × V, L(X,Z)) such that A(λ) ≡ DxF (0, λ) is
a family of Fredholm operators satisfying (II.4.1) and (II.4.2). Let 0 be an
isolated eigenvalue of A(λ0). In order to find nontrivial bifurcating solutions
of F (x, λ) = 0 near (0, λ0), a Lyapunov–Schmidt reduction as in Section I.2
is adequate. To this end we decompose the Banach spaces X and Z as in
(II.4.6), and according to Theorem I.2.3, the problem F (x, λ) = 0 for (x, λ)
locally near (0, λ0) is equivalent to an n-dimensional problem

Φ(v, λ) = 0 near (0, λ0) ∈ N × R.(II.4.22)

Here Φ : Ũ × Ṽ → Z0, where 0 ∈ Ũ ⊂ N and λ0 ∈ Ṽ ⊂ R, and Φ ∈
C(Ũ × Ṽ , Z0), DvΦ ∈ C(Ũ × Ṽ , L(N,Z0)). To be more precise, Φ(v, λ) =
QF (v+ψ(v, λ), λ), where Q : Z → Z0 along R is the projection, v ∈ Ũ ⊂ N ,
and ψ : Ũ× Ṽ → X0 solves (I−Q)F (v+ψ(v, λ), λ) = 0 for all (λ, v) ∈ Ũ× Ṽ ;
cf. Section I.2. Differentiating this equation with respect to v yields

(I −Q)DxF (v + ψ(v, λ), λ)(IN +Dvψ(v, λ)) ≡ 0.(II.4.23)

Inserting the trivial solution (v, λ) = (0, λ) into (II.4.23) gives, in view of
ψ(0, λ) = 0,
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Dvψ(0, λ) = −[(I −Q)DxF (0, λ)]−1(I −Q)DxF (0, λ)
∈ L(N,X0),
where (I −Q)DxF (0, λ)|X0 ∈ L(X0, R) is an isomorphism
for λ near λ0 and (I −Q)DxF (0, λ)|N ∈ L(N,R).

(II.4.24)

This gives for Φ(v, λ) = QF (v+ψ(v, λ), λ) the expression (recallDxF (0, λ) ≡
A(λ))

DvΦ(0, λ) = QA(λ){IN − [(I −Q)A(λ)]−1(I −Q)A(λ)}.(II.4.25)

(Note that [(I −Q)A(λ)]−1 ∈ L(R,X0) and X0 = (I − P )X .)
ThusDvΦ(0, λ) = B(λ0, Q, λ) (cf. (II.4.20)) and we can state the following

theorem:

Theorem II.4.3 Let Φ(v, λ) = 0 be an n-dimensional Bifurcation Equation
for the problem F (x, λ) = 0 obtained by the method of Lyapunov–Schmidt
as expounded in Section I.2. Assume the trivial solution F (0, λ) = 0 and
therefore Φ(0, λ) = 0 for all λ near λ0. Then

DxF (0, λ) ∈ L(X,Z) has an odd crossing number
at λ = λ0 ⇔
DvΦ(0, λ) ∈ L(N,Z0) ∼= L(Rn,Rn) has an odd
crossing number at λ = λ0 ⇔
det DvΦ(0, λ) changes its (nonzero) sign at λ = λ0.

(II.4.26)

Note that the decompositions (II.4.6), and therefore the function Φ, are
not unique.

An application of a finite-dimensional version of Theorem II.3.3 for
Φ(v, λ) = 0 finally yields a Bifurcation Theorem for Fredholm Opera-
tors:

Theorem II.4.4 Assume for F (x, λ) = 0 that the derivative DxF (0, λ) =
A(λ) along the trivial solution satisfies (II.4.1)–(II.4.3). If DxF (0, λ) has
an odd crossing number at λ = λ0, then (0, λ0) is a bifurcation point for
F (x, λ) = 0 in the following sense: The closure of the set of nontrivial solu-
tions near (0, λ0) contains a connected component to which (0, λ0) belongs.

Indeed, extend Φ to N × R → Z0, apply Theorems II.4.3 and II.3.3 to
Φ(v, λ) = 0, and recall that Φ(v, λ) = 0 gives all solutions of F (x, λ) = 0
locally near (0, λ0). By its construction, connected solution sets of Φ(v, λ) = 0
yield connected solution sets of F (x, λ) = 0; cf. Section I.2.

In the next section we improve Theorem II.4.4 by a global version in the
sense of Rabinowitz’s Theorem, Theorem II.3.3.

We give some special cases of Theorem II.4.4.
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Case 1
If dimN = 1, i.e., if 0 is a geometrically simple eigenvalue of A(λ0) =
DxF (0, λ0), then Φ(v, λ) = 0 is a one-dimensional Bifurcation Equation.
An odd crossing number of DvΦ(0, λ) means simply that the scalar function
DvΦ(0, λ) changes sign at λ = λ0 if it is expressed with respect to bases in
N = span[v̂0] and Z0 = span[v̂∗0 ]; cf. (I.4.20)–(I.4.22). Since DvΦ(0, λ0) = 0
(by Corollary I.2.4), a sufficient condition is D2

vλΦ(0, λ0) �= 0, provided that
the family A(λ) = DxF (0, λ) and therefore DvΦ(0, λ) is differentiable with
respect to λ. In this case, formula (II.4.25) gives (recall that Q : Z → Z0

along R)

D2
vλΦ(0, λ0) = Q

d

dλ
A(λ0)|N ∈ L(N,Z0) and

D2
vλΦ(0, λ0) �= 0 ⇔
d

dλ
A(λ0)v̂0 = D2

xλF (0, λ0)v̂0 �∈ R(DxF (0, λ0)) if

N(DxF (0, λ0)) = span[v̂0].

(II.4.27)

Condition (II.4.27)3 is the same as condition (I.5.3) of Theorem I.5.1. In this
case, the bifurcating solutions consist of a unique smooth curve.

The nondegeneracy (II.4.27) or (I.5.3), however, is violated in many simple
cases of an odd crossing number. Consider the example DxF (0, λ) = A(λ) =
A0 + (λ − λ0)I and N(A0) = span[v̂0]. Then

d
dλA(λ0)v̂0 = v̂0 �∈ R(A0) if

and only if the eigenvalue 0 is not only geometrically but also algebraically
simple (usually called simple). On the other hand, by its linear dependence
on λ, it is directly seen that the family A(λ) = A0 + (λ − λ0)I has an odd
crossing number at λ = λ0 if and only if the eigenvalue 0 has an odd algebraic
multiplicity. (In this case, the differentiated bifurcation function DvΦ(0, λ)
given in (II.4.25) is of order (λ − λ0)

m if m is the algebraic multiplicity of
0.) We admit that the evaluation of (II.4.25) is not simple, in general, and in
many cases the crossing number of the family A(λ) is of easier access.

A degenerate change of sign of DvΦ(0, λ) at λ = λ0, however, does not ne-
cessarily give a unique bifurcating curve as shown in Section I.16 even in the
analytic case. In the nonanalytic case, “Bifurcation with a One-Dimensional
Kernel” can indeed be as general as stated in Theorem II.4.4.

Remark II.4.5 It can easily be seen without knowledge of any degree that
a change of sign of DvΦ(0, λ) at λ = λ0 entails bifurcation from the trivial
solution line {(0, λ)} at λ = λ0. Namely, in the upper and lower (v, λ) half-
plane, the function Φ has opposite signs near the line {(0, λ)}, and these signs
change at λ = λ0; cf. Figure II.4.1.

By continuity and the mean value theorem, the function Φ has to have a
continuum of zeros emanating at (0, λ0), and that continuum exists globally
as described in Theorem II.3.3 (provided that Φ is globally defined). (The
idea for a proof of that “evident” statement can be taken from the proof of
Theorem I.19.2; see also Figure I.19.1.)
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In particular, the solution continua of Φ(v, λ) = 0, separating domains
where Φ is positive and negative, exist in the upper and lower (v, λ) half-
planes. This simple observation leads to a refinement of Theorem II.3.3; cf.
Theorem II.5.9 below.

Φ < 0

Φ = 0

++ +

Φ > 0

DvΦ(0, λ) > 0

− λ−
− − −

− +++

v

DvΦ(0, λ) < 0

Figure II.4.1

Case 2
Let dimN = n > 1 be odd. Assume again that A(λ) = DxF (0, λ) is differen-
tiable with respect to λ near λ = λ0, so that formula (II.4.27)1 holds. Since
DvΦ(0, λ0) = 0 (by Corollary I.2.4), we have

DvΦ(0, λ) =
d

dλ
DvΦ(0, λ0)(λ − λ0) +R(λ) in L(N,Z0)

= Q
d

dλ
A(λ0)|N (λ− λ0) +R(λ) (see (II.4.27)1).

(II.4.28)

Here R(λ) is a remainder such that limλ→λ0 R(λ)/(λ− λ0) = 0 in L(N,Z0).
Assume that

Q
d

dλ
A(λ0) ∈ L(N,Z0) is regular ⇔

D2
xλF (0, λ0)v̂ �∈ R(DxF (0, λ0))

for all v̂ ∈ N(DxF (0, λ0))\{0} ⇔
Z = R(DxF (0, λ0))⊕D2

xλF (0, λ0)N(DxF (0, λ0)) or

Z = R⊕ d

dλ
A(λ0)N.

(II.4.29)

Then, by (II.4.28),
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detDvΦ(0, λ) = det

(
Q

d

dλ
A(λ0)

)
(λ − λ0)

n + r(λ),

so that lim
λ→λ0

r(λ)/(λ − λ0)
n = 0.

(II.4.30)

(Here we identify L(N,Z0) with L(Rn,Rn), so that det(Q d
dλA(λ0)) is de-

fined.) By (II.4.29), det(Q d
dλA(λ0)) �= 0, and we conclude that

if (II.4.29) holds and dimN(DxF (0, λ0)) = n is odd,
then DvΦ(0, λ) has an odd crossing number at λ = λ0.
By Theorem II.4.3, DxF (0, λ) has an odd crossing
number at λ = λ0, too, and Theorem II.4.4
guarantees bifurcation for F (x, λ) = 0 at λ = λ0.

(II.4.31)

This bifurcation result is due to [168]. Observe that the number n is the
geometric multiplicity of the eigenvalue 0 ofDxF (0, λ0) and that the algebraic
multiplicity m = dimEλ0 can be arbitrarily large.

Remark II.4.6 An odd crossing number in Definitions II.3.1 and II.4.1
plays a crucial role in local and global bifurcation theorems; cf. Theorems
II.3.2, II.3.3, II.4.4, II.5.8, and II.5.9. By the simple counterexamples (II.7.18),
(II.7.19), it is indispensable for bifurcation, in general. Whereas its defini-
tion is transparent, its verification can be complicated. The computation of
eigenvalues of (infinite-dimensional) linear operators is not a simple task,
and the evaluation of the entire 0-group could be very involved. (Note, how-
ever, that for our applications in Chapter III we give cases in which it is
easy; cf. (III.2.36), for example.) Theorem II.4.3 tells that the determination
of an odd crossing number is reduced to a finite-dimensional problem, to be
more precise, to a problem whose dimension is the geometric multiplicity of
the critical eigenvalue 0. In view of its form (II.4.25), the evaluation of its
determinant could still be a challenge; cf., however, Case 1 of Theorem II.4.4.

There is a large literature in which one attempts to give a different ap-
proach to the crucial property of local and global bifurcation: It is found
under the notion of “odd multiplicity.” The Krasnosel’skii condition on
DxF (0, λ) = I + λDf(0) is an odd algebraic multiplicity of the eigenvalue
−1/λ0 of Df(0), and by the linear dependence on λ, this means an odd cross-
ing number of DxF (0, λ) at λ = λ0. In case of a nonlinear dependence on
λ, however, the common algebraic multiplicity of an eigenvalue has to be re-
placed by some multiplicity in which the family DxF (0, λ) apart from λ = λ0

is involved. Such a definition is rather complicated and not transparent at
all. Another drawback is that it applies only to families DxF (0, λ) depending
analytically on λ in a neighborhood of λ = λ0. If it depends only smoothly, it
applies only if some derivative with respect to λ does not vanish at λ = λ0. An
advantage is that there are explicit devices for computing odd multiplicities
in which the reduction (II.4.25) is used, too. An odd multiplicity is clearly
equivalent to an odd crossing number. In view of the complexity of odd mul-
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tiplicities, other approaches under fewer regularity assumptions are found in
the literature.

For details we refer to [154], [82], [133], [123], [43], [42], [146], [50], [84].
We prefer the notion of an odd crossing number, since it is more natural

and, moreover, since it is directly related to a change of Morse index; cf. De-
finition II.7.1. The Morse index is an important tool in Nonlinear Dynamics,
and an odd crossing number links Bifurcation Theory to that wide field; cf.
also Section II.7.

All approaches to bifurcation via odd multiplicities or odd crossing num-
bers are “linear theories” in the respect that the condition for bifurcation is
imposed only on the linearization along the trivial solution. The nonlinear
remainder is arbitrary in all these theories.

II.5 A Degree for a Class of Proper Fredholm Operators
and Global Bifurcation Theorems

In this section, X and Z are both real Banach spaces such that X ⊂ Z is
continuously embedded. We consider mappings F : U → Z, where U ⊂ X is
an open and bounded set. In order to define our admissible class of operators
we need some definitions.

Definition II.5.1 A class of linear operators A ∈ L(X,Z) is called admis-
sible if the following hold:
(i) A is a Fredholm operator of index zero.
(ii) A : Z → Z with domain of definition D(A) = X is closed.
(iii) The spectrum σ(A) in a strip (−∞, c)× (−iε, iε) ⊂ C for some c > 0,

ε > 0 consists of finitely many eigenvalues of finite algebraic multiplicity.
Their total number (counting multiplicities) in that strip is stable under
small perturbations in the class of A in L(X,Z).

We remark that property (ii) is a consequence of property (i), so that its
requirement could be omitted.

By the perturbation theory for closed operators as expounded in [86], any
isolated eigenvalue μ0 perturbs to its μ0-group of equal total finite multipli-
city. Property (iii) simply excludes that a perturbation of A creates a new
eigenvalue as a perturbation of −∞. This phenomenon is certainly excluded
for a class of operators A ∈ L(X,Z) whose spectra are locally uniformly
bounded from below. Definition II.5.1 is satisfied by classes of elliptic opera-
tors that are locally uniformly sectorial; cf. [52].

Definition II.5.2 Let U ⊂ X be open and bounded.
An operator F : U → Z is called admissible if
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(i) F ∈ C2(Ũ , Z), U ⊂ Ũ , where Ũ is open in X,
(ii) The class {DF (x)|x ∈ Ũ} ⊂ L(X,Z) is admissible according to Defini-
tion

II.5.1,
(iii) F is proper; i.e., the inverse image in U of a compact set in Z is compact

in X.

Definition II.5.2 is motivated by nonlinear differential operators whose
Fréchet derivatives are elliptic. For such operators Definition II.5.2 is verified
in Section III.5.

If X = Z, every compact perturbation of the identity (cf. Definition II.2.1)
is admissible if it is a C2-mapping. Indeed, its derivative is of the form I+K,
where K ∈ L(X,X) is compact, and Definition II.5.1 is satisfied by the
Riesz–Schauder Theory [170]: There are only finitely many eigenvalues of K
in a strip (−∞,−1 + c) × (−iε, iε) if 0 < c < 1 that are the eigenvalues of
I + K in (−∞, c) × (−iε, iε). Since the spectrum of I + K is bounded by
1 + ‖K‖, the total number of eigenvalues in that strip is stable under small
compact perturbations of K in L(X,X). Finally, property (iii) of Definition
II.5.2 is satisfied for F = I + f if f is completely continuous: If xn + f(xn) =
zn, the convergence of the sequences (zn) and (f(xn)) (w.l.o.g.) implies the
convergence of (xn), so that F is proper.

Step 1
Assume that y /∈ F (∂U) is a regular value for F ; i.e.,

DF (x) ∈ L(X,Z) is regular (is an isomorphism)
for all x ∈ U with F (x) = y (x ∈ F−1(y)).

(II.5.1)

By (II.5.1), the set F−1(y) (possibly empty) consists of isolated points {xj},
and by properness it is compact. Therefore, it is a finite set, so that we can
make the following definition:

Definition II.5.3 Assume that F is admissible and that y �∈ F (∂U) is a
regular value for F . Then

d(F,U, y) =
∑

x∈F−1(y)

i(F, x), where

i(F, x) = 1 if σ(DF (x)) ∩ (−∞, 0) = ∅,
i(F, x) = (−1)m1+···+m� if
σ(DF (x)) ∩ (−∞, 0) = {μ1, . . . , μ	}, and
mk is the algebraic multiplicity of μk, k = 1, . . . , �,

(II.5.2)

and
∑

∅ = 0.

As in Definition II.1.1, we call i(F, x) the index of F at x (where we omit
the dependence on y). Clearly, d(F,U, y) = d(F − y, U, 0).

Definition II.5.3 is motivated by the Leray–Schauder formula (II.2.11),
and if X = Z and F is a compact perturbation of the identity (cf. Definition
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II.2.1) of class C1, then Definition II.5.3 indeed gives the Leray–Schauder
degree, provided that y �∈ F (∂U) is a regular value for F .

Proposition II.5.4 The set of regular values y �∈ F (∂U) is open, and the
degree (II.5.2) is locally constant with respect to y. To be more precise, there
is a δ > 0 such that for all ỹ ∈ Bδ(y) = {ỹ ∈ Z|‖ỹ − y‖ < δ}, Definition
II.5.3 applies and

d(F,U, ỹ) = d(F,U, y).(II.5.3)

Proof. By properness, F is a closed map and y �∈ F (∂U) has a positive
distance to F (∂U). Therefore, Bδ(y) ∩ F (∂U) = ∅ if δ > 0 is small enough.
By (II.5.1), the map F is a diffeormorphism from a neighborhood Vj of any
xj ∈ F−1(y) in U onto a neighborhood of y. If δ > 0 is possibly decreased,
every ỹ ∈ Bδ(y) has one preimage x̃j in each Vj , and DF (x̃j) is regular.
Let V ⊂ U be the union of (finitely many, disjoint) open neighborhoods Vj

of xj ∈ F−1(y). Then U\V is closed, F (U\V ) is closed, and y �∈ F (U\V )
has a positive distance to F (U\V ). Therefore, if δ > 0 is small enough,
Bδ(y) ∩ F (U\V ) = ∅, so that F−1(Bδ(y)) ⊂ V and the sets F−1(y) and
F−1(ỹ) have the same (finite) cardinality for all ỹ ∈ Bδ(y). Consider the ho-
motopy y(τ) = y+τ(ỹ−y) ∈ Bδ(y) for τ ∈ [0, 1]. Then F−1({y(τ)|τ ∈ [0, 1]})
consists of continuously differentiable curves {x̃j(τ)|τ ∈ [0, 1]} connecting
xj ∈ F−1(y) to x̃j ∈ F−1(ỹ) in each neighborhood Vj of xj . Then DF (x̃j(τ))
is a continuous homotopy from DF (xj) to DF (x̃j) in the open set of regular
maps in L(X,Z). By admissibility of F according to Definition II.5.2, the
total number of eigenvalues of DF (x̃j(τ)) on (−∞, 0) is finite (counting mul-
tiplicities), and eigenvalues of DF (x̃j(τ)) can leave the real half-axis (−∞, 0)
only by nonreal complex conjugate pairs. Since by Definition II.5.1 (iii), the
total multiplicity of all perturbed eigenvalues is constant, the numbers of all
eigenvalues of DF (x̃j(τ)) in (−∞, 0) have the same parity for all τ ∈ [0, 1],
and (II.5.3) follows directly from Definition II.5.3. 
�

Step 2
If y is not a regular value for F , we find a sequence (yn)n∈N ⊂ Z with yn → y
in Z such that yn �∈ F (∂U) and all yn are regular values for F . This is the
result of Quinn–Sard–Smale [145]. (Originally, it was required that X be sep-
arable, so that every open covering of U contained a countable subcovering.
This stringent assumption is given up in [145].) Since there is no analogue
of the Stone–Weierstrass Approximation Theorem in infinite dimensions, we
cannot give up the smoothness of F as in the finite-dimensional case. The C2-
differentiability is needed in Theorem II.5.6 below, which states the crucial
property of the degree of Definition II.5.3, namely, that it is locally constant
when its entries are slightly perturbed in their admissible classes. In other
words, the homotopy invariance of that degree is valid. This implies that the
following definition makes sense:
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Definition II.5.5 Assume that F is admissible and that y �∈ F (∂U). Then
for a sequence (yn)n∈Z ⊂ Z of regular values for F such that yn → y and
yn �∈ F (∂U),

d(F,U, y) = lim
n→∞ d(F,U, yn).(II.5.4)

Clearly, d(F,U, y) = d(F − y, U, 0).

We give the arguments why the degree (II.5.4) is well defined: Let y0 and
y1 be regular values for F in Z\F (∂U). We define

F̃ : [0, 1]× U → Z by

F̃ (τ, x) = F (x) − τy1 − (1− τ)y0
(II.5.5)

and clearly,

d(F,U, y0) = d(F − y0, U, 0) = d(F̃ (0, ·), U, 0),
d(F,U, y1) = d(F − y1, U, 0) = d(F̃ (1, ·), U, 0).(II.5.6)

The map F̃ is of class C2, and its derivative D(τ,x)F̃ ∈ L(R × X,Z) is a

Fredholm operator of index 1. By properness of F , the map F̃ is proper, too.
According to the result of Quinn–Sard–Smale [145], the set of regular values
for F̃ is dense in Z, and by properness, it is also open in Z. (We sketch the
argument: Let y ∈ Z be a regular value for F̃ . If not empty, F̃−1(y) consists
of compact continuously differentiable curves in [0, 1]×U. Fix some point on
such a curve. Then a decomposition of R×X into the one-dimensional kernel
ofD(τ,x)F̃ , which is the tangent space to that curve, and some complementary

space X0 ⊂ R × X yields a regular operator D(τ,x)F̃ |X0 ∈ L(X0, Z). The

Implicit Function Theorem and the properness of F̃ imply that the curves
in F̃−1(y) are isolated, that there are only finitely many, that for ỹ ∈ Bδ(y)
for small δ > 0 the derivative D(τ,x)F̃ on F̃−1(ỹ) ⊂ [0, 1] × U is surjective,

and that the set F̃−1(ỹ) consists only of curves that are perturbations of the
curves in F̃−1(y); cf. the arguments in the proof of Proposition II.5.4.)

Since 0 ∈ Z is a regular value for F̃ (0, ·) and for F̃ (1, ·), according to
Proposition II.5.4 we find some ỹ near 0 such that (cf. (II.5.6))

d(F̃ (0, ·), U, ỹ) = d(F̃ (0, ·), U, 0) = d(F,U, y0),

d(F̃ (1, ·), U, ỹ) = d(F̃ (1, ·), U, 0) = d(F,U, y1),

and ỹ is also a regular value for F̃
defined in (II.5.5).

(II.5.7)

We return to the problem whether the degree (II.5.4) is well defined. If
y �∈ F (∂U), then it has a positive distance to F (∂U); i.e., ‖F (x)−y‖ ≥ d > 0
for all x ∈ ∂U . Next, we show that if y0, y1 are sufficiently close to y and if
ỹ is in a small neighborhood of 0, then the endpoints of all curves in F̃−1(ỹ)
are in the bottom {0} × U or in the top {1} × U of the cylinder [0, 1] × U .
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Indeed, let y0, y1 ∈ Bd/8(y), ỹ ∈ Bd/8(0). Then

‖F̃ (τ, x)− ỹ‖ = ‖F (x)− y0 + τ(y0 − y1)− ỹ‖
= ‖F (x)− y + y − y0 + τ(y0 − y1)− ỹ‖ ≥ d

2 > 0
for all (τ, x) ∈ [0, 1]× ∂U .

(II.5.8)

The proof that

d(F̃ (0, ·), U, ỹ) = d(F̃ (1, ·), U, ỹ),(II.5.9)

which implies in view of (II.5.7) that

d(F,U, y0) = d(F,U, y1),(II.5.10)

is the same as that of the more general Theorem II.5.6 below, where the
cylinder [0, 1]× U is replaced by a segment of a noncylindrical domain. This
finally proves that Definition II.5.5 makes sense and that (II.5.4) does not
depend on the choice of the sequence of regular values (yn)n∈N.

As mentioned before, if X = Z and F is a compact perturbation of the
identity of class C1, then Definition II.5.3 gives the Leray–Schauder degree,
provided that y �∈ F (∂U) is a regular value for F . The homotopy invariance
(II.5.9) implies that Definition II.5.5 is valid for the Leray–Schauder degree
as well. Thus all proofs in this section apply also for the Leray–Schauder
degree for its admissible class F = I + f . Note, however, that this approach
requires that F be a C2-mapping, in particular, that smoothness is required
in the proofs of Proposition II.5.4 and Theorem II.5.6 below.

Theorem II.5.6 The degree of Definition II.5.5 is homotopy invariant in
the following sense: Let U ⊂ R × X = {(τ, x)|τ ∈ R, x ∈ X} be open and
Uτ = {x ∈ X |(τ, x) ∈ U} be uniformly bounded (possibly empty) for τ in
finite intervals of R. We assume that

F ∈ C2(Ũ , Z), where U ⊂ Ũ is open in R×X,
F : U → Z is proper,

the class {DxF (τ, x)|(τ, x) ∈ Ũ} ⊂ L(X,Z)
is admissible according to Definition II.5.1, and
y : R → Z is a C2-curve such that
y(τ) �= F (τ, x) for all (τ, x) ∈ ∂U .

(II.5.11)

Then

d(F (τ, ·), Uτ , y(τ)) = const for all τ ∈ R(II.5.12)

and d(F (τ, ·), Uτ , y(τ)) = 0 if Uτ0 = ∅ for some τ0 ∈ R.

Proof. Define F̃ (τ, x) = F (τ, x) − y(τ). Then F̃ ∈ C2(Ũ , Z), F̃ : U → Z
is proper, and D(τ,x)F̃ (τ, x) ∈ L(R ×X,Z) is a Fredholm operator of index
1. Fix a bounded segment of the noncylindrical domain Ua,b = U ∩ ((a, b)×
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X). Since F (∂U) is closed, by properness the curve {y(τ)|τ ∈ [a, b]} has a
positive distance to F ((∂U)a,b), where (∂U)a,b = ∂U ∩([a, b]×X). Therefore,

‖F̃ (τ, x)‖ ≥ d > 0 for all (τ, x) ∈ (∂U)a,b, and by the Quinn–Sard–Smale
Theorem [145] and by the openness of the set of regular values, there exists
an element ỹ ∈ Z, ‖ỹ‖ < d, and ỹ is a regular value for F̃ : Ua,b → Z, for

F̃ (a, ·) : Ua → Z, and for F̃ (b, ·) : Ub → Z; cf. (II.5.7). By the arguments
given before, this implies that F̃−1(ỹ)∩Ua,b consists of finitely many compact
one-dimensional manifolds (curves) with boundaries in Ua or in Ub; cf. Figure
II.5.1. (Closed curves in F̃−1(ỹ) ∩ Ua,b play no role in the sequel. Therefore,
Figure II.5.1 does not show closed curves that might clearly exist.)

Pick one curve C in F̃−1(ỹ) starting in Ua or Ub. It ends at a different
point in Ua or Ub. By the choice of ỹ, the operators

DxF̃ (a, x), DxF̃ (b, x) ∈ L(X,Z) are regular
when (a, x) or (b, x) are endpoints of C.

(II.5.13)

Therefore, the degrees d(F̃ (a, ·), Ua, ỹ) and d(F̃ (b, ·), Ub, ỹ) are defined as in
Definition II.5.3. We show that

d(F̃ (a, ·), Ua, ỹ) = d(F̃ (b, ·), Ub, ỹ),(II.5.14)

where we assume that Ua �= ∅, Ub �= ∅; see Figure II.5.1. If Ua �= ∅, Ub = ∅,
for instance, then for some b̃ < b we obtain Ub̃ �= ∅, but F̃ (b̃, ·)−1(ỹ) = ∅, so
that, according to Definition II.5.3, d(F̃ (b̃, ·), Ub̃, ỹ) = 0. In this situation U
has a dead end, and it does not reach {b} × X ; see Figure II.5.1. Thus all
curves have to return to Ua, and the subsequent proof shows that the sum of
all indices of F̃ (a, ·) in Ua is zero, proving that d(F̃ (a, ·), Ua, ỹ) = 0.

Ra b

X

Figure II.5.1
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We parameterize the curve C in F̃−1(ỹ) by {(τ(λ), x(λ))|λ ∈ [α, β]}, so
that τ(α), τ(β) ∈ {a, b} and (τ̇ (λ), ẋ(λ)) �= (0, 0) (.= d

dλ). Since ỹ is a regular

value for F̃ ,

N(D(τ,x)F̃ (τ(λ), x(λ)) = span[(τ̇ (λ), ẋ(λ))],(II.5.15)

which is geometrically the tangent space to C at (τ(λ), x(λ)) ∈ R×X . Thus

DxF̃ (τ(λ), x(λ)) ∈ L(X,Y ) is regular
⇔ τ̇ (λ) �= 0 for λ ∈ [α, β].

(II.5.16)

On all (relatively) open intervals in [α, β] where τ̇ (λ) �= 0, we see that the
index i(F̃ (τ(λ), ·), x(λ)) is constant by the arguments given in the proof of
Proposition II.5.4. By the choice of ỹ, we know that τ̇(λ) �= 0 for λ near α
and λ near β. We investigate the behavior of the index when λ passes the
complementary compact set Λ ⊂ (α, β), where τ̇(λ) = 0. Choose for λ ∈ Λ an
open interval (λ− δλ, λ+ δλ) whose length will be appropriately determined
below; cf. (II.5.20). Then finitely many such intervals cover Λ, and the union
of these intervals consists of one or more (finitely many) intervals in (α, β). We
focus on one such open interval (α̃, β̃). By construction, DxF̃ (τ(α̃), x(α̃)) and
DxF̃ (τ(β̃), x(β̃)) are regular, and we determine the indices i(F̃ (τ(α̃), ·), x(α̃))
and i(F̃ (τ(β̃), ·), x(β̃)).

Since τ̇ (λ) = 0 for λ ∈ Λ, we have ẋ(λ) �= 0, and by continuity, this is
true for all λ ∈ [α̃, β̃]. By the choice of ỹ, the operator D(τ,x)F̃ (τ(λ), x(λ)) ∈
L(R×X,Z) is surjective for all λ ∈ [α, β], and therefore Dτ F̃ (τ(λ), x(λ)) �= 0
in Z for all λ ∈ Λ. By continuity, this is again true for all λ ∈ [α̃, β̃]. We define

N(λ) = span[ẋ(λ)], Z0(λ) = span[Dτ F̃ (τ(λ), x(λ))],
and decompositions
X = N(λ)⊕X0(λ),

Z = R(λ) ⊕ Z0(λ) for λ ∈ [α̃, β̃], where

R(λ) = R(DxF̃ (τ(λ), x(λ))|X0(λ)).

(II.5.17)

The spaces X0(λ) form a continuous family of complements in the sense that
the projections

Pλ : X → N(λ) along X0(λ),
Qλ : Z → Z0(λ) along R(λ),

depend continuously on λ ∈ [α̃, β̃] in
L(X,X), L(Z,Z), respectively.

(II.5.18)

Observe that N(DxF̃ (τ(λ), x(λ)) ⊂ N(λ) with equality only if λ ∈ Λ. (Using
the identity Dτ F̃ (τ(λ), x(λ))τ̇ (λ) + DxF̃ (τ(λ), x(λ))ẋ(λ) = 0 it is an easy
exercise that Z0(λ) is complementary to R(λ) for all λ ∈ [α̃, β̃].)

We make a Lyapunov–Schmidt reduction according to Section I.2 in a
neighborhood of (τ(λ), x(λ)) that satisfies F̃ (τ(λ), x(λ)) − ỹ = 0. For this
procedure we use the decompositions (II.5.17). (This can be done for all
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λ ∈ [α̃, β̃] for which N(DxF̃ (τ(λ), x(λ))) = {0} or = N(λ).) We obtain a
family of functions

Φ̃λ : (τ(λ) − δ̃λ, τ(λ) + δ̃λ)× Ũλ → Z0(λ),

where Ũλ ⊂ N(λ) is a neighborhood of v(λ) = Pλx(λ)

and Φ̃λ(τ, v) = 0 ⇔ F̃ (τ, x) = ỹ, v = Pλx.

(II.5.19)

Thus the zeros of Φ̃λ form the local curve {(τ(λ̃), v(λ̃))|λ̃ ∈ (λ− δλ, λ+ δλ)},
v(λ̃) = Pλx(λ̃).

Setting G(x, λ) = F̃ (τ(λ), x(λ)+x)− ỹ, we have G(0, λ) = 0, DxG(0, λ) =
DxF̃ (τ(λ), x(λ)), and a Lyapunov–Schmidt reduction near (0, λ) using the
decompositions (II.5.17) yields a family of functions

Φλ : (λ− δλ, λ+ δλ)× Uλ → Z0(λ),
where Uλ ⊂ N(λ) is a neighborhood of 0 and

Φλ(v, λ̃) = 0 ⇔ G(x, λ̃) = F̃ (τ(λ̃), x(λ̃) + x)− ỹ = 0,
v = Pλx.

(II.5.20)

By uniqueness of the reductions we have

Φλ(v, λ̃) = Φ̃λ(τ(λ̃), Pλx(λ̃) + v) and

DvΦλ(0, λ̃) = DvΦ̃λ(τ(λ̃), Pλx(λ̃)) for λ̃ ∈ (λ− δλ, λ+ δλ).
(II.5.21)

We apply now the results of Section II.4 to A(λ̃) = DxG(0, λ̃).
Let λ ∈ Λ. Then, for λ̃ ∈ (λ− δλ, λ+ δλ),

DxF̃ (τ(λ̃), x(λ̃)) ∈ L(X,Z) is regular

⇔ DvΦ̃λ(τ(λ̃), Pλx(λ̃) �= 0, and in this case,

i(F̃ (τ(λ̃), ·), x(λ̃)) = S(λ̃)signDvΦ̃λ(τ(λ̃), Pλx(λ̃)).

(II.5.22)

Here S(λ̃) ∈ {1,−1}, and formulas (II.4.13), (II.4.14), (II.4.25) show that
S(λ̃) depends continuously on λ̃ in (λ−δλ, λ+δλ), and therefore, it is constant.
(Recall that Q̂ belongs to a continuous family of projections in L(Z,Z).)

If λ ∈ [α̃, β̃]\Λ, then we choose δλ > 0 such that (λ−δλ, λ+δλ)∩Λ = ∅ and
(II.5.22)1 is valid for all λ̃ ∈ (λ − δλ, λ + δλ). Choosing Q̂ = Qλ in (II.4.13),
we obtain also (II.5.22)2 with a continuous and therefore constant function
S(λ̃) on (λ− δλ, λ+ δλ).

Thus S(λ̃) is locally constant on the entire interval [α̃, β̃], which means
that S(λ̃) ≡ S0 ∈ {1,−1} for all λ̃ ∈ [α̃, β̃], and (II.5.22) implies that

if DvΦ̃λ(τ(λ), Pλx(λ)) �= 0 for some λ ∈ [α̃, β̃], then

i(F̃ (τ(λ), ·), x(λ)) = S0signDvΦ̃λ(τ(λ), Pλx(λ)).
(II.5.23)

By Φ̃λ(τ(λ̃), v(λ̃)) = 0 for all λ̃ ∈ (λ− δλ, λ+ δλ) (where v(λ̃) = Pλx(λ̃); cf.
(II.5.19)), we obtain, by differentiation with respect to λ̃ at λ̃ = λ,
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Dτ Φ̃λ(τ(λ), v(λ))τ̇ (λ) +DvΦ̃λ(τ(λ), v(λ))v̇(λ) = 0.(II.5.24)

By N(λ) = span[ẋ(λ)], see (II.5.17), we have v̇(λ) = Pλẋ(λ) = ẋ(λ), and by
Z0(λ) = span[Dτ F̃ (τ(λ), x(λ))], we get in view of the construction of the bi-
furcation function Φ̃λ in Section I.2 Dτ Φ̃λ(τ(λ), x(λ)) = QλDτ F̃ (τ(λ), x(λ))
= Dτ F̃ (τ(λ), x(λ)), where we use also the definition (II.5.18) of Qλ. In order
to define the sign of DvΦ̃λ(τ(λ), v(λ)), we have to identify L(N(λ), Z0(λ))
with L(R,R) ∼= R. This is done by the choice of bases {v̇(λ)} in N(λ) and
{Dτ F̃ (τ(λ), x(λ))} in Z0(λ). Thus (II.5.24) gives

signDvΦ̃λ(τ(λ), v(λ)) = −signτ̇(λ) ∈ {−1, 0, 1}
for all λ ∈ [α̃, β̃].

(II.5.25)

A combination of (II.5.23) and (II.5.25) leads to the following result:

Let (α̃, β̃) be any open interval in the covering
of Λ = {λ ∈ (α, β)|τ̇ (λ) = 0}. Then for all

λ ∈ [α̃, β̃] such that τ̇ (λ) �= 0, in particular for

λ = α̃ and λ = β̃, the index of

F̃ (τ(λ), ·) at x(λ) exists and
i(F̃ (τ(λ), ·), x(λ))signτ̇(λ) ≡ −S0.

(II.5.26)

Since, as stated before, the index i(F̃ (τ(λ), ·), x((λ)) is constant in any in-
terval of [α, β]\Λ, the behavior (II.5.26) extends to all λ ∈ [α, β], i.e., to the
entire curve C:

i(F̃ (τ(λ), ·), x(λ))signτ̇ (λ) ≡ −S0 ∈ {1,−1}
for all λ ∈ [α, β] with τ̇ (λ) �= 0.

(II.5.27)

Note that the index exists if τ̇(λ) �= 0.
A simple but crucial consequence of (II.5.27) is the following (see also

Figure II.5.1): Since signτ̇ (α) = –signτ̇(β) �= 0 if the endpoints of C are both
in Ua or both in Ub and signτ̇(α) = signτ̇ (β) �= 0 if the endpoints of C are in
Ua and in Ub,

the indices of F̃ (τ, ·) at the endpoints
of a solution curve C are opposite (equal)
if the endpoints are in the same set
Ua or Ub (in different sets Ua and Ub).

(II.5.28)

In the regular case, the degree is the sum of the indices, and (II.5.28)
proves (II.5.14). This completes the proof that Definition II.5.5 makes sense;
cf. (II.5.9). Since the regular value ỹ is arbitrarily close to 0, Definition II.5.5
implies
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d(F (a, ·), Ua, y(a)) = d(F̃ (a, ·), Ua, 0)

= d(F̃ (a, ·), Ua, ỹ) = d(F̃ (b, ·), Ub, ỹ)

= d(F̃ (b, ·), Ub, 0) = d(F (b, ·), Ub, y(b)),

(II.5.29)

which finally proves (II.5.12). The last statement of Theorem II.5.6 follows
from d(F̃ (a, ·), Ua, ỹ) = 0 if Ub = ∅; cf. the arguments after (II.5.14). 
�
Remark II.5.7 Property (II.5.27) is in complete coincidence with the index
along a plane solution curve of a function Φ : R×R → R. Let 0 be a regular
value for Φ such that the solutions of Φ(τ, x) = 0 form smooth curves in R×R.
The index i(Φ(τ, ·), x), if it exists, is simply signDxΦ(τ, x) if Φ(τ, x) = 0.
Since 0 is a regular value for Φ, any curve of zeros of Φ separates regions in
the plane R × R where Φ is positive and where Φ is negative. Therefore, if
τ̇ (λ) �= 0 (for a suitable parameterization {(τ(λ), x(λ))} of such a curve), the
derivative DxΦ(τ(λ), x(λ)) is positive (negative) if Φ is negative (positive)
below and positive (negative) above that curve. As visualized in Figure II.5.2,
the signs of Φ below and above a curve of zeros change at every turning point,
i.e., if signτ̇(λ) changes. Observe that for such behavior it is not required that
the points where τ̇ (λ) = 0 be isolated.
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+

+
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+
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Φ < 0
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−

+

Figure II.5.2

We summarize the essential properties of the degree defined in Definition
II.5.5:

(1) The normalization (II.1.10) holds.
(2) The additivity (II.1.11) holds.
(3) The homotopy invariance holds as described in Theorem II.5.6.
(4) If yn → y, y, yn �∈ F (∂U), and F (xn) = yn for some xn ∈ U , then

properness implies the existence of some x ∈ U such that F (x) = y. Then
by Definitions II.5.3 and II.5.5,
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if d(F,U, y) �= 0, then there is some
x ∈ U such that F (x) = y.

(II.5.30)

(5) The homotopy invariance shows that the degree depends only on the values
of F of the boundary ∂U .

(6) The excision (II.1.16) holds.

Finally, the notion of the index given in Definition II.5.3 is extended to
any isolated solution x0 ∈ U of F (x) = y as in (II.1.17). Thus the degree
of Definition II.5.5 is the sum of its indices if there are only finitely many
solutions of F (x) = y in U .

To summarize, the degree for our class of proper Fredholm operators has
precisely the same properties as the Brouwer degree or the Leray–Schauder
degree for their classes of operators.

II.5.1 Global Bifurcation via Odd Crossing Numbers

The degree is a good tool in the bifurcation theory for parameter-dependent
problems as described in Section II.3. We consider

F : U × V → Z with open sets
0 ∈ U ⊂ X, V ⊂ R,

(II.5.31)

and we assume the “trivial solution” F (0, λ) = 0 for all λ ∈ V . For our global
bifurcation result below, we simply assume that U = X and V = R; i.e.,
F : X × R → Z is everywhere defined. Furthermore,

F ∈ C2(X × R, Z),
the class {DxF (x, λ)|(x, λ) ∈ X × R} ⊂ L(X,Z)
is admissible according to Definition II.5.1, and
F is proper on every closed and bounded
subset of X × R according to Definition II.5.2 (iii).

(II.5.32)

Thus for an open and bounded set U ⊂ X , the degree d(F (·, λ), U, y) is
defined by Definition II.5.5, provided that y �∈ F (∂U, λ).

A necessary condition for bifurcation from the trivial solution line {(0, λ)}
at some (0, λ0) ∈ X × R is that

0 be an eigenvalue of DxF (0, λ0).(II.5.33)

By admissibility of A(λ) ≡ DxF (0, λ), conditions (II.4.1), (II.4.2), and
(II.4.3) are satisfied, so that the notion of an odd crossing number according
to Definition II.4.1 is well defined. By (II.4.5)1, the index i(F (·, λ), 0) =
i(DxF (0, λ), 0) exists locally for λ �= λ0, and by Definition II.5.3 and by
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property (iii) of admissibility in Definition II.5.1 (see also the arguments
given in the proof of Proposition II.5.4),

an odd crossing number of DxF (0, λ) at λ = λ0

means that the index i(F (·, λ), 0) changes at λ = λ0.
(II.5.34)

Since all ingredients of Rabinowitz’s Theorem (Theorem II.3.3) are avail-
able, we obtain the followingGlobal Bifurcation Theorem for Fredholm
Operators (cf. Theorem II.4.4):

Theorem II.5.8 Let S denote the closure of the set of nontrivial solutions
of F (x, λ) = 0 in X × R, where F : X × R → Z satisfies (II.5.32). Assume
that DxF (0, λ) has an odd crossing number at λ = λ0. Then (0, λ0) ∈ S, and
let C be the (connected) component of S to which (0, λ0) belongs. Then
(i) C is unbounded, or
(ii) C contains some (0, λ1), where λ0 �= λ1.

The proof is the same as that of Theorem II.3.3. Observe simply that if
(i) and (ii) do not hold, the component C is compact by properness.

For applications, both global Theorems II.3.3 and II.5.8 are valuable. To
prove global bifurcation for quasilinear elliptic problems, for instance, both
theorems are applicable as expounded in Section III.5. Theorem II.5.8 needs
more differentiability of F , but for the application of Theorem II.3.3 the map-
ping F has to be put into the form of a compact perturbation of the identity.
Such a transformation usually requires the inversion of linear operators hav-
ing a compact resolvent, and this inversion might cause problems, as it does
for the examples mentioned in Remark III.5.2. But even if it is possible, the
verification of an odd crossing number might be hard after F has been trans-
formed into a compact perturbation of the identity. Example (III.5.6) shows
the problems as explained after it. To summarize, if F has enough differen-
tiability, a conversion into a compact perturbation of the identity in order to
apply the Leray–Schauder degree is not useful even if possible. Rather, we
recommend that one apply the degree for proper Fredholm operators to F .

II.5.2 Global Bifurcation with One-Dimensional
Kernel

Next, we give a refinement of Theorem II.3.3 if dimN(DxF (0, λ0)) = 1. In
Section II.3, the mapping F (·, λ) is assumed to be a compact perturbation
of the identity; i.e., X = Z and F (x, λ) = x+ f(x, λ), where f is completely
continuous. Therefore, DxF (0, λ) = I +Dxf(0, λ) and Dxf(0, λ) ∈ L(X,X)
is compact. As mentioned already in Sections II.4 and II.5, the mappings
considered in Section II.3 fit completely into the framework of Section II.4,
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and all results for (nonlinear) Fredholm operators presented in Section II.4
are clearly also true for compact perturbations of the identity.

Locally near the bifurcation point (0, λ0), all solutions of F (x, λ) = 0
are given by the solutions of Φ(v, λ) = 0, which is the bifurcation equation
obtained by the method of Lyapunov–Schmidt. We use the decompositions
(II.4.6), where N = N(DxF (0, λ0)), R = R(DxF (0, λ0)), and X = Z. If
dimN = codimR = 1, then Φ(v, λ) = 0 is a scalar bifurcation equation.
As discussed in Section II.4, Case 1 of Theorem II.4.4, and in particular in
Remark II.4.5, a change of sign of DvΦ(0, λ) at λ = λ0 (which is equivalent
to an odd crossing number of DxF (0, λ) at λ = λ0) causes a change of sign
of the function Φ in the upper and lower (v, λ)-planes near the line {(0, λ)};
cf. Figure II.4.1. By continuity of Φ, a continuum of zeros emanates at (0, λ0)
existing globally in a neighborhood of (0, λ0) ∈ N × R where Φ is defined.
We make this more precise. Let

N(DxF (0, λ0)) = span[v̂0], v̂0 ∈ X, ‖v̂0‖ = 1.(II.5.35)

As proved in Section I.2,

F (x, λ) = 0 for (x, λ) ∈ Br(0)× (λ0 − δ, λ0 + δ) ⇔
x = sv̂0 + ψ(sv̂0, λ) and Φ(sv̂0, λ) = 0.

(II.5.36)

If the ball Br(0) and the interval (λ0−δ, λ0+δ) are small enough, all continua
for s > 0 and for s < 0 reach the boundary of Br(0) × (λ0 − δ, λ0 + δ).
Moreover, since ψ(0, λ) = 0 and Dvψ(0, λ0) = 0 ∈ L(N,X0), cf. Corollary
I.2.4, all solutions of F (x, λ) = 0 in Br(0)× (λ0 − δ, λ0 + δ) satisfy

x = sv̂0 + x0, where x0 = s

∫ 1

0

Dvψ(tsv̂0, λ)dtv̂0 ∈ X0

and ‖x0‖ ≤ 1

2
|s| (for small |s| such that x ∈ Br(0)).

(II.5.37)

Thus all local nontrivial solution continua are in closed cones ofX×R defined
as follows:

Let x ∈ X be decomposed as x = sv̂0 + x0, where
s ∈ R and x0 ∈ X0, cf. (II.4.6) and (II.5.35). Then

K+
δ =

{
(x, λ)|s ≥ 0, ‖x0‖ ≤ 1

2
s, |λ− λ0| ≤ δ

}
,

K−
δ =

{
(x, λ)|s ≤ 0, ‖x0‖ ≤ −1

2
s, |λ− λ0| ≤ δ

}
.

(II.5.38)

Clearly, K+
δ ∩K−

δ = {0} × [λ0 − δ, λ0 + δ].
The component C in S (= the closure of all nontrivial solutions of

F (x, λ) = 0 in X × R) to which (0, λ0) belongs decomposes locally as
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C ∩ (Br(0)× (λ0 − δ, λ0 + δ)) = C+
loc ∪ C−

loc, where

C+
loc ⊂ K+

δ , C−
loc ⊂ K−

δ and C+
loc ∩ C−

loc = {(0, λ0)}.
Furthermore, C±

loc ∩ ∂(Br(0)× (λ0 − δ, λ0 + δ)) �= ∅.
(II.5.39)

Both subcontinua C+
loc and C−

loc of C have global extensions. We let

C± denote the maximal components of C±
loc\{(0, λ0)},

respectively, in C\{(0, λ0)}.(II.5.40)

By definition, C = C+ ∪ C− ∪ {(0, λ0)}, but C+ = C− is not excluded. The
following result refines Theorem II.3.3.

Theorem II.5.9 Assume the hypotheses of Theorem II.3.3 and that
dimN(DxF (0, λ0)) = 1. Then each of C+ and C− either satisfies the alter-
natives (i) and (ii) of Theorem II.3.3 or
(iii) contains a pair of points (x, λ), (−x, λ), where x �= 0.

Proof. At least one of C+ and C− must satisfy the alternatives of Theorem
II.3.3. Suppose C+ does not satisfy any of (i)–(iii). We define

Ĉ− = {(x, λ)|(−x, λ) ∈ C+}.(II.5.41)

Then C+ ∩ Ĉ− = ∅, and Ĉ ≡ C+ ∪ Ĉ− ∪ {(0, λ0)} is compact. Let

U be an open neighborhood of Ĉ
in X × R such that (−x, λ) ∈ U whenever
(x, λ) ∈ U.

(II.5.42)

Since Ĉ is generated by C+ via the involution (x, λ) �→ (−x, λ), we can assume
for U that

U = U+ ∪ U− ∪ (Br(0)× (λ0 − δ, λ0 + δ)),

U+ ∩ U− = ∅, U− = {(x, λ)|(−x, λ) ∈ U+}, and

C+ ⊂ U+ ∪ (Br(0)× (λ0 − δ, λ0 + δ)),

Ĉ− ⊂ U− ∪ (Br(0)× (λ0 − δ, λ0 + δ)).

(II.5.43)

We define a new mapping on the closure U as follows:
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F̂ (x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x, λ) if
(x, λ) ∈ K+

δ ∩ (Br(0)× [λ0 − δ, λ0 + δ]),

s

2‖x0‖F (2‖x0‖v̂0 + x0, λ) if

x = sv̂0 + x0, 0 ≤ s < 2‖x0‖, and

(x, λ) ∈ Br(0)× [λ0 − δ, λ0 + δ],

−F̂ (−x, λ) if
x = sv̂0 + x0, s ≤ 0, and
(x, λ) ∈ Br(0)× [λ0 − δ, λ0 + δ],

F (x, λ) if

(x, λ) ∈ U+\(Br(0)× (λ0 − δ, λ0 + δ)),

−F̂ (−x, λ) if
(x, λ) ∈ U−\(Br(0)× (λ0 − δ, λ0 + δ)).

(II.5.44)

The goal of Definition (II.5.44) is that

F̂ is continuous on U ,

F̂ is a compact perturbation of the identity, i.e.,

F̂ (x, λ) = x+ f̂(x, λ) and

f̂ : U → X is completely continuous,

DxF̂ (0, λ) = DxF (0, λ) has an odd crossing
number at λ = λ0, and finally,

F̂ (·, λ) is an odd mapping.

(II.5.45)

Furthermore, F̂ = F on (K+
δ ∩ (Br(0)× [λ0 − δ, λ0 + δ])) ∪ U+\(Br(0)×

(λ0−δ, λ0+δ)), which contains C+ by (II.5.39) and (II.5.43). By the oddness
of F̂ (·, λ),

Ĉ = C+ ∪ Ĉ− ∪ {(0, λ0)} is the component of

Ŝ (which is the closure of the set of nontrivial

solutions of F̂ (x, λ) = 0 in U) to which
(0, λ0) belongs.

(II.5.46)

Since Ĉ is compact, we obtain, as in the proof of Theorem II.3.3,

a bounded open set Û ⊂ X × R such that

Ĉ ⊂ Û , ∂Û ∩ S = ∅, and

Û ∩ {(0, λ)|λ ∈ R} = {0} × (λ0 − δ̂, λ0 + δ̂)

for some arbitrarily small δ̂ > 0.

(II.5.47)

This leads to a contradiction as in the proof of Theorem II.3.3. 
�
Since the Global Bifurcation Theorem for Fredholm operators, Theorem

II.5.8, has the same proof as Theorem II.3.3, one might expect the refine-



II.6. A Global Implicit Function Theorem 231

ment as stated in Theorem II.5.9 also for nonlinear Fredholm operators. The
obstruction, however, is in the Definition (II.5.44) of the odd mapping F̂ ,
which is only continuous and not of class C2. However, if F : X × R → Z
is admissible as in (II.5.32) and if F (·, λ) is odd, we do not need Definition
(II.5.44), and we obtain immediately the following:

Corollary II.5.10 Assume the hypotheses of Theorem II.3.3 or of Theorem
II.5.8 and that dimN(DxF (0, λ0)) = 1. If F (·, λ) is odd, then the component
C of S to which (0, λ0) belongs decomposes into C = C+ ∪ C− ∪ {(0, λ0)},
so that C− = {(x, λ)|(−x, λ) ∈ C+}. Then each of C+ and C− satisfies the
alternatives of Theorem II.3.3 or of Theorem II.5.8.

This does not exclude alternative (iii) of Theorem II.5.9.

If dimN(DxF (0, λ0)) > 1, then for odd F (·, λ), the solution set is “odd” in
the sense that it is invariant under the involution (x, λ) �→ (−x, λ). The defini-
tion of C+ and C−, however, does not make sense. In particular, a local decom-
position as in (II.5.39) has no analogue, in general, if dimN(DxF (0, λ0)) > 1.

II.6 A Global Implicit Function Theorem

We consider a continuous mapping F :X ×R → Z, where X ⊂ Z is continu-
ously embedded, and we assume a solution

F (x0, λ0) = 0.(II.6.1)

Apart from the assumptions (I.1.2) and (I.1.3) for the local Implicit Func-
tion Theorem, Theorem I.1.1, we need a setting such that a degree for F (·, λ)
can be defined.

The Leray–Schauder degree is applicable if X = Z, F (x, λ) = x+ f(x, λ),
and f : X × R → X is completely continuous. The degree for Fredholm op-
erators can be used if F ∈ C2(X ×R, Z), DxF (x, λ) ∈ L(X,Z) is admissible
according to Definition II.5.1, and F is proper on every closed and bounded
subset of X × R according to Definition II.5.2(iii).

A Global Implicit Function Theorem then reads as follows:

Theorem II.6.1 Assume the preceding properties of F : X × R → Z and
(II.6.1) such that

DxF (x0, λ0) ∈ L(X,Z) is bijective and
DxF ∈ C(Br(x0)× (λ0 − ρ, λ0 + ρ), L(X,Z)) for some r, ρ > 0.

(II.6.2)
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Let S denote the set of all solutions of F (x, λ) = 0 in X × R and let C
be the (connected) component of S that contains the local solution curve
{(x(λ), λ)|λ ∈ (λ0 − δ, λ0 + δ)} through (x0, λ0) = (x(λ0), λ0) given by Theo-
rem I.1.1. Then
(i) C = {(x0, λ0)} ∪ C+ ∪ C−, C+ ∩ C− = ∅, and C+, C− are each unbounded,

or
(ii) C\{(x0, λ0)} is connected.

Proof. Assume that C\{(x0, λ0)} is not connected. Then C = {(x0, λ0)} ∪
C+ ∪ C−, where C+ ∩ C− = ∅, and let C+ denote the component of
{(x(λ), λ)|λ ∈ (λ0, λ0 + δ)} in S\{(x0, λ0)}.

Assume that C+ is bounded. As shown in the proofs of Theorem II.3.3

and Theorem II.5.8, the bounded and closed set C+ ∪ {(x0, λ0)} = C+
is

compact. As in the proof of Theorem II.3.3, we can construct a bounded
open set U ⊂ X × R such that

C+ ⊂ U and ∂U ∩ S = {(x0, λ0)}.(II.6.3)

Setting as before Uλ = {x ∈ X |(x, λ) ∈ U}, we can also assume that

Uλ0 ∩Br(x0) = ∅ and
Uλ0 ∪Br(x0) = (U)λ0 ,

(II.6.4)

where r > 0 is so small that x = x0 is an isolated solution of F (x, λ0) = 0
in Br(x0). (Note that in (II.6.4)1 Uλ0 denotes the closure of the fiber Uλ0 in
X , whereas (II.6.4)2 denotes the fiber of the closure U in X × R.) Then the
additivity and the homotopy invariance of the respective degree imply

d(F (·, λ0), Br(x0), 0) + d(F (·, λ0), Uλ0 , 0)
= d(F (·, λ), Uλ, 0) for λ ≥ λ0,
= 0, since Uλ = ∅ for large λ > λ0.

(II.6.5)

On the other hand, if Uλ0 �= ∅,

d(F (·, λ0), Uλ0 , 0)
= d(F (·, λ), Uλ, 0) for λ ≤ λ0,
= 0, since Uλ = ∅ for large λ < λ0.

(II.6.6)

This proves

d(F (·, λ0), Br(x0), 0) = 0.(II.6.7)

But DxF (x0, λ0) ∈ L(X,Z) is bijective, and the local degree (II.6.7) is the
index i(F (·, λ0), x0) ∈ {−1, 1}; cf. (II.2.10), (II.2.11), or (II.5.2). This contra-
diction proves that C+ is unbounded, and the unboundedness of C− is proved
in the same way. 
�
Remark II.6.2 The proof of Theorem II.6.1 shows that the assumption
(II.6.2) can be reduced to (II.6.2)1. Note that the local Implicit Function The-
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orem does not hold without assumption (II.6.2)2, which means that there is
not necessarily a unique local curve of solutions {(x(λ), λ)} through (x0, λ0).
But the nonzero local degree (II.6.7) and the homotopy invariance of the de-
gree imply that the solution (x0, λ0) is continued for λ ∈ (λ0 − δ, λ0 + δ). Let
C denote the component in S containing (x0, λ0). Then the same alternative
(i), (ii) holds, and in any case, C\{(x0, λ0)} �= ∅.
Remark II.6.3 The possibility of a global extension of the local solution
curve given by the Implicit Function Theorem is also called Global Contin-
uation. It gives solutions of F (x, λ) = 0 for all λ ∈ R, provided that (x0, λ0)
is the only solution for λ = λ0 and that there is an a priori estimate for
solutions x for all λ in finite intervals of R. This possibility motivated Leray
and Schauder to extend the Brouwer degree to infinite dimensions in order
to solve nonlinear elliptic partial differential equations; cf. Section III.5.

II.7 Change of Morse Index and Local Bifurcation for
Potential Operators

Zero is called a hyperbolic equilibrium of a linear operator A ∈ L(X,Z), X ⊂
Z, if after a natural complexification of X and Z (cf. Section I.8), there is no
spectral point of A on the imaginary axis of C. If A has only a point spectrum,
the number of eigenvalues (counting multiplicities) in the right half-plane of
C is called the Morse index of A. For general operators, however, there might
be infinitely many such eigenvalues, even if A is a Fredholm operator. Under
the assumptions of Section II.4, however, a local Morse index is defined as
follows.

Assume for a family of linear operators A(λ) ∈ L(X,Z) for λ ∈ R the
properties (II.4.1), (II.4.2), and (II.4.3). Then the generalized eigenspace Eλ0

of the eigenvalue 0 of A(λ0) is finite-dimensional, and that eigenspace is
perturbed to an invariant space Eλ for A(λ) of the same dimension for λ
near λ0. The eigenvalue 0 of A(λ0) perturbs to eigenvalues of A(λ) near 0
(the so-called 0-group) that are the eigenvalues of A(λ) ∈ L(Eλ, Eλ); cf. [86],
Chapters II and III.

Definition II.7.1 Assume that zero is a locally hyperbolic equilibrium of
A(λ) ∈ L(X,Z) for all λ ∈ (λ0−δ, λ0)∪(λ0, λ0+δ); i.e., there is no eigenvalue
in the 0-group of A(λ) on the imaginary axis. Let n>(λ) be the number of
all eigenvalues in the 0-group of A(λ) (counting multiplicities) in the positive
complex half-plane. This number is constant for λ ∈ (λ0 − δ, λ0) and for
λ ∈ (λ0, λ0 + δ), and it is called the local Morse index of A(λ) at 0. The
number
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χ(A(λ), λ0) = n>(λ0 − ε)− n>(λ0 + ε), 0 < ε < δ,(II.7.1)

is the crossing number of the family A(λ) at λ = λ0 through 0.

Clearly, if χ(A(λ), λ0) is an odd number, then the family A(λ) has an odd
crossing number at λ = λ0 according to Definition II.4.1. Observe, however,
that Definition II.4.1 does not require a local hyperbolicity of the equilibrium
zero of A(λ). A nonzero crossing number (II.7.1) means that the local Morse
index of A(λ) changes at λ = λ0. If χ(A(λ), λ0) is nonzero but even, then the
family A(λ) does not have an odd crossing number at λ = λ0 according to
Definition II.4.1.

As in Section II.4, we show that a change of the local Morse index is
detected by the method of Lyapunov–Schmidt, provided that the family A(λ)
is symmetric in the sense of Section I.3.

For the sake of convenience, we restate the assumptions. On the Banach
space Z a continuous and definite scalar product (I.3.1) is defined. We assume
that

(A(λ)x1, x2) = (x1, A(λ)x2)
for all x1, x2 ∈ X ⊂ Z, λ ∈ (λ0 − δ, λ0 + δ).

(II.7.2)

Let Eλ be the perturbed finite-dimensional invariant space for A(λ), where
Eλ0 is the generalized eigenspace of the eigenvalue 0 of A(λ0). Then Eλ ⊂
X ⊂ Z, so that Eλ is endowed with a scalar product and (II.7.2) holds on
Eλ. Thus A(λ) ∈ L(Eλ, Eλ) is symmetric, and therefore

Eλ possesses a basis of eigenvectors of A(λ),
and all eigenvalues of A(λ) are real.

(II.7.3)

Furthermore, the algebraic multiplicity dimEλ =dimEλ0 of the eigenvalue 0
of A(λ0) coincides with its geometric multiplicity.

Thus N(A(λ0)) = Eλ0 , and there are invariant decompositions of X and
Z as follows (cf. (II.4.4)):

X = N ⊕X0, N = N(A(λ0)), X0 = R(A(λ0)) ∩X,
Z = R⊕ Z0, R = R(A(λ0)), Z0 = N.

(II.7.4)

By the symmetry (II.7.2), the spaces N and X0 as well as R and Z0 are
orthogonal with respect to the scalar product ( , ). We also make use of
the following decompositions, which are continuous perturbations of (II.7.4)
for τ near λ0:

X = Eτ ⊕Xτ , Xτ = (I − P (τ))X,
Z = Rτ ⊕ Eτ , Rτ = (I − P (τ))Z.

(II.7.5)

Here P (τ) is the eigenprojection of A(τ) onto the eigenspace Eτ ⊂ X ⊂
Z, which depends continuously on τ in L(X,X) and in L(Z,Z) for τ near
λ0. Since A(τ) is symmetric with respect to the scalar product ( , ), the
eigenprojection P (τ) is symmetric as well, so that the decompositions (II.7.5)
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are orthogonal with respect to ( , ). Clearly, (II.7.4) is embedded into
(II.7.5) for τ = λ0. The Lyapunov–Schmidt projections defined by (II.7.5)
are Qτ = P (τ) : Z → Eτ along Rτ and Pτ = Qτ |X : X → Eτ along Xτ , and
P (τ)N = P (τ)Eλ0 = Eτ .

We represent A(λ) : X → Z according to a decomposition (II.7.5) as a
matrix

A(λ) =

(
(I −Qτ )A(λ) (I −Qτ )A(λ)

QτA(λ) QτA(λ)

)
,(II.7.6)

identifying the direct sums in (II.7.5) with Cartesian products whose elements
are written as columns; cf. (II.4.10).

Defining C(Qτ , λ) andD(τ,Qτ , λ) as in (II.4.12), we obtain, as in (II.4.13),

C(Qτ , λ)A(λ) = D(τ,Qτ , λ).(II.7.7)

Following (II.4.15) with [(I −Qτ )A(λ)]
−1 ∈ L(Rτ , Xτ ) and

B(τ,Qτ , λ) = QτA(λ){IEτ − [(I −Qτ )A(λ)]
−1(I −Qτ )A(λ)}

∈ L(Eτ , Eτ ),
(II.7.8)

we see that the symmetry of Qτ and A(λ) with respect to the scalar pro-
duct ( , ) implies the symmetry of B(τ,Qτ , λ) ∈ L(Eτ , Eτ ). Therefore, all
eigenvalues of B(τ,Qτ , λ) are real for all τ and λ near λ0.

By definition (II.4.12), C(Qλ, λ)|Eλ
= IEλ

, and B(λ,Qλ, λ) = A(λ)|Eλ
.

Furthermore, D(τ,Qτ , λ)|Eτ = B(τ,Qτ , λ), and therefore (II.7.7) defines a
homotopy in L(Eτ , Eτ ):

C(Qτ , λ)A(λ)|Eτ =

{
A(λ) ∈ L(Eλ, Eλ) for τ = λ,
B(λ0, Qλ0 , λ) ∈ L(N,N) for τ = λ0.

(II.7.9)

(Recall that N = Eλ0 .) Since C(Qτ , λ) is an isomorphism for all τ and λ
near λ0, cf. (II.4.14), B(τ,Qτ , λ) ∈ L(Eτ , Eτ ) is regular for all λ ∈ (λ0 − δ,
λ0) ∪ (λ0, λ0 + δ) and for all τ ∈ (λ0 − δ, λ0 + δ). This, in turn, implies that
for all τ between λ and λ0, zero is a hyperbolic equilibrium of B(τ,Qτ , λ)
(all eigenvalues are real) and that the Morse index of B(τ,Qτ , λ) is constant.
According to Definition II.7.1, this proves the following theorem:

Theorem II.7.2 Let A(λ) ∈ L(X,Z) be a family of Fredholm operators sa-
tisfying (II.4.1), (II.4.2), and that is symmetric in the sense of (II.7.2). Let 0
be an isolated eigenvalue of A(λ0) and assume that zero is a locally hyperbolic
equilibrium of A(λ) for λ ∈ (λ0 − δ, λ0)∪ (λ0, λ0 + δ). Choose the Lyapunov–
Schmidt decomposition (II.7.4) with projection Q = Qλ0 : Z → N along R.
Then zero is a hyperbolic equilibrium of B(λ0, Q, λ) ∈ L(N,N) for all λ ∈
(λ0− δ, λ0)∪ (λ0, λ0+ δ), and the families A(λ) ∈ L(X,Z) and B(λ0, Q, λ) ∈
L(N,N) have the same crossing numbers at λ = λ0 through 0:

χ(A(λ), λ0) = χ(B(λ0, Q, λ), λ0).(II.7.10)
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We apply Theorem II.7.2 for the proof of a local bifurcation theorem for
a family of potential operators.

II.7.1 Local Bifurcation for Potential Operators

Let F : U × V → Z be a mapping such that 0 ∈ U ⊂ X and λ0 ∈ V ⊂
R are open. We assume that F (0, λ) = 0 for all λ ∈ V and that F is a
nonlinear Fredholm operator with respect to x ∈ U and for all λ ∈ V : To
be more precise, F ∈ C(U × V, Z) and DxF ∈ C(U × V, L(X,Z)) such
that A(λ) ≡ DxF (0, λ) is a family of Fredholm operators satisfying (II.4.1),
(II.4.2). Moreover, we assume that Z is endowed with a scalar product ( , )
satisfying (I.3.1) and that

F (·, λ) is a potential operator from U into Z
according to Definition I.3.1 for all λ ∈ V .

(II.7.11)

A consequence of (II.7.11) is that A(λ) = DxF (0, λ) ∈ L(X,Z) is a family of
symmetric operators satisfying (II.7.2); cf. Proposition I.3.2.

We prove next a Bifurcation Theorem for Potential Operators:

Theorem II.7.3 Let F (·, λ) be a family of potential operators satisfying the
hypotheses summarized above in this Section. Let 0 be an isolated eigenvalue
of A(λ0) = DxF (0, λ0). If zero is a locally hyperbolic equilibrium of A(λ) =
DxF (0, λ) for λ ∈ (λ0−δ, λ0)∪ (λ0, λ0+δ) according to Definition II.7.1 and
if the crossing number χ(A(λ), λ0) of the family A(λ) at λ = λ0 through 0
is nonzero, then (0, λ0) is a bifurcation point of F (x, λ) = 0 in the following
sense: (0, λ0) is a cluster point of nontrivial solutions (x, λ) ∈ X ×R, x �= 0,
of F (x, λ) = 0.

In a few words: Any change of the local Morse index of A(λ) = DxF (0, λ)
at λ = λ0 implies bifurcation of F (x, λ) = 0 at λ = λ0.

Proof. In order to find nontrivial solutions of F (x, λ) = 0 near (0, λ0)
a Lyapunov–Schmidt reduction as in Section I.2 is adequate. To this end,
we decompose the Banach spaces X and Z as in (II.7.4), and according to
Theorem I.2.3, the problem F (x, λ) = 0 for (x, λ) near (0, λ0) is equivalent
to a finite-dimensional problem Φ(v, λ) = 0 near (0, λ0) in N × R. Clearly,
Φ(0, λ) = 0, and as shown in Section II.4, formula (II.4.25),

DvΦ(0, λ) = B(λ0, Q, λ)
= QA(λ){IN − [(I −Q)A(λ)]−1(I −Q)A(λ)} ∈ L(N,N).

(II.7.12)

By Corollary I.2.4, DvΦ(0, λ0) = 0 ∈ L(N,N), but by Theorem II.7.2, zero is
a hyperbolic equilibrium ofDvΦ(0, λ) for all λ ∈ (λ0−δ, λ0)∪(λ0, λ0+δ), and
the crossing number χ(DvΦ(0, λ), λ0) is nonzero. If we consider the dynamical
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system in N ,
dv

dt
= Φ(v, λ),(II.7.13)

this means, by definition, that

zero is a hyperbolic equilibrium of the dynamical
system (II.7.13) for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ)
whose Morse index changes at λ = λ0.

(II.7.14)

Using Conley’s index theory [22], the change of index (II.7.14) has the follow-
ing consequences for (II.7.13): {0} ⊂ N is an isolated invariant set of (II.7.13)
for all λ ∈ (λ0 − δ, λ0)∪ (λ0, λ0 + δ) and let Nε ⊂ Bε(0) ⊂ N be a compact
isolating neighborhood of {0} for (II.7.13) with λ = λ0 ± ε, 0 < ε < δ. Then
there is some λ̃ ∈ (λ0 − ε, λ0 + ε) such that (II.7.13) has a global solution
whose trajectory is in Nε for all t ∈ (−∞,∞) and touches the boundary of
Nε at some t. If there were no such λ̃ ∈ (λ0 − ε, λ0 + ε), then Nε would
define a continuation from λ0 − ε to λ0 + ε, and the Morse indices would be
the same, contradicting (II.7.14). The union of all such bounded trajectories
forms a nontrivial bounded invariant set in Nε ⊂ Bε(0) for (II.7.13) with
λ̃ ∈ (λ0 − ε, λ0 + ε). Since 0 < ε < δ is arbitrary, we can state that

(0, λ0) is a bifurcation point of nontrivial
bounded invariant sets of (II.7.13).

(II.7.15)

By Theorem I.3.4, Φ(·, λ) : Ũ → N, Ũ ⊂ N , is a family of potential operators
for all λ ∈ (λ0−δ, λ0+δ): There exists a function ϕ : Ũ×(λ0−δ, λ0+δ) → R

such that
Dvϕ(v, λ)h = (Φ(v, λ), h) for all

(v, λ) ∈ Ũ × (λ0 − δ, λ0 + δ) ⊂ N × R, h ∈ N.
(II.7.16)

Here the scalar product ( , ) on N is induced by the scalar product on Z.
Let {v(t)|t ∈ (−∞,∞)} be a global nontrivial bounded trajectory of (II.7.13)
with λ = λ̃. Then

d

dt
ϕ(v(t), λ̃) = Dvϕ(v(t), λ̃)v̇(t)

= ‖Φ(v(t), λ̃)‖2 ≥ 0 for all t ∈ (−∞,∞),
(II.7.17)

where ‖v‖2 = (v, v), v ∈ N . In this sense, ϕ(·, λ̃) is a Lyapunov func-
tion for (II.7.13) with λ = λ̃ whose orbital derivative (II.7.17) is nonneg-
ative and vanishes only at equilibria of (II.7.13) with λ = λ̃. Furthermore,
{ϕ(v(t), λ̃)|t ∈ (−∞,∞)} is a bounded monotonic function such that the lim-
its limt→±∞ ϕ(v(t), λ̃) exist and limt→±∞ d

dtϕ(v(t), λ̃) = 0. The α-(or ω-)limit
set of {v(t)} is not empty. Let v0 be any element of the ω-limit set, say. Then
limt→∞ ϕ(v(t), λ̃) = ϕ(v0, λ̃), limt→∞ d

dtϕ(v(t), λ̃) = ‖Φ(v0, λ̃)‖2 = 0, and v0
is an equilibrium of (II.7.13) with λ = λ̃. This proves the well-known fact that
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the α- and ω-limit sets of a bounded trajectory of a dynamical system having
a Lyapunov function ϕ(·, λ̃) as in (II.7.17) consist only of equilibria, i.e., of
solutions of Φ(v, λ̃) = 0. If the α- and ω-limit sets were both {0}, then by the
monotonicity, ϕ(v(t), λ̃) ≡ ϕ(0, λ̃) or d

dtϕ(v(t), λ̃) = ‖Φ(v(t), λ̃)‖2 ≡ 0, which
means that v(t) ≡ 0 or v is trivial. Thus at least one of the α- or ω-limit
sets of a nontrivial bounded trajectory v is nontrivial. Clearly, the nontrivial
equilibrium (v0, λ̃) is in Nε × (λ0 − ε, λ0 + ε). Since 0 < ε < δ is arbitrary,
every neighborhood of (0, λ0) contains a nontrivial solution of Φ(v, λ) = 0,
which proves the theorem. 
�

Remark II.7.4 The proof of Theorem II.7.3 reveals its validity also for
F (·, λ), which is not a family of potential operators: For the application of
Theorem II.7.2 one needs the symmetry of DxF (0, λ) = A(λ) in the sense
of (II.7.2). If the dynamical system (II.7.13) has a Lyapunov function as in
(II.7.17), then the α- and ω-limit sets consist only of equilibria. If these prop-
erties for F and Φ can be verified, a nonzero crossing number of the family
A(λ) at λ = λ0 through 0 implies the same conclusion for F (x, λ) = 0 as
given in Theorem II.7.3.

The set of nontrivial solutions {(x, λ)} of F (x, λ) = 0 near (0, λ0) does
not form a curve or a continuum in general (provided that χ(A(λ), λ0) is not
odd; cf. Theorem II.4.4). A counterexample can be found in [14].

The example in [14] is a counterexample to Theorem I.21.2. We show that
Theorem I.21.2 is a special case of Theorem II.7.3:

Assumption (I.21.2) on F implies (II.7.11) for F (x) − λx with potential
f(x)− λ

2 (x, x). Here A(λ) = DF (0)− λI = A0 − λI satisfies (II.4.1), (II.4.2)
for λ ∈ (λ0− δ, λ0− δ) according to (I.21.3), and the 0-group of A(λ) consists
of {λ0 − λ} if λ0 is an isolated eigenvalue of A0. Since Eλ0 = N(A0 − λ0I)
by assumption (I.21.3), we obtain Eλ = N(A0 − λ0I) as well, and counting
the multiplicity of the positive eigenvalue λ0 − λ of A0 − λI for λ ∈ (λ0 −
δ, λ0), we obtain χ(A(λ), λ0) = n > 0 if n =dimN(A0 − λ0I). Therefore, the
assumptions for Theorem I.21.2 allow us also to apply Theorem II.7.3, and
the example in [14] is a counterexample to Theorem II.7.3.

We close this section by a remark that odd crossing numbers in general
and nonzero crossing numbers in case of a family of potential operators are
indispensable for bifurcation. This is illustrated by the following simple ex-
ample in R2:

F (x, λ) = λ

(
x1

x2

)
+

(
x3
2

−x3
1

)
= 0, x =

(
x1

x2

)
∈ R2.(II.7.18)

Here F (0, λ) = 0, A(λ) = DxF (0, λ) = λI such that χ(A(λ), 0) = −2.
Nonetheless, x = (x1, x2) = (0, 0) is the only solution of (II.7.18) for all
λ ∈ R. Thus even and nonzero crossing numbers do not imply bifurcation in
general unless F (·, λ) has a potential. Finally, a zero crossing number does not
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entail bifurcation even if F (·, λ) has a potential. This is seen by the following
example in R:

F (x, λ) = λ2x+ x3 = 0, x ∈ R.(II.7.19)

Again, F (0, λ) = 0, A(λ) = DxF (0, λ) = λ2I, χ(A(λ), 0) = 0, and x = 0 is
the only solution of (II.7.19) for all λ ∈ R.

Remark II.7.5 According to Conley’s bifurcation result (II.7.15) under the
hypotheses (II.7.14), the point (0, λ0) = (0, 0) is a bifurcation point of non-
trivial bounded invariant sets of the dynamical system ẋ = F (x, λ), where F
is given in (II.7.18).

Indeed, in view of d
dt(x

4
1 + x4

2) = 4(x3
1ẋ1 + x3

2ẋ2) = 4λ(x4
1 + x4

2), the sets
Tr = {(x1, x2)|x4

1 + x4
2 = r4} are invariant for the system ẋ = F (x, 0) for all

r > 0, i.e., the bounded invariant sets Tr bifurcate vertically. The sets Tr are
closed curves and therefore they represent periodic solutions with periods Pr.

By Green’s formula the area of Ωr = {(x1, x2)|x4
1 + x4

2 < r4} is given

by |Ωr| = 2
∫
Tr

x1dx2 − x2dx1 = 2
∫ Pr

0 x4
1 + x4

2dt = 2r4Pr, whence Pr =

|Ωr|/2r4 = |Ω1|/2r2. The periods of the bifurcating periodic solutions tend to
infinity as the amplitudes tend to zero.

Remark II.7.6 The local Theorem II.7.3 is included in Chapter II about a
global theory, since the methods to prove it differ considerably from the an-
alytic methods expounded in Chaper I about a local theory. The Brouwer or
Leray–Schauder degree as well as Conley’s index are topological and global
tools. Furthermore, the condition for bifurcation in terms of a nonzero cross-
ing number fits perfectly into the framework of Chapter II.

II.8 Notes and Remarks to Chapter II

Degree theories have been developed for various classes of mappings, not all of
which are mentioned here. A degree for Fredholm operators was suggested by
Smale [160], and after this, using a concept of orientable Fredholm structures,
such a degree was introduced in [41]. In [50], [51] that concept was replaced by
a notion of orientability of Fredholm maps via their Fréchet derivatives, yiel-
ding a degree in the usual way. For a subclass of bounded Fredholm operators
whose Fréchet derivatives have bounded and finite spectra on the negative
real axis, thus having an orientation in a natural way, a degree was defined in
[45], [31], [40], [128]. The extension to unbounded Fredholm operators whose
Fréchet derivatives have again finite spectra on the negative real axis is given
in [46] and independently in [98]. For relatively compact perturbations of li-
near Fredholm mappings the coincidence degree was defined in [136]; cf. also
[54], [137]. A preliminary synopsis of these degree theories is given in [13].
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The application of the degree in Bifurcation Theory goes back to Kras-
nosel’skii [118]. Here the sufficient (and in some sense also necessary) condi-
tion of an odd multiplicity was introduced. For a linear dependence on the
parameter, it is the algebraic multiplicity of an eigenvalue, whereas for a non-
linear dependence on the parameter, the notion of a multiplicity is much more
involved; cf. Remark II.4.6. We mention [154], [82], [133], [123], [98], [43], [42],
[146], [50], [84]. In most articles, the different notions of multiplicity are com-
pared and proved to be equivalent (up to regularity of the mappings with
respect to the parameter).

In all theories an odd multiplicity means that the index of the linearization
along the trivial solution line changes. We call this an odd crossing number.
Bifurcation then takes place for any nonlinear remainder. In this sense these
are linear theories. For special nonlinearities, however, local and global bi-
furcation can also be proved for even multiplicities, i.e., for even crossing
numbers; see [130].

The bifurcation results for Fredholm operators are taken from [98]. Here
the relation between an odd crossing number and (local and global) bifurca-
tion was established.

The Global Rabinowitz Bifurcation Theorem, including the case of a one-
dimensional kernel, was published in [147]. For the structure of global con-
tinua we refer also to [30], [84], where Theorem II.5.9 is sharpened.

Bifurcation for Potential Operators has a long history. Usually, the bifur-
cation parameter plays the role of a Lagrange multiplier; cf. Section I.21 and
the remarks at the end of Section I.22. This means that it appears linearly
in the equation. A nonlinear dependence on the parameter was first allowed
in [20], and after this, in [100], [146]. The approach here is taken from [100].



Chapter III

Applications

III.1 The Fredholm Property of Elliptic Operators

The Fredholm property is a leitmotiv, since it was assumed in all sections of
Chapters I and II. Clearly, all finite-dimensional linear operators have that
property, but we have infinite-dimensional applications in mind. A prototype
of a Fredholm operator, playing also a central role in applications, is an
elliptic operator over a bounded domain. We confine ourselves to operators
of second order acting on scalar functions.

Let Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary ∂Ω
such that the elliptic regularity theory is valid. For u : Ω → R (in C2(Ω),
say), the linear operator

Lu =
∑n

i,j=1 aij(x)uxixj +
∑n

i=1 bi(x)uxi + c(x)u

with smooth and bounded coefficients
aij , bi, c : Ω → R is called elliptic if∑n

i,j=1 aij(x)ξiξj ≥ d‖ξ‖2for all x ∈ Ω, ξ ∈ Rn,

with some uniform constant d > 0 and the
Euclidean norm ‖ ‖ on Rn.
Without loss of generality, we can assume that
aij(x) = aji(x) for i, j = 1, . . . , n.

(III.1.1)

In the literature, the nomenclature includes “uniformly elliptic” and “strongly
elliptic,” but we call it simply elliptic. The indices xi denote partial derivatives
with respect to xi.

Closely related to the operator L is its bilinear form B of first order,
obtained by an integration by parts if u is a test function in C∞

0 (Ω):

241, H. Kielhöfer Bifurcation Theory: An Introduction with Applications to Partial Differential 
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B(u, v) = (Lu, v)0 = (u, L∗v)0
for all u, v ∈ C∞

0 (Ω),
where ( , )0 is the scalar product in L2(Ω).
L∗ is called the formally adjoint operator.

(III.1.2)

If L = L∗, then L is formally self-adjoint, and in this case,

Lu =
∑n

i,j=1(aij(x)uxi)xj + c(x)u,

with aij(x) = aji(x) for i, j = 1, . . . , n; i.e.,
L is of divergence form.

(III.1.3)

The bilinear form is symmetric, i.e., B(u, v) = B(v, u), if and only if L = L∗.

In the sequel we define the operator L on function spaces that include
boundary conditions on the functions u, v such that (III.1.2) holds (the reg-
ularity and boundary behavior of test functions is too much). For general L,
homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω,(III.1.4)

and for formally self-adjoint L, so-called natural boundary conditions∑n
i,j=1 aij(x)uxiνj = 0 for x ∈ ∂Ω,

where ν = (ν1, ..., νn) is the outward
unit normal vector field on ∂Ω,

(III.1.5)

guarantee B(u, v) = (Lu, v)0 = (u, L∗v)0 for all u, v ∈ C2(Ω) satisfy-
ing (III.1.4) or (III.1.5). In particular, if L = Δ, then the natural bound-
ary conditions are homogeneous Neumann boundary conditions. They play
an important role in the calculus of variations, since (local) minimizers of
B(u, u) − 2(f, u)0 satisfy the natural boundary conditions if no boundary
conditions on u are required a priori; cf. our remarks after (III.1.20).

Remark III.1.1 Other homogeneous boundary conditions that provide an
elliptic operator with all properties summarized in (III.1.6) below are possible.
We confine ourselves to Dirichlet and natural boundary conditions, since on
the one hand, they simplify our presentation, and on the other hand, they are
important in applications.

For our functional analysis, the linear operator L is defined in a Banach
space (or Hilbert space) with an appropriate domain of definition. Then L is
unbounded but closed, and when its domain of definition is given the graph
norm (or an equivalent norm), then L is a bounded operator from one Banach
space into another Banach space. In our abstract setting we use both aspects;
cf. (II.4.1), (II.4.2): Let X and Z be real Banach spaces such that X ⊂ Z is
continuously embedded. Then we need the following properties of the linear
operator L:
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L : Z → Z with domain of definition
D(L) = X ⊂ Z is closed and
L : X → Z is bounded; i.e.,
L ∈ L(X,Z) and
L is a Fredholm operator of index zero.

(III.1.6)

The first setting is needed for a spectral theory of L, whereas the last
(and more subtle) property is crucial for a Lyapunov–Schmidt reduction, the
universal tool of our abstract chapters. We verify (III.1.6) for different classes
of spaces X ⊂ Z.

This can be done (and it is well known) because an elliptic operator L
has a regularizing property with respect to various scales of smoothness. Due
to this crucial property, it suffices to establish its Fredholm property in a
Hilbert space, which is the most convenient space for linear problems: The
geometry of a Hilbert space is Euclidean, and apart from local compactness,
it is the same as the geometry of Rn or Cn. If the domain of definition of a
linear operator is dense, its adjoint is defined and acts in the same space.

In view of these advantages of a Hilbert space, one is tempted to formulate
all applications in a Hilbert space. However, the benefits of a Hilbert space
for linear problems turn eventually into obstructions for nonlinear problems
that cannot be overcome. Nonlinear operators, in general, are defined only
on Banach spaces of continuous functions (with continuous derivatives, etc.),
which from a functional-analytic point of view are “bad,” since they are not
reflexive.

Therefore, when analyzing a nonlinear problem, we recommend the fol-
lowing flexibility: Use the Hilbert space for its linear aspects and switch to
the Banach space to study its nonlinearity.

An elliptic operator (III.1.1) with homogeneous Dirichlet boundary con-
ditions (III.1.4) defines an operator

L : L2(Ω) → L2(Ω) with domain of definition
D(L) = H2(Ω) ∩H1

0 (Ω).
(III.1.7)

We use the following notation for the Sobolev spaces: W k,p(Ω), W k,p
0 (Ω)

for p ∈ [1,∞], k ∈ N ∪ {0}, W k,2(Ω) = Hk(Ω), W k,2
0 (Ω) = Hk

0 (Ω), and
H0(Ω) = H0

0 (Ω) = L2(Ω). The respective norms are denoted by ‖ ‖k,p and
‖ ‖k,2 = ‖ ‖k, which are generated by scalar products ( , )k. (A good
reference for Sobolev spaces is [1], and in [24], [52], [56], [122], [126] one finds
all we need for elliptic operators.)

By ellipticity, Poincaré’s inequality, and G̊arding’s inequality the bilinear
form B(u, u)− c‖u‖20 is negative definite on H1

0 (Ω) for some constant c ≥ 0
such that the Lax–Milgram Theorem gives a unique weak solution u ∈ H1

0 (Ω)
of Lu−cu = f for every f ∈ H0(Ω). The above-mentioned regularity of weak
solutions implies that u ∈ H2(Ω) ∩H1

0 (Ω), and therefore,
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L− cI : H2(Ω) ∩H1
0 (Ω) → H0(Ω)

is bounded and bijective.
(III.1.8)

Here D(L) = H2(Ω) ∩ H1
0 (Ω) is given the norm ‖ ‖2, which turns it into

a Hilbert space. By Banach’s Theorem, (L − cI)−1 : H0(Ω) → D(L) is
continuous, which implies that the operator L defined in (III.1.7) is closed.

Furthermore,

(L− cI)−1 ≡ Kc ∈ L(H0(Ω), H0(Ω))
is compact,

(III.1.9)

by the compact embedding D(L) ⊂ H0(Ω). Then for f ∈ H0(Ω),

Lu = f, u ∈ D(L) ⇔
(I + cKc)u = Kcf, u ∈ H0(Ω).

(III.1.10)

The Riesz–Schauder Theory implies that I + cKc is a Fredholm operator of
index zero. The equivalence (III.1.10) proves directly that

dimN(L) = dimN(I + cKc) = n < ∞,
f ∈ R(L) ⇔ Kcf ∈ R(I + cKc), and
R(L) is closed in H0(Ω).

(III.1.11)

The trivial decomposition f = (I + cKc)f − cKcf shows that H0(Ω) =
R(I + cKc) + R(Kc). Then H0(Ω) = R(I + cKc) ⊕ Kc(Z0) for some n-
dimensional space Z0 ⊂ H0(Ω) with R(L)∩Z0 = {0}. On the other hand, if
Z̃0 is any complementary space in the sense that R(L)⊕ Z̃0 = H0(Ω) (choose
the orthogonal complement Z̃0 = R(L)⊥, e.g.), then (III.1.11) implies also
that Kc(Z̃0) ∩ R(I + cKc) = {0}. This proves n ≤ codimR(L) ≤ n, and in
view of (III.1.11),

L : D(L) = H2(Ω) ∩H1
0 (Ω) → H0(Ω)

is a Fredholm operator of index zero.
(III.1.12)

Considering L as an operator in H0(Ω) as in (III.1.7), it is closed, densely
defined, and in view of (III.1.12), the Closed Range Theorem in its Hilbert
space version is applicable:

R(L) = {f ∈ H0(Ω)|(f, u)0 = 0 for all u ∈ N(L∗)}.(III.1.13)

Here L∗ : H0(Ω) → H0(Ω) is the adjoint of L with D(L∗) ⊂ H0(Ω). Recall
that the definition of the adjoint includes the definition ofD(L∗). If the formal
adjoint defined in (III.1.2) is given the domain of definition H2(Ω)∩H1

0 (Ω),
then the same arguments as for (III.1.8) imply that L∗ − cI : H2(Ω) ∩
H1

0 (Ω) → H0(Ω) is bijective, which proves that
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L∗ : L2(Ω) → L2(Ω) with domain of definition
D(L∗) = H2(Ω) ∩H1

0 (Ω) is the adjoint of L.
(III.1.14)

(See [170] for a definition of L∗ and its properties.) Interchanging the roles
of L and L∗ (clearly, L∗∗ = L), we obtain the decompositions

H0(Ω) = N(L)⊕R(L∗),
H0(Ω) = R(L)⊕N(L∗),(III.1.15)

which are also orthogonal with respect to ( , )0. For applications the fol-
lowing representation of the corresponding orthogonal projections is useful:

Let {v̂1, . . . , v̂n} ⊂ N(L) be an orthonormal basis.

Then Pu =
∑n

k=1(u, v̂k)0v̂k is an orthogonal projection

P : H0(Ω) → N(L) along R(L∗).

Let {v̂∗1 , . . . , v̂∗n} ⊂ N(L∗) be an orthonormal basis.

Then Qu =
∑n

k=1(u, v̂
∗
k)0v̂

∗
k is an orthogonal projection

Q : H0(Ω) → N(L∗) along R(L).

(III.1.16)

Since N(L) ⊂ D(L) = X and X ⊂ Z = H0(Ω), we obtain Lyapunov–
Schmidt decompositions

X = N(L)⊕ (R(L∗) ∩X),
Z = R(L)⊕N(L∗),
with projections (III.1.16); note that
P ∈ L(X,X) and Q ∈ L(Z,Z).

(III.1.17)

If L = L∗ (formally), then L with homogeneous Dirichlet boundary conditions
is self-adjoint, and (III.1.15)–(III.1.17) hold with L = L∗.

Remark III.1.2 Note that the Lyapunov–Schmidt decomposition is not
unique, and in particular, it is not necessarily orthogonal with respect to the
scalar product ( , )0. In case of a semisimple eigenvalue 0 of L, one might
choose X = N(L) ⊕ (R(L) ∩ X), Z = R(L) ⊕ N(L), so that P = Q|X ; cf.
(I.18.2)–(I.18.4).

If L = L∗ (formally), the Dirichlet boundary conditions can be replaced
by the natural boundary conditions (III.1.5). Accordingly,

L : L2(Ω) → L2(Ω) with domain of definition

D(L) = H2(Ω) ∩ {u|∑n
i,j=1 aij(x)uxiνj = 0 for x ∈ ∂Ω},(III.1.18)

where the boundary conditions hold in the generalized sense of the trace of
functions in H2(Ω) on ∂Ω. By B(u, v) = (Lu, v)0 = (u, Lv)0 for all u, v ∈
D(L), all conclusions drawn for D(L) = H2(Ω) ∩ H1

0 (Ω) hold literally also
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for D(L) as defined in (III.1.18), since the regularity of weak solutions is
also true in this case. In particular, a bijectivity as in (III.1.8) holds, which
implies by the steps (III.1.9)–(III.1.12) that

L : D(L) → H0(Ω), where D(L) as defined
in (III.1.18) is given the norm ‖ ‖2,
is a Fredholm operator of index zero.

(III.1.19)

Since L = L∗ (formally), we obtain for the same reasons as for (III.1.14)
that the operator L defined in (III.1.18) is self-adjoint, and the Closed Range
Theorem gives

H0(Ω) = N(L)⊕R(L),
yielding Lyapunov–Schmidt decompositions
X = D(L) = N(L)⊕ (R(L) ∩X),
Z = H0(Ω) = R(L)⊕N(L).

(III.1.20)

In this case, P = Q|X .
The peculiarity of the natural boundary conditions can be seen from the

following: Consider the associated bilinear form B : H1(Ω) × H1(Ω) → R,
which is negative definite if c(x) ≤ −c0 < 0 for all x ∈ Ω; cf. (III.1.3).
Then the Riesz Representation Theorem gives a weak solution u ∈ H1(Ω) of
Lu = f for every f ∈ H0(Ω), i.e., B(u, v) = (f, v)0 for all v ∈ H1(Ω). By
elliptic regularity, u ∈ H2(Ω) and the Divergence Theorem (in its generalized
form) then give u ∈ D(L) as defined in (III.1.18). This observation is restated
as follows: If u ∈ H1(Ω) is a solution of the Euler–Lagrange equation for
B(u, u) − 2(f, u)0 in its weak form, which is B(u, v) = (f, v)0 for all v ∈
H1(Ω), then u satisfies the natural boundary conditions.

We emphasize that L has the Fredholm property also in other spaces.
Assume that a Banach space Z ⊂ L2(Ω) is continuously embedded and that
there is a domain of definition X ⊂ Z for L such that

L : X → Z is continuous when
X = D(L|Z) is given a norm that
turns it into a Banach space.

(III.1.21)

We assume an elliptic regularity in the following sense:

Lu = f for u ∈ D(L), f ∈ Z ⇒ u ∈ X.(III.1.22)

(Note that D(L) = H2(Ω) ∩H1
0 (Ω).) Then

N(L) = N(L|Z) ⊂ X, and
R(L) ∩ Z = R(L|Z) is closed in Z,

(III.1.23)

since Z ⊂ L2(Ω) is continuously embedded and R(L) is closed in L2(Ω). The
ellipticity of L∗ implies (III.1.22) also for L∗ (with D(L∗) = D(L)), so that
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N(L∗) ⊂ X.(III.1.24)

The decomposition (III.1.15)2 implies that for every z ∈ Z,

z = Lu+ u∗, where u ∈ D(L), u∗ ∈ N(L∗),
Lu = z − u∗ ∈ Z ⇒ u ∈ X, whence
Z = R(L|Z)⊕N(L∗).

(III.1.25)

Since dimN(L|Z) = dimN(L) = dimN(L∗),

L : X → Z, X = D(L|Z),
is a Fredholm operator of index zero.

(III.1.26)

Finally, the decomposition (III.1.15)1 implies, by (III.1.23)1,

X = N(L|Z)⊕ (R(L∗) ∩X),(III.1.27)

so that the projections (III.1.16) also define Lyapunov–Schmidt projections

P |X : X → N(L|Z) along (R(L∗) ∩X),
Q|Z : Z → N(L∗) along R(L|Z),
P |X ∈ L(X,X), Q|Z ∈ L(Z,Z).

(III.1.28)

The crucial assumptions (III.1.21) and (III.1.22) are true for the following
spaces:

Z = Lp(Ω), X = W 2,p(Ω) ∩W 1,p
0 (Ω),

with norms ‖ ‖0,p and ‖ ‖2,p, and
Z = Cα(Ω), X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω},
with norms ‖ ‖0,α and ‖ ‖2,α,

(III.1.29)

where for the Sobolev spaces 2 ≤ p < ∞ and where for the Hölder spaces
0 < α < 1. In all cases, the elliptic operator L : X → Z is a Fredholm
operator of index zero. For applications it is very useful that for all settings
the same projections (III.1.16) can be used; cf. (III.1.28).

Replacing the homogeneous Dirichlet boundary conditions by the natural
boundary conditions for L = L∗, we see that the elliptic regularity (III.1.22)
holds as well when in Z = Lp(Ω) or Z = Cα(Ω) the domain of definition
X for L is defined as in (III.1.18), where H2(Ω) is replaced by W 2,p(Ω) or
C2,α(Ω), respectively. The decomposition (III.1.20) then yields

X = N(L|Z)⊕ (R(L) ∩X),
Z = R(L|Z)⊕N(L),

(III.1.30)

where L denotes the operator (III.1.18). Again,N(L|Z) = N(L) andR(L|Z) =
R(L) ∩ Z, so that Q|X and Q|Z are continuous projections according to the
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decompositions (III.1.30) when Q is the projection defined in (III.1.16). Fi-
nally, P = Q|X .

For one-dimensional domains, i.e., for intervalsΩ = (a, b) ⊂ R, we can also
choose the spaces Z = C[a, b] andX = C2[a, b]∩{u|u(a) = u(b) = 0} endowed
with the usual maximum norm and the sum of the maximum norms of u and
its first and second derivatives, respectively. In this case ellipticity means
a11(x) ≥ d > 0 for all x ∈ [a, b] and the regularity (III.1.22) follows from a
continuous embedding H2(a, b) ⊂ C1[a, b] and from the classical fundamental
theorem of the calculus of variations due to DuBois–Reymond ([16], [109],
e.g.): A weak derivative of a continuous function that is continuous is in fact
a classical derivative.

Another peculiarity of a one-dimensional linear elliptic differential oper-
ator of second order is the fact that a multiplication by a suitable positive
function ρ transforms it into a formally self-adjoint form. In this case the
natural boundary conditions for an elliptic operator are u′(a) = u′(b) = 0 in
the classical sense since u ∈ C1[a, b]. The regularity (III.1.22) holds also in
case of these or mixed boundary conditions, i.e., in case of u(a) = u′(b) = 0
or vice versa. Consequently, L is a Fredholm operator of index zero.

The theory for so-called Sturm–Liouville boundary value and eigenvalue
problems yields that the kernel of L is at most one-dimensional and that 0 is a
simple eigenvalue in this case. Therefore Remark III.1.2 holds. In particular,
Qu = (u, ρv̂0)0v̂0, where N(L) = span[v̂0] and (v̂0, ρv̂0)0 = 1. Indeed, f ∈
R(L|Z) = R(L)∩Z ⇔ ρf ∈ R(ρL|Z) = R(ρL)∩Z ⇔ (ρf, v̂0)0 = (f, ρv̂0)0 = 0
for v̂0 ∈ N(ρL) = N(L) = N(L|Z).

III.1.1 Elliptic Operators on a Lattice

Recall that the elliptic regularity (III.1.22) for the spaces (III.1.29) requires
a smooth boundary ∂Ω. For regular domains with corners, however, such as
rectangles, squares, and certain triangles, we argue as follows: For

Ω = (0, a)× (0, b) ⊂ R2,we define
XD = {u : R2 → R|u(x1, x2) = −u(−x1, x2) = −u(x1,−x2)

= u(x1 + 2a, x2) = u(x1, x2 + 2b) for (x1, x2) ∈ R2},
XN = {u : R2 → R|u(x1, x2) = u(−x1, x2) = u(x1,−x2)

= u(x1 + 2a, x2) = u(x1, x2 + 2b) for (x1, x2) ∈ R2}.

(III.1.31)

Then all functions u ∈ C(R2)∩XD satisfy homogeneous Dirichlet bound-
ary conditions u = 0 on ∂Ω.

All functions u ∈ C1(R2) ∩ XN satisfy homogeneous Neumann boundary
conditions (∇u, ν) = 0 on ∂Ω.

Let L be an elliptic operator (III.1.1) with smooth coefficients defined on
R2 such that
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a11, a22 ∈ XN , a12, a21 ∈ XD, c ∈ XN ,
b1 ∈ {u : R2 → R|u(x1, x2) = −u(−x1, x2) = u(x1,−x2)

= u(x1 + 2a, x2) = u(x1, x2 + 2b) for (x1, x2) ∈ R2},
b2 ∈ {u : R2 → R|u(x1, x2) = u(−x1, x2) = −u(x1,−x2)

= u(x1 + 2a, x2) = u(x1, x2 + 2b) for (x1, x2) ∈ R2}.

(III.1.32)

(If L = L∗ is of divergence form (III.1.3), then (III.1.32)1 implies automati-
cally the assumptions on b1 and b2.)
Define Ω−2,2 = (−2a, 2a) × (−2b, 2b), Ω−2,0 = (−2a, 0) × (−2b, 2b), and
Ω0,2 = (0, 2a) × (−2b, 2b). In dealing with weak solutions, the boundary
plays no role. Choose c ≥ 0 such that B(u, u) − c‖u‖20 is negative definite
over H1

0 (Ω−2,2) and that by the Lax–Milgram Theorem there is a unique
weak solution u ∈ H1

0 (Ω−2,2) of Lu − cu = f for every f ∈ L2(Ω−2,2).
Choose f ∈ L2(Ω−2,2)∩XD. By symmetry of Ω−2,2, the function ũ(x1, x2) ≡
u(−x1, x2) is also in H1

0 (Ω−2,2). The assumptions (III.1.32) imply that ũ is

a weak solution of Lu − cu = f̃ = −f , so that by uniqueness, ũ = −u. This
oddness of u with respect to x1 implies that u(0, x2) = 0, and by approxima-
tion by smooth functions (using the odd part of approximating sequences),
u ∈ H1

0 (Ω−2,0)∩H1
0 (Ω0,2). Therefore, û(x1, x2) ≡ u(x1+2a, x2) ∈ H1

0 (Ω−2,0),
too, and the assumptions (III.1.32) imply that û is a weak solution of

Lu − cu = f̂ = f . Since B(u, u) − c‖u‖20 is also negative definite over
H1

0 (Ω−2,0), uniqueness of weak solutions in H1
0 (Ω−2,0) implies u = û. In

view of the oddness of u, we obtain then u(−a, x2) = u(a, x2) = −u(a, x2),
and as before, u(−a, x2) = u(a, x2) = 0 implies u ∈ H1

0 (Ω−1,0) ∩ H1
0 (Ω0,1),

where Ω−1,0 = (−a, 0)× (−2b, 2b) and Ω0,1 = (0, a)× (−2b, 2b).
Using the same arguments for an inverse reflection and a 2b-shift in the

direction of x2, we have proved that the weak solution u ∈ H1
0 (Ω−2,2) of

Lu− cu = f for f ∈ L2(Ω−2,2)∩XD is in H1
0 (Ω−2,2)∩XD, and in particular,

u ∈ H1
0 (Ω) for Ω = (0, a)× (0, b).

By interior regularity of weak solutions in H1
0 (Ω−2,2) we obtain u ∈

H2(Ω) ∩ H1
0 (Ω). Since there is a one-to-one correspondence between f ∈

L2(Ω) and f ∈ L2(Ω−2,2) ∩ XD (by extension via inverse reflections and
periodicities), we have proved (III.1.8) also for Ω = (0, a)× (0, b).

Consequently, (III.1.12) holds, and since the corresponding coefficients of
L∗ satisfy (III.1.32) as well, the statements (III.1.14) and (III.1.15) are proved
analogously.

Let Lu = f for u ∈ H2(Ω) ∩H1
0 (Ω) and f ∈ Cα(R2) ∩XD. Extending u

via inverse reflections and periodicities to a function in XD, the properties
(III.1.32) of the coefficients of L imply Lu = f (almost everywhere) on R2.
By interior regularity, u ∈ C2,α(R2) ∩ XD, which proves (III.1.22) for Z =
Cα(R2) ∩XD and X = C2,α(R2) ∩XD. Consequently,
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L : C2,α(R2) ∩XD → Cα(R2) ∩XD

is a Fredholm operator of index zero,
C2,α(R2) ∩XD = N(L)⊕ (R(L∗) ∩X),
Cα(R2) ∩XD = R(L)⊕N(L∗).

(III.1.33)

Observe that the formal adjoint in (III.1.33) is also considered as an operator
L∗ : X → Z.

The homogeneous Neumann boundary conditions are the natural boun-
dary conditions for L = Δ+cI = L∗. For negative c ∈ XN , the corresponding
bilinear form B(u, u)+c‖u‖20 (where B(u, u) is the negative Dirichlet integral)
is negative definite over H1(Ω−2,2), so that by Riesz’s Theorem there is a
unique weak solution u ∈ H1(Ω−2,2) of Δu+cu = f for every f ∈ L2(Ω−2,2).
Proceeding as before, if f ∈ L2(Ω−2,2)∩XN , then u ∈ H1(Ω−2,2)∩XN . (Here
the arguments are easier, since we do not have to take care about boundary
conditions.) By interior regularity of weak solutions in H1(Ω−2,2) we obtain
u ∈ H2(Ω). We have two choices in proving the homogeneous Neumann boun-
dary conditions for u: As mentioned before, weak solutions of Δu + cu = f
in H2(Ω) satisfy (∇u, ν) = 0 on ∂Ω in a generalized sense by the Divergence
Theorem. On the other hand, if u ∈ H2(Ω̃) for Ω ⊂ Ω̃ ⊂ (Ω−2,2) and

u ∈ XN , then the symmetries and periodicities of functions in C1(Ω̃) ∩XN

imply (∇u, ν) = 0 on ∂Ω in the classical sense, which is extended to functions
in H2(Ω̃)∩XN by approximation. In any case, we end up with the statement
that for negative c ∈ XN ,

Δ+ cI : H2(Ω) ∩ {u|(∇u, ν) = 0 on ∂Ω} → H0(Ω)
is bounded and bijective; cf. (III.1.8).

(III.1.34)

This, in turn, implies (III.1.19) and (III.1.20) for L = Δ + cI for every
(smooth) c ∈ XN .

Let Lu = f for u ∈ D(L) (defined in (III.1.34)) and f ∈ Cα(R2) ∩ XN .
As before, replacing inverse reflections by reflections, we obtain by interior
regularity u ∈ C2,α(R2) ∩XN , proving (III.1.22) for Z = Cα(R2) ∩XN and
X = C2,α(R2) ∩XN . This implies, by (III.1.20), for any (smooth) c ∈ XN ,
that

L = Δ+ cI : C2,α(R2) ∩XN → Cα(R2) ∩XN

is a Fredholm operator of index zero,
C2,α(R2) ∩XN = N(L)⊕ (R(L) ∩X),
Cα(R2) ∩XN = R(L)⊕N(L),

(III.1.35)

where the decompositions are orthogonal with respect to the scalar product
( , )0 in L2(Ω).

The previous analysis for the rectangle Ω = (0, a)× (0, b) and for a rect-
angular lattice in R2 is easily generalized to higher dimensions.

For a square lattice, i.e., when a = b, we can impose another (inverse)
reflection across a diagonal, yielding
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X1
D = {u : R2 → R|u ∈ XD, u(x1, x2) = −u(−x2 + a,−x1 + a)},

X1
N = {u : R2 → R|u ∈ XN , u(x1, x2) = u(−x2 + a,−x1 + a)}.

(III.1.36)
For u ∈ C(R2)∩X1

D, the nodal set {(x1, x2)|u(x1, x2) = 0} contains {(x1, x2)|
x1 = ka, x2 = ka, x1 + x2 = (2k + 1)a,−x1 + x2 = (2k + 1)a for all k ∈ Z}.
Therefore, homogeneous Dirichlet boundary conditions are satisfied for the
“tile” Ω = {(x1, x2)|0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ a}, which is the triangle
with corners (0, 0), (a, 0), (0, a). Every other tile obtained by reflections and
translations defining X1

D has clearly the same property. We sketch the lattices
of XD and X1

D in Figure III.1.1.

Ω Ω

Lattice of XD, XN Lattice of X1
D, X1

N

a

b
a

a

Figure III.1.1

In addition to (III.1.32), we assume that

the coefficients aij and c have a reflection
symmetry and all bj have an inverse
reflection symmetry across the line {x1 + x2 = a}.

(III.1.37)

Then L and L∗ have the “equivariance” mapping C2(R2)∩X1
D into C(R2)∩

X1
D. By the previous arguments, L − cI : H2(Ω) ∩ H1

0 (Ω) → H0(Ω) is
bijective for the square Ω = (0, a) × (0, a). If f ∈ L2(Ω) ∩ X1

D, in view of
the equivariance of L − cI, the inverse reflection symmetry of f across the
diagonal of Ω is inherited by the unique solution u of Lu− cu = f . As shown
earlier, this implies the Fredholm property and the decompositions (III.1.33)
where XD is replaced by X1

D.

The arguments for (III.1.35) apply also whenXN is replaced byX1
N . Every

u ∈ C2,α(R2)∩X1
N satisfies homogeneous Neumann boundary conditions on

the boundary of the triangle with corners (0, 0), (a, 0), (0, a), and of every
other triangular tile of the lattice of X1

N ; cf. Figure III.1.1.

Adding to X1
D, X1

N another (inverse) reflection across the second diagonal
{x1 = x2} of the square, we obtain the lattice shown in Figure III.1.2.
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Note that the square lattices in Figure III.1.1 and Figure III.1.2 are not
essentially distinct, since they are transformed into each other by an affine
mapping.

Another class of triangles for which our analysis applies is given by hexa-
gonal lattices shown in Figure III.1.3. The double periodicity of u in both
cases is u(x1 + a, x2) = u(x1, x2) = u(x1 +

1
2a, x2 +

1
2

√
3a).

Assume first an inverse reflection across each line of a lattice shown in
Figure III.1.3, which, together with the two periodicities, defines the “isotropy
group” of the respective lattice. If the coefficients of the elliptic operator L
on R2 have the double periodicity and all (inverse) reflection symmetries by
analogy with (III.1.32), then L is “equivariant” with respect to the “isotropy
group” of the lattice. (We leave it to the reader to give the precise conditions
on L. A sufficient condition is found in (III.6.15), (III.6.16).)

a

a

Figure III.1.2

a

Ω

Figure III.1.3

Let u be the unique weak solution of Lu−cu = f with weak homogeneous
Dirichlet boundary conditions on a hexagon of side length 2a in the lattice.
We sketch the proof that u inherits the isotropy of f , which is the isotropy
of the lattice shown in the left picture of Figure III.1.3. (For details, see the
proof for the rectangular lattice.) By uniqueness, u has an inverse reflection
symmetry across all diagonals of the hexagon. Therefore, u satisfies weak
homogeneous Dirichlet boundary conditions on the boundaries of each of the
six equilateral triangles of side length 2a. Shift u along each diagonal by an
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amount of a to the middle of the hexagon. The shifted triangles do not match
any other of the six triangles but form triangles with three sides in the interior
and one corner on one side of the hexagon. By the periodicities of f and the
equivariance of L, the shifted u are weak solutions of Lu− cu = f with weak
homogeneous Dirichlet boundary conditions on each shifted triangle. On the
other hand, the original u is also a weak solution of Lu− cu = f on each of
these triangles, but on two sides of the triangles, which are not on a diagonal
of the hexagon, weak homogeneous Dirichlet boundary conditions are not
necessarily satisfied.

Here is a new argument: Let Ω1 denote one of these triangles. Then the
bilinear form B(u, u) − c‖u‖20 is negative definite on H1(Ω1), too, if c > 0
is large enough. Therefore, by uniqueness of weak solutions in H1(Ω1), the
solutions u and the shifted u coincide, proving u ∈ H1

0 (Ω1). A closer look
at the geometry of a hexagon of side length 2a reveals the following: u has
weak homogeneous Dirichlet boundary conditions on the boundaries of all 12
equilateral triangles of side length 2a and therefore also on all 24 equilateral
triangles of side length a; u has double periodicity; and u has also inverse
reflection symmetry across every line shown in the left picture of Figure
III.1.3, provided that it is in the chosen hexagon of side length 2a.

By interior regularity, u ∈ H2(Ω)∩H1
0 (Ω) and L−cI : H2(Ω)∩H1

0 (Ω) →
H0(Ω) is bijective for every tile Ω of the left lattice of Figure III.1.3 that is
an equilateral triangle of side length a. If f has the additional three inverse
reflection symmetries shown in the right picture of Figure III.1.3, then again
by uniqueness and assumed equivariance of L, these symmetries are inherited
by the solution of Lu− cu = f , too.

If f ∈ Cα(R2) has the isotropy of one of the lattices shown in Figure
III.1.3, then every solution u ∈ H2(Ω) ∩H1

0 (Ω) of Lu = f is extended to R2

having that isotropy, too, and by interior regularity, u ∈ C2,α(R2).
Consequently, (III.1.33) holds if the isotropy of the function space XD

defined in (III.1.31) is replaced by a “fixed-point space” of any of the isotropy
groups of the lattices shown in Figure III.1.1–Figure III.1.3, provided that
L has the equivariance with respect to that isotropy group. Recall that each
line of the lattices is an inverse reflection line and therefore a nodal line of
every u in their respective “fixed-point spaces.” Thus every u in a fixed-point
space satisfies homogeneous Dirichlet boundary conditions on the boundary
of each tile of the respective lattice.

Finally, if each line of the lattices is a reflection line and therefore a line
where u satisfies homogeneous Neumann conditions, then (III.1.35) holds if
the isotropy of XN defined in (III.1.31) is replaced by any of the isotropies
of the lattices shown in Figure III.1.1–Figure III.1.3.
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III.1.2 Spectral Properties of Elliptic Operators

At the end of this section we make some useful remarks on the spectrum of
an elliptic operator L, which is closely connected to its Fredholm property.

As usual, for a spectral theory, the underlying real function spaces are
complexified in a natural way; cf. Section I.8. For the operator L defined in
(III.1.7), property (III.1.8) means that the number c ≥ 0 is in the resolvent
set ρ(L) of L and that the resolvent (L−cI)−1 = Kc is compact; cf. (III.1.9).
This allows the application of the Theorem on Compact Resolvents in [86]:

The spectrum σ(L) of L defined in (III.1.7)
consists of isolated eigenvalues of finite algebraic
multiplicities, and all resolvents are compact.
If c ∈ ρ(L), then for (L− cI)−1 = Kc,

μ ∈ ρ(Kc) ⇔ 1

μ
+ c ∈ ρ(L),

and the geometric and algebraic multiplicities
of an eigenvalue μ0 of Kc and of

the eigenvalue
1

μ0
+ c of L are the same.

(III.1.38)

(Observe that 0 �∈ ρ(Kc) and 0 is not an eigenvalue of Kc.) Defining

L : Z → Z with D(L|Z) = X ⊂ Z
with Z and X as in (III.1.29),

(III.1.39)

then the elliptic regularity (III.1.22) implies that

the geometric and algebraic eigenspaces
of L for an eigenvalue μ are in X ,
so that the spectrum and the geometric and algebraic
multiplicities of an eigenvalue of L
are the same for all settings (III.1.39).

(III.1.40)

This means that not only the Lyapunov–Schmidt projections (III.1.16) but
also necessary spectral information on L (or on a family of elliptic operators)
can be taken from its Hilbert space realization (III.1.7).

The results (III.1.38) and (III.1.40) hold accordingly for L = L∗ defined
in (III.1.18) and for its restriction (III.1.39) when Z = Lp(Ω) or Z = Cα(Ω)
and X is defined as in (III.1.18), where H2(Ω) is replaced by W 2,p(Ω) or
C2,α(Ω), respectively. It is well known that a (formally) self-adjoint elliptic
operator L has only real eigenvalues.

If Ω = (a, b) ⊂ R is a finite interval, then, as mentioned in Section III.1,
a multiplication by a suitable positive function transforms L into a (formal)
self-adjoint form. Therefore one-dimensional elliptic operators with homo-
geneous Dirichlet, Neumann, or mixed boundary conditions have only real
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eigenvalues. A closer analysis of those so-called Sturm–Liouville eigenvalue
problems yields that these eigenvalues are simple, which means that their
geometric and algebraic multiplicities are one; cf. [16], [109], for example.

Finally, the spectral properties (III.1.38) and (III.1.40) hold also for equi-
variant L if Ω is a tile in one of the lattices shown in Figures III.1.1–III.1.3.
The alternative setting here is (III.1.39) with Z = Cα(R2) ∩ XD and X =
C2,α(R2)∩XD when XD is the fixed-point space of the isotropy group of one
of the lattices. The subscript D means “inverse reflections” across the lines
of the lattice. For L = Δ + cI we can also choose Z = Cα(R2) ∩ XN and
X = C2,α(R2) ∩ XN , where the subscript N means “reflection” across the
lines of the respective lattice.

Remark III.1.3 Properties (III.1.38) and (III.1.40) provide another proof
of the Fredholm property of L in all settings (III.1.39): If 0 ∈ ρ(L), then
N(L) = {0} and R(L) = Z, so that the Fredholm property of L is trivial. If
0 ∈ σ(L), it is an isolated eigenvalue of finite algebraic multiplicity. By the
results in [86], [170] on isolated eigenvalues, the Banach space Z decomposes
into Z = E0 ⊕ Z0, where E0 is the finite-dimensional generalized eigenspace
of L for the eigenvalue 0. Both spaces E0 and Z0 are invariant for L, L ∈
L(E0, E0), and 0 ∈ ρ(L|Z0), so that N(L) ⊂ E0 and Z0 ⊂ R(L). From finite-
dimensional linear algebra we know that E0 = R(L|E0) ⊕ Ẽ0 with dim Ẽ0 =
dimN(L). Therefore, Z = R(L|E0) ⊕ Ẽ0 ⊕ Z0 = R(L) ⊕ Ẽ0, proving the
Fredholm property of L.

III.2 Local Bifurcation for Elliptic Problems

Let Ω ⊂ Rn be a bounded domain with a boundary ∂Ω such that linear
elliptic operators over Ω have the properties provided in Section III.1. A fully
nonlinear elliptic problem with homogeneous Dirichlet boundary conditions
is of the form

G(∇2u,∇u, u, x, λ) = 0 in ∂Ω, λ ∈ R,
u = 0 on ∂Ω,

(III.2.1)

where we use the following notation:

∇u is the gradient of u with components uxi,
∇2u is the second gradient or Hessian of u
with components uxixj , i, j = 1, . . . , n,
u : Ω → R is in C2(Ω), say, and x ∈ Ω.

(III.2.2)

If G ∈ Ck+1(Rn×n
sym × Rn × R×Ω × R,R), then
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F ∈ Ck(C2,α(Ω)× R, Cα(Ω)), where
F (u, λ)(x) ≡ G(∇2u(x),∇u(x), u(x), x, λ).

(III.2.3)

Assuming G(0,0, 0, x, λ) = 0 for all (x, λ) ∈ Ω × R, we have F (0, λ) = 0
and the trivial solution (0, λ) for all λ ∈ R. The Fréchet derivative of F with
respect to u along the trivial solution is given by

DuF (0, λ)h =∑n
i,j=1 Gwij (0,0, 0, x, λ)hxixj +

∑n
i=1 Gvi(./.)hxi +Gu(./.)h

for h ∈ C2,α(Ω), where the variables of

G : Rn×n
sym × Rn × R×Ω × R → R are

denoted by (W,v, u, x, λ), W = (wij), v = (vi).

(III.2.4)

If for some λ = λ0 the operatorDuF (0, λ0) is elliptic in the sense of (III.1.1),
then for X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω} and Z = Cα(Ω),

F ∈ Ck(X × R, Z), and
DuF (0, λ0) is a Fredholm operator of index zero;

(III.2.5)

see (III.1.26), (III.1.29). (For the local analysis of this section we need smooth-
ness of F only in a neighborhood of the bifurcation point (0, λ0). Accord-
ingly, the global smoothness of G can be reduced to G ∈ Ck+1(W × V ×
U × Ω × (λ0 − δ, λ0 + δ),R), where W × V × U is an open neighborhood of
(0,0, 0) ∈ Rn×n

sym × Rn × R.)
In many applications the operator in (III.2.1) is of a more special form,

G(∇2u,∇u, u, x, λ) ≡∑n
i,j=1 aij(∇u, u, x, λ)uxixj + g(∇u, u, x, λ),

(III.2.6)

called quasilinear, since the highest-order derivatives of u appear linearly.
Euler–Lagrange equations of first-order variational problems are quasilinear,
which explains the importance of this class of problems. Moreover, for an
Euler–Lagrange equation we obtain automatically aij = aji in (III.2.6), and
when linearized about u = 0, an Euler–Lagrange equation is of divergence
form (III.1.3) and therefore self-adjoint. Its ellipticity is directly related to
the convexity of the underlying functional, which explains the importance of
ellipticity. For such problems, not only Dirichlet but also natural boundary
conditions are of interest; cf. the example at the end of this section. In Section
III.1 we provide the Fredholm property (III.2.5) also for this class of problems.

If Ω = (a, b) ⊂ R is a (finite) interval, then F (u, λ)(x) ≡
G(u′′(x), u′(x), u(x), x, λ) defines a map F ∈ Ck(C2[a, b] × R, C[a, b]), pro-
vided that G ∈ Ck(R × R × R × [a, b],R). Therefore, for one-dimensional
domains we can save one order of differentiability. The Fréchet deriva-
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tive DuF (0, λ)h = Gw(0, 0, 0, x, λ)h
′′ + Gv(./.)h

′ + Gu(./.)h is elliptic if
Gw(0, 0, 0, x, λ) �= 0 for all x ∈ [a, b]. As pointed out in Section III.1, it
defines a Fredholm operator of index zero when it is considered as an op-
erator in L(X,Z) for X = C2[a, b] ∩ {u|u(a) = u(b) = 0} and Z = C[a, b].
Instead of Dirichlet boundary conditions we can take Neumann boundary
conditions, i.e., u′(a) = u′(b) = 0, or mixed boundary conditions.

III.2.1 Bifurcation with a One-Dimensional Kernel

We start with the application of Theorem I.5.1. We set

DuF (0, λ)h =

L(λ)h =
∑n

i,j=1 aij(x, λ)hxixj +
∑n

i=1 bi(x, λ)hxi + c(x, λ)h,

with coefficients given in (III.2.4).

(III.2.7)

Then the hypotheses of Theorem I.5.1 are the following:

L(λ0) is elliptic,

N(L(λ0)) = span[v̂0], ‖v̂0‖0 = 1,

N(L(λ0)
∗) = span[v̂∗0 ], ‖v̂∗0‖0 = 1,

(Lλ(λ0)v̂0, v̂
∗
0)0 �= 0, where

Lλ(λ0)h =
∂

∂λ
L(λ)h|λ=λ0 = D2

uλF (0, λ0)h.

(III.2.8)

Here L(λ0)
∗ is the adjoint operator according to (III.1.2), and ‖ ‖0, ( , )0

are norm and scalar product in L2(Ω). Observe that in view of the results
of Section III.1, the properties (III.2.8)2,3 are independent of the setting of
L(λ0) : X → Z, and for the nondegeneracy (I.5.3) we choose the projection
Q of (III.1.16); cf. also (III.1.17).

If (III.2.8) is satisfied, there exists a smooth (depending on k ≥ 2 in
(III.2.3)) nontrivial curve of solutions {(u(s), λ(s))|s ∈ (−δ, δ)} of F (u, λ) = 0
through (u(0), λ(0)) = (0, λ0) in X × R, and by (I.5.16), (I.5.17), u(s) =
sv̂0 + o(s) in X .

The Bifurcation Formulas of Section I.6 determine the bifurcation diagram
for (III.2.1) near (u, λ) = (0, λ0). The formula for λ̇(0) (cf. (I.6.3)) reads in
this case as

λ̇(0) = −1

2

(D2
uuF (0, λ0)[v̂0, v̂0], v̂

∗
0)0

(Lλ(λ0)v̂0, v̂∗0)0
,(III.2.9)



258 Chapter III. Applications

where F is defined in (III.2.3). The derivatives of F with respect to u are
expressed by derivatives of G with respect to its variables (wij , vi, u), cf.
(III.2.4).

In the so-called semilinear case,

G(∇2u,∇u, u, x, λ) ≡ ∑n
i,j=1 aij(x, λ)uxixj + g(∇u, u, x, λ),(III.2.10)

the formula for D2
uuF (0, λ0) uses only derivatives of g, and in the simplest

case, in which g = g(u, x, λ), then D2
uuF (0, λ0)[v̂0, v̂0] = guu(0, x, λ0)v̂

2
0 .

If λ̇(0) �= 0, then we have a transcritical bifurcation as sketched in Figure
I.6.1. If λ̇(0) = 0, the computation of λ̈(0) given in (I.6.11) is more involved,
in particular if in (I.6.9) the second derivatives do not vanish. We give its
computation in this case for a particular example; cf. (III.2.89). Since this
example serves as a paradigm for more phenomena in local and global bifur-
cation theory, we postpone it until the end of this section.

If 0 is a simple eigenvalue of DuF (0, λ0) = L(λ0) in the sense of (I.7.4)
then the Principle of Exchange of Stability expounded in Section I.7 is ap-
plicable.

The buckling of the Euler rod mentioned in the Introduction is an
important historical example. Therefore we discuss it here although it is mo-
deled by an ODE. An incompressible but elastic rod of length � is clamped
at one end and free at the other end. Due to its incompressibility the rod is
not deformed if it is subject to an axial load P . However, if the load exceeds
a crititical value, this “trivial state” becomes unstable and the rod deflects
from the straight state, i.e., it “buckles.” This phenomenon is a paradigm for
bifurcation.

x

u(x)

P

Figure III.2.1

The function u(x) for x ∈ [0, �] describes the angle as sketched in Fi-
gure III.2.1. As developed in [153], it satisfies the following boundary value
problem:

u′′ + λ sinu = 0 in [0, �],
u(0) = u′(�) = 0.

(III.2.11)
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The real parameter λ is proportional to the load P . Setting F (u, λ) = u′′ +
λ sinu for u ∈ X = C2[0, �]∩{u|u(0) = u′(�) = 0}, we obtain F : X×R → Z
with Z = C[0, �]. We have the trivial solution F (0, λ) = 0 for all λ ∈ R, and
DuF (0, λ)h = L(λ)h = h′′ + λh is an elliptic operator, which is a Fredholm
operator of index zero with the mixed boundary conditions (III.2.11)2; cf.
Section III.1. Moreover, as an operator in L2(0, �) with domain of definition
D(L(λ)) = H2(0, �) ∩ {u|u(0) = u′(�) = 0} it is self-adjoint, i.e., L(λ) =
L(λ)∗. (Since H2(0, �) ⊂ C1[0, �], the boundary conditions can be imposed in
the classical sense.) For the following eigenvalues λk it has a one-dimensional
kernel spanned by v̂k:

λk =
(
(2k + 1)

π

2�

)2

, v̂k(x) = ck sin
√
λkx, k ∈ N ∪ {0},(III.2.12)

where ck normalizes to ‖v̂k‖0 = 1. Since Lλ(λk)h = h and v̂∗k = v̂k, con-
dition (III.2.8) is fulfilled for all k ∈ N ∪ {0}. By Theorem I.5.1 there exist
smooth nontrivial curves of solutions {(uk(s), λk(s))|s ∈ (−δk, δk)} ⊂ X ×R

of F (u, λ) = 0 through (uk(0), λk(0)) = (0, λk) for all k ∈ N ∪ {0}. Since
D2

uuF (0, λk)[h, h] = 0 for all h ∈ X , formula (III.2.9) gives λ̇k(0) = 0 for all
k ∈ N ∪ {0}, and formula (I.6.11) yields

λ̈k(0) = −1

3

(D3
uuuF (0, λk)[v̂k, v̂k, v̂k], v̂k)0
(D2

uλF (0, λk)v̂k, v̂k)0

=
1

3
λk

∫ 	

0

v̂4kdx > 0 for all k ∈ N ∪ {0}.
(III.2.13)

All bifurcations are supercritical pitchfork bifurcations. The oddness of F
with respect to u, i.e., F (−u, λ) = −F (u, λ), implies for the bifurcating curves
the following properties (we omit the index k): With the notation of (I.2.7),
(I.2.8) we have

(I −Q)F (−v − ψ(v, λ), λ) = 0 and
(I −Q)F (−v + ψ(−v, λ), λ) = 0.

(III.2.14)

By uniqueness guaranteed by the Implicit Function Theorem we see that ψ
is odd with respect to v, i.e., ψ(−v, λ) = −ψ(v, λ). This, in turn, implies
the oddness of the bifurcation function Φ with respect to v; cf. (I.2.9). By
definition of Φ̃ in (I.5.10) we have Φ(sv̂0, λ) = sΦ̃(s, λ), and therefore Φ̃ is
even with respect to s, i.e., Φ̃(−s, λ) = Φ̃(s, λ). This gives in (I.5.14)

Φ̃(−s, λ(s)) = 0 and

Φ̃(−s, λ(−s)) = 0.
(III.2.15)

Again by uniqueness we see that λ is even in s, i.e., λ(−s) = λ(s) for all s ∈
(−δ, δ) and that u is odd in s, i.e., u(−s) = −u(s); cf. (I.5.16). This provides
another proof of λ̇(0) = 0 and it implies the symmetry of all pitchforks with
respect to the λ-axis.
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Since 0 is a simple eigenvalue of DuF (0, λ0), we can apply the Principle of
Exchange of Stability expounded in Section I.7. ByDuF (0, λ)v̂k = v̂′′k+λv̂k =
v̂′′k + λk v̂k + (λ− λk)v̂k = (λ− λk)v̂k the trivial solution line {(0, λ)|λ ∈ R)}
is stable for λ < λ0: all (simple) eigenvalues λ−λk of DuF (0, λ) are negative
for k ∈ N ∪ {0}. For λ > λ0 the greatest eigenvalue λ − λ0 of DuF (0, λ) is
positive and therefore the trivial solution line becomes unstable. In Section
I.7.3 we prove that a loss of stability implies that the supercritical pitchfork
is stable; see also Figure I.7.3. The local bifurcation scenario is sketched in
Figure III.2.2.

u

λ0 λλ2λ1

Figure III.2.2

Each half of the pitchforks has a global extension; see Section III.5, Theo-
rem III.5.1, and Corollary II.5.10. A celebrated result of Crandall and Rabi-
nowitz [26] for nonlinear Sturm–Liouville eigenvalue problems is the follow-
ing: Each half of all pitchforks is unbounded in X × R, they are all globally
separated, and they never intersect the trivial solution line a second time.
A key ingredient of their proof, besides the Leray–Schauder degree, is the
demonstration that the number of zeros of a solution in the interval (0, �)
is preserved along each nontrivial global branch. That number is inherited
from the function v̂k and therefore it is different for each global pitchfork.
We come back to these ideas in Section III.6.

The properties of the elliptic operator (III.2.7) expounded in Section III.1
allow us also to apply Theorem II.4.4.

In Case 1, i.e., when dimN(L(λ0)) = 1, an odd crossing number of the
family L(λ) at λ = λ0 is equivalent to a change of sign of the one-dimensional
bifurcation function DvΦ(0, λ) given in (II.4.25) at λ = λ0. This generalizes
the nondegeneracy (III.2.8)4, which is equivalent to D2

vλΦ(0, λ0) �= 0; cf.
(II.4.27). Consider the example (III.2.17) below, where the coefficients aij
and bi of L(λ) given by (III.2.4) do not depend on λ, and the coefficient c
does not depend on x. Then (III.2.8)4 reduces to

c′(λ0)(v̂0, v̂
∗
0)0 �= 0, ′ =

d

dλ
.(III.2.16)

The condition (v̂0, v̂
∗
0)0 �= 0, however, requires that 0 be an (algebraically)

simple eigenvalue of L(λ0); cf. (I.7.4), (I.16.4). On the other hand, the family
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L(λ)h =
∑n

i,j=1aij(x)hxixj +
∑n

i=1bi(x)hxi + c(λ)h(III.2.17)

has an odd crossing number at λ = λ0 if

the eigenvalue 0 of L(λ0) has an
odd algebraic multiplicity and if
c(λ) is strictly monotonic near λ = λ0.

(III.2.18)

This clearly allows c′(λ0) = 0. Note that condition (III.2.18) for local bifur-
cation applies to a fully nonlinear elliptic problem of the form

L(λ)u+ g(∇2u,∇u, u, x, λ) = 0 in Ω,
u = 0 on ∂Ω,

(III.2.19)

where L(λ) is of the form (III.2.17) and gwij (0,0, 0, x, λ) = gvi(./.) =
gu(./.) = 0. The famous result of Krasnosel’skii about “odd algebraic mul-
tiplicities” relies on the Leray–Schauder degree and does not apply to fully
nonlinear problems. (The one-dimensional kernel is clearly not necessary for
the application of Theorem II.4.4, as we note below in (III.2.36).)

The price one has to pay if the nondegeneracy (III.2.8)4 is given up is that
the bifurcation diagram does not necessarily consist of only one nontrivial
curve; see also Remark II.4.5. This is explicitly seen by the example (III.2.20)
below for Degenerate Bifurcation discussed in Section I.16. In this case, 0 is
an algebraically simple eigenvalue of L(λ) (cf. (I.16.4)); i.e., (v̂0, v̂

∗
0)0 �= 0.

Nonetheless, (III.2.16) is violated by c′(λ0) = 0.

Remark III.2.1 If the lowest-order coefficient of an elliptic operator L as
in (III.1.1) is nonpositive, c(x) ≤ 0, then the elliptic maximum principle and
Hopf’s boundary lemma are valid. Consequently, for all settings discussed
in Section III.1, L : X → Z is bijective, L−1 ∈ L(Z,Z) is compact, and
−L−1 is strictly positive in the sense of ordered Banach spaces. This means in
particular that every solution u ∈ X of −Lu = f ∈ Z is nonnegative, provided
that f is nonnegative. The Krein–Rutman Theorem (cf. [171]) then states
that the eigenvalue μ0 ∈ σ(L) of smallest modulus is unique, real, negative,
and algebraically simple. The corresponding eigenfunction v̂0 is positive (or
negative) in Ω.

The statement for the dual operator implies that μ0 ∈ σ(L∗) is simple and
the eigenfunction v̂∗0 is positive in Ω as well. Here L∗ is the adjoint operator
in the sense of (III.1.2), (III.1.14).

For an arbitrary elliptic operator L we have c(x) ≤ γ ∈ R, so that the
operator (−L+γI)−1 is strictly positive in the above sense. Therefore, L−γI
has a simple eigenvalue μ0 < 0 with positive eigenfunction v̂0. Then μ0+γ ∈
R is a simple eigenvalue of L, or 0 is a simple eigenvalue of L − (μ0 + γ)I
with a positive eigenfunction v̂0. Accordingly, 0 is a simple eigenvalue of the
adjoint (L− (μ0 + γ)I)∗ = L∗ − (μ0 + γ)I.



262 Chapter III. Applications

If L is self-adjoint, L = L∗, then all eigenvalues in σ(L) are real, and
μ0 is the largest negative eigenvalue, called the principal eigenvalue. It was
known long before the Krein–Rutman Theorem, in particular it was known
to Courant, Hilbert, Fischer, and Weyl, that the maximum of the negative
definite Rayleigh quotient B(u, u)/‖u‖20 in H1

0 (Ω)\{0} is attained for some
positive (or negative) v̂0 ∈ H1

0 (Ω) and that its value μ0 < 0 is the largest
eigenvalue. Its simplicity follows directly from the positivity of the eigenfunc-
tion v̂0: Every eigenfunction that is orthogonal to v̂0 in L2(Ω) changes its
sign. On the other hand, the maximum μ0 is attained only for some positive
(or negative) function.

The significance of the principal eigenvalue of a parameter-dependent fa-
mily L(λ) is that it is the first eigenvalue that might cross the imaginary axis
through 0 at λ = λ0, causing instability in the sense discussed in Section I.7.
The benefits for bifurcation “created by that instability” is that the kernel of
L(λ0) is one-dimensional and that due to the positivity of the eigenfunction
v̂0, it is easily seen which terms in bifurcation formulas do not vanish. Last
but not least, by the simplicity of the eigenvalue 0 of L(λ0), the Principle of
Exchange of Stability is valid; cf. Section I.7.

As an example of Degenerate Bifurcation expounded in Section I.16 we
consider the semilinear boundary value problem

L0u+ λ7u− λ4u2 + λ2u4 − u7 = 0 in Ω,
u = 0 on ∂Ω,

(III.2.20)

where 0 is an algebraically simple eigenvalue of some elliptic operator L0 with
positive eigenfunction v̂0. According to Remark III.2.1, the adjoint L∗

0 has a
simple eigenvalue 0 with positive eigenfunction v̂∗0 , too.

In view of the simplicity of the eigenvalue 0, we can use the Lyapunov–
Schmidt decomposition

X = N(L0)⊕ (R(L0) ∩X),
Z = R(L0)⊕N(L0),

(III.2.21)

with eigenprojection Qu = (u, v̂∗0)0v̂0 on N(L0) along R(L0) when we norma-
lize (v̂0, v̂

∗
0)0 = 1; cf. (I.16.4)–(I.16.6). (Observe that (III.2.21) is orthogonal

with respect to ( , )0 only if v̂0 = v̂∗0 or L0 = L∗
0. In contrast to the ortho-

gonal projections (III.1.16) valid for (III.1.17) or (III.1.27), we need here
only one projection Q, since P = Q|X . Note that the Lyapunov–Schmidt
reduction is not unique and that bifurcation formulas depend clearly on the
chosen reduction. Their vanishing or nonvanishing, however, or a change of
sign does not depend on the chosen reduction.)

For L(λ) = L0 + λ7I we obtain

(L(λ)v̂0, v̂
∗
0)0 = λ7,(III.2.22)
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so that the nondegeneracy (III.2.8)4 for λ0 = 0 is violated (in accordance with
(I.7.36), since the simple eigenvalue perturbation is trivially μ(λ) = λ7, so
that μ′(0) = 0). The degenerate condition (III.2.18), however, is satisfied, and
the method of Section I.16 provides the following: Identifying v ∈ N(L(0)) =
N(L0) with its coordinate s = (v, v̂∗0)0 and Φ ∈ N(L0) with its coordinate
(Φ, v̂∗0)0 with respect to v̂0, respectively, we see that the scalar bifurcation
function Φ̃(s, λ) = Φ(s, λ)/s given in (I.16.23) is of the following form:

Φ̃(s, λ) = c70λ
7 + c41λ

4s+ c23λ
2s3 + c06s

6 + h.o.t.,
where c70 = 1 by μ(λ) = λ7 and Theorem I.16.3,
c41 = −(v̂20 , v̂

∗
0)0, c23 = (v̂40 , v̂

∗
0)0, c06 = −(v̂70 , v̂

∗
0)0.

(III.2.23)

By positivity of the eigenfunctions v̂0, v̂
∗
0 we have c70 = 1 > 0, c41 < 0, c23 >

0, c06 < 0, so that the Newton Polygon Method described in Section I.15
yields the bifurcation diagram shown in Figure I.16.3; see also (I.16.55),
(I.16.56).

As mentioned at the end of Remark III.2.1, the Principle of Exchange of
Stability is valid; see Theorem I.16.8. If L0 = L∗

0 is self-adjoint, then μ(λ) =
λ7 is the principal eigenvalue of L(λ) = L0 + λ7I, and the trivial solution
(u, λ) = (0, λ) of (III.2.20) indeed loses stability at λ0 = 0. Consequently, the
bifurcating branches have the stability properties that are marked in Figure
I.16.3.

Another example is

L0u+ (λ2 − ε)u− u3 = 0 in Ω,
u = 0 on ∂Ω,

(III.2.24)

with the same operator L0 as before in (III.2.20). All solutions of (III.2.24)
near (u, λ, ε) = (0, 0, 0) are obtained by solving Φ(s, λ2−ε) = sΦ̃(s, λ2−ε) =
0, where Φ(s, λ̃) is the bifurcation function for (III.2.24) when we simply
substitute λ2 − ε = λ̃. As in (III.2.23), we obtain

Φ̃(s, λ2 − ε) = λ2 − ε+ c02s
2 + h.o.t.,

where c02 = −(v̂30 , v̂
∗
0)0 < 0.

(III.2.25)

ε > 0 ε = 0

s

ε < 0

λ

Figure III.2.3
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The solution set {(s, λ)} of Φ(s, λ2 − ε) = 0 is sketched in Figure III.2.3
for different values of ε near 0.

If L0 = L∗
0, then 0 is the principal eigenvalue of L0, so that the solutions

have the stability indicated in Figure III.2.3.

Remark III.2.2 The “generic” simple bifurcations at λ = ±√
ε for ε > 0

become a degenerate bifurcation for ε = 0, and for ε < 0 no bifurcation takes
place at all. One might believe that the eigenvalue 0 of L0 + (λ2 − ε)I for
λ = ε = 0 is no longer simple, since two eigenvalues “collide” at 0. This is a
misunderstanding: The eigenvalue λ2−ε of L0+(λ2−ε)I is throughout simple,
and bifurcation takes place at those values of λ for which λ2 − ε = 0. This is
completely different from the Hamiltonian Hopf Bifurcation, cf. Section I.11,
where for fixed λ the operator A(λ) has indeed two different eigenvalues that
collide for λ = λ0. As mentioned in Remark I.17.7, a degenerate bifurcation
for ε = 0 is always perturbed to “generic” bifurcations, but those perturbations
are best understood from the degenerate diagram. We recommend a study of
the bifurcations for L0 + λ(λ− ε)I in (III.2.24), too. For more examples see
[96].

III.2.2 Bifurcation with a Two-Dimensional Kernel

In this section we apply the method of Section I.19.1 to the following example:

Δu+ f(u,λ) = 0 in Ω ⊂ Rn,

u = 0 on ∂Ω,
(III.2.26)

where u = (u1, u2), Δu = (Δu1, Δu2), and Δ denotes the scalar Laplacian.
We assume that the vector field f is of the following form:

f : R2 × R → R2 is in Ck+1(R2 × R,R2), k ≥ 2,

f(u, λ) = λu+ f0k0(u) +R(u, λ)

for some homogeneous polynomial

f0k0 : R2 → R2 of order k0 ≥ 2, and where

R(u, λ) contains all terms of higher order in (u, λ− λ0),

i.e., of order |λ− λ0|j‖u‖k, where
k > k0 for j = 0, k > 1 for j = 1, and k ≥ 1 for j > 1.

(III.2.27)

(For the value of λ0 ∈ R see (III.2.29).) If the domain Ω ⊂ Rn is bounded
and the boundary ∂Ω is sufficiently smooth, we know by Section III.1 that
Δ+ λI : X → Z with X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω} and Z = Cα(Ω) is a
Fredholm operator of index zero. Then the same holds for Δ+λI : X2 → Z2

and
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F(u, λ)(x) = Δu(x) + f(u(x), λ)
defines a mapping
F : X2 × R → Z2 of class Ck(X2 × R, Z2).

(III.2.28)

By F(0, λ) = 0 we have the trivial solution (0, λ) for all λ ∈ R. We find a two-
dimensional kernel of DuF(0, λ) = Δ+ λI to the first (principal) eigenvalue
λ0 of −Δ, i.e.,

N(DuF(0, λ0)) = span[v̂1, v̂2], where
v̂1 = (v̂0, 0) and v̂2 = (0, v̂0) and
v̂0 is the positive eigenfunction of
−Δ : X → Z corresponding to λ0

that is normalized to ‖v̂0‖0 = 1.

(III.2.29)

Since Δ + λ0I is (formally) self-adjoint in (L2(Ω))2 with scalar product
(u,v)0 = (u1, v1)0 + (u2, v2)0, we obtain the following decomposition and
projections:

Z2 = R(DuF(0, λ0))⊕N(DuF(0, λ0)),

Q : Z2 → N along R, P : X2 → N along R ∩X2,

Qu = (u, v̂1)0v̂1 + (u, v̂2)0v̂2, P = Q|X2 ;

(III.2.30)

cf. (III.1.16), (III.1.30). In view of assumption (III.2.27) we obtain by
(I.19.25), (I.19.26) a bifurcation function of the form (I.19.40), i.e.,

Φ(v, λ) = Φ0k0(v) + (λ − λ0)Φ11v +R(v, λ), where
Φ0k0(v) = Qf0k0(v), Φ11v = v for
v = (z1, z2)v̂0 ∈ N, z = (z1, z2) ∈ R2.

(III.2.31)

Since assumption (I.19.44) is fulfilled by (III.2.31)2 (Z0 = N and v̂∗k =
v̂k, k = 1, 2, in this case), the crucial condition in Theorem I.19.2 is (I.19.45).
For v = zv̂0 ∈ N we obtain by definition (I.19.43) and with f0k0 = (f1

0k0
, f2

0k0
),

(Φ0k0(v), Rπ/2Φ11v)0

= −z2

∫
Ω

f1
0k0

(zv̂0)v̂0dx+ z1

∫
Ω

f2
0k0

(zv̂0)v̂0dx

= (−f1
0k0

(z)z2 + f2
0k0

(z)z1)

∫
Ω

v̂k0+1
0 dx

= f0k0(z) ·Rπ/2z

∫
Ω

v̂k0+1
0 dx,

(III.2.32)

where “·” is the Euclidean scalar product in R2 and Rπ/2 is a rotation about
π/2 in R2. Since v̂0 > 0 in Ω, (I.19.45) is satisfied in the following cases:
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If k0 is odd, assume the existence of
z1, z2 ∈ R2 with ‖z1‖ = ‖z2‖ = 1 and
f0k0(z1) ·Rπ/2z1 < 0,
f0k0(z2) ·Rπ/2z2 > 0.

If k0 is even, assume the existence of
a z ∈ R2 with ‖z‖ = 1 and
f0k0(z) ·Rπ/2z �= 0.

(III.2.33)

In both cases Corollary I.19.3 guarantees the existence of at least two local
continua or one continuum, respectively, of nontrivial solutions of F(u, λ) = 0
through (0, λ0) in X2 × R.

Choosing the parameterization z(t) = (cos t, sin t) for t ∈ [0, 2π] of S1 ⊂
R2, Corollary I.19.4 applies if there exists a z ∈ S1 with f0k0(z) ·Rπ/2z �= 0

and if
∫ 2π

0
f0k0(z(t)) ·Rπ/2z(t)dt = 0. Simple examples are

f0k0(z) =

(
α β
γ δ

)(
zk0
1

zk0
2

)
with

(α, β, γ, δ) �= (0, 0, 0, 0) for even k0,
and the additional condition β = γ for odd k0;

f02(z) =

(
z21 − z22
z1z2

)
.

(III.2.34)

The last example has the peculiarity that the two zeros of g(ṽ, 0) =
(Φ02(ṽ), Rπ/2ṽ)0 = z32

∫
Ω v̂30dx on S1 ⊂ N , i.e., for z21+z22 = 1, are degenerate

such that the Implicit Function Theorem is not applicable to solve (I.19.51).
We remark that the computation (III.2.32) is also valid for any other

simple eigenvalue λk of −Δ with an eigenfunction v̂k, k ≥ 1. Then (I.19.45)
is satisfied under the assumptions (III.2.33), provided

∫
Ω
v̂k0+1
k dx �= 0. This

is always true if k0 is odd.

However, when considered over a square Ω ⊂ R2, the second eigen-
value λ1 of −Δ subject to homogeneous Dirichlet boundary conditions is no
longer simple but has multiplicity two. Consequently, dimN(DuF(0, λ1)) =
dimN(Δ+λ1I) = 4 and the method of Section I.19.1 is not applicable. (For
the functional analytic setting of (III.2.26) over a square see Section III.1.1.)
In order to reduce the dimension of the kernel to two, we restrict the map-
ping F(·, λ) in (III.2.28) to fixed-point spaces of certain symmetry groups
of the square. For this purpose we need an equivariance of the vector field
f in (III.2.27) with respect to these symmetries. Note that Δ is equivari-
ant under the complete orthogonal group of the plane. One of the benefits of
equivariance is that fixed-point spaces are invariant under the nonlinear map-
ping F(·, λ). Furthermore, the dimension four of the kernel N(DuF(0, λ1))
reduces to two in a fixed-point space such that under suitable additional
conditions, Theorem I.19.2 and Corollary I.19.3 are applicable, yielding bi-
furcating nontrivial continua also at (0, λ1). All details can be found in [119].
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Finally, we study in [119] bifurcation functions of type (III.2.31)1 having
the equivariance with respect to the symmetry group of a regular n-gon,
n ≥ 3.

III.2.3 Bifurcation with High-Dimensional Kernels

The most general local result (in view of counterexamples) for fully nonli-
near elliptic problems is given by the application of Theorem II.4.4. With
DuF (0, λ) = L(λ) with L(λ) as in (III.2.7), as previously, the hypotheses of
Theorem II.4.4 are the following:

L(λ) is elliptic for λ ∈ (λ0 − δ, λ0 + δ),
0 is an eigenvalue of L(λ0), and
L(λ) has an odd crossing number at λ = λ0.

(III.2.35)

The last statement means that an odd number of eigenvalues (counting mul-
tiplicities) in the 0-group of L(λ) leave the left complex half-plane when
λ passes through λ0 (see Definition II.4.1). As proved in Theorem II.4.3,
assumption (III.2.35) implies that det(DvΦ(0, λ)) changes sign at λ = λ0

for every bifurcation function Φ(v, λ) obtained by the method of Lyapunov–
Schmidt.

The verification of (III.2.35)3 is not easy, in general, but for the special
case that L(λ) is given by (III.2.17) with a coefficient c(λ) satisfying (III.2.18)
it is simple. We summarize this result for convenience briefly as follows:

If 0 is an eigenvalue of odd algebraic multiplicity
of L(λ0) that is of the form (III.2.17)
with strictly monotonic coefficient c(λ), then
a continuum of nontrivial solutions of the
fully nonlinear elliptic problem (III.2.1) bifurcates
at (0, λ0) in X × R, where X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}.

(III.2.36)

Note that the hypotheses (III.2.35) are more general, and the statement of
Theorem II.4.4 is sharper than that of Krasnosel’skii’s Theorem in [118].

Another type of bifurcation theorem is given by (II.4.31), which is sum-
marized thus:

L(λ) is elliptic for λ ∈ (λ0 − δ, λ0 + δ),
dimN(L(λ0)) is odd,
(Lλ(λ0)v̂, v̂

∗)0 �= 0 for all
v̂ ∈ N(L(λ0))\{0}, v̂∗ ∈ N(L(λ0)

∗)\{0}.
(III.2.37)

We recall that the spectral properties of an elliptic family L(λ) are the same
for all settings L(λ) : Z → Z with D(L) = X ⊂ Z; cf. (III.1.39), (III.1.40).
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III.2.4 Variational Methods I

We give an application of Theorem I.21.2 to a so-called nonlinear eigenvalue
problem

Lu = μg(x, u) in Ω, μ ∈ R,
u = 0 on ∂Ω,

(III.2.38)

where L = L∗ is of divergence form (III.1.3) and elliptic. Assuming c(x) ≤
0, then the bilinear and symmetric form B(u, v) is negative definite on
H1

0 (Ω); cf. (III.1.8) (use Poincaré’s inequality). This means that ( , )1
and −B( , ) are equivalent scalar products on H1

0 (Ω).

Weak Solutions for Functions g with at Most Critical Growth

For the function g : Ω × R → R, we assume that the partial derivative
gu : Ω × R → R exists, that g, gu ∈ C(Ω × R,R), and that

|g(x, u)| ≤ c1 + c2|u|r,
|gu(x, u)| ≤ c3 + c4|u|r−1 for all (x, u) ∈ Ω × R,

1 ≤ r ≤ n+ 2

n− 2
for n > 2, 1 ≤ r < ∞ for n = 2,

(III.2.39)

and no restriction on g for n = 1. Here n is the dimension of the domain Ω,
i.e., Ω ⊂ Rn.

Defining the primitive

G(x, u) =

∫ u

0

g(x, s)ds for (x, u) ∈ Ω × R and

f(u) =

∫
Ω

G(x, u(x))dx for u ∈ H1
0 (Ω),

(III.2.40)

then the following is well known; see [118], for example. The function
f : H1

0 (Ω) → R satisfies

f ∈ C2(H1
0 (Ω),R) and

Df(u)h =

∫
Ω

g(x, u(x))h(x)dx for u, h ∈ H1
0 (Ω).

(III.2.41)

Setting ĝ(u)(x) = g(x, u(x)), we see that the function ĝ(u) is in Lq(Ω) with
q = 2n/(n + 2), by assumption (III.2.39)1 and by continuous embedding
H1

0 (Ω) ⊂ Lp(Ω) for p = 2n(n− 2), where we assume n > 2; the cases n ≤ 2
are left to the reader. Since 1/p + 1/q = 1, Hölder’s inequality proves that
Df(u) ∈ L(H1

0 (Ω),R), which is the dual space of H1
0 (Ω). Furthermore,
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D2f(u)[h1, h2] =

∫
Ω

gu(x, u(x))h1(x)h2(x)dx

for u, h1, h2 ∈ H1
0 (Ω),

(III.2.42)

and the same arguments using (III.2.39)2 prove that D2f(u) : H1
0 (Ω) ×

H1
0 (Ω) → R is bilinear and continuous; i.e., D2f(u) ∈ L2(H

1
0 (Ω),R).

The continuity of f,Df , and D2f with respect to u in the norms of
H1

0 (Ω), L(H1
0 (Ω),R), L2(H

1
0 (Ω),R), respectively, is more subtle and is proved

in [118]. By Riesz’s Representation Theorem, for each u ∈ H1
0 (Ω) there is a

unique
∇Lf(u) ∈ H1

0 (Ω) such that

Df(u)h = −B(∇Lf(u), h) for all u, h ∈ H1
0 (Ω).

(III.2.43)

According to Definition I.3.1, the mapping ∇Lf is the gradient of f with
respect to the scalar product −B( , ), and the subscript L denotes its
dependence on L. In the notation of Theorem I.21.2 we haveX = Z = H1

0 (Ω).
Staying with the notation of Section III.1, where X and Z have a different
meaning, we set H1

0 (Ω) = X1, and we define

F ≡ −∇Lf : X1 → X1,

F (0) = 0 if g(x, 0) = 0 for all x ∈ Ω,

F ∈ C1(X1, X1), by (III.2.40)–(III.2.43), and

B(DF (u)h1, h2) =

∫
Ω

ĝu(u)h1h2dx,

(III.2.44)

where as before, ĝu(u)(x) = gu(x, u(x)). For A0 = DF (0) we verify hypoth-
esis (I.21.3) of Theorem I.21.2.

Remark III.2.3 Let r = r(x) be any function r ∈ C(Ω). Then the operator
A0 ∈ L(X1, X1), defined by

B(A0v, h) = (rv, h)0 for all v, h ∈ X1 = H1
0 (Ω),(III.2.45)

is symmetric (self-adjoint) with respect to the scalar product −B( , ) and
compact: By continuity, the linear operator A0 maps weakly convergent se-
quences in X1 onto weakly convergent sequences in X1, which, by compact
embedding H1

0 (Ω) ⊂ L2(Ω), converge strongly in L2(Ω). Choosing h = A0v,
we see that the defining equation (III.2.45) proves that A0 maps weakly con-
vergent sequences in X1 onto strongly convergent sequences in X1, which
means compactness of A0.

Therefore, by the Riesz–Schauder Theory, the spectrum σ(A0) consists of
real nonzero eigenvalues of finite (algebraic) multiplicities and of 0, which
is the only possible cluster point of σ(A0). If A0 �= 0, then its spectral ra-
dius ‖A0‖L(X1X1) (with the operator norm generated by −B( , )) is po-
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sitive. Therefore, there exists an eigenvalue λ0 with |λ0| = ‖A0‖ > 0. Fur-
thermore, it is known that the following completeness of orthonormal sys-
tems of eigenfunctions holds: If λ0, λ1, . . . are all nonzero eigenvalues of A0

with orthonormal eigenfunctions v̂0, v̂1, . . . (with respect to −B( , )), then
X1 = N(A0)⊕ span[v̂0, v̂1, . . .].

A closer look reveals more: Let r(x) > 0 for x in an open subset Ω+ ⊂ Ω.
Then dim{v ∈ X1| supp(v) ⊂ Ω+} = ∞ (where “supp” denotes the support),
so that the complement of N(A0) in X1 is infinite-dimensional. Let v �=
0, supp(v) ⊂ Ω+, and v =

∑
αkv̂k be its Fourier series. Then 0 < (rv, v)0 =

B(A0v, v) = −∑
α2
kλk. If there were only finitely many eigenvalues λk < 0,

then there would exist such a v �= 0 with Fourier coefficients αk = 0 for all
λk < 0 such that 0 < (rv, v)0 = −∑

α2
kλk ≤ 0. This contradiction proves that

there exist infinitely many negative eigenvalues λk < 0 of A0 with λk → 0
as k → ∞. The same argument yields infinitely many positive eigenvalues
λ	 > 0 with λ	 → 0 as � → ∞ if r(x) < 0 for x ∈ Ω− ⊂ Ω.

The eigenvalue problem for A0, i.e.,

B(A0v, h) = λB(v, h) = (rv, h)0 for all h ∈ H1
0 (Ω),(III.2.46)

is the weak formulation of the elliptic eigenvalue problem

Lv = μrv in Ω, μ = λ−1,
v = 0 on ∂Ω,

(III.2.47)

with possibly indefinite weight function r ∈ C(Ω). The preceding results about
the eigenvalues λ �= 0 of A0 yield the following: If Ω+ = {x ∈ Ω|r(x) > 0} �= ∅
(or Ω− = {x ∈ Ω|r(x) < 0} �= ∅), then there exist infinitely many negative
eigenvalues μk < 0 with μk → −∞ as k → ∞ (or infinitely many positive
eigenvalues μ	 > 0 with μ	 → +∞ as � → ∞) of the weak eigenvalue problem
(III.2.47). Furthermore, there exists a largest negative (or smallest positive)
eigenvalue, and these possibly two “principal” eigenvalues are the maximum
(or minimum) of {−B(v, v)/(rv, v)0|v ∈ H1

0 (Ω), (rv, v)0 > 0 (or (rv, v)0 <
0)} (respectively). These extrema are attained at some positive (or negative)
function v̂0 ∈ H1

0 (Ω); cf. Remark III.2.1.
If r changes sign on Ω, the simplicity of a principal eigenvalue μ0 is not

as obvious as in the definite case. Furthermore, all other eigenfunctions of
(III.2.47) that do not belong to a principal eigenvalue change sign in Ω. For
details we refer to [77], [108].

If the boundary of Ω allows an elliptic regularity theory, then the weak
formulation (III.2.46) for v ∈ H1

0 (Ω) and the strong version (III.2.47) for
v ∈ D(L) = H2(Ω) ∩H1

0 (Ω) are equivalent. If the weight function r belongs
to Cα(Ω), then elliptic regularity implies that v ∈ C2,α(Ω) ∩ {u|u = 0 on
∂Ω} for every eigenfunction v of (III.2.47); cf. (III.1.40). Conversely, all
eigenfunctions of A0 with eigenvalues λk = μ−1

k are in C2,α(Ω) ∩ {u|u = 0
on ∂Ω} if the data of the problem are smooth enough.
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We apply the results described in Remark III.2.3 to the weight r = ĝu(0) ∈
C(Ω). If ĝu(0) �= 0 (i.e., if gu(x, 0) �≡ 0), then all eigenvalues λk �= 0 of A0 are
candidates for the application of Theorem I.21.2. (Since A0 ∈ L(X1, X1) is
self-adjoint, we have clearly (I.21.3)4, and Remark I.21.1 is trivially satisfied.)

Let λ0 �= 0 be one of the eigenvalues of A0. Then for every sufficiently
small ε > 0 there are at least two solutions (u, λ) = (u(ε), λ(ε)) ∈ H1

0 (Ω)×R

of
F (u) = λu, −B(u, u) = ε2,
and λ(ε) → λ0 as ε ↘ 0.

(III.2.48)

By definitions (III.2.43), (III.2.44), and (III.2.40), this means that

B(u, h) = μ

∫
Ω

g(x, u)hdx, μ = λ−1

for all h ∈ H1
0 (Ω) and μ = μ(ε) → μ0 = λ−1

0 ,

where μ0 is an eigenvalue of (III.2.47)
with r = ĝu(0).

(III.2.49)

In other words, (u, μ) ∈ H1
0 (Ω) × R are nontrivial weak solutions of

(III.2.38) clustering at (0, μ0).

For u ∈ H1
0 (Ω), assumption (III.2.39)1 implies that ĝ(u) ∈ Lq(Ω) with

q = 2n/(n+ 2). If the data, in particular the boundary ∂Ω, allow an elliptic
regularity theory, then (III.2.49) implies u ∈ W 2,q(Ω). Since this does not
give more regularity for ĝ(u), that is ĝ(u) ∈ Lq(Ω) with q = 2n/(n + 2),
no further gain of regularity via a so-called “bootstrapping” is possible, in
general. (It is possible, however, if the growth in (III.2.39)1 is “subcritical,”
i.e., if r < n+2

n−2 .)

Some comments on this result are in order: Theorem I.21.2 provides weak
solutions of (III.2.38) in the sense of (III.2.48) or (III.2.49) under rather
weak regularity conditions on the data of the problem. The coefficients of
L of the form (III.1.3) have to satisfy only aij ∈ C1(Ω), c ∈ C(Ω), and for
the nonlinearity it suffices that g, gu ∈ C(Ω × R,R). Then all hypotheses on
F ∈ C1(H1

0 (Ω), H1
0 (Ω)) and on A0 = DF (0) ∈ L(H1

0 (Ω), H1
0 (Ω)) to apply

Theorem I.21.2 are satisfied irrespective of the regularity of the boundary
∂Ω. We obtain bifurcation of weak solutions at every eigenvalue of the weak
eigenvalue problem (III.2.38) for every bounded domain Ω with no condition
on its boundary ∂Ω.

Apart from the lack of regularity of the weak solutions, the Hilbert space
approach for (III.2.38) clearly also has the drawback mentioned in Section
III.1: The Hilbert space setting might impose obstructions to nonlinear prob-
lems, which in the case in question are the growth conditions (III.2.39) on the
nonlinearity g. As recommended in Section III.1, we overcome this drawback
by a Banach space approach.
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Strong Solutions for Arbitrary Functions g

Now the boundary ∂Ω and the coefficients of L are again smooth enough
to ensure the properties of the elliptic operator L as expounded in Section
III.1. Let g : Ω×R → R be any function in C2(Ω×R,R) such that g(x, 0) = 0
for all x ∈ Ω. Then, for G as defined in (III.2.40)1, the functional f given in
(III.2.40)2 is defined on X1,α ≡ C1,α(Ω) ∩ {u|u = 0 on ∂Ω}. Furthermore,
f ∈ C2(X1,α,R), and its derivative DF (u) is given by (III.2.41)2 for u, h ∈
X1,α. By ĝ(u), ĝu(u) ∈ Cα(Ω) = Z ⊂ L2(Ω), we can state (III.2.41)2 and
(III.2.42) as

Df(u)h = (ĝ(u), h)0 for u, h ∈ X1,α,

D2f(u)[h1, h2] = (ĝu(u)h1, h2)0 for u, h1, h2 ∈ X1,α.
(III.2.50)

By the assumption that c(x) ≤ 0, the elliptic operator L from (III.1.3) is
bijective via L : H2(Ω) ∩ H1

0 (Ω) → H0(Ω. Therefore, L is also bijective as
a mapping L : X ≡ C2,α(Ω) ∩ {u|u = 0 on ∂Ω} → Z; cf. Section III.1, in
particular (III.1.40). Defining

F (u) ≡ L−1ĝ(u) for u ∈ X1,α, then
B(F (u), h) = (ĝ(u), h)0 = Df(u)h
for all u, h ∈ X1,α,

(III.2.51)

so that −f ∈ C2(X1,α,R) is a potential for F ∈ C1(X1,α, X1,α) with respect
to the scalar product −B( , ) on X1,α ⊂ H1

0 (Ω) = X1. Furthermore,

DF (u)h = L−1(ĝu(u)h) for u, h ∈ X1,α,(III.2.52)

which implies for A0 = DF (0) the equivalence

(A0 − λI)v = 0 for v ∈ X1,α, λ �= 0 ⇔
Lv = μĝu(0)v for v ∈ X, μ = λ−1.

(III.2.53)

As discussed at the end of Remark III.2.3, for r = ĝu(0) ∈ Cα(Ω), every
eigenfunction v of (III.2.47) in H2(Ω) ∩ H1

0 (Ω) is also in X , so that all
results for (III.2.47) summarized in Remark III.2.3 hold for the eigenvalue
problem (III.2.53)2 as well. Therefore, the eigenvalue problems (III.2.46) and
(III.2.53)1 are equivalent, too.

Let λ0 �= 0 be one of the eigenvalues of A0. Then the decomposition
X1 = N(A0−λ0I)⊕R(A0−λ0I) for A0 ∈ L(X1, X1), defined in (III.2.45) for
r = ĝu(0), implies forX1,α ⊂ H1

0 (Ω) = X1 the decompositionX1,α = N(A0−
λ0I) ⊕ R(A0 − λ0I) for A0 ∈ L(X1,α, X1,α) defined by A0 = L−1 ◦ ĝu(0)I.
(The same notation A0 for different settings should not be confusing.)

Thus all hypotheses of Theorem I.21.2 are satisfied for F ∈ C1(X1,α, X1,α)
defined in (III.2.51), and every nontrivial pair solving F (u) = λu yields a
classical solution (u, μ) ∈ X × R of (III.2.38) for μ = λ−1.
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The two approaches for problem (III.2.38) show that weak solutions un-
der weak regularity assumptions are obtained via a Hilbert space setting that
requires growth conditions on g, whereas strong solutions under strong regu-
larity of all data are given by a Banach space approach having the advantage
that it applies for every smooth nonlinearity g, irrespective of any growth at
infinity.

In general, we know only the properties (III.2.48) of the nontrivial solu-
tions. However, if dimN(L− μ0ĝu(0)I) = 1, then Theorem I.5.1 applies: For
the family L(μ) = L− μĝu(0)I, the nondegeneracy (III.2.8)4 is satisfied by

(Lμ(μ0)v̂0, v̂0)0 = (ĝu(0)v̂0, v̂0)0
= λ0B(v̂0, v̂0) �= 0 for λ0 = μ−1

0 ,
(III.2.54)

so that the bifurcating solution set is a smooth curve {(u(s), μ(s))|s ∈ (−δ, δ)}
in X × R through (0, μ0). This is true, in particular, if μ0 is a principal
eigenvalue of Lv = μĝu(0)v; cf. (III.2.47) and the comments after it.

The application of Corollary I.21.3 gives many more solutions in the
Hilbert space as well as in the Banach space approach:

If g(x,−u) = −g(x, u) for all (x, u) ∈ Ω × R, then at
(0, μ0) at least n pairs of solutions (±u, μ) of (III.2.38)
bifurcate, where n = dimN(L− μ0ĝu(0)I).

(III.2.55)

III.2.5 Variational Methods II

There is still a drawback to overcome: The method used to prove Theorem
I.21.2 allows only a linear dependence on the parameter λ, which means that
the parameter μ in (III.2.38) appears linearly, too. Application of Theorem
II.7.3, however, allows an arbitrary dependence on the parameter, which we
denote again by λ. Although we could stay with the foregoing setting, we
change it in order to avoid an inversion of L.

Let L(λ) = L(λ)∗ be a family of operators of divergence form (III.1.3)
with coefficients aij ∈ C(R, C1,α(Ω)), c ∈ C(R, Cα(Ω)). (This means that
λ �→ aij(·, λ), λ �→ c(·, λ) are continuous from R into the Banach spaces
C1,α(Ω), Cα(Ω), respectively.) The boundary ∂Ω is smooth enough to apply
all properties of elliptic operators summarized in Section III.1. Assuming that

L(λ0) is elliptic and that
0 is an eigenvalue of L(λ0),

(III.2.56)

then the continuous family L(λ) : X → Z satisfies (II.4.1), (II.4.2), and
(II.4.3) for X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω} and Z = Cα(Ω). We consider
the semilinear problem
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L(λ)u+ g(u, x, λ) = 0 in Ω,
u = 0 on ∂Ω,

(III.2.57)

where g ∈ C2(R × Ω × R,R) satisfies g(0, x, λ) = gu(0, x, λ) = 0 for all
(x, λ) ∈ Ω × R. (The first condition gives the trivial solution (u, λ) = (0, λ)
and the second is imposed without loss of generality by adding gu(0, x, λ) to
the coefficients c(x, λ) of L(λ).) Then

F : X × R → Z is in C(X × R, Z), where
F (u, λ)(x) = (L(λ)u)(x) + g(u(x), x, λ),
DuF ∈ C(X × R, L(X,Z)), and
DuF (0, λ)h = L(λ)h.

(III.2.58)

If we endow Z with the scalar product ( , )0, then F (·, λ) is a potential
operator from X into Z according to Definition I.3.1. We give the potential:

f(u, λ) =
1

2
(L(λ)u, u)0 +

∫
Ω

G(u(x), x, λ)dx

for (u, λ) ∈ X × R, where

G(u, x, λ) =

∫ u

0

g(s, x, λ)ds for (u, x, λ) ∈ R×Ω × R.

(III.2.59)

Then Theorem II.7.3 provides nontrivial solutions of F (u, λ) = 0 in X×R,
i.e., of (III.2.57), which cluster at (0, λ0), if

the crossing number χ(L(λ), λ0) of L(λ) at λ = λ0 is nonzero.(III.2.60)

Since all eigenvalues of L(λ) are real, local hyperbolicity is true if 0 is
not an eigenvalue of L(λ) for λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ). By Definition
II.7.1, a nonzero crossing number means that a nonzero number of eigenvalues
(counting multiplicities) leaves or enters the positive real axis when λ passes
through λ0. We give a simple sufficient condition that implies (III.2.60):

L(λ)h =
∑n

i,j=1(aij(x)hxi)xj + c(λ)h,

and c(λ) is strictly monotonic near λ = λ0;
(III.2.61)

cf. (III.2.17), (III.2.18). Note that in contrast to (III.2.36), the multiplicity
of the eigenvalue 0 of L(λ0) is arbitrary in the variational case. Therefore,
for F (u, λ) = Δu + λg(u) = 0 with g(0) = 0, g′(0) > 0, for example,
every eigenvalue μn > 0 of −Δ provides a bifurcation point (0, λn), where
μn = λng

′(0); cf. Section III.7.

Since Theorem II.7.3 generalizes Theorem I.21.2, our result on (III.2.57)
is our most general for elliptic problems of variational structure.
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III.2.6 An Example

This example, which is continued in Sections III.5 and III.6, is presented
because it serves as a paradigm for the following techniques:

• By an exploitation of symmetry, only nondegenerate bifurcations with one-
dimensional kernels occur.

• An evaluation of bifurcation formulas reveals sub- and supercritical pitch-
fork bifurcations and determines, in turn, their stability.

• The global extensions of the local bifurcating curves satisfy the second
Rabinowitz alternative. The proof includes the following steps:

• A combination of symmetry and of the elliptic maximum principle applied
to a differentiated equation proves that the maxima and minima of all
solutions on a global branch have a fixed location.

• This qualitative property separates all global branches and helps at the
same time to prove an a priori estimate excluding the first Rabinowitz
alternative.

• In view of the separation of branches, there is only one possibility left to
meet the trivial solution line a second time.

• This establishes the global bifurcation diagram.

We start now to discuss the following model: Minimize or find critical
points of the energy

Eε(u) =

∫
Ω

(
ε

2
‖∇u‖2 +W (u))dx, ε ≥ 0,

over Ω = (0, 1)× (0, 1)

under the constraint

∫
Ω

u dx = m.

(III.2.62)

This functional is commonly called the Cahn–Hilliard energy, describing
the total energy of a binary alloy of mass m in Ω with (ε > 0) or without
(ε = 0) interfacial energy. According to the two components of the alloy, the
free energy potential W : R → R is a so-called two-well potential having two
minima; cf. Figure III.2.4. We assume that W is sufficiently smooth (C4 is
enough).

The Euler–Lagrange equation for (III.2.62) is

−εΔu+W ′(u) = λ in Ω, λ = Lagrange multiplier,∑2
i=1uxiνi = 0 on ∂Ω,∫

Ω

u dx = m,

(III.2.63)
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spinodal region

W

W
′

Maxwell line
βα

W
′′

m2m1

Figure III.2.4

where ν is the outer normal; i.e., (III.2.63)2 are the natural boundary condi-
tions for the self-adjoint operator Δ called homogeneous Neumann boundary
conditions; cf. (III.1.5). For ε > 0, (III.2.63) is a semilinear elliptic problem
with a nonlocal term, namely,

λ =

∫
Ω

W ′(u)dx.(III.2.64)

In order to incorporate the constraint (III.2.63)3 into a function space, we
make the substitution

u = m+ v, where

∫
Ω

v dx = 0(III.2.65)

(recall that |Ω| = 1), and we set

Fε(v,m) = −εΔv +W ′(m+ v)−
∫
Ω

W ′(m+ v)dx.(III.2.66)

In the subsequent analysis we fix ε > 0, and we use the mass m as
a bifurcation parameter. We have the trivial solutions (v,m) = (0,m) of
Fε(v,m) = 0 for all m ∈ R (describing a homogeneous mixture), and before
choosing the adequate function spaces, we study its linearization along the
trivial solution. We obtain from (III.2.66)

−εΔv +W ′′(m)v = 0 in Ω,

(∇v, ν) = 0 on ∂Ω,∫
Ω

v dx = 0,

(III.2.67)
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having the following special classes of eigenfunctions:

v̂(x1, x2) = α1 cosnπx1 + α2 cosnπx2, α1, α2 ∈ R,
provided that W ′′(m) = −εn2π2, n ∈ N,

v̂	n(x1, x2) = α cos �πx1 cosnπx2, α ∈ R,
provided that W ′′(m) = −ε(�2 + n2)π2, �, n ∈ N.

(III.2.68)

The kernels are not necessarily one-dimensional: Whereas this is obvious in
the first case, it is possible also in the second case if ñ2 = �2+n2 or �̃2+ ñ2 =
�2 + n2 for different integers.

Since higher-dimensional kernels are not convenient in bifurcation theory,
we can pursue two tracks: Restrict the problem to a one-dimensional one,
i.e., allow the dependence on only one variable x1, say (in which case the
Euler–Lagrange equation is an ODE), or impose symmetry constraints that
reduce the dimension of the kernels to one. We choose the second possibility,
since the first one is simpler and is treated analogously.

From the first class we pick the eigenfunction

v̂n(x1, x2) = cosnπx1 + cosnπx2,(III.2.69)

which belongs to the following symmetry class:

Xn =

{
v : R2 → R|v(x1, x2) = v(−x1, x2) = v(x1,−x2)

= v(x2, x1) = v

(
x1 +

2

n
, x2

)
= v

(
x1, x2 +

2

n

)}
;

(III.2.70)

cf. (III.1.31)2. We change the notation of (III.1.31): The subscript n refers to
the period, and we have an additional symmetry with respect to the diagonal
{x1 = x2}. The symmetry lattice is shown in Figure III.1.1 for a = 1

n when
it is shifted by the vector ( 1

n , 0).
The eigenfunctions of the second class have the symmetry

v(x1, x2) = v

(
n

�
x2,

�

n
x1

)
,(III.2.71)

which is not orthogonal if � �= n. Therefore, the operator Δ is not equivariant
with respect to the oblique symmetry, so that its fixed-point space is not
invariant; cf. the discussion in Section III.1. For � = n, however, we set

v̂nn(x1, x2) = 2 cosnπx1 cosnπx2,(III.2.72)

which belongs to the symmetry class

Xnn =

{
v ∈ Xn|v(x1, x2) = v

(
−x2 +

1

n
,−x1 +

1

n

)}
,(III.2.73)
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whose lattice is shown in Figure III.1.2. As remarked in Section III.1, the
lattices forXn andXnn are not essentially distinct, since they are transformed
into each other by an affine mapping. We confine our analysis to the symmetry
class Xn and state simply that the modifications to the class Xnn are simple
enough to be left to the reader. (For details see [106].)

The classesXn are appropriate for homogeneous Neumann boundary con-
ditions on Ω = (0, 1)× (0, 1) for all n ∈ N. Accordingly, we define

X2,α
n = C2,α(R2) ∩Xn ∩

{
v|
∫
Ω

vdx = 0

}
,

Xα
n analogously,

(III.2.74)

and the mapping defined in (III.2.66) satisfies

Fε : X
2,α
n × R → Xα

n ,(III.2.75)

since by the boundary conditions,
∫
Ω Fε(v,m)dx = 0. Clearly, all solutions

(v,m) ∈ X2,α
n × R of Fε(v,m) = 0 give via u = v + m solutions of the

Euler–Lagrange equation (III.2.63) satisfying the constraint (III.2.63)3.
By the analysis of Section III.1, in particular by (III.1.35),

DvFε(0,m) = −εΔ+W ′′(m)I : X2,α
n → Xα

n

is a Fredholm operator of index zero.
(III.2.76)

Note that the Fredholm property remains valid in the subspaces of func-
tions with mean value zero in Ω. (Constant functions span N(Δ) and are
complementary to R(Δ). In this case constant functions vanish.) As seen in
(III.2.68),

dimN(DvFε(0,m)) = 1, provided that
W ′′(m) = −εn2π2.

(III.2.77)

By the assumed shape of W ′′ shown in Figure III.2.4, there are two solutions
m1

n,m
2
n of the characteristic equation (III.2.77)2 for n = 1, . . . , N(ε) if ε > 0

is small enough. These candidates for bifurcation points are in the spinodal
region (m1,m2).

By formal self-adjointness of L = −εΔ+W ′′(m)I, we have by (III.1.35)
the decomposition

Xα
n = R(L)⊕N(L),(III.2.78)

where the spaces R(L) and N(L) are orthogonal with respect to the scalar
product ( , )0 in L2(Ω). This yields the Lyapunov–Schmidt projections

Qv = (v, v̂n)0v̂n, Q : Xα
n → N(L) along R(L),

P = Q|X2,α
n

: X2,α
n → N(L) along R(L) ∩X2,α

n .
(III.2.79)

Observe that ‖v̂n‖0 = 1 for all n ∈ N.
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Again by the assumption on W ′′, cf. Figure III.2.4, the nondegeneracy
(I.5.3) of Theorem I.5.1 is satisfied:

(D2
vmFε(0,m)v̂n, v̂n)0 = W ′′′(m) �= 0

if W ′′(m) = −εn2π2 has two solutions m1
n,m

2
n.

(III.2.80)

Therefore, there exist nontrivial curves of solutions {(v(s),m(s))|s ∈ (−δ, δ)}
of Fε(v,m) = 0 through (v(0),m(0)) = (0,mi

n), i = 1, 2, and by (I.5.16),
(I.5.17),

v(s) = sv̂n + o(s) in X2,α
n .(III.2.81)

If (v,m) ∈ X2,α
n × R is a solution of Fε(v,m), then the reversion

ṽ(x1, x2) = v

(
1

n
− x1,

1

n
− x2

)
(III.2.82)

defines a solution (ṽ,m) ∈ X2,α
n × R, too. Since the reversion of the eigen-

function v̂n is its negative −v̂n, the uniqueness of the bifurcating curve im-
plies that the two components {(v(s),m(s))|s ∈ [0, δ)} and {(v(s),m(s))|s ∈
(−δ, 0]} are transformed into each other by the reversion (III.2.82). This
implies, in particular, m(−s) = m(s) and ṁ(0) = 0. We verify this by eval-
uating the Bifurcation Formula of Section I.6. Sub- or supercriticality of the
pitchfork is then determined by m̈(0), provided that it is nonzero.

By definition (III.2.66),

D2
vvFε(v,m)[v̂n, v̂n] = W ′′′(m+ v)v̂2n −

∫
Ω

W ′′′(m+ v)v̂2ndx,

D3
vvvFε(0,m)[v̂n, v̂n, v̂n] = W (4)(m)v̂3n by

∫
Ω

v̂3ndx = 0.

(III.2.83)

Using the projection (III.2.79), we see that the numerator of formula (I.6.3)
for ṁ(0) (see also (III.2.9)) is

(D2
vvFε(0,m)[v̂n, v̂n], v̂n)0

= W ′′′(m)

∫
Ω

v̂3ndx−W ′′′(m)‖v̂n‖20
∫
Ω

v̂ndx = 0.
(III.2.84)

Therefore, ṁ(0) = 0. Formula (I.6.11) for m̈(0) is more involved. We evaluate
the numerator (I.6.9) step by step:

(D3
vvvFε(0,m)[v̂n, v̂n, v̂n], v̂n)0 = W (4)(m)

∫
Ω

v̂4n dx =
9

4
W (4)(m),

D2
vvFε(0,m)[v̂n, v̂n] = W ′′′(m)(v̂2n − 1),

QD2
vvFε(0,m)[v̂n, v̂n] = 0.

(III.2.85)
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Next we solve
DvFε(0,m)v = W ′′′(m)(v̂2n − 1)
for v ∈ (I − P )X2,α

n ; i.e., (v, v̂n)0 = 0.
(III.2.86)

By v̂2n − 1 = 1
2 (cos 2nπx1 + cos 2nπx2) + 2 cosnπx1 cosnπx2 we obtain, in

view of (III.2.76) and W ′′(m) = −εn2π2 for the solution of (III.2.86),

v =
W ′′′(m)

εn2π2

(
1

6
(cos 2nπx1 + cos 2nπx2) + 2 cosnπx1 cosnπx2

)
.(III.2.87)

Finally,

(D2
vvFε(0,m)[v̂n, v], v̂n)0 = W ′′′(m)

∫
Ω

vv̂2ndx

=
13

12

W ′′′(m)2

εn2π2
, since (v, v̂n)0 = 0.

(III.2.88)

For the denominator of (I.6.11) we use (III.2.80), and we obtain form = m(0),

m̈(0) = −1

3

{
9

4

W (4)(m)

W ′′′(m)
− 13W ′′′(m)

4εn2π2

}
.(III.2.89)

By the assumed shape of W ′′ we have W (4)(m) > 0 and
W ′′′(m1

n) < 0, W ′′′(m2
n) > 0. Therefore, for small ε > 0,

m̈(0) < 0 at (0,m1
n), m̈(0) > 0 at (0,m2

n),(III.2.90)

yielding the bifurcation diagrams sketched in Figure III.2.5.
In Sections III.5, III.6 we see how the two local curves shown in Figure

III.2.5 are extended globally; see Figure III.6.2.
In Figure III.2.5 the instability of the solutions (m, v) is marked by a

hatched line. We define the stability of a conditionally critical point of the
energy Eε(u) = Eε(m+v) given in (III.2.62) by its stability as an equilibrium
of the negative gradient flow, i.e., of

dv

dt
= −Fε(v,m); see (III.2.66).(III.2.91)

(The evolution equation (III.2.91) is not what is called the dynamical Cahn–
Hilliard model. In that model the preservation of mass is ensured by the
application of the Laplacian together with an additional boundary condition.
It does not contain a nonlocal term, but it is a parabolic PDE of fourth
order.)
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Figure III.2.5

In the symmetry class Xn, the value W ′′(mi
n) = −εn2π2 is the principal,

i.e., greatest negative, eigenvalue of εΔ; cf. Remark III.2.1. In other words,
0 is the principal eigenvalue of −DvFε(0,m

i
n), i = 1, 2. The assumed shape

of the graph of W ′′ shown in Figure III.2.4 implies that the eigenvalue 0
becomes a negative eigenvalue of DvFε(0,m) for m < m1

n, m > m2
n, and a

positive eigenvalue for m ∈ (m1
n,m

2
n). This proves the stability properties of

the trivial solutions (0,m), as indicated in Figure III.2.5.
By the Principle of Exchange of Stability proved in Section I.7, both

bifurcating pitchforks sketched in Figure III.2.5 are therefore unstable; cf.
Figure I.7.3. Presumably the branches regain stability at the next turning
point; cf. Figure I.7.1 and Figure III.6.2.

Remark III.2.4 One of the best-known phenomena in applied bifurcation
theory is the appearance of Taylor vortices in the so-called Couette–Taylor
model. Since there exists a vast literature about that model, we do not give all
details. We refer to the monographs [17], [80], and to the survey [115], where
the problem is thoroughly discussed and where many historical and important
references are given.

The gap Ω between two coaxial cylinders of infinite length with radii 0 <
R1 < R2 is filled with a viscous and incompressible fluid; see Figure III.2.6.

There are no external forces, and a rotation of the interior cylinder causes
a flow due to the adhesion of the fluid to the cylinders. A flow is described
by its velocity u = (u1, u2, u3) at time t and at a point x = (x1, x2, x3) in the
gap Ω.

One introduces dimensionless reference quantities for length, velocity,
time, and pressure, which are all directly adapted to the model, and one
defines ri = Ri/(R2 − R1), i = 1, 2, and the Reynolds number λ =
R1ω(R2 − R1)/ν, where ω is the angular velocity of the interior cylinder
and where ν denotes the kinematic viscosity. Then the dimensionless velocity
u satisfies the Navier–Stokes system
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R2 x1R1

Ω

x2

x3

Figure III.2.6

∂u

∂t
−Δu+ λ(u · ∇)u+ λ∇p = 0 in Ω,

divu = 0 in Ω,

u(x1, x2, x3) =
1

r1

⎛
⎝−x2

x1

0

⎞
⎠ for

√
x2
1 + x2

2 = r1,

u(x1, x2, x3) = 0 for
√
x2
1 + x2

2 = r2.

(III.2.92)

Here p denotes the (unknown and dimensionless) pressure, and Δu =
(Δu1, Δu2, Δu3), where Δ is the scalar Laplacian, and the operator u · ∇ =
u1

∂
∂x1

+ u2
∂

∂x2
+ u3

∂
∂x3

acts on each component of u.

There is a stationary solution (u0, p0) for all λ > 0, the so-called Couette
flow, given by
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u0(x1, x2, x3) =
r1

r22 − r21

(
r22
r2

− 1

)⎛
⎝−x2

x1

0

⎞
⎠ , r =

√
x2
1 + x2

2,

p0(x1, x2, x3) =

(
r1

r22 − r21

)2

√
x2
1+x2

2∫
r1

(r22 − ρ2)2

ρ3
dρ.

(III.2.93)

That flow does not depend on the axial variable x3 and it is rotationally
symmetric in the following sense: Let

Tϕ =

⎛
⎝ cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

⎞
⎠ , ϕ ∈ [0, 2π],(III.2.94)

denote the rotation in the (x1, x2)-plane about the angle ϕ.
Then

u0(Tϕx) = Tϕu0(x), p0(Tϕx) = p0(x) for all Tϕ.(III.2.95)

The velocity profile decays monotonically from (III.2.92)3 at r = r1 to zero at
r = r2. It is what one expects. (System (III.2.92) and its solution (III.2.93)
are usually given in cylindrical coordinates.)

Experiments, however, show that for angular velocities ω greater than
some critical value ω0, i.e., for Reynolds numbers λ greater than some λ0,
the Couette flow is no longer observed but a new stationary flow appears.
This flow is also rotationally symmetric in the sense of (III.2.95), but it de-
pends also on the axial direction x3. As a matter of fact, it is periodic in that
direction with a well-defined period. It is called the Taylor vortex flow. The
trajectory of any single particle is a closed spiral and all spirals form tori
stacked one on top of the other, with opposite orientations.

From a mathematical point of view this organization of a new flow can
be described as a bifurcation. To be more precise, it is a “symmetry-breaking
bifurcation,” since the symmetry (=constancy) in direction x3 is broken. Fur-
thermore, an exchange of stability takes place, which means that the Couette
flow loses its stability, whereas the Taylor vortices are stable, at least for
angular velocities ω > ω0 that are near ω0.

In order to prove this scenario one makes the ansatz u = u0 + v, p =
p0 + q in (III.2.92), yielding for stationary v,

−Δv+ λ[(v · ∇)u0 + (u0 · ∇)v] + λ(v · ∇)v + λ∇q = 0 in Ω,
divv = 0 in Ω,

v = 0 for r = ri,
(III.2.96)

i = 1, 2, where r =
√
x2
1 + x2

2. Furthermore one requires a rotational symme-
try, i.e.,
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v(Tϕx) = Tϕv(x), q(Tϕx) = q(x) for all Tϕ in (III.2.94).(III.2.97)

The restriction (III.2.97) is motivated by experiments and mathematically
justified by the following: The Navier–Stokes system (III.2.92)1,2 is equivari-
ant with respect to the entire orthogonal group O(3), whence it allows sym-
metric solutions in the sense of (III.2.95), (III.2.97).

Obviously system (III.2.96) has the trivial solution v = 0 and q = 0 for
all parameters λ, and it is the goal to detect a bifurcation from the trivial
solution line. However, there is an obstruction to the application of all com-
mon bifurcation theorems, namely the unboundedness of the domain Ω. The
linearization of the operator (III.2.96)1,2 at (v, q, λ) = (0, 0, λ) has the prop-
erties of an elliptic operator including its drawbacks caused by an unbounded
domain: The crucial Fredholm property is no longer granted and the spectrum
is no longer necessarily discrete.

Experiments suggest to restrict problem (III.2.96) to vector fields (v, q)
that are periodic in the axial direction x3. Then the domain Ω can be restricted
to a section D having the height p3 of one period, i.e., the problem is reduced
to a bounded domain.

A crucial question arises at this point: Which period is physically correct?
Recall that the period of the Taylor vortices is not imposed but organized by
itself. We discuss that deep question later and we describe briefly the steps
to prove bifurcation.

The starting point is an orthogonal decomposition of the Hilbert space
L2(D)3 into the closure of divergence-free (solenoidal) vector fields Z and the
gradient of scalar functions: L2(D)3 = Z⊕ Z⊥. Let P : L2(D)3 → Z denote
the orthogonal projection along Z⊥. If P is applied to (III.2.96)1, then the
gradient of the pressure is eliminated, since P∇q = 0. On the other hand, if
Pf = 0, then f = ∇q for some q ∈ H1(D). We define

F(v, λ) = −PΔv + λP[(v · ∇)u0 + (u0 · ∇)v] + λP(v · ∇)v.(III.2.98)

The operator F(·, λ) is given a domain X ⊂ Z, which is a closed subspace
of the Hilbert space H2(D)3. It consists of solenoidal vector fields satisfying
homogeneous Dirichlet boundary conditions on the cylinders. Furthermore,
all vector fields in X have the symmetry (III.2.97) and they are restrictions
of vector fields on Ω that are periodic in the axial direction x3 with a period
p3, which is the height of the segment D. Then

F : X× R → Z is continuous,
F(0, λ) = 0 for all λ ∈ R, and
problem (III.2.96) is reduced to
F(v, λ) = 0 for (v, λ) ∈ X× R.

(III.2.99)

It is known that −PΔ : X → Z is bijective and continuous, whence it has a
continuous inverse K : Z → X. Since the linear operator L(u0)v = (v·∇)u0+
(u0 ·∇)v is continuous from H1(D)3 into L2(D)3, and since the embedding
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X ⊂ H1(D)3 is compact, the operator KPL(u0) : H1(D)3 → H1(D)3 is
compact. For DvF(0, λ) = −PΔ+λPL(u0) the relation DvF(0, λ)v = f for
f ∈ Z, v ∈ X is equivalent to (I+ λKPL(u0))v = Kf for v ∈ H1(D)3. The
proof following (III.1.10) shows that

DvF(0, λ) : X → Z
is a Fredholm operator of index zero.

(III.2.100)

Thus problem (III.2.99)4 allows the application of the (local) bifurcation the-
orems presented in this book. First of all, one has to find some λ0 > 0 such
that DvF(0, λ0) has a nontrivial kernel. This amounts to the solution of the
linear problem

−Δv+ λ0[(v · ∇)u0 + (u0 · ∇)v] + λ0∇q = 0 in Ω,
divv = 0 in Ω,

v = 0 for r = ri, i = 1, 2,

v(Tϕx) = Tϕv(x), q(Tϕx) = q(x) for all Tϕ in (III.2.94),
v(x1, x2, x3 + p3) = v(x1, x2, x3),
q(x1, x2, x3 + p3) = q(x1, x2, x3).

(III.2.101)

If (v, q)(x1, x2, x3) is a (nontrivial) solution of (III.2.96), (III.2.97), or
(III.2.101), then for all numbers a ∈ R the function (v, q)(x1, x2, x3 + a)
is a solution, too. In order to obtain a one-dimensional kernel one fixes the
“phase” in the axial direction by the following additional restrictions (which
can be satisfied by solutions of (III.2.96), (III.2.97), and (III.2.101) due to
the corresponding equivariance of the systems):

v1(x1, x2,−x3) = v1(x1, x2, x3),
v2(x1, x2,−x3) = v2(x1, x2, x3),
v3(x1, x2,−x3) = −v3(x1, x2, x3),
q(x1, x2,−x3) = q(x1, x2, x3).

(III.2.102)

An analysis of (III.2.101) yields a one-dimensional kernel of DvF(0, λ0) for
some λ0 > 0 depending on the chosen period p3. To be more precise, there are
infinitely many such parameters λj , j ∈ N∪{0}, but for physical reasons only
the smallest value λ0 is of interest. Furthermore, excluding a countable set of
periods p3 for which degeneracies could occur, zero is not only a geometrically
simple eigenvalue of DvF(0, λ0), but also “simple” in the following sense:
Define A = −PΔ, which is self-adjoint and positive definite as an operator
A : Z → Z with domain D(A) = X, and define M = PL(u0) and its formal
adjoint M∗ as operators M,M∗ : Z → Z with domains X, respectively. If for
v̂0 ∈ X, ŵ∗

0 ∈ Z,

N(I+ λ0A
−1M) = span[v̂0],

N(I+ λ0M
∗A−1) = span[ŵ∗

0 ], then
(v̂0, ŵ

∗
0)0 �= 0.

(III.2.103)
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By (A−1Mv,w)0 = (v,M∗A−1w)0 for all v ∈ X, w ∈ Z, the vector v̂0 is
not in the range R(I+ λ0A

−1M).
The “simplicity” (III.2.103) implies the nondegeneracy (I.5.3)2 of Theo-

rem I.5.1: Let

v̂∗
0 = A−1ŵ∗

0 ∈ X. Then
N(DvF(0, λ0)) = N(A+ λ0M) = span[v̂0],
N((DvF(0, λ0))

∗) = N(A+ λ0M
∗) = span[v̂∗

0 ],
0 �= (v̂0, ŵ

∗
0)0 = −λ0(A

−1Mv̂0, ŵ
∗
0)0

= −λ0(Mv̂0,A
−1ŵ∗

0)0
= −λ0(D

2
vλF(0, λ0)v̂0, v̂

∗
0)0,

(III.2.104)

whence D2
vλF(0, λ0)v̂0 �∈ R(DvF(0, λ0)).

Thus Theorem I.5.1 is applicable to F(v, λ) = 0 at (0, λ0), and by some
numerical evidence a supercritical pitchfork bifurcation takes place at (0, λ0).
The bifurcating curve {(v(s), λ(s))} through (v(0), λ(0)) = (0, λ0) yields via
u(s) = u0 + v(s) Taylor vortices for Reynolds numbers λ(s) > λ0. The two
parts of the pitchfork give vortices having opposite orientations.

As mentioned before, experiments suggest a “Principle of Exchange of
Stability,” which means that the Couette flow is stable for Reynolds numbers
λ < λ0, that it is unstable for λ > λ0, and that the supercritically bifurcating
vortex flow is stable.

Linearized stability of a stationary solution (v, λ) is true if the spectrum of
DvF(v, λ) is in the right complex half-plane. On the other hand, if DvF(v, λ)
has an eigenvalue in the left complex half-plane, then (v, λ) is unstable; cf.
[115]. (Note that the time-dependent Navier–Stokes system is of the form
dv
dt = −F(v, λ). By the definition (III.2.98) of F, the spectral properties of
DvF(v, λ) imply also the stability properties of u = u0 + v as a solution of
(III.2.92).) The Couette flow u0 is stable for 0 < λ < λ0 if the real parts of all
eigenvalues of DvF(0, λ) are positive for all 0 < λ < λ0. Assuming that zero
is the only eigenvalue of DvF(0, λ0) with vanishing real part, the stability of
the Couette flow and of the vortex flow for λ > λ0 is determined by the critical
eigenvalue perturbation of DvF(0, λ) and of DvF(v(s), λ(s)), respectively.
These perturbations are studied in Section I.7 under the assumption that zero
is a simple eigenvalue of DvF(0, λ0) = A+λ0M. This means that (v̂0, v̂

∗
0)0 �=

0, where the vectors v̂0 and v̂∗
0 are defined in (III.2.104). However, to our

knowledge, only the simplicity of the eigenvalue zero of A−1DvF(0, λ0) = I+
λ0A

−1M, i.e., (v̂0, ŵ
∗
0)0 = (v̂0,Av̂∗

0)0 �= 0, has been shown in the literature;
cf. (III.2.103).

Let μ(λ) denote the simple eigenvalue perturbation of DvF(0, λ) for λ near
λ0. Then μ(λ0) = 0, and by (I.7.34) and (III.2.104) we obtain μ′(λ0)(v̂0, v̂

∗
0)0

= −(v̂0,Av̂∗
0)0/λ0 �= 0. (This does not prove (v̂0, v̂

∗
0)0 �= 0, since the eigen-

value perturbation is valid only in case of (v̂0, v̂
∗
0)0 �= 0.)

If sign(v̂0, v̂
∗
0)0 = sign(v̂0,Av̂∗

0)0, then the Couette flow becomes unstable for
λ > λ0, and in view of the results of Section I.7 the supercritically bifurcating
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vortex flow is stable; see Figure I.7.3. However, this exchange of stability has
not yet been rigorously proved.

Some more remarks have to be made:
Stability in this context means stability under perturbations in the class

of velocity fields having the same symmetries and the same periodicity in the
axial direction x3. This notion of stability is more restrictive than physical
stability under any perturbation.

The crucial open problem, however, is the choice of the axial period p3 of
the Taylor vortices. Whereas a fixed period is imposed in the mathematical
analysis, the period is organized by itself in reality. Thus the question of the
physically relevant period cannot be answered by the approach described previ-
ously. However, there is some plausible attempt at a solution: Since the bifur-
cation point (0, λ0) depends on the period p3, i.e., λ0 = λ0(p3), one assumes
that the period p3,c, where λ0,c = λ0(p3,c) is minimal, is a correct period,
at least at the bifurcation point. Note, however, that the function λ0(p3) is
obtained only in the class of vector fields (v, q) having rotational symmetry
and the prescribed period p3; cf. (III.2.101)4,5.

A different approach to understanding the pattern formation of the Couette–
Taylor model is an analysis of the Navier–Stokes system (III.2.92) in the
unbounded domain Ω without a fixed periodicity in axial direction x3. A new
pattern appears only if the Couette flow u0 loses its stability as a station-
ary solution of (III.2.92). The critical threshold λ = λcr, where a loss of
stability takes place, is determined by the Principle of Linearized Stability,
which means that for λ = λcr the linearization at u0 has eigenvalues on
the imaginary axis and that the rest of the spectrum is in the stable (positive)
half-plane. A Fourier analysis in the unbounded axial direction x3 determines
the critical unstable modes. Assume that the loss of stability is caused only by
an eigenvalue zero with eigenfunctions defining one single critical mode kcr
or a critical period pcr = 2π/kcr in the x3-direction. (Obviously λcr ≤ λ0,c,
where λ0,c is the minimal value of λ0(p3) described above. If λcr = λ0,c then
pcr = p3,c under the foregoing assumption.) Under more generic assump-
tions one finds for λ > λcr (nontrivial) stationary solutions of (III.2.92)
near (0, λcr), which have axial periods in intervals around pcr. These inter-
vals shrink to pcr as λ tends to λcr and they are determined by the unstable
modes for λ > λcr. These solutions represent Taylor vortex flows, but it seems
to be hard to select a single period in these intervals that is physically relevant.
This is another open stability problem.

The method is briefly described as follows: Since system (III.2.92) for sta-
tionary fields u is “reversible,” the x3-axis can play the role of a “time axis.”
Using a “center manifold,” system (III.2.92) for stationary u with λ near λcr

is reduced to a four-dimensional system of “amplitude equations,” which are
put into “normal form.” This method detects also classes of bounded station-
ary solutions, which are not periodic in the direction x3, but, for instance, are
quasiperiodic or “homoclinic.” For details we refer to [17] and to the litera-
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ture cited here. We mention only the origins [114] and [139], where elliptic
problems in unbounded cylinders are treated in this way. Somehow related to
this method is the use of the “Ginzburg-Landau Equation” as a “Modulation
Equation;” cf. the survey [140].

In experiments, Taylor vortices are observed only in a specific regime of
Reynolds numbers beyond a critical value λcr. If that parameter, i.e., if the
angular velocity of the interior cylinder, reaches another critical value, a
secondary bifurcation to a so-called wavy vortex flow takes place. That flow is
no longer stationary but time-periodic such that the bifurcation is of the type
of a Hopf bifurcation. However, due to the complexity of the mathematical
model, this bifurcation has not yet been rigorously proved.

This is not the end of the story: One has experimentally found a large
“zoo” of different flows, one bifurcating from another at characteristic values
of the Reynolds number, which, in general, depends also on the angular ve-
locity of the exterior cylinder. Opposite directions of rotations of the interior
and exterior cylinders yield interesting flows. In particular, a wavy vortex
flow can bifurcate directly from the Couette flow. The experimental results
are listed in [17], [80], for instance. Many of the flows are mathematically
understood to a certain extent.

There is another prominent model in fluid dynamics, namely the so-called
Bénard model. A viscous fluid in the gap between horizontal planes moves by
convection when the lower plane is heated. Experiments show that the convec-
tion creates flows forming regular patterns: one observes, for instance, strips
(rolls) and hexagons. These and more patterns are mathematically detected
as stationary flows bifurcating from a basic trivial state.

III.3 Free Nonlinear Vibrations

Another class of nonlinear problems to which many of our local bifurcation
theorems apply is given by the nonlinear wave equation. We discuss the one-
dimensional case in detail and give the extensions to higher dimensions in
Remark III.3.4.

The one-dimensional wave equation for scalar u = u(t, x) with (t, x) ∈
R× R is

utt − uxx = g(u),(III.3.1)

where g : R → R is some smooth function. As usual, we assume g(0) = 0, so
that we have the trivial solution u = 0. Its linearization at u = 0,

vtt − vxx − g′(0)v = 0,(III.3.2)
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has nontrivial solutions

v(t, x) = Re
Imei(ωt±kx), provided that

k2 − ω2 − g′(0) = 0.
(III.3.3)

These solutions are periodic in t and in x. We try to answer the following
question:

Do any of these doubly periodic solutions persist in a perturbed form for
the nonlinear equation, at least for small amplitudes?

Following P. Rabinowitz [152], we call nontrivial solutions of (III.3.1) free
vibrations. We treat this as a bifurcation problem.

We assume that the periods in time and space are locked and that they
are perturbations of the periods of the linearized equation: After a rescaling
t �→ t/λ, x �→ x/λ, we obtain the problem of small-amplitude solutions of

utt − uxx = λ2g(u) for λ near 1
with fixed periods 2π/w in time and 2π/k in space.

(III.3.4)

The locked periods serve as a hidden bifurcation parameter λ for (III.3.1).
Actually, we consider the following generalization (after another rescaling,

we can assume w.l.o.g. that the period in space is 2π):

utt − uxx − c(λ)u = g(t, x, u, λ),
u(t+ P, x) = u(t, x),
u(t, x+ 2π) = u(t, x),

(III.3.5)

or instead of periodicity in space, we impose homogeneous Dirichlet or Neu-
mann boundary conditions,

u(t, 0) = u(t, π) = 0, or
ux(t, 0) = ux(t, π) = 0.

(III.3.6)

The period P in time is a period of the linearized problem (a linear period)
and will be specified later. The function c : R → R is in C1(R,R), the function
g : R4 → R is sufficiently smooth and satisfies

g(t, x, 0, λ) = gu(t, x, 0, λ) = 0,
g(t+ P, x, u, λ) = g(t, x, u, λ),
g(t, x+ 2π, u, λ) = g(t, x, u, λ),

(III.3.7)

and in case of homogeneous Neumann boundary conditions (III.3.6)2,

gx(t, 0, u, λ) = gx(t, π, u, λ) = 0
for all (t, x, u, λ) ∈ R4;

(III.3.8)

cf. also (III.3.20) below. We define
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ĝ(u, λ)(t, x) = g(t, x, u(t, x), λ)(III.3.9)

and consider
utt − uxx − c(λ)u − ĝ(u, λ) = 0(III.3.10)

in an appropriate function space that incorporates the periodicities and
boundary conditions.

For the special case (III.3.4) we assume simply g(0) = 0, g′(0) �= 0, and
we write it as utt−uxx−λ2g′(0)u = λ2(g(u)− g′(0)u). Then all assumptions
(III.3.7), (III.3.8) are satisfied and c(λ) = λ2g′(0) is nontrivial. Note that a
rescaling of solutions of (III.3.4) yields solutions of (III.3.1).

Remark III.3.1 When written as a first-order system,

ut = v,
vt = uxx + c(λ)u + ĝ(u, λ),

(III.3.11)

the nonlinear hyperbolic PDE (III.3.10) can be considered to be an infinite-
dimensional Hamiltonian system, provided that g does not depend on t.

We give the formal arguments, confining ourselves to the boundary con-
ditions (III.3.6)1. Let X = H2(0, π) ∩ H1

0 (0, π) and Z = L2(0, π). Then
a solution (u, v) of (III.3.11) defines a trajectory (u, v)(t) in X × X via
[(u, v)(t)](x) = (u(t, x), v(t, x)), solving the parameter-dependent evolution
equation

d

dt

(
u

v

)
=

(
v

L(λ)u+ ĝ(u, λ)

)
≡ F (u, v, λ)

in Z × Z with L(λ)u = uxx + c(λ)u.

(III.3.12)

We define a Hamiltonian

H : X ×X × R → R by

H(u, v, λ) =
1

2
(L(λ)u, u)0 +

∫ π

0

Ĝ(u, λ)dx − 1

2
(v, v)0,

where ( , )0 is the scalar product in Z = L2(0, π),

G is a primitive such that Gu(x, u, λ) = g(x, u, λ),

and Ĝ(u, λ)(x) = G(x, u(x), λ).

(III.3.13)

Then the gradient of H with respect to the scalar product ( , )0 on Z ×Z
(cf. Definition I.3.1) is
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∇(u,v)H(u, v, λ) =

(
L(λ)u + ĝ(u, λ)

−v

)
∈ Z × Z

for (u, v, λ) ∈ X ×X × R, and

F (u, v, λ) =

(
0 −I
I 0

)
∇(u,v)H(u, v, λ) or F = J∇H,

D(u,v)F (0, 0, λ0) =

(
0 −I
I 0

)(
L(λ0) 0
0 −I

)
≡ JB0,

(III.3.14)

by gu(x, 0, λ) = 0; cf. (III.3.7)1. Now, L(λ0) : Z → Z with domain of defini-
tion D(L(λ0)) = X has the eigenvalues c(λ0)− n2, n ∈ N, so that

A0 = D(u,v)F (0, 0, λ0) = JB0 has

the eigenvalues μn = ±√
c(λ0)− n2, n ∈ N.

(III.3.15)

Therefore, A0 has infinitely many (discrete) eigenvalues on the imaginary
axis, and A0 does not generate a holomorphic semigroup. Apart from that
obstruction, the infinitely many purely imaginary eigenvalues could be “al-
most resonant,” a phenomenon that gives rise to “small-divisor problems”;
cf. Remark III.3.2 below. Therefore, a Lyapunov Center Theorem like The-
orem I.11.4 cannot be proved for the nonlinear wave equation (III.3.10)
or (III.3.11). Nonetheless, some of the problems are overcome by methods
of KAM Theory in [25], for example, providing time-periodic solutions of
(III.3.10) of small amplitude for a frozen parameter λ, i.e., in the spirit of a
Lyapunov Center Theorem.

The appropriate function spaces for treating (III.3.10) with the periodic-
ities (III.3.5) or boundary conditions (III.3.6) are the following:

X = {u(t, x) = ∑∞
k=−∞

∑∞
n=−∞ ckne

ikxei
2π
P nt, c−k,−n = ckn,

‖u‖2X =
∑∞

k=−∞
∑∞

n=−∞ |ckn|2(k2 + n2) < ∞},

X = {u(t, x) = ∑∞
k=1

∑∞
n=−∞ ckn sinkxei

2π
P nt, ck,−n = ckn,

‖u‖2X as above }, or

X = {u(t, x) = ∑∞
k=0

∑∞
n=−∞ ckn cos kxei

2π
P nt, ck,−n = ckn,

‖u‖2X as above }.

(III.3.16)

Using Fourier analysis, it is not difficult to prove the alternative definitions
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X = {u ∈ W 2,2((0, P )× (0, 2π))|u(0, x) = u(P, x),
ut(0, x) = ut(P, x), u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π)}
with equivalent norms ‖u‖X , ‖u‖2,2,

X = {u ∈ W 2,2((0, P )× (0, π))|u(0, x) = u(P, x),
ut(0, x) = ut(P, x), u(t, 0) = u(t, π) = 0}, or

X = {u ∈ W 2,2((0, P )× (0, π))|u(0, x) = u(P, x),
ut(0, x) = ut(P, x), ux(t, 0) = ux(t, π) = 0},

for all t ∈ (0, P ), x ∈ (0, 2π), or x ∈ (0, π), respectively.

(III.3.17)

All spacesX are Hilbert spaces with norm ‖ ‖X or ‖ ‖2,2. (Since C2([0, P ]×
[0, 2π]) and C2([0, P ]× [0, π]) are dense in the spaces W 2,2((0, P ) × (0, 2π))
and W 2,2((0, P )×(0, π)), respectively, the conditions on u on the boundary of
the respective rectangles are extended from C2-functions to W 2,2-functions
by approximation. One could also say that the boundary condition on the
Lipschitz boundary holds in the sense of the “trace” of W 2,2-functions on the
boundary.)

The wave operator acts as follows:

Au ≡ utt − uxx =
∑∑

ckn(k
2 − 4π2

P 2 n
2)ϕk(x)e

i 2π
P nt

for u ∈ X with ϕk(x) = eikx, sin kx, or cos kx.
(III.3.18)

We define

A : X → X with D(A) = {u ∈ X |Au ∈ X} ≡ Y
and A acting as in (III.3.18).

(III.3.19)

Since A : X → L2(Q) is continuous and X ⊂ L2(Q) for Q = (0, P )× (0, 2π)
or Q = (0, P )× (0, π), it follows immediately that A as defined in (III.3.19)
is a closed operator.

Endowing Y = D(A) with the graph norm (‖u‖2X+‖Au‖2X)1/2, we obtain
a Hilbert space Y , and A : Y → X is obviously continuous.

Next, we show that the nonlinear mapping ĝ (see (III.3.9)) can be de-
fined on X × R. Since the rectangle Q is in R2, the Sobolev space W 2,2(Q)
is a Banach algebra: Let u ∈ W 2,2(Q) ⊂ C(Q) and D = ∂

∂t or D = ∂
∂x .

By u ∈ C(Q), the element ĝ(u, λ) is in C(Q) ⊂ L2(Q) and Dĝ(u, λ) =
ĝt(u, λ)+ ĝu(u, λ)Du or Dĝ(u, λ) = ĝx(u, λ)+ ĝu(u, λ)Du ∈ L2(Q), too, since
ĝt(u, λ), ĝx(u, λ), ĝu(u, λ) ∈ C(Q) and Du ∈ L2(Q). For each second deriva-
tive we obtain D2ĝ(u, λ) = ĝtt(u, λ)+2ĝtu(u, λ)Du+ ĝu(u, λ)D

2u or the same
expression with t replaced by x. Since ĝtt(u, λ), ĝtu(u, λ), ĝxx(u, λ), ĝxu(u, λ),
ĝu(u, λ) ∈ C(Q), and Du,D2u ∈ L2(Q), we end up with D2ĝ(u, λ) ∈ L2(Q).
This proves ĝ(u, λ) ∈ W 2,2(Q), provided that u ∈ W 2,2(Q). Furthermore,
(u, λ) �→ ĝ(u, λ) is a continuous mapping from W 2,2(Q)× R into W 2,2(Q).
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The space X is also defined via periodicities and boundary conditions; cf.
(III.3.17). By assumptions (III.3.7)2,3, the periodicities of u in time and space
are preserved for ĝ(u, λ). By (III.3.7)1, the homogeneous Dirichlet boundary
conditions of u imply the same boundary conditions for ĝ(u, λ). Finally, for
Dxĝ(u, λ) = ĝx(u, λ)+ ĝu(u, λ)Dxu, assumption (III.3.8) implies that ĝ(u, λ)
satisfies homogeneous Neumann boundary conditions, provided that u sat-
isfies them. This proves that (u, λ) �→ ĝ(u, λ) is a continuous mapping from
X × R into X for all three cases (III.3.17).

(Since spaces of C2-functions satisfying the Dirichlet or Neumann bound-
ary conditions in space are dense in X , all the above proofs can be carried
out for classical derivatives. The extension to weak derivatives follows then
by approximation.)

Finally, Duĝ(u, λ)v = ĝu(u, λ)v for all u, v ∈ X , and by assumption
(III.3.7)1,

ĝ : X × R → X is in C1(X × R, X),
Duĝ(0, λ) = 0 for all λ ∈ R, if
ĝ(u, λ) is defined by (III.3.9) and if
g, gu ∈ C2(R4,R).

(III.3.20)

The functional-analytic setting of problems (III.3.5), (III.3.6) is the fol-
lowing: Solve

F (u, λ) = 0 for (u, λ) ∈ Y × R, where

F : Y × R → X is defined by

F (u, λ) = (A− c(λ)I)u − ĝ(u, λ),

F ∈ C(Y × R, X), DuF ∈ C(Y × R, L(Y,X)),

DuF (0, λ) = A− c(λ)I ≡ A(λ).

(III.3.21)

For all three realizations of X , the mapping F (·, λ) : Y → X defines a
potential operator with respect to the scalar product ( , )0 of L2(Q); cf.
Definition I.3.1. We give the potential:

f(u, λ) =
1

2
((A− c(λ))u, u)0 −

∫
Q

Ĝ(u, λ)dt dx,

where Gu(t, x, u, λ) = g(t, x, u, λ) and

Ĝ(u, λ)(t, x) = G(t, x, u(t, x), λ) for (t, x) ∈ Q,
(u, λ) ∈ Y × R, Q = (0, P )× (0, 2π) or Q = (0, P )× (0, π).

(III.3.22)

The Fredholm property of DuF (0, λ) = A − c(λ)I is crucial. In contrast
to families of elliptic operators L(λ) studied in Sections III.1, III.2, the hy-
perbolic family A(λ) = A− c(λ)I has the Fredholm property only for specific
values of c(λ). For c(λ) in a complementary set the properties of A − c(λ)I
might change dramatically; cf. Remark III.3.2 below.

In view of (III.3.18), we define for fixed λ0 ∈ R,
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S =

{
(k, n)|k2 − 4π2

P 2
n2 − c(λ0) = 0

}
⊂ Z× Z, N× Z, or (N ∪ {0})× Z;

(III.3.23)

cf. (III.3.16). Then

N(DuF (0, λ0)) =

{
u(t, x) =

∑
(k,n)∈S

cknϕk(x)e
i 2π

P nt

}
and 0 < dimN(DuF (0, λ0)) < ∞ ⇔
S �= ∅ is a finite set.

(III.3.24)

First of all,

S �= ∅ ⇔ k20 −
4π2

P 2
n2
0 − c(λ0) = 0 for some (k0, n0)

⇔ P =
2πn0√

k20 − c(λ0)
≡ P0 is a linear period.

(III.3.25)

Here we exclude the case n0 = 0 or k20 − c(λ0) = 0. If g does not depend on
t, then a special class of solutions of (III.3.5), (III.3.6) is given by stationary
solutions of

−uxx − c(λ)u = g(x, u, λ),
u(x+ 2π) = u(x) or

u(0) = u(π) = 0 or
ux(0) = ux(π) = 0,

(III.3.26)

which are one-dimensional elliptic problems and are treated with methods
described in Section III.2. Parameters λ0 where bifurcation for (III.3.26) is
possible are characterized by k20−c(λ0) = 0 for some k0 ∈ N∪{0}. Here we as-
sume that the linear period P0 in (III.3.25) is well defined by a nonstationary
element u0 ∈ N(DuF (0, λ0)); i.e., n0 �= 0 and k20 − c(λ0) > 0.

Fixing the period P = P0, we see that the so-called characteristic equation
defining the set S is

n2
0k

2 − (k20 − c(λ0))n
2 − n2

0c(λ0) = 0.(III.3.27)

The (nonempty) solution set S of (III.3.27) depends on c(λ0) in a sensitive
way: If c(λ0) is irrational, then S = {(±k0,±n0)} or S = {(k0,±n0)}. In
this case, the kernel N(DuF (0, λ0)) is 4- or 2-dimensional, respectively, but
the behavior of DuF (0, λ0) on its complement is hard to control; cf. Remark
III.3.2. In particular, we cannot prove the Fredholm property of DuF (0, λ0)
if c(λ0) is irrational.

Therefore, we assume that c(λ0) =
p
q ∈ Q, q ∈ N, p ∈ Z\{0}.

In this case, the characteristic equation becomes a Diophantine equation

n2
0q

2k2 − (q2k20 − pq)n2 = n2
0pq �= 0,(III.3.28)
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whose solution set S is characterized as follows:

S �= ∅ is a finite set ⇔
q2k20 − pq = r2 for some r ∈ N.

(III.3.29)

For a proof we refer to most books on elementary number theory, where one
can find (III.3.29) in sections about Pell’s equation.

It is of interest that the set

Λ =

{
p

q
|q2k20 − pq = r2 for some (k0, r) ∈ N0 × N

}
is dense in R (N0 = N ∪ {0} or N),

(III.3.30)

which means that the set of rational values of c(λ0) such that the kernel
N(DuF (0, λ0)) = N(A− c(λ0)I) is finite-dimensional for some linear period
P0 is dense in R.

We call a rational number in Λ admissible. The linear periods for which a
rational number is admissible are rational multiples of 2π. In this sense they
are locked to the period in space, (III.3.5)3, or to the boundary conditions
(III.3.6).

Let c(λ0) �= 0 be admissible for a period P0 and let (k, n) �∈ S. Then

∣∣∣k2 − 4π2

P 2
0

n2 − c(λ0)
∣∣∣

=
1

n2
0q

2

∣∣∣n2
0q

2k2 − (q2k20 − pq)n2 − n2
0pq

∣∣∣
=

1

n2
0q

2

∣∣∣n2
0q

2k2 − r2n2 − n2
0pq

∣∣∣ ≥ 1

n2
0q

2
,

(III.3.31)

and for
f(t, x) =

∑
(k,n) �∈S

dknϕk(x)e
i 2π
P0

nt ∈ X,

u(t, x) =
∑

(k,n) �∈S

cknϕk(x)e
i 2π
P0

nt with

ckn = dkn/

(
k2 − 4π2

P 2
0

n2 − c(λ0)

)
is in X ,

it solves Au − c(λ0)u = f , and by

Au = c(λ0)u+ f ∈ X we obtain u ∈ Y = D(A).

(III.3.32)

This proves that the closed orthogonal complement of N(DuF (0, λ0)) with
respect to the scalar product ( , )0 of L2(Q) is the range of DuF (0, λ0),
i.e.,

X = N(DuF (0, λ0))⊕R(DuF (0, λ0)).(III.3.33)

In order to complete the list of all hypotheses of our various bifurcation
theorems we prove that
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0 is an isolated eigenvalue of DuF (0, λ0)
with algebraic multiplicity n = dimN(DuF (0, λ0)).

(III.3.34)

By (III.3.31) we obtain for all (k, n) ∈ Z×Z (or N×Z or (N∪{0})×Z) and
for μ ∈ C, ∣∣∣k2 − 4π2

P 2
0

n2 − c(λ0)− μ
∣∣∣

≥ min

{
|μ|, 1

n2
0q

2
− |μ|

}
for 0 < |μ| < 1

n2
0q

2
,

(III.3.35)

so that the argument of (III.3.32) proves that{
μ ∈ C|0 < |μ| < 1

n2
0q

2

}
is in the

resolvent set of A− c(λ0)I = DuF (0, λ0).

(III.3.36)

Corresponding to the isolated eigenvalue 0 of DuF (0, λ0) = A0 there exists
a generalized closed eigenspace E0 ⊂ X such that A0 ∈ L(E0, E0) with
spectrum σ(A0|E0) = {0}. Since the operator A0 = A− c(λ0)I is symmetric
with respect to the scalar product ( , )X defining the norm ‖ ‖X in
(III.3.16), the spectral radius of the bounded operator, A0|E0 is given by its
norm. This implies A0|E0 = 0 and E0 ⊂ N(A0) ⊂ E0, which proves (III.3.34)
(see also (III.3.33)).

We assume that the function

c(λ) is strictly monotonic near λ = λ0.(III.3.37)

Then the eigenvalue 0 of A0 = DuF (0, λ0) = A − c(λ0)I perturbs to the
eigenvalue μ(λ) = c(λ0)− c(λ) �= 0 of DuF (0, λ0) = A− c(λ)I for λ �= λ0, so
that according to Definition II.7.1, zero is a locally hyperbolic equilibrium of
DuF (0, λ0) for all λ ∈ (λ0 − δ, λ0) ∪ (λ0, λ0 + δ), and the crossing number of
the family DuF (0, λ0) at λ = λ0 through 0 is ± dimN(DuF (0, λ0)), which
is nonzero. Note, however, that the crossing number is always even.

Remark III.3.2 By (III.3.20) the operator F defined in (III.3.21) also sat-
isfies

F : X × R → Z = L2(Q),
F ∈ C(X × R, Z), DuF ∈ C(X × R, L(X,Z)).

(III.3.38)

One might ask why we lift it to F : Y × R → X. The reason is that
DuF (0, λ0) ∈ L(X,Z) is not a Fredholm operator even if c(λ0) is admissible
for some P0. We show that

Z = N(DuF (0, λ0))⊕R(DuF (0, λ0)),
but R(DuF (0, λ0)) is not closed.

(III.3.39)
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Define f ∈ N(DuF (0, λ0))
⊥ ⊂ Z as in (III.3.32)1. If the Fourier series of f is

finite, then the function u defined in (III.3.32)2 is in X, and DuF (0, λ0)u =
f ∈ R(DuF (0, λ0)). The set S̃ = {(k, n)|n2

0q
2k2 − r2n2 = 0} is infinite,

and S ∩ S̃ = ∅. Define f ∈ N(DuF (0, λ0))
⊥ ⊂ Z by a Fourier series with

infinitely many modes (k, n) ∈ S̃. The function u defined in (III.3.32)2 is
then u = −c(λ0)

−1f, u �∈ X if f �∈ X, and in this case f �∈ R(DuF (0, λ0)).
If c(λ0) is not admissible but rational, we have an infinite-dimensional

kernel N(DuF (0, λ0)). None of our abstract bifurcation theorems allows an
infinite-dimensional kernel, so that we cannot treat that case. If c(λ0) is ir-
rational, we have a 4- or 2-dimensional kernel, and the analysis of (III.3.32)
yields formal solutions of DuF (0, λ0)u = f for all f ∈ N(DuF (0, λ0))

⊥. Al-
though the denominators in (III.3.32)3 do not vanish, they cannot be con-
trolled as in (III.3.31). As a matter of fact, depending on a “degree of
irrationality” of c(λ0), the absolute values of the divisors (III.3.32)3 become
arbitrarily small, and Au−c(λ)u = f is a typical “small-divisor problem.” In
KAM Theory, specific values for c(λ0) are distinguished for which the divisor
can become arbitrarily small but in a controlled way. A “rapidly convergent”
Fourier series can then overcome the deficiency caused by the divisors. The
set Λ of (III.3.30) can be considered as a subset of admissible sets in KAM
Theory.

In order to solve F (u, λ) = 0 defined in (III.3.21), we apply various of our
abstract bifurcation theorems. Before doing this, we mention that another
“lift” of F provides classical solutions of (III.3.5), (III.3.6): Define for X as
in (III.3.17),

X4 ≡ X ∩
{
u ∈ W 4,2(Q)| ∂

j

∂tj
u(0, x) =

∂j

∂tj
u(P, x), j = 2, 3

}
endowed with the Sobolev norm ‖ ‖4,2.

(III.3.40)

Then the wave operator A of (III.3.18) defines a closed operator A : X4 → X4

with D(A) = {u ∈ X4|Au ∈ X4} ≡ Y4, and ĝ of (III.3.20) satisfies ĝ :
X4 × R → X4 with all properties listed in (III.3.20), where X is replaced by
X4, provided that g, gu ∈ C4(R4,R). Consequently, F (u, λ) = (A−c(λ)I)u−
ĝ(u, λ) defines a mapping F : Y4 × R → X4 that has the same properties as
F : Y × R → X . By embedding X4 ⊂ C2(Q), all solutions (u, λ) ∈ Y4 ×R of
F (u, λ) = 0 are classical solutions of (III.3.5), (III.3.6). For simplicity, we stay
with the setting F : Y × R → X . (Note that this “lifting” to gain regularity
differs from a “bootstrapping” to prove regularity for elliptic problems.)

III.3.1 Variational Methods

Our most general results are given by the application of Theorem II.7.3. Note
that all its hypotheses are satisfied for F : Y × R → X .
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Theorem III.3.3 If c(λ0) �= 0 is admissible for a linear period P0, and if
(III.3.37) holds, then (0, λ0) ∈ Y ×R is a cluster point of nontrivial solutions
(u, λ) of (III.3.5), (III.3.6).

Together with the observation (III.3.30), we obtain the following result:

If c : R → R is globally strictly monotonic,
then the cluster points {(0, λ0)} ⊂ Y × R

of nontrivial solutions (u, λ) of (III.3.5), (III.3.6)
for some period P = P0 depending on λ0

form a dense set in {0} × R.

(III.3.41)

We mention that we cannot apply Theorem II.4.4 in order to provide con-
nected sets of solutions: Since the cardinality of the solution set S of (III.3.28)
is 0 (mod 4) or 0 (mod 2), the dimension of N(DuF (0, λ0)) always yields
even crossing numbers by (III.3.37). (Note, however, the results (III.3.46),
(III.3.47), below.)

For c(λ) = λ and for nonlinearities g that do not depend on λ, Theorem
I.21.2 and Corollary I.21.3 are applicable: If λ0 �= 0 is admissible for a linear
period P0, then there exist at least two solutions (u(ε), λ(ε)) ∈ Y × R with
‖u(ε)‖0 = ε and λ(ε) → λ0 as ε ↘ 0. (Here ‖ ‖0 is the norm in L2(Q).)

If g(t, x,−u) = −g(t, x, u), Corollary I.21.3 gives at least n pairs
(±u(ε), λ(ε)) ∈ Y ×R of solutions with ‖u(ε)‖0 = ε and λ(ε) → λ0 as ε ↘ 0,
where n = dimN(DuF (0, λ0)).

If (III.3.5) is autonomous, i.e., if g does not depend on t, then with each
solution u(t, x), all phase-shifted functions Sθu(t, x) = u(t + θ, x) are again
solutions. Let g(x,−u) = −g(x, u). Then speaking of n pairs of solutions does
not make much sense, since a phase shift creates a continuum of infinitely
many solutions. Let us consider the “orbit of u” {±Sθu|θ ∈ R} to be one
element. How many solutions has (III.3.5), (III.3.6) with an odd nonlinearity
g = g(x, u)?

The critical points of the potential f (cf. (III.3.22) for λ = λ0) on the
manifold Mε (cf. (I.21.22) in the proof of Theorem I.21.2) are obtained via
a “minimax method” using families of subsets of Mε whose “genera” are
bounded from below. (We cannot go into the details here, but we refer to
[118], [150], [110].) The minimax method gives critical values, and different
critical values yield clearly different critical points. If r+1, say, critical values
are equal, then a theorem about multiplicities tells that the genus of the set
of critical points at that level is at least r+1. The genus of an orbit is 1 or 2,
depending on whether it has two components or one. Using the subadditivity
of the genus, we obtain the following result: Let λ0 �= 0 be admissible for the
period P0. Then
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utt − uxx − λu = g(x, u),
u(t+ P0, x) = u(t, x),

with boundary conditions (III.3.5)3 or (III.3.6)
and g(x,−u) = −g(x, u),
has at least m different solution orbits ({±Sθu(ε)}, λ(ε))
with ‖u(ε)‖0 = ε and λ(ε) → λ0 as ε ↘ 0,
where 2m = dimN(DuF (0, λ0)) = dimN(A− λ0I);
cf. (III.3.18).

(III.3.42)

III.3.2 Bifurcation with a One-Dimensional Kernel

The high-dimensionality of the kernels N(DuF (0, λ0)) can be reduced to
dimension one as follows: Let c(λ0) =

p
q �= k2 for all k ∈ N∪{0} be admissible

in the sense of (III.3.30); i.e., c(λ0) ∈ Λ. Then it is admissible for all periods
2πn0q/r = P0 such that pq = q2k20 − r2 for (k0, r) ∈ N0×N. Obviously, there
are only finitely many such pairs (k0, r) ∈ N0×N. Choose r1 maximal among
all solutions of pq = q2k20 − r2. Then P1 = 2πq/r1 is the minimal period for
which c(λ0) =

p
q is admissible and

S1 =

{
(k, n)|k2 − 4π2

P 2
1

n2 − c(λ0) = 0

}
= {(±k0,±1)} or {(k0,±1)}.

(III.3.43)

By definition of P1, the characteristic equation in (III.3.43) is q2k2 − r21n
2 =

pq. By assumption on c(λ0) =
p
q �= k2, a solution (k, 0) is excluded. If there

were a solution (k, n) with n > 1, then r = nr1 > r1 and pq = q2k2 − r2

would contradict the maximal choice of r1. This means, in view of (III.3.24),
that

if P1 is the minimal period

for which c(λ0) =
p

q
�= k2 is admissible, then

dimN(DuF (0, λ0)) = 4 or 2.

(III.3.44)

The kernel is 4-dimensional if k0 �= 0 and if we impose periodic boundary
conditions (III.3.5)3. In the cases of the homogeneous Dirichlet or Neumann
boundary conditions (III.3.6), the kernel is 2-dimensional.

The reduction to one-dimensional kernels is possible if

g(−t, x, u, λ) = g(t, x, u, λ),
and in case of periodic boundary conditions, additionally
g(t,−x, u, λ) = g(t, x, u, λ)
for all (t, x, u, λ) ∈ R4.

(III.3.45)
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When the wave equation (III.3.5)1 with the boundary conditions (III.3.6)
is restricted to the function space {u ∈ Y |u(−t, x) = u(t, x)}, then

N(DuF (0, λ0)) = span[sin k0x cos
2π
P1

t] or

N(DuF (0, λ0)) = span[cos k0x cos
2π
P1

t].
(III.3.46)

In case of the boundary condition (III.3.5)3, i.e., in case of periodicity in
space, we restrict problem (III.3.5) to the subspace {u ∈ Y |u(−t, x) =
u(t, x), u(t,−x) = u(t, x)}, and then

N(DuF (0, λ0)) = span[cos k0x cos
2π
P1

t].(III.3.47)

By (III.3.33), the number 0 is an algebraically simple eigenvalue of the
operator DuF (0, λ0) = A − c(λ0)I, and the nondegeneracy (I.5.3) of The-
orem I.5.1 is satisfied if c′(λ0) �= 0. We obtain a nontrivial solution curve
{(u(s), λ(s))|s ∈ (−δ, δ)} through (u(0), λ(0)) = (0, λ0) and

u(s)(t, x) = sϕk0(x) cos
2π
P1

t+ o(s),

where ϕk0(x) = cos k0x or sin k0x.
(III.3.48)

The Bifurcation Formulas of Section I.6 are applicable with projection
Qu = (u, v̂0, )0v̂0, where v̂0(t, x) = αϕk0 (x) cos

2π
P1

t, so that ‖v̂0‖0 = 1. Here

( , )0 and ‖ ‖0 denote the scalar product and the norm in L2(Q) with
Q = (0, P1)× (0, 2π) or Q = (0, P1)× (0, π), respectively.

We give an example: Consider

utt − uxx − λu = u	 with � = 2 or 3,
periodicity (III.3.5)3, or boundary conditions (III.3.6).

(III.3.49)

Then the value λ0 = 24 is admissible for the linear periods P0 = 2π and
P0 = 2π/5. Since a function with period 2π/5 also has period 2π, the solutions
of the characteristic equation for P0 = 2π/5 also yield solutions of the char-
acteristic equation for P0 = 2π, that is, (±5,±1), (±7,±5) or (5,±1), (7,±5).
These solutions give 8- or 4-dimensional kernels, respectively, and for � = 2,
Theorem I.21.2 provides at least two different 2π-periodic orbits ({Sθu}, λ)
near (0, 24). For � = 3, Corollary I.21.3 guarantees at least four different
2π-periodic orbits ({±Sθu}, λ) near (0, 24) in case of periodic boundary con-
ditions in space.

When we restrict the period to the minimal period 2π/5, then the char-
acteristic equation has only the solutions (±7,±1) or (7,±1). In the spaces
of even functions in time, and also in space in case of periodic boundary
conditions, Theorem I.5.1 provides a curve of solutions {(u(s), λ(s))|s ∈
(−δ, δ)} of (III.3.49), where u(s)(t, x) = s cos 7x cos 5t+ o(s) or u(s)(t, x) =
s sin 7x cos 5t+o(s). Note that in view of the autonomy of equation (III.3.49),
all phase-shifted functions u(s)(t+θ, x) are solutions, too, and in case of peri-
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odic boundary conditions, we can also allow any phase shift in space, namely,
u(s)(t, x + ξ). Note that for � = 3, Corollary I.21.3 does not give more than
two different 2π/5-periodic orbits.

Finally, the Bifurcation Formulas of Section I.6 determine the local shape
of the bifurcating curve {(u(s), λ(s))|s ∈ (−δ, δ)} of (III.3.49). By∫ 2π/5

0

cos3 5t dt = 0, we obtain for � = 2,

(D2
uuF (0, λ0)[v̂0, v̂0], v̂0)0 = 0, whence λ̇(0) = 0.

For � = 3, we obtain λ̇(0) = 0 by D2
uuF (0, λ0) = 0.

(III.3.50)

Note that (III.3.50) holds in the cases of periodic, Dirichlet, or Neumann
boundary conditions. Evaluation of formula (I.6.11) for λ̈(0) is more involved.
We give only the results:

For � = 2, we obtain λ̈(0) > 0;

for � = 3, we have λ̈(0) < 0,
(III.3.51)

so that in all cases, (III.3.49) gives rise to pitchfork bifurcations at λ0 = 24
that are supercritical for � = 2 and subcritical for � = 3; cf. Figure I.6.1.
Whereas by oddness, the pitchfork is obvious for � = 3, it is surprising for
� = 2, since one would expect a transcritical bifurcation. (In case of Dirichlet
boundary conditions, the computation of λ̈(0) for � = 2 is not easy.)

By (III.3.34), the algebraic multiplicity of the eigenvalue 0 ofDuF (0, λ0) is
not larger than its geometric multiplicity, which means that 0 is semisimple.
In case (III.3.44), when the assumptions (III.3.45) allow us to reduce the
bifurcation of P1-periodic solutions of (III.3.5), (III.3.6) to a one-dimensional
kernel, the eigenvalue 0 of DuF (0, λ0) is algebraically simple. Therefore, the
analysis of Section I.16 about Degenerate Bifurcation is applicable. We give
an example:

utt − uxx − λ0u+ (λ2 − ε)u = u3

with periodicity (III.3.5)3,
or boundary conditions (III.3.6).

(III.3.52)

Let λ0 �= k2 be admissible, i.e., λ0 ∈ Λ (cf. (III.3.30)), and let P1 be the
minimal period for which λ0 is admissible. Then the analysis of P1-periodic
solutions for (III.3.52) is precisely the same as for (III.2.24): The solutions
{(u, λ)} of (III.3.52) near (u, λ) = (0, 0) are sketched in Figure III.2.1 for
different values of ε near 0. (By Lyapunov–Schmidt reduction, every solution
(u, λ) near (0, 0) is of the form (III.3.48), and there is a one-to-one correspon-
dence between solutions (u, λ) of (III.3.52) near (0, 0) and solutions (s, λ) of
Φ(s, λ) near (0, 0), and Figure III.2.1 shows the solution sets {(s, λ)}.)

If 0 is an algebraically simple eigenvalue ofDuF (0, λ0), then it perturbs to
an eigenvalue μ(s) of DuF (u(s), λ(s)) according to the Principle of Exchange
of Stability stated in Theorem I.7.4. However, the sign of μ(s) has nothing



302 Chapter III. Applications

to do with the stability of u(s) considered as a time-periodic solution of
an evolution equation, namely, the nonlinear wave equation (III.3.5)1. The
“energy” of (III.3.5)1 with boundary conditions (III.3.6), e.g.,

1

2

∫ π

0

u2
t + u2

x − c(λ)u2dx−
∫ π

0

Ĝ(u, λ)dx,(III.3.53)

for autonomous Ĝ(u, λ)(x) = G(x, u(x), λ) with Gu(x, u, λ) = g(x, u, λ), is
constant along any solution of (III.3.5)1, (III.3.6). This provides nonlinear
stability for stationary solutions u0 if u0 is a strict local minimizer of the
functional

1

2

∫ π

0

u2
x − c(λ)u2dx−

∫ π

0

Ĝ(u, λ)dx,(III.3.54)

i.e., if its second derivative (its “Hessian”) is positive definite (cf. the remarks
in Section I.7 after (I.7.3)). If u0 is a nonstationary periodic solution, however,
this stability analysis fails.

Remark III.3.4 It is interesting and instructive to extend the analysis of
this section to the two-dimensional analogue of the one-dimensional wave
equation, namely,

utt −Δu− c(λ)u = g(t, x, u, λ),(III.3.55)

where u(t, x) is defined on R×Ω, Ω ⊂ R2. The Fourier analysis is completely
analogous if Ω = (0, π)× (0, π), and we end up with a characteristic equation
of the form

A2
0(k

2 + �2)−B0n
2 = C0,(III.3.56)

where A0, B0, and C0 are integers with A0 �= 0, B0 > 0. Classical results from
number theory show that an indefinite quadratic ternary form like (III.3.56)
has either no solution or infinitely many solutions [12]. This means that
there is no admissible set (III.3.30) with the property (III.3.29) in this case.
(For c(λ0) �∈ Q, the same obstructions arise as for the one-dimensional wave
equation.) Consequently, we are not able to treat (III.3.55) over the square
Ω = (0, π)× (0, π).

However, if we replace the square by the unit sphere S2 ⊂ R3 and “Δ” by
the Laplace–Beltrami operator, the analysis of this section is applicable: Here
the characteristic equation is again a binary form

A2
0k(k + 1)−B0n

2 = C0,(III.3.57)

for which an admissible set Λ with the property (III.3.29) can be defined.
Moreover, for the nonlinear wave equation (III.3.55) on the sphere, and when
c(λ0) is an integer, not only do we find small-amplitude solutions, but we
obtain global and unbounded branches of free vibrations (in the sense
of Theorem II.5.8).
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There is another new feature of the wave equation on the sphere: By the
rich symmetry of S2, we can distinguish solutions by their precise spatiotem-
poral patterns. In order to discover these patterns systematically, they are
classified via subgroups of 0(2) × 0(3), which leaves [0, P0] × S2 invariant
(by periodicity, [0, P0] is identified with S1). In this way we discover local
and global branches of so-called standing waves, which are characterized
by a fixed spatial symmetry while oscillating periodically in time. We find
rotating waves, which correspond to rigidly rotating patterns. Finally, we
get discrete rotating waves: Unlike rotating waves, these patterns do not
rotate rigidly but rather reappear in rotated form at regular fractions of the
period. All these results are found in [61], where all types of waves are also
illustrated by their nodal lines. For convenience, we give some examples in
Figure III.3.1–Figure III.3.3.

Figure III.3.1 Standing Waves.

(These methods apply also to nonlinear wave equations on the spheres Sn

for n ≥ 3. The eigenvalues of the Laplace–Beltrami operator are given by
k(k+ n− 1), so that the characteristic equation is always a binary quadratic
form. An exploitation of symmetry, however, for 0(2) × 0(n) is much more
involved.)
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However, for Ω ⊂ R2 a square and an equilateral triangle, the nonlinear
plate equation

utt +Δ2u− c(λ)u = g(t, x, u, λ)(III.3.58)

on R × Ω is amenable to our method; see [72], [73]. Here the characteristic
equations are of the form

A2
0(k

2 + �2)2 −B0n
2 = C0 for the square,

A2
0(k

2 + �2 − k�)2 −B0n
2 = C0 for the triangle,

(III.3.59)

allowing us to define admissible sets Λ having the property (III.3.29). Ac-
cordingly, we find free vibrations bifurcating from (0, λ0) whenever c(λ0) ∈ Λ.
Due to the symmetries of Ω, we distinguish solutions by their spatiotemporal
symmetry of any subgroup of 0(2) × D4 and 0(2) × D3. We find standing
waves and discrete rotating waves having the properties described previ-
ously for waves on the sphere. On the triangle we discover a new family of
solutions that we call spatiotemporal reflection waves: A rigid pattern
reappears in reflected form after half the period. In [72], [73] all types of waves
are sketched by their nodal lines.

The analysis for the plate equation on the square as well as on the equila-
teral triangle depends on the fact that the eigenvalues and the eigenfunctions
of the Laplacian with homogeneous Dirichlet boundary conditions are well
known. It is worth mentioning that the embedding of the square into the
square lattice and the embedding of the triangle into the hexagonal lattice
as expounded in Section III.1 is crucial for that analysis.

Figure III.3.2 Rotating Wave.
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Figure III.3.3 Discrete Rotating Wave.

Finally, rotating waves having spatial symmetries of the sphere, and dis-
crete rotating waves having spatial symmetries of the square and equilateral
triangle, cannot be solutions of an evolution equation that is of first order in
t. If a periodic solution has some spatial symmetry for some fixed time, then
the fixed-point space of its isotropy subgroup (of the entire isotropy group of
the domain) is invariant for all times t. Therefore, the spatial pattern cannot
rotate.
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III.4 Hopf Bifurcation for Parabolic Problems

A fully nonlinear parabolic problem with homogeneous Dirichlet boundary
conditions is of the form

ut = G(∇2u,∇u, u, x, λ) in R×Ω, λ ∈ R,
u = 0 on R× ∂Ω,

(III.4.1)

where u = u(t, x) is a scalar function of time t ∈ R and of space x ∈ Ω ⊂ Rn.
Problem (III.4.1) is well posed only if initial values u(0, x) are prescribed, i.e.,
if it is an initial–boundary value problem. For mathematical and physical
reasons, solutions of (III.4.1) exist only for positive time, in general, but
special classes, such as periodic solutions, are defined for all times t ∈ R.

If G(0,0, 0, x, λ) = 0 for all (x, λ) ∈ Ω × R, we have the trivial solution
u = 0 for all λ ∈ R, and we provide nontrivial periodic solutions via Hopf
Bifurcation.

If G ∈ Ck+1(Rn×n
sym × Rn × R×Ω × R,R) for k ≥ 1, then for

F (u, λ)(x) ≡ G(∇2u(x),∇u(x), u(x), x, λ),(III.4.2)

cf. (III.2.3), the Fréchet derivative at (0, λ) is given by

DuF (0, λ)h =∑n
i,j=1 aij(x, λ)hxixj +

∑n
i=1 bij(x, λ)hxi + c(x, λ)h

≡ L(λ)h; cf. (III.2.7).

(III.4.3)

Assume that for some λ = λ0 the operator L(λ0) is elliptic in the sense
of (III.1.1). When considered as an operator L(λ0) : L2(Ω) → L2(Ω) with
domain of definition D(L(λ0)) = H2(Ω) ∩H1

0 (Ω), it is a Fredholm operator
of index zero having a discrete spectrum of eigenvalues of finite (algebraic)
multiplicity; cf. (III.1.12), (III.1.38). (We assume that Ω ⊂ Rn is bounded
and that ∂Ω has the properties such that the results of Section III.1 are
applicable. Furthermore, for a reasonable spectral analysis the spaces of this
section are complexified, though all operators are real.)

The bilinear pairing of Z = L2(Ω) = Z ′ is explicitly given by

〈u, v〉 =
∫
Ω

uv dx,(III.4.4)

and the conditions (I.8.5)–(I.8.7) for Hopf Bifurcation are satisfied if
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iκ0(�= 0) is a simple eigenvalue of L(λ0)
and of its adjoint L(λ0)

∗ according to (III.1.2),
with eigenfunctions ϕ0, ϕ

∗
0 ∈ D(L(λ0)), respectively,∫

Ω

ϕ0ϕ
∗
0 dx = 1, and

Re

∫
Ω

(Lλ(λ0)ϕ0)ϕ
∗
0 dx �= 0; cf. (I.8.44),

(III.4.5)

where Lλ(λ0) is defined in (III.2.8)5.
By the results of Section III.1, in particular (III.1.40), these spectral con-

ditions are the same for the operators

L(λ0) : L
p(Ω) → Lp(Ω),

D(L(λ0)) = W 2,p(Ω) ∩W 1,p
0 (Ω), 2 ≤ p < ∞,

L(λ0) : C
α(Ω) → Cα(Ω),

D(L(λ0)) = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}.

(III.4.6)

In other words, it is sufficient to check the spectral properties (III.4.5) for
L(λ) in its Hilbert space representation in order to know them for all repre-
sentations (III.4.6).

Setting L0 = L(λ0) = DuF (0, λ0), we see that the crucial property for
proving Hopf Bifurcation is that

J0 ≡ κ0
d

dt
− L0 : Y ∩ E → W

is a continuous Fredholm operator of index zero,

(III.4.7)

provided that the nonresonance condition (I.8.14) holds. The spaces Y,E, and
W are defined in (I.8.11) for Z = Lp(Ω) or Z = Cα(Ω) and X = D(L0) =
W 2,p(Ω) ∩W 1,p

0 (Ω) or X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, respectively.
The Fredholm property (III.4.7) is proved in Proposition I.8.1 under

the assumption that L0 generates a compact holomorphic semigroup. We
give now some details about the generation of semigroups of the operators
(III.4.6).

For some c ≥ 0, the operator L0 − cI : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is

bijective; cf. (III.1.8). This means that c ∈ R is in the resolvent set of L0 :
L2(Ω) → L2(Ω), and by (III.1.40), it is also in the resolvent set of L0 :
Lp(Ω) → Lp(Ω) and of L0 : Cα(Ω) → Cα(Ω). This observation implies the
a priori estimates

‖u‖2,p ≤ cp(‖L0u‖0,p + ‖u‖0,p)
for all u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω), cp > 0, 2 ≤ p < ∞,

‖u‖2,α ≤ cα(‖L0u‖0,α + ‖u‖0,α)
for all u ∈ C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, cα > 0.

(III.4.8)
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By the famous trick of Agmon [2], the elliptic a priori estimates in Lp(Ω)
imply the following estimates of the resolvent of L0:

For z ∈ Σ = {z ∈ C||argz| ≤ π
2 + δ, |z| ≥ R}

with some suitable δ > 0, R > 0,

|z|‖u‖0,p ≤ Cp‖(L0 − zI)u‖0,p
for all u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω).

(III.4.9)

When the same trick is applied in Cα(Ω), one obtains (see [166], [88], [90])
that

for z ∈ Σ and u ∈ C2,α(Ω) ∩ {u|u = 0 on ∂Ω},
|z|‖u‖0,0 + |z|1−(α/2)‖u‖0,α ≤ Cα‖(L0 − zI)u‖0,α,

(III.4.10)

where ‖ ‖0,0 denotes the maximum norm in C(Ω). Counterexamples show
that (III.4.10) cannot be improved; cf. [166]. In any case, the sector Σ is
in the resolvent set of L0, and the estimates (III.4.9), (III.4.10) imply the
existence of the family of operators

eL0t =
1

2πi

∫
∂Σ

ezt(zI − L0)
−1dz for t > 0,

in L(Z,Z) for Z = Lp(Ω) and Z = Cα(Ω).

(III.4.11)

Whereas eL0t is a holomorphic semigroup in Lp(Ω) generated by L0 (see
[86], [142], [170], for example), it is not a holomorphic semigroup in Cα(Ω)
in its usual sense. Note that D(L0) = C2,α(Ω) ∩ {u|u = 0 on ∂Ω} is not
dense in Cα(Ω). Nonetheless, the family eL0t ∈ L(Cα(Ω), Cα(Ω)) defined
by (III.4.11) has similar properties to those of a holomorphic semigroup for
t > 0, but it has a singularity at t = 0:

‖eL0tu‖0,α ≤ Mαe
dtt−α/2‖u‖0,α for t > 0,

‖eL0tu‖0,0 ≤ Mαe
dt‖u‖0,α,

with some Mα > 0, d ∈ R, and for all u ∈ Cα(Ω);

(III.4.12)

cf. [166], [88], [90]. In both cases, definition (III.4.11) implies that eL0tu ∈
D(L0) for t > 0 and u ∈ Z. Since D(L0) is compactly embedded into Z, the
semigroup eL0t is compact for t > 0.

Therefore, Proposition I.8.1 is applicable to L0 : Z → Z with Z = Lp(Ω)
and D(L0) = W 2,p(Ω) ∩W 1,p(Ω), which means that under the assumptions
(III.4.5) and (I.8.14), the Fredholm property (III.4.7) holds.

For Z = Cα(Ω) and D(L0) = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, however,
the proof of Proposition I.8.1 fails for the following reason: If f ∈ Cβ

2π(R, Z)
for some β > α/2, then the solution of J0u = f given by (I.8.23) is only
in Cβ−(α/2)(R, X) ∩ C1+β−(α/2)(R, Z), in general (the Hölder exponents β
in time and α in space are not necessarily identical). Nonetheless, we make
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use of semigroups in Cα(Ω) in proving the regularity of bifurcating periodic
solutions; cf. (III.4.20)–(III.4.22) below. See also Remark III.4.2 for a different
treatment of a fully nonlinear parabolic problem.

For an Lp-theory we have to confine ourselves to quasilinear parabolic
problems; i.e., the right-hand side of (III.4.1) is of the form (III.2.6). Since
W 2,p(Ω) ⊂ C1(Ω) for p > n, the quasilinear differential operator

G(∇2u,∇u, u, x, λ) ≡∑n
i,j=1 aij(∇u, u, x, λ)uxixj + g(∇u, u, x, λ)

defines via (III.4.2), and by our assumptions on G, an operator

F ∈ Ck+1((W 2,p(Ω) ∩W 1,p
0 (Ω)) × R, Lp(Ω)).

(III.4.13)

(For the local analysis of this section we need smoothness of F only in a neigh-
borhood of the bifurcation point (0, λ0). Accordingly, the global smoothness
of G can be reduced to aij , g ∈ Ck+1(V ×U ×Ω× (λ0 − δ, λ0 + δ),R), where
V × U is an open neighborhood of (0, 0) ∈ Rn × R.)

Thus, for k ≥ 2, assumption (III.4.5) and the nonresonance condition
(I.8.14) imply the applicability of the Hopf Bifurcation Theorem (Theorem
I.8.2) to the evolution equation

du

dt
= F (u, λ) in Lp(Ω) for p > n.(III.4.14)

Solutions of (III.4.14), periodic or not periodic, are, by definition, not
classical solutions of the parabolic problem (III.4.1). Note that d/dt means
the derivative of the trajectory u(t)(x) = u(t, x) with respect to the norm in
Lp(Ω). We show now that bifurcating 2π/κ-periodic solutions of (III.4.14) are
indeed classical solutions of the parabolic partial differential equation with
homogeneous Dirichlet boundary conditions.

In the sequel we fix λ near λ0 and consider a small-amplitude solution
u ∈ C1+β

2π/κ(R, L
p(Ω)) ∩ Cβ

2π/κ(R,W
2,p(Ω) ∩ W 1,p

0 (Ω)) of (III.4.14) for some

β ∈ (0, 1] and p > n.
By a continuous embedding W 2,p(Ω) ∩W 1,p

0 (Ω) ⊂ (C1,α(Ω) ∩ {u|u = 0

on ∂Ω}) for 0 < α < 1− n
p , the solution u is in Cβ

2π/κ(R, C
1,α(Ω)). We insert

u = u(t, x) into the quasilinear operator G of (III.4.13), and we define

L̃(t)h ≡ ∑n
i,j=1 aij(∇u, u, x, λ)hxixj ,

f(t) ≡ g(∇u, u, x, λ), t ∈ R,
(III.4.15)

where we suppress the dependence on λ. By the continuous differentiability
of aij and g, the property u ∈ Cβ

2π/κ(R, C
1,α(Ω)) implies

aij , f ∈ Cβ
2π/κ(R, C

α(Ω)), i, j = 1, . . . , n.(III.4.16)
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The assumed ellipticity of L̃0 ≡ L̃(t) for (u, λ) = (0, λ0) entails the uniform
ellipticity of L̃(t) (uniform with respect to t) for small amplitudes of u in
C1,α(Ω) and for λ near λ0. Therefore, (III.4.10) holds for each L̃(t) and

L̃(t) : C2,α(Ω) ∩ {u|u = 0 on ∂Ω} → Cα(Ω)
is bijective for all t ∈ R.

(III.4.17)

In view of (III.4.11), the properties (III.4.16), (III.4.17) imply that

for each τ ∈ R there exists a semigroup

eL̃(τ)t on Cα(Ω) with estimates (III.4.12), and

‖(L̃(t)− L̃(τ))L̃−1(s)u‖0,α ≤ C|t− τ |β‖u‖0,α
for all s, t, τ ∈ R, u ∈ Cα(Ω), with a uniform constant C > 0.

(III.4.18)

With the aid of (III.4.18), the construction of a so-called fundamental solu-

tion is accomplished in [162], [52], provided that the semigroups eL̃(τ)t are
holomorphic without singularity at t = 0. In the singular case (III.4.12),
however, this construction still provides a fundamental solution, but having
weaker properties. We summarize the results of [90]:

Let Z = Cα(Ω) and X = D(L̃(t)) = C2,α(Ω) ∩ {u|u = 0 on ∂Ω} and
0 < α < β ≤ 1 with a gap β−α that is sufficiently large (conditions on β−α
are found in [90]). Then for T > 0,

there is a fundamental solution Ũ(t, τ) ∈ L(Z,Z),
which is continuous for 0 ≤ τ < t ≤ T , such that

Ũ(t, τ)Ũ (τ, s) = Ũ(t, s) for 0 ≤ s < τ < t ≤ T ,

Ũ(t, τ)u ∈ X for 0 ≤ τ < t ≤ T and u ∈ Z,

‖Ũ(t, τ)u‖0,α ≤ C1(t− τ)−α/2‖u‖0,α,
‖L̃(s)Ũ(t, τ)u‖0,α ≤ C2(t− τ)−1−(α/2)‖u‖0,α,
for 0 ≤ τ < t ≤ T , s ∈ [0, T ], and u ∈ Z,
∂

∂t
Ũ(t, τ) = L̃(t)Ũ (t, τ) in L(Z,Z) for 0 ≤ τ < t ≤ T .

(III.4.19)

For our purposes, the following Variation of Constants Formula is useful:

For f ∈ Cβ([0, T ], Z) and u(0) ∈ Z
the function obtained by integration in Z,

u(t) = Ũ(t, 0)u(0) +

∫ t

0

Ũ(t, s)f(s)ds,

is in C1((0, T ], Z) ∩ C((0, T ], X), and

du

dt
= L̃(t)u + f in (0, T ].

(III.4.20)
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(Actually, one can prove u ∈ C β̃([ε, T ], X) for some β̃ < β−(α/2), but this is
not done in [90].) Using (III.4.20), the regularity of bifurcating 2π/κ-periodic
solutions of (III.4.14) is immediate: By definitions (III.4.15), every periodic
solution of (III.4.14) satisfies

u(t) = Ũ(t, 0)u(0) +

∫ t

0

Ũ(t, s)f(s)ds in Lp(Ω)

with u(0) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ⊂ C1,α(Ω).

(III.4.21)

Since f ∈ Cβ([0, T ], Z) for Z = Cα(Ω), cf. (III.4.16), the function u ∈
Cβ

2π/κ(R, C
1,α(Ω)) satisfies the same integral equation (III.4.21) in Cα(Ω),

so that the regularity (III.4.20) and periodicity of u imply

u ∈ C1
2π/κ(R, C

α(Ω)) ∩ C2π/κ(R, C
2,α(Ω)),

u(t, x) = 0 for t ∈ R and x ∈ ∂Ω, and

du

dt
= F (u, λ) holds in Cα(Ω).

(III.4.22)

Properties (III.4.22) imply clearly that u = u(t, x) is a classical 2π/κ-periodic
solution of (III.4.1). As a matter of fact, the notion of a classical solution
requires less than (III.4.22). Note that d/dt means the derivative with respect
to the norm in Cα(Ω). We summarize:

Theorem III.4.1 Consider the evolution equation (III.4.14), where the right-
hand side given by (III.4.2) is quasilinear in the sense of (III.4.13). Assume
the ellipticity of DuF (0, λ0) = L(λ0), the spectral conditions (III.4.5), and
the nonresonance condition (I.8.14). Then Theorem I.8.2 on Hopf Bifurca-
tion is applicable to the evolution equation (III.4.14) in Lp(Ω).

The regularity (III.4.22) implies that the bifurcating 2π/κ-periodic solu-
tions are classical solutions of the parabolic problem (III.4.1).

Finally, we mention that the bifurcating curve {(u(r), λ(r))} of 2π/κ(r)-
periodic solutions through (0, λ0) with 2π/κ(0) = 2π/κ0 is continuously dif-

ferentiable (with respect to r) in (C1+β
2π/κ(r)(R, L

p(Ω))∩Cβ
2π/κ(r)(R,W

2,p(Ω)))×
R and therefore, by continuous embedding for p > n, it is also contin-
uously differentiable in (Cβ

2π/κ(r)(R, C
1,α(Ω) ∩ {u|u = 0 on ∂Ω}) × R for

0 < α < 1− n
p .

Remark III.4.2 The elegant treatment of Hopf Bifurcation using semi-
groups – an approach that mimics the finite-dimensional case by considering
the parabolic problem (III.4.1) as an ODE (III.4.14) in a Banach space – fails
for fully nonlinear parabolic problems, since the Fredholm property (III.4.7) is
not true for Z = Cα(Ω) and X = C2,α(Ω)∩{u|u = 0 on ∂Ω}. The reason for

this failure is that the space W = Cβ
2π(R, C

α(Ω)) is not adequate: the Hölder
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continuity in space is superimposed by the Hölder continuity in time, which is
more than just Hölder continuity in the time–space cylinder [0, T ]×Ω ≡ QT .

The adequate spaces are given in [53], [121]. Using the notation of [121],
we see that the space H	+2,	/2+1(QT ) for some 0 < � < 1 consists of func-
tions whose time derivatives up to order 1 are uniformly Hölder continuous
in time with exponent �/2 and whose space derivatives up to order 2 are uni-
formly Hölder continuous in space with exponent �. These functions are also
uniformly Hölder continuous with exponent � in the time–space cylinder with
weighted distance |(x, t)− (x′, t′)| = (|x−x′|2+ |t− t′|)1/2; cf. [53]. Note that
no mixed derivatives are involved.

We sketch how to prove Hopf Bifurcation for fully nonlinear parabolic
problems using the parabolic regularity in those Hölder spaces over the time–
space cylinder proved in [53], [121].

We know from Proposition I.8.1 that for J0 : Y ∩ E → W with Y =
C1+β

2π (R, Lp(Ω)), E = Cβ
2π(R,W

2,p(Ω)∩W 1,p
0 (Ω)), and W = Cβ

2π(R, L
p(Ω)),

the decomposition
W = R(J0)⊕N(J0)(III.4.23)

holds; cf. (I.8.28). For β = �/2 there is a continuous embedding H
	,	/2
2π (R ×

Ω) ⊂ W , where the subscript 2π denotes 2π-periodicity in time. The parabolic
regularity proved in [53], [121] applies then as follows:

J0u = f for u ∈ Y ∩ E, f ∈ H
	,	/2
2π (R×Ω)

⇒ u ∈ H
	+2,	/2+1
2π (R×Ω) ∩ {u|u(t, x) = 0 on R× ∂Ω}

and κ0
∂u

∂t
− L0u = f in R×Ω

holds in the classical sense.

(III.4.24)

In contrast to the “infinite-dimensional ordinary differential operator” J0 =
κ0

d
dt − L0, the operator J0 ≡ κ ∂

∂t −L0 is a genuine partial differential oper-
ator. A proof of (III.4.24) is rather involved. Since N(J0) = N(J0) ⊂ X	 ≡
H

	+2,	/2+1
2π (R × Ω) ∩ {u|u(t, x) = 0 on R× ∂Ω}, analogous arguments as in

(III.1.22)–(III.1.28) prove that for Z	 ≡ H
	,	/2
2π (R×Ω), the parabolic operator

J0 = κ0
∂

∂t
− L0 : X	 → Z	

is a (continuous) Fredholm operator of index zero,

and in particular, Z	 = R(J0)⊕N(J0)
with projection Q|Z�

: Z	 → N(J0) along R(J0),
where Q is defined by (I.8.21) with duality (III.4.4).

(III.4.25)

(In view of (III.4.23) an adjoint operator is not needed.)
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Let F be a fully nonlinear operator defined by (III.4.2). We rewrite
(III.4.1) by

∂u

∂t
= F (u, λ) in R×Ω,

u = 0 on R× ∂Ω,

(III.4.26)

and the usual rescaling in time yields 2π/κ-periodic solutions of (III.4.26),
provided that

G(u, κ, λ) ≡ κ
∂u

∂t
− F (u, λ) = 0

for (u, κ, λ) ∈ X	 × R× R.

(III.4.27)

If G ∈ Ck+1(Rn×m
sym × Rn × R×Ω × R,R), then G ∈ Ck(X	 × R× R, Z	).

By DuG(0, κ0, λ0) = J0 and the Fredholm property (III.4.25), the proof
for bifurcating nontrivial solutions of G(u, κ, λ) = 0 near (0, κ0, λ0) via the
method of Lyapunov–Schmidt follows precisely the lines of Section I.8. In
particular, assumptions (III.4.5) and the nonresonance condition (I.8.14) are
sufficient to solve the bifurcation equation nontrivially; that bifurcation equa-
tion is of the form (I.8.34), or (I.8.38), since the projection Q has the same
structure as in (I.8.21); cf. (III.4.25).

In this way we can prove the existence of a nontrivial curve {(u(r), λ(r))|r ∈
(−δ, δ)} of 2π/κ(r)-periodic solutions of (III.4.26) through (u(0), λ(0)) =

(0, λ0) with 2π/κ(0) = 2π/κ0 in
(
H

	+2,	/2+1
2π/κ(r) (R × Ω) ∩ {u|u(t, x) = 0 on

R× ∂Ω})× R.

The Bifurcation Formulas derived in Section I.9 hold accordingly. The
evaluation of (I.9.11) (with duality (II.4.4)) is certainly nontrivial, since an
inversion of elliptic operators 2iκ0 − L0 and L0 is involved. If, however,
D2

uuF (0, λ0) = 0, i.e., if the nonlinear part of F is at least of third order,
then the bifurcation formulas of Theorem I.9.1 are much simpler.

Finally, the Principle of Exchange of Stability holds for nondegener-
ate as well as for degenerate Hopf Bifurcation for parabolic problems. De-
generate Hopf Bifurcation is expounded in Section I.17: In this case,
the condition Reμ′(λ0) �= 0, cf. (III.4.5)5, is replaced by Reμ(m)(λ0) �= 0
for some odd m ∈ N. If in (III.4.13) the coefficients aij and the function
g are analytic with respect to their real variables (∇u, u, λ), the quasilin-
ear operator F defined by (III.4.2) is analytic in the sense of (I.16.2) for
X = W 2,p(Ω) ∩ W 1,p

0 (Ω) and Z = Lp(Ω). Therefore, all results of Section
I.17 are applicable to the evolution equation (III.4.14) in Lp(Ω). The Prin-
ciple of Exchange of Stability then says that consecutive curves of periodic
solutions ordered in the (r, λ)-plane have opposite stability properties (in
a possibly weakened sense); cf. Theorem I.17.6. Stability means, by defini-
tion, linear stability determined by the second nontrivial Floquet exponent.
If that Floquet exponent vanishes, then the Principle of Linearized Stability
fails; cf. Section I.12. In case of a nondegenerate Hopf Bifurcation, however,
the second Floquet exponent is nonzero along a nondegenerate pitchfork, and
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the Principle of Exchange of Stability applies; cf. Theorem I.12.2, Corollary
I.12.3, and Figure I.12.1.

If the parabolic problem (III.4.1) is semilinear (defined in (III.2.10)), then
as proved in [76], linear stability indeed implies nonlinear orbital stability.

III.5 Global Bifurcation and Continuation for Elliptic
Problems

Whereas in Section III.2 we study local bifurcations for fully nonlinear ellip-
tic problems, we prove global results only for quasilinear elliptic problems,
namely,

G(∇2u,∇u, u, x, λ) ≡∑n
i,j=1 aij(∇u, u, x, λ)uxixj + g(∇u, u, x, λ) = 0 in Ω,

u = 0 on ∂Ω.
(III.5.1)

Again Ω ⊂ Rn is a bounded domain with a boundary ∂Ω such that linear
elliptic operators have the properties provided in Section III.1. As usual, we
assume G(0,0, 0, x, λ) = 0 for all (x, λ) ∈ Ω × R, so that we have the trivial
solution (0, λ) for all λ ∈ R.

The ellipticity of problem (III.5.1) is defined as follows:∑n
i,j=1 aij(v, u, x, λ)ξiξj ≥ d(v, u, λ)‖ξ‖2

for all x ∈ Ω, ξ ∈ Rn, with some positive
and continuous function d : Rn × R× R → R.

(III.5.2)

Then d(v, u, λ) ≥ dR > 0 for all (v, u, λ) ∈ Rn ×R×R such that ‖v‖+ |u|+
|λ| ≤ R.

We define X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, Y = C1,α(Ω), and Z =
Cα(Ω).
If aij , g and their partial derivatives with respect to (v, u, x) ∈ Rn × R × Ω
are in C(Rn × R×Ω × R,R), then

L(u, λ)h ≡ ∑n
i,j=1 aij(∇u, u, x, λ)hxixj satisfies

L ∈ C(Y × R, L(X,Z)),

and ĝ ∈ C(Y × R, Z), where

ĝ(u, λ)(x) = g(∇u(x), u(x), x, λ).

(III.5.3)

In case aij , g ∈ C3(Rn × R×Ω × R,R), the mapping
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F (u, λ) ≡ L(u, λ)u+ ĝ(u, λ) satisfies

F ∈ C2(X × R, Z) and

DuF (u, λ)h

=
∑n

i,j=1 aij(∇u, u, x, λ)hxixj +
∑n

i=1 bi(∇2u,∇u, u, x, λ)hxi

+ c(∇2u,∇u, u, x, λ)h for (u, λ) ∈ X × R, h ∈ X .

(III.5.4)

Before we apply Theorem II.5.8 to (III.5.1) in its form F (u, λ) = 0, i.e.,
before verifying the conditions (II.5.32) on F , we discuss the notion of an
odd crossing number of DuF (0, λ) at λ = λ0. An odd crossing number is
equivalent to a change of index i(F (·, λ), 0) at λ = λ0, cf. (II.5.34), and its
Definition II.4.1 is here applied to the family

DuF (0, λ) = L(0, λ) +Duĝ(0, λ), where

L(0, λ) is given in (III.5.3) and

Duĝ(0, λ)h =
∑n

i=1 gvi(0, 0, x, λ)hxi + gu(0, 0, x, λ)h.

(III.5.5)

For special families DuF (0, λ), an odd crossing number is easily verified;
cf. (III.2.8), (III.2.17), (III.2.36). It is the crucial condition for local bifurca-
tion (Theorem II.4.4) as well as for global bifurcation (Theorem II.5.8).

If F is not of class C2, then Theorem II.3.3 offers a way to obtain the same
global alternative as given by Theorem II.5.8, provided that the problem
F (u, λ) = 0 is converted into a problem for a compact perturbation of the
identity, that is, u + f(u, λ) = 0; cf. Definition II.2.1. If this has been done,
then the crucial assumption is again an odd crossing number of the family
I +Duf(0, λ) at λ = λ0.

The conversion of F (u, λ) = 0 to u+f(u, λ) = 0 is not unique. Nonetheless,
one expects that the spectral properties of the families DuF (0, λ) and I +
Duf(0, λ) near λ = λ0 imply simultaneously an odd crossing number as
long as the problems F (u, λ) = 0 and u + f(u, λ) = 0 are equivalent. That
expectation, however, is not at all obvious, as a simple semilinear example
shows:

Assume that F (u, λ) = Lu + ĝ(u, λ), where L is some elliptic operator
(independent of (u, λ)) that is invertible and where ĝ is given in (III.5.3)4.
Then the following equivalence is obvious:

F (u, λ) ≡ Lu+ ĝ(u, λ) = 0 for (u, λ) ∈ X × R ⇔
u+ f(u, λ) ≡ u+ L−1ĝ(u, λ) = 0 for (u, λ) ∈ Y × R.

(III.5.6)

(Below, we prove that f : Y ×R → Y is completely continuous.) It is simple
to verify that 0 is an eigenvalue of DuF (0, λ0) = L+Duĝ(0, λ0) if and only
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if 0 is an eigenvalue of I + Duf(0, λ0) = I + L−1Duĝ(0, λ0), and that the
geometric multiplicities are the same. However, since L−1 and Duĝ(0, λ0)
(given by (III.5.5)3) do not commute in general, it is not clear whether the
algebraic multiplicities are equal, too. Consequently, it is open whether the
two families DuF (0, λ) and I +Duf(0, λ) have simultaneously odd crossing
numbers at λ = λ0. In particular, the computation of the crossing number
of the compact perturbation of the identity might cause problems if it is not
proved that it has the same parity as the crossing number of the original
elliptic family.

Having these difficulties in mind, we prefer to stay first with the original
formulation F (u, λ) = 0 of problem (III.5.1); cf. (III.5.3), (III.5.4).

We verify the conditions (II.5.32) on F .

First of all, F ∈ C2(X×R, Z) if aij , g ∈ C3(Rn×R×Ω×R,R). Then the
coefficients aij , bi, and c of DuF (u, λ) as given by (III.5.4) are C2-functions of
their arguments, and by (III.5.2) the linear operator DuF (u, λ) ∈ L(X,Z) is
elliptic for all (u, λ) ∈ X×R. In view of Section III.1, this proves (i) and (ii) of
Definition II.5.1. In order to verify condition (iii) of that definition we have to
replace F by −F and accordinglyDuF (u, λ) by −DuF (u, λ). By the sectorial
property of elliptic operators as stated in (III.4.9), (III.4.10), the spectrum
of −DuF (u, λ) is in a sector {z ∈ C| |arg z| ≤ π

2 − δ} ∪ {z ∈ C| |z| ≤ R} for
some δ > 0, R > 0 depending only on the ellipticity d(v, u, λ) > 0 in (III.5.2),
on the norms ‖aij‖0,α, ‖bi‖0,α, ‖c‖0,α of the coefficients of (III.5.4), and on Ω.
This proves that a strip (−∞, c)×(−iε, iε) ⊂ C for some c > 0, ε > 0 contains
at most finitely many eigenvalues of finite algebraic multiplicity; cf. (III.1.38).
Finally, a small perturbation of −DuF (u, λ) by a small perturbation of (u, λ)
in X × R entails a small perturbation of the eigenvalues of −DuF (u, λ) in
a sector such that their total number in that strip is stable under small
perturbations.

The last property to be verified is properness. According to (III.5.4), we
decompose F (u, λ) = L(u, λ)u+ ĝ(u, λ). Let

F (un, λn) = fn, where fn → f in Z

and {(un, λn)} is bounded in X × R.
(III.5.7)

Without loss of generality, (λn)n∈N converges to λ in R, and by compact
embedding, (un)n∈N converges to u in Y . This, in turn, implies, by (III.5.3),

ĝ(un, λn) → ĝ(u, λ) in Z and

‖(L(un, λn)− L(u, λ))un‖0,α ≤ ε‖un‖2,α ≤ εM
(III.5.8)

for all n ≥ n0(ε). By (III.5.7), (III.5.8),
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L(u, λ)un =

(L(u, λ)− (L(un, λn))un − ĝ(un, λn) + fn

converges to −ĝ(u, λ) + f in Z.

(III.5.9)

Since L(u, λ) is elliptic, cf. (III.5.2), injective, and therefore bijective by its
Fredholm property, the elliptic a priori estimate ‖un‖2,α ≤ CR‖L(u, λ)un‖0,α,
with some constant CR > 0 depending on ‖u‖1,α + |λ| ≤ R, implies that
(un)n∈N converges to u ∈ X . This proves properness and the admissibility
of F according to (II.5.32). Therefore, Theorem II.5.8 is applicable to the
problem F (u, λ) = 0.

Next, we convert F (u, λ) = 0 into a compact perturbation of the identity
u+ f(u, λ) = 0 in such a way that the crossing numbers of DuF (0, λ) and of
I +Duf(0, λ) at some λ = λ0 have the same parity.

Choose a continuous function c : R → R such that

gu(0, 0, x, λ) + c(λ) ≤ 0

for all (x, λ) ∈ Ω × R,
(III.5.10)

and define

L̂(u, λ) ≡ L(u, λ) +Duĝ(0, λ) + c(λ)I.(III.5.11)

In view of (III.5.5), the lowest-order coefficient of the elliptic operator L̂(u, λ)
is nonpositive, so that by the maximum (and minimum) principle, L̂(u, λ) ∈
L(X,Z) is injective. Its Fredholm property (cf. Section III.1) implies that it
is bijective. We claim that

‖h‖2,β ≤ ĈR‖L̂(u, λ)h‖0,β with some ĈR > 0,

for all (u, λ) ∈ Y × R such that ‖u‖1,α + |λ| ≤ R,

and for all h ∈ C2,β(Ω) ∩ {u|u = 0 on ∂Ω},
where 0 < β < α < 1.

(III.5.12)

Assume the existence of sequences (un)n∈N, (λn)n∈N, and (hn)n∈N with
‖un‖1,α + |λn| ≤ R, ‖hn‖2,β = 1, and

L̂(un, λn)hn → 0 in Cβ(Ω) as n → ∞.(III.5.13)

By 0 < β < α < 1 and a compact embedding, we can assume w.l.o.g. that
un → u in C1,β(Ω) and λn → λ in R, whence

L̂(un, λn)h → L̂(u, λ)h in Cβ(Ω)

uniformly for h ∈ C2,β(Ω) with ‖h‖2,β ≤ 1.
(III.5.14)

Therefore,
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L̂(u, λ)hn

= (L̂(u, λ)− L̂(un, λn))hn + L̂(un, λn)hn

converges to 0 in Cβ(Ω),

whence hn → 0 in C2,β(Ω) as n → ∞

(III.5.15)

by the elliptic a priori estimate (III.5.12)1 for the single operator L̂(u, λ).
This contradicts ‖hn‖2,β = 1 and proves (III.5.12).

We convert F (u, λ) = 0 for (u, λ) ∈ X×R given by (III.5.4)1 equivalently
into

u+ f(u, λ) ≡
u+ L̂(u, λ)−1(ĝ(u, λ)−Duĝ(0, λ)u− c(λ)u) = 0

for (u, λ) ∈ Y × R.

(III.5.16)

The mapping f : Y × R → Y is completely continuous: First of all, the
mapping (u, λ) �→ ĝ(u, λ) − Duĝ(0, λ)u − c(λ)u is continuous and bounded
from Y ×R into Z, which, in turn, is continuously embedded into Cβ(Ω) for
0 < β < α < 1. The identity L̂(u, λ)−1 − L̂(ũ, λ̃)−1 = L̂(ũ, λ̃)−1[L̂(ũ, λ̃) −
L̂(u, λ)]L̂(u, λ)−1 together with (III.5.12) and (III.5.3)2, where X is replaced
by C2,β(Ω) ∩ {u|u = 0 on ∂Ω} and Z is replaced by Cβ(Ω), proves that
f is continuous and bounded as a mapping from Y × R into C2,β(Ω). Fi-
nally, bounded sets in C2,β(Ω) are relatively compact in Y , which proves the
complete continuity of f .

For the application of Theorem II.3.3 we need also continuous differentia-
bility of f with respect to u along the trivial solution line {(0, λ)}. This is
true if in addition to the conditions for (III.5.3), g ∈ C(R, C2(V ×U×Ω)) for
a neighborhood V × U of (0, 0) ∈ Rn × R; cf. (III.5.5) and (III.5.17) below.
(This nomenclature means that the mapping λ �→ g(·, ·, ·, λ) is continuous
from R into the Banach space C2(V × U ×Ω).)

The crucial condition for global bifurcation for the compact perturbation
of the identity u + f(u, λ) = 0 is an odd crossing number of the family
I +Duf(0, λ) at some λ = λ0. Since ĝ(0, λ) = 0, we obtain from (III.5.16)

I +Duf(0, λ) = I − c(λ)L̂(0, λ)−1, where by (III.5.11),

L̂(0, λ) = L(0, λ) +Duĝ(0, λ) + c(λ)I =

DuF (0, λ) + c(λ)I; cf. (III.5.5).

(III.5.17)

If 0 is an eigenvalue of DuF (0, λ0), then by its definition (III.5.10), c(λ0) < 0
and c(λ0) and 1/c(λ0) are eigenvalues of L̂(0, λ0) and L̂(0, λ0)

−1, respectively,
of the same algebraic multiplicity; cf. (III.1.38). Furthermore,
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μ(λ) is in the 0-group of DuF (0, λ) ⇔
μ(λ)

μ(λ) + c(λ)
is in the 0-group of I +Duf(0, λ)

for λ ∈ (λ0 − δ, λ0 + δ) having the same
algebraic multiplicity in both cases.

(III.5.18)

In view of μ(λ)+ c(λ) < 0 for real μ(λ) and for λ ∈ (λ0 − δ, λ0+ δ), provided
that δ > 0 is small enough, this proves that

the family DuF (0, λ) has an odd crossing number
at λ = λ0 ⇔
I +Duf(0, λ) has an odd crossing number at λ = λ0.

(III.5.19)

Before we summarize our results, we mention that for solution sets {(u, λ)}
⊂ Y ×R of u+ f(u, λ) = 0, connectedness and unboundedness in Y ×R are
equivalent to connectedness and unboundedness in X × R. (For a proof use
a “bootstrapping argument.”) By (III.5.11), (III.5.16) the solution sets of
F (u, λ) = 0 and u + f(u, λ) = 0 coincide. Theorem II.3.3 then yields the
following:

Theorem III.5.1 Assume that the elliptic family L(0, λ)+Duĝ(0, λ) defined
in (III.5.5) has an odd crossing number at some λ = λ0. If the functions aij
and g and their partial derivatives with respect to (v, u, x) ∈ Rn × R × Ω
are continuous and if g ∈ C(R, C2(V ×U ×Ω)) for a neighborhood V ×U of
(0, 0) ∈ Rn×R, then there exists a component C in the closure S of nontrivial
solutions of the quasilinear elliptic problem L(u, λ)u+ ĝ(u, λ) = 0 in X × R

emanating at (0, λ0) and subject to the alternatives
(i) C is unbounded in X × R, or
(ii) C contains some (0, λ1), where λ0 �= λ1.

Here X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}.
In case of dimN(DuF (0, λ0)) = 1 = dimN(I +Duf(0, λ0)), the applica-

tion of Theorem II.5.9 gives the following refinement: C = C+∪C−∪{(0, λ0)}
and each of C+ and C− either satisfies one of the alternatives (i) and (ii) or

(iii) contains a pair (u, λ), (−u, λ) where u �= 0.

Under the assumptions (III.2.8), the continua C± are locally given by
smooth curves {(u(s), λ(s))|s ∈ (0, δ)} and {(u(s), λ(s))|s ∈ (−δ, 0)}. Glo-
bally, not much is known about C± in general. In Section III.6 we provide
an example for the second alternative of Theorem III.5.1. In Section III.7 we
prove that C± are globally smooth curves parameterized by the amplitude
of u if C± are positive and negative branches emanating from the principal
eigenvalue. None of these results hold in general, but they require special
assumptions.

Remark III.5.2 The key for the application of the Leray–Schauder de-
gree instead of the degree of proper Fredholm operators is the equivalence
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(III.5.19), which, in turn, relies on the inversion of L̂(u, λ). However, there
are elliptic problems with nonlinear boundary conditions that cannot be trans-
formed into a compact perturbation of the identity in an obvious way; cf. the
problems in nonlinear elasticity considered in [75] and in fluid mechanics
studied in [23]. In these cases the degree for Fredholm operators developed
in Section II.5 is applicable, and Theorem II.5.8 yields the same alternative
as Theorem II.3.3. (If for physical reasons the mapping F is not everywhere
defined, there is a third possibility, that C reaches the boundary of the domain
of definition of F .)

III.5.1 An Example (Continued)

The Euler–Lagrange equation (III.2.63) for the variational problem (III.2.62)
gives rise to a bifurcation problem Fε(v,m) = 0; cf. (III.2.66), where the mass
m serves as a bifurcation parameter. The local bifurcation diagram for fixed
small ε > 0 is sketched in Figure III.2.5.

Here we have a one-dimensional kernel ofDvFε(0,m
i
n), i = 1, 2, cf.(III.2.77),

and the nondegeneracy (III.2.80) implies an odd crossing number ofDvFε(0,m)
at m = mi

n, i = 1, 2; cf. (II.4.27).
Due to the nonlocal term, it is simpler to transform Fε(v,m) = 0 for

(v,m) ∈ X2,α
n × R into a compact perturbation of the identity, namely, v +

fε(v,m) = 0 for (v,m) ∈ Xα
n × R, where

fε(v,m) = −Δ−1 1

ε

(
W ′(m+ v)−

∫
Ω

W ′(m+ v)dx

)
.(III.5.20)

Note that Δ : X2,α
n → Xα

n is bijective due to the mean value zero; cf.
(III.1.35). The mapping fε : X

α
n ×R → Xα

n is completely continuous, and by
(III.2.80) the family I +Dvfε(0,m) = I − 1

εW
′′(m)Δ−1 has an odd crossing

number at m = mi
n, i = 1, 2, since DvFε(0,m) = −εΔ + W ′′(m)I has an

odd crossing number at m = mi
n.

The application of Theorem II.3.3 then provides the existence of compo-
nents Cn,i ⊂ X2,α

n ×R in the closure S of nontrivial solutions of v+fε(v,m) =
0 or of Fε(v,m) = 0 emanating at (0,mi

n), i = 1, 2. Since ε > 0 is fixed in
that analysis, we suppress the dependence on ε in the notation Cn,i.

As remarked after (III.2.82), the local bifurcating curve {(v(s),m(s))|s ∈
(−δ, δ)} through (v(0),m(0)) = (0,mi

n) decomposes into two components
{(v(s),m(s))|s ∈ [0, δ)} and {(v(s),m(s))|s ∈ (−δ, 0]}, which are transformed
into each other by the reversion (III.2.82). These are the local components
defined in (II.5.39), which are globally extended to C+

n,i and C−
n,i; cf. (II.5.40).

Since those global components are transformed into each other by the re-
version (III.2.82), too, we do not need Theorem II.5.9 in order to state the
following for i = 1, 2:



III.5. Global Bifurcation and Continuation for Elliptic Problems 321

Cn,i = C+
n,i ∪ C−

n,i ∪ {(0,mi
n)},

and each of C+
n,i and C−

n,i is subject

to alternative (i) or (ii) of

Theorem III.5.1.

(III.5.21)

In Section III.6 we show that Cn,i is bounded for i = 1, 2, and that Cn,i each
connect (0,m1

n), (0,m
2
n). Therefore, Cn,1 = Cn,2, and by definition (II.5.40),

C+
n,i = C−

n,i for i = 1, 2. (Note that C+
n,1 is connected to C−

n,1 through (0,m2
n).)

III.5.2 Global Continuation

Solutions (u0, λ0) of a quasilinear elliptic problem (III.5.1) are possibly locally
continued by the Implicit Function Theorem (Theorem I.1.1) and globally
extended via the Global Implicit Function Theorem (Theorem II.6.1). We
give the details.

As usual, X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, Y = C1,α(Ω), and Z =
Cα(Ω).

Let (u0, λ0) ∈ X×R be a solution of (III.5.1), and assuming g(0, 0, x, 0) =
0 for all x ∈ Ω, we have w.l.o.g. (u0, λ0) = (0, 0). Assume that F : X×R → Z
as given in (III.5.4)1 is continuous and has the regularity (I.1.3) of the local
Implicit Function Theorem. If aij , g, and their partial derivatives with respect
to (v, u, x) ∈ Rn × R × Ω are globally continuous, then F ∈ C(X × R, Z);
cf. (III.5.3). If in addition, g(·, ·, ·, 0) ∈ C2(V × U × Ω) for a neighborhood
V × U of (0, 0) ∈ Rn × R, then DuF (0, 0) ∈ L(X,Z) exists. If, moreover,
aij , g ∈ C((−δ, δ), C2(V × U × Ω)), then F has the regularity (I.1.3) of the
local Implicit Function Theorem near (u0, λ0) = (0, 0). (The latter means
that the mappings λ �→ aij(·, ·, ·, λ) and λ �→ g(·, ·, ·, λ) are continuous from
(−δ, δ) into the Banach space C2(V ×U×Ω).) Note, however, that according
to Remark II.6.2, assumption (II.6.2) can be reduced to (II.6.2)1. In other
words, the last assumptions on aij and g are redundant.

Convert F (u, λ) = 0 equivalently into the compact perturbation of the
identity u+ f(u, λ) defined in (III.5.16). Then the crucial assumption for the
application of Theorem II.6.1 is the following:

DuF (0, 0) ∈ L(X,Z) is bijective ⇔
I +Duf(0, 0) ∈ L(Y, Y ) is bijective.

(III.5.22)

Observe that Duf(0, 0) ∈ L(Y, Y ) exists if DuF (0, 0) ∈ L(X,Z) exists.
In view of the ellipticity (III.5.2), conditions (III.5.22) are satisfied if

0 is not an eigenvalue of

DuF (0, 0) = L(0, 0) +Duĝ(0, 0); cf. (III.5.5).
(III.5.23)
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Apply the Leray–Schauder degree to the compact perturbation of the
identity (III.5.16) and observe that connectedness and unboundedness of so-
lution sets {(u, λ)} ⊂ X × R of F (u, λ) = 0 are equivalent to connectedness
and unboundedness of solution sets {(u, λ)} ⊂ Y × R of u + f(u, λ) = 0. If
F ∈ C2(X×R, Z), cf. (III.5.4), then apply the degree for Fredholm operators
to F . In any case, we obtain the conclusion of Theorem II.6.1 for the solution
set of F (u, λ) = 0 in X × R. Note that C\{(0, 0)} �= ∅ also if the regularity
of the local Implicit Function Theorem does not hold; cf. Remark II.6.2.

In order to eliminate the second alternative of Theorem II.6.1, we assume
that

L(u, 0)u+ ĝ(u, 0) = 0 implies u = 0.(III.5.24)

In this case, the hyperplane X × {0} ⊂ X × R contains only the solution
(u0, λ0) = (0, 0), so that the set C\{(0, 0)} is not connected. Therefore, the
components C+, C− of solutions of F (u, λ) = L(u, λ)u+ ĝ(u, λ) = 0 in X ×R

are each unbounded. An a priori estimate like

L(u, λ)u+ ĝ(u, λ) = 0 ⇒
‖u‖2,α ≤ C(λ) for all λ ∈ R

(III.5.25)

implies the existence of solutions (u, λ) ∈ C for all λ ∈ R. In Section III.6
we give explicit conditions such that (III.5.24) holds; cf. Theorem III.6.6.
In Section III.7 we investigate the asymptotic behavior of C for a special
problem: If the nonlinearity has a sublinear growth at infinity, then (III.5.25)
holds.

Remark III.5.3 We consider global bifurcation and global continuation of
classical solutions of (III.5.1) under strong assumptions on the regularity
of the data, i.e., on the mapping G and on the domain Ω. For general
bounded domains Ω and less-smooth functions G defining a semilinear el-
liptic problem of type (III.2.10), the notion of a weak (or generalized) so-
lution is still possible. That definition, however, is apparently not adequate
for a global bifurcation or a global continuation analysis. In [74] we over-
come this problem by a convenient formulation. As a matter of fact, a weak
solution (u, λ) ∈ C(Ω) × R solves some problem u + f(u, λ) = 0, where
f : C(Ω) × R → C(Ω) is completely continuous. This allows us to use all
techniques for local and global analysis expounded in Chapters I and II. The
conditions on the boundary ∂Ω are very general: It suffices that every point
of ∂Ω satisfy an exterior cone condition. Moreover, it is shown in [74] that
a positivity of weak solutions is globally preserved. We return to this in the
next section.
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III.6 Preservation of Nodal Structure on Global
Branches

The global branches (continua) of quasilinear elliptic problems (III.5.1) em-
anating at (0, λ0), where the linearized problem has an eigenvalue zero, are
unbounded or meet the trivial solution line at a different(0, λ1); cf. Theorem
III.5.1. In this section we show how to eliminate one alternative in order to
get much more insight into the global solution set of (III.5.1).

The essential step is the separation of global branches via the nodal pro-
perties of their solutions. This idea was first carried out for nonlinear Sturm–
Liouville eigenvalue problems; cf. [26]: The number of nodes (zeros) of a
solution in the underlying interval is preserved along each nontrivial branch.
This number serves as a “label” for each branch, so that the branches are
separated and unbounded.

The extension to two or more independent variables seems straightfor-
ward: One has to prove a preservation of nodal patterns. However, it is not
at all clear how this can be done in general. As an illustration, consider the
well-known linear eigenvalue problem characterizing the frequencies and nor-
mal modes of a square membrane. By simple superposition, the number and
arrangement of nodal lines along a solution sheet emanating from a repeated
eigenvalue can vary drastically. Consequently, there seems to be little hope
of attaining results comparable to those of [26] for general quasilinear elliptic
problems. However, when the symmetry of a problem fixes the location of
particular nodal lines, then we can show that a minimal frozen nodal pattern
is indeed globally preserved.

Pick one such nodal domain: The essential step is to prove that positivity
of a solution in that domain is preserved under perturbation. This is usually
shown by an application of the elliptic minimum (maximum) principle and
the Hopf boundary lemma. This, in turn, requires a smooth boundary (or
moderate corners for more refined versions). Since we plan to consider prob-
lems on polygonal domains in a lattice (see Figures III.1.1–III.1.3), we present
a maximum principle suitable to our purpose but that does not require any
regularity of the boundary.

III.6.1 A Maximum Principle

Let Ω ⊂ Rn be any bounded domain and let

Lu =
∑n

i,j=1aij(x)uxixj +
∑n

i=1bi(x)uxi + c(x)u(III.6.1)

be an elliptic operator over Ω in the sense of (III.1.1). The coefficients satisfy
aij ∈ C1(Ω), bi, c ∈ C(Ω).
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Theorem III.6.1 Suppose that v ∈ C2(Ω) ∩ C(Ω) ∩H1
0 (Ω) satisfies

(Lv)(x) ≤ 0 for all x ∈ Ω.(III.6.2)

Then there exists a number γ > 0, depending only on the (maximum) norms
of aij ∈ C1(Ω), bi, c ∈ C(Ω), and on the ellipticity of L, such that

meas{x ∈ Ω|v(x) < 0} < γ
implies v ≡ 0 or v(x) > 0 for all x ∈ Ω.

(III.6.3)

Proof. Let D = {x ∈ Ω|v(x) < 0} and we assume that D �= ∅. Then
v ∈ H1

0 (D), since v = 0 on ∂D (cf. the appendix of [70], for example). By
Poincaré’s inequality (cf. [56]),

‖v‖L2(D) ≤
( |D|
ωn

)1/n

‖∇v‖L2(D),

where ωn denotes the volume of the unit
ball in Rn and |D| = measD.

(III.6.4)

Since v < 0 in D, it follows from the hypothesis (III.6.2) that

(Lv, v)L2(D) ≥ 0,(III.6.5)

and after integration by parts,∫
D

∑n
i,j=1aij(x)vxivxjdx ≤

∫
D

∑n
i=1b̂i(x)vxiv + c(x)v2dx,

where b̂i = bi −
∑n

j=1
∂

∂xj
aij .

(III.6.6)

Then ellipticity, uniform estimates of the coefficients b̂i and c, and the in-
equality ab ≤ (ε/2)a2 + (1/2ε)b2 deliver

d‖∇v‖2L2(D) ≤ εc1‖∇v‖2L2(D) +
(c1
ε

+ c2

)
‖v‖2L2(D).(III.6.7)

Choosing ε = d/2c1 yields

‖∇v‖L2(D) ≤ C‖v‖L2(D)(III.6.8)

with a constant C > 0 depending only on the coefficients and on the ellipticity
of L. In view of (III.6.4), we obtain, for |D| > 0 and v < 0 on D,

(
ωn

|D|
)1/n

≤ C or |D| ≥ ωnC
−n ≡ γ.(III.6.9)

Hence, if |D| < γ, then D = ∅ and v ≥ 0 on Ω. But then for c− = min{c, 0} ≤
0, c− ∈ C(Ω),
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i,j=1aij(x)vxivxj +

∑n
i=1b̂i(x)vxi + c−(x)v

≤ Lv ≤ 0 on Ω by (III.6.2).
(III.6.10)

By the minimum principle in [56] either v ≡ 0 or v(x) > 0 for all x ∈ Ω. 
�

III.6.2 Global Branches of Positive Solutions on a
Domain or on a Lattice

We consider global branches of quasilinear elliptic problems

G(∇2u,∇u, u, x, λ) ≡∑n
i,j=1 aij(∇u, u, x, λ)uxixj + g(∇u, u, x, λ) = 0 in Ω,

u = 0 on ∂Ω,
written as (cf. (III.5.3)–(III.5.4))

L(u, λ)u+ ĝ(u, λ) ≡ F (u, λ) = 0

for (u, λ) ∈ X × R, X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}.

(III.6.11)

As usual, we consider F : X × R → Z, where Z = Cα(Ω). Clearly, if
g(0, 0, x, λ) = 0 for all x ∈ Ω and λ ∈ R, we have the trivial solution line
{(0, λ)}. The conditions on local and global bifurcation are given in Sections
III.2 and III.5. Here we do not prove existence, but we focus on the qua-
litative properties of a global branch emanating at (0, λ0). Necessarily, 0 is
an eigenvalue of DuF (0, λ0) = L(0, λ0) + Duĝ(0, λ0), and we assume that
N(DuF (0, λ0)) is spanned by some positive function v̂0. There are two ways
of dealing with this situation: In the first case,

Ω ⊂ Rn is a bounded domain
with a smooth boundary ∂Ω, and
0 is the principal eigenvalue
of the elliptic operator DuF (0, λ0).

(III.6.12)

The existence of a principal eigenvalue is guaranteed either by the Krein–
Rutman Theorem or by variational principles (going back to Courant, Fi-
scher, Hilbert, and Weyl) discussed in Remark III.2.1. In any case, a principal
eigenvalue 0 is (algebraically) simple.

The second case is described as follows: Let L ⊂ R2 be a rectangular,
square, or hexagonal lattice as shown in Figures III.1.1–III.1.3. To stay with
the nomenclature of Section III.1, let
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XD = {u : R2 → R|u has the double periodicity of L
and u has an inverse reflection symmetry
across each line of the lattice L}.

(III.6.13)

For the lattices shown in Figure III.1.1, the function spaces XD are given
in (III.1.31) and (III.1.36). The double periodicity of the hexagonal lattice
is u(x1 + a, x2) = u(x1, x2) = u(x1 +

1
2a, x2 +

1
2

√
3a) for all (x1, x2) ∈ R2.

The inverse reflection symmetries across the lines shown in Figure III.1.2 and
Figure III.1.3 can be written down explicitly, too, but we leave it to the reader.
(The reflections are all of the form (x1, x2) �→ R(x1, x2)+ (a1, a2), where the
reflection R ∈ O(2) and the translation by (a1, a2) leave the respective lattice
L invariant.) We assume that the quasilinear elliptic operator (III.6.11) has
the following “equivariance”:

F : (C2,α(R2) ∩XD)× R → Cα(R2) ∩XD.(III.6.14)

A sufficient condition for this is, for instance, that

G(∇2, u,∇u, u, x, λ) ≡
∇ · q(∇u, u, λ) + p(∇u, u, λ), where

q : R2 × R× R → R2, p : R2 × R× R → R

are smooth functions such that

q(Rv, u, λ) = Rq(v, u, λ),
q(v,−u, λ) = q(v, u, λ),
p(Rv, u, λ) = p(v, u, λ),
p(v,−u, λ) = −p(v, u, λ),

for all reflections R ∈ O(2) that
leave the lattice L invariant,
and for all (v, u, λ) ∈ R2 × R× R.

(III.6.15)

In the more general quasilinear case (III.6.11), sufficient conditions for equi-
variance are readily obtained by differentiations of (III.6.15) via

aij(v, u, λ) =
∂qi
∂vj

(v, u, λ), i, j = 1, 2,

g(v, u, λ) =
2∑

i=1

∂qi
∂u

(v, u, λ)vi + p(v, u, λ).

(III.6.16)

We verify the hypotheses (II.5.32) of Theorem II.5.8; i.e., we verify Def-
inition II.5.2 for F as defined in (III.6.11) and acting as in (III.6.14). If
the coefficients aij and g of (III.6.11) are C3-functions, the operator F of
(III.6.14) is of class C2. The equivariance (III.6.14) implies that
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DuF (u, λ) : C2,α(R2) ∩XD → Cα(R2) ∩XD,
the representation (III.5.4) shows that it
is elliptic, and the results of Section III.1,
in particular (III.1.33), prove that
it is a Fredholm operator of index zero.

(III.6.17)

To verify the spectral condition (iii) of Definition II.5.1, it suffices to show that
the spectrum of−DuF (u, λ) is bounded from below in the following sense: Let
Ω be a tile in the lattice L. If v ∈ C2,α(R2)∩XD, then v ∈ C2,α(Ω)∩{u|u = 0
on ∂Ω}, and for an eigenvalue μ ∈ C, we can conclude that

−DuF (u, λ)v = μv (cf. (III.5.4));

d‖∇v‖2L2(Ω) ≤ εc1‖∇v‖2L2(Ω) +
(c1
ε

+ c2 +Reμ
)
‖v‖2L2(Ω),

by ellipticity (III.5.2) and estimates as in (III.6.7),

−C‖∇v‖2L2(Ω) ≤ Reμ‖∇v‖2L2(Ω),

by Poincaré’s inequality; whence Reμ ≥ −C.

(III.6.18)

The constant C > 0 depends only on the ellipticity d = d(v, u, λ) > 0, on the
coefficients of (III.5.4), and on the tile Ω. By (III.1.38) (which is valid also
in this case), a strip (−∞, c)× (−iε, iε) ⊂ C contains at most finitely many
eigenvalues of finite algebraic multiplicity, and their total number in that
strip is stable under small perturbations of −DuF (u, λ). (The (locally) uni-
form bound Reμ ≥ −C is a weaker statement than the sectorial property of
−DuF (u, λ) as stated in (III.4.9), (III.4.10). This property was used to prove
admissibility of −DuF (u, λ) in Section III.5.) The last property, properness,
is verified as in (III.5.7)–(III.5.9), since C2,α(R2)∩XD is compactly embedded
into C1,α(R2) (by double periodicity).

To summarize, the equivariant quasilinear elliptic problem F (u, λ) = 0 on
the lattice L, where the operator F as given by (III.6.11) acts as in (III.6.14),
allows a global bifurcation analysis as stated in Theorem III.5.1 with X =
C2,α(R2) ∩ XD. The crucial assumption is an odd crossing number of the
family DuF (0, λ) = L(0, λ) +Duĝ(0, λ) at some λ = λ0.

The subject matter of this section is the bifurcation of positive solu-
tions. As in (III.6.12), this requires that the eigenspace of the eigenvalue
0 of DuF (0, λ0) be spanned by some positive function. What does this mean
on a lattice?

We consider DuF (0, λ0) : Z → Z with domain X = C2,α(R2) ∩XD and
Z = Cα(R2) ∩XD. By the definition of XD in (III.6.13),

all lines in the lattice L are in the
nodal set of all u ∈ C2,α(R2) ∩XD.

(III.6.19)

Now we are ready to describe the second case:
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Let Ω be a fixed tile in the lattice L
and let 0 be an eigenvalue of the
equivariant and elliptic operator DuF (0, λ0)
with an eigenfunction v̂0 ∈ C2,α(R2) ∩XD

that is positive on Ω.

(III.6.20)

By the inverse reflection symmetries defining XD, the eigenfunction v̂0 is
positive or negative on all tiles of the lattice L, and the lines of the lattice L
are the precise nodal set of the eigenfunction v̂0.

For the family

DuF (0, λ) = Δ+ c(λ)I,(III.6.21)

for instance, the assumption (III.6.20) is satisfied for all lattices L shown in
Figures III.1.1–III.1.3, provided that λ = λ0 satisfies a characteristic equation
c(λ) = μ0, where μ0 depends explicitly on the lattice L. The precise values
of μ0 and the eigenfunctions v̂0 are given in [70]. In any case,

dimN(DuF (0, λ0)) = 1.(III.6.22)

The argument for (III.6.22) is the following: The eigenfunction v̂0 ∈ C2,α(R2)∩
XD satisfies

DuF (0, λ0)v̂0 = 0 in Ω,
v̂0 = 0 on ∂Ω,
v̂0 > 0 in Ω.

(III.6.23)

Since in all cases the elliptic operator DuF (0, λ0) is formally self-adjoint (cf.
(III.6.21)), the Rayleigh quotient B(v, v)/‖v‖20 over Ω is maximized by a
function v̂1 ∈ H1

0 (Ω) and therefore also by |v̂1| ∈ H1
0 (Ω), which is positive in

Ω; cf. (III.1.2) and Remark III.2.1. The last statement follows from interior
regularity and the minimum principle (III.6.10). The maximal value of the
quotient is the principal eigenvalue of DuF (0, λ0) over Ω (in its weak formu-
lation), and if it were not 0, then the positive eigenfunctions v̂0 and v̂1 would
be orthogonal in L2(Ω), a contradiction. Therefore, v̂0 = v̂1, and 0 is the
principal eigenvalue of DuF (0, λ0) over Ω, which is simple. This argument is
valid regardless of the corners of the boundary ∂Ω.

In view of assumption (III.6.12) in the first case, (III.6.22) holds in both
cases, where the eigenfunction v̂0 spanning N(DuF (0, λ0)) satisfies (III.6.23).
The conditions for an odd crossing number at λ = λ0 in case of (III.6.22)
are given in Section III.2; for (III.6.21) it simply means that λ0 solves a
characteristic equation c(λ) = μ0 and that c(λ) is strictly monotonic near
λ = λ0.

The main result of this section is the following:

Theorem III.6.2 Assume that 0 is a principal eigenvalue of DuF (0, λ0) =
L(0, λ0) + Duĝ(0, λ0) in the sense of (III.6.12) or (III.6.20). Let C be the
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global continuum in the closure S of nontrivial solutions of F (u, λ) = 0 ema-
nating at (0, λ0). Let Cλ0 ⊂ C\({0}×R) denote all components whose closures
contain (0, λ0). If (u, λ) ∈ Cλ0 , then either u > 0 or u < 0 in Ω, where Ω is
a bounded domain in Rn with a smooth boundary ∂Ω, or Ω ⊂ R2 is a tile in
the lattice L. This means that for all (u, λ) ∈ Cλ0 , the lines of the lattice L
constitute the precise nodal set of the function u. All lattices shown in Figures
III.1.1–III.1.3 are admitted; cf. also Figure III.6.1.

If C∩({0}×R) = {(0, λ0)}, then C = Cλ0∪{(0, λ0)}, so that the alternatives
(i) and (ii) of Theorem III.5.1 hold for at least one component of Cλ0 . It might
happen, however, that some (0, λ1) is in Cλ0 , where λ1 �= λ0, and that some
branch emanates at (0, λ1) that is in C\({0} × R) but not in Cλ0 . As we see
in Section III.6.3 below, the assumptions (III.6.22), (III.6.23) are then also
satisfied for λ = λ1, and the claim of Theorem III.6.2 holds for Cλ1 as well. In
this way, we cover all of C\({0} × R), and we do not lose information about
C when studying only Cλ0 .

Proof of Theorem III.6.2: Suppose that (u, λ) ∈ Cλ0 . Then h = u ∈ X =
C2,α(Ω) ∩ {u|u = 0 on ∂Ω} is a solution of the linear elliptic problem

L̃(u, λ)h = 0,(III.6.24)

where we define

L̃(u, λ)h ≡∑n
i,j=1aij(∇u, u, x, λ)hxixj +

∑n
i=1b̃i(./.)hxi + c̃(./.)h,

b̃i(v, u, x, λ) =

∫ 1

0

gvi(tv, tu, x, λ)dt,

c̃(v, u, x, λ) =

∫ 1

0

gu(tv, tu, x, λ)dt,

for (v, u, x, λ) ∈ Rn × R×Ω × R.

(III.6.25)

We establish the claim of Theorem III.6.2 first for local bifurcating solu-
tions. By construction via the method of Lyapunov–Schmidt, all (u, λ) ∈ Cλ0

in a small neighborhood of (0, λ0) are of the form

u = sv̂0 + o(s) in X as s → 0;(III.6.26)

cf. Corollary I.2.4 (and (II.5.37)). Since v̂0 > 0 in Ω,

meas{x ∈ Ω|(u/s)(x) < 0} → 0 as s → 0.(III.6.27)

Since u/s ∈ C2,α(Ω)∩{u|u = 0 on ∂Ω} and L̃(u, λ)(u/s) = 0 in Ω, Theorem
III.6.1 implies that u/s > 0 in Ω for small |s|. Thus u > 0 for s ∈ (0, δ) and
u < 0 for s ∈ (−δ, 0). (We do not claim that Cλ0 consists locally of two curves
or that Cλ0 has only two components.)
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Defining the cones

K+ = {(u, λ) ∈ X × R|u > 0 in Ω},
K− = {(u, λ) ∈ X × R|u < 0 in Ω},(III.6.28)

then we see that the preceding analysis shows that

Cλ0 ∩ (Br(0)× (λ0 − δ, λ0 + δ)) ⊂ K+ ∪K− for Br(0) ⊂ X ,

provided that r > 0 and δ > 0 are sufficiently small.
(III.6.29)

In particular, K± ∩ Cλ0 are each nonempty.

We show that K± ∩ Cλ0 are open relative to Cλ0 .
Let (u, λ) ∈ K+ ∩ Cλ0 , i.e., u > 0 in Ω, and (ũ, λ̃) ∈ Cλ0 close to (u, λ) in

X × R. Then
meas{x ∈ Ω|ũ(x) < 0} → 0

as (ũ, λ̃) → (u, λ) in X × R.
(III.6.30)

Since ũ ∈ C2,α(Ω)∩{u|u = 0 on ∂Ω} and L̃(ũ, λ̃)ũ = 0 in Ω, Theorem III.6.1
implies ũ > 0 in Ω or (ũ, λ̃) ∈ K+ ∩ Cλ0 .

We show that K± ∩ Cλ0 are each closed relative to Cλ0 .
Let (un, λn) ∈ K+ ∩ Cλ0 be such that (un, λn) → (u, λ) ∈ Cλ0 in X × R.

Since un > 0 in Ω, u ≥ 0 in Ω, and L̃(u, λ)u = 0 in Ω, the argument of
(III.6.10) implies u > 0 in Ω. Therefore, the limit (u, λ) is in K+ ∩ Cλ0 .

Let C±
λ0

denote the components of K± ∩ Cλ0 in Cλ0 . Then we have shown

that K± ∩ Cλ0 = C±
λ0

or

C+
λ0

⊂ K+, C−
λ0

⊂ K−, and by (III.6.29),

Cλ0 = C+
λ0

∪ C−
λ0
,

(III.6.31)

which proves Theorem III.6.2. �

We remark that C±
λ0

might each consist of more than one component. In

contrast to the components C± of (II.5.40), we have obviously C+
λ0

∩ C−
λ0

= ∅.
We apply Theorem II.5.9 to the first case (III.6.11), (III.6.12), and the

statement after Theorem III.5.1 implies that

each of C+
λ0

and C−
λ0

satisfies the
alternatives of Theorem III.5.1; i.e.,
it is unbounded or meets {0} × R at
some (0, λ1) where λ0 �= λ1.

(III.6.32)

In the second case (III.6.14), (III.6.20), the operator F (·, λ) in (III.6.14) is
odd according to (III.6.15). Therefore, we can apply Corollary II.5.10 directly
without converting the problem to a compact perturbation of the identity. In
particular,
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C−
λ0

= {(u, λ)|(−u, λ) ∈ C+
λ0
}, and

each of C+
λ0

and C−
λ0

satisfies the alternatives
of Theorem III.5.1.

(III.6.33)

The nodal set of any solution u of the quasilinear elliptic problem (III.6.11)
such that (u, λ) ∈ C+

λ0
∪ C−

λ0
is precisely the same as the nodal set of the

eigenfunction v̂0, namely the lines of the lattice L.

III.6.3 Unbounded Branches of Positive Solutions

The positivity (negativity) on Ω along C+
λ0
(C−

λ0
) serves as a useful criterion for

eliminating one alternative in (III.6.32) or (III.6.33). Assume that C+
λ0

meets

some (0, λ1) where λ1 �= λ0. Then there exists a sequence (un, λn) ∈ C+
λ0

such

that un → 0 in X and λn → λ1 in R. (Recall that X = C2,α(Ω) ∩ {u|u = 0
on ∂Ω} or X = C2,α(R2)∩XD in the first or second case, respectively.) Then

vn = un/‖un‖0,α ∈ X solve

L̃(un, λn)vn = 0, cf. (III.6.24), (III.6.25),

whence ‖vn‖2,α ≤ C̃ for all n ∈ N,

(III.6.34)

by elliptic a priori estimates, since the coefficients aij , b̃i, c̃ of the operator

L̃(un, λn) are uniformly bounded in C1,α(Ω) and Cα(Ω) for all n ∈ N. (Note
that the elliptic a priori estimates are also valid for L̃(u, λ) : C2,α(R2)∩XD →
Cα(R2)∩XD as expounded in Section III.1 for elliptic operators on a lattice.)

By a compact embedding we can assume without loss of generality that

vn → v̂1 in C1,α(Ω), whence

L(un, λn)vn = −∑n
i=1b̃ivnxi − c̃vn converges to

−Duĝ(0, λ1)v̂1 in Cα(Ω) as n → ∞,

(III.6.35)

by definitions (III.6.11) and (III.6.25). On the other hand,

‖(L(un, λn)− L(0, λ1))vn‖0,α ≤ ε‖vn‖2,α ≤ εC̃(III.6.36)

for all n ≥ n0(ε). By (III.6.35) and an elliptic a priori estimate, this implies

L(0, λ1)vn → −Duĝ(0, λ1)v̂1 in Cα(Ω),

vn → v̂1 in C2,α(Ω), v̂1 ∈ X, ‖v̂1‖0,α = 1,

DuF (0, λ1)v̂1 = L(0, λ1)v̂1 +Duĝ(0, λ1)v̂1 = 0.

(III.6.37)



332 Chapter III. Applications

Finally, vn > 0 in Ω, since (un, λn) ∈ C+
λ0
, so that v̂1 ≥ 0, and by the

argument of (III.6.10), v̂1 > 0 in Ω.

To summarize, 0 is an eigenvalue of DuF (0, λ1) with a positive eigenfunc-
tion v̂1. Standard arguments imply dimN(DuF (0, λ1)) = 1 (cf. our comments
after (III.6.23)), and 0 is a principal eigenvalue of DuF (0, λ1) over the do-
main Ω ⊂ Rn with smooth boundary ∂Ω, cf. (III.6.12), or 0 is a principal
eigenvalue of DuF (0, λ1) operating on a lattice L; cf. (III.6.20), (III.6.23). In
view of (III.6.32) or (III.6.33), this observation implies the following theorem:

Theorem III.6.3 Assume that 0 is a principal eigenvalue of

DuF (0, λ) = L(0, λ) +Duĝ(0, λ), cf. (III.6.11),(III.6.38)

in the sense of (III.6.12) or (III.6.20) if and only if λ = λ0. Then the global
continua of positive solutions of (III.6.11), C+

λ0
, and of negative solutions,

C−
λ0
, are each unbounded in C2,α(Ω)× R.

We give an application of Theorem III.6.3. Let L ⊂ R2 be a rectangular,
square, or hexagonal lattice, and let the quasilinear operator (III.6.11) be
equivariant in the sense of (III.6.14). Let DuF (0, λ) = Δ+ c(λ)I with some
function

c : R → (0,∞) that is strictly monotonic,
c(λ) → 0 as λ → −∞, c(λ) → ∞ as λ → ∞.

(III.6.39)

Then the characteristic equations c(λ) = μ0 > 0, given in [70] for a principal
eigenvalue 0 of DuF (0, λ), have a unique solution λ = λ0 for each lattice L.
There is also another peculiarity: Depending on the characteristic periodic-
ities of the lattice L (which are given by one number a > 0 for the square
and the hexagonal lattice, and by two numbers a > 0, b > 0 for the rect-
angular lattice), each positive value μ0 occurs on the right-hand side of the
characteristic equations c(λ) = μ0. This means the following:

For a semilinear problem Δu+ g(u, λ) = 0,
where g(−u, λ) = −g(u, λ) and
c(λ) = gu(0, λ) satisfies (III.6.39),
each point (0, λ0) gives rise to unbounded
branches C+

λ0
of solutions having the properties

that for (u, λ) ∈ C+
λ0

the lines of some
rectangular or hexagonal lattice L shown in Figure III.6.1
are the precise nodal set for u. The periodicities of L
are in one-to-one correspondence with λ0.

(III.6.40)

(Statement (III.6.40) holds for more general quasilinear problems F (u, λ)
= 0 that are equivariant with respect to the lattices L; cf. (III.6.15), (III.6.16).
For (III.6.40) only DuF (0, λ) = Δ+ c(λ)I is needed.)



III.6. Preservation of Nodal Structure 333

We show the nodal sets in Figure III.6.1. There are two more lattices, cf.
Figures III.1.2, III.1.3, but these are affine linear images of those shown in
Figure III.6.1.

Figure III.6.1

III.6.4 Separation of Branches

The nodal properties labeling each branch are a useful criterion for the se-
paration of branches. This has been carried out in [67] for a quasi-linear ellip-
tic problem over a rectangle (0, a)× (0, b) subject to homogeneous Dirichlet
boundary conditions. Assuming the equivariance of a rectangular lattice, we
consider the quasilinear elliptic operator on a rectangular lattice with peri-
odicities 2a and 2b; cf. (III.1.31)2. By (III.6.40), for each (m,n) ∈ N × N

there is a bifurcation point (0, λmn) of an unbounded branch C+
λmn

, and for

(u, λ) ∈ C+
λmn

the lines of a rectangular lattice with periodicities 2a/m and
2b/n form the precise nodal set of u. Clearly, u satisfies the homogeneous
Dirichlet boundary conditions on the boundary of the rectangle (0, a)×(0, b),
so that each unbounded branch C+

λmn
is a solution branch of the quasilinear

boundary value problem over the rectangle (0, a) × (0, b). Having different
nodal patterns, all infinitely many branches C+

λmn
are separated. The analo-

gous result holds also for all branches over any triangle in a hexagonal lattice;
cf. [70].

The Cahn–Hilliard energy (III.2.62) over a square has many bifurca-
ting global branches of critical points. For that analysis we use the setting
Fε(v,m) = 0, cf. (III.2.66), or equivalently v + fε(v,m) = 0, cf. (III.5.20), of
the Euler–Lagrange equation (III.2.63). The global branches Cn,i emanate at
(0,mi

n), i = 1, 2, and so far, not much more than the Rabinowitz alternative
is known about them; cf. (III.5.21). If (v,m) ∈ Cn,i, then v has the double
periodicity 2/n, which, however, would not exclude a union of Cn,i with Ckn,i.
By a mean value zero, positivity (or negativity) over a tile cannot be used
as a label to separate the branches. Below, we continue the analysis of that
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example, and we introduce a new method for separating the branches Cn,i for
different n. A side effect of that analysis is that the branches are bounded;
i.e., we establish alternative (ii) of Theorem III.5.1.

In Section III.7 we prove that the branches C+
λ0

of (III.6.40) for the rectan-
gular and hexagonal lattices on the left of Figure III.6.1 are globally smooth
curves parameterized by the amplitude of u, provided that g(u, λ) depends
linearly on λ, i.e., g(u, λ) = λg(u); cf. Remark III.7.18. This statement sharp-
ens considerably all global results of this and the previous sections, since in
general, global branches are only continua. For plane symmetric domains
Ω with a smooth boundary, Theorem III.7.9 gives conditions for when the
global continua C±

λ0
of Theorem III.6.3 are smooth curves parameterized by

the amplitude of u.

III.6.5 An Example (Continued)

We continue the analysis of the Euler–Lagrange equation (III.2.63) for
the variational problem (III.2.62). In Section III.5 we show that the lo-
cally bifurcating curves sketched in Figure III.2.5 are globally extended by
Cn,i = C+

n,i ∪ C−
n,i ∪ {(0,mi

n)}, i = 1, 2, cf. (III.5.21), and that each of C+
n,i

and C−
n,i is subject to the Rabinowitz alternative. Since both subcontinua

are transformed into each other by the reversion (III.2.82), they satisfy the
same alternative, but we do not know yet which one. Note that C±

n,i are not
characterized by positivity or negativity, respectively. As a matter of fact,
as in seen from their mean value zero, solutions v for (v, λ) ∈ C±

n,i have no
positive or negative sign in the square Ω. Note also that the symmetry class
Xn given in (III.2.70) does not separate the branches C±

n,i, since Xn contains
the classes Xkn for all k ∈ N.

For the subsequent analysis we adopt the definition of Theorem III.6.2:

Let Cmi
n
⊂ Cn,i\({0} × R) denote all

components whose closures contain (0,mi
n), i = 1, 2.

(III.6.41)

Then

Cmi
n
∩ (Br(0)× (mi

n − δ̃,mi
n + δ̃)) = C+

mi
n,loc

∪ C−
mi

n,loc
,(III.6.42)

where C+
mi

n,loc
= {(v(s),m(s))|s ∈ (0, δ)} and C−

mi
n,loc

= {(v(s),m(s))|s ∈
(−δ, 0)} are the local solution curves of Fε(v,m) = 0 through (v(0),m(0)) =
(0,mi

n); cf. (III.2.81). As mentioned previously, since v(s) has no definite sign,
the preceding analysis, using positive or negative cones, is not adequate to
label the local continua C±

mi
n,loc

and their global components in Cmi
n
, denoted

by C±
mi

n
. Here is the way out:
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The crucial observation is that the partial derivatives of the eigenfunction
v̂n, cf. (III.2.69), are negative in the square Ωn = (0, 1

n ) × (0, 1
n ). We make

this more precise now.
If v ∈ C1(R2) ∩Xn, where Xn is defined in (III.2.70), then

∂

∂x1
v ∈ X1

n =

{
w : R2 → R|w(x1, x2) = −w(−x1, x2) =

w
(
x1,−x2) = w

(
x1 +

2

n
, x2

)
= w

(
x1, x2 +

2

n

)}
,

∂

∂x2
v ∈ X2

n =

{
w : R2 → R|w(x1, x2) = w(−x1, x2) =

− w(x1,−x2) = w

(
x1 +

2

n
, x2

)
= w

(
x1, x2 +

2

n

)}
.

(III.6.43)

In particular,

wj = 0 for xj =
k

n
, k ∈ Z,

if wj ∈ C(R2) ∩Xj
n, j = 1, 2.

(III.6.44)

If (v,m) ∈ X2,α
n × R solves Fε(v,m) = 0, then, by interior elliptic regula-

rity and a “bootstrapping argument,” it follows from (III.2.66) for a smooth
function W that v ∈ C3,α(R2) and that for j = 1, 2,

wj =
∂

∂xj
v solve

−εΔwj +W ′′(m+ v)wj = 0 on R2,

wj = 0 for xj =
k

n
, k ∈ Z.

(III.6.45)

For (v,m) ∈ C±
mi

n,loc
we have by (III.2.81) for j = 1, 2,

wj(s) = s
∂

∂xj
v̂n + o(s) in C1,α(R2) ∩Xj

n.(III.6.46)

From (III.2.69) it follows that

∂

∂xj
v̂n < 0 in the strip Sj

n =

{
0 < xj <

1

n

}
,

∂2

∂x2
j

v̂n < 0 for xj = 0,
∂2

∂x2
j

v̂n > 0 for xj =
1

n
, whence

wj(s) < 0 in Sj
n for 0 < s < δ,

wj(s) > 0 in Sj
n for −δ < s < 0, j = 1, 2.

(III.6.47)
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We define for j = 1, 2,

K−
j,n =

{
(v, λ) ∈ X2,α

n × R
∣∣ ∂

∂xj
v < 0 in Sj

n,

∂2

∂x2
j

v < 0 for xj = 0,
∂2

∂x2
j

v > 0 for xj =
1

n

}
,

K+
j,n analogously.

(III.6.48)

Then we have shown in (III.6.47) that

C+
mi

n,loc
⊂ K−

j,n, C−
mi

n,loc
⊂ K+

j,n for j = 1, 2.(III.6.49)

By the double periodicity of (v, λ) ∈ K±
j,n,∣∣∣∣ ∂2

∂x2
j

v

∣∣∣∣ ≥ d(v) > 0 for xj = 0 and xj =
1

n
,(III.6.50)

which implies that K±
j,n ∩ Cmi

n
are each open relative to Cmi

n
⊂ X2,α

n × R.

We show that K±
j,n ∩ Cmi

n
are also closed relative to Cmi

n
.

Let (vk,mk) ∈ K−
j,n∩Cmi

n
such that (vk,mk) → (v,m) ∈ Cmi

n
in X2,α

n ×R.

Then wj = ∂
∂xj

v ≤ 0 in Sj
n, and wj solves (III.6.45); i.e., wj solves a linear

elliptic problem in the strip Sj
n and satisfies homogeneous Dirichlet boundary

conditions on ∂Sj
n. The argument of (III.6.10) and the elliptic maximum

principle then imply that wj < 0 in Sj
n, since w ≡ 0 is excluded. (Note

that wj is periodic along the strip, so that it suffices to consider the elliptic
equation in a compact segment of the strip.) The Hopf boundary lemma in
[56] finally implies that | ∂

∂xj
wj | > 0 on ∂Sj

n, so that (v,m) ∈ K−
j,n ∩ Cmi

n
.

Let C±
mi

n
denote the components of K∓

j,n ∩ Cmi
n
in Cmi

n
. Then, for j =

1, 2, K∓
j,n ∩ Cmi

n
= C±

mi
n
,

C+
mi

n
⊂ K−

j,n, C−
mi

n
⊂ K+

j,n, and by (III.6.49),

Cmi
n
= C+

mi
n
∪ C−

mi
n
.

(III.6.51)

(We give here a different argument from that for (III.6.31), since the strips
Sj
n are unbounded, but ∂Sj

n are smooth.) Obviously, C+
mi

n
∩C−

mi
n
= ∅, and the

continua are transformed into each other by the reversion (III.2.82). Note
that C±

mi
n
⊂ C±

n,i, respectively, but as we shall see below, equality does not

hold.
Property (III.6.51)1 means, by the definition (III.6.48) of the cones K∓

j,n,

that the branches C±
mi

n
are labeled by nodal properties of the derivatives. In

view of the periodicity (III.6.43), the constant sign of ∂
∂xj

v = wj in Sj
n is true
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for all parallel strips of width 1
n , with changing sign in adjacent strips. This

characteristic nodal pattern implies a separation of branches:

Cmi
n
∩ Cmj

k
= ∅ for n �= k, i, j ∈ {1, 2}.(III.6.52)

The knowledge about the precise nodal pattern of ∂
∂xj

v = wj on Cmi
n

has more benefits. First of all, it implies a fixed location of all minima and
maxima:

If (v,m) ∈ C+
mi

n
⊂ K−

j,n, then

max
x∈R2

v(x1, x2) = v(0, 0) = v

(
2k

n
,
2�

n

)
,

min
x∈R2

v(x1, x2) = v

(
1

n
,
1

n

)
= v

(
2k + 1

n
,
2�+ 1

n

)
.

(III.6.53)

This means also that

Δv(0, 0) ≤ 0 and Δv

(
1

n
,
1

n

)
≥ 0.(III.6.54)

Subtracting the equation Fε(v,m) = 0, cf. (III.2.66), in x = (0, 0) and x =
( 1n ,

1
n ) results in the nonlocal term droping out, and by (III.6.54) we obtain

W ′(m+ v(0, 0)) ≤ W ′
(
m+ v

(
1

n
,
1

n

))
for all (v,m) ∈ C+

mi
n
.

(III.6.55)

On the other hand, by its mean value zero,

v

(
1

n
,
1

n

)
< 0 < v(0, 0).(III.6.56)

By the assumed shape of the graph of W ′ sketched in Figure III.2.4, the
inequalities (III.6.55), (III.6.56) are compatible only if

|m| ≤ M1 and −M2 ≤ v

(
1

n
,
1

n

)
< v(0, 0) ≤ M2

for constants M1,M2 > 0 depending only on W ′.
(III.6.57)

This gives the uniform a priori estimate

|m|+ ‖v‖0,0 = |m|+ max
x∈R2

|v(x)| ≤ M1 +M2

for all (v,m) ∈ C+
mi

n
, independent of n ∈ N and ε > 0.

(III.6.58)

Using the equation Fε(v,m) = 0, cf. (III.2.66), a “bootstrapping” delivers
the following sequence of estimates via (interior) elliptic a priori estimates
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(Ω = (0, 1)× (0, 1) ⊂ Ω̃ = (−1, 2)× (−1, 2)):

ε‖Δv‖L2(Ω̃) ≤ ‖W ′(m+ v)‖L2(Ω̃) + 3

∫
Ω

|W ′(m+ v)|dx,
whence ‖v‖H2(Ω) ≤ C1/ε,

‖v‖0,α ≤ C2/ε by embedding H2(Ω) ⊂ Cα(Ω),

ε‖Δv‖0,α ≤ ‖W ′(m+ v)‖0,α +

∫
Ω

|W ′(m+ v)|dx,
whence ‖v‖2,α ≤ C3/ε

2,

where for v ∈ X2,α
n the norms over Ω or R2 are the same.

(III.6.59)

To summarize,

|m|+ ‖v‖2,α ≤ C0/ε
2 for all (v,m) ∈ C+

mi
n

and for a constant C0 > 0 depending only on W ′.
(III.6.60)

The application of the reversion (III.2.82) gives the same bound also for
all (v,m) ∈ C−

mi
n
. This means that (for fixed ε > 0) C±

mi
n
are bounded in

X2,α
n × R. Since C±

mi
n
= C±

n,i, respectively, if C±
n,i ∩ ({0})× R) = ∅, statement

(III.5.21) implies that C±
mi

n
meet the trivial axis {0} ×R apart from (0,mi

n).

By (III.6.42) and the uniqueness of C+
mi

n,loc
and C−

mi
n,loc

, C+
mi

n
and C−

mi
n
also

consist of one component.
In order to decide on the target of C+

m1
n
, say, we adapt the arguments

(III.6.34)–(III.6.37) to (III.6.45). Let (vk,mk) ∈ C+
m1

n
be such that vk → 0 in

X2,α
n and mk → m̃1 �= m1

n in R. Then w1k = ∂
∂x1

vk satisfies

−εΔw1k +W ′′(mk + vk)w1k = 0 on R2,

w1k = 0 for x1 = 0,
1

n
,

∂

∂x2
w1k = 0 for x2 = 0,

1

n
,

(III.6.61)

by the symmetries and periodicities of X1
n; cf.(III.6.43). (Interior) elliptic a

priori estimates for (III.6.61)1 imply, as in (III.6.34),

‖w1k‖2,α/‖w1k‖0,α ≤ C̃, or (w.l.o.g.),

w1k/‖w1k‖0,α → w1 in Cα(R2) as k → ∞ and

‖w1‖0,α = 1.

(III.6.62)
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Using again (III.6.61)1, we see that the same “bootstrapping” as in (III.6.35)–
(III.6.37) proves that

w1k/‖w1k‖0,α → w1 in C2,α(R2) as k → ∞ and

−εΔw1 +W ′′(m̃1)w1 = 0 on R2,

w1 = 0 for x1 = 0,
1

n
,

∂

∂x2
w1 = 0 for x2 = 0,

1

n
,

(III.6.63)

since clearly, w1 ∈ X1
n. By (III.6.51), w1k < 0 in Ωn =

(
0, 1

n

) × (
0, 1

n

)
and

therefore w1 ≤ 0 in Ωn, but in view of (III.6.62), w1 �≡ 0. Therefore, w1 is
an eigenfunction of the Laplacian over Ωn with mixed boundary conditions
(III.6.63)3,4 for the eigenvalue W ′′(m̃1)/ε. On the other hand, ∂

∂x1
v̂n is an

eigenfunction of the same problem for the eigenvalue −n2π2; cf. (III.2.69).
Since Δ with the mixed boundary conditions is symmetric with respect

to the scalar product in L2(Ωn), eigenfunctions for different eigenvalues are
orthogonal with respect to that scalar product. But ∂

∂x1
v̂n < 0 and w1 ≤ 0

in Ωn, so that orthogonality is excluded. Therefore, W ′′(m̃1)/ε = −n2π2 or
m̃1 = m2

n; cf. (III.2.77). Since the reversion (III.2.82) transforms C+
m1

n
into

C−
m1

n
, the component C−

m1
n
meets (0,m2

n) as well. We summarize:

The bounded solution continua C±
m1

n

emanating at (0,m1
n) meet the trivial

solution line at (0,m2
n), where m1

n,m
2
n

are the two solutions of the characteristic

equation W ′′(m) = −εn2π2. The solution

continua C±
m2

n
emanating at (0,m2

n)

meet (0,m1
n) and therefore C±

m1
n
= C±

m2
n
,

respectively.

(III.6.64)

We sketch the global continua C±
mi

n
in Figure III.6.2.

The entire analysis for the solution continua C±
mi

n
of Fε(v,m) = 0, where

Fε is defined in (III.2.66), is valid for fixed small ε > 0. Therefore, we suppress
the dependence on ε in the notation C±

mi
n
.

Note that our analysis does not imply that C±
mi

n
are globally smooth

curves: The topological argument proving Theorem III.5.1 guarantees only
continua. However, a numerical path-following device suggests curves, and
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these curves have two additional turning points, sketched in Figure III.6.2.
In [107] we give the arguments for those turning points:

The turning points are closely related to the singular limits of solutions on
C±
mi

n
as ε ↘ 0. Recall that in the variational problem (III.2.62) the parameter

ε represents the interfacial energy. For ε = 0 that variational problem is
simple, and minimizers for m in the so-called spinodal region are piecewise
constant. The interface between the two constant concentrations of the binary
alloy form a characteristic pattern, which, however, is not determined by the
model (III.2.62) for ε = 0. It is believed that patterns that are selected by
singular limits of conditionally critical points of Eε(u) as ε tends to zero are
physically relevant, in particular, if the critical points are minimizers of Eε(u).
In this case, the “Minimal Interface Criterion” of Modica holds, which means
that the patterns with minimal interfaces are selected by singular limits of
minimizers. In [106], [107] we show that this pattern formation is not the
only possible one: We prove that all conditionally critical points of Eε(u) on
the global continua C±

mi
n
converge to minimizers of E0(u) as ε tends to zero,

for fixed m in the spinodal region. (We give the proof of the convergence to
conditionally critical points of E0(u) in Remark III.6.4.) They form patterns
that do not necessarily have minimal interfaces but that are determined by
the symmetries and monotonicities of u = m + v ∈ Xn. If the pattern in
the limit has no minimal interface, then according to the “Minimal Interface
Criterion,” the critical points on C±

mi
n
are not minimizers of the energy Eε(u)

(under the constraint of prescribed mass m). This explains the two turning
points sketched in Figure III.6.2: The local unstable solution curves shown
in Figure III.2.5 gain stability beyond the first turning points according to
the “Principle of Exchange of Stability” of Section I.7 and sketched in Figure
I.7.1. But that stability is lost when the branch turns back again, so that there
is a “middle branch” that is not stable. According to the comments on the
stability in Section III.2, cf. (III.2.91), the unstable critical points u = m+ v
are not minimizers of the energy Eε(u). Nonetheless, as ε tends to zero they
form characteristic patterns of minimizers with nonminimal interfaces shown
in [107]. We recall, however, that we have no proof that the solution branches
C±
mi

n
are globally curves. Such global smoothness is proved for a special class

of problems in Section III.7.
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(v,m)

v

mm1
n m2

n

C+
mi

n

C−
mi

n

Figure III.6.2

Remark III.6.4 We give a proof that solutions of the Euler–Lagrange equa-
tion (III.2.63) on the continua C±

mi
n
converge for a mean value m in the spin-

odal region to a nontrivial conditionally critical point of the enery E0(u) (see
(III.2.62)) as ε tends to zero. That proof contains some useful arguments.
The proof that the limit is a global minimizer, however, is too special and too
technical to give here.

So far we have suppressed the dependence on ε > 0, but apparently
this dependence will be crucial now. Therefore we denote the continua by
C±
mi

n,ε
. By (III.2.77) the bifurcation points (0,m1

n) and (0,m2
n) tend to (0,m1)

and (0,m2), respectively, as ε tends to zero; see Figure III.2.4. Therefore
(III.6.64) guarantees that for any m ∈ (m1,m2), which is the so-called spin-
odal region, a singular limit analysis makes sense.

We fix m ∈ (m1,m2) and we consider the set {vε,m|(vε,m,m) ∈ C+
mi

n,ε
for

0 < ε < ε0}, where ε0 might depend on m. By the uniform estimate (III.6.58)
there is a sequence (εk)k∈N with limk→∞ εk = 0 such that

w- lim
k→∞

vεk,m = v0,m ∈ L2(Ω),(III.6.65)

where “w- lim” denotes the weak limit in L2(Ω). In particular,

0 =

∫
Ω

vεk,mdx →
∫
Ω

v0,mdx = 0, as k → ∞,(III.6.66)
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i.e., the limit function v0,m has also mean value zero. In order to sharpen
the convergence (III.6.65) we generalize Helly’s theorem in [44] on pointwise
convergence of monotonic sequences to two dimensions.

Let, as before, Ωn = (0, 1
n ) × (0, 1

n ) and let K denote the positive closed
cone K = {(x1, x2)|0 ≤ x1, 0 ≤ x2} in R2. We define an order in R2 by

x ≤ y ⇔ y − x ∈ K,(III.6.67)

and in view of (III.6.51) (see also (III.6.48)) we have monotonicity with
respect to that order:

x ≤ y ⇒ vεk,m(x) ≥ vεk,m(y) for all x, y ∈ Ωn.(III.6.68)

Let {xj |j ∈ N} be a countable dense set in Ωn. By the uniform boundedness
of (vεk,m(xj))k∈N, cf. (III.6.58), a common procedure of elementary analysis
yields a subsequence, again denoted by (εk)k∈N, such that

lim
k→∞

vεk,m(xj) = v0(x
j) exists in R for all j ∈ N.(III.6.69)

By (III.6.68) we obtain the monotonicity

xi ≤ xj ⇒ v0(x
i) ≥ v0(x

j) for all i, j ∈ N.(III.6.70)

We extend v0 on Ωn as follows:

v0(x) = inf{v0(xi)|xi ≤ x} for any x ∈ Ωn.(III.6.71)

Then the monotonicity (III.6.70) is preserved on Ωn:

x ≤ y ⇒ v0(x) ≥ v0(y) for all x, y ∈ Ωn.(III.6.72)

Furthermore |v0(x)| ≤ M2 for all x ∈ Ωn; cf. (III.6.57). We say that v0 has
a jump at x ∈ Ωn if

inf{v0(xi)|xi ≤ x} > sup{v0(xj)|x ≤ xj}.(III.6.73)

On each line that is parallel to the x1-axis the order (III.6.67) coincides with
the usual order on the real line, and it is well known that the monotonic
function v0 has at most countably many jumps on such a line. Therefore, by
Fubini’s theorem, the set

J = {x ∈ Ωn|v0 has a jump at x}
has measure zero.

(III.6.74)

Now let x ∈ Ωn\J and η > 0 be given. In view of equality in (III.6.73) we
find two points xi and xj satisfying
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xi ≤ x ≤ xj and 0 ≤ v0(x
i)− v0(x

j) ≤ η

3
.(III.6.75)

By (III.6.68), (III.6.69) we obtain

|vεk,m(x) − vε�,m(x)| = vεk,m(x) − vε�,m(x), say,

≤ vεk,m(xi)− v0(x
i) + v0(x

i)− v0(x
j) + v0(x

j)− vε�,m(xj)

≤ η

3
+

η

3
+

η

3
= η for k, � ≥ k0(η).

(III.6.76)

(If |vεk,m(x) − vε�,m(x)| = vε�,m(x) − vεk,m(x) the same arguments hold.)
Therefore (vεk,m(x))k∈N is a Cauchy sequence for all x ∈ Ωn\J , whence

lim
k→∞

vεk,m(x) = ṽ0(x) for all x ∈ Ωn\J.(III.6.77)

We show that v0 defined in (III.6.71) coincides with ṽ0 on Ωn\J : For some
fixed x ∈ Ωn\J ,

ṽ0(x) − v0(x) = ṽ0(x) − vεk,m(x) + vεk,m(x) − vεk,m(xi)

+vεk,m(xi)− v0(x
i) + v0(x

i)− v0(x).
(III.6.78)

Choose xi ≤ x such that v0(x
i) − v0(x) ≤ η

3 and choose after this k ∈ N

such that ṽ0(x) − vεk,m(x) ≤ η
3 and vεk,m(xi) − v0(x

i) ≤ η
3 ; cf. (III.6.77),

(III.6.69). Since by the monotonicity (III.6.68), vεk,m(x)− vεk,m(xi) ≤ 0, we
obtain

ṽ0(x) − v0(x) ≤ η.(III.6.79)

For the same fixed x ∈ Ωn\J ,

v0(x) − ṽ0(x) = v0(x) − v0(x
j) + v0(x

j)− vεk,m(xj)

+vεk,m(xj)− vεk,m(x) + vεk,m(x)− ṽ0(x).
(III.6.80)

Choose x ≤ xj such that v0(x)− v0(x
j) ≤ η

3 and choose after this k ∈ N such
that v0(x

j)−vεk,m(xj) ≤ η
3 and vεk,m(x)− ṽ0(x) ≤ η

3 . Since by monotonicity,
vεk,m(xj)− vεk,m(x) ≤ 0, we obtain

v0(x) − ṽ0(x) ≤ η.(III.6.81)

Estimates (III.6.79), (III.6.81) prove v0 = ṽ0 on Ωn\J and by (III.6.77),

lim
k→∞

vεk,m(x) = v0(x) for all x ∈ Ωn\J.(III.6.82)

Lebesgue’s dominated convergence theorem then yields, in view of (III.6.74),
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lim
k→∞

∫
Ωn

vεk,mϕdx =

∫
Ωn

v0ϕdx for all ϕ ∈ L2(Ωn),(III.6.83)

and therefore, by (III.6.65),

v0 = v0,m ∈ L2(Ωn).(III.6.84)

Repeating the above arguments for all squares of side length 1
n in Ω = (0, 1)×

(0, 1) and using the respective monotonicities of vεk,m in these squares we
obtain a limit function v0 = v0,m ∈ L2(Ω)∩Xn; cf. (III.2.70). We summarize:

Let for a sequence (εk)k∈N with lim
k→∞

εk = 0,

(vεk,m,m) ∈ C+
mi

n,εk
for m in the spinodal region (m1,m2).

Then a subsequence, again denoted by (vεk ,m)k∈N,

has a limit v0,m in the following sense:

lim
k→∞

vεk,m(x) = v0,m(x) almost everywhere in Ω.

That limit function v0,m is in L∞(Ω), it has

mean value zero, and it has the same symmetries,

periodicities, and monotonicities as vεk,m.

(III.6.85)

Next we show that u0,m = m + v0,m is a critical point of E0(u) under the
constraint

∫
Ω
udx = m. Indeed, by Fεk(vεk ,m,m) = 0, cf. (III.2.66), we obtain

after an integration by parts∫
Ω

(−εkvεk,mΔϕ+W ′(m+ vεk,m))ϕdx = 0

for all test functions ϕ ∈ C∞(R2) satisfying∫
Ω

ϕdx = 0 and Neumann boundary conditions on ∂Ω.

(III.6.86)

Passing in (III.6.86) to the limit yields by Lebesgue’s dominated convergence
theorem ∫

Ω

W ′(u0,m)ϕdx = 0,

∫
Ω

u0,mdx = m,

for all test functions characterized in (III.6.86).

(III.6.87)

Therefore W ′(u0,m) = λ and u0,m ∈ L∞(Ω) is a critical point of E0(u) under
the constraint

∫
Ω udx = m.

A trivial critical point is the constant function u0 = m, which is not
a minimizer. Thus the whole procedure makes sense only if we show that
u0,m �= m or that v0,m �= 0.
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The function ∂
∂x1

vε,m satisfies the boundary value problem (III.6.61),
which can be interpreted as an eigenvalue problem for −Δ with weight func-
tion over Ωn, namely,

Δw + λrεw = 0 in Ωn,
with boundary conditions (III.6.61)2,3 and
rε = −W ′′(m+ vε,m).

(III.6.88)

As pointed out in Remark III.2.3, the negative eigenfunction ∂
∂x1

vε,m belongs

to the positive principal eigenvalue λε =
1
ε , which is characterized as follows:

λε = min

⎧⎪⎪⎨
⎪⎪⎩

‖∇w‖2L2(Ωn)

(rεw,w)L2(Ωn)

∣∣∣∣∣∣∣∣
0 �= w ∈ W 1,2(Ωn),
(rεw,w)L2(Ωn) > 0,
w satisfies the Dirichlet
boundary conditions (III.6.61)2

⎫⎪⎪⎬
⎪⎪⎭.(III.6.89)

Usually the weight function rε is positive, but that positivity is not necessary.
What is needed is that the set in (III.6.89) not be empty and that Poincaré’s
inequality hold for the admitted class of functions. That is true for the Dirich-
let boundary conditions on two opposite sides of the square. The minimum is
attained at an eigenfunction having constant sign in Ωn. The Neumann boun-
dary conditions on the two other sides of the square are automatically fulfilled
by a minimizer of (III.6.89), since they are the natural boundary conditions
for the variational problem (III.6.89). For more details see [77].

The convergence in (III.6.85) implies by Lebesgue’s dominated conver-
gence theorem

lim
k→∞

(rεkw,w)L2(Ωn) = −(W ′′(m+ v0,m)w,w)L2(Ωn)

for all w ∈ W 1,2(Ωn).
(III.6.90)

Assume that −W ′′(m+ v0,m) = r0 is positive on a set of positive measure in
Ωn. Then the (weak) eigenvalue problem (III.6.88) with weight function r0 has
a positive principal eigenvalue λ0 with an eigenfunction w0 ∈ W 1,2(Ωn) satis-
fying the Dirichlet boundary condition (III.6.61)2. Furthermore, that eigen-
function w0 has a constant sign in Ωn and minimizes (III.6.89), where rε is
replaced by r0. We deduct from (III.6.89) and (III.6.90)

1

εk
= λεk ≤

‖∇w0‖2L2(Ωn)

(rεkw0, w0)L2(Ωn)
≤

‖∇w0‖2L2(Ωn)

(r0w0, w0)L2(Ωn)
+ 1

= λ0 + 1 for all k ≥ k0.

(III.6.91)

The contradiction of (III.6.91) proves that W ′′(m+ v0,m) ≥ 0 almost every-
where in Ωn. Looking at Figure III.2.4, we see that this is possible only if
v0,m �= 0 for m ∈ (m1,m2).
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Since W ′(m + v0,m) = W ′(u0,m) = λ in Ω, the critical point u0,m with
mean value m is piecewise constant, having two values that are not in the spin-
odal region (m1,m2). The monotonicity with respect to the order (III.6.67)
in Ωn restricts the distribution of these two values in Ωn, and by reflections
and periodic extension it suggests a pattern shown in [106].

So far, no minimizing property of u0,m for the functional E0(u) under
the constraint

∫
Ω udx = m has been proved. A subtle analysis [107], however,

reveals that the singular limit u0,m fulfills a second Weierstrass–Erdmann
corner condition that is known for minimizers of one-dimensional variational
problems, namely

W (u0,m)− u0,mW ′(u0,m) is continuous, i.e.,
is constant in Ωn.

(III.6.92)

The condition (III.6.92) allows for u0,m only the values α and β shown in
Figure III.2.4. Consequently, the singular limit u0,m is a global minimizer of
E0(u) =

∫
Ω
W (u)dx under the constraint

∫
Ω
udx = m, where the mean value

m is in the spinodal region. (The simple arguments for the last statement can
be found in [109], e.g..)

Remark III.6.5 The methods related to the Euler–Lagrange equation of the
Cahn–Hilliard energy, expounded in Sections III.2.5, III.5.1, and III.6.5, can
also be applied to other problems. In [120] we investigate radially symmetric
critical points of nonconvex functionals of the form

E(u) =

∫
BR(0)

W (∇u) +G(u)dx(III.6.93)

over a ball BR(0) in Rn. Here W depends only on the Euclidean norm of
∇u and is a nonconvex two-well potential as sketched in Figure III.2.4. Con-
sequently, the direct methods of the calculus of variations are not applicable
and the Euler–Lagrange equation is not elliptic. Therefore, the existence of
critical points, in particular of minimizers, is not at all obvious, even if the
functional is coercive and bounded from below.

One possibility of overcoming the difficulties is given by a singular pertur-
bation of higher order,

Eε(u) =

∫
BR(0)

1

2
ε(Δu)2 +W (∇u) +G(u)dx for ε > 0.(III.6.94)

Since (III.6.94) has a uniformly elliptic Euler–Lagrange equation of fourth
order, the chances of proving the existence of critical points are increased.
Moreover, if critical points of (III.6.94) converge as ε tends to zero, then one
can hope for critical points of (III.6.93). For the first step, i.e., to prove the
existence of a solution of the Euler–Lagrange equation, we embed (III.6.94)
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into a family of functionals

Eε,λ(u) =

∫
BR(0)

1

2
ε(Δu)2 +W (∇u, λ) +G(u)dx, λ ∈ R,(III.6.95)

where Eε,0(u) = Eε(u). Assuming ∇W (0, λ) = 0 (where ∇ denotes the gra-
dient with respect to the first variables) and G′(0) = 0, we see that the func-
tional (III.6.95) has a trivial critical point u = 0 for all λ ∈ R given by the
trivial solution (0, λ) of the corresponding Euler–Lagrange equation.

A rough analysis shows that the trivial critical point is not a minimizer
for Eε,0(u) = Eε(u). In order to find nontrivial critical points we restrict the
functionals to radially symmetric functions. This is possible if W (·, λ) is ra-
dially symmetric, and it is adequate to the problem, since one can show that
under certain additional conditions, a minimizer of E(u) is radially sym-
metric, if it exists. The mathematical benefits of this restriction, however,
are striking: A bifurcation analysis of the one-dimensional Euler–Lagrange
equation of fourth order gives us pairs ±λk ∈ R, k ∈ N ∪ {0}, where a lo-
cal bifurcation with a one-dimensional kernel takes place. At each (0,±λk)
Theorem I.5.1 is applicable, and the bifurcation formulas of Section I.6 yield
pitchfork bifurcations. For a global continuation of the local bifurcating curves
we apply Theorem II.5.9, and we obtain global continua C±

±λk
emanating at

(0,±λk) and satisfying the alternatives given in that theorem. In general,
however, we cannot decide which of the alternatives is valid. We discuss only
C±
±λ0

in more detail. Here λ0 > 0 is closely related to the principal eigenvalue
of the negative Laplacian −Δ over the ball BR(0) satisfying homogeneous
Dirichlet boundary conditions. The corresponding eigenfunction spanning the
one-dimensional kernel is not only positive but also radially symmetric. These
geometric properties are preserved for all functions of the global continuum
C+
λ0
. In order to prove this as we do in Section III.6.2 we have to ensure

the validity of a maximum principle. However, such a maximum principle
applies only to special elliptic equations of fourth order. The Euler–Lagrange
equation of (III.6.95) is not admissible in general, unless it is restricted to
radially symmetric functions.

An a priori estimate of C+
λ0

rules out unboundedness, and by its positivity

it is not connected to C−
λ0

or to any other C±
±λk

for k ≥ 1. The only possibility

left is C+
λ0

= C+
−λ0

, in other words, the continuum C+
λ0

connects (0,+λ0) and
(0,−λ0). In particular, there is a radially symmetric nontrivial critical point
of (III.6.95) for any λ ∈ (−λ0, λ0). Note that this is true for any fixed ε > 0.

Making use of the positivity and further geometric properties such as
monotonicity of the critical points on C+

λ0
, we can prove the compactness

of the set of critical points on C+
λ0

for fixed λ ∈ (−λ0, λ0) as ε tends to zero.
In particular, we obtain a singular limit for λ = 0. This singular limit is
a nonnegative radially symmetric critical point of E(u) = E0(u) given in
(III.6.93).



348 Chapter III. Applications

However, that singular limit could be trivial, and therefore it would not be
of any interest. Another application of all geometric properties of the nontriv-
ial critical points together with a subtle analysis yields finally that the singular
limit is positive in BR(0).

Under additional assumptions we show that this method gives indeed a
minimizer of E(u), which is unique. All details of the proofs can be found in
[120].

III.6.6 Global Branches of Positive Solutions via
Continuation

We consider (III.6.11) with G(0,0, 0, x, 0) = 0 for all x ∈ Ω such that we
have the solution (u0, λ0) = (0, 0) ∈ X × R. We prove a global continuation
of that solution by unbounded branches of positive and negative solutions. To
that end we assume that Ω ⊂ Rn is a bounded domain with a smooth bound-
ary ∂Ω and that the functions aij and g in (III.6.11) satisfy the regularity
assumptions of Section III.5. Moreover,

g(0, 0, x, λ) ≥ 0 for λ ≥ 0,
g(0, 0, x, λ) ≤ 0 for λ ≤ 0,
and for all x ∈ Ω, but
g(0, 0, x, λ) �= 0 for some x ∈ Ω if λ �= 0.

(III.6.96)

Apart from assumption (III.6.96) for all (x, λ) ∈ Ω × R we need also the
following global and local properties of the function g:

gu(v, u, x, 0) ≤ 0 for all (v, u, x) ∈ Rn × R×Ω,
g(v, u, x, λ) ≥ 0 for λ ≥ 0,

g(v, u, x, λ) ≤ 0 for λ ≤ 0 or

gu(v, u, x, λ) ≤ 0 or

gu(v, u, x, λ)u ≥ 0 for λ ≥ 0,

gu(v, u, x, λ)u ≤ 0 for λ ≤ 0,

and for (v, u, x, λ) ∈ Rn × R×Ω × R

such that ‖v‖+ |u|+ |λ| ≤ δ.

(III.6.97)

As in (III.6.24), every solution (u, λ) ∈ X × R of F (u, λ) = 0 yields a
solution h = u of the linear elliptic problem

L̃(u, λ)h = −g in Ω,

h = 0 on ∂Ω,
(III.6.98)
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where L̃(u, λ) is defined in (III.6.25) and g = g(0, 0, x, λ). By (III.6.96)–
(III.6.98),

DuF (0, 0)h = 0 for h ∈ X ⇔
L̃(0, 0)h = 0 in Ω,

h = 0 on ∂Ω,

(III.6.99)

where c̃(0, 0, x, 0) ≤ 0; cf.(III.6.25). Therefore, the maximum (minimum)
principle implies that h = 0 and 0 is not an eigenvalue of DuF (0, 0). In
view of the ellipticity of DuF (0, 0), the point 0 is in the resolvent set of
DuF (0, 0), and DuF (0, 0) ∈ L(X,Z) is bijective. By the Implicit Function
Theorem, Theorem I.1.1, the solution (u0, λ0) = (0, 0) is locally continued
by a curve {(u(λ), λ)|λ ∈ (−δ, δ)} and globally extended by a continuum C
subject to the alternative described in Theorem II.6.1; see Section III.5.2,
(III.5.22)–(III.5.24).

We rule out alternative (ii) of Theorem II.6.1. By (III.6.97)1,

F (u, 0) = 0 for u ∈ X ⇔
L̃(u, 0)u = 0 in Ω,

u = 0 on ∂Ω,

(III.6.100)

where c̃(∇u, u, x, 0) ≤ 0, cf. (III.6.25), whence u = 0 by the maximum
(minimum) principle. Therefore, C\{(0, 0)} is not connected, since for

C = {(0, 0)} ∪ C+ ∪ C−,(III.6.101)

the components C+ and C− are separated by the hyperplane X × {0}. As in
Theorem II.6.1, let

C+ denote the component of {(x(λ), λ)|λ ∈ (0, δ)},
C− denote the component of {(x(λ), λ)|λ ∈ (−δ, 0)},
each of which is unbounded in X × R.

(III.6.102)

By (III.6.100),

C+ ⊂ X × (0,∞), C− ⊂ X × (−∞, 0),(III.6.103)

and we claim that u > 0 in Ω for (u, λ) ∈ C+ and u < 0 in Ω for (u, λ) ∈ C−.
We start with the local curve {(u(λ), λ)|λ ∈ (0, δ)}. By (III.6.96)–(III.6.98),

L(u(λ), λ)u(λ) ≤ 0 in Ω or

L̃(u(λ), λ)u(λ) = 0 in Ω,
u(λ) = 0 on ∂Ω,

(III.6.104)

where c̃(∇u(λ), u(λ), x, λ) ≤ 0 when (III.6.97)4 is valid for (v, u, x, λ) ∈ Rn×
R×Ω × R with ‖v‖+ |u|+ |λ| ≤ δ. In case of (III.6.97)5 we have
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L(u(λ), λ)u(λ) +
∑n

i=1 b̃i(∇u(λ), u(λ), x, λ)u(λ)xi ≤ 0 in Ω,
u(λ ) = 0 on ∂Ω,

(III.6.105)

since c̃(∇u(λ), u(λ)x, λ)u(λ) ≥ 0. Recall that L(u, λ) is defined as in (III.6.11).
In all cases (III.6.104), (III.6.105) the minimum principle implies u(λ) > 0 in
Ω or u(λ) ≡ 0, which is excluded for λ ∈ (0, δ) by (III.6.96). For λ ∈ (−δ, 0)
the assumptions (III.6.96), (III.6.97) imply by the maximum principle that
u(λ) < 0 in Ω. Thus

{(u(λ), λ)|λ ∈ (0, δ)} ⊂ K+,

{(u(λ), λ)|λ ∈ (−δ, 0)} ⊂ K−,
(III.6.106)

where the cones K± are defined in (III.6.28). Once we get started in the
cones, the further extension of K± ∩ C± �= ∅ in C± follows precisely the lines
of (III.6.28)–(III.6.31). We can show that K± ∩C± are each open and closed
relative to C±, since by (III.6.103), we can use (III.6.96)1 in (III.6.98) for
(u, λ) ∈ C+, and (III.6.96)2 for (u, λ) ∈ C−. Note that assumptions (III.6.97)
are no longer used when (III.6.106) is known. Thus, by connectedness of C±,
we obtain K± ∩ C± = C± or

C+ ⊂ K+ and C− ⊂ K−.(III.6.107)

We summarize:

Theorem III.6.6 The quasilinear elliptic problem (III.6.11) satisfying
(III.6.96), (III.6.97) possesses an unbounded positive solution continuum
C+ ⊂ X × (0,∞) and an unbounded negative solution continuum C− ⊂
X × (−∞, 0), both of which emanate from the solution (u0, λ0) = (0, 0).

In the next section we show how positivity (negativity) is used to obtain
more information about qualitative properties of global branches. In par-
ticular, for a special problem (III.7.1), global positive or negative solution
continua are smooth curves parameterized by the amplitude of u; cf. The-
orems III.7.9 and III.7.10. Moreover, under suitable growth conditions on
the nonlinearity, their asymptotic behavior can be determined; cf. Theorem
III.7.17.

Remark III.6.7 In Remark III.5.3 we mention the existence of global bran-
ches of weak solutions of a semilinear elliptic problem over a bounded domain
with a nonsmooth boundary. Since these weak solutions are in C(Ω), point-
wise positivity (or negativity) in Ω is defined. Since the Maximum Principle
of Theorem III.6.1 can be generalized to weak solutions, the existence of global
positive and negative branches of weak solutions can be proved under much
more general assumptions on the data of the problem; cf. [74].
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III.7 Smoothness and Uniqueness of Global Positive
Solution Branches

In this section we study the model problem

Δu+ λg(u) = 0 in Ω,
u = 0 on ∂Ω,

(III.7.1)

where Ω is a bounded domain in Rn having a smooth boundary ∂Ω. The
function g : R → R is smooth (C2 is enough), and first we assume g(0) = 0,
so that we have the trivial solution (0, λ) for all λ ∈ R.

Let g′(0) > 0. We know from Section III.2.4 that every eigenvalue μn > 0
of −Δ subject to the homogeneous boundary conditions (III.7.1)2 provides a
bifurcation point (0, λn) = (0, μn/g

′(0)) for (III.7.1). In this section we study
the branch emanating at (0, λ0). To this purpose we define two positive values
of λ:

μ0 = λ0g
′(0) is the principal eigenvalue

of −Δ on Ω subject to homogeneous
Dirichlet boundary conditions; i.e.,
μ0 is the smallest positive and simple eigenvalue
of −Δ with positive eigenfunction v̂0, and
μ1 = λ1g

′(0) is the second eigenvalue
of −Δ; i.e., 0 < λ0 < λ1.

(III.7.2)

Then, by the results of Section III.6, in particular of Theorem III.6.3,

there exist an unbounded continuum
C+

λ0
of positive solutions and an unbounded

continuum C−
λ0

of negative solutions
of (III.7.1) in X × R emanating at (0, λ0).

(III.7.3)

Recall that X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}.
(The conditions for local and global bifurcation are easy to verify: De-

fine F (u, λ) = Δu + λg(u) for (u, λ) ∈ X × R. Then D2
uλF (0, λ)h =

Lλ(λ)h = g′(0)h; cf. (III.2.8), and the simplicity of the principal eigen-
value and the (formal) self-adjointness of L(λ0) imply condition (I.5.3) or
(III.2.8). Moreover, this condition is equivalent to an odd crossing number of
DuF (0, λ) = L(λ) = Δ+λg′(0)I; cf. (I.7.36). To be more precise, the greatest
eigenvalue of L(λ) is μ(λ) = (λ− λ0)g

′(0), and it crosses the imaginary axis
at μ(λ0) = 0 with “nonvanishing speed” μ′(λ0) = g′(0) > 0. This describes
a loss of stability of the trivial solution (0, λ): it is stable for λ < λ0 and
unstable for λ > λ0.)

The topological methods, however, for proving the existence of C =
{(0, λ0)} ∪ C+

λ0
∪ C−

λ0
do not give more information than (III.7.3). In par-

ticular, the following questions have no answer yet:
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• Are C±
λ0

smooth curves in X × R?

• What is the asymptotic behavior of C±
λ0

as ‖u‖2,α + |λ| → ∞?
• Are there other positive (negative) solutions of (III.7.1) that are not on

C+
λ0
(C−

λ0
)?

We give some answers using first growth conditions on g. Assume that

0 ≤ g(u)u ≤ g′(0)u2 for u ∈ R,
i.e., g grows at most linearly.

(III.7.4)

Then, for (u, λ) ∈ C±
λ0
,

(−Δu, u)0 = ‖∇u‖20 = λ(g(u), u)0 ≤ λg′(0)‖u‖20.(III.7.5)

Since the principal eigenvalue λ0g
′(0) is the minimal value of the Rayleigh

quotient, i.e.,

λ0g
′(0) = min

{‖∇u‖20
‖u‖20

∣∣u ∈ H1
0 (Ω), u �= 0

}
,(III.7.6)

cf. Remark III.2.1, we obtain from (III.7.5)

λ ≥ λ0 for all (u, λ) ∈ C±
λ0
.(III.7.7)

For a sublinear growth of g the bifurcation is supercritical.

For a superlinear growth, i.e.,

g(u)u > g′(0)u2 for u ∈ R, u �= 0,(III.7.8)

we obtain for (u, λ) ∈ C±
λ0
,

−Δu− λg′(0)u = λ(g(u)− g′(0)u) in Ω,

u = 0 on ∂Ω, and

g(u)− g′(0)u >
< 0 in Ω.

(III.7.9)

Since (III.7.1) has no nontrivial solution for λ = 0 and since C±
λ0

are con-

nected, we have λ > 0 for all (u, λ) ∈ C±
λ0
.

Let v̂0 denote the positive and normalized eigenfunction of −Δ for the
principal eigenvalue μ0 = λ0g

′(0). Then

(λ0 − λ)g′(0)(u, v̂0)0 = (−Δu− λg′(0)u, v̂0)0

= λ(g(u)− g′(0)u, v̂0)0 >
< 0 by (III.7.9),

(u, v̂0)0
>
< 0 for (u, λ) ∈ C±

λ0
, whence

0 < λ < λ0 for all (u, λ) ∈ C±
λ0
.

(III.7.10)
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For a superlinear growth of g the bifurcation is subcritical.

By unboundedness of C±
λ0
, this means that ‖u‖2,α is unbounded for (u, λ) ∈

C±
λ0
, but it does not imply any specific asymptotic behavior. In order to

sharpen the result of (III.7.10), we assume that

lim
u→∞ g′(u) = g′(∞), lim

u→−∞ g′(u) = g′(−∞) exist,

0 < g′(0) < g′(±∞) ≤ λ1

λ0
g′(0), cf. (III.7.2),

g′′(u) > 0 for u > 0,
g′′(u) < 0 for u < 0.

(III.7.11)

By g(0) = 0, the assumptions (III.7.11) imply (III.7.8) and

0 <
g(u)

u
< g′(u) < g′(±∞) for u �= 0.(III.7.12)

In the following we let (cf. (III.2.47))

μ0(ρ) denote the principal eigenvalue with
positive continuous weight function ρ
of −Δ on Ω subject to homogeneous
Dirichlet boundary conditions and
μ1(ρ) the second eigenvalue with weight function ρ.

(III.7.13)

According to (III.7.2), μ0(1) = μ0. The eigenvalue μ0(ρ) is given as in
(III.7.6), where the denominator of the quotient is replaced by (ρu, u)0, cf.
Remark 2.3, and by the minimax principle (see [24]), the second eigenvalue
is described as

μ1(ρ) = max
0�=v∈H1

0 (Ω)
min

{ ‖∇u‖20
(ρu, u)0

∣∣∣∣0 �= u ∈ H1
0 (Ω), (ρu, v)0 = 0

}
.(III.7.14)

Both variational characterizations imply the monotonicity of the eigenvalues
with respect to the weight function:

0 < ρ1(x) ≤ ρ2(x) for all x ∈ Ω

⇒ μ0(ρ1) ≥ μ0(ρ2),

μ0(ρ1) > μ0(ρ2) if ρ1 �= ρ2,

μ1(ρ1) ≥ μ1(ρ2).

(III.7.15)

For (u, λ) ∈ C±
λ0
,

Δu+ λ
g(u)

u
u = 0 in Ω,

u = 0 on ∂Ω,
(III.7.16)
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so that λ = μ0(g(u)/u), which is the principal eigenvalue of −Δ with weight
function g(u)/u. (Note that g(u)/u ∈ C(Ω).) By (III.7.12), (III.7.15),

λ = μ0(g(u)/u) > μ0(g
′(u)) > μ0(g

′(±∞)) = λ0
g′(0)

g′(±∞)
,

μ1(g(u)/u) ≥ μ1(g
′(u)) ≥ μ1(g

′(±∞)) = λ1
g′(0)

g′(±∞)
≥ λ0,

(III.7.17)

where we use (III.7.11)2. This restricts the interval of values of λ to

0 < λ0
g′(0)

g′(±∞)
< λ < λ0 for all (u, λ) ∈ C±

λ0
;(III.7.18)

cf. (III.7.10). For F (u, λ) = Δu+ λg(u) and (u, λ) ∈ C±
λ0
,

DuF (u, λ)h = 0 for h ∈ X ⇔
Δh+ λg′(u)h = 0 in Ω,

h = 0 on ∂Ω,

(III.7.19)

which means that λ is an eigenvalue with positive weight g′(u) of −Δ. By
(III.7.17), (III.7.18),

μ0(g
′(u)) < λ < λ0 ≤ μ1(g

′(u)),(III.7.20)

so that λ is between the first (principal) and the second eigenvalues with
weight g′(u) of −Δ. Therefore,

DuF (u, λ) ∈ L(X,Z) is bijective
for all (u, λ) ∈ C±

λ0
.

(III.7.21)

Recall that Z = Cα(Ω). By the Implicit Function Theorem (Theorem I.1.1)
every solution (u, λ) ∈ C±

λ0
of F (u, λ) = 0 is locally continued by a smooth

curve parameterized by λ. Therefore, by connectedness,

C±
λ0

are globally smooth curves

parameterized by λ ∈ (λ±
∞, λ0) ⊂

(
λ0

g′(0)
g′(±∞)

, λ0

)
;

(III.7.22)

cf. (III.7.18). Let (λn)n∈N be any sequence such that λn ↘ λ+
∞, say, and

‖u(λn)‖2,α → ∞ by unboundedness of C+
λ0

= {(u(λ), λ)|λ ∈ (λ+
∞, λ0)} in X×

R. Then (u(λn))n∈N is unbounded in C(Ω), too, since its boundedness implies
boundedness in C2,α(Ω) by the following “bootstrapping”: Boundedness of
(u(λn))n∈N, and therefore of (λng(u(λn)))n∈N, in C(Ω) implies by (III.7.1)
and an elliptic a priori estimate boundedness of (u(λn))n∈N in W 2,p(Ω) for
every 1 < p < ∞. A continuous embedding into Cα(Ω) for p > n yields
boundedness of (u(λn))n∈N, and therefore of (λng(u(λn)))n∈N, in Cα(Ω),



III.7. Smoothness and Uniqueness 355

and (III.7.1) together with another elliptic a priori estimate implies finally
boundedness of (u(λn))n∈N in C2,α(Ω).

Passing to a subsequence, assume that ‖u(λn)‖∞ → ∞ as λn ↘ λ+
∞.

(Here ‖ ‖∞ is the maximum norm in C(Ω), also denoted by ‖ ‖0,0.) Setting
vn = u(λn)/‖u(λn)‖∞ and sn = 1/‖u(λn)‖∞ yields that ‖vn‖∞ = 1, sn → 0,
and vn solves

Δvn + λnsng

(
vn
sn

)
= 0 in Ω,

vn = 0 on ∂Ω,
vn > 0 in Ω.

(III.7.23)

By (III.7.11), g(u)/u → g′(∞) as u → ∞, whence |g(u) − g′(∞)u| ≤ εu for
u ≥ M(ε). Therefore, for M = M(ε) and positive u,

max
x∈Ω

|g(u(x)) − g′(∞)u(x)|
≤ max

0≤u(x)≤M
|./.|+ max

u(x)≥M
|./.| ≤ Cg(M) + ε‖u‖∞

≤ 2ε‖u‖∞ if ‖u‖∞ ≥ Cg(M)/ε.

(III.7.24)

Since ‖vn‖∞ = 1, the estimate (III.7.24) implies

‖sng
(
vn
sn

)
− g′(∞)vn‖∞ ≤ 2ε

for all 0 < sn ≤ ε/Cg(M) or

sng

(
vn
sn

)
− g′(∞)vn → 0 in C(Ω) as n → ∞.

(III.7.25)

By boundedness of
(
λnsng

(
vn
sn

))
n∈N

in C(Ω), cf. (III.7.25), the same boot-

strapping as described before yields via (III.7.23) boundedness of (vn)n∈N in
W 2,p(Ω) for p > n and, by a compact embedding into Cα(Ω), the conver-
gence of a subsequence (vnk

)k∈N to some v ∈ Cα(Ω) with ‖v‖∞ = 1 and
v ≥ 0 in Ω. By (III.7.25) this implies

λnk
snk

g

(
vnk

snk

)
→ λ+

∞g′(∞)v in C(Ω)

as k → ∞.
(III.7.26)

Finally, the elliptic a priori estimate for (III.7.23) in Lp(Ω) gives by (III.7.26)
the convergence of (vnk

)k∈N to v in W 2,p(Ω), and we obtain by (III.7.23) in
the limit

Δv + λ+
∞g′(∞)v = 0 in Ω,

v = 0 on ∂Ω,
v ≥ 0 in Ω.

(III.7.27)

Since v ∈ Cα(Ω), elliptic regularity clearly provides v ∈ C2,α(Ω). The elliptic
maximum principle implies v > 0 in Ω, since v ≡ 0 is excluded by ‖v‖∞ =
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1. Therefore, λ+
∞g′(∞) = μ0, which is the principal eigenvalue of −Δ; cf.

(III.7.2). By μ0 = λ0g
′(0), we obtain

λ+
∞ = λ0

g′(0)
g′(∞)

and λ−
∞ = λ0

g′(0)
g′(−∞)

(III.7.28)

by analogous arguments. In view of (III.7.22), this proves that the global
branches C±

λ0
are smooth curves that are parameterized by λ over the intervals

(λ0g
′(0)/g′(±,∞), λ0), respectively.

We claim the asymptotic behavior

lim
λ↘λ±∞

‖u(λ)‖∞ = ∞.(III.7.29)

If (III.7.29) is not true, there exists a sequence (λn)n∈N such that λn ↘ λ+∞,
say, and ‖u(λn)‖∞ ≤ C for (u(λn), λn) ∈ C+

λ0
. By the “bootstrapping” ex-

pounded before, the boundedness of (u(λn))n∈N in C(Ω) implies via (III.7.1)
the boundedness of (u(λn))n∈N in C2,α(Ω) and, by compact embedding, the
convergence of a subsequence (u(λnk

))k∈N to some u in Cα(Ω) with u ≥ 0
in Ω. By the convergence of (λnk

g(u(λnk
)))k∈N to λ+

∞g(u) in Cα(Ω), an
elliptic a priori estimate for (III.7.1) in Cα(Ω) implies the convergence of
(u(λnk

))k∈N to u in C2,α(Ω), and (u, λ+
∞) solves (III.7.1). (This property

that boundedness of solutions implies relative compactness is called “proper-
ness” of the mapping Δu+λg(u); cf. (III.5.7)–(III.5.9).) By its construction,

(u, λ+∞) ∈ C+

λ0
, and by Theorem III.6.2, either u > 0 or u ≡ 0 in Ω. In the

second case, (0, λ+
∞) would be a bifurcation point for (III.7.1) from the trivial

solution line {(0, λ)}, which is excluded, since λ+∞g′(0) < λ0g
′(0) = μ0, which

is the principal (= smallest) eigenvalue of −Δ. Therefore, u > 0 in Ω and
(u, λ+

∞) ∈ C+
λ0
, contradicting (III.7.18) by (III.7.28). This proves (III.7.29).

By the asymptotic behavior (III.7.29) we can choose a sequence λn ↘ λ+∞
such that the analysis (III.7.23)–(III.7.27) is valid. Since the limit satisfying
(III.7.27) is unique by ‖v‖∞ = 1, we can conclude that the entire sequence
(vn) converges to v in W 2,p(Ω) (for any 1 < p < ∞). Accordingly, (III.7.26)
is true for any sequence vn = u(λn)/‖u(λn)‖∞ = u(λn)sn where λn ↘ λ+

∞.
We claim that the convergence (III.7.26) also takes place in Cα(Ω). For

a proof we give some well-known facts about convergence in Hölder spaces.
By the simple estimate

|f(x)− f(y)|
|x− y|α ≤ 2

( |f(x)− f(y)|
|x− y|β

)α/β

‖f‖1−(α/β)
∞

for 0 < α < β ≤ 1, x, y ∈ Ω, x �= y,

(III.7.30)

the following property is immediate:
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Let (fn)n∈N ⊂ Cβ(Ω) be such that

fn → 0 in C(Ω) and ‖fn‖0,β ≤ C as n → ∞.

Then fn → 0 in Cα(Ω) for 0 < α < β ≤ 1 as n → ∞.

(III.7.31)

If (fn)n∈N ⊂ C1(Ω) (not to be confused with the Hölder space Cβ(Ω) with
β = 1), then the mean value theorem implies ‖fn‖0,1 ≤ C, provided that

‖∇fn‖∞ ≤ C̃ as n → ∞. Using this observation we apply (III.7.31) with
β = 1 to

fn = sng

(
vn
sn

)
− g′(∞)v for which

∇fn = g′
(
vn
sn

)
∇vn − g′(∞)∇v and

‖∇fn‖∞ ≤ Cg′ (‖∇vn‖∞ + ‖∇v‖) ≤ C̃ as n → ∞.

(III.7.32)

Here assumption (III.7.11)1 gives the constant Cg′ , and the convergence vn →
v in W 2,p(Ω) (which implies the convergence vn → v in C1(Ω) by embedding
W 2,p(Ω) ⊂ C1(Ω) for p > n) gives the boundedness of ‖∇vn‖∞. This proves
that

λnsng

(
vn
sn

)
→ λ+

∞g′(∞)v in Cα(Ω),(III.7.33)

and the elliptic a priori estimate for (III.7.23) in Cα(Ω) implies the conver-
gence vn → v in C2,α(Ω).

We summarize:

Theorem III.7.1 Let C±
λ0

be the unbounded continua of positive (negative)
solutions of (III.7.1) emanating at (0, λ0), where the function g satisfies
g(0) = 0, g′(0) > 0, and (III.7.11). Then C±

λ0
are smooth curves parame-

terized by λ ∈ (λ±∞, λ0) = (λ0g
′(0)/g′(±∞), λ0), respectively. Furthermore,

lim
λ↘λ±∞

‖u(λ)‖∞ = ∞ for (u(λ), λ) ∈ C±
λ0
,

lim
λ↘λ±∞

u(λ)

‖u(λ)‖∞ = v̂0 in C2,α(Ω),

where v̂0 is the positive (negative)

eigenfunction of −Δ to the principal

eigenvalue μ0 = λ0g
′(0) = λ±∞g′(±∞).

(III.7.34)

Finally, the trivial solution line {(0, λ)} is stable for λ < λ0 and unstable for
λ > λ0, whereas C±

λ0
are unstable.

The instability of the global curves C±
λ0

is not a consequence of the local
Principle of Exchange of Stability expounded in Section I.7. It is a conse-
quence of (III.7.20) as follows:
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Let ṽ0 (depending on u) be the normalized positive eigenfunction for the
principal eigenvalue μ0(g

′(u)) with weight function g′(u) of −Δ on Ω subject
to homogeneous Dirichlet boundary conditions. Then the greatest eigenvalue
of DuF (u, λ) for (u, λ) ∈ C±

λ0
is

max{−‖∇v‖20 + λ(g′(u)v, v)0|v ∈ H1
0 (Ω), ‖v‖0 = 1}

≥ −‖∇ṽ0‖20 + λ(g′(u)ṽ0, ṽ0)0 > −‖∇ṽ0‖20 + μ0(g
′(u))(g′(u)ṽ0, ṽ0)0 = 0.

The positivity of the greatest eigenvalue of DuF (u, λ) entails the instability
of u.

We sketch C+
λ0

in Figure III.7.4. The monotonicity with respect to the

amplitude is true for symmetric domains in R2; cf. Theorems III.7.9, III.7.17.

Properties (III.7.34) suggest a Bifurcation from Infinity at λ = λ±
∞. We

prove “bifurcation” in the sense of Theorem I.20.1 under more restrictive
assumptions on g at u = ∞ that give λ±

∞ = λ∞. On the other hand, we drop
the assumption g(0) = 0.

III.7.1 Bifurcation from Infinity

Problem (III.7.1) provides an example of Bifurcation from Infinity in the
sense of Theorem I.20.1 under the assumptions

lim
|u|→∞

g′(u) = g′(∞) > 0, i.e., g′(∞) = g′(−∞),

|ug′′(u)| ≤ C1 for all u ∈ R, with some C1 > 0.
(III.7.35)

Let μ0 = λ∞g′(∞) be the principal eigenvalue of −Δ and let v̂0 be a
positive eigenfunction spanning N(Δ + μ0I) ⊂ X = C2,α(Ω) ∩ {u|u = 0 on
∂Ω}. Setting

F (u, λ) = L(λ)u+ λR(u),

L(λ)u = Δu+ λg′(∞)u,

R(u) = g(u)− g′(∞)u,

(III.7.36)

we see that the assumptions (I.20.2), (I.20.3) with A(λ) = L(λ), λ0 = λ∞,
and (I.20.5) are satisfied. (Recall that v̂0 �∈ R(Δ + μ0I) = span[v̂0]

⊥ ∩ Z,
where Z = Cα(Ω) and the orthogonal complement is taken with respect to
the scalar product in L2(Ω).) The crucial assumption for Theorem I.20.1 is
(I.20.4): Let U be a neighborhood of v̂0 in X . Then it has to be shown that
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sg
(v
s

)
− g′(∞)v → 0 in Z = Cα(Ω),(

g′
(v
s

)
− g′(∞)

)
h → 0 in Z as s → 0,

for all v ∈ U ⊂ X and

uniformly for h ∈ X with ‖h‖2,α ≤ 1.

(III.7.37)

By (III.7.35)1, g(u)/u → g′(∞) as |u| → ∞, whence |g(u) − g′(∞)u| ≤ ε|u|
for |u| ≥ M(ε). Therefore, for M = M(ε),

max
x∈Ω

|g(u(x))− g′(∞)u(x)|
≤ max

|u(x)|≤M
|./.|+ max

|u(x)|≥M
|./.| ≤ Cg(M) + ε‖u‖∞

≤ 2ε‖u‖∞ if ‖u‖∞ ≥ Cg(M)/ε.

(III.7.38)

Using ‖v‖∞ ≤ c1 for all v ∈ U , we see that the estimate (III.7.38) implies

∥∥sg (v
s

)
− g′(∞)v

∥∥
∞ ≤ 2c1ε

for all |s| ≤ εc1/Cg(M) or

sg
(v
s

)
− g′(∞)v → 0 in C(Ω) as s → 0.

(III.7.39)

This argument does not apply to (III.7.37)2, where we need the following
properties:

v ∈ U ⊂ X implies v(x) > 0 for all x ∈ Ω,

0 < v(x) ≤ ε if dist(x, ∂Ω) ≤ δ1(ε),

v(x) ≥ d(δ1) > 0 if dist(x, ∂Ω) ≥ δ1 > 0,

h ∈ X with ‖h‖2,α ≤ 1 implies

|h(x)| ≤ ε if dist(x, ∂Ω) ≤ δ2(ε).

(III.7.40)

Note that U ⊂ X is a neighborhood of v̂0 that is positive in Ω and for which
Hopf’s boundary lemma is valid on ∂Ω.

By (III.7.35)1, |g′(u)− g′(∞)| ≤ Cg′ for all u ∈ R, whence
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(
v(x)

s

)
− g′(∞))h(x)

∣∣∣∣ ≤ Cg′ε

if dist(x, ∂Ω) ≤ δ2(ε),∣∣∣∣
(
g′

(
v(x)

s

)
− g′(∞)

)
h(x)

∣∣∣∣ ≤ ε

if dist(x, ∂Ω) ≥ δ2(ε) and |s| ≤ δ(ε), or(
g′

(v
s

)
− g′(∞)

)
h → 0 in C(Ω) as s → 0,

uniformly for h ∈ X with ‖h‖2,α ≤ 1.

(III.7.41)

We use the property (III.7.31) in order to prove (III.7.37). Let (sn)n∈N ⊂ R

be such that sn → 0. Then for

fn = sng

(
vn
sn

)
− g′(∞)v we obtain

∇fn =

(
g′

(
v

sn

)
− g′(∞)

)
∇v, whence

‖∇fn‖∞ ≤ Cg′‖∇v‖∞ ≤ Cg′c2 = C̃,

(III.7.42)

where Cg′ depends only on the uniform bound of |g′(u)|, cf. (III.7.35)1, and
c2 is a uniform bound of ‖∇v‖∞ for all v ∈ U . The application of (III.7.31)
with β = 1 then implies (III.7.37)1. For

fn =

(
g′

(
v

sn

)
− g′(∞)

)
h we obtain

∇fn =
1

sn
g′′

(
v

sn

)
(∇v)h+

(
g′

(
v

sn

)
− g′(∞)

)
∇h.

(III.7.43)

The second term of (III.7.43)2 is estimated as in (III.7.42) when c2 is a
uniform bound of ‖∇h‖∞ for all h ∈ X with ‖h‖2,α ≤ 1. For the first term
we use the uniform estimate

|h(x)| ≤ c3v(x) for all x ∈ Ω,

for all h ∈ X with ‖h‖2,α ≤ 1,

and for all v ∈ U ⊂ X .

(III.7.44)

Indeed, the positive eigenfunction v̂0 with nonzero normal derivatives on ∂Ω
(Hopf’s boundary lemma) bounds all functions h ∈ X = C2,α(Ω) ∩ {u|u = 0
on ∂Ω} with ‖h‖∞+‖∇h‖∞ ≤ ‖h‖2,α ≤ 1 pointwise in Ω by |h(x)| ≤ c̃3v̂0(x)
for some c̃3 > 0. This estimate persists for all v ∈ U ⊂ X with a uniform
constant c3, since U is a neighborhood of v̂0 in X . Using (III.7.44) we obtain
for the first term (III.7.43)2,



III.7. Smoothness and Uniqueness 361∣∣∣∣ 1sn g′′
(
v(x)

sn

)
∇v(x)h(x)

∣∣∣∣
≤ c3

∣∣∣∣v(x)sn
g′′

(
v(x)

sn

) ∣∣∣∣‖∇v(x)‖
≤ c3C1‖∇v‖∞ ≤ C̃ by (III.7.35)2,

uniformly for v ∈ U ⊂ X, ‖h‖2,α ≤ 1.

(III.7.45)

By (III.7.31) this proves (III.7.37)2, and all assumptions of Theorem I.20.1
are verified.

Theorem III.7.2 Under the assumptions (III.7.35) there is a unique con-
tinuous curve {(v(s), λ(s))|s ∈ (−δ, δ)} in (C2,α(Ω) ∩ {u|u = 0 on ∂Ω})×R

through (v(0), λ(0)) = (v̂0, λ∞) such that the functions

u(s) =
v(s)

s
for s ∈ (−δ, δ)\{0}

solve (III.7.1) with λ = λ(s).

(III.7.46)

Here μ0 = λ∞g′(∞) is the principal eigenvalue of −Δ with positive eigen-
function v̂0.

The property

lim
s→0

‖u(s)‖2,α = ∞, lim
s→0

λ(s) = λ∞(III.7.47)

explains the nomenclature “Bifurcation from Infinity” at λ = λ∞. Since
v̂0 > 0 in Ω and v̂0 has nonzero normal derivatives on ∂Ω (Hopf’s boundary
lemma), we have v(s) > 0 in Ω for s ∈ (−δ, δ) such that

u(s) > 0 in Ω for s ∈ (0, δ),

u(s) < 0 in Ω for s ∈ (−δ, 0).
(III.7.48)

If the global continua C±
λ0

exist (cf. Theorem III.7.1), one expects that the

ends of C±
λ0

near (∞, λ∞) are on the curve (III.7.46) bifurcating from infinity.
We show more:
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Let (un, λn) ∈ X × R be positive (negative)

solutions of (III.7.1) such that ‖un‖∞ → ∞
and λn → λ̂+

∞(λ̂−
∞) as n → ∞. Then

un =
v(sn)

sn
= u(sn) , λn = λ(sn),

for some sn ∈ (0, δ)((−δ, 0)) with sn → 0 and where

{(v(s), λ(s))} is the unique curve of Theorem III.7.2,

and therefore λ̂+∞ = λ̂−∞ = λ∞.

(III.7.49)

For a proof we confine ourselves to the case of positive un. The same
arguments that prove Theorem III.7.1 yield

un

‖un‖∞ → v in C2,α(Ω) as n → ∞,

where v > 0 solves

Δv + λ̂+∞g′(∞)v = 0 in Ω,

v = 0 on ∂Ω,

whence v = v̂0 and λ̂+∞ = λ∞.

(III.7.50)

Normalizing ‖v̂0‖0 = 1 (where ‖ ‖0 and ( , )0 denote the norm and the
scalar product in L2(Ω)), we obtain for sn = 1/(un, v̂0)0 that

vn = snun ∈ X satisfies

vn → v̂0 in X, λn → λ∞, sn → 0 as n → ∞,

F̃ (vn, λn, sn) = (0, 0), where

F̃ (v, λ, s) =
(
L(λ)v + λsR

(v
s

)
, (v, v̂0)0 − 1

)
;

(III.7.51)

cf. (III.7.36). On the other hand, the triplet from Theorem III.7.2, (v(s), λ(s), s)
∈ X ×R×R, solves (III.7.51)3, too, so that uniqueness of the solutions near
(v̂0, λ∞, 0) implies (III.7.49). (In the proof of Theorem I.20.1 the duality
〈v, v̂′0〉 can be replaced by (v, v̂0)0.) Statement (III.7.49) implies in particular
that

under the assumptions (III.7.11) and (III.7.35),
the global curves C±

λ0
described in Theorem III.7.1

connect the local curves bifurcating from 0
at λ = λ0 and bifurcating from infinity at λ = λ∞.

(III.7.52)

Finally, the asymptotic behaviors (III.7.33) and (III.7.47) are equivalent:

lim
λ↘λ∞

‖u(λ)‖2,α = ∞ ⇔ lim
λ↘λ∞

‖u(λ)‖∞ = ∞.(III.7.53)
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This complete description of the global positive (negative) solution branches
C±
λ0

requires rather restrictive assumptions on the nonlinearity g. In the se-
quel we prove smoothness of positive solution branches under quite general
assumptions on g, but the domain Ω is symmetric and partially convex in
R2.

Remark III.7.3 Bifurcation from Infinity for (III.7.1) can be proved un-
der weaker assumptions on g than stated in (III.7.35). To be more precise,
assumption (III.7.35)2 is not necessary, and (III.7.35)1 can be weakened to
lim|u|→∞ g(u)/u = K. Following [149], we consider Δ : X → Z as a con-

tinuous bijection for X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}, Z = Cα(Ω), and
also for X = W 2,p(Ω)∩W 1,p

0 (Ω), Z = Lp(Ω), cf. (III.1.8), (III.1.40). Then
(III.7.1) is equivalent to the fixed-point problem

u = −λΔ−1g(u), u ∈ C(Ω).(III.7.54)

Setting A(λ) = I + λKΔ−1 and R(u) = Δ−1(g(u)−Ku), we see that the
inversion w = u/‖u‖2∞ transforms

A(λ)u + λR(u) = 0, (u, λ) ∈ C(Ω)× R, into

A(λ)w + λ‖w‖2∞R(w/‖w‖2∞) = 0, (w, λ) ∈ C(Ω)× R.
(III.7.55)

Assumption |g(u)−Ku| = o(|u|) at |u| = ∞ implies for

R̃(w) ≡ ‖w‖2∞R(w/‖w‖2∞) that

R̃(w) = o(‖w‖∞) at w = 0 in C(Ω)

and R̃ : C(Ω) → C(Ω) is compact; see (III.7.38) and [149].

(III.7.56)

Since A(λ) = I + λKΔ−1 is a compact perturbation of the identity, cf. De-
finition II.2.1, the analysis of bifurcation from the trivial solution line for
A(λ)w + λR̃(w) = 0 allows the application of the Leray–Schauder degree; cf.
Sections II.2, II.3. In particular, if μk = λkK is an eigenvalue of −Δ on
Ω (subject to homogeneous Dirichlet boundary conditions) of odd multiplic-
ity, then (0, λk) is a bifurcation point for A(λ)w + λR̃(w) = 0; cf. Theorems
II.3.2 and II.3.3. The inversion u = w/‖w‖2∞ then provides bifurcation for
A(λ)u + λR(u) = 0 at (∞, λk), which, in turn, proves Bifurcation from In-
finity for (III.7.1) at λ = λk. Furthermore, the alternative of the Global Ra-
binowitz Bifurcation Theorem is valid for A(λ)w+ λR̃(w) = 0. However, the
translation of that alternative to an alternative for Bifurcation from Infinity
after inversion is somewhat awkward, and it is found in [149]. Note that the
statements of Theorems I.20.1 and III.7.2 are much sharper. The bifurcating
continuum obtained by the application of the Leray–Schauder degree does not
necessarily consist of a unique curve as stated in Theorem III.7.2. Since we
need that uniqueness in the sequel, the stronger assumptions (III.7.35) are
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justified. Our analysis, however, applies only if μ0 = λ∞g′(∞) is the princi-
pal eigenvalue of −Δ.

III.7.2 Local Parameterization of Positive Solution
Branches over Symmetric Domains

We consider (III.7.1) over a domain having the following properties:

Ω ⊂ R2 is bounded with a smooth boundary ∂Ω,
Ω is symmetric with respect to the x- and y-axes,
and Ω is partially convex; i.e.,
if (x1, y), (x2, y) ∈ Ω then (tx1 + (1− t)x2, y) ∈ Ω,
if (x, y1), (x, y2) ∈ Ω then (x, ty1 + (1 − t)y2) ∈ Ω,
for all t ∈ [0, 1].

(III.7.57)

Remark III.7.4 For the sake of convenience we restrict the presentation to
domains (III.7.57). There are, however, other cases to which the same or
modified arguments as given in this sequel can be applied: For instance,

Ω ⊂ R2 is a rectangle
or an equilateral triangle.

(III.7.58)

Consider Δu + λg(u) = 0 with g(−u) = −g(u) on a rectangular or hexa-
gonal lattice L as described in Section III.6. As summarized in (III.6.40),
each point (0, λ0) with λ0 > 0 gives rise to unbounded branches of solutions
whose nodal set consists precisely of the lines of a particular rectangular or
hexagonal lattice whose periodicities are in one-to-one correspondence with
λ0. On each tile Ω of the lattice, the solution u is positive or negative. Whereas
a rectangle Ω has the symmetries of (III.7.57), an equilateral triangle Ω has
three symmetry axes. What is needed is for each half of Ω on one side of a
symmetry axis to be an optimal cap in the sense of [55]. Then, according to a
celebrated result of [55], positive solutions on Ω have the symmetries of Ω; cf.
Proposition III.7.5 below. Having this in mind, an extension to smooth and
convex domains having the symmetries of any regular polygon is possible,
too. In Remark III.7.18 we summarize our results for domains other than
(III.7.57).

We quote from [55] the following result:

Proposition III.7.5 Assume that u ∈ C2(Ω) is a positive solution of
(III.7.1), where λ > 0 and g(0) ≥ 0. Then u has the same symmetries as
Ω; i.e., for (x, y) ∈ Ω,

u(−x, y) = u(x, y),
u(x,−y) = u(x, y),

(III.7.59)
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and moreover,
ux < 0 on {(x, y) ∈ Ω|x > 0},
uy < 0 on {(x, y) ∈ Ω|y > 0}.(III.7.60)

Finally,

uν < 0 on ∂Ω(III.7.61)

for the derivative in the direction of the exterior normal unit vector ν on ∂Ω.

Note that properties (III.7.59), (III.7.60) are valid for every g and λ �= 0.
The last property (III.7.61) follows from Hopf’s boundary lemma using

the trick (III.6.10) and the assumptions λ > 0, g(0) ≥ 0: If g(0) > 0, then
for x near ∂Ω, (III.7.1) implies Δu(x) = −λg(u(x)) < 0, and the usual
boundary lemma applies. If g(0) = 0, then (III.7.1) implies Δu + λcu = 0,
where c = g(u)/u ∈ C(Ω). Since u > 0 in Ω, we obtain, as in (III.6.10),
Δu+ λc−u ≤ 0, and again the usual Hopf lemma applies.

As stated in Remark III.7.8 below, property (III.7.61) is not necessarily
true if g(0) < 0.

Another consequence of Proposition III.7.5 is that for positive solutions
of (III.7.1) (for all λ �= 0 and for all g),

‖u‖∞ = max
(x,y)∈Ω

u(x, y) = u(0, 0).(III.7.62)

Lemma III.7.6 Let u ∈ C2(Ω) be a positive solution of (III.7.1) where
g(0) ≥ 0. Then the linear problem

Δv + λg′(u)v = 0 in Ω,
v = 0 on ∂Ω,

(III.7.63)

has no nontrivial solution v ∈ C2(Ω) having the symmetries

v(−x, y) = v(x, y),
v(x,−y) = v(x, y),

(III.7.64)

and satisfying

v(0, 0) = 0.(III.7.65)

If the homogeneous boundary conditions (III.7.63)2 are replaced by

v > 0 or v < 0 on ∂Ω,(III.7.66)

then problems (III.7.63)1, (III.7.64), (III.7.65), (III.7.66) also have no solu-
tion.

Proof. We assume the existence of some nontrival v ∈ C2(Ω) having the
properties (III.7.64), (III.7.65), solving (III.7.63)1, and satisfying v = 0 or
v > 0 or v < 0 on ∂Ω. By (III.7.65), the origin (0, 0) is in the nodal set
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N of v. The complement Ω\N decomposes into nodal domains, and by the
maximum principle, v has opposite signs in two adjacent domains. (The sign
of λg′(u) = c plays no role for this argument; see the trick of (III.6.10).)

Since (0, 0) ∈ N , the symmetry of v implies that there is a nodal domain
D of v in Ω ∩ {x > 0} or in Ω ∩ {y > 0} and v = 0 on ∂D, v > 0 in D.
(In case of (III.7.66) we have D ⊂ Ω.) Therefore, depending on its sign, the
number λ �= 0 is the largest negative or smallest positive eigenvalue of the
weak eigenvalue problem for −Δ with weight function g′(u) over D subject to
homogeneous Dirichlet boundary conditions; cf. Remark III.2.3, in particular
(III.2.46), (III.2.47). It is characterized by an extremal property of

‖∇v‖2L2(D)

(g′(u)v, v)L2(D)
among v ∈ H1

0 (D)

such that (g′(u)v, v)L2(D) > 0 or < 0.

(III.7.67)

Since we need a piecewise smoothness of ∂D (which is true but which is not
easy to prove), we proceed as follows: Let D ⊂ D ⊂ Ω ∩ {x > 0}, say, where
∂D is piecewise smooth. Then the largest negative (or smallest positive)
eigenvalue μ0 of the same weak eigenvalue problem over D is not smaller (or
not larger) than λ. This follows by the extremal property of the “principal”
eigenvalue μ0. If μ0 = λ, we replace v by the positive eigenfunction over
D that satisfies (III.7.63), where Ω is replaced by D. If λ < μ0 < 0 or
0 < μ0 < λ, then we shrink D in Ω ∩ {x > 0}, preserving its piecewise
smooth boundary, so that the “principal” eigenvalue μ0 becomes λ. This is
possible, since by Poincaré’s inequality (III.6.4),

|μ0| ≥ c|D|−1 for a uniform c > 0
and |D| = measD.

(III.7.68)

Therefore, replacing D by D if necessary, we can assume that v satisfies
(III.7.63), where Ω is replaced by D, that v > 0 in D, that D is in Ω∩{x > 0},
say, and that ∂D is piecewise smooth.

Using (III.7.1) for u (which is certainly in C3(Ω) by elliptic regularity),
we obtain by differentiation

Δux + λg′(u)ux = 0 in D,(III.7.69)

and Green’s formula then gives, in view of v = 0 on ∂D,∫
∂D

∂v

∂n
ux = 0,(III.7.70)

where n is the exterior normal unit vector on ∂D. However,
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∂v

∂n
< 0 on ∂D\{ singular points},

by Hopf’s boundary lemma using v > 0 as in (III.6.10),

ux < 0 on ∂D ∩ {x > 0},
ux = 0 on ∂D ∩ {x = 0},
by Proposition III.7.5,

(III.7.71)

contradicting (III.7.70). 
�
Our Main Result on Local Parameterization of Positive Solu-

tions reads as follows:

Theorem III.7.7 Let (u0, λ0) ∈ C2,α(Ω)×R be a solution of (III.7.1) such
that u0 > 0 in Ω and λ0 > 0. We assume g(0) ≥ 0 and that the domain
Ω satisfies (III.7.57). According to (III.7.62), we denote its amplitude by
‖u0‖∞ = u0(0, 0) = p0. Then there are a neighborhood U × V of (u0, λ0) ∈
C2,α(Ω)× R and a curve of class C1 if g is of class C2,

C = {(u(p), λ(p))|p ∈ (p0 − δ, p0 + δ)}
through (u(p0), λ(p0)) = (u0, λ0),

(III.7.72)

such that all solutions of (III.7.1) in U × V are on the curve C, u(p) > 0 in
Ω, and

‖u(p)‖∞ = u(p)(0, 0) = p for p ∈ (p0 − δ, p0 + δ).(III.7.73)

In other words, the curve C is parameterized by the amplitude p of u(p).

Proof. The result follows from the Implicit Function Theorem of Section I.1
in a suitable setting. As usual, we set X = C2,α(Ω)∩ {u|u = 0 on ∂Ω}, Z =
Cα(Ω), and from (III.1.26), (III.1.29), we know that

L : X → Z, defined by

Lv = Δv + λ0g
′(u0)v,

is a (bounded) Fredholm operator of index zero.

(III.7.74)

For the symbols σ, τ ∈ {+,−} we introduce four symmetry classes,

Σ(σ,τ) = {u : Ω → R|u(−x, y) = σu(x, y), u(x,−y) = τu(x, y)},(III.7.75)

and by the symmetry u0 ∈ Σ(+,+) stated in Proposition III.7.5,



368 Chapter III. Applications

L : X(σ,τ) → Z(σ,τ) with

X(σ,τ) = X ∩Σ(σ,τ), Z(σ,τ) = Z ∩Σ(σ,τ),

is a Fredholm operator of index zero

for all σ, τ ∈ {+,−}.

(III.7.76)

For a proof of (III.7.76) we refer to the arguments given in Section III.1 pro-
ving (III.1.33): Choose a constant c ≥ 0 such that L− cI : X → Z becomes
bijective. Since the operator L− cI commutes with every (inverse) reflection
across the x- or y-axis, the unique solution u of Lu− cu = f is necessarily in
X(σ,τ) if f ∈ Z(σ,τ). Therefore, L − cI : X(σ,τ) → Z(σ,τ) is bijective, which
implies (III.7.76) by the same arguments that (III.1.8) implies (III.1.12).

Next we introduce a mapping

G : X(+,+) × R× (0,∞) → Z(+,+) × R,

G(w, λ, t) ≡
(
Δw +

λp0
t

g

(
t

p0
w

)
, w(0, 0)− p0

)
,

(III.7.77)

which is of class C1 and G(u0, λ0, p0) = (0, 0). We prove that its derivative

D(w,λ)G(u0, λ0, p0)[v, λ] = (Lv + λg(u0), v(0, 0)),

D(w,λ)G(u0, λ0, p0) : X
(+,+) × R → Z(+,+) × R,

(III.7.78)

is bijective.

Case I. The kernel N(L) is nontrivial in X(+,+).
By Lemma III.7.6 we know that v(0, 0) �= 0 for all nontrivial v ∈ N(L).

Therefore,
dimN(L) = 1,(III.7.79)

since otherwise, there would be some nontrivial v ∈ N(L) ⊂ X(+,+) with
v(0, 0) = 0. We claim that

g(u0) �∈ R(L) ⊂ Z(+,+).(III.7.80)

The rescaled function us
0(x, y) = u0(sx, sy) solves Δus

0 + s2λ0g(u
s
0) = 0 for

all s > 0. Differentiating this equation with respect to s at s = 1 yields

v1(x, y) = xu0x(x, y) + yu0x(x, y), solving

Δv1 + λ0g
′(u0)v1 = −2λ0g(u0).

(III.7.81)

Furthermore,

v1 ∈ Σ(+,+) and v1 < 0 on ∂Ω(III.7.82)

by assumption (III.7.57) onΩ and by (III.7.61) of Proposition III.7.5. Assume
that g(u0) ∈ R(L). Then
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Lv0 = 2λ0g(u0) for some v0 ∈ X(+,+),

L(v + v0 + v1) = 0,

(v + v0 + v1)(0, 0) = 0, and

v + v0 + v1 < 0 on ∂Ω for some v ∈ N(L),

(III.7.83)

contradicting Lemma III.7.6. This proves (III.7.80).
Since v(0, 0) �= 0 for nontrivial v ∈ N(L), we derive from (III.7.76), (III.7.79),
(III.7.80) thatD(w,λ)G(u0, λ0, p0) as given by (III.7.78) is surjective. To prove
its injectivity, let

D(w,λ)G(u0, λ0, p0)[v, λ] = (Lv + λg(u0), v(0, 0)) = (0, 0),

for some (v, λ) ∈ X(+,+) × R.
(III.7.84)

By (III.7.80) we obtain λ = 0 and v ∈ N(L). Lemma III.7.6 then implies
that v = 0.

Case II. The kernel N(L) is trivial in X(+,+).
In this case, (III.7.76) implies that L : X(+,+) → Z(+,+) is bijective and

therefore
Lv2 = g(u0) for some v2 ∈ X(+,+).(III.7.85)

We claim that v2(0, 0) �= 0. If v2(0, 0) = 0, then the function v1 from (III.7.81)
yields

L(v1 + 2λ0v2) = 0, v1 + 2λ0v2 ∈ Σ(+,+),

(v1 + 2λ0v2)(0, 0) = 0, and

v1 + 2λ0v2 < 0 on ∂Ω,

(III.7.86)

contradicting Lemma III.7.6. For given (f, μ) ∈ Z(+,+) × R,

D(w,λ)G(u0, λ0, p0)[v, λ] = (f, μ) for

v = L−1f − λv2 ∈ X(+,+),

λ = ((L−1f)(0, 0)− μ)/v2(0, 0) ∈ R,

(III.7.87)

which proves the surjectivity of D(w,λ)G(u0, λ0, p0). Assume (III.7.84). If λ =
0, then v = 0. If λ �= 0, using the function v1 from (III.7.81),

L(λv1 − 2λ0v) = 0, λv1 − 2λ0v ∈ Σ(+,+),

(λv1 − 2λ0v)(0, 0) = 0, and

sign(λv1 − 2λ0v) = −signλ on ∂Ω,

(III.7.88)

contradicting Lemma III.7.6. This proves the bijectivity ofD(w,λ)G(u0, λ0, p0)
in all cases.

By the Implicit Function Theorem, there exists a C1-curve
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{(w(t), λ(t))|t ∈ (p0 − δ, p0 + δ)} in X(+,+) × R through

(w(p0), λ(p0)) = (u0, λ0) and

G(w(t), λ(t), t) = (0, 0) for all t ∈ (p0 − δ, p0 + δ),

(III.7.89)

and all solutions of G(w, λ, t) = (0, 0) in a neighborhood of (u0, λ0, p0) are
on that curve. Obviously,

(u(t), λ(t)) =

(
t

p0
w(t), λ(t)

)
solves (III.7.1) for all t ∈ (p0 − δ, p0 + δ).

(III.7.90)

Since u(p0) = u0 > 0 in Ω and u0ν < 0 on ∂Ω, cf. (III.7.61), we obtain, for
sufficiently small δ > 0,

u(t) > 0 in Ω for all t ∈ (p0 − δ, p0 + δ).(III.7.91)

Therefore, (III.7.62) implies

‖u(t)‖∞ = u(t)(0, 0) =
t

p0
w(t)(0, 0) = t(III.7.92)

by the second equation of G(w, λ, t) = (0, 0). This proves that the parameter
t is indeed the amplitude p.

Finally, every solution (u, λ) of (III.7.1) in a neighborhood U×V of (u0, λ0)
in X × R is positive, and therefore, by Proposition III.7.5, u ∈ X(+,+), and

(w, λ, t) =
(

p0

p u, λ, p
)
solves G(w, λ, t) = (0, 0) for p = u(0, 0). Since (w, λ, t)

is in a neighborhood of (u0, λ0, p0) inX(+,+)×R×(0,∞), the solution (w, λ, t)
is on the curve (III.7.89), or (u, λ) is on the curve C given by (III.7.90). 
�

Remark III.7.8 Note that Theorem III.7.7 applies to every positive solution
of (III.7.1); i.e., (u0, λ0) is not necessarily obtained by a bifurcation from
the trivial solutions. Indeed, if g(0) > 0, such a trivial solution line does
not exist. The condition g(0) ≥ 0, however, cannot be dropped in Theorem
III.7.7. In [78], Remark 4.2, we give a counterexample for (III.7.1) over a
ball Ω = BR(0) ⊂ R2 with g(0) = −ε < 0 having a solution

(u0, λ0) such that u0 > 0 in Ω and λ0 > 0,
u0ν = 0 on ∂Ω, cf. (III.7.61),
but there exists no positive solution for p < p0,
where p0 is the amplitude of u0,
and there is only a curve of positive solutions
{(u(λ), λ)|0 < λ < λ0} with amplitudes
p > p0 that ends in (u0, λ0).

(III.7.93)
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The continuation of that curve for λ > λ0 consists of radially symmetric
solutions that are no longer positive. As mentioned in [78], at (u0, λ0) a
symmetry-breaking bifurcation of axially symmetric solutions (which are non-
positive) takes place, too.

We can clearly apply Theorem III.7.7 to any positive (negative) solution
(u, λ) of (III.7.1) on a global continuum C+

λ0
(C−

λ0
) bifurcating from the triv-

ial solution line at (0, λ0); cf. Theorem III.6.3 or (III.7.3). This yields the
following smoothness:

Theorem III.7.9 Assume g(0) = 0, g′(0) > 0, and that the domain Ω sa-
tisfies (III.7.57). Then the unbounded continua C+

λ0
of positive and C−

λ0
of

negative solutions of (III.7.1) emanating at (0, λ0) are each smooth curves
parameterized by the amplitude of u.

For a proof, observe that λ0 = μ0/g
′(0) > 0 and λ > 0 for all (u, λ) ∈ C±

λ0
.

Finally, if u < 0 solves (III.7.1), then û = −u > 0 solves Δû + λĝ(û) = 0,
where ĝ(û) = −g(−û). Therefore, Theorem III.7.7 applies also to negative
solutions of (III.7.1).

We can also apply Theorem III.7.7 to any positive (negative) solution
(u, λ) of (III.7.1) on a global continuum C+(C−) emanating from the solution
(0, 0) and obtained by the Global Implicit Function Theorem; cf. Theorem
III.6.6. This yields the following result:

Theorem III.7.10 Assume g(0) > 0 and that the domain Ω satisfies the
condition (III.7.57). Then the unbounded continua C+ of positive and C− of
negative solutions of (III.7.1) emanating from (0, 0) are each smooth curves
parameterized by the amplitude of u.

For a proof, observe that λ > 0 for (u, λ) ∈ C+ and λ < 0 for (u, λ) ∈ C−. If
(u, λ) ∈ C−, then û = −u > 0 solves Δû+(−λ)ĝ(û) = 0, where ĝ(û) = g(−û)
and −λ > 0, ĝ(0) > 0.

We recall that all continua mentioned in Theorems III.7.9 and III.7.10 are
in the symmetry class X(+,+) × R.

In Theorem III.7.17 the asymptotic behavior of the continua C±
λ0

or C± at
‖u‖∞ = ∞ is investigated.

III.7.3 Global Parameterization of Positive Solution
Branches over Symmetric Domains and
Uniqueness

We consider (III.7.1) over a domain having the properties (III.7.57). We prove
an a priori bound for the parameter λ if u is positive.
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Lemma III.7.11 Let (u, λ) ∈ X × R (X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω}) be
a positive solution of (III.7.1) where g satisfies

g(u) ≥ 0 for u ≥ 0,
g(u) > 0 for u ∈ (a,∞), a ≥ 0,
lim
u→∞ g(u)/u = K > 0.

(III.7.94)

If ‖u‖∞ = u(0, 0) ≥ a+ ε, then

λ ∈ (0, Λ)(III.7.95)

for some constant Λ > 0 depending only on Ω, g, and ε > 0.

Proof. A positive solution of (III.7.1) with a function g satisfying (III.7.94)
can exist only for λ > 0: Since for λ = 0 problem (III.7.1) has only the trivial
solution u = 0, we assume λ < 0. Then Δu = −λg(u) ≥ 0 by (III.7.94)1,
so that by the maximum principle, u is constant if it attains a nonnegative
maximum in Ω. This contradiction proves λ > 0.

We assume that there is a sequence of positive solutions (un, λn) of
(III.7.1) such that

‖un‖∞ ≥ a+ ε, lim
n→∞λn = ∞.(III.7.96)

Case I. The amplitudes ‖un‖∞ are unbounded.
Without loss of generality, ‖un‖∞ → ∞ as n → ∞. Then the rescaled

functions
ũn(x, y) = un(x/

√
λn, y/

√
λn),

vn = ũn/‖ũn‖∞ with sn = 1/‖ũn‖∞ solve

Δvn + sng

(
vn
sn

)
= 0 in Ωn =

√
λnΩ,

vn = 0 on ∂Ωn,

1 ≥ vn > 0 in Ωn, vn(0, 0) = 1,

(III.7.97)

where we use also (III.7.62). By the assumption (III.7.94) on g, the arguments
for (III.7.24), (III.7.25) prove that

max
(x,y)∈Ωn

∣∣∣∣sng
(
vn
sn

)
−Kvn

∣∣∣∣ → 0 as n → ∞,

whence 0 ≤ sng

(
vn
sn

)
≤ C on Ωn for all n ∈ N.

(III.7.98)

For every ball BR(0) there is an nR ∈ N such that BR(0) ⊂ Ωn for all n ≥ nR.
Following the arguments after (III.7.25), elliptic a priori estimates imply

‖vn‖W 2,2(BR(0)) ≤ CR for all n ≥ nR,(III.7.99)
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where CR depends only on the radius R and on g. By a compact embedding
W 2,2(BR(0)) ⊂ C(BR(0)), a diagonal process for n → ∞ and R = N → ∞
yields a subsequence (vnk

)k∈N
of (vn)n∈N

and some

v ∈ C(R2) such that

vnk
→ v in C(BR(0)) for each R > 0.

(III.7.100)

By (III.7.98),

snk
g

(
vnk

snk

)
→ Kv in C(BR(0)), whence

vnk
→ v in W 2,2(BR(0)) for each R > 0,

(III.7.101)

where we use also the elliptic equation (III.7.97)3 and an elliptic a priori
estimate. Therefore, Δv + Kv = 0 in BR(0) for each R > 0, and by the
embedding W 2,2(BR(0)) ⊂ Cα(BR(0)) we obtain finally

Δv +Kv = 0 in R2, v ∈ C2,α(R2),

0 ≤ v ≤ 1, v(0, 0) = 1,
(III.7.102)

contradicting a result on bounded superharmonic functions on R2 (Liouville’s
Theorem; see [56]).

Case II. The amplitudes ‖un‖∞ are bounded.
Without loss of generality, limn→∞ ‖un‖∞ = p ∈ (a,∞). We define vn and

Ωn as in (III.7.97), and we obtain as before (III.7.99), (III.7.100). Instead of
(III.7.101), we get this time

snk
g

(
vnk

snk

)
→ g(pv)

p
in C(BR(0))(III.7.103)

for each R > 0, which, in turn, yields

Δv + g(pv)/p = 0 in R2, v ∈ C2,α(R2),

0 ≤ v ≤ 1, v(0, 0) = 1.
(III.7.104)

In this case, the assumption (III.7.94)1 implies that v is a bounded super-
harmonic function on R2. Therefore, Liouville’s Theorem implies v(x, y) ≡
v(0, 0) = 1 for all (x, y) ∈ R2. This gives g(p) = 0, contradicting (III.7.94)2
for p ∈ (a,∞). 
�

We continue to consider the model problem (III.7.1) over a domain Ω
having the properties (III.7.57).

Theorem III.7.12 We assume for g : R → R that g is of class C2 and
satisfies
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g(u) ≥ 0 for u ≥ 0,

g(u) > 0 for u ∈ (a,∞), a ≥ 0,

lim
|u|→∞

g′(u) = g′(∞) > 0,

|ug′′(u)| ≤ C1 for all u ∈ R and some C1 > 0.

(III.7.105)

Then for each p ∈ (a,∞) there is a unique solution (u, λ) = (u(p), λ(p)) ∈
(C2,α(Ω) ∩ {u|u = 0 on ∂Ω})× R of (III.7.1) having the properties

u(p) > 0 in Ω, λ(p) > 0,

‖u(p)‖∞ = p.
(III.7.106)

Furthermore,
{(u(p), λ(p))|p ∈ (a,∞)} forms a curve

of class C1 in C2,α(Ω)× R.
(III.7.107)

Proof. By Theorem III.7.2 there is a unique curve {(u(s), λ(s))|s ∈ (0, δ
and λ(s) → λ∞ > 0 as s ↘ 0; cf. (III.7.48) and (III.7.53). Therefore,

p̂ = inf{r ∈ (a,∞)| there is a positive solution (u, λ)

of (III.7.1) with ‖u(p)‖∞ = p for all p ∈ (r,∞)}(III.7.108)

exists in [a,∞). We claim that p̂ = a.
Assume p̂ > a. Let (un, λn) ∈ X × R, X = C2,α(Ω) ∩ {u|u = 0 on ∂Ω},

be a sequence of positive solutions of (III.7.1) with ‖un‖∞ = pn ↘ p̂ ≥ a+ ε.
By Lemma III.7.11, the sequence (λn)n∈N is bounded in R, and therefore
((un, λn))n∈N is bounded in X × R; cf. the arguments after (III.7.22). By
properness of the mapping F : X × R → Z = Cα(Ω) given by F (u, λ) =
Δu + λg(u), the sequence ((un, λn))n∈N is relatively compact in X × R; cf.
(III.5.7)–(III.5.9).

Choose a subsequence of ((un, λn))n∈N converging to (û, λ̂) ∈ X×R solv-
ing (III.7.1). Then û ≥ 0, ‖û‖∞ = p̂ > 0, and the maximum principle gives

û > 0 in Ω and also λ̂ > 0. Therefore, Theorem III.7.7 implies the existence
of a curve {(u(p), λ(p))|p ∈ (p̂ − δ, p̂ + δ)} through (û, λ̂) with u(p) > 0 in
Ω and ‖u(p)‖∞ = p for p ∈ (p̂ − δ, p̂ + δ). This contradicts the definition
(III.7.108) of p̂, proving p̂ = a.

Next we prove uniqueness. Assume that

B = {p ∈ (a,∞)| there are at least two positive

solutions (u, λ) of (III.7.1) with ‖u‖∞ = p}
(III.7.109)

is not empty. By (III.7.49) and Lemma III.7.11, the set B is bounded in

(a,∞). Therefore, b̂ = supB exists in (a,∞). If b̂ ∈ B, then Theorem III.7.7

provides a contradiction to the definition of b̂. If b̂ �∈ B, then by properness
of F (u, λ) = Δu + λg(u), there is a unique solution (û, λ̂) of (III.7.1) with



III.7. Smoothness and Uniqueness 375

û > 0 in Ω and ‖û‖∞ = b̂. By definition of b̂, at least two different sequences

(ui
n, λ

i
n), i = 1, 2, with ‖u1

n‖∞ = ‖u2
n‖∞ < b̂ converge to (û, λ̂) in X × R,

contradicting again Theorem III.7.7. Therefore, the set B has to be empty,
which proves the uniqueness.

By the local result of Theorem III.7.7, the curve (III.7.107) is clearly
globally of class C1 in X × R. 
�

Proposition III.7.13 Assume g(0) ≥ 0 and g(p0) = 0 for some p0 > 0.
Then:

(i) There is no positive solution (u, λ) ∈ X ×R of (III.7.1) with ‖u‖∞ = p0.

(ii) If (un, λn) ∈ X × R is a sequence of positive solutions of (III.7.1) such
that ‖un‖∞ → p0, then (sign(g(‖un‖∞))λn → ∞ as n → ∞.

Proof. Assume the existence of a positive solution with ‖u‖∞ = p0. By
Proposition III.7.5 and (III.7.62),

w = u− p0 satisfies

w(0, 0) = 0, w < 0 in Ω\{(0, 0)},
Δw + λcw = 0 in Ω, where

c(x, y) =

{
g(u(x, y))/w(x, y)) for (x, y) ∈ Ω\{(0, 0)},
g′(p0) for (x, y) = (0, 0).

(III.7.110)

Then the function c is continuous on Ω, but the properties of w contradict
the maximum principle (by the trick (III.6.10), no sign condition on λc is
necessary for w ≤ 0). This proves (i).

Case (ii) can occur only if g(‖un‖∞) �= 0. Since ‖un‖∞ = un(0, 0) (cf.
(III.7.62)), the relationsΔun(0, 0) = −λng(un(0, 0)) ≤ 0 imply signg(‖un‖∞)
= signλn �= 0. If the sequence (|λn|)n∈N were bounded, by properness of the
mapping F : X × R → Z given by F (u, λ) = Δu + λg(u), the sequence
((un, λn))n∈N would be relatively compact in X × R; cf. (III.5.7)–(III.5.9).

The limit of a subsequence would give a positive solution (û, λ̂) ∈ X × R

of (III.7.1) with ‖û‖∞ = p0, contradicting (i). Therefore, no subsequence of
(|λn|)n∈N can be bounded, which proves (ii). 
�

Next we give our Main Result on Positive Solutions of (III.7.1) over
symmetric domains Ω satisfying (III.7.57).

Theorem III.7.14 We assume for g : R → R that g is of class C2 and
satisfies

g(u) ≥ 0 for u ∈ [0, b), b ≤ ∞.(III.7.111)

Then for each p ∈ (0, b) where g(p) > 0 there is a unique solution (u, λ) =
(u(p), λ(p)) ∈ (C2,α(Ω) ∩ {u|u = 0 on ∂Ω}) × R of (III.7.1) having the
properties
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u(p) > 0 in Ω, λ(p) > 0,

‖u(p)‖∞ = p.
(III.7.112)

For p ∈ (0, b) where g(p) = 0, no positive solution u of (III.7.1) with ‖u‖∞ =
p exists.

To each maximal interval (p1, p2) ⊂ (0, b) where g(p) > 0 there corre-
sponds precisely one maximal curve {(u(p), λ(p))|p ∈ (p1, p2)} ⊂ X × R of
positive solutions of (III.7.1) that is of class C1.

If for i ∈ {1, 2} the point pi is in (0, b), then g(pi) = 0 and λ(p) → ∞ as
p ∈ (p1, p2) and p → pi.

Proof. Let g(p) > 0 for p ∈ (0, b). We consider problem (III.7.1) with a
modified function g̃ : R → R of class C2 such that

g̃(u) = g(u) for u ∈ [0, p],

g̃ satisfies (III.7.105) for some a ∈ [0, p).
(III.7.113)

Such a function g̃ certainly exists. Theorem III.7.12 then guarantees a unique
solution (u(p), λ(p)) ∈ X × R of the modified problem having the properties
(III.7.106). By (III.7.113)1, this solution is also a unique solution of the orig-
inal problem satisfying (III.7.112). (Nonuniqueness would imply nonunique-
ness of the modified problem as well, contradicting Theorem III.7.12.) By
Theorem III.7.7 on local parameterization, each such solution (u(p), λ(p)) is
on a curve of class C1 parameterized by the amplitude p of u(p). Proposition
III.7.13 finally excludes positive solutions with amplitudes p where g(p) = 0,
and it gives the asymptotic behavior λ(p) → ∞ as the parameter p approaches
a zero of the function g. 
�
Remark III.7.15 In [78], Remark 6.4, we show by a counterexample that
the assumption (III.7.111) cannot be dropped in Theorem III.7.14. We give
an example for (III.7.1) over a ball Ω = BR(0) ⊂ R2 with g(0) = 0, g(u) > 0
for u > p0, but g(u) < 0 for u ∈ (0, p0) having no positive solution with
amplitude ‖u‖∞ = p ∈ (p0,

3
2p0). In view of g(0) = 0, Theorem III.7.7 is

valid.
The assumptions (III.7.57) on the domain Ω cannot be dropped either.

This is shown in [33] by various counterexamples.

III.7.4 Asymptotic Behavior at ‖u‖∞ = 0 and
‖u‖∞ = ∞

We keep the assumptions of Theorem III.7.14 for problem (III.7.1) over a
domain Ω satisfying (III.7.57). If g(u) > 0 for u ∈ (0, δ) or for u ∈ (a,∞),
then (III.7.1) possesses unique positive solutions (u, λ) ∈ (C2,α(Ω)∩{u|u = 0
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on ∂Ω}) × R with amplitudes ‖u‖∞ = p ∈ (0, δ) or ‖u‖∞ = p ∈ (a,∞) and
with some λ = λ(p) > 0. We investigate the asymptotic behavior of λ(p) as
p → 0 and p → ∞.

Theorem III.7.16 Under the assumptions of Theorem III.7.14 and g(u) >
0
for u ∈ (0, δ) the following hold:

(i) If g(0) > 0, then λ(p) → 0 as p → 0.

(ii) If g(0) = 0, g′(0) > 0, then λ(p) → λ0 = μ0/g
′(0) as p → 0, where μ0 is

the principal eigenvalue of −Δ; cf. (III.7.2).

(iii) If g(0) = 0, g′(0) = 0, then λ(p) → ∞ as p → 0.

Proof. Let γ = limu→0 g(u)/u ∈ [0,∞] be the limit in each of the three
cases. Then, for given ε > 0 or M > 0,

γ − ε < g(u)/u < γ + ε or

M < g(u)/u for γ = ∞,

for all 0 < u < δ(ε) or 0 < u < δ(M).

(III.7.114)

We define for a positive solution (u, λ) ∈ X × R of (III.7.1) with amplitude
‖u‖∞ = p < δ(ε) or ‖u‖∞ = p < δ(M) the function ρ = g(u)/u, which is con-
tinuous and positive in Ω. As in (III.7.13), we denote by μ0(ρ) the principal
eigenvalue with weight function ρ of −Δ on Ω subject to homogeneous Dirich-
let boundary conditions. Then μ0(ρ) minimizes the quotient ‖∇u‖20/(ρu, u)0
in H1

0 (Ω)\{0}; cf. (III.7.6). Therefore, the estimates (III.7.114) for ρ imply,
in view of the monotonicity (III.7.15),

μ0(ρ) < μ0(M) in case (i), where γ = ∞,

μ0(γ + ε) < μ0(ρ) < μ0(γ − ε) in case (ii),

where γ = g′(0) > 0,

μ0(ε) < μ0(ρ) in case (iii), where γ = 0.

(III.7.115)

On the other hand, if ρ = const, then clearly, μ0(ρ) = μ0/ρ, where μ0 is the
principal eigenvalue of −Δ with weight ρ = 1. Finally, if (u, λ) is a positive
solution of (III.7.1), then clearly, λ = μ0(ρ); cf. (III.7.16). Combining these
observations with (III.7.115) proves Theorem III.7.16. 
�

In case (ii), the curve of positive solutions emanating at (0, λ0) bifurcates
from the trivial solution line {(0, λ)} (note that g(0) = 0). The maximal curve
provided by Theorem III.7.14 is the unbounded continuum C+

λ0
introduced in

(III.7.3). The curve C+
λ0

is parameterized by the amplitude p = ‖u‖∞, and
it exists as long as g(p) > 0. If g(p0) = 0 for some p0 > 0, then λ(p) → ∞
as p ↗ p0. If g(u) > 0 for all u ∈ (0,∞), then the asymptotic behavior at
‖u‖∞ = ∞ is partially determined by the following theorem.
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Theorem III.7.17 Under the assumptions of Theorem III.7.14 for b = ∞
and g(u) > 0 for u ∈ (a,∞), the following hold:

(i) If limu→∞ g(u)/u = K > 0, then λ(p) → λ∞ = μ0/K as p → ∞, where
μ0 is the principal eigenvalue of −Δ; cf. (III.7.2).

(ii) If limu→∞ g(u)/u = 0, then λ(p) → ∞ as p → ∞.

Proof. (i) Let (u(pn), λ(pn)) ∈ X×R be a sequence of positive solutions of
(III.7.1) such that ‖u(pn)‖∞ = pn → ∞ as n → ∞. By the proof of Lemma
III.7.11, Case I, the sequence (λ(pn))n∈N is bounded, and the arguments for
(III.7.23)–(III.7.27), (III.7.98)–(III.7.102) prove that the only possible clus-
ter point for (λ(pn))n∈N is λ∞ with λ∞K = μ0, where μ0 is the principal
eigenvalue of −Δ.
(ii) Assume that a sequence of positive solutions (u(pn), λ(pn)) ∈ X × R

satisfies ‖u(pn)‖∞ = pn → ∞ and 0 < λ(pn) < Λ. Without loss of generality,
we assume that λ(pn) → λ ≥ 0. Again the arguments for (III.7.23)–(III.7.27),
(III.7.98)–(III.7.102) prove that (for a subsequence) u(pnk

)/‖u(pnk
)‖∞ → v

in W 2,2(Ω), λ(pnk
)g(u(pnk

))/pnk
→ 0 in C(Ω) as k → ∞, and Δv = 0 in

Ω, v = 0 on ∂Ω, ‖v‖∞ = v(0, 0) = 1, which is a contradiction. 
�
The case limu→∞ g(u)/u = ∞ is obviously more involved. We refer to

[103], for example, where we discuss the exponential growth of g and prove
that λ(p) → 0 as p → ∞.

Remark III.7.18 In Section III.6 we prove the existence of global solution
branches of Δu+ λg(u) = 0 with g(−u) = −g(u) that are characterized by a
fixed rectangular or hexagonal nodal pattern of their solutions; cf. (III.6.40).
As mentioned in Remark III.7.4, these continua can also be considered as
positive solution branches over a tile Ω of the respective lattice L which is a
rectangle or an equilateral triangle. These tiles Ω are admitted for Proposition
III.7.5, and accordingly, positive solutions have the symmetries of Ω, and
the directional derivatives orthogonal to a symmetry axis are negative; cf.
(III.7.60). Relation (III.7.61), however, does not hold at the corners of ∂Ω.
Nonetheless, a modified Lemma III.7.6 holds when (0, 0) is replaced by the
center of Ω, i.e., the intersection of the symmetry axes. Therefore, Theorem
III.7.7 is valid for every solution (u, λ) ∈ (C2,α(R2) ∩ XD) × R such that
u > 0 in a tile Ω and λ > 0. Since the unbounded branches C+

λ0
of (III.6.40)

emanating at (0, λ0) for some λ0 > 0 stay in the half-space (C2,α(R2)×XD)×
(0,∞), they are globally smooth curves parameterized by the amplitude of u;
cf. Theorem III.7.9. This sharpens considerably the result of (III.6.40).

All other results apart from uniqueness in this section about global parame-
terization and the asymptotic behavior are also valid for Δu+λg(u) = 0 with
g(−u) = −g(u) on a rectangular or hexagonal lattice. The reason for that
exception is that we have not proved the uniqueness of the curve bifurcating
from infinity; cf. Theorem III.7.2 and (III.7.49). The uniqueness claimed in
Theorem III.7.12 relies on the uniqueness near infinity. (We believe that The-
orem III.7.2 holds also on a lattice, but its proof does not apply to polygonal
domains, since we need a smooth boundary for Hopf’s boundary lemma.)
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For smooth and convex domains having the symmetries of a regular poly-
gon, all results on local and global parameterization, uniqueness, and asymp-
totic behavior of this section hold. Needless to say, they hold also for an
interval, i.e., if (III.7.1) is an ODE with two-point boundary conditions.

We sketch some typical cases in Figure III.7.1–Figure III.7.3.

In Figure III.7.1,
g(u) > 0 for u ∈ [0, p1) ∪ (p1,∞), g(p1) = 0,

lim
u→∞ g(u)/u = K.

In Figure III.7.2,
g(u) > 0 for u ∈ (0, p1) ∪ (p1,∞), g(p1) = 0,

g(0) = 0, g′(0) > 0, lim
u→∞ g(u)/u = 0.

In Figure III.7.3,
g(u) > 0 for u ∈ (0, p1) ∪ (p1, p2) ∪ (p2,∞), g(pi) = 0, i = 1, 2,

g(0) = 0, g′(0) = 0, g(u) ∼ eu as u → ∞.

(III.7.116)

μ0/K

p = ‖u‖∞

λ

p1

Figure III.7.1
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μ0/g
′(0)

p = ‖u‖∞

λ

p1

Figure III.7.2

If g(u) > 0 for all u ∈ (0,∞), then the asymptotic behavior at the zeros
g(pi) = 0 is eliminated, and the asymptotic behavior at ‖u‖∞ = 0 and at
‖u‖∞ = ∞ is connected by a smooth curve. Under the conditions (III.7.11),
a parameterization by the amplitude p as well as by λ is possible, and we
sketch C+

λ0
in Figure III.7.4. The trivial solution line is stable for λ < μ0/g

′(0)
and unstable for λ > μ0/g

′(0), whereas C+
λ0

is unstable; cf. Theorem III.7.1.

λ

p = ‖u‖∞

p2

p1

Figure III.7.3
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μ0/g
′(0)

p = ‖u‖∞

λμ0/g
′(∞)

Figure III.7.4

III.7.5 Stability of Positive Solution Branches

We discuss the stability properties of the global curves of positive solutions
given by Theorems III.7.9 and III.7.10. These curves are parameterized by the
amplitude p of u. For analytical g : R → R we apply the results of Section I.16,
starting with the local Principle of Exchange of Stability given by formula
(I.16.51). Since the greatest eigenvalue of the linearization along the trivial
solution line is μ(λ) = (λ − λ0)g

′(0) (see the comments after (III.7.3)), the
trivial solution is stable for λ < λ0 and unstable for λ > λ0. Excluding vertical
bifurcation, a supercritically bifurcating curve is stable and a subcritically
bifurcating curve is unstable. The local curve given by Theorem III.7.10 is
stable, since all eigenvalues of DuF (u, λ) = Δ + λg′(u)I are negative for
(u, λ) near (0, 0) ∈ X(+,+) × R. Recall that F (u, λ) = Δu + λg(u) defines
a mapping F : X(+,+) × R �→ Z(+,+); cf. (III.7.75), (III.7.76). Accordingly,
the subsequent stability analysis admits only perturbations in the symmetry
class Σ(+,+). Whereas this weakens the notion of stability, it sharpens that
of instability. For a discussion of the critical eigenvalue perturbations along
global curves we need the following lemma.

Lemma III.7.19 Let (u, λ) ∈ C+
λ0

or C+ given by Theorem III.7.9 or
III.7.10. Both global curves are parameterized by the amplitude p of u, i.e.,
(u, λ) = (u(p), λ(p)) for p > 0. Then the following holds (˙= d

dp ):
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λ̇(p) �= 0 ⇒ DuF (u(p), λ(p)) : X(+,+) → Z(+,+)

is bijective or 0 is not an eigenvalue

of DuF (u(p), λ(p)),

λ̇(p) = 0 ⇒ 0 �= u̇(p) ∈ N(DuF (u(p), λ(p))

and (DλF (u(p), λ(p)), u̇(p))0 �= 0.

(III.7.117)

Proof. Assume in case λ̇(p) �= 0 that 0 �= v ∈ N(DuF (u(p), λ(p))). Differ-
entiating F (u(p), λ(p)) = 0 with respect to p we obtain

DuF (u(p), λ(p))u̇(p) +DλF (./.)λ̇(p) = 0,(III.7.118)

and using the symmetry ofDuF (u, λ) = Δ+λg′(u)I with respect to the scalar
product ( , )0 in L2(Ω), (III.7.118) yields after scalar multiplication by v

(DλF (u(p), λ(p)), v)0 = 0,(III.7.119)

where we also used λ̇(p) �= 0. By the surjectivity of D(u,λ)F (u(p), λ(p)) :

X(+,+) × R → Z(+,+) proved for (III.7.78), there is a (w, λ) ∈ X(+,+) × R

such that DuF (u(p), λ(p))w + DλF (./.)λ = v. Scalar multiplication by v,
using DuF (u(p), λ(p))v = 0 and (DλF (u(p), λ(p)), v)0 = 0, gives ‖v‖20 = 0
or v = 0. This contradiction proves that DuF (u(p), λ(p)) is injective and, by
the Fredholm property, that it is bijective.

If λ̇(p) = 0 then (III.7.118) proves u̇(p) ∈ N(DuF (u(p), λ(p))). We show
that u̇(p) �= 0. By (III.7.90) we have

u(t) =
t

p
w(t), where

w(p) = u(p) and w(t)(0, 0) = p for t ∈ (p− δ, p+ δ).
(III.7.120)

This implies u̇(p) = 1
pu(p)+ẇ(p) and ẇ(p)(0, 0) = 0. Therefore u̇(p)(0, 0) = 1,

cf. (III.7.92), and u̇(p) �= 0. Again by the surjectivity of D(u,λ)F (u(p), λ(p))

there is a (w, λ) ∈ X(+,+) × R such that DuF (u(p), λ(p))w + DλF (./.)λ =
u̇(p). Using u̇(p) ∈ N(DuF (u(p), λ(p)) and the symmetry of DuF (u(p), λ(p)),
we obtain after scalar multiplication by u̇(p),

λ(DλF (u(p), λ(p)), u̇(p))0 = ‖u̇(p)‖20 > 0,(III.7.121)

which proves the last statement of (III.7.117). 
�
A consequence of (III.7.117)1 is that

the stability property of the curve {(u(p), λ(p))}
does not change as long as λ̇(p) �= 0.

(III.7.122)

In case λ̇(p0) = 0,
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v̂0 = c0u̇(p0), normalized to ‖v̂0‖0 = 1 by c0 > 0,

spans N(DuF (u(p0), λ(p0)); cf. (III.7.79).
(III.7.123)

For a Lyapunov–Schmidt reduction we decompose

X(+,+) = N(DuF (u(p0), λ(p0)))⊕ (R(DuF (./.)) ∩X(+,+)),

Z(+,+) = R(DuF (u(p0), λ(p0))) ⊕N(DuF (./.)),
(III.7.124)

with orthogonal (with respect to ( , )0) projections Qu = (u, v̂0)0v̂0 and
P = Q|X(+,+) .

Setting F̂ (u, p) = F (u(p0 + p) + u, λ(p0 + p)) we have F̂ (0, p) = 0 for
all p near 0 and DuF̂ (0, 0) = DuF (u(p0), λ(p0)). Let Φ̂(s, p) be the scalar
bifurcation function for F̂ (u, p) = 0 obtained by the method of Lyapunov–
Schmidt near (u, p) = (0, 0) according to the decomposition (III.7.124) and
let Φ(s, λ) be the scalar bifurcation function for F (u, λ) = 0 near (u, λ) =
(u(p0), λ(p0)) according to the same decomposition. (The “scalar bifurcation
function” is derived from the bifurcation function (I.2.9) when v ∈ N and
Φ ∈ N are identified with their coordinates s = (v, v̂0)0 and (Φ, v̂0)0 with
respect to the basis {v̂0} ⊂ N , respectively; cf. also (I.19.5). Moreover, since
v = Qu and Φ = QF , these coordinates coincide with (u, v̂0)0 and (F, v̂0)0,
respectively.) Then, in view of F (u(p0 + p), λ(p0 + p)) = 0, we have Φ(s(p0 +
p), λ(p0 + p)) = 0 for all p near 0, where Qu(p0 + p) = (u(p0 + p), v̂0)0v̂0 =
s(p0 + p)v̂0. Furthermore,

Φ̂(s, p) = Φ((u(p0 + p), v̂0)0 + s, λ(p0 + p)); cf. (I.16.39).(III.7.125)

By u(p0 + p) = u(p0) + pu̇(p0)+ h.o.t. we obtain with (III.7.123)

(u(p0 + p), v̂0)0 = (u(p0), v̂0)0 + p(u̇(p0), v̂0)0 + h.o.t.

= s(p0 + p) = s(p0) + ṡ(p0)p+ h.o.t. with ṡ(p0) =
1

c0
.

(III.7.126)

Assume now that

λ̇(p0) = · · · = λ(k−1)(p0) = 0, λ(k)(p0) �= 0 for k ≥ 2.(III.7.127)

Differentiating Φ̂(0, p) = Φ(s(p0 + p), λ(p0 + p)) = 0 k times with respect to
p at p = 0, (III.7.127) implies

DsΦ(s(p0), λ(p0)) = · · · = Dk−1
s Φ(s(p0), λ(p0)) = 0,

d

dp
DsΦ(s(p0 + p), λ(p0 + p))|p=0 = · · · = dk−2

dpk−2
DsΦ(./.)|p=0 = 0,

dk−1

dpk−1
DsΦ(s(p0 + p), λ(p0 + p))|p=0 = −c0DλΦ(./.)|p=0λ

(k)(p0).

(III.7.128)
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On the other hand, Theorem I.16.6 links (III.7.128) to the simple eigenvalue
perturbation DuF (u(p), λ(p))v(p) = μ(p)v(p) with 0 �= v(p) ∈ X(+,+) for p
near p0 as follows:

μ(p0) = μ̇(p0) = · · · = μ(k−2)(p0) = 0,

μ(k−1)(p0) = −c0DλΦ(s(p0), λ(p0))λ
(k)(p0)

= −c0(DλF (u(p0), λ(p0)), v̂0)0λ
(k)(p0) �= 0,

(III.7.129)

where we use the last statement of (III.7.117). Formula (III.7.129) generalizes
formula (I.7.31). (For k = 2, (III.7.129) and (I.7.31) differ by the factor c0
which has the following reason: For (I.7.31) we choose a parameterization
such that ‖ẋ(0)‖ = ‖v̂0‖ = 1, whereas here ‖u̇(p0)‖0 = ‖ 1

c0
v̂0‖0 = 1

c0
. If we

parameterize the solution curve as (û(t), λ̂(t)) = (u(p0 + c0t), λ(p0 + c0t)),
then ‖ ˙̂u(0)‖0 = 1 and there is no longer a factor c0 in (III.7.129).)

Formula (III.7.129) has the following consequences for the global curves
C+
λ0

and C+ parameterized by the amplitude p; recall that the number k ≥ 2
is defined in (III.7.127) and that μ(p) is the simple eigenvalue perturbation
DuF (u(p), λ(p))v(p) = μ(p)v(p) for p near p0.

If k is odd then (u(p0), λ(p0))
is not a turning point and
signμ(p) does not change near p = p0.

If k is even then (u(p0), λ(p0))
is a turning point and
signμ(p) changes at p = p0.

(III.7.130)

Supercritically bifurcating curves C+
λ0

and C+ are stable for amplitudes p > 0

up to the first point (u(p0), λ(p0)) where λ̇(p0) = 0; cf. (III.7.122). If
(III.1.127) holds with an odd k, then the stability is preserved for p > p0 (and
p near p0). Let (u(p0), λ(p0)) be a first point on C+

λ0
or C+ where (III.1.127)

holds with an even k. By (III.7.130) the stability is lost at this turning point.
To be more precise, in this case μ(p0) = 0 is the greatest eigenvalue, i.e.,

it is the principal eigenvalue of DuF (u(p0), λ(p0)) = Δ + λ(p0)g
′(u(p0))I,

and the eigenfunction u̇(p0) is positive in Ω. Furthermore, λ(k)(p0) < 0, since
λ(p0) is a local maximum at the first turning point. Since μ(p) < 0 for p < p0
and μ(p) > 0 for p > p0 (and p near p0), μ

(k−1)(p0) > 0. Formula (III.7.129)
then implies that (DλF (u(p0), λ(p0)), u̇(p0))0 =

∫
Ω
g(u(p0))u̇(p0)dx > 0.

Beyond the first turning point or on a subcritically bifurcating curve C+
λ0

the solution u(p) is unstable. Its instability is preserved as long as λ̇(p) �= 0 or
if (III.7.127) holds with an odd k. Let (u(p0), λ(p0)) be the next turning point
when the amplitude p is increased. By (III.7.130) the critical eigenvalue μ(p)



III.8. Notes and Remarks to Chapter III 385

changes sign at p = p0. However, μ(p0) = 0 is not necessarily the principal
eigenvalue. It could also be the second eigenvalue.

In the first case the principal eigenvalue becomes negative, which means
that μ(k−1)(p0) < 0. In view of λ(k)(p0) > 0 (λ(p0) is a local minimum),
formula (III.7.129) is satisfied only if

∫
Ω g(u(p0))u̇(p0)dx > 0. In this case

the curve regains stability for p > p0 (and p near p0).
In the second case the second eigenvalue becomes positive. By the same

arguments as before, this is possible only if
∫
Ω g(u(p0))u̇(p0)dx < 0. In this

case the curve remains unstable for p > p0 (and p near p0).
In the first case u̇(p0) is positive in Ω; in the second case the eigenfunction

u̇(p0) has precisely two nodal domains in Ω; cf. [24]. Since u̇(p0) ∈ X(+,+), the
nodal line is a symmetric closed curve in Ω with the origin in its interior. This
is not a priori excluded; note that the function g′(u(p0)) does not necessarily
have a constant sign.

To summarize, in contrast to a loss of stability, a gain of stability at a
turning point is not guaranteed. We sketch some possibilities in Figure III.7.5,
where the first two curves represent C+

λ0
and the third curve sketches C+; cf.

Theorems III.7.9 and III.7.10.

stable

p = ‖u‖∞

unstable

not specified
λ

Figure III.7.5

We mention that a curve C+
λ0

can have infinitely many turning points as
the amplitude tends to infinity. A specific example is given in [112].

III.8 Notes and Remarks to Chapter III

The Fredholm property of elliptic operators over bounded domains is clearly
well known. Since a single suitable reference for all our purposes is probably
not available in closed form, we include a proof for convenience. The Fredholm
property of elliptic operators on a lattice, however, is not so well established.
A proof for Neumann boundary conditions is given in [49]. In that paper
we prove also how a fixed rectangular nodal structure preserved on global
branches breaks up under a small perturbation.
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Local and global bifurcation for elliptic problems is a subject of countless
papers that have appeared in the last thirty years. We try to give a synopsis
from what we have learned from those and in particular from what we have
learned from our teacher, K. Kirchgässner, and also from M. Crandall and P.
Rabinowitz during a visit in Madison in 1977/78. The same holds for Hopf
bifurcation for parabolic problems, and we mention our starting point [115].
(For references about Hopf bifurcation see the Notes and Remarks to Chapter
I, Section I.22.)

The discussion of the stationary Cahn–Hilliard model, serving as a para-
digm in Sections III.2, III.5, III.6, is taken from [106], [107].

In contrast to elliptic and parabolic problems, hyperbolic problems are
very rare in bifurcation theory. Most contributions to the one-dimensional
wave equation are devoted to forced nonlinear vibrations. We mention [147],
[148], [138], and the references cited there. By its nature, this is not a bifurca-
tion problem, and its approach uses a broad selection of nonlinear functional
analysis. Free vibrations “in the large” are found in [152] via global methods
of the calculus of variations. Bifurcation of free vibrations in the spirit of a
Lyapunov Center Theorem is proved in [25] by methods of KAM Theory; cf.
Remark III.3.1. Our approach to free nonlinear vibrations goes exclusively
back to [92], and it was resumed in [110], [101], [72], [73], and [61].

Preservation of nodal structure on global branches was first proved in
[26], whose ideas were extended to higher dimensions in [66], [67], [68], [70].
In [71] we took the challenge to prove it for elliptic systems and in [69] for
fully nonlinear elliptic problems (whose results are not included in this book).

Global positive (and negative) solution branches of elliptic problems have
been investigated by many people. It started with the pioneering paper [147],
which established the Rabinowitz alternative for each of the branches of
positive and negative solutions. Later, more qualitative properties of these
branches, depending on the data of the problem, became an issue; cf. the re-
views [5], [127], and also [143], for example. The question about smoothness
and uniqueness has been answered only for a class of ODEs [156] and for
problems over a ball: Due to the radial symmetry of positive solutions, they
satisfy an ODE; cf. [161], [141], for example. To the best of our knowledge,
smoothness and uniqueness of positive solution branches over more general
but still symmetric domains has been investigated only in [103], [104], [78].
The proof of Lemma III.7.11 is essentially due to [32]. An iteration scheme
that selects stable positive solution branches in a neighborhood of the bifur-
cation point is presented in [116].
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88. H. Kielhöfer. Halbgruppen und semilineare Anfangs-Randwertprobleme.
Manuscripta Mathematica, 12:121–152, 1974.
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96. H. Kielhöfer. A Bunch of Stationary or Periodic Solutions Near an Equilibrium by a
Slow Exchange of Stability. Nonlinear Differential Equations: Invariance, Stability,
and Bifurcation, Academic Press, New-York, pages 207–219, 1981.
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104. H. Kielhöfer. Smoothness of global positive branches of nonlinear elliptic problems
over symmetric domains. Mathematische Zeitschrift, 211:41–48, 1992.
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106. H. Kielhöfer. Pattern formation of the stationary Cahn–Hilliard model. Proceedings
of the Royal Society of Edinburgh, 127 A:1219–1243, 1997.
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113. K. Kirchgässner. Multiple Eigenvalue Bifurcation for Holomorphic Mappings. Contri-
butions to Nonlinear Functional Analysis. Academic Press, New York, pages 69–99,
1977.
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116. K. Kirchgässner and J. Scheurle. Verzweigung und Stabilität von Lösungen semi-
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